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Titre : Un problème inverse de source en sciences planétaires : localisation d’un dipole magnétique
dans des roches lunaires à partir de données magnétiques clairsemées

Résumé :

Les anomalies magnétiques à la surface de la Lune, indiquent que celle-ci a eu un champ
magnétique propre. Les géologues étudient la magnétisation rémanente des roches de la Lune,
afin de comprendre l’ origine et l’ évolution de cet ancien champ lunaire. Les informations dispo-
nibles, collectées à partir de techniques non invasives telles que l’ utilisation d’ un magnétomètre
tournant, correspondent à certaines composantes du champ magnétique de l’ échantillon. Ceci
fournit un problème inverse qui consiste à récupérer les caractéristiques de la magnétisation à
partir du champ qu’ elle génère.
Nous faisons l’ hypothèse de que la source magnétique est ponctuelle et unique. En se fondant
sur une telle hypothèse, une approche existante consiste à postuler la position de la source
magnétique au centre de masse de l’ échantillon, puis à résoudre un problème linéaire pour
retrouver la magnétisation. Dans cette thèse, nous proposons d’ utiliser d’ abord les données
disponibles pour estimer l’ emplacement de la source, ce qui est un problème non linéaire. La
magnétisation est ensuite retrouvée, comme avec l’ autre approche, en résolvant un problème
linéaire.
Dans notre étude, nous observons l’ existence d’ une relation entre les pôles d’ une fonction
rationnelle et l’ emplacement de la source magnétique. Nous utilisons des schémas d’ approxi-
mation rationnelle pour récupérer le pôle de la fonction rationnelle à partir de ses valeurs sur un
cercle. Nous proposons ensuite différentes méthodes pour utiliser le lien entre le pôle récupéré
et l’ emplacement de la source, afin de l’ estimer. Nous avons mené des expériences numériques
pour analyser le comportement de ces méthodes et comparer leurs qualités.

Mots clés : roches de la Lune, source magnétique, estimer l’ emplacement de la source, ap-
proximation rationnelle, problème inverse.



Title : An inverse source problem in planetary sciences : dipole localization in Moon rocks from
sparse magnetic data.

Abstract :

Magnetic anomalies on the Moon’s surface indicate that the Moon used to have a global ma-
gnetic field for millions of years that no longer exist. Geoscientists need to study the remanent
magnetization (strength and direction) of Moon rocks, in order to understand the origin and the
evolution of this ancient lunar field. This remanent magnetization is preserved from ferroma-
gnetic materials. From non-invasive techniques such as with the use of a spinner magnetometer,
the available information is some measurements of the sample’s magnetic field. This leads to an
inverse problem which is to recover the magnetization characteristics from the field it generates.
We use the hypothesis of a single pointwise magnetic source (dipolar model). With such an
assumption, an existing approach is to set the magnetic source position at the sample’s mass
center and then solve a linear problem to recover the magnetization. In this thesis we propose
to use the available data to first estimate the location of the dipolar source, which is a nonlinear
problem. The magnetization is then recovered as with the other approach, by solving a linear
problem.
In our study, we observe that there is a relation between the poles of a rational function and
the magnetic source location. We use rational approximation schemes to recover the pole of
the rational function from its values on a circle. Then we propose several methods to use the
link between the recovered pole and the source location, in order to estimate it. Methods like
these take advantage of the geometrical features derived from our physical model equations. We
conducted numerical experiments to analyze the behavior of these methods and compare their
qualities.

Keywords : Moon rocks, magnetic dipole, source estimation, rational approximation, inverse
problems.
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Abstract

Figure 1: Global maps of three components and total intensity of the lunar
magnetic anomalies at 30 km altitude (SVM30) [1].

Magnetic anomalies on the Moon’s surface (see Figure 1) indicate that the
Moon used to have a global magnetic field [2]. Geoscientists need to study
the remanent magnetization (strength and direction) of Moon rocks, in order
to understand the origin and the evolution of this ancient lunar magnetic
field. From non-invasive techniques such as with the use of a spinner mag-
netometer, we are able to measure the sample’s magnetic field. This leads
to an inverse problem which is to recover the magnetization characteristics
from the field it generates.
We use the hypothesis of a single pointwise magnetic source (dipolar model).
With such an assumption, an existing approach is to set the magnetic source
position at the sample’s mass center and then solve a linear problem to re-
cover the magnetization. In this thesis we propose to use the available
data to first estimate the location of the dipolar source, which is a nonlin-
ear problem. Practically with the proper data treatment we translate our
source localization problem to a rational approximation problem. The mag-
netization is then recovered as with the other approach, by solving a linear
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problem.
In our study, we observe that there is a relation between the poles of a
rational function and the magnetic source location. We use rational approx-
imation schemes to recover the pole of the rational function from its values
on a circle. Then we propose several methods to use the link between the
recovered pole and the source location, in order to estimate it. We con-
ducted numerical experiments to analyze the behavior of these methods and
compare their qualities.



Introduction and thesis outline

During the last sixty years, our understanding of the Moon has changed
drastically. In 1959 Luna 2 mission carried a three-component fluxgate
magnetometer and it didn’t detect a global magnetic field on the Moon,
this was in agreement with the theory that the Moon is too small to pro-
duce a dynamo field similar to that of the Earth’s. The same year Luna 3
mission took the first photograph of the far side of the Moon revealing a
landscape covered mostly with impact craters in contrast to the near side of
the Moon (the side that is always visible from Earth) which is 30% covered
with basaltic plains of ancient volcanic activity known as “mare”. However,
the giant leap came with the Apollo missions in 1969 and the discovery of
ancient Lunar magnetism! Apollo 11 (July 1969) and Apollo 12 (Novem-
ber 1969) missions revealed a significant surface magnetic field which comes
from crustal remanent magnetization anomalies see Figure 1. Even early
studies of the Apollo samples [3] reveal that the Moon had a strong mag-
netic field, with a value up to 100 µT , between 3.9-3.6 Ga (billion years)
ago, see Figure 2.

The Earth’s magnetic field is generated by a geodynamo and it ranges from
25-65 µT . The Moon is a planetary object with mass about 1.2% of the
Earth’s mass however we have evidences that it used to have an ancient
magnetic field with strength up to 100 µT . This is a puzzling situation
because when scientists calculated the theoretical maximum field strength at
the surface of the Moon from a geodynamo mechanism [4,5], they found that
it should range between 12-16 µT . So how it is possible a small planetary
object like the Moon can generate such a strong magnetic field? One idea
to answer this question is that the mechanism that produces the Moons
global magnetic field was different from that of the Earth’s. In [4] they
also study the idea of a field generated by a precession core crystallization,
and/or thermal convection dynamo, in that case an intensity of 71-77 µT
is possible. Another idea is that the strong remanent magnetization of the
Moon rocks is the effect of impact events [6] and their magnetic field of the
impact-generated plasma.

So what is the remanent magnetization and how paleomagnetic
studies try to recover it? The origin of the magnetization comes from

15
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Figure 2: Absolute and IRMs normalization paleointensities of the Lunar
samples as a function of time. Each point represents a single Lunar rock.
The green area corresponds to the theoretical maximum field strength at
the surface of the Moon generated by a dynamo mechanism. Data taken
from [3].

quantum mechanics phenomena [7] that are not in the scope of this thesis.
Nonetheless it is interesting to discuss how these phenomena affects the be-
havior of the chemical elements of the periodic table under the influence of
an external magnetic field. Based on the interaction of an element with an
external magnetic field, we can categorize the chemical elements (with re-
spect to their magnetic properties) into four groups known as antiferromag-
netic, paramagnetic, diamagnetic and ferromagnetic/ferrimagnetic. More
precisely elements with no response to an external magnetic field are called
antiferromagnetic. Elements that have weak interactions with the applied
magnetic field are called paramagnetic if they are attracted by the field, and
diamagnetic if they are repelled from the magnetic field. Finally elements
with strong interactions with the applied magnetic field are called ferro-
magnetic/ferrimagnetic. Ferromagnetic materials are able to retain their
magnetic properties after the external field has been removed [8]. Iron is
one of the most important ferromagnetic elements, for this reason miner-
als (mixes of elements with metals) that contain iron such as magnetite,
hematite and pyrrhotite are crucial for paleomagnetic studies [8]. Since iron
is so important for our study, it will be useful to know the iron concentration
on the Moon’s surface. More precisely the iron abundance in Lunar surface
varies from 0.1 wt% (weight percent) in mare basalts to 1-2 wt% in the
largest crater basis with an average abundance of 0.11-0.45 wt% [9]. That
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means that some Apollo samples are not good candidates for paleomagnetic
studies due to low iron content and some of the good samples with high iron
content must have been enriched with iron from asteroidal projectiles [6].

Paleomagnetic studies focused on remanent magnetization preserved by fer-
romagnetic materials. This magnetization is the result of a cooling process
under the influence of a magnetic field. In paleomagnetic studies they can
use noninvasive or invasive techniques to estimate the magnetization of a
sample. For instance a noninvasive technique is to measure the magnetic
field around a sample and try to estimate the magnetization from this infor-
mation [10,11]. On the other hand a common invasive demagnetization tech-
nique in paleomagnetic studies is the Thellier-Thellier method [12]. With
the Thellier-Thellier method, a sample is exposed to various stages of heat-
ing, at each stage the natural remanent magnetization (NRM) of the sample
is replaced with thermal remanent magnetization (TRM). At the end of this
process the NRM is totally replaced with TRM and an estimation of NRM
is recovered through the known TRM data. Unfortunately both noninvasive
and invasive techniques have a degree of uncertainty for the NRM estima-
tion. That happens because for noninvasive techniques we are dealing with
inverse problems that depend on the model, for instance the use of a dipolar
or a multipolar source affects the estimation of the magnetization, because it
explains the magnetic field data under different assumptions. On the other
hand for invasive techniques like Thellier-Thellier method not only do we
damage the sample, but at the same time in order to have a good estima-
tion of the magnetization, we need to satisfy specific conditions such as the
single-domain magnetic grains [13]. Though human processed objects like
bricks and pottery satisfy the single-domain magnetic grains condition it is
not common to find natural objects such as rocks that they do. That means
the paleointensity data illustrated in Figure 2 have uncertainty for both
their intensity and their age. For this reason the need to study the Apollo
samples with modern magnetometers and new theories is essential. One of
the goals of our study is to develop tools that can increase the confidence
on the noninvasive techniques.

Some open questions: we saw before, that the records of the ancient
Lunar magnetic field, are preserved in Moon rocks, for billions of years, in
the form of remanent magnetization (NRM). Those rocks reveal pieces of
the ancient Moon’s magnetic history. The goal of the geoscientists is to
combine this information and understand the mechanism and the evolution
of this ancient magnetic field. What are the origins and the mechanisms of
this field? What was its intensity and its evolution? Why did it disappear?
How does a small planetary object have the ability to generate a long lasting
magnetic field? All of these questions are still open for the geoscientists.
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Why a planetary magnetic field is important? To answer this ques-
tion we need to know how Earth’s magnetic field is useful. The main reason
why Earth’s magnetic field is important is because it protects us against the
solar wind [14, ch. 15]. Solar wind is a phenomenon where charged particles
from the Sun “bombard” a planet. Without a global planetary magnetic
field the upper layers of the atmosphere are exposed to those charged parti-
cles. That results in the slow and gradual loss of the atmosphere. For Earth
specifically, the ozone layer, which protects us from the cosmic radiation
and part of the Sun’s ultraviolet radiation, is located at the upper level of
our atmosphere and it is more vulnerable to solar wind. Consequently it
is not an exaggeration to say that life on the Earth as we know it, exists
because of the magnetic field of our planet. Another reason is due to the
fact that humans depend more and more on assets that are in orbit around
our planet. The satellites and other space devices face a potential threat
from the charged particles of the solar wind [15]. However a magnetic field
is not stable. It has a periodic cycle of geomagnetic polarity reversals [16],
during the reversals the field strength drops to low levels and as a result the
danger for satellite damage increases. For those reasons it is important to
understand how a planetary object generates a global magnetic field, what
is the minimum size required to sustain it? And what conditions affect its
intensity?

Challenges

From the 2200 returned samples of Apollo missions that are stored in NASA
facilities1 only 90 had been studied for paleomagnetism upto 2010. A more
exhaustive study which measuresd 123 new samples, took place in 2016 by
scientists from Cerege [11]. The difference between the previous studies and
the latest one was that previous studies focused on small fragments usually
with a weight less than 1 g (with exception [17] which studied samples with
weight between 0.24-8.05 g) and many of those used invasive demagnetiza-
tion methods. The motivation of our research is to study large samples from
the Apollo missions weighing between 50 g & 4 kg. For a study like this,
an invasive technique is not an option. The large Apollo samples must be
protected and only after significant evidence of paleomagnetic importance,
can a small fragment of the sample be extracted for further invasive studies.
For this reason it is important to decide which rocks have interesting mag-
netic properties. The current approach used by geoscientists is to assume
that the generated magnetic field can be explained by a single dipole, which
is located at the center of the mass of the sample.

1Lunar Sample Laboratory: https://curator.jsc.nasa.gov/lunar/

https://curator.jsc.nasa.gov/lunar/
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Thesis Contribution

Our contribution is to expand the model used by geoscientists. Though we
also assume that the magnetic field can be explained by a single dipole,
the location of the dipole could be anywhere inside the sample. A model
like that has the advantage, for instance, to indicate the area from where
a fragment should be extracted. In addition, for large samples, a better
localization of the dipole, leads to better estimation for the strength of the
magnetization. Both of these are necessary for the geoscientists to take the
correct decision in the samples selection.
These new paleomagnetic studies are the consequence of the growing inter-
est around the Moon and its history. The French National Research Agency
(ANR) participated in this research expedition by funding the MagLune
project2. The innovation of this project is the collaboration between French
research centers CEREGE, IPGP, ISTerre, INRIA and American organiza-
tions and institutes MIT, NASA which put in action the study of the same
problem from many different scientific fields.
Though our research focuses on Lunar rock samples, its results can be used
to study remanent magnetization from rock samples of other planets and
planetary objects in our solar system. With our research we can even study
the magnetic properties of meteorites.

Thesis outline

The issue of the magnetization recovery can be broken into two subproblems.
The first problem is to find the location of the magnetic dipole (chapters 2,
3, 4) and the second problem is to recover the strength and the direction of
the magnetic dipole (chapter 5). The content of this thesis is structured as
follows:

Chapter 1: in this chapter we describe the data acquisition process and
the physical model of our study. We explain the problem we face and we
derive the equations that describe it. We also describe the simulations frame-
work for our synthetic data experiments. The setup of these experiments
will be used to test and compare the various methods of our study in the
rest of the thesis.

Chapter 2: in this chapter we describe the data treatment, based on this
process we are able to start our analysis. Part of the solution of the local-
ization problem depends on the estimation of a pole of a rational function
inside the unit disk. That happens because the pole is linked with informa-
tion regarding the dipole location. The goal of this chapter is to provide an

2http://maglune.cerege.fr/

http://maglune.cerege.fr/
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initial estimation of the pole by using either PHC or grid method and then a
final estimation of the pole with the use of RARL2 software. A comparison
for perfect and noisy synthetic data of the two initialization methods (PHC
and grid) is provided at the end of this chapter.

Chapter 3: having the information of the estimated pole position we use
different methods to recover the dipole location. In this chapter we describe
a linear system method as well as methods with geometrical features namely
the planes method, parabola method and circles method. The goal of this
chapter is to understand the features of the described methods. We also
conduct simulations with synthetic data in order to get a first idea for the
performance of each method.

Chapter 4: this chapter is dedicated to resolve some issues regarding the
circles method of chapter 3. Due to approximation and numerical errors
the mathematical solution of a common intersection point of the circles
method cannot be computed. For this reason we need to compute a pseudo-
intersection point. To do that we use three different approaches namely the
radical center, the minimization of the sum of the distances to three circles
and the minimization of the sum of the squares of powers of a point with
respect to given circles. At the end of the chapter we provide simulations
with synthetic data and we discuss how we can combine the information from
different measurement positions in order to compute a unique estimation for
the dipole location.

Chapter 5: having an estimation for the dipole location we can focus
now on the second problem which is the estimation of the strength and the
direction of the magnetic dipole. We describe how we can approach this
problem as a least min square problem. We also provide simulations with
synthetic data. In this chapter we also conduct a comparison of the methods
we decide to use in order to solve the problem.

Chapter 6: the last chapter of our thesis is dedicated to the conclusions,
and the description of further work.



Notations

B[Xd,Md](X) macroscopic magnetic field

Br, B⊥, Bτ magnetic field data which measured by the radial, ver-
tical and tangential component of the magnetic field
respectively

µ0 magnetic permeability of free space
Md = (M1,M2,M3) magnetic source moment / dipole moment
Xd = (xd, yd, zd) magnetic source location / dipole location
X = (x, y, z) point under study e.g. location of the pointwise mag-

netic field measurement
ξ− pole of our rational function / theoretical pole

In our study we adopt the following conventions for our notations.

• Symbols in bold represent vectors or matrices, unless otherwise indi-
cated.

• Estimated quantities appear with a hat on top of the symbol e.g.
X̂d denotes the estimation of the magnetic source location / dipole
location.

• Notations with prime (′) referred to the scaled geometry of the unit
circle T, disc D or ball B depending the content of our analysis. For
instance ξ′− denotes the theoretical pole in the unit disc D.
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CHAPTER 1

Data acquisition process and physical models

1.1 Data acquisition process

In this section we describe the data acquisition process and the geometry
that is correlated with it. Let’s start with the nature of our measurements.
Moon rocks have the ability to preserve magnetic information [9] in the
form of remanent magnetization. This remanent magnetization generates
a magnetic field around the rock. Geoscientists from Cerege conducted a
survey by measuring the magnetic fields of 123 Moon rock samples [11] with
the aim of recovering information on their magnetization. An additional
difficulty in their work was the fact that the Moon rock samples from Apollo
missions are located in NASA storage facilities and they cannot leave these
facilities. This situation introduces some additional constraints such as the
portability of the equipment used by geoscientists. For this reason they built
a spinner magnetometer device which they call lunometer [10] see Figure 1.1.

As a result the lunometer is a portable device and without many mechanical
parts, this design resolves the transportation issues and at the same time
protects the samples from chemical contamination. Lunometer performs
measurements of the magnetic field in short time and without damaging the
sample. It also has the ability to measure a variety of sample sizes and it can
isolate the sample from the external environment with a mu-metal shield.
Finally lunometer is sensitive enough to allow measurements of samples with
weak magnetic field. As a side remark for the lunometer, geoscientists use a
commercial three-axis fluxgate magnetic field sensor (Mag-03MS1003 Bart-
ington Instruments, Ltd.) which measures the components of the magnetic
field Br, B⊥, Bτ namely the radical, vertical and tangential component

3http://www.bartingtondefenceandspace.com/presentation/

mag-03-three-axis-magnetic-field-sensor
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respectively at heights [0, 0.015, 0.03]. These specifications dictate the de-
fault setup of our experiments for which we usually use 3 sensors at heights
[0, 0.015, 0.03].

Figure 1.1: Schematic illustration of the magnetometer [10]. The picture on
the left shows the side view of the magnetometer, while the picture on the
right shows its top view. In both pictures one can see the rotation mechanism
on top of which there is the rotation table and the acrylic cubic box which
encloses the sample as well as the commercial three-axis fluxgate magnetic
field sensor. This sensor measures each component of the magnetic field at
different heights. The sample is isolated from the external environment with
a two-layered mu-metal shield.

The measurement procedure is as follows:

• The sample is enclosed inside an acrylic cubic box. The size of the box
can vary from five to twenty centimeters. The acrylic box is placed on
top of a rotating table (deposition plate).

• A two-layered mu-metal shield is used to cancel the ambient field.

• A rotating mechanism, rotates the deposition plate. At every 0.7◦ the
three components of the magnetic field are measured stepwise by the
“three-axis” fluxgate sensor, note that the distance of the sensor from
the cubic box center (which approximates the sample’s mass center)
is free to move from between five to thirty centimeters.

• After one or several full turns (for the sake of stacking) these operations
are repeated two more times (3 measurement positions in total) with
the sample placed in orthogonal positions on the rotating table.
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Finally from those sparse measurements for one measurement position, we
will have data on three circle sections on a cylindrical geometry see Fig-
ure 1.2. From those measurements we try to recover the dipole’s position,
direction and magnitude. The features of this cylindrical geometry will be
explained in detail during our study.

(a) This picture illustrates the surfaces
of the cubic box (where the sample is
enclosed) which are placed on the dis-
position plate.

(b) This picture shows the data geom-
etry of our measurements. The mea-
surements are performed on three or-
thogonal cylinders; for each cylinder,
data are indeed available at discrete
points of three circles.

Figure 1.2: In both pictures we use the same color code to illustrate the
measurement position. Position 1, is illustrated with red and the orthogonal
positions 2 and 3, are illustrated with yellow and green respectively.

1.2 Physical framework

In our study we use the differential form of Maxwell’s equations for the
magnetic field, under the magnetostatic and macroscopic framework, see [18,
ch. 5.8]:

∇ ·B = 0, (1.1)

∇×H = J, (1.2)

where ∇· is the divergence operator, ∇× is the curl operator, B is the
average of all magnetic flux regions of our volume (magnetic flux density),
H is the averaged magnetic field and J is the total current density. Note
that B, H, J are R3 valued quantities depending on space variables.
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Figure 1.3: Illustration of hysteresis loop for a ferromagnetic material.

The link between the averaged magnetic field H and the averaged magnetic
flux density B is given by the relation

H =
1

µ0
B−M, (1.3)

where M is the average macroscopic magnetization which is also called mag-
netic moment density, or magnetization. In ferromagnetic materials, H and
B have a non linear relation which could be illustrated with the hysteresis
loop, see Figure 1.3.
For hard ferromagnetic materials (such as iron) with a given magnetization
M and J = 0 we see in [18, ch. 5.9] that Equation (1.2) becomes

∇×H = 0. (1.4)

Equation (1.4) implies that we can introduce a magnetic scalar potential
ΦM in [18, ch. 5.9 B] and [19, sec. 2.1]. Then the macroscopic magnetic
field can be computed as

H = −∇ΦM . (1.5)

The idea of the scalar potential ΦM computation is to use Equations (1.1)
and (1.3). This leads us to the relation

∆ΦM = ∇ ·M

which is a Poisson equation (with ∆ we denote the Laplace operator ∇·∇).

By using the Coulomb potential
1

4π|X−X′|
as a fundamental solution of
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−∆, the expression of the scalar magnetic potential ΦM can be written as:

ΦM (X) = − 1

4π

∫
∇ ·M(X′)

|X−X′|
d3X′,

at points X ∈ R3 that do not belong to the support of M. Now having
in mind that our magnetization is assumed to be pointwise we can use the
Dirac impulsion δ for which we get that

〈M, 1〉 = 〈MdδXd
, 1〉 = Md〈δXd

, 1〉 = Md,

where Md is the moment of the dipole. Following the computations in [19],
we compute the gradient

∇
(

1

|X−X′|

)
= − X−X′

|X−X′|3
.

With these computations we can write the scalar potential as:

ΦM (X) = − 1

4π

∫
∇ ·M(X′)

|X−X′|
d3X′ = − 1

4π

∫
M(X′) · ∇

(
1

|X−X′|

)
d3X′,

from which we get:

ΦM (X) =
1

4π

∫
M(X′) · (X−X′)

|X−X′|3
d3X′ =

1

4π

Md · (X−Xd)

|X−Xd|3
. (1.6)

Note that the right part of Equation (1.6) derives from our single dipole
assumption.

Notation of our study: for a point X outside from the sample, Equation
(1.3) is zero. In that case the magnetic flux density B and the magnetic field
H are proportional to each other. In our study, by abuse of language, we
call B sometimes as magnetic field. We use the notation B[Xd,Md] to recall
that the magnetic source is a single dipole with location Xd and moment
Md. Consequently the basic equation of our study which is based on a single
dipole, quasi-static (time independent), magnetostatic, macroscopic approx-
imation for ferromagnetic materials can be computed from the Expressions
(1.5) and (1.6) from which we get:

B[Xd,Md](X) = µ0H = −µ0∇ΦM (X) = −µ0∇
(

1

4π

Md · (X−Xd)

|X−Xd|3

)
.

(1.7)



1.3. MAGNETIC SOURCE MODELS 27

Now what we have to do is to compute the gradient of ΦM . We do the
computations for the first element of the gradient vector which corresponds
to the partial derivative of

− 1

4π

Md · (X−Xd)

|X−Xd|3

with respect to the first variable x1 of X = (x1, x2, x3); we can work with a
similar way for the other two partial derivatives.

− 1

4π

∂

∂x1

Md · (X−Xd)

|X−Xd|3
= − 1

4π

∂

∂x1

 M1

M2

M3

 ·
 x1 − xd1

x2 − xd2

x3 − xd3


((x1 − xd1)2 + (x2 − xd2)2 + (x3 − xd3)2)

3
2

.

By computing the dot product and using the property of the derivative for

division of functions

(
f

g

)′
=
f ′g − fg′

g2
we get:

− 1

4π

∂

∂x1

M1(x1 − xd1) +M2(x2 − xd2) +M3(x3 − xd3)

((x1 − xd1)2 + (x2 − xd2)2 + (x3 − xd3)2)
3
2

=

= − 1

4π

(
|X−Xd|3 ∂

∂x1
(M1(x1 − xd1) +M2(x2 − xd2) +M3(x3 − xd3))

|X−Xd|6
−

−
[Md · (X−Xd)]

∂
∂x1

((
(x1 − xd1)2 + (x2 − xd2)2 + (x3 − xd3)2

) 3
2

)
|X−Xd|6

 =

= − 1
4π

|X−Xd|3M1−[Md·(X−Xd)] 3
2
|X−Xd| ∂∂x1 ((x1−xd1)2+(x2−xd2)2+(x3−xd3)2)

|X−Xd|6
=

= − 1

4π

|X−Xd|3M1 − 3|X−Xd|[Md · (X−Xd)](x1 − xd1)

|X−Xd|6
=

= − 1

4π

|X−Xd|2M1 − 3[Md · (X−Xd)](x1 − xd1)

|X−Xd|5
.

Combining this result (together with the other two partial derivatives) and
Equation (1.3) we get the expression of our main equation of our study
which is:

B[Xd,Md](X) = −µ0

4π

|X−Xd|2Md − 3[Md · (X−Xd)](X−Xd)

|X−Xd|5
. (1.8)

1.3 Magnetic source models

There are two main categories of magnetic source models, namely dipo-
lar [20, 21] and multipolar [22]. In literature the assumption of point like
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magnetic sources is common for both of these categories. For each category
we can have models which concern a single source [20] or many sources [21].
Depending on the model, the magnetic source could be located at the origin
of the coordinate system or elsewhere. For instance geoscientists in Cerege
study a dipolar model with a single dipole assumption which is located at
the origin of their coordinate system [10]. Similarly in our study we also
use a dipolar model with a single dipole assumption but our source could be
located at any place in our coordinate system, limited only by the sample’s
physical size. It is worth mentioning that there exist also hybrid models like
in [23] which assume first dipolar dominant sources and then use multipolar
expansion.

Note that the data from the magnetic field measurements are independent
of the model we use. In our case we use the assumption that the field can be
explained by only one magnetic dipole in the sample. This assumption has
meaning if the sample is uniformly magnetized or if the sample is globally not
magnetic, except for a small grain somewhere. In these cases the hypothesis
of a single magnetic dipole could be a good approximation of the rock’s
generated field. Of course it is possible that the data cannot be explained
by only one dipole. In that case the role of our algorithm is to tell us that
our hypothesis of a single dipole is not valid.

1.4 Framework for simulations with synthetic data

In the following chapters we conduct simulations with synthetic data in order
to test the methods we develop. For this reason it is useful to describe here
the frameworks of those simulations. We design the experiments in such a
way that, in the ideal case, the data acquisition process corresponds to data
without noise generated from exactly one magnetic dipole with moment Md

at location Xd (perfect data, based on our assumption). To do that, we
generate arbitrary dipole locations Xd and moments Md. There are two
main frameworks based on which we can categorize our experiments.

Framework for arbitrary dipoles uniformly spread in a restricted
volume: for this framework of experiments we define the shape of a vol-
ume, such as a cylinder or a ball. The generated dipoles of those experiments
are uniformly spread inside the volume. For instance in Figure 1.4 one can
see the dipole locations of 2000 experiments uniformly spread inside a ball
of radius r = 0.14.

Framework for arbitrary dipoles uniformly spread on cylinders:
for this framework we define specific cylinders with radii evenly spaced be-
tween 0 and R where R denotes the distance of the sensors from the rev-
olution axis. In these experiments the dipoles are uniformly spread on the
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(a) (b)

Figure 1.4: The picture on the left illustrates a general 3D view of 2000
dipole locations uniformly generated in a ball of radius r = 0.14. The picture
on the right is the 2D side view of the same 2000 dipole locations containing
the information (|xd + iyd|, zd). In both pictures the dipole locations are
illustrated as black stars.

surface of each cylinder and are vertically ranging from −R to R. For in-
stance Figure 1.5 illustrates the case with R = 0.111 for 10 different cylinders
with 100 generated dipoles on each surface hence 1000 dipole locations in
total. Note that every cylindrical surface has the same number of generated
dipoles.

For each framework we generate arbitrary moments Md for the dipoles
(by default we generate one moment). For the moments we specify their
strength, namely their modulus. The moments directions are randomly
chosen (uniformly) on a sphere. For instance, if we generate 30 moments
Md with modulus one, for a dipole location, we will end up with 30 different
dipoles which are all located at the same Xd location. Figure 1.6 shows the
directions of the moments for a case like that.

Extra parameters of our experiments

Noise: note also that we have the ability to introduce noise into our mea-
surements. There are two kinds of noise we can use, the angular noise which
adds inaccuracy to the sensors’s locations and signal noise which is additive
noise on the magnetic field measurements.
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(a) (b)

Figure 1.5: The picture on the left illustrates a general 3D view of 1000
dipole locations generated on the surface of 10 concentric cylinders. The
picture on the right is a top view of the same 1000 dipoles locations, here
the radius of the cylinders are more visible. In both pictures the dipole
locations are illustrated as black stars.

Figure 1.6: The black star illustrates one arbitrary dipole location Xd .
For this dipole location, 30 different moments Md were generated and their
direction starts from the black star and continues to the black dots. Note
that a setup like this generates 30 different dipoles for our experiments.

Number of sensors: another degree of freedom in our experiments is
that we can simulate measurements with a different number of sensors and
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place them at various heights. This is important because geoscientists are
interested in seeing if a new version of a lumometer with multiple sensors
could provide us with better estimations for the sample’s magnetization.

Sensors distance R from the revolution axis: in many simulations
we set R = 0.15 meters, this distance is the default distance used by geo-
scientists in Cerege. Recall that the distance of the lunometer sensors can
vary between R = 0.05 to R = 0.3 meters.

Measurement positions: another parameter of our experiments is the
number of measurement positions. By default we use three different or-
thogonal positions. At each position the lunometer performs measurements
on circular sections for each component of the magnetic field B[Xd,Md] at
different heights which form a cylindrical geometry see Figure 1.2.

1.5 Setups of experiments

In the following chapters 2, 3, 4 and 5 we conduct simulations with synthetic
data. In this section we collect all the setups of our experiments to come
and we explain their characteristics. We do that for two reasons: the first
reason is to help the reader with a handy reference, so one can find easily the
experiments setup and the second reason, is to provide enough information
for other researchers in order to reproduce our experiments and test our
claims.

Descriptions of the setup of our experiments

For the selected synthetic data experiments, we set (for all of them) the
sensors measurement distance from the revolution axis at R = 0.15, the
measurement step at 1◦ and the moment strength at 0.001 Am2. We also
present experiments without angular noise, we do that because we observe
that with the selected method of study, the angular noise does not affect
significantly our results. We divide the experiments into five groups as
follows.

First group of experiments: this group of synthetic data experiments
consists of 4000 dipoles. To get them, we first generate 4000 radii evenly
spread between 0 and R and select randomly only one dipole per cylinder
surface and the cylinders are vertically ranging from −R to R. The measure-
ments are taken for a single measurement position and the three sensors are
all located at the same height. The following tables show the information
of these setups.
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Table 1.1: Setup

# of cylinders # of dipoles per cylinder surface Total # of dipoles
4000 1 4000
# of generated mo-
ments

# of measurement positions signal noise

1 1 0%
# of sensors heights type of sensor
3 0.015, 0.015, 0.015 Br, B⊥, Bτ

Table 1.2: Setup

# of cylinders # of dipoles per cylinder surface Total # of dipoles
4000 1 4000
# of generated mo-
ments

# of measurement positions signal noise

1 1 5%
# of sensors heights type of sensor
3 0.015, 0.015, 0.015 Br, B⊥, Bτ

Second group of experiments: this group of experiments consists of
6000 dipoles, which are generated on the surfaces of 15 concentric cylinders
whose radii are evenly distributed between 0 and R (400 dipoles per surface).
Once again the cylinders are vertically ranging from −R to R. This group
also concerns data from a single measurement position. The sensors of these
experiments are located at different heights.
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Table 1.3: Setup

# of cylinders # of dipoles per cylinder surface Total # of dipoles
15 400 6000
# of generated mo-
ments

# of measurement positions signal noise

1 1 0%
# of sensors heights type of sensor
3 0, 0.015, 0.03 Br, B⊥, Bτ

Table 1.4: Setup

# of cylinders # of dipoles per cylinder surface Total # of dipoles
15 400 6000
# of generated mo-
ments

# of measurement positions signal noise

1 1 0%
# of sensors heights type of sensor
11 −0.075,−0.06,−0.045,−0.030,

−0.015, 0, 0.015, 0.030,
0.045, 0.06, 0.075

Bτ , B⊥, Br, Bτ ,
B⊥, Br, B⊥, Bτ ,
Br, B⊥, Bτ

Table 1.5: Setup

# of cylinders # of dipoles per cylinder surface Total # of dipoles
15 400 6000
# of generated mo-
ments

# of measurement positions signal noise

1 1 0%
# of sensors heights type of sensor
9 0, 0.015, 0.03

0, 0.015, 0.03
0, 0.015, 0.03

Br, B⊥, Bτ
Br, B⊥, Bτ
Br, B⊥, Bτ

Third group of experiments: this group of experiments consists of 6000
dipoles, which are uniformly generated inside a ball with radius r = 0.14 .
This group concerns data from all three measurement positions, hence it is a
complete data set. The sensors in these experiments are located at different
heights.
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Table 1.6: Setup

volume # of dipoles Total # of dipoles
ball of radius 0.14 6000 6000
# of generated mo-
ments

# of measurement positions signal noise

1 3 0%
# of sensors heights type of sensor
3 0, 0.015, 0.03 Br, B⊥, Bτ

Table 1.7: Setup

volume # of dipoles Total # of dipoles
ball of radius 0.14 6000 6000
# of generated mo-
ments

# of measurement positions signal noise

1 3 0%
# of sensors heights type of sensor
11 −0.075,−0.06,−0.045,−0.030,

−0.015, 0, 0.015, 0.030,
0.045, 0.06, 0.075

Bτ , B⊥, Br, Bτ ,
B⊥, Br, B⊥, Bτ ,
Br, B⊥, Bτ

Table 1.8: Setup

volume # of dipoles Total # of dipoles
ball of radius 0.14 6000 6000
# of generated mo-
ments

# of measurement positions signal noise

1 3 5%
# of sensors heights type of sensor
3 0, 0.015, 0.03 Br, B⊥, Bτ

Table 1.9: Setup

volume # of dipoles Total # of dipoles
ball of radius 0.14 6000 6000
# of generated mo-
ments

# of measurement positions signal noise

1 3 5%
# of sensors heights type of sensor
11 −0.075,−0.06,−0.045,−0.030,

−0.015, 0, 0.015, 0.030,
0.045, 0.06, 0.075

Bτ , B⊥, Br, Bτ ,
B⊥, Br, B⊥, Bτ ,
Br, B⊥, Bτ

Fourth group of experiments: in these experiments we study the effect
of the dipole moment. For this reason we use three selected dipole locations
of the Setup 1.6. More precisely we use the Xd(4) = [0.0228,−0.1080, 0.0690],
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Xd(5) = [−0.0526,−0.0529,−0.0838] and Xd(6) = [0.0519, 0.1101,−0.0668]
locations which correspond to the 4th, 5th and 6th experiments location of
Setup 1.6. For these cases we generate 1000 moments that varies randomly
on a sphere around each Xd. Finally we use the current lunometer configu-
ration and 3 measurement positions for our experiments.

Table 1.10: Setup

# of dipoles Total # of dipoles
3 3000

# of generated mo-
ments

# of measurement positions signal noise

1000 3 0%
# of sensors heights type of sensor
3 0, 0.015, 0.030 Br, B⊥, Bτ

Fifth group of experiments: here we have measurements from a sin-
gle measurement position. For these experiments we use 1000 dipoles uni-
formly spread inside a ball of radius r = 0.14 and we use a single type
of sensor (B⊥) to take the measurements, but at eleven different heights.

Table 1.11: Setup

volume # of dipoles Total # of dipoles
ball of radius 0.14 1000 1000
# of generated mo-
ments

# of measurement positions signal noise

1 1 5%
# of sensors heights type of sensor
11 −0.075,−0.06,−0.045,−0.030,

−0.015, 0, 0.015, 0.030,
0.045, 0.06, 0.075

B⊥, B⊥, B⊥, B⊥,
B⊥, B⊥, B⊥, B⊥,
B⊥, B⊥, B⊥



CHAPTER 2

Approximation methods in 2D and their link with
the dipole location

In Chapter 1, we saw the data acquisition process and the physical model
of our study. In this chapter, we start dealing with our first subproblem,
namely the estimation of the dipole location Xd. More precisely we see how
we can manipulate the information we get from the pointwise measurements
of the components of the magnetic field B[Xd,Md], in order to extract useful
information for the dipole location Xd. Our strategy is to work in a 2D
space instead of a 3D one. We can do this by focusing our study on the
measurements from a single component of the magnetic field B[Xd,Md] (ra-
dial, tangential or vertical) which are taken on a single measurement plane,
at sensors locations on a circle. Our first goal for this chapter is to explain
how our reduced 2D problem is linked with rational functions and essentially
with a pole estimation inside the unit disk D. This approach was inspired
by the article [21].

Such pole estimates, actually available for the field components at different
heights and in 3 orthogonal directions, will allow us to compute an estimate
of the dipole location Xd in Chapter 4.

Note that in this chapter we explain how to treat the available signal and
what is the physical model of our study. Then we use Grid and PHC methods
in order to initialize properly RARL2 which is the software that provides us
with a pole estimation inside the unit disk D. Finally we do a comparison
between the Grid and PHC methods.

2.1 Measurement treatment

Let us consider one section of measurements, take for instance measurements
from position 1 (where by convention the cubic box is seated on the 0xy
plane, for the other two measurement positions the cubic box is seated on

36



2.1. MEASUREMENT TREATMENT 37

the 0xz and 0yz planes respectively). From the data acquisition process in
Chapter 1, we saw that the measurements of a magnetic field component are
taken on a circular path around the sample, with revolution axis 0z which
passes through the center of the acrylic box where the sample is enclosed.
The sample is placed inside the acrylic box in such a way that the revolution
axis of each measurement position passes near its mass center, with this way
the origin of our coordinate system is a rough approximation of the rock’s
mass center. Because we want to work on the unit circle T, we scale the
geometry of our data. We do that by dividing with R the distance between
the revolution axis and the sensors location see Figure 2.1.

Figure 2.1: The picture on the left illustrates the actual geometry of our
data acquisition process, for a single magnetic field component. The black
rectangle illustrates the sensor’s location. The distance of the sensor from
the revolution axis 0z is R. The picture on the right illustrates the 2D
scaled geometry of our study, which is on the complex plane. The dashed
circle on the right picture is the unit circle T. In both pictures, the available
measurements are given at points located on the dashed circles.

Now there are two kinds of information we need to scale: the sensor’s lo-
cations at specific points X = (x, y, z), and the unknown dipole location
Xd = (xd, yd, zd). As we did in paper [20], we introduce the complex num-
ber ξ = x+ i y, where i ∈ C is the imaginary number i2 = −1, so that
the measurements on the actual geometry are indeed known for values of
ξ that all satisfy |ξ| = R. Accordingly, we introduce the complex number
ξd = xd + i yd. Moreover the magnetic source that we are looking for is nec-
essarily inside the sample, which is itself inside the cubic box surrounded by
the circles of radius R where the sensors lie. This implies that |zd| < R and
|ξd| < R.

We scale our information by dividing by R. Hence in our scaled geometry
we have

ξ′ := x′+iy′ :=
x+ i y

R
=

ξ

R
, h :=

z

R
, ξ′d := x′d+i y′d :=

xd + i yd
R

, hd :=
zd
R
.

Now, for any ξ′ satisfying |ξ′| = 1 we have ξ′ = 1/ξ′. We also have that
|hd| < 1 and |ξ′d| < 1.
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2.1.1 Raw data

Our analysis starts with the available data. Let us denote by brj , b⊥j and bτj
respectively the values of the radial, vertical and tangential components of
B[Xd,Md] at sensors locations (xj , yj , h), where xj + iyj = ξj = Rξ′j = Reiθj ,
for j = 1, ..., N = 360, the number of pointwise measurements.

2.1.2 Rational function of the physical model

To continue our study we are taking advantage of the measurements of the
components of the magnetic field B[Xd,Md](X) ∈ R (radial, tangential or
vertical) at point X = (x, y, z) with (x, y) on a circular path.

In our work in [20] we saw that if c = (c1, c2, c3) is an arbitrary vector
of R3 with γ = c1 + i c2, and observing that x′ = x/R = (ξ′ + ξ′)/2 and
y′ = y/R = (ξ′ − ξ′)/(2i), we have, for any ξ′ satisfying |ξ′| = 1,

X

R
· c =

x

R
c1 +

y

R
c2 +

z

R
c3

=
ξ′ + ξ′

2
c1 +

ξ′ − ξ′
2i

c2 + hc3

=
1

2ξ′

(
ξ′

2
c1 + c1 − iξ′

2
c2 + ic2 + 2hc3ξ

′
)

=
1

2ξ′

(
(c1 − ic2)ξ′

2
+ 2c3hξ

′ + (c1 + ic2)
)

=
1

2ξ′

(
γ ξ′

2
+ 2 c3h ξ

′ + γ
)
. (2.1)

Now, the measurement available at point X is B[Xd,Md](X) ·v with v being
either v⊥ = (0, 0, 1) or vr = (x/R, y/R, 0) or vτ = (−y/R, x/R, 0) (vertical,
radial or tangential respectively) with directions as illustrated in the figure
below.

Figure 2.2: Illustration of the direction of the vectors v⊥ = (0, 0, 1), vr =
(x/R, y/R, 0) and vτ = (−y/R, x/R, 0).

Observing that
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X · v⊥ = z,

X · vr = R,

X · vτ = 0,

v⊥ · c = c3,

vr · c =
X

R
· (c1, c2, 0),

vτ · c =
X

R
· (c2,−c1, 0)

(2.2)

we can conduct the computations for the quantities B[Xd,Md](X) · v.
Note that the denominator as well as the terms |X−Xd|2 and Md · (X−Xd)

are common for each measurement component.
Let’s investigate the structure of B[Xd,Md](X) · v.

Study of the radial component: the first measurement component of
the magnetic field which we study is the radial one. In this case our main
equation namely Equation (1.8) takes the form:

B[Xd,Md](X) · vr = −µ0

4π

|X−Xd|2 (Md · vr)− 3 [Md · (X−Xd)] ((X−Xd) · vr)
(|X−Xd|2)

5
2

.

Observe that the denominator contains the same quantity as the first term
of the numerator but with a different power. Because of that we can fo-
cus our study on the numerator and simultaneously extract some informa-
tion for the denominator. Let’s investigate now the structure of expression
B[Xd,Md](X) · vr for the radial component of our magnetic field. The anal-
ysis of the numerator terms is the following:

• |X−Xd|2 = |ξ − ξd|2 + (z − zd)2 = R2
[
(ξ′ − ξ′d)(ξ′ − ξ′d) + (h− hd)2

]
.

In the scaled geometry on the unit circle T it holds that |ξ′|2 = ξ′ξ′ = 1,
hence we get:

|X−Xd|2 = −R
2

ξ′

[
ξ′dξ

′2 − (1 + |ξ′d|2 + (h− hd)2)ξ′ + ξ′d

]
= −R

2

ξ′
p(ξ′),

where the expression inside the bracket is a polynomial

p(ξ′) = ξ′dξ
′2 − (1 + |ξ′d|2 + (h− hd)2)ξ′ + ξ′d

of degree less or equal to two.

• Let

Md =

 M1

M2

M3

 .
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From the 5th equation of Equations (2.2) we have that Md · vr =
X

R
· (M1,M2, 0) and from Equation (2.1) we get that

Md · vr =
1

2ξ′

[
(M1 − iM2)ξ′

2
+ (M1 + iM2)

]
,

where the expression inside the bracket is a polynomial of variable ξ′

of degree less or equal to two.

• Md · (X−Xd) = Md ·X−Md ·Xd and by using the scaled geometry
we get that:

Md · (X−Xd) = R

[(
M1

M2

M3

)
·

(
x′

y′

h

)
−

(
M1

M2

M3

)
·

(
x′d
y′d
hd

)]

and with the use of Equation (2.1) we get

Md · (X−Xd) =
R

2ξ′
[(M1 − iM2)ξ′

2
+ 2M3hξ

′ + (M1 + iM2)

− 2ξ′(M1x
′
d +M2y

′
d +M3hd)]

=
R

2ξ′
[(M1−iM2)ξ′

2
+2(−M1x

′
d−M2y

′
d+M3(h−hd))ξ′ +(M1+iM2)],

where the expression inside the bracket is a polynomial of variable ξ′

of degree less or equal to two.

• (X−Xd) · vr = X · vr −Xd · vr, by using the 2nd and 5th equations
of Equations (2.2) we get that:

(X−Xd) · vr = R− X

R
· (xd, yd, 0).

Now from Equation (2.1) we have

(X−Xd) · vr =
2ξ′R

2ξ′
− R

2ξ′

(
(x′d − iy′d)ξ

′2 + x′d + iy′d

)
=

R

2ξ′

(
2ξ′ − (x′d − iy′d)ξ

′2 + x′d + iy′d

)
where the expression inside the bracket is a polynomial of variable ξ′

of degree less or equal to two.

By doing computations on the numerator with moment (M1,M2,M3) and
defining ∆h = h − hd, we end up with a polynomial κ(ξ′) of degree less or
equal to four as follows.

κ(ξ′) = ar + brξ
′ + crξ

′2 + brξ
′3 + arξ

′4,
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with coefficients:

ar =
1

4
(x′d + iy′d)M1 +

1

4
(ix′d − y′d)M2,

br =
1

2
(−2 + ∆2

h − 2x′d
2 + y′d

2 − 3ix′dy
′
d)M1+

+
i

2
(−2 + ∆2

h + x′d
2 − 2y′d

2 + 3ix′dy
′
d)M2 +

3

2
∆h(x′d + iy′d)M3,

cr =
7

2
(x′dM1 + y′dM2)− 3∆hM3.

At the same time the denominator consists in a second degree polynomial
p(ξ′) to the power of 5/2. Let us denote the structure B[Xd,Md](X) · vr by
the function fr(ξ

′) as follows:

fr(ξ
′) = −µ0

4π

R2

ξ′2
κ(ξ′)(

−R2

ξ′ p(ξ
′)
) 5

2

. (2.3)

Note that fr(ξ
′) is not a rational function, due to the denominator’s square

root. This introduces some difficulties because it is harder to compute the
branch point of fr(ξ

′) inside the unit disk D than the poles of a rational
function. However by squaring both sides of Equation (2.3) we get that:

f2
r (ξ′) = − µ2

0

16π2R6

ξ′κ2(ξ′)

p5(ξ′)
, (2.4)

which is a rational function.
We can work in a similar way for the components B[Xd,Md](X) · vτ and
B[Xd,Md](X) · v⊥ as follows.

Study of the tangential component: the terms we have to compute
in order to study the structure of the tangential magnetic field component
B[Xd,Md](X) · vτ are the following:

• Md · vτ : from the 6th equation of Equations (2.2) we get that:

Md · vτ =
X

R
· (M2,−M1, 0) ,

and from Equation (2.1) we get that

Md · vτ =
1

2ξ′

[
(M2 + iM1)ξ′

2
+ (M2 − iM1)

]
,

where the expression inside the bracket is a polynomial of variable ξ′

of degree less or equal to two.
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• (X−Xd) · vτ = X · vτ −Xd · vτ , by using 3rd and 6th equations of
Equations (2.2) and Equation (2.1) we get that:

(X−Xd) ·vτ = 0−X

R
· (y,−x, 0) = − R

2ξ′

(
(y′d + ix′d)ξ

′2 + (y′d − ix′d)
)
,

where the expression inside the bracket is a polynomial of variable ξ′

of degree less or equal to two.

As before, by doing computations on the numerator with moment (M1,M2,M3)
and defining ∆h = h− hd, we end up with a polynomial θ(ξ′) of degree less
or equal to four.

θ(ξ′) = aτ + bτξ
′ + cτξ

′2 + bτξ
′3 + aτξ

′4,

with coefficients:

aτ =
1

4
(−ix′d + y′d)M1 +

1

4
(x′d + iy′d)M2,

bτ =
i

2
(−1−∆2

h + 2x′d
2 − y′d2 + 3iy′dx

′
d)M1+

+
1

2
(1 + ∆2

h + x′d
2 − 2y′d

2 + 3ix′dy
′
d)M2 +

3

2
∆h(−ix′d + y′d)M3,

cτ =
5

2
(y′dM1 − x′dM2).

As before we compute a (non rational) function

fτ (ξ′) = −µ0

4π

R2

ξ′2
θ(ξ′)(

−R2

ξ′ p(ξ
′)
) 5

2

,

for the B[Xd,Md](X) · vτ structure. By squaring both sides of the above
function we get the rational function:

f2
τ (ξ′) = − µ2

0

16π2R6

ξ′θ2(ξ′)

p5(ξ′)
. (2.5)

Study of the vertical component: the last structure we have to study
concerns the measurements of the vertical magnetic field component B[Xd,Md](X)·
v⊥. Here we need to compute the terms:

• Md · v⊥ =

(
M1

M2

M3

)
·

(
0
0
1

)
= M3,

which is a constant and
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• (X−Xd) · v⊥ = X · v⊥ − v⊥ ·Xd = R(h− hd),

which comes from the 1st and 4th equations of Equations (2.2) and it
is a constant too.

As a result this time the numerator computations with moment (M1,M2,M3)
and ∆h = h− hd provides us with a polynomial s(ξ′) of degree less or equal
to two.

s(ξ′) = a⊥ + b⊥ξ
′ + a⊥ξ

′2,

with coefficients:

a⊥ = −3

2
∆h(M1 + iM2)− (x′d + iy′d)M3,

b⊥ = 3∆h(x′dM1 + y′dM2) + (1 + x′d
2 + y′d

2 − 2∆2
h)M3.

The (non rational) function f⊥(ξ′) that derives from our computations is

f⊥(ξ′) = −µ0

4π

R2

ξ′
s(ξ′)(

−R2

ξ′ p(ξ
′)
) 5

2

and by squaring both of its sides we get the rational function:

f2
⊥(ξ′) = − µ2

0

16π2R6

ξ′3s2(ξ′)

p5(ξ′)
. (2.6)

Link between polynomial p(ξ′) and dipole location Xd: from the
above study we know that the coefficients of the polynomial p(ξ′) (which
appears in the denominator of the study at each component) are given by
expression:

p(ξ′) = ξ′dξ
′2 − (1 + |ξ′d|2 + (h− hd)2)ξ′ + ξ′d.

The root ξ′− of p in D is linked to ξ′d, because the coefficients of p contain
the information ξ′d and hd of the dipole Xd. Our goal now is to estimate ξ′−.
Note that in our study we denote with ξ′− the location of the actual pole

of our rational function and with ξ̂′− its estimation. To avoid confusion we
must clarify that we often call ξ′− as the theoretical pole.

2.1.3 Combination of raw data and model’s rational function
on T

Let us denote the rational functions of our model which are given from
Equations (2.4), (2.5) and (2.6) as f2. The function f2 is defined for the
whole complex plane C with exception its poles.
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The third step of our analysis is to observe that for the points ξ′j = eiθj at
which we have values bj (that consist of measurements brj , b⊥j or bτj , see
Section 2.1.1) on our circular path, it holds that

f2(eiθj ) = b2j .

Continuing the treatment of our signal we observe that the rational functions
f2 of our model can be simplified by dividing with eiθj = ξ′j when the data

are acquired from Br and Bτ sensors and by e3iθj = ξ′3j when the data
are acquired from B⊥ sensor. Equivalently our raw data have the forms:

f2
r (eiθj )

eiθj
=
b2rj

eiθj
= Fr(e

iθj ),
f2
τ (eiθj )

eiθj
=
b2τj

eiθj
= Fτ (eiθj ),

and
f2
⊥(eiθj )

e3iθj
=

b2⊥j

e3iθj
= F⊥(eiθj ).

The physical model suggests that our treated data can be represented with
rational functions Fr, F⊥ and Fτ which, for simplicity, we denote as F ∈
L2(T). A handy reference at this point is that later on, in Chapter 3 we
have a section dedicated to the polynomial p analysis (this section is called
“Denominator analysis”). In that section we show that polynomial p has
no root on T. This is the reason why we can express Fr, F⊥ and Fτ as
F ∈ L2(T).

It holds that

F (eiθ) = F+(eiθ)︸ ︷︷ ︸
poles outsideD

⊕ F−(eiθ)︸ ︷︷ ︸
poles insideD

,

where F+ is an analytic function inside the unit disk D and F− is an analytic
function outside the unit disk D. The part we are interested in studying is
the F− because it is a rational function with poles inside the unit disk D.
Note that the poles of F− are related with the zeroes in D of the order 5
polynomial p5 where p has degree less or equal to two.

For the rational function F , the above decomposition corresponds to that
of L2(T) = H2 ⊕H⊥2 in terms of Hardy spaces.

Definition 1 The Hardy space H⊥2 consists of all functions f(z) =
∑
n<0

an z
n

with an ∈ C (analytic outside D) such that ‖f‖22 =
∑
n<0

|an|2 <∞ (from Par-

seval theorem). Analogously, the Hardy space H2 consists of all functions

f(z) =
∑
n≥0

an z
n with an ∈ C (analytic in D) such that ‖f‖22 =

∑
n≥0

|an|2 <

∞, see [24].

Based on the available information we can compute an approximate repre-
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sentation of F by using Fourier expansion, as in [25]:

F (eiθ) ≈
N∑
l=0

cle
ilθ +

−1∑
l=−N

cle
ilθ

︸ ︷︷ ︸
stable part

,

where 2N + 1 is the total number of the Fourier coefficients cl defined by
the formulas

cl =
1

2π

∫ π

−π
F (eiθ)e−ilθdθ ≈ 1

N

N∑
j=1

F (eiθj )e−
ilθj
N .

In our analysis l ∈ Z, N = 360 (is the number of measurement points and
it is an even number for us). In our study we use the Discrete Fourier
Transform (DFT) to compute Fourier coefficients. The Fourier coefficients
are split into a stable and unstable part. The important information now is
contained in the stable part of the Fourier expansion which is the orthogonal
projection F− of F on H⊥2 . This is a representation of F− and has poles
inside the unit disk D. We do actually get its approximation F−N :

F−N (eiθ) =
−1∑

l=−N
cle

ilθ .

The last step of our measurement treatment is that when the coefficients cl
of the stable part of the Fourier expansion F−N are computed, we normalize
them by using the following formula for all l = −1, ..,−N :

vl =
cl(∑−1

l=−N |cl|2
) 1

2

.

We do that because the computed cl values are small (with modulus smaller
than 10−12). The normalization provides us with values vl that can be
expressed as a vector v = [v−1, ..., v−N ] ∈ Rn. Observe that we can define a
function W− which is computed from the normalized F−N as:

W−(eiθ) =

−1∑
l=−N

vle
ilθ =

F−N (eiθ)

‖F−N ‖2
. (2.7)

2.2 Grid method

As we mentioned before, Grid method and PHC method are used to initialize
properly RARL2 which provides us with a pole estimation (denoted as ξ̂′−)
inside the unit disk D. However in our study we want to know the value
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of the actual pole ξ′−. We compute ξ′− by solving a direct problem with
the use of the exact location Xd of the dipole. For the experiments with
simulated data, we compute both ξ′− and ξ̂′−. The reason why we need to
know the exact pole location ξ′− is in order to evaluate the accuracy of the

methods we develop, however for the computation of the pole estimate ξ̂′−
we obviously use only the measured signal and not the location of the dipole
which creates it.

The first method of pole estimation consists of a naive discrete grid search
(we essentially minimize the cost function on a finite set of points).

• The first step is to define a list of points in the disk D namely αg with
g = 1, ..., 36000, which forms our grid where the cost function will be
evaluated, see Figure 2.3. We do that because we are interested to
find a pole estimation ξ̂′est inside the unit disk D.

Figure 2.3: This picture illustrates the points αg of our grid where we eval-
uate the cost function (black dots). The grid is formed from 100 equidistant
points on the radius R taken every 1◦.

• The next step is to define our cost function. The idea is to look for
the best polynomial Q(ξ′ − αg) of degree less than or equal to four,
that minimizes the criterion∥∥∥∥Q(ξ′ − αg)

(ξ′ − αg)5
−W−(ξ′)

∥∥∥∥
2

. (2.8)

For this criterion we use the Euclidean norm.
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Note that we use polynomial Q(ξ′−αg) instead having just an approx-
imation with a polynomial Q(ξ′). We do that in order to work with

a family of rational functions namely
(ξ′ − αg)k

(ξ′ − αg)5
with k = 0, 1, 2, 3, 4.

For this family we can expand our polynomial expressions as follows:

Q(ξ′ − αg)
(ξ′ − αg)5

=
q0 + q1(ξ′ − αg) + q2(ξ′ − αg)2 + ...+ q4(ξ′ − αg)4

(ξ′ − αg)5

=
q0

(ξ′ − αg)5
+

q1

(ξ′ − αg)4
+

q2

(ξ′ − αg)3
+

q3

(ξ′ − αg)2
+

q4

(ξ′ − αg)
.

Since ξ′j , αg and W−(ξ′j) are known quantities we can create the matrix
M with size 360× 5 such that:

M =
[
(ξ′j − αg)−1, (ξ′j − αg)−2, (ξ′j − αg)−3, (ξ′j − αg)−4, (ξ′j − αg)−5

]
,

j = 1, · · · , 360. We can also create a vector W of size 360 which
has as elements the values W−(ξ′j). To compute the coefficients of
the polynomial Q, our problem boils down to a search for a solution
of the column vector q = [q4, q3, q2, q1, q0]T , with size 5 × 1, of an
overdetermined system

M q = W .

Such a solution does not exist in general and we therefore compute
the solution to the associated least squares problem of minimizing the
discrete criterion:

‖M q−W‖22 .

This can be computed by using the Moore-Penrose pseudo-inverse [26,
Sec. 5.5.4] matrix M+. In this situation, the pseudo-inverse M+ of
M is given by the expression

M+ = (M∗M)−1M∗ ,

where M∗ is the conjugate transposed matrix of M. The solution to
the least squares problem is then given by

q̂ = M+W.

This estimate q̂ of q furnishes an approximation of the coefficients of the
polynomial Q(ξ′ − αg). We can then compute the Fourier expansion of
Q(ξ′ − αg)/(ξ′ − αg)5 depending on αg and use its results to evaluate our
criterion in Expression (2.8).
The αg point from our grid which returns the minimum value for our Cri-

terion (2.8), is our choice as the estimation ξ̂′est for the pole location.
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By collecting all the computed values of our Criterion (2.8) for each point
αg of our grid, we can plot a 3D surface as illustrated in Figures 2.4 and
2.5. One can see that depending on the data we can produce surfaces with
various shapes. These surfaces are plotted by using as (x, y) coordinates the
coordinates of the αg points and as z coordinate the computed value of the
Criterion (2.8) with respect to each αg point.

More precisely in order to produce the results of Figures 2.4 and 2.5 we
need to use synthetic data from the B⊥ sensor at height h = 0.015 and with
distance from the revolution axis equal to R = 0.15.

In Figure 2.4 for both pictures we use ideal data (without noise) taken
at every 1◦ (hence N=360) their information for the dipole location and
moment are collected in the following table.

Figure 2.4 dipole location dipole moment

left picture [−0.0077,−0.0278,−0.1044] [0.3731,−0.9058, 0.2004] · 10−3

right picture [−0.0592, 0.0566, 0.1129] [0.5069, 0.8495,−0.1457] · 10−3

In Figure 2.5 in both pictures we use the same dipole. The difference between
the pictures in Figure 2.5 comes from the fact that the picture on the left
concerns ideal data in contrast to the picture on the right where our data are
contaminated with 5% uniform noise on our measurements and our study
continues without using any denoising technique. The information for the
dipole location and moment is collected in the following table.

Figure 2.5 dipole location dipole moment

both pictures [0.0287, 0.0310, 0.0072] [−0.6816, 0.1428, 0.7175] · 10−3

During our study we observed a plethora of different surface shapes not
just those few we illustrate here. We also observe that the shape of the
surface can affect the ξ̂′est estimation. For instance surfaces with big flat
valleys close to their global minimum increase the uncertainty for a good
ξ̂′est estimation because small perturbations at the bottom of the surface
can lead to different estimations for the pole location estimation.

For synthetic data with 5% uniform noise and without any denoising treat-
ment, the shape of the surface changes a little bit. This can be observed if
one compares the two pictures in Figure 2.5. Observe that for noisy data the
global minimum is lifted up which can create bigger uncertainty for cases
with flat valleys close to their global minimum.
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(a) (b)

Figure 2.4: These pictures illustrate two surface plots of our cost func-
tion (as given by Expression (2.8)) with different shapes. The picture
on the left corresponds to Xd = [−0.0077,−0.0278,−0.1044] and Md =
[0.3731,−0.9058, 0.2004] · 10−3. The picture on the right corresponds to
Xd = [−0.0592, 0.0566, 0.1129] and Md = [0.5069, 0.8495,−0.1457] · 10−3.

(a) This is a surface plot of our cost
function for data without noise.

(b) This is a surface plot of our cost
function for the same data with 5% uni-
form noise.

Figure 2.5: For both picture the dipole is placed at Xd =
[0.0287, 0.0310, 0.0072] with Md = [−0.6816, 0.1428, 0.7175] · 10−3.

2.3 PHC method

Another way to find a pole estimation ξ̂′est inside the unit disk D is with
the use of the Principal Hankel Components approach (PHC) as described
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in [27]. This is an order reduction method, which consists in a singular value
decomposition of the Hankel matrix of W− followed by a projection onto
the space associated to the most significant P ones, P being the targeted
reduced order.

• Once again we are interested by the function W− introduced in (2.7) which
contain the information of the stable part of the Fourier coefficients. We can
represent this function with different ways but now we use a representation
that comes from control theory and is called state space representation as
they did in [27]. With this representation we get

W−(ξ′) = c(ξ′I−A)−1b,

where A is a square matrix of size n × n for some n ∈ N. While b is a
column vector n× 1 and c is a row vector 1× n.
The advantage of this representation is that the matrix A may be chosen as a
diagonal square matrix hence its elements on the diagonal are its eigenvalues
while the others are zero. At the same time from the pole-residue form of a
rational function we can associate the poles of a function with the elements
of matrix A.

Example: for instance consider the simple case of a rational function with
the following pole-residue representation:

f(z) =
n∑
k=1

ck
z − αk

,

where ck ∈ C, αk ∈ C for k = 1, · · · , n.

f(z) = (c1, c2, ..., cn)



1
z−α1

0 . . . . . . 0

0 1
z−α2

0 . . .
...

... 0
. . .

...
...

...
. . . 0

0 . . . . . . 0 1
z−αn





1
...
...
...
1


f(z) = c(zI−A)−1b;

where

A =



α1 0 . . . . . . 0

0 α2 0 . . .
...

... 0
. . .

...
...

...
. . . 0

0 . . . . . . 0 αn


.
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So our goal now is to create and compute the proper matrix A because its
eigenvalues will give us the poles we are looking for. To do that we use the
coefficients vl of the expression (2.7) of W− and we create the truncated
Hankel matrix ΦN , a symmetric matrix with constant entries along the

antidiagonals [28, Ch.1], with size
N

2
× N

2
which is defined as:

ΦN =



v−1 v−2 v−3 . . . v−N
2

v−2 v−3 . . .
...

v−3
. . .

...
...

...
. . .

v−N
2

. . . . . . v−N


. (2.9)

We follow this approach, due to the fact that the elements of the Hankel
matrix coincide with a combination of matrices A, c and b as follows:

ΦN =



cb cAb cA2b . . . cA
N
2 b

cAb cA2b . . .
...

cA2b
. . .

...
...

...
. . .

cA
N
2 b . . . . . . cANb


,

which can be written as:

ΦN = OC , with O =



c
cA
...
...

cA
N
2

 , C =
(
b,Ab, ...,A

N
2 b
)
,

the last two matrices being known in control theory as observability matrix
O and controlability matrix C, both of size N

2 ×
N
2 . In this representation

c has size 1 × N
2 , A has size N

2 ×
N
2 and b has size N

2 × 1. Recall that in
our study N = 360. Based on [27] for N

2 > 50 the truncated Hankel matrix
ΦN yielded good results for all the examples they tried. For this reason we
are confident that we have a sufficiently big number of Fourier coefficients
compare to the number of poles we want to estimate.

• Our problem now boils down to form the observability matrix O. That
happens becuse in [27] they define a process where matrix A can be com-
puted through proper manipulations of matrix O. To compute the observ-
ability matrix O we use the PHC algorithm as they did in [29]. The idea is
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to use singular value decomposition (SVD) and then compute the observ-
ability and controlability matrices as follows. First we compute the SVD of
ΦN :

ΦN = UΣV∗,

where Σ is a diagonal matrix and U, V are unitary matrices.

In [30] is explained that the singular values are given in decreasing order,
hence the first P ≤ N/2 singular values will be bigger when compared to the
others. From the number of these singular values they define the number of
the stable poles. Hence our Hankel matrix can take the form:

ΦN = [UP UT ]

[
ΣP 0
0 ΣT

] [
V∗P
V∗T

]
.

Note that UP is a N/2× P matrix, ΣP is a P × P square matrix of the P
highest singular values and V ∗P is a P ×N/2 matrix. Now we can compute

a “reduced” observability matrix Ô of size N/2× P as in [29]:

Ô = UPΣ
1
2
P .

Observe that we care to compute the observability matrix only for the first P
singular values because we know that they have a link with the stable poles.
Using the reduced observability matrix Ô, we can compute the matrix Â
with size P×P as they did in [27], with P = 5. Let Ôl and Ôf the matrices of

size (N/2−1)×P formed by deleting the last and first row of Ô, respectively.
As a solution to the overdetermined system of equations Ôl Â = Ôf , Â may
be computed as the solution to the associated least square problem, and is
given by:

Â = (Ô∗l Ôl)−1Ô∗l Ôf .

• Because with PHC method we compute up to 5 poles in D (but in our
problem we are looking for a single pole of order 5), the last step is to average
the solutions of the eigenvalues of the matrix Â. Figure 2.6 illustrates the
behavior of the PHC method and its averaged eigenvalues for ideal and
noisy data. Note that in order to produce the pictures in Figure 2.6, we
use the same dipole location and moment as for the pictures in Figure 2.5
with the same convention where the left pictures illustrate ideal data and
right pictures illustrate noisy data (with 5% uniform noise on the signal).

Figure 2.5 Dipole location dipole moment

both pictures [0.0287, 0.0310, 0.0072] [−0.6816, 0.1428, 0.7175] · 10−3

The average of the computed eigenvalues of the PHC method provides an-
other estimation ξ̂′est for the ξ′− pole location.
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(a) (b)

(c) (d)

Figure 2.6: Picture on the left illustrate the SVD decomposition (top) and
the PHC pole estimation ξ̂′est (bottom) for synthetic data without noise.
Picturse on the right illustrate the same information for synthetic data with
5% uniform noise on the measurements. The ξ̂′est estimation in the picture
below is based on the PHC method illustrated as red ex (it is computed
as the mean value of the eigenvalues of matrix Â black crosses). The ξ̂′est

estimation from the Grid method illustrated as green ex. The theoretical
pole ξ′− illustrated as blue circle and the unit circle center illustrated with
a black dot. The black crosses illustrate the singular values. At the top
pictures we have all the computed singular values and at the bottom pictures
we have the location in D of the first 5 singular values.

2.4 RARL2 algorithm

A way to compute best quadratic (discrete norm) stable rational approxi-

mant to
Q(ξ′ − ξ̂′est)

(ξ′ − ξ̂′est)
5

with 1 single pole of order 5 is with the use of RARL24

4https://project.inria.fr/rarl2/

https://project.inria.fr/rarl2/
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algorithm.
From the PHC and the Grid method we get a ξ̂′est estimation for the pole
location (not necessarily the same see Figure 2.6(d)). We can use ξ̂′est as
initialization of a gradient descent algorithm which is called RARL2. Our
final estimation ξ̂′− for the pole location is the RARL2 solution and it is the
pole estimation we use in our thesis.
The idea of RARL2 is to parametrize the rational function

Q(ξ′ − αg)
(ξ′ − αg)5

= φ(λ1, ..., λm)

with m > 0 parameters λ1, ..., λm. Those parameters can be poles, co-
efficients or something else that can describe our function. In the present
situation, they can be chosen as αg and the coefficients qk of Q, k = 0, · · · , 4.
The algorithm selects the parameters λj so as to minimze the criterion

J(λ1, ..., λm) =
N∑
j=1

∣∣∣φ(λ1, ..., λm)(eiθj )−W−(eiθj )
∣∣∣2 ,

which is differentiable, namely we can define the gradient of the criterion
J(λ1, ..., λm).
RARL2 is basically an optimization method for which we provide as inputs
the values v = [v−1, ..., v−N ] and the initial point ξ̂′est and it returns to us
as a solution to the final estimation for the pole location ξ̂′−.

2.5 Comparison of PHC and Grid method

At this point it is useful to decide which method we will adopt to initialize
the RARL2 algorithm. As we already discussed, each method has different
features. PHC method performs well for a smooth function but it is sensitive
to noise. On the other hand the accuracy of the grid method depends
on the number of points that form the grid and it could face situations
with uncertainty about the global minimum. For this reason, a comparison
between PHC method and Grid method is essential. To understand their
different behaviors, we have two kinds of errors that we are interested in,
the initial-final percentage error (eif ) which is defined as

eif =
|ξ̂′est − ξ̂′−|
|ξ̂′−|

· 100.

Initial-final error compares how far our initialization point ξ̂′est is from the
RARL2 final pole estimation solution ξ̂′−. The other percentage error we
are interested in, is the final-theoretical error (eft) which is defined as

eft =
|ξ̂′− − ξ′−|
|ξ′−|

· 100.
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In this case we compare how good the pole approximation of RARL2 method
is compared to the actual pole.

During our study of the eft error we adopt the color code as illustrated in
Figure 2.7.

In Figure 2.7(a) the error bar indicates the level of eft error. Where, yellow
represents error levels with eft < 5%, black represents error levels with
5% ≤ eft < 30%, red represents error levels with 30% ≤ eft < 100% and
green represents error levels with 100% ≤ eft.
In Figures 2.7(b) we illustrate the eft absolute angle difference (converted
in degrees) computed by the expression:

|exp
(

i(Arg(ξ̂′−)−Arg(ξ′−))
)
|.

Here we depict with blue the angle differences for values smaller than 5◦,
with a range of colors that varies from light blue to green and orange for
angle differences between 5◦ to 15◦ and with yellow for angle differences
bigger than 15◦.

(a)

(b)

Figure 2.7: Color code regarding the eft error level and the absolute angle

difference |exp
(

i(Arg(ξ̂′−)−Arg(ξ′−))
)
|.

Study of data without noise: the first set of experiments for the com-
parison of PHC and grid method consists of 4000 dipoles uniformly spread
inside a cylinder. These experiments concern data without noise from a
single measurement position and with sensors that are located at the same
height. We use the Setup 1.1 as described in Chapter 1.
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We gather some of the results of PHC method in Table 2.1.

Table 2.1: PHC method

Br B⊥ Bτ
# of cases with eif > 0.5% 25 27 44

max (eif ) % 2.8 5.4 4.3

max (eft) % 6.4 4.4 4.6

For the 4000 dipoles without noise PHC method performs well. There are
only a few cases for each sensor where the RARL2 does not select as final
solution ξ̂′− the initialization ξ̂′est. All of those cases concern dipoles that
are located close to the sensors, because in that case the PHC method
could compute eigenvalues that are located outside the unit disk D and
consequently the ξ̂′est is affected. We also do a comparison between the
RARL2 and the theoretical solution. The max (eft) is 6.4%. This concerns
only few cases, either close to the sensors, or close to the revolution axis.
The next step of our study is to check how the grid method performs.

We conduct the same simulations but this time by using the grid method
see Table 2.2.

Table 2.2: Grid method

Br B⊥ Bτ
# of cases with eif > 0.5% 0 83 1

max (eif ) % 0.17 1.5 0.6

max (eft) % 29.4 73.4 53.4

The first observation regarding the grid method is that the selection of ξ̂′est

is not far away from the ξ̂′− RARL2 final estimation. That means that ξ̂′est

is located close to the αg point of our grid that minimizes our cost function.
The second observation is that we do not always select the actual global
minimum of our cost function. Note that even with ideal data we can have
a dipole with eft up to 73.4%. This is an issue that we study and it has
to do with the evaluation of our cost function at the points αg of our grid.
More precisely for situations with local minimum close to a global minimum
or for cases with big flat valleys around the actual pole we can have bad
estimations with the grid method. We saw that PHC method can also be
affected by the dipoles locations. The difference between the Grid an the
PHC method is how they estimate the initial ξ̂′est. On one hand the behavior
of the grid method is affected directly from the shape of the cost function.
That happens because grid method evaluates the cost functions at specific
points and nearby local minimums can drastically affect our estimations.
On the other hand PHC method is affected from dipole locations that either
represent degenerate cases (for instance close to the revolution axis) or they
are located close to the sensors.
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One unexpected but interesting result is that the tangential Bτ sensor be-
haves differently compared to the radial Br sensor. Though we conduct
experiments to favor the one sensor against the other we observe that this
behavior is inherent to the sensors features. We cannot explain what exactly
generates this behavior and for this reason a more persistent investigation
must be completed. However our simulations consistently confirm this dif-
ferent behavior and we are confident of the results we present.

In Figures 2.8(a), (c) and (e) one can see the distribution of the error eft
between ξ̂′− and ξ′− solution. From those distributions one can observe that
each sensor has a different behavior as we discuss before. The distribution of
eft for the Br radial sensor, decreasing constantly but slow. The distribution
of eft for the B⊥ vertical sensor decreasing faster than Br but has few
extreme cases with eft bigger than 50% and the distribution of eft for the
Bτ tangential sensor has two peaks, one large for an error close to 0% and
one small for an error close to 40%. This 40% error is visualized in Figure
2.8(f) from the collection of the red points close to the revolution axis.

Note that in Figures 2.8(a), (c) and (e): the vertical axis corresponds to the
number of the dipoles and the horizontal axis, to the eft percentage error
of RARL2 solution with respect to the theoretical one. Note also that in
Figures 2.8(b), (d) and (f): we have illustrations of the 2D information of
the dipoles. Here the vertical axis corresponds to the height zd of a dipole
and the horizontal axis correspond to its distance from the revolution axis
|xd + iyd|. The yellow dots represent cases with eft < 5%, the black dots
represent cases with 5% ≤ eft < 30% and the red dots represent cases with
30% ≤ eft. Note that the pictures at the top concern the Br sensor and the
middle and bottom ones the B⊥ and Bτ sensors respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: Illustrations of the grid method results for ideal data from a
single measurement position. All the sensors located at the same height.
The pictures on the left illustrate the distribution of eft. The pictures on
the right visualise the dipole heights zd and their distances |xd + iyd| from
the revolution axis.
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To ensure that the small peak close to the 40% value in the error distribution
of the Bτ sensor in Figure 2.8(e), is also a feature of the sensor and not just
an artifact of the way we define our grid αg with g = 1, ..., 36000, we repeat
the simulations for a denser grid βG with G = 1, ..., 49320 points. The results
regarding the eft are gathered in Table 2.3.

Table 2.3: Comparison of grids αg with βG

Grid Br B⊥ Bτ
αg max (eft) % 29.4 73.4 53.4

αg # of cases with eft > 30% 0 12 307

βG max (eft) % 31 53.2 57.5

βG # of cases with eft > 30% 2 6 187

Observe that with this approach we manage to decrease the number of
dipoles that provide eft error bigger than 30% from 307 to 187 for the
Bτ sensor. Nonetheless the distribution shape remains similar to the one
in Figure 2.8(e) but with a smaller peak close to 40%. After reviewing the
results derived from the algorithm, we were able to observe there were many
cases for the Bτ sensor with errors larger than 30%. We determined that
all of these cases, despite how their cost function surfaces look, have a local
minimum located close to the global minimum.

From the above analysis we can conclude that for data without noise the
PHC method performs better than the grid method. The grid method is
also good but it has some features that add uncertainty under specific con-
ditions. Though we can limit this uncertainty with a denser grid, it cannot
be completely eliminated. And as a result, will always influence our results.

Study of noisy data: this set of experiments is designed as the previous
one, only this time we contaminate the sensors measurements with 5% uni-
form noise as described in Setup 1.2 in Chapter 1. We compare once again
the PHC and the grid method for the 4000 dipoles. The results are gathered
in Tables 2.4 and 2.5.

Table 2.4: PHC method with noise

Br B⊥ Bτ
mean (eif ) % 148.8 131.4 147.3

mean (eft) % 96.0 81.1 59.2

# of cases with eft > 30% 2898 2116 2010

# of cases with eft > 100% 1158 904 836
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Table 2.5: Grid method with noise

Br B⊥ Bτ
mean (eif ) % 0.04 0.1 0.04

mean (eft) % 93.0 23.8 54.7

# of cases with eft > 30% 3093 967 1921

# of cases with eft > 100% 1168 93 532

One early conclusion from the Table 2.4 is that the PHC method is untrust-
worthy for data without any denoising treatment. This is an expected result
because we violate the conditions where this method holds. The max eif
error reaches a value up to 2000%, and its mean error is more than 130%.
That means that for contaminated noisy data, PHC method provides essen-
tially an arbitrary point in the unit disk D as pole estimation ξ̂′est and it
is up to RARL2 to recover a more suitable pole estimation. On the other
hand, the grid method provides a point close to a minimum (not necessarily
the global one) even for noisy data, since its max eif error does not exceed
the 2%. At this point it is useful to clarify that the grid method despite the
fact that it uses less iterations of RARL2, is almost two times slower than
the PHC method.

In Figures 2.9(a), (c) and (e) one can see the error distribution of the grid
method for the eft error for each sensor. Their vertical axis corresponds to
the number of the dipoles and their horizontal axis to the eft error of RARL2
solution with respect to the theoretical one. In addition, in Figures 2.9(b),
(d) and (f) we include the absolute angle difference distribution between
RARL2 ξ̂′− solution and the theoretical one ξ′−. The vertical axis at these
pictures corresponds to the number of the dipoles and their horizontal axis to
the angle difference expressed in degrees. Pictures at the top correspond to
information of sensor Br and pictures in the middle and bottom correspond
to information from sensors B⊥ and Bτ respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: Illustrations of the grid method results for noisy data from a
single measurement position with sensors at the same height. Pictures on
the left show the eft distribution of each sensor and pictures on the right
show the angle difference distribution for each sensor.
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In Figure 2.10 we illustrate with different colors the eft error level informa-
tion for each one of the dipole locations. As well as the regions where the
absolute angle difference between ξ̂′− and ξ′− is expected to be high or low
with respect to the sensor’s distance.
In Figures 2.10(a), (c) and (e) we collect the 2D information of the actual
dipoles of our experiment. Their vertical axis corresponds to the dipole
height zd and the horizontal axis corresponds to the dipole distance |xd +

iyd| =
√
x2
d + y2

d from the revolution axis. For the eft error levels we follow

the color code of Figure 2.7(a). Hence the yellow dots represent cases with
eft < 5%, the black dots represent cases where 5% ≤ eft < 30%, the red dots
represent cases where 30% ≤ eft < 100% and the green dots represent cases
where 100% ≤ eft.
In Figures 2.10(b), (d) and (f) we illustrate the 2D regions information of
the absolute angle differences between the ξ̂′− and ξ′− with respect to the
sensor’s distance. Here we follow the color code of Figure 2.7(b).
There is a very interesting observation by comparing the Figures 2.9(a),
(c), (e), with the Figures 2.9(b), (d) and (f): The distribution of the eft
error does not have the same shape as the distribution of the absolute angle
differences. Based on that we can assume that there exist cases where we can
have a larger error for the ξ̂′− estimation compared to ξ′− but at the same
time a smaller error for their arguments. Roughly speaking the estimated
argument of ξ̂′− is more trustworthy than the modulus |ξ̂′−|, this is more
obvious in Figures 2.10(b), (d) and (f), where the blue regions of the angle
difference overlap areas with various eft errors. Note also that each sensor
has a different behavior. With strong evidence that the B⊥ sensor performs
better than the Br and the Bτ for the same data.
To conclude this chapter, we studied 2 initialization methods for the pole
estimation ξ̂′est, namely the PHC and the grid method and we applied to
both of them RARL2 in order to obtain our final result ξ̂′−. We tested PHC
and grid method for ideal and noisy data and explored their features for
each measurement sensor. Though PHC method is superior with ideal data,
its features do not allow it to perform well in situations with noisy data.
On the other hand grid method, despite the fact that it is computationally
heavier than PHC, has a good performance for both ideal and noisy data.
We observe that for noisy data, grid method is better than PHC. In addition
when we use grid method for noisy data, we can identify regions where the
argument of its solution is well estimated. For this reason in this thesis we
use the grid method as initialization for the RARL2. After computing the
estimation ξ̂′− for the pole location, we are in position to study and see
how this information is linked with the actual dipole location. Chapters 3
and 4 are focused on that aspect and additional computations provided in
Chapter 5.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.10: Illustrations of the grid method results for noisy data from a
single measurement position with sensors located at the same height. Pic-
tures on the left illustrate the 2D information of the actual dipoles with the
color code of Figure 2.7(a) for the eft error. Pictures on the right illustrate
the 2D regions information of the absolute angle differences with the color
code of Figure 2.7(b).



CHAPTER 3

Dipole location estimation with several methods

In this chapter we are interested in discovering the dipole location Xd =
(xd, yd, zd) ∈ R3. In Chapter 2 and article [20, sec. 4] we explained how
to estimate the pole ξ̂′− ∈ C of our rational function f2. We also saw the

link between ξ̂′− and Xd and we observed the sensors behavior. In order to
estimate Xd we develop several methods each one with its own special fea-
tures. The goal of this chapter is to understand how these methods work,
what their features are and which one is the best candidate to estimate
the dipole location Xd. The presentation of these methods in this chapter
has the following logic: first we present the planes method, this method
provides a general idea for the direction of the dipole location Xd. Then
we present three methods namely linear combination, parabola and circles
methods respectively. All of these methods take advantage of the informa-
tion recovered by the planes method and each one of these three methods
can estimate a dipole location X̂d from a single measurement position. To
decide which method is the best candidate to estimate the dipole location
Xd we conducted experiments with synthetic data and we analyzed their
features. To start our study, a key observation which comes from Chap-
ter 2 is that the denominator of our main equation, Equation (1.8) namely
|X−Xd|5, is the same for all components of the magnetic field B[Xd,Md](X)
and is independent of the moment of the dipole. Together with the fact that
the denominator can be linked to the pole of some rational function f2, with
proper manipulation of the denominator we can extract useful information
for the dipole location.

3.1 Denominator analysis

In this section we want to study the denominator of our rational functions
f2. We did part of this study in Chapter 2 where we observed that the

64
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denominator p5(ξ′) concerns a polynomial p(ξ′) of variable ξ′ with degree
less or equal to two. Let us consider the measurements provided on one
circular path. By using the notations of Chapter 2 on the unit circle T
geometry we get that

ξ′ = x′ + iy′ =
x+ i y

R
=

ξ

R
, h =

z

R
, ξ′d = x′d + i y′d =

xd + i yd
R

, hd =
zd
R
.

Now, one can observe that the denominator is a positive real number that
has the following expression:

|X−Xd|5 =
(
|X−Xd|2

) 5
2 =

(
|ξ − ξd|2 + (z − zd)2

) 5
2 .

Now we focus our study on the expression |X−Xd|2 inside the parenthesis.
In this case we can recall from Chapter 2 that the square distance between
the sensor and the dipole position is equal to

|X−Xd|2 = −R
2

ξ′

[
ξ′dξ
′2 −

(
1 + |ξ′d|2 + (h− hd)2

)
ξ′ + ξ′d

]
= −R

2

ξ′
ph(ξ′),

(3.1)
where ph(ξ′) is another notation for the polynomial p(ξ′) with variable ξ′,
of degree less or equal to two, which concerning measurements at height h.
Polynomial ph(ξ′) is given by

ph(ξ′) = ξ′dξ
′2 −

(
1 + |ξ′d|2 + (h− hd)2

)
ξ′ + ξ′d . (3.2)

In Chapter 2 we saw that by squaring the measurement data b2 we can get
a rational function f2 with structure f2 = ξ′q(ξ′)2/ph(ξ′)5, where q(ξ′) is
a polynomial of degree less or equal to four. The poles of function f2 are
the points where the denominator vanishes. That means those points are
the roots of polynomial ph(ξ′) in Equation (3.2) which depend only on the
dipole position Xd.

Study of ph(ξ′): lets start our study of the ph(ξ′) polynomial with a re-
mark.

Remark 1 When ξ′d = 0, Equation (3.2) is simplified to

ph(ξ′) = −
(
1 + (h− hd)2

)
ξ′.

This simplified expression represents degenerated cases that are located on
the revolution axis. This expression is equal to 0 only if ξ′ = 0. Since RARL2
provides us with a pole estimation inside the unit disk D we expect that it
should compute ξ̂′− = 0. From our experiments with ideal data RARL2

indeed computes ξ̂′− = 0 (with error that varies between 10−10 to 10−16).
Despite the good results of RARL2 in those degenerated cases we are unable
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to continue our study as we do in the rest of the chapter, where it is necessary
to have ξ̂′− 6= 0. In cases like those we are interested in studying the data

from the other two measurement positions. If RARL2 computes ξ̂′− = 0 for
all three measurement positions, then we have a strong indication that the
dipole Xd is located at the origin of the coordinate system Xd = (0, 0, 0).

After that remark we can focus our study on the generic case where ξ′d 6= 0.

Proposition 1 We claim that, the two complex roots ξ′− and ξ′+ of ph satisfy
that

∣∣ξ′−∣∣ ≤ |ξ′d| < 1 <
∣∣ξ′+∣∣, that ξ′± and ξ′d share the same complex argument

and that, when h varies,
∣∣ξ′−∣∣ reaches its maximal value |ξ′d| once, at h = hd.

The process of proving this proposition will set the base of our understanding
for the linear combination and the geometrical methods.

Proof.

The polynomial ph(ξ′) has complex value coefficients, nonetheless by using

the change of variable ξ′ = t
ξ′d
|ξ′d|

as one can find in [20,21,31], our polynomial

can be expressed (up to a multiplicative constant) as a polynomial with real
valued coefficients:

ph(ξ′) = ξ′d ph(t),

where ph(t) is a polynomial of degree 2 in variable t given by

ph(t) = t2 −
1 + |ξ′d|2 + (h− hd)2

|ξ′d|
t+ 1. (3.3)

At this point we can focus our study on the polynomial ph(t) which have up
to two roots denoted as t− and t+.

Remark 2 Vieta’s formulas
Vieta’s formulas give us the relation between the coefficients and the sum
and product of the roots. In the general case for a second order polynomial
q(x) = αx2 + βx + γ with coefficients α, β, γ and roots r1, r2, the Vieta’s
formulas give

r1 + r2 = −β
α
, r1r2 =

γ

α

When applied in our case for ph(t), we get:

t−t+ = 1, (3.4)

t− + t+ =
1 + |ξ′d|2 + (h− hd)2

|ξ′d|
(3.5)
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Note that from Equation (3.4) we can compute t+ from t− by taking t+ =
1

t−
.

Definition 2 We use the notation convention that t− ≤ t+, and with the
use of Equations (3.4) and (3.5) we deduce the information that 0 < t− ≤
1 ≤ t+.

Lemma 1 The polynomial ph(t) has real valued roots.

This lemma can be proved by computing the discriminant of ph(t):

∆ =

(
−

1 + |ξ′d|2 + (h− hd)2

|ξ′d|

)2

− 4

=

(
1 + |ξ′d|2 + (h− hd)2

)2 − (2|ξ′d|)2

|ξ′d|2

=

(
(|ξ′d|+ 1)2 + (h− hd)2

) (
(|ξ′d| − 1)2 + (h− hd)2

)
|ξ′d|2

> 0.

The discriminant is strictly positive because |ξ′d| < 1 as we saw in Chapter 2
and the above formula involves only additions, multiplications and divisions
of positive numbers. Hence the polynomial ph(t) has two real valued roots
t− and t+.

Lemma 2 The modulus of ξ′− is equal to t−.

This can be proved directly with the use of the change of variable

|ξ′−| =
∣∣∣∣t− ξ′d
|ξ′d|

∣∣∣∣ = |t−|
|ξ′d|
|ξ′d|

= t−.

Lemma 3 The argument of ξ′± is equal with the argument of ξ′d:

Arg(ξ′±) = Arg(ξ′d)

This directly follows from the change of variables ξ′± = t±
ξ′d
|ξ′d|

and the fact

that t± > 0 are positive real numbers.

Lemma 4 The root t− of ph(t) as a function of h, attains its maximum
value at h = hd, moreover t− ≤ |ξ′d|.

In order to prove this lemma we use Equation (3.5). Let ρ = h− hd, then
we can see the above expression as a function

ℵ(ρ) =
1 + |ξ′d|2 + ρ2

|ξ′d|
,
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of variable ρ and parameter |ξ′d| 6= 0. The function ℵ(ρ) obviously reaches
its unique minimum value when ρ = 0 which is equivalent to h = hd. By
using this information on function ℵ(ρ) and with the use of Equations (3.4)
and (3.5) we get:

ℵ(0) ≤ ℵ(ρ)⇔ |ξ′d|+
1

|ξ′d|
≤ t− +

1

t−
.

Now we bring everything on the same side and we simplify it by using that
0 < |ξ′d|t− < 1, with |ξ′d| < 1 from Chapter 2 and t− ≤ 1 from Definition 2.
Hence we get:

(|ξ′d|−t−)(|ξ′d|t−)+(t−−|ξ′d|) ≤ 0⇔ (|ξ′d|−t−)(|ξ′d|t−−1) ≤ 0⇒ |ξ′d|−t− ≥ 0

which proves that t− ≤ |ξ′d| for |ξ′d| 6= 0.
Thereby we establish the overall claim of Proposition (1).

We have now all the tools to analyze the relations between the polynomials
ph(ξ′), ph(t) and the dipole location Xd. To exploit those relations we
develop several methods that follow.

3.2 Planes method

We start our study with the information furnished by ξ′−. Our goal is to
constrain the area where the dipole Xd is located. The planes method as its
name indicates, defines a plane for each measurement position. Though the
planes method can be applied for one position only, the combination of the
information from all three measurement positions restrict even further the
area of X̂d. In this section we study how we compute this method and how
it restricts the possible location of X̂d. Keep in mind that with this method
we do not estimate a specific point but a region in space.
The idea of the planes method comes from the information we get from
Lemma 3. More specifically Lemma 3 states that Arg(ξ′−) = Arg(ξ′d), namely
the direction of the dipole can be estimated through the Arg(ξ′−). This di-
rection can be illustrated as a perpendicular (half) plane with respect to the
measurement plane that passes through the revolution axis see Figure 3.1.
Note that planes method depends only on the information of Arg(ξ′d) and
not the modulus |ξ′d|.
By construction, the lunometer has a different height hi for each sensor.
From Equation (3.3) we get that by changing the parameter h for some
specific ξ′d and hd we must compute a different t− root for each height.
Consequently in the ideal case, we expect that RARL2 algorithm will provide
us with a different ξ̂′(i)− for each sensor’s measurements but all of which with
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Figure 3.1: In this illustration the measurement plane (also complex plane)
of our study is in red. The quantity Arg(ξ′d) defines the direction of the per-
pendicular (half) plane denoted with light blue color where the dipole must
belong. Note that the perpendicular plane passes through the revolution
axis 0z.

the same argument. However, due to approximation errors the argument of
ξ̂′(i)− estimation is not necessarily the same as the argument of the actual
pole ξ′(i)− (see the absolute angle difference in Figure 2.10 in Chapter 2).
As a result their corresponding perpendicular planes could differ. Because
we recover different perpendicular planes from the ξ̂′(i)− estimations, an
averaged plane must be defined in order to continue our study.

3.2.1 Theoretical framework of our averaged plane

Having a list of Arg(ξ̂′(i)−) and due to the fact that we expect Arg(ξ̂′(i)−) ≈
Arg(ξ′d), we compute the average angle (in radians), in the range [−π, π] as

illustrated in the Algorithm 1. If the Arg(ξ̂′(i)−) angles range on more than
a half of a circle, we specify to Matlab to return error which in our study
we usually associate it with the value Inf.

Study of cases with range that exceed 90◦: in order to decide what
to do with cases that Arg(ξ̂′(i)−) angles range on more than 90◦, we conduct
experiments with synthetic noisy data for 6000 dipoles which are contained
in a ball. For these experiments we use the measurements of a single position
(more precisely the first position of Setup 1.8). Now we are interested in
answering two questions. The first one is whether cases with big range
provide bad estimations for the averaged plane (see Figure 3.2(a)) and the
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Algorithm 1 Computation of the average angle

Function: AvgAngle
Input: ξ1, ..., ξN a list of non-zero complex numbers
Output: Θ, “average” argument of ξ1, ..., ξN

for k=1 to N do
θk ←− Arg(ξk)

end for
RangeAngle ←− maxk=1,...,N (θk)−mink=1,...,N (θk)
rot ←− false /* rot stands for rotation */
if RangeAngle > π then

/* Either the angles are spread on more than a half-plane, */
/* or they are clustered around −π ≡ π [2π] */
/* We check it by rotating everything by π */
for k=1 to N do
θk ←− NormalizeAngle(θk + π)

end for
rot ←− true
RangeAngle ←− maxk=1,...,N (θk)−mink=1,...,N (θk)
if RangeAngle > π then

return error
end if

end if
Θ←−

∑N
k=1 θk
N

if rot = true then
/* Rotate it back */
Θ←− NormalizeAngle(Θ + π)

end if
return Θ

Function: NormalizeAngle(θ)
Input: an angle θ ∈ R
Output: θ′, the unique determination of θ in [−π, π)

θ′ ←− Arg(exp(i (θ + π)))
return θ′
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second one is whether bad estimation of the averaged plane is an indication
of a bad estimation of |ξ̂′(i)−|.

(a)
(b)

Figure 3.2: The picture on the left illustrates the range between Arg(ξ̂′(i)−)
converted in degrees (horizontal axis) and the range between the actual
dipole’s angle Arg(ξ′d) compared to the averaged angle (vertical axis) also

converted in degrees. The red rectangle encloses cases whose Arg(ξ̂′(i)−)
range is bigger than 90◦. The picture on the right provides the 2D informa-
tion |xd + iyd| horizontal axis and zd vertical axis for the dipoles locations
black dots. Red dots correspond to dipoles with Arg(ξ̂′(i)−) range more than
90◦, and blue circles for similar cases but with range more than 60◦. For
both pictures we use the first position of Setup 1.8 for noisy data with the
use of the grid method.

From our 6000 dipoles analysis we saw that there are 101 cases with Arg(ξ̂′(i)−)
ranges that exceed 90◦ for which an arbitrary averaged angle is computed
as one can see in Figure 3.2(a). The mean value for these computed average
angles is 36◦. There are also 91 cases with Arg(ξ̂′(i)−) ranges between 60◦

and 90◦. For these 91 cases the mean averaged angle is 20◦. The behavior
of the 91 cases with ranges between 60◦ and 90◦ is more predictable. The
distribution of the ranges for the 6000 dipoles can be seen in Figure 3.3.
We also observe that the dipole locations of all of the cases with Arg(ξ̂′(i)−)
ranges that exceed 60◦ are located around the revolution axis (see Figure
3.2(b)). So, to answer the first question, our experiments confirm that cases
with a range bigger than 90◦ provide unreliable averaged angles.
For the second question we want to check whether a bad estimation of the
averaged plane interpreted as bad estimations of |ξ̂′(i)−|. For this reason we
compute the eav error as follows:

eav =

∑S
i=1

∣∣∣∣ |ξ̂′(i)−−ξ′(i)−||ξ′
(i)−|

∣∣∣∣
S

· 100,
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Figure 3.3: This picture illustrates the distribution of the ranges Arg(ξ̂′(i)−)
for the 6000 dipoles of our experiments. For these experiments we use noisy
data from the first position of Setup 1.8 with the use of the grid method.

where S corresponds to the number of sensors. Which is the averaged error
of the ξ̂′(i)− estimates given by all the sensors with respect to the theoretical
poles ξ′(i)−, for one given experiment. In Figure 3.4 one can see the distri-

bution of the eav error for the cases with Arg(ξ̂′(i)−) ranges (converted in
degrees) less than 60◦, between 60◦ to 90◦ and more than 90◦ respectively.
Observe that the shape of the eav distribution for the cases with Arg(ξ̂′(i)−)
ranges less than 60◦ and between 60◦ to 90◦ are similar, in contrast to the
cases with ranges more than 90◦.
That is an indication that we can exclude cases with Arg(ξ̂′(i)−) ranges more
than 90◦ because they provide unreliable information for both the average
angle and the eav error. On the other hand cases with Arg(ξ̂′(i)−) ranges
between 60◦ to 90◦ have a predictable behavior which is slightly worse but
similar when compared to the cases with ranges less than 60◦.

Remark 3 Data disregarding process
From our analysis we conclude that with the current lunometer configuration,
we can disregard information for cases with ranges that exceed 90◦.

We are aware that the current disregarding process rejects all the data of a
given position, without concerning if some sensors provide good estimations.
For this reason in Chapter 5 we test if a lunometer with more sensors, can
find a cluster of sensors with good estimations. Our study provides us with
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Figure 3.4: These pictures illustrate the eav error for the cases with
Arg(ξ̂′(i)−) ranges (converted in degrees) less than 60◦, between 60◦ to 90◦

and more than 90◦ respectively. For these experiments we use noisy data
from the first position of Setup 1.8 with the use of the grid method.
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some evidences that we can indeed define a cluster of sensors with good
estimations, however the experiments are at preliminary stages and more
simulations must be conducted in order to have a clear answer.
Until now we saw how to compute the average angle/plane for a single
measurement position. Hence by combining the information of all three
measurement positions we have in total up to three averaged planes as one
can see in Figure 3.5.

Figure 3.5: This picture illustrates the complex planes of the three mea-
surement positions with red, green and yellow color. The averaged plane for
each measurement positions are colored blue. The pairwise intersection of
the averaged planes are denoted with (magenta) lines.

Solid angle investigation: this investigation concerns cases where all 3
averaged planes are computed. This investigation conducted to provide an
intuition about the combination of the three averaged planes. Its results
based on emperical observations, for this reason we do not use it in our
numerical experiments study in Chapter 5. In our study the intersection
of any pair of averaged planes defines a line in the space, hence three lines
overall see Figure 3.5. From those lines we can compute the solid angle as
part of a corresponding tetrahedron [32, Theorem 1, Lemma 1], [33] with
one of its vertices placed at the origin of our coordinate system.
Let’s present shortly the notion of solid angle. A solid angle is related to the
surface area of a ball. This surface area can be formed from the intersection
of the ball with any geometric object (cone, tetrahedron, etc.). In fact any
closed curve on the surface of a ball B, can define lines that meet at a vertex
(e.g. at the center of the ball B) and creates a solid angle. That means that
we can define a solid angle for various shapes, with most common shapes
under study in literature be the cones, tetrahedrons and cubes, projecting
them onto the surface of the ball. In the lecture notes [34] is described as
how to compute a solid angle for a cone, a tetrahedron or a polyhedron.
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In our study we are interested only for the solid angle of a tetrahedron,
which we will describe in a while. Solid angle is measured in steradian (sr)
(SI unit). Note that there are 4π steradians in a sphere in comparison to
the 2π of the circle radians. Though the surface area of a ball is 4πr2 and
depends on the radius r of the ball, because we measure an angle, we are
not influenced from the ball radius, for this reason solid angle will always
measure 4π steradians and the surface area of a steradian will be equal to r2.

Remark 4 [32, Sec. 1] The solid angle of a tetrahedron with a vertex on
the center of a ball B is the area of the spherical triangle on the ball B. This
spherical triangle formed by the intersection points between the tetrahedron
and the sphere see Figure 3.6.

In our case, in order to compute the solid angle defined by the three averaged
planes, we need first to compute the dihedral angles between each pair of
averaged planes.

Figure 3.6: For this illustration the magenta lines correspond to the pairwise
intersection of the averaged planes. The corresponding spherical triangle
on the surface of the unit ball B (whose surface defines the solid angle) is
colored with purple. With light blue color one can see the tetrahedron shape
we describe before.

Definition 3 [35, ch. 8 Sec. 2] The dihedral angle αc is the angle that
formed between two planes with c = ({1, 2}, {2, 3}, {3, 1}) and c denote the
possible pairs of our three averaged plains.

To compute the angle between two planes we need first to know the equation
of each plane in the form Apx+Bpy+Cpz = Dp with p define a plane (in our
experiments this is a known information with p = 1, 2, 3). Then we define
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a normal vector for each plane np = (Ap, Bp, Cp) and then the dihedral
angle is computed as the angle between the normal vectors np as they do
in [36, ch.17] with the use of the following formula:

α12 = arccos

∣∣∣∣∣ A1A2 +B1B2 + C1C2√
A2

1 +B2
1 + C2

1

√
A2

2 +B2
2 + C2

2

∣∣∣∣∣ .
Similarly we can compute the α23 and α31.

Now we can compute the solid angle φ also known as spherical excess for
the spherical triangles, based on [32, Lemma 1, ch. 8 Sec. 2 ] as follows:

φ = α12 + α23 + α31 − π.

The idea of the spherical excess is that the sum of the angles of a spherical
triangle will always be bigger or equal to π. This is based on a property of
the sum of the angles of a spherical triangle which states that, their sum
is greater than 180◦ and less than 540◦ [35, sec. 2]. For this reason the
solid angle φ of our spherical triangle varies between (0, 2π). This can be
translated as, smaller solid angles provide us with more restricted regions
where the dipole X̂d should be located. For this reason we want a solid angle
φ as small as possible. In our study we use the solid angle φ as an empirical
indicator for the confidence we should have in our estimations. During
those first experimentations we adopt an empirical threshold of 3.04 · 10−4

sr which is an approximation of 1 square degree. Square degree is not an
SI unit, however it provides an illustration to measure parts of a sphere, in
the same way degrees measure parts of a circle. One steradian is equal to
(180/π)2 square degrees so we can convert steradians to square degrees and
the opposite. Note that because this threshold is empirical and based on a
personal selection which narrows the solid angle to a square degree, we have
used it only to identify cases which deserve extra attention.

3.2.2 Test of planes method, simulations with synthetic data

Remark 5 An important remark regarding the simulations with synthetic
data that follows is that they concern ideal data (data without noise). That
happens because the goal of Chapter 3 is to compare the linear combination,
parabola and circles method that follows under ideal conditions. However
it was important for us to illustrate the behavior of the planes method for
noisy data. That was the reason why we decide to study until now the planes
method with noisy data from the first measurement position of Setup 1.8.

From now on we test the planes method by conducting experiments with
ideal synthetic data concerning 6000 dipoles inside a ball as described in
Setups 1.6 and 1.7 of Chapter 1.
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Study of data without noise for the current lunometer configu-
ration: the first experiment we conduct concerns cases with the current
lunometer configuration and without noise as described in Chapter 1. For
this setup of experiments we conduct measurements for all three measure-
ment positions (Setup 1.6), hence it is a complete set of data. Note that
because the planes method does not compute a precise estimation for the
dipole Xd, there is no direct way to compare the planes method with the
methods we develop later on.
The general results of our experiment are the following:

Experiment Arg(ξ̂′(i)−)
range more
than 90◦

Average solid an-
gle

Maximum value
of solid angle

Setup 1.6 1 1.36 · 10−4 0.02

One first observation is that there is only one case with Arg(ξ̂′(i)−) range
more than 90◦, which is estimated at the first measurement position. We
also observe that the maximum solid angle of our experiments is equal to
0.02 sr or approximately 65 square degrees which covers 0.15% of the unit
sphere surface (a sphere has approximately 41264 square degrees). That
means that we have good results for every experiment (which is expected
since we deal with ideal data). We face in total 485 cases with solid angle
bigger than our 3.04 · 10−4 threshold, which corresponds to 8.1% of our
cases. This is a good indication for the robustness of our method, it tells
us basically that with ideal data we can have high confidence for the dipole
direction to almost 91% of our averaged planes estimations.

Study of data without noise for multiple sensors: to see how this
method behaves with more sensors, we use the Setup 1.7. We conduct the
data acquisition process with 11 sensors, as described in Chapter 1.
The general results are the following:

Experiment Arg(ξ̂′(i)−)
range more
than 90◦

Average solid an-
gle

Maximum value
of solid angle

Setup 1.7 3 7.7 · 10−5 0.071

In this set of experiments we face 3 cases where Arg(ξ̂′(i)−) range more
than 90◦. From our investigation we observe that there is 1 case for each
measurement position, hence there are 3 cases in total where we do not
compute a solid angle. We observe also that the average value of the solid
angle for the remaining cases is smaller than our 3.04 · 10−4 threshold, with
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only 263 cases that exceed it. The maximum value for the solid angle in our
experiments is 0.071 or 233 square degrees which covers 0.5% of unit sphere
surface. In conclusion, the experiments show that more sensors estimate
better the dipole direction.
As an extra confirmation of our theory that the solid angle contains the
dipole location Xd we select 100 random cases from both of the above ex-
periments and we test if the dipole is actually located between the averaged
planes. Indeed for all of the selected cases the dipole was located inside the
tetrahedron formed by our averaged planes.

3.3 Linear combination method

We continue our study with the linear combination method. The idea of this
method is to manipulate properly the information from Expression (3.5) and
solve a linear system. For this reason we introduce the notation λh:

λh :=
1 + |ξ′d|2 + (h− hd)2

|ξ′d|
= t+ + t−. (3.6)

Note that λh depends only on t− and t+, hence we can estimate it from
the available data and we will consider it as a known quantity. Now, from
Expression (3.6) for S ≥ 3 we get:

λh1 |ξ′d| = 1 + |ξ′d|2 + (h1 − hd)2,
λh2 |ξ′d| = 1 + |ξ′d|2 + (h2 − hd)2,

...
λhS |ξ′d| = 1 + |ξ′d|2 + (hS − hd)2.

Those equations concern data at heights hi, i = 1, ..., S with unknowns |ξ′d|,
hd. To simplify the system we subtract from the first equation the other
S − 1 equations and we get:

(λh1 − λh2)|ξ′d| = (h1 − hd)2 − (h2 − hd)2,

(λh1 − λh3)|ξ′d| = (h1 − hd)2 − (h3 − hd)2,
...

(λh1 − λhS )|ξ′d| = (h1 − hd)2 − (hS − hd)2.

By expanding the squares on the right side of the system we end up with
(λh1 − λh2)|ξ′d|+ 2(h1 − h2)hd = h2

1 − h2
2,

(λh1 − λh3)|ξ′d|+ 2(h1 − h3)hd = h2
1 − h2

3,
...

(λh1 − λhS )|ξ′d|+ 2(h1 − hS)hd = h2
1 − h2

S ,
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which we can express in a matrix form as Ax = B with:

A =


λh1 − λh2 2(h1 − h2)
λh1 − λh3 2(h1 − h3)

...
...

λh1 − λhS 2(h1 − hS)

 , x =

[
|ξ′d|
hd

]
and B =


h2

1 − h2
2

h2
1 − h2

3
...

h2
1 − h2

S

 .
For S ≥ 4, the above linear system of S − 1 equations is overdetermined.
Overdetermined systems usually do not have exact solutions [26, Sec. 5.3]
but we can find a solution of x denoted as x̂ by solving the least squares
problem x̂ = Argminx∈R2 |B −Ax|2, where | · | is the Euclidean norm. This
can be done, e.g., by using the Moore-Penrose pseudo-inverse [37] matrix
A+. The A+ of A is given by the expression A+ = (ATA)−1AT where AT

is the transposed matrix of A. The solution to the least squares problem is
then given by x̂ = A+B.

Special case with S = 3: note that in the particular case when S = 3,
our system Ax = B has two equations with two unknowns (hence it is not
an overdetermined system anymore). In that case matrix A is a square 2× 2
matrix.

• If its determinant DetA 6= 0, then A is an invertible matrix and we
can compute its unique solution x = A−1B, where A−1 is the inverse
matrix of A.

• If its determinant DetA = 0 then the equations of the system{
(λh1 − λh2)|ξ′d|+ 2(h1 − h2)hd = h2

1 − h2
2,

(λh1 − λh3)|ξ′d|+ 2(h1 − h3)hd = h2
1 − h2

3,

are not independent and we have infinitely many solutions or no solu-
tion at all.

Let’s study the value of DetA. For S = 3 we know that

A =

[
λh1 − λh2 2(h1 − h2)
λh1 − λh3 2(h1 − h3)

]
,

and its determinant is

DetA = 2 [(λh1 − λh2)(h1 − h3)− (λh1 − λh3)(h1 − h2)] .

For i 6= j, Equation (3.6) gives that

λhi − λhj =
1

|ξ′d|
(hi − hj)(hi + hj − 2hd).
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Which for our problem provides DetA 6= 0 because we study general
cases with |ξ′d| 6= 0 and hi 6= hj .

When hi = hj we have λhi = λhj . Consequently for the square matrix
A we get DetA = 0 when h1 = h2 or h2 = h3 or h1 = h3. However
we must emphasize that a situation like that is impossible with the
current lunometer configuration which enforce that hi 6= hj .

3.3.1 Test of linear combination method, simulations with
synthetic data

The theoretical framework of this method is the following: we know that
the sensors take measurements at known heights hi. For each sensor we can
compute the λhi coefficient through the pole estimations ξ′(i)− as follows:

λhi = |ξ′(i)−|+
1

|ξ′(i)−|
.

To illustrate the behavior of the linear combination method we conducted
simulations with ideal synthetic data. We use the Setups 1.3 and 1.4 of
the experiments without noise as described in Chapter 1. Both of them
consist of 6000 dipole experiments that spread on cylinder surfaces around
the revolution axis and for measurements taken at one position. We denote
with X̂d = (ξd, zd) the 3D estimation from the dipole location. In this
experiment, X̂d is computed from the information of a single measurement
position.

Study of data without noise for the current lunometer configura-
tion: for these experiments we use the Setup 1.3 for a single measurement
position as described in Chapter 1.
The result of the linear combination method is an estimation X̂d for the
dipole location Xd. To analyze our data we compute the percentage error
between the estimated and the actual dipole elin normalized by the radius
R of our sensors distance from the revolution axis as follows

elin =
|X̂d −Xd|

R
· 100.

For the current lunometer configuration (special case when S = 3) (and with
|ξ′d| 6= 0), Ax = B linear system boils down to a system of two equations with
two unknowns. That means that RARL2 should provide us with different
ξ̂′(i)− pole estimations at each height, this claim is based on the theoretical
root ξ′(i)− from Equation (3.3) for cases with same (|ξ′d|, hd) and different
h. However RARL2 due to approximation and numerical errors provide
us with some cases where the ξ̂′(i)− approximations are equal. As a result
our computations for the λhi coefficients are contaminated from these bad
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approximations. This affect our Matlab computations for the elin dipole
error and we get as a result Inf or NaN. We observe that these cases (which
correspond to less than 1% of our experiments) are exactly the same cases
that provide us with an Inf value for their condition number. We can see
where they are located in Figure 3.7(a).

(a) (b)

Figure 3.7: In both pictures the vertical axis shows the information zd and
the horizontal axis the information |ξd| for the 6000 generated dipole lo-
cations (black dots). The black horizontal lines correspond to the heights
of the sensors. For the picture on the left, the red stars illustrate dipole
locations with Inf condition number/excluded cases. For the picture on the
right, the blue stars illustrate dipole locations that provide us with elin error
more than 1000%. Both pictures illustrate results of the linear combination
method.

We computed the condition number in order to check the sensitivity of
our matrix A. There are 49 cases with infinite condition numbers, the
remaining 5951 cases have a mean condition number of 3.14 · 1011 with
a median condition number located at 40. This is an indication of the
sensitivity of our linear equation system. The distribution of the logarithm
of the condition numbers we compute can be seen in Figure 3.8.

The general results of our analysis are the following:
Experiment Average

elin

# of excluded
cases

# of dipoles with
elin > 1000%

# of dipoles with
elin > 50%

Setup 1.3 3.75 · 1011 49 71 2685

Note that the average elin is: 3.75 · 1011%, for the remaining 5951 dipoles
after removing the cases with infinite value for their condition number.

Let us discuss in more detail some of the above results. Figure 3.7(a) il-
lustrates the 2D information for the cases with Inf value for their condition
number which are also the excluded cases. Figure 3.7(b) is a similar plot but
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Figure 3.8: This picture illustrates the logarithm of the condition number,
for the 5951 remaining cases of the experiment with Setup 1.3 for data
without noise (from a single measurement position) and with the current
lunometer configuration. These illustrations concern the linear combination
method.

concerns the dipoles with elin bigger than 1000% and Figure 3.9 illustrates
the distribution of the elin error. From the study of the 71 cases with elin
error more than 1000%, we observe that they concern cases where at least
two estimated poles are equal.
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Figure 3.9: This picture illustrates the distribution of the elin of the linear
combination method for errors up to 300%. Its vertical axis corresponds to
the number of dipoles and its horizontal axis to the elin percentage error.
These experiments concern the linear combination method with the use of
ideal data.

From our analysis we observe that we can have good estimations of the
ξ′(i)− but nonetheless the linear combination method will provide us with

uncertain estimations of X̂d. This claim is based on the comparison of the
mean eft error with the elin error. Note that eft error is given as we defined
it in Chapter 2

eft =
|ξ̂′− − ξ′−|
|ξ′−|

· 100.

Though these two percentage errors have different nature. Their comparison
shows that for mean eft less than 2% (good estimations of ξ̂′(i)− correspond

to 3948 dipoles in total) we have elin with an average of 4.4 · 1011% and a
median of 30% (bad estimations of X̂d with the linear combination method).

Study of data without noise for multiple sensors: at this point we
are interested in studying the behavior of a lunometer with multiple sensors
and how it affects the results of the linear combination method. To investi-
gate this scenario we conducted experiments for data without noise, but this
time we use 11 sensors instead of 3. We use the Setup 1.4 for the 6000 dipole
experiments for a single measurement position as described in Chapter 1.

For this setup of experiments the general results of our analysis are the
following:
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Experiment Average
elin

# of excluded
cases

# of dipoles with
elin > 1000%

# of dipoles with
elin > 50%

Setup 1.4 17.2 0 0 694

Though we do not exclude any dipole with the linear combination method,
we have to address that 3 cases are not taken into account due to the planes
method. That happens because these cases have Arg(ξ̂′(i)−) with range bigger
than 90◦. For these experiments, the results are better compared to the 3
sensors experiments. Once again we computed the condition number of the
linear combination system. This time the mean condition number is 12 with
a median condition number equal to 9.5. Note also that here the average
elin is 17,2%. The distribution of the log of the condition numbers for this
experiment is given in Figure 3.10.

Figure 3.10: This picture illustrates the logarithm of the condition number,
for the 5997 remaining cases of the experiments of Setup 1.4 for data without
noise (from a single measurement position) and with 11 sensors. For this
experiment we use the linear combination method.

One first observation from our experiments, is that when we use 11 sensors
the maximum elin is 247%. In Figure 3.11 one can see the dipoles which
provide elin more than 100%. Those cases correspond to 179 dipoles in
total, which represent 3% of the measurements. Once again we observe good
estimations of eft does not translate to small elin. Finally the distribution
of the elin and the mean elin by radius can be seen in Figures 3.12(a) and
(b) respectively. Note that we illustrate the information of mean elin by
radius only for the 11 sensors. That happens because in the case with the 3
sensors in our previous experiments we have many cases with big errors that
influence our results. From the elin distribution we can see that more than
50% of the dipole experiments provide us with elin less than 5%. Another
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interesting observation is the behavior of the mean elin with respect to the
measurement radius which denotes that dipoles which are located further
from the revolution axis and consequently are closer to the sensors provide
us with better results. This observation is consistent with the analysis we
completed in Chapter 2.

Figure 3.11: The vertical axis shows the information zd and the horizontal
axis the information |ξd| for the 6000 generated dipole locations (black dots).
The black horizontal lines correspond to the heights of the sensors. The blue
stars illustrate dipole locations that provide us with error more than 100%.
For this experiments we use the linear combination method.
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(a)

(b)

Figure 3.12: The top picture illustrates the distribution of the elin error for
the linear combination method. Its vertical axis corresponds to the number
of dipoles and its horizontal axis to the elin error. The bottom picture
illustrates the mean elin (vertical axis) with respect to the cylinder radius
(horizontal axis).

In conclusion linear combination method performs poorly with the current
lunometer’s configuration despite the fact that we use synthetic ideal data.
It does have the potential to provide better results (for instance with the
use of 11 sensors) but for the scope of this study the main observation is its
high sensitivity.

3.4 Parabola method

The first goal of the parabola method is to estimate the height zd of the
dipole location, by knowing that information we can further compute also
the |ξd|. As happened with the previous methods, parabola method can be
used either for a single measurement position or with a combination of two
or three measurement positions. The idea of this method is the following,
each measurement position allows one to estimate a height to which X̂d

belongs. This height (which is related to the vertex of the parabola) defines
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a plane parallel to the measurement plane. We can have in total 3 of those
planes due to the different measurement positions, each recovered plane
has information for the heights of the dipole Xd which are associated with
the ẑd, x̂d and ŷd information for the first, second and third measurement
position respectively. Hence a combination of all three recovered planes
should provide us with an estimate of the X̂d.
The parabola method is a geometrical method inspired from Lemma 4.
When we studied the function ℵ(ρ) at the beginning of this chapter we
get the expression

ℵ(ρ) =
1 + |ξ′d|2 + ρ2

|ξ′d|
.

In the generic case when |ξ′d| 6= 0, one can observe that this expression has
the form of a vertical parabola which attains its minimum value at ρ = 0
(which is equivalent to h = hd). We will focus our study on the general case
where |ξ′d| 6= 0.
By expanding the term (h− hd)2 of Equation (3.6) we get:

λh =
1

|ξ′d|
h2 − 2hd

|ξ′d|
h+

1 + |ξ′d|2 + h2
d

|ξ′d|
. (3.7)

Equation (3.7) has the form λh = αh2 + βh+ γ (which is the standard form
of a horizontal parabola see Figure 3.13) with h varying on the vertical axis
and λh varying on the horizontal axis where the coefficients α, β and γ are
unknown.
Now, in theory, in order to recover a parabola equation (compute the coeffi-
cients α, β, γ ∈ R) one only needs to know three of its points. In our study
the parabola points (λhi , hi) ∈ R2 are defined from the heights of the sensors
hi with i = 1, ..., S and from the estimated λhi coefficients. This brings us
back to solve a linear problem with the same logic as we did in the linear
combination method before. This time the system we want to solve is the
following: 

αh2
1 + βh1 + γ = λh1 ,

αh2
2 + βh2 + γ = λh2 ,

...

αh2
S + βhS + γ = λhS

Which we can express in a matrix form as Ax = B with:

A =


h2

1 h1 1
h2

2 h2 1
...

...
...

h2
S hS 1

 , x =

 α
β
γ

 and B =


λh1
λh2

...
λhS

 .
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Figure 3.13: This is an illustration of three different examples of parabola
in Equation (3.7). The one in black corresponds to |ξ′d| = 1, the one in blue
to |ξ′d| = 5, and the one in red to |ξ′d| = 10. For this illustration the height
of the dipole is set to be hd = 5.

For S ≥ 4, the above linear system of S equations is overdetermined. So we
can use the Moore-Penrose pseudo-inverse matrix A+ = (ATA)−1AT where
AT is the transposed matrix of A and we can compute the solution to the
least squares problem as x̂ = A+B. For the special case where S = 3 we
have three equations with three unknowns and by solving the linear system
of these equations we can define the parabola.

The first point we are interested in calculating with the parabola method
is the vertex of the parabola, because at that point we get hi = hd = zd/R
and this is where the parallel plane with respect to our measurement plane
will be located. When hd is known, one could consider also to recover the
information for |ξ′d| since its value is related to the computed coefficients
α, β, γ. Due to time limitations we didn’t study these relations. However it
is interesting information for further research. In order to test the parabola
method we conduct experiments with synthetic ideal data.

3.4.1 Test of the parabola method, simulations with syn-
thetic data

Study of data without noise for the current lunometer configura-
tion: in order to test the parabola method, we conduct experiments with
ideal synthetic data. At first we use the Setup 1.3 of the experiments as
described in Chapter 1. This is the setup with the 6000 dipoles located on
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Figure 3.14: This picture illustrates the distribution of the logarithm of the
ezd error for the parabola method with 3 sensors measurements form a single
position.

the surfaces of concentric cylinders. We use one measurement position with
the current lunometer configuration of the 3 sensors. The goal of this exper-
iment is to test how sensitive the parabola method is under ideal conditions.
To do that we compute the parabola peak percentage error ezd as follows

ezd =
|ẑd − zd|

R
· 100. (3.8)

The obtained results are as follows:

Experiment Averaged
percentage
ezd

# of excluded
cases

# of cases with
ezd more than
1000%

# of cases with
ezd more than
50%

Setup 1.3 67.6% 18 10 2483

With the current lunometer configuration from the 6000 dipoles of our ex-
periment, we exclude in total 18 cases. Those 18 cases concern dipoles for
which the ξ′(i)− estimations have the same value at each height hi. In those
cases our Matlab computations provide us with the value NaN as the so-
lution for the parabola peak. For the remaining 5982 cases the averaged
percentage ezd of the parabola method is 67.6%.

This large averaged ezd error, is strong evidence that with the current
lunometer configuration, parabola method is too sensitive. Indeed 41% of
our experiments provide us with ezd > 50%. The distribution of the loga-
rithm of the ezd error can be seen in Figure 3.14
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Study of data without noise for multiple sensors: to complete the
study of this method we also conducted ideal data experiments with 11
sensors, we used the Setup 1.4 as described in Chapter 1. The goal of these
experiments is to verify if more sensors could increase the accuracy of the
parabola method. The general results of our analysis are the following:

Experiment Averaged
percentage
zd error

# of excluded
cases

# of cases with
error more than
1000%

# of cases with
error more than
50%

Setup 1.4 81.1% 0 74 707
For the second experiment we have 11 sensors. Once again we have to
address that 3 cases are not taken into account due to the planes method,
for cases with Arg(ξ̂′(i)−) and a range larger than 90◦. This is something we
expected because we have already studied this setup of experiments with the
linear combination method. For the rest of the cases the averaged ezd error
is 81.1%. This result is a little bit misleading because the error increases
with more sensors due to the fact that we get more cases with ezd > 1000%
(74 cases in total) but at the same time we have only 11% of our experiments
which provide us with ezd > 50%. The distribution of the logarithm of the
ezd error can be seen in Figure 3.15

Figure 3.15: This picture illustrates the distribution of the logarithm of the
ezd error for the parabola method with 11 sensors measurements form a
single position.

The studies so far have shown, that the planes method is a good approach in
restricting the search area for the dipole location Xd. We can also see that
with the current lunometer configuration, both the linear combination and
the parabola method show sensitivity to estimate the information related to
X̂d location. We continue our study with another geometrical method, that
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of circles method.

3.5 Circles method

With this method, our goal is to recover an X̂d estimation for the dipole
location through the geometrical study. The circles method can also provide
us with an estimation X̂d for each measurement position. The circles method
is also based on Equation (3.6)

λhi :=
1 + |ξ′d|2 + (hi − hd)2

|ξ′d|
= t(i)+ + t(i)−

which we can rewrite as:

λhi |ξ
′
d| = 1 + |ξ′d|2 + (hd − hi)2 ⇔ (hd − hi)2 + (|ξ′d|2 − λhi |ξ

′
d|) = −1.

By completing the square of the term (|ξ′d|2 − λhi |ξ′d|) (namely with the

addition and subtraction of the term
λ2
hi

4
) we get:(

|ξ′d| −
λhi
2

)2

+ (hd − hi)2 =
λ2
hi

4
− 1. (3.9)

From the proof of Lemma 1 which we study at the beginning of this chapter
in the section of the Denominator analysis, one can observe that ∆ = λ2

hi
−4

(λhi defined from Equation (3.6)) and we get that
λ2
hi

4
− 1 > 0.

Equation (3.9) implies that (|ξ′d|, hd) lies on the circle with center Ci =(
λhi
2
, hi

)
and radius ri =

1

2

√
λ2
hi
− 4.

Actually in Equation (3.9) if we replace ξ′d and hd by t(i)− and hi respectively
the equation still holds. More precisely by replacing and doing computations
at the left part of Equation (3.9) we get:(

t(i)− −
t(i)+ + t(i)−

2

)2

+ (hi − hi)2 =

(
2t(i)− − t(i)− − t(i)+

2

)2

=
(t(i)− − t(i)+)2

4
=
t2(i)+ + t2(i)− − 2

4
.

Now for the right part of Equation (3.9) we get:

λ2
hi

4
− 1 =

(t(i)+ + t(i)−)2

4
− 1 =

t2(i)+ + t2(i)− + 2− 4

4
=
t2(i)+ + t2(i)− − 2

4
.

From the above computations we can see that the point (t(i)−, hi) belongs
on the circle of Equation (3.9). We can work with a similar method for the
point (t(i)+, hi).
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For the current lunometer configuration we have three sensors i = 1, 2, 3
from which we get three circle equations. Theoretically, those circles must
intersect at the actual dipole location Xd. However numerical simulations
reveal that we can not compute a single intersection point even for ideal
data due to approximation errors of our methods (RARL2 is initialized by
grid method and computes an approximation of ξ′(i)− and not the exact

theoretical value). In addition floating point / rounding errors of Matlab
also contribute to the uncertainty of our result. Figure 3.16 illustrates this
behavior.

Figure 3.16: The picture on the left is an illustration of a theoretical in-
tersection example of the three circles. For a dipole placed at Xd =
[0.015, 0.015, 0.015] with moment Md = [0.0723, 0.0721, 0.9948] · 10−3 for
data without noise from the second measurement position. The vertical
black line indicates the sensors distance from the origin of our coordinate
system R = 0, 15. The picture on the right is a close up of the area close to
the dipole location (blue dot) from the first picture.

Another interesting observation comes from the circle center Ci =

(
λhi
2
, hi

)
and the use of Equation (3.6). From Equation (3.6) we know that λhi =
t(i)−+ t(i)+ = |ξ′−|+ |ξ′+|. That means that the circle center is located at the
middle of the segment defined by the points (t(i)−, hi) and (t(i)+, hi) where
hi is the height of the sensor, t(i)− = |ξ′−| is the value of the pole estimation

and t(i)+ =
1

t(i)−
can be computed from t(i)−. This provides us with the

information that we can use to compute the diameter of the circle (Ci, ri)
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from the points (t(i)−, hi) and (t(i)+, hi).

Remark 6 From Lemma 4 we know that t− attains its maximum value
at h = hd. Moreover, from the first Vieta’s formula (3.4), we know that

t+ =
1

t−
with 0 < t− < 1. That means that at height h = hd, not only t−

attains its maximum value but at the same time t+ attains its minimum
value. Since the points (t−, h) and (t+, h) define the diameter of the circle
(Ci, ri) we can claim that the circle with the smallest possible diameter must
be located at the height h = hd.

3.5.1 Accuracy of the computed circles, simulations with
synthetic data

At this point in order to test if the computed circles which were derived
from the ξ̂′(i)− estimations are good approximations of the circles computed

from the theoretical poles ξ′(i)−, we conduct preliminary experiments with
synthetic ideal data for a single measurement position.

Study of data without noise for the current lunometer configu-
ration: our setup of experiments uses the lunometer configuration as de-
scribed in Setup 1.5. This setup concerns ideal data measurements from a
single position for 6000 dipoles spread on the surfaces of concentric cylinders
(like the Setup 1.3). This time for each height hi, i = 1, 2, 3 we take mea-
surements of all three of the components of the magnetic field B[Xd,Md](X).
This can help us to compare the results of each sensor as we did in Chap-
ter 2. We use this setup of experiments only for the circles method because
we conducted them at a later stage of our research. At that moment we
were already aware that our final selection for our study would be the cir-
cles method. For this reason we conduct some extra experiments just for
the circles method in order to address different questions we have.
The goal of these preliminary experiments is to test whether the recovered
circles of our method are good approximations of the theoretical ones. To
evaluate the circles we compute the percentage error eradii for the recovered
circles radius with respect to the theoretical ones as follows:

eradii =
|Recovered Radius− Theoretical Radius|

Theoretical Radius
· 100.

We also compute the percentage error ehcenter for the coordinate that cor-
responds to the horizontal axis (we write it in short as: hor) of the circles
centers. We normalize this error by dividing with the theoretical radius too
as follows:

ehcenter =
|Recovered hor center− Theoretical hor center |

Theoretical Radius
· 100.
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The following table gathers the information for the average of eradii and
ehcenter per sensor and per corresponding height.

Br B⊥ Bτ
heights 0 0.015 0.030 0 0.015 0.030 0 0.015 0.030

average eradii 4.7 4.8 5.1 1.9 1.9 2.0 3.7 3.4 3.7

average ehcenter 3.6 3.7 3.9 1.3 1.3 1.4 3.2 2.9 3.1

The first observation from the above table is that both average errors are
small. The second observation is that their values barely vary with respect
to the height, and they depend on the sensor. We also observe that the
cases with eradii > 50% and the cases with ehcenter > 50% coincide. For this
reason we have evidences that a comparison of our computed circles with
the theoretical ones, can be based either by comparing their radius or by
comparing their centers, hence we can further focus our study only on eradii.
In Figure 3.17 we can see the distributions of the eradii and ehcenter for
each sensor for height h = 0 (the other two height h = 0.015 and h =
0.03 have similar distributions). This is a good result because it confirms
that the consistency of our analysis does not depend on the height of the
measurements but on the measurement component. Interestingly enough,
some features of the eradii distribution remind us of the results we observed
in Chapter 2, namely the Br sensor has a distribution with a long right tail,
the Bτ sensor has a distribution with two peaks though this time the peak
of the distribution error is located close to 30% instead of 40% and the B⊥
sensor has a fast decrease. In any case, those results show consistency with
our previous analysis. From a general point of view, it seems that a multiple
sensor lunometer constructed with B⊥ sensors can provide better results for
our estimation of X̂d dipole location. This is something that we will test in
Chapter 5.
In conclusion, from our analysis with perfect data the recovered circles can
be considered as good approximations of the theoretical ones. The key
information now is the link between the intersection point between the Ci
circles and the dipole location Xd as provided from Equation (3.9). The
difficulty we face now, is how we can recover this intersection point since,
even with ideal data, Matlab does not provide us with a unique common
intersection point among the circles, see Figure 3.16. For this reason a
pseudo-intersection point must be defined. The next chapter is dedicated
to that issue and explains in more detail how we can compute such a point.
Numerical simulations and examples are also provided.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.17: Pictures on the left have as vertical axis the number of the
dipoles, and as horizontal axis the eradii. Pictures on the right have as
vertical axis the number of the dipoles, and as horizontal axis the ehcenter.
All of the pictures concern results of the circles method for ideal data from
a single measurement position. For these illustrations the sensors height is
h = 0.



CHAPTER 4

Circles pseudo-intersection (3D)

In this chapter we address the problem of how to define an intersection point
for the circles method (this problem is illustrated in Figure 3.16). We call
our recovered solution “pseudo-intersection” point X̂d. Note that we have a
“pseudo-intersection” point X̂d (for each measurement position). In theory
X̂d must coincide with the actual intersection point Xd of the given S ≥ 3
circles whenever it exists.
In this section we investigate three methods for computing a pseudo - inter-
section point X̂d, namely the radical center, the minimization of the sum of
the distances to three circles and the minimization of the sum of the squares
of powers of a point with respect to given circles. The first two methods
apply only when S = 3, in contrast to the third one where the number of
circles can be S ≥ 3. The radical center is a simplistic approach to solve
our problem for three given circles. The minimization of the sum of the
distances to three circles is solved by computing a finite list of points among
which the minimization point must belong. Finally the third method relies
on finding the common roots of two polynomials of a single variable. Each
method provides a pseudo-intersection point X̂d with different sensitivity
and characteristics which are studied. Note that the notation X̂d contain
the 3D information of the dipole location (namely (ξ̂d, ẑd)), however when
we study each measurement position individually we also use the notation
x̂d which contain the 2D information of the dipole location (|ξ̂d|, ẑd) for each
measurement position. Numerical simulations illustrate the robustness and
the properties of each method. At the end of this chapter we discuss how we
can combine the information from different measurement positions by using
the idea of the centroid and compute a final X̂d estimation. At that point
we use the notation X̂d(p) with p = 1, 2, 3 for the recovered 3D information
of the dipole location for each measurement position and the notation X̂d

for their combination.
We also discuss a rough approximation which we use in [20]. In Chapter 5 we

96
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conduct more simulations with synthetic data and we compare their results.

4.1 Radical center

The current lunometer configuration restricts the use of information from
S = 3 circles. A natural and easy idea for a pseudo-intersection point esti-
mation x̂d is by computing the radical center [38, ch.3] (also called power
center) of those three circles. This method consists of computing firstly the
three radical axes of the pairs of circles and secondly the intersection point of
those axes. A description and numerical simulations of this method follow.

Definition 4 Power of a point [38, ch.3, §43].
The power of a point P = (x, y) ∈ R2 with respect to a circle Ci centered at
(xi, yi) ∈ R2 with radius Ri > 0, is the real number hi(x, y) defined as:

hi(x, y) = (x− xi)2 + (y − yi)2 −R2
i , (4.1)

and it indicates the “relative distance” of the point P = (x, y) to a given
circle Ci.

Remark 7 Note that from the definition the following properties hold.

P ∈ Ci ⇔ hi(x, y) = 0,
P ∈ Di ⇔ hi(x, y) < 0,

P ∈ R2\Di ⇔ hi(x, y) > 0,

where Di is the open disk surrounded by the circle Ci and Di = Di ∪ Ci is
the closure.

Remark 8 Note that from the above remark and Equation (4.1) we can de-
duce that the value of P = (x, y) is getting bigger as we increase its distance
from the circle Ci.

Remark 9 If there exists a common intersection point P = (x, y) ∈ R2 for
N ≥ 2 given circles Ci, then it holds that the corresponding powers hi of P
to Ci vanish:

h1(x, y) = ... = hN (x, y) = 0.

Definition / Proposition 1 Radical axis [38, ch.3, §45]
The locus of a point P having equal power with respect to two given non con-
centric circles, is a certain line perpendicular to the line joining their centers
which is called the radical axis (or power line) of the circles. If the two cir-
cles intersect, this is the line passing through their points of intersections
see Figure 4.1.
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Figure 4.1: The above pictures illustrate the radical axis denoted as line λ
for two different cases. The picture on the left shows a case where the two
given circles are disjoint and the picture on the right shows a case where the
two given circles intersect twice.

Proof. A way to prove that the locus of point P = (x, y) ∈ R2 having equal
power with respect to two given non concentric circles h1(x, y) = h2(x, y)
is a certain line, comes from Equation (4.1). Solving Equation (4.1) for the
x, y variables we get:

h1(x, y) = h2(x, y)⇔ 2(y2−y1)y+2(x2−x1)x+x2
1−x2

2+y2
1−y2

2−R2
1+R2

2 = 0.

This is an equation of the form αx + βy + γ = 0, with α = 2(x2 − x1),
β = 2(y2−y1) and γ = x2

1 − x2
2 + y2

1 − y2
2 −R2

1 +R2
2. For any non concentric

pair of circles (e.g. intersecting, overlapping or disjoint circles), this is the
equation of a line.

Remark 10 For concentric circles the radical axis expression h1(x, y) =
h2(x, y) degenerates to −R2

1 + R2
2 = 0. It holds only when R1 = R2 which,

practically, tells us that the concentric circles intersect if and only if they
have the same radius. For the concentric cases where R1 6= R2 the set of
points with equal power with respect to both circles is empty.

Theorem 1 Radical axes theorem [38, ch.3, §46]

The radical axes of three pairwise distinct circles, whose centers are not
aligned, are concurrent. The point of concurrence is called the radical center
see Figure 4.2.

A proof of this theorem is given in [38, ch.3, §46].

Remark 11 If the centers of three given circles are aligned then their rad-
ical axes are parallel, in that case infinity can be considered as their concur
point see Figure 4.2.
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Figure 4.2: The above pictures illustrate two configurations for the circles
centers (xi, yi), i = 1, 2, 3: aligned (left picture) and not aligned (right
picture). In the first case the radical center can be considered to be the
infinity, for the second case the radical center is shown as a red square.

Radical center is our first candidate for a pseudo-intersection point x̂d. In-
deed if there exists a common intersection point (x, y) for the three given
circles of our study, then it must hold that h1(x, y) = h2(x, y) = h3(x, y) = 0.
This is a special case of the radical center which from Definition/Proposition 4
and Theorem 1 needs to satisfy the system of equations:

h1(x, y) = h2(x, y),
h2(x, y) = h3(x, y),
h1(x, y) = h3(x, y).

The radical center at point P = (x, y) is a very particular point for which
the power of a point with respect to each one of the three given circles, is
the same. From Remarks 7 and 8 we know that we prefer the power of a
point at P = (x, y) to be close to zero. For this reason radical centers with
values close to zero are good candidates for our pseudo-intersection point in
contrast to radical centers with big values that indicate that P = (x, y) is
far away from our circles.

4.1.1 Test of radical center method, simulations with syn-
thetic data

Study without noise for the current lunometer configuration: to
analyze the behavior of this method, we conduct experiments for 6000
dipoles without noise, for one measurement position, that are located on
the surfaces of 15 concentric cylinders as described in Setup 1.3.

To analyze our data we compute the pseudo-intersection radical center per-
centage error (epi rc) between the estimated x̂d and the theoretical pseudo-
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intersection point xd, normalized by the radius R of our sensors distance
from the revolution axis as follows:

epi rc =
|x̂d − xd|

R
· 100. (4.2)

The theoretical pseudo-intersection point xd is computed by using the in-
formation of the actual dipole location Xd (forward problem). The general
results of our analysis are the following:

Experiment Average
epi rc

# of excluded
cases

# of dipoles with
error more than
1000%

# of dipoles with
error more than
50%

Setup 1.3 4.4 · 1011 0 72 3295

The first observation for this method is that we never encounter a situation
where the radical center is at infinity. However, it has a high sensitivity
with the median value of epi rc equal to 56%. In Figure 4.3 one can see the
dipoles that produce error more than 1000%. By studying those cases we
observe that their ξ̂′(i)− results almost align, in fact the pairwise differences

between ξ̂′(i)− differ after the second decimal in their real or imaginary part.

Figure 4.3: In this illustration the vertical axis shows the information zd
of the dipole location Xd and the horizontal axis the information |ξd|. The
6000 generated dipole locations (black dots) and the black lines correspond
to the heights of the sensors. The blue stars illustrate dipole locations that
provide us with error more than 1000%. These experiments concern ideal
data processed with the radical center method.

The distribution of the epi rc percentage error of the radical center method
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can be seen in Figure 4.4. The behavior of the radical center method, is
linked with the RARL2 poles estimations ξ̂′(i)− and the circles we compute
from them . Because the heights hi of the sensors are close one to another,
the ξ̂′(i)− estimations tend to provide us with circle centers that in many
cases are almost vertically aligned. That makes the radical axes concur at
a point far away from the circles. This feature in addition with the fact
that the method can be used only for S = 3 circles suggest that we should
investigate other methods to compute a pseudo-intersection point x̂d.

Figure 4.4: This picture illustrates the distribution of the epi rc error for the
radical center method. The vertical axis corresponds to the number of the
dipoles and the horizontal axis corresponds to the epi rc percentage error.
These experiments concern ideal data form a single measurement position.

Note that since the radical center method performs poorly for ideal data
there is no reason to test it for data contaminated with noise. Also, the fact
that it is limited to S = 3 sensors does not allow us to conduct simulations
with more sensors either.
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4.2 Minimizing the sum of the distances to three
given circles

The stability issues of the radical center naturally leads to the following
informal question: does there exist a point P = (x, y) ∈ R2 the distance
of which is minimum with respect to three given circles? To answer this
question we need to define first the distance of a point to a circle.

Definition 5 Distance of a point to a circle
Let a point P = (x, y) ∈ R2 and a circle Ci ∈ R2 centered at (xi, yi) ∈ R2

with radius Ri > 0. The distance from P to Ci is given by

di(P ) = |
√

(x− xi)2 + (y − yi)2 −Ri| =: fi(x, y), (4.3)

which defines a function fi(x, y). Now the question we asked can be ex-
pressed as follows: for three given circles C1, C2 and C3, let the vector

V (P ) =

 d1(P )
d2(P )
d3(P )

 ∈ R3,

can we find a point P = (x, y) which minimizes its norm?
At this point a selection of a norm is necessary. There are three types of
norm usually used, the ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞. The Euclidean ‖ · ‖2 norm,
also called least square, is a usual choice when there is no specific reason to
select another norm and because it is associated with an Euclidean space.
The uniform ‖ · ‖∞ norm, is selected when it is important to not neglect
isolated large elements in the vector of distances. The ‖ · ‖1 norm, also
known as least absolute deviation or least absolute error, minimizes the
sum of the absolute differences between the target value and the estimated
values. In our case the ‖ · ‖1 norm leads us to a tractable problem, with
good geometric properties (for the three given circles) for this reason is the
choice of preference.

Remark 12 The ‖ · ‖1 norm of the vector V (P ) is

‖V (P )‖1 =

3∑
i=1

|di(P )| = |d1(P )|+|d2(P )|+|d3(P )| =
3∑
i=1

fi(x, y) =: f(x, y).

Back to our problem for the three given circles, the function f(x, y) is equal
to

f(x, y) = |
√

(x− x1)2 + (y − y1)2 −R1|+ |
√

(x− x2)2 + (y − y2)2 −R2|

+ |
√

(x− x3)2 + (y − y3)2 −R3|,
(4.4)
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hence it is continuous on R2 but not differentiable everywhere: in fact f is
not differentiable when one of the square roots of the function is equal to
zero (hence at the centers of the given circles), and when one of the absolute
values of the function is equal to zero. The function f is defined on the entire
plane, but its value is increasing when we are moving away from the given
circles. Hence we can restrict ourselves to a compact set which includes the
given circles. In this compact set, the function f is continuous everywhere,
so it has at least one minimum value.

We do not know the exact location of the minimal value but we know where
we should search for it. Our strategy is to collect a list of points where this
minimum value must be located. This list of points consists from the circles
centers, the circles intersection points (if any), the isogonic centers and the
Alhazen/“Alhazen-like” points.

From this list the circles centers and the pairwise circles intersections are
easy to compute. To complete our list we need to study what happens in
the differentiable and the non-differentiable domains of f as follows.

4.2.1 Domains where the function f is differentiable

If the minimum value belongs in the differentiable domain of function f
then it must be reached at a critical point. The critical points are neces-
sarily located either outside or inside the disks Di of the given circles with
exception to their centers (xi, yi). Because we exclude the domain where the
function f is not differentiable, we end up with a function f(x, y)|∆ which

is differentiable everywhere in its domain ∆ with ∆ = R2\
3⋃
i=1
{Ci, (xi, yi)}.

If a critical point is located outside a disk Di then the absolute value with
respect to that disk in Equation (4.4) can be replaced with a parenthesis.
If a critical point is located inside a disk Di then the absolute value with
respect to that disk in Equation (4.4) can be replaced with a parenthesis
with a negative sign in front. We do not know where a critical point is
located but there are eight possible sub-domains ∆j , j = 1, ..., 8 which we
can study, based on the possible circles configurations.

Remark 13 The possible differentiable sub-domains, for three given circles,
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are the following:

∆1 = R2\
3⋃
i=1

Di,

∆2 = D2\{D1 ∪D3 ∪ (x2, y2)},
∆3 = D3\{D1 ∪D2 ∪ (x3, y3)},
∆4 = D1\{D2 ∪D3 ∪ (x1, y1)},
∆5 = (D1 ∩D2 ∩D3)\{(x1, y1) ∪ (x2, y2) ∪ (x3, y3)},
∆6 = (D1 ∩D3)\{D2 ∪ (x1, y1) ∪ (x3, y3)},
∆7 = (D1 ∩D2)\{D3 ∪ (x1, y1) ∪ (x2, y2)},
∆8 = (D2 ∩D3)\{D1 ∪ (x2, y2) ∪ (x3, y3)}.

For instance, if a critical point is located outside the given disks Di, i =

1, 2, 3 then it belongs in the sub-domain ∆1 = R2\
3⋃
i=1

Di, and the function

f(x, y)|∆1 takes the form :

f(x, y)|∆1 =
3∑
i=1

(√
(x− xi)2 + (y − yi)2 −Ri

)
=: Expr1(x, y). (4.5)

Note that the expression on the right hand side of the above equation is
differentiable in the whole domain ∆ and this expression could have critical
points even outside the sub-domain ∆1. Having the above information in
mind, our algorithm makes a list with all possible critical points of f . To
do that we look for the critical points (in ∆) of the expressions Exprj(x, y),
j = 1, .., 8. A critical point (x, y) of Exprj that additionally satisfies that
(x, y) ∈ ∆j is an actual critical point of f . Otherwise, it is not a critical
point of f , but in any case, our list will collect all possible critical points of
f .
Now let us study the gradient of Expr1(x, y) (we can work in a similar way
for the other Exprj(x, y) cases). Without loss of generality we can compute
the gradient for only one term of Expr1(x, y) and get:

∇(
√

(x− xi)2 + (y − yi)2 −Ri) =

(
x− xi
y − yi

)
∥∥∥∥( x− xi

y − yi

)∥∥∥∥ . (4.6)

Observe that Equation (4.6) defines a unit vector ui(x, y).

Remark 14 The term Ri of Expression (4.5) has no influence after the use
of ∇ operator. The simplification of Ri term and the unit vectors features in
Equation (4.6) happens exactly because we use the ‖ · ‖1 norm instead e.g.
the Euclidean one.
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Proposition 2 Equation (4.6) provides us with three unit vectors u1, u2,
u3 which come from the three terms of Expression (4.5). Depending on the
considered expression Exprj (j = 1, ..., 8), we get the following expressions
for ∇Exprj(x, y), for (x, y) ∈ ∆:

∇Expr1(x, y) = +u1(x, y) + u2(x, y) + u3(x, y),
∇Expr2(x, y) = +u1(x, y)− u2(x, y) + u3(x, y),
∇Expr3(x, y) = +u1(x, y) + u2(x, y)− u3(x, y),
∇Expr4(x, y) = −u1(x, y) + u2(x, y) + u3(x, y),
∇Expr5(x, y) = −u1(x, y)− u2(x, y)− u3(x, y),
∇Expr6(x, y) = −u1(x, y) + u2(x, y)− u3(x, y),
∇Expr7(x, y) = −u1(x, y)− u2(x, y) + u3(x, y),
∇Expr8(x, y) = +u1(x, y)− u2(x, y)− u3(x, y).

(4.7)

Because in the Expressions (4.7) we are dealing with additions and sub-
tractions of unit vectors and in the case of a critical point we want their
combinations to be equal to zero, we can approach the problem geometri-
cally.

For example if u1(x, y) + u2(x, y) + u3(x, y) = 0, the addition of vectors can
be illustrated by connecting each vector head to tail and the vectors add
to zero if the head to tail connections form a closed loop. In our case, as
we are dealing with unit vectors, their addition must form an equilateral
triangle. A similar reasoning applies for the other expressions, see Figure
4.5. For instance, for the gradient of Expr2 to be zero, the only difference is
the direction of the u2(x, y) vector. Note also that if three unit vectors add
up to zero, by placing their origins at the same point, they form angles as
shown in Figure 4.6. Such angle properties hold for any of the expressions
∇Exprj(x, y) = 0.

Figure 4.5: The picture on the left illustrates the orientation of the unit vec-
tors if ∇Expr1(x, y) = 0. The picture on the right illustrates the orientation
in the case when ∇Expr2(x, y) = 0.
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Figure 4.6: Both pictures correspond to rearrangements of the unit vectors
of Figure 4.5 with their origins placed at the same point.

Figure 4.6 underlines that, the possible critical points we are interested in
computing concern combinations of unit vectors with specific orientations
(geometrical characteristics). These geometric characteristics can be de-
scribed as: when we draw the lines through our potential critical point with
respect to the orientations of the unit vectors, then the lines divide the space
around the potential critical point, into six equal angles of 60◦ each.

Based on that observation our question becomes: can we find, for a triangle
ABC, all points P such that when we draw the lines through P and the
triangle vertices, the space around the points P is divided into six equal
angles of 60◦ each? The answer to that question is yes, in literature there
exist some points with the desired geometrical characteristics. They have
been called isogonic centers of a triangle and in the Clark Kimberling’s
encyclopedia of triangle centers5, they are denoted as X(13) and X(14)
respectively.

Definition 6 ( [39]) A point is called an isogonic center of a triangle when
the lines drawn through this point to the vertices of the triangle divide the
space around it into six equal angles of 60◦ each.

Our problem now is linked with the isogonic centers through the desired
geometrical properties. Instead of computing all the possible critical points
of ∇Exprj(x, y)|∆ and then searching whether the geometrical properties
we want hold, we can just search for the points where we know that the
geometrical properties hold. To do this we form a triangle ABC beginning
at the circle centers A = (x1, y1), B = (x2, y2), C = (x3, y3) and we search
for their isogonic centers.

There are two ways of construction in order to compute the isogonic centers

5http://faculty.evansville.edu/ck6/encyclopedia/ETC.html

http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
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as one can find in [39] and [40]. Both of these are based on the drawing of
equilateral triangles on the sides of the given triangle.

Remark 15 The way we compute the isogonic centers is described in [39]
and it is the following. Let ABC be a triangle. For each side of the ABC
triangle we draw outwardly equilateral triangles. Then for each equilateral
triangle we draw its circumcircle see Figure 4.7. We end up with a con-
current point P among the three circumcircles. That happens because if we
take a pair of circumcircles they intersect at a vertex of the triangle and at
the point P we are interested about. At P because of the inscribed angles
theorem it holds that it faces the sides of the triangle (which are chords of
the circumcircles) with an angle of 120◦ each. That means that it also faces
the third face of the triangle with an angle of 120◦ since 360 − 240 = 120.
Hence the point P must be on the third circumcircle circumference too. This
point of concurrency is the first isogonic center P = X(13) of the triangle.
If the equilateral triangles were drawn inwardly, then we compute the second
isogonic center P ′ = X(14).

In [40] they explain how to construct the isogonic centers by drwaing the
lines AA′, BB′ and CC ′ as one can see in Figure 4.7 (and they also provide
a proof).

Figure 4.7: The picture on the left illustrates the construction of the first
isogonic center P = X(13). The picture on the right illustrates the construc-
tion of the second isogonic center P ′ = X(14).

Remark 16 In [39] they specify that every triangle has a unique X(13)
point. On the other hand the X(14) point is unique for any triangle except
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the equilateral ones. For the equilateral triangles X(14) is anywhere on its
circumcircle circumference.

Consequently, if the circles centers A = (x1, y1), B = (x2, y2), C = (x3, y3)
do not form an equilateral triangle, the list we construct to contain all critical
points of f can be limited to the two isogonic centers X(13) and X(14).

If on the other hand the circles centersA = (x1, y1), B = (x2, y2), C = (x3, y3)
form an equilateral triangle, we decide to contain in the list only the first
isogonic center X(13) and omit the other. We based this decision in the fol-
lowing idea. If our circles centers form an equilateral triangle there are two
possible scenarios with the current lunometer configuration as illustrated in
Figure 4.8. That happens because the three heights of the sensors are evenly
distributed. The left case of Figure 4.8 is ideal for us because based on sym-
metrical properties the dipole should be located at the height of B = (x2, y2).
For this reason a good selection for a possible pseudo-intersection point could
be the circle’s center B = (x2, y2). For the right case of Figure 4.8 we have at
least one bad approximation of ξ̂′(i)−, in that case any point of the circum-
circle circumference could be a pseudo-intersection point. Since the selection
for a pseudo-intersection in the second cases is arbitrary we can select to use
the three centers A = (x1, y1), B = (x2, y2), C = (x3, y3) as possible pseudo-
intersection points. That means that when we deal with equilateral triangles
we can omit the point X(14) because the possible pseudo-intersection points
we select are already contained in our list (namely the circles centers).

Figure 4.8: The black parallel lines indicate the heights of the sensors. Be-
cause of the sensors height limitations, there are only two possible ways the
circles centers A = (x1, h1), B = (x2, h2), C = (x3, h3) form an equilateral
triangle, as illustrated on the two pictures above.

How we compute the isogonic centers is illustrated with the Algorithm 2.

Now we need to investigate the situation where the minimum of f would
be reached at a point where it is not differentiable. The next section is
dedicated to that problem.
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Algorithm 2 Computation of the isogonic centers

Function: IsogonicCenters
Input: (x1, y1), (x2, y2), (x3, y3) the coordinates of the circles centers
/*For the pseudo-code we denote the circles centers also as C1, C2, C3*/
Output: I1, I2 /* the two isogonic centers */

/* Computation of the first isogonic center I1 */
A ← OutwardPointWrtC3(C1, C2)
/* it computes the vertex point A of the outward (with respect to the
direction of the vertex C3) equilateral triangle AC1C2 */
B ← OutwardPointWrtC1(C2, C3)
D ← OutwardPointWrtC2(C1, C3)
CA ← CircleTroughPoints(C1, C2, A)
CB ← CircleTroughPoints(C2, C3, B)
CD ← CircleTroughPoints(C1, C3, D)
I1 ← FindTheConcurrentPointOf(CA,CB,CD)
return I1

/* Computation of the second isogonic center I2 */
H1 ←

√
(x2 − x1)2 + (y2 − y1)2

/* Distance between the points C1 and C2 */
H2 ←

√
(x3 − x2)2 + (y3 − y2)2

H3 ←
√

(x1 − x3)2 + (y1 − y3)2

if H1 = H2 & H2 = H3 then
I2 ← []

else
A′ ← InwardPointWrtC3(C1, C2)
/* it computes the vertex point A′ of the inward (with respect to the
direction of the vertex C3) equilateral triangle A′C1C2 */
B′ ← InwardPointWrtC1(C2, C3)
D′ ← InwardPointWrtC2(C1, C3)
CA′ ← CircleTroughPoints(C1, C2, A

′)
CB′ ← CircleTroughPoints(C2, C3, B

′)
CD′ ← CircleTroughPoints(C1, C3, D

′)
I2 ← FindTheConcurrentPointOf(CA′, CB′, CD′)

end if
return I2
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4.2.2 Domains where the function f is non differentiable

The domain where f is not differentiable consists of the circles centers
(xi, yi), the possible intersection points and the circles circumferences Ci,
with i = 1, 2, 3. We already discussed that the circles centers and the inter-
section points are treated separately in our list, hence in this subsection we
are interested in investigating what happens on the domain

Γ = (C1 ∪ C2 ∪ C3)\({intersections} ∪ (x1, y1) ∪ (x2, y2) ∪ (x3, y3)).

Notice that we do not know whether the point P = (x, y) which minimizes
the norm V (P ) belongs to this domain, however we can study what prop-
erties this point should satisfy if it were to belong to this domain. Without
loss of generality, we can assume that the point P = (x, y) belongs to the
first given circle C1 (we can work with a similar method for the other two
cases C2 and C3). On C1, f(x, y) takes the form

f(x, y)|C1 = |
√

(x− x2)2 + (y − y2)2−R2|+ |
√

(x− x3)2 + (y − y3)2−R3|.
(4.8)

Reasoning by cases as we did before, we partition C1 into different sub-
domains where the sign of each term inside the absolute values is fixed.

Remark 17 The possible sub-domains are the following:

Γ1 = C1\{D2 ∪D3},
Γ2 = C1 ∩D2\({intersections} ∪D3 ∪ (x2, y2)),

Γ3 = C1 ∩D3\({intersections} ∪D2 ∪ (x3, y3)),

Γ4 = C1 ∩D2 ∩D3\({intersections} ∪ (x2, y2) ∪ (x3, y3)),

For a point (x, y) in the sub-domain Γ1 = C1\{D2 ∪D3} it holds:

f(x, y) =
√

(x− x2)2 + (y − y2)2−R2+
√

(x− x3)2 + (y − y3)2−R3. (4.9)

Let h be the function defined on R2 by

h(x, y) =
√

(x− x2)2 + (y − y2)2 −R2 +
√

(x− x3)2 + (y − y3)2 −R3.
(4.10)

The functions f and h differ on R2 but their restriction to Γ1 coincide.
Moreover, h is differentiable on R2\{(x2, y2), (x3, y3)}. That means that if
there exists a minimum value in the differentiable domain of function h then
it must be reached at a critical point. If this point belongs on the restricted
path Γ1 then it could be a candidate for a pseudo-intersection point.
As we are searching for possible critical points of function h(x, y), we have
to compute the derivative at points P = (x, y) on the restricted path defined
by our sub-domains. To do that we make use of the fact that whenever h is a
differentiable function of several variables and γ is a differentiable path, then
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the univariate function g given by the composition g : h ◦ γ has a derivative
given by

g′(θ) = 〈∇h(γ(θ)), γ′(θ)〉,

where 〈·, ·〉 denotes the inner product and ∇ the gradient.
Our first goal is to find an explicit formula for the derivative g′(θ). Because
our restricted path is the circle circumference C1 in order to simplify our
computations and without loss of generality we can assume that our re-
stricted path is the unit circle T. This is just a change of coordinate system
by using dilation and translation. Hence our γ path can be expressed as:

γ(θ) = (cos θ, sin θ),

with 0 ≤ θ ≤ 2π. The derivative of γ(θ) is given by:

γ′(θ) = (− sin θ, cos θ).

Since we work on the unit circle T it means that ‖γ′(θ)‖ = 1.
The gradient of h function ∇h(x, y) can be computed using the same logic
as was used in order to compute Expressions (4.7) Exprj(x, y)|∆. As a
result we end up once again with unit vector combinations ui(x, y) as in
Equation (4.6), note that the direction of the unit vector depends on θ.
Now the explicit expression of g′(θ) is

g′(θ) =
x2 sin θ − y2 cos θ√

(cos θ − x2)2 + (sin θ − y2)2
+

x3 sin θ − y3 cos θ√
(cos θ − x3)2 + (sin θ − y3)2

.

Because it is difficult to solve g′(θ) = 0 through the above equation, we will
try to take advantage of the unit vectors relationships. This means that we
will approach the problem through its geometric features.

Remark 18 The derivatives of function g on each sub-domain Γ1, Γ2, Γ3,
Γ4 are: 

g′(θ)|Γ1 = 〈+u2(θ) + u3(θ), γ′(θ)〉
g′(θ)|Γ2 = 〈−u2(θ) + u3(θ), γ′(θ)〉
g′(θ)|Γ3 = 〈+u2(θ)− u3(θ), γ′(θ)〉
g′(θ)|Γ4 = 〈−u2(θ)− u3(θ), γ′(θ)〉.

(4.11)

Note that for simplicity of the notations we will write a unit vector as ui
instead of ui(θ).

We can focus our study only on the expressions at the right side of Equations
(4.11) and “forget” the sub-domains Γ1, Γ2, Γ3, Γ4. If for instance we find a
point that satisfies 〈+u2 +u3, γ

′(θ)〉 = 0 there are two possibilities: either it
belongs to Γ1 and it is an actual critical point, or it does not belong to Γ1.
In the latter case, including this point in our list makes no harm: when we
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evaluate the ‖V (P )‖1 norm at all points of our list, it will just be discarded
because the norm will obvisouly not be minimal there. For the first case in
the above equations, we get:

〈u2 + u3, γ
′(θ)〉 = 0

⇒ 〈u2, γ
′(θ)〉 = −〈u3, γ

′(θ)〉
⇒ ‖u2‖‖γ′(θ)‖ cos(φ) = −‖u3‖‖γ′(θ)‖ cos(φ′)
⇒ cos(φ) = − cos(φ′),

Where θ is the angle which defines our tangent point γ(θ) ∈ C1 and φ, φ′

are the angles between the tangent vector vτ and the unit vectors direction
u2 and u3 respectively, as illustrated in Figure 4.9(a). The above expression
tells us that the angles of the unit vectors have opposite cosines. If we fixed
u2 then there are only two directions where u3 satisfies the condition of the
opposite cosine. The solid red vector of Figure 4.9(b) (which correspond
to the information from Figure 4.9(a)) and the dashed red vector of Fig-
ure 4.9(b). Note in Figure 4.9(b) that the complementary angle ρ formed
by φ is equal to the angle φ′ − π

2 .
At this point one can ask: is there a unique point which satisfies the condi-
tion 〈u2 + u3, γ

′(θ)〉 = 0? The answer is no, since from Figure 4.9(b) we
already have two possible directions that satisfy the equation cos(φ) =
− cos(φ′). So what can we do in order to compute all of these points?
Luckily for us, the angle ρ which is the complementary angle of φ and the
fact that it has an equal angle with respect to the u3 vector and the normal
direction axis is linked with an ancient problem known as Alhazen problem
in optics [41]. This problem covers the case of the solid red vector in Figure
4.9(b) so we can study the angle ρ instead of φ.

Alhazen points (study of solid red vector in Figure 4.9(b))

Problem 1 Alhazen problem in optics (2D version) [41]
Given a light source and a circular mirror, find the points on the mirror, if
any, where the light will be reflected to the eye of an observer.

For us the locations of the light source and the observer correspond to the
circles centers (x2, y2) and (x3, y3) respectively. The circular mirror is the
circumference C1. The idea now of solving the Alhazen problem is based on
the law of reflection, which states that the angles of incident and reflection
are equal. For us the angle of incident is denoted as ρ and the angle of
reflection is the angle of φ′ − π

2 , see Figure 4.9(b).
Let u = γ(θ) ∈ T and c2 = x2 + iy2, c3 = x3 + iy3 be the circles centers ex-
pressed in complex form. In [41] they use the notation ](c2, u, 0) = ](0, u, c3)
where ](c, u, w) denotes the radians measure in (−π, π) of the oriented angle
with initial side [u, c] and final side [u,w]. This equality condition is equiv-
alent to the statement that the angles of incident and reflection are equal.
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(a) This picture illustrates the unit vec-
tor projections of our example on the
tangent point γ(θ) ∈ C1. At this
point it holds that 〈u2 + u3, γ

′(θ)〉 = 0.
Based on the inner product properties
we can associate the tangent axis with
the cosine axis of the trigonometric cir-
cle as illustrated in the picture on the
right.

(b) This picture illustrates the informa-
tion from the picture on the left. The
point γ(θ) ∈ C1 is represented at the
center of our unit circle T. The hori-
zontal black line is the tangent line of
the left picture and is associated with
the cosine axis of our unit circle T. The
vertical orange line is the line on the
normal direction and is associated with
the sine axis. There are two possible
situations where 〈u2 + u3, γ

′(θ)〉 = 0,
our example in the left picture shows
one of those and is illustrated with a
solid red line.

Figure 4.9

In paper [41] they investigate the cases for all the possible locations of c2, c3

e.g. when both of them are inside the circle C1. Finally they establish that:

Arg

(
u− c2

u

)
= Arg

(
u

u− c3

)
.

From which we get:

Arg

(
u− c2

u

)
−Arg

(
u

u− c3

)
= 0⇒ Arg

(
u− c2

u

u− c3

u

)
= 0.

The trick now is to observe that since the argument of the quantity inside
the parenthesis is equal to zero, it means that this quantity is a positive real
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number, consequently it is equal with its conjugate

u− c2

u

u− c3

u
=
u− c2

u

u− c3

u
. (4.12)

By expanding the above equation and with the use of uu = 1 we get:

u2

(
1

u
− c2

)(
1

u
− c3

)
=

1

u2
(u− c2)(u− c3)

⇒ u2

(
1

u2
− 1

u
c3 −

1

u
c2 + c2c3

)
=

1

u2
(u2 − uc3 − uc2 + c2c3)

⇒ c2c3u
4 − (c2 + c3)u3 + (c2 + c3)u− c2c3 = 0. (4.13)

This is a quartic equation, which has up to four complex roots. As they
mention in [41] the solution of Equation (4.13) may have roots that are not
on the unit circle. As remarked already earlier, having a finite number of
extra points in our list does not affect our study: we will simply evaluate
‖V (P )‖1 for each one of them and eventually keep the minimum. The extra
points will be discarded because they will obviously not provide a global
minimum.

“Alhazen-like” points (study of dashed red vector in Figure 4.9(b))

Inspired by the solution of the Alhazen points, we study the dashed red
vector of Figure 4.9(b) in a similar way. By using the same notation as
before we can write:

Arg

(
u− c2

u

)
= π −Arg

(
u

u− c3

)
.

From that we get

Arg

(
u− c2

u

)
+ Arg

(
u

u− c3

)
= π ⇒ Arg

(
u− c2

u

u

u− c3

)
= π.

Observing that the argument of the quantity inside the parenthesis is equal
to π, it means that this quantity is a negative real number, consequently it
is equal with its conjugate

u− c2

u− c3
=
u− c2

u− c3

and by expanding the above equation in addition with the use of uu = 1 we
get:

(c2 − c3)u2 + 2iIm(c2c3)u− c2 + c3 = 0. (4.14)
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That means in order to solve our problem as illustrated in Figure 4.9(b) we
have to solve Equations (4.13) and (4.14). The above analysis ensures that
Alhazen and “Alhazen-like” points coincide with the points we are looking
for, for the sub-domains Γ1, Γ4

In paper [42] they discuss and prove that Equation (4.12) is satisfied either
if the incident and reflection angles are equal or if they differ by π. They
call both kinds of points “reflection points” and distinguish them as “proper
reflections” in the first case (which corresponds to the solid red vector of
Figure 4.9(b)) and “backward reflections” in the second case. This is a
convenient result for us, because in order to complete our analysis of the
function f on non differentiable domains, we need to find also solutions for
the cases where 〈u2 − u3, γ

′(θ)〉 = 0. In these cases we get

〈u2, γ
′(θ)〉 = 〈u3, γ

′(θ)〉
⇒ ‖u2‖‖γ′(θ)‖ cos(φ) = ‖u3‖‖γ′(θ)‖ cos(φ′)
⇒ cos(φ) = cos(φ′).

In Figure 4.10 we illustrate the directions of the u2 and u3 vectors.

Figure 4.10: This picture illustrates the angle relation for the situations
where cos(φ) = cos(φ′). Note that we preserve the color code of Figure 4.9b.
There are two possible ways to have cos(φ) = cos(φ′) and we illustrate them
with a solid and a dashed red line.

Now the information we get from Figure 4.10 can be decomposed into two
problems. The first problem regarding the solid red vector of Figure 4.10.
This problem is in fact the “backward reflections” of the Alhazen points
which are described in [42], hence we can recover their solutions also from
Equation (4.13).
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The second problem regarding Figure 4.10 is the red dashed vector. This is
equivalent to both the u2 and u3 vectors having exactly the same direction.
By using the notations as before we can write:

Arg

(
u− c2

u

)
= Arg

(
u− c3

u

)
⇒ Arg

(
u− c2

u− c3

)
= 0.

Now by observing that the argument of the quantity inside the parenthesis is
equal to zero, means that the quantity is a positive real number, we can write

u− c2

u− c3
=
u− c2

u− c3
.

This expression leads us to Equation (4.14). That means that the cases
of Figure 4.10 have been already computed through Equations (4.13) and
(4.14).
Now we have completed the list of points for the ‖V (P )‖1 minimization
method. The list consists of the circles centers, the circles intersections, the
two isogonic centers, the Alhazen and the “Alhazen-like” points. The next
step in our analysis is to evaluate the quantity ‖V (P )‖1 for each one of these
points and keep as pseudo-intersection point x̂d the point with the minimum
‖V (P )‖1 value.

4.2.3 Test of minimizing ‖V (P )‖1 simulations with synthetic
data

Study of data without noise for the current lunometer configura-
tion: for these experiments we use the same setup (Setup 1.3) with the
6000 dipoles as we did in the radical center analysis. These experiments
concern ideal data from a single measurement position.
Here we compute the pseudo-intersection percentage error (epi ms), based on
the method that minimizes the sum of the distances to three given circles.
This is computed with the same method as Equation (4.2), however we name
it differently so we can distinguish the method results.

epi ms =
|x̂d − xd|

R
· 100.

The general results of our analysis are the following:
Experiment Average

epi ms error
# of excluded
cases

# of dipoles with
error more than
1000%

# of dipoles with
error more than
50%

Setup 1.3 27 0 2 914

For the 6000 dipoles the average epi ms percentage error is 27%, with a me-
dian value of 13.5%. The distribution of epi ms can be seen in Figure 4.11.
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In fact 5086 cases have epi ms percentage error less than 50% and we face
only two cases with error more than 1000%. An illustration of the computed
circles and the x̂d estimation from one of the examples with epi ms > 1000%
can be seen in Figure 4.12. In fact a careful analysis of our experimental
results shows that for epi ms errors more than 200% we get circles config-
urations as seen in Figure 4.12. Note that the percentage of the error is
linked with the size of the circles for this reason in Figure 4.12 small sized
circles produce less error than bigger circles. We observe that the instability
issues come from cases where the circle centers are almost aligned. This
issue affects every method of our study.

Figure 4.11: This picture illustrates the distribution of the epi ms percentage
error of the minimization of ‖V (P )‖1 method. Its vertical axis corresponds
to the number of dipoles and its horizontal axis to the epi ms. These exper-
iments concern ideal data from a single measurement position.

The next question, since we use a list of points to search for the minimum
value of ‖V (P )‖1, is how many times each category of points is selected as
the minimum. At first sight the results may surprise the reader. Among
the 6000 dipoles, there are 4169 occasions where an actual intersection point
between two of the given circles is selected: that is almost 70% of the times.
In addition, for the remaining 30% cases, the minimum is reached at an
Alhazen or “Alhazen-like” point. That means that, in our list, the collec-
tions of circles centers and the two isogonic centers never correspond to a
point that minimizes ‖V (P )‖1. This can be explained because our goal is
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Figure 4.12: This picture illustrates one of the cases with epi ms > 1000%.
The recovered x̂d(p) is denoted as a red dot and the actual dipole location
as a blue dot. The vertical black line corresponds to the sensors distance
from the samples mass center R = 0.015. The horizontal dashed black lines
indicate the circles diameters and at the same time the sensors heights hi.

to minimize a problem with respect to the circumferences of the given cir-
cles and not with respect to the circles centers. In contrast circles centers
and isogonic centers by construction “ignore” the information for the circles
circumferences. By this analysis we can conclude that a feature of ‖V (P )‖1
minimization method is that its solutions tend to be located on the circles
circumferences.

The approach used to minimize ‖V (P )‖1 heavily relies on the hypothesis
that there are S = 3 circles and is hard to extend to more circles. As a
result we cannot conduct simulations with more than three sensors. Our
next method does not suffer from this problem.

4.3 Minimizing the sum of the squares of powers
of a point with respect to given circles

Until now, we saw two different ways in order to estimate a pseudo-intersection
point x̂d with the circles method. Both of those approaches work for three
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given circles, a condition which is satisfied with the current lunometer’s con-
figuration. More precisely the radical center works by definition for S = 3
circles and the method of minimizing the sum of the distances to given cir-
cles, could be adapted for S ≥ 3 circles, but the model is more complicated
and the nice geometrical features with the unit vectors combinations may
not hold anymore. For this reason in this section we use another method
which minimizes the sum of the squares of the powers of a point with re-
spect to S ≥ 3 given circles. At the end of the section numerical simulations
evaluate its performance.

To link this method with the previous ones, consider a point P = (x, y) ∈ R2

and given circles Ci, with i = 1, .., S. Recall from Definition 4 that the power
of a point is given by:

hi(x, y) = (x− xi)2 + (y − yi)2 −R2
i .

Remark 19 From Definition 4 we know that, if there exists an intersec-
tion point P = (x, y) ∈ R2 for S ≥ 3 given circles then h1(x, y) = ... =
hS(x, y) = 0 holds. If there is no intersection point then for S = 3 circles
we can still search for h1(x, y) = h2(x, y) = h3(x, y) 6= 0 which is the radical
center. The idea now is instead of enforcing an equality among the powers
h1(x, y) = ... = hS(x, y) explore if we can find a point P with powers hi(x, y)
as small as possible.

Let us define the vector Λ(P ), for S ≥ 3 given circles, by

Λ(P ) =


h1(x, y)
h2(x, y)
...

hS(x, y)

 ∈ RN .

Our goal now is to find a point P which minimizes the ‖Λ(P )‖22 norm.

‖Λ(P )‖22 = h2
1(x, y) + ...+ h2

S(x, y) =:
S∑
i=1

ki(x, y) =: k(x, y). (4.15)

We actually want to minimize ‖Λ(P )‖2 rather than its square, but since it
is a positive real number, minimizing it or its square is essentially the same
problem: both ‖Λ(P )‖2 and ‖Λ(P )‖22 reach their minimum value at the
same point P = (x, y) ∈ R2. The reason why we use ‖Λ(P )‖22 is because we
want to simplify the square root which would otherwise be introduced in our
computations from the Euclidean norm ‖ · ‖2. In addition Expression (4.15)
provides us with a continuous, differentiable function k(x, y) in the entire
plane R2. As before, because k(x, y) increases when the point P = (x, y) is
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moving away from the given circles, we can restrict ourselves to a compact
set which includes the global minimum, which must moreover be reached at
a critical point of the function k(x, y).
The critical points of function k(x, y) are the points where its partial deriva-
tives with respect to x and y vanish at the same time:

A(x, y) := ∂k
∂x(x, y) = 0

B(x, y) := ∂k
∂y (x, y) = 0,

By computing the partial derivatives we get the following system:



1
4 A(x, y) = Sx3 − 3

(
S∑
i=1

xi

)
x2 +

(
3

S∑
i=1

x2
i +

S∑
i=1

(
(y − yi)2 −R2

i

))
x

−
S∑
i=1

xi
(
x2
i + (y − yi)2 −R2

i

)
= 0,

1
4 B(x, y) = (Sy −

S∑
i=1

yi)x
2 +

(
−2y

S∑
i=1

xi + 2
S∑
i=1

xiyi

)
x

+y
S∑
i=1

(
x2
i + (y − yi)2 −R2

i

)
−

S∑
i=1

yi
(
x2
i + (y − yi)2 −R2

i

)
= 0.

(4.16)
At this point we have two options: either we continue our study with Sys-
tem (4.16) which leads us to quite complicated computations, or we compute
a simpler system equivalent to System (4.16), by changing the coordinate
system before the expansion of expressions A(x, y) and B(x, y). To do this
simplification we take advantage from the fact that, in System (4.16), the
quantities

S∑
i=1

xi,
S∑
i=1

yi,
S∑
i=1

xiyi,

appear many times. We can eliminate those quantities by using a new
coordinate system. The new coordinate system of our study is actually a
translation and a rotation of the original one.
The translation we use is to place the origin of the coordinate system on
the barycenter (gravity center) formed by the S ≥ 3 circle centers. This
corresponds to the following change of coordinates:

(x, y) (x′, y′) =

(
x− 1

S

S∑
i=1

xi, y − 1

S

S∑
i=1

yi

)
.

By doing this we eliminate the terms
S∑
i=1

x′i,
S∑
i=1

y′i in the Expression (4.16).

Then we use rotation of angle −θ of the coordinate system such that:

(x′, y′) (x
′′
, y
′′
) = (x′ cos(θ) + y′ sin(θ),−x′ sin(θ) + y′ cos(θ)) .
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In this case

S∑
i=1

x
′′
i y
′′
i =

S∑
i=1

(
x′i cos(θ) + y′i sin(θ)

) (
−x′i sin(θ) + y′i cos(θ)

)
.

By expanding the above expression and with the use of trigonometric for-
mulas we can express it as

S∑
i=1

x
′′
i y
′′
i = α · cos(φ) + β · sin(φ),

with α =
S∑
i=1

x′iy
′
i, β = 1

2

S∑
i=1

(
y
′2
i − x

′2
i

)
and φ = 2θ.

What we want with the rotation of the coordinate system is

α · cos(φ) + β · sin(φ) = 0.

We can compute now an angle for φ as follows

α · cos(φ) + β · sin(φ) = 0⇔ < ((cosφ+ i sinφ)(α− iβ)) = 0⇔
⇔ <

(
eiφ(α− iβ)

)
= 0.

If α2 + β2 6= 0 then we can continue our computations as:

<
(
eiφ|α− iβ|eiArg(α−iβ)

)
= 0⇔

⇔ <
(
eiφeiArg(α−iβ)

)
= 0,

which gives us

φ+ Arg(α− iβ) = π
2 [π]⇔

⇔ φ = π
2 −Arg(α− iβ)[π].

Where [π] denotes the modulo π. If α2 + β2 = 0 then we can keep the
coordinate system as it is (without rotation) because in that case any angle
will satisfy our equations.
Without loss of generality, we will hence assume that we work from the

beginning in such a coordinate system, so we further assume that
S∑
i=1

xi = 0,

S∑
i=1

yi = 0,
S∑
i=1

xiyi = 0.

To simplify the computation of our system even further we introduce the
following notations:

X =

S∑
i=1

x2
i , Y =

S∑
i=1

y2
i , R =

S∑
i=1

R2
i , C = −

S∑
i=1

xi(x
2
i + y2

i − R2
i ), D =

−
S∑
i=1

yi(x
2
i + y2

i −R2
i ), M = 3X + Y −R and W = X + 3Y −R.
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Once simplified using the properties of our system of coordinates and our
notations, System (4.16) becomes:{

A(x, y) = Ay(x) = Sx3 + (Sy2 +M)x+ C = 0
B(x, y) = By(x) = Syx2 + Sy3 + yW +D = 0.

(4.17)

Remark 20 Observe that System (4.17) consists of two polynomials with
variables (x, y). Observe also that we adopt the notations Ay(x) and By(x)
to underline the idea that we can consider these polynomials as univariate
polynomials with variable x and an unknown parameter y. This is an impor-
tant step in order to continue our analysis. That happens because we want to
search for the common roots of our polynomials A(x, y) and B(x, y) by using
the resultant method [43, ch.4 §8], however a fundamental condition of this
method is that we have to deal with a system of two univariate polynomials,
hence the Ay(x) and By(x) notations. A description of the resultant method
and why we are able to use it follows in the next subsection.

4.3.1 Resultant

Definition 7 Resultant
Consider two polynomials with coefficients in R:

L(x) = lnx
n + ...+ l1x+ l0,

Q(x) = qmx
m + ...+ q1x+ q0.

The resultant of L,Q is defined as the determinant of the (m+ n)× (m+ n)
Sylvester matrix given by

SL,Q =



ln ln−1 ln−2 . . . 0 0 0
0 ln ln−1 . . . 0 0 0
...

. . .
. . .

. . .
. . .

...
0 0 0 . . . l1 l0 0
0 0 0 . . . l2 l1 l0
qm qm−1 qm−2 . . . 0 0 0
0 qm qm−1 . . . 0 0 0
...

. . .
. . .

. . .
. . .

...
0 0 0 . . . q1 q0 0
0 0 0 . . . q2 q1 q0


(4.18)

Where the m first rows contain the coefficients ln, ln−1, ... , l0 of L shifted
0, 1, ... , m− 1 steps and padded with zeros, and the n last rows contain
the coefficients qm, qm−1, ... , q0 of Q shifted 0, 1, ... , n− 1 steps and
padded with zeros.

Proposition 3 [43, ch.4 §8, Prop.8.1 p.202]
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If the polynomials L(x), Q(x) have a common root in C, then their resultant
is equal to zero.

Our strategy is as follows, first we compute the determinant of the Sylvester
matrix for our univariate polynomials Det(SAy ,By). The computations of
the determinant, will provide us with a polynomial of variable y. Then
by computing the roots of that polynomial we have a collection of possible
values of parameter y. We can then replace the parameter y in System (4.17)
with each one of the computed values. Finally we solve A(x) = 0 and
B(x) = 0 with respect to variable x and we have as solutions the pairs
(x, y) with all the possible critical points of function k(x, y). The last step
is to bring those points back to the original geometry and keep the one that
minimizes the ‖Λ(P )‖22.
More precisely our Sylvester’s matrix has the form:

SAy,By=



S 0 Sy2 +M C 0
0 S 0 Sy2 +M C
Sy 0 Sy3 + yW +D 0 0
0 Sy 0 Sy3 + yW +D 0
0 0 Sy 0 Sy3 + yW +D


.

(4.19)
By computing the determinant of the Matrix (4.19), we end up with a poly-
nomial of degree 5 namely

Ω(y) = ω5y
5 + ω4y

4 + ω3y
3 + ω2y

2 + ω1y + ω0,

where Ω(y) is the resultant of Ay(x), By(x) and it has coefficients ωj ∈ R,
j = 0, 1, ..., 5

ω5 = S3(W −M)2,
ω4 = 2DS3(W −M),
ω3 = S3(C2 +D2) + S2W(M−W)2,
ω2 = DS2(W −M)(3W −M),
ω1 = D2S2(3W − 2M),
ω0 = S2D3.

Note that in general for polynomials of fifth degree or higher we can calculate
their roots with numerical approximations from root-finding algorithms e.g.
Newton-Raphson method [44].
If (x?, y?) is a common root of System (4.17), Proposition 3 ensures that
Ω(y?) = 0. Therefore, we compute the real roots of Ω(y) = 0 (among which
we are sure to find y?), and we plug each one of them back in the equations
Ay(x) = 0, By(x) = 0 (now the equations can be written as A(x) = 0,
B(x) = 0 because y is given). System (4.17) becomes a system of polynomials
in the x variable only. In the case when we put the proper value y?, this
system must have at least one real root (namely x?). In total we can have
up to 25 (x, y) pairs (with one of the pairs having the same (x?, y?) values).
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That happens because the polynomial Ω(y) might have up to 5 real roots,
and then for polynomials A(x) = 0 and B(x) = 0 we have up to 3 and up
to 2 roots respectively. The last step is to bring the recovered (x?, y?) pair
back to the original coordinate system and evaluate the function k(x, y).
We keep as pseudo-intersection x̂d(p) point the (x, y) pair that minimizes
‖Λ(P )‖22. The idea of how we compute the pseudo-intersection candidates
can be seen in Algorithm 3.
In Algorithm 3, notice that we make use of a function called real roots
which is assumed to be a library function that returns all the real roots of
a polynomial whose variable name is given as the second input.
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Algorithm 3 Minimize the sum of the squares of the powers of a point
w.r.t. S circles

Function: MinPowers
Input: (x1, y1), . . . , (xS , yS) a list of S circle centers; R1, . . . , RS , their
radii.
Output: (x?, y?) the point of R2 that minimizes the criterion k, see
Eq. (4.15).

xavg ←− 1
S

∑S
j=1 xj ; yavg ←− 1

S

∑S
j=1 yj

α←−
∑S

j=1 xjyj ; β ←− 1
2

∑S
j=1

(
y2
j − x2

j

)
/* Translate the system of coordinates if necessary */
if x2

avg + y2
avg 6= 0 then

for j = 1 to S do
x′j ←− xj − xavg ; y′j ←− yj − yavg

end for
(x?, y?)←− MinPowers((x′1, y

′
1), . . . , (x′S , y

′
S), R1, . . . , RS)

return (x? + xavg, y
? + yavg)

end if
/* Rotate the system of coordinates if necessary */
if α2 + β2 6= 0 then
φ←− π

2 −Arg(α− iβ) ; θ ←− φ
2

for j = 1 to S do
x′′j ←− xj cos(θ) + yj sin(θ) ; y′′j ←− −xj sin(θ) + yj cos(θ)

end for
(x?, y?)←− MinPowers((x′′1, y

′′
1), . . . , (x′′S , y

′′
S), R1, . . . , RS)

return (x? cos(θ)− y? sin(θ), x? sin(θ) + y? cos(θ))
end if
/* Otherwise, we are in a normalized system of coordinates */
X ←−

∑S
j=1 x

2
j ; Y ←−

∑S
j=1 y

2
j ; R ←−

∑S
j=1R

2
j

C ←− −
∑S

j=1 xj(x
2
j + y2

j −R2
j ) ; D ←− −

∑S
j=1 yj(x

2
j + y2

j −R2
j )

M←− 3X + Y −R ; W ←− X + 3Y −R
/* Coefficients of Ω(y), the determinant of SAy ,By , see Eq. (4.19) */
ω5 ←− S3(W −M)2 ; ω4 ←− 2DS3(W −M)
ω3 ←− S3(C2 +D2) +S2W(M−W)2 ; ω2 ←− DS2(W−M)(3W−M)

ω1 ←− D2S2(3W − 2M) ; ω0 ←− S2D3

L←− realRoots(ω5y
5 + ω4y

4 + ω3y
3 + ω2y

2 + ω1y + ω0, y)
minValue = +∞
for y? in L do

for x? in realRoots(Sx3 + (Sy?2 +M)x+ C, x) do

k ←−
∑S

j=1

(
(x? − xj)2 + (x? − xj)2 −R2

j

)2
if k ≤ minValue then

minValue←− k ; res←− (x?, y?)
end if

end for
end for
return res
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4.3.2 Test of minimizing ‖Λ(P )‖2
2 method, simulations with

synthetic data

Study of data without noise for the current lunometer configura-
tion: we use the same setup of experiments with the 6000 dipoles that are
located on concentric cylinders, as we did in the radical center and the mini-
mization of ‖V (P )‖1 methods analysis (Setup 1.3). Once again we compute
the pseudo-intersection percentage error which for this method we call it
epi pw. This is computed in the same way as Equation (4.2).

epi pw =
|x̂d − xd|

R
· 100.

The general results of our analysis are as follows:

Experiment Average
epi pw error

# of excluded
cases

# of dipoles with
error more than
1000%

# of dipoles with
error more than
50%

Setup 1.3 34 0 26 951

For the 6000 dipoles the averaged epi pw error is 34% with a median value at
14.4%, which are slightly bigger than the average epi ms which we compute
for the minimization of ‖V (P )‖1. We can see the error distribution of epi pw
in Figure 4.13. Here we face 26 cases with epi pw > 1000%. These cases
correspond to circles whose centers are almost aligned. It is worth mention-
ing that epi pw and epi ms error distributions are almost identical. The only
difference is for the number of dipoles with an error larger than 300%. This
difference could be the effect of the ‖V (P )‖1 feature which tends to select an
intersection point or a point on the circumference as a pseudo-intersection
point, in contrast to the ‖Λ(P )‖22 method.
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Figure 4.13: This picture illustrates the epi pw distribution for ideal data
from a single measurement position. Its vertical axis corresponds to the
number of dipoles and its horizontal axis to the epi pw percentage error. For
these experiments we use the ‖Λ(P )‖22 method with data acquired from 3
sensors.

Study of data without noise for multiple sensors: as we have already
discussed, the extra feature of this method is that it can be used with more
than three sensors, offering the possibility of also using the circles method.
So it is natural to conduct some experiments with multiple sensors even if we
can not compare them directly with the minimization of ‖V (P )‖1 process.
For the multiple sensor experiments we use the Setup 1.4 as described in
Chapter 1 which concern measurements form a single measurement position
for ideal data. Here we have 6000 dipoles on concentric cylinders as before,
but we use 11 sensors instead of 3.

The general results of our analysis are as follows:

Experiment Average
epi pw error

# of excluded
cases

# of dipoles with
error more than
1000%

# of dipoles with
error more than
50%

Setup 1.4 8.4 0 0 148

Note that (once again) we do not compute 3 cases because of the averaged
planes results and the fact that we have Argξ̂′(i)− angles with ranges of more

than 90◦. The first observation (regarding the remaining dipoles) for the
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experiments without noise for multiple sensors is that the epi pw average
error drops to 8.4%. In fact the maximum epi pw error does not exceed 96%
and only 3% of the dipoles locations produce an error bigger than 50%. The
results are significantly better compared to the experiments with the actual
lunometer configuration. The evidence that more sensors provide us with
better results has already been seen in Chapter 3. This result is one more
confirmation of this observation. The error distribution of epi pw error for
the multiple sensors experiment can be seen in Figure 4.14.

Figure 4.14: This picture illustrates the epi pw error distribution for multi-
ple sensors for ideal data. Its vertical axis corresponds to the number of
dipoles and its horizontal axis to the epi pw percentage error. Note that the
maximum error is 95.2%, the illustration exceeds up to 300% in order to
be compareable with Figure 4.13. For these experiments we use also the
‖Λ(P )‖22 method.

4.3.3 Summary of our technique

In Chapter 2 we saw the PHC and the grid method for finding a first estimate
of the ξ′(i)− pole. We optimized their results with RARL2 and we finally get

the ξ̂′(i)− estimation.

In Chapter 3 we studied different methods to gain knowledge of the dipole
location Xd. Each method has its own characteristics. We also introduced
the circles method but we faced the issue of defining a pseudo-intersection
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point x̂d.

Finally in Chapter 4 we described three techniques for which the circles
method can define a pseudo-intersection point x̂d.

By conducting experiments and comparing their results we decided that
the methodology we will use to approach the problem of finding the dipole
localization Xd is the following:

• Use of the grid method and RARL2 to find the ξ̂′(i)− estimations.

• Use of the planes method in order to define the averaged plane, (for
cases with range bigger than 90◦ we disregard the information of the
whole position).

• Use of the circles method with the minimization of ‖Λ(P )‖22 in order
to define a pseudo-intersection point x̂d.

• Combine the information of planes and circles method in order to
define the X̂d(p) per measurement position p = 1, 2, 3.

Because the circles method provides us with one estimation X̂d(p) per mea-
surement position, we have to decide how we will compute a single X̂d

estimation by combining all the available information. For this reason we
use the centroid approach as follows.

4.4 Centroid

Depending on the data availability we face one of the following cases.

Data available from a single measurement position p = 1: in that
case

X̂d(1) =: X̂d.

Data available from two measurement positions p = 1, 2: let us as-
sume that two positions p = 1, 2 provide us with two independent estimates
X̂d(1) and X̂d(2). In that case we compute the midpoint

X̂d(1) + X̂d(2)

2
=: X̂d,

as the final dipole location estimation X̂d.
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Data available from three measurement positions p = 1, 2, 3: simi-
larly with the previous case, if we have independent estimates from all three
measurement positions, our final dipole location estimation X̂d is given by
computing the centroid of the three points X̂d(1), X̂d(2) and X̂d(3) as fol-
lows:

X̂d(1) + X̂d(2) + X̂d(3)

3
=: X̂d.

4.5 Rough approximation

At this point it is useful to recall the method we use (at the first stages
of our study [20]) before we compute the pseudo-intersection points and
their centroid. This method consist of a rough approximation and it is an
independent method for estimating the dipole location Xd.
Rough approximation is a basic technique which needs information from all
three measurement positions in order to compute the X̂d estimation. Its
idea is based on the properties of the pole ξ′− which we studied in Chapter 2
and the fact that |ξ′−| ≤ |ξ′d|. From the first measurement position, we

have several ξ̂′(i)− estimations (as many as sensors), from those we keep the
one with maximum modulus, thereby we obtain a rough approximation of
(x̂d, ŷd) coordinates.
Repeating the same procedure with the ξ̂′(i)− corresponding to the second
and third measurement positions, we get a rough approximation of (ŷd, ẑd)
and (x̂d, ẑd) respectively. Overall, we have two estimates for each of the
three coordinates of Xd dipole. Now for each coordinate, we retain the es-
timate of maximum absolute value.

Once we have an estimation X̂d for our dipole location, the only unknown
quantity remaining in our main Equation (1.8) is Md. The next chapter is
dedicated to its recovery.



CHAPTER 5

Moment recovery and numerical experiments

In this chapter, we are interested in recovering the magnetization Md of
the dipole. The key observation is that, when the dipole location Xd is
estimated, the unknown quantity Md can be recovered by studying the
numerator of our main Equation (1.8).

B[Xd,Md](X) = −µ0

4π

|X−Xd|2 Md − 3 [Md · (X−Xd)] (X−Xd)

|X−Xd|5
.

The idea now is to create and solve a linear system of equations with un-
known quantity the moment

Md =

 M1

M2

M3


of the dipole.
What we measure are the magnetic field components (radial, tangential or
vertical) B[Xd,Md](X) at points X = Xji = (xj , yj , zi). In our simulations
we use j = 1, · · · , N with N = 360 the number of measurement points
and i = 1, · · · , S with S = 3 or 11 the number of sensors (which for the
current lunometer configuration corresponds to measurements of the three
components of the magnetic field measured at different heights). Based on
these conventions, (xj , yj) belongs to a circle of pointwise measurements of
any component of the field, while zi has the value of one of the heights of
the measurements circles.
When the dipole location Xd is estimated, the denominator in Equation (1.8)
can be considered as a known quantity. Consequently, we can rewrite Equa-
tion (1.8) as

−4π

µ0
|X−Xd|5B[Xd,Md](X) = |X−Xd|2 Md − 3 [Md · (X−Xd)] (X−Xd) ,

131



132
CHAPTER 5. MOMENT RECOVERY AND NUMERICAL

EXPERIMENTS

and set

Fi(Xji) = −4π

µ0
|Xji −Xd|5B[Xd,Md](Xji) .

Were i = 1, ..., S indicates measurements from the ith sensor (measurements
of a single magnetic field component) at the corresponding height zi. Note
that Fi(Xji) is a vector of size N × 1. Now for a single measurement com-
ponent we can write:

Fi = |Xji −Xd|2
 M1

M2

M3

− 3

  M1

M2

M3

 ·
 xj − xd
yj − yd
zi − zd

  xj − xd
yj − yd
zi − zd

 .
(5.1)

Let us assume that S = 3, and we have measurements for the radial, tan-
gential and vertical component of the magnetic field respectively. In that
case we can expand Equation (5.1) as follows:


F1 =

(
|Xj1 −Xd|2 − 3(xj − xd)2

)
M1 − 3(xj − xd)(yj − yd)M2 − 3(xj − xd)(z1 − zd)M3

F2 = −3(xj − xd)(yj − yd)M1 +
(
|Xj2 −Xd|2 − 3(yj − yd)2

)
M2 − 3(yj − yd)(z2 − zd)M3

F3 = −3(xj − xd)(z3 − zd)M1 − 3(yj − yd)(z3 − zd)M2 +
(
|Xj3 −Xd|2 − 3(z3 − zd)2

)
M3.

(5.2)
Note that each Fi (in our example i = 1, 2, 3 for different components)
is a system of linear equations with the unknowns (M1,M2,M3). Since
j = 1, ..., 360 means that each Fi is in fact an overdetermined system of linear
equations. When we face overdetermined systems we can approximate their
solution by using the least square approach, with the use of Moore-Penrose
pseudo-inverse matrix as we did in Chapter 3 for the linear combination
method in Section 3.3 and the parabola method in Section 3.4.

5.1 Moment recovery

In our example, in order to solve the linear system of Expression (5.2) we
write it in a matrix form as follows:

F = AMd,

with:

F =

 F1

F2

F3

 ,
A =

 |Xj1 −Xd|2 − 3(xj − xd)2 −3(xj − xd)(yj − yd) −3(xj − xd)(z1 − zd)
−3(xj − xd)(yj − yd) |Xj2 −Xd|2 − 3(yj − yd)2 −3(yj − yd)(z2 − zd)
−3(xj − xd)(z3 − zd) −3(yj − yd)(z3 − zd) |Xj3 −Xd|2 − 3(z3 − zd)2


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and

Md =

 M1

M2

M3

 .
The size of vector F is 1080 × 1, because we take measurements for S = 3
sensors at N = 360 different points for each one, hence (3 · 360 = 1080).
The size of the matrix A is 1080× 3 and the size of vector Md is 3×1. Now
we can use the Moore-Penrose pseudo-inverse [37] matrix A+ = (ATA)−1AT

(where AT is the transposed matrix of A). The solution to the least squares
problem is then given by

M̂d = A+F.

Note that in [37] they explain that Moore-Penrose pseudo-inverse works even
with rank deficient matrices.

This is how we compute the estimation M̂d for the moment of the dipole.
From this estimation we can study two characteristics regarding the dipole’s
moment, namely its amplitude and its direction. For the numerical simula-
tions that follows we compute the percentage amplitude error of the moment
eampl as:

eampl =

∣∣∣∣∣ |M̂d| − |Md|
|Md|

∣∣∣∣∣ · 100.

The angular error eang of the moment (expressed in degrees) as:

eang =

(
M̂d ·Md

|M̂d||Md|

)
· 180

π
.

We also compute the percentage error between the estimated and the actual
dipole location eest−act, normalized by the radius R of our sensors distance
from the revolution axis. The eest−act is given by:

eest−act =
|X̂d −Xd|

R
· 100.

5.2 Numerical experiments with synthetic data

In this section we conduct numerical experiments for ideal and noisy data.
For our synthetic data experiments we use N = 360 measurement points.
In our analysis we compare 3 methods that compute an estimation for the
dipole moment Md. These methods are the following.

• Cerege method: This method is the one that is currently used by
geoscientists in Cerege. Its idea is to assume that the dipole is located
at the origin of our coordinate system X̂d = (0, 0, 0).
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• Rough method: This is the approximation method described in
Chapter 4, Section 4.5 and the one we use in paper [20]. Here the
idea is to keep the maximum modulus of the estimated pole ξ̂(i)− per

position and combine their information in order to recover a X̂d. Note
that for the current lunometer configuration we have i = 1, 2, 3 at
different heights zi.

• Circles method: This is the method we start studding in Chapter 3
Section 3.5 and we complete its study by finding a pseudo-intersection
point in Chapter 4. For this method depending on the available in-
formation, we use the recovered point, midpoint or centroid as the
estimation X̂d as described in Chapter 4 in the Section 4.4.

After estimating the dipole location X̂d, we solve the appropriate lin-
ear system in order to recover the moment and get M̂d, as explained in
Section 5.1.

Remark 21 An important piece of information for the reader is that, for
the numerical experiments of this chapter, we do not discuss the linear com-
bination method neither the parabola method. That happens because we test
them and their results behave poorly when compared with the Cerege, rough
and circles methods. We also present only synthetic data experiments be-
cause we still need some adaptations to our code in order to interpret and
work with the real data measurements.

In this section, with each experiment we investigate the influence of dif-
ferent factors. In Section 5.2.1 we conduct some experiments that we use
as reference examples. These experiments concern ideal data from 3 dif-
ferent positions with the current lunometer configuration (3 sensors that
measure the radial, tangential and vertical component of the field at differ-
ent heights). In Section 5.2.2 we study the influence of using more sensors
for ideal data. In Sections 5.2.3 and 5.2.4 we study the previous experiments
under the contamination of noise. In these experiments we use 5% uniform
noise on the signal and we study it without applying any denoising treat-
ment. In Section 5.2.5 we use ideal data to test the influence of the moment
orientation, we also test how the number of measurement positions affect
our results and if less measurement points with N = 72, 63 or 24 can affect
our estimations. The experiments of Section 5.2.5 can be compared with
our reference results of Section 5.2.1. We continue with Section 5.2.5 by
conducting experiments with noise data and multiple sensors for one mea-
surement position. Finally we investigate in Section 5.2.6 if we can filter
out specific estimations of ξ̂(i)− pole estimations, instead of disregarding the
measurements from the whole measurement position.

Remark 22 As a general rule in our experiments, when we contaminate
our data with noise (5% uniform noise on the signal) we continue our study



5.2. NUMERICAL EXPERIMENTS WITH SYNTHETIC DATA 135

without applying any denoising treatment. For this reason in the numerical
experiments below when we mention that we use noisy data it implies that
we do not use any treatment on them.

5.2.1 Study of data without noise for the current lunometer
configuration

For this Setup 1.6 of experiments we use the lunometer configuration. Here
we generate 6000 dipoles inside a ball and we take measurements from 3
positions. In Figure 5.1 one can see the distributions of the eest−act, eampl
and eang errors. We collect the results of our analysis in the following table:

# cases eest−act > 20% eampl > 50% eang > 50◦ eampl < 25% eang < 10◦

Cerege 5950 1925 1708 2894 1627

Rough 31 0 0 5940 5999

Circles 1120 698 2 4728 5964

Note that in these experiments we compute an X̂d at any case, because we
use the methodology which is described in Chapter 4 Section 4.4. Hence we
can compute a final X̂d point even if we disregard information from up to
2 (of the 3) measurement positions. This holds for all the experiments that
follow and have measurements from 3 positions.

The first observation from these experiments is that the rough method per-
forms perfectly for ideal data. This can be observed also from the distribu-
tions of eest−act, eampl and eang errors in Figure 5.1 and it is in accordance
with our results in paper [20]. Another (counterintuitive) observation is
that the location of the dipole affects the estimation of the moment but
not significantly. See for instance the case, eest−act > 20% for the Cerege
method. There are 5950 dipoles with localization error bigger than 20%,
which corresponds to the 99% of the total cases. However only 32% of our
dipoles provide eampl > 50% and 28% of them provide eang > 50◦. Finally,
from the distributions of Figure 5.1 there is an evidence that for ideal data
rough and circles method can estimate better the direction of the magnetic
moment than its amplitude.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.1: These experiments concern ideal data of 3 sensors, from 3 dif-
ferent positions. The illustrations compare the Cerege, rough and circles
methods. Pictures on the left illustrate the eest−act distributions and pic-
tures on the right the eampl, eang distributions.
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5.2.2 Study of data without noise for multiple sensors

The setup of these experiments with ideal data is described in Chapter 1
Setup 1.7. As before we generate 6000 in a ball, but this time we use 11
sensors at each of the 3 positions. In Figure 5.2, one can see the distributions
of the eest−act, eampl and eang errors. We collect the results of our analysis
in the following table:

# cases eest−act > 20% eampl > 50% eang > 50◦ eampl < 25% eang < 10◦

Cerege 5950 678 435 4433 3266

Rough 0 0 0 6000 6000

Circles 3 1 0 5988 5999

As we expected, for the Cerege method the number of dipoles with eest−act >
20% is the same as before. That happens because the generated dipoles in
both experiments have the exact same locations Xd, since Cerege method
assumes that X̂d = (0, 0, 0) at any case it means that the eest−act must be
identical in both experiments. We can confirm this observation by com-
paring the eest−act distributions of Cerege method in Figures 5.1 and 5.2.
However there is a significant improvement in the results of eampl and eang
with the use of 11 sensors instead of 3. This improvement can be observed
by comparing the distributions for eampl and eang in Figures 5.1 and 5.2 for
each method, but it is more obvious for the Cerege and the circles methods.
This is a strong evidence that for ideal data more sensors (that are located
at different heights) provide us with better estimations for the Md.
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(d)
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(f)

Figure 5.2: These experiments concern ideal data of 11 sensors, from 3
different positions. The illustrations compare the Cerege, rough and circles
methods. Pictures on the left illustrate the eest−act distributions and pictures
on the right the eampl, eang distributions.



5.2. NUMERICAL EXPERIMENTS WITH SYNTHETIC DATA 139

5.2.3 Study of noisy data for the current lunometer config-
uration

For this setup of experiments we contaminate our signal with 5% uniform
noise. Our experiments consist of 6000 dipoles in a ball and we take mea-
surements from 3 positions as described in Setup 1.8. In Figure 5.3, we
present the distributions of the eest−act, eampl and eang errors. We collect
the results of our analysis in the following table:

# cases eest−act > 20% eampl > 50% eang > 50◦ eampl < 25% eang < 10◦

Cerege 5950 1951 1704 2861 1631

Rough 4645 3797 593 776 3496

Circles 2722 706 575 3535 3410

The first observation is that for noisy data the rough method performs
poorly. That is up to a point expected because the rough method uses only
the information of the maximum modulus of ξ′(i)−. Consequently for noisy

data a bad estimation of ξ′(i)− will affect drastically the estimation X̂d. This

is also reflected on the number of cases with eampl > 50% and eang > 50◦

error which for the rough method concern 63.2% and 9.8% of our dipoles
experiments respectively.

Another observation is that the circles method behaves better than the
Cerege method. By comparing the distributions in Figure 5.3, one can see
that Cerege method has more dipoles with eampl < 5% but its distribution
decreases faster compared to the circles method. As a result, the circles
method has more dipoles with eampl < 25%. Also by comparing the eang
distributions of the two methods we can see that with the circles method
we have better estimation of the direction of the moment.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.3: These experiments concern noisy data of 3 sensors, from 3 dif-
ferent positions. The illustrations compare the Cerege, rough and circles
methods. Pictures on the left illustrate the eest−act distributions and pic-
tures on the right the eampl, eang distributions.
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5.2.4 Study of noisy data for multiple sensors and heights

Here we repeat the experiments with 5% uniform noise as before, only this
time we use 11 sensors (per position) to measure the magnetic field, instead
of 3. This setup of experiments is described in Chapter 1 Setup 1.9. In
Figure 5.4, we present the distributions of the eest−act, eampl and eang errors.
We collect the results of our analysis in the following table:

# cases eest−act > 20% eampl > 50% eang > 50◦ eampl < 25% eang < 10◦

Cerege 5950 684 438 4426 3276

Rough 5758 4668 277 370 4094

Circles 547 342 281 4825 4400

This experiment confirms the observation that more sensors provide us with
better estimations of the moment Md. For instance by comparing the dis-
tribution in Figures 5.3 and 5.4 we can see that the number of sensors plays
an important role in improving the results of our estimations for both the
dipole location Xd and its moment estimation Md.

By studying the cases with eest−act > 20%, eampl > 50% and eang > 50◦

for the circles method we observe that they are concentrated close to the
borders of the sphere where the dipoles of our experiments are contained,
see Figure 5.5. From our study there is no obvious correlation between the
cases with eampl > 50% and eang > 50◦ except the fact that they are located
close to the borders of our sphere. Though we investigate selected cases that
are located close to the borders, we do not have a clear view for the reason
behind this behavior. Note that because we have 3 measurement positions
it means that there is at least one position where the illustrated dipoles are
not close to the sensors.
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(a)
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(d)
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Figure 5.4: These experiments concern noisy data of 11 sensors, from 3
different positions. The illustrations compare the Cerege, rough and circles
methods. Pictures on the left illustrate the eest−act distributions and pictures
on the right the eampl, eang distributions.
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(a)

(b) (c)

Figure 5.5: Illustrations of circles method for noisy data form 11 sensors
and from 3 measurement positions. All pictures contain 2D information of
the dipole locations (black dots). The vertical axis correspond to zd and the
horizontal axis to |xd + iyd|. The red dots on the top picture correspond

to cases with eest−act > 20% and the cyan circles to cases for which
∣∣∣X̂d

∣∣∣
exceeds the radius R (those are cases that we are aware that we should not
trust the moment estimation). The magenta dots at the bottom left picture,
illustrate cases with eampl > 50% and the green dots at the bottom right
picture illustrate cases with eang > 50◦.
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5.2.5 Study of other parameters

Moment direction: one of the observations in our paper [20] was that
the moment of a dipole can affect the estimation of both the dipole lo-
cation Xd and its moment estimation Md. To test this assumption we
select three individual cases from the experiments of Setup 1.6 (more pre-
cisely we select the 4, 5 and 6 generated dipoles with locations Xd(4) =
[0.0228,−0.1080, 0.0690], Xd(5) = [−0.0526,−0.0529,−0.0838] and Xd(6) =
[0.0519, 0.1101,−0.0668] which are illustrated in Figure 5.6 with red, blue
and black diamonds respectively. Then we generate 1000 different moments
for each one of the selected dipole locations with different orientations but
with the same amplitude of 0.001. The setup of this experiment is described
in Chapter 1 Setup 1.10.

Remark 23 For this experiment we compare the results only for the circles
method, however a similar behavior is observed also for the rough and Cerege
methods.

In the following tables we collect firstly the information of the circles method
for the eest−act, eampl and eang errors which concern our 3 dipoles from our
reference experiments in Section 5.2.1. Secondly we compute the average
values of eest−act, eampl and eang for the 1000 generated moments per location
based on the circles method too. The distribution of eest−act, eampl and eang
for each dipole can be seen in Figure 5.7.

Figure 5.6: This picture illustrates the Xd(4) = [0.0228,−0.1080, 0.0690],
Xd(5) = [−0.0526,−0.0529,−0.0838] and Xd(6) = [0.0519, 0.1101,−0.0668]
dipole locations as red, blue and black diamonds respectively. The black
cross denote the origin of our coordinate system.
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Reference
Section 5.2.1

Location error
eest−act

Moment am-
plitude error
eampl

Moment angular
error eang

Xd(4) 19.7% 32.6% 2.39◦

Xd(5) 3.2% 4.4% 0.52◦

Xd(6) 6.9% 9.9% 1.33◦

Current examples Average location
error eest−act

Average moment
amplitude error
eampl

Average moment
angular error eang

Xd(4) 6.2% 8.5% 1.3◦

Xd(5) 4.3% 6.4% 1◦

Xd(6) 7.2% 10.4% 0.7◦

The above tables show us the percentage error eest−act, eampl and eang for
our 3 individual locations for the circles method. The first table contains
the information of the reference experiments and the second table contains
the average information of the current experiments with the 1000 different
moments. Based on the second table, one can see that we expect to have on
average a certain percent of eest−act, eampl errors and indeed the Xd(5) and
Xd(6) locations of our reference experiment are close to the average values of
the second table. However, Xd(4) has a larger value than the average value
of the second table. For this reason we study the error distributions for each
dipole location as illustrated in Figure 5.7. An interesting observation is that
each location has a different behavior. For instance it is more likely to have
a good approximation for the generated dipole in location Xd(5), than the
generated dipole location Xd(4). In Figure 5.8 we collect the 3D information
for the three selected locations, as well as the 3D information of the moment
orientations. The magenta circles illustrate cases with eampl > 10%, it
is obvious that there is no specific moment directions which provide bad
estimations. From our analysis it seems that the most important role for a
good approximation of the moment plays the location of the dipole and not
its moment direction.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.7: These experiments concern ideal data of 3 sensors, from 3 dif-
ferent positions. The illustrations focus on 3 specific locations with the use
of circles methods. We provide the error distributions as follows: pictures
on the left illustrate the eest−act and pictures on the right the eampl, eang.
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(a) (b)

(c)

Figure 5.8: These experiments concern ideal data of 3 sensors, from 3 dif-
ferent positions. The illustrations focus on three specific dipole locations
Xd(4), Xd(5) and Xd(6) and their results regarding the circles methods.
We present the 3D information for the three selected dipole locations by us-
ing the colorcode of Figure 5.6 where each dipole location denoted with red,
blue and black diamonds. Black dots illustrate the direction of the moments
and the magenta circles denote cases with eampl > 10%,

Number of measurement positions: another parameter that we are
interested in testing with the circles method is the necessary number of
measurement positions in order to compute good approximations of the
dipole location Xd and its moment Md. In our reference experiments of
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Section 5.2.1, we saw how the circles method performs for ideal data, with
measurements taken by 3 sensors for 3 measurement positions as described
in Setup 1.6. Here we repeat this experiment but we analyze the data firstly
for all three measurements positions (as we did in Section 5.2.1), secondly
for the first two measurement positions and lastly for only the first mea-
surement position. In Figure 5.9 we present the distributions of the eest−act,
eampl and eang errors for the circles method with data acquired from 3, 2
and 1 measurements positions respectively. From those distributions one
can observe that 3 measurement positions provide in general better results
for the eest−act, eampl and eang errors. However the two measurement posi-
tions also performs well. Only the results of a single measurement position
provide poor estimations for Xd and Md. This is interesting information,
which indicates that circles method needs data from at least two measure-
ment positions in order to increase its performance. Through our analysis
we confirm that the number of measurement positions plays indeed a more
important role than the number of sensors at each position. In Section 5.2.6
for instance (which we discuss later) we conduct experiments for a single
measurement position with 11 sensors, its eest−act, eampl and eang distribu-
tions in Figure 5.10 have the same behavior with our single measurement
distributions in Figures 5.9(e) and (f).
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.9: These experiments concern ideal data of 3 sensors, from 3, 2 and
1 measurement positions respectively. The illustrations focus on the circles
method. The pictures on the left illustrates the error distribution of eest−act
and the pictures on the right, the error distribution of eampl, eang.
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Measurement step: we also test for the circles method, how the step size
between pointwise measurements along a circular path affect our results. By
step size we mean how often the sensors take measurements of the magnetic
field B[Xd,Md](X). In our simulations we take measurements every 1◦ (which
gives us N = 360) in comparison the current lunometer takes measurements
every 0.7◦ [10] N = 512. In this analysis we want to see how sparse the
measurements can be (how large can the step between them be) in order
to start affecting our results. For this test we use the first 100 cases from
our reference experiments we describe in Section 5.2.1. That means that we
have 100 generated dipoles that are uniformly spread inside a ball of radius
r = 0.14. We use steps of 1◦, 5◦, 10◦ and 15◦ which provide us with N = 360,
72, 36 and 24 measurement points per circular path respectively. The results
for the eest−act, eampl and eang errors, are collected in the following table:

Table 5.1: measurement step for circles method

# cases eest−act >
20%

eampl >
50%

eang >
50◦

eampl <
25%

eang <
10◦

step 1◦ 20 15 0 74 99

step 5◦ 23 15 0 72 99

step 10◦ 17 9 0 81 98

step 15◦ 41 4 0 63 89

The first observation is that, for ideal data with the use of circles method,
until 10◦ it seems there is no significant difference in our results. The cases
with eampl > 50% are observed at common dipole locations for the first
three step sizes. There is an indication that steps up to 10◦ provide us with
better results, we base this claim on the observation that we have fewer cases
with eampl < 25% and eang < 10◦ errors for the 15◦ step size compared to
the other, smaller step sizes. In this analysis, the 10◦ step performs better;
however it is not clear why this happens. In any case, these experiments
provide us only with an intuition of the step size influence, due to the fact
that they are conducted for a small number of dipoles. This is something
that it is worth studying further, however due to time constraints we were
not able to continue the study for more dipoles.

Single sensor / component: in Chapter 2 Section 2.5, we saw evidence
that the measurements of B⊥ sensor could provide us with better results
compared to the Br and Bτ sensors. This evidence however, comes from the
study of a single sensor measurement at a specific height. In order to test if
multiple B⊥ sensors, which are located at different heights, can provide us
with better Xd, Md estimations, we conduct experiments with noisy data
for 1000 dipoles uniformly spread inside a ball, for a single measurement
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position. For this experiment we use 11 B⊥ sensors as described in Setup
1.11 and we compare their results by using 1000 dipoles uniformly spread
inside a ball with the same size from the first measurement position of
Setup 1.9 which we saw in Section 5.2.4. In Figure 5.10, we present the
distributions of the eest−act, eampl and eang errors for the circles method
regarding the measurements of multiple B⊥ sensors compared to multiple
Br, B⊥, Bτ sensors. We observe that all of the distributions have similar
behavior (shape). The small differences between the distributions can be
explained by the fact that the 1000 dipoles of one of the experiments are
different to the 1000 dipoles of the other experiment (not the same moments
Md). We also collect some results in the following table:

# cases eest−act >
50%

eampl >
50%

eang >
50◦

eampl <
25%

eang <
10◦

B⊥ only 624 287 284 467 154

multiple Br, B⊥, Bτ 624 237 188 434 161

This table confirms that there is no significant difference in our results, when
we have multiple sensors that measure only the B⊥ component or when we
have multiple sensors that measure all three Br, B⊥, Bτ components of the
field. However one extra piece of information that does not appear in the
table is that, with multiple B⊥ sensors, we exclude 14 cases based on the way
we have computed the averaged plane (recall the process of the Arg(ξ̂(i)−) list
which we saw in Chapter 3 Section 3.2.1). In contrast with multiple sensors
Br, B⊥, Bτ we exclude 55 cases. This could be a coincidence due to the
fact that our two experiments study different dipole moments. Once again
through time limitations we are not able to continue our study in depth,
however this is one more observation that needs further investigation.
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(a)

(b)

(c)

(d)

Figure 5.10: These experiments concern noisy data of 11 sensors, from a
single measurement position. The illustrations focus on the circles method.
The pictures on the left illustrate eest−act distributions and the pictures on
the right eampl, eang distributions. The top three pictures regard measure-
ments only of B⊥ component and the bottom three pictures from Br, B⊥, Bτ
components.

5.2.6 Study of possible clusters

Study of possible clusters for multiple sensors: when we study the
planes method in Chapter 3 Section 3.2.1, we set the question if for multiple
sensors we have the ability to disregard measurements from specific sensors
instead of disregarding the whole measurement position. Here we analyze
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the information from the Setup 1.11 which concerns the experiments of 1000
dipoles inside a ball and measurements taken from multiple B⊥ sensors
for a single measurement position. From the pole estimations ξ̂(i)− (with

i = 1, ..., 11) we compute a list with their arguments Arg(ξ̂(i)−). Now in
Chapter 3 we exclude the measurements of a whole position when we faced
cases with angle ranges that exceed 90◦. In this experiment we have in
total 14 excluded cases for which we collect the angle information Arg(ξ̂(i)−)
(converted to degrees) at the following table. Note that the last column
of the table contain the actual (theoretical) angle Arg(ξ′−) of the dipole
computed from the true location Xd of each dipole.

Table 5.2: list of angles Arg(ξ̂(i)−) and Arg(ξ′−)

Ex. case Arg(ξ̂′(1)−) Arg(ξ̂′(2)−) Arg(ξ̂′(3)−) Arg(ξ̂′(4)−) Arg(ξ̂′(5)−) Arg(ξ̂′(6)−)

1 40 -93 -111 99 -10 5
2 -86 -108 -93 -128 -127 -130
3 172 179 -176 -180 -167 179
4 -40 -59 -22 128 -180 -77
5 -119 -59 -93 -82 -102 -58
6 -149 -175 -139 165 -169 -94
7 15 31 26 8 17 -13
8 85 44 48 10 77 134
9 -103 -117 -124 -121 -120 -119
10 -131 -156 -155 -166 -117 -91
11 -25 -20 -13 -32 -26 -17
12 24 23 25 -86 22 18
13 159 32 -1 112 116 113
14 152 106 -163 -176 148 145

Ex. case Arg(ξ̂′(7)−) Arg(ξ̂′(8)−) Arg(ξ̂′(9)−) Arg(ξ̂′(10)−) Arg(ξ̂′(11)−) Arg(ξ′−)

1 2 5 -1 -7 7 -3
2 -130 -131 -124 176 148 -129
3 156 179 -170 154 96 -180
4 -75 -84 -76 -83 -81 -79
5 -49 136 84 10 -50 -80
6 -128 -161 -153 -150 -154 -155
7 -63 -29 -20 -31 -42 -14
8 26 25 28 28 24 27
9 -121 -149 165 -158 -116 -122
10 -157 156 119 -145 -104 -119
11 -147 144 10 163 166 -28
12 17 20 19 15 17 18
13 114 118 121 117 115 113
14 145 147 145 147 147 146

Because our angles vary from [−180, 180) degrees it is difficult to determine
from the table above how many of our Arg(ξ̂(i)−) are close to the theoretical
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Figure 5.11: This picture illustrates the information of Table 5.2 which is
interepreted with colors based on the provided colorbar.

angle Arg(ξ′−). For this reason in Figure 5.11 we use a different representa-
tion of the table’s information. More precisely we make a color coded table
where the last column of the table contains the (theoretical) angles Arg(ξ′−)
as before. The values of the angles in this table are associated with a color
as one can see from the color bar at the right hand-side of Figure 5.11 which
varies between [−180, 180) degrees. Now each row corresponds to one of
the excluded cases and the first 11 columns of the color table gather the
information Arg(ξ̂′(i)−) with i = 1, ..., 11. With this representation the an-
gles of each row that differs a lot from the true angle are easily identified.
For instance, the first line of the color table shows that the first 4 sensors
provide angles further away from the actual angle (cyan color of the 12th

column).
From the above analysis, a first answer is that for multiple sensors a clus-
tering process, which excludes information from specific sensors, is possible.
That happens because one can observe that in most cases, there are only few
sensors with bad angle estimation. However, for a definitive answer more
investigation is required.
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General discussion and conclusion

Paleomagnetic studies try to understand the history and the evolution of
the magnetic field of planets and planetary objects. Through those studies,
hypotheses such as the continental drift [45], the tectonic plates and the
geomagnetic reversal [16] have been proposed and confirmed. Because of
these studies, the way we understand the world has changed. One impor-
tant factor in these studies is that with the right conditions, ferromagnetic
materials can preserve natural remanent magnetization (NRM) for long pe-
riods of time (even billions of years). The difficulty geoscientists face is how
to recover accurately the magnetization from various objects. For this rea-
son they develop invasive techniques where they demagnetize the samples
under study such as rocks or clay fragments [12]. However invasive tech-
niques limit geoscientists to studying small samples, which are essentially
destroyed after the study. This motivates them to develop instrumentation
for noninvasive techniques [10]. New technologies also help them to increase
the sensitivity of sensors that record the magnetic field of a rock.

Despite the new technological advantages there are still some physical limi-
tations that puzzle the geoscientists. With noninvasive techniques they can
measure the magnetic field around a sample [11], but then they have to deal
with an inverse problem in order to recover the magnetization that generates
this field. In our study we saw that in order to have good estimations of the
magnetization Md the knowledge of the source location Xd is important.
To estimate the location Xd for large samples (for instance a rock that has
a mass of 1 kg) geoscientists have two options:

• The first option is to take measurements at a distance from the sam-
ple. In that case an approximation of the magnetic source location
at the sample’s mass center is valid. However magnetic field varying
as an inverse cube (with respect to the distance), that can be ob-
served in Equation (1.7) from the denominator expression |X−Xd|3.

155
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That means that the field strength decreases rapidly when we increase
the distance from the magnetic source. Hence, if geoscientists take
measurements at a distance from the sample, they are in fact just
measuring noise.

• The second option they have is to take measurements close to the
(large) sample. However, in a case like this, the framework geoscien-
tists use (namely the assumption that the magnetic source is located
at the center of the sample’s mass) could be invalid.

Contribution and experimental observations

In our thesis we address exactly a situation like the above second option.
More precisely, we study what happens when we take measurements of a
large sample with a single magnetic source from a small distance. During our
study, we saw how to estimate the source location Xd and the magnetization
Md. An important contribution of our study is that we gain intuition for
the behavior of a magnetic source due to the large number of synthetic data
experiments we conducted (more than 680.000 experiments). In this thesis
we include only a small part of our experiments in order to highlight our
main observations, more precisely from our experiments with synthetic data
in Chapter 5 (Section 5.2) we observe that there exists some parameters
which can be controlled by geoscientists and can affect the Md estimation.
Some of these parameters are the following:

• Number of sensors: in our analysis, both with ideal and noisy data,
we observe an improvement of the Md estimation based on the num-
ber of sensors we use. Though we had some evidences in Chapter 2
Section 2.5 that B⊥ sensor could perform better than other two sen-
sors, the overall picture we have after our study in Chapter 5 Section
5.2 is that, it does not matter what sensor we use (measurement of a
specific component) but how many sensors we have at each measure-
ment position. In fact in Chapter 2 we test the pole estimation ξ̂′−
for each sensor Br, Bτ and B⊥ by conducting experiments for 4000
dipoles from one measurement position at a specific height z = 0.015.
In contrast in Chapter 5 we conducted experiments for 1000 dipoles
with measurements from one position at heights z that varies from
[-0.075, 0.075]. For the multiple sensors experiments we compare the
Xd, Md estimations by using only B⊥ sensors at the one case and
a combination of Br, Bτ and B⊥ at different heights at the other
case. We observe that the multiple sensors results were comparable,
which suggests that indeed it is more important to have many sensors
at each measurement position, than fewer sensors, which measure a
specific component.
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• Number of measurement positions: though having measurements
of 2 or 3 different positions is time consuming, in Chapter 5 Section 5.2
we observe that it is really important to combine information from
many positions for a good Md estimation. The information from the
extra positions is a critical factor that works as a weight for our data
and leads us to better estimations. In fact it is more important to
have measurements from different positions than having one position
with many sensors.

• Level of noise: the higher the level of noise the worst our estimations
for Xd and Md. This is an expected observation. In our study with
synthetic data we investigate cases with ideal signal and cases with
noisy data. We study the noisy data experiments without applying
any denoising treatment. We do this because we are planning to test
the raw measurements of the magnetic field, provided to us by the
geoscientists in Cerege. To be more precise, we know that geoscientists
take measurements at magnetically isolated facilities. However they
still face issues of jumps and drift in their signal. For this reason they
use a denoising technique known as Savitzky-Golay filter. With this
technique they recover a signal that resembles the signal from a single
(centered) dipole that has no drift or jumps. With our approach we
want to compare the results of the raw signal analysis with the results
of the signal after treatment.

Now concerning the question “which method of our study is best to be use
in order to estimate the magnetization Md?”, the answer depends on the
level of noise.

• Ideal data: for cases where the data can be considered ideal, the best
method to use in order to estimate the magnetization Md is the rough
method which is described in Chapter 4 Section 4.5. This method
performs well for data without noise and provides us with accurate
estimations of the source location Xd, which in turn provides us with
good estimations for the magnetization Md.

• Noisy data: for cases with noisy data (without applying any denois-
ing treatment) we propose the circles method as explained in Chap-
ters 3 and 4. However this is an answer that needs some extra explana-
tion. For noisy data the Cerege method provides similar results with
the circles method as one can see by comparing the distributions of the
two methods in Figures 5.3 and 5.4. The reason why we propose the
use of circles method is because it has better results for the eang error
and it consistently has more dipoles with amplitude error eampl < 25%.
However one can debate that the performance of Cerege method espe-
cially for experiments with noisy data with 11 sensors for 3 different
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positions is comparable with the performance of the circle method. In
this particular scenario one can indeed use the Cerege method in terms
of convenience by sacrificing slightly its estimation accuracy. Despite
this special occasion we believe that for noisy data, circles method is
a good option, because it gives a higher level of confidence for both
eang and eampl error.

Further work

One important process to continue with our work is to test our method
with real data. We couldn’t include results with real data analysis because
we didn’t finish the code adaptations in order to interpret them properly.
However through our synthetic data analysis we observe some factors that
would be interesting to study in depth, these factors are the following:

• Number of dipoles: one main assumption in our model is that the
magnetic field we measure is generated form a single dipole. Though
it could be valid for homogeneous magnetized objects, this assumption
is not realistic for objects such as rocks. For this reason we want to
expand the model in order to estimate more than one dipole location
(possibly 2 or 3 dipole locations is a feasible goal).

• Filtering process: we have already shown evidence that when we use
multiple sensors at different heights zi we can disregard information
from specific sensors, instead of disregarding the information from the
whole measurement position. This is an observation worth further
investigation, because it can increase the quality of our estimations.

• Noisy data: as we have already discussed the level of noise is an
important parameter that should be studied in depth. A compari-
son of Md estimations regarding raw and treated signal could reveal
interesting results.

• Comparison with other methods: though our main concern in
this thesis was to compare our methods with the method currently
used by geoscientists, in literature one can find other available meth-
ods in order to estimate the source location Xd and the magnetization
Md, e.g. spherical harmonics or multipole expansion [46]. A compar-
ison between all these methods for the same set of data could reveal
interesting results regarding the magnetization recovery.
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