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The purpose of this thesis is to study probabilistic numerical methods for Piecewise Deterministic (Markov) Processes (PDMP or PDP) with a view towards applications in Neuroscience.

In the first section of the present introduction we position our work with respect to the literature. In section 2 we present the conductance-based models that will be used for applications purpose. In section 3 we introduce the general class of PDMP/PDP we consider. In sections 4 and 5 we review the general ideas behind thinning and Monte Carlo simulations (classical and multilevel). Section 6 describes, chapter by chapter, the main mathematical results obtained in this thesis. Some perspectives related to our work are discussed in Section 7.

Positioning of the thesis

In this thesis, motivated by applications in Neuroscience, we study efficient Monte Carlo (MC) and Multilevel Monte Carlo (MLMC) methods based on the thinning for piecewise deterministic (Markov) processes (PDMP or PDP) that we apply to stochastic conductance-based models. On the one hand, when the deterministic motion of the PDMP is explicitly known we end up with an exact simulation. On the other hand, when the deterministic motion is not explicit, we establish strong estimates and a weak error expansion for the numerical scheme that we introduce. The thinning method is fundamental in this thesis. Beside the fact that it is intuitive, we use it both numerically (to simulate trajectories of PDMP/PDP) and theoretically (to construct the jump times and establish error estimates for PDMP/PDP).

Stochastic conductance-based models are composed by two distinct variables, the first one is continuous and models the membrane potential whereas the second one is discrete and models the configuration of the ionic channels. Those variables are fully coupled in the sense that the evolution of the membrane potential is influenced by the proportion of ionic channels in a given configuration and the opening/closing dynamic of the channels depends continuously on the membrane potential. As a consequence, these models naturally lead to the class of PDMPs [START_REF] Pakdaman | Fluid limit theorems for stochastic hybrid systems with application to neuron models[END_REF]. We are interested in applications to stochastic counterparts of Hodgkin-Huxley [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF] and Morris-Lecar [START_REF] Morris | Voltage oscillations in the barnacle giant muscle fiber[END_REF] models which are known as biologically realistic since they take into account the precise description of the ionic channels as opposed to the FitzHugh-Nagumo model [START_REF] Fitzhugh | Mathematical models of threshold phenomena in the nerve membrane[END_REF] for example.

In a first part we consider the class of PDMP with explicit flow. In this case using the thinning we are able to simulate exactly the jump times and we obtain an exact simulation of the trajectories. We study both theoretically and numerically the efficiency of such thinning algorithms for different types of bounds from the classical global bound to a path-adapted one. We did not find such systematic study of these different bounds in the literature.

Suppose that we want to approximate an expectation Ergpx T qs involving the process at a terminal time. Classical MC would be satisfactory when we have explicit flow.
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However, when the flow is not explicit we have first to discretise it, for instance with a classical Euler scheme, in order to get back to an explicit flow. On the discretised flow we can use classical MC, but this would result in a high complexity. This motivated us to consider MLMC for PDMP which to the best of our knowledge have not been considered in the literature.

We apply the first part to the discretisation of the PDMP (which turns out to be a PDP) for which we obtain by thinning an exact simulation. Based on this construction, we are able to prove strong error estimates for PDP and a weak error expansion for PDMP. We then use these error estimates to investigate the efficiency of the MLMC method to approximate expectations of functions of the state of a PDMP at fixed time.

Regarding stochastic conductance-based models, the flow is explicit for PDMP-type Hodgkin-Huxley and 3-dimensional Morris-Lecar models. However it is not explicit for the classically used 2-dimensional Morris-Lecar PDMP. For example, our work can be applied to simulate exactly and efficiently quantities of interest such as first spike latency or inter-spike intervals in a PDMP-type Hodgkin-Huxley model and to efficiently approximate the moments of the proportion of open channels or the membrane potential at fixed time in a 2-dimensional Morris-Lecar PDMP in order to compute statistics on these biological variables. In the literature, numerical schemes for PDMP/PDP have been the subject of different papers. In [START_REF] Brandejsky | Numerical method for expectations of piecewise deterministic Markov processes[END_REF] and [START_REF] Brandejsky | Optimal stopping for partially observed piecewise-deterministic Markov processes[END_REF], the authors introduce numerical methods to compute expectations of functionals of a PDMP and optimal stopping times. Their approaches are based on the quantization of the underlying discrete-time Markov chain. In [START_REF] Martin | Strong error Analysis of the Theta-Method for Stochastic Hybrid Systems[END_REF] and [START_REF] Anderson | Stochastic Representations of Ion Channel Kinetics and Exact Stochastic Simulation of Neuronal Dynamics[END_REF], the authors show that a PDMP with a specific jump distribution can be represented as the solution of a stochastic differential equation (SDE) where the noise comes from counting processes. Consequently, they build fixed time step numerical schemes where they simulate the number of jumps within each time step rather than the jump times explicitly. The numerical schemes introduced in [START_REF] Ding | Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model[END_REF] and [START_REF] Riedler | Almost sure convergence of numerical approximations for Piecewise Deterministic Markov Processes[END_REF] explicitly simulate the jump times and are both based on the numerical inversion of a survival function. In [START_REF] Ding | Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model[END_REF], the authors approximate the log-survival function (i.e the integrated jump rate) of the jump times using a numerical scheme together with a linear interpolation. By doing this, they approximate the distribution of the jump times with a piecewise exponential distribution. In [START_REF] Riedler | Almost sure convergence of numerical approximations for Piecewise Deterministic Markov Processes[END_REF], the author reformulates the problem of the inversion of the survival function of each jump time as a hitting time problem for a system of ordinary differential equations (ODE) with random threshold. The system of ODEs is non-linear, includes an equation on the jump rate along the flow of the PDMP and is different for each jump time. A numerical scheme which is related to [START_REF] Riedler | Almost sure convergence of numerical approximations for Piecewise Deterministic Markov Processes[END_REF] can be found in [START_REF] Veltz | A new twist for the simulation of hybrid systems using the true jump method[END_REF] where the author uses a change of time in the previous system of ODEs in order to obviate the hitting time problem. None of the numerical schemes discussed above uses the thinning and none of them produces an exact simulation even if the flow of the PDMP is explicit.

The author in [START_REF] Veltz | A new twist for the simulation of hybrid systems using the true jump method[END_REF] compares his ODE-based algorithm with a fictitious jump method proposed in [START_REF] Graham | Stochastic simulation and Monte Carlo[END_REF]. This is a thinning algorithm which uses a constant global bound for the intensity of the PDMP and is exact when the flow is explicit. Another thinning algorithm using a constant global bound can be found in [START_REF] Campillo | A mass-structured individual-based model of the chemostat: convergence and simulation[END_REF] in order to simulate a model
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Regarding the schemes specifically devoted to stochastic conductance-based models, several algorithms have been developed. The algorithms in [START_REF] Skaugen | Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations[END_REF], [START_REF] Clay | Relationship between membrane excitability and single channel open-close kinetics[END_REF], [START_REF] Rubinstein | Threshold fluctuations in an N sodium channel model of the node of ranvier[END_REF], [START_REF] Chow | Spontaneous action potentials due to channel fluctuations[END_REF] consist in following the evolution of each channel separately (therefore the efficiency is low) and do not use thinning. Papers [START_REF] Chow | Spontaneous action potentials due to channel fluctuations[END_REF], [START_REF] Mino | Comparison of algorithms for the simulation of action potentials with stochastic sodium channels[END_REF], [START_REF] Rowat | Interspike Interval Statistics in the Stochastic Hodgkin-Huxley Model: Coexistence of Gamma Frequency Bursts and Highly Irregular Firing[END_REF] simulate the number of channels in each possible states without considering each channel individually in the spirit of Gillespie algorithm [START_REF] Gillespie | A general method for numerically simulating the stochastic time evolution of coupled chemical equations[END_REF]. Gillespie algorithm is used to simulate continuous time homogeneous Markov chains and has been popularized by Gillespie in order to simulate the stochastic time evolution of a system of chemical reactions. We emphasize that this algorithm is known under different names in the literature such as kinetic Monte Carlo, stochastic simulation algorithm or n-fold way algorithm. Generalisations of this algorithm have been considered for example by Gillespie himself to take into account the case of semi-Markov processes [START_REF] Gillespie | Monte Carlo Simulation of Random Walks with Residence Time Dependent Transition Probability Rates[END_REF]. However Gillespie algorithm does not use thinning and is based on the inversion of a survival function. To be complete, let us mention that many papers aim to speed up the simulation using diffusion approximations of the Markov dynamic of the ionic channels [START_REF] Fox | Stochastic Versions of the Hodgkin-Huxley Equations[END_REF], [START_REF] Linaro | Accurate and Fast Simulation of Channel Noise in Conductance-Based Model Neurons by Diffusion Approximation[END_REF], [START_REF] Goldwyn | Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons[END_REF], [START_REF] Orio | Simple, Fast and Accurate Implementation of the Diffusion Approximation Algorithm for Stochastic Ion Channels with Multiple States[END_REF], [START_REF] Dangerfield | Modeling ion channel dynamics through reflected stochastic differential equations[END_REF], [START_REF] Huang | Channel-based Langevin approach for the stochastic Hodgkin-Huxley neuron[END_REF], [START_REF] Pezo | Diffusion approximation-based simulation of stochastic ion channels: which method to use[END_REF]. Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties such as bounding of channels proportion to r0, 1s. We precise that in this thesis we do not work in this direction.

To summarize, the thinning has been used in few papers dealing with numerical schemes for PDMP and only with a global constant bound for the intensity. No study of the efficiency of thinning algorithms has been conducted. Moreover, the MLMC method for PDMP has not been considered.

The MLMC method is a general method which allows to approximate efficiently the expectation of a random variable X. MLMC relies on the existence of a numerical scheme pX h , h ą 0q which converges strongly (in the sense of squared L 2 norm) and weakly to X as h goes to 0. The main difficulty to efficiently use the MLMC method is to build a numerical scheme, well correlated to X, for which we have strong and weak estimates. Indeed, the orders of convergence play a crucial role in the complexity of a MLMC estimator.

The MLMC method has been popularized by Giles [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF] in the case of SDEs with a view towards financial applications. Giles considers the fixed time step Euler-Maruyama scheme which is correlated to the underlying SDE by using the same brownian motion for both processes. Such scheme is known to verify a Ophq strong and weak convergence (see [START_REF] Kloeden | Numerical Solution of Stochastic Differential Equations[END_REF], [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF]).

For a jump-diffusion when the intensity is state-dependent the authors in [START_REF] Xia | Multilevel Path Simulation for Jump-Diffusion SDEs[END_REF], motivated by financial applications, use the jump-adapted Milstein scheme to build an approximation which they correlate to the original jump-diffusion by thinning. The weak convergence of such a Milstein scheme for jump-diffusions has been investigated first in [START_REF] Mikulevicius | Time Discrete Taylor Approximations for Itô Processes with Jump Component[END_REF] in which an Oph 2 q convergence was proved under strong regularity assumptions on the coefficients of the jump-diffusion and on the function g (remember that we want to approximate Ergpx T qs). When the jump coefficient is not regular (for instance not continuous) Oph 2 q is still valid under stronger assumptions on g as was proved in [START_REF] Glasserman | Convergence of a discretization scheme for jumpdiffusion processes with state-dependent intensities[END_REF].
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More recently, [START_REF] Xia | Multilevel Monte Carlo for jump processes[END_REF] obtains an Ophq weak convergence for a Lipschitz jump coefficient and a class of g larger than those considered in [START_REF] Mikulevicius | Time Discrete Taylor Approximations for Itô Processes with Jump Component[END_REF] and [START_REF] Glasserman | Convergence of a discretization scheme for jumpdiffusion processes with state-dependent intensities[END_REF]. Note that in [START_REF] Mikulevicius | Time Discrete Taylor Approximations for Itô Processes with Jump Component[END_REF] and [START_REF] Glasserman | Convergence of a discretization scheme for jumpdiffusion processes with state-dependent intensities[END_REF] the numerical scheme is based on thinning. We emphasize that the discretisation grid in [START_REF] Mikulevicius | Time Discrete Taylor Approximations for Itô Processes with Jump Component[END_REF], [START_REF] Glasserman | Convergence of a discretization scheme for jumpdiffusion processes with state-dependent intensities[END_REF] and [START_REF] Xia | Multilevel Path Simulation for Jump-Diffusion SDEs[END_REF] is constructed a priori and is composed by a fixed grid to which they add the jump times of the Poisson process introduced for the thinning. As a consequence, they simulate explicitly the jump times of the discretised process. Regarding the strong convergence, it is known that the Milstein scheme for diffusions provides an Oph2 q convergence. However, because of the jumps and the fact that some proposed jump times may be accepted for one process but not for the other, or vice versa, the authors in [START_REF] Xia | Multilevel Path Simulation for Jump-Diffusion SDEs[END_REF] obtain only an Ophq strong convergence. In order to improve this order, they introduce a change of probability under which the original process and its discretisation have the same probability of accepting a proposed jump time. Under this probability change they obtain an Oph 2 q strong convergence.

MLMC has been investigate for continuous time homogeneous Markov chains in [START_REF] Anderson | Multilevel Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics[END_REF] in the context of chemical reactions. The authors represent such processes as the solution of a random time change equation (see [START_REF] Ethier | Markov Processes: Characterization and Convergence[END_REF]) which is similar to a classical SDE without drift where the noise arises from a Poisson random measure. Consequently, they use the fixed time step Euler-Maruyama scheme where they simulate the number of jumps within each time step rather than the jump times explicitly. They correlate the original process and its approximation using the additivity property of independent Poisson variables and they prove Ophq strong and weak convergence. In their paper they do not use thinning.

Our approach differs from the previous ones in the way we construct an approximation of our original PDMP. Since one of the characteristics of a PDMP is a family of vector fields indexed by its discrete component, we discretise a priori the flow corresponding to each vector field using a deterministic Euler scheme. Then, we build our scheme step by step inspired by the original iterative construction of PDMP/PDP (see [START_REF] Davis | Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models[END_REF]). In the first step, using the discretised initial flow and thinning, we simulate explicitly the first jump time and the new position. Then we start anew from this first jump (which is simulated exactly from the results in the first part of the thesis) and we iterate this procedure. This implies that our discretisation grid is constructed iteratively and starts anew from each jump times and so it differs from the ones in [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF], [START_REF] Xia | Multilevel Path Simulation for Jump-Diffusion SDEs[END_REF] and [START_REF] Anderson | Multilevel Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics[END_REF]. Moreover we use the thinning also in the theoretical study of the error estimates. We first show that there is an Ophq strong and weak convergence. Then, inspired by [START_REF] Xia | Multilevel Path Simulation for Jump-Diffusion SDEs[END_REF], we also introduce a new probability under which we obtain an Oph 2 q strong convergence. This is an important step in order to lower the complexity of the MLMC estimator as we detail in section 5. When implemented on a PDMP-type Morris-Lecar model, our MLMC estimator does indeed outperform the classical MC one.
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Based on this biological phenomenon, two key Neuroscience fields have emerged in order to understand how neurons communicate: the neural encoding and the neural decoding. The neural encoding concerns the study of the response of a neuron to a given input (or stimulus) while the neural decoding is the opposite, it concerns the problem of recovering the stimulus observing the response (see [START_REF] Dayan | Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems[END_REF] for more details). The response of a neuron usually refers to quantities of interest related to the spike train (sequence of spike times) it produces such as the first spike latency, the distribution of the inter-spike interval or the spike rate.

Neuron's membrane separates the intracellular environment from the extracellular one and allows exchanges of material and energy between these two environments. These exchanges are allowed by the opening and closing of ionic channels located on the membrane. A ionic channel is constituted by four gates which can be of different types (activation and inactivation) and is specific to one type of ions, for example, a sodium channel allows sodium ions only to pass the membrane. We say that a channel is active when all its gates are open. In most neurons, the intracellular environment contains a large proportion of potassium ions, whereas the extracellular environment contains a majority of sodium ones. A.L Hodgkin and A. Huxley discovered that the generation of action potentials principally relies on the movement of these two kind of ions across the membrane.

A stimulus (it can be an input from other neurons or external applied current) makes the sodium channels active, thus, sodium ions enter in the intracellular environment. It implies an increase of the membrane potential (voltage) above its resting value : the membrane is depolarized. The sodium channels open very fast leading to a fast increase of the membrane potential. When the membrane potential exceeds a certain threshold value, we say that the neuron emits an action potential or a spike (we also say the neuron discharges or fires). After being active, sodium channels become inactive, while potassium channels open at a much slower time scale. Potassium ions leave the intracellular environment to compensate the entry of sodium ions and the membrane potential goes back to its resting value : the membrane is re-polarized. Potassium channels stay active longer than sodium ones, thus, the membrane potential continues to decrease and goes below its resting value : the membrane is hyper-polarized. Finally, a protein makes the potassium ions go back into the intracellular environment and expels sodium ions in the extracellular one. The membrane potential then goes back to its resting value until the next action potential. These are the principal steps of the generation of an action potential.

INTRODUCTION means that we clamp (isolate) a piece of the axon or the soma of the neuron and we study electrical properties in time in this clamped area (also called membrane-patch). The original four-dimensional Hodgkin-Huxley (HH) model is the following set of nonlinear differential equations. 

In this model, a channel is modelled by the gates that compose it. The R valued function v represents the membrane potential (voltage). The r0, 1s valued functions m, h, n correspond to the probability of a gate of type m, h (for the sodium) or n (for the potassium) to be open. The voltage-dependent functions α z and β z for z " m, h, n are opening and closing rates of gates of type z respectively. I is a time-dependent function which represents the input current, C is the membrane capacity. The function F is given by F pv, m, h, nq :" I L pvq `INa pv, m, hq `IK pv, nq where, for z P tNa, K, Lu, I z " g z pv ´vz q represents the ionic currents where g Na " g Na m 3 h, g K " g K n 4 and g L " g L are the conductances of the sodium, potassium and leak respectively. The constants g L , g Na , g K are the conductances when all the gates are open and v L , v Na , v K are the resting potentials. 1) with a constant applied current Iptq " 10 and initial condition pv, m, h, nq " p0, 0, 0, 0q.

This deterministic model successfully reproduces some of the main features of neural response such as the shape, amplitude and threshold of the action potential, the refractory period. However, the channels are considered to be in a very large number, it then fails to explain a fundamental experimental observation. When submitted to a repeated given stimulation (input current), the response of a single neuron is never exactly the same [START_REF] Verveen | Fluctuation Phenomena in Nerve Mebrane[END_REF]. This observation suggests that there exists a stochastic component in the biological INTRODUCTION mechanisms that generate action potentials. One explanation for that randomness is the fact that the opening and closing of ionic channels are subject to thermal noise, and are thus stochastic mechanisms [START_REF] Chow | Spontaneous action potentials due to channel fluctuations[END_REF], [START_REF] White | Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex[END_REF].

To obtain a stochastic version of the deterministic HH model [START_REF] Alfonsi | Adaptive hybrid simulation of hybrid stochastic and deterministic models for biochemical reactions[END_REF], consider that the number of ionic channels in the neuron is small enough for the thermal noise to have an impact on the evolution of the membrane potential. Ionic channels are thus represented by finite-state pure jump processes with transitions depending on the membrane potential. Between jumps of these processes, the membrane potential evolves according to a deterministic dynamic which is influenced by the proportion of ionic channels in a given configuration. Such a model belongs to the class of Piecewise Deterministic Markov Processes (PDMP), see [START_REF] Davis | Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models[END_REF], [START_REF] Davis | Markov Models and Optimization[END_REF], [START_REF] Jacobsen | Point Process Theory and Applications, Marked Point and Piecewise Deterministic Processes[END_REF] (see also the section 3 of the present introduction). In this thesis, the stochastic version of the deterministic HH model ( 1) is called the subunit model. More precisely, the subunit model pν, θ pmq , θ phq , θ pnq q can be described as follows:

• For each type of gates z " m, h, n, we consider that single gates i P t1, ..., N z u,

where N z is the number of gates of type z, are modelled by independent jump processes u pzq i ptq with voltage-dependent transition rates α z and β z 0

α z p.q ÝÑ ÐÝ β z p.q 1. (2) 
The state 0 indicates that the gate is close and the state 1 that the gate is open.

• The proportion (empirical measure) of open gates of type z " m, h, n is then defined as:

θ pzq t " 1 N z Nz ÿ i"1 u pzq i ptq.
• Between the jumps of θ " pθ pmq , θ phq , θ pnq q, the dynamic of the membrane potential is given by the following ordinary differential equation (ODE):

C dν dt " Iptq ´F pν, θq, (3) 
where the function F is as in the model [START_REF] Alfonsi | Adaptive hybrid simulation of hybrid stochastic and deterministic models for biochemical reactions[END_REF]. We emphasize that for fixed θ, the above ODE is linear so that an explicit flow exits.

By noting θ " pθ pmq , θ phq , θ pnq q, the jump rate of this model is then given by λpθ, νq "N m ´αm pνqp1 ´θpmq q `βm pνqθ pmq ¯`N h ´αh pνqp1 ´θphq q `βh pνqθ phq constant applied current Iptq " 10, initial condition pν, θ pmq , θ phq , θ pnq q " p0, 0, 0, 0q and N m " N h " N n " 300.

so that if at time t 0 the model is in state pν 0 , θ 0 q the survival function of the next transition time, say T , is given by t Þ Ñ e ´şt t 0 λpθ 0 ,φ θ 0 ps,ν 0 qqds where φ θ 0 p., ν 0 q denotes the solution of (3) with initial condition pν 0 , θ 0 q. Between times t 0 and T , the membrane potential evolves deterministically according to φ θ 0 p., ν 0 q. At time T a gate opens or closes according to a transition measure, say Q, which is proportional to the corresponding transition rate.

For example, if we write λpθ, νq " ř 6 i"1 λ i pθ, νq where λ 1 pθ, νq " N m α m pνqp1 ´θpmq q denotes the rate for the opening of a gate of type m, λ 2 denotes the rate for the closing of a gate of type m and so on, then the probability that a gate of type m opens at time T is given by

Q ppθ 0 , φ θ 0 pT ´t0 , ν 0 qq, tθ 0 `p1{N m , 0, 0quq " λ 1 pθ 0 , φ θ 0 pT ´t0 , ν 0 qq λpθ 0 , φ θ 0 pT ´t0 , ν 0 qq . ( 4 
)
The electrical circuit introduced by Hodgkin and Huxley in [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF] to model the membrane potential dynamic in the squid giant axon has become the basic formalism to represent most of the additional conductances encountered in neuron modelling. Among them, we can quote the transient potassium current [START_REF] Connor | Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma[END_REF] and the low-threshold calcium current [START_REF] Wang | A model of the T-type calcium current and the low-threshold spike in thalamic neurons[END_REF], [START_REF] Gutierrez | Dynamics of Low-Threshold Spike Activation in Relay Neurons of the Cat Lateral Geniculate Nucleus[END_REF], [START_REF] Huguenard | Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons[END_REF]. This formalism is also used to model the membrane potential dynamic of different excitable cells such as cardiac cells [START_REF] Mitchell | A two-current model for the dynamics of cardiac membrane[END_REF] or muscle fibers [START_REF] Morris | Voltage oscillations in the barnacle giant muscle fiber[END_REF]. Models that treat these aspects of ionic conductances, known as conductance-based models, can reproduce the rich and complex dynamics of real excitable cells quite accurately. For more details we refer to [START_REF] Hille | Ionic channels of excitable membranes[END_REF], [START_REF] Dayan | Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems[END_REF], [START_REF] Izhikevich | Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting[END_REF]. Moreover, the stochastic counterpart of these conductance-based models are obtained as for the HH model ( 1) by replacing the gain-loss equations describing the channels by jump processes. It is known that such stochastic models converge to their corresponding deterministic models when the number of channels goes to infinity [START_REF] Pakdaman | Fluid limit theorems for stochastic hybrid systems with application to neuron models[END_REF]. Iptq " 1 (left) and Iptq " 10 (right), initial condition pν, θ pmq , θ phq , θ pnq q " p0, 0, 0, 0q and

Another stochastic

N m " N h " N n " 300.
Actually, there is another stochastic Hodgkin-Huxley model which focuses on the channels themselves instead of the gates that compose it. Consequently, this model differs from the subunit model in the way the ionic conductances are modelled. We call it the channel model. It is also much used in computational Neuroscience since it describes the channel states more in detail. More precisely, let N Na be the number of sodium channels and N K be the number of potassium ones. We define independent jump processes u pNaq k for k " 1, . . . , N Na and u pKq k for k " 1, . . . , N K to model the sodium and potassium channels respectively. Unlike the dynamic of the gates (2), the dynamic of these jump processes can be represented by the diagrams in Figures 4 and5 with voltage-dependent transition rates. 
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The conducting state (the state that makes the channel active) of the sodium (respectively potassium) channels is tm 3 h 1 u (respectively tn 4 u) which corresponds to three open gates m and one open gate h (respectively four open gates n). The conductance of the membrane now depends on the empirical measures defined by the proportion of active channels of each types as follows

θ pm 3 h 1 q t " 1 N Na N Na ÿ k"1 1 tm 3 h 1 u ´upNaq k ptq ¯, θ pn 4 q t " 1 N K N K ÿ k"1 1 tn 4 u ´upKq k ptq ¯.
Similarly, for i " 0, 1, 2, 3 and j " 0, 1, let θ pm i h j q be the proportion of sodium channels in state tm i h j u and for k " 0, 1, 2, 3, 4, let θ pn k q be the proportion of potassium channels in state tn k u. Consequently, by noting θ " ´pθ pm i h j q q i,j , pθ pn k q q k ¯, the function F which defines the ODE for the evolution of the membrane potential in (3) now reads F pν, θq " g L pν ´νL q ´gNa θ pm 3 h 1 q pν ´νNa q ´gK θ pn 4 q pν ´νK q, and just as in (3), an explicit flow is available since F is linear in ν for fixed θ. Moreover the jump rate can be written in the following matrix form

λpθ, νq "N Na ¨αm pνq β m pνq α h pνq β h pνq ‹ ‹ ' T ¨3 2 1 0 3 2 1 0 0 1 2 3 0 1 2 3 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 ‹ ‹ ' ¨θpm 0 h 0 q . . . θ pm 3 h 1 q ‹ ' `NK ˆαn pνq β n pνq ˙T ˆ4 3 2 1 0 0 1 2 3 4 ˙¨θ pn 0 q
. . .

θ pn 4 q ‹ '.
The channel model has 28 possible transitions (see Figures 4 and5) compared to the subunit model which has only 6 (opening or closing of a gate of type m, h or n) and its jump distribution can be presented just as [START_REF] Anderson | Multilevel Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics[END_REF]. For example, if we write λpθ, νq " ř 28 i"1 λ i pθ, νq where λ 1 pθ, νq " N Na θ pm 0 h 0 q 3α m pνq denotes the rate of the transition from the state m 0 h 0 to the state m 1 h 0 and if we note pθ 0 , ν 0 q the state of the model just before a jump (or a transition), then the probability that the transition m 0 h 0 Ñ m 1 h 0 occurs is INTRODUCTION giant muscle fiber. This model also belongs to the family of conductance-based models and involves calcium and potassium conductances. It takes the following form

$ ' & ' % C dv dt " Iptq ´F pv, M, N q, dM dt " p1 ´M qα Ca pvq ´M β Ca pvq, dN dt " p1 ´N qα K pvq ´N β K pvq. (5) 
In this model, the r0, 1s valued functions M and N correspond to the probability of a calcium and potassium gate respectively to be open. The function F is given by F pv, M, N q " g L pv ´vL q `gCa M pv ´vCa q `gK N pv ´vK q.

The functions v, I, α z and β z for z " Ca, K as well as the constants C, g L , g Ca , g K , v L , v Ca and v K have the same meaning as in the HH model [START_REF] Alfonsi | Adaptive hybrid simulation of hybrid stochastic and deterministic models for biochemical reactions[END_REF]. In their paper [START_REF] Morris | Voltage oscillations in the barnacle giant muscle fiber[END_REF], Morris and Lecar reduce the dimension of the above model ( 5) by assuming that the variable M evolves much faster than N so that M is replaced by its steady state value M 8 . Consequently, they obtain the following set of equations

# C dv dt " Iptq ´F pv, M 8 pvq, N q, dN dt " p1 ´N qα K pvq ´N β K pvq. (6) 
The model ( 6) is called the reduced or the two-dimensional Morris-Lecar model. It is particularly interesting because of its low dimension. Indeed, many of its properties can be visualised on the pv, N q phase space. Stochastic counterparts of models ( 5) and ( 6) are obtained as explained above in the case of the HH model [START_REF] Alfonsi | Adaptive hybrid simulation of hybrid stochastic and deterministic models for biochemical reactions[END_REF]. We emphasize that because the function M 8 is not linear, the ODE which gives the deterministic behaviour of the membrane potential in the stochastic two-dimensional Morris-Lecar model can not be solved explicitly.

Piecewise deterministic (Markov) processes

Piecewise Deterministic Processes (PDPs) have been introduced by M.H.A Davis as a general class of non-diffusive processes. These processes are based on an increasing sequence of random times in which the processes have a jump and on a deterministic evolution between two successive random times. The distribution of a PDP is thus determined by three parameters called the characteristics of the PDP: a vector field, a jump rate (intensity function) and a transition measure.

In this thesis we are interested in PDPs, that we denote by px t , t P R `q, which has two distinct components: a discrete one which takes its values in a finite or countable set and a continuous one with values in a subset of R d , d ě 1. Let Θ be a finite or countable set and let D be an open subset of R d . We denote by BD the boundary of D. Let E " tpθ, νq : θ P Θ, ν P Du INTRODUCTION be the state space of the process px t q " pθ t , ν t q. We denote by BE its boundary.

Let pΦ θ , θ P Θq be a family of functions such that Φ θ : R `ˆD Ñ D for all θ P Θ. The functions pΦ θ q will determine the deterministic motion of the continuous component of the PDP. Moreover, for x " pθ, νq P E, let us define t ˚pxq " " inftt ą 0 : Φ θ pt, νq P BDu, `8 if no such time exists.

For each x P E, t ˚pxq is the time needed to reach the boundary BD following the curve Φ θ p., νq starting from the point x. Note that this time is deterministic given the starting point. For notational convenience in the sequel, we set Ψpt, xq :" pθ, Φ θ pt, νqq for all t ě 0 and x " pθ, νq P E.

The jump mechanism of the PDP is described by a jump rate function λ : E Ñs0, `8r and a transition measure Q : E ˆBpEq Ñ r0, 1s where BpEq denotes the σ-field generated by the Borel sets of E. We make the following hypotheses 1. The function λ is bounded, 2. Q px, txuq " 0, @x P E.

If there were no jumps from the boundary, the assumption on λ would ensure that the resulting PDP does not blow up. In the presence of jumps from the boundary, we need an additional assumption on the transition measure to avoid blow up. Roughly speaking, this assumption ensures that the post-jump value from the boundary does not goes back to the boundary too fast (see [START_REF] Davis | Markov Models and Optimization[END_REF] p.60).

We now present the classical construction of PDPs by M.H.A Davis [START_REF] Davis | Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models[END_REF]. Let pΩ, F, Pq be the probability space consisting in all sequences of independent uniformly distributed random variables on r0, 1s. We construct the PDP px t , t P R `q " ppθ t , ν t q, t P R `q from one such sequence. First, let S x ptq " 1 tăt˚pxq e ´şt 0 λpΨps,xqqds [START_REF] Bouguet | Quantitative speeds of convergence for exposure to food contaminants[END_REF] be the survival function of the inter jump times and let G x : r0, 1s Ñ R `be its generalised inverse defined by

G x puq "
" inftt ą 0 : S x ptq ď uu, `8 if the above set is empty.

Moreover, there exits (see [START_REF] Davis | Markov Models and Optimization[END_REF] p.56) a measurable function H x : r0, 1s Ñ E such that for all x P E and A P BpEq PpH x pU q P Aq " Qpx, Aq,

where U is a random variable with uniform distribution on r0, 1s. The function H is the generalised inverse of Q.
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Let pU k , k ě 1q be a sequence of i.i.d random variables with uniform distribution on r0, 1s. The sample path of the process px t q, starting from a fixed initial point x 0 " pθ 0 , ν 0 q P E is defined as follows. Let ω P Ω.

1. The initial condition is deterministic and is given by pθ 0 pωq, ν 0 pωqq " pθ 0 , ν 0 q.

2. The component νpωq follows the deterministic motion given by the function Φ θ 0 p., ν 0 q as long as the discrete component θpωq remains equal to θ 0 . The first jump time of θpωq is defined by

T 1 pωq " G x 0 pU 1 pωqq.
Thus for t P r0, T 1 pωqr we have

x t pωq " pθ 0 , Φ θ 0 pt, ν 0 qq.

3.

At time T 1 pωq the process have a jump, its value is updated according to the distribution Q ppθ 0 , Φ θ 0 pT 1 pωq, ν 0 qq, .q, that is,

x T 1 pωq " H pθ 0 ,Φ θ 0 pT 1 pωq,ν 0 qq pU 2 pωqq.
4. The algorithm is then repeated for n ě 2

T n pωq " T n´1 pωq `Gx T n´1 pωq pU 2n´1 pωqq, (8) 
and

x Tn pωq " H ˆθT n´1 pωq,Φ θ T n´1 pωq pTnpωq´T n´1 pωq,ν T n´1 pωqq ˙pU 2n pωqq, so that for t P rT n pωq, T n`1 pωqr

x t pωq " pθ Tn pωq, Φ θ Tn pωq pt ´Tn pωq, ν Tn pωqqq.

As a particular case, we emphasize that the jump mechanism of stochastic conductancebased models of section 2 only concerns their discrete component and that there is no boundary. Indeed, the continuous component, which models the membrane potential, does not jump and D " R. In this case, for pθ, jq P Θ 2 and ν P R, let λ j pθ, νq be the rate for the transition from state θ to state j given that the membrane potential value is ν. Then, for all x " pθ, νq P E, the jump rate reads λpxq " ř jPΘ λ j pxq and the transition measure (on the whole state space E) is given for j P Θ and B P BpRq by Qpx, tju ˆBq " Qpx, tjuqδ ν pBq where Q : E ˆBpΘq Ñ r0, 1s is such that Qpx, tjuq " λ j pxq{λpxq. Now let pf θ , θ P Θq be a family of vector fields such that the functions f θ : D Ñ D are bounded and Lipschitz continuous uniformly in θ. If we choose Φ θ " φ θ in the INTRODUCTION above construction where for all x " pθ, νq P E, we denote by pφ θ pt, νq, t ě 0q the unique solution of the ordinary differential equation (ODE)

" dyptq dt " f θ pyptqq , yp0q " ν, ( 9 
)
then the corresponding PDP is Markov since φ satisfies the semi-group property which reads φ θ pt `s, νq " φ θ pt, φ θ ps, νqq for all t, s ě 0 and for all pθ, νq P E. In this case, the process px t q is a piecewise deterministic Markov process (see [START_REF] Davis | Markov Models and Optimization[END_REF] or [START_REF] Jacobsen | Point Process Theory and Applications, Marked Point and Piecewise Deterministic Processes[END_REF]).

The following definition and theorems gather important properties of a stochastic process constructed as above. In their statement a PDP or a PDMP refers to a process constructed as above with characteristics pΦ, λ, Qq or pφ, λ, Qq respectively. Definition 3.1. Associated to a PDP px t , t P R `q we define the following processes for all A P BpEq.

1. ppt, Aq " ř iě1 1 T i ďt 1 x T i PA . 2. p ˚ptq " ř iě1 1 T i ďt 1 x T i ´PBE . 3. ppt, Aq " ş t 0 Qpx s , Aqλpx s qds `şt 0 Qpx s´, Aqp ˚pdsq. 4. qpt, Aq " ppt, Aq ´ppt, Aq.
In the above definition, p and p ˚are counting processes where p ˚counts the number of jumps from the boundary, p is the compensator of p so that q is a local martingale. Theorem 3.1 (Extended generator [START_REF] Davis | Markov Models and Optimization[END_REF]). A stochastic process px t , t P R `q constructed as above with characteristics pφ, λ, Qq is a homogeneous strong Markov càdlàg piecewise deterministic process. The domain DpAq of its extended generator A consists of the bounded measurable functions g defined on E such that 1. t Ñ gpθ, φ θ pt, νqq is absolutely continuous for all x " pθ, νq P E and t P r0, t ˚pxqr.

2. For all x P BE, the boundary condition gpxq " ş E gpyqQpx, dyq is satisfied. For g P DpAq the extended generator is given by Agpxq " p∇g.f qpxq `λpxq ż E pgpyq ´gpxqq Qpx, dyq. Theorem 3.2 (Itô formula [START_REF] Davis | Markov Models and Optimization[END_REF]). Let px t , t P R `q be a PDMP. Then, for g P DpAq and for all t ě 0

gpx t q " gpx 0 q `ż t 0 Agpx s qds `M g t ,
where M g t :" ş t 0 ş E pgpyq ´gpx s´q qpds, dyq is a true martingale with respect to the filtration generated by p.
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Theorem 3.3 (Feynman-Kac formula [START_REF] Davis | Markov Models and Optimization[END_REF]). Let px t , t P R `q be a PDMP, T ą 0 and F : E Ñ R be a bounded function. 

Simulation of non-homogeneous Poisson processes and thinning

Let λ be a positive real function defined on r0, `8r and consider a non-homogeneous Poisson process pN t , t ě 0q with intensity (or jump rate) λ and jump times pT n , n ě 0q. It is known that for all n ě 0 and given that T n " t for some real t ě 0, the survival function F of the inter-jump time T n`1 ´Tn is given by F psq " e ´şt`s t λpuqdu . One way to simulate pN t q (and probably the most natural) is to simulate iteratively the inter-jump times using the inverse of the survival function F ´1 and a sequence of i.i.d random variables pU n , n ě 1q with uniform distribution on r0, 1s according to T n`1 ´Tn " F ´1pU n`1 q. In this case we have F ´1puq " Λ ´1 p´lnpuq `Λptqq ´t where Λptq " ş t 0 λpsqds and Λ ´1 denotes the inverse of Λ. Consequently, we have the following theorem.

Theorem 4.1. Let pT n , n ě 0q be a non-homogeneous Poisson process with jump rate λ : R `Ñ R `such that T 0 " 0 and let pE n , n ě 1q be an i.i.d sequence of exponential variables with parameter 1 independent of pT n q. Then, for n ě 0, we have the following equality in distribution

T n`1 " Λ ´1 pE n`1 `ΛpT n qq .
Simulating the Poisson process pN t q using Theorem 4.1 requires to compute Λ and Λ ´1. This task can be tedious especially if the jump rate λ is a complicated function which is not explicitly integrable. In this case, the computation can be done numerically using the Euler scheme for example. However, we emphasize that this method is numerically efficient when the jump rate is explicitly integrable with explicit inverse of its integral.

Another way to simulate the Poisson process pN t q is through the thinning of a Poisson process pN t , t ě 0q with jump times pT n , n ě 0q and jump rate λ ˚such that λptq ď λ ˚ptq for all t ě 0. The thinning method which has been introduced by Lewis and Shedler in [START_REF] Lewis | Simulation of nonhomogeneous Poisson processes by thinning[END_REF] can be viewed as the analogue of the rejection method for point processes and in particular for Poisson processes. The idea of the thinning is the following. If we independently delete the points T n with probability 1 ´λpT n q{λ ˚pT n q then the remaining points form a non-homogeneous Poisson process with jump rate λ. The thinning method is formalised in the following theorem.
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Theorem 4.2. Let λ and λ ˚be two real and positive functions defined on r0, `8r such that λptq ď λ ˚ptq for all t ě 0. Let pN t , t ě 0q and pN t , t ě 0q be two Poisson processes with jump rate λ and λ ˚respectively. Let us denote by pT n , n ě 0q with T 0 " 0 the jump times of pN t q. Let pU n , n ě 0q be a sequence of i.i.d random variables with uniform distribution on r0, 1s independent of pT n q and let pτ n , n ě 0q be a sequence of indexes defined iteratively by

" τ 0 " 0, τ n`1 " inf tk ą τ n : U k ď λpT k q{λ ˚pT k qu .
Then, the process pT τn , n ě 0q is a realisation of the non-homogeneous Poisson process pN t q with jump rate λ.

The key point to efficiently simulate a non-homogeneous Poisson process by thinning is that the simulation of pN t q must be simpler than the one of pN t q. The case where pN t q is a homogeneous Poisson process has become classic and the resulting algorithm is easy to implement. However, it is intuitive that a constant upper bound λ ˚could lead to many rejections especially if the jump rate presents significant variations over the time thus increasing the computation time too much. Consequently, if one can find a function λ ˚such that λptq{λ ˚ptq is close to 1 for all t ě 0 and such that the function t Ñ ş t 0 λ ˚psqds is explicit with explicit inverse, then, the combination of Theorems 4.2 and 4.1 will lead to an efficient simulation with few rejections and will obviates the need for numerical integration of the jump rate.

As a particular case, the thinning can be used to simulate random variables with survival function t Þ Ñ e ´şt 0 hpsqds where h is a real and positive functions defined on r0, `8r as follows.

Corollary 4.1. Let h and λ ˚be two real and positive functions defined on r0, `8r such that hptq ď λ ˚ptq for all t ě 0. Let pT n , n ě 0q with T 0 " 0 be a non-homogeneous Poisson process with jump rate λ ˚independent of pU n , n ě 1q a sequence of i.i.d random variables with uniform distribution on r0, 1s. Let us define the random variable τ by τ " inf tk ą 0 : U k ď hpT k q{λ ˚pT k qu .

Then, the survival function of the random variable

T τ is t Þ Ñ e ´şt 0 hpsqds .
Finally, note that since the seminal paper [START_REF] Lewis | Simulation of nonhomogeneous Poisson processes by thinning[END_REF] several variants and generalisations have been developed. As a variant, we can quote [START_REF] Devroye | Non-uniform random variate generation[END_REF] (chapter 6) where a non homogeneous Poisson process is obtained from a two-dimensional one with unit rate. Moreover, we can find generalisations to multi-variate point process with stochastic intensity in [START_REF] Ogata | On Lewis' Simulation Method for Point Processes[END_REF], to spatial point processes in [START_REF] Moller | Statistical inference and simulation for spatial point processes[END_REF] and to random measures in [START_REF] Kallenberg | Foundations of Modern Probability[END_REF].
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an estimator of such a quantity for which the computational complexity (or cost) is denoted by CpY q. The computational complexity of an estimator is usually defined as the number of operations necessary to its simulation. Generally speaking, we measure the error committed by approximating ErXs by Y using the Mean Squared Error (MSE) which is defined as the squared quadratic error (squared L2 -error), namely MSE :" E " pY ´ErXsq 2 ‰ .

A direct computation shows that the MSE admits the following bias-variance decomposition

MSE " E " pY ´ErY s `ErY s ´ErXsq 2 ‰ " pErY s ´ErXsq 2 `VarpY q.

(10)

Non biased framework

Consider that the random variable X can be simulated (at a reasonable complexity) and let pX k , k ě 1q denote a sequence of independent random variables distributed as X. The classical Monte Carlo (MC) estimator then reads

Y " 1 N N ÿ k"1 X k ,
where N ě 1 appears as a parameter. In this case ErY s " ErXs so that the estimator is not biased. A natural question is: how to choose N so that Y approximates ErXs quite accurately? On the one hand, the strong law of large numbers which states that lim

N Ñ`8 1 N N ÿ k"1 X k " ErXs,
suggests that if we choose N large enough then Y will be close to ErXs. Moreover, if Var(X) ă `8, the central limit theorem states that the renormalized statistical error ? N pY ´ErXsq is approximatively distributed as a centred Gaussian with variance Var(X). This allows to build confidence intervals

" ErXs ´aa VarpXq{N , ErXs `aa VarpXq{N ı
where a is a quantile of the centred Gaussian distribution with variance Var(X) and then to choose N in order to obtain the user desired precision (confidence level).

On the other hand, we can choose N in order to minimize the computational complexity of Y subject to the constraint that the MSE must be less or equal to 2 where ą 0 is a user prescribed error. Since Y is not biased, we have MSE " VarpY q " 1 N VarpXq, moreover, CpY q " N κ where κ is the complexity of a single simulation of X. The optimal sample size of the estimator is then obtained by saturation of the constraint MSE ď 2 , this leads to the following choice INTRODUCTION and the corresponding complexity is CpY q " κVarpXq 2 " Op ´2q. [START_REF] Brémaud | Point Processes and Queues, Martingale Dynamics[END_REF] We emphasize that it is not possible to build an estimator with an optimal complexity better than Op ´2q.

In the present non biased framework, both approaches (confidence interval and MSE) are similar since the precision is related to the quantity a VarpXq{N . However, we will privilege the approach with the MSE in the biased framework because it explicitly takes into account the bias of the estimator through [START_REF] Bressloff | Stochastic Processes in Cell Biology[END_REF] whereas the approach with the confidence intervals does not.

Biased framework

Consider now that the random variable X can not be simulated (at a reasonable complexity). We then introduce a family of random variables pX h , h ą 0q such that X h can be simulated (at a reasonable complexity) for h ą 0. Moreover, we assume that pX h , h ą 0q converges to X when h Ñ 0 in the strong and weak following senses

DV 1 ą 0, β ą 0, Er|X h ´X| 2 s ď V 1 h β , (12) 
and

Dc 1 ą 0, α ą 0, ErX h s ´ErXs " c 1 h α `oph α q. (13) 
The family pX h , h ą 0q will be used to construct an estimator and the strong and weak estimates [START_REF] Buckwar | An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution[END_REF] and (13) will be used to control respectively the variance and the bias of the estimator. We denote by κphq the computational complexity induced by one simulation of X h . It is natural to assume that h Þ Ñ κphq is a decreasing function of h and that lim hÑ0 κphq " `8 since X h becomes closer to X when h Ñ 0, keeping in mind that X can not be simulated at a reasonable complexity. It is convenient to assume that κphq " κ{h where κ is a positive constant, see [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] or [START_REF] Pagès | Numerical Probability: An Introduction with Applications to Finance[END_REF]. The complexity κphq is usually interpreted as the number of time steps performed to simulate a realisation of X h .

Classical Monte Carlo

Let h ą 0 and let pX k h , k ě 1q be a sequence of independent random variables distributed as X h . The classical MC estimator now reads

Y " 1 N N ÿ k"1 X k h ,
where h and N ě 1 appear as parameters. In this case, the bias (using the weak estimate (13)), the variance and the complexity of the estimator read
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From the strong estimate [START_REF] Buckwar | An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution[END_REF] we have VarpX h q Ñ VarpXq as h Ñ 0 so that VarpX h q is asymptotically a constant independent of h. Moreover, using [START_REF] Campillo | A mass-structured individual-based model of the chemostat: convergence and simulation[END_REF] the bias of the estimator is independent of N and is asymptotically equals to c 1 h α . Thus, the optimal parameters ph, N q " argmin MSEď 2 CpY q are such that the bias parameter h must be of order 1 α and the sample size N must be of order ´2. The resulting optimal complexity is then CpY q " Op ´2´1 α q.

Consequently, the unbiased MC complexity [START_REF] Brémaud | Point Processes and Queues, Martingale Dynamics[END_REF] is always better than the biased MC one [START_REF] Chafaï | On the long time behavior of the TCP window size process[END_REF].

Multilevel Monte Carlo

The Multilevel Monte Carlo (MLMC) method refers to the use of a MLMC estimator. This method has been introduced by S. Heinrich in [START_REF] Heinrich | Multilevel Monte Carlo methods[END_REF] and developed by M. Giles in [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF]. The main idea to obtain a MLMC estimator based on the family pX h , h ą 0q is to consider the following telescopic sum with depth L ě 2

ErX h L s " ErX h ˚s `L ÿ l"2 ErX h l ´Xh l´1 s, (15) 
where ph l , 1 ď l ď Lq is a geometrically decreasing sequence h l " h ˚M ´pl´1q with h ˚ą 0 and M ą 1 free parameters. In equality [START_REF] Chow | Spontaneous action potentials due to channel fluctuations[END_REF], the corrective term at level l, pX h l ´Xh l´1 q, is composed by two random variables, one with a fine time step, X h l , and the other with a coarse one, X h l´1 . For each level l P t1, . . . , Lu, a classical MC estimator is used to independently approximate ErX h l ´Xh l´1 s and ErX h ˚s. At each level, a number N l ě 1 of samples are required and the key point is that the random variables X h l and X h l´1 are assumed to be correlated in order to make the variance of X h l ´Xh l´1 small. Considering at each level l " 2, . . . , L independent couples pX h l , X h l´1 q of correlated random variables independent of X h ˚, the MLMC estimator then reads

Y " 1 N 1 N 1 ÿ k"1 X k h ˚`L ÿ l"2 1 N l N l ÿ k"1 pX k h l ´Xk h l´1 q, (16) 
where pX k h ˚, k ě 1q is a sequence of independent and identically distributed random variables distributed as X h ˚and ´pX k h l , X k h l´1 q, k ě 1 ¯for l " 2, . . . , L are independent sequences of independent copies of pX h l , X h l´1 q and independent of pX k h ˚q. From the weak estimate [START_REF] Campillo | A mass-structured individual-based model of the chemostat: convergence and simulation[END_REF], the bias of the estimator ( 16) is given by ErY s ´ErXs " c 1 h α L `o ph α L q . Note that an increase of L produces a decrease of the bias. Using the mutual independence of X h ˚and pX h l , X h l´1 q for l " 2, . . . , L, the variance of ( 16) is given by

VarpY q " 1 N 1 VarpX h ˚q `L ÿ l"2 1 N l VarpX h l ´Xh l´1 q.
INTRODUCTION Note that from ( 13) and ( 12), VarpX h l ´Xh l´1 q Ñ 0 when l Ñ `8. Thus, we need only a small number N l of samples on the finest levels. Moreover, the global computational complexity of this estimator is given by

CpY q " κ ˜N1 h ˚`L ÿ l"2 N l `h´1 l `h´1 l´1 ˘¸. (17) 
It is known (see [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF], [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF], [START_REF] Pagès | Numerical Probability: An Introduction with Applications to Finance[END_REF]) that provided that pX h , h ą 0q satisfies ( 13) and [START_REF] Buckwar | An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution[END_REF] there exists values of the parameters L, pN l , 1 ď l ď Lq such that the estimator ( 16) reaches a MSE less or equal to 2 with a computational complexity which satisfies

CpY q " $ ' & ' % Op ´2q if β ą 1, Op ´2plogp qq 2 q if β " 1, Op ´2´1 ´β α q if β ă 1.
Consequently, in the case β ą 1, the MLMC complexity is of the same order as the unbiased MC one [START_REF] Brémaud | Point Processes and Queues, Martingale Dynamics[END_REF]. Moreover, in the worst case scenario β ă 1, the MLMC complexity is still better than the biased MC one [START_REF] Chafaï | On the long time behavior of the TCP window size process[END_REF]. The computational complexity saving of a MLMC estimator depends on how fast the variance VarpX h l ´Xh l´1 q decreases as the level goes up. It is then an important matter to build MLMC estimators with strong order convergence β ą 1.

Actually, a more general MLMC estimator can be obtained by considering at each level different approximations for fine and coarse simulations. Let pX f h , h ą 0q and pX c h , h ą 0q be two families of random variables which satisfy the following strong estimate @l P t2, . . . , Lu, DV 1 ą 0,

β ą 0, Er|X f h l ´Xc h l´1 | 2 s ď V 1 h β l , ( 18 
)
and which weakly converge to X in the same sense as [START_REF] Campillo | A mass-structured individual-based model of the chemostat: convergence and simulation[END_REF], so that, for h ą 0, ErX f h s " ErX c h s. In this case, equality [START_REF] Chow | Spontaneous action potentials due to channel fluctuations[END_REF] reads

ErX f h L s " ErX c h ˚s `L ÿ l"2 ErX f h l ´Xc h l´1 s,
and the corresponding MLMC estimator reads

Y " 1 N 1 N 1 ÿ k"1 X c,k h ˚`L ÿ l"2 1 N l N l ÿ k"1 pX f,k h l ´Xc,k h l´1 q. ( 19 
)
INTRODUCTION follows. Start with L " 2 and build a MLMC estimator with depth level L where the sample sizes N l at levels l " 1, . . . , L are given by

N l " S M ´2a V l h l ˜L ÿ l"1 a V l {h l ¸W ,
where V l is a rough estimation of the variance of the corrective term at level l. This makes the estimated variance of the estimator less than 1 2 2 . Then, in order to ensure that the bias is less than 1 ? 2 use the following test

|Y L | ă 1 ? 2 pM ´1q , ( 20 
)
where Y l denotes the classical MC estimator used at level l. If ( 20) is verified then stop otherwise set L " L `1 and continue until ( 20) is verified.

On the other hand, in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] (see also [START_REF] Pagès | Numerical Probability: An Introduction with Applications to Finance[END_REF]) the authors show that we can determine the parameters a priori through the following optimisation problem

pL, N 1 , . . . , N L q " argmin MSEď 2 CpY q. ( 21 
)
In order to give some details about the resolution of ( 21), let us first introduce some notations. Consider that the sample size at level l is given by N l " rN q l s where N is the global sample size and q " pq l , 1 ď l ď Lq is a stratification with ř L l"1 q l " 1. The complexity of the estimator (see [START_REF] Cocozza-Thivent | Processus stochastiques et fiabilité des systèmes[END_REF]) then reads CpY q " N Cpq, Lq and the MSE is then asymptotically of the form MSE " µ 2 pLq `1 N νpq, Lq where µpLq denotes the bias of the estimator and νpq, Lq{N its variance. Let φpq, Lq " νpq, LqCpq, Lq denotes the effort of the estimator (the product of the variance and complexity) which is independent of N . Since the problem [START_REF] Dangerfield | Modeling ion channel dynamics through reflected stochastic differential equations[END_REF] can not be solved directly, the authors decompose it in three steps. Firstly, they fix L and determine the stratification q ˚which minimize the effort, that is q ˚" argmin φpq, Lq.

Secondly, using the optimal stratification and always with fixed L they saturate the constraint MSE " 2 with respect to N in order to find the optimal sample size N ˚" νpq ˚, Lq 2 ´µ2 pLq .

Thirdly, they are able to choose the depth level L which minimize the complexity as follows L ˚" argmin µpLqă N ˚Cpq ˚, Lq.

Results of the thesis

In this section, we present the results of the present thesis chapter by chapter.

INTRODUCTION

Chapter 1: Exact simulation of the jump times of a class of Piecewise Deterministic Markov Processes

This chapter has been published in the Journal of Scientific Computing (see [START_REF] Lemaire | Exact simulation of the jump times of a class of Piecewise Deterministic Markov Processes[END_REF]). The aim of this chapter is to introduce an exact simulation (perfect sampling) algorithm for the class of PDMPs whose flows are known. This means that we explicitly know the solution of each ordinary differential equation associated to each vector field. We focus on the (exact) simulation of the inter-jump times considering that the post-jump values can be simulated exactly. We emphasize that the post-jump values are discrete random variables (finite or countable) for which the exact simulation is, in general, not an issue. M.H.A Davis in [START_REF] Davis | Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models[END_REF] or [START_REF] Davis | Markov Models and Optimization[END_REF] provides an iterative construction of PDMPs which suggests to simulate the inter-jump times by inversion of their survival function (see also the section 3 of the present introduction). The survival function is expressed using the integral of the jump rate along the flow. Thus, we are not guaranteed to be able to inverse the survival function even if the flows are known explicitly. To overcome this difficulty we use the thinning method [START_REF] Lewis | Simulation of nonhomogeneous Poisson processes by thinning[END_REF] (see also the section 4 of this introduction).

We propose different kinds of bounds for the intensity along the flow, from coarse to path-adapted:

• the global bound, the coarsest, which is constant (in particular it is independent of the state of the PDMP and of time),

• the local bound, which depends on the post-jump value of the PDMP and which is constant between two successive jump times,

• the optimal bound, the finest, which depends on the post-jump value of the PDMP and also on the time evolution of the process between two successive jump times.

The main interest of the optimal bound is that the thinning algorithm with such a bound applies with weaker hypotheses on the jump rate than with the classical global bound. More precisely, the optimal bound requires that the jump rate is locally bounded along a given flow whereas the global bound requires that it is globally bounded on the state space. Moreover, the optimal bound provides a powerful thinning algorithm. The drawback of this bound is that when the bound becomes very close to the actual jump rate, the computation time may be too long. It is thus necessary to look for a satisfactory balance.

Our main contribution is the theoretical study of their respective efficiency. We choose to define the efficiency as the mean value of the ratio between the number of selected jump times and the number of generated jump times. This indicator is between 0 and 1 and is easily understood, the closer it is to 1 the less we reject points, thus the more efficient the algorithm is.

As an application, we use the subunit and the channel model (see section 2) to numerically compare the efficiency of the different bounds (global, local, optimal). In this introduction we only present the results concerning the channel model since they are similar to those obtained with the subunit model. The comparison of the bounds enables us to show that the optimal bound speeds up simulation compared to the global and the local bound.
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Let E " Θ ˆD where Θ is a finite or countable set and D is an open subset of R d , d ě 1. We consider a E-valued PDMP px t , t ě 0q with characteristics pφ, λ, Qq where φ is an explicit solution of the ODE (9) and λ, Q are as in section 3. Depending on which bound we use, we assume that one of the following assumptions is satisfied.

Additional assumptions on the jump rate:

H glo : sup xPE λpxq ă 8.

H loc : @x P E, sup sě0 λpψps, xqq ă 8.

H opt : @x P E, @I Ď R `, sup sPI λpψps, xqq ă 8.

For all x " pθ, νq P E and t ě 0 we set ψpt, xq " pθ, φ θ pt, νqq. In this case, the survival function of the inter-jump times is given by [START_REF] Bouguet | Quantitative speeds of convergence for exposure to food contaminants[END_REF] with Ψ " ψ so that the jump-times occur either in a deterministic way (when the flow hits a boundary) or in a Poisson-like fashion. In order to construct (and simulate) the inter-jump times by thinning, we first prove the following lemma. 

Thinning algorithm

We describe the thinning algorithm with a generic function λ : R `ˆE Ñ R `which is assumed to have the following properties:

• @u ě 0, @y P E, λpψpu, yqq ď λpu, yq.

• @u ě 0, @y P E, the function Λy puq " ş u 0 λpv, yqdv is explicitly computable.

• @y P E, the inverse of Λy , denoted by `Λ y ˘´1 , is explicitly computable.

We simulate a sample path of the PDMP px t , t ě 0q with values in E, starting from a fixed initial point x 0 P E at time 0 as follows.

Let p T 0 k , k ě 0q be a non homogeneous Poisson process with jump rate λpt, x 0 q for t ě 0, and, τ 1 " inftk ą 0 :

U p1q k λp T 0 k , x 0 q ď λpψp T 0 k , x 0 qqu,
where pU p1q n , n ě 1q is a sequence of independent random variables with uniform distribution on r0, 1s, independent of p T 0 k q. Then, from Corollary 4.1 and Lemma 6.1 we have T 1 " T 0 τ 1 ^t˚p x 0 q. On r0, T 1 r the PDMP evolves deterministically according to the flow INTRODUCTION ψp., x 0 q. Then we simulate the post-jump value as a random variable whose conditional distribution is Q pψpT 1 , x 0 q, .q. Suppose we have simulated the PDMP up to time T i . Then, conditionally on pT i , x T i q, the PDMP px t q restarts from x T i at time T i independently from the past. Let p T i k , k ě 0q be a Poisson process with jump rate λpt ´Ti , x T i q for t ě T i , and,

τ i`1 " inftk ą 0 : U pi`1q k λp T i k , x T i qq ď λpψp T i k , x T i qqu,
where pU pi`1q n

, n ě 1q is a sequence of independent uniform random variables, independent of p T i k q and x T i . Then, always from Corollary 4.1 and Lemma 6.1 we have T i`1 " T i `T i τ i`1 ^t˚p x T i q. On rT i , T i`1 r the process evolves according to the flow ψp. ´Ti , x T i q. The post-jump value has distribution Q pψpT i`1 ´Ti , x T i q, .q and so on.

Note that given pT 1 , x T 1 q, . . . , pT i , x T i q respectively, we efficiently simulate the Poisson processes p T 0 k q, p T 0 k q, . . . , p T i k q respectively using Theorem 4.1.

We formally define the efficiency of a generic bound λ, that we call rate of acceptance, by ErN t { Ñt s where pN t q is the counting process associated to the sequence of jump times of the PDMP and p Ñt q is the counting process whose (stochastic) intensity is λpt, x t q.

The bounds

The three different bounds we consider are formally defined by: global bound: λglo :" sup xPE λpxq. local bound: λloc pyq :" sup sě0 λ pψps, yqq , @y P E. optimal bound: λopt pu, yq :" ř kPP sup sPP k λpψps, yqq1 P k puq, @u ě 0, @y P E, where P is a finite or countable set and pP k , k P P q is a partition of r0, `8r.

The three additional hypotheses H glo , H loc , H opt ensure that the functions λz , Λz and `Λ z ˘´1 are well defined, z P tglo, loc, optu. Considering the optimal bound, note that we are free to choose the partition we want and for any partition the simulation remains exact. The simplest partition (also the one we use to expose the numerical results below) is obtained by letting ą 0 and setting P " t0, 1u and P 0 " r0, r, P 1 " r , `8r. The optimal bound using this partition is called the optimal-P bound.

Numerical results

To numerically compare the efficiency of the three bounds (optimal-P , local, global), we simulate 10 5 trajectories of the channel model on a finite time interval r0, T s and we approximate the rate of acceptance and the simulation time using a classical Monte Carlo estimator. The numerical results are given in Figure 7 and Table 1. Moreover, Figure 6 shows the ratio λpx t q{ λpt, x t q for the three bounds as a function of time.

Figure 7 shows the computation time and the rate of acceptance using the optimal-P bound as a function of the parameter . In all cases (i.e N chan " 30, 300, 3000), there is a value of which minimizes the computation time and maximizes the rate of acceptance. This optimal is inversely proportional to the jump rate. Thus, in order to efficiently use this optimal bound one has to take a small (respectively large) when the jumps frequency is high (respectively low). More precisely, the optimal computation time and rate of acceptance are obtained for of order max n |T n`1 ´Tn |. 1 indicate that the simulation time is approximately reduced by 2 in going from the global bound to the local bound and it is again approximately reduced by 2 in going from the local to the optimal bound. However note that the rate of acceptance is refined by a factor of approximately 4 in going from the global to the local bound and is again refined by a factor 4 from the local to the optimal bound. This chapter has been submitted to the Journal of Applied Probability, the preprint [START_REF] Lemaire | Thinning and Multilevel Monte Carlo for Piecewise Deterministic (Markov) Processes[END_REF] is available on arXiv or HAL. The aim of this chapter is to extend the Multilevel Monte Carlo (MLMC) method to approximate expectations of a function of the state of a PDMP at fixed time. In the first part of this chapter we study approximations of trajectories of Piecewise Deterministic Processes (PDP) when the flow is not explicit by the thinning method. We also establish strong error estimates for PDPs as well as a weak error expansion for Piecewise Deterministic Markov Processes (PDMP). These estimates are the building blocks of the Multilevel Monte Carlo (MLMC) method which we study in the second part. The coupling required by the MLMC is based on the thinning procedure.

The results in Table

In the third part we apply these results to a 2-dimensional Morris-Lecar model with stochastic ion channels. In the range of our simulations the MLMC estimator does indeed outperform the classical Monte Carlo one.

Let E " Θ ˆRd where Θ is a finite or countable set, d ě 1 and let T ą 0. We first consider a finite time horizon E-valued PDP px t , t P r0, T sq with characteristics pΦ, λ, Qq, without jumps from the boundary, that we construct by thinning of a homogeneous Poisson process as in chapter 1. We also consider that the functions pΦ θ , θ P Θq are not known explicitly and we use a numerical scheme Φ θ (with implicit time step h) approximating Φ θ for which there exits positive constants C 1 and C 2 independent of h and θ such that

sup tPr0,T s |Φ θ pt, ν 1 q ´Φθ pt, ν 2 q| ď e C 1 T |ν 1 ´ν2 | `C2 h, @θ P Θ, @pν 1 , ν 2 q P R 2d . ( 22 
)
We associate to the family pΦ θ , θ P Θq a PDP also constructed by thinning that we denote INTRODUCTION px t , t P r0, T sq. We emphasize that the processes px t q and px t q are correlated via the thinning of the same homogeneous Poisson process. We prove in the following theorem a strong error estimate for PDPs.

Theorem 6.1. Let px t , t P r0, T sq and px t , t P r0, T sq be two correlated PDPs with characteristics pΦ, λ, Qq and pΦ, λ, Qq such that x 0 " x 0 " x for some x P E. Assume that Θ is finite and that for all θ P Θ and for all A P BpΘq the functions λpθ, .q and Qppθ, .q, Aq are Lipschitz uniformly in θ. Then, for all bounded functions F :

E Ñ R such that for all θ P Θ the function ν Þ Ñ F pθ, νq is L F -Lipschitz where L F is positive and independent of θ, there exists constants V 1 ą 0 and V 2 ą 0 independent of the time step h such that E " |F px T q ´F px T q| 2 ‰ ď V 1 h `V2 h 2 . ( 23 
)
The result of Theorem 6.1 is mainly based on the construction of the couple px t , x t q and on the fact that the Euler scheme is of order 1 this is why it is valid for a general PDP and its Euler scheme. Since the PDPs px t q and px t q are constructed using two different functions Φ and Φ the probability of accepting a proposed jump time differs from one process to the other. Consequently, the sequence of jump times of both processes may be different. Moreover the discrete components of the post-jump locations may also be different. The presence of the term V 1 h results from the trajectories of ppx t , x t q, t P r0, T sq where the jump times and/or the discrete components differ (see Figure 8b) whereas the term V 2 h 2 results from those where the jump times and the discrete components are equal (see Figure 8a).

Consider now that Φ θ " φ θ for all θ P Θ where φ θ is a non explicit solution of (9). In this case, the process px t q is a PDMP with characteristics pφ, λ, Qq. Moreover, let us denote by φ θ the continuous Euler scheme (also called Euler polygon) which approximate φ θ with some time step h ą 0 and let px t q be a PDP with characteristics pφ, λ, Qq. We emphasize that px t q is not Markov since the continuous Euler scheme φ fails to satisfy the semi-group property and that φ and φ satisfy estimate [START_REF] Davis | Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models[END_REF]. In this case, we prove in the following theorem a weak error expansion for PDMPs. Theorem 6.2. Let px t , t P r0, T sq be a PDMP with characteristics pφ, λ, Qq and let px t , t P r0, T sq be a PDP with characteristics pφ, λ, Qq such that x 0 " x 0 " x for some x P E. Assume that for all θ P Θ and for all A P BpΘq, the functions Q ppθ, .q, Aq, λ pθ, .q and f θ p.q are bounded and twice continuously differentiable with bounded derivatives. Assume moreover that the solution u of the integro differential equation

" Aupt, xq " 0, pt, xq P r0, T rˆE, upT, xq " F pxq, x P E,
with F : E Ñ R a bounded function and A the generator of the process pt, x t q is such that for all θ P Θ, the function pt, νq Þ Ñ upt, θ, νq is bounded and two times differentiable with bounded derivatives and that the second derivatives of pt, νq Þ Ñ upt, θ, νq are uniformly
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The jumps times and the discrete components are equals. Thus, the continuous components of both processes px h l t q and px h l´1 t q are given, between two successive jump times, by the Euler discretisation of the same flows φ k0 , φ k1 with two time steps h l and h l´1 and different but close initial points. These typical trajectories result in the presence of the term V 2 h 2 in the estimate [START_REF] Davis | Markov Models and Optimization[END_REF].
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The jumps times and the discrete components are not equal. First, we observe a temporal offset between the two processes. Moreover, when the discrete components are not equal, the continuous components of both processes px h l t q and px h l´1 t q are given by the Euler discretisation of two different flows φ k1 and φ k2 with two time steps h l and h l´1 . These typical trajectories result in the presence of the term V 1 h in the estimate [START_REF] Davis | Markov Models and Optimization[END_REF].

Figure 8 -Illustration of two typical behaviours of the couple of processes px h l t , x h l´1 t q involved at level l of the estimator [START_REF] Dereich | Multilevel Monte Carlo algorithms for Lévy-driven SDEs with Gaussian correction[END_REF].

Lipschitz in θ. Then, for any bounded function

F : E Ñ R there exists a constant c 1 independent of h such that ErF px T qs ´ErF px T qs " hc 1 `Oph 2 q.
The result of Theorem 6.2 mainly relies on the Feynman-Kac formula for PDMPs and so on the Markov property. Note that a similar weak error expansion has been proved for stochastic differential equations using the Feynman-Kac formula for those processes.

We now want to apply the MLMC method in order to approximate expectations of the form ErF px T qs where px t , t P r0, T sq is a PDMP and F : E Ñ R is a smooth function. The MLMC method relies simultaneously on Theorems 6.1 and 6.2 that is why we study its application to the PDMP framework instead of the more general PDP one. The results of Theorems 6.1 and 6.2 indicate that the family (indexed by a time step h) of random variables pF px T q, h ą 0q converges strongly and weakly to F px T q as in ( 12) and ( 13) which are the building blocks of biased Monte Carlo simulations (see section 5.2). Moreover, the same theorems suggest to investigate the use of the MLMC method in the PDMP framework with β " 1 and α " 1.
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Setting X h :" F px T q for h ą 0 to emphasize the dependence of x T on a time step h, we build a classical MC estimator (denoted by Y MC ) and a MLMC estimator (denoted by Y MLMC ) of ErF px T qs as follows

Y MC " 1 N N ÿ k"1 X k h , ( 24 
)
where pX k h , k ě 1q is an i.i.d sequence of random variables distributed like X h and

Y MLMC " 1 N 1 N 1 ÿ k"1 X k h ˚`L ÿ l"2 1 N l N l ÿ k"1 pX k h l ´Xk h l´1 q, (25) 
where ´pX k h l , X k h l´1 q, k ě 1 ¯for l " 2, . . . , L are independent sequences of independent copies of the couple pX h l , X h l´1 q and independent of the i.i.d sequence pX k h ˚, k ě 1q. In order to improve the convergence rate of the MLMC estimator (25) (to increase the parameter β in Theorem 6.1) we prove that the following representation holds. Proposition 6.1. Let px t , t P r0, T sq and px t , t P r0, T sq be two PDPs with characteristics pΦ, λ, Qq and pΦ, λ, Qq respectively such that x 0 " x0 " x for a given x " pθ, νq P E. Assume that λ and Q depend only on θ, that Q is always positive and 0 ă λpθq ă λ for all θ P Θ. Then, there exists a process p Rt , t P r0, T sq which depends on Φ, λ, Q, λ, Q and px t , t P r0, T sq such that for all t P r0, T s and for all bounded measurable functions g : E Ñ R, we have Ergpx t qs " Ergpx t q Rt s.

The fact that λ and Q only depend on θ implies that the jump mechanism of the PDP px t q is given by an autonomous Markov chain (independent of Φ). Consequently, the jump mechanism of the PDPs px t q with characteristics pΦ, λ, Qq for h ą 0 is exactly the same as the one of px t q, that is, the jump times and the discrete components are the same. This situation is illustrated in Figure 9. From Proposition 6.1, we can then decompose ErF px h L T qs over the levels using the scheme pF px h T q Rh T , h ą 0q as follows

ErF px h L T qs " ErF px h T q Rh T s `L ÿ l"2 ErF px h l T q Rh l T ´F px h l´1 T q Rh l´1 T s,
where, for l " 1, . . . , L, the discrete components of the processes px h l t q jump at the same times and in the same states and the processes p Rh l t q are such that ErF px h l T qs " ErF px h l T q Rh l T s. Then, letting Xh " F px T q RT for h ą 0, we define a second MLMC estimator noted Ỹ MLMC as follows

Ỹ MLMC " 1 N 1 N 1 ÿ k"1 Xk h ˚`L ÿ l"2 1 N l N l ÿ k"1 p Xk h l ´X k h l´1 q. ( 26 
)
We prove in the following theorem a strong error estimate for the numerical scheme

pF px h T q Rh T , h ą 0q. INTRODUCTION φ l k 0 p . , ν 0 q φ l θ1 p. , ν l 1 q φ l´1 k0 p ., ν0 q φ l ´1 θ1 p . , ν l ´1 1 q ν 0 ν l 1 ν l 2 ν l´1 1 ν l´1 2 T 1 T 2 [ [ Rl pT 1 , θ 1 q [ [ Rl´1 pT 1 , θ 1 q 1 T 1 T 2 Figure 9 -Illustration of the typical behaviour of the couple of processes ´px h l t , Rh l t q, px h l´1 t , Rh l´1
t q ¯involved at level l of the estimator [START_REF] Dereich | A Multilevel Monte Carlo algorithm for Lévydriven Stochastic Differential Equations[END_REF]. In this situation, the jump times and the discrete components of both processes px h l t q and px h l´1 t q are the same and are equal to those of an autonomous Markov chain (independent of φ l and φ l´1 ) represented in green in the above graphics. Thus, the continuous components of both px h l t q and px h l´1 t q evolves as described on Figure 8a (see the left hand side graphic). Moreover, the corrective processes p Rh l t q and p Rh l´1 t q are not necessarily close to 1 but are close to each other (see the right hand side graphic). Consequently, the corresponding L 2 error (see [START_REF] Devroye | Non-uniform random variate generation[END_REF]) is of order Oph 2 l q.

Theorem 6.3. Let px t q and px t q be as in Proposition 6.1. Let px t , t P r0, T sq and px t , t P r0, T sq be two PDPs with characteristics pΦ, λ, Qq and pΦ, λ, Qq respectively. Let p Rt , t P r0, T sq and p Rt , t P r0, T sq be as in Proposition 6.1, that is such that, Ergpx t qs " Ergpx t q Rt s and Ergpx t qs " Ergpx t q Rt s. Assume that for all θ P Θ and for all A P BpΘq the functions λpθ, .q and Qppθ, .q, Aq are Lipschitz uniformly in θ. Then, for all bounded functions F : E Ñ R such that for all θ P Θ the function ν Þ Ñ F pθ, νq is L F -Lipschitz (L F ą 0), there exists a positive constant Ṽ1 independent of the time step h such that E

" |F px T q RT ´F px T q RT | 2 ‰ ď Ṽ1 h 2 . ( 27 
)
Thus, we end up with β " 2 in (12) with X " F px T q RT and X h " F px T q RT so that the complexity goes from a Op ´2plogp qq 2 q to a Op ´2q. We also prove in the following proposition another representation which allows to build a MLMC estimator with two different numerical schemes (see ( 19)).

Proposition 6.2. Let px t , t P r0, T sq and px t , t P r0, T sq be two PDPs with characteristics pΦ, λ, Qq and p Φ, λ, Qq respectively and let x 0 " x0 " x for a given x " pθ, νq P E. We denote by pθ n q and pT n q the discrete component and the jump times respectively of px t q. Assume that Q is always positive and that 0 ă λpxq ă λ ˚for all x P E. Let pµ n , n P Nq be the sequence defined by µ 0 " ν and µ n " Φθ n´1 pT n ´Tn´1 , µ n´1 q for n ě 1 and let us define for all t P r0, T s, y t " pθ n , Φθn pt ´Tn , µ n qq if t P rT n , T n`1 r. Then, there exists a process p Rt , t P r0, T sq which depends on Φ, Φ, λ, Q, pµ n q and px t , t P r0, T sq such that for all t P r0, T s and for all bounded measurable functions g : E Ñ R, we have Ergpx t qs " Ergpy t q Rt s. q ¯involved at level l of the estimator [START_REF] Ding | Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model[END_REF]. In this situation, the discrete component and the jump times of py pl,l´1q t q are those of px
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q. Thus, their corresponding continuous components evolves as described on Figure 8a (see the left hand side graphic). Moreover, the corrective process p Rpl,l´1q t q is close to 1 (see the right hand side graphic). Consequently, the corresponding L 2 error (see [START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF]) is of order Oph 2 l q.

From Proposition 6.2 we can then decompose ErF px h L T qs over the levels as follows

ErF px h L T qs " ErF px h T qs `L ÿ l"2 ErF py pl,l´1q T q Rpl,l´1q T ´F px h l´1 T qs,
where for l " 2, . . . , L, the process py pl,l´1q t , t P r0, T sq is a PDP whose deterministic motions are given by the approximate flow φ θ with time step h l and whose discrete component jumps at the same times and in the same states as the Euler scheme px t q with time step h l´1 do. Moreover, the process p Rpl,l´1q t , t P r0, T sq is as in Proposition 6.2, that is such that ErF py pl,l´1q T q Rpl,l´1q

T s " ErF px h l T qs. We illustrate this situation in Figure 10. Letting pX f h l , X c h l´1 q " pF py pl,l´1q T q Rpl,l´1q

T , F px h l´1 T
qq for l " 2, . . . , L we define a third MLMC estimator also noted Ỹ MLMC as follows

Ỹ MLMC " 1 N 1 N 1 ÿ k"1 X c,k h ˚`L ÿ l"2 1 N l N l ÿ k"1 pX f,k h l ´Xc,k h l´1 q. ( 28 
)
Following the same arguments as in the proof of Theorem 6.3 we are able to prove the following theorem.

Theorem 6.4. For all l P t2, . . . , Lu, let py pl,l´1q t q, p Rpl,l´1q t q and px h l´1 t q be as above. Then, there exists a constant Ṽ1 independent of h l such that Er|F py pl,l´1q T q

Rpl,l´1q

T ´F px h l´1 T q| 2 s ď Ṽ1 h 2 l . ( 29 
)
Thus, we end up with β " 2 in [START_REF] Connor | Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma[END_REF] with pX f h l , X c h l´1 q " ´F py pl,l´1q T q Rpl,l´1q

T , F px h l´1 T q ¯.

Numerical Results

INTRODUCTION

We first illustrate the strong convergence results of Theorems 6.1, 6.3 and 6.4 on a 2-dimensional Morris-Lecar PDMP, then, we numerically compare (on the same model) the classical MC estimator and the MLMC estimators. We chose the mean value of the membrane potential at fixed time as the quantity of interest. More precisely, we are interested in the approximation of ErF px T qs where px t , t P r0, T sq denotes a 2-dimensional Morris-Lecar PDMP, F pθ, νq " ν for pθ, νq P E and T ą 0 is fixed. 

ErpX hl ´Xhl´1 q 2 s Erp Xhl ´X hl´1 q 2 s ErpX f hl ´Xc hl´1 q 2 s
Figure 11 -The plot shows the decay of ErpX h l ´Xh l´1 q 2 s, Erp Xh l ´X h l´1 q 2 s and ErpX f h l ´Xc h l´1 q 2 s (y-axis, log M scale) as a function of l with h l " h ˆM ´pl´1q , h " 1, M " 4. For visual guide, we added black solid lines with slopes -1 and -2.

In Figure 11 we represent the L 2 errors ErpX h l ´Xh l´1 q 2 s, Erp Xh l ´X h l´1 q 2 s and ErpX f h l ´Xc h l´1 q 2 s as a function of the level l where we set

pX h l , X h l´1 q " ´F px h l T q, F px h l´1 T q ¯, p Xh l , Xh l´1 q " ´F px h l T q Rh l T , F px h l´1 T q Rh l´1 T ¯, pX f h l , X c h l´1 q " ´F py pl,l´1q T q Rpl,l´1q T , F px h l´1 T q ¯.
The theoretical order of convergence are respected since the L 2 error ErpX h l ´Xh l´1 q 2 s as a function of the level l behaves like a line with slope -1 and since Erp Xh l ´X h l´1 q 2 s and ErpX f h l ´Xc h l´1 q 2 s behave like a line with slope -2. The green curve (representing Erp Xh l ´X h l´1 q 2 s) is above the purple one (representing ErpX f h l ´Xc h l´1 q 2 s) because the variance of Rh l T and Rh l´1 T is bigger than the one of Rpl,l´1q

T . Consequently, the variance of the MLMC estimator [START_REF] Dereich | A Multilevel Monte Carlo algorithm for Lévydriven Stochastic Differential Equations[END_REF] is bigger than the one of the estimator [START_REF] Ding | Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model[END_REF]. For that reason we do not consider the estimator [START_REF] Dereich | A Multilevel Monte Carlo algorithm for Lévydriven Stochastic Differential Equations[END_REF] in the comparison below.

In Figure 12 we compare the complexity and the CPU-time of the classical MC estimator [START_REF] Dayan | Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems[END_REF] and the MLMC estimators ( 25) and ( 28) as a function of a prescribed INTRODUCTION ą 0. We observe that the complexity of the classical MC estimator [START_REF] Dayan | Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems[END_REF] and those of the MLMC estimators ( 25) and ( 28) do indeed behave as a Op ´3q, Op ´2plogp qq 2 q and Op ´2q respectively as it is theoretically expected. The numerical results suggest that MLMC estimators can be successfully used in the framework of PDMPs.

1 10 2 ´5 2 ´4 2 ´3 2 ´2 2 ´1
Complexity ratio 

Y MC Y MLMC Ỹ MLMC (a) Ratio of the complexities. 1 10 2 ´5 2 ´4 2 ´3 2 ´2 2 ´1 CPU time ratio Y MC Y MLMC Ỹ MLMC (b) Ratio of the CPU-times.

Perspectives

In this section, we present perspectives which are linked to our work that we would like to develop in the future.

Exact simulation of action potentials

The thinning algorithm introduced in chapter 1 provides us with an exact simulation of the trajectories of conductance-based models with explicit flow such as a Hodgkin-Huxley PDMP. As mentioned above, several diffusion approximations have been developed to approximate such models. In [START_REF] Rowat | The ISI distribution of the stochastic Hodgkin-Huxley neuron[END_REF], [START_REF] Pezo | Diffusion approximation-based simulation of stochastic ion channels: which method to use[END_REF], the authors compare their respective accuracy and computational efficiency through a numerical analysis. They quantify the errors made in estimating quantities of interest related to action potentials (i.e distribution of inter-spike intervals, first spike latency or spike rate) using approximate algorithms such as the Euler-Maruyama scheme. They all use a model in which the channels are modelled by Markov chains with simplified or approximated transitions as a reference. This does not produce exact samples of action potentials or of spiking times. Since the thinning algorithm is exact, a possible perspective is to use it as a reference algorithm to conduct such a numerical analysis.

Multilevel Monte Carlo

INTRODUCTION

In chapter 2 we consider a PDMP px t , t P r0, T sq with no explicit flow, we propose a numerical scheme, px t q, approximating the PDMP and we prove strong and weak convergences which are the building blocks of Monte Carlo simulations. Then, we address the problem of estimating ErF px T qs by MLMC where F : E Ñ R is a smooth function. This framework does not include the biologically relevant estimation of interspike intervals, first spike latency or spike rate which are modelled as path-dependent functionals of the PDMP. A perspective could be to investigate the MLMC in this setting. More precisely, if we denote by Dpr0, T s, Eq the space of E-valued cad-lag functions defined on r0, T s one could investigate strong and weak convergences of G px t , t P r0, T sq toward G px t , t P r0, T sq where G : Dpr0, T s, Eq Ñ R. The order of such convergences could then be used to estimate quantities of the form E rG px t , t P r0, T sqs.

Another related work could be to consider a different numerical scheme for the PDMP. More precisely, in this thesis we have chosen to approximate a PDMP with characteristics pφ, λ, Qq by a PDP with characteristics pφ, λ, Qq where φ denotes the classical Euler scheme associated to φ. This choice implies that both processes can be constructed using the same classical iterative construction. Consequently, the discretisation grid of the PDP on r0, T s is random and is formed by the points T n `kh for n " 0, . . . , N T where k " 0, . . . , tpT n`1 ^T ´T n q{hu and h denotes the time step of φ. This differs from the case where the numerical scheme is constructed from the regular fixed grid pt n , 0 ď n ď N q on r0, T s defined by t n " nh for n " 0, . . . N where N ą 0 and h " T {N . It would be interesting to construct a scheme for PDMP on that fixed grid, that is, a sequence pX n , 0 ď n ď N q such that X n approximates x tn in order to study strong and weak convergences and to compare the computational efficiency in both settings.

Introduction

In many areas it is important to be able to simulate exactly and rapidly trajectories of a stochastic process. This is the case for Monte Carlo methods, statistical estimation, bootstrap. In this article, we are interested in the exact simulation (perfect sampling) of a class of Piecewise Deterministic Markov Processes (PDMP). These processes, introduced by M.H.A. Davis in [START_REF] Davis | Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models[END_REF], are based on an increasing sequence of random times in which the processes have a jump and on a deterministic evolution between two successive random times. The law of a PDMP is thus determined by three parameters called the characteristics of the PDMP: a family of vector fields, a jump rate (intensity function) and a transition measure.

In this study we consider the class of PDMPs whose flows are known, this means that we explicitly know the solution of each ordinary differential equation associated to each vector field. Explicit flows cover a wide-enough range of interesting applications. For example, we can quote the temporal evolution of the membrane potential and ionic channels in neuroscience (see [START_REF] Pakdaman | Fluid limit theorems for stochastic hybrid systems with application to neuron models[END_REF]), the evolution of a food contaminant in the human body in pharmacokinetics (see [START_REF] Bouguet | Quantitative speeds of convergence for exposure to food contaminants[END_REF]), the growth of bacteria in biology (see [START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF]), the data transmission in internet network (see [START_REF] Chafaï | On the long time behavior of the TCP window size process[END_REF]) or the evolution of a chemical network in chemistry (see [START_REF] Alfonsi | Adaptive hybrid simulation of hybrid stochastic and deterministic models for biochemical reactions[END_REF]). For hybrid models in cell biology and gene networks see [START_REF] Bressloff | Stochastic Processes in Cell Biology[END_REF] and [START_REF] Crudu | Convergence of stochastic gene networks to hybrid piecewise deterministic processes[END_REF].

In this paper we focus on the exact simulation of the PDMP inter-jump times. Davis in [START_REF] Davis | Markov Models and Optimization[END_REF] provides an iterative construction of PDMPs (cf. p. 59) which suggests to simulate the inter-jump times by inversion of their survival function. However he does not specify precisely how to do it numerically. The survival function is expressed using the integral of the jump rate along the flow. When the jump rate along the flow is explicitly integrable and when its integral is explicitly invertible, we can simulate the jump times exactly (by using the jump rate directly), see [START_REF] Devroye | Non-uniform random variate generation[END_REF]. When the survival function is not explicitly invertible, several algorithms have been proposed in the literature (cf [START_REF] Riedler | Almost sure convergence of numerical approximations for Piecewise Deterministic Markov Processes[END_REF], [START_REF] Veltz | A new twist for the simulation of hybrid systems using the true jump method[END_REF], [START_REF] Ding | Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model[END_REF]) but none of them produced exact samples even if the flows are explicit.

We use the thinning method introduced by Lewis and Schedler in [START_REF] Lewis | Simulation of nonhomogeneous Poisson processes by thinning[END_REF] to simulate Poisson processes and generalised by Ogata [START_REF] Ogata | On Lewis' Simulation Method for Point Processes[END_REF] to any point process. The thinning method obviates the need for numerical integration of the jump rate and produces an exact simulation. This method has become classic when the jump rate of the process admits a constant upper bound λ. In this case, it consists in generating the jump times of a (homogeneous) Poisson process with intensity λ and then to select some of these times by a rejection argument. The times selected are realisations of the jump times. The resulting algorithm is easy to implement. However, it is intuitive that a constant upper bound λ could lead to many rejections especially if the jump rate presents significant variations thus increasing the computation time too much.

In the sequel we focus on path-adapted upper bounds. We propose different kinds of such bounds for the intensity along the flow, from coarse to path-adapted. Our main contribution is the theoretical study of their respective efficiency. We also provide a numerical study of the computation times for the different bounds. We will consider three types of jump rate bounds:

• the global bound (I.8), the coarsest, which is constant (in particular it is independent of the state of the PDMP and of time),

• the local bound (I.9), which depends on the post-jump value of the PDMP and which is constant between two successive jump times,

• the optimal bound (I.10), the finest, which depends on the post-jump value of the PDMP and also on the time evolution of the process between two successive jump times.

We see at least three interests in the optimal bound. The first is that the thinning algorithm with an optimal bound applies with weaker hypotheses on the jump rate than with the classical global bound. More precisely, the optimal bound requires that the jump rate is locally bounded along a given flow whereas the global bound requires that it is globally bounded on the state space. The second is that it provides a powerful thinning algorithm. The drawback of this bound is that when the bound becomes very close to the actual jump rate, the computation time may be too long. It is thus necessary to look for a satisfactory balance. We discuss this difficulty on a numerical example. Finally, the optimal bound is constructed by following each vector field of the family. This construction is thus natural in the context of switching processes such as PDMPs. For this reason we think that the algorithm studied in this article can be applied to a much larger family of processes such as Hawkes processes, switching stochastic differential equations or switching stochastic partial differential equations with state-dependent intensity.

As an indicator of the efficiency of our thinning algorithm, we choose the mean value of the ratio between the number of selected jump times and the number of generated jump times. We call it rate of acceptance. This indicator is between 0 and 1 and is easily understood, the closer it is to 1 the less we reject points, thus the more efficient the algorithm is. We explicitly express this rate of acceptance in terms of the transition measure of a discrete time Markov chain which carries information about the PDMP but also about all the rejected jump times. In particular this chain is different from the embedded Markov chain classically associated to a PDMP. We also express the rate of acceptance as a function of the ratio between the jump rate of the PDMP and the jump rate bound. This expression enables us to see that the closer the jump rate bound is to the PDMP jump rate the more efficient the algorithm is. Let us note that our rate of acceptance is different from the efficiency defined in [START_REF] Lewis | Simulation of nonhomogeneous Poisson processes by thinning[END_REF] or [START_REF] Devroye | Non-uniform random variate generation[END_REF] chap. 6 which is the ratio between the mean number of selected jump times and the mean number of generated jump times. However, both coincide in the case of Poisson processes.

As an application, we consider two stochastic versions of the deterministic Hodgkin-Huxley (HH) model (cf. [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF]). The two biophysicist Hodgkin and Huxley proposed a four dimensional system of ordinary differential equations (ODE) based on their observations, in order to model the coupled evolution of the membrane potential of a neuron and of specific pores called channels located in the membrane. The circulation of ions through the channels create currents that modify the electric balance and the potential. (HH) model has become classic because it provides a way to express the conductance of the membrane: the conductance is expressed using the potential dependent probability that specific subunits of channels (called gates) are open given that each gate can be in two states only, either open or closed. However since channels (and consequently gates) are in finite number it is natural to consider a stochastic version of (HH) that we call the subunit model. Actually a second stochastic version exists that focuses on the channels themselves. In this case the stochastic model is fourteen dimensional (see Section 1.6.2). We call it the channel model. It is also much used in computational Neuroscience since it describes the channel states more in detail. Both stochastic versions are PDMP. When the number of channels goes to infinity the channel model converges to a deterministic system of ODE (of dimension 14) such that the variable modelling the membrane potential coincides with the one in (HH) when the initial conditions satisfy a binomial relation [START_REF] Pakdaman | Fluid limit theorems for stochastic hybrid systems with application to neuron models[END_REF].

The jump rates of the subunit and the channel models (which come from the modelling [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF]) are complex functions with high variations especially when the membrane potential is in a depolarization phase. Thus, numerical inversion of the distribution function of the inter-jump times can be time consuming. We show in section 1.7.1 how to determine jump rate bounds in such stochastic (HH) models. We use these models to compare numerically the different bounds (I.8), (I.9), (I.10), and thus, to highlight the efficiency of the optimal bound. The comparison of the bounds enables us to show that the optimal bound speeds up simulation compared to the global bound and the local bound. We show that the computation time is reduced by 2 in going from the global bound to the local bound and that it is again reduced by 2 in going from the local bound to the optimal bound.

To be complete, let us mention some algorithms specific to (HH) models. When the number of channels or gates is high, some authors have used diffusion approximations to improve the computation time (cf [START_REF] Orio | Simple, fast and accurate implementation of the diffusion approximation algorithm for stochastic ion channels with multiple states[END_REF], [START_REF] Goldwyn | Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons[END_REF], [START_REF] Fox | Stochastic Versions of the Hodgkin-Huxley Equations[END_REF]), which clearly does not produce exact samples. On the other hand, in many papers, the channels/gates are modelled by Markov chains with simplified or approximated transitions (cf [START_REF] Skaugen | Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations[END_REF], [START_REF] Chow | Spontaneous action potentials due to channel fluctuations[END_REF], [START_REF] Anderson | Stochastic representation of ion channel kinetics and exact stochastic simulation of neuronal dynamics[END_REF], [START_REF] Clay | Relationship between membrane excitability and single channel open-close kinetics[END_REF], [START_REF] Rubinstein | Threshold fluctuations in an N sodium channel model of the node of ranvier[END_REF]). This does not produce exact samples even if they are called exact in these papers in comparison to the diffusion approximation. For a review of these specific algorithms, see [START_REF] Mino | Comparison of algorithms for the simulation of action potentials with stochastic sodium channels[END_REF].

The paper is organized as follows. In section 2, we give the definition of PDMPs, the assumptions and set the notation used in other sections. In section 3, we present the construction of PDMPs by thinning. In section 4, we introduce the different jump rate bounds. In section 5, we give the theoretical results concerning the comparison of the jump rate bounds and the rate of acceptance without boundaries. In section 6, we introduce the Hodgkin-Huxley models. In section 7 we numerically illustrate the results. Section 1.8 is an appendix in which we compute the rate of acceptance for Poisson processes.

PDMPs and assumptions

A PDMP is a stochastic process in which the randomness comes from random jump times and post-jump locations [START_REF] Davis | Markov Models and Optimization[END_REF], [START_REF] Davis | Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models[END_REF]. In this paper, we consider that such a process takes the following general form x t " pθ t , V t q, @t ě 0, where • θ : R `Ñ K is a jump process that characterizes the mode of the system, K is a finite or countable space.

• V : R `Ñ D is a stochastic process which evolves deterministically between two successive jumps of θ, D is an open subset of R d .

Let us denote E " K ˆD so that px t q tě0 is an E-valued process. We note pT n q ně0 the sequence of jump times of the PDMP and pN t q tě0 the counting process, N t " ř ně1 1 Tnďt . We assume that for every starting point x P E, E x rN t s ă 8 for all t ě 0. This assumption implies in particular that T n Ñ 8 almost surely.

Such a process is uniquely determined by three characteristics, namely, pφ, λ, Qq. In the remainder of the paper, we consider that the characteristics verify the following.

Assumptions on the characteristics

• The deterministic flow φ : R `ˆE Ñ D is assumed continuous and induced by a conservative vector field F : E Ñ D, see [START_REF] Davis | Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models[END_REF].

• The jump rate λ : E Ñs0, `8r is assumed to be a measurable function such that for each x " pθ, νq P E the function s Ñ λpθ, φps, xqq is locally integrable. We also assume that λ has a uniformly bounded derivative along the flow and that inf ps,xqPR `ˆE λpθ, φps, xqq ą 0.

• The transition measure Q : E ˆBpEq Ñ r0, 1s governs the post-jump location of the process. We assume that Q ´x, txu ¯" 0, @x P E.

For t P rT n , T n`1 r, V takes the following form V t " φpt ´Tn , x Tn q and the trajectory of the process px t q tě0 is then given by

x t " ÿ ně0
´θTn , φpt ´Tn , x Tn q ¯1TnďtăT n`1 .

For notational convenience, we define a vector field G : E Ñ E such that, for x P E, Gpxq " ˆ0 F pxq ˙. We note ψ the flow induced by G. For each x P E, t ˚pxq is the time needed to reach the boundary from x. Note that this time is deterministic. In [START_REF] Davis | Markov Models and Optimization[END_REF], M.H.A Davis shows that there exists a filtered probability space pΩ, F, F t , P x q such that the process px t q tě0 is a Markov process. He also shows that px T k q kě0 is a Markov chain with kernel Z such that for all x P E Zpx, Aq "

ż t˚pxq 0 Q ´ψpt, xqq, A ¯λpψpt, xqqe ´şt 0 λpψps,xqqds dt `e´ş t ˚pxq 0 λpψps,xqqds Q ´ψpt ˚pxq, xq, A ¯.
Let pS n q :" pT n ´Tn´1 q be the sequence of inter-jump times. The intensity of S n`1 conditionally on pT n , x Tn q is λpψpt ´Tn , x Tn qq for t ě T n . We emphasise that the jump rate λ determines the law of the inter-jump times through the survival function S x defined for all t ě 0 and x P E by for the jump rate along the trajectory of px t q. In the sequel, and depending on the context, we assume that one of the following assumptions is satisfied.

Additional assumptions on the jump rate:

H glo : sup xPE λpxq ă 8.

H loc : @x P E, sup sě0 λpψps, xqq ă 8.

H opt : @x P E, @I Ď R `, sup sPI λpψps, xqq ă 8.

Note that assumption H glo is verified when λ is bounded. Assumption H loc is verified when λ is continuous and ψ is bounded. In assumption H opt , when I is compact, λ continuous and ψ continuous is sufficient. Also, H glo implies (H loc and H opt ) and H loc implies H opt .

Simulation of PDMPs and thinning

In [START_REF] Davis | Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models[END_REF] and [START_REF] Davis | Markov Models and Optimization[END_REF] Davis provides an iterative construction of a PDMP and suggests to simulate its inter-jump times using the generalized inverse Ψ x of (I.2) defined for all u P r0, 1s and x P E by Ψ x puq " " inftt ě 0 : S x ptq ď uu, `8 if the above set is empty.

(I.4)

Thus, the random variable Ψ x pU q where U " Upr0, 1sq, has survival function (I.2) (see, for example, [START_REF] Davis | Markov Models and Optimization[END_REF] chap. 2 section 2.3 and 2.4). However, the problem of the exact computation of Ψ x is not obvious. If the function (I.2) is explicitly invertible, the problem is solved. However, in most applications we cannot compute Λ x ptq " ş t 0 λpψps, xqqds explicitly and even less invert it. Moreover the indicator function must be taken into account.

On the other hand, several papers have proposed methods to approximate the inverse (I.4). In [START_REF] Riedler | Almost sure convergence of numerical approximations for Piecewise Deterministic Markov Processes[END_REF] and [START_REF] Veltz | A new twist for the simulation of hybrid systems using the true jump method[END_REF], the authors use deterministic numerical methods which essentially consist in solving ODEs to compute (I.4). In [START_REF] Ding | Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model[END_REF], the authors use a piecewise linear approximation of (I.2) which can be explicitly invertible. In these three papers, the flows are not assumed explicit, the authors do not consider boundaries that is t ˚pxq " `8 for all x P E. We emphasise that the algorithms proposed in these papers would not produce exact samples even if the flows were explicit.

We show how to simulate exactly the inter-jump times in the presence of a boundary when the flows are explicit. We proceed by thinning. Details on thinning may be found in [START_REF] Lewis | Simulation of nonhomogeneous Poisson processes by thinning[END_REF] or [START_REF] Devroye | Non-uniform random variate generation[END_REF]. First, let us introduce a modified survival function, S x , defined by S x ptq " e ´şt 0 λpψps,xqqds .

(I.5)

For x P E, (I.5) is the survival function of a random variable with hazard rate λpψp., xqq (cf. [START_REF] Devroye | Non-uniform random variate generation[END_REF] chap. 6). Let λ be a function such that λpψpt, xqq ď λpt, xq for all t ě 0. Let p Tk q kě1 be a Poisson process with jump rate λp., xq independent of pU n q ně1 a sequence of iid random variables with uniform distribution on r0, 1s. We define the random variable τ by τ " inftk ą 0 : U k λp Tk , xq ď λpψp Tk , xqqu.

Then, we have the following lemma (see [START_REF] Devroye | Non-uniform random variate generation[END_REF]).

Lemma 1.3.1. The random variable Tτ has hazard rate λpψp., xqq.

Since the flows are assumed explicit, we can compute exactly the ratio λpψpt, xqq{ λpt, xq for all t ě 0. We use the following lemma to simulate the Poisson process p Tk q kě1 . Lemma 1.3.2 (Devroye [START_REF] Devroye | Non-uniform random variate generation[END_REF], chap. 6). Let pT n q ně0 be a Poisson process with jump rate f ptq and let E be an exponential variable with parameter 1 independent of the Poisson process, then, for n ě 0, we have

T n`1 Law " F ´1 pE `F pT n qq ,
where F ptq " ş t 0 f psqds.

Thus, we need an explicit expression of Λx ptq " ş t 0 λps, xqds and of Λ´1

x ptq to simulate exactly the process p Tk q (in section 1.4, we present bounds which verify these conditions). In the case where the bound λ is constant, Λx and its inverse are explicit and easy to compute. However, we can see from the expression of τ that such a bound will lead to many rejections especially when the function t Ñ λpψpt, xqq present significant variations. Consequently many evaluations of the intensity along the flow and many generations of pseudo-random variables will be necessary to simulate Tτ . This will potentially increase the computation time compared to a refined bound possibly complicated to integrate and invert but leading to fewer rejections. This balance between coarse and refined bounds will be illustrated both theoretically and numerically in the sequel.

So far, we have shown how to simulate exactly a random variable with survival function (I.5). To simulate exactly the inter-jump times with boundaries (i.e. a random variable with survival function (I.2)) by using the thinning described above, we need the following lemma. Proof. A direct computation shows that, @x ě 0, PpY ě xq " PpY ^T ě xq.

Since the flows are explicit, the deterministic time t ˚pxq can be computed exactly. Therefore we simulate the first jump of a PDMP starting from x by Tτ ^t˚p xq using lemmas 1.3.1 and 1.3.3 where the variables p Tk q and τ are as above.

We now describe the construction of a PDMP px t q by thinning. In the remainder of this section and by analogy with the representation (I.3), we consider a generic bound of λ, namely β, defined by βpt, x t q :" ÿ ně0 λpt ´Tn , x Tn q1 TnďtăT n`1 .

(I.6)

We assume that the function λ : R `ˆE Ñ R `has the following properties:

• @u ě 0, @y P E, λpψpu, yqq ď λpu, yq.

• @u ě 0, @y P E, the function Λy puq " ş u 0 λpv, yqdv is explicitly computable.

• @y P E, the inverse of Λy , denoted by `Λ y ˘´1 , is explicitly computable.

The form of the generic bound (I.6) follows from the structure of the PDMP. In practice, one has to specify a bound λ to implement the generic algorithm 1 below (three specifications are given in section 1.4). We construct a sample path of the PDMP px t q tě0 with values in E, starting from a fixed initial point x 0 P E at time 0 as follows.

Let p T 0 k q kě0 be a Poisson process defined on r0, `8r with jump rate λpt, x 0 q for t ě 0, and, τ 1 " inftk ą 0 :

U p1q k λp T 0 k , x 0 q ď λpψp T 0 k , x 0 qqu,
where pU p1q n q ně1 is a sequence of independent random variables with uniform distribution on r0, 1s, independent of p T 0 k q kě0 . By lemma 1.3.3, the first jump time T 1 " S 1 of the PDMP is the minimum between the first jump time of a non-homogeneous Poisson process defined on r0, `8r with jump rate λpψpt, x 0 qq and t ˚px 0 q. Thus, T 1 " T 0 τ 1 ^t˚p x 0 q. On r0, T 1 r the PDMP evolves as follows x t " ψpt, x 0 q.

The random variable x T 1 has distribution Q ´ψpT 1 , x 0 q, . ¯. Note that conditionally on T 1 the process p T 0 k q kě1 is a Poisson process on r0, T 1 r with jump rate λpt, x 0 q ´λpψpt, x 0 qq, see [START_REF] Devroye | Non-uniform random variate generation[END_REF] chap.6.

Suppose we have simulated T i , then, conditionally on pT i , x T i q, the PDMP px t q restarts from x T i at time T i independently from the past. Let p T i k q kě0 be a Poisson process on r0, `8r with jump rate λpt ´Ti , x T i q for t ě T i , and,

τ i`1 " inftk ą 0 : U pi`1q k λp T i k , x T i qq ď λpψp T i k , x T i qqu,
where pU pi`1q n q ně1 is a sequence of independent uniform random variables, independent of p T i k q kě0 and x T i . By lemma 1.3.3 and the thinning procedure, we have T i`1 " T i `T i τ i`1 ^t˚p x T i q. On rT i , T i`1 r the process evolves as follows

x t " ψpt ´Ti , x T i q.

The random variable x T i`1 has distribution Q ´ψpS i`1 , x T i q, . ¯. Note that, conditionally on pT i , x T i , T i`1 q, the process pT i `T i k q kě1 is a Poisson process on rT i , T i`1 r with jump rate λpt ´Ti , x T i q ´λpψpt ´Ti , x T i qq.

Conditionally on pT 1 , x T 1 , . . . , T i , x T i , T i`1 q, the points in rT i , T i`1 r obtained from the Poisson process pT i `T i k q kě1 are independent of the points in rT j´1 , T j r obtained from the Poisson process pT j `T j k q kě1 for j " 1, . . . , i. The construction above provides a generic algorithm associated to the bound (I.6) to simulate trajectories of PDMPs (see Algorithm 1 below).

To conclude this section, consider the case of PDMPs without boundaries. In this case, the construction above provides a point process, namely,

T 0 ă T 0 1 ă . . . ă T 0 τ 1 ´1 ă T 1 ă T 1 `T 1 1 ă . . . ă T 1 `T 1 τ 2 ´1 ă T 2 ă T 2 `T 2 1 ă . . . (I.7)
Notation 1.3.1. In the sequel, the process defined by (I.7) is noted p Tk q kě0 and the associated counting process is noted p Ñt q tě0 . We also denote by pT k q kě0 the process formed by all the rejected points (i.e the process p Tk q kě0 without the jump times pT k q kě0 ) and pN t q tě0 the associated counting process.

Algorithm 1 Simulation of a trajectory of px t q on r0, T s.

Require: Fix the initial condition x 0 " pθ 0 , V 0 q, set a jump counter n " 0 and fix the initial time T n " 0. Set also an auxiliary jump counter k " 0 and an auxiliary variable Tk " T n .

repeat repeat k Ð k `1. Simulate U 2k´1 " Ups0, 1rq. Set E k " ´logpU 2k´1 q. Set Tk " `Λ x Tn ˘´1 `Ek `Λ x Tn p Tk´1 q ˘. Simulate U 2k " Ups0, 1rq. until U 2k λp Tk , x Tn q ď λpψp Tk , x Tn qq Set T n`1 " T n `T k ^t˚p x Tn q. Set Tk " 0. if T n`1 ď T then
V t " φpt ´Tn , x Tn q for t P rT n , T n`1 r. Simulate a post-jump value x T n`1 according to the Markovian kernel Q pψpS n`1 , x Tn q, .q. else V t " φpt ´Tn , x Tn q for t P rT n , T r.

end if n Ð n `1. until T n ě T
The sequence p Tk q kě0 contains both generated and selected points and the subsequence noted pT k q kě0 such that for k ě 1, T k "

ř k l"1 T l´1 τ l
defines the jump times of the PDMP. Thus, we have constructed the jump times of the PDMP by thinning the process p Tk q kě0 with non-constant (and random) probabilities pp k q such that p k " λpx Tk ´q{ λpx Tk

´, Tk q is the probability to accept Tk . Note that the process p Tk q kě0 is composed by pieces of independent Poisson processes p T 0 k q, p T 1 k q, . . . , p T i k q, . . ..

Jump rate bounds

In this section we introduce the different jump rate bounds considered in this paper, namely, the optimal bound, the local bound and the global bound. The optimal bound is particularly efficient in term of reject because it is as close as we want to the jump rate.

The global bound

We define the global bound by λglo pu, yq :" sup xPE λpxq, @u ě 0, @y P E.

(I.8)
By definition, this bound is constant and does not depend on the state of the PDMP nor on time, we will denote it by λglo . This bound is probably the most used and has the advantage to lead to an easy implementation. Indeed, to simulate the jump times of the PDMP we simulate a homogeneous Poisson process with jump rate λglo disregarding the state of the PDMP. For u ě 0 and y P E, the integrated jump rate bound is given by Λglo y puq " λglo u and the inverse is given by p Λglo y q ´1puq " u{ λglo .

The local bound

We define the local bound by λloc pu, yq :" sup sě0 λ pψps, yqq , @u ě 0, @y P E. (I.9)

By definition, this bound is constant between two successive jump times and has the advantage of being adapted to the state of the PDMP right-after a jump. We will denote it by λloc pyq. To each jump time of the PDMP corresponds a homogeneous Poisson process whose intensity depends on the state of the PDMP at the jump time. For u ě 0 and y P E, the integrated jump rate bound is Λloc y puq " ´sup sě0 λpψps, yqq ¯u and the inverse is given by p Λloc y q ´1puq " ´u{ sup sě0 λpψps, yqq ¯.

The optimal bound

Let P be a finite or a countable space, for i " 1, . . . , cardpP q, we note p i its elements. Let us denote by pP k q kPP a partition of r0, `8r formed by intervals. Thus, there exists a p i´1 , a p i P R such that P p i " ra p i´1 , a p i r with a p 0 :" 0. We assume that a p i´1 ă a p i for i " 1, . . . , cardpP q. The partition pP k q kPP can contain at most one element whose Lebesgue measure is infinite. Thus, if such an element exits, it is the last of the partition, i.e, ˇˇP p CardpP q ˇˇ" 8, and, ˇˇP p i ˇˇă 8 for i " 1, . . . , CardpP q ´1. We define the optimal bound by λopt pu, yq :" ÿ kPP sup sPP k λpψps, yqq1 P k puq, @u ě 0, @y P E. (I.10) By definition, this bound is piecewise constant between two successive jump times, thus it is adapted to the state of the PDMP right-after a jump but also to the evolution in time of the jump rate. To each jump time of the PDMP corresponds a non-homogeneous Poisson process whose intensity depends on the state of the PDMP at the jump time and on the flow starting from this state. For u ě 0 and y P E, the integrated jump rate bound is given by Λopt y puq "

ÿ kPP sup sPP k λpψps, yqq ˇˇP k X r0, us ˇˇ,
where ˇˇP k X r0, us ˇˇrepresents the length (Lebesgue measure) of P k X r0, us. The inverse, `Λ opt y ˘´1 , is given by

`Λ opt y ˘´1 puq " cardpP q ÿ i"1 ´u ´ři´1 k"1 sup sPPp k λpψps, yqq ˇˇP p k ˇš up sPPp i λpψps, yqq `i´1 ÿ l"1 ˇˇP p l ˇˇ¯1 rκp i´1 ,κp i r puq,
where κ p i " ř i k"1 sup sPP k λpψps, yqq ˇˇP p k ˇˇfor i " 1, . . . , CardpP q. By convention, we set ř 0 l"1 ˇˇP Tn p l ˇˇ" 0 and κ p 0 " 0. As an example of partition let P " N, ą 0 and define P k " rk , pk `1q r. Note that this partition is infinite. This is not a numerical problem since the time horizon is finite (λ is assumed positive, see section 1.2). Now, consider the optimal bound with this partition (see section 1.7.2 for a numerical study of this bound). We emphasise that the smaller the parameter is the fewer rejected points are. This point is theoretically illustrated by proposition 1.5.5. However, when is too small, possibly many iterations are required to compute Λp.q and Λ´1 p.q, this will increase the computation time. We will see in section 1.7.2 that taking of order max n pT n`1 ´Tn q leads to the optimal computation time.

Remark 1.4.1. The three hypotheses H glo , H loc , H opt (section 1.2) ensure that the functions λz , Λz and `Λ z ˘´1 are well defined, z P tglo, loc, optu. Moreover, the numerical tractability of the suprema involved in the different bounds follows from the characteristics of the PDMP to simulate. We refer to section 1.7.1 for explicit formulas of these bounds for two stochastic HH models. Also, hypotheses H loc and H opt allow to implement the algorithm 1 when the jump rate is not globally bounded.

Remark 1.4.2. For the three jump rate bounds, the simulation is exact. In particular, for all finite or countable P , that is, for any partitions of r0, `8r, the simulation remains exact.

Remark 1.4.3. The choice of the bound depends on the PDMP we want to simulate. If the jump rate does not vary very much in time, the local bound or the global constant bound can be chosen but if the jump rate presents high variations in a small time interval, the optimal bound is preferable in term of computation time.

Remark 1.4.4. The local bound and the optimal bound along the trajectory of the PDMP px t q namely, β loc and β opt , are stochastic processes.

Efficiency of the thinning algorithm

In this section, we do not consider boundaries. We compare the efficiency of the thinning algorithm in term of reject for the different bounds. The number of points needed to simulate one inter-jump time of a PDMP in state x P E is given by τ z pxq " inftk ą 0 : U k λz p Tk , xq ď λ `ψp Tk , xq ˘u, for z P tglo, loc, optu, where pU n q ně1 is a sequence of iid random variables with uniform distribution on r0, 1s independent of a Poisson process p Tk q kě1 with jump rate λz pt, xq.

The randomness of a PDMP px t q is contained in the associated jump process pη t q defined by η t " x Tn T n ď t ă T n`1 .

(I.11)

Because T n " inftt ą T n´1 : η t´‰ η t u, the knowledge of pη t q tě0 implies the knowledge of pT n q ně0 .

Comparison of the mean number of total jump times

In this section, the variables τ z pxq for z P tglo, loc, optu and x P E are called local reject.

In proposition 1.5.1, we show that the best local reject is obtained with the optimal bound. The smaller the local reject the fewer pseudo-random variables have to be simulated. Thus, the computation time using the optimal bound is expected to be smaller than with the two other bounds.

Proposition 1.5.1. For all x P E, we have

Erτ opt pxqs ď Erτ loc pxqs ď Erτ glo pxqs.

Proof. Let x P E. From the definitions of the three bounds (I.8), (I.9) and (I.10), we have λopt pt, xq ď λloc pxq ď λglo , @t ě 0.

Recall that, for fixed x P E, τ opt pxq, τ loc pxq and τ glo pxq denote the number of points (or iterations) needed to simulate one inter-jump time of a PDMP (which is in state x) by thinning using the upper bounds λopt , λloc and λglo respectively. In this case, since the inter-jump time is a random variable with hazard rate t Þ Ñ λpψpt, xqq we can apply Theorem 2.2 of [START_REF] Devroye | Non-uniform random variate generation[END_REF]. We obtain the following equalities.

Erτ 

Rate of acceptance

We are now interested in the rate of acceptance, that is, the mean proportion of selected points in an interval of the form r0, ts for t ą 0. Let pN t q be the counting process of the PDMP and p Ñt q the counting process with generic jump rate (I.6). In proposition 1.5.2 we give an explicit formula for the rate of acceptance defined as ErN t { Ñt | Ñt ě 1s. This formula is valid for the three bounds λopt , λ loc and λ glo introduced in section 1.4. Note that for k ě 1, p k " λpψp Tk ´Tn k , x Tn k qq{ λp Tk ´Tn k , x Tn k qq is the probability to accept the point Tk where T n k denotes the last selected jump-time before Tk and p Tn q is defined by (I.7). Let J : R `Ñ R `be the process defined by J t " ř kě0 pt ´Tk q1 T k ďtăT k`1 . Thus, for t ě 0, J t gives the age of the last selected jump-time before t. Then, for k ě 1, we can write the probabilities p k as follows

p k " λpψpJ Tk´1 `S k , η Tk´1 qq{ λpJ Tk´1 `S k , η Tk´1 q,
where Sk " Tk ´T k´1 and pη t q is defined by (I.11). The process p Sk , Xk q kě0 where Xk " pJ Tk , η Tk q defines a Markov chain on R `ˆẼ where Ẽ " R `ˆE with Markov kernel M defined by M pj 0 , x 0 ; ds, dj, dxq " αpj 0 , x 0 ; dsq Qps, j 0 , x 0 ; dj, dxq, where, αpj 0 , x 0 ; dsq " λpj 0 `s, x 0 qe ´şs 0 λpj 0 `z,x 0 qdz ds, and, Qps, j 0 , x 0 ; dj, dxq " ´1 ´λpψpj 0 `s, x 0 qq λpj 0 `s, x 0 q, tq ¯δj 0 `spdjqδ x 0 pdxqλ pψpj 0 `s, x 0 qq λpj 0 `s, x 0 q Q ´ψpj 0 `s, x 0 q, dx ¯δ0 pdjq.

The Markov kernel M should be understood as follows. Given that Xk 0 " pj 0 , x 0 q for some k 0 P N (that is, at time Tk 0 , the age of the last accepted jump time is J Tk 0 " j 0 and the state of the PDMP at the last accepted jump time is η Tk 0 " x 0 ), the next proposed inter-jump time Sk 0 `1 has a density given by α. Then, conditionally on Sk 0 `1 " s, we accept or not this proposed inter-jump time according to the kernel Q. More precisely, we reject it with probability 1 ´λp.q{ λp.q, in this case the age of the last accepted jump time is updated, J Tk 0 `1 " j 0 `s, and the state of the PDMP is not updated, η Tk 0 `1 " x 0 . If we accept it (with probability λp.q{ λp.q), then the age of the last accepted jump time is set to 0 and the state of the PDMP is updated according to the kernel Q. Proposition 1.5.2. Let pN t q tě0 be the counting process of the PDMP px t q tě0 , p Ñt q tě0 be the counting process with jump times p Tn q ně0 and M be the kernel of the Markov chain p Sk , J Tk , η Tk q kě0 , we have

E " N t Ñt | Ñt ě 1 ı " 1 Pp Ñt ě 1q ÿ ně1 1 n ż pR`ˆẼq n « n ÿ k"1 λpψpj k´1 `sk , x k´1 qq λpj k´1 `sk , x k´1 q ff e ´şt´tn 0 λpjn`z,xnqdz
ˆ1tětn µpdx 0 qM p0, x 0 ; ds 1 , dj 1 , dx 1 q . . . M pj n´1 , x n´1 ; ds n , dj n , dx n q, where t n :" ř n i"1 s i , µ is the law of η T0 and the integration variables s . and pj . , x . q belong to R `and Ẽ respectively.

Proof. We provide a proof in two steps. First, we establish that, with an appropriate conditioning, the conditional law of N t is the conditional law of a sum of independent Bernoulli random variables with different parameters. Then, we use this property as well as the kernel M to compute the rate of acceptance.

Let n ě 1 and let us define n independent Bernoulli random variables X i with parameters p i such that p i " λpψpJ Ti´1 `S i , η Ti´1 qq λpJ Ti´1 `S i , η Ti´1 q .

Let X " ř n i"1 X i and A t,n " t Ñt " n, p 1 , . . . , p n u. By noting that, for 0 ď k ď n, we have

tN t " k|A t,n u " ď 1ďi 1 ă...ăi k ďn " č iPI n k tU i ď p i u č iPI n k tU i ą p i u ı " tX " k|p 1 , . . . , p n u,
where I n k " ti 1 , . . . , i k u Ď t1, . . . , nu, I n k is the complementary of I n k in t1, . . . , nu and pU i q are independent random variables uniformly distributed in r0, 1s and independent of pp i q, we deduce that LpN t |A t,n q " LpX|p 1 , . . . , p n q.

In particular, ErN t |A t,n s " ErX|p 1 , . . . , p n s " ř n i"1 p i . Thus, one can write

E " N t Ñt | Ñt ě 1  " 1 Pp Ñt ě 1q ÿ ně1 1 n E " N t 1 Ñt"n ı " 1 Pp Ñt ě 1q ÿ ně1 1 n E " ErN t |A t,n s| Ñt " n ‰ Pp Ñt " nq " 1 Pp Ñt ě 1q ÿ ně1 1 n E " n ÿ i"1 p i 1 Ñt"n ı " 1 Pp Ñt ě 1q ÿ ně1 1 n E « n ÿ i"1 p i 1 t´Tně0 E " 1 Sn`1 ět´Tn |η T0 , S1 , . . . , Sn , J Tn , η Tn ı ff .
Conditionally to pη T0 , S1 , J T1 , η T1 , . . . , Sn , J Tn , η Tn q, the random variable Sn`1 is a hazard law with rate λpJ Tn `t, η Tn q for t ě 0. Thus,

E " N t Ñt | Ñt ě 1 ı " 1 Pp Ñt ě 1q ÿ ně1 1 n E " n ÿ i"1 p i e ´şt´Tn 0 λpJ Tn `u,η Tn qdu 1 t´Tně0 ı " 1 Pp Ñt ě 1q ÿ ně1 1 n E " f pη T0 , S1 , J T1 , η T1 , . . . , Sn , J Tn , η Tn q ı ,
where,

f px 0 , s 1 , j 1 , x 1 , . . . , s n , j n , x n q " e ´şt´ř n i"1 sn 0 λpjn`u,xnqdu 1 t´ř n i"1 sně0 n ÿ i"1 λpψpj i´1 `si , x i´1 qq λpj i´1 `si , x i´1 q .
Since p Sk , J Tk , η Tk q kě0 is a Markov chain with kernel M , we obtain

E " f pη T0 , S1 , . . . , Sn , J Tn , η Tn q ‰ " ż pR`ˆẼq n f px 0 , s 1 , j 1 , x 1 . . . , s n , j n , x n q µpdx 0 qM p0, x 0 ; ds 1 , dj 1 , dx 1 q . . . M pj n´1 , x n´1 ; ds n , dj n , dx n q,
where µ is the law of η T0 . Thus, we have the result.

When λ is close to λ, the rate of acceptance is expected to be close to 1. As an example, consider the case of two Poisson processes pN t q and p Ñt q with intensity λptq and λptq respectively such that λptq " λ for all t ě 0. Thus, for n ě 1, S1 , . . . , Sn are independent exponential variables with parameter λ. Let us also consider that λptq » λ for t ě 0. In this case, the rate of acceptance is

E " N t Ñt | Ñt ě 1 ı » 1 1 ´e´λt ÿ ně1 ż pR `qn
e ´λ ´t´ps 1 `...`snq ¯1těs 1 `...`sn αpds 1 q, . . . , αpds n q,

where αpdsq " λe ´λs ds. Since, Tn " S1 `. . . `S n is gamma distributed with parameters n and λ, we have

E " N t Ñt | Ñt ě 1 ı » 1 1 ´e´λt ÿ ně1 Ere ´λpt´Tnq 1 tě Tn s » 1 1 ´e´λt ÿ ně1 p λtq n n! e ´λt » 1.

Convergence of the counting process with a specific optimal bound as jump rate

We first show, in proposition 1.5.3, that pT k q kě0 (defined in section 1.3) is a Cox process with stochastic jump rate βpt, x t q ´λpx t q. Details on Cox processes can be found in [START_REF] Kallenberg | Foundations of Modern Probability[END_REF].

Proposition 1.5.3. The point process ξpr0, tsq "

ÿ ně0 1 T nďt ,
is a Cox process directed by the random measure µ such that µpr0, tsq " ş t 0 pβps, x s q λpx s qqds.

Proof. Let us first note that for t ě 0, and, from (I.6) and (I.3), we have βpt, x t q ´λpx t q " ÿ ně0 " λpt ´Tn , x Tn q ´λpψpt ´Tn , x Tn qq ı 1 TnďtăT n`1 .

The Laplace transform of a random measure completely characterises its distribution (see in [START_REF] Daley | An Introduction to the Theory of Point Processes[END_REF], the discussion p.57 after Theorem 9.4.II). Moreover, the Laplace transform of a Cox process is given in [START_REF] Kallenberg | Foundations of Modern Probability[END_REF], chap 12. Thus, we show that for any measurable and non-negative function f , the Laplace transform of ξ satisfies Ere ´ξf s " Ere ´µp1´e ´f q s, (I.12)

where ξf " ş f dξ. Let f be a non-negative measurable function. Let us note f T ptq " f ptq1 tďT for T ą 0. Thus, lim T Ñ8 f T ptq " f ptq with f T increasing with T . Then, by Beppo-Levi Theorem, ξf T Õ ξf and e ´ξf T OE e ´ξf when T goes to infinity. Moreover, e ´ξf T ď 1, thus by Lebesgue dominated convergence Theorem Ere ´ξf T s Ñ Ere ´ξf s.

With the same type of arguments, we show that

Ere ´µp1´e ´fT q s Ñ Ere ´µp1´e ´f q s. Thus, it is sufficient to show (I.12) for functions f T . We have

Ere ´ξf T s " Ere ´řně1 f T pT nq s " ÿ kě0 Ere ´řně1 f T pT nq |N T " ksPpN T " kq " ÿ kě0 E " Er k ź i"0 e ´řně1 f T pT nq1 T i ďT năTi`1 |N T " k, pη t q 0ďtďT s|N T " k ı PpN T " kq.
By the thinning procedure, the points T n in rT i , T i`1 r may be written as T i `T i l for some l ě 1 where p T i l q lě1 is, conditionally on pT i , x T i q, a Poisson process with jump rate λpt ´Ti , x T i q ´λpψpt ´Ti , x T i qq for t ě T i . Since p T i l q lě0 is independent of p T j l q for i ‰ j, the random variables X i :" e ´řně1 f T pT nq1 T i ďT năTi`1 are independent conditionally on pη t q 0ďtďT . Moreover, the Laplace functional of a Poisson process ξ with intensity µ verifies Ere ´ξf s " e ´µp1´e ´f q . Thus, we obtain

Ere ´ξf T s " ÿ kě0 E " k ź i"0 Ere ´řně1 f T pT nq1 T i ďT năTi`1 |N T " k, pη t q 0ďtďT s|N T " k ı PpN T " kq " ÿ kě0 E " e ´řN T i"0 ş ´1´e ´fT psq1 T i ďsăT i`1 ¯´λ ps´T i ,x T i q´λpψps´T i ,x T i qq ¯ds |N T " k ı PpN T " kq " E " e ´řiě0 ş
´1´e ´fT psq ¯1T i ďsăT i`1 ´λps´T i ,x T i q´λpψps´T i ,x T i qq ¯ds ı " Ere ´µp1´e ´fT q s. Now, let P " N, ą 0 and let pP k q kPN be the partition such that P k " rk , pk `1q r for k P N. Let us denote λopt, the optimal bound with the partition pP k q kPN . In this case we have, λopt, pu, yq " ÿ kě0 sup sPrk ,pk`1q r λpψps, yqq1 rk ,pk`1q r puq. (I.13) Moreover, we note β opt, pt, x t q the jump rate bound along the trajectory of px t q and we note p Ñ opt, t q the corresponding counting process. The number of points needed to simulate one inter-jump time of a PDMP in state x P E with this particular optimal bound is noted τ opt, pxq.

We show, in proposition 1.5.4, that the counting process p Ñ opt, t q converges in distribution when goes to 0 to the counting process pN t q of the PDMP. Finally, proposition 1.5.5 states that the smaller the parameter the fewer points have to be rejected. We begin by a lemma. where λopt, is given by (I.13). The conclusion follows.

Proof. For

Proposition 1.5.4. Let pN t q be the counting process of the PDMP px t q. For p Ñ opt, t q defined above, we have the following convergence in distribution

Ñ opt, ÝÑ Ñ0 N.
Proof. In order to show the convergence in distribution of Ñ opt, toward N when goes to 0, we show the convergence of the Laplace transform of Ñ opt, toward the one of N (see [START_REF] Cocozza-Thivent | Processus stochastiques et fiabilité des systèmes[END_REF] Proposition 4.13, p.99 for example). More precisely, for all non-negative measurable function f , we show that

Ere ´ş f d Ñ opt, s ÝÑ Ñ0 Ere ´ş f dN s.
Let f be a non-negative measurable function and let T ą 0, following the same arguments as in the beginning of the proof of proposition 1.5.3, it is sufficient to show the convergence of the Laplace transform for functions f T ptq " f ptq1 tďT . Let p T n q be the points of the process Ñ opt, . We have

Ere ´ş f T d Ñ opt, s " Ere ´řně0 f T p T n q s " E " Ere ´řně0 f T p T n q |pη t q 0ďtďT s ı " E " e ´řně0 f T pTnq Ere ´řně0 f T pT n q |pη t q 0ďtďT s ı ,
where pT n q denotes the rejected points. Since pT n q is a Cox process with stochastic jump rate β opt, pt, x t q ´λpx t q, we obtain

Ere ´ş f T d Ñ opt,
s " E " e ´řně0 f T pTnq e ´şp1´e ´fT psq qpβ opt, ps,xsq´λpxsqqds ı .

Since e ´řně0 f T pTnq e ´şp1´e ´fT psq qpβ opt, ps,xsq´λpxsqqds ď 1, we obtain, by Lebesgue dominated convergence Theorem and by continuity of the exponential, that lim ı .

Ñ0 Ere ´ş f T d Ñ opt, s " E " e ´řně0 f T
In this model, a channel is modelled by the gates that compose it. The R valued function v represents the membrane potential (voltage). The r0, 1s valued functions m, h, n correspond to the probability of a gate of type m, h (for the sodium) or n (for the potassium) to be open. The functions α z and β z for z " m, h, n are opening and closing rates of gates z respectively. I is a time-dependent function which represents the input current, C is the membrane capacity. For z P tNa, K, Lu, I z " g z pv ´vz q represents the ionic currents where g Na " g Na m 3 h, g K " g K n 4 and g L " g L are the conductances of the sodium, potassium and leak respectively. Thus the constants g L , g Na , g K are the conductances when all the gates are open and v L , v Na , v K are the resting potentials. Now consider a channel in itself. Let E Na " tm 0 h 0 , m 1 h 0 , m 2 h 0 , m 3 h 0 , m 0 h 1 , m 1 h 1 , m 2 h 1 , m 3 h 1 u be the set of the possible states of a sodium channel and E K " tn 0 , n 1 , n 2 , n 3 , n 4 u be the set of those of a potassium channel. The fourteen dimensional Hodgkin-Huxley model is given by the following set of nonlinear differential equations.

$ ' ' & ' ' % C dp v dt " Iptq ´IL pp vq ´INa pp v, γ Na m 3 h 1 q ´IK pp v, γ K n 4 q, dγ Na k dt " ř iPE Na ,i‰k ρ Na i,k pp vqγ Na i ´ρNa k,i pp vqγ Na k , @k P E Na , dγ K l dt " ř jPE K ,j‰l ρ K j,l pp vqγ K j ´ρK l,j pp vqγ K l , @l P E K . (I.15)
The r0, 1s valued functions γ Na k for k P E Na (γ K l for l P E K respectively) represent the probability of a sodium (potassium respectively) channel to be in the state k (state l respectively). For all pi, jq P E Na ˆENa (E K ˆEK respectively), the function ρ Na i,j (ρ K i,j respectively) is the transition rate from state i to state j for a sodium (potassium respectively) channel. The possible sodium (potassium respectively) transitions are given in Figure (I.2) below ((I.3) respectively). For example, ρ Na i,j " 3α m if i " m 0 h 0 and j " m 1 h 0 and ρ K i,j " α n if i " n 3 and j " n 4 . In this model, the functions p v, I, I L , I Na and I K and the constant C have the same meaning as in (I.14) but, the conductances of the sodium and potassium are now modelled by g Na " g Na γ Na m 3 h 1 and g K " g K γ K n 4 . Note that the conductance of the membrane depends on the probability of a channel to be open.

These models describe the electrical behaviour of a neuron with an infinite number of gates or channels. Thus, they do not reflect the variability observed experimentally. Note that, if a binomial relation is satisfied between the initial configuration of gates and channels and if vp0q " p vp0q, then, the two models provide the same potential (i.e. vptq " p vptq, for all t ě 0), see [START_REF] Pakdaman | Fluid limit theorems for stochastic hybrid systems with application to neuron models[END_REF]. Figure I.1 is obtained with the following set of parameters.

α n pxq " p0.1´0.01xq expp1´0.1xq´1 , α m pxq " p2.5´0.1xq expp2.5´0.1xq´1 , α h pxq " 0.07 expp´x 20 q, β n pxq " 0.125 expp´x 80 q, β m pxq " 4 expp´x 18 q, β h pxq " 

1 expp3´0.1xq`1 , V Na " 115, g Na " 120, V K " ´12, g K " 36, V L " 0, g L " 0.3, C " 1.

Stochastic Hodgkin-Huxley models

Neurons are subject to various sources of fluctuations, intrinsic (from the membrane) and extrinsic (from synapses). The intrinsic fluctuations are mainly caused by ion channels.

To take into account these fluctuations in the models, we fix a finite number of gates or channels and replace their deterministic dynamic by stochastic processes. Here, we discuss two stochastic models, the subunit model and the channel model. These models belong to the class of Piecewise Deterministic Markov Processes. In the sequel we denote by V the stochastic membrane potentials of the subunit model and the channel model as opposed to the deterministic ones denoted by v and p v (see I.14 and I.15 respectively).

The subunit model

The where,

f sub pθ, V, tq " Iptq ´gL pV ´VL q ´gNa N ´3 m ´θpmq ¯3N ´1 h θ phq pV ´VNa q ´gK N ´4 n ´θpnq ¯4pV ´VK q.
We also define the jump rate of the process by λ sub pθ, V q " ´αm pV qpN m ´θpmq q `βm pV qθ pmq ¯`´α h pV qpN h ´θphq q `βh pV qθ phq ¯ὰ n pV qpN n ´θpnq q `βn pV qθ pnq ¯.

The membrane potential is continuous thus the transition measure Q sub is only concerned by the post-jump location of the jump process θ. For example, the probability of the event of exactly one gate n opens (conditionally on the last jump time being T k ) is given by

Q sub ´pθ T k´1 , V T k q, tθ T k´1 `p1, 0, 0qu ¯" α n pV T k qpN n ´θpnq pT k´1 qq λ sub pθ T k´1 , V T k q .
To summarize, the subunit model can be expressed as a PDMP x sub t " pθ t , V t , tq P Θ sub ˆR ˆR`w ith vector field f sub : Θ sub ˆR ˆR`Ñ R, jump rate λ sub : Θ sub ˆR Ñ R `, and transition measure Q sub : Θ sub ˆR ˆBpΘ sub q Ñ r0, 1s. The subunit model converges to (I.14) when the number of gates goes to infinity [START_REF] Pakdaman | Fluid limit theorems for stochastic hybrid systems with application to neuron models[END_REF].

The channel model

In the channel model we denote by N Na the number of sodium channels and by N K the number of potassium ones. We define MJPs u pNaq k for k " 1, . . . , N Na (respectively u pKq k for k " 1, . . . , N K ), conditionally independent on V t , to model the sodium (respectively potassium) channels. The dynamics of these MJPs can be represented by the diagrams in Figures I.2 and I.3. We define the number of active channels at time t ě 0 by

m 0 h 1 m 1 h 1 m 2 h 1 m 3 h 1 m 0 h 0 m 1 h 0 m 2 h 0 m 3 h 0 3αm βm 2αm 2βm αm 3βm 3αm βm 2αm 2βm αm 3βm β h α h β h α h β h α h β h α h
θ pm 3 h 1 q ptq " N Na ÿ k"1 1 tm 3 h 1 u ´upNaq k ptq ¯, θ pn 4 q ptq " N K ÿ k"1 1 tn 4 u ´upKq k ptq ¯.
For i " 0, 1, 2, 3 and j " 0, 1, let θ pm i h j q be the number of channels in state tm i h j u and for k " 0, 1, 2, 3, 4, let θ pn k q be the number of channels in state tn k u. Let Θ chan be the state space of the process θ t " ´pθ pm i h j q ptqq i,j , pθ pn k q ptqq k ¯which records the configuration of the channels at time t. The state space is defined by Θ chan " tθ P t0, . . . , N Na u 8 ˆt0, . . . , N K u 5 :

3 ÿ i"0 1 ÿ j"0 θ pm i h j q " N Na , 5 ÿ k"0 θ pn k q " N K u.
The channel model takes the following form pCq

" C dVt dt " f chan pθ t , V t , tq, pθ t q.
The vector field is given by f chan pθ, V, tq " Iptq ´gL pV ´VL q ´gNa N ´1 Na θ pm 3 h 1 q pV ´VNa q ´gK N ´1 K θ pn 4 q pV ´VK q.

A change in the configuration of the channels happens when a gate opens or closes. We define the application η : Θ chan Ñ Θ sub which, given a configuration of channels, returns the configuration of the corresponding gates. We have ηpθq " » -θ pn 1 q `2θ pn 2 q `3θ pn 3 q `4θ pn 4 q θ pm 1 h 0 q `2θ pm 2 h 0 q `3θ pm 3 h 0 q `θpm 1 h 1 q `2θ pm 2 h 1 q `3θ pm 3 h 1 q θ pm 0 h 1 q `θpm 1 h 1 q `θpm 2 h 1 q `θpm 3 h 1 q fi fl .

The 

λ chan pθ, V q " λ sub pηpθq, V q,
where,

λ sub pηpθq, V q " ´αm pV qpN m ´θm open q `βm pV qθ m open ᾱh pV qpN h ´θh open q `βh pV qθ h open ᾱn pV qpN n ´θn open q `βn pV qθ n open ¯.
Since V is continuous, the kernel Q chan is only concerned by the post-location of the process θ. Defining Q chan classically done in the literature ( [START_REF] Riedler | Almost sure convergence of numerical approximations for Piecewise Deterministic Markov Processes[END_REF] p. 53 and [61] p.587) is computationally expensive because we have more transitions to deal with than in the subunit model. We propose to decompose the kernel Q chan into a product of two kernels. The decomposition is based on the following observation: it is a change in the configuration of the gates that implies a change in the configuration of the channels. Thus, to determine which transition occurs at time t among the 28 transitions given above, we first determine which gate opens or closes by using the kernel Q sub with λ sub pηp.q, .q and then, depending on which gate changes state, we determine a channel transition by using another kernel. For example, suppose that at time t a gate m opens, thus, the possible channel transitions are: 

tm 0 h 0 Ñ m 1 h 0 u, tm 1 h 0 Ñ m 2 h 0 u, tm 2 h 0 Ñ m 3 h 0 u, tm 0 h 1 Ñ m 1 h 1 u, tm 1 h 1 Ñ m 2 h 1 u, tm 2 h 1 Ñ m 3 h 1 u
h 0 Ñ m 0 h 1 u, tm 1 h 0 Ñ m 1 h 1 u, tm 2 h 0 Ñ m 2 h 1 u, tm 3 h 0 Ñ m 3 h 1 u
and so on. For example, the probability of the event of having the transition {m 0 h 0 Ñ m 1 h 0 } (conditional on the last jump time being T k ) is given by

Q chan ´pθ T k´1 , V T k q, tθ T k´1 `p´1, `1, 0, . . . , 0qu "Q sub ´pηpθ T k´1 q, V T k q, tηpθ T k´1 q `p0, 1, 0qu
Lm

open ´pθ T k´1 , V T k q, tθ T k´1 `p´1, `1, 0, . . . , 0qu ¯,
where,

Q sub ´pηpθ T k´1 q, V T k q, tηpθ T k´1 q `p0, 1, 0qu ¯" α m pV T k qθ m close pT k´1 q λ sub pηpθ T k´1 q, V T k q , L m open ´pθ T k´1 , V T k q, tθ T k´1 `p´1, `1, 0, . . . , 0qu
¯" 3θ pm 0 h 0 q pT k´1 q θ m close pT k´1 q .

Finally, the probability of having the transition {m 0 h 0 Ñ m 1 h 0 } is, as expected, given by the rate of this transition multiplied by the number of channels in the state {m 0 h 0 } divided by the total rate.

For x P E, the support K chan x of the discrete measure of probability Q chan px, .q contains at most 28 elements (depending on the current state x), thus, in the worst case we have to do 28 "if ´then" tests to determine the next transition. With the decomposition of Q chan , we have, in the worst case 12 "if ´then" tests to do. Indeed, for x P E the support K sub x of the discrete probability Q sub pηpxq, .q contains at most six elements, and the support of the probabilities L m open px, .q, L m close px, .q, L h open px, .q, L h close px, .q, L n open px, .q, L n close px, .q contains also at most six elements (when we deal with a transition of a gate m). Therefore, it is computationally cheaper to decompose the kernel.

Thus, the channel model can be expressed as a PDMP x chan t " pθ t , V t , tq P Θ chan ˆR R`w ith vector field f chan : Θ chan ˆR ˆR`Ñ R, jump rate λ chan : Θ chan ˆR Ñ R `, and transition measure Q chan : Θ chan ˆR ˆBpΘ chan q Ñ r0, 1s. The channel model converges to (I.15) when the number of channels goes to infinity [START_REF] Pakdaman | Fluid limit theorems for stochastic hybrid systems with application to neuron models[END_REF].

Explicit flow between two successive jump times

In this section, we determine the explicit expression of the flow of both models. For n ě 0, t ě T n and z P tsub, chanu, the trajectory of the flow φ on rT n , `8r is given by the following ODE.

# dφpt´Tn,x Tn q dt

" f z ´θTn , φpt ´Tn , x Tn q, t ¯" ´az n φpt ´Tn , x Tn q `bz n `1 C Iptq, φp0, x Tn q " V Tn , where,

a sub n " 1 C ˆgL `gNa N ´3 m ´θpmq pT n q ¯3N ´1 h θ phq pT n q `gK N ´4 n ´θpnq pT n q ¯4˙, b sub n " 1 C ˆgL V L `gNa V Na N ´3 m ´θpmq pT n q ¯3N ´1 h θ phq pT n q `gK V K N ´4 n ´θpnq pT n q ¯4˙, a chan n " 1 C ´gL `gNa N ´1 Na θ pm 3 h 1 q pT n q `gK N ´1 K θ pn 4 q pT n q ¯, b chan n " 1 C ´gL V L `gNa V Na N ´1 Na θ pm 3 h 1 q pT n q `gK V K N ´1 K θ pn 4 q pT n q ¯.
Then, the flow is given by φpt ´Tn , x Tn q " e ´az n pt´Tnq

" V Tn `bz n a z n pe a z n pt´Tnq ´1q `1 C ż t Tn e a z n ps´Tnq Ipsqds ı . (I.17)
For both models we consider that the stimulation I takes the form Iptq " K1 rt 1 ,t 2 s ptq with K ą 0 and t, t 1 , t 2 P R `.

Simulations

We now proceed to the simulations of the subunit model and the channel model using the algorithm 1. Firstly, we explicit the three bounds for both models. Secondly, we numerically compare the efficiency of the bounds in term of reject and computation time. Finally, we use the algorithm 1 to compute a variable of biological interest for both models.

Determination of the jump rate bounds

For simplicity of presentation, we do not distinguish in the notation the flows of the subunit model and those of the channel model, one has to use a sub and b sub for the subunit model and a chan and b chan for the channel model. The determination of the bounds relies on the fact that α n , α m , β h are increasing functions, β n , β m , α h are decreasing, and that for n ě 0, the flow (I.17) is bounded.

The global bound

To determine the global bound we use a result in [START_REF] Buckwar | An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution[END_REF] concerning the channel model which states that if V 0 P rV ´, V `s, then, V t P rV ´, V `s @t ě 0, with, V ´" mintV Na , V K , V L u and V `" maxtV Na , V K , V L u. By using the monotony of the opening and closing rate functions, we find λglo " N m α m pV Na q `Nh β h pV Na q `Nn α n pV Na q.

The result in [START_REF] Buckwar | An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution[END_REF] is also applicable to the subunit model and leads to the same expression of the global bound for this model.

The local bound

Let n ě 0 and t ě T n . To determine the local bound, λloc px Tn q, we write the flow (I.17) as follows, φpt ´Tn , x Tn q " f n ptq `gn ptq, where, f n ptq " e ´anpt´Tnq ´VTn `bn a n pe anpt´Tnq ´1q ¯,

g n ptq " e ´anpt´Tnq 1 C ż t Tn e anps´Tnq Ipsqds.
The purpose is to determine a lower and an upper bound of (I.17). We have a n ą 0, b n may be negative or non-negative, and f n is monotone. By using the fact that, @t ě 0, Iptq ď K, we find V Tn ď φpt ´Tn , x Tn q ď V Tn , (I. [START_REF] Connor | Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma[END_REF] where, V Tn " V Tn _ bn an `K Can , and V Tn " V Tn ^bn an . Then, by using the monotony of the opening and closing rate functions we obtain λloc px Tn q " ´αm pV The expression of the local bound is the same for the channel and subunit model but the Markov chain θ is different.

The optimal bound

Let n ě 0. We consider two partitions of r0, `8r. The first one is the same as in section 1.5.3 which is noted, for fixed ą 0, pP k q kPN . We recall that, for k P N, P k " rk , pk `1q r and that, in this case, the optimal bound is given by λopt, pu, x Tn q " ÿ kě0 sup sPrk ,pk`1q r λpψps, x Tn qq1 rk ,pk`1q r puq. where, κ p " ř p k"1 sup sPP k λpψps, x Tn qq and, by convention, κ 0 " 0. The second partition is obtained for P " t0, 1u and is noted pQ k q kPP where Q 0 " r0, r and Q 1 " r , `8r. In this case, the optimal bound is given by λopt, pu, x Tn q " sup sPr0, r λpψps, x Tn qq1 r0, r puq `λ loc px Tn q1 r ,`8r puq.

For k P N,
The integrated optimal bound is Λopt,

x Tn puq " sup sPr0, r λpψps, x Tn qqp ^uq `λ loc px Tn qpu ´ ^uq.

The inverse is given by

´Λ opt,
x Tn ¯´1 puq " u sup sPr0, r λpψps, x Tn qq 1 r0, sup sPr0, r λpψps,x Tn qqr puq `´u ´ sup sPr0, r λpψps, x Tn qq λloc px Tn q ` ¯1r sup sPr0, r λpψps,x Tn qq,`8r puq.

Once again, the expression of the optimal bound is the same for both models but the Markov chain is different. We precise that we used the local bound to define the optimal bound with the partition pQ Tn, k q kPt0,1u . Note that, for n ě 0, it is possible to define an n which is "adapted" to the inter jump time T n`1 ´Tn . To determine such an n , we use the bounds of the flow in inequality (I.18) to define a lower local bound, λpx Tn q, as follows λpx Tn q " ´αm pV We note pT n q ně0 the corresponding point process. Then we have 0.05 " PpT n`1 ´Tn ą n q ď PpT n`1 ´T n ą n q " e ´ nλpxT n q .

We take n " ´logp0.05q λpx Tn q . Note that n is in fact adapted to the inter jump time T n`1 ´T n .

Numerical results

In this section, we numerically compare the three different jump rate bounds (I.8), (I.9), (I.10) and we use Algorithm 1 to simulate a variable of biological interest, the spiking time.

Numerical comparison of the jump rate bounds

In this part, we first show trajectories of the two stochastic Hodgkin-Huxley models obtained with Algorithm 1 using the optimal bound with the partition pP k q kPN . Then, we collect in several tables and graphs the results concerning the computation time and the rate of acceptance of both models for the three types of bounds.

In the sequel, for ą 0, the optimal-Q (respectively optimal-P ) bound denotes the optimal bound using the partition pQ k q kPt0,1u (respectively pP k q kPN ), see section 1.7.1. All numerical values are obtained from a classic Monte Carlo method with 100 000 trials. Parameters of the models are given in section 1.6.1 (the same set of parameters is used for both models). We denote by N chan the common number of sodium and potassium channels, N chan " N Na " N K . The input current is Iptq " 301 r1,2s ptq. The computation time represents the time needed to simulate one path of the PDMP on [0,10]. The simulations were carried out on a computer with a processor Intel Core i5-4300U CPU @ 1.90GHz ˆ4. The code is written in C++ language.

Each rows of Figure 2 shows fifty trajectories of the subunit and the channel model with a different number of channels, N chan " 30, 300, 3000. It allows to see the different behaviours of the two models. In each rows, we see that the behaviour of the channel model is more erratic than the subunit model one (except for the third row where the two models have approximately the same behaviour). Differences in trajectories are mainly explained by two distinct modelling approaches of the conductance of the membrane. In the subunit model, we consider that the conductance at time t depends on the fraction of open gates at time t, thus, the equation of the voltage changes rapidly at the same time as the state of the gates. In the channel model, the conductance at time t depends on the fraction of active channels at time t, therefore, a change in the state of the gates may not imply a change in the voltage's equation. Thus, the dynamic of the membrane potential changes less than in the first case and trajectories are more irregular. We also see that, the higher the number of channels the smaller the differences in trajectories. It illustrates a result in [START_REF] Pakdaman | Fluid limit theorems for stochastic hybrid systems with application to neuron models[END_REF] where the authors showed that the deterministic limit (when the number of channels goes to infinity) of the variable V of both models are the same. However, it seems that the convergence speed is not the same.

Concerning the optimal-P bound, we see on goes to 0 (proposition 1.5.4). Figure 3 also shows that, for fixed N chan , the computation time varies with . For both models, the value of which minimizes the computation time is inversely proportional to the parameter N chan . Let pN chan q be that optimal value of . For increasing ą pN chan q, the rate of acceptance decreases, thus, we have to simulate more and more uniform pseudo-random variables and the computation time increases. For decreasing ă pN chan q, the rate of acceptance increases but the computation time too because of the increasing number of iterations needed to compute the integrated jump rate bound and its inverse. Thus, one has to take a small (respectively large) when the jumps frequency is high (respectively low).

We see on Figure 4 that, the smaller the closer the rate of acceptance of the optimal-Q bound to the one of the local bound. Note that the value of which maximises the rate of acceptance is the same which minimizes the computation time. As in the case of the optimal-P bound, the optimal value of is inversely proportional to N chan . For decreasing ă pN chan q, the rate of acceptance decreases and the computation time increases because we mainly use the local bound, λloc px Tn q, instead of the smaller bound, sup sPr0, r λpψps, x Tn qq, in the computation of Λopt, and p Λopt, q ´1 (see section 1.7.1). For increasing ą pN chan q, the rate of acceptance decreases and the computation time increases because the bound sup sPr0, r λpψps, x Tn qq becomes bigger and bigger.

By comparing the optimal-Q pN chan q and the optimal-P pN chan q bound we see that the first one is the most efficient in term of computation time, it is also the simplest to implement. However, this bound does not exist when the jump rate or the flow is not bounded. In this case, one may use the optimal-P pN chan q bound which is efficient too but a little bit more complex to implement.

From Figures 3 and4, we see that for both the optimal-Q and the optimal-P bounds the best computation time is achieved for p30q " 0.1, p300q " 0.01 and p3000q " 0.005. We saw in sections 1.6.2 and 1.6.2 that the subunit model and the channel model share the same jump rate. For both models, the maximum value of the inter-jump times is of order 10 ´1 for N chan " 30, 10 ´2 for N chan " 300 and 10 ´3 for N chan " 3000. It coincides with the values pN chan q which, in this case, confirm that the optimal computation time is obtained for of order max n |T n`1 ´Tn |.

Tables I.1-I.3 show results of the computation time and of the rate of acceptance of the thinning algorithm for the global, local and optimal-Q n bounds using both the channel and the subunit models with different values of the parameter N chan . For both models and for all the studied values of N chan , the computation time using the optimal bounds (Q pN chan q ,P pN chan q and Q n ) is better than the one obtained with both the global and local bounds. Note that the optimal-Q n bound is more efficient than the optimal-P pN chan q bound to simulate the subunit model. Since the computation of n requires the computation of the jump rate bound at each iterations, the optimal-Q n bound will be more efficient when the jumps frequency is low. Thus, for all studied values of N chan , the optimal-Q pN chan q bound is the most efficient.

The differences of computation time between the subunit and the channel model are explained by the fact that the numerical computation of the flow of the channel model is cheaper than the one of the subunit model. Note that the computation time using the three bounds (global, local, optimal) increases linearly as a function of N chan .

In the ODE algorithm [START_REF] Riedler | Almost sure convergence of numerical approximations for Piecewise Deterministic Markov Processes[END_REF], we need to adapt the time step h when the parameter N chan varies, otherwise, we do not simulate the expected trajectories of the models. Thinning algorithm in the channel model speeds up the simulation by a factor 3 compared to the ODE method whereas in the subunit model the factor is approximately 1. Such a difference is explained by the fact that the ratio of the computation times between the flows of the subunit and the channel (for thinning algorithm) is bigger than the ratio of the computation times between the vector fields of the subunit and the channel (for ODE algorithm).

Despite the complexity of the optimal bound compared to the two others, it is the 

Spiking times

Bio-scientists believe that the timing of action potentials is one of the characteristics of the nervous system which carries the most of information. It has been shown experimentally [START_REF] Verveen | Fluctuation Phenomena in Nerve Mebrane[END_REF] that if a neuron is repeatedly stimulated by identical pulses, both the amplitude and the timing of the action potentials is variable. In the sequel we numerically compare the mean value of the spiking time of the subunit and channel model to the one of the deterministic Hodgkin-Huxley model. Let px t q be the subunit model or the channel model defined on a filtered probability space pΩ, F, F t , P x q. We consider that the stimulation is a monophasic current which produces only one action potential within a given time window r0, T s as in Figure I.1. We suppose that a spike occurs when the membrane potential exceeds a certain value noted ν. Let T be the spiking time that we define by

T " inftt P r0, T s : V t ě νu.
We are interested in the numerical computation of the mean and the standard deviation of T as a function of the number of channels. For low values of the parameters N Na and N K a spike may never occur. In this case, T " T and we do not count these trajectories in the Monte Carlo procedure. Thus, we evaluate the mean value of the spiking time conditionally on having a spike, ErT |T ă T s, with the following estimator I M " p1{M q ř M k"1 T k where pT k q are iid realizations of T conditionally on tT ă T u and M denotes the sample size of the estimator. We define the proportion of spikes as follows. Consider that we simulate n independent trajectories of stochastic action potentials (with the subunit model or the channel model) on r0, T s. We define a sequence of independent random variables X 1 , . . . , X n as follows: for i " 1, . . . , n, X i " # 1 if there exits t P r0, T s such that V t ě ν, 0 if for all t P r0, T s, V t ă ν.

Then we define the proportion of spikes as 1{n ř n i"1 X i . It has been shown in [START_REF] Pakdaman | Fluid limit theorems for stochastic hybrid systems with application to neuron models[END_REF] that the deterministic limits of both the subunit (Hodgkin-Huxley of dimension four [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF]) and the channel model (Hodgkin-Huxley of dimension fourteen [START_REF] Pakdaman | Fluid limit theorems for stochastic hybrid systems with application to neuron models[END_REF]) are equivalent when the initial conditions satisfy a combinatorial relationship. We consider that, at time t " 0, all the gates of the subunit model are closed and all the channels of the channel model are in the corresponding state, i.e state tm 0 h 0 u for the sodium and tn 0 u for the potassium. These initial conditions satisfy the combinatorial relationship in [START_REF] Pakdaman | Fluid limit theorems for stochastic hybrid systems with application to neuron models[END_REF]. The initial conditions of both deterministic Hodgkin-Huxley models are also chosen so that they satisfy the binomial relation. Thus, the spiking time of these deterministic models is the same. In the simulations, we take T " 10, ν " 60, we consider that the stimulation is given by Iptq " 301 r1,2s ptq and that N Na " N K " N chan . In this case, the spiking time of the deterministic model is T deter " 2, 443.

Figure I.8 illustrates the convergence of the mean spiking time of both the subunit and the channel model when the number of channels goes to infinity. For N chan " 1500 we see that the dispersion of the spiking time around its deterministic limit is approximately of order 10 ´1 ms for the subunit model and of order 10 ´2 ms for the channel model. Thus, a membrane patch with a number of channels superior to 1500 mimics the behaviour of the deterministic Hodgkin-Huxley model. For a number of channels inferior to 500, we see from Figure I.7 that the neuron may not respond to the stimuli. In this case, the dispersion of the spiking time ranges from approximately 10 ´1 and almost 1 ms which is consistent with the observations in [START_REF] Verveen | Fluctuation Phenomena in Nerve Mebrane[END_REF]. Since the simulation is exact the estimator I M is unbiased and errors due to the Monte Carlo procedure are of order of M ´1{2 .

Appendix

In this section we compute the rate of acceptance for the thinning of Poisson processes. Let N and Ñ be two Poisson processes with jump rate λ and λ respectively and jump times pT n q ně1 and p Tn q ně1 respectively. Assume that N is the thinning of Ñ . Since Pp Ñt " 0q " e ´şt 0 λpsqds , we define the rate of acceptance by ErN t { Ñt | Ñt ě 1s. In the case of Poisson processes this indicator takes the following form

Er N t Ñt | Ñt ě 1s " ş t 0 λpsqds ş t 0 λpsqds . (I.19)
To get (I. [START_REF] Crudu | Convergence of stochastic gene networks to hybrid piecewise deterministic processes[END_REF]), we use the following result which is similar to the n-uplet of non-ordering uniform variables in the Poisson homogeneous case f p T1 ,..., Tn| Ñt"nq pt 1 , . . . , t n q " λpt 1 q . . . λpt n q ´şt 0 λpsqds ¯n 1 pt 1 ,...,tnqPr0,ts n . (I.20) Equation (I.20) gives an explicit formula of the conditional density of the vector p T1 , . . . , Tn | Ñt " nq. Note that we do not consider any ordering in points p Tk q 0ďkďn and that conditionally on t Ñt " nu, the points T1 , . . . , Tn are independent with density ´λpsq{ ş t 0 λpuqdu ¯1sPr0,ts . By noting that, for k ď n,

tN t " k| Ñt " nu " ď 1ďi 1 ă...ăi k ďn " č iPti 1 ,...,i k u tU i ď λ λ p Ti q| Ñt " nu č iPti 1 ,...,i k u c tU i ą λ λ p Ti q| Ñt " nu ı ,
where pU i q are independent variables uniformly distributed in r0, 1s, independent of p Ti q, we deduce that

PpN t " k| Ñt " nq " ˆn k ˙P ˆUi ď λ λ p Ti q| Ñt " n ˙k P ˆUi ą λ λ p Ti q| Ñt " n ˙n´k .
(I.21) Thus, the law of the number of selected points is binomial conditionally on the number of generated points. With (I.20) and (I.21), one is able to determine that LpN t | Ñt " nq " Bpn, pq, with p " ş t 0 λpsqds{ ş t 0 λpsqds. Then, we find (I. [START_REF] Crudu | Convergence of stochastic gene networks to hybrid piecewise deterministic processes[END_REF]) by using that

Er N t Ñt | Ñt ě 1s " 1 Pp Ñt ě 1q ÿ ně1 1 n ErN t | Ñt " nsPp Ñt " nq.

Introduction

In this paper we are interested in the approximation of the trajectories of PDPs. We establish strong error estimates for a PDP and a weak error expansion for a PDMP. Then we study the application of the Multilevel Monte Carlo (MLMC) method in order to approximate expectations of functional of PDMPs. Our motivation comes from Neuroscience where the whole class of stochastic conductance-based neuron models can be interpreted as PDMPs. The response of a neuron to a stimulus, called neural coding, is considered as a relevant information to understand the functional properties of such excitable cells. Thus many quantities of interest such as mean first spike latency, mean interspike intervals and mean firing rate can be modelled as expectations of functionals of PDMPs.

PDPs have been introduced by Davis in [START_REF] Davis | Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models[END_REF] as a general class of stochastic processes characterized by a deterministic evolution between two successive random times. In the case where the deterministic evolution part follows a family of Ordinary Differential Equations (ODEs) the corresponding PDP enjoys the Markov property and is called a PDMP. The distribution of a PDMP is thus determined by three parameters called the characteristics of the PDMP: a family of vector fields, a jump rate (intensity function) and a transition measure. We consider first a general PDP px t q which is not necessarily Markov on a finite time interval r0, T s for which the flow is not explicitly solvable. Approximating its flows by the classical Euler scheme and using our previous work [START_REF] Lemaire | Exact simulation of the jump times of a class of Piecewise Deterministic Markov Processes[END_REF], we build a thinning algorithm which provides us with an exact simulation of an approximation of px t q that we denote px t q. The process px t q is a PDP constructed by thinning of a homogeneous Poisson process which enjoys explicitly solvable flows. Actually this thinning construction provides a whole family of approximations indexed by the time step h ą 0 of the Euler scheme. We prove that for any real valued smooth function F the following strong estimate holds

D V 1 ą 0, V 2 ą 0, Er|F px T q ´F px T q| 2 s ď V 1 h `V2 h 2 . (II.1)
Moreover if px t q is a PDMP the following weak error expansion holds

D c 1 ą 0, ErF px T qs ´ErF px T qs " c 1 h `oph 2 q. (II.2)
The estimate (II.1) is mainly based on the construction of the couple px t , x t q and on the fact that the Euler scheme is of order 1 this is why it is valid for a general PDP and its Euler scheme. On the contrary, the estimate (II.2) relies on properties which are specific to PDMPs such as the Feynman-Kac formula.

The MLMC method relies simultaneously on estimates (II.1) and (II.2) that is why we study its application to the PDMP framework instead of the more general PDP one. MLMC extends the classical Monte Carlo (MC) method which is a very general approach to estimate expectations using stochastic simulations. The complexity (i.e the number of operations necessary in the simulation) associated to a MC estimation can be prohibitive especially when the complexity of an individual random sample is very high. MLMC relies on repeated independent random samplings taken on different levels of accuracy which differs from the classical MC method. MLMC can then greatly reduces the complexity of the classical MC by performing most simulations with low accuracy but with low complexity and only few simulations with high accuracy at high complexity. MLMC have been introduced by S. Heinrich in [START_REF] Heinrich | Multilevel Monte Carlo methods[END_REF] and developed by M. Giles in [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF]. The MLMC estimator has been efficiently used in various fields of numerical probability such as SDEs [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF], Markov chains [START_REF] Anderson | Multilevel Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics[END_REF], [START_REF] Anderson | Complexity of Multilevel Monte Carlo tau-leaping[END_REF], [START_REF] Glynn | Exact estimation for markov chain equilibrium expectations[END_REF], Lévy processes [START_REF] Ferreiro-Castilla | Multilevel Monte Carlo simulation for Lévy processes based on the Wiener-Hopf factorisation[END_REF], jump diffusions [START_REF] Xia | Multilevel Path Simulation for Jump-Diffusion SDEs[END_REF], [START_REF] Dereich | Multilevel Monte Carlo algorithms for Lévy-driven SDEs with Gaussian correction[END_REF], [START_REF] Dereich | A Multilevel Monte Carlo algorithm for Lévydriven Stochastic Differential Equations[END_REF] or nested Monte Carlo [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF], [START_REF] Giorgi | Théorémes limites pour estimateurs Multilevel avec et sans poids[END_REF]. See [START_REF] Giles | Multilevel Monte Carlo methods[END_REF] for more references. To the best of our knowledge, application of MLMC to PDMPs has not been considered.

For the sake of clarity, we describe here the general improvement of MLMC. We are interested in the estimation of ErXs where X is a real valued square integrable random variable on a probability space pΩ, F, Pq. When X can be simulated exactly the classical MC estimator p1{N q ř N k"1 X k with X k , k ě 1 independent random variables identically distributed as X, provides an unbiased estimator. The associated L 2 -error satisfies Y ´ErXs 2 2 " VarpY q " 1 N VarpXq. If we quantify the precision by the L 2 -error, then a user-prescribed precision 2 ą 0 is achieved for N " Op ´2q so that in this case the global complexity is of order Op ´2q. Assume now that X cannot be simulated exactly (or cannot be simulated at a reasonable cost) and that we can build a family of real valued random variables pX h , h ą 0q on pΩ, F, Pq which converges weakly and strongly to X as h Ñ 0 in the following sense

D c 1 ą 0, α ą 0, ErX h s ´ErXs " c 1 h α `oph 2α q, (II.3) and D V 1 ą 0, β ą 0, Er|X h ´X| 2 s ď V 1 h β . (II.4)
Assume moreover that for h ą 0 the random variable X h can be simulated at a reasonable complexity (the complexity increases as h Ñ 0). The classical MC estimator now consists in a sequence of random variables

Y " 1 N N ÿ k"1 X k h , (II.5)
where X k h , k ě 1 are independent random variables identically distributed as X h . The bias and the variance of the estimator (II.5) are respectively given by ErY s ´ErXs " ErX h s ´ErXs » c 1 h α and VarpY q " 1 N VarpX h q. From the strong estimate (II.4) we have that VarpX h q Ñ VarpXq as h Ñ 0 so that VarpX h q is asymptotically a constant independent of h. If as above we quantify the precision by the L 2 -error and use that Y ´ErXs 2 2 " pErY s ´ErXsq 2 `VarpY q, we obtain that the estimator (II.5) achieves a user-prescribed precision 2 ą 0 for h " Op 1{α q and N " Op ´2q so that the global complexity of the estimator is now Op ´2´1 α q.

The MLMC method takes advantage of the estimate (II.4) in order to reduce the global complexity. Let us fix L ě 2 and consider for l P t1, . . . , Lu a geometrically decreasing sequence ph l , 1 ď l ď Lq where h l " h ˚M ´pl´1q for fixed h ˚ą 0 and M ą 1. The indexes l are called the levels of the MLMC and the complexity of X h l increases as the level increases. Thanks to the weak expansion (II.3), the quantity ErX h L s approximates ErXs. Using the linearity of the expectation the quantity ErX h L s can be decomposed over the levels l P t1, . . . , Lu as follows

ErX h L s " ErX h ˚s `L ÿ l"2
ErX h l ´Xh l´1 s.

(II.6)

For each level l P t1, . . . , Lu, a classical MC estimator is used to approximate ErX h l Xh l´1 s and ErX h ˚s. At each level, a number N l ě 1 of samples are required and the key point is that the random variables X h l and X h l´1 are assumed to be correlated in order to make the variance of X h l ´Xh l´1 small. Considering at each level l " 2, . . . , L independent couples pX h l , X h l´1 q of correlated random variables, the MLMC estimator then reads

Y " 1 N 1 N 1 ÿ k"1 X k h ˚`L ÿ l"2 1 N l N l ÿ k"1 pX k h l ´Xk h l´1 q, (II.7)
where pX k h ˚, k ě 1q is a sequence of independent and identically distributed random variables distributed as X h ˚and ´pX k h l , X k h l´1 q, k ě 1 ¯for l " 2, . . . , L are independent sequences of independent copies of pX h l , X h l´1 q and independent of pX k h ˚q. It is known, see [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF] or [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF], that given a precision ą 0 and provided that the family pX h , h ą 0q satisfies the strong and weak error estimates (II.4) and (II.3), the multilevel estimator (II.7) achieves a precision Y ´ErXs 2 2 " 2 with a global complexity of order Op ´2q if β ą 1, Op ´2plogp qq 2 q if β " 1 and Op ´2´p1´βq{α q if β ă 1. This complexity result shows the importance of the parameter β. Finally, let us mention that in the case β ą 1 it possible to build an unbiased multilevel estimator, see [START_REF] Glynn | Unbiased Estimation with Square Root Convergence for SDE models[END_REF].

Estimates (II.1) and (II.2) suggest to investigate the use of the MLMC method in the PDMP framework with β " 1 and α " 1. Letting X " F px T q and X h " F px T q for h ą 0 and F a smooth function, we define a MLMC estimator of ErF px T qs just as in (II.7) (noted Y MLMC in the paper) where the processes involved at the level l are correlated by thinning. Since these processes are constructed using two different time steps, the probability of accepting a proposed jump time differs from one process to the other. Moreover the discrete components of the post-jump locations may also be different. This results in the presence of the term V 1 h in the estimate (II.1). In order to improve the convergence rate (to increase the parameter β) in (II.1), we show that for a given PDMP px t q we have the following auxiliary representation ErF px T qs " ErF px T q RT s.

(II.8)

The PDMP px t q and its Euler scheme are such that their discrete components jump at the same times and in the same state. p Rt q is a process which depends on px t , t P r0, T sq.

The representation (II.8) is inspired by the change of probability introduced in [START_REF] Xia | Multilevel Path Simulation for Jump-Diffusion SDEs[END_REF] and is actually valid for a general PDP (Proposition 2.2.2) so that ErF px T qs " ErF px T q RT s where px t q is the Euler scheme corresponding to px t q and p Rt q is a process which depends on px t , t P r0, T sq. Letting X " F px T q RT and X h " F px T q RT we define a second MLMC estimator (noted Ỹ MLMC ) where now the discrete components of the Euler schemes px t q involved at the level l always jump in the same states and at the same times. To sum up, the first MLMC estimator we consider (Y MLMC ) derives from (II.6) where the corrective term at level l is ErF px h l T q´F px

h l´1 T
qs whereas the corrective term of the second estimator ( Ỹ MLMC ) is ErF px h l T q Rh l T ´F px

h l´1 T q Rh l´1 T s.
For readability, we no longer write the dependence of the approximations on the time step. For the processes pF px t q Rt q and pF px t q Rt ) we show the following strong estimate

D Ṽ1 ą 0, Er|F px T q RT ´F px T q RT | 2 s ď Ṽ1 h 2 ,
so that we end up with β " 2 and the complexity goes from a Op ´2plogp qq 2 q to a Op ´2q.

As an application we consider the PDMP version of the 2-dimensional Morris-Lecar model, see [START_REF] Pakdaman | Fluid limit theorems for stochastic hybrid systems with application to neuron models[END_REF], which takes into account the precise description of the ionic channels and in which the flows are not explicit. Let us mention [START_REF] Benaïm | Quantitative ergodicity for some switched dynamical systems[END_REF] for the application of quantitative bounds for the long time behavior of PDMPs to a stochastic 3-dimensional Morris-Lecar model. The original deterministic Morris-Lecar model has been introduced in [START_REF] Morris | Voltage oscillations in the barnacle giant muscle fiber[END_REF] to account for various oscillating states in the barnacle giant muscle fiber. Because of its low dimension, this model is among the favourite conductance-based models in computational Neuroscience. Furthermore, this model is particularly interesting because it reproduces some of the main features of excitable cells response such as the shape, amplitude and threshold of the action potential, the refractory period. We compare the classical MC and the MLMC estimators on the 2-dimensional stochastic Morris-Lecar model to estimate the mean value of the membrane potential at fixed time. It turns out that in the range of our simulations the MLMC estimator outperforms the MC one. It suggests that MLMC estimators can be used successfully in the framework of PDMPs. As mentioned above, the quantities of interest such as mean first spike latency, mean interspike intervals and mean firing rate can be modelled as expectations of path-dependent functional of PDMPs. This setting can then be considered as a natural extension of this work.

The paper is organised as follows. In section 2, we construct a general PDP by thinning and we give a representation of its distribution in term of the thinning data (Proposition 1). In section 3, we establish strong error estimates (Theorems 1-2). In section 4, we establish a weak error expansion (Theorem 3). In section 5, we compare the efficiency of the classical and the multilevel Monte Carlo estimators on the 2-dimensional stochastic Morris-Lecar model.

Piecewise Deterministic Process by thinning 2.2.1 Construction

In this section we introduce the setting and recall some results on the thinning method from our previous paper [START_REF] Lemaire | Exact simulation of the jump times of a class of Piecewise Deterministic Markov Processes[END_REF]. Let E :" Θ ˆRd where Θ is a finite or countable set and d ě 1. A piecewise deterministic process (PDP) is defined from the following characteristics

• a family of functions pΦ θ , θ P Θq such that Φ θ : R `ˆR d Ñ R d for all θ P Θ,

• a measurable function λ : E Ñs0, `8r,

• a transition measure Q : E ˆBpEq Ñ r0, 1s.

We denote by x " pθ, νq a generic element of E. We only consider PDPs with continuous ν-component so that for A P BpΘq and B P BpR d q, we write Qpx, A ˆBq " Qpx, Aqδ ν pBq.

(II.9)

Then it holds that for all measurable function f : E Ñ R, for all x " pθ, νq P E and for all t ě 0

ż E f pi, zqQppθ, Φ θ pt, νqq, didzq " ÿ iPΘ f pi, Φ θ pt, νqqQppθ, Φ θ pt, νqq, iq.
Our results do not depend on the dimension of the variable in R d so we restrict ourself to R (d " 1) for the readability. We work under the following assumption Assumption 2.2.1. There exists λ ˚ă `8 such that, for all x P E, λpxq ď λ ˚.

In [START_REF] Lemaire | Exact simulation of the jump times of a class of Piecewise Deterministic Markov Processes[END_REF] we considered a general upper bound λ ˚. In the present paper λ ˚is constant (see Assumption 2.2.1). Let pΩ, F, Pq be a probability space on which we define 1. an homogeneous Poisson process pN t , t ě 0q with intensity λ ˚(given in Assumption 2.2.1) whose successive jump times are denoted pT k , k ě 1q. We set T 0 " 0.

2. two sequences of iid random variables with uniform distribution on r0, 1s, pU k , k ě 1q and pV k , k ě 1q independent of each other and independent of pT k , k ě 1q.

Given T ą 0 we construct iteratively the sequence of jump times and post-jump locations pT n , pθ n , ν n q, n ě 0q of the E-valued PDP px t , t P r0, T sq that we want to obtain in the end using its characteristics pΦ, λ, Qq. Let pθ 0 , ν 0 q P E be fixed and let T 0 " 0. We construct T 1 by thinning of pT k q, that is

T 1 :" T τ1 , (II.10)
where τ 1 :" inf tk ą 0 : U k λ ˚ď λpθ 0 , Φ θ 0 pT k , ν 0 qqu . (II.11)

We denote by |Θ| the cardinal of Θ (which may be infinite) and we set Θ " tk 1 , . . . , k |Θ| u.

For j P t1, . . . , |Θ|u we introduce the functions a j defined on E by a j pxq :"

j ÿ i"1
Qpx, tk i uq, @x P E. (II.12)

By convention, we set a 0 :" 0. We also introduce the function H defined by Hpx, uq :"

|Θ| ÿ i"1
k i 1 a i´1 pxqăuďa i pxq , @x P E, @u P r0, 1s.

For all x P E, Hpx, .q is the inverse of the cumulative distribution function of Qpx, .q (see for example [START_REF] Devroye | Non-uniform random variate generation[END_REF]). Then, we construct pθ 1 , ν 1 q from the uniform random variable V 1 and the function H as follows

pθ 1 , ν 1 q " `H `pθ 0 , Φ θ 0 pT τ1 , ν 0 qq, V 1 ˘, φ θ 0 pT τ1 , ν 0 q ˘, " pH ppθ 0 , Φ θ 0 pT 1 , ν 0 qq, V 1 q , φ θ 0 pT 1 , ν 0 qq .
Thus, the distribution of pθ 1 , ν 1 q given pτ 1 , pT k q kďτ 1 q is Qppθ 0 , Φ θ 0 pT τ1 , ν 0 qq, .q or in view of (II.9), ÿ kPΘ Q `pθ 0 , Φ θ 0 pT τ1 , ν 0 qq, tku ˘δpk,φθ 0 pT τ1 ,ν 0 qq .

For n ą 1, assume that `τn´1 , pT k q kďτ n´1 , pθ n´1 , ν n´1 q ˘is constructed. Then, we construct T n by thinning of pT k q conditionally to `τn´1 , pT k q kďτ n´1 , pθ n´1 , ν n´1 q ˘, that is

T n :" T τn ,
where

τ n :" inf ! k ą τ n´1 : U k λ ˚ď λpθ n´1 , Φ θ n´1 pT k ´T τn´1 , ν n´1 qq
) .

Then, we construct pθ n , ν n q using the uniform random variable V n and the function H as follows

pθ n , ν n q :" ´H ´pθ n´1 , Φ θ n´1 pT τn ´T τn´1 , ν n´1 qq, V n ¯, Φ θ n´1 pT τn ´T τn´1 , ν n´1 q " `H `pθ n´1 , Φ θ n´1 pT n ´Tn´1 , ν n´1 qq, V n ˘, Φ θ n´1 pT n ´Tn´1 , ν n´1 q ˘.
We define the PDP x t for all t P r0, T s from the process pT n , pθ n , ν n qq by

x t :" pθ n , Φ θn pt ´Tn , ν n qq , t P rT n , T n`1 r. (II.13) Thus, x Tn " pθ n , ν n q and x Tn " pθ n´1 , ν n q. We also define the counting process associated to the jump times N t :" ř ně1 1 Tnďt .

Approximation of a PDP

In applications we may not know explicitly the functions Φ θ . In this case, we use a numerical scheme Φ θ approximating Φ θ . In this paper, we consider schemes such that there exits positive constants C 1 and C 2 independent of h and θ such that sup tPr0,T s |Φ θ pt, ν 1 q ´Φθ pt, ν 2 q| ď e C 1 T |ν 1 ´ν2 | `C2 h, @θ P Θ, @pν 1 , ν 2 q P R 2 . (II.14)

To the family pΦ θ q we can associate a PDP constructed as above that we denote px t q. We emphasize that there is a positive probability that px t q and px t q jump at different times and/or in different states even if they are both constructed from the same data pN t q, pU k q and pV k q. However if the characteristics pΦ, λ, Qq of a PDP px t q are such that λ and Q depend only on θ, that is λpxq " λpθq and Qpx, .q " Qpθ, .q for all x " pθ, νq P E, then its embedded Markov chain p Tn , p θn , νn q, n ě 0q is such that p θn , n ě 0q is an autonomous Markov chain with kernel Q and p Tn , n ě 0q is a counting process with intensity λt " ř ně0 λp θn q1 Tnďtă Tn`1 . In particular, both p θn q and pτ n q do not depend on Φ. The particular form of the characteristics λ and Q implies that the PDP px t q and its approximation px t q are correlated via the same process pτ n , θn q. In other words, these processes always jump exactly at the same times and their θ-component always jump in the same states. Such processes px t q are easier theoretically as well as numerically than the general case. They will be useful for us in the sequel.

The following lemma (which is important for several proofs below) gives a direct consequence of the estimate (II.14). Lemma 2.2.1. Let pΦ θ q and pΦ θ q satisfying (II.14). Let pt n , n ě 0q be an increasing sequence of non-negative real numbers with t 0 " 0 and let pα n , n ě 0q be a sequence of Θ-valued components. For a given ν P R let us define iteratively the sequences pβ n , n ě 0q and pβ n , n ě 0q as follows "

β n " Φ α n´1 pt n ´tn´1 , β n´1 q, β 0 " ν, and

" β n " Φ α n´1 pt n ´tn´1 , β n´1 q, β 0 " ν.
Then, for all n ě 1 we have 

|β n ´βn | ď e C

Thinning representation for the marginal distribution of a PDP

The sequence pT n , pθ n , ν n q, n ě 0q is an R `ˆE-valued Markov chain with respect to its natural filtration F n and with kernel K defined by K ´pt, θ, νq, dudjdz ¯:" 1 uět λpθ, Φ θ pu´t, νqqe ´şu´t 0 λpθ,Φ θ ps,νqqds Qppθ, Φ θ pu´t, νqq, djdzqdu .

(II.17) That is to say, for n ě 0, the law of the random variable T n given F n´1 admits the density given for u ě 0 by

1 uěTn λpθ n´1 , Φ θ n´1 pu ´Tn , ν n´1 qqe ´şu´Tn 0 λpθ n´1 ,Φps,ν n´1 qqds , (II.18)
and the law of pθ n , ν n q knowing F n´1 and T n is given, in view of II.9, by the following probability measure Q `pθ n´1 , Φ θ n´1 pTn´T n´1 ,ν n´1 q q, . ˘δΦ θ n´1 pTn´T n´1 ,ν n´1 q p.q.

(II. [START_REF] Crudu | Convergence of stochastic gene networks to hybrid piecewise deterministic processes[END_REF] The marginal distribution of x t can then be expressed for n P N, for fixed x 0 " x P E and for any bounded measurable function g using (II.13), the intensity λ via (II. [START_REF] Connor | Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma[END_REF] as follows where, for short, ν n " Φ θ n´1 pT n ´Tn´1 , ν n´1 q. We can iterate on II.20 using successive conditioning and the kernel II.17 to finally obtain

E
E rgpx t q1 Nt"n s " ż pR `ˆEq n gpi n , Φ in pt ´tn , z n qqe ´şt´tn 0 λpin,Φ in ps,znqqds
Kpp0, xq, dt 1 di 1 dz 1 q...Kppt n´1 , i n´1 , z n´1 q, dt n di n dz n q.

However since we have constructed px t q by thinning, we would prefer to express the distribution of x t using the upper bound λ Then, using the partition Y pě0 tN t " pu, the fact that tN t " pu " tT p ď t ă T p`1 u, the density of pT 1 , . . . , T p q given T p`1 and the fact that T p`1 is gamma distributed, we are able to show that Proposition 2.2.1 allows us to identify corrective terms (which should be interpreted as Radon-Nikodym derivatives) in order to express the marginal distribution of a PDP px t q with characteristics pΦ, λ, Qq in term of a PDP px t q with the same flow Φ and simplified jump characteristics p λ, Qq. These corrective terms are defined in Proposition 2.2.2. Proposition 2.2.2 states a change of probability in which we change the jump mechanism of a PDP. We modify the intensity of a PDP through the acceptance and reject probabilities. The proposed representation of the marginal distribution will be used to construct an efficient MLMC estimator in section 2.5.2. Proposition 2.2.1. Let px t , t P r0, T sq be a PDP with characteristics pΦ, λ, Qq constructed in section 2.2.1. Let n and m be integers such that n ď m and let p 1 , . . . , p n be an ordered sequence of integers. Then, for all bounded measurable function g we have Ergpx t q1 tNt"nu s "

ÿ 1ďp 1 ăp 2 ....ăpnďm ÿ θPΘ ErQpx T pn´1
, θq gpθ, Φ θ pt ´T pn , ν n qq

1 tτ i "p i ,1ďiďn,N t "mu m ź q"pn`1 p1 ´λpθ, Φ θ pT q ´T pn , ν n qq λ ˚qs.
The following proposition and its corollaries will be useful in section 2.3. In their statements px t , t P r0, T sq and px t , t P r0, T sq are PDPs constructed in section 2.2.1 using the same data pN t q, pU k q, pV k q and the same initial point x P E but with different sets of characteristics.

The following results are inspired by the change of probability introduced in [START_REF] Xia | Multilevel Path Simulation for Jump-Diffusion SDEs[END_REF] where the authors are interested in the application of the MLMC to jump-diffusion SDEs with state-dependent intensity. In our case, we need a change of probability which guarantees not only that the processes jump at the same times but also in the same states.

Proposition 2.2.2. Let us denote by pΦ, λ, Qq (resp. pΦ, λ, Qq) the characteristics of px t q (resp. px t q). Let us assume that λ and Q depend only on θ, that Q is always positive and 0 ă λpθq ă λ ˚for all θ P Θ. For all integer n, let us define on the event t Ñt " nu,

Zn " Qpx T τn , θn q Qp θn´1 , θn q ˜ˆ1 ´λp θn q λ ˚˙N t ´τn ¸´1 N t ź q"τn`1

˜1

´λp θn , Φ θn pT q ´T τn , νn qq λ ˚¸, the product being equal to 1 if τn " N t and for all 1 ď ď n ´1,

Z " Qpx T τ , θ q Qp θ ´1, θ q ˜λp θ q λ ˚ˆ1 ´λp θ q λ ˚˙τ `1´τ ´1 ¸´1 λp θ , Φ θ pT τ `1 ´T τ , ν qq λ ˚τ `1´1 ź q"τ `1 ˜1 ´λp θ , Φ θ pT q ´T τ , ν qq λ ˚¸, Z0 " ˜λp θ0 q λ ˚ˆ1 ´λp θ0 q λ ˚˙τ 1 ´1¸´1 λp θ0 , Φ θ0 pT τ1 , ν0 qq λ ˚τ 1 ´1 ź q"1 ˜1 ´λp θ0 , Φ θ0 pT q , ν0 qq λ ˚¸, Rn " Zn n´1 ź "0 Z .
Then, for all n ě 0 we have Ergpx t q Rn 1 t Ñt"nu s " Ergpx t q 1 tNt"nu s. We assume that Q is always positive and that 0 ă λpxq ă λ ˚for all x P E. Let pµ n q be the sequence defined by µ 0 " ν and µ n " Φθ n´1 pT n ´Tn´1 , µ n´1 q for n ě 1. For all integer n, let us define on the event tN t " nu,

Zn " Q `pθ n´1 , µ n q, θ n Q`p θ n´1 , ν n q, θ n ˘¨N t ź q"τn`1 1 ´λ`θ n , Φ θn pT q ´T τn , ν n q λ˚' ´1 N t ź q"τn`1 ˜1 ´λ`θ n , Φθn pT q ´T τn , µ n q λ˚¸,
the products being equal to 1 if τ n " N t and for all 1 ď ď n ´1,

Z " Q `pθ ´1, µ q, θ Q`p θ ´1, ν q, θ ˘˜λ `θ , Φ θ pT τ `1 ´T τ , ν q λ˚τ `1´1 ź q"τ `1 ˜1 ´λ`θ , Φ θ pT q ´T τ , ν q λ˚¸¸´1 λ `θ , Φθ pT τ `1 ´T τ , µ q λ˚τ `1´1 ź q"τ `1 ˜1 ´λ`θ , Φθ pT q ´T τ , µ q λ˚¸, Z0 " ˜λ`θ 0 , Φ θ 0 pT τ1 , ν 0 q λ˚τ 1 ´1 ź q"1 ˜1 ´λ`θ 0 , Φ θ 0 pT q , ν 0 q λ˚¸¸´1 λ `θ0 , Φθ 0 pT τ1 , µ 0 q λ˚τ 1 ´1 ź q"1 ˜1 ´λ`θ 0 , Φθ 0 pT q , µ 0 q λ˚¸, Rn " Zn n´1 ź "0 Z .
Then, for all n ě 0 we have Erg `θn , Φθn pt ´Tn , µ n q ˘R n 1 tNt"nu s " Ergpx t q 1 t Ñt"nu s. The set tN t " n, τ i " p i , 1 ď i ď n, N t " mu is equivalent to the following -N t " m, -among the times T ˚ , 1 ď ď m exactly n are accepted by the thinning method they are the T pi , 1 ď i ď n, all the others are rejected. We proceed by induction starting from the fact that all the T q , p n `1 ď q ď m are rejected which corresponds to the event @ p n `1 ď q ď m, U q ą λpθ n , Φ θn pT q ´T pn , ν n qq λ ˚.

The random variable 1 tτ i "p i , 1ďiďnu depends on pθ , ν , 1 ď ď n ´1, T i , 1 ď i ď p n , U j , 1 ď j ď p n q where by construction ν " φ θ ´1 pT p ´T p ´1 , ν ´1q, θ " Hppθ ´1, ν q, V q which implies that pθ , ν , 1 ď ď n ´1q depend on pT i , 1 ď i ď p n´1 , U j , 1 ď j ď p n´1 , V k , 1 ď k ď n ´1q. Thus V n is independent of all the other random variables of thinning that are present in gpx t q1 tNt"n,τ i "p i , 1ďiďn, N t "mu . The conditional expectation of gpx t q1 tNt"n,τ i "p i , 1ďiďn,N t "mu w.r.t. the vector pT i , 1 ď i ď m `1, U j , 1 ď j ď m, V k , 1 ď k ď n ´1q is therefore an expectation indexed by this vector as parameters. Since the law of Hpx, V n q is Qpx, ¨q for all x P E we obtain for p 1 ă p 2 ă ... ă p n ď m,

Ergpx t q1 tNt"n,τ i "p i , 1ďiďn, N t "mu s " Er ÿ θPΘ Qpx T pn´1 , θq gpθ, Φ θ pt ´T pn , ν n qq F pθ, U j , 1 ď j ď m, T ˚ , 1 ď ď m `1, V k , 1 ď k ď n ´1qs, (II.21) with F pθ, U j , 1 ď j ď m, T ˚ , 1 ď ď m `1, V k , 1 ď k ď n ´1q " 1 tN t "m,τ i "p i , 1ďiďnu m ź q"pn`1 1 Uqą λpθ,Φ θ pT q ´T pn ,νnqq λ ˚.
In (II.21) the random variables pU q , p n `1 ď q ď mq are independent of the vector We can iterate on the latter form by first conditioning V n´1 by all the other r.v. and then conditioning pU q , p n´1 `1 ď q ď p n q by all the remaining ones and so on. However the terms that appear do not have the same structure since the U q correspond to a rejection for p n´1 `1 ď q ď p n ´1 whereas U pn corresponds to an acceptation. So that the next step yields

pT i , 1 ď i ď m `1, U j , 1 ď j ď p n , V k , 1 ď k ď n ´1q.
Ergpx t q1 tNt"n,τ i "p i , 1ďiďn, N t "mu s " ÿ αPΘ ÿ θPΘ ErQpx T pn´2 , αqQ ppα, ν n q, θq gpθ, Φ θ pt ´T pn , ν n qq1 tN t "m,τ i "p i , 1ďiďn´1u λpα, Φ α pT pn ´T pn´1 , ν n´1 qq λ ˚pn´1 ź q"p n´1 `1p1 ´λpα, Φ α pT q ´T pn´1 , ν n´1 qq λ ˚q m ź q"pn`1 p1 ´λpθ, Φ θ pT q ´T pn , ν n qq λ ˚qs, (II.22)
where we write ν n for simplicity keeping in mind that ν n " Φ θ n´1 pT pn ´T pn´1 , ν n´1 q " Φ θ n´1 pT pn ´T pn´1 , Φ θ n´2 pT pn´1 ´T pn´2 , ν n´2 qq " Φ α pT pn ´T pn´1 , Φ θ n´2 pT pn´1 ´T pn´2 , ν n´2 qq. We iterate the previous argument based on the use of (II.23) and we use the definition of Zn´1 to obtain Ergpx t q Rn 1 t Ñt"n,τi"pi, 1ďiďn, N t "mu s "

Moreover the previous arguments apply to Epgpx

t qf pθ i , ν i , 1 ď i ď n ´1, θ n , ν n , T k , 1 ď k ď mq 1 tNt"n,τ i "p i , 1ďiďn, N t "mu q and provide Ergpx t qf pθ i , ν i , 1 ď i ď n ´1, θ n , ν n , T k , 1 ď k ď mq 1 tNt"n,τ i "p i , 1ďiďn, N t "mu s " ÿ θPΘ ErQpx T pn´1 , θqgpθ, Φ θ pt ´T pn , ν n qqf pθ i , ν i , 1 ď i ď n ´1, θ, ν n , T k , 1 ď k ď mq 1 tN t "m,τ i "p i , 1ďiďnu m ź q"pn`1 p1 ´λpθ, Φ θ pT q ´T pn ,
ÿ αPΘ ÿ θPΘ ErQpx T pn´2 , αqQppα, νn q, θq gpθ, Φ θ pt ´T pn , νn qq n´2 ź "0 Z 1 tN t "m,τ i "p i , 1ďiďn´1u m ź q"pn`1 p1 ´λpθ, Φ θ pT q ´T pn , νn qq λ ˚q λpα, Φ α pT pn ´T pn´1 , νn´1 qq λ ˚pn´1 ź q"p n´1 `1p1
´λpα, Φ α pT q ´T pn´1 , νn´1 qq λ ˚qs,

where for short νn " φ α pT pn ´T pn´1 , νn´1 q and νn´1 " φ θn´2 pT pn´1 ´T pn´2 , νn´2 q. Comparing the latter expression to (II.22) and using an induction we conclude that Ergpx t q Rn 1 t Ñt"n,τi"pi, 1ďiďn, N t "mu s " Ergpx t q 1 tNt"n,τ i "p i ,1ďiďn,N t "mu s.

It remains to sum up on p i , 1 ď i ď n and m.

Strong error estimates

In this section we are interested in strong error estimates that we define as squared L 2 errors (mean squared errors) in order to respect the MLMC framework introduced in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF]. Below, we state the main assumptions and theorems of this section, the proofs are given in sections 2.3.2, 2.3.3 respectively. Assumption 2.3.1. For all θ P Θ and for all A P BpΘq, the functions ν Þ Ñ λpθ, νq and ν Þ Ñ Qppθ, νq, Aq are Lipschitz with constants L λ ą 0, L Q ą 0 respectively independent of θ. Theorem 2.3.1. Let Φ θ and Φ θ satisfying (II.14) and let px t , t P r0, T sq and px t , t P r0, T sq be the corresponding PDPs constructed in section 2.2.1 with x 0 " x 0 " x for some x P E. Assume that Θ is finite and that λ and Q satisfy Assumption 2.3.1. Then, for all bounded functions F : E Ñ R such that for all θ P Θ the function ν Þ Ñ F pθ, νq is L F -Lipschitz where L F is positive and independent of θ, there exists constants V 1 ą 0 and V 2 ą 0 independent of the time step h such that

E " |F px T q ´F px T q| 2 ‰ ď V 1 h `V2 h 2 .
Remark 2.3.1. When the numerical scheme Φ θ is of order p ě 1, which means that sup tPr0,T s |Φ θ pt, ν 1 q ´Φθ pt, ν 2 q| ď e 

C 1 T |ν 1 ´ν2 | `C2 h p we have E " |F px T q ´F px T q| 2 ‰ ď V 1 h p `V2
P Θ the function ν Þ Ñ F pθ, νq is L F -Lipschitz (L F ą 0), there exists a positive constant Ṽ1 independent of the time step h such that E " |F px T q RT ´F px T q RT | 2 ‰ ď Ṽ1 h 2 .
We now introduce the random variable τ : which will play an important role in the strong error estimate of Theorem 2.3.1 as well as in the identification of the coefficient c 1 in the weak error expansion in section 2.4 (see the proof of Theorem 2.4.1 in section 2.4.2).

Adding and subtracting a j _ a j in the the above sum yields

PpX " Xq ě |K| ÿ j"1 pa j _ a j ´aj´1 _ a j´1 q `|K| ÿ j"1 pa j ^aj ´aj _ a j q.
The first sum above is a telescopic sum. Since a |K| " a |K| " 1 and a 0 " a 0 " 0, we have

PpX " Xq ě 1 ´ř|K|´1 j"1 |a j ´aj |.

Lemma 2.3.2. Let pa n , n ě 1q and pb n , n ě 1q be two real-valued sequences. For all n ě 1, we have

n ź i"1 a i ´n ź i"1 b i " n ÿ i"1 pa i ´bi q n ź j"i`1 a j i´1 ź j"1 b j
Proof of Lemma 2.3.2. By induction.

Proof of Theorem 2.3.1

First, we write

E " |F px T q ´F px T q| 2 ‰ " E " 1 minpT τ : ,T τ : qďT |F px T q ´F px T q| 2 ı `E " 1 minpT τ : ,T τ : qąT |F px T q ´F px T q| 2 ı ": P `D,
where τ : is defined in Definition 2.3.1. The term P has the same behaviour with respect to the time step h as the probability that the discrete processes pT n , θ n q and pT n , θ n q differ on r0, T s. Moreover, the term D behaves like h 2 because the discrete processes pT n , θ n q and pT n , θ n q are equal on r0, T s. In the following we prove that P " Ophq and that D " Oph 2 q.

Step 1: estimation of P .

The function F being bounded we have P ď 4M 2 F P `minpT τ : , T τ : q ď T ˘where M F ą 0. Moreover, for k ě 1, τ

: " k ( " τ : ą k ´1( Ş pτ k , θ k q ‰ `τ k , θ k ˘(. Hence P `minpT τ : , T τ : q ď T ˘" ÿ kě1 E " 1 minpT k ,T k qďT 1 τ : "k ı " ÿ kě1 E " 1 minpT k ,T k qďT 1 τ : ąk´1 1 pτ k ,θ k q‰pτ k ,θ k q ı ď ÿ kě1 J k `2I k where J k :" E " 1 minpT k ,T k qďT 1 τ : ąk´1 1 τ k "τ k 1 θ k ‰θ k ı , I k :" E " 1 minpT k ,T k qďT 1 τ : ąk´1 1 τ k ‰τ k ı . (II.25)
We start with J k . First note that, for k ě 1, tτ k " τ k u " tT k " T k u and that on the event

tT k " T k u, we have minpT k , T k q " T k , so that J k " E " 1 T k ďT 1 τ : ąk´1 1 τ k "τ k 1 θ k ‰θ k ı
. We emphasize that it makes no difference in the rest of the proof if we choose minpT k , T k q " T k . Since tτ : ą k ´1u " Ş k´1 i"0 tpτ i , θ i q " pτ i , θ i qu, we can rewrite J k as follows

ÿ 1ďp 1 ă...ăp k α 1 ,...,α k´1 PΘ Er1 tτ i "τ i "p i ,1ďiďku 1 tθ i "θ i "α i ,1ďiďk´1u 1 T pk ďT 1 θ k ‰θ k s. (II.26)
By construction we have θ k " Hppθ k´1 , ν k q, V k q and θ k " Hppθ k´1 , ν k q, V k q. The random variable 1 tτ i "τ i "p i ,1ďiďku 1 tθ i "θ i "α i ,1ďiďk´1u 1 T pk ďT depends on the vector pU i , 1 ď i ď p k , T j , 1 ď j ď p k , V q , 1 ď q ď k ´1q which is independent of V k . Conditioning by this vector in (II.26) and applying Lemma 2.3.1 yields

Er1 tτ i "τ i "p i ,1ďiďku 1 tθ i "θ i "α i ,1ďiďk´1u 1 T pk ďT 1 θ k ‰θ k s ď E » -1 tτ i "τ i "p i ,1ďiďku 1 tθ i "θ i "α i ,1ďiďk´1u 1 T pk ďT |Θ|´1 ÿ j"1 |a j pα k´1 , ν k q ´aj pα k´1 , ν k q| fi fl .
From the definition of a j (see (II.12)), the triangle inequality and since

Q is L Q -Lipschitz, we have ř |Θ|´1 j"1 |a j pα k´1 , ν k q ´aj pα k´1 , ν k q| ď p|Θ|´1q|Θ| 2 L Q |ν k ´νk |. Since we are on the event tτ i " τ i " p i , 1 ď i ď ku Ş tθ i " θ i " α i , 1 ď i ď k ´1u, the application of Lemma 2.2.1 yields |ν k ´νk | ď e LT pk kCh. Thus J k ď C 1 hEr1 T k ďT ks where C 1 is a constant independent of h. Moreover, ř kě1 1 T k ďT k " ř N T k"1 k ď N 2
T and ErN 2 T s ď ErpN T q 2 s ă `8 so that ř kě1 J k " Ophq. From the definition of I k (see (II.25)), we can write

I k " E " 1 minpT k ,T k qďT 1 τ : ąk´1 p1 τ k ăτ k `1τ k ąτ k q ı " E " 1 T k ďT 1 τ : ąk´1 1 τ k ăτ k ‰ `E " 1 T k ďT 1 τ : ąk´1 1 τ k ąτ k ı ": I p1q k `Ip2q k .
The second equality above follows since tτ k ă τ k u " tT k ă T k u and tτ k ą τ k u " tT k ą T k u. We only treat the term I p1q k , the term I p2q k can be treated similarly by interchanging the role of pτ k , T k q and pτ k , T k q. Just as in the previous case, we can rewrite

I p1q k as follows ÿ 1ďp 1 ă...ăp k α 1 ,...,α k´1 PΘ Er1 tτ i "τ i "p i ,1ďiďk´1u 1 tθ i "θ i "α i ,1ďiďk´1u 1 T pk ďT 1 τ k "p k 1 p k ăτ k s.
(II.27)

In (II.27) we have tτ k " p k u X tp k ă τ k u Ď tλpα k´1 , Φ α k´1 pT pk ´T pk´1 , ν k´1 qq ă U p k λ ˚ď λpα k´1 , Φ α k´1 pT pk ´T pk´1 , ν k´1 qqu. The random variable 1 tτ i "τ i "p i ,1ďiďk´1u
1 tθ i "θ i "α i ,1ďiďk´1u 1 T pk ďT depends on pU i , 1 ď i ď p k´1 , T j , 1 ď j ď p k , V q , 1 ď q ď k ´1q which is independent of U p k . Conditioning by this vector in (II.27) yields Step 2: estimation of D.

Er1 tτ i "τ i "p i ,1ďiďk´1u 1 tθ i "θ i "α i ,1ďiďk´1u 1 T pk ďT 1 τ k "p k 1 p k ăτ k s ď Er1 tτ i "τ i "p i ,1ďiďk´1u 1 tθ i "θ i "α i ,1ďiďk´1u
Note that for n ě 0 we have tN T " nu X tminpT τ : , T τ : q ą T u " tN T " nu X tN T " nu X tτ : ą nu, where we can interchange the role of tN T " nu and tN T " nu. Thus, using the partition tN T " n, n ě 0u, we have 

D " ÿ ně0 E " 1 N T "n 1 N T "

Proof of Theorem 2.3.2

First we reorder the terms in RT . We write RT " QT ST HT where QT "

ÑT ź l"1 Qpx T τl , θl q Qp θl´1 , θl q , (II.28) ST " ÑT ź l"1 λp θl´1 , Φ θl´1 pT τl ´T τl´1 , νl´1 qq λ ˚τ l ź k"τ l´1 `1p1 ´λp θl´1 , Φ θl´1 pT k ´T τl´1 , νl´1 qq λ ˚q (II.29) N T ź l"τ ÑT `1p1 ´λp θ ÑT , Φ θ ÑT pT l ´T τ ÑT , ν ÑT qq λ ˚q, HT " ÑT ź l"1 ˆλp θl´1 q λ ˚p1 ´λp θl´1 q λ ˚qτ l ´τ l´1 ´1˙´1 ˜p1 ´λp θ ÑT q λ ˚qN T ´τ ÑT ¸´1 . (II.30)
Likewise we reorder the terms in RT writing RT " QT ST HT where QT and ST are defined as (II.28) and (II.29) replacing x and Φ by x and Φ. Since the processes p θn q and pτ n q do not depend on Φ or Φ, the term H is the same in R and R . To prove Theorem 2.3.2, let us decompose the problem and write

|F px T q RT ´F px T q RT | " |pF px T q ´F px T qq RT `p RT ´R T qF px T q| ď |F px T q ´F px T q|| RT | `| RT ´R T ||F px T q|, so that E " |F px T q RT ´F px T q RT | 2 ‰ ď 2E " |F px T q ´F px T q| 2 | RT | 2 ‰ `2E " | RT ´R T | 2 |F px T q| 2 ‰ ": 2D `2C.
In the following we show that C " Oph 2 q and that D " Oph 2 q.

Step 1: estimation of C.

The function F being bounded we have

C ď M 2 F E " | RT ´R T | 2 ‰
where M F is a positive constant. Moreover, for all θ P Θ, we have p1 ´λpθq{λ ˚q´1 ď p1 ´λ max {λ ˚q´1 and p λpθq{λ ˚q´1 ď p λmin {λ ˚q´1 . Thus, HT ď ´λ min λ ˚p1 ´λmax λ ˚q¯´N T and using the definition of R and R (see (II.28), (II.29) and (II.30)) we can write

| RT ´R T | ď ˆλ min λ ˚p1 ´λ max λ ˚q˙´N T `| QT ´Q T | ST `|S T ´S T | QT ˘.
We set J " | QT ´Q T | ST and I " | ST ´S T | QT . To provide the desired estimate for C, we proceed as follows. First, we work ω by ω to determine (random) bounds for J and I from which we deduce a (random) bound for | RT ´R T |. Finally, we take the expectation. We start with I. For all pθ, νq P E and for all t ě 0 we have, from Assumption 2.2.1, that 1 ´λpθ, Φ θ pt, νqq{λ ˚ď 1 and λpθ, Φ θ pt, νqq{λ ˚ď 1. Then, using Lemma 2.3.2 (twice) we have

| ST ´S T | ď 1 λ ˚Ñ T `1 ÿ l"1 τl ^N T ÿ k"τ l´1 `1 |λp θl´1 , Φ θl´1 pT k ´T τl´1 , νl´1 qq´λp θl´1 , Φ θl´1 pT k ´T τl´1 , νl´1 qq|.
Using the Lipschitz continuity of λ and Lemma 2.2.1, we find that, for all l " 1, . . . , ÑT `1 and k " τl´1 `1, . . . , τl ^N T ,

|λp θl´1 , Φ θl´1 pT k ´T τl´1 , νl´1 qq ´λp θl´1 , Φ θl´1 pT k ´T τl´1 , νl´1 qq| ď e LT Chl.
Moreover, for all l " 1, . . . , ÑT `1 we have τl 

^N T ´τ l´1 ď N T so that | ST ´S T | ď N T pN T `1q 2 C 1 h where C 1 is a positive constant independent of h. Finally, since QT ď ρ ´N T we have I ď ρ ´N T N T pN T `1q

Weak error expansion

In this section we are interested in a weak error expansion for the PDMP px t q of section 2.2.3 and its associated Euler scheme px t q. First of all, we recall from [START_REF] Davis | Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models[END_REF] that the generator A of the process pt, x t q which acts on functions g defined on R `ˆE is given by where for notational convenience we have set B ν gpt, xq :" Bg Bν pt, θ, νq, B t gpt, xq :" Bg Bt pt, xq and f pxq " f θ pνq for all x " pθ, νq P E. Below, we state the assumptions and the main theorem of this section. Its proof which is inspired by [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF] (see also [START_REF] Pagès | Numerical Probability: An Introduction with Applications to Finance[END_REF] or [START_REF] Graham | Stochastic simulation and Monte Carlo[END_REF]) is delayed in section 2.4.2. Assumption 2.4.1. For all θ P Θ and for all A P BpΘq, the functions ν Þ Ñ Q ppθ, νq, Aq, ν Þ Ñ λ pθ, νq and ν Þ Ñ f θ pνq are bounded and twice continuously differentiable with bounded derivatives. We introduce the random counting measure p associated to the PDMP px t q defined by ppr0, ts ˆAq :" ř ně1 1 Tnďt 1 YnPA for t P r0, T s and for A P BpEq. The compensator of p, noted p 1 , is given from [START_REF] Davis | Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models[END_REF] by p 1 pr0, ts ˆAq " ż t 0 λpx s qQpx s , Aqds.

Hence, q :" p ´p1 is a martingale with respect to the filtration generated by p noted pF p t q tPr0,T s . Similarly, we introduce p, p 1 , q and pF p t q tPr0,T s to be the same objects as above but corresponding to the approximation px t q. The fact that p 1 is the compensator of p and that q is a martingale derives from arguments of the marked point processes theory, see [START_REF] Brémaud | Point Processes and Queues, Martingale Dynamics[END_REF]. Definition 2.4.2. Let us define the following operators which act on functions g defined on R `ˆE.

T gpt, x, yq :" B t gpt, xq `f pyqB ν gpt, xq, Agpt, x, yq :" T gpt, x, yq `Sgpt, xq.

The following theorem gives us a way to represent the solution of the integro-differential equation (II.34) as the conditional expected value of a functional of the terminal value of the PDMP px t q. It plays a key role in the proof of Theorem 2.4.1.

Theorem 2.4.3 (PDMP's Feynman-Kac formula [START_REF] Davis | Markov Models and Optimization[END_REF]). Let F : E Ñ R be a bounded function. Then the integro-differential equation (II.34) has a unique solution u : R `ˆE Ñ R given by upt, xq " ErF px T q|x t " xs, pt, xq P r0, T s ˆE.

Proof of Theorem 2.4.1

We provide a proof in two steps. First, we give an appropriate representation of the weak error ErF px T qs ´ErF px T qs. Then, we use this representation to identify the coefficient c 1 in (II.35).

Step 1: Representing ErF px T qs ´ErF px T qs.

Let u denote the solution of (II.34). From Theorem 2.4.3 we can write ErF px T qs ÉrF px T qs " ErupT, x T qs ´up0, xq. Then, the application of the Itô formula (II.38) to u at time T yields upT, x T q " up0, xq `ż T 0 Aups, x s , x ηpsq qds `M u T .

Since pM u t q is a true martingale, we obtain

ErupT, x T q ´up0, xqs " E "ż T 0 Aups, x s , x ηpsq qds  .

For s P r0, T s we have Aups, x s , x ηpsq q " B t ups, x s q `f px ηpsq qB ν ups, x s q `Sups, x s q (see Definition 2.4.2). From the regularity of λ, Q and u (see assumptions 2. The application of the Taylor formula to the functions B 2 tt u, B 2 tν u, B 2 νν u, SpB t uq, SpB ν uq, B t pSuq, B ν pSuq and SpSuq at the order 0 around pηprq, x ηprq q yields Υpr, x r , x ηprq q " Υpηprq, x ηprq , x ηprq q `Ophq. Setting Ψpt, xq " Υpt, x, xq and recalling that for r P rηpsq, ss, ηprq " ηpsq and that |s ´ηpsq| ď h, we obtain ErF px T qs ´ErF px T qs " E "ż T 0 ps ´ηpsqqΨpηpsq, x ηpsq qds  `Oph 2 q.

Consider the expectation in the right-hand side of the above equality. We decompose the integral into a (finite) sum of integrals on the intervals rT n `kh, pT n `pk `1qhq ^T n`1 s where Ψ is constant. Without loss of generality, we are led to consider integrals of the form ş t kh ps ´khqCds for some k ě 0, t P rkh, pk `1qhs and C a bounded constant. We From the above inequality, we find that E " 1 minpT τ : ,T τ : qąT |Γ ´Γ| ı ď L Ψ Ce LT T hErN T pN T `1qs.

Since N T ď N T and ErN T pN T `1qs ă `8 we conclude that E " 1 minpT τ : ,T τ : qąT |Γ ´Γ| ı "

Ophq. We have shown that E " ş T 0 Ψpηpsq, x ηpsq qds ı " E " ş T 0 Ψpηpsq, x ηpsq qds ı `Ophq. Secondly, from the regularity assumptions 2.4.1 and 2.4.2, the function pt, νq Þ Ñ Ψpt, θ, νq is uniformly Lipschitz in θ. Moreover, for all s P r0, T s there exits k ě 0 such that both s and ηpsq belong to the same interval rT k , T k`1 r so that x s " pθ k , φ θ k ps T k , ν k qq and x ηpsq " pθ k , φ θ k pηpsq ´T k , ν k qq. Thus, from the Lipschitz continuity of Ψ, from the fact that |s ´ηpsq| ď h and since f θ is uniformly bounded in θ we have |Ψps, x s q ´Ψpηpsq, x ηpsq q| ď Ch where C is a constant independent of h. Then, we obtain sup sPr0,T s |ErΨps, x s qs ´ErΨpηpsq, x ηpsq qs| ď Ch from which we deduce that ˇˇE " ş T 0 Ψpηpsq, 

x

Numerical experiment

In this section, we use the theoretical results above to apply the MLMC method to the PDMP 2-dimensional Morris-Lecar (shortened PDMP 2d-ML).

The PDMP 2-dimensional Morris-Lecar

The deterministic Morris-Lecar model has been introduced in 1981 by Catherine Morris and Harold Lecar in [START_REF] Morris | Voltage oscillations in the barnacle giant muscle fiber[END_REF] to explain the dynamics of the barnacle muscle fiber. This model belongs to the family of conductance-based models (just as the Hodgkin-Huxley model [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF]) and takes the following form # dv dt " 1 C ´I ´gLeak pv ´VLeak q ´gCa M 8 pvqpv ´VCa q ´gK npv ´VK q ¯, dn dt " p1 ´nqα K pvq ´nβ K pvq, (II. [START_REF] Glynn | Exact estimation for markov chain equilibrium expectations[END_REF] where M 8 pvq " p1 `tanhrpv ´V1 q{V 2 sq{2, α K pvq " λ K pvqN 8 pvq, β K pvq " λ K pvqp1 Ń8 pvqq, N 8 pvq " p1 `tanhrpv ´V3 q{V 4 sq{2, λ K pvq " λ K coshppv ´V3 q{2V 4 q.

In this section we consider the PDMP version of (II.41) that we denote by px t , t P r0, T sq, T ą 0, whose characteristics pf, λ, Qq are given by • f pθ, νq " 1 C ´I ´gLeak pν ´VLeak q ´gCa M 8 pνqpν ´VCa q ´gK θ N K pν ´VK q ¯,

• λpθ, νq " pN K ´θqα K pνq `θβ K pνq,

• Q ´pθ, νq, tθ `1u ¯" pN K ´θqα K pνq λpθ,νq , Q ´pθ, νq, tθ ´1u ¯" θβ K pνq λpθ,νq .

The state space of the model is E " t0, . . . , N K u ˆR where N K ě 1 stands for the number of potassium gates. The values of the parameters used in the simulations are V 1 " ´1.2 , V 2 " 18, V 3 " 2, V 4 " 30, λ K " 0.04, C " 20, g Leak " 2, V Leak " ´60, g Ca " 4.4, V Ca " 120, g K " 8, V K " ´84, I " 60, N K " 100.

Chapter II Multilevel Monte Carlo for PDMPs 

Classical and Multilevel Monte Carlo estimators

In this section we introduce the classical and multilevel Monte Carlo estimators in order to estimate the quantity E rF px T qs where px t , t P r0, T sq is the PDMP 2d-ML and F pθ, νq " ν for pθ, νq P E so that F px T q gives the value of the membrane potential at time T . Note that other possible choices are F pθ, νq " ν n or F pθ, νq " θ n for some n ě 2.

In those cases, the quantity E rF px T qs gives the moments of the membrane potential or the number of open gates at time T so that we can compute statistics on these biological variables. Let X :" F px T q. In the sequel it will be convenient to emphasize the dependence of the Euler scheme px t q on a time step h. We introduce a family of random variables pX h , h ą 0q defined by X h :" F px T q where for a given h ą 0 the corresponding PDP px t q is constructed as in section 2.2.3 with time step h. In particular, the processes px t q for h ą 0 are correlated through the same randomness pU k q, pV k q and pN t q. We build a classical Monte Carlo estimator of ErXs based on the family pX h , h ą 0q as follows

Y MC " 1 N N ÿ k"1 X k h , (II.42)
where pX k h , k ě 1q is an i.i.d sequence of random variables distributed like X h . The parameters h ą 0 and N P N have to be determined. We build a multilevel Monte Carlo estimator based on the family pX h , h ą 0q as follows

Y MLMC " 1 N 1 N 1 ÿ k"1 X k h ˚`L ÿ l"2 1 N l N l ÿ k"1 pX k h l ´Xk h l´1 q, (II.43)
where ´pX k h l , X k h l´1 q, k ě 1 ¯for l " 2, . . . , L are independent sequences of independent copies of the couple pX h l , X h l´1 q and independent of the i.i.d sequence pX k h ˚, k ě 1q. The parameter h ˚is a free parameter that we fix in section 2.5.4. The parameters L ě 2, M ě 2, N ě 1 and q " pq 1 , . . . , q L q Ps0, 1r L with ř L l"1 q l " 1 have to be determined, then we set N l :" rN q l s, h l :" h ˚M ´pl´1q . We also set X :" F px T q RT where RT is defined as in Proposition 2.2.2 with an intensity λ and a kernel Q that will be specified in section 2.5.4 and let p Xh , h ą 0q be such that Xh :" F px T q RT for all h ą 0 . By Proposition 2.2.2, we have ErXs " Er Xs and ErX h s " Er Xh s for h ą 0. Consequently, we build likewise a multilevel estimator Ỹ MLMC based on the family p Xh , h ą 0q. The complexity of the classical Monte Carlo estimator Y MC depends on the parameters ph, N q and the one of the multilevel estimators Y MLMC and Ỹ MLMC depends on pL, q, N q. In order to compare those estimators we proceed as in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] (see also [START_REF] Pagès | Numerical Probability: An Introduction with Applications to Finance[END_REF]), that is to say, for each estimator we determine the parameters which minimize the global complexity (or cost) subject to the constraint that the resulting L 2 -error must be lower than a prescribed ą 0. As in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF], we call V 1 , c 1 , α, β and VarpXq the structural parameters associated to the family pX h , h ą 0q and X. We know theoretically from Theorem 2.3.1 (strong estimate) and Theorem 2.4.1 (weak expansion) that pα, βq " p1, 1q whereas V 1 , c 1 and VarpXq are not explicit (we explain how we estimate them in section 2.5.3). Moreover, the structural parameters Ṽ1 , c1 , α, β and Varp Xq associated to p Xh , h ą 0q and X are such that α " α, c1 " c 1 (see (II.36)), β " 2 (see Theorem 2.3.2) and Ṽ1 , Varp Xq are not explicit. The classical and the multilevel estimators defined above are linear and of Monte Carlo type in the sense described in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF]. The optimal parameters of those estimators are then expressed in term of the corresponding structural parameters as follows (see [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] or [START_REF] Pagès | Numerical Probability: An Introduction with Applications to Finance[END_REF]). For a user prescribed ą 0, the classical Monte Carlo parameters h and N are hp q " p1 `2αq ´1 2α

ˆ |c 1 | ˙1 α
, N p q " ˆ1 `1 2α ˙VarpXq `1 `ρh β{2 p q ˘2 2 , (II. [START_REF] Gutierrez | Dynamics of Low-Threshold Spike Activation in Relay Neurons of the Cat Lateral Geniculate Nucleus[END_REF] where ρ " a V 1 {VarpXq. The parameters of the estimator Y MLMC are given in Table II.1 where n l :" M l´1 for l " 1, . . . , L with the convention n 0 " n ´1 0 " 0. The parameters of k " 2 ´k p 100 p b 100 p v 100 time (sec) L M h ˚N cost 1 5.00e-01 4.28e-01 1.98e-01 1.44e-01 3.13e-01 2 2 0.1 2.38e+03 2.50e+04 2 2.50e-01 2.47e-01 1.55e-01 3.72e-02 1.26e+00 2 3 0.1 9.46e+03 1.00e+05 3 1.25e-01 1.36e-01 8.90e-02 1.05e-02 5.00e+00 2 6 0.1 3.80e+04 4.11e+05 4 6.25e-02 6.22e-02 2.15e-02 3.41e-03 2.09e+01 3 4 0.1 1.58e+05 1.75e+06 5 3.12e-02 3.17e-02 6.07e-03 9.71e-04 8.35e+01 3 5 0.1 6.30e+05 7.02e+06

Table II.4 -Results and parameters of the Multilevel Monte Carlo estimator Ỹ MLMC (case 3). Estimated values of the structural parameters: c1 " 3.91, Ṽ1 " 34.1.

Y MLMC and Ỹ MLMC (case 3). As an example, the first line of table II.3 reads as follows: for a user prescribed " 2 ´1 " 0.5, the MLMC estimator Y MLMC is implemented with L " 2 levels, the time step at the first level is h ˚" 0.1, this time step is refined by a factor n l " M l´1 with M " 2 at each levels and the sample size is N " 2600. For such parameters, the numerical complexity of the estimator is CostpY MLMC q " 28200, the empirical RMSE p 100 " 0.389 and the computational time of one realisation of Y MLMC is 0.362 seconds. We also reported the empirical bias p b 100 and the empirical variance p v 100 in view of (II.45). The results indicate that the MLMC outperforms the classical MC. More precisely, for small values of (i.e k " 1, 2, 3) the complexity and the CPU-time of the classical and the multilevel MC estimators are of the same order. As decreases (i.e as k increases) the difference in complexity and CPU-time between classical and multilevel MC increases. Indeed, for k " 5 the complexity of the estimator Y MC is approximately 13 times superior to the one of Y MLMC and 19 times superior to the one of Ỹ MLMC . The same fact appears when we look at the complexity ratio of the estimators Y MLMC and Ỹ MLMC (i.e Cost(Y MLMC )/Cost( Ỹ MLMC )) as decreases. However, the difference between the

  dt " Iptq ´F pv, m, h, nq, dm dt " p1 ´mqα m pvq ´mβ m pvq, dh dt " p1 ´hqα h pvq ´hβ h pvq, dn dt " p1 ´nqα n pvq ´nβ n pvq.

Figure 1 -

 1 Figure 1 -Simulated trajectory of the membrane potential v (left) and of the corresponding gates m, h and n (right) in the deterministic Hodgkin-Huxley model (1) with a constant applied current Iptq " 10 and initial condition pv, m, h, nq " p0, 0, 0, 0q.

Figure 2 -

 2 Figure2-10 simulated trajectories of the membrane potential ν (left) and of the corresponding proportion of gates θ pmq ,θ phq and θ pnq (right) in the subunit model with a constant applied current Iptq " 10, initial condition pν, θ pmq , θ phq , θ pnq q " p0, 0, 0, 0q and N m " N h " N n " 300.

Figure 3 -

 3 Figure3-Simulated spike train using the subunit model with a constant applied current Iptq " 1 (left) and Iptq " 10 (right), initial condition pν, θ pmq , θ phq , θ pnq q " p0, 0, 0, 0q and N m " N h " N n " 300.

Figure 4 -Figure 5 -

 45 Figure 4 -Sodium (Na) scheme.

Figure 6 -

 6 Figure 6 -Simulated trajectories of the jump rate and the different bounds (optimal-P 0.005 , local, global) (left) and of the corresponding ratio λ{ λ (right) in the channel model with N Na " N K " 3000.

Figure 7 -

 7 Figure 7 -Computation time and rate of acceptance with the optimal-P bound as a function of the parameter in the channel model with N Na " N K " N chan where N chan denotes the number of channels.

Figure 12 -

 12 Figure 12 -The plots (a) and (b) show the complexity and CPU-time ratios w.r.t the complexity and CPU-time of the estimator Ỹ MLMC (28) as a function of the prescribed (log 2 scale for the x-axis, log scale for the y-axis).

S x ptq " 1

 1 tăt˚pxq e ´şt 0 λpψps,xqqds . (I.2) Thus, the jump-times occur either in a deterministic way (when the flow hit a boundary) or in a Poisson-like fashion. Identity (I.1) implies the representation λpx t q " ÿ ně0 λpψpt ´Tn , x Tn qq1 TnďtăT n`1 , (I.3)

Lemma 1 . 3 . 3 .

 133 Let T ą 0 and g : R `Ñ R `be a non-negative, locally integrable function. Define Sptq " 1 tăT e ´şt 0 gpsqds , Sptq " e ´şt 0 gpsqds . Let Y (Y respectively) be a random variable with survival function S (S respectively). Then, we have Y law " Y ^T .

Lemma 1 . 5 . 1 .

 151 We have the following uniform convergence sup xPE sup sě0 | λopt, ps, xq ´λpψps, xqq| ÝÑ Ñ0 0,

Figure I. 1 -

 1 Figure I.1 -Simulated trajectory of the deterministic four-dimensional Hodgkin-Huxley model. The value of the parameters is given above and Iptq " 301 r1,2s ptq.

FigureFigure I. 3 -

 3 Figure I.2 -Sodium (Na) scheme

Figure I. 5 Figure I. 4 -

 54 Figure I.4 -First column : subunit model. Second column : channel model. Vertical red rows are the standard deviation of the spiking times (see section 1.7.2).

Figure I. 5 -

 5 Figure I.5 -Computation time and rate of acceptance with the optimal-P bound as a function of the parameter .

Figure I. 6 -

 6 Figure I.6 -Computation time and rate of acceptance with the optimal-Q bound as a function of the parameter .

Figure I. 7 -

 7 Figure I.7 -Proportion of spikes obtained with the subunit model and the channel model as a function of the number of channels N chan .

  Figure I.8 -Mean value of the spiking time (ms) with standard deviation as a function of the number of channels N chan . Left: subunit model. Right: channel model.

  θ pT j , νqq λ ˚qfi fl " e ´şt 0 λpθ,Φ θ ps,νqqds .

  Agpt, xq " B t gpt, xq `f pxqB ν gpt, xq `λpxq ż E pgpt, yq ´gpt, xqqQpx, dyq, (II.33)

  Membrane potential as a function of time. Red curves: stochastic potential. Black curve: Proportion of opened gates as a function of time. Red curves: stochastic gates (θ{N K ). Black curve: deterministic gates (n). Probability of opening a gate (Qpx t , tθ t `1uq) as a function of time. Jump rate (λpx t q) as a function of t.

Figure II. 1 -

 1 Figure II.1 -10 trajectories of the characteristics of the PDMP 2d-ML on r0, 100s.

  Ratio of the complexities.

  Ratio of the CPU-times.

Figure II. 3 -

 3 Figure II.3 -The plots (a) and (b) show the complexity and CPU-time ratios w.r.t the complexity and CPU-time of the estimator Ỹ MLMC as a function of the prescribed (log 2 scale for the x-axis, log scale for the y-axis).

  The following integro-differential equation admits a unique solution u : R `ˆE Ñ R which is given by upt, xq " ErF px T q|x t " xs, pt, xq P r0, T s ˆE.

	$ &	B Bt upt, xq `Aupt, xq " 0, pt, xq P r0, T rˆE, upt, xq " ş E upt, yqQpx, dyq, pt, xq P r0, T rˆBE,
	%	upT, xq " F pxq, x P E,

Lemma 6.1. Let

  T ą 0 and g : R `Ñ R `be a non-negative, locally integrable function.

	Define		
	Sptq " 1 tăT e	´şt 0 gpsqds , Sptq " e	´şt 0 gpsqds .
	Let Y (Y respectively) be a random variable with survival function S (S respectively).
	Then, we have Y		

law " Y ^T .

Table 1 -

 1 Computation time and rate of acceptance for the three bounds (optimal, local, global) in the channel model with N Na " N K " N chan where N chan denotes the number of channels.

	N chan	Bound	computation time (sec) rate of acceptance
		Optimal-P 0.1	0,003 p˘1.10 ´6q	0,80 p˘1.10 ´3q
	30	Local	0,008 p˘2.10 ´4q	0,14 p˘1.10 ´3q
		Global	0,012 p˘3.10 ´4q	0,06 p˘2.10 ´5q
		Optimal-P 0.01	0,027 p˘5.10 ´4q	0,95 p˘9.10 ´5q
	300	Local	0,05 p˘1.10 ´3q	0,22 p˘8.10 ´5q
		Global	0,120 p˘2.10 ´3q	0,06 p˘1.10 ´5q
		Optimal-P 0.005	0,26 p˘3.10 ´2q	0,99 p˘9.10 ´6q
	3000	Local	0,474 p˘4.10 ´2q	0,24 p˘7.10 ´6q
		Global	1.184 p˘3.10 ´1q	0,06 p˘9.10 ´8q

6.2 Chapter 2: Thinning and Multilevel Monte Carlo for Piecewise Deterministic (Markov) Processes. Application to a stochastic Morris-Lecar model.

  Illustration of the typical behaviour of the couple of processes ´py

	pl,l´1q t	,	Rpl,l´1q t	h l´1 q, px t

  Denote by BD the boundary of D. For all x P E, let

	t ˚pxq "	" `8 if no such time exists. inftt ą 0 : φpt, xq P BDu,
			Then the PDMP can be written
	as follows		
		ÿ	
		x t "	ψpt ´Tn , x Tn q1 TnďtăT n`1 ,	(I.1)
		ně0	

  Let t 0 P rl{n, pl `1q{ns such that sup sPrl{n,pl`1q{nr λpψps, xqq " λpψpt 0 , xqq. The application of the mean value inequality to the function t Ñ λpψpt, xqq gives

	|λpψpt 0 , xqq ´λpψpt, xqq| ď M |t 0 ´t| ď M	1 n	ď ν.
	n ą 0 we set " 1{n, thus,	
	λopt,1{n pt, xq "	ÿ	sup	λpψps, xqq1 rk{n,pk`1q{nr ptq.
		kě0	sPrk{n,pk`1q{nr
	t ě 0, there exists l ě 0 such that t P rl{n, pl `1q{nr. Thus,
	λopt,1{n pt, xq "	sup	λpψps, xqq.
			sPrl{n,pl`1q{nr

Let M " sup xPE sup sě0 ˇˇB λ Bs ´ψps, xq ¯ˇˇ, ν ą 0, N " rM {νs and n ě N . Let x P E and

  pTnq e lim Ñ0

						ş	´p1´e ´fT psq qpβ opt, ps,xsq´λpxsqqds	ı .
	Moreover, we have		
	´T sup	sup	´λ opt, pu, yq ´λpψpu, yqq	¯ď ż	´p1 ´e´f T psq qpβ opt, ps, x s q ´λpx s qqds ď 0,
	yPE	uě0			
	Where λopt, is given by (I.13).		
	By lemma 1.5.1, we obtain that almost surely e lim Ñ0	ş	´p1´e ´fT psq qpβ opt, pxs,sq´λpxsqqds "
	1. The conclusion follows since E " e ´řně0 f T pTnq	ı	" " E e ´ş f T dN

  . State 1 corresponds to the open configuration and 0 to the closed one. The opening and closing rates which depend on the voltage are noted α z p.q and β z p.q respectively. The dynamics of a gate can be represented by the following diagram.We consider that all MJPs are independent conditionally on V t , the value of the potential at time t, and we define the number of open gates z at time t by θ pzq ptq " Furthermore, let Θ sub " t0, . . . , N n u ˆt0, . . . , N m u ˆt0, . . . , N h u be the state space of the process θ t " ´θpnq ptq, θ pmq ptq, θ phq ptq ¯which records the number of open gates at time t. Note that, N z ´θpzq ptq gives the number of closed gates z at time t. The subunit model takes the following form

				Nz
				ÿ	u pzq k ptq.
				k"1
	pSq	"	C dVt dt " f sub pθ t , V t , tq, pθ t q,
		α z p.q	
	0	ÝÑ ÐÝ	1.	(I.16)
		β z p.q	

subunit model is obtained by considering that the conductance of the membrane depends on the empirical measure defined by the proportion of open gates. We denote the number of gates of type m (respectively h, n) by N m (respectively N h , N n ). Let us consider that each gate is represented by a t0, 1u-valued Markovian Jump Process (MJP) noted u pzq k for z " m, h, n and k " 1, . . . , N z

  first component of the vector ηpθq contains θ n open , the number of open gates n, the second θ m open , the number of open gates m and the third θ h open , the number of open gates h. Thus, for z " m, h, n, θ z close ptq " N z ´θz open ptq gives the number of closed gates z at time t. We define the jump rate of the channel model by

  and the next transition is one of those. We define six kernels to take into account all the possibilities.LetL m open , L m close , L h open , L h close , L n open , L nclose be kernels defined on Θ chan ˆRˆBpΘ chan q with values in r0, 1s such that L m open is the kernel which chooses a transition as above, L h open is a kernel which choose a transition among the following ones tm 0

  Tn " f n pT n `k q _ f n pT n `pk `1q q `e´ank Tn qq sup sPP p λpψps, x Tn qq `pp ´1q ¯1rκ p´1 ,κpr puq,

	where,					
		V	k,					ż Tn`pk`1q	e anps´Tnq Ipsqds,
								Tn
		V k, Tn " f n pT n `k q ^fn pT n `pk `1q q `e´anpk`1q	ż Tn`k Tn	e anps´Tnq Ipsqds.
	The integrated optimal bound is given, for u ě 0, by
					Λopt, x Tn puq "	ÿ kě0	sPP k sup	λpψps, x Tn qq	" pk `1q ^u ´k	^uı .
	Its inverse is given by		
	´Λ opt, x Tn	¯´1	puq "	ÿ	´u ´	ř p´1 k"1 sup sPP k	λpψps, x
						pě1	
		we have			
	sup sPP k	λpψps, x Tn qq " ´αm pV	k, Tn qpN m	´θm open pT n qq `βm pV k, Tn qθ m open pT n q ¯ὰ
						h pV k, Tn qpN h	´θh open pT n qq `βh pV	k, Tn qθ h open pT n q ¯ὰ
						n pV	k, Tn qpN n	´θn open pT n qq `βn pV k, Tn qθ n open pT n q ¯,

  Tn qpN m ´θm open pT n qq `βm pV Tn qθ m open pT n q

		ᾱh
	pV Tn qpN h	´θh open pT n qq `βh pV Tn qθ h open pT n q	ᾱn
	pV Tn qpN n	´θn open pT n qq `βn pV Tn qθ n open pT n q ¯.

Table I .

 I 1 -computation time and rate of acceptance for N chan " 30. The lines ODE represent the algorithm in[START_REF] Riedler | Almost sure convergence of numerical approximations for Piecewise Deterministic Markov Processes[END_REF] with h " 10 ´3 for both subunit model and channel model. TableI.2 -computation time and rate of acceptance for N chan " 300. The lines ODE represent the algorithm in[START_REF] Riedler | Almost sure convergence of numerical approximations for Piecewise Deterministic Markov Processes[END_REF] with h " 10 ´4 for both subunit model and channel model.

	Model	Bound	computation time (sec) rate of acceptance
		Optimal-Q n	0,003 p˘8.10 ´7q	0,857 p˘2.10 ´3q
	Channel	Local	0,008 p˘6.10 ´6q	0,141 p˘2.10 ´3q
		Global	0,012 p˘3.10 ´6q	0,065 p˘6.10 ´5q
		ODE	0.009 p˘1.10 ´7q	
		Optimal-Q n	0,016 p˘1.10 ´6q	0,88 p˘1.10 ´3q
	Subunit	Local	0,050 p˘2.10 ´4q	0,22 p˘1.10 ´3q
		Global	0,12 p˘3.10 ´4q	0,061 p˘2.10 ´5q
		ODE	0,016 p˘2.10 ´7q	
	Model	Bound	computation time (sec) rate of acceptance
		Optimal-Q n	0,030 p˘3.10 ´5q	0,962 p˘9.10 ´5q
	Channel	Local	0,050 p˘1.10 ´4q	0,223 p˘3.10 ´4q
		Global	0,120 p˘3.10 ´4q	0,062 p˘7.10 ´5q
		ODE	0.094 p˘1.10 ´5q	
		Optimal-Q n	0,148 p˘5.10 ´4q	0,957 p˘9.10 ´5q
	Subunit	Local	0,244 p˘1.10 ´3q	0,237 p˘8.10 ´5q
		Global	0,322 p˘2.10 ´3q	0,061 p˘1.10 ´5q
		ODE	0,157 p˘1.10 ´5q	

most efficient one in terms of reject and computation time to simulate both the channel model and the subunit model.

Table I .

 I [START_REF] Anderson | Stochastic Representations of Ion Channel Kinetics and Exact Stochastic Simulation of Neuronal Dynamics[END_REF] -computation time and rate of acceptance for N chan " 3000. The lines ODE represent the algorithm in[START_REF] Riedler | Almost sure convergence of numerical approximations for Piecewise Deterministic Markov Processes[END_REF] with h " 10 ´5 for both subunit model and channel model.

	Model	Bound	computation time (sec) rate of acceptance
		optimal-Q n	0,296 p˘3.10 ´3q	0,965 p˘2.10 ´5q
	Channel	Local	0,474 p˘6.10 ´3q	0,236 p˘3.10 ´5q
		Global	1,184 p˘2.10 ´2q	0,060 p˘3.10 ´7q
		ODE	0.940 p˘5.10 ´4q	
		Optimal-Q n	1,471 p˘3.10 ´2q	0,964 p˘9.10 ´6q
	Subunit	Local	2,478 p˘4.10 ´2q	0,238 p˘7.10 ´6q
		Global	3,315 p˘3.10 ´1q	0,060 p˘9.10 ´8q
		ODE	1,567 p˘1.10 ´3q	

  1 tn nC 2 h, where C 1 and C 2 are positive constants independent of h. Proof of Lemma 2.2.1. Let n ě 1. From the estimate (II.14), we have for all k ď nˇˇβ k ´βk ˇˇď e C 1 pt k ´tk´1 q |β k´1 ´βk´1 | `C2 h,and thereforee ´C1 t k ˇˇβ k ´βk ˇˇď e ´C1 t k´1 |β k´1 ´βk´1 | `C2 h.By summing up these inequalities for 1 ď k ď n and since β 0 " β 0 we obtain ˇˇβ n ´βn ˇˇď e C 1 tn nC 2 h.

  rgpx t q1 Nt"n s " E rgpθ n , Φ θn pt ´Tn , ν n qq1 Nt"n s " E " gpθ n , Φ θn pt ´Tn , ν n qq1 Tnďt Er1 T n`1 ąt |F n s ‰ Φ θn pt ´Tn , ν n qq1 Tnďt eErQ ppθ n´1 , ν n q, iq gpi, Φ i pt ´Tn , ν n qq1 Tnďt e

			" E	" gpθ n , ´şt´Tn 0	λpθn,Φ θn ps,νnqqds	ı
	Moreover, using II.19, we get		
	E rgpx t q1 Nt"n s " E	" 1 Tnďt E	" gpθ n , Φ θn pt ´Tn , ν n qqe	´şt´Tn 0	λpθn,Φ θn ps,νnqqds |F n´1 , T n	ıı
	"	ÿ				´şt´Tn 0	λpi,Φ i ps,νnqqds s
		iPΘ			
							(II.20)

  ˚, the Poisson process pN t , t ě 0q and the sequences pU k , k P Nq, pV k , k P Nq. In Proposition 2.2.1, we give an other representation of II.20. Instead of using the conditional density of the jump times (II.18), we focus on the random indexes τ n (recall that T n " T τn ) to make appear the acceptance and reject probabilities (λp.q{λ ˚and 1´λp.q{λ ˚). The product term which appear in the expectation in the right hand side of the equality in Proposition 2.2.1 should be interpreted as the survival function of T n`1 in II.20. Indeed, consider for example the first jump time T 1 and that x 0 " pθ, νq P E is fixed. Using II.18, we have

		PpT 1 ą tq " e	´şt 0 λpθ,Φ θ ps,νqqds .
	Moreover, we have			
		PpT 1 ą tq " E	» -j"1 N t ź p1	´λpθ, Φ θ pT j , νqq λ ˚qfi fl .
	In order to derive the above equality, we use that
	tT 1 ą tu " tT τ1 ą tu		
	" tτ 1 ą N t u		
	"	ď pě0 tN t " p, U 1 ą	λpθ, Φ θ pT 1 , νqq λ ˚, . . . , U p ą	λpθ, Φ θ pT p , νqq λ

˚u and the fact that the sequence pU k , k ě 0q is independent of the Poisson process N ˚.

Corollary 2.2.1.

  Under the assumptions of Proposition 2.2.2, setting Rt " R Ñt , we have Ergpx t q Rt s " Ergpx t qs. We have chosen to state Proposition 2.2.2 with a PDP px t q whose intensity and transition measure only depend on θ for readability purposes. Actually the arguments of the proof are valid for non homogeneous intensity and transition measure of the form λpx, tq and Qppx, tq, dyq for x " pθ, νq P E. A possible choice of such characteristics is λpx, tq " λpθ, Φθ pt, νqq and Qppx, tq, dyq " Qppθ, Φθ pt, νqq, dyq for Φ a given function. This remark will be implemented in section 2.5.4. Let pΦ, λ, Qq (resp. p Φ, λ, Qq) be the set of characteristics of px t q (resp. px t qq.

	Remark 2.2.1. Proposition 2.2.2 looks like a Girsanov theorem (see [70]) however we do not use the martingale theory here. Remark 2.2.2. Corollary 2.2.2.

  ν n qq λ Proof of Proposition 2.2.2. By assumption the (jump) characteristics p λ, Qq of px t q depend only on θ. Let p 1 ă p 2 ă ... ă p n ď m. Applying the same arguments as in (II.23) to px t q and using the definitions of Z , 0 ď ď n and Rn we obtain,

				˚qs.	(II.23)
	We prove below Proposition 2.2.2. The other statements can be proved analogously.
	Ergpx ˚qm´pn
	´p1	´λpθq λ ˚qm´pn ¯´1 Qpx T pn´1 Qp θn´1 , θq , θq	q"pn`1 m ź p1	´λpθ, Φ

t q Rn 1 t Ñt"n,τi"pi,1ďiďn,N t "mu s "

ÿ θPΘ Er Qp θn´1 , θq gpθ, Φ θ pt ´T pn , νn qq Zn n´1 ź "0 Z 1 tN t "m,τ i "p i ,

1ďiďnu s p1 ´λpθq λ ˚qm´pn " ÿ θPΘ Er Qp θn´1 , θq gpθ, Φ θ pt ´T pn , νn qq n´1 ź "0 Z 1 tN t "m,τ i "p i , 1ďiďnu p1 ´λpθq λ θ pT q ´T pn , νn qq λ ˚qs " ÿ θPΘ ErQpx T pn´1 , θq gpθ, Φ θ pt ´T pn , νn qq Zn´1 n´2 ź "0 Z 1 tN t "m,τ i "p i , 1ďiďnu m ź q"pn`1 p1 ´λpθ, Φ θ pT q ´T pn , νn qq λ ˚qs.

h 2p . Assumption 2.3.2. There

  exist positive constants ρ, λmin , λmax such that for all pi, jq P Θ 2 , ρ ď Qpi, jq and λmin ď λpiq ď λmax ă λ

	˚.

Theorem 2.3.2. Let

  Φ θ and Φ θ satisfying (II.14) and let px t , t P r0, T sq and px t , t P r0, T sq be the corresponding PDPs constructed in section 2.2.1 with x0 " x0 " x for some x P E. Let p Rt , t P r0, T sq and p Rt , t P r0, T sq be defined as in Corollary 2.2.1. Under assumptions 2.3.1 and 2.3.2 and for all bounded functions F : E Ñ R such that for all θ

  1 T pk ďT |λpα k´1 , Φ α k´1 pT pk ´T pk´1 , ν k´1 qq ´λpα k´1 , Φ α k´1 pT pk ´T pk´1 , ν k´1 qq|s Using the Lipschitz continuity of λ then Lemma 2.2.1 we get that I p1q k ď C 2 hEr1 T k ďT ks where C 2 is a constant independent of h. Concerning the term I C 2 hEr1 T k ďT ks. We conclude in the same way as in the estimation of J k above that ř kě1 I k " Ophq.

		p2q k , we will end with the
	estimate I	p2q k ď

  n 1 τ : ąn ˇˇF pθ n , Φ θn pT ´Tn , ν n qq ´F pθ n , Φ θn pT ´Tn , ν n qq ˇˇ2 ı The application of the Lipschitz continuity of F and of Lemma 2.2.1 yields ˇˇF pθ n , Φ θn pT ´Tn , ν n qq ´F pθ n , Φ θn pT ´Tn , ν n qq ˇˇď L F e LT pn `1qCh.

	Then, we have D ď C 3 h 2 ř of h. Since ř ně0 E " 1 N	ně0 E	"	1 N T "n pn `1q 2 ‰	where C 3 is a constant independent

T "n pn `1q 2 ‰ " ErpN T `1q 2 s ď ErpN T `1q 2 s ă `8, we conclude that D " Oph 2 q.

  2 C 1 h. (II.31) Now, consider J. Note that from Assumption 2.2.1 we have ST ď 1. We use the same type of arguments as for I. That is, we successively use Lemma 2.3.2, the Lipschitz continuity of Q and Lemma 2.2.1 to obtainJ ď ρ ´N T pN T q 2 C 2 h, (II.32)where C 2 is a positive constant independent of h. Then, we derive from the previous estimates (II.31) and (II.32) that| RT ´R T | ď Ξ 1 pN T qC 3 h,˚q¯´n npn `1q 2 and C 3 " maxpC 1 , C 2 q. Finally, we have Er| RT ´R T | 2 s ď C 3 h 2 ErΞ 1 pN T q 2 s. Since ErΞ 1 pN T q 2 s ă `8 we conclude that C " Oph 2 q. Recall that xT " p θ ÑT , Φ θ ÑT pT ´T ÑT , ν ÑT qq and xT " p θ ÑT , Φ θ ÑT pT ´T ÑT , ν ÑT qq. Then, using the Lipschitz continuity of F , Lemma 2.2.1 and since ÑT ď N T we get |F px T q ´F px T q| ď L F e LT p ÑT `1qCh ď L F e LT pN T `1qCh. ErΞ 2 pN T q 2 s ă `8 we conclude that D " Oph 2 q.

	where Ξ 1 pnq "	´ρ λmin λ ˚p1 ´λmax λ
	Step 2: estimation of D.
	Moreover, | RT | ď	´ρ λmin λ ˚p1 ´λmax

λ ˚q¯´N T so that D ď C 4 h 2 ErΞ 2 pN T q 2 s

where C 4 is a positive constant independent of h and Ξ 2 pnq " pn `1q ´ρ λmin λ ˚p1 ´λmax λ ˚q¯´n . Since

  Assumption 2.4.2. The solution u of the integro differential equation " Aupt, xq " 0, pt, xq P r0, T rˆE, upT, xq " F pxq, x P E, (II.34) with F : E Ñ R a bounded function and A given by (II.33) is such that for all θ P Θ, the function pt, νq Þ Ñ upt, θ, νq is bounded and two times differentiable with bounded derivatives. Moreover the second derivatives of pt, νq Þ Ñ upt, θ, νq are uniformly Lipschitz in θ. Let px t , t P r0, T sq be a PDMP and px t , t P r0, T sq its approximation constructed in section 2.2.3 with x 0 " x 0 " x for some x P E. Under assumptions 2.4.1. and 2.4.2. for any bounded function F : E Ñ R there exists a constant c 1 independent of h such that ErF px T qs ´ErF px T qs " hc 1 `Oph 2 q. (II.35) Remark 2.4.1. If px t q is a PDMP whose characteristics λ, Q satisfy the assumptions of Proposition 2.2.2 and px t q is its approximation we deduce from Theorem 2.4.1 thatErF px T q RT s ´ErF px T q RT s " hc 1 `Oph 2 q.(II.36)

	Theorem 2.4.1.

2.4.1 Further results on PDMPs: Itô and Feynman-Kac formulas

Definition 2.4.1. Let us define the following operators which act on functions g defined on R `ˆE. T gpt, xq :" B t gpt, xq `f pxqB ν gpt, xq, Sgpt, xq :" λpxq ż E pgpt, yq ´gpt, xqqQpx, dyq. From Definition 2.4.1, the generator A defined by (II.33) reads Agpt, xq " T gpt, xq Sgpt, xq.

  4.1 and 2.4.2), the functions B t u, B ν u and Su are smooth enough to apply the Itô formula (II.38) between ηpsq and s respectively. This yields B t ups, x s q " B t upηpsq, x ηpsq q `ż s ηpsq ApB t uqpr, x r , x ηprq qdr `M Btu Moreover, since ηprq " ηpsq for r P rηpsq, ss, we have f px ηpsq qB ν ups, x s q " f px ηpsq qB ν upηpsq, x ηpsq q `ż s ηpsq f px ηprq qApB ν uqpr, x r , x ηprq qdr `f px ηpsq qpM Aups, x s , x ηpsq q " Aupηpsq, x ηpsq , x ηpsq q `ż s ηpsq Υpr, x r , x ηprq qdr `ApB t uq `f pyqApB ν uq `ApSuq ˘pt, x, yq. (II.39) Since Aupt, x, xq " Aupt, xq, the first term in the above equality is 0 by Theorem 2.4.3. By using Fubini's theorem and the fact that pM ErF px T qs ´ErF px T qs " E We can compute an explicit form of Υ in term of u, f , λ, Q and their derivatives. Indeed, Υ is given by (II.39), and we have ApB t uqpt, x, yq " B 2 tt upt, xq `f pyqB 2 tν upt, xq `SpB t uqpt, xq, `f ApB ν uq ˘pt, x, yq " f pyq `B2

	so that											
						`M Btu s	´M Btu ηpsq `f px ηpsq qpM	Bν u s	´M Bν u ηpsq q	`M Su s	´M Su ηpsq ,
	where,											
			Υpt, x, yq :" Btu t q and pM	Su t q are true martingales, we
	obtain											
			E	"ż T	M	Btu s	´M Btu ηpsq ds 	" E	"ż T	M	Su s	´M Su ηpsq ds		" 0.
						0								0
	Moreover, since pM	Bν u t q is a F p t -martingale, we have
	E	"ż T 0	f px ηpsq qpM	Bν u s	´M Bν u ηpsq qds		"	ż T 0	E	" f px ηpsq qErM	Bν u s	´M Bν u ηpsq |F p ηpsq s ı	ds " 0.
	Collecting the previous results, we obtain
														« ż T	ż s
														0
														s	´M Btu ηpsq ,
	B ν ups, x s q " B ν upηpsq, x ηpsq q	`ż s	ApB ν uqpr, x r , x ηprq qdr	`M Bν u s	´M Bν u ηpsq ,
												ηpsq	
	Sups, x s q " Supηpsq, x ηpsq q	`ż s	ApSuqpr, x r , x ηprq qds	`M Su s	´M Su ηpsq .
												ηpsq	
														Bν u s	´M Bν u ηpsq q,

ηpsq Υpr, x r , x ηprq qdrds ff . tν upt, xq `f pyqB 2 νν upt, xq `SpB ν uqpt, xq ˘, ApSuqpt, x, yq " B t pSuqpt, xq `f pyqB ν pSuqpt, xq `SpSuqpt, xq.

  Cds `Oph 2 q. Since Ψ is assumed bounded and ErN T s ă `8, the above arguments yields the following representation ErF px T qs ´ErF px T qs "Step 2: From the representation (II.40) to the expansion at the order one. In this step, we show that E Now, recall from (II.24) that, on the event tminpT τ : , T τ : q ą T u, we have T k " T k and θ k " θ k for all k ě 1 such that T k P r0, T s. Thus, for all n ď N T and for all s P rT n , T n`1 r we have x ηpsq " pθ n , φ θn pηpsq ´T n , ν n qq and x ηpsq " pθ n , φ θn pηpsq ´T n , ν n qq. Consequently, on the event tminpT τ : , T τ : q ą T u we have |Ψpηpsq, θ n , φ θn pηpsq ´T n , ν n qq ´Ψpηpsq, θ n , φ θn pηpsq ´T n , ν n qq|ds.From the regularity assumptions 2.4.1 and 2.4.2, the function ν Þ Ñ Ψpt, θ, νq is uniformly Lipschitz in pt, θq with constant L Ψ as sum and product of bounded Lipschitz functions. Thus, from this Lipschitz property and the application of Lemma 2.2.1, we get |Ψpηpsq, θ n , φ θn pηpsq ´T n , ν n qq ´Ψpηpsq, θ n , φ θn pηpsq ´T n , ν n qq| ď L Ψ Ce LT pn `1qh.

	have	ş t kh ps ´khqCds " t´kh 2	ş t kh Cds moreover adding and subtracting h in the numerator
	of pt ´khq{2 yields				
				ż t kh	ps ´khqCds "	h 2	ż t kh	Cds	`t ´pk `1qh 2	ż t kh	Cds.
	Since C is bounded we deduce that	ş t kh ps ´khqCds " h 2 "ż T kh h ş t 0 2 E Ψpηpsq, x ηpsq qds		`Oph 2 q.	(II.40)
						" ş T 0 Ψpηpsq, x ηpsq qds	ı	" E	" ş T 0 Ψps, x s qds ı	`Ophq. First,
	we introduce the random variables Γ and Γ defined by Γ :" Γ :" ş T 0 Ψpηpsq, x |Γ ´Γ|	ş T 0 Ψpηpsq, x ηpsq qds and
		N T ÿ	ż T n`1	^T				
	ď							
		n"0	T n					

ηpsq qds and write

Er|Γ ´Γ|s " E " 1 minpT τ : ,T τ : qďT |Γ ´Γ| ı `E " 1 minpT τ : ,T τ : qąT |Γ ´Γ| ı ,

where τ : is defined in Definition 2.3.1. Since Ψ is bounded and PpminpT τ : , T τ : q ď T q "

Ophq (see the proof of Theorem 2.3.1), we have E " |Γ ´Γ|1 minpT τ : ,T τ : qďT ı " Ophq.

  Finally, the weak error expansion readsErF px T qs ´ErF px T qs "

	ηpsq qds ı	´E " ş T 0 Ψps, x s qds ıˇˇˇď "ż T CT h. h 0 2 E Ψps, x s qds		`Oph 2 q.

Conductance-based modelsMost neurons respond to incoming signals with action potentials (also called spikes) which are the building block of the neural coding. Action potentials are generated in the soma, propagate along the axon and produce inputs to the other neurons through dendrites.

Monte Carlo simulationsLet X be a random variable defined on some probability space pΩ, F, Pq. Consider the problem of the numerical approximation of ErXs. To this purpose let us denote by Y

,

Remerciements

Chapter I

Exact simulation of the jump times of a class of Piecewise Deterministic Markov Processes Abstract

In this paper, we are interested in the exact simulation of a class of Piecewise Deterministic Markov Processes (PDMP). We show how to perform an efficient thinning algorithm depending on the jump rate bound. For different types of bounds, we compare theoretically the efficiency of the algorithm (measured by the mean ratio between the total number of jump times generated by thinning and the number of selected ones) and we compare numerically the computation times. We use the thinning algorithm on Hodgkin-Huxley models with Markovian ion channels dynamics to illustrate our results. Proposition 1.5.5. For all x P E, we have Erτ opt, pxqs ÝÑ Ñ0 1.

Proof. Let x P E and ą 0. From theorem 2.2 in chap.6 of [START_REF] Devroye | Non-uniform random variate generation[END_REF] Erτ opt, pxqs ď 1.

Since Erτ opt, pxqs ě 1 for all ą 0, the conclusion follows.

Hodgkin-Huxley models

In this section, we introduce two deterministic Hodgkin-Huxley models and their stochastic versions, namely, the subunit model and the channel model.

Deterministic Hodgkin-Huxley models

In the celebrated paper [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF] Alan Lloyd Hodgkin and Andrew Huxley proposed a deterministic model to explain the ionic mechanisms underlying the initiation of action potentials in the squid giant axon. They pointed out that the initiation of action potentials relies on three types of channels (sodium, potassium, and leak) which allow the transfer of ions across the membrane. A sodium (potassium respectively) channel is permeable to sodium ions (potassium ions respectively) only and is composed by three activation gates represented by the variable m and one inactivation gate h (four activation gates n and zero inactivation gates respectively 

Abstract

In the first part of this paper we study approximations of trajectories of Piecewise Deterministic Processes (PDP) when the flow is not explicit by the thinning method. We also establish a strong error estimate for PDPs as well as a weak error expansion for Piecewise Deterministic Markov Processes (PDMP). These estimates are the building blocks of the Multilevel Monte Carlo (MLMC) method which we study in the second part.

The coupling required by the MLMC is based on the thinning procedure. In the third part we apply these results to a 2-dimensional Morris-Lecar model with stochastic ion channels. In the range of our simulations the MLMC estimator outperforms the classical Monte Carlo one.

Application to the construction of a PDMP and its associated Euler scheme

In this section we define a PDMP and its associated Euler scheme from the construction of the section 2.2.1. Consider a family of vector fields pf θ , θ P Θq satisfying Assumption 2.2.2. For all θ P Θ, the function f θ : R Ñ R is bounded and Lipschitz with constant L independent of θ.

If we choose Φ θ " φ θ in the above construction where for all x " pθ, νq P E, we denote by pφ θ pt, νq, t ě 0q the unique solution of the ordinary differential equation (ODE)

then the corresponding PDP is Markov since φ satisfies the semi-group property which reads φ θ pt `s, νq " φ θ pt, φ θ ps, νqq for all t, s ě 0 and for all pθ, νq P E. In this case, the process px t q is a piecewise deterministic Markov process (see [START_REF] Davis | Markov Models and Optimization[END_REF] or [START_REF] Jacobsen | Point Process Theory and Applications, Marked Point and Piecewise Deterministic Processes[END_REF]).

Let h ą 0. We approximate the solution of (II.15) by the Euler scheme with time step h. First, we define the Euler subdivision of r0, `8r with time step h, noted pt i , i ě 0q, by t i :" ih. Then, for all x " pθ, νq P E, we define the sequence py i pxq, i ě 0q, the classical Euler scheme, iteratively by " y i`1 pxq " y i pxq `hf θ py i pxqq, y 0 pxq " ν, to emphasize its dependence on the initial condition. Finally, for all x " pθ, νq P E, we set φ θ pt, νq :" y i pxq `pt ´ti qf θ py i pxqq, @t P rt i , t i`1 s.

(II.16)

We construct the approximating process px t q as follows. Its continuous component starts from ν 0 at time 0 and follows the flow φ θ 0 pt, ν 0 q until the first jump time T 1 that we construct by (II.10) and (II.11) of section 2.2.1 where we replace Φ θ 0 pT k , ν 0 q by φ θ 0 pT k , ν 0 q. At time T 1 the continuous component of x T 1 is equal to φ θ 0 pT 1 , ν 0 q :" ν 1 since there is no jump in the continuous component. The discrete component jumps to θ 1 . We iterate this procedure with the new flow φ θ 1 pt ´T 1 , ν 1 q until the next jump time T 2 given by (II.10) and (II.11) with φ θ 1 pT k ´T 1 , ν 1 q and so on. We proceed by iteration to construct px t q on r0, T s. Consequently, the discretisation grid for px t q on the interval r0, T s is random and is formed by the points T n `kh for n " 0, . . . , N T and k " 0, . . . , tpT n`1 ^T ´T n q{hu. This differs from the SDE case where the classical grid is fixed.

By classical results of numerical analysis (see [START_REF] Hairer | Solving Ordinary Differential Equations I[END_REF] for example), the continuous Euler scheme (II.16) (also called Euler polygon) satisfies estimate (II.14). If we choose Φ θ " φ θ in the above construction then the corresponding PDP px t q is not Markov since the functions φ θ p., νq do not satisfy the semi-group property (see [START_REF] Jacobsen | Point Process Theory and Applications, Marked Point and Piecewise Deterministic Processes[END_REF]).

Definition 2.3.1. Let us define τ

The random variable τ : enables us to partition the trajectories of the couple px t , x t q in a sense that we precise now. Consider the event

) , (II. [START_REF] Dayan | Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems[END_REF] where pT n q and pT n q denote the sequences of jump times of px t q and px t q. On this event tminpT τ : , T τ : q ą T u the trajectories of the discrete time processes pT n , θ n q and pT n , θ n q are equal for all n such that T n P r0, T s (or equivalently T n P r0, T s). Moreover the complement i.e tminpT τ : , T τ : q ď T u contains the trajectories for which pT n , θ n q and pT n , θ n q differ on r0, T s (there exits

Preliminary lemmas

In this section we start with two lemmas which will be useful to prove Theorems 2.3.2 and 2.3.3. Lemma 2.3.1. Let K be a finite set. We denote by |K| the cardinal of K and for i " 1, . . . , |K| we denote by k i its elements. Let pp i , 1 ď i ď |K|q and pp i , 1 ď i ď |K|q be two probabilities on K. Let a j :" ř j i"1 p i and a j :" ř j i"1 p i for all j P t1, . . . , |K|u. By convention, we set a 0 " a 0 :" 0. Let X and X be two K-valued random variables defined by X :" GpU q, X :" GpU q, where U " Upr0, 1sq, Gpuq " ř |K| j"1 k j 1 a j´1 ăuďa j and Gpuq " ř |K| j"1 k j 1 a j´1 ăuďa j for all u P r0, 1s. Then, we have

Proof of Lemma 2.3.1. By definition of X and X and since the intervals sa j´1 , a j sXsa j´1 , a j s are disjoints for j " 1, . . . , K, we have

Moreover, for all 1 ď j ď |K|, we have

Thus, denoting by x `:" maxpx, 0q the positive part of x P R and using that x `ě x, we obtain

Remark 2.4.2. For all functions g defined on R `ˆE, T gpt, x, xq " T gpt, xq, so that Agpt, x, xq " Agpt, xq.

The next theorem provides Itô formulas for the PDMP px t q and its approximation px t q. For all s P r0, T s, we set ηpsq :" T n `kh if s P rT n `kh, pT n `pk `1qhq ^T n`1 r for some n ě 0 and for some k P t0, . . . , tpT n`1 ´T n q{huu.

Theorem 2.4.2. Let px t , t P r0, T sq and px t , t P r0, T sq be a PDMP and its approximation respectively constructed in section 2.2.3 with x 0 " x 0 " x for some x P E. For all bounded functions g : R `ˆE Ñ R continuously differentiable with bounded derivatives, we have [START_REF] Davis | Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models[END_REF]. We prove (II.38) following the same arguments. Since q " p ´p1 , we have

Consider the above sum. As in [START_REF] Davis | Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models[END_REF], we write, on the event tN t " nu, that

For all k ď n ´1, we decompose the increment gpT k`1 , x

q ´gpT k , x T k q as a sum of increments on the intervals rT k `ih, pT k `pi `1qhq ^T k`1 s Ă rT k , T k`1 s. Without loss of generality we are led to consider increments of the form gpt, θ, φ θ pt, νqq ´gpih, θ, y i pxqq for some i ě 0, t P rih, pi `1qhs and for all x " pθ, νq P E where we recall that φ is defined by (II. [START_REF] Clay | Relationship between membrane excitability and single channel open-close kinetics[END_REF]). The function g is smooth enough to write gpt, θ, φ θ pt, νqq ´gpih, θ, y i pxqq " ż t ih pB t g `fθ py i pxqqB ν gq ps, θ, φ θ ps, νqqds.

Then, the above arguments together with definition 2.4.2 yields gpt, x t q ´gpT n , x T n q `n´1 ÿ

2 ř L j"1 q j pn j´1 `nj q

Table II.1 -Optimal parameters for the MLMC estimator (II.43).

Ỹ MLMC are given in a similar way using Ṽ1 , β and Varp Xq. Finally, the parameter M p q is determined as in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] section 5.1.

Methodology

We compare the classical and the multilevel Monte Carlo estimators in term of precision, CPU-time and complexity. The precision of an estimator Y is defined by the L 2 -error Y ´ErXs 2 " a pErY s ´ErXsq 2 `VarpY q also known as the Root Mean Square Error (RMSE). The CPU-time represents the time needed to compute one realisation of an estimator. The complexity is defined as the number of time steps involved in the simulation of an estimator. Let Y denote the estimator (II.42) or (II.43). We estimate the bias of Y by

where Y 1 , . . . , Y R are R independent replications of the estimator. We estimate the variance of Y by

where v 1 , . . . , v R are R independent replications of v the empirical variance of Y . In the case where Y is the crude Monte Carlo estimator we set

If Y is the MLMC estimator, we set

where m p1q

The numerical computation of (II.45) for both estimators (II.42) and (II.43) requires the computation of the optimal parameters given by (II.44) and in table II.1 of section 2.5.2 which are expressed in term of the structural parameters c 1 , V 1 and VarpXq. Moreover the computation of the bias requires the value ErXs. Since there is no closed formula for the mean and variance of X we estimate them using a crude Monte Carlo estimator with h " 10 ´5 and N " 10 6 . The constants c 1 and V 1 are not explicit, we use the same estimator of V 1 as in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] section 5.1, that is

and we use the following estimator of c 1

The estimator of c 1 is obtained writing the weak error expansion for the two time steps h and h{M , summing and neglecting the Oph 2 q term. In (II.46) we use ph, M q " p0.1, 4q and in (II.47), we use ph, M q " p1, 4q and the expectations are estimated using a classical Monte Carlo of size N " 10 4 on pX h{M , X h q. We emphasize that we interested in the order of c 1 and V 1 so that we do not need a precise estimation here.

Numerical results

In this section we first illustrate the results of Theorems 2.3.1 and 2.3.2 on the Morris-Lecar PDMP, then we compare the MC and MLMC estimators. The simulations were carried out on a computer with a processor Intel Core i5-4300U CPU @ 1.90GHz ˆ4.

The code is written in C++ language. We implement the estimator Ỹ MLMC (see section 2.5.2) for the following choices of the parameters p λ, Qq.

Case 1: λpθq " 1 and Q´θ , tθ `1u ¯" N K ´θ N K , Q´θ , tθ ´1u ¯" θ N K . Case 2: λpx, tq " λpθ, vptqq and Qppx, tq, dyq " Qppθ, vptqq, dyq where v denotes the first component of the solution of (II.41).

Cases 1 and 2 correspond to the application of Proposition 2.2.2. Based on Corollary 2.2.2 we also consider the following case.

Case 3: Consider the quantity ErF px T q ´F px T qs where px t q and px t q are PDPs with characteristics pΦ, λ, Qq and p Φ, λ, Qq respectively. By Corollary 2.2.2, we have ErF px T qs " ErF py T q RT s where py t q is a PDP whose discrete component jumps in the same states and at the times as the discrete component of px t q do and p Rt q is the corresponding corrective process. Thus, we consider the quantity ErF px T q ´F py T q RT s instead of ErF px T q ´F px T qs.

The case 3 implies to use the following MLMC estimator which is slightly different from (II.43).

where ´pX k h l , Xk h l´1 q, k ě 1 ¯for l " 2, . . . , L are independent sequences of independent copies of the couple pX h l , Xh l´1 q " pF px T q, F py T q RT q where py t q is a PDP whose discrete component jumps in the same states and at the same times as the Euler scheme px t q with time step h l do, whose deterministic motions are given by the approximate flows with time step h l´1 and p Rt q is the corresponding corrective process (see Corollary 2.2.2). ErpX hl ´Xhl´1 q 2 s Erp Xhl ´X hl´1 q 2 s: Case 1 Erp Xhl ´X hl´1 q 2 s: Case 2 Erp Xhl ´X hl´1 q 2 s: Case 3 (a) T=10. ErpX hl ´Xhl´1 q 2 s Erp Xhl ´X hl´1 q 2 s: Case 2 Erp Xhl ´X hl´1 q 2 s: Case 3 (b) T=20. The figure II.2 confirms numerically that Er|X h l ´Xh l´1 | 2 s " Oph l q and that Er| Xh l Xh l´1 | 2 s " Oph 2 l q for the cases 1,2 and 3 (see Theorems 2.3.1 and 2.3.2 respectively).

Indeed, for T " 10 (see figure II.2a), we observe that the curve corresponding to the decay of Er|X h l ´Xh l´1 | 2 s as l increases is approximately parallel to a line of slope -1 and that the curves corresponding to the decay of Er| Xh l ´X h l´1 | 2 s in the cases 1,2 and 3 are parallel to a line of slope -2. We also see that the curves corresponding to the cases 2 and 3 are approximately similar and that for some value of l those curves go below the one corresponding to Er|X h l ´Xh l´1 | 2 s. The curve corresponding to the case 1 is always above all the other ones, this indicates that the L 2 -error (or the variance) in the case 1 is too big (w.r.t the others) and that is why we do do not consider this case in the sequel.

As T increases (see figures II.2b and II.2c), the theoretical order of the numerical schemes is still observed. However, for T " 20, a slight difference begin to emerge between the cases 2 and 3 (the case 3 being better) and this difference is accentuated for T " 30 so that we do not represent the case 2.

For the Monte Carlo simulations we set T " 30, λ ˚" 10 and the time step involved in the first level of the MLMC is set to h ˚" 0.1. We choose this value for h ˚because it represents (on average) the size of an interval rT n , T n`1 s of two successive jump times of the auxiliary Poisson process pN t q. The estimation of the true value and variance leads ErXs " ´31.4723 and VarpXq " 335. Note that vp30q " ´35.3083 where v is the deterministic membrane potential solution of (II.41) so that there is an offset between the deterministic potential and the mean of the stochastic potential. We replicate 100 times the simulation of the classical and multilevel estimators to compute the empirical RMSE so that R " 100 in (II.45).

k " 2 ´k p 100 p b 100 p v 100 time (sec) N h cost 1 5.00e-01 4.32e-01 2.34e-01 1.52e-01 3.10e-01 2.16e+03 6.30e-02 3.43e+04 2 2.50e-01 2.59e-01 1.69e-01 3.87e-02 1.55e+00 8.47e+03 3.15e-02 2.69e+05 3 1.25e-01 1.17e-01 6.25e-02 9.78e-03 8.80e+00 3.34e+04 1.58e-02 2.12e+06 4 6.25e-02 5.67e-02 2.73e-02 2.47e-03 5.62e+01 1.32e+05 7.88e-03 1.68e+07 5 3.12e-02 2.50e-02 -1.78e-03 6.21e-04 3.93e+02 5.24e+05 3.94e-03 1.33e+08 Table II complexity of these two MLMC estimators increases more slowly than the one between a MC and a MLMC estimator. Recall that the computational benefit of the MLMC over the MC grows as the prescribed decreases. Both classical and multilevel estimators provide an empirical RMSE which is close to the prescribed precision (see tables II.2, II.3 and II.4). We can conclude that the choice of the parameters is well adapted. For the readability, figures II.3a, II.3b show the ratios of the complexities and the CPU-times of the three estimators Y MC , Y MLMC and Ỹ MLMC as a function of .