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C H A P T E R 1

Introduction

Spectroscopy is an ancient branch of physical chemistry. It collects a large variety

of techniques to explore the nature of substances throughout the study of matter-

radiation interactions. In this context, the electromagnetic spectrum of light is a

fundamental support which encodes, for example, important information from the

chemical composition of distant galaxies or from the electronic structure of tiny atoms.

The present PhD thesis is about the computation of single and multiphoton processes

in atoms and molecules induced by a laser field. Concretely, our attention has been

focused on the development of different methods that enable us to reproduce the

electron dynamics induced by photons.

From a theoretical point of view, the study of the interaction between an atom (or

a molecule) and an electromagnetic field requires two essential ingredients: (1) the

calculation of the electronic structure of the irradiated system and (2) the description

of the electromagnetic interaction. The electronic structure can be predicted using

numerical techniques based on the representation of the N -electron wave function in

a Hilbert space. On the other side, the electromagnetic interaction is described with

the laser field parameters, i.e. the intensity, the energy of the photons, etc.

Having these two ingredients in mind, during the last three years, we have devel-

oped, implemented, and used different computational methods in order to compute

atomic and molecular spectra generated by single and multiphoton processes.

Nowadays, a clear understanding of these processes is still a challenge. For this

reason, new theoretical approximations and new computational methods shall be

developed. The present PhD thesis shows our contributions to this theoretical and

computational development. This manuscript is organized as follows. Chapter 2

is focused on the calculation of the target observables that characterize single and

multiphoton processes. Chapter 3 shows in details the numerical methods we used

in our work to calculate electronic structures in atoms and molecules. In Section

3.1, we present the B-splines. In Section 3.2, we comment the calculation of one-

electron atoms with B-splines. Section 3.3 is about the solution of the time-dependent

Schrödinger equation for one-electron atoms using the technique of B-splines, and

Section 3.4 is dedicated to the calculation of the two-electron integrals (also with
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B-splines) required to explore N -electron atoms. Finally, in Section 3.5 attention is

focused on the computation of molecular electronic structures using Gaussian-type

orbitals. Moreover, the time-dependent configuration interaction singles method is

briefly presented.

In Chapter 4, we present our investigation on photoexcitation and photoionization

in atoms, where we implemented a linear-response range-separated density-functional

theory method, and in Chapter 5 attention is focused on our study of the optimal

representation of the time-dependent wave function for strong laser fields. At the end

of the manuscript, general conclusions and perspectives are given.
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Electron dynamics induced by a

laser field

This chapter contains a brief overview on matter-radiation interaction. First, we

present first-order perturbation theory, used in the calculation of single-photon spec-

tra. Second, multiphoton ionization processes are commented. The computation of

above-threshold ionization (ATI) and high-harmonic generation (HHG) spectra is in-

troduced. We note that in this chapter attention has been focused on interactions

produced by a linearly polarized laser1 field.

2.1 MATTER-RADIATION INTERACTION

This section has been realized following the book of G. C. Schatz and M. A. Ratner

“Quantum Mechanics in Chemistry” [Schatz 03]. Additionally, our presentation of

first-order perturbation theory has been completed using as a reference the book

“Mécanique Quantique II”, written by C. Cohen-Tannoudji, B. Diu and F. Laloë

[Cohen-Tannoudji 97].

2.1.1 Classical description of an electromagnetic field

Maxwell’s equations design the classical framework in which an electromagnetic field

is described. Both electric E(r,t) and magnetic B(r,t) fields are generated by the

scalar potential Φ(r, t) and the vector potential A(r,t) as follows (in IS units)

E(r,t) = −∇Φ(r, t)− ∂A(r,t)

∂t
, (2.1)

B(r,t) = ∇×A(r,t), (2.2)

The potentials Φ(r, t) and A(r,t) are not uniquely defined and depend on the choice

of the gauge. However, the fields E(r,t) and B(r,t) are invariant under the following

gauge transformation

Φ(r, t) → Φ′(r, t) = Φ(r, t)− ∂f(r, t)

∂t
, (2.3)

A(r, t) → A′(r, t) = A(r, t) +∇f(r, t), (2.4)

1From “light amplification by stimulated emission of radiation”.
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where f(r, t) is a scalar function. In the Coulomb gauge, also called the radiation

gauge, is defined by imposing

∇ ·A(r,t) = 0. (2.5)

As a consequence, one has

∇2Φ(r, t) = 4π̺, (2.6)

where ̺ is the charge density. In the case of no sources of charge, the scalar potential

vanishes in the Coulomb gauge. Within these conditions, it can be shown that a

monochromatic linearly polarized electromagnetic plane wave is generated by the

potential vector

A(r,t) = A0 ê cos(k · r− ωt), (2.7)

and described by the corresponding fields

E(r,t) = −∂A(r,t)

∂t
= E0 ê sin(k · r− ωt), (2.8)

B(r,t) = ∇×A(r,t) = B0 (ê× k̂) sin(k · r− ωt), (2.9)

where the electric field strength is given by E0 = −ωA0 and the magnetic strength

by B0 = −A0 |k|, where A0 is the amplitude of the vector potential and ω = |k|c
is the angular frequency of the plane wave, with c is the speed of light. Moreover,

ω corresponds to a frequency ν = ω/2π and to a wavelength λ = c/ν. Finally, k is

the propagation vector orthogonal to the polarization unitary vector ê, i.e. k · ê = 0.

In addition, the intensity I(ω) of the radiation can be calculated using the Poynting

vector, which represents the instantaneous energy flux, as follows

S(r, t) = E(r,t)× B(r,t) = A2
0 |k|2 c k̂ sin(k · r− ωλt)

2. (2.10)

Over a whole wave period, T = 2π/ω, the intensity can be expressed as

I(ω) =
1

T

� T

0

|S(r, t)|dt = A2
0 |k|2 c
2

=
A2

0 ω
2

2 c
=

E2
0

2 c
. (2.11)

The total number of photons N (ω) of angular frequency ω, within a volume V ,
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can be obtained from the following relation

N (ω) =
I(ω)

�ω

V

c
. (2.12)

In typical working conditions, i.e. I(ω) ≃ 1014 W cm−2, when using a monochromatic

linearly polarized radiation, generated by a Ti:Sapphire laser with photon energy

�ω = 1.55 eV, the total number of photons in the volume V = λ3, with λ = 2πc/ω =

800 nm, is N (ω) ≃ 1 × 108, which is a very large quantity. Therefore, a classical

description of the electromagnetic field can be justified, see for instance [Mandel 95].

2.1.2 Time-dependent Schrödinger equation

The semi-classical non-relativistic Hamiltonian for a N -electron atom in an electro-

magnetic field is described by

Ĥ(t) =
N
�

i=1

1

2me

[p̂i + eA(ri, t)]
2 + V (r1...rN )−

N
�

i=1

eΦ(ri, t), (2.13)

where the spin-dependent terms have been neglected. The electron momentum op-

erator is defined as p̂i = −i�∇ri
and the potential V (r1...rN) takes into account

the electron interactions of the system, i.e. electron-nucleus and electron-electron

interactions. In the Coulomb gauge, Eq. (2.13) is rewritten as

Ĥ(t) = Ĥ0 + Ĥint(t), (2.14)

where the field-free Hamiltonian Ĥ0 is given by

Ĥ0 =

N
�

i=1

p̂2
i

2me
+ V (r1...rN ), (2.15)

and the time-dependent interaction Hamiltonian Ĥint(t) by

Ĥint(t) =

N
�

i=1

e

me
A(ri, t) · p̂i +

N
�

i=1

e2

2me
A(ri, t)

2. (2.16)

At this point, it is very interesting to see that, if the wavelength λ of the radiation is

larger than the size of the atomic system, and the intensity is not very high, the spatial

variations of the field across the atomic system can be neglected. As a consequence,
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the vector potential becomes spatially homogeneous, i.e. A(ri, t) ≈ A(t). This

important approximation is called the dipole approximation and translates Eq. (2.16)

into

Ĥint(t) =
e

me
A(t) ·P+

e2N

2me
A2(t), (2.17)

where P =
�N

i=1 p̂i is the total electron momentum operator. Finally, within the

former conditions and approximations, one can write the non-relativistic spin-free

time-dependent Schrödinger equation (TDSE) for a N -electron atom in an electro-

magnetic field as

i�
∂

∂t
Ψ(t) =

�

Ĥ0 +
e

me

A(t) ·P+
e2N

2me

A2(t)

�

Ψ(t), (2.18)

where Ψ(t) is the time-dependent N -electron wave function. In general, it can be

shown that Eq. (2.18) is invariant under certain gauge transformations

Ψ(t) → Ψ′(t) = Ψ(t)× exp

�

−ie

�
f(t)

�

, (2.19)

together with Eq. (2.4) and Eq. (2.3), where now the scalar function f only depends

on time. Consequently, it is very interesting to see that simple forms of Eq. (2.18)

can be obtained by choosing the appropriate gauge. Let us now briefly introduce the

velocity and the length gauges of the TDSE.

2.1.2.1 TDSE in the velocity gauge

Within the dipole approximation, the diamagnetic quadratic interaction term, ap-

pearing in Eq. (2.18), can be eliminated by choosing the velocity gauge. Basically,

this gauge translates Eq. (2.18) into the following form

i�
∂

∂t
ΨV (t) =

�

Ĥ0 +
e

me
A(t) ·P

�

ΨV (t), (2.20)

where one has used the scalar function

fV (t) = − eN

2me

� t

−∞

A2(t′)dt′, (2.21)
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together with the potentials

AV (t) = A(t), (2.22)

ΦV (t) =
eN

2me
A2(t). (2.23)

In the velocity gauge, the time-dependent interaction Hamiltonian is defined by

ĤV
int(t) =

e

me
A(t) ·P. (2.24)

If a monochromatic plane wave is used, the potential vector may be express as

A(t) = A0 ê cos(ωλt). (2.25)

Moreover, with this kind of radiation, Eq. (2.24) can be rewritten as

ĤV
int(t) = ĤV

int e
−iωλt +

�

ĤV
int

�∗

eiωλt, (2.26)

with ĤV
int = (eA0/2me)ê ·P.

2.1.2.2 TDSE in the length gauge

Another common form of Eq. (2.18) is presented by the length gauge, which can be

expressed as

i�
∂

∂t
ΨL(t) =

�

Ĥ0 + e E(t) ·R
�

ΨL(t), (2.27)

where R =
�N

i=1 ri is the total position operator, and E(t) the electric field in the

dipole approximation. In order to obtain Eq. (2.27), one uses the following scalar

function

fL(t) = −A(t) ·R, (2.28)

together with the potentials

AL(t) = 0, (2.29)

ΦL(t) = −E(t) ·R. (2.30)
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The time-dependent interaction Hamiltonian in the length gauge is then given by

ĤL
int(t) = e E(t) ·R. (2.31)

If a monochromatic radiation is used, the electric field in the dipole approximation

can be defined as

E(t) = E0 ê cos(ωλt). (2.32)

Then, Eq. (2.31) is rewritten as

ĤL
int(t) = ĤL

int e
−iωλt +

�

ĤL
int

�∗

eiωλt, (2.33)

with ĤL
int = (eE0/2)ê ·R.

2.2 FIRST-ORDER TIME-DEPENDENT PERTURBATION THEORY

Once the TDSE has be rewritten in a simple form, using the velocity or the length

gauges, one can start to think about its resolution. However, in most of the cases,

this is not an easy task. In fact, the TDSE encodes the “quantum many-body prob-

lem” which cannot be solved exactly in systems with more that two particles. As a

consequence, under different assumptions, diverse approximations can be performed.

In our case, it has been described that, as long as the intensity of the radiation

is small, solutions of the TDSE can be expanded in a perturbation series [Cohen-

Tannoudji 97]. For this reason, if one works with low laser intensities, single-photon

processes can be accurately described within time-dependent perturbation theory

(TDPT). In this framework, the time-dependent Hamiltonian of the investigated

electronic system is given by

Ĥ(t) = Ĥ0 + λintV̂ (t), (2.34)

where Ĥ0 is the field-free Hamiltonian of the system, V̂ (t) is the time-dependent

perturbation and λint is a parameter that controls the strength of the perturbation.

As well as this, TDPT assumes that the time-dependent wave function Ψ(t) can be

decomposed onto the eigenstates of Ĥ0 as

Ψ(t) =
∞
�

m=1

cm(t) ψm e−i εm
�

t, (2.35)
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where the expansion coefficients {cm(t)} take into account the temporal dependence

and the couples {εm,ψm} are solutions of the following eigenvalue problem

Ĥ0ψm = εmψm. (2.36)

If Eq. (2.35) is now substituted into the TDSE, an ensemble of coupled differential

equations can be obtained,

i�
d
dt

cm(t) = λint

∞
�

k=1

Vm,k(t) ck(t) e
iωm,kt, (2.37)

where the time-dependent perturbation matrix elements are defined as

Vm,k(t) = �ψm|V̂ (t)|ψk�, (2.38)

and ωm,k = (εm− εk)/�. In order to solve Eq. (2.37), TDPT proposes to approximate

the time-dependent coefficients to a perturbative series as

cm(t) =
∞
�

n=0

λn
int c

(n)
m (t). (2.39)

Then, Eq. (2.37) can be solved for a given specific order n, starting form the definition

of the 0th-order (unperturbed) solution, which is

c(0)m (t) = �ψm|ψi� = δm,i. (2.40)

In fact, this definition indicates that the system is initially found at ψi, i.e. Ψ(t =

0) ≡ ψi, being ψi an eigenstate of Ĥ0. Also, one can see that the 0th-order coefficient

is a time-independent coefficient, i.e c(0)m (t) ≡ c
(0)
m . Subsequently, it can be shown that

the first-order solution of Eq. (2.37) is given by the integral

c(1)m (t) =
1

i�

� t

0

Vm,i(t
′) eiωm,it′ dt′. (2.41)
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2.2.1 Single-photon transition rate

Assuming that the time-dependent wave function Eq. (2.35) is normalized,

�Ψ(t)|Ψ(t)� =
∞
�

m=1

|cm(t)|2 = 1, (2.42)

the time-dependent coefficient |cm(t)|2 can be interpreted as the probability that the

system has to be in the state ψm at time t. As a matter of fact, the first-order

transition probability P (1)
i,f (t) is given by the square root of the final state time-

dependent coefficient |cf(t)|2, expressed as

P(1)
i,f (t) = |c(0)f + λintc

(1)
f (t)|2, (2.43)

where c
(0)
f is given by δi,f = 0, and then, the transition probability is completely

described by the first-order coefficient of the final state as

P(1)
i,f (t) = λ2

int|c(1)f (t)|2 = λ2
int

�2

�

�

�

�

� t

0

Vf,i(t
′) eiωf,it

′

dt′
�

�

�

�

2

. (2.44)

If now a monochromatic linearly polarized radiation is used, in order to produce

the single-photon transition |ψi� → |ψf �, one can show that Eq. (2.44) can be rewrit-

ten as

P(1)
i,f (t) =

E2
0e

2

4�2
|�ψi |ê ·R|ψf�|2 ×

�

�

�

�

� t

0

�

ei(ωif−ω)t′ + ei(wif+ω)t′
�

dt′
�

�

�

�

2

, (2.45)

where the length-gauge description of the time-dependent perturbation has been used,

see for instance Eq. (2.33). Moreover, for large times t, one observes that, if only

absorption is taking into account, Eq. (2.45) approximates the following expression

P(1)
i,f (t) ≈

πE2
0e

2

2�2
|�ψi |ê ·R|ψf�|2 t δ(ω − ωif), (2.46)

where δ(ω−ωif ) is the Dirac delta function, which preserves the energy conservation

principle in the long time limit. Additionally, the first-order transition rate per unit

of time Γ
(1)
i,f (ω) can be defined as

Γ
(1)
i,f (ω) =

P(1)
i,f (t)

t
=

πE2
0e

2

2�2
|�ψi |ê ·R|ψf�|2 δ(ω − ωif). (2.47)
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On the other hand, if the final state |ψf� is found to be in the continuous region of

the spectrum, the initial state |ψi� is coupled with an ensemble of continuum states

located over an infinitesimal range of energy around the final state energy εf . As

a consequence, the transition rate per unit of time, between a bound state and a

continuum state, is given by Fermi’s golden rule, such as

Γ̃
(1)
i,f (ω) =

P̃(1)
i,f (t)

t
=

πE2
0e

2

2�2
|�ψi |ê ·R|ψf�|2 ρ̃(εf)δ(ω − ωif). (2.48)

where ρ̃(εf) is the density of final states. As we are going to show later, the definition

of ρ̃(εf) depends on the chosen continuum state normalization criteria. For this

reason, the normalization and the density of continuum states shall be chosen and

defined consistently [Friedrich 98].

2.2.2 Cross sections and oscillator strengths

The energy transfer per unit of time, from a monochromatic linearly polarized plane

wave radiation to a N -electron atom, is given by the absorption cross section σif (ω),

which is defined as

σi,f (ω) =
Γi,f(ω)

I(ω)
�ω, (2.49)

where the radiation intensity I(ω) is given by Eq. (2.11), and the transition rate by

Eq. (2.47) or Eq. (2.48).

In addition to the cross section, single-photon transitions can be characterized

using the dimensionless oscillator strengths fi,f , which are expressed as

fi,f =
me c

2 π � e2
σi,f . (2.50)

In fact, Eq. (4.21) represents the renormalized cross section with respect to the classi-

cal harmonic oscillator model [Cohen-Tannoudji 97]. We note that, in atomic units,

the oscillator strengths can be expressed within the length or the velocity gauges as

fi,f = 2 ωif |�ψi |ê ·R|ψf �|2 =
2

ωif
|�ψi |ê ·P|ψf �|2 . (2.51)

Finally, it can be shown that Eq. (2.51) satisfies the Thomas-Reiche-Kuhn summation
�

f fi,f = N , where N is the number of electrons and the sum runs over all final states.
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2.3 MULTIPHOTON IONIZATION PROCESSES

Multiphoton ionization processes were first observed by E. K. Damon and R. G.

Tomlinson in 1963 [Damon 63], but Albert Einstein was the first who mentioned the

possibility of such processes in 1905 [Einstein 05].

The basic idea, behind these processes, is that several photons can be implicated

in absorption or emission at the same time. Multiphoton ionization occurs when an

ensemble of photons are absorbed by the system to ionize electrons from bound states

to the continuum. These processes can be written as A + n �ω → A+ + e−, where

n is the number of photons. In 1979, Agostini et al. [Agostini 79] showed that, at

sufficiently high laser intensities, typically over 1013 W/cm2, the ejected electron e−

can absorb photons in excess from the minimum number required for producing the

ionization. This phenomenon was called “above-threshold ionization” (ATI), and was

detected by analyzing photoelectron spectra [Joachain 11].

In the last decades, multiphoton ionization processes have been studied using a

classical or a semi-classical picture [Plaja 13]. Within this point of view, electrons

can be extracted from the vicinity of the perturbed atom or molecule and taken into

the free space, accelerated by the electromagnetic field. However, due to the field

oscillations in time, some electrons can go back and re-collide to their core. In these

collisions, there is a possibility of recombination and relaxation to one of the bound

states. This relaxation of the system is translated into the emission of radiation of

different frequencies. This process is named as “high-harmonic generation”, and was

first modeled by the semi-classical “three-step model” [Lewenstein 94].

As one observes, the required intensities for producing these processes are far from

the perturbative regime. As a consequence, the TDSE must be solved explicitly with

the help of numerical methods. After solving the TDSE, one has access to the time-

dependent wave function Ψ(t), which encodes the electron dynamics of the system.

In this section, attention is focused on the computation of ATI and HHG spectra

once Ψ(t) is known.

2.3.1 Photoelectron spectrum

Photoelectron spectra contain the electron energy (and also angular) distribution

after the interaction with the laser pulse. There are different techniques that allow

us to compute a photoelectron spectrum [Bachau 01,Mosert 16], but in our work we
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have implemented the window operator method [Schafer 91], which is based on the

spectral analysis of the final state wave function Ψf , that is, after the interaction

with the laser field. The window operator is defined as

Ŵ (ε, n, γ) =
γ2n

�

Ĥ0 − ε
�2n

+ γ2n
(2.52)

where n is an integer. This operator acts like a window centered at the energy ε with

a width of 2γ. Then, the probability of finding an electron in the energy interval

[ε− γ, ε+ γ] is given by

P (ε, n, γ) =
�

Ψf

�

�

�
Ŵ

�

�

�
Ψf

�

. (2.53)

The numerical evaluation of Eq. (2.53) can be performed as follows

P (ε, n, γ) = γ2n
�

χ(n)|χ(n)
�

(2.54)

where the vector
�

�χ(n)
�

is defined as

�

�χ(n)
�

=
1

�

Ĥ0 − ε
�2n−1

+ i γ2n−1

|Ψf � . (2.55)

In order to obtain
�

�χ(n)
�

, one shall solve the following equation

�

�

Ĥ0 − ε
�2n−1

+ i γ2n−1

�

�

�χ(n)
�

= |Ψf� . (2.56)

In practice, the choice of n = 2 gives good results, as shown in Ref. [Schafer 91].

Then, for n = 2, Eq. (2.56) can be factorized easily and one obtains

��

Ĥ0 − ε
�

+
√
i γ

� ��

Ĥ0 − ε
�

−
√
i γ

�

�

�χ(2)
�

= |Ψf�, (2.57)

and
�

�χ(2)
�

is computed by solving the following system

��

Ĥ0 − ε
�

+
√
i γ

�

|ξ� = |Ψf�, (2.58)
��

Ĥ0 − ε
�

−
√
i γ

�

�

�χ(2)
�

= |ξ�. (2.59)
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Figure 2.1: Two window functions separated by 2γ for n = 1, n = 2 and n = 3. As we see,
for n = 1 windows correspond to Lorentzians, having a large overlap and a sharp peak.

The two parameters, that a user of the window method must indicate, are γ and

n. A small value of γ gives us the possibility of having fine energy resolutions, while a

large value of n allows for accurate results. Figure 2.1 presents two successive window

functions for different values of n. When n increases, the overlap between functions

decreases and the energy bins became rectangular. A simple and useful illustration

of the amount of overlap can be obtained by the examination of the sum of all the

probabilities P (ε, n, γ) over the whole range of energy. Since the final state wave

function is normalized to unity, this quantity must be equal to one. Note that the

spacing between successive values of ε is always 2γ.

2.3.2 Photoemission spectrum

Informations on ionization processes can be extracted from the light spectrum gen-

erated by the radiating dipole moment. This is computed as the Fourier transform

of the time-dependent dipole d(t) = �Ψ(t)|ξ̂|Ψ(t)�, such as

Pξ(ω) =

�

�

�

�

1

tf − ti

� tf

ti

�Ψ(t)|ξ̂|Ψ(t)�e−iωtdt
�

�

�

�

2

, (2.60)

where ξ̂ can be given by the position operator (denoted here as ẑ) or by the velocity

operator v̂z = −i[ẑ, Ĥ(t)], or by the acceleration operator âz = −i[v̂z , Ĥ(t)], where

Ĥ(t) is the time-dependent Hamiltonian, and ti and tf are the initial and final prop-

agation times. The three forms of the power spectrum Eq. (2.60) are then the dipole

Pz(ω), the velocity Pvz(ω) and the acceleration Paz(ω) forms. Those are related to

each other as follows,

ω2Pz(ω) ≈ Pvz(ω) ≈
1

ω2
Paz(ω), (2.61)

see for instance the appendix section in [Coccia 16b].



C H A P T E R 3

Methods for electronic-structure

calculations

For the purposes of calculating time-independent and time-dependent electronic wave

functions, required for the computation of single and multiphoton processes, this

chapter is dedicated to the electronic-structure methods that I used during my PhD.

First of all, attention is focused on B-splines. During my PhD, I developed from

scratch a series of Fortran codes based on such functions. These codes were designed

for investigating atomic systems (in spherical polar coordinates) and molecular sys-

tems in reduced dimensions (one dimension), see Chapter 4 and Chapter 5. Therefore,

in Section 3.1 B-splines are presented. This section has been strongly inspired by the

PhD thesis of E. Cormier, entitled “Étude théorique de l’interaction entre un système

à 1 ou 2 électrons actifs et un champ laser intense” [Cormier 94]. As well as this, I

followed the book of C. de Boor “A Practical Guide to Splines” [de Boor 78]. From

this book I translated the basic Fortran subroutines to evaluate B-splines to build

up my own codes. In order to validate the implementation of B-splines, in Section

3.2 we introduce the use of B-splines in one-electron atoms. After that, I carry out

different calculations on the hydrogen atom. With these calculations I reproduce

the results presented by E. Cormier in his PhD thesis and also some of the results

given by Bachau et al. in the review “Applications of B-splines in atomic and molec-

ular physics” [Bachau 01]. In Section 3.3 we present the numerical resolution of the

TDSE in one-electron atoms using B-splines. In Section 3.4, the electronic structure

of N -electron atoms is briefly commented. Attention is focused on the computation

of the two-electron integrals with B-splines. In our work, only a direct integration

method has been developed. To compute these integrals I followed the work of Qiu

et al. [Qiu 99]. In addition, in this section we present the integration of the long-

range and short-range two-electron integrals, implemented in our work presented in

Chapter 4. In Section 3.5, some fundamental aspects of molecular electronic-structure

calculations are introduced. We briefly present the Gaussian-type orbital functions,

implemented in commercial quantum chemistry packages, such as Molpro [Werner 15]

or Qchem [Shao 15]. In particular, these two codes were used during my PhD for the
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study of molecules.

Finally, in Section 3.5 we comment the time-dependent configuration interaction

singles (TDCIS) method, implemented in the code Light [Luppi 13] and used in our

work presented in Chapter 5.

3.1 THE B-SPLINE REPRESENTATION

In the last decades, thanks to computer power, polynomial interpolation has become

a fundamental tool in signal and image processing, numerical analysis or, for exam-

ple, in disciplines such as social sciences. Polynomials are a common choice used

to approximate analytical functions. The reason is, basically, because polynomials

can be evaluated, differentiated and integrated easily using the basic arithmetic op-

erations of addition, subtraction, and multiplication. From a computational point

of view, these aspects make polynomials great mathematical objects. In addition,

experience has shown that, in some specific cases, when the target function oscil-

lates strongly, piecewise polynomial functions of high order are much more efficient

than simple polynomials. B-splines are piecewise polynomial functions (L2-integrable

functions defined in a restricted sampled space) which have smooth connections be-

tween the pieces, presenting a high level of flexibility that allow us to fit any kind

of continuous curve. In fact, the term “spline” makes reference to industrial design-

ers and shipbuilders who, in the past, used to draw continuous and smooth curves

over a sequence of “knot points” using a flexible piece of wooden or rubber named

spline. Formally, B-spline functions were introduced by I. J. Schoenberg after the

Second World War [Schoenberg 46,Schoenberg 64,Schoenberg 73], and thanks to C.

de Boor’s monograph [de Boor 78], they were popularized in different branches of

applied mathematics, see for example [Unser 99] and references therein.

The early use of B-splines in atomic physics demonstrated their ability to solve

scattering and bound-state problems [Shore 73,Fischer 89,Fischer 90, Sapirstein 96,

Fischer 08], and today they are recognized as a powerful tool when continuum states

are required. The success of such functions is directly related to their effective com-

pleteness, that is, the capability to approach L2 completeness without numerical

spoiling [Argenti 09]. Nowadays, atomic program packages based on B-splines are

available [Nikolopoulos 03,Nepstad 10,Fischer 11]. However, new algorithms have to

be developed in order to increase the computational efficiency of complex calculations,
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concretely when one works with molecules. For this reason, new hybrid basis sets,

which combine B-splines and Gaussian-type orbitals, have been recently developed,

see for example [Marante 14,Marante 17].

Let us now introduce the fundamental aspects of the spline interpolation, required

in our electronic-structure calculations.

3.1.1 Piecewise polynomial functions and the subspace Pk,ξ,ν

Definition 1 Let ξ := {ξi ∈ [0, x
max

]}l+1
i=1 be a sequence of breakpoints and k a positive

integer. If P1(x), ..., Pl(x) is a sequence of l polynomials, each of them of order k

(i.e. degree k − 1), then we define the corresponding piecewise polynomial function

f(x) of order k by the prescription

f(x) := Pi(x) if ξi < x < ξi+1 ; i = 1, ..., l.

The set of all such piecewise polynomial functions of order k with a given sequence ξ

is denoted by the space Pk,ξ.

The space Pk,ξ is a linear space of dimension kl. A function f(x) in Pk,ξ is

composed by l polynomials, one for each interval defined by two breakpoints, and

each polynomial presents k components (k coefficients for a polynomial of degree

k − 1). The choice of such space is not restrictive enough because no continuity

conditions are imposed at the breakpoints. As we are going to work with atomic

wave functions, which must be continuous, one has to add supplementary restrictions

to the set of f(x). What we are going to do is to define a subspace of Pk,ξ in which

the functions f(x) and its derivatives will be continuous at the breakpoints. This

problem is solved in the subspace Pk,ξ,ν ⊂ Pk,ξ thanks to the following definition:

Definition 2 Let f(x) ∈ Pk,ξ,ν be a piecewise polynomial function of order k (i.e.

degree k − 1) with the following continuity conditions ν := {νi}l+1
1 at the breakpoints

ξ := {ξi}l+1
1

f(x) ∈ Pk,ξ

∂(j−1)f

∂xj−1
is continuous at ξi for j = 1, ..., νi.

Some examples:

For νi = 0, there is no continuity condition at ξi.



18 Chapter 3 Methods for electronic-structure calculations

� � � � � �

�

���

���

���

���

���

���

�
��

�

�
�

�

�

�

� � � � �

�

�

Figure 3.1: A full set of B-splines of order k = 3 (i.e. degree 2) associated to the knot
sequence t = {0, 0, 0, 1, 2, 3, 4, 5, 5, 5}. Knots are represented by full circles. Figure inspired
from [Bachau 01].

For νi = 1, f is continuous at ξi.

For νi = 3, f , ∂f/∂x and ∂2f/∂x2 are continuous at ξi.

Moreover, the k-th derivative of f is continuous everywhere except at the break-

points. That is because f is a polynomial function of order k in each interval. The

sequence ν = {νi}l+1
1 only fixes the continuity conditions at the limits of intervals,

that is, at the breakpoints. Usually, one manipulates many functions of Pk,ξ,ν at the

same time. Therefore, it is very useful to properly define a basis from such space. Our

goal is to expand any function of Pk,ξ,ν in terms of a linear combination of functions

g1, g2, ... ∈ Pk,ξ,ν to operate with the decomposition coefficients. We are going to see

that each space Pk,ξ,ν posses its own basis consisting on splines. These basis splines

are named B-splines.

3.1.2 Definition of the B-splines

Definition 3 Let t := {ti} be a nondecreasing sequence. The i-th B-spline of order

k for the knot sequence t is denoted by Bk
i,t and is defined iteratively by the Cox-de

Boor recursion relation as

B1
i,t(x) =







1 if x ∈ [ti, ti+1),

0 elsewhere,
(3.1)

Bk
i,t(x) =

x− ti
ti+k−1 − ti

Bk−1
i,t (x) +

ti+k − x

ti+k − ti+1
Bk−1

i+1,t(x). (3.2)
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Eq. (3.1) defines the B-spline of order k = 1 over the interval [ti, ti+1), while the

recurrence relation (Eq. (3.2)) allows us to compute any B-spline as a combination of

two B-splines of order k − 1, starting with the information given by Eq. (3.1).

Usually, one writes Bi(x) instead of Bk
i,t(x) as long as k and t can be inferred from

the context. The definition of the knot sequence doesn’t exclude the superposition of

two or more consecutive knots. As we are going to see, the distribution of knots will

control the continuity conditions of B-splines between intervals. Figure 3.1 reports all

the B-splines of order 3 associated with the knot sequence t = {0, 0, 0, 1, 2, 3, 4, 5, 5, 5}.
We notice that a single B-spline, for example B3(x), is defined by its order k over an

interval [t3, t3+k], which contains k+1 consecutive knots. From this discrete behavior,

some general properties can be deduced:

• Compact support: A B-spline has a small support, i.e., Bi(x) = 0 ∀x /∈
[ti, ti+k]. It follows that only k B-splines Bi−k+1, Bi−k+2, ..., Bµ might be nonzero

on the interval [ti, ti+1]. Then, we deduce that for a given x only k B-splines

are nonzero:
Bj−k+1 �= 0

...

Bµ �= 0



















∀x ∈ [ti, ti+1].

Finally, it is easy to show that

�Bi|Bj� =
� b

a

Bi(x)Bj(x)dx = 0 for |i− j| ≥ k.

• Positive defined: Any B-spline Bi(x) is positive on its support, i.e., Bi(x) > 0

for x ∈ [ti, ti+k].

• Partition of unity: With the adopted definition, the B-spline sequence con-

sists of nonnegative functions which sum up to unity, i.e.

�

i

Bi(x) = 1 ∀x.

• Connection at the knots: The sequence of knots has an impact on the

continuity of B-splines. There is a direct relation between the multiplicity of the

knots and the connection class between the intervals. If mi is the multiplicity
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Figure 3.2: Schematic representation of the recursive algorithm used to evaluate the k
nonzero B-splines at a given position x, up to order k = 3, relative to the knot sequence
t = {0, 1, 2, 3, 4, 5}. Each step is achieved from the previous one by applying the defini-
tion formula Eq. (3.2) and starting with the information of the B-spline of order k = 1, i.e.
Eq. (3.1). Note that at each position x one will obtain k nonzero B-spline values which sum
up to unity (black circles). Figure inspired from [Bachau 01].

of a knot {ti = ti+1 = ... = ti+mi−1}, then, the connection at the knot is

characterized by:

(i) The order of the B-spline k.

(ii) The multiplicity of the knot mi (1 ≤ mi ≤ k).

Moreover, the continuity class1 is given by Ck−1−mi. Each B-spline is a function

composed by different polynomial pieces joined by a certain degree of continuity

at each knot. As the knot multiplicity only can takes values from 1 to k, one

may find two continuity limits:

– Optimal or maximum continuity limit: mi = 1 ⇒ Ck−2, the (k-2)th deriva-

tive is continuous.

– Minimal continuity limit: mi = k ⇒ C−1, the B-spline is discontinuous.

• Numerical evaluation: Within the given definitions, a direct algorithm can

be designed to simultaneously generate the values of the k nonzero B-splines

of order k at a given position x. Figure 3.2 presents a scheme of this recur-

sive algorithm introduced by C. de Boor in [de Boor 78]. On the other side,

concerning the evaluation of derivatives, one may use Eq. (3.3). This equation

is obtained easily from Eq. (3.2), and can be applied successively to compute

1A function f which is continuous together with its derivatives up to order n, i.e. f,Df, ..., Dnf
is labeled by the class Cn. Then, C0 means that f is continuous and C−1 that f is discontinuous.
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B-spline derivatives of high order.

d
dx

Bk
i,t(x) = (k − 1)

�

Bk−1
i,t (x)

ti+k−1 − ti
−

Bk−1
i+1,t(x)

ti+k − tti+1

�

. (3.3)

From a practical point of view, a stable numerical evaluation can be performed

using a set of Fortran subroutines designed by C. de Boor. In our work, we have

implemented the routine BSPLVP (p. 134 in [de Boor 78]), which requires as

input values the order k, the sequence of knots t and the position x. This sub-

routine evaluates the k nonzero B-splines at x using the algorithm represented

in Figure 3.2. In addition, if derivatives are needed, they can be performed

using the routine BSPLVD (p. 288 in [de Boor 78]), which is based on Eq. (3.3).

Finally, integrals involving B-splines, and its derivatives, can be computed up

to machine accuracy employing Gauss-Legendre quadrature, see for instance

Appendix C. We recall here that Gauss-Legendre quadrature is exact for a

polynomial of order k = 2M + 1, where M is the number of Gauss-Legendre

points that must be used. Then, for each subinterval in the knot sequence, M

evaluation points must be used to compute the polynomial piece integral. After

this, one sums up all the M weighted values to obtain the resulting integral in

the given subinterval.

3.1.3 The basis set of B-splines as a basis of Pk,ξ,ν

Once B-splines have been defined, we are able to establish the relation between the

space Pk,ξ,ν and the basis of B-splines. To do this, let us formally introduce the notion

of spline function:

Definition 4 A spline function of order k and with knot sequence t is any linear

combination of B-splines of order k for the knot sequence t:

f(x) :=
�

i

ciB
k
i,t(x). (3.4)

The collection of all such spline functions is denoted by Sk,t.

In order to build up a sequence of knots and a basis of B-splines from the param-

eters of the space Pk,ξ,ν, we need to introduce the Curry-Schoenberg theorem:
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Theorem 1 For a strictly increasing sequence ξ = {ξi}l+1
1 , and a given nonnegative

integer sequence ν = {νi}l2 with νi ≤ k, ∀i :

n := k +

l
�

i=2

(k − νi) = kl −
l

�

i=2

νi = dim Pk,ξ,ν (3.5)

and let t := {ti}n+k
1 be any nondecreasing sequence so that:

(i) t1 ≤ t2 ≤ ... ≤ tk ≤ ξ1 and ξl+1 ≤ tn+1 ≤ ... ≤ tn+k,

(ii) for i = 2, ..., l, the number ξi occurs exactly k − νi times in t.

Then, the sequence {Bk
i,t}ni=1 of B-splines of order k for the knot sequence t is a basis

for Pk,ξ,ν on the segment [tk, tn+1]. So,

Pk,ξ,ν = Sk,t on [tk, tn+1]. (3.6)

The proof of the Curry-Schoenberg theorem is realized in two steps: first, one

verifies that each B-spline is in Pk,ξ,ν as a function on the segment [tk, tn+1], and

second, one shows that the B-splines associated with the knot sequence t are linearly

independent. To sum up, the theorem permits the construction of a B-spline basis

for any particular piecewise polynomial space Pk,ξ,ν and gives a recipe to generate

an appropriate knot sequence t. Finally, the choice of t translates the continuity

conditions (the smoothness of the spline) at a given breakpoint into the corresponding

number of knots at that point.

The theorem doesn’t limit the choice of the first k and last k knots. A common

choice is

t1 = ... = tk = ξ1 and tn+1 = ... = tn+k = ξl+1,

which imposes no continuity conditions at the end points ξ1 and ξl+1 of the segment

of interest. In fact, this choice is consistent with the fact that the B-spline basis

provides a valid representation for elements of Pk,ξ,ν only on the interval [tk, tn+1].

Additionally, this knot distribution confers optimal continuity conditions at the inner

points. The construction of such a knot sequence t = {ti}n+k
1 , from the breakpoint

sequence ξ = {ξi}l+1
1 and the sequence ν = {νi}l+1

1 , can be displayed using the

following diagram presented in Table 3.1.
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Table 3.1: Translation of breakpoints and continuity conditions into knots of an appropriate
multiplicity.

breakpoints ξ1 ξ2 ... ξl ξl+1

continuity conditions ν1 = 0 ν2 ... νl νl+1 = 0
knot multiplicity k k − ν2 ... k − νl k

knots t1, ..., tk tk+1, ..., t2k−ν2 ... t(n−1)k−νl+1, ..., tn tn+1, ..., tn+k

Afterwards, thanks to the definition of a basis in terms of B-splines, we are able

to manipulate the representation of any spline through its decomposition coefficients.

To summarize, this representation, called B-representation, is characterized by the

following set of parameters for f ∈ Pk,ξ,ν:

(i) The integers k and n. That is, the order of f and the number of linear param-

eters (i.e., n = kl −�

i νi = dim Pk,ξ,ν).

(ii) The vector t = {ti}n+k
1 containing the knots (constructed from the sequences ξ

and ν).

(iii) The vector c = {ci}n1 of the coefficients of f with respect to the B-spline basis

{Bi}n1 .

In terms of these parameters, one has

f(x) =
n

�

i

ciBi(x) ∀x ∈ [tk, tn+1], (3.7)

and in particular, if tj ≤ x ≤ tj+1 for some j ∈ [k, n], one has

f(x) =

j
�

i=j−k+1

ciBi(x) ∀x ∈ [tj , tj+1], (3.8)

where the value of f at x only depends on k coefficients.

3.2 ONE-ELECTRON ATOMS

Also named hydrogen-like atoms (i.e. H, He+, Li2+...), the one-electron atoms are

simple dynamical systems composed only by two particles: a nucleus and an electron.

The time-independent Schrödinger equation of such a system can be expressed, in
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Figure 3.3: Hydrogen-like atom in spherical polar coordinates. The nucleus of mass mM is
placed at the center of the system while the relative position of the electron e is determined
by the distance r and the two angles θ and ϕ.

atomic units, as follows,

�

−1

2
∇2 + V (r)

�

Ψ(r) = εΨ(r), (3.9)

where the first term is the electron kinetic energy operator, V (r) is the nucleus-

electron interaction potential and Ψ(r) is the electron stationary state of energy ε.

Moreover, different interaction potential models can be used to specify the nucleus-

electron interaction V (r). However, a natural choice is to use the Coulomb potential,

which in spherical polar coordinates reads as

V (r) = −Z

r
, (3.10)

where Z is the nuclear charge and r is the distance of the electron to the nucleus,

see for instance Figure 3.3. In the case of using a central potential, such as Eq. (3.10),

the solutions of Eq. (3.9) can be written as a product of an angular function Y m
l (θ,ϕ)

and a radial wave function Rn,l(r) as follows

Ψn,l,m(r) = Rn,l(r)Y
m
l (θ,ϕ), (3.11)

where Y m
l (θ,ϕ) is a spherical harmonic, and the integers n, l and m label the sta-

tionary state Ψn,l,m(r).
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Finally, the problem presented in Eq. (3.9) is transformed into a one-dimensional

problem given by the reduced radial Schrödinger equation,

�

−1

2

d2

dr2
+

l(l + 1)

2r2
+ V (r)

�

un,l(r) = ε un,l(r), (3.12)

where the solutions un,l(r) = Rn,l(r)/r verify the following conditions:

� ∞

0

u∗
n,l(r)un,l(r)dr = 1, (3.13)

un,l(0) = 0. (3.14)

The exact solutions of Eq. (3.12) can be found analytically when using the Coulomb

potential, given by Eq. (4.25). Concretely, the Coulomb solutions are divided in two

energy domains. Firstly, for ε < 0, the solutions are associated to the bound states

of the electron, where energy ε only can take negative discrete values. This domain

of solutions is named the discrete spectrum. On the other hand, for ε > 0, the so-

lutions will represent unbound, also called continuum, states of the electron. In this

case, the energy ε can take every positive value and, for that reason, this domain is

called as the continuous spectrum. Thus, an ideal numerical method should be able to

compute both energy domains with a high precision. The B-spline representation has

been presented as an appropriate numerical technique which allows us to describe the

discrete and the continuous spectra at the same time. Within the B-spline represen-

tation, the initial step for solving numerically the Schrödinger equation is to assume

that the solutions of Eq. (3.12) can be approximated by spline functions in Pk,ξ,ν. A

formal proof of this assumption doesn’t exist, however, experience has demonstrated

the accuracy of such an approximation. Futhermore, the problem of searching the

solutions un,l(r) becomes the problem of searching the approximate spline functions

fn,l(r) that verify Eq. (3.12) under the conditions Eq. (3.13) and Eq. (3.14). In this

manner, one has

un,l(r) ≈ fn,l(r) =
�

i

ciB
k
i,t(r), (3.15)

where the notation can be simplified by means of

un,l(r) =
�

i

ciB
k
i,t(r), (3.16)
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The question posed now concerns the choice of the appropriate parameters of

the B-spline basis, that is, of the subspace Pk,ξ,ν. Once again, experience has shown

that the choice of such parameters is essential for an accurate interpolation. However,

there is not any rule or perfect recipe that dictates us which parameters must be used.

In each specific case, the properties of the investigated problem are going to impose

some constraints that must be adapted in the adequate subspace Pk,ξ,ν. Subsequently,

one shall always investigate the optimal parameters of Pk,ξ,ν in each specific problem.

The freedom of choosing these parameters confers a high flexibility to the method,

as we are going to see. Let us now investigate, within a practical case, the strengths

and the weaknesses of this approximation. Let us solve the Schrödinger equation for

the Hydrogen atom (i.e. Z = 1) which solutions are well known analytically.

3.2.1 Solving the Schrödinger equation in the subspace Pk,ξ,ν

First of all, and regarding the case of the hydrogen atom, let us discuss about the

choice of the parameters of the space Pk,ξ,ν:

• The order k: In general, the greater the order, the greater the numerical

precision. However, the computational cost required for the evaluation of B-

splines also increases. The experience has shown that for a central potential,

such as the Coulomb potential, an optimal order can be found between k = 5

and k = 15 [Bachau 01]. On the other hand, the kinetic energy term, presented

in the total Hamiltonian, imposes a minimal order to B-splines. As we know,

spline functions of order k, which approximate the solutions of Eq. (3.12), must

present at least a continuous second derivative everywhere. To ensure this

condition, the minimal order must be at least k = 3.

• The sequence of breakpoints ξ: The target solutions un,l(r) are represented

over a finite region of the space, enclosed between two endpoints: ξmin ≡ rmin

and ξmax ≡ rmax. Naturally, for solving Eq. (3.12), one chooses rmin = 0 bohr,

while rmax determines the total size of the “simulation box” (the region of in-

terest). As we are going to show later, the choice of rmax is crucial in different

aspects, affecting the quality of the numerical solutions. On the other hand, by

fixing the sequence of breakpoints, one controls the number of pieces (intervals)

in which the space is divided. The number of intervals in the simulation box

has a direct impact on the numerical precision. Breakpoints can be distributed
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Figure 3.4: Different breakpoint sequences with ξ1 ≡ rmin = 0 bohr and ξ15 ≡ rmax = 100
bohr.

easily in different manners in order to reach an accurate interpolation. In Figure

3.4, different breakpoint distributions are shown. If one is concerned with the

computation of bound states, usually an exponential or a parabolic distribu-

tion is recommended. In this case, the points are localized close to rmin where

one expects to describe the localized character of un,l(r) with a high accuracy.

Although, if one wants to properly reproduce the oscillations of the continuum

states, a linear spacing is mandatory in order to achieve the same numerical

accuracy over the whole space of interest.

• The sequence of continuity conditions ν: Usually, one chooses the max-

imal continuity limit at the inner breakpoints. As we have mentioned previ-

ously, hydrogen-like solutions must have a continuous second derivative in every

interval of the sampled space. Differently, the treatment effectuated at the end-

points is conditioned by the boundary conditions of the studied problem. As

our numerical solutions are obtained in a finite space region, additionally to the

condition Eq. (3.14), one shall impose the following boundary condition

un,l(rmin) = un,l(rmax) = 0. (3.17)

Then, one only searches those solutions which are zero at the borders of the

simulation box. Henceforward, these boundary conditions can be achieved by

imposing the minimal continuity limit at the bordered breakpoints, or simply

by removing the first and the last B-spline functions from the basis.
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• The knot sequence t: As we saw, this sequence defines the B-spline ba-

sis in Pk,ξ,ν. Thanks to the Curry-Schoenberg theorem, this sequence can be

established by the breakpoints and the continuity conditions.

Once the parameters of Pk,ξ,ν have been specially chosen for the problem of inter-

est, and the knot sequence t has been established, a basis set of B-spline functions

is immediately defined. The expansion of the solutions of Eq. (3.12) in terms of B-

splines allows us to transform the differential equation into a linear algebra problem.

Consequently, one finally works in a finite matrix space. At this point, the discrete

nature of B-splines is revealed as a seductive issue from a computational point of view.

In fact, the linear space of B-splines generate band matrices, which are a special type

of sparse matrices for which optimal linear algebra algorithms exist [Anderson 99].

We note that this is not a trivial remark. Thanks to this particular aspect, high

performance calculations can be carried out for big matrix dimensions, and currently

associated numerical problems, such as linear dependencies, are almost inexistent

and the idea of an effective completeness can be experienced. Let us now rewrite

Eq. (3.12) within the bra-ket notation,

Ĥl|un,l� = εn,l|un,l�, (3.18)

where the hydrogen atom Hamiltonian is given by

Ĥl = −1

2

d2

dr2
+

l(l + 1)

2r2
− 1

r
, (3.19)

and the reduced radial wave functions are expressed in terms of B-splines such as

|un,l� =
Ns
�

i=1

cn,li |Bks
i,t�, (3.20)

where Ns is the dimension of the basis and ks is the order of the B-splines2. If one

multiplies Eq. (3.18) by �Bks
j,t|, a set of linear equations is obtained,

Ns
�

i=1

cn,li �Bks
j,t|Ĥl|Bks

i,t� = εn,l

Ns
�

i=1

cn,li �Bks
j,t|Bks

i,t�, (3.21)

2From this moment, Ns is associated with the dimension of the basis and ks with the order of
the B-splines.
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and the problem can be rewritten in the following compact matrix form

Hl C = El S C (3.22)

where El is a diagonal matrix that contains the eigenvalues {εn,l}, C is the vector

matrix composed by the decomposition coefficients, and

Hl = {Hi,j}Ns

i,j=1 ; with H l
i,j = �Bks

j,t|Ĥl|Bks
i,t�, (3.23)

S = {Si,j}Ns

i,j=1 ; with Si,j = �Bks
j,t|Bks

i,t�. (3.24)

The matrix S is positive defined and is called the “overlap matrix”. B-spline functions

are non-orthogonal, and thus, overlaps between B-splines are not zero. The presence

of S will impose the orthogonality to the solutions of Eq. (3.12). Finally, matrix

elements can be evaluated as

Hi,j = − 1
2

� rmax

rmin

Bj(r)
�

d2

dr2
Bi(r)

�

dr

+ l(l+1)
2

� rmax

rmin

Bj(r)
1
r2

Bi(r)dr

−
� rmax

rmin

Bj(r)
1
r
Bi(r)dr,

(3.25)

and

Si,j =
� rmax

rmin

Bj(r)Bi(r)dr, (3.26)

where the knot sequence t and the order ks have been removed from the expressions

for clarity. The one-electron integrals over B-splines in Eq. (3.25) and Eq. (3.26) can

be performed up to machine accuracy using Gauss-Legendre quadrature, see Appendix

C. Moreover, thanks to the compact support of B-splines, one verifies that

Hi,j = Si,j = 0 ∀ j − k ≥ i ≥ j + k. (3.27)

As a consequence, sparse matrices Hl and S are composed by a single diagonal band

of 2k − 1 nonzero elements. If one adds to this issue the fact that Hl and S are

symmetric matrices, one only needs to compute Ns(ks + 1) elements instead of N 2
s

for a Ns × Ns matrix. At this point, we are addressing the resolution of the eigen-

value problem Eq. (3.22). Different methods are proposed in the literature [Press 07].

However, from a practical point of view, one can directly implement the optimized
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routines specially designed for band matrices in LAPACK (Linear Algebra Pack-

age) [Anderson 99]. On the other hand, if a specific eigenvalue or eigenfunction is

required, the inverse iteration method can be easily implemented, see also [Press 07].

Nevertheless, we recall that the inverse iteration method is useless for continuum

states. Therefore, other kind of techniques, such as the “shooting method”, shall be

implemented [Caillat 15]. In general, it is obvious that one will select a method that

allows us to take advantage of the structure of the implicated matrices, especially

when we have to deal with huge matrix dimensions.

Independently of the chosen numerical resolution method, in this section attention

is focused strictly on the B-spline representation of the solutions of Eq. (3.12). We

pass now to show our results on the hydrogen atom. In order to validate our imple-

mentation of B-splines, our results can be easily compared with the results presented

by E. Cormier in his PhD thesis [Cormier 94] and by Bachau et al. [Bachau 01].

3.2.2 Eigenvalues and eigenfunctions

After solving the eigenvalue problem Eq. (3.22), solutions of Eq. (3.12) are given as

an ensemble of discrete states of negative and positive energies. Therefore, one takes

the negative solutions as a representation of the electron bound states, while the

positive discrete states shall be interpreted as “continuum” states. In Table 3.2, a set

of bound states is shown together with the differences between the computed and the

exact eigenvalues. These differences, displayed as “δ”, establish the deviation of the

computed values from the exact ones. As the exact solutions are known, converged

results are numerically obtained only when the machine accuracy is achieved, that is

when the differences are lower or equal than the threshold δmachine = 10−12.

Table 3.2: Hydrogen atom eigenvalues computed with a B-spline basis set of Ns = 400,
ks = 8, rmax = 200 bohr and using a linear sequence of breakpoints. Numerical error is
given in terms of 10−δ. A very high accuracy is obtained up tu n = 6.

n εns δ εnp δ εnd δ εnf δ εng δ
1 -0.50000000 14
2 -0.12500000 13 -0.12500000 14
3 -0.05555555 13 -0.05555555 13 -0.05555555 13
4 -0.03125000 13 -0.03125000 13 -0.03125000 14 -0.03125000 13
5 -0.02000000 13 -0.02000000 13 -0.02000000 13 -0.02000000 13 -0.02000000 13
6 -0.01388888 13 -0.01388888 13 -0.01388888 13 -0.01388888 13 -0.01388888 13
7 -0.01020408 9 -0.01020408 9 -0.01020408 9 -0.01020408 9 -0.01020408 10
8 -0.00781238 5 -0.00781240 5 -0.00781242 6 -0.00781245 6 -0.00781248 6
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Figure 3.5: Hydrogen atom radial wave functions: 1s (a) and 5d (b) orbitals. Calculation
performed with the following B-spline parameters: Ns = 400, ks = 8, rmax = 200 bohr and
using a linear sequence of breakpoints.

In addition, the quality of the computed eigenfunctions Figure 3.5 can be quantify

with the calculation of the expectation values of the powers of the electron position

r, which are given by

�rν�n,l =
� ∞

0

rν |Rn,l(r)|2r2dr. (3.28)

Table 3.3: Analytical expressions of the expectation values �rν�n,l for the hydrogen atom
(i.e. Z = 1) have been taken from Bethe and Salpeter’s monograph “Quantum Mechanics

of One- and Two-Electron Atoms” [Bethe 57].

ν Analytical expressions of �rν�n,l for Z = 1
1 [3n2 − l(l + 1)]/2
2 [5n2 + 1− 3l(l + 1)] n2/2
3 [35n2(n2 − 1)− 30n2(l + 2)(l − 1) + 3(l + 2)(l + 1)l(l − 1)] n2/8
4 [63n4 − 35n2(2l2 + 2l − 3) + 5l(l + 1)(3l2 + 3l − 10) + 12] n4/8

−1 1/n2

−2 (l + 1/2)/n3



32 Chapter 3 Methods for electronic-structure calculations

The expectation values �rν�n,l are interesting quantities related to observables that

are well known in the case of one-electron atoms. For instance, Table 3.3 presents the

analytical expressions of Eq. (3.28) for the Hydrogen atom. Subsequently, a compari-

son between the computed expectation values �rν�n,l and the analytical results given

in Table 3.3 will give us the information about the quality of our numerical method.

Figure 3.6 displays the numerical errors (the differences) between the computed and

the exact values for different angular momenta up to the level n = 12. As one ob-

serves, up to the level n = 7, the numerical accuracy of our method is correct. In fact,

the differences are found under the machine accuracy. However, above n = 7, the

differences between the computed and the exact eigenfunctions start to be important.
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Figure 3.6: Numerical accuracy of the computed eigenfunctions for the hydrogen atom ex-
pressed in terms of the expectation values �rν�n,l for the first few bound states. B-spline
parameters: Ns = 400, ks = 8, rmax = 200 bohr and linear sequence of breakpoints.
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The reason of the deviations observed in Figure 3.6 is directly related to the fact

that the hydrogen atom has been enclosed in a finite simulation box by imposing

specific boundary conditions at the endpoints Eq. (3.17). This issue is translated to

the addition of an artificial infinite potential barrier at r = rmax, where solutions

must be zero. Then, the electron is finally affected by an effective potential Veff(r)

that reads as

Veff(r) =







l(l+1)
2r2

− 1
r

if 0 < r < rmax,

+∞ if rmax ≤ r .
(3.29)

In Figure 3.7, Veff(r) has been represented. Moreover, it is noticeable that the eigen-

functions associated to the Hamiltonian composed by Veff(r) are not the pure hydrogen

atom solutions. However, experience shows us that increasing the size of the simu-

lation box, that is, the value of rmax, the number of accurate solutions increases. In

Table 3.4, the box size effects are exposed. The number nmax indicates the maximal

quantum level used to calculate the expectation values �rν�n,l within the machine

accuracy (i.e. δmachine = 10−12).

Table 3.4: Size box effects. nmax indicates the maximal quantum level used to compute the
expectation values �rν�n,l within the machine accuracy ( i.e. δmachine = 10−12). Calculations
have been carried out with the following B-spline parameters: ks = 8, and the number of
B-splines has been modified in order to keep constant the breakpoint spacing Δξ ≡ Δr.

rmax bound states nmax

100 8 4
200 12 7
500 19 12
1000 28 19
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Figure 3.7: Representation of the effective potential Veff(r) for different angular momentum
of an hydrogen atom enclosed in a box of size rmax. Figure inspired from [Cormier 94].
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We observe that, for a linear sequence of breakpoints with a constant spacing

Δξ ≡ Δr, the number of bound states, as well as the quantum level nmax, increases

with the size box rmax. The inaccurate computed states, those with a quantum

number n > nmax, can be interpreted as a set of “pseudo-Rydberg” states of the

atom [Cormier 94].

3.2.3 B-spline parameters and numerical accuracy

For a given box size rmax, the accuracy of a computed state can be increased by

selecting an appropriate couple of parameters Ns and ks, that is, by choosing the

appropriate number of breakpoints and knots in the interval [rmin, rmax]. However,

the converge rate of both parameters Ns and ks is different. Experience shows us

that depending on the required degree of accuracy, there is always an optimal couple

(Ns, ks) in terms of CPU time. Figure 3.8 shows different (Ns, ks) couples achieving

different degrees of accuracy on the hydrogen atom ground state energy, i.e. ε1s. For

excited states (not shown here), the converge behavior is very similar. In general,

the higher ks the lower the dimension Ns to reach a particular numerical accuracy.

Usually, the order ks is chosen to be in the range ks ∈ [7, 11] [Bachau 01].
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Figure 3.8: Convergence of two (Ns, ks)-couples on the ground state energy ε1s: (a) presents
the couple (Ns, 4) and (b) the couple (Ns, 8). Box size is rmax = 1000 bohr and the
breakpoint sequence is chosen to be linear. Black dashed line represents machine accuracy.

3.2.4 Continuum states

The fact of enclosing our atomic system in a finite space region (simulation box of size

rmax) and imposing to solutions some specific boundary conditions, i.e. Eq. (3.17),

translates to an effective potential Veff(r) in which an infinite potential barrier is

placed at r = rmax. Due to this effective potential, negative and positive solutions

are given as an ensemble of discrete states. We have discussed the effects of the box

size and the B-spline parameters on bound states (negative solutions), and one can
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Figure 3.9: Interpretation of the discrete positive states. Figure inspired from [Cormier 94].

say that, the bigger the box size the lower the influences of the infinite potential

barrier on the solutions. Thus, when the box size goes to infinity, Veff(r) becomes

the pure atomic potential (which for the Hydrogen atom is the Coulomb potential).

Consequently, more accurate results are obtained. On the other side, the discrete

positive solutions must be interpreted as the atomic continuum states. Figure 3.9

shows an interpretation of the positive solutions of energy εi > 0. Each of this

discrete states is considered as a band of continuum states with an energy width of

ΔE. This discretized representation of the exact continuum approaches the exact

continuum when the density of positive states goes to infinity, and then, the band

width ΔE reduces to zero (ΔE → 0). The density of states is controlled by the box

size and the number of B-splines in the basis.

In addition, eigenfunctions associated to the discrete positive energies shall re-

produce the asymptotic sinusoidal behavior of the pure continuum states, see for

instance Figure 3.10. For a given box size rmax, this behavior can be reproduced by

choosing the correct B-splines parameters (Ns, ks). At this particular point, one ap-

preciates the flexibility of B-splines to accurately reproduce the oscillating behavior

of the continuum states. In Figure 3.11, a wave function is displayed together with

its weighted B-spline decomposition. We remark the quasi-absence of cancellations

when describing the sign switches.
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Figure 3.10: Energy normalized radial wave functions for two continuum states of symmetry
“s”. B-spline parameters: N = 400, k = 8, rmax = 200 bohr and linear sequence of
breakpoints.
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Figure 3.11: Weighted B-spline decomposition of a given continuum radial wave function of
symmetry “s”. B-spline parameters: N = 400, k = 8, rmax = 200 bohr and linear sequence
of breakpoints.
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3.2.4.1 Energy spectrum

Figure 3.12 presents different energy spectra calculated with different rmax values.

One observes that the number of discrete positive states increases with rmax. This

behavior is a natural consequence of describing the hydrogen atom in a finite space

region. In fact, the behavior observed in Figure 3.12 is identical to that of a free

particle enclosed in a box with infinite potential barriers. We recall that the energy

of a free particle in a box is given by

εi =
i2 π2

2 r2max

with i = 1, 2, ... (3.30)

In addition, the box size effects on the computed discrete state energies {εi} can

be explored by slowly varying rmax. In Figure 3.13, one observes how energies are

displaced when rmax increases. It is interesting to see, for example, how the state

ε53 crosses the energy range ΔE simply by the fact of changing the value of rmax.

Thus, in principle, any desired continuum state energy could be computed within our

method using the corresponding B-spline parameters. Note that the curves are not

straight lines but they change as 1/r2max.
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Figure 3.12: Energy spectra of discretized continuum states for different values of rmax. The
dimension Ns of the basis is changed to keep constant the density of B-splines and the knot
spacing. The order of B-splines was chosen to be ks = 8 and the breakpoint sequence was
of the linear form.
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Figure 3.13: Size box effects on a series of discretized continuum states. We observe the
state energy as a function of the box size rmax. B-spline parameters: Ns = 100, ks = 8 and
the breakpoint sequence is linear.

3.2.4.2 Density of states

For a given angular symmetry, the radial density of states (DOS) is defined as the

number of states per unit of energy. Figure 3.14 displays the DOS for the hydrogen

atom computed with different values of rmax. As we observed, the DOS increases with

rmax. As we previously saw, the continuum spectrum of the hydrogen atom, computed

in a finite space region, is similar to the spectrum of a free particle enclosed in a box.

As a consequence, the curves observed in Figure 3.14 can be fitted by the expression

ρ(ε) =
1

π
√
2

rmax√
ε
, (3.31)

where ρ(ε) is the DOS for a free particle in a box with infinite potential barriers.

From a computational point of view, the calculation of the DOS is not an easy task.

However, if we assume that number of discretized continuum states in our calculation

is infinity, the computed positive energies {εi} can be associated to a continuous

energy function ε̃ such as εi = ε̃(i) ∀i, see for instance [Macías 88,Cormier 94]. In

order to obtain the DOS, one has to face the computation of the derivative of the

energy with respect to the state index number, that is

∂ε̃(x)

∂x

�

�

�

�

x=i

. (3.32)

Eq. (3.32) can be estimated performing a Taylor expansion (for example, up to
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Figure 3.14: Box size effects on the density of states (DOS). The dimension N of the basis
is changed in order to keep constant the density of B-splines and the knot spacing with
respect rmax, the order of B-splines is ks = 8.

the 3rd order) of the function ε̃(x) in x = i− 1 and x = i+ 1, such as

ε̃(i+ 1) = εi+1 = εi +
∂ε̃

∂x

�

�

�

�

x=i

+
1

2

∂2ε̃

∂x2

�

�

�

�

x=i

+
1

6

∂3ε̃

∂x3

�

�

�

�

x=i

(3.33)

ε̃(i− 1) = εi−1 = εi −
∂ε̃

∂x

�

�

�

�

x=i

+
1

2

∂2ε̃

∂x2

�

�

�

�

x=i

− 1

6

∂3ε̃

∂x3

�

�

�

�

x=i

(3.34)

and by difference one has

∂ε̃

∂x

�

�

�

�

x=i

≈ Δε̃

Δx
=

εi+1 − εi−1

2
+

1

6

∂3ε̃

∂x3

�

�

�

�

x=i

, (3.35)

where the last term takes into account the variations of the curve ε̃(x). In the case

of a Coulomb potential enclosed in a finite box, the derivative can be approximated

to the first term as
∂ε̃

∂x

�

�

�

�

x=i

≈ εi+1 − εi−1

2
. (3.36)

Thus, the DOS of an ensemble of discretized continuum states can be expressed as

the inverse of Eq. (3.36), such as

ρ(εi) =
2

εi+1 − εi−1
. (3.37)

3.2.4.3 Normalization of the continuum wave functions

The last aspect that must be discussed is the normalization problem of the computed

discretized continuum wave functions. Due to the imposed boundary conditions,
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every solution of Eq. (3.12) is orthonormalized in the index scale as follows,

�Ψi|Ψj� = δi,j. (3.38)

However, as we know, the continuous solutions must be orthonormalized in the energy

scale, that is, by the rule

�ΨE′|ΨE� = δ(E ′ −E). (3.39)

Thus, the normalization problem is to find the adequate normalization coefficient to

pass from the index scale (index representation) to the energy scale (energy represen-

tation). This problem has been attacked from different angles, here we present the

most general technique [Landau 77].

For a given set of wave functions, which are orthonormalized over the discrete

scale-variable “σ”, that is

�Ψσ′ |Ψσ� = δ(σ′ − σ), (3.40)

we look for having a different orthonormalization over the scale-variable “h(σ)”, which

depends on “σ”. Then, we also have

�Ψh(σ′)|Ψh(σ)� = δ(h(σ′)− h(σ)). (3.41)

If σ′ approaches σ, one has that h(σ′) − h(σ) = [dh(σ)/dσ](σ′ − σ), and from the

properties of the delta function 3, one can write δ(h(σ′)−h(σ)) = |dh(σ)/dσ|−1δ(σ′−
σ), where |dh(σ)/dσ|−1 is a constant. Consequently, we have

�Ψh(σ′)|Ψh(σ)� =
1

|dh(σ)/dσ|δ(σ
′ − σ). (3.42)

By comparing Eq. (3.40) and Eq. (3.42), we deduce that the normalization factor

3We recall that the delta function is defined as δ(x) = 0 for x �= 0 and δ(0) = +∞. Some of its
properties are:

(i)
� +∞

−∞
δ(x)dx = 1;

(ii)
� +∞

−∞
δ(x− a)f(x)dx = f(a);

(iii) δ(−x) = δ(x);

(iv) δ(αx) = |α|−1δ(x), where α is a constant.
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between the σ and the h(σ) scales must be given by

|Ψh(σ)� =
1

�

|dh(σ)/dσ|
|Ψσ�. (3.43)

In our particular case, the derivative dh(σ)/dσ is given by the derivative of the

energy with respect to the state index number, that is, Eq. (3.32). In consequence,

as reported in the previous section, we can state that the normalization coefficient is

determined by the DOS. The conversion from the index scale normalization to the

energy scale normalization is finally given by

|Ψεi� = ρ(εi)
1/2|Ψi� =

�

2

εi+1 − εi−1

|Ψi�, (3.44)

where |Ψεi� symbolized the energy normalized states and |Ψi� the states obtained

directly from our numerical calculation.

3.3 SOLVING THE TIME-DEPENDENT SCHRÖDINGER EQUATION

In this section, the resolution of the time-dependent Schrödinger equation (TDSE)

within the B-spline representation for the case of an hydrogen-like atom is presented.

We recall that the TDSE is given (in atomic units) by

i
∂

∂t
|Ψ(t)� = Ĥ(t)|Ψ(t)�, (3.45)

where time-dependent Hamiltonian is given by Ĥ(t) = Ĥ0 + Ĥint(t), where Ĥ0 is the

field-free Hamiltonian,

Ĥ0 =

�

−1

2

∂2

∂r2
− 1

r

∂

∂r
+

1

2

L̂2

r2
− Z

r

�

, (3.46)

where L̂2 is the angular momentum operator. The interaction Hamiltonian Ĥint(t)

can be expressed in the length or in the velocity gauge in spherical polar coordinates

for a linear polarized electric field along the z-axis as

ĤL
int(t) = E(t) r cos θ, (3.47)

ĤV
int(t) = −iA(t)

�

cosθ
∂

∂r
− sinθ

r

∂

∂θ

�

, (3.48)
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where E(t) is the external electric field and the potential vector is defined as A(t) =

−
� τ

t
E(t′)dt′, where τ is the duration of the laser pulse.

The time-dependent wave function |Ψ(t)� is composed by an angular part, given by

the spherical harmonics (Y m
l (Ω) ≡ Y m

l (θ,φ)), and a radial part, which is represented

within the B-spline basis (Bν(r) ≡ Bks
ν,t(r)) in the interval [0, rmax] as follows,

Ψ(r, t) =

Ns
�

ν=1

lmax
�

l=0

+l
�

m=−l

cl,mν (t)
Bν(r)

r
Y m
l (Ω), (3.49)

where the decomposition coefficients {cl,mν (t)} take into account the temporal depen-

dence of the wave function. The use of this expansion translates Eq. (3.45) into its

matrix form such as

i S
d
dt
C(t) = [H0 +Hint(t)]C(t), (3.50)

where S is the overlap matrix, H0 the field-free Hamiltonian and Hint(t) is the electric

field interaction matrix.

This equation can be solved using different numerical methods. In the following

subsection, the Crank-Nicolson technique is briefly presented.

3.3.1 Time discretization

As we know, the formal solution of the TDSE can be written in terms of the time

evolution operator such as

|Ψ(t)� = Û(t, t0)|Ψ(t0)�

= Û(t = tn, tn−1)...Û(t2, t1)Û(t1, t0)|Ψ(t0)�, (3.51)

where Û(ti+1, ti) drives our system from time ti to ti+1. The temporal integration is

then performed step by step from t0 to t. The explicit form of Û(ti+1, ti) is given by

Û(ti+1, ti) = T̂ exp

�

−i

� ti+1

ti

Ĥ(t′)dt′
�

, (3.52)

where T̂ is the time-ordering operator. Moreover, if the time step Δt (i.e. Δt =

ti+1 − ti) is small enough, the time evolution operator Û(ti+1, ti) can be approached

by a simple first-order Taylor expansion in Δt. However, this leads to an error in

Δt2 and the norm of the time-dependent wave function can be lost during the time
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evolution. To avoid these issues, Crank et al. [Crank 47] proposed a technique which is

unitary and the error is in Δt3. This method is based in a truncated series expansion,

allowing us to write that

|Ψ(t+Δt)� ≈
�

I− iĤ

�

t+
Δt

2

�

Δt

2

� �

I+ iĤ

�

t +
Δt

2

�

Δt

2

�−1

|Ψ(t)�, (3.53)

where the integrand of Eq. (3.52) has been evaluated at the middle point of the time

interval [t, t+Δt]. If now, Eq. (3.49) is used in Eq. (3.53), one can obtain the following

equation for the expansion coefficients,

A

�

t+
Δt

2

�

C(t+Δt) = C′(t), (3.54)

where the matrix A is defined for every time t as

A (t) =

�

S+ i {H0 +Hint (t)}
Δt

2

�

, (3.55)

and the vector C′(t) is given by the product

C′(t) =

�

S− i

�

H0 +Hint

�

t+
Δt

2

��

Δt

2

�

C(t). (3.56)

In order to solve Eq. (3.54), one shall perform two operations: (1) a vector-matrix

product in Eq. (3.56) and (2) the inversion of matrix A. When working with large

basis set dimensions, this operations can be very costly. The inversion can be per-

formed using a method based on the Krylov space, for example, the biconjugate

gradient method, see for instance [Press 07].

3.3.2 Computation of the B-spline matrix elements

The evaluation of the B-spline matrix elements requires the calculation of radial and

angular integrals. Radial integrals are going to be computed numerically, while the

angular integrals are calculated analytically with the help of the recurrence relations

of the spherical harmonics. In Appendix B, we recall definitions and relations of

spherical harmonics.

We now determine the different matrix elements in Eq. (3.50).
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Overlap matrix elements (Sµ,ν)
m,m′

l,l′ :

(Sµ,ν)
m,m′

l,l′ =
� rmax

0

� Bµ(r)
r

Y m′

l′ (Ω)× Bν(r)
r

Y m
l (Ω)r2drdΩ

=
� rmax

0
Bµ(r)Bν(r)dr ×

�

Y m′

l′ (Ω)Y m
l (Ω)dΩ

= �µ|ν� δl′,l δm′,m.

(3.57)

Field-free Hamiltonian matrix elements (H0
µ,ν)

m,m′

l,l′ :

(H0
µ,ν)

m,m′

l,l′ =
� rmax

0

� Bµ(r)
r

Y m′

l′ (Ω)
�

−1
2

∂2

∂r2
− 1

r
∂
∂r

+ 1
2
L̂2

r2
− 1

r

�

Bν(r)
r

Y m
l (Ω)r2drdΩ

=
� rmax

0

� Bµ(r)
r

Y m′

l′ (Ω)
�

−1
2

∂2

∂r2

�

Bν(r)
r

�

− 1
r

∂
∂r

�

Bν(r)
r

�

+ l(l+1)
2

Bν(r)
r3

− Bν(r)
r2

�

Y m
l (Ω)r2drdΩ

=
� rmax

0

� Bµ(r)

r
Y m′

l′ (Ω)
�

−1
2

�

r2B′′

ν (r)−2rB′

ν(r)+2Bν (r)
r3

�

− 1
r

�

B′

ν(r)r−Bν(r)
r2

�

+ l(l+1)
2

Bν(r)
r3

− Bν(r)
r2

�

Y m
l (Ω)r2drdΩ

=
� rmax

0

� Bµ(r)
r

Y m′

l′ (Ω)
�

−1
2
B′′

ν (r)
r

+ l(l+1)
2

Bν(r)
r3

− Bν(r)
r2

�

Y m
l (Ω)r2drdΩ

=
� rmax

0
Bµ(r)

r

�

−1
2
B′′

ν (r)
r

+ l(l+1)
2

Bν(r)
r3

− Bν(r)
r2

�

dr ×
�

Y m′

l′ (Ω)Y m
l (Ω)dΩ

=
�

−1
2

�

µ
�

�

�

∂2

∂r2

�

�

�
ν
�

+ l(l+1)
2

�

µ
�

�

1
r2

�

� ν
�

−
�

µ
�

�

1
r

�

� ν
�

�

δl′,l δm′,m.

(3.58)

Electric field matrix elements in the length gauge (HL
µ,ν)

m′m
l′l (t):

(HL
µ,ν)

m′m
l′l (t) =

� rmax

0

� Bµ(r)
r

Y m′

l′ (Ω) [E(t)r cos θ] Bν(r)
r

Y m
l (Ω)r2drdΩ

= E(t)
� rmax

0
Bµ(r) r Bν(r)dr ×

�

Y m′

l′ (Ω) [cos θ Y m
l (Ω)]dΩ

= E(t)�µ|r|ν�×
�

Y m′

l′ (Ω) [al+1,mY
m
l+1(Ω) + al−1,mY

m
l−1(Ω)]dΩ

= E(t)�µ|r|ν�{al+1,m

�

Y m′

l′ (Ω)Y m
l+1(Ω)dΩ+ al−1,m

�

Y m′

l′ (Ω)Y m
l−1(Ω)dΩ}

= E(t)�µ|r|ν�{al+1,m δl′,l+1δm′,m + al−1,m δl′,l−1δm′,m}
= E(t)�µ|r|ν� al+1,m δl′,l+1δm′,m + E(t)�µ|r|ν� al−1,m δl′,l−1δm′,m

= (HL
µ,ν)

m′m
l′,l+1(t) + (HL

µ,ν)
m′m
l′,l−1(t),

(3.59)

where

al+1,m =

�

(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3)

�1/2

, (3.60)

al−1,m =

�

(l −m)(l +m)

(2l + 1)(2l − 1)

�1/2

. (3.61)
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Electric field matrix elements in the velocity gauge (HV
µ,ν)

m′,m
l′,l (t):

(HV
µ,ν)

m′,m
l′,l (t) =

� rmax

0

� Bµ(r)
r

Y m′

l′ (Ω)
�

−iA(t)
�

cos θ ∂
∂r

− sin θ
r

∂
∂θ

��

Bν(r)
r

Y m
l (Ω)r2drdΩ

= −iA(t)
�

� rmax

0

� Bµ(r)
r

Y m′

l′ (Ω)
�

cos θ ∂
∂r

� Bν(r)
r

Y m
l (Ω)r2drdΩ

−
� rmax

0

� Bµ(r)
r

Y m′

l′ (Ω)
�

sin θ
r

∂
∂θ

� Bν(r)
r

Y m
l (Ω)r2drdΩ

�

= −iA(t)
�

� rmax

0

Bµ(r)
r

∂
∂r

�

Bν(r)
r

�

r2dr ×
�

Y m′

l′ (Ω) [cos θ Y m
l (Ω)]dΩ

−
� rmax

0

Bµ(r)Bν(r)

r
dr ×

�

Y m′

l′ (Ω)
�

sin θ ∂
∂θ

Y m
l (Ω)

�

dΩ
�

= −iA(t)
�

� rmax

0

Bµ(r)

r

�

B′

ν(r)r−Bν(r)
r2

�

r2dr

×
�

Y m′

l′ (Ω)[al+1,mY
m
l+1(Ω) + al−1,mY

m
l−1(Ω)]dΩ

−
� rmax

0

Bµ(r)Bν(r)
r

dr

×
�

Y m′

l′ (Ω)[l × al+1,mY
m
l+1(Ω)− (l + 1)× al−1,mY

m
l−1(Ω)]dΩ

�

= −iA(t)
���

µ
�

�

∂
∂r

�

� ν
�

− �µ|1
r
|ν�

�

×[al+1,m

�

Y m′

l′ (Ω)Y m
l+1(Ω)dΩ+ al−1,m

�

Y m′

l′ (Ω)Y m
l−1(Ω)dΩ]

−�µ|1
r
|ν�

×[l al+1,m

�

Y m′

l′ (Ω)Y m
l+1(Ω)dΩ− (l + 1) al−1,m

�

Y m′

l′ (Ω)Y m
l−1(Ω)dΩ]

�

= −iA(t)
���

µ
�

�

∂
∂r

�

� ν
�

− �µ|1
r
|ν�

�

× [al+1,m δl′,l+1δm′,m + al−1,m δl′,l−1δm′,m]

− �µ|1
r
|ν�× [l al+1,m δl′,l+1δm′,m − (l + 1) al−1,m δl′,l−1δm′,m]

�

= −iA(t)
���

µ
�

�

∂
∂r

�

� ν
�

− (l + 1)�µ|1
r
|ν�

�

× al+1,m δl′,l+1δm′,m

�

−iA(t)
���

µ
�

�

∂
∂r

�

� ν
�

− l × �µ|1
r
|ν�

�

× al−1,m δl′,l−1δm′,m

�

= (HV
µ,ν)

m′,m
l′,l+1(t) + (HV

µ,ν)
m′,m
l′,l−1(t),

where al+1,m and al−1,m are given by Eq. (3.60) and Eq. (3.61), respectively.

3.4 N-ELECTRON ATOMS

N -electron atoms present a complex electronic structure. This fact is related to

the existence of the electron-electron interactions, which are of the same order of

magnitude as the nucleus-electron interactions. Therefore, the electron dynamics is

controlled by both interactions. The non-relativistic Hamiltonian for a N -electron

atom can be expressed as

Ĥ0 = −1

2

N
�

i=1

∇2
ri
−

N
�

i=1

Z

ri
+

N
�

i=1

N
�

j>i

1

rij
, (3.62)

where the electron-electron interaction is given by the pairwise Coulomb potential
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Figure 3.15: A two-electron atom in spherical polar coordinates. The nucleus of mass mM

is located at the center of the system while the relative positions of the electrons me1 and
me2 are given by r1 ≡ {r1, θ1,φ1} and r2 ≡ {r2, θ2,φ2}. The electron-electron distance is
determined by the vector r12 = |r1 − r2|.

function,

wee(rij) =
1

rij
, (3.63)

with rij = |ri− rj | being the distance between the ith and the jth electron. In Figure

3.15, a two-electron atom in spherical harmonics is presented.

Due to the electron-electron interaction term, the Schrödinger equation associated

to Eq. (3.62) cannot be solved and approximations must be done. In order to obtain

accurate results, different methods have been developed during the last decades. One

of the first approximations is the Hartree-Fock approximation [Hartree 57], which

expresses the ground state wave function of the system as a single Slater determinant,

ΨHF
0 (x1,x2, ...,xN) = (N !)−1/2

�

�

�

�

�

�

�

�

�

�

�

�

χi(x1) χj(x1) · · · χk(x1)

χi(x2) χj(x2) · · · χk(x2)
...

...
...

χi(xN) χj(xN) · · · χk(xN)

�

�

�

�

�

�

�

�

�

�

�

�

, (3.64)

where N electrons occupy N spin-orbitals {χi,χj , ...,χk}. For the propose of in-

creasing the accuracy of the Hartree-Fock solution, one can introduce high-order

terms to the wave function based on excited Slater determinants (also called con-

figurations) [Szabo 96]. In principle, if one takes into account a full configuration

interaction expansion of the wave function, exact results can be obtained. However,
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limitations arise from a computational point of view. Nevertheless, within the den-

sity functional theory, it is possible to correct some of the errors introduced by the

Hartree-Fock approximation at the single determinant level [Koch 01].

A review of the different electronic-structure methods is far from the outlooks

of the present section. However, a common point between all these methods is the

computation of the two-electron integrals. This task can be seen as a fundamental

brick. For this reason, in this section we are going to present in details how two-

electron integrals can be computed within a basis of B-splines. We are not only

interest on the pure Coulomb integrals, but also on the range-separation integrals,

which are normally required in hybrid methods, as we will see later.

The numerical technique presented here to compute the two-electron integrals is

based on direct integration. This is a very expensive method from a computational

point of view, but is the simplest one. Other ways to obtain the two-electron integrals

are based on the Poisson equation, which is a convenient technique when working with

molecules, see for example [Becke 88].

3.4.1 Two-electron integrals for the Coulomb interaction

The Coulomb electron-electron interaction is given by

wee(|r1 − r2|) =
1

(|r1|2 + |r2|2 − 2|r1||r2| cos γ)1/2
, (3.65)

where r1 and r2 are electron vector positions and γ is the angle between them. As it

is shown in Appendix B, the multipolar expansion of this interaction is given by

wee(|r1 − r2|) =
∞
�

k=0

�

rk<
rk+1
>

� k
�

mk=−k

(−1)mkCk
−mk

(Ω1)C
k
mk

(Ω2), (3.66)

where r< = min(|r1|, |r2|) and r> = max(|r1|, |r2|) and the renormalized spherical

harmonics are defined as

Ck
mk

(Ω) ≡ Ck
mk

(θ,φ) = (4π/(2k + 1))1/2 Y mk

k (θ,φ). (3.67)

In a one-electron atomic orbital basis, where the spatial orbitals are given by

�r|p� ≡ �r|np, lp, mp� = ϕnp,lp,mp(r) =
unp,lp(r)

r
Y

mp

lp
(θ,φ), (3.68)
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the Coulomb two-electron integrals can be expressed as the sum of products of radial

integrals and angular factors such as

�pq|wee|tu� =
∞
�

k=0

Rk(p, q; t, u)
k

�

mk=−k

δmk ,mp−mtδmk ,mq−mu

× (−1)mk ck(lp, mp, lt, mt) c
k(lq, mq, lu, mu), (3.69)

where the angular coefficients ck(lp, mp, lt, mt) and ck(lq, mq, lu, mu) are the Gaunt’s

coefficients, which are defined in details in Appendix B. However, we recall here that,

the Gaunt’s coefficient ck(l,m, l′, m′) is non zero only if |l − l′| ≤ k ≤ l + l′ and if

l + l′ + k is an even integer, which makes the sum over k exactly terminate.

The two-dimensional radial Slater integrals are given by Rk(p, q; t, u), where the

labels p, q, t and u represent the radial functions of the one-electron atomic orbitals,

unp,lp(r1), unq,lq(r2), unt,lt(r1) and unu,lu(r2). Moreover, these radial functions can be

approximated using the B-spline representation as we explained before. Thus, for a

given knot sequence {ti}Ns+ks
1 on a finite space segment [0, rmax], one has

unp,lp(r1) =
Ns
�

α=1

cnp,lp
α Bks

α (r1), (3.70)

unq,lq(r2) =
Ns
�

λ=1

c
nq,lq
λ Bks

λ (r2), (3.71)

unp,lt(r1) =

Ns
�

β=1

cnt,lt
β Bks

β (r1), (3.72)

unp,lu(r2) =
Ns
�

ν=1

cnu,lu
ν Bks

ν (r2). (3.73)

Afterwards, if this representation is implemented, the radial Slater integrals Rk(p, q; t, u)

are finally given by the following expression

Rk(p, q; t, u) =
Ns
�

α=1

Ns
�

λ=1

Ns
�

β=1

Ns
�

ν=1

(cnp,lp
α )∗(c

nq,lq
λ )∗cnt,lt

β cnu,lu
ν Rk(α,λ; β, ν), (3.74)

where Rk(α,λ; β, ν) are the Slater matrix elements given by the two-dimensional

integrals

Rk(α,λ; β, ν) =

� rmax

0

� rmax

0

Bks
α (r1)B

ks
λ (r2)

�

rk<
rk+1
>

�

Bks
β (r1)B

ks
ν (r2)dr1dr2. (3.75)
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3.4.1.1 Qiu and Froese Fischer Integration-Cell Algorithm

In order to directly evaluate the Slater matrix elements, defined by Eq. (3.75), one can

implement the integration-cell algorithm, which was developed by Qiu et al. [Qiu 99],

and entirely based on the piecewise nature of B-splines. We recall that, for a given

knot sequence {ti}Ns+ks
1 , the B-spline Bks

α is non-zero only in the range [tα, tα+ks ].

This fact implies that only ks B-splines are non-zero in the interval Tα = [tα, tα+1].

Consequently, the ks non-zero B-splines in Tα are labeled as follows: Bks
α , Bks

α+1,...,

Bks
α+ks−1.

This behavior is translated into the computation of the two-dimensional integral

Rk(α,λ; β, ν). As a consequence, Rk(α,λ; β, ν) = 0 if either |α−β| ≥ ks or |λ− ν| ≥
ks. Basically, contributions to this integral only occur when Bks

α (r1) and Bks
β (r1),

together with Bks
λ (r2) and Bks

ν (r2), overlap. In addition, due to the inherent symmetry

of Rk(α,λ; β, ν), one can compute Rk(α,λ; β, ν) �= 0 only for α ≤ β, λ ≤ ν and α ≤ λ.

ν

λ−k
s
��

βα−k
s
��

Figure 3.16: Schematic representation of the area over the cells that contribute to the inte-
grand of the Slater matrix elements Rk(α,λ;β, ν). The area is composed by a block of cells
extended from the interval Tα−ks+1 to Tβ in the axis r1, and from the interval Tλ−ks+1 to
Tν in the axis r2. Figure inspired from [Qiu 99].

As well as this, it can be shown that, the area which contributes to Rk(α,λ; β, ν) is

extended from the knot interval Tα−ks+1 to the interval Tβ in the axis r1, and from the

interval Tλ−ks+1 to the interval Tν in the axis r2 coordinate, see for instance Figure 3.16.

Since there are only ks B-splines which are non-zero along the r1 or r2 coordinates in

each cell, the integration is performed only with the non-zero {α, β,λ, ν} combinations

over each individual cell, and then, after summation, the Slater matrix elements are

obtained. As one observes in Figure 3.16, there are two kinds of integration cells,
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those located over the off-diagonal elements, and those over the diagonal.

• Integration over the off-diagonal cells:

Over the off-diagonal cells, the integration limits are not coupled and the in-

tegrand of Rk(α,λ; β, ν) is separable. The two-dimensional integral is then

reduced to a product of two one-dimensional integrals. Thus, for a given off-

diagonal cell, defined, for example, between the knot intervals Tα = [tα, tα+1]

and Tλ = [tλ, tλ+1], in the r1 and r2 coordinates respectively, and for the case

tα < tλ, one has the following product:

Rk(α,λ; β, ν;Tα, Tλ) = rk(α, β;Tα)× r−k−1(λ, ν;Tλ), (3.76)

where

rk(α, β;Tα) =

� tα+1

tα

Bks
α (r1) r

k
1 Bks

β (r1)dr1, (3.77)

r−k−1(λ, ν;Tλ) =

� tλ+1

tλ

Bks
λ (r2)

1

rk+1
2

Bks
ν (r2)dr2. (3.78)

Eq. (3.77) and Eq. (3.78) can be evaluated using the Gauss-Legendre quadrature,

as in the case of the one-electron integrals. Additionally, we remark that, in

general, rk(α, β;Tα) = rk(β,α;Tα) and that r−k−1(α, β;Tα) = r−k−1(β,α;Tα).

Then, only elements with α < β need to be calculated and stored for a later

assembling.

• Integration over the diagonal cells:

Over the diagonal cells, the integration limits are coupled and a two-dimensional

integration shall be performed. Then, for a given diagonal cell, Tα = Tλ, we

have the following summation:

Rk(α,λ; β, ν;Tα) = Rk
Δ(α,λ; β, ν;Tα) +Rk

Δ(λ,α; ν, β;Tα), (3.79)

where in general, a triangle element is given by the two-dimensional integral

product

Rk
Δ(α,λ; β, ν;Tα) =

� tα+1

tα

Bks
α (r1)

1

rk+1
1

Bks
β (r1)dr1

� r1

tα

Bks
λ (r2) r

k
2 Bks

ν (r2)dr2.

(3.80)
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Eq. (3.80) is computed again with the Gauss-Legendre quadrature and stored.

The complementary triangle element is then obtained from the former, by doing

a symmetric index exchange during the later assembling.

• Assembly of the cell integrals:

To sum up, one only needs to compute and to store the cell integrals rk(α, β;Tα),

r−k−1(α, β;Tα) and Rk
Δ(α,λ; β, ν;Tα), and then, Slater matrix elements are ob-

tained after the assembling of the different cell integrals. The computational

cost of the assembling is N 2
s × k4

s .

3.4.1.2 Some F k[p, q] and Gk[p, q] integrals

In order to test our implementation of the integration-cell algorithm, and the accuracy

of such a method, we decided to evaluate some of the well known Slater integrals,

which are defined for a set of hydrogen orbital functions. We decided to reproduced

the same integrals appearing in [Qiu 99].

First of all, the hydrogen radial functions are reproduced within our basis set of

B-splines as

unp,lp(r) =
Ns
�

α=1

cnp,lp
α Bks

α (r) (3.81)

where the decomposition coefficients are obtained after diagonalization of Eq. (3.18).

Then, the target Slater integrals can be calculated as

F k[p, q] ≡ Rk(p, q; p, q) =

� rmax

0

� rmax

0

�

�cnp,lp
α

�

�

2
�

�

�
c
nq,lq
λ

�

�

�

2

Rk(α,λ;α,λ), (3.82)

Gk[p, q] ≡ Rk(p, q; q, p) =

� rmax

0

� rmax

0

�

�cnp,lp
α

�

�

2
�

�

�
c
nq,lq
λ

�

�

�

2

Rk(α,λ;λ,α), (3.83)

where the Slater matrix elements Rk(α,λ;α,λ) and Rk(α,λ;λ,α) are obtained with

the integration-cell algorithm. In Table 3.5, we show the difference between the

exact value and our calculated integrals. We observe that the numerical accuracy is

obtained.
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Table 3.5: Comparison of some F k[p, q] and Gk[p, q] integrals computed with the integration-
cell algorithm. B-spline parameters: knot sequence was chosen to be linear-parabolic, the
order ks = 8 and the dimension Ns = 56.

F k/Gk Computed value Exact valuea Difference
F 0[1s, 1s] 0.625000000000 5/8 0.178745906965E-13
F 0[2s, 1s] 0.209876543210 17/81 0.269229083472E-14
F 0[2s, 2s] 0.150390625000 77/512 0.252575738102E-14
F 0[2p, 1s] 0.242798353909 59/243 0.671684929898E-14
F 0[2p, 2s] 0.162109375000 83/512 0.341393580072E-14
F 0[2p, 2p] 0.181640625000 93/512 0.552335954751E-14
F 0[4s, 4s] 0.372714996338E-01 19541/524288 0.256253351871E-13
F 0[4s, 4p] 0.380382537842E-01 19943/524288 0.220309881449E-13
F 0[4s, 4d] 0.394687652588E-01 20693/524288 0.178190795452E-13
F 0[4s, 4f ] 0.414714813232E-01 21743/524288 0.161329283266E-13
F 0[4p, 4p] 0.389347076416E-01 20413/524288 0.180411241502E-13
F 0[4d, 4d] 0.426731109619E-01 22373/524288 0.733441085643E-14
F 0[4f, 4f ] 0.502262115479E-01 26333/524288 0.153349555276E-14
G0[2s, 1s] 0.219478737997E-01 16/729 0.156125112838E-14
G0[2p, 3p] 0.990904320000E-02 96768/9765625 0.111022302463E-15
G0[2p, 4p] 0.316121639091E-02 560/177147 0.778457159845E-15
G1[1s, 2p] 0.512117055327E-01 112/2187 0.722338855397E-14
G1[2s, 2p] 0.878906250000E-01 45/512 0.147104550763E-14
G1[2p, 3s] 0.942243840000E-02 92016/9765625 0.818789480661E-15
G1[2p, 3d] 0.373712486400E-01 1824768/48828125 0.217187379192E-14
G1[2p, 4s] 0.324150125163E-02 5168/1594323 0.131578775653E-14
G1[2p, 4d] 0.119925510703E-01 19120/1594323 0.161329283266E-14
F 2[4f, 4f ] 0.281402042934E-01 103275/3670016 0.193942084614E-14
G2[2p, 3p] 0.113246208000E-01 110592/9765625 0.149186218934E-15
G2[2p, 4p] 0.400420742848E-02 2128/531441 0.113884596198E-14
G2[2p, 4f ] 0.300064666946E-02 4784/1594323 0.362557206479E-15
G3[2p, 3d] 0.217998950400E-01 1064448/48828125 0.129410371308E-14
G3[2p, 4d] 0.737617157878E-02 3920/531441 0.100267016911E-14
F 4[4f, 4f ] 0.188018253871E-01 69003/3670016 0.160982338571E-14
G4[2p, 4f ] 0.195694348009E-02 1040/531441 0.251534904017E-15
F 6[4f, 4f ] 0.139102935791E-01 7293/524288 0.130277733046E-14

a From Ref. [Qiu 99].

3.4.2 Long-range and short-range two-electron integrals

The Coulomb electron-electron interaction, wee(r), with r = |r1 − r2|, can be split

into a short-range wsr
ee(r) and a long-range wlr

ee(r) component, using the appropriate

separator function. In the literature, many different separator functions are proposed

in order to assure the following relation

wee(r) = wlr
ee(r) + wsr

ee(r). (3.84)
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Figure 3.17: Schematic illustration of the Ewald attenuator.

A common separator function is given by the Ewald attenuator, which is based on

the error function, such as

wlr
ee(r) =

erf(µ r)

r
, (3.85)

wsr
ee(r) =

erfc(µ r)

r
, (3.86)

where µ is a tunable range-separation parameter controlling the range of the separa-

tion. Figure 3.17 presents the splitting of the Coulomb interaction carried out by this

separator function.

In order to compute two-electron integrals involving the operators Eq. (3.85) and

Eq. (3.86), a multipolar expansion is required as in the Coulomb case, i.e. Eq. (3.66).

However, a direct expansion of Eq. (3.85) and Eq. (3.86) is not an immediate task.

It is possible to expand Eq. (3.85) in a Taylor series, such as

wlr
ee(r) =

2µ√
π

∞
�

n=0

(−µ)2n

n!(2n + 1)
r2n, (3.87)

which converges for all r [Gill 97]. Subsequently, the powers of the distance r2n can

be expanded as follows

r2n =

∞
�

k=0

Lk
2n(r>, r<)

k
�

mk=−k

(−1)mkCk
−mk

(Ω1)C
k
mk

(Ω2), (3.88)

where, for 2n being an even positive integer, we have [Sack 64]

Lk
2n(r>, r<) = (−2n)k r2n>

�

r<
r>

�k

2F1

�

k − n,−1

2
− n; k +

3

2
;
r2<
r2>

�

, (3.89)
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where the Gauss hypergeometric function is given by

2F1(a, b; c; z) = 1 +
∞
�

s=1

(a)s(b)s
(c)ss!

zs, (3.90)

with

(a)0 = 1,

(a)s =
Γ(a+ s)

Γ(a)
. (3.91)

However, when the series Eq. (3.87) is truncated at n = nmax, the series behaves

as (−r2)nmax and it becomes worthless at large r. Nevertheless, other expansions

have been proposed to overcome the limitations of Eq. (3.87). In the literature, one

finds for example the use of methods based on a Gaussian expansion or on a Bessel

expansion [Limpanuparb 11]. But, also in these cases, limitations exist. For this

reason, attention is focused now on the short-range component, i.e. Eq. (3.86).

3.4.2.1 Exact expression for the short-range interaction

The multipolar expansion of the short-range interaction was derived by Marshall

[Marshall 02], but it was Ángyán et al. [Ángyán 06] who obtained a compact exact

general expression for Eq. (3.86).

First of all, one takes the Laplace transform of Eq. (3.86) in the variable t = 1/4µ2,

such as

wsr
ee(r) =

erfc(r/2
√
t)

r
; L[wsr

ee(r)] =
exp(r

√
s)

s r
. (3.92)

Then, the Gegenbauer addition theorem can be applied to the Laplace transform

[Watson 22], and one directly obtains

exp(r
√
s)

s r
=

2

π

∞
�

k=0

(2k + 1)
ik(r<

√
s)kk(r>

√
s)√

s

k
�

mk=−k

(−1)mkCk
−mk

(Ω1)C
k
mk

(Ω2),

(3.93)

where the Bessel functions ik(z) and kk(z) are defined as

kk(z) =
π

2z
e−z

k
�

p=0

(k + p)!

p!(k − p)!(2z)p
(3.94)
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ik(z) =
1

2z

�

ez
k

�

p=0

(−1)p(k + p)!

p!(k − p)!(2z)p
+ (−1)k+1e−z

k
�

p=0

(k + p)!

p!(k − p)!(2z)p

�

.(3.95)

Thus, the multipolar expansion of Eq. (3.86) can be written as

wsr
ee(r) =

∞
�

k=0

Sk(r>, r<; t)
k

�

mk=−k

(−1)mkCk
−mk

(Ω1)C
k
mk

(Ω2), (3.96)

where

Sk(r>, r<; t) =
2(2k + 1)

π
L−1

�

ik(r<
√
s)kk(r>

√
s)√

s

�

. (3.97)

Moreover, Ángyán et al. determined a general expression for Eq. (3.97) by per-

forming an order by order determination of the inverse Laplace transform [Ángyán 06].

They found that the radial µ-dependent function, Sk(r>, r<;µ), can be written in

terms of the scaled radial coordinates η = µ r> and ζ = µ r<, as follows

Sk(r>, r<;µ) = µ Φk(η, ζ), (3.98)

with

Φk(η, ζ) = Hk(η, ζ) + F k(η, ζ) +

k
�

m=1

F k−m(η, ζ)
η2m + ζ2m

(ζ η)m
, (3.99)

and the introduced auxiliary functions

Hk(η, ζ) =
1

2(ζ η)k+1

��

η2k+1 + ζ2k+1
�

erfc(η + ζ)−
�

η2k+1 − ζ2k+1
�

erfc(η − ζ)
�

,

(3.100)

and

F k(η, ζ) =
2

π1/2

k
�

p=0

�

− 1

4(ζ η)

�p+1
(k + p)!

p!(k − p)!
×

�

(−1)k−pe−(η+ζ)2 − e−(η−ζ)2
�

.

(3.101)

Finally, the associated short-range two-electron integrals �pq|wsr
ee|tu� can be deter-

mined identical to the Coulomb integrals, Eq. (3.69), with the simple difference that

the radial term is not given by the standard Slater matrix elements. Now, the radial

kernel in Eq. (3.75) is changed to that of Eq. (3.98). In addition, due to the fact that

the radial kernel Sk(r>, r<;µ) is not separable in simple products of the variables r>

and r<, the integration-cell algorithm is modified in order to calculate all integrals

as non-separable two-dimensional integrals, as in the case of the off diagonal cells for
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the Coulomb interaction. In a second step, the long-range two-electron integrals can

be simply obtained by difference

�pq|wlr
ee|tu� = �pq|wee|tu� − �pq|wsr

ee|tu�. (3.102)

3.4.2.2 Power series expansion of the short-range interaction

The derived expression for the kth-order radial function, Sk(r>, r<;µ) = µ Φk(η, ζ),

gives us the possibility to work with the multipolar expansion of the short-range

interaction. Nevertheless, it is not separable in the variables r> and r<. In order to

arrive at a separable radial expression in η and ζ , Ángyán et al. also introduced a

power series expansion of the radial function Φk(η, ζ) in the smaller reduced variable

ζ [Ángyán 06]. In this section we explore the validity of this expansion, which is given

by

Φk(η, ζ) =
∞
�

n=0

Dk
n(η)

ηk+1
ζk+2n, (3.103)

where Dk
n(η) is given by

D0
0(η) = erfc(η), (3.104)

for n = k = 0,

Dk
0(η) = erfc(η) +

e−(η)2

√
π

2k+1
k

�

m=1

2−m(µr>)
−2m+2k+1

(2k − 2m+ 1)!!
, (3.105)

for n = 0 and k ≥ 1, and

Dk
n(η) =

e−(η)2

√
π

2k+1(2k + 1)

n!(2n+ 2k + 1)

n
�

m=1

�

m− n− 1

m− 1

�

2n−m(η)2n−2m+2k+1

(2k + 2n− 2m+ 1)!!
, (3.106)

for n ≥ 1 and k ≥ 1. Figure 3.18 presents the expansion function Dk
n(η) for different

k and n values. Note that, although higher order terms are almost invisible for the

chosen scale, their contribution is non-negligible once they are multiplied by ζ k+2n.

In order to explore the range of validity of Eq. (3.103), one can follow the approach

proposed by Ángyán et al. [Ángyán 06]. The exact function Φk(η, ζ) is compared with

the truncated function Φ̃k
nmax

(η, ζ), which is defined as

Φ̃k
nmax

(η, ζ) =
nmax
�

n=0

Dk
n(η)

ηk+1
ζk+2n. (3.107)
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Figure 3.18: Radial expansion function of different orders, D0
n(η),D

1
n(η), D

2
n(η) and D3

n(η).
Figure inspired from [Ángyán 06].

The range of validity for the truncated series expansion Eq. (3.107) is estimated,

for different orders, comparing the plots of Φk(ζ , ζ) and Φ̃k
nmax

(ζ , ζ), together with the

Coulomb interaction kernel Gk(ζ , ζ), which is defined from the following relations

Gk(r>, r<) =

�

rk<
rk+1
>

�

= Gk(r>, r<) = µ Gk(η, ζ). (3.108)

In Figure 3.19 the radial functions Gk(ζ , ζ), Φk(ζ , ζ) and Φ̃k
nmax

(ζ , ζ) are presented for

different k values. One observes that, at higher orders of k and at small values of ζ ,

Φk(ζ , ζ) is almost identical to the Coulomb interaction. If attention is focused on the

truncated short-range radial function Φ̃k
nmax

(ζ , ζ), one observes that, for nmax = 0, it

goes to zero too quickly, and for higher k and nmax > 0, oscillations appear making

the truncated expansion unusable. As a matter of fact, these divergences show us that

the truncated expansion in ζ , i.e. Eq. (3.103), shall not be used in the computation

of short-range two-electron integrals. Therefore, the implementation of the exact

expression Eq. (3.98) was chosen for the calculation of the short-range two-electron

integrals.
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Figure 3.19: Exploration of the range of validity of the truncated short-range expansion
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(η, ζ). Diagonal values of Φ̃k
nmax

(η, ζ), Φk(η, ζ) and Gk(η, ζ), i.e. η = ζ.
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3.5 MOLECULES

In previous sections attention has been focused on the use of B-splines in atomic cal-

culations. Now, the computation of molecular electronic structures is addressed. Due

to the complexity of such systems, we have decided to make use of two commercial

quantum chemistry packages, i.e. Molpro [Werner 15] and Qchem [Shao 15]. These

codes have been optimally developed to carry out molecular calculations at different

levels of theory. In addition, they are based on Gaussian-type orbital (GTO) func-

tions, see for example [Boys 50, Pople 78]. For this reason, a brief review on GTO

functions is given in this section. Moreover, we introduce the use of Kaufmann GTO

functions and “ghost atoms”. In a second step, we present the TDCIS framework

proposed by Luppi et al. [Luppi 13] to investigate multiphoton ionization processes

in molecules. Finally, at the end of this section, some calculations on the molecu-

lar hydrogen ion H+
2 are shown. In particular, the basis set effects on the energy

spectrum and in high-harmonic generation are noted.

Let us now introduce the total field-free Hamiltonian for a N -electron molecule,

which is expressed, as we know, in terms of nuclear and electronic position vectors,

RA and ri, as follows (in atomic units)

Ĥtotal = −
N
�

i=1

1

2
∇2

i−
M
�

A=1

1

2MA

∇2
A−

N
�

i=1

M
�

A=1

ZA

riA
+

N
�

i=1

N
�

j>i

1

rij
+

M
�

A=1

M
�

B>A

ZAZB

RAB

, (3.109)

where ZA is the atomic number of the nucleus A, and MA is the mass of the nucleus

A. The interatomic distance between two nuclei is given by RAB = |RA −RB| and

the distance between the ith electron and the Ath nucleus is riA = |ri − RA|. As

usual, the distance between two electrons is given by rij = |ri − rj |.

Here we are interested on electron dynamics, so the Born-Oppenheimer approxi-

mation is assumed. As a consequence, the total wave function can be rewritten as a

product of two functions such as

Φtotal({ri}; {RA}) = Φelec({ri}; {RA})× Φnucl({RA}), (3.110)

where the pure electronic wave function Φelec({ri}; {RA}) depends parametrically on
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the nuclear coordinates and satisfies the following equation

Ĥ0
elecΦelec = EelecΦelec, (3.111)

where the field-free electronic Hamiltonian is given by

Ĥ0
elec = −

N
�

i=1

1

2
∇2

i −
N
�

i=1

M
�

A=1

ZA

riA
+

N
�

i=1

N
�

j>i

1

rij
. (3.112)

For fixed nuclei, the total molecular energy is defined by adding the nuclear repulsion

energy to the electronic energy as follows,

Etotal = Eelec +
M
�

A=1

M
�

B>A

ZAZB

RAB

. (3.113)

In general, the ground state of the molecule can be described by the Hartree-Fock

determinant |ΨHF
0 � = |χ1χ2...χaχb...χN �, where the spin-orbitals {χi} are obtained

after solving the Hartree-Fock-Roothaam equations. If the total number of spin-

orbitals is 2O > N , it is then possible to generate an ensemble of (2O)!/N !(2O−N)!

excited configurations using the Hartree-Fock ground state as a reference. Then, the

molecular wave function can be represented as

|Φelec� = c0|ΨHF
0 �+

�

ra

cra|Ψr
a�+

�

a<b
r<s

crsab|Ψrs
ab�+ ..., (3.114)

where the singly excited configurations {|Ψr
a�} are Slater determinants in which an

electron has been promoted from an occupied spin-orbital χa to a virtual one χr, i.e.

|Ψr
a� = |χ1χ2...χrχb...χN �. Subsequently, a doubly excited configuration |Ψrs

ab� implies

the promotion of two electrons from occupied spin-orbitals χa and χb to the virtual

χr and χs. The same holds for higher order excited configurations.

However, the use of a full configuration interaction expansion of the wave function

is not possible for a computational point of view, and approximations must be done.

In the last years, quantum chemistry codes have been developed within different levels

of theory making use of the mathematical properties of the GTO functions. Once

we are able to compute the electronic structure of an investigated molecule, it is

possible to used the “outputs” of such a calculation and performing a time-dependent
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propagation in presence of a laser field. This is the framework developed by Luppi

et al. [Luppi 13] and used during my PhD in order to explore multiphoton processes

in molecules. Before describing the propagation method, let us introduce the GTO

functions.

3.5.1 Gaussian-type orbitals

In order to solve the molecular Hartree-Fock equation, quantum chemistry packages

usually represent the molecular spin-orbitals within a basis set of GTO functions,

such as

χm(r) =
�

µ

cmµ Gµ(r), (3.115)

where the GTO function centered on the nucleus A is defined in cartesian coordinates

as

Gµ(r) = Nµ x
iµ
A y

jµ
A z

kµ
A e−αµ |rA|2, (3.116)

where Nµ is the normalization factor, rA = r−RA and the total angular momentum

l is given by the sum iµ + jµ + kµ = l.

In the context of single and multiphoton processes, the main problems reported

when using GTO functions are related to their local nature. Due to this issue, GTO

functions are incapable to accurately reproduce Rydberg and continuum states. For

the purposes of increasing the performance of GTO basis sets, it is possible to add

Kaufmann’s functions to the basis [Kaufmann 89]. Kaufmann et al. proposed a

universal Gaussian basis set for describing Rydberg and continuum states using the

appropriate exponents αµ. In their work, Kaufmann et al. presented a systematic

procedure to obtain such optimal exponents [Kaufmann 89]. Moreover, GTO func-

tions are normally defined over nuclei in molecules. However, it is also possible to

define a GTO function over other space region. When these regions do not contain

any nucleus they are denominated as “ghost atoms”. This term refers to the absent of

nuclei in the region where a set of GTO functions can be defined. The GTO functions

defined over a ghost atom are given by Eq. (3.116) but where rA is substituted by

rGh = r−RGh, where RGh is the position vector of the ghost atom.

The influences of the Kaufmann GTO functions and of ghost atoms have been

reported in the calculation of multiphoton processes in atoms and molecules, see for

example [Luppi 13, Coccia 16a,Coccia 16b]. As well as this, more informations on
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GTO functions can be found in the book “Molecular Electronic Structure Theory

written by T. Helgaker, P. Jorgensen, and J. Olsen [Helgaker 00].

3.5.2 Time-dependent configuration interaction singles theory

Within the dipole approximation, the TDSE for a N -electron molecule can be written

in the length gauge in atomic units as follows

i
d
dt

Φelec(t) =
�

Ĥ0
elec + E(t) ·R

�

Φelec(t), (3.117)

where the field-free Hamiltonian Ĥ0
elec is given by Eq. (3.112) and the total position

operator is R =
�N

i=1 ri, and the electric field E(t) is normally given by

E(t) = E0 ê cos2
�

πt

τ

�

cos(ωt+ φ), (3.118)

where τ is the duration of the pulse.

The time-dependent configuration interaction singles (TDCIS) method proposes

us to expand the time-dependent wave function |Φelec(t)� onto the time-independent

singly excited configurations {|Ψr
a�}, here refered to us as {|ΨS�},

|Φelec(t)� =
W
�

S=0

cS(t)|ΨS�, (3.119)

where W is the total number of excited configurations and S = 0 represents the

Hartree-Fock configuration. Note that the expansion coefficients take into account

the time dependence of the wave function. Afterwards, inserting Eq. (3.119) into

Eq. (3.117), and projecting over the corresponding bras, a time-dependent equation

for the expansion coefficients is obtained. In a compact matrix form it is given by

i
d
dt

C(t) =
�

H0 +V(t)
�

C(t), (3.120)

where C(t) is the vector matrix for the time-dependent coefficients, H0 is the field-

free diagonal matrix of elements H0
S,S′ = �ΨS|Ĥ0

elec|ΨS′� = ES′δS,S′ (where ES′ is

the energy of the eigenstate S ′), and V(t) is the non-diagonal interaction matrix of

elements VS,S′(t) = �ΨS|E(t) ·R|ΨS′�.
In order to solve Eq. (3.120), one commonly chooses the Hartree-Fock ground state

as initial condition, i.e. |Φelec(t = 0)� ≡ |ΨHF
0 �. Then, time is discretized and the
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split-propagator approximation technique can be used to separate the contributions

from the field-free Hamiltonian and the time-dependent interaction [Press 07]. As a

consequence, Eq. (3.120) is translated into the following expression

C(t +Δt) ≈ e−i V(t) Δt e−i H0 Δt C(t), (3.121)

where Δt is the time step. As the field-free matrix H0 is diagonal, e−i H0 Δt is also

a diagonal matrix of elements e−i ES′ Δt δS,S′. Moreover, the exponential of the non-

diagonal interaction matrix can be computed as follows

e−i V(t) Δt = U† e−i Vd(t) Δt U, (3.122)

where U is a unitary matrix that transforms the interaction representation from the

CIS basis into a basis in which it is diagonal, i.e. V(t) = U† Vd(t) U = E(t) U† Rd U

where Vd(t) = E(t) ·Rd is the diagonal representation of the interaction matrix and

Rd is the diagonal representation of the total position operator. As one can see, the

time dependence is factorized in a multiplicative function independent of Rd. As a

consequence, the unitary matrix U is time-independent, allowing us to compute U

only once before the time propagation.

An important aspect to take into account during the propagation is the control

of the ionization. During the time propagation, one shall eliminate any unphysical

reflexions4 from the time-dependent wave function. To do this, one used to remove

the high-energy electron density from the calculation. This can be done, for example,

using the heuristic lifetime model proposed by Klinkusch et al. [Klinkusch 09]. Within

this heuristic model, the CIS state energies above the ionization threshold are replaced

by complex energies such as

ES → ES − i

2
ΓS, (3.123)

where ΓS is the ionization rate of the single-excited configuration |ΨS�. In addition,

the lifetime tS of the state S is defined as tS = 1/ΓS. In general, the ionization

rate ΓS is parametrized using a classical picture of the ionization process. Basically,

one considers that an electron, placed on a spin-orbital χa with an energy εa >

4Unphysical reflexions are errors introduced to the time-dependent wave function during the
propagation as a consequence of the incompleteness of the CIS space on which the time-dependent
wave function has been represented, and also, due to the limitations of the implemented GTO basis.
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0, can be associated with an escaping electron with a kinetic energy of εa = 1
2
v2,

where the escape velocity is given by v = d/tS. The escape length d represents the

traveled distance by the electron during the time tS. The escape length is the single

parameter that has to be introduced by the user into the model. Usually, the escape

length d is chosen to be identical to the maximal distance gained by an electron

in an electromagnetic field within the classical picture of the three-step model, i.e.

d = 2 E0/ω2, where E0 is the amplitude of the electric field and ω is the carrier

frequency. Finally, this heuristic model is proposed as an alternative to the complex

absorbing potentials or to the wave function absorbers [Risoud 17].

Once the time-dependent coefficients are known, the induced dipole-moment can

be calculated in the length gauge as follows

D(t) = −�Φ(t)|R|Φ(t)� = −
�

S,S′

c∗S(t) cS′(t) RS,S′, (3.124)

where RS,S′ = �ΨS|R|ΨS′� is the total position matrix element. Consequently, a

molecular high-harmonic generation spectrum can be obtained from the square root

of the Fourier transform of Eq. (3.124) as

P (ω) =

�

�

�

�

� τ

0

D(t)h(t)eiωtdt
�

�

�

�

2

, (3.125)

where h(t) is an apodization function that can be chosen to be, for example, of the

sin-square window form.

3.5.3 Exploring the accuracy of the GTO basis

In order to show the range of validity of GTO functions, we present here an study

on the molecular hydrogen ion H+
2 . In addition we investigate the basis set effects

on high-harmonic spectra calculated using the TDCIS method previously introduced.

This project was carried out in the context of an international collaboration I did

during my PhD with E. Coccia at the Dipartimento di Scienze Chimiche in Padova

and at the Dipartimento di Scienze Chimiche e Farmaceutiche in Trieste.

For the purposes of representing the field-free Hamiltonian of the H+
2 molecule, we

decided to implement over each hydrogen atom of the molecule a 6-aug-cc-pVTZ+5K

atom-centered basis, where “5K” symbolized the used of 5 Kaufmann GTO functions

for each angular momentum. In Table 3.6, the implemented Kaufmann exponents are
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Table 3.6: Kaufmann exponents for each angular momentum. Here n is not the princi-
pal quantum number, n represents the GTO Kaufmann exponent index. In our 6-aug-cc-
pVTZ+5K basis, 5 Kaufmann functions have been included for each angular momentum up
to l = 2.

n l = 0 l = 1 l = 2
1 0.245645 0.430082 0.622557
2 0.098496 0.169341 0.242160
3 0.052725 0.089894 0.127840
4 0.032775 0.055611 0.078835
5 0.022327 0.037766 0.053428

given. The total number of GTO functions presented in our GTO basis was 226.

Within the 6-aug-cc-pVTZ+5K basis, it is possible to solve the Hartree-Fock

equation in order to obtain an ensemble of molecular orbitals with the code Qchem

[Shao 15]. In order to eliminate possible linear dependencies problems, during the

diagonalization of the Hartree-Fock Hamiltonian, 25 GTO functions were removed

automatically from the basis by Qchem. Linear dependencies are numerical errors

arising due to the high degree of overlap between the GTO functions.

After the diagonalization of the Hartree-Fock Hamiltonian, the CIS matrix can be

built up with the calculated Hartree-Fock molecular orbitals. The diagonalization of

the CIS matrix gives us an ensemble of excited states. For the case of the molecular

hydrogen ion H+
2 these excited states correspond to the exact ones.

3.5.3.1 Potential energy curves

In Figure 3.20, some of the lowest potential energy curves are shown for some of

the lowest excited states. One can observe that their behavior is correct and in

concordance with the curves given by Fetic et al. [Fetic 17]. Additionally, Table 3.7

presents some electronic eigenvalues for the first states of symmetry σ and π. Our

results are directly compared with the accurate calculations carried out by Fetic et

al. [Fetic 17]. They implemented a basis set of B-splines in elliptical coordinates

(ξ, η,ϕ), where the box size was chosen to be ξmax = 60 au, the total number of

B-splines (of order 10) was 80 and the number of spherical harmonics was 20. This

comparison gives us a measure of the accuracy of the Qchem calculation with the

6-aug-cc-pVTZ+5K basis.

In Table 3.7 we observe that the difference between energies (expressed in terms

of 10−δ) is more important in the ground state that in higher energy states. In order
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Figure 3.20: Some potential energy curves of the molecular hydrogen ion H+
2 for the first

lowest bound states calculated with a 6-aug-cc-pVTZ+5K basis with the code Qchem.

to clarify this fact, one could do two things: first, comparing the Qchem energies

with an exact (analytical) calculation of H+
2 , and second, performing a systematic

study on different GTO basis. For example, by changing the angular momentum of

the GTO functions, the number of diffuse functions in the basis or by including a

different number of Kaufmann functions.

These proposed explorations are beyond the principal aim of the present manuscript

and are postponed to a future work. Nevertheless, we can say that the bound state

energies, computed with the 6-aug-cc-pVTZ+5K basis, are quite accurate.

Table 3.7: Comparison of some electronic eigenvalues (in Ha) of the hydrogen molecular ion
H+

2 at the equilibrium interatomic distance calculated with a 6-aug-cc-pVTZ+5K basis with
the code Qchem. The error difference is given in terms of 10−δ .

State Eigenvalue Eigenvaluea δ
1σg -1.1024194974 -1.1026342145 4
1σu -0.6673174571 -0.6675343922 4
1πu -0.4287137515 -0.4287718199 5
2σg -0.3607918005 -0.3608648753 5
2σu -0.2553534735 -0.2554131651 5
1πg -0.2266921320 -0.2266996266 6

aFrom Ref. [Fetic 17].

3.5.3.2 Energy spectrum

Attention is now focused on Rydberg and continuum states. In order to increase

the density of these states, we decided to add a set of ghost atoms to our 6-aug-cc-
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Figure 3.21: Energy spectrum of the molecular hydrogen ion H+
2 computed at the interatomic

equilibrium distance. In black: calculation with the 6-aug-cc-pVTZ+5K basis over each
hydrogen atom. In green: calculation with the 6-aug-cc-pVTZ+5K basis plus the addition
of two basis GTO type 1 over ghost atoms (see text). In red: calculation with the 6-aug-
cc-pVTZ+5K basis plus the addition of two basis GTO type 1 over two ghost atoms and
20 functions GTO type 2 over 20 ghost atoms (see text). In blue: calculation with the
6-aug-cc-pVTZ+5K basis plus the addition of two basis GTO type 1 over two ghost atoms
and 28 functions GTO type 2 over 28 ghost atoms (see text).

pVTZ+5K basis. The addition of ghost atoms may suppose the inclusion of linear

dependencies in the calculation. For this reason, the position of ghost atoms has to

be chosen carefully. Furthermore, the type of GTO functions placed over the ghost

atoms have also to be tested.

In our study, attention was focused only in ghost atoms distributed along the

molecular axis (z-axis). Moreover, after different tests, two types of GTO basis

functions where placed over the ghost atoms:

• GTO type 1: This GTO basis is composed by Kaufmann and diffuse GTO

functions with angular momentum l = 1 and l = 2. We have used 5 Kaufmann

and 4 diffuse GTO functions for each value of l. This basis set was placed over

two ghost atoms located at RGh1
= 9.448 k̂ au and at RGh2

= −9.448 k̂ au,

where k̂ is the unitary vector of the direction. The center of the molecule is

placed at RCM = 0 k̂.

• GTO type 2: This GTO basis is simply composed by a single Kaufmann GTO

function of angular momentum l = 0 where the exponent is α1 = 0.245645. An

ensemble of this GTO function has been distributed over the z-axis with an

spacing of 0.9488 au between each function. In the positive range of the z-axis,
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the first GTO type 2 function was placed at RGh1
= (9.448+0.9448) k̂, and, in

the negative range, at RGh2
= −(9.448+0.9448) k̂. In our calculation, the same

number of GTO type 2 functions was used in the positive and in the negative

ranges of the z-axis.

Figure 3.21 presents different energy spectra of the H+
2 computed with the 6-aug-

cc-pVTZ+5K basis and with the addition of the non-atom-centered basis GTO type

1 and GTO type 2. We observed that the number of Rydberg and continuum states

increases when two GTO type 1 basis are introduced in our calculation. As well as

this, when 20 functions GTO type 2 are introduced, the number of continuum states

increases. However, we are limited by the linear dependencies and the inclusion of

more functions GTO type 2 dose not improve the energy spectrum.

3.5.3.3 Ghost atoms effects on high-harmonic generation

The effects of the basis set on the electron dynamics can be investigated by analyzing

the HHG spectra of the H+
2 . In Figure 3.22 we show two HHG spectra calculated

with the same laser parameters but with two different basis sets. In Figure 3.22(a)

the HHG spectrum was computed with the 6-aug-cc-pVTZ+5K basis, and, in Figure

3.22(b) we used the 6-aug-cc-pVTZ+5K basis together with 2 basis GTO type 1

and 28 functions GTO type 2. In Figure 3.22 the red line indicates the two-center

minimum predicted by Lein’s model [Lein 02], and the blue line denotes the cut-off

energy predicted by the three-step model [Lewenstein 94].

In Figure 3.22(a) one observes that the 6-aug-cc-pVTZ+5K is not able to properly

describe the HHG spectrum of the H+
2 for the given laser parameters. The expected

two-center interference minimum and the cut-off region are not described. In Figure

3.22(b), we can see the existence of high-energy peaks, corresponding to high-energy

continuum states. This spectrum can be compared to the HHG spectrum computed

by Fetic et al. [Fetic 17]. With this comparison one observes that the low-energy part

of our spectrum is correctly described while the high-energy part, such as the cut-off

region, is not accurately described with the addition of ghost atoms.
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Figure 3.22: High-harmonic generation spectra of the molecular hydrogen ion H+
2 computed

in the length gauge with (a) a basis set of 6-aug-cc-pVTZ+5K and with (b) a 6-aug-cc-
pVTZ+5K basis with 2 basis GTO type 1 and 28 functions GTO type 2 (see text). The
laser pulse is polarized along the molecular axis with an intensity of I = 3 × 1014 W/cm2

and a wavelength of λ = 800 nm. The total number of optical cycles was 18 using a cos2

envelope.





C H A P T E R 4

Range-separated DFT for atomic

spectra

In this chapter, we have reproduced our article titled “Linear-response range-separated

density-functional theory for atomic photoexcitation and photoionization spectra”,

published in J. Chem. Phys. 150, 234104 (2019) [Zapata 19].

In this work, we have investigated the performance of the range-separated hy-

brid (RSH) scheme, which combines long-range Hartree-Fock (HF) and a short-range

density-functional approximation (DFA), for calculating photoexcitation and pho-

toionization spectra of the H and He atoms, using a B-spline basis set in order to

correctly describe the continuum part of the spectra. The study of these simple sys-

tems allows us to quantify the influence on the spectra of the errors coming from

the short-range exchange-correlation DFA and from the missing long-range corre-

lation in the RSH scheme. We study the differences between using the long-range

HF exchange (nonlocal) potential and the long-range exact exchange (local) poten-

tial. Contrary to the former, the latter supports a series of Rydberg states and

gives reasonable photoexcitation and photoionization spectra, even without apply-

ing linear-response theory. The most accurate spectra are obtained with the linear-

response time-dependent range-separated hybrid (TDRSH) scheme. In particular, for

the He atom at the optimal value of the range-separation parameter, TDRSH gives

slightly more accurate photoexcitation/photoionization spectra than standard linear-

response time-dependent HF. More generally, the present work shows the potential of

range-separated density-functional theory for calculating linear and nonlinear optical

properties involving continuum states.

4.1 INTRODUCTION

Nowadays, time-dependent density-functional theory (TDDFT) [Runge 84], applied

within the linear-response formalism [Gross 85,Casida 95,Petersilka 96], is a widely

used approach for calculating photoexcitation spectra (transitions from bound to

bound states) of electronic systems. In spite of many successes, it is however well

known that usual (semi-)local density-functional approximations (DFAs), i.e. the

local-density approximation (LDA) and generalized-gradient approximations (GGAs),
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for the exchange-correlation potential and its associated exchange-correlation kernel

do not correctly describe long-range electronic transitions, such as those to Ryd-

berg [Casida 98] and charge-transfer [Dreuw 03] states in atomic and molecular sys-

tems. A better description of Rydberg excitations can be obtained with exchange-

correlation potential approximations having the correct −1/r long-range asymptotic

decay [van Leeuwen 94, Tozer 98, Casida 00, Schipper 00], even though it has been

shown that accurate Rydberg excitation energies and oscillator strengths can in fact

be extracted from LDA calculations in small atoms [Wasserman 03,Wasserman 05].

A more general solution for correcting both Rydberg and charge-transfer excitations

is given by range-separated TDDFT approaches [Tawada 04, Yanai 04, Peach 06,

Livshits 07, Baer 10, Fromager 13, Rebolini 13] which express the long-range part

of the exchange potential and kernel at the Hartree-Fock (HF) level. These range-

separated approaches also give reasonably accurate values for the ionization energy

threshold [Yanai 04,Gerber 05,Tsuneda 10].

Linear-response TDDFT has also been used for calculating photoionization spec-

tra (transitions from bound to continuum states) of atoms and molecules [Zangwill 80,

Levine 84,Stener 95,Stener 97,Stener 97,Stener 00,Stener 01,Stener 05,Stener 06,Tof-

foli 06,Stener 07,Zhou 09]. These calculations are less standard in quantum chemistry

since they involve spatial grid methods or B-spline basis sets for a proper description

of the continuum states. In this case as well, usual (semi-)local DFAs provide a limited

accuracy and asymptotically corrected exchange-correlation potential approximations

give more satisfactory results. More accurate still, but less common, are photoion-

ization spectra calculated with the exact-exchange (EXX) potential [Stener 01] or

the localized HF exchange potential and its associated kernel [Zhou 09]. Recently,

range-separated approximations have been successfully used for calculating photoex-

citation and photoionization spectra of molecular systems using time-propagation

TDDFT with Gaussian basis sets together with an effective lifetime model compen-

sating for the missing continuum states [Lopata 13,Fernando 15,Sissay 16]. However,

to the best of our knowledge, range-separated approximations have not yet been used

in frequency-domain linear-response TDDFT calculations of photoionization spectra.

In this work, we explore the performance of the linear-response time-dependent

range-separated hybrid (TDRSH) scheme [Rebolini 13, Toulouse 13] for calculating

photoexcitation and photoionization spectra of the H and He atoms using a B-spline
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basis set to accurately describe the continuum part of the spectra. The TDRSH

scheme allows us to treat long-range exchange effects at the HF level and short-range

exchange-correlation effects within (semi-)local DFAs. First, the dependence of the

range-separated hybrid (RSH) orbital energies on the range-separation parameter is

investigated, as well as the effect of replacing the long-range HF exchange nonlocal

potential by the long-range EXX local potential (resulting in a scheme that we refer to

as RSH-EXX). Second, oscillator strengths directly computed with the RSH and the

RSH-EXX orbitals are compared with oscillator strengths obtained with the linear-

response TDRSH scheme. The study of the H atom allows us to quantify the residual

self-interaction error coming from the short-range exchange-correlation DFA, and

the study of the He atom permits to quantify the effect of the missing long-range

correlation in the RSH scheme. This work constitutes a first step for applying range-

separated TDDFT to strong-field phenomena, such as high-harmonic generation or

above-threshold ionization, where long-range effects and continuum states play an

important role.

The outline of the paper is as follows. In Section 4.2, firstly, we briefly review the

RSH scheme and introduce the RSH-EXX variant, and, secondly, we review the linear-

response TDRSH method. In Section 4.3, the basis set of B-spline functions is defined,

and we indicate how the range-separated two-electron integrals are computed using

an exact spherical harmonic expansion for the range-separated interaction. In Section

4.4 results are presented and discussed. Firstly, we show the performance of the B-

spline basis set for describing the density of continuum states of the H atom within

the different methods. Secondly, the dependence of the orbital energies of the H and

He atoms on the range-separation parameter is analyzed. Thirdly, different calculated

photoexcitation/photoionization spectra for the H and He atoms are discussed and

compared with exact results. In Section 5.6, conclusions and perspectives are given.

Unless otherwise indicated, Hartree atomic units are used throughout the paper.
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4.2 RANGE-SEPARATED DENSITY-FUNCTIONAL THEORY

4.2.1 Range-separated hybrid scheme

Range-separated density-functional theory (see, e.g., Refs. [Savin 96,Toulouse 04]) is

based on the splitting of the Coulomb electron-electron interaction wee(r) = 1/r into

long-range (lr) and short-range (sr) contributions

wee(r) = wlr
ee(r) + wsr

ee(r), (4.1)

and the most common forms for the long-range and short-range interactions are

wlr
ee(r) =

erf(µr)
r

, (4.2)

and

wsr
ee(r) =

erfc(µr)
r

. (4.3)

where erf and erfc are the error function and the complementary error function,

respectively, and µ is a tunable range-separation parameter controlling the range

of the separation. Using this decomposition, it is possible to rigorously combine a

long-range wave-function approach with a complementary short-range DFA.

The simplest approach in range-separated density-functional theory consists in

using a single-determinant wave function for the long-range interaction. This leads

to the RSH scheme [Ángyán 05] which spin orbitals {ϕp(x)} (where x = (r, σ) are

space-spin coordinates) and orbital energies εp can be determined for a given system

by the following eigenvalue problem,

�

−1

2
∇

2 + vne(r) + vH(r) + vsr
xc(x)

�

ϕp(x) +

�

vlr,HF
x (x,x′)ϕp(x

′)dx′ = εpϕp(x),(4.4)

where vne(r) is the nuclei-electron potential, vH(r) is the Hartree potential for the

Coulomb electron-electron interaction,

vH(r) =

�

n(x′)wee(|r− r′|)dx′, (4.5)

where n(x) =
�occ

i |ϕi(x)|2 are the spin densities (i refers to occupied spin orbitals),
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vlr,HF
x (x,x′) is the nonlocal HF exchange potential for the long-range electron-electron

interaction,

vlr,HF
x (x,x′) = −

occ
�

i

ϕ∗
i (x

′)ϕi(x)w
lr
ee(|r− r′|), (4.6)

and vsr
xc(x) is the short-range exchange-correlation potential

vsr
xc(x) =

δĒsr
xc

δn(x)
, (4.7)

where Ēsr
xc is the complement short-range exchange-correlation density functional.

In this work, we use the short-range spin-dependent LDA exchange-correlation func-

tional of Ref. [Paziani 06] for Ēsr
xc. The long-range and short-range potentials, vlr,HF

x (x,x′)

and vsr
xc(x), explicitly depend on the range-separation parameter µ, and consequently

the spin orbitals, the orbital energies, and the density also implicitly depend on it. For

µ = 0, vlr,HF
x (x,x′) vanishes and vsr

xc(x) becomes the usual full-range LDA exchange-

correlation potential, and thus the RSH scheme reduces to standard Kohn-Sham

LDA. For µ → ∞, vlr,HF
x (x,x′) becomes the usual full-range HF exchange potential

and vsr
xc(x) vanishes, and thus the RSH scheme reduces to standard HF.

In the present paper, we also consider the following variant of the RSH scheme,

�

−1

2
∇

2 + vne(r) + vH(r) + vsr
xc(x) + vlr,EXX

x (x)

�

ϕp(x) = εpϕp(x), (4.8)

in which the long-range nonlocal HF exchange potential has been replaced by the

long-range local EXX [Talman 76,Görling 94,Görling 95] potential

vlr,EXX
x (x) =

δElr
x

δn(x)
, (4.9)

where E lr
x is the long-range exchange density functional [Toulouse 06a,Toulouse 06b].

We will refer to this scheme as RSH-EXX. The calculation of the EXX potential is

involved [Filippi 96,Görling 99,Ivanov 99], with the exception of one- and two-electron

systems. Indeed, for one-electron systems, the long-range EXX potential is simply

vlr,EXX
x (x) = −vlr

H(r), (4.10)
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and for systems of two electrons in a single spatial orbital, it is

vlr,EXX
x (x) = −1

2
vlr
H(r), (4.11)

where vlr
H(r) =

�

n(x′)wlr
ee(|r − r′|)dx′ is the long-range Hartree potential. For these

one- and two-electron cases, it can be shown that Eq. (4.4) and Eq. (4.8) give identical

occupied orbitals but different unoccupied orbitals. More generally, for systems with

more than two electrons, the HF and EXX exchange potentials give similar occupied

orbitals but very different unoccupied orbitals.

Once orbitals and orbital energies are obtained from Eq. (4.4) and Eq. (4.8), the

bare oscillator strengths can be calculated. They are defined as

f 0
ia =

2

3
ω0
ia

�

ν=x,y,z

|dν,ia|2, (4.12)

where i and a refer to occupied and unoccupied spin orbitals, respectively, ω0
ia = εa−εi

are the bare excitation energies and dν,ia =
�

ϕ∗
i (x)rνϕa(x)dx are the dipole-moment

transition integrals. We will consider these bare excitation energies ω0
ia and oscillator

strengths f 0
ia for a first approximation to photoexcitation/photoionization spectra.

4.2.2 Linear-response time-dependent range-separated hybrid

In the time-dependent extension of the RSH scheme within linear response (referred

to as TDRSH) [Rebolini 13,Toulouse 13,Fromager 13], one has to solve the following

pseudo-Hermitian eigenvalue equation





A B

−B∗ −A∗









Xn

Yn



 = ωn





Xn

Yn



 , (4.13)

whose solutions come in pairs: excitation energies ωn > 0 with eigenvectors (Xn,Yn),

and de-excitation energies ωn < 0 with eigenvectors (Y∗
n,X

∗
n). The elements of the

matrices A and B are

Aia,jb = (εa − εi)δijδab +Kia,jb, (4.14)

Bia,jb = Kia,bj, (4.15)
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where i, j and a, b refer to occupied and unoccupied RSH spin orbitals, respec-

tively, and the coupling matrix K contains the contributions from the Hartree kernel

fH(r1, r2) = wee(|r1 − r2|), the long-range HF exchange kernel f lr,HF
x (x1,x2;x

′
1,x

′
2) =

−wlr
ee(|r1−r2|)δ(x1−x′

2)δ(x
′
1−x2), and the adiabatic short-range exchange-correlation

kernel f sr
xc(x1,x2) = δvsr

xc(x1)/δn(x2)

Kia,jb = �aj|fH|ib� + �aj|f lr,HF
x |ib�+ �aj|f sr

xc|ib�

= �aj|wee|ib� − �aj|wlr
ee|bi�+ �aj|f sr

xc|ib�, (4.16)

where �aj|wee|ib� and �aj|wlr
ee|bi� are the two-electron integrals associated with the

Coulomb and long-range interactions, respectively, and

�aj|f sr
xc|ib� =

��

ϕ∗
a(x1)ϕ

∗
j(x2)f

sr
xc(x1,x2)ϕi(x1)ϕb(x2)dx1dx2. (4.17)

Since we use the short-range LDA exchange-correlation density functional, for µ = 0

the TDRSH scheme reduces to the usual linear-response time-dependent local-density

approximation (TDLDA). For µ → ∞, the TDRSH scheme reduces to standard

linear-response time-dependent Hartree-Fock (TDHF).

The time-dependent extension of the RSH-EXX variant within linear response

(referred to as TDRSH-EXX) leads to identical equations with the exception that

the long-range HF exchange kernel f lr,HF
x (x1,x2;x

′
1,x

′
2) is replaced by the long-range

frequency-dependent EXX kernel [Görling 98a,Görling 98b]

f lr,EXX
x (x1,x2;ω) = δvlr,EXX

x (x1,ω)/δn(x2,ω). (4.18)

For one-electron systems, the long-range EXX kernel is simply

f lr,EXX
x (x1,x2;ω) = −f lr

H(r1, r2), (4.19)

and, for systems with two electrons in a single spatial orbital, it is

f lr,EXX
x (x1,x2;ω) = −1

2
f lr

H(r1, r2), (4.20)

where f lr
H(r1, r2) = wlr

ee(|r1 − r2|) is the long-range Hartree kernel. For these one-

and two-electron cases, TDRSH and TDRSH-EXX give rise to identical excitation
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energies and oscillator strengths.

Finally, we can calculate the corresponding TDRSH (or TDRSH-EXX) oscillator

strengths as

fn =
2

3
ωn

�

ν=x,y,z

|dν,ia(Xn,ia + Yn,ia)|2 . (4.21)

In the limit of a complete basis set, the linear-response oscillator strengths in Eq. (4.21)

always fulfill the Thomas-Reiche-Kuhn (TRK) sum rule,
�

n fn = N where N is the

electron number. The bare oscillator strengths of Eq. (4.12) fulfill the TRK sum rule

only in the case where the orbitals have been obtained from an effective local poten-

tial, i.e. for LDA and RSH-EXX but not for HF and RSH (see Ref. [Toulouse 13]).

4.3 IMPLEMENTATION IN A B-SPLINE BASIS SET

In practice, each spin orbital is decomposed into a product of a spatial orbital and a

spin function, ϕp(x) = ϕp(r)δσp,σ where σp is the spin of the spin orbital p, and we

use spin-adapted equations. As we investigate atomic systems, the spatial orbitals

are written in spherical coordinates,

ϕp(r) = Rnplp(r)Y
mp

lp
(Ω), (4.22)

where Y
mp

lp
(Ω) are the spherical harmonics (Ω stands for the angles θ,φ) and the

radial functions Rnplp(r) are expressed as linear combinations of B-spline functions

of order ks,

Rnplp(r) =

Ns
�

α=1

cnplp
α

Bks

α (r)

r
, (4.23)

where Ns is the dimension of the basis. To completely define a basis of B-spline

functions, a non-decreasing sequence of Ns + ks knot points (some knot points are

possibly coincident) must be given [de Boor 78]. The B-spline function Bks

α (r) is

non zero only on the supporting interval [rα, rα+ks
] (containing ks + 1 consecutive

knot points) and is a piecewise function composed of polynomials of degree ks − 1

with continuous first ks − m derivatives across each knot of multiplicity m. We

have chosen the first and the last knots to be ks-fold degenerate, i.e. r1 = r2 =

· · · = rks
= Rmin and rNs+1 = rNs+2 = · · · = rNs+ks

= Rmax, while the multiplicity
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of the other knots is unity. The spatial grid spacing was chosen to be constant in

the whole radial space between two consecutive non-coincident points and is given

by Δr = Rmax/(Ns − ks + 1). In the present work, the first and the last B-spline

functions were removed from the calculation to ensure zero boundary conditions at

r = Rmin and r = Rmax. The results presented in this paper have been obtained

using the following parameters: ks = 8, Ns = 200, Rmin = 0, and Rmax = 100 bohr.

Moreover, we need to use only s and pz spherical harmonics.

Working with such a B-spline representation, one must compute matrix elements

involving integrals over B-spline functions. The principle of the calculation of one-

electron and two-electron integrals over B-spline functions are well described by

Bachau et al. in Ref. [Bachau 01]. We will now briefly review the computation

of the standard Coulomb two-electron integrals over B-spline functions, and then we

will present the calculation of the long-range or short-range two-electron integrals

over B-spline functions, the latter being original to the present work.

4.3.1 Coulomb two-electron integrals

The Coulomb electron-electron interaction is given by

wee(|r− r′|) = 1

(|r|2 + |r′|2 − 2|r||r′| cos γ)1/2
, (4.24)

where r and r′ are electron vector positions and γ is the angle between them. The

multipolar expansion for this interaction is

wee(|r− r′|) =
∞
�

k=0

�

rk<
rk+1
>

� k
�

mk=−k

(−1)mkCk
−mk

(Ω)Ck
mk

(Ω′), (4.25)

where r< = min(|r|, |r′|) and r> = max(|r|, |r′|) and Ck
mk

(Ω) = (4π/(2k + 1))1/2 Y mk

k (Ω)

are the renormalized spherical harmonics. The Coulomb two-electron integrals, in the

spatial orbital basis, can then be expressed as the sum of products of radial integrals

and angular factors

�pq|wee|tu� =
∞
�

k=0

Rk(p, q; t, u)
k

�

mk=−k

δmk ,mp−mtδmk,mq−mu

× (−1)mkck(lp, mp, lt, mt)c
k(lq, mq, lu, mu), (4.26)
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where Rk(p, q; t, u) are the two-dimensional radial Slater integrals and the angular

coefficients ck(lp, mp, lt, mt) and ck(lq, mq, lu, mu) are obtained from the Gaunt co-

efficients [Cowan 81, Čertík 12]. The coefficient ck(l,m, l′, m′) is non zero only if

|l− l′| ≤ k ≤ l+ l′ and if l+ l′ + k is an even integer, which makes the sum over k in

Eq. (4.26) exactly terminate. The Slater integrals are defined as

Rk(p, q; t, u) =

Ns
�

α=1

Ns
�

λ=1

Ns
�

β=1

Ns
�

ν=1

cnplp
α c

nqlq
λ cntlt

β cnulu
ν

×Rk(α,λ; β, ν), (4.27)

where Rk(α,λ; β, ν) are the Slater matrix elements given by

Rk(α,λ; β, ν) =

� ∞

0

� ∞

0

Bks

α (r)Bks

λ (r′)

�

rk<
rk+1
>

�

×Bks

β (r)Bks

ν (r′)drdr′. (4.28)

In order to compute the Slater matrix elements Rk(α,λ; β, ν), we have imple-

mented the integration-cell algorithm developed by Qiu and Froese Fischer [Qiu 99].

This algorithm exploits all possible symmetries and B-spline properties to evaluate

efficiently the integrals in each two-dimensional radial region on which the integrals

are defined. Gaussian quadrature is used to compute the integrals in each cell.

4.3.2 Long-range and short-range two-electron integrals

A closed form of the multipolar expansion of the short-range electron-electron inter-

action defined in Eq. (4.3) was determined by Ángyán et al. [Ángyán 06], following a

previous work of Marshall [Marshall 02] who applied the Gegenbauer addition theo-

rem to the Laplace transform of Eq. (4.3). This exact expansion is

wsr
ee(|r− r′|) =

∞
�

k=0

Sk(r>, r<;µ)×
k

�

mk=−k

(−1)mkCk
−mk

(Ω)Ck
mk

(Ω′), (4.29)

where the µ-dependent radial function is written in terms of the scaled radial coor-

dinates Ξ = µ r> and ξ = µ r< as

Sk(r>, r<;µ) = µ Φk(Ξ, ξ), (4.30)
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with

Φk(Ξ, ξ) = Hk(Ξ, ξ) + F k(Ξ, ξ)

+

k
�

m=1

F k−m(Ξ, ξ)
Ξ2m + ξ2m

(ξ Ξ)m
, (4.31)

and the introduced auxiliary functions

Hk(Ξ, ξ) =
1

2(ξ Ξ)k+1

��

Ξ2k+1 + ξ2k+1
�

erfc(Ξ+ ξ)

−
�

Ξ2k+1 − ξ2k+1
�

erfc(Ξ− ξ)
�

, (4.32)

and

F k(Ξ, ξ) =
2

π1/2

k
�

p=0

�

− 1

4(ξ Ξ)

�p+1
(k + p)!

p!(k − p)!

×
�

(−1)k−pe−(Ξ+ξ)2 − e−(Ξ−ξ)2
�

. (4.33)

In order to arrive at a separable expression in Ξ and ξ, Ángyán et al. [Ángyán 06]

also introduced a power series expansion of the radial function Φk(Ξ, ξ) in the smaller

reduced variable ξ. However, the range of validity of this expansion truncated to the

first few terms is limited to small values of ξ, i.e. ξ � 1.5, and higher-order expansions

show spurious oscillations. After some tests, we decided to use the exact short-range

radial function Φk(Ξ, ξ) without expansion in our work.

The expression of the short-range two-electron integrals �pq|wsr
ee|tu� is then iden-

tical to the one in Eq. (4.26) with the simple difference that the radial term is not

given by the standard Slater matrix elements. Now, the radial kernel in Eq. (4.28)

is changed to that of Eq. (4.30). Due to the fact that the radial kernel is not mul-

tiplicatively separable in the variables r> and r<, the integration-cell algorithm is

modified in order to calculate all integrals as non-separable two-dimensional inte-

grals. In a second step, the long-range two-electron integrals can be simply obtained

by difference

�pq|wlr
ee|tu� = �pq|wee|tu� − �pq|wsr

ee|tu�. (4.34)
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4.4 RESULTS AND DISCUSSION

In this section, photoexcitation and photoionization spectra for the H and He atoms

are presented. Photoexcitation and photoionization processes imply transitions from

bound to bound and from bound to continuum states, respectively. For this reason,

we first check the density of continuum states obtained with our B-spline basis set.

After that, we show how orbital energies for the H and He atoms are influenced by the

range-separation parameter µ. Finally, having in mind these aspects, we discuss the

different calculated spectra. All the studied transitions correspond to dipole-allowed

spin-singlet transitions from the Lyman series, i.e. 1s → np.

4.4.1 Density of continuum states

In Figure 4.1, the radial density of states (DOS) of a free particle in a spherical

box is compared with the radial DOS of the continuum p orbitals of the H atom

computed with the exact Hamiltonian or with the HF or LDA effective Hamiltonian

using the B-spline basis set. The radial DOS of a free particle is given by [Bachau 01]

ρ(ε) = Rmax/π
√
2ε where Rmax is the radial size of the box, while for the different

Hamiltonians using the B-spline basis set (with the same Rmax) the radial DOS is

calculated by finite differences as ρ(εp) = 2/(εp+1−εp−1) where εp are positive orbital

energies.

As one can observe, the radial DOS computed with the LDA or the HF Hamilto-

nian is essentially identical to the DOS of the free particle. This can be explained by

the fact that since the unoccupied LDA and HF orbitals do not see a −1/r attractive

potential they are all unbound and they all contribute to the continuum, similarly to

the free-particle case. By contrast, for the exact Hamiltonian with the same B-spline

basis set, one obtains a slightly smaller DOS in the low-energy region. This is due

to the presence of the −1/r attractive Coulomb potential which supports a series of

bound Rydberg states, necessarily implying less unoccupied orbitals in the continuum

for a given basis.

We have checked that, by increasing the size of the simulation box, together with

the number of B-spline functions in the basis so as to keep constant the density

of B-spline functions, the DOS of the exact Hamiltonian converges, albeit slowly,

to the free-particle DOS. This must be the case since, for potentials vanishing at

infinity, the global density of unbound states is independent of the potential for
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Figure 4.1: Radial density of states (DOS) for a free particle, ρ(εp) = Rmax/π
�

2εp, in a
spherical box of size Rmax = 100 bohr, and for the continuum p orbitals of the H atom
computed with the exact Hamiltonian, or with the HF or LDA effective Hamiltonian using
the B-spline basis set with the same Rmax.

an infinite simulation box (only the local DOS depends on the potential, see e.g.

Ref. [Dick 12]). From a numerical point of view, the computation of the DOS can

be seen as a convergence test. With the present basis set, a huge energy range of

the continuum spectrum is described correctly, and the difference between the DOS

of the exact Hamiltonian and the free-particle DOS at low energies (0.0− 0.2 Ha) is

only about 10−4 Ha−1. This difference is small enough to fairly compare the different

methods considered in this paper.

The calculation of the DOS is also important in order to compute proper oscillator

strengths involving continuum states. Because of the use of a finite simulation box,

the calculated positive-energy orbitals form, of course, a discrete set and not strictly

a continuum. These positive-energy orbitals are thus not energy normalized as the

exact continuum states should be. To better approximate pointwise the exact con-

tinuum wave functions, the obtained positive-energy orbitals should be renormalized.

Following Macías et al. [Macías 88], we renormalize the positive-energy orbitals by

the square root of the DOS as ϕ̃p(r) =
�

ρ(εp)ϕp(r).

4.4.2 Range-separated orbital energies

In Figure 4.2 we show the 1s and the low-lying p orbital energies for the H atom

calculated with both the RSH and RSH-EXX methods as a function of the range-

separation parameter µ.

As one observes in Figure 4.2(a), with the RSH method only the 1s ground state
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Figure 4.2: Orbital energies obtained with the RSH (a) and with the RSH-EXX (b) methods
as a function of range-separation parameter µ for the H atom. The occupied 1s orbital energy
is plotted in red and the unoccupied p orbital energies are plotted in blue. Horizontal dotted
lines indicate the exact 1s orbital energy (−0.5 Ha) and the ionization limit (0 Ha).
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Figure 4.3: Orbital energies obtained with the RSH (a) and with the RSH-EXX (b) methods
as a function of range-separation parameter µ for the He atom. The occupied 1s orbital
energy is plotted in red and the unoccupied p orbital energies are plotted in blue. Horizontal
dotted lines indicate exact Kohn-Sham orbital energies [Umrigar 98], including the opposite
of the exact ionization energy (−0.9036 Ha) for the 1s orbital energy and the ionization
limit (0 Ha).

is bound, and the energy of this state is strongly dependent on µ. At µ = 0, the self-

interaction error introduced by the LDA exchange-correlation potential is maximal.

But, when µ increases, the long-range HF exchange potential progressively replaces

the long-range part of the LDA exchange-correlation potential and the self-interaction

error is gradually eliminated until reaching the HF limit for µ → ∞, where one obtains

the exact 1s orbital energy. The p orbitals (and all the other unoccupied orbitals)

are always unbound and their (positive) energies are insensible to the value of µ.

One also observes that the approximate continuum of p orbitals has a DOS correctly

decreasing as the energy increases, as previously seen in Figure 4.1.

In Figure 4.2(b), one sees that the 1s orbital energy computed with the RSH-EXX

method is identical to the 1s orbital energy obtained by the RSH scheme, as expected.

However, a very different behavior is observed for the unoccupied p orbitals. Starting



Section 4.4 Results and discussion 85

from the LDA limit at µ = 0 where all unoccupied orbitals are unbound, when the

value of µ increases one sees the emergence of a series of bound Rydberg states coming

down from the continuum. This is due to the introduction of an attractive −1/r term

in the long-range EXX potential, which supports a Rydberg series. For µ → ∞, we

obtain the spectrum of the exact hydrogen Hamiltonian calculated with the B-spline

basis set. Necessarily, with the finite basis used, the appearance of the discrete bound

states is accompanied by a small reduction of the density of continuum states, as we

already observed in Figure 4.1 with the exact Hamiltonian.

Another interesting aspect that can be observed in Figure 4.2(b) is the fact that the

different bound-state energies reach their exact µ → ∞ values at different values of

µ. Thus, for a fixed small value of µ, each bound-state energy is affected differently

by the self-interaction error. For the compact 1s orbital, the self-interaction error

is eliminated for µ � 1 bohr−1. For the more diffuse 2p Rydberg state, the self-

interaction error is essentially eliminated with µ � 0.5 bohr−1. When we continue

to climb in the Rydberg series, the orbitals become more and more diffuse and the

self-interaction error is eliminated from smaller and smaller values of µ.

In Figure 4.3, the 1s and low-lying p orbital energies for the He atom are shown.

Again, for the RSH method, one sees in Fig. Figure 4.3(a) that only the occupied 1s

orbital is bound and all the unoccupied p orbitals are in the continuum. Similarly to

the case of the H atom, at µ = 0 the 1s orbital energy is too high, which can essentially

be attributed to the self-interaction error in the LDA exchange-correlation potential.

This error decreases when µ increases and the 1s orbital energy converges to its HF

value for µ → ∞. However, contrary to the case of the H atom, for this two-electron

system, the 1s HF orbital energy is not equal to the opposite of the exact ionization

energy but is slightly too low due to missing correlation effects. In the spirit of the

optimally tuned range-separated hybrids [Livshits 07,Baer 10, Stein 09b, Stein 09a],

the range-separation parameter µ can be chosen so that the HOMO orbital energy

is equal to the opposite of the exact ionization energy, which gives µ = 1.115 bohr−1

for the He atom.

As regards the RSH-EXX method, one sees again in Figure 4.3(b) that, for this

two-electron system, the 1s RSH-EXX orbital energy is identical to the 1s RSH orbital

energy. As in the case of the H atom, the introduction of the long-range EXX

potential generates a series of bound Rydberg states, whose energies converge to the
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Kohn-Sham EXX orbital energies for µ → ∞. For the Rydberg states of the He

atom, it turns out that the Kohn-Sham EXX orbital energies are practically identical

to the exact Kohn-Sham orbital energies [Umrigar 98], implying that the Kohn-Sham

correlation potential has essentially no effect on these Rydberg states. As we will see,

contrary to the RSH case, the set of unoccupied RSH-EXX orbitals can be considered

as a reasonably good first approximation for the computation of photoexcitation and

photoionization spectra, even before applying linear-response theory.

4.4.3 Photoexcitation/photoionization in the hydrogen atom

In Figure 4.4, photoexcitation/photoionization spectra for the H atom calculated with

different methods are shown. For the calculation using the exact Hamiltonian, the

spectrum is correctly divided into a discrete and a continuum part, corresponding to

the photoexcitation and photoionization processes, respectively. As already discussed

in Section 4.4.1, for all calculations, the continuum states have been renormalized, or

equivalently the oscillator strengths of the continuum part of the spectrum have been

renormalized as f̃1s→np = ρ(εnp)f1s→np where ρ(εnp) is the DOS at the corresponding

positive orbital energy εnp. Moreover, for better readability of the spectra, following

Refs. [Friedrich 98,Wasserman 03,Yang 09], we have also renormalized the oscillator

strengths of the discrete part of the spectrum as f̃1s→np = n3f1s→np where n is the

principal quantum number of the excited p orbital. This makes the transition between

the discrete and the continuum part of the spectrum smooth. Another thing is,

since we are working with a finite B-spline basis set principally targeting a good

continuum, we obtain only a limited number of Rydberg states and the last Rydberg
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Figure 4.4: Photoexcitation/photoionization spectra calculated with different methods for
the H atom. In (a) comparison of the HF, LDA, and TDLDA methods with respect to the
calculation with the exact Hamiltonian. In (b) comparison of the RSH, RSH-EXX, and
TDRSH methods (all of them with a range-separation parameter of µ = 0.5 bohr−1) with
respect to the calculation with the exact Hamiltonian.



Section 4.4 Results and discussion 87

� � �� �� ��

� ������

�����

����

����

��
�
��
��
�
�
�
��
��

�
�

�����

��

���

�����������

���������������

Figure 4.5: Comparison of the renormalized radial amplitude R̃(r) =
�

ρ(ε)R(r) of the
continuum p orbital involved in the transition energy ωn = ε − ε1s = 0.8 Ha calculated by
HF, LDA, RSH, and RSH-EXX (with a range-separation parameter of µ = 0.5 bohr−1) with
respect to the exact calculation for the H atom.

states near the ionization threshold are not accurately described. In particular, the

corresponding oscillator strengths are overestimated (not shown). To fix this problem,

we could for example use quantum defect theory in order to accurately extract the

series of Rydberg states [Al-Sharif 98, Friedrich 98, van Faassen 06, van Faassen 09].

However, for the propose of the present work, we did not find necessary to do that, and

instead we have simply corrected the oscillator strengths of the last Rydberg states

by interpolating between the oscillator strengths of the first five Rydberg states and

the oscillator strength of the first continuum state using a second-order polynomial

function of the type f̃n = c0 + c1 ωn + c2 ω2
n. This procedure was applied for all

spectra having a discrete part.

Let us first discuss the spectra in Figure 4.4(a). The LDA spectrum, calculated

using the bare oscillator strengths of Eq. (4.12), does not possess a discrete photoex-

citation part, which was of course expected since the LDA potential does not support

bound Rydberg states, as seen in the µ = 0 limit of Figure 4.2. The ionization thresh-

old energy, giving the onset of the continuum spectrum, is much lower than the exact

value (0.5 Ha) due to the self-interaction error in the ground-state orbital energy. At

the ionization threshold, the LDA oscillator strengths are zero, in agreement with

the Wigner-threshold law [Wigner 48, Sadeghpour 00] for potentials lacking a long-

range attractive −1/r Coulomb tail. Close above the ionization threshold, the LDA

spectrum has an unphysical large peak, which corresponds to continuum states with
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an important local character. However, as noted in Ref. [Wasserman 03], at the ex-

act Rydberg transition energies, the LDA continuum oscillator strengths are actually

reasonably good approximations to the exact discrete oscillator strengths, which was

explained by the fact that the LDA potential is approximately the exact Kohn-Sham

potential shifted by a constant. Moreover, above the exact ionization energy, LDA re-

produces relatively well the exact photoionization spectrum and becomes essentially

asymptotically exact in the high-energy limit. This is consistent with the fact that,

at a sufficiently high transition energy, the LDA continuum orbitals are very similar

to the exact ones, at least in the spatial region relevant for the calculation of the

oscillation strengths, as shown in Figure 4.5.

The TDLDA spectrum differs notably from the LDA spectrum only in that the

unphysical peak at around 0.3 Ha, close above its ionization threshold, has an even

larger intensity. This increased intensity comes from the contribution of the LDA

exchange-correlation kernel (not shown). The LDA exchange-correlation kernel being

local, its larger impact is for the low-lying LDA continuum orbitals having a local

character. As the TRK sum rule must be satisfied, the higher peak in the TDLDA

spectrum is followed by a decrease of the oscillator strengths faster than in the LDA

spectrum, until they reach the same asymptotic behavior.

The HF spectrum in 4.4(a) not only has no discrete photoexcitation part, as

expected since the unoccupied HF orbitals are unbound (see the µ → ∞ limit of Figure

4.2a), but does not even look as a photoionization spectrum. The HF unoccupied

orbitals actually represent approximations to the continuum states of the H− anion,

and are thus much more diffuse than the exact continuum states of the H atom, as

shown in Figure 4.5. Consequently, the HF spectrum has in fact the characteristic

shape of the photodetachment spectrum of the H− anion [Bethe 57,Rau 96] (with the

caveat that the initial state is the 1s orbital of the H atom instead of the 1s orbital

of the H− anion). Finally, note that, for the H atom, linear-response TDHF gives of

course the exact photoexcitation/photoionization spectrum.

Let us now discuss the spectra obtained with the range-separated methods in Fig-

ure 4.4(b). The common value of the range-separation parameter µ = 0.5 bohr−1 has

been used [Gerber 05]. The RSH spectrum looks like the photodetachment spectrum

of the H− anion. This is not surprising since the RSH effective Hamiltonian con-

tains a long-range HF exchange potential. The RSH continuum orbitals are similarly
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Table 4.1: Excitation energies (ωn in Ha) and oscillator strengths (fn) of the first discrete
transitions calculated with different methods for the He atom. The ionization energy is also
given.

Transition Exacta TDHF RSH-EXXb TDRSHb

ωn fn ωn fn ωn fn ωn fn
11S → 21P 0.7799 0.2762 0.7970 0.2518 0.7766 0.3303 0.7827 0.2547
11S → 31P 0.8486 0.0734 0.8636 0.0704 0.8474 0.0857 0.8493 0.0708
11S → 41P 0.8727 0.0299 0.8872 0.0291 0.8721 0.0344 0.8729 0.0292
11S → 51P 0.8838 0.0150 0.8982 0.0148 0.8835 0.0172 0.8839 0.0148
11S → 61P 0.8899 0.0086 0.9042 0.0087 0.8897 0.0100 0.8899 0.0087

Ionization energy 0.9036 0.9180 0.9036 0.9036
aFrom Ref. [Kono 84].
bCalculations were performed with µ = 1.115 bohr−1.

diffuse as the HF continuum orbitals, as shown in Figure 4.5. The RSH ionization

threshold energy is slightly smaller than the exact value (0.5 Ha) due to the remain-

ing self-interaction error in the 1s orbital energy stemming from the short-range LDA

exchange-correlation potential at this value of µ. The RSH-EXX ionization thresh-

old is identical to the RSH one, but, contrary to the RSH spectrum, the RSH-EXX

spectrum correctly shows a discrete photoexcitation part and a continuum photoion-

ization part. Beside the small redshift of the spectrum, the self-interaction error at

this value of µ manifests itself in slightly too small RSH-EXX oscillator strengths.

The RSH-EXX continuum orbitals are very similar to the exact continuum orbitals,

as shown in Figure 4.5. Finally, at this value of µ, TDRSH gives a photoexcita-

tion/photoionization spectrum essentially identical to the RSH-EXX spectrum.
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Figure 4.6: Photoexcitation and photoionization spectra calculated with different methods
for the He atom. In (a) comparison of HF, TDHF, LDA, and TDLDA methods. In (b)
comparison of RSH, RSH-EXX, and TDRSH methods (all of them with a range-separation
parameter of µ = 1.115 bohr−1).
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Figure 4.7: Photoionization cross-section profile for the He atom. Normalized cross sections
are given (in Hartree atomic units) by σn = (2π2/c)f̃n where f̃n are the renormalized
oscillator strengths and c is the speed of light. Conversion factors 1 Ha = 27.207696 eV and
1 bohr2 = 28.00283 Mb are employed. The experimental data and the FCI results are from
Ref. [Venuti 96].

4.4.4 Photoexcitation/photoionization in the helium atom

In Figure 4.6, different photoexcitation/photoionization spectra for the He atom are

shown. As in the H atom case, the oscillator strengths of the discrete part of the

TDHF, RSH-EXX, and TDRSH spectra have been interpolated (using again the

oscillator strengths of first five Rydberg states and of the first continuum state) to

correct the overestimation of the oscillator strengths for the last Rydberg transitions.

The excitation energies and the (non-interpolated) oscillator strengths of the first

five discrete transitions are reported in Table 4.1 and compared with exact results.

The photoionization part of some of the calculated spectra are compared with full

configuration-interaction (FCI) calculations and experimental results in Figure 4.7.

In Figure 4.6(a), one sees that the HF spectrum looks again like a photodetach-

ment spectrum, corresponding in this case to the He− anion. By contrast, TDHF

gives a reasonable photoexcitation/photoionization spectrum. In particular, for the

first discrete transitions listed in Table 4.1, TDHF gives slightly too large excita-

tion energies by at most about 0.02 Ha (or 0.5 eV) and slightly too small oscillator

strengths by at most about 0.025. The ionization energy is also slightly too large by

about 0.015 Ha, as already seen from the HF 1s orbital energy in the µ → ∞ limit

of Figure 4.3. As regards the photoionization part of the spectrum, one sees in Figure

4.7 that TDHF gives slightly too large photoionization cross sections.
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The LDA spectrum in Figure 4.6(a) is also similar to the LDA spectrum for the

H atom. The ionization threshold energy is much too low, and the spectrum lacks a

discrete part and has an unphysical maximum close above the ionization threshold.

Except from that, taking as reference the TDHF spectrum (which is close to the exact

spectrum), the LDA spectrum is a reasonable approximation to the photoionization

spectrum and, again as noted in Ref. [Wasserman 03], a reasonable continuous approx-

imation to the photoexcitation spectrum. In comparison to LDA, TDLDA 1 gives

smaller and less accurate oscillator strengths in the lower-energy part of the spec-

trum but, the TRK sum rule having to be preserved, larger oscillator strengths in the

higher-energy part of the spectrum, resulting in an accurate high-energy asymptotic

behavior as seen in Figure 4.7.

Figure 4.6(b) shows the spectra calculated with RSH, RSH-EXX, and TDRSH us-

ing for the range-separation parameter the value µ = 1.115 bohr−1 which imposes the

exact ionization energy, as explained in Subection 4.4.2. The RSH spectrum is sim-

ilar to the HF spectrum and does not represent a photoexcitation/photoionization

spectrum. By contrast, the RSH-EXX spectra is qualitatively correct for a pho-

toexcitation/photoionization spectrum. As shown in Table 4.1, in comparison with

TDHF, RSH-EXX gives more accurate Rydberg excitation energies, with a largest

error of about 0.003 Ha (or 0.08 eV), but less accurate oscillator strengths which are

significantly overestimated. The TDRSH method also gives a correct photoexcita-

tion/photoionization spectrum, with the advantage that it gives Rydberg excitation

energies as accurate as the RSH-EXX ones and corresponding oscillator strengths as

accurate as the TDHF ones. As shown in Figure 4.7, TDRSH also gives a slightly

more accurate photoionization cross-section profile than TDHF.

1Contrary to our Figure 4.6(a), the TDLDA spectrum of the He atom shown in Figure 6 of
Ref. [Wasserman 03] has a larger maximum than the LDA spectrum. This discrepancy is due to the
fact that the TDLDA spectrum shown in Ref. [Wasserman 03] comes in fact from Ref. [Stener 01],
where it was calculated by replacing the LDA 1s orbital energy by the opposite of the exact ionization
energy. We have checked that this results not only in an energy shift of the spectrum but also to
larger oscillator strengths. The true TDLDA spectrum of the He atom is thus the one shown in the
present Figure 4.6(a).
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4.5 CONCLUSIONS

We have investigated the performance of the RSH scheme for calculating photoex-

citation/photoionization spectra of the H and He atoms, using a B-spline basis set

in order to correctly describe the continuum part of the spectra. The study of these

simple systems allowed us to quantify the influence on the spectra of the errors com-

ing from the short-range exchange-correlation LDA and from the missing long-range

correlation in the RSH scheme. For the He atom, it is possible to choose a value for

the range-separation parameter µ for which these errors compensate each other so as

to obtain the exact ionization energy.

We have studied the differences between using the long-range HF exchange non-

local potential and the long-range EXX local potential. Contrary to the former,

the latter supports a series of Rydberg states and the corresponding RSH-EXX

scheme, even without applying linear-response theory, gives reasonable photoexcita-

tion/photoionization spectra. Nevertheless, the most accurate spectra are obtained

with linear-response TDRSH (or TDRSH-EXX since they are equivalent for one-

and two-electron systems). In particular, for the He atom at the optimal value of

µ, TDRSH gives slightly more accurate photoexcitation and photoionization spectra

than standard TDHF.

The present work calls for further developments. First, the merits of TDRSH

(and/or TDRSH-EXX) for calculating photoexcitation/photoionization spectra of

larger atoms and molecules, where screening effects are important, should now be

investigated. Second, it would be interesting to test the effects of going beyond the

LDA for the short-range exchange-correlation functional [Toulouse 05,Goll 06] and

adding long-range wave-function correlation [Fromager 13,Hedegard 13,Rebolini 16].

Third, time-propagation TDRSH could be implemented to go beyond linear response

and tackle strong-field phenomena, such as high-harmonic generation and above-

threshold ionization [Labeye 18].
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Optimal basis set for strong laser

fields

In this chapter we have reproduced our article titled “On the optimal basis set for

electron dynamics in strong laser fields: The case of molecular ion H+
2 ”, published

in J. Chem. Theory Comput. 14, 11, 5846-5858 (2018) [Labeye 18]. This work

was realized in collaboration with Dr. Richard Taïeb’s group at the Laboratoire

de Chime-Physique Matière et Rayonnement (Sorbonne Université - CNRS), Dr.

Emanuele Coccia at the Dipartimento di Scienze Chimiche e Farmaceutiche (Univer-

sità di Trieste) and Dr. Valérie Véniard at the Laboratoire des Solides Irradiés (École

Polytechnique).

Today, a clear understanding of the mechanisms that control the electron dynam-

ics in strong laser field is still a challenge that requires to be interpreted by advanced

theory. Development of accurate theoretical and computational methods, able to pro-

vide a precise treatment of the fundamental processes generated in the strong field

regime, is therefore crucial. A central aspect is the choice of the basis for the wave-

function expansion. Accuracy in describing multiphoton processes is strictly related

to the intrinsic properties of the basis, such as numerical convergence, computational

cost, and representation of the continuum. By explicitly solving the 1D and 3D

time-dependent Schrödinger equation for H+
2 in presence of an intense electric field,

we explore the numerical performance of using a real-space grid, a B-spline basis,

and a Gaussian basis (improved by optimal Gaussian functions for the continuum).

We analyze the performance of the three bases for high-harmonic generation and

above-threshold ionization for H+
2 . In particular, for high-harmonic generation, the

capability of the basis to reproduce the two-center interference and the hyper-Raman

phenomena is investigated.

5.1 INTRODUCTION

The optical response of a molecular system to an intense and ultrashort laser pulse is a

subject of increasing interest since the advent of the attosecond laser pulses [Chini 14].

Recent advances in laser technology are continuously triggering the introduction of
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new time-resolved spectroscopies, offering the opportunity to investigate electron dy-

namics in molecules with unprecedented time resolution [Krausz 14]. For exam-

ple, electronic charge migrations have been traced in molecules using attosecond

pulses [Lépine 14], electron correlation effects have been also observed in photoe-

mission processes on the attosecond scale [Ossiander 17, Bergues 12] and above-

threshold ionization (ATI) together with high-harmonic generation (HHG) spectra

have been used to explain the attosecond dynamics of electronic wave packets in

molecules [Nisoli 17,Haessler 10].

Despite these exciting experimental achievements, reaching a clear understanding

of the mechanisms that control the electron dynamics under the action of a strong

laser field is still a challenge that requires theoretical support [Nisoli 17]. It is crucial

to develop accurate theoretical and computational methods capable to provide precise

treatments of the fundamental processes generated by a strong laser field [Palacios 15,

Telnov 07,Lee 08,Madsen 07].

Nowadays, the electron dynamics problem in strong fields is tackled by two main

families of methods: time-dependent density-functional theory (TDDFT) and time-

dependent wave-function methods [Nisoli 17, Coccia 16b,Gao 17, Liu 16,Ulusoy 11,

Chu 05]. With these methods, developments have been focused on the accurate

description of electron correlation. However, because of the complexity of nonlinear

optical phenomena, such as HHG and ATI, another important aspect needs to be

carefully addressed: the choice of the one-electron basis for representing the time-

dependent wave function. In fact, a reliable description of the electron dynamics

in strong laser fields depends on the accuracy in reproducing the bound states and,

even more important, the continuum states of the molecular system considered. In

addition, choosing a good basis can improve the numerical convergence of the results

and reduce the computational cost of simulations.

Most of the proposed numerical methods in literature directly describe the system

wave function on a real-space grid [Krause 92, Wassaf 03, Ruiz 06, Sawada 16] or

through a numerically defined grid-based basis set of functions, as in the case of the

discrete-variable representation method [Tao 09], the pseudospectral grid method,

or the finite-element method [Pabst 16]. Within these approaches, schemes have

been proposed to compute ATI spectra in molecules [De Giovannini 12] and to study

the different molecular orbital contributions to HHG spectra [Chu 16, Wang 17].
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Grid-based basis sets have demonstrated to be very accurate to describe nonlinear

optical phenomena. However, the computational cost can be very high and strategies

involving multi-level parallelization schemes have had to be developed [Andrade 15].

Another recurrent basis, in the context of ultrafast electron dynamics, is composed

by B-splines, defined as piecewise polynomial functions with compact support [de

Boor 78]. They were first introduced in atomic calculations by Shore [Shore 73] and

later extensively used to treat ionized and excited states [Fischer 89,Fischer 90]. B-

splines have proved to be a very powerful tool to describe multiphoton ionization

processes in atoms and molecules in the frameworks of TDDFT and wave-function

methods [Martín 99, Bachau 01,Cormier 97, Stener 07]. The success of B-splines is

due to a remarkable feature: B-splines are able to reproduce accurately both bound

and continuum states. This numerical property is directly related to their effective

completeness [Argenti 09]. Nowdays atomic packages based on B-splines are available

[Fischer 11, Nikolopoulos 03, Nepstad 10] and recent studies show their ability to

reproduce HHG and ATI spectra of molecules under the action of a strong laser

field [Fetic 17]. However, new algorithms have to be developed in order to increase

the computational efficiency of complex calculations with B-splines.

More recently, Gaussian-type orbital functions (abbreviated as Gaussian functions

in the following), in the framework of the time-dependent configuration-interaction

(TDCI) method, have been used to calculate HHG spectra in atoms and molecules

[Coccia 16b,Luppi 13,White 16,Coccia 16a,Luppi 12]. The importance of the cardi-

nal number (related to the maximal angular momentum) of the basis set and the

number of diffuse basis functions was investigated [Coccia 16b, Luppi 12]. Two

strategies to improve continuum states have been studied: multi-centered basis func-

tions [White 16, Coccia 16a] and, alternatively, Gaussian functions with exponents

specially optimized to improve the continuum [Coccia 16b, Coccia 17]. This latter

strategy proved to be more efficient than using multi-centered basis functions and

it has also lower computational cost, however it remains to be tested on molecular

systems. These works permitted us to identify the best basis sets to be used in order

to capture the features of HHG spectra.

Finally, to overcome some of the limitations of the grid, B-spline, and Gaussian

basis, hybrid approaches have been proposed in the last years. For example, Gaussian

functions were used together with grid-based functions to reproduce electron dynam-
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ics in molecular systems [Yip 14], and also Gaussian functions have been combined

with B-splines for studying ionization in H and He atoms [Marante 14,Marante 17].

The aim of the present work is to compare the performance of the three families of

basis, briefly reviewed above, i.e. grid, B-splines, and Gaussians, for the calculation

of HHG and ATI spectra of the molecular ion H+
2 . This system has been chosen

because it has the advantage of having only one electron, which allows us not to bias

our investigation with possible effects due to electron correlation. Indeed, with this

simple case, we can focus on the effectiveness of the representation of the continuum

states for the electron dynamics and the computational advantages of each basis.

Moreover, the presence of two nuclei in H+
2 offers the opportunity to observe intricate

physical features, such as quantum interferences in the HHG process [Wörner 10,

Picón 11,Lein 02].

This article is organized as follows. In Section 5.2 we present the 1D theoretical

model to solve the electronic time-dependent Schrödinger equation (TDSE) with grid,

B-spline, and Gaussian bases. In Section 5.3 we present and discuss the results for

the 1D approach. In Section 5.4 we present the 3D theoretical model to solve the

electronic TDSE with grid and Gaussian basis. In Section 5.5 we present and discuss

the results for the 3D approach. We compare the bound and the continuum energy

spectra of H+
2 , as well as HHG and ATI spectra for grid, B-spline, and Gaussian bases,

emphasizing the advantages and disadvantages of each representation. In particular,

for HHG spectra, we investigate the capability of the different basis to reproduce

specific quantum features, such as the hyper-Raman [Millack 93] and the the two-

center interference phenomena [Wörner 10, Picón 11, Lein 02]. Finally, Section 5.6

contains our conclusions.

5.2 1D THEORETICAL MODEL OF H+
2

The electronic TDSE for a 1D model of H+
2 is given by, in atomic units (au),

i
∂

∂t
ψ(x, t) =

�

Ĥ0(x) + Ĥint(x, t)
�

ψ(x, t), (5.1)

where ψ(x, t) is the time-dependent electron wave function. Here, Ĥ0(x) is the field-

free Hamiltonian,

Ĥ0(x) = −1

2

d2

dx2
+ V̂ (x), (5.2)
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with a soft Coulomb electron-nuclei interaction given by

V̂ (x) = − 1
�

�

x− R
2

�2
+ α

− 1
�

�

x+ R
2

�2
+ α

, (5.3)

where R is the interatomic distance and α is a parameter chosen to reproduce the

exact ionization energy Ip (taken as -1.11 Ha for all the three bases employed here)

of the real H+
2 molecule at a given value of R (α = 1.44 at R = 2.0 au) [Lein 02].

The interaction between the electron and the laser electric field E(t) is taken into

account by the time-dependent interaction potential, which is given in the length

gauge by

Ĥint(x, t) = x̂E(t), (5.4)

where E(t) is the laser electric field and x̂ is the electron position operator. The laser

electric field is chosen as E(t) = E0f(t) sin(ω0t) where E0 is the maximum amplitude

of the pulse, ω0 is the carrier frequency, and f(t) is a trapezoidal envelope

f(t) =



















t/T0, 0 ≤ t < T0

1, T0 ≤ t < T0

10− t/T0 9T0 ≤ t < 10T0

, (5.5)

with T0 = 2π/ω0. The duration of the pulse is thus τ = 10T0 (i.e., 10 optical cycles).

5.2.1 HHG and ATI spectra

A HHG spectrum, experimentally accessible by measuring the emission spectrum in

the presence of an intense laser field, can be calculated as the acceleration power

spectrum over the duration of the laser pulse τ [Burnett 92]

Pa(ω) =

�

�

�

�

� τ

0

�

ψ(t)|−∇V̂ −E(t)|ψ(t)
�

W (t)e−iωtdt

�

�

�

�

2

, (5.6)

where −∇V̂ −E(t) is the electron acceleration operator, as defined by the Ehrenfest

theorem, and W (t) is an apodisation function that we chose to be of the sine-square

window form. An alternative way to obtain the HHG spectrum is to calculate the

dipole power spectrum as

Px(ω) =

�

�

�

�

� τ

0

�ψ(t)|x̂|ψ(t)�W (t)e−iωtdt

�

�

�

�

2

, (5.7)
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It can be shown that the two forms are related [Burnett 92, Bandrauk 09, Han 10,

Coccia 16b], ω4Px(ω) ≈ Pa(ω), under reasonable conditions (see appendix in Ref.

[Coccia 16b]). The function W (t) is a sin-square window function chosen empirically

to minimise the noise, and especially to remove the artefacts arising from the discrete

Fourier transform due to the fact that we integrate only over a limited time duration

and not from −∞ to +∞.

An ATI spectrum, which is experimentally accessible by measuring the photoelec-

tron spectrum of the molecule, can be calculated by spectrally analyzing the system

wave function ψ(τ) at the time τ corresponding to the end of the laser pulse. Specif-

ically, using the window operator method, one calculates the probability P (E, n, γ)

to find the electron in the energy interval [E − γ, E + γ] as [Schafer 91]1

P (E, n, γ) =

�

ψ(τ)

�

�

�

�

�

γ2n

(Ĥ0 − E)2n + γ2n

�

�

�

�

�

ψ(τ)

�

, (5.8)

where γ and n are parameters chosen to allow flexibility in the resolution and accuracy

of the energy analysis. In our case we chose n = 2 and γ = 2× 10−3 au.

5.2.2 Representation of the time-dependent wave function

5.2.2.1 Real-space grid

The time-dependent wave function is discretized on a real-space grid of N points xi

separated by a constant step Δx = xi+1−xi, in the interval [x1 = −(N−1)Δx/2, xN =

(N − 1)Δx/2]. It is thus represented by the vector

ψ(x, t) ≡ (ψ(x1, t), . . . ,ψ(xi, t), . . . ,ψ(xN , t)), (5.9)

where xi = (i− 1− (N − 1)/2)Δx.

The Laplacian operator is computed with the second-order central difference for-

mula which gives rise to a tridiagonal matrix representation of the Hamiltonian

Ĥ0 [Krause 92]. The TDSE (Eq. (5.1)) is solved by means of the Crank-Nicholson

1For the grid and B-spline basis sets, the ATI signal was evaluated following the approach ex-
plicitly given in Ref. [Schafer 91]. We compute P (E, n = 2, γ) = �ψ(τ)|γ4/[(Ĥ0 −E)4 + γ4]|ψ(τ)� =
gamma4�χ|χ�, where |χ� is defined in Eq. (2) of Ref. [Schafer 91]: (Ĥ0−E+

√
iγ)(Ĥ0−E−

√
iγ)|χ� =

|ψ(τ)�. Then P (E, n = 2, γ) = γ4�χ|χ� is directly obtained from the norm of |χ�. For the Gaussian
basis sets, the wave function is expressed in a orbital basis for which the window operator of Eq. (5.8)
is diagonal. We thus simply evaluate P (E, n = 2, γ) =

�

j |cj |2γ4/[(Ej − E)4 + γ4], where j runs
over the (discrete) states from the quantum chemistry calculation.
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propagation algorithm [Crank 47]. The H+
2 ground state, computed by inverse itera-

tion [Press 07], is taken as the initial state for the propagation. In addition, to avoid

unphysical reflections at the boundaries of the simulation grid, a mask-type absorber

function [Krause 92] was implemented with a spatial extension of 50 au.

For ATI spectra, converged results were obtained with N = 200001 and Δx = 0.02

au, and with a time step Δt = 8.41 × 10−4 au. For HHG spectra, we obtained

converged results with N = 160001, Δx = 0.01 au, and Δt = 1.35× 10−2 au.

5.2.2.2 B-spline basis set

The time-dependent wave function with the B-spline basis set is represented as

ψ(x, t) =

M
�

i=1

ci(t)B
k
i (x), (5.10)

where ci(t) are time-dependent coefficients and {Bk
i (x)} are a set of B-spline functions

of order k and dimension M . To completely define B-spline functions a sequence of

knots t = {ti}i=1,M+k must be given. Each function Bk
i (x) is defined on a supporting

interval [ti, ti+k] which contains k + 1 consecutive knots, and the function Bk
i (x)

vanishes outside this interval. We have chosen the first and the last knots to be

k-fold degenerate, t1 = t2 = · · · = tk = Rmin and tM+1 = tM+2 = · · · = tM+k =

Rmax, while the multiplicity of the other knots is unity. The width of an interval

is ti+1 − ti = Rmax/(M − k + 1) [Bachau 01]. In our calculations we used k = 8,

M = 15008, Rmin = 0, and Rmax = 8000 au. The system was placed at the center of

the box at x = 4000 au.

ATI and HHG spectra were obtained by solving the TDSE (Eq. (5.1)) within

the Cranck-Nicholson propagation algorithm [Crank 47] using a time step of Δt =

1.35×10−2 au. The H+
2 ground state was computed by inverse iteration [Press 07] and

taken as the initial state for the propagation. We did not need to use any absorber

during the propagation because of the very large size of the simulation box.

5.2.2.3 Gaussian basis set

For the Gaussian basis set we followed the TDCI procedure developed in our previous

work [Coccia 16b], and adapted it to the present 1D H+
2 model. The time-dependent
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wave function is represented here as

ψ(x, t) =
�

k≥0

ck(t)φk(x), (5.11)

where φk(x) are the eigenstates of the field-free Hamiltonian Ĥ0, composed by the

ground state (k = 0) and all the excited states (k > 0). The φk(x) are expanded on

the Gaussian basis set. In this work, we use uncontracted Gaussians localized on each

nucleus and two “angular momenta” (l), corresponding to odd and even functions.

The basis functions are thus of the form (x ± R/2)le−α(x±R/2)2 , where l = 0 or 1.

The Gaussian exponents α are of two different types. The first type of exponents are

optimized to describe the bound part of the wave function. We used the uncontracted

STO-3G basis set, i.e. three uncontracted Gaussians whose exponents are taken from

the STO-3G basis set with Slater exponent ζ = 1. We take the same exponents for

l = 0 and l = 1. The second type of exponents are optimized for the representation

of the continuum [Coccia 16b]. They are computed with the procedure developed by

Kaufmann [Kaufmann 89] adapted to the 1D model, i.e. by optimizing the overlap

between a 1D Slater type function N
(S)
n (ζ)xne−ζ|x| with ζ = 1 and a Gaussian function

N
(G)
l (αn,l)x

le−αn,lx
2, where N

(S)
n and N

(G)
l are normalization factors. Note that, in

this case, the exponents used for the l = 0 shell and for the l = 1 shell are different. In

the following, we will denote these Gaussian functions optimized for the continuum

as K functions. To sum up, we use 3 functions with STO-3G exponents and 4 K

functions for each angular momentum, localized on each nucleus, which makes a

total of (3 + 4) × 4 = 28 uncontracted Gaussian basis functions. However when we

orthonormalize this basis set, we find linear dependencies that needs to be removed.

For this we define a cutoff ǫ = 10−8 under which the eigenvalues of the overlap

matrix are considered to be zero, and their corresponding eigenvectors are removed

from the space. We get an orthonormalized basis set of 24 basis functions. The basis-

set exponents are collected in Table S1 of Supporting Information, see for instance

Ref. [Labeye 18]. To solve the TDSE (Eq. (5.1)) we used the split-operator propagator

with Δt = 1.35× 10−2 au.

In order to compensate for the unphysical absence of ionization, we used the

double-d heuristic lifetime model proposed in Ref. [Coccia 16b]. This model re-

quires two parameters: d0 and d1 which represent different electron escape lengths



Section 5.2 1D results and discussion 101

after ionization. We have chosen these parameters on the basis of the rescattering

model [Corkum 93,Lewenstein 94] where an electron is ionized by a strong laser field,

accelerated in the continuum, and then brought back close to its parent ion where

it can recombine or scatter. From this model, d0 is equal to the maximum electron

excursion after ionization which is xmax =
�

2E0/ω4
0, while d1 < d0. In our calcula-

tions we always used d1 = 20 au. Moreover d0 affects all the continuum states below

the cutoff energy Ecutoff = Ip +3.17Up [Corkum 93,Lewenstein 94] (Up = E2
0/(4ω

2
0) is

the ponderomotive energy of the electron) while d1 handles the ionization for those

continuum energy states above Ecutoff. This allows to better retain the contribution

of continuum states for the recombination step of the HHG process. Table 5.1 collects

the values of d0 used in this work.

Table 5.1: d0 values, taken as xmax, used in the double-d heuristic lifetime model for the
laser intensities employed in this work.

I (W/cm2) d0 (au)
5× 1013 23
1014 33

2× 1014 46
3× 1014 57
4× 1014 66
5× 1014 74
7× 1014 87

There is a fundamental difference between this approach and the grid and B-spline

ones. Indeed, the TDSE with the Gaussian basis set is solved in the energy space.

This fact permits to have a more direct and intuitive interpretation of the role of

bound and continuum states in HHG and ATI spectroscopies. In addition, the use of

Gaussians reduces considerably the computational time required in time propagation.

This makes it a more promising tool for the modelisation of larger molecules.

5.3 1D RESULTS AND DISCUSSION

5.3.1 Spectrum of the field-free Hamiltonian

The spectrum of Ĥ0 should be strictly independent on the choice of the basis set in

the limit of a complete basis set. However, because our basis sets are not complete,

differences in the eigenstates and eigenvalues from grid, B-spline, and Gaussian basis
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sets can arise, especially at high-energy values. In order to investigate the behavior

of the three basis sets, the spectrum of Ĥ0 is analyzed in this section.

In Figure 5.1 the ground-state wave function is shown. The three basis sets repro-

duce exactly alike the ground state of the 1D H+
2 model, at the equilibrium internu-

clear distance of R = 2.0 au. The panel (a) of Figure 5.2 shows the eigenvalues given by

each basis set up to the 30th energy state, and in panel (b) of Figure 5.2 one finds the

inverse of the density of continuum states which is defined as ρ(Ej) = 1/(Ej+1 − Ej)

where Ej is a positive eigenvalue. In order to compare the three bases, the density

of the states has been normalized to the length of the simulation box in the case of

the grid and B-splines and to a constant in the case of the Gaussians. This constant

was chosen to force the first Gaussian continuum eigenvalue to match the first con-

tinuum eigenvalue of the grid and B-splines, which are identical. For all the three

basis sets, the continuum part of the spectrum is represented as a finite number of

eigenstates as, in numerical calculations, the basis set is always incomplete. However,

the discreteness of the Gaussians is much larger than that of the grid and B-splines.

The spectrum obtained with the Gaussians starts to diverge from the grid and B-

spline ones already at around the 13th state. This issue is a direct consequence of

the relatively small size of the Gaussian basis set compared to the number of grid

points or B-spline functions used. Indeed, the STO-3G+4K basis contains only 24

Gaussian basis functions whereas we used 400001 grid points and 15000 B-splines. In

principle, we could increase the number of Gaussians but this will quickly lead to the

linear dependency problem. This problem prevents us to use more than a few tens of

optimized Gaussian functions. This fact, as we will see in the following sections, can

have important consequences on the calculation of HHG and, in particular, of ATI

spectra.

To investigate the accuracy of the grid, B-spline, and Gaussian bases in the de-

scription of continuum wave functions, we have chosen two different continuum en-

ergies, both representative of two different continuum energy regions: low energy

(E = 0.06 Ha) and high energy (E = 1.97 Ha). For each of these energies, we

reported in Figure 5.3 the corresponding wave functions ϕE(x). For the grid, the

continuum wave functions were obtained by propagating the TDSE at the chosen

positive energy E with a fourth-order Runge-Kutta algorithm [Press 07], and then
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Figure 5.1: Ground-state wave function of H+
2 (at the equilibrium internuclear distance of

R = 2.0 au) calculated using grid, B-spline, and Gaussian basis.

normalized with the Strömgren procedure [Seaton 62]2. Instead, for B-splines and

Gaussians, the wave functions were obtained from a direct diagonalisation of Ĥ0.

In this case, the resulting continuum states were renormalized using the procedure

proposed by Macías et al. [Macías 88]3. We verified that the Strömgren and Macías

procedures are equivalent. The continuum wave functions computed with both grid

and B-spline basis sets reproduce the same oscillations in the low- and high-energy

regions of the continuum. On the other hand, Gaussians can reproduce just a few

of the oscillations. We already observed this behavior in the case of the hydrogen

atom in a 3D calculation [Coccia 16b] where the crucial role of the K functions was

pointed out in order to obtain these oscillations (in that case a much larger basis

set was employed). Here, we want to draw the attention on the fact that Gaussians

can still be reasonable in the low-energy continuum, but become unsuitable to repro-

duce oscillations for high-energy continuum states. The probability of propagating

an electron in one of the two regions depends on the laser parameters used in the

simulation. This fact can have important implications in the description of HHG and

ATI spectra as we will see in the following sections.

2The Strömgren procedure consists in fitting the asymptotic form of the numerical solution of
the Schrödinger equation with the exact solution calculated when V̂ (x) = 0. This implies that
for a specific energy E in the continuum: ψ(x) = sin(θ(x))/

�

2πk(x), where k(x) is the electron

momentum which is proportional to
√
2E and it is related to θ(x) as k(x) = dθ(x)/dx.

3The Macías procedure permits to normalise L2-norm continuum states. In this method, for a
specific energy E in the continuum, we have: ψ(x) = ψL2(x)

�

ρ(E)/2, where ψL2 is the L2-norm
normalized state and ρ(E) is the density of states evaluated numerically as the number of states per
energy unit as ρ(Ej) = 2/(Ej+1 − Ej−1).
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Figure 5.2: (a) Eigenvalues of H+
2 up to the 30th eigenstate. (b) Inverse of the normalized

density of continuum states.

5.3.2 HHG

HHG spectra have been calculated in the dipole and the acceleration forms for H+
2

at different internuclear distances: R = 1.8, R = 2.0 (equilibrium distance), and

R = 2.2 au for a Ti:Sapphire laser pulse with a carrier frequency ω0 = 0.057 Ha

(1.55 eV, 800 nm) and different intensities: I = 5× 1013, I = 1× 1014, I = 2× 1014,

I = 5× 1014, and I = 7× 1014 W/cm2.

In Figure 5.4 we show the dipole form of the HHG spectra at R = 2.0 au for three

different laser intensities. All the three basis sets reproduce the general expected

features of an HHG spectrum: the intensity of the low-order harmonics decreases

rapidly, then a plateau region follows where the intensity remains nearly constant,

and at high frequencies the harmonic intensity decreases again. As H+
2 has a center-of-

inversion symmetry, only odd harmonics are presented in the spectrum. We estimated

the cutoff energies by calculating Ecutoff = Ip + 3.17Up, as given in the semiclassical
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Figure 5.3: (a) Spatial dependence of the even wave function ϕE(x) corresponding to E =
0.06 Ha. (b) Spatial dependence of the odd wave function ϕE(x) corresponding to E = 1.97
Ha.

rescattering model [Corkum 93,Lewenstein 94].

We observe that the grid and B-spline HHG spectra are indistinguishable for all

the laser intensities. This fact is consistent with the analysis reported above on the

spectrum of Ĥ0 (see Section 5.3.1). On the other hand, the agreement between the

spectra obtained with the Gaussian basis and those obtained with the grid or B-

splines deteriorates when the laser intensity increases. This is clearly observed for

the plateau region for the intensity I = 5 × 1014 W/cm2, but also detected for the

plateau and cutoff regions for the intensity I = 7× 1014 W/cm2 (see Supplementary

Information). Most of these observations are also valid when using the acceleration

form of the HHG spectrum. The only exception we found was with the Gaussian basis

set and laser intensities I = 5×1014 W/cm2, as shown in Figure 5.5, and I = 7×1014

W/cm2 (see Supplementary Information [Labeye 18]). For these largest intensities,

the spectrum extracted from the acceleration seems to largely underestimate the

position of the cutoff but to much better reproduce the harmonics of the plateau.



106 Chapter 5 Optimal basis set for strong laser fields

To analyse in more details the fine structure of the HHG peaks, in Figure 5.6 HHG

spectra only up to the 15th harmonics. The B-spline and the grid spectra are almost

identical except for some very small differences when the laser intensity is very high.

Gaussian spectra reproduces the features of the B-spline and grid ones, but when the

laser intensity increases the Gaussian spectrum becomes much more noisy.

From panel (a) of Figure 5.6 it is also possible to identify another series of peaks

besides those corresponding to the harmonics. These peaks corresponds to hyper-

Raman lines with position given by ω̃ ± 2kω0 [Gauthey 95], where k is an integer

and ω̃ = 6.69ω0 is the resonance with the first excited state. We observe that the

three basis sets describe with the same accuracy the hyper-Raman lines. Moreover, at

sufficiently large laser intensity, the HHG process dominates, and the hyper-Raman

lines are not observed anymore (panel (b) of Figure 5.6).

The accuracy of the grid, B-spline, and Gaussian calculations was also inves-

tigated through their ability to reproduce the two-center interference in the HHG

spectrum. This interference was predicted by Lein et al. [Lein 02] for diatomic

molecules such as H+
2 . In this model, the electron that recombines with the ionic

core can interact with either of the two nuclei. The two atomic centers can there-

fore be interpreted as coherent point sources and the whole system can be seen as

a microscopic analog of Young’s two-slit experiment. The light emitted by each nu-

cleus will interfere either constructively or destructively depending on its frequency

and the interference pattern will superimpose to the HHG spectrum. Since Lein’s

model has been proposed, a great number of numerical analyses came forth point-

ing out the role of the internuclear distance, molecular orientation, recombination to

excited states, and laser intensity [Madsen 07, Wörner 10, Han 13, Suárez 17, Chir-

ila 06,Chen 08, Itatani 04,Vozzi 05,Lagmago Kamta 09,Smirnova 09].

According to Lein’s model, the position of the minimum in the spectrum is in-

dependent from the laser intensity and can be extracted from the analysis of the

recombination dipole drec(E) = �ϕ0|x̂|ϕE� where ϕ0 is the ground state and ϕE is a

continuum state at energy E of Ĥ0. This quantity is plotted in panel (a) of Figure 5.7

for R = 1.8 au and in panel (a) of Figure 5.8 for R = 2.2 au. For R = 2.0 au, we report

the recombination dipole in the Supplementary Information [Labeye 18]. The mini-

mum described in the two-center interference corresponds to the energy which makes

the recombination dipole vanishing. We found that the corresponding frequency is
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Figure 5.4: HHG spectra calculated from the electron dipole at the equilibrium internuclear
distance R = 2.0 au with laser intensities: (a) I = 1014 W/cm2, (b) I = 2 × 1014 W/cm2,
and (c) I = 5 × 1014 W/cm2. Intensities I = 5 × 1013 and 7 × 1014 W/cm2 are reported
in the Supplementary Information [Labeye 18]. For each HHG spectrum, the dot-dashed
lines indicate the cutoff energies, which are given by the rescattering model as Ecutoff =
Ip +3.17Up, see Ref. [Corkum 93,Lewenstein 94]: (a) Ecutoff = 31.7ω0, (b) Ecutoff = 43.9ω0,
and (c) Ecutoff = 80.5ω0. The arrow points to the expected position of the two-center
interference minimum extracted from the recombination dipole.
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W/cm2 using Gaussian basis sets. The dot-dashed line is the cutoff energy Ecutoff = 80.5ω0

and the arrow points to the expected position of the two-center interference minimum,
extracted from the recombination dipole which is identical to the one extracted from the
recombination acceleration.

ω = 34.0ω0 for R = 1.8 au, ω = 26.4ω0 for R = 2.0 au, and ω = 20.8ω0 for R = 2.2

au. We note that the extraction of the minimum from the recombination dipole is

straightforward for the grid and B-spline basis sets, while in the case of the Gaussian

basis only a rough estimate can be given. Lein’s model predicts the position of the

minimum at ω = π2/(2R2ω0) which gives ω = 26.7ω0 for R = 1.8 au, ω = 21.6ω0 for

R = 2.0 au, and ω = 17.9ω0 for R = 2.2 au. The underestimation of the minimum

position by Lein’s model has already been pointed out [Chirila 06]. The main reasons

must be searched in the different description of the ground state and the continuum

between our 1D theoretical model and Lein’s model.

We report in panel (b) of Figure 5.7 and in panel (b) of Figure 5.8 the HHG

spectra for R = 1.8 au and for R = 2.2 au with I = 2 × 1014 W/cm2 and we

observe that all the basis sets reproduce the position of the minimum of the two-

center interference. Also the minimum for R = 2.0 au is very well reproduced as

can be seen in Figure 5.4. Another observation is that the sharpness of the minimum

depends on the laser intensity and on the internuclear distance. We confirm the

fact that the minimum is more visible for smaller internuclear distances [Risoud 17].

We did the same investigation considering the recombination acceleration arec(E) =

�ϕ0| − ∇V̂ |ϕE� and the HHG spectrum from the acceleration. We obtained the

same results (see Supplementary Information [Labeye 18]) explained before. From

these studies we deduce that all the basis sets are capable to accurately reproduce
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Figure 5.6: HHG spectra calculated from the electron dipole at the equilibrium internuclear
distance R = 2.0 au up to the 15th harmonic with laser intensities: (a) I = 1014 W/cm2

and (b) I = 5× 1014 W/cm2. The dashed lines indicate the position of the harmonics while
the dotted lines indicate the hyper-Raman lines at position ω̃± 2kω0 [Gauthey 95] where k
is an integer and ω̃ = 6.69ω0 is the resonance with the first excited state.

the two-center interference [Lein 02]. However, in the case of the Gaussian basis, the

acceleration seems to better reproduce the minimum for I = 5×1014 W/cm2 (panel (c)

of Figure 5.5) and I = 7×1014 W/cm2 (see Supplementary Information [Labeye 18]).

From the detailed analysis of HHG spectra presented in this section, we conclude

that for a good performance of the Gaussian basis the laser intensity cannot be “very

large”. For example, for intensity lower than I = 5 × 1014 W/cm2 we obtain correct

HHG spectra while for higher intensities only the harmonic peaks in the low-energy

part of the plateau are correct. A strategy to improve the Gaussian basis set could

be to modify the cutoff ǫ below which the eigenvalues of the overlap matrix are set

to zero. This will change the number of kept eigenvectors. In Figure 5.9 we compare

an HHG spectrum for I = 5 × 1013 W/cm2 calculated with the grid and with the

Gaussian basis while changing the linear-dependency threshold ǫ: ǫ = 10−4 (17 basis
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Figure 5.7: Two-center interference at R = 1.8 au: (a) recombination dipole and (b) HHG
spectrum at I = 2 × 1014 W/cm2. The arrow points to the expected position of the two-
center interference minimum extracted from the recombination dipole. The dot-dashed line
is the cutoff energy Ecutoff = 43.8ω0. E0 is the ground-state energy.

functions), ǫ = 10−8 (24 basis functions, which is the standard choice throughout

the article), and ǫ = 10−10 (26 basis functions). This analysis shows that for a “low”

intensity (I = 5× 1013 W/cm2) the quality of the HHG spectrum in the plateau and

cutoff regions is not affected by the specific choice of the threshold of eigenvalues.

5.3.3 ATI

We calculated ATI spectra with intensities I = 5×1013, 1×1014, and 5×1014 W/cm2.

In panel (a) of Figure 5.10 we show the ATI spectrum with laser intensity I =

1014 W/cm2, while the spectra for intensities I = 5 × 1013 and 5 × 1014 W/cm2

are reported in the Supplementary Information [Labeye 18].

The ATI spectrum of Figure 5.10 has positive energy peaks (bound-continuum

transitions) corresponding to the electron density ionized during the propagation, i.e.

the photoelectron spectrum, while the peaks in the negative region (bound-bound
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Figure 5.8: Two-center interference at R = 2.2 au: (a) recombination dipole and (b) HHG
spectrum at I = 2 × 1014 W/cm2. The arrow points to the expected position of the two-
center interference minimum extracted from the recombination dipole. The dot-dashed line
is the cutoff energy Ecutoff = 43.8ω0. E0 is the ground-state energy.

transitions) represent the electron density remaining in the ground state and that

has been transferred to excited states. We remind that only the positive energy

region of an ATI spectrum is experimentally measurable.

As already seen for the HHG spectra, the grid and B-spline basis sets describe with

the same accuracy both bound-bound and bound-continuum transitions. Their ATI

spectra coincide and correctly reproduce the expected features of an ATI spectrum:

the distance between two consecutive ATI peaks (in the positive energy region) is

constant and equal to the energy of a photon, i.e. 0.057 Ha.

The Gaussian basis is only able to reproduce bound-bound transitions. The neg-

ative energy part of the spectrum is quite close to the one obtained with the grid and

B-splines, while bound-continuum transitions are out of reach for the Gaussian basis

set. This limitation is due to the low density of states in the continuum. Indeed, with

the basis-set parameters used here, only six continuum states are reproduced in the
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Figure 5.9: HHG spectra from the dipole at the equilibrium internuclear distance R = 2.0
au with I = 5× 1013 W/cm2 obtained with the grid and with the Gaussian basis sets with
linear-dependency thresholds ǫ = 10−4, ǫ = 10−8, and ǫ = 10−10.

energy region between 0 and 1 Ha, as we can see in the bottom panel of Figure 5.2.

This low density of states is far from reproducing the correct ATI energy distribution

and explains why no more than six peaks are observed in the positive energy region

of the spectrum. The energies of the six ATI peaks correspond to the energies of the

six continuum states reported in Figure 5.2. To detail more on this feature, we plot

in panel (b) of Figure 5.10 the photoelectron spectrum, computed with the Gaussian

basis, after absorption of one photon and for three different photon energies ω0 =

1.34 Ha, ω0 = 1.47 Ha, and ω0 = 1.61 Ha. Together, we also plot the energy position

of the ground state and of the first continuum energies corresponding to symmetry-

allowed transitions. One clearly sees that if the photon energy matches the energy of

a transition from the ground state to one of the continuum states then we get a pho-

toelectron peak. However, if the photon energy does not match any transition then

no ionization is observed. This crucial feature forbids the computation of a correct

photoelectron or ATI spectrum with the Gaussians basis set used here. We believe

that larger Gaussian basis sets can in principle describe ATI. Indeed, in 3D calcu-

lations [Coccia 16b], one can easily produce tens of low-energy (<1 Ha) continuum

states, leading to a possible improvement of the ATI spectrum.

5.4 3D THEORETICAL MODEL OF H+
2

The electronic TDSE for a 3D model of H+
2 is given by, in atomic units (au),

i
∂

∂t
ψ(r, t) =

�

Ĥ0(r) + Ĥint(r, t)
�

ψ(r, t), (5.12)
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Figure 5.10: (a) ATI spectrum calculated at the equilibrium interatomic distance R = 2.0
au with intensity I = 1 × 1014 W/cm2. (b) Photoelectron spectrum calculated with the
Gaussian basis at the equilibrium distance R = 2.0 au with intensity I = 1× 1014 W/cm2

and three photon energies ω0 = 1.34 Ha (black), ω0 = 1.47 Ha (red), and ω0 = 1.61 Ha
(blue). The ground-state energy (-1.11 Ha) and the continuum-state energies (0.06 Ha,
0.22 Ha, and 0.50 Ha) which correspond to transitions allowed by symmetry are displayed
(magenta dots).

where ψ(r, t) is the time-dependent electron wave function. Here, Ĥ0(r) is the field-

free Hamiltonian,

Ĥ0(r) = −1

2
∇2 + V̂ (r), (5.13)

with V̂ (r) the Coulomb electron-nuclei interaction.

The interaction between the electron and the laser electric field E(t) is taken into

account by the time-dependent interaction potential, which is given in the length

gauge by

Ĥint(r, t) = ẑE(t), (5.14)

where E(t) is the laser electric field polarized along the z axis, corresponding to the

H+
2 internuclear axis, and ẑ is the electron position operator along this axis. We have
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chosen the same type of laser as in the 1D model (see Section 5.2) except that the

duration of the pulse is τ = 6T0 (i.e., 6 optical cycles). We calculated HHG spectra

from the dipole as in Eq. (5.7).

5.4.1 Representation of the time-dependent wave function

5.4.1.1 Real-space grid

Concerning the 3D calculations on a grid, we used the Octopus code which is a

software package for TDDFT calculations [Andrade 15]. For our calculations we

have chosen the “independent particle” option which permits to get the numerically

exact solution for the TDSE in the case of one electron. We have chosen as simulation

box a cylinder with radius 50 au and height 100 au with a grid space Δr = 0.435

au. The TDSE of Eq. (5.12) is solved by means of the Crank-Nicholson propagation

algorithm [Crank 47,Press 07] with a time step Δt = 5 × 10−2 au. Also in this case

to avoid unphysical reflections at the boundaries of the simulation box, a mask-type

absorber function was used with a spatial extension of 22 au.

5.4.1.2 Gaussian basis set

In this case, we used the approach we developed and detailed in Ref. [Coccia 16b,

Luppi 13] which consists in solving the TDSE using the TDCI approach. For the

Gaussian calculations, we used a development version of the MOLPRO software

package [Werner 15] and the external code LIGHT [Luppi 13] to perform the time

propagation using also in this case a time step Δt = 5 × 10−2 au. As Gaussian

basis set we used a 6-aug-cc-pVTZ with 5 K functions, which we denote as 6-aug-

cc-pVTZ+5K, which is the largest basis without linear dependencies. The basis-set

exponents and contraction coefficients are collected in Table S2 of Supporting Infor-

mation [Labeye 18]. To treat ionization we used a double-d heuristic model where

the parameters d1 and d0 have been chosen as in the 1D model. The value of Ip is in

this case -1.10 Ha.

5.5 3D RESULTS AND DISCUSSION
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5.5.1 HHG

We calculated HHG spectra in the dipole form for H+
2 at internuclear distance R =

2.0 au (equilibrium) for a Ti:Sapphire laser with a carrier frequency ω0 = 0.057 Ha

and intensities I = 5×1013, 1×1014, 2×1014, 3×1014, 4×1014, and 5×1014 W/cm2.

In Figure 5.11 we show the HHG spectra for three laser intensities (the spectra for

the other intensities are reported in the Supplementary Information). Both the Gaus-

sian and grid basis sets reproduce well the expected features of an HHG spectrum,

regardless of the applied field intensity, as already pointed out for the 1D case. How-

ever, starting from intensity I = 3×1014 W/cm2, the quality of the spectrum obtained

with the Gaussian basis set tends to diminish, especially in the cutoff region. For 3D

calculations, obtaining a good HHG spectrum with optimized Gaussians seems to be

more difficult than for 1D calculations, due to the computational complexity.

However, it is interesting to note that the low-energy harmonics are still well de-

scribed when compared to the grid calculations. We show this behavior by analysing

the fine structures of the peaks as shown in Figure 5.12. Here, we plot the HHG

spectra up to the 13th harmonic for different intensities. For the grid calculations

(panel (a)) with I = 5 × 1013 W/cm2 only the first and the third harmonic peaks

are clearly visible together with a strong and large peak at around 7.65ω0, due to

the emission from the first excited state. Also in this case we observe hyper-Raman

lines at position ω̃ ± 2kω0 [Gauthey 95] where k is an integer and ω̃ = 7.65ω0 is the

resonance with the first excited state. Observing the evolution of the harmonics and

the resonant peaks as a function of the laser intensity (from I = 5 × 1013 W/cm2

to I = 5 × 1014 W/cm2), the harmonics become more and more intense while the

hyper-Raman lines almost disappear. The same behaviour was already observed in

the 1D model. The spectra obtained with the Gaussian basis set show exactly the

same trend as shown in panel (b) of Figure 5.12.

5.6 CONCLUSIONS

We explicitly solved the 1D and 3D TDSE for H+
2 in the presence of an intense electric

field and we explored the numerical performance of using a real-space grid, a B-spline

basis, or a Gaussian basis optimized for the continuum. We analyzed the performance

of the three basis sets for calculating HHG and ATI spectra. In particular, for HHG,

the capability of the basis set to reproduce the two-center interference and the hyper-
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Figure 5.11: HHG spectra in the dipole form at the equilibrium internuclear distance R =
2.0 au with laser intensities: (a) I = 5 × 1013 W/cm2, (b) I = 2 × 1014 W/cm2, and (c)
I = 3× 1014 W/cm2. For each HHG spectrum, the dot-dashed line gives the cutoff energy
Ecutoff = Ip + 3.17Up given by the rescattering model [Corkum 93,Lewenstein 94] which is
(a) Ecutoff = 25.4ω0, (b) Ecutoff = 43.7ω0, and (c) Ecutoff = 55.9ω0. The arrow points to the
expected position of the two-center interference minimum extracted from the recombination
dipole.

Raman lines was investigated. We showed that the grid and B-spline representations

of the time-dependent wave function give the same results for both HHG and ATI.

On the contrary, the performance of the Gaussian basis is more mixed and depends

on the intensity of the laser. It is possible to optimize Gaussian functions to describe
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Figure 5.12: HHG spectra in the dipole form at the equilibrium internuclear distance of
R = 2.0 au up to the 13th harmonic with laser intensities : I = 5×1013 W/cm2, I = 2×1014

W/cm2, and I = 5 × 1014 W/cm2 for (a) grid and (b) Gaussian basis sets. For each
HHG spectrum, the dashed line indicates the position of the harmonics and the dotted line
indicates the hyper-Raman lines at position ω̃ ± 2kω0 [Gauthey 95] where k is an integer
and ω̃ = 7.65ω0 is the resonance of the first excited state.

the low-energy part of the continuum. However, this optimization is limited by the

issue of linear dependencies among Gaussian functions. This implies that for HHG

the Gaussian basis can perform well up to the laser intensity I = 5× 1014 W/cm2 for

1D and up to I = 2× 1014 W/cm2 for 3D. For higher intensities we have found that

only low-energy harmonics are still correct. Moreover, for 3D calculations, obtaining

a good HHG spectrum with optimized Gaussian functions seems to be more difficult

than in 1D calculations. Despite their limitations, Gaussian basis sets can reproduce

intricate features of the HHG spectrum at low energy. Instead, in the case of ATI,

Gaussian basis sets make impossible the description of a correct spectrum.

As a conclusion, from our investigation, we noticed that the grid and B-spline

basis sets have very similar behavior and computational cost. These basis sets are

very accurate to describe the continuum and phenomena such as HHG and ATI.
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Gaussian basis sets are less efficient to describe the continuum. The effect on ATI

and HHG spectra is however different: on one hand, ATI spectrum is not reproduced

by Gaussian basis functions, on the other hand the most important features and fine

structures (minimum/resonances) at low energy of the HHG spectrum are correctly

described. A clear advantage of Gaussian functions with respect the other basis sets is

their computational cost which continues to make them interesting for many-electron

systems.



C H A P T E R 6

Conclusion

In the present manuscript, attention has been focused on the computation of single

and multiphoton processes on atoms and molecules. Due to the complex nature of

this subject, different physical approximations, together with an ensemble of diverse

numerical methods, have been developed, implemented, and used in order to obtain

new insights on such matter-radiation processes.

Concretely, within the framework proposed by linear-response range-separated

density-functional theory, we have explored photoexcitation and photoionization in

one- and two-electron atoms. Thanks to the technique of B-splines, it was possible to

correctly describe the continuum states of the investigated atomic systems. Therefore,

the effects of the range-separation parameter on continuum states could be studied.

At this point, we are now able to carry on our investigations on atoms with more than

two electrons. This work opens the possibility of simulating core-electron transitions

from inner shells to excited or continuum states. In addition, range-separation effects

may be examined on multiphoton above-threshold ionization in N -electron atoms. A

starting point will be, for example, the study of two-photon transitions.

Once again, B-splines have been shown to be a powerful numerical tool. How-

ever, when complex systems, such as molecules, have to be investigated, B-splines

methods become very expensive from a computational point of view. For this rea-

son, we have explored the possibility of using Gaussian-type orbitals (GTO) specially

designed to describe the continuum. Multiphoton ionization processes, such as ATI

and HHG, have been investigated on the one-dimensional molecular hydrogen ion

H+
2 using B-splines, GTO, and grid methods in order to compare their numerical

accuracy. ATI spectra cannot be computed with the proposed GTO basis set. Linear

dependencies limits our aspirations and the incompleteness of the GTO basis is an

expensive price to pay when using such functions. Nevertheless, we observed that

HHG spectra, obtained with moderate laser intensities, can be reproduced with the

GTO basis. This opens the possibility of studying complex molecules within the TD-

CIS framework used here. In the future, more systematic studies with ghost-atom

basis functions shall be carried out in order to obtain a better measurement of their

numerical performance and their effects on multiphoton ionization processes.





A P P E N D I X A

The Wigner 3-j Symbol

The Wigner 3-j symbol, also known as Clebsch-Gordon coefficient, is an algebraic

function of six arguments that is defined as follows:





j1 j2 j3

m1 m2 m3



 = δm1+m2+m3,0(−1)j1+j2−m3

×
�

(j1+j2−j3)!(j1−j2+j3)!(−j1+j2+j3)!
(j1+j2+j3+1)!

�1/2

×
�
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t!(j1+j2+j3−t)!(j1−m1−t)!(j2+m2−t)!(j3−j2+m1+t)!(j2−j1−m2+t)!

(A.1)

with t ∈ [max(0, j2 − j3 −m1, j1 − j3 +m2),min(j1 + j2 − j3, j1 −m1, j2 +m2)].

Eq. (A.1) is zero unless the following conditions (also known as selection rules) are

satisfied:

(1) m1 ∈ {−|j1|, ..., |j1|}, m2 ∈ {−|j2|, ..., |j2|} and m3 ∈ {−|j3|, ..., |j3|}.

(2) m1 +m2 +m3 = 0.

(3) |j1 − j3| ≤ j2 ≤ |j1 + j3|.

(4) For the special case m1 = m2 = m3 = 0, the sum j1 + j2 + j3 = 2s must be an

even integer number.

Symmetry properties: the Wigner 3-j symbol satisfies the following symmetry

permutations,





j2 j1 j3

m2 m1 m3



 =





j1 j3 j2

m1 m3 m2



 = (−1)j1+j2+j3





j1 j2 j3

m1 m2 m3



 , (A.2)

as well as this, it can be also seen that
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 . (A.3)
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Orthogonality and sum rules:
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Special values:
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0 0 0



 = (−1)s
�
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�1/2

× s!

(s− j1)!(s− j2)!(s− j3)!
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where 2s = j1 + j2 + j3 must be an even integer, otherwise Eq. (A.7) is zero.



A P P E N D I X B

Spherical harmonics

Throughout the present manuscript we have made use of a different number of rela-

tions involving spherical harmonics. In this appendix, definitions and useful formula

are collected. Proofs of them can be found in standard mathematical textbooks.

B.1 Legendre polynomials Pl(x)

The Legendre polynomials of degree l are defined by Rodrigues’ formula:

Pl(x) =
1

2ll!

dl(x2 − 1)l

dxl
, (B.1)

where x ∈ [−1, 1]. Additionally, one has Pl(−x) = (−1)lPl(x).

The Legendre polynomials satisfy the orthogonality relation

� 1

−1

Pk(x)Pl(x)dx =
2

2k + 1
δk,l. (B.2)

Moreover, it can be shown that a product of two polynomials can be expanded in a

series in terms of the Wigner 3-j symbol such as

Pk(x)Pl(x) =

|k+l|
�
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2
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The integral of a product of three Legendre polynomials can be written as
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Finally, it is interesting to see that any function f(x) with x ∈ [−1, 1] can be
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expanded in terms of the Legendre polynomials such as

f(x) =

+∞
�

l=0

fl Pl(x), (B.5)

where fl = [(2l + 1)/2]
� 1

−1
f(x)Pl(x)dx.

In particular, the Legendre polynomials are associated with the following gener-

ating function
1

(1 + t2 − 2xt)1/2
=

+∞
�

l=0

tl Pl(x), (B.6)

for |t| ≤ 1. Thus, it can be demonstrated that the inverse of the distance between

two points can be expressed in terms of Legendre polynomials in spherical polar

coordinates as

1

|r1 − r2|
=

1

(|r1|2 + |r2|2 − 2|r1||r2| cos γ
)1/2
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1
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=

+∞
�

l=0

�

rl<
rl+1
>

�

Pl(cos γ), (B.8)

where γ is the angle between r1 and r2, r< = min(r1, r2) and r> = max(r1, r2).

B.2 Associated Legendre polynomials Pm
l (x)

For a positive integer m, the unnormalized associated Legendre polynomials Pm
l (x)

are defined as

Pm
l (x) = (1− x2)m/2 dm

dxm
Pl(x), (B.9)

where Pl(x) are the Legendre polynomials. For negative integers (m < 0) one has

P−m
l (x) = (−1)m

(l −m)!

(l +m)!
Pm
l (x), (B.10)

and the orthogonality relation is defined as

� 1
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Pm
l (x)Pm

k (x)dx =
2
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(l +m)!

(l −m)!
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As a consequence, one can define the normalized associated Legendre polynomial

functions as

Θm
l (x) =

�

(2l + 1)

2

(l −m)!

(l + 1)!
Pm
l (x). (B.12)

Finally, two important recurrence relations, involving the computation of the

dipole transition matrix elements, are presented here for x = cos θ:

cos θ Θm
l = al+1,m Θm

l+1 + al−1,m Θm
l−1, (B.13)

sin θ
d
dθ

Θm
l = l × al+1,m Θm

l+1 + (l + 1)× al−1,m Θm
l−1, (B.14)

where the relation coefficients are given by
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, (B.15)
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�1/2

. (B.16)

B.3 Spherical harmonics Y m
l (Ω)

For m ≥ 0, spherical harmonics Y m
l (Ω) ≡ Y m

l (θ,φ) are defined by

Y m
l (θ,φ) = Θm

l (cos θ)
eimφ

√
2π

, (B.17)

where Θm
l (θ) are the normalized associated Legendre polynomials. For negative in-

tegers (m < 0) one finds the following relation

Y m
l (Ω) = (−1)m

�

Y −m
l (Ω)

�∗
. (B.18)

Spherical harmonics are orthonormal functions, so we have that

�

(Y m
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� π
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(Y m
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In addition, we recall the sum rule

l
�

m=−l

|Y m
l (θ,φ)|2 = 2l + 1

4π
. (B.20)
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The recurrence relations involving spherical harmonics are deduced directly from

the associated Legendre polynomials by multiplying Eq. (B.13) and Eq. (B.14) by

eimφ/
√
2π,

cos θ Y m
l = al+1,m Y m

l+1 + al−1,m Y m
l−1, (B.21)

sin θ
d
dθ

Y m
l = l × al+1,m Y m

l+1 + (l + 1)× al−1,m Y m
l−1, (B.22)

where the relation coefficients al+1,m and al−1,m are given by Eq. (B.15) and Eq. (B.16).

In the calculation of electronic structures, it is convenient to define the renormal-

ized spherical harmonics,

Ck
q (Ω) ≡ Ck

q (θ,φ) =

�

4π

2k + 1

�1/2

Y q
k (θ,φ). (B.23)

Note the index inversion in Ck
q (Ω) with respect to Y q

k (Ω).

Afterwards, important angular integrals are given by a product of three spherical

harmonics, which can be easily determined with the help of the Wigner 3-j symbols,
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where ck(l′m′, lm) are the Gaunt coefficients and the delta function rises from the

3-j symbol selection rules. The Gaunt coefficients present some interesting properties

coming also from the 3-j symbol relations. Here, we list some of the useful ones:

(1) ck(l′m′, lm) = (−1)m−m′

ck(lm, l′m′).

(2) c0(lm, lm) = 1.

(3)
�
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The spherical harmonic addition theorem is stated as

Pl(cos γ) =
4π

(2l + 1)

l
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where γ is the angle between the two vectors r̂1 = (θ1,φ1) and r̂2 = (θ2,φ2) such as

cos γ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2) = r̂1 · r̂2. (B.26)

This theorem can be rewritten in terms of the renormalized spherical harmonics as

follows
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Finally, we can show that the inverse of a distance between two points is given by
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Gauss-Legendre Quadrature

This appendix has been written following the book “Numerical Recipes 3rd Edition:

The Art of Scientific Computing” [Press 07].

Gaussian quadrature techniques are numerical integration methods based on the

following approximation

� b

a

W (x)f(x)dx ≈
N
�

j=1

wjf(xj), (C.1)

where W (x) is a known function and f(x) can be approximated with a polynomial,

and the weights wj and the quadrature positions xj depend on the choice of W (x).

In Gauss-Legendre quadrature, one has W (x) = 1. In addition, the weights are

computed using the following expression

wj =
2

(1− x2
j )[P

′
N(xj)]2

, (C.2)

where P ′
N(xj) is the derivative of the Legendre polynomial at its zero xj . Thus, the

quadrature positions xj, also known as abscissas, are the N zeros of the Legendre

polynomial PN(x) defined in the interval [−1, 1].

Assuming that f(x) is a polynomial function of order 2N − 1, Eq. (C.1) can be

evaluated exactly as follows
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Abstract

The present PhD thesis contributes to the development of numerical methods used

to reproduce the electron dynamics induced by single and multiphoton processes in

atoms and molecules. In the perturbative regime, photoexcitation and photoioniza-

tion have been studied in atoms with range-separated density-functional theory, in

order to take into account the electron-electron interaction effects. Moreover, in the

non-perturbative regime, above-threshold ionization and high-harmonic generation

spectra have been simulated using different representations for the time-dependent

wave function for the purpose of describing the continuum states of the irradiated

system. Our studies open the possibility of exploring matter-radiation processes in

more complex systems.

Résumé

Cette thèse contribue aux développements de méthodes numériques utilisées pour

reproduire la dynamique électronique induite par des processus à un et plusieurs pho-

tons dans les atomes et molécules. Dans le domaine perturbatif, la photoexcitation et

la photoionisation ont été étudiées à l’aide de la théorie de la fonctionnelle de la den-

sité à séparation de portée, dans le but de prendre en compte les effets d’interaction

électron-électron. De plus, dans le domaine non-perturbatif, les spectres au-delà du

seuil d’ionisation et les spectres de génération d’harmoniques d’ordres élevés ont été

simulés en utilisant différentes représentations de la fonction d’onde dépendante du

temps du système étudié. Cette étude ouvre la possibilité d’explorer des processus

matière-rayonnement dans des systèmes plus complexes.


