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Abstract 

Naturally fractured reservoirs occupy the first places in the world's reserves and form a very special 
class of hydrocarbons reservoirs. Their study is very specific and complex due to the secondary 
porosity and permeability of the fractures network. Fluids flow essentially through the fracture 
network while the large amount of oil is stored in the rock matrix, making the oil production from 
these reservoirs a great challenge for petroleum engineers. During secondary or tertiary recovery in 
severely fractured reservoirs, the injection of low viscosity fluids, such as gas or water, leads usually 
to the early breakthrough of these fluids (fluid channeling) into the production wells causing thereby 
a poor microscopic and macroscopic oil recovery efficiency. The main challenge in chemical 
enhanced oil recovery (cEOR) operations in fractured reservoirs is to prevent this fluid channeling 
phenomenon, so that the injected fluids can enter, get in touch and move the oil trapped in the matrix. 
These operations are known as conformance control and an improved conformance in a fractured 
reservoir can be achieved by reducing the fractures permeability through gel systems, foam systems 
or the microbial growth. The purpose of this thesis is to study the thermal gelation of a polymer gel 
system formed by partially hydrolyzed polyacrylamides (PHPAs) and polyethylenimines (PEIs). The 
gelation time, gel strength and gel thermal stability, of well characterized reactants, are investigated 
as function of the main physico-chemical parameters. The response surface methodology (RSM) is 
employed to develop a mathematical model that allows the prediction of the gelation time of 
PHPA/PEI systems in the temperature range between 70 to 90 °C. The crosslinking mechanisms of 
PHPA and PEI are then investigated and quantified using advanced techniques.  

Keywords: Partially hydrolyzed polyacrylamide, polyethylenimine, thermal gelation, gelation 
time, response surface methodology, crosslinking mechanisms. 

Résumé 

Les réservoirs fracturés naturellement occupent la première place dans les réserves mondiales et 
forment une classe très particulière des réservoirs d'hydrocarbures. Leur étude est très spécifique et 
complexe à cause de l’existence de la porosité et de la perméabilité secondaires caractéristiques des 
réseaux de fractures. Les fluides s'écoulent essentiellement à travers un réseau de fractures tandis que 
la grande quantité de pétrole est emmagasinée par la matrice rocheuse, ce qui rend la production de 
pétrole à partir de ces réservoirs difficile et un grand défi pour les ingénieurs pétroliers. Lors de la 
récupération secondaire ou tertiaire dans les réservoirs fortement fracturés, l'injection des fluides de 
faible viscosité, tels que le gaz ou l'eau, conduit généralement à des percées précoces de fluides 
(canalisation de fluide ou channeling) dans les puits de production, entraînant ainsi une mauvaise 
efficacité, à l’échelle microscopique et macroscopique, de la récupération de pétrole. Le challenge 
pour les opérations de la récupération chimique améliorée du pétrole (cEOR) dans les réservoirs 
fracturés, c’est d'empêcher ce phénomène de canalisation des fluides « channeling », afin que les 
fluides injectés puissent entrer, se mettre en contact et déplacer l'huile piégée dans la matrice. Ces 
opérations sont connues sous le nom de « contrôle de conformance ».  Dans un réservoir fracturé, la 
conformance peut être améliorée en réduisant la perméabilité secondaire des fractures par l’utilisation 
des systèmes de gels, de la mousse ou de la croissance microbienne. L’objectif de cette thèse est 
d'étudier la gélification d'un système de gel polymère formé par les polyacrylamides partiellement 
hydrolysés (PAPHs) et les polyethylenimines (PEIs). Pour des réactifs bien caractérisés, le temps de 
gélification, la force du gel et la stabilité thermique du gel sont étudiés en fonction des principaux 
paramètres physico-chimiques du système (PAPH/PEI). La méthode des surfaces de réponses (MSR) 
est utilisée pour développer un modèle mathématique qui permet la prédiction du temps de 
gélification des systèmes (PAPH/PEI) dans l’intervalle de températures compris entre 70 et 90 °C. 
Les mécanismes de réticulation, du PHPA avec de la PEI, sont ensuite étudiés et quantifiés à l'aide 
des techniques avancées. 
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Mots clés: polyacrylamide partiellement hydrolysé,  polyethylenimine, gélification thermique, 
temps de gélification, La méthode des surfaces de réponses,  mécanismes de réticulation. 

 ملخص

جداً من الخزانات الهيدروكربونية. تعتبر   تحتل الخزانات المتصدعة طبيعيا المراكز الأولى في احتياطيات العالم وتشكل فئة خاصة
السوائل بشكل أساسي عبر . تتدفق ثانويتين لشبكة الكسورمية والنفاذية الخزانات خاصة ومعقدة للغاية بسبب المسادراسة هذه ال

من هذه الخزانات تحديا   النفطمما يجعل إنتاج  الصخرية،المصفوفة  في ةخزنم تكونكبيرة من النفط الشبكة الكسور بينما الكمية 
سوائل المنخفضة  اليؤدي حقن عادةً ما  بشدة، صدعةمتالالثانوي أو العالي في الخزانات  راجستخكبيرا لمهندسي البترول. أثناء الا 

مردودية استرجاع النفط  بار الإنتاج مما يؤدي إلى ضعف لآ مبكر لهذه السوائل الختراق الاإلى  الماء،مثل الغاز أو  اللزوجة،
نات المتصدعة، في منع الخزا نفط فيلاستخلاص المعزز للالكيميائية لعمليات الأثناء  ،. يتمثل التحدي الرئيسيالمجهرية والعيانية

تعُرف هذه   ك النفط المحتجز في المصفوفة.يل وتحراصالات ،لو دخالن ملسوائل المحقونة امكن تت ظاهرة الاختراق المبكر بحيث  
نفاذية الكسور من خلال المواد   لعمليات باسم التحكم في التوافق، ويمكن تحسين التوافق في خزان متصدع عن طريق تقليلا

هدف هذه الأطروحة هو دراسة التشكل الحراري لمادة هلامية (جل بقاعدة   ، الرغوة أو التكاثر الميكروبي.(الجل) يةالهلام
  أمين. يتم فحص وقت التشكل، وقوة الجل، والثبات-يثيلين-يأكريلاميد المهدرج جزئياً والبول -البوليمرات) المتشكلة من البولي

تسُتخدم منهجية أسطح الاستجابة   الرئيسية. تمادا على العوامل الفيزوكيميائيةيدا، اعوصوفة جمال تفاعلاتلملالحراري للجل،  
أمين في نطاق  -يثيلين-أكريلاميد المهدرج جزئياً والبولي-لتطوير نموذج رياضي يسمح بالتنبؤ بوقت تشكل جيل أنظمة البولي

مهدرج جزئياً  أكريلاميد ال-ليات التشابك بين البوليلآ الكمي تحديدالفحص والدرجة مئوية. يتم   90إلى  70درجات الحرارة بين 
أمين باستخدام التقنيات المتقدمة.-يثيلين-والبولي  

ً -البولي الكلمات المفتاحية: منهجية أسطح ، وقت تشكل جيلالتشكل الحراري، ، أمين-يثيلين -البولي، أكريلاميد المهدرج جزئيا
. ليات التشابك، آابةالاستج    
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Introduction Générale  

Avec l’explosion démographique et la croissance économique des grands pays émergents (Chine, 

Inde, Brésil et autres) sans précédentes, les besoins mondiaux en énergie ne cessent de croître depuis 

le début du siècle contre des exigences et des restrictions écologiques de plus en plus strictes. Dans 

ce contexte, de grands efforts ont été déployés pour substituer les énergies fossiles non renouvelables 

par d’autres sources d’énergie renouvelables et respectueuses de l’environnement, en dépit de tout 

cela, le pétrole reste toujours la source d’énergie la plus utilisée et la plus demandée de nos jours. Par 

conséquent, les compagnies pétrolières se trouvent face à un défi majeur pour maintenir et/ou 

augmenter la production des grands champs pétroliers matures au regard du déclin constant du 

nombre de nouvelles découvertes et les coûts extravagants de l’extraction des réserves non-

conventionnelles. 

Dans les réservoirs conventionnels, la récupération du pétrole se fait généralement en trois étapes : 

primaire, secondaire et tertiaire. Durant la récupération primaire, le pétrole est acheminé vers les puits 

producteurs à travers les forces motrices présentes naturellement dans le réservoir telles que, 

l’expansion des aquifères actifs et des chapeaux de gaz, l’expansion du gaz dissout, l’expansion de 

l’huile et de la roche réservoir ainsi que l’effet de la gravité. La récupération secondaire consiste à 

injecter de l’eau ou bien du gaz, dans l’aquifère ou le chapeau de gaz respectivement, pour maintenir 

la pression du réservoir et balayer le pétrole vers les puits producteurs. Après ces deux étapes de 

production, le réservoir atteint sa limite de production économique et il est considéré comme étant un 

réservoir « mature », si bien que le plus souvent, deux tiers du pétrole restent toujours piégés dans le 

réservoir.  

Selon les pétroliers, l’extraction de la moitié du pétrole piégé dans les champs matures permettra de 

doubler les réservés mondiales exploitables. C’est dans ce contexte, que de nouvelles techniques de 

récupération assistée du pétrole, communément appelées en anglais « Enhanced Oil 

Recovery (EOR) » ont été mises en œuvre et largement développées depuis les années 1960. Tout 

particulièrement, les méthodes chimiques de la récupération assistée du pétrole (cEOR) consistent à 

réduire la tension interfaciale et les forces capillaires entre les fluides d’injection et les fluides du 

réservoir, et/ou l’augmentation de la viscosité du fluide déplaçant.   

Dans les réservoirs fracturés naturellement, les fluides circulent essentiellement à travers un réseau 

de fractures. Pour l’ingénieur pétrolier, la production du pétrole se trouve dans un paradoxe 

relativement au double comportement observé dans les réservoirs fracturés par rapport aux réservoirs 

non fracturés. En effet, les fractures ouvertes jouent un rôle très important durant la récupération 

primaire mais peuvent poser des contraintes lors des récupérations secondaire et tertiaire. Nous 

pouvons citer le phénomène de channeling (canalisation de fluide) comme problème typique 
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rencontré lors de l’exploitation des réservoirs fracturés. Les percées précoces des fluides d’injection 

dans les puits producteurs entraînent de mauvaises efficacités de balayage à l’échelle microscopique 

et macroscopique. Le principal défi au cours des opérations EOR dans ce type de réservoirs est 

d'empêcher le channeling, de sorte que les fluides injectés durant la phase secondaire ou tertiaire, 

peuvent entrer, se mettre en contact et déplacer le pétrole piégé dans la matrice rocheuse. La réduction 

de la perméabilité des fractures en faveur de la matrice rocheuse est connue sous le nom « contrôle 

de conformance ». Dans ce contexte, l’application des systèmes de gels retardés demeure l’une des 

stratégies les plus efficaces.  

En Algérie et après plus d’un demi-siècle d’exploitation, les grands champs pétroliers se rapprochent 

de plus en plus de leurs limites de productions. Cependant, les projets EOR chimique n’ont vu le jour 

que depuis un quinquennat et demeurent toujours en phase de recherche. C’est dans ce contexte actuel 

que s’inscrit cette thèse qui constitue une contribution à l’étude et à l’application de l’EOR dans les 

champs pétroliers algériens et tout particulièrement, l’utilisation des systèmes de gels retardés pour 

éventuellement les opérations de contrôle de conformance dans les réservoirs fracturés comme ceux 

de Tin Fouyé Tabankort (TFT), Hassi Messaoud (HMD), Rhourde El Baguel (REB)… etc. Cette 

étude repose sur deux critères essentiels en se basant d’une part,  sur les aspects écologiques et 

économiques et d’autre part, sur l’aspect technique en termes d’avantages que peuvent apporter les 

gels formulés à partir du polyacrylamide partiellement hydrolysé et de la polyethylenimine lors de 

l’exploitation des réservoirs fracturés naturellement qui feront l’objet de discussion dans ce 

manuscrit. 

Pour atteindre cet objectif, cette étude est répartie en cinq chapitres.  

Le premier chapitre expose l’état de l’art actuel des grands axes faisant l’objet de cette étude réparti 

en trois points principaux. Il présente en premier lieu, une définition des réservoirs fracturés 

naturellement, leurs classifications, caractéristiques et mécanismes de récupération. En second lieu, 

un point sur les méthodes chimiques de la récupération tertiaire. Troisièmement, une synthèse 

bibliographique concernant les méthodes de caractérisation et les différents types de gels, et tout 

particulièrement les gels à base du polyacrylamide partiellement hydrolysé et de la polyethylenimine. 

Le second chapitre est consacré à la caractérisation des matériaux et les réactifs utilisés dans cette 

étude en termes de masse moléculaire apparente, degré d’hydrolyse ou de branchement, température 

de dégradation, les concentrations de recouvrement et le comportement viscoélastique des 

polyacrylamides partiellement hydrolysés. 

Le troisième chapitre traite la thermo-gélification des systèmes de gels à base du polyacrylamide 

partiellement hydrolysé et de la polyethylenimine en termes de stabilité thermique, morphologie, 

relations structure-propriété et comportement viscoélastique.  
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Le quatrième chapitre consiste à élaborer un modèle mathématique décrivant le temps de gélification 

en fonction des principaux paramètres physico-chimiques en utilisant la méthode des surfaces de 

réponses (MSR).  

Le dernier chapitre aborde d’une part, l’influence du degré d’hydrolyse et du pH sur le temps de 

gélification. Et d’autre part, l’étude des mécanismes de réticulation entre le polyacrylamide 

partiellement hydrolysé et la polyethylenimine. Par ailleurs, des techniques de la résonance 

magnétique nucléaire classiques 1D (Proton « 1H » et carbon « 13C ») et avancées 2D (DOSY et 

NOESY), ont été utilisées pour suivre les variations chimiques sur les réactifs et quantifier la 

cinétique de gélification.  

Enfin, ce manuscrit s’achève avec une conclusion générale où sont regroupés les résultats essentiels 

de cette thèse ainsi que les recommandations et les perspectives de ce travail. 
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1. Chapter I: State of art 

1.1 Naturally Fractured Reservoirs 

1.1.1 Definition 

Naturally Fractured reservoirs (NFRs) are geological formations with two distinct types of porous 

media: a rock matrix and a fracture network, which give the reservoir a dual porosity and permeability 

characteristics. Formed in many depositional environments including carbonates, shales and 

sandstones, naturally fractured reservoirs represent more than 50 % of hydrocarbons reservoirs and 

contribute in a large extent to the worldwide production of oil and gas [1]. Although, the majority of 

the hydrocarbon reservoirs are fractured to some extent, their fractures have an ignored effect on the 

fluid flow and storage. In the case of naturally fractured reservoirs, the fracture network has a 

significant impact on fluid storage and its conductivity, the reservoir performance and oil recovery 

[2]. The fractures may appear in a single or multiple rock formations, due to the mechanical failures 

of the rock under natural geological stresses such as tectonic movements, lithostatic (overburden) 

pressure changes, thermal stresses, high fluid pressures, drilling activities, and even fluid extraction 

[3]. These fractures can have dimensions of several micrometers (micro-fissures) to several thousand 

kilometers (continental fractures). Neglecting or failing to determine the distribution, the orientation, 

the interconnectivity and the degree of mineral cementation of these fractures [4, 5], can have serious 

consequences on the development and production from the reservoir such as designing inappropriate 

wells patterns or drilling unnecessary in-fill wells. Performing a proper characterization of a naturally 

fractured reservoir was always a challenging task especially during the earliest stages of the reservoir 

history. While, the complex role of the fractures during the primary and secondary recovery phases 

makes the naturally fractured reservoirs a production paradox [6]. 

1.1.2 Classifications 

The naturally fractured reservoirs can be classified based on the contributions of the porosities and 

permeabilities of both the fracture network and the rock matrix into the overall reservoir production. 

Nelson [7] introduced the most general typology considered nowadays, which classify the naturally 

fractured reservoirs to four types as shown in Figure 1.1 and explained below: 
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Figure 1.1 : Naturally fractured reservoirs classification system. [7] 

Type I: Fractures provide the essential reservoir porosity and permeability while the matrix has little 

porosity and permeability. In this case, the hydrocarbons are stored in the fracture network and the 

fluids flows are controlled also by this network. The reserves in this reservoir type are rather low, and 

the development of such reservoir requires only the drilling of few wells. The latter are likely to 

produce at high initial rates due to the larger drainage area per well. However, the production will 

decline very fast and the water/gas breakthrough will occur earlier [6]. An example of this reservoir 

type is the Amal field in Libya.  

Type II: Fractures provide the essential reservoir permeability while the matrix provides 

more porosity and stores a part of the hydrocarbons. The reserves in this reservoir type are 

substantially higher than those in Type I reservoirs thanks to the enhanced matrix porosity. The initial 

production rates are generally good, however during the secondary recovery, difficulties can occur if 

the fracture matrix communication is poor. Examples of such type are the Agha Jari and Haft Kel 

fields in Iran and La Paz/Mara field in Venezuela. 

Type III: Fractures only assist the permeability in an already producible reservoir which has a high 

matrix porosity. This type represents the case of most of the largest fields in the world such as the 

Kirkuk field in Iraq, Gachsaran field in Iran, Hassi Messaoud field in Algeria and Dukhan field in 

Qatar. The reservoirs are more continuous and tend to sustain economic production rates but can have 

complex directional permeability relationships. 

Type IV: Matrix has high porosity and permeability and governs the storage of all the hydrocarbons 

of the reservoir. On the other side, fractures provide no additional porosity or permeability and create 

only a reservoir anisotropy. Usually, these fractures are filled with minerals and tend to block the 

fluid flow, which renders the reservoir economically unprofitable for development and production. 



Chapter I 
 

6 
 

1.1.3 Characteristics  

During the drilling and production phases, fundamental differences between naturally fractured 

reservoirs and conventional non-fractured reservoirs can be observed. Van golf Racht [8] and Saidi 

[9] listed the biggest differences between the two types of reservoirs as follow: 

 Mud losses during the drilling phase are more pronounced in fractured reservoirs due to the 

presence of large fractures and thief zones/voids. 

 The water-oil contact (WOC) and gas-oil contact (GOC) are sharp interfaces before and 

during the production phase because of the rapid re-equilibration of the fluids insured by the 

high fracture permeabilities. In contrast, large transition zones between the water and oil, the 

gas and oil are observed in conventional non-fractured reservoirs. 

 Thanks to the convective circulation inside the fractures, PVT properties and fluids 

compositions are constant with depth in fractured reservoirs. On the other side, varying bubble 

points as function of depth are observed in the conventional non-fractured reservoirs. 
 Very high productivity indexes of around 500 Standard Barrel/Day/psi or higher are typically 

observed in naturally fractured wells producing under laminar flow. 

 The pressure drops around producing wells (horizontal pressure gradients) are usually lower 

than those in conventional non-fractured reservoirs due to the high transmissibility of fluids 

in the fracture network. These pressure drops do not have any important role in the production 

phase which is more related to the fracture/matrix communication. 

 The vertical communications in fractured reservoirs causes the liberated gas from the oil phase 

to segregate towards the top of the reservoir rather than towards the well, which result in lower 

Gas Oil Ratio (GOR). 

 The petrophysical characteristics of the rock matrix and the PVT properties of the fluid which 

affect largely the breakthrough phenomenon in conventional non-fractured reservoirs, have 

no significant effect in the case of fractured reservoirs. The breakthrough phenomenon and 

the water cut depend only on the production rate. 

 An artificial stimulation, by acidizing, results usually in a considerable increase in the 

productivity of the wells in naturally fractured reservoirs compared to conventional non-

fractured reservoirs. In this case, the acids tend essentially to increase the width of the already 

existing fractures and channels. 

1.1.4 Recovery mechanisms in naturally fractured reservoirs 

In general, the oil production from a reservoir is governed by viscous, capillary and gravitational 

forces [10]. In the case of naturally fractured reservoirs, the recovery mechanisms are slightly 

different from those in conventional non-fractured reservoirs because of the low viscous forces and 
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the high capillarity differences between the matrix and the fracture network [11]. Depending on the 

displacing fluid and reservoir characteristics and conditions, four basic recovery mechanisms are 

usually considered in naturally fractured reservoirs namely the gravity drainage, spontaneous 

imbibition, fluid expansion and molecular diffusion [12] as depicted in Figure 1.2 and discussed 

subsequently. 

 

     

Figure 1.2 : Schematic of different recovery mechanisms in fractured reservoirs (A) Gravity 
drainage (B) Spontaneous imbibition (C) Fluid expansion (D) Molecular diffusion. [13] 

The gravity drainage was first discussed by Cardwell and Parsons [14]. The mechanism consists on 

oil displacement by immiscible gas and occurs from the top of the matrix blocks when the gravity 

forces overcome the capillary forces in the matrix [15]. The gravity forces are determined by the 

density difference between the gas in the fracture and the oil in the matrix and the effective height of 

the matrix blocks [16]. The latter represents the height of one matrix block if there is no capillary 

continuity and the sum of the matrix blocks heights if a capillary continuity is established between 

the blocks as shown in Figure 1.3. The larger the effective height and the lower density difference 

are, the lower is the capillary threshold pressure of the matrix block and the higher is the gravity 

drainage mechanism. 
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Figure 1.3 : Gravity drainage between vertical matrix blocks.[16] 

The imbibition mechanism consists on oil displacement by water and can occur 

naturally/spontaneously if initiated by capillary forces or forcibly if caused by external forces which 

give rise to a pressure gradient between the fracture and the matrix [17]. An imbibition where the 

water enters from one matrix side (face) and the oil is recovered from the opposite side is a co-current 

imbibition. While an imbibition where the water enters from one matrix side (face) and the oil is 

recovered from the same side is a counter-current imbibition. The imbibition is governed by numerous 

factors including rock wettability, capillary pressure, initial water saturation, oil/water interfacial 

tension, pore structure, matrix block size and the surface area open to flow [18]. In water wet 

reservoirs, the spontaneous imbibition can result in important oil recoveries during the primary 

recovery phase by an active water drive process and during the secondary recovery phase by a water 

flooding process. 

Fluid expansion mechanism occurs mainly in the primary recovery phase. As the oil production from 

the reservoir starts, it causes a rapid pressure drop in the fracture network compared to the matrix. 

Such pressure difference between the two systems initiates the oil flow to outside the matrix as it 

expands. Moreover and below the bubble point, gas will evolve from the oil and the expanding gas 

will lead to further recovery from the matrix [13]. 

Similarly, to the fluid expansion mechanism, the molecular diffusion mechanism occurs due to the 

difference in the hydrocarbon components concentrations between the gas in the fracture network and 

the oil in the matrix. The hydrocarbon components of the gas may diffuse into the oil and cause it to 

swell, reducing its viscosity and forcing it outside the matrix [13]. This mechanism is very limited 

and slow. However, if a miscible gas is injected, the two fluids can be easily mixed and can reach a 

thermodynamic equilibrium by exchanging some of their individual hydrocarbon components 

forming consequently a single hydrocarbon phase that can be recovered. It was reported in literature 

that a gas recycling process can result in a recovery of the half of condensates, from a fractured gas 

condensate reservoir, only through the diffusion mechanism [12]. 
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1.2 Enhanced Oil Recovery methods in Naturally Fractured Reservoirs 

Oil recovery from hydrocarbon reservoir passes by three recovery phases: primary, secondary and 

tertiary phases. During the primary phase, the oil is produced under the initial reservoir energy (active 

water drive, gas cap drive, dissolved gas) through one of the aforementioned mechanisms (imbibition, 

drainage, expansion, diffusion). The fracture network usually plays a positive role by conducting the 

oil towards the producing wells. In the secondary recovery phase, water or gas are injected to maintain 

the reservoir pressure and provide an additional mean to sweep the oil, in such phase, the fracture 

network has a complex role depending on the matrix rock wettability preferences, the fractures 

dimensions and orientation in regards the injection and production wells. For instance, a 

waterflooding operation in a water-wet fractured reservoir can be very cost efficient due to the 

spontaneous imbibition mechanism as observed by the increased oil production rates in the Ekofisk 

fractured reservoir in Norway as shown in Figure 1.4 [19]. However, in oil-wet or neutral wet 

fractured reservoirs, the spontaneous imbibition mechanism is low, and the injected water tends to 

flow exclusively through the fracture network leaving the majority of the oil unswept [10]. 

 
Figure 1.4 : Oil production rate response in the Ekofisk field during 25 years with a waterflooding 

process starting after 15 years. [19] 

Allan and Sun [20] evaluated the ultimate oil recovery during primary and secondary recovery in 

one hundred 100 fractured reservoir around the world.  In 56 oil reservoirs and 8 gas reservoirs for 

which reliable data were available as depicted in Figure 1.5, the average ultimate recovery in oil 

reservoirs was of 26% while in gas reservoirs was of 61%. Particularly, in Type III fractured 

reservoirs, the well fractured water-wet reservoirs had ultimate recovery factors ranging from 25 to 

45% compared to only 5 to 25% for the well fractured oil-wet reservoirs, which confirms the 

pronounced efficiency of the secondary waterflooding in the water-wet reservoirs [21]. 
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Figure 1.5 : Distribution of ultimate recovery factor for Oil/Gas fractured reservoirs of all types. 
[20] 

Tertiary recovery or Enhanced oil recovery (EOR), which encompasses various techniques used to 

increase the amount of recoverable oil after the conventional (primary and secondary recoveries) 

strategies are no longer effective, has found its application also in naturally fractured reservoirs. Green 

and Willhite [22] categorized the EOR methods into five categories namely: mobility control, 

chemicals, miscible, thermal and others which include the Microbial EOR. More recently, Sheng [23] 

considered the mobility control methods as a subcategory of Chemical EOR methods. In this study, 

we are presenting only the main chemical EOR methods including mobility control methods 

employed in naturally fractured reservoirs: 

1.2.1 Wettability Reversal/ Interfacial Tension Reduction 

Promoting the spontaneous imbibition mechanism, by altering the wettability of an oil-wet fractured 

reservoir to become water-wet or reducing the interfacial tension (IFT) between the two phases, is 

one of the strategies that can be very efficient. The injection of cationic, anionic and nonionic 

surfactants was reported to alter the wettability of oil-wet carbonates towards water-wet [24]. The 

mechanism of the wettability reversal is not fully understood. However, some of the proposed 

mechanisms include the desorption of polar organic components from the originally oil-wet surfaces 

through ions pairing with the charged surfactants [25] and the micellar solubilization [26]. The 

thermal stimulation was also proposed as a method to alter the rocks wettability [27]. Schembre et al. 

[28] stated that high temperatures enhance the water wetness of diatomite rocks and reduce the oil to 

water viscosity ratio, which yields a less resistant force to water imbibition. A third technique consists 

on injecting smart water [29]. A smart water is a brine with optimized concentrations of calcium 

(Ca2+), sulfate (SO4
2-) and magnesium (Mg2+) ions. These ions are considered as wettability 

influencing ions in carbonate reservoirs due to their preferential adsorption on the chalk surfaces and 

abilities in displacing the organic carboxylic groups responsible on the oil-wet state of the surface 

[30].  
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On the other side, if the IFT between the oil and the gas is reduced, the gravity drainage mechanism 

can be enhanced. Karimaie and Trorsaeter [31] observed an increased oil recovery as the IFT was 

decreased between the gas and oil following the re-pressurization of the injected gas. 

1.2.2 Mobility/Conformance Control 

In fractured reservoirs where the imbibition/drainage mechanisms are limited and the fractures are so 

large or highly conductive, the injected fluids will essentially flow in the fracture network leaving 

huge quantities of the oil trapped in the matrix. A rapid breakthrough of injection fluids into the 

production wells and poor oil sweep efficiencies are observed as illustrated in Figure 1.6. In this case, 

a fracture channeling phenomenon occurs, which is considered as one of the most common reservoir 

conformance problems [32]. 

 
Figure 1.6 : Fracture channeling phenomenon.[33] 

The main challenge is to reduce the fractures conductivity in order to force the injection fluids to 

enter, get in touch and move the oil trapped in the matrix. These operations are known as conformance 

control treatments. Three techniques employed in reducing fractures permeability namely Foam, 

Microbial and Gels are presented below: 

1.2.2.1 Foam 

Foams are liquid systems prepared by mixing gas (CO2, N2, CH4 or flue gas), liquid (water) and 

foaming agents (surfactants) to form a discontinuous gas phase (bubbles) separated by a thin liquid 

films called lamellae. Based on the amount of the gas phase, dry foams/Polyederschaum or wet 

foams/Kugelschaum can be prepared [34]. As shown in Figure 1.7, dry foams are characterized by 

polygonal bubbles separated by thin lamellae films due to the high gas volume fractions. While, wet 

foams are formed by low gas volume fractions and are characterized by spherical bubbles separated 

by thick lenses of the liquid [35]. The bubbles size and distribution are the main indicators of a bulk 

foam stability. The latter is affected by many factors associated with both the physiochemical 

properties of the foam components (gas, liquid, surfactant) such as surfactant type and concentration, 
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liquid viscosity, density difference between gas and liquid, and the presence or not of detrimental 

components such as lower chain hydrocarbons [36]. 

 
Figure 1.7 : Gas bubbles forms in dry and wet foams.  

Foam injection in porous media as a potential EOR method was first proposed by Boud et Holbrook 

[37]. Later, Bernard and Holm [38] highlighted the effect of foam in reducing the gas relative 

permeability in heterogeneous reservoirs, and considered the foam as a promising agent for 

controlling gas mobility. In fact, foams have higher viscosities compared to water and gas [34]. When 

injected in a reservoir, foams exhibit both a viscosity-enhancement component and a permeability-

reducing component [32]. The viscosity-enhancement component is related to the high-pressure drops 

needed to drive the bubbles at a constant velocity. While, the permeability-reducing component is 

related to the formation or the increase in the trapped residual-gas saturation, which reduces the 

relative permeability of the gas [39]. Figure 1.8 shows a pore scale schematic of gas trapping function 

of foam in porous media, where capillary forces play an important role in immobilizing a large 

fraction of the foam bubbles especially in the intermediate-sized pores. 

 

Figure 1.8 : Pore scale schematic of gas trapping function of foam in porous media.[40] 

In heterogeneous reservoirs, Foams can be generated in-situ through one of the generation 

mechanisms namely snap-off, lamellae division and leave behind [41] as shown in Figure 1.9.  
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Figure 1.9 : Foam generation mechanisms (a) Snap-off (b) Lamellae division (c) Leave-behind.[42] 

Foams are preferentially generated in the high permeability zones and tend to divert the subsequent 

flow into the low permeable zones. When capillary communications and crossflows are established 

between the two zones, the foam front will move uniformly at equal velocity [43]. This feature 

encouraged the investigations of foam injection for conformance control operations in fractured 

reservoirs. Kovscek et al. [35] studied experimentally the flow of nitrogen, water and foam through 

a transparent rough-walled rock fracture with a hydraulic aperture of 30 μm. For foam qualities 

ranging from 0.60 to 0.99, their results showed that foam flow resistance was 100 to 540 times higher 

than that of nitrogen gas. At the microscopic scale, foam injection was evaluated in fractured silicone 

models by Kovscek et al. [44] and Gauteplass et al. [45]. Similarly, Fernø et al. [46] evaluated the 

generation of foam and its behavior in a fractured network of marble blocks. Zuta and Fjelde [47] 

reported an important improvement in the sweep efficiency and the recovery factor when CO2 foam 

was injected under reservoir conditions in a fractured core plug where the fracture was simulated by 

a drilled hole of 0.3 cm diameter. Recently, Haugen et al. [48] investigated the injection, in fractured 

rocks with different wettability preferences, of miscible CO2, CO2 foam and N2 foam following a 

secondary water injection. The Ultimate oil recoveries were found to be higher in oil-wet cores than 

in water-wet cores. While the miscible CO2 and N2 foams were more efficient compared to the 

immiscible foams. The major limitation of foam injection at the field scale is the excessive pore 

volume (PV) needed to achieve high oil recoveries. Haugen et al. [49] obtained an 80 % recovery of 

the original oil in place only after injecting more than 100 PV of a pre-generated immiscible N2 foam. 

1.2.2.2 Microbial  

The bacterial growth inside the fractures was investigated as an innovative method to reduce the 

fractures permeability [50]. Bacillus and Clostridium microorganisms have a great potential to 

survive under harsh conditions of hydrocarbon reservoirs. Once in the reservoirs with sufficient 
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nutrients, the in-situ metabolism starts producing cellular mass capable of plugging physically the 

fractures [51]. Soudmand-asli et al. [52] investigated two types of bacteria (Bacillus subtilis and 

Leuconostoc mesenteroides) to enhance the oil recovery in fractured porous media of etched-glass 

micromodels. They observed a considerable permeability reduction when the Leuconostoc 

mesenteroides bacteria were incubated in sand-packed column. However, the plugging of the matrix-

fracture interfaces resulted in a poor oil recovery in the fractured porous media. Al-Hattali et al. [53] 

studied the plugging recovery mechanism of Bacillus licheniformis strains in fractured carbonate 

rocks under various nutrients such as nitrogen sources, yeast extract, peptone and urea. They obtained 

a total of 27–30% of the residual oil recovery within only 11 hours of incubation. 

1.2.2.3 Gels  

Gel systems have shown to be of great interest for the petroleum industry. Several gel systems, such 

as Bulk Gels [54], Weak Gels [55], Colloidal Dispersion Gels (CDGs) [56], Performed Particle Gels 

(PPGs) [57], Microgels [58], were developed and applied in oilfields to account for the various 

technical and environmental demands. By far, bulk gels were the largest applied gel technology in 

conformance control operations, including sweep-improvement treatments and water- and/or gas-

shutoff treatments [32] overcoming the other two techniques (Foam and Microbial) thanks to their 

cost efficiency, controllable gelation times and adjustable strengths [59]. Bulk gels are chemically 

crosslinked fluid-based systems which have acquired a solid-like properties induced by a continuous 

3D structure of a chemical agent [32]. Bulk gels are initially under the form of low viscosity gelant 

solutions which allows their injection in injection/production wells. When arriving to the targeted 

zone, a gelation reaction takes place under the effect of one of the activation methods such as 

temperature, pH, chemical precursors, transforming the mobile gelant solution to a nonmobile gel 

that block the targeted zone (fracture, high permeability zone). Three main characteristics of bulk 

gels namely, the gelation time, the final gel strength and the long-term stability, alongside their 

behavior and flow properties in porous media, should be well studied and controlled to guarantee the 

success of the gel treatment. When placed in the reservoir, bulk gels can be significantly affected by 

the surrounding reservoir conditions, which may alter their volumes and affect their blocking 

capacity. Dehydration, syneresis and swelling are the most common processes that alter gel volume 

with different manner and to different extents. The first two processes reduce the gel volume while 

the third increases the gel volume. In dehydration, the gel volume is decreased due to the expulsion 

of solvent from the gel by a pressure gradient imposed on the bulk gel or a spontaneous imbibition of 

the water from the gel to the rock matrix. Syneresis occurs when an over gelation/crosslinking takes 

place while swelling occurs under the effect of osmotic pressure when a salinity concentration 

difference between the water forming the gel and the injection or formation water is present.  
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A variety of bulk gels were widely studied and developed in both laboratories and oilfields since the 

earliest years of the 20th century. For instance, two major groups namely the inorganic sodium silicate 

gels and the organic polymer gels can be distinguished. Both groups are presented in the subsequent 

sections with an emphasis on the second group (polymer gels). 

1.3 Silicate gels 

Silicate gels are likely the oldest bulk gel technology in conformance-improvement treatments, with 

the first application reported as early as 1922 [60]. Sodium silicate gels are precipitation type gels 

[61] formed by lowering the pH value of a sodium silicate solution (Na2O.nSiO2) with an acidic 

activator such as hydrochloric acid (HCl), sulfuric acid (H2SO4) or citric acid, following the steps 

illustrated in Figure 1.10. Depending on the percentage of the active content in the solution and the 

ratio of silica (SiO2) to sodium oxide (Na2O), a wide range of sodium silicate gel forms can be 

obtained. Nevertheless, the most common sodium silicate solution, used in oilfields, has a ratio of 

SiO2 to Na2O around 3,3 to 1 with an active content of 38-40 wt% in water [62]. 

 

 

Figure 1.10 : Formation mechanism of sodium silicate gel.[63] 

While the silicate portion of the gel is in itself environmentally friendly, the environmental aspect of 

the activator depends on the selected acid [32]. Sodium silicate gels represent also some limitations 

regarding their applications in fractured reservoirs such as the very low initial gelants viscosities 

which can invade the non-targeted zones [64], gel syneresis and brittleness that causes gels to lose its 

blocking efficiency very easily [65] and the hardly controlled gelation times [66]. Despite these 

disadvantages, the silicate gels have regained some interest during the last decade with additional 

enhancement on the employed chemicals. Nasr-El-Din and Taylor [67] evaluated a sodium silicate 

system with urea as an internal activator, as both reactants are non-toxic and readily available.  

Recently, Hatzignatiou et al. [68] screened and compared commercial silicate gelants for 

conformance control in naturally fractured carbonate reservoirs. Several activators, such as NaCl, 

HCl, sodium acid pyrophosphate (SAAP) and citric acid (CitAc), were tested for their ability to form 

rigid gels at 40 °C, 60 °C and 80 °C, considering  different types of silicates and SiO2 to M2O ratios,. 

The authors proposed to incorporate polymers as additives to the standard silicate-based gelants in 

order to enhance the initial gelants viscosities and the final gel strength. 
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1.4 Polymer gels 

Polymer gels are prepared by dissolving small quantities of a water-soluble polymer with a 

crosslinker agent, which under the effect of temperature form a gel as shown in Figure 1.11. A typical 

polymer gel is consisted of about 7000–10000 ppm polymer and 500–2000 ppm crosslinker with the 

remainder (99%) being water [69]. 

 

Figure 1.11: The typical scheme for preparing a polymer gel.[18]  

The base-polymers used for preparing polymer gels are mainly of two types:  

- Synthetic polymers such as Polyacrylamide (PAM) [70], Partially Hydrolyzed Polyacrylamide 

(PHPA) [33], Polyacrylamide/tert-butyl Acrylate (PAtBA) [71], Copolymer of acrylamide (AM) 

and acrylamido-2-methylpropane sulfonic acid (AMPSA) [72], Terpolymer of AM, AMPSA, N,N-

Dimethyl Acrylamide (N,N-DMA) [73], Terpolymer of AM, AMPSA, N-Vinylpyrrolidone (NVP) 

[74], Hydrophobically Associating Polymer (HAP) [75]. 

- Biopolymers such as Xanthan gum [76], Guar gum [77] and Scleroglucan [78].  

On the other hand, crosslinking agents are of three types:  

- Inorganic: these are multivalent metal cations (chromium, aluminum, zirconium or titanium) 

attached to chemical complexes called ligands such as acetate, citrate, lactate, malonate and 

propionate… etc [79]. The ligands are mainly used to control the crosslinking rate between the 

polymer and the trivalent cations by releasing slowly and in controllable manner the trivalent 

cations according to the surrounding conditions (temperature, pH…etc.). The trivalent cations 

form then an ionic bond with the negatively charged groups on the backbone of the polymer [80].  

- Organic: In this case, the crosslinking is achieved through a covalent bond between the functional 

groups of the polymer and an organic crosslinker such as glyoxal [81], polyethylenimine (PEI) 

[82], a combination of a phenol source (Phenol, Phenyl acetate, Hydroquinone (HQ), Dihydroxy-

naphthalene) with a formaldehyde source (Hexamethylenetetramine (HMTA), 

Terephthalaldehyde, Paraformaldehyde) [33]. Two main advantages of these crosslinkers, over the 
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inorganic ones, are the longer gelation times and the thermal stability at higher temperatures [69] 

and the resistance to ionic forces [81]. 

- Natural: In an attempt to examine and promote eco-friendly crosslinkers, Reddy et al. studied the 

crosslinking ability of chitosan with acrylamide-based polymers such as PHPA, PAtBA and 

Acrylamide/AMPSA copolymer [83]. Chitosan is a low molecular weight (Mw) linear 

polysaccharide, thus nontoxic and biodegradable, which can crosslink with acrylamide-based 

polymers through covalent bonds. However, as it precipitates above pH=6, the use of this 

crosslinker at large scales (oilfield) was restricted. 

Among all these polymers and crosslinkers, partially hydrolyzed polyacrylamide (PHPA) and 

polyethylenimine (PEI) as the base polymer and the crosslinker respectively, were the most promising 

reactants at both the laboratory and industrial scales especially during the last decade.  Here below, 

we are presenting each one alongside their characteristics and advantages. 

1.5 Partially Hydrolyzed Polyacrylamide 

Partially Hydrolyzed polyacrylamide (PHPA) is a synthetic linear polymer consisted of acrylamide 

and acrylate monomers presented through their amide (CONH2) and carboxylate (COO-H+/Na+) 

functional groups respectively, as shown in Figure 1.12. PHPAs have usually high molecular weights 

of 4 and up to 30 ×106 g/mol [84]. They are produced through the hydrolysis reaction of a non-ionic 

polyacrylamide (PAM), the copolymerization reaction of an acrylamide with an acrylic acid, and 

finally the aminolysis reaction of a polyacrylate (PAA) [85]. However, only the first two reactions 

are used for the commercial production of PHPA, which is supplied either in the powder or the 

emulsion form [23]. 

 

Figure 1.12 : The chemical structure of PHPA. 

One of the most important parameters that describes a PHPA is its hydrolysis degree (HD) defined 

as the ratio of the carboxylate groups divided by the total number of the carboxylate and the amide 

groups [86], as given in the following equation:  

𝐻𝐷 =
௒

௒ା௑
                                                                  Equation 1.1 

Where Y is the molar concentration of the carboxylate groups in (mol/l) and X is the molar 

concentration of the amide groups in (mol/l). 
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The hydrolysis degrees of PHPA vary typically between 1 to 60 % [79] but are comprised only 

between 5 to 30 % for the commercial PHPA products [23]. The number of the negatively charged 

carboxylate groups on the PHPA backbone is so decisive regarding the stability and the rheological 

properties of the polymer solution in one side and the crosslinking reaction with inorganic 

crosslinkers in the other one. When prepared in a given aqueous solution, the electrostatic repulsion 

between these negatively charged groups is responsible on the conformation of the polymer and its 

apparent viscosity. In salt free water, the negative charges (COO-) tend to repel each other causing 

the polymer flexible chains to stretch, the hydrodynamic volume to increase and the apparent 

viscosity to be high. In contrast, in saline water and under the effect of monovalent or bivalent cations, 

the negative charges are screened and neutralized, resulting in the polymer chains to be compressed, 

the hydrodynamic volume to decrease and low viscosity to be observed. The temperature, the 

presence of bivalent or trivalent cations in the aqueous solution, and oxygen were all found to affect 

the stability and efficiency of PHPA. For temperatures greater than 60 °C, the auto-hydrolysis of the 

amide groups (CONH2) to carboxylate groups (COO-) is accelerated [87] shifting the initial 

hydrolysis degree to very high values (> 45%) which result in viscosity drop as the polymer chains 

become compressed and distorted. Moreover, and in the presence of high concentration bivalent or 

trivalent cations, the polymer may precipitate [88]. While, the presence of oxygen, especially at high 

temperatures, leads to the oxidative degradation of the polymer [89], which result in quick viscosity 

loss with time [90]. Despite these limiting factors, PHPAs were by far the most widely employed 

polymer for both conformance control especially in fractured reservoirs and for enhanced oil recovery 

(EOR) operations including polymer flooding (PF) and alkaline-surfactant-polymer (ASP) flooding 

[91], thanks to their lower cost, commercial availability, greater viscoelasticity, lower adsorption to 

reservoir rocks and resistance to microbial degradation [23]. 

1.6 Polyethylenimine 

Polyethylenimines (PEIs) are low molecular weight polymers (Mws varying between 0.8 to 750 × 

103 g/mol) of variable structures such as linear, branched, comb, network and dendrimer architectures 

formed by the linking of ethylenimine units through different synthesis and modifications methods 

[92]. Usually, commercial polyethylenimines have a spherical branched structure and are synthetized 

by an electrophilic ring-opening polymerization of unsubstituted ethylenimine with a protonic 

catalyst such as Lewis acids and their salts, strong Brønsted acids, carboxylic acids, or halogens [93]. 

Branched PEIs are consisted essentially of three amino groups, making it a highly nucleophilic 

reactant: (1) primary amine end groups (NH2), (2) secondary amine linear units (NH), (3) tertiary 

amine branched units (N) (i.e., dendritic units), separated by two methylene carbons (CH2) as shown 

in Figure 1.13. They are also characterized by a branching degree (BD) defined as:  
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BD=
2D

2D+L
                                                                   Equation 1.2 

where: D are the dendritic units and L are the secondary amine linear units [94]. 

 

Figure 1.13: The chemical structure of a branched polyethylenimine. 

Branched PEIs are amorphous and freely soluble in water, methanol, ethanol and acetone, while at 

room temperature, they are highly viscous and odourless liquids [92]. Most importantly, PEIs are 

considered as eco-friendly materials, that were approved for food contact in the United States [83]. 

In fact, the acute oral toxicity of branched PEIs varies with its molecular weight. For example, the 

median lethal dose (LD50) of PEIs with a molecular weight between 0.3-30 × 103 g/mol, is around 

0.8-3.0 g/kg (mouse) and reaches 8.0 g/kg (mouse) for a 30 wt% aqueous solution of PEI with a 

molecular weight between 70-100 × 103 g/mol [93].  

Polyethylenimines have also a  highly cationic character [95], since some of their primary and 

secondary amine groups can be protonated to ammonium ions (NH3
+), according to the pH of the 

solution as shown in Figure 1.14:  

 
Figure 1.14 : The percentage of PEI’s unprotonated nitrogens versus the solution pH.[96]  
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Thanks to all these attractive features (branched structure, high nucleophilicity, high ionic charge, 

water solubility and non-toxicity nature), PEIs were employed in a wide range of applications 

including but not limited to medicinal chemistry such as DNA transfection agents or drug delivery 

agents [97, 98], water treatment [99], carbon dioxide capture [100], cosmetics [101]. Similarly, PEIs 

have gained a huge interest in the oil and gas industry, especially during the last two decades, as 

effective crosslinkers of various acrylamide-based polymers that are presented and discussed in the 

subsequent parts.  

1.7 Polyethylenimine crosslinked polymer gels 

The first study on PEI crosslinked polymer gels was reported in a patent by Allison and Purkaple 

[102]. The authors stated that upon the mixing of 2.5 % Polyethylenimine with 0.1 % polyacrylamide 

(PAM), a viscous gel was quickly formed at room temperature. It was until 1997, when Morgan and 

co-workers introduced for the first time a gel system based on the crosslinking of PAtBA and PEI for 

the high temperature water/gas shutoff applications [82]. Since then, several acrylamide-based 

polymers were tested to crosslink with PEI as discussed here below and summarized in Table 1.1 at 

the end of the section. 

1.7.1 PAtBA/PEI 

The introduction of this system was in order to overcome the problems of the rapid gelation at high 

temperatures and the precipitation of the crosslinker at high pH associated with the PHPA/chromium 

(III) acetate gels. To solve the rapid gelation problems, the initial idea consisted of controlling the 

hydrolysis of the polymer to delay the crosslinking between the trivalent chromium cations and the 

negatively charged groups of the polymer. This option was offered by controlled hydrolysis co-

polymers such as Polyacrylamide/tert-butyl Acrylate (PAtBA) as shown in Figure 1.15:  

 

Figure 1.15 : The chemical structure of PAtBA.[103] 

 PAtBA was chosen based on its feed stock price and its high solubility in water [82]. However, the 

persistence of problems associated with the crosslinker itself, such as toxicity and precipitation in 

carbonate rocks, encouraged the investigations of new crosslinkers. At this stage, the PEI was selected 

first due to its ability to form covalent bonds with the carbonyl carbon at the PAtBA ester groups 
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through nucleophilic attack as shown in Figure 1.16 and secondly due to its eco-friendly aspect 

compared to other nucleophilic species which can also displace the PAtBA ester groups.  

 

Figure 1.16 : PEI nucleophilic attack on the ester groups of PAtBA. [103]  

The interaction of PAtBA with PEI formed a ringing solid gel that was stable for two months at 156 

°C [82] and it was later developed for the large commercial use [71]. The crosslinking mechanism 

between PAtBA and PEI was an active area of research for a lot of scientists. Hardy et al. [71] 

proposed three possible ways of crosslinking:  

 the nucleophilic attack.  

 the hydrolysis of the (-tBA) groups then an ionic crosslinking. 

 the thermolysis of the (-tBA) groups then an ionic crosslinking.  

The hydrolysis and thermolysis were the two reaction pathways of tert-butyl acrylate (-tBA) 

decomposition into an acrylic acid as shown in Figure 1.17 and 1.18, respectively.  
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Figure 1.17 : The hydrolysis of the (-tBA) groups on PAtBA.[103] 

 

Figure 1.18 : The thermolysis of the (-tBA) groups on PAtBA.[103] 

The resulted acrylic acid is then supposed to crosslink with the cationic PEI via an acid-base proton 

exchange: the ammonium ions (NH3
+) of the PEI with the carboxylate groups (COO-) of the polymer. 

This was especially the case for pH below 7 and temperatures below 90°C [71]. Another crosslinking 

mechanism was proposed by Reddy et al. [83] wherein the PEI forms covalent bonds directly with 

the carbonyl carbons at the amide groups of PAtBA, through a transamidation reaction as shown in 

Figure 1.19: 

 

Figure 1.19 : PEI transamidation reaction with the amide groups.[103]  
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The transamidation reaction was confirmed by Al-Muntasheri et al. [104] who studied the gelation of 

a totally decomposed PAtBA with PEI. Three samples of PAtBA were heated at 80, 105 and 120 °C 

for sufficient times to decompose all their tert-Butyl acrylate (-tBA) groups. Then, they were mixed 

with PEI at the same temperature of heating. All the three decomposed PAtBA/PEI samples did form 

a gel confirming the transamidation reaction as one of the main crosslinking mechanisms especially 

in the case of 105 and 120 °C. At 80 °C, the contribution of the acid-base interaction into the 

crosslinking was theoretically present but no further quantification was done. Moreover, some authors 

considered the “nucleophilic attack” and the “transamidation reaction” to take place simultaneously 

and used the term “nucleophilic substitution” to describe the crosslinking mechanism of PAtBA/PEI 

gels [105]. As a summary, one can conclude that the PAtBA/PEI interactions are done mainly through 

a nucleophilic substitution for temperatures above 90°C and through a combination of nucleophilic 

substitution and acid-base interaction for temperatures below 90°C. 

The gelation reactions, the viscoelastic properties and the performance of PAtBA/PEI gels in porous 

media have been also the subject of numerous studies. The effect of different controlling parameters 

such as polymer and crosslinker concentrations, type of mixing water, temperature, initial pH, type 

of inorganic salts, the presence of contaminants i.e. ferric iron, on gelation time and gel strength were 

thoroughly investigated [105, 106]. Gelation times reported in literature varied from 0.3 to 15 hours 

in the temperature range of 70 to 150 °C and for polymers loadings of 3 to 9 wt%. While, the thermal 

stability of PAtBA/PEI gels was reported to be up to 191°C [107]. The PAtBA/PEI gels were very 

strong gels confirmed by the measured storage moduli that were remarkably higher than those of 

inorganically gels [106]. A typical PAtBA/PEI gel, prepared with 7 wt% polymer and 0.3 wt% PEI 

and cured at 150 °C for 12 hours, had an elastic modulus of approximately 700 Pa compared to only 

7 Pa for a typical PHPA/chromium (III) acetate gel prepared with 0.5 wt% polymer and 0.0417 wt% 

crosslinker and cured at 41°C for 24 hours [108]. The explanation of such behavior was the low 

molecular weight of PAtBA which manifest in shorter and straighter polymer chains that result in a 

tighter 3D structure. This was also the case in porous media, PAtBA/PEI gels showed higher 

resistances and higher apparent strengths in low permeability cores [109]. For example, the maximum 

pressure build-up reached 510 psi in a sandstone core with a permeability of 300 mD. Moreover, it 

was confirmed that higher intrinsic gel strength, using either higher crosslinker loadings or higher 

curing temperatures, will result in higher gel resistances. The PAtBA/PEI gels showed good 

injectivity, they went eight times farther than chromium-based systems in cores under equivalent 

conditions [80] thanks to their low initial gelant viscosities. A good permeability reduction of up to 

88% in Oklahoma sandpacks was also maintained for one year at an extreme temperature of 176.6 

°C [73]. All These good performances of PAtBA/PEI gels, whether in bulk tests where perfect 

gelation times and thermal stability were obtained or in corefloods where good injectivity and 
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permeability reductions were recorded, made the PAtBA/PEI gels the most successful PEI 

crosslinked polymer gels. 

1.7.2 PAM/PEI 

Confirming the transamidation reaction as one of the main mechanisms in the crosslinking of the 

PAtBA/PEI gels, encouraged Al-Muntasheri and co-workers [70] to investigate the crosslinking of 

polyacrylamide (PAM) shown in Figure 1.20 with PEI. The molecular weight of the studied PAM 

was similar to that of PAtBA (Molecular weights comprised between 250 to 500 × 103 g/mol), the 

only reason of this choice was purely technical, as the PAM is cheaper (2 to 4 USD/Kg) compared to 

PAtBA (7.7 USD/Kg) [110].  

 

Figure 1.20 : The chemical structure of PAM. 

The effect of controlling parameters on gelation reaction were fully examined using both rheological 

measurements and differential scanning calorimetry [111]. The PAM/PEI gel was found stable for 8 

weeks at 130 °C and 30 bars [70] and gelation time did not exceed one hour at 130 °C similarly to 

PAtBA/PEI gels [105]. However, the activation energy of the PAM/PEI gel (71 kJ/mol) was lower 

than that of the PAtBA/PEI gel (120 kJ/mol), indicating a faster and easier reaction between the PAM 

and PEI. The viscoelastic behavior of PAM/PEI gels was also considered, El-Karsani et al. [112] 

studied the effect of temperature, reactants concentrations, pH and salinity on the PAM/PEI gel 

strength at high temperature (130 °C) and high-pressure (34.5 bars) conditions. The storage modulus 

of a typical PAM/PEI gel prepared using 7 wt% of polymer and 0.3 wt% of crosslinker, cured at 150 

°C and 500 psi, was 1087 Pa which was higher than that of a similar PAtBA/PEI gel (700 Pa). This 

result confirmed that more crosslinking reactions took place between PAM and PEI compared to 

PAtBA and PEI, thus the stronger gel.  

Moreover, several papers addressed the performance and displacement of PAM/PEI gel in porous 

media [113-115]. The PAM/PEI gel had an excellent permeability reduction in Berea sandstone cores, 

where a 100% permeability reduction was recorded over the course of three weeks at 90 °C [70]. The 

key point of this success was the non-adsorption of the polymer [114]. The low molecular weight and 

the nonionic character of the polymer were the main reasons for the absence of any mechanical 

retention or ionic adsorption of the polymer in Bentheimer sandstone cores. The yield of the PAM/PEI 
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gel in bulk and porous media had a similar trend in both cases [112]. An increased compression at 

pressure drops below the critical yield pressure, followed by the gel yield at this critical pressure then 

a lower residual gel resistance above this critical pressure. Interestingly, higher yield stresses were 

observed in porous media compared to bulk experiments [114]. 

A more recent method, which consists on using emulsified PAM/PEI gels, for selectively reducing 

the water permeability was introduced by Mohamed et al. [116]. In a such system, the gelant is 

emulsified in an oil phase using an appropriate emulsifier (surfactant) and when in porous media, the 

emulsion breaks up to a water phase which forms the gel and an oil phase which remains mobile. The 

advantage of these systems is the possibility to apply them in producer wells without the need for 

isolation techniques. The gelation kinetics and the viscoelastic behavior of an emulsified PAM/PEI 

gels prepared with 70% water phase (Gelant) and 30% hydrocarbon phase (Diesel and surfactant) 

were studied using differential scanning calorimetry and dynamic shear rheology, respectively [116, 

117]. The emulsified PAM/PEI gels had lower characteristics in terms of crosslinking rate and gel 

strength compared to non-emulsified ones. This behavior was explained in one side by the limited 

heat transfer conducted to the emulsified gelant which slow down the reaction and consequently the 

number of crosslinked sites, and on the other side by the formation of isolated gel domains rather than 

a continuous structure, which is the case when gelation starts before the total breakage of the emulsion 

[117], as illustrated in Figure 1.21. 

 

Figure 1.21 : Types of formed gels in the emulsified PAM/PEI system (a) formulation with 
complete separation (b) formulation with partial separation (c) formulation with no separation.[117] 

1.7.3 PHPA/PEI 

Partially hydrolyzed polyacrylamide (PHPA) was investigated as a good alternative for PAtBA and 

PAM polymers for fractures shutoff applications in the low temperature range reservoirs (<100 °C) 

due to its high molecular weight, which limits the gelant solution penetration to the rock matrix. The 

crosslinking of PHPA with PEI was documented to be mainly through a transamidation reaction of 
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the amide groups by the PEI’s amines. Nevertheless, the interaction between the carboxylate groups 

(COO-) of the PHPA and the ammonium ions (NH3
+) of the PEI was also considered as a potential 

crosslinking mechanism [71, 103, 118]. For some authors, the evidence of such interaction was the 

lower gelation times at higher hydrolysis degrees [70]. 

Several studies investigated the gelation of PHPA/PEI gels mainly in the low and ultralow temperate 

range of 4.4 to 65 °C to address conformance control in the arctic zones, shallow water/gas zones in 

offshore fields and the permafrost zones in the temperature range [33, 95, 119-123]. Nevertheless, 

conformance control was not the only area for PHPA/PEI gels application; Hashmat et al. [124] 

investigated the PHPA/PEI gel as a loss circulation material (LCM) in drilling operations with 

temperatures of up to 100 °C.  

Gelation times of PHPA/PEI gels reported in literature, varied between 0.5 hour [123] to 9 days [120] 

with low gelation times obtained using high polymer and crosslinker loadings of up to 7% and 2% 

respectively [95]. In contrast, when typical polymer and crosslinker concentrations are used, gelation 

time was around 15 hours at 40 °C, which was still longer than that of the commonly used 

PHPA/chromium (III) acetate gels (5 hours at 40°C). The performance of PHPA/PEI gels in porous 

media was also well-investigated. High water permeability reductions of up to 15000 were observed 

using PHPA/PEI gels in fractured cores [121]. The most interesting feature was the low measured 

fluid leakoff rates to the rock matrix, which confirmed the PHPA/PEI gels to be suitable for fractures 

and high permeability channels shutoff [33]. Gelation rate and gel strength were also found to 

improve when the gelant first flows through porous media [122], thanks to the mechanical extrusion 

of the long-curled polymer chains, which promotes the crosslinking between the polymer and the 

crosslinker.  

On the other hand, the viscoelastic behavior of PHPA/PEI gels was not fully considered in literature. 

To the best of our knowledge, there is no systematic study on the effect of controlling parameters 

such as reactants concentrations, temperature, pH, salinity on the PHPA/PEI gels viscoelastic moduli. 

A limited investigation on the effect of hydrolysis degree on the storage modulus was reported by El-

Karsani et al. [118], wherein, higher hydrolysis degrees were found to produce higher storage moduli, 

which was explained by the increased number of crosslinked sites when the polymer chains are fully 

expended at high hydrolysis degrees.  

1.7.4 HAP/PEI 

Hydrophobically Associating Polymers (HAPs) are synthetic polymers which contain one or more 

hydrophilic groups with a small fraction of hydrophobic groups as shown in Figure 1.22. These 

hydrophobic groups give the polymer an enhanced rheological behavior and a higher adsorption 

capacity [125]. 



Chapter I 
 

27 
 

 

Figure 1.22 : The chemical structure of HAPs (R1 the general radical structure reported by Sheng, 
R2 the specific radical structure studied in Bai et al.).[23, 75] 

HAPs were first developed and evaluated as relative permeability modifiers in sandstone reservoirs 

by Eoff et al. [126] and later, introduced as a base polymer for crosslinked polymer gels. The 

HAP/crosslinker (unknown chemical structure) gel retained 75 to 85% of its original strength, after 

six months of aging at 95 °C in real reservoir cores [127]. In the light of these results, it was further 

examined in 26 wells in the high temperature/high salinity Zhongyuan oilfield in China. The average 

water injection pressure increased by about 2.8 MPa and the average water injection index decreased 

by about 8.2 m3/d/MPa, while over than 79% of the surrounding producer wells recorded an increase 

in oil production rates, indicating a huge success of the HAP/crosslinker gel. These findings 

encouraged a study on the crosslinking of HAP with PEI [75]. The examined HAP had a hydrophobic 

monomer content of 1.8% HAP with the structure shown in Figure 1.22.  

The idea was that these hydrophobic groups associate with each other via hydrophobic interactions 

to further strengthen the gel. This was experimentally confirmed when low concentrations of NaCl 

salt were added to the gelant, a slight increase in the final gel viscosity was recorded due to the 

enhanced polarity of the gelant and the intensified hydrophobic associations. The gelation mechanism 

between the HAP and PEI was through a transamidation reaction similar to the other acrylamide-

based polymers with gelation times varying between 36 to 85 hours at 80 °C. These gelation times 

were relatively higher than those of others acrylamide-based gels.  A proposed explanation would be 

the reduced number of accessible amide groups. When the hydrophobic groups associate with each 

other, they tend to decrease the hydrodynamic volume of the polymer, which make less amide groups 

accessible to the PEI. The evidence of such reduction in the hydrodynamic volume was the low initial 

viscosity of the polymer (40 cP) despite using deionized water. The HAP/PEI gel was further tested 

in sandpacks cores, where it showed a very good shut-off performance of over than 98% permeability 

reduction and a water residual resistance factor higher than 55. Nevertheless, neither the viscoelastic 

properties nor the field implementations of HAP/PEI gels are reported in literature. 

1.7.5 Copolymers and terpolymers/PEI 

The copolymers and terpolymers of acrylamide are synthesised through incorporating monomers that 

give the polymer a higher thermal stability by limiting the hydrolysis of the neighbourhood amide 
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groups at very high temperatures [128]. In attempt to examine new acrylamide-based polymers that 

are thermally stable and can give relevant gelation times at extreme temperatures as high as 170 °C, 

Vasquez et al. [72] investigated the crosslinking of acrylamide/acrylamido-2-methylpropane sulfonic 

acid (AM/AMPSA) copolymer shown in Figure 1.23 with PEI. 

 

Figure 1.23 : The chemical structure of AM/AMPSA copolymer.[110]  

Excellent gelation times, that vary between 2 to 20 hours, were obtained in the temperature range of 

132.2 to 176.6 °C, compared to only 0.2 to 0.3 hours at 130 °C for PAtBA/PEI and PAM/PEI gels. 

This delayed crosslinking reaction was essentially caused by the steric hindrance provided by the 

methyl-propane sulfonic acid functional groups [83]. Further investigations by Vasquez et al. [73] 

led to the AM, AMPSA, N,N-Dimethyl Acrylamide (N,N-DMA) terpolymer shown in Figure 1.24. 

 

Figure 1.24 : The chemical structure of AM/AMPSA/N,N-DMA terpolymer. 

The added N, N-DMA groups were incorporated to further delay the crosslinking rate via their steric 

hindrance. However, gelation times were very sensitive to the solution pH and the salinity of the 

mixing brine. For example, the gelation time decreased from 24 hours to only 2 hours when the pH 

of the solution passed from 11 to 8 at 135 °C. No further explanation was provided for this behavior. 

(AM/AMPSA/N, N-DMA)/PEI gels were then examined in sandpacks, where they maintained a 97% 

water permeability reduction at 176.6 °C over the course of one year.  

More recently, Zhu et al. [74] studied the gelation at 150 °C of the terpolymer of AM, AMPSA, N-

vinylpyrrolidone (NVP) shown in Figure 1.25 with PEI. The crosslinking reaction was investigated 

using four PEIs having different molecular weights. It was found that very low molecular weight PEI 
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(Mw= 1.8 × 103 g/mol) cannot form a consistent gel, and gelation time decreases with the increase of 

the crosslinker molecular weight. This was explained by the length of the PEI chains and the number 

of the crosslinking sites on them. The gelation time was around 3.5 hours at 150 °C for a typical 

sample prepared with 0.8 wt% terpolymer and 0.3 wt% PEI (Mw= 70 × 103 g/mol), which was higher 

than the gelation times of PAtBA/PEI and PAM/PEI gel systems. While the gel maintained a good 

thermal stability over the course of 2 months.  

 

Figure 1.25 : The chemical structure of AM/AMPSA/NVP terpolymer. 

One should precise that no field implementations nor viscoelastic behavior of all the above gels have 

been reported in literature.  
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Table 1.1 : Polymer/PEI gel systems reported in literature. 

Polymer Crosslinker Temperature 
(°C) 

Gelation 
Time 

(Hours) 

solvent Reference 

10% (*) PAtBA 1% PEI 70-90 9 to 1.5 Synthetic Sea 
water 

[82] 

7% PAtBA 0.33% PEI 95 15 / [71] 

5% PAtBA 1% PEI 95 5 

3% PAtBA 1% PEI 95 7 

7% PAtBA 1% PEI 70 13 

5% PAtBA 0.5% to 2% 
PEI 

80 3.3 to 
24 

2% KCl brine [109] 

100 1.3 to 7 

120 0.3 to 3 

350 gal/1000 gal  
(**) PAtBA 

40 gal/1000 
gal PEI 

80 5 2% KCl brine [72] 

7% PatBA 1.5% PEI 85 14 7% KCl brine [73] 

7% PatBA 0.3% PEI 100 3.9 Distilled water [105] 

3.5% PatBA 1% PEI 71.1 21.3 2% KCl brine [95] 

5 to 9% PAM 0.3 to 2% PEI 130 0.25 to 
0.53 

Distilled water [70] 

5% PHPA 0.33 to 2% 
PEI 

25 8 to 13 2% KCl brine [119] 

60 1.5 to 6 

0.5 to 1.5% PHPA 0.2 to 1.5% 
PEI 

40 15 hours 
to 9 
days 

Synthetic water 

Total Dissolved 
Solids (TDS)= 

90000 mg/l 

[120] 

2% PHPA 0.35% PEI 65 10 Synthetic water 

TDS= 5000 mg/l 

[121] 

1 to 2% PHPA 0.2 to 0.35% 
PEI 

65 4 to 72 Fresh water 

TDS= 500 mg/l 

[122] 

5% to 7% PHPA 1% to 2% 
PEI 

4.4 and 23.3 0.5 to 
30 

2% KCl brine and 
Fresh water 

[123] 

3.5% PHPA 1% PEI 71.1 2.5 2% KCl brine [95] 
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0.75% PHPA 0.41% PEI 85 3 2% KCl brine [33] 

3% PHPA 
(Flopaam3330S) 

0.6 to 1.2% 
PEI 

 

100 

 

3.3 Distilled water [124] 

2% PHPA 
(Alcomer130) 

3.4 

0.15% HAP 0.2% PEI 80 85 Distilled water [75] 

0.45% HAP 0.8% PEI 80 36 

410 gal/1000 gal 
AM/AMPSA 

100 to 250 
gal/1000 gal 

PEI 

132.2 14 to 20 2% KCl brine 

 

[72] 

176.6 2 

3 to 9%  
AM/AMPSA/N,N-

DMA 

0.5 to 2% PEI 135 2 to 41 10% KCl brine [73] 

162.7 0.75 to 
5 

0.6 to 1.2% 

AM/AMPSA/NVP 

0.3% PEI 150 3.5 to 6 Distilled water [74] 

*: mass concentration (wt%) **: Gallons per 1000 Gallons (volume per volume ratio) 

1.8 Major enhancements on polyethylenimine crosslinked polymer gels 

Despite the variety of gelation times and gel strengths that can be obtained by the classical PEI 

crosslinked polymer gels, several techniques were employed to further enhance these two properties. 

Here below, we are representing and discussing some of these techniques. While Table 1.2 

summarize the gelation times obtained with these techniques. 

Table 1.2 : PEI/Polymer gel systems with different additives reported in literature. 

Polymer Crosslinker** Temperature 
(°C) 

Gelation 
Time 

(Hours) 

solvent and additive** Refer
-ence 

150 gallon/1000 
gallons (gpt)* 

PAtBA 

10 gpt PEI 126.6 2 824 gpt field water+ 
167 gpt KCl+ 275 
lb/1000 gal NaCl 

[129] 

140 0.9 

150 1.5 824 gpt field water+ 
167 gpt KCl+ 300 
lb/1000 gal NH4Cl 

7% PAtBA 2% PEI 162.7 9.6 2% KCl brine +8% 
Na2CO3 

[130] 

176.6 6 

0.75% PHPA 0.41% PEI 85 15 2% KCl brine+ [33] 
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107.2 4 15 lb/1000 gal 
Na2CO3 

 

4000 ppm PHPA 4000 ppm research grade 
PEI with (DS:PEI=1:2) 

100 2.66 1% KCl brine [131] 

4000 ppm commercial 
grade PEI (DS:PEI=1:2) 

14 

4000 ppm PHPA 4000 ppm PEI+ 

2000ppm AMPSA 

100 120 1% KCl brine [132] 

5% PHPA 1.3% PEI 26.6 11.3 2% KCl brine [123] 

1.3% PEI+ 0.5 gpt EA 10.1 

1.3% PEI + 0.5 gpt TEA 9.9 

3.5% PHPA 1 % PEI 71.1 2.75 2% KCl brine [95] 

1 % PEI + TETA 3.5 

3% PAtBA 1% PEI 22 

1% PEI+ 1mole TEA 18 

1% PEI+ 1mole EA 16.5 

10% PAtBA 1% PEI chelated with 
zirconium 

100 5 / [133] 

7% PAtBA 

 

0.65% PEI+ 4% 
Polyamino acid 

135 21 2% KCl brine 

 

[73] 

148.8 2.5 

0.5 to 1.5 

d-PEI 

176.6 6.5 to 29 

190.5 4.5 to 10 

(AM/AMPSA/N
-DDAM) 

terpolymer 

80% modified PEI 

(PEI–GX) 

100 30 / [134] 

5% PAtBA 

 

 

1% PEI 90 5.45 to 
8.40 

Water + cement + 
retarders 

[135] 

100 2.45 to 
4.55 

*: gpt (gallon per thousand gallons). 
** additives are written in bold character. 
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1.8.1 Retarders 

Various methods are used to delay the gelation of gel systems when placed in the well. These methods 

include cooling the near wellbore area, varying the polymers type and concentrations, adjusting the 

pH of the mixture. However, the use of chemical retarders, especially inorganic salts was the most 

economical method to delay the gelation of PEI crosslinked polymer gels. Inorganic salts such as 

sodium chloride (NaCl), sodium carbonate (Na2CO3) and ammonium chloride (NH4Cl) act through 

their positive charged ions on the carboxylate groups of the polymer. This interaction reduces in one 

hand the number of carboxylate sites available for crosslinking with PEI and in the other hand the 

repulsion between these groups, which consequently decrease the hydrodynamic volume of the 

polymer and the number of accessible amide groups to PEI. This phenomenon is commonly known 

as the charge-shielding effect [118]. 

In literature, various studies reported the delaying effect of the above-mentioned salts. The gelation 

time did increase from less than one hour at 126 °C to 6 hours at 176.6 °C when sodium carbonate 

was added to the PAtBA/PEI gel [130] and from 3 hours to 15 hours at 85 °C for a PHPA/PEI gel 

[33]. The addition of sodium carbonate did not affect the thermal stability and the strength of 

PAtBA/PEI gel and PHPA/PEI gel when tested in sandpacks [136]. However, the main issue with 

sodium carbonate was the compatibility problems with field mixing water. Ammonium chloride 

(NH4Cl) was reported to overcome these compatibility issues and succeeded in delaying the gelation 

of the PAtBA/PEI at 150 °C to 90 minutes [129]. Despite this success, it was found later that the 

addition of NH4Cl resulted in weaker gels compared to NaCl-added or salt-free gel systems [118]. 

Sodium chloride (NaCl), on the other hand, did not have compatibility issues and did not affect the 

gel strength but its retardation effect was too short for field implementation. All these problems with 

retarders encouraged the investigation of other techniques, which affect the crosslinking rate by 

affecting the crosslinker rather than the polymer. 

1.8.2 Nanoparticles 

Nowadays, nanotechnology is gaining a huge interest in the oil industry [137, 138]. The first use of 

nanoparticles for gelation delay was investigated for PHPA/chromium (III) acetate gels [139]. 

Polyelectrolyte complexes (PECs) were used to entrap the Cr(III) ions and control their release. PECs 

are usually formed, through strong coulomb interactions, when two solutions of oppositely charged 

polyelectrolytes are mixed as illustrated in Figure 1.26 [140]. The PECs, in that study, were formed 

by the electrostatic interactions of highly charged cations (PEI) and highly charged anions (Dextran 

Sulfate DS) which resulted in nanoparticles of 100 to 200 nm. The approach succeeded in delaying 

the gelation time from 30 min to 4.5 days at temperature of 40 °C.  
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Figure 1.26 : PECs charge and size as function of the polyelectrolytes charge ratios (nanoparticles 
are formed when one charge of the polyelectrolytes is in excess otherwise aggregates are 

formed).[140] 

During the investigation, the authors compared the gelation of PHPA/free PEI, PHPA/Unloaded 

PECs and PHPA/PECs+Cr(III). Interestingly, PHPA/Unloaded PECs elongated the gelation time to 

the order of several days compared to PHPA/free PEI. These findings encouraged the investigation 

on the gelation reaction of PHPA/Unloaded PECs [131]. The effects of various controlling factors on 

gelation time, mainly the effect of DS:PEI ratio, were examined. The PEI:DS mixture succeeded in 

delaying the onset of the gelation with up to 12 hours at 100 °C and stronger gels were formed 

compared to the inorganically crosslinked polymer gels. Nevertheless, and despite this success, the 

use of DS at the commercial scale in oilfields was impossible. Since DS is too expensive (10000 

USD/kg) and is mainly used in the pharmaceutical industry as a controlled-release agent [132]. In an 

effort to substitute the DS with cheaper readily available chemicals, the 2-Acrylamido-2-

methylpropane sulfonic acid (AMPSA) monomer, which is produced at 8 USD/kg, was investigated 

as a potential replacement. The AMPSA successfully delayed the gelation in a similar way to the DS. 

The gelation time of the PHPA/PEI+AMPSA gel was around 120 hours at 100 °C compared to only 

13 hours for PHPA/PEI+DS gel at the same temperature [132]. 

1.8.3 Derivatives 

The use of polyethylenimine derivatives such as polypropylene imine has been reported in literature 

as one of the most effective methods to elongate the gelation time. In a patent, Hardy reported the 

first use of a polyethylenimine derivative [133]. He found that the time required for the crosslinking 

of a PAtBA, with a polyethylenimine chelated with zirconium, was increased by a factor of two 

compared to a non-chelated polyethylenimine. The same delaying effect was observed when 

polyamino acid was used to form a complex with PEI to constrain it from attacking the PAtBA 

polymer [73]. In the above scenarios, chemical species are complexed permanently with the PEI’s 
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amine groups to reduce the number of available crosslinking sites. One can see that this mechanism 

is similar to that of nanoparticle complexes, however the main difference between the two, is the 

resulted particles size and the interaction type (permanent or temporary). In other scenarios, the 

chemical structure of PEI is itself altered. It was the case for a derivatized-PEI (d-PEI), where some 

of the amine groups were converted to amides [73]. Here, the amide groups must be hydrolyzed back 

to free amines before the crosslinking can take place, which result in the gelation delay. The PAtBA/d-

PEI gel provided an excellent gelation time of 13 hours at 149 °C compared to only 0.3 hour at 130 

°C for a classic PEI. A 100% permeability reduction was also maintained at a temperature as high as 

190.5 °C. Another modified PEI (PEI-GX) was also reported to delay the gelation of a terpolymer of 

AM/AMPSA/N-dodecyl acrylamide (N-DDAM) [134]. The gelation time of this system reached 30 

hours at 100 °C for a PEI modified at 80%, which is 7.5 times higher than that when a non-modified 

PEI is used. The nature of PEI modification was not disclosed, however and regarding the 

commercially available PEIs, the modified PEI can be an ethoxylated PEI at 80%, where the some of 

the amine groups are converted to hydroxyethyl groups as shown in Figure 1.27.  

 
Figure 1.27 : the chemical structure of the 80 % ethoxylated PEI. 

1.8.4 Accelerator 

Researches on PEI crosslinked polymer gels were not limited on high temperature applications. 

Ultralow temperature reservoirs were also considered for gel treatments as discussed for the 

PHPA/PEI gels. However, the high polymer and crosslinker concentrations, used to achieve 

reasonable gelation times at low temperatures, are technically and economically unacceptable. 

Therefore, Reddy et al. [95, 123] investigated the use of chemical activators to increase the PEI 

reactivity and consequently decrease the reactants loadings needed to achieve the same gelation time. 

Theoretically, the maximum number of crosslinking sites of both the polymer and the crosslinker 

should be accessible and available to achieve the best gelation performance using the lowest reactants 

loadings. However, when the PEI’s amine groups are protonated, they become less nucleophilic and 

unreactive [71]. They can be deprotonated and re-activated using amine-bases activators. 

Alkanolamines such as ethanolamine (EA), diethanolamine (DEA) and triethanolamine (TEA); 

olgomeric polyamines such as ethylenediamine (EDA), diethylenetriamine (DETA), 

triethylenetetraamine (TETA) and tetraethylenepentaamine (TEPA) were all examined to activate the 

PEI through one of the reaction pathways shown in Figure 1.28:  
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Figure 1.28 : Two potential ways for PEI activation using amine-based activators.[95].  

These activators were found to effectively reduce the gelation time of the PHPA/PEI gel at 26.6 °C 

and of the PAtBA/PEI gel at 71.1 °C. They allowed also to reduce by 30 to 50% the needed amount 

of reactants to obtain a given gelation time. This was the case for a specific concentration of 

activators, while higher amounts acted inversely as in the case for EA and TEA [123]. Moreover, the 

accelerating effect of activators was found to decrease with temperature, which was explained by the 

lower deprotonation abilities of these activators at higher temperatures. On the other side, the effect 

of these activators on the final gel strength was not reported.  

1.8.5 Solid particles 

The PEI crosslinked polymer gels were known to form strong gels especially when low molecular 

weight polymers are used. “Ringing gels” were reported for the PAtBA/PEI system [141]. However, 

the enhancement of the final gel strength for near wellbore applications by adding solid particles 

such as cement, rigid setting materials (Rsm), silica flour and coal fly ash (CFA), was also reported. 

The cement was first added as a fluid loss agent which can form an additional barrier when it filtrates 

inside the matrix [142]. The gelation reaction of a PAtBA/PEI gel with “dykerhoff class-G cement” 

were evaluated at 90 °C and 100 °C [135]. The mixture showed an excellent shutoff behavior in 

laboratory experiments and withstood differential pressures of up to 180 bars. It was then applied 

in two production wells in a Syrian oilfield, the first well (118 °C) showed a good response and the 

net oil production increased initially by 2500 barrel of oil per day (BOPD) then stabilized at 1000 

BOPD during one year of production, while, the water cut decreased from 63% to 25%. The 

production in the second well (144°C) was sadly lost. The gel/cement mixtures showed some 

drawbacks such as the interaction between the cement retarders and the gel, the need to drill out a 

part of the system from the well, the difficulty of treatment design at high temperatures. These 

drawbacks encouraged to replace the cement by other inert materials. The choice was rapidly fixed 
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on silica flour because of its inert nature, similar particle distribution, cheaper price and availability 

[143]. The effect of temperature, permeability, and silica flour percentage on the leakoff and sealing 

abilities of a gel/silica flour mixture were thus investigated [144]. The percentage of silica flour was 

found to have the greater effect on the leakoff percentage, while the other two parameters had no 

effect. Moreover, the gel/Silica flour mixture was reported to withstand differential pressure of up 

to 172 bars which is similar to that of the gel/cement mixture. Some authors recommended to add 

the cement to the gel/silica flour mixture to further strengthen the system. This new mixture was 

successfully employed in sealing a 186 meters interval length of a dead well with a bottom-hole 

temperature of 148 °C in Syria [142]. However, the main drawback of the above two systems was 

the use of high silica flour and/or cement loadings (50%). The solution was in rigid setting materials 

(Rsm) that can be added in lower percentages (<5%). These Rsm are low-viscosity metal 

oxychloride-type cements, which set rapidly at a given temperature and limit the gel penetration to 

the matrix. They were reported to develop high compressive strength of up to 275 bars in few hours 

and to resist temperatures of up to 204 °C. The PAtBA/PEI+ Rsm  gels were mainly employed in 

the Cantarell Field in Mexico [107]. Other proposed inert materials such as starches and water 

swellable materials which offer the same leakoff rates as silica flour but using lower loadings was 

reported in literature [143]. Further efforts by Adewunmi et al. [145] led to coal fly ash (CFA) as a 

potential additive to reinforce PAM/PEI gels. CFA is an inorganic waste material constituted 

essentially of silica and alumina [146]. The gelation reaction and the viscoelastic behavior of the 

PAM/PEI+CFA gels were evaluated at 90°C, where the results showed a delayed gelation times and 

an improved viscoelastic behavior for these systems. More recently, Chen et al. investigated the 

reinforcing performance of nano-silica on PAM/PEI gels through core flooding tests in sandpack. 

The gel strength and stability were highly improved thanks to the hydrogen bonding between the 

nano-silica and PAM. As a result, the stability was increased 10 times from 18 to 180 days at 130 

°C. While, the shutoff ratio was maintained above 80% (during 180 days at 130 °C) when nano-

silica was incorporated compared to only 14% for a common PAM/PEI gel at the same conditions 

[147]. 

1.9 Successful applications around the world 

As presented earlier, various PEI crosslinked polymer gels and improvements have been examined 

in laboratories. Among the different PEI crosslinked polymer gels, the PAtBA/PEI was the only 

system to be applied in oilfields at the large scale. Here below, we are representing some of its 

applications in three different regions of the world: 
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1.9.1 North Sea 

The first application of the PAtBA/PEI gel was in the North Sea region. The B-21A well, in the 

Ekofisk field in Norway, was producing 60% water after three years of its drilling. A gel treatment 

using the PAtBA/PEI gel was implemented to seal the voids created by the early acid treatments on 

the well [71]. The targeted zones were at two intervals: 10953-10963 ft and 11000 -11013 ft. A cool 

down of the near wellbore area was first implemented to decrease the downhole temperature from 

126.6 °C to 82.2 °C then 550 barrels (bbls) of the PAtBA/PEI gel were injected. The water production 

in the well did not decrease. However, the upper target zone which was producing 100% water was 

successfully sealed. Another well in the North Sea, the A-13 well in the “Åre” formation of the 

Heidrun field, was producing undesirable high gas quantities because of a high permeability flow 

channel, which connects the upper part of an open-hole gravel pack to the gas-filled sand layer. The 

placement of 100 m3 PAtBA/PEI gel, at a downhole temperature of 88 °C, helped in reducing the gas 

oil ratio of the well from 700 to 200 Sm3/ Sm3 [148]. The third case is the A-01 well in the Valhall 

field. The well was suffering from a leak between the production tubing and the annulus that had to 

be re-established immediately according to the regional safety regulations [149]. This was achieved 

by injecting only 28 bbls of the PAtBA/PEI gel, which helped in plugging the leak and decreasing 

the unstable annulus pressure from 90 bars to 24 bars. 

1.9.2 Middle East 

PEI crosslinked polymer gels were thoroughly studied for application in Saudi Arabia oilfields [150, 

151]. Al-Muntasheri et al. [129] reported the results of a successful gel treatment in a high temperature 

(149 °C), high-pressure (482.6 bars) horizontal gas well, that was producing at a water cut of 100%. 

The resistivity log analysis helped in identifying the water production zone and the laboratory work 

helped in evaluating the adequate gel formulations. During the execution phase, the well showed a 

good injectivity with injection pressure of less than 4000 psi, which allowed the use of high polymer 

loadings to prepare the gel. A pre-flush of 120 bbls of water +KCl was first injected to cool down the 

near wellbore area from 149 °C to 115 °C, followed by 150 bbls of the optimized gel and 5 bbls of 

the gel+ silica flour mixture. The well remained closed for 3 days and upon its opening, the water cut 

decreased by 42% and the gas rate increased from 2.2 to 17 million standard cubic feet per day 

(MMSCFD) as shown in Figure 1.29: 
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Figure 1.29 : Gas rate and water cut during the flowback in the treated horizontal gas well.[129] 

Another open-hole horizontal well in the Wafra Ratawi field was the subject of the first gel treatment 

in Kuwait using the PAtBA/PEI gel [152]. The oil production of the well was decreasing from 794 

BOPD to 680 BOPD and the water cut increased from 75% to 82% during the course of two months. 

The engineers decided to treat the toe side of the well using 850 bbls of the PAtBA/PEI gel. The heel 

side of the well was first isolated using a non-damaging gel system based on a modified Hydroxyethyl 

Cellulose (HEC) and a metal-oxide crosslinker. After the treatment, the oil production of the well 

increased by 25% from 680 BOPD to 840 BOPD and the water cut decreased to 70% from its initial 

value of 82%. 

Recently, El-Beltagy et al. [153] reported the use of a PAtBA/PEI+ retarder gel and PAtBA/PEI 

+retarder+ Silica Flour gel in a high temperature (160.5 °C), high acidity (>300 ppm H2S) offshore 

well in the red sea area. The Saqqara A1 well, located in the Saqqara field in the Gulf of Suez- Egypt, 

was producing with a water cut of 95%, after only one year of production. The production logging 

tool (PLT) analysis showed that the zone number 3, among the 4 productive zones, was the source of 

the excessive water. Thus, a gel treatment, using a PAtBA/PEI + retarder, was designed to treat the 

targeted zone. In order to isolate the upper zones, a PAtBA/PEI + retarder+ Silica Flour (50%) system 

was injected to form a temporary formation/wellbore barrier that was easily perforated and cleaned 

after the main treatment. Consequently, the water production decreased from 2300 barrel of water per 

day (BWPD) to almost zero BWPD.  

1.9.3 Mexico 

Mexico is the region where the greatest number of treatments using PEI crosslinked polymer gels 

were implemented [119, 154]. Ortiz Polo et al. [155] presented the results of 37 wells in the fractured 

carbonate and sandstone reservoirs in the southern region of Mexico, among a total of 93 cases treated 

with the PAtBA/PEI gel back to 2004. Natural fractures in these reservoirs promoted the water 
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conning into producer wells and caused a major challenge to handle the excessive produced water. 

Water shutoff treatments were the only convenient solution to treat a large number of the wells. As a 

result, most of the treated wells, which were producing over 80% water before treatment, experienced 

a 100% reduction in water cut after the treatment and in one case of them, the oil production increased 

from zero to 2000 BOPD. 

The case of the offshore well “Abkatun-53A”, in the Abkatun field in the Gulf of Mexico, was 

discussed in detail [130]. Water coning through high permeability streaks in the naturally fractured 

reservoir resulted in an excessive water production. In 2005, the well was producing around 4725 

BOPD and 2196 BWPD (water cut 31.7%) with a bottom hole temperature of 141 °C. After cooling 

down the well with 250 bbls of seawater, about 315 bbls of the PAtBA/PEI gel were placed in the 

targeted zone. As a result, the water cut was decreased to 3.7%.  This result was compared to a 

conventional cement squeezing implemented in an adjacent well having the same problem. By far, 

the gel treatment was better in reducing the water cut. Hernandez et al. [144] described the case 

histories related to the rising of the water oil contact in 3 wells in the Caan field in the Gulf of Mexico. 

The wells were producing with water cuts of 57, 60 and 57% respectively, and bottom hole 

temperatures of around 140 °C. After the treatment with the PAtBA/PEI gel, the water cuts were 

reduced to almost 0% as shown in Figure 1.30. 

(a)   (b) 

(c)  

Figure 1.30 : Oil production rate and water cut before and after gel treatment in three well in the 
Caan field in Mexico (a) Well_1 (b) Well_2 (c) Well_3.[144] 
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1.10 Polymer gel evaluation methods 

The success of any gel treatment depends heavily on the ability of scientists and engineers to control 

and adjust its gelation time and its final strength, as function of the technical requirements of the 

injection operation and the in-situ conditions of the reservoir. Likewise, the long-term thermal, 

chemical and biological stabilities of the gel, under the reservoir conditions, are critical and should 

be evaluated thoroughly.  Gelation time is essential during gel placement in the targeted well because 

it determines how deep the gel can be placed in a formation. Overestimating gelation time may lead 

to injectivity problems such as premature gelation in the coiled tubing or in the near wellbore. In 

contrast, underestimating gelation time may lead to a gel washout once the well is re-opened.  The 

gel strength and its ability to effectively block the targeted zone are important when resuming the 

injection of the chase fluids. While, the needed gel volumes, to completely occupy the fracture/ zone, 

can be estimated approximately; the gel strength must be well defined. Consequently, the gel rupture 

pressure, at which the gel breaks down and allows the chase fluids to pass through it, should be 

measured and the higher it is, the better is the gel treatment.  

In a laboratory work, bulk tests and core flood experiments are usually conducted to evaluate the gel 

characteristics (gelation time, gel strength and gel stability) under the effect of the maximum number 

of controlling parameters such as reactants concentrations, reactants molecular weights, temperature, 

salinity, pH, presence of contaminants. Here below, we are briefly presenting the laboratory methods 

used to evaluate these characteristics: 

1.10.1 Bottle test method 

The bottle test method or the “sealed tube method” as documented also in literature [156] is the most 

popular method used to evaluate the gel parameters. It is an experimental method that provides a 

semi-quantitative measurement of gelation time, gel strength and gel stability [157]. In such method, 

glass bottles or tubes are filled with the specific polymer gel system to approximately one-half of 

their volumes and sealed with a cap. The bottles/tubes are then placed in a preheated oven or a 

thermostatic bath set at the test temperature and taken for periodical observations [72]. The gel flow 

behavior under gravity, upon inversion of the bottles, is assigned to a strength code.  

Sydansk’s gel code is the most commonly used code system [158], where gel flow behavior is 

represented through alphabets from “A” to “J” with each alphabet corresponding to a given flow 

behavior as summarized in Table 1.3 and illustrated in Figure 1.31.  
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 Figure 1.31 : Illustration of Sydansk’s gel codes in the bottle test method. 

Table 1.3 : Sydansk’s gel code. [159]  

Code Observation Description 

A No Detectable gel formed The gel appears to have the same viscosity as the 
original polymer solution. 

B Highly flowing gel The gel appears to be only slightly more viscous 
than the initial polymer solution. 

C flowing gel Most of the gel flows to the bottle cap by gravity 
upon inversion. 

D Moderately flowing gel A small portion (5—l0%) of the gel does not 
readily flow to the bottle cap by gravity upon 

inversion. 

E Barely flowing gel The gel can barely flow to the bottle cap and/or a 
significant portion (> 15%) of the gel does not 

flow by gravity upon inversion. 

F Highly deformable non-
flowing gel 

The gel does not flow to the bottle cap by gravity 
upon inversion. 

G Moderately deformable non-
flowing gel 

The gel deforms about halfway down the bottle by 
gravity upon inversion. 

H Slightly deformable non-
flowing gel 

Only the gel surface slightly deforms by gravity 
upon inversion. 

I Rigid gel There is no gel surface deformation by gravity 
upon inversion. 

J Ringing rigid gel A tuning fork-like mechanical vibration can be 
felt upon tapping the bottle. 
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Stavland et al. [160] proposed a more simplified code where numbers from 0 to 3 give the state of the 

gel as given in Table 1.4. However, the authors did not provide any visual illustration of these codes. 

When compared to Sydansk’s gel code, the following superimpositions can be accepted: (code 0 = 

code A), (code 1 = code B), (code 2 = code C to F) and (code 3 =code G to J). 

Table 1.4 : Stavland’s simplified gel code. 

code Observation 

0 No gel 

1 Indications for gel 

2 Floating gel 

3 Rigid gel 

 
The main advantages of the bottle test method are the non-destructive nature of this method (no shear 

degradation), the possibility of testing a larger number of samples at the same time, and the long 

period of observation that can be achieved (days to months). All these advantages qualify it as the 

easiest, fastest and cheapest evaluation method. On the other side, this method must be considered 

with caution because it can lead to a subjective and mistaken characterizations [161] as the attribution 

of the codes using naked eyes differs from person to another. 

1.10.2 Breakthrough vacuum method 

The breakthrough vacuum method is an uncommon method used essentially to determine the gel 

strength [162] through the measurement device shown in Figure 1.32. The principle consists on 

measuring the gel strength through the pressure difference between the atmospheric pressure and the 

pressure in the filtering flask [163]. For that, a gel sample (approximately 25 ml) is placed in the 

ampoule and the vacuum pump is turned on. When the gel breaks into to the intermediate flask, the 

maximum pressure indicated on the pressure meter gives the gel strength [164]. This value is then 

corrected by considering the breakthrough vacuum value of the preparation phase alone (water or 

oil). A breakthrough vacuum value of 0.007 MPa for water was reported in literature [163].  
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Figure 1.32 : The measurement device of the breakthrough vacuum method.[164]  

1.10.3 Steady shear method 

Steady shear viscosity measurements have been extensively used to determine the gelation time [86]. 

It is a quantitative and an accurate method for gelation time determination compared to the bottle test 

method [165]. The viscosity of the gelant samples is measured at a fixed shear as function of time. 

The gelation time correspond to the time when the viscosity starts to build up sharply or more 

precisely the inflection point on the curve of viscosity versus time [166] as shown in Figure 1.33:  

 

Figure 1.33 : Gelation time determination in the viscosity versus time curve. 

Some authors divided gelation time into an initial gelation time (IGT) and final gelation time (FGT) 

when plotting viscosity versus time [167] as depicted in Figure 1.34. Nevertheless, defining a final 

gelation time is theoretically inaccurate as gel systems have infinite viscosities and not a plateau 

viscosity. The latter results from the degradation of the gel network under shear. Other authors 

considered the gelation time as simply the elapsed time from preparation to when the viscosity of the 

gelant reaches 1000 cP [168]. 
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Figure 1.34 : Initial (IGT) and final (FGT) gelation time determination in the viscosity versus time 
curve.[169].  

Despite being the simplest rheological method for gelation time determination, the steady shear 

viscosity has however one major drawback. The shear flow effect on the gelation reaction and gel 

structure, especially near the gel point, is a matter of debate between those considering a positive 

effect [170, 171] and those considering a negative one [172], which influence on the accuracy of this 

method.  

1.10.4 Dynamic shear Method 

Polymer gels are viscoelastic systems, which means that they exhibit intermediate properties between 

those of elastic solids and viscous liquids [85]. The elastic nature dominates over short periods of 

applied stress while the viscous nature becomes more evident over long periods [108]. The elastic 

and viscous responses are presented respectively by the storage modulus G’ and the loss modulus G”. 

The storage modulus G’ measures the ability of the material to store elastic energy that can be 

recovered eventually, while the loss modulus G’’ measures the amount of mechanical energy that is 

transformed into heat because of the viscous forces. The ratio of the loss modulus G” to the storage 

modulus G’ defines the phase angle δ, which is equal to zero for an elastic solid and 90 degree for a 

newtonian liquid. The three quantities are defined below: 

𝐺ᇱ =
ఛబ

ᇲ

ఊబ
                                                                       Equation 1.3 

𝐺′′ =
ఛబ
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ఊబ
                                                                     Equation 1.4 

𝑇𝑎𝑛 𝛿 =
ீ′′

ீᇲ
                                                               Equation 1.5 

Where, τ0’ is the maximum component of the elastic stress in Pa, τ0’’ is the maximum component of 

the viscous stress in Pa and γ0 is the maximum strain in %. 

Dynamic shear method consists on applying small sinusoidal shear deformations on the gelant or gel 

system and monitoring the evolution of the storage (G’) and loss (G”) moduli as function of time or 

frequency, allowing to determine both the gelation time [173, 174] and gel strength [106]. First, the 
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gelation time was documented in literature to be at the crossover of G’ and G’’ (tan δ=1) as assumed 

by Tung and Dynes [175]. While, Winter and Mours suggested that the gelation time should be 

determined at the intersection of the tangent of the shift angle (tan δ= G’’/G’) at several frequencies 

as function of time [176]. The two definitions are highlighted below in Figure 1.35: 

(a) (b)  

Figure 1.35 : Gelation time determination as defined by (a) Tung and Dynes, (b) Winter and 
Mours.[176].  

On the other side, the gel strength was directly correlated with the elastic or storage modulus (G’) 

[106]. In fact, the monitoring of the storage modulus as function of time during a gelation reaction 

reveals three major phases [112] as shown in Figure 1.36 : an induction phase where G’ is negligible, 

an abrupt-increase phase where G’ increases monotonically and a final phase where G’ reaches an 

equilibrium plateau. This equilibrium value was considered as the quantitative representation of the 

final gel strength [177]. Moreover, when monitoring the storage modulus as function of frequency 

for a liquid-like gelant solution that transforms to a non-flowing gel system, the slope of the storage 

modulus starts to decrease from an initial value of 2 for the liquid-like non-crosslinked gelant solution 

to become totally independent of the applied frequency for the fully set crosslinked gel system [178] 

as shown in Figure 1.37. This plateau value is considered as the final gel strength. 
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Figure 1.36 : The typical variation of the storage modulus as function of time during a gelation 

reaction.[117]  

 
Figure 1.37 : The typical variation of the storage modulus as function of frequency from a liquid-

like gelant solution to a fully set polymer gel.[106] 

Although dynamic rheology provides a consistent polymer gel description, it remains a time 

consuming, expensive (when using high temperature and high pressure equipment) and invasive (if 

the investigation parameters are not well optimized) [85]. 

1.10.5 Low field nuclear magnetic resonance 

In order to develop new methodologies that allow a practical and accurate monitoring of gelation time 

and gel strength characterization, Romero-zeron et al. [161] evaluated the use of low field nuclear 

magnetic resonance (NMR) to investigate the gelation reaction and gel states of the PHPA/chromium 

(III) acetate system. As the bulk relaxation rate, which is a fluid property that characterizes how easily 

the protons give off energy to one another, is related to the viscosity of the system through the 

relationship given below [179]; A low field NMR measurement was supposed to be able to track the 

variation of viscosity observed macroscopically. 
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Where 
ଵ

்మಳ
 is the bulk relaxation rate in s-1, 𝑇ଶ஻ is the time for the signal to disappear in the reverse 

plane, 𝜂  is viscosity and T is the absolute temperature. 

The authors succeeded to represent the bulk relaxation rate as function of reaction time and extract 

the precise liquid/solid transition or the gelation time as illustrated in Figure 1.38. 

 

Figure 1.38 : Bulk relaxation rate obtained using low-field NMR versus reaction time for the 
PHPA/chromium (III) acetate system.[161].  

The authors confirmed also that the low field NMR could observe shifts in gelation time as function 

of polymer concentration, crosslinker concentration and salinity of preparation water and was even 

able to detect the onset of gel degradation. On the other side, they failed to establish the relationships 

between the low field NMR and the dynamic rheological measurements in terms of gel strength.  

The low field NMR method as an unbiased and nonintrusive technique approved to be reliable in 

gelation time determination. It was considered as the best alternative, to the previously discussed 

rheological and observation methods, to study the gelation time in porous media. Despite these 

promising features, no further development of this technique is reported in literature. 

1.10.6 Differential scanning calorimetry 

Differential scanning calorimetry (DSC) is a thermo-analytical technique which provides quantitative 

and qualitative information, as a function of temperature or time, about the physico-chemical 

variations (endothermic/exothermic processes, heat flow and changes in heat capacity) associated 

with materials transitions [180]. For instance, DSC has been largely used to study the kinetics of 

crystallization [124]. On the other side, as the stability of the polymer/crosslinker bonds or 

interactions depends heavily on the temperature and the energy which they can sustain [181], DSC 
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was employed in studying the thermal stability and degradation temperature of various polymer gels 

[182-184].  

More recently, and since the crosslinking reactions are associated with temperature and heat release 

phenomenon similarly to the crystallization processes, DSC was investigated as a promising 

technique for studying the gelation reaction and kinetics of polymer gels [111]. The gelation kinetics 

of single or multi-crosslinked, emulsified or non-emulsified gel systems, during an isothermal or a 

non-isothermal gelation process, were reported in literature [116, 185, 186]. In such DSC 

experiments, the gelant samples are loaded and sealed in aluminum hermetic pans, then examined 

following a curing scheme wherein temperature is either fixed at a constant value (isothermal 

process), ramped with a constant gradient (non-isothermal process) or a combination of both schemes 

(non-isothermal/isothermal process). The heat released during the process is then used to calculate 

the fractional gelation (xt) as function time “t” using the following equation:  

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑔𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑥௧ =
௧௛௘ ௛௘௔௧ ௥௘௟௘௔௦௘ௗ ௨௣ ௧௢ ௧௜௠௘ ௧

௧௛௘ ௧௢௧௔௟ ௛௘௔௧ ௥௘௟௘௔௦௘ௗ ௗ௨௥௜௡௚ ௧௛௘ ௣௥௢௖௘௦௦
     Equation 1.7 

This allows to obtain curves of fractional gelation as function of time as shown in Figure 1.39. The 

effect of different controlling parameters can be assessed at any given fractional gelation value, while 

gelation time is determined when fractional gelation is equal to unity [124]. The gelation kinetics 

such as the gelation rate constant and the reaction order are consequently obtained by modeling the 

fractional gelation experimental data with kinetics models such as the Rate model, Avrami model, 

Jeziorny model and Mo’s model [185]. 

 

Figure 1.39 : Typical curve of fractional gelation versus time for a polymer gel system examined in 
a non-isothermal/isothermal process.[111]  
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1.11 Conclusion 

The presented state of art dealt with four major axes. The first axe focused on naturally fractured 

reservoirs, their classifications and characteristics compared to the conventional non-fractured 

reservoirs alongside the four fundamental recovery mechanisms governing the oil recovery in these 

NFRs. The latter have atypical production/recovery behaviors that depend mainly on the wettability 

preference of the rock matrix, the fractures dimensions and orientation in regards the injection and 

production wells. The average ultimate recovery factor was only around 26 % in oil reservoirs and 

reached 61% in gas reservoirs after the primary and secondary phases. In type II and III fractured 

reservoirs, the ultimate oil recovery factor in water-wet reservoirs was comprised between 25 and 45 

% compared to only 5 to 25% in oil-wet and neutral-wet reservoirs. In the second axe, we highlighted 

the chemical enhanced oil recovery methods employed in the fractured reservoirs with an emphasis 

on the three techniques used for mobility/conformance control namely foam, microbial and gels. The 

superiority of gel systems compared to the other two techniques was expressed through their high 

stability, high efficiency, low quantities needed to block the most conductive fractures and possibility 

of application in oil/gas reservoirs after water/gas flooding. Consequently, two major groups of bulk 

gel systems namely the inorganic sodium silicate gels and the organic polymer gels were presented. 

As the polymer gels can be formulated with a variety of base polymers (synthetic and biopolymers) 

and crosslinkers (inorganic, organic and natural), controllable gelation times and adjustable strengths 

can be designed. The third axe reviewed the different PEI crosslinked polymer gels reported in 

literature alongside with their latest improvements, as well as some of their successful applications 

around the world. As summary, PEI was tested to crosslink with different acrylamide-based polymers 

such as PAtBA, PAM, PHPA, HAP, AM/AMPSA copolymer, AM/AMPSA/N,N-DMA and 

AM/AMPSA/NVP terpolymers through nucleophilic substitutions and acid-base ionic interactions. 

The main reasons for testing these base polymers were the economical and/or the technical 

advantages of each one. Some polymers were much more cheaper and readily available in larger 

quantities compared to the others, as it the case for PHPA compared to PAtBA and HAP. While, 

some polymers reacted easily with PEI thanks to their reactive functional groups such as the PAtBA 

ester groups, compared to other polymers with functional groups that act inversely and delay the 

gelation such as the AM/AMPSA copolymer sulfonic groups; HAP polymer, for example, was 

investigated to benefit from the hydrophobic interactions of its functional groups to strengthen the 

gel. The molecular weight of the polymer played also an important role. Low molecular weight 

polymers (PAtBA, PAM) formed strong gels and were destined for matrix shutoff. While high 

molecular weight polymers (PHPA) had lower leakoff to the matrix and were intended for fractures 

shutoff. These PEI crosslinked polymer gels have been examined in a wide temperature application 

interval ranging from 4.4 °C to 205 °C, where they showed excellent gelation times at high 
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temperatures and could withstood differential pressures of up to 3600 psi. Despite the variety of 

gelation times offered by these gels, many improvements were incorporated to enhance the gelation 

time and gel strength. Inorganic salts such as sodium carbonate, sodium chloride and ammonium 

chloride were used as retarders thanks to their charge-shielding effect. However, they were found to 

affect the final gel strength and had some compatibility problems with mixing waters. PEI derivatives 

and nanoparticles, which constrain the PEI from attacking the polymer, were shown to be good 

alternatives for these conventional retarders. The only restriction for their large-scale application was 

the higher price. On the other side, for low temperature applications, chemical activators such as 

Alkanolamines and Olgomeric polyamines were used to activate the PEI unreactive sites, which were 

shown to accelerate the crosslinking rate at very specific amounts. Inert solid materials such as 

cement, silica flour, coal ash fly, Rsm, Starches and Water Swellable Materials were used to enhance 

the final gel strength for near wellbore applications and some of them were successfully applied with 

PAtBA/PEI gels in North Sea, Middle East and Mexico oilfields. While, for the other polymer/PEI 

gels, no field application is reported in literature. Finally, the fourth axe discussed the various 

evaluation methods used to study the gelation time, gel strength and gel stability of polymer gels. The 

principle of each method besides its advantages or limitations were presented. The bottle test method 

was the only method which allows to evaluate the three characteristics simultaneously with the 

possibility of testing a larger number of samples at the same time, and for long periods of observation. 

The steady and dynamic shear methods were the best accessible techniques to obtain consistent 

quantitative values of gelation time and gel strength if the shear effect is well determined and 

controlled. While sophisticated techniques such as NMR and DSC showed to be the most promising 

methods in studying the gelation time and kinetics. However, they stay time-consuming and cost-

intensive methods which need to be optimized. For the case of the Algerian fractured reservoirs, 

where the reservoir temperatures are usually comprised between 60 and 100 °C, partially hydrolyzed 

polyacrylamide (PHPA) and polyethylenimines (PEI) seem to be the best base polymer and 

crosslinker respectively, regarding their ecological, economic and technical aspects. The PHPA is 

cheap and readily available and its height molecular weight makes it adaptable for fractures shutoff. 

While PEI is ecological with confirmed crosslinking capabilities at wide temperature ranges. On the 

other side, the PHPA/PEI systems were investigated only for the lower temperature conformance 

control applications. In those studies, the adequate characterization of the reactants was not 

considered, while numerous lacks still exist in terms of investigating and optimizing the thermal 

gelation of these systems under various physico-chemical conditions. Moreover, the crosslinking 

mechanisms between the two reactants were not fully investigated. Consequently, it became obvious 

that studying these systems for higher temperature applications while taking into account the physico-

chemical characteristics of the reactants and their crosslinking mechanisms, represents a good 

working prospect for us. 
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2. Chapter II: Materials characterization 

2.1 Products 

Three partially hydrolysed polyacrylamides (PHPAs), kindly provided by “SNF Floerger-France”, 

were employed as the base polymers. The PHPAs had different molecular weights and were provided 

in a powder form. Two polyethylenimines (PEIs), used as crosslinkers, were purchased from “Sigma 

Aldrich”. They had also different molecular weights but were in a liquid form. The products are 

shown in Figure 2.1 and their main physical and chemical characteristics communicated by the 

suppliers are summarized in Table 2.1. In order to obtain a more precise information on these 

products, a complete set of characterizations were conducted to determine their viscosity-average 

molecular weight (𝑀ഥ௩) using capillary viscosimetry, the PHPAs hydrolysis degrees and PEIs 

branching degrees using NMR, the water content and degradation temperature using 

thermogravimetric analysis (TGA). 

(a)      (b)  

Figure 2.1 : PHPA in a solid form provided by SNF Floerger (b) PEIs in liquid form from Sigma 
Aldrich. 

Inorganic salts namely sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl2), 

magnesium chloride (MgCl2), sodium sulfate (Na2SO4), sodium bicarbonate (NaHCO3) were ACS 

(American Chemical society) grade salts purchased from “Sigma Aldrich”. These salts were 

employed to prepare the different mixing waters. Distilled water, obtained from a milliQ system (18.2 

MΩ.cm), was also employed during this study. 
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Table 2.1 : The main physical and chemical characteristics of the studied products as communicated 
by the suppliers. 

Product 

 name 

Product 

code in 

this 

study 

Average 

Molecular 

Weight 

(~Mw)  

(106 

g/mol)  

Hydrolysis 

or 

Branching 

degree (%) 

Appearance 

& water content 

(%) 

Relative 

density 

pH Median 

Lethal 

Dose 

(LD50) 

(mg/Kg) 

AN905 BPM PHPA1 3~5 5 White granular 

solids (<1%) 

0.6-0.9 5-9 

@ 5 

g/l 

>5000 

AN905 PG2 PHPA2 8~10 5 

AN905 SH PHPA3 10~13 5 

Polyethylenimine, 

branched  

sigma 

code:408727 

PEI25 0.025 by 

light 

scattering 

NP Odorless & 

colorless 

Viscous liquid 

(0%) 

1.03 12 @ 

100 

g/l 

>500-

<2000 

Polyethylenimine 

solution 

Sigma 

code:181978  

PEI750 0.75 by 

light 

scattering 

NP Odorless & 

colorless viscous 

liquid (=50 wt% 

water) 

1.08 ~12 

@ 

100 

g/l 

500-2000 

*NP: not provided. 

2.2 Mixing water 

The main mixing water referred in this study as “injection water”, was a synthetic water prepared in 

the laboratory. It has similar composition and characteristics as the injection water of the Tin Fouyé 

Tabankort (TFT) reservoir in Algeria as summarized in Table 2.2 and 2.3 respectively: 

Table 2.2 : Injection water composition. 

Salt type Concentration (mg/l) 

NaCl 820.2 
KCl 75.1 

CaCl2 500.2 
MgCl2 333.6 
Na2SO4 1422 
NaHCO3 253.0 
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Table 2.3 : Injection water characteristics at 25°C. 

Parameter Value 
Total Dissolved Solids 

(TDS) (mg/l) 
3404.1 

Conductivity (ms/cm) 5.00 
pH 8.34 

Viscosity (cP) 0.91 

2.3 Reactants molecular weights 

The molecular weights of all the products (PHPAs and PEIs) were determined using capillary 

viscosimetry and based on the Mark-Houwink defined as follow: 

[η] = K ×  𝑀௪
ఈ                                                        Equation 2.1  

Where [η] is the intrinsic viscosity in (ml/g), Mw is the molecular weight in (g/mol), K in (ml/g) and 

𝛼 (dimensionless) are constants which are found experimentally for each polymer/solvent pair at a 

particular temperature [187]. In fact, the molecular weights determined through this method are 

viscosity-average molecular weights 𝑀ഥ௩, in (g/mol), which are calculated using Equation 2.2 

extracted from Equation 2.1: 

 𝑀ഥ௩ = 𝑒
భ

ഀ
(୪୭୥[஗]ି୪୭୥ ௄)                                                 Equation 2.2 

While K and 𝛼 are reported in literature for various polymers/solvent pairs, the intrinsic viscosity 

should be measured. Also called the limiting viscosity number [188], the intrinsic viscosity estimates 

the macromolecules dimensions (hydrodynamic volume) in a solution. It is defined as the limit of the 

reduced viscosity (ηR) or the inherent viscosity (ηI) when the polymer concentration tends to zero as 

shown in the equations below [189]: 

[η] = lim
௖→଴

η୍   and/or   [η] = lim
ୡ→଴

ηୖ                                     Equation 2.3 

with: 

η୍ =
௟௡ (஗౨)

ୡ
                                                                   Equation 2.4 

ηୖ =
஗౨ ି ଵ

ୡ
                                                                 Equation 2.5 

 

And 

η୰ =
஗

஗౩
                                                                               Equation 2.6 

Where: η and ηs are the solution’s and solvent’s shear viscosity in (cP), ηr is the relative viscosity 

(dimensionless) and C is the polymer concentration (g/ml). 



 Chapter II 
 

55 
 

It is clear from the above equations that a simple measure of the relative viscosity will allow to 

determine the reduced and inherent viscosities. Plotting these two viscosities, measured at different 

polymer concentrations, versus the polymer concentration and extrapolating the two curves to the 

zero concentration allows to obtain the intrinsic viscosity graphically. Most importantly, dilute 

polymer solutions must be considered to measure an accurate intrinsic viscosity, as the polymer 

chains are isolated from each other at low concentrations. 

The relative viscosities are usually measured using capillary viscometers, which consist on measuring 

the flow time of fixed volumes of the solvent and polymer solutions through a capillary tube. 

Ubbelohde viscometers with suspended ball level were the most known capillary viscometers used in 

this area [190]. However, they work only at atmospheric pressure and without control on shear rate. 

Rodriguez and co-workers [191] developed a new capillary viscosimeter which allows to measure 

the viscosity of dilute polymer solutions at controlled and very low shear rates and for temperatures 

even above the boiling point of the solvent.  

Based on Poiseuille’s law, the viscosity of the dilute polymer solutions (which exhibits a newtonian 

behavior) can be calculated by measuring the differential pressure between the two ends of a 

cylindrical capillary of length L and radius R, at flow rate Q: 

η =
୼୔ ஠ୖర

଼ ୕ ୐
                                                                         Equation 2.7 

The shear rate inside the cylindrical capillary can be also calculated using the following equation: 

𝛾̇ =
ସ ொ

஠ୖయ
                                                                              Equation 2.8 

Consequently, the new capillary viscosimetry technique consists on measuring the pressure drop (ΔP) 

(using pressure sensors) of dilute polymer solutions that are injected at fixed flow rates (Q), using a 

syringe pump, inside a known internal radius and length tubing and at a fixed temperature as shown 

in Figure 2.2: 

 

Figure 2.2 : The principle of the new capillary viscosimetry technique.[191]  

Plotting the differential pressures ΔP versus the flow rates Q for the solvent and different dilute 

solutions should give linear curves and allows to calculate the relative viscosities: 
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ΔP =
଼ ஗ ୐

஠ୖర
 Q                                                               Equation 2.9 

η୰೔
=

ୱ୪୭୮ୣ౩౥ౢ౫౪౟౥౤ (౟)

ୱ୪୭୮ୣ౩౥ౢ౬౛౤౪
                                                  Equation 2.10 

With η୰𝑖
 is the relative viscosity of a dilute solution (i) prepared at a fixed concentration.         

The homemade capillary viscosimeter employed in this study is depicted in Figure 2.3. The solvent 

and dilute solutions were injected at fixed flow rates using a syringe pump (mid pressure neMESYS 

1000N, Cetoni) inside a polyether ether ketone (PEEK) tubing having an internal radius of 254 𝜇m 

and 1.3 m of length measured between the two ends of the pressure sensor. The PEEK tubing was 

kept inside an oven (CTO-20AC, Shimadzu) set at the test temperature, while a back pressure 

(Swagelok), placed at the end of the tubing, ensured no air bubbles get inside the system. The pressure 

drops were recorded using a pressor sensor (ABB) that can measure pressure drops comprised 

between 0 to 60 mbar. The data were collected via a videographic recorder (ScreenMaster 500F, 

ABB) and processed using the “Datamanager” software (ABB). 

 

Figure 2.3 : The homemade capillary viscosimeter.  

Stock solutions of PHPAs (5000 ppm) and PEIs (100000 ppm) were first prepared in 5 g/l NaCl water 

(solvent). For PHPAs, the powder was gently sprinkled into the vortex created by the vigorous stirring 

of the mixing water using a pale marine stainless-steel blade stirrer. Homogenization was kept for six 

hours at 500 rpm (round per minute). On the other side, the right amount of the liquid PEIs was 

homogenized in the 5 g/l NaCl water for only one hour using a magnetic stirrer. The stock solutions 

were stored at 6 °C and used when needed to prepare the diluted solutions. PHPAs dilute solutions 

were prepared at 100, 200, 300, 400 and 500 ppm, while PEI25 dilute solutions were prepared at 

10000, 20000, 30000, 40000, 50000 ppm and PEI750 dilute solutions at 5000, 10000, 15000, 20000 

and 25000 ppm. The solvent (5 g/l NaCl water) and the dilute solutions were then injected in the 

capillary viscosimeter at flow rates of 3μl/s (𝛾̇ = 233.1 𝑠ିଵ), 2.5, 2, 1.5, 1, 0.75, 0.5, 0.25μl/s (𝛾̇ =

19.43 𝑠ିଵ), and a fixed temperature of 25 °C. 
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Here below we are representing only one figure from each step of the data treatment process to finally 

obtain the intrinsic viscosity. First, the pressure drops recorded, using the videographic recorder, have 

the profile shown in Figure 2.4. The average value at each plateau is used to plot the pressure drop 

as function of the flow rate for the solvent and the dilute solutions as in Figure 2.5. The variations 

were fitted with linear functions and the ratio of the slope of a given dilute solution (i) to the slope of 

the solvent gives the relative viscosity as defined in Equation 2.10. The relative viscosities are then 

used to calculate the inherent and reduced viscosities through Equations 2.4 and 2.5. Plotting these 

two viscosities as function of the product concentration, as shown in Figure 2.6, allows to find the 

intrinsic viscosity (considered as the average between the two intercepts). The same procedures were 

repeated for the other PHPAs and PEIs solutions.  

 

Figure 2.4 : Pressure drop profile as function of time at different flow rates for the solvent (5 g/l 
NaCl water) through the videographic recorder. 

 

Figure 2.5 : Pressure drop versus flow rate curve for the solvent and dilute PHPA1 solutions with 
their corresponding linear fits. 
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Figure 2.6 : Inherent, reduced and intrinsic viscosities of PHPA1. 

The Mark-Houwink constants K and 𝛼 were obtained from literature. For the three PHPAs, K was 

taken as 0.00631 and 𝛼 as 0.80 [192], while for the two PEIs, K was taken as 1 and 𝛼 as 0.26 [193]. 

The measured intrinsic viscosities and the viscosity-average molecular weights 𝑀ഥ௩ of all the products 

are summarized in Table 2.4:   

Table 2.4 : The products intrinsic viscosities and viscosity average molecular weights. 

Product Intrinsic viscosity [η] (ml/g) Viscosity-average molecular 

weight (𝑀ഥ௩) (106 g/mol) 

PHPA1 1460 5.1 

PHPA2 1990 7.5 

PHPA3 2560 10.2 

PEI25 13.0 0.02 

PEI750 32.8 0.67 

2.4 Reactants hydrolysis/branching degrees 

The hydrolysis degrees of PHPAs and the branching degrees of PEIs were determined using the NMR 

technique. The products were solubilized in deuterated water (D2O) at a concentration of around 20 

mg/ml and their proton (1H) and carbon (13C) NMR spectra were recorded at temperature of 25 °C on 

a Bruker AVANCE 400 MHz spectrometer equipped with a Z-gradient Bruker 5 mm BBFO (Braod 

Band Fluorine Observe) probe. The acquisition and processing parameters are summarized in Table 

2.5. A TopSpin 4.0.3 software (Bruker BioSpin) was employed to analyze and process the spectra. 
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Table 2.5 : The acquisition parameters of the 1H-RMN and 13C-RMN spectra. 

Parameter 1H-RMN 13C-RMN 

Frequency (MHz) 400.13 100.61 

Acquisition time AQ (s) 1.98 0.68 

Spectral width SWH (Hz) 8250 24038 

Fid size 32768 32768 

Number of scans 32 20480 

The 1H-NMR spectra of PHPAs, as shown in Figure 2.7 for the PHPA1, revealed two main peaks 

assigned respectively to the methylene group (CH2) for shifts comprised between 1.5-1.7 ppm and 

the methine group (CH) for shifts comprised between 2.1-2.25 ppm [194].  However, these spectra 

do not allow any quantitative separation between the methine and methylene of the acrylamide units 

and those of the acrylate units. Consequently, the hydrolysis degree of PHPAs cannot be defined 

through proton NMR. On the other hand, the 13C-NMR spectra of PHPAs allowed to separate four 

peaks: the methylene (CH2) and methine groups (CH) of both acrylamide and acrylate units at shifts 

of around 33.8-36.7 ppm and 41.4-42.1 ppm respectively, the carbons in the amide groups (CONH2) 

at 179.5-180.2 ppm and those in carboxylate groups (COONa) at 182.7-182.9 ppm. The use of 

carbonyl carbons for the quantitative determination of the hydrolysis degree of PHPAs has been 

reported [195, 196]. The hydrolysis degrees were thus determined using Equation 1.1, where the 

molar concentrations (X and Y) were taken as the integrated areas under the peaks at 180 and 182 

ppm in 13C-NMR spectra as shown for the PHPA1 in Figure 2.8. 

 

Figure 2.7 : 1H-NMR spectra of PHPA1 at 25 °C. 
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Figure 2.8 : 13C-NMR spectra of PHPA1 at 25 °C. 

The hydrolysis degrees of the three studied PHPAs are given in Table 2.6:  

Table 2.6 : the hydrolysis degrees of the three PHPAs. 

Product PHPA1 PHPA2 PHPA3 

Hydrolysis degree (%) 6.1 6.1 6.2 

Similarly, the proton and carbon RMN spectra of PEIs were recorded to obtain the branching degrees. 

The 1H-NMR spectra revealed only one major peak between 2.5-2.65 ppm, as shown in Figure 2.9, 

which corresponds to the methylene groups (CH2) attached to the different amine substituents without 

separation between them [193]. Thus, the branching degree could have not been determined. In 

contrast, the 13C-NMR spectra were characterized by eight major peaks as shown in Figure 2.10, with 

each set of peaks representing the methylene attached to a precise amine unit: peaks at 56.1, 53.1 and 

51.1 ppm were assigned to (CH2) attached to tertiary (N) amine units; peaks at 50.7, 47.7 and 45.7 

ppm to (CH2) attached to secondary (NH) amine units and peaks at 39.8 and 37.8 ppm to (CH2) 

attached to primary (NH2) amine units. 

 
Figure 2.9 : 1H-NMR spectra of PEI25 at 25 °C. 
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Figure 2.10 : 13C-NMR spectra of PEI25 at 25 °C. 

The integrated areas under the peaks (Ai) were employed to calculate the percentage of primary 

(NH2), secondary (NH), and tertiary (N) amino groups in the two PEIs (PEI25 and PEI750), following 

the equations given below: 

%𝑁𝐻ଶ =
஺ళା஺ఴ

(
ಲభశಲమశಲయ

య
)ା(

ಲరశಲఱశಲల
మ

)ା(஺ళା஺ఴ)
 × 100                Equation 2.11 

%𝑁𝐻 =
ಲరశಲఱశಲల

మ

(
ಲభశಲమశಲయ

య
)ା(

ಲరశಲఱశಲల
మ

)ା(஺ళା஺ఴ)
 × 100                Equation 2.12 

%𝑁 =
ಲభశಲమశಲయ

య

(
ಲభశಲమశಲయ

య
)ା(

ಲరశಲఱశಲల
మ

)ା(஺ళା஺ఴ)
 × 100                   Equation 2.13 

The branching degrees were consequently calculated using the Equation 1.2, where D (dendritic units) 

and L (linear amine units) were substituted by %N and %NH respectively. The percentage of each 

amine unit and branching degrees for the two PEIs are given in Table 2.7:    

Table 2.7 : The percentage of each amine unit (NH2, NH, N) and the branching degrees (BD) for the 
two PEIs calculated from 13C-NMR spectra. 

Product %NH2 %NH %N Branching 

Degree (BD) 

PEI25 36.8 37.0 26.2 58.6 

PEI750 36.4 38.8 24.7 56.0 

2.5 Reactants thermal degradation 

The thermal degradation of the products alongside their water contents were studied using the 

thermogravimetric analysis (TGA). The experiments were carried out using a TA-Q50 TGA 

instrument. Products samples of about 5 mg were placed into an aluminum sample holder, heated 
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from 30 to 600 °C at a ramp rate of 10 °C/min and under a dynamic nitrogen atmosphere with a flow 

rate of 20 ml/min. Figure 2.11 shows the weight percentage as function of temperature for the three 

PHPAs (PHPA1, 2, 3) and the two PEIs (PEI25, PEI750). The corresponding water contents of the 

product were calculated at 140 °C and are summarized in Table 2.8:  

 
Figure 2.11 : Thermogravimetric analysis curves of the different products. 

The observed thermal degradation curves of the PHPAs and PEIs were in good agreement with those 

documented in literature [197-199]. The PHPAs are degraded in three stages: the first one starts 

around 220 °C where PHPAs undergo irreversible chemical changes either through imidization 

reactions between the neighboring amide groups (CONH2) or the dehydration of the isolated groups, 

which result in the formation of imides and nitriles and the release of ammonia (NH3) and water 

(H2O) respectively. The second and third degradation stages are not distinct from each other and 

occur at 320 °C for the second stage and above 400 °C for the third stage. The second stage is 

characterized by the release of CO2 resulting from both the decarboxylation of the carboxylate groups 

(COONa) and the decomposition of imides, formed during the first stage. While, in the third stage, 

only the decarboxylation of the carboxylate groups continues to take place alongside the breakdown 

of the polymer backbone and the formation of paraffinic hydrocarbon materials. On the other side, 

the PEIs had one degradation stage comprised between 300 and 400 °C where products such as 

ammonia, ethylamine, pyrrole are released due to the random bond scissions.  

Table 2.8 : The water content in each product. 

Product PHPA1 PHPA2 PHPA3 PEI25 PEI750 

Water content (%) 7.8 8.3 9.2 1.8 44.1 

 



 Chapter II 
 

63 
 

2.6 Critical overlap concentration of PHPAs 

In order to realize the gelation process, one of the most important parameters that should be 

determined beforehand is the critical overlap concentration “C*”, which indicates the transition 

between the dilute and the semi-diluted solution regimes of the polymer as shown in Figure 2.12. In 

the dilute regime, the macromolecules behave independently because they are separated from each 

other, while in the semi-dilute regime, frictions are imposed on the macromolecules due to the chains 

overlapping and entanglement.  

 

Figure 2.12 : Polymer-molecules interaction at different concentrations. 

In a gelation process, the C* is the minimum concentration of the base polymer which is needed to 

obtain a continuous 3D structure (bulk gel) when a crosslinker is added to the polymer solution [81]. 

Several methods were used to determine the critical overlap concentration. Gomes and Costa [200] 

evaluated the use of the potentiometric titration to determine C* of a PHPA solution. Rodd et al. [201] 

used the Dynamic Light Scattering (DLS) to characterise the boundary between the dilute and semi-

dilute regimes of xanthan solutions. However, rheological measurements were extensively employed 

to determine this parameter. When measuring the zero-shear specific viscosity “ηsp0” and the intrinsic 

viscosity “[η]” and plotting “ηsp0” versus the overlap parameter “C.[η]”, the critical overlap 

concentration will coincide with a slope change in this plot [202, 203]. Other recent variants of this 

method consist of plotting directly the zero-shear viscosity “η0” versus polymer concentration “C” 

[201, 204] or the shear viscosity “η” at different shear rates versus polymer concentration “C” [205, 

206].  

As the determination of the C* for the three PHPAs is so extensive in terms of data points and curves, 

here below, we are limiting the presentation to only one example of C* determination of one of the 

PHPAs namely PHPA1. A stock solution of 10000 ppm of the polymer was first prepared in 5 g/l 

NaCl water. The powder was gently sprinkled into the vortex created by the vigorous stirring of the 

mixing water using a pale marine stainless-steel blade stirrer. Homogenization was kept for six hours 

at 500 rpm. The stock solution was then diluted to obtain polymer solutions with different 

concentrations ranging from the too-viscous to water-like solutions. The viscosities of the solvent (5 
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g/l NaCl water) and the very dilute polymer solutions were measured using the capillary viscosimeter 

following the same procedures presented in the subsection 2.3 of this chapter.  

Figure 2.13 shows the shear viscosity of the solvent and dilute PHPA1 solutions measured at 25 °C. 

The viscosities and shear rates were calculated using Equation 2.7 and 2.8 respectively. Just as the 

solvent viscosity, the dilute polymer solutions exhibited a newtonian behavior in all the shear rate 

interval with constant viscosities. The intrinsic viscosity of the PHPA1 was then determined 

following the same procedures presented in the subsection 2.3 of this chapter ([𝜂]=1460 ml/g). 

  

Figure 2.13 : shear viscosity of solvent and dilute PHPA1 solutions measured at 25 °C using the 
capillary viscosimeter. 

When the pressure drops ΔP exceeded the detection limit of the pressure sensor (60 mbar) in the 

capillary viscosimeter, the viscosity of the polymer solution was measured using a rotational 

rheometer (Anton Paar, MCR 302). The latter was equipped with a coaxial cylinder that have the 

following dimensions (measuring bob radius, Ri =13.325 mm, measuring cup radius, Re =14.465 mm, 

Gap Length, L =39.997 mm, Measuring Gap, e=1.14 mm). To ensure the exactness and repeatability 

of the viscosity measurements, settings in terms of measurement points per decade, measurement 

time per point, ascending (from 0.1 to 1000 s-1) or descending (from 1000 to 0.1 s-1) shear sweep were 

first investigated as shown in Figure 2.14. Consequently, the retained settings were as follow: 6 

measurement points per decade, measurement time per point of 20 seconds and an ascending shear 

sweep from 0.1 to 1000 s-1. 
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(a)  (b)  

Figure 2.14 : (a) measurement time per point and (b) ascending/descending sweep effects on the 
measured shear viscosity. 

The measured viscosities using the rotational rheometer are depicted in Figure 2.15. At very low 

shear rates, all the polymer solutions showed a newtonian behavior where viscosity remained constant 

up to a certain critical shear rate. Beyond this shear rate, the viscosity decreased with shear rate 

indicating a typical shear thinning behavior. The latter can be related to the uncoiling and the aligning 

of polymer macromolecules with the shear flow. When a second critical shear rate is reached, the less 

concentrated polymer solutions (i.e., 2000 ppm, 3000 ppm) showed a shear-thickening behavior 

where viscosity increased with the shear rate. This phenomenon can be related to the flow induced 

deformations and association of macromolecules. At high shear rates, the polymer chains may 

participate in the formation of clusters as the relaxation time is too short to adapt the flow geometry. 

Another explanation evokes the onset of the chain’s dilatant behavior under the high elongational 

flows, which strongly deform the macromolecules and give rise to an important contribution of the 

polymer’s elongational viscosity in the measured viscosity.  

 

Figure 2.15 : shear viscosity of PHPA1 solutions measured at 25 °C using the rotational rheometer. 
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The cross model was used to fit the flow behavior of the polymer solutions with exemption of the 

shear thickening area. The cross model represents the data very well at both high and low shear rates, 

which makes it a high realistic model compared to other models: 

𝜂 = 𝜂ஶ +
ఎబିఎಮ

(ଵାఒ.ఊ̇೘)
                                                   Equation 2.14 

With η is the shear viscosity, η∞ is the infinite-shear viscosity, η0 is the zero-shear viscosity; λ is the 

time constant and m is a dimensionless exponent. The fit parameters for the different polymer 

concentrations are reported in Table 2.9: 

Table 2.9 : Cross model parameters for PHPA1 solutions measured at 25 °C. 

Concentration 
(ppm) 

η0  

(cP) 

η∞  

(cP) 

λ (s) m 

10000 295 13.24 0.130 0.724 

7500 105 13.96 0.046 0.846 

5000 36 9.94 0.029 0.853 

4000 17 7.54 0.013 0.945 

3000 10.25 5.86 0.011 0.933 

2000 5.70 4.48 0.009 1.011 

When all the viscosities of the prepared polymer solutions were measured, the zero-shear specific 

viscosities “ηsp0”, defined by Equation 2.15, were calculated:  

ηୱ୮଴ =
஗బି ஗౩

஗౩
                                                     Equation 2.15 

With ηୱ is the solvent viscosity and η୭ is the zero-shear viscosity of the polymer solution. 

The zero-shear specific viscosities “ηsp0” were then plotted against the overlap parameter “C.[η]” as 

shown in Figure 2.16: 
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Figure 2.16 : Critical overlap concentration (C*) determination for PHPA1 prepared in 5 g/l NaCl 
water and at 25°C. 

In the above figure, three regions were identified: the dotted line for the dilute regime, the dashed line 

for the semi-diluted regime and the solid line for the concentrated regime. The intersection between 

the three lines gave the C* and C**. The same procedures were followed for the other two PHPAs 

(PHPA2 and PHPA3). Stock solutions were prepared in injection water then diluted to obtain polymer 

solutions with different concentrations. The viscosities of very diluted were measured using the 

capillary viscosimeter while those of the more concentrated solutions were measured using the 

rotational rheometer. The intrinsic viscosities were calculated alongside the zero-shear specific 

viscosities “ηsp0”. The latter were then plotted against the overlap parameter “C.[η]” as shown in 

Figure 2.17. Interestingly, the curves of the three PHPAs superposed on each other in one single 

curve. This is in good agreement with previous studies suggesting the existence of a master curve for 

polymer solutions having a fixed conformation when prepared in good solvents [207, 208]. 

Table 2.10 summarizes the obtained intrinsic viscosities and the critical concentrations (C*, C**) 

for the three PHPAs prepared in 5 g/l NaCl water.  

Table 2.10 : the intrinsic viscosities and the critical concentrations (C*, C**) measured at 25 °C for 
the three PHPAs prepared in 5 g/l NaCl. 

polymer PHPA1 PHPA2 PHPA3 

[𝜂] (ml/g) 1460 1994 2560 

C* (ppm) 700 551 491 

C** (ppm) 4016 3825 3253 
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Figure 2.17 : The master curve of zero-shear specific viscosity versus the overlap parameter for the 

three PHPAs prepared in 5 g/l NaCl water and at 25°C. 

2.7 Viscoelastic behavior of PHPAs 

Understanding of the viscoelastic behavior of the base polymer is of paramount importance in the 

comprehension of the viscoelastic behavior of the obtained polymer gel. In this subsection, we have 

conducted a set of experiments to characterize the viscoelastic moduli of the three PHPAs in their 

non-crosslinked state, which will help afterwards in the interpretations of their viscoelastic moduli 

when crosslinked with PEI. Prior to that, the effect of the applied strains and frequencies on the 

accuracy of the measured moduli, were evaluated independently. To do so, PHPAs solutions, 

prepared in 5 g/l NaCl water, were loaded in the coaxial cylinder of the rotational rheometer (Anton 

Paar, MCR 302).  

As the linear viscoelastic ranges of polymer systems are determined through strain sweep tests at 

fixed frequencies, the first step consisted of evaluating the effect of the chosen frequency on the 

measured viscoelastic moduli. Strain sweep tests were conducted at 4 different frequencies and fixed 

temperature of 25 °C on PHPA1 solutions prepared at fixed concentration of 10000 ppm as shown in 

Figure 2.18. In the studied strain range, the recorded loss moduli (G”) were independent of the strain 

and were higher than the storage moduli (G’) expressing the viscous behavior of the tested polymer 

solutions. When the frequency was increased from 0.1 to 5 Hz, the measured viscoelastic moduli 

were amplified by a factor of around 100. On the other side, the measured storage modulus was 

drastically decreased to around 2×10-4 Pa at a frequency of 10 Hz, indicating the beginning of the 

nonlinear viscoelastic range. Moreover, the viscoelastic moduli could not be measured at very high 

strains (strain > 600 %) which was due to the instrument limitations at these conditions. As a result, 
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measurements of the viscoelastic moduli in a strain sweep test were confirmed to be dependent on 

the chosen frequency [209, 210]. Thus and for an accurate determination of the linear viscoelastic 

range, strain sweep tests should be conducted at the highest frequency for which the linear domain is 

the shortest [211], in this case either at 1 or 5 Hz. Both very low and very high frequencies (0.1 and 

10 Hz) are not recommended since the measurement in the regions of low and high strain respectively, 

are limited by the equipment sensitivity.  

 

Figure 2.18 : The frequency effect on viscoelastic moduli in a strain sweep test (PHPA1 
concentration=10000 ppm). 

Inversely, the effect of the strain on the measured viscoelastic moduli during a frequency sweep test 

was evaluated. In all cases, the applied strain should be within the linear viscoelastic range. Three 

descending (from 10 to 0.01 Hz) frequency sweep tests at fixed strains of 0.1, 1 and 10 % were 

realized as shown in Figure 2.19. The loss and storage moduli were totally independent of the applied 

strain aligning with the observations from Figure 2.18 and previous reports in literature [212]. 

Nevertheless, the variation of the storage modulus at low frequencies was better captured when higher 

strains were applied. 
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Figure 2.19 : The strain effect on viscoelastic moduli in a frequency sweep test (PHPA1 
concentration=10000 ppm). 

The effect of polymer concentration, temperature and polymer’s molecular weight on the viscoelastic 

moduli of PHPA prepared in 5 g/l NaCl water were then evaluated through frequency sweep tests at 

a fixed strain of 10 % as shown in Figures 2.20, 2.21 and 2.22, respectively. For all the studied 

parameters and in all the investigated frequency range, the loss modulus (G”) was higher than the 

storage modulus (G’), with no crossover between them, indicating the predominance of the viscous 

behaviour over the elastic one for all polymer solutions and in all test conditions. Both viscoelastic 

moduli decreased when frequency decreased and the gap between them became larger at low 

frequencies. As illustrated in Figure 2.21, the loss moduli G” were very close at higher frequencies 

(around 10 Hz) but then the G” slopes were around 1 in the low frequency range (0.01-1 Hz). 

Meanwhile, the storage moduli (G’) slopes were around 2 in the frequency range (0.1-1 Hz), which 

is in good agreement with the theoretical slope of log G’ versus log ω for a non-crosslinked polymer 

solution (theoretical slope= 2) [176]. Experimentally, this can be explained by the decreased 

measurement time at high frequencies which allows less time for polymer chains to relax and thus 

the polymer solutions will tend to behave as rigid materials and show higher viscoelastic moduli, 

mainly high storage moduli at high frequencies. At low frequencies, the measurement time starts to 

increase compared to the relaxation time and the viscous behavior becomes more dominant. Polymer 

concentration and molecular weight had a proportional effect on the value of the measured 

viscoelastic moduli in contrast to the temperature that had a negative effect. However, for the less 

concentrated solutions (PHPA1 solutions prepared at 3000 and 5000 ppm) and for high temperatures 

(60 and 80 °C), the storage modulus could not be measured or was too low at high frequencies. In 

fact, the polymer solutions are crowded at high concentrations and molecular weights which results 

in an increased number of entanglements and a decreased motion of the polymer chains. 

Consequently, the relaxation time of these polymer chains becomes longer because of the restricted 

intramolecular motion [213]. With higher relaxation times, the polymer solutions exhibit higher 
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viscoelastic moduli at low measurement times (high frequencies). Inversely, the enhanced chains 

movement at high temperatures result in less entangled network and shorter relaxation times thus the 

observed low viscoelastic moduli at high temperatures. When the polymer solutions are too dilute 

and their network is insufficiently entangled, the elastic response (storage modulus) becomes so small 

and cannot be measured accurately at high frequencies as it was the case for low polymer 

concentrations and high temperatures. 

 

Figure 2.20 : Viscoelastic moduli at different concentrations of PHPA1 solutions prepared in 5 g/l 
NaCl water (strain= 10 %, T= 25 °C). 

  

Figure 2.21 : Viscoelastic moduli at different temperatures of PHPA1 solutions prepared at 10000 
ppm in 5 g/l NaCl water (strain= 10 %). 
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Figure 2.22 : Viscoelastic moduli at different PHPA molecular weights (polymer concentration= 

10000 ppm in 5 g/l NaCl water, strain =10 %, T= 25 °C). 

2.8 Conclusion 

In this chapter, a complete characterisation methodology of the reactants used in the thesis (three 

PHPAs and two PEIs) was conducted. A new homemade capillary viscosimeter was employed to 

measure the viscosities of the solvent and dilute reactant solutions, which allowed afterwards to 

calculate the intrinsic viscosities and the viscosity-average molecular weights based on the Mark-

Houwink equation. The PHPAs hydrolysis degrees and PEIs branching degrees (which are usually 

neglected in studies on PEI based polymer gels) were determined based on the carbon (13C) NMR 

spectra of the reactants. The thermogravimetric analysis (TGA) gave access to the water content of 

the reactants and their thermal degradation. The critical concentrations (C* and C**) of the three 

PHPAs, which are important to the gelation reaction, were determined through the plot of the zero-

shear specific viscosity versus the overlap parameter. To do so, the flow curves of concentrated 

polymer solutions were fitted using the cross model while the dilute polymer solutions exhibited only 

a newtonian behavior. The curves of zero-shear viscosity versus the overlap parameter of the three 

PHPAs were found to superimpose confirming the polymer to be solubilized in a good solvent. 

Finally, the viscoelastic behavior of the non-crosslinked PHPA solutions was investigated. The effect 

of the applied frequencies in strain sweep tests and inversely the effect of the applied strain in 

frequency sweep tests were first evaluated. It was found that the frequency had a greater impact 

compared to the strain. All the polymer solutions exhibited a dominant viscous behaviour over the 

elastic one in all the test conditions. However, and due to the equipment limitations, reliable 

measurements of the storage moduli were only obtained in a limited frequency range. 
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3. Chapter III: The thermal gelation of PHPA/PEI mixtures  

3.1 Introduction 

In this chapter, the thermal gelation of partially hydrolyzed polyacrylamide (PHPA) and 

polyethylenimine (PEI) mixtures were studied under realistic conditions of temperature (80°C) and 

salinity (Total Dissolved Solids, TDS= 3.4 g/l) of the Algerian reservoir of Tin Fouyé Tabankort 

(TFT). The thermal stability, the degradation temperature, the morphology, the structure-property 

relationships and the viscoelastic behavior of the PHPA/PEI mixtures were investigated as function 

of the main controlling parameters namely reactant concentrations, reactants molecular weights, 

temperature and inorganic salts presence. All experiments were conducted in the semidilute and 

concentration regimes of the polymer (c>c*) while maintaining practical initial gelant viscosities. 

Various techniques were employed such as the bottle test method, the steady shear method, the 

dynamic shear method, differential scanning calorimetry (DSC) and scanning electron microscopy 

(SEM). The obtained results were discussed and compared to the literature reported PHPA/PEI gels 

or PEI based gel polymers characteristics. 

3.2 Materials and methods: 

The three PHPAs and the two PEIs, presented in the materials characterization chapter, were 

investigated in this section. PHPA1, which had a medium Mw (5×106 g/mol) and low HD (6%), 

developed the lowest gelant viscosities (~12 cP at 5000 ppm in TDS =3.4 g/l water). It was 

consequently chosen as the main base polymer. While PHPA2 and PHPA3, having the same HD (6%) 

but higher Mw, were used to study the effect of the polymer’s molecular weight. The main crosslinker 

was PEI25, while PEI750 was used to study the crosslinker’s molecular weight effect at the same BD 

(56-59). 

Prior to preparation of gelant solutions, PHPAs stock solutions of 10000 ppm (10 g/l) were prepared 

in injection water (see section 2.2 of materials characterization chapter). The polymer powder was 

gently sprinkled into the vortex created by the vigorous stirring of mixing water using a pale marine 

stainless-steel blade stirrer. Homogenization was conducted for six hours at 500 rpm. The stock 

solutions were stored at 6 °C. Gelant solutions were then prepared by adding the appropriate amount 

of crosslinker to the polymer solutions and stirring using a magnetic stirrer for an additional 5 

minutes. For all the prepared gelant solutions, the pH, measured using a wtw/pH-3310 pH meter, was 

varying between 9.5 and 10.5 because of the crosslinker (PEI) that has a strong buffering capacity.  

For the bottle test method, the gelant solutions were loaded in glass tubes that were aged in an oven 

at 801 °C. The glass tubes were taken for periodical observations of gelation time, gel strength and 
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gel long-term stability. In contrast, the gelant solutions were loaded directly in a rotational rheometer 

(Anton Paar, MCR 302) for steady shear measurements. The latter were conducted at 80 °C using a 

coaxial cylinder that had the following dimensions (Measuring Bob radius, Ri =13.325 mm, 

Measuring Cup radius, Re =14.465 mm, Gap Length, L =39.997 mm, Measuring Gap, e=1.14 mm), 

which acquired a gelant sample volume of approximately 19.3 ml. In the case of dynamic shear 

measurements, gelant solutions were first filled in small glass flasks and cured in the oven at 801 

°C for 48 hours. After that, the gel samples were carefully loaded into a parallel plate geometry on 

the same rotational rheometer (Anton Paar, MCR 302). The plates had a radius of 12.49 mm and were 

separated by a 1 mm gap. The viscoelastic moduli (G’ and G”) were measured at 25 °C set using a 

temperature controlling cell. 

Differential scanning calorimetry (DSC) was performed with the Q1000 DSC instrument (TA 

Instruments) to study the degradation temperature of PHPA/PEI gel. About 5 mg of a fully formed 

PHPA/PEI gel (20000 ppm PHPA1/ 10000 ppm PEI25 prepared in distilled water) was placed in 

aluminum hermetic pan, sealed with a pressing tool and loaded into a DSC instrument, where an 

empty pan was used as a reference. The temperature was equilibrated at 25 °C, then ramped at 2 

°C/min to 200 °C under a constant nitrogen flow of 20 ml/min. 

Scanning Electron Microscope (SH3000, Hirox, South Korea) was used to examine the 

microstructure (morphology) of the PHPA/PEI gel. First, a gelant solution, prepared with 20000 ppm 

PHPA1 and 10000 ppm PEI25 in distilled water, was cured at 80 °C overnight. A small portion of 

the formed gel was then frozen with liquid nitrogen and cutted with razor blade to obtain ultrathin 

films that were placed on a copper-plate and coated with gold in a sputter coater (Denton Vacuum). 

SEM images were collected using a field source emission of 20 kV accelerating voltage.  

3.3 Results and discussions: 

3.3.1 Thermal gelation through the bottle test method 

The thermal gelation of PHPA/PEI mixtures was first evaluated using the bottle test method. The 

semi-quantitative method allows to evaluate the gelation time and gel strength simultaneously and to 

observe the gel thermal stability for long periods. Sixteen gelant solutions were prepared in injection 

water using four PHPA1 concentrations of 3000, 5000, 7500 and 10000 ppm (all above the critical 

overlap concentration C* =700 ppm), and four PEI25 concentrations of 500, 1000, 2000 and 3000 

ppm. The gelant solutions were loaded into glass tubes and aged at 80 °C. The qualitative evaluation 

of the gel samples using Sydansk’s gel code was conducted over the course 3 months as summerized 

in Table 3.1: 
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Table 3.1 : Summary of the gelation performance of the PHPA1/PEI25 mixtures at 80 °C and 

TDS=3.4 g/l according to Sydansk’s code. 

Gel Formulation Gel Strength according to Sydansk’s Code 

PHPA1 

Concentration 

(ppm) 

PEI25 

Concentration 

(ppm) 

Time (Hours) 

1 2 3 4 6 8 24 48 
10 

days 

1 

month 

3 

months 

3000 

500 A A A A A A D E C B A 

1000 A A A A C E F F F F A 

2000 A A A B F F I I I S* S* 

3000 A A A C F F I S* S* S* S* 

5000 

500 A A A A A A E E D B A 

1000 A A A B E F G G G G A 

2000 A A B E G G I I I I I 

3000 A A C F G H I I S* S* S* 

7500 

500 A A A A A B F G F B A 

1000 A A B E F G I I I F E 

2000 A A D F H I I I I I I 

3000 A B E F H I I I I I I 

10000 

500 A A A A B D H H F D A 

1000 A A B D G F I I I E B 

2000 B D F G H I I I I I I 

3000 A D G H I I I I I I I 

*syneresis. 

In literature, the gelation time was considered at various Sydansk’s codes. Jia et al. [214] considered 

the gelation time at the moment when a gelant solution of code A turns to a flowing gel of code C. 

Others considered code D as the gelation point [165, 215]. While, You et al. [163] defined it at the 

time when a gelant solution reaches code G. However, the most accepted and accurate definition, and 
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the one retained here, was when the gelant solution passes from code A to code B [132]. The first 

observation extracted from the table was that the high reactant concentrations led to lower gelation 

times and higher gel strengths which reached the code “I” in Sydansk’s gel code, comparably to the 

low molecular weight acrylamide-based/PEI gels [115]. Such observation can be explained by the 

enhanced interactions and crosslinking reactions between the polymer and the crosslinker at high 

concentrations, which result in an inverted variation of gelation time and gel strength (faster reaction 

and more crosslinked sites) as function of reactants concentrations.  The second observation was that 

syneresis, where water is expelled from the 3D structure of the gel as shown in Figure 3.1, occurred 

rapidly for all gelant solutions prepared with crosslinker/polymer ratio higher than ½. Syneresis is 

generally caused by the overcrosslinking induced by the excessive crosslinker loadings [216]. Finally, 

the studied PHPA/PEI gel samples were relatively stable over the observation period of 3 months. 

Almost all gel samples, prepared with crosslinker concentrations higher than 1000 ppm and 

crosslinker/polymer ratios of less than ½, maintained their strength throughout all the period. While 

those samples prepared with low crosslinker concentration (500 or 1000 ppm) lost their strength. In 

such case, the low crosslinking density reduce the ability of the gel 3D structure to retain the water 

inside it. 

 

Figure 3.1 : Syneresis phenomenon observed after only 3 days for the gel sample prepared with a 
PHPA1/PEI25 ratio of 1/1. 

3.3.2 Structure-property relationships and viscoelastic behavior 

In this part, the structure-property relationships and the viscoelastic behavior of the PHPA/PEI gel 

system are investigated as function of reactant concentrations, reactants molecular weights, 

temperature and inorganic salts presence using both steady and dynamic shear methods. For the 

steady shear method, the effect of shear rate on gelation time determination was first evaluated in 

order to choose the appropriate shear rate for all the subsequent steady shear viscosity measurements. 

While, for the dynamic shear method, strain sweep tests were conducted to determine the linear 

viscoelastic range of the PHPA/PEI gel.  
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3.3.2.1 Shear rate effect on gelation time 

The viscosity evolution versus time, for gelant solutions prepared with 10000 ppm PHPA1 and 3000 

ppm PEI25 in injection water, was determined at different shear rates of 1, 5, 10, 30 and 50 s-1. As 

shown in Figure 3.2, the gelation time was identified at the intersection of a horizontal line that shows 

the initial gelant viscosity with a diagonal line that shows the viscosity evolution after the gelation 

point. At low applied shear rates, the viscosity evolution was sharp and rapid after the gelation point, 

contrary to higher shear rates where gelation times were slightly delayed and viscosity evolution was 

less pronounced. 

 

Figure 3.2 : Shear rate effect on gelation time. 

In order to confirm this trend, the slopes of the viscosity variation after the gelation point (Slope 

P=
୴୧ୱୡ୭ୱ୧୲୷ (୲మ)ି୴୧ୱୡ୭ୱ୧୲୷ (୲భ)

௧మି௧భ
  with t1 and t2 higher than the gelation time) as function of the applied 

shear rates were plotted in a log-log curve as shown in Figure 3.3: 
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Figure 3.3 : Slope of viscosity evolution after the gelation point versus the applied shear rate. 

Interestingly, the variation was found to follow a power law relationship which corresponds to a shear 

thinning effect of the three-dimensional structure being formed. As reviewed in the state of art, the 

effect of shear flow on the gelation reaction, especially near the gel point, was a matter of debate. 

Here, the negative effect of shear flow on the gelation reaction and gel structure was confirmed. This 

was clear for shear rates of 5 and 10 s-1, where the viscosity drops slightly after the gelation point 

before resuming its increase. Previous studies reported that the shear rate destroys the aggregates 

formed by intermolecular bonds and limits the formation of a continuous gel structure [217]. Based 

on this result, we decided to consider a shear rate of 1 s-1 for all the subsequent steady shear viscosity 

measurements. 

3.3.2.2 Linear viscoelastic range 

The dynamic oscillatory measurements are generally consisted of two types of tests: strain or stress 

sweep tests where the strain/stress is varied at a constant frequency and frequency sweep tests where 

the frequency is varied at a constant strain/stress. In order to determine the linear viscoelastic range 

of the PHPA/PEI gel systems, a strain sweep test was first performed on gel samples prepared in 

injection water with different PHPA1 and PEI25 concentrations, and which were cured at 80 °C for 

48 hours. At a fixed frequency of 1 Hz, the storage modulus remained constant within the strain range 

of 0.1 to 100% but largely decreased beyond that as shown in Figure 3.4. Based on this result and 

other literature reported strain sweep tests on similar gel systems tested with parallel plates geometries 

[218, 219] a fixed strain of 1% was chosen to perform the frequency sweep tests. 
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Figure 3.4 : Strain sweep test on gel samples prepared with different PHPA1 and PEI25 
concentrations (Frequency= 1 Hz). 

3.3.2.3 Polymer and crosslinker concentration effect 

To study the effect of polymer and crosslinker concentrations on gelation time, a set (matrix) of 16 

gelant solutions were prepared in injection water using four PHPA1 concentrations of 3000, 5000, 

7500 and 10000 ppm and four PEI25 concentrations of 500, 1000, 2000 and 3000 ppm. The gelant 

solutions were directly loaded into the rheometer equipped with a coaxial cylinder, where their 

viscosities were monitored versus time at a fixed shear rate of 1 s-1 and a fixed temperature of 80 °C. 

Moreover, the effect of polymer and crosslinker concentrations on the viscoelastic moduli (gel 

strength) was also considered. For the polymer concentration effect, gelant solutions were prepared 

in injection water using a fixed PEI25 concentration of 1000 ppm and variable PHPA1 concentrations 

of 3000, 5000, 7500 and 10000 ppm. Inversely, for the crosslinker concentration effect, gelant 

solutions were prepared at a fixed PHPA1 concentration of 5000 ppm and variable PEI25 

concentrations of 500, 1000, 2000 and 3000 ppm. In both cases, gelant solutions were first cured at 

80 °C for 48 hours, then the obtained gel samples were loaded carefully into the rheometer equipped 

with a parallel plate geometry. Frequency sweep tests were conducted between 0.1 and 10 Hz at a 

fixed strain of 1% and a fixed measurement temperature of 25 °C. 

Figure 3.5 shows the variation of gelation time as a function of polymer and crosslinker 

concentrations, respectively.  
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(a) (b)  
Figure 3.5 : (a) Polymer and (b) crosslinker concentrations effect on gelation time.  

It was clear that higher polymer and crosslinker concentrations led to lower gelation times in 

correspondence to the bottle test observations. For example, gelation time decreased by a factor of 

10, from 750 minutes (12 hours and 30 minutes) when 3000 ppm PHPA1/500 ppm PEI25 were used, 

to only 75 minutes (1 hour and 15 minutes) when 10000 ppm PHPA1/3000 ppm PEI25 were used. 

When comparing the measured gelation times with those reported for similar PHPA/PEI systems as 

summarized in Table 3.2, one can notice the superiority of our PHPA/PEI system in terms of lower 

reactants concentrations and lower initial gelant viscosities while covering a wider range of gelation 

times. Furthermore, from the curve profiles in Figure 3.5 (a-b), it appears that the crosslinker 

concentration effect was more pronounced compared to that of the polymer concentration (in fact, 

when polymer concentration increased almost 4 times, gelation time decreased by 2 times compared 

to a decrease of 4 times for the same increase in the crosslinker concentration). However, gelation 

times remained constant above 2000 ppm (i.e., 3000 ppm). Another important observation was that 

the variation of gelation time versus both polymer and crosslinker concentration did not follow an 

exponential relationship, as reported in previous studies [105, 120, 122]. 

Table 3.2 : PHPA/PEI gelation times reported in literature and this study. 

Polymer Crosslinker Initial 
gelant 
Viscosity 
(cp) 

T (°C)  Solvent Gelation 
Time 
(Hours) 

Reference 

5% PHPA 
0.33 - 2% 

PEI 
NP* 

25 
2% KCl brine 

8-13 
[119] 

60 1.5-6 

0.5 – 1.5% 
PHPA 

0.2 – 1.5% 
PEI 

NP 40 

Synthetic 
water 

TDS= 90 g/l 

15hrs – 
9 days 

[120] 
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2% PHPA 0.35% PEI 409 65 

Synthetic 
water 

TDS= 5 g/l 

10 [121] 

1 – 2% PHPA 
0.2 -0.35% 

PEI 
617 65 

Fresh water 

TDS= 0.5 g/l 
4 – 72 [122] 

3.5% PHPA 1% PEI NP 71.1 2% KCl brine 2.5 [95] 

0.75% PHPA 0.41% PEI 33 85 2% KCl brine 3 [33] 

3% PHPA 
(Flopaam 
3330S) 0.6 – 1.2% 

PEI 
 

NP 100 
Distilled 

water 

3.3 

[124] 

2% PHPA 
(Alcomer130) 

NP 100 3.4 

7% PHPA 0.3% PEI NP 120 
Salt free 

water 
0.5-0.75 [118] 

0.3% to 1% 
PHPA 

0.05 – 0.3% 
PEI 

12.5 80 

Synthetic 
water 

TDS= 3.4 g/l 

0.25-
12.5 

This study 

*NP=Not Provided. 

Figure 3.6 shows an example of the storage and loss moduli variations in a frequency sweep test for 

gel samples prepared in injection water at different polymer concentrations and fixed crosslinker 

concentration. For all the tested gel samples (including those prepared at fixed polymer 

concentration), frequency sweep tests revealed that the storage modulus (G’) is totally independent 

of the applied frequency and is largely higher than the loss modulus (G”). Such results confirm the 

formation of a 3D crosslinked structure as reviewed and explained in the state of art (see section 

1.10.4). Consequently, the variation of the storage and loss moduli at a fixed frequency of 1.36 Hz 

were correlated with the polymer and crosslinker concentrations through mathematical relationships 

as presented in Figure 3.7. 
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(a) (b)  
Figure 3.6 : (a) storage and (b) loss modulus variations in a frequency sweep test for gel samples 
prepared at different polymer concentrations and fixed crosslinker concentration (strain= 1%). 

(a) (b)  
Figure 3.7 : (a) polymer concentration effect (at fixed PEI25 concentration= 1000 ppm) and (b) 
crosslinker concentration effect (at fixed PHPA1 concentration= 5000 ppm) on the viscoelastic 

moduli G’ and G” (Strain= 1%, Frequency= 1.36 Hz). 

Both storage and loss moduli varied proportionally with polymer and crosslinker concentrations 

following exponential relationships y= 𝑎 ∗ 𝑒௕. In literature, Al-Muntasheri et al. [106] reported 

exponential variations of the storage and loss moduli of a PAtBA/PEI gel system under the respective 

effect of polymer concentration:  𝐺′ = 22.7 × 𝑒଴.ସଽ (௉஺௧஻஺ ௖௢௡௖௘௡௧௥௔௧௜௢௡ ௜௡ ௪௧%) , 𝐺" = 0.45 ×

𝑒଴.଻ଷ (௉஺௧஻஺ ௖௢௡௖௘௡௧௥௔௧௜௢௡ ௜௡ ௪௧%) and crosslinker concentration: 𝐺′ = 487.56 ×

𝑒ଵ.ହଷ (௉ாூ ௖௢௡௖௘௡௧௥௔௧௜௢௡ ௜௡ ௪௧%). Moreover, El-karsani et al. [112] presented the following two 

relationships for the storage modulus of PAM/PEI gel system as function of polymer and crosslinker 

concentrations: 𝐺′ = 168 × 𝑒଴.ଶଶ(௉஺ெ ௖௢௡௖௘௡௧௥௔௧௜௢௡ ௜௡ ௪௧%) and 𝐺′ = 931 ×

𝑒଴.ଶଷ (௉ாூ ௖௢௡௖௘௡௧௥௔௧௜௢௡ ௜௡ ௪௧%). Given the differences between the studied systems in terms of reactants 

concentration ranges, molecular weights, and other controlling parameters (curing and measurement 

temperatures, salinity... etc), a quantitative comparison between the obtained relationships (constants 

a and b) of this study and those reported in literature seems impossible. However, it is acceptable to 

consider the increase rate in comparing between the different effects. El-karsani et al. [112] stated 
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that when the polymer (PAM) concentration increased three times, the storage modulus increased by 

a factor of three compared to only a factor of 1.1 when the crosslinker (PEI) concentration increased 

by the same factor (3 times). Similarly, an increase of PAtBA concentration by a factor of 2.33 

resulted in an increase of the storage modulus by a factor of 7, while an increase of PEI concentration 

by a factor of 3 resulted in the storage modulus increase by a factor of 4.3 as extracted from [106]. In 

this study, when considering the same PHPA and PEI concentrations increase (three times: from 3000 

to 10000 ppm for PHPA and from 1000 to 3000 ppm for PEI), the storage modulus increased by a 

factor of 19 with polymer concentration and a factor of 2 with crosslinker concentration. This result 

means that the PHPA concentration effect on the storage modulus is more pronounced compared to 

both the PEI concentration effect and other polymers concentrations effect (i.e., PAM, PAtBA). 

Table 3.3 summarizes the reported storage moduli of PEI crosslinked polymer gels. Our PHPA/PEI 

gel system had comparable strength with other PEI crosslinked polymer gels. Nevertheless, when 

considering a typical gel sample prepared with 5000 ppm PHPA and 1000 ppm PEI, having an initial 

gelant viscosity of 12 cP and a gelation time of 3 hours, the gel strength was only around 10% of that 

of typical PAM/PEI or PAtBA/PEI gels.  

Table 3.3 : Storage moduli reported in the literature for PEI crosslinked polymer gels. 

The system TCuring 
(°C)  

TMeasur 
(°C) 

Mixing water G’ 
(Pa) 

Reference 

PAtBA (70000 ppm)/PEI 
(3000 ppm) 

150 23.5 
Field water TDS= 

1.18 g/l 
675 [106] 

PAM (70000 ppm)/ PEI (3000 
ppm) 

130 130 
Field water TDS= 

0.98 g/l 
725 [112] 

Non-emulsified PAM (90000 
ppm)/ PEI (10000 ppm) 

120 120 
Field water TDS= 

0.98 g/l 

885 

[117] 
Emulsified PAM/PEI 
Completely separated 

746 

Emulsified PAM/PEI Non-
separated 

344 

AM/AMPS/NVP terpolymer 
(12000 ppm)/PEI (3000 ppm) 

150 150 
Deionized water + 
0.1 % Na2CO3 + 
0.05 % thiourea 

27.8 [74] 

PHPA (10000 ppm)/PEI (1000 
ppm) 

80 25 
Synthetic water 

TDS= 3.4 g/l 

594.2 

This study 
PHPA (5000 ppm)/ PEI (1000 
ppm) 

69.5 
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Experimentally, the lower gelation times and the higher gel strengths can be explained by the greater 

number of available crosslinking sites when high polymer or crosslinker concentrations are employed 

and by the more entangled network when high polymer concentrations are used. The gelation speed 

is mainly dependent on the number of PEI entities in the solution which are the initiators of the 

crosslinking reaction. However, this is only true to a certain extent as the crosslinking reaction speed 

depends also on other limiting parameters such as the temperature and salinity. Hence the gelation 

time was observed to become invariant starting from a given PEI saturation concentration (i.e., 2000 

ppm). For PHPA, the saturation concentration was not observed in the studied concentration range. 

In contrast, the gel strength was more dependent on the polymer concentration. In fact, and at high 

PHPA concentrations, the polymer chains overlap between each other and create entanglement points 

which present additional crosslinking sites in one hand and on the other one favorize the 

intermolecular crosslinking (between sites of different chains) rather than intramolecular crosslinking 

(between sites on the same polymer chain). Both mechanisms render the formed 3D structure 

stronger. Moreover, the pronounced effect of PHPA polymer concentration on the gel strength 

(storage modulus) compared to PAM and/or PAtBA concentrations, is explained by the longer PHPA 

chains which as stated before offer a more entangled network, thus a similar PHPA concentration 

increase as PAM or PAtBA result in higher effect.  

3.3.2.4 Molecular weight effect 

One of the main reasons for studying PHPA/PEI gels is to address conformance control problems in 

fractured reservoirs. PHPAs have high molecular weights, which make them suitable for fractures 

shutoff because of their low penetration into the matrix. In this subsection, the effects of both polymer 

and crosslinker molecular weights on gelation time are investigated, while the gel strength is assessed 

only under the effect of polymer’s molecular weight. Figure 3.8 shows the viscosity evolution versus 

time of three gelant solutions prepared in injection water with 5000 ppm of three PHPAs having the 

same HD (6%) and different molecular weights (MwPHPA1= 5.1×106 g/mol, MwPHPA2= 7.5×106 g/mol, 

MwPHPA3= 10.2×106 g/mol), and crosslinked with 1000 ppm of the low Mw PEI25 (MwPEI25= 2×104 

g/mol). Similarly, the storage (G’) and loss (G”) moduli of the same three gelant solutions, which 

were first cured in an oven at 80 °C for 48 hours, were measured and correlated with the polymers 

molecular weights as shown in Figure 3.9. Two key points can be retained from the two figures: both 

the initial gelant viscosities and the viscoelastic moduli (G’ and G”) varied proportionally with the 

polymer’s molecular weight while the gelation times varied unproportionally and were shorter for the 

samples prepared with PHPA2 and PHPA3 compared to PHPA1.  
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Figure 3.8 : Reactants molecular weight effect on gelation time. 

 

Figure 3.9 : Polymer’s molecular weight effect on the storage (G’) and loss (G”) moduli 
(strain=1%, Frequency=1.36 Hz). 

The effect of the polymer’s molecular weight on the initial viscosity of a polymer solution was 

previously discussed and is well-documented in literature. Nevertheless, the explanation reported in 

literature for the observed shorter gelation times was the availability of additional crosslinking sites 

in the high molecular weight polymers [120, 122]. Such explanation is inaccurate, especially when 

the same polymer mass concentrations are examined. In fact, when polymers with the same hydrolysis 

degree but different Mws are tested at the same mass concentration (i.e., 5000 ppm = 5 g/l), the 

number of amide and carboxylate groups remains constant. The only difference is the number of 

polymer chains. Thus, the best explanation would invoke the hydrodynamic volumes of the polymers. 

Assuming that the conformation of the PHPA is a random coil, the hydrodynamic volume “Vh” can 

be calculated using the molecular weight and the radius of gyration: 



Chapter III 
 

86 
 

𝑉௛ =
ସగ

ଷ
× 𝑅௚

ଷ                                                  Equation 3.1 

Where:  

𝑅௚ = 𝐴 × 𝑀௪
ఠ                                                 Equation 3.2 

with A=2.94×10-5 µm/(g/mol), and ω=0.586 [220]. 

In this case, PHPA2 and PHPA3 had hydrodynamic volumes greater than PHPA1 by a factor of 2 

and 3.5, respectively. The longer polymer chains and the higher hydrodynamic volumes result in more 

entangled polymer networks. These intermolecular entanglements facilitate the crosslinking reactions 

as the crosslinking sites are close to each other and some nodes are already formed. This can also 

explain the higher storage and loss moduli recorded for the high molecular weight polymers 

especially that the same trend was observed for the viscoelastic moduli when polymer solutions of 

the three PHPAs, prepared in 5 g/l NaCl water, were tested alone without the presence of a crosslinker. 

It is worth noting that very high molecular weights are not recommended for conformance control 

operations, neither during the injection phase (high initial viscosities), nor during the deep placement 

in the reservoir (shorter gelation times). It may be possible to decrease the concentration of the high 

molecular weight polymers in order to decrease the initial gelant viscosity and to increase the gelation 

time. However, and as discussed earlier, the polymer concentration effect on gelation time is less 

significant. 

Furthermore, the viscosity evolution versus time of two gelant solutions prepared in injection water 

with 5000 ppm of PHPA1 crosslinked with 1000 ppm of two PEIs having the same BD but a different 

Mws (MwPEI25= 2×104 g/mol and MwPEI750= 67×104 g/mol), was shown in Figure 3.8. Despite 

increasing the crosslinker molecular weight up to 33 times, the gelation time was affected only 

slightly; it decreased from 185 minutes for the gel sample prepared with PEI25, to 125 minutes for 

the sample prepared with PEI750, which represents a 30% reduction in gelation time. In a general 

scheme where PEI macromolecules are dispersed in an entanglement of polyacrylamide chains, the 

crosslinking appears to be governed by the number of macromolecules (concentration) and the 

number of NH2 groups that are present. In our case, the two PEIs had the same BD (BD=56-59), but 

with a molecular weight ratio of 34. This molecular weight ratio can also be expressed in terms of a 

hydrodynamic volume ratio of 94 and a surface ratio of 20 that were obtained from equations 3.1 and 

3.2 (where A= 7.53 × 10-5 µm/(g/mol) and ω=0.43 [221]). As the two crosslinkers were employed at 

the same mass concentrations, the number of PEI750 macromolecules was lower by a factor of 34, 

which was supposed to delay the gelation. However, as the PEI750 macromolecules had higher 

dimensions (gyration radius and a surface area higher by a factor of 4 and 20 respectively), the 

reaction was accelerated thanks to the higher number of NH2 groups on the larger surface and the 

crosslinking which can take place even between the more distant polymer chains. The compensation 
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of the lower number of macromolecules by the higher number of functional NH2 units and the larger 

macromolecules dimensions, can explain the slightly affected gelation time observed when the higher 

molecular weight PEI750 was employed. 

3.3.2.5 Temperature effect 

Temperature is one of the most influential parameters for any chemical reaction. For gel systems in 

oilfields, it is important to quantify the effect of temperature on gelation time, as a small change in 

reservoir temperature can severely affect the gelation time. Figure 3.10 shows the viscosity evolution 

at various temperatures (from 60 to 90 °C) of gelant solutions prepared in injection water with 5000 

ppm PHPA1 and 1000 ppm PEI25. The initial viscosity of the gelant solution decreased from 17 cP 

at 60°C to 12 cP at 90°C, while the gelation time decreased significantly with an increase of 

temperature, from 11 hours at 60°C to only 1.75 hour at 90°C.  

 

Figure 3.10 : Temperature effect on gelation time. 

The enhanced mobility of the polymer and crosslinker at high temperature decreases in one hand the 

solutions initial viscosities and on the other hand increases the rate of interactions between the two 

reactants which reduces the gelation time. Most studies, reported in the literature, related the 

temperature effect on the gelation time of acrylamide-based polymers with PEI to the endothermic 

nature of the crosslinking reaction [75, 105]. More recently, some authors confirmed that the 

crosslinking of acrylamide-based polymers with PEI during a non-isothermal gelation, to be 

associated with both endothermic and exothermic processes. During the crosslinking of PAM with 

PEI, El-karsani et al. related the endothermic process to the hydrolysis of the polymer (PAM) while 

the exothermic process was related to the onset of the crosslinking with PEI [111]. When the 

simultaneous crosslinking of an acrylamide based polymer with two crosslinkers (inorganic “Cr3+” 

and organic “PEI”) was investigated, the endothermic process was linked to the onset of the 

crosslinking of the inorganic crosslinker (Cr3+) and the exothermic process to the onset of the 
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crosslinking of the organic crosslinker (PEI) [185]. In order to investigate the exothermic or 

endothermic nature of the crosslinking reaction between the PHPA and PEI, a neat polymer solution 

of 20000 ppm PHPA1 and a gelant solution of 20000 ppm PHPA1 and 4000 ppm PEI25 both prepared 

in distilled water, were loaded into two hermetic pans and placed in the DSC instrument. The 

temperature was first equilibrated at 30 °C, increased at a rate of 1 °C/min to 80 °C, and then 

maintained at this temperature for 30 minutes. As depicted in Figure 3.11, both the polymer solution 

and the gelant solution showed an endothermic peak which started immediately with temperature 

ramp, while only the gelant solution had exhibited an exothermic peak that start at 50°C. The 

exothermic process is, in this case, translated by the onset of the crosslinking between the PHPA and 

PEI which is shown to release heat. 

 

Figure 3.11 : DSC curve of polymer solution (PHPA1) and gelant solution (PHPA1/PEI25) 
prepared in distilled water. 

Furthermore, the effect of temperature on gelation time was correlated using an Arrhenius-type 

equation:  

𝑡௚ = 𝑀. 𝑒𝑥𝑝 (
ாೌ

ோ்
)                                              Equation 3.3 

where tg and M are the gelation time and frequency factor in minutes, respectively. Ea is the activation 

energy in kJ/mol, R is the universal gas constant in (kJ/mol.K) and T is the absolute temperature in 

K.  

Figure 3.12 shows an Arrhenius-type plot for two gelant solutions prepared with 5000 ppm PHPA1 

and 1000 ppm PEI25 in distilled water and injection water. 
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Figure 3.12 : Arrhenius-type plot for gelant solution prepared in distilled and injection water. 

A good fit was obtained for both solutions using equation 3.3, which yielded activation energies of 

43.6 kJ/mol and 61.4 kJ/mol for distilled and injection water, respectively. The activation energy was 

always considered as a good indicator of gelation reaction sensitivity to temperature [222] and the 

easiness or difficulty of the gelation reaction [182]. Higher activation energies indicate that the 

reaction is more difficult to proceed and is more sensitive to temperature, while lower activation 

energies indicate that the reaction can proceed more easily and is less sensitive to temperature. Based 

on these definitions and the activation energies obtained, it is clear that the gelation reaction occurs 

easier in distilled water (43.6 kJ/mol) compared to injection water (61.4 kJ/mol). Furthermore, when 

comparing the obtained activation energies with those reported in the literature for other PEI-based 

polymer gels as summarized in Table 3.4. We can see the good agreement, with lower values being 

obtained for our PHPA/PEI gels.  Al-Muntasheri et al. reported activation energies of 120 and 71.3 

kJ/mol for their PAtBA/PEI gel system (T=100-140 °C, TDS=0.02 g/l) [105] and PAM/PEI gel 

system (T=100-140 °C, distilled water) [70] respectively, compared to only 43.6 kJ/mol for our 

PHPA/PEI gel (T=60-90 °C, distilled water). In addition to the difference between the studied 

temperature ranges and the crosslinkers molecular weights (their PEI had a Mw of 70×104 g/mol), 

the most critical parameter that can result in such disproportion between our and their activation 

energies, would be the polymers molecular weights. Higher molecular weight polymers as it is the 

case for our PHPA (Mw=5×106 g/mol), result in more entangled polymer network compared to 

shorter polymers, as was the case for PAM and PAtBA (both had a Mw=0.25-0.5×106 g/mol). Such 

entangled network, as discussed earlier, renders the crosslinking reaction more easier thus the lower 

activation energies are observed.  
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Table 3.4 : Activation energies reported in the literature for PEI crosslinked polymer gels. 

Gelling system Mixing water Temperature 

range (°C) 

Activation 

energy (kJ/mol) 

References 

PAtBA/PEI TDS=0.02 g/l 100-140 120 [105] 

TDS=1.19 g/l 115 

TDS=58.35 g/l 92 

PAM/PEI Distilled water 100-140 71.3 [70] 

10 g/l NaCl 

water 

120-140 88 

HAP/PEI Distilled water 50-90  41.6 in bottle [75] 

70-90  60.9 in core 

(AM, AMPSA, 

NVP)/PEI 

Distilled water + 

0.1 % Na2CO3 + 

0.05 % thiourea 

50-160 89.14 [74] 

PHPA/PEI Injection water 

TDS=3.4 g/l 

60-90 61.4 

 

This study 

Distilled water 43.6 

In regard to the gel strength under the effect of temperature, studies in literature were scarce. To 

assess this point, gelant solutions prepared with 5000 ppm PHPA1 and 1000 ppm PEI25 in injection 

water, were cured at different temperatures of 60, 70, 80 and 90 °C for 48 hours to account for the 

effect of temperature on the viscoelastic moduli of the formed gels. Figure 3.13 shows the storage 

and loss moduli as function of the curing temperature. The storage modulus was found to slightly 

increase with temperature following an exponential relationship:  

𝐺′ = 12.605𝑒଴.଴ଶଵହ (்)                                     Equation 3.4 

While the loss modulus remained almost constant. This result suggests that the number of crosslinked 

sites increased with temperature. As the concentrations of both reactants remained constant, such 

trend can be only explained by the higher interactions due to the enhanced mobility of the polymer 

and crosslinker at high temperatures. 
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Figure 3.13 : Temperature effect on the storage (G’) and loss (G”) moduli. 

3.3.2.6 Inorganic Salts effect 

Polymer gels are usually prepared with field injection waters which represent up to 99% of their total 

composition. These injection waters are charged with monovalent and bivalent cations. In this 

subsection, we wanted to quantify separately the effects of monovalent and divalent cations on 

PHPA/PEI gelation time and gel strength. To accomplish this, various amounts (5, 10, 15 g/l) of NaCl 

and CaCl2 were added to gelant solutions prepared with 10000 ppm PHPA1 and 2000 ppm PEI25 in 

distilled water. Each gelant solution was separated in two samples, the first sample was directly loaded 

to the coaxial cylinder to evaluate its viscosity evolution with time (gelation time) while the second 

sample was first cured for 48 hours at 80 °C and then loaded to the parallel plates geometry for the 

viscoelastic moduli determination. Figure 3.14 and Figure 3.15 show the gelation time and the 

storage modulus (gel strength) respectively as function of inorganic salts (NaCl and CaCl2) 

concentrations. 

 

Figure 3.14 : Inorganic salts (NaCl and CaCl2) effect on gelation time. 
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Figure 3.15 : Inorganic salts (NaCl and CaCl2) effect on the storage modulus (G’). 

At higher salt concentrations, lower gelant viscosities, higher gelation times and lower gel strengths 

were recorded. Gelation times were successfully correlated with a second-degree polynomial [123] 

while the storage moduli were correlated with exponential relationships. Cations affect negatively on 

anionic polymer gels through a charge-shielding effect [84]. The crosslinking rate and its extent were 

limited due to the occupied carboxylate groups which represent possible crosslinking sites and the 

lower hydrodynamic volume of PHPA, which renders the polymer network less entangled and the 

crosslinking sites (either the amide or carboxylate groups) less accessible. Although the two salts have 

approximately the same ionic radius, and considering the same molar concentration, calcium chloride 

(CaCl2) had a higher negative effect than sodium chloride (NaCl) because of its greater ionic charge. 

In order to further highlight this difference, the DSC technique was employed. DSC was recently 

used to study the retardation mechanism of inorganic salts (NH4Cl and NaCl) on the gelation kinetics 

of PAM/PEI gels [116, 118]. In our study, two gelant solutions were prepared with 20000 ppm PHPA1 

and 4000 ppm PEI25 in 10 g/l NaCl and 10 g/l CaCl2 water, respectively. A sample of around 5 mg 

from each gelant solution was loaded in hermetic pans and placed in the DSC instrument. The same 

temperature program as the one employed in the temperature effect subsection was followed. Figure 

3.16 shows the heat flow variations versus temperature of the two samples. It is clear that the onset 

of the crosslinking temperature was higher (70.06 °C), and the exothermic heat (99.09 J/g) was lower 

for the sample prepared in CaCl2 water. This result demonstrates that the crosslinking reaction is more 

difficult (higher gelation times), and the crosslinked sites are fewer (weaker gels) in the presence of 

calcium chloride (CaCl2) compared to sodium chloride (NaCl), confirming the higher charge 

shielding effect of CaCl2. 
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Figure 3.16 : DSC curves of gelant solution prepared in 10 g/l (NaCl/CaCl2) water. 

3.3.3 Gel degradation temperature 

Alongside the long-term thermal stability evaluated through the bottle test method, the thermal 

degradation of the PHPA/PEI gel was examined using differential scanning calorimetry (DSC). The 

degradation temperature, at which the crosslinking bonds starts to break down, coincides with a high 

endothermic peak [181]. For the PHPA/PEI gel, it was found to be around 122°C as shown in Figure 

3.17. This temperature was higher than those of similar inorganic and organic crosslinked polymer 

gels (temperatures from 100 to 111 °C were reported for gels prepared with an acrylamide/AMPSA 

copolymer crosslinked with chromium (III) acetate, aluminium nitrate, PEI and 

Hexamethylenetetramine) [223]. Such high degradation temperature is also an indicator on the 

presence of covalent bonds between the polymer and the crosslinker [69]. 

 

Figure 3.17 : Degradation temperature of PHPA/PEI gel. 
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3.3.4 Gel morphology 

The microstructure of a PHPA/PEI gel, prepared with 20000 ppm PHPA and 10000 ppm PEI in 

distilled water and cured overnight at 80°C, was examined using the SEM technique as shown in 

Figure 3.18. SEM images magnified at ×500, ×1000, ×2000 and ×5000 revealed the dense and 

homogeneous morphology of the formed 3D structure. Bai et al. [75] reported a honeycomb structure 

which contains a connected skeleton and disconnected cavities for a hydrophobically associated 

polymer (HAP) crosslinked with PEI. Similarly, Zhu et al. [74] observed a more porous gel structure 

with grid sizes of 33.5 to 50.6 µm for their terpolymer P(AM/AMPS/NVP) crosslinked with PEI. In 

both cases, the structure voids were explained by the presence of intermediates groups (hydrophobic 

groups of HAP and AMPS/NVP of the terpolymer) which do not react with the crosslinker and only 

separate the amide groups that were considered as responsible on the crosslinking reaction with the 

amine groups of PEI. In our case, we couldn’t observe any voids in the PHPA/PEI structure which 

can be explained by the absence of intermediate non-reactive groups. Moreover, the crosslinking 

reaction can take place between both the amide or carboxylate groups of the PHPA with the amine 

groups of PEI, which means higher number of crosslinked sites and thus a compact gel structure. 

However, one should not exclude the possible structure damages that could have been occurred during 

the freeze-drying and gold coating process related to the SEM samples preparations [224]. In any 

case, and despite the data provided in the literature, the interpretation of a structure of the sample in 

solution based on a two-dimensional microscopic visualization of the dried sample seems to us to be 

very controversial. 

  

  
Figure 3.18 : SEM images of PHPA/PEI gel cured at 80 °C magnified at (A) ×500 (B) ×1000 (C) 

×2000 (D) ×5000. 
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3.4 Conclusion 

The proper characterization of the thermal gelation of any gel system under reservoir conditions is 

very important to the succeful of the gel treatement. This can be obtained through a better 

understanding of the thermal stability, the structure-property relationships and viscoelastic behavior 

of the targeted system as function of the reactant concentration ratios, the reactants structure 

(molecular weights) and the initial physicochemical conditions (temperature and mixing water 

salinity).  

In this chapter, the thermal gelation of well charcterized PHPA and PEI polymers was evaluated 

under the effect of some controlling paramters by modifying a single parameter at a time in order to 

adress a gel treatement in an algerian oilfield (T= 80 °C and TDS= 3.4 g/l). First, the choice of the 

concentration regime is important to obtain a continuous gel structure but also to have reasonable 

initial gelant viscosites; thus, all the experiments were conducted above the diluted regime of the 

polymer (c>c*) with initial gelant viscosities of around 10 cP using the main selected PHPA polymer 

namely PHPA1 (Mw= 5×106 g/mol and HD= 6%). A qualitative evaluation of the PHPA/PEI system 

through the bottle test method was conducted. High reactants loadings resulted in lower gelatin times 

and stronger gels that reached code “I” in sydansk’s gel code comparably to previous PEI based 

crosslinked polymer gels. The gel samples were shown to be stable at 80 °C over the course of 3 

months of observations. However, samples prepared with crosslinker/polymer ratio higher than ½ 

suffered syneresis while those prepared with low crosslinker concentrations (500 or 1000 ppm) lost 

their strength over the period of 3 months. A quantitative evaluation of gelation time and gel strength 

was then realized using steady and dynamic shear measurements. The investigation on the effect of 

shear rate on the gelation time showed the negative effect of shear flow on the gelation reaction and 

gel structure. The viscosity increase after gelation point was found to follow a power law relationship 

which corresponds to a shear thinning effect of the three-dimensional structure being formed. On the 

other side, frequency sweep tests revealed that the viscoelastic moduli were totally independent of 

the applied frequency and the storage modulus (G’) is largely higher than the loss modulus (G”). 

confirming the formation of a 3D crosslinked structure. We demonstrated also the antagonistic effect 

on the gelation time and the viscoelastic moduli between reactants concentrations, reactants molecular 

weight and temperature in one hand, and mixing-water salinity in the other one. Contrary to what was 

reported in literature, the gelation time was found to not follow an exponential variation with reactants 

concetrations while gel strength followed this exponenetial trend with regards to reactants 

conentrations. The lower gelation times and the higher gel strengths obtained at high reactant 

concentrations were explained by the greater number of available crosslinking sites at these 

conditions. The gelation time was mainly affected by the crosslinker concentration whereas the gel 

strength by the polymer concentration. At high polymer concentrations, the polymer chains overlap 
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between each other and create entanglement points which favorize the intermolecular crosslinking 

reaction. The same explanation was evoked for the molecular weight effect on gelation time and gel 

strength instead of the common explanation given in literature which relates this trend to the 

availability of additional crosslinking sites in the high molecular weight polymers. The PHPA/PEI 

reaction was found to be exothermic in nature and the system activation energies were of 43.6 kJ/mol 

for distilled and of 61.4 kJ/mol for injection water indicating that the interaction is easier in distilled 

water. In fact, the presence of monovalent and bivalent cations in the mixing water reduces the gel 

characteristics (gelation time and gel strength) through a charge shielding effect. The cations screen 

the negatively charged carboxylate groups at the polymer backbone reducing consequently the 

hydrodynamic volume of the polymer (less entangled polymer network) and the number of possible 

crosslinking sites (carboxylate groups). A quantification of the effect of monovalent and bivalent 

cations namely sodium chloride and calcium chloride on the gelation time and gel strength was 

conducted. Particularly, the calcium chloride presence resulted in very high gelation times and very 

low storage modulus compared to the sodium chloride because of the higher ionic charge of calcium 

ions. Furthermore, the PHPA/PEI system showed interesting features in terms of degradation 

temperature which reached 122 °C and gel morphology that was homogeneous and compact. 
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4. Chapter IV: Gelation time optimization using response surface 
methodology 

4.1 Introduction 

As discussed in the previous chapters, the gelation time is the most important parameter during the 

gel injection operations in the oilfield. For a selected polymer gel system, the gelation time can be 

controlled either by varying the reactants concentrations, increasing the salinity of the mixing water 

by adding monovalent inorganic salts or changing the temperature of the targeted reservoir zone by 

injecting large quantities of hot/cold water prior to the gel placement operation. In the previous 

chapter, the effects of four controlling parameters (polymer concentration, crosslinker concentration, 

temperature and salinity) were assessed using the one variable at time (OVAT) approach. In this 

chapter, a statistical analysis and an optimization of the gelation time of PHPA/PEI system under the 

effect of the aforementioned parameters were conducted using the response surface methodology 

(RSM). The aim was to develop a mathematical model which is able to predict the gelation time of 

PHPA/PEI system for temperatures between 70 to 90 °C which represent the usual reservoirs 

temperatures in some of the biggest Algerian fractured reservoirs. A four factor doehlert matrix was 

employed to design the experiments and evaluate the gelation time as function of water salinity (NaCl 

concentration from 0 to 8 g/l), polymer concentration (4000 to 10000 ppm), crosslinker concentration 

(500 to 2500 ppm), temperature (70°C to 90°C) and their corresponding combinations. The statistical 

analysis of the obtained experimental responses and the mathematical model fitting were next 

proceeded using the JMP Pro 13 software. While, the statistical significance of the proposed 

mathematical model and its terms was assessed using the analysis of variance (ANOVA), the 

determination coefficient, the adjusted determination coefficient and the root mean square error. 

Moreover, the effect of each parameter and the interactions between the parameters were presented 

and discussed through 3D response surface plots. Finally, the optimal parameters, to obtain an 

adequate gelation time in fixed reservoir conditions of temperature and depth, were determined using 

the desirability approach. Prior to the experimental part, a literature review on the Response Surface 

Methodology (RSM), Design of Experiments (DoE) principle, the most famous designs and the 

application of DoE on gel systems, was presented. 

4.2 Response Surface Methodology  

Introduced in the early 50s by Box and Winter [225], the response surface methodology (RSM) 

represents a collection of mathematical and statistical techniques which allows (1) modelling 

engineering problems with several controllable factors (independent variables) and responses 

(dependent variables), (2) analyzing the effect of these factors and the interactions between them, and 
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finally (3) finding the best values of the factors which optimize these problems [226, 227]. A general 

workflow in RSM is consisted of five steps as reported by Bezerra et al. [228]: 

 Selecting the major independent variables, which effect on the system, through screening 

studies and delimitating the experimental region, based on the objective of the study and the 

experience of the researcher.  

 Choosing the experimental design and carrying out the experiments according to the selected 

experimental matrix. 

 Fitting a nonlinear mathematical model using the obtained experimental data. 

 Evaluating the model’s fitness. 

 Obtaining the optimum values for each studied variable. 

In RSM, the aim is to develop the best approximative relationship between the “k” independent 

variables “ζi” and the response “y” as defined below [229]:  

𝑦 =  𝑓(𝜁ଵ, 𝜁ଶ, . . . 𝜁௞) + 𝜀                                   Equation 4.1 

Where f  is the unknown response function, ε is the statistical error which represents the other sources 

of variability not accounted for in f, including measurement error on the response, the effect of other 

non-considered variables. Usually ε is assumed to have a normal distribution with mean zero 𝐸(𝜀) =

0  and variance σ2: 

𝐸(𝑦) = 𝜂 = 𝐸൫𝑓(𝜁ଵ, 𝜁ଶ, … 𝜁௞)൯ + 𝐸(𝜀) = 𝑓(𝜁ଵ, 𝜁ଶ, … 𝜁௞)                    Equation 4.2 

As the independent variables “ζi” have different measurement units, it is more convenient to 

transform them to dimensionless coded variables “xi”. Consequently, the true response function can 

be written as:                                 

𝜂 = 𝑓(𝑥ଵ, 𝑥ଶ, . . . 𝑥௞)                                         Equation 4.3 

Based on the number of the inputs and the variation of the output, either a first-order (Equation 4.4) 

or a second-order (Equation 4.5) model is used to fit the independent variables to the response. By 

far, the second-order model was preferred in RSM because of its flexibility and easy determination 

of its regression coefficients (𝛽i) [227] : 

𝜂 = 𝛽଴ + ∑ 𝛽௜ 
௞
௜ୀଵ 𝑥௜  + ∑ 𝛽௜௝ 

௞
௜ୀଵ,௝ ୀ௜ାଵ 𝑥௜𝑥௝                        Equation 4.4 

𝜂 = 𝛽଴ + ∑ 𝛽௜ 
௞
௜ୀଵ 𝑥௜  + ∑ 𝛽௜௜ 

௞
௜ୀଵ 𝑥௜

ଶ  + ∑ 𝛽௜௝ 
௞
௜ୀଵ,௝ ୀ௜ାଵ 𝑥௜𝑥௝                  Equation 4.5 

The regression coefficients of the chosen model are determined using the least square method, which 

consists on finding the vector of least squares estimators, b, that minimizes the sum of square errors 

“L” as given below [230]: 



Chapter IV 
 

99 
 

𝐿 =  ∑ 𝜀௜
ଶ =  𝜀்𝜀௡

௜ୀଵ = (𝑦 − 𝑋𝛽)்(𝑦 − 𝑋𝛽)                               Equation 4.6 

Equation 4.6 is minimal when its derivative is null.  Thus, after calculation and simplification, the 

vector of the least square is given as:  

𝑏 = (𝑋்𝑋)ିଵ + 𝑋்𝑌                                                   Equation 4.7 

4.3 Design of Experiment (DOE) 

In RSM, the choice of the experimental design is the most critical step which affects the accuracy of 

the mathematical model and the cost of constructing the response surface. Design of Experiments 

(DoE) represents the various techniques of choosing the best combinations of the independent 

variables or inputs (samples) inside the design space (the intervals of theses variables) to maximize 

the amount of information using the lowest number of samples.  The basic principles in the design of 

experiments encompasses the replication, the randomization and the blocking defined as follow [231]: 

 Replication: consists of repeating the experiments in order to obtain a more precise result 

(sample mean value) and to estimate the experimental error (sample standard deviation). 

 Randomization: refers to the random order of performing the experimental runs in order to 

rule out the dependency between the conditions of a given run from those of the previous runs 

and those of the subsequent runs. 

 Blocking: consists of arranging the experiments in groups that are similar to one another in 

order to reduce the sources of variability and improve the precision. 

In literature, different ways of choosing the optimal arrangement of the sampling do exist. The most 

famous designs are presented below: 

4.3.1 Factorial Design 

Factorial designs represent the basis of all most common designs. The idea of these designs is simple 

and consists on making all the possible combinations between the different levels of the factors  [232] 

which results in Lk experimental points for k factors with L levels. The factorial designs allow to 

assess the effect of each factor over the response variable independently, that to say, they are 

orthogonal. Moreover, each factor combination appears equally many times which is the property of 

balanced designs [232]. Factorial designs with only two or three levels for all design factors are the 

most frequently documented designs. In the case of three-level factorial designs (3k factorial designs), 

the number of the experiments increases largely with the number of the studied factors. For problems 

with 4 and 5 factors, the number of experiments is of 81 and 243 experiment, respectively. Thus, the 

3k factorial design had just a limited application in RSM [228], and was mainly employed for 

problems with only two or three factors. On the other side, the two-level factorial designs (2k factorial 

design) were the most used factorial designs, thanks to their adaptability for both qualitative and 

quantitative factors, lower number of experiments compared to other factorial designs with more 
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levels (>2), comparable efficiency to other sophisticated designs such as the central composite design. 

Figure 4.1 shows the location of the experimental points in the two and three-factors 2k and 3k 

factorial designs, respectively. 

Another type of the factorial designs, which was developed to overcome the problem of the high 

number of experiments in the 2k and 3k factorial designs, is the fractional factorial design. In such 

design, only a fraction of the experiments of either the 2k or 3k full factorial designs is realized. This 

fraction can be one-half, one-quarter or more of the full factorial design. The number of experiments 

is thus equal to Lk-v with v= 1, 2, 3… and the fraction of the full factorial is calculated as 1/2v [233]. 

for example, in a two-level fractional factorial design (2k-1 fractional factorial design) with 5 factors 

(25-1), only 16 experiments are realized instead of 32 in a (2k =25) full factorial design. Some 

information is always lost when a fractional factorial design is performed, for instance not all main 

and interaction effects can be estimated separately [233]. 

(a)     (b)  

(c)  (d)  

Figure 4.1 : The location of the experimental points in (a) two factors 2k factorial design (b) three 
factors 2k factorial design (c) two factors 3k factorial design (d) three factors 3k factorial design. 

4.3.2 Central Composite Design 

The central composite designs (CCD) were first introduced by Box and Wilson [225]. As their name 

suggests, the central composite designs are composed of three designs namely a 2k full factorial 
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design, a star design in which 2×k experimental points are set at an  distance from the center and a 

central point [232]. Consequently, the total number of the experimental runs in CCD are equal to 2k 

+ 2k +1. Based on the  value, various types of CCD do exist [231] as shown in Figure 4.2:  

 A central composite circumscribed (CCC) design with >1, it is the original form of the CCD 

[234] and the most employed design in literature. In such design, the factors are studied at five 

levels (−1, −, 0, +, +1), the points at the levels −1 and +1 are those of the full factorial design, 

the points at the level 0 are the central points while the points at the levels − and + are those 

of the star design. The value of α depends on the number of factors and it is calculated as 2×k/4. 

For two, three, and four variables, α equals to 1.41, 1.68, and 2 respectively. Figure 4.3 shows 

the location of the 9 and 15 experimental points for the two and three factors central composite 

circumscribed designs respectively.   

 A central composite faced (CCF) design with  = 1, in this case the factors are studied only at 

three levels (−1, 0, +1). 

 A central composite inscribed (CCI) design is a scale down of the CCC design, which is 

employed in specific situations where the limits of the factors cannot be violated [231]. In this 

case, the  values are taken at the limits and scaled to 1, while the factorial design points are 

scaled to 1/.  

While the added star points increase the ability of CCD to perceive the response behavior with a 

higher accuracy [235], the number of the experimental run in CCD increases rapidly with the number 

of factors because of the incorporated factorial design. 

 

Figure 4.2 : Central composite design types. 
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 (a)   (b)  

Figure 4.3 : The location of the experimental points in (a) two factors central composite 
circumscribed design (b) three factors central composite circumscribed design. 

4.3.3 Box-Behnken Design 

For problems with a number of factors strictly higher than two, the Box-Behnken designs (BBD) are 

built by combining two-levels factorial designs between each two factors while maintaining the other 

factors at zero [231]. In this case, all the factors are adjusted only at three levels (−1, 0, +1) [228]. 

The main idea of the Box-Behnken designs is to limit the sample size as the number of factors 

increases. This is obtained by maintaining only a sufficient sample size for the estimation of the 

coefficients in a second-degree least square approximating polynomial [236]. The number of the 

experimental runs in BBD, for a given number (k) of the studied factors, is thus equal to 2k2 − 2k +1 

[233]. Figure 4.4 shows an example of the thirteen experimental points location in a three factors 

Box-Behnken design. In comparison to a full factorial design (27 experiments for three factors), the 

BBD is clearly more economical. However, the BBD do not cover well the experimental space and 

as consequent studying the combination of the factors at their extreme conditions (i.e., the corner of 

the cube in Figure 4.4) is not possible. 

 
Figure 4.4 : The location of the experimental points in a three factors Box-Behnken design. 
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4.3.4 Doehlert Design  

The Doehlert design, first proposed by Doehlert in 1970 [237], is a uniform shell design that was 

widely employed in the experimental design in various science fields especially in analytical 

chemistry [238]. Doehlert designs fill the experimental space in a regular way by choosing uniformly 

the sampling points at constant distances [232]. For two factors, the doehlert design is a hexagon with 

a central point, while for three factors, the doehlert design represents a cuboctahedron as shown in 

Figure 4.5: 

(a)   (b)  

Figure 4.5 : The location of the experimental points in (a) two factors doehlert design (b) three 
factors doehlert design.[239] 

Compared to other designs, the doehlert designs require only a few number of the experimental runs 

equal to k2+k+1 where k is the number of the studied factors. These factors can be explored at 

different number of levels (e.g., 3, 5 and 7). In a two-factors doehlert design, one factor is studied at 

three level and the other one at five levels, while in the three-factors doehlert design, one factor is 

studied at three level, the second one at five, and last one at seven levels [233]. There is no general 

rule on how to assign the factors with the number of levels, however, it is preferable to study the 

strongest factors with the larger number of levels [238]. The doehlert matrices are not orthogonal nor 

rotatable as previous designs, but they allow the extension of the domain by adding another factor or 

displacing the design towards a new experimental domain without having to repeat all initial 

experiments [240]. 

4.4 Application of DoE on gel systems  

In literature, several studies were reported on the use of DoE in evaluating the characteristics of 

different gel systems employed for conformance control treatments. Here below, we are reviewing 

those studies conducted exclusively during the last decade.  Moghadam et al. [241] reported the use 

of the fractional factorial design to investigate the effect of eight factors namely pH, NaCl and CaCl2 
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concentrations, crosslinker/copolymer ratio, polymer concentration and presence or absence of 

sodium lactate, nanoclay, and thiourea, on the gelation time of sulfonated polyacrylamide/chromium 

(III) acetate system. They found that sodium lactate presence, copolymer concentration, nanoclay 

presence, thiourea presence, and crosslinker/copolymer ratio were the main affecting factors. Salehi 

et al. [235] studied the effect of NaCl concentration and pH on the gelation time of a similar sulfonated 

polyacrylamide/chromium (III) acetate system using central composite design (CCD) and found that 

the gelation time was more dependent on the pH value than the salinity. In another study, Salehi and 

coworkers [242] employed the Plackett-Burman Design (PBD) to screen a larger number of factors 

namely the concentration of polymer and crosslinker, pH, temperature and presence or absence of 

NaCl, KCl, CaCl2, MgCl2, thiourea, sodium lactate and nanoclay on the gelation time of the same 

polymer gel (sulfonated polyacrylamide/ chromium triacetate). Since the PBD allowed to assess the 

effect of each parameter separately, they used the CCD to investigate the interactions between the 

most influencing parameters which were the temperature, pH and CaCl2 concentration. The gelation 

time, of a grafted carboxymethyl cellulose-g-polyacrylamide copolymer (PAM-g-CMC) crosslinked 

to chromium acetate, was also investigated in terms of polymer concentrations and 

polymer/crosslinker ratios using CCD [243]. It was found that the gelation time was more affected 

by the polymer concentrations rather than the crosslinker concentrations. Furthermore and using 

CCD, Lenji et al. [244] studied the gelation time of sulfonated polyacrylamide/ 

Hexamethylenetetramine (HMTA) system under the effects of the polymer and crosslinker 

concentrations, and hydrochloric acid (HCl) concentration which was added as an activator. 

Similarly, CCD was used to compare the gelation and syneresis times of polymer gels prepared with 

a sulfonated polyacrylamide and different crosslinkers, including chromium triacetate, aluminum 

nitrate, PEI and HMTA [223]. The investigations on the gelation time, the viscoelastic behavior and 

the thermal stability of the four prepared polymer gels showed that the PEI crosslinked polymer gel 

had the optimum characteristics in terms of lower gelation times, delayed syneresis times and higher 

resistance to deformation using only low reactants concentrations. More recently, Amir et al. [245] 

investigated the effects of polymer and crosslinker concentrations on the gelation time and initial 

viscosity of PAM/PEI gel system at 95 °C using CCD. The reactants concentrations had an opposite 

effect on the two responses (gelation time and initial viscosity), while the polymer concentration 

effect was more pronounced compared to the crosslinker concentration.  

4.5 Materials and methods 

Partially hydrolyzed polyacrylamide (PHPA1) and polyethylenimine (PEI25), presented in the 

materials characterization chapter, were used in this chapter as the base polymer and crosslinker 

respectively. The PHPA1 had a molecular weight (Mw) of 5×106 g/mol and a hydrolysis degree (HD) 

of 6% and was chosen based on its low initial gelant viscosities, which are recommended for field 
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injection operations. On the other side, the PEI25, which had a molecular weight (Mw of 20000 

g/mol) and a branching degree (BD) of 59% , was chosen preferentially because of its higher active 

content. Distilled water obtained from a milliQ system (18.2 MΩ.cm) and an ACS grade sodium 

chloride (NaCl) purchased from Sigma Aldrich were used to prepare the mixing water with variant 

salinities. 

Gelant solutions, with a volume of approximately 20 ml, were prepared by sprinkling the right amount 

of the polymer powder inside the vortex created by the vigorous stirring of the mixing water using a 

magnetic stirrer. Homogenization was kept for two hours, then the appropriate amount of the 

crosslinker was added and the stirring was continued for additional 5 minutes. The gelant solutions 

were directly loaded into the coaxial cylinder of the rotational rheometer (Anton Paar, MCR 302). 

Viscosity evolution of each gelant solution was monitored versus time at a shear rate of 1 s-1 to avoid 

any shear effect interference. 

4.6 Results and discussions: 

4.6.1 Experiment implementation: 

To implement the doehlert design, the experimental values of the four factors and for each 

experimental run, were first calculated using the following relationship: 

𝐹௜௝ = (𝑋௜௝ × ∆𝐹௜) + 𝐹ത௜                                                Equation 4.8 

where Fij is the experimental value of the factor “i” (i=1, 2, 3, 4) at the level “j” (j=1, 2,…,3 or 5 or 

7), Xij is the value of the coded variable “i” at the level “j” as given in Table 4.1. 𝐹ത௜ is the value of 

the factor “i” in the center of the experimental domain, and ∆𝐹௜ is the variation range of the factor “i” 

defined as: 

𝐹ത௜ =
௛௜௚௛ ௟௘௩௘௟ ௢௙ ி೔ା ௟௢௪ ௟௘௩௘௟ ௢௙ ி೔

ଶ
                                      Equation 4.9 

∆𝐹௜ =
௛௜௚௛ ௟௘௩௘௟ ௢௙ ி೔ି ௟௢௪ ௟௘௩௘௟ ௢௙ ி೔

ଶఏ೔
                                 Equation 4.10 

with 𝜃௜ the coded value limit for each factor. In a doehlert design with four factors, 𝜃௜ are taken as 𝜃ଵ 

= 1; 𝜃ଶ = 0.866; 𝜃ଷ = 0.816; 𝜃ସ = 0.791. The four factors (k=4) were donated as “F1” for NaCl 

concentration (salinity), “F2” for PHPA1 (polymer) concentration, “F3” for PEI25 (crosslinker) 

concentration and “F4” for temperature. The NaCl concentration was studied at five levels (j= 1, …5), 

both polymer and crosslinker concentrations were investigated at seven levels (j= 1, …7) while 

temperature was studied at three levels (j= 1, 2, 3). The independent factors with their low/high 

experimental levels, central values and variation ranges are summarized in Table 4.2: 
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Table 4.1 : Possible Xij values in a four factors doehlert design. 

Xij j= 1 j= 2 j= 3 j= 4 j= 5 j= 6 j= 7 

i= 1 -1 -0.5 0 0.5 1 / / 

i= 2 -0.866 -0.577 -0.289 0 0.289 0.577 0.866 

i= 3 -0.816 -0.612 -0.204 0 0.204 0.612 0.816 

i= 4 -0.791 0 0.791 / / / / 

Table 4.2 : Independent factors and their levels. 

Independent Factors  
Coded 
variable 

Levels of factors 
𝐹ത௜ ∆𝐹௜ 

Low level High level 

F1: NaCl concentration 
(ppm)  

X1 0 8000 4000 4000 

F2: polymer 
concentration (ppm)  

X2 4000 10000 7000 3464.2 

F3: crosslinker 
concentration (ppm)  

X3 500 2500 1500 1225.5 

F4: temperature (°C)  X4 70 90 80 12.6 

In a doehlert design, a total number of k2 + k + 1 experimental run are needed. In the case of four 

factors (k=4), 21 experimental runs should be conducted. However, two replications of the center 

point were added to estimate the experimental error. Consequently, the complete doehlert matrix 

consisted of 23 experimental runs and the calculated experimental values of the independent factors 

are presented in Table 4.3: 
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Table 4.3 : Doehlert matrix and the corresponding experimental values. 

No. 

Doehlert matrix Actual values of independent factors 

X1 X2 X3 X4 
NaCl 
concentration 
(ppm) 

polymer 
concentration 
(ppm) 

crosslinker 
concentration 
(ppm) 

temperat
ure (°C) 

1 0 0 0 0 4000 7000 1500 80 

2 1 0 0 0 8000 7000 1500 80 

3 0.5 0.866 0 0 6000 10000 1500 80 

4 -0.5 0.866 0 0 2000 10000 1500 80 

5 -1 0 0 0 0 7000 1500 80 

6 -0.5 -0.866 0 0 2000 4000 1500 80 

7 0.5 -0.866 0 0 6000 4000 1500 80 

8 0.5 0.289 0.816 0 6000 8000 2500 80 

9 -0.5 0.289 0.816 0 2000 8000 2500 80 

10 0 -0.577 0.816 0 4000 5000 2500 80 

11 0.5 -0.289 -0.816 0 6000 6000 500 80 

12 -0.5 -0.289 -0.816 0 2000 6000 500 80 

13 0 0.577 -0.816 0 4000 9000 500 80 

14 0.5 0.289 0.204 0.791 6000 8000 1750 90 

15 -0.5 0.289 0.204 0.791 2000 8000 1750 90 

16 0 -0.577 0.204 0.791 4000 5000 1750 90 

17 0 0 -0.612 0.791 4000 7000 750 90 

18 0.5 -0.289 -0.204 -0.791 6000 6000 1250 70 

19 -0.5 -0.289 -0.204 -0.791 2000 6000 1250 70 

20 0 0.577 -0.204 -0.791 4000 9000 1250 70 

21 0 0 0.612 -0.791 4000 7000 2250 70 

22 0 0 0 0 4000 7000 1500 80 

23 0 0 0 0 4000 7000 1500 80 
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4.6.2 Mathematical model Fitting 

Twenty-three gelant solutions were prepared following the procedure stated in the materials and 

methods section. The experimental measurements were performed in a random sequence to minimize 

the effects of uncontrolled factors [243]. For each experimental run, the response (gelation time) was 

determined at the inflection point in the viscosity versus time plot as previously explained in section 

3.3.2.1 of chapter I. The gelation times of the 23 gelant samples varied between 10 to 540 minutes. 

The statistical analysis of the obtained experimental responses was next conducted using the JMP Pro 

13 software (from SAS “Statistical Analysis System” Institute Inc, Copyright © 2016). The 

experimental responses (gelation times) were first fitted using the second order model (Equation 4.5). 

However, some of the model predicted responses were negative indicating the gelation time is not 

directly correlated to the studied factors through a polynomial model. Consequently, we decided to 

use an exponential model where the logarithmic of gelation time (ln GT) is inserted and fitted in the 

JMP software instead of the gelation time. Table 4.4 presents the predicted responses of the 

polynomial and exponential models while Figure 4.6 compares between the normalized predicted to 

experimental results of both models for each run. From the figure, it was clear that the predicted 

responses using the exponential model were fairly close to the unit compared to those obtained using 

the polynomial model.  The obtained exponential model in terms of coded variables is given in 

Equation 4.11, where the regression coefficients (ai, aii, aij) were estimated using the method of least 

squares: 

ln(𝐺𝑇) =  4.8923 + 1.4504𝑋ଵ − 0.6763𝑋ଶ − 0.1094𝑋ଷ − 0.8424𝑋ସ − 0.4948𝑋ଵ
ଶ +

0.0758𝑋ଶ
ଶ + 0.2889𝑋ଷ

ଶ − 0.0919𝑋ସ
ଶ + 0.2090𝑋ଵ𝑋ଶ + 0.3518𝑋ଵ𝑋ଷ − 0.0109𝑋ଵ𝑋ସ −

0.0257𝑋ଶ𝑋ଷ − 0.2140𝑋ଶ𝑋ସ  − 0.3397𝑋ଷ𝑋ସ.                                                 Equation 4.11 

 
Figure 4.6 : normalized predicted/experimental results for each experimental run using the 

polynomial and the exponential models. 
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Table 4.4 : Experimental and predicted responses obtained by the polynomial and exponential 
models. 

Run 
No. 

Experimental 
response (min) 

Predicted response by 
polynomial model* 

(min) 

Predicted response 
by exponential 
model* (min) 

1 140 133.3 133.3 

2 330 368.7 346.5 

3 162 147.5 156.9 

4 32 33.8 30.7 

5 20 -18.7 19.1 

6 115 129.5 118.7 

7 405 403.2 422.4 

8 222 240.5 263.9 

9 45 53.3 43.7 

10 225 230.5 226.6 

11 320 311.7 329.4 

12 130 111.5 109.3 

13 125 119.5 124.1 

14 112 69.3 92.5 

15 17 45.6 19.2 

16 110 91.8 101.5 

17 78 110.3 90.8 

18 540 511.4 479.1 

19 105 147.7 127.1 

20 170 188.2 184.3 

21 350 317.7 300.9 

22 130 133.3 133.3 

23 130 133.3 133.3 

* polynomial predictions are obtained by modelling the experimental results (GT) directly to a second 
order equation, exponential predictions are obtained by modelling the logarithm of experimental 
results Ln (GT) to a second order equation. 
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The logarithm of the experimental responses and the predicted responses using the exponential model 

were plotted in Figure 4.7. The predicted and experimental responses were essentially aligned with 

the diagonal indicating the two responses to be very close.  

 
Figure 4.7 : Experimental response versus predicted response plot. 

4.6.3 Statistical significance 

To assess the statistical significance of the model as well as the model terms (the four factors and 

their interactions) on the response, the Analysis of Variance (ANOVA) was conducted. The ANOVA 

consists on comparing the variation due to the treatment (change in the combination of variable levels) 

with the variation due to random errors associated with the measurements of the experimental 

responses [246]. In such analysis, the evaluation of these variations is made by calculating the 

different deviations of the observations or their replicates, the sum of squares, the degree of freedom 

and the mean squares for each source (model, model terms, residuals, lack of fit and pure error) as 

defined in the Table 4.5: 

Table 4.5 : The mathematical relationships of the sum of squares, the degree of freedom and the 
mean squares for each source used in ANOVA. 

Source Sum of squares (SS) 
Degree of 

freedom (Df) 
Mean square (MS) 

Model 
𝑆𝑆௠௢ௗ௘௟ = ෍(𝑦ො௜

௡

௜

− 𝑦ത)ଶ 
𝑝 − 1 

𝑀𝑆௠௢ௗ௘௟ =
𝑆𝑆௠௢ௗ௘௟

𝑝 − 1
 

Residuals 
𝑆𝑆௥௘௦ = ෍(𝑦௜

௡

௜

− 𝑦ො௜)ଶ 
𝑛 − 𝑝 

𝑀𝑆௥௘௦ =
𝑆𝑆௥௘௦

𝑛 − 𝑝
 

Lack of 

fit 
𝑆𝑆௟௢௙ = ෍(𝑦ො௜

௡

௜

− 𝑦ത௜)ଶ 
𝑛 − 𝑛௥ − 𝑝 + 1 

𝑀𝑆௟௢௙ =
𝑆𝑆௟௢௙

𝑛 − 𝑛௥ − 𝑝 + 1
 

Pure 

error 𝑆𝑆௣௘ = ෍(𝑦௜

௡ೝ

௜

− 𝑦ത௜)ଶ 
𝑛௥ − 1 

𝑀𝑆௣௘ =
𝑆𝑆௣௘

𝑛௥ − 1
 

Total 
𝑆𝑆௧௢௧௔௟ = ෍(𝑦௜

௡

௜

− 𝑦ത)ଶ 
𝑛 − 1 / 
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Where, 𝑦௜  is the experimental value of the run ‘‘i’’, 𝑦ො௜ the predicted value of the run ‘‘i’’, 𝑦ത the overall 

mean of experimental values, 𝑦ത௜ the mean of experimental values of replicates, n the number of 

experimental runs (observations); nr the number of experimental replicates, p the number of terms in 

the model. 

For the model terms, the same quantities (sum of squares of the term “SSterm”, degree of freedom and 

mean square of the term “MSterm”) are calculated for each term by assuming that the term is null. The 

statistical significance of the model and its terms can be then evaluated using both the F-ratio and the 

p-value. The F-ratio compares the model/term variance with the residuals variance by dividing the 

model/term mean square (MSmodel/MSterm) on the residuals mean square (MSres) while the p-value 

gives the probability of obtaining a greater F-ratio than the actual one if the null hypothesis is true 

(no factor  effect) [247]. The higher F-ratio values means the model/term variance is more significant 

than the residual variance and thus the model or the term is statistically significant. Likewise, the 

lower p-values (generally <0.05 is considered as a reference) indicates the null hypothesis is rejected 

(there is at least one factor effect). Other statistical indicators, which include the coefficient of 

determination (R2), the adjusted coefficient of determination (R2
adj) and the root mean square error 

(RMSE) defined by equations 4.12, 4.13 and 4.14, can be also used to assess the performance of the 

proposed model. 

𝑅ଶ =
ௌௌ೘೚೏೐೗

ௌௌ೟೚೟ೌ೗
= 1 −

ௌௌೝ೐ೞ

ௌௌ೟೚೟ೌ೗
                             Equation 4.12 

𝑅ଶ
௔ௗ௝ = 1 −

൫ଵିோమ൯(௡ିଵ)

(௡ି௣)
                                Equation 4.13 

𝑅𝑀𝑆𝐸 = ඥ𝑀𝑆௥௘௦                                           Equation 4.14 

As illustrated in Table 4.6, a high F-ratio of 42.4457 and a P-value of <0.0001 were obtained for the 

model confirming its significance at a 95% confidence level. Such significance was also confirmed 

through the highest values of the determination coefficient (R2 = 0.9867) and the adjusted 

determination coefficient (R2
adj = 0.9635) with the lowest RMSE value (RMSE = 0.1718). 
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Table 4.6 : The ANOVA results of the model and its terms. 

Source 
Sum of 
squares 

(SS) 

Degree of 
freedom (Df) 

Mean square 
(MS) 

F-ratio p-value 

X1 10.5183 1 10.5183 356.1987 <.0001* 
X2 2.2870 1 2.2870 77.4472 <.0001* 
X3 0.0597 1 0.0597 2.0227 0.1928 
X4 3.5520 1 3.5520 120.2864 <.0001* 

X1X2 0.0328 1 0.0328 1.1094 0.3230 
X1X3 0.0742 1 0.0742 2.5116 0.1517 
X1X4 0.00007 1 0.00007 0.0023 0.9632 
X2X3 0.0004 1 0.0004 0.0134 0.9108 
X2X4 0.0255 1 0.0255 0.8626 0.3802 
X3X4 0.0641 1 0.0641 2.1710 0.1789 
X1

2 0.2938 1 0.2938 9.9505 0.0135* 
X2

2 0.0069 1 0.0069 0.2337 0.6418 
X3

2 0.1110 1 0.1110 3.7584 0.0885 
X4

2 0.0124 1 0.0124 0.4191 0.5355 
Model 17.5475 14 1.2534 42.4457 <0.0001* 

Pure error 0.0035 2 0.0017 - - 
Lack of fit 0.2327 6 0.0388 21.8317 0.0444* 
Residuals 0.2362 8 0.0295 - - 

Total 17.7837 22 - - - 
 *p˂0.05 

For the model terms, it can be seen that the p-values of the majority of terms are greater than the 

significance level of 0.05; hence, they are considered to have a negligible effect on the model. Only 

X1 (NaCl concentration), X2 (Polymer concentration), X4 (temperature) and X1
2 (quadratic effect of 

NaCl concentration) had p-values lower than 0.05 and thus had a significant effect on the model. 

Consequently, the final mathematical model, after eliminating the insignificant terms and fitting the 

experimental response once more is given below: 

ln(𝐺𝑇) =  4.9765 + 1.4504𝑋ଵ − 0.6763𝑋ଶ − 0.1094𝑋ଷ − 0.8424𝑋ସ − 0.4948𝑋ଵ
ଶ  Equation 4.15 

The NaCl concentration was the only factor that had a proportional effect with gelation time, where 

the latter increases when NaCl concentration increases. The other factors (temperature, polymer 

concentration and the quadratic effect of salinity) had negative coefficients (-0.6763, -0.8428, -0.4948 

respectively) which mean that their effect is inversely proportional with gelation time (when they 

increase, the gelation time decreases).  
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4.6.4 3D response surface plots 

To further illustrate and discuss the effect of each factor and the interactions between these factors 

we were referred to the 3D response surface plots.  

(a)  (b)   

(c)  (d)   

(e)  (f)  

Figure 4.8 : 3D response surface plots of ln (GT) showing combined effect of NaCl concentration 
“X1”, polymer concentration “X2”, crosslinker concentration “X3” and Temperature “X4”. 
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Figure 4.8 shows the 3D Response surface plots of ln(GT) as function of the combined effect of the 

four studied factors. From Figures 4.8 (a-b-c), it is clear that the response (gelation time) increases 

when the NaCl concentration (X1) increases despite the effect of the second combined factor. 

Furthermore, the effect of NaCl concentration is more pronounced compared to the effect of the 

second factor. In this case, the presence of sodium ions (Na+) affects the gelation reaction through a 

charge shielding effect [118] which screen the negatively charged carboxylate groups (COO-) and 

reduce consequently the hydrodynamic volume of the polymer. A lower hydrodynamic volume means 

a less entangled polymer network and less accessible PHPA crosslinking sites. Both temperature (X4) 

and polymer concentration (X2) had an inversely proportional effect on gelation time (when they 

increase the gelation time decreases) as shown in Figures 4.8 (a-d-c-e-f). The effect of temperature 

is explained by the enhanced movement of molecules that promotes the interactions between the 

PHPA and PEI [214]. While the higher polymer concentrations bring more crosslinking sites and 

render the polymer network more entangled which make the gelation reaction faster. Surprisingly, 

the crosslinking concentration (X3) had  the least effect on gelation time in contrast to the result 

obtained in chapter I. Mainly, high crosslinker concentrations result in lower gelation times as more 

PEI amine groups are available to the crosslinking reaction. However, this is not always the case as 

shown in Figure 4.8 (b) and Figure 4.8 (f) at high NaCl concentrations (X1=1) and low temperatures 

(X4=-1) respectively. A possible explanation could be related to a pH value shifting for the PHPA/PEI 

mixture. This contradictory result constitutes a working prospect to investigate the interaction 

mechanisms between the PHPA and PEI. 

4.6.5 Optimization using the desirability approach 

For gel injection operations in the oilfield, the polymer and the crosslinker are usually mixed in the 

surface facilities, pumped downhole using a coiled tubing unit, and injected for a sufficient time until 

reaching the targeted depth inside the formation [161]. Some of the main operating conditions in the 

oilfield, which interfere in the gelation time determination, are the gelant injection rate, the diameter 

of the coiled tubing and the depth of the treated formation. In the literature reported conformance 

control operations, injection rate of 1 bbl/min (158.99 liter/min) [129, 142] and 2-inches (5.08 cm) 

coiled tubing diameter [136], were approved and largely employed. By considering these two 

operating conditions and an average reservoir depth of 6560 ft (2000 m), which is the reservoir depth 

of the Algerian fractured reservoir of Tin Fouyé Tabankort “TFT” [248], the estimated injection time 

needed to reach the reservoir is 25 minutes. Consequently, and to ensure a sufficient gel penetration 

inside the reservoir, the gelation time must be higher of at least five times this injection time (i.e, 125 

minutes). Finding the optimum parameters to obtain this gelation time, for the studied PHPA1/PEI25 

gel system, is now possible through the fitted mathematical model and a desirability function 

approach implemented in the JMP software.  
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Initially proposed by Derringer and Suich [249], the desirability function approach has become one 

of the most widely used methods in the industry for optimizing multiple response processes. The 

method consists on finding the optimal operating conditions (xi) for which the “most desirable” 

response values are obtained [234]. A desirability function 𝑑(𝑌෠௜) is assigned for each estimated model 

response 𝑌෠௜(x) and can takes values only between 0 and 1, with 𝑑(𝑌෠௜) = 0 is the completely 

undesirable value and 𝑑(𝑌෠௜) = 1 is the most desirable value of 𝑌෠௜. In an optimization, one can 

maximize, minimize or set a targeted value for the response 𝑌෠௜, and in each case, a different 

desirability function should be defined. In the case of a targeted value, the desirability function is 

defined as follow [234]:   

𝑑൫𝑌෠௜൯ =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

0                             𝑖𝑓   𝑌෠௜(𝑥) < 𝐿௜

ቆ
𝑌෠௜(𝑥) −  𝐿௜

 𝑇௜ −  𝐿௜
ቇ

௦

             𝑖𝑓   𝐿௜ ≤ 𝑌෠௜(𝑥) ≤ 𝑇௜

ቆ
𝑌෠௜(𝑥) −  𝑈௜

 𝑇௜ − 𝑈௜
ቇ

௧

              𝑖𝑓   𝑇௜ ≤ 𝑌෠௜(𝑥) ≤ 𝑈௜

0                              𝑖𝑓   𝑌෠௜(𝑥) > 𝑈௜

 

With Ui, Li, Ti are the upper, lower and the targeted values respectively and the exponents “s, t” 

determine the importance of reaching the target. For s=t=1, the desirability function develops linearly 

towards Ti, for s < 1 and t < 1 the function is convex while for s > 1 and t > 1 the function is concave. 

 

 

Figure 4.9 : Desirability function and the optimum parameters at the targeted response. 

Figure 4.9 shows the prediction profiles of the desirability function and the response ln(GT) 

according to the variations of the four studied parameters. A desirability value of 1 was assigned to 

the targeted response of ln(125) = 4.8283. The temperature X4 was fixed at 0, which is the reservoir 

temperature of the TFT reservoir (80°C), while the salinity was fixed at -0.15, which represents a 

mixing water with 3.4 g/l NaCl. The polymer and crosslinker concentrations were than varied to 



Chapter IV 
 

116 
 

maximize the desirability value. The optimum concentrations were obtained at -0.24 for the polymer 

concentration X2 and 0.08 for the crosslinker concentration X3, for which the desirability has reached 

a value of 0.999999. Using the equation 4.8, the optimal experimental concentrations were 6186 ppm 

and 1598 ppm for the PHPA1 and PEI25 respectively. 

To validate these optimal conditions, a laboratory experimental test was conducted. A gelant solution, 

prepared in 3.4 g/l NaCl water using a PHPA1 concentration of 6186 ppm and PEI25 concentration 

of 1598 ppm, were loaded into the coaxial cylinder of the rotational rheometer. The test temperature 

was set at 80 °C and the viscosity evolution was monitored against time. The corresponding gelation 

time was of 110 minutes which is very close to the targeted gelation time (125 minutes). Based on 

this result, it can be concluded that the mathematical model validity was established, and the 

optimization was successful. 

4.7 Conclusion: 

In this chapter, the statistical investigation on the gelation time of the PHPA/PEI gel system using the 

response surface methodology (RSM) was achieved.  The four parameters namely NaCl concentration 

(0 to 8 g/l), polymer concentration (4000 to 10000 ppm), crosslinker concentration (500 to 2500 ppm) 

and temperature (70 to 90 °C) were considered at five, seven, seven and three experimental levels 

respectively using the robust doehlert matrix. A set of 23 experimental run including two replicates 

to determine the pure error, were conducted. A nonlinear mathematical model was then used to fit the 

experimental response (gelation time) as function of the four parameters and their interactions. The 

polynomial model failed to fit the experimental responses thus an exponential model was considered. 

The latter presented the highest values of determination coefficient (R2 = 0.9867) and adjusted 

determination coefficient (R2
adj = 0.9635) with the lowest RMSE value (RMSE = 0.1718). The 

analysis of variance (ANOVA) was also employed to assess the statistical significance of the model 

and its terms. The sum of squares, the degree of freedom, the mean squares, the F-ratio and p-value 

of each source (model, model terms, residuals, lack of fit and pure error) were calculated and only 

sources with p-values of less than 0.05 were considered as significant. Consequently, four model 

terms had a significant effect on the model namely X1 (NaCl concentration), X2 (Polymer 

concentration), X4 (temperature) and X1
2 (quadratic effect of NaCl concentration). The effects of 

these factors and their interactions were then discussed through the 3D response surface plots. The 

NaCl concentration had a negative and the major effect on the gelation time among all the studied 

parameters. This was explained by the charge shielding effect which screen the negatively charged 

carboxylate groups (COO-) and reduce consequently the number of polymer entanglements and 

available crosslinking sites. Both temperature and polymer concentration had a proportional effect on 

the gelation time thanks to the enhanced movement of molecules and the higher number of 
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crosslinking sites and entanglements. In contradiction to our previous observations, the effect of the 

crosslinker concentration was more complex especially when the other parameters are set to make 

crosslinking reaction slower (lower temperature and higher salinity). This result encourages further 

investigation to understand the interaction mechanisms between the PHPA and PEI, which will be 

the subject of the next chapter. Finally, the experimental validity and the optimization of the gelation 

time using the obtained mathematical model were approved. For a set of real operating conditions in 

the oilfield, namely the injection rate (1 bbl/min), the coiled tubing diameter (2 inches), the reservoir 

depth (6560 ft), the reservoir temperature (80 °C) and the injection water salinity (3.4 g/l), the 

estimated injection time and the minimal gelation time needed were calculated. A desirability 

function was then defined and the optimal concentrations to match the targeted gelation time were 

determined and validated experimentally.  
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5. Chapter V: The crosslinking mechanisms of PHPA with PEI 

5.1 Introduction 

Since the introduction of the PEI/acrylamide-based polymers gel systems in the late 90’s, most of the 

literature studies considered the formed gels as covalently crosslinked gels and referred the works of 

Hardy et al. [71] and Reddy et al. [83] in explaining the crosslinking mechanisms between the 

different polymers and the PEI crosslinker as reviewed in the state of Art. Hardy et al. considered the 

interaction to be either through a nucleophilic attack or an ionic interaction between the cationic 

crosslinker and the anionic polymer. On the other side, Reddy et al. proposed the transamidation 

reaction between the PEI’s amine groups and the amide groups of the acrylamide-based polymer. In 

both works, the authors did not show any evidence on the existence of such crosslinking mechanisms 

nor a quantification of them. Their propositions were built only on observations and comparisons of 

gelation times and gel strengths with other metallic crosslinked polymer gels. Furthermore, and in the 

case of PHPA/PEI gel systems, the effect of the hydrolysis degree and the initial gelant pH value on 

the gelation time were not previously addressed. In order to respond to these points, we are studying 

in this chapter the interaction mechanisms between PHPA and PEI, using advanced techniques such 

as 1D and 2D nuclear magnetic resonance (NMR), which give access to the chemical structure 

variations in both reactants. The effect on the gelation time of varying the anionicity of the PHPA 

through the hydrolysis degree or the cationcity of PEI through the solution’s pH is also investigated 

and discussed. 

5.2 Materials and methods 

The three PHPAs (PHPA1, PHPA2, PHPA3) having the same HD (6%) but different molecular 

weights were used as the base polymers. While the crosslinker was the PEI25, having a molecular 

weight of 20000 g/mol and BD of 59%. Low molecular weight polymers, purchased from Sigma 

Aldrich, namely Polyacrylamide (PAM) in a powder form, Polyacrylic Acid (PAA) (35 wt% in water) 

and very low Mw PEI (PEI1300) (50 wt% in water) were employed during the NMR experiments. In 

the pH effect study, concentrated HCl and NaOH solutions (1 mol/l) were used to vary the initial pH 

value of the mixtures. The main mixing water was the injection water described in the materials 

characterization chapter while deuterated water (D2O) was employed to prepare the NMR samples.  

Just as the high molecular weight reactants (PHPAs and PEI25), the low molecular weight reactants 

(PAM, PAA and PEI1300) were characterized in terms of viscosity-average molecular weight and 

hydrolysis or branching degree. The characteristics of all the reactants are listed in Table 5.1:  
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Table 5.1 : Reactants characterizations in terms of viscosity-average molecular weight and 
hydrolysis or branching degree 

Reactant/variable PHPA1 PHPA2 PHPA3 PAM PAA PEI25 PEI1300 

[𝜂] (ml/g) 1460 1990 2560 114.9 46.4 13.0 7.8 

𝛼* 0.81 0.755 0.26 

𝜅* 0.0062 0.031 1 

M̄v (103 g/mol) 5100 7500 10200 52.9 15.9 19.4 2.7 

HD or BD (%) 6.1 6.1 6.2 0 100 58.6 42.3 

* 𝛼 and 𝜅 are the Mark–Houwink equation constants issued from literature [187, 192, 193] 

The three high molecular weight PHPAs were hydrolyzed to obtain PHPAs with at least four more 

hydrolysis degrees (HD1= 15%, HD2= 25%, HD3= 35%, HD4= 45%). The experimental procedure, 

to realize this, was the one reported by Feng et al. [196]:  the three PHPAs were first dissolved into 

0.1M (5.844 g/l) NaCl aqueous solutions at polymer concentrations of 0.1M (7.108 g/l in three 

different round-bottom flasks). Solid NaOH was then added to obtain final NaOH concentrations of 

0.25M (10 g/l). Under constant stirring, the mixtures were heated at 50 °C and at time intervals of 15, 

45, 120 and 240 minutes, samples were taken from each reaction medium and precipitated in an 

acetone/ethanol mixture (50/50 by volume). The samples were washed several times with acetone 

then dried under vacuum at 40°C for at least 24 hours [250]. 

For the NMR measurements, a Bruker AVANCE 400 MHz spectrometer equipped with a Z-gradient 

Bruker 5 mm BBFO probe was employed. The products were solubilized in deuterated water (D2O) 

and their proton (1H) and carbon (13C) NMR spectra were recorded using the same acquisition and 

processing parameters listed in Table 2.5 in the materials characterization chapter. For the DOSY 

(Diffusion ordered spectroscopy) and NOESY (Nuclear Overhauser Enhancement SpectroscopY) 

experiments, the classic Bruker sequences ledbpg2s et noesygpph were used. 

5.3 Results and discussion  

5.3.1 Hydrolysis degree effect 

To examine the effect of the hydrolysis degree on gelation time, three PHPAs (PHPA1, PHPA2 and 

PHPA3) with the same initial hydrolysis degree of 6 % were hydrolyzed to obtain a total of five 

different hydrolysis degrees for each PHPA. Gelant solutions prepared in injection water using 5000 

ppm of each PHPA and 1000 ppm PEI25 were loaded into the rheometer set at 80 °C, where the 

viscosity evolution was monitored as function of time. Figure 5.1 shows the variation of the initial 

gelant viscosity and the gelation time for the three PHPAs as function of their hydrolysis degrees. 

From Figure 5.1 (a), it is clear that, for a given PHPA, the initial gelant viscosity increased with the 
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hydrolysis degree until reaching a maximum at HD=25% then started to decrease beyond that. 

Kulicke and Horl [251] reported a similar viscosity behavior with the viscosity maximum observed 

at HD= 40%, while, Rabiee et al. [252] observed the viscosity maximum at HD= 20%. Such behavior 

can be explained by the polymer chains being progressively extended and stretched as the number of 

the negatively charged carboxylate groups increases. When reaching a given limit, the additional 

negatively charged groups will not contribute in stretching the polymer chains but will rather promote 

the complexation with the divalent cations present in the mixing water, resulting in the shrinkage of 

the polymer chains and consequently in the viscosity drop. It should be reminded that high gelant 

viscosities are not recommended for gel injection operations in the oilfield as they increase the 

required pump capacities. 

An inverted behavior was found in the case of gelation time as depicted in Figure 5.1 (b) where, 

gelation time decreased with hydrolysis degree until reaching a minimum at HD= 25% then resumed 

its increase beyond that. Al-Muntasheri et al. [141] found that the gelation time of PAM/PEI gels 

decreased from 2 hours to 0.55 hour when the neat PAM was hydrolyzed to 4.7% and 7.2% at 100°C. 

El-karsani et al. [118] observed also the lower gelation times at higher HDs for the PAM/PEI gels 

and succeeded in fitting the variation of gelation time as function of the hydrolysis using an 

exponential relationship. Furthermore, the authors explained their result by the enhanced stretching 

of PAM chains due to the repulsive forces between the carboxylate groups, which allows more 

amide/carboxylate groups to be accessible for the crosslinking with PEI. The first part of our results 

agrees with these results, however the second part when gelation time starts to increase with 

hydrolysis degree is contradictory. A possible explanation for this controversial result would evoke 

the reduced hydrodynamic volume of the polymer at high hydrolysis degrees which was also 

expressed by the lower initial gelant viscosities. Another explanation would be that the main 

crosslinking reaction is through the transamidation reaction between the PHPA’s amide groups and 

the PEI’s amine groups. In such case, when the hydrolysis increases, the number of the available 

amide groups decreases, and the reaction is consequently delayed. To further investigate this 

crosslinking mechanism, additional experiments were conducted as presented and discussed below.  
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(a)  (b)  
Figure 5.1 : Hydrolysis degree effect on (a) initial gelant viscosity (b) gelation time. 

5.3.2 Initial pH effect 

Despite being one of the most influential parameters on both PHPA and PEI, the effect of pH on 

PHPA/PEI gel systems has, to the best of our knowledge, not been previously investigated. In this 

part, gelant solutions prepared with 10000 ppm PHPA1 and 2000 ppm PEI25 in injection water and 

having initial pH values of around 10 were titrated with concentrated HCl and NaOH solutions (1 

mol/l) to account for the effect of raising or lowering the initial pH value of the gelant on the gelation 

time. Figure 5.2 shows the gelation times obtained at different initial pH values for the PHPA1/PEI25 

mixtures cured at 80 °C.  

 

Figure 5.2 : pH effect on gelation time. 

The gelation time was the lowest in mildly basic environments (8.5<pH<11), followed by mildly 

acidic environments (3.5<pH<6). It increased then at neutral pH and was very high in extremely high 

basic (pH> 12) and acidic (pH<3) environments. To explain these results, one should first identify 

the effect of pH on PHPA and PEI alone. For PEI, when the pH is decreased, the amine groups are 

protonated to ammonium ions and become less nucleophilic, and at high pH, these amines are 

deprotonated and become more nucleophilic as was shown in Figure 1.14 in the state of art chapter. 
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With PHPA, the addition of HCl or NaOH is known to accelerate the hydrolysis of amides groups, 

especially at high temperatures. In the PHPA1/PEI25 system, when the pH was increased from the 

initial value of 10 to 11.7 and 13.2 by adding NaOH, the gelation time increased from 105 minutes 

to 205 and 980 minutes, respectively. In this case, the NaOH is supposed to accelerate the hydrolysis 

of amide groups to carboxylate groups and deprotonating all the PEI amines groups. Furthermore, the 

added NaOH will bring additional sodium ions (Na+) to the solution which will tend to screen the 

negatively charged carboxylate groups of the polymer, thereby reducing the hydrodynamic volume 

of the polymer. As a result of these three effects, no ionic interactions between the PHPA and PEI 

can take place (PEI’s amine groups are uncharged), while less PHPA amide groups are available for 

the transamidation reaction with the PEI’s amine groups thus the retardation effect that was observed. 

Alternatively, when HCl was added, the pH was decreased from 10 to 8.5, 6.5, 5.2 and 3.5. An instant 

increase in the viscosity was observed visually, even before the gelant solution was loaded to the 

rheometer. A similar observation was previously reported by Al-Muntasheri et al. for the PAtBA/PEI 

gels [105]. A possible explanation is that some of the newly protonated PEI amine groups (ammonium 

ions NH3
+) react instantly with the negatively charged carboxylate groups through ionic interactions 

resulting in the instant increase of the viscosity. When loaded into the rheometer, a slightly delayed 

gelation times were observed compared to the basic conditions, which can be due to the reduced 

nucleophilicity of PEI amine groups. At very low pH values of around 2, the gelation was further 

delayed. Here, the excess hydrogen ions (H+) will screen the negatively charged carboxylate groups, 

thereby reducing the polymer’s hydrodynamic volume and allowing fewer amide groups to be 

accessible to the PEI. In contrast, the gelation was just slightly delayed at neutral pH. In neutral 

conditions, both the hydrolysis of PHPA is slow and the nucleophilicity of the PEI’s amine groups is 

reduced while the added H+ ions tend to screen the PHPA’s carboxylate groups, resulting in the 

polymer shrinkage. All these effects render the crosslinking reaction unfavorable at this pH value.  

5.3.3 Reaction mechanisms through NMR techniques  

In this section, we were interested in studying the interaction mechanisms between PHPA with its 

two functional groups (amides and carboxylate) and PEI with its three amines (primary, secondary 

and tertiary) and the chemical variations that may occur on both reactants. To do so, we suggest the 

use of 1H e 13C NMR and 2D NMR techniques including the DOSY and NOESY techniques in 

studying the short distance interchain interactions. Nuclear magnetic resonance as a well-known 

characterization tool has found lately its application in monitoring chemical reactions progression as 

well as providing practical insights into the structure-property relationships [253-255]. Nevertheless, 

NMR was only limitedly investigated on polymer gel systems. Romero-zeron et al. [161] studied the 

gelation reaction and gel states of the PHPA/chromium (III) acetate system through bulk relaxation 

rates. Bait et al. [256] employed the proton (1H) NMR in monitoring the polymerization-reticulation 
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process of hydrogel nanocomposites based on polyacrylamide and poly(acrylamide-hydroxyethyl 

methacrylate).  

First, a mixture with a ratio of 1:1 of 20 mg PHPA1 and PEI25 was solubilized in deuterated water 

(D2O), loaded in an NMR tube and then to the NMR spectrometer. The proton (1H) and carbon (13C) 

NMR spectra were recorded at 25 °C at an initial time (t=0) and after curing the mixture for 1 hour 

at 80 °C. Figure 5.3 (a, b) show the recorded proton (1H) and carbon (13C) NMR spectra at both 

conditions. At the initial time (25°C), the chemical shifts of both reactants were easily separated and 

identified, however, the spectra of the cured mixtures were largely broadened and overlapped over 

one another as observed in the shift ranges of 30 to 60 ppm and 179 to 185 ppm in the carbon 

spectrum. This can be attributed to the extremely accelerated interaction because of the very high 

concentrations of reactants which were employed in the first place to record good carbon (13) NMR 

spectrum. Consequently, it seems that following the reaction kinetics and the chemical variations 

using these high molecular weight reactants is impossible. 

(a)  

(b)  

Figure 5.3 : (a) the proton “1H” and (b) carbon “13C” spectra of PHPA1/PEI25 mixture at 25°C at an 
initial time (t=0) (blue curve) and after curing at 80°C for one hour (red curve). 



Chapter V 
 

124 
 

To overcome this, we were referred to the low molecular weight reactants. PAM and PAA were 

selected respectively to study separately the interaction of the amides and carboxylates groups of 

PHPA. While the PEI1300 substituted the higher molecular weight PEI25.  

The NMR Diffusion ordered spectroscopy (NMR-DOSY) experiments were then conducted. The 

DOSY technique is a two-dimensional (2D) NMR experiment which allows a virtual 

chromatographic separation of different components in a mixture by correlating the conventional 

chemical shifts with the diffusion coefficients of these components [257-259]. As the diffusion 

behavior of a given specie depends on its size, shape, mass, charge and surrounding environment 

[260], the measurements of the 1H-NMR signal attenuations during a pulsed field gradient give access 

to the diffusion coefficients. When representing the chemical shifts and the diffusion coefficients in 

a 2D map, both physical and chemical information, on the composition and the interactions between 

the components of the studied mixture, can be obtained. The DOSY technique was reported to have 

a higher accuracy when applied on low molecular weight species and diluted mixtures [261].  

Before recording the DOSY spectra of the mixtures (PAM/PEI1300 and PAA/PEI1300), the diffusion 

coefficients of sole components (PAM, PAA and PEI1300) were recorded separately as shown below 

in Figure 5.4. 

(a) (b)

(c)  

Figure 5.4 : Diffusion Coefficients of single components (a) PAM (b) PAA (c) PEI1300 at 25°C. 

It was evident that the diffusion coefficients of the sole components decreased with the increase of 

their molecular weights. PAM had the lower diffusion coefficient (DPAM=11.2×10-12 m2/s) compared 

to PAA (DPAA=46.5×10-12 m2/s) and PEI1300 (DPEI1300=184×10-12 m2/s). These results were in good 
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agreement with diffusion coefficients reported in literature for similar reactants and also in agreement 

with the Stokes–Einstein equation which stipulates that high molecular weight molecules with higher 

hydrodynamic volumes have lower diffusion coefficients [261-264]. 

Following that, two diluted mixtures of PAM/PEI1300 and PAA/PEI1300 were prepared in 

deuterated water (D2O) at a ratio of 3:1 and allowed to interact for a sufficient time (48h hours) before 

recording their proton (1H) spectra at 25 °C as shown in Figure 5.5.  

The PAM/PEI1300 mixture exhibited one diffusion coefficient of 5×10-12 m2/s which was lower than 

those of PAM and PEI alone which confirms the presence and formation of a higher molecular weight 

component. On the other side, the PAA/PEI1300 mixture exhibited two different diffusion 

coefficients. The first diffusion coefficient (D1(PAA/PEI1300)=46.4×10-12 m2/s) was the same as that of 

PAA alone (DPAA=46.5×10-12 m2/s), while the second diffusion coefficient (D2(PAA/PEI1300)=109×10-12 

m2/s) was slightly lower than that of PEI1300 alone (DPEI1300=184×10-12 m2/s). These results suggest 

that the two reactants (PAA and PEI1300) were still free and separated from each other in the mixture. 

The lower diffusion coefficient observed for the PEI1300 can be explained by its constrained 

movement caused by the presence of the larger PAA molecules in the mixture compared to PEI1300 

alone. From these DOSY results, one can assume that the PEI amine groups are preferentially 

interacting with the amide groups rather than the carboxylate groups even at room temperature. 

 (a)  (b)  

Figure 5.5 : NMR DOSY spectra at 25°C of (a) PAM/PEI1300 and (b) PAA/PEI1300 mixtures with 
their initial sole reactants. 

To further investigate the DOSY results, we were referred to the NMR NOESY (Nuclear Overhauser 

Enhancement SpectroscopY) technique. This 2D NMR sequence, which was mainly employed in 

studying the phenomenon of encapsulation, and release of active agent carried by polymers [265], is 

able to reveal the spatial proximity between protons of different molecules in close proximity to each 

other due to the dipole interactions (1H-1H). The existence of correlations spots on the NOESY 2D 

spectrum indicates that the distance between protons is smaller than 5 Å [266]. Figure 5.6 shows the 
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NOESY spectra of PAM/PEI1300 and PAA/PEI1300 mixtures taken at two different temperatures of 

25 and 60 °C. 

(a) (b)  

(c) (d)  

Figure 5.6 : NMR NOESY spectra of (a) PAM/PEI1300 at 25°C, (b) PAM/PEI1300 at 60°C, (c) 
PAA/PEI1300 at 25°C and (d) PAA/PEI1300 at 60°C. 

For instance, the NOESY spectra of both mixtures recorded at 25 °C, show the existence of 

correlation spots (highlighted by the small black box) between the hydrogens of PAM or PAA in one 

hand and those of PEI1300 on the other one. While, at 60 °C, only the correlation spot of 

PAM/PEI1300 persisted and that of PAA/PEI1300 disappeared. This confirms that the PAM and 

PEI1300 are either interacting chemically or physically, but their interaction is strong and 

independent of the temperature. On the other side, the PAA and PEI1300 are in close proximity to 

each other at room temperature but are totally separated when the temperature increases. Such result 

is perfectly in line with the observed diffusion coefficients of PAA and PEI1300 in the mixture 

obtained through the DOSY experiments. When the proton and carbon spectra of a PAA/PEI mixture 

were recorded at 25 °C at an initial time t=0 and after curing the mixture for 24 hours at 80°C as 

shown in Figure 5.7, no chemical variations or shifts at the corresponding peaks of PAA and PEI1300 

were observed, confirming no interaction between the two reactants at the study conditions.  
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(a)  (b)

(c)  

Figure 5.7 : (a) Proton “1H” and (b-c) Carbon “13C” NMR spectra of PAA/PEI1300 mixture 
recorded at t=0 (25°C) and at 24 hours (after curing at 80 °C). 

In the case of PAM and PEI1300, the interaction kinetics were also investigated by tracking the 

chemical variations and peak shifts on the proton and carbon spectra of PAM/PEI mixtures cured at 

80 °C at different reaction times. To record good NMR spectra, the concentrations of PAM and 

PEI1300 were of 15 mg/ml and 5 mg/ml respectively, while sodium acetate (5mg/ml) was employed 

as an internal standard. Figure 5.8 highlights the proton and carbon spectra of the PAM/PEI1300 

mixtures cured at 80°C for different reaction times of 1, 2, 4, 8 and 36 hours. In both proton and 

carbon spectra, the corresponding peaks of PAM, namely those of methylene group (CH2) and the 

methine group (CH), were identical and did not shift with the increased curing time. In contrast, the 

shift at 179 ppm characterizing the PAM amides groups, in the carbon spectrum, decreased with the 

curing time, and gave raise to two other peaks at 180 and 183 ppm. The peak at 183 ppm was the shift 

corresponding to the carboxylate groups, which indicates the onset of the hydrolysis. While that at 

180 ppm could be attributed to the amide groups neighbored to carboxylate groups or primary amine 

(NH2) converted to secondary (NH) or tertiary (N) amines. For PEI, the peaks in the region of 2.5 to 

3 ppm on the proton spectrum and in the region 35 to 60 ppm on the carbon spectrum, did shift with 

the increased curing time indicating a change in the chemical environment of the PEI’s methylene 

carbons (CH2) attached to the different amines groups. While the observed shift in the proton 

spectrum do not allow an accurate separation between the neighboring amine groups, we were more 

interested in the 8 characteristic peaks of PEI in the carbon spectrum. As shown in Figure 5.8 (b), 



Chapter V 
 

128 
 

the peaks number 2, 3, 5 and 6 were identical and did not shift in contrary to the four other peaks 

namely 1, 4, 7 and 8. It is worth noting that peaks 2, 3, 5 and 6 correspond to the methylene groups 

neighbored from both sides either by tertiary (N) or secondary amines (NH), while peaks 1, 4, 7 and 

8 correspond with the methylene groups neighbored in at least one side by a primary amine group 

(NH2). Consequently, it becomes evident that the primary amine groups are the only PEI’s groups 

reacting with the amide groups of the PAM. 

(a)  

(b)  
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(c)  

Figure 5.8 : (a) Proton “1H” and (b-c) Carbon “13C” NMR spectra of PAM/PEI1300 mixture cured 
at 80 °C for different reaction times. 

Theoretically, when the primary PEI’s amine groups react with the PAM amides groups, they would 

lose one hydrogen and convert to secondary (NH) amide groups. This would result in shifting the 

peak number 1 towards peak number 2, the peaks number 4 and 7 toward peak number 5 and the peak 

number 8 towards peak number 6. However, it was clear that only the peaks 1 and 4 shifted in the 

right direction towards peak 2 and 5 respectively, while the peaks 7 and 8 shifted in an opposite 

direction. The latter can be explained by the more pronounced effect of C=O groups on the methylene 

groups that are close to the primary PEI’s amine groups (peak 7-8) compared to the methylene groups 

that are away from the primary groups (peak 1-4) as highlighted in Figure 5.9. 

 

Figure 5.9 : The modified chemical environment of the methylene carbons (CH2) of PEI1300 in 
Peaks 1, 4, 7 and 8 when interacting with PAM. 
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In literature, it was considered that the NMR peak shifts can be linearly correlated with the 

concentration of reactants inside a mixture [266, 267], as given in equation 5.1:  

𝑃𝑒𝑎𝑘 𝑠ℎ𝑖𝑓𝑡 = 𝐴 × 𝐶 + 𝐵                                         Equation 5.1 

Where A, B are constants and C is the concentration of a given reactant. 

Consequently, the peak shifts, in this study, were considered to quantify the conversion of the primary 

amine groups attached to the methylene groups (CH-NH2) into secondary amide (CO-NH). The shifts 

of the 1st and 4th peaks alongside the hydrolysis degree (defined in Equation 1.1 in the state of art and 

section 2.4 in the materials characterization chapter) were then plotted against the curing time as 

shown in Figure 5.10. 

(a) (b)  

Figure 5.10 : (a) The shifts of the 1st and 4th peaks and (b) the hydrolysis degree variations as 
function of curing time at 80 °C. 

Studying the chemical reactions kinetics involves quantifying the reaction rates in order to infer about 

the kinetic mechanisms for chemical conversion of reactants (R) into products (P) [268]. The 

equations describing the pseudo first-order reactions are defined as follow: 

[𝑅] = [𝑅]଴𝑒ି௞௧                                                     Equation 5.2 

[𝑃] = [𝑅]଴(1 − 𝑒ି௞௧)                                               Equation 5.3 

Where [R]0 is reactant concentration at t=0, [R], and [P] are reactant and product 

concentrations respectively at a given time t, k is the apparent reaction rate constant. 

In order to compare the kinetics of both reactions (transamidation and hydrolysis), the curves were 

fitted using the exponential relationship given below:  

𝑦 = 𝑀(1 − 𝑒ି௞௧)                                                      Equation 5.4             

Where, y is the peak shift or the hydrolysis degree, t is the curing time and M, k are constants. Table 

5.2 summarizes the obtained fit constants.  
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Table 5.2 : The fit constants and their respective determination coefficients of the hydrolysis and 
transamidation reactions kinetics. 

 Peak 1 Peak 4 Hydrolysis 
A (ppm) 2.2 ± 0.2 2.0 ± 0.2 23 ± 2 

B (1/hour) 0.16 ± 0.04 0.15 ± 0.03 0.05 ± 0.01 
R2 0.945 0.957 0.994 

Despite it is almost impossible to verify that the total conversion of the primary amine groups to 

secondary amide groups would result in peaks 1 and 4 shifting to the exact positions of peak 2 and 5 

respectively, we are considering in this study that the theoretical shifts separating peak 1 from 2 and 

peak 4 from 5 are the maximum values indicating the end of the reaction, i.e. the total conversion.  

The plateau values, reached by the two peak shifts, were identical but slightly lower than the 

theoretical values separating peak 1 on peak 2 (2.7 ppm) and peak 4 on peak 5 (2.6 ppm), respectively. 

In fact, the conversion values reached 80% and 76% for peaks 1 and 4 respectively. These results 

suggest that a total conversion of the primary amine groups to secondary amide groups was not 

obtained. On the other side, the hydrolysis degree was of 23% ±2%. Moreover, and in terms of 

reaction rate constants, the reaction constants in respect to the transamidation reaction were three 

times higher than that of the hydrolysis reaction. These results explain perfectly the obtained final 

conversion rates and hydrolysis degree. 

5.4 Conclusion 

The literature knowledge on the crosslinking mechanisms between PHPA and PEI was only limited 

to observations and comparisons of gelation times and gel strengths with other gel systems. In this 

chapter, we were interested in understanding the crosslinking mechanisms and the chemical variations 

on the reactants. NMR techniques including 1D proton “1H” and carbon “13C” and 2D DOSY and 

NOESY techniques were thus employed. The effect of both the anionicity of PHPA and cationcity of 

PEI on the gelation time, which are in direct relationship with the prevailing crosslinking mechanism, 

were considered, for the first time, in this chapter.  

As a result, the PHPA’s hydrolysis and the PEI’s protonation degrees were found to positively affect 

the gelation time to a certain extent, but beyond it an inverted affect can be observed. The positive 

effect of the hydrolysis degree of PHPA was related to the enhanced hydrodynamic volume of the 

polymer under the repulsive forces of the higher number of the negatively charged carboxylate 

groups. The results also demonstrate the huge dependency of the crosslinking reaction on the initial 

pH value of the gelant solution. At acidic conditions, an instant viscosity increase was observed 

visually because of the faster ionic interactions between the anionic polymer and the cationic 

crosslinker. Consequently, the initial pH value of gelant solutions and its variation inside the reservoir 

should be considered carefully, especially if the gel is to be applied in acidic environments, such as 

in carbonate reservoirs.  
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On the other side, and out from the six possible crosslinking options existing between the PHPA with 

its two functional groups (amides and carboxylates) and PEI with its three amines groups (primary, 

secondary and tertiary), we showed that the crosslinking reaction takes place preferentially between 

the amides groups of the polymer and the primary amines groups of the crosslinker. Interestingly, the 

crosslinking reaction was found to be also accompanied with a hydrolysis reaction. With the 

transamidation reaction rate constants calculated in respect to the methylene groups that were away 

from the primary amine groups, these reaction rate constants were found to be identical regardless of 

the amine type (secondary or tertiary) attached from the other side of the methylene. They were found 

also to be three times higher than the hydrolysis reaction.  

While, the 1D proton “1H” and carbon “13C” NMR did not allow to accurately follow the reaction 

kinetics using the high molecular weight reactants, the DOSY and NOESY techniques alongside the 

1D proton “1H” and carbon “13C” NMR on low molecular weight reactants were successfully 

employed. The DOSY experiments showed the presence and formation of a higher molecular weight 

components even at room temperature when PAM and PEI were mixed for a sufficient time. The 

NOESY experiments confirmed the spatial proximity between protons of the amide groups of the 

polymer and the amine groups of the crosslinker independently of the applied temperature revealing 

a strong interaction between the two. In contrast, the interaction of the carboxylate groups with the 

amine groups was neglectable. 
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Conclusion Générale  

Le contrôle de conformance représente l’une des méthodes les plus efficaces pour la récupération 

assistée des hydrocarbures par voie chimique pour les réservoirs fracturés. Il consiste à bloquer et à 

colmater les fractures conductrices de façon à forcer les fluides d’injection d’entrer, se mettre en 

contact et déplacer l’huile piégée dans la matrice rocheuse. Cependant, pour le cas des réservoirs 

fracturés algériens qui se rapprochent de leurs limites économiques, l’étude et l’application du 

contrôle de conformance n’ont pas été prévues auparavant. C’est dans cette optique, que les travaux 

de cette thèse ont porté sur l’étude des systèmes de gels retardés à base du polyacrylamide 

partiellement hydrolysé (PAPH) et de la polyethylenimine (PEI) sous les conditions de salinité et de 

température réelles, en vue de la mise en œuvre du contrôle de conformance dans les réservoirs 

fracturés algériens. 

Une revue bibliographique nous a permis de faire le point sur les réservoirs fracturés, leurs taux de 

récupération obtenus après la récupération primaire et secondaire ainsi que les méthodes chimiques 

de la récupération assistée du pétrole employées. Nous nous sommes intéressés particulièrement aux 

systèmes organiques de gels réticulés vu les avantages en termes de disponibilité commerciale, 

caractéristiques contrôlables et stabilité dans les conditions de fond du réservoir. En effet, la littérature 

rapporte de nombreux systèmes mais les plus promoteurs sont ceux à base du polyacrylamide et de 

la polyethylenimine. Ainsi les différents polymères, les améliorations et les applications des gels 

réticulés à base de PEI ont été revus. A notre connaissance, les travaux antérieurs ont révélé que la 

caractérisation physico-chimique des réactifs ainsi que les paramètres optimaux et pratiques tels que 

les concentrations des réactifs et les viscosités initiales n’ont pas été pris en considération. Par ailleurs, 

l’application des systèmes (PAPH/PEI) s’est limitée aux réservoirs à faible température (T < 60°C). 

De plus, les investigations sur ces systèmes en termes de stabilité, morphologie, comportement 

viscoélastique, mécanismes de réticulations ainsi que l’influence de quelques paramètres de contrôle 

primordiaux, tels que le pH initial des solutions et le degré d’hydrolyse du polymère n’ont pas fait 

l’objet d’études auparavant. Pour bien cerner les problèmes posés dans la pratique, il nous a semblé 

très intéressant d’examiner l’application de ces systèmes (PHPA et PEI) pour les réservoirs fracturés 

dans une gamme de température plus élevée allant de 70 °C à 90 °C. 

La première contribution de ce travail consiste à l’étude de la gélification thermique des mélanges de 

polyacrylamide partiellement hydrolysé (PAPH) et de la polyethylenimine (PEI), conduite 

principalement à une température de 80 °C et une salinité de l’eau à 3.4 g/l en quantité totale de 

matière dissoutes (TDS), en considérant trois caractéristiques principales:  le temps de gélification, 

la force et la stabilité thermique du gel. Les effets, sur le temps de gélification et les modules 

viscoélastiques, du cisaillement [1 ; 50]s-1, de la concentration du PAPH [3000 ; 10000]ppm et de la 
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PEI [500 ; 3000]ppm, de la masse moléculaire du PAPH [5.1×106 ; 10.2×106]g/mol et de la PEI 

[2×104 ; 67×104]g/mol, de la température [60 ; 90]°C et de la salinité de l'eau de préparation [0 ; 

15]g/l (NaCl ou CaCl2), ont été mis en évidence. Nous avons montré que les concentrations et les 

masses moléculaires des réactifs ainsi que la température ont un effet proportionnel, contrairement à 

la salinité de l’eau de préparation et le cisaillement qui ont un effet disproportionnel. Ces effets ont 

été expliqués essentiellement à travers le changement du volume hydrodynamique du polymère en 

fonction du paramètre considéré. Les temps de gélifications ont varié globalement entre 0.25 à 12.5 

heures alors que la force du gel a atteint le code « I » sur l’échelle des codes de Sydansk 

comparablement aux autres systèmes de gels à base de la PEI. A titre illustratif, pour une formulation 

typique de 5000 ppm de PAPH (Mw PAPH= 5.1×106 g/mol) et 1000 ppm de PEI (Mw PEI= 2×104 

g/mol), la viscosité initiale de la solution gélifiante était de 12 cP seulement donnant un temps de 

gélification de 3 heures et un module élastique (G’) de l’ordre de 70 Pa. Sur un intervalle 

d’observation de 3 mois, le gel de PAPH/PEI a montré une stabilité thermique parfaite, sauf pour des 

rapports de polymère/agent réticulant supérieur à 0,5 ou des concentrations d’agent réticulant très 

faibles (500 à 1000 ppm), ou le gel a souffert de la synérèse. 

La deuxième contribution de cette thèse consistait à développer un modèle mathématique permettant 

de prédire le temps de gélification du système PAPH/PEI en fonction de quatre paramètres clés : la 

salinité de l’eau de préparation, la température, la concentration du polymère et celle de l’agent 

réticulant. Pour cela, la méthode des surfaces de réponses basée sur la matrice de doehlert a été 

utilisée. L’ajustement des points expérimentaux a été réalisé par un modèle exponentiel au lieu du 

modèle polynomiale largement utilisé dans les études antérieures. La signification statistique du 

modèle et ses termes a été évaluée à travers l'analyse de la variance (ANOVA) et les coefficients de 

détermination et de détermination ajusté (R2 = 0,9867 ; R2
adj = 0,9635) ainsi que l’écart quadratique 

moyen (RMSE = 0,1718). La salinité, la concentration du polymère et la température étaient les plus 

influents sur le temps de gélification par ordre décroissant alors que la concentration de l’agent 

réticulant n’a pas eu d’effet significatif sur le temps de gélification. Ce dernier a été par la suite 

optimisé par ce modèle mathématique en considérant les conditions réelles rencontrées sur le champ 

(température, débit d’injection, profondeur), alors que les mesures expérimentales en laboratoires ont 

permis de vérifier la validité du modèle proposé.  

La troisième contribution de ce travail a porté sur les mécanismes de réticulation. Deux paramètres 

importants ont été évalués à savoir l’anionicité du polymère et la cationicité de l’agent réticulant. Un 

effet proportionnel des deux paramètres a été observé jusqu’à une valeur critique, au-delà de laquelle 

un effet inverse apparaissait : l’anionicité du polymère était en relation directe avec le volume 

hydrodynamique alors que la cationicité de l’agent réticulant favorisait les interactions ioniques. La 

technique RMN a révélé que la réticulation du PHPA et de la PEI est effectuée essentiellement à 
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travers les groupes amides du PHPA et les amines primaires de la PEI. La présence de la PEI n’a pas 

initié seulement la réticulation mais aussi l’hydrolyse de certains groupes amides du PHPA.  

Au terme de cette étude, nous pouvons affirmer que nos trois contributions (L’étude de la gélification 

thermique en fonction des principaux paramètres physico-chimiques, le développement d’un modèle 

mathématique permettant la prédiction du temps de gélification, l’étude des mécanismes de 

réticulation) ainsi que la revue bibliographique rapportée permettent une meilleure compréhension 

des systèmes gels polymères pour répondre aux besoins pratiques réels des réservoirs fracturés. Les 

résultats obtenus confortés, dans d’autres cas moins satisfaisants, par rapport à ceux de la littérature 

ont été discutés et critiqués. Cependant, pour que cette étude soit complète et valorisée, il faudra 

prévoir le test de ses formulations proposées sur des échantillons de milieux poreux et mettre en 

œuvre des essais pilotes avant de procéder à l’utilisation à grande échelle. 
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