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Résumé Le calcul haute performance est un domaine scientifique dans lequel de très
complexes et intensifs calculs sont réalisés sur des infrastructures de calcul à très large
échelle appelées supercalculateurs. Leur puissance calculatoire phénoménale permet
aux supercalculateurs de générer un flot de données gigantesque qu’il est aujourd’hui
difficile d’appréhender, que ce soit d’un point de vue du stockage en mémoire que de
l’extraction des résultats les plus importants pour les applications.

Nous assistons depuis quelques années à une convergence entre le calcul haute per-
formance et des domaines tels que le BigData ou l’intelligence artificielle qui voient
leurs besoins en termes de capacité de calcul exploser. Dans le cadre de cette conver-
gence, une grande diversité d’applications doit être traitée par les ordonnanceurs des
supercalculateurs, provenant d’utilisateurs de différents horizons pour qui il n’est pas
toujours aisé de comprendre le fonctionnement de ces infrastructures pour le calcul dis-
tribué.

Dans cette thèse, nous exposons des solutions d’ordonnancement et de partition-
nement de ressources pour résoudre ces problématiques. Pour ce faire, nous proposons
une approche basée sur des modèles mathématiques qui permet d’obtenir des solutions
avec de fortes garanties théoriques de leur performance. Dans ce manuscrit, nous nous
focalisons sur deux catégories d’applications qui s’inscrivent en droite ligne avec la con-
vergence entre le calcul haute performance et le BigData: les applications intensives en
données et les applications à temps d’exécution stochastique.

Les applications intensives en données représentent les applications typiques du
domaine du calcul haute performance. Dans cette thèse, nous proposons d’optimiser
cette catégorie d’applications exécutées sur des supercalculateurs en exposant des
méthodes automatiques de partitionnement de ressources ainsi que des algorithmes
d’ordonnancement pour les différentes phases de ces applications. Pour ce faire, nous
utilisons le paradigme in situ, devenu à ce jour une référence pour ces applications. De
nombreux travaux se sont attachés à proposer des solutions logicielles pour mettre en
pratique ce paradigme pour les applications. Néanmoins, peu de travaux ont étudié
comment efficacement partager les ressources de calcul les différentes phases des ap-
plications afin d’optimiser leur temps d’exécution.

Les applications stochastiques constituent la deuxième catégorie d’applications que
nous étudions dans cette thèse. Ces applications ont un profil différent de celles de la
première partie de ce manuscrit. En effet, contrairement aux applications de simulation
numérique, ces applications présentent de fortes variations de leur temps d’exécution
en fonction des carastéristiques du jeu de données fourni en entrée. Cela est dû à leur
structure interne composée d’une succession de fonctions, qui diffère des blocs de code
massifs composant les applications intensive en données. L’incertitude autour de leur
temps d’exécution est une contrainte très forte pour lancer ces applications sur les su-
percalculateurs. En effet, l’utilisateur doit réserver des ressources de calcul pour une
durée qu’il ne connait pas. Dans cette thèse, nous proposons une approche novatrice
pour aider les utilisateurs à déterminer une séquence de réservations optimale qui min-
imise l’espérance du coût total de toutes les réservations. Ces solutions sont par la suite
étendues à un modèle d’applications avec points de sauvegarde à la fin de (certaines)
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réservations afin d’éviter de perdre le travail réalisé lors des réservations trop courtes.
Enfin, nous proposons un profiling d’une application stochastique issue du domaine
des neurosciences afin de mieux comprendre les propriétés de sa stochasticité. A travers
cette étude, nous montrons qu’il est fondamental de bien connaı̂tre les caractéristiques
des applications pour qui souhaite élaborer des stratégies efficaces du point de vue de
l’utilisateur.

Mots-clés Calcul haute performance, applications stochastiques, applications à forte
intensité en données, paradigme in situ, algorithmes d’ordonnancement, partition-
nement de ressources, stratégies de réservations, profiling d’applications
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Title HPC - Big Data Convergence: Managing the Diversity of Application Profiles on
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Abstract Numerical simulations are complex programs that allow scientists to solve,
simulate and model complex phenomena. High Performance Computing (HPC) is the
domain in which these complex and heavy computations are performed on large-scale
computers, also called supercomputers. For instance, cosmological simulations that aim
to understand the physical behavior of dark energy and dark matter require simulating
environments involving trillions of particles. To do so, these simulations require storage
and computing capabilities that none of our personal computers are able to offer.

Supercomputers are complex computers designed to perform quadrillions of numer-
ical operations per second for the most powerful of them. A supercomputer is hierar-
chical: it is composed of interconnected servers, containing interconnected processors.
Each processor is composed of several cores, a limited amount of memory, as well as
cables in order to interconnect all those components with the other servers. The cen-
tral memory of the machine and the main storage capacities are hard-drives located
in separated boxes. Such an internal organization implies a really complex and dense
interconnection network.

Nowadays, most scientific fields need supercomputers to undertake their research. It
is the case of cosmology, physics, biology ,or chemistry. Recently, we observed a conver-
gence between Big Data/Machine Learning and HPC. Applications coming from these
emerging fields (for example, using Deep Learning frameworks) are becoming highly
compute-intensive. Hence, HPC facilities have emerged as an appropriate solution to
run such applications.

From the large variety of existing applications has risen a necessity for all supercom-
puters: they must be generic and compatible with all kinds of applications. Indeed, it
is hardly justified to design a machine that cost tens of millions of euros if only a few
applications are able to run on it. Actually, computing nodes also have a wide range
of variety, going from CPU to GPU with specific nodes designed to perform dedicated
computations. Each category of node is designed to perform very fast operations of a
given type (for example vector or matrix computation).

Supercomputers are used in a competitive environment. Indeed, multiple users si-
multaneously connect and request a set of computing resources to run their applica-
tions. This competition for resources is managed by the machine itself via a specific
program called scheduler. This program reviews, assigns, and maps the different user
requests. Each user asks for (that is, pay for the use of) access to the resources of the
supercomputer in order to run his application. These resources are, typically, a subset
of the available computational nodes with their associated features (memory and stor-
age to store/load data, etc). The user is granted access to some resources for a limited
amount of time. This means that the users need to estimate how many compute nodes
they want to request and for how long, which is often difficult to decide.

In this thesis, we provide solutions and strategies to tackle these issues. We propose
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mathematical models, scheduling algorithms, and resource partitioning strategies in
order to optimize high-throughput applications running on supercomputers. In this
work, we focus on two types of applications in the context of the convergence HPC/Big
Data: data-intensive and irregular (or stochastic) applications.

Data-intensive applications represent typical HPC frameworks. These applications
are made up of two main components. The first one is called simulation, a very
compute-intensive code that generates a tremendous amount of data by simulating a
physical or biological phenomenon. The second component is called analytics, during
which sub-routines post-process the simulation output to extract, generate, and save the
final result of the application. We propose to optimize these applications running on su-
percomputers by designing automatic resource partitioning and scheduling strategies
for both of its components. To do so, we use the well-known in situ paradigm that con-
sists in scheduling both components together in order to reduce the huge cost of saving
all simulation data on disks. While most of related works propose software solutions
for in situ processing, we propose to include into these solutions automatic resource
partitioning models and scheduling heuristics to improve the overall performance of in
situ applications.

Stochastic applications are applications for which the execution time depends on its
input, while in usual data-intensive applications the makespan of simulation and an-
alytics are not affected by such parameters. Stochastic jobs originate from Big Data or
Machine Learning workloads, whose performance is highly dependent on the charac-
teristics of input data. These applications have recently appeared on HPC platforms.
However, the uncertainty of their execution time remains a strong limitation when us-
ing supercomputers. Indeed, the user needs to estimate how long his job will have to be
executed by the machine, and enters this estimation as his/her first reservation value.
But if the job does not complete successfully within this first reservation, the user will
have to resubmit the job, this time requiring a longer reservation. In the end, the total
cost for the user will be the overall cost of all the reservations that were necessary to
achieve the successful completion of the job. In this thesis, we propose to model the
execution time of such applications by a probability distribution and to use this knowl-
edge to derive an optimal reservation sequence. We also derive strategies including
checkpointing at the end of some (well-chosen) reservations, to avoid wasting the bene-
fits of failed reservations. Finally, we perform an in-depth profiling of such applications
and show that a good knowledge of applications is critical when one aims to design
cost-efficient strategies.

Keywords High Performance Computing, stochastic applications, data-intensive ap-
plications, in situ processing, scheduling algorithms, resource partitioning, reservation-
based scheduling, application profiling
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fût à mon grand regret très limité sur la troisième année...

Un grand merci à tous les membres de l’équipe TADaaM. J’ai eu la chance de cotoyer
des personnes bienveillantes venant d’horizon très différents. Merci à Emmanuel pour
la direction de l’équipe (et les messages supprimés sur Mattermost :P), à Guillaume
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Résumé étendu en français

Le calcul haute performance est un domaine scientifique dans lequel de très complexes
et intensifs calculs sont réalisés sur des infrastructures de calcul à très large échelle ap-
pelées supercalculateurs. De nombreux domaines scientifiques ont de nos jours recours
aux simulations numériques afin de modéliser, simuler et expliquer les phénomènes na-
turels parmi les plus complexes de notre monde. Les programmes exécutés par les su-
percalculateurs sont des applications scientifiques très sophistiquées qui requièrent une
puissance de calcul phénoménale afin de résoudre un problème d’intérêt sous-jacent.
Ces applications scientifiques ne peuvent être exécutées sur nos ordinateurs personnels
de par leurs énormes besoins à la fois en termes de ressources de calcul mais aussi de
consommation mémoire. Par exemple, certaines simulations de cosmologie visent à
étudier les propriétés physiques de la matière noire, qui serait une des clés pour mieux
appréhender le fonctionnement de notre univers. Ces simulations nécessitent de re-
produire des environnements dans lequels des trillions de particules interagissent entre
elles.

Les supercalculateurs sont aujourd’hui devenus un outil central pour de très nom-
breux domaines scientifiques tels que la physique, la chimie, la biologie, les sciences de
la terre ou la cosmologie. De ce fait, une très grande variété d’applications sont exé-
cutées sur les supercalculateurs, chacune ayant ses propres propriétés et contraintes.
À ce large spectre d’applications se sont récemment ajoutés de nouveaux programmes
provenant de domaines connexes au calcul haute performance tels que le BigData, qui
propose des solutions pour le traitement de données massives, ainsi que l’intelligence
artificielle. En effet, les besoins en calcul de ces domaines sont devenus si élevés
que seules les infrastructures à grand échelle proposées par le calcul haute perfor-
mance peuvent satisfaire ces demandes. En particulier, l’apprentissage profond re-
quiert d’entraı̂ner et traiter d’énormes quantités de données afin d’instancier les mod-
èles prédictifs des réseaux de neurones. Ainsi, nous assistons depuis quelques années
à une convergence entre le calcul haute performance et les domaines du BigData et de
l’intelligence artificielle.

Cette très grande diversité d’applications soulève une importante nécessité pour les
supercalculateurs: ils doivent être génériques et compatibles avec le plus grand spec-
tre possible d’applications. En effet, il est difficilement concevable de construire une
infrastructure de calcul pour un coût de plusieurs dizaines de millions d’euros si seule-
ment un petit nombre d’applications peut en bénéficier. Afin d’offrir cette flexibilité,
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les supercalculateurs se sont équipés d’un large éventail de nœuds de calcul, allant
du processeur aux cartes graphiques en passant par les accélérateurs. Chaque type de
ressource de calcul est optimisé pour certaines opérations calculatoires. Par exemple, les
processeurs graphiques sont reconnus pour leurs performances dans le calcul matriciel.

Ainsi, les supercalculateurs sont des machines de calcul ayant une architecture
très complexe. Ces machines sont organisées en boı̂tes hiérarchiques interconnectées.
Chaque boı̂te contient des unités de calcul. Les processeurs, unité de calcul la plus ré-
pandue, contiennent différents cœurs de calcul ainsi qu’une quantité restreinte de mé-
moire volatile utilisée pour stocker de manière temporaire les données de calcul. Un
supercalculateur contient aussi une mémoire centrale persistente, également centralisée
dans une boı̂te, et composée de disques durs sur lesquels peuvent être sauvegardées
des données de manière pérenne. Enfin, un réseau de communication performant as-
sure la connexion entre les différents éléments d’une même boı̂te ainsi qu’un accès vers
les autres composants du supercalculateur. Une telle organisation génère un réseau de
communication très dense et complexe. De par le nombre de processeurs présents dans
les supercalculateurs, ceux-ci sont capables d’effectuer jusqu’à 1015 opérations arith-
métiques par seconde pour les plus puissants d’entre eux au moment de l’écriture de
cette thèse. Cette puissance calculatoire phénoménale permet aux supercalculateurs de
générer un flot de données gigantesque qu’il est aujourd’hui difficile d’appréhender,
que ce soit d’un point de vue du stockage en mémoire que de l’extraction des résultats
les plus importants pour les applications.

Au delà de leur architecture complexe, les supercalculateurs sont aussi un environ-
nement très compétitif lorsqu’il s’agit d’accéder à leurs ressources. En effet, de nom-
breux utilisateurs peuvent simultanément se connecter à la machine et réserver un en-
semble de ressources de calcul pour exécuter leurs applications. Afin d’avoir un accès
à la machine, les utilisateurs doivent auparavant effectuer une procédure de demande
d’accès aux administrateurs du supercalculateur en motivant leur besoin en calcul. Sou-
vent, cet accès est garanti pour la soumission d’un projet scientifique démontrant le
besoin de la machine pour son accomplissement. La compétition pour les ressources
de la machine est gérée au niveau de la machine elle-même, par un programme com-
plexe et sophistiqué appelé ordonnanceur. Ce programme est en charge de recevoir les
différentes requêtes des utilisateurs, de les arbitrer et de faire en sorte de couvrir simul-
tanément le plus possible de requêtes utilisateurs avec les ressources physiques de la
machine. Chaque utilisateur envoie une demande en nombre de ressources de calcul
à l’ordonnanceur (concrètement, l’utilisateur paye pour l’utilisation de ces ressources)
pour une durée déterminée, afin d’exécuter son application. Typiquement, l’utilisateur
demande l’accès à un sous-ensemble des ressources de calcul disponibles sur la machine
(processeurs, processeurs graphiques, accélérateurs) avec leurs fonctionnalités associées
(accès à leur mémoire locale et aux disques durs). L’utilisateur peut alors se voir affecter
ces ressources pour un temps prédéfini, indiqué à l’ordonnanceur lors de la requête
initiale. Cela signifie que les utilisateurs doivent être en mesure d’estimer assez précisé-
ment la quantité de nœuds de calcul dont ils ont besoin, mais aussi pour combien de
temps ces ressources leur seront affectées. Avec ces différentes requêtes, l’ordonnanceur
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construit alors un ordonnancement des différentes applications, et se charge de dis-
tribuer les ressources aux utilisateurs en fonction de cet ordonnancement. Ce pro-
cessus est itéré de manière dynamique, avec une réévaluation de l’ordonnancement à
chaque nouvel évènement (complétion d’une réservation, nouvelle requête etc). Les re-
quêtes en attente de traitement sont placées dans une ou plusieurs files d’attente de
l’ordonnanceur, chacune ayant une évaluation propre de la priorité à donner aux re-
quêtes. Ainsi, l’objectif de l’ordonnanceur est évidemment de maximiser l’utilisation
de toutes les ressources de calcul afin d’optimiser le rendement de la machine tout en
guarantissant une équité maximale entre les utilisateurs.

Dans le cadre de la convergence entre le calcul haute performance et les domaines
avec des besoins en calcul grandissant, une grande diversité d’applications doit être
traitée par les ordonnanceurs des supercalculateurs, provenant d’utilisateurs de dif-
férents horizons pour qui il n’est pas toujours aisé de comprendre le fonctionnement
de ces infrastructures pour le calcul distribué. Or, l’estimation du besoin en ressources
de calcul des applications est fondamental pour la performance à la fois des applica-
tions des utilisateurs mais aussi des machines elles-mêmes. Prenons l’exemple d’un
utilisateur qui surestime le temps de réservation nécessaire pour l’exécution de son
application. Cette dernière se termine donc avant la durée totale de réservation des
ressources. Dans ce cas, ces ressources sont libérées au profit d’autres utilisateurs. De
ce fait, l’ordonnanceur de la machine se retrouve avec un trou au milieu de son ordon-
nancement, qu’il va essayer de combler en sélectionnant des requêtes d’utilisateurs dans
ses files d’attente. Ce processus, appelé backfilling, ne suffit souvent pas à combler les
différents vides laissés par les surestimations du temps d’exécution des applications.
Quant à l’utilisateur, le coût associé à sa réservation est plus élevé que ce qu’il aurait
pu payer avec une réservation plus proche de la réalité des besoins de son application.
Dans le cas contraire d’une sous-estimation (temps d’exécution de l’application plus
long que la durée de réservation des ressources), les conséquences pour l’utilisateur
sont importantes car son application est brutalement interrompue à la fin de la réser-
vation. Cet arrêt soudain de l’application peut engendrer la perte du progrès réalisé
durant la réservation si l’utilisateur n’a pas prévu de sauvegarde de ses données au
cours de l’exécution. De fait, cette réservation est perdue à la fois pour l’utilisateur qui
aura payé une réservation qui ne lui aura pas été bénéfique, et pour la machine qui n’a
pas utilisé une partie de ses ressources pour effectuer des calculs utiles. Les exemples
précédents démontrent à quel point l’estimation de la durée des réservations est im-
portante pour optimiser le fonctionnement des supercalculateurs, ainsi que limiter le
coût des réservations pour les utilisateurs. Ainsi, ces utilisateurs doivent réaliser des
réservations les plus représentatives possibles des besoins réels de leurs applications,
qui peuvent être difficiles à estimer en pratique.

Dans cette thèse, nous exposons des solutions d’ordonnancement et de partition-
nement de ressources pour résoudre ces problématiques. Pour ce faire, nous proposons
une approche basée sur des modèles mathématiques qui permet d’obtenir des solutions
avec de fortes garanties théoriques de leur performance.

Dans ce manuscrit, nous nous focalisons sur deux catégories d’applications qui
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s’inscrivent en droite ligne avec la convergence entre le calcul haute performance et le
BigData: les applications intensives en données et les applications à temps d’exécution
stochastique.

Les applications intensives en données représentent les applications typiques du do-
maine du calcul haute performance. Ces applications sont classiquement décomposées
en deux parties. La première est appelée simulation, et se présente comme un code
calculatoirement très intensif qui s’exécute en parallèle sur de nombreuses ressources
de calcul. Ce code est développé afin d’étudier et reproduire des phénomènes issus
du monde réel provenant des domaines scientifiques mentionnés au début de ce ré-
sumé. De par le nombre important de ressources de calcul sur lesquelles elle s’exécute,
la simulation est capable de génèrer d’énormes volumes de données. La deuxième
partie de l’application est appelée analyse. Pendant cette phase, des sous-routines
réalisent un post-traitement des données de la simulation. Ainsi, l’analyse des don-
nées permet de réaliser des opérations d’extraction, de génération de statistiques ou
de sauvegarde des données. L’analyse est une partie très importante de l’application
qui permet à la fois de vérifier l’intégrité des données mais aussi de générer le résul-
tat final de l’application. De manière générale, l’analyse est également employée pour
effectuer des opérations de visualisation du problème sous-jacent tout au long de la
simulation afin de permettre à l’utilisateur de bénéficier d’un affichage interactif du
progrès de l’application, voire d’influer sur son exécution. Dans cette thèse, nous pro-
posons d’optimiser cette catégorie d’applications exécutées sur des supercalculateurs en
exposant des méthodes automatiques de partitionnement de ressources ainsi que des al-
gorithmes d’ordonnancement pour les différentes phases de ces applications. Pour ce
faire, nous utilisons le paradigme in situ, devenu à ce jour une référence pour ces ap-
plications. Le principe de ce paradigme est de coupler l’analyse à la simulation afin
de post-traiter les données directement sur les nœuds de simulation où elles sont pro-
duites. Cela évite le stockage en mémoire de l’ensemble des données de simulation
pour les traiter une fois la simulation terminée. Avec les énormes volumes de don-
nées générés par la simulation, cette étape de stockage est aujourd’hui rédhibitoire
du fait des performances très variables des opérations d’accès aux disques, ainsi que
de la taille exponentielle des volumes de données à stocker. De nombreux travaux se
sont attachés à proposer des solutions logicielles pour mettre en pratique ce paradigme
pour les applications. Néanmoins, peu de travaux ont étudié comment partager ef-
ficacement les ressources de calcul entre la simulation et l’analyse afin d’optimiser
le temps d’exécution des applications. Nous proposons dans la première partie de
cette thèse des stratégies de partitionnement de ressources associées à des algorithmes
d’ordonnancement des différentes analyses afin de les coupler avec la simulation.

Les applications stochastiques constituent la deuxième catégorie d’applications que
nous étudions dans cette thèse. Ces applications ont un profil différent de celles de la
première partie de ce manuscrit. En effet, contrairement aux applications de simulation
numérique, ces applications présentent de fortes variations de leur temps d’exécution
en fonction des carastéristiques du jeu de données fourni en entrée. Cela est dû à leur
structure interne composée d’une succession de fonctions, qui diffère des blocs de code
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massifs composant les applications intensive en données. Les applications stochastiques
émergent de domaines tels que l’intelligence artificielle ou le Big Data. L’incertitude au-
tour de leur temps d’exécution est une contrainte très forte pour lancer ces applications
sur les supercalculateurs, comme mentionné ci-avant dans ce résumé. Afin d’exécuter
ces applications, un utilisateur doit réaliser une première réservation dont il doit es-
timer la durée. Si l’application n’a pas pu se terminer pendant cette réservation, alors
cet utilisateur devra réaliser une seconde réservation d’une durée supérieure à la pre-
mière. Ce processus devra être répété jusqu’au succès de l’application. Au final, le
coût pour l’utilisateur sera la somme des coûts de chaque réservation ainsi réalisée.
Dans cette thèse, nous proposons une approche novatrice pour aider les utilisateurs de
ce type d’application à calculer une séquence de réservations optimale qui minimise
l’espérance du coût total de toutes les réservations. Pour ce faire, nous proposons une
modélisation mathématique rigoureuse de ces applications en représentant leur temps
d’exécution par une distribution de probabilité. Par la suite, nous utilisons les propriétés
mathématiques de cette distribution afin de calculer une séquence optimale de réserva-
tions. Ces solutions sont par la suite étendues à un modèle d’applications avec points
de sauvegarde à la fin de (certaines) réservations afin d’éviter de perdre le travail réalisé
lors des réservations trop courtes. Enfin, nous proposons un profiling d’une application
stochastique issue du domaine des neurosciences afin de mieux comprendre les pro-
priétés de sa stochasticité. À travers cette étude, nous montrons qu’il est fondamental
de bien connaı̂tre les caractéristiques des applications pour qui souhaite élaborer des
stratégies efficaces du point de vue de l’utilisateur.
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Introduction

High Performance Computing (HPC) refers to the performance of complex and
heavy computations on large-scale computers called supercomputers. The programs
that are executed on such machines are called applications. Each application aims at
solving, simulating, or modeling complex phenomena that a simple computer would
not be able to handle due to the complexity and size of the target problem. For instance,
cosmological simulations aiming at understanding the physical behavior of dark energy
and dark matter requires simulating environments involving trillions of particles [69].
To do so, these simulations require storage and computing capacities that no personal
computers could possibly offer. Simulations are really complex programs, often com-
posed of sub-tasks that are processed in a very specific order with strong dependencies
on one another. An application can be compared to a cooking recipe: the cake repre-
sents the target result, while the different steps of the recipe corresponds to the different
sub-routines of the application that need to be performed in order to get the final result.

Nowadays, most scientific fields need supercomputers to undertake their research.
It is the case of cosmology, physics, biology or chemistry. From the large variety of ex-
isting applications has risen a necessity for all supercomputers: they must be generic
and compatible with all kinds of applications. Indeed, it is hardly justified to design a
machine that cost tens of millions of euros1 if only a few applications are able to run on
it. To offer this universality, many software runtimes and libraries are designed to offer
a wide range of flexibility in terms of applications. This set of software is called a soft-
ware stack because it offers services at many different levels of the program execution
(for instance within the application itself or to ease interactions between programs and
machine).

From megascale to exascale computers...

Most countries or companies involved in HPC research have developed more and more
powerful supercomputers through years, following the breakthrough in hardware de-
sign and the new computational needs due to the progress of scientific research and the
industrial evolution. The TOP500 [4] is a statistical ranking showing the characteristics
and performance of the 500 most powerful machines in the world. The performance of
such machines are evaluated thanks to the LINPACK benchmark2, which resolves a sys-
tem of linear equations. Machine performance are assessed by determining how many
FLoating-Point Operations Per Seconds (FLOPS) it is able to perform. As of June 2020,
the most powerful supercomputers are nowadays able to reach around 400 petaFLOPS
(400× 1015 FLOPS) in terms of computation power, which equates to assembling tens of
millions of laptops together.

Over the past years, supercomputers have become extremely powerful in terms of
computational power. Let us provide a brief historical background and summary of

1The cost of Aurora, the first exascale machine to be developed at Argonne National Laboratory is
estimated to more than $500M [5].

2https://www.top500.org/project/linpack/
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From megascale to exascale computers...

Figure 1: Supercomputer Cray-1 (photo credits from https://www.cray.com)

evolution of supercomputers. The first supercomputer was the Cray-1, illustrated in
Figure 1. It was designed by Cray company in the 70s. Up to now, it remains the most
successful supercomputer of history, with more than 80 machines sold. It is the first
computer to be made up of several boxes and linked together with wires arranged into
a ring. The idea of separating the computer into modules came from the difficulty of
adding more and more components to a single module, making the architecture too
complex. The Cray-1 computer was able to reach 160 megaFLOPS (that is, 160 millions
operations per second) at peak performance. During the 90s, hardware enhancements
allowed supercomputers to be built with thousands of processors organized into clus-
ters. In 1997, the supercomputer Intel ASCI Red/9152 from DoE Sandia National Labo-
ratory (USA) was the first computer ranked in the TOP500 with teraFLOPS computing
power. From then on, the era of modern supercomputers starts and the power of super-
computers keeps increasing to reach petascale, and soon exascale with machines such as
Frontier [7] or Aurora [6] in 2021 (which is expected to propose more than 1.5 exaFLOPS,
or 1.5 trillion FLOPS).

In 2012, for the first time in history, a supercomputer (the Sequoia machine at the
Lawrence Livermore National Laboratory, USA) reached a million cores according to
TOP500 ranking. The cores are the most basic compute units of supercomputers. Hence,
the quantity of cores is a good metric to evaluate the degree of parallelism associated
to a machine. As of August 2013, the top five supercomputers all feature more than
500,000 cores.

Figure 2 shows the evolution of machine peak performance (Figure 2a), the number
of cores (Figure 2b) and the total power (Figure 2c) of the machine ranked first at Top500
from 2007 to June 2020, date of the last update of the ranking at the time this manuscript
is released. We can see that, in this period, the performance peak has been multiplied
by 330, while the machines have multiplied their number of cores by a factor 10. These
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Figure 2: Evolution of the machine ranked 1st in TOP500 for some selected features.
Data are extracted from November 2007 to June 2020.
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From megascale to exascale computers...

figures show all the progress that has been done in terms of hardware performance.
Following this trend, the energy needs of these machines have become quite significant.
This is not only due to the multiplication of hardware components, but also to the ne-
cessity of cooling the whole system. Altogether, these growing energy requirements
lead to a higher energy consumption. For instance, the Frontier exascale supercomputer
is expected to have a power consumption in the range of 30 MW [7], which represents
the energy consumption of 24,000 households according to the U.S. Energy Information
Administration [10]. In addition to the energy cost, maintenance is also a major criteria
since it is necessary to be able to maintain and repair hardware components. Several
other costs have to be envisioned too, such as staffing or software licences. Altogether,
supercomputers represent at the same time a major tool for scientists to solve their prob-
lems and an important cost for the structure that hosts them.

Just like our personal computers, supercomputers all rely on the Von Neumann ar-
chitecture [145]. In essence, this model describes the programs running on a computer
as a sequence of instructions that are processed by a process unit and managed by a
control unit. The programs are loaded into the memory of the machine, which can also
be accessed by the programs to store data. However, supercomputer’s design is more
specific because it should be able to manage millions of process units at the same time.
To do so, supercomputers have a hierarchical layout.

Indeed, a supercomputer is composed of boxes nested in each other. Figure 3 illus-
trates the architecture of a supercomputer. The basic box is the process unit (Figure 3a).
It is the component that allows the machine to perform basic arithmetic and control-
ling operations. Different types of units can be found depending on the computations
that they have been optimized to perform. Among classical examples are the Central
Processing Unit (CPU), the Graphical Processing Unit (GPU), or accelerators. Several of
these units (of the same type) are assembled together on a compute card (Figure 3b).
Then, compute cards are interconnected into a node board, and all node boards are
then assembled together into a rack (Figure 3c). Then, racks are linked together into
a cabinet (Figure 3d). Finally, several cabinets are connected to each other to form a
supercomputer. Figure 3e shows the supercomputer Mare Nostrum 2 of the Barcelona
Supercomputing Center.

To put in a nutshell, a supercomputer is a set of hierarchical boxes, all interconnected
with each others at different levels of the hierarchy. According to the Von Neumann
infrastructure, memory is also a fundamental feature of supercomputers. The central
persistent memory of the machine, called Parallel File System (PFS), is the biggest vol-
ume where each user has a dedicated storage space. Each memory volume is accessed
by a communication bus that processes the writing and reading of memory instruc-
tions, called Input/Output operation (I/O) operations. Each communication bus has a
limited traffic capacity that we call bandwidth. Alongside the PFS, memory spaces are
available for users at each level of the machine hierarchy. These units can be accessed by
the user programs running on the machine. Recently, some near-node persistent storage
are also available in supercomputer infrastructures [7] to offer the users the possibility
to manage their data with flexibility. For instance, data with high frequency access can
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(a) Process Unit (b) Compute Card

(c) Node Board (d) Cabinet (or rack)

(e) Supercomputer

Figure 3: Structure of supercomputers: a set of interconnected hierarchical boxes.
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... that applications need to accommodate

be persistently stored in disks that are close to compute nodes in order to guarantee fast
I/O operations.

In brief, supercomputers are infrastructures with a complex hardware layout. They
require huge pecuniary investments in order to build them, and then maintain them
over their lifetime.

... that applications need to accommodate

Usually, scientific applications are based on models of real-life phenomena (for instance,
physics models). Because it is difficult to study these problems in laboratory conditions
(either due to the impossibility to create a proper environment or its huge financial
cost), models of these phenomena tend to be implemented into sophisticated computer
programs that are designed to reach an important degree of parallelism in their codes
in order to increase computational performance. This specific code structure makes
large-scale machines the natural candidates to host such programs.

Figure 4: Illustration of molecular dynamics for proteins using Gromacs [3] software.

We already mentioned cosmological simulations that simulate environments with
trillions of particles. Other domains, such as molecular dynamics, also use supercom-
puters to simulate proteins folding and unfolding. Figure 4 presents an example of a
protein folding simulation using Gromacs package [3]. This type of computation re-
quires several processes running in parallel with synchronization in order to generate
this output. To do so, application developers make the use of most of the functionalities
offered by the software stack. Some of these solutions are now widely used in most
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of HPC facilities. For instance, the Message Passing Interface (MPI) is the de facto stan-
dard that defines routines to perform communications in between processes of the same
program running in parallel on allocated cores and nodes.

With modern architectures, scientific workflows generate a tremendous amount of
data. Indeed, simulation codes have become rather sophisticated and tend to generate
huge quantities of data, which are analyzed in a second phase in order to extract the
desired results. For instance, a run of Hardware/Hybrid Accelerated Cosmology Code
(HACC) [69], a cosmological toolkit, generates PetaBytes (PB) of data when Summit,
ranked first at Top500 in 2019, has 250 PB of file system capacity. Such amount of data is
complex to store on the PFS, not only because of its total volume, but also because of the
bottleneck that represents the limited bandwidth of the communication bus. Between
November 2010 and November 2020, the machine ranked first of the Top500 ranking
saw its central storage capacity increased by a factor 253, while the interconnect speed
only increased by less than a factor 24. Hence, the growth factor of the speed of the
interconnect is much smaller than the one of the storage capacity. While more and more
storage capacity tends to be proposed, the performance ratio between the total capacity
of the disks and the speed of access to it rather tends to deteriorate.

Basically, all data generated by an application are stored on the disks to be post-
processed in a second phase. However, the limited traffic speed to access the disks had
become a major restriction to the performance of the applications. Facing this pressure
over the access to data storage, application users and developers have been forced to
rethink the data life cycle. Therefore, data management has become a major concern for
them over the last years. Users must extract or transform data so that the final volume
to be saved on disk is as compact as possible. This fact has forced the HPC community
to widen its perspective and explore solutions coming from other scientific fields.

... coming from different domains

Simultaneously, other domains face a dramatic increase of their computational needs.
Artificial Intelligence (AI) and BigData are one of the best examples of this rise. For
instance, Machine Learning, in particular Deep Learning, has an important computa-
tional power need. Indeed, important efforts of parallelization have been made in the
training phase so that the networks are trained over bigger and bigger datasets. As a
reason, Deep Learning users start to target HPC infrastructures to execute their appli-
cations. Moreover, those improvements have convinced some HPC users to include AI
techniques in their applications. This integration is done at different levels of applica-
tion, going from data pre-fetching to enhancement of computational load distribution
and for else output analysis. BigData field brings expertise in data management and

3Jaguar [8] supercomputer proposed a 10PB size for the PFS, while Summit [9] has 250PB capacity.
4Single link capacity for Jaguar [8] had a maximum peak performance of 57.6 GBytes per second while

the specifications of Summit [9] indicate 100 GBytes per second
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HPC Big data

Amounf of data

Application Pipeline

Figure 5: Convergence between HPC and BigData

visualization for HPC applications. Recently, Big Data applications are using compute-
intensive procedures to perform data mining. Just like HPC application, this rise of
computational requirements is due to the usage of modern AI techniques.

Consequently, we observe a convergence between these different domains with each
are expecting to benefit from the others’ innovations to solve its own limitations. Fig-
ure 5 illustrates this convergence since in this example HPC is used to generate an im-
portant amount of data, that the BigData field is able to treat in a second phase. Subse-
quently, HPC benefits from the BigData’s expertise in data management, while BigData
can use HPC facilities to improve its solutions.

Altogether, from an HPC perspective, such a convergence implies that supercomput-
ers become the target for applications coming from many different fields, each having
their own communities and development processes. For instance, data analysis (called
analytics) is expected to become a full component of the HPC software stack. These ana-
lytics procedures directly come from BigData frameworks that process massive amounts
of data. Thus, HPC infrastructures have to manage all these applications possibly run-
ning at the same time, on different types of compute units with very different needs.
Some of these emerging applications feature a profile which is quite different from the
one of the classical HPC applications. This implies that HPC infrastructures should not
only be flexible in terms of hardware solutions, but also in terms of software offering.

Applications are executed on supercomputers by users who have been granted ac-
cess to the machine. This access is usually provided after submission of a research
project that demands a computational support. Candidate projects indicate a desired
budget of computations (in cores × hours). Typically, if one has a total budget of 100
cores × hours, it means that it is possible to compute 100 hours on a single core. If with
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the same budget one books two cores of the machine, the total computation duration
will be 50 hours. As a matter of fact, this time budget represents the financial cost as-
sociated to the total core per hours granted on the machine. In the end, the scientific
board of the infrastructure reviews the submissions and either accepts or rejects user’s
access requests. We depict in Figure 6 a schematic representation of the organization of
a large-scale infrastructure.

I/O

I/O

I/O

Compute nodes

I/O

Scheduler

Users

Fr
on

t-
en

d
no

de
s

PFS

Figure 6: Representation of a typical large-scale infrastructure. Users access the machine
by the front-end nodes and perform submissions to the scheduler. Access to PFS is one
of the major bottleneck for performance due to limited capacities of the storage network
compared to the dimension of the resources available for computations.

Once the access is granted, users can run their programs by booking a subset of the
computational resources of the machine for a defined duration. However, hundreds of
users may want to start a program at the same time. As the resources of the machine are
finite, it is not possible to allow a set of requests with a total number of resources greater
than the machine’s capacity. Hence, it is necessary to referee all the different demands.
This arbitration process is performed by a very complex program called scheduler. At
any time, the scheduler maps the requests (or jobs) of users basing on the resource
availability of the system.

The scheduler’s performance is fundamental in supercomputer operations. It guar-
antees fairness between users: a user should not wait infinitely before his request is
actually allocated on the machine. In addition to fairness, scheduler must maximize
system utilization at any time. Indeed, any compute unit that is not being dedicated to
a request is costly for the infrastructure since it still runs at minima (waiting for instruc-

Managing the Diversity of Application Profiles on HPC Facilities 19



Issue in question

tions to process) without any user covering the expenses.
In the same fashion as there is a competition for compute units, users get caught

up in a critical struggle for memory access. Indeed, we previously mentioned that the
communication bus has a limited traffic bandwidth. When several applications are run-
ning at the same time on the machine, many I/O operations to access the PFS have to
be processed in parallel of each others, which creates contention due to the finite nature
of the bandwidth. Therefore, I/O bandwidth needs to be shared between several users.
In Figure 6, we clearly see a difference of dimension between the number of resources
available to perform computations and the size of the network to access the PFS. Even
though some nodes are dedicated to perform I/O operations, their number is in fact in-
sufficient in comparison with the needs of the different machine users, hence generating
a bottleneck in the system. Moreover, I/O operations are often blocking for programs.
It implies that, until the operations succeed, the application is waiting and does not
perform any more computations. Consequently, I/O operations can slow down appli-
cations and directly impact their performance.

Altogether, supercomputers form a very competitive environment for users. Users
send requests to access the resources of the machine, requests that are managed by the
scheduler. Possibly, jobs can wait in the queue of the scheduler before being actually
processed on the machine. From a user perspective, the objective is to see one’s requests
running in the machine as early as possible, which entails minimizing the time spent in
the scheduler queue. From a system administrator perspective, the objective is to max-
imize the resource utilization of the machine. If all the compute units are constantly
allocated to particular jobs, then the machine is fully profitable. Given the above, users
and system administrators have different goals and expectations with regards to a su-
percomputer infrastructure.

Issue in question

In this introduction, we presented the main features of modern HPC facilities. Super-
computers offer a huge computational capacity at the cost of a complex architecture.
Also, users are running their programs concurrently on the machine. This leads to a
competition for resources (for instance, disk bandwidth) that can significantly degrade
application performance.

On the one hand, there are users with a wide range of applications developed by dif-
ferent communities (AI, physics, etc). On the other hand, we have supercomputers that
offer solutions to execute those applications. These solutions are twofold: high flex-
ibility in hardware components (CPU, GPU, accelerators) and specific tools provided
by software stack. However, due to their quite complex architectures, application de-
velopers and users must be able determine the needs of the applications in terms of
compute nodes and memory. These decisions can either be performed statically before
starting the application or evaluated dynamically during its execution. The mapping
of application needs onto machine features is often difficult because of the complexity
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of the applications, which function by following several steps that are either parallel or
sequential. For example, sequential applications require only one compute core, while
parallel applications can benefit from several resources. In the case of sequential ap-
plications, assigning multiple nodes to the performance of this application is a waste of
resources, since such application will only be using a single core. As a result, users must
have an idea of the profile of their applications, that is to say of the different needs in
terms of resources that will be required by the programs during their execution.

Therefore, the central question of this thesis is as follows: how to optimize various
application profiles on HPC infrastructures? A natural answer to this question is to
accurately estimate the needs of the different applications. With a good knowledge of
one’s application, one can efficiently map computational needs and machine features.
This theory forms the core of the research carried out in this thesis.

Our approach consists in using mathematical models of the applications running on
HPC facilities. By doing so, we aim at estimating application needs, both in terms of
computational resources and memory. In addition to application models, we propose
flexible platform abstractions through expressive models of HPC facilities.

Since the applications running on supercomputers belong to many different scien-
tific domains, their profile can be very different. For this reason, creating a generic
model for all applications is a difficult task. To solve this issue, we propose to categorize
applications by batching those that share common features. Then, for each category,
we propose dedicated solutions in order to optimize each type of applications for HPC
infrastructures.

Modeling application behavior requires a good knowledge of its workflow. Relevant
informations regarding applications and their functioning can be directly provided by
program developers or even by users through their past experience in the use of the
programs in question. Another possibility is to directly study the application’s behavior
by performing tests and runs in order to build a profile of its features.

The advantage of our approach is that our solutions are designed to be applicable to
all applications of a same category. Likewise, our solutions are valid for many different
uses of the applications, without consideration of the nature of the input or of the scien-
tific problem to be solved. Indeed, scientific codes often present many parameters that
are used during the computation of the problem under study. By providing a generic
model of the applications, we provide users with solutions that apply for a large scope
of possible parameterization of applications.

Nevertheless, this approach features a few inherent drawbacks. One of them is the
difficulty to model an exact behavior of the programs running on HPC facilities. As
we previously discussed, supercomputers are very competitive environments that are
constantly evolving depending on the applications currently running on the machine.
For instance, the effects of I/O contention are very difficult to perceive, and even more
difficult to foresee. Besides, hardware and system components variability is inevitable
on large-scale machines. However, we believe that our models do not need to take all
the specificities of applications and platforms into account in order to be efficient. They
are tools that users can use to optimize the usage of the platform with their applications.
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Moreover, models remain flexible tools that can always be enhanced, parameterized and
adapted to a very wide range of use cases.

In this thesis, we propose solutions to optimize the performance of two different
types of applications on large-scale machines :

Data-Intensive Applications: This category of applications includes many classical
HPC workflows. Such applications are designed to run on a large scale, with
possibly thousands of compute units. These applications are stable in terms of
memory and computational needs, whatever parameters are entered. This means
that for a given application, we can accurately estimate both the overall duration
of the computations and their memory requirements. Another central feature is
the date-intensivity they create. As we already mentioned, data management is
critical in HPC systems and represents one of the major issues of this type of
application. In this manuscript, we propose to use the paradigm called in situ,
which consists in post-processing data directly where they are produced, in or-
der to avoid the storage of the full set of data. The final volume to be written on
disks is in that case very limited since it will only consist in the meaningful results
generated by the application workflow. As they are stable in terms of resource
requirements, we provide models to distribute the different tasks to the machine
resources so that the execution of the application is minimized in time. The study
of these applications constitutes the core of the first part of this manuscript.

Stochastic Applications: This new generation of applications arise from emerging
fields using HPC facilities such as AI and neuroscience. Contrary to data-intensive
applications, and because of the AI frameworks they use, these applications are
input-sensitive. Indeed, they show important variations in terms of execution time
(called walltime), depending on the input. Originally developed for local clusters,
these applications have begun to target the computational power of supercom-
puters. However, the variation of resource needs is a major difficulty when one
wants to run such programs on HPC facilities. Indeed, a user must provide a dura-
tion when he requests resources from the machine. With unpredictable variations
of several hours, coming up with an estimation is difficult. An overestimation
leads to a waste of resources, coupled with important expenses for the users. Con-
versely, underestimating the duration means that the applications will be stopped
in the middle of its computation because the actual duration of the execution is
greater than the one conveyed to the scheduler. The second part of this manuscript
provides some important contributions aiming to determine reservation strategies
that such applications could use. While the walltime variations can be important,
we assume that these variations obey a known probability distribution that could
be determined based on the previous runs of the application.
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Let us now introduce the organization of this manuscript.
Part I contains our contributions to the issue of managing data-intensive applica-

tions on large-scale facilities. Chapter 1 introduces the scientific context of the topic
under study. Chapter 2 proposes a review of the related work related dealing with the
management of such applications on HPC facilities and with the in situ paradigm that
we will use in this work to process such applications. Chapters 3 to 5 are dedicated to
the presentation of all the solutions that we suggest to the problem under study together
with an evaluation of our strategies. Finally, Chapter 6 concludes this first part of the
manuscript and proposes some short-term perspectives for the presented contributions.

Part II hinges upon the study of stochastic applications. Chapter 7 introduces the
inherent problems induced when managing such applications on HPC facilities by ex-
posing our high-level observations based on the study of a representative application.
Chapter 8 discusses some related work, while Chapters 9 to 10 describe reservation
strategies that leverage the constant uncertainty about the execution time of this cate-
gory of applications. Chapter 11 centers upon the performance evaluation of the dif-
ferent strategies in comparison with state-of-the-art approaches. Finally, Chapter 12
proposes to move one step further in the study of these applications since it features an
in-depth profiling of a neuroscience stochastic application. We then demonstrate that
a good knowledge of these applications is crucial to design and achieve cost-efficient
strategies. Finally, Chapter 13 contains a summary of all contributions of this second
part of the thesis.

This manuscript ends with a conclusion that summarizes the different contributions
that have been brought throughout this thesis and mentions the publications that they
were released in. We also propose ideas for mid-term to long-term future works that
would allow to develop the different solutions described in this document.

Different appendices are also available in order to provide additional content when
necessary.
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Chapter 1

Introduction
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1.1 With high computing capacities come huge amounts
of data

Many scientific fields study complex phenomena happening in our environment with
the aim of better understanding them in order to answer various questions that have not
been answered yet. For instance, the formation of our galaxy is subject to many different
hypotheses that only the understanding of dark matter can clarify.

Most of the time, such studies are difficult to reproduce under laboratory condi-
tions. For instance, the dark matter experiments are extremely difficult to perform in
practice. Among the limitations are usually the overwhelming expenses they induce
and the physical impossibility of doing it.

To overcome these difficulties, scientists build representative and expressive models
that they use to perform physical or numerical simulations. Such experiments can vali-
date, deny, or give some hints about the correctness of a hypothesis. These simulations
are performed by using large-scale supercomputers.

Future supercomputer architectures are expected to reach a computing power in the
order of an exascale [6, 7], which means more than 1018 FLOPS. Such a tremendous
capacity would allow applications to solve extreme-scale scientific problems that have
not yet been solved due to machine limitations.

While computing power keeps rising, some other features of supercomputers are not
able to follow this trend. We already highlighted in the introduction to this manuscript
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the importance of data management. Moving data to the central memory of the machine
becomes more and more critical to maintain system performance. While the computing
capacities of machines are getting higher, the I/O capabilities of systems do not increase
as fast. From [15], the peak performance of machines has been multiplied by a factor 500
from petascale to exascale machines. However, the I/O capacities have been increased
by a factor ∼ 70 at best, and the I/O bandwidth by a factor only ∼ 30. This means
that we are able to generate more data but unable to manage them efficiently due to the
limited capacities of the I/O system, both in terms of access to memory spaces through
the bandwidth and of storage capacities. Not only the bandwidth is limited, but there
is also a large variability in I/O performance operations for applications. This is due
to the high competition for system resources between users concurrently running their
programs on the machine. Hence, several users may want to perform I/O operations at
the same time, thus requiring to share the bandwidth with each other.

Altogether, I/O operations are most of the time blocking, thus hindering the appli-
cations. Hence, the overall performance of the applications is impacted, and this con-
tention around I/O system has become critical for the performance of data-intensive
applications. It follows that data management is nowadays a crucial concern for HPC
applications running on supercomputers. This forces the HPC community to design so-
lutions to help manage the tremendous amount of data generated by the applications.

One of these solutions is to add new memory spaces close to the compute nodes that
are used as buffers. These buffers use persistent and fast storage technologies (for ex-
ample Solid-state Drive (SSD) or Non-volatile Random Access Memory (NVRAM)) so
that when a contention appears for a user, data are first stored on these local buffers. Af-
terwards, the application can continue its computation and maintain its performance.
Once contention on I/O system is reduced, the buffers are emptied onto the PFS. In
brief, this strategy allows users to reduce the impact of contention on application per-
formance.

However, this approach does not allow to handle the huge amounts of data released
at high frequency by data-intensive applications. As we previously explained, limited
traffic bandwidth from compute nodes to PFS slows down the application which must
then wait for all the data to be safely stored on PFS before starting a new iteration of
simulation. Under these circumstances, limiting the requests to the Parallel File System
(PFS) becomes necessary. To address this issue, new strategies are being developed
that rely on coupling simulation and analysis in order to solve the problem of storing
all simulation data. In the next section, we will describe this paradigm called in situ
processing.

1.2 Description of in situ processing

Let us first describe in more depth the organization of a typical data-intensive appli-
cation. HPC applications generally comprises two different phases. The first one is
called simulation. It is a compute-intensive phase that can be envisioned as a single
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task involving a huge monolithic block of code that generates a large amount of data.
The second one is the analysis (also called analytics), a data-intensive phase that con-
sists in processing the data generated in the previous phase. This second phase aims
at analyzing [106, 105, 31] or visualizing [56, 148, 75] data in order to extract insights
from the phenomenon under study. Analytics is composed of different functions that
we call analysis and considered as independent from one another. Simulation runs over
several iterations, and analytics is periodically used to process the data. Some of the
analysis functions can be run at each iteration of simulation, or after a predefined num-
ber of steps. In the end, analytics post-process the simulation data of iteration i when
simulation is performing iteration i + 1. This means that the very first iteration of the
application only runs the simulation, while the very last one only performs the analysis
of the last simulation iteration. In between, simulation and analytics run at the same
time. This system implies that the nodes are able to store the data of two iterations of
simulation: the current one and the previous one, which is being post-processed by an-
alytics. Overall, a data-intensive application is composed of many different tasks that
one can divide into two main phases.

To limit I/O operations and the associated overheads, in situ has become one of the
major paradigm to manage data-intensive applications. Its principle is to perform the
analytics and simulation on the same machine and at the same time, without relying on
intermediate files. Analysis is performed on-line, starting as soon as the data produced
by the simulation are available in the memory of the compute nodes. Only the out-
put of analysis functions is written to the PFS once all the analysis are finished. Thus,
simulation and analytics share the same computing resources. The challenge is then to
optimize resource allocation between the analysis and the simulation.

The in situ paradigm overcomes the limitations of this basic post-mortem data analysis
by taking advantage of data locality and processing the analysis of the data directly
where they are created. In essence, the in situ paradigm can be described as the fact of
coupling the simulation and the analytics stages on shared (or not) resources.

First of all, let us briefly describe the structure of a typical compute unit. We focus
here on CPU (also called processor or node), the basic brick of supercomputers as we
presented in the introduction of this manuscript. Figure 1.1 features a schematic rep-
resentation of an Intel Xeon E5-2680 v3 @ 2,5 GHz processor. It is composed of several
cores (24 in our case), which are the components that perform computations following
the VonNeumann architecture [145]. A processor also has memory spaces that can be
accessed by the cores during computation. The principle of these memory spaces is that
the closer to the core, the faster the access but the smaller the capacity.

Moreover, some spaces are shared between the cores (thus, possibly between users
on the same processor) while some are dedicated to specific cores. Each core can ac-
tually access dedicated memory spaces called L1 and L2 caches. These storages have a
limited capacity but can be accessed very fast by the cores. A third level of cache, L3, is
shared by all the cores, and offers a bigger storage capacity. Finally, each processor has
a non-persistent Random Access Memory (RAM) with quite an important storage ca-
pacity compared with the cache capacities (128GB for the whole processor in our case).
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This RAM memory is used to store computational data during the application process.
However, the RAM is not a persistent storage. Thus, users must transfer their data from
the local RAM of processors to the disks of the PFS in order to save them once the ap-
plication is finished.
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Figure 1.1: Features of a Haswell Intel Xeon E5-2680 v3 @ 2,5 GHz processor with 24
cores and 128GB of local memory represented by hwloc library [33]. Each cache level is
denoted as Ln, and are increasingly shared following the value of n. The cache levels Lni
are cache for instructions, while the ones with Lnd are for data. I/O operations outside
of the node are performed through Infiniband network.

Generally speaking, in situ processing aims at coupling simulation and analytics on
machine resources in order to directly post-process simulation data, only the final anal-
ysis results needing to be stored on a disk. We will now detail the different ways of
processing analytics alongside simulation on compute units. All these different possi-
bilities form the in situ paradigm.

Analytics are called in situ if they are running on some cores of a node whose other
cores are performing simulation. This principle is illustrated by Figure 1.2. In this ex-
ample, on a node composed of 8 cores in total, 6 cores are dedicated to simulation while
the last two are assigned to analytics. In such a configuration, the set of cores of the
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analytics are called helper cores. The advantage of this configuration is that the analytics
can locally access the simulation data on this node. Most of the time, only few cores
are diverted from simulation to prevent any major degradation of the simulation per-
formance. Moreover, simulation often has difficulties scaling efficiently on a many-core
approach. Hence, losing a few cores per nodes by removing them during the simula-
tion is inconsequential. In that case, the in situ analytics are a good way to process data
online. However, difficulties may appear such that negative interferences between the
two phases. For instance, if one helper core begins trashing the L3 cache, it may have a
dramatic effect on the performance of other cores.

S S S S

S S A A

S S S S

S S A A

S S S S

S S A A

S S S S

S S A A

Figure 1.2: in situ processing of analytics where simulation and analytics run in parallel
on 4 processors of 8 cores. Simulation runs on 6 cores while the analytics use the 2 other
cores of each node.

Another way of coupling simulation and analytics is to dedicate nodes to each of the
phases. This is named in transit processing. Figure 1.3 illustrates such situation. Sim-
ulation and analytics are coupled on separated nodes. In this setup, analytics benefits
from the full resources of its assigned nodes. These nodes are called staging nodes. In
this configuration, simulation and analytics run on separated resources, which prevents
any interference from happening between the two of them. However, the main differ-
ence is that staging nodes do not have simulation data in their local memory. Hence,
it is necessary to transfer the required data from the simulation nodes to the staging
nodes in order to post-process them. As we already discussed, I/O operations can face
contention that can impact the performance of the staging nodes.

Finally, in situ and in transit can be combined in a hybrid setup, as illustrated in
Figure 1.4. This is a flexible approach in which analytics that do not scale correctly can
be performed in situ, while the most compute-intensive of them that would interfere too
much with simulation can be exported towards staging nodes.

Figures 1.2, 1.3 and 1.4 assume that simulation and analytics run in parallel on their
assigned cores. This type of execution is called asynchronous processing. There is an-
other version called synchronous where simulation and analytics run by successive it-
erations on the in situ nodes. Simulation first runs on in situ nodes using all of their
cores. Then, the simulation is periodically stopped to perform the analytics on the same
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Figure 1.3: in transit processing of analytics, during which simulation and analytics run
in parallel on separated processors of 8 cores. Simulation runs on 8 cores and on 3
processors, and the analytics on 8 cores of one processor.

resources. Chapter 3 contains a modelization of both execution types and discusses the
main advantages and drawbacks of both schemes.
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Figure 1.4: Hybrid in transit/in situ processing of analytics on 4 processors of 8 cores.
Simulation runs on 6 cores and the in situ analytics on 2 helper cores of 3 in situ proces-
sors. in transit analytics are executed on a dedicated processor.

There are several software solutions [50, 53, 52] that allow users to specifically dedi-
cate nodes and cores to analytics and distribute the computation tasks over different sets
of nodes. Thus far, they rely on a manual resource partitioning and on the allocation by
the user of task requirements (simulation and analysis). This means that they require
an important human effort to efficiently match the application needs with the machine
resources. Moreover, this approach will not necessarily be appropriate for another one.

This part of the manuscript features several contributions to automate the arbitration
of resources between simulation and analytics. We propose a memory-constraint mod-
elization for in situ analytics. We use this model to provide different scheduling policies
and determine both the number of resources that should be dedicated to each analysis
function, and strategies to schedule efficiently these functions.
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1.3 Contributions

In this part, we propose to optimize data-intensive applications on supercomputers
through a theoretical approach. We first design flexible models of HPC infrastructures
and of the applications that are running on it. Secondly, we show the general appli-
cation pipeline that these models can express. From this, we formalize an optimization
problem and identify the critical resource arbitration and scheduling problems to which
we propose practical solutions. Finally, we evaluate our solutions through an intensive
set of simulations on synthetic applications.

Overall, we make the following contributions:

• We propose a general model for HPC applications, which will take into account
simulations and analysis functions as well as propose a model for the target ma-
chine, including multi-core architectures, memory limitations, and communica-
tion costs under bandwidth constraints. We use it to properly define the in situ al-
location problem.

• We use this model to derive new algorithms for the allocation and scheduling
problem. The algorithms are based on a theoretical analysis of the model followed
by greedy strategies. We also provide an optimal (non polynomial) solution which
will be used later to study our strategies.

• We evaluate these algorithms on synthetic applications. This evaluation allows us
to point out the key elements to take into account when scheduling in situ func-
tions.

We insist on the fact that the model that we study supports mixed strategies for the
analysis scheduling. The analysis can be performed on the same nodes that run the
simulation, either in sequence with the simulation execution or in overlap following a
time or space sharing strategy. These strategies are commonly referred as in situ. But
they can also be performed in transit, i.e. on nodes dedicated to the analysis and which
take into account the extra cost of the data transfer from the simulation nodes to these
staging nodes. Therefore, we believe that this work can be used for any data-intensive
application running on supercomputers.

Now that we have introduce the issue under study in this first half of the manuscript,
let us explain how we structured the rest of this part in order to resolve the issue of
resource management for data-intensive applications.

Chapter 2 introduces some related work about scheduling applications on HPC fa-
cilities. We also present data management techniques in HPC, so as the related work
about in situ paradigm for HPC applications.

In Chapter 3, we present the application and platform models for in situ processing.
The platform model includes task representation and communication model. Appli-
cation model formulates a general representation of the two phases of data-intensive
applications by describing a task with an execution time on a single core and a peak
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memory requirement. We also introduce the task performance model on shared re-
sources. Finally, we describe how to combine platform and application models in order
to describe the application pipeline in both synchronous or asynchronous execution.

Chapter 4 formulates the optimization problem that comes up when we try to mini-
mize the application processing time on HPC infrastructures. After enlarging upon this
issue and its states, we propose to solve this problem by decomposing it into two sub-
problems, each receiving a proper solution. The first sub-problem consists in determin-
ing the nodes and cores partitioning between simulation and analytics when analytics
are already assigned to be processed either in situ or in transit. We base our solutions
to this sub-problem on two different task performance models to show the flexibility of
our proposition. The second sub-problem is then to determine which analysis have to
be performed in situ and eventually on staging nodes. We propose scheduling heuristics
in combination with solutions to the first sub-problem to solve the overall optimization
problem.

Chapter 5 proposes an evaluation of our solutions on synthetic applications. We
evaluate both asynchronous and synchronous execution schemes and evaluate our
scheduling heuristics by different metrics. From the results, we extract the main crite-
ria for application performance, the most important one being the correlation between
application performance and performance of helper cores dedicated to perform in situ
analytics.

Finally, Chapter 6 presents a conclusion to this first part of the manuscript. We also
provide different perspectives to this work, and introduce content of the second half of
the manuscript.
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In this chapter, we present an overview of the related work concerning the manage-
ment of data-intensive applications on HPC facilities. We also propose a state-of-the-art
summary of the in situ paradigm in the context of supercomputers.

2.1 Running applications on supercomputer facilities

This section outlines how to run an application on HPC facilities.
Submitting an application onto HPC platforms consists in submitting a request to

a complex program called scheduler. In their request, users must specify the amount
of resources needed (number of nodes/cores as well as optionally the type of nodes
and/or the amount of memory per core required by the application). Users must also
provide a total runtime for each submitted job. The scheduler takes all this informa-
tion into account when setting up the job priorities as well as when choosing the set of
nodes involved in each execution. Concerning the size of the reservation, data-intensive
applications have a rather constant execution time on a determined set of resources.
Hence, users are able to accurately determine the size of the reservation without over-
estimating it. This estimation is not always feasible to perform for other profiles of
applications, as we will see in the second part of this manuscript.

Batch schedulers are widely adopted by many resource managers in HPC systems,
such as Slurm [155], Torque [131] and Moab [37]. They use an iterative and repetitive
algorithm triggered by state changes, such as new job submission, job starting or ending,
or timeout. They use different policies to determine which job should be executed when
and on which resources. Jobs are usually placed in one or multiple waiting queues
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with different priorities before being scheduled onto the machine. For example, the
Slurm scheduler [156] uses two queues: one for high-priority jobs, and another for low-
priority jobs. Jobs are placed in queues based on their resource requirement, generally
with long-running jobs that require a large amount of resources having higher priorities
in order to avoid starvation. Jobs that are kept in the waiting queue for a long period of
time could also be upgraded and moved up in the queue. HPC scheduler has to balance
a continuous trade-off between system efficiency (increase machine usage by scheduling
large jobs) and application response (the time small jobs need to wait in queue before
being executed). Slurm [155] schedules the jobs by starting with the top of the high-
priority queue, and then moving down. In addition, most batch schedulers use resource
reservation in combination with backfilling [98, 129, 114]. Backfilling allows smaller jobs
lying farther back in the queue to be scheduled before the other jobs waiting at the front
of the queue, as long as the jobs at the front are not delayed by this decision. Even
though larger jobs (in terms of time and resource requirement) have higher priorities,
the lack of resource availability in the system generally leads to longer waiting times.
On the other hand, smaller jobs, despite having lower priorities, are usually scheduled
quickly thanks to the backfilling algorithms that place them in the unused time slots
between successive large jobs.

Some studies (e.g., [152, 113, 124]) have analyzed the impact of scheduling strategies
on the performance of applications in large HPC centers. They show that the penalty for
jobs with longer requested walltimes and/or larger numbers of nodes is higher than that
for jobs with shorter elapsed times and smaller number of nodes. This can be observed,
for example, on the K computer from Riken Advanced Institute for Computational Sci-
ence [152]. The HPC scheduling policy generally tries to give users a fair opportunity
for job execution while maximizing the total system utilization. The study shows that,
for applications requesting similar computing resources, the waiting time generally in-
creases with larger requested processing times which can cause hours of delays for large
scientific applications, even though it also depends on other workloads submitted to the
system. Some HPC centers divide the resources into seasons for users to utilize the al-
located resources. Users tend to submit more jobs toward the end of a season, causing
contention at the scheduler level that results in even longer waiting times. In addition,
depending on the overestimation of the required processing time for long jobs, smaller
jobs might have more opportunity to be scheduled through the backfilling algorithm.
Medium jobs have lower priority than large jobs, without being candidates for the back-
filling algorithm. Thus their waiting time may be quite significant depending on the
workload of the HPC system. The study retrievable in [124] presents an evolution trend
of the workload of HPC systems and its corresponding scheduling policies as we move
from monolithic MPI applications to high-throughput and data-intensive jobs. The cost
paid in terms of waiting time of applications in the queue has generally increased over
the years because of the fluctuating workloads. Systems that give each job a partition
of the resources for exclusive use and allocate such partitions in accordance with the
sequence of job arrivals could suffer from severe fragmentation, leading to low utiliza-
tion [113]. The authors of the research propose an aggressive backfilling algorithm for
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dealing with such fragmentation. However, users are still expected to provide accurate
runtime estimates. The study shows that over-estimations may lead to a long waiting
time, and possibly to excessive CPU quota loss, while under-estimations can lead to job
terminations before their completion. Some recent schedulers [116] consider the distri-
bution of execution time of the submitted jobs to take their scheduling decision in order
to increase their overall utility.

Finally, BigData frameworks such as MapReduce [42] or Dryad [84] also rely on
schedulers (e.g. YARN [143] and Mesos [77]) considering distinct features such as fair-
ness or resource negotiation to manage the workload.

2.2 Emergence of in situ as a major paradigm

Data management has become a major issue in the field of supercomputers. We already
mentioned the possibility to use burst-buffers to temporarily store data if the I/O sys-
tem is congested. Once the contention is reduced, buffers are emptied on disks. From
an application perspective, performance has not been degraded and no data loss has
occurred. A few researchers have investigated the issue of buffer size and how to parti-
tion them between different users [22, 21]. Strategies to efficiently empty burst buffers
have also been proposed [135]. Indeed, draining burst buffers data must be done with
care in order to avoid creating even more severe I/O contention. What is more, some
studies [99] have attempted to show the efficiency of burst buffers in large-scale storage.
Finally, some other works have proposed to use these burst buffers as storage places
for input data rather than for output data [154]. The goal is to optimize BigData frame-
works on HPC facilities. The authors’ idea was to prefetch data on these buffers in order
to have fast access to meaningful data for applications.

Obviously, such solutions are not sufficient due to the limited size of burst-buffers.
Nowadays, a wide range of scientific domains such as biology, chemistry, or dynamic
system studies use large scale simulations. As a consequence, the in situ paradigm
emerged and progressively became one of the major solutions for data management
in HPC. Many large scale simulations have developed analytics techniques that we will
discuss below.

Solutions to in situ visualization and analysis are usually described by where the
process is performed and on how resources are shared. This has led to the common
distinction between in situ, in transit, and postmortem visualization, as well as between
tight and loose coupling. To alleviate the I/O bottleneck, the in situ paradigm offers the
possibility to start processing data as soon as they are made available by the simulation,
while still residing in the memory of the compute node. In situ processing includes
data compression, indexing, and computation of various types of descriptors (1D, 2D,
images, etc.). The amount of data to be saved on disks is reduced, hence reducing the
pressure on the file system when writing the results, as well as when reading them back
for the postmortem analysis. Results can also be visualized on-line, enabling advanced
execution monitoring.
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Per se, the idea of reducing data output to limit I/O related performance drops and
to keep the output data size manageable is not a new one. Scientists have relied on solu-
tions as simple as decreasing the output frequency. In situ processing proposes to move
one step further by providing a full fledged processing framework that enable scientists
to manage more easily and thoroughly their available I/O budget. The first publication
to have ever coined the in situ concept in those terms is very likely the one written by
Kwan Liu Ma et al. [103]. Solutions emerged from existing visualization libraries like
VTK or Visit that added new readers to get data directly from a live simulation [56, 148],
or from I/O libraries like ADIOS [101] augmented with processing capabilities when
transiting data from the simulation to the file system [162]. While users have to config-
ure data placement in software, none of them are able to determine if this placement is
optimal or not.

The most direct way to perform in situ analytics is to inline computations directly in
the simulation code. This is the approach adopted in [158] as well as in the standard
visualization tools like Paraview and Visit [56, 148] and their recent extensions [25, 93].
In this case, in situ processing is executed in sequence with the simulation that is sus-
pended meanwhile. This process is described in Figure 2.1. We name this approach
synchronous.

S S S S

S S S S

S A A A

A A A A

Simulation: iteration i Analytics: iteration i

Figure 2.1: Synchronous in situ processing of analytics where simulation and analytics
iteratively run on a processor of 8 cores. Simulation runs on the 8 cores and is then
paused to perform the analytics on 8 cores.

In order to improve resource usage, asynchronous in situ proposes to overlap the sim-
ulation and the analysis executions, as illustrated in Figure 2.2. At each iteration of sim-
ulation, some cores of in situ nodes are allocated to the simulation, while the remaining
nodes are running the analytics. At iteration i + 1 of simulation, analytics processes
the data of the iteration i of simulation. This implies that the data of two iterations of
simulation are stored on compute nodes. An obvious solution to manage resources dis-
tribution consists in relying on the OS scheduler capabilities to allocate resources. The
analytics runs its own processes or threads concurrently with the ones of the simula-
tion. The simulation only needs to give a copy of the relevant data to the local in situ
analytics processes. The analytics can next proceed concurrently with the simulation.
However, some works [161, 72] show that relying entirely on the OS scheduler does
not prove to be efficient because the presence of analytics processes tends to disturb
the simulation (context switch, cache trashing). GoldRush proposes to activate analy-
sis executions only on long-enough sequential sections of the simulation. Tins adopts a
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task-based programming relying on a work-stealing scheduler for a fine grain interleav-
ing and load balancing of tasks on the compute nodes [46].

S S S S

S S A A

S S S S

S S A A

Simulation: iteration i Simulation: iteration i+ 1

Figure 2.2: Asynchronous in situ processing of analytics where simulation and analytics
run simultaneously on a processor composed of 8 cores. Simulation runs on 6 cores and
the analytics working on the data of previous iteration of simulation has 2 dedicated
cores.

To reduce these interferences, several works propose to rely on space sharing where
one or several helper cores are dedicated to analytics. Damaris [50], FlowVR [53],
Melissa [139], Functional Partitioning [96], GePSeA [127], Active Buffer [104], or
SMART [146] adopt this solution. Tins [46] introduced dynamic helper cores, dedi-
cating cores to analysis only when analysis tasks are ready to be run. Even if the in situ
processing simply consists in saving data onto disks, this approach tends to be more effi-
cient than the one consisting in relying on standard I/O libraries like MPI I/O [50]. The
simulation runs on less cores, but, since it is usually not 100% efficient, the performance
is decreased by less than the ratio of confiscated cores. Still, helper isolation is limited
to the compute core and the first two cache levels. Memory and usually the L3 cache
are shared between cores. In situ tasks, by trashing the L3 cache or using a significant
amount of the node memory, can affect the simulation performance. Communication
that can perform in situ tasks can also load the network interface and slow down the sim-
ulation communications. To better schedule the communication load, DataStager [12]
proposes a mechanism that triggers in situ related traffic outside of the simulation com-
munication phases.

For a better isolation of the simulation and in situ processes, one solution consists
in offloading in situ tasks from the simulation to the costs of moving the data from
the simulation nodes to the staging nodes. This way of processing is called in transit.
HDF5/DMS [31] uses the HDF5 and PnetCDF I/O library calls to expose a virtual file
to staging nodes. GLEAN [141, 144] is another example of a simulation/visualization
coupling tool initiated by making HDF5 and PnetCDF I/O library calls. DataSpaces [48]
stores the simulation data on staging nodes with a spatially coherent layout and acts as
a server for client applications. Padawan [38] proposes a Python based staging solu-
tion. Several systems use staging nodes to expose the simulation data to other scientific
workflows [43, 102].

A few frameworks support both in situ and in transit processing. JITStaging [11] and
PreData [163] propose to extract data from the simulation, apply a first in situ treat-
ment with simple stateless codes, and then transfer the data to staging nodes. Ben-
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nett et al. [30]’s solution is built on top of DataSpaces and Dart [47] to perform in situ
and in transit visualization and analytics. FlexIO [162] brings to ADIOS in situ and in
transit processing capabilities. FlexIO uses shared memory segments to handle data to
asynchronous node-local in situ processes and RDMA transport methods for inter-node
transfers, in particular for staging nodes. Specific stateless codelets can be dynamically
moved on different cores during the simulation. For N ×M like data re-distributions,
FlexIO relies on centralized coordinators that gather information about data and pro-
cess distribution, compute the communication pattern, and send back the necessary
instructions to each process involved. This handshaking process can be totally or partly
bypassed if the data distribution does not need to be recomputed between consecutive
steps. Zhang et al. [159] added a shared memory space to a Dart server to support both
simulation code coupling and in situ/in transit scenarios. The user describes groups of
parallel codes called bundles and creates a workflow between these bundles. Based on
MPI, the framework requires that all bundles are integrated in the same MPI applica-
tion, which can require significant coding efforts. Similarly, Damaris [52, 50] proposes to
embed in situ tasks in the MPI context of the simulation. At launch time, MPI processes
define the type of task that they are about to execute (simulation or in situ) depending
on their mapping on the target machine. Then, cores or nodes can be dedicated to either
in situ or in transit tasks. Bredala [54] enables automatic global data redistribution be-
tween the in situ and in transit nodes and provides a contract that enables to extract data
from the simulation depending on the analysis demands [112]. Having a single MPI
application seems quite interesting for those supercomputers OS that do not support
running more than one application per node. FlowVR [53] relies on a dataflow model
in which components can be mapped in situ or in transit without the constraint of having
all components running in the same MPI context.

Most of these approaches are MPI+X based. New programming models are also de-
veloped as alternatives to message passing. StarPU [20], PaRSEC [78], Legion [26], and
HPX [86] propose task-based runtime systems for distributed heterogeneous architec-
tures. The program defines a directed acyclic graph where vertices are tasks and edges
represent data dependencies between tasks. The runtime is in charge of mapping tasks
to resources, triggering task execution, and deciding of the necessary data movements
once data dependencies are resolved. Early experiments have attempted to utilize Le-
gion for in situ analytics [119, 74]. Though they show that Legion runtime is able to
overlap analytics and simulation tasks, there are also evidence that the performance of
Legion is not yet as competitive as MPI approaches.

Very few works have addressed in situ application modeling to define algorithms,
study scheduling policies, and manage resource partitioning. One of this work is [94]
that proposes a statistical performance model based on algorithmic complexity to pre-
dict the run-time cost of a set of representative parallel rendering algorithms. These are
commonly used for in situ rendering, yet they do not take into account the interactions
between the simulation and the analytics components. Another group of works based
on DataSpace focuses on optimizing in transit data storage. Some studies [133] focus
on performance optimization through data placement. Stacker [132] relies on machine
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learning to optimize the placement of data on the memory hierarchy, taking into account
per node persistent storage capabilities like NVRAM or Burst Buffers. Zheng et al. [162]
also put forward several heuristics enabling to compute the core mapping and to opti-
mize the use of helper cores and staging nodes. Furthermore, Malakar et al. [106, 105]
considered in situ analysis as a numerical optimization problem to compute an optimal
frequency of analytics when the later is subject to resource constraints such as I/O band-
width and available memory. However, this work only offers sequential simulation and
analysis.
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Chapter 3

On Modeling Applications on HPC
facilities for in situ Processing
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In this chapter, we present mathematical models to schedule a HPC application com-
posed of a simulation code and the associated analytics on a HPC infrastructure. Sec-
tion 3.1 introduces a model to abstract HPC machines, while Section 3.2 presents the
application representation, that is based on the assumption that the target applications
generate lots of data that can be analyzed on-line. Finally, Section 3.3 presents the ap-
plication pipeline that combines the models above introduced.

3.1 Architecture

In this section, we introduce a model of the machine infrastructure.
We assume that a platform is composed of Cn identical unit-speed nodes. Each node

is composed of c cores (also called processors throughout this work) and a shared mem-
ory of size Mn between all the cores.

We model communications as an extra cost. Intra-node communications are con-
sidered as cost-free due to the shared memory space between processors. We assume
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that a processor can access the data on its node memory without extra cost. However,
inter-node communications generate an overhead that is modeled as follows.

We define a communication cost V 7→ Tcom (V ): assume a volume of data V located
on the memory of node Ni, then it takes Tcom (V ) units of time to transfer it on the
memory of node Nj .

In this work we use the linear bandwidth model [149] to model the communication
cost1:

Tcom (V ) =
V

b
where b is the available bandwidth for the transfer. We assume that total bandwidth of
the system is equally divided between each node, as is the total memory for each node.

Note that other classical communication models take into consideration a latency
that fades-out for large messages. We consider here significant data movements, hence
this latency has a negligible effect in our case.

3.2 Applications

This section is devoted to the application representation.
This work focuses on iterative HPC applications that consist in two different phases:

the simulation phase, a compute-intensive phase modeled as a huge task that generates
large amounts of data, and the analysis phase (also called analytics), a data-intensive
phase that consists in transforming the data generated in the previous phase. Analytics
is composed of different functions that we consider as independent from one to another.
Thus, many different tasks have to be modeled to represent such double-phase applica-
tions.

Our model supports both in situ and in transit processing of the analysis tasks. Part
of the analysis phase can be executed in situ on the nodes used for the simulation either
in a synchronous or asynchronous mode. The cores of the nodes dedicated to analytics
in asynchronous setup are the helper cores. The other part runs in transit on dedicated
nodes, the staging nodes.

3.2.1 General representation of application tasks

We consider that all tasks, being either simulation or analysis tasks, are moldable: the
scheduler can decide prior to execution how many nodes and cores are assigned to each
task. Once the application starts, this number is fixed for the full computation duration.

The work of a task is defined as the execution time of the task times the number of
cores used. A classical task model considers that the amount of work is constant with
the increase in pluralization (perfectly/embarrassingly parallel model [76]). In other words,
parallelizing the application implies no overhead. In the next chapter, we propose a so-
lution for two different task models: perfectly parallel and Amdahl’s law [17]. However,

1Although, most of this work is agnostic of the bandwidth model used
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to ease readability, we focus mostly on the perfectly parallel model for its expressiv-
ity. Most of the results are valid with many other work models, and when needed we
discuss in this work the impact of such models.

Each task/function (simulation or analysis) is defined by two parameters:

• a reference execution time given as a running time on one core; and

• a memory peak representing the maximum memory consumption of the task dur-
ing its execution.

For notation, we introduce tρµ(c) as the makespan of task µ (either simulation or anal-
ysis function) at iteration ρ on c core(s).

3.2.2 Simulation phase

We consider the simulation as a task iterated Π times. In the following, let Sρ (ρ ∈
{1, · · · ,Π}) be the ρth simulation iteration.

Each iteration Sρ is defined by its data input Vρ, its execution time tρsim (1) and its
memory peak Pρ.

Assuming there is enough memory available to perform the iteration Sρ, let tρsim(c)
be the execution time on c cores to perform the simulation,

tρsim(c) =
tρsim(1)

c

We also work under the assumption that the memory peak does not depend on the
number of cores working on the iteration. Hence for iteration Sρ running on c cores, the
average peak memory per core is Pρ

c
.

We consider that the simulation data are evenly distributed amongst the nodes as-
signed to the simulation, and thus that the simulation outputs are also evenly dis-
tributed. We consider that the simulation does not perform I/Os directly. Simulation
outputs are all handed to analysis tasks that are in charge of data processing and even-
tually to perform I/O to save the necessary data to disk.

3.2.3 Analysis phase

An analysis phase runs after each simulation iteration Sρ. We denote by Aρ the set of
analysis tasks to be performed on the output data of iteration Sρ:

Aρ = {Aρ1, · · · , AρKρ}

Any of the tasks of A can be executed either in situ or in transit. We denote by AIS
and AIT the partition of the analytics tasks according to their execution mode:

AIS ∪̇AIT = A
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For this work, we assume that all analysis tasks run at each simulation iteration ρ are
identical:

Aρ = A

Analytics tasks can include about anything, like computation of high level descrip-
tors [46], compressing data [138], verifying the integrity of the data to detect a silent
error [23], or checkpointing for reliability [24].

Analytics tasks can either be executed synchronously, i.e. without overlap with the
simulation or asynchronously. We detail both scenarios in coming paragraphs.

For now, we denote by ti(c) the processing time of function i on c cores.

in situ Analysis: The in situ analysis tasks directly access the local simulation output
data on the node where they run. As all tasks run in parallel on each simulation node,
the total makespan of in situ analysis functions is the sum of the makespan of each task.

The in situ tasks need memory space allocated in the simulation nodes. We ensure
that this does not impair the simulation execution by enforcing that the sum of the peak
memory of both the simulation and analytic tasks running on the simulation node do
not overflow the total memory of each simulation node.

If we perform synchronous analytics, the simulation is periodically paused to per-
form in situ analytics on simulation resources. It means that simulation and analysis
alternatively use all the cores of their assigned nodes.

For asynchronous analytics, we used so called helper cores to perform the in situ anal-
ysis in parallel of the simulation. In this case, analysis and simulation overlaps. Because
of helper cores, the simulation is slowed down and a trade-off between analysis benefits
and simulation performance loss has to be addressed.

I/O are performed to transfer the output of analytics to the PFS. As it is assumed to
have negligible cost, the cost is included into the function makespan.

in transit Analysis: The input to the AIT functions are not available on the in transit
nodes. They need to be transferred from the simulation nodes.

We model the in transit cost in terms of time only. We assume that the cost is the time
to send all the input of functionsAIT (i.e. all associated memory peaks) from simulation
nodes to in transit nodes, associated to the cost for running the functions. The output
of analysis functions are stored on PFS, which is assumed to induce a negligible cost
that is not subject to interference. Thus, we consider that this cost is included in the
makespan of the functions. We also consider that it is the in transit nodes that has to
face the transfer overhead while the in situ nodes on which data are located can continue
working.

In both asynchronous/synchronous scenarios, in transit analytics is performed on a
dedicated set of nodes.

We touch here a first optimization problem that arises: if all analysis are performed
in transit, required inputs have to be transferred to staging nodes, hence generating an
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overhead. However, if all analysis are in situ, simulation will be processed in parallel of
analysis, thus will be slowed down.

Figure 3.1 illustrates the partitioning of the resources between in situ and in transit
processing. Simulation runs on c − c∗ cores on n∗ in situ nodes while the c∗ other cores
of these nodes are dedicated to in situ analytics. Finally, Cn− n∗ are staging nodes for in
transit processing of analytics, for which the transfer of simulation data are necessary.

Cn

c− c∗

c∗

n∗ Cn − n∗

c

Figure 3.1: Schematic representation of resource allocation between in situ and in transit
processing.The x-axis represents the number of nodes and the y-axis the number of
cores on one node. Simulation cores are in green, in situ cores in red while in transit
cores are in blue.

3.3 Application pipeline

We end this chapter dedicated to model design by the presentation of the application
pipeline. We model both types of execution when coupling simulation and analysis:
asynchronous and synchronous processing.

Figure 3.2 presents the application pipeline for asynchronous analytics.
In this model, the cores dedicated to in situ analysis cannot be used for the simula-

tion. They are called helper cores. For each simulation iteration, the set AIS[ρ − 1] is
executed concurrently to the ρth simulation round on n∗ in situ nodes. Note that they
do not need necessarily to be executed concurrently, but this is one of the strategies that
minimizes the execution time since the helper cores cannot be used for anything else
that analysis.
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Transfer Cn − n∗

Idlen∗

Transfer Cn − n∗
Idle ...

...

Simulation
in situ Analysis
in transit Analysis

Figure 3.2: Illustration of Application Workflow with Asynchronous Analytics.

There are c∗ helper cores over the c cores that are dedicated to perform in situ AIS
functions. Thus, c − c∗ cores are dedicated to the simulation iterations. The helper
cores can access simulation data locally, without requiring to transfer the input of the
analysis functions. However, it reduces the number of cores dedicated to simulation,
and its performance. The set of in transit functions is performed on Cn−n∗ nodes, using
all available cores. However, the transfer of function inputs induces a time overhead
that has to be balanced with the makespan of simulation and in situ analysis. Finally,
the application makespan is computed as the maximum time between simulation, in
situ and in transit makespan. Some idle time on resources appears when one of these
makespans is longer than another.

Usually, synchronous execution signifies that the analytics code is directly included
in the simulation code. This is mainly used for analysis functions that periodically
monitor the evolution of a given parameter or value of importance for the application
progress. Heavier compute-load analysis can also be performed synchronously at a
lower frequency and mostly accounts for reducing the final amount of data to be stored.
One example of synchronous in situ processing is the Paraview toolkit [56] that enables
users to embed visualization functionalities inside simulation code.

Figure 3.3 presents the application pipeline for synchronous analytics. The main
difference with the previous scenario is that the in situ analytics is processed in sequence
with the simulation, that is paused during that time. The in transit analytics follows the
same rules as before. As for asynchronous case, some idle time may appear, for example
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Transfer Cn − n∗

Idlen∗

Transfer Cn − n∗
Idle ...

...

Simulation
in situ Analysis
in transit Analysis

Figure 3.3: Illustration of Application Workflow with Synchronous Analytics.

if the in transit analytics has a larger makespan than the simulation followed by in situ
analysis. In the synchronous case, the application makespan is the maximum between
the simulation summed with the in situ analytics and the in transit makespan.

In the rest of this work, we assume that the analysis functions are performed using
the asynchronous scenario. This can be justified by a difference in practice between the
two scenarios. Indeed, synchronous analytics causes complex side effects such as cache
pollution overheads during the switch between simulation and analytics on the in situ
resources. Moreover, it is often intrusive to the code of the application, as we previ-
ously stated. Finally, another reason is that the simulation process is often not able to
efficiently scale while we increase the number of cores. This is even reinforced when
considering another task model than the perfectly parallel one. Hence, dedicating full
resources of the in situ nodes to the simulation does not necessarily enhance its perfor-
mance. However, in Chapter 5, we discuss the performance of both asynchronous and
synchronous analytics to demonstrate the benefits of our contributions.

This ends the presentation of the models of the application and the platform. In
the next chapter, we formalize the optimization problem under study and show how to
derive its solutions.
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Chapter 4

Automatic Resource Partitioning and
Scheduling Heuristics for in situ
Processing

In this chapter, we will express in Section 4.1 the optimization problem for in situ
processing of data-intensive applications that we further decompose into two sub-
problems. Sections 4.2 and 4.3 detail solutions for the first sub-problem for two different
task models. Finally, Section 4.4 will introduce scheduling heuristics to solve the second
sub-problem.

4.1 A global optimization problem for in situ processing

In this section, we express the different problems to be solved in order to optimize HPC
applications on HPC facilities.

Firstly, we define the general optimization problem. Recall that we process all anal-
ysis functions at each iteration of simulation. We now propose Problem 1, called 1-ARP
(1-APPLICATION RESOURCE PARTITIONING):

Problem 1 (1-APPLICATION RESOURCE PARTITIONING (1-ARP)). Given A the set of anal-
ysis tasks, S the set of simulation tasks, can we determine n∗ the number of simulation nodes,
c∗ the number of helper cores and a scheduling of the N calls to the set A such that the total
makespan of the application is minimal?

This is the general problem we will solve in order to get an efficient distribution of
application workload over an optimal distribution of computational resources.

In this problem, we can identify two subproblems with regards to our platform
and application modeling. Firstly, how can we divide Aρ into AIS and AIT such that
the total time of the application is minimal? Secondly, a joint problem is how can we
determine the computational resource partitioning that, associated to the subdivision
of Aρ, minimize the total makespan of the application? Those two questions are the
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core of the problem. Both questions are correlated between each other. To determine
AIS and AIT , it will be necessary to determine resource partitioning of the nodes and
cores to be able to evaluate a subdivision of Aρ.

To tackle this issue, we propose to solve 1-ARP using two subproblems:

• Sub-problem 1 (REPAS): This is a refinement of 1-ARP when the analysis sets are
already determined. Given AIS and AIT , determine a resource allocation of the
compute units in between simulation and analysis tasks.

• Sub-problem 2: Using solutions for REPAS, divideA intoAIS andAIT so that the
total makespan of the application is minimized. We propose scheduling heuristics
that test different possible task scheduling and their associated resource partition-
ing according to Sub-problem 1. All the possible schedules are not always suitable,
due to the limited amount of memory of the system. Hence, we propose heuristics
that respect system constraints in order to produce eligible schedules.

Then, in order to solve 1-ARP, we first study a refinement of it when the analysis sets
are already determined. This is expressed as Problem 2.

Problem 2 (RESOURCE PARTITIONING FOR ANALYSIS SETS (REPAS)). Given AIS , AIT
and S, can we determine n∗, c∗ and a scheduling of the N calls to the set A such that the to-
tal makespan of the application is minimal?

This simpler problem REPAS provides a solution for 1-ARP when the scheduling of
the analysis functions (either in situ or in transit) is given.

We show in the next section how to compute a solution to REPAS. We then use this
solution in Section 4.4 to derive solutions to 1-ARP.

In this section, we study the REPAS problem. We first compute an optimal floating
solution for the number of in situ nodes n∗ and the number of helper cores c∗. We will
then discuss an integer solution for this problem.

4.2 A solution to REPAS problem

We present in this section a solution for REPAS. We start by performing some rewriting
to ease the resolution.

4.2.1 Reformulation of REPAS

We have seen in Section 3.3 of Chapter 3 that in the asynchronous case, the analysis from
the iteration i− 1 are performed at the same time as the simulation of iteration i. Hence
the total execution time consists of the sum of: (i) the first iteration of the simulation; (ii)
Π− 1 times the maximum time taken, either by the simulation, or by the analysis times;
and (iii) the time for the final analysis.

Let us now denote by:
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• TS(n∗, c∗), the time to execute one iteration of the simulation on n∗ nodes, given
that for each node, c∗ cores are dedicated for in situ analysis;

• T ISA (AIS, n∗, c∗) the time to perform the analysis AIS on n∗ nodes, using c∗ cores
per node; and

• T ITA (AIT , n∗) the time to perform the analysis AIT given that the simulation is us-
ing n∗ nodes.

Using notations above without their parameters to ease the reading, the execution
time is:

TS + (Π− 1) max
(
TS, T

IS
A , T ITA

)
+ max

(
T ISA , T ITA

)
Assuming that Π is large enough, then

TS + max
(
T ISA , T ITA

)
<< (Π− 1) max

(
TS, T

IS
A , T ITA

)
and we can focus on the following optimization problem:

Problem 3. Given (AIS,AIT ), find n∗ ≤ Cn, and c∗ ≤ c that minimize

max
(
TS(n∗, c∗), T ISA (AIS, n∗, c∗), T ITA (AIT , n∗)

)
.

In the following, we show how to compute a solution to this problem, that is how to
find n∗ and c∗. We first write formally the different execution times.

Proposition 1 (Execution time of the different phases). Let X be the sum of the single core
execution time of each Ai ∈ AIS (i.e. X =

∑
Ai∈AIS

ti(1)). Similarly, we have:
∑

Ai∈AIT
ti(1) =

W −X where W is the total time of analysis tasks. Let MemIT be the sum of the memory peak
of each Ai ∈ AIT and b the bandwidth per node of the platform.

TS(n∗, c∗) =
tsim (1)

n∗ · (c− c∗)

T ISA (AIS, n∗, c∗) =
X

n∗c∗

T ITA (AIT , n∗) =
W −X

c(Cn − n∗)
+ TCom

(
n∗, Cn − n∗,AIT

)
=

W −X
c(Cn − n∗)

+
MemIT

(Cn − n∗) · b

These different costs come naturally from the fully parallel model, indeed it is the
time to sequentially run all the tasks divided by the number of cores used.
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4.2.2 Solution with rational number of cores and nodes

In this section, we compute a solution to Problem 3, under the form of rational numbers.

Theorem 1 (Optimal Number of Helper Cores). The optimal number of helper cores is given
by the following:

c∗ =
X · c

tsim(1) +X

Proof. To obtain this result, one can verify that in an optimal solution,

TS(n∗, c∗) = T ISA (AIS, n∗, c∗).

Indeed, otherwise if one is faster than the other one, we can share ε cores from the
fastest computation to the slowest one such that its execution time does not increase too
much its duration. This will reduce the slowest computation hence contradicting the
optimality of the solution.

Hence we have:

tsim(1)

c− c∗ =
X

c∗

tsim(1) · c∗ = c ·X − c∗ ·X

c∗ =
X · c

tsim(1) +X

Using the value of c∗ from Theorem 1, we now compute n∗.

Theorem 2 (Optimal Number of in situ Nodes). The optimal number of in situ nodes is
given by:

n∗ =
X · Cn

c∗ ·
(
W−X
c

+ MemIT

b

)
+X

Proof. The result is obtained similarly to Theorem 1. First according to Theorem 1, we
know that in the optimal solution the time for in situ analysis is equal to the simulation
time. In addition, we use the formula from Problem 3 and verify that:

T ISA (AIS, n∗, c∗) = T ITA (AIT , n∗),

where c∗ is the value obtained in Equation (1) (and is a function of n∗). Similarly to
the previous Theorem, one can verify that if one of the analysis is faster than the other
one, we can share ε nodes from the fastest analysis such that its execution time does
not increase too much. These nodes are then allocated to the other analysis which will
reduce its execution time hence contradicting the optimality of the solution.
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As we did before, we will solve the following equation in order to obtain the value
of n∗:

X

n∗c∗
=

W −X
c(Cn − n∗)

+ TCom
(
n∗, Cn − n∗,AIT

)
=

W −X
c(Cn − n∗)

+
MemIT

(Cn − n∗) · b
By rewriting,

X

c∗
=

n∗

(Cn − n∗)
·
(W −X

c
+
MemIT

b

)
Then,

n∗ · c∗ ·
(W −X

c
+
MemIT

b

)
= X · (Cn − n∗)

This results in

n∗ · c∗ · W −X
c

+ n∗ · c∗ · MemIT

b
+X · n∗ = X · Cn

Finally,

n∗ =
X · Cn

c∗ ·
(
W−X
c

+ MemIT

b

)
+X

This result is derived for a linear bandwidth model but similar derivations can be
performed with other communication models.

4.2.3 Integer solution for REPAS problem

In Section 4.2.2, we described a solution to compute the number of in situ nodes n∗ and
the number of helper cores c∗. However, these solutions return a rational number that
is not suitable for us to describe a number of system physical resource.

To solve this issue, we round the result to the closest higher integer. Recall that in
the proof of Lemma 1, the makespan of in situ analysis is computed to be at most equal
to the simulation one, to avoid performance loss. Thus, we choose to round c∗ and n∗

to highest value to ensure that the highest makespan will be the simulation (in other
words, analysis does not penalize simulation in the current setup).

This can lead to idle time for in situ resources. This will be the target of a future work
to evaluate the best policy for c∗ and n∗ rounding.

In the following, we consider Π = 1 without loss of generality.
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4.3 A solution to REPAS problem with Amdahl’s law

In this section, we extend the results of Section 4.2 for a different task model: Amdahl’s
law [17].

4.3.1 Introduction to Amdahl’s Law

In 1967, Gene Amdahl introduced a formula which gives the theoretical speedup in la-
tency of the execution time of a task with fixed workload. Amdahl’s law is often used in
parallel computing to predict the theoretical speedup when using multiple processors.
The principle is that a task submitted on a system can be divided into two parts:

1. a part that is sequential and thus, cannot take benefits from multiple resources

2. a parallel part that will improve when assigned to several compute units

In essence, this model states that a task will never scale perfectly when multiple
resources are assigned to it due to inherent sequential nature of some part of the task.

Definition 1 presents a mathematical description of the law. For a task t with basic
execution time T on a single resource and with a proportion of sequential code 0 ≤ α ≤
1, the processing time of t using c resources is equal to the scaling over the c units of
the 1 − α original duration T , equals to 1−α

c
× T . In addition, there is the cost for the α

proportion of sequential code whose time is αT .

Definition 1 (Amdahl’s law).

T (c) =

(
α +

1− α
c

)
· T (4.1)

Some other task models such that Gustafson’s law [68] can also be envisioned to
enrich the model expressivity.

In this section, we present a new solution for REPAS problem where simulation fol-
lows Amdahl’s law, and all analysis follows the basic fully parallel model. As simulation
is a huge code, it is expected to be performed on an important set of nodes, hence having
to face scaling problem. However, analysis are usually processed on few cores for which
a fully parallel model is sufficient to model execution time. Even though some analysis
may not scale correctly on staging nodes, we assume that the effect will be limited on
overall performance.

4.3.2 Solution for resource partitioning subproblem

In this section, we first compute an optimal floating solution for the number of in situ
nodes n∗ and the number of helper cores c∗. We will then discuss an integer solution for
this problem.

Remind that we want to solve Problem 3, as for perfectly parallel task model.
We first update the formal definition of the different execution times.
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Proposition 2 (Execution time of the different phases). Let X be the sum of the single core
execution time of each Ai ∈ AIS (i.e. X =

∑
Ai∈AIS

ti(1)). Similarly, we have:
∑

Ai∈AIT
ti(1) =

W −X where W is the total time of analysis tasks. Let MemIT be the sum of the memory peak
of each Ai ∈ AIT and b the bandwidth per node of the platform. Finally, let α be the parameter of
Amdahl’s law, representing the fraction of the simulation that can be parallelized.

TS(n∗, c∗) = tsim ·
(
α +

1− α
n∗ · (c− c∗)

)
T ISA (AIS, n∗, c∗) =

X

n∗c∗

T ITA (AIT , n∗) =
W −X

c(Cn − n∗)
+ TCom

(
n∗, Cn − n∗,AIT

)
=

W −X
c(Cn − n∗)

+
MemIT

(Cn − n∗) · b

These two analysis costs are the same as for the fully parallel model, indeed it is the
time to sequentially run all the tasks divided by the number of cores used. Regarding
simulation process, we use Amdahl’s law [17] using n∗ nodes with each c − c∗ cores at
disposal.

Solution with rational number of cores and nodes

In this section, we compute a solution to Problem 3 when task follows Amdahl’s
law [17].

Theorem 3 (Optimal Number of Helper Cores). The optimal number of helper cores c∗ and
the optimal number of in situ nodes can be computed by solving a third order polynomial.

Proof. As we previously mentioned, one can verify that in an optimal solution,

TS(n∗, c∗) = T ISA (AIS, n∗, c∗).

Indeed, otherwise if one is faster than the other one, we can share ε cores from the fastest
computation such that its execution time does not increase too much. This will reduce
the slowest computation hence contradicting the optimality of the solution.

Hence we have:

tsim

(
α +

1− α
n∗(c− c∗)

)
=

X

n∗c∗
(4.2)

tsim

(
α +

1− α
n∗(c− c∗)

)
=

W −X
c(Cn − n∗)

+
MemIT

(Cn − n∗)b
(4.3)
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We rewrite Equation (4.2) to express n∗ as a function of c∗:

tsimα +
tsim (1− α)

n∗(c− c∗) =
X

n∗c∗

tsimαn
∗ +

tsim (1− α)

c− c∗ =
X

c∗

n∗ =
X

c∗αtsim
− 1− α

(c− c∗)α
We now substitute the value of n∗ in Equation (4.2):

tsimα =
X(

X
c∗αtsim

− 1−α
(c−c∗)α

)
c∗
− tsim(1− α)(

X
c∗αtsim

− 1−α
(c−c∗)α

)
(c− c∗)

tsimα =
X(

X
αtsim
− c∗(1−α)

(c−c∗)α

) − tsim(1− α)
Xc

c∗αtsim
− X

αtsim
− 1−α

α

1

tsimα
=

1

αtsim
− c∗(1− α)

(c− c∗)αX −
Xc

c∗αtsim
2(1− α)

− X

αtsim
2(1− α)

− 1

αtsim

At the end, we obtain that

−c∗(1− α)

(c− c∗)αX −
Xc

c∗αtsim
2(1− α)

+ ζ = 0 (4.4)

where
ζ =

1

αtsim
+

X

αtsim
2(1− α)

We multiply by (c− c∗) in Equation (4.4) to get

−cc∗ + cc∗α + c∗2 − c∗2α
αX

+
c∗cX − c2X

c∗αtsim
2(1− α)

+ ζ(c− c∗) = 0

↔ c∗3 · a+ c∗2 · b+ c∗ · c+ d = 0 (4.5)

with

a =
1− α
αX

b =
cα− c
αX1

− ζ

c =
cX

αtsim
2(1− α)

+ ζc

d =
c2X

αtsim
2(1− α)
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Solving this third order polynomial gives a solution for c∗. With this solution, one
can compute the value of n∗ using Equation (4.2) or (4.3).

This section shows that our approach can be extended to other task models. In prac-
tice, due to the rounding of the solution, both solutions are expected to return very
similar results. Future work will be dedicated to the comparison of the model perfor-
mance with different task models. In the remaining of this first part of the manuscript,
we consider the perfectly parallel task model with the associated solutions we above
derived for its simplicity in this modeling approach.

We now move one step forward in the resolution of the global optimization problem
by proposing scheduling heuristics of the different tasks of the application.

4.4 Sub-problem 2: task scheduling decisions

With the solutions to Problem 3, we now want to solve the general
1-APPLICATION RESOURCE PARTITIONING problem. Indeed, we are now able to
determine a resource partitioning given a division of the analysis tasks between in situ
and in transit processing. However, all the possible schedules are not always suitable,
due to the limited amount of memory of the system. As we discussed in Sections 3.2.3,
let us define procedure VIABILITY that, for a given system, verifies that the in situ
nodes have enough memory for simulation and the memory peaks associated to the
scheduled in situ analysis. As we previously stated, the set of in transit analysis do
not require memory to be performed (cf. Section 3.2.3). However, they generate a
communication time for sending their input to the in transit nodes. We now propose
different scheduling heuristics for simulation and analysis tasks.

4.4.1 "One-by-One" greedy algorithms

A natural polynomial strategy for scheduling algorithm is to greedily move analysis
functions from AIT to AIS , and to compute the optimal allocation of nodes and cores.
Note that because of memory constraints, not all analysis can fit in situ, which is why
we consider that they all start as in transit analysis.

Such an algorithm is described by Algorithm 1. The idea is to sort the analysis func-
tions following a given metric (priority order). We initialize the algorithm withAIT = A
and AIS = ∅. Then we greedily move each analysis according to the priority order
one by one from AIT to AIS . When an analysis is moved, we determine the minimum
number of nodes needed so that the required memory for simulation plus the memory
reserved for in situ analysis is not greater than the memory available. If the number
of nodes is greater than Cn, then we leave this application in AIT . Otherwise we com-
pute the optimal allocation of nodes and cores by a procedure called PTNG, that applies
Lemma 3. Procedure 2, described by Algorithm 2, ensures the respect of memory con-
straints.

In this work we try the following priority functions:
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Algorithm 1 Generic Greedy Algorithm

Require: Set of analysisAna, total number of nodesCn, total number of cores c, memory
per node m, bandwidth per node b, simulation time S, memory consumption of
simulation mS , a metric metric to sort the analysis

Ensure: A resource partitioning n∗, c∗ and a scheduling of tasks AnaIS , AnaIT

1: AnaIS ← ∅
2: AnaIT ← Ana
3: Analysis← metric(Ana)
4: (n∗, c∗)← PTNG

(
AnaIS, AnaIT , Cn, c, b

)
5: exec_time← SCHED

(
Cn, n

∗, c, c∗,S, AnaIS, AnaIT , b
)

6: for ai ∈ Analysis do
7: AnaIS ← AnaIS ∪ ai
8: AnaIT ← AnaIT \ ai
9: (n1, c1)← PTNG

(
AnaIS, AnaIT , Cn, c, b

)
10: if VIABILITY

(
AnaIS, n1,m,m

S
)

then
11: e← SCHED

(
Cn, n1, c, c1,S, AnaIS, AnaIT , b

)
12: if e < exec_time then
13: n∗ ← n1

14: c∗ ← c1

15: else
16: AnaIS ← AnaIS \ ai
17: AnaIT ← AnaIS ∪ ai
18: end if
19: else
20: AnaIS ← AnaIS \ ai
21: AnaIT ← AnaIS ∪ ai
22: end if
23: end for
24: return

(
AnaIS, AnaIT , n∗, c∗

)
• INCREASING-TIME/DECREASING-TIME: we sort the analysis by their increas-

ing/decreasing execution time on a single core.

• INCREASING-PEAK/DECREASING-PEAK: we sort the analysis by their increas-
ing/decreasing memory peak.

• RANDOM: we compute a uniformly random priority order.

DECREASING-TIME is well known to be efficient for scheduling applications with an
objective of minimizing the execution time. INCREASING-TIME is famously known to
be efficient with respect to the objective of improving fairness. RANDOM is here as a
witness: anything worse than this heuristic can be considered as a poor order.
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Algorithm 2 Viability of a resource partitioning for a set of in situ analysis

Require: Set of in situ analysis AnaIS , number of in situ nodes n∗, memory per node m,
memory consumption of simulation mS

Ensure: True if the in situ input system would be viable, False otherwise
1: result = False
2: IS_memory ← (m× n∗)−mS

3: if (IS_memory ≥ 0) then
4: counter ← 0
5: for ana ∈ AnaIS do
6: counter ← counter + (memory_peak (ana))
7: end for
8: if counter ≤ IS_memory then
9: result← True

10: end if
11: end if
12: return result

4.4.2 Optimal scheduling algorithm

To compare the previous algorithms, we will use the optimal scheduling algorithm that
tests all the possible in transit/in situ configurations and keep the one that generates the
lowest execution time. This optimal algorithm is described by Algorithm 3.

4.4.3 Complexity analysis

The greedy algorithms have a linear complexity on the number of analysis tasks
O(K log(K)). VIABILITY procedures have a complexity in O(K) and PTNG in O(1).

The optimal algorithm has a complexity exponential on the number of analysis func-
tions O(2K ). Indeed, it has to generate all possible subsets of K functions. As usually
there is a small number of analysis functions, this exponential factor remains limited (cf.
Table 1 in [46] for an example).

This concludes this chapter on proposing automatic tools to perform resource parti-
tioning and task allocation for in situ processing of applications. Next chapter is dedi-
cated to the evaluation of the different heuristics as so as the general performance of the
models we proposed.
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Algorithm 3 Optimal Algorithm

Require: Set of analysisAna, total number of nodes Cn, total number of cores cmemory
per node m, bandwidth per node b, simulation time S, memory consumption of
simulation mS

Ensure: A resource partitioning n∗, c∗ and a scheduling of tasks AnaIS , AnaIT

1: AnaIS ← ∅
2: AnaIT ← Ana
3: subsets← generate_subsets (Ana)
4: exec_time← SCHED

(
Cn, n

∗, c, c∗,S, AnaIS, AnaIT , b
)

5: (n∗, c∗)← PTNG
(
AnaIS, AnaIT , Cn, c, b

)
6: for set in subsets do
7: IS ← set
8: IT ← ana \ set
9: (n,HC)← PTNG (IS, IT, Cn, c, b)

10: if VIABILITY
(
IS, n,m,mS

)
then

11: e← SCHED
(
Cn, n, c,HC,S, AnaIS, AnaIT , b

)
12: if e < exec_time then
13: n∗ ← n
14: c∗ ← c
15: AnaIS ← IS
16: AnaIT ← IT
17: end if
18: end if
19: end for
20: return

(
AnaIS, AnaIT , n∗, c∗

)
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Chapter 5

Evaluating Model Through Simulation
Process

Contents
5.1 Evaluation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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5.3 Criteria for application performance . . . . . . . . . . . . . . . . . . . . 66

5.4 Results for synchronous scenario . . . . . . . . . . . . . . . . . . . . . . 69

In this chapter, we present an evaluation of our model and scheduling strategies
on synthetic applications. Section 5.1 discusses the simulation setup and methodology.
Section 5.2 evaluates our proposed solutions for asynchronous in situ processing. In
Section 5.3, we discuss from these results the important features that determines the ap-
plication performance. Finally, Section 5.4 studies the performance on the synchronous
scenario.

5.1 Evaluation methodology

To evaluate the different strategies, we designed a simulator to study the performance of
the different scheduling algorithms (Section 4.2 in Chapter 4) coupled with our resource
partitioning solution (Section 4.4 in Chapter 4). Each scheduling heuristic of Section 4.4
is implemented and returns an execution time for a given simulation function, set of
analysis and platform. The platform is given as a number of nodes, cores, a total amount
of memory M and a bandwidth. We recall that every node has the same amount of
memory, and bandwidth.

Recall that we consider here a perfectly parallel task model. A simulation task is
given as a processing time on single core and a peak memory consumption. We fix as
a constant the memory consumption of the simulation to be 1 and the total available
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memory of the system to be 1.33. This is justified by the fact that usually, simulation is a
large task that requires most of the system resources. These values can be easily tuned
in the setup of the simulator to satisfy a wide range of scenarios.

The analysis functions are described by the same features as the simulation and are
randomly generated regarding the following process. We fix a desired memory occu-
pation M for the application (simulation and analysis) and a number of analysis func-
tions K . Then, we randomly generate a set of K analysis for which the total amount
of memory peaks sums to M − 1. The execution time on one core for each function is
randomly picked between an upper bound and lower bound percentage of the simula-
tion execution time. In the following, we fix K to 8. Here again, each parameter can be
tuned by users.

The simulator is designed to support both asynchronous analysis scenario and syn-
chronous (in this case the in situ analysis is part of the simulation). For the latter sce-
nario, we use the same scheduling and model tools previously mentioned. The simula-
tion memory peak and work are updated with the scheduled in situ analysis.

Given this simulator, we perform different evaluations of the model and algorithms
by increasing the memory load of the application and studying the impact of the mem-
ory constraint on the analysis execution mode. We vary the memory load of the ap-
plication from 1.05 to 2.1 To ensure that the communication time does not interfere in
the results, we tested different bandwidth per node values going from 10% of the total
memory per unit time to 100%.

To ensure the reliability of results, we perform 130 samplings for each memory oc-
cupation and plot the average of the results for each algorithm. The number of nodes is
50 and number of cores per node is 8.

The simulator has been developed using SageMath2. The plots of this section are
generated using R language. The code of the simulator and all details related to software
dependencies3, plot generation or installation instructions are detailed in Appendix A.1.

5.2 Results in asynchronous scenario

In this section, we present the results of the above setup in the asynchronous scenario.
Figure 5.1 presents the performance of algorithms where each node has a bandwidth

equals to 10% of its memory per unit time. The first plot presents the execution time of
the application with regards to memory occupation. The execution times are normal-
ized with regard to the optimal Algorithm 3.

First of all, we note that the algorithms tend to converge to the optimal when the
constraints of memory are either strong or weak. This is explained by the fact that if

1When the memory load equals to 2, the memory consumption of analysis and simulation are equal.
In reality, this extreme point is never reached.

2http://www.sagemath.org/
3The simulator has not been tested on other versions of SageMath than 8.1 but there should not have

any problem as we use Sage as a runtime, we do not use its provided libraries.
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Figure 5.1: Simulation of Algorithm performance for asynchronous scenario with band-
width is equal to 10% of the memory per node, per unit time.

the memory load of application overpasses by far the total memory of the platform, the
only solution is to offload all the analysis in transit to maintain simulation performance
(we assume that the simulation can fit on the platform by using all its resources). In
the contrary, if the memory constraints are very low, the optimal solution is to perform
in situ analysis by sharing the resources between analysis and simulation. However,
greedy heuristics are not able to find an appropriate in situ analytics schedule due to the
fact that they consider analysis one by one. Figures 5.2, 5.3 and 5.4 show that different
bandwidths do not influence the scheduling policy.

From the performance analysis, we extract two algorithms that seems to perform
better than others: INCREASING-PEAK and DECREASING-TIME. They also induce an in
situ memory occupation relatively close to the optimal. To understand part of their good
performance, we have also plotted the in situ memory occupation for each algorithm
with regards to the total memory occupation of the application. The observation that
one can make is that the performance of algorithms seems correlated to the memory
size occupied by in situ applications. It seems to make sense as one may expect that the
additional cost incurred is the one due to data movement, hence one wants to minimize
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Figure 5.2: Simulation of Algorithm performance for asynchronous scenario with band-
width equals to 25% of the memory per node, per unit time.

the amount of such movement.
However, an interesting conclusion is that our greedy algorithms are often perform-

ing badly with regards to this optimal. One of the reason is surely that those algorithms
consider analysis one by one, and not by packs. It seems intuitive that scheduling a
group of tasks on a given set of resources has more probability to induce better perfor-
mance in an overall perspective than only one task. In the future, we must take into
account batches of analysis rather than one by one in order to design efficient schedul-
ing policies.

5.3 Criteria for application performance

From previous discussion on asynchronous scenario, one can deduce that an important
feature for system performance is resource utilization. If some resources are reserved
for in situ analysis, those resources must be sufficiently used in terms of memory and
computation to improve system performance. Otherwise, those resources are better be
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Figure 5.3: Simulation of Algorithm performance for asynchronous scenario with band-
width is equal to 50% of the memory per node, per unit time.

left to simulation and the analysis offloaded into in transit processing.
It is not a trivial result as it seems. Indeed, if an analysis is fast but uses lots of

memory, it may mean that the helper cores are never used. One may expect that it
would be better to use them. Note that this trade-off may explain the good performance
of DECREASING-TIME. While INCREASING-PEAK is better at using as much memory as
possible for analysis, DECREASING-TIME might be better at using the helper cores as
much as possible.

To validate this hypothesis, we plotted Figure 5.5. The x-axis shows the in situ mem-
ory load of considered algorithms (normalized by optimal algorithm). The farther a
point is on the right, the better the scheduling algorithm uses the in situ memory. The
y-axis is dedicated to (normalized) execution time: the lower a point is, the better the
associated algorithm performs. We included in this plot all points of Figure 5.1 to Fig-
ure 5.4. We shape each point by its algorithm and color it with a gradient representing
its normalized in situ workload.

One should read the figure as follows. In a first time, we look where most of the
points are located regarding x-axis. Indeed, if a non negligible number of points are
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Figure 5.4: Simulation of Algorithm performance for asynchronous scenario with band-
width is equal to 100% of the memory per node, per unit time.

greater than 1 on this axis, it means that the optimal solution does not have a strong cor-
relation with in situ memory usage. We clearly see that most of the points have a value
less than 1. The exception points stand for cases with lowest application memory load.
Hence, the optimal solution is strongly correlated to the in situ memory usage. This
confirms the previous intuition. Let us now take a look on the y-axis and the coloring
corresponding to in situ workload. We clearly see a trend between the performance of
the algorithm and the in situ workload. Indeed, the best performance are obtained when
the in situ workload is closed to optimal, hence indicating a correlation in optimal solu-
tion between performance and in situ workload. All features together, this plot shows
the strong correlation between the in situ resource usage and algorithm performance.

Finally, Figure 5.6 shows the evolution of the three different makespans (simulation
and analysis) of optimal solution for a bandwidth at 10% of memory per node. An in-
teresting remark is that the optimal solution is often a mixture of in situ/in transit. We
see that the simulation is always the larger makespan until the memory load of appli-
cation overcomes system capacity. This comes from the rounding strategy discussed
in Section 4.2.3. Once the memory load of the application reaches the system memory

68 Valentin HONORÉ



5. Evaluating Model Through Simulation Process

1.0

1.5

2.0

2.5

3.0

0.0 0.4 0.8 1.2
Normalized in situ Memory Load

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

Algorithms
Increasing Peak

Decreasing Peak

Increasing Time

Decreasing Time

Random

0.25

0.50

0.75

1.00
Normalized in situ Workload

Figure 5.5: Evaluation of in situ memory and workload parameters in algorithm perfor-
mance for asynchronous scenario.

capacity, the analysis have to be offloaded in transit, thus generating a communication
overhead as we can see in the figure.

Figures 5.7-5.8 show different trends for INCREASING-PEAK and RANDOM heuris-
tics4. Due to their greedy behavior, those heuristics generate a schedule with heavy
load of in transit analytics, hence important transfer overhead. Thus, the in transit ana-
lytics makespan is the main cost of each iteration for greedy heuristics, explaining the
gap of performance with optimal solution.

5.4 Results for synchronous scenario

In this section, we compare the performance of asynchronous versus synchronous ana-
lytics. We expect the synchronous scenario to outperform the asynchronous one. Recall
that when synchronous, we iterate the simulation over all in situ cores, then we pause
it to perform the in situ analysis on the same cores as the in transit analytics on its ded-
icated nodes. In the latter scenario, the working surface dedicated to simulation and
analysis is more important than the one in the asynchronous case, thus induces better
performance. In practice, synchronous analytics causes complex side effects such as

4The trends are similar for other heuristics and different bandwidths.
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Figure 5.6: Comparison of simulation, in situ and in transit analysis makespans for dif-
ferent application memory load for Optimal solution when bandwidth per node equals
to 10% of memory per node.
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Figure 5.7: Comparison of simulation, in situ and in transit analysis makespans for dif-
ferent application memory load for INCREASING-PEAK heuristic when bandwidth per
node equals to 10% of memory per node in asynchronous scenario.
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Figure 5.8: Comparison of simulation, in situ and in transit analysis makespans for dif-
ferent application memory load for the RANDOM heuristic when bandwidth per node
equals to 10% of memory per node.
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cache pollution overhead when switching between tasks and it is intrusive to the code.
Moreover, simulation is often not able to efficiently scale while we increase the number
of cores. A task model such as Amdahl’s law [17] would even reinforce this effect. From
this perspective, asynchronous analytics is more beneficial despite the data copies it en-
genders. This would be the target of a future work. For now, the synchronous scenario
represents a lower bound on application performance as we consider embarrassingly
parallel tasks.
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Figure 5.9: Simulation of Algorithm performance in synchronous scheme with band-
width is equal to 25% of the memory per node, per unit time.

Figures 5.9-5.10 show the simulation results in the synchronous case for a setup
similar to the one in Section 5.2. We plot in those figures the two best algorithms
(DECREASING-PEAK and INCREASING-TIME5) and also the optimal solution of asyn-
chronous scenario, all normalized by the optimal synchronous solution. We see that
two optimal solutions have at most a 10% difference and tend to be very similar when
the application memory load overflows system capacity. We observe for the greedy

5The order of performance for all other heuristics in synchronous mode is the same as in the asyn-
chronous results.
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Figure 5.10: Simulation of Algorithm performance in synchronous scheme with band-
width is equal to 100% of the memory per node, per unit time.

heuristics that the synchronous mode does not help to enhance performance. Some
difference may occur in some cases, but never more than a 10% gap between the perfor-
mance of a heuristic in synchronous/asynchronous processing. With a larger number
of cores per node, we know that this difference will tend to reduce, due to the flexibility
the increasing number of cores provides.

We see the benefits of synchronous execution mode for in situ processing when we
have in situ analytics to process. However, when the application memory load rises, we
see that the optimal synchronous can be outperformed by the optimal asynchronous.
This is due to the fact that, in synchronous, there is not enough in situ work to take the
benefits of all in situ resources when the simulation is paused. In contrast, asynchronous
scenario induces a more flexible resource partitioning with less in situ resource loss.

This concludes the performance evaluation of our models and algorithms.
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Chapter 6

Summary of Part I

In this chapter, we summarize the contributions presented in this first part of the
manuscript. We also introduce ideas of short-term future works.

6.1 Summary

In this first part of the manuscript, we considered the problem of optimizing data-
intensive applications on supercomputers. Coming from scientific fields such as bi-
ology or physics, these applications are composed of two phases: the simulation, being
compute-intensive, and the analytics, presenting a data-intensive profile. Such applica-
tions exhibit a regular execution time due to the structure of their code, developed as
monolithic blocks. Hence, determining the duration of the resource reservation can be
accurately performed after some basic profiling of the two phases.

As variations in the performance of I/O operations are one of the major bottleneck
in supercomputers, the storage of all the simulation data on disks prior to analytics
process is no more sustainable. As an alternative, coupling simulation and analytics
in order to post-process data directly on their production site has emerged as a major
trend for data-intensive applications. We considered in our work the widely used in situ
paradigm where simulation and analytics are iteratively run on shared or non-shared
resources.

Critical issues in in situ paradigm is to make decisions about the compute nodes and
workload distribution in between simulation and analytics. This problem is two-fold: it
consists in partitioning correctly the resources shared between the simulation and the
analysis functions (nodes, memory, etc.), and scheduling the different analysis in order
to perform them in situ or in transit.

As a solution to these issues, we proposed a general model of the workflow of these
applications and formulated an optimization problem for minimizing the execution
time of the applications. We designed automatic tools to ease the resource partition-
ing and computational load distribution between the application and the machine re-
sources. We derived a model to partition the compute nodes between the different set
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of tasks of the application. This model relies on several assumptions that we have either
tried to keep as inconsequential as possible, or that are easily modifiable (e.g. band-
width model, task model) in our analysis. We also provided scheduling heuristics to
decide which analysis functions have to be performed in situ and in transit. We estab-
lished the flexibility of our models by extending our solutions to another task model for
the simulation, Amdahl’s law. We assumed that analytics is composed of a limited num-
ber of analysis functions, according to usual implementations of analytics. Indeed, some
use cases from computational physics involves limited number of analysis functions, ac-
cording to Table I in [46]. In general, some routines are in charge of performing visual-
ization duties, while others process verifications on data integrity and some manage the
data saving on disks. Some other functions can be scheduled to perform post-processing
of data (extraction, statistics etc), depending on the problem under study. Our model is
flexible in terms of number of analysis functions, as well as it can be adapted for many
different frameworks.

Finally, we performed an evaluation of our solutions on synthetic applications. We
were able to assert that the memory usage of the analysis functions is one of the key
feature to account for when performing the scheduling of analysis functions. Specifi-
cally, when partitioning analysis functions between in situ and in transit, one needs to
maximize the amount of analysis functions computed in situ.

6.2 Perspectives

Near-future work will be dedicated to evaluating experimentally these results. Simula-
tion results must be validated in the framework of a real simulation process with its own
analytics workflow. This evaluation would allow us to study how robust the assump-
tions made by our model are, and if our algorithms can be used as such, or if we need to
make our model more precise. To do so, we plan to use the FLowVR middleware1 [53].
FlowVR enables to launch parallel simulations on thousand of cores with the in situ
paradigm. FlowVR is based on a data-flow approach, where the application is modeled
as a set of components that exchange messages, that is, data. Hence, the application is
expressed as a directed graph. FlowVR automates the deployment of the application on
machine resources, and the communications between the different components using
daemons running on each distributed resource. Overall, it offers a flexible environment
to design customized analytics associated to a simulation code. In our case, the simu-
lation is performed through the Gromacs package that emulates molecular dynamics
with equations of motions considering until millions of particles. The associated ana-
lytics are designed to perform operations on and tracking of the particles. For instance,
some analytics are dedicated to perform visualization of the system under study. Some
others are designed to compute metrics that evaluate the evolution of the system. These

1http://flowvr.sourceforge.net/
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experimentations are currently being designed on the Occigen2 machine of the french
National Computing Center for Higher Education.

Once this first evaluation will be over, a natural next step is to focus on designing
algorithms that maximize the usage of in situ resources (memory and cores). A first idea
would be to consider the analysis by packs rather than one by one. In general, we would
like to quantify the bound that makes in situ analysis interesting from a performance
perspective.

Several other directions include enriching our model to enhance its expressivity for
different types of simulation and analytics coupling. Extensions to heterogeneous nodes
is a first step, with different processing speed or specialization in certain type of opera-
tions. Indeed, it can be interesting for applications to perform computations on different
types of CPU depending on the tasks that compose its workload. For instance, we in-
troduced that AI techniques such that Machine Learning functions are now being used
on HPC facilities. Such AI frameworks usually better perform on GPU than CPU. In
the second part of this manuscript, we study such type of AI applications and propose
solutions to efficiently manage them on HPC facilities.

Another direction on optimizing data-intensive applications is to better take into
account the hierarchical memory of CPU. As we previously stated, different levels of
memory are available for compute cores to store data. With their different access speed
and capacities, it is necessary to optimize the usage of this hierarchy in order to ensure
performance of the running tasks. Such improvement would imply a good knowledge
of the memory usage of the different tasks of the application. This can be done, for
example, by annotating data to help users determine their memory space destination.
Understanding the I/O profile of the applications can also be useful to perform the
scheduling of applications.

Finally, different communication models can be considered in order to better reflect
the competition for I/O system and more accurately predict the transfer overhead for
the different data.

2Machine configuration is available at https://www.cines.fr/en/supercomputing-2/
hardwares/the-supercomputer-occigen/configuration/.
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Chapter 7

Introduction
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7.1 Introduction

In the first part of this thesis, we mentioned that high performance computing platforms
rank amongst the most powerful structures able to perform heavy-load critical compu-
tations. We described typical HPC applications as sets of massively parallel codes that
require a significant number of computing resources to meet their need for memory and
computation. Fields such as astronomy and cosmology, computational chemistry, par-
ticle physics, and climate science have evolved together with the advance of platform
architecture and software stack. These scientific applications follow widely used pro-
gramming models in order to reach massive levels of parallel processing. The classical
fork-join paradigm consists in branching off the execution of the program into several
parallel tasks at pre-defined moments of the application execution. Branches are later
merged and joined to go back to initial sequential processing. This branching princi-
ple is useful for increasing the amount of memory available for the application because
each branch gets processed on a dedicated resource. This workflow model is actually
widely used for developing scientific applications, which are composed of a set of tasks
that have dependencies between each other. Most of the time, such applications can
be represented by a directed acyclic graph where nodes stand for the different tasks of
the application, and the edges are the dependencies between them. The advantage of
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such application representations is that they provide users with a better control over
the flow of data generated by the different tasks. In this paradigm, each task com-
prises either several sequential tasks, or a large set of parallel tasks, for instance using
MPI. Many workflow system management have been designed in recent years in order
to offer users solutions to develop their applications in many different environments,
whether it be a local cluster, a grid (a network of compute nodes spatially distributed)
or large-scale infrastructures. The Pegasus project [44] is an example of such workflow
management system. It has been designed to offer portability, scalability, performance,
but also reliability by being able to detect errors occurring during application lifetime.

Originating from BigData, some similar programming frameworks have appeared
on HPC environments, owing to the convergence between the two domains. One of the
most famous one is the MapReduce model. It has been developed with the motive of
processing parallelizable problems across large sets of input data on many-node infras-
tructures. Due to the constant increase of input datasets, these frameworks are now tar-
geting the large-scale infrastructures of HPC, since local clusters cannot offer that much
computational power. One of the strength of MapReduce lies in its ability to take ad-
vantage of the locality of data. Indeed, it is able to process the data near the place where
they are stored in order to avoid unnecessary communications. Input are divided in
between each processing unit, called worker. Each worker first applies a Map function
on its local input, and saves the generated output on a temporary storage. A shuffling
operation is then executed in order to reassign the data based on output keys gener-
ated by the Map phase. This process ensures that the data that have the same key get
located on the same worker. Finally, each worker simultaneously processes in parallel
each data, which have been grouped by key. In short, both Map and Reduce operations
can be performed in parallel by each node.

Newly emerging applications move beyond a structure with large monolithic codes
that are usually designed for HPC, which use tightly-coupled and compute-centric al-
gorithms. Fields such as neuroscience, bioinformatics, genome research, computational
biology usually carry out exploratory research that involves more dynamic, heteroge-
neous, multi-phase workflows using ad-hoc computations and methodologies. New
Machine Learning (ML) and AI frameworks have become important tools in exploratory
domains. While significant efforts have been made over past years to improve these ML
techniques, research advances have induced new requirements in terms of computa-
tions. For instance, Deep Learning requires an important training part, in which the
quality of the model is supposed to increase as the dataset size grows.

Such workflows involving ML techniques will soon start targeting HPC infrastruc-
tures that offer high computation support as well as substantial memory and good net-
work specifications. However, the profiles of these emerging applications differ from
that of classic HPC applications. Often, the execution time of these applications is diffi-
cult to estimate because they are input-independent. It is common for such applications
to have walltimes ranging between several hours and several days. This feature consti-
tutes a real limitation for users for whom requesting the maximum possible walltime
often induces an overestimation that increases the total cost of the request. For second
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generation applications, this paradigm works differently. Users still need to estimate
the peak memory requirement, so as to mobilize only the amount of resources that will
meet peak memory needs. However, important variations in memory consumption can
have a significant impact on performance prediction. Studies using machine learning
methods to estimate the future resource consumption of an application assume a con-
stant peak memory footprint (e.g. [134]). However, it remains tricky to evaluate the
exact walltime of the application. Correspondingly, it is hard to estimate the reservation
duration. If one overestimates the walltime of the application, the cost for the user can
prove to be very important. By way of contrast, underestimation can lead to applica-
tion failure. A solution to this problem would be to continue processing a sequence of
reservations until the application terminates. We propose to tackle this problem from a
theoretical perspective in order to determine efficient scheduling heuristics to minimize
the cost of processing a stochastic application.

In the remaining part of this introductory chapter of the second part of this thesis,
we will study the profile of stochastic applications with the goal of understanding the
properties and characteristics of these new frameworks. To that end, we will focus on a
representative neuroscience application named SLANT [80, 79]. This code features the
typical behavior of the upcoming stochastic applications, that is to say:

1. Its workflow consists of multiple stages and a walltime comprised between tens of
minutes to hours depending on the hidden characteristics of the input Magnetic
Resonance Imaging (MRI) and of the hardware of the platform;

2. While its peak memory requirement is predictable, within one execution the mem-
ory footprint can have variations of tens of GBs;

3. Its code is dynamic, in continuous development, and dependant upon on the
needs of each study.

7.2 Emergence of a second generation of applications

In this section, we present the high-level observations of a representative stochastic ap-
plication used in the neuroscience field, called SLANT (presented in Section 7.2.1). From
these observations, we will propose in Chapter 9 a generic application model that we
will use in Chapter 10 to design scheduling strategies for such types of applications.

7.2.1 Spatially Localized Atlas Network Tiles (SLANT)

Spatially Localized Atlas Network Tiles (SLANT) [80, 79] is a Neuroscience applica-
tion developed by the medical and neuroscience department at the Vanderbilt Univer-
sity [91]. Most of the work presented in this second part of the manuscript has been
done in collaboration with Vanderbilt University. This cooperation was quite profitable
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since we could have access to emerging applications and explore them so as to provide
solutions to help developers execute efficiently their applications.

SLANT features an easily understood input data, MRI images, which makes it ideal
to be studied, and it is actually representative of many of this new type of HPC applica-
tions. For example the RADICAL-Pilot job system to develop bioinformatics workflows
is often used to create workflows that spawn large numbers of short-running processes
that can exhibit highly irregular I/O and computation patterns [109]. Similarly, appli-
cations using Adaptive Mesh Refinement (AMR) methods have been proven to have
highly unpredictable performance variations depending on the characteristics of the in-
put data [142].

In our case, SLANT performs multiple independent 3D Fully Convolutional Net-
work (FCN) for high-resolution whole brain segmentation. It takes as input a MRI image
obtained by measuring spin–lattice relaxation times of tissues1.

We run the application on a Haswell platform hosted on Plafrim2, using the Singu-
larity container runtime. Due to the hardware limitations of the Haswell platform3,
we could not run the GPU version of SLANT. Instead, we used a CPU version of
the application whose code is freely available at https://github.com/MASILab/
SLANTbrainSeg. The CPU version is given in the form of a Docker image. Since
the Haswell platform does not support Docker either, we used a software called Sin-
gularity, which allows us to utilize the Docker image without installing it on the plat-
form. Appendix A.3 presents the details of our protocol to run the application while
Appendix D.1 describes the architecture of the Haswell platform.

We are interested in the behavior of the applications when it does not get impeded
by any interference coming from the system or from some other applications (e.g. con-
gestion due to shared resources).

Different versions of SLANT exist, depending on whether the network tiles are over-
lapped or not. Here, we consider the overlapped version (SLANT-27 [80]), in which
the target space is covered by 3 × 3 × 3 = 27 3D FCN. The application is divided into
three main phases: i) a preprocessing phase that performs transformations on the target
image (MRI is a non-scaled imaging technique) ii) a deep-learning phase iii) a post-
processing phase doing label fusion so as to generate the final application results. Each
task may present run-to-run variation in their walltime.

7.2.2 High-level observations

We previously mentioned that second generation applications present variation in their
walltime. In this section, we will attempt to verify this assertion, and investigate the
origin of this variation at application level. To this end, we will run the SLANT-27

1The format of the input MRI is named T1weighted image.
2https://www.plafrim.fr/
3The GPU version requires nvidia-docker program that is not available on the Haswell platform.
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7. Introduction

application on different input types. These inputs are extracted from OASIS-3 [90]4 and
Dartmouth Raiders Dataset (DRD)5 [73] datasets.

Figure 7.1: SLANT application walltime variation for various inputs.

Figure 7.2: Performance variability on identical inputs. Variability is studied over five
runs.

4For this very large dataset, we only used a subset of available data. Selected data are presented in
Appendix A.3.

5Available at http://datasets-dev.datalad.org/?dir=/labs/haxby/raiders
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In Figure 7.1, we confirm our previous observations about the large walltime varia-
tions. What is more, we can distinguish two categories of walltimes, which correspond
to the two datasets: OASIS inputs have a walltime of 70min±15%, and DRD inputs have
a walltime of 125min±30%. The obvious questions arising from these observations are
the following:

• Is the walltime variation due to a machine artifact (or is it due to the quality of the
input)?

• Is the walltime variation due to the input size (and can it be predicted using this
information)?

We study these questions hereafter in the present section via a set of experiments.
First, we randomly selected three inputs of both datasets, and executed them five times
each. We present the results in Figure 7.2. We can see that the behavior for each in-
put is quite consistent. There are slight variations for DRD inputs, but nothing of the
same magnitude as the one that was observed over all inputs. Hence, it seems that the
duration of the execution is highly influenced by the input.

Figure 7.3: Correlation between the size of the input and the walltime over the 312 runs.

We then study the variation of walltime as a function of the input size in Figure 7.3.
We can see that for a given dataset, the walltime does not seem correlated with the input
size. The corresponding Pearson correlation factors are 0.30 (OASIS) and −0.15 (DRD).
The datasets, however, appear to have different input types: except for the outlier at 120
MB, the input sizes of OASIS vary from 0 to 30MB while those from DRD vary from
45 to 75MB. We present visually the type of inputs for the two databases in Figure 7.4.
Intuitively, the performance difference between DRD and OASIS is probably due to the
resolution of the images.
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(a) Segmentation for OASIS.

(b) Segmentation for DRD.

Figure 7.4: Typical inputs and outputs based on the dataset.

Altogether, we can make the following preliminary observations about these new
applications:

1. We observe large variations in terms of execution time of Neuroscience applica-
tions, complicating their execution on HPC platforms. This aspect will constitute
the core of the remaining research hereafter exposed in this part of the manuscript

2. These variations are mostly determined by elements from the input, but are not
correlated with the size of the input (quality and not quantity).

At this stage, one can argue that our analysis does not take into account machine-
related performance variations (I/O, shared resources etc), nor does it try to see if one
could "predict" the performance of the application based on inputs. yet these omissions
were purposeful. Many work in the scientific literature focus on both these topics, for
example [164, 51, 92] for machine-related variations and [134] for predicting application
makespan based on inputs (see Chapter 8 for more details). Here, we specifically aim at
showing application specific variations which we believe is a new way of handling HPC
applications (as shown in Figure 7.2, we verified that, for given inputs, there was almost
no machine-related variations). Obviously, one needs to ultimately take into account
many aspects when taking scheduling decisions but, from a research standpoint, we
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believe that it is important to study them separately. In this work, we focus on the
variability that are due to the application itself.

7.3 Contributions

The second part of this manuscript focuses on the study of the type of emerging appli-
cations that we shall call Stochastic Applications in the remaining part of this manuscript.

In Chapter 8, we review a few related work dealing with scheduling and managing
such applications on reservation-based platforms.

Chapter 9 will be devoted to the application model, platform cost model and prob-
lem statement. Based on our observations about SLANT, we will propose a generic
application model in which the execution time of the application follows a known prob-
ability distribution. Some assumptions are made to tackle the problems, such as a flat
memory model for the applications. Our study aims to bridge the gap between the
specific characteristics of exploratory applications and the strict requirements of HPC
batch schedulers that hinder productivity and innovation for new computational meth-
ods. Using this application model to formulate different cost models of platforms, we
will then describe different optimization problems of scheduling stochastic applications
on a reservation-based platform. The objective is to minimize the expected cost of a suc-
cessful execution of the jobs. Our cost model of platforms will basically cover two main
scenarios: a model that considers the possibility of checkpointing in the end of a reser-
vation (that is, the fact of saving the progress of application to avoid losing it in the end
of the reservation), or a model that does not comprise any checkpointing. This method
will allow us to cover a wide range of target applications and frameworks.

In Chapter 10, we will detail a few algorithmic solutions to the problems stated in
Chapter 9. We will derive our solutions from the cases in which application walltime
follows either continuous or discrete probability distributions. In short, our suggestions
are based on two different scenarios (checkpointing is available or not). Depending on
the type of distribution, the solutions are either exact solutions, near-optimal approxi-
mation algorithms, or sub-optimal ones.

Afterwards, we present in Chapter 11 an extensive set of simulations and experi-
ments with the aim of evaluating the scheduling strategies that we will previously have
introduced. We will perform evaluations for a wide range of usual probability distri-
butions, with many different cost functions covering a wide range of scenarios. We
will show that our solutions outperform current approaches for stochastic application
in HPC systems.

In Chapter 12, we will try to move one step forward in this study by attempting a
more in-depth analysis of the SLANT application. We will propose an analysis at task
level of the profile of the application in order to extract important features of the stochas-
tic nature of the application. Our goal is to validate and enhance our first application
model. One of the main innovations in this part is that we will not consider anymore the
memory model to be flat. We will propose a decomposition of the application into sub-
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tasks having their proper memory peak. Then, based on these new observations, we
will put forward new scheduling heuristics inspired by the ones previously presented
in Chapter 10. To this end, we will use these models to estimate the resource request
for SLANT when deployed on a HPC system. We will then evaluate these new strate-
gies alongside the ones described in Chapter 10. Eventually, we will point out that a
good knowledge of the application is quite crucial to the design cost-efficient schedul-
ing strategies.

Finally, Chapter 13 propose a conclusion on the second part of this manuscript.
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Chapter 8

Related Work
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In this chapter, we explore some related work about scheduling stochastic applica-
tion and checkpointing.

8.1 Reservation-based scheduling

In this section, we briefly recall the principle of HPC schedulers and discuss the impor-
tance of resource estimation for their performance. More details about it can be found
in Chapter 2 of Part I.

8.1.1 HPC schedulers and resource estimation

Submitting a job onto HPC platform consists in sending a request to a complex pro-
gram called scheduler. Each request details the amount of resources needed (number
of nodes/cores as well as optionally the type of nodes and/or the amount of memory
per core required by the application). A request must also provide a total duration for
which resource will be allocated. Then the scheduler takes all this information into
account when mapping the different user requests with the machine resources. Most
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schedulers for HPC systems (Slurm [155], Torque [131] or Moab [37]) implement an it-
erative algorithm triggered by state changes, such as new job submissions, job starting
or ending event, or timeout. This principle works well for scientific applications since
the amount of resources needed can be estimated prior to application execution with a
good precision. We see that this is more complex with stochastic applications, for which
the walltime for a given input cannot be estimated accurately.

Resource overestimation during submission is a typical strategies for HPC applica-
tions since the cost of getting your application killed due to underestimation is very
high. As it was recently empirically showed by our colleagues Gainaru et al. [60], the
runtime overestimation due to the inherent structure of stochastic jobs can impact both
system utilization and user response time by 25-30%. These observations have moti-
vated the collaboration with Vanderbilt University on the design of scheduling strate-
gies for stochastic applications.

Several works aim at improving the use of batch scheduler in the presence of uncer-
tainty on the runtimes. Zrigui et al. [165] discussed using online learning to improve the
performance of batch schedulers by a simple classification of jobs into two categories,
small and large. BigData frameworks such as MapReduce [42] and Dryad [84] rely on
schedulers (e.g. YARN [143] and Mesos [77]) with distinct features such as fairness,
or resource negotiation to manage the workload. However, accurate application needs
must be known to the scheduler. The strategies we propose aim at providing hints to the
user so they can optimize their submissions, but also to these communities since their
schedulers may use user-given execution-time distributions of tasks to implement their
own sequence of reservation with checkpointing.

To provide solutions in the presence on uncertain execution time, some work focus
on optimizing the expected response time of applications by performing distribution fit-
ting [34, 87, 64, 111, 115]. They assume a well-known probability distribution of the job
execution time. These ideas were extended to provided near-optimal reservation strate-
gies in both HPC and cloud systems for a set of stochastic jobs with backfilling [60].
These papers do not consider a task model for the stochasticity of the application be-
cause they simply focused on the execution time (flat memory model), as we do in
Chapter 10 and 11. The problems under study are already complex to tackle, and some
assumptions need to be done in order to develop a solution. However, we move one step
further in Chapter 12 by developing a stochastic task model, which allows to develop
a memory footprint model. Hence, we obtain a better representation of the memory
behavior of the applications.

8.1.2 Pricing and reservation schemes in the cloud.

Cloud computing platforms have emerged as another option for executing HPC appli-
cations. Job scheduling in the cloud has an even bigger challenge [67], since it needs
to deal with highly heterogeneous resources with a wide range of processor configura-
tions, interconnects, virtualization environments, etc.
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Different pricing and reservation schemes are also available for users who submit
jobs to a cloud service. The former usually provides a more flexible service while
the latter incurs a much cheaper cost. The user pays for the resource requested
and/or used based on an hourly or daily rate. Several works have been done to
study these schemes in the cloud, and from a computer science perspective. Many
of these studies focus on the pricing strategies and service management of platform
providers [151, 45, 39, 14, 130]. Some works consider modeling the delays for users [14],
and how providers manage the idle resources [45]. The work in [151] studies the pric-
ing practices of Amazon AWS [16] when the price is dynamically adapted to real-time
demand and idle resources. In [39], authors provide an analytical model of pricing for
reservation-based scheme (used by Amazon AWS) and utilization-based scheme (used
by Google GCP [65]). They show that the effective price mainly depends on the variation
of platform usage and the competition for customers. Some tools are also provided for
users to perform cost evaluation in order to select which type of platform to use. They
show that users with high-volatility demand should consider using AWS offers while
one should use GCP in the other case. Our experimental results in Chapter 11, com-
pared with on-demand or utilization-based services, reservation strategies can provide
cost-effective options for executing stochastic jobs when there is significant difference in
the offered price.

8.2 Scheduling under variability

In this section, we study related work of scheduling under variability at application or
system level.

8.2.1 Variability at application level

Scheduling with uncertainty Many prior works have considered stochastic schedul-
ing for jobs with execution time uncertainty. Most research in this paradigm (e.g.,
[34, 87, 64, 111, 121, 115]) assume that the execution time of a job follows a known prob-
ability distribution and aims at optimizing either the expected response time or the
makespan for a set of jobs under various distributions. Most of them, however, do not
consider the problem in the context of reservation-based scheduling. In this manuscript,
we also model jobs by an execution time following a probability distribution. From this,
we propose reservation strategies for a single job in both HPC and cloud systems, either
with or without checkpointing considerations.

More specifically, many works deal with stochastic job scheduling (e.g., [137, 49, 140,
36, 147]). Various models [35] have been proposed to model the performance of ex-
ecuting stochastic jobs on computing platforms. For instance, in [95], stochastic jobs
are modeled as a DAG of tasks whose execution times and communication times are
stochastically independent. The authors in [137] propose a model based on resource
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load in grid systems. Several refinements can be envisioned, such that improving sched-
uler performances by including distribution features in order to optimize final perfor-
mance. Also, dealing with heterogeneous nodes increases problem complexity [140]. A
book by Pinedo [122] contains a comprehensive survey of stochastic scheduling prob-
lems, and a book chapter [62] proposes a detailed comparison of stochastic task-resource
systems.

Prediction of execution time While the second part of this document focuses on work-
ing with the uncertainty of execution time, another complementary direction is to try to
remove this uncertainty by predicting the execution time.

The predictive methods based on machine learning, rely on supervised inductive
learning over historical log files on large-scale compute clusters, using either predicted
memory usage of the jobs or predicted the execution time of the jobs, and assume a large
set of training data. As instance, in [134], the authors use five types of regression algo-
rithms on a large dataset (millions of entries) containing past executions of applications
on their internal cluster, and predict both the memory and the processing time of future
runs. The study in [18] combines CPU and GPU execution historic logs and generate ob-
servations that help users or administrators to classify jobs into equivalence classes by
likelihood of failure. In [89], the authors use a predictive scheme for identifying small
walltime jobs. With a similar approach, Gaussier et al. [63] introduced several machine
learning methods for predicting the class of execution (small/large) for HPC application
with the goal of improving scheduling and backfilling algorithms. A similar regression
model is presented in [66], but with a focus on predicting underestimation of job run-
time for applications running on TSUBAME 2.5. Closer to our study, [107] focuses on
two bioinformatics applications. Their method is capable of increasing the accuracy of
predicting the job execution time, the memory needs, and the space usage. However,
the method requires a large training set. Unlike these studies, our applications are ex-
tremely dynamic with their codes in continuous change. Thus they require a strategy
that not only is capable of dealing with stochasticity in memory and execution time, but
can learn the behavioral pattern of the application fast. Hence, the huge amount of data
required to train the prediction model is a limitation for our considered applications.
Moreover, we discussed in Figure 7.3 the difficulty of predicting application walltime
with regards to input size.

8.2.2 Variability at system level

In our work, we focus more on application-level variability. However, variability at
system level is also a factor to take into account when one studies the variability of
applications in terms of walltime or memory needs.

Several works [13, 88] study the factors of variability in HPC machines at (among
others) system level. In [128], authors point out the importance of cross-application

94 Valentin HONORÉ



8. Related Work

contention and system activity. Some works [83] also study the variability due to com-
ponent manufacture.

Other system constraints such as I/O interference [153, 100] or including consid-
eration of network traffic [51], power limits [83] or concurrency tuning in the HPC
middleware [118], can also become a significant reason for performance variability. In-
terferences are also observed between different virtual machines running on the same
hardware in a cloud computing provider [123]. Although we could include all these
variability causes in our study, we chose to focus on application-specific variations, a
new trend in HPC, and separate their impact from the hardware constraints.

Finally, variation in resource requirements is a known fact for HPC even for existing
traditional applications. It can be attributed to several factors: randomized algorithms,
inherent job variability (e.g. depending on input data), resource sharing, interferences,
OS jitter, etc. Inherent job variability is the topic of this work, and includes iterative
methods that work towards convergence [142] through discrete steps or studies that
trigger an in-depth analysis of subproblems based on certain observations. Those will
experience variability in both execution time and memory consumption. It has also been
recently observed in machine learning framework on GPUs [97].

8.3 On the use of checkpointing

In this section, we present the current approach for checkpointing in HPC, and present
the current solutions for stochastic applications.

Checkpointing is a major tool to cope with stochastic applications and/or platform
unavailability. It is usually implemented through checkpoint-restart [150, 82]: saving
a snapshot of application state on a persistent external support (typically, the central
filesystem). Then, this snapshot of the application can be used to resume computation
due to either failure of the application itself or hardware/platform crash.

The objective is to perform this process with minimal loss of computing work.
Hence, one has to balance the gain of restarting from a snapshot after a failure with
the time spent to checkpoint. Checkpointing too often is indeed not an efficient solu-
tion because saving huge amounts of data usually slows down the application signifi-
cantly. In the context of fault-tolerance, a lot of work (e.g., [157, 41, 82]) has been devoted
to deriving the optimal checkpointing interval that minimizes the checkpointing over-
head or resource waste. A checkpoint can be taken using a variety of techniques at
every level of the system, from utilizing special hardware/architectural checkpointing
features through modification of the user source code. Some works [55] present the
implementation of checkpoint-restart in HPC system.

For this work, we consider more a user perspective for stochastic application. This
is justified by the possibility to save only the necessary data, which could lead to save
checkpoints smaller than a whole system snapshot. This has the double advantage of
reducing the required storage space, as so as limiting the use of I/O systems whose
performance is affected by contention [153]. Also, user-level checkpoints could be used
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for many different purposes such as fault-tolerance or debugging purpose.
Specifically, for application-level checkpointing, we could consider checkpointing

performed either by the application itself explicitly modifying the code to work with
a user level checkpoint library (like FTI [27]) or by linking an external library. In our
work, we focus on this latter case because it generally does not require to modify the
application, which we do not aim at doing now. BLCR [70] was a popular solution but it
does not seem to be maintained anymore, and does not support containers as far as we
know. DMTCP [19] is a more recent alternative that has good support for parallel HPC
jobs, and may be integrated with Slurm [125]. However it lacks container supports.

Another solution is to use CRIU [1], which is well supported in the upstream Linux
kernel, and has support for checkpointing containers [110, 120]. CRIU enables check-
pointing a running process under the form of a collection of files(open files, open sock-
ets etc), later used for restoration point from where the snapshot has been taken. At
restore process, CRIU reads the files in the checkpoint, forks the process then restores
its resources (memory, sockets, timers, etc.). However, the application ends after CRIU
has performed the checkpoint, which can be a limitation. Also, Docker container sup-
port [40] seems still experimental. Thus, checkpointing in practice is a complex process
to handle for stochastic applications, especially when using a container runtime. Some
surveys [126] discuss the advantages and drawbacks of each approach above described.

In our experiments in Chapter 12, we use CRIU to checkpoint the docker image of
SLANT. Our work is actually not strongly tied with CRIU. Hence this choice may be
revise in the future if target applications require MPI support or do not need containers.

In this work, we present strategies that combine reservation and checkpointing for
stochastic jobs with known execution time distributions. To the best of our knowledge,
this is the first result to provide performance guarantee on the expected execution time
while leveraging checkpointing in reservation-based scheduling environment.
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Reservation Strategies for Single
Stochastic Job
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9.1 Introduction

In this chapter, we introduce the notion of reservation strategies for stochastic jobs. After
introducing a motivational example of the target problem, we present a formal defini-
tion of a stochastic job in Section 9.2. Then, Section 9.3 is dedicated to the presentation
of a generic platform cost model. Finally, we state the optimization problem to be solved
in Section 9.4.

9.1.1 Reservation-based approach

We are interested in processing a single stochastic job on a reservation-based platform.
The notion of reservation-based platform is here very wide, and covers both cloud plat-
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forms (such as Amazon AWS[16]) as well as HPC infrastructures. We aim at providing
solutions that cover a wide range of platforms and applications.

In general, scheduling a job onto such platforms typically involves making a reser-
vation of the required resources, say of duration W1 seconds, and running the job on
the platform until either the job has successfully completed, or the reservation time has
elapsed, whichever comes first.

In the case of stochastic jobs, the user has to guess a good value for W1. Indeed, if the
job does not complete successfully within these W1 seconds, the user has to resubmit
the job, this time requiring a longer reservation, say of length W2 > W1. If the job still
does not complete successfully within W2 seconds, the user has to try again, using a
reservation of length W3 > W2, and so on until the job would succeed eventually. The
cost to the user is then the cost associated with all the reservations that were necessary
to the successful completion of the job.

A reservation strategy could well depend on the context, the type of jobs and the
platform. As an example, the MASI Lab [91] that we collaborate with at Vanderbilt
University takes the average execution time from the last few instances of a neuroscience
job to determine the first reservation time for its next instance. If the reservation is
not enough, a standard practice is to resubmit the job by increasing with a factor 1.5
the requested time in the last failed run, some users tend to reserve a walltime that
“guarantees” execution success (say up to the 99th execution quantile). If this is not
enough, they can ask for the 99th execution quantile of the remaining possibilities, etc.

This reservation-based approach is agnostic of the type of the job (sequential or par-
allel; single task or workflow) and of the nature of the required computing resources
(processors of a large supercomputer, virtual machines on a cloud platform, etc.). The
user just needs to make good guesses for the values of successive reservation durations,
hoping to minimize the associated cumulated cost. Here, we refer to cost as a generic
metric. It could be paid either in terms of budget (e.g., a monetary amount as a function
of what is requested and/or used in a cloud service), or in terms of time (e.g., the wait-
ing time of the job in an HPC queue that depends on the requested runtime as shown
in Figure 9.1).

Although we do not know the exact execution time of the job to be scheduled, we
do not schedule completely in the dark. Instead, we assume that there are many jobs of
similar type and that their execution times obey the same (known) probability distribu-
tion, that can be extracted from historic of past runs as we will see in next sections. Each
job is deterministic, meaning that a second execution of the same job will last exactly as
long as the first one. However, the exact execution time of a given job is not known until
that job has successfully completed. Our only assumption is that job execution times are
randomly and uniformly sampled from a target probability distribution.

We also include the possibility of checkpointing at the end of some (well-chosen)
reservations. This allows us to save the current state of the application, and restart
in a next reservation from that state. The idea of checkpointing is very natural and
widely used in practice, in particular for long jobs lasting several hours, but it dramati-
cally complicates the design of scheduling strategies. State-of-the-art approaches either
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(a) Jobs that requested 204 procs. (b) Jobs that requested 409 procs.

Figure 9.1: Average wait times of the jobs run on the same number of processors (204
and 409) as a function of the requested runtimes (data from [136]). All jobs are clustered
into 20 groups, each with similar requested runtimes. Each point (in blue) shows the
average wait time of all jobs in a group and the dotted lines (in orange) represent affine
functions that fit the data.

checkpoint at the end of all reservations, or never checkpoint. For large-scale applica-
tions, checkpointing to save intermediate results at the end of each reservation is the de
facto standard approach.

As checkpointing is not always supported for all applications (for instance, check-
pointing applications running inside a container is currently under development [40]),
we also provide solutions that do not model checkpointing. In this chapter, we intro-
duce the model of reservations with possibility of checkpointing at the end of reserva-
tion. The model without checkpoint/restart is introduced in Section 10.2 of Chapter 10
before presenting the associated scheduling strategies.

While the core of the theoretical results presented in the remaining chapters of this
manuscript is valid for general continuous probability distributions, we focus on the
usual distributions for the evaluation. In particular, we consider Uniform, Beta, and
Bounded Pareto distributions if the execution times are upper-bounded, i.e., they be-
long to some interval [a, b]; and we consider Exponential, Weibull, LogNormal, and a
few others if there is no upper bound for the execution times. Note that the LogNormal
distribution has been advocated to model file sizes [57], and we assume that job du-
rations could naturally obey this distribution too. Also we only consider distributions
whose support is included in [0,∞), because execution times must have positive values.
This precludes the use of Normal distribution, for instance.
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9.1.2 A generic cost function

The cost of a reservation is usually proportional to the reservation length, with a possi-
ble initial and fixed value (start-up overhead). In our will of targeting a wide range of
platforms, we propose a generic cost model that fit both cloud/BigData and HPC infras-
tructures. A typical model of cloud platform is the Reserved Instance model available on
Amazon AWS [16], which is up to 75% cheaper than the flexible On-Demand model that
does not require advanced reservations. For HPC infrastructures, the cost of a reserva-
tion is similar, with a cost paid in proportion to the actual execution time, again with
a possible start-up overhead. This latter scenario is relevant when submitting jobs to
large supercomputing platforms, where each user requests a set of resources for a given
number of hours, but only pays for the hours actually spent; however, the time spent in
the waiting queue of the scheduler, and hence the job’s waiting time, both depend upon
the number of hours asked for in the request.

Specifically, for a reservation of lengthW1 and an actual execution duration of length
X , the cost is expressed as:

αW1 + βmin(W1, X) + γ (9.1)

where α, β and γ are constant parameters that depend on the platform and the cost
model1. The first component αW1 is proportional to the reservation length (pay for what
you ask). The second component βmin(W1, X) is proportional to the actual execution
time (pay for what you use). Finally, the third and last component is a start-up time
possibly associated with the first and/or second components.

Altogether, this cost function covers many different cost models, going from exe-
cution time on an HPC infrastructure to cost when using virtual machines in Cloud
Computing frameworks.

9.1.3 An illustrative example

We use an example to help understand the challenges of the problem under study. Con-
sider the jobs depicted in Figure 9.2. We model their execution time with D, a truncated
LogNormal probability distribution on the domain [a, b] = [0, 80h] (mean µ = 21h, stan-
dard deviation σ = 20h). The exact execution time X of the next job to be scheduled
is not known until that job has successfully completed, but instead is randomly and
uniformly sampled from the target probability distribution D. The objective is to min-
imize the expected cost of scheduling this job. To do so, we have to derive a sequence
of reservations. Then we compute the cost of the job given that sequence, and aim at
minimizing the expected value.

1Other cost functions could be envisioned. In particular, the cost for a reservation could be a more
general function than a simple affine one. Most of the results in this manuscript can be extended to
convex cost functions. When using a convex function impacts the theoretical results, we mention the
associated modifications to be done. Basically, we focus on affine costs because of their wide applicability
under various scenarios.
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Figure 9.2: Execution times from 2017 for a Structural identification of orbital anatomy
application, and its fitted distribution (in red).

We instantiate the cost model with α = 1, β = γ = 0 in the example. In Figure 9.3,
we depict three strategies, and their expected costs in hours: (i) S1 (Standard), which
reserves the upper bound of D, W1 = b = 80; (ii) S2 (Without Checkpoint), which
introduces a first reservation of sizeW1 = 20 before the second reservationW2 = 80; (iii)
S3 (With Checkpoint), which introduces a first checkpointed reservation of size W1 =
20 + 7 (20 to cover jobs shorter than 20, and 7 (red box) is the cost to checkpoint), then
a second non-checkpointed reservation of size W2 = 7 + 20 (7 (green box) is the cost to
restart, 20 to cover jobs larger than 20 and smaller than 40), and a third reservation of
size W3 = 7 + 60 (7 is the cost to restart, 60 to cover jobs of size up to b). Now, we show
how to compute the expected cost of the different strategies. For S1, there is a unique
reservation that represents the total cost:

E(S1) = 80

For S2, the expected cost is decomposed as follows. Either one reservation is sufficient to
success, or the two reservations are needed. In the first case, the reservation W1 of size
20 is performed and is weighted by P (X ≤ 20), the probability of job success with this
single reservation. In the second case, the first reservation has failed but has been paid,
and one has to perform the second reservation W2 = 80, for a total cost of 80 + 20 = 100.
This scenario occurs only if 20 < X ≤ 80. Hence, we have

E(S2) = 20 · P (X ≤ 20) + (80 + 20) · P (20 < X ≤ 80)

= 20× 0.66 + 100× 0.34

= 47.2
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Time8020 54 100 121

Standard
E(S1) = 80 80

No Checkpoint
E(S2) = 47.2

if t ≤ 2020
8020 if t > 20

With Checkpoint
E(S3) = 41.54

720 if t ≤ 20
207720 if 20 < t ≤ 40

607207720 if t > 40

Figure 9.3: Illustration of different reservation strategies. The checkpoint (red) and
restart (green) costs are equal to 7.

Regarding the expected cost of S3, we apply the same principle as in the calculation
of S2. However, we leverage the wastage of failed reservations by using checkpointing
(inducing an extra-cost in the reservation) and updating the probability associated to
each reservation:

E(S3) = 27 · P (X ≤ 20) + (27 + 27) · P (20 < X ≤ 40) + (54 + 67) · P (40 < X)

= 27× 0.66 + 54× 0.26 + 121× 0.08

= 41.54

Note that S̃3, the variant of S3 where the second reservation is also checkpointed,
would have a larger expected cost due to this second checkpoint: E(S̃3) = 27 × 0.66 +
61 × 0.26 + 128× 0.08 = 43.92. Similarly one can verify that not performing the second
reservation at all would also have increased the expected cost. This example shows that
the duration of the reservations is a critical feature for performance. Also, we see that
including checkpointing does help for some scenarios but has too much overhead for
others, and suggests that finding the best trade-off is difficult.

Indeed, in the general case, one has to decide which reservations should be check-
pointed, depending on application profile and platform parameters. Moreover, deter-
mining the expected cost of a given reservation sequence together with scheduling de-
cisions gets quite complicated. In the remaining of this chapter, we introduce the formal
definition of stochastic jobs, a formulation of the expected cost for a sequence of reser-
vation as well as the optimization problem to solve.
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9.2 Stochastic jobs

We consider stochastic jobs whose execution times are unknown but (i) deterministic
with respect to input data, so that two successive executions of the same job will have
the same duration; and (ii) randomly and uniformly sampled from a given probabil-
ity distribution law D, whose density function (PDF) is f and cumulative distribution
function (CDF) is F . The probability distribution is assumed to be nonnegative, since we
model execution times, and it is defined either on a finite support [a, b], where 0 ≤ a < b,
or on an infinite support [a,∞) where a ≥ 0.

Hence, the execution time of a job is a random variable X , and

P(X ≤ T ) = F (T ) =

∫ T

a

f(t)dt

For notational convenience, we sometimes extend the domain of f outside the support
of D by letting f(t) = 0 for t ∈ [0, a] ∪ [b,∞).

These notations implies that D is a continuous distribution. At this point, it is nec-
essary to explain the difference and benefits of using continuous or discrete probability
distribution of the execution time. When an application is executed, it is straightforward
to obtain historical data of the execution under the form of discrete values. From these
historical data, two possibilities can be envisioned:

• use these raw data to generate an associated discrete probability distribution,

• interpolate a continuous distribution by fitting an usual and known distribution.

Intuitively, one could believe that discrete probability would be the most natural way
to use historical data. However, recent work [59] shows that using continuous model by
interpolating the historical data gives more robust solutions, especially when few data
are available. Hence, we consider here a model to derive and evaluate candidate so-
lutions from continuous distributions. However, we do not eliminate the possibility of
using discrete distributions. In Chapter 10 that presents algorithms to derive reserva-
tion strategies from distributions, we also provide exact solutions in the case of discrete
distribution. We also investigate solutions that discretize a continuous distribution into
a discrete one, to use the exact associated algorithm. We compare the performance of
all these heuristics in Chapter 11.

Finally, we assume that we can interrupt the jobs at any time (divisible load appli-
cation) to take a checkpoint: this will save the current progress of the execution, and
enable to restart from that point on. Divisible load applications can be found, for exam-
ple, in biological computations, image and video processing [85]. Usually, a checkpoint
is a snapshot of the memory state of the application at the time of the checkpoint. For
now, we assume that the cost of checkpoint and of recovery are constant throughout the
execution. Let C be the cost to checkpoint the data at the end of an execution, and R the
cost to read the data to restart a computation.
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Remark 1. By setting either C or R to∞, then it is never useful to checkpoint, hence this prob-
lem can be reduced to the problem without checkpointing presented in Section 10.2 of Chapter 10.

9.3 Definitions and optimization problem

We present in this chapter the different notations that are necessary to define the prob-
lem under study.

9.3.1 General principles

We start by introducing the basic principles of reservation-based approach. To execute
a job , the user makes a series of reservations, until the job successfully executes within
the length of the last reservation. For a reservation of length W1, and for an actual du-
ration t of the job, the cost is αW1 + βmin(W1, t) + γ, as stated in Equation (9.9), where
α > 0, β ≥ 0 and γ ≥ 0. If W > W1, another reservation should be paid for.
Hence, the user needs to make a (possibly infinite) sequence of reservations S =
(W1,W2, . . . ,Wi,Wi+1, . . . ), where:

1. Wi < Wi+1 for all i ≥ 12 Indeed, because jobs are deterministic, it is redundant to
have a duration in the sequence that is not strictly larger than the previous one,
hence that duration can be removed from the sequence;

2. all possible execution times of the job are indeed smaller than or equal to some Wi

in the sequence. This simply means that the sequence must tend to infinity if job
execution times are not upper-bounded.

We assume that both properties hold when speaking of a reservation sequence. For
notational convenience, we define W0 = 0, in order to simplify summations.

Moreover, we take the checkpointing process into account. If the job did not com-
plete its execution during the last reservation, but was checkpointed during the last C
seconds of that reservation, then in the current reservation, the job can restart from that
checkpoint during the first R seconds, and then continue execution from its saved state.
On the contrary, if no checkpoint was taken during the last reservation, the work done
during that reservation is lost, and the execution must restart from the last checkpoint
(or from the very beginning if no checkpoint was taken yet).

Altogether, the user needs to schedule a (possibly infinite) sequence of reservations
and decide whether to take a checkpoint or not at the end of each reservation.

We use the cost model presented in Equation (9.1). For a reservation of length W
and an actual execution duration w for the job, the cost is

αW + βmin(W,w) + γ

where α > 0, β ≥ 0 and γ ≥ 0.
2We considere here a sequence of reservations. This condition does not hold anymore when consider-

ing checkpointing, that we introduce in the next paragraphs.
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Elapsed Time

T1 = t1

C

W1

R

T2 = t2 − t1

W2

R

T3 = t3 − t1

C

W3

R

T4 = t4 − t3

W4

Figure 9.4: Graphical representation of elapsed time for the reservation sequence S =
{(W1, 1), (W2, 0), (W3, 1), (W4, 0)}.

Size of

job

0 t1 t2 t3 t4

T1 T2

T3

T4

Figure 9.5: Graphical representation of job progress (and showing tk versus Tk) for the
reservation sequence S = {(W1, 1), (W2, 0), (W3, 1), (W4, 0)}.

9.3.2 Notations and reservation-based strategies

We formally define what is a reservation sequence for an application whose execution
time follows a probability distribution.

Definition 2 (Reservation sequence forD). Given a probability distributionD, a reserva-
tion sequence S = {(W1, δ1), (W2, δ2), . . . }, is defined as a sequence of reservation lengths
Wk and a sequence of checkpointing decisions δk ∈ {0, 1}: δk = 1 means the kth reserva-
tion ends with a checkpoint, and δk = 0 means it does not.

Then, the kth reservation can be decomposed into:

Wk = Rk + Tk + Ck (9.2)

where Rk is the time spent for restart, Tk for actual job execution, and Ck for checkpoint.
We have Ck = δkC by definition. There is a restart if and only if there has been a
checkpoint at some point before, hence

Rk = (1−
k−1∏
i=1

(1− δi))R

(assuming R1 = 0 for the first reservation).
It is hard to keep track of actual job progress when using only the (Wk, δk) values.

Consider for instance the following sequence S = {(W1, 1), (W2, 0), (W3, 1), (W4, 0)},
which is depicted in Figure 9.4. If the actual job duration is X = t, during which reser-
vation will the job complete its execution? We introduce another view of the reservation
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sequence S by introducing the milestones (tk’s) as shown in Figure 9.5. A milestone tk
represents the amount of work that has actually been executed at the end of the kth

reservation. Then, the last reservation for the job of length t is Wk, where tk−1 ≤ t ≤ tk.
Of course, we need that t ≤ t4 for all values of D (equivalently, the upper bound of the
support of D is b ≤ t4) for all jobs to complete successfully with the four reservations of
S.

The relationship between the milestone tk (actual work progress) and the value of Tk
(time spent computing during reservation Wk; see Equation (9.2)) is the following:

tk = Tk +
k−1∑
i=1

δiTi (9.3)

Indeed, the work actually progresses only from the last checkpoint, while the work ex-
ecuted during the previous non-checkpointed reservations is lost whenever these non-
checkpointed reservations do not allow for the full completion of the job. Another way
to express the relationship between tk and Tk is the following:

tk = Tk + max{ti
∣∣∣ 1 ≤ i ≤ k − 1 and δi = 1} (9.4)

Indeed, Equation (9.4) gives a recursive way to compute tk from its definition. We reca-
pitulate the relations between all notations introduced in Figures 9.4 and 9.5:

Wk = Rk + Tk + Ck (9.5)
Rk = (1− Πi<k(1− δi))R (9.6)

Tk = tk −
∑
i<k

δiTi

= tk −max{ti
∣∣∣ 1 ≤ i ≤ k − 1 and δi = 1} (9.7)

Ck = δkC (9.8)

In the following, we use milestones tk rather than reservation lengths Wk to charac-
terize a reservation sequence, and we write

S = {(t1, δ1), (t2, δ2), . . . }
instead of

S = {(W1, δ1), (W2, δ2), . . . }
because it is easier to use milestones when computing the expected cost of a sequence,
as shown below. For notational convenience, we define t0 = 0 as the first milestone of
each sequence S. Note also that we can restrict to sequences where tk−1 < tk, because
otherwise (if tk−1 = tk), the execution does not progress during the kth reservation.

From above notations, basic checkpointing policies can be described as follows:

• Checkpoint all reservations: ∀δ, δi = 1, leading to ti = Ti = Wi

• Never Checkpoint: ∀δ, δi = 0, which implies that ti =
∑
j≤i

Tj
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9.4 Optimization problem

Given a reservation sequence S = {(ti, δi)}i and a job with execution time t such that
tk−1 < t ≤ tk, the cost of the sequence for that job is given by:

CS(k, t) =
k−1∑
i=1

(αWi + βWi + γ) + αWk + β(Rk + t− (tk − Tk)) + γ (9.9)

where the first part is the total cost from the k − 1 first reservations that did not allow
the job to complete, and the second part is the cost of the kth reservation. The actual
execution time during the kth reservation is t− (tk − Tk), because tk − Tk is the amount
of work done up to the beginning of that reservation; we add the restart time (Rk) but
do not need to checkpoint (if δk = 1) because the job successfully completes before it is
taken.

We let k(t) = k for a job of length t such that tk−1 < t ≤ tk. Now, the expected cost of
the reservation sequence S over a job whose execution time is a random variable X is

E(S(X)) =

∫ ∞
0

CS(k(t), t)f(t)dt =
∞∑
k=1

∫ tk

tk−1

CS(k, t)f(t)dt (9.10)

We are now ready to state the optimization problem:

Definition 3 (STOCHASTIC-CKPT). Given a random variable X following the distribu-
tion D (with PDF f and CDF F ) for the execution times of stochastic jobs, and given a
cost function given by Equation (9.9) (with parameters α > 0, β ≥ 0 and γ ≥ 0), find a
reservation strategy S with minimal expected cost E(S(X)) as given in Equation (9.10).

In the next chapter, we will use all these notations to derive solutions to STOCHASTIC-
CKPT. We will also study a variant of the problem when checkpointing is not available.
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Chapter 10

Algorithmic Solutions
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In this chapter, we present algorithmic solutions to solve STOCHASTIC-CKPT prob-
lem, presented in Chapter 9.

We divide this algorithmic study in two sections. Section 10.1 presents the reser-
vation strategies in the case of scheduling an application with the possibility of check-
pointing at the end of some reservations (STOCHASTIC-CKPT, Problem 3 in Chapter 9).
Section 10.2 presents model and solutions to the associated problem without check-
pointing.
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10.1 Solutions with checkpointing

In this section, we propose a solution to Problem 3 presented in Chapter 9. The main
contributions for the scheduling study with checkpointing are the following:

• An arbitrarily close to optimal solution for any continuous probability distribu-
tion with bounded support, by providing a Fully Polynomial-Time Approxima-
tion Scheme (FPTAS) to compute a reservation sequence and its checkpointing
decisions (Section 10.1.2).

• The characterization of an optimal reservation sequence, together with its check-
pointing decisions, for any discrete probability distribution, using a sophisticated
dynamic programming algorithm (Section 10.1.3).

• A set of heuristics to solve STOCHASTIC-CKPT for bounded continuous distri-
butions (Section 10.1.4), based on extensions of the solutions presented in Sec-
tion 10.1.2 and Section 10.1.3

Before presenting the different solutions, we first introduce some necessary nota-
tions.

10.1.1 Expected cost

We start by establishing a simpler expression for the expected cost function of
STOCHASTIC-CKPT.

Theorem 4. Given a random variable X and a reservation sequence S = {(t1, δ1), (t2, δ2), . . . },
the expected cost E(S(X)) of a strategy S given by Equation (9.10), with parameters α, β and γ,
can be rewritten as:

E(S(X)) = β · E[X] + α
(
t1 + δ1C

)
+ γ

+
∞∑
i=2

(
αWi + β

(
Ri + (1− δi−1)Ti−1 + Ci−1

)
+ γ
)
· P (X > ti−1) (10.1)

For simplicity, when there is no ambiguity on the random variable X, we denote E(S(X)) =
E(S).

Proof. Firstly we rewrite Equation (10.1) as follows:

E(S) = β · E[X] +
∞∑
i=1

(
αWi + β

(
Ri + (1− δi−1)Ti−1 + Ci−1

)
+ γ
)
· P (X > ti−1) (10.2)

with initialization δ0 = W0 = R1 = 0 and t0 = 0.
From Equations (9.9) and (9.10), we have

E(S) = E1 + E2 + E3 (10.3)
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where

E1 =
∞∑
k=1

∫ tk

tk−1

( k∑
i=1

(αWi + γ)
)
f(t)dt

E2 =
∞∑
k=1

∫ tk

tk−1

( k−1∑
i=1

βWi

)
f(t)dt

E3 =
∞∑
k=1

∫ tk

tk−1

β
(
t+Rk + Tk − tk

)
f(t)dt

Using t0 = 0, we compute the first term as

E1 =
∞∑
k=1

k∑
i=1

(αWi + γ)

∫ tk

tk−1

f(t)dt

=
∞∑
k=1

k∑
i=1

(αWi + γ) · P (tk−1 < X ≤ tk)

=
∞∑
i=1

(αWi + γ)
∞∑
k=i

P (tk−1 < X ≤ tk)

=
∞∑
i=1

(αWi + γ) · P (X > ti−1)

Similarly, using W0 = 0, we express the second term as:

E2 =
∞∑
i=1

βWi · P (X > ti)

Finally, we derive the third term as:

E3 =

∫ ∞
t0

βtf(t)dt+
∞∑
k=1

∫ tk

tk−1

β
(
Rk + Tk − tk

)
f(t)dt

= β · E[X] +
∞∑
i=1

β
(
Ri + Ti − ti

)
· P (ti−1 < X ≤ ti)
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Plugging these three terms back into Equation (10.3), we get:

E(S) = β · E[X] +
∞∑
i=1

(αWi + βWi−1 + γ) · P (X > ti−1)

+
∞∑
i=1

β (Ri + Ti − ti) · P (ti−1 < X ≤ ti)

= β · E[X] +
∞∑
i=1

(αWi + β(Ri + Ti−1 + Ci−1) + γ) · P (X > ti−1)

−
∞∑
i=1

β (ti − Ti) · P (ti−1 < X ≤ ti) (10.4)

For the last derivation, we used

∞∑
i=1

(Ri−1 · P (X > ti−1) +Ri · P (ti−1 < X ≤ ti)) =
∞∑
i=1

(Ri · P (X > ti−1)

Now, we study the second part of Equation (10.4) above. For all j ≤ 1, let φo(j)
denote the index of the jth checkpointed reservation of S. For instance in the example
of Figures 9.4 and 9.5, φo(1) = 1 and φo(2) = 3. Then, using Equation (9.7), we have

∞∑
i=1

(ti − Ti) · P (ti−1 < X ≤ ti) =
∞∑
j=1

tφ(j) · P
(
tφ(j) < X ≤ tφ(j+1)

)
=
∞∑
j=1

Tφ(j) · P
(
X > tφ(j)

)
=
∞∑
i=1

δiTi · P (X > ti)

Plugging the above back into Equation (10.4), we get the desired result shown in Equa-
tion (10.2).

10.1.2 Execution time as a continuous probability distribution

In this section, we provide an approximation algorithm of the optimal strategy for con-
tinuous distributions with bounded support [a, b], where a ≥ 0 and b is finite. Because
we model job execution times, it is natural to truncate continuous distributions whose
support is [0,∞[ such as an Exponential or LogNormal distribution, say, to a bounded
support [a, b].

The result for continuous distribution is particularly important: recent work [59]
have shown that continuous distributions gave strategies that allowed using small data
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samples to find an efficient strategy. Here, it returns an arbitrarily good quality solution
with low complexity.

More precisely, let X be a continuous random variable defined on [a, b] modeling the
probability distribution D, where 0 ≤ a < b, with CDF F and PDF f . We propose a so-
lution for STOCHASTIC-CKPT under the form of a fully polynomial-time approximation
scheme. Before presenting the solution and its proof, we start by showing the following
Lemma:

Lemma 1. Given a random variable X and a strategy S = {(t1, δ1), . . . , (t|S|, δ|S|)}, if there
exists an index i0 > 1 such that t1 < · · · < ti0−1 ≤ min(R, εE[X]) < ti0 < · · · < t|S|, then the
strategy S̃ = {(min(R, εE[X]), 0), (ti0 , δi0), . . . , (t|S|, δ|S|)} satisfies:

E(S̃(X)) ≤ (1 + ε) · E(S(X))

Intuitively, this lemma states that restricting to strategies such that the first reserva-
tion is at least min(R, εE[X]) only increases the cost by at most a factor of 1 + ε.

Proof. Consider a strategy S = {(t1, δ1), . . . , (t|S|, δ|S|)} for a random variable X, such
that there exists an index i0 > 1 with

t1 < · · · < ti0−1 ≤ min(R, εE[X]) < ti0 < · · · < t|S|

For simplicity, we denote by ã = min(R, εE[X]), and define strategy S̃ =
{(ã, 0), (ti0 , δi0), . . . , (t|S|, δ|S|)}.

From Equation (10.1) we have:

E(S(X)) ≥ β · E[X]

+ α(t1 + C1) + γ

+
(
αWi0 + β

(
Ri0 + (1− δi0−1)Ti0−1 + Ci0−1

)
+ γ
)
· P (X > ti0−1)

+

|S|∑
i=i0+1

(
αWi + β

(
Ri + (1− δi−1)Ti−1 + Ci−1

)
+ γ
)
· P (X > ti−1)

E(S̃(X)) = β · E[X]

+ (αã+ γ) + (αW̃i0 + βã+ γ) · P (X > ã)

+

|S|∑
i=i0+1

(
αW̃i + β

(
R̃i + (1− δi−1)T̃i−1 + C̃i−1

)
+ γ
)
· P (X > ti−1)

We obviously have Ci = C̃i, ∀i ≥ i0.
We now show the following property:

∀i ≥ i0, Wi ≥ W̃i

To show this, we consider two cases:
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1. the last checkpoint before ti was done during tj with j ≥ i0 or there was no check-
point before ti.
In this case, we obviously have Wi = W̃i;

2. the last checkpoint before ti was done during tj with j < i0 in S, and there was no
checkpoint done in S̃ before ti.

In this case, we have Wi = R + (ti − tj) + δiC and W̃i = ti + δiC.
Since tj ≤ ti0−1 ≤ R, we get Wi ≥ W̃i.
Similarly, we can show that, ∀i ≥ i0, Ri ≥ R̃i.

Further, since P (X > ã) ≤ P (X > ti0−1) ≤ 1, we can now derive that:

E(S̃(X))− E(S(X)) ≤ α(ã− t1 − C1) + β(ã−Ri0 − (1− δi0−1)Ti0−1 − Ci0−1) · P (X > ti0−1)

≤ (α + β)ã

≤ ε(α + β)E[X]

Finally, note that we immediately have E(S(X)) ≥ (α + β)E[X] + γ, because this is
the cost of an omniscient strategy that makes a single reservation of exactly the right
size for each job. Therefore, we get the result:

E(S̃(X))− E(S(X)) ≤ ε · E(S(X))

which completes the proof of Lemma 1.

Armed of this lemma, we now present Algorithm 4 that computes a solution to
STOCHASTIC-CKPT with a complexity O

(
1
ε3

)
. Then, we introduce Theorem 5 show-

ing that Algorithm 4 computes a fully polynomial-time approximation scheme for
STOCHASTIC-CKPT.

Algorithm 4 DYN-PROG-COUNT(X, ε)

1: Let [a, b] be the domain of X, with 0 ≤ a < b

2: c0 = 3(b− a) min
(

1
min(max(a,εE[X]/3),R,C)

, α+β
γ

)
3: n← dc0/εe
4: Define the discrete distribution Yn ∼ (vi, fi)i=1...n s.t.

vi = a+ i · b−a
n

for 0 ≤ i ≤ n

fi = P (Yn = vi) = P (vi−1 < X ≤ vi) for 1 ≤ i ≤ n

5: Sdp
n ← Optimal strategy for Yn (Theorem 6 in Section 10.1.3 for discrete distribution)

6: return Sdp
n
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Theorem 5. Given a continuous random variable X on the domain [a, b], where 0 ≤ a < b,
and given a constant ε > 0, DYN-PROG-COUNT(X, ε) is a 1 + ε-approximation algorithm for
STOCHASTIC-CKPT and executes in time O

(
1
ε3

)
.

Proof. Given a continuous random variable X of support [a, b], we define the discrete
random variable Yn ∼ (vi, fi)i=1...n as stated in Algorithm 4:

vi = a+ i · b−a
n

for 0 ≤ i ≤ n

fi = P (Yn = vi) = P (vi−1 < X ≤ vi) for 1 ≤ i ≤ n

(10.5)

Let Sopt = {(t̃oi , δ̃oi )}1≤i≤|Sopt| denote the optimal solution for X , and let Sdp
n denote

the optimal solution for Yn returned by Theorem 6, presented in Section 10.1.3, that
corresponds to an optimal solution any discrete distributions. We want to show that

E(Sdp
n (X)) ≤ (1 + ε) · E(Sopt(X))

In order to do that, we construct two intermediate strategies Sopt
ε/3 and Salgo as follows.

First, Sopt
ε/3 = ((toi , δ

o
i ))i is constructed in such a way that if t̃o1 ≥ min(R, εE[X]

3
), then

Sopt
ε/3 = Sopt, otherwise we construct Sopt

ε/3 from Sopt by following Lemma 1 (with the
value ε

3
). Then, according to Lemma 1, we have:

E(Sopt
ε/3(X)) ≤

(
1 +

ε

3

)
· E(Sopt(X)) (10.6)

Second, Salgo = ((tai , δ
a
i ))1≤i≤|Sopt

ε/3
| (hence |Salgo| = |Sopt

ε/3|), is such that for 1 ≤ i ≤ |Sopt
ε/3|,

we let (tai , δ
a
i ) = (vπo(i), δ

o
i ). Here, we use the sequence (vi)i=0...n from Equation (10.5), and

the function πo defined below:

vπo(i)−1 < toi ≤ vπo(i) (10.7)

In other words, for each reservation, Salgo chooses the first discrete value larger than
or equal to the corresponding one chosen by Sopt

ε/3, and makes the same checkpointing
decision.

Lemma 2. E(Salgo(X)) ≤ (1 + ε
3
) · E(Sopt

ε/3(X)).

Proof. We use the notations T oi ,Ro
i , Co

i ,W o
i for the parameters of Sopt

ε/3, and T ai ,Ra
i , Ca

i ,W a
i

for the parameters of Salgo. From Equations (9.5) to (9.8), we see that, for 1 ≤ i ≤ |Sopt
ε/3|,

we have:

1. δoi = δai ;

2. Ro
i = Ra

i ;
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3. Co
i = Ca

i ; and

4. W a
i −W o

i = T ai − T oi .

In addition, if σo(i) (resp. σa(i)) is the index of the last checkpoint before toi (resp. tai ),
then σo(i) = σa(i), and,

|T ai − T oi | =
∣∣(tai − taσa(i)

)
−
(
toi − toσo(i)

)∣∣
=
∣∣(vπo(i) − vπo(σo(i)))− (toi − toσo(i))∣∣

=
∣∣(vπo(i) − toi )− (vπ(σo(i)) − toσo(i)

)∣∣
≤ max

(
vπo(i) − toi , vπo(σo(i)) − toσo(i)

)
≤ b− a

n

From Equation (10.1) we have:

E(Sopt
ε/3(X)) = β · E[X] +

|Sopt
ε/3
|∑

i=1

(
αW o

i + β
(
Ro
i + (1− δoi−1)T oi−1 + Co

i−1

)
+ γ
)
· P
(
X > toi−1

)

E(Salgo(X)) = β · E[X] +

|Sopt
ε/3
|∑

i=1

(
αW a

i + β
(
Ra
i + (1− δai−1)T ai−1 + Ca

i−1

)
+ γ
)
· P
(
X > tai−1

)
We first observe that P

(
X > tai−1

)
≤ P

(
X > toi−1

)
because tai−1 ≥ toi−1. We can derive

that:

E(Salgo(X))− E(Sopt
ε/3(X)) ≤

|Sopt
ε/3
|∑

i=1

(
α|T ai − T oi |+ β(1− δoi−1)|T ai−1 − T oi−1|

)
· P
(
X > toi−1

)

≤ α
b− a
n

+

|Sopt
ε/3
|−1∑

i=1

((
α + β(1− δoi )

)b− a
n

)
· P (X > toi )

≤ b− a
n

(
α + (α + β)

|Sopt
ε/3
|−1∑

i=1

P (X > toi )

)

We also observe that:

E(Sopt
ε/3(X)) ≥ γ +

|Sopt
ε/3
|−1∑

i=1

γ · P (X > toi )

Further, for 1 ≤ i ≤ |Sopt
ε/3|, we have W o

i ≥ Ro
i + T oi ≥ min(R, ã), where ã =

max(a,min(R, εE[X]/3)). This is because either T oi ≥ ã according to Lemma 1 (when
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there was no checkpoint before toi ), or Ro
i = R (when there was a checkpoint before toi ).

Therefore, we can derive:

E(Sopt
ε/3(X)) ≥ min(max(a, εE[X]/3), R, C)

(
α + (α + β)

|Sopt
ε/3
|−1∑

i=1

P (X > toi )

)
Note that

min(R,max(a,min(R, εE[X]/3))) = min(max(a, εE[X]/3), R)

Using the definition of c0 = 3(b − a) min
(

1
min(max(a,εE[X]/3),R,C)

, α+β
γ

)
in Algorithm 4,

we obtain:

E(Salgo(X))− E(Sopt
ε/3(X)) ≤ c0

n
· E(Sopt

ε/3(X)) ≤ ε

3
· E(Sopt

ε/3(X))

which concludes the proof of Lemma 2.

Lemma 3. E(Sdp
n (X)) ≤ E(Salgo(X))

Proof. Given any reservation strategy S = {(ti, δi)}1≤i≤|S| such that ∀i, ti ∈ {v1, . . . , vn},
we show that:

E(S(Yn))− E(S(X)) = β (E[Yn]− E[X])

Indeed, for the two distributions Yn and X, the only differences in the cost function
are: (i) the expectations E[Yn] and E[X]; and (ii) the probability values P (Yn > ti) and
P (X > ti) ,∀i.
But if ti ∈ {v1, . . . , vn}, we have:

P (Yn > ti) = P (Yn > vk)

= P
(
Yn ∈ ∪nj=k+1{vj}

)
=

n∑
j=k+1

P (Yn = vj)

=
n∑

j=k+1

P (X ∈]vj−1, vj]) = P (X ∈]vk, vn])

= P (X > vk) = P (X > ti)

We obtain that:
E(S(Yn))− E(S(X)) = β (E[Yn]− E[X])

We apply this result to both Sdp
n and Salgo and derive that:

E(Sdp
n (Yn))− E(Sdp

n (X)) = E(Salgo(Yn))− E(Salgo(X))

or equivalently,

E(Sdp
n (Yn))− E(Salgo(Yn)) = E(Sdp

n (X))− E(Salgo(X))
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But Sdp
n is optimal for Yn, hence

E(Sdp
n (Yn))− E(Salgo(Yn)) ≤ 0

Therefore,
E(Sdp

n (X))− E(Salgo(X)) ≤ 0

This concludes the proof of Lemma 3.

Now, combining Lemma 2, Lemma 3 and Equation (10.6), we get:

E(Sdp
n (X)) ≤ E(Salgo(X))

≤
(

1 +
ε

3

)
· E(Sopt

ε/3(X))

≤
(

1 +
ε

3

)(
1 +

ε

3

)
· E(Sopt(X))

≤ (1 + ε) · E(Sopt(X))

which concludes the proof of Theorem 5.

To conclude, we presented a near-optimal solution for STOCHASTIC-CKPT problem.
This result theoretically gives strong guarantee on performance and is an important
contribution to the problem under study.

10.1.3 Execution time as a discrete probability distribution

In this section, we provide an optimal algorithm for walltime given as a discrete proba-
bility distribution.

An optimal dynamic-programming algorithm

We now study Problem 3 for a finite discrete distribution:

Y ∼ (vi, fi)1≤i≤n

where vi < vi+1 for all 1 ≤ i ≤ n − 1 and fi = P (Y = vi). We assume that fn 6= 0 and
n∑
i=1

fi = 1.

Consider a strategy S = {(t1, δ1), (t2, δ2), . . . , (t|S|, δ|S|)}, where ti = vπ(i) and ti < ti+1

for all 1 ≤ i ≤ |S| − 1. Also, the last reservation is necessarily t|S| = vn to ensure that
the expected cost of the strategy is finite. By convention, we let t0 = v0 = a, hence
P (Y > t0) = 1. Note that we can safely restrict to strategies where each milestone ti is
equal to some threshold vj of the discrete distribution: otherwise, replacing ti by the
largest vj such that vj ≤ ti leads to a smaller cost.
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Rewriting Equation (10.1) with Wi = Ri + Ti + Ci, and since W0 = 0, the expected
cost of strategy S can be expressed as:

E(S) = β · E[Y ]

+

|S|∑
i=1

(
α (Ri + Ti + Ci) + βRi + γ

)
· P (Y > ti−1)

+

|S|−1∑
i=1

β
(
(1− δi)Ti + Ci

)
· P (Y > ti) (10.8)

Based on Equation (10.8), and using Equations (9.6) to (9.8), we construct a dynamic
programming algorithm to compute the optimal reservation sequence, that we name
DISCRETE-CKPT:

Theorem 6. For a discrete distribution Y ∼ (vi, fi)1≤i≤n, the optimal expected cost is returned
by Eckpt(0, 0), where, for 0 ≤ ic ≤ il ≤ n, Eckpt(ic, il) is:

=β · E[Y ], if il = n

= min
il+1≤j≤n,
∆j∈{0,1}

(
Eckpt

(
∆jj, j

)
+
(
α
(
vj + ∆jC

)
+ γ
)
·

n∑
k=il+1

fk + β
(
(1−∆j)vj + ∆jC

)
·

n∑
k=j+1

fk

)
if ic = 0

= min
il+1≤j≤n,
∆j∈{0,1}

(
Eckpt

(
(1−∆j)ic + ∆jj, j

)
+
(
α
(
R + (vj − vic) + ∆jC

)
+ βR + γ

)
·

n∑
k=il+1

fk

+ β
(
(1−∆j)(vj − vic) + ∆jC

)
·

n∑
k=j+1

fk

)
, otherwise

The optimal solution can be computed in O(n3) time.

Intuitively, ic denotes the index of the last checkpointed value, while il denotes the
index of the last value that was tried before we try the next one with index j. Here, ∆j

indicates whether the value vj will be checkpointed or not.

Proof. To prove the optimality, consider E(S) given in Equation (10.8) for any reservation
sequence:

S = {(t1, δ1), . . . , (t|S|, δ|S|)}
= {(vπ(1),∆π(1)), . . . , (vπ(|S|),∆π(|S|))}
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and define E` as the following partial sum:

E` = β · E[Y ]

+

|S|∑
i=`+1

(
α (Ri + Ti + Ci) + βRi + γ

)
· P (Y > ti−1)

+

|S|−1∑
i=`+1

β
(
(1− δi)Ti + Ci

)
· P (Y > ti) (10.9)

Note that E0 = E(S). We show by induction that the following invariant is true for
all ` = |S|, |S| − 1, . . . , 0:

E` ≥ Eckpt(π(`), π(`)) (10.10)

where π(`) is the index of the last reservation not larger than π(`) and such that ∆π(`) =
1. We denote the corresponding reservation by t` = vπ(`).

For the base case with ` = |S|, we have π(|S|) = n, and E|S| = β · E[Y ] =

Eckpt(π(|S|), n). Now, suppose E`+1 ≥ Eckpt(π(`+ 1), π(` + 1)) for ` + 1 ≤ |S|. Here,
we note that π(`+ 1) = π(`+ 1) if ∆π(`+1) = 1 (i.e., if vπ(`+1) is checkpointed). Otherwise,
we have π(`+ 1) = π(`). Then, from Equation (10.9), we derive:

E` = E`+1 +
(
α (R`+1 + T`+1 + C`+1) + βR`+1 + γ

)
· P (Y > t`)

+ β
(
(1− δ`+1)T`+1 + C`+1

)
· P (Y > t`+1)

≥ Eckpt(π(`+ 1), π(`+ 1))

+
(
α (R`+1 + (t`+1 − t`) + C`+1) + βR`+1 + γ

)
· P
(
Y > vπ(`)

)
+ β

(
(1− δ`+1)(t`+1 − t`) + C`+1

)
· P
(
Y > vπ(`+1)

)
= Eckpt

(
(1−∆π(`+1))π(`) + ∆π(`+1)π(`+ 1), π(`+ 1)

)
+
(
α
(
1π(`) 6=0R + (vπ(`+1) − vπ(`)) + ∆π(`+1)C

)
+ β1π(`)6=0R + γ

)
·

n∑
k=π(`)+1

fk

+ β
(

(1−∆π(`+1))(vπ(`+1) − vπ(`)) + ∆π(`+1)C
)
·

n∑
k=π(`+1)+1

fk

≥ Eckpt
(
π(`), π(`)

)
In the derivation above, the first inequality is due to the inductive hypothesis, and

using T`+1 = t`+1 − t` from Equation (9.7). The last inequality is due to the definition of
Eckpt. Thus, by induction, we get Eckpt(0, 0) = Eckpt(π(0), π(0)) ≤ E0 = E(S). This shows
that Eckpt(0, 0) is not greater than the expected cost of any reservation sequence S, thus
returning the optimal solution.
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Finally, one can pre-compute values of
n∑

k=`+1

fk for all 0 ≤ ` < n (in linear time) and

store them. Then, computing Eckpt(ic, il) depends on 2(n − il) other Eckpt values, thus
takes O(n− il) time. The overall complexity is therefore O(n3).

10.1.4 Other heuristics for STOCHASTIC-CKPT problem

All the results presented in Sections 10.1.1 to 10.1.3, namely the cost model (Theorem 4),
the approximation algorithm for continuous distributions with bounded support (Theo-
rem 5) and the optimal algorithm for discrete distributions (Theorem 6) can be extended
to some variants of the problem where the checkpoint strategy is determined a priori.

A heuristic that checkpoints every reservation

Indeed, there are two important and natural variants to consider: strategies where no
reservation is checkpointed, and strategies where all reservations are checkpointed. The
former variant (called NO-CHECKPOINT) is presented later on in Section 10.2.4, where
we derive an optimal algorithm for discrete distributions with reduced time complexity
O(n2) instead of O(n3) as in Theorem 6. The latter variant (called ALL-CHECKPOINT)
also admits an optimal dynamic programming algorithm of reduced time complexity
O(n2):

Theorem 7. For a discrete distribution Y ∼ (vi, fi)1≤i≤n, the optimal expected cost for
ALL-CHECKPOINT (when all reservations are checkpointed) is returned by EAllCkpt(0), where
v0 = 0 and:

EAllCkpt(n) = β · E[Y ]

EAllCkpt(i) = min
i+1≤j≤n

(
EAllCkpt(j)+βC ·

n∑
k=j+1

fk+
(
α
(
1i 6=0R+(vj−vi)+1j 6=nC

)
+β1i 6=0R+γ

)
·
n∑

k=i+1

fk

)

The optimal solution can be computed in O(n2) time.

While this heuristic requires the distribution of the execution time to be discrete, one
can still use it for any continuous distribution by following discretization procedures
further introduced in Section 10.2.4 for algorithmic developments for the application
model without checkpoints.

A periodic heuristic

In addition to the algorithms presented in Section 10.1, we propose a periodic heuristic
for the case of bounded distributions. This strategy, described in Algorithm 5, is a natu-
ral policy, where successive reservations differ in length by a constant amount of time T ,
called the period. A checkpoint is performed at the end of each period. Hence, the value
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of Wi associated with each ti is constant in this strategy. The algorithm specifies the
number of chunks τ in the domain [a, b] of the bounded distribution, thus the period
can be computed as T = b−a

τ
.

Algorithm 5 ALL-CHECKPOINT-PERIODIC(X, τ)

1: Let [a, b] be the domain of X, and let T = b−a
τ

2: (ti, δi) =


(a+ i · T, 1) for i = 1, 2, . . . , τ − 1

(b, 0) for i = τ

3: return Speriod
τ ← ((ti, δi))1≤i≤τ

We also define NO-CHECKPOINT-PERIODIC as the version of
ALL-CHECKPOINT-PERIODIC where no checkpoint is performed. It is presented
by Algorithm 6.

Algorithm 6 NO-CHECKPOINT-PERIODIC(X, τ)

1: Let [a, b] be the domain of X, and let T = b−a
τ

2: (ti, δi) =


(a+ i · T, 0) for i = 1, 2, . . . , τ − 1

(b, 0) for i = τ

3: return Speriod
τ ← ((ti, δi))1≤i≤τ

For such solutions, one can derive optimal strategies for specific distributions. We
focus now on ALL-CHECKPOINT version of periodic strategies and prove this assertion
for Uniform distributions. One can also prove that ALL-CHECKPOINT and its periodic
counterpart are identical. The next subsections are dedicated to proving those asser-
tions.

Periodic heuristic for exponential distributions

In this section, we are interested in proving that ALL-CHECKPOINT and
ALL-CHECKPOINT-PERIODIC are similar for Exponential distribution.

Theorem 8. When the execution time of a job follows a distribution D ∼ Exponential (λ) , the
solution of ALL-CHECKPOINT and ALL-CHECKPOINT-PERIODIC are identical.

Proof. For this specific result, we express the solutions under the form: {T1, T2, T3, · · · }.
We have the following properties:
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• Given (t1, t2, . . . , ) a solution to ALL-CHECKPOINT, then the associated
{T1, T2, T3, · · · } satisfy:

∀i, ti =
∑
j≤i

Tj

This is a direct corollary of Equations (9.3) and (9.4).

• For D ∼ Exponential (λ),

P (X > V1 + V2) = P (X > V1) · P (X > V2) . (10.11)

We define
(
u1, u2, · · ·

)
the solution that minimizes

∞∑
i=1

(
α
(
R + ui + C

)
+ β

(
R + C

)
+ γ
)
· P
(
X >

∑
j<i

uj

)
(10.12)

To study Sopt = (T o1 , T
o
2 , . . . ) the optimal solution given by ALL-CHECKPOINT for D,

we rewrite the expected cost of a solution S = (T1, T2, . . . ) for ALL-CHECKPOINT:

E(S) = β · E[X] +
∞∑
i=1

(
αWi + β

(
Ri + (1− δi−1)Ti−1 + Ci−1

)
+ γ
)
· P (X > ti−1)

= β · E[X]− C +
∞∑
i=1

[
α
(
R + Ti + C

)
+ β

(
R + C

)
+ γ
]
· P
(
X >

∑
j<i

Tj

)

From this formulation, we can see that T o1 = u1, T o2 = u2, T o3 = u3, . . . as they satisfy the
same equations.

By rewriting and using Equation (10.11),

E(S) = β · E[X] +
(
αW1 + βR + γ

)
+
∞∑
i=2

(
αWi + β

(
R + C

)
+ γ
)
· P
(
X >

∑
j<i

Tj

)
= β · E[X] + α

(
W1 + βC + γ

)
+ P (X > T1) ·

∞∑
i=2

(
α
(
R + Ti + C

)
+ β

(
R + C

)
+ γ
)
· P
(
X >

∑
2≤j<i

Tj

)
= β · E[X] + α

(
W1 + βC + γ

)
+ P (X > T1) ·

∞∑
i=1

(
α
(
R + Ti−1 + C

)
+ β

(
R + C

)
+ γ
)
· P
(
X >

∑
j<i−1

Tj+1

)
(10.13)
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From this last formulation, we can see that the sequence (T o2 , T
o
3 , . . . ) that minimizes

Equation (10.13) can be optimized independently of T o1 , and that it is the solution that
minimizes Equation (10.12). Hence we obtain, T o2 = u1, T o3 = u2,. . . Iterating the pro-
cess, we obtain the result: T o1 = u1 = T o2 = u2 = T o3 = . . . , and the solution to
ALL-CHECKPOINT is a periodic solution.

Periodic heuristic for Uniform distributions

In this section, we consider the ALL-CHECKPOINT approach for Uniform distributions
in the RESERVATIONONLY scenario. Specifically, we are able to characterize the best
periodic approach: for a Uniform distribution D over [a, b] (where 0 ≤ a < b), consider
a reservation sequence S(n) = (Wi, 1)1≤i≤n where n ≥ 2, W1 = a + b−a

n
+ C, Wi =

R + b−a
n

+ C for 1 < i < n and Wn = R + b−a
n

. In other words, we have n − 1 evenly
distributed checkpoints in the interval [a, b]. The first reservation has a checkpoint but
no restart, the last reservation (whenever used) has a restart but no checkpoint, and all
intermediate reservations have both a restart and a checkpoint. Finally, let S(1) = (b, 0)
be the sequence with a unique reservation of length (and cost) b (no need to checkpoint
in this particular case). The following proposition provides the optimal value of n:

Proposition 3. With the above notations, E(S(n)) is minimized either for n = max(1, bnoptc)
or n = dnopte where nopt =

√
b−a−2C
C+R

if b− a ≥ 2C and nopt = 1 otherwise.

Proof. Because the distribution is uniform, the probability that i reservations are needed
for a given job is always equal to 1

n
, hence the expected cost of S(n) for n ≥ 2 is

E(S(n)) =
1

n

n∑
i=1

i∑
j=1

Wj

where Wi is the cost of the i-th reservation. After several algebraic manipulations, we
derive that

E(S(n)) =
n− 1

2n
a+

n+ 1

2n
b+

n2 + n− 2

2n
C +

n− 1

2
R

Differentiating, the derivative gets zeroed for n = nopt when b− a ≥ 2C, and otherwise
it stays positive, hence the result.

If D ∼ Uniform(a, b) with [a, b] = [2, 20] and C = R = 1 we find nopt =
√

8. One can
compute that the cost for three reservations (ceil value for

√
8) is E(S(3)) = 97/6 ≈ 16.2.

Let us now define a two-reservation strategies at milestones 11 and 20 1, we can compute

1The first reservation will be of length 11 + 1 with the checkpointing overhead, and the second one of
length 1 + 9 with the restart cost.
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its associated cost by:

E(S(2)) =

∫ 11

2

(α12 + βt+ γ)P(X = t|X ≤ 11)dt

+

∫ 20

11

[(α12 + β12 + γ) + (α10 + β(t− 11) + γ)]P(X = t|X ≥ 11)dt

This gives us E(S(2)) = 17 for distribution D. Hence, it is more efficient to use three
reservations than two.

Summary of contributions

To summarize the solutions for STOCHASTIC-CKPT problem described in this section,
we provided:

• a 1 + ε-approximation algorithm when execution time follows a bounded contin-
uous distribution (Theorem 5),

• an optimal dynamic programming algorithm when execution time follows a dis-
crete distribution (Theorem 6),

• a periodic heuristic and a variant of Theorem 6 where all reservations are check-
pointed. We also derive properties of these heuristics for Exponential and Uniform
distributions.

In the next section, we propose to study the problem when checkpoint/restart is not
possible for the application.

10.2 Solutions without checkpointing

It is sometimes not possible to use checkpointing for a considered application. We
briefly here discuss the main reasons of this assertion. More details are presented in
Chapter 8. There are two main paradigm for managing checkpointing within an appli-
cation. Checkpointing may be performed either by the application itself by explicitly
modifying the code in order to work with a user level checkpoint library (like FTI [27]),
or by linking an external library. The first case requires modifications in the code of the
application, which is often not suitable for stochastic applications due to the dynamic
nature of their code. The second solution seems to be the most suitable one. How-
ever, we already mentioned that some solutions are no longer maintained (BLCR [70])
and often do not support checkpointing for containers (DMTCP [19]). It is an impor-
tant reason, as stochastic applications emerge from ML/Big-Data frameworks that are
originally designed for cloud computing, where developing an application inside a con-
tainer is the de facto approach. Even though one could checkpoint the application inside
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the container without checkpointing the whole container, we consider that such solu-
tion requires an important human cost to be implemented. Hence, this is not a suitable
solution for some users that are not native developers.

The contributions of this section are as follows:

• A refinement of STOCHASTIC-CKPT without checkpointing considerations, with
all necessary formulations (Section 10.2.1)

• A characterization of an optimal solution and a recursive formula to compute a se-
quence of reservation in the case of continuous distribution, up to the computation
of the first reservation (Section 10.2.2)

• A heuristic to derive a sub-optimal solution using an exhaustive search procedure
to estimate the value of the first reservation for any continuous distribution (Sec-
tion 10.2.3)

• An optimal solution when the walltime of application follows a discrete probabil-
ity distribution (Section 10.2.4)

• A discretization-based heuristic to use the discrete dynamic-programming algo-
rithm with any continuous distribution (Section 10.2.4)

• A discussion on the extension of the results presented in this section with non-
convex cost functions (Section 10.2.5)

We start this study by presenting the formulation of the problem without check-
pointing.

10.2.1 Problem refinement

Similarly to the case with checkpoint, the user makes a series of reservations, until the
job successfully executes within the length of the last reservation. If a reservation ends
without the success of the application, the work done during this reservation is lost and
one has to restart the application from scratch. This fact shows the benefits of using
checkpointing, when it is supported by the considered application.

For now, we consider that checkpointing is no more available. For a sequence S =
(W1,W2, . . . ,Wi,Wi+1, . . . ), and for a job execution time t, the cost is

C(k, t) =
k−1∑
i=1

(αWi + βWi + γ) + αWk + βt+ γ (10.14)

where k is the smallest index in the sequence such that t ≤ Wk (or equivalently, Wk−1 <
t ≤ Wk; recall that W0 = 0).
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The goal is to find a scheduling strategy, i.e., a sequence of increasing reservation
durations, that minimizes the cost in expectation. Formally, the expected cost for a
sequence S = (W1,W2, . . . ,Wi,Wi+1, . . . ) can be written as:

E(S) =
∞∑
k=1

∫ Wk

Wk−1

C(k, t)f(t)dt (10.15)

Indeed, when Wk−1 < t ≤ Wk, the cost is C(k, t), which we weight with the correspond-
ing probability.
Here are two examples for two usual continuous distributions:

• UNIFORM(a, b): for a uniform distribution over the interval [a, b] where 0 < a < b,
we have f(t) = 1

b−a if a ≤ t ≤ b, and f(t) = 0 otherwise. Given a finite sequence
S = (a+b

2
, b), the expected cost is

E(S) =

∫ a+b
2

a

(α
a+ b

2
+ βt+ γ)

1

b− adt

+

∫ b

a+b
2

(
(α
a+ b

2
+ β

a+ b

2
+ γ) + (αb+ βt+ γ)

) 1

b− adt

The first term is for values of t that are in [a, a+b
2

] and the second term is for larger
values of t in [a+b

2
, b]. For the latter term, we pay a constant cost

α
a+ b

2
+ β

a+ b

2
+ γ

for the first reservation, which was unsuccessful, and then a cost that depends
upon the value of t for the second reservation if β 6= 0.

• EXP(λ): for an exponential distribution with rate λ and support in [0,∞), we
have f(t) = λe−λt for all t ≥ 0. Given an infinite and unbounded sequence
S = ( 1

λ
, 2
λ
, . . . , i

λ
, i+1
λ
, . . . ), the expected cost is

E(S) =
∞∑
k=1

∫ k
λ

k−1
λ

( k−1∑
i=1

(α
i

λ
+ β

i

λ
+ γ) + α

k

λ
+ βt+ γ

)
λe−λtdt

Again, when t ∈ [k−1
λ
, k
λ
], we pay a fixed cost for the k − 1 first reservations, and a

possibly variable cost for the k-th reservation. Looking at the expression of E(S)
above, we easily see that the given sequence S has a finite expected cost E(S). In
fact, there are many sequences with finite expected cost, such as those defined by
ti = ui+ v for i ≥ 1, where u and v are positive constants.

We are now ready to state the optimization problem:

Managing the Diversity of Application Profiles on HPC Facilities 127



10.2. Solutions without checkpointing

Definition 4 (STOCHASTIC). Given a probability distribution (with CDF F ) for the exe-
cution times of stochastic jobs, and given a cost function given by Equation (9.1) (with
parameters α, β and γ), find a reservation sequence S with minimal expected cost E(S)
as given in Equation (10.15).

As we stated before, we focus on the usual probability distributions, hence we as-
sume that the density function f and the CDF F of D are smooth (infinitely differen-
tiable), and that D has finite expectation.

10.2.2 Execution time as a continuous probability distribution

In this section, we establish key properties of an optimal solution for a continuous prob-
ability distribution of execution time.

A new expression for cost function

We start by establishing a simpler expression for the cost function of STOCHASTIC.

Theorem 9. Given a sequence S = (t1, t2, . . . , ti, ti+1, . . . ), the cost function given by Equa-
tion (10.15) (with parameters α, β and γ) can be rewritten as (with t0 = 0):

E(S) = β · E[X] +
∞∑
i=0

(αti+1 + βti + γ)P (X ≥ ti) (10.16)

Proof. We first expand Equation (10.15) as follows:

E(S) =
∞∑
k=1

(∫ tk

tk−1

( k∑
i=1

(αti + γ) +
k−1∑
i=1

βti + βt
)
f(t)dt

)
(10.17)

We compute the three terms on the right-hand side separately. By defining t0 = 0, the
first term can be expressed as:

∞∑
k=1

(∫ tk

tk−1

( k∑
i=1

(αti + γ)
)
f(t)dt

)
=
∞∑
k=1

k∑
i=1

(αti + γ)

∫ tk

tk−1

f(t)dt

=
∞∑
k=1

k∑
i=1

(αti + γ)P (X ∈ [tk−1, tk])

=
∞∑
i=1

∞∑
k=i

(αti + γ)P (X ∈ [tk−1, tk])

=
∞∑
i=1

(αti + γ)P (X ≥ ti−1)
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Similarly, we obtain the second term:

∞∑
k=1

(∫ tk

tk−1

( k−1∑
i=1

βti

)
f(t)dt

)
=
∞∑
i=1

βtiP (X ≥ ti)

and the third term:

∞∑
k=1

(∫ tk

tk−1

βtf(t)dt

)
= β · E[X]

Plugging these three terms back into Equation (10.17), we get the desired expression for
the cost function as given by Equation (10.16).

Characterizing the optimal solution

In this section, we are interested in characterizing the properties of an optimal solution
S = (to1, t

o
2, · · · , ton, · · · ) for STOCHASTIC.

Upper bound on to1 and finite expected cost In this section, we extract an upper bound
for the first request to1 of an optimal sequence So to STOCHASTIC, which allows us to
show that the expected cost E(So) is upper bounded too, and hence finite. This result
holds in a general setting, namely, for any distribution D such that E(X2) <∞.

Obviously, if the distribution’s support is upper bounded, such as for UNIFORM(a, b),
a solution is to choose that upper bound for to1 (e.g., to1 ≤ b for UNIFORM(a, b)). Hence,
we focus on distributions with infinite support [a,∞) and aim at restricting the search
for an optimal to1 to a bounded interval [a,A1] for some A1. We derive the following
result.

Theorem 10. For any distribution D with infinite support [a,∞) such that E[X2] < ∞, the
value to1 of an optimal sequence So = (to1, t

o
2, . . . , t

o
i , t

o
i+1, . . . ) satisfies to1 ≤ A1, and E(So) ≤ A2,

where

A1 = E[X] + 1 +
α + β

2α
(E[X2]− a2) +

α + β + γ

α
(E[X]− a) (10.18)

A2 = β · E(X) + αA1 + γ (10.19)

Proof. We consider the sequence S = (t1, t2, . . . , ti, ti+1, . . . ) with ti = a+ i for i ≥ 1 (and
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t0 = 0), and compute:

E(S)− β · E[X] =
∞∑
i=0

(αti+1 + βti + γ)P (X ≥ ti)

=
∞∑
i=0

(α(a+ i+ 1) + β(a+ i) + γ)P (X ≥ a+ i)

= α(a+ 1) + γ +
∞∑
i=1

(α + β)(a+ i)P (X ≥ a+ i)

+ (α + γ)
∞∑
i=1

P (X ≥ a+ i)

= α(a+ 1) + γ + (α + β)
∞∑
i=1

∫ a+i

a+i−1

(a+ i)P (X ≥ a+ i) dt

+ (α + γ)
∞∑
i=1

∫ a+i

a+i−1

P (X ≥ a+ i) dt

Note that for all t ∈ [a+ i− 1, a+ i], we have both

a+ i ≤ t+ 1

and
P (X ≥ a+ i) ≤ P (X ≥ t)

Thus,
(a+ i)P (X ≥ a+ i) ≤ (t+ 1)P (X ≥ t)

Hence, we can write:

E(S)− β · E[X] ≤ α(a+ 1) + γ + (α + β)
∞∑
i=1

∫ a+i

a+i−1

(t+ 1)P (X ≥ t) dt

+ (α + γ)
∞∑
i=1

∫ a+i

a+i−1

P (X ≥ t) dt

= α(a+ 1) + γ + (α + β)

∫ ∞
a

(t+ 1)P (X ≥ t) dt+ (α + γ)

∫ ∞
a

P (X ≥ t) dt

≤ α(a+ 1) + γ + (α + β)

∫ ∞
a

t · P (X ≥ t) dt+ (2α + β + γ)

∫ ∞
a

P (X ≥ t) dt

For the last inequality, we have split∫ ∞
a

(t+ 1)P (X ≥ t) dt
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into ∫ ∞
a

tP (X ≥ t) dt

and ∫ ∞
a

P (X ≥ t) dt

Extending the support of D to [0,∞) by letting f(t) = 0 for 0 ≤ t ≤ a, and hence
P (X ≥ t) = 1 for 0 ≤ t ≤ a, we have the following property for any integer p ≥ 1:∫ ∞

0

tp−1 · P (X ≥ t) dt =

∫ ∞
t=0

tp−1

∫ ∞
x=t

f(x)dxdt

=

∫ ∞
x=0

f(x)

∫ x

t=0

tp−1dtdx

=

∫ ∞
0

xp

p
f(x)dx

=
E[Xp]

p

Hence, using p = 1, we have:∫ ∞
a

P (X ≥ t) dt =

∫ ∞
0

P (X ≥ t) dt−
∫ a

0

P (X ≥ t) dt = E[X]− a

and using p = 2, we get:∫ ∞
a

t · P (X ≥ t) dt =

∫ ∞
0

t · P (X ≥ t) dt−
∫ a

0

t · P (X ≥ t) dt =
E[X2]− a2

2

Altogether, we derive that:

E(S) ≤ β · E[X] + αA1 + γ (10.20)

where A1 is given by Equation (10.18). From Equation (10.16), the expected cost of any
sequence S satisfies E(S) ≥ β ·E[X]+αt1 +γ (cost of expected execution time and cost of
first request). Hence, necessarily in an optimal sequence, the first reservation to1 satisfies
to to1 ≤ A1. Thus, Equation (10.18) gives the desired bound on to1.

Properties of optimal sequences We now derive a recurrence relation between the
successive requests in the optimal sequence for STOCHASTIC.

Theorem 11. Let So = (toi )i≥1 denote an optimal sequence for STOCHASTIC. For all i ≥ 1, if
toi is not the last element of the sequence and F (toi ) 6= 1, we have the following property:

αtoi+1 + βtoi + γ = α
1− F (toi−1)

f(toi )
+ β

1− F (toi )

f(toi )
(10.21)
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Proof. We fix an index j ≥ 1 such that F (toj) 6= 1 and consider the expected cost when
we replace toj by an arbitrary value t ∈ [toj−1, t

o
j+1]. This amounts to using the sequence

Soj (t) = (to1, t
o
2, · · · , toj−1, t, t

o
j+1, · · · )

whose expected cost, according to Equation (10.16), is the following:

E(Soj (t)) = β · E[X] +
∑

i 6=j−1,j

(αtoi+1 + βtoi + γ)P (X ≥ toi ) + (αt+ βtoj−1 + γ)P
(
X ≥ toj−1

)
+ (αtoj+1 + βt+ γ)P (X ≥ t)

which we can rewrite as:

E(Soj (t)) = Cj + αt(1− F (toj−1)) + (αtoj+1 + βt+ γ)(1− F (t))

where Cj is some constant independent of t. By definition, the minimum of E(Soj (t))
on [toj−1, t

o
j+1] is achieved at t = toj (and potentially at other values). Because E(Soj (t))

is smooth, we have that: its derivative at toj , which is not an extremity of the interval

[toj−1, t
o
i+1], must be equal to zero, i.e.,

∂E(Soj (t))

∂t
= 0. This gives:

α(1− F (toj−1)) + β(1− F (toj))− (αtoj+1 + βtoj + γ)f(toj) = 0 (10.22)

To get the final result, it remains to show that f(toj) 6= 0. Otherwise, we would get
from Equation (10.22) that:

α(1− F (toj−1)) + β(1− F (toj)) = 0

which implies that:
F (toj−1) = 1

because α > 0 (and β(1− F (toj)) ≥ 0). But then,

F (toj) ≥ F (toj−1) = 1

which contradicts the initial assumption. Hence, f(toj) 6= 0, and rewriting Equa-
tion (10.22) directly leads to Equation (10.21).

Note that the condition F (toi ) 6= 1 in Theorem 11 applies to distributions with
bounded support, such as UNIFORM(a, b), where F (b) = 1.
For the usual distributions with unbounded support, such as EXP(λ), we have F (t) < 1
for all t ∈ [0,∞) and an optimal sequence must be infinite. In essence, Theorem 11
suggests that an optimal sequence is characterized solely by its first value to1:

Proposition 4. For a smooth distribution with unbounded support, solving STOCHASTIC re-
duces to finding to1 that minimizes

∞∑
i=0

(αti+1 + βti + γ)P (X ≥ ti)
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where to0 = 0, and for all i ≥ 2,

toi =
1− F (toi−2)

f(toi−1)
+
β

α

(
1− F (toi−1)

f(toi−1)
− toi−1

)
− γ

α
(10.23)

For a smooth distribution with bounded support, the recurrence in Equation (10.23) still holds
but the optimal sequence stops as soon as it reaches toi with F (toi ) = 1.

Proposition 4 provides an optimal algorithm for general smooth distributions, up to
the determination of to1. However, computing the optimal to1, remains a difficult problem,
except for simple distributions such as UNIFORM(a, b) (see Section 10.2.2).

Optimal solution for specific distributions

Uniform distributions In this section, we discuss the optimal strategy for a uniform
distribution UNIFORM(a, b), where 0 < a < b. Intuitively, one could try and make a first
reservation of duration, say, t1 = a+b

2
, and then a second reservation of duration t2 = b.

However, we show that the best approach is to make a single reservation of duration
t1 = b, for any value of the parameters α, β and γ:

Theorem 12. For a uniform distribution UNIFORM(a, b), the optimal sequence for STOCHAS-
TIC is So = (b).

Proof. We proceed by contradiction and assume there is an optimal sequence S =
(t1, t2, . . . , ti, ti+1, . . . ) for STOCHASTIC where t1 < b. Necessarily, this sequence con-
tains more elements: either it is finite of length n and then necessarily tn = b (hence
n ≥ 2): otherwise tn < b and E(S) = ∞ because the interval [tn, b] has non-zero mea-
sure; or it is infinite and then the conclusion holds (note that in that case, limi→∞ ti = b:
otherwise the strictly increasing sequence (ti)i≥1 converges to some value b′ < b and
E(S) =∞ because the interval [b′, b] has non-zero measure). Altogether, t2 always exists
and t1 < t2 ≤ b.

We can compute E(S) by distinguishing whether the job execution time t satisfies: (i)
a ≤ t ≤ t1; or (ii) t1 ≤ t ≤ t2; or (iii) t2 ≤ t ≤ b. Note that the last case (iii) may disappear
if t2 = b. We obtain:

E(S) =
t1 − a
b− a (αt1 + β

a+ t1
2

+ γ) +
t2 − t1
b− a (αt1 + βt1 + γ + αt2 + β

t1 + t2
2

+ γ)

+
b− t2
b− a (αt1 + βt1 + γ + αt2 + βt1 + γ + Z)

In the equation above, we have used the fact that:

β

∫ t1

a

tP(X = t|a ≤ t ≤ t1)dt = β
a+ t1

2
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and similarly,

β

∫ t2

t1

tP(X = t|t1 ≤ t ≤ t2)dt = β
t1 + t2

2

Also, b−t2
b−a Z represents the expected cost of the third and following reservations for t ∈

[t2, b].
Now, we suppress t1 in the optimal sequence S and get a new sequence

S ′ = (t2, t3, . . . , ti, ti+1, . . . )

We can compute its expected cost just as before:

E(S ′) =
t2 − a
b− a (αt2 + β

a+ t2
2

+ γ) +
b− t2
b− a (αt2 + βt2 + γ + Z)

where Z has the same value as above, because only the beginning of the sequence has
been modified. We can then derive that:

E(S)− E(S ′) =
1

b− a(αu+ βv + γw)

where u = t1(b − t2) + a(t2 − t1) > 0, v = t1(b − t1) > 0, and w = b − t1 > 0. Hence
E(S) > E(S ′), and S was not an optimal sequence, the desired contradiction.

Exponential distributions In this section, we provide partial results for the RESERVA-
TIONONLY problem (β = γ = 0 and α = 1) with an exponential distribution EXP(λ).
From Theorem 10 (and the example in Section 10.2.1), we know that there exist se-
quences of finite expected cost. We further characterize the optimal solution as follows:

Proposition 5. Let S1 = (s1, s2, . . . , si, si+1, . . . ) denote the optimal sequence for RESERVA-
TIONONLY with X1 ∼ EXP(1). It is the sequence that minimizes

E(S1) = s1 + 1 +
∞∑
i=1

e−si ,

such that, s2 = es1 , and for i ≥ 3,
si = esi−1−si−2 (10.24)

We denote by E1 = s1 + 1 +
∞∑
i=1

e−si . The optimal sequence for RESERVATIONONLY for

Xλ ∼ EXP(λ) is the infinite sequence Sλ = (t1, t2, . . . , ti, ti+1, . . . ) such that ti = si
λ

for i ≥ 1.
Its expected cost is E(Sλ) = 1

λ
E1.

Proof. The results on S1 (Equation (10.24) andE1) follow directly from Proposition 4 and
Equation (10.23).
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Consider an EXP(λ) distribution: Xλ. From Equation (10.16), the expected cost of the
optimal sequence Sλ is

E(Sλ) =
∞∑
i=0

ti+1e
−λti

where t0 = 0, t1 is unknown, and the value of ti for i ≥ 2 is given by Equation (10.23) as

ti =
eλ(ti−1−ti−2)

λ

for i ≥ 2. We define ui = λti for all i ≥ 0, we derive that

E(Sλ) =
1

λ

∞∑
i=0

ui+1e
−ui

with ui = eui−1−ui−2 for all i ≥ 2. Hence ui is the sequence that minimizes

E(Sλ) =
∞∑
i=0

ti+1e
−λti =

1

λ

∞∑
i=0

ui+1e
−ui =

1

λ

(
u1 + 1 +

∞∑
i=1

e−ui

)
We can notice that the sequence U = (u1, u2, · · · , ui, · · · ) solves the same system of

equations as S1, hence S1 is a valid solution for U .
Hence the result.

Again, the optimal sequence is fully characterized by the value of t1 or s1. Here, s1

is independent of λ. In other words, the solution for EXP(1) is generic, and the solution
for EXP(λ) for an arbitrary λ can be directly derived from it. Unfortunately, we do not
know how to compute s1 analytically. However, a brute-force search provides the value
s1 ≈ 0.74219, which means that the first reservation for EXP(λ) should be approximately
three quarters of the mean value 1

λ
of the distribution, for any λ > 0.

10.2.3 A heuristic solution for arbitrary continuous distributions

The results of the previous section provide an optimal strategy for STOCHASTIC up to
the determination of the optimal to1 , since Theorem 11 and Proposition 4 allow us to
compute the subsequent toi ’s. However, while we have derived an upper bound on to1,
we do not know how to compute its exact value for an arbitrary distribution.

We present here an exhaustive search procedure called BRUTE-FORCE that tries dif-
ferent values for the first reservation length t1 in a sequence S, and then computes the
subsequent values according to Equation (10.23). Algorithm 7 details the different steps
of the heuristic.

Specifically, we try M different values of t1 on the interval [a, b], where a is the lower
bound of the distribution and b is the upper bound if the distribution is finite. Oth-
erwise, we set b = A1, which is an upper bound on the optimal to1 as given in Equa-
tion (10.18). For each m = 1, . . . ,M , we generate a sequence that starts with

t1 = a+m · b− a
M
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Given a sequence S, we evaluate its expected cost using Equation (10.16). We finally
return the minimum expected cost found over all the M values of t1. Note that some
values of t1 may not lead to any result, because the sequence computed based on it and
using Equation (10.23) may not be strictly increasing. In this case, we simply ignore the
sequence. The complexity of this heuristic is O(M).

Algorithm 7 BRUTE-FORCE (X,M)

1: Let [a, b] be the domain of definition of X , with 0 ≤ a < b
2: Let tup1 = b if b 6=∞, tup1 = A1 otherwise as given in Equation (10.18)
3: Let V = {a+m · t

up
1 −a
M
}with m = 1, . . . ,M , the set of candidate t1

4: Let Sb = ∅ the variable to track current best solution
5: Let E(Sb) = 0 the expectation of current best solution
6: for m ∈ V do
7: Let Sc be the sequence associated to t1 = m following Equation (10.23)
8: Let E(Sc) be the expectation of the cost of Sc as in Equation (10.16)
9: if Sc strictly increasing and E(Sc) < E(Sb) then

10: Sb = Sc, E(Sb) = E(Sc)
11: end if
12: end for
13: return Sb

We point out that the actual optimal value for the first request to1 would possibly lie in
between two successive values of t1 that we try. However, because we deal with smooth
probability distributions, we expect to return a t1 and an associated expected cost that
are close to the optimal when M is sufficiently large. In the performance evaluation, we
set M = 5000.

10.2.4 Execution time as a discrete probability distribution

We focus in this section on solving STOCHASTIC-CKPT in the case of a discrete distribu-
tion of the application walltime.

An optimal algorithm for discrete distribution

When execution time of the application follows any discrete probability distribution,
the optimal sequence is computed by a dynamic programming algorithm.

Theorem 13 (Discrete distribution). If X ∼ (vi, fi)i=1...n, then STOCHASTIC can be solved
optimally in polynomial time. This algorithm is called NO-CHECKPOINT.

Proof. Let E∗i denote the optimal expected cost given that X ≥ vi. In this case, to com-
pute the optimal expected cost, the probability distribution of X needs to be first up-
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dated as
f ′k =

fk
n∑
j=i

fj

,∀k = i, . . . , n

which guarantees that
n∑
k=i

f ′k = 1.

We can then express E∗i based on the following dynamic programming formulation,
NO-CHECKPOINT:

E∗i = min
i≤j≤n

(
αvj + γ +

j∑
k=i

f ′k · βvk +
( n∑
k=j+1

f ′k

)(
βvj + E∗j+1

))

In particular, to compute E∗i , we make a first reservation of all possible discrete values
(vj)j=i...n and select the one that incurs the minimum total expected cost. For each vj

considered, if the job’s actual execution time is greater than vj (with probability
n∑

k=j+1

f ′k),

the total cost also includes the optimal cost E∗j+1 for making subsequent reservations.
The dynamic program is initialized with E∗n = αvn + βvn + γ, and the optimal total

expected cost is given by E∗1. The complexity is O(n2), since each E∗i depends on n − i
other expected costs, with associated probability updates and summations that can be
computed in O(n − i) time. The optimal sequence of reservations can be obtained by
backtracking the decisions made at each step.

Note that the sequence obtained by dynamic programming always ends with the
largest value vn = b. When applying it back to a continuous distribution with un-
bounded support, more values will be needed, because the sequence must tend to in-
finity as explained in Section 9.3. In this case, additional values can be appended to the
sequence by using other heuristics, such as the ones presented next in Section 11.1.1.

Truncating and discretizing continuous distributions

We discuss in this section how one could use the above presented algorithm for any
continuous distribution by discretizing it into a discrete distribution.

If a continuous distribution has finite support [a, b], where 0 ≤ a < b, then we can
directly discretize it. Otherwise, for a distribution with infinite support [a,∞), where
0 ≤ a, we need to first truncate it in order to operate on a bounded interval. In the latter
case, we define

b = Q(1− ε)
where

Q(x) = inf{t|F (t) ≥ x}
is the quantile function. That is, we discard the final ε ∈ (0, 1) quantile of the distribu-
tion, which for usual distributions ensures that b is finite. In either case, the discretiza-
tion will then be performed on the interval [a, b]. Let n denote the number of discrete
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values we will sample from the continuous distribution. The result will be a set of n
pairs (vi, fi)i=1...n, where the vi’s represent the possible execution times of the jobs, and
the fi’s represent the corresponding probabilities. We envision two procedures for the
discretization:

• EQUAL-PROBABILITY: This scheme ensures that all the discrete execution times
have the same probability. Thus, for all i = 1, 2, . . . , n, we can compute

vi = Q
(
i · F (b)

n

)
with associated

fi =
F (b)

n

• EQUAL-TIME: This scheme makes the discrete execution times equally spaced in
the interval [a, b]. Thus, for all i = 1, 2, . . . , n, the execution times and their proba-
bilities are computed as

vi = a+ i · b− a
n

associated to
fi = F (vi)− F (vi−1)

We show in next chapter that EQUAL-TIME scheme tends to perform better than
EQUAL-PROBABILITY, hence we preferably use EQUAL-TIME procedure to trans-
form continuous distributions into discrete ones when necessary.

Note that when the continuous distribution has unbounded support, the probabili-
ties for the n discrete execution times do not sum up to 1, i.e.,

n∑
i=1

fi = F (b) = 1− ε

A smaller value of ε and a larger number n will provide a better sampling of the contin-
uous distribution in either discretization scheme. In the performance evaluation, we set
ε = 10−7 and n = 1000.

We saw in the previous section that our solution for STOCHASTIC for continuous
distribution is a sub-optimal heuristic, hence not an exact solution. Thus, the idea of
using the dynamic-programming algorithm by using discretization procedures comes
naturally. We will compare in Chapter 11 the performance of the discretization-based
heuristic with the heuristic solution for STOCHASTIC.

In Section 10.1.2, we presented a near-optimal solution for STOCHASTIC-CKPT using
continuous distribution. One could also use the discretization procedures in that case,
as we also provide an optimal solution in the case of discrete distribution. However, the
FPTAS already generates a solution really close to the optimal. Hence, the interest of
using the discretization is less prominent for STOCHASTIC-CKPT than for STOCHASTIC.
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10.2.5 Extension to convex cost functions

We briefly show that the results presented in this section for the STOCHASTIC problem
can be easily extended to convex cost functions.
To do so, we extend Theorem 11 and Proposition 4 in the case of a general convex cost
function.

Theorem 14. Let So = (toi )i≥1 denote an optimal sequence for STOCHASTIC-CKPT. For all
i ≥ 1, if toi is not the last element of the sequence and F (toi ) 6= 1, we have the following property:

G
(
toi+1

)
+ βtoi = G′ (toi ) ·

1− F (toi−1)

f(toi )
+ β

1− F (toi )

f(toi )
(10.25)

where G (x) is a convex cost function.

The proof follows the same principle as the one for Theorem 11.

Proposition 6. For a smooth distribution with unbounded support and a convex cost function
G (x), solving STOCHASTIC-CKPT reduces to finding to1 that minimizes

∞∑
i=0

(
G (ti+1)+βti

)
P (X ≥ ti)

where to0 = 0, and for all i ≥ 2,

toi = G−1

(
G′
(
toi−1

)
· 1− F (toi−2)

f(toi−1)
+ β

(
1− F (toi−1)

f(toi−1)
− toi−1

))
(10.26)

For a smooth distribution with bounded support, the recurrence in Equation (10.26) still holds
but the optimal sequence stops as soon as it reaches toi with F (toi ) = 1.

Proof. Directly comes from rewriting Equation (10.25).

10.3 Summary of contributions

We summarize in Table 10.1 our different contributions for both STOCHASTIC and
STOCHASTIC-CKPT problems, with associated algorithms, theorems, and proofs in
the manuscript. Finally, Table 10.2 recalls the different heuristics we introduced for
STOCHASTIC-CKPT problem.

This concludes this chapter about algorithmic solution for STOCHASTIC-CKPT and
STOCHASTIC. In the next chapter, we will propose a rigorous evaluation of all the pro-
posed strategies of this chapter.
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Problem STOCHASTIC-CKPT STOCHASTIC

Distribution Continous Discrete Continuous Discrete

Support Bounded Unbounded - Bounded Unbounded -

Solution (1 + ε)-approx - optimal sub-optimal sub-optimal optimal

Algorithm Name DYN-PROG-COUNT - DISCRETE-CKPT BRUTE-FORCE BRUTE-FORCE NO-CHECKPOINT

Complexity O
(

1
ε3

)
- O(n3) O(M) O(M) O(n2)

Ref. Proof Theorem 5 - Theorem 6 Proposition 4 Proposition 4 Theorem 13

Ref. Algorithm Algorithm 4 - Theorem 6 Algorithm 7 Algorithm 7 Theorem 13

Table 10.1: Summary of contributions to both STOCHASTIC and STOCHASTIC-CKPT
problems, with the referred theorem and proof.

Name ALL-CHECKPOINT ALL-CHECKPOINT-PERIODIC NO-CHECKPOINT-PERIODIC

Reference Theorem 7 Algorithm 5 Algorithm 6

Distribution Discrete Discrete Discrete

Problem STOCHASTIC-CKPT STOCHASTIC-CKPT STOCHASTIC

Solution Heuristic Heuristic Heuristic

Complexity O(n2) O(n) O(n)

Table 10.2: Summary of all heuristics under study for STOCHASTIC-CKPT problem.
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Chapter 11

Performance Evaluation

Contents
11.1 A first evaluation: the model without checkpoint . . . . . . . . . . . . . 142

11.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

11.1.2 Results for RESERVATIONONLY scenario . . . . . . . . . . . . . . . 144

11.1.3 Results for HPC scenario . . . . . . . . . . . . . . . . . . . . . . . 147

11.2 On the strategies with checkpointing . . . . . . . . . . . . . . . . . . . . 149

11.2.1 Evaluation methodology . . . . . . . . . . . . . . . . . . . . . . . . 149

11.2.2 Results for Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 150

11.2.3 Results for Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 154

11.3 Experiments for Checkpointing Strategies . . . . . . . . . . . . . . . . . 155

11.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

11.3.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 157

In this chapter, we evaluate the algorithmic solutions for STOCHASTIC and
STOCHASTIC-CKPT problems presented in Chapter 10.

The evaluations are processed in three steps:

• We first evaluate the solution without checkpointing of Section 10.2, and com-
pare it with standard scheduling approaches. We perform this evaluation un-
der two different cost models that cover both HPC and cloud computing systems.
The evaluations are done by a simulation process, on synthetic applications (Sec-
tion 11.1).

• In a second step, we provide through simulation an evaluation of the different
strategies with checkpointing presented in Section 10.1. We also compare the per-
formance to the non-checkpointing version and show the benefits of checkpoint-
ing (Section 11.2).
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• Finally, we propose an evaluation of the solutions including checkpointing by per-
forming real experiments with neuroscience application (Section 11.3).

We describe in Appendix A.2 the details of the software contributions for the differ-
ent evaluations performed in this chapter.

11.1 A first evaluation: the model without checkpoint

In this section, we evaluate the different heuristics presented in Section 10.2.3 to solve
STOCHASTIC problem. Our purpose in this section is to show that our contribution
to solve STOCHASTIC, the BRUTE-FORCE algorithm, is a good solution. To do so, we
evaluate BRUTE-FORCE in comparison with heuristics that do not use checkpointing, in-
troduced in Section 11.1.1. In Section 11.2, we will compare solutions with and without
checkpointing and show the benefits of checkpointing. It is expected that a good check-
pointing solution should outperform the ones without checkpointing. This is why we
perform a fair evaluation for BRUTE-FORCE as a first step in this dedicated section.

The code and setup of the experiments presented in this section are pub-
licly available on https://gitlab.inria.fr/vhonore/ipdps_2019_
stochastic-scheduling. Appendix A.2.1 presents some more details about
this software production. In the following, the notion of performance stands for the
expected cost of each algorithm under various job execution time distributions and cost
functions.

11.1.1 Methodology

In this section, we present some simple heuristics that are inspired by common resource
allocation strategies in the literature. These heuristics do not explore the structure of an
optimal solution nor the probability distribution, but rely on simple incremental meth-
ods to generate reservation sequences.

In the following, we use µ = E(X) to denote the mean of a given distribution, σ2 =
E(X2) − µ2 to denote its variance, and m = Q(1

2
) to denote its median, where Q(x) =

inf{t|F (t) ≥ x} represents the quantile function. The different heuristics are defined as
follows:

• MEAN-BY-MEAN: start with the mean (i.e., t1 = µ) and then make each subsequent
reservation request by computing the conditional expectation of the distribution
in the remaining interval, i.e.,

ti = E(X|X > ti−1) =

∫∞
ti−1

tf(t)dt

1− F (ti−1)
, ∀i ≥ 2

Deriving the sequence is straightforward for some distributions (e.g., exponential,
uniform), but more involved for others. Full derivations for every considered dis-
tributions are described in Appendix B.
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11. Performance Evaluation

• MEAN-STDEV: start with the mean (i.e., t1 = µ) and then increment the reservation
length by one standard deviation (σ) for each subsequent request, i.e.,

ti = µ+ (i− 1)σ, ∀i ≥ 2

• MEAN-DOUBLING: start with the mean (i.e., t1 = µ) and then double the reserva-
tion length for each subsequent request, i.e.,

ti = 2i−1µ, ∀i ≥ 2

• MEDIAN-BY-MEDIAN: start with the median (i.e., t1 = m) and then make each
subsequent reservation request by using the median of the distribution in the re-
maining interval, i.e.,

ti = Q(1− 1

2i
), ∀i ≥ 2

The expected cost of each heuristic is obtained by using Equation 10.15. To get uni-
form results, we normalize the expected cost of each heuristic by the expected cost of
an omniscient scheduler, which knows the job execution time t a priori, and thus would
make a single request of length t1 = t. Averaging over all possible values of t from
the distribution D, the omniscient scheduler that we denote by OMNISCIENT has an ex-
pected cost:

Eo =

∫ ∞
0

(αt+ βt+ γ)f(t)dt = (α + β) · E[X] + γ

For a given distribution, the normalized ratio between algorithm performance and OM-
NISCIENT will always be larger than or equal to 1, and a smaller ratio means a better
result.

We perform the evaluation of the heuristics under two different reservation-based
scenarios, each associated to a different cost function:

• RESERVATIONONLY (Section 11.1.2): This scenario is based on the Reserved Instance
pricing scheme available in AWS [16], where the user pays exactly what is re-
quested. Hence, we instantiate the cost function with α = 1, β = γ = 0. For
instance, such costs are incurred when making reservations of resources to sched-
ule jobs on some cloud platforms, with hourly or daily rates. We consider nine
probability distributions in this case, six of which have infinite support1 and the
remaining three have finite support. Table 11.1 lists these distributions with in-
stantiations of their parameters used in the evaluation.

• HPC (Section 11.1.3): This scenario is based on executing large jobs on HPC plat-
forms, where the cost, as represented by the total turnaround time of a job, is the
sum of its waiting time in the queue and its actual execution time. We set β = 1 for

1We consider here one-side truncation for Truncated Normal distribution.
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11.1. A first evaluation: the model without checkpoint

(a) Functional MRI quality assurance (fMRIQA) [58](b) Voxel-based morphometry quality assurance
(VBMQA) [108]

Figure 11.1: Traces of over 5000 runs (histograms in purple) from July 2013 to Oc-
tober 2016 of two Neuroscience applications from the Vanderbilt’s medical imaging
database [71]. We fit the data to LogNormal distributions (dotted lines in orange) with
means and standard deviations shown on top.

the execution time and instantiate the waiting time function (α, γ) by curve-fitting
the data from the Intrepid machine, presented in Figure 9.1 of Chapter 9. The
probability distribution of application walltime is derived from execution traces
of Neuroscience applications as shown in Figure 11.1.

11.1.2 Results for RESERVATIONONLY scenario

We first evaluate in Table 11.2 the performance of the two discretization schemes pre-
sented in Section 10.2.4 with different numbers of discrete samples. We can see that,
for all distributions considered, the normalized costs with omniscient scheduler of both
heuristics improve as we increase the number n of samples. The performance converges
and gets close to that of BRUTE-FORCE when n = 1000, despite the differences in the
convergence rate under different distributions and discretization schemes (EQUAL-TIME
and EQUAL-PROBABILITY). Again, both heuristics take just a few seconds to run on
an Intel i7 core, and the results provide good approximate solutions to the problem
with sufficient samples. Even though performance of both schemes are close, we see
that EQUAL-TIME seems to perform slightly better. Hence, we use EQUAL-TIME as dis-
cretization scheme in the remaining of this chapter, when using NO-CHECKPOINT and
heuristics presented in Table 10.2 of Chapter 10.

2This one-side truncation is used for evaluation of non-checkpointing strategies (Section 11.1)
3This two-side truncation is used for the evaluation of strategies with checkpointing (Section 11.2)
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Distribution PDF f(t) Instantiation Support (in hours) PDF shape
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Table 11.1: Probability distributions and parameter instantiations.
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Distribution
EQUAL-TIME EQUAL-PROBABILITY

n = 10 n = 25 n = 50 n = 100 n = 250 n = 500 n = 1000 n = 10 n = 25 n = 50 n = 100 n = 250 n = 500 n = 1000

Exponential 2.61 2.40 2.33 2.33 2.39 2.35 2.31 3.68 2.76 2.56 2.59 2.28 2.34 2.36

Weibull 17.03 7.19 4.11 3.14 2.66 2.95 2.40 15.77 7.46 5.75 4.24 3.47 2.84 2.22

Gamma 2.22 2.17 2.17 2.13 2.12 2.08 2.20 2.66 2.39 2.38 2.23 2.27 2.27 2.13

Lognormal 1.93 1.86 1.96 1.89 1.93 1.96 1.87 2.93 2.52 2.18 2.00 1.92 1.91 1.93

TruncatedNormal 1.38 1.34 1.36 1.38 1.37 1.37 1.38 1.41 1.39 1.39 1.38 1.36 1.36 1.36

Pareto 31.54 13.02 6.88 3.80 2.09 1.74 1.71 32.05 12.99 3.76 5.09 2.97 1.99 1.66

Uniform 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33

Beta 1.82 1.82 1.81 1.86 1.78 1.79 1.79 1.79 1.82 1.78 1.81 1.79 1.81 1.80

BoundedPareto 2.18 1.88 1.84 2.04 1.98 1.91 2.00 2.59 2.17 1.90 1.99 1.91 1.94 1.91

Table 11.2: Normalized expected costs (Ẽ(S)/Eo) of the two discretization-based heuris-
tics with different numbers of samples in the RESERVATIONONLY scenario.

Distribution BRUTE-FORCE MEAN-BY-MEAN MEAN-STDEV MEAN-DOUB. MED-BY-MED NO-CHECKPOINT

Exponential 2.15 2.36 (1.10) 2.39 (1.11) 2.42 (1.13) 2.83 (1.32) 2.31 (1.07)

Weibull 2.12 2.76 (1.30) 3.58 (1.69) 3.03 (1.43) 3.05 (1.44) 2.40 (1.13)

Gamma 2.02 2.26 (1.12) 2.18 (1.08) 2.24 (1.11) 2.51 (1.24) 2.20 (1.09)

Lognormal 1.85 2.19 (1.19) 2.09 (1.13) 1.95 (1.06) 2.30 (1.24) 1.87 (1.01)

TruncatedNormal 1.36 1.98 (1.46) 1.83 (1.35) 1.98 (1.46) 2.16 (1.60) 1.38 (1.02)

Pareto 1.62 1.82 (1.12) 2.18 (1.34) 1.75 (1.08) 2.26 (1.39) 1.71 (1.05)

Uniform 1.33 2.21 (1.66) 1.90 (1.43) 1.67 (1.26) 2.21 (1.66) 1.33 (1.00)

Beta 1.75 2.02 (1.15) 2.11 (1.20) 1.98 (1.13) 2.45 (1.40) 1.79 (1.02)

BoundedPareto 1.80 1.84 (1.02) 2.09 (1.16) 1.83 (1.01) 2.81 (1.56) 2.00 (1.11)

Table 11.3: Normalized expected costs of different heuristics in the RESERVATIONONLY
scenario under different distributions. The values in the parenthesis show the expected
costs normalized by those of the BRUTE-FORCE heuristic.
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Table 11.3 presents, for each heuristic, the normalized expected cost, i.e., Ẽ(S)/Eo,
under different probability distributions. The BRUTE-FORCE heuristic tries M = 5000
values of t1, and EQUAL-TIME discretization procedure sets the truncation parameter to
be ε = 10−7.

First, the normalized costs allow us to compare the performance of these heuristics
with that of the omniscient scheduler to access the relative benefits of using Reserved
Instance (RI) rather than On-Demand (OD). Indeed, if the per-hour price for RI is cRI

and the corresponding price for OD is cOD, it is beneficial to use RI and compute a
reservation sequence S, if cRI · Ẽ(S) ≤ cOD · Eo, that is Ẽ(S)/Eo ≤ cOD/cRI. In the case of
Amazon AWS [16], the price for the two types of services can differ by a factor of 4, i.e.,
cOD/cRI = 4.

We can see in the table that the normalized costs of all heuristics satisfy Ẽ(S)/Eo < 4
for all distributions except for Pareto, which has a long tail4 and thus incurs a higher
cost for non-omniscient schedulers. Overall, the results show the benefit of using the
reservation-based approach for the considered problem. We also observe that, com-
pared with other heuristics, BRUTE-FORCE has better performance (see values in the
parenthesis in the table), and this is because it computes a reservation sequence by ex-
ploring the properties of the optimal solution (Section 10.2.2).

We now study the BRUTE-FORCE heuristic in more detail. Table 11.4 shows the best
t1 found, which we denote by tbf

1 , and some other values of t1 at different quantiles of the
distributions with their normalized costs (in parenthesis). First, we can see that some
values of t1 can lead to invalid sequences that are not increasing (i.e., ti+1 < ti for some
i), which are indicated by null cost values in the table. Moreover, even if the sequence
is valid, compared to using tbf

1 , randomly guessing a t1 can result in a cost that is not
good enough in most cases. Although we can sometimes extract t1’s that could give a
reasonable cost (e.g., in the case of Exponential distribution, t1 = 0 results in a cost that
is close to that given by tbf

1 ), it is difficult in general to guess a good value for t1 without
using a systematic approach. We point out that more efficient algorithms may exist to
search for the best t1, but our BRUTE-FORCE procedure takes just a few seconds to run
on an Intel i7 core with M = 5000, thus providing a practical solution that is close to the
optimal for the problem.

11.1.3 Results for HPC scenario

We now present the evaluation results for the HPC scenario when using a real job execu-
tion time distribution under an HPC cost model. The distribution that we use (shown in
Figure 11.1b) is generated from the execution traces of a Neuroscience application (VB-
MQA [28]). It follows a LogNormal law with parameters (µ = 7.1128h, σ = 0.2039h) ob-
tained by fitting the execution time data to the distribution curve, and this gives a mean
of µd = 1253.37s ≈ 0.348 hour and a standard deviation of σd = 258.261s ≈ 0.072 hour.

4Intuitively, a long-tail distribution has a large number of occurrences that are far from the beginning
and central part of its support. Formally, it means that 1−F (x+y)

1−F (x) → 1 when x→∞, ∀y > 0.
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Distribution tbf
1 (assoc. cost)

Other values of t1 (associated cost)

Q(0.25) Q(0.5) Q(0.75) Q(0.99)

Exponential 0.73 (2.15) 0.29 (−) 0.69 (−) 1.39 (2.67) 4.61 (4.83)

Weibull 0.18 (2.12) 0.08 (2.51) 0.48 (2.35) 1.92 (3.87) 21.21 (13.49)

Gamma 1.23 (2.02) 0.48 (−) 0.84 (−) 1.35 (2.11) 3.32 (3.36)

Lognormal 29.64 (1.85) 14.34 (−) 20.09 (−) 28.14 (−) 64.28 (2.97)

TruncatedNormal 10.22 (1.36) 7.05 (−) 8.00 (−) 8.95 (−) 11.29 (1.42)

Pareto 2.59 (1.62) 1.65 (−) 1.89 (−) 2.38 (−) 6.96 (4.23)

Uniform 19.95 (1.33) 12.50 (−) 15.00 (−) 17.50 (−) 19.90 (−)

Beta 0.81 (1.75) 0.33 (−) 0.50 (−) 0.67 (−) 0.94 (1.89)

BoundedPareto 2.10 (1.80) 1.15 (−) 1.39 (−) 1.93 (−) 8.27 (4.64)

Table 11.4: The best tbf
1 found by the BRUTE-FORCE heuristic and other values of t1 at

different quantiles of the distributions with their normalized expected costs (in paren-
thesis) in the RESERVATIONONLY scenario.

The average waiting time function (shown in Figure 9.1b) is obtained by analyzing the
logs from 20 groups of jobs run on 409 processors of Intrepid [136] with different reser-
vation requests. We get an affine function with parameters (α = 0.95, γ = 3771.84s ≈
1.05 hour) obtained also by curve fitting. The execution time parameter is set to β = 1.

Figure 11.2 plots the normalized expected costs of different heuristics in this sce-
nario. To evaluate the robustness of the results, we also vary the distribution param-
eters so that its mean and standard deviation are increased by up to a factor of 10
from their original values5, i.e., up to µd ≈ 3.48 hours and σd ≈ 0.72 hour. We can see
from the figures that, regardless of the parameter variations, BRUTE-FORCE and the two
discretization-based heuristics (EQUAL-TIME and EQUAL-PROBABILITY) have very close
performance, which is significantly better than the performance of the other heuris-
tics. The results are consistent with those observed in Section 11.1.2 for the RESERVA-
TIONONLY scenario, and altogether they demonstrate the effectiveness and robustness
of the proposed BRUTE-FORCE and discretization schemes for the STOCHASTIC problem.

This concludes the evaluation of our proposed solutions for STOCHASTIC problem.
Through an intensive set of simulation results, we demonstrated the efficiency of our
strategies in comparison with state-of-the-art approach.

In the next section, we are interested in evaluating the strategies that includes check-
pointing (STOCHASTIC-CKPT problem). It is expected that including checkpointing of

5Given a desired mean µd and a standard deviation σd, the LogNormal distribution can be instantiated

with parameters σ =
√

ln((σ
d

µd )2 + 1) and µ = ln
(
µd − σd2

2

)
.
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Figure 11.2: Normalized expected costs of the different heuristics in the HPC scenario
with different values for the mean (in hours) and standard deviation (in hours) of the
LogNormal distribution (µ = 7.1128, σ = 0.2039) with α = 0.95, β = 1.0, γ = 1.05.

some well-chosen distribution should improve the performance of these strategies.

11.2 On the strategies with checkpointing

In this section, we evaluate the performance of the different heuristics of Section 10.1
in simulation. As we previously stated, performance stands for the expected cost of
each algorithm under various job execution time distributions, C/R overhead and cost
functions. We use jobs that follow a wide range of usual probability distributions as well
as a distribution obtained from traces of a real Neuroscience application. We also show
that checkpointing can be an efficient tool to optimize the performance of applications
on reservation-based platforms, and under which conditions this statement holds. The
code for this section is publicly available on https://gitlab.inria.fr/vhonore/
ckpt-for-stochastic-scheduling. More details about the software development
and the reproducibility of results are available in Appendix A.2.2.

11.2.1 Evaluation methodology

In this section, we evaluate five different algorithms from the following two sets of
strategies:

• DYN-PROG-COUNT: This set includes Algorithm 4, and its ALL-CHECKPOINT and
NO-CHECKPOINT variants described in Section 10.1.4.
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11.2. On the strategies with checkpointing

• ALL-CHECKPOINT-PERIODIC: This set includes Algorithm 5, and its
NO-CHECKPOINT-PERIODIC counterpart where checkpointing is not allowed
(i.e., δi = 0,∀i).

The above algorithms are evaluated using two scenarios and one cost function called
RESERVATIONONLY-PRICING. It follows the same principle as the one introduced in
Section 11.1 for RESERVATIONONLY scenario. This function is based on the Reserved
Instances pricing scheme in AWS [16], where the user pays exactly what is requested.
Hence, α = 1, β = γ = 0. For completeness, we present in Appendix C similar results
with a second cost function called HPC-PRICING. It considers an additional cost that
is proportional to the actual execution time (pay for what you use). Thus, α = 1, β =
1, γ = 0.

We now detail the two scenarios we use to evaluate the algorithms, using
RESERVATIONONLY-PRICING cost function:

• Scenario 1 (Section 11.2.2): We consider nine usual probability distributions, five of
which have infinite support (Exponential, Weibull, Gamma, LogNormal, Pareto)
and four have finite support (Truncated Normal, Uniform, Beta, Bounded Pareto).
We use the same instantiation of the distributions as the ones presented in Ta-
ble 11.1 The first five distributions are truncated and fed as input to Algorithm 4.
To do so, we set the upper bound of the infinite support to b = Q(1 − υ), where
Q(x) = inf{t|F (t) ≥ x} is the quantile function and υ is a small constant. In our
simulation, we set υ = 10−7. During the discretization procedure in Algorithm 4,
we then normalize the probabilities of all discrete values so that they sum to 1. We
set C = R = 360 seconds (0.1 hour). This checkpointing cost is extracted from [81]
and corresponds to an average checkpointing duration, where an optimistic one
is 60 seconds and a pessimistic one is 600 seconds. We further discuss the impact
of the checkpointing cost on the performance.

• Scenario 2 (Section 11.2.3): In this scenario, we consider the execution time traces
of a real Neuroscience application, and fit a LogNormal distribution to its execu-
tion times. To further evaluate the robustness of the algorithms, we perturb the
parameters of the fitted distribution by varying its mean and standard deviation
and show the impact on the performance.

11.2.2 Results for Scenario 1

We first evaluate the performance of DYN-PROG-COUNT compared to the other strate-
gies, when the values of R and C varies. Figure 11.3 presents the performance of these
strategies normalized to that of DYN-PROG-COUNT (black line for y = 1.0) for all distri-
butions of Table 11.1 using RESERVATIONONLY-PRICING cost function. We use ε = 0.1
for DYN-PROG-COUNT and its variants. Regarding periodic strategies, we choose the
best value for the number of chunks τ in [1, 1000]. Not surprisingly, we can observe that

150 Valentin HONORÉ



11. Performance Evaluation

when C and R are small, the best result is to use the ALL-CHECKPOINT strategy while
when they are large, one should use the NO-CHECKPOINT strategy. There exist thresh-
olds on the sizes of C and R where DYN-PROG-COUNT uses a mix of checkpointed and
not checkpointed reservations. In that case, the gain of using DYN-PROG-COUNT can be
up to 10% in compared with its variants. An interesting future direction is to find prop-
erties on those threshold depending on the distribution. Finally, one should observe
that the gain obtained with DYN-PROG-COUNT compared to the best periodic solution
is in general more important (for Truncated Normal, the performance of periodic so-
lutions are worse than a factor 2 of DYN-PROG-COUNT). For Exponential distribution,
ALL-CHECKPOINT and its periodic counterpart are identical (proof can be found in Sec-
tion 10.1.4), due to the memoryless property of the exponential distribution.

We then study the impact of ε on the performance of DYN-PROG-COUNT (DPC) when
R = C = 6min, 30min and 60min. The idea is that when ε = 1, this theoretically guar-
antees that the performance is at most twice (= 1 + ε) that of the optimal, but in practice
it can be a lot better. We study in Figure 11.4 the performance of DYN-PROG-COUNT
for various values of ε for distributions of Table 11.1 with RESERVATIONONLY-PRICING
cost function. All performance are normalized by DYN-PROG-COUNT for ε = 0.1. We
can see that in practice, the convergence to the lower bound in performance is fast. In-
deed, for ε = 1 and C = R = 6min (Figure 11.4a), almost all distributions already reach
convergence, except for Weibull and Pareto (which have a much larger domain of defi-
nition and specific properties6). For those distributions, we see that they converged for
ε = 0.1. We observe similar trends in Figures 11.4b and 11.4c when R and C increases.
Interestingly, one can note that Pareto distribution converges faster for C = R = 30 or
60min than for C = R = 6min, while Weibull distribution shows contrary behavior.
Convergence is still achieved for ε = 0.1. This shows the possible impact of application
features on algorithm behavior.

Our final evaluation for this scenario is a study of the impact of the size of the
period. Until now we have always chosen the period that minimized the objective
functions. Table 11.5 shows the performance of both variants of the periodic algo-
rithms, ALL-CHECKPOINT-PERIODIC and NO-CHECKPOINT-PERIODIC, normalized by
that of DYN-PROG-COUNT (ε = 0.1), when C = R = 360s using RESERVATIONONLY-
PRICING cost function. For each distribution: the second columns shows the best
period found when τ varies from 1 to 1000 (with its associated cost normalized
by that of DYN-PROG-COUNT), and the other columns present results for specific
values of τ in that interval. As was observed before, ALL-CHECKPOINT-PERIODIC
is in general not able to match DYN-PROG-COUNT (except for some distributions).
We can also clearly see that NO-CHECKPOINT-PERIODIC performs even worse than
ALL-CHECKPOINT-PERIODIC. The reason is that the checkpointing cost is relatively low
in this setup, so it is preferable to checkpoint more often than never. Hence, when

6For instance, Pareto is a long-tail distribution, meaning that it has a large number of occurrences that
are far from the beginning and central part of its support. Formally, it means that 1−F (x+y)

1−F (x) → 1 when
x→∞, ∀y > 0.
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(b) Weibull (µ = 2.0h)
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(c) Gamma (µ = 1.0h)
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(d) LogNormal (µ = 2.80h)
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(e) Pareto (µ = 2.25h)

0 1000 2000 3000
Cost of C and R (seconds)

1.0

1.2

1.4

A
l
g

o
/D

P
C

(X
,0

.1
)

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(f) Truncated Normal (µ = 8.00h)
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(g) Uniform (µ = 10.5h)
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(h) Beta (µ = 0.5h)
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(i) Bounded Pareto (µ = 1.84h)

Figure 11.3: Expected costs of the different strategies normalized to that of
DYN-PROG-COUNT(X, 0.1) when C = R vary from 60 to 3600 seconds, for all distribu-
tions in Table 11.1 with support considered in hours with RESERVATIONONLY-PRICING
cost function. We indicate in brackets the mean µ of each distribution.
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(c) C = R = 60min

Figure 11.4: Expected cost of DYN-PROG-COUNT(X, ε) as a function of ε for different
distributions for X with RESERVATIONONLY-PRICING cost function. C = R are set to
6, 30 and 60min.
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C = R = 1h, Table 11.6 shows that NO-CHECKPOINT-PERIODIC performs slightly better
than ALL-CHECKPOINT-PERIODIC. Finally another observation is that a wrong period
size can significantly deteriorate the performance of the periodic algorithms.

Distribution
ALL-CHECKPOINT-PERIODIC NO-CHECKPOINT-PERIODIC

Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000 Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000

Exponential 27 (1.00) 9.82 2.31 4.02 5.75 7.47 9.19 14 (1.38) 9.82 6.91 13.23 19.56 25.89 32.22

Weibull 380 (1.06) 106.50 1.15 1.06 1.10 1.18 1.27 89 (2.54) 106.50 3.26 5.32 7.52 9.74 11.98

Gamma 14 (1.02) 6.02 3.68 6.76 9.85 12.93 16.02 8 (1.26) 6.02 9.34 18.08 26.82 35.56 44.31

Lognormal 11 (1.11) 3.60 3.92 7.05 10.18 13.32 16.45 4 (1.25) 3.60 15.48 30.17 44.86 59.56 74.25

Pareto 1000 (1.01) 228.77 1.75 1.23 1.09 1.03 1.01 562 (1.33) 228.77 1.78 1.37 1.33 1.37 1.45

TruncatedNormal 2 (2.15) 2.18 8.17 14.31 20.45 26.59 32.73 1 (2.18) 2.18 197.54 394.01 590.47 786.93 983.39

Uniform 8 (1.01) 1.57 3.17 5.51 7.86 10.20 12.54 1 (1.57) 1.57 51.08 101.33 151.59 201.84 252.10

Beta 2 (1.06) 1.11 30.78 61.00 91.23 121.45 151.67 1 (1.11) 1.11 40.85 81.15 121.45 161.75 202.05

BoundedPareto 32 (1.01) 7.53 1.73 2.71 3.70 4.70 5.69 14 (1.44) 7.53 6.51 12.28 18.06 23.83 29.61

Table 11.5: Expected cost of ALL-CHECKPOINT-PERIODIC and
NO-CHECKPOINT-PERIODIC, normalized by DYN-PROG-COUNT(X, 0.1) for
C = R = 360s, with RESERVATIONONLY-PRICING cost function.

Distribution
ALL-CHECKPOINT-PERIODIC NO-CHECKPOINT-PERIODIC

Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000 Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000

Exponential 12 (1.44) 7.35 9.49 18.53 27.57 36.61 45.66 14 (1.03) 7.35 5.17 9.90 14.64 19.38 24.12

Weibull 156 (1.26) 70.94 1.29 1.65 2.11 2.60 3.11 89 (1.69) 70.94 2.17 3.54 5.01 6.49 7.98

Gamma 7 (1.48) 4.77 17.59 34.70 51.82 68.93 86.05 8 (1.00) 4.77 7.40 14.32 21.25 28.18 35.11

Lognormal 4 (1.23) 2.98 18.81 36.96 55.11 73.26 91.42 4 (1.04) 2.98 12.82 24.98 37.14 49.30 61.47

Pareto 563 (1.20) 175.44 1.58 1.24 1.21 1.24 1.31 562 (1.02) 175.44 1.37 1.05 1.02 1.05 1.11

TruncatedNormal 1 (1.85) 1.85 38.01 74.45 110.89 147.33 183.78 1 (1.85) 1.85 167.50 334.08 500.67 667.25 833.83

Uniform 3 (1.01) 1.23 13.46 26.26 39.07 51.88 64.69 1 (1.23) 1.23 39.89 79.13 118.37 157.61 196.85

Beta 1 (1.08) 1.08 207.32 414.09 620.87 827.64 1034.42 1 (1.08) 1.08 39.93 79.31 118.70 158.08 197.47

BoundedPareto 14 (1.26) 5.59 5.72 10.88 16.05 21.21 26.38 14 (1.07) 5.59 4.82 9.11 13.39 17.68 21.96

Table 11.6: Expected cost of ALL-CHECKPOINT-PERIODIC and
NO-CHECKPOINT-PERIODIC, normalized by DYN-PROG-COUNT(X, 0.1) for C = R = 1h,
with RESERVATIONONLY-PRICING cost function.

11.2.3 Results for Scenario 2

We now present the simulation results for a probability distribution fitted to the exe-
cution time traces of a real Neuroscience application (a code for structural identification
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of orbital anatomy) extracted from the Vanderbilt’s medical imaging database [71]. Fig-
ure 9.2 shows the execution time traces of the application and its fitted LogNormal dis-
tribution. Figure 11.5 presents the performance of different algorithms for this fitted
distribution using the RESERVATIONONLY-PRICING cost function, for different values of
C = R. To evaluate the robustness of algorithms, we also vary the original mean µo
(Figures 11.5a 11.5c 11.5e) or standard deviation σo (Figures 11.5b 11.5d 11.5f) of the
distribution from their original values7. For readability, all axis are in logscale. We fix
ε = 1.0 and test checkpoint/restart costs equals to 6min, 1h and 12h. For periodic strate-
gies, we use similar brute-force procedure as Scenario 1 to find the period that performs
best. The expected costs of the algorithms are normalized with omniscient scheduler
(blue dashed line), as described in Section 11.1.1.

We can observe that DYN-PROG-COUNT always gives the best performance.
As previously observed, the checkpointing cost influences the performance of
NO-CHECKPOINT and ALL-CHECKPOINT with regard to DYN-PROG-COUNT. When
C = R = 600 seconds or C = R = 3600s (Figure 11.5a - 11.5d), the value is low enough
to allow for checkpointing all reservations, the performance of DYN-PROG-COUNT and
ALL-CHECKPOINT are the same and outperforms NO-CHECKPOINT by a wide mar-
gin. However, when the checkpoint/restart overhead increases to 12h (roughly µo

2
),

we see that checkpointing all reservations become over-costly (NO-CHECKPOINT is bet-
ter than ALL-CHECKPOINT). In that case, DYN-PROG-COUNT outperforms all other
strategies. One can observe that when the ratio µ/σ is large (either by increasing
the mean, or decreasing the standard deviation), the solutions converge to the omni-
scient scheduler. This could be expected, in this case the variability becomes negligible
and the job behaves similarly to a deterministic job. As for the periodic algorithms,
ALL-CHECKPOINT-PERIODIC has better performance than NO-CHECKPOINT-PERIODIC.
However, both algorithms have worse performance than DYN-PROG-COUNT. The re-
sults demonstrate the robustness of DYN-PROG-COUNT for a practical application with
different distribution parameters. We see that, for this instantiation, it is always ben-
eficial to use RI rather than OD when using the BRUTE-FORCE heuristic. Hence, our
reservation-based approach is validated in terms of cost model in Cloud Computing.

11.3 Experiments for Checkpointing Strategies

In this section, we conduct real experiments on an HPC platform by using three stochas-
tic Neuroscience applications. The goal of the experiments is to study the performance
of different reservation and checkpointing strategies when scheduling multiple jobs in
a shared HPC execution environment.

7Given a desired mean µ and a desire standard deviation σ, the LogNormal distribution can be instan-

tiated with parameters κ =
√

ln
(
(σµ )2 + 1

)
and ν = ln

(
µ− κ2

2

)
.
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(a) Variation of µ, σ = σo = 19.7h, C = R = 600s
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(b) Variation of σ, µ = µo = 21.4h, C = R = 600s
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(c) Variation of µ, σ = σo = 19.7h, C = R = 1h
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(d) Variation of σ, µ = µo = 21.4h, C = R = 1h

0.1 1.0 10.0

µ/µo

1

2

3

4

5
6
7
8
9

10

A
lg

o
/O

m
n
is

c
ie

n
t

Dyn-Prog-Count

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(e) Variation of µ, σ = σo = 19.7h, C = R = 12h
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(f) Variation of σ, µ = µo = 21.4h, C = R = 12h

Figure 11.5: Normalized performance of algorithms with omniscient scheduler when µ or σ
vary, using RESERVATIONONLY-PRICING cost function (α = 1.0, β = γ = 0). Basis is the LogNor-
mal distribution in Figure 9.2 (µo = 21.4h, σ0 = 19.7h). C = R are set to 600, 3600 and 43200s
(12h), ε = 1.
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11.3.1 Experimental setup

The chosen Neuroscience applications are described in Table 11.7 along with their
execution characteristics, which are extracted from the Vanderbilt’s medical imaging
database [71]. In particular, the walltime distributions are obtained by fitting the exe-
cution time traces, and the checkpointing/restart costs are obtained by analyzing and
averaging their memory footprints. Note that, for these applications, the restart costs
(R) are different from the checkpointing costs (C).

Here, we focus on the evaluation of the following two different sets of strategies:

• An HPC-for-Neuroscience strategy (called HPC in Section 11.3.2), which uses the
average of the last 5 runs as the initial reservation length and then increases it by
a factor of 1.5 for each subsequent reservation. This strategy is currently used by
the MASI group [91] at Vanderbilt to handle stochastic Neuroscience applications.

• Our proposed DYN-PROG-COUNT strategy and its ALL-CHECKPOINT variant.

We ran the experiments on a 256-thread Intel Processor (Xeon Phi 7230, 1.30GHz)
while submitting jobs through the Slurm scheduler [155]. All three Neuroscience appli-
cations are sequential (i.e., uses a single hardware thread) and perform some medical
imaging analysis. The variation in the execution time is due to the different character-
istics of the input data. However, as we do not have access to the raw input images, we
used the information in the logs to simulate the characteristics of the input data, thereby
forcing a job to run for a certain walltime and saving a specific amount of data for the
checkpoints. In each experiment, we submitted 500 jobs from one of the three appli-
cations, and recorded the completion time of each job. We use the average job stretch
(defined as the ratio between the total execution time of a job and its actual walltime)
to show the individual job performance, and use the utilization (defined as the ratio
between the sum of all jobs’ walltimes and the total time required to execute them) to
show the performance of the system for the whole job set. During the experiments, the
scheduler has complete access to the entire platform, thus corresponding to the scenario
with α = 1, β = 0, γ = 0.

11.3.2 Experimental results

By experimenting on a real system, we investigate the robustness of our strategy: 1)
when multiple applications are running concurrently; 2) when the read/write times
vary due to congestion while accessing I/O and/or due to application interference; 3)
when the C/R costs vary depending on when in the application the checkpoint/restart
takes place (i.e., different values for different reservations). Figure 11.6 shows the per-
formance of the three strategies when submitting 500 jobs from each application to the
Slurm scheduler. We manually force the C/R costs to be the same (as in Table 11.7) for
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Application Type Walltime distribution C R

Diffusion model fitting (Qball)
Gamma (k = 1.18, θ = 34,

[a, b] = [146s, 407s])
90s 40s

Diffusion model fitting (SD)
Weibull (k = 1043811, λ = 1174322466,

[a, b] = [46min, 2.3h])
25min 10min

Functional connectivity analysis (FCA)
Gamma (k = 3.6, θ = 72,

[a, b] = [165s, 1003s])
150s 100s

Table 11.7: Characteristics of the chosen Neuroscience applications.

each strategy so as to study the effects of application interference and the runtime sys-
tem’s performance variability on our model. The findings are consistent with the sim-
ulation results (in Section 11.2), showing that DYN-PROG-COUNT performs better than
its ALL-CHECKPOINT variant in terms of both system utilization and average job stretch
using all three applications. Moreover, the two algorithms outperform the simple HPC
strategy.

Figure 11.6: Utilization and average job stretch for DYN-PROG-COUNT,
ALL-CHECKPOINT and the HPC strategies.

Depending on when the checkpoint is being taken, the checkpoint size and thus the
time to save and restore the application can vary. Figure 11.7 shows the results when
the C/R costs could vary for different reservations. Based on the log traces of these
three applications, we noticed that their memory footprints can vary by as much as 30%
depending on when the checkpoint is taken (e.g., the checkpoint time can vary between
80 and 110 seconds for Qball). Our experiment generates random checkpoint sizes us-
ing a uniform distribution with the mean given by the average checkpoint size from the
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traces, and forces the application to read/write the corresponding amount at the begin-
ning/end of the execution. In this experiment, we assume that the checkpointing time
is included in the request time and is never responsible for applications exceeding their
allocated time. While the DYN-PROG-COUNT solution is computed using the average
C/R costs presented in Table 11.7, the experimental results show that its performance is
robust up to 15-20% variability in the C/R costs. Moreover, the average job stretch ap-
pears to be even more stable than the utilization, suggesting that most of the submitted
jobs are not impacted by the fluctuation in the C/R costs.

Figure 11.7: Utilization and average job stretch for the three applications (blue: Qball;
Orange: SD; Green: FCA) when varying the C/R costs by different percentages (0 to
30%) using the DYN-PROG-COUNT strategy. Horizontal lines represent the results for
the HPC strategy.

If application-level checkpoint is used, the application is usually aware of the check-
point size, thus the checkpointing process can start before the reservation is over. The
subsequent submissions can easily adapt to this deviation with the first checkpoints that
are smaller than the one used to compute the sequence (this is the case for Figure 9). For
system-level checkpoint, the application footprint usually remains similar throughout
the execution of the application. In case the checkpointing time is causing the applica-
tion to exceed the reserved time, the submission will fail and subsequent submissions
can take this into account by adding the wasted time.

The limitation of our method is visible for applications with large variability in
checkpointing size, which can be due to multiple factors, either within the application
that presents different memory footprints throughout its execution, or by system-level
causes, such as I/O congestion or failures. Such large variability in checkpointing size
compared to what is used to compute the reservation sequence can result in worse per-
formance when using our method, and the classic HPC model would be preferred in
this case. This limitation is discussed in Chapter 12 where we investigate methods to
incorporate variation of checkpointing size into the computation of the reservation se-
quence, by either using historic information or adapting the subsequent request times
based on the sizes of previous checkpoints. Variation of C/R times is one of the major
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DYN-PROG-COUNT HPC Improvement

Utilization Avg Stretch Utilization Avg Stretch Utilization Avg Stretch

67 2.04 55 2.34 21% 15%

73 1.72 62 2.04 18% 19%

62 2.08 55 2.46 12% 18%

71 1.88 64 2.1 11% 12%

63 2.19 56 2.41 11% 10%

71 1.74 64 1.96 10% 12%

75 1.51 68 1.69 10% 12%

68 2.09 65 2.19 4% 5%

61 2.24 60 2.32 2% 4%

77 1.96 75 1.99 2% 2%

Table 11.8: Utilization and average job stretch for 10 different runs, each using 500
jobs from all three applications. The runs are ordered by the best improvement of
DYN-PROG-COUNT in utilization.

future research direction to improve the strategies with checkpointing.

Finally, we conduct experiments in a more realistic scenario by running all three ap-
plications at the same time and investigating the impact on the strategies. In particular,
we submitted a total of 500 jobs (100 from Qball, and 200 each from SD and FCA), and
kept the C/R costs constant across different reservations. We recorded the utilization
and average job stretch when using DYN-PROG-COUNT compared to the HPC strategy
for 10 different runs choosing different instances from the traces each time. The results
are presented in Table 11.8. We can see that DYN-PROG-COUNT improves both utiliza-
tion and average job stretch by 10% on average, and by up to 20% depending on the in-
stances submitted. Overall, these results again illustrate the robustness of our algorithm
and confirm its benefit for scheduling stochastic applications on reservation-based plat-
forms, as long as checkpoint costs remain constant for each application.
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Conclusion

In this section, we evaluated our scheduling strategies using both simulations and ex-
periments. We demonstrated the efficiency of the different solutions compared to state-
of-the-art heuristics, with different cost models covering a wide range of possible sce-
narios. We also exhibited the benefits of using checkpointing at the end of some well-
chosen reservations in order to save the progress of the application through the succes-
sive reservations.

One of the main limitation of our checkpointing model is that it assumes a constant
overhead for checkpointing and restarting. In practice, this may not be really represen-
tative of the application behavior. In Chapter 7, we mentioned that we could estimate
the peak memory of the application, hence asking for the minimal amount of resources
that satisfies this peak memory. However, if one could observe peaks in memory con-
sumption, it means that at some moment of the application execution, the memory con-
sumption may be much lower than the peak. Thus, checkpointing at such a moment
should be more cost-efficient and then may impact the checkpointing decisions of our
strategies.

In Chapter 12, we will propose a more in-depth study of the SLANT application, by
observing the behavior at the task-level. From our new observations, we will refine our
application model, and we will design sequences with memory-aware checkpointing
decisions.
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Chapter 12

One Step Further: Profiling
Applications for Better Strategies
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In previous chapters, we presented reservation-based strategies for stochastic appli-
cations on HPC or cloud infrastructures. To tackle the challenge of walltime variability,
we provided solutions with either checkpointing to save progress of application at the
end of some well-chosen reservations, or without in case checkpointing is not available
for the target application. So far, we assumed that the execution time of these appli-
cations can be modeled by a (known) probability distribution. Also, we assumed a
flat memory model for the application so that the cost of checkpoint-restart is constant
wherever a checkpoint is performed during application execution.

The validity of this assumption is critical as our proposed solutions require the
knowledge of the checkpoint (C) and restart (R) costs in order to determine the size
of the successive reservations. If C is much more important than expected, the check-
point process fails due to lack of time in the reservation. Hence, this failure directly
impacts the upcoming reservations and so, the performance of the overall strategy. At
the contrary, if R (and/or C) is lower than estimated, the reservation ends earlier and
there is some reserved time that has been wasted.
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Figure 12.1: Memory requests during submission and memory usage variation for nine
representative medical and neuroscience applications.

Figure 12.1 presents a first analysis of the memory requirements and requests for
nine exploratory applications from the medical and neuroscience department at the
Vanderbilt University [91] that we collaborated with to obtain historic of application
runs. The logs are generated for a 6-month period in 2018 running on their in-house
cluster. Users often utilize only fractions of the requested memory (e.g. MaCRUISE_v3,
bedpostx_v2 in Figure 12.1) or end up with their application killed due to memory un-
derestimation (e.g. dtiQA_v2 and dtiQA_v3). Users tend to overestimate their resource
requirements in both time and memory, which leads to these application typically wait-
ing in the scheduler queue for days before eventually running. In addition, the stochas-
tic memory utilization often requires users to request only high memory nodes for their
execution.

We see here a big contrast with applications studied in Part I. Memory-intensive ap-
plications we mentioned were not subject to run-to-run variability in memory needs,
due to their monolithic and static code structure. We had applications with important
memory needs, but constant over the execution. Hence, one can reserve some resources
(matching minimum memory requirements) on the target machine for a known dura-
tion of time depending on the considered application. Then, resources are distributed
between the different parallel tasks of the big block of code in order to optimize the total

164 Valentin HONORÉ



12. One Step Further: Profiling Applications for Better Strategies

execution time of the applications.
Overall, based on the feedback from application users, it seems that stochastic ap-

plications present a stochastic profile for both execution time and memory features. In
this chapter, we investigate the correctness of this observation. From a memory per-
spective, we want to verify the correctness of the flat memory model assumption that
we expressed in previous chapters. To do so, we propose a more fine-grained study
of an exploratory stochastic application, SLANT, that we already studied in Chapter 7.
The aim of this chapter is to verify the applicability in practice of strategies presented
in Chapter 9. Specifically, we are interested in verifying the assumption that checkpoint
cost is constant through application execution. We show that this is not the case for
SLANT application, due to the memory footprint of the application exhibiting many
variations.

Based on our observations of SLANT, we then propose a generic application model
where an application is described as a chain of tasks whose walltimes follow probability
distributions. We use this model to estimate the resource request for SLANT when de-
ployed on an HPC system. We also show that our resource estimator needs only a few
runs to learn the model and to optimize the submission and execution of these types of
applications without any modification to the batch scheduler or HPC middleware. This
is essential for productivity-focused applications since their codes are in continuous
change based on the requirements of each study. Performance prediction methods can
be used by scientific applications to adjust their resource requirements during submis-
sion. However they tend to work well only on well known codes that can provide a rich
history of past runs. Our study aims to bridge the gap between the specific characteris-
tics of exploratory applications and the strict requirements of HPC batch schedulers that
hinder productivity and innovation for new computational methods. We then propose
memory-aware reservation strategies inspired from the ones presented in Section 10.1
of Chapter 10. Finally, we evaluate these new strategies and give perspectives to this
work.

The contributions of this chapter are:

• A complete characterization of the SLANT application, from both task and mem-
ory perspectives

• A refined application model and memory-aware scheduling strategies for
STOCHASTIC-CKPT

• An evaluation of these new strategies via different metrics

12.1 Task-level observations

In this section, we continue the study of the SLANT application initiated in Chapter 7.
We previously mentioned that studies using machine learning methods to estimate the

Managing the Diversity of Application Profiles on HPC Facilities 165



12.1. Task-level observations

future resource consumption of an application assume a constant peak memory foot-
print (e.g. [134]). We assumed that this could be used as constant value for checkpoint-
ing overhead. In this section, we study more closely the memory behavior of these new
HPC applications.

(a) Typical memory profile with OASIS input.

(b) Typical memory profile with DRD input.

Figure 12.2: Examples of memory footprints of the SLANT application with inputs from
each considered dataset. Memory consumption is measured every 2 seconds with the
used memory field of the vmstat command.

Figure 12.2 presents the memory footprint of two runs of the SLANT application, one
for each of the input categories. Note that all other runs follow similar trends, specif-
ically the peak memory usage is not dependent on the input, only the time depends
(and hence the average memory utilization). For both profiles, we can see clearly the
three phases of the application (pre-processing, deep-learning, post-processing). Note
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that these traces hint at the fact that the difference in executed time is more linked to a
quality element since there is fewer pre/post-processing time for OASIS inputs.

In the following, we focus our discussions on the runs obtained from the 88 DRD
inputs (Figure 12.2b) because their pre/post processing steps are more interesting, al-
though the same study could be done for the OASIS inputs.

These memory footprints show that the runs can be divided into roughly seven dif-
ferent tasks of “constant” memory usage:

• pre-processing phase: This phase includes the four first tasks. The 1st task shows
a memory consumption peak of around 3.5GB for the few first minutes of the
application execution. The 2nd, 3rd and 4th tasks have respectively a peak of about
10GB, 6GB and 10GB.

• deep-learning phase: The 5th task represents the deep-learning phase. This task
presents a periodic pattern with memory consumption peaks going up to 50GB.
Each pattern is repeated 27 times, corresponding to the parameterization of the
network tiles in SLANT-27 version.

• post-processing phase: The 6th and 7th tasks model the last phase of the application,
with a memory peak to respectively 3.5GB and 10GB.

1 2 3 4 5 6 7

Figure 12.3: Job decomposition in tasks based on raw data of a memory footprint.

In the second step of this analysis, we are interested by the behavior of the job at the
task level. For this second step, we decompose the job into tasks based on the mem-
ory characteristics by using a simple parser (see Figure 12.3). This parser returns the
duration of each task within each run based on their memory footprint. Note that this
decomposition can be incorrect, we discuss this and its implications later.

Using the decomposition in tasks, we can plot the individual variation of each task
execution time (for simplicity, we only considered execution time at the minute level) in
Figure 12.4.
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Figure 12.4: Analysis of the task walltime for all jobs (raw data).

We make the following observations. First, all tasks show variation in their walltime
based on the input run. This variation differs from task to task. For instance, task #7 has
variations up to ∼ 25 minutes while tasks #3 and #4 have less than 5 minutes difference
between runs.

Another observation from the raw data on Figure 12.4, is that some tasks present
several peaks (tasks #5 and #7). There may be several explanations to this, from actual
task profile (for instance a condition that adds a lot of work if it is met), lack of sufficient
data for a complete profile, or finally a bad choice in our task decomposition. Going
further, one may be interested in generating a finer grain parsing of the application pro-
file to separate these peaks into individual tasks, based on more parameters than only
the memory consumption. We choose not to do this to preserve some simplicity to our
model. In the following, we denote by X1, . . . , X7 the random variable that represents
the execution times of the seven tasks.

An important next question is whether they show correlation in their variation. In-
deed, given that they are based on the same input, one may assume that they vary
similarly. To study this, we present in Table 12.1 their Pearson Correlation coefficients.
We see that only tasks #1 and #2 present a very high Pearson correlation (meaning that
their execution times are proportional), while the others do not seem to show any im-
pactful correlation. This measure is an important artifact as it hints at the independence
of the different execution time variables.

Finally, to investigate the distribution of memory usage overtime, we study the task
status at all time (at time t, which task is being executed). To do so, given Xi (i =
1 . . . 7) the execution time of task i, we represent in Figure 12.5 the functions yi(t) =

P
(∑

j≤iXj < t
)

. Essentially, it means that yi is the probability that task i is finished.

Figure 12.5 is read this way: the probability that task i is running at time t corre-
sponds to the distance between the plots corresponding to task i − 1 and task i. For
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Task Index 1 2 3 4 5 6 7

1 1.000 0.998 -0.308 -0.261 -0.114 -0.039 0.139

2 1.000 -0.293 -0.277 0.142 -0.058 0.159

3 1.000 0.076 0.547 -0.283 0.223

4 1.000 -0.361 0.296 -0.308

5 1.000 -0.568 0.574

6 1.000 -0.475

7 1.000

Table 12.1: Pearson Correlation matrix of the walltimes of the different tasks.

Figure 12.5: yi(t) = P
(∑

j≤iXj < t
)

is the probability that task i is finished at time t
(raw data).

instance, at time t = 0 task #1 is running with probability 1. At time 100, tasks #5 to
#7 are running (roughly) with respective probability 0.06, 0.5, 0.38. In addition, with
probability 0.06 the job has finished its execution.

This figure is interesting in the sense that it gives us task properties as a function
of time. For instance, given the memory footprint of each task, one can estimate the
probability of the different memory needs.
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12.2 From observations to a theoretical model

Using the observations from Section 12.1, we now derive a new computational model in
Section 12.2.1. We discuss the advantages and limitations of this model in Section 12.2.2.

12.2.1 Job model

We model an application A as a chain of n tasks:

A = j1 → j2 → · · · → jn,

such that ji cannot be executed until ji−1 is finished. Each task ji is defined by two pa-
rameters: an execution time and a peak memory footprint. The peak memory footprint
of each task does not depend on the input, and hence can be written as Mi. The exe-
cution time of each task is however input dependent, and we denote by Xi the random
variable that represents the execution time of task ji. Xi follows a probability distribu-
tion of density (PDF) fi. We also assume that the Xi are independent.

Finally, the compact way to represent an application is

{(f1,M1), . . . , (fn,Mn)}. (12.1)

12.2.2 Discussion

Figure 12.6: Interpolation of data from Figure 12.4 with Normal Distributions.

To discuss the model, we propose to interpolate the data from our application with
Normal Distributions1. We present such an interpolation on Figure 12.6 (data in Ta-
ble 12.2). Fitting to continuous distributions is interesting in terms of data representa-
tion, and offers more flexibility to study the properties of the application. As we have

1We write that X follows a normal distribution N (µ, σ).
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Task ID 1 2 3 4 5 6 7

Mean µ (in sec) 255 871 588 459 3050 804 1130

Std σ (in sec) 96.7 322 76.8 48.1 263 393 568

Table 12.2: Parameters (µ, σ) of the Normal Distributions interpolated in Figure 12.6.

seen earlier, Normal Distributions may not be the best candidates for those jobs (for
example jobs with multiple peaks), but they have the advantage of being simpler to
manipulate. This is also a good element to discuss the limitations of our model.

Using the interpolations, one can then compute several quantities related to the
problem with more or less precision. We show how one would proceed in the following.

Task status with respect to time

We can estimate the functions P
(∑

j≤iXj < t
)

represented in Figure 12.5, which later
help to guess the task status with respect to time. Indeed, if X1, . . . , Xi are independent
normal distributions of parameters N (µ1, σ1), . . . ,N (µi, σi), then Yi =

∑
j≤iXj follows

N (
∑

j≤i µj,
√∑

j≤i σ
2
j ). We plot in Figure 12.7 the functions fi = P (Yi < t).

Figure 12.7: Representation of the cumulative distribution of the termination time of the
7 tasks over time from raw data.

An important observation from this figure is that even if the interpolations per task
are not perfect, the sum of their model gets closer with time to actual data. This is
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further discussed in Section 12.3. Obviously this may not be true for all applications
and is subject to caution, however the fact that initially all models seemed far off on a
per task basis but converged well is positive.

Memory specific quantities

Using this data, one should be able to compute different metrics needed for an evalua-
tion, such as:

• The average memory needed for a run M̄ =
∑n

i=1 MiE[Xi]. This quantity may
be useful for co-scheduling schemes in the case of shared/overprovisionned re-
sources [32, 117];

• Or even arbitrary values such as, the “likely” maximum memory needed as a func-
tion of time

Mτ (t) = max

{
Mi|P

(∑
j<i

Xi < t ≤
∑
j≤i

Xi

)
> τ

}
. (12.2)

We introduce this value as it will be used in Section 12.3.1.

In addition, the data for the values of Mi can be obtained with traces of very few execu-
tions (since it is not input dependent).

The fi can also be interpolated from very few executions with more or less preci-
sion. We evaluate this precision here with the following experiment, presented in Fig-
ure 12.8. We interpolate from 5, 10, 20, 50 randomly selected (with replacement) runs
the functions fi and compare (i) the evolution of M̄ ; and (ii) the maximum memory
need t 7→M0.1(t). Each experiment is repeated 10 times to study the variations.

We observe from Figure 12.8a that with respect to the average memory need, increas-
ing the number of data elements does not improve the precision significantly. This was
expected since the only information needed is the expectation of the random variables,
which is a lot easier to obtain than the distribution.

With respect to the maximum memory requirements (Figure 12.8b), it seems that
very few runs (5 runs) already give good performance. This could also be predicted due
to the Maximum function, which gives more weight to any single run.

Obviously this modelization is not perfect and can be improved depending on the
level of precision one needs, specifically we can see the following caveats:

• The peak memory is different from the average memory usage (see for instance
task #5 in Figure 12.3), where the job varies between high-memory needs and low-
memory needs. Hence using peak memory to guess the average memory may
lead to an overestimation of the average memory (as shown in Figure 12.8a). To
mitigate this, one may add as a variable the average memory per task.
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(a) Average memory M̄ for different number of inputs over 10 experiments. Red star is M̄
of original 88 runs.

(b) M0.1 for different number of inputs (average of 10 experiments).

Figure 12.8: Different quantities that can be interpolated from the model, such as aver-
age memory (top) or peak memory (bottom).

• The model assumes that the lengths of the tasks are independent. However this
may not be true as we have seen in Table 12.1 where the lengths of tasks #1 and
#2 are highly correlated. In our case, a simple way to fix this would have been to
merge them into a single meta task. We chose not to do this to study voluntarily
the limits of the model.

• This model is based on the information available today. Specifically, the jobs here
are sequentialized (the dependencies are represented by a chain of tasks). How-
ever we can expect a more general formulation where the dependencies are more
parallel (and hence represented by a Directed Acyclic Graph instead of a linear
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chain).

To conclude this section, we have presented a new model for emerging HPC ap-
plications that is easy to manipulate but still seems close to the actual performance. We
discussed possible limitations to this model. In the remaining of this chapter, we present
an algorithmic use-case where one can use this model, and show on experiments that
solutions derived from this model are efficient.

12.3 Impact of stochastic memory model on reservation
strategies

In this section, we now discuss how our model may be used to inform on reservation
strategies for HPC schedulers.

We already presented reservation strategies in Chapter 9. Essentially, for an appli-
cation of unknown execution time, the strategies provided users with increasingly-long
reservations to use for submission until one was sufficient to execute the whole job. We
proposed strategies with optional use of checkpointing in order not to waste what was
previously computed. In this chapter, we are obviously interested in the strategies with
the possibility of checkpointing.

12.3.1 Algorithmic framework

In this section, we present memory-aware reservation strategies as well as the different
reference heuristics we used a baseline.

Reservation strategy

A reservation strategy is presented under the form

S = ((R1, T1, C1), (R2, T2, C2), . . . , (Rn, Tn, Cn)) .

The strategy would then be executed as follows: initially, the user asks to the system a
reservation of lengthR1+T1+C1 (time to restart from previous checkpoint, the estimated
walltime and the time to checkpoint at the end of the reservation). During the initial R1

units of time, the application gathers the data needed for its computation. Then, during
a time T1 it executes. If the walltime is smaller than T1, then the user saves the output
data and the run ends. Otherwise, at the end of these T1 units of time, the application
checkpoints its current state during the C1 units of time.

• If C1 is enough to perform the checkpoint, then the user repeats the previous step
with a reservation of length R2 + T2 + C2.

• If C1 is not enough to perform the checkpoint, then the user repeats the previous
step with a reservation of length R1 + T1 + T2 + C2.
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Finally, we associate to each (Ri, Ti, Ci) in S a memory requestMi that corresponds to
an estimation of the minimum amount of memory for the application not to fail during
this reservation. Typically, this value is the maximum peak of the reservation during
its computation of Ti units of time. This can be obtained by tracking the progress of
the application over reservations. Then, using the likely maximum memory needed
as presented in Fig 12.8b, one is able to estimate the maximum memory need of the
application.

Evaluated algorithms

In this work, we compare three algorithms to compute the reservation strategies. All
these strategies are based from the same input: k previous runs of the application (in
practice we use k = 5, 10, 20, 50).

• ALL-CHECKPOINT (Section 10.1.4 in Chapter 10): This computes the optimal so-
lution to minimize the expected total reservation time when all reservations are
checkpointed and when the checkpoint cost is constant. We take the maximum
memory footprint over the execution as the basis for the checkpoint cost.

• MEM-ALL-CKPT: it is an extension of ALL-CHECKPOINT based on Section 12.2.1.
Specifically it uses M0.1 (defined in Eq. (12.2)) as the basis for the checkpoint cost
function. The complete procedure of this extension is described below.

• NEURO [61, 91]: This is the algorithm used by the neuroscience department at
Vanderbilt University. In their algorithm, they use the maximum length of the last
k runs as their first reservation. If it is not enough, they multiply it by 1.5 and
repeat the procedure. To be fair with the other strategies, we added a checkpoint
to this strategy. Hence the length of the second reservation (T2) is only 50% of the
first one (T1), so that T1 + T2 = 1.5T1. We use the maximum size of a checkpoint as
checkpoint cost. For completeness, we also add a strategy that uses average length
instead of maximum length. We denote it by NEURO-AVG.

The strategies of both ALL-CHECKPOINT and MEM-ALL-CKPT assume that we have a
discrete distribution of execution time for the application. Hence they start by a modeling
phase using the k inputs. In order to do so, we fit the walltime of the k runs to a normal
distribution. We then discretize it into 1000 equally spaced values on the truncated
domain [0, Q(10−7)] (where Q(ε) is the ε quantile of the distribution). In addition, we
then model a checkpoint cost via a simple latency/bandwidth model, where given a
latency l and a bandwidth b, the checkpoint time for a volume of data V is C(V ) =
l + V/b.

After discretization, we obtain a random variable Y ∼ (vi, Ci, fi)1≤i≤n, such that for
1 ≤ i ≤ n, P (Y = vi) = fi. The cost to perform a checkpoint at time vi isCi = C(M0.1(vi))
for MEM-ALL-CKPT. We assume the cost to restart is constant R. Finally, we apply the
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following dynamic programming procedure to Y (v0 = 0):
SMAC(n) = 0

SMAC(i) = min
i+1≤j≤n

(
SMAC(j)+ (R+(vj−vi)+ Ci) ·

n∑
k=i+1

fk

)
MEM-ALL-CKPT and ALL-CHECKPOINT are then the associated solutions to SMAC(0) (de-
pending on the checkpoint function). They can be computed in O(n2) time.

12.3.2 Experimental setup

In this section, we provide information about the evaluation. The execution of the ap-
plication is performed on the Haswell platform. The k inputs chosen for the modeling
phase used to derive the algorithms are picked uniformly at random with replacement
in the DRD set. The evaluation is performed on the set of 88 inputs from DRD. All
evaluations are repeated 10 times.

Checkpointing

SLANT is currently available within a Docker image. We used the CRIU external li-
brary [120] to perform system level checkpointing of the Docker container without
changing the code of SLANT. With each execution of SLANT, we are running a dae-
mon in charge of triggering checkpoints at the times given by our strategy.

Actual checkpointing could not be used on the Haswell platform because Docker is
not available there. Moreover, CRIU requires credentials on the platform that we could
not get on that platform.

To workaround this problem, we use a KNL platform presented in Appendix D.2.
This KNL platform is too slow to perform thorough experiments but Docker checkpoint-
ing is supported. Hence experiments on KNL were performed using the checkpoint
times (corresponding to the right memory footprint) from that platform and simulated
checkpoints (based on the KNL checkpoints) for the Haswell machine. Before doing so,
we verified that the memory footprint was identical over the different phases between
the two platforms. To evaluate the latency and bandwidth we use the dd unix command
with characteristics typical for the CRIU library (multiple image files in Google protocol
buffer format [2]).

Performance evaluation

Given a reservation strategy consisting of two reservations (R1, T1, C1), (R2, T2, C2) and
an application of walltime t, s.t. T1 < t ≤ T2, we define:

1. Its total reservation time: (R1 + T1 + C1) + (R2 + (T2 − T1) + C2). That is:

R1 +R2 + T2 + C1 + C2;
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2. Its system utilization, i.e. its walltime divided by its reservation time:

t

R1 +R2 + T2 + C1 + C2

;

3. In addition, if we define M1 and M2 the memory requested for the reservations,
we can define the weighted requested memory as:

(R1 + T1 + C1) ·M1 + (R2 + T2 − T1 + C2) ·M2

R1 +R2 + T2 + C1 + C2

.

Intuitively, this is the total memory used by the different reservations normalized
by time.

We present in Figure 12.9 several performance criteria to compare the different al-
gorithms. We first discuss from a high level before entering specifics. Overall, using
the improved model from Section 12.2 to design the reservation algorithm allows us to
improve performance on all fronts. In addition, this model does not use much data,
since performance with k = 5 is almost as good as performance with k = 50. This
is an important result that shows the robustness of the model designed to the various
approximations that are made (independence of variables etc).

Figure 12.9a presents the results for the total reservation time metric. NEURO and
NEURO-AVG have an higher reservation time, which can be expected because they are
naive strategies. An interesting observation is that more data does not help it (on the
contrary). This is due to the fact that with more data, the strategy includes more outliers,
and since the initial reservation uses the maximum length, it guarantees an overestima-
tion every time. MEM-ALL-CKPT performs better than all ALL-CHECKPOINT, but the
difference is not large. This is probably due to a better estimation of the reservation
time for the checkpoint. The observations are similar for the utilization (Figure 12.9b),
for similar reasons.

Finally, Figure 12.9c plots the weighted average requested memory.
ALL-CHECKPOINT and NEURO are not memory-aware, and hence assume a con-
stant memory footprint of 51GB throughout execution. In this figure we are more
interested by the performance of MEM-ALL-CKPT. The gain is ∼ 8% and corresponds
to the runs that needed to use a second reservation (the first one always covers task #5
and hence also has a peak memory of 51GB).

One could argue that the performance improvements between ALL-CHECKPOINT
and MEM-ALL-CKPT are not that important (less than 4% in reservation time and uti-
lization, 8% in memory usage). What is interesting here is that the only improvement
we made to the ALL-CHECKPOINT strategy is the incorporation of the task-level model
(and hence the memory model).

Going further

The next step would be to see how one could deduce a new and improved algorithm
by using the task-level information. Specifically, looking at Figure 12.8a, the natural
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(a) Average reservation time.

(b) Average utilization.

(c) Weighted average memory.

Figure 12.9: Performance of the different algorithms for various criterias.
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intuition is to make a first reservation of length 25 min (guaranteed to finish before the
memory intensive task #5), allowing it to be a cheaper solution memory-wise.

We study the new version of MEM-ALL-CKPT: MEM-ALL-CKPTV2 that incorporates
this additional reservation. In this solution, if task #4 finishes before these 25 minutes,
we cannot start task #5 since we do not have enough memory available, hence we check-
point the output and waste the remaining time.

Figure 12.11 illustrates the scaling of the reservations between the two platforms.
Remind that experiments on KNL were performed using the checkpoint times (corre-
sponding to the right memory footprint) from that platform and simulated checkpoints
(based on the KNL checkpoints) for the Haswell machine.

We plot in Figure 12.10 the total reservation time and weighted average requested
memory for ALL-CHECKPOINT and MEM-ALL-CKPTV2.

Figure 12.10: Weighted average requested memory for ALL-CHECKPOINT and
MEM-ALL-CKPTV2

We see that now that MEM-ALL-CKPTV2 can gain ∼ 25% of memory in average in
comparison with ALL-CHECKPOINT, at no cost reservation-wise. Moreover, the cost of
the extra reservation on the reservation time of the sequence is negligible. This is a
very persuasive exemple of the importance of a good knowledge of application features
when designing cost-efficient reservation strategies.
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.
(a) Execution on the Haswell platform.

.
(b) Execution on the KNL platform.

Figure 12.11: Memory footprint of SLANT on the platforms. Vertical lines indicate the
reservations given by the MEM-ALL-CKPTV2 using the Haswell platform and scaled for
the KNL platform.
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Chapter 13

Summary of Part II

In this chapter, we summarize all the contributions presented in the second part of this
document. We also discuss short-term extensions to the solutions we proposed.

13.1 Summary

In this second part of the thesis, we presented reservation strategies for stochastic appli-
cations. By modeling the execution time of the application as a known probability dis-
tribution, we derived solutions that compute sequences of reservations that minimize
the expectation of the cost of running the target application on a platform to which is
associated a cost function. We considered two main application models: one that allows
checkpointing some well-chosen reservations in order to save the progress during cur-
rent reservation, and one that does not have any checkpointing considerations. For these
two models, we derived solutions for both continuous and discrete probability distribu-
tions of the execution time of applications. Furthermore, we proposed a complete set of
simulation and experiment results that demonstrate the efficiency of our strategies.

Finally, we proposed to move one step further in our study by performing an in-
depth profiling of a representative stochastic application called SLANT. Our studies
confirmed the variation in execution time of these applications and validated the cor-
rectness of modeling the execution time of applications with a probability distribu-
tion. Moreover, we were able to enhance our application model, by demonstrating that
SLANT could be modeled with a sequence of tasks, each following its proper distri-
bution of the execution time and having its proper memory peak. This last feature
promises to greatly enhance the quality of the memory modelization of stochastic ap-
plications. For instance, in the case of SLANT, by leveraging the knowledge that task
#5 has a huge memory peak in comparison with the other tasks, we were able to op-
timize the memory usage of reservations for which the probability of running task #5
is unlikely. Moreover, we demonstrated the efficiency of our strategies in a real-world
setup. By this application profiling, we wanted to convince about the necessity to bet-
ter understand application behavior and needs in order to optimize their execution on
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reservation-based platforms.

13.2 Perspectives

Many short-term perspectives to this work can be envisioned. Some theoretical studies
still remains to be performed, such as the approximation proof for the unbounded con-
tinuous distributions in the model with checkpointing considerations (cf. Table 10.1).
Designing memory-aware algorithms with performance guarantees is also a promis-
ing direction for the design of efficient strategies. Some other derivations concerning
the evaluation of the critical checkpoint cost for which checkpointing all reservations
becomes too costly in comparison with its pendent without checkpoint can also be en-
visioned.

The different models that we proposed in this part of the thesis could be extended to
application running on GPUs. We expect that similar observations would be performed
in comparison with the one we presented for the CPU version of applications. Besides,
GPU computing is the most typical way of developing such type of applications, due
to the AI techniques employed by the applications. Indeed, most AI frameworks are
optimized to perform more efficient computations on GPUs rather than CPUs.

Further extensions of our proposed solutions could also include requests with vari-
able amount of resources, which would consist in the combination of a reservation time
and a number of processors. Many researches are currently dedicated to the paralleliza-
tion of the AI frameworks [29, 160]. Consequently, such models would be adapted for
the future enhancement of stochastic applications.

Through our study of scheduling stochastic applications, we would like to motivate
users and system administrators of HPC platforms to consider adapting our strategies
in the case of stochastic job submissions. In particular, by modeling the execution time
of a stochastic job with a distribution, we have demonstrated the benefits of requesting
a sequence of reservations compared to a single reservation of the maximum execution
time for the job. Thus, by leveraging such knowledge on the job profiles, we believe
that our strategies will lead to significant improvements in terms of both system and
application performance over the existing scheduling policies used in HPC platforms.
To do so, we would like to see the effect of such strategies on the platforms. This is
a complex perspective as it requires to analyze the behavior of applications running
on the platform, which necessitates to have an access to its logs and perform a fine-
grain analysis of the effect of our strategies. We further develop this perspective in the
conclusion of this manuscript.

Finally, we have shown that the cost of checkpoint/restart could vary, depending on
where the snapshot is taken in the application execution. We started to present memory-
aware solutions that leverage this variation. Further studies about the robustness to
variations have to be done, due to the crucial importance of checkpoint and restart cost
estimation in order to avoid the possible failure of a reservation.
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Scientific simulations are compute and data-intensive programs that researchers de-
velop in order to simulate the behavior of a natural phenomenon that is often difficult
to study in laboratory conditions. Supercomputers are large-scale infrastructures that
have been designed to support these very heavy programs. With the raise of compu-
tational needs in many categories of applications, supercomputers have recently been
more and more employed to execute a wide range of application profiles. In this the-
sis, we have proposed strategies for users to optimize two different categories of HPC
applications running on large-scale facilities. Part I focused on data-intensive applica-
tions that are developed to simulate complex real-life phenomena from fields such as
cosmology, physics or biology. Part II was dedicated to the study of stochastic applica-
tions. Arising from emerging fields such that neuroscience, these applications display
important variations in terms of execution time according to their input. On reservation-
based platforms, this behavior becomes a critical issue since users need to estimate as
accurately as possible the duration of their job before submitting a reservation on large-
scale facilities.

Summary of contributions

The next paragraphs summarize our contributions to the issues under study. Addition-
ally, we will discuss the prospects of this thesis and suggest a few research directions
for future works that would leverage our findings.

Data-intensive applications

In Part I, we proposed models to optimize in situ processing for data-intensive applica-
tions. The goal is to provide data management strategies for one of the major bottlenecks
hindering application performance. The in situ paradigm consists in coupling both sim-
ulation and analytics phases in order to post-process data directly on machine nodes,
therefore avoiding the need for an intermediate storage. We expressed different math-
ematical models of machines and applications to represent the in situ pipeline between
simulation and analytics from a theoretical perspective.

We then formulated a solution to optimize the in situ processing with the goal of
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minimizing the execution time of the application. We also derived solutions to this
problem in the form of two complementary sub-problems: the partitioning of machine
resources and the scheduling heuristics of the different tasks of the application.

Finally, we performed an evaluation of our models for synthetic applications. We
pointed out the importance of memory usage during the analysis as a central feature to
take into account when performing the scheduling of the different analysis functions.
As a result, the amount of analysis to be performed in situ has to be maximized.

This work has been published in the IJHPCA journal [169].

Stochastic applications

Part II presents reservation-based strategies for stochastic applications. Stochastic appli-
cations have recently appeared on HPC facilities due to their increasing needs in terms
of computations. They feature a very different profile when compared with usual HPC
frameworks: their execution time is input-dependent, and cannot be predicted by an an-
alyze of the input nature. In this part, we proposed to tackle this problem by modeling
the execution time of these applications with a random variable that follows a probabil-
ity distribution which is known a priori. For instance, the distribution can be estimated
thank to the historic of application runs. From raw data, one can fit a continuous dis-
tribution, which has been demonstrated as a more expressive model than the discrete
one.

We first introduced the different features of this type of applications by describing
high-level observations from a representative neuroscience application. We validated
the variation of execution time and demonstrated that there is no correlation between
input size and execution time.

Secondly, we proposed different models for the application as well as the expres-
sion of a generic cost function for any reservation-based platform. Application models
consider the possibility to take or not a checkpoint at the end of some well-chosen reser-
vation in order to save application progress. We assumed that the memory model of
the application is flat, hence that the cost of checkpoint/restart is constant all over ap-
plication execution. We then formulated the optimization problems related to the two
different application models.

We then exposed the algorithmic solutions to the problem under study for each con-
sidered application model, and for both discrete and continuous probability distribu-
tions. Depending on the application model, solutions are either sub-optimal heuristics,
near-optimal approximations or optimal solutions. Furthermore, we proposed a com-
plete set of evaluation results for all the aforementioned solutions to show their effi-
ciency as well as their applicability in a real-case setup. These evaluations contain both
simulation results and real-setup experiments in an HPC environment.

The last chapter of Part II carried out an in-depth profiling of a representative
stochastic application. This study aims at better understanding the different features of
the walltime variation. Using different observations, we refined the application model,
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notably by removing the flat memory model assumption. Finally, we demonstrated that
a good knowledge of applications is essential to the design of cost-efficient strategies.

A first publication in IPDPS’19 [166] has introduced the application model without
checkpointing, as well as the derived solutions for any probability distribution, either
with continuous or discrete support. We demonstrated the benefits of our solutions in
comparison with more naive strategies that do not rely on a characterization of an op-
timal solution. Eventually, we provided a research report [172] presenting a more com-
plete set of results based on a various range of scenarios in order to prove the soundness
of our solutions.

A second publication in IPDPS’20 [167] has developed the application model with
checkpoint/restart technique with the aim of saving application progress through the
different reservations. The main novelties and contributions of this work (compared to
the previous one) are the novel algorithmic techniques used to provide an optimal solu-
tion for any discrete distributions, and a near-optimal solution for continuous distribu-
tion with bounded support. A set of simulation results and experiments demonstrated
the efficiency and practicality of our strategies. Furthermore, a research report [173]
synthesized all the results and contributions brought in the design of strategies con-
sidering checkpoint. The profiling of stochastic applications presented in Chapter 12 is
proposed in [170], to appear.

Different kinds of contributions

Overall, both parts of the manuscript contain important work in terms of modeling of
the optimization problem for the target applications, and propose significant algorithm
development: Part I contains scheduling heuristics for the analysis functions of the ap-
plications while Part II also includes important algorithm contributions aiming to derive
reservation strategies for stochastic applications. The latter also proposes substantial
proofs and theoretical guarantees of the performance of these solutions.

Both parts also detail contributions in the form of simulation software to evaluate the
proposed models. Appendix A elaborates on these contributions and presents artifacts
that allow a full reproducibility of the results exposed in this manuscript. A set of real
experiments have also been conducted to study the SLANT application, that are also
presented in the appendix section.

Perspectives

Several perspectives have already been presented in the end of Part I and Part II that
tended to further extend the results of this thesis. In this section, we would like to
suggest future perspectives for long-term future works, which would apply to each cat-
egory of applications. Eventually, we expose some future prospects that could globally
concern both types of applications.
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In Chapter 6, we mentioned short-term extensions that could contribute to enrich our
models for both platform and application. In addition to these future works, further
investigations can be carried out in order to make these models more expressive with
regards to the competition for resources in HPC environments. For instance, one could
work on the analysis that are only performed at certain iterations. This would consist
in a simple way to carry out the kind of analysis that checks the integrity of data or
saves a snapshot of some data at predefined iterations of simulation. Analysis could be
performed either periodically, or at a specific frequency that could be irregular. In prac-
tice, this could be complex to handle, especially if one starts to consider dependencies
between certain analysis functions.

As follows, another perspective is to consider a more intricate analysis model, that
would focus on the dependencies between analysis functions. New scheduling policies
will need to be introduced to consider the application as a task-graph model. Further-
more, it would be interesting to study models where analysis functions can adjust the
parameters of the simulation depending on its progress or reached state in the target
phenomenon. This would then lead to the necessity to reassess the simulation needs.
Such feedback could be performed by designing dynamic models that are able to adapt
to the different decisions during the application execution.

Finally, the rise of new analysis profiles such as the codes coming from AI framework
have to be envisioned. Variations in execution time, as we have seen in the second part
of this manuscript, will lead to a new difficulty in terms of resource allocations. We
have explained that modes of operation have to be trained on a training set. However,
depending on the size and nature of the training set, large variations of performance can
occur. Variation of task execution time, either for analysis or simulation, would not be
suitable in our current model. Indeed, our model expects that each task can be modeled
by a single-core walltime that is assumed to be easy to determine. If an analysis finally
sees its walltime doubled compared with the expectation, simulation has to wait for it
to end, thus slowing down the overall application performance. On the contrary, if the
walltime of a given job is shorter than expected, resources assigned to this analysis will
have some idle time of computation. To solve these issues, one could plan to adapt the
solution that we have developed for stochastic applications in the context of a classic
HPC application framework. This is a difficult problem since some tasks would be
stochastic, while some others would not. However, in the context of the convergence
between many different domains, such analysis will probably soon be used to carry out
scientific simulations, provided it gets carefully studied and developed. For instance,
classification algorithms using learning techniques can be coupled with simulation to
process its data.
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Stochastic applications

In Chapter 13, we described some direct perspectives to our contributions. They mostly
consist in wrapping up the remaining theoretical proofs to be derived, in addition to
validating our work on the GPU version of applications. Also, we proposed to extend
our strategies by considering requests with variable amount of resources as a promising
direction for the enhancement of distributed AI frameworks. We now briefly present
mid to long-term prospects of extension for this work.

An interesting future work for stochastic applications would be to include system
constraints in our models. For instance, I/O congestion may have an important impact
on reservations that perform a checkpoint. Indeed, a checkpoint consists in saving a
snapshot of the execution on the PFS, and its cost is often greatly impacted by conges-
tion. Though we have estimated what would be the time for doing a checkpoint in our
strategies, we would like to point out that an under-estimation would lead to the failure
of the checkpoint, which would have a direct impact on the remaining reservations that
would finally not have the snapshot in memory to restart from. A solution to alleviate
the I/O congestion would be to perform a checkpoint not only at the end of reservations,
but also anytime during its execution. This would add more flexibility and allow us to
make a checkpoint with more chances of success. Moreover, the application could itself
checkpoint at a moment that is beneficial in the context of the execution, for instance be-
tween different phases. However, snapshots of applications taken at different time will
not represent the same state of the application. Moreover, if a checkpoint is performed
before the end of a reservation, one will have to decide what to do with the possibly
remaining time once the checkpoint is over. One could continue the application process
and hope that it will let the application achieve its termination. If it does not, this extra
work will be lost. One should stress that this approach is not always possible: for ex-
ample, it will not work for the checkpointing library CRIU that systematically kills the
application after a checkpoint is performed. Another possibility would be to actually
end the application after each checkpoint and move to the next reservation.

Another meaningful way to develop our findings is to include all our solutions into
a more global stochastic framework. Indeed, applications are often connected to each
other in a global framework. When a first application computes a result, a second one
then uses them to perform another computation, and so on. This represents quite a
tricky challenge because it means that the model that will be used must be elaborate
enough to include several successive stochastic processes.

Ultimately, we also believe that the application’s behavioral model can help under-
stand the needs of these applications and can guide the design of future middleware
for HPC systems, including I/O and memory management. Hence, pursuing the strain
towards an accurate modeling of the applications appears to be an important prospect
for future works.
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Throughout the present work, we have provided different strategies to manage different
types of applications. Our approach was to mathematically represent the behavior of
applications running on a target platform. We demonstrated that this approach can
lead to important gain in terms of application performance, allowing users to reduce
their operating expenses.

On the use of theoretical models

A natural way to pursue our work is to determine how our solutions can be used in
practice. Different options can be envisioned, depending on the type of applications
that will be considered.

For data-intensive applications, the most likely option would be to let users be re-
sponsible for optimizing their requests on a target machine. This way, they would have
to instantiate the models corresponding to the profile of the application in question.
This requires a human mediation to find the good parameters for the models, especially
for users that are not used to manipulate such mathematical tools. They would have
to profile the simulation phase as well as the analysis functions in order to determine
the resource partitioning between simulation and analytics. In addition, users would be
able to schedule the analysis functions either on helper cores or on staging nodes.

For stochastic applications, the same principle could be applied. By performing
some runs of the applications, one can use the historic data to instantiate the model.
Recent works have shown the benefits of using continuous models for few data, which
makes our solutions totally suitable in that case. The limitations of this approach dwell
in the amount of human work that it requires. Application developers and users come
from different domains, and it is not necessarily easy for all of them to understand the
benefits of our strategies as well as how to put them in practice. While some automatic
modules could help users perform the different operations, users would still rely on
basic strategies by convenience, even if we proved that they are very costly for both the
users and the platforms.

Another approach could be envisioned that would improve the quality of the sub-
missions and limit the necessary work to be performed by users. Indeed, one could
assume that the scheduler could be in charge of managing the different reservations. If
the scheduler is able to intercept submissions of stochastic applications, it could auto-
matically compute a sequence of reservations for the submitted application. This would
be done by accessing a database storing the past runs of the same application, which is
already a challenging functionality to set up. For instance, the Slurm scheduler could
deploy a special module in order to offer such solutions. The major difficulties ensuing
from this idea are two-fold. The first one is to convince both users and system adminis-
trators of the benefits of such an approach. The second one is to allow the scheduler to
access the necessary data in order to perform this process. The user identifier, as well
as program name, should always be analyzed by the scheduler in order to detect the
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concerned application and automate the processing of stochastic requests.
Before deploying such process, an in-depth analysis of the history of submissions

over large-scale platforms has to be performed. Accordingly, in order to optimize the
processing of job submissions, a salient idea would be to analyze traces from supercom-
puters. Indeed, statistics about each submission dropped on a platform are registered
by the system, generating an important database. For instance, various elements such
as the users’ identifiers, the size of each submission, the waiting time in the scheduler
queue, and many others are stored in a large database. Altogether, an in-depth analysis
of these data would help system administrators to better understand user behavior and
to categorize jobs with regards to many different metrics. For stochastic jobs, this would
allow us to determine which users or groups of users use such type of application. Then,
the system could follow a specific allocation policy for the related submissions. From
a more global perspective, a study of such dataset would greatly help administrators
identify the limits of current scheduling and resource partitioning policies. The identi-
fied weaknesses could then be solved by providing adapted solutions that would target
either specific categories of applications or the whole set of job submissions.

From static to dynamic decisions

One last possible way to relevantly carry on our results concerns our approach of the
design of static strategies. Every model is instantiated once and for all at the beginning
of the application run. The main drawback of such a method is that it cannot take ben-
efit from any information during the application run. In order to resolve this negative
point, dynamic models could be designed that would take advantage of the feedback
concerning specific metrics of the application. For instance, the in situ paradigm could
adapt the resource assignation to analytics depending on its performance on previous
iterations. This could be very helpful if the first estimation of the resource needs turns
out not to be accurate. The main difficulties of this approach in terms of model consist
in determining how often the model should be refreshed, without impacting the per-
formance of the application. In the case of stochastic applications, this approach could
be quite advantageous in situations where one reservation failed during its execution,
either because of a checkpoint that did not have enough time to be performed, or due
to hardware failure (or other external causes). In both cases, the remaining reservations
may not perform as expected. A new computation of the sequence of reservations would
definitely overcome the negative impact of the failed reservation. However, depending
on the considered strategies, this computation could prove to be quite time consuming.
Once again, the frequency of this revaluation would need to be carefully determined to
limit its impact on the overall performance. Finally, some scheduler features such as dy-
namic reservations could be further explored. The most crucial challenge would be to
ensure that the scheduler extends current reservation before it reaches its end in order
to avoid computation termination. Such an approach would need to be experimented
in practice so as to evaluate how it could be integrated to the numerous strategies that
we have proposed in this thesis.
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Appendix A

Software production and reproducibility

A.1 Software resource for in situ modeling

The software simulator of in situ processing for data-intensive applications is designed
to evaluate resource partitioning solutions as well as scheduling heuristics for simula-
tion and analytics of HPC simulations. It has been developed using SageMath toolkit.
It implements a platform and application model. Each model has been implemented to
make it as flexible as possible for users. Hence, users can parametrized at their conve-
nience the different features related to the application and the platform.

The code is freely accessible online at https://gitlab.inria.fr/vhonore/
in-situ_simulator. Plotting scripts and data are also available to reproduce the
simulation results presented in Chapter 5.

A.2 Software resource for stochastic evaluation

We developed different software resources for evaluating the different reservation-
based strategies presented in Chapter 11. All the simulations presented in this section
have been performed on the Haswell platform presented in Appendix D.

A.2.1 Simulation code for stochastic evaluation without checkpoint

The first software production concerns the solutions without checkpointing considera-
tion. We developed a simulation framework that allows to compute the expected costs
of different strategies when the application execution time follows any instantiation of
usual probability distributions presented in Table 11.1. The simulation code is divided
in several files, each implementing either the different operations related to the proba-
bility distributions, the algorithms that compute the sequence of reservations, the cost
function and computation of expected cost, or the main file that contains all the instruc-
tions to perform the computations.
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A.3. Software resource for SLANT profiling

All the code, setup and instructions to reproduce the experiments presented in
Section 11.1 of Chapter 11 are publicly available on https://gitlab.inria.fr/
vhonore/ipdps_2019_stochastic-scheduling.

A.2.2 Simulation code for stochastic evaluation with checkpoint

In order to evaluate the solutions with checkpointing, we refined the first software pro-
duction of Appendix A.2.1 to include the checkpointing considerations. This implies
the implementation of the whole new strategies, as well as the refinement of the com-
putation of the expected cost for a given sequence of reservations. Moreover, different
evaluations have been designed to evaluate the benefits and possible associated limita-
tions of checkpointing in our models.

Here again, a full description of the procedures for a fully reproducibility of results
presented in Section 11.2 of Chapter 11 are publicly available on https://gitlab.
inria.fr/vhonore/ckpt-for-stochastic-scheduling.

A.3 Software resource for SLANT profiling

The last development in terms of code production concerns the profiling of the SLANT
application, presented in Chapters 7 and 12. We executed the application on the Haswell
platform presented in Appendix D.1. The application is given under the format of a
Docker image, that we run on the Haswell platform using Singularity software. For
each run, we monitored the memory consumption of the application and measured its
execution time. This process generates a database of runs that we used to investigate
the profile of such category of applications. The full procedure to run the application as
well as all the generated data are publicly available at https://gitlab.inria.fr/
vhonore/sc20_reproducibility_initiative.

Later on, experiments considering checkpointing with the SLANT application have
been performed on a Knights Landing platform presented in Appendix D.2. An
other repository contains our approach to run SLANT with a checkpointing library
called CRIU. Overall reproducibility features are accessible at https://github.com/
anagainaru/ReproducibilityInitiative/tree/master/2020_tpds. This
repository is maintained by one of the collaborators to this work.
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Appendix B

Recursive formulas to get sequence of
reservations for MEAN-BY-MEAN
heuristic

In this section, we present recursive formulas to compute the sequence of reservations
S = (t1, t2, . . . , ti, ti+1, . . . )using the MEAN-BY-MEAN heuristic for the considered distri-
butions. As described in Section 11.1.1, the heuristic computes a new reservation value
ti from the previous value ti−1 as follows:

ti = E(X|X > ti−1) =

∫∞
ti−1

tf(t)dt

1− F (ti−1)
, for all i ≥ 2 (B.1)

The following subsections present the derivations of the formulas for different distribu-
tions, while Table B.1 summarizes results for all distributions.

B.1 Exponential distribution

For Exponential (λ), substituting f(t) = λe−λt and F (t) = 1 − e−λt into Equation (B.1),
we get:

ti =

∫∞
ti−1

tλe−λtdt

e−λti−1

=
[−te−λt]∞ti−1

+
∫∞
ti−1

e−λtdt

e−λti−1
(integrating by parts)

=
ti−1e

−λti−1 + [− 1
λ
e−λt]∞ti−1

e−λti−1

=
ti−1e

−λti−1 + 1
λ
e−λti−1

e−λti−1

= ti−1 +
1

λ
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B.2. Weibull distribution

Distribution Sequence of ti’s for i ≥ 1

Exponential(λ) ti =

{
1
λ
, if i = 1

ti−1 + 1
λ
, otherwise

Weibull(λ, κ) ti =

{
λΓ
(
1 + 1

κ

)
, if i = 1

λe

(
ti−1
λ

)κ
Γ
(
1 + 1

κ
,
( ti−1

λ

)κ)
, otherwise

Gamma(α, β) ti =

{
α
β
, if i = 1

1
β

(
α + (βti−1)αe−βti−1

Γ(α,βti−1)

)
, otherwise

LogNormal(µ, σ2) ti =


eµ+σ2

2 , if i = 1

eµ+σ2

2 · 1−erf
(

ln ti−1−µ
σ
√

2
− σ√

2

)
1−erf

(
ln ti−1−µ
σ
√

2

) , otherwise

TruncatedNormal(µ, σ2, a) ti =


µ+ σ

√
2
π
· e
− 1

2(a−µσ )
2

1−erf
(
a−µ
σ
√

2

) , if i = 1

µ+ σ
√

2
π
· e
− 1

2

(
ti−1−µ

σ

)2

1−erf
(
ti−1−µ
σ
√
2

) , otherwise

Pareto(ν, α) ti =

{
α
α−1

ν, if i = 1
α
α−1

ti−1, otherwise
(for α > 1)

Uniform(a, b) ti =

{
1
2
(a+ b), if i = 1

1
2
(ti−1 + b), otherwise

Beta(α, β) ti =

{
α

α+β
, if i = 1

B(α+1,β)−B(ti−1;α+1,β)
B(α,β)−B(ti−1;α,β)

, otherwise

BoundedPareto(L,H, α) ti =


α
α−1
· H1−α−L1−α

H−α−L−α , if i = 1

α
α−1
· H

1−α−t1−αi−1

H−α−t−αi−1

, otherwise
(for α > 1)

Table B.1: Recursive formulas to compute sequence of reservations for MEAN-BY-MEAN.

B.2 Weibull distribution

For Weibull(λ, κ), substituting f(t) = κ
λ

(
t
λ

)κ−1
e−( tλ)

κ

and F (t) = 1 − e−( tλ)
κ

into Equa-
tion (B.1) and simplifying, we get:

ti =

∫∞
ti−1

κ
(
t
λ

)κ
e−( tλ)

κ

dt

e
−
(
ti−1
λ

)κ

=

∫∞(
ti−1
λ

)κ λx 1
κ e−xdx

e
−
(
ti−1
λ

)κ
(

by letting x =
( t
λ

)κ)
= λe

(
ti−1
λ

)κ
Γ

(
1 +

1

κ
,

(
ti−1

λ

)κ)

where Γ(x, y) =
∫∞
y
tx−1e−tdt denotes the upper incomplete gamma function.

196 Valentin HONORÉ



B. Recursive formulas to get sequence of reservations for MEAN-BY-MEAN heuristic

B.3 Gamma distribution

For Gamma(α, β), substituting f(t) = βα

Γ(α)
tα−1e−βt and F (t) = 1 − Γ(α,βt)

Γ(α)
into Equation

(B.1) and simplifying, we get:

ti =

∫∞
ti−1

βαtαe−βtdt

Γ (α, βti−1)

=
1

β
·
∫∞
βti−1

xαe−xdx

Γ (α, βti−1)
(by letting x = βt)

=
1

β
·
α
∫∞
βti−1

xα−1e−xdx− [xαe−x]∞βti−1

Γ (α, βti−1)
(integrating by parts)

=
1

β
· αΓ (α, βti−1) + (βti−1)αe−βti−1

Γ (α, βti−1)

=
1

β

(
α +

(βti−1)αe−βti−1

Γ(α, βti−1)

)
where Γ(x, y) =

∫∞
y
tx−1e−tdt denotes the upper incomplete gamma function.

B.4 LogNormal distribution

For LogNormal(µ, σ2), substituting f(t) = 1
tσ
√

2π
e−

1
2( ln t−µ

σ )
2

and F (t) = 1
2

+ 1
2
erf
(

ln t−µ√
2σ

)
into Equation (B.1) and simplifying, we get:

ti =
1

σ

√
2

π
·
∫∞
ti−1

e−
1
2( ln t−µ

σ )
2

dt

1− erf
(

ln ti−1−µ
σ
√

2

)
= eµ+σ2

2 ·
2√
π

∫∞
ln ti−1−µ
σ
√
2
− σ√

2

e−x
2
dx

1− erf
(

ln ti−1−µ
σ
√

2

) (
by letting x =

ln t− µ
σ
√

2
− σ√

2

)

= eµ+σ2

2 ·
2√
π

∫∞
0
e−x

2
dx− 2√

π

∫ ln ti−1−µ
σ
√
2
− σ√

2

0 e−x
2
dx

1− erf
(

ln ti−1−µ
σ
√

2

)
= eµ+σ2

2 ·
erf(∞)− erf

(
ln ti−1−µ
σ
√

2
− σ√

2

)
1− erf

(
ln ti−1−µ
σ
√

2

)
= eµ+σ2

2 ·
1− erf

(
ln ti−1−µ
σ
√

2
− σ√

2

)
1− erf

(
ln ti−1−µ
σ
√

2

)
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B.5. TruncatedNormal distribution

where erf(x) = 2√
π

∫ x
0
e−t

2
dt denotes the error function.

B.5 TruncatedNormal distribution

For TruncatedNormal(µ, σ2, a), substituting f(t) = 1
σ

√
2
π
· e

− 1
2( t−µσ )

2

1−erf
(
a−µ
σ
√
2

) and F (t) =

erf
(
t−µ
σ
√
2

)
−erf

(
a−µ
σ
√

2

)
1−erf

(
a−µ
σ
√
2

) into Equation (B.1) and simplifying, we get:

ti =
1

σ

√
2

π
·
∫∞
ti−1

te−
1
2( t−µσ )

2

dt

1− erf
(
ti−1−µ
σ
√

2

)
=

2√
π
·

∫∞
ti−1−µ
σ
√
2

(xσ
√

2 + µ)e−x
2
dx

1− erf
(
ti−1−µ
σ
√

2

) (
by letting x =

t− µ
σ
√

2

)

=
2√
π
·
σ
√

2
∫∞
ti−1−µ
σ
√

2

xe−x
2
dx+ µ

(∫∞
0
e−x

2
dx−

∫ ti−1−µ
σ
√
2

0 e−x
2
dx

)
1− erf

(
ti−1−µ
σ
√

2

)

=
2√
π
·
σ
√

2
[
−1

2
e−x

2
]∞
ti−1−µ
σ
√
2

+ µ
√
π

2

(
erf(∞)− erf

(
ti−1−µ
σ
√

2

))
1− erf

(
ti−1−µ
σ
√

2

)

=
2√
π
·
σ
√

2

(
0 + 1

2
e
−
(
ti−1−µ
σ
√
2

)2
)

+ µ
√
π

2

(
1− erf

(
ti−1−µ
σ
√

2

))
1− erf

(
ti−1−µ
σ
√

2

)
= µ+ σ

√
2

π
· e

− 1
2

(
ti−1−µ

σ

)2

1− erf
(
ti−1−µ
σ
√

2

)

where erf(x) = 2√
π

∫ x
0
e−t

2
dt denotes the error function.
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B. Recursive formulas to get sequence of reservations for MEAN-BY-MEAN heuristic

B.6 Pareto distribution

For Pareto(ν, α) with α > 1, substituting f(t) = ανα

tα+1 and F (t) = 1 −
(
ν
t

)α into Equa-
tion (B.1) and simplifying, we get:

ti =
α
∫∞
ti−1

t−αdt

t−αi−1

=
α

1− α ·
[t1−α]∞ti−1

t−αi−1

=
α

1− α ·
0− t1−αi−1

t−αi−1

=
α

α− 1
ti−1

B.7 Uniform distribution

For Uniform(a, b), substituting f(t) = 1
b−a and F (t) = t−a

b−a into Equation (B.1), we get:

ti =

∫ b
ti−1

t 1
b−adt

1− ti−1−a
b−a

=
b2 − t2i−1

2(b− ti−1)

=
b+ ti−1

2

B.8 Beta distribution

For Beta(α, β), substituting f(t) = tα−1(1−t)β−1

B(α,β)
and F (t) = B(t;α,β)

B(α,β)
into Equation (B.1) and

simplifying, we get:

ti =

∫ 1

ti−1
tα(1− t)β−1dt

B (α, β)− B (ti−1;α, β)

=

∫ 1

0
tα(1− t)β−1dt−

∫ ti−1

0
tα(1− t)β−1dt

B (α, β)− B (ti−1;α, β)

=
B (α + 1, β)− B (ti−1;α + 1, β)

B (α, β)− B (ti−1;α, β)

where B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt represents the beta function and B(a;x, y) =∫ a

0
tx−1(1− t)y−1dt represents the incomplete beta function.
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B.9. BoundedPareto distribution

B.9 BoundedPareto distribution

For BoundedPareto(L,H, α), substituting f(t) = αHαLαt−α−1

Hα−Lα and F (t) = Hα(1−Lαt−α)
Hα−Lα into

Equation (B.1) and simplifying, we get:

ti =
αHα

∫ H
ti−1

t−αdt

Hαt−αi−1 − 1

=
α

1− α ·
Hα(H1−α − t1−αi−1 )

Hαt−αi−1 − 1

=
α

α− 1
· H

1−α − t1−αi−1

H−α − t−αi−1
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Appendix C

Evaluation of strategies with
checkpointing using HPC cost function

In this appendix, we propose to complete the evaluation of strategies with checkpoint-
ing by providing results for HPC cost function. In compared with RESERVATIONONLY
cost function, it considers an additional cost that is proportional to the actual execution
time (pay for what you use). Thus, α = 1, β = 1, γ = 0.

C.1 Results for Scenario 1

We present first an evaluation of the performance of DYN-PROG-COUNT, compared to
the other strategies, when the values of R and C varies. Figure C.1 shows the results
with HPC cost function. We see that results are consistent with Figure 11.3, with small
variations in results but same general trends.

We then study the impact of ε on the performance of DYN-PROG-COUNT (DPC) when
R = C = 6min, 30min and 60min. When ε = 1, this theoretically guarantees that the
performance is at most twice (= 1 + ε) that of the optimal, but in practice it can be a lot
better. We study in

Figure C.2 shows the performance of DYN-PROG-COUNT for various values of ε for
distributions of Table 11.1 with HPC cost function. All performance are normalized by
DYN-PROG-COUNT for ε = 0.1. One can note that all distributions converge even faster
than the results presented in Figure 11.4, for RESERVATIONONLY cost function. Indeed,
for ε = 0.4, all distribution converge. Overall, the results are consistent in between
the two cost functions. In both figures, the number of chunks n in DYN-PROG-COUNT
varies between 50 to 1000 depending on the distribution and value of ε, showing the
practicality of DYN-PROG-COUNT for considered distributions.

The final evaluation for this scenario is a study of the impact of the size of the pe-
riod. Until now we have always chosen the period that minimized the objective func-
tions. Table C.1 (resp. Table C.2) shows the performance of both variants of the periodic
algorithms, ALL-CHECKPOINT-PERIODIC and NO-CHECKPOINT-PERIODIC, normalized
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C.1. Results for Scenario 1
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(b) Weibull (µ = 2.0h)
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(c) Gamma (µ = 1.0h)
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(d) LogNormal (µ = 2.80h)
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(e) Pareto (µ = 2.25h)
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(f) Truncated Normal (µ = 8.00h)
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(g) Uniform (µ = 10.5h)
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(h) Beta (µ = 0.5h)
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Figure C.1: Expected costs of the different strategies normalized to that of
DYN-PROG-COUNT(X, 0.1) when C = R vary from 60 to 3600 seconds, for all distri-
butions in Table 11.1 with support considered in hours with HPC cost function. We
indicate in brackets the mean µ of each distribution.
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C. Evaluation of strategies with checkpointing using HPC cost function
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(b) C = R = 30min
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(c) C = R = 60min

Figure C.2: Expected cost of DYN-PROG-COUNT(X, ε) as a function of ε for different
distributions for X with HPC cost function. C = R are set to 6, 30 and 60min.
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C.1. Results for Scenario 1

by that of DYN-PROG-COUNT (ε = 0.1), when C = R = 360s (resp. C = R = 1h)
using HPC cost function. For each distribution: the second columns shows the best pe-
riod found when τ varies from 1 to 1000 (with its associated cost normalized by that
of DYN-PROG-COUNT), and the other columns present results for specific values of τ in
that interval. Overall, results show similar trends when using the HPC cost function in
compared with Tables 11.5 and 11.6. Periodic heuristics are often not able to reach the
performance of DYN-PROG-COUNT, that take the benefits of its close approximation to
an optimal solution.

Distribution
ALL-CHECKPOINT-PERIODIC NO-CHECKPOINT-PERIODIC

Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000 Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000

Exponential 21 (1.00) 6.38 2.43 4.20 5.97 7.74 9.52 10 (1.35) 6.38 8.14 15.59 23.04 30.50 37.95

Weibull 300 (1.04) 62.32 1.07 1.05 1.12 1.21 1.31 64 (2.29) 62.32 3.53 6.03 8.60 11.19 13.79

Gamma 12 (1.01) 4.03 3.83 6.98 10.13 13.28 16.44 6 (1.24) 4.03 10.80 20.89 30.99 41.08 51.18

Lognormal 4 (1.07) 2.42 3.74 6.63 9.52 12.41 15.30 3 (1.17) 2.42 16.55 32.24 47.93 63.62 79.32

Pareto 999 (1.00) 128.29 1.39 1.11 1.03 1.01 1.00 415 (1.28) 128.29 1.45 1.28 1.32 1.41 1.51

TruncatedNormal 2 (1.61) 1.61 6.93 12.34 17.75 23.16 28.57 1 (1.61) 1.61 207.16 413.80 620.45 827.09 1033.73

Uniform 6 (1.01) 1.28 2.98 5.07 7.17 9.26 11.36 1 (1.28) 1.28 54.39 107.91 161.42 214.93 268.44

Beta 1 (1.03) 1.03 32.95 65.29 97.62 129.96 162.29 1 (1.03) 1.03 45.95 91.22 136.49 181.76 227.03

BoundedPareto 26 (1.01) 4.69 1.74 2.68 3.62 4.57 5.52 10 (1.38) 4.69 7.22 13.62 20.03 26.44 32.85

Table C.1: Performance of ALL-CHECKPOINT-PERIODIC and
NO-CHECKPOINT-PERIODIC, normalized by DYN-PROG-COUNT(X, 0.1) for
C = R = 360s, with HPC cost function.

Distribution
ALL-CHECKPOINT-PERIODIC NO-CHECKPOINT-PERIODIC

Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000 Best τ τ = 1 τ = 200 τ = 400 τ = 600 τ = 800 τ = 1000

Exponential 9 (1.25) 4.81 11.24 22.19 33.15 44.11 55.07 10 (1.02) 4.81 6.13 11.74 17.35 22.96 28.58

Weibull 116 (1.19) 44.78 1.30 1.83 2.42 3.03 3.65 64 (1.65) 44.78 2.54 4.33 6.18 8.04 9.91

Gamma 6 (1.29) 3.26 21.21 42.11 63.02 83.93 104.84 6 (1.00) 3.26 8.73 16.89 25.04 33.20 41.36

Lognormal 4 (1.13) 2.12 21.39 42.15 62.91 83.67 104.43 3 (1.03) 2.12 14.50 28.24 41.99 55.73 69.48

Pareto 438 (1.11) 103.29 1.27 1.11 1.13 1.21 1.31 415 (1.03) 103.29 1.17 1.03 1.06 1.13 1.21

TruncatedNormal 1 (1.45) 1.45 41.13 81.05 120.98 160.91 200.83 1 (1.45) 1.45 186.46 372.46 558.46 744.46 930.46

Uniform 2 (1.00) 1.08 15.21 29.71 44.21 58.71 73.22 1 (1.08) 1.08 45.90 91.05 136.21 181.36 226.52

Beta 1 (1.03) 1.03 263.43 526.83 790.22 1053.62 1317.02 1 (1.03) 1.03 45.65 90.62 135.59 180.56 225.53

BoundedPareto 11 (1.14) 3.64 6.50 12.51 18.53 24.55 30.57 10 (1.07) 3.64 5.59 10.56 15.53 20.50 25.46

Table C.2: Performance of ALL-CHECKPOINT-PERIODIC and
NO-CHECKPOINT-PERIODIC, normalized by DYN-PROG-COUNT(X, 0.1) for C = R = 1h,
with HPC cost function.
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C.2 Results for Scenario 2

Figure C.3 shows similar trends using the same setup with the HPC cost function.
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(c) Variation of µ, σ = σo = 19.7h, C = R = 1h
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(d) Variation of σ, µ = µo = 21.4h, C = R = 1h
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(e) Variation of µ, σ = σo = 19.7h, C = R = 12h

0.1 1.0 10.0

σ/σo

1

2

3

4

A
lg

o
/O

m
n
is

c
ie

n
t

Dyn-Prog-Count

All-Ckpt

No-Ckpt

All-Ckpt-Per

No-Ckpt-Per

(f) Variation of σ, µ = µo = 21.4h, C = R = 12h

Figure C.3: Normalized performance of algorithms with omniscient scheduler when µ or σ
vary, using HPC cost function (α = β = 1.0, γ = 0). Basis is the LogNormal distribution in
Figure 9.2 (µo = 21.4h, σ0 = 19.7h). C = R are set to 600, 3600 and 43200s (12h), ε = 1.

206 Valentin HONORÉ



Appendix D

Description of the different platforms
for stochastic application experiments

In this appendix, we present the different platforms used to perform the simulation
process and experiments in the second part of the manuscript.

D.1 Haswell platform

We used an Haswell platform hosted on Plafrim1, a development platform located in
Inria Bordeaux-Sud Ouest. Each node of the platform is composed of two Intel Xeon E5-
2680v3 processors with 12 cores each, with associated frequency of 2,5 GHz. Figure D.1
describes the topology of this platform generated by the hwloc library.

D.2 Knights Landing platform

To perform experiments with checkpoints in Chapter 12, we used a KNL platform com-
posed of a 256-thread Intel Xeon Phi 7230 processor (Knights Landing), running at
1.30GHz frequency. It is configured Quadrant/Cache mode with 96GB of main mem-
ory. Figure D.2 presents an abstraction of the topology of this node, generated with the
hwloc library.

1https://www.plafrim.fr/

207

https://www.plafrim.fr/


D.2. Knights Landing platform

Machine (128GB total)

Package L#0

L3 (15MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#0

PU L#0
P#0

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#1

PU L#1
P#2

6x total
L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#5

PU L#5
P#10

PCI 01:00.0

Net em1

PCI 01:00.1

Net em2

PCI 00:11.4

Block sda
465 GB

PCI 05:00.0

Net em3

PCI 05:00.1

Net em4

NUMANode L#0 P#0 (32GB)

L3 (15MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#6

PU L#6
P#12

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#7

PU L#7
P#14

6x total
L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#11

PU L#11
P#22

NUMANode L#1 P#2 (32GB)

Package L#1

L3 (15MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#12

PU L#12
P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#13

PU L#13
P#3

6x total
L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#17

PU L#17
P#11

PCI 81:00.0

Net ib0

OpenFabrics qib0

NUMANode L#2 P#1 (32GB)

L3 (15MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#18

PU L#18
P#13

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#19

PU L#19
P#15

6x total
L2 (256KB)

L1d (32KB)

L1i (32KB)

Core L#23

PU L#23
P#23

NUMANode L#3 P#3 (32GB)

Figure D.1: Topology of the Haswell platform made of dual-processor Haswell Xeon
E5-2680v3 nodes.
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Figure D.2: Topology of the KNL platform made of a Knights Landing Xeon Phi 7230
processor.
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Acronyms

AI Artificial Intelligence. 17

CPU Central Processing Unit. 14

FCN Fully Convolutional Network. 82

FLOPS FLoating-Point Operations Per Seconds. 11

FPTAS Fully Polynomial-Time Approximation Scheme. 105

GPU Graphical Processing Unit. 14

HACC Hardware/Hybrid Accelerated Cosmology Code. 17

HPC High Performance Computing. 11

hwloc Portable Hardware Locality package. 30

I/O Input/Output operation. 14

MPI Message Passing Interface. 17

MRI Magnetic Resonance Imaging. 81

NVRAM Non-volatile Random Access Memory. 28

PFS Parallel File System. 14

RAM Random Access Memory. 29

SLANT Spatially Localized Atlas Network Tiles. 81

SSD Solid-state Drive. 28
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