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Research presented in this manuscript has been performed at LAboratory on PLAsma and 

Conversion of Energy (LAPLACE, Toulouse, France) within the Materials and Plasma 

Processes (MPP) group. The MPP research group has developed extensive expertise in the 

domain of Plasma Enhanced Chemical Vapour Deposition (PECVD). The group is 

experienced in working with different types of plasma reactors and experimental conditions, 

ranging from very low pressure (~1 mTorr ≈ 0.13 Pa) to atmospheric pressure. Furthermore, 

low pressure PECVD of SiOxCyHz thin films from organosilicon precursors, 

Hexamethyldisiloxane (HMDSO) and Tetraethoxysilane (TEOS), has been the subject of 

numerous research projects [1]–[10].   

In the described context, a joint laboratory, PIXCELL-Lab, was created in 2004 between 

ESSILOR, a renowned global company in the domain of ophthalmologic optics, and 

academic research laboratories LAPLACE, CIRIMAT and LAAS. The objective of this 

cooperative effort was to develop a pixelated optical system. Within the framework of this 

collaboration, Mr R. Cozzolino carried out thesis research focusing on addition of an 

antireflective property to the pixelated optical system [11]. The construction of desired 

antireflective coating was based on the combination of a layer with low refractive index, 

studied in the thesis of Ms I. Savin [4], and a layer with high refractive index, the subject of 

Mr R. Cozzolino’s work. Zirconium dioxide was chosen as a high refractive index material 

due to its desirable properties such as: n = 1.8-2.2, high transmittance in the visible spectral 

range, high hardness, low thermal conductivity and strong oxidation resistance. A 

metalorganic precursor, Zirconium tetra tert-Butoxide (ZTB), was selected for the purpose of 

synthesizing zirconium oxide thin films. The study has shown the possibility of depositing a 

zirconium oxide thin film, with high refractive index (n = 1.96) and high optical transparency, 

from a metalorganic precursor. However, film barrier properties were compromised by the 

appearance of columnar morphology. To the best of our knowledge, columnar growth mode 

has not been observed in organosilicon thin films synthesized by low pressure PECVD. 

The outlined results had motivated further investigation of ZTB as a precursor and 

ZrOxCyHz thin film deposition within the framework of the thesis delivered by Mr R. Verhoef 

[12]. The main objective was to identify molecular and atomic species created in the plasma 

phase. Chemical composition of the plasma phase was studied in a Radio Frequency 

Inductively Coupled Plasma (RF ICP) reactor located at Chemistry of Plasma Surface 

Interactions (ChIPS) laboratory in Mons, Belgium. In the second step, deposited thin films 

were analysed in order to relate their characteristics to the chemical composition of the 

plasma. The films were synthesized in the RF ICP reactor at ChIPS, as well as in the 
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Microwave Multipolar Plasma excited by Distributed Electron Cyclotron Resonance (MPP-

DECR) reactor at LAPLACE. 

The study has shown that changes in process parameters strongly influence plasma phase 

chemical composition, as well as thin film characteristics. In the two plasma modes, ICP and 

ECR, columnar morphology appeared when plasma gas mixture was rich in oxygen gas. It 

was indicated that columnar growth is not bound to the chemical composition of the films. A 

wide range of compositions was obtained by varying the power in 100% ZTB plasma, and by 

adding oxygen gas to the plasma gas mixture. Columnar growth was not observed at 100% 

ZTB regardless of the chemical composition of deposited thin films. 

Our ambition to research the plasma phase of metalorganic PECVD process in a multi-

dipolar ECR reactor was motivated by the previously performed studies. We envisioned 

coupling an experimental investigation by in-situ Fourier Transform Infrared Spectroscopy 

(FTIR) and Mass Spectrometry (MS) with Density Functional Theory (DFT) calculations. 

However, technical conditions, had prevented us from performing the study in the given time 

framework. Specifically, the required, new and sophisticated, plasma analysis system had not 

been operational at the time.  

Accordingly, we had chosen to shift our focus to thin films grown in low pressure 

metalorganic plasma. Metal oxide nanocoatings are of great scientific and technological 

interest, in areas ranging from microelectronic industry and optical devices to biomedical 

applications. These thin films have been synthesized by various techniques such as sol-gel 

process, standard Chemical Vapour Deposition (CVD) and PECVD. These procedures 

frequently use metalorganic molecules as precursors. 

The thesis presented here aims to serve towards the advancement of general principles that 

govern low pressure metalorganic PECVD. For this purpose, we have introduced another 

metalorganic precursor, Titanium tetra isopropoxide (TTIP), in addition to ZTB. The objective 

of this work is to explore and compare the behaviour of ZrOxCyHz and TiOxCyHz thin film 

growths in low pressure metalorganic plasma and final characteristics of the deposited films. 

Our research strategy includes a comparative examination of changes induced by variation in 

the oxygen gas fraction, as well as the total pressure of the plasma gas mixture.  

Furthermore, particular attention was given to thin film growth mode, specifically 

columnar growth. It has been reported that columnar morphology disappears with a very low 

addition of HMDSO to TTIP/O2 plasma gas mixture [13]. Therefore, we have explored the 

deposition of “composite” ZrSixOyCzHw and TiSixOyCzHw thin films from a combination of 

metalorganic (ZTB or TTIP, respectively) and organosilicon (HMDSO) precursors.  
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With respect to the objectives of this work, the thesis manuscript is organised in five 

chapters. In Chapter I we review the fundamental principles of the PECVD process and the 

basic plasma phase characteristics. Literature survey provides the description of general 

characteristics of zirconium and titanium oxide thin films, as well as research findings on low 

pressure PECVD from ZTB and TTIP plasmas. Further, we report on characteristics of 

“composite” metal-silicon-oxide thin films synthesized by PECVD and other deposition 

processes. 

Chapter II focuses on the experimental context of this study. We review the basic 

principles and the characteristics of multi-dipolar ECR plasma. Further, the PECVD reactor is 

introduced in detail, and so are the particularities of precursor molecules: ZTB, TTIP and 

HMDSO. We also present different diagnostic techniques used to probe the plasma phase and 

to examine thin film characteristics.  

Chapter III is dedicated to the study of thin film growth at different values of O2 gas 

percentage of ZTB/O2 and TTIP/O2 plasma gas mixtures. We begin with a qualitative OES 

analysis of the plasma phase and continue with a comparative examination of various thin 

film characteristics. In collaboration with colleagues at Institute of Material Science in Sevilla 

(Spain), we couple the experimental results with Monte Carlo (MC) simulations to explain the 

differences in morphological features between thin films grown in oxygen-rich ZTB and TTIP 

plasmas. 

In Chapter IV we study modifications of thin film characteristics induced by an increase in 

total pressure of plasma gas mixtures. Thin films have been grown in O2-rich ZTB/O2 and 

TTIP/O2 plasmas to allow examination of the behaviour of columnar growth mode with 

increasing pressure.  

Chapter V explores thin film growth in ZTB/HMDSO/O2 and TTIP/HMDSO/O2 plasmas. 

We analyse the physico-chemical characteristics of “composite” thin films as well as the 

evolution of morphological features as HMDSO gas is added to O2-rich metalorganic plasma. 

Lastly, General conclusion and perspectives paragraph gives a summary of research results 

and their interpretation. It also introduces perspective research directions based on the 

conclusions presented in this thesis. 
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Introduction 

One of the objectives of this chapter is to introduce the scientific context of the research 

presented in this thesis. To begin with, we review fundamental aspects of thin film formation 

and different deposition techniques. Second, we present the characteristics of the plasma 

phase and the process of generating plasma. Afterwards, the PECVD deposition technique is 

described in more detail. 

In the second part, we review the literature on physico-chemical, morphological and 

structural characteristics of zirconia and titania thin films synthesized by PECVD. We also 

examine the characteristics of “composite” zirconia-silica and titania-silica oxide thin films 

deposited by PECVD and other deposition techniques. 

Finally, as a conclusion, we define the objective and the strategy of our research. 

 

 Thin films: fundamental aspects 

The term thin film denotes a layer of material typically ranging from few atomic layers to 

few micrometres in thickness. The fabrication of thin films dates to ancient times. More than 

5000 years ago, Egyptian craftsmen recognized the exceptional malleability of gold and used 

a hammering process to produce golden leaves of remarkable thinness.  Samples found in 

Luxor were measured to be only 0.3 μm thick [14]. Even though thin films have been in use 

for centuries, corresponding scientific research and production have widely expanded in the 

last century primarily due to the semiconductor industry and the demand for miniaturization 

of integrated circuits [15]–[17]. Nowadays, thin film technology is of high importance in 

numerous fields of science and industry ranging from aerospace industry to medical 

applications [18]–[22]. 

I.2.1 Thin film formation 

In the following text, we focus on the first steps of thin film formation from a vapour phase 

as explained by the “capillarity” theory. This approach is of qualitative nature, and although 

quantitatively inaccurate, it provides useful predictions [14]. First stages of film formation 

include the nucleation process [14], [23]–[27]. Atoms and molecules impinge on the substrate 

where they are physisorbed due to permanent or fluctuating dipole moment that induces the 

Van der Waals attraction. Physisorbed species are then chemisorbed and they participate in 

nuclei formation (see Figure I-1).               
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Figure I-1: Schematic representation of a nucleation process during vapour phase deposition (adapted from 

[14] ). θ is the substrate-nucleus contact angle; γsv, γfs and γvf are the substrate-vapour, film-substrate and 

vapour-film interfacial tensions, respectively.  

                   

Nucleus is a cluster of atoms formed due to thermodynamic fluctuations. For thin film 

growth, nuclei at a critical size are needed. Formed cluster of atoms with a radius less than the 

critical radius r* is unstable and will lose atoms. Unstable clusters have too high and 

thermodynamically unfavourable surface free energy. Incorporation of additional 

atoms/molecules induces an increase in free energy. In contrast, adding more matter to stable 

nuclei leads to a decrease in free energy. Figure I-2 graphically presents the free energy of a 

nucleus as a function of nucleus size. The free energy corresponding to critical radius r* 

represents nucleation energy barrier. 

 

 

Figure I-2: Free energy change as a function of nucleus size (adapted from [28]). 

 

The nucleation process depends on the tension between substrate-vapour γsv, film-substrate 

γfs and vapour-film γvf interfaces that are related by Young’s equation: 

𝛾𝑠𝑣 = 𝛾𝑓𝑠 + 𝛾𝑣𝑓𝑐𝑜𝑠𝜃 Equation I-1 

where θ represents the contact angle between the substrate and the nucleus (see Figure I-1). 

Three fundamental growth modes can be distinguished based on the relations between 

interfacial tensions mentioned above (see Figure I-3): 
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1. Volmer-Weber or island growth mode appears when the interaction between the 

atoms/molecules is stronger than the interaction between the substrate and the 

atoms/molecules: 

𝛾𝑠𝑣 < 𝛾𝑓𝑠 + 𝛾𝑣𝑓 Equation I-2 

2. Frank-Van der Merwe or layer-by-layer growth mode develops if atoms are more strongly 

bound to each other than to the substrate: 

𝛾𝑠𝑣 ≥ 𝛾𝑓𝑠 + 𝛾𝑣𝑓 Equation I-3 

3. Stranski-Krastanov or layer+island growth mode outsets with a layer-by-layer growth 

followed by island mode after few initial atomic layers. 

 

 
Figure I-3: Basic thin film growth modes (adapted from [14]). 

 

I.2.2 Thin film deposition processes 

Different deposition technologies have been developed with regards to the demand for 

variety of thin film characteristics [29]–[31]. Figure I-4 presents different techniques 

categorized by the precursor phase. 

 

Figure I-4: Classification of thin film deposition techniques according to precursor phase (non-exhaustive list). 
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I.2.2.1 Chemical Solution Deposition (CSD)  

CSD is a wet-chemical process and includes any deposition method of a solid thin film 

from a liquid chemical precursor. Precursor chemicals are dissolved or suspended in a solvent 

which, when deposited and heated, results in the formation of a solid thin film. The main 

steps in the CSD process are: (1.) choosing an appropriate precursor and solvent; (2.) 

preparation of the solution; (3.) wet film or pattern formation; (4.) drying of the film; (5.) 

removal of contamination and thermal consolidation. 

 

I.2.2.2 Physical Vapour Deposition (PVD) 

PVD is a class of processes used to deposit thin solid films from vaporized material. The 

main steps include: (1.) converting the solid target material into vapour by physical means; 

(2.) transporting the vapour from source to substrate; (3.) condensation on the substrate. Two 

basic PVD techniques, evaporation and sputtering, are distinguished by the method employed 

to vaporize the solid target material. Thermal evaporation uses heat to convert the source 

material into vapour in a high vacuum environment. Advantages of this method are high 

deposition rate, less substrate damage, and excellent purity. On the other hand, film 

composition is not easily controlled, and the step coverage is difficult to improve. Sputtering 

is a plasma-assisted technique in which the solid target material is vaporized by ionic 

bombardment. High energy ions are generated in the plasma phase and directed at a target. 

The ions sputter target atoms that are then transported to the substrate through a region of 

reduced pressure. Sputtering technique allows using large sized targets and subsequently 

achieving uniform thickness over large wafers, as well as easily controlling film thickness and 

alloy composition. The sputtering deposition rate can be fairly low for some materials. 

 

I.2.2.3 Chemical Vapour Deposition (CVD) 

CVD is based on the deposition of thin films on a substrate via thermally activated 

chemical reactions. Reactive gases are introduced into a vacuum chamber and transported to 

the heated substrate where a thin film is formed. Typically, CVD requires high substrate 

temperatures (>300°C). The process includes several mechanisms: (1.) the introduction of a 

reactive gas, precursor, into a reaction chamber; (2.) gas phase collisions between precursor 

molecules (3.) transport of the precursor to the heated substrate; (4.) adsorption of the 

precursor onto the substrate; (5.) diffusion, desorption and film forming reactions on the 

substrate. At lower temperatures the regime is limited by surface reaction rate, whereas at 
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higher temperatures, it is limited by maximum possible rate at which reactant species arrive at 

the surface. 

Plasma Enhanced Chemical Vapour Deposition (PECVD) process is classified as a special 

type of CVD, which employs an electrical discharge to decompose the precursor gas 

molecules. Thin films of various materials can be deposited on substrates at significantly 

lower temperature than in standard CVD. PECVD is used in this work, and is therefore, 

described in more detail in paragraph I.4 (p.19). 

 

 Plasma phase: fundamental principles 

I.3.1 Definition of plasma 

In the 1920s, Irving Langmuir was the first to use the term plasma to describe ionised gas 

appearing in a filament bulb [32]. The origin of the expression lays in the Greek word πλασµα 

meaning mouldable substance. Plasma is also known as the fourth state of matter. When 

heating matter in a solid state, it first converts to liquid state, then gaseous state. By using 

even more energy, the substance will transform from gaseous to plasma state.  

Although plasma is rarely encountered in everyday life, most of the visible matter that 

makes the universe is in the plasma state. Stars, stellar atmospheres, interstellar and 

intergalactic gas are examples of plasma systems. On Earth, matter in plasma state is found in 

the ionosphere and magnetosphere. Lightning and Northern Lights are further examples of the 

plasma phase. Plasma is used in industry for material processing, in fluorescent lamps, TV 

sets, energy production (nuclear fusion), waste incineration, for various medical applications, 

and in many other areas. 

Strictly defined plasma is a state of matter in which all of the atoms and molecules are 

ionized, i.e. all particles are electrically charged. However, slightly ionised gases (~1%) may 

show plasma characteristic behaviour. Almost all plasmas on Earth are actually partially 

ionized gases – composed of electrically charged and neutral particles. The ionization degree 

of the plasma, α, is defined as the proportion of ionised particles in the plasma:  

𝛼 =
𝑛𝑖

𝑛𝑖 + 𝑛𝑛
 Equation I-4 

where ni is the number density of ionised particles and nn is the number density of neutral 

particles. Plasma is said to be weakly ionised if the value of the ionisation degree α is lower 

than 10-4 [33]. 
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Plasma phase is characterized by the presence of collective interactions between particles. 

Long-range Coulomb interaction appears in the plasma due to a large number of charged 

particles. Particles in the gas phase interact in collisions, whereas in plasma there is a 

sufficient number of free charged particles, thus plasma dynamics are dominated by electric 

and magnetic forces. The particles interact collectively, forming an electromagnetic field 

where each particle interacts simultaneously with all the others. 

Plasma is a quasi-neutral system composed of charged and neutral particles: electrons, 

neutral atoms and molecules, positive and negative ions, excited and radical species and 

photons produced in the relaxation process of excited species. Quasi-neutrality implies that 

plasma is macroscopically neutral, i.e. it is composed of an equal number of positively and 

negatively charged particles: 

𝑛𝑒 ≈ 𝑛𝑖 Equation I-5 

where ne and ni represent electron and ion density, respectively. Plasma quasi-neutrality is 

derived from the concept of electrostatic or Debye shielding. The interaction between 

individual particles in the plasma is negligible in relation to the collective interaction. The 

particles in the plasma "see" each other over long distances, thus the effect of electrostatic 

shielding arises.  

I.3.2 Plasma characteristics 

For classifying and comparing different kinds of plasmas (Figure I-5), we typically use two 

primary parameters: 

➢ electron temperature Te and 

➢ electron number density ne. 

The temperature of the particles present in the plasma is usually expressed in electronvolt 

(eV): 1 eV corresponds to approximately 11600 K. 

Plasma phase contains “lightweight” electrons and “heavy” neutral and ionized atoms and 

molecules. Based on the relative temperatures of these species, plasmas are classified into two 

categories: 

➢ plasmas at thermodynamic equilibrium (also called thermal plasmas) → the 

temperature of electrons Te, ions Ti, and neutrals Tn is equal (Te = Ti = Tn),  

➢ plasmas at non-thermodynamic equilibrium, known as cold plasmas → the 

temperatures of the different plasma species are not equal, yet the electrons are 

characterized by much higher temperatures than the heavy particles (Te >> Ti , Tn). 



Chapter I 

 

 

17 

 
Figure I-5: Different types of plasmas classified by electron temperature and electron density (adapted from 

[34]). 

 

Examples of plasmas at thermodynamic equilibrium are highly ionised plasmas with highly 

energetic species (α ≈ 1 and Te > 106 K), such as fusion plasma. Partially ionised plasma (α 

<< 1), such as gas discharge plasmas, can be at non-thermodynamic equilibrium, as well as 

close to thermodynamic equilibrium depending on the pressure and discharge length. At low 

pressures, low collision rate due to long particle mean free path leads to inefficient energy 

transfer and Te >> Theavy. At high pressures, frequent collisions lead to efficient energy transfer 

and Te = Theavy (e.g. lightning, plasma arc). If the discharge length is sufficiently small, we 

will obtain non-thermodynamic equilibrium regardless of high pressure (e.g. Dielectric 

Barrier Discharge - DBD). In this work, we used low pressure gas discharge plasma 

characterised by non-thermodynamic equilibrium.  

I.3.3 Generating plasma 

The ionisation of atoms is the most important process in generating and sustaining the 

plasma phase. For an atom to be ionised, it needs to absorb enough energy. Frequent 

collisions, in which new charged particles are created, sustain the plasma state. There are 

several ways for ionization to take place. The most notable is the direct ionization by 

electronic impact. An electron e- transmits energy to an atom or molecule A during collision, 

so an additional electron is released, and an ion is created: 

𝐴 + 𝑒−  →  𝐴+ + 𝑒− + 𝑒− Equation I-6 

This process is the most important process in low temperature plasmas where the electron 

energy is high enough, i.e. significantly higher than the energy of neutral atoms and ions. In 
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addition to the direct collisional ionization, the electrons can ionize the atom gradually in 

several collisions. At first, the atom is excited, and in subsequent collision it is ionised: 

𝐴 + 𝑒−  →  A∗ + 𝑒− Equation I-7 

𝐴∗ + 𝑒−  →  𝐴+ + 𝑒− + 𝑒− Equation I-8 

where A is a neutral particle, A* excited neutral particle, A+ ion and e- an electron. An electron 

can be released in a collision of two neutral atoms in excited states: 

𝐴∗ + 𝐴∗  →  𝐴+ + 𝑒− + 𝐴  Equation I-9 

The described reaction is called ionization in a collision with a heavy particle. Heavy 

colliding particles can be two neutrals, ion and a neutral atom or two ions. 

In high-temperature plasmas, in which photon energy is high, photoionization is a 

significant process. The photon of energy hν is absorbed by a neutral atom A providing 

sufficient energy to ionize the atom: 

𝐴 + ℎ𝜈 →  𝐴+ + 𝑒− Equation I-10 

If the photon energy is greater than the ionization energy, the difference transforms to kinetic 

energy of the released electron. 

Free electron production can also be achieved in the so-called surface ionization. Electrons, 

ions or photons can hit the surface of the reactor wall or the electrode and new electrons 

emerge from the surface.  

 

I.3.3.1 Plasma in a laboratory 

In a laboratory environment, low temperature plasmas are typically generated by applying 

electrical energy to the gas and accelerating the few free electrons present due to cosmic or 

radioactive radiation of gas atoms and molecules [35], [36]. The plasma is generated and 

sustained by applying electric energy usually via direct current (DC), radiofrequency (RF) or 

microwave (MW) power. The type of source used to generate plasma defines the range of 

plasma parameters such as Te, ne and working pressure (see Table I-1).  

 

Table I-1: Plasma parameters corresponding to different types of plasma sources (adapted from [37]). 

Type of source Pressure (mbar) ne (cm-3) Te (eV) 

RF capacitive 

      hollow cathode 

10-3-10 

1 

1011 

1012 

1-10 

0.1 

RF inductive 

      helicon 

10-3-10 

10-4-10-2 

1012 

1013 

1 

1 
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Type of source Pressure (mbar) ne (cm-3) Te (eV) 

MW 

      surfatron 

      planar 

      closed structure 

 

1000 

100 

1000 

 

1012 

1011 

1012 

 

5 

2 

3 

      ECR  10-3 1012 5 

DBD 1000 1014 5 

DC glow 

      cathode region 

      negative glow 

      positive column 

      hollow cathode 

10-3-100 

 

 

10-2-800 

 

1012 

1011 

1012 

 

100 

0.1 

1-10 

0.1 

  

Regarding pressure units, we use millitorr (mTorr) to express pressure values in this work. 

Generally, various pressure units are used in scientific and industrial plasma laboratories. 

Therefore, we present different pressure units and their values equivalent to 1 mTorr in Table 

I-2. 

Table I-2: Units of pressure frequently used in plasma science and industry. 

Unit Symbol 
Pressure values equivalent to   

1 mTorr 

Torr Torr 1·10-3 Torr 

Pascal Pa ≈ 0.13 Pa 

Bar bar ≈ 1.33·10-6 bar 

Millibar mbar ≈ 1.33·10-3 mbar 

Millimetre of mercury mmHg ≈ 1·10-3 mmHg 

Atmosphere atm ≈ 1.32·10-6 atm 

 

 

 Plasma Enhanced Chemical Vapour Deposition  

Plasma Enhanced Chemical Vapour Deposition (PECVD) is a special type of the CVD 

process. The principle is based on the deposition of material on a desired substrate exposed to 

reactive particles. The reactive particles are created by applying electric field to a gas 

confined in a reactor chamber. The gas is then transformed to plasma. The processes in the 

plasma phase include ionization, excitation, and dissociation, recombination of gas atoms and 

molecules, as well as production of photons. The particles are ionized, excited, and 

dissociated in collisions with accelerated electrons as presented in Equation I-6, Equation I-7 

and Equation I-8 (p.17), Equation I-11 and Equation I-12: 



Chapter I 

 

 

20 

𝐴𝐵 + 𝑒−  →  𝐴+ + B + 2𝑒− (dissociative ionization) Equation I-11 

𝐴𝐵 + 𝑒−  →  A + B + 𝑒− (electron impact dissociation) Equation I-12 

where A and B are neutral particles, AB neutral molecular particle, A* excited neutral particle, 

A+ ion and e- an electron.  

Reactions in the plasma phase depend on the process parameters such as gas pressure, the 

electric power and the gas composition. These parameters influence the type of species 

created in the plasma phase. The species are transported to the substrate surface where they 

contribute to thin film formation and growth. The thin film formation is a result of plasma-

substrate interaction involving reactive surface reactions as presented in Figure I-6. The 

nature, size and energy of impinging species, as well as the surface temperature, influence the 

various surface phenomena such as adsorption, diffusion, desorption, nucleation, and 

coalescence. 

 

Figure I-6: Schematic presentation of plasma and surface processes in PECVD (adapted from [38]). 

 

There is a strong dependency between external process parameters (such as pressure, 

electrical power, gas mixture, and surface temperature) and phenomena leading to thin film 

formation [29]. These parameters can be utilized to control thin film growth and obtain 

materials with desired properties.  
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 Zirconium oxide and titanium oxide thin films: literature review 

I.5.1 Zirconium oxide thin films deposited by PECVD 

Zirconium oxide coatings are of interest to variety of areas ranging from microelectronic 

industry and optical devices to biomedicine and protective coatings. Their significance in both 

science and technology is due to desirable properties such as good thermal stability, low 

thermal conductivity, oxidation resistance and high hardness, biocompatibility, high dielectric 

constant (ε = 14–25) and wide band gap (Eg = 4.6-7.8 eV) [39]–[49]. They are widely 

employed as optical coatings because of their high refractive index (n = 1.8-2.2) and high 

transparency in visible and near infrared range [11], [50]–[53]. 

Zirconia thin films have been synthesized using various techniques such as sol-gel [53]–

[57], PVD [51], [58]–[62], CVD [47], [63]–[67], and PECVD [12], [39], [40], [48], [49], 

[68]–[73] processes. In this review, we focus on the ZrO2-like thin film synthesized by 

PECVD. Table I-3 summarizes the physico-chemical, morphological, and macroscopic 

characteristics of thin films as reported in literature. 

In terms of application, the studies summarized in Table I-3 have focused on zirconia films 

as optical coatings with high transparency and high refractive index [11], [73], and as gate 

dielectric material in metal–oxide–semiconductor (MOS) transistors and storage capacitor in 

dynamic random access memory (DRAM) devices [48], [70]. The PECVD of the ZrO2 thin 

films has mostly been performed in MW ECR and RF ICP reactors. In the deposition process, 

Zirconium Tetra tert-Butoxide (ZTB) is most frequently used as a precursor, while O2 gas is 

employed as an oxidant. ZTB is often introduced with a carrier gas (usually argon) due to its 

low vapour pressure. Besides ZTB, Zirconium tetrachloride (ZrCl4) has been used as 

precursor fairly often.  

Several studies investigated the influence of gas mixture composition on thin film 

characteristics [12], [69], [70]. It has been reported that the carbon at.% decreases, while the 

refractive index and density increase with rise of O2 gas proportion in the gas mixture. 

Column-like structures have been observed in O2 rich plasmas, whereas in pure precursor 

plasmas films exhibit uniform morphology. The deposited films have been predominantly 

amorphous, sometimes with incorporated polycrystalline phases (monoclinic and tetragonal). 

The fraction of crystalline phase increases with oxygen addition to the gas mixture.  

It has been shown that varying the process parameters influences final characteristics of the 

thin films. Higher substrate temperature and substrate polarization have been used to enhance 
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the crystallization of the films as well as the refractive index [39], [48], [71], [72]. The same 

has been achieved by employing the post-deposition annealing process [48].   

 

Table I-3: Characteristics of ZrO2-like thin films obtained by PECVD: literature review. 

Deposition 

method and 

growth 

conditions 

Chemical 

composition and 

chemical bonding 

Morphological and structural 

characteristics 

Macroscopic 

properties 

(n, density) 

References 

MW ECR 
ZTB+O2 

ptotal: 1 mTorr 
PMW: 800W 
O2: 0-90% 
Ts=55°C 

%O2 ↗:  

↘ C at.%  

↘ C-H, ↗ Zr-O  

Granular nature 

%O2 ↗: uniform → columnar 

morphology (at ≥80% O2) 

Not reported [12] 

MW ECR 

ZTB+O2 

ptotal: 1mTorr 

O2: 0-95% 

PMW: 200-800W 

Ts: uncontrolled 

Homogeneous in-

depth composition 

%O2 ↗:  

↘ C at.%  

ZrO1.5C2.5→ZrO1.4

C0.1 (bulk 

stoichiometry) 

%O2 ↗:  

Surface roughness ↗  

Amorphous→amorphous+poly-

crystalline (monoclinic and 

tetragonal) (at ≥80% O2) 

Uniform→columnar morphology 

(at ≥80% O2) 

%O2 ↗: 

density↗ 

(2.6→4.2g/cm-3)  

n↗ (n550nm=1.6→1.9) 

 

↗ PMW (100%ZTB): 

density↗ 

(1.8→2.7g/cm-3) 

n↗ (n550nm=1.58-1.76) 

[69] 

RF ICP 

ZTB+O2 

O2: 0-90% 

ptotal: 4mTorr 

PRF: 20-200W 

Ts: uncontrolled 

PRF ↗ (100%ZTB):  

C at.% ↗ 

ZrO3C2.6→ZrO5C23  

(surface 

stoichiometry) 

 

%O2 ↗: 

↘ C at.%  

PRF ↗(100%ZTB):  

Granular nature 

Uniform morphology 

 

%O2 ↗: from uniform morphology 

to columnar growth (at ≥80% O2) 

Not reported [12] 

Remote RF 

PECVD 

ZTB+O2 

Ts: 170-385°C 

C at.% not 

detectable (<1%) 
Not reported 

Ts ↗→ n ↗ 

n: 1.70-2.04 
[72] 

RF ICP 

ZTB+O2 

(carrier gas: Ar) 

ptotal: 95-

125mTorr 

PRF: 900-1500W 

Vb: 0-500V 

Ts: 280-350 °C 

Stoichiometric 

composition 

Some carbon in the 

films 

No carbide 

Vb ↗: amorphous → crystalline 

(mainly tetragonal, small amounts 

of monoclinic) 

Columnar morphology 

Not reported 

 
[71] 

MW ECR 

ZTB+O2 

(carrier gas: Ar) 

ptotal: 10-40mTorr 

O2/Ar: 0-10 

PMW: 300-900W 

Bonds: O-H, C-C, 

Zr-O, C=O, C-O, 

O-C-O 

 

 O2 ↗: 

↘ C at.% 

O2/Ar ≥ 0.2:  ZrO2  

C-H ↘ 

O2/Ar ↗→ roughness ↘ 

Amorphous+very small fraction 

polycrystalline (tetragonal and 

monoclinic)  

Not reported [70] 
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Deposition 

method and 

growth 

conditions 

Chemical 

composition and 

chemical bonding 

Morphological and structural 

characteristics 

Macroscopic 

properties 

(n, density) 

References 

MW ECR 

ZTB+O2 

ptotal: 1.2mTorr 

PMW: 500W 

PRF(bias): 0 or 

25W 

O2: 83% 

Not reported 

Amorphous + small fraction 

polycrystalline (tetragonal and 

monoclinic) 

Vb ↗: amorphous → crystalline 

Vb ↗: n ↗ 

(n632.28nm=1.85→1.92

) 

 

Anneal (700°C in 

N2): n ↗  

(n632.28nm=1.92→2.04

) 

[48] 

RF CCP 

ZTB+Ar+O2 

(carrier gas: Ar) 

ptotal: 1-4 Pa 

(≈7.5-30 mTorr) 

PRF: 25-150W 

Vb:100-400V 

Ts: uncontrolled 

ZTB+Ar 

C at.%: max 57% 

ZrO6.2C9.3 

 

ZTB+Ar+O2 

C at.%: max 27% 

 

ZTB+O2 

O-H peak 

pronounced, C-H 

peak weak 

ZrO3.8C1.8 

 

ZTB+Ar 

Ra=5 nm 

Uniform morphology 

 

ZTB+Ar+O2 

Amorphous 

Columnar 

 

ZTB+O2 

Ra=25nm 

Amorphous 

Columnar  

PRF ↗ → n ↗ 

 

ZTB+Ar 

n546nm=1.78→1.90 

transmittance: 70% 

 

ZTB+Ar+O2 

n546nm=1.58→1.80  

 

ZTB+O2 

max n546nm=2.12 

Transmittance: 85-

90% 

[73] 

MW 

ZrCl4+O2 

(carrier gas: Ar) 

ptotal:130Pa 

(≈975mTorr) 

PMW:400W 

Ts: 300-800°C 

O wt.%: 25.9% 

No carbon detected 

Columnar with numerous intra- 

and intercolumnar porosities  

 

Ts=300-400°C: nanocrystalline or 

amorphous structures 

Ts=500°C, 800°C: monoclinic +  

indication of tetragonal/cubic 

Not reported [39] 

 

I.5.2 Titanium oxide thin films deposited by PECVD 

Titanium dioxide films have been extensively studied as a photocatalyst for various 

applications such as decomposing organic compounds, disinfection purposes, as well as UV-

sensitive hydrophilic surfaces [74]–[78]. Due to their stability, high refractive index, and 

transparency over a wide spectral range, titania films are broadly used as optical coatings for 

dielectric interference filters, multilayer mirrors or antireflective layers [13], [79]–[81].  

Various deposition processes have been used for obtaining titania thin films such as sol-gel 

[82]–[85], PVD [86]–[89] and CVD [90]–[93]. Table I-4 presents the characteristics of 

titanium oxide films grown in RF and MW PECVD as reported by different research groups. 

Usually, Titanium tetra isopropoxide (TTIP) or Titanium tetrachloride (TiCl4) are used as 

precursor molecules and oxygen gas as an oxidant. Most frequently a carrier gas (Ar, O2 or 

He) is used to inject the titanium precursor into the reactor. 
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Carbon atomic content has been detected in most films deposited by metalorganic PECVD. 

Decrease of carbon contamination has been observed with increase of oxygen gas proportion 

in the gas mixture [94] or with ionic bombardment, induced by polarisation of the substrate 

[95].  

The films deposited in TTIP/O2 plasma at very high O2 gas proportion in the gas mixture 

exhibit mostly columnar morphology [95][96]. Li at al. have shown that the substrate 

polarisation induces a change in growth mode of the film, evidenced in the disappearance of 

column-like structures and the appearance of smooth surface and uniform morphology [97]. 

Films are predominantly amorphous when deposited at floating potential and uncontrolled 

substrate temperature, which typically remains below 150°C. At substrate temperatures higher 

than ~250°C, presence of anatase as crystalline phase has been detected. Increase in substrate 

bias voltage has also been used to increase crystallization of the films. 

Regarding the optical properties, maximum values of n at 550nm have been found in the 

1.7-2.4 range. Refractive index increases with substrate thermal heating. Post-annealing 

procedure can also be used to increase the refractive index and the film density [98].  

  

Table I-4: Characteristics of TiO2-like thin films obtained by PECVD: literature review. 

Deposition 

method and 

growth 

conditions 

Chemical 

composition and 

chemical bonding 

Morphological and structural 

characteristics 

Macroscopic 

properties 

(n, density) 

References 

RF CCP 

TTIP+Ar 

TTIP+O2 

(carrier gas: He) 

Ts: uncontrolled 

(<35°C) 

Vb: from -600V  

to 600V 

TTIP+Ar 

C/Ti: 4.2-5.3 

 

TTIP+O2 

O2 ↗:   

C at.% ↘ 

TiO2.5C0.8→ 

TiO2.3C0.6 

Amorphous 

TTIP+Ar 

n550nm=1.58-1.84 

 

TTIP+O2 

n550nm=1.56-1.74 

 

[94] 

Remote MW 

TTIP+O2 

TTIP+O2+Ar 

ptotal: 4mTorr 

PMW: 400W 

Ts: 25-250°C 

Carbon at.%:  

~15% (before 

surface cleaning) 

~4-5% (after 

surface cleaning) 

Amorphous; at Ts>230°C 

presence of anatase phase 

 

TTIP+O2 

Columnar 

Ts=25°C narrow columns 

Ts=250°C columns formed by 

small polyhedral crystallites 

 

TTIP+O2+Ar 

Ts=25°C uniform  

Ts=200°C globular 

Ts=250°C columnar 

Ts ↗ → n ↗  

 

TTIP+O2 

n550nm=2.1→2.2 

 

TTIP+O2+Ar 

n550nm=1.9→2.4 

[96] 
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Deposition 

method and 

growth 

conditions 

Chemical 

composition and 

chemical bonding 

Morphological and structural 

characteristics 

Macroscopic 

properties 

(n, density) 

References 

RF ICP 

TTIP+ O2 

(carrier gas: O2) 

PRF: 300W 

ptotal: 3-5 mTorr 

Vb: Vf, -15V 

Ts: uncontrolled 

(<100°C) 

Vb: Vf → -15 V 

O/Ti=1.92→2.08 

C at.%=10→4% 

O-H  ↘  

C-O ↗ and C=O ↗ 

Vf: amorphous 

Vb: amorphous+rutile detected 

 

All columnar with granular 

surface morphology 

Vb: Vf → -15 V 

n633nm=2.0→2.32 

density=3.0 →3.7 

g/cm3 

 

[95] 

MW ECR 

TTIP+O2 

PMW: 75 W 

ptotal: 1.1-1.25 

mTorr 

Ts: 100 °C 

O/Ti > 2  

 

C at.%: ~13 % 

Not reported 

TTIP ↗ → n ↘ 

n500nm=2.38→2.1 for 

pTTIP=0.1→0.25mTor

r 

 

[81] 

Remote MW 

TTIP+O2+H2 

(carrier gas: He) 

PMW: 500W 

ptotal: 0.1 Torr 

Ts: 100-300°C 

Ts ↗ → O-H ↘ 

H2/O2 ↗ → O-H ↘,     

Ti-O-Ti ↘ 

Amorphous 

Ts ↗ → n ↗  

n632.8nm=1.9→2.35 

  

H2/O2 ↗ → n ↘  

n632.8nm=2.18→1.92 

 

[99] 

RF CCP 

TiCl4+O2 

(carrier gas: Ar) 

PRF: 100-300W 

Vb: -60V 

 

Cl at.%: 5.4-7.1% 

Ti at.%: 37.2-30% 

O at.%:  48.5-

61.5% 

 

PRF↗ 

(100→300W): 

O/Ti ↗ (1.3→2.05) 

 

Amorphous 

Annealing(450°C)→amorphous+ 

anatase 

  

PRF↗→ roughness ↗ 

(rms:4.6→11.6 nm)  

Surface granules forming large 

aggregates 

PRF↗ → n↗, 

transmittance ↗ 

n550nm=2.09→2.39 

[80] 

MW ECR 

TiCl4+O2 

PMW: 400 W 

ptotal: 10 mTorr 

Vb: Vf, -41V 

Ts: uncontrolled 

Annealing 

(optional): 600°C 

in N2 

No Cl detected 

Vf: amorphous  

(Vb=-41V): anatase 

(Vf+annealing): anatase+rutile  

 

Roughness:  

1.2 nm (Vf)  

6.5 nm (Vf + annealing) 

7.4 nm (-41V+ annealing) 

Density:  

3.2 g/cm-3 (Vf)  

3.62 g/cm-3 

(Vf+annealing)  

3.85 g/cm-3 (-

41V+annealing)  

 

n632.8nm 

(Vf) 2.25→ 

(+annealing) 2.30  

(-41V) 2.3→ 

(+annealing) 2.48 

[98] 

RF CCP 

TEOT+O2 

TiCl4+O2 

(carrier gas: Ar) 

PRF: 50-300W 

 

TEOT+O2 

C at.%=5.5-11.1% 

O/Ti=2.67-2.27 

PRF↗→↗C at.%, 

↘O/Ti 

 

TiCl4+O2  

Cl at.%=3.3-7.5 

O/Ti=1.39-2.03 

PRF↗→O/Ti ↗ 

TEOT+O2 

Compact, smooth surface free of 

defects 

 

TiCl4+O2  

Smooth at PRF<100W 

Inhomogeneous, globular surface 

at PRF=200-300W 

O2↗ → n↗ 

PRF↗ → n ↗ 

 

TEOT+O2: max 

n550nm=2.25 

TiCl4+O2: max 

n550nm=2.39 

 

 

[79] 
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Deposition 

method and 

growth 

conditions 

Chemical 

composition and 

chemical bonding 

Morphological and structural 

characteristics 

Macroscopic 

properties 

(n, density) 

References 

RF ICP 

TTIP+O2 

PRF: 400W 

ptotal: 3mTorr 

Ts: uncontrolled, 

(<150°C) 

Vb: Vf or 

(-20V)-(-150V) 

O/Ti≈1.9-1.95 

~25% C at.% 

(surface not 

cleaned) 

 

O-H  band, Ti-O 

and “carbonate” 

band 

Vb↗  → roughness ↘; 

from columnar to homogeneous  

At Vb=-50V micropores 

 

Vf : anatase 

Vb=-20V : anatase +rutile 

Vb>|-50V|:  rutile 

n632.8nm=2.25-2.49 

 

Vf to -50V: n↗ 

(2.33→2.49) 

Vb>|-50V|: n↘ 

 

[97] 

 

 Zirconia-silica and titania-silica thin films: literature review  

I.6.1 Zirconia-silica thin films 

“Composite” metal oxide systems are of special interest in developing materials which 

exhibit properties over a considerably wider range in comparison with corresponding single 

components. ZrO2-SiO2 “composite” films have been extensively studied for microelectronic 

use and as protective and chemical resistant coatings [100]–[107]. Zirconia-silica films have 

been considered a promising candidate as gate dielectric material due to higher thermal 

stability, wider band gap, and better interface properties compared to metal oxides [101], 

[102], [104], [108], [109]. It has been reported that the relative permittivity and the band gap 

energy can be easily controlled by the zirconium content in the “composite” films [100]. 

Zr-Si oxide thin films have been synthesized by different deposition methods such as 

sputtering [62], [110], [111], sol-gel [105], [112], conventional CVD [103], [113]–[115], and 

PECVD [108]. Most studies are focused on the electrical properties of the “composite” films 

[104], [112], [113], [116], [117]. Studies reporting on physico-chemical and structural 

characteristics are less abundant. Several of the latter are summarized in Table I-5. 

Uniform and smooth morphological aspect of “composite” films has been reported in the 

reviewed literature. These films exhibit essentially amorphous structuration. Small fractions 

of monoclinic and cubic phases have been detected in films with low Si atomic content [62], 

[110].  

The films are highly transparent in the visible range. ZrO2-SiO2 films display lower 

transmittance than ZrO2 films and higher than SiO2 [62]. Increase of Si incorporation in the 

films results in a decrease of the refractive index. By modifying chemical composition, 

refractive index can be varied over wide range (~1.4-2.1). 
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In MOCVD and sputtering deposition processes, an increase of substrate temperature 

induced a decrease of Si atomic content in the films [62], [102], [115]. Investigations of FTIR 

spectra have confirmed the appearance of Zr-O and Si-O bonds in the films. Formation of Zr-

Si bond has not been observed. Several groups have assigned the peak at 990 cm-1 to Zr-O-Si 

bonding structure [100], [105], [108]. 

 

Table I-5: Characteristics of ZrSiO4-like thin films obtained by different processes: literature review. 

Deposition method   

and growth conditions 

Chemical composition 

and chemical bonding 

Morphological and 

structural 

characteristics 

Macroscopic 

properties 

(n, density) 

References 

RF CCP 

Zr(OC3H7)(C11H19O2)3 

+TEOS+O2 

(carrier gas: Ar) 

ptotal: 40-65 Pa 

Ts: 400 °C 

Si-O, Zr-O 

Zr-O-Si 

No silicide bond 

 

Ar (Zr precursor) ↗: 
ZrSi5.7O12.9→ZrSi0.6O3.2 

Amorphous Not reported 
[100], 

[108] 

RF magnetron 

sputtering 

Target: ZrO2-SiO2 

PRF: 50-150W 

Ts: 200-500°C 

ptotal=0.65 Pa 

Ts ↗: decrease in Zr/Zr+Si 

molar ratio 

Smooth microstructure 

Essentially amorphous 

Target 90%ZrO2-

10%SiO2: display of 

monoclinic structure 

↗ SiO2 → n ↘  

n(ZrO2)=2.15, 

n(SiO2)=1.46  

Highly 

transparent in the 

visible range  

Transmittance:  

(SiO2)>(ZrO2-

SiO2)>(ZrO2) 

[62] 

Reactive DC 

magnetron sputtering 

Targets: Zr; As-doped Si 

single crystal 

Sputter gas: O2+Ar 

ptotal: 5-7 mTorr 

Not reported 

≤10% SiO2: 

amorphous+small 

amount of cubic 

zirconia 

≥10% SiO2: 

amorphous 

 

deposition rate ↗:   
density ↗ 
(3.5→3.85 g/cm3 

for 50%ZrO2-

50%SiO2) 

 

%SiO2 ↗ → n ↘ 

10%SiO2: 

n600nm=1.95  

50%SiO2: 

n600nm=1.65  

[110] 

Sol-gel 

Trimethoxysilane 

Zr propoxide 

Zr-O, Si-O  

Si-O-Zr at 990cm-1 

Si-O-Si, Si-C, C-H 

O-H (absorbed water) 

Uniform and smooth 

surface+shallow cracks 

or busted bubble-like 

microstructures 

Optically 

transparent 

 

[105] 

MOCVD 

Precursor A: ZrIV(acac)2-

(OSiMe3)2 

Precursor B: ZrIV(acac)2-

(OSitBuMe2)2 

Ar/O2 atmosphere ptotal: 

2.5 mbar 

Ts: 400-600°C 

C at.%: 

A(Ts=500°C): 10%  

B(Ts=450°C): 2%  

 

Ts ↗:  

Si at.% ↗, C at.% ↘, 

Carbon free films at 

Ts>550°C 

Zr0.95Si0.05O2→ 

Zr0.75Si0.25O2 

Not reported 

n633nm=1.8-1.9 

Annealing in O2 

at 900°C for 10s:  

n ↗ (n633nm=2.36) 

[102], 

[115] 
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Deposition method   

and growth conditions 

Chemical composition 

and chemical bonding 

Morphological and 

structural 

characteristics 

Macroscopic 

properties 

(n, density) 

References 

PVD 

Sputtering 

E-beam evaporation 

Ts: 25-600°C 

From Zr2Si32O66 to 

Zr27Si15O58 (highest Zr 

at.% with e-beam) 

No evidence of Zr-Si bond 

formation 

Homogeneous in-depth 

composition 

Amorphous 

Uniform morphology 
Not reported [111] 

 

I.6.2 Titania-silica thin films 

Titania-silica thin films (TiO2/SiO2) have been investigated as candidates for use in optical 

and electronic devices, such as waveguides in bio-sensing, optical fibres, and photonic 

crystals [118]–[122] . Objectives of these studies involved accurately controlling refractive 

index or dielectric constant of “composite” films. These properties have been tailored by 

varying film composition. By “mixing” the silica and titania material, it is expected to obtain 

a wide range of refractive indices: from ~1.45 (SiO2 bulk) to ~2.55 (TiO2 bulk) at visible and 

near-infrared wavelengths. 

Ti-Si oxide films have been fabricated using a variety of techniques including sputtering 

[123]–[126], sol-gel [119], [120], [127]–[129], and different types of CVD [130]–[133] 

process. Table I-6 presents characteristics of Ti-Si oxide thin films synthesized by different 

techniques. Composition and structure of “composite” films are dependent on the deposition 

process parameters. In CVD processes (MOCVD, ALD, PECVD, IBICVD), TTIP and TiCl4 

are most frequently used as precursors for Ti deposition. Organosilicon molecules (TEOS, 

HMDSO), as well as silicon chloride (SiCl4) compounds have been employed as precursors 

for Si deposition. 

 It has been shown that small addition of SiO2 to TiO2 can transform morphology from 

columnar to uniform in PVD and PECVD process [13], [123]. The “composite” films are 

mainly amorphous. When crystalline phase of TiO2 is detected, its presence decreases with 

increase of Si at.% in the films [130]. Crystallisation of the films can be slightly enhanced by 

post-deposition annealing [122].  

Refractive indices of the films, measured at λ=550nm, were found in the 1.45-2.44 range. 

Specifically, films obtained by PECVD exhibited n550nm values from 1.45-2.39. In the 

reviewed literature, refractive index has decreased as the Si/Ti atomic ratio in the films 

increased.  
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Table I-6: Characteristics of titania-silica thin films obtained by different processes: literature review. 

Deposition method 

and growth 

conditions 

Chemical 

composition and 

chemical bonding 

Morphological and 

structural characteristics 

Macroscopic 

properties 

(n, density) 

References 

PEALD 

Cycles: 

TTIP+O2+Ar 

TEOS+O2+Ar 

Ts: 250 °C 

Homogeneous in depth 

composition 

From TiSiO3.2 to 

TiSi0.3O2.5 

Not reported 

↗ Ti at.% 

(19.1→26.3): 

n ↗ 

(n550nm=1.93→2.21) 

[134] 

 

RF ICP 

TTIP 

+O2+HMDSO 

HMDSO: 0.2-2.0% 

PRF: 400W 

ptotal: ~3mTorr 

Ts: uncontrolled 

(<150°C) 

HMDSO ↗ : 

(Vf) TiSi0.9O4.0C1.6 → 

TiSi9.4O21.1C4.8 

(Vb=-50V): 

TiSi0.2O2.7C1.0 

→ TiSi5.0O12.3C3.2 

(surface not cleaned) 

 

Si-O-Si, Si-O-Ti, Ti-O, 

Si-O, O-H 

(Vf) Amorphous 

Columnar morphology 

disappears at 0.2% HMDSO  

HMDSO ↗ → roughness ↘ 

 (rms=1.59-0.48nm) 

 

(Vb=-50V) Uniform  

<0.5%HMDSO: rutile 

>0.5%HMDSO: amorphous 

↗HMDSO → n↘ 

(Vf) 

n632.8nm=1.95→1.50 

 

(Vb=-50V) 

n632.8nm=2.24→1.58 

[13] 

Aerosol Assisted 

CVD 

Mixed 

solution of 

TEOS+TTIP 

(carrier gas: N2) 

Ts: 400 °C 

Annealed at 950°C 

TiO2/SiO2:  

0.92/0.08 → 0.81/0.19 

SiO2 content ↗ : 

from anatase+amorphous to 

amorphous  

 

n550nm=~2.44-2.38 

Content of SiO2>16 

mol.%:  

n decreases 

[130] 

RF PECVD 

TiCl4+SiCl4+ 

O2+Ar 

ptotal: 25-50 mTorr 

TiCl4 ↗:  

Si–O–Ti ↗ 

Ti3.1Si29.1O66.6Cl1.2→ 

Ti30.4Si0.8O68.1Cl0.7 

Annealing at 400 °C: 

amorphous+polycrystalline 

(anatase and rutile) 

Ti/(Si+Ti) ↗:  

n ↗ 

(n550nm=1.58→2.39) 

[122] 

IBICVD: 

TiCl4+ 

(C2H5O)3SiH 

O2
+ ions (400 eV) 

ptotal:~0.07-0.08 Pa 

Ti-O-Si at 940 cm-1 

Amorphous 

Compact and homogeneous 

morphology 

Si/Ti ↗:  

density ↘ 

(3.42→2.57 g/cm3) 

n↘ 

(n550nm=1.47→2.3)  

[132] 

MW ECR 

TTIP+Si(CH3)3Cl 

(carrier gas: O2) 

PMW: 400W 

ptotal: 0.65 Pa 

Ti-O-Si at 940 cm-1 

Amorphous 

Columnar at high Ti content 

in the films 

Si/Ti ↗:  

density ↘ 

(2.30→1.93 g/cm3) 

n↘ 

(n550nm=1.45→2.1) 

[132] 

Reactive 

co-sputtering 

Targets of Si and Ti; 

O2 atmosphere 

Homogenous in-depth 

composition  

SiO2% ↗ (5→58%) 

Amorphous 

SiO2% ↗ (5→58%): 

n↘ (n600nm = 

2.39→1.77) 

 

[123] 

 

 Research objective and strategy 

In the first part of this chapter, we have revised notions prerequisite for the study presented 

in the following chapters: the fundamental principles of thin film formation, plasma phase 

characteristics and the PECVD process. In the second part, we have reviewed the reported 
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research on zirconium oxide, titanium oxide and “composite” metal/silicon oxide thin films 

deposited by different processes.  

Literature review on zirconium and titanium oxide films obtained by PECVD has shown 

that film characteristics are strongly influenced by process parameters such as substrate 

temperature and substrate polarisation. Columnar growth has been observed in both types of 

films synthesised in oxygen-rich plasma gas mixtures. The films are predominantly 

amorphous with, in some experiments, a low fraction of polycrystalline phase present in the 

films. 

Lastly, we have summarised several studies that had examined “composite” zirconia-silica 

and titania-silica thin films. The morphological features, density and refractive index, can be 

controlled by the atomic ratio of silicon to metal. “Composite” films exhibit characteristics 

over a significantly wider range in comparison with corresponding silicon oxide and metal 

oxide films. 

Studies reported in the literature predominantly focus on final characteristics and 

macroscopic properties of zirconium and titanium oxide thin films synthesized in different 

experimental conditions. The applicative objective of thin film science is the control of film 

growth and development of materials with desired properties. For successfully achieving that 

objective, it is necessary to understand fundamental mechanisms, which govern the deposition 

process. 

 In PECVD, process parameters influence behaviour of the plasma phase, as well as surface 

conditions (e.g. substrate temperature). Species created in plasma arrive at the surface where 

they participate in surface reactions and thin film growth.  Therefore, by modifying external 

process parameters, we are able to control characteristics of deposited thin films (Figure I-7).  

 

Figure I-7: Schematic presentation of relationship between different phases of PECVD process. 

 

Metalorganic precursors are frequently employed for deposition of metal-oxide films in 

conventional CVD and in PECVD processes. In this work, we provide a comparative study of 

thin films deposited by PECVD from two different metalorganic precursors: ZTB and TTIP, 

with the objective of identifying behaviours characteristic of metalorganic PECVD in general. 
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We have chosen to study the influence of two process parameters: 

➢ oxygen gas fraction of precursor/O2 gas mixture, and 

➢ total gas pressure. 

At LAPLACE, influence of O2 percentage of ZTB/O2 gas mixture on thin film characteristics 

has been studied in MW multipolar plasma excited by distributed ECR [11][12]. These 

previous studies are used as a control for verifying our results, since we are introducing a 

metalorganic precursor for the first time in a differently configurated reactor at LAPLACE: a 

semi-industrial multi-dipolar ECR reactor. Additionally, we expanded the study to another 

metalorganic precursor, TTIP. To the best of our knowledge, there is a lack of systematic 

studies of the evolution of film properties as O2 gas is added to TTIP/O2 gas mixture. 

The effect of total gas pressure, the second process parameter chosen in this work, is rarely 

studied. To the best of our knowledge, the evolution of film properties as a function of 

pressure in ECR plasma has not been investigated. At high O2 fraction in the gas mixture, 

deposited films are almost inorganic, although the deposition rate is very low. It is possible 

that increasing pressure increases the deposition rate while still preserving desirable film 

properties such as high refractive index. This would certainly be of interest from an industrial 

point of view. 

 Additionally, we have investigated the feasibility of depositing “composite” metal/silicon 

oxide thin films with homogeneous composition.  It has been reported that low fraction of 

HMDSO in TTIP/O2 plasma compromises film columnar morphology [13]. In this work, we 

have examined the influence of HMDSO addition to metalorganic/O2 gas mixture on physico-

chemical and morphological film characteristics. At LAPLACE, it is the first time that the 

combination of two precursors, organosilicon and metalorganic, has been used in an ECR 

reactor. 

To understand the thin film growth, it is essential to identify plasma composition. Due to 

technical conditions, we were unable to perform an extensive study of the plasma chemistry. 

Nevertheless, in this thesis, we provide hypothesis about the evolution of the plasma phase 

and surface mechanisms as process parameters are varied. These hypotheses have been 

developed on the basis of observed modifications in film characteristics coupled with 

previously studied ZTB plasma phase [12] and theoretical Monte Carlo simulations [135].   
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Introduction 

The objective of this chapter is to present the various experimental devices used for the 

realization and characterization of the thin films studied in this thesis. First, we introduce the 

ECR principle and the main characteristics of the type of plasma employed in the deposition 

process. Secondly, we proceed with describing different systems that compose the multi-

dipolar ECR deposition reactor. Afterwards, we present the various characterization tools used 

to probe the plasma phase and to identify the chemical composition of the films, their physical 

characteristics (morphology and topography) as well as other properties. The last part of the 

chapter focuses on the specific precursors used in this work: metalorganic (zirconium tetra 

tert-butoxide – ZTB, titanium tetra isopropoxide – TTIP) and organosilicon 

(hexamethyldisiloxane - HMDSO) precursors are introduced. 

 

 Multi-dipolar electron cyclotron resonance plasma 

II.1.1 Electron cyclotron resonance phenomenon 

The deposition reactor used in this work takes advantage of the phenomenon of Electron 

Cyclotron Resonance (ECR) to accelerate the electrons and generate plasma [136]–[138]. 

ECR principle is based on the superposition of mutually perpendicular static magnetic field 

and an electric field of an incident electromagnetic wave.  

 
Figure II-1: Schematic representation of ECR principle: electron gyration trajectory  

around the lines of a static magnetic field. 

 

Resonance is achieved when the frequency of the incident electromagnetic wave f equals 

the electron gyration frequency fce in the static magnetic field of strength B: 

: 
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𝑓𝑐𝑒 = 𝑓 =  
1

2𝜋

𝑒

𝑚𝑒
𝐵 Equation II-1 

where e is the electron charge and me electron mass. In our experimental setup, the frequency 

of the applied electromagnetic wave is 2.45 GHz. The Equation II-1 is satisfied in the region 

where the magnetic field B equals 875 Gauss. In that particular region, called the ECR zone, 

electrons "see" a continuous electric field and are thus continuously accelerated. This is the 

way the electrons acquire energy. They are then confined by the magnetic mirror effect and 

their energies allow them to collide with the precursor molecules injected into the reactor and 

cause the dissociation of atomic bonds. The new species, originating from the dissociation 

process, diffuse towards the centre and the walls of the reactor to react with surfaces and 

achieve (according to their nature) deposition, etching or functionalization. 

Plasma generated with ECR phenomenon is characterised by:  

➢ very low working pressure: from ~0.1 mTorr to ~10 mTorr, and  

➢ high electron density: up to 1012 cm-3, [136], [138], [139].  

This type of plasma creation mechanism allows independently controlling the plasma 

generation process and the energy of the ions impinging on the treated surfaces. Certain 

conditions, very low ionic bombardment, enable treatment of thermo-sensitive materials such 

as polymers [140], [141]. 

II.1.2 Multi-dipolar ECR plasma source 

In this work, a multi-dipolar configuration was used to generate an ECR plasma [142]–

[144]. Figure II-2 shows a photograph of an elementary dipolar plasma source with identified 

principle elements. This type of source was developed by HEF (Hydromécanique Et 

Frottements) R&D Industrial Group. Each source is composed of a permanent Sm2Co17 

magnet with an azimuthal symmetry around its magnetization axis, a coaxial line which 

serves as a microwave applicator and an impedance matching system.                

   
 

Figure II-2: Photograph of an elementary dipolar ECR plasma source. 
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The elementary sources can be organized in different configurations: in two- or three-

dimensional networks, arrangements with alternate or identical magnetic polarities, 

rectangular or hexagonal networks and other. In the deposition reactor employed in our work, 

12 elementary sources are organized in a 2D planar network with alternate magnetic polarities 

(see Figure II-3).  
  

 

Figure II-3: Photographs of: 12 multi-dipolar magnets positioned at the top of the plasma chamber (left); 

magnets in argon plasma (pAr=1 mTorr, PMW=800 W) (right). 

  

Figure II-4 presents a magnetic field configuration of an individual elementary source. In 

multi-dipolar ECR plasmas the energetic electrons are trapped close to the multipolar 

magnetic field structure, i.e. the ECR zone, while the “cold” ones diffuse away from the 

plasma production region under the influence of density gradients and the resulting space 

charge electric field [145].  

  
Figure II-4: Configuration of a magnetic field produced by a cylindrical magnet with axial magnetization: 

amplitude lines of a constant magnetic field (right); magnetic field lines (left) [146].  

 

Bechu et al. [147] have measured the variation of electron temperature Te and electron 

density Ne in H2 plasma as a function of the radial distance from an elementary dipolar source 

axis (in the mid plane) (Figure II-5). When approaching the source axis, the plasma density 
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increases up to 0.89∙1010 cm-3 at the closest position (40 mm from the magnet surface). At this 

point the relative density of cold/hot electrons equals 0.83/0.16 while at the point ~10 cm 

farther it increases to 0.92/0.04.  The effective Te varies from 0.7 eV to 2.8 eV when 

approaching the source axis. 

 

 

Figure II-5: Radial variations, in the mid plane, of relative density (left) and electron temperature (right) of 

“hot” (triangles) and “cold” (circles) electrons. Experimental conditions: H2 plasma, p = 0.72 Pa,                 

PMW = 200 W applied to a single source [147]. 

 

Figure II-6 shows measurements of the plasma parameters characteristic to the deposition 

reactor used in this work. The measurements are presented as a function of distance from the 

centre of the plasma chamber towards the chamber wall.  

 

 

Figure II-6: Evolution of plasma parameters Te and Ne as a function of distance from the centre of the deposition 

reactor Pixcell for different power values (12 elementary sources; Ar gas; pAr=3 mTorr). 

 

Two generations of elementary sources have been used in this reactor. Measurements 

presented in Figure II-6 correspond to plasma created by dipolar sources of the 1st generation, 

whereas sources of the 2nd generation were used in this work. These two generations of 

sources differ only in the construction of the cooling system, thus, there should not exist a 
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significant difference in plasma parameters between them. The measurements were performed 

in Ar plasma for different values of microwave power, at 3 mTorr, ~10 cm below the source. 

The electron temperature equals ~2-2.5 eV and it is relatively constant over the radial distance 

from the centre of the reactor. Electron density, as expected due to the sheath formation, 

decreases in the vicinity of the reactor wall and is of the order of 1010 cm-3.  

In this work, we have studied the influence of total gas pressure on thin film characteristics 

(Chapter IV). Therefore, it is of interest to understand how plasma parameters change with the 

increase in gas pressure. Bechu et al. [148] have observed the variation of plasma parameters 

as a function of argon gas pressure (up to 5 mTorr) in the multi-dipolar plasma reactor (Figure 

II-7). The elementary plasma sources (each supplied with 100 W of MW power) were 

positioned in two rings at the periphery of a cylindrical reactor. The parameters were 

measured at the centre of the reactor (45 cm diameter). Although the geometry of the reactor 

in question differs from ours (3D network vs 2D planar network) and the absolute values of 

the characteristic parameters may be different, we expect that the evolution of the plasma 

parameters with pressure is similar in both reactors. Up to 1 mTorr, the electron temperature 

Te increases significantly, whereas it is nearly constant (~2.5 eV) at higher pressures. Plasma 

density increases with Ar gas pressure up to ~5∙1011 cm-3. 

 

 
Figure II-7: Plasma potential, floating potential and Te (a), and plasma density (b) as a function of Ar pressure 

(cylindrical reactor, 20 elementary plasma sources, 100 W per source) (adapted from [148]).  

 

 Plasma reactor “Pixcell” 

Reactor used for thin film deposition allows generating plasma excited by the phenomenon 

of Electron Cyclotron Resonance (ECR). The main chamber of the reactor consists of a 

stainless-steel cylinder of 318 mm in inner diameter and 480 mm in height. Figure II-8 

presents a 3D image of the plasma reactor setup.  
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Microwave signal is produced by a Metal Process generator (MAGNETRON SUPPLY 

2kW) delivering a maximum power of 2000 W. Twelve elementary dipolar sources (Figure 

II-2, p.36) are positioned at the top of the metallic cylinder composing the enclosure. The 

power is equally distributed between 12 coaxial cables by a power distributor. To optimise the 

power transfer, it is possible to manually adjust the impedance matching system for each 

elementary source independently. The applied microwave power generates a temperature rise 

in the antennas and the reactor walls. To limit this phenomenon and to prevent overheating, a 

cooling fluid is circulating in the interior of the elementary plasma sources.  

 

 
Figure II-8: 3D representation of the reactor Pixcell. 

 

II.2.1 Airlock 

Presence of an airlock resolves one of the major technological barriers. It allows the 

transfer of the samples under vacuum and thus renders unnecessary to equalize the reactor 

pressure to atmospheric pressure when loading or removing the samples. The enclosure of the 

reactor is therefore protected from frequent pollution. The primary vacuum (p≈10-3 Torr) in 

the airlock is achieved by means of a two-stage rotary vane pump. The airlock is separated 

from the enclosure by a gate valve which can be opened when the pressure balance between 

the reactor and the airlock is satisfactory. The stainless-steel loading arm allows the transfer of 

flat samples having up to 200 mm in diameter. The airlock has been designed in such a way 

that it is possible to introduce 3D samples into the reactor. 
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Figure II-9: Photograph of the reactor “Pixcell”. 

 

II.2.2 Pumping system  

Vacuum in the reactor is assured by a pumping unit consisting of a rotary vane pump, type 

Alcatel 20 63 SD (60 m3/h), and a turbomolecular maglev pump type Adixen ATH 1600M 

(1400 l/s) with a constant rotation frequency of 650 Hz. Since the reactor operates at pressures 

in the ~0.1-10 mTorr range, the pumping unit is employed to achieve high vacuum level in the 

plasma enclosure: of the order of ~10-6-10-7 Torr.  

It is possible to control the pumping rate by varying the opening of the butterfly valve 

placed upstream of the turbomolecular pump. This is important in our study because it is 

difficult to vary the pressure of ZTB and TTIP gas over a wide pressure range due to their low 

vapour pressures. We defined a specific valve opening to achieve a wider range of precursor 

gas pressure: at 15% of valve opened we were able to control and stabilize precursor gas 

pressure on a much broader range, from 0.02 to ~2 mTorr. 

 

1 - Reactor chamber 

2 - Elementary dipolar plasma sources 

3 - MW power distributor 

4 - Turbomolecular pump 

5 - Capacitive gauge 

 

6 - Airlock 

7 - Injection system of metalorganic 

precursors (LVD 200) 

8 - Injection system of organosilicon 

precursors 
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II.2.3 Pressure measurements 

Two gauges allow measuring the pressure in the deposition chamber. A dual Cold 

cathode/Pirani gauge, model ACC 2009 (Alcatel), measures the pressure in the range from 

760 Torr to 3.8∙10-9 Torr: 

➢ Pirani gauge, which works on the principle of thermal manometers, ensures the pressure 

measurement for pressures from 760 Torr to 10-3 Torr, 

➢ cold cathode gauge, which works on the principle of ionization, measures pressures 

lower than 10-3 Torr.  

Baratron MKS 627 vacuum gauge, a capacitance manometer thermostated at 45° C, is the 

gauge employed to control the injected gas pressure and the total working pressure during the 

plasma deposition process. The pressure measurement range spreads from 0.01 mTorr to 1 

Torr. The gauge works on the principle of mechanical gauges with an Inconel® membrane. 

The advantage of this type of gauge is that the measurement is independent of the type of gas 

used. 

II.2.4 Gas injection systems 

Precursor compounds used in this work are in liquid phase at standard ambient temperature 

and pressure. From a practical point of view, PECVD requires injecting the precursor in gas 

phase into the reactor. Thus, the vapour pressure of the precursor is of utmost importance. The 

higher the vapour pressure, the easier it is to inject and regulate the compound. Vapour 

pressure of metalorganic molecules is very weak. Nevertheless, when heating the reservoir 

and the injection lines, it is possible to inject it at pressures sufficiently high to achieve 

PECVD. 

 

II.2.4.1 ˝Conventional˝ gasses 

For the "conventional gases", the ones in the gaseous state at the standard conditions of 

use, such as oxygen (O2) and argon (Ar), the injection is achieved through two oppositely 

placed entry points in the top part of the enclosure. A mass flow meter is placed on each gas 

line in order to regulate the injected flow rates.  
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II.2.4.2 Metalorganic and organosilicon precursors 

Precursor injection systems must be designed to control the flows injected in the reactor. 

These systems must be adapted to the physical and chemical properties of every precursor. 

The organosilicon precursor hexamethyldisiloxane (HMDSO) is liquid at ambient pressure 

and temperature and it has a fairly high vapour pressure (Figure II-10), thus it is stored in a 

glass flask at room temperature. The adjoining circuit is heated at 40°C by means of a rheostat 

fed by a heating wire to prevent condensation in the circuit and stabilize the injection. Flow 

control is done through a millimetre needle valve between the HMDSO containing tank and 

the reactor. In practice, the flow control is done by measuring pressure in the reactor (at 

constant pumping speed a constant pressure corresponds to a constant flow). This type of 

injection allows stabilizing HMDSO vapour pressure ranging from 0.01 mTorr to 10 mTorr. 

The HMDSO is injected into the reactor through two oppositely placed points few cm above 

the substrate holder (Figure II-14).  

  

 
Figure II-10: Vapour pressure as a function of temperature for: H2O, HMDSO, ZTB and TTIP [12]. 

 

Injection systems of metalorganic precursors differ from HMDSO injection system. 

Zirconium tetra tert-butoxide (ZTB) and titanium tetra isopropoxide (TTIP) are also 

liquid at atmospheric pressure and room temperature but have a much lower vapour pressure 

(Figure II-10). It was, therefore, necessary to design a specific injection system, based on the 

same principles as the injection system of HMDSO but with a few key differences. The 

injection line needed to be shorter in order to have the least possible loss of load, and the 

system needed to be heated to obtain a sufficiently high precursor vapour pressure in the 

deposition chamber. To inject ZTB, we have used a Low Vapour Delivery (LVD 200) system 

constructed specifically for precursors with low vapour pressure (Figure II-11). This injection 
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system was developed in collaboration between laboratory LAPLACE and OMICRON 

Technologies (France). The apparatus is composed entirely of metal elements (tank, seals, and 

valves) to make the system as isolated as possible. LVD system can sustain temperatures up to 

150°C.  

 

 

Figure II-11: Images of the LVD 200 injection system. 

 

The working principle is based on the pressure regulation of the gas flowing through an 

orifice placed in such a way as to create the desired pressure drop over the line and thus 

allowing the control of the flow rates. Figure II-12 shows the schematic representation of the 

LVD system. The pressure measurement is achieved by a capacitive gauge which controls the 

opening of a valve (VR1) allowing the pressure regulation of the gas flowing through the 

orifice (OR1) and creating the desired pressure drop.  

 

 

Figure II-12: Schematic representation of the LVD 200 injection system. 
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Thermal isolation of the setup is crucial to avoid the condensation of the precursor at 

possible cold points. Likewise, heating of the system is necessary to achieve stable injection 

and ZTB gas pressure regulation. The container temperature was set at 90 °C and the 

temperature of the line between 110 and 140 °C.  

High performance of the LVD system is unquestionable; however, it is still a very sensitive 

system. During this work, at the end of the ZTB study campaign, a faulty regulating valve 

caused a leak that rendered the system inoperative. A chemical reaction between ZTB and air 

had resulted in zirconia powder creation inside the LVD system.  

We have constructed another injection system by using operational parts of the LVD 

system (Figure II-13) to be able to proceed with our work and the study of TTIP PECVD. 

TTIP was stored in a metallic container heated at 90 °C and connected to the reactor by a line 

composed of two parts: a short metallic tube heated at 95 °C and a double walled curved tube 

heated at 100 °C. The flow control is done through a millimetre needle valve located between 

the container and the reactor. The injection is monitored by measuring the TTIP gas pressure 

in the reactor. This system allows stable TTIP injection in the 0.3-1.5 mTorr pressure range for 

the chosen pumping parameters (butterfly valve opened at 15 %).  

 

 

Figure II-13: Photograph of the manual precursor injection system. 

II.2.5 Substrate holder 

A transfer system equipped with an airlock allows transferring samples towards the 

substrate-holder in the plasma chamber. The substrate holder is a cylindrical stainless-steel 

plate whose axis coincides with that of the enclosure. The vertical position of the substrate 

holder can be controlled by an electrical motor. Important to note is that the position of the 

substrate-holder has a significant influence on the deposition rate and on the homogeneity of 
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the deposited films. Distances between different gas injection points and the substrate holder 

are shown in Figure II-14. Positioning of precursor gas injection followed existing technical 

restrictions. 

 
Figure II-14: Positions of gas injection points and the substrate holder during deposition process. 

 

Substrate holder is electrically isolated from the rest of the machine. Therefore, it remains 

at floating potential (Vf) during the discharge. However, the holder can be connected to an RF 

generator operating at 13.56 MHz via an impedance matching system. The matching box, 

constituted of two manually adjustable capacities and a build-up coil, serves to adapt the 

output impedance of RF generator to the impedance of the plasma, and thus minimize the 

power reflected in the direction of the generator. By polarizing the substrate holder, we can 

control the energy of charged species impinging on the substrate and the film.  

The temperature of the substrate-holder can be regulated by heating or cooling the fluid, 

which circulates in the interior cooling system. 

 

 Experimental protocols 

Thin films were deposited on silicon (Si) substrates provided by Sil'tronix Silicon 

Technologies (see Table II-1 for detailed information). This type of substrate allowed 

analysing the deposited films with the chosen experimental techniques described in paragraph 

II.5. The original wafers were cleaved by a micro-cutting machine or manually, with a 

diamond cutter, into smaller pieces (minimal dimensions: min. length x min. width = 10 mm x 

10 mm). 
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Table II-1: Information on the type of substrate used in this work. 

Substrate Silicon wafer 

Type and doping Intrinsic 

Orientation (100) ± 0.5° 

Thickness 525 ± 25 µm 

Surface Double Side Polished 

Resistivity > 200 ohm·cm 

 

Ahead of every deposition, the substrates were cleaned by employing the procedure 

presented in Figure II-15. The main objective of the cleaning procedure was to remove all 

organic residue from the substrate surface. Acetone is successful in removing organic 

pollutants and dissolving oils; however, it evaporates quickly leaving its own residue. Thus, a 

two-solvent method is used: after acetone rinse, substrate is rinsed with ethanol to remove 

acetone with its contaminants. Additionally, substrates were shortly immersed in diluted 

hydrofluoric acid (HF) which removes native silicon dioxide layer (typically ~20 Å thick) 

from the silicon substrate surface. 

 

 

Figure II-15: Steps of the silicon substrate cleaning procedure. 

 

The deposition protocol is presented in Figure II-16. It is important to note that the 

subsequent order of precursor and oxygen gas injection was consistently followed:  

1. metalorganic precursor, 

2. organosilicon precursor (if injected), 

3. oxygen gas (if injected). 

Rinse with acetone ((CH
3
)

2
CO) 

Rinse with ethanol (C
2
H

5
OH) 

Rinse with deionized (DI) water 

Immerse in 2% HF solution (time: 30 sec) 

Rinse in DI water (time: 3 min) 

Blow dry with dry air 

Substrate cleaning procedure 
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Figure II-16: Deposition protocol. 

 

 Precursor molecules 

In this section we present different precursor molecules used in our study: 

➢ two metalorganic compounds 

o Zirconium Tetra tert-Butoxide (ZTB), 

o Titanium tetra isopropoxide (TTIP), and 

➢ an organosilicon compound 

o Hexamethyldisiloxane (HMDSO). 

All precursors have been supplied by Sigma Aldrich. 
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II.4.1 Zirconium Tetra tert-Butoxide 

Zirconium Tetra tert-Butoxide (ZTB, ZrO4C16H36), developed by Bradley et al. [149] in the 

40's, is a complex metal-organic molecule (see Figure II-17). It is a part of the family of metal 

alkoxides whose structural formula is: 

[𝑀(𝑂𝑅)𝑥]𝑛 Equation II-2 

where M is the metal atom of valency x, R is an alkyl group, and n is the degree of 

polymerization.  

 

 
Figure II-17: Different representations of ZTB molecular structure: 2D; 3D molecule geometry optimized by 

DFT calculations (Gaussian 09) and visualized by GaussView 5. 

 

From the ‘60s, ZTB has been used in the synthesis of zirconium oxide coatings. Compared 

to other zirconium compounds, ZTB’s strengths lie in its higher volatility, low toxicity to 

humans and the environment and relatively low price. Although ZTB is the most volatile 

molecule among zirconium compounds its vapour pressure is not nearly as high as that of 

organosilicon molecules (see Figure II-10). ZTB is highly sensitive to light, air and humidity. 

Figure II-18 shows theoretically and experimentally obtained infrared spectra of ZTB. The 

theoretical spectrum, corresponding to vibrations of the ZTB molecule, has been acquired by 

DFT calculations. The experimental spectrum was obtained by FTIR of gas phase ZTB at 
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very low pressure (~4mTorr) in the framework of Mr R. Verhoef’s thesis [12]. The 

identification of the peaks present in the IR spectrum of the ZTB molecule will aid in analysis 

of IR spectra characteristic to thin films deposited in ZTB plasma.  

We have used a combination of literature search [11], [12], [150] and visualisation of 

calculated frequencies in GaussView graphical interface to assign the peaks. Peak wavelength 

values and corresponding assignations are presented in Annex of this work. When comparing 

the two spectra, theoretical and experimental, differences in peak wavenumbers can be 

observed. These shifts are due to approximations employed in DFT calculations: anharmonic 

energy potential is replaced by a harmonic potential. Additionally, the scaling factor applied to 

the calculated wavenumbers is experimentally determined for different molecules and thus it 

is not specific to the ZTB molecule. Therefore, we can observe slight shifts between the 

experimentally and theoretically obtained IR wavenumbers even after applying the scaling 

factor.  

 
Figure II-18: Comparison of experimental [12]  and calculated IR spectra of ZTB molecule. 

 

II.4.2 Titanium Tetra Isopropoxide 

Titanium tetra isopropoxide (TTIP, TiO4C12H28) is a complex metalorganic molecule 

(Figure II-19) with a structure similar to ZTB’s structure. Both ZTB and TTIP are composed 

of a central transition metal atom: zirconium ( 𝑍𝑟91
40 ) and titanium ( 𝑇𝑖48

22 ), respectively. The 

central atom is surrounded with four oxygen atoms that are each bonded to three hydrocarbon 

chains: C4H9 in ZTB and C3H7 in TTIP. TTIP’s advantages are its volatility, low toxicity and 

low financial cost. 
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Figure II-19: Different representations of TTIP molecular structure: 2D; 3D molecule geometry optimized by 

DFT calculations (Gaussian 09) and visualized by GaussView 5. 

 

An IR spectrum corresponding to TTIP molecule has been calculated by DFT and 

presented in Figure II-20. The peaks were assigned by visualizing calculated frequencies and 

reviewing the literature [151]. For peak wavelength values and corresponding assignations see 

Annex of this work. 

 
Figure II-20: IR spectrum of TTIP molecule calculated by DFT. 
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II.4.3 Hexamethyldisiloxane 

The development of thin layers produced by PECVD from organosilicon precursors has 

been extensively studied for more than thirty years. Hexamethyldisiloxane (HMDSO, 

OSi2C6H18) is the most frequently used organosilicon precursor in PECVD of SiOxCyHz 

coatings [10], [152]–[154]. Its molecular structure is presented in Figure II-21. HMDSO is 

liquid at ambient temperature and pressure and it is neither toxic nor explosive. Its favourable 

characteristics include stability, high volatility and low financial cost. 

 

Figure II-21: Different representations of HMDSO molecular structure: 2D; 3D molecule geometry optimized by 

DFT calculations (Gaussian 09) and visualized by GaussView 5. 

 

 
Figure II-22: Comparison of calculated and experimental [10] IR spectra of HMDSO molecule including 

assignment of the peaks based on DFT and literature [10], [155] . 
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In Figure II-22 IR spectrum of gas phase HMDSO measured by FTIR [10] and IR 

spectrum of HMDSO molecule calculated by DFT are compared. Peak wavelengths and 

corresponding assignations are summarised in Annex of this work. 

 

 Characterization techniques  

Numerous experimental and theoretical techniques allow analysis of thin solid films and 

characterisation of plasma phase. Diagnostic techniques used in this study are Optical 

Emission Spectroscopy (OES), Mechanical Profilometry, Fourier Transform Infrared 

Spectrometry (FTIR), Scanning Electron Microscopy (SEM), Atomic Force Microscopy 

(AFM), X-ray Photoelectron Spectroscopy (XPS), Spectroscopic Ellipsometry (SE), X-ray 

Reflectivity (XRR), Ellipsometry Porosimetry (EP) and Density Functional theory (DFT). A 

succinct overview of these techniques and employed instruments with the corresponding 

experimental parameters is presented in the following text.  

II.5.1 Optical Emission Spectroscopy (OES) 

OES analysis was employed to obtain insight into the chemical composition of the plasma 

phase. OES is a non-invasive in-situ technique that allows identification of excited atomic and 

molecular species in the plasma phase by analysing the emission of electromagnetic radiation, 

which is a result of de-excitation of excited species.  

OES of plasma is based on the analyses of light emitted from the plasma. Through 

collisions with electrons, plasma particles are excited to higher energy states. During 

relaxation to lower energy states, these particles emit electromagnetic radiation. Energy of 

emitted photons is equal to the difference between excited and lower energy state. Wavelength 

λ of the corresponding spectral line is described by the following relation:  

𝐸 =
ℎ𝑐

𝜆
, Equation II-3 

where h is Planck’s constant, c is the speed of light and E is the energy difference between 

two states, i.e. the emitted photon energy.  

Every atom has precisely defined energy levels, thus each one emits characteristic 

radiation. Excited atoms and ions in the plasma create a unique emission spectrum. Light 

emitted by the discharge is a collection of spectral lines generated by different atoms in the 

plasma.  
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The emission spectra were observed and recorded by optical emission spectrometer model 

Acton Advanced SP2500A and the WinSpec spectroscopy software, both from Princeton 

Instruments. Grating of 150 grooves/mm and Step and Glue operational mode were used to 

record the spectra in the 200-920 nm spectral range. In Step and Glue mode, the resulting 

spectrum is collected as a series of incremental files. These files are then used to create a 

single glued data file. The software takes an exposure and, while the shutter is closed, moves 

the spectrometer to the next position. Final spectral resolution was equal to 0.13 nm. The 

optical fibre, used to transmit the signal, was positioned 15 cm below the plasma generation 

area (Figure II-14, p.46).  

II.5.2 Mechanical profilometry 

Thin film deposition rates were determined from film thickness values divided by 

corresponding deposition time lengths. The thickness of the deposited films has been 

measured by a mechanical profilometer model Alpha Step IQ from KLA Tencor located in 

LAPLACE Laboratory. This profilometer employs a diamond tip of 5 μm curvature radius to 

probe the material surface. The uncertainty of the thickness measurement of the standard 

sample used for calibration (thickness = 473.3 nm) is ±0.3 nm.  

To measure the thickness, it is necessary to create a steep step on the samples.  Two 

methods have been used to achieve the latter:  

1. mechanical removal of deposited material by scratching with a steel cutter, and  

2. use of the lift-off method.  

 

 
Figure II-23: Schematic presentation of the employed lift-off method. 

 

The lift-off method includes creating a masking structure on the substrate surface by using a 

sacrificial material (Figure II-23). The film was deposited on a silicon wafer, which was 

marked by a trace of marker pen. Afterwards, ethanol (CH3CH2OH) was used to dissolve the 

marker trace and to create a clean step. 
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II.5.3 Fourier Transform Infrared Spectrometry (FTIR) 

FTIR spectroscopy was employed to study chemical characteristics of deposited thin films. 

FTIR analytical technique is in common use in thin film research. It allows investigating 

chemical bonds present in the material. Figure II-24 shows a schematic representation of a 

FTIR spectrometer. 

 
Figure II-24: Schematic representation of FTIR spectrometer (adapted from [156]). 

 

When exposed to infrared radiation, molecules selectively absorb radiation of specific 

wavelengths causing vibrational motion. For this to occur, a vibrational mode must be IR 

active, i.e. it must cause a change in the dipole moment of the molecule. The frequency at 

which absorption occurs is an intrinsic feature of a chemical bond. Therefore, by scanning the 

infrared frequency range, it is possible to reconstruct the spectrum that corresponds to 

analysed sample, highlighting different absorption bands, and thus determining the type of 

bonds present.  

Specific wavelength of absorbed radiation coresponds to a specific chemical bond. When 

applying simple harmonic oscillator approximation, frequency of bond vibration can be 

determined according to Hooke's law:  

𝜐̅ =  
1

2𝜋𝑐
√
𝑘

𝜇
 Equation II-4 

where 𝜐̅ is the wavenumber of absorbed radiation, c is speed of light, k is force constant of the 

bond, and µ is reduced mass.  

Absorbance A of a species is related to its concentration by Beer-Lambert law:  
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𝐴 =  𝑙𝑜𝑔
𝐼0
𝐼
= 𝜀𝐶𝑙 Equation II-5 

where I0 is intensity of incident light, I intensity of transmitted light, ε molar absorption 

coefficient, C concentration of absorbing species, and l length of light path through the 

sample.  

The measurements were performed by Bruker Vertex 70 FT-IR spectrometer with a DTGS 

detector located at LAPLACE. This spectrometer operates at atmospheric pressure and it is 

equipped with a purging system employed to remove water vapour and CO2 from the system. 

The analysis has been performed in transmission mode with a resolution of 4 cm-1. Every 

recorded spectrum is an average of 20 spectra obtained by scanning the 4000-400 cm-1 

wavenumber range. Raw spectra have been normalised by film thickness. 

II.5.4  X-ray Photoelectron Spectroscopy (XPS) 

X-ray Photoelectron Spectroscopy (XPS) technique was used to study thin film chemical 

composition. XPS, also known as Electron Spectroscopy for Chemical Analysis (ESCA), is 

widely used material analysis technique based on the photoelectric effect. When a surface is 

irradiated with X-rays, emission of electrons from the sample is possible. X-rays excite 

electrons, and if their binding energy is lower than X-ray energy, they will be emitted from the 

atoms. Kinetic energy of emitted electron, i.e. photoelectron, (Ek) is equal to the difference 

between the energy of incident X-rays (hν) and the binding energy of the emitted electron 

(Eb): 

𝐸𝑘 = ℎ𝜈 − 𝐸𝑏.  Equation II-6 

Photo-effect equation allows calculating binding energies of emitted electrons. Using this 

information, elements present in the material can be identified. 

XPS is a surface analysis technique. Due to short inelastic mean free paths of 

photoelectrons, only the ones in the outer surface (depth: 10-100 Å) can escape the sample. 

Nevertheless, obtaining composition of a sample over its entire thickness is achievable by 

employing etching. An ion beam is used for etching surface layers to reveal the bulk of a 

sample or for only removing surface contamination. 

The machine we used for obtaining atomic composition of deposited thin films is XPS 

Kalpha ThermoScientific located at CIRIMAT-ENSIACET in Toulouse, France.  

Measurement parameters are summarized below: 

▪ X-ray: Al (Kα), E = 1486.6 eV 

▪ Detection limit: ~0.1 at. %  
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▪ Analysis depth: 2-10 nm 

▪ Ultra-vacuum: p < 5.10-9 mbar 

▪ X-ray spot: 30-400 µm 

▪ Ar+ gun  

Example of an XPS spectrum of ZrSixOyCwHz film is shown in Figure II-25. The following 

peaks have been analysed to determine atomic concentration of the metal (Zr or Ti), silicon 

(Si), oxygen (O) and carbon (C): Zr3d, Ti2p, Si2p, O1s and C1s. Hydrogen atomic content 

cannot be determined by XPS technique. 

 

 

Figure II-25: Example of an XPS spectrum of ZrSixOyCwHz film. 

 

During sample transfer and in-air storage, film surfaces have been exposed to 

contamination. Since XPS measurements were performed on as-deposited films after their 

exposure to air, the quantity of carbon and oxygen atoms detected in the films may be over-

estimated.  

II.5.5 Scanning Electron Microscopy (SEM) 

SEM technique was used to obtain surface and cross-sectional images of deposited thin 

films. Unlike optical microscopy, electron microscopy uses electrons instead of light. 

Relatively large wavelength of visible light (400 – 700 nm) has placed a limit on image 

resolution in the nanometre range. In theory, an imaging source should be able to distinguish 

two close objects if distance between them is equal to half of the imaging energy wavelength. 

An electron may have significantly smaller wavelength than visible light according to de 

Broglie’s equation:  

𝜆 =  
ℎ

𝑝
=

ℎ

√2𝑚𝑒𝑉
 Equation II-7 



Chapter II 

 

 

58 

where 𝜆 is electron de Broglie wavelength, h is Planck’s constant, p electron momentum, m 

electron mass, e electron charge, and V potential difference. Therefore, using electrons in 

microscopy allows achieving considerably higher resolution. 

Figure II-26 shows a schematic representation of a scanning electron microscope. SEM 

uses an electron beam focused to a very fine line for scanning the sample. Electrons in the 

beam interact with the specimen, producing various signals (secondary electrons, 

backscattered electrons, x-rays, etc.) that can be used to obtain information about sample 

topography and composition. Beam-specimen interaction results in additional electrons 

knocked off the specimen. These electrons are collected by a detector - an anode at a potential 

of a few hundred volts positive with respect to the specimen. Variation in the current that 

flows to the anode is used to create an image of the sample. 

 

 

Figure II-26: Schematic representation of an SEM  [157]. 

 

Electron microscope requires vacuum to operate. Without vacuum, electron beam would 

interact with air particles. Electrons could be absorbed by air molecules, and the latter could 

also contaminate the sample. Since electrons are electrically charged, SEM sample needs to 

be conductive enough to dissipate energy. Sample preparation includes cleaning it of any dust 

or debris, and if the specimen is not conductive, it is coated in a conductive material like gold 

or platinum through a process called sputter coating. This conductive coating enables the 

sample to be grounded, protecting it from being damaged by the electron beam. 

Two different systems were used to record the images:  
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▪ MEB FEG JEOL JSM 6700F – EDS with an image resolution of 1 nm at 15 kV, and 

▪ JSM-7800F Prime with a resolution of 0.8 nm in 1 kV-30 kV range.  

Both machines are located at Centre de MicroCaractérisation Raimond Castaing in Toulouse, 

France. Prior to taking the images, all the samples have been metalized to avoid surface 

charging phenomenon: 1 nm thick platinum (Pt) layer was deposited on the samples by 

plasma sputtering.  

II.5.6 Atomic Force Microscopy (AFM) 

Atomic Force Microscopy (AFM) is a probe-scanning imaging technique that maps the 

interactions between a fine tip and atoms of a surface. Operational principle is based on 

approaching a cantilever, at the end of which a nanometeric tip is placed, to the surface of a 

sample. The cantilever is deflected as a result of the interaction forces and that deflection is 

measured by positioning a laser beam on the upper face of the cantilever. The laser beam 

reflects on a mirror to a four-quadrant photodiode that records a light signal. Schematic 

representation of an AFM is shown in Figure II-27. 

To study the film topography, film surface was analysed by Bruker AFM model Multimode 

8 (Nanoscope V software) located in LAPLACE Laboratory. The measurements were 

performed by using the Bruker TESPA-V2 AFM probe. The machine was operated in tapping 

mode to visualize the surface of the films in 3D. The resolution in the vertical direction equals 

0.01 nm, whereas in the horizontal direction it corresponds to a few nanometres. 

 

 

Figure II-27: Schematic representation of an AFM [158]. 

 



Chapter II 

 

 

60 

In the following chapter, we report on the values of two surface roughness parameters, Ra 

and Rmax: 

➢ Mean roughness parameter Ra is the arithmetic average of the absolute values of the 

roughness profile height: 

𝑅𝑎 =
1

𝑙
∫|𝑍(𝑥)|𝑑𝑥

1

0

 Equation II-8 

where l is the sampling length and Z(x) is the profile height at coordinate x.  

➢ Maximum roughness depth Rmax is the largest single roughness depth within the evaluated 

length. 

II.5.7 X-Ray Reflectivity (XRR) 

X-Ray Reflectivity technique is based on the analysis of intensity of x-ray beam reflected 

on a sample at grazing angles. This method allows calculating the density of deposited thin 

films. Figure II-28 shows an example of a reflectivity curve obtained by XRR.  

 
Figure II-28: Example of reflectivity as a function of incident angle measured by XRR. θc is the critical angle. 

 

To extract information about a sample, X-ray reflectivity curve is analysed by fitting a 

simulated curve. Fitting parameters are typically density, film thickness and interfacial 

roughness. Thin film density is related to the critical angle; amplitude of oscillations is 

associated to density contrast; film thickness is related to the period of oscillations; oscillation 

decay rate at higher angles is connected to surface or interface roughness; and intensity decay 

rate at higher angles is correlated to surface roughness.  

At angles inferior to critical angle θc, incident radiation is completely reflected. Critical 

angle θc is directly related to electron density ρe by the following equation: 
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𝜃𝑐 = √
𝜆2𝑟0

𝜋
𝜌𝑒, Equation II-9 

where λ is the wavelength of the incident x-ray beam and r0 is Bohr atomic radius. If film 

chemical composition is known, mass density of the film can be estimated based on the 

following equation:  

𝑛 = 1 −
2𝜋𝑟0

𝑘0
2 𝜌𝑒 = 1 −

2𝜋𝑟0

𝑘0
2 𝑁𝐴𝜌𝑚𝐾, Equation II-10 

where n is the refractive index, ρe is electron density, ρm is mass density, NA is the Avogadro 

number, K is the coefficient related to film chemical composition, r0 is Bohr atomic radius, 

and k0 is equal to λ/2π with λ representing the x-ray wavelength. 

In our work, we have used stoichiometry determined by XPS measurements. The XRR 

analysis was performed with an XRD machine model D5000 from Siemens at European 

Institute of Membranes in Montpellier, France.  

II.5.8 Spectroscopic Ellipsometry (SE) 

Spectroscopic ellipsometry is a non-invasive diagnostic technique employed for 

determining optical characteristics of a material, as well as other properties such as 

crystallinity, roughness or doping concentration. Ellipsometry investigates interaction of 

polarized light with a material by measuring a change in the polarization of light as it is 

reflected from a surface. It is an indirect method for determining material properties, i.e. 

theoretical modelling is necessary to obtain the properties from experimentally obtained 

physical quantities. Theoretical models use mathematical relations called dispersion formulae 

that help in evaluation of optical and other material properties by a ˝fitting˝ procedure.  

Figure II-29 shows a schematic representation of the principle of spectroscopic 

ellipsometry. Ellipsometry measures phase difference Δ and amplitude ratio Ψ between 

reflected and polarized light. More precisely, it determines cos(Δ) and tan(Ψ) using a 

mathematical treatment of reflected beam intensity. This allows obtaining complex reflection 

coefficient ρ:  

𝜌 = tan(Ψ) 𝑒𝑖Δ = f(n, k), Equation II-11 

where n is the refractive index and k is the damping constant which describes a change in the 

amplitude of the electromagnetic wave propagating through a medium. For transparent 

materials, due to high penetration depths of light, k values are very close to zero and N ≈ n. 
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However, for many other materials, n and k are not constant parameters, yet they depend on 

the incident light wavelength: an effect known as dispersion. 

 

 

Figure II-29: Schematic representation of spectroscopic ellipsometry principle [159]. 

 

When investigating a thin layer deposited on a substrate, calculations using the 

measurements of tan(ψ) and cos(Δ) are not straightforward. Indeed, the reflection coefficient 

for a film-covered surface involves the film thickness d. Since an unknown variable is added 

to the system more than one solution becomes possible. This new relation can be written as 

follows:  

𝜌 = f(𝑁0, 𝑁1, 𝑁2, λ, d, 𝜃0), Equation II-12 

where N0, N1 and N2 are refraction indices of the environment, film and substrate, 

respectively. λ is the incident light wavelength, θ0 angle of incidence and d is film thickness. 

Usually, N0, λ and θ0 are known, while it is possible to obtain N2, N1 and d. 

In our study, spectroscopic ellipsometer Semilab GES5E was used to analyse refractive 

indices of deposited thin films. Cauchy absorbent dispersion model was employed for 

determination of the refractive indices. The model is based on the following empirical 

formulae:  

𝑛(𝜆) = 𝐴 +
104 ∙ 𝐵

𝜆2
+
109 ∙ 𝐶

𝜆4
 Equation II-13 

𝑘(𝜆) = 10−5 ∙ 𝐷 +
104 ∙ 𝐸

𝜆2
+
109 ∙ 𝐹

𝜆4
 Equation II-14 

where n(λ) and k(λ) are refractive index and extinction coefficient at wavelength λ, and A, B, 

C, D, E, F are fitting parameters. In this work, we report film refractive indices corresponding 

to the wavelength value of 632.8 nm.  
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II.5.9 Ellipsometry Porosimetry (EP) 

Ellispometry Porosimetry is a technique developed by coupling Spectroscopic 

Ellipsometry with adsorption phenomenon. EP examines changes of optical properties and 

material thickness during adsorption and desorption of a volatile species, i.e. a vapour probe. 

Figure II-30 shows an example of the adsorption/desorption isotherms as function of the ratio 

of vapour probe partial pressure and saturated vapour pressure.  

Evolution of refractive index and film thickness is used to calculate the quantity of the 

adsorbed probe molecules present in the films, i.e. the open porosity fraction, on the basis of 

Lorentz-Lorentz equations presented in the scheme below (adapted from [160]): 

Vacuum 

p=0 

 

𝑛2 − 1

𝑛2 + 1
=
𝑉𝑆
𝑉0

𝑛𝑆
2 − 1

𝑛𝑆
2 + 1

 Equation II-15 

Saturation 

p/p0=1 

 

𝑛2 − 1

𝑛2 + 1
=
𝑉𝑆
𝑉0

𝑛𝑆
2 − 1

𝑛𝑆
2 + 1

+
𝑉𝐿
𝑉0

𝑛𝐿
2 − 1

𝑛𝐿
2 + 1

 Equation II-16 

• n refractive index of the whole layer; ns refractive index of the skeleton; nl refractive index of the liquid 

• V0 volume of the layer; VS skeleton volume; VL volume of the open pores filled with liquid L 

 

EP allows obtaining different material properties such as porosity, pore size distribution, 

hydrophobicity or diffusion coefficient. 

 

Figure II-30: Example of film refractive index and thickness evolution measured by EP during ethanol 

adsorption cycle. 

 

Table II-2 presents a classification of nanoporosity by pore diameter. EP technique allows 

analysing microporosity and mesoporosity of a material in the range of 10 nm to several µm. 
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The proportion of open nanoporosity in the deposited films was examined by ellipsometric 

porosimetry. The experimental setup employed to examine nanoporosity of thin films 

deposited in our study, allows detecting pores in 2-50 nm diameter range [161].  

 

Table II-2: Nanoporosity classified by pore diameter according to IUPAC [162]. 

Micropores Mesopores Macropores 

<2 nm 

2-50 nm >50 nm Ultra 

<0.7 nm 

Super 

>0.7 nm 

 

A system composed of a Semilab GES5E ellipsometer and a vacuum chamber (Figure 

II-31) was used to observe changes in the refractive index during adsorption and desorption of 

volatile species. Vacuum chamber serves to control vapour pressure of the probe solvent.  

 

 

Figure II-31: Ellipsometry porosimetry setup at European Institute of Membranes in Montpellier, France.            

Main parts of the setup: 1 - vacuum chamber, 2 - ethanol, 3 - light source, 4 - polarizer, 5 - analyser. 

 

Considering that the probe solvent will physisorb at the pore walls and it should 

condensate at room temperature, there are several requirements the probe must fulfil: 

➢ sufficiently high vapour pressure for convenient analysis (min. several Torr), 

➢ preferentially non-polar or weakly polar molecule; otherwise, the refractive index of 

condensed solvent could be different close to the pore walls than in the liquid phase, 

➢ any chemical reaction must be avoided; pure physisorption of the probe molecule has 

occurred on the probe walls if the refractive index of the film comes back to its 

original value after a full adsorption/desorption cycle. 

Some of the frequently used probe molecules are:  
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• ethanol, CH3CH2OH (kinetic diameter at 293K = 0.43 nm; dipole moment = 1.69 

Debye; vapour pressure at 293K = ~59 Torr), 

• water, H2O (kinetic diameter at 293K = 0.27 nm; dipole moment = 1.85 Debye; 

vapour pressure at 293K = ~24 Torr), 

• toluene, C7H8, aromatic (kinetic diameter at 293K = ~0.60 nm; dipole moment = 

0.37 Debye; vapour pressure at 293K = ~28 Torr).  

Regarding the requirements the probe must conform to, and the characteristics of frequently 

used probes listed above, ethanol was chosen as the vapour probe in this work.  

Ellipsometry porosimetry measurements and the corresponding analysis were performed at 

European Institute of Membranes in Montpellier, France. 

II.5.10 Density Functional Theory (DFT) 

Synthetic vibrational spectra corresponding to precursor molecules used in this work were 

built by DFT theoretical calculations. DFT is a quantum computational method [163], [164], 

that was employed for optimization of precursor molecule geometries and calculations of their 

vibrational spectra (at 298K).  

The goal of most quantum chemical approaches is the - approximate - solution of the 

Schrödinger equation. Unfortunately, it is impossible to solve the Schrödinger equation for a 

many-body system. Evidently, we must involve some approximations. The basic idea behind 

DFT is the first Hohenberg-Kohn theorem which states that all the fundamental properties of a 

system can be obtained from electron probability density. Electron probability density is 

always a function of only three space coordinates. DFT calculations can be applied to systems 

ranging from atomic nuclei and atoms to classical and quantum fluids. It allows calculating a 

great variety of molecular properties such as vibrational frequencies and ionization energies. 

All calculations were performed using the Gaussian09 package [165]. GaussView 5 

graphical interface was used for building the molecular structures, i.e. generating input files, 

as well as for visualising calculated vibrational frequencies. Regarding the computational 

details, the B3LYP hybrid exchange-correlation functional with the 6-311++g (3df, 3pd) basis 

set was used. A scaling factor of 0.9613, adapted for the functional and the basis set used in 

our calculations, was applied to calculated wavenumbers [166]. The servers employed to run 

the calculations as well as the licenced Gaussian09 package were provided by the Laboratory 

for Chemistry of Novel Materials at University of Mons (Belgium) in the framework of 

collaboration with LAPLACE laboratory. 
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Introduction 

The objective of this chapter is to study the modifications of the thin film growth process 

as a function of the variations in the plasma gas mixture. Two types of thin film materials, 

ZrOxCyHz and TiOxCyHz, have been synthesised in low pressure ZTB/O2 and TTIP/O2 

plasmas, respectively. The films have been deposited at various values of metalorganic 

precursor-to-oxygen gas ratio at constant total gas mixture pressure. The corresponding 

process parameters are summarised in Table III-1.  

 

Table III-1: Growth conditions of thin films deposition in ZTB/O2 and TTIP/O2 plasmas. 

Total gas pressure 1 mTorr 

MW power 800W 

Substrate Si (100) 

Substrate potential Floating 

Tsubstrate Uncontrolled 

Gas mixture 

composition 

100% ZTB 
75% ZTB 

25% O2 

50% ZTB 

50% O2 

35% ZTB 

65% O2 

20% ZTB 

80% O2 

5% ZTB 

95% O2 

100% TTIP 
70% TTIP 

30% O2 

50% TTIP 

50% O2 

35% TTIP 

65% O2 

20% TTIP 

80% O2 

5% TTIP 

95% O2 

Deposition time < 10 min at 0-80% O2, 30-40 min at 95% O2  

 

The chapter is divided into five parts. Generally, each part begins with a predominately 

descriptive presentation of experimental results corresponding to films deposited in ZTB/O2 

and TTIP/O2 plasma. This is followed by a comparison between two types of films and an 

interpretation of the obtained results.  

First, an OES qualitative analysis of the plasma phase is presented. Afterwards, the focus 

shifts to characteristics of the solid phase and we review thin film growth rates. Then, film 

physico-chemical properties are studied by means of FTIR and XPS. Furthermore, evolution 

of morphological features of the film, investigated by SEM and AFM, is analysed. 

Experimentally observed results are coupled with findings obtained from MC simulations 

performed by colleagues at Institute of Material Science in Sevilla, Spain. Finally, we 

examine macroscopic physical properties of the film (refractive index, density and 

nanoporosity fraction) in a succinct manner. 
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 OES analysis of ZTB/O2 and TTIP/O2 plasma phase 

In a PECVD process, the formation of a thin film is the result of plasma-surface 

interactions. The species existing in the plasma play one of the crucial roles in the mechanism 

of thin film growth. Thus, to understand the growth mechanism and to control the final thin 

film characteristics, it is necessary to have an insight into the plasma chemistry. To achieve 

that, optical emission spectroscopy has been employed.  The position of optical fibre in regard 

to the reactor allows probing the diffused part of the plasma in the centre of the plasma 

chamber, relatively far from the ECR zone (Chapter II, p.36).  

This study is of qualitative nature: it serves to provide information on the type of excited 

species present in the plasma phase and the evolution of the plasma composition with regards 

to variations in the gas mixture ratio. In this analysis, we are not performing actinometry or 

presenting a detailed spectroscopic examination. 

Normalization of measured data was necessary to allow the comparison of different spectra 

and the examination of the evolution of certain spectral lines. Therefore, argon gas was added 

to the gas mixture and all the emission spectra intensities were divided by the intensity of a 

spectral line at 750 nm which originates from an excited argon atom [167]. The first step of 

the experimental protocol included stabilizing the pressure of the precursor/O2 gas mixture at 

1 mTorr. Afterwards, the lowest possible quantity of argon gas allowed by the technical 

conditions was injected into the reactor: ~5 % relative to the total gas pressure.  

To verify that the argon gas presence does not significantly alter the composition of the 

plasma, optical emission spectra of the pure precursor plasma and the precursor/Ar plasma 

have been compared. Figure III-1 shows a region of the spectra in which all appearing lines 

correspond to species originating from precursor and O2 molecules; Ar lines were not 

observed in this part of the spectra. The comparison confirmed that the addition of a small 

quantity of argon gas into the metalorganic/O2 gas mixture does not appear to noticeably 

influence the OES spectra of the plasma phase.  

The spectra have been measured in the 250-900 nm wavelength range. In the following 

text, the main spectral lines are identified in both ZTB and TTIP plasmas and the 

corresponding species are assigned. Additionally, we have studied the evolution of normalised 

intensities of the spectral lines corresponding to subsequent excited species: H, CH, O, CO, 

CO+, CO2
+.  

 



Chapter III 

 

 

71 

 

Figure III-1: Comparison of 400-650 nm region of OES spectra corresponding to precursor and precursor/Ar 

plasma (precursor: ZTB or TTIP, pprecursor = 1 mTorr, pAr = 0.05 mTorr,  PMW = 800 W). 

 

Different research groups have established that the evolution of intensity of the atomic 

oxygen spectral line normalised by the Ar line intensity, I(O)/I(Ar), is representative of the 

evolution of oxygen atom density in HMDSO/O2 and TEOS/O2 plasmas [168], [169]. Relying 

on the findings of aforementioned studies, here we consider the evolution of the spectral line 

intensity ratio I(X)/I(Ar), where X is H, CH, O, CO, CO+ or CO2
+, as an indication of the 

evolution of the plasma composition. 

III.1.1 Identification of OES spectra 

Figure III-2 shows emission spectra corresponding to ZTB/O2/Ar and TTIP/O2/Ar plasmas 

obtained at O2/precursor = 1 (total pressure p(precursor+O2+Ar) = 1.05 mTorr, PMW = 800W). 

The peaks, listed in Table III-2, have been assigned with the help of literature [11], [170], 

[171]. The same spectral lines appear in emission spectra of both ZTB and TTIP plasmas. The 

only observable difference is found in the intensity of the peaks.  

Apart from the peaks corresponding to excited Ar atoms, other assigned atomic and 

molecular species may originate from the precursor and O2 molecule dissociation in collisions 

with accelerated electrons and/or from reactions occurring at the plasma-surface (substrate, 

reactor walls) interface. Chemical reactions between neutral precursor fragments in the 

plasma phase are disregarded due to relatively low operating pressure of 1 mTorr and low 

energy of the neutral particles.   

Peaks assigned to excited H, O and Ar atoms are dominant in emission spectra of studied 

plasmas. We have assigned certain peaks to excited CO, CO+, CO2
+, OH, CH, C2, H2 species. 

The presence of CO2, OH and H2 in the plasma phase may be taken as a sign of plasma-
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surface reactions. CO, CH and C2 could originate from surface reactions, as well from the 

precursor fragmentation due to existence of C-O, C-C, C-H bonds in both ZTB and TTIP 

molecules. 

 
Figure III-2: Optical emission spectra of ZTB/O2/Ar and TTIP/O2/Ar plasma normalised by Ar spectral line 

intensity at 750 nm (pprecursor = 0.50 mTorr, poxygen gas = 0.50 mTorr, pAr gas = 0.05 mTorr, PMW = 800 W). 

 

Table III-2: List of assigned emission spectral lines observed in ZTB/O2/Ar and TTIP/O2/Ar plasmas              

(ptotal = 1.05 mtorr, PMW = 800W, 4.8% Ar) [11], [96], [170], [171]. 

Radiative species System Wavelength (nm) 

H Balmer lines (Hα, Hβ, Hγ, Hδ) 656.6, 486.9, 435.1, 411.3 

H2 - 835.7 

CH 4300 Å system 431.2 

CO 
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Radiative species System Wavelength (nm) 

Ångström System 

Asundi Bands 

411-663 

574-860 

CO+ 
Comet Tail 

Badlet-Johnson 

308-641 

331-424 

CO2
+ - 287.6, 288.9 

OH 3064 Å system 308.2 

C2 Swan system 516.4 

O - 725.4, 746.1, 777.4, 845.0 

Ar - 

696.6, 706.8, 737.2, 738.4, 750.39, 

763.4, 772.3, 794.6, 800.3, 801.1, 

810.1, 811.2, 825.9 

 

Central part of precursor molecules consists of a metal atom surrounded by four oxygen 

atoms. Metal atoms and metal oxide species might be present in the plasma phase due to 

dissociation of the precursor molecule. Table III-3 presents the wavelengths of peaks assigned 

to Zr, ZrO, Ti and TiO species in low temperature plasmas reported by different authors [39], 

[96], [172], [173]. In the investigation of the spectra observed in our study, we were not able 

to distinguish the emission lines corresponding to Zr and ZrO in ZTB plasmas nor the ones 

matching Ti and TiO in TTIP plasmas. This may be explained by low concentration of these 

species relative to other emissive particles in the plasma. Accordingly, corresponding 

emission intensities might be too low to be detected in our experimental conditions. 

 

Table III-3: Peaks assigned to Zr and Ti species in OES spectra of low temperature plasmas: literature review. 

Radiative 

species 
Wavelength (nm) References 

Zr 350.9, 352.0 [172] 

Zr+ 339.2, 343.8, 349.6 [172] 

ZrO 463.7, 464.0, 622.9, 626.1, 629.3, 634.5, 637.8, 647.4, 650.8 [39], [172] 

Ti 
388.3, 390.5, 402.5, 429.8, 451.8, 452.3, 453.3, 517.4, 519.3, 

521.0, 843.6 
[96], [173] 

TiO 705.5, 708.8, 712.6, 715.9 [96] 

Ti+ 323.5, 323.7, 323.9, 338.4, 338.8, 375.9, 376.1, 368.5 [173] 

 

III.1.2 Evolution of OES spectra as a function of gas mixture composition 

ZTB 

Figure III-3(a) presents the evolution of normalised intensities of several spectral lines as a 

function of O2 gas proportion in the gas mixture. The lines of interest, corresponding to 
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excited O, H and CH species, were observed at 777.4, 656.6 and 431.2 nm, respectively. In 

general, the emission of atomic O increases with addition of O2 to the gas mixture, while 

emissions corresponding to H and CH decrease. In the evolution of the emission intensity of 

these species, two regimes can be distinguished. At low O2 concentration in the gas mixture 

we observe rather slow changes. After 80% of O2 had been added to the gas mixture, we can 

observe a steep increase in O emission and a drastic decrease in emissions of H and CH. This 

point is also a changing point for emissions at 296.7, 425.4 and 288.9 nm corresponding to 

CO, CO+ and CO2
+ (Figure III-3(b)). Emission intensities of these species achieve a 

maximum at ≥80 % of O2 in the gas mixture and then decrease as the proportion of O2 gas 

approaches 95%.  

 
Figure III-3: Evolution of spectral line intensity ratios as a function of O2 gas percentage of ZTB/O2 gas mixture 

(pZTB+O2 = 1 mTorr, pAr gas = 0.05 mTorr, PMW = 800 W): (a) I(O)/I(Ar), I(H)/I(Ar), I(CH)/I(Ar), (b) I(CO)/I(Ar), 

I(CO+)/I(Ar), I(CO2
+)/I(Ar). 

 

TTIP 

Figure III-4(a) shows the spectral line emission intensity associated with H, CH and O as a 

function of O2 proportion in the TTIP/O2 gas mixture. Emission intensity of excited O atoms 

generally increases with increase in O2 gas percentage added to the gas mixture, while H and 

CH emissions decrease. For highly oxidised gas mixture of TTIP/O2, steep changes are 

observed. Figure III-4(b) presents the evolution of carbon-oxide species: CO, CO+ and CO2
+. 

With increase in O2 gas fraction in TTIP/O2 gas mixture, emission intensities of these excited 

carbon-oxide species increase to achieve maximum values at 90% of O2 gas added to the gas 

mixture. With further addition of O2 gas, the emission intensities decrease.  
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Figure III-4: Evolution of spectral line intensity ratios as a function of O2 gas percentage of TTIP/O2 gas mixture 

(pTTIP+O2 = 1 mTorr, pAr gas = 0.05 mTorr, PMW = 800 W): (a) I(O)/I(Ar), I(H)/I(Ar), I(CH)/I(Ar), (b) I(CO)/I(Ar), 

I(CO+)/I(Ar), I(CO2
+)/I(Ar). 

 

Figure III-5 shows the evolution of the emission intensity of excited oxygen atoms in 

ZTB/O2 and TTIP/O2 plasmas. As the O2 gas fraction in the gas mixture increases and 

approaches 100%, the normalised emission intensity of oxygen atoms also increases. Granier 

et al. have observed similar behaviour of oxygen atom density in TTIP/O2 ICP plasma [174].  

   
Figure III-5: Evolution of spectral line intensity ratio I(O)/I(Ar) as a function of O2 fraction in precursor/O2 gas 

mixture (precursors: ZTB or TTIP, ptotal = 1 mtorr, PMW = 800W). 

 

Contrarily, a higher O atom density and spectral line intensity ratio I(O)/I(Ar) have been 

observed in O2-rich organosilicon/O2 plasma compared to 100% O2 plasma [3], [174]. This 

has been attributed to higher probability of O atom recombination at reactor walls in 100% O2 

plasma. As low percentage of organosilicon precursor is found in the gas mixture, new 

reactive species are created and introduced into competition with oxygen atoms to occupy the 

surface recombination sites. The difference in evolution between metalorganic and 

organosilicon plasma might lie in different surface recombination mechanisms at play [174].  
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III.1.3 OES analysis: discussion  

Optical emission spectra of low pressure ZTB/O2 and TTIP/O2 plasmas are composed of 

identical spectral bands. These spectra mainly consist of peaks corresponding to excited O, H, 

OH, CH, CO, CO+, CO2
+.  The intensities of the peaks change as the gas mixture ratio of 

metalorganic precursor and O2 gas varies. Spectral lines corresponding to excited Zr and ZrO 

or Ti and TiO were not recognised. In a qualitative sense, the spectra are very similar to 

optical emission signatures of low pressure HMDSO/O2 and TEOS/O2 plasmas [1], [3], [175].  

The species identified in the plasmas originate from the precursor fragmentation process as 

well as from the surface etching reactions. The etching of carbon atoms achieved by oxygen 

species has been confirmed by the increase in the intensities of the peaks assigned to CO and 

CO2 with O2 gas addition. Besides atomic oxygen which plays a crucial role in removing 

carbon from the deposits, hydrogen is also expected to participate in the etching of the film by 

forming volatile species such as C2H2. 

Regarding the CxOy type of species, a specific maximum in the emission intensity is 

observed in both ZTB and TTIP plasmas as O2 is added to the gas mixture. Similar evolution 

has been observed in TEOS and HMDSO plasmas [3]. After the initial increase up to a 

maximal value, a decrease of intensity is noticed in O2-rich plasma (~95% of O2) which may 

be explained by extreme dilution of the metalorganic precursor in the gas mixture. The high 

quantity of oxygen atoms is outweighed by the deficiency of carbon atoms. 

Optical emissions attributed to H and CH in ZTB/O2 and TTIP/O2 plasma decrease with 

addition of O2 gas to the gas mixture (Figure III-3(a), p.74; Figure III-4(a), p.75). The same 

tendency has been observed in multipolar ECR plasma of ZTB/O2, TEOS/O2 and HMDSO/O2 

[1], [3], [11]. This evolution can be explained by the dilution of the precursor, i.e. the main 

source of carbon and hydrogen atoms, as O2 gas fraction in the gas mixture is increased. At 

the same time, part of H atoms is lost at the reactor walls and substrate surface in the 

recombination reactions with O to form OH and H2O, as already evidenced in the literature 

[168]. Similar behaviour of the CxHy type of species has been observed by Mr R. Verhoef in 

his thesis work with in situ FTIR and MS of low pressure ICP ZTB/O2 plasma [12]. The study 

has shown a decrease in the FTIR absorption peaks corresponding to CH4 and C2H2, while 

MS measurements confirmed a rapid decline in the signal attributed to species such as C2H, 

C2H2 and C5H7. It has been proposed that the fragments arrive at the surface and react with 

atomic O rather than with atomic H and form species of type HOCH3 instead of CxHy. 
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 Deposition rate  

Thin films were deposited in ZTB/O2 and TTIP/O2 plasmas at different gas mixture ratios 

of O2 gas and precursor gas. Total gas pressure was constant at 1 mTorr, microwave power 

was set at 800 W, with substrate at floating potential. Figure III-6 shows the deposition rate 

values obtained from thickness profilometer measurements corresponding to films deposited 

in (a) ZTB/O2 and (b) TTIP/O2 plasma. 

      

Figure III-6: Deposition rate of thin films deposited at different gas mixture ratios in (a) ZTB/O2 and (b) 

TTIP/O2 plasma (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= floating). Error bars correspond to standard 

deviation. 

 

Growth rate is affected by several factors including the following two that have been 

deemed predominant:   

➢ material etching achieved by atomic oxygen (as confirmed by OES: detection of peaks 

corresponding to excited OH and CO2
+), as well as by atomic hydrogen, 

➢ precursor dilution: quantity of precursor monomer injected into the reactor decreases as 

O2 proportion in the gas mixture increases, thus less material is available for 

deposition. 

It is remarkable that the deposition rate of both ZrOxCyHz and TiOxCyHz films evolved in the 

same manner (Figure III-7). Two regimes can be distinguished: an approximately constant 

deposition rate at low proportions of O2 in the gas mixture (0-50%), and a consistent decrease 

of the deposition rate as O2 content is further increased. During the PECVD process in 

question, the deposition and etching of the material are in competition. At first, deposition is 

favoured despite the constant dilution of the precursor. Then, as O2 proportion surpasses 50%, 

the combined effect of etching and dilution prevail, and the deposition rate decreases.  
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Relatively small, but constant difference was observed when comparing of absolute values 

of growth rates between films deposited in ZTB plasma and TTIP plasma.  Higher growth 

rates for ZTB plasmas might be partially explained by the difference in the quantity of 

material available for deposition, i.e. a higher number of carbon and hydrogen atoms present 

in a ZTB molecule (16 C and 36 H) compared to a TTIP molecule (12 C and 28 H). 

 
Figure III-7: Deposition rate of thin films deposited at different gas mixture ratios in ZTB/O2 and TTIP/O2 

plasma (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate = floating). Error bars correspond to standard deviation. 

 

 Thin film chemical composition and bonding 

III.3.1 Chemical composition 

Thin films deposited at different metalorganic precursor/O2 gas mixtures have been 

analysed by XPS to investigate their chemical composition. The XPS measurements were 

performed on as-deposited films after their exposure to air, without executing surface cleaning 

by argon ion etching, thus the quantity of carbon and oxygen atoms detected in the films may 

be over-estimated. Another detail to keep in mind is that XPS analysis does not deliver 

absolute values but provides relative chemical composition expressed in atomic percentages.  

ZTB 

Figure III-8 shows carbon, oxygen and zirconium atomic fraction in thin film as a function 

of O2 gas proportion in the ZTB/O2 gas mixture. In general, atomic percentage of carbon 

decreased, while that of zirconium and oxygen increased. At first, atomic composition 

changed slowly and evolved more abruptly after 80% of O2 was added to the gas mixture. If 

we disregard hydrogen atomic content in the films, the stoichiometry, derived from XPS 
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measurements, changed from ZrO2.9C4.8 in pure ZTB plasma to ZrO1.9C0.8 in highly oxidised 

plasma (95% of O2 in the gas mixture).  

 
Figure III-8: Atomic composition of thin films deposited in ZTB/O2 plasma (ptotal = 1 mTorr, PMW = 800 W, 

Vsubstrate = floating) as a function of O2 proportion in the gas mixture. 

 

TTIP 

XPS analysis of thin films deposited in TTIP/O2 plasma at different gas mixture ratios 

yields the atomic composition in carbon, oxygen and titanium shown in Figure III-9.  

 

Figure III-9: Atomic composition of thin films deposited in TTIP/O2 plasma (ptotal = 1 mTorr, PMW = 800 W, 

Vsubstrate = floating) as a function of O2 proportion in the gas mixture. 

 

Generally, the films become deficient in carbon atoms as O2 gas is added to the gas 

mixture. The number of C atoms per one Zr atom decreases from 3.4 to 0.6 as proportion of 

O2 gas in the gas mixture increases from 0% to 95%. Atomic composition in oxygen and 

titanium increases as gas mixture becomes highly oxidised. A particular point in the evolution 

of the chemical composition can be identified at 70% O2/30% TTIP, when the atomic 

composition starts changing at a higher rate than before it.  
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III.3.1.1 Evolution of thin film chemical composition: ZTB vs TTIP  

Chemical composition of thin films evolves with changes in the precursor/O2 gas mixture: 

from highly organic thin films in pure precursor plasma to almost inorganic coatings in 

predominately O2 plasma. Figure III-10 shows the evolution of carbon and oxygen atomic 

content relative to the metal atom. The change in film composition is primarily attributed to 

decrease in carbon available for deposition due to precursor dilution and the etching of 

hydrocarbon species by atomic oxygen. The presence of volatile carbon-oxide species has 

been confirmed by OES (Chapter III.1.1, p.71). Data obtained by XPS analysis is summarised 

in Table III-4.  

      
Figure III-10: Evolution of (a) O/Zr and O/Ti, (b) C/Zr and C/Ti atomic ratios in thin films deposited at different 

gas mixtures in ZTB/O2 and TTIP/O2 plasma (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate = floating). 

 

Table III-4: Chemical composition and atomic ratios corresponding to films deposited in ZTB/O2 and TTIP/O2 

plasma (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate = floating). Hydrogen atomic concentration is disregarded. 

O2 in plasma gas 

mixture (%) 

Atomic composition (%) Atomic ratio 

O C M* O/M* C/M* 

ZTB / O2 plasma 

0 33.5 55.1 11.4 2.9 4.8 

50 41.4 42.5 16.1 2.6 2.6 

80 44.5 37.9 17.6 2.5 2.1 

95 51.6 21.3 27.1 1.9 0.8 

TTIP / O2 plasma 

0 39.6 46.6 13.8 2.9 3.4 

50 46.7 37.4 15.9 2.9 2.3 

80 54.9 24.1 21.0 2.6 1.1 

95 60.5 15.0 24.5 2.5 0.6 
*M corresponds to Zr and Ti for ZTB and TTIP related data, respectively. 
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We observed a difference in the chemical composition of precursor molecules (Table III-5) 

and thin films deposited in pure precursor plasmas. Carbon atomic percentage equals 76.2% 

in ZTB and 70.6% in TTIP molecule, whereas concentration of carbon in thin films deposited 

in pure ZTB and TTIP plasmas equals 55.1% and 46.6%, respectively.  The difference can be 

primarily explained by the formation of volatile CxHy species. Volatile species such as CH4 

and C2H2 have been detected in 100% ZTB plasma by in situ FTIR spectroscopy [12].  

 

Table III-5: Chemical composition and atomic ratios corresponding to ZTB and TTIP molecules. Hydrogen 

atomic concentration is disregarded. 

Molecule 
Atomic composition (%) Atomic ratio 

O C M* O/M* C/M* 

ZTB 19.0 76.2 4.8 4 16 

TTIP 23.5 70.6 5.9 4 12 
*M corresponds to Zr and Ti for ZTB and TTIP related data, respectively. 

 

In the evolution of the film composition, we can observe a particular point at which the 

rate of change noticeably increases (Figure III-8, Figure III-9, p.79-79). This occurs at a 

higher O2 proportion in the gas mixture for films deposited in ZTB/O2 plasma (at ≥80% of 

O2) compared to films formed in TTIP/O2 plasma (at ≥70 and <80% O2). An increase of the 

rate of change has been observed in films deposited in TEOS/O2 plasmas as well [1], [3]. 

Figure III-11 shows chemical composition of films synthesised in ZTB and TEOS plasmas in 

the same MMP-ECR reactor.  

 
Figure III-11: Atomic composition of thin films deposited in ZTB/O2 and TEOS/O2 MMP-ECR plasma (ptotal ≈ 1 

mTorr, Vsubstrate = floating) (adapted from [11] and [3], respectively). 

 

For TEOS, the change occurs at 50% O2 in the gas mixture. TEOS molecule has a similar 

structure as ZTB and TTIP, however, it also has a lower number of carbon and hydrogen 

atoms:  
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The number of C atoms per O atoms present in the gas mixture might play a role in triggering 

a (faster) decrease of carbon at.% in the films.  

III.3.2 Thin film chemical bonding 

The following subchapter focuses on infrared spectra of thin films deposited in ZTB/O2 

and TTIP/O2 plasmas at constant pressure of 1 mTorr, MW power of 800 W and at floating 

potential. FTIR spectroscopy is employed to study changes in chemical bonding in thin films 

as a function of the proportion of O2 gas in the precursor/O2 gas mixture. First, tentative 

assignation of the peaks appearing in FTIR spectra is presented. The IR bands 

appearing in the spectra are complex and may result from numerous overlapping 

peaks. Thus, we list several bonds and the corresponding chemical environments 

which may contribute to the IR bands in question. Secondly, we focus on the IR 

spectrum evolution as the precursor/O2 gas mixture changes.  

 

III.3.2.1 Identification of FTIR spectra 

ZTB 

Figure III-13 shows an FTIR spectrum corresponding to a thin film deposited in 50% 

ZTB/50% O2 plasma (see Annex of this work for detailed image of the spectrum). Peaks 

appearing in the spectrum were assigned to C-H, O-H, C-O, C=O, C-C, C=C and Zr-O bond 

vibrations in various structural environments. Four wide and complex bands were observed in 

4000-400 cm-1 IR range.  

 

3750-2750 cm-1 region 

 Wide band in 3750-2750 cm-1 region was formed by overlapping peaks corresponding to 

stretching vibrations of O-H and C-H bonds. The part of the band originating from O-H bond 

vibrations was assigned to two different structural environments:  

➢ peaks identified at 3688, 3670, 3649 cm-1 were assigned to O-H bond stretching in a 

bridged configuration [176]–[178] schematically presented in Figure III-12; 
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Figure III-12: Structural presentation of a bridged hydroxyl (M - metal atom). 

 

➢ in the region between 3600 and 2750 cm-1, the band was created by overlapping of 

peaks originating from O-H bond vibration in H-bonded and non-H bonded absorbed 

H2O [177]; additionally. 

Peaks observed at 2966, 2931, 2911, 2872, 2838 cm-1 were assigned to C-H bond asymmetric 

and symmetric stretching vibrations in CH3, CH2 and CH environments. These peaks have 

been largely evidenced in literature on metalorganic and organosilicon thin films [3], [10], 

[12], [69], [179], [180]. 

 

 

Figure III-13: FTIR spectrum of thin film deposited in 50% ZTB/50% O2 plasma (ptotal = 1 mTorr, PMW = 800 W, 

Vsubstrate = floating). 

 

1800-1250 cm-1 region 

In 1800-1250 cm-1 range, numerous peaks overlap and create a wide band that is 

challenging to analyse. We have divided the band into four wide peaks centred at 1699, 1577, 

1436, 1374 cm-1 and a shoulder at 1315 cm-1. The peak at 1699 cm-1 has been assigned to 

C=O bond stretching in an environment similar in structure to an ester, ketone, aldehyde or 

carbonate [12], [70], [181]. The examples of these chemical structures are presented in Figure 

III-14 and Figure III-15. Large peak centred at 1577 cm-1 is primarily assigned to C=O 

stretching in carbonate-like and formate-like structures (Figure III-14) reported in studies on 
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carbon CO, CO2 and H2 adsorption on zirconia polymorphs [182]–[185].  The O-H bending 

vibration in absorbed H2O may also contribute to this peak as well as C=C stretching in an 

environment similar to aromatic hydrocarbons and/or alkenes (Figure III-16) [181].  

 

 

 

Figure III-14: Different carbonate and formate structures bonded to metal atoms (M – metal atom)( adapted 

from [182], [186]).  

 

Peaks centred at 1436, 1374 and a shoulder at 1315 cm-1 have been assigned to C-O 

vibration in carbonate- and formate-like environments [ref]. Peaks corresponding to C-H 

bending in structures similar to alkanes/aldehydes/ketones/formates and O-H bending 

vibration might be observed in this IR region [50], [70], [73], [182], [183]. In FTIR spectra of 

liquid ZTB [11], [150], as well as in ZTB molecule synthetic spectra calculated by DFT 

(Chapter II.4.1, p.49), peaks appearing in 1471-1359 cm-1 range have been assigned to C-H 

bending vibrations, thus it is reasonable to expect that C-H bending vibration also contributes 

to peaks in this IR region of examined thin film FTIR spectra. 

 

 

Figure III-15: Structural formula examples of an aldehyde, a ketone, an ether and an ester compound. 
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Figure III-16: Examples of hydrocarbon compounds structural formulas: an alkane, an alkene and an aromatic. 

 

1250-900 cm-1 region 

Four peaks centred at 1230, 1200, 1152 and 1024 cm-1 appear in the 1250-900 cm-1 region.  

In the synthetic IR spectrum of a ZTB molecule, peak at 1204 cm-1 corresponds principally to 

C-C stretching and C-C-C bending, peak at 1164 cm-1 corresponds to C-O stretching and C-C-

C bending, and peak at 996 cm-1 corresponds to C-O and Zr-O stretching (Chapter II.4.1, 

p.49). In the FTIR spectrum of liquid ZTB, peaks at ~1230 and ~1188 cm-1 have been 

assigned to C-C stretching, while the peak at ~1000 cm-1 has been assigned to C-O stretching 

[11], [150]. Analogously, we assigned the peaks observed in the 1250-900 cm-1 IR region of 

thin film FTIR spectra to C-O and C-C vibrations in Zr-alkoxides (Figure III-17) and in 

environments similar to ethers, esters and alcohols. C-O bond stretching in carbonate 

structures bonded to Zr atoms may also contribute to peaks at 1152 and 1024 cm-1 [187]. 

 

 

Figure III-17: Different alkoxy groups bonded to a metal atom: an ethoxide, an isopropoxide and a tert-butoxide 

(M – metal atom). 

 

900-400 cm-1 region 

In the 900-400 cm-1 region of IR radiation, several peaks overlap and form a wide band 

that corresponds mainly to Zr-O bond vibrations. The broadness of this band may be 

attributed to the amorphous nature of the films and the presence of polycrystalline phases 

[188]. In the FTIR studies performed on thin films deposited by different methods (PECVD, 

CSD), peaks corresponding to monoclinic [70], [112], [189], [190] and tetragonal [70], [112], 

alkane alkene aromatic hydrocarbon 

ethoxide isopropoxide tert-butoxide 
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[190] crystalline structures have been identified (Table III-6, p.88). It is possible that in the 

films obtained in our study, small fractions of monoclinic and tetragonal are present in the 

predominately amorphous phase. Additionally, several authors have reported the presence of 

peaks at 480, 608, 650 and 825 cm-1 and assigned them to C=O vibration in O-C=O structure 

[73], [191]. 

 

TTIP 

FTIR spectrum of thin film deposited in 50% TTIP/50% O2 plasma is presented in 

Figure III-18 (see Annex of this work for enlarged image of the spectrum). The peaks in the 

spectrum have been assigned to vibrations of C-H, O-H, C-O, C=O, C-C, C=C and Ti-O 

bonds. In the following analysis, the spectrum is divided into four regions.  

 

3750-2750 cm-1 region 

In this IR region various peaks overlap, corresponding to O-H and C-H bond stretching 

vibrations. The wide band, centred at 3330 cm-1, is characteristic of O-H bond vibrations in 

H-bonded and non H-bonded H2O [177], [178]. Peaks appearing at 3689, 3675 and 3655 cm-1 

were assigned to bridged OH [177], [178], [192]. Peaks identified at 2969, 2932, 2909, 2870, 

2843 cm-1 originate from the stretching vibrations of C-H bond in CHx=1,2,3 [181]. 

 

1800-1250 cm-1 region 

In the 1800-1250 cm-1 region, a complex band appears. This band was divided into five 

peaks centred at 1676, 1558, 1450, 1372 and 1330 cm-1. 1676 cm-1 peak was attributed to 

C=O bond stretching in an environment like carbonate, ester, ketone and aldehyde and to 

C=C bond stretching in alkene-like structures. Large peak at 1558 cm-1 is principally the 

result of C=O stretching in carbonate and formate structures bonded to Ti atoms [179], [193], 

O-H bending in absorbed H2O and C=C stretching in environments similar to aromatic 

hydrocarbons and alkenes [181]. The wide band that includes 1450, 1372 and 1330 cm-1 

peaks, was assigned to vibrations of C-O bond in carbonate and formate structures bonded to 

Ti atoms [179], [193], [194]. C-H bonds might as well contribute to this band. In this same 

region, peaks in the IR spectra of liquid TTIP and DFT spectra of a TTIP molecule have been 

assigned to C-H bond vibrations (Chapter II.4.2, p.50). 
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Figure III-18: FTIR spectrum of thin film deposited in 50% TTIP/50% O2 plasma (ptotal = 1 mTorr, PMW = 800 W, 

Vsubstrate = floating). 

 

1250-960 cm-1 region 

In the 1250-960 cm-1 range, three peaks have been identified: 1163, 1130, 1011 cm-1. Peaks 

corresponding to C-O vibration in an environment such as ethers, alcohols, esters and 

carbonates have been observed in this IR region [181]. On the other hand, three distinctive 

peaks have been observed in this IR region in the spectra of liquid TTIP [151]: 1161, 1115, 

988 cm-1, and synthetic spectra of TTIP molecule: 1141, 1108, 996 cm-1 (Chapter II.4.2, 

p.50). These peaks have been assigned to vibrations of C-O, C-C and C-H and Ti-O bonds. In 

several studies of thin film FTIR spectra, peaks detected in this range have been assigned to 

Ti-O-C vibration in alkoxy groups. Based on the above-mentioned literature findings and the 

calculated IR spectra of TTIP molecule, the peaks appearing in this region were primarily 

attributed to C-O bond stretching in titanium alkoxides and C-C bond vibration in alkane-like 

environment.  

 

960-400 cm-1 region 

The band spreading over 960-400 cm-1 was primarily assigned to Ti-O bond vibration. The 

broadness of Ti-O peak may be a sign of the amorphous film nature and of the Ti-O bonds in 

environment rich in carbon atoms and/or hydroxyl groups [188]. Nevertheless, crystalline 

phases may also contribute to this large band. Peaks corresponding to anatase and rutile phase 

have been identified in various studies of thin films deposited by CVD, PECVD, sol-gel and 

spray pyrolysis (see peak positions and corresponding references in Table III-6).  

 

4000 3500 3000 2500 2000 1500 1000 500

0.000

0.005

0.010

0.015

0.020

0.025

Ti-O 

C-O

C-C

A
b

s
o

rb
a

n
c
e

Wavenumber (cm
-1
)

C-H

O-H

C=O

C=C

O-H

C-O

C-H

O-H



Chapter III 

 

 

88 

Table III-6: FTIR peaks assigned to Zr-O and Ti-O crystalline phases: literature review. 

Assignation Peak position (cm-1) References 

Zr-O 
monoclinic 407, 409, 440, 490, 507, 574, 583, 629, 772 [70], [112], [189], [190] 

tetragonal 432, 436, 466, 467, 584 [70], [112], [190] 

Ti-O 
anatase 435, 436, 440, 450, 640, 643, 748 [13], [76], [194]–[196] 

rutile 420, 423, 460, 496, 498, 500, 535, 608, 610, 678, 799 [13], [194]–[199] 

 

III.3.2.2 Thin film FTIR spectra: ZTB vs TTIP 

Figure III-19 shows a graphical comparison of FTIR spectra corresponding to thin films 

deposited in 50% ZTB/ 50% O2 and 50% TTIP/50% O2 plasmas.  

 

Figure III-19: FTIR spectra of thin films deposited in ZTB/O2 and TTIP/O2 plasmas                                         

(ptotal = 1 mTorr, PMW = 800 W, Vsubstrate = floating). Absorbance: normalised by thin film thickness. 

 

Four distinct bands were formed in both spectra. The band attributed to O-H and C-H bond 

vibrations extends over the same IR range (3750-2750 cm-1) in both thin films deposited in 

ZTB and TTIP plasma. Position and form of the peaks corresponding to C-H stretching are 

almost identical. In the 960-400 cm-1 part of the spectra, peaks attributed to Zr-O and Ti-O 

bonds appeared. Peak positions and corresponding assignations are reported in Table III-7. 

A complex band in 1750-1250 cm-1 region is displayed in more detail in Figure III-20. The 

band spreads over the same IR range in both spectra of ZrOxCyHz and TiOxCyHz films. This 

band was attributed mainly to C=O and C-O bonds in carbonate structures bonded to metal 

atoms: Zr or Ti. At first, we may notice small differences in peak forms and differences in 

peak height relative to other peaks in the same spectrum. Nevertheless, all four relatively wide 

peaks and one shoulder can be observed in spectra of both types of films.  
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Figure III-20: Comparison of FTIR 1800-1250 cm-1 spectral region corresponding to thin films deposited in 

ZTB/O2 and TTIP/O2 plasmas (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate = floating).                                

Absorbance: normalised by thin film thickness. 

 

Table III-7: Identification of IR absorption peaks corresponding to thin films deposited in ZTB/O2 and TTIP/O2 

plasma (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate = floating). 

ZTB / O2 TTIP / O2 

Peak position (cm-1) Assignation Peak position (cm-1) Assignation 

3750-2750 
O-H stretching in 

absorbed H2O 
3750-2750 

O-H stretching in 

absorbed H2O 

3688, 3670, 

3649 

O-H stretching in 

Zr-OH 
3689, 3675, 3655 

O-H stretching in 

Ti-OH 

2966, 2931, 2911, 

2872, 2838 

C-H stretching 

in CHx 

2969, 2932, 2909, 

2870, 2843 

C-H stretching 

in CHx 

1699 
C=O stretching 

C=C stretching 
1676 C=O stretching 

C=C stretching 

1577 

C=O stretching 

C=C stretching 

O-H bending 

1558 

C=O stretching 

C=C stretching 

O-H bending 

1436, 1374, 

1315 

C-O stretching 

O-H bending 

C-H bending 

1450, 1372, 1330 

C-O stretching 

O-H bending 

C-H bending 

1230, 1200, 1152 
C-C and C-O in 

ZrOC(CxHy) 
1163, 1130 

C-C and C-O 

TiOC(CxHy) 

1024 C-O in ZrOC(CxHy) 1011 C-O in ZrOC(CxHy) 

900-400 Zr-O 960-400 Ti-O 

 

A noticeable difference between the spectra in question was found in the 1250-900 cm-1 IR 

region, as it can be seen in Figure III-21(a). Four peaks are observed in TiOxCyHz films, while 

five peaks appear in ZrOxCyHz films. These peaks were assigned to C-O and C-C bond 

vibrations in metal alkoxide structures. The peaks at 1230 cm-1 and 1200 cm-1 in ZrOxCyHz 

look similar in form and relative intensities to 1163 cm-1 and 1130 cm-1 peaks in TiOxCyHz. 
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However, they are shifted to higher wavenumbers by ~70 cm-1. To further confirm the 

analogous assignations (C-O and C-C in MOC(CxHy)), we have looked into the FTIR 

signatures of liquid ZTB and TTIP [11], [151] and the theoretically built vibrational spectra 

(Chapter II.4, p.48). The observed shift appears in both synthetic spectra, and (Figure 

III-21(b)) in the spectra of liquid ZTB and TTIP as reported in Table III-8.  

 

  
Figure III-21: Comparison of 1250-900 cm-1 spectral region corresponding to: (a) thin films deposited in 

ZTB/O2 and TTIP/O2 plasmas (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate = floating; absorbance: normalised by 

film thickness); (b) ZTB and TTIP molecules synthetic IR spectra obtained by DFT calculations. 

 

Table III-8: Absorption peaks observed in the 1250-900 cm-1 region in FTIR spectra of liquid ZTB and TTIP 

[11], [151]. 

Wavenumber: ῦ (cm-1) 
∆ῦ (cm-1) 

ZTBliquid TTIPliquid 
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III.3.2.3 Evolution of thin film FTIR spectra as a function of gas mixture composition: 

ZTB vs TTIP 

In the following text, we focus on evolution of thin film FTIR spectra with addition of O2 

to the precursor/O2 gas mixture (see Figure III-22). To be able to compare the IR spectra of 

different films, the spectra were normalised by thin film thickness.  

 

 
Figure III-22: FTIR spectra of thin films deposited at different O2 proportion in ZTB/O2 and TTIP/O2 plasmas 

(ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= floating). Absorbance: normalised by thin film thickness. 

 

As it can be observed in the previously introduced identification of FTIR spectra, IR bands 

present in thin films deposited in ZTB/O2 plasma were also present in films deposited in 

TTIP/O2 plasma. Evolution of chemical bonding is analysed simultaneously for films 

deposited in ZTB and in TTIP plasmas. Furthermore, the FTIR spectra (4000-400 cm-1) are 

divided into four zones to facilitate a more detailed analysis.  
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4000-2750 cm-1 region 

Figure III-23 shows the evolution of FTIR spectra in 4000-2750 cm-1 range. Top image 

corresponds to films deposited in ZTB/O2 plasma, whereas the bottom image represents the 

spectra of films deposited in TTIP/O2 plasma. 

 

 

Figure III-23: FTIR spectra (3750-2750 cm-1) of thin films deposited at different proportion of O2 gas in  a) 

ZTB/O2 and b) TTIP/O2 gas mixture (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= floating). Absorbance: normalised 

by thin film thickness. 
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C-H stretching band evolves in the same direction in both films deposited in ZTB and in 

TTIP plasmas.  C-H stretching band is indicative of the amount of hydrocarbon incorporated 

in the films. As gas mixtures become rich in oxygen and deficient in precursor gas, the 

number of hydrocarbons in the films decreases. This observation is in accordance with XPS 

measurements that show a decrease in carbon atomic percentage (Table III-4, p.72), as well as 

with OES analysis that indicates a decrease in CH and H species concentration in the plasma 

phase (Chapter III, p.74). However, even at high O2 proportion (95%), the band representing 

C-H bonding, although weak, is still present.  

 

1800-1250 cm-1 region 

 

Figure III-24:FTIR spectra (1800-1250 cm-1) of thin films deposited at different proportion of O2 gas in  a) 

ZTB/O2 and b) TTIP/O2 gas mixture (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= floating). Absorbance: normalised 

by thin film thickness. 
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A remarkable similarity is observed in the evolution of the 1800-1250 cm-1 band between 

films deposited in ZTB and in TTIP plasmas. The spectra are visible in Figure III-24 and the 

evolution of the band surface area with O2 is presented in Figure III-25.  

As O2 gas proportion is increased in the precursor/O2 gas mixture, the band absorbance 

increases to reach a maximum at ~80% of O2.   With further addition of O2 to the gas mixture, 

from 80 to 95%, the absorbance decreases sharply. This behaviour implies that the major 

contribution to this band comes from C=O and C-O bonds in structural environments rich in 

oxygen atoms such as carbonates. 

Carbonate “core” is composed of three oxygen atoms and one carbon atom: CO3
2-. 

Evidently, oxygen atoms are needed to construct carbonate structures, therefore, with an 

increasing O2 gas proportion in the gas mixture, the concentration of C-O and C=O bonds 

increases in the oxygen-atom rich environment in the films. At the same time, precursor, a 

source of carbon atoms, is diluted as O2 is added to the gas mixture. The effect of dilution is 

far more prominent when O2 proportion in the gas mixture increases from 80 to 95% than it is 

during the increase from 0 to 80%: O2-to-precursor molecule ratio increases from 4 to 19, 

compared to an increase from 0 to 4, respectively. Thus, after achieving the maximum (at 

~80% O2), plasma becomes deficient in carbon atoms as we approach 95% of O2 in the gas 

mixture, due to precursor dilution and the decreasing concentration of C=O and C-O bonds in 

the films. Noteworthy is the analogous behaviour of CO and CO2 concentration in the plasma 

phase as indicated by OES analysis (Chapter III, p.74). Besides C=O and C-O bonds, C=C, O-

H and C-H bonds may contribute to the band in this region as well. 

 

 

Figure III-25: Change in surface area of peaks observed in FTIR spectra of thin films deposited in ZTB/O2 and 

TTIP/O2 plasmas: 1800-1250 cm-1 band (primarily C-O and C=C in carbonate-like environment). 
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1250-960 cm-1 region 

Figure III-26 shows FTIR spectra of (a) zirconium oxide and (b) titanium oxide films in 

1250-950 cm-1 range. Peaks present in this range have been assigned to C-O and C-vibrations 

in metal alkoxide groups (M-O-C(CxHy), M: Zr or Ti atom). With oxygen gas addition, the 

peaks decrease in absorbance and become undetectable in O2-rich conditions (at 80% O2 in 

TTIP and at 95% O2 in ZTB). The evolution of the band surface area is plotted in Figure 

III-27. 

 

Figure III-26: FTIR spectra (1250-950 cm-1) of thin films deposited at different proportion of O2 gas in  ZTB/O2 

and TTIP/O2 gas mixture (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= floating). Absorbance: normalised by thin 

film thickness. 
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Figure III-27: Change in surface area of FTIR peaks corresponding to films deposited in ZTB/O2 and TTIP/O2 

plasmas: 3050-2800 cm-1 band (C-H in CHx); 1250-950 cm-1 band (C-O and C-C in metal alkoxide groups). 

 

 

960-400 cm-1 region 

The band observed in 960-400 cm-1 range in FTIR spectra of films deposited in ZTB and in 

TTIP plasmas results from vibrations of Zr-O and Ti-O bonds, respectively. With addition of 

O2 gas to the gas mixture, the absorbance of this band increases. This indicates an increase in 

the concentration of Zr-O and Ti-O bonds in the films. FTIR observations agree with XPS 

measurements: carbon atomic % decreases and atomic % of Zr and O increase with addition 

of O2 to plasma gas mixture. 

III.3.3 Evolution of film chemical composition and chemical bonding: summary 

The chemical composition and bonding of thin films deposited in ZTB and TTIP plasmas 

were studied as a function of O2 gas proportion in the gas mixture. Both types of films 

exhibited similar behaviour. Overall, the carbon atomic percentage decreased, while that of 

oxygen and metal atoms (Zr or Ti) increased. Changes in these atomic fractions are mutually 

dependent, thus the observed evolution might result from the actual increase in deposition of 

the metal atoms and oxygen or the decrease in the deposition of carbon atoms. The former is 

improbable since a decrease in the growth rate was detected. Furthermore, the etching of 

carbon atoms was indicated by the OES study (e.g. presence of CO2, CO in the plasma). 

These findings, coupled together, imply that the decrease in incorporation of carbon atoms 

into the film governs the change of the film chemical composition. 
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The changes in the film chemical composition agree with the changes observed in 

chemical bonding. The peaks corresponding to M-O bonds (M: Zr or Ti) increased in intensity 

with O2 gas addition to the gas mixture. The decrease in carbon atomic fraction was 

evidenced in the decrease of C-H and C-C bonding. These bonds were replaced by C-O bonds 

organised in carbonate-like structures (carbonate “core”: one C atom per 3 O atoms). When 

the gas mixture became very rich in oxygen gas (>80% O2), the fraction of C-O bonds 

decreased due to the extreme dilution of the precursor, i.e. the deficiency of available carbon 

atoms. 

 

 

 

Figure III-28: FTIR spectra (950-400 cm-1) of thin films deposited at different proportion of O2 gas in  a) ZTB/O2 

and b) TTIP/O2 gas mixture (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= floating). Absorbance: normalised by thin 

film thickness. 
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 Thin film morphology 

The following text presents morphological and topographical features of films synthesised 

at different gas compositions. First, structural characteristics of films deposited in ZTB/O2 

and in TTIP/O2 plasmas are exposed in a descriptive manner. This is followed by a 

comparative discussion of the morphological evolution of both types of films. All the 

examined films were in the 110-190 nm thickness range. SEM imaging has been used to study 

the surface and the cross-section morphology (direction: perpendicular to the substrate), while 

AFM has been employed to examine the film topography.  

 

III.4.1 Evolution of morphological and topographical characteristics  

ZTB 

AFM images of thin films deposited at 0%, 50% and 95% of O2 are shown in Figure 

III-29. This topographical study confirmed the increase of thin film surface roughness with O2 

proportion in the gas mixture (Table III-9). The roughness parameter Ra increased from 0.27 

nm at 0% O2, over 0.38 nm at 50% O2 to 4.90 nm at 95% O2. A more drastic difference was 

observed in the change of Rmax: from 2.5 to 38 nm as O2 increased from 0 to 95%, 

respectively. High surface roughness at 95% of O2 was consistent with thin film columnar 

morphology observed by SEM. 

Figure III-30 shows cross-sectional SEM micrographs of thin films deposited at different 

proportions of O2 gas in ZTB/O2 gas mixture. Thin films deposited at 0-80% of O2 exhibited 

relatively uniform morphology over all the thickness without defined and organised features. 

We observed fine, randomly oriented, granular-like forms with diameters of a few nanometres 

throughout the film cross-sections. SEM images of films deposited at 50% and 80% of O2 

showed voids between the films and corresponding substrates. The films had possibly 

detached from the substrates during the cleavage procedure. This step was a part of sample 

preparation process for SEM imaging. Another cause of the detachment could have been film 

stress. To comment any further on the latter possibility, specific mechanical measurements of 

film extrinsic and intrinsic stresses would be necessary, and these were outside the scope of 

our research project. At 95% of O2, columnar morphology had developed. The closely stacked 

columns, 10-40 nm in width, had grown perpendicular to the substrate surface. It appeared 

that the columns had grown directly from the interface with the substrate and that their width 
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increased with height. As in previous conditions, the film consisted of small granular-like 

nano-formations that were, in this case, organised in columnar morphology.  

 

 

Figure III-29: AFM surface images of thin films grown in ZTB/O2 plasma (ptotal = 1 mTorr, PMW = 800 W, 

Vsubstrate= floating): (a) 100% ZTB, (b) 50% ZTB/50% O2, (c) 5% ZTB/95% O2.                                                        

Surface area measured: 1µm2. 

 

SEM imaging was employed to investigate film surface morphology, as can be seen in 

Figure III-31. Thin films deposited at 0-65% of O2 do not exhibited particular surface 

structuration. The surfaces were formed by very fine, densely packed, grains. At 80% of O2, it 

was possible to notice contours of what seemed to be an onset of columnar shapes observed 

from above, although it was hard to differentiate any defined features. At 95% of O2, closely 

stacked and irregularly shaped structures form the surface. These structures correspond to 

columnar tops. Each top consisted of fine nanometric grains observed in other films as well. 

Most tops had diameters in the 20-40 nm range, which agreed with columnar widths observed 

in cross-sectional micrographs. 

 

a) 100% ZTB b) 50% ZTB / 50% O2 

c) 5% ZTB / 95% O2 
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Figure III-30: SEM cross-sectional images of thin films deposited at different gas compositions in ZTB/O2 

plasma (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= floating). Thin film thickness: 140-170 nm. 
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Figure III-31: SEM surface images of thin films deposited at different gas compositions in ZTB/O2 plasma                 

(ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= floating). Thin film thickness: 140-170 nm. 
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TTIP 

AFM images of thin films deposited in TTIP plasma at different fractions of O2 gas in the 

gas mixture are shown in Figure III-32. and determined roughness values presented in Table 

III-9 reveal the increase in surface roughness as O2 gas proportion in gas mixture increased.  

 

 

Figure III-32: AFM surface images of thin films grown in TTIP/O2 plasma (ptotal = 1 mTorr, PMW = 800 W, 

Vsubstrate= floating): (a) 100% TTIP, (b) 50% TTIP/50% O2, (c) 5% TTIP/95% O2.                                                       

Surface area measured: 1µm2 

 

Roughness parameter Ra equalled 0.39 nm, 0.53 nm and 0.98 nm at 0%, 50% and 95% of 

O2, respectively. As O2 proportion in the films increased from 0 to 95%, Rmax increased from 

3.86 to 9.07 nm. Surface morphology, observed by SEM, agreed with AFM analysis. 

 

 

 

 

a) 100% TTIP b) 50% TTIP / 50% O2 

c) 5% TTIP / 95% O2 
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Table III-9: AFM surface roughness measurements corresponding to thin films grown in ZTB/O2 and TTIP/O2 

plasma (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= floating). Surface area measured: 1µm2. 

O2 in the 
gas mixture 

ZTB / O2 TTIP / O2 

Ra (nm) Rmax (nm) Ra (nm) Rmax (nm) 

0 % 0.27 2.5 0.39 3.86 

50 % 0.38 4.6 0.53 5.42 

95 % 4.90 38 0.98 9.07 

 

SEM images of thin film cross sections are presented in Figure III-33. These cross-

sectional images provided insight into the film bulk and allowed investigating morphology of 

thin films deposited at different gas compositions in TTIP/O2 plasma. Thin films obtained at 

0-65% of O2 displayed uniform morphology with no distinguishable structures. All the films 

exhibited fine granular nature. At 80% of O2, the morphology changed, and two different 

layers were observed: a thin, dense bottom layer with no apparent structuration and a 

columnar, upper layer.  Relatively wide columns (20-40 nm in width) started to grow 

perpendicular to the substrate after thin film thickness reached 20-30 nm. With further 

increase in O2 gas, at 95%, columns had grown from the interface with the substrate. These 

narrow columns, with widths of 10-20 nm, were densely stacked. 

Figure III-34 shows SEM surface images of thin films deposited at different gas 

compositions. At 0-65% of O2 in the gas mixture, no defined features were observable. The 

film surfaces exhibited fine granular nature that was already evidenced in the film bulk by 

cross-sectional SEM images. The surfaces seemed compact without any developed cracking. 

Increase in the O2 proportion to 80% led to the appearance of columnar growth. In these 

conditions, the surface was composed of mounds with diameters in 10-40 nm range. These 

formations consisted of fine granular-like structures. At 95% of O2, most surface mounds 

decreased in size, to diameters of 10-15 nm. 
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Figure III-33: SEM cross-sectional images of thin films deposited at different gas mixture ratios in TTIP/O2 

plasma (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= floating). Thin film thickness: 120-170 nm. 
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Figure III-34: SEM surface images of thin films deposited at different gas compositions in TTIP/O2 plasma (ptotal 

= 1 mTorr, PMW = 800 W, Vsubstrate= floating). Thin film thickness: 120-170 nm. 
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III.4.2 From low to high oxygen gas fraction in plasma gas mixture: growth mode 

evolution 

The preceding paragraph provides insight into morphology of the thin films deposited in 

ZTB and TTIP plasmas. As oxygen gas was added to the plasma gas mixture, the thin film 

growth mode drastically changed. In both types of plasmas, the film microstructure evolved 

from homogeneous to columnar. At O2-poor conditions, there were no apparent 

morphological features formed in the films, whereas at O2-rich conditions, the film 

morphology was organised in columnar structures.  

The columnar growth has already been observed in zirconia and titania thin films deposited 

by PECVD [71], [73], [95], [96]. Besides experimentally observed columns, columnar thin 

film morphologies have been investigated by theoretical simulations [135], [200], [201]. 

Among the theoretical studies, a Monte Carlo (MC) model, developed by a group at the 

Institute of Material Science in Sevilla (Spain) [135], agrees fairly well with our experimental 

conditions. In the MC model, the species are assumed to have low energy and to follow an 

isotropic flow distribution. The thermal diffusion, desorption and re-emission processes have 

been neglected. In our deposition process, the substrate was at floating potential, thus the 

incoming species were expected to have low energy; the substrate temperature was relatively 

low (<100°C), so thermal diffusion could be disregarded. Due to very low working pressure, 

the species flow should have been predominately isotropic.  

The MC model of interest  focuses on a physical aspect of the problem and disregards the 

chemical interactions [135]. Each particle in the model represents a Ti species that follows an 

isotropic momentum distribution function towards the substrate. After arriving at the substrate 

surface, the particle is deposited and instantly transformed into a TiO2 block. The MC 

simulation showed that, in the imposed conditions, the development of the columnar 

structures could be explained by a geometrical shadowing phenomenon. Due to the isotropic 

flow distribution of incoming species, the surface shadowing mechanism governs the thin 

film growth process resulting in films with columnar morphology [202]. 

In the metalorganic PECVD process, the chemical composition of plasma is fairly 

complex. Different precursor fragments, containing a metal atom and many or few organic 

parts, arrive at the surface of the substrate/film to be physisorbed. At the same time, oxygen 

species impinge at the surface and possibly react with the fragment enabling chemisorption of 

the metal atom as well as desorption of the organic part of the fragment. This several-step 

operation, named “the sticking mechanism”, is schematically presented in Figure III-35. In 
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triggering the development of columnar morphology, the very complex surface processes 

should play a crucial role along with the geometrical shadowing [200], [202], [203].  

As the plasma gas mixture evolves from O2-poor to O2-rich, the chemistry of the plasma 

phase changes and influences the physics and chemistry of surface processes. In the following 

text, we attempt to explain the difference between “the sticking mechanisms” of the two 

different conditions in a very simplified manner. A physisorbed precursor fragment containing 

the metal atom is relatively mobile due to low van der Waals bonding energy. This fragment 

will be able to move until it encounters an oxygen species. Thus, depending on the 

impingement rate of oxygen species, it is possible for the fragment to move more or less. If it 

moves more, the shadowing effect will be diminished, and the resulting film will be compact 

with no defined features as in the case of O2-poor conditions. If the fragment has no time to 

diffuse, due to high arrival rate of oxygen species, the shadowing process will lead to 

columnar growth. 

 

 

Figure III-35: Simplified schematic representation of the “sticking mechanism”. 

 

 
Figure III-36: SEM cross-sectional images of thin films deposited in 20% ZTB/80% O2 and 20% TTIP/80% O2 

plasmas (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= floating). 
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Figure III-36 shows the SEM cross-sectional images of films deposited at 80% of O2 gas in 

the gas mixture. In titania-like films, the columnar morphology appears at a lower proportion 

of O2 when compared to the films deposited in ZTB plasma. This result was assumed to be 

due to the difference in the size of the organic part of the precursor molecules. Since there are 

fewer carbon atoms in TTIP than in ZTB, oxygen species are more effective and the “sticking 

mechanism” leading to columnar growth is activated at lower amounts of O2 gas in the gas 

mixture. This difference was also evidenced in the XPS investigation: at 80% O2/20% 

precursor, there is 24.1 at.% of carbon in titania-like films and 37.9 at.% of carbon in 

zirconia-like films. 

III.4.3 Growth mechanisms in low pressure O2-rich ZTB and TTIP plasmas 

A striking difference was observed in the column widths between films obtained in ZTB 

and TTIP plasmas at 95% O2/5% precursor (Figure III-37). At the same height, the columns 

formed in titania-like film are thinner (10-20 nm) in comparison with film grown in ZTB 

plasma (20-40 nm). The AFM analysis showed a significant difference in surface roughness 

between the films: the roughness parameter Ra equalled 0.98 nm and 4.90 nm for films 

deposited in O2-rich TTIP and ZTB plasma, respectively. 

 

 
Figure III-37: SEM cross-sectional images of thin films deposited in oxygen-rich ZTB and TTIP plasmas (ptotal = 

1 mTorr, PMW = 800 W, Vsubstrate= floating). 

 

The complexity of a PECVD process renders it difficult to easily pinpoint specific 
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could further corroborate potential explanations. A collaboration was established with Dr. A. 

Palmero and Dr. R. Alvarez at Institute of Material Science in Sevilla, Spain, who have 

extensively studied thin film microstructure by Monte Carlo (MC) simulations as well as 

experimental plasma deposition processes [58], [135], [204]–[207].  

 

III.4.3.1  Monte Carlo simulation of thin film growth 

Figure III-38 shows the schematic presentation of thin film growth process in the MC 

simulation. MC models employed to simulate ZrO2 and TiO2 thin film growth consider that 

the depositing particles are metal species, Zr or Ti.  Each particle arrives at the surface from 

an initial random point. Depositing particles follow the direction defined by a polar angle of 

incidence θ [0, π/2) and an azimuthal angle φ [0, 2π). Particle direction is randomly calculated 

by defining an incident angle distribution function per unit time and unit surface. 

After being deposited, the metal particle Zr or Ti is immediately transformed into a metal 

dioxide block of ZrO2 or TiO2, respectively. Each particle occupies a cubic volume ∆3, where 

∆ equals 0.33 nm, the average distance between Zr or Ti atoms in ZrO2 or TiO2, respectively. 

Typical simulated deposition rate is ~10 atoms/nm2s, i.e. every 0.1 second 1 atom is 

deposited on 1 nm2.  

All of the models included the following constraints which were in agreement with the 

experimental conditions (as explained in paragraph III.4.2, p.106):  

▪ no thermal mobility, desorption or re-emission, 

▪ low energy of the incoming species. 

 

 
Figure III-38: Schematic presentation of thin film growth simulated by MC (adapted from [135]). 

 

Strong correlation has been found between directionality of impinging particles and the 
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directional flux leads to lower surface roughness and thinner columns. Accordingly, cause of 

the difference between morphologies formed in ZTB and TTIP plasma could lie in the particle 

flux distribution. TTIP fragment population might have a narrower momentum distribution: 

partially isotropic particle flux with preferential perpendicular direction. This hypothesis, 

based on different particle flux distribution was first modelled by MC.  

MC model of ZrO2 growth imposed the following conditions:  

▪ isotropic flux, 

▪ no surface relaxation (particle deposited at the point of first contact with the surface), 

▪ incoming species of low energy, 

▪ no thermal mobility, desorption or re-emission. 

 

 

Figure III-39: Cross-sectional and surface images of thin films obtained by (a, c) PECVD from ZTB/O2, (b, d) 

MC simulation of ZrO2. PECVD process parameters: 5% ZTB/ 95% O2, ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= 

floating. MC model parameters: isotropic flux, no relaxation at the surface. 
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Morphology of the simulated ZrO2 film corresponded remarkably to morphology of the film 

obtained by PECVD. Cross-sectional and surface images of films obtained by PECVD and 

MC are presented in Figure III-39. We can observe a striking similarity between the modelled 

film and the film deposited by PECVD, both in the cross section and surface images. 

In the simulation of TiO2 growth, particle flux was partially isotropic with preferential 

perpendicular direction towards the substrate. This was the only differing parameter between 

the simulation of ZrO2 and TiO2. Conditions of TiO2 simulated growth were:  

▪ perpendicular flux direction favoured, 

▪ no surface relaxation (particle deposited at the point of first contact with the surface), 

▪ incoming species of low energy, 

▪ no thermal mobility, desorption or re-emission. 

  

 

Figure III-40: Cross-sectional and surface images of thin films obtained by (a, c) PECVD from TTIP/O2, (b, d) 

MC simulation of TiO2. PECVD process parameters: 5% TTIP/ 95% O2, ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= 

floating. MC model parameters: perpendicular flux direction favoured, no relaxation at the surface. 
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Resulting morphology of simulated TiO2 film disagrees completely with the morphology 

observed in PECVD as it can be seen in Figure III-40. Columnar structures are distinctly 

visible in the SEM cross-sectional image of the PECVD film, whereas in the image of 

simulated film we cannot distinguish any defined structures. This simulation indicates that 

partially isotropic particle flux with preferential perpendicular direction is not the defining 

parameter that leads to the growth of thinner columnar structures. 

It is possible that surface conditions and reactions are significantly different between ZTB 

and TTIP plasmas. Precursor molecules have different physico-chemical characteristics. 

These two molecules are composed by different central atoms and different number of carbon 

and hydrogen atoms, ZTB: ZrO4C16H36 vs TTIP: TiO4C12H28. Central metal atoms, 𝑍𝑟91.2
40  vs 

𝑇𝑖47.9
22 , exhibit different characteristics (e.g. electronegativity χZr=1.33 vs χTi=1.54). In 

PECVD, precursor fragment containing a metal atom arrives at the substrate surface where it 

can be physisorbed. Depending on the complex surface processes such as electromagnetic 

interactions between adsorbed particles and the substrate, physisorbed fragment might diffuse 

to a near, energetically more favourable position. This process might have a strong influence 

on film morphology. To alleviate any confusion with thermally induced mobility of 

chemisorbed species, we address the mobility of physisorbed particles as relaxation. 

We examined this hypothesis by an MC model which included the difference in surface 

relaxation between ZrO2 and TiO2 growth. The differing parameter, introduced in the 

simulation of TiO2 film, was the possibility of relaxation. After landing on the surface, Ti 

species could migrate a few ångström to a near, more energetically stable position where it 

was then deposited. On the other hand, in the simulation of ZrO2 film (p.110), Zr species were 

deposited at the point of first contact with the film surface.  

Parameters set in the second MC model of TiO2 growth were: 

▪ possible surface relaxation, 

▪ isotropic flux, 

▪ incoming species of low energy, 

▪ no thermal mobility, desorption or re-emission. 

Simulation resulted in a remarkable similarity between the simulated film and the film 

obtained by PECVD. The comparison of the results can be seen in cross-sectional and surface 

images in Figure III-41. The microstructures of modelled films strikingly match the 

microstructures of films grown in TTIP/O2 plasma.  
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Figure III-41: Cross-sectional and surface images of thin films obtained by (a, c) PECVD from TTIP/O2, (b, d) 

MC simulation of TiO2. PECVD process parameters: 5% TTIP/ 95% O2, ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= 

floating. MC model parameters: possible surface relaxation, isotropic flux. 

 

Based on the findings of the MC theoretical study, it is likely that the Ti species, 

physisorbed at the film surface, in 5% TTIP/95% O2 PECVD might have a higher probability 

of diffusion to a near, energetically more stable, position in comparison with species created 

in 5% ZTB/95% O2 plasma. Probability of relaxation depends on physico-chemical 

characteristics of the incoming particles, the film surface and their mutual interaction. The 

extreme complexity of the phenomena in question makes it difficult to completely reveal the 

plasma / surface processes. Nevertheless, combining the experimental and theoretical methods 

has significantly improved our insight into the O2-rich metalorganic PECVD. 
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 Characterization of macroscopic physical properties 

Thin films synthesised at 100% precursor and 5% precursor/95% O2 plasmas have been 

probed by spectroscopic ellipsometry (SE), ellipsometric porosimetry (EP) and X-ray 

reflectometry (XRR) to obtain values of thin film refractive index, nanoporosity profile and 

density, respectively.  

EP analysis (Figure III-42) provided the values of nanosized pore proportion in the films. 

By the EP measurements in question, only open porosity could be “seen” with pore diameters 

in 0.47-50 nm range.  

     
Figure III-42: Refractive index as a function of pore diameter measured by EP during ethanol adsorption and 

desorption on thin films deposited in ZTB/O2 and TTIP/O2 plasmas (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= 

floating). 

 

Figure III-43 shows the data obtained by means of XRR. In the calculation of the density 

values, the chemical composition observed by XPS investigation was taken into account 

(Table III-4, p.73). 

 
Figure III-43: XRR measurements of reflectivity as a function of an incident angle for thin films deposited in 

ZTB/O2 and TTIP/O2 plasmas (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= floating). 
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Table III-10 contains the values of the refractive index, density and nanoporosity 

corresponding to thin films deposited in ZTB/O2 and TTIP/O2 plasmas. The refractive index 

increased from 1.59 to 1.84 as gas mixture changed from 100% ZTB to 5% ZTB/95% O2. The 

density of the zirconia-like films also increased from 2.09 to 3.58 g/cm3. This behaviour was 

expected since thin films evolved from being highly organic to being almost inorganic as O2 

gas was added to the gas mixture (Table III-4, p.73). Likewise, refractive index of films 

deposited in TTIP plasmas increased: from 1.73 to 2.10. The density, starting at 2.18 g/cm3 at 

100% TTIP, reached 2.94 g/cm3 in O2-rich conditions.  

  

Table III-10: Refractive index, density and nanoporosity of the thin films deposited in ZTB/O2 and TTIP/O2 

plasma (ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= floating). 

Plasma gas mixture 
Refractive index  

(at λ = 633 nm) 

Density 

(g/cm3) 
Nanoporosity (%) 

(dpore = 0.5-50.0 nm) 

100% ZTB 1.59 2.1  7.5 

5% ZTB/ 95% O2 1.84 3.6 1.9 

100% TTIP 1.73 2.2 0 

5% TTIP/ 95% O2 2.10 2.9 0 

 

Values of the optical properties of metal oxide materials depend on the crystalline phase 

and the preparation method. Refractive index of ZrO2 and TiO2 material in the visible/infrared 

wavelength range equals ≥2.0 and ≥2.4, respectively [209]–[212]. The density of zirconia is 

found in ~5.3-6.2 g/cm3 range and the density of titania has been measured in the 3.8-4.2 

g/cm3 range. These values are higher than the refractive indices and density values 

corresponding to the films obtained in our study at O2-rich conditions. This could be 

explained by the presence of carbon atoms and porosity in the films. The relatively high 

carbon content measured at the film surface, 21.3 at.% in zirconia-like film and 15 at.% in 

titania-like film, implies a non-negligible fraction of carbon atoms in the thin film bulk. The 

nanoporosity proportion decreased to 1.9 % at 5% ZTB/95% O2, while in titania-like films it 

has not been observed. Still, the total porosity content, including closed pores and the pores 

larger than the ones that would be observed by EP, may be important. 

 

 Conclusion 

In this chapter, we have studied the influence of oxygen gas percentage of metalorganic/O2 

plasma gas mixture on the thin film growth process and the final film characteristics. In 
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general, the characteristics of the films corresponding to ZTB and to TTIP plasmas evolve in 

the same manner. 

It has been shown that the films evolve from highly organic to almost inorganic in nature. 

Carbon atoms are less deposited due to precursor dilution and etching achieved by the 

increasing number of oxygen atoms. Precursor dilution and thin film etching induce a 

decrease of the deposition rate in plasma gas mixture with over 50% of O2 gas.  

The changes in the film chemical composition are also evidenced in the chemical bonding. 

As the O2 gas is added to the gas mixture, the hydrocarbon rich environments such as 

MOC(CxHy) are replaced by carbonate-like structures rich in oxygen atoms (M: metal atom). 

The fraction of C-O and C=O bonds that form structures such as M(CO3) achieves a maximal 

value at ~80% of O2. With further addition of O2, a decrease is observed due to carbon 

deficient conditions. Analogous behaviour of the number of CO and CO2 species in the 

plasma phase has been indicated by OES analysis. 

The growth mode drastically changes as the plasma gas mixture becomes rich in oxygen 

gas: from uniform in all directions to columnar.  The columnar structures observed in titania-

like films are significantly thinner in comparison with zirconia-like films. By coupling the 

experimentally obtained results and Monte Carlo simulations, the difference in column width 

has been explained by the higher surface relaxation possibility of physisorbed Ti species in 

TTIP plasma relative to Zr species in ZTB plasma. 

Regarding the macroscopic properties, it has been shown that the film refractive index and 

density increase at oxygen-rich gas mixture conditions and that the open nanosized pore 

content in the films is generally very low. 
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Introduction 

This chapter explores the modifications of thin film characteristics induced by an increase 

in total gas pressure. The composition of the plasma gas mixture was maintained constant at 

5% metalorganic precursor and 95% oxygen gas. The O2-rich gas mixture was chosen since 

films deposited in these conditions exhibit a particular (columnar) morphology. Additionally, 

the deposited films are almost-inorganic metal oxides which are of interest in various 

scientific and industrial areas. The deposition parameters are summarized in Table IV-1. 

 

Table IV-1: Thin film growth conditions at different total gas pressure values in ZTB/O2 and TTIP/O2 plasma. 

Total gas pressure 1-10 mTorr 

Gas mixture composition 5% metalorganic precursor / 95% O2 

MW power 800W 

Substrate Si (100) 

Substrate potential Floating 

Tsubstrate Uncontrolled 

Deposition time 
30-40 min at 1 mTorr, 

< 15 min at 2-10 mTorr 

 

Each paragraph of this chapter starts with a presentation of experimentally obtained results 

that is followed by a discussion and comparison between ZrOxCyHz and TiOxCyHz films. To 

begin with, the evolution of the deposition rate is introduced. Afterwards, we examine the 

chemical composition and chemical bonding of the film by XPS and FTIR, and the 

modifications of thin film morphology based on SEM imaging. Lastly, the macroscopic 

physical properties of the thin film are reviewed. 

The total gas pressure has achieved relatively high values (up to 10 mTorr). Due to the 

particularities of precursor injection systems and the gas introduction protocol (Chapter II.3, 

p.46), it is necessary to discuss the influence of experimental conditions on the injection of 

TTIP gas. The injection of ZTB was controlled by a semi-automatic system that readjusted the 

injection to maintain a constant value during the introduction of oxygen gas and the 

deposition process. In contrast, the manual injection system used for TTIP was unable to 

readjust the injection. Consequently, it is possible that the TTIP flow rate was compromised 

by subsequent introduction of O2 gas leading to a decrease of the initially set partial pressure 

value. Therefore, when reviewing and comparing results corresponding to ZTB and to TTIP 

plasmas, it is important to keep in mind that the partial pressure of TTIP might in fact be 

different than the noted value. 
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 Deposition rate 

The growth rates of thin films deposited at different pressures of ZTB/O2 and TTIP/O2 gas 

mixtures are graphically presented in Figure IV-1. The gas mixtures were composed of 5% 

precursor and 95% O2 gas. The deposition rate of both types of films evolved in a similar 

manner: with increase in pressure from 1 to 10 mTorr, the deposition rate increased from <5 

nm/min to ~50 and ~60 nm/min in TTIP/O2 and ZTB/O2 plasma, respectively.  

 

      

Figure IV-1: Deposition rate of thin films grown at various total gas pressures in (a) ZTB/O2 and (b) TTIP/O2 

plasma (5% precursor/95% O2, PMW = 800 W, Vsubstrate = floating). Error bars correspond to standard deviation. 

 

Numerous phenomena, such as changes in the chemical nature of fragments arriving at the 

substrate or in the effectiveness of etching achieved by oxygen species, might have effect on 

the growth rate. It is most likely that the change in the amount of matter available for 

deposition has the predominant role. The precursor/O2 gas ratio and the reactor pumping 

speed were constant. Therefore, to increase the pressure, precursor and oxygen gas were 

added to the plasma gas mixture. 

 

 Thin film chemical composition and bonding 

IV.2.1 Chemical composition 

In this part, we focus on the modification of surface and bulk chemical properties induced 

by the increase of total gas pressure. The XPS technique was employed to probe the thin 

chemical composition of the film surface. The analysis depth ranges from 2 nm to 10 nm. The 

data obtained by XPS investigation is summarized in Table IV-2.  
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Table IV-2: XPS chemical composition and atomic ratios corresponding to films deposited in ZTB/O2 and 

TTIP/O2 plasmas at different gas pressure values (5% precursor/95% O2, PMW = 800 W, Vsubstrate = floating).  

Total gas 

pressure (mTorr) 

Atomic composition (%) Atomic ratio 

M* O C O/M* C/M* 

ZTB / O2 plasma 

1  27.1 51.6 21.3 1.9 0.8 

2  25.1 51.2 23.7 2.0 0.9 

4  21.8 50.4 27.8 2.3 1.3 

8  19.5 46.9 33.6 2.4 1.7 

10  20.4 50.2 29.4 2.5 1.4 

TTIP / O2 plasma 

1  24.5 60.5 15.0 2.5 0.6 

2  21.8 55.5 22.7 2.5 1.0 

4  21.6 54.8 23.6 2.5 1.1 

8  20.0 53.6 26.4 2.7 1.3 

10  18.9 51.6 29.5 2.7 1.6 
          *M corresponds to Zr and Ti for ZTB and TTIP related data, respectively. 

 

ZTB 

XPS examination of the coatings grown in ZTB/O2 plasma revealed how the chemical 

composition of the film evolved with the increase of total gas pressure (Figure IV-2). Starting 

from 1 mTorr up to 8 mTorr, atomic fraction of carbon increased, and that of zirconium and 

oxygen modestly decreased. As pressure increased further, to 10 mTorr, carbon at.% seemed 

to slightly decrease and oxygen at.% increased.  

 

 
Figure IV-2: Atomic composition of thin films deposited in ZTB/O2 plasma as a function of total gas pressure          

(5% precursor/95% O2, PMW = 800 W, Vsubstrate = floating). 
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XPS data, presented in Table IV-2 and graphically in Figure IV-9, have shown that relative 

to zirconium atoms, the number of carbon and oxygen atoms increased with pressure. The 

film stoichiometry, excluding hydrogen atomic content, evolved from ZrO1.9C0.8 at 1 mTorr to 

ZrO2.5C1.4 at 10 mTorr.  

 

TTIP 

Figure IV-3 graphically presents the chemical composition of the thin film, obtained by 

XPS, as a function of TTIP/O2 gas mixture pressure. A decrease was observed in both oxygen 

and zirconium atomic fractions, while the percentage of carbon atoms forming the films 

increased. At 1 mTorr, the films consisted of 24.5 Zr at.%, 60.5 O at.% and 15.0 C at.% (Table 

IV-2). The composition changed to 18.9 Zr at.%, 51.6 O at.% and 29.5 C at.% at 10 mTorr. 

The film stoichiometry, disregarding hydrogen presence, changed from TiO2.5C0.6 to TiO2.7C1.6 

as the total gas pressure increased from 1 to 10 mTorr. Figure IV-9 graphically presents the 

change in stoichiometry, i.e. the number of carbon and oxygen atoms relative to zirconium 

atoms.  

 

 
Figure IV-3: Atomic composition of thin films deposited in TTIP/O2 plasma as a function of total gas pressure          

(5% precursor/95% O2, PMW = 800 W, Vsubstrate = floating). 

 

IV.2.2 Comparative analysis of thin film chemical bonding as a function of 

pressure: ZTB vs TTIP 

Detailed identification of FTIR spectra corresponding to films deposited in ZTB/O2 and 

TTIP/O2 plasmas is presented in Chapter III (p.82). In this chapter, we focus on the changes in 

0 2 4 6 8 10
0

10

20

30

40

50

60

 Ti    O    C

Ti

 

 

A
to

m
ic

 c
o

m
p

o
s
it
io

n
 (

%
)

Pressure (mTorr)

O

C



Chapter IV 

 

 

123 

chemical bonding under the influence of total gas pressure. Figure IV-4 shows the 4000-400 

cm-1 spectral range of FTIR signatures originating from thin films deposited at various 

pressures of precursor/O2 gas mixture. To simplify the analysis, the spectra have been divided 

into three spectral regions that correspond to three distinct IR bands observed by FTIR. 

 

Figure IV-4: FTIR spectra of thin films deposited at different total gas pressures in ZTB/O2 and TTIP/O2 plasma     

(5% precursor/95% O2, PMW = 800 W, Vsubstrate = floating). Absorbance: normalised by film thickness. 
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environmental conditions (such as air temperature and humidity level) were different, all of 

which could have influenced the degree of absorbed water and the H2O amount present in the 

FTIR sample chamber.  

In both zirconia-like and titania-like films, it was possible to distinguish peaks 

corresponding to C-H bonds (in the 2970-2830 cm-1 range); however, changes in their 

intensities were minor as pressure increased. These peaks became slightly more pronounced at 

highest pressures (8-10 mTorr), which implies an increase of C-H bond concentration in both 

types of films.  

 

 

Figure IV-5: FTIR spectra (4000-2650 cm-1) of thin films deposited at different total gas pressures in  

a) ZTB/O2 and b) TTIP/O2 gas mixture (5% precursor/95% O2, PMW = 800 W, Vsubstrate = floating).  

Absorbance: normalised by film thickness. 

 

 

 

4000 3750 3500 3250 3000 2750

0.00

0.01

0.02

A
b
s
o
rb

a
n
c
e

(a) ZTB/O
2

 

 

 1 mTorr

 2 mTorr

 4 mTorr

 6 mTorr

 8 mTorr

 10 mTorr

Wavenumber (cm
-1
)

C-H in CH
x
 

O-H 
 in H

2
O

4000 3750 3500 3250 3000 2750

0.000

0.005

0.010

 1 mTorr

 2 mTorr

 4 mTorr

 6 mTorr

 8 mTorr

 10 mTorr

(b) TTIP/O
2

A
b
s
o
rb

a
n
c
e

Wavenumber (cm
-1
)

 

 

O-H 

 in H
2
O C-H in CH

x
 



Chapter IV 

 

 

125 

1800-1250 cm-1 region 

The complex 1800-1250 cm-1 band (Figure IV-6), appearing in zirconia- and titania-like 

films, was primarily assigned to C-O and C=O bonds in carbonate-like environments (Figure 

III-14, p.84). Contributions from C=C, C-H and O-H bonds should also be expected in this 

region.  

In general, the band absorbance increased with pressure in both types of films as it can be 

seen in Figure IV-7. In films grown in ZTB plasma, the band absorbance increased up to a 

pressure of 4 mTorr. Afterwards, the change slowed down, to finally slightly decrease at a 

pressure of 10 mTorr. In titania-like films, the absorbance of the band continues to increase 

even at highest pressures. 

 
Figure IV-6: FTIR spectra (1800-1250 cm-1) of thin films deposited at different total gas pressures in a) ZTB/O2 

and b) TTIP/O2 gas mixture (5% precursor/95% O2, PMW = 800 W, Vsubstrate = floating).  

Absorbance: normalised by film thickness. 
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Figure IV-7: Evolution of surface area of 1800-1250 cm-1 band observed in FTIR spectra of thin films deposited 

in ZTB/O2 and TTIP/O2 plasmas. 
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Figure IV-8: FTIR spectra (1250-400 cm-1) of films deposited at different total gas pressures in                            

a) ZTB/O2 and b) TTIP/O2 plasma (5% precursor/95% O2, PMW = 800 W, Vsubstrate = floating).  

Absorbance: normalised by film thickness. 
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The IR band, partially spreading over the 1250-400 cm-1 range, has been assigned to Zr-O 

and Ti-O bonds in zirconia-like and titania-like films, respectively (Chapter III.3.2.1, p.82). 

Highest intensity corresponded to films deposited at 1 mTorr. A decrease in intensity occurred 

when pressure increased to 2 mTorr. Afterwards, at higher pressures, intensity of the band 

remained relatively stable. This behaviour was characteristic to films deposited in ZTB/O2 as 

well as in TTIP/O2 plasma.  

IV.2.3 Thin film chemical composition and bonding: summary 

The influence of variations in total gas pressure on chemical composition and chemical 

bonding of the thin film has been examined. The stoichiometric ratios corresponding to films 

deposited in ZTB and TTIP plasmas evolved in a similar manner as can be seen in Figure 

IV-9. Relative to the metal atom (Zr or Ti), films became richer in carbon and oxygen atoms. 

Since the growth rate increased with pressure, it is improbable that the deposition of metal 

atoms increased. Therefore, this development, measured by XPS, is mainly due to enhanced 

incorporation of carbon and oxygen atoms into the films as pressure increased.  

        

Figure IV-9: Evolution of (a) O/Zr and O/Ti, (b) C/Zr and C/Ti atomic ratios in thin films deposited at different 

total gas pressures in ZTB/O2 and TTIP/O2 plasma (5% precursor/95% O2, PMW = 800 W, Vsubstrate = floating). 
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intensity of the band corresponding primarily to C-O and C=O bonds in carbonate like 

structures.  

The reason for the change in the chemical composition and chemical bonding of the film 

might lie in the evolution of the chemical composition of plasma leading to different surface 

mechanisms. With increasing pressure, more particles were injected into the reactor and the 

MW power transferred to the gas remained constant, implying that the amount of power per 

particle decreased. The electron temperature decreases with the increase in pressure as 

reported in literature on multi-dipolar ECR plasma (Figure II-7, p.39) [147]. Energetic 

electrons are needed to drive the fragmentation process of the precursor molecules. If the 

electron temperature decreases, the effectiveness of precursor dissociation process should be 

altered. 

Another phenomenon, neglected at very low pressures, might play a significant role: 

chemical reactions taking place in the plasma phase. The mean free path of the particles in the 

plasma decreases with pressure since the two are inversely correlated. As an example, an 

expression for the mean free path λnn of a neutral molecule between two consecutive neutral-

neutral collisions is given as: 

λnn =
kBTn
pσnn

 Equation IV-1 

where p is the gas pressure, kB the Boltzmann constant, Tn the gas temperature, and σnn the 

effective collisional cross section. Accordingly, collisions become more probable at higher 

pressures, and the probability of chemical reactions occurring in the plasma phase increases.  

The described changes in the plasma processes may lead to a change in chemical 

composition of the plasma phase, i.e. nature and size of the fragments arriving to the substrate 

surface. It is possible that the fragments in question become larger and more organic as the 

pressure increases. Furthermore, due to the reactions of recombination taking place in the 

plasma phase, and the decrease of the power per particle ratio, the fraction of highly reactive 

oxygen atoms might decrease leading to less effective etching of carbon atoms from the film 

surface. Thus, the deposition mechanism is affected, and more carbon and oxygen atoms are 

incorporated into the films.  
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 Thin film morphology 

IV.3.1 Evolution of morphological characteristics  

ZTB 

Figure IV-10 presents the SEM cross-sectional images corresponding to thin films 

deposited at various ZTB/O2 gas mixture pressures. In the films obtained at 1 and 2 mTorr, 

nanometric granular forms are organised in densely stacked columnar structures. In both 

films, the columns grow in a direction perpendicular to the substrate surface, and their widths 

seem to increase with height. The examination of SEM images does not indicate a significant 

difference in the morphological features of these films. 

Morphological examination of the film obtained at 4 mTorr reveals columnar growth. 

Some of the columns appear to be damaged, and the broken pieces can be observed in the 

SEM cross-sectional image. The breakage has most probably occurred during the cleavage 

step of the sample preparation process for SEM imaging. The columns are not closely stacked 

together, yet intercolumnar voids are observable. 

At 6 mTorr, two microstructural organizations seem to exist. In the bottom layer of the 

film, no apparent and defined features are observable, yet the film seems far from compact. In 

the upper layer, irregular columnar structures were formed. The morphology of the film looks 

as a transitional step between columnar and homogeneous morphology. 

In the cross-sectional images of the films deposited at 8 and 10 mTorr, a void between the 

substrate and the film is present. This void was most likely formed due to detachment of the 

film in the course of sample cleavage procedure. At 8 mTorr, a very different morphology 

develops: no defined features can be recognized. The film consists of fine granular formations 

and does not seem dense. The film grown at 10 mTorr seems homogeneous, in the sense that 

no apparent microstructural forms can be observed. The film appears more compact than the 

film obtained at 8 mTorr; still, it possesses a fine granular nature.  

The micrographs presented in Figure IV-11 show the top view of zirconia-like thin films 

synthesized at different gas mixture pressures. The surface of the thin film deposited at 1 

mTorr consists of densely packed mounds. The diameter range corresponding to the mounds 

correlates well with the widths of the columnar structures at maximum height. 
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Figure IV-10: SEM cross-sectional images of thin films deposited at different total gas pressures in 5% ZTB/95% 

O2 plasma (PMW = 800 W, Vsubstrate = floating). 
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Figure IV-11: SEM surface images of thin films deposited at different total gas pressures in 5% ZTB/95% O2 

plasma (PMW = 800 W, Vsubstrate = floating). 
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observed. 
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At 4 mTorr, the film surface is composed of larger “cracks” formed between groups of 

closely packed mounds. The edges of the mounds are fairly easy to differentiate. The voids 

observed between the groups of mounds have widths in 15-30 nm range. 

The surface of the film grown at 6 mTorr exhibits a combination of larger formations of 

grouped mounds and wide “cracks”. The mounds are easily distinguishable. The voids 

observed on the surface have widths in 50-100 nm range. In the image, the edges of the 

mounds seem to be “glowing”. The bright white contour indicates that surface charging 

phenomenon occurred during SEM imaging. The film surface, in this case, is magnified 100 

000 times. Figure IV-12 shows the micrographs obtained after zooming out at this location on 

the film surface. The third image represents a magnification of 5000 times: the bright spots 

correspond to the area that was magnified up to 100 000 times. In those areas, enhanced 

“cracking” is observed relative to the surrounding film surface which implies an influence of 

surface charging on the width of the voids present on the film surface. Thus, the surface voids 

may, in reality, be narrower than observed by SEM imaging. 

In the film obtained at 8 mTorr, surface morphology changes drastically. The surface seems 

much more densely packed and no evident “cracking” forms are observable. The surface 

exhibits granular topography consisting of not very well-defined shapes. 

At 10 mTorr, the film surface evolves even more towards a completely smooth surface on a 

nanometric level. The SEM image provides an indication of a compact and uniform film 

surface. 

 

 

Figure IV-12: SEM images of the same location on thin film surface obtained at different levels of magnification: 

influence of surface charging.  Thin film obtained at 6 mTorr in 5% ZTB/95% O2 plasma  

(PMW = 800 W, Vsubstrate = floating). 
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TTIP 

Figure IV-13 shows SEM cross-sectional images corresponding to thin films deposited in 

TTIP/O2 plasma at gas mixture pressures from 1 to 10 mTorr. The film synthesized at 1 mTorr 

exhibits columnar morphology. The columns grow perpendicularly to the surface and appear 

to be closely stacked together.  

With the pressure increased to 2 mTorr, column-like structures seem larger in width 

relative to the columns observed at 1 mTorr. The width of the columns increases with height, 

which is difficult to detect at 1 mTorr. The SEM micrograph gives an indication of the 

presence of narrow voids spreading perpendicularly to the substrate between the columnar 

structures. 

 SEM images of the films deposited at 4, 6, 8 and 10 mTorr show similar morphological 

features. All the films seem to consist of fine grains organized in columnar structures. Broken 

columns, observed in the images, are most likely a result of the sample cleavage procedure. 

The irregular columnar structures grow perpendicularly to the substrate and widen with 

height. Intercolumnar voids, directed from the substrate to the film surface, become more 

prominent as pressure increases. 

Figure IV-14 presents SEM surface images of thin films deposited at different TTIP/O2 gas 

mixture pressures. The film obtained at 1 mTorr has a dense, granular surface topography. The 

diameter range (10-20 nm) corresponding to the surface mounds correlates well with the 

column widths at maximal height observed in SEM cross-sectional images.  

At 2 mTorr, the surface mounds (diameters in 25-45 nm range) become larger in 

comparison to the ones seen at 1 mTorr. This development is in accordance with the increase 

in column widths observed at maximum height. 

In thin films deposited at 4-10 mTorr, the surface mounds are of similar sizes as the ones 

seen at 2 mTorr. The film surfaces do not appear densely packed, yet “cracking” formations 

are observed. These irregularly shaped voids are more pronounced at higher pressures and 

attain a maximal width of about 20 nm. The surface topography is in agreement with the 

morphology of the film bulk seen in SEM cross-sectional images.  
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Figure IV-13: SEM cross-sectional images of thin films deposited at different total gas pressures in 5% 

TTIP/95% O2 plasma (PMW = 800 W, Vsubstrate = floating). 
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Figure IV-14: SEM surface images of thin films deposited at different total gas pressures in 5% TTIP/95% O2 

plasma (PMW = 800 W, Vsubstrate = floating). 

 

IV.3.2 Morphological changes as a function of pressure: discussion 

The previous text introduced observations corresponding to the changes in morphological 

features of the film bulk and film surface as the pressure of O2-rich gas mixture increased. 
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Unlike the similar changes observed in the morphology of the thin film under the influence of 

oxygen fraction in the precursor/O2 gas mixture, the increase in total gas pressure results in 

fairly different microstructural evolution between zirconia-like and titania-like films.  

The morphology of films obtained in ZTB/O2 plasma evolves from columnar to compact, 

and uniformly in all directions. Thin films exhibit columnar morphology at 1-2 mTorr. At 4 

mTorr, the morphology changes significantly: large intercolumnar voids are observed. At 6 

mTorr, the bottom film layer is characterized by ill-defined features, while the top layer 

exhibits irregular columnar structuration. With increase to 8 mTorr, a drastic change leads to 

no apparent structuration, and at 10 mTorr the film appears to be uniform with a smooth 

surface on a nanometric scale. 

 

 

 
Figure IV-15: SEM cross-sectional images of thin films deposited at 10 mTorr in ZTB/O2 and TTIP/O2 plasmas 

(5% precursor/95% O2, PMW = 800 W, Vsubstrate = floating). 
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influence on the gas flow regime, which could affect the particle momentum distribution. The 

increased deposition rate is also present in this interplay of changing parameters. 

The distinction in morphological evolution between zirconia- and titania-like films might 

be a result of a number of characteristics such as the different precursor molecule or metal 

atom size and mass, chemical nature of the fragments formed in the plasma phase or surface 

relaxing mechanisms. The deposition procedures between ZTB and TTIP PECVD differed in 

the injection systems used for introducing the precursor into the reactor. Semi-automatic 

system was used for injection of ZTB, whereas a completely manual system was employed to 

inject TTIP. The dissimilarity in the injection system might lead to the variations of the 

precursor gas circulation in the reactor. Different flow pathways could induce different levels 

of precursor fragmentation and influence the collisions that occur in the plasma phase at 

higher pressures. This might result in a different nature of fragments arriving to the substrate, 

as well as different momentum distribution of the impinging species between ZTB and TTIP 

plasma. 

 

 Characterization of macroscopic physical properties 

This paragraph presents the analysis of the macroscopic physical properties of thin films 

deposited in 5% ZTB/95% O2 and 5% TTIP/95% O2 plasmas at gas mixture pressures in 1-8 

mTorr range. The particularities and constraints of the EP and XRR techniques employed are 

commented in Chapter II.5, p.53) 

Figure IV-16 shows the evolution of the refractive index, density and nanoporosity fraction 

of films deposited in ZTB/O2 plasma. The refractive index (n) decreased immediately as 

pressure increased from 1 to 2 mTorr. With further pressure increase to 4 mTorr, the value of n 

decreased, while from 4 to 8 mTorr it seemed to remain relatively stable. The film density was 

reduced sharply from 3.6 g/cm3 at 1 mTorr to 3.0 g/cm3 at 4 mTorr, then continued a modest 

decrease to 2.8 g/cm3 at 8 mTorr. In agreement with the overall density decrease, the fraction 

of nanometric open pores in the films increased from 2% to 16%. 

Evolution of the refractive index and nanoporosity concentration in the films deposited in 

TTIP/O2 plasma is graphically presented in Figure IV-17. Due to technical issues, the titania-

like film samples were difficult to analyse by XRR and the obtained density values are not 

reliable enough to be included in the results presented here. Regarding refractive index values, 

a high rate of decline was observed: from 2.10 to 1.74 at 1 mTorr and 4 mTorr, respectively. 
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From 4 to 8 mTorr, n increased slightly to 1.79. The nanoporosity fraction of films was 

undetectable at 1 and 2 mTorr. However, it reached a value of 10% at 8 mTorr.  

 

 
Figure IV-16: Refractive index, density and nanoporosity fraction of thin films deposited in ZTB/O2 plasma as a 

function of total gas pressure (5% ZTB/95% O2, PMW = 800 W, Vsubstrate = floating). 

 

The refractive index of both kinds of films decreased with pressure in a similar manner. It 

has been shown that the increase of carbon fraction in the metalorganic films leads to lowered 

refractive index [11], [213]. XPS study has established that the C/M and O/M atomic ratios 

(M: metal atom) characteristic to the films increased with pressure (Table IV-2, p.121). 

Additionally, the XRR analysis of zirconia-like films demonstrated that the film density was 

reduced which implies that the void concentration increases and consequently the refractive 

index decreases. The change in nanoporosity fraction agrees with evolution of n and density 

values. 
 

 

Figure IV-17: Refractive index and nanoporosity fraction of thin films deposited in TTIP/O2 plasma as a function 

of total gas pressure (5% TTIP/95% O2, PMW = 800 W, Vsubstrate = floating). 
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 Summary 

In Chapter IV, we have studied the modifications of thin film characteristics that were 

induced by the increase in total pressure of oxygen-rich metalorganic plasma gas mixture (5% 

precursor/95% O2). It has been shown that the deposition rate continuously increases with 

pressure. In general, films become richer in carbon and oxygen atomic content relative to the 

metal atom. Furthermore, an increase in concentration of C-O and C=O bonds forming the 

carbonate-like environment in the films has been detected.  

A striking difference has been observed in the evolution of the growth mode between ZTB 

and TTIP plasma. It has been shown that the columnar structures disappear at 8 mTorr in films 

deposited in ZTB plasma. In contrast, films grown in TTIP plasma exhibit columnar growth 

over the whole measured pressure range. Regarding macroscopic characteristics, the 

refractive index decreases with pressure. The overall density (measured only for ZrOxCyHz 

films) decreases as well. On the other hand, the open nanoporosity content in the films 

increases with total gas pressure, although it is remaining relatively low (10-16% at 8 mTorr).  
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Introduction 

Chapter V explores PECVD synthesis of “composite” ZrSixOyCzHw and TiSixOyCzHw thin 

films. Film characteristics are examined as a function of HMDSO gas addition to a plasma gas 

mixture of metalorganic precursor and O2. Deposition parameters are presented in Table V-1. 

High quantity of oxygen gas was chosen since columnar morphology develops in O2-rich 

metalorganic PECVD, as presented in Chapter III. It was of interest to examine the behaviour of 

columnar growth as HMDSO is introduced to the gas mixture. In other studies, it has been 

reported that columnar structures disappear with addition of an organosilicon precursor to 

metalorganic/O2 plasma gas mixture [13].  

This chapter is divided into four parts. First, the deposition rate is presented. Second, chemical 

composition and FTIR spectra are analysed. Afterwards, we examine the morphological features 

of the films and we conclude with a comparison of refractive index and nanoporosity between the 

deposited thin films. 

 

Table V-1: Thin film deposition parameters in ZTB/HMDSO/O2 and TTIP/HMDSO/O2 plasmas. 

Total gas pressure 2.00-2.50 mTorr 

MW power 800W 

Substrate Si (100) 

Substrate potential Floating 

Tsubstrate Uncontrolled;  <100°C 

Deposition time < 15 min 

ZTB / TTIP partial pressure 0.10 mTorr 

O2 partial pressure  1.90 mTorr 

HMDSO partial pressure 0.10 mTorr 0.30 mTorr 0.50 mTorr 

HMDSO fraction in the gas mixture 4.8% 13.0% 20.0% 

 

It is important to note the difference in gas injection process of ZTB and TTIP.  Due to 

reasons discussed in the introduction of Chapter IV (p.117), fraction of TTIP gas in the plasma 

gas mixture might, in fact, be different than the indicated values.  
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 Deposition rate 

Figure V-1 shows the evolution of the deposition rate with the addition of HMDSO into the 

plasma gas mixture. The growth rate increases as the organosilicon precursor is added to ZTB/O2 

and TTIP/O2 gas mixtures. The observed evolution was attributed to an increase of the quantity of 

matter in the plasma gas mixture. Since the amount of metalorganic precursor and oxygen gas 

injected into the reactor was constant, and HMDSO was added to the mixture, the amount of 

matter available for deposition increased.  

 

    

Figure V-1: Deposition rate of thin films grown in (a) ZTB/HMDSO/O2 and (b) TTIP/HMDSO/O2 plasma (ptotal= 

2.0-2.5 mTorr, PMW = 800 W, Vsubstrate= floating). Error bars correspond to standard deviation. 

 

     In our experimental configuration, the growth rate of a thin film in 5% HMDSO/95% O2 at 2 

mTorr is relatively low: ~3.7 nm/min. A comparison with deposition rates in metalorganic/O2 and 

metalorganic/HMDSO/O2 plasmas is reported in Table V-2.  

 

Table V-2: Growth rates of thin films obtained in different gas mixtures at identical precursor partial pressures 

(pHMDSO or ZTB or TTIP = 0.10 mTorr, pO2 = 1.90 mTorr, ptotal=2.0-2.1 mTorr, PMW = 800 W, Vsubstrate = floating). 

Plasma gas mixture  Deposition rate (nm/min) 

5% HMDSO / 95% O2  3.7 ± 0.1 

5% ZTB / 95% O2  10.5 ± 0.4 

5% TTIP / 95% O2  6.7 ± 0.3 

4.76% ZTB / 4.76% HMDSO / 90.48% O2  13.3 ± 0.1 

4.76% TTIP / 4.76% HMDSO / 90.48% O2  10.8 ± 0.6 
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 Thin film chemical composition and bonding 

V.2.1 Chemical composition 

XPS technique was used to investigate atomic composition of thin film as HMDSO was 

introduced into the metalorganic/O2 gas mixture. To verify the film homogeneity in terms of 

chemical composition, in-depth profiles were obtained by employing Ar ion etching during XPS 

measurements. The profiles corresponding to films synthesized in ZTB/HMDSO/O2 and 

TTIP/HMDSO/O2 plasmas are shown in Figure V-2.  

 

 

Figure V-2: XPS in-depth chemical composition profile of thin films deposited in (a) 4% ZTB/13% HMDSO/83% O2 

and (b) 4% TTIP/13% HMDSO/83% O2 plasma (ptotal = 2.3 mTorr, PMW = 800 W, Vsubstrate = floating).  

 

In-depth analysis confirmed that the atomic content was homogeneously distributed 

throughout the film bulk. Differences were observed in the film substrate interface and at the film 

surface. The profile of the film deposited in ZTB/HMDSO/O2 indicates an increase of the carbon 

atomic percentage at the film-substrate interface. The increase is not visible for the film deposited 

in TTIP/HMDSO/O2, yet at this moment it is not possible to discard its presence since more 

measurement points are needed in the film-interface region. This phenomenon has been observed 

in films deposited in O2-rich ZTB/O2 plasmas by Mr R. Cozzolino, in the framework of his thesis 

at LAPLACE laboratory [11]. Carbon interface origin has been attributed to the physisorption of 

precursor molecules during the gas injection stabilisation step. Hydrocarbons originating from 

reactor walls, coated in previous deposition processes, have been identified as an additional 
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contamination source. These hydrocarbon species are etched and contribute to film growth in the 

initial moments after the plasma generation step. To avoid this contamination, it is necessary to 

protect the substrate during gas flow stabilisation and initial “transitional” regime.  

A difference in composition was observed for the first few measurement points that 

correspond to the film surface. A comparison between the bulks and the surfaces is presented in 

Table V-3.  

 
Table V-3: Comparison of surface and bulk chemical composition analysed by XPS  

(ptotal = 2.3 mTorr, PMW = 800 W, Vsubstrate= floating). 

 
4% ZTB / 13% HMDSO / 83% O2 4% TTIP / 13% HMDSO / 83% O2 

Stoichiometry Carbon at. % Stoichiometry Carbon at. % 

Surface ZrSi1.2O4.1C1.7 20.8% TiSi2.0O5.8C2.7 23.5% 

Bulk ZrSi0.8O3.0C0.4 ~6.5% TiSi1.3O4.0C0.4 ~5.5% 

 

Our objective was to study the evolution of the chemical composition, not the absolute values. 

Therefore, assuming the surface contamination level had not varied significantly between 

different samples, we have opted for XPS surface analysis instead of in-depth analysis to reduce 

time and financial costs. The XPS data concerning thin films deposited at different HMDSO 

amounts added to the gas mixtures is summarized in Table V-4. 

 

Table V-4: XPS chemical composition and stoichiometric ratios corresponding to films deposited in ZTB/HMDSO/O2 

and TTIP/HMDSO/O2 plasmas at different HMDSO fractions in plasma gas mixture                                                       

(ptotal = 2.0-2.5 mTorr, PMW = 800 W, Vsubstrate = floating).  

HMDSO in plasma 
gas mixture (%) 

Atomic composition (%) Atomic ratio 

M* Si O C Si/M* O/M* C/M* 

ZTB / HMDSO / O2 plasma 

0 25.1 - 51.2 23.7 - 2.0 0.9 

4.8 21.2 9.2 55.8 13.8 0.4 2.6 0.7 

13.0 15.8 14.5 54.6 15.9 0.9 3.5 1.0 

20.0 10.3 16.5 48.2 25.0 1.6 4.7 2.4 

TTIP / HMDSO / O2 plasma 

0 21.8 - 55.5 22.7 - 2.5 1.0 

4.8 11.9 13.1 50.7 24.3 1.1 4.2 2.0 

13.0 8.7 17.2 50.6 23.5 2.0 5.8 2.7 

20.0 5.8 21.0 45.2 28.0 3.6 7.8 4.8 
  *M corresponds to Zr and Ti for ZTB and TTIP related data, respectively. 
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ZTB 

Figure V-3(a) graphically presents the evolution of the atomic content in thin films deposited 

in ZTB/HMDSO/O2 plasma. Silicon at.% increased, while zirconium at.% decreased with 

addition of HMDSO to the gas mixture. At first, the fraction of oxygen atoms modestly increased, 

while afterwards it slowly decreased.  The carbon atomic content decreased after initial 

introduction of HMDSO. With further HMDSO addition, carbon at.% increased steadily. Film 

stoichiometry changed significantly from ZrSi0.4O2.6C0.7 to ZrSi1.6O4.7C2.4 at 4.8% and 20% of 

HMDSO in the gas mixture, respectively. 

    

Figure V-3: Atomic composition of thin films deposited in (a) ZTB/HMDSO/O2 and (b) TTIP/HMDSO/O2 plasma as 

a function of gas mixture composition (ptotal = 2.0-2.5 mTorr, PMW = 800 W, Vsubstrate= floating). 

 

TTIP 

Figure V-3(b) shows the modifications of film chemical composition as a function of HMDSO 

addition to TTIP/O2 plasma gas mixture. Silicon atomic fraction increased as HMDSO was added 

to the gas mixture, while titanium atomic proportion decreased.  Carbon at.% in the films slowly 

increased, while oxygen at.% decreased. Relative to titanium atoms, the film became 

significantly richer in oxygen and carbon atoms. Film stoichiometric ratio evolved from 

TiSi1.1O4.2C2.0 to TiSi3.6O7.8C4.8 at 4.8% and 20% of HMDSO, respectively.  

In comparison to ZrSixOyCzHw films, metal atomic fraction in the TiSixOyCzHw films is 

significantly lower, while Si/metal atomic ratio is higher. The observed difference and enhanced 

incorporation of Si atoms relative to Ti atoms can be explained by considering TTIP gas injection 
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conditions (for more details see the “Introduction” of this chapter). It is possible that the 

percentage of TTIP in the gas mixture is effectively lower than the recorded value. 

V.2.2 Chemical bonding 

V.2.2.1 Identification of FTIR spectra  

The objective of this subchapter is to investigate chemical bonding in “composite” thin films 

grown in O2-rich plasma gas mixture of metalorganic (ZTB or TTIP) and organosilicon 

(HMDSO) precursors. To facilitate the identification of FTIR spectra of ZrSixOyCzHw and 

TiSixOyCzHw thin films, we first introduce the assignations of IR absorption peaks corresponding 

to thin films synthesized in organosilicon plasma. Figure V-4 presents a comparison of FTIR 

spectra corresponding to highly organic thin film deposited in 100% HMDSO, and SiO2-like thin 

film obtained in 5% HMDSO/95% O2 plasma gas mixture. The observed peak positions and 

associated assignations are reported in Table V-5. 

 

 

Figure V-4: FTIR spectra corresponding to thin films deposited in 100% HMDSO (ptotal =1 mTorr) and in 5% 

HMDSO/95% O2 (ptotal = 2 mTorr) plasma (PMW = 800 W, Vsubstrate= floating). 

 

FTIR spectra of thin film grown in pure HMDSO plasma include four absorption bands (3000-

2800 cm-1, 2141 cm-1, 1480-1330 cm-1, 1258 cm-1) which indicate the presence of hydrocarbon 

environment in the film. Peaks in 3000-2800 cm-1 band correspond to C-H stretching vibrations 

in CHx groups [1], [3], [8], [10], [153]. The peak rising at 2141 cm-1 has been assigned to Si-H 
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bond stretching [3], [214]. In the 1480-1330 cm-1 range, absorption peaks originate from C-H 

bending modes in CHx groups [1], [3], [8]. The peak at 1355 cm-1 has been related to Si-CH2-Si 

structure [214], [215]. At 1258 cm-1, a peak attributed to symmetric bending vibration of Si-CHx 

complex is observed [1], [3], [153], [214]. The peaks detected in the 1200-400 cm-1 range 

corroborate the presence of Si-O-Si bridge in the films. Si-O stretching and Si-O-Si bridge 

bending modes are observed at 1015 cm-1 and 795 cm-1, respectively. The Si-O bending mode in 

Si-O-(CH3)x possibly contributes to the 795 cm-1 peak [3]. 

In the spectra corresponding to the film deposited in O2-rich HMDSO plasma, the bands 

representing hydrocarbon environments (3000-2800 cm-1, 2141 cm-1, 1480-1330 cm-1, 1258 cm-1) 

are absent. The peak at 1175 cm-1 and a shoulder at 1061 cm-1 are assigned to Si-O stretching 

vibration in the Si-O-Si structure. The peaks at 812 cm-1 and 455 cm-1 are attributed to Si-O-Si 

bridge bending mode [3], [216], [217].  

 

Table V-5: Identification of IR absorption peaks corresponding to thin films deposited in 

100% HMDSO (ptotal=1 mTorr; text in black) and 5% HMDSO/95% O2 (ptotal = 2 mTorr; text in red) plasma 

(PMW = 800 W, Vsubstrate= floating). 

Wavenumber (cm-1) Assignation References 

2957 

2908 

2875 

C-H stretching in CHx 
[1], [3], [8], [10], 

[153] 

2141 Si-H stretching [3], [214] 

1457 

1409 

1355 

C-H bending in CHx [1], [3], [8] 

1258 
C-H bending and Si-C stretching 

in Si-CH3 

DFT calculations, 

[1], [3], [153], [214] 

1175shoulder 

1061 
Si-O stretching in Si-O-Si [1], [153] 

1015 Si-O stretching in Si-O-Si [8], [10], [217] 

837shoulder Si-(CH3)3 bending [3], [10], [153] 

812 Si-O bending [1], [216] 

795 Si-O bending in Si-O-Si / Si-O-(CH3)x [3] 

455 Si-O bending in Si-O-Si [216], [217] 

 

The following text studies chemical bonding of “composite” metalorganic-organosilicon films. 

The performed identification of infrared absorption peaks in organosilicon and silicon oxide films 
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is coupled with the analysis of FTIR spectra corresponding to metalorganic films carried out in 

Chapter III (Chapter III.3.2.1, p.82).  

 

ZTB 

Figure V-5 graphically presents the FTIR absorption spectrum corresponding to a thin film 

grown in ZTB/HMDSO/O2 plasma (see Annex of this work for detailed image of the spectrum). 

The peaks observed in the spectrum have been assigned to the vibrations of the following bonds: 

Zr-O, Si-O, Si-C, Si-H, C-O, C=O, C=C, C-H, O-H. The summary of the peak positions and the 

corresponding assignations is presented in Table V-6. 

 

 

Figure V-5: FTIR spectrum of thin film deposited in 4% ZTB/13% HMDSO/83% O2 plasma  

(ptotal = 2.3 mTorr, PMW = 800 W, Vsubstrate = floating). 

 

The large band spreading over 3720-2800 cm-1 was attributed to O-H bond stretching 

vibrations in H2O absorbed by the film. This band overlaps with peaks that emerge at 2970 cm-1, 

2930 cm-1 and 2881 cm-1, and correspond to stretching of the C-H bond in CHx groups. At 2341 

cm-1, a narrow peak appears, assigned to an Si-H stretching mode. 

In the complex 1750-1300 cm-1 band, four peaks have been identified. The large peak centred 

at 1575 cm-1 and a shoulder at 1700 cm-1 were primarily associated with C=O stretching 

vibrational mode in carbonate-like environments (visualized in Figure III-14, p.84). C=C bond 

vibrations may also contribute to the peaks in this IR region. The peaks centred at 1457 cm-1, 

1415 cm-1 and 1375 cm-1 were attributed to C-O bond stretching vibration in surroundings rich in 
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oxygen atoms, and to C-H bending modes in CHx. The bending of the O-H bond may contribute 

to the complex band that spreads over the 1750-1300 cm-1 range.  

The IR absorption at 1269 cm-1 is characteristic to Si(CHx)y structure. The peak corresponds to 

Si-C stretching and C-H bending vibrational modes.  

The peak observed at 984 cm-1 and a shoulder at 1150 cm-1 were assigned to Si-O stretching 

vibration. Along with the Si-O vibration, the Si-C bending in Si-(CHx)y structure was attributed to 

the peak at 984 cm-1. In the 800-400 cm-1 range, numerous peaks originating from Zr-O bond 

vibrations overlap and create a wide band. Since the presence of silicon atoms in the films was 

confirmed by XPS (Table V-4, p.146), and the Si-O peak at ~1000 cm-1 was observed, it is 

reasonable to expect the appearance of the peak at ~ 450 cm-1 which corresponds to the Si-O 

bending mode.  

 

TTIP 

The IR absorption spectrum characteristic to thin films synthesized in TTIP/HMDSO/O2 

plasmas is shown in Figure V-6, while the corresponding numerical data and the peak 

assignations are reported in Table V-6. Peaks emerging in the spectrum have been assigned to Ti-

O, Si-O, Si-C, Si-H, C-O, C=O, C=C, C-H, O-H bonds. The assignations are based on the 

literature on vibrational spectra of titanium oxide, silicon oxide and titania-silica “composite” 

films, DFT calculated spectra of HMDSO and TTIP molecules (Figure II-22, p.52, and Figure 

II-20, p.51) and FTIR analysis of TiOxCyHz (Chapter III.3.2.1, p.82) and SiOxCyHz  (Chapter 

V.2.2.1, p. 148) films performed in this work.  

The wide absorption band in 3750-2800 cm-1 range corresponds to O-H stretching vibration in 

absorbed H2O. In this band, two pronounced peaks that originate from C-H stretching vibration in 

CHX structure appear at 2966 cm-1, 2939 cm-1, and 2870 cm-1. At 2339 cm-1 a peak assigned to 

Si-H stretching mode was detected.  

The large band in 1750-1300 cm-1 range was primarily assigned to C=O and C-O stretching 

modes in environments similar to carbonate structures (visualized in Figure III-14, p.84). C=C 

stretching vibration might contribute to the peak found at 1564 cm-1 and the shoulder at 1690 cm-

1. The peaks identified at 1452 cm-1 and 1381 cm-1 were assigned to C-O stretching and C-H 

bending vibrations. At 1270 cm-1, a distinct peak appears, which is ascribed to Si-C stretching 

and C-H bending in Si(CHx)y environment. 
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Figure V-6: FTIR spectrum of thin film deposited in 4% TTIP/13% HMDSO/83% O2 plasma 

(ptotal = 2.3 mTorr,   PMW = 800 W, Vsubstrate = floating). 

 

In the 1250-400 cm-1 range, peaks characteristic to Si-O, Si-C and Ti-O vibrational modes 

overlap and create a large band. The shoulder at 1152 cm-1 and peaks at 1026 cm-1, 916 cm-1 and 

450 cm-1 are attributed to Si-O stretching mode. Peaks emerging at 1026 cm-1 916 cm-1 have also 

been assigned to Si-C bending vibration. Peaks corresponding to Ti-O bonds spread over 1000-

400 cm-1 region. 

 

Table V-6: Identification of IR absorption peaks corresponding to thin films deposited in ZTB/HMDSO/O2 and 

TTIP/HMDSO/O2 plasma (ptotal = 2.1-2.5 mTorr, PMW = 800 W, Vsubstrate = floating). 

ZTB / HMDSO / O2 TTIP / HMDSO / O2 

Peak position (cm-1) Assignation Peak position (cm-1) Assignation 

3720-2800 O-H stretching 3750-2800 O-H stretching 

2970 

2930 

2881 

C-H stretching 

in CHx 

2966 

2939 

2870 

C-H stretching 

in CHx 

2341 Si-H stretching 2339 Si-H stretching 

1700shoulder C=O stretching 

C=C stretching 
1690shoulder C=O stretching 

C=C stretching 

1575 

C=O stretching 

C=C stretching 

O-H bending 

1564 

C=O stretching 

C=C stretching 

O-H bending 

1457 

1415 

1375 

C-O stretching 

O-H bending 

C-H bending 

1452 

1381 

C-O stretching 

O-H bending 

C-H bending 
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ZTB / HMDSO / O2 TTIP / HMDSO / O2 

Peak position (cm-1) Assignation Peak position (cm-1) Assignation 

1269 

Si-C stretching 

C-H bending in Si-

(CHx)y 

1270 

Si-C stretching 

C-H bending in Si-

(CHx)y 

1150shoulder Si-O stretching in 

Si-O-Si 
1152shoulder Si-O stretching in 

Si-O-Si 

984 

Si-O stretching 

Si-C bending in 

Si-(CHx)y 

1026 

916 

Si-O stretching 

Si-C bending in 

Si-(CHx)y 

800-400 Zr-O 1000-400 Ti-O 

450 Si-O bending 450 Si-O bending 

 

ZrSixOyCzHw and TiSixOyCzHw thin films exhibit a similar FTIR signature. The observed 

absorption peaks appear as a combination of peaks detected in spectra of organosilicon (Figure 

V-4) and metalorganic films (Chapter III.3.2.1, p.82). Several distinctions between the examined 

IR spectra are reviewed in the following text: 

➢ The band spreading over 3750-2800 cm-1 range, attributed to O-H stretching in absorbed 

H2O, was detected in films deposited in metalorganic/O2 and metalorganic/HMDSO/O2 

plasmas. However, this band was not observed in films deposited in HMDSO and 

HMDSO/O2 plasmas.  

➢ 1750-1300 cm-1 band, primarily assigned to C-O and C=O bonding, is characteristic of 

metalorganic and “composite” metalorganic-organosilicon films. The band was also detected 

in the studies of thin films deposited from TEOS plasma [1], [3]. Yet, this band does not 

appear in the spectra of films synthesized in HMDSO plasma. An explanation of the observed 

difference might lie in the absence of the C-O bond in the HMDSO molecule, while ZTB, 

TTIP and TEOS molecules each contain four C-O bonds.  

➢ The peak assigned to Si-H stretching is observed at 2141 cm-1 for organosilicon films. The 

centre of this peak is shifted by ~200 cm-1 towards higher wavenumbers (~2340 cm-1) in the 

spectra of “composite” metalorganic-organosilicon films. It has been shown that the position 

of the Si-H peak is very sensitive to modifications in the electronegativity of neighbouring 

atomic groups [218]–[220]. Thus, the observed shift can principally be explained by the 

change in the environment of the Si atom. Compared films were deposited in 100% HMDSO 
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and O2-rich metalorganic/HMDSO plasma. Therefore, the organosilicon film is expected to 

contain a higher fraction of carbon atoms, whereas the “composite” films should have a lower 

C at.% and higher O at.%. in comparison. The latter is evidenced by the intense Si-O and M-

O (M: Ti or Zr) peaks observed in FTIR spectra and the presence of band corresponding to 

oxygen rich carbonate structures. To further corroborate our assumption, we have compared 

the XPS data corresponding to “composite” films (Figure V-2, p.145) with films deposited in 

100% HMDSO in similar experimental conditions performed in Laplace Laboratory [3].  

XPS has measured ~45 at.% of carbon and ~25 O at.% in organosilicon film, while ~6 C at.% 

and ~60 O at.% were detected in “composite” films. Accordingly, the Si atom environment is 

richer in O atoms in examined “composite” films compared to carbon rich surroundings in 

organosilicon films. The change in neighbouring atomic groups leads to the significant Si-H 

peak shift due to oxygen being more electronegative than carbon: χoxygen=3.5 vs χcarbon=2.5. 

 

V.2.2.2 Evolution of thin film chemical bonding with HMDSO addition to ZTB/O2 and 

TTIP/O2 plasma gas mixtures: comparative analysis 

In the previous subchapter we have assigned the peaks observed in “composite” film FTIR 

spectra. In this part, the focus is on the evolution of absorption bands with HMDSO addition to 

metalorganic/O2 plasma gas mixture. Figure V-7 presents 4000-400 cm-1 spectral range of IR 

absorbance by thin films grown at different quantities of HMDSO in the gas mixture. The studied 

IR range has been divided into three regions in the following discussion. 

 

4000-2125 cm-1 region 

Figure V-8 shows the evolution of film absorption peaks in the 4000-2125 cm-1 spectral range 

with the addition of HMDSO to ZTB/O2 and TTIP/O2 plasmas. The wide 3750-2800 cm-1 band, 

assigned to O-H stretching, is present in all the films and indicates the absorption of H2O from 

the environment.   

O-H band overlaps with peaks characteristic of C-H stretching in CHx. Nonetheless, it can be 

observed that the C-H peaks become more pronounced with addition of HMDSO, implying an 

increase in C-H bonding present in the films. 

At ~2340 cm-1, a peak corresponding to Si-H stretching vibration appears with the 

introduction of HMDSO. Remarkably, the peak absorbance evolves in the same manner in both 
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films synthesized in ZTB and TTIP plasma. With the increase of HMDSO quantity from 4.8% to 

13%, the Si-H peak absorbance increases. As we further add HMDSO, at 20%, the peak 

disappears completely. 

 

 

Figure V-7: Evolution of thin film FTIR spectra (4000-400 cm-1) with HMDSO addition to (a) ZTB/HMDSO/O2 and 

(b) TTIP/HMDSO/O2 plasma (ptotal = 2.00-2.50 mTorr, PMW = 800 W, Vsubstrate = floating). 

Absorbance: normalised by thin film thickness. 
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Figure V-8: Evolution of thin film FTIR spectra (4000-1800 cm-1) with HMDSO addition to (a) ZTB/HMDSO/O2 and 

(b) TTIP/HMDSO/O2 plasma (ptotal = 2.00-2.50 mTorr, PMW = 800 W, Vsubstrate = floating).   

Absorbance: normalised by thin film thickness. 
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Figure V-9: Evolution of thin film FTIR spectra (1800-1230 cm-1) with HMDSO addition to (a) ZTB/HMDSO/O2 and 

(b) TTIP/HMDSO/O2 plasma (ptotal = 2.00-2.50 mTorr, PMW = 800 W, Vsubstrate = floating). 

Absorbance: normalised by thin film thickness. 
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Considering that the films are grown in O2-rich plasmas, and that the 1800-1230 cm-1 band is 

primarily assigned to bond vibrations in carbonate-like structures, the observed evolution implies 

an increase in concentration of C-O and C=O bonds with HMDSO increase. Moreover, since the 

peaks representing C-H stretching in CHx become more pronounced, C-H bending vibration are 

expected to increasingly attribute to 1500-1300 cm-1 band with HMDSO addition. 

In “composite” films, a 1270 cm-1 peak, assigned to Si-C bond, appeared at 13% of HMDSO 

and increased in absorbance at 20%. This development implies that the fraction of Si-C bonding 

in Si(CHx)y environment increased with HMDSO. 

 

1230-400 cm-1 region 

Figure V-10 presents the 1230-400 cm-1 region of FTIR spectra corresponding to the 

examined thin films. With the introduction of HMDSO emerges an absorption band characteristic 

of Si-O and Si-C vibrations emerges: one large peak and a shoulder are observed in ZrSixOyCwHz 

and two peaks in TiSixOyCwHz films. 

It appears that the Si-O and Si-C band increased in absorbance as HMDSO proportion 

increased from 4.8% in ZTB plasma. Concerning films deposited in TTIP plasma, it was difficult 

to draw conclusions about the evolution of the Si-O and Si-C peaks due to overlapping with Ti-O 

band.   

In general, the absorbance of the M-O (M: Zr or Ti) band decreased with HMDSO addition. 

The initial increase can be observed in the lowest examined wavenumbers which is most 

probably the result of the Si-O peak presence that was observed at ~450 cm-1 in organosilicon 

spectra, along with Si-O and Si-C peaks around 1000 cm-1. Since the Si-O peak overlaps with M-

O band, it is not possible to distinguish its evolution from the observed spectra.  

The review of the 1230-400 cm-1 spectral range confirmed the presence of Si-O and Si-C 

bonding in all “composite” films, as well as a decrease of M-O (M: Zr or Ti) bonding with 

HMDSO addition. 
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Figure V-10: Evolution of thin film FTIR spectra (1230-400 cm-1) with HMDSO addition to (a) ZTB/HMDSO/O2 and 

(b) TTIP/HMDSO/O2 plasma (ptotal = 2.00-2.50 mTorr, PMW = 800 W, Vsubstrate = floating).  

Absorbance: normalised by thin film thickness. 
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evidenced by XPS analysis, as well as by the appearance of Si-O and Si-C peaks in the IR 

spectra.  

     

Figure V-11: Evolution of film atomic composition ratios (a) C/M, (b) Si/M and O/M, (M: Zr or Ti) as a function of 

HMDSO addition to the ZTB/HMDSO/O2 and TTIP/HMDSO/O2 gas mixtures  

(ptotal = 2.0-2.5 mTorr, PMW = 800 W, Vsubstrate = floating).  
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“composite” films. The peak in question was detected in highly organic silicon oxide film 

(Figure V-4, p.148). Furthermore, with addition of HMDSO into the metalorganic/O2 gas 

mixture, more hydrogen and silicon atoms are available for deposition. Thus, the observed 

behaviour of the Si-H peak was not expected.  For Si-H bond to be formed, fragmentation of 

HMDSO molecule is necessary: the Si-O bond as well as the C-H bond need to be broken. 

The disappearance of the Si-H peak might be a result of changes in the chemistry of the 

plasma phase and/or surface reactions. 

 

Table V-7: Summary of the observations made by FTIR analysis. 

Gas mixture 

modification 
     Changes in chemical bonding  

Introduction of 

HMDSO 

• Zr-O ↘ | Ti-O ↘ 

• appearance of Si-O, Si-C, Si-H 

• C-O and C=O ↘ 

• O-H in absorbed H2O present 

Increase in 

HMDSO 

fraction from 

4.8% to 20.0% 

• Zr-O ↘ | Ti-O ↘ 

• Si-C ↗  

• Si-H first ↗, disappears at 20%  

• C-H ↗ 

• O-H in absorbed H2O present  

• ZrSixOyCwHz films: C-O and C=O ↗ 

• TiSixOyCwHz films: C-O and C=O ↗, at 20% ↘ 

 

 Thin film morphology  

V.3.1 Evolution of film morphological characteristics 

This subchapter focuses on the morphological modifications of films induced by HMDSO 

addition to the ZTB/O2 and TTIP/O2 plasma gas mixtures. Since a mixture of organosilicon and 

metalorganic precursor was used, it was of interest to compare morphology of thin films 

deposited in O2-rich HMDSO plasma with films synthesized in O2-rich metalorganic plasmas. 

The corresponding SEM cross-sectional and surface images are shown in Figure V-12. As 

already presented and discussed in previous chapters, films obtained in 5% ZTB/95% O2 and 5% 

TTIP/95% O2 plasmas at 2 mTorr and floating potential exhibit columnar morphology. The SiO2-

like film, on the other hand, appears homogeneous in all directions. No defined microstructural 

formations can be distinguished. The surface of the film seems smooth on a nanometric level. To 
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the best of our knowledge, the columnar morphology has not been observed in the numerous 

studies of organosilicon thin films deposited by low pressure ECR PECVD. 

 

 

 

 

                                     
Figure V-12: SEM cross-sectional (left) and surface (right) images of silica-, zirconia- and titania-like thin films (gas 

mixture: 5% precursor/95% O2, ptotal=2 mTorr, PMW = 800 W, Vsubstrate = floating). 
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ZTB 

Figure V-13 shows SEM cross-sectional micrographs of thin films deposited at different 

quantities of HMDSO in the ZTB/HMDSO/O2 plasma gas mixture. Thin film obtained in 

ZTB/O2 plasma has a columnar morphology. Columnar structures grew perpendicularly to the top 

surface of the substrate and they do not seem densely stacked. Each column consists of 

nanometric granular forms.  

From what we could observe in the SEM images, the morphology of the film does not appear 

altered by the introduction of HMDSO into the gas mixture. With further increase, from 4.8% to 

13% of HMDSO, the film microstructure was not significantly influenced. The films exhibit 

columnar morphology extending from the substrate to the top surface of the film. 

 

 

 

Figure V-13: SEM cross-sectional images of thin films deposited at different quantities of HMDSO in 

ZTB/HMDSO/O2 plasma gas mixture (ptotal = 2.0-2.5 mTorr, PMW = 800 W, Vsubstrate = floating). 
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At 20% of HMDSO in the gas mixture, the film growth mode was extensively modified 

leading to the disappearance of columnar growth. The bottom layer of the film seems uniform, 

whereas in the top layer, the onset of shapes that resemble the columnar structures is observed. 

The film surface morphology at different gas mixture compositions can be seen in SEM 

images presented in Figure V-14. The surface of the film deposited in ZTB/O2 plasma is 

composed of unevenly shaped mounds and narrow “cracking” patterns with maximal width of 15 

nm.  

 

 

 

Figure V-14: SEM surface images of thin films deposited at different quantities of HMDSO in ZTB/HMDSO/O2 

plasma gas mixture (ptotal = 2.0-2.5 mTorr, PMW = 800 W, Vsubstrate= floating). 

 

As HMDSO is added to the gas mixture, the evident voids disappear. At 4.8% and 13% of 

HMDSO, the film surface consists of irregular mounds with diameters mainly in 30-50 nm range. 
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With further increase to 20% of HMDSO, mounds with more defined edges and rounded shapes 

have developed.  This observation agrees with the cross-sectional morphology of the film, where 

shapes reminding of columnar structures are observed in the upper layer. 

 

TTIP 

The evolution of thin film morphology as HMDSO was added to the TTIP/O2 gas mixture has 

been examined by SEM imaging (Figure V-15). The film deposited in TTIP/O2 plasma exhibits 

columnar microstructure. The columns grow in a direction perpendicular to the substrate surface 

and their widths increase with height. Intercolumnar voids can be distinguished in the SEM 

cross-sectional image. The film is composed of fine nanometric grains organized in columnar 

structures.  

 

 
 

Figure V-15: SEM cross-sectional images of thin films deposited at different quantities of HMDSO in 

TTIP/HMDSO/O2 plasma gas mixture (ptotal = 2.0-2.5 mTorr, PMW = 800 W, Vsubstrate = floating). 
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When HMDSO is introduced to the gas mixture, thin film morphology remains columnar. It is 

difficult to distinguish differences in microstructural features between films deposited at 0% and 

at 4.8% of HMDSO by reviewing the obtained SEM images. 

At 13% of HMDSO, the film morphology seems to change slightly, and the columns become 

less defined. The film is organized in column-like structures that grow from the substrate-film 

interface to the film top surface. With further increase of HMDSO quantity to 20%, film growth 

mode undergoes a drastic change. The microstructure appears completely homogeneous with no 

defined features. The film exhibits a granular nature. 

 

 

 
Figure V-16: SEM surface images of thin films deposited at different quantities of HMDSO in TTIP/HMDSO/O2 

plasma gas mixture (ptotal = 2.0-2.5 mTorr, PMW = 800 W, Vsubstrate = floating). 
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Figure V-16 shows SEM surface images corresponding to thin films deposited in TTIP/O2 and 

TTIP/HMDSO/O2 plasmas. The addition of HMDSO into the TTIP/O2 gas mixture does not seem 

to have a visible influence on the film surface morphology. In all film surfaces examined, fine 

grains are arranged in irregularly shaped mounds with diameters in the 20-50 nm range. None of 

the films exhibit formation of surface voids. 

 

V.3.2 Thin film morphology as a function of HMDSO addition to ZTB/O2 and 

TTIP/O2 plasma gas mixture: comparative summary 

The SEM imaging provided an insight into the modifications of morphological characteristics 

in the ZrSixOyCwHz and TiSixOyCwHz “composite” films, with the addition of HMDSO to the 

metalorganic/O2 plasma gas mixture. The SiO2-like film exhibits a compact and homogeneous 

microstructure, whereas oxygen-rich metalorganic films have columnar morphology (Figure 

V-12, p.162). Adding HMDSO to the ZTB and TTIP plasmas has strongly influenced the film 

microstructural features. At 20% of HMDSO, the columnar morphology of the films disappeared 

(Figure V-13, p.163 and Figure V-15, p. 165). 

In the framework of Mr D. Li’s thesis [13], it has been shown that a small addition of HMDSO 

to TTIP/O2 ICP low pressure plasma compromises the columnar morphology of films deposited 

at floating potential. The columnar morphology disappeared in the film with TiSi0.9O4.0C1.6 

surface stoichiometry. In our case, the columnar morphology was still present in the 

TiSi2.0O5.8C2.7 film that was richer in Si, C and O atoms relative to ICP grown film. The column-

like structures disappeared in the TiSi3.6O7.8C4.8 film. This comparison implies that the chemical 

composition of the film does not play the sole crucial role in the modification of the film 

morphology.  

In the films deposited in ZTB/HMDSO/O2 plasma, the columnar morphology disappeared in 

ZrSi1.6O4.7C2.4 film. For both types of deposits, columnar growth was observed even at relatively 

high silicon bulk atomic content (~20%; Figure V-2, p.145). The variations in the HMDSO gas 

mixture fraction have shown that it is possible to obtain columnar morphology in the films with a 

wide range of chemical compositions.  
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 Insight into macroscopic physical properties of “composite” metal-

silicon oxide thin films 

The following text presents a very succinct inspection of the film refractive index and 

nanoporosity fraction. Data related to the optical constant is given in Table V-8. The refractive 

index n (at 632.8 nm) of silica-like thin film synthesized in 5% HMDSO/95% O2 plasma was 

determined to be 1.48. This value is in agreement with values reported in the literature for silicon 

dioxide thin films [4], [221], [222]. In comparison, zirconia-like and titania-like films deposited 

in the same conditions exhibit higher n values. The combination of metalorganic and 

organosilicon precursors resulted in the “composite” films with refractive indices of medium 

values. Studies of ZrSixOy and TiSixOy films have shown that the refractive index decreases with 

a decrease in the metal (Zr or Ti) at.% and increase of Si at.% in the films [13], [103]. XPS 

analysis has shown a decrease of metal atomic fraction in the films, as well as an increase of the 

silicon at.% with the addition of HMDSO to the gas mixture (Table V-4, p.146).  

 

Table V-8: Refractive index at 632.8 nm of thin films deposited in different plasma compositions                                

(p = 2.00-2.30 mTorr, PMW = 800 W, Vsubstrate = floating). 

Plasma gas mixture Thin film refractive index 

5% HMDSO/95% O2 1.48 

5% ZTB/95% O2 1.78 

5% TTIP/95% O2 1.90 

4% ZTB/13% HMDSO/83% O2 1.66 

4% TTIP/13% HMDSO/83% O2 1.65 

 

Film nanoporosity content was examined by ellipsometric porosimetry. In the films deposited 

in 5% ZTB/95% O2 plasma at 2 mTorr, 3% of nanosized pores were detected. The nanoporosity 

level was undetectable in films grown in 5% TTIP/95% O2 plasma (ptotal = 2 mTorr) as well as in 

“composite” films deposited at 13% of HMDSO in the gas mixture.  
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 Summary 

In this chapter, we have explored the growth of thin films in oxygen-rich plasma gas mixture 

of metalorganic and organosilicon precursor. The “composite” ZrSixOyCzHw and TiSixOyCzHw 

with homogeneously distributed chemical composition have been successfully synthesized.  

Characteristics of both types of “composite” films evolve in a similar manner as HMDSO is 

added to the metalorganic/O2 gas mixture. The atomic content of silicon, oxygen and carbon in 

the films increases relative to the metal atomic fraction. The FTIR study confirmed the presence 

of M-O, Si-O, Si-C, Si-H, C-O, C=O and C-H bonding. 

“Composite” thin films exhibit different morphological features depending on the amount of 

HMDSO added to the gas mixture. At very low HMDSO percentage, the film growth mode 

remains columnar. With further addition of HMDSO, the columnar structures disappear.  

We have shown the possibility of depositing oxide thin films with a vast range of refractive 

index values, as well as varying morphological features. 
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A comparative study of thin films synthesized in plasmas generated from two metalorganic 

precursors, ZTB and TTIP, has been presented in this thesis. Chemical composition, physico-

chemical and morphological characteristics as well as macroscopic properties of thin films 

have been evaluated for different process conditions:  

➢ variation of chemical composition of the plasma gas mixture: increase of oxygen gas 

percentage from 0% to 95% (at constant total gas pressure of 1 mTorr); 

➢ increase in total gas pressure of 5% metalorganic precursor + 95% O2 plasma gas 

mixture. 

Furthermore, we have synthesized “composite” ZrSixOyCzHw and TiSixOyCzHw thin films in 

oxygen-rich plasma gas mixture of metalorganic (ZTB or TTIP) and organosilicon precursor 

(HMDSO). Evolution of thin film characteristics has been studied as HMDSO was added to 

the gas mixture.  

Research presented in this manuscript should serve as an advancement towards identifying 

mechanisms that govern thin film growth in low pressure metalorganic PECVD. A summary 

of research results and corresponding interpretations is given in the following text and tables. 

Influence of oxygen gas percentage of plasma gas mixture 

Film characteristics corresponding to ZTB and TTIP plasmas change in a similar way as 

the plasma gas mixture becomes rich in oxygen gas. Chemical composition of the films 

evolves from highly organic to almost inorganic. Accordingly, OES analysis indicates a 

decline in the concentration of hydrocarbon species. A decreasing amount of carbon atoms is 

deposited due to precursor dilution and etching achieved by an increasing number of oxygen 

atoms. Changes in the chemical composition of the films are evidenced in chemical bonding, 

with films becoming abundant in metal-oxygen bonds. Hydrocarbon environment is replaced 

by carbonate-like structures rich in oxygen atoms. The concentration of C-O and C=O bonds 

that form structures such as Zr(CO3)/Ti(CO3) achieves highest value at ~80% of O2. With 

further addition of oxygen gas, this value decreases due to carbon-deficient conditions. OES 

analysis had indicated analogous behaviour of the concentration of CO and CO2 species in the 

plasma phase.  

Film morphology films is strongly affected by the variation in plasma gas mixture. 

Uniform growth is transformed to columnar growth in oxygen-rich conditions. Columnar 

structures observed in titania-like films are significantly thinner in comparison to zirconia-like 

films. Monte Carlo simulations have confirmed our hypothesis that the difference in column 
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width is a consequence of higher probability of surface relaxation of physisorbed Ti species in 

TTIP plasma, relative to Zr species in ZTB plasma.  

 

Table VI-1: Evolution of thin film characteristics as O2 fraction in plasma gas mixture increases:         

comparative summary of research findings. 

Oxygen gas in plasma gas mixture: 0% → 95% 

(ptotal = 1 mTorr) 

ZTB / O2 TTIP / O2 

▪ growth rate: relatively stable at first; continuous decrease at >50% O2 

▪ ZrO2.9C4.8 → ZrO1.9C0.8   ▪ TiO2.9C3.4 → TiO2.5C0.6   

▪ ↗ Zr-O/Ti-O; ↘ C-H 

▪ ↘ C-C and C-O that form ZrOC(CHx)y / TiOC(CHx)y 

▪ C-O and C=O bonds that form carbonate-like environment ↗ at <80% O2, ↘ at >80% O2 

        
▪ Ra: 0.27 nm → 4.90 nm 

       
▪ Ra: 0.39 nm → 0.98 nm 

▪ n (at 632.8 nm): 1.59 → 1.84 

▪ density: 2.1 g/cm3 → 3.6 g/cm3 

▪ open nanoporosity: 8% → 2% 

▪ n (at 632.8 nm): 1.73 → 2.10 

▪ density: 2.2 g/cm3 → 2.9 g/cm3 

▪ open nanoporosity: 0 % 

 

Influence of total gas pressure in oxygen-rich plasma 

Majority of examined characteristics of zirconium oxide and titanium oxide films evolves 

in a similar manner as total gas pressure is increased. We have detected continuous increase of 

the growth rate, primarily explained by increased deposition of carbon and oxygen atoms, as 

corroborated by XPS investigation. In general, films become richer in carbon and oxygen 

atoms relative to the metal atom (Zr or Ti). Chemical composition change is further 

corroborated by an increase in concentration of C-O and C=O bonds that form carbonate-like 

environment in the films. We suspect that the paramount motive of the change in physico-

chemical nature of the films lies in the plasma phase chemical composition. The evolution of 

nature and size of species that arrive to the substrate surface should have a significant 

influence on surface reactions, and the overall mechanism of thin film growth. Plasma phase 

might be significantly affected by:  

➢ decreasing amount of injected power per particle, and 

➢ decreasing mean free path of the particles. 

Changes in these two parameters might lead to a lower effectiveness of precursor dissociation 

process and increased probability of chemical reactions in the plasma phase. It is possible that 

species in the plasma become larger and more organic as pressure increases. The analysis of 
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the plasma phase by in-situ FTIR and MS should be performed to corroborate these 

hypotheses. 

Unlike other examined characteristics, thin film morphology evolves differently in ZTB 

and in TTIP plasma. The increase in pressure induces a drastic change of the growth mode in 

ZTB plasma: from columnar to uniform in all directions, whereas the films grown in TTIP 

plasma exhibit columnar morphology over the whole pressure range. The distinction in 

morphological evolution between zirconia- and titania-like films might be the result of several 

characteristics such as different properties of central metal atoms or the differences in 

employed precursor injection systems. Investigating the plasma phase is crucial for 

understanding the observed behaviours. 

 

Table VI-2: Influence of total gas pressure on thin film characteristics: comparative summary of research results.  

Total gas pressure: 1 mTorr → 8 mTorr 

5% ZTB / 95% O2 5% TTIP / 95% O2 

▪ continuous increase of the growth rate 

▪ ZrO1.9C0.8 → ZrO2.4C1.7 ▪ TiO2.5C0.6 → TiO2.7C1.3 

▪ ↗ C-O and C=O that form carbonate-like structures 

            

▪ n (at 632.8 nm): 1.84 → 1.69 

▪ density: 3.6 g/cm3 → 2.8 g/cm3 

▪ open nanoporosity: 2% → 16% 

▪ n (at 632.8 nm): 2.10 → 1.79 

▪ open nanoporosity: 0% → 10% 

 

Synthesis of “composite” thin films in metalorganic/HMDSO/O2 plasma 

In the last chapter of this thesis, we have explored the synthesis of thin films in oxygen-

rich plasma gas mixture of metalorganic (ZTB or TTIP) and organosilicon (HMDSO) 

precursor. The “composite” ZrSixOyCzHw and TiSixOyCzHw thin films, with homogeneously 

distributed chemical compositions, have been successfully deposited. As HMDSO was added 

to the gas mixture, silicon, oxygen and carbon atoms were increasingly deposited relative to 

the metal atom. Identification of the FTIR spectra confirmed the presence of M-O, Si-O, Si-C, 

Si-H, C-O, C=O and C-H bonding.  

Film morphology is affected by HMDSO addition to the plasma gas mixture. “Composite” 

films with columnar morphology are deposited at very low percentage of HMDSO. Film 

morphology becomes uniform with further addition of the organosilicon precursor.  
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Table VI-3: Characteristics of thin films deposited from metalorganic precursor+O2+HMDSO plasma gas 

mixtures: comparative summary of research observations. 

HMDSO in plasma gas mixture: 4.8% → 20% 

(ptotal = 2.10 → 2.50 mTorr) 

ZTB / O2 / HMDSO TTIP / O2 / HMDSO 

▪ continuous increase of the growth rate 

▪ ZrSi0.4O2.6C0.7 → ZrSi1.6O4.7C2.4 ▪ TiSi1.1O4.2C2.0 → TiSi3.6O7.8C4.8 

▪ Zr-O/Ti-O ↘ 

▪ Si-C ↗; C-H ↗ 

▪ Si-H ↗, disappears at 20% 

▪ C-O and C=O that form carbonate-like environment ↗ 

 
↓ 

 

 
↓ 

 

▪ n (at 632.8 nm): 1.66 at 13% HMDSO ▪ n (at 632.8 nm): 1.65 at 13% HMDSO 

 

In the framework of this thesis, we have shown the possibility of synthesizing metal oxide 

and metal-silicon oxide thin films with a vast range of characteristics: uniform to columnar 

morphology; highly organic to almost inorganic; low to high refractive index. The 

comparative study of thin films grown in ZTB and TTIP plasmas indicated a predominantly 

similar comportment of the two metalorganic PECVD processes. Furthermore, our 

understanding of the difference between columnar growth mechanisms in ZTB and TTIP 

plasma has been significantly improved by coupling experimentally obtained results with 

theoretical simulations of thin film growth. Nevertheless, there are questions that remain 

unanswered and new ones arise. These are discussed in the following paragraph. 

 

Perspectives 

➢ Increase in total gas pressure had induced a particular evolution of thin film morphology. 

Before further studying gas pressure influence on thin film growth, it is important to 

repeat the study of TTIP plasma. The study should be performed by using the LVD 

injection system to confirm the observed differences in evolution of film morphology 

between ZTB and TTIP plasmas. 

➢ Combining experimental PECVD and Monte Carlo simulations has proved to be 

successful in explaining certain morphological features of the films. It would be of interest 

to follow this pathway further by constructing hypotheses and specific experiments which 

could be modelled in Monte Carlo simulations, with the objective of deepening the 
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understanding of thin film growth mechanisms.  

➢ Metalorganic precursors are frequently used in PECVD of metal oxide nanocoatings.  

Thus, it is of interest to further investigate general laws that govern thin film growth in 

this type of process by expanding the research to other metalorganic precursors such as 

Titanium (IV) tert-butoxide (TiTB) and Hafnium (IV) tert-butoxide (HfTB).  

 

Figure VI-1: 3D molecular geometries of TiTB, ZTB and HfTB, and atomic mass and number                    

corresponding to central atoms of each molecule (Ti, Zr and Hf, respectively). 

➢ Species present in the plasma phase arrive at the surface and participate in different 

physical and chemical reactions leading to thin film growth. Therefore, to understand the 

PECVD process, it is crucial to have insight into the plasma phase. This includes 

examining the evolution of plasma chemical composition as a function of different 

process parameters.  

A new, sophisticated plasma analysis platform (Figure VI-2), currently under construction 

at LAPLACE, will allow a comprehensive study of the plasma phase. Main characteristics 

of the system will be the following:  

• Plasma sources: ECR and ICP; 

• In situ FTIR spectroscopy, 

o high detectivity (100 passes), and 

o wide range (from 4000 to 10 cm-1); 

• Mass spectroscopy; optical emission spectroscopy; Langmuir probe. 

 
Figure VI-2: Schematic representation of the plasma analysis platform under construction at LAPLACE. 
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➢ Furthermore, in collaboration with Laboratory for Chemistry of Novel Materials at 

University of Mons, we have significantly advanced the preparation for plasma phase 

study. The method is based on the combination of in-situ FTIR, MS and DFT, with the 

objective of assisting the interpretation of experimental results by theoretical calculations.  

Supporting FTIR analysis with DFT appears to be a promising approach as already shown 

in the research of organic plasma [223], [224]. To assess the pertinence of this approach 

for metalorganic plasma, we have used FTIR and MS data collected in the framework of 

Mr R. Verhoef's thesis [12], and built a synthetic vibrational spectrum of the plasma phase 

(Figure VI-3). 

 
Figure VI-3: Synthetic IR spectrum compared to FTIR spectrum of ZTB plasma. 

 

It has also been shown that coupling experimental data and DFT calculations allows 

proposing precursor dissociation pathways in the plasma phase and the ionisation source 

of MS spectrometer [224]. The method is based on the Gibbs free enthalpies of 

dissociation reactions. The operational principle involves calculating Gibbs free enthalpy 

difference between the reactants and the products. As preparation for envisioned 

comprehensive study of the precursor dissociation mechanism, we have calculated free 

enthalpy change in different dissociation reactions for ZTB, TTIP and HMDSO molecules 

(several examples are listed below; the form [X − Y] denotes species X lacking part Y 

(graphical representation shown in Figure VI-4)). 

 

𝐻𝑀𝐷𝑆𝑂 
        3.87 𝑒𝑉       
→           𝐶𝐻3 + [𝐻𝑀𝐷𝑆𝑂 − 𝐶𝐻3] 

𝐻𝑀𝐷𝑆𝑂+ 
     0.70 𝑒𝑉        
→          𝐶𝐻3 + [𝐻𝑀𝐷𝑆𝑂− 𝐶𝐻3]

+
 

3500 3000 2500 2000 1500 1000 500

0.0

0.2

0.4

0.6

0.8

1.0

 

 

In
te

n
s
it
y
 (

a
.u

.)

Wavenumber (cm
-1
)

 ZTB plasma (45W)

 Synthetic spectrum (DFT)

         Peaks corresponding to ZTB molecule and/or large ZTB fragments

CH
4

CO
2

CO

O=C(CH
3
)

2

CH
4

C
2
H

2

H
3
CCCH

H
2
C=C(CH

3
)

2

H
2
C=CCH

3

H
2
C=CHCH

3



General conclusion and perspectives 

 

 

179 

𝐻𝑀𝐷𝑆𝑂 
       4.19  𝑒𝑉       
→           𝑆𝑖(𝐶𝐻3)3 + [𝐻𝑀𝐷𝑆𝑂 − 𝑆𝑖(𝐶𝐻3)3] 

[𝐻𝑀𝐷𝑆𝑂 − 𝑆𝑖(𝐶𝐻3)3] 
      0.48 𝑒𝑉     
→         𝐶𝐻3 + [𝐻𝑀𝐷𝑆𝑂 − 𝑆𝑖(𝐶𝐻3)3 − 𝐶𝐻3] 

𝑍𝑇𝐵
    2.54 𝑒𝑉        
→         𝐶𝐻3 + [𝑍𝑇𝐵 − 𝐶𝐻3] 

𝑍𝑇𝐵+
        4.23 𝑒𝑉        
→          𝐶𝐻3

+ + [𝑍𝑇𝐵 − 𝐶𝐻3] 

𝑍𝑇𝐵+
      −0.63 𝑒𝑉         
→           𝐶𝐻3 + [𝑍𝑇𝐵 − 𝐶𝐻3]

+ 

𝑍𝑇𝐵+
      1.51 𝑒𝑉          
→          𝑂𝐶(𝐶𝐻3)3 + [𝑍𝑇𝐵 − 𝑂𝐶(𝐶𝐻3)3]

+ 

[𝑍𝑇𝐵 − 𝑂𝐶(𝐶𝐻3)3]
+
       4.22 𝑒𝑉      
→         𝑂𝐶(𝐶𝐻3)3 + [𝑍𝑇𝐵 − 𝑂𝐶(𝐶𝐻3)3 − 𝑂𝐶(𝐶𝐻3)3]

+ 

𝑇𝑇𝐼𝑃+
         −0.25 𝑒𝑉       
→           𝐶𝐻3 + [𝑇𝑇𝐼𝑃 − 𝐶𝐻3]

+ 

𝑇𝑇𝐼𝑃+
     1.36 𝑒𝑉       
→         𝑂𝐶𝐻(𝐶𝐻3)2 + [𝑇𝑇𝐼𝑃 − 𝑂𝐶𝐻(𝐶𝐻3)2]

+ 

[𝑇𝑇𝐼𝑃 − 𝑂𝐶𝐻(𝐶𝐻3)2]
+
     1.79 𝑒𝑉       
→        𝐶𝐻3 + [𝑇𝑇𝐼𝑃 − 𝑂𝐶𝐻(𝐶𝐻3)2 − 𝐶𝐻3]

+ 

 

 

 

Figure VI-4: 2D graphical representation of the following dissociation reaction:  

HMDSO → Si(CH3)3 + [HMDSO − Si(CH3)3].

HMDSO [HMDSO − Si(CH3)3] Si(CH3)3 
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Table A-1: Synthetic IR spectrum of ZTB molecule calculated by 

DFT method in Gaussian09 software. 

ZTB molecule 

Wavenumber (cm-1) Assignation 

2983.24-2981.4 C-H in CH3 a-stretching in phase 

2977.4-2972.70 C-H in CH3 a-stretching out of phase 

2917.06-2916.4 C-H in CH3 s-stretching in phase 

2908.87-2907.91 C-H in CH3 s-stretching out of phase 

1459.55-1456.41 C-H in CH3 scissoring in phase 

1441.07-1438.32 C-H in CH3 scissoring out of phase 

1430.33-1427.51 C-H in CH3 scissoring out of phase 

1416.71-1415.44 C-H in CH3 scissoring out of phase 

1367.59-1365.72 C-H in CH3 wagging in phase 

1341.97-1339.52 C-H in CH3 wagging out of phase 

1203.77-1201.68 C-H in CH3 rocking 

1162.76-1162.34 C-O stretching 

1037.25 
Zr-O s-stretching 

C-O s-stretching 

997.93-997.29 Zr-O-C stretching 

923.91-922.68 CH3 rocking 

874.91-872.42 CH3 rocking 

754.72-753.97 
Zr-O stretching 

C-C s-stretching 

517.83-516.97 

499.71 

C-C-C bending 

Zr-O stretching 

460.31-459.0 Zr-O-C bending 

C-C-C bending 455.2-451.49 

338.02-326.99 C-C-C bending 
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Table A-2: Synthetic IR spectrum of TTIP molecule calculated by 

DFT method in Gaussian09 software. 

TTIP molecule 

Wavenumber (cm-1) Assignation 

2985.4-2983.8 C-H in CH3 a-stretching in phase  

2981.6-2980.0 C-H in CH3 a-stretching out of phase 

2979.7-2977.7 C-H in CH3 a-stretching in phase 

2972.2-2970.2 C-H in CH3 a-stretching out of phase 

2913.7-2912.3 C-H in CH3 s-stretching in phase  

  2908.7-2907.2 C-H in CH3 s-stretching out of phase  

2869.9-2858.0 C-H in CH stretching 

1450.7-1447.8 C-H in CH3 scissoring in phase  

1434.5-1433.3 C-H in CH3 scissoring in phase 

1430.3-1421.8 C-H in CH3 scissoring out of phase 

1359.6-1357.8 C-H in CH3 wagging in phase 

1343.1-1341.2 C-H in CH3 wagging out of phase 

1318.5-1311.5 C-H in CH bending  

1155.7 Ti-O-C s-stretching 

1141.1-1140.3 C-C-C bending 

1108.7-1106.2 C-O stretching out of phase 

1099.6-1097.3 C-C a-stretching 

1015.2 Ti-O-C s-stretching in phase 

996.9-990.8 Ti-O-C a-stretching 

906.9-889.4 C-C-H bending 

827.4-824.2 C-C-C s-stretching in phase 

616.0-610.9 Ti-O a-stretching 

569.0 Ti-O s-stretching 

447.2-434.2 

Ti-O-C bending 

C-C-C bending 
427.6 

416.2-398.1 

325.4-322.0 C-C-C bending 
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Table A-3: Synthetic IR spectrum of HMDSO molecule calculated by 

DFT method in Gaussian09 software. 

HMDSO molecule 

Wavenumber (cm-1) Assignation 

2976.4-2969.6 C-H in CH3 a-stretching 

2907.1-2903.8 C-H in CH3 s-stretching  

1418.7-1396.8 C-H in CH3 scissoring 

1250.8-1242.0 C-H in CH3 wagging  

1040.3 Si-O-Si a-stretching 

873.0 
Si-O-Si s-stretching 

Si-C-H bending 

835.1-818.2 Si-C-H bending 

743.9-736.9 Si-C-H bending 

632.5 Si-O-Si s-stretching 

588.8 Si-C s-stretching out of phase in Si(CH3)3 

471.1 Si-O-Si s-stretching 

311.1 

307.7 
Si-O-Si bending 

241.3-238.7 
C-Si-C bending  

CH3 groups scissoring 
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Figure A-1: FTIR spectrum of thin film deposited in 50% ZTB / 50% O2 plasma 

(ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= floating). 
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Figure A-2: FTIR spectrum of thin film deposited in 50% TTIP / 50% O2 plasma 

(ptotal = 1 mTorr, PMW = 800 W, Vsubstrate= floating). 
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Figure A-3: FTIR spectrum of thin film deposited in 4% ZTB / 13% HMDSO / 83% O2 plasma 

(ptotal = 2.3 mTorr, PMW = 800 W, Vsubstrate= floating). 
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Figure A-4: FTIR spectrum of thin film deposited in 4% TTIP / 13% HMDSO / 83% O2 plasma 

(ptotal = 2.3 mTorr, PMW = 800 W, Vsubstrate= floating). 



Résumé 

 

Dans ces travaux des couches minces d’oxyde métalliques et « composites » oxyde métalliques siliciés ont été 

obtenues par PECVD dans un réacteur plasma multi-dipolaire RCE à partir de mélanges gazeux composés 

d’oxygène et de de précurseurs  organométalliques [le Zirconium (IV) tert-Butoxide (ZTB, ZrO4C16H36) et le 

Titanium (IV) isopropoxide (TTIP, TiO4C12H28)].  

Dans la première partie de ce travail les travaux se sont focalisés  sur l’étude des caractéristiques des couches 

minces en fonction du rapport O2/précurseur. Dans les deux cas (oxyde de titane et oxyde de zirconium) nous 

avons montré que les propriétés analysées évoluent de manière similaire avec l'augmentation du rapport 

O2/précurseur. La composition des films  évolue d’une phase organique à une phase quasi inorganique avec 

l'addition d’O2 dans le mélange. La croissance des couches passe d’un mode de croissance homogène à 

colonnaire (dans le plasma très fortement oxydé). D’un point de vue fondamental les colonnes obtenues 

expérimentalement en ZTB et TTIP ont été comparées à celles obtenues par simulation  numérique (méthode de 

Monte  Carlo) afin de comprendre les différences morphologiques observées (tailles de colonnes). 

Ensuite, nous avons mis en évidence l'influence de la pression du mélange O2 (95%)/précurseur (5%) sur la 

croissance de la couche: La composition chimique des films ne change pas significativement avec l'augmentation 

de la pression. Dans le cas du ZTB, la pression totale a une forte influence sur les caractéristiques structurales: en 

effet, pour des pressions >8 mTorr la croissance colonnaire disparaît.  En revanche ce phénomène n’est pas 

observé dans le cas du TTIP. 

Enfin, dans la troisième partie du travail nous avons démontré la possibilité de réaliser des dépôts de types 

ZrSiwOxCyHz et TiSiwOxCyHz en introduisant simultanément dans le réacteur plasma un précurseur 

organométallique (ZTB ou TTIP)  et un précurseur organosilicié (HMDSO, OSi2C6H18).  L’augmentation du 

taux de HMDSO dans le mélange permet de passer d’un mode croissance colonnaire (faible teneur de HMDSO) 

à un mode de croissance Uniforme (plus forte teneur en HMDSO).  

Ces travaux ont mis en évidence les diverses possibilités  d’accéder à un grand panel de propriétés de couches en 

termes de densité, indices optiques et porosité. 
 

Mots clés: PECVD basse pression, couches minces, oxyde métalliques, oxyde métalliques siliciés, ZTB, TTIP,  

   HMDSO. 
 

 
Abstract 

 

In this thesis, metal oxide and metal oxide/silica « composite » thin films were obtained by PECVD in multi-

dipolar ECR plasma reactor from gas mixtures composed of oxygen gas and metalorganic precursors [Zirconium 

(IV) tert-Butoxide (ZTB, ZrO4C16H36) and Titanium (IV) isopropoxide (TTIP, TiO4C12H28)].  

In the first part of the thesis, the study focused on thin film characteristics as a function of O2/precursor ratio. As 

O2/precursor ratio increased, analysed properties evolve similarly in both zirconium and titanium oxide films. 

Composition of thin films progresses from organic to almost inorganic with addition of oxygen to plasma gas 

mixture. The growth mode evolves from homogeneous to columnar in highly oxidized plasma. From a 

fundamental point of view, columns obtained experimentally in ZTB and TTIP were compared with those 

obtained by theoretical simulation (Monte Carlo method) in order to understand the observed morphological 

differences (column width). 

Further, we investigated the influence of total gas pressure of plasma gas mixture composed of O2 

(95%)/metalorganic precursor (5%) on thin film growth. Chemical composition of the films does not change 

drastically with the increase in pressure. In the case of ZTB, total gas pressure has a strong influence on the 

morphological characteristics: columnar growth disappears at pressures above 8 mTorr. This phenomenon was 

not observed in films deposited in TTIP plasma. 

In the third part of this work, we have demonstrated the possibility of synthesising ZrSiwOxCyHz and 

TiSiwOxCyHz homogeneous thin films by simultaneously introducing a metalorganic precursor and an 

organosilicon precursor [Hexamethyldisiloxane (HMDSO, OSi2C6H18)] into the reactor. Increase in the fraction 

of HMDSO in the plasma gas mixture induces a change in growth mode from columnar growth mode (low 

HMDSO content) to uniform growth mode (higher HMDSO content). 

This work has highlighted the various possibilities of obtaining a large panel of thin film properties in terms of 

density, optical index and porosity.  
 

Keywords: low pressure PECVD, thin films, metal oxide, metal oxide/silica, ZTB, TTIP, HMDSO. 

 


