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Abstract

Single beam acoustical tweezers have been developed and applied to numerous applications

in biological and biochemical domains. Their application in precise manipulations requires

accurate control of the acoustical trap. This work sets out to calibrate the force exerted by

acoustical tweezers and synthesize the desired wavefield.

The single beam acoustical tweezers are achieved by a focused vortex beam. An object in

interaction with the acoustic waves is trapped thanks to the radiation pressure. This three-

dimensional force can be obtained by knowing the incident beam shape coefficients as well as

the scattering coefficients. Therefore, the computation of the forces can be achieved by mea-

suring the wavefield. The first part of the thesis concentrates on assessing different methods

to compute the beam shape coefficients from the pressure field to estimate the radiation force

exerted on an elastic sphere. Then, in the second part, the synthesis of the field using the

inverse filtering method is carried out. A proper synthesis of the field requires a suitable dis-

tribution of control points where the wave propagation information is recorded. To synthesize

the appropriate vortex beam, three kinds of distributions were compared.

For the single beam acoustical tweezers, the most challenging part is the axial restoring force.

In order to overcome this difficulty, the spherical vortex beam with high pressure gradient in

the axial direction is introduced. This spherical vortex beam is intended to trap large spheres

with diameters close to the wavelength. The feasibility of this vortex is analyzed numerically

and experimentally.

Keywords: nonlinear acoustics, radiation pressure, acoustical tweezers, calibration, wave-

field synthesis, scattering



Résumé

Les pinces acoustiques à faisceau unique ont été développées et appliquées à de nombreuses

applications dans les domaines biologiques et biochimiques. Leur application lors de manipula-

tions précises nécessite une connaissance complète des forces appliquées sur l’objet. Ce travail

a pour objectif de calibrer la force exercée par une pince acoustique et de synthétiser le champ

d’onde souhaité.

Les pinces acoustiques à faisceau unique sont réalisées par un faisceau vortex focalisé. Un

objet en interaction avec les ondes acoustiques est piégé grâce à la pression de radiation. Cette

force tridimensionnelle peut être obtenue en connaissant les coefficients du champ incident

ainsi que les coefficients de diffusion. Par conséquent, le calcul des forces peut être réalisé en

mesurant le champ incident. La première partie de la thèse se concentre sur l’évaluation de

différentes méthodes permettant de calculer ces coefficients du champ incident à partir de la

mesure du champ de pression calibré. Ensuite, dans la deuxième partie, le champ est synthétisé

en utilisant la méthode du filtre inverse. L’efficacité de cette méthode dépend de la distribution

des points de contrôle. Les choix de distribution sont comparés.

Pour les pinces acoustiques, une difficulté majeure est d’obtenir une force de rappel axiale

d’amplitude suffisamment large pour compenser le poid de la sphère. Afin de surmonter cette

difficulté, un nouveau champ de type vortex sphérique est introduit. Ce champ est destiné à

piéger de grandes sphères de diamètres proches de la longueur d’onde afin d’obtenir en plus des

forces de grande amplitude, une sélectivité améliorée de la pince. La faisabilité de ce vortex est

analysée numériquement et expérimentalement.

Mots-clés : acoustique nonlinéaire, pression de radiation, pince acoustique, calibration,

synthèse du champ, diffusion
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Chapter 1

Context and objectives

Contactless manipulation technologies are critical for numerous biological studies and appli-

cations: cellular interaction, DNA and RNA replication and segregation, microparticles trans-

portation, separation and selection of cells and bacteria, etc. Technical devices such as optical,

magnetic, and acoustic tweezers are developed and employed in biological experiments to study

small objects, including cells and proteins. These micro manipulators are in strong demand in

the field of biophysics. Among these tweezers, optical tweezers [1, 2, 3, 4] have been developed

and used first because of their precision and trap capabilities. In 1971, Arthur Ashkin first

developed a stable optical levitator based on counterpropagating laser beams. 15 years later

[2], the first single beam optical tweezers were realized by Arthur Ashkin using a tightly focused

light beam that gives rise to a more accurate control of trapping. However, the high intensity

focus of optical tweezers can lead to photo-damage and heating [5, 6] of the target object, espe-

cially for in vivo samples. In addition, the applications of optical tweezers are limited by their

force range, from 0.1 to 100 pN [7]. Thus, the optical tweezers are suitable for manipulations

at the sub-cellular levels. As for the studies on the scale of larger organisms, the optical forces

are minuscule. Magnetic tweezers can avoid photo-damage compared to optical tweezers. They

are widely used in the biology field, especially for manipulation and analyses of DNA and RNA

[8, 9]. The main drawback of magnetic tweezers is the limited range of constant force. Besides,

the target objects are limited to magnetic particles or require pre-tagging (attach or bind mag-

netic particles to the target object) [7]. Moreover, applying large force requires high-current

electromagnets which would cause heating or production of non constant-force. The radiation

force is proportional to the energy density divided by the speed of propagation. As the velocity
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CHAPTER 1. CONTEXT AND OBJECTIVES

of light is 5 orders of magnitude larger than sound speed, acoustic tweezers can afford large

forces with much smaller intensity than optical tweezers. The acoustic tweezers are, therefore,

a solution for the heating issue. Moreover, no pre-tagging is required for acoustic tweezers and

the sizes of the trapped particle range from hundred nanometers to millimeter. This advantage

emphasizes their potential for in vivo studies and enables a wide range of applications in various

domains: materials science, biophysical properties of cells and molecules, micro-rheology, and

biophysical characterization of DNA, etc.

As acoustic tweezers are anticipated as a powerful tool with numerous advantages, different

kinds of acoustic traps are developed. Early studies of the acoustic traps[10, 11] were based on

plane standing waves to trap particles at the nodes or anti-nodes. Among the studies of the

acoustic radiation pressure, Gorkov [12] proposed an approach to obtain the radiation force on

objects much smaller than the acoustic wavelength in an acoustic field due to standing waves.

According to Gorkov’s expression, the radiation pressure of standing waves could be written as

a gradient force. His theory is widely used and has accelerated the development of acoustic trap

by standing waves. The first acoustic tweezers are investigated by Wu [13] using two collimated

focused ultrasonic beams propagating along opposite directions with which radial selectivity

was achieved [see Fig. 1.1- (1)]. Latex particles and clusters of frog eggs were trapped in

the potential well. Acoustic levitation, known for a longtime [14, 15], has achieved significant

success in many research areas, such as measurement of liquid surface tension [16], studies

on liquid droplets [17, 18, 19] and biochemical analysis [20]. The simplest configurations of

acoustic levitator is called single-axis acoustic levitator. It can be formed by a single transducer

and a reflector [15, 21, 22], by two opposing transducers [17] or by two opposing arrays of

transducers [23]. Xie and Wei have demonstrated a single-axis device [24] that allows stable

levitation of high-density solid sphere, liquid droplet [21], and even living animals [25]. As

illustrated in Fig. 1.1-(2) and (3), an iridium sphere and a mercury drop are both trapped

in the levitator; small animals like ant, ladybug, and small fish are levitated without losing

their vitality. Standing surface acoustic waves (SSAWs) can also create acoustic traps, which

have opened up a new area for the development of particle sorting. In microfluidics systems,

‘acoustophoresis’ describes the effect of radiation pressure acting on particles in suspension when

exposed to an acoustic standing wave field. It is widely applied to manipulate micro objects

2



CHAPTER 1. CONTEXT AND OBJECTIVES

[26] (particle, bubble, droplet, etc.) like patterning[27, 28, 29], separation and transportation

[30, 31, 32, 33, 34, 35]. The radiation force exerting on gas bubbles in interaction with sound

waves, known as Bjerknes force, have been used to manipulate gas bubbles [36, 37]. Recently,

the SSAWs have been extensively utilized in the biological field to separate cells [38, 39, 40]

due to their noninvasiveness. Some of the SSAWs’ applications are represented in Fig. 1.2: (1)

an effective microparticle patterning system established by SSAWs; (2) droplets with different

densities sorted by SSAWs; (3) nanoscale particle sorting using two-stage SSAWs (separation

of exosomes from blood); (4) separation of lipid particles from red blood cells with efficiency

close to 100%.

Figure 1.1: (1) Two focused collimated ultrasonic beams propagating along opposite directions
a reused to generate a force potential well to trap a spherical particle.T represents a focusing
PZT transducer. W is the beam width at its focal point. (2) Single-axis acoustic levitation
of an iridium sphere and a mercury drop. (3) Acoustic levitation of small living animals by a
resonant single-axis device (Reprinted from [13, 21, 25]).

3



CHAPTER 1. CONTEXT AND OBJECTIVES

Figure 1.2: (1) Particles patterned into dot clusters in a 2D standing acoustic field [27]. (2)
Schematic of the SSAW-based multichannel droplet sorter constructed by two interdigital trans-
ducers (IDTs). [34]. (3) Separation of nanoparticles (exosomes) from blood using two-stage
SSAWs [40]. (4)Acoustic separation of human lipid particles and human erythrocytes by dif-
ferent compressibility [41].

In these schemes, all pressure nodes (or anti-nodes depending on the object density and

compressibility) act as potential traps. Although the standing wave fields are of significance in

collective manipulation of multiple objects or for particles sorting, all those acoustic trapping

devices require more than one transducer , and trapped targets which must be located between

these transducers. Furthermore, the multiplicity of nodes and anti-nodes precludes any selec-

tivity. On the contrary, optical tweezers are selective traps with a single position of equilibrium.

Regarding the advantage of three-dimensional manipulation, the single beam acoustic trap is

developed [42, 43, 44]. A recent study demonstrated the feasibility and efficiency of single

beam acoustic tweezers. They are characterized by the ability to pick up, trap and manipulate

a single small elastic particles in three dimensions [45, 42, 46, 47] as its optical counterpart

[48, 49, 50].

The solution to build a single beam acoustic tweezers has been to tailor the incident field

4



CHAPTER 1. CONTEXT AND OBJECTIVES

with a focused acoustic vortex. Acoustic vortices are the acoustical equivalent of optical vortices

[51], with a helical type of wavefront and a phase singularity at the center of helicoid as shown

in Fig. 1.3-(1). The helicoidal beams carry orbital angular momentum that can be transferred

to particles and induce rotation [52, 53]. The variation of the phase has a jump of 2m′π when

it undergoes a circle around the center of the vortex. The topological charge, m′, is an integer.

The sign of the topological charge depends on the direction of rotation through which the phase

has positive jumps: positive for counterclockwise and negative for clockwise. On the axis of

propagation, since the phase is undefined, the corresponding amplitude of the wave is zero and

forms a dark core. Therefore, the amplitude pattern of the vortex beam presents a ring shape,

as shown in Fig. 1.3-(2). It is also called a ‘doughnut mode’. With the doughnut-shaped

intensity distribution, it is possible to trap the targets at the core of acoustic vortex. The

radius of the ring grows larger as the topological charge increases. Different types of acoustic

vortex abased on their shape of wavefront will be presented later in the following section.

5



CHAPTER 1. CONTEXT AND OBJECTIVES

Figure 1.3: (1)Planes of constant phase for a wavefront containing a screw dislocation (helicoidal
wavefront). The phase winds around the axis of propagation z and the pitch of the helix is
fixed by the topological charge m′. (2) Phase front and corresponding intensity distribution for
vortex with topological charge m′ = 1, 2, 3 (from left to right) [45].

For all the possible applications, the calibration of the force provided by acoustic tweezers

is crucial, especially for micro-rheology studies. The optical and magnetic tweezers’ forces

calibration is achieved mainly by two methods: the first one studies the Brownian motion of

trapped objects with sizes comparable to the wavelength, then the force is determined from

Hooke’s law [54, 55]; the second one uses the viscous drag generated by fluid flow with force

determined by Stokes’ law [56].

However, the first method is not applicable for acoustic tweezers because the wavelength

and the object can be much larger than those of optical tweezers, and the Brownian motion

disappears at these scales. As for the second method, the fluid drag forces are also used to

calibrate the acoustic trapping force [57], but difficulties arise for single beam acoustic tweezers

due to the Magnus effect caused by the rotation of bead in an acoustic vortex beam [58].

The computation of the acoustic radiation force on spherical particles has been developed

6
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for different kinds of wavefields. The study began with a plane wave [10, 59, 60, 61]. Then,

the radiation pressure exerted by some more complicated beams such as: focused axisymmetric

beams [62, 63, 64], helicoidal Bessel beam [65, 66, 67] were established. Thereafter, the studies

were extended to arbitrary wavefront [68, 69, 70, 71]. In viscous fluid, The viscosity correction

of the radiation force was considered [72]. Furthermore, the approximation of the radiation

force on an object of arbitrary shape in a plane standing wave was also demonstrated [73]. For

the force prediction of the single beam acoustic tweezers, we will introduce a new method in

this paper. This method is not a direct measurement of the force but allows characterizing

the radiation force by measuring the acoustic pressure field of an arbitrary acoustic beam.

Previously, the three-dimensional force exerted on a spherical particle was modeled using the

incident beam expansion on spherical harmonics. This model depends on the dubbed beam

shape coefficients (BSC), Amn , and the scattering coefficients of the particle, Rn [74]. As the

scattering coefficient depends only on the physical characteristics of the object and propagation

medium, we aim to determine the BSC according to the incident acoustic beam pressure.

Therefore, our study is divided into four parts. In the first chapter, we introduce the analytical

model of radiation force exerted on an elastic sphere. The second chapter consists of different

methods with which we determine the BSC. Then, in the third chapter, the inverse filtering

method is employed to synthesize the vortex beams. Consequently, the acoustical trapping and

manipulating by the vortex beams are experimentally carried out in the last chapter.

7



Chapter 2

Acoustic radiation force

2.1 Derivation of the acoustic radiation force

This chapter is a compact version of the derivation of the acoustic radiation force on an

elastic sphere proposed by Baresch in his thesis [45].

2.1.1 Historical scalar theory

The acoustic radiation pressure is a nonlinear effect that characterizes the average force

exerted on an object interacting with the acoustic wave. In 1905, Rayleigh [75] published his

work with the first expression of acoustic radiation pressure which depends on the nonlinearity

of the medium.

PR = β < E > . (2.1)

Where < E > is the time-averaged energy density and β the coefficient of nonlinearity of the

medium. This expression can be used under the hypothesis that a plane wave is confined in

its propagation medium without communication with the outside environment at rest. After

Rayleigh’s study, Langevin [76] gives another expression of the radiation pressure in which the

plane wave is no longer confined but can communicate with the rest of the medium at rest:

PL =< E > . (2.2)

The expression of Rayleigh Pressure is in agreement with the results of Hertz and Mende

8



CHAPTER 2. ACOUSTIC RADIATION FORCE

[77]. However, the conditions necessary are too theoretical to obtain this expression. Indeed,

communication with the resting medium is inevitable in a free medium. Thus, the experi-

mental configurations lead mainly to the Langevin radiation expression. Another example of

Langevin radiation pressure is the radiation force balances that are designed specifically for

easy ultrasound power measurements on high power devices.

These theories are scalar, and their range of validity is restricted to plane longitudinal

waves incident on plane targets. This is in contrast with optic radiation pressure that was

modeled by Maxwell and is given by the Maxwell tensor. A more generic modeling in acoustics

accounting for arbitrary wavefronts, targets, and wave polarization was developed by Brillouin

and is described in the next section.

2.1.2 Modern tensorial theory

The tensorial nature of radiation pressure was developed in two papers [78, 79] published

in French. A translation in English appeared in 1938 [80]. The force exerted by external forces

on a portion of a solid is the integral on its surface of the Cauchy stress (minus the pressure for

an ideal fluid). The radiation force, i.e radiation pressure, is the mean value of this quantity.

In the following, we consider harmonic waves only (steady regime) and hence the time average

can be performed on an acoustic period, T = 2π/ω.

Fi = − 1

T

∫ T

0

(∫
S(t)

pnidS

)
dt = − <

∫
S(t)

pnidS > . (2.3)

Where p(~x, t) is the total pressure field in the fluid, index i stands for the axis considered,

and ~n is the unit vector normal to the surface of the object and pointing outward. It is an

average effect that should be distinguished from the instantaneous force applied to the object

that only contributes to the oscillation of it and can be computed in the linear approximation.

An acoustic field is, by definition, a local change of particle position and stress. The surface

S(t) of the object is, therefore, in oscillation and makes the calculation of the average force

a nonlinear process. One possible solution to alleviate this difficulty consists in writing the

radiation force in Lagrangian coordinates. However, calculating the net force in Lagrangian

coordinates is computationally complicate and not always feasible for fluids. Below, we give a

9



CHAPTER 2. ACOUSTIC RADIATION FORCE

reminder of the method used to come back to a fixed surface and in Eulerian coordinates.

Fixed surface in Eulerian coordinates

The first step is to write the continuity equation for momentum [81]:

∂ρvi
∂t

+
∂Πij

∂xj
= 0, (2.4)

with:

Πij = pδij + ρvivj. (2.5)

Where vi, vj is the fluid velocity, ρ is the density and Πij is the momentum flux tensor. By

integrating the Eq. (2.4) on the volume contained between the vibrating surface S(t) and a

fixed surface SR surrounding the object (see Fig. 2.1), using the divergence theorem, we obtain:

∫
V (t)

∂ρvi
∂t

dV +

∫
S(t)

Πijn
′
jdS +

∫
SR

ΠijnRjdS = 0. (2.6)

with ~n′ = −~n the normal to the surface S(t) of the object but pointing inward and ~nR the

normal outgoing vector at the surface SR.

10



CHAPTER 2. ACOUSTIC RADIATION FORCE

Object

Surface 
at rest

Incident wavefront

Figure 2.1: Geometry and notations used of the calculation of the force exerted on a particle
by an incident acoustic wave [45].

It is now appropriate to re-express the left side of Eq. (2.6) using the Reynolds transport

theorem:
∂

∂t

∫
V (t)

ρvidV =

∫
V (t)

∂ρvi
∂t

dV +

∫
S(t)

ρvivjn
′
jdS. (2.7)

Using this theorem, the continuity relation can be written as:

∂

∂t

∫
V (t)

ρvidV +

∫
S(t)

(Πij − ρvivj)n′jdS = −
∫
SR

ΠijnRjdSR. (2.8)

We now take the average in time of Eq. (2.8). Using the fact that the mean of a time derivative

cancels the first term of left hand side. The integrand of the second term is the pressure field

and taking into account ~n′ = −~n is the force expression of Eq. (2.3). The force then is expressed

by:

Fi = −
∫
SR

< Πij > nRjdS, (2.9)

11



CHAPTER 2. ACOUSTIC RADIATION FORCE

where < Πij > is named the Brillouin radiation tensor with the following expression:

< Πij >=< p > δij+ < ρvivj > . (2.10)

For the Brillouin expression of the radiation force, we notice that no hypothesis is necessary on

the shape of the object. The average force can therefore be obtained from this integrated tensor

on an immobile surface completely surrounding any object. A second order approximation of

Πij is the first non zero contribution < Πij > and is generally sufficient for acoustic wave of

finite amplitude. This approximation is discussed in the next part.

Second order approximation

For any acoustics fields, α, is decomposed into a perturbative series at second order:

α ≈ α0 + α1 + α2. (2.11)

with α0 the value at rest, α1 the linear acoustic field with < α1 >= 0 and α2 � α1 the

second order contribution. For the Reynolds tensor, the second order approximation is obvious

: ρvivj ≈ ρ0v1iv1j. The second order approximation of the pressure field in Eulerian coordinates

is given by the second relation of Langevin [82, 83, 84]:

p ≈ p0 +
1

2

p2
1

ρ0c2
0

− 1

2
ρ0~v

2
1 + C(t). (2.12)

Where C(t) is a function of time that only depends on the boundary condition in the far

field. The radiation force, Eq. (2.9), results from integration on a closed surface, and hence

any constant pressure like term have a null contribution. Thus, the term (p0 + C(t))δij can be

dropped. The expression of Brillouin tensor then becomes:

< Πij >= (
1

2

< p2
1 >

ρ0c2
0

− 1

2
ρ0 < ~v2

1 >)δij+ < ρ0v1iv1j > . (2.13)

With the expression 2.13, the radiation pressure can be calculated directly from the pressure

and velocity fields at the first order, the non-linearities of the medium do not intervene. From

now on, I will drop the index 1 since all acoustic fields appear at first order only. While the

12
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computation of the Brillouin tensor requires the expression of the acoustic fields at first order

in the fluid only, it remains to compute the total field in the fluid that is the sum of the incident

and scattered fields.

2.1.3 Radiation pressure on an elastic sphere in an ideal fluid

In the presence of the sphere, the total acoustic pressure field is composed of the incident

pressure field pi and the scattered pressure field ps:

p = pi + ps. (2.14)

From this stage, a spherical target is assumed, and in these conditions, a spherical coor-

dinates system is the best choice to write the boundary conditions at the object surface that

couple incident and scattered field.

We decompose in spherical coordinates, (r, θ, ϕ):
x = r sin θ cosϕ,

y = r sin θ sinϕ,

z = r cos θ.

(2.15)

With a set of orthogonal functions called spherical harmonics which are defined by:

Y m
n (θ, ϕ) =

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pm
n (cos θ)eimϕ

= Nm
n P

m
n (cos θ)eimϕ.

(2.16)

Where Pm
n (cos(θ)) are the Legendre polynomials. The azimuthal number m and the radial

degree n satisfy |m| ≤ n. The time convention adopted is exp(−iωt).
The point r = 0 belongs to the domain of definition of pi, this yields the choice of the

13
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spherical Bessel function, jn(kr) with k = ω/c0 is the wave number:

pi(r, θ, ϕ, t) = pa

∞∑
n=0

∑
|m|<n

Amn jn(kr)Y m
n (θ, ϕ) exp(−iωt), (2.17)

where the Amn are called the beam shape coefficients (BSC) and must be computed.

Linear scattering

Since, from the one hand, only the linear scattering is involved in our problem and on the

other hand, the spherical harmonics are orthogonal we can assume that the scattered pressure

field can be written:

ps(r, θ, ϕ, t) = pa

∞∑
n=0

∑
|m|<n

Rm
n A

m
n h

(1)
n (kr)Y m

n (θ, ϕ) exp(−iωt). (2.18)

Where h
(1)
n (kr) is the spherical Hankel function of the first kind describing the divergent wave

scattered by the sphere.

Far field approximation

By applying the expressions Eq. (2.14, 2.17, 2.18) to Eq. (2.13), the components of Brillouin

tensor in spherical coordinates can be obtained: < Πrr >, < Πrθ >, < Πrϕ >. The derivation

is given in [74, 45], and in the following, the steps used are mentioned.

The calculation of these components can be simplified by supposing that the radius R of

the surface S is approaching infinity (R → ∞). In practice, the spherical Hankel and Bessel

functions take the following asymptotic form:

h(1)
n (kR) ' (−i)(n+1) e

(ikR)

kR
, (2.19)

and:

jn(kR) =
h

(1)
n (kR) + h

∗(1)
n (kR)

2
. (2.20)

After replacing the spherical Hankel and Bessel functions by their asymptotic forms in Eq.

(2.17, 2.18), and applying these expressions of pressure field to calculate < Πrr >, < Πrθ >,

14
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< Πrϕ >,the components proportional to 1/R4 are negligible since R → ∞. We notice that

only one component of the Brillouin tensor < Πrr > (proportional to 1/R2) intervenes which

involves only the flow of radial momentum transported across the surface.

Radiation forces on an elastic sphere in an ideal fluid

Finally, the three components of radiation pressure exerted on an arbitrarily located elastic

sphere in a perfect fluid by an arbitrarily incident beam are [74]:

Fx =− 〈V 〉
k2

0

∞∑
n=0

∑
|m|<n

=(Q−mn Am∗n Am−1
n+1 Cn

+Qm
n A

m
n A

m+1∗
n+1 C∗n),

(2.21)

Fy = +
〈V 〉
k2

0

∞∑
n=0

∑
|m|<n

<(Q−mn Am∗n Am−1
n+1 Cn

+Qm
n A

m
n A

m+1∗
n+1 C∗n),

(2.22)

Fz = −2
〈V 〉
k2

0

∞∑
n=0

∑
|m|<n

=(Gm
n A

m∗
n Amn+1Cn). (2.23)

With :

V = p2
a/(2ρ0c

2
0),

Cn = R∗n +Rn+1 + 2R∗nRn+1,

Qmn =
√

(n+m+ 1)(n+m+ 2)/
√

(2n+ 1)(2n+ 3),

Gmn =
√

(n+m+ 1)(n−m+ 1)/
√

(2n+ 1)(2n+ 3).

From the theoretical expressions of the radiation pressure, two coefficients are required to

determine the forces:

• Scattering coefficients: Rn

• Incident BSC: Amn

Here, the scattering coefficients Rm
n are simplified to Rn. The reason will be explained in

the next section. The two next sections describe the procedure to compute these two sets of

coefficients.
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2.2 Scattering coefficient

The study of the scattering problem of a plane longitudinal wave in interaction with spheres

begins by Anderson [85] (liquid sphere) and Faran [86] (elastic sphere). The general theory of

acoustic diffraction processing for a sphere of any size in front of the wavelength is introduced.

Then, Epstein and Carhart[87], as well as Allegra and Hawley[88] have integrated the thermal

and viscous effects to these models. However, the above models are valid by supposing the

acoustic field is axisymmetric. In the case of the scattering of a plane shear wave, the field is

no longer axisymmetric. Truell and al.[89] have used for the first time the scalar potentials of

Debye to solve this problem. For different forms of objects, the matrix called ”T-matrix”[90, 91]

is introduced by Waterman. Nevertheless, this matrix works only for spherical or cylindrical

objects.

To break these limitations and get an expression adapted to acoustic tweezers, the study

of [45] using the same decomposition as Truell developed the general expression of scattering

coefficients of an elastic sphere in any kind of acoustic longitudinal waves. Thus the method of

Anderson and Faran was generalized.

The problem is to calculate the scattering coefficients on an elastic sphere in any acous-

tic field. We select a spherical coordinates system (r, θ, ϕ) centered on the sphere (see Fig.

2.2). The acoustic waves propagate with speed c0 in the fluid medium. The sphere is elastic,

homogeneous and isotropic, with density ρp and radius a. Longitudinal and transverse waves

propagate respectively with velocity cl and ct.

Potentials decomposition

As presented in the previous section, the acoustic pressure field in the fluid is the solution of

the scalar Helmholtz equation and hence can be decomposed in a spherical harmonics function

series (Eq. (2.17, 2.18)). In the following, we give a concise presentation of the steps required

to do the same kind of decomposition for an elastic medium.

Debye Potentials
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Figure 2.2: Spherical basis of the problem. Sphere of radius a suspended in a fluid of density
ρ0 and sound speed c0. The sphere scatters the incident acoustic wave. The spherical basis is
centered at the sphere center O. Transmitted waves are excited inside the particle of density ρp
and velocities cl and ct for the longitudinal and transverse (or shear) components respectively
[45].

The elastic equation of momentum conservation in linear regime is [92]:

−ρpω2~u = (λp + µp)~5(~5 · ~u) + µp ~4~u. (2.24)

where ~u is the field of displacement and λp and µp are the two Lamé parameters. Applying the

decomposition of Helmholtz,

~u = ~5Φ + ~5∧ ~A. (2.25)

we can split this equationin an ”irrotational” part and a ”solenoidal” part.

klΦ + ∆Φ = 0,

kt ~A+ ~∇∧ ~∇∧ ~A = 0.
(2.26)

with kl,t = ω/cl,t, cl =
√

(λp + 2µp)/ρ0 and ct =
√
µp/ρ0

After this step, we go from a vector ~u with three unknowns to a scalar potential and a vector

potential with four unknowns in total. To eliminate the indeterminacy, the generic Gauge
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condition ~5 · ~A = 0 is generally used. However, for a spherical scatterer, the decomposition to

use is the Debye coefficients. Indeed the vector potential ~A can be written as a function of two

scalar potentials (ψ, χ) (Eq. (2.27)):

~A = ~5∧ (r~erψ) + ~5∧ ~5∧ (r~erχ)/kt. (2.27)

Using this decomposition, the equation for the potential vector splits into two scalar Helmholtz

equations and the whole problem can now be written:

∆Φ + k2
l Φ = 0,

∆ψ + k2
tψ = 0,

∆χ+ k2
tχ = 0.

(2.28)

Therefore, the potentials (Φ, ψ, χ) can be decomposed in the basis of spherical harmonics:

Φ =
φ0

ω

∞∑
n=0

n∑
m=−n

Smn A
m
n jn(kr)Y m

n (θ, ϕ), (2.29)

ψ =
φ0

ω

∞∑
n=0

n∑
m=−n

Tmn A
m
n jn(kr)Y m

n (θ, ϕ), (2.30)

χ =
φ0

ω

∞∑
n=0

n∑
m=−n

Um
n A

m
n jn(kr)Y m

n (θ, ϕ). (2.31)

Four unknowns Rm
n , Smn , Tmn and Um

n have been introduced and can be determined by applying

the boundary conditions on the surface of the sphere with radius a.

Boundary conditions

At the interface, by applying the continuity of normal displacements and the continuity of

constraints:

ufi + ufs = ur,

pi + ps = −τrr,

0 = τrθ,

0 = τrϕ.

(2.32)
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where ufi,s is the radial displacement of the fluid particles at the surface of the sphere for the

incident and scattered waves. The medium here is fluid and devoid of viscosity which explains

the zero tensor of the last two equations of Eq.(2.32). The elements of the Cauchy stress tensor,

τij, are connected to the components of the displacement vector ui by Hook’s law:

τij = λpεkkδij + 2µp.εij (2.33)

Where εij = 0.5( ∂ui
∂xj

+
∂uj
∂xi

) is the tensor of the linearized strains and εkk its trace, δij is the

Kronecker delta. At this point, one could include viscous losses in the sphere considering

complex Lamé coefficients.

To write the first boundary conditions, we need a relation between the displacement in the

fluid and our potential, i.e the pressure. With the linearized Euler equation in steady regime

and ~v = ∂~u
∂t

:

ρ0ω
2~u = ~5p. (2.34)

Similarly, in the solid, it is necessary to express the displacement ~u and the components of

the stress tensor τij as a function of the potentials (Φ, ψ, χ) that we have introduced. After

the displacement ~u and stress tensor τij are expressed in spherical harmonics, the boundary

conditions are applied. To get rid of θ, ϕ dependence, integration on the surface of the sphere is

performed and the orthogonal properties of associated Legendre polynomials [93, 94] are used:

< Pm
k |Pm

l >=
2(l +m)!

(2l + 1)(l −m)!
δk,l. (2.35)

With the scalar product defined as:

< Pm
n |Pm′

n′ >=

∫ π

0

Pm
n (cos θ)Pm′

n′ (cos θ) sin θdθ =

∫ 1

−1

Pm
n (x)Pm′

n′ (x)dx. (2.36)

The linear system of 4 equations with four unknown splits in two independent systems

of three and one equation respectively. The first one describes an incident longitudinal wave

that is coupled to the longitudinal wave and one shear wave in the solid. The second one

describes the second shear wave that can not be excited. This property is ascribed to the Debye

decomposition. As a consequence, when the incident wave is longitudinal the m dependence

can be dropped Rm
n = Rn and the first system of 3 equations is equal to the one derived by
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Faran for an incident longitudinal plane wave.

The scattering coefficients expressions are obtained:

Rn = − jn(ka)εn − kaj′n(ka)

hn(ka)εn − krh′n(ka)
, (2.37)

εn is a coefficient which depends only on the properties of the elastic material and is written:

εn =
1

2

ρ0

ρp
(kta)2an/bn − cn/dn

en/bn − fn/dn
, (2.38)

with:

an = klaj
′
n(kla),

bn = klaj
′
n(kla)− jn(kla),

cn = 2n(n+ 1)jn(kta),

dn = −2ktaj
′
n(kta)− ((kta)2 − 2n(n+ 1) + 2)jn(kta),

en = 2klaj
′
n(kla) + (

(kta)2

2
− n(n+ 1))jn(kla),

fn = 2n(n+ 1)(jn(kta)− ktaj′n(kta)).

(2.39)

The scattering coefficient Rn therefore depends only on the mechanical parameters of the sphere

(ρp, cl, ct), its radius, (a), the excitation angular frequency, ω, and the incident medium prop-

erties ρ0, c0. The results correspond identically to those obtained conventionally by Faran [86]

in the case of an incident longitudinal plane wave.

2.3 Incident beam shape coefficients

As already mentioned, the incident field can be expressed in terms of spherical harmonics

(Eq. (2.17)). Then, the spatial part of the field depends on the BSC Amn :

pi(r, θ, ϕ) = pa

∞∑
n=0

∑
|m|<n

Amn jn(kr)Y m
n (θ, ϕ). (2.40)

These coefficients are mandatory for the determination of the radiation pressure. For a given

position of the sphere, with a spherical coordinates system centered on the sphere, coefficients

Amn can be obtained analytically for different fields like plane wave, Bessel beam or focused

vortex beam. The expressions of the incident BSC for these three fields are given in the
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following paragraphs.

Beam shape coefficients for a plane wave

A plane wave propagating along the z−axis has the following expression in a Cartesian

coordinates system:

pi(~x, t) = pae
i(kz−ωt), (2.41)

and in spherical coordinates (see the convention provided in Eq. (2.15)):

pi(~x, t) = pae
i(kr cos θ−ωt). (2.42)

The decomposition of the spatial dependency into the basis of spherical harmonics (defined Eq.

(2.17)) is:

eikr cos θ =
∞∑
n=0

cnNnPn(cos θ). (2.43)

Here, the symmetries of the plane wave implies that there is no azimuthal dependency and thus

no summation on the index m. The coefficients Nn corresponds to the coefficients N0
n defined

Eq. (2.16) and the coefficients cn have to be determined.

By using the orthogonality of the associated Legendre polynomials, one obtains:

cn =
1

Nn

2n+ 1

2

∫ π

0

e(ikr cos θ)Pn(cos θ) sin θdθ. (2.44)

Knowing that the integral form of the spherical Bessel function is:

jn(kr) =
1

2in

∫ π

0

e(ikr cos θ)Pn(cos θ) sin θdθ, (2.45)

the Eq. (2.43) then becomes:

eikr cos θ =
∞∑
n=0

in(2n+ 1)

Nn

jn(kr)Pn(cos θ). (2.46)
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Finally, the incident BSC of a plane wave propagating along the z−axis are:

Amn =

i
n
√

4π(2n+ 1) if m = 0,

0 if m 6= 0.

(2.47)

Beam shape coefficients for a Bessel beam

A Bessel beam is a superposition of plane wave with wave vectors distributed over a cone of

aperture angle β. Note that a cylindrical wave of charge m′ can be expressed in the spherical

coordinate with the following form[95]:

Φ = Φ0

∞∑
n=|m′|

i(n−m
′
) (n−m′

)!

(n+m′)!
(2n+ 1)jn(kr)eim

′
ϕPm

′

n (cos θ)Pm
′

n (cos β), (2.48)

where m′ is an fixed integer and the coefficient Amn :

Amn = 4πi(n−m
′
)Y m

′

n′ (m
′
, n, ϕ = 0, θ = β). (2.49)

Focused cylindrical vortex beam

This beam is very important because, it is the keystone to create acoustic tweezers [42, 45,

46, 96]. The BSC for a focused vortex beam are[42]:

Amn = δm,m′4πNm′

n (kr0)2h(1)
n (kr0)

∫ π

π−α0

Pm′

n (cos θ′) sin θ′dθ′. (2.50)

With h
(1)
n the spherical Hankel function of the first kind, m′ the topological charge of the vortex

and α0, a0, r0 are respectively the aperture angle, the radius of the transducer and the focal

distance as illustrated on top of Fig. 2.3. Note that the expression of coefficients Amn is not

exactly the same as in reference [42] because of the different definitions of spherical harmonics.

In this paper, we use the expression of normalized spherical harmonics with a factor Nm
n , as

shown in Eq. (2.16).

Using Eq. (2.50), the pressure field can be computed anywhere. Figure 2.3 shows the

pressure field for a focused vortex beam of charge m′ = 1 (top row), and the BSC (bottom).

The pressure field has a zero amplitude along the axis of propagation. This is a common feature
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associated with the vortex beam [97, 98]. This feature is important for acoustical tweezers since

elastic bead smaller than the wavelength are trapped at pressure nodes, i.e a positive intensity

gradient. The focusing is important because the aperture of the transducer is 5.5cm, 7.5cm

away from the focus (corresponding to an angle equal to α0 = 43o). Note that the lateral

energy density gradient is much larger than its axial counterpart and this results in a larger

radial radiation force than the axial one. As expected, the BSC are restricted to the column

m = 1 with a non-intuitive variation in function of the radial degree.
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Figure 2.3: (Top) Modulus of the complex pressure field at frequency f0 = 1.2 MHz and (bot-
tom) BSC, for a focused vortex with topological charge m′ = 1 generated with a concave
spherical transducer: aperture angle α0 = 43o, radius of the transducer a0 = 5.5 cm, geometri-
cal focus r0 = 7.5 cm, the spherical basis is centered at the focus of the incident beam.

Focused spherical vortex beam

Another design of the vortex beam is called the spherical vortex beam with the sound field

identical to a sphere at the focal position. The coefficients are different from the focused cylin-

drical vortex beam. In the integral, Eq. (2.50), an associated Legendre polynomial normalized

to unity is added P̃m′

l (cos θ′) = Pm′

l (cos θ′)/ max
θ′∈{π−α0,π}

(
Pm′

l (cos θ′)
)
. This amplitude modu-

lation of the source aperture discriminate focused acoustical vortices from spherical vortices.

Comparing Figs. 2.3 and 2.4, one can notice that it changes the energy density around the

focus radically and strongly increase the energy density axial gradient. The radial degree l is

chosen so that the amplitude variates smoothly in the range of θ0 = [π − α0 : π] (the source

aperture) and gently drops near zero for θ0 = π − α0 to avoid strong secondly lobes in the
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radiated field. To shorten expressions, the change of variable : x = − cos θ′ is used in the

following. Integrands can be further simplified with the relation Pm′

l (−x) = (−1)l+m
′
Pm′

l (x).

Amn = δm,m′4πNm′

n (kr0)2h(1)
n (kr0)(−1)n+l

∫ 1

cosα0

P̃m′

l (x)Pm′

n (x)dx. (2.51)
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Figure 2.4: (Top) Modulus of the complex pressure field at frequency f0 = 1.2 MHz and (bot-
tom) BSC, for a focused spherical vortex with topological charge m′ = 1, radial degree l = 8
generated with a concave spherical transducer: aperture angle α0 = 43o, radius of the trans-
ducer a0 = 5.5 cm, geometrical focus r0 = 7.5 cm, the spherical basis is centered at the focus of
the incident beam.

Beam shape Amn

wave plane in
√

4π(2n+ 1)

Bessel beam 4πi(n−m
′
)Y m

′

n′ (m
′
, n, ϕ = 0, θ = β)

Focused cylindrical vortex beam δm,m′4πNm′
n (kr0)2h

(1)
n (kr0)(−1)n+m′ ∫ 1

cosα0
Pm′
n (x)dx

Focused spherical vortex beam δm,m′4πNm′
n (kr0)2h

(1)
n (kr0)(−1)n+l

∫ 1

cosα0
P̃m′

l (x)Pm′
n (x)dx

Table 2.1: Coefficients Amn for different beam shapes.

In addition to the analytical method, the quadrature method using the orthogonal property

of the spherical harmonic functions permits to calculate the coefficients Amn at any position

by knowing the incident acoustic pressure field pi. Different methods of Amn determination by
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quadratures based on Eq. (2.52) will be detailed and compared in chapter 3.

Amn =
1

p0jn(kr)

∫
Ω

piY
m∗
n dΩ, (2.52)

where Ω is a spherical surface. To calculate the radiation pressure exerted on the sphere at

numerous different positions, the determination of coefficients Amn by quadrature method can

be very tedious and numerically expensive. Nevertheless, we can make use of the property of

orthogonality of spherical harmonics to obtain operators of rotation and translation. First, the

BSC for one location of the sphere are calculated either numerically or analytically. Second, the

new set of coefficients corresponding to other locations of the sphere are computed by applying

linear operator of translation and rotation of the spherical basis to the first set. As described

below, this method is made of two rotations and one translation (Fig. 2.5). As presented

Figure 2.5: Arbitrary translation ~r” decomposed into two rotations and one translation [45].

in Fig. 2.5, the first rotation R1 orients the axis Oz in the direction of the translation vector

~r”, then the translation operator T is applied in this direction, using the addition theorem to

spherical harmonics. When the target arrives at the new position O, the second rotation R2

gives back their original direction to the basis vectors. Thus, the coefficients Ãmn at any new

positions can be obtained by applying these rotations and translation to the initial Amn .

Ãmn =
n∑

v=−n

Dv,m
n (R2)

∞∑
n′=0

Cm
n′,n(kr”)

n∑
m′=−n

Dm′,m
n (R1)Amn . (2.53)

25



CHAPTER 2. ACOUSTIC RADIATION FORCE

where the axial translation satisfies :

jn(kr)Y m
n (θ, φ) =

∞∑
n′=0

Cm
n′,n(kr”)Y m

n′ (θ′, φ′). (2.54)

and for the rotation operator Dm,m′
n , the spherical harmonics satisfy the property :

Y m
n (θ, φ) =

n∑
m′=−n

Dm,m′

n (R)Y m′

n (θ′, φ′). (2.55)

with R the rotation matrix.

Overall, by applying translations and rotations to the coefficients Amn at a reference position,

configurations at all other positions can be obtained easily.

2.4 Additional effects

Apart from the radiation pressure, some other additional forces can also arise in the sin-

gle beam trapping system. As our experiments are underwater, acoustic streaming should be

taken into consideration. Depending on the origin of the wave attenuation, acoustic streaming

is usually divided into boundary streaming and bulk streaming.

Boundary streaming originates from the acoustic energy attenuation occurring in an acous-

tic viscous boundary of thickness σv =
√

2µ/ρω (µ and ρ are the viscosity and density of the

fluid, and ω is the driving angular frequency). It is often divided into inner streaming and outer

streaming according to its position whether it’s inside or outside the viscous boundary layer.

Rayleigh [99] first analyzed and derived a solution of the outer streaming. Therefore the outer

streaming is also called ‘Rayleigh streaming’. The outer streaming is created from momentum

diffusion of the velocity vorticity created near the boundary and not from pressure gradient

effects [100]. Schlichting [101] first worked on the inner streaming and estimated the vortex size

inside the boundary layer. The thermal dissipation is considered and analyzed [102]. When

acoustic waves interact with axisymmetric objects, the viscous effect can induce a rotation of

the objects. The viscous torque generated by orthogonal acoustic waves is first analytically

calculated by [103]. In acoustic levitation, standing waves can also induce rotation of matter
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in air [104] and is capable of rotating spherical particles and cells [105]. Besides, in acoustic

vortex beams, the transfer of orbital angular momentum (OAM) to matter has been observed

both in air [106, 107] and in water [52, 53]. In the paper [58], the torque of the particles as a

result of absorption both in and around the sphere is measured and is at the range of pNm.

The radiation pressure is significantly larger than the torque. Meanwhile, the thickness of the

acoustic viscous boundary in our case is about 1 µm (with the frequency of ultrasound at 1 MHz

in water at temperature 19o) which is much smaller than the radii of target beads (from 0.1 mm

to 0.7 mm) in our case. As a result, boundary streaming can be neglected.

Bulk streaming, also named ‘Eckart streaming’ [108], is caused by the absorption of the

acoustic energy in the bulk of the fluid. Bulk streaming is typically observed in systems much

larger than the wavelength. The wave damping is the source of the bulk streaming which

is proportional to the square of the frequency. Thus, to generate Eckart streaming requires

acoustic absorption over a long distance and it is more obvious in high frequency waves. In our

studies, the acoustic beams are at about 1 MHz and are focused at a distance of 8 cm. Knowing

that the acoustic attenuation length is about 20 m, the bulk streaming is not noteworthy to be

considered.

As demonstrated in [58], the absorption within the sphere, as well as the viscous effect at

the boundary, are responsible for the rotation. The viscous elasticity of the sphere material

can influence the force exerted on the sphere by modifying the scattering coefficient. However,

this effect is negligible compared to the radiation force.

Another effective influence is the generation of harmonics. The energy can be transferred to

the harmonics and turn a sinusiodal wave into an acoustical shock wave [109]. This nonlinear

effect is small and cumulative. It takes a certain distance to grow. The shock distance for

an acoustic wave (with amplitude around 1 MPa, frequency of 1.2 MHz) is about 12 cm. This

distance is comparable to the focal distance 8 cm. However, the field of interest in this study

are sharply focused, the source aperture is large aperture is high. This results in a depth of

field of about 4.6 mm much smaller that the shock distance. The array of transducers and the

lens used in our experiment has an antenna gain about 30. Thus the signal amplitudes at the
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transducers are much lower than 1 MPa. Therefore, the shock distance is far away from the

focal position of the vortex beam. Thus, the generation of harmonics can also be neglected.
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Chapter 3

Computation of the radiation force

exerted by acoustic tweezers using

pressure field measurements

3.1 Introduction

As presented in chapter 2, the radiation pressure exerted on an elastic sphere (Eqs. (2.21-

2.23)) can be obtained by knowing the scattering coefficient Rn and the dubbed beam shape

coefficients (BSC) Amn . Since the scattering coefficient Rn depends only on the physical charac-

teristics of the object and propagation medium which can be computed with the Generalized

Lorenz-Mie Theory, the estimation of the radiation pressure can be considered as a problem of

calculating the BSC (Amn ) from the measurement of the incident acoustic pressure field. Thus

in this chapter, to obtain the BSC, three methods are investigated and compared: quadrature

method, inverse problem regularization by sparsity and angular spectrum method (ASM). The

first one consists of measuring the acoustic field on a spherical surface and calculating the

spherical functions decomposition by quadratures. The second method is based on the mea-

surement of the acoustic field at random points in a spherical volume and on the resolution of

the inverse problem by a sparse method called the orthogonal matching pursuit (OMP). In the

third method, the incident beam is measured on a transverse plane, decomposed into a sum of

plane waves and then the expansion of coefficients is calculated. These methods are applied in

numerical simulation of determining the BSC of a focused vortex beam of topological charge
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m′ = 1. This beam is very important because, it is the keystone to create acoustic tweezers

[42, 45, 46, 96]. The theoretical expression of its BSC is presented in chapter 2. Then, exper-

imentally a focused acoustic vortex beam and a focused Gaussian beam are synthesized and

the methods of the BSC determination are applied to characterize the experimental radiation

pressure. In the following sections, these methods will be demonstrated and compared.

3.2 Quadratures on spherical surface

The first method is based on the orthogonality of the spherical harmonics:

< Y m
n , Y

m′

n′ >= δn,n′δm,m′ ,

where the scalar product on the sphere is defined by:

< f(θ, ϕ), g(θ, ϕ) >=
∫ ∫

f(θ, ϕ)g(θ, ϕ) sin θdθdϕ.

By applying this property to the incident acoustic field of Eq. (2.17), coefficients Amn can be

expressed by integrals over a spherical surface:

Amn =
1

pajn(kr)
< p, Y m

n >

=
1

pajn(kr)

∫
θ

∫
ϕ

p(θ, ϕ)Y m∗
n (θ, ϕ) sin θdθdϕ.

(3.1)

Using the quadrature method allows to approximate the integrals in Eq. (3.1) by a weighted

sum over the points on a spherical surface. As expected the BSC for a focused vortex beam of

topological charge m′ = 1 are restricted to the column m = 1 with a non intuitive variation in

function of the radial degree. We assessed numerically the relative error on the radiation force

[Eqs. (2.21-2.23)] by decreasing the truncation order n. Thereafter, all series are truncated at

n ≤ N = 25 and the relative error on the force is 0.001. Different quadrature rules have been

tested in the following parts: Lebedev quadrature, Legendre-Gauss quadrature, and Chebyshev

quadrature [110].

3.2.1 Lebedev quadrature

In the Lebedev quadrature, the number, position and the weight of Lebedev grids defined

on an unit sphere [(xi, yi, zi) and weights wi] have been derived by Sobolev [111]. Therefore,
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measuring the pressure field at the Lebedev points (see Fig. 3.1 to visualize their positions)

and using this quadrature give the BSC (Amn ).

Amn =
1

jn(kr)pa

I−1∑
i=0

p(θi, ϕi)Y
m∗
n (θi, ϕi)wi. (3.2)

Lebedev quadrature has optimal efficiency, i.e. the number of points required, I = (N + 1)2/3,

is the smallest, where N is the highest order of the polynomials integrated on the sphere.

Moreover, the distance between the Lebedev points is roughly constant. This feature is very

interesting since it provides an optimal sampling of the sphere in regards with the finite size

of an hydrophone, and thus it optimizes the signal-to-noise-ratio (SNR). The integrand is the

product of spherical harmonics, Eqs. (2.17) and (3.1). If the series is truncated at n ≤ N , the

integrand is a polynomial of order smaller than 2N and hence N = 2N . For our case, N = 25

and this yields I = 867. It must be noted that the number of Lebedev points is not arbitrary.

Here, we use I = 974 Lebedev points on a sphere with radius 7 mm (5.6 λ). This choice allows

the high order modes (here up until n = 25) to be perfectly retrieved. As shown in Fig. 3.1,

the BSC are obtained by the Lebedev quadrature for a focused vortex beam.

This previous estimation does not take into account the noise in the measurements. It is

known that the determination of the BSC are prone to errors in the presence of noise [112].

To assess the robustness of the method in presence of noise, we proceed in three steps. First,

the theoretical BSC of Eq. (2.50), named thereafter Amnth
, are computed and the corresponding

pressure field calculated with Eq. (2.17) on the Lebdev grid as well as in the focal plane to

determine the maximum pressure. Second, a noise with a uniform distribution in an interval

of amplitude 5% of this maximum pressure is added to the pressure field calculated on the

Lebedev grid. Third, the BSC of this noisy pressure field, noted Amn , are estimated with Eq.

(3.2) and shown on the bottom of Fig. 3.1.

In Fig. 3.1, the lines where the BSC are very different from the original ones 2.3 corre-

spond to the values closest to zero for the Bessel function (Fig. 3.2). Indeed, since the scalar

product with spherical harmonics is a linear operation, the result is the scalar product with the

ideal pressure fields plus the scalar product with the noise. Hence the error is proportional to

1/jn(kr). In Fig. 3.2, we can observe a first oscillating part up to n = 35 followed by a fast

decrease converging to 0. We selected a sphere radius large enough, 7 mm(5.6 λ), so that the
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truncation order N = 25 is located in the oscillating part. To assess the numerical performance

of the method, we compute the relative error:

err =
1

(N + 1)2

N∑
n=0

m=n∑
m=−n

|Amn − Amnth
|

max(|Amnth
|) . (3.3)

Where (N + 1)2 is the total number of coefficient Amn of order n ≤ N . Here the relative

error is 0.061.
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Figure 3.1: (Top) points on a Lebedev sphere, and (Bottom left) reconstructed beam shape
coefficients for an incident focused vortex beam without noise and (Bottom right) with 5%
noise.
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Figure 3.2: (Top) Amplitude of the spherical Bessel jn(kr) function for a radius r=7 mm (the
blue triangles show the values close to zero) and (Bottom) for two different radii r1=7.11 mm
and r2=7.45 mm (the red points show the maximum values between |jn(kr1)| and |jn(kr2)| for
each order n). The frequency is f0=1.2 MHz.

An upgrade in order to mitigate the detrimental effect of noise is to use a double layer

Lebedev sphere [112]. The idea is to use two spheres with different radii and to apply the

Lebedev quadrature, for a given ordrer n, to the sphere for which the Bessel function has the

greatest absolute value. Using the asymptotic behavior of Bessel function for large x compared

to n, jn(x) ≈ cos(x − π/2)/x, in Fig. 3.2, we selected the radius of the second sphere such

that jn(x′) ≈ sin(x′−π/2)/x′ to optimize the estimation, this leads to r1=7.11 mm (5.7 λ) and

r2=7.45 mm (6λ). The red stars indicate the chosen value between the two Bessel functions

to compute the beam shape coefficient of order n. Therefore, two spheres of different sizes are

used. The double layer Lebedev sphere grids are presented in Fig. 3.3. For each sphere, 974

Lebedev points are used. Figure 3.3 shows the BSC obtained for an incident focused vortex

beam with 5% of noise. They are close to the original ones 2.3. The double layer method
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efficiently cancels the large errors introduced by the division of the Bessel functions and the

relative error decreases from 0.06 to 0.015. Nevertheless, one can see that the BSC for m 6= 1

are not strictly equal to zero and thus a weak error remains on the estimated BSC.
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Figure 3.3: (Top) measurement points of a double layer Lebedev sphere, (Bottom) reconstructed
beam shape coefficients for an incident focused vortex beam with 5% noise by the double layer
Lebedev quadrature method.

3.2.2 Legendre-Gauss quadrature

The two-dimensional integrals in Eq. (3.1) can be considered as two one-dimensional inte-

grals over θ and ϕ. Replacing the Y m∗
n (θ, ϕ) by Eq. (2.16), we obtain:

Amn =
1

pajn(kr)

∫
θ

∫
ϕ

p(θ, ϕ)Nm
n P

m
n (cos θ)e−imϕ sin θdθdϕ, (3.4)

With:

Fm(θ) =
1

2π

∫ 2π

ϕ=0

p(θ, ϕ)e−imϕdϕ, (3.5)

which is a Fourier series decomposition, and can be approached by:

Fm(θ) =
1

2K

2K−1∑
k=0

p(θ, ϕk)e
−imϕk . (3.6)
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Where K is the number of points on ϕ. Then the Eq. (3.4) can be simplified by:

Amn =
2π

pajn(kr)
Nm
n

∫ π

θ=0

Fm(θ)Pm∗
n (cos θ) sin θdθ, (3.7)

If we replace cos θ by x, we obtain the following expression:

Amn =
2π

pajn(kr)
Nm
n

∫ 1

−1

Fm(θ)Pm∗
n (x)dx. (3.8)

The Legendre-Gauss quadrature is a method to approximate a one-dimensional integral in the

interval [−1, 1]: ∫ 1

−1

f(x)dx =

Ig−1∑
i=0

f(xi)wi. (3.9)

Where xi is the Gauss point position (Ig: the number of points on θ) and wi the weight given

by wi = 2
(1−x2i )[P ′

n(xi)]2
. With Eq. (3.9), the coefficients Amn can finally be calculated by:

Amn =
1

pajn(kr)

π

K

Ig−1∑
i=0

2K−1∑
k=0

p(θi, ϕk)Y
m∗
n (θi, ϕk)wi. (3.10)

The points θi of the Gauss-Legendre quadrature are calculated by: θi = arccos(xi), and ϕk are

distributed evenly between 0 and 2π.

We adopt here a grid of 30 points on θ and 60 points on ϕ (1800 points on total, comparable

to the Lebedev grids), as shown on the top of Fig. 3.4. The sphere has a same radius with

Lebedev quadrature [7.11 mm (5.7λ)]. With the same procedure of calculation as presented in

the Lebedev quadrature, the BSC estimated with Eq. (3.10) are shown on the bottom of Fig.

3.4. The BSC obtained without noise in the incident beam are depicted on the left of Fig. 3.4.

The BSC on column m = 1 are well retrieved, however, some noise appears on other columns

where the BSC are supposed to be zeros. On the right side of Fig. 3.4 shows the BSC estimated

when a 5% noise is added to the incident pressure field. The noise in the BSC augments with

a relative error of 0.025 which is higher than the Lebedev method.
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Figure 3.4: (Top) points on a Gauss-Legendre sphere, and (Bottom left) reconstructed BSC for
an incident focused vortex beam without noise and (Bottom right) with 5% noise.

3.2.3 Chebyshev quadrature

For the Chebyshev quadrature, all the weights associated with nodes on the sphere are equal

with wi = 4π
I

(I is the total number of nodes). And the coefficients can be expressed by:

Amn =
4π

jn(kr)paI

I−1∑
i=0

p(θi, ϕi)Y
m∗
n (θi, ϕi). (3.11)

Since the weights are identical to all the nodes, it is important to choose an optimal distribution

of the points. We have assessed the efficiency of three kinds of distributions: the first is 30×60

points distributed regularly on θ and on ϕ respectively; the second is 1800 points distributed

arbitrarily on the sphere; the last is a uniform distribution named t-design [113]. The radius

of the sphere remains always the same. For the first and second distributions, we use the same

number of points as the Gauss-Legendre quadrature (1800 points), however the t-design points

can’t be a random number. Here we adopt a grid of 1801 points. The distributions are depicted

in Fig. 3.5 and the BSC are shown in Fig. 3.6.
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(a) Regular distribution (b) Random distribu-

tion

(c) T-design

Figure 3.5: (Lef) Regular distribution, (Middle) random distribution, and (Right) t-design
grids.
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Figure 3.6: (Top) BSC on a regular sphere, and (Middle) BSC on a random sphere, and
(Bottom) BSC on a t-design sphere (Left) without noise and (Right) with 5% noise in the
incident beam.

Among all the grids tested with the Chebyshev quadratures, only the t-design points permit

to find the exact BSC in the case without noise. In the case with 5% noise, the relative error

of Amn obtained by t-design is 0.0323. Furthermore, we have increased the number of nodes to
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1986. However, the relative error (0.029) does not decrease significantly and is always larger

than the double layer Lebedev quadrature. Therefore, comparing the relative errors obtained

by each quadrature method, the double layer Lebedev is the optimal method.

3.3 Regularization of the inverse problem by a sparse

method

3.3.1 The OMP method

Instead of solving Eq. (3.1) with its discretized version Eq. (3.2), another strategy consists

of solving Eq. (2.17) whose discretized counterpart can be reformulated under a matrix/vector

form:

P = MA+ ε, (3.12)

with vector P whose components are the Fourier transform of the pressure field at frequency f0

at point of discretization (xi, yi, zi): p̂(xi, yi, zi, f0) of length I, vector A whose components are

the BSC Al = Amn with l = n(n+ 1) +m of length L = (N + 1)2, the matrix M whose elements

are (jn(kri)Y
m
n (θi, ϕi)) with (ri, θi, ϕi) the points (xi, yi, zi) written in spherical coordinates of

size (I × L), and vector ε the additive noise on points (xi, yi, zi). Because of the noise, the

direct inversion is not possible and a regularization has to be used. As can be seen on Fig. 2.3

for a focused vortex beam, a large number of beam shape coefficients are null. So, vector A is

sparse. This a priori can be used to regularize the inversion:

Ã = argmin||A||0 such as P = M A. (3.13)

With this formulation, vector Ã is searched with a particular constraint: it must contain a

minimum of non-zero terms. In practice, to find A we have to measure (or simulate) P on a set

of points and to build matrix M on the set of chosen points with a maximal number of modes for

the truncature. To solve Eq. (3.13), we choose to use Orthogonal Matching Pursuit algorithm

(OMP) [114]. This algorithm is iterative. For each iteration, the component of M with the

highest inner product with the remaining part of vector P is selected. Then its contribution is

subtracted and the iterations continue on the residue. This procedure stops when the iteration
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reaches the number of non-zero elements of the coefficients (25 in our case) or when the residual

reaches a limit.

As previously, the truncature order is set to 25. At this stage the distribution of the points

is free, the BSC can be calculated on any type of grids. A regular distribution of 45×45 points

in a transverse plan (x, y) at the focal position z = 0 of size 7 mm × 7 mm (5.6λ×5.6λ) is firstly

used. In the case without noise, the BSC in column m = 1 obtained by OMP are depicted in

Fig. 3.7. As shown in the figure, the BSC obtained by OMP are nulls for all the degree with

odd numbers. However, for the even numbers, the results agree well with the theoretical values.

In fact, the zero values are due to the associated Legendre polynomials Pm
n (cos θ). In Fig. 3.7,

the Pm
n (cos θ) with m = 1 are plotted in plan (x, y) with z = 0 (θ = π/2). As shown in the

figure, Pm
n (cos θ) equals zero for degree n with odd numbers. Thus, the plane (x, y) at z = 0

permits only to retrieve half of the BSC we need. To avoid the zeros, we take another plane

(x, y) of same size at z =1 cm (8λ). In this plane, θ is no longer at π/2. The BSC at column

m = 1 obtained without noise, as shown in Fig. 3.8, superimpose with the theoretical values.

However, by adding 5% of noise in the incident field, huge noise appear in the BSC (see Fig.

3.9). Accordingly, this distribution is very sensitive to noise.
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Figure 3.7: (Top) Modulus of BSC in column m = 1 of a focused acoustic vortex, and (Bottom)
associated Legendre polynomials Pm

n (cos θ) with m = 1 and θ = π/2.
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Figure 3.8: Modulus of BSC in column m = 1 of a focused acoustic vortex calculated in a plane
at z =1 cm without noise.
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Figure 3.9: Modulus of BSC of a focused acoustic vortex calculated in a plane at z =1 cm with
5% noise in the incident wavefield.

To avoid an ill-conditioned matrix, the best choice is a set of random points distributed in

a spherical volume as illustrated on Fig. 3.10. Because of the noise, the matrix M is always

full rank, the direct inversion is then always possible but unstable in regard of a small change

in the noise. This ill-posed problem required regularization to get a meaningful solution. To

compare this method with the double layer Lebedev sphere quadrature, we set the same number

of points: 1948 dispersed in a spherical volume of identical radius r = 7.11mm(5.7λ).
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Figure 3.10: (Top) randomly distributed measurement points in a sphere, and (Bottom left) re-
constructed beam shape coefficients for an incident focused vortex beam with 5% noise obtained
by the OMP method and (Bottom right) block-OMP method.

With the OMP method, we should be able to recover the coefficients in column m = 1 with

25 iterations. However, tests for a vortex beam have shown the inefficiency of this stopping

criterion. Thus, the stopping criterion of the OMP procedure will be the residual limit (lower

than 1e − 3). Figure. 3.10 shows the BSC obtained with the OMP algorithm for the same
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noisy field as before. There is a very good agreement with the original set of coefficients even

if some coefficients are not exactly set to zero. Here, the relative error is 0.0141 close to the

0.015 obtained with le double layer Lebedev quadrature. A drawback is the number of iteration

required, the computation can be very long.

3.3.2 The Block-OMP

A method to improve this is the Block version of OMP. It’s the same procedure but with

the matrix M in a block version [115]. The algorithm is the same but the measurement matrix

M and the coefficient Al of size N × 1 are divided in to blocks. This method helps us to take

less iteration but obtain the same results as the OMP method.

A = [a1...ad︸ ︷︷ ︸
A[1]

ad+1...a2d︸ ︷︷ ︸
A[2]

...aN−d+1...aN︸ ︷︷ ︸
A[n]

]

M = [m1...md︸ ︷︷ ︸
m[1]

md+1...m2d︸ ︷︷ ︸
m[2]

...mN−d+1...mN︸ ︷︷ ︸
m[n]

]
(3.14)

Fig. 3.10 shows the coefficients obtained by applying the Block-OMP method, the matrix M is

divided into blocks of (N × 10), and the iteration number is 35 only. An unexpected outcome

of using Block-OMP was that the relative error was halved: 0.006.

3.4 Angular spectrum method (ASM)

A third approach is to use a transformation from angular spectrum to spherical harmonics

[116]. The Fourier transform of the pressure in plane z can be seen as a superposition of plane

waves:

p̂(x, y, z, ω) =

1

4π2

∫ ∫
k2x+k2y≤k2

S(kx, ky)e
ikxx+ikyy+i

√
k2−k2x−k2yzdkxdky,

(3.15)

where the angular spectrum S(kx, ky) is the two-dimensional spatial Fourier transform of

the pressure in plane z = 0:

S(kx, ky) =

∫ +∞

−∞

∫ +∞

−∞
p̂(x, y, z = 0, ω)e−i(kxx+kyy)dxdy. (3.16)
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According to [116], the pressure field can be rewritten:

p̂(x, y, z, ω) =
1

π

∞∑
n=0

injn(kr)
n∑

m=−n

Ynm(θ, ϕ)

×
∫ ∫

k2x+k2y≤k2
S(kx, ky)Y

∗
nm(θk, ϕk)dkxdky,

(3.17)

with:

kx = k sin(θk) cos(ϕk), ky = k sin(θk) sin(ϕk) and kz = k cos(θk).

Therefore, the comparison of Eq. (2.17) and Eq. (3.17) shows that the coefficients Amn can

be written as:

Amn =
in

π

∫ ∫
k2x+k2y≤k2

S(kx, ky)Y
∗
nm(θk, ϕk)dkxdky. (3.18)

The noisy pressure field is simulated here on a square grid of dimension 7 mm × 7 mm (5.6λ×
5.6λ) regularly sampled with a total of 2500 points. Note that the mesh grids of ASM should be

very fine, otherwise errors of integration in Eq. (3.18) arise. The square grid is located at the

focal distance (x, y, z = 0). This field is Fourier transformed [Eq. (3.16)] with a discrete Fourier

transform (DFT). The sampling after a DFT can be refined by zero-padding, for instance. We

performed a polynomial interpolation instead. Indeed, knowing the polynomial coefficients,

numerical integration of Eq. (3.18) can be achieved with a variable step method to increase

accuracy. Figure 3.11 shows the BSC obtained with the ASM method. The agreement with the

original BSC is quite good, especially for column m = 1. Nevertheless, other columns contain

non null BSC with a relative important amplitude. And the relative error is 0.014.
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Figure 3.11: Computation of the BSC by angular spectrum decomposition.

Therefore, all methods listed in the Tab. 3.1 allow to retrieve the BSC for a focused vortex

beam with a good confidence even in presence of noise.
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Methods Relative Error
Double layer Lebedev quadrature 0.015

OMP 0.014
Block - OMP 0.006

ASM 0.014

Table 3.1: Relative errors for three methods.

3.5 Estimation of the radiation pressure by the three

methods

In the previous sections, three methods allow to retrieve the BSC are introduced: the

double layer Lebedev quadrature (Lebedev), the block-OMP algorithm (OMP) and the angular

spectrum (ASM). To assess the efficiency of each method, we calculate the radiation force

exerted on a polystyrene sphere of radius a = 0.1λ. On the left of Fig. 3.12, the forces are

calculated by using all the BSC obtained by the three methods, while on the right of Fig. 3.12,

the forces are computed with A1
n only. From Fig. 3.12, it is clear that all methods yield accurate

estimations of the radial force. On the contrary, the azimuthal force, Fφ, has a much weaker

amplitude and all methods give poor estimates. Nevertheless, OMP method roughly recovers

the original shape of the force. These differences originate from the estimated BSC with finite

value outside column m = 1. It is shown in Fig. 3.12 that after filtering out these BSC, all

methods recover the theoretical force perfectly. In the case of the axial force, Fz, both OMP

and the ASM turn out to provide good estimations while again, the Lebedev method is less

efficient and leads to fast oscillations around the expected curve. However, these errors can not

be reduced by filtering the BSC outside m = 1. We may assume that the error is hidden in

column m = 1.

The oscillations on the axial force calculated by Lebedev method are periodical, similar to

those caused by a standing wave. Moreover, we know that the radiation pressure due to a

standing wave is much stronger than the one due to a progressive wave [10]. Any error on the

estimated BSC in this regard should lead to large discrepancies on the force estimation. In order

to investigate this assumption, a weak amplitude wave propagating in the opposite direction

is superposed to the incident wave. This can be achieved by adding the 0.005(−1)(n+m)Amn to

the initial BSC. Indeed, the symmetry z → −z transforms cos(θ) into cos(π − θ) = − cos(θ).
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Figure 3.12: (Left) radiation force exerted on a polystyrene sphere of radius r = 0.1λ with
all the beam shape coefficients, and (Right) with only the beam shape coefficients on column
m = 1.

Then, considering that the associated Legendre functions Pm
n (cos(θ)) satisfy the relation :

Pm
n (−x) = (−1)(n+m)Pm

n (x), (3.19)

with Eq. (2.17) and (2.16), the BSC of the wave propagating in the opposite direction can be

computed by multiplying the coefficients by (−1)(n+m). In Fig. 3.13, the axial force for the

progressive wave only and with the counterprogating wave superposed are plotted. Comparing

with Fig. 3.12, oscillations with the same periodicity but weaker amplitudes are obtained. The

difference of amplitude is expected since the 5% noise is applied differently and does not result

in the same signal to noise ratio.

There remains to explain why the Lebedev method is more sensitive to the noise than the

other two methods. In our simulation, the random noise amplitude is evenly distributed be-

tween −5% and 5% of the maximum pressure of the incident beam in all three cases. However

for Lebedev quadrature, the pressure field is sampled at the surfaces of two spheres with radius
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Figure 3.13: Axial force exerted on a polystyrene sphere of radius r = 0.1λ with theoretical
coefficients Amn (black) and theoretical coefficients with a counter propagating wave with 0.5%
amplitude (red).

r =7.11 mm and r =7.45 mm where the wave is either yet converging, z < 0, or diverging, z > 0

. Since the wave is sharply focused, on these spheres its amplitude is therefore relatively weak.

This results in a poorer signal to noise ratio (SNR). By calculating the SNR at a measurement

point where the signal is the maximum for each method, we obtain the results of 22.5, 32.2

and 32.5 dB for the Lebedev quadrature, OMP and ASM respectively. Note that the noise we

add in the incident beam is a random value between −5% and 5% of the maximum pressure,

so in the SNR calculation, the amplitude of noise taken into account is the mean value of the

total noise, which is equal to 2.5%, i.e. 32 dB, of the maximum pressure. On the contrary, the

set of points used either inside a spherical volume (OMP) or on a focal plane (ASM) contains

locations where the pressure amplitude is maximum and where the SNR is about 10 dB larger

than the Lebedev quadrature. In order to explore the influence of the radius of the sphere and

confirm the role played by the SNR, the OMP method is now applied in conditions similar to

the ones used for Lebedev quadrature. The pressure field is sampled on a set of points randomly

distributed on two spherical surfaces for: r =7 mm and r =10 mm. The results are presented on

Fig. 3.14. When the sphere radius is the same as for Lebedev method, r =7 mm, the axial force

obtained by the two methods are similar with oscillating errors of about the same period and

amplitude. Besides, if we increase the radius to r =10 mm, the fluctuations become stronger as

expected since the SNR is even more degraded. So according to these results, we can conclude

that the oscillations are related to the poorer SNR in Lebedev method. Moreover, the choice of

the sphere radius used in the Lebedev quadrature is constrained by the decreasing amplitude

of Bessel functions of high order, Fig. 3.2. Thus, decreasing the radius below r =7 mm in our

test case would increase the truncature error.
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To compare the numerical estimation of the forces by different methods (with all the BSC
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Figure 3.14: Axial force exerted on a polystyrene sphere of radius r = 0.1λ with coefficients
computed by OMP method on two spherical surfaces (black and blue) and the theoretical force
(red).

Amn ), the relative errors between the force calculated with the Amn , F , in the presence of noise

and the force computed with the Amnth
, Fth, are then calculated :

errforce =
1

K

∑K
0 |F − Fth|
max|Fth|

. (3.20)

Where K is the total number of positions where the forces are estimated. The results are

presented in Tab. 3.2. We can conclude that both the OMP and ASM are effective methods for

estimating the radiation force from pressure field measurements with very low relative error as

presented in Tab. 3.2. The task is nevertheless difficult since small errors potentially result in

spurious standing waves and the radiation pressure exerted by standing waves is much stronger

than for progressive waves.

Relative error T-design Lebedev OMP ASM
Fρ 0.097 0.036 0.012 0.018
Fφ 2.59 0.87 0.23 0.22
Fz 0.38 0.29 0.056 0.096

Table 3.2: Relative errors of the forces for three methods.
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3.6 Influence of noise on coefficients and forces estima-

tions

In the previous section, we have observed that the SNR is crucial for retrieving the BSC.

However, the sensitivity to the noise level in the wavefield can differ from method to method.

Thus in this section, we will analyze the influence of the noise on the BSC and radiation forces.

As shown in Fig.3.15, the BSC are computed by each method with different noise level fields.
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Figure 3.15: Relative errors of the coefficients Amn for different methods as a function of the
noise.

As can be seen in Fig. 3.15, the relative errors of the BSC (Amn ) for the three methods

are proportional to the noise level. For the Lebedev double layer and OMP method, the

relative errors increase more rapidly than the ASM method. The ASM method appears to be

more constant under the influence of the noise. In Fig. 3.16 depicted the influence of noises

in force estimations. Same as the BSC, the errors of the radiation forces are proportional

to the noise level. When the noise level is under 2%, if we compare the relative errors of

radial and axial forces, the OMP and Lebedev quadrature show a better performance in the

force estimations with smaller relative errors. However, as the noise level grows, the errors of

Lebedev quadrature rise more quickly than the other methods. For noise under 5%, the relative

errors of OMP method are always the smaller of three methods, even for the axial force. In

Fig. 3.12, although, in the Fz of OMP method exists some oscillations, the relative errors are

smaller than the ASM method. Nevertheless, the relative errors of the ASM for both the BSC

and radiation forces are more consistent with the variation of noise level. Therefore, the ASM

is a method that gives reliable results and is less sensitive to the noise.
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Figure 3.16: Relative errors of the radiation forces for different methods as a function of the
noise.

3.7 Experimental measurements

In this section, the three methods are applied on experimental data. The experimental

set-up, the method used to synthesize the pressure fields, the optimization of this method for

the pressure fields of interest in the context of acoustic tweezers are described in detail in the

next chapter. Here we just briefly mention the main features. A focused Gaussian beam, with

charge m′ = 0, and a focused vortex beam with charge m′ = 1 have been synthesized. The

incident sound beam was then measured by a calibrated needle hydrophone of 0.2 mm (0.2λ)

diameter (Precision Acoustics Ltd, UK) on three different grids corresponding to the different

algorithms presented in sections 3.2-3.4. The measurement grids are all centered on the focal

point of the vortex beam. For each location of the hydrophone, an ultrasound burst of 10

cycles is repeated 128 times and the records are averaged to increase the SNR. For each grid,

the SNR at the maximum pressure point is calculated: 45.6, 54.5 and 53.7 dB for the Lebedev

quadrature, OMP method and SAM respectively. The experimental SNR is 20 dB lower than
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the SNR in section 3.5. We noticed that the SNR of Lebedev quadrature is always 10 dB lower

than the others methods, this fact remains true in the experiment. As we discussed in section

3.5 on spheres used in Lebedev method, the maximum acoustic signal has a lower amplitude

compared to the other two methods, i.e OMP and ASM.

After these measurements on the different grids, we apply the three methods described in sec-

tions 3.2-3.4 to estimate the coefficients. The obtained beam shape coefficients completely

describe the field. Eq. (2.17) can then be used to calculate a reconstruction of the field in

any position. To compare direct experimental measurements of the acoustic field and the field

reconstructed with the estimated beam shape coefficients by Eq. (2.17), we measured the

acoustic pressure on the transverse plane (x, y) (on the ASM grid) and the vertical plane (x, z)

(on a rectangular grid of dimension 7 mm ×20 mm (5.6λ× 16λ) with steps of 0.4 mm ×0.3 mm

(0.3λ × 0.2λ)). A DFT is then used to get the measured pressure in the Fourier domain and

then extract the modulus at 1.2 MHz. Fig 3.17 displays the computed and measured modulus

of the pressure field at this frequency. We carried out this comparison for the focused Gaussian

and focused vortex beam.
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Figure 3.17: Reconstruction of the incident beam for the focused Gaussian beam (Left), and
the focused vortex beam with m′ = 1 (Right).

The reconstructed fields computed with the three different methods are in very good agree-

ment with the direct measurements. On the lateral plane (x, y), the main lobe is perfectly

recovered, and in the case of the focused vortex beam, the small anisotropy on the bright ring

is accurately estimated. Compared to simulated results of the previous section, the noise is

not the single source of discrepancy between Amn and Amnth
and as consequence between F and

Fth, Eq. (3.20). The secondary ring of high pressure modulus characteristic of diffraction by

a truncated aperture, i.e. the array of transducers, is also efficiently estimated. The inverse

filtering while very efficient does not achieve a perfect synthesis of the looked for pressure fields

(see Fig. 3.17). For instance, the experimental measurements are not perfectly axisymmetric

and this will have an impact on the azimuthal force. For the axial plane, (x, z), OMP and ASM

methods also provide quite a good reconstruction on main and secondary lobes. The ‘X-shape’

and high intensity at the focus, features expected for sharply focused beam, are perfectly re-

produced, while the Lebedev quadrature estimation has some spurious amplitude oscillations.

These oscillations have a comparable period with the one observed on the axial force Fz (Fig.
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3.12) in the numerical simulation when noise was present. We provided an explanation for this

phenomenon in section 3.5. As a result, both the OMP and ASM are able to estimate the BSC

and hence the acoustic pressure field in the volume of interest around the focus.

Finally, we use these obtained coefficients of the focused Gaussian beam and the vortex beam

m′ = 1 to calculate the radiation forces exerted on polystyrene spheres of radius r = 0.1λ

with Eq. (2.21, 2.22, 2.23). The results are shown on Fig. 3.18 and Fig. 3.19. The axial force

obtained with Lebedev method is not presented on the Figures since it’s very fluctuating like its

reconstruction on (x, z) plane. As in the previous section, the relative error of the experimental

forces for Gaussian beam and vortex are calculated and reported in tables below Tab.3.3, 3.4.

Relative error Lebedev OMP ASM

Fρ 0.036 0.036 0.012

Fz 0.23 0.11 0.07

Table 3.3: Relative errors of the experimental forces for three methods (Gaussian beam).

Relative error Lebedev OMP ASM

Fρ 0.027 0.057 0.034

Fφ 0.71 0.6 0.99

Fz 0.8 0.14 0.14

Table 3.4: Relative errors of the experimental forces for three methods (Acoustic vortexm′ = 1).

According to Fig. 3.18, for a focused Gaussian beam and for each method the radial force

is in good agreement with the theoretical one. Theoretically no azimuthal force is applied, but

a weak rotational force exists in the force estimation by three methods. This dissimilarity of

azimuthal force can be due to the difference between the theoretical field and the experimental

field synthesised by inverse filtering, as well as the presence of the noise in the measurements.

As for the axial force, the force estimated by ASM is very close to the theoretical one with a

very low relative error of 0.07. However, the one calculated by OMP appears to be oscillating

though in the reconstruction on plane (x, z) no oscillations are visible. Note that the trap

slope is positive for both radial and axial forces. Therefore at the origin the force is null but

the equilibrium is unstable. To achieve acoustical tweezers for a stiffer and denser particle
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compared to water, cancellation of the pressure field at the focus is required as the case studied

below.

For the focused vortex beam of charge m′ = 1, the forces are quite similar with the ones

obtained by adding noise in the numerical assessment of the three methods (see previous sec-

tion). First, the computation of the radial force agrees with the theoretical force whatever

the method. Secondly, the azimuthal forces computed by the experimental BSC are different

from the theoretical one. These differences are caused by the value of Amn coefficients outside

column m = 1. If we keep only column m = 1 and recalculate the azimuthal force, then, all the

forces for different methods superpose with the theoretical force. This filtering makes the field

intensity axisymmetric and eliminates any anisotropy in the transverse plane. However, the

experimental field presents a slight anisotropy. Thus this discrepancy comes from imperfections

on the field synthesis by inverse filtering and on the force estimation due to the noise. The third

observation is that both OMP and ASM provide a good estimate of the axial force which has

the same negative slope as the theoretical one, i.e same trap strength and stiffness. The OMP

axial force has some fluctuations, but performs much better than the Lebedev method, the

force obtained with ASM is smooth and close to the theory but with a shift about 0.2λ of the

equilibrium position where Fz = 0. This shift can be caused by a slight shift 0.2λ (0.25 mm) of

the focal point in the experimental measurements. As reported in the Tab. 3.4, even with this

shift, the relative error is small (0.14), by cancelling the shift, the relative errors will decrease

to 0.091 and 0.085 for the OMP and ASM respectively which are very similar to the numerical

estimations in the Tab. 3.2 of section 3.5.

3.8 Conclusion

In this chapter, the computation of the radiation pressure on an elastic sphere exerted by

acoustic tweezers is presented. The radiation force is not measured directly but from measure-

ments of the pressure field associated with a model [see Eqs. (2.21-2.23)]. Therefore, to obtain

the forces, it is necessary to estimate the BSC from experimental sampling of the pressure field.

Three methods were developed: the Lebedev double layer quadrature, the OMP method, and

the ASM. We have assessed the methods by simulating a focused vortex of charge m′ = 1 with

5% noise. The results show that all these methods can recover the coefficients. The forces com-
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Figure 3.18: Experimental radial Fρ, azimuthal Fφ and axial Fz forces exerted on an polystyrene
sphere of radius r = 0.1λ in a focused Gaussian beam with charge m′ = 0.

puted by the different methods agree well with the theory, apart from the Lebedev quadrature

for which the axial force is fluctuating.

The experimental verification of these methods is done with two kinds of beams: a focused

axisymmetric non-vortex beam (m′ = 0) and a focused vortex of charge m′ = 1. The methods

introduced previously were applied to compute the experimental BSC and radiation forces.

To confirm the BSC obtained are comparable with the synthesized acoustic beams, we have

measured, in addition, the incident beam pressure in plane (x, z) and (x, y). Compared with

the direct measurements in plane (x, y), the reconstructions of the field by three methods are

similar and almost identical. Nevertheless, for the (x, z) plane reconstruction, the field rebuilt

by the Lebedev quadrature contains a lot of oscillations. Apart from that, both the OMP

method and ASM accord with the experimental measurement. From the analyze of the forces,

the OMP and angular spectrum method permit to predict the radial and axial forces appro-

priately except the azimuthal force which is sensitive to the noise outside the column m = 1 of
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Figure 3.19: Experimental radial Fρ, azimuthal Fφ, axial Fz forces exerted on an polystyrene
sphere of radius r = 0.1λ in a focused vortex beam with charge m′ = 1, calculated by the total
coefficents (Left), and only by the coefficients in column m = 1 (Right).
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the coefficients.

Moreover, we have observed that the low signal-to-noise-ratio (SNR) of Lebedev method is re-

sponsible for the fluctuations in the axial force as well as the reconstructed field in plane (x, z).

Since the radiation pressure due to a standing wave is much stronger than the one due to a

progressive wave, even slight noise inducing a counterpropagating wave can lead to oscillations

in axial force. Therefore, increasing the SNR in the field measurement is of importance, espe-

cially for the accuracy of axial force computation. In this chapter, the OMP and ASM were

validated both in simulation and experiments to be reliable methods. With the help of these

methods, we are able to anticipate the radiation forces by measuring the acoustic field.
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Chapter 4

Acoustic field synthesis

4.1 Introduction

The experimental realization of acoustic tweezers is required to be able to tailor an adequate

wavefield with a spatial organization allowing the trapping effect [45]. Different fields can be

used to trap particles such as a focused cylindrical vortex beam [46], a spherical vortex beam

[42] or a bottle beam [96]. Different solutions exist to produce these complex wave fields.

Acoustic vortex synthesis systems have been developed using either multi-elements with arrays

of transducers or mono-elements. The first acoustic vortex at ultrasonic frequency was produced

using a source consisting of a four-panel transducer[97]. Most of the recent methods involving

the formation of the acoustic vortex beam are based on transducer arrays [117, 96, 46, 118, 98],

which serve as independent sources modulating the phase and amplitude individually. For

mono-element devices, the vortex can be generated: using a spiral grating [119, 120]; with

a ferroelectret film gluing onto a helical surface substrate [121]; by a spiraling interdigitated

transducers (IDTs) printed at the surface of a piezoelectric substrate [122]; and a spiraling

transducers obtained by folding a spherical acoustical vortex on a flat piezoelectric substrate

[47]; using a metasurface [123] or a optoacoustic absorber surface [124]. Among all these

solutions, we choose to use an array of transducers with an appropriate wave field synthesis

method. With an array of transducers, multiple methods can be applied to synthesize the

desired acoustic field, including time reversal [125], inverse filtering [118, 126] and integrative

angular spectrum technologies [127, 128], etc. Inverse filtering is a very general technique for

analyzing and synthesizing complex signals that propagate through an arbitrary linear medium.
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This method allows for finding the optimal input signals to get a target wavefield. It is based

on the measurement of an operator of propagation and the computation of its inverse. In

this chapter, we will first recall the theoretical background of the spatio-temporal inverse filter

technique. Then, we will present the experimental results obtained for different distributions of

measurement points as well as different regularizations of the inverse operator of propagation.

Eventually, the sensitivity of the inverse filter on these parameters is studied.

4.2 Spatio-temporal inverse filter background

The inverse filter method consists of three steps: (i) recording the propagation operator of

the propagation medium which completely characterizes the medium and the geometry of the

experiment; (ii) calculating the inversion of the propagation operator, which is a sensitive step

since the direct inversion is not possible; (iii) computing the optimal input for the transducer

array.

Figure 4.1: Principle of the spatio-temporal inverse filter method. For a set of M transducers,
a control plane P of N points is scanned by the hydrophone. All information related to the
physical system is contained in the impulse response hji(t).

To acquire the propagation operator, first, the geometry of the experiment is chosen. The

salient features of the setup are shown in Fig. 4.1: the source is a concave array of M = 127
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Figure 4.2: Bi-concave lens with transducer array.

Figure 4.3: Positions of the 127 transducers.
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piezoelectric transducers (central frequency around 1.15 MHz) with a focal distance equal to 45

cm. A bi-concave lens in PMMA [45] is added to the array of transducers in order to decrease

the focal distance to about 6 cm (Fig. 4.2). The positions of the transducers are shown in

Fig. 4.3. The surface of each transducer is a hexagon of 62.82 mm2, and the total aperture

of the transducer array is 50 mm. Then, we consider N control points whose positions are

distributed in the volume of the medium. The distributions depend on the target field. One

of the objectives in this chapter is to study the influence of the control point distribution on

the wave field synthesis. At each control point, the pressure field is measured. Let fj(t) be the

signal received at the jth control point (1 6 j 6 N) and ei(t) (1 6 i 6 M), the input signal

on the array of transducers. The impulse response between transducer i and control point j is

denoted hji(t). It is obtained by means of a pulse whose center frequency is chosen as a function

of the bandwidth of the piezoelectric transducers (here centered around 1.2 MHz). The impulse

response includes all the propagation effects through the medium under investigation as well as

the acousto-electric responses of the transducers and hydrophone. Hence, the signal received

on the jth control point, which was emitted by the ith transducer can be written:

fj(t) =
M∑
i=1

hji(t) ∗ ei(t), (4.1)

where the symbol ‘*’ denotes the convolution product. The Fourier transform of this equation

gives:

Fj(ω) =
M∑
i=1

Hji(ω)Ei(ω). (4.2)

Eq. (4.2) can be viewed as a matrix/vector product:

F (ω) = H(ω)E(ω). (4.3)

Where H is the frequency response of the system (size: N×M), which describes the propagation

of signals from the array of transducers to the control points and thus is called the propagation

operator. The vectors E(ω) (length: N) and F (ω) (length: M) contain the spectra of the

transmitted and received signals respectively.

We aim to find the optimal signals to send (E) by the array of transducers to generate the

target field F on the control points after propagation. A naive approach consists in inverting
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directly the Eq. (4.3). However, the matrix H is not square and cannot be inverted directly.

Instead, the pseudo inverse is computed with a singular value decomposition (SVD). The SVD

allows adding a step of regularization through the choice of a cut-off in the singular values.

First, the matrix H is written as the product of three matrices:

H = U S V †. (4.4)

where U is a unitary matrix (dimensions: N ×N), S a diagonal matrix (dimensions: N ×M)

whose coefficients are the singular values (positive or null) and V † is the conjugate transpose

of matrix V (dimensions: M ×M) which is also a unitary matrix. With these notations, the

pseudo inverse of matrix H is:

H−1 = V S−1U †. (4.5)

In this equation, the matrix S−1 is diagonal, and its components 1/λi are simply the inverse

of the components λi of S. The propagation operator is obtained by the measurement of

the impulse responses. Therefore it contains not only the physical information but also some

noise. It should be noticed that small errors in H(ω) (and so in S) can produce large errors in

H−1(ω) (because of S−1). Indeed, some of these eigenvalues can be very small, thus sensitive

to noise. After the inversion, 1/λi tends to infinity for small λi. To get rid of these unexpected

errors, a cut-off is applied to the singular value decomposition: components corresponding to

the smallest eigenvalues are replaced by zero in S−1 and gives a regularized inverse propagation

operator Ĥ
−1

defined by:

Ĥ
−1

= V Ŝ
−1
U † = V



1
λ1

0 · · · 0

0
. . .

1
λNe

. . .
...

...
. . . 0

. . . 0

0 . . . 0 0


U †. (4.6)

With the regularized inverse propagation operator Ĥ
−1

(ω), it is straightforward to get the
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emission vector to synthesize the target field F (ω):

E(ω) = Ĥ
−1

(ω)F (ω). (4.7)

In the next section, this method is applied experimentally to synthesize different fields: a

Gaussian beam, a focused vortex beam and a spherical vortex beam with different distributions

of control points. A special emphasis is also placed on the choice of the cut-off value. Indeed, if

the cut-off is too high, some physical singular values will be neglected. On the contrary, if the

cut-off is too low, some noise can contaminate the inverse operator. Therefore, it is strongly

dependent on the quality of experimental measurement. One can determine the optimal cut-off

value by trying different values.

4.3 Experimental synthesis of acoustic fields

In this section, different types of acoustic fields are synthesized using the spatio-temporal

inverse filter method, as presented in the previous section. The distribution of control points,

as well as the distribution of transducers in the inverse filter technique are important factors

that will influence the efficiency of the method. Only one array of transducers is available, and

the PMMA lens is originally made to optimize its geometry for the synthesis of these kinds of

sharply focused target acoustic fields. In the following is described the attempts to carry out

an optimization of the control points distribution. Three distributions of the control points

were used and compared.

4.3.1 Synthesis of acoustic fields with Lebedev points distribution

Lebedev grids have already been introduced in chapter 3 as a method of quadrature. The

Lebedev points are defined on a unit sphere (xi, yi, zi) derived by Sobolev [111]. As we explained

in chapter 3, Lebedev quadrature has optimal efficiency, i.e. the number of points required is

the smallest, and the point spacing is roughly constant and well adapted to the finite size of a

hydrophone. Knowing that the number of points is fixed by the maximum polynomial order

used to expand the field and yields, in our case, 974 points distributed on a sphere, we assessed

the efficiency for a sphere sampled with 974 points. A calibrated needle hydrophone of 1 mm
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diameter was used to measure the signal at each control point with 16 averages to increase

the signal-to-noise ratio (SNR). The sphere radius is 20 mm. As a consequence, the interval

between neighbouring points is about 2.2 mm on average, twice the hydrophone size (Fig. 4.4).

Figure 4.4: Distribution of control points on a sphere of radius 20 mm with Lebedev distribution.

The measurement on these control points allows us to measure the impulse responses hij(t),

and after a Fourier transform, the propagation operator H(ω). We denote the first distribution

by Ĥ
1
(ω). The transducers bandwidth limits the frequencies available for the field synthesis.

Therefore, the first step consists of selecting the bandwidth after a Fourier transform of the

impulse responses, as shown in Fig. 4.5. The sampling frequency is 25 MHz and the number of

points for the Fourier transform is 1024 so that the frequency sampling interval is 24.4 kHz. The

spectrum maximum is around 1.2 MHz. As depicted in Fig. 4.5, about 60 sampling frequencies

are sufficient to describe the transfer function from 0.5 to 2 MHz. Thus, the other frequency

components are set to zero. The remaining steps of the inverse filter method are carried out

on this limited set of frequencies. To obtain the inverse propagation operator matrix H−1(ω)

the singular values are computed, as shown in Fig. 4.6. From the figure we find that in this

distribution most of the singular values reach their maximum at 1.2 MHz as expected and

spread on a dynamic of about 20 dB. There is almost no noise in the eigenvalues. The dark

line represents the cut-off threshold, and removes the smallest singular values that have a flat

behavior.
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Figure 4.5: Signal bandwidth selection.

Figure 4.6: Singular values of the propagation operator H
1
.

Once the regularized pseudo-inverse matrix Ĥ
−1

1
(ω) is obtained, the emission vector E1(ω)

can be computed with Eq. (4.7) on a chosen target field F 1(ω). As for the matrix H(ω), index

1 is related to the set of control points selected.

A first target field F fv
1 (ω) is a vortex of topological charge m′ = 1 focused with an angle

α0 = 42.5◦. The BSC coefficients are given by Eq. (2.50). These BSC coefficients are a function

of ω. It remains to define the time behavior of the target pressure field. A quasi-monochromatic

signal of frequency f = 1.2 MHz with a Gaussian envelope (Fig. 4.7) is used in all the following

experiments. The emission vector Efv
1 (ω) is calculated at each frequency component in the

selected bandwidth. Then Efv
1 (t) is computed with an inverse Fourier transform, and can be

transmitted by the transducer array. The emitted acoustic field is scanned on a transverse plane
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(x, y) at the focal distance and an axial plane (x, z) centered on the focus. For the plane (x, y),

500 points in polar coordinates sampling a disk of radius r =2.5 mm are used (20 intervals for

the polar angle and 25 for the radial distance). For the axial plane (x, z), a set of 2800 points

on a cartesian grid are used to sample a rectangle, 40 points on the x-axis and 70 on the z-axis.

The sides lengths are 7 mm and 20 mm respectively. Considering that the mesh is much finer for

the scans than for the measurement of the impulse responses, we have changed the hydrophone

with 1 mm diameter to a new one with 0.2 mm diameter. This smaller hydrophone is used in

all scans in this work.

0 20 40 60
Time ( s) 

1.0

0.5

0.0

0.5

1.0

e i

Figure 4.7: Quasi-monochromatic signal of frequency f = 1.2 MHz.

As presented in Fig. 4.8, the pressure field measured in plane (x, y) on the left side has

the same form as the theoretical one on the right side but the ring is slightly larger. For the

axial plane (x, z), Fig. 4.9, the similarity between synthesized and target fields is degraded.

Obviously, the pressure field is not entirely symmetric and well-focused. The reason for this less

good result can be due to the choice of control points that are used to measure the propagation

operator. The sphere has a large radius, and some of the points are too far away from the focal

position. Thus the measured signal can be very tiny and result in a low SNR. Therefore, this

distribution of control points doesn’t work out well enough for our application. Moreover, the

points are distributed on a spherical surface, i.e. not in the same transverse plane. As our wave

is progressive, the phase of the targeted field is energetically sensitive to errors in the speed of

sound. Therefore, we changed to a new distribution in the focal plane in the next section.
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Figure 4.8: Modulus (top) and phase (bottom) of the complex pressure field in plane (x, y)
for a focused vortex of charge m′ = 1; (Left) Target acoustic field; (Right) Measurements
(propagation operator: H

1
).

4.3.2 Synthesis of acoustic fields with a point distribution located

on a disc

The second distribution of control points assessed is a disc of radius 7 mm with 581 points

distributed regularly in polar coordinates with 30 intervals on the radial axis and 20 intervals on

the polar angle. The disc is located in the focal plane, it is parallel to the array of transducers

, and it is centered on the focal point. Compared to the first Lebedev mesh, this distribution is

spread on a much smaller surface, and the number of points is increased. Moreover, the points

interval on each circle is not constant and decreases with the radius. This results in a more

dense grid around the focus, as shown in Fig. 4.10.

Three kinds of acoustic beams are synthesized for this distribution: a Gaussian beam (i.e.

a focused vortex of charge m′ = 0) denoted F fg
2 (ω), a focused vortex beam of charge m′ = 1,

F fv
2 (ω) and a focused spherical vortex beam of charge m′ = 1, l = 8, F sv

1 (ω). The BSC for the

Gaussian and focused vortex beams are computed with Eq. (2.50). The BSC for the spherical
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Figure 4.9: Modulus of the complex pressure field in plane (x, z) for a focused vortex of charge
m′ = 1; (Left) Target acoustic field; (Right) Measurements (propagation operator: H

1
).

Figure 4.10: Distribution of the control points on a disc of radius 7 mm with a regular distri-
bution on the radial direction and polar angle.

vortex are here given by Eq. (2.51). For these three target fields, the focusing is made with

a maximum angle of 42.5◦ as in the previous section. The same procedure is carried out to

calculate the regularized pseudo-inverse matrix Ĥ
−1

2
(ω), the emission vectors Efg

2 (ω), Efv
2 (ω)

and Esv
2 (ω) for all frequencies in the bandwidth and lastly the emission vectors in the time

domain.

The three emission vectors are emitted successively with the array of transducers. The

acoustic fields in plane (x, y) are measured in a square located at the focal plane and centered

at the focus. The side length is 7 mm. The mesh samples the axes x and y with 50×50 = 2500

points and hence an interval of 0.14 mm.

The modulus of theoretical and experimental fields are presented in Fig. 4.11(a) for ω/(2π) =

1.2 MHz. The top row presents the target fields F fg
2 (ω), F fv

2 (ω) and F sv
2 (ω). The bottom row

are the measurements. The experimental and target fields are in good agreement in the case of

the Gaussian and focused vortex beams. For the spherical vortex, the measured high-intensity

ring is not so uniform with a size slightly smaller than expected. Another discrepancy is visible

inside this high-intensity ring, and the field is not perfectly canceled. These similarities and
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differences are also present in the phase of the fields, shown in Fig. 4.11(b). The most salient

errors are at the center of the spherical vortex where a small phase disc in the theoretical field

is not at all reproduced in the experiment.

In the plane (x, z), modulus of the wavefield is presented in Fig. 4.12, target fields are on

the left column while the measurements are on the right. Again the agreement is very good for

the Gaussian and focused vortex beams. The spherical vortex synthesis is rather good, and the

field intensity seems to flow around an obstacle located at the focus. This creates high-intensity

gradients in the axial direction in order to get a strong and stiff axial trap. Nevertheless, the

experimental synthesis is not perfect, and differences appear mostly behind the focus.
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(a) Modulus of the complex pressure field

(b) Phases of the complex pressure field

Figure 4.11: Modulus (normalized) and phases of the complex pressure field in plane (x, y) for
different acoustic beams: Gaussian (m′ = 0) and focused vortex (m′ = 1), spherical vortex with
m′ = 1 and l = 8. (Top) Theoretical acoustic field; (Bottom) experimental measurements.
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Figure 4.12: Modulus of the complex pressure field in plane (x, z) for different acoustic beams
(from top to bottom): Gaussian (m′ = 0) and focused vortex (m′ = 1), spherical vortex with
m′ = 1 and l = 8. (Left) Theoretical acoustic field; (Right) experimental measurements.

The previous comparisons are qualitative and do not ensure that the radiation forces gener-

ated by these waves have the expected characteristics. As described in chapter 3, the BSC can

be computed from experimental scans in the (x, y) plane with the angular spectrum method.

The BSC obtained for a Gaussian beam, and a focused vortex beam are shown in Fig. 4.13.

According to the figure, the experimental BSC represent a similar distribution in column m = 0

and m = 1 for the Gaussian beam and focused vortex beam respectively, but with some noise

outside the column. The comparison of modulus and phase in the core column between the

experimental and theoretical BSC are shown in Fig. 4.14. The experimental modulus is close to

the theoretical one, especially at the position where the amplitude of BSC is large. Meanwhile,

the phase of the focused vortex is also in good agreement with the theory until order n = 10.
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However, the phase of the Gaussian beam compared to the cylindrical beam is less in agreement

with the theory. Knowing the BSC and selecting a target sphere, Eqs. (2.21, 2.22, 2.23) yields

the radiation force components. For the comparisons, a polystyrene sphere of radius a = 0.1λ is

used for the Gaussian and focused vortex beams and a larger a = 0.45λ polyethylene sphere for

the spherical vortex beam. This choice may seem peculiar. On the one hand, a = 0.1λ ensures

that the scattering regime corresponds to a rather small sphere where no resonances occur.

On the other hand, spherical vortex is designed to optimize the axial force and the selectivity

of the tweezers. Since focusing sharpness is limited by diffraction at about one wavelength,

these fields are designed for spheres with a diameter close to this limit. However, for this size,

resonances occur. We will see in section 5 that a three-dimensional trap can be obtained with

our experimental set-up for a very limited choice of material and sphere size. This radiation

force is then written in cylindrical coordinates: Fρ, Fφ, Fz. Note that there is one adjustable

parameter. Since we don’t know a priori the antenna gain of our experimental system made

of the array and the PMMA lens, we have to fix pa in Eq. (2.17). To determine pa, we com-

pute the field in the plane (x, y) with Eq. (2.17), using pa = 1 and the analytical BSC. Thus

the maximum located on the intensity ring is determined without pa. The calibrated pressure

measured for the corresponding synthesized field gives the experimental maximum pressure ,

and thus defines the adjustable parameter pa. This parameter is estimated for each synthesized

field since the antenna gain depends on the chosen target field.

Fig. 4.16 and Fig. 4.17 present the comparisons of the force obtained with the analytical

BSC (Eq. (2.50)) and the BSC computed from experimental scans for the Gaussian and focused

vortex beams respectively. The estimated radial force Fρ superimposes almost perfectly with

the theoretical forces. Note that a stable equilibrium trap occurs when the force has a negative

slope only. Hence, the Gaussian beam does not achieve the tweezers for a polystyrene bead

that is denser and stiffer than the surrounding water. The azimuthal forces Fφ however, due

to the noise outside the column, are different from the theoretical forces (Fig.4.13). The axial,

Fz, experimental and theoretical forces are close in both cases. Nevertheless, the equilibrium

position of the focused vortex beam is slightly shifted.
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Figure 4.13: (Left) Normalized BSC obtained by the experimental measurement of the acoustic
field using the angular spectrum method for a Gaussian beam with topological charge m′ = 0
(Top), and a focused vortex beam with topological charge m′ = 1 (Bottom); (Right) Theoretical
BSC.
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Figure 4.14: (Top) Normalized BSC in column m = 0 for a Gaussian beam with topological
charge m′ = 0 (Bottom), and BSC in column m = 1 for a focused vortex beam with topological
charge m′ = 1.

In the case of the spherical vortex beam (Fig. 4.15), the BSC in column m = 1 has notable

differences from the theoretical ones. The maximum amplitude of the BSC shifts from n = 8

to n = 9, and the phase is also shifted. The radiation force is shown in Fig. 4.18. The radial

force Fρ of the synthetized field is rather faithful to the targeted field and a stiff radial trap is

predicted. On the contrary, the axial forces Fz show large differences, mainly behind the focus

as observed in Fig. 4.12. These errors are important enough to destroy the axial trap. Indeed,

even if the axial force has a negative slope, it remains near zero and hence a bead located

behind the focus is pushed away by the beam. The comparison between the experimental force

estimations and the theoretical forces confirms that the distribution of 581 points on a disc at

z= 0 allows us to retrieve the Gaussian beam and focused vortex beam well. However, it is

not optimal for a spherical vortex beam with a bigger high-intensity ring. Compared to the

first distribution, the second one operates much better for the focused vortex, although for
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a spherical vortex the result is not satisfying yet. Nevertheless, this result indicates that by

distributing the points in the focal plane and at the same time, increasing the number of points,

we can ameliorate the inverse propagation operator. This inspired us to refine the mesh again

and concentrate more on the region of the high-intensity ring of the vortex. In the following

section, another distribution will be analyzed.
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Figure 4.15: Normalized BSC in column m = 1 for a spherical vortex beam with topological
charge m′ = 1.

3 2 1 0 1 2 3
z/

200

0

200

400

F z
(n

N
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
/

0

500

1000

1500

F
(n

N
)

Experience
Theory

0.0 0.5 1.0 1.5 2.0 2.5 3.0
/

80

60

40

20

0

F
(n

N
)

Figure 4.16: Radiation force exerted on a polystyrene sphere of radius a = 0.1λ by a Gaussian
beam of topological charge m′ = 0.
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Figure 4.17: Radiation force exerted on a polystyrene sphere of radius a = 0.1λ by a focused
vortex beam of topological charge m′ = 1.
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Figure 4.18: Radiation force exerted on a polyethylene sphere of radius a = 0.45λ by a focused
spherical vortex beam of topological charge m′ = 1 and radial degree l = 8.

4.3.3 Synthesis of acoustic fields with a point distribution located

on a square

In order to improve the quality of the synthesis for the spherical vortex beam, we employ

another type of mesh in the focal plane (x, y). 2500 control points are distributed on a cartesian

grid sampling a square disk of side length 6 mm. The principal interval in this mesh is 0.14 mm.

Moreover, we refine the mesh at the center to retrieve the small circle of phase. Thus, the

interval at the center is 0.1 mm, as shown in Fig. 4.19. The modulus (left column) and phase

(right column) of the theoretical field of a spherical vortex beam in the new regular mesh (on

the bottom) and the previous mesh (on the top), are shown in Fig. 4.20. Compared to the

previous distribution, this one is much more refined in the center and focus sharply on the first

high-intensity ring.

Considering that the mesh is much finer, the hydrophone used here is the smallest one with

a diameter of 0.2 mm.
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Figure 4.19: Distribution of control points on a disk of length 6 mm with 50×50 points.

Figure 4.20: Modulus (normalized) and phases of the complex pressure field on plane (x, y) for
a spherical vortex beam with m′ = 1, l = 8 and α0 = 42.5◦ sampled in different control meshes:
(Top) mesh used in section 4.3.2; (Bottom) mesh used in this section.

77



CHAPTER 4. ACOUSTIC FIELD SYNTHESIS

Two types of acoustical beams are synthesized with this distribution: a focused vortex beam

and a spherical vortex beam. These fields are scanned in planes (x, y) and (x, z), and their

modulus and phases are plotted in the following figures.

For a spherical vortex m′ = 1, l = 8 and α0 = 49◦, (Fig. 4.22 and Fig. 4.23), we find that

the high-intensity ring is well recovered with good homogeneity of amplitude. Inside the ring,

the field is at zero amplitude , the same as the theoretical one. Even though the variation of

phase inside the small circle does not appear in the measurement field, the global variation of

the phase is in good agreement with the theoretical one. The modulus in plane (x, z) is similar

to the theory as expected. The radiation forces estimated with the measurement are given in

Fig. 4.24. Compared to Fig. 4.18 in the previous section, we find a better agreement with the

theoretical forces, especially for the axial force Fz which confirms that the spherical vortex is

well synthesized and this kind of control point distribution works out for the desired spherical

vortex. Since the synthesis was now faithful to the target fields, the angle has been increased

from α0 = 42.5◦ to α0 = 49◦ in order to stiffen the trap and increase the radiation force exerted.

With this modification, the amplitude of the radiation force is one order of magnitude larger

here than in the previous section.

The results for a focused vortex of topological charge m′ = 1 and α0 = 49◦ are shown in

Fig. 4.25. Both the modulus and phase correspond well with the theoretical field. The BSC

of the experimental spherical vortex are given in Fig. 4.21. Compared to the BSC obtained

in the previous section Fig. 4.15, the result is improved. Both the modulus and phase agree

well with the theoretical BSC. Nonetheless, as we calculate the radiation forces in Fig. 4.26,

we notice that the axial force does not agree as well as for the previous distribution (Fig.

4.17) and the decay of the equilibrium position becomes larger. So, for a focused vortex of

topological charge m′ = 1, this kind of fine mesh has no advantage compared to the previous

one. And if we compare the number of points, in this distribution 2500 points are used which is

4 times larger than the previous distribution. Furthermore, in the experimental measurement,

acquisition time for each point takes around 20 s. The 2500 points mesh costs 10 hours more for

the measurement, which is not efficient for a simple focused vortex. Therefore, for the Gaussian

and focused vortex beam with a small high-intensity region, the second distribution in a 7 mm

disc of 581 points is optimal. Whereas for a spherical vortex with a larger intensity ring, the

2500 points mesh is better.
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Figure 4.21: Normalized BSC in column m = 1 for a spherical vortex beam with topological
charge m′ = 1 and l =8.

Figure 4.22: Modulus (normalized) and phases of the complex pressure field in plane (x, y) for
a spherical vortex beam with m′ = 1, l = 8 and α0 = 49◦: (Top) experimental measurements;
(Bottom) theoretical pressure field.
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Figure 4.23: Modulus (normalized) of the complex pressure field in plane (x, z) for a spherical
vortex beam with m′ = 1, l = 8 and α0 = 49◦: (Left) theoretical pressure field; (Right)
experimental measurements.

3 2 1 0 1 2 3
z/

0

5

10

F z
(

N
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
/

20

10

0

10

20

F
(

N
)

Experiment
Theory

0.0 0.5 1.0 1.5 2.0 2.5 3.0
/

0.5

0.0

0.5

1.0

1.5

2.0

F
(

N
)

Figure 4.24: Radiation force exerted on a polyethylene sphere of radius r = 0.45λ by a spherical
vortex beam with m′ = 1, l = 8 and α0 = 49◦.
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Figure 4.25: Modulus (normalized) and phases of the complex pressure field in plane (x, y)
for a focused vortex beam of topological charge m′ = 1 and α0 = 49◦: (Top) experimental
measurements; (Bottom) theoretical pressure field.
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Figure 4.26: Radiation force exerted on a polystyrene sphere of radius r = 0.1λ by a focused
vortex beam of topological charge m′ = 1 and α0 = 49◦.

4.3.4 Comparison of the three distributions

In the previous section, we have recorded experimentally the three propagation operators

(H
1
, H

2
, H

3
) corresponding to the three control point mesh assessed. Then we computed

their regularized pseudo-inverse (Ĥ
−1

1
, Ĥ

−1

2
, Ĥ

−1

3
). For all these distributions, a focused vortex

beam was synthesized by the inverse filter technique. The experimental measurement of the

acoustical fields synthesized showed some differences between the three distributions. In this

section, we try to find where these differences come from.

Firstly, a focused vortex beam f fv(t), is synthesized by the three different emission vectors

(efv1 (t), efv2 (t), efv3 (t)) calculated by each distribution. We begin by a comparison of these

vectors. In Fig. 4.27, the set of electric emitted signals normalized to 1 as a function of time is

presented. From the figure, we find that the distribution of emitted signals is different between

the three; the transducers which have high emission amplitude are not the same ones. To

have a more accurate comparison, we then plot the modulus and phase of each transducer at

frequency 1.2 MHz in Fig. 4.28. We find no similarity between the three. Even the Efv
2 (ω) and
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Efv
3 (ω) for which the experimental measurement in plane (x, y) is in good agreement with the

theoretical field. Therefore, to synthesize a given field we can have different solutions for the

transducer array.

Figure 4.27: Emission vectors for a focused vortex beam calculated by three different distribu-
tions of control points (efv1 (t), efv2 (t), efv3 (t)).

0 20 40 60 80 100 120
0.00

0.25

0.50

0.75

1.00

A
m

pl
it

ud
e

Efv
1 (ω)

Efv
2 (ω)

Efv
3 (ω)

0 20 40 60 80 100 120
Transducer Element

−2

0

2

P
ha

se

Figure 4.28: Amplitude and phase of the signals emitted by the array of transducers.

Since the record of the propagation operator is done in almost the same experimental con-

ditions, two major factors can lead to these differences: the distribution of control points,
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and the threshold regularization, i.e the cut-off value, while using the SVD method to get the

pseudo-inverse matrix. So in the next parts, we will analyze these two factors.

The normalized singular values of three distributions (SV 1(ω), SV 2(ω), SV 3(ω)) are pre-

sented in the figure below (Fig. 4.29). On the top row from left to right, all the singular

values of the three distributions are plotted as a function of frequency. On the bottom, the

singular values at frequencies 0.5 MHz, 1.2 MHz and 2 MHz are presented after sorting them in

amplitude order.

For all measurements, the dynamic range is about -66 dB. The oscilloscope we used has

a resolution of 8 bits which can encode an analog input into 256 different levels (28 = 256).

While calculating the singular values, the absolute value is taken into account which requires

only 7 bits of resolution. For each record, 16 averages were taken in order to improve the SNR

which adds
√

16 = 4 bits of resolution to the dynamic range. Thus the total resolution is 11

bits which leads to a dynamic range of -66 dB (a factor 2 is equal to 6 dB).

In the first distribution (Lebedev) the singular values SV 1(ω), as depicted in Fig. 4.29,

remain above −30 dB, well above the dynamic range. They have almost no noise and the

singular values decrease almost monotonically. On the whole bandwidth there is no grouping

of singular values with similar and weak amplitude. As the distance between grid points in this

distribution is the largest, the signal recorded is not likely to be similar from one to another,

the column vectors of the matrix are uncorrelated, and hence the matrix is full rank. Note

that due to the presence of noise, the matrix is always full rank whatever the dimension, i.e the

number of points in the distribution. However, singular values grouping at noise level or if the

SNR is too high at the dynamic range level signifies that the mesh is fine enough to perform

oversampling. This feature is expected for inverse problems that are usually ill-posed and the

solution is regularization as seen above.

In the second distribution, the weakest singular values reach the dynamic range level of

about -66 dB. At low frequencies and high frequencies where the signal amplitude is smaller

due to the finite bandwidth of the transducer array and the frequency content of the signal

emitted. The bandwidth selected is larger than in the previous distribution. Again, the singular

values are not contaminated by noise as above. However,the mesh grid performs oversampling

for frequencies below 0.8 MHz since a group of crowded weak singular values appears. The

sampling rate is relative to the wavelength. This behavior disappears at higher frequencies
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where the undersampling is reached, and the matrix would be of full rank even in noiseless

condition. So we can conclude that at 1.2 MHz, this mesh grid is not fine enough to sample all

the physically feasible pressure fields.

In the third distribution, the hydrophone was changed from 1 mm to 0.2 mm. Since the

sensitivity is proportional to the sensor surface, a −28 dB decrease of the SNR is expected.

Oversampling at low frequencies leads to some of the singular values grouping together at

about −43 dB. The SNR level is now above the theoretical dynamic range and reduces it from

−66 dB to −43 dB. It is noticed that the undersampling now reaches at around 1.3 MHz which

is above our frequency of interest. It ensures that optimal conditions are met to synthesize all

target pressure fields.

Figure 4.29: Singular Values : (Top) all the singular values for the three distributions (1.
Lebedev; 2. (θ, r) disc; 3. Square mesh); (Bottom) singular values at 0.5 MHz, 1.2 MHz and
2 MHz (from left to right).

Influence of the SVD regularization

The cut-off value used in the regularization step may affect the final result. This regular-

ization step is required for the over-determined linear system often encountered in the inverse
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problems. We analyzed above that only H
3
(ω) is both overdetermined and with a dynamic

range fixed by the SNR. So we take the example of SV 3(ω)to analyze the influence of the cut-off

value. Figure 4.30 shows the different cut-off values we have tried and their influences on the

field synthesis. On top of the figure, the theoretical field is presented. Then by successively

increasing the number of singular values taken into account, three different estimates of the

pseudo-inverse matrix Ĥ
−1

3
(ω) are calculated. This leads to three different emission vectors

Esv1
3 (ω), Esv2

3 (ω) and Esv3
3 (ω) for the same target field, F sv

3 (ω).

To get the experimental pressure field we use a different method. A propagation operator

H
4
(ω), with 3600 control points distributed evenly through a square of 14 mm×14 mm (11.6λ×

11.6λ) at the focal plane was recorded. For any emission vector E(ω) the pressure field scanned

on these 3600 points is given, at angular frequency ω, by H
4
(ω)E(ω).

With this method we obtain the synthesized field in the focal plane. As illustrated in Fig.

4.30, the more singular values we take the more information on the field we retain. Taking

only the first 30 singular values, the high-intensity red ring and the phase inside the ring are

well retrieved. Meanwhile, the blue ring illustrated in the theoretical field outside the red ring

disappears in this case. As we cut off at the 30th singular value we eliminate the necessary

information in the inverse matrix to retrieve the blue ring. Then by doubling the number of

singular values, the blue ring appears and the amplitude and phase compared to the previous

one is much closer to the desired field. This improvement indicates that the information to

synthesize the field is more complete in this regularization. In the last test, all the singular

values were used in the inversion. Both the red and blue ring is similar to the theoretical

one. While outside, some noise appears in the field amplitude and phase. This phenomena

demonstrates that in the SV 3(ω) the noise is very limited, and only impacts the outside of the

main intensity ring. From the regularization procedure above we find that, even in the case

with more noise, the cut-off value doesn’t have a great influence on the final synthesis of the

field.

The emission vectors (Esv1
3 (ω), Esv2

3 (ω), Esv3
3 (ω)) computed by the inverse matrix with

different cut-off values (cut-off at the 30th, 60th and 120th value respectively) are depicted in

Fig. 4.32. For the emission vector Esv1
3 (ω) the largest amplitudes are at the center of the

transducer array from the 30th to 90th transducers. Then by increasing the number of singular

values, Esv2
3 (ω), the emission intensity becomes more evenly distributed. Eventually, taking all
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the singular values Esv3
3 (ω), the emission distribution becomes less uniform. The amplitudes

and phases of the emission vectors are represented in Fig. 4.33. As interpreted previously, the

amplitudes between the three don’t show many similarities. In spite of that, the phases are

very close which gives a reason for the similarity of the wavefield in Fig. 4.30. Regarding its

influence on the radiation force as depicted in Fig. 4.31, the radial and axial forces exerted by the

spherical vortex with different cut-off values are similar and close to the theoretical force. The

radial force with cut-off value at 30th has a larger amplitude than the others owing to the higher

amplitude of the emission vector shown in Fig. 4.32. Besides, its azimuthal force, compared

to those with higher cut-off values has a more significant difference from the theoretical one.

However, as the magnitude of Fφ is small this difference is not noteworthy. We also observe that

the forces exerted by vortex with cut-off value at the 60th almost superimpose with the 120th.

Consequently, the regularization of the cut-off value in the inverse filter technique doesn’t have

a crucial influence on the field synthesis quality.
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Figure 4.30: Influence of singular values : (Top) the theoretical modulus and phase of pres-
sure field; (Bottom) modulus and phase obtained by taking different cut-off thresholds for the
singular values.
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Figure 4.31: Radiation force exerted on a polyethylene sphere of radius a = 0.45λ by spherical
vortex synthesized by applying different cut-off values (cut-off at the 30th, 60th, 120th value).

Figure 4.32: The emission vectors (Esv1
3 (ω), Esv2

3 (ω), Esv3
3 (ω)) computed by the inverse matrix

with different cut-off values (cut-off at the 30th, 60th, 120th value).

89



CHAPTER 4. ACOUSTIC FIELD SYNTHESIS

Figure 4.33: Influence of singular values cut-off threshold on the amplitude and phase of the
emission vectors (Esv1

3 (ω), Esv2
3 (ω), Esv3

3 (ω)).

Influence of the propagation operator

Knowing that the regularization of singular values doesn’t have a remarkable impact on the

field synthesis, the reason for the difference in the scanned field is, therefore, hidden in the

propagation operator H(ω) itself. To investigate this we apply first the propagation operator

H
4
(ω) to the different emission vectors. Second, the operator H

2
(ω) will be used to confirm

the role played by the image space of each matrix.

Projection of the emission vector in the image space of the matrix H
4
(ω)

Firstly, we compare the pressure fields obtained in the focal plane in the same conditions

for the emission vectors Efv
1 (ω), Efv

2 (ω) and Efv
3 (ω) obtained for a focused vortex of charge

m′ = 1. As described above (Eq. (4.3)), the pressure field can be directly determined by

multiplying the emission vector with the matrix H
4
(ω). The results are shown in Fig. 4.34,

modulus on the left column and phase on the right. The target field is displayed on the last

row.

The pressure field H
4
(ω)Efv

1 (ω) at the top of the figure describes a ring of non-uniform

amplitude with a shift towards y-axis.
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The pressure field H
4
(ω)Efv

2 (ω) is much closer to the target pattern but shifted along the

x-axis. The main intensity ring is still non-uniform; the second intensity ring, in blue, is non-

uniform as well. Intensity spots regularly spaced on a circle of larger radius are a salient feature

that was already visible on the scan in Fig. 4.11(a). The control point distribution used to

compute Efv
2 (ω) (Fig. 4.10), is evenly distributed on polar coordinates (θ,r). When r increases,

the distance between two points located at the same radius increase as well. This leads to an

undersampling responsible, probably through aliasing, for the generation of topological charge

components of opposite sign and hence a cosine modulation on the azimuth.

The pressure field H
4
(ω)Efv

3 (ω), as illustrated in the figure, is well centered and the ampli-

tude and phase are in good match with the theoretical pattern up to the third ring. Farther

away, the field becomes random. Since Efv
3 (ω) is calculated with a matrix H−1

3
(ω) and a tar-

get field F fv
3 (ω) defined on a square mesh of size 7 mm×7 mm (5.8λ × 5.8λ) the field was not

constrained outside the third ring and hence it is not surprising that discrepancies occur.

The synthesis of spherical vortices is now investigated. As the use of the first emission

vector (Esv
1 ) gives poor results for the focused vortex, only the second and third emission

vectors are considered: Esv
2 and Esv

3 . The corresponding pressure fields are shown in Fig.

4.35. The pressure field obtained with H
4
(ω)Esv

2 on top of the figure shows an inhomogeneous

intensity ring with a non-zero amplitude region inside. It is consistent with the experimental

result presented in Fig. 4.11(a). As for the focused vortex synthesis some high-intensity noise

appears at the edge of the field. Meanwhile, the field is also slightly shifted towards the x-axis.

On the contrary, the pressure field H
4
(ω)Esv

3 , as expected, has almost the same pattern as the

theoretical one.

Projection of the emission vector in the image space of the matrix H
2
(ω)

The same analysis is done to visualize the pressure field in the control plane of the second

distribution. As depicted in Fig. 4.36, the H
2
(ω) is applied to the emission vectors (top row:

Esv
2 ; middle row: Esv

3 , bottom: target field). The pressure field H
2
(ω)Esv

2 has a perfect ho-

mogeneous ring centered at the origin of the mesh with zero amplitude inside. This contrasts

with Figs. 4.35 and 4.11(a) where the noise outside the high-intensity ring disappears. While

looking at the pressure field H
2
(ω)Esv

3 the high-intensity ring is shifted towards x-axis in a

negative direction. This is the opposite of H
4
(ω)Esv

2 and confirms that the two experimentally
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determined lens focal points, that are used as origin, are slightly shifted in the two experi-

ments. However, as observed previously, the highest intensity ring as well as secondary lobe

are uniform. The fact that discrepancies are visible in the experimental scan or in the linear

mapping operated by H
4
(ω), i.e H

4
(ω)Esv

2 , but not in the linear mapping operated by H
2
(ω)

confirms the undersampling or, in other words, the too small dimension of the image subspace

of H
2
(ω). The number of rows of H

2
(ω), the image space dimension, is too small to distinguish

the two emission vectors. To synthesize a spherical vortex the propagation operator H
2
(ω) is

not adequate. The control points are not enough. Thus, some of the necessary information to

retrieve the field is left out at the beginning of the measurement.

With the estimations of the focused and spherical vortex field it is clear that, apart from the

noise outside of the second ring, the pressure field achieved by H
4
(ω)Esv

2 and H
4
(ω)Esv

3 are both

in good agreement with the theoretical one. However, the two experimental measurements have

a different origin points, and therefore result in a slight shift along the x-axis. This translation

of the field can be responsible for the differences between Esv
2 and Esv

3 , as observed in Fig. 4.27

and that was left unexplained.
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Figure 4.34: Modulus and phase of the complex pressure field in plane xy for a focused vortex
of m′ = 1.
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Figure 4.35: Modulus and phase of the complex pressure field in plane xy for a spherical vortex
of m′ = 1.
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Figure 4.36: Modulus and phase of the complex pressure field in plane xy for a spherical vortex
of m′ = 1.
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4.4 Conclusion

In this chapter we have successfully synthesized two kinds of vortex beams: a focused vortex

and a spherical vortex. The spherical vortex, compared to the focused vortex beam, forms a

more significant intensity gradient in the axial direction which allows a stronger axial trap. Its

capability of trapping larger spheres leads us, for the first time, to synthesis this kind of wave

field. To retrieve these fields, the inverse filtering method was employed. In this method, the

distribution of the control points is crucial for the field synthesis. Therefore, three distributions

of control points were used: a sphere of radius 20 mm with 974 Lebedev points, a disc of radius

7 mm in the focal plane with 581 points and a square of width 6 mm in the focal plane with

2500 points. The results were compared qualitatively by measuring the synthesized wave field

experimentally and quantitatively by computing the BSC and radiation force using the method

introduced in chapter 3.

In our analysis, we have found that the key to achieve the desired wave field is to construct

a suitable mesh. The mesh of control points should be fine enough to allow recording all the

necessary information of the target field in the propagation operator. The criterion of whether

the distribution is adequate or not lies in the singular values. As we have analyzed in section

4.3.4, if the control point distribution is satisfactory, the corresponding singular values will have

a group of values at the noise level, which signifies the oversampling.

To optimize the emission vectors, the influence of the cut-off value was also assessed in this

chapter. The small singular values are supposed to be sensitive in the pseudo inverse step and

should be set to zero. However, by taking different cut-off values and comparing the resulting

fields and radiation forces, we noticed that the cut-off value does not have a noticeable impact

on the field synthesis. The differences are not significant and mainly appear in the field outside

the high-intensity ring. Therefore, the most important factor that determines the field synthesis

quality is the distribution of control points.
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Chapter 5

Trapping and manipulation of elastic

spheres by acoustic vortex

5.1 Introduction

In the previous chapter, we have synthesized experimentally two types of acoustic vortex:

focused vortex beam and spherical vortex beam, by the inverse filter method. These vortex

beams are used in this chapter to trap and manipulate elastic spheres. The focused and spherical

vortex beams are introduced roughly in chapter 2. However, for a spherical vortex, some of

the parameters should be chosen cautiously to achieve trapping for larger spheres. So in the

first section, we introduce a tailored spherical vortex with optimum trap capability for a given

target. Then, as a preparation of experiments, the analysis of its ability for trapping sphere

with different sizes and materials are made. Besides, in order to exert larger forces, some

modifications of the emission vectors, obtained by inverse filtering, are applied. In the last

section, the experimental setup of the manipulation and the result of sphere trapping by focused

and spherical vortex beams are illustrated.
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5.2 Acoustical trap by a spherical vortex

5.2.1 Spherical vortex

A spherical vortex, as its name, describes a vortex beam with the pressure field of spherical

pattern at the central beam core. Its capability for trapping depends highly on the beam shape,

for example, the radius of the intensity ring. As presented in chapter 2, for a spherical vortex,

the shape of the vortex is determined mainly by three factors: the aperture angle α0, the topo-

logical charge m′, and the degree l of the associated Legendre polynomial P̃m′

l (x) in Eq. (2.51).

Among these factors, the aperture angle α0 is limited by the lens that is used experimentally

to focus the field, and the maximum angle allowed by our lens is 49◦. To achieve the desired

forces acting on an elastic sphere, the optimal topological charge m′ and the degree l should

be chosen. The degree l of the associated Legendre polynomial P̃m′

l (x), as explained earlier in

chapter 2, is chosen to have an amplitude that varies smoothly in the range of θ0 = [π−α0 : π]

(the source aperture) and gently drops near zero at π − α0 to avoid strong secondary lobes in

the radiated field. As depicted in Fig. 5.1 the topological charge m′ is fixed at 1, P̃m′

l (x) with

(x = cos(θ)) as a function of α0 is plotted for different degree l. According to the figure, the

degree l = 8 is the most adapted while m′ = 1.

As far as the topological charge m′ is concerned, in Fig. 5.2, the amplitude of the pressure

field with m′ = 1, m′ = 2, m′ = 3 in plane (x, y) and (x, z) are represented. In plane (x, y),

the high-intensity ring keeps almost the same shape. Meanwhile, the pressure gradient in plane

(x, z) varies a lot from m′ = 1 to m′ = 3. When m′ = 1, the high intensity has a ‘candy’ form,

the zero amplitude region is like a spherical ‘candy’ wrapped up by high pressure field. By

increasing m′ to 2, the zero amplitude region remains a spherical shape at the center, whereas,

the high pressure packing of the zero region begins to open at the two sides. For m′ = 3, the

zero region turns totally into a cylindrical shape. To analyze the impacts of the beam shape on

the radiation forces, in Fig. 5.3, the radiation forces exerted on a polyethylene sphere of radius

a = 0.45λ for different topological charges are depicted. The radial and azimuthal forces are

similar between the three, from m′ = 1 to m′ = 3. Only the amplitude of the forces decreases

as a result of the decrease of intensity at the pressure field. In terms of the axial forces, notable

differences come up. For m′ = 3, the sphere sustains a tiny constant forward force. No trap

98



CHAPTER 5. TRAPPING AND MANIPULATION OF ELASTIC SPHERES BY
ACOUSTIC VORTEX

is formed in this vortex due to the lack of pressure gradient at the center of the vortex in the

axial direction, which is shown in Fig. 5.2. Regarding the axial forces with m′ = 1 and m′ = 2,

both cases create a trap for the sphere. However, the axial forces with m′ = 1 are two times

larger than m′ = 2 owing to the beam shape, which gives rise to a greater pressure gradient.

Therefore, to generate a spherical vortex with a good capability for trapping the target sphere,

the topological charge m′ = 1 and radial degree l = 8 are the most suitable.
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Figure 5.1: Normalized associated Legendre polynomialP̃m′

l (x) as a function of α0.
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Figure 5.2: Modulus of the pressure field in plane (x, y) and (x, z) with different topological
charges: m′ = 1, m′ = 2, m′ = 3 (from top to bottom).
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Figure 5.3: Radial Fρ, azimuthal Fφ, axial Fz forces exerted on an polyethylene sphere of radius
a = 0.45λ by a spherical vortex beam with topological charge m′ = 1, m′ = 2, m′ = 3.

The BSC in column m = 1 of a spherical vortex with topological charge m′ = 1, radial

degree l = 8 and a focused vortex with the same topological charge and an aperture angle α0

are shown in Fig. 5.4. By tailoring the vortex with the associated Legendre polynomial P̃m′

l

with radial degree l = 8, the location of the maximum modulus of BSC of the spherical vortex

differs from the focused vortex. The modulus of BSC peaks at n = 8, which is equal to the radial

degree l. Looking at the right of Fig. 5.4, the influence of the aperture angle is depicted. The

width at half maximum decreases while increasing the aperture angle α0. Therefore, choosing

the radial degree l = 8 and aperture angle α0 = 49o for the spherical vortex concentrates the

energy of BSC at n = 8, which, as shown in Fig. 5.3, gives rise to a more constant force to trap

the sphere.
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Figure 5.4: Normalized modulus of BSC of a spherical vortex with topological charge m′ = 1,
radical degree l = 8, aperture angle α0 = 49◦, and a focused vortex with same topological charge
and aperture angle (Left); normalized modulus of BSC of a spherical vortex with topological
charge m′ = 1 and radical degree l = 8, and aperture angle α0 = 59◦, 49◦, 39◦ (Right).

Trapping capability of a spherical vortex through different spheres

The previous section has shown that a spherical vortex tailored with topological charge

m′ = 1 and radial degree l = 8 is adequate to trap a polyethylene sphere of radius a = 0.45λ

(Fig. 5.3). However, according to our estimation of the axial forces for a polyethylene sphere of

different radii, the trapping capability of the spherical vortex, especially the axial trap, is not

constant. As depicted in Fig. 5.5, among the polyethylene spheres of radii a = 0.4λ, a = 0.45λ

and a = 0.48λ, the radial trap always exists. Nevertheless, only the sphere with r = 0.45λ can

be trapped axially.
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Figure 5.5: Radial Fρ, azimuthal Fφ, axial Fz forces exerted on a polyethylene sphere of radii
a = 0.4λ, a = 0.45λ, a = 0.48λ by a spherical vortex beam.

Therefore, to succeed in trapping the particles experimentally, it is important to test the

range of sizes and materials that can be trapped, especially in the axial direction of a spherical

vortex. The negative force in the axial direction is the key to trap the particles. Thus, the

determination of the suitable range of polyethylene sphere sizes requires only to compute the

axial force at a position where the negative force is most likely to appear. According to Fig.

5.5, for instance, at z = 0.9λ the axial force is negative with a maximum amplitude for a

polyethylene sphere of a = 0.45λ. In Fig. 5.6, the axial force at z = 0.9λ as a function of

sphere radius is represented. As illustrated in the figure, from a = 0.2λ, the resonances begin

to appear in the axial force and thereafter regions for which the axial force is negative alternates

with regions where the force is positive. From the figure, the zone where Fz < 0 represents

the range of sphere radius that can be trapped. Only the spheres with radii between (0.42λ

and 0.47λ) or (0.5λ and 0.54λ), (0.59λ and 0.64λ ) have a negative force and therefore can

be trapped by the spherical vortex. This result agrees with the force estimation in Fig.5.5,

since the spheres of radii r = 0.4λ and r = 0.48λ are at the resonances of the axial force, it is

impossible to trap them axially.
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Figure 5.6: Normalized axial forces F̃z exerted on a polyethylene sphere positioned at z = 0.9λ
as a function of sphere radius by a spherical vortex.

These resonances of the force come from the resonances of the scattering coefficients Rn.

As the axial force is calculated by Eq. (2.23) (Fz = −2 〈V 〉
k20

∑∞
n=0

∑
|m|<n=(Gm

n A
m∗
n Amn+1Cn).),

where Cn is a function of the scattering coefficients (Cn = R∗n +Rn+1 + 2R∗nRn+1). In Fig. 5.7,

the modulus of Cn is plotted for a polyethylene sphere as a function of radius. Comparing Fig.

5.6 and Fig. 5.7, the resonances in Cn locate at the same positions as the resonances observed

in the axial forces. The figure also illustrates that for a < 0.6λ, the coefficients Cn with n > 6

can be neglected since from n = 6 the amplitudes become weak. As the force is a sum on degree

n, we define here f̂nz as the force in degree n:

f̂nz = −=(Gm
n A

m∗
n Amn+1Cn). (5.1)

The contribution of f̂nz to the negative force at each degree n can be computed by Eq. (5.1).

In Fig. 5.8, the f̂nz until degree n = 6 are depicted. Taking the trapping region between 0.42λ

and 0.47λ as an example, according to the figure, f̂nz with negative amplitudes that contribute

to the final negative force are at degrees n = 2, n = 3 and n = 4.
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Figure 5.7: Modulus of Cn as a function of sphere radius for a polyethylene sphere.
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Figure 5.8: f̂nz as a function of sphere radius for different degrees until n = 6 for a polyethylene
sphere.

In order to find the relation between the coefficients Cn and its contribution to the negative

force, the coefficients Cn of polyethylene sphere at degree n = 2, n = 3 and n = 4 are depicted

in Fig. 5.9. In the figure, the region within which the negative force appears is highlighted

by two gray dashed curves. In the trapping region, the modulus of Cn as well as the phase

are constant and located between two resonances. The phase inside the trapping region is

approximately π
2
. As the axial force is the imaginary part of the product of Am∗n Amn+1 and Cn
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with an opposite sign (−1) in front, thus to obtain a negative force requires the sum of phase to

be inferior to π. In Fig. 5.10, the modulus and phase of Am∗n Amn+1 are plotted. Even though the

maximum of the modulus is at n = 8, the corresponding phase is however at π
2

(the gray dashed

line represents the position where the phase is π/2), with the phase of Cn at π
2

simultaneously,

which results in a sum of phase equal to π and does not contribute to the axial restoring force

at all and will, on the contrary, push away the sphere. Meanwhile, at degree n = 2, n = 3 and

n = 4, the phases are the smallest and give rise to a positive real part which finally contributes

to the negative restoring forces.
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Figure 5.9: Modulus and phase of Cn as a function of radius at degrees n = 2, n = 3, n = 4 for
a polyethylene sphere.
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Figure 5.10: Modulus and phase of Am∗n Amn+1 as a function of degree n.

The trap capability of the spherical vortex on a polystyrene sphere can be examined in the

same way. The axial force exerted on a polystyrene sphere at position z = 0.9λ as a function

of the polystyrene sphere radius is computed and shown in Fig. 5.11. According to the figure,
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the negative force appears at some of the radii but the amplitude is very weak. For one of the

regions between a = 0.46λ and 0.49λ, the f̂nz are plotted in Fig. 5.11. The f̂nz contributing

to the negative force are at degrees n = 2, n = 3, n = 4. Then we plot the coefficients Cn as

shown in Fig. 5.12. Similar to the polyethylene sphere, inside the trapping zone, the modulus

and phase of Cn are constant. The phases at degree n = 2, and n = 3 are close to π
2

while

at degree n = 4, the phase is larger and is equal to 2π
3

. As the sum of Cn phase and Am∗n Amn+1

phase at n = 4 is close but less than π this results in a small negative force. Moreover, since

the function sin (the imaginary part) decreases linearly around π, a decrease of phase thus

results in a proportional increase of the modulus of the negative force.
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Figure 5.11: Normalized axial F̃z forces exerted on an polystyrene sphere positioned at z = 0.9λ
as a function of sphere radius (Left); f̂nz as a function of sphere radius for different degrees until
n = 6 (Right).
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Figure 5.12: Modulus and phase of Cn as a function of sphere radius at degrees n = 2, n = 3,
n = 4 for a polystyrene sphere.

As the scattering coefficients Cn of a polystyrene sphere depends only on its physical prop-
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erties, the only way to trap a polystyrene sphere is to adjust the BSC of the spherical vortex

beam to give rise to the negative force. The BSC of a spherical vortex, as demonstrated in the

previous section, can be modified by changing the aperture angle α0, the radial degree l, or

topological charge m′. Taking the radial degree l as an example, in Fig. 5.13, the modulus and

phase of Am∗n Amn+1 with different radial degrees are shown. The gray dashed lines highlight the

radial degrees of interest. Looking at the phases of each radial degree, the l = 8 gives rise to a

phase significantly below π/2 in the region of interest and hence potentially to a large negative

force. However, the modulus of the Am∗n Amn+1, at the same degree n, decrease when l increases

and this trend is in favor of the smallest l. Therefore the impact of changing the radial degree

l on the negative force is not obvious. In Fig. 5.14, f̂nz as a function of polystyrene sphere

radius with different radial degrees l in the BSC are shown. From the figure, only the BSC

with radial degree l = 8 lead to the most significant negative force. In spite of the fact that the

modulus of Am∗n Amn+1 with l = 8 is smaller than those with l = 6, and l = 7, it has a smaller

phase at the same time. Its advantage in phase makes it capable of creating a negative force.

Thus comparing to the modulus, the phase is more crucial for the force computation in both

Cn and Am∗n Amn+1.
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Figure 5.13: Modulus and phase of Am∗n Amn+1 as a function of degree n for different radial
degrees l.
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Figure 5.14: f̂nz at degree n = 4 as a function of sphere radius for different radial degrees l.

Another way to modify the BSC is to change the aperture angle α0. In the previous analysis,

the forces are calculated at z = 0.9λ where the amplitude of negative axial force is maximal.

This position can be changed as the aperture angle α0 varies. Fig. 5.15 depicts the axial

forces exerted on a polystyrene sphere by a spherical vortex with different aperture angles. The

negative restoring force peaks at an axial position that depends on the aperture angle. For

α0 = 39o and α0 = 49o, at z = 0.8λ, the axial force reaches its minimum. Meanwhile, for

α0 = 59o and α0 = 69o, the minimums are at z = 1.5λ and z = 1.45λ respectively. We aim

to compare and maximize the amplitude of the negative axial force. Thus the product of BSC

(Am∗n Amn+1) for each aperture angle is computed in the corresponding position and is illustrated

in Fig. 5.16. This indicates that the axial negative force can be strengthened by increasing

the aperture angle. Increasing the aperture angle is, therefore, a method to get a polystyrene

sphere trapped by a spherical vortex.
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Figure 5.15: Axial forces exerted by a spherical vortex with different aperture angles on a
polystyrene sphere of radius a = 0.48λ.

From the Fig. 5.16, we notice that the increase of α0 from 49◦ to 59◦ and 69◦ gives rise to a

modulation of the product Am∗n Amn+1 at the degrees highlighted by the gray dashed curves. The

phase with α0 = 59◦ stays the same as α0 = 49◦. However, when the aperture angle reaches

69◦, the phase decreases comparing to 49◦ and 59◦. This smaller value in phase can eventually

results in a higher negative force as shown in Fig. 5.17.
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Figure 5.16: Modulus and phase of Am∗n Amn+1 as a function of degree n for different aperture
angles α0.
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Figure 5.17: Sum of f̂nz as a function of sphere radius from degree n = 2 to n = 4 for a
polyethylene sphere

In conclusion, the trapping ability of a spherical vortex is strongly dependent on the res-

onances and hence on the scattering coefficient. The axial trap can be achieved between two

resonance peaks. Meanwhile, the BSC have significant effects on the amplitude of the negative

force. To get the axial trap, we can either choose the suitable sphere material for a given vortex

beam or adjust the BSC of the spherical vortex. As demonstrated previously, the polyethylene

sphere with radii between 0.42λ and 0.47λ is a good target for a spherical vortex with topo-

logical charge m′ = 1 and radial degree l = 8. Therefore, in the following experiments, the

polyethylene sphere with corresponding sizes will be used.

5.2.2 Experimental synthesis of a spherical vortex

In chapter 4, we have demonstrated the method to synthesize a spherical vortex using the

inverse filtering method. By knowing the desired acoustic field, and the pseudo-inverse of

the propagation matrix, the emission signals of each transducer can be calculated. A focused

spherical vortex with topological charge m′ = 1 and radial degree l = 8, as selected in the

previous section, is synthesized by inverse filtering. Its pressure field measured experimentally

is depicted in Fig. 5.18 and Fig. 5.19. On the right column of Fig. 5.18, the emission

vectors esv(t) calculated by Eq. (4.7) are presented in the top row. According to the figure,

the energy is mainly distributed on the first 20 transducers and the other transducers have

barely no contribution to the pressure field. Some modification of the emission vector esv(t)

should be made, in order to make optimal use of all the transducers and, at the same time,
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increase the intensity of the high-intensity ring. This will allow to exert larger radiation forces,

especially for the axial force. First, for each transducer element, the signals are normalized

esvi (tj)/max
i

(max
j

(esvi (tj))), where i is the index of the transducer elements (from 1 to 127) and

j is the index of the time sample. Then we multiply each signal by a new amplitude factor equal

to

(
max
j

(esvi (tj)) /max
i

(
max
j

(esvi (tj))

))β
with β equal to 0.5 or 0.25. As shown in Fig. 5.18,

by applying these modifications, the number of signals with significant amplitude increases.

Meanwhile, the pressure field obtained is also changed. The high-intensity rings keep the same

pattern. While inside the rings, the intensity is no longer at zero amplitude and the phases

have also changed. We calculate the pressure fields in the plane z = 0, on the axis y = 0 as

displayed in Fig. 5.20. The amplitude of the modified field with β = 0.25 has increased almost

by a factor 2 by comparing to the original emission. Moreover, the differences between the

pressure field measurements in plane (x, z) are also clearly visible. With the original esv(t),

the pressure field (on top) is quite close to the theoretical field (at the bottom). However, the

two modified fields in plane (x, z), remain no longer the spherical pattern centered at the focal

range.
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Figure 5.18: Experimental measurements of modulus (Left) and phase (Middle) of the complex
pressure field in plane (x, y) for a spherical vortex beam with l = 8, α0 = 49◦ obtained by
different emission vectors (Right).
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Figure 5.19: Modulus of the complex pressure field in plane (x, z) for a spherical vortex beam
with l = 8, α0 = 49◦ obtained by different emission vectors (from top to bottom): Original,
β = 0.5, β = 0.25, theoretical.
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Figure 5.20: Pressure fields along axis x at focal distance z = 0.

In order to evaluate the impact of these modifications on the radiation forces, we use the

angular spectrum method (ASM) demonstrated previously (Chap.3) to estimate the radiation

forces. As depicted in Fig. 5.21, by modifying the vector Esv from the origin up to β = 0.125,

the amplitude of the radial force increases and the trap in radial direction remains always. For

the axial force, when z < 0, the force is positive and increases notably with the decrease of the

coefficient β. The maximum positive force with β = 0.125 is four times larger than the original

one. However, when the sphere is located behind the focus (z > 0), the maximum amplitude of

the restoring force increases until β = 0.25 and then decreases. Thus, according to the trapping

performance illustrated by the radiation forces, the exponent β = 0.25 is optimum.
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Figure 5.21: Radiation force exerted on a polyethylene sphere of radius r = 0.45λ by a focused
spherical vortex beam of topological charge m′ = 1, l = 8 synthesized by different emission
vectors with β = 0(original), 0.5, 0.25, 0.125.

5.3 Trapping and manipulation of a sphere with the acous-

tic vortex

Two types of vortex are used to trap the target experimentally: a focused vortex with

topological charge m’=1 and aperture angle α0 = 49◦ and a spherical vortex with the same

aperture angle, topological charge and radial degree l = 8 as selected in the first section. The

pressure field of the vortex in plane (x, z) and (x, y) are depicted in Fig. 5.22. As demonstrated

in the figure, the spherical vortex has a trapping zone (zero pressure amplitude zone) with a

spherical pattern at the center of the vortex beam, while the focused vortex has a smaller and

cylindrical shape trapping zone in the axial direction. Since the shape of the trapping zone has

an impact on the trapping capability of the sphere, spheres with different materials and sizes

are chosen as listed in the Tab. 5.1.
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Sphere diameter (d (µm)) density (ρ(g/cc))
polystyrene 355-425 1.098
polystyrene 2000 1.098
polystyrene 750-850 1.098
polyethylene 1000-1180 0.96
polyethylene 1000-1180 1

Table 5.1: The target spheres for trapping experience.

Figure 5.22: Pressure field of a spherical vortex (top) and focused vortex (bottom).

5.3.1 Experimental setup

The experimental setup is shown in Fig. 5.23. An array of 127 piezoelectric transducers is

held by a vertical support to synthesize the desired beam in a large water tank. A high focal

ratio acoustical lens is fixed in front of the transducers in order to focus the vortex. A very thin

polyethylene film (with thickness ≈ 15 µm) that ensures minimal acoustic reflection is stretched

on a bracket and is mounted on a three-axis motorized positioning system. The motors (Micro-

Controller, Newport) are powered and controlled by a controller (Newport, MM-4006) with

a maximum accuracy of 5 µm. Behind the optical window, an optical zoom image the area

of interest and the image is recorded by a CMOS camera (ON Semi VITA1300, Model ID:

FL3-U3-13Y3M-C). At the bottom of the vertical support, four wheels are installed to move

the transducers.
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Figure 5.23: Experimental setup: an array of transducers are positioned vertically by a support;
the emitted acoustic field is focused by the lens, a polyethylene film is stretched on a bracket
which is connected to a motorized positioning system.

5.3.2 Finding the focal position of the vortex

In our experiment, we drive the transducers at a frequency f= 1.2 MHz corresponding to a

wavelength of λ = 1.23 mm in water of 20 ◦C where the speed of sound is about 1480 m/ s. A

hydrophone of 0.2 mm diameter (Precision Acoustics Ltd, UK) scanning a grid of points defined

near the focus measures the instantaneous pressure field to find the focal position of the vortex.

The pressure field of the vortex in plane (x, y) has a ring shape pattern with zero amplitude

at the center for both focused and spherical vortex as shown in Fig 5.22. As illustrated in the

118



CHAPTER 5. TRAPPING AND MANIPULATION OF ELASTIC SPHERES BY
ACOUSTIC VORTEX

figure, the ring of the focused vortex is smaller than the spherical vortex, as well as the zero

amplitude region at the center which helps to identify the focal position more accurately. Thus,

a focused vortex is synthesized experimentally to fix the focal position. Once the hydrophone is

successfully positioned at the core of focal position, we then adjust the position of the camera

to focus on the hydrophone, and at the same time make sure that the hydrophone is at the

center of the camera screen. As depicted in Fig. 5.24, the hydrophone is clear and centered,

the red dot on top of the hydrophone represents the focal position of the vortex. This step of

fixing the focal position allows later to locate the sphere at the trapping zone of the vortex.

The camera used in our experiments has a maximum resolution of 1280×1024 with pixel size

of 4.8 µm. As our experiment takes place in water, the light goes trough several optical medium

and its refraction affects the magnification factor of our optical zoom. Thus, the calibration of

our optical system is necessary. Since the hydrophone is mounted on the positioning system,

by moving the hydrophone, the image size can be calculated according to the distance between

two borders of the screen recorded on the motor controller. According to these experimental

measurements, one pixel corresponds to 3 µm. Knowing the pixel size of the camera, can help

to measure the radius of the trapping target, identify the equilibrium position of the trap, etc.

Figure 5.24: Photo of the hydrophone at the focal position.
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5.3.3 Trap by a focused vortex

The trapping zone of a focused vortex is small, and as discussed in the previous section,

resonances of scattering coefficients come up when the sphere is larger than a = 0.2λ. In our

experiment, we use polystyrene beads of radii between 178 mm and 212 mm (0.142λ − 0.17λ)

with density 1.098 g/cc as target spheres. After putting the beads on the film, by moving the

film with the motorized positioning system, it is easy to locate the target bead at the trapping

zone of the focused vortex. In Fig. 5.25, two beads are clear in the photo, indicating that they

are both positioned in the focal plane. By moving the sphere to the center of the screen, the

target sphere is positioned at the focal point of the focused vortex beam.

Figure 5.25: Photo of the polystyrene sphere at the focal position.

Once the bead is placed near the trapping zone, we then emit the focused vortex to trap

it. The effect of the vortex beam is immediate and noticeable. As illustrated in Fig. 5.26, A is

the initial position of the bead. The gray dashed curve represents the central axis of the vortex

beam. As soon as we turn on the transducers, the bead with radius 0.15λ is firstly attracted by

the radial force and moves towards the central axis and arrives at position B. Then the bead

is lifted to position C, the equilibrium position. When it arrives at position C, the bead began

to stabilize. It stays at the same position until the transducers are turned off. This experiment

demonstrates that the focused vortex beam synthesized experimentally by the inverse filtering
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method is able to trap a polystyrene sphere as estimated. To verify the selectivity of the vortex

beam, several others spheres are placed in close vicinity of the target sphere. As depicted in

Fig. 5.27, when the vortex beam is emitted, only one sphere is lifted. This confirms that the

vortex trap is efficient and selective.

Figure 5.26: Snapshots of the trap by a focused vortex.
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Figure 5.27: Snapshots showing the selectivity of a focused vortex beam.

Referring to the 3D manipulation, as the focused vortex is supposed to have the power

of moving the trapped target in any desired direction, this capability of the 3D trap is also

examined in our experiments. Figure 5.28 are the snapshots at different time and hence different

location of the transducers array. The sphere is initially picked up in position A at T1, then

transducers are moved towards the direction −y at T2, the particle follows the movement of

the transducers and reaches position B. The transducers are relocated towards direction +y,

+x, and −x at T3, T4, T5 respectively, the sphere is always trapped and moves along with the

transducers as shown in figure.
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Figure 5.28: Positions of the bead by moving the transducers.

A polyethylene film with thickness 15 µm is used to support and move the spheres in our

experiments. However, the radiation pressure due to a standing wave is much stronger than the

one due to a progressive wave. As illustrated in chapter. 3, even 0.5% of counterprogating wave

can induce notable oscillations in axial force. Even though, a very thin film is chosen to avoid

the acoustic reflection, its influence to the radiation forces is not negligible. In order to observe

the impact of the film on the axial forces, after the sphere is steadily trapped, the film is moved

to different locations and the movement of the sphere is recorded by the camera. Figure 5.29

depicts the sphere positions at different moments with the film located at different positions.

The red line in the figure represents the film position. At T1, the sphere is initially lying on the

film at a position above the trapping zone. By lowering the film, when the sphere reaches the

trapping zone, it is lifted and stabilizes at T2. Continuing descending the film, from T2 to T4,

the sphere, as observed experimentally, at first, is slightly dragged down by the viscous force

induced by the flow but remains trapped. When the film stops at a certain position, the sphere
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is pulled up and stabilizes at a new equilibrium position as shown in the figure. At T5, the film

is located far away from the sphere and disappears from the screen. At this moment, the sphere

is no longer influenced by the flow which is induced by the movement of the film, and stays

always at the same equilibrium position. The gray dashed curve represents the equilibrium

position without the presence of the film. Then the film is moved in opposite direction and the

new equilibrium positions of the sphere are recorded, T6 and T7. From T2 to T7, the variation

of the sphere position is slight but not null which indicates that the influence of the film on the

axial force is not negligible. When the film is the closest to the focal point as depicted in T7,

the equilibrium position has goes up about 0.3λ. This position shift can be a result of standing

wave created by a counterpropagating wave reflected by the film. Since the beam is sharply

focused, the amplitude of this standing wave decreases rapidly as the membrane moves away.

Therefore, to diminish the effect of the film on the radiation force, we should make sure the

film is not too close to the target while trapping.

Figure 5.29: Snapshots of the hydrophone at the focal position.

5.3.4 Trap by a spherical vortex

In the case of a spherical vortex, as explained in the previous section, the trapping target

becomes larger and the resonances start to come up which resulted in a more complicated
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trapping condition. Consequently, the physical properties of the sphere become more important

for the trapping effect. Two kinds of polyethylene spheres that are most likely to be trapped

were tested in our experiments: sphere with radius between 500 µm and 590 µm (0.4λ− 0.47λ)

with density 1 g/cc and 0.96 g/cc. According to the experimental results, none of these spheres

were fully trapped by the spherical vortex beam and only radial trap was identified during the

experiments. Three reasons can probably be responsible for the failure of the axial trap. First,

polyethylene sphere attracts each others through an electrostatic force. They were dispersed

in water with the help of a surfactant. We tried to apply this surfactant to the polyethylene

membrane also. Nevertheless, this was far from perfect and the static force between the sphere

surface and the film has to be overcome in order to lift the sphere. Second, the resonances

of the scattering coefficients are of great importance to the axial trap. The frequency of these

resonances is strongly dependent of the physical properties of the sphere material and these

properties are not characterized by the supplier. Third, the polyethylene particles sphericity

is very variable from one sphere to the other and never of good quality. Since the location

and magnitude of the resonances are also strongly dependent on the geometry, this plays a role

similar to change in material properties and may explain the axial trap failure. Even though

the axial trap was not successful in our experiments with the spherical vortex trap, the radial

trap has always been strong and constant. As shown in Fig. 5.30, a polystyrene sphere is

radially trapped, while moving the polyethylene film, the particle stays trapped in the same

position.
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Figure 5.30: Snapshots of a polystyrene sphere trapped radially by a spherical vortex

5.4 Conclusion

In this chapter, we aimed at experimentally trap the elastic spheres using either a focused

vortex beam or a spherical vortex beam. To trap and manipulate spheres smaller than 0.2λ,

a focused vortex was used. According to our experiments, the focused vortex has successfully

selected, trapped the target sphere. And we were able to move the sphere by moving the

transducer array.

In the case of a sphere larger than 0.2λ, a spherical vortex beam was introduced. We have

tailored the spherical vortex beam by choosing the topological charge and radial degree to

ensure a higher pressure gradient in the axial direction, which gives rise to a more significant

axial force. Moreover, the trapping zone is large with a radius about 0.5λ, and has a spherical

pattern at the center of the beam. This vortex is supposed to be efficient in trapping large

spheres. However, the axial trapping for a larger sphere is still challenging as the resonances

of the scattering coefficients occur. In order to overcome this difficulty, we have studied the

impacts of the resonances and the BSC on the axial restoring force which is the key for axial
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trapping. Our analysis demonstrated that the axial restoring force depends highly on the

resonances and appears most probably between the resonance peaks. Moreover, the BSC also

have an influence on the axial force. By interacting with the scattering coefficient, the BSC

affect the amplitude of the negative force. Therefore, the axial trap can be achieved either by

choosing the appropriate spheres or adjusting the BSC. Referring to our experiments, despite

all the studies we have made, the unknown physical properties of the target spheres make

the three-dimensional trapping of a spherical vortex complicated. Moreover, the static force

between the polyethylene sphere and the supporting membrane is significant. Even though we

have applied the surfactant to reduce the friction, the result was not satisfactory. Furthermore,

the polyethylene bead has a very poor sphericity, which also leads to a unpredictable radiation

force. With all these practical difficulties, the axial trap was not identified experimentally.

Nevertheless, we have observed a firm radial trap during the experiments.
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Conclusions and outlooks

Single beam acoustical tweezers using vortex beams have been developed recently as a

powerful device for contactless manipulation. In order to make accurate control of this kind of

tweezers, in this thesis, we have addressed two main studies: calibration of the radiation force

and synthesis of vortex beams.

The force calibration is based on a three-dimensional model which describes the radiation

force exerted on a spherical particles as a function of the expansion coefficients (BSC) and

the scattering coefficients of the particle. We have demonstrated that the radiation pressure

on a given sphere can be characterized by sampling the pressure field. Three methods were

introduced and compared numerically and experimentally in chapter 3. These methods are:

quadrature method on a spherical surface, sparse method of an inverse problem at random

points in a spherical volume (OMP) and angular spectrum method (ASM) in the focal plane

of the acoustical field. We noticed that the OMP and ASM methods can retrieve the BSC

with good accuracy both in numerical simulations and experiments. Moreover, the SNR has a

significant impact on the results, especially on the axial force. Even a slight noise forming a

counterpropagating wave can lead to strong oscillations in the axial force. Therefore, reducing

the SNR in the pressure field measurement is of great importance. The ASM, measuring the

field at the focal plane of the focused beam, where the intensity is highest, was proven to be

the optimal method.

For the wavefield synthesis, we used an array of transducers to emit the desired acoustic

field by applying the inverse filtering technique. Two major steps in this method are: firstly,

record the wave propagating information in the propagation operator; secondly, calculate the
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pseudo-inverse of the propagation operator using SVD method. Each step has an adjustable

factor that influences the result. These two factors are the distribution of the control points

and the cut-off value.We have employed three distributions with different point spacing and

displacements. The force calibration method introduced in chapter 3 was applied to compare

the differences of the resulting BSC and radiation forces quantitatively. The comparison of

these results demonstrated that it is necessary to use a fine mesh (interval ≈0.1λ) to achieve a

field that corresponds well with the target field. Moreover, we observed that the distribution of

singular values contains information about the sampling quality of the control points. Adequate

distribution of control points will result in a group of singular values gathering at a noise level

which signifies the over-sampling and is indispensable for a satisfactory field synthesis result.

The influence of the cut-off value was also analyzed. But its impacts on the pressure field and

the radiation force is not noteworthy. Therefore, the distribution of the control points is the

primary factor that influences the results of the field synthesis and special emphasis should be

given to choose a suitable mesh. For both a focused vortex and a spherical vortex, we have

found an optimal distribution. And the synthesized wavefields were in good agreement with

the theoretical ones.

It is noticed that the axial force is always much smaller than the radial force, especially

the axial restoring force, which is crucial for the trapping efficiency. Therefore, a spherical

vortex was introduced in this work. Compared to a focused vortex, on the one hand, it forms a

larger spherical trapping zone (with radius about 0.5λ) at the beam core. Thus, it is capable of

trapping larger spheres. On the other hand, the spherical vortex has a higher pressure gradient

in the axial direction, which gives rise to a more significant axial restoring force. With these

characteristics, the spherical vortex is supposed to create an efficient and selective trap.

With the previous two steps of preparation, we finally arrived at the final step to trap

and manipulate the elastic spheres experimentally. For small spheres with radii under 0.2λ,

a focused vortex beam was used as a trapping field. During the experiments, a single sphere

was trapped firmly in an equilibrium position. Consequently, the sphere can be transported

wherever with the movement of the transducer array. For larger spheres with radii about

0.5λ, a spherical vortex beam was used. Nonetheless, as the resonances begin to come up,

the axial trap becomes difficult. Although the radial trap is always strong and stable, the

axial restoring force is not ensured. To achieve the axial restoring force, we have analyzed the
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impact of scattering coefficient resonances as well as the BSC on the axial force. According to

our analysis, the axial restoring force depends highly on the resonances and appears between

the peaks of the resonances. In the meantime, the BSC can also influence the amplitude of the

restoring force. For instance, the restoring force can be enhanced by increasing the aperture

angle of the spherical vortex beam. We have tested and chosen the spheres that are highly

likely to be trapped for the experiments. However, in our experiments, the axial trap was not

observed owing to the complexity of the resonances with unknown physical properties of the

target sphere and strong static force between the sphere and the supporting membrane. On

the contrary, the radial trap that has been unidentified experimentally is always firm.

Note that at a frequency about 1 MHz, the maximum restoring force exerted by a spherical

vortex is about 5 µN, the sphere volume is about 1 mm3 and our choice of spheres are limited to

light polymer spheres with a density comparable to water. The shear velocity of the polymer

sphere is low which results in a small shear wavelength and thus the resonances begin at a small

size (0.2λ). Besides, the physical properties of polymer spheres are not well characterized.

Therefore, the axial trapping is hard to achieve. However, at high frequency, for instance

50 MHz, the size of the trapping zone decreases to a volume with 5 orders of magnitude lower.

Particles with denser materials like glass can be used as target spheres. The physical properties

of glass are well defined. In addition, the shear velocity of glass is also larger so no resonances

appear at the interested size range. Hence the axial trapping is feasible. Consequently, the

spherical vortex is much likely to have better selectivity in high frequency which makes it

important in micro-metric manipulation.

The calibrated acoustical tweezers has a lot of potential in biological applications. With

a trapped sphere, the acoustical tweezers can be used as a real handle. This handle can be

attached to an organism to probe its visco-elastic module and even its shear modulus through

torsion. In addition, in biological systems, it’s important to characterize the radiation force

exerted on the target, especially for the in vivo samples, since this may influence the vitality

of the targets.

Also, acoustical tweezers with high spatial resolution are in need that allows manipulation

as cell assemblies, RNA unfolding,etc. This can be achieved by increasing the frequency or

improving the field synthesis method. However, the manipulation for particles at or under

microscale is very challenging since the acoustic streaming becomes non-negligible or even
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acts as a dominating force. Therefore, the studies of acoustic streaming is of importance in

these scales. Besides, the manipulation of larger spheres is not easier, as we have explained in

this work, the resonances of large sphere leads to unsustainable restoring force. To overcome

this difficulty, the analysis of the relationship between the targets’ physical properties and

the resonances is demanded. Above all, even facing with so many challenges, the potential

applications and the noninvasive properties of the acoustical tweezers are always the key drivers

for the development of this powerful device.
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