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General introduction 

Over the past three decades, the discovery and development of phononic crystals and metamaterials have 

revolutionized the manipulation of wave propagation in both the elastic and acoustic mediums [1–5]. Owing 

to the periodically modulated elastic modulus and mass density in a scale either comparable to the 

wavelength (phononic crystals) or much smaller than the wavelength (metamaterials), many remarkable 

wave propagation phenomena unachievable in the nature materials have been predicted theoretically and 

demonstrated experimentally, including band gap [6], negative refraction [7], over-the-diffraction-limit 

imagining [8], acoustic cloaking [9], non-reciprocal propagation [10], etc. 

Designing artificial structures to manipulate elastic waves, especially Lamb waves that are widely used in 

the industrial applications, through either band folding or local resonance has been one of the most fruitful 

scientific pursuits. One decade ago, pillar type structure that consists of depositing a periodic array of 

cylinders on a plate was firstly developed [11,12]. It has been proved to be one promising candidate in 

controlling Lamb waves. The pillar can function as either a scatter when the wavelength in the plate is 

comparable to the periodicity or a resonator if the wavelength is much larger than the periodicity. Thus, 

both Bragg and low frequency band gaps can be generated [13–15]. When behaving as a resonator, it 

exhibits three kinds of resonances, namely the bending, the compressional and the torsional modes [16]. 

The bending and compressional vibration can easily couple with the symmetric and antisymmetric Lamb 

waves and the torsional motion can interact with the shear-horizontal Lamb waves [17–19]. Obviously, the 

pillar type periodic structures have significant potentials in controlling the propagation of Lamb waves. 

Especially the pillared metamaterials, it can modulate the wave propagation in the subwavelength scale. In 

that system, instead of merely designing local resonance to form a low frequency band gap that simply 

blocks the wave propagation, it is more interesting to investigate the occurrence of the doubly negative 

property [20–22], simultaneously negative effective elastic modulus and mass density, that not only allows 

for the wave propagation, but also processes the negative group velocity which can be further adopted to 

realize the negative refraction, lensing and cloaking [23–25]. 

In recent years, the emergence of topological insulators provides a fascinating way to realize the defect-

immune and lossless energy transport. Unidirectional wave propagation at the domain between two 

topologically distinct systems has been experimentally observed and the associated topological nature 

ensures the suppression of the backscattering in the presence of impurities and disorders [26–28]. Owing to 
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the bulk-edge correspondence, the difference in topological invariants guarantees the number of the edge 

states. By analogy with the quantum Hall effect, the quantum spin Hall effect and the quantum valley Hall 

effect, this concept was soon extended to phononic crystals. While breaking the time-reversal symmetry in 

the system, the topological chiral edge states emulating the quantum Hall effect will occur at the boundary 

[29–31]. Upon the reservation of the time-reversal symmetry in the configuration, the topological 

pseudospin-protected edge states [32–34] in analogy to the quantum spin Hall effect and the topological 

valley-protected edge states [35–37] mimicking the quantum valley Hall effect will occur at the domain 

wall. More interestingly, the topological pseudospin-valley combined edge states have been reported very 

recently which utilizes both the pseudospin and valley degrees of freedom [38–44]. Inspiring by these, we 

raise the interests to investigate the topological transport of Lamb waves in the pillar type structure that can 

provide an extraordinary approach to robustly guide Lamb waves. 

Besides these passive designs that are only suitable for the predefined applications, the actively tunable 

phononic crystals and metamaterials have gained considerable attention owing to the imminent quests on 

the time-dependent wave propagation modulation [45,46]. In these systems, an external field originating 

from the electronic, the magnetic or the mechanical devices is usually introduced which can dynamically 

tune the effective properties in a relatively narrow frequency interval [47–50]. By analogy with these, it 

might be interesting to involve external sources into the pillar type systems to achieve the timely modulation 

of Lamb waves. 

This manuscript is devoted to develop passive and active approaches to manipulate Lamb waves in the 

pillared phononic crystals and metamaterials. It is organized as follows. In the first chapter, we firstly 

investigate the negative properties associated with the bending, the compressional and the torsional modes 

in two square lattice single-sided pillared metamaterials. Secondly, two different schemes to achieve the 

doubly negative property are explained in details. The potentials of the doubly negative property in the 

negative refraction and acoustic cloaking is numerically demonstrated. 

In the second chapter, we investigate the topological transport of Lamb waves in the pillared phononic 

crystals. To begin with, we recall the methodology in constructing a single Dirac cone and a double Dirac 

cone by folding the band structure. After that, the occurrence of the topologically valley-protected edge 

states in an asymmetric double-sided pillared phononic crystal is discussed. The unidirectional propagation 

of the edge states at different domain walls are studied. Besides, we consider a symmetric double-sided 

pillared phononic crystal where the symmetric and antisymmetric modes can be totally decoupled. The 

occurrence of the topologically valley-protected, pseudospin-protected and pseudospin-valley combined 

edge states is demonstrated. The refraction and transmission of the topological edge states at the zigzag and 

armchair terminations is studied. 
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In the third chapter, we present an active method to control the transmission of zero-order antisymmetric 

Lamb wave propagating through an infinite line of pillars. Two different systems with the second-order 

bending resonance and the first-order compressional resonance of the pillars separated and superimposed 

are taken into consideration. In contrast to the metamaterials, the coupling between the neighboring pillars 

is discussed. External traction force and pressure are then applied on the pillars that can well couple with 

the bending and compressional vibration. Both the magnitude and relative phase of the external sources 

against the transmission coefficient are studied. The efficiency of the external traction force and pressure is 

also evaluated. 
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Chapter 1 

1 Doubly negative property in double-sided pillared metamaterials 

1.1 Introduction 

The advent of locally resonant metamaterials almost two decades ago [51], and the great deal of research 

that ensue [2–5], have significantly contributed to the possibilities we have now for controlling the 

propagation and the dispersion of acoustic and elastic waves. Some effective properties of these artificial 

structures may exhibit abnormal behaviors in narrow frequency intervals where they may be infinite positive, 

null or even negative. In these frequency intervals where only one effective parameter is negative, the mass 

density, the bulk modulus or the shear modulus, the wave propagation is completely forbidden that leads to 

the total reflection of the incident wave, impinging on the metamaterial from the adjacent homogeneous 

medium within which the wavelength may be several orders of magnitude larger than the lattice constant 

[52–54]. In contrast, if the structure is engineered to support frequency intervals where the doubly negative 

property occurs, i.e. simultaneously negative effective mass density and bulk (shear) modulus, phenomena 

not present in nature may arise, for instance, the negative refraction, the cloaking effect and the over-the-

diffraction-limit imaging. Generally speaking, the doubly negative property can be achieved either by 

combining two different substructures, each supporting a different resonance or by constructing a single 

structure where two resonances can occur in the same frequency interval [55]. 

In the past decade, a couple of acoustic [25,56–63] and elastic configurations allowing for the doubly 

negative property have been theoretically predicted and experimentally demonstrated. Regarding the elastic 

systems, it can be classified into discrete and continuum designs. For example, Huang et al. [64] put forward 

a discrete one-dimensional metamaterial by assembling a mass-in-mass subsystem featuring the negative 

effective mass density and a symmetric mass-truss subsystem featuring the negative effective Young’s 

modulus. Wang et al. [65,66] reported both one-dimensional and two-dimensional discrete metamaterials 

which allows to independently control the effective mass density and stiffness. Concerning the continuum 

systems, for instance, Liu et al. [21] proposed a three-constituents chiral metamaterial made by embedding 

soft-coated heavy cylinders into a polyethylene matrix that achieves the doubly negative property thanks to 

the combination of the translational and rotational resonances of the heavy cores. Introducing the same two 

resonances but this time in a single-phase metamaterial plate, Zhu et al. [23] observed the subwavelength 

negative refraction of the longitudinal elastic wave experimentally and demonstrated in this way the 
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occurrence of simultaneously negative effective mass density and bulk modulus. Lai et al. [20] proposed a 

two-dimensional elastic metamaterial that comprises a multi-mass locally resonant inclusion in the unit cell. 

It exhibits the monopolar, the dipolar and the quadrupolar resonances that can respectively turn the mass 

density, the bulk modulus and the shear modulus negative. However, in most of these aforementioned 

metamaterials, the doubly negative property only occurs in a very narrow frequency interval which may 

constitute a drawback for many applications. To overcome this difficulty, Dong et al. [24] developed a 

topology optimization scheme to design a two-dimensional single-phase anisotropic elastic metamaterial 

with the broadband doubly negative property. Besides, its ability in the superlensing effect as well as the 

cloaking effect in the deep subwavelength scale for both the longitudinal and transverse elastic waves is 

numerically evidenced. 

Nevertheless, most of these research was dealing with the bulk waves whereas the modulation over other 

types of elastic waves, such as Lamb waves, is a prerequisite to the development of the planar double-

negative elastic metamaterials. Along this line, a single-phase elastic metamaterial featuring two 

independent resonators inside the plate allowing to independently tune the effective mass density and 

stiffness was proposed and experimentally investigated by Oh et al. [67]. Later on, the same group 

experimentally demonstrated the subwavelength focusing of the zero-order symmetric Lamb waves in the 

proposed structure [68]. Chen et al. [69] reported an adaptive hybrid metamaterial that possesses both the 

negative effective mass density as well as the extremely tunable stiffness by properly adjusting both the 

mechanical and electric elements. Furthermore, Gusev et al. [22] presented a double-negative metamaterial 

plate for the flexural waves based on the resonant elements attached to a thin plate. In this design, the 

negative effective mass density is achieved by the normal-force interactions whereas the effective stiffness 

becomes negative owing to the rotationally resonant mechanical elements. 

More practical candidates in that respect are probably the pillared metamaterials which could be described 

as phononic stubbed plates constructed by depositing periodic cylindrical dots on a thin homogeneous 

substrate as independently proposed by Pennec et al. [11] and Wu et al. [12]. It has been reported that the 

pillared metamaterials can achieve both high frequency band gaps associated to the Bragg scattering and 

low frequency band gaps related to the local resonances of the pillars [70–75]. However, the locally resonant 

band gap is usually very narrow that poses great challenges to the applications. To deal with this, Assouar 

et al. [76] developed a two-dimensional double-sided pillared metamaterial and theoretically predicted that 

the relative bandwidth of the locally resonant band gap can be significantly increased by a factor of two 

compared to the classical one-sided counterpart. Subsequently, Bilal et al. [77,78] proposed another design 

within which the pillars stand in between the holes regularly patterned in the plate. This structure, sometimes 

referred as a trampoline, allows to broaden the low frequency band gap by a factor of four. Very recently, 
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such pillared metamaterials have been employed to manipulate the surface acoustic wave. Zhao et al. [79] 

experimentally demonstrated the subwavelength focusing of Rayleigh waves using the gradient-index 

pillared phononic crystals made of air holes scatters in a thick silicon substrate. Benchabane et al. [80] 

reported the manipulation of the mechanical vibrations at the micron scale by exploiting the interaction 

between the individual, isolated pillars and the surface acoustic waves. Oudich et al. [81] proposed a 

composite pillar made of a one-dimensional phononic crystal and observed the confined modes at the pillar-

substrate interface that couples with the surface acoustic waves and causes their attenuation. The 

aforementioned wave propagation phenomena in the pillared metamaterials or phononic crystals ensue from 

the interaction between the vibration of the pillars at resonances and the elastic waves propagating in the 

substrate. Generally, three kinds of resonances can be involved in the dynamic properties of these systems, 

namely the bending, the compressional and the torsional modes that in the low frequency regime can couple 

with the zero-order symmetric (S0), the zero-order antisymmetric (A0) and the zero-order shear-horizontal 

(SH0) Lamb waves propagating in the plate respectively. 

Up to now, the realization of the doubly negative property in the pillared metamaterials have never been 

reported. And the quest to manipulate Lamb waves in the subwavelength scale becomes one of the most 

interesting scientific topics in physical acoustics. This is why we perform this study in this chapter to seek 

a new way to control the propagation of Lamb waves. It is constructed as follows. In Sec. 1.2, the single 

negative property in the single-sided pillared metamaterials is analyzed. Subsequently, the first mechanism 

to achieve the doubly negative property founded in an asymmetric double-sided pillared metamaterial is 

reported in Sec. 1.3. Then, we investigate a more specific situation in Sec. 1.4, a symmetric double-sided 

pillared metamaterial, that provides a second mechanism to realize the doubly negative property. In Sec. 

1.5, we illustrate some applications with the proposed double-negative pillared metamaterial and 

demonstrate the occurrence of the doubly negative property in return. Finally, it ends with the general 

conclusion in Sec. 1.6. 

1.2 Single negative property in single-sided pillared metamaterials 

1.2.1 Lamb waves in a periodic structure 

Before analyzing the band structure and the dynamical properties of the pillared metamaterials, we briefly 

recall the main features of Lamb waves in the periodically structured plates. Lamb waves are the solutions 

of the equations of motion for a harmonic wave propagating in a medium with a finite thickness along one 

direction of space and infinite along the other two, with the boundary conditions that the components of the 

stress in the direction normal to the free surfaces are zero. Owing to the mirror-symmetry with respect to 

the mid-plane of the plate, these modes can be distinguished as symmetric and antisymmetric modes. In a 
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homogeneous isotropic medium, the three lowest branches are respectively the antisymmetric flexural 

branch and the symmetric shear horizontal and longitudinal branches. The higher branches have a cut-off 

frequency as the wave vector k approaches 0 and those modes are highly dispersive. The phononic crystal 

plate is usually constructed by inserting periodic inclusions (holes) into the plate or by depositing pillars on 

it. The dispersion curves of this periodic inhomogeneous medium are now described in the corresponding 

two-dimensional Brillouin zone (BZ) with their dynamical properties having specific characteristics 

including the band gaps, the folding of the dispersion curves and the mode conversion. In particular, the 

strong resonances associated with the pillars can be very efficient in opening band gaps. Although the 

branches have more complex character and coupling between the displacement components than in a 

homogeneous plate, some branches still feature the flexural, the longitudinal or the shear horizontal 

character. In the case of the single-sided pillared metamaterials, the mirror-symmetry with respect to the 

mid-plane of the plane in the unit cell is strictly speaking broken, while this mirror-symmetry property can 

be restored in the case of the double-sided pillared metamaterials (Sec. 1.4) which allows to separately 

investigate the symmetric and antisymmetric modes. We show that this property can be very helpful in 

designing the double-negative pillared metamaterial. 

1.2.2 Negative effective mass density 

In this part, we are going to analyze the dynamical properties of a single-sided pillared metamaterial 

arranged in the square lattice. The elementary unit cell is displayed in figure 1.1(a) where a denotes the 

lattice constant, d and h stand for the diameter and the height of the pillars respectively and e is the thickness 

of the plate. The periodicity lies in the plane (x, y) and the z-axis is chosen to be perpendicular to the plate. 

In order to obtain the dynamic properties in the MHz range, we assumed these parameters to be a = 200µm, 

d = 120µm, h = 325µm and e = 100µm. The whole structure is made of steel whose physical parameters are 

the Young’s modulus E = 200GPa, the Poisson’s ratio v = 0.3 and the mass density ρ = 7850kg/m3. Owing 

to the same material for the plate and the pillars, thus strong coupling between Lamb waves propagating in 

the plate and the vibrations of the pillars may be expected especially in the vicinity of the resonant 

frequencies [82]. This proposed single-phase configuration much differs from the composite pillared 

metamaterial where a soft rubber provides the bonding between the resonators and the stiff plate generally 

giving rise to the sharp resonances [74,83,84]. 

The band structure shown in figure 1.1(b) was obtained by applying periodic conditions on the unit cell and 

solving the eigenequations with COMSOL Multiphysics. The color scale in this figure represents the relative 

amplitude of the out-of-plane displacement component 
 

2

pillar

2 2 2

pillar

z

x y z

u dV

u u u dV
 

 




. It can be seen that a 
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complete band gap opens in between 3.17MHz to 3.48MHz. In this frequency interval, the wavelengths of 

A0 and S0 Lamb modes in the plate are about 500µm and 1800µm respectively, i.e. more than twice and 

nine times the lattice constant. Therefore, this low frequency band gap cannot result from the Bragg 

scattering. It rather suggests that this complete band gap should be ascribed to the local resonances of the 

pillars. To support this assertion, we have computed the eigenmodes of the unit cell at point M of the BZ 

for the three branches converging to frequency 3.1MHz [see the inset in figure 1.1(b)]. The results are 

displayed in figure 1.1(c). Clearly, the deformation concentrates in the pillar whereas it is almost zero in the 

plate. This is further supported by the flat branches in the lower frequency edge of the band gap that 

correspond to zero group velocities and are evidences of the local resonances as widely discussed in Refs. 

[71,76,85,86]. Moreover, the deformation shown in figure 1.1(c) corresponds to the two second-order 

bending modes, labelled as points A and B, and the compressional mode, labelled as point C. Given the 

square symmetry of the unit cell, the bending modes A and B are polarized along orthogonal directions and 

occur at the same frequency. 

(a)  (b)  

(c)  

Figure 1.1: (a) Elementary unit cell of the investigated single-sided pillared metamaterial and the first irreducible 

BZ of the square lattice. (b) Band structure in the low frequency regime along the high symmetry axes of the first 

irreducible BZ. The color scale corresponds to the relative amplitude of the out-of-plane displacement component, 

integrated over its volume (see text). For comparison, the band structure of the simplified system described by 
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equation (1.1) is shown as the black solid lines. Inset: enlargement of the dispersion curves around 3.1MHz. (c) 

Eigenmodes of the unit cell at points A, B, and C labelled in (b). 

In order to investigate the formation of the low frequency band gap, we employ a frequency response 

analysis. The method, which is only valid in the long wavelength limit, consists of applying an external 

displacement field U on the four lateral boundaries of the unit cell while leaving free both the top and the 

bottom faces [16,87]. The induced force F exerted on these boundaries is then derived from the stress 

average over the four boundaries of the unit cell considered as a homogeneous media. In the harmonic 

regime at frequency 2  , F and U are related through  2

eff
V  F U , where V is the volume of the unit 

cell and  
eff

  is the 3×3 dynamic effective mass density matrix to be determined. This can be done by 

successively applying the harmonic prescribed displacement  0 expi iU i tU x  (i = 1, 2, 3) along one of 

the axes in the principal coordinate system while the other two components are set to zero. In addition, 

symmetry arguments allow to reduce the number of the independent matrix components. For the structure 

we consider here, the z-axis being a four-fold symmetry axis the matrix are invariant through the exchange 

of the indices 1 and 2 and therefore 
11 22  , 

12 21  , 
13 23   and 

31 32  . Moreover, it has been 

demonstrated in Ref. [76] that in a pillared metamaterial the off-diagonal terms in  
eff

  are null except for 

values very close to the resonant frequencies where a singularity occurs. Thus, the only elements to be 

considered are 
11 , 

22 11   and 
33 . Their variations around the lower frequency edge of the band gap are 

displayed in figure 1.2. The component 
11  that mainly relates to the in-plane motion [modes A and B in 

figure 1.1(c)], is negative from 3.21MHz to 3.50MHz, whereas 
33  that should be ascribed to the out-of-

plane displacement [mode C in figure 1.1(c)], becomes negative from 3.26MHz to 4.63MHz. A complete 

band gap opens when all the components of the effective mass density matrix become negative, i.e. in 

between 3.26MHz and 3.50MHz in the present case. 
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Figure 1.2: Effective mass density matrix components 
11  (red) and 

33  (black) normalized to the mass density of 

steel as a function of the excitation frequency. 

This is in good agreement with the low frequency band gap shown in figure 1.1(b) that goes from 3.17MHz 

to 3.48MHz. The small discrepancy of about 2.8% on the lower frequency edge of the forbidden band may 

be readily ascribed to the phase change across the unit cell, not accounted for in the calculation because the 

preceding theory is only valid in the long wavelength assumption. 

Besides this comprehensive approach where the structure is considered as an effective medium, one can 

also explain the formation of the low frequency band gap owing to a local analysis of the motion of the 

pillar. In this framework, the resonator is represented by a mass-spring subsystem that couples to the plate 

within which an elastic wave at frequency 2   and wave vector k propagates. Let us firstly consider the 

first-order compressional resonance shown in figure 1.1(c). The pillar vibrates along the z-axis and can exert 

a vertical traction force on the plate. It can be modeled as a mass-spring subsystem with mass m and spring 

stiffness kC depicted by the right panel in figure 1.3(a). Gusev et al. [22] already solved the equations of 

motion of this corresponding mechanical system and obtained an analytical expression for the effective mass 

density component 
33 . The governing equations of this simplified model in the frequency domain can be 

written as: 
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In equation (1.1), Fourier transform of both the vertical displacement of the plate zu  and mass u allow to 

eliminate the time dependence and lead to the variables ˆ
zu  and û  written in the frequency domain; 

 3 212 1D e E    is the flexural rigidity of the plate that depends on both the Young’s modulus E and the 

Poisson’s ratio ; n is the number of the mass-springs per unit area; C Ck m   is the resonant frequency 

of the mass-spring subsystem. Remembering that ˆ
zu  reads  0

ˆ expzu u ikx , we can derive the wave number 

k by solving equation (1.1), namely: 
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Equation (1.2) shows that k2 turns imaginary if  takes a value in between 
C  and  

1
2

C1 nm
e




 , hence 

preventing the propagation of the flexural waves in the plate. Moreover, equation (1.2) allows to define the 

effective mass density as: 
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. (1.3) 

It turns negative when the excitation frequency is in the same interval. This well explains the occurrence of 

the negative value of the component 
33 . This simplified model can be further extended to the case of a 

two-dimensional phononic crystal by setting periodic conditions and implementing a plane wave expansion 

method to derive the dispersion curves [88]. Then, the solution is represented by the black solid lines in 

figure 1.1(b). 

It is less intuitive to establish the governing equations that accurately describe the complex motions of the 

pillar and the plate for the second-order bending resonance. However, the problem can be simplified by 

analogizing the single-sided pillared unit cell to the classical cantilevered beam in which the rigid body is 

replaced by a deformable medium and where the oscillation of the pillar is excited by Lamb wave that 

propagates in the plate. In this simplified model depicted in figure 1.3(b), the internal forces at the interface 

between the pillar and the plate can be modeled as a moment and traction force parallel to the plate surface. 

It allows for a comprehensive analyze of the effective mass density and a better understanding of the 

occurrence of the negative mass density. 

Let us firstly consider the motion of the pillar in the sagittal plane depicted in the middle panel of figure 

1.3(b). Since no traction force is considered, the motion reduces to a pendulum motion and can be well 

modeled by a mass-torsional spring with mass m, rotational inertia J and torsional stiffness kB rigidly 

attached to the plate. Then, the governing equations for the wave propagation along the x-axis in this plate-

resonator coupled system can be written as [89]: 
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where ˆ
zu  and ̂  are the vertical displacement of the plate and the rotation angle of the torsional spring in 

the frequency domain; kB and J determine the resonant frequency of the mass-torsional spring subsystem 

through BB Jk  . By solving equation (1.4), we can derive the wave number k, namely: 
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Equation (1.5) allows to define the effective mass density at frequency 2   as being: 
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Equation (1.6) shows that 
eff  is always positive whatever the frequency. Therefore, the resonance of the 

torsional spring cannot explain on its own that 
11  becomes negative in the specific frequency interval and 

in turn the occurrence of the negative effective mass density. Therefore, it is essential to consider the traction 

force acting on the foot of the pillar to understand the formation of the negative effective mass density 

evidenced by the simulations above. 

This traction force excites the plate into an oscillation and the pillar can be regarded as an additional mass 

M attached to the unit cell by the compression springs with stiffness kH. For the wave propagating along the 

x-axis, the problem reduces to the classic one-dimensional mass-spring metamaterial depicted in the right 

panel of figure 1.3(b). One can show that the effective mass density can be written as [90]: 

 0 2 2
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1 ( )
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eff

M
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V
, (1.7) 

where m0 stands for the mass of the plate in the unit cell and  H H 0k M m    is the angular frequency 

of the assembly "unit cell + additional mass". Clearly, the effective mass density turns negative in between 

H  and H 01 M m  . This simple model well explains the occurrence of the negative values of the 

component 11 , as well it shows that the existence of a traction force is essential to understand the formation 

of the negative effective mass density in this single-sided pillared metamaterial. We further show in Sec. 
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1.4 that it is also essential to explain the negative property in the symmetric double-sided pillared 

metamaterials. 

Therefore, it can be concluded that in the proposed single-sided pillared metamaterial the low frequency 

band gap can be attributed to the local resonances of the pillars. The effective mass density turns negative 

in that frequency interval owing to the combination of the bending and the compressional resonances. As 

for the bending resonance, the motion of the pillars may be broken down into a rotational and a translational 

component. It is the latter that turns the component 
11  of the effective mass density matrix to be negative, 

whereas the moment applied to the plate by the rotational motion is ineffective. Regarding the compressional 

resonance, it results in the negative component 
33  of the effective mass density matrix. 

(a)  

(b)  

Figure 1.3: (a) Vertical traction force (left panel) and simplified mass-spring subsystem (right panel) for the 

compressional resonance C. (b) Scheme of the traction force and moment (left panel), simplified mass-torsional 

spring subsystem (mid panel) and mass-spring subsystem modelling the bending resonances denoted as A and B in 

figure 1.1(c). 

1.2.3 Negative effective shear modulus 

As discussed in Sec. 1.2.2, the combination of the bending and the compressional resonances of the pillars 

can contribute to the negative effective mass density. Remembering that the pillar resonator features three 
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kinds of resonances, namely the bending, the compressional and the torsional modes, naturally, it might 

question that whether the torsional mode can lead to the negative property. 

Interestingly, it has been theoretically demonstrated by Liu et al. [21] and Wang et al. [65,66] that the 

rotational resonance of a core mass in a discrete mass-spring system can generate the negative effective 

stiffness. By tuning the translational resonance of the core mass to the same frequency interval that achieves 

the negative effective mass density, then the doubly negative property can be obtained. Afterwards, more 

practical designs involving the rotational inertia have been proposed to demonstrate both numerically and 

experimentally its occurrence [21,23,91] which in turn widen the scope of applications. In analogy to these, 

the torsional vibration of the pillars can couple with SH modes propagating in the thin plate, therefore, the 

effective shear modulus may potentially become negative as well. 

To investigate the torsional mode, we develop another single-sided configuration as shown in figure 1.4(a). 

The diameter and the height of the pillars were chosen to be d = 110µm and h = 130μm respectively. The 

other parameters, such as the lattice constant a, the thickness of the plate e and the physical properties, are 

the same as the one proposed in figure 1.1(a). The corresponding band structure was computed and displayed 

in figure 1.4(b). It can be seen that no complete band gap occurs in the investigated frequency range from 0 

to 7MHz. The eigenmodes of the unit cell evaluated at points A, B and C labelled in figure 1.4(b) are shown 

in figure 1.4(c). In the eigenmodes at points A and B, unambiguously, the pillar undergoes an alternative 

torsional motion around its central axis. As for the eigenmode at point C, it represents the first-order 

compressional resonance. 

(a)  (b)  
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(c)  

Figure 1.4: (a) Elementary unit cell of the proposed single-sided pillared metamaterial and (b) its corresponding 

band structure. (c) Eigenmodes of the unit cell at points A, B, and C labelled in (b). 

As mentioned before, the torsional motion of the pillars can couple with the local shear deformation of the 

plate which can potentially modulate the effective shear modulus µeff of the plate, probably becoming 

negative. To verify this assumption, we have calculated the effective shear modulus using the numerical 

method described in Refs. [24,91,92]. In the calculation, instead of a pure shear strain excitation that could 

not excite the torsional mode, we have considered a simple shear strain field applied along two parallel 

lateral boundaries. This sets the local displacement field and excites the torsional vibration of the pillar 

effectively. Then, the variation of the effective shear modulus against the excitation frequency is deduced 

from the equivalence between the energy of the induced force vectors on the lateral boundaries and the 

strain energy of the effective medium. The relationship between them can be expressed as 21
=

2
eff

V

V 


F U , 

where V  stands for the set of the lateral boundaries and γ represents the amplitude of the applied simple 

shear strain field. The result displayed in figure 1.5 depicts that the effective shear modulus is negative from 

5.29MHz to 5.36MHz, in very good agreement with the frequency interval in between point B (5.29MHz) 

and point A (5.35MHz). Therefore, it is suggested that a locally resonant band gap should be expected in 

this interval. However, owing to the dispersion curve of the compressional mode labelled as point C in 

figure 1.4(c) that goes through this frequency interval, no complete band gap opens. Therefore, we can 

conclude that the negative effective shear modulus can be achieved by the torsional resonance of the pillar 

in the single-sided pillared metamaterial. 
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Figure 1.5: Effective shear modulus normalized to the shear modulus of steel as a function of the excitation 

frequency. 

1.3 Doubly negative property in an asymmetric double-sided pillared metamaterial 

In Sec. 1.2, we demonstrate that in the single-sided pillared metamaterials the combination of the bending 

and the compressional resonances of the pillars can generate the negative effective mass density and the 

torsional mode of the pillars can contribute to the negative effective shear modulus. As proposed in Ref. 

[55], one practical scheme to achieve the doubly negative property is to combine two different substructures, 

each supporting a different resonant mode. Therefore, it is suggested that we can assemble the previously 

discussed two single-sided pillared metamaterials to form a double-sided system within which the negative 

effective mass density from one pillar and the negative effective shear modulus from another pillar are 

turned specially to the common frequency interval. Then, the doubly negative property can be expected in 

the merged structure. 

1.3.1 Doubly negative property in merged structure 

To achieve this, we develop two different single-sided pillared metamaterials in analogy to the previously 

two systems, denoted as SPM-A in figure 1.6(a) constructed by a periodic array of pillar A and as SPM-B 

in figure 1.6(b) constructed by a periodic array of pillar B. The parameters of pillar A are optimized to 

possess a low frequency band gap featuring the negative effective mass density and to ensure that the 

frequency of the torsional resonance of pillar B can fall into this band gap. 

Regarding SPM-A configuration, the diameter and the height of the pillar A were chosen to be d = 80µm 

and h = 200μm. The corresponding band structure is displayed in figure 1.6(d). It can be seen that a low 

frequency band gap occurs in between 5.19MHz and 5.47MHz. As concluded in Sec. 1.2.2, it should be 

accredited to the negative effective mass density generated by the combination of the bending and the 

compressional resonances of pillar A. The local resonances can also be evidenced by the flatness of the 
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dispersion curves around the lower limit of the band gap and the eigenmodes at point M of the BZ, labelled 

as points C and D in figure 1.6(d). The deformation and displacement fields of the eigenmodes displayed in 

figure 1.6(h) illustrate that they are the second-order bending resonance and the first-order compressional 

resonance of pillar A. Further, the effective mass density matrix components are evaluated and their 

evolution against the excitation frequency is shown in figure 1.6(e). Both components turn negative in 

between 5.32MHz and 5.49MHz which is in good agreement with the forbidden band that goes from 

5.19MHz to 5.47MHz with a small discrepancy of about 2.5% at the lower edge. With regard to SPM-B 

configuration, the parameters of pillar B are the same as the one proposed in Sec. 1.2.3. For comparison, 

the band structure is displayed in figure 1.6(f). The eigenmodes of the unit cell at points E, F and G are 

displayed in figure 1.6(h). Afterwards, to build a double-sided pillared metamaterial, we attach pillar A and 

pillar B to the top and the bottom sides of a thin plate respectively as shown in figure 1.6(c). Clearly, the 

merged structure is asymmetric about the mid-plane of the plate. To validate this approach to obtain the 

doubly negative property, we have computed the band structure of this asymmetric double-sided pillared 

metamaterial (ADPM). The dispersion curves are displayed in figure 1.6(g). As expected, an isolated 

negative-slope branch (red) appears in between 5.28MHz and 5.35MHz. In addition, we display the 

eigenmodes of the unit cell at some points (labelled from point C' to point G' in order) in figure 1.6(h). 

Comparing the band structures of these three kinds of pillared metamaterials allows understanding the 

formation of this newly isolated branch. At point M of the BZ, the bending and the compressional modes 

(point C and point D) in figure 1.6(d) slightly shift to point C' and point D' in figure 1.6(g) upon attachment 

of pillar B to the bottom side of the thin plate. For both resonances, the displacement fields of ADPM 

displayed in figure 1.6(h) show that the deformation of pillar B is very small at the compressional resonance 

and even null at the bending resonance. This suggests that pillar B acts merely as an inert mass attached to 

the plate that simply shifts the resonant frequencies of pillar A. Accordingly, the frequency interval of the 

negative effective mass density generated by the resonances C' and D' of pillar A in ADPM also shifts and 

now appears in between 5.21MHz and 5.48MHz instead of 5.19MHz to 5.47MHz in SPM-A, but the overall 

mechanism leading to the negative effective mass density is the same for both pillared metamaterials. 
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(a)  (b)  (c)  

(d)  (e)  

(f)  (g)  



Chapter 1. Doubly negative property 

20 

(h)  

Figure 1.6: Elementary unit cells of (a) SPM-A, (b) SPM-B and (c) DPM and corresponding band structures of (d) 

SPM-A, (f) SPM-B and (g) ADPM. (e) Effective mass density matrix components 11  (red solid line) and 33  

(black solid line) normalized to the mass density of steel as a function of the excitation frequency. (h) Eigenmodes 

of the unit cell at points labelled in panels (d), (f) and (g). 

The situation becomes totally different when comparing the band structures of ADPM and SPM-B. In this 

case, appending pillar A to SPM-B does not summarize into a resonant frequency shift of pillar B. At point 

M of the BZ, the compressional resonance labelled as point G' influences both pillars in ADPM [see panel 

G' in figure 1.6(h)] and therefore the shift from point G (the compressional resonance of SPM-B) to point 

G' cannot be ascribed to an inert mass attached to the plate as before. Meanwhile, the eigenfrequencies at 

points labelled as E and F [see figure 1.6(f)] remain unchanged because there is no coupling between the 

torsional vibration of pillar B and the bending and the compressional vibrations of pillar A. For a sake of 

consistency in the notations, these points are labelled as E' and F' in figure 1.6(g). As mentioned before, the 

effective shear modulus turns negative in the frequency interval between these two points. Therefore, both 

the negative effective mass density and shear modulus are achieved in this frequency interval which 

perfectly explains the occurrence of the propagative branch with a negative-slope in figure 1.6(g). 

However, it should not be assumed from the eigenmodes of ADPM at points E' and F' that the torsional 

resonance of pillar B merely induces the negative effective shear modulus. As proof of this, figure 1.7(a) 

displays the eigenmode of the unit cell at the wave vector in the middle of M boundary. While pillar B 

vibrates on its torsional mode, the motion of pillar A clearly corresponds to the bending resonance. 

Moreover, the top view depicted in the right panel reveals that the vibration lies in the plane perpendicular 

to the direction of propagation, which suggests that the doubly negative branch is SH polarized. This is 

further confirmed by the eigenmode at the wave vector in the middle of X boundary in figure 1.7(b). Again, 

pillar A vibrates on its bending mode with a motion lying in the plane perpendicular to the direction of 



Chapter 1. Doubly negative property 

21 

propagation, as better viewed in the top view displayed in the right panel of figure 1.7(b), confirming that 

the double-negative branch is SH polarized. At this point, the amplitude of the torsional motion of pillar B 

is relatively small but non-null from which it can be concluded that both the bending mode of pillar A and 

the torsional mode of pillar B contribute to the formation of the double-negative branch. 

(a)  (b)  

Figure 1.7: Eigenmodes of ADPM unit cell at the wave vectors in the middle of M (a) and X (b) boundaries. 

Their top views are shown in the corresponding right panels. 

1.3.2 Enlargement of the double-negative branch 

We have demonstrated in Sec. 1.3.1 the occurrence of the doubly negative property that ranges from 

5.28MHz to 5.35MHz in the proposed ADPM. In some specific applications and devices where a high 

selectivity in frequency is a requirement, this narrow interval may be an advantage but there are other 

applications where a broad band is preferable instead. To establish that the pillared metamaterials we have 

investigated in this work are able to meet such contradictory requirements, we have improved the design of 

the structure by including holes drilled throughout the plate to enlarge the doubly negative branch. Actually, 

Bilal et al. [77] have reported that the subwavelength band gaps can be increased by a factor of four in a 

perforated plate. Such local resonance amplification phenomenon is sometimes called the trampoline effect. 

In this section, we examine the impact of these holes on the width of the double-negative branch. Four 

through-holes with a diameter of 60µm are drilled at the four corners of the square lattice unit cell of the 

proposed ADPM. The band structure denoted as the red dotted lines is displayed in figure 1.8(a). For 

comparison, the band structure of ADPM without perforated hole is also shown in figure 1.8(a) as the black 

dotted lines. Both band structures share almost the same profile. In particular, the doubly negative branch 

along X direction is almost not affected by the holes. Along M direction, the eigenfrequency at point F' 

decreases to point F'' because of the softening of the plate, logically leading to the increase of the width of 

the double-negative branch by a factor of 2.3 where the effective shear modulus is negative that extends 

now from 5.19MHz to 5.35MHz. Figure 1.8(b) plots the band structure when the diameter of the holes is 

enlarged up to 100µm. Both the eigenfrequencies of the bending and the compressional modes significantly 

shift downwards. The frequency of the eigenmode at point F' is strongly impacted and moves down to point 

F''' and the doubly negative property occurs now in between 5.07MHz and 5.33MHz allowing for a broader 
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propagative band (the width is increased by a factor of 3.7). Note that this approach also applies to the chiral 

configuration described in Sec. 1.3.5. 

(a)  (b)  

Figure 1.8: Band structures (red dotted lines) after introducing perforated holes with the diameter 60µm (a) and 

100µm (b) at the four corners of the square lattice unit cell of the proposed ADPM. The band structure of ADPM 

without perforated holes is shown as the black dotted lines for reference. 

1.3.3 Polarization-filter behavior 

We have demonstrated in Sec. 1.3.1 that the isolated propagative branch is SH polarized. Therefore, it is 

quite natural to investigate the transmission of an incident SH0 mode through a structure of finite dimension 

along one direction of space and in turn, the coupling of this wave with both the torsional and the bending 

modes of the pillars. To this end, we have considered a two-dimensional metamaterial plate consisting of 

nine unit cells along the x-axis and infinite along the y-axis [figure 1.9(a)]. Periodic condition ky = 0 is 

applied to investigate the propagation along X direction. Two perfectly matched layers (with the length 

set to be two times the wavelength of S0 Lamb mode) are involved at two ends to eliminate the reflected 

waves from the boundaries. The incident wave was launched at a distance of 1000μm away from the left 

edge and impinged the array of resonators at normal incidence. The transmission coefficient, defined as the 

ratio of the displacement component along the y-axis of the transmitted wave to the one of the plate without 

pillars is shown in figure 1.9(b) as the black solid line. This coefficient is almost equal to unity in the 

frequency interval where the doubly negative property occurs, which confirms that both the bending motion 

of pillar A and the torsional vibration of pillar B are efficiently excited. For comparison, figure 1.9(b) 

displays as the red solid line the transmission coefficient of an incident A0 Lamb wave normalized to the 

out-of-plane displacement component of the incident wave. In the frequency interval where the doubly 

negative property occurs, the transmission coefficient is equal to zero. Symmetry considerations well 

explain this result. Actually, both the deformation caused by the elastic wave and the geometry of the 

structure are symmetric about the plane (x, z). This makes it impossible the coupling with the bending mode 
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of pillar A in the plane perpendicular to the direction of propagation and thus the double-negative branch 

turns to be a band gap. Similar conclusions may be drawn for an incident S0 Lamb wave, even though its 

in-plane displacement component is larger than its antisymmetric counterpart. It should be noted to conclude 

this section that one can take advantage of the different behaviors along X direction observed for incident 

SH0 and A0 or S0 Lamb waves to conceive new polarization filter devices based on the geometry of the 

proposed ADPM. 

(a)  

(b)  

Figure 1.9: (a) Finite element model to investigate the transmission of an incident SH0 and A0 Lamb waves along 

X direction. (b) Transmission spectra of incident SH0 (black) and A0 Lamb waves (red) propagating across the 

supercell in (a). 

1.3.4 Mode conversion phenomenon 

In Ref. [82], Jin et al. have established that a pillar reemits Lamb waves when it is excited on either the 

bending or the compressional eigenmode. Therefore, one must question the property of the transmitted 

waves in figure 1.9(a) and investigate on the possible mode conversion resulting from the interactions of 

the pillars at resonances with the incident SH0 wave propagating in the plate. The analysis is based on the 

fact that both S0 and A0 modes have the out-of-plane displacement component, contrary to SH0 mode that 

is in-plane polarized. The computation is performed for the propagation along different directions in the 

first irreducible BZ. 
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When the propagation is along X direction at a frequency in the double-negative branch (i.e. ky = 0 and 

2   = 5.33MHz), the out-of-plane displacement component uz is null, within the computation accuracy, 

and only uy has a measurable value in the transmitted field. Let us note here that the mode conversion cannot 

occur for the propagation along this direction since, as shown above, the bending vibration of pillar A lies 

in the plane (y, z) in that case. Therefore, the wave vector of the reemitted wave is along the y-axis which is 

why the displacement field in the unstructured area downstream the pillars does not feature any out-of-plane 

displacement component. In contrast, when the wave vector slightly deviates from X direction and has a 

non-null component ky, the out-of-plane displacement component comes out in the transmitted field. For 

instance, when 0.05yk a , the amplitude normalized to the amplitude of an incident SH0 wave at ky = 0 

is 0.08z yu U   which suggests the occurrence of A0 and/or S0 modes in the transmitted field. Accordingly, 

the normalization of the amplitude of the in-plane displacement components ux and uy is 0.12x yu U   and 

0.98y yu U  . This ratio goes up to 0.29z yu U  , 0.41x yu U   and 0.75y yu U   when 0.2yk a . An 

efficient way to identify the exact nature of the modes in the transmitted field is to compute their dispersion 

 k  for frequencies in the double-negative branch. To this end, an incident SH0 wave with 0.2yk a  

and a frequency in the range where the doubly negative property occurs, is excited in front of the structure; 

both the components uy and uz of the displacement field are then computed at 256 different positions along 

the direction of propagation separated by 50µm from one another, downstream the pillars. The amplitude 

against the magnitude of the wave vector k is deduced from the spatial Fourier transform of the data. The 

results for ux and uz, normalized to the amplitude of an incident SH0 wave, are displayed in figure 1.10(a) 

and figure 1.10(b) respectively. The peak at k = 0.01µm-1 in figure 1.10(a) evidently corresponds to SH0 

mode transmitted through the periodic structure. The other two branches appear at the wave vectors of k = 

6.5×10-3µm-1 and k = 17.6×10-3µm-1. These branches correspond to S0 and A0 modes respectively which 

clearly demonstrates that the mode conversion towards both A0 and S0 modes occurs during the propagation 

of SH0 mode through the structure when the wave vector deviates from X direction. In figure 1.10(b), SH0 

mode disappears because it does not contain the out-of-plane displacement component and the emergence 

of A0 and S0 modes confirm the occurrence of the mode conversion again. 
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(a)  (b)  

Figure 1.10: Fourier spectrum of the displacement components along the x-axis (a) and the z-axis (b) of the 

transmitted wave at the frequencies inside the double-negative branch. 

1.3.5 Pillared metamaterial with chirality 

The preceding analysis in Sec. 1.3.3 unambiguously demonstrates that along ΓX direction the doubly 

negative property can be excited with an incident SH0 mode whereas most of the applications proposed so 

far rely on the dispersive properties of A0 or S0 mode. This raises the issue of how to efficiently and 

simultaneously excite both the bending resonance of pillar A and the torsional mode of pillar B with A0 or 

S0 mode. The main difficulty comes from the excitation of the torsional motion of pillar B. Once the torsional 

vibration of pillar B is excited, then the local shear deformation in the plate can easily excite the bending 

vibration of pillar A in the perpendicular plane. 

An achievable solution to address this problem is to introduce the chirality [93,94] to pillar B in order to 

break the symmetry of the unit cell. As a consequence, it is expected that the propagation of the waves in 

the plate results in an asymmetric deformation in the surrounding area of the pillar, thus should easily lead 

to the torsional vibration especially when the frequency of the wave is close to the one of the torsional 

eigenmode. Both the cross section and the side view of a chiral pillar fulfilling this requirement are sketched 

in figure 1.11(a). Eight flanks equally spaced in azimuth with a length l = 60μm and a width w = 10μm are 

inserted along a solid cylinder with the diameter d = 100μm and the height h = 105μm. A twist angle θ = 

45º in the anticlockwise direction is further applied to each flanks, as shown in the bottom panel of figure 

1.11(a). The band structure of this chiral double-sided pillared metamaterial (CDPM) is displayed as the red 

dotted lines in figure 1.11(b) together with the band structure of ADPM which is included merely for 

comparison as the black dotted lines. The band structure of CDPM has a similar profile as the one of ADPM. 

The doubly negative branch goes from 5.37MHz to 5.41MHz which is slightly different from ADPM where 

the doubly negative branch goes from 5.28MHz to 5.35MHz. The eigenmodes at points labelled as L, N, 

and P in figure 1.11(b) that correspond respectively to the bending and the compressional resonances of 
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pillar A and to the torsional resonance of pillar B, are illustrated in figure 1.11(d). Comparing these 

displacement fields to their counterparts in ADPM [see the displacement fields at points C', D', E' in the 

lower panel of figure 1.6(h)] indicates that the eigenmodes of the unit cell in the frequency domain of interest 

are conserved when introducing chirality in pillar B. 

To further point out the efficiency of the chirality to excite the torsional vibration, we show as the red solid 

line in figure 1.11(c) the transmission spectrum of an incident A0 mode propagating through the supercell 

put forward in figure 1.9(a) replaced the chiral pillar B on the bottom side of the plate. A transmission 

coefficient of about 0.25 is obtained in the frequency range where the doubly negative property occurs 

thanks to the combination of the bending vibration of pillar A and the torsional vibration of chiral pillar B. 

This result must be compared with the transmission spectrum of A0 mode which is null inside the double-

negative branch in the absence of chirality [see the red solid line in figure 1.9(b)] since the torsional 

resonance could not be excited in that case. 

(a)  (b)  (c)  

(d)  

Figure 1.11: (a) Representative profile of the chiral pillar B. (b) Band structure of CDPM (red dotted lines) and 

ADPM (black dotted lines). (c) Transmission spectrum of an incident A0 mode propagating across the supercell 

shown in figure 1.9(a) with the chiral pillar B instead. (d) Eigenmodes of the unit cell at points indicated in (b). 
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1.4 Doubly negative property in a symmetric double-sided pillared metamaterial 

It has been evidenced in Sec. 1.3 that the doubly negative property can be obtained by assembling two 

different single-sided pillared metamaterials. One features the negative effective mass density that results 

from the combination of the bending and the compressional resonances and the other one generates the 

negative shear modulus that comes from the torsional mode. What’s more, we need to ensure that the 

eigenfrequency of the torsional mode of one pillar can fall inside the low frequency band gap induced by 

the other pillar. And to meet such requirement, these two pillars usually have different dimensions. Thus, it 

might raise the question that what would happen in a symmetric double-sided pillar metamaterial that can 

be recognized as a more specific case. In this section, we are going to discuss a symmetric double-sided 

pillared metamaterial that enables the enlargement of the width of the low frequency band gap as reported 

in Refs. [76,83,84,95]. We show that the doubly negative property can be obtained through an appropriate 

choice of the dimensions of the pillars and the plate. 

1.4.1 Occurrence of isolated negative-slope branch 

The elementary unit cell of the symmetric double-sided pillared metamaterial is shown in figure 1.12(a). 

Two identical pillars are symmetrically arranged on both sides of the plate. The geometric parameters of the 

unit cell are the same as those of the single-sided pillared metamaterial in Sec. 1.2.2. The corresponding 

band structure is shown in figure 1.12(b). In contrast to the band structure of the single-sided pillared 

metamaterial displayed in figure 1.1(b), an isolated propagative negative-slope branch arises inside the 

complete band gap that opens in between 3.25MHz and 3.76MHz. This is almost twice the width of the 

band gap obtained in the single-sided pillared metamaterial. This enlargement is due to the strong coupling 

between the resonances of the double-sided pillars and Lamb waves propagating in the plate [76]. 

The isolated branch in between 3.53MHz and 3.57MHz divides the band gap into two narrower ones ranging 

from 3.25MHz to 3.53MHz and from 3.57MHz to 3.76MHz respectively. A zoomed view of the isolated 

branch is displayed in the inset. The negative slope of this branch throughout the first irreducible BZ cannot 

be afforded to a band folding effect and rather suggests simultaneous negative effective mass density and 

modulus resulting from the local resonances of the pillars. In support of this argument, we show in figure 

1.12(c) the displacement field at two characteristic points in this branch. At point  of the BZ [point D in 

the inset of figure 1.12(b)] the displacement field clearly corresponds to a symmetric compressional mode 

of the double-sided pillars [left panel in figure 1.12(c)] whereas the motion of the double-sided pillars at 

middle point between  and X is a symmetric bending mode [right panel in figure 1.12(c)]. We show in the 

following that the former is responsible for the negative effective Young’s modulus whereas the latter, 

similar to the single-pillared metamaterial, leads to the negative effective mass density. 
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(a)  (b)  

(c)  

Figure 1.12: (a) Elementary unit cell of the symmetric double-sided pillared metamaterial and its first irreducible 

BZ of the square lattice. (b) Band structure in the low frequency range. Inset: enlargement of the isolated branch. 

(c) Eigenmodes of the unit cell at points denoted as D and E in the inset. 

1.4.2 Formation of the double-negative branch 

Before analyzing the formation of the isolated branch, it is necessary to identify the resonances in the 

frequency range of interest. This can be done by computing the displacement field in the unit cell upon the 

global harmonic excitation ( ,0,0)i tAe  . On the whole, there are four resonances involving a motion in the 

plane (x, z), namely: BA (3.17MHz) is the second-order antisymmetric bending resonance; BS (3.26MHz) is 

the second-order symmetric bending resonance; CA (3.04MHz) is the first-order antisymmetric 

compressional resonance, and CS (3.57MHz) is the first-order symmetric compressional resonance. The 

corresponding displacement fields are displayed in figure 1.13(a). Because of the squared symmetry of the 

unit cell one should also add to this list two bending resonances equivalent to modes BS and BA respectively, 

but involving motions along the y-axis. 

As it is the case in the single-sided pillared metamaterial, the formation of the low frequency band gap 

should be the signature of the negative effective mass density that results in turn from the combination of 

the bending and the compressional resonances of the double-sided pillars. For verifying this hypothesis, the 
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same method as the one applied in Sec. 1.2.2 was implemented to calculate the effective mass density matrix 

against the excitation frequency. The normalized components 
11  and 

33  displayed in figure 1.13(b), 

highlight the role played by each resonance. Actually, at the frequencies of BA and CS the changes in 
11  

and 
33  are very sharp and cannot generate the negative effective mass density. On the contrary, both 

11  

and 
33  turn negative at the frequencies of BS and CA which thus directly relate to the negative effective 

mass density. The simplified traction forces and moments modeling the interaction between the pillars and 

the plate at the resonances provide a comprehensive understanding of these divergent behaviors. Both are 

schematically described in figure 1.13(a) by the black and red arrows respectively. At BA resonance, the 

moments induced by the two identical pillars are the same whereas the traction forces are pointing in 

opposite directions and hence the resultant force becomes zero. Although the resultant moment is not equal 

to zero, it does not couple with the motion in the plate and this bending resonance cannot induce the negative 

effective mass density: 
11  and 

22  do not turn negative around the antisymmetric bending resonance, 

except at the exact resonant frequency. The reverse phenomenon occurs at BS resonance. Actually at this 

frequency the resultant moment is equal to zero, but not the resultant traction force that consequently 

contributes to the negative value of 
11  in between 3.26MHz and 3.77MHz. Owing to the symmetry, 

22  

gets also negative in the same frequency interval. 

The same argument applies for both compressional modes. Indeed, the resultant force at the frequency of 

CS (i.e. 3.57MHz) is null and this mode does not trigger the negative values of the component 
33 . 

Conversely, the situation at the frequency of CA is similar to the one observed at the compressional 

resonance in the single-sided pillared metamaterial: the axial forces in the pillars combine and 
33  takes the 

negative values in the range from 3.04MHz to 5.29MHz. 

(a)  
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(b)  

Figure 1.13: (a) Eigenmodes of the unit cell at the four representative resonance frequencies upon excitation 

( ,0,0)i tAe 
. (b) Effective mass density matrix components 11  (red) and 33  (black) normalized to the mass density 

of steel as a function of the excitation frequency. 

Overall, the negative effective mass density is achieved at any frequency in the frequency interval ranging 

from 3.26MHz to 3.77MHz, including the vibrational modes on the isolated branch therein, where 
11 , 

22  

and 
33  are all negative as shown in figure 1.13(b). Both these values exactly match the limits of the low 

frequency band gap displayed in figure 1.12(b) and further highlighted with the red solid lines in figure 

1.12(b). 

Although the isolated branch is relatively flat, especially along XM direction of the BZ, the group velocity 

is non-null and the propagation of the elastic energy at the corresponding frequencies is allowed. Therefore, 

the dynamic modulus is necessarily negative for any vibrational mode on this branch. Figure 1.13(b) clearly 

demonstrates that the narrow interval around 3.57MHz where propagation is allowed corresponds to the 

first-order symmetric compressional resonance CS which is thus causing the negative effective modulus and 

in turn the doubly negative property. However, it should be noticed that this resonance involves a purely 

out-of-plane motion only at points , X and M of the BZ. In between these main corners, the in-plane 

motions contribute also to the deformation of the pillars, as it can be observed in figure 1.12(c), the 

eigenmode at point E. 

Similar to the analytical study developed above to explain the negative effective mass density achieved in 

the single-sided pillared metamaterial, one can model the symmetric compressional vibration of the double-

sided pillared system as two identical mass-spring subsystems, each featuring a mass m and a stiffness kC, 
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vibrating in phase as shown in figure 1.14(a). In this figure, e is the thickness of the plate; 
xA e a   and 

2

zA a  are the areas of boundaries parallel to the planes (y, z) and (x, y) respectively. To calculate the 

vertical traction forces exerted on the plate when the pillars are on a vertical motion, let us consider two 

harmonic tension forces Fx with the same amplitude, both applied along the x-axis on the lateral boundaries 

parallel to the plane (y, z) and pointing in opposite directions [figure 1.14(b)]. Displacements ±x1 of the 

lateral boundaries, ±z1 of the free surfaces and ±z2 of the mass m result from the forces Fx [figure 1.14(b)]. 

It is expected that the harmonic deformation induced by Fx allows to excite the resonances of the mass-

spring subsystems if the frequency is properly tuned. 

(a)  (b)  

Figure 1.14: (a) Schematic model of the unit cell with two identical mass-spring subsystems. (b) Side view of the 

unit cell and notations of the displacements induced by the forces applied along the x-axis. 

To simplify the derivation of the effective Young’s modulus Eeff of the unit cell, we assume that the reactive 

forces Fz caused by the vibration of the mass-spring subsystems are uniformly distributed on the matrix 

plate. Under this hypothesis, the dynamic stress tensor   and strain tensor   in the plate submitted to a 

harmonic excitation are given by Hooke’s law and can be expressed as: 
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As previously, E is the Young’s modulus and v the Poisson’s ratio of the plate. On the other hand, the 

equation of motion of the mass-spring subsystem is: 

  
2

2
z C 2 12

z
m F k z z

t


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
. (1.9) 

By combining equations (1.8) and (1.9) one can easily obtain: 
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where  
1

2
0 Ck m   is the natural frequency of the mass-spring subsystem, M

2 zEA
k

e
  is the effective 

stiffness of the plate. 

Equation (1.10) is nothing else but the Hook’s law applied to an effective medium whose effective Young’s 

modulus 
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 depends on the frequency 2   and takes into account the internal 

motions of the unit cell through the parameters C Mk k   and 0 . 

The effective Young’s modulus Eeff can also be written evidently as: 
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The effective Young’s modulus diverges if 
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, which thus must be regarded as the 

resonant frequency of the effective medium. It is interesting to notice here that the resonant frequency of 

the effective medium is not that of the mass-spring subsystem. Furthermore, 0effE   when  
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and Eeff is negative if: 
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This interval would become broader when the Poisson’s ratio v increases. Although this simplified model 

hardly allows predicting the position and width of the isolated double-negative branch, it provides an 

intuitive comprehension of the occurrence of the negative effective Young’s modulus and in turn the doubly 

negative property in the symmetric double-sided pillared metamaterials. 

1.4.3 Evolution of the double-negative branch against the geometric parameters 

Being the consequence of a resonant phenomenon, the double-negative branch of the proposed structure is 

relatively narrow which may be a drawback for some applications. However, the width of the frequency 

band where the doubly negative property occurs can be increased through a proper choice of the geometrical 

parameters of the unit cell [82]. Here, we investigate the influence of the height and the diameter of the 

pillars as well as the thickness of the plate, on both the width of the forbidden band gap and the negative-

slope branch. 

Both figure 1.15(a) and (b) display the effect of the dimensions of the pillars on both the low frequency 

band gap and the negative-slope branch. Increasing the height of the pillar leads to the decrease of the central 

frequency of the band gap, as well as to the decrease of the range where the doubly negative property occurs. 

This should be related to the decrease of the compressional resonance frequency for increasing the height 

of the pillars [96]. Moreover, the lower part of the band gap broadens as the height of the pillars increases. 

In contrast, the propagative branch moves closer to the upper limit of the band gap as the height of the pillars 

increases leading to the closure of the upper part when the height of each pillar is more than about 350µm. 

Remembering that the effective mass density tends towards zero while keeping negative values when the 

frequency approaches the upper limit of the band gap [see figure 1.13(b)], it is expected that this structure 

may behave as a zero-index elastic metamaterial. Actually, in that case the phase velocity in the 

metamaterial tends to infinity and therefore the refractive index (i.e. ratio of the velocity in the background 

to the velocity in the metamaterial) goes to zero. This point is further developed below. 

On the other hand, the bending resonance is very sensitive to the diameter of the pillars [82] and 

consequently this parameter has a large impact on the width of the band gap that broadens as the diameter 

increases [figure 1.15(b)]. However, the width of the double-negative branch is very little affected by this 

parameter and remains equal to about 8.5% of the width of the forbidden band whatever the diameter of the 

pillars is. 
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(a)  

(b)  

Figure 1.15: Edges of the band gap (lower panel) and relative width of the double-negative branch (upper panel) 

against (a) the height and (b) the diameter of the pillars. The black (red) solid lines stand for the upper (lower) part 

of the band gap. In both panels the blue curve is the relative width of the band where the doubly negative property 

occurs. 

However, the parameter that most efficiently affects the width of both the band gap and the double-negative 

branch is the thickness of the plate (figure 1.16). Actually, both parts of the band gap slightly decrease as 

the thickness increases while at the same time the width   of the double-negative branch linearly 

increases when increasing the thickness of the plate. The relative width of the frequency interval exhibiting 

the negative effective Young’s modulus reaches the maximum value of ~20% of the total band gap when e 

= 180µm. 
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Figure 1.16: Edges of the band gap (lower panel) and relative width of the double-negative branch (upper panel) 

against the thickness of the plate. The black (resp. red) solid lines stand for the upper (resp. lower) part of the band 

gap. The blue curve is the relative width of the branch where the doubly negative property occurs. 

A simple model allows to summarize these results. Actually, at CS resonance there is almost no displacement 

at the foot of the pillars [see figure 1.13(a)] that can be modelled as a mass-spring system with a steady 

attachment point and for which the displacement on top of the pillar is proportional to the axial force. With 

these assumptions, Hooke’s law leads to 
2
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  . With the typical dimensions of the unit cell,  is always much less than unity and equation 

(1.12) can be expanded as: 
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. Equation (1.13) gives the full account of the behaviors 

displayed in figure 1.15 and figure 1.16. 

Although relatively narrow even when it is maximum, the width of the doubly negative branch remains 

sufficient for an experimental validation based onto conventional techniques as for instance the excitation 

of Lamb waves with the interdigitated transducers (IDTs) on a piezoelectric film. Actually, in the frequency 

range that we have considered, elastic waves featuring a spectral purity f  better than the width of the 

negative effective Young’s modulus band can be easily obtained with an IDT comprising only a few tens 
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pairs of electrodes, allowing in turn to tailor the transition from the single negative property to the doubly 

negative property. It is worth noting that our results are not specific to the MHz range and may be transposed 

to either the GHz or the kHz range by rescaling both the thickness of the plate and the lattice constant while 

keeping the ratio a const   ( is the wavelength at the operating frequency) and adapting the dimensions 

of the pillars accordingly. The high frequency domain fits with nanostructures whose typical dimensions 

(thickness of the plate, high and diameter of the pillars, and lattice constant) are of a few micrometers or 

less, with the possible applications such as the vibration isolation of the sensitive components, the super-

focusing, the high-resolution imaging, or the cloaking of elastic waves (see Sec. 1.5.2). At the other end of 

the scale, the symmetric double-sided pillared metamaterials with the typical dimensions in the millimeter 

range are excellent candidates for the noise reduction and filtering in the audio range. However, a narrow 

band is not necessarily a drawback and even it becomes an advantage for all applications and devices where 

a high selectivity in frequency is a requirement. 

1.5 Applications of doubly negative property 

1.5.1 Refraction at the outlet of a prism-shaped supercell 

The theoretical prediction and experimental observation of the negative refraction of Lamb waves have been 

reported in both elastic phononic crystals [7,97,98] and metamaterials [21,23,24]. In the former case, the 

negative refraction relates to the periodicity and the resulting band folding and therefore the wavelength of 

the propagating wave is of the same order of magnitude as the lattice constant. In contrast, in an elastic 

metamaterial, the negative refraction is the direct consequence of simultaneously negative effective mass 

density and modulus (or stiffness) [21,23,24] and observing the phenomenon in the long wavelength limit 

provides further evidence of the doubly negative property. 

For this purpose, we have investigated the refraction of an incident Lamb wave at the interface between a 

two-dimensional prism-shaped double-sided pillared metamaterial and the surrounding plate. The structure 

depicted in figure 1.17(a) consists of 120 unit cells arranged in a 45° isosceles triangle in a circular steel 

plate. The plate is surrounded by a perfectly matched layer to eliminate any reflections from the boundaries. 

The two perpendicular boundaries of the prism are set parallel to the lattice directions ΓX and XM. A line 

source of width 1600µm is placed 100µm away from the inlet interface perpendicularly to ΓX direction and 

the wave impinged the prism at normal incidence. 

1.5.1.1 Asymmetric single-sided pillared metamaterial supercell 

To demonstrate the doubly negative property in the asymmetric double-sided pillared metamaterial 

discussed in Sec. 1.3, an incident SH0 wave was launched at the line source. After propagation along the x-
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axis in the prism, the incident SH0 wave was reflected at the outlet interface and propagated along the 

negative y-axis. Obviously, the reflected SH0 wave can couple with the bending vibration of the pillars in 

the plane (x, z) which in turn allows for reemission of both A0 and S0 Lamb modes along the positive x-axis. 

Therefore, both these modes should be expected in the transmitted field. Two frequencies in close vicinity 

in the doubly negative branch were investigated, namely 5.31MHz and 5.33MHz [see figure 1.17(b)]. At 

these frequencies the wavelength of SH0 mode is about 2.9 times the lattice constant while 4.9 and 1.8 times 

the lattice constant for S0 and A0 modes respectively. At frequency 5.33MHz, the out-of-plane displacement 

component uz displayed in figure 1.18(a) confirms that the wave is negatively refracted at the outlet interface 

providing evidence that both the effective mass density and the shear modulus are simultaneously negative. 

More surprisingly, a large part of incident wave is positively refracted which cannot be explained without 

the help of the mode conversion illustrated above. To show this, we have analyzed the wave refraction in 

the reciprocal space [98–100] and computed the equifrequency contours (EFCs) in both the super cell and 

the surrounding plate. The approach consists of separately considering the symmetric and antisymmetric 

Lamb modes. Both modes feature the out-of-plane polarization and thus are necessarily present in the 

transmitted field shown in figure 1.18(a). Let us firstly consider A0 mode. The EFCs of the supercell from 

5.3MHz to 5.34MHz are displayed in figure 1.18(b) as the grey solid lines (highlighted as blue at frequency 

5.33MHz). The red circle denotes the EFC at frequency 5.33MHz in the plate and the cyan dashed line 

represents the normal to the outlet interface. Noticing that the EFCs shrink as the frequency increases which 

confirms the negative group velocity in the double-negative branch. Owing to the conservation of the 

component of the wave vector parallel to the interface, it is straightforward to draw the wave vector of the 

refracted wave in the plate [red arrow kA in figure 1.18(b)] as well as the group velocities in both the 

supercell (blue bold arrow Vg) and the surrounding plate (red bold arrow VgA) which are normal to the EFCs. 

This simple scheme well accounts for the negative refracting angle ( ) 17.2     measured at the outlet 

interface of the supercell [see figure 1.18(a)] but not for the positive one. To explain the positive refraction, 

one must consider wave vector k in the supercell beyond the first BZ as depicted in figure 1.18(c). Within 

this scheme of refraction, the relationship between k and Vg inside the doubly negative branch remains 

satisfied, namely k  Vg < 0. Moreover, the conservation of the wave vector parallel to the outlet interface 

leads to a transmitted wave with the positively refracted angle ( ) 75.7    . 

Regarding the refraction at frequency 5.31MHz, the mechanism is exactly the same and leads to both 

negatively and positively refracted A0 Lamb modes as depicted in figure 1.19. The EFCs analysis results 

are displayed in figure 1.19(b) and (c) that correspond to the negative and positive refraction respectively. 

The only difference lying in the refracted angles as shown in figure 1.19 and table 1.1. 
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(a)  (b)  

Figure 1.17: (a) Finite element model adopted to investigate the refraction at the outlet interface between a prism-

shaped supercell and the surrounding plate. (b) Relative positions of the excitation frequencies inside the double-

negative branch. 

(a)  

(b)  (c)  

Figure 1.18: (a) Plot of the out-of-plane displacement on the top surface of the plate under the excitation of an 

incident SH0 mode at frequency 5.33MHz. EFCs analysis of (b) the negative and (c) the positive refraction at the 

outlet interface. The transmitted wave is assumed to be A0 mode only. 
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(a)  

(b)  (c)  

Figure 1.19: (a) Plot of the out-of-plane displacement on the top surface of the plate under the excitation of an 

incident SH0 mode at frequency 5.31MHz. EFCs analysis of (b) the negative and (c) the positive refraction at the 

outlet interface. The transmitted wave is assumed to be A0 mode only. 

Secondly, we assume that the transmitted wave only consists of S0 mode and we analyze the refraction at 

frequencies 5.33MHz and 5.31MHz following the same procedure as for A0 mode. The results are displayed 

in figure 1.20(a) and (b) where the blue solid lines represent the EFCs in the supercell and the magenta solid 

lines represent the EFCs in the surrounding plate at frequencies 5.33MHz and 5.31MHz. The group 

velocities and the wave vectors in the supercell are denoted as Vg and k respectively. Both these quantities 

were calculated at frequencies 5.33MHz in figure 1.20(a) and 5.31MHz in figure 1.20(b). The symbols VgS 

and kS shown in figure 1.20(a) are for the group velocity and the wave vector at frequency 5.33MHz in the 

surrounding plate. 

It can be seen that the refraction schemes for S0 mode at frequencies 5.33MHz and 5.31MHz are totally 

different from one another. Only the negative refraction with an angle of 54.9 occurs in the former case 

and no refracted beam, whether positive or negative, is observed in the latter case. This suggests the 
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occurrence of the abnormal refraction [101–103] that both the symmetric and antisymmetric modes 

contribute to the out-of-plane displacement on the negative side of the normal to the outlet interface at 

frequency 5.33MHz whereas only the antisymmetric mode gets refracted, both positively and negatively, if 

the frequency is lowered down to 5.31MHz. 

(a)  (b)  

Figure 1.20: EFCs analysis of the refraction at the outlet interface at frequencies (a) 5.33MHz and (b) 5.31MHz. 

The transmitted wave is assumed to be S0 mode only. 

To further confirm the EFCs analysis, we have performed two-dimensional Fourier transform on the out-

of-plane displacement in the area surrounded by a red rectangle dashed line in figure 1.17(a). The 

computations were done in a local system of coordinates (x'Oy') obtained by rotating the original system by 

45 clockwise. The results at frequencies 5.33MHz and 5.31MHz are displayed in figure 1.21(a) and (b) 

respectively. Both A0 and S0 Lamb modes are observed in figure 1.21(a) while there is no contribution of 

S0 mode in figure 1.21(b). It is consistent with the previous EFCs analysis that S0 mode can only be 

negatively refracted at frequency 5.33MHz. For comparison, the refracted angles calculated from the EFCs 

analysis are displayed as red dashed lines for A0 mode and magenta dashed line for S0 mode. Both are in 

good agreement with the two-dimensional Fourier transform results. 
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(a)  (b)  

Figure 1.21: Two-dimensional Fourier transform of the out-of-plane displacement in the red rectangle dashed area 

shown in figure 1.17(a) at frequencies (a) 5.33MHz and (b) 5.31MHz. The red and magenta dashed lines represent 

their refracted angles calculated from the EFCs analysis. 

Thirdly, with regard to the refraction of SH0 mode, one must consider its in-plane displacement. However, 

the analysis is rendered more difficultly by the fact that both A0 and S0 modes contribute to the in-plane 

motion downstream the outlet interface. To illustrate this, we display the in-plane displacement components 

ux and uy on the top surface of the plate at frequency 5.33MHz in the left and right panels of figure 1.22(a) 

respectively. As previously, the refraction on both sides of the normal to the outlet interface can be observed. 

However, as a result of the displacement components associated to A0 and S0 modes whose polarization are 

close to the y-axis [see figure 1.19(b) and figure 1.20(a)], the wave front of the negatively refracted beam 

in the right panel of figure 1.22(a) appears unstructured. To analyze the refraction of SH0 mode, the EFC 

for SH0 mode in the plate at frequency 5.33MHz is sketched in figure 1.22(b) as the green solid line. VgSH 

(green bold arrow) and kSH (green arrow) are the group velocity and the wave vector for SH0 mode and Vg 

(blue bold arrow) and k (blue arrow) are the ones at the same frequency in the supercell. Unambiguously, 

SH0 mode can only be negatively refracted with an angle of 29 denoted as the green dashed line in figure 

1.22(c). The perpendicular polarization of the negatively refracted beam overlaps with both A0 (17.2) and 

S0 (54.9) modes to produce the complex displacement pattern in the right panel of figure 1.22(a). Instead, 

the in-plane displacement component ux mainly contains SH0 mode leading to the plane wave front in the 

negatively refracted beam. This is further confirmed by the two-dimensional Fourier transform of the in-

plane displacement component ux at frequency 5.33MHz, recorded in the rectangle area drawn in figure 

1.17(a) and shown in the left panel of figure 1.22(c). The refracted angle derived from the two-dimensional 

Fourier transform is in very good agreement with the result from the EFCs analysis. The right panel of figure 

1.22(c) depicts the two-dimensional Fourier transform of the in-plane displacement component uy. It can be 

seen that the positive refraction only includes A0 mode whereas the negative refraction combines A0, S0 and 
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SH0 modes. The two-dimensional Fourier transform performed at frequency 5.31MHz (not shown here) 

confirms that S0 mode does not appear in the negative refraction part of the in-plane displacement 

component map. Further, table 1.1 summarizes all the refracted angles of A0, S0 and SH0 modes. 

(a)   

(b)  

(c)   

Figure 1.22: (a) Plots of the in-plane displacement components ux (left panel) and uy (right panel) on the top surface 

of the plate under the excitation of an incident SH0 mode at frequency 5.33MHz. (b) EFCs analysis of the refraction 
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at the outlet interface at frequency 5.33MHz. The transmitted wave is assumed to be SH0 mode only. (c) Two-

dimensional Fourier transform of the in-plane displacement components ux (left panel) and uy (right panel) in the 

red rectangle dashed area shown in figure 1.17(a) at frequency 5.33MHz. The green dashed line depicts its refracted 

angle calculated from the EFCs analysis. 

Table 1.1: Summary of the refracted angles when the transmission wave is assumed to be A0, S0 and SH0 waves 

separately at frequencies 5.31MHz and 5.33MHz. The signs (+) and () refer to the positive and the negative 

refraction respectively. 

Frequency A0 () A0 (+) S0 () S0 (+) SH0 () SH0 (+) 

5.31MHz 25.9 56.2 / / 45.9 / 

5.33MHz 17.2 75.7 54.9 / 29 / 

 

1.5.1.2 Symmetric double-sided pillared metamaterial supercell 

In this part, the prism-shaped supercell is replaced by the symmetric double-sided pillared metamaterial to 

demonstrate the doubly negative property in that configuration. The frequency of the exciting waves was 

set to the middle value of the peak in the isolated branch, namely 3.55MHz. At this frequency, the 

wavelength of the symmetric (antisymmetric) Lamb mode is about eight (three) times the lattice constant 

which is actually in the deep subwavelength scale. 

The out-of-plane displacement component under the excitation of an incident S0 Lamb wave is plotted in 

figure 1.23(a). It is clear that the excited S0 mode propagates into the supercell and gets negatively refracted 

at the outlet interface. This result demonstrates that both the second-order symmetric bending resonance 

(BS) related to the negative effective mass density and the first-order symmetric compressional resonance 

(CS) related to the negative effective Young’s modulus are simultaneously excited, thus allowing in turn the 

propagation in the supercell. One should also notice that, as a resonant process, even the small out-of-plane 

displacement of S0 Lamb mode is able to excite CS resonance. When the negative refraction results from the 

band folding at frequencies larger than the Bragg gap, it is generally accompanied with a high level of 

reflection at each interface between the phononic crystal and the background that may constitutes a severe 

drawback in many applications. It is worth mentioning that this is not the case here. To show this, we have 

computed the transmission coefficient of S0 Lamb wave impinging at normal incidence a structure made of 

eleven unit cells along the x-axis and infinite along the y-axis. The result displayed in figure 1.23(b) indicates 

that the transmission coefficient is equal to unity in the whole double-negative branch. 

The result is totally different for an incident A0 Lamb mode as plotted in figure 1.23(c). Actually, for this 

polarization the wave cannot propagate into the metamaterial and is totally reflected at the inlet interface. 
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This comes from the symmetry of this mode that cannot couple neither to the resonance CS nor to the 

resonance BS of the double-sided pillars and therefore prevents the occurrence of the doubly negative 

property for the propagation to be allowed. 

(a)  (b)  

(c)  

Figure 1.23: (a) Plot of the out-of-plane displacement under the excitation of incident S0 (a) and A0 (c) Lamb waves 

at frequency 3.55MHz. (b) Transmission coefficient of S0 Lamb wave impinging a phononic crystal built by eleven 

unit cells along the x-axis and infinite along the y-axis at normal incidence. 

1.5.2 Cloaking effect in a rectangular supercell with void 

Another current topic is the implementation of acoustic cloaking based on a zero-index metamaterial and 

much work has been devoted to this research since a few years [24,60,104,105]. This exciting phenomenon 

can be ascribed to the effective phase velocity that tends towards to be infinite if the effective mass density 

is close to zero. Therefore, an alternative method to obtain a refractive index with a null value consists in 

combining an infinite effective modulus and a finite effective mass density. In what follows, the cloaking 

effect in both the chiral asymmetric double-sided pillared metamaterial and the symmetric double-sided 

pillared metamaterial is investigated. The finite element mode is displayed in figure 1.24. The rectangular 

supercell consists of 132 unit cells and features a 7a×3a rectangular void in its center. An incident Lamb 



Chapter 1. Doubly negative property 

45 

wave was excited at a distance of 1000μm far away from the left edge of the metamaterial and perfectly 

matched layers are implemented on each side of the sample to eliminate any reflection from the boundaries. 

Periodic boundary conditions are applied on the other two edges. 

 

Figure 1.24: Finite elements model implemented to verify the cloaking effect. 

1.5.2.1 Chiral asymmetric double-sided pillared metamaterial supercell 

As demonstrated in figure 1.11, the proposed chiral double-sided pillared metamaterial exhibits the doubly 

negative property in between 5.37MHz and 5.41MHz. In the vicinity of the torsional resonance of the pillars 

(5.41MHz), the effective shear modulus turns to be infinite. Therefore, the frequency of the excited wave is 

fixed to be 5.4MHz where the infinite shear modulus can be guaranteed. Besides, the doubly negative 

property can also be excited by an incident S0 or A0 Lamb waves propagating along X direction. 

Considering an incident A0 Lamb wave at frequency 5.4MHz, the out-of-plane displacement on the top 

surface of the plate is displayed in the top panel of figure 1.25. It can be seen that the wave front keeps plane 

upon transmission through the sample except the area around the void where scattering effects are observed. 

As a consequence of the infinite effective shear modulus and finite effective mass density in the supercell, 

the phase velocity gets nearly infinite and there is no phase change for an incident A0 Lamb wave 

propagating in the supercell, thus allowing for the cloaking effect in this system. The decrease of the 

amplitude of the transmitted wave is related to mode conversion from A0 mode to S0 and SH0 modes. In 

contrast, when the working frequency is tuned to be 6MHz, i.e. a frequency where the effective shear 

modulus and mass density are positive, the incident A0 Lamb wave undergoes strong scattering around the 

void, giving rise to the distorted wave front observed in the bottom panel of figure 1.25. This simple analysis 

of the transmission through the chiral pillared system unambiguously reveals that the shielding of 

substructures at specific frequencies may be achieved with this geometry. 
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Figure 1.25: Plots of the out-of-plane displacement on the top surface of the plate upon an incident A0 mode at 

frequencies 5.4MHz (top panel) and 6MHz (bottom panel). 

1.5.2.2 Symmetric double-sided pillared metamaterial supercell 

As for the symmetric double-sided pillared metamaterial, the first-order symmetric compressional resonance 

CS contributes to the negative effective Young’s modulus with an infinite value when the excitation 

frequency is equal or quite close to 3.57MHz. Whereas the effective density keeps a negative but still finite 

value at this frequency, thus the zero-index behavior should be observed. Replacing the rectangular supercell 

as shown in figure 1.24 with the symmetric double-sided pillared metamaterial, an incident S0 Lamb wave 

at frequency 3.57MHz was launched. The out-of-plane displacement on the top surface of the plate is 

depicted in the top panel of figure 1.26. At this frequency, the wave front keeps plane upon transmission 

through the sample owing to the constant phase during the propagation. In contrast, when the excitation 

frequency is tuned to be 4MHz, i.e. a frequency where the effective Young’s modulus and mass density are 

positive, the incident S0 Lamb wave undergoes strong scattering around the void, thus leading to the 

distorted wave front in the bottom panel of figure 1.26. 

 

Figure 1.26: Plots of the out-of-plane displacement on the top surface of the plate upon an incident S0 mode at 

frequencies 3.57MHz (top panel) and 4MHz (bottom panel). 
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1.6 Conclusion 

In this chapter, we have numerically investigated the negative properties of two single-phase single-sided 

pillared metamaterials. It is found that the combination of the bending and the compressional resonances of 

the pillars can result in the negative effective mass density and the torsional resonance can lead to the 

negative effective shear modulus. Especially, at bending resonance, the vibration of the pillars may be 

broken down into a rotational and a translational motion induced by the internal moment and the traction 

force respectively. And we demonstrate that it is the latter that generates the negative effective mass density 

whereas the moment applied to the plate by the rotational motion is ineffective. 

To achieve the doubly negative property, we have figured out two possible approaches. The mechanism is 

explained and discussed in details. The first scheme is to combine the torsional resonance of one pillar and 

the bending and the compressional resonances of another pillar. Then, simultaneously negative effective 

mass density and shear modulus can be obtained in the merged asymmetric double-sided pillared 

metamaterial. The formed double-negative branch is SH polarized and the bending mode of the pillar in the 

plane perpendicular to the direction of propagation accounts for the in-plane negative effective mass density 

whereas the torsional mode of the other pillar contributes to the negative effective shear modulus. In addition, 

we show that the width of the doubly negative branch can be enlarged by a factor of 3.7 by simply employing 

perforated holes into the plate. Considering the transmission through a structure that is finite along the x-

axis and infinite along the y-axis, SH0 mode has proven to be the most suitable candidate. The proposed 

asymmetric double-sided pillared metamaterial shows polarization dependence for the propagation along 

ΓX direction. At the doubly negative branch, an incident SH0 wave propagates without any measurable 

attenuation whereas an incident A0 (S0) Lamb wave is totally reflected. Moreover, mode conversion is 

observed and studied by computing the displacement of the transmitted wave when the wave vector deviates 

from being along ΓX direction. To overcome the difficulty of exciting the pillar into the torsional vibration 

with A0 (S0) mode, we have introduced the chirality into the unit cell, causing that way an asymmetric 

deformation in the surrounding area of the pillars. The efficiency of this design is demonstrated by 

computing the transmission spectrum of an incident A0 Lamb wave. 

The second scheme is to employ the symmetric double-sided pillared metamaterial. It is shown that the 

negative effective mass density is achieved owing to the combination of the symmetric bending resonance 

and the antisymmetric compressional resonance of the pillars and the negative effective Young’s modulus 

relates to the symmetric compressional resonance. Moreover, the double-sided pillared metamaterial has the 

advantage to allow separating the symmetric and antisymmetric modes which is not achievable with the 

single-sided configuration. The symmetric band is created by the close vicinity of a bending resonance and 

a compressional resonance that together allow for the opening of a narrow pass band. Furthermore, the 
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influence of the geometrical parameters of the unit cell on the width of both the band gap and the double-

negative branch is studied. The band gap shifts downwards when increasing the height of the pillars or 

decreasing the diameter of the pillars, while the thickness of the plate merely affects the position of the band 

gap. More importantly, both the height of the pillars and the thickness of the plate have a strong impact on 

the width of the double-negative branch. By carefully designing the unit cell, the width can be significantly 

enlarged. In particular, equation (1.12) demonstrates that materials with large Poisson’s ratio allow for 

larger width. 

To evidence the occurrence of the doubly negative property, the refraction at the outlet interface between a 

prism-shaped supercell and its surrounding plate is discussed. As for the asymmetric double-sided pillared 

metamaterial, interestingly, both positive and negative refractions are observed. The physical explanation 

of this behavior is analyzed in details with the help of the EFCs analysis. We show that the out-of-plane 

displacement in the positive refraction domain only involves A0 mode. As for the negative refraction, at 

frequency 5.33MHz it involves both A0 and S0 modes, whereas at frequency 5.31MHz only A0 mode is 

refracted while S0 mode is reflected. Regarding the symmetric double-sided pillared metamaterial, the 

phenomena turn much simpler. S0 Lamb wave at a frequency in the double-negative branch can propagate 

within the supercell whereas the propagation of A0 Lamb mode is forbidden. Finally, zero-index refraction 

is carried out in both the chiral asymmetric double-sided pillared metamaterial and the symmetric double-

sided pillared metamaterial. And the cloaking effect of a void inside the rectangular supercell is well 

observed. 
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Chapter 2 

2 Topological transport of Lamb waves in pillared phononic crystals 

2.1 Introduction 

Realization of topologically protected edge states has provided an intriguing approach to manipulate the 

wave propagation in both the photonic crystals [39,40,113–116,41,106–112] and the phononic crystals 

[29,31,119–128,32,129,34–37,44,117,118]. One-way propagation immune to the defects and disorders at 

the domain wall between two topologically distinct configurations can be achieved. The essence of such 

fascinating phenomenon origins from the topological phase which was firstly investigated in quantum 

systems. Given its great potentials in the unidirectional transport with negligible attenuation, it has been 

quickly employed in the photonic and phononic crystals to robustly guide the electromagnetic, acoustic and 

elastic waves. In this chapter, emphasize is placed on the elastic phononic crystals. 

On the whole, there are three kinds of topological phononic crystals that are in analogy to quantum Hall 

effect (QHE), quantum spin Hall effect (QSHE) and quantum valley Hall effect (QVHE) respectively. 

Firstly, to mimic QHE, active components should be involved to break the time-reversal symmetry in the 

system, leading to the nonzero Chern number, and then topological chiral edge states can be achieved 

[29,30,42,117,118,130–134]. Regarding the elastic topological phononic crystals, for example, Wang et al. 

[29] investigated both square and hexagonal lattice phononic crystals with gyroscopes connected to each 

mass at the lattice points. Owing to the gyroscopic inertial effects, the time-reversal symmetry in the system 

is broken and the Chern numbers turns to 1 or 2, indicating single or multimode chiral edge states. The 

suppression of reflected waves at both the sharp corners and the line defection has been numerically 

demonstrated. Thereafter, Nash et al. [30] experimentally observed the unidirectional wave propagation in 

such system. Concerning the acoustic topological phononic crystals, Yang et al. [117] incorporated 

circulating flows into a triangular lattice acoustic structure to break the time-reversal symmetry. The 

unidirectional transport against the cavity and Z-shape corners has been numerically demonstrated. 

Similarly, the chiral edge states in the honeycomb and square lattice counterparts have been developed by 

Ni et al. [132] and Chen et al. [133] respectively. Recently, an experimental demonstration of acoustic 

Chern insulator by using an angular-momentum-biased resonator array with the broken Lorentz reciprocity 

has been carried out by Ding et al. [31]. Overall, this kind of topological phononic crystal imposes great 

challenges on practical applications due to the system complexity. 
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Secondly, when emulating QSHE with the time-reversal symmetry reserved in the system, it only involves 

passive components, whereas it requires intricate designs to achieve a double Dirac cone. Wu et al. [107] 

presented the realization in the topological photonic states purely based on the conventional dielectric 

material and the unidirectional propagation by injecting electromagnetic wave with positive or negative 

angular momentum. By transforming a honeycomb lattice of cylinders into a triangular lattice of cylinder 

hexagons, the Dirac cone at point K (K') of the honeycomb lattice is folded to a double Dirac cone at point 

Γ which is further referred as zone folding mechanism. The topological phase transition can be achieved by 

contracting or expanding the hexagonal clusters, leading to the nonzero spin Chern number. Afterwards, 

this mechanism is extended to the acoustic [32,135–137] and elastic [124,126,138–142] topological 

phononic crystals respectively. Except that, a double Dirac cone can also occur at point K (K') of the BZ. In 

the photonic crystals, it can be achieved by overlapping two single Dirac cones, each created by the 

transverse-electric and transverse-magnetic modes respectively, at the same frequency [43]. While in the 

elastic phononic crystals, Mousavi et al. [33] employed a dual scale patterning into a phononic crystal slab 

to degenerate the symmetric and antisymmetric Lamb modes. Such design is of significant complexity and 

challenging to implement. Furthermore, a more feasible design was proposed by Miniaci et al. [143] where 

exploited the sensitivity to macroscopic modifications in the unit cell introduced by the through or blind 

holes, which breaks the mirror-symmetry and induces the spin-orbit coupling interaction. 

Thirdly, in analogy to QVHE, it exploits the valley degree of freedom, labelling as energy extrema of 

quantum states in momentum space, which gains much attention owing to its potentials as a new type of 

information carrier like spins in spintronics. Extending the valley concept into classical waves, the 

occurrence of the valley-like dispersion curves has been made possible by the band folding in the artificial 

crystals arranged in the honeycomb lattice [144,145]. After that, a great deal of acoustic [35,36,119,146–

151] and elastic [152,153,162,163,154–161] topological phononic crystals have been reported and the 

valley-protected edge states were theoretically predicted and experimentally observed. For example, Lu et 

al. [35,119] firstly introduced this concept into the acoustic phononic crystals which consist of triangular 

rods in a two-dimensional wave guide within which symmetries can be characterized by the rotation of the 

rods. Dirac cones would occur upon reservation of the C3v symmetry. Once the symmetry is broken by 

rotating the rods, the Dirac cone is lifted and the vortex revolution (clockwise and anticlockwise) at each 

valley plays the role of the valley degree of freedom. With regard to the elastic configurations, Pal et al. 

[153,162] theoretically studied the valley-protected edge states in a honeycomb lattice discrete system and 

experimentally observed the unidirectional propagation of the flexural wave. Compared to the previous two 

categories, the valley Hall topological phononic crystal features significantly reduced geometrical 

complexity and the topological phase transition can be achieved by merely breaking the space-inversion 
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symmetry in the unit cell, leading to the nonzero valley Chern number. However, to suppress the inter-

valley scattering, the large separation between the opposite valleys should be ensured. 

Very recently, the topologically protected edge state, combining both pseudospin and valley degrees of 

freedom, has gained more and more interest. Specifically, it has been reported that the pseudospin-valley 

combined edge states can occur at the domain wall constructed by two distinct systems each supporting 

QSHE and QVHE respectively [38–41,43,44]. For instance, Kang et al. [39] juxtaposed a rod-collar 

photonic crystal emulating QVHE and a triangle-prism photonic crystal mimicking QSHE that possess a 

common topological band gap. By pushing the rods in contact with either one bounding copper plate or 

lying in between the plates that breaks the mirror-symmetry in the system, the in-phase and out-of-phase 

combination of the transverse-electric and transverse-magnetic modes in the eigenmodes define the 

pseudospin up and down states, resulting in the nonzero spin Chern number. Besides, rotating the triangle 

prisms can contribute to the nonzero valley Chern number. Then, the bulk-edge correspondence principle 

ensures the occurrence of the topological edge states owing to the difference in the topological invariant 

across the interface. The propagation of these edge states depends on both the pseudospin and valley states. 

Based on this property, valley-dependent wave guiding at a Y-junction has been demonstrated. However, 

the aforementioned two topological crystals supporting QVHE and QSHE respectively involve totally 

different geometries which renders their designs very complex. Therefore, designing an adjustable platform 

that allows for swapping between QSHE and QVHE is of primary importance for this research field. 

In this chapter, we present another approach to manipulate the propagation of Lamb wave in the pillared 

phononic crystals (PPnCs), namely the topologically protected transport of Lamb waves between two 

topologically distinct systems. The discussion is organized as follows. In Sec. 2.2, we briefly introduce the 

process to create a single Dirac cone and a double Dirac cone occurring at point K (K') of the BZ. 

Subsequently, we discuss in Sec. 2.3 the topological propagation of Lamb waves in elastic wave guides 

constructed by two honeycomb lattice asymmetric double-sided PPnCs which extends the work about the 

double-negative branch in the square lattice system demonstrated in the previous chapter. In Sec. 2.4, we 

concentrate on a honeycomb lattice symmetric double-sided PPnC and investigate the occurrence of the 

topological edge state at different domain walls and the refraction patterns at the zigzag and armchair 

terminations. Finally, it ends with the general conclusion in Sec. 2.5. 

2.2 Constructing a single Dirac cone and a double Dirac cone 

It is well known that a single Dirac cone and a double Dirac cone are prerequisite to emulate QVHE and 

QSHE and then investigate the topologically protected edge states. As demonstrated in Ref. [135], a single 

Dirac cone can be judiciously realized by transforming a triangular lattice structure to a honeycomb lattice 
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arrangement that results in a perfect folding of the band structure. Here, we briefly recall this process. In 

figure 2.1(a), it shows a triangular array of soda cans which can be recognized as subwavelength resonators 

and the first branch of the band structure. Above this branch, there is a low frequency band gap associated 

with the negative effective bulk modulus contributed by the Helmholtz resonances. Then, the distance 

between nearest neighbors is kept the same as the one in the triangular pattern and rearrange in the 

honeycomb lattice [see figure 2.1(b)]. The honeycomb unit cell (green dashed box) can be viewed as the 

union of two triangular unit cells (blue dashed box), offsetting with respect to each other along ΓM2 

direction. These two sub unit cells can form an equidistant Bragg planes along ΓK2 (ΓK2') direction that 

folds the first branch in the triangular lattice. Then, a single Dirac cone occurs at point K2 (K2') of the BZ. 

What’s more, the size of the BZ is now one-third of the one in figure 2.1(a). Further, additional point 

degeneracies can be obtained by considering a supercell containing a full hexagonal resonators [see red 

dashed box in figure 2.1(c)] instead of only two resonators. Thanks to this mathematic band folding, the 

single Dirac cone located at point K2 (K2') of the BZ are now folded into point Γ, thus creating a double 

Dirac cone. By analogy with these, both a single Dirac cone and a double Dirac cone in the elastic 

configuration can be obtained. 

 

Figure 2.1: (a) A triangular array of Helmholtz resonators and its corresponding band structure. (b) A honeycomb 

lattice Helmholtz resonators and its corresponding band structure. (c) A triangular lattice phononic crystal with 

hexagonal resonators inside the unit cell and its corresponding band structure. [135] 

As for a double Dirac cone, it can also occur at point K (K') of the BZ instead of the center point Γ as 

mentioned in figure 2.1. Specifically, in the elastic systems, it can be realized by designing a dual-scale 

phononic crystal plate as shown in figure 2.2(a) [33]. Owing to the symmetry about the mid-plane of the 

plate in the unit cell, the eigenmodes can be decomposed into symmetric and antisymmetric modes 

according to the symmetry of the deformed displacement fields. Two scales of patterning are intentionally 

designed for different purposes. The larger wavelength patterning is adopted to fold the symmetric and 

antisymmetric branch to construct two separated single Dirac cones. The smaller deep-subwavelength 



Chapter 2. Topological transport of Lamb waves 

53 

patterning yields extreme elastic anisotropy that can ensure the overlap of the two aforementioned Dirac 

cones with simultaneously matched frequency and group velocity, as shown in figure 2.2(b), which is 

usually unachievable because of the drastically different dispersion relations. Such complex designs impose 

great challenge on the applications. After that, a more feasible approach is proposed in Ref. [143] [see figure 

2.3(a)]. It involves through holes in the triangular-hole patterned phononic crystal plate to degenerate the 

symmetric and antisymmetric modes at the same frequency as illustrated in figure 2.3(b) and (c) to form a 

double Dirac cone. Then, by replacing the through holes with blind holes to break the mirror-symmetry, the 

double Dirac cone is lifted as depicted in figure 2.3(d) and the spin-orbit coupling interaction can be 

emulated. Similarly, by degenerating the transverse-electric and transverse-magnetic modes in the photonic 

crystals, a double Dirac cone occurring at point K (K') of the BZ can also be realized [106]. 

 

Figure 2.2: (a) A dual-scale phononic crystal plate and (b) its corresponding band structure. [33] 

 

Figure 2.3: (a) A triangular-hole patterned phononic crystal plate. Perspective view of the patterned unit cells and 

the corresponding band structures: (b) patterned plate (PP), (c) plate with additional circular holes drilled through 

the thickness (TH) and (d) with blind holes (BH). [143] 

2.3 Topological transport in an asymmetric double-sided PPnC 

As discussed in chapter 1, in the low frequency regime, A0 and S0 Lamb waves propagating in the plate can 

be modulated by the bending and the compressional vibration of the pillars. With regard to SH0 mode, its 

in-plane polarization is perpendicular to the propagation direction that can be well coupled into the torsional 
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motion of the pillars. We have demonstrated that a double-negative branch can occur in a square lattice 

asymmetric double-sided PPnC by assembling the bending, the compressional and the torsional modes into 

a common frequency interval [19]. Besides, the wave propagation along ΓX direction at a frequency where 

the doubly negative property occurs is polarization-dependent. It can be considered as a propagative band 

for an incident SH0 wave, while it turns to be a forbidden one for an incident A0 (S0) Lamb wave. What’s 

more, unlike the respective intersection of the other dispersion curves, it is totally isolated inside a complete 

band gap that can simplify the discussion significantly. In this part, we develop a honeycomb lattice 

asymmetric double-sided PPnC and investigate the occurrence of the topological edge state in analogy to 

QVHE in this system. 

2.3.1 Artificially folding and polarization-dependent propagation 

Firstly, we consider an asymmetric double-sided PPnC arranged in a triangular lattice. The corresponding 

elementary unit cell together with its first irreducible BZ are displayed in figure 2.4(a). Two distinct pillars 

denoted as pillar A and pillar B are concentrically connected to a thin plate. The lattice constant and the 

thickness of the plate are chosen to be a = 231μm and e = 100μm. Pillar A is designed to form a low 

frequency band gap that features the negative effective mass density by combining the bending and the 

compressional resonances. The diameter and the height are dA = 120μm and hA = 268μm. Further, the 

frequency of the torsional resonance of pillar B is optimized to occur inside the above band gap whose 

diameter and height are dB = 140μm and hB = 160μm. Then, the doubly negative property can be achieved. 

Afterwards, the band structure is computed and displayed in figure 2.4(b). As expected, a negative-slope 

branch exists in between 4.408MHz and 4.486MHz. And it would disappear when considering the single-

sided PPnC constructed merely by pillar A or pillar B. Therefore, it is exactly a double-negative branch that 

possesses simultaneously negative effective mass density (in between 4.176MHz and 4.643MHz) and shear 

modulus (in between 4.408MHz and 4.486MHz). To give more evidences, the eigenmodes at points C, D 

and E labelled in figure 2.4(b) are depicted in figure 2.4(c). Clearly, the eigenmode at point C is the first-

order torsional resonance of pillar B that contributes to the negative effect shear modulus. The eigenmodes 

at points D and E are the second-order bending resonance and the first-order compressional resonance of 

pillar A respectively. Their combination accounts for the negative effective mass density. The color bar 

shown in figure 2.4(b) depicts the weighting of the torsional deformation of pillar B along the z-axis 

computed by 
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where (curl ) U  denotes the curl vector of the displacement field U and V represents the volume of the unit 

cell. Inside the double-negative branch, intuitively, the torsion along the z-axis is the dominant deformation 

especially at the wave vectors around the corners of the BZ. Subsequently, the transmission spectra for 

incident A0, S0 and SH0 waves along K1 and ΓM1 directions are calculated and represented by the black, 

the red and the blue solid lines in figure 2.4(d) and (e) respectively. It can be seen that the double-negative 

branch functions as a forbidden band for an incident A0 (S0) Lamb waves whereas an incident SH0 wave 

can propagate with negligible attenuation along both primary directions. Therefore, it might be interesting 

to create a Dirac cone with such double-negative branch that has potentials in realizing the topologically 

protected SH0 wave. 

(a)  (b)  

(c)  

(d)  (e)  
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Figure 2.4: (a) Schematic of the proposed asymmetric double-sided PPnC arranged in the triangular lattice and (b) 

the corresponding band structure. (c) Eigenmodes at points C, D and E labelled in (b) and the black arrows represent 

the elastic deformation vectors. Transmission spectra of incident A0 (black), S0 (red) and SH0 (blue) Lambs wave 

propagating along (d) ΓK1 and (e) ΓM1 directions. 

Secondly, to construct a Dirac cone with the aforementioned double-negative branch, we resort to a 

honeycomb arrangement as shown in figure 2.5(a). Two pairs of the asymmetric double-sided pillars are 

assembled into one honeycomb unit cell. To keep the distance between the nearest neighbors the same as 

the one in the triangular lattice in figure 2.4(a). The lattice constant is adjusted to be a = 400μm. Besides, 

we prefabricate four through holes with diameter d = 240μm at the four corners of the unit cell. These 

patterned holes can soften the plate and the band structure would be slightly changed [77]. 

The corresponding band structure ranging from 3MHz to 5.5MHz is shown in figure 2.5(b). It is found that 

a partial forbidden band opens in between 4.302MHz and 4.344MHz along ΓM2 direction. Two eigenmodes 

degenerate at frequency 4.318MHz forming a single Dirac cone at point K2 (K2') of the BZ. The group 

velocity is 56.138m/s. Figure 2.5(c) displays the eigenmodes at points F, G, H1 and H2 labelled in figure 

2.5(b). Regarding the eigenmode at point F, pillar BL and pillar BR exhibit in-phase torsional resonance 

which suggests the reservation of the negative effective shear modulus that results in the negative group 

velocity around point F. As for the eigenmode at point G, pillar BL and pillar BR exhibit out-of-phase 

torsion which comes from the band folding directly. Concerning the eigenmodes at points H1 and H2, the 

torsion along the z-axis in pillar BL and pillar BR are the dominant deformation. According to k  p 

perturbation theory, once the Dirac cone is lifted by imposing the space-inversion symmetry breaking 

perturbation, the newly eigenmodes at the bounding can be well approximated by a linear combination of 

the degenerate eigenmodes [42]. Therefore, it can be speculated that the torsion of pillar BL and pillar BR 

along the z-axis will still play an important role in the perturbed configuration. Figure 2.5(d) displays the 

transmission spectra along ΓK2 direction of incident A0 (black), S0 (red) and SH0 (blue) Lamb waves 

respectively. The corresponding computational mode is depicted on the top. The excitation is placed at the 

left of the supercell and two perfectly match layers are placed at two ends respectively to eliminate the 

reflected waves from the boundaries. Periodic conditions are applied along the y-axis. The higher branch 

(upper cyan region in between 4.318MHz and 4.353MHz) is a propagative band for an incident SH0 wave 

and whereas a forbidden one for an incident A0 (S0) Lamb wave. While at the lower branch (lower cyan 

region in between 4.141MHz and 4.318MHz), the contrary polarization-dependent propagation can be 

observed. What’s more, in between 4.302MHz and 4.344MHz (magenta region), all Lamb modes are 

propagative owing to the mixture of the in-phase and out-of-phase deformation. Figure 2.5(e) displays the 

transmission spectra along ΓM2 direction. It can be seen that only SH0 wave can propagate at both the lower 
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and higher branches. It can be well understood by considering the symmetry about the xz-plane of the model 

depicted on the top. 

(a)  (b)  

(c)  

(d)  (e)  

Figure 2.5: (a) Schematic of the proposed asymmetric double-sided PPnC arranged in the honeycomb lattice and (b) 

the corresponding band structure. (c) Eigenmodes at points F, G, H1 and H2 labelled in (b) and the black arrows 

represent the elastic deformation vectors. Transmission spectra of incident A0 (black), S0 (red) and SH0 (blue) Lamb 

waves propagating along (d) K2 and (e) ΓM2 directions. 
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2.3.2 Emulating QVHE 

2.3.2.1 Topological phase transition 

In order to mimic QVHE, we need to impose the space-inversion symmetry breaking perturbation on the 

honeycomb unit cell to lift the Dirac cone and introduce the topological phase transition. Thus, a nonzero 

valley Chern number can be obtained together with the occurrence of a reopened band gap at the valleys. 

Practically, it can be done by varying the height or the diameter of the asymmetric double-sided pillars. 

During this process, C3v symmetry is broken because of the violation of the mirror-symmetry about lattice 

vectors while C3 symmetry is still preserved in the perturbed configuration. 

As discussed in Sec. 2.3.1, the torsional vibration of the lower pillars has significant contribution to the 

formation of the constituent branches of the Dirac cone. Therefore, the perturbation in the height of the 

lower pillars (pillar BL and pillar BR) with hBL = hB + ΔhV and hBR = hB  ΔhV is firstly taken into 

consideration. The band structure with the height perturbation ΔhV = 1µm, hereafter referred as type-I, is 

displayed in figure 2.6(a). It can be seen that the Dirac cone is lifted and an omnidirectional band gap ranging 

from 4.301MHz to 4.335MHz reopens. To reveal the vortex chirality at the valley K2, on the top surface of 

the plate the phase distribution of the out-of-plane displacement is evaluated and plotted in figure 2.6(b). 

The top and bottom panels display the phase fields at the higher (4.335MHz) and lower (4.301MHz) 

bounding respectively. In the top panel, the phase field decreases gradually in anticlockwise direction at the 

center of pillar AL which can be recognized as the valley pseudospin up state while it keeps constant at the 

position of pillar AR. In the bottom panel, a uniform distributed phase field can be observed at the position 

of pillar AL and the phase field decreases gradually in clockwise direction at the center of pillar AR which 

can be recognized as the valley pseudospin down state. Owing to the reservation of the time-reversal 

symmetry in the system, these valley pseudospin states will be inverted at the valley K2'. It is also noted 

that a specific valley state can be selectively excited by involving proper chirality in the source to match the 

valley pseudospin state of the desired valley [119,164–166]. 

In order to visualize the impact of the height perturbation on the reopened band gap, the evolution of the 

pseudospin up and down states at the valley K2 represented by the red and black circles respectively is 

shown in figure 2.6(c). Clearly, when the height perturbation ΔhV becomes nonzero, the Dirac cone is lifted 

and a band gap reopens. And the width of the band gap is almost proportional to the height perturbation. 

More importantly, the band gap will firstly close and then reopen again when the height perturbation ΔhV 

crosses zero. Meanwhile, the frequency order of the pseudospin up and down states is inverted that signals 

the topological phase transition. Considering another perturbed configuration with the height perturbation 

ΔhV = −1µm (type-II), it is exactly the space-inverted counterpart of type-I PPnC. Even if they have the 
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same dispersion curves, they are absolutely distinct from the topological point of view. Secondly, the 

perturbation in the height of the upper pillars (pillar AL and pillar AR) with hAL = hA + ΔhV and hAR = hA  

ΔhV is also investigated and the evolution of the pseudospin up and down states is plotted in figure 2.6(d) 

represented by the red and black crosses respectively. In comparison, the width of the reopened band gap is 

more sensitive to the height perturbation of the lower pillars. 

(a)  (b)  

(c)  (d)  

Figure 2.6: (a) Band structure of the perturbed PPnC with the height perturbation ΔhV = 1µm. (b) Phase distribution 

of the out-of-plane displacement on the top surface of the plate at the higher (top panel) and lower (bottom panel) 

bounding of the lifted Dirac cone. Evolution of the pseudospin up and down states at the valley K2 against the height 

perturbation ΔhV in the (c) lower (red and black circles) and (d) upper (red and black crosses) pillars. 

To represent the topological feature involved in type-I PPnC after lifting the Dirac cone, the topological 

invariant defined as the integral of the Berry curvature over a portion of the BZ is numerically studied. The 

Berry curvature of nth band at a given wave vector k can be calculated from 

      n n n
ˆ i    k kk u k u k z , (2.2) 
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where un(k) is the periodic part of the displacement field in the unit cell at the given wave vector k = (kx, 

ky). Owing to the reservation of the time-reversal symmetry, the Chern number defined by integrating the 

Berry curvature over the whole BZ will be expected to be zero. As for the perturbed PPnC with the space-

inversion symmetry broken, the Berry curvature of the lower bounding of the lifted Dirac cone at the valley 

K2 (K2') can be analytically expressed as [110,155,157] 
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where k = k – kK2/K2' is the relative wave vector with respect to the valley K2 (K2') and vg is the group 

velocity at the Dirac cone. m denotes the effective mass and is proportional to the frequency interval between 

the pseudospin up and down states. It is also directly related to the height perturbation ΔhV and can represent 

the space-inversion symmetry breaking strength. Generally, in a small space-inversion symmetry breaking 

case, the Berry curvature will be highly localized around the valley K2 (K2'). The well-known valley Chern 

number defined as the local integral of the Berry curvature in the vicinity of the valley will converge quickly 

to a nonzero quantized value which can be theoretically derived as [110,153] 

      21 1
K2/K2' sgn

2π 2
VC d m   k k = . (2.4) 

It can be seen that the valley Chern number only depends on the sign of the effective mass m. Besides, in 

equation (2.3), it is clear that the distribution of the Berry curvature becomes broader as the effective mass 

m increases and the interference of the Berry curvature between two opposite valleys might occur. Then, 

the assumption of the small space-inversion symmetry breaking is no long valid, instead, it turns to a large 

space-inversion symmetry breaking case. In that situation, when directly integrating equation (2.3) in the 

vicinity of the valley [163] to calculate the valley Chern number, a huge deviation from the theoretical 

values 1/2 might arise because of the destructive interference of the Berry curvature between the two 

opposite valleys. 

To identify the strength of the space-inversion symmetry breaking in type-I PPnC, the distribution of the 

Berry curvature around the valley is numerically obtained [110,155]. In figure 2.7(a), the black dotted line 

represents the numerical results along K2 direction at the wave vectors varying from kx = 2π/3a to kx = 

10π/3a and ky = 0. For comparison, the theoretical values predicted by equation (2.3) is depicted as the red 

solid line. It can be seen that the results obtained from these two different methods are in good agreement 

in between kx = 4π/3a to kx = 8π/3a, i.e. along the high symmetry boundaries K2-M2-K2' of the BZ. While 

in between kx = 2π/3a to kx = 4π/3a the numerical result decreases quickly than the theoretical prediction. 
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After that, the anisotropy around the valley K2 is also evaluated and illustrated in figure 2.7(b). The black, 

red and blue solid lines denote the absolute values of the Berry curvature at the wave vectors with distances 

|k| = 0.05|K2|, 0.1|K2| and 0.2|K2| away from the valley K2. The Berry curvature exhibits a circular 

shape when the wave vectors are very close to the valley K2 which can be considered to be isotropic. 

However, it turns to the triangular shape as the distance |k| increases to be 0.1|K2|. And once the distance 

|k| is set to be 0.2|K2|, it changes to the clover-like shape and decreases much more quickly when the 

wave vector deviates from the high symmetry boundaries K2-M2-K2' of the BZ which might be related to 

the steep dispersion curve around the lifted Dirac cone. The distribution becomes strongly anisotropic. To 

calculate the valley Chern number, the Berry curvature around the valley K2 is numerically obtained and 

shown in figure 2.7(c). The integration of the Berry curvature over this reciprocal space is 0.22 which has 

a huge discrepancy from the theoretical value 1/2. Therefore, the height perturbation ΔhV = 1µm in the 

type-I PPnC can be recognized as a large space-inversion symmetry breaking case. The space-inversion 

symmetry breaking strength would become stronger if increasing the height perturbation. Figure 2.7(d) 

depicts both the numerical (black dotted line) and theoretical (red solid line) results of the Berry curvature 

when the height perturbation is set to be ΔhV = 2µm. The profile of the Berry curvature is much broader and 

the integral at the valley K2 turns to be −0.08. In between kx = 4π/3a and kx = 8π/3a, the Berry curvature 

associated with the valley K2 and K2' tends to connect directly (see the slope) suggesting the possibility of 

the very strong inter-valley scattering. 

(a)  (b)  
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(c)  (d)  

Figure 2.7: Numerical (black) and theoretical (red) values of the Berry curvature along K2 direction at the wave 

vectors varying from kx = 2π/3a to kx = 10π/3a and ky= 0 when the height perturbation is set to be (a) ΔhV = 1µm 

and (d) ΔhV = 2µm. (b) Absolute values of the Berry curvature at the wave vectors with distances |k| = 0.05|K2| 

(black), 0.1|K2| (red) and 0.2|K2| (blue) respectively away from the valley K2. (c) Distribution of the Berry 

curvature in the vicinity of the valley K2 with ∆kx varying from −0.5π/a to 0.5π/a and ∆ky varying from −0.5π/a to 

0.5π/a. 

2.3.2.2 Valley-protected edge states 

The above analysis indicates the existence of the valley-protected edge states at the domain walls formed 

by the topologically distinct type-I and type-II PPnCs. To verify this, we consider a three-layers ribbon 

supercell as modelled in figure 2.8(a), sandwiching eight unit cells of type-II PPnC in between two sets of 

six unit cells of type-I PPnC. Two zigzag domain walls are formed and zoomed in the side views, namely 

LDW and SDW with the height of the adjacent lower pillars at the interface increased and decreased by 

1µm respectively. The dispersion curves of the ribbon supercell are displayed in figure 2.8(b) ranging from 

4.25MHz to 4.4MHz. The black dotted lines represent the bulk modes. The red and blue dotted lines 

represent the edge state occurring at LDW and SDW respectively. It should be pointed out that the projection 

of the valleys K2 and K2' onto these two zigzag domain walls is kx = 2π/3a and kx = 2π/3a. At the valley 

K2, the group velocity of the edge state localized at LDW is negative which can also be predicted by 

considering the change of the valley Chern number from type-I to type-II PPnC as 

Type-Ι Type-ΙΙ(K2) (K2) 1V VC C   . In contrast, the group velocity turns positive at the valley K2'. The bottom 

views of the eigenmodes at points M (4.316MHz) and N (4.323MHz) are displayed in the left and right 

panels of figure 2.8(c). The red arrows denote the elastic deformation vectors. The adjacent lower pillars at 

LDW exhibit the antisymmetric torsion about the interface and the adjacent upper pillars feature the 

antisymmetric bending. However, at SDW the torsion of the lower pillars and the bending of the upper 

pillars are symmetric about the interface. It has been reported that the antisymmetric edge state would turn 

to be a dead band due to the mismatch in the spatial parity between the eigenmode and the elastic 
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deformation caused by the incident wave [35,167]. However, it is not that case in this system and it can be 

well excited in our system when considering an incident SH0 wave which will be demonstrated in the 

following discussion. 

(a)  (b)  

(c)   

Figure 2.8: (a) Schematic of the proposed three-layers ribbon supercell constructed by sandwiching eight unit cells 

of type-II PPnC in between two sets of six unit cells of type-I PPnC and zoomed side views of two zigzag domain 

walls. (b) Dispersion curves of the proposed ribbon supercell. (c) Bottom views of the eigenmodes at points M and 

N labelled in (b). 

To verify the unidirectional transport of the valley-protected edge states, the wave propagation in the straight 

wave guide as sketched in figure 2.9(a) built by 24×20 unit cells is investigated. The upper and lower 

domains are made of type-I and type-II PPnCs respectively that forms a LDW at the interface. Perfectly 

match layers (PMLs) are employed to enclose the whole model to eliminate the reflected waves. Two 

sources with phase difference π/3 separated by a distance a are placed at the red point to excite the right-

going K2'-polarized edge state [157]. At this domain wall, the edge state features the antisymmetric 
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deformation about the interface. Firstly, an incident SH0 wave at frequency 4.314MHz was launched by 

applying the y-axis polarized traction forces. Figure 2.9(b) plots the magnitude of the out-of-plane 

displacement on the top surface of the plate. The excited wave propagates along the positive x-axis which 

is in agreement with the positive group velocity at the valley K2'. At the right zigzag termination, the K2'-

polarized SH0 wave gets both positively and negatively refracted. To quantitatively discuss the ability to 

suppress backscattering waves, the ratio between the magnitude of the out-of-plane displacement at the left 

and right ends is introduced, namely  = ALeft/ARight and is equal to 0.064 in this situation. It slightly deviates 

from zero, but we can still conclude that in this large space-inversion symmetry breaking case the 

backscattering wave can be well suppressed at the right zigzag outlet. Secondly, an incident A0 Lamb wave 

at the same frequency was launched by applying the z-axis polarized forces. The distribution of the 

magnitude of the out-of-plane displacement is displayed in figure 2.9(c). It can be seen that the injected 

energy is highly localized around the sources and cannot propagate along the domain wall. Because the 

generated elastic field cannot match the antisymmetric deformation of the edge state [see the left panel of 

figure 2.8(c)]. Therefore, it actually turns to be a forbidden band for an incident A0 (S0) Lamb wave. 

(a)  

(b)  (c)  

Figure 2.9: (a) Schematic of the straight wave guide featuring a LDW at the interface constructed by placing type-I 

and type-II PPnCs in the upper and lower domains respectively. The red point represents the position of two phase-

matched sources. Plots of the magnitude of the out-of-plane displacement on the top surface of the plate under the 

excitation of the K2'-polarized (b) SH0 and (c) A0 Lamb waves at frequency 4.314MHz. 

By inverting the position of type-I and type-II PPnCs as plotted in figure 2.9(a), we can construct another 

straight wave guide forming a SDW at the interface. At this domain wall, the edge state features the 

symmetric deformation about the interface. Similarly, both incident K2'-polarized SH0 and A0 Lamb waves 

at frequency 4.325MHz are taken into consideration. The plots of the magnitude of the out-of-plane 
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displacement on the top surface are displayed in figure 2.10(a) and (b) respectively. It can be seen that the 

excited SH0 wave is localized around the sources whereas the excited A0 Lamb wave can propagate along 

the negative x-axis. These wave propagation phenomena can be understood by considering the spatial parity 

between the elastic field generated by the sources and the symmetric deformation of the edge state at this 

domain wall [see the right panel of figure 2.8(c)]. Only A0 Lamb mode can match the required symmetric 

displacement field and its propagation along the negative x-axis is in agreement with the negative group 

velocity of the edge state at the valley K2'. 

(a)  (b)  

Figure 2.10: Plots of the magnitude of the out-of-plane displacement on the top surface of the plate under the 

excitation of the K2'-polarized (a) SH0 and (b) A0 Lamb waves at frequency 4.325MHz. The straight wave guide is 

constructed by inverting the position of type-I and type-II PPnCs as illustrated in figure 2.9(a). 

In addition, the propagation of the edge state in a Z-shape wave guide featuring two 60 sharp bending 

corners as sketched in figure 2.11(a) is investigated. This Z-shape wave guide is formed by placing type-I 

and type-II PPnCs in the upper and lower regions. According to the previous discussion, only SH0 wave can 

propagate along this domain wall. A right-going K2'-polarized SH0 wave at frequency 4.314MHz was 

launched. The displacement field is plotted in figure 2.11(b). The refracted waves appear at the left outlet 

which indicates the occurrence of the inter-valley scattering of the edge state at the bending corners. 

Comparatively, the magnitude at the left end is much smaller than the one at the right end that suggests the 

weak inter-valley scattering. The magnitude ratio between two outlets is 0.279 which is much larger than 

the one in the straight wave guide. Therefore, in this large space-inversion symmetry breaking case, the 

bending corners can result in the weak inter-valley scattering, however, most of the injected energy can 

propagate smoothly through the Z-shape wave guide. 
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(a)  (b)  

Figure 2.11: Schematic of the Z-shape wave guide constructed by placing type-I and type-II PPnCs in the upper and 

lower domains respectively. The red point represents the position of two phase-matched sources. (b) Plot of the 

magnitude of the out-of-plane displacement on the top surface of the plate under the excitation of the K2'-polarized 

SH0 wave at frequency 4.314MHz. 

Further, the propagation of the edge states in the larger space-inversion symmetry breaking situation is 

studied. Considering another ribbon supercell with the increased height perturbation ΔhV = 2µm, the 

dispersion curves are depicted in figure 2.12(a). The red and blue solid lines represent the edge states 

occurring at LDW and SDW respectively. Compared to the ones displayed in figure 2.8(b), these two newly 

edge states have the similar profiles, but are totally gapped. To examine the occurrence of the topological 

protection, the propagation of the K2'-polarized SH0 wave at frequency 4.304MHz in both the straight and 

Z-shape wave guides is studied. The results are shown in figure 2.12(b) and (c) respectively. The reflected 

wave from the zigzag outlet and bending corners can be unambiguously observed. The magnitude ratios are 

0.228 for the straight wave guide and 0.943 for the Z-shape wave guide. Therefore, it can be concluded that 

the topological protection of the edge state cannot be guaranteed any more in this larger space-inversion 

symmetry breaking case with gapped edge states. 

(a)   
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(b)  (c)  

Figure 2.12: (a) Dispersion curves of the proposed three-layers ribbon supercell with the increased height 

perturbation ΔhV = 2µm. Plots the magnitude of the out-of-plane displacement on the top surface of the plate under 

the excitation of the K2'-polarized SH0 wave at frequency 4.304MHz in the (b) straight and (c) Z-shape wave guides. 

2.4 Topological transport in a symmetric double-sided PPnC 

2.4.1 Occurrence of the Dirac cones and its evolution against the height of the pillars 

In this part, the topological transport of Lamb waves in a symmetric double-sided PPnC is presented. Thanks 

to the symmetry about the mid-plane of the plate in the unit cell, the symmetric and antisymmetric Lamb 

modes can be well decoupled, providing the opportunities to investigate their associated topological nature 

respectively. The elementary unit cell together with the BZ are displayed in figure 2.13(a). Two identical 

arrays of pillars are arranged concentrically over a thin plate. Four through-thickness holes are drilled at the 

corners of the honeycomb unit cell. The lattice constant and the thickness of the plate were chosen to be a 

= 400μm and e = 100μm. The diameter and the height of the pillars are dA = dB = dC = dD = D = 120μm and 

hA = hB = hC = hD = H = 160μm. The diameter of the holes is dH = 280µm. It should be pointed out that the 

reported phenomena in what follows also apply to any other single-phase systems. 

The band structure of the proposed symmetric double-sided PPnC is displayed in figure 2.13(b) that can be 

decomposed into the symmetric (red dotted lines) and antisymmetric (blue dotted lines) subcomponents 

owing to the mirror-symmetry in the unit cell. To help to distinguish this, the eigenmodes at points labelled 

from E1 to E6 are depicted in figure 2.13(b). At points E1 and E2, the double-sided pillars exhibit the 

symmetric bending. At points E3 and E4, the antisymmetric bending can be observed. At points E5 and E6, 

the deformation is the mixture of the symmetric bending and symmetric torsion. For the symmetric band 

structure subcomponent, the deformation of the eigenmodes is symmetric about the mid-plane of the plate 

that can be well excited by S0 or SH0 waves propagating in the plate. Regarding the antisymmetric band 

structure subcomponent, the deformation of the eigenmodes is antisymmetric about the mid-plane of the 

plate that can well couple into A0 Lamb wave propagating in the plate. 
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(a)  (b)  

(c)  

(d)  

Figure 2.13: (a) Elementary unit cell of the proposed symmetric double-sided PPnC and (b) the corresponding band 

structure. (c) Eigenmodes at points labelled from E1 to E6 in (b). (d) Band structure of the single-sided PPnC by 

removing all the pillars on one side of the plate. 

For comparison, the band structure of the single-sided PPnC, obtained by removing all the pillars on one 

side of the plate, is illustrated in figure 2.13(c). Two Dirac cones formed by the antisymmetric branches at 

0.937MHz and 2.361MHz that can be seen in figure 2.13(b) at point K (K') of the BZ persist upon removing 
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all the pillars on one side, unlike the Dirac cone at 2.068MHz created by the symmetric branches. 

Considering the wavelengths of both Lamb modes involving the symmetric displacements, i.e. 2557 and 

1513μm for S0 and SH0 modes respectively which are 6.393 and 3.783 times the lattice constant, therefore, 

the Dirac cone at 2.068MHz occurs in the deep subwavelength scale and should be attributed to the local 

resonances of the pillars. 

To illustrate the tunable ability of this symmetric double-sided PPnC, the evolution of the band structure 

against the height of the pillars is studied. Figure 2.14 displays the band structures with the height of the 

pillars set to be 80µm, 120µm, 160µm and 200µm respectively. Globally, the band structure shifts to the 

lower frequency regime while increasing the height of the pillars and the interval between the first Dirac 

cone constructed by the symmetric branches and the second Dirac cone constructed by the antisymmetric 

branches can be judiciously tailored. Further, we will demonstrate that these two single Dirac cones can 

even overlap at the same frequency creating a double Dirac cone with optimized parameters. More 

specifically, a second Dirac cone formed by the symmetric branches occurs at frequency 5.916MHz 

(4.32MHz) when the height of the pillars is chosen to be 80µm (120µm). 

(a)  (b)  

(c)  (d)  
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Figure 2.14: Band structures of the symmetric double-sided PPnCs with the height of the pillars set to be (a) 80µm, 

(b) 120µm, (c) 160µm and (d) 200µm respectively. 

2.4.2 Emulating QVHE 

2.4.2.1 Topological phase transition 

As mentioned in Sec. 2.3.2, the space-inversion symmetry breaking perturbation must be imposed on the 

unit cell to introduce the topological phase transition. In this symmetric double-sided system, it can be 

realized by perturbing either the height or the diameter of the pillars while always reserving the mirror-

symmetric about the mid-plane of the plate. Firstly, the diameter perturbation with dA = dB = D + ΔdV and 

dC = dD = D  ΔdV is imposed. For example, the band structure with the diameter perturbation ΔdV = 4µm, 

which can be recognized as a small space-inversion symmetry breaking strength, is displayed in figure 

2.15(d). Two Dirac cones get lifted, thus leading to two nontrivial band gaps. Afterwards, the energy flux 

together with the phase distribution of the out-of-plane displacement at the bounding of the lifted Dirac 

cones are shown in figure 2.15(b) and (c) for the symmetric and antisymmetric band structure 

subcomponents respectively. Unambiguously, the clockwise and anticlockwise vortex chirality can be 

observed which can be recognized as the valley pseudospin down and up states. Considering the time-

reversal symmetry in the system, at the opposite valley K' the valley pseudospin states are inverted. Figure 

2.15(d) depicts the evolution of the valley pseudospin states against the diameter perturbation. The red and 

blue crosses (circles) represent the valley pseudospin down (up) states. When crossing zero, their frequency 

order is inverted and the band gap firstly closes and then reopens which is the signature of the topological 

phase transition. Besides, upon the same perturbation, a relatively broader band gap reopens for the 

antisymmetric band structure subcomponent that suggests its sensitivity to the diameter perturbation. 

Secondly, the perturbation in the height of the pillars with hA = hB = H + ΔhV and hC = hD = H  ΔhV is 

applied. Figure 2.15(e) plots the dependence of the valley pseudospin states on the height perturbation. In 

contrast, the symmetric band structure subcomponent has a broader reopened band gap. 
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(a)  (b)  

(c)  (d)  (e)  

Figure 2.15: Band structure of the perturbed PPnC with the diameter perturbation ΔdV = 4µm. Energy flux (black 

arrows) and phase distribution of the out-of-plane displacement at the lower (bottom panel) and higher (top panel) 

bounding of the lifted Dirac cone at the valley K for the (b) symmetric and (c) antisymmetric band structure 

subcomponents. Evolutions of the valley pseudospin states against the (d) diameter and (e) height perturbation at 

the valley K. 

Subsequently, the Berry curvature is numerically computed. Figure 2.16(a) and (b) show the results at the 

lower bounding for the antisymmetric and symmetric band structure subcomponents at the wave vectors 

varying from kx = 2π/3a to kx = 10π/3a and ky = 0. Two opposite valleys are well separated that suggests the 

suppression of the inter-valley scattering. Figure 2.16(c) and (d) display the distribution of the Berry 

curvature in the vicinity of the valley K. Theoretically, it converges quickly to (K/K') 1 2VC  . As for the 

higher bounding of the lifted Dirac cone, the results will change the sign to be positive [see figure 2.17(a) 

and (b)]. With regard to the antisymmetric band structure subcomponent, the peak values at the lower and 

higher bounding are exactly consistent. Nevertheless, for the symmetric band structure subcomponent, the 

peak value at the lower bounding changes slightly from the one at the higher bounding. 
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(a)  (b)  

(c)  (d)  

Figure 2.16: Numerical results of the Berry curvature of the lower bounding of the lifted Dirac cones: at the wave 

vectors varying from kx = 2π/3a to kx = 10π/3a and ky = 0 for the (a) antisymmetric and (b) symmetric band structure 

subcomponents and in the vicinity of the valley K for the (c) antisymmetric and (d) symmetric band structure 

subcomponents. 

(a)  (b)  
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(c)  (d)  

Figure 2.17: Numerical results of the Berry curvature of the higher bounding of the lifted Dirac cones: at the wave 

vectors varying from kx = 2π/3a to kx = 10π/3a and ky = 0 for the (a) antisymmetric and (b) symmetric band structure 

subcomponents and in the vicinity of the valley K for the (c) antisymmetric and (d) symmetric band structure 

subcomponents. 

2.4.2.2 Valley-protected edge states of the antisymmetric dispersion curves 

To study the associated topologically protected edge states, we construct a three-layers ribbon supercell as 

sketched in figure 2.18(a). It sandwiches eight unit cells with the diameter perturbation ΔdV = −10µm (type-

IV) in between two sets of six unit cells with the diameter perturbation ΔdV = 10µm (type-III). It should be 

mentioned that the larger diameter perturbation is applied to reopen a relatively broader band gap. Two 

zigzag domain walls are formed. The diameter of the adjacent pillars is decreased at SDW and increased at 

LDW. Firstly, we concentrate on the antisymmetric dispersion curves of the ribbon supercell as depicted in 

figure 2.18(b). Three newly branches can span through the reopened band gap. The eigenmodes of the 

magenta, the cyan and the black branches at the wave vector kx = 0.5π/a are presented in figure 2.18(c). It 

is found that the magenta and cyan dotted lines represent the edge states occurring at SDW and LDW 

respectively whereas the black dotted line denote the locally resonant mode at the top end where the pillars 

with small diameter are placed at the extreme end of the supercell. The edge state at SDW features the 

symmetric deformation about the interface, while the one at LDW the localized deformation turns 

antisymmetric. In this situation, the projection of the valleys K and K' on these two zigzag domain walls are 

kx = 2π/3a and kx = 2π/3a respectively. At the valley K, the edge state at SDW has a positive group velocity 

which is consistent with the valley Chern number difference of the higher bounding across the interface, i.e. 

Type-III Type-IV(K) (K) 1V VC C  . Whereas at the valley K', the group velocity becomes negative. 
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(a)  (b)  

(c)  

Figure 2.18: (a) Schematic of the proposed three-layers ribbon supercell constructed by sandwiching eight unit cells 

of type-IV PPnC in between two sets of six unit cells of type-III PPnC. (b) Antisymmetric dispersion curves of the 

ribbon supercell. (c) Eigenmode of the edge states (magenta and cyan branches) and locally resonant mode (black 

branch) at the wave vector kx = 0.5π/a. 

Thereafter, the propagation of the K-polarized edge state in the wave guide in figure 2.19(a) is studied. 

Type-III and type-IV PPnCs fill in the lower and upper regions respectively forming a SDW at the interface. 

A right-going wave at frequency 2.368MHz was launched by two phase-matched sources in the middle of 

the domain wall (red point). Figure 2.19(b) plots the out-of-plane displacement on the top surface of the 

plate. The edge state gets refracted at the right zigzag termination without any reflection which is guaranteed 

by the small space-inversion symmetry breaking strength and the valley conservation at the zigzag 

termination. Two refracted beams at the right outlet can be observed. Based on the relative position of the 

edge state and the refracted beams to the normal to the zigzag termination, they can be recognized as a 

positive one (on two sides of the normal) and a negative one (on the same side of the normal) respectively. 
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To interpret such refracted pattern, the equifrequency contours (EFCs) analysis is carried out as shown in 

figure 2.19(c). The edge states are locked to the valley K (three black dots) of the BZ (black solid line). The 

blue solid line represents the EFC of A0 Lamb wave at the same frequency in the plate. The cyan dashed 

lines depict the normal to the right outlet. Owing to the conservation of the component of the wave vector 

parallel to the right outlet, two refracted wave vectors are graphically obtained (blue bold arrows) which are 

in good agreement with the displacement fields in figure 2.19(c). As mentioned in Sec. 2.4.1, the position 

of the Dirac cones can be modulated by the height of the pillars. It suggests that the refractive angles of the 

two refracted beams can be judiciously tuned as depicted in figure 2.19(d). Both the refractive angles 

increase as the height of the pillars grows, especially the negatively refractive one that quickly reaches the 

maximum value (90) and then vanishes. To testify this, the height of the pillars was chosen to be hA = hB 

= H = 220μm. Upon the same diameter perturbation ΔdV = 10µm, the frequency of the K-polarized edge 

state decreases to 1.809MHz. The refraction pattern at the right zigzag outlet and the EFCs analysis are 

depicted in figure 2.19(e) and (f). Clearly, only one positively refracted A0 Lamb wave remains. 

From another point of view, owing to the time-reversal symmetry in the system, perfect coupling into the 

desired valley-polarized edge state can also be achieved by properly selecting an incident wave impinging 

from the surrounding plate to the zigzag termination. Depending on the height of the pillar, either one or 

two possible wave vectors is available. 

(a)  (b)  

(c)  (d)  
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(e)  (f)  

Figure 2.19: (a) Schematic of the straight wave guide constructed by placing type-III and type-IV PPnCs in the 

lower and upper regions respectively. (b) Plot of the out-of-plane displacement on the top surface of the plate under 

the excitation of the right-going edge state at frequency 2.368MHz that was launched in the middle. (c) EFCs 

analysis of the refracted pattern at the right zigzag termination. (d) Evolution of the refractive angles against the 

height of the pillars. (e) Plot of the out-of-plane displacement under the excitation right-going edge state at frequency 

1.809MHz with the height of the pillars set to be hA = hB = H = 220μm and the diameter perturbation ΔdV = 10µm. 

(f) Refracted pattern predicted by the EFCs analysis at frequency 1.809MHz. 

The interaction between the right-going K-polarized edge state and the armchair termination [see figure 

2.20(a)] is studied. Figure 2.20(b) plots the out-of-plane displacement field. Reflection at the right armchair 

outlet occurs owing to the breaking of the valley conservation. Thus, the left-going K'-polarized edge state 

is generated and gets refracted at the left outlet. More interestingly, three transmitted beams at the right 

outlet can be observed. This peculiar pattern can be well predicted by the EFCs analysis in figure 2.20(c). 

The blue bold wave vectors match the transmitted field very well. Besides, the EFC of A0 Lamb wave in 

the plate (blue solid circle) will shrink if the frequency of the valley-polarized edge state decreases. When 

it locates inside the BZ, then the inclined transmitted beams will disappear. To evidence that, the evolution 

of the inclined angle against the height of the pillars predicted by the EFCs analysis is computed and 

displayed in figure 2.20(d). It is found that the angle increases as the height of the pillars grows. When the 

height of the pillars grows to be hA = hB = H = 250µm, only one transmitted beam remains which contains 

all the transmitted elastic energy as demonstrated in figure 2.20(e). The excitation frequency is set to be 

1.651MHz. 

(a)  (b)  
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(c)  (d)  

(e)  

Figure 2.20: (a) Schematic of the straight wave guide constructed by placing type-III and type-IV PPnCs in the 

lower and upper regions respectively with the right termination set to be armchair type. (b) Plot of the out-of-plane 

displacement on the top surface of the plate understand the excitation of the right-going edge state at frequency 

2.368MHz that was launched in the middle. (c) EFCs analysis of the transmitted pattern at the right armchair outlet. 

(d) Evolution of the inclined angles against the height of the pillars. (e) Plot of the out-of-plane displacement under 

the excitation of the K-polarized edge state at frequency 1.651MHz with the height of the pillars set to be hA = hB = 

H = 250μm and the diameter perturbation ΔdV = 10µm. 

2.4.2.3 Valley-protected edge states of the symmetric dispersion curves 

Secondly, in this part, we are going to discuss the topologically valley-protected edge state associated with 

the symmetric Lamb modes. Figure 2.21 displays the symmetric dispersion curves of the ribbon supercell. 

Three newly branches appear in the reopened band gap. The eigenmodes of the magenta, the cyan and the 

black branches at the wave vector kx = 0.5π/a are shown in figure 2.21(b). As stated by the deformation in 

the eigenmodes, the magenta and cyan dotted lines represent the edge states occurring at SDW and LDW 

respectively whereas the black dotted line denotes the locally resonant mode at the bottom end where the 

pillars with large diameter are placed at the extreme end of the supercell. Besides, the adjacent pillars exhibit 

the symmetric deformation about the interface at SDW and the antisymmetric deformation about the 

interface at LDW. However, the edge states could not span the whole reopened band gap and leave a 

completely forbidden band in between 2.083MHz and 2.121MHz. 
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(a)  

(b)  

Figure 2.21: (a) Symmetric dispersion curves of the ribbon supercell. (b) Eigenmode of the edge states (magenta 

and cyan branches) and locally resonant mode (black branch) at the wave vector kx = 0.5π/a. 

As mentioned before, the original Dirac cone occurs in the deep subwavelength scale and the wavelengths 

of S0 and SH0 waves at the same frequency in the plate are much larger than the lattice constant. It will play 

an important role in understanding the abnormal wave patterns at the zigzag termination. The propagation 

of the topological edge state in the wave guide in figure 2.20(a) is analyzed. A K'-polarized left-going wave 

at frequency 2.042MHz was launched in the middle of the domain wall. The magnitude of the in-plane 

displacement and the out-of-plane displacement on the top surface of the plate are displayed in the left and 

right panels of figure 2.22(a) respectively. In the left panel, the black arrows render its polarization that 

reveals its SH polarized feature. The edge state turns downwards and mostly remains localized at the zigzag 

outlet, even though some elastic energy spreads across the plate and a small portion propagates along the 

bottom interface. In the right panel, similar phenomenon can be observed. Most of the energy is localized 

at the interface. More interestingly, a circular shape wave field occurs in the plate that suggests the 

topologically protected edge state actually performs as point sources at the end of the wave guide. 
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The EFCs analysis depicted in figure 2.22(c) can help to interpret the wave pattern in the outer plate. The 

red and green solid lines are the EFCs for S0 and SH0 modes in the plate at the same frequency. The edge 

state is locked to the valley K' (three black dots) of the BZ (black solid line). Owing to the extremely small 

wave vector of S0 and SH0 waves in the plate, the refracted wave vector becomes imaginary and therefore 

the refracted wave would turn to be evanescent. However, at the zigzag outlet interface, due to the coupling 

with the locally resonant mode occurring at the edge ending with pillars having a large diameter [see the 

zoomed view of the left bottom corner in figure 2.22(d)], the evanescent wave is strongly enhanced. In 

contrast, there is no vibration enhancement if the resonant pillars (highlighted in blue in the zoomed view) 

are removed as shown in figure 2.22(b). This well explains that the magnitude at the bottom interface is 

nearly zero. 

From another point of view, the extremely small group velocity at the original Dirac cone can lead the edge 

states to attenuate very quickly into the neighboring PPnCs according to the decay factor derived in Ref. 

[42]. Therefore, the edge state would be strongly localized around the domain wall. When compared to the 

much larger wavelengths in the plate, it can be well understood that the edge state should function as point 

sources when it arrives at the end of the domain wall and the interference of the wave fields generated by 

these neighboring point sources contributes to the different wave patterns in the plate. Therefore, it can be 

stated in the deep subwavelength scale that the valley-protected edge state can convert to the evanescent 

wave and also behaves as point sources when it arrives the end of the domain wall. 

(a)   
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(b)   

(c)  (d)  

Figure 2.22: Plots of the magnitude of the in-plane displacement (left panel) and the out-of-plane displacement (right 

panel) on the top surface of the plate under the excitation of the left-going K'-polarized edge state at frequency 

2.042MHz that was launched in the middle (a) with and (b) without the resonant pillars. (c) EFCs analysis of the 

refracted pattern at the left zigzag termination. (d) Zoomed view of the left bottom corner in (a) and (b). 

Considering the time-reversal symmetry in the system, the evanescent wave propagating at the interface 

might be capable to convert to the topological edge state. A point source is placed at the bottom interface 

and a z-polarized harmonic force at frequency 2.042MHz is applied, thus can generate the evanescent wave 

propagating along the interface. The left and right panels in figure 2.23 display the magnitude of the in-

plane displacement and the out-of-plane displacement respectively. In both panels, the evanescent wave 

localized at the interface turns upwards and couples to the right-going K-polarized edge state which provides 

a fascinating way to collect the evanescent wave. 
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Figure 2.23: Plots of the magnitude of the in-plane displacement (left panel) and the out-of-plane displacement (right 

panel) on the top surface of the plate under the excitation of a z-polarized point source at the bottom interface. 

In the following, the interaction between the K'-polarized edge state and the armchair termination is 

presented. Figure 2.24(a) plots the magnitude of the in-plane displacement and the out-of-plane 

displacement respectively. Even though the valley conservation at the left outlet is broken, most of the 

elastic energy gets transmitted directly regardless of the large impedance mismatch. Figure 2.24(b) and (c) 

show the transmitted pattern predicted by the EFCs analysis with the transmitted wave assumed to be SH0 

and S0 modes separately. For each Lamb mode, only one transmitted beam can be obtained. However, the 

transmitted SH0 mode would not occur because it is against the symmetry of the displacement field about 

the domain wall due to its specific polarization. It can be evidenced by the horizontal polarization vectors 

in the left panel of Figure 2.24(a). Moreover, the transmitted wave has almost a circular shape profile which 

is quietly different from the transmitted field of A0 Lamb mode displayed in figure 2.20(b). It can be well 

explained by considering that the edge state acts at points sources [see the energy spots at the outlet in the 

left panel of figure 2.24(a)] once arriving at the armchair termination. 

(a)   
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(b)  (c)  

Figure 2.24: (a) Plots of the magnitude of the in-plane displacement (left panel) and the out-of-plane displacement 

(right panel) under the excitation of the K'-polarized edge state at frequency 2.042MHz. EFCs analysis of the 

transmitted pattern at the left armchair outlet with the transmitted wave assumed to be (b) SH0 and (c) S0 Lamb 

mode respectively. 

As discussed above, the valley-polarized edge state cannot be refracted at the zigzag termination owing to 

the extremely small wave vector in the surrounding plate that might potentially restrict its practical 

application. To deal with this issue, one needs to increase the frequency of the edge state and ensure its 

occurrence in the high frequency regime. Here, we consider another configuration with the height of the 

pillars set to be hA = hB = D = 80μm. The band structure is already displayed in figure 2.14(a) where a 

second Dirac cone formed by the symmetric branches occurs at frequency 5.916MHz. After imposing the 

same diameter perturbation ΔdV = 10µm (type-V), the higher Dirac cone gets lifted in figure 2.25(a) which 

leads to a nontrivial band gap ranging from 5.746MHz to 6.096MHz. Then, the juxtaposition with its 

inverted counterpart ΔdV = −10µm (type-VI) allows for the occurrence of the topologically valley-protected 

edge state at the domain walls. To verify that, we consider a three-layers ribbon supercell by replacing type-

III and type-IV PPnCs in figure 2.18(a) with type-V and type-VI PPnCs respectively. Figure 2.25(b) depicts 

the symmetric dispersion curves. Two topologically protected edge states labelled as the magenta and cyan 

dotted lines occur at SDW and LDW respectively and the black dotted line denotes the locally resonant 

mode at the top end where the pillars with decreased diameter are placed at the extreme end of the supercell. 

The eigenmodes of the edge states and the localized mode at the wave vector kx = 0.5π/a are illustrated in 

figure 2.25(c). It can be seen that the localized deformation is the mixture of the symmetric bending and 

torsion. Moreover, the localized elastic field is symmetric about the interface at SDW, whereas 

antisymmetric about the interface at LDW. It also suggests that an incident S0 Lamb wave can propagate at 

SDW where an incident SH0 wave will be totally reflected at the inlet. In contrast, the propagation of S0 

Lamb wave is forbidden at LDW and an incident SH0 mode becomes propagative. 
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(a)  (b)  

(c)  

Figure 2.25: (a) Band structure of the perturbed PPnC with the diameter perturbation ΔdV = 10µm. (b) Symmetric 

dispersion curves of the ribbon supercell. (c) Eigenmodes of the edge states (magenta and cyan branches) and the 

locally resonant mode (black branch) at the wave vector kx = 0.5π/a. 

Considering the straight wave guide in figure 2.26(a) built by placing type-V and type-VI PPnCs in the 

lower and upper regions, thus it constructs a SDW at the interface. Both the left and right outlets are set to 

be zigzag type. Then, the propagation of the right-going K-polarized edge state at frequency 5.909MHz at 

the domain wall is studied. Figure 2.26(a) displays the in-plane displacement components ux and uy in the 

left and right panels respectively. In the left panel, two refracted beams can be observed. While in the right 

panel, it only contains one positively refracted wave. After that, we perform the EFCs analysis of the 

refraction at the right zigzag outlets and the results are shown in figure 2.26(b). Firstly, we assume the 

refracted wave to be only S0 Lamb wave (see the left panel). A positively refracted S0 Lamb mode (48) 

occurs and denoted by the red bold arrow. Secondly, the refracted wave is assumed to be SH0 wave. Both 

the positively (26.2) and negatively (62) refracted beams (green bold arrows) emerge as displayed in the 

right panel. Further, two-dimensional Fourier transform of the in-plane displacement components ux and uy 
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inside the red dashed rectangle sketched in figure 2.26(a) is performed to verify the above analysis and 

presented in figure 2.26(c). In the left panel, the positively refracted S0 Lamb mode and the negatively 

refracted SH0 mode occur. And in the right panel, the positively refracted SH0 mode appears. Both the 

refractive angles are consistent with the results predicted by the EFCs analysis (red and green dashed lines). 

(a)   

(b)   

(c)   

Figure 2.26: (a) Plots of the in-plane displacement components ux (left panel) and uy (right panel) on the top surface 

of the plate under the excitation of the right-going K-polarized edge state at frequency 5.909MHz. (b) EFCs analysis 

of the refraction at the right zigzag outlet with the refracted wave assumed to be only S0 (left panel) and SH0 (right 

panel) Lamb waves respectively. (c) Two-dimensional Fourier transform of the in-plane displacement components 

ux (left panel) and uy (right panel) shown in the red rectangle in (a). 

Figure 2.27(a) plots the magnitude of the in-plane displacement and the out-of-plane displacement on the 

top surface of the plate when the K'-polarized left-going edge state at frequency 5.909MHz impinging on 
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the armchair termination. In the left panel, two main transmitted wave occurs in the plate which are mainly 

SH polarized. According to the EFCs analysis shown in figure 2.27(b), it consists of three transmitted SH0 

beams. Actually, only two inclined SH0 modes will exist in the transmitted field and the one along the 

negative x-axis will not occur because it violates the symmetry of the displacement field about the domain 

wall. The inconsistency of the inclined angle can be attributed to the superposition with S0 Lamb mode. In 

the right panel of figure 2.27(a), the out-of-plane displacement of the transmitted field exhibits three 

transmitted S0 beams. As predicted by the EFCs analysis in figure 2.27(c), only one S0 Lamb wave could 

exist. It is suggested that the other two beams might come from the interference of the point sources at the 

armchair outlet. To support this assumption, we consider three point sources with the interval 600µm 

symmetrically arranged at the end of the domain wall. The superposition of the generated wave field by 

these point sources is plotted in figure 2.27(d) that shows the similar profile with the one in the right panel 

of figure 2.27(a). At this point, it confirms with the previous conclusion that in the subwavelength scale the 

edge state performs as point sources at the outlet termination. 

(a)   

(b)  (c)  
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(d)  

Figure 2.27: (a) Plots of the out-of-plane displacement (left panel) and the magnitude of the in-plane displacement 

(right panel) under the excitation of the K'-polarized edge state at frequency 5.909MHz. EFCs analysis of the 

transmitted pattern at the left outlet with the transmitted wave assumed to be (b) S0 and (c) SH0 mode respectively. 

(d) Generated wave field by assuming three point sources separated by 600µm at the interface. 

2.4.3 Emulating QSHE 

2.4.3.1 Topological phase transition 

The proximity of the Dirac cones of the symmetric and antisymmetric band structure subcomponents in 

figure 2.14 suggests that they might overlap if the dimensions of the unit cell are properly designed, giving 

rise to a double Dirac cone and then to emulate QSHE. This is indeed the case when dA = dB = dC = dD = D 

= 80μm, hA = hB = hC = hD = H = 153.6μm, dH = 320μm, and e = 70μm. The band structure is shown in 

figure 2.28(a). The double Dirac cone occurs at frequency 1.781MHz. As well known, to emulate QSHE, 

one needs to break the mirror-symmetry about the mid-plane of the plate. To achieve that, we impose the 

perturbation in the height of the pillars with hA = hD = H + ΔhS and hB = hC = H  ΔhS. Then, the double 

Dirac cone is lifted and the symmetric and antisymmetric modes hybridize near the original double Dirac 

cone which can introduce the spin-orbit coupling interaction. Within this framework, the in-phase and out-

of-phase hybridization can be adopted as the effective pseudospin up and down states respectively [33]. The 

band structure for ΔhS = 3µm (type-VII) is displayed in figure 2.28(b). The double Dirac cone splits into 

two single ones and a nontrivial complete band gap reopens in between 1.763MHz and 1.82MHz. 

Furthermore, the comparison with figure 2.28(a) reveals that the lower (upper) Dirac cone combines the 

lower (upper) symmetric and antisymmetric modes. Figure 2.28(b) and (d) illustrate the eigenmodes at the 

lower and higher Dirac cones which confirms the pairwise hybridization. Thereafter, the Berry curvature of 

the four constituent four branches of the original double Dirac cones in the vicinity of the valley K is 

numerical evaluated and shown in figure 2.29(a)-(d). It is found that the Berry curvature is strongly localized 

around the valley K which is quietly different from the broad distribution in figure 2.7 and figure 2.17. The 
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large separation between the opposite valleys can be always ensured in this situation that makes the 

corresponding topological edge states much more robust. By integrating the Berry curvature over the valley 

sectors, the spin Chern number converges theoretically to be (K/K') 1 2SC  . When the height perturbation 

is changed to ΔhS = 3µm (type-VIII), the spin Chern number will turn to be (K/K') 1 2SC   . 

(a)  (b)  

(c)  (d)  

Figure 2.28: (a) Occurrence of the double Dirac cone. (b) Lifting of the double Dirac cone after imposing the height 

perturbation ΔhS = 3µm. Eigenmodes at the (c) lower and (d) higher Dirac cones respectively. 

(a)  (b)  
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(c)  (d)  

Figure 2.29: Distribution of the Berry curvature of the four constituent branches [from (a) to (d)] of the original 

double Dirac cone in the vicinity of the valley K. For each Dirac cone, the constituent branches have the opposite 

sign of the Berry curvature. 

2.4.3.2 Pseudospin-protected edge states 

To investigate the topologically pseudospin-protected edge state, we build a two-layers ribbon supercell as 

displayed in figure 2.30(a) constructed by juxtaposing ten unit cells of type-VII PPnC and ten unit cells of 

type-VIII PPnC vertically. According to the bulk-edge correspondence principle, the spin Chern number 

difference 1 across the interface ensures the occurrence of the topologically protected edge states at DW1. 

Applying periodic conditions along the x-axis, the dispersion curves are numerically obtained and displayed 

in figure 2.30(b). Four pseudospin-locked edge states appear in the reopened band gap, namely a forward 

pseudospin down (↓) pair (cyan) and a backward pseudospin up (↑) pair (magenta). Figure 2.30(c) illustrates 

the eigenmodes of the magenta and cyan dotted line at the wave vector kx = 0.5π/a. For each mode, the 

elastic deformation is localized around the domain wall. Especially, for the magenta branch, the 

displacement field is almost symmetric about the interface. In addition, it should be pointed out that when 

inverting the positions of type-VII and type-VIII PPnCs, the profiles of the topological edge states would 

keep the same, however, their associated pseudospin states are inverted. 

In what follows, we are going to discuss the propagation of the pseudospin-protected edge states in the 

straight wave guide featuring a DW1 at the interface, built by placing type-VII and type-VIII PPnCs in the 

lower and upper regions. Two phase-matched z-polarized forces at frequency 1.782MHz are set in the 

middle of the domain wall to launch the K-polarized pseudospin-protected edge states. Figure 2.30(d) 

presents the out-of-plane displacement on the top surface of the plate. Both the left-going (pseudospin up) 

and right-going (pseudospin down) waves are generated, which is consistent with the two available edge 

states (pseudospin up state with negative group velocity and pseudospin down state with positive group 

velocity) at the valley K. The refracted patterns at the left and right zigzag outlets predicted by the EFCs 
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analysis are depicted in figure 2.30(e) and (f) respectively. Because S0 (red) and SH0 (green) Lamb modes 

in the plate at the same frequency have extremely small wave vectors, the edge state can only undergo 

refraction into A0 Lamb modes (blue bold arrows). At the left zigzag outlet, it exists a negatively refracted 

beam (29.3) and a positively refracted beam (78.2). At the right zigzag termination, two refracted beams 

still exist and their refractive angles are inverted, i.e. 29.3 for the positively refracted one and 78.2 for the 

negatively refracted one. Both prediction is in very good agreement with the out-of-plane displacement 

fields at the left and right outlets. 

(a)  (b)  

(c)  (d)  
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(e)  (f)  

Figure 2.30: (a) Schematic of the proposed two-layers ribbon supercell constructed by juxtaposing ten unit cells of 

type-VIII PPnC and ten unit cells of type-VII PPnC vertically. (b) Dispersion curves of the ribbon supercell. (c) 

Eigenmodes of the magenta and cyan branches at the wave vector kx = 0.5π/a. (d) Plot of the out-of-plane 

displacement on the top surface of the plate under the excitation of the K-polarized pseudospin-protected edge states 

at frequency 1.782MHz. EFCs analysis of the refracted patterns at the (e) left and (f) right zigzag terminations. 

2.4.4 Pseudospin-valley combined edge states 

As discussed in Sec. 2.4.2 and 2.4.3, depending on the perturbation imposed on the diameter or the height 

of the pillars, reserving or breaking the mirror-symmetry about the mid-plane of the plate, the proposed 

symmetric double-sided PPnC may emulate either QVHE or QSHE. Therefore, it provides a unique 

opportunity to investigate the pseudospin-valley combined edge state that utilizes both the pseudospin and 

valley degrees of freedom to control the wave propagation. Then, the propagation of the topologically 

protected edge states will depend on both the valley and pseudospin states unlike the valley-dependent 

propagation in Sec. 2.4.2 and the pseudospin-locked propagation in Sec. 2.4.3. To ensure the occurrence of 

the topological pseudospin-valley combined edge states, the two-layers ribbon supercell in figure 2.31(a) 

built by juxtaposing ten unit cells of type-VIII PPnC and ten unit cells of type-IX PPnC vertically is 

developed. Regarding the bottom layer, the height of the pillars was initially chosen to be hA = hB = hC = hD 

= H = 152.5µm. The diameter perturbation ΔdV = −4µm (type-IX) is imposed on the ten unit cells to mimic 

QVHE. With regard to the top layer, it consists of ten unit cells with the height perturbation ΔhS = −3µm 

(type-VIII) to simulate QSHE. The dispersion curves of the ribbon supercell are shown in figure 2.31(b). 

Remembering that the projection of the valleys K and K' on the zigzag domain wall is kx = −2π/3a and kx = 

2π/3a respectively. At the valley K, the valley Chern number of type-IX PPnC is (K) 1 2VC    and the 

spin Chern number of type-VIII PPnC is (K) 1 2SC   . Therefore, the magenta dotted line denotes a 

backward pseudospin up edge state at DW2 due to the Chern numbers difference across the interface 

(K) (K) 1S VC C    . Equally, at the valley K', the cyan dotted line represents a forward pseudospin down 

edge state occurring at the same domain wall. Therefore, the propagation of the edge states will depend on 

both the pseudospin and valley states. Besides, the grey dotted lines in the reopened band gap represent the 
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localized modes at the bottom end of the supercell. And the eigenmodes of the grey and cyan branches at 

the wave vector kx = 2π/3a are illustrated in figure 2.31(c) that unambiguously reveals the localized elastic 

energy. 

(a)  (b)  

(c)  

Figure 2.31: (a) Schematic of the proposed two-layers ribbon supercell constructed by juxtaposing ten unit cells of 

type-VIII PPnC and ten unit cells of type-IX PPnC vertically. (b) Dispersion curves of the ribbon supercell. (c) 

Eigenmodes of the grey and cyan branches at the wave vector kx = 2π/3a. 

Except that, we now consider another two-layers ribbon supercell constructed by juxtaposing PPnCs with 

the height perturbation ΔhS = 3µm (type-VII) and the diameter perturbation ΔdV = −4µm (type-IX) 

horizontally as shown in figure 2.32(a). Periodic condition along the y-axis is applied. The corresponding 

dispersion curves are displayed in figure 2.32(b). The eigenmodes of the cyan and grey branches at the wave 

vector ky = 2π/3a are illustrated in figure 2.32(c) which feature the localized resonant mode at the right end 

of the ribbon supercell and the topological edge state respectively. We mention that the projection of the 

valleys K and K' on this zigzag domain wall changes to ky = 2π/3a and ky = −2π/3a respectively. At the 

valley K', the valley Chern number of type-IX PPnC is (K') 1 2VC   and the spin Chern number of type-VII 
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PPnC is (K') 1 2SC  . The Chern numbers difference is (K') (K') 1V SC C    ensuring that a forward spin-

up edge state (magenta) occurs at the valley K' at DW3. Analogously, a backward spin-down edge state 

(cyan) exists at the valley K. 

(a)  (b)  

(c)  

Figure 2.32: (a) Schematic of the proposed two-layers ribbon supercell constructed by juxtaposing ten unit cells of 

type-VII PPnC and ten unit cells of type-IX PPnC horizontally. (b) Dispersion curves of the ribbon supercell. (c) 

Eigenmodes of the cyan (top panel) and grey (bottom panel) branches at kx = 2π/3a. 

As demonstrated before, the propagation of the topological pseudospin down edge state at DW2 and DW3 

depends on the specific valley. Therefore, the wave propagation path of the pseudospin down edge state at 

the intersection between DW2 and DW3 will be further decided by the associated valley. Figure 2.33(a) 

exhibits a T-shaped wave guide that assembles three different domain walls together, namely DW1, DW2 

and DW3. As demonstrated in figure 2.30(b), at DW1, the pseudospin down edge state associated with 

either the valley K or K' can propagate, referred as (K/K') . In comparison, at DW2, the pseudospin down 

edge state becomes propagative when it is locked to the valley K', referred as (K') . Instead, it is associated 

with the valley K at DW3, denoted as (K) . Therefore, the valley based selection of the pseudospin down 

edge state should be expected at the junction. It is mentioned that the parameters for the perturbed PPnCs 

constructing the T-shaped wave guide is specifically designed to ensure the frequency of the topological 

edge state at the valleys occurring at the same frequency. 
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To confirm valley based path selection at the junction of three domain walls, the pseudospin protected edge 

states at frequency 1.782MHz associated with the valley K was selectively excited by two phase-matched 

sources placed in the middle of DW1. Figure 2.33(b) plots the out-of-plane displacement field on the top 

surface of the plate. At DW1, the pseudospin up edge state with negative group velocity is excited that 

propagates along the negative x-axis. And the pseudospin down edge state is simultaneously generated that 

possess positive group velocity, propagating along the positive x-axis. Upon encountering the junction, the 

pseudospin down edge state turns downwards and continues to propagate at DW3 owing to the conservation 

of the valley K. After that, by tuning the sources, we lock the wave vector to the valley K'. The distribution 

of the out-of-plane displacement is displayed in figure 2.33(c). The right-going pseudospin down edge state 

now only propagates at DW2 which is in good agreement with the theoretical prediction. Unambiguously, 

the proposed T-shaped wave guide allows for the valley based splitting of the pseudospin down edge states. 

Moreover, the pseudospin up edge states propagating at DW1 can also split by designing a similar T-shaped 

wave guide. 

(a)  

(b)  (c)  

Figure 2.33: (a) Schematic of the T-shaped wave guide and the valley based splitting of the pseudospin down edge 

states. Plots of the out-of-plane displacement on the top surface of the plate while the pseudospin-protected edge 

states are locked to the valley (b) K and (c) K' respectively. 

2.5 Conclusion 

In this chapter, we have presented the realization of the topological transport of Lamb waves in both the 

asymmetric and symmetric double-sided PPnCs. Three different topological edge states, namely the valley-
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protected, the pseudospin-protected and the pseudospin-valley combined, at different domain walls have 

been demonstrated. The interaction between the edge states and the zigzag or armchair terminations is 

analyzed in details, including the refracted and transmitted patterns. 

In the asymmetric double-sided PPnC configuration, we extend our previous work about the double-

negative branch in a square lattice pillared metamaterial. We have demonstrated that the mechanism also 

applies to the triangular lattice arrangement. Then, by transforming the triangular lattice to a honeycomb 

lattice design, the double-negative branch can be artificially folded to create a single Dirac cone. The 

constituent branches of the Dirac cone exhibit divergent polarization-dependent propagation behaviors 

along the primary directions of the BZ. When imposing the space-inversion symmetry breaking perturbation, 

the topological phase transition emulating QVHE is introduced. The Berry curvature around the valleys was 

numerically obtained. We show that the Berry curvature becomes strongly anisotropic when the wave vector 

gets far away from the valleys. Besides, we study the propagation of the topological edge states in different 

wave guides featuring two kinds of domain walls. At one domain wall, an incident A0 (S0) Lamb wave can 

propagate while the propagation of an incident SH0 wave is forbidden. At the other domain wall, the contrary 

phenomena are observed. Except that, two large space-inversion symmetry breaking cases are taken into 

consideration. We show that in the case with gapless edge states the suppression of the inter-valley scattering 

at the zigzag termination can be achieved whereas weak inter-valley scattering occurs at the bending corners. 

In the other case with gapped edge states, strong reflection at both the zigzag termination and bending 

corners are observed which indicates that the topological protection is no longer guaranteed. 

In the symmetric double-sided PPnC configuration, thanks to the mirror-symmetry about mid-plane of the 

plate, the symmetric and antisymmetric modes can be well decoupled which allows to investigate their 

topological features independently. By the judiciously choosing the height of the pillars, the Dirac cone can 

occur in the deep subwavelength scale or at the high frequency regime and even a double Dirac cone can be 

achieved. By perturbing the diameter or the height of the pillars while reserving the mirror-symmetry about 

the mid-plane of the plate, the topological phase transition emulating QVHE can be introduced. We show 

that the antisymmetric band structure subcomponent is more sensitive to the diameter perturbation and less 

sensitive to the height perturbation. Afterwards, we firstly investigate the topological edge states of the 

antisymmetric dispersion curves. It is found that the valley-polarized edge states can refracted into one or 

two A0 Lamb waves at the zigzag outlet and one or three A0 beams at the armchair termination depending 

on the height of the pillars. Secondly, we study the topological edge states of the symmetric dispersion 

curves. When occurring in the deep subwavelength scale, the valley-polarized edge state turns to be 

evanescent when propagating along the zigzag outlet and can be enhanced by the locally resonant modes. 

When arriving at the end of the domain wall, owing to the huge different between the wavelength and the 
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lattice constant, the topological edge state can behave as point sources whose interference results in the 

circular shape transmitted wave. After that, to ensure occurrence of the refraction at the zigzag termination, 

we reduce the height of the pillars that leads to a second Dirac cone occurring at the high frequency regime. 

The corresponding valley-polarized edge state can be refracted both positively and negatively. The 

negatively refracted beam only consists of SH0 mode whereas the positively refracted beam is the 

combination of S0 and SH0 modes. Subsequently, we optimize the parameters of the unit cell to overlap the 

Dirac cones created respectively by the symmetric and antisymmetric modes to obtain a double Dirac cone. 

Then, by imposing perturbation on the height of the pillars, breaking the mirror-symmetry about the mid-

plane of the plate, the topological phase transition emulating QSHE can be involved. And the propagation 

of the valley-polarized pseudospin-protected edge states is studied. Finally, we adopt both the pseudospin 

and valley degrees of freedom to investigate the pseudospin-valley combined edge state at the domain wall 

constructed by two topological distinct PPnCs each supporting QVHE and QSHE respectively. We evidence 

the valley-dependent feature of the pseudospin-valley combined edge states. Based on this property, we 

demonstrate the valley based splitting of the pseudospin down edge states in a T-shaped wave guide. 
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Chapter 3 

3 Active control of transmission through a line of pillars 

3.1 Introduction 

As discussed in the previous two chapters, we provide two practical approaches in both the double-sided 

pillared metamaterials and the double-sided pillared phononic crystals to manipulate the propagation of 

Lamb waves in the plate. The first one can realize the negative refraction and acoustic cloaking in the 

subwavelength scale and polarization filtering which can be attributed to the occurrence of the doubly 

negative property contributed by the bending, the compressional and the torsional resonances of the pillars. 

The second one achieves the topologically protected transport in the wave guides built by two topologically 

distinct pillared systems. In both configurations the control of Lamb waves occurs in a very narrow 

frequency interval and the wave propagation behavior at a single frequency can be well designed, thus they 

are suitable for the predefined applications. However, regarding the quest for the time-dependent wave 

propagation modulation, these passive configurations are inefficient. 

To overcome this difficulty, researchers resorted to the active metamaterials or phononic crystals. In these 

configurations, the external force originating from the electrical and/or mechanical devices is introduced 

which can receive the external information and make the timely response to modulate the propagating waves 

immediately. For example, Baz [47] proposed a one-dimensional active acoustic metamaterial with the 

programmable effective mass densities. It consists of an array of periodic fluid cavities separated by 

piezoelectric diaphragms that can be controlled to generate the constant mass densities over wide frequency 

intervals. By applying passive electric components, the effective mass densities can be orders of magnitudes 

lower or higher than the fluid medium. Acoustic cloaks can be implemented physically and objects treated 

with these active metamaterials can become acoustically invisible. Very recently, Baz [168] developed a 

disturbance rejection control strategy to achieve a closed-loop control of the effective mass density while 

rejecting the impact of the wave pressure disturbances. Popa et al. [48] described and experimentally 

demonstrated a systematic approach to design active acoustic metamaterials whose effective properties can 

be modulated independently in a wide range. The design consists of two transducers and an electronic circuit. 

The role of one transducer is to sense the pressure wave incident on the metamaterial. The other one is 

introduced to regenerate the acoustic response. These two transducers are connected by an electronic circuit 

which manages the electric signal produced by the first transducer and then drives the second one according 
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to the desired effective parameters. The active acoustic metamaterial can achieve not only the negative 

effective mass density, the non-unity bulk modulus and the negative refraction with tunable gain and 

absorption but also the non-reciprocal wave propagation [49,169]. Xiao et al. [170] proposed a membrane-

type acoustic metamaterial which can be easily controlled by an external voltage. It employs a metal-coated 

central platelet and a rigid mesh electrode which is transparent to acoustic wave. It shows that DC voltage 

can modulate the resonant frequencies and tune the phase of the transmitted wave serving as an active phase 

modulator and AC voltage can provide an extra vibration that can act as an acoustic switch. Chen et al. [171] 

presented a tunable acoustic metamaterial, consisting of periodic membranes and side holes, featuring the 

doubly negative property. The tension and stiffness of the membranes are actively controlled by 

electromagnets that produces additional stresses, thus leading to the adjustable transmission and phase 

velocity. It is found that a tiny DC voltage can arise a significant shift of the double-negative pass band. 

Ning et al. [50] proposed an active system consisting of symmetric double Helmholtz cavities. The structure 

shows controllable effective bulk modulus, especially a negative value over a wide frequency interval, by 

changing external voltage with different piezoelectric diaphragm stiffness. The multilayered cloak can be 

achieved by implementing the active control on corresponding unit cells to exhibit desired distribution of 

the effective bulk modulus. 

In the aforementioned configurations, the effective properties, including the negative effective mass density, 

the negative effective bulk modulus, the doubly negative property and the transmission can be effectively 

controlled by involving the external fields. Inspired by these, we attempt to introduce external sources into 

the pillared resonators to actively control the transmission of incident Lamb waves propagating through the 

pillared metamaterials. As mentioned before, the pillared resonator features the bending, the compressional 

and the torsional resonances. All these resonant frequencies can be independently tuned through a proper 

choice of the height and/or the diameter. Moreover, in some specific situation, the bending and the 

compressional modes can superimpose at the same frequency. 

By analyzing the scattered Lamb waves by a line of pillars at resonance in Ref. [82], it has been shown that 

the transmitted wave in the far field can be considered as the superposition of the incident Lamb wave and 

the reemitted Lamb wave generated by the line of resonators. What’s more, the transmission spectrum is 

quietly different depending on whether the bending resonance and the compressional resonance occur at the 

same frequency or not. When these two modes occur at different frequencies, two transmission dips would 

be formed, and even go to zero. This can be ascribed to the destructive interferences between the incident 

Lamb wave and the π-phase-shift reemitted Lamb wave, both having comparable amplitudes. In comparison, 

the amplitude of the reemitted Lamb wave increases significantly when the bending mode and the 

compressional mode occur at the same frequency. In that case, even though there is still a π-phase-shift 
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between the incident and reemitted Lamb waves, transmission of a substantial part of the elastic energy 

becomes possible. 

In this chapter, we go a step further. We used numerical simulations to investigate the control over the 

transmission of an incident A0 Lamb wave propagating through a line of pillars close to the resonance, with 

an external force applied on the top. The chapter is organized as follows. In Sec. 3.2, we identify the 

eigenmodes of the line of pillars by calculating the transmission spectrum and discuss the coupling between 

the neighboring pillars by comparing to the pillared metamaterials. After that, the properties of the reemitted 

Lamb wave generated by the line of pillars around the resonances are studied in Sec. 3.3. Two different 

lines of pillars with the bending resonance and the compressional resonance separated and superimposed 

are taken into consideration. Further, in Sec. 3.4, by employing external force applied on the top ends of the 

pillar resonators, we study the evolution of the transmission coefficients against the magnitude and phase 

of the external source. Both the traction force parallel to the top ends and pressure normal to the top ends 

are discussed. Their efficiency in modulating the transmission coefficient is evaluated. Finally, it ends with 

the general conclusion in Sec. 3.5. 

3.2 Eigenmodes of a line of pillars 

In this section, we investigate the transmission spectrum of an incident A0 Lamb wave propagating through 

a line of pillars. In this way, the locally resonant modes of the line of pillars can be recognized owing to the 

dips occurring in the transmission spectrum. The finite element model we used is described in figure 3.1(a). 

The diameter and the height of the pillar were set to be d = 50µm and h = 245µm respectively. The line of 

pillars is infinite along the x-axis and the repeat distance a = 200µm is modeled by applying periodic 

conditions along the x-axis. The thickness of the plate was set to be e = 145µm. Perfectly match layers 

(PMLs) are arranged at two ends in order to eliminate the waves reflected by the boundaries. Both the pillars 

and the plate are assumed to be made of silicon. The elastic constants are C11 = 166GPa, C12 = 64GPa and 

C44 = 79.6GPa and the mass density is  = 2330kg/m3. 

Subsequently, an incident A0 Lamb wave was excited 1000µm away from the left side of the line of pillars 

by applying z-axis polarized pressure on the plate. The out-of-plane displacement is recorded at a distance 

of 500µm downstream the line of pillars. Then, the transmission spectrum can be computed by normalizing 

the out-of-plane displacement to the one in a reference model without pillars and displayed in figure 3.1(b). 

It can be seen that three sharp transmission dips appear. Each of them relates to a specific resonant mode 

that can be unambiguously identified owing to the associated displacement field depicted in figure 3.1(d). 

Obviously, the first one at frequency 0.8MHz is the first-order bending resonance, hereafter referred as B1. 

The second one corresponds to the second-order bending resonance (B2) at frequency 4.66MHz. And the 
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third one represents the first-order compressional resonance at frequency 7.24MHz denoted as C1. In 

comparison, the transmission coefficient at the compressional resonance C1 is much lower than the ones at 

the bending resonances B1 and B2. It might be ascribed to the perfect coupling between the compressional 

mode and the incident A0 Lamb wave that features the out-of-plane polarization. It can also be explained 

from another point of view that will be discussed in the following. It should also be noticed that the 

transmission coefficient at the compressional resonance C1 is very small, but it is nonzero. 

Compared to the pillared metamaterials or the phononic crystals discussed in the previous two chapters, the 

geometrical difference lies in that the line of pillars investigated in this chapter contains only one unit cell 

along the y-axis. Therefore, the coupling effect between the neighboring pillars along the y-axis no longer 

exists. Figure 3.1(d) shows the band structure of a square lattice pillared metamaterial built by the same 

pillar displayed in figure 3.1(a). The lattice constant is set to be 200µm. As discussed before, the flat 

dispersion curves denote the resonances of the pillars. For the bending resonances B1 and B2, they occur at 

frequencies 0.8MHz and 4.6MHz respectively that are in very good agreement with the first and second 

transmission dips depicted in figure 3.1(b). Obviously, for the bending resonances, the influence of the 

coupling between the neighboring pillars on the resonant frequencies can be neglected which might be 

related to the huge difference between the wavelengths of S0 Lamb wave (9735µm at frequency 0.8MHz 

and 1690µm at frequency 4.6MHz) propagating in the plate at the same frequency and the lattice constant. 

For the compressional resonance C1, it occurs at frequency 6.91MHz that has a 4.56% discrepancy from 

the frequency at the third transmission dip which suggest that the coupling between the neighboring pillars 

may affect the eigenfrequency. It should be mentioned here that the wavelength of A0 Lamb wave (468µm) 

propagating in the plate at the same frequency is the same order of magnitude as the lattice constant. 

(a)  
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(b)  (d)  

(c)  

Figure 3.1: (a) Proposed finite element model and (b) transmission spectrum of an incident A0 Lamb wave 

propagating through the line of pillars. (c) Normalized displacement fields of the line of pillars at the three 

transmission dips. (d) Band structure of a square lattice pillared metamaterial built by the same pillar shown in (a) 

with lattice constant set to be 200µm. 

As mentioned in Ref. [82], the frequencies of both bending modes strongly depend on the diameter of the 

pillar but it is less sensitive to its height. Especially, the eigenfrequency of the bending resonance B2 

increases much quickly than the one of the bending resonance B1 while the diameter of the pillar grows. As 

for the compressional resonance C1, the height of the pillar has a more significant impact than the diameter. 

Therefore, it can be speculated that the bending resonance B2 and the compressional resonance C1 can 

occur at the same frequency by properly selecting the height or the diameter of the pillar. Figure 3.2(a) 

depicts the evolution of the transmission spectra of an incident A0 Lamb wave against the diameter of the 

line of pillars. Three different configurations are taken into consideration, namely 80µm, 100µm and 120µm 

represented by the black, the red and the blue solid lines respectively. It can be seen that the transmission 

dips generated by the bending resonance B1 shifts slightly and the transmission dips corresponding to the 

bending resonance B2 and the compressional resonance C1 merge gradually as the diameter of the pillars 

increases. By optimizing the parameters, it is found that the frequencies of the bending resonance B2 and 

the compressional resonance C1 overlap at frequency 7.57MHz when the diameter is set to be 112µm. The 

corresponding transmission spectrum is displayed in figure 3.2(b). The transmission coefficient at the 
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frequency B2/C1 is much larger than the ones in figure 3.1(b) where the bending resonance B2 and the 

compressional resonance C1 are separated. 

(a)   (b)  

(c)  (d)  

Figure 3.2: (a) Evolution of the transmission spectra of an incident A0 Lamb wave against the diameter of the line 

of pillars. The black, the red and the blue solid lines represent the spectrum for the line of pillars with the diameter 

set to be 80µm, 100µm and 120µm respectively. (b) Transmission spectrum of an incident A0 Lamb wave with the 

diameter of the line of pillars set to be 112µm. (c) Band structure of a square lattice pillared metamaterial built by 

the same pillars adopted in (b). (d) Transmission spectrum of an incident A0 Lamb wave propagating through the 

three lines of pillars. 

Figure 3.2(c) shows the band structure of a square lattice pillared metamaterial constructed by the 

corresponding pillars. The bending resonance B1 occurs at frequency 1.56MHz which is in very good 

agreement with the frequency at the first transmission dip. However, the bending resonance B2 and the 

compressional resonance C1 occur at frequencies 7.24MHz and 6.44MHz that has 4.39% and 14.97% 

discrepancies from the frequency at the second transmission dip. The coupling of the neighboring pillars 

has a significant influence on the resonant frequencies, especially on the compressional resonance C1. 

Figure 3.2(d) shows the transmission spectrum of an incident A0 Lamb wave propagating through the three 

line of pillars (three unit cells along the y-axis). Thus, the coupling of the neighboring pillars along the y-
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axis should be taken into consideration. Two separated transmission dips occur at frequencies 6.6MHz and 

7.27MHz respectively which are in very good agreement with the resonant frequencies deduced from the 

band structure. Therefore, the line of pillars investigated in this chapter is quite different from the pillared 

metamaterials or the phononic crystals, because the coupling effect from the neighboring pillars are not 

involved that can significantly influence the resonant frequencies, especially when the wavelength of Lamb 

wave propagating in the plate is the same order of magnitude as the lattice constant. 

3.3 Lamb waves reemitted by a line of pillars 

As demonstrated in Ref. [82], the pillars can reemit Lamb waves when it is excited into vibration by an 

incident Lamb wave. In the linear regime where only small amplitude is involved, the superposition 

principle applies and thus, the displacement field downstream the line of pillars can be regarded as the sum 

of the incident Lamb wave and the remitted Lamb wave. Thus, subtracting the former from the transmitted 

wave allows to thoroughly analyze the features of the latter. In figure 3.3(a), we show the evolution against 

the frequency, of the complex amplitude of the reemitted Lamb wave, normalized to the incident Lamb 

wave. The square markers are introduced solely to help to visualize the tendency and the corresponding 

frequencies are shown in the adjacent labels. At the lower (i.e. 2.5MHz) or the higher (i.e. 10MHz) 

frequencies regimes that are far away from the resonances, both the real and imaginary parts tend to zero 

which means that almost no reemitted Lamb wave is generated by the line of pillars. It can be well 

understood by considering the huge difference between the diameter of the pillars and the wavelength of the 

Lamb wave propagating in the plate. The diffraction would occur around the line of pillars and the total 

transmission can be achieved. In contrast, the complex amplitude displays drastic changes in the vicinity of 

the resonances and rotates clockwise as the frequency increases. Moreover, at the bending resonance B2 

and the compressional resonance C1, the imaginary parts become zero and the real parts turn negative, as 

shown in figure 3.3(b) that plots the top view (see from the positive z-axis) of figure 3.3(a), which means 

that the reemitted Lamb wave is out-of-phase with the incident Lamb wave. The destructive interference 

occurs that finally results in the transmission dips. In addition, the complex amplitude around the 

compressional resonance C1 changes gradually comparing to the one around the bending mode B2 that is 

consistent with the broader profile of the dip. The magnitude of the reemitted Lamb wave around the 

compressional resonance C1 is much larger (but still smaller than the one of the incident Lamb wave) that 

can further explain the smaller transmission coefficient. 
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(a)  (b)  

Figure 3.3: (a) Evolution of the complex amplitude of the reemitted Lamb wave against the frequency. (b) Top view 

(see form the positive z-axis) of the curve displayed in (a). The bending resonance B2 and the compressional 

resonance C1 are separated. 

We have demonstrated in the previous subsection that the bending resonance B2 and the compressional 

resonance C1 can occur at the same frequency when the diameter is set to be 112µm. Reproducing the same 

procedure, we can analyze the reemitted Lamb wave in this situation. The evolution against the frequency 

of the complex amplitude of the reemitted Lamb wave is displayed in figure 3.4(a) and (b). The profiles are 

similar to the ones shown in figure 3.3(a) and (b) and the winding of the complex amplitude around the 

resonance can be observed. The difference between them lies in the magnitude of the reemitted Lamb wave 

which is almost 1.5 times the incident Lamb wave. It indicates that the incident Lamb wave is totally 

cancelled out by the reemitted Lamb wave and the remain part of the reemitted Lamb waves contributes to 

the transmitted field. 

(a)  (b)  
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Figure 3.4: (a) Evolution of the complex amplitude of the reemitted Lamb wave against the frequency. (b) Top view 

(see from the positive z-axis) of the curve displayed in (a). The bending resonance B2 and the compressional 

resonance C1 are superimposed. 

3.4 Control of the transmission through a line of pillars by introducing external sources 

As discussed in Sec. 3.3, the superposition of the incident and reemitted Lamb wave generated by the 

vibration of the line of pillars finally results in the dips in the transmission spectrum. This interferential 

mechanism suggests to introduce external sources applied on the pillars as shown in figure 3.5, to enhance 

or suppress their vibration in order to handle the reemitted Lamb wave. Then, the transmission coefficient 

can be further modulated. In figure 3.5, the internal source allows to generate the incident Lamb wave with 

both phase and amplitude kept constant. The corresponding amplitude of the transmitted wave at the detector 

is denoted as AtransIn. On the other hand, if only the external source is involved, the amplitude of the 

transmitted wave is represented by AtransEx. The transmitted wave under the excitation of both these sources 

is simply expressed as AtransTotal = AtransIn + AtransEx. 

 

Figure 3.5: Schematic of the transmission control by introducing external sources applied on the line of pillars. 

As much as the discussion in Secs. 3.2 and 3.3, two different systems will be studied. Firstly, the line of 

pillars with the bending resonance B2 and the compressional resonance C1 occurring at different frequencies 

and secondly, the line of pillars with both these resonances being superimposed. 

3.4.1 Line of pillars with separated modes 

To ensure a good coupling with the bending resonance B2, we firstly consider a traction force imposed on 

the top ends of the line of pillars, parallel to the y-axis, acting as the external source. The excitation 

frequency shifts slightly from the resonant frequency to avoid singularity and is chosen to be 4.6MHz. Two 

independent parameters of the external traction force can be controlled, namely, the magnitude and the phase 

difference with respect to the internal excitation. Figure 3.6 shows the transmission coefficient map against 

the phase difference and the magnitude of the external source. The color bar represents the transmission 

coefficient ranging from 0 to 1. In the calculation, the magnitude is assumed to be positive ranging from 0 
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to 1MPa; a negative magnitude will solely introduce an additional π-phase shift to the phase difference 

(varying from 0 to 2π). Unambiguously, the total transmission (transmission coefficient is equal to 1) can 

be easily achieved when matched magnitude and phase difference are applied. A large domain of solutions 

can be found from figure 3.6. However, to achieve zero transmission, there is only one possible scheme 

(inside the blue region). Moreover, when the phase difference is in between π and 1.5π, the transmission 

coefficient firstly decreases and then increases whereas the magnitude grows continuously. 

 

Figure 3.6: Transmission coefficient map against the phase difference and the magnitude of the external traction 

force. The color bar represents the transmission coefficient ranging from 0 to 1. 

To better interpret the transmission coefficient map, the magnitude of the external traction force assumed to 

be 0.1MPa is considered. The transmission coefficient against the phase difference is depicted in figure 

3.7(a). At point A (with the phase difference 0.22π), the transmission coefficient reaches the maximum 

value whereas it becomes minimum at point B (with phase difference 1.22π). In figure 3.7(b), we show the 

relative phase between the transmitted amplitude AtransEx and AtransIn given by the parameter 

 /transEx transInangle A A  . At point A (0.22π), these two amplitudes are in-phase, whereas the out-of-phase 

relationship can be observed at point B (1.22π). Therefore, it is the constructive interference between the 

internal and external excitations that contributes to the maximum transmission coefficient at point A and 

the destructive interference that leads to the transmission dip at point B. It should also be mentioned that 

when the in-phase or out-of-phase relationship between the transmitted amplitudes AtransEx and AtransIn is 

constant, the transmission coefficient is proportional to the magnitude of the external traction force. 

Therefore, it can be continuously tuned in between 0 and 1. 
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 (a)  (b)  

Figure 3.7: (a) Transmission coefficient against the phase difference of the external traction force when the 

magnitude is assumed to be 0.1MPa. (b) Relative phase between the transmitted amplitude AtransEx and AtransIn. 

Subsequently, the evolution between the transmission coefficient and the magnitude is investigated and 

displayed in figure 3.8(a). The phase difference is fixed at 0.22π where the transmitted amplitudes AtransEx 

and AtransIn are in-phase. As expected, the transmission coefficient is proportional to the magnitude of the 

external traction force. When the magnitude is set to be −0.47MPa (point C), the zero transmission can be 

achieved. The negative sign means an additional π-phase shift to the phase difference. That is 1.22π in this 

case. When the magnitude turns to be either 0.06MPa (point D) or −1MPa (point E), the transmission 

coefficient is equal to 1. To figure out the difference in these two cases, the relative phase between the 

transmitted amplitude AtransTotal and AtransIn is computed and shown in figure 3.8(b). At point D, the 

transmitted amplitude AtransTotal is in-phase with AtransIn. This suggests that both the internal and external 

excitations contribute constructively to the transmitted field. While at point E, the transmitted amplitude 

AtransTotal is out-of-phase with AtransIn. It is always maintained when the magnitude lies in between points C 

and E. Owing to the destructive interference, the transmitted wave from the internal source will be totally 

cancelled out. The final transmitted wave actually origins from the external source and the transmission 

coefficient increases with increasing magnitude. 

Regarding the transmission coefficient map shown in figure 3.6, very small injected energy is needed to 

achieve the total transmission when the phase difference is set around 0.22π owing to the constructive 

interference between the transmitted waves generated by the internal and external sources. The minimum 

value is obtained when the phase difference is 0.22π and the magnitude is 0.66MPa. When the phase 

difference is set around 1.22π, the destructive interference happens. Thus, the transmission coefficient firstly 

decreases as the magnitude increases. When the transmitted wave from the internal source is totally 

cancelled out, the transmission coefficient increases as the magnitude continues to grow. The zero 

transmission can be obtained with the phase difference 1.22π and the magnitude 0.47MPa. 
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(a)  (b)  

Figure 3.8: (a) Transmission coefficient against the magnitude of the external traction force when the phase 

difference is fixed at 0.22π. (b) Relative phase between the transmitted amplitude AtransTotal and AtransIn. 

Except the external traction force, we can also impose an external pressure on the top of the pillars. The 

evolution of the transmission coefficient against the phase difference if assuming a magnitude of 3MPa, is 

shown in figure 3.9(a). It reaches the maximum and minimum values with the phase difference set to be 

0.57π and 1.57π respectively. These phases correspond to the transmitted amplitudes AtransEx and AtransIn in-

phase and out-of-phase. Figure 3.9(b) depicts the transmission coefficient against the magnitude when the 

phase difference is chosen to be 0.57π. The total transmission can be achieved with the magnitude 1.1MPa 

or −18.8MPa and the zero transmission can be obtained with magnitude −8.8MPa. 

In summary, either the external traction force or the pressure can be employed to modulate the transmission 

coefficient when the excitation frequency is close to the bending resonance B2. However, the external 

pressure needs higher energy level to achieve the total and zero transmission in comparison with the external 

traction force, because the coupling with the bending vibration of the pillars is less efficient. 

(a)  (b)  
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Figure 3.9: (a) Transmission coefficient against the phase difference of the external pressure when the magnitude is 

assumed to be 3MPa. (b) Transmission coefficient against the magnitude of the external pressure when the phase 

difference is chosen to be 0.57π. 

Concerning the transmission control around the compressional resonance C1, an external pressure applied 

on the top of the pillars is firstly introduced which can easily couple into their compressional vibration. The 

excitation frequency is selected to be 7.2MPa. The transmission coefficient map versus the phase difference 

and the magnitude of the external pressure is displayed in figure 3.10 within which the phase difference 

varies from 0 to 2π and the magnitude ranges from 0 to 0.7MPa. It can be seen that the transmission 

coefficient can be continuously tuned. Figure 3.11(a) displays the transmission coefficient versus the phase 

difference when the magnitude is assume to be 0.5MPa. The minimum and maximum transmission occur at 

0.72π and 1.72π respectively. Figure 3.11(b) depicts the relative phase between the transmitted amplitude 

AtransEx and AtransIn. It is out-of-phase at 0.72π and becomes in-phase at 1.72π. 

 

Figure 3.10: Transmission coefficient map against the phase difference and the magnitude of the external pressure. 

The color bar represents the transmission coefficient ranging from 0 to 1. 

(a)  (b)  
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Figure 3.11: (a) Transmission coefficient against the phase difference of the external pressure when the magnitude 

is assumed to be 0.5MPa. (b) Relative phase between the transmitted amplitude AtransEx and AtransIn. 

Subsequently, the influence of the magnitude of the external pressure on the transmission coefficient is 

studied. The phase difference is chosen to be 1.72π where, according to figure 3.11(a), the maximum 

transmission is obtained. The evolution of the transmission coefficient versus the magnitude of the external 

pressure is displayed in figure 3.12(a). The total transmission can be achieved when the magnitude is 

−0.7MPa. The transmission coefficient decreases to 0 when the magnitude increases to −0.14MPa. 

Afterwards, it increases as the magnitude continues to grow and reaches 1 again at 0.42MPa. Figure 3.12(b) 

displays the relative phase between the transmitted amplitude AtransTotal and AtransIn. When the magnitude is 

less than −0.14MPa, the contribution to the transmitted wave of the external source becomes dominant. 

When the magnitude is greater than 0, both the internal and external sources contribute to the transmitted 

field. When the magnitude is in between −0.14MPa and 0, the transmitted wave form the internal source is 

partly cancelled out and the rest part together with the one from the external source forms the transmitted 

field. 

(a)  (b)  

Figure 3.12: (a) Transmission spectrum against the magnitude of the external pressure when the phase difference is 

fixed at 1.72π. (b) Relative phase between the transmitted amplitude AtransTotal and AtransIn. 

We have also considered an external traction force. Figure 3.13(a) shows the transmission coefficient versus 

the phase difference when the magnitude is set to be 8MPa. It gets the maximum and minimum values with 

the phase difference 1.75π and 0.75π respectively where the transmitted amplitudes AtransEx and AtransIn are 

in-phase and out-of-phase. Figure 3.13(b) displays the transmission coefficient against the magnitude with 

the phase difference fixed to be 1.75π. The total transmission is achieved with the magnitude −13.2MPa or 

8MPa. The transmission coefficient becomes zero with the magnitude −2.6MPa. In contrast to the external 

pressure, more injected energy is needed to obtain the total and zero transmission for the external traction 

force. 
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(a)  (b)  

Figure 3.13: (a) Transmission coefficient against the phase difference of the external traction force when the 

magnitude is assumed to be 8MPa. (b) Transmission coefficient against the magnitude when the phase difference is 

chosen to be 1.75π. 

3.4.2 Line of pillars with superimposed modes 

In this part, we discuss the active control of the transmission through the line of pillars when the bending 

resonance B2 and the compressional resonance C1 occur at the same frequency. In such situation, either the 

external traction force or pressure can well couple into the vibration of the pillars. The excitation frequency 

is tuned to be 7.5MHz in the vicinity of the eigenfrequency. 

Firstly, we consider the case of an external traction force applied on the top with the magnitude set to be 

0.2MPa. The transmission coefficient against the phase difference is shown in figure 3.14(a). It reaches the 

maximum and minimum values when the phases are 0.52π and 1.52π respectively. Meantime, the 

transmitted amplitudes AtransEx and AtransIn are in-phase and out-of-phase, as shown in figure 3.14(b). 

Subsequently, we fix the phase difference to be 0.52π. The evolution between the transmission coefficient 

and the magnitude is depicted in figure 3.14(c). The zero transmission is achieved when the magnitude is 

−0.25MPa and the transmission coefficient gets the value 1 when the magnitude is −0.68MPa or 0.19MPa. 

Figure 3.14(d) shows the relative phase between the transmitted amplitude AtransTotal and AtransIn. When the 

magnitude is less than −0.25MPa, the transmitted wave from the internal excitation is totally cancelled out 

and the transmitted field entirely results from the external source. When the magnitude is in between 

−0.25MPa and 0, the destructive interference from the internal and external sources occur. The former one 

is partly cancelled out and the rest part gets transmitted. When the magnitude is greater than 0, constructive 

interference occurs and both sources positively contribute to the transmission. 
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(a)  (b)  

(c)  (d)  

Figure 3.14: (a) Transmission coefficient against the phase difference of the external traction when the magnitude 

is assumed to be 0.2MPa. (b) Relative phase between the transmitted amplitude AtransEx and AtransIn. (c) Transmission 

coefficient against the magnitude when the phase difference is fixed at 0.52π. (d) Relative phase between the 

transmitted amplitude AtransTotal and AtransIn. 

Secondly, an external pressure is applied on the top of the pillars. According to the transmission coefficient 

versus the phase difference shown in figure 3.15(a), with the magnitude set to be 0.25MPa and the relative 

phase between the transmitted amplitudes AtransEx and AtransIn depicted in figure 3.15(b), the transmitted 

amplitude AtransEx is out-of-phase with AtransIn for the phase difference of 0.08π. As a result, a dip occurs in 

the transmission spectrum whereas a peak is observed if the phase difference goes to 1.08π. 

Afterwards, the transmission coefficient against the magnitude is illustrated in figure 3.15(c) with the phase 

difference fixed at 1.08π. It goes 0 at the magnitude −0.29MPa. And the total transmission can be achieved 

at the magnitude −0.78MPa or 0.21MPa. In the former case (i.e. −0.78MPa), the transmitted wave from the 

internal source is suppressed and the transmitted field solely depends on the external source, whereas in the 

latter case (0.21MPa), both sources make contribution according to the relative phase between the 

transmitted amplitude AtransTotal and AtransIn illustrated in figure 3.15(d). 
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(a)  (b)  

(c)  (d)  

Figure 3.15: (a) Transmission coefficient against the phase difference of the external pressure when the magnitude 

is assumed to be 0.25MPa. (b) Relative phase between the transmitted amplitude AtransEx and AtransIn. (c) 

Transmission coefficient against the magnitude when the phase difference is fixed at 1.08π. (d) Relative phase 

between the transmitted amplitude AtransTotal and AtransIn. 

In comparison, to achieve the zero transmission, we can apply an external traction force with the magnitude 

−0.25MPa and the phase difference 0.52π or an external pressure with the magnitude −0.29MPa and the 

phase difference 1.08π. In both approaches, the required injected energy is almost the same, the difference 

lies in the phase difference between the internal and external excitation. From the experimental point of 

view, it also provides a flexible manner to select the excitation device, for example, adopting the 

piezoelectric transducer to apply the external pressure and employing laser illumination to impose the 

external traction force. To obtain total transmission, the magnitude and the phase difference must be tuned 

to be 0.19MPa and 0.52π for the external traction force and 0.21MPa and 1.08π for the external pressure. 

3.5 Conclusion 

In this chapter, we have numerically investigated the active control of the transmission of an incident A0 

Lamb wave though a line of pillars by introducing an external excitation. Firstly, we have calculated the 
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transmission spectrum in order to recognize the resonant frequencies and modes of the line of pillars. The 

first-order bending resonances B1, the second-order bending resonance B2 and the first-order compressional 

resonance C1 result in three transmission dips. By a proper choice of the diameter of the pillars, the merging 

of the dips caused by the bending resonance B2 and the compressional resonance C1 can be obtained and 

hence optimizing the geometrical parameters, allow for the bending resonance B2 and the compressional 

resonance C1 to occur at the same frequency. In contrast to the pillared metamaterials or the phononic 

crystals, we have studied the effect of the coupling between the neighboring pillars on the resonant 

frequencies. We show that the coupling has a significant influence on the eigenfrequencies when the 

wavelength is of the same order of magnitude as the lattice constant and the coupling effect can be neglected 

in the subwavelength case. Secondly, the reemitted Lamb wave generated by the vibration of the line of 

pillars is analyzed. Its amplitude tends to be zero when the excitation frequency is far away from the 

eigenfrequencies. In the vicinity of the resonant frequencies, the amplitude in the complex plane rotates in 

the clockwise direction. When the bending resonance B2 and the compressional resonance C1 are separated, 

the magnitude of the reemitted Lamb wave is smaller than the incident Lamb wave. The transmitted wave 

is still in-phase with the incident wave. When the bending resonance B2 and the compressional resonance 

C1 are superimposed, the magnitude of the reemitted Lamb wave is larger than the incident Lamb wave. 

The transmitted wave turns out-of-phase with the incident Lamb wave. Thirdly, an external traction force 

or pressure applied on the top of the pillars is introduced to enhance or suppress the vibration downstream 

the line of resonators and to further control the transmission. In the vicinity of the bending resonance B2, 

the transmission coefficient can be continuously tuned in between 0 and 1 by imposing either a traction 

force or a pressure. Comparatively, the former one is more efficient. Less injected energy is needed to 

achieve the total or zero transmission. When the excitation frequency is close to the compressional 

resonance C1, applying an external pressure is a better choice. Further, when the bending resonance B2 and 

the compressional resonance C1 are superimposed, almost the same injected energy for both approaches is 

needed. The difference lies in the phase difference between the internal and external source. Thus, it 

provides a more flexible manner to select the external source. 
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General conclusion and perspectives 

In this manuscript, we numerically demonstrated in the pillared phononic crystals and metamaterials two 

passive and one active approaches in manipulating the propagation of Lamb waves. In the first passive 

approach, we presented two mechanisms to achieve the doubly negative property in the double-sided 

pillared metamaterials, thus propagation of S0 and SH0 waves can be modulated in the subwavelength scale. 

In the second approach, we realized the topological transport of Lamb waves in the double-sided pillared 

phononic crystals and investigated the refraction at the zigzag termination and the transmission at the 

armchair termination. After that, we proposed an active way to control the transmission of A0 Lamb wave 

propagating through an infinite line of pillars. We would like to summary the important findings in what 

follows. 

To achieve the doubly negative property, we firstly studied two single-sided pillared metamaterials. By 

evaluating their effective properties in the vicinity of the resonant frequencies of the pillar, it is found that 

the combination of the bending and the compressional resonance results in the negative effective mass 

density and the torsional resonance leads to the negative effective shear modulus. Subsequently, based on 

these results, we obtained a SH polarized double-negative branch in an asymmetric double-sided pillared 

metamaterial that integrates the bending, the compressional and the torsional resonances into a common 

frequency interval. The width can be enlarged by simply involving perforated holes in the plate. We 

demonstrated inside this double-negative branch the polarization-dependent propagation along ΓX direction 

and the occurrence of the mode conversion from SH0 mode towards A0 (S0) modes when deviating from ΓX 

direction. After that, a more special configuration, the symmetric double-sided pillared metamaterial, was 

considered. We presented a second mechanism to realize the doubly negative property. We show that the 

combination of the symmetric bending resonance and the antisymmetric compressional resonance results in 

the negative effective mass density and the symmetric compressional resonance contributes to the negative 

effective Young’s modulus. Then, once the resonant frequency of the symmetric compressional mode is 

designed inside the frequency interval where the negative effective mass density occurs, a double-negative 

branch appears. Inside this double-negative branch, only the propagation of S0 Lamb wave is allowed and 

while incident A0 (SH0) mode is totally reflected. Further, the applications in the negative refraction and 

zero-index refraction was also numerically evidenced. 
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Inspired by the unidirectional and lossless energy transport in the topological insulators, we extended this 

concept into the pillared phononic crystals. Following the previous discussion in the asymmetric double-

sided configuration, we firstly resorted to its triangular counterpart. The double-negative branch was 

reserved. By transforming it to a honeycomb arrangement, a single Dirac cone occurred at point K of the 

BZ. We demonstrated inside the constituent branches of the Dirac cone the divergent wave propagation 

phenomena against the polarization and the propagation directions. Subsequently, by imposing the space-

inversion symmetry breaking perturbation, the Dirac cone was lifted and the topological phase transition 

was introduced. By sandwiching two perturbed configurations with opposite valley Chern numbers to 

construct a three-layers ribbon supercell, the topologically valley-protected edge states occurring at the 

domain walls were obtained by calculating the band structure. It is found that the topological edge states 

might be gapped under the very large symmetry breaking perturbation. In that situation, very strong inter-

valley scattering occurred at both the zigzag termination and sharp-corners which suggested that the 

topological protection was no longer guaranteed. 

To be consistent, the topological transport in the symmetric double-sided pillared phononic crystals was 

studied. Thanks to the mirror-symmetry about the mid-plane of the plate, the symmetric and antisymmetric 

modes are completely decoupled that makes it possible to independently study their corresponding 

topological nature. For the antisymmetric dispersion curves, at the zigzag termination the valley-polarized 

edge states can refract into A0 modes both positively and negatively. When increasing the height of the 

pillars, the negatively refractive angle quickly reaches maximum and vanishes. While at the armchair 

termination, either one or three transmitted A0 modes can be observed depending the height of the pillars. 

For the symmetric dispersion curves, the situation became quietly complicated. When the Dirac cone 

occurred in the deep subwavelength scale, the topological edge states served as point sources once arriving 

the termination of the wave guide. Then, superposition of the wave fields generated by the points sources 

contributed to the transmission field, for example the circular shape wave front at the armchair outlet. When 

encountering the zigzag termination, the wave became evanescent at the interface owing to the extremely 

small wave vectors of S0 and SH0 modes in the plate and was strongly enhanced by the locally resonant 

modes. While increasing the height of the pillars, a second Dirac cone occurred at the high frequency. The 

corresponding valley-polarized refracted into S0 and SH0 modes. Subsequently, by optimizing the unit cell, 

a double Dirac cone was achieved. When breaking the mirror-symmetry about the plate, the double Dirac 

cone was lifted together with the opening of a nontrivial band gap. The symmetric and antisymmetric 

eigenmodes hybridized around the original double Dirac cone which introduced the emulation of the spin-

orbit coupling interaction. By juxtaposing two perturbed systems with opposite spin Chern numbers, the 

topologically pseudospin-protected edge states occurred at the domain wall. Further, combining two 

perturbed configurations each supporting QSHE and QVHE respectively, the topologically pseudospin-
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valley combined edge states were obtained at the domain walls. Their propagation depended on both the 

pseudospin and valley states. Based on these, we discussed the propagation of the topological pseudospin 

down state in a T-shaped wave guide and observed the valley based splitting at the junction. 

Besides the passive approaches to manipulate Lamb waves, we also studied an active way to control the 

transmission of A0 Lamb wave through an infinite line of pillars. The transmission spectrum was firstly 

computed which allows to identify the resonant frequencies and modes of the line of pillars. We show that 

the second-order bending resonance B2 and the first-order compressional resonance C1 superimposed in 

optimized design. In contrast to the pillared metamaterial, the coupling between the neighboring pillars on 

the resonant frequencies was investigated. It is found that the coupling has a significant influence on the 

resonant frequencies when the wavelength is the same order of magnitude as the lattice constant, but can be 

neglected in the subwavelength case. After that, we analyzed the reemitted wave by the pillars once excited 

into vibration. We found that the amplitude in the complex plane rotated in the clockwise direction when 

crossing the resonant frequencies. Further, we applied external traction force or pressure to enhance or 

suppress the vibration of the line of pillars to control the transmission. We show that the transmission 

coefficients can be continuously adjusted in between 0 and 1 by carefully choosing the magnitude and 

relative phase of the external sources. When the second-order bending resonance B2 and the first-order 

compressional resonance C1 are separated from each other, the external traction force is more efficient at 

the frequency close to the bending resonance frequency and less injected energy is needed for the external 

pressure around the compressional resonant frequency. while the second-order bending resonance B2 and 

the first-order compressional resonance C1 are superimposed, it is found that almost the same injected 

energy is required for both which provides a more flexible manner to select the external source. 

The work in this manuscript is devoted to numerically study two passive approach exploring the doubly 

negative property and the topological transport and one active approach involving external sources to 

manipulate the propagation of Lamb waves. Experimental demonstration will be implemented to the 

evidence the numerical findings in future work, including the occurrence of the doubly negative property, 

the polarization filter behaviors and the topologically protected propagation. Regarding the topological 

transport in the symmetric double-sided pillared phononic crystals, it can be further extended. For example, 

investigating the topological edge states when simultaneously breaking the mirror-symmetry and the space-

inversion symmetry and discussing the influence of the competition between two symmetry perturbations 

on the topological edge states. Concerning the active modulation, an actively tunable metasurface can be 

further developed. It can be done by gradually tuning the phase of the transmitted wave, thus abnormal 

refraction through the line of pillars might be achieved. 
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