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A.5 Plan de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

List of Figures 185

List of Tables 189

Acronyms 191

Glossary 194

Personal Publications 195

Bibliography 197



Acknowledgements

I would first like to thank my advisors Dr. Karol Desnos and Pr. Daniel Menard for
their help and support during these three years of thesis. Karol, thank you for your help
on technical and redactional details. I have really appreciated your help during the first
months working on my beloved stereo matching algorithm ! Daniel, who had to work
with me for a little longer, a huge thanks for your trust in me and my work, since my
� Parcours recherche �. It was really positive to have someone always behind me in
the hardest moments of the PhD. Besides, all our mathematical discussions were really a
pleasure, and thank you for letting me lead my PhD as I was willing to.

I also want to thank Pr Alberto Bosio and Pr. Christophe Jégo for having accepted to
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CHAPTER 1

Approximate Computing: Trading-off Quality for Performance

“Le mieux est l’ennemi du bien”

Voltaire

1.1 Semiconductors and computing systems trends: towards
approximate computing

The fierce competition to design faster, cheaper and more energy-efficient electronic sys-
tems is not only economical but also an urging answer in the need to save the available
energy resources. Indeed, according to the Semiconductor Industry Association and Semi-
conductor Research Corporation, the total energy required by computing systems will
exceed the estimated world’s energy production by 2040, if no significant improvement is
obtained in terms of energy-aware computing systems [AC15].

A boom in the computing capacities

From 1965 to 2012, the computing capacity offered by computing systems, along with
the accuracy, have increased exponentially. According to Moore’s law [Moo06], stated less
than a decade after the invention of the silicon integrated circuit in 1958 by Jack Kilby, the
number of transistors on a chip was expected to double every 2 years, which was closer to
every 18 months in reality, consequently increasing the processing speed while decreasing
the price of a chip. Gordon Moore made indeed quite a remarkable prediction since, as
presented in Figure 1.1 the number of transistors on an integrated circuit closely followed
this trend from year 1970 to 2016. Besides, the cost reduction for the chip manufacturer as
well as chip user has been made possible thanks to new chemical processes to manufacture
integrated circuits while optimizing the cost. Using optical lithography instead of hand
painting, by the mid-1960s, the transistors packaging was more expensive than the cost
of manufacturing the transistor. Analyzed by Hutcheson [Hut05], the economic version
of Moore’s law states that the cost per transistor is halved every 18 months. From 30
transistors on the first silicon integrated circuits, to 10 billion transistors today, the global
chip production has boomed, thanks to technical factors such as the reduction in feature
size, an increased yield and an increased packing density.
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Figure 1.1 – The facts behind Moore’s law [Int].

The ease in accessing to powerful chips induced a growth in the consumer demand
for computing systems and powerful software. Nevertheless, as shown in Figure 1.1, the
end of Moore’s law [Ard02] has been observed since 2012. The scaling trends of CMOS
technology impede to respect the predicted yields and performances. For instance, 45-
nm Central Processing Units (CPUs) were expected to achieve a clock frequency of 10
GHz while in practice only achieving 3 to 4 GHz [SK00]. As Markov [Mar14] presented,
computing efficiency is inherently limited in a fundamental, material, device, circuit and
system/software nature. For instance, on-chip interconnect highly limits the performance
of a chip. Transistors are themselves limited by the width of the dielectric gate, which has
reached the size of a few atoms. Along with the increase in computation speed, the energy
required for computing has also increased according to the Heisenberg uncertainty prin-
ciple [BHL07] and its management becomes major concern. The Heisenberg uncertainty
principle, in its energy-time form, expresses the operational limitations due to quantum
mechanics as:

∆t∆E ≥ h

2
(1.1)

where ∆t and ∆E represents the time and energy, respectively, and h Planck’s constant.
That is to say, that to compute faster, more energy is required, since if ∆t decreases, then
∆E has to increase for the inequality to remain true.

The Dennard’s scaling prediction, that stated that the power consumption of semicon-
ductor integrated circuits is kept constant while increasing their density, broke down in
2006.

An unreliable future hardware

Following the end of Moore’s law and Dennard’s scaling, a paradox has been set up: Very
Large Scale Integration (VLSI) designers need to reduce their cost of chip manufacturing
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to answer the growing demand, modifying their design margins but produce always more
error-prone technologies. Indeed, according to Moore’s law, the density of transistors
on a chip increases while the number of faults in a chip increases with the density of
transistors. In the search for efficiency, the constantly reducing size of manufactured
chips goes along with the reduction of the operating voltage that induces a higher fault
vulnerability to electrical noise as explained in [SWK+05]. Electrical noise that can also be
called interference, may be an undesirable electrical signal that interferes with the original
electrical signal.

Because of the fault vulnerability of currently manufactured chips, so as to ensure a
strict accuracy on a result, a redundancy in the computational modules is required. This
process increases all the more the energy required. The future hardware being unreliable,
the process of discarding a chip because of an imperfection appears to be another part of
the current paradox.

A massive quantity of data to process

The volume of information to process has also boomed over the past few years: “in 2010,
during two days, the same volume of information is produced that it has been in two
billion years up to 2003” (Eric Schmidt [Sie10]). Data centers are expected to deal with
175 zettabytes of data by 2025 [Ins19]. This growing volume of data to process goes along
with an exponential growth in demand for storage and computing.

Nevertheless, the volume of data produced is growing twice faster than the growth
of bandwidth. New ways of computing are required to deal with this massive stream
of information to process. For instance, the world’s largest radio telescope, the Square
Kilometer Array (SKA) [DHSL09], whose construction is planned to begin in 2020, will
be composed of hundred of thousands of receiving antennas. In the first phase of the
SKA project, 160 terabytes of raw data per second will be generated and will have to
be analyzed. Another example of this exponentially growing volume of produced data is
Internet of Things (IoT) which connects together billions of computing devices. Work in
energy-efficient computing is strongly needed, at all levels of computing, whether it be on
sensors or on ultra low-power processors with energy harvesting.

At the same time, according to Bell’s law, every decade, new classes of computing de-
vices are getting 100 times smaller. Computing devices are required to deal with massive
streams of information while shrinking in terms of size. In this context, to face with the
growing volume of data to process, or the size of the chips embedded in the daily used
systems, near sensor computing ([LHG+16]) has been proposed. Instead of centralizing the
computations, only the meta-data are transmitted to the central processing part, while
the computations are done near the sensors. LikamWa et al. [LHG+16] have proposed
near sensor computing in the domain of continuous mobile vision, to overcome the energy
bottleneck, with RedEye. In RedEye, the processing part has been moved into the analog
domain to reduce the workload of the analog readout, the data movements and conse-
quently, the energy required. However, near sensor computing is also subject to numerous
constraints such as the operating voltage, or the bandwidth capacities. Compromises have
to be made. The energy consumption of current systems is still rapidly growing as they
need to process always more information.

New techniques are then searched for meeting real-time and energy constraints when
designing embedded systems, and save resources during the implementation phase. In this
context, Approximate Computing (AC) is one of the main approaches for post-Moore’s
Law computing and is under consideration in this thesis. AC uses the numerical accuracy
of an application as a new tunable parameter to design more efficient systems in terms of
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area, energy or speed. It exploits the error resilience of numerous applications in order
to save energy or accelerate processing. AC benefits from the intrinsic error resilience of
algorithms in signal, image, video processing, artificial intelligence or data mining fields.

1.2 Energy-aware computing

Several types of energy-aware computing have been proposed since the 1960s. Since power
consumption has become one of the main limiting factors to increase the performance
of applications, new computing methods have been proposed to optimize energy/power
consumption.

1.2.1 Stochastic computing

Stochastic computing has been proposed in the 1960s [Gai69, AH13]. Stochastic computing
processes data as probabilities represented by bit-streams. The probability indicates the
number of 1s in the bit-stream without having an incidence on its position. A bit-stream
is then called a stochastic number. For instance, to represent x = 0.75, numerous bit-
streams can be used depending on the length of the bit-streams used, since x represents
the probability of having a 1 in the bit-stream:

x = 0.75 =


(1, 1, 1, 0)
(1, 0, 1, 1)
(1, 1, 1, 1, 0, 0, 1, 1)

Treating information as bit-streams allows using less costly, complex and energy-
consuming units. Indeed, a multiply unit can be implemented with a AND gate.

For example, instead of processing the multiplication of x = 4
8 and y = 6

8 , they can be
represented as follows:

x =
4

8
=

{
(0, 1, 1, 0, 1, 0, 1, 0)
(0, 1, 0, 1, 1, 1, 0, 0)

y =
6

8
=

{
(1, 0, 1, 1, 1, 0, 1, 1)
(1, 1, 1, 0, 1, 0, 1, 1)

The multiplication of x and y will then be processed with an AND gate, giving for
the first representations of x and y the result (0, 0, 1, 0, 1, 0, 1, 0) = 3

8 , while for the second
representations of x and y the result (0, 1, 0, 0, 1, 0, 0, 0) = 2

8 .

Nevertheless, as shown in the example, depending on the stochastic number used to
represent the values (x, y), the accuracy at the output of the operation is modified. To
generate the stochastic number representing a data x, pseudo-random numbers generators
are used. The difficulty, when generating stochastic numbers to represent probabilities, is
that each bit in the bit-stream possesses the same weight, thus several stochastic numbers
can represent the same probability. To compute with fair stochastic numbers, they have
to be non-correlated and random enough. Correlation between stochastic numbers may
generate errors during the computation. To derive error statistics on stochastic computing,
the techniques of statistical inference, estimation and detection, are used. The precision
of a stochastic number is represented by the number of bits used to encode the data.
One of the major problems of stochastic computing is that the length of the bit-streams
used to process the data increase exponentially with the accuracy required. Consequently,
stochastic computing is generally slow for obtaining a relatively small precision. Despite
the drawbacks of stochastic computing, the current production of unrealiable hardware
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circuits, as presented in Section 1.1 pushed researchers to reconsider the computation
with probabilities.

1.2.2 Quantum computing

Quantum computing is presented [Gru99] as an opening on the different forms of energy-
aware computing. Quantum computing aims at reproducing the ability of subatomic par-
ticles, for instance hadrons, which can exist in more than a state at a time. Quantum
computers can then be more efficient at solving particular problems than classical com-
puters, as for instance, factoring integers or solving discrete logarithms [Sho99]. Indeed,
contrary to classical computing in which the information is carried out by bits that can
only exist in two distinct states, 0 or 1, in quantum computing, information is carried
out by qubits, the quantum generalization of a bit. Two fundamental laws are driving
quantum computing.

1. Superposition: Qubits can exist in |0 >-state, |1 >-state or in a linear combination
of both expressed as |φ >= a · |0 > +b · |1 > where (a, b) are complex numbers.

2. Entanglement: A correlation exists between the individually random behavior of two
qubits.

Qubits are a superposition of the different values and can exist in more than 2 states.
A qubit can be positioned anywhere on a sphere of radius 1. The probability that the
qubit is in state |0 > is equal to |a|2, and in state |1 > to |b|2. Consequenly, computing
with qubits allows to store more information with less energy. However, the stability of
qubits is still an issue, as well as cooling considerations. In 2016, IBM released a 5-qubit
computer available online and programmable in Python for researchers, and has released
more recently a 20-qubit quantum computer.

Nevertheless, quantum computing requires new software systems to be viable.

1.2.3 Probabilistic computing

Unlike stochastic or quantum computing, probabilistic computing presented by Palem
et al. [Pal03] is a technique to estimate the energy savings obtained with an accuracy
trade-off. Probabilistic computing links the energy consumed by a computation with its
probability of being accurate. Linking computations with the notion of probability makes
sense since the behavior of errors is best described with a probabilistic behavior. Palem
considers that energy savings can be computed with thermodynamics laws. A bit of
information equal to 0 or 1 is then called a value and is considered as a thermodynamics
microstate that can be measured. Boltzmann’s equation derives the energy that can be
saved for a computation with a probability p of being accurate, as being k ·T ln(1p) Joules.
Probabilistic computing has been strongly influenced by the Automata Theory [VN56]
of Von Neumann in which he states that “error should be treated by thermodynamics
methods”.

1.2.4 Approximate computing

Approximate computing is the energy-aware computing technique considered in this
thesis. AC is inspired by the error conception of Von Neumann, in which the tolerance to
imprecision of an application is exploited. Indeed, in 1956, John Von Neumann [VN56] has
studied how to constrain an error induced when building an automaton using unrealiable
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components. Instead of dealing with errors with the will-power to completely eliminate
them, he showed that under certain conditions, the accuracy of an operation realized by
an automaton can be controled and framed. Besides, as long as this error was bounded,
the automaton was able to give acceptable results despite the presence of erroneous values.
According to John Von Neumann, “error is viewed as [...] an essential part of the process
under consideration”. Error is then treated as a required information to take into account
throughout the computation process. Processors implementing AC techniques are trying
to mimic the computation as done by the brain. For instance, when people are asked to
quickly evaluate a percentage with mental calculus, they are working with approximations
to obtain a close idea of the answer. The brain possesses approximately 1010 neurons,
each has about 104 connections and requires 25 Watts of continuous power to be able to
compute 25 Peta Operations per seconds. Surely the best processor ever built! In the last
two decades, research on the AC paradigm has been very active. Lots of approximation
techniques have been proposed, from the circuit to system level. An overview of these
techniques is presented in Chapter 2. Nevertheless, a lot of work is still left to do to
analyze accurately these techniques in terms of induced errors and behavior within an
application, so as to make it easier for application designers to use them.

1.3 Approximate computing

1.3.1 The error resilience property

Applying AC techniques to an application requires a good knowledge of its behavior when
errors occur. The error resilience property of an application is the key-point in applying
AC: used in domains such as video or image processing, data mining or recognition ap-
plications. AC exploits the fact that the precision offered by an application is generally
greater than the precision required. Numerous applications may output acceptable results
while differing from the exact expected result, as explained in [KIK+98] for video coding
algorithms. The property of error resilience, for an application, is the ability for the appli-
cation, to produce acceptable results despite the fact that some computations are skipped
or approximated and thus inexact. This property may be induced by several factors:

• The end-user: the need of the end-user or its perception may limit the need for ac-
curacy on the output. For instance, if the end-user of the output of the application is
a neural network, it can compensate the errors induced by the use of approximation.
Another example, in video processing where the end-user is the human user, the hu-
man visual perception limits greatly the accuracy needed. Finally, for applications
as in data mining, no golden result exist.

• The input: the input data of the application may be redundant or noisy, inherently
inducing noise in the computations. Real-world data can generally be processed with
approximations.

• The computations: the computations in the application may be statistic, prob-
abilistic or recursive. Besides, iterative computations can compensate the errors
caused by the use of an approximate module.

It is to be noted though that some applications are not error resilient. For instance, in
control-based applications, a small error in the computations may lead to a wrong decision
and in the end to a non-acceptable error at the output of the application. In addition, in
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critical systems, the application has to be predictible, that is to say, for a given input, the
result has to be known.

According to error resilient applications, the error between the reference application
and its approximate version can be used as a margin to trade-off the performance in terms
of computation time or energy consumption, and the implementation cost in terms of
memory requirements or complexity as such. AC offers a new degree of freedom to design
an application as illustrated in Figure 1.2.
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(a) Design of an application without AC.
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(b) Design of an application with AC.

Figure 1.2 – New degree of freedom when designing an application with AC techniques.

Nevertheless, the property of error-resilience for an application is not sufficient to apply
AC techniques. Programmers have to clearly identify parts of the application that tolerate
AC as well as parts where strict accuracy is required. For instance, an application with non-
linear operations may not tolerate approximations near these operations. Approximations
having an impact on the control flow or memory accesses may lead to disastrous behaviors
as Yetim et al. [YMM13] presented with an approximation leading to a segmentation fault.
A sensitivity analysis can be led to annotate the algorithm indicating the less sensitive
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parts, as presented in [CCRR13]. Chippa et al. [CCRR13] proposed the Application
Resilience Characterization framework to identify the error-resilient parts of applications,
and characterize the error-resilient parts depending on varied AC techniques.

Furthermore, to choose an approximation strategy, a Design Space Exploration (DSE)
is generally performed to find the configuration with respect to the constraints of the
platform on which the algorithm is embedded. Once an approximation strategy has been
chosen, the impact of the approximation on the application quality metric has to be quan-
tified. The application quality metric, whose measurement depends on the application,
quantifies the output quality of the application. For instance, for a signal processing appli-
cation, the application quality metric can be the signal-to-noise ratio (SNR). For an image
processing application, the application quality metric can be the Structural Similarity
Index [WBSS04].

1.3.2 Different levels of approximate computing techniques

AC can be applied at different levels, as presented in Figure 1.3.

Less data,
Less accurate,

Less up-to-date

Data
Level

Accurate

Variable

Hardware
Level

Reliable

Less ExactComputation
Level

Exact

Computing model
today

Figure 1.3 – Different levels of approximation.

Firstly, the approximation can be made on the Data Level. The number of data to
process can be decreased leading to less up-to-date data or a smaller volume of data to
process. Data can also be stored with a reduced precision, saving bits and thus energy,
or can even be compressed. In parallel programs, the synchronization between different
threads can be relaxed so as to use less up-to-date data. The different approximation
techniques on data are presented in Section 2.2.

At the Computation Level, the algorithm itself is adjusted so as to trade off the
accuracy. Computation or memory accesses skipping can be implemented. In this case,
some computing-blocks are not applied. Functional approximation can also be used, ap-
proximating sophisticated mathematical functions by polynomials, or by Look-Up Table
(LUT) for instance. The different approximation techniques at the computation level are
presented in Section 2.3.

Finally, approximations can be done at the Hardware Level. In that case, alterna-
tive hardware implementations of a circuit less energy-consuming can be found, as the
numerous alternative implementations of exact arithmetic operators. A circuit can also
be approximated in terms of its functionning parameters: modifying the operating voltage
or frequency of a circuit has an impact on the result quality and the energy consumption.
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To end with, unreliable storage can be used to store error-resilient data. The different
approximation techniques at the hardware level are presented in Section 2.4.

Beyond the three distinct axes of AC, Hedge et al. [HS01] have proposed a technique
to identify approximable parts at each levels of design abstraction in an application. The
recognition, mining and synthesis (RMS) applications are targeted with this cross-layer
method, since they possess several interesting properties for AC: the statistical and ag-
gregative algorithms average down or out the errors, and the iterative algorithms have the
self-healing property.

From the programmer point of view, there remains a long way to go from the exact
implementation of an application to an approximated version of the application that can
be used. This is the reason why whole methodologies have been created to apply AC tech-
niques to a whole application: from the subdivision of the application into blocks, to the
computation of the energy savings, real recipes have been proposed to help programmers
to use efficiently these techniques.

Identifying the level on which applying approximations is a real current challenge.
Indeed, approximations may be applied from the transistor level up to the processor itself.

1.4 Scope of the thesis and contributions

To implement approximations in an application, the functionality of the application has
to be guaranteed and the induced errors at the output of the application have to be
framed and quantified. Tools are needed to quickly explore the different approximation
perspectives and their impact on the application output quality. The difficulty to study
the impact of approximations on an algorithm, is that AC algorithms are generally more
intricate in terms of hardware implementation or memory accesses than their accurate
implementation. The simulation of AC algorithms is more complicated and the adaptation
effort to use them generally requires an entire team of system and hardware engineers.
The main challenge when including AC in an application is to evaluate the impact of the
approximation on the quality of service (QoS) at the output of the application. Potential
approximations have to be analyzed and fine tuned to choose the best approximations with
respect to the different constraints on the application implementation. The Approximation
Design Space Exploration (ADSE) is large and requires a fast simulation to evaluate
approximation impact on QoS. The selection of the set to simulate is also a critical point
in testing the approximation perspective.

In this thesis, the objective is to propose new techniques to adress the problem of
error characterization and propagation in AC systems. Methods to characterize the errors
induced by the approximations are presented, as well as methods to link the induced errors
to the output quality of the application. The main contributions of this thesis are:

1. A generic simulation-based framework to statistically characterize the error induced
by inexact operators. This method is based on inferential statistics and extreme
value theory to derive a subset to simulate according to user-defined confidence
requirements. This contribution has been published in [BCDM18] and [BCDM19].

2. A fast simulator of inexact operators has been developped. The proposed simulator
allows to quickly measure the impact of approximation on the application QoS. This
contribution has been published in [BDM18c] and [BDM18a].

3. A new method for fixed-point noise power evaluation is proposed. The error induced
by fixed-point coding is statistically characterized, allowing to compute the noise
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power with an adaptive and reduced number of simulations. This contribution has
been published in [BDM19a].

4. A new method based on inferential statistics for fixed-point refinement has been
developed. The number of simulations is adapted depending on the required accuracy
on the estimation of the noise power. This contribution has been presented as a
poster in DAC19 and has led to patent number FR1903747 [BMD19].

5. A method for accuracy or quality metric inference using kriging, a geostatistical
method, has been developed. The proposed method allows to reduce the number
of simulation-based evaluations of the considered metric. This contribution has not
been published yet.

Another contribution of this thesis has been to get involved in scientific popularization.
AC has been presented into several conferences during events as the “Festival des Sciences”,
“En Direct du Labo” or “A la découverte de la recherche”. Three articles have been written
for scientific media for the general public, and are listed below:

1. A general presentation of the problematic of energy savings in IoT as well as the
potential solutions offered by AC is presented in [Bon18a].

2. A short presentation of the problematic of my thesis is described in the article [Bon18b].

3. An overview of the use of IoT in medicine for rhythmology is presented in the arti-
cle [Bon].

Finally, this thesis has been elected “Coup de coeur du public” at the semi-final in
Rennes of the competition “Ma Thèse en 180s”.

1.5 Outline of the thesis

This thesis is organized in two parts: Part I introduces the concept of AC and presents an
overview of AC techniques in Chapter 2. Then the different error metrics proposed to
characterize the errors induced by approximations are presented, as well as the models to
link errors with application QoS in Chapter 3. Part II formally introduces and evaluates
the contributions of this thesis. Chapter 4 presents an algorithmic-level approximation
technique and its behavior towards two different error metrics. Chapter 4 exposes the
motivations of the thesis. Chapter 5 presents the proposed method for the characteriza-
tion of the error profile of inexact operators. Chapter 6 details the proposed simulators
to be able to quickly simulate an inexact operator and measure its impact on the output
quality metric. In Chapter 7, a simulation-based model for the accuracy evaluation of
systems converted in finite precision using inferential statistics is presented. This model
is used in an optimization algorithm for the fixed-point refinement of the word-lengths of
the data in an application converted in finite precision. The proposed method is based
on the previously proposed statistical error model of the noise power, and uses inferential
statistics to greatly reduce the number of simulations required. Seeking to go further in
the improvement of the time to evaluate the finite precision effect, Chapter 8 explains
how simulations can be avoided by estimating the accuracy metric at the output of an
application during fixed-point refinement using geostatistical methods as kriging. Finally,
Chapter 9 concludes this thesis and proposes potential research directions for future
research.



CHAPTER 2

Background: Approximation Techniques

“Science does not claim at establishing
immuable truths and eternal dogmas;
its aim is to approach the truth by
successive approximations, without
claiming that at any stage final and
complete accuracy has been achieved”

Bertrand Russell

2.1 Introduction

To optimize criteria as energy, latency and area, a recent approach is to trade-off the
output application quality for the cost of the designed system as presented in [BMS18]. In
this context, numerous approaches have been proposed in Approximate Computing (AC).
An overview of these approaches along the three approximation axes is presented. First,
the data-driven approximations are presented in Section 2.2. Then, the approximations
done at the software level on the computations, are presented in Section 2.3. Finally,
approximations done on the hardware structure are presented in Section 2.4. AC does not
use any assumption on the stochastic nature of the underlying process of the application
contrary to stochastic computing, but uses the statistical properties of the data or the
algorithm. Along with these approximation techniques, methods to analyze the profile
of the errors generated by the induced approximations have also been proposed, and are
presented in Chapter 3.

2.2 Approximate computing techniques at the data level

The statistical properties of data can be used to implement several AC techniques. Data-
driven AC techniques benefit from the reduction of the volume of data to process or the
representation of the intern variables of an application that can be more energy-efficient.
Different strategies are proposed to process data-driven approximations and are presented
in Figure 2.1.

15
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Figure 2.1 – Approximate computing techniques: at the data level.

2.2.1 Reduction of the amount of data to process

One may use a reduction in the amount of data to process as presented in Figure 2.2. This
reduction can be done in the spatial or in the time domain. Both techniques are massively
used by application designers in signal, image or video processing to meet real time and
complexity constraints. Concerning the time domain, reducing the sampling rate of a
signal to process allows decimating it. The reduction of the sampling rate reduces the bit
rate of the process which impacts the quality of the signal to process. In Figure 2.2(b), data
downsampling is done by doing the computations with a clock frequency lower than the
clock frequency without data downsampling presented in Figure 2.2(a), which implies that
data are present less often. When it comes to the spatial domain, the signal to process can
be downscaled (fitting a signal to a lower resolution) or upscaled (fitting a signal to a higher
resolution). In Figure 2.2(c), data downscaling is done by doing the computations on input
data of smaller sizes compared with the original input data presented in Figure 2.2(a).

t

(a) Reference data.

t

(b) Data downsampling.

t

(c) Data downscaling.

Figure 2.2 – Methods for reducing the amount of data to process.

In [ACN14], downsampling is proposed as a reduction of the amount of data to process
in the time domain. The proposed AC method is illustrated on a timing synchronization
problem for Wideband-Code Division Multiple Access (W-CDMA) systems. The timing
synchronization is originally done with the computation of a matched filter. The input
samples of the matched filter are decimated by a factor D. Consequently, one among D
Multiply-accumulate (MAC) operations needed to filter the input signal are pruned. This
technique reduces the overall complexity of the algorithm while keeping good performances
with a dynamic adjustment of the approximation given the obtained signal-to-noise ratio
(SNR).

This technique has two advantages:

• The overall computational load of the algorithm is reduced.

• Further approximation techniques can be implemented, as reducing the actual sam-
pling rate of the system by a factor 1

D to save even more energy or increasing the
factor D.
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In the spatial domain, downscaling the data to process greatly reduces the volume
of computations. For instance, it can be applied to an image processing application as
the stereo matching algorithm [BDM18b]. In this case, the input signal composed of two
rectified images, is fitted to a lower resolution, dividing the size of the input images by
4 to half the complexity of the studied algorithm. Nevertheless, in this case, important
characteristics are lost as presented in Figures 2.3. Compared to the reference output
shown in Figure 2.3(a) obtained with the input images in full resolution, the output of
the stereo matching algorithm with the downsampled images 2.3(b), suffers from blurred
contours. Similar techniques can be used in video processing to reduce the computational
complexity.

(a) Reference output. (b) Output with downsampled input data.

Figure 2.3 – Impact of downscaling the input data on a stereovision application: the case of stereo
matching.

2.2.2 Precision optimization

Designing an algorithm intended for embedded platforms is usually made using tools giving
high precision results, as for instance double floating-point algorithms written with high-
level programming languages (Matlab, Python, C/C++, ...). Nevertheless, the complexity
of these algorithms limits their embeddability. Indeed, if no special care is taken during the
implementation phase, the high precision of the produced results is often obtained at the
expense of a high overhead in terms of latency, memory storage and energy consumption.
Real-time and power consumption constraints driving the design of embedded systems
increase the need to adapt algorithms before embedding them. Currently, playing with
data representation has been shown to be one of the most efficient ways to efficiently
trade-off quality for performance [BSM17].

Commonly, floating-point arithmetic is used for its simplicity of application devel-
opment. Offering a high dynamic range as well as a high precision in the computations,
this type of arithmetic does not need any manual conversion during computations since it
is already done by the hardware. Besides, floating-point arithmetic offers the same accu-
racy to encode very small and very large numbers. According to the IEEE-754 standard
for floating-point arithmetic [ZCA+08], floating-point numbers are represented with three
parameters, namely the sign s, the exponent e, and the mantissa m as:

x = (−1)s ×m× 2e (2.1)
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where m is a M -bit number representing the significant figures of the number x, and e an
integer giving the position of the radix-point. According to IEEE-754 standard, single-
precision floating-point numbers are represented with M = 24 and e = 8 and double
precision floating-point numbers are represented with M = 53 and e = 11. Nevertheless,
when implementing an application using floating-point arithmetic, the ease of use is to the
detriment of area, latency or energy consumption. Barrois [Bar17] measured the overhead
of using floating-point numbers instead of integers on a simple addition using floating-
point and integers types from MentorGraphics. These results are presented in Table 2.1.
The overhead, in terms of area, to implement a 32-bit floating-point addition compared to
an integer addition is 3.5 times larger, while being 3.9 times larger to implement a 64-bit
floating-point addition compared to an integer addition. In terms of total power required
to process the addition, for 32-bit operations the overhead is 12 times larger while for 64-
bit operations the overhead is 15.7 times larger. Finally, in terms of delay, the overhead
on the critical path for 32-bit operations is 27.3 times larger while being 30 times larger
for 64-bit operations.

Area (µm2) Total power (µW) Critical path (ns)

32-bit float ADD 653 0.439 2.42

64-bit float ADD 1453 1.120 4.02

32-bit integer ADD 189 0.037 1.06

64-bit integer ADD 373 0.071 2.10

32-bit float MPY 1543 0.894 2.09

64-bit float MPY 6464 6.560 4.70

32-bit integer MPY 2289 0.065 2.38

64-bit integer MPY 8841 0.184 4.52

Table 2.1 – Overhead of floating-point operation compared to integer operation, extracted
from [Bar17].

When comparing floating-point and integer multiplication, the area for implementing
floating-point multiplication is lower than for integer multiplication. Indeed, the multipli-
cation is done only on the mantissa, consequently on 24 bits for single precision and 53
bits for double precision floating-point contrary to 32 or 64 bits for integers. Nevertheless,
the floating-point multiplication is still more costly in terms of energy consumption.

Custom floating-point data-types have been proposed to trade accuracy for perfor-
mance and can be preferred for an implementation on Field Programmable Gate Arrays
(FPGAs) for instance, as presented by Mishra et al. [MS13]. In this case, the mantissa
and exponent word-lengths are reduced or increased beyond the classical floating-point
formats. The area and computation time can then be reduced or increased compared
to a classical use of single or double precision floating-point. For instance, half-precision
floating-point data-types are represented with 1 sign bit, 5 bits to encode the exponent and
10 bits to encode the mantissa [VDZ08]. Nevertheless, when customizing the word-lengths
of the exponent and mantissa, a whole study has to be made to check the validity of the
word-lengths of the data in the targeted application.

Representing real numbers as integers, fixed-point arithmetic can be considered.
A number x encoded with fixed-point arithmetic is represented with three parameters,
namely the sign s, the number of bits m to encode the integer part and the number of
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bits n to encode the fractional part. m represents the distance expressed in number of
bits between the position of the radix-point and the Most Significant Bit (MSB) while n
represents the distance expressed in number of bits between the position of the radix-point
and the Least Significant Bits (LSB). A number x is represented in fixed-point coding as
xQ:

xQ =< x× 2n > ×2−n (2.2)

where the operator < . > represents the rounding mode. Despite being harder to use since
fixed-point arithmetic requires determining for each variable the integer and fractionnal
part word-lengths, and offering a lower dynamic range and limited precision, fixed-point
Digital Signal Processors (DSPs) are cheaper than floating-point DSPs and their implemen-
tation is much faster on a General Purpose Processor (GPP). Implementing an application
with fixed-point arithmetic may be useful to optimize word-lengths of the internal vari-
ables in the application, thus optimizing the dynamic power consumption. The dynamic
power Pdyn is expressed in Equation 2.3 depending on the activity factor α, the global
circuit equivalent capacitance Cg, the clock frequency and the supply voltage Vdd.

Pdyn ≈ α · Cg · fCLK · V 2
dd (2.3)

According to Equation 2.3, decreasing the activity factor which represents the fraction of
the circuit that is switching, or the global circuit equivalent capacitance decreases the dy-
namic power and may then decrease the energy consumption of the circuit. Consequently,
optimizing the word-lengths of the intern variables in an application may decrease its
energy consumption.

Dynamic precision scaling is proposed in [PCR10] for applications implementing a
Discrete Cosine Transform (DCT). According to the problem of massive data to process,
numerous data compression techniques have been implemented, and among them DCT.
The output of the targeted applications being an image, the perceived quality can be
traded for the energy consumption of the algorithm. Benefiting from the fact that the high-
frequency coefficients of a DCT have a lower impact on the output image quality, different
input bit-width are used for the computation of the different coefficients. An algorithm is
then proposed to select the best bit-width allocation to maximize the energy savings while
minimizing the quality loss, offering power savings from 36 to 75%. The operand bit-width
is then modified at run-time using the fact that some coefficients become negligtible after
a certain number of iterations and do no more have an impact on the computation thanks
to the energy compaction property of the DCT.

Clareda et al. [CGS15] implemented a modification at run-time of the word-lengths of
the internal variables in an Orthogonal Frequency-Division Multiplexing (OFDM) receiver.
Indeed, the required accuracy of the wireless receiver strongly depends on the channel
conditions. To save energy, the bit-width is adapted depending on the channel conditions.
The proposed method managed to save up to 63% of the dynamic energy consumption
while offering acceptable accuracy. Nguyen et al. [NMS09] implemented dynamic precision
scaling in the rake receiver of a W-CDMA receiver and managed to save between 25% and
40% of energy.

2.2.3 Less up-to-date data

The last level of action for implementing AC on the data is to work with less up-to-date
data. This technique is proposed in [RSNP12] for parallel programs. The motivation of
this technique is to reduce the overhead due to the synchronization between threads in
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parallel programs. For instance, the authors indicate that on an IBM Power 7, the K-
Means algorithm with a large input set and targetting to find 8 clusters spends 90% of
the computation time in synchronization. Nevertheless, the synchronization in parallel
programs is needed to ensure the following conditions:

• Data structures as linked lists are not manipulated simultaneously by several threads

• The different threads reach several points during the execution in a predictible way

• The threads work with consistent values even when working with shared variables

In the proposed method, the two last conditions are relaxed. Nevertheless, to implement
this technique, a quality criterion must be predefined. Then a whole study of the consid-
ered algorithm allows the programmer choosing the relaxation points. To end with, the
proposed technique allows choosing between the exact and approximate version of the code
depending on the comparison of the obtained result and the quality criterion. The pro-
posed relaxed synchronization method offers important savings in terms of computation
time and thus energy consumption while guaranteeing an acceptable result.

Meng et al. [MCR09] propose using best-effort computing for parallel programming to
relax dependencies between computations.

Another way to use less up-to-date data is to reduce the latency and energy of memory
accesses. Miguel et al. [MBJ14] propose approximating the values inducing cache misses
when accessed. In the proposed method, when a cache miss occurs, instead of accessing
the higher memory levels (main memory or higher cache level), a hardware mechanism
is used to estimate the accessed memory value. This mechanism is used to prevent the
processor from waiting for the retrieved data. Nevertheless, load value approximation can
only be used on applications with a high locality in memory values, with no cache misses.

2.3 Approximate computing techniques at the computation
level

The objective when implementing an AC technique at the computation level, is to reduce
the processing complexity. When reducing the processing complexity, the processing time
is also reduced, which leads to a possible opportunity to go into deep sleep mode and
consume less energy with dynamic power management. Two directions can be taken to
reduce the processing complexity, both requiring algorithmic modifications. Computations
can be skipped or sophisticated processing can be modified and approximated by simpler
computations as presented in Figure 2.4. Before implementing an approximation at the
computation level, the error-tolerant computations have to be identified. As explained
by Nogues et al. [NMP16], the computations to approximate are chosen if they are error-
tolerant as well as costly in terms of computation time or energy consumption.

Computation 
Level

Computation 
Level

Computation Skipping

       Computation Approximation

                  Incremental Refinement
     Loop Perforation

  Parameter Modification

Mathematical Approximation

Fuzzy Memoization

 Block Skipping
Early Termination/Iterative Refinement

Figure 2.4 – Approximate computing techniques: at the computation level.
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2.3.1 Computation skipping

Computation skipping consists in not executing parts of the computations to reduce the
processing complexity. The selection of the skipped computations can be done at two
granularity levels.

For fine-grained computation skipping, incremental refinement has been proposed
by Ludwig et al. [LNC96] for reducing the energy consumption of digital filters. In the
proposed approach, the filter order is dynamically adjusted to reduce the energy consump-
tion which is proportional to the filter order. Ludwig et al. express the average power
consumption in the implemented digital filter as:

P =
∑
i

Ni · Ci · V 2
dd · f (2.4)

where Ni represents the number of operations of type i performed per sample, which can
be multiplications, additions, memory storages etc., Ci is the average capacitance switched
per operation of type i, Vdd is the operating supply voltage and f the sample frequency.
The authors proposed to reduce the number of operations of type i performed per sample
by dynamically adjusting the filter order, which leads to a direct reduction of the average
power consumption. By analyzing the input signal to filter, the higher taps in the filter
can be powered-off.

Loop perforation can be used to reduce the volume of processing in an application.
Sidiroglou et al. [SDMHR11] proposed to identify critical and tunable loops in an appli-
cation, to reduce the executed iterations in tunable loops. In this case, a subset of the
iterations of a loop is executed, which generally results in an output differing from the
output of the accurate application. By applying loop perforation on several applications,
the authors managed to reduce the execution time by seven while keeping the difference
at the output lower than 10%. Besides, the authors have identified several computational
kernels that support well perforation, as the computation of a sum, the argmin opera-
tion or Monte-Carlo simulation. This technique has been applied to applications from
the PARSEC 1.0 benchmark suite [BKSL08] so as to cover a wide range of application
domains as finance, media processing or data mining for instance.

Vassiliadis et al. [VPC+15] proposed an approximation technique similar to loop per-
foration but based on user information on the critical nature of parts of an application, as
well as a percentage of tasks to approximate.

Loop perforation can be done dynamically, to adjust the number of iterations perfo-
rated at run-time depending on the obtained output quality or energy requirements, but
the selection of the iterations to perfore induces a run-time overhead. Selective dynamic
loop perforation is proposed in [LPM18], to skip a subset of the instructions in an itera-
tion, but an overhead appears due to the selection of the iteration. In this case, loops are
automatically transformed to be able to skip instructions in chosen iterations. Selective
dynamic loop perforation achieves an average speedup of 2× compared to classical loop
perforation technique while inducing the same amount of error.

Early termination or iterative refinement is a method that ends a computation
process before reaching its end. Generally, the considered computation is an iterative pro-
cess that converges towards a value. To save time, the iterative process is stopped before
it reaches full convergence. Several stopping conditions can be set. In some algorithms,
the number of iterations has a direct link with the accuracy and can be computed and
fixed in advance. For instance, for the Cordic algorithm [MVJ+09], the higher the number
of iterations, the more accurate the estimation of the searched cosine and sine functions
will be. The stopping condition can be defined when the improvement between several
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successive iterations falls below a fixed threshold. Nevertheless, to define a stopping cri-
terion directly linked with the output quality, one may know the reference output which
is generally not the case. To answer this problem, the framework ApproxIt [ZYYX14] has
been proposed. It targets only iterative method and implements a quality estimator to be
able to select the best approximation strategy for the next iteration at runtime.

The differences between loop perforation and iterative refinement are presented in
Figure 2.5. The different iterations of the loop are figured with ik. In the accurate
implementation of the loop, the iterations from i0 to in are successively executed. In
the version of loop perforation LP1, iterations of the loop are periodically skipped. In the
version of loop perforation LP2, iterations of the loop are skipped with no particular period.
Finally, for incremental refinement, from a certain iteration, in the proposed example, i2,
the iterations of the loop do no more need to be executed: the loop stops.

i0i0i0 in-2i2i1 in-1 in...Accurate

i0i0i0 in-2i2 in...LP1

LP2 i0i0i0 in-2 in...i1
IR i0i0i0 i1 i2

Figure 2.5 – Different approximations on a loop: Loop Perforation (LP) and Iterative Refinement
(IR).

Finally, a coase-grained algorithmic approximation can be implemented, namely block
skipping. In this case, a whole block is not executed to gain performance. Block skipping
allows applying AC at the level of the whole application. Nogues et al. [NMP16] proposed
to decompose the application to approximate, in this case, a software High Efficiency Video
Coding (HEVC) decoder, into processing blocks to apply AC on chosen blocks. Once the
application has been decomposed into blocks, a profiling step allows classifying the different
blocks and analyzing which one are the most computationally intensive. Indeed, depending
on the class of a block, it can be approximated or not. For instance, if the processing
block affects the application control flow, then no approximation can be applied on this
block. This block is said to produce control-oriented data. Approximable blocks are
signal-oriented blocks with domain conservation. These blocks are said to produce signal-
oriented data. Besides, approximation can be done mainly if such blocks preserve the signal
domain. The preservation of the signal domains means that the nature of the input of the
block is similar to the nature of the output of the block. In the software HEVC decoder,
the most computationally intensive blocks are the motion compensation filters. To reduce
the energy consumption of the decoder, block skipping is implemented. To trade-off the
energy consumption and the application quality of service (QoS), a parameter called skip
control defines the frequency of block skipping. According to the skip control parameter,
the filters are activated (or not). The frequency of block skipping is set as a percentage of
pixel blocks where filters are skipped. The chosen blocks can then be skipped permanently
or regularly. Block skipping in the HEVC decoder allows saving up to 40% of the energy
consumption.
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2.3.2 Computation approximation

When implementing computation approximation, sophisticated processing blocks are re-
placed by less complex ones. To guarantee that the processing by both blocks will lead to
a similar result, mathematical equivalence between both blocks is required. For instance,
replacing a division by a constant by the multiplication by the inverse of the constant
are two blocks mathematically equivalent. Nevertheless, mathematical equivalence can be
relaxed to achieve further complexity reduction.

Parameter modification can be applied to reduce the computational complexity in
blocks such as filters or transforms for instance. In this case, the algorithm is preserved but
a parameter is modified to reduce the volume of computations. For instance, a filter with
similar specifications may be designed for different filter orders, thus affecting the number
of computations in the filter. The parameter modification induces a modification of the
algorithm. Nogues et al. [NMP16] proposed to tune the number of taps of the motion
compensation filters according to a parameter called the approximation level control.

Fuzzy memoization can be used. Memoization is the principle of saving the result of
the execution of a function or computation in memory, so as to use it for future executions.
This technique has first been proposed to reduce the execution time for a computation
already done. The main motivation to implement memoization techniques is to remove
redundancy due to the repetition of instruction-level inputs, as well as repetition of input
data within high-level computations. The principle of memoization is particularly useful
for costly operations as multiplications or divisions or for complex processing composed
of several elementary operations. When an instruction has to be executed, for instance,
x Op y = z, the input operands x and y are used to access the Look-Up Table (LUT)
storing the previously executed instructions, called the reuse table. If the operation has
already been executed, this is a hit, and the result is extracted from the reuse table. If
this is not the case, this is a miss. The instruction is executed and its result is stored
in the reuse table. The principle of memoization is presented in Figure 2.6. As Arjun et
al. explained in [SSRS15], to apply memoization in a program, two conditions have to be
satisfied:

• The memoized code has to be transparent to the rest of the code, that is to say that
it should not cause any side-effect.

• For the same input, the memoization and original code sould produce identical out-
put.

x y
Reuse Table

ALU

MUX

z
Figure 2.6 – Illustration of the principle of memoization.
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According to these two conditions, no approximation lies in memoization. Besides, the
gain brought by memoization may be annihilated by the size of the Look-Up Tables (LUTs)
to store in memory to save the past execution results. To further improve the performance
in terms of execution time using value locality, fuzzy memoization has been proposed
and applied for floating-point operations by Alvarez et al. [ACV05]. Indeed, floating-point
numbers offer a high dynamic range and imply the need for large reuse tables to achieve
an acceptable hit rate when accessing the table. Contrary to classical memoization, when
implementing fuzzy memoization, before accessing the reuse table presented in Figure 2.6,
N Least Significant Bits (LSBs) of the input operands x and y are dropped. A masking
operation is applied before accessing the reuse table, which implies that operands with
similar Most Significant Bits (MSBs), despite being strictly different, will be affected to
the same compartment of the reuse table. Fuzzy memoization is particularly well tolerated
in multimedia applications, where the end-user generally tolerates errors. The number N
of dropped bits can be used to trade-off the output quality and the computation time or
energy consumption of the targeted application.

Mathematical approximation has been proposed for integrating complex appli-
cations composed of numerous sophisticated processing in embedded systems. In this
context, mathematical functions are commonly used in embedded applications in various
domains like digital communications, digital signal processing, computer vision, robotics,
etc... When determining the value of an intricate function, the exact value or an approx-
imation can be computed. The challenge is to implement these functions with enough
accuracy without sacrificing the performances of the application, namely memory usage,
execution time and energy consumption. Several solutions can be used to compute an ap-
proximate value of a mathematical function f over a segment I, according to a maximum
error value ε.

Specific algorithms can be adapted to a particular function [PTVF88]. Several meth-
ods can be used to compute an approximate value of a function. Iterative methods as
the shift-and-add BKM algorithm [BKM94] or the COordinate Rotation DIgital Com-
puter (CORDIC) algorithm [MVJ+09] are generally easy to implement. For instance, the
CORDIC algorithm computes approximate values of trigonometric, logarithmic or hyper-
bolic functions and is used in calculators. To compute the tangency of an angle θ as
presented in Figure 2.7, the principle of the algorithm is to apply successive rotations to
a vector ~v whose initial coordinates are (1, 0) and final coordinates (X,Y ). Indeed, to
rotate a vector whose coordinates are (xin, yin) from an angle θ, the operation applied to
compute the coordinates of the resulting vector is:[

xo
yo

]
= cos θ

[
1 − tan θ

tan θ 1

]
·
[
xin
yin

]
(2.5)

Nevertheless, to obtain an efficient implementation of the CORDIC algorithm on low cost
hardware, the multiplications have to be avoided. To do so, instead of applying a single
rotation of θ, several rotations of small angles θi are applied, such that θ '

∑n
i=0 θi.

Besides, in the efficient hardware implementation of the CORDIC algorithm, the values
of tan θi are taken equal to 2−i to replace the multiply operations by shifts. Finally, the
obtained values of xo and yo are equal to cos θ and sin θ respectively.

The accuracy of the CORDIC algorithm is strongly dependent on the number of itera-
tions, that is to say n, used to compute the rotation. For instance, to compute the cosine
and sine of angle 70◦, the values obtained with 5 iterations of the CORDIC algorithm are
0.3706 and 0.9280 respectively, while with 10 iterations, the values obtained are 0.3435
and 0.9390 respectively. Nevertheless, nowadays, a growing majority of embedded pro-
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θ

X

Y

Figure 2.7 – Illustration of the CORDIC algorithm, θ represented in blue.

cessors possesses a hardware multiplier. Besides, the computation time of the CORDIC
algorithm strongly depends on the targeted accuracy that sets the number of iterations.
It is also possible to compute the approximation of a function thanks to other methods
whose algorithms are described in [PTVF88].

LUT or bi-/multi-partite tables methods can be used when low-precision is required.
Nevertheless, the need to store the characteristics of the approximation in tables results
in some impossibilities to include these methods in embedded systems because of their
memory footprint. Indeed, LUT-based method would consume the most memory space
but would be the most efficient in terms of computation time. That method consists in
using 0-degree polynomials to approximate the value of the function f . The interval I on
which the function has to be evaluated is segmented until the error between each 0-degree
polynomial and the real value of f is lower than the maximal acceptable error value ε
on each segment. However, this type of segmentation has to be uniform: if the error
criterion is not fulfilled on a single subsegment J , all the subsegments of I have to be
segmented again. De Dinechin and Tisserand [DDT05] detailed improvements of the LUT
method called bi-/multi-partite methods. The multi-partite method proposes to segment
I to approximate f by a sequence of linear functions. The initial values of each segment
as well as the values of the offsets to add to these initial values to get whichever value in a
segment have to be saved in tables. The size of these tables is then reduced compared to
bi-partite tables methods exploiting symmetry on each segment. That method allows quick
computations and reduced tables to store but is limited to low-precision approximation.
This method is efficient for hardware implementation.

Finally, polynomial approximation is a good alternative for function evaluation, espe-
cially when several elementary functions are combined. Tools like Sollya [CJL10] provide
the polynomial coefficients to approximate a function f on an interval I for a predefined
polynomial order. For embedded fixed-point processors, polynomial approximation can
give very accurate results in a few cycles if the interval I is segmented finely enough. That
is to say, a polynomial Pi approximates the function f on each segment of I. The segmen-
tation is required so as to approximate the function f according to a maximum error of
approximation εmax. The polynomial order is then a trade-off between the approximation
error and the segment size. To obtain a given maximum approximation error, the decrease
in the polynomial order implies the reduction of the segment size. This increases the num-
ber of polynomials to store in memory. For a given data-path word-length, the increase in
polynomial order raises the fixed-point computation errors and annihilates the benefit of
lower approximation error obtained by a too high polynomial order. Thus, for fixed-point
arithmetic, the polynomial order is relatively low. Consequently to obtain a low maximal
approximation error, the segment size is reduced. Accordingly, non-uniform segmentation
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is required to limit the number of polynomials to store in memory. Thus, the challenge is
to find the accurate segmentation of the interval I.

Lee et al. have proposed different non-uniform segmentations [LCLV09] for hardware
function evaluation. On each segment, the function f is approximated by the Remez
algorithm. Afterwards, a simple logic circuit is used to find the segment corresponding
to an input value x. LUTs are used to store the coefficients of the polynomials. For
software function evaluation, Bonnot et al. [BNM16] proposed a non-uniform segmenta-
tion technique. The first step of this method consists in finding the optimal non-uniform
segmentation for approximating the function f on the interval I. The non-uniform seg-
mentation is then stored in a tree structure as presented in Figure 2.8. Each node of the
tree structure represents a segment on which the accuracy contraint is not respected, while
the leaves are segments where the accuracy constraint εmax is fullfilled. Consequently, an
approximating polynomial Pi is associated to each leaf. The coefficients of the different
polynomials as well as required shifts to compute the value Pi(x) ' f(x) with input x ∈ I
are stored in tables.

Figure 2.8 – Non-uniform segmentation of I stored in tree structure T .

The challenge of the proposed method, is to efficiently access the approximating poly-
nomial Pi depending on the input value x. To be efficient, if the input x is formatted in
fixed-point with m bits to encode the integer part, the m MSB of the input x are used to
know in which segment is included value x, and consequently which polynomial Pi is used
to compute the approximate value of f(x) as presented in Figure 2.9. In these methods,
the maximum error of approximation is used as an user-defined parameter, and has an
impact on the memory footprint of the system as well as computation time.

2.4 Approximate computing techniques at the hardware level

Approximations can be done on the hardware structure of a circuit: the implementation of
the circuit itself or its functionning parameters can be modified. Firstly, inexact arithmetic
operators are considered. They are then called approximate hardware module. The errors
induced by the implementation of approximate hardware modules can then be tackled
by an error correction circuit or by dedicated software, or left untackled in case of an
error-resilient application. The use of an inexact operator is considered as a functional
approximation: the truth table of the function is modified to tolerate errors in the name of
reducing the logic complexity and the length of critical paths. The effect on the circuit is a
reduction in power consumption and area. Other modifications on the hardware level are
possible, and may be applied along with the modifications on arithmetic operators. These
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Figure 2.9 – Evaluation of polynomial Pi(x).

modifications are done on the circuit functioning parameters and reduce the dynamic power
dissipation inducing errors. Finally, unreliable modules as unreliable memory storage, have
been proposed. The different AC techniques on the hardware structure are presented in
Figure 2.10.

Hardware LevelHardware Level

Approximate processing units

       Circuit Parameters Modification

Inexact adders
Inexact multipliers

DVFS
Clock gating

Unreliable storage

Figure 2.10 – Approximate computing techniques: at the hardware level.

2.4.1 Approximate processing units

Inexact adders

The current arithmetic operators having reached their performance limitations, approx-
imate hardware modules have been created. Whether it be in terms of critical path or
circuit area, to get better performances, the boolean function of operators has to be slightly
modified to overcome these limitations. Consequently, the output of an inexact operation
is not always mathematically equal to the output of the accurate operator.

Accurate adder structure A lot of work force has been put on classical arithmetic
operators as adders since they are generally the basic blocks of numerous more complex
circuits. The best obtained performances with accurate adders are a logarithmic delay,
for an N-bit adder, the critical path is equal to O(log(N)), and a linear area. These
performances have been obtained with adders as the Ripple-Carry-Adder (RCA) presented
in Figure 2.11(a) and the Carry-Look-Ahead Adder (CLA) presented in Figure 2.11(b).

The accurate adder RCA is composed of full adders taking as inputs 2 bits, xi and yi
as well as the carry signal cin from the previous stage of the addition. Each full adder of
the RCA outputs the resulting sum bit zi as well as the carry out signal cout. The truth
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Figure 2.11 – Design of two accurate adders.

table of the full adder is represented in Table 2.2. The area required to implement an
N-bit RCA is equivalent to O(N) with a delay equivalent to O(N).

xi yi cin zi cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 2.2 – Full adder truth table.

The accurate adder CLA is composed of full adders that compute the output sum bit
zi as well as signals pi, propagate the carry, and gi, generate the carry, that are sent to an
independent circuit that computes the carry cin for the next stage of the adder. At each
stage of the addition, the signals pi, gi, ci and zi are computed as:

pi = xi ⊕ yi (2.6)

gi = xi ∧ yi (2.7)

ci = gi−1 ∨ (ci−1 ∧ pi−1) (2.8)

zi = pi ⊕ ci (2.9)

Using the carry look-ahead circuit, the carry generation is faster, which induces a delay
reduction equivalent to O(log(N)). Nevertheless, the required additionnal circuit leads to
an important increase in the global circuit area.
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Figure 2.12 – Optimization process for probabilistic pruning of a circuit.

To improve the performances of adders, accurate adders can automatically be modified
into inexact circuits or new designs can be proposed from scratch.

Probabilistic pruning [LEN+11] is a design technique that relies on architectural
modifications of an original circuit by automatically pruning portions of the circuit to
reduce its power consumption, depending on their probability of being active during the
operation. To choose the pruned portion of the circuit, error metrics are considered. The
circuit is modeled as a Directed Acyclic Graph (DAG) C with the circuit components
being the nodes of the DAG and wires being the edges. To find the pruned circuit under
an error constraint, an optimization problem has to be solved. The DAG of the pruned
circuit C′ is a sub-graph of C, with similar set of inputs/outputs but a minimized number
of components. The error metric considered by Lingamneni et al. [LEN+11] is the average
error amplitude. The optimization process is presented in Figure 2.12.

The first step when applying probabilistic pruning to a circuit is to estimate the activity
of each node in the circuit. The goal is to prune the circuit parts with highest activity.
Then, before applying probabilistic pruning to the circuit, two strategies can be adopted:

• Weighted Probabilistic Pruning, where the choice of the pruned portions of the
circuits is made according to a cost function assigned to each node, which is the
activity of the node multiplied by its significance in terms of induced error.

• Uniform Probabilistic Pruning, where all the portions of the circuits have the same
cost for pruning.

Lingamneni et al. [LEN+11] applied probabilistic pruning to several classical adders,
as for instance RCA or CLA. The obtained results for uniform probabilistic pruning leads
to savings in energy-delay-area product between 2 and 7.5× with error rates comprised
between 10−6% and 10%. When it comes to weighted probabilistic pruning, the savings
are up to 5.3× for corresponding error rate of 37%.

The majority of the proposed inexact adders in the literature, are designs trying to
reduce the length of critical carry chain path. For an exact addition of x and y encoded
on N -bits, the carry is propagated from the lowest full addition on the LSBs x0 and y0,
up to the upper full addition on the MSBs as presented in Figure 2.11. Nevertheless, the
probability for the carry to be propagated up to the higher full adder is very low. Indeed,
the carry signal ci at stage i depends on the previous carry ci−1 only if the signal propagate
pi at stage i is true. According to Verma et al. [VBI08], the knowledge of the longest chain
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of propagated signals which corresponds to the number L such that from stage i to i+L,
the signals pi are equal to 1, indicates that ci is independent from ci−L−1. It is then
possible to build adders of size L in parallel without propagating the carry between them.

Verma et al. [VBI08] studied the longest sequence of propagate signals by studying
the longest run of heads in a series of n coin tosses, and have identified the behavior of
a coin to the behavior of a bit. The longest sequences of propagates according to a given
probability p have been computed and are reported in Table 2.3. According to Table 2.3,
the percentage of chances that in a 64-bit addition, the carry ci will be independent from
carry ci−18 is equal to 99.99%. The propagation of the carry signals from the LSBs up to
the MSBs can be used to trade-off the delay of the addition, since the longest sequence of
propagates is equivalent to log n where n is the adder input bit-width.

Bitwidth p = 99% p = 99.99%

64 11 17

128 12 18

256 13 20

Table 2.3 – Longest sequence of propagates for a given probability p.

To reduce the delay of adders, four major kinds of topology of inexact adders have
been explored in the literature: segmented adders, speculative adders, and carry cut-back
adders.

Segmented adders are processing differently the MSBs, processed by accurate adders,
and the LSBs processed by inexact adders. The inexact adder is segmented into an accu-
rate and an approximate part.

Approximate Full Adders (AFAs) are for instance approximating the computations on
the LSBs by implementing approximate full adders. In this case, the boolean function of
the full adder is modified. Gupta et al. [GMP+11] proposed to reduce the logic complexity
of an adder at the transistor level. The considered accurate full-adder is the Mirror Adder
(MA) represented in Figure 2.13(a). The accurate MA is composed of symmetrical NMOS
and PMOS chains which account for 24 transistors. The approximate designs built on
the structure of the MA reduce the number of transistors as well as the internal node
capacitance. The reduced size of the adder area induces a reduction in the switching ca-
pacitance αCg, having an impact on the dynamic power Pdyn as presented in Equation 2.3.
Besides, the reduction in the number of transistors is equivalent to a reduced complexity
and consequently shorter critical paths. Gupta et al. proposed 3 inexact versions of the
1-bit MA, used to build larger bit-width inexact adders. The inexact adders are only used
for processing the LSBs to ensure high output quality. An example of approximation on
the structure of the MA is presented in Figure 2.13(b).

To obtain the inexact version of the MA, the authors have removed transistors one
by one from the accurate version of the MA. The goal when designing inexact versions
of this operator, was to ensure the highest possible number of accurate outputs Sum and
Cout. In the proposed inexact structure, the number of transistors has been reduced from
24 to 16. The removed transistors correspond to the part of the circuit used to compute
Sum since Sum = Cout in 6 cases out of 8. An error is then induced in one case on Cout
and 3 cases on Sum, as presented in Table 2.4. The area of the accurate MA amounts to
40.66 µm2 while the area of the simplified MA is reduced to 22.56 µm2.
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(a) Accurate mirror adder. (b) Simplified mirror adder.

Figure 2.13 – Structure of the mirror adder and a simplified version of the mirror adder, extracted
from [GMP+11].

A B Cin Sum Cout Sumapp Cout,app

0 0 0 0 0 1 0

0 0 1 1 0 1 0

0 1 0 1 0 0 1

0 1 1 0 1 0 1

1 0 0 1 0 1 0

1 0 1 0 1 0 1

1 1 0 0 1 0 1

1 1 1 1 1 0 1

Table 2.4 – Mirror adder truth table: accurate and simplified version.

Gupta et al. used the inexact version of the MA to build AFAs, by approximating only
the LSBs. The IMPrecise Adder for low-power Approximate CompuTing (IMPACT) has
for instance been proposed, by implementing inexact MA on the LSBs while processing
the MSBs with a RCA. The number of approximated LSBs can then be used to tune the
degree of approximation.

Mahdiani et al. [MAFL10] proposed another type of segmented adder: the bio-inspired
inexact Lower-part-OR adder (LOA). In this case, the LSBs of the input operands are
processed with an OR gate and the carry-in signals are generated with an AND gate.
The MSBs are processed with an accurate adder. In the LOA, a p-bit addition is divided
into two smaller additions, an m-bit accurate addition on the MSBs and a n-bit inexact
addition on the LSBs such that m + n = p. The LOA is presented in Figure 2.14. The
accurate addition on the MSBs is materialized by the Accurate adder, and outputs the sum
on the MSBs Sp−1:n as well as the carry-out signal Cout. The accurate adder is separated
from the addition on the LSBs and the carry-in signal to provide to the accurate adder is
computed using an AND gate on the input bits n − 1, Xn−1 and Yn−1. Finally, the sum
on the LSBs is processed using bitwise OR gates.
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Figure 2.14 – Structure of the Lower-part-OR adder.

The proposed LOA frequently generates an error but the mean amplitude of the gen-
erated error stays moderate. As for the Approximate Full Adder (AFA), the frequency
of errors can be adjusted with the length of inexact lower part. For instance, if the ap-
proximation is done on 2 LSBs, the frequency of errors amounts to 40% compared to an
accurate adder of the same size. If the approximation is done on 8 LSBs, the frequency of
errors reaches 90%. Nevertheless, the maximum error amplitude generated stays moderate
since equal to 2n−1 − 1 where n is the length of inexact lower part. In terms of area and
delay, when implementing a LOA with an accurate adder implemented with a RCA, when
the size of the inexact lower part increases by 1 bit, the number of gates decreases between
21 and 31. Besides, for a similar implementation, the delay is reduced between 0.16ns and
0.55ns.

Another type of segmented adders is composed of the different variations of Error-
Tolerant Adders (ETAs). According to the Error-Tolerant Adder (ETA) proposed by Zhu
et al. [ZGZ+10], the addition on the MSBs is performed as a classical addition, from the
LSB of the MSBs, up to the MSB, as presented in Figure 2.15. The processing on the
LSBs is different: no carry signal is generated and the processing is done from the MSB
of the LSBs up to the LSB. For each stage of the addition on the LSBs, since the carry
signal is eliminated, a special processing is done to minimize the induced error. The input
bits at each stage of the addition are scanned from left to right. While one of the input
bits xi, yi is different from 1, a classical addition is performed, from the left to the right.
If the input bits xi, yi are both equal to 1, the scanning process stops and from the output
bit zi, all the output bits are set to 1.

10110011 10011010
01101001 00010011+̂

  100011100 10011111

LSBs to MSBs MSBs to LSBs

Figure 2.15 – Structure of the ETA.

The goal of the ETA is to reduce the delay as well as the energy consumption. Instead
of waiting for the carry signals to compute the next stage of addition, the addition on
the MSBs and the addition on the LSBs are performed in parallel. Nevertheless, the
mechanism to approximate the carry propagation phenomenon may lead to frequent errors.
To reduce the error frequency, variations of the ETA have been proposed.
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Contrary to the ETA, the Error-Tolerant Adder Type II (ETAII) [ZGY09] no longer
eliminates the carry propagation in the addition on the LSBs but aims at reducing the
delay of propagating the carry. The ETAII combines the structure of a segmented adder
since a n-bit adder is segmented in to k < n-bit sub-adders, with the speculative structure
of the Almost Correct Adder (ACA). Indeed, Zhu et al. studied the probability that the
carry signal is correct depending on the number of bits taken into account to compute
the carry signal. Using only one bit to speculate the carry signal, it has 75% of chances
to be correct. Adding 3 bits for the speculation increases this probability to 96%. A
general formula has been derived to indicate the probability P of computing an accurate
carry signal depending on the number of neighbouring bits k taken as inputs to the CLA,
P = 1 − 0.5k. The basic structure of the ETAII is presented in Figure 2.16. Each n

k -bit
sub-adder is composed of two blocks, a carry generator and a sum generator. The adder is
then regularly segmented in sub-adders. The carry is generated by CLA blocks that feed
the sum generator to the next stage with the generated carry signal to reduce the induced
error. In the ETAII, the longest possible carry propagation chain length is equal to 2n

k .
The complexity of designing the ETAII adder lies in the choice of the sub-adders length,
which allows trading-off the quality for energy consumption. To evaluate the accuracy of
the designed ETAII depending on the length of sub-adders, Zhu et al. have simulated bit-
accurate C code reproducing the behavior of the adder for varied k, n = 32 and random
inputs drawn in [0; 232−1]. In the proposed experiments, the probability that the accuracy
of the output result is higher than 95% is equal to 83.5% for k = 2, and reaches 98.3%
for k = 4 and 100% if the size of the sub-adders is 16-bits. Nevertheless, the obtained
error measurements have been obtained with only 10000 inputs, which is not significant
on the overall input set. Besides, one of the main drawback of the ETAII is that the same
number of bits are used to compute the carry signal whether it applies on the LSBs or on
the MSBs. Another variation of the ETA has been proposed as the Error-Tolerant Adder
Type IV (ETAIV) [ZGWY10]. The ETAIV is segmented into N

X blocks and processes
differently the LSBs and the MSBs. The carry signal on the LSBs is processed as in the
ETAII, while on the MSBs two parallel blocks are used to infer the carry signal:

• A carry generator with a carry in signal cin = 0

• A carry generator with a carry in signal cin = 1

The obtained carry out signals are then sent to a 2-to-1 multiplexer controlled by the
carry out generated from the LSBs to select the carry out signal. The induced errors in
the ETAIV can then be controlled with the size of the blocks in the segmented adder. The
error maps of 8-bit ETAIV are presented in Figure 2.17 for two values of X.

Zhu et al. [ZGY09] provided a comparison of different 16-bit accurate and inexact
adders in terms of performance, which is presented in Table 2.5. The presented results
have been obtained with an input frequency of 100MHz and the power is an average on
100 randomly drawn inputs. The indicated delay is the one obtained in worst-case. The
most power-efficient adder is the ETA while the fastest is the accurate RCA. Nevertheless,
to draw a fair comparison between the proposed adders, a fair error measurement has to
be done.

Speculative adders take the risk of breaking the carry chain, as for instance the ACA
and Variable Latency Speculative Adder (VLSA) presented in [VBI08]. The ACA is the
most known speculative adder. Exponentially faster than traditionnal accurate adders, it
is composed of an array of overlapping and translated sub-adders, so that each sum bit
is constructed using exactly the same amount of preceding carry stages, except the first
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Figure 2.16 – Structure of the ETAII.

Adder Power(mW) Delay (ns) # of Transistors

Accurate
RCA 0.22 4.04 896
CLA 0.51 2.37 2208

Approximate
ETA 0.13 2.29 1006

ETAII 0.24 0.20 1372
ETAIV 0.25 1.03 1444

Table 2.5 – Performances of the ETA and its variations compared to accurate adders, extracted
from [ZGY09].
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Figure 2.17 – Error maps of the ETAIV for different segmentation sizes, color scales correspond
to the error.

ones. The critical-path delay is limited and near-linear, but the circuit cost is fairly high.
The area of the ACA is slightly larger than the area of a RCA. The ACA, represented
in Figure 2.18, is an interesting case study due to its very low Error Rate (ER). Errors
occur when carry chains are longer than the ACA sub-adder size C, which is the main
ACA design parameter. The delay of the ACA is equal to the delay of the sub-adder of
size C. C embodies a trade-off between speed and accuracy, as illustrated in Figure 2.19.
The values of the induced errors are represented in Figure 2.19(a) for a 8-bit ACA with
C = 2 and in Figure 2.19(b) for a 8-bit ACA with C = 6. The operand combinations that
do not generate any error are indicated in dark blue. Thus, ACA designs have a very low
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Figure 2.18 – Structure of the ACA.

frequency of errors, but of high arithmetic distance. For instance, for the 8-bit ACA with
C = 6, the error rate is equal to 0.0156, the average error amplitude to 1.75 and maximum
error amplitude 192. Verma et al. have proposed the VLSA based on the design of the
ACA to detect when errors occur and correct them. The VLSA consists in adding an
error detection circuit to the ACA. The VLSA is then composed of an ACA to which is
added a signal indicating whether the result is accurate or not. Since the error rate of the
ACA is relatively low, the delay of the VLSA is almost equal of the delay of the ACA.
The signal to indicate whether the result is accurate or not is computed by analyzing the
propagate signals. The propagate signals are computed with a AND gate on both input
bits. The goal of computing this signal, is to indicate if a carry chain is longer than C.
The implemented error correction circuit is composed of an N

C CLA block, and outputs
the carry signal missed because of the carry chain longer than C. Finally, when the output
of the adder is not correct, an error correction circuit is used. The VLSA is then always
correct but has a variable latency.

0 50 100 150 200 250
Value of operand 1

0

50

100

150

200

250

V
al

ue
 o

f 
op

er
an

d 
2

0

50

100

150

200

250

(a) ACA N=8,C=2.

0 50 100 150 200 250
Value of operand 1

0

50

100

150

200

250

V
al

ue
 o

f 
op

er
an

d 
2

0

20

40

60

80

100

120

140

160

180

(b) ACA N=8,C=6.

Figure 2.19 – Error maps of the ACA for different carry-chain lengths, color scales correspond
to the error.

The Inexact Speculative Adder (ISA) [CSE15] is an optimized version of the architec-
ture of speculative adders. As an evolution of the ETAII, it also segments the addition
into several sub-adders with carry speculated from preceding sub-blocks. The ISA features
a shorter speculative overhead that improves speed and energy efficiency, and introduces a
dual-direction error correction-reduction scheme that lowers the mean and the worst-case
errors. The structure of the ISA is presented in Figure 2.20. The adder is segmented into
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sub-adders executed in parallel, themselves composed of 3 blocks. A first block speculates
the value of the carry, depicted by Carry Speculation block, and feeds a sub-adder, de-
picted by Sum Generator block, to generate a temporary sum value. The obtained value as
well as the carry speculated are feeding a compensation block, depicted by Compensation
block, to correct the induced errors. The compensation block compares the carry signal
generated by the Carry Speculation block with the carry signal from the previous Sum
Generator block. If those two values are inconsistent, a correction on the sum is applied.
If this correction cannot be applied, the error magnitude is reduced using the preceding
sum bits.
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Figure 2.20 – Structure of the ISA.

The ISA design typically yields higher Error Rates than ACA but with lower error
values, depending of the number of sub-blocks and error compensation level, which are
the main ISA design parameters. Nevertheless, the multiplexers required for a good error
compensation still represent a substantial area and energy overhead, particularly for low-
speed implementations.

Finally, a last type of inexact adders is the Carry-Cut Back Adder (CCBA) [CSE16].
The CCBA exploits a novel idea of artificially-built false paths (i.e. paths that cannot
be logically activated), co-optimizing arithmetic precision together with physical netlist
delay. The CCBA is segmented into several sub-adders, and multiplexers are inserted
between sub-adders to cut the carry propagation, so as to reduce the critical path delay.
The carry chain is cut depending on a Propagation block analyzing whether the carry
signal has to be propagated or not. Carry Speculation blocks can be used optionnally.
To guarantee floating-point-like precision, high-significance carry stages are monitored to
cut the carry chain at lower-significance positions. These cuts prevent the critical-path
activation, thus relaxing timing constraints and enabling energy efficiency levels out of
reach from conventionally designed circuits. The ER ranges similarly as for the ISA, but
the error values are lower than those generated by the ACA and the ISA, depending of
the number of cuts and cutting distance, which are the main CCBA design parameters.

Approximate multipliers

Accurate multiplier structure An integer multiplication of two N -bit integers can be
decomposed into two steps:

• Generation of the partial products
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• Addition of the partial products

The output of the multiplication is on 2N bits. The principle of integer multiplication
is depicted in Figure 2.21 with 4-bit integers [x3 : x0] and [y3 : y0]. The generated
partial products are represented with the integers [a3 : a0], [b3 : b0], [c3 : c0] and [d3 : d0].
When computing a binary multiplication, the output of a partial product can be 0 or
the multiplicand. Consequently, the most greedy part of the multiplication in terms of
resources is the addition of the partial products.
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Figure 2.21 – Multiplication of two integers on 4 bits.

As shown in Figure 2.21(b), the partial product addition can be represented as a
triangle, called the partial product tree. To build more efficient multipliers, the reduction
of the partial product tree can be targeted. To reduce the partial product tree, Full Adder
(FA) and Half Adder (HA) cells are cascaded until 2 lines are left in the tree. FA cells take
3 inputs, for instance bits b2, c1 and d0 in Figure 2.21(b) and compress them into 2 bits.
HA cells take 2 inputs, for instance bits c1 and d0 and compress them into 2 bits. The
strategy to reduce the partial product tree has a major impact on the complexity of the
multiplier. Particularly, tree multipliers are a class of multipliers working on this reduction
of the partial product tree, as the Wallace tree multiplier that aims at reducing as early
as possible the partial product bits or the Dadda tree multiplier that aims at reducing as
late as possible the partial product bits. Array multipliers are a sort of tree multipliers.
Array multipliers reduce the partial product tree using Carry-Save Adders (CSAs) and
process the final addition with RCA. They are not the fastest or smallest multipliers but
have a compact hardware layout because of their regularity, which makes them interesting
for Very Large Scale Integration (VLSI).

Inexact multipliers Several techniques to design approximate multipliers have been
proposed, since they are main-basic blocks for Digital Signal Processing applications as
Finite Impulse Response (FIR) filters.

The approximation can be done on the generation of the partial products. Kulka-
rni et al. [KGE11] used simpler structure to generate the partial products and to build
a low-power 2 × 2 multiplier block: the Underdesigned Multiplier (UDM). The proposed
basic block can be used to build larger multipliers. To build the proposed 2× 2 multiplier
block, the authors noticed that representing the output of a 2× 2 multiplication on 3 bits
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instead of 4 could lead to significant circuit simplifications. The modified Karnaugh table
is represented in Table 2.6. As depicted in Table 2.6 in red, when representing the output
on 3 bits, the only erroneous multiplication output is the output of 11 × 11, set to 111.
The error rate of the proposed block is then 1

16 . The original accurate circuit and the
approximate version are represented for 2-bit inputs in Figure 2.22. The approximation
allows reducing the circuit area by 50%, and the critical path in both circuits is indicated
in red. Larger multipliers can be built using the proposed 2× 2 multiplier to generate the
partial products. The mean relative error induced by the UDM ranges in [1.39%; 3.35%]
for 2 to 16-bit adders, while saving power between [30%; 50%].

X
Y

00 01 11 01

00 000 000 000 000
01 000 001 011 010
11 000 010 110 100
10 000 011 111 110

Table 2.6 – Karnaugh table of a 2× 2 UDM block.

X
1

Y
1

X
1

Y
0

X
0

Y
1

X
0

Y
0

Z
3

Z
1

Z
0

Z
2

(a) Circuit of accurate 2 × 2 multi-
plier.

X
1

Y
1

X
1

Y
0

X
0

Y
1

X
0

Y
0

Z
2

Z
1

Z
0

(b) Circuit of approximate 2×2 mul-
tiplier.

Figure 2.22 – Circuits of accurate and approximate 2× 2 multiply block, critical path in red.

The approximation of multipliers can be done on the partial product tree. Approx-
imate Array Multiplier (AAM) have been proposed, based on the efficient implementation
of accurate array multipliers based on the Baugh-Wooley algorithm [Hwa79]. Van et
al. [VWF00] proposed an approximate array multiplier, the lower error fixed-width multi-
plier called the AAM in the rest of the manuscript. The AAM is a fixed-width multiplier:
for multiplying two inputs on N−bits, the output is formatted on N−bits. Consequently,
during the multiplication, the LSBs are truncated preserving only the MSBs. The prin-
ciple used in the AAM is to prune the cells used to compute the LSBs that will not be
kept in the output. An error compensation mechanism is implemented to reduce the er-
ror amplitude. The structure of the AAM is represented in Figure 2.23(b) as well as the
structure of the accurate array multiplier in Figure 2.23(a). As shown on the structure of
the AAM, the cells to compute the partial products on the LSBs have been pruned.

Figure 2.23(a) shows the regularity of the layout of the array multiplier, which induces
an efficient implementation for VLSI. To obtain a signed version of the array multiplier,
the MSBs of all the partial products are inverted, except for the last partial product for
which all the bits are inverted except for the MSB. In Figure 2.23(a), the different cells
correspond to:
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Figure 2.23 – Circuits of accurate and approximate 6× 6 signed array multipliers, error compen-
sation cells in pink. Extracted from [Bar17]

• ND: NAND gate

• A: AND gate

• AHA: a half adder whose inputs are combined by an AND gate

• AFA: a full adder whose inputs are combined by an AND gate

• NFA: a full adder whose inputs are combined by a NAND gate

Classically, to implement a fixed-width array multiplier, the LSBs cells are simply
truncated. The LSBs cells are the cells at the upper-right diagonal in Figure 2.23(a)
which represent nearly half of the cells of the multiplier. Truncating the LSBs of the
array multiplier has been proposed by Kidambi et al. [KEGA96], who demonstrated that
the induced truncation bias and variance of the error were growing linearly with the size
of the multiplier. Nevertheless, since this truncation induced a non-negligible error, the
approximate multiplier depicted in Figure 2.23(b) has been proposed. Van et al. [VWF00]
proposed to add an error compensation mechanism on the diagonal (cells depicted in pink).
The correction cells are composed of a NAND gate, followed by N−2 AAO gates, where N
is the size of the multiplier, which represent two AND gates and an OR gate and finally an
AA gate composed by two successive AND gates. Consequently, the error compensation
mechanism is very simple. The error map of the AAM is depicted in Figure 2.24.

A survey on approximate arithmetic operators is presented in [JHL15]. The study
compares the different operators in terms of energy savings as well as error induced.

2.4.2 Circuit parameters modification

Another hardware approximation technique consists in producing a circuit which, under
normal conditions, always functionnally match its design. Nevertheless, under modified
conditions, the circuit gives approximate results. To do so, the fact that circuit manufac-
turers take margins on the indicated operating voltage/frequency of a circuit is exploited.
These margins are originally added to ensure that the uncertainties induced by the varia-
tions of physical processes, temperature for instance, are negligible. However, these mar-
gins are generally greater than really needed. Lower voltage can then be applied without
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Figure 2.24 – Error map of the 8-bit AAM, color scales correspond to the error.

inducing any functionnal errors, if the voltage stays higher than critical voltage imposed
by the critical path, or inducing errors if the applied voltage is too low to meet the crit-
ical path delay. In this case, the stability of the circuit is not guaranteed and errors can
occur. Errors can be corrected using an error-correction circuit. Working at near or sub
threshold achieves important energy savings. Indeed, transistors are generally considered
as ideal switches [RD15]. If the operating voltage Vdd is higher than a threshold voltage
VT they conduct the current, and on the contrary if it is lower than VT they are turned
off. Nevertheless, in reality, the current is not completely cut off when Vdd < VT but it
reduces exponentially. Consequently, the circuit can be operating at voltages lower than
VT , but reducing the operating voltage implies an increase in the circuit delay. VT is called
the critical supply voltage, the minimum supply voltage to produce a correct output.

The dynamic energy consumption being proportionnal to the square of the operating
voltage, reducing Vdd by a factor K decreases the dynamic power consumption by a factor
K2.

Figure 2.25 indicates the evolution of energy consumption per operation depending on
the supply voltage, while Figure 2.26 indicates the evolution of delay (in logarithmic scale)
per operation depending on the supply voltage.
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Figure 2.25 – Impact of a decrease in voltage on the energy consumption from [Mit16].

Nevertheless, reducing the supply voltage or increasing the clock frequency may break
critical paths inducing timing errors and consequently computation errors. Reducing the
supply voltage implies that the voltage is below the one at which the critical path delay is
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equal to the sample period. The propagation time increases and may be higher than the
critical path. In this case, the required results may not be available at the clock edge and
the value considered for computation or result may be erroneous. Besides, circuits func-
tionning at sub-threshold are suffering from exponential sensitivity to possible variations
(for instance, temperature). The main problem of working at sub-threshold is process
variability. Manufacturing processes are suffering from variation, for instance for two sim-
ilar transistors, the oxide thickness or critical dimensions for instance are not exactly the
same. The margin on the voltage to work at sub-threshold will not necessarily be similar
for two similar circuits. To prevent from high-amplitude errors that may endanger the
global circuit behavior, an error-correction circuit can be added to the approximate cir-
cuit. This error-correction circuit may induce a non-negligible overhead in terms of area,
energy and delay.

For instance, Hegde et al. [HS01] proposed soft Digital Signal Processors (DSP), that
is to say scaling the supply voltage of a DSP system beyond VT . By proposing algorithmic
noise-tolerance, an error-compensation mechanism to heal the system from errors induced
if the critical path is triggered, Hegde et al. adress other errors sources as deep submicron
noise. Deep submicron noise represents all the noise sources in deep submicron technology
due to the reduced feature sizes, the reduced supply voltages, the interconnects or the
density of manufactured System on Chip (SoC) [HS98]. Nevertheless, to be efficient, soft
DSP depends on the scaling of the operating voltage, the error frequency as well as the
overhead of error-compensation mechanisms. To create an efficient error-compensation
mechanism, algorithmic noise-tolerance relies on the study of the transfer function as well
as on the inputs and outputs distributions. Finally, the error-compensation mechanisms
can also be erroneous. Tang et al. [TBJJ11] have proposed a new metric that allows taking
into account the imperfection of the error-compensation mechanism to heal a system from
deep submicron noise.

According to voltage scaling, benefits can be demonstrated with a simple 8-bit RCA.
Figure 2.27 indicates the percentage of input combinations requiring a path delay of k×TFA
to be added, TFA being the path delay of a FA. Operating at VT , the critical path of the
8-bit RCA is equal to 8×TFA. However, Figure 2.27 indicates that more than 95% of the
input combinations can be processed in 5 × TFA. If the voltage is reduced such that the
new FA delay is equal to 5

8 × TFA, the probability of error occurrence is equal to 0.05.

Soft DSP allows reducing the energy dissipation for filter-based systems within a range
of 60-81% for a degradation of 0.5 dB on the output signal to noise ratio.

Ernst et al. [EDL+04] proposed Razor, a method that adapts the operating voltage
depending on the induced error rate. As the method proposed by Hedge et al., Razor heals
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Figure 2.27 – Proportion of input combinations (%) requiring k×TFA to be added using a RCA,
results from [HS01].

the system from errors induced by voltage scaling or deep submicron noise. To detect and
correct induced errors, Razor combines architectural and circuit-level techniques. Each
flip-flop in the design is augmented to allow detecting if the computation could not finish
on time. Using the Razor method, the ER depending on the operating voltage has been
measured for a 18×18 Field-Programmable Gate Array (FPGA) multiplier block operating
at 90MHz and 27°C and is depicted in Figure 2.28. This method can achieve up to 35%
energy savings while inducing an error at a frequency of 1.3%. The obtained results using
the Razor method clearly show the conservative margin taken by manufacturers to ensure
a good behavior of their circuits, since no error occurs at the safety margin nor at zero
margin.

Supply Voltage (V)

E
rr

or
 r

at
e 

(l
og

)

100

1

10-2

10-4

10-6

0
1.78 1.70 1.54 1.38 1.261.74 1.66 1.62 1.58 1.50 1.46 1.42 1.34 1.30 1.22 1.18 1.14

An error every 20 seconds

Environnmental 
margin 1.69V

Safety 
margin 1.63V

Zero 
margin 1.54V

Figure 2.28 – Error rate depending on the operating voltage for a 18 × 18 FPGA multiplier block,
results from [EDL+04].

Constantin et al. [CWK+15] proposed a predictive instruction-based dynamic clock
adjustment to dynamically study the critical paths of each instruction so as to apply
voltage scaling to achieve energy consumption reduction in a pipelined processor. This
technique achieves up to 24% power consumption reduction. Indeed, to derive the oper-
ating frequency of a circuit, static timing analysis is done on the circuit under the worst
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conditions at which the critical path is always respected. In this method, the instructions
determining the critical path at instant t are the instructions in the pipeline in the current
stage. Dynamic Voltage and Frequency Scaling (DVFS) benefits from the fact that the
critical path is not always reached.

To conclude, voltage over-scaling has not yet been adopted by industrials because of
its non-reproductible behavior from a chip to another.

2.4.3 Unreliable storage of resilient data

In 2001, the International Technology Roadmap for Semiconductors [AEJ+02] was pre-
dicting an increase in the area occupied by embedded memory in SoC from 52% to 94%
in 4 years. Efficiently managing the power required by a SoC goes with efficiently man-
aging the memory system. Besides, the SoC yield is strongly dependent on the memory
yield. Nevertheless, while targeting efficiency when designing embedded memories, the
number of expected faults increases. Errors in memory appear because of the shrinking
size of manufactured components, particle strikes or a use at a lower voltage. To ensure
a sufficient quality, repair strategies have been proposed. For instance, redundancy in the
elements in the memory array has been proposed [LYHW10] to repair the faulty memory
cells. However, using redundancy in the memory elements goes along with an area and
cost overhead.

To avoid redundancy, Smolyakov et al. [SGGL13] proposed to manage differently faulty
memory cells depending on their impact on the overall result. The sensitivity of the result
to a fault on a memory cell is evaluated based on the Bit Error Rate (BER) metric. For
instance, a faulty LSB will lead to a lower sensitivity to faults than a faulty MSB and
data before filtering are less sensitive to faults. After having evaluated the sensitivity of
memory cells, faulty memory blocks leading to a high sensitivity can be permuted with
memory blocks with lower sensitivity. Finally, a forward error correction at system level
is proposed to allow correcting faults while avoiding the area overhead caused when using
redundant modules.

Frustaci et al. [FKB+15] proposed another type of memory for error-tolerant appli-
cations. They proposed to dynamically apply voltage scaling to Static Random Access
Memory (SRAM) depending on the energy/quality trade-off required by the considered
application. Indeed, voltage scaling is generally limited at the system level because of the
SRAM embedded in the system. The faults due to voltage scaling on SRAM are either
due to a difference between the bitcell speed and the operating frequency, or due to ran-
dom process variations leading to wrong read write margins which are decreasing as the
operating voltage scales down. Besides, the BER increases exponentially as the operating
voltage scales down. Consequently, the MSBs have to be protected and the reduction of
the operating voltage has to stop whenever the quality is degraded too much, allowing
only a few LSBs to be wrong to get an acceptable quality (higher than 30 dB). This so-
lution is not satisfying in terms of energy savings and since to get enough savings, the
majority of LSBs is wrong, it is better not to transport them. As proposed by Smolyakov
et al. [SGGL13], the quality can be adjusted by applying error correction to a few sensitive
MSBs using for instance selective bit-level circuit techniques and allowing more aggressive
voltage scaling. The proposed voltage scaling on SRAM allows saving up to 32% energy
for similar quality on a 32kb SRAM testchip in 28nm.

Another method to reduce energy-consumption is to lower the Dynamic Random Ac-
cess Memory (DRAM) refresh rate. DRAM is a volatile memory which implies that
constant refreshing is required to keep the data stored in cells consistent. The refresh rate
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is generally conservative to ensure that no data is lost even if physical parameters are
changing, for instance, an increase in the temperature. However, frequently refreshing the
DRAM implies an increase in the power consumption. This rate can be reduced with error-
resilient data. Nevertheless, this process is highly dependent on physical parameters as
the considered chip, the temperature or the management of the power between successive
refreshes, leading to unpredictable behavior. To analyze the influence of these parameters,
Rahmati et al. [RHHF14] proposed to create a reproducible platform allowing reproduc-
ing the results for different temperature ranges and varied power management strategies.
For instance, the impact of the implemented power management strategy, namely power
gating, has been measured and reproduced in Figure 2.29.
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Figure 2.29 – Impact of power management on the fraction of accurate bits when reducing the
DRAM refresh rate, results from [RHHF14].

The authors studied the fraction of correct bits depending on the refresh rate, in the
case when the power is completely cut off between successive refreshes and in the other
case when the power in maintained. The proposed results have been obtained at a constant
temperature of 30°C, and indicate that when the power is cut off between refreshes, the
accuracy drops by an order of magnitude faster than when the power is maintained. This
technique to save energy must then be used carefully not to damage the quality at the
output of the application. Another important factor to take into account when reducing
the DRAM refresh rate is temperature. Increasing temperature affects the power leakage at
the transistor level. As a consequence, temperature increases logarithmically the volatility
of the data contained in the DRAM. To end with, even though reducing the DRAM refresh
rate can lead to important power savings, several important factors have to be taken into
account to ensure the accuracy of the stored data.

Finally, the error-resilient data can be compressed using a compression algorithm that
will cause lossy information but will allow increasing the data transfer rate and decreasing
the energy consumption. This technique has been proposed by Reinhardt et al. [RCHS09]
for wireless sensors networks. Energy is a critical resource in wireless sensors networks
because it is battery-powered. In wireless sensors networks, the data collected by sensors
have to be periodically transmitted to a base station with a low latency, since data have to
constantly be up-to-date. The power consumption of the communication unit in a sensor
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network is generally higher than the power required for transmitting or receiving. Data
compression before transmission allows reducing the transmission time or increasing the
density of information transmitted for a similar cost. Nevertheless, the data compression
is done with additional microcontrollers operations, thus at the detriment of energy. A
trade-off between compression and power savings has to be found.

2.5 Background: conclusion and perspectives

In this chapter, a non exhaustive description of AC techniques was presented. Several
techniques within the different levels to apply AC were described. When studying the
different contributions in the existing literature, the striking need for error analysis tech-
niques appeared. Indeed, when proposing a new AC technique, the performance of the
technique in terms of energy consumption, area or latency are studied. However, the er-
ror induced by these techniques as well as their impact on the output application quality
metric is generally done with exotic metrics and the link to the application is often non-
reproducible. The study of the impact of approximations on the application quality metric
is critical to use AC techniques in the industry. The main goal of this thesis is to model the
errors induced by various AC techniques. A thorough understanding of the approximation
techniques is consequently a pre-requisite to further work on error modeling.

In the next chapter, a description of existing error modeling techniques is presented.
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CHAPTER 3

Related Works: Analysis of the Impact of Approximate Computing on
the Application Quality

“Les erreurs sont les portes de la
découverte”

James Joyce

3.1 Introduction

As presented in Chapter 2, Approximate Computing (AC) is one of the main approaches
for post-Moore’s Law computing. It exploits the error resilience of numerous applications
in order to save energy or accelerate processing. The numerical accuracy of an application
is now taken as a new tunable parameter to design more efficient systems. Nevertheless,
the numerical accuracy of an application has to stay within an acceptable limit for the
output of the application to be usable. For this reason, the impact of the induced errors
on the application has to be studied. Before analyzing the effects of the errors induced
by the chosen approximations on the application quality metric, the errors induced by the
AC technique themselves have to be characterized. A thorough characterization of the
approximation error allows, during the Design Space Exploration (DSE) phase, choosing
the most suitable AC technique with respect to the implementation constraints and to
quantify the impact of the approximation on the application quality metric. The impact
of the approximation on the application quality metric is generally evaluated numerous
times because the DSE requires testing many configurations. Consequently, this evaluation
has to be fast so as to limit the DSE time.

AC techniques generate various error profiles. When implementing AC in an applica-
tion, the objective of error analysis is to derive the impact of the induced approximations
on the application quality metric.

The evaluation of the impact of the approximation on the application quality metric
can be done in three steps as presented in Figure 3.1.

The errors induced by the approximations are first characterized so as to provide an
AC source error model according to several error metrics for further error propagation.
The error characterization is presented in Section 3.4 and can be done with two different
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Figure 3.1 – Different steps to analyze the impact of approximation on quality.

techniques. Analytical techniques are presented in Section 3.4.1 provide a mathematical
model of the error. Simulation-based techniques are presented in Section 3.4.2 and are
more generic but require the emulation of the implemented approximation. The different
methods to emulate AC techniques are presented in Section 3.3. Varied error metrics are
used for error characterization. The error metrics can be the mean error amplitude µ, the
standard deviation of the error σ, the probability mass function (PMF) of the error, or an
interval that contains the error bounds.

Then, the errors are propagated through the application. This step described in Sec-
tion 3.6 allows deriving an intermediate accuracy metric as for instance the noise power
P , or the Signal-to-Quantization-Noise Ratio (SQNR). As for the error characterization
step, analytical techniques presented in Section 3.6.1 can be used. Simulation-based tech-
niques presented in Section 3.6.2 can also be used along with emulation or error injection
techniques.

Finally, the approximation errors may have to be linked to the output quality as pre-
sented in Section 3.5. In this case, a few analytical approaches have been proposed and
are described in Section 3.5.1. Analytical approaches are depicted as shaded in Figure 3.1
since no general analytical approach has been proposed. They have to be derived specif-
ically for a quality metric. Simulation-based techniques are generally preferred and are
described in Section 3.5.2. They can be implemented along with error injection.

3.2 Metrics to analyze the impact of AC

3.2.1 AC error and accuracy metrics

Introducing approximations in an application is equivalent to tolerating errors in the ap-
plication. Emulation techniques have been proposed to reproduce the introduced errors at
the approximation technique level, and are presented in Section 3.3. The introduced errors
are characterized and modeled with error metrics to ease the process of linking the induced
errors to the quality evaluation function of the application. The error of approximation êi
on a given input of the computation is expressed as:

êi = ẑ − z (3.1)

where ẑ and z are the erroneous and exact outputs of the computation, respectively.
Numerous error metrics have been proposed and the choice of the considered error

metrics depends on the implemented AC technique as well as on the nature of the output
of the application, as presented by Akturk et al. [AKK15]. To quantify the errors induced
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by an approximation, the deviation between the approximate output and the accurate
output has to be measured. Nevertheless, as explained by Akturk et al. [AKK15], the
considered error metric has to be robust to several side-effects. For instance, when taking
a relative error metric, the reference should not introduce any bias on the measured devi-
ation. Besides, averaging the error metric over a certain number of points may hide large
deviations on particular points, hence the need for a metric to measure the extreme errors.
Another important point in deriving error metrics is to define how to aggregate errors.

When these restrictions have been taken into account, different metrics to compute the
deviation exist: statistical, bitwise and interval-based metrics.

Statistical metrics

According to Chippa et al. [CCRR13], the induced errors by an AC technique can be
characterized with statistics according to three parameters. The three parameters are all
derived from the deviation expressed as the error distance ei:

ei = |ẑ − z| (3.2)

The first parameter to characterize the error is the mean error amplitude, µe, which
corresponds to the average value of the different error distances e. The second parameter
f is the Error Rate (ER), which represents the frequency of error occurrence. The third
parameter is the standard deviation of the error erms which represents the dispersion
around the average error value and is considered as the error predictability by Chippa
et al. [CCRR13]. The computation of the three parameters is detailed in the following
Equations:

µe =
1

N

∑
i∈I

ei (3.3)

f = 1
N

∑
i∈I

fei ,with fei =

{
0 if ei = 0

1 else
(3.4)

erms =

√
1

N

∑
i∈I

ei2 (3.5)

For a continuous statistical distribution of the error, the different parameters are rep-
resented with a distribution as in Figure 3.2. This continuous distribution is called a
probability density function (PDF). The ER is represented by the area under the distri-
bution, the mean error amplitude is the mean value of the distribution, and the error
predictability is the standard deviation of the distribution.

When the distribution of the error is discrete, as for instance with inexact arithmetic
operators, the statistical distribution of the error is the probability mass function (PMF).
The PMF of the approximation error is the function indicating the probability that the
error distance is equal to a particular value. It represents the Error Rate (ER) depending
on the Error Distance (ED) of the induced errors. The PMF can be represented as a bar
chart, and the higher a bar is, the more frequent the considered error occurs. PMFs can be
highly asymmetric as presented in Figures 3.3(a) and 3.3(b) for the Almost Correct Adder
(ACA) on 16 bits with a carry chain length of 4 and the Approximate Array Multiplier
(AAM) on 16 bits, respectively. These PMFs have been obtained with 10000 uniformely
drawn inputs in the input space [0; 216]. The more inputs are drawn, the more accurate
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Figure 3.2 – Continuous statistical distribution of the error: Probability Density Function.

the PMF is. To build the PMF of an approximate operator error, or statistics on the error,
Monte Carlo simulations are generally used [CSE15].

The error can also be characterized in terms of Maximum Error Distance (maximum
ED) M e defined as:

M e = max
i∈I

ei (3.6)

Bitwise metric

In digital communication systems, a widely used error model is the Bit Error Rate (BER).
Indeed, the goal of a digital communication system is to receive the closest data to the
data that was sent by the transmitter. The BER indicates the system performance and
is expressed as a ratio that measures the number of corrupted bits in a given number of
transmitted bits [Fre15] as in Equation 3.7.

BER =
Number of erroneous bits

Total number of transferred bits
(3.7)

A similar metric can be used for inexact operators with the Bitwise Error Rate (BWER).
The BWER represents the BER of each bit position in a binary word. For instance, if x
is an n-bit binary input, the BWER is a vector b depending on x expressed as b = {pi}
with i ∈ J0 ; n − 1K, where pi is the probability of bit i in x to be erroneous. Numerous
methods have been proposed to propagate the BWER error metric through an inexact
operator, and are presented in Section 3.6.1.

Interval-based metric

Error metrics can be represented by intervals and propagated by Interval Arithmetic (IA).
IA has first been proposed by Ramon Moore [Moo62] and consists in propagating intervals
instead of real numbers in the application. For instance, if variable x lies in [x;x], the
interval will be propagated through the different computations of the application. IA
is for instance used to bound the effects of round off errors in computations and allows
guaranteeing the output accuracy. For instance, intervals are used to produce conservative



Metrics to analyze the impact of AC 51

0 10000 20000 30000 40000 50000 60000
Error Distance

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

Er
ro

r R
at

e

(a) Almost Correct Adder, N = 16, C = 4.

0 1 2 3 4
Error Distance

x109
0

1

2

3

4

5

Er
ro

r R
at

e

x10-9

(b) Approximate Array Multiplier, N = 16.

Figure 3.3 – Probability Mass Function of two inexact operators.

error bounds for the computations in a digital computing machine where the computations
are a succession of rounded arithmetic operations whether it be in floating-point or in fixed-
point arithmetic. In this case, the produced interval is guaranteed to contain the accurate
output of the computation and the radius of the interval is the error bound.

Nevertheless, in the case of errors induced by inexact operators, the error may be
unsmooth and the resulting PMF highly asymmetrical. To better render the error induced,
Huang et al. [HLR11] proposed an adaptation of IA to inexact circuits called Modified
Interval Arithmetic (MIA). In the proposed method, each bar of the PMF of an operator
is modeled by an interval, as:

MIA(x) = P (a ≤ x ≤ b), if a ≤ x ≤ b (3.8)
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3.2.2 Application quality metrics

The characterization of the error induced by AC allows knowing the impact of the ap-
proximation on the application output quality. This impact can be measured with the
application quality of service (QoS) or with an intermediate quality metric. This step
corresponds to Blocks 2 and 3 in Figure 3.1. The application quality metric, whose nature
and measurement depends on the application, quantifies the output quality of the appli-
cation. For instance, for a signal processing application, the application quality metric
can be the signal-to-noise ratio (SNR), whereas for an image processing application, the
application quality metric can be the Structural Similarity Index Measure (SSIM). The
application quality metric is used to compare the output generated by the approximate
version of the algorithm with the output generated by the reference version of the algori-
thm. Nevertheless, in some cases, an intermediate metric can be easier to compute. An
intermediate metric is a generic error metric independent from the QoS metric, and that
may be linked to the QoS of the application.

Application quality metrics are generally user-defined quality evaluation functions and
have to be provided along with the error tolerance of the application. For an application,
several quality evaluation functions can be used and the impact of the approximation on
the different functions may strongly vary. Different quality evaluation functions have been
reported in Table 3.1 for various error-tolerant applications.

Data Processing
Domain

Quality Evaluation
Function

Digital Signal Processing
Peak Signal to Noise Ratio
Mean Squared Error
Relative difference

Image Processing

Middlebury metric (stereovision)
SSIM
Mean Squared Error
Pixel Difference

Image Segmentation
Percentage of Misclustered Points
Mean Centroid Distance

Video Processing
Peak Signal to Noise Ratio
SSIM

Communications Systems Bit Error Rate
Web Search Number of Correct Results in Top 25 Results

Classification
Classification Accuracy:
Percentage of Correctly Classified Points

Table 3.1 – Various application quality metrics depending on the nature of the application.

The impact of the choice of the quality function evaluation has been studied by Chippa
et al. [CCRR13] for image segmentation with k-means clustering. The two considered met-
rics are the percentage of miclustered points and the mean centroid distance. The obtained
error characteristics depending on both quality evaluation functions are presented in Fig-
ure 3.4 extracted from [CCRR13]. The white parts on Figure 3.4 indicate an acceptable
error, in this case the degradation in the output quality is lower than 1%. Figure 3.4(a)
uses as quality evaluation function the mean centroid distance while Figure 3.4(b) the
percentage of mis-clustered points. It can be seen that the application appears as being
more resilient in the case of mean centroid distance since the white parts are larger.
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(a) Metric: mean centroid distance.

(b) Metric: percentage of mis-clustered points.

Figure 3.4 – Impact of quality evaluation function on error-resilience (from [CCRR13]).

Gillani et al. [GK17] studied the impact of the quality function evaluation on the
error resiliency of a particular iterative workload: the StEFCal [SW14], a radio astronomy
calibration algorithm. Gillani et al. noticed that when using the quality function classically
used for the evaluation of the accurate algorithm, namely, the convergence criterion, that
computes the relative Euclidean distance between the vectors of current and previous
solution, the insights on the application quality when implementing AC were not useful.
When evaluating the quality of the approximate version of the algorithm using this quality
function, it happened that the solution had converged in the wrong plane. To prevent from
this phenomenon, they proposed another metric that takes into account the convergence
as well as the distance to the accurate solution.

In our contributions, we have studied the dependence of error-resiliency to the quality
evaluation function. The considered application is a stereovision algorithm that produces
a depth map, and the implemented AC technique is an algorithm-level approximation
detailed in Chapter 4. Two quality evaluation functions have been tested. The Middlebury
metric is particular to the evaluation of the depth maps quality and gives the percentage
of good pixels according to a ground truth. The Middlebury metric takes into account
an error threshold ε. If the depth of a given pixel is different from the depth of the same
pixel in the ground truth map from less than ε disparity levels, the pixel is counted as
correct. The Middlebury metric does not evaluate the smoothness of the disparity map
and does not render the human visual perception of quality. The other considered metric
is the SSIM which better renders the human visual perception of quality. The proposed
approximation technique was rejected according to the Middlebury metric while accepted
when the quality function evaluation was the SSIM.
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3.2.3 Conclusion

Numerous error metrics have been proposed to quantify the errors induced by AC tech-
niques. In this thesis, a focus has been made on the statistical error metrics since they
possess mathematic properties to estimate them as well as confidence information on the
obtained estimations. According to quality metrics, in Chapter 4, it is demonstrated that
the choice of the quality metric has a strong impact on the tolerance of the application to
imprecisions. In the proposed contributions, an intermediate metric has been used to get
away from the dependance to the quality metric.

3.3 Approximations emulation techniques

Numerous techniques are using simulations to evaluate the impact of AC on the application
quality metric or on an intermediate accuracy metric. In this case, the approximation
mechanism may have to be emulated so as to reproduce its internal behavior. Emulation
techniques have mainly been proposed for inexact arithmetic operators as well as for finite
precision arithmetic. In both cases, emulation can be done with functional simulation
techniques used to reproduce the behavior of the approximation instead of simulating the
approximation behavior on the hardware. Functional simulation techniques for inexact
operators and finite precision aim at reproducing the behavior of the approximation at the
logic level and at the bit level, respectively.

3.3.1 Inexact arithmetic operators

The functional simulation of the behavior of inexact arithmetic operators is used in [DVM12,
JLL+17, CCSE18] to characterize the induced errors or to analyze the QoS at the out-
put of an application implementing inexact arithmetic operators. In this case, emulation
by functional simulation allows studying the behavior of the inexact operator before the
hardware implementation. Nevertheless, the emulation of inexact arithmetic operators is
complex. To mimic the behavior of inexact arithmetic operators, emulation is done with
bit-accurate simulations at the logic level (Bit-Accurate Logic-Level (BALL) simulations)
that are required to reproduce the internal structure modifications of the operator at the
logic-level. The complexity of reproducing the internal behavior of the operator leads to
long simulation times. For instance, as presented in Figure 3.5, the BALL simulation time
of a 16-bit inexact adder, in this case, the ACA, is around 300 times longer than the one
of a native accurate processor instruction, represented in Figure 3.5(b) as floating-point
simulation. In the case of an inexact multiplier, in this case the AAM represented in
Figure 3.5(a), it is 4000 times longer.

The ratio r between the BALL simulation time and the simulation time for the corre-
sponding accurate floating-point operation of several 32-bit inexact operators are indicated
in Table 3.2. The ratio r is evolving in [31942; 73864819].

For the emulation of 32-bit inexact arithmetic operators, the required time is very long.
Consequently, the simulation of a whole application so as to analyze the impact of 32-bit
inexact operators on the QoS at the output of the application becomes prohibitive, if not
impossible.

3.3.2 Fixed-point arithmetic

To mimic the finite precision effects, fixed-point arithmetic can be emulated. Several
commercial high-level tools to design digital signal processing applications can be used to
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(a) AAM.

(b) ACA.

Figure 3.5 – Comparison of the simulation time for the BALL and floating-point simulation of
two inexact arithmetic operators.

Op. name r

ADD
ETAIV 31942
ACA 859406
ISA 1799519

MPY
AAM 13375154
ABM 73864819

Table 3.2 – Ratio r between BALL simulation and simulation of accurate floating-point operation
times for 32-bit operators.

emulate fixed-point arithmetic, as Signal Processing Worksystem (Cadence), DSP Station
(Frontier Design), CoCentric (Synopsis) [BN04], or C++ classes that have been proposed
in SystemC [GLMS10, MRR07, AT03]. More recently, Matlab/Simulink have proposed a
fixed-point designer toolbox [BBW14] to emulate the behavior of an application in finite
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precision. Given the target architecture, the fixed-point simulation of the application can
be bit-accurate.

C++ based fixed-point data-types are particularly slow to simulate since they can be
two to three orders of magnitude slower than the execution of floating-point data-types.
The emulation of fixed-point arithmetic is done on floating-point architectures. The integer
word-length, the total word-length as well as the quantization and overflow modes can be
specified. The quantization mode specifies how to manage a value whose accuracy is
greater than the one of the fixed-point variable embedding it, while the overflow mode
specifies how to manage a value whose amplitude is larger than the largest that can be
encoded on the fixed-point variable. Two different types of fixed-point simulation have
been proposed: 1) Constrained data types also called static fixed-point data-type sc fixed

with data-type arguments known at compile time. 2) Unconstrained data types also called
dynamic fixed-point data-type sc fix with data-type arguments that can be variables and
then modified. The static fixed-point data-type simulation is faster than the dynamic one,
but the application has to be re-compiled each time the data word-lengths are modified.
To improve the simulation speed of SystemC fixed-point data-types, a type fast has
been proposed for both constrained and unconstrained SystemC data-types, limiting the
precision to 53 bits.

3.3.3 Operator overloading and approximate data types for simulation

For an efficient simulation of an application implementing AC techniques, Sampson et
al. proposed EnerJ [SDF+11], a Java extension with type qualifiers to indicate which
data are approximated and which data have to be accurate. The programmer anno-
tates the code implementing its application and indicates the approximable parts, and
error-sensitive parts. Approximate storage, for instance unreliable memory modules as
unreliable registers, data caches, or main memory, and computation are emulated to allow
quality analysis at the output of the simulation. The inexact arithmetic operators are
implemented by overloading the existing accurate operators. Several AC techniques may
be emulated through EnerJ, as Dynamic Voltage and Frequency Scaling (DVFS), reduced
width in floating-point operations or reduction of the Dynamic Random Access Memory
(DRAM) refresh rate.

3.3.4 Conclusion

Emulation is an important part of error modeling for AC since it allows avoiding testing
the implemented technique within the real system. However, the proposed methods to
emulate the impact of inexact operators or finite precision arithmetic for instance lead to
long simulation times which impedes the use of exhaustive simulations for characterizing
the approximation error and limits the possibilities for the design space exploration. The
different abstraction levels for emulation and their associated times are represented in
Figure 3.6. For AC techniques at the computation level, the whole application has to be
simulated for emulation with native data-types which leads to low emulation time. Finite
precision arithmetic has to be emulated at architecture level and inexact circuits at circuit
levels, which leads to moderate emulation time. The longest to emulate is voltage over-
scaling which has to be emulated at technological level, that is to say at the transistors
level.
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Figure 3.6 – The different abstraction levels and times for emulation.

3.4 AC error characterization

From the different emulation techniques presented in Section 3.3, the induced errors by
the AC technique are reproduced and can be characterized with varied techniques. Two
types of state-of-the-art techniques exist to characterize the error metrics intrinsic to the
implemented approximations: analytical and simulation-based techniques.

3.4.1 Analytical techniques

Analytical techniques have been proposed to provide a mathematical model to evaluate
the considered error metric.

Widrow model for fixed-point arithmetic

Using a statistical representation of the induced error, an error model can be created for
various AC techniques. For instance, for modeling the error induced by fixed-point arith-
metic, the Widrow model [WKL96] can be used. The quantization error by truncation is
characterized with statistical parameters as the mean error amplitude, µe and the standard
deviation erms expressed as:

µe =
q

2
(1− 2−k) (3.9)

erms
2 =

q2

12
(1− 2−2k) (3.10)

where k represents the number of eliminated bits and q = 2−n where n is the number
of bits to encode the fractional part after quantization. Using the statistical error model,
the quantization process in fixed-point arithmetic can be replaced by an additive white
noise, as presented in Figure 3.7 with the following properties:

• Stationary and ergodic random variable.

• Non-correlated with the input signal x.

• Independent from the other noise sources.

• Uniform distribution.
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In Figure 3.7, x(n) represents the input signal at time n, xQ(n) the input signal
after conversion in fixed-point (Q for quantization) and ex(n) the statistical error model
characterized by its first and second order moments expressed in Equation 3.9.

Q

+

ex(n)

x(n) xQ(n)

x(n) xQ(n)

Figure 3.7 – Widrow model for fixed-point quantization noise.

Probabilistic analysis - inexact operators

To characterize the error metrics of inexact operators, several analytical techniques have
been proposed. Liu et al. [LHL15] analytically derive estimated values for the ER and the
Mean Error Distance (mean ED) of several block-based inexact adders, namely the ACA,
the Error-Tolerant Adder Type II (ETAII), the Equally Segmented Adder (ESA) and the
Speculative Carry Selection Adder (SCSA). After having established how to compute the
signal propagate pi, which indicates whether a carry signal is propagated to the ith sum
bit, they handle the derivation of error metrics for the different adders separately. The
assumption that inputs are uniformely distributed is taken.

To derive the error metrics of the ACA, the authors form the universal error set com-
posed by all the possible error patterns in the inexact operator. With a n-bit ACA, it
is possible to derive n disjoint subsets whose union form the universal error set. Each
subset, denoted Πi, is composed of the error patterns in which the ith bit is erroneous,
the upper bits are accurate, and the lower bits are either accurate or not. The total mean
ED of the operator is then defined by the sum of the mean ED in each subset. The mean
ED in each subset Πi is approximately equal to 2i · qi where qi is the probability to be in
the considered subset Πi. Indeed, the error induced by the ith bit is dominant while the
possible errors on the Least Significant Bits (LSBs) may cancelled each other.

The ER can be derived as
∑

i qi. Through the probabilistic analysis of the inexact
operator, the values of qi are analytically derived.

When it comes to an n-bit ESA divided into r = dnk e− 1 sub-adders, since all the sub-
adders have an equal size except the first sub-adder which is exact, the ER is approximately
equal to 1−(12)r. An approximation is then used to compute the mean ED, since the errors
in the lower sub-adders can be neglected compared to the one of the higher sub-adders. A
similar method is applied for the ETAII giving approximate values of the ER and mean
ED. The proposed method strongly relies on a probabilistic analysis of the structures of
each considered inexact adder, hence the impossibility to generalize this method to other
structure of inexact operators or other AC techniques.

As an improvement of the method proposed in [LHL15],Wu et al. [WLGQ17] derived
a method to compute the exact error profile of block-based inexact adders. Another
improvement brought by Wu et al. is to provide a generic method to compute the error
statistics of block-based adders. Making the assumption that the inputs are uniformely
distributed in [0; 2N − 1] where N is the size of the adder, the authors compute the



AC error characterization 59

probabilities of the signals propagate, generate and kill the carry, p, g and k respectively.
The signals p, g and k are defined hereafter, if A,B are the input bits:

p = A⊕B (3.11)

g = A ·B (3.12)

k = A ·B (3.13)

Given these probabilites, the computation of the ER is possible. Finally, a result of
the inexact aritmetic adder is correct if and only if all the speculated input of carries
are correct. The authors compute in a recursive way the probability of this event. To
derive the error distribution, the binary representation of the ED, named the “error pat-
tern” is analyzed. All the possible error patterns are enumerated and their probability of
occurrence is computed, giving the exact PMF of the error induced by the inexact adder.

Mazahir et al. [MHH+17, MHHS17] proposed a complete study on a probabilistic
evaluation of the exact PMF of inexact adders and inexact recursive multipliers. The
targeted class of inexact adders is adders implementing carry chain truncation and carry
prediction between successive accurate sub-adders. An error occurs in these adders when
the number of bits to predict the carry is not sufficient to predict the accurate carry signal.
In this case, an error in a sub-adder can propagate to the upper sub-adders, and leads
to an output of the adder lower than the accurate adder output. In the end, the method
analyzes the probabilities that an error occur in each sub-adder to derive the accurate
PMF. The method trades complexity off for genericity, not only targetting block-based
adders. Nevertheless, this method is particularly long to analyze large bit-width adders.
Again, the conditions on the inputs that led to an error are identified and treated as
independent events using probabilities.

Matrix-based determination of the mean ED

Roy and Dhar [RD18] extend the method proposed in [MHH+17], deriving the accurate
value of the mean ED of inexact Least Significant Bits (LSB) adders. This method is
based on the structure of these n-bit adders decomposed into an n−m-bit accurate adder
on the Most Significant Bits (MSBs) and several inexact sub-adders on the LSBs. The
analysis of the mean ED is done by building a 2-D memory database of size (M, 2), where
M = 2m+1 if m LSBs are approximated. To build this database, 4 matrices are used,
which consider 4 different carry-out conditions on the mth bit:

• MAT00: the accurate and approximate carry-out signals at the mth bit are 0.

• MAT01: the accurate carry-out signal at the mth bit is 0, and the approximate
carry-out signal at the mth bit 1.

• MAT10: the accurate carry-out signal at the mth bit is 1, and the approximate
carry-out signal at the mth bit 0.

• MAT11: the accurate and approximate carry-out signals at the mth bit are 1.

Given the truth tables of accurate and inexact adders, the 4 matrices storing the
different error amplitudes for each sub-adder are built to finally compute the mean ED.
The asymptotic runtime of the proposed matrix-based method for mean ED computation
is linear with the number of approximated LSBs, O(m), if the size of the inexact sub-
adders is negligible compared to m. Nevertheless, the proposed method targets only the
estimation of the mean ED which is not enough to characterize the error generated by an
inexact operator, and is particular to a class of operator.
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Empirical model and gate-level error characterization

Sengupta et al. [SSHS17] proposed a gate-level error characterization method to determine
the error variance erms of an adder whose approximation relies on the LSBs. The error
variance is characterized as a function of the number of approximated LSBs y. The induced
error e can be modeled as a random variable x that lies in [−(2y − 1); (2y − 1)] since y
LSBs are approximated, and whose probability to be equal to e is pe. The error variance
is then computed as:

e2rms(y) =

2y−1∑
x=−(2y−1)

x2px (3.14)

Assuming that x is uniformely distributed in [−(2y − 1); (2y − 1)], the error variance can
be written as:

e2rms(y) =
(2y+1 − 1)2

12
(3.15)

Finally, since the error variance when no LSBs are approximated is 0, an empirical for-
mulation of the error variance is derived as e2rms(y) = a · (2by − 1). The values (a, b) are
constants derived from fitting experimentally obtained error variance values with Monte-
Carlo simulations to the empirical model.

Hierarchical analysis

Sengupta et al [SSHS18] proposed to derive the error PMF at the output of inexact adders
or multipliers by first focusing on the characterization of smaller units, for instance Full
Adder (FA).

For a signed approximate FA, the error can affects the output of the sum ∆S, as well
as the sign bit ∆s. For instance, for the inexact FA structure presented in [GMRR13],
the truth table of the FA with inputs a, b, carry-in signal ci, carry-out signal co and sum
S is detailed in Table 3.3. The accurate values of S and s are indicated as Sacc and sacc
allowing computing ∆S and ∆s.

a b ci co s sacc ∆s S Sacc ∆S

0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 1 0 1 1 0

0 1 0 1 0 1 -1 2 1 1

0 1 1 1 0 0 0 2 2 0

1 0 0 0 0 1 -1 0 1 -1

1 0 1 1 0 0 0 2 2 0

1 1 0 1 0 0 0 2 2 0

1 1 1 1 1 1 0 3 3 0

Table 3.3 – Truth table of FA from [GMRR13].

From the truth table of the FA, and for a known input distribution, in this example,
the inputs are independent and uniformely distributed random variables. Consequently,
the derivation of the PMF is immediate. The PMF of three signals are presented in
Figure 3.8. Indeed, to derive the PMF for uniformely distributed inputs, the occurrence
of the different signal values have to be counted. For instance, to derive f∆S(n), we can
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observe in the truth table for signal ∆S, 6 occurrences out of 8 of value 0, and 1 occurrence
out of 8 of values 1 and −1.

fΔs(n)

n0-1-2 1 2

6/8

2/8

fΔS(n)

n0-1-2 1 2

6/8

1/8

fs(n)

n0-1-2 1 2

4/8
2/8

1/8

3
1/8 1/8

Figure 3.8 – PMF of the signals ∆s, ∆S and S for the approximate FA from [GMRR13].

The derivation of the error PMF is done in a general case where the input distribution
is not uniform. Nevertheless, the obtained expressions for the PMF depends on the prob-
abilities of the input signals to be 1, which are known only when the input distribution
is known. This leads to a highly restrictive condition to apply the proposed method to
derive the error PMF of an inexact adder.

Error analysis in voltage-overscaled circuits

Liu et al. [LZP10] proposed an analytical analysis of the impact of supply voltage overscal-
ing on arithmetic units, as adders or multipliers. The proposed method estimates the mean
ED at the output of an exact operator subject to voltage overscaling. The authors’ objec-
tive was to generalize a method to derive the mean ED under voltage overscaling since the
behavior of three different 16-bit accurate adders, the Ripple-Carry-Adder (RCA), Carry-
Look-Ahead Adder (CLA) and Carry-Select Adder with similar critical supply voltage,
was very different under similar voltage overscaling operation as presented in Figure 3.9.
The represented power consumption is normalized with respect to the power consumption
at which the adders are accurate.
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Figure 3.9 – Impact of voltage overscaling on the mean ED at the output of accurate adders
from [LZP10].
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To compute the mean ED at the output of an arithmetic operator subject to voltage
overscaling, for each internal signal of the application, the error significance W e

k , which
depends on the maximum error amplitude as well as on the switching activity, is determined
for each internal signal k. If the considered internal signal k impacts the computation of
a single output bit, W e

k is equal to the weight of the output bit (if the output bit is the
ith bit, the weight is equal to 2i). If the considered signal k impacts several output bits,
then W e

k is the minimum of the weights of the output bits. Then, the switching activity is
estimated in each node of the circuit and at all discrete time points. The switching activity
corresponds to the probability of a transition from a bit a to b, with (a, b) ∈ {0; 1}. For a
transition 0→ 1 of signal k at time t = TCLK , the switching activity is denoted P 01

k , and
for a transition 1 → 0, P 10

k . Given these information, the hypothesis that the different
signals independently and additively contribute to the computation of the mean ED gives
the following Equation for the mean ED computation:

µe =
∑
k∈S

(W e
k × (P 01

k + P 10
k )) (3.16)

Indeed, with overscaled supply voltage, the critical path delay may be larger than the clock
period TCLK . Consequently, at time t = TCLK , switching may induce errors. The proposed
method has been demonstrated on the error analysis of circuits implementing digital signal
processing applications subject to supply voltage overscaling. Giving an accurate analysis
of the mean ED at the output of the circuit, it reduces the characterization time by
several orders of magnitude compared to classical Monte-Carlo simulation techniques. The
complexity of the proposed characterization is in [O(N);O(Nm)] for the characterization
of N−bit operations with m inputs.

Conclusion

Numerous methods have been proposed to characterize the errors induced by inexact
operators as in [LHL15, MHH+17, WLGQ17, RD18] or to quantify the error induced by
finite precision. A few work has been done to analytically evaluate the error induced by
DVFS on an arithmetic circuit.

Focusing on the numerous methods proposed for inexact operators, their major draw-
back is that they all are dedicated to specific structures of inexact operators. If the
application designer is willing to test inexact operators belonging to different types, the
analytical method to compute the error statistics requires a new mathematical derivation.
Besides, to compute the desired metrics, the amount of computations to do becomes really
high with the bit-width and an important memory storage is required. To end with, no
estimation has been proposed on the maximum ED, which is a critical parameter when
implementing an approximation in an application.

3.4.2 Simulation-based techniques

To characterize the errors induced by AC techniques, simulation-based techniques are
massively used. Simulation-based techniques are more and more employed due to their ease
of use. Functional simulation techniques run the approximate system on a representative
input data set and compute the required statistics for computing the error metrics. To
mimic the behavior of the approximation, emulation techniques can be used.

The principle of functional simulation-based techniques for error metric characteriza-
tion is presented in Figure 3.10. Functional simulation techniques can be used to link the
approximation with an error metric. In this case, the approximate application and its
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accurate version are run on NSamples points extracted from real input data. The accurate
and approximate output values, z and ẑ respectively, are used to measure the obtained
error according to a chosen metric, for instance the mean ED µ, the standard deviation of
the error σ or the error PMF.
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Figure 3.10 – Illustration of the simulation-based determination of error metric.

Exhaustive simulations

Exhaustive functional simulations can be used to compute exact statistics of the error
induced by an AC technique. In this case, the AC technique is simulated for its whole
input data set, and statistics on the induced error are computed.

For instance, an inexact operator can be simulated exhaustively which means simulated
for all possible inputs. If the considered inexact operator has two unsigned inputs x and
y coded on Nx bits and Ny bits respectively, the exhaustive input set I = Ix × Iy is
composed of 2Nx+Ny values. Consequently, exhaustive functional simulations for high bit-
widths inexact operators, and more generally if the input design space of an AC technique
is large, are not feasible because of the required simulation time. Besides, as presented
in Section 3.3.1, the emulation of the approximation mechanisms at the hardware level
is complex, and long to simulate. To mimic the inexact operator behavior, bit-accurate
simulations at the logic-level are required to model the internal structure modifications
of the operator. Nevertheless, BALL simulations are two to three orders of magnitude
more complex than classical simulations with native data types for 16-bit operators. This
simulation time overhead can reach 7 orders of magnitude for complex 32-bit inexact
operators. Thus, exhaustively testing the operator for all the input value combinations is
not feasible for high bit-widths because of the required simulation time.

Mazahir et al. [MHH+17] have exhaustively simulated the inexact adder proposed
in [SAHH15] on an Intel Core i7 processor working at 2.4 GHz for various input operands
word-length. The evolution of the simulation time depending on the input operands word-
length is presented in Figure 3.11.

As presented in Figure 3.11, the simulation time for inexact operators becomes pro-
hibitive with the input operands word-length, since having an exponential evolution with
the input operands word-length. Given this important simulation time overhead, exhaus-
tive simulation, which means simulating the application implementing inexact operators
for all its possible inputs, is impossible in most cases.

Monte-Carlo simulations

Functional simulation is commonly applied on a given number of random inputs, as pre-
sented for inexact operators in [DVM12, JLL+17, CCSE18] or for DVFS in [LZP10].
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Figure 3.11 – Simulation time of an inexact adder depending on input operands bit-width
from [MHH+17].

Inexact operators are generally simulated with 5 million random inputs as proposed
in [CCSE18], which is the typical inexact circuit characterization method. The quality
of the statistical characterization obtained from a random sampling is highly dependent
on the number of samples taken and on the chosen input distribution. Besides, classi-
cal simulation-based analysis do not provide any confidence information on the obtained
statistical estimation. Using a great number of samples can be ineffective in terms of
simulation time.

Another drawback of Monte-Carlo simulations compared to analytical techniques is
that they do not give any information on the causes of the induced errors.

Pre-characterization for analytical techniques

Noteworthy, a large part of the analytical techniques to characterize error metrics presented
in Section 3.4.1 relies on a pre-characterization phase. The pre-characterization phase
generally relies on simulations to get error information required for the analytical derivation
of the error. For instance, before using analytical techniques as the MIA or Modified Affine
Arithmetic (MAA) to propagate the errors through an application, Huang et al. [HLR11,
HLR12] launch a characterization phase based on simulations. This characterization phase
is required to derive the PMF of the error-free input data, the PMF of the error generated
by the inexact operator, and the PMF of the error on the input data if the input is noisy.
Once the different PMFs have been derived, they are stored in Look-Up Tables (LUTs).

Similarly, Chan et al. [CKK+13] need to characterize the behavior of different error
metrics as the ER, mean ED or maximum ED depending on various input distributions
and various hardware configurations. They first simulate the considered inexact operator
for various hardware configurations, for instance different carry-chain length for the ACA.
They then record the evolution of different error metrics depending on the standard devi-
ation of the input distribution. The obtained results are saved in LUTs and further used
for error composition.

Sengupta et al [SSHS17] used a pre-characterization phase with gate level characteri-
zation of inexact adders depending on the number of approximated LSBs. As presented in
Section 3.4.1, the error pre-characterization step for inexact adders consists in fitting the
parameters (a, b) in Equation e2rms(y) = a · (2by − 1) giving the standard deviation of the
error depending on the number of approximated LSBs y. To do so, the standard deviation
of the error is computed for different values of y with exhaustive simulations, and (a, b)
are derived by regression.
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Conclusion

To analyze the errors induced by AC techniques, simulation-based techniques are hardly
scalable for large applications, large input data sets or numerous and different perturbation
types. Since exhaustive simulations are not scalable, Monte-Carlo simulations are generally
used. Nevertheless, a study on the number of samples to simulate and on the quality of
the obtained statistics has, to the best of our knowledge, never been proposed. Work
on simulation-based techniques was to be done to develop generic and more robust error
analysis methods.

3.5 Quality metric determination

3.5.1 Analytical techniques

Analytical techniques derive a mathematical expression of the application quality metric.
For instance, Liu et al. [LHL15] proposed to analyze the impact of inexact adders on
an image processing application, and particularly to analytically derive the Peak Signal
to Noise Ration (PSNR) metric at the output of an image processing application imple-
menting specific types of inexact arithmetic adders. When implementing this analytical
technique, the error metric required from Block 1 in Figure 3.1 is the mean ED.

The PSNR is a commonly used quality metric or intermediate accuracy metric for
image processing applications. The computation of the PSNR is done as:

PSNR = 20 log
d√

MSE(I,K)
(3.17)

where d represents the maximum possible value for a pixel in the reference image I of
size (m,n), K represents the image of size (m,n) obtained from approximate application
implementation, and MSE is the mean squared error function defined as:

MSE(I,K) =
1

m · n

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (3.18)

which can be rewritten as:

MSE(I,K) = E[ME ◦ME ] (3.19)

where ME is the error matrix defined as ME = K − I and E represents the expected
value of the Hadamard product of ME with itself. Since the implemented inexact circuit
is composed by a inexact adders, Equation 3.19 can also be written as:

MSE(I,K) = E[(

a∑
i=1

ME,i) ◦ (

a∑
i=1

ME,i)] (3.20)

Two strong hypotheses are made: the inputs are uniformely distributed, the mean ED µe
and Mean Squared Error Distance (MSED) erms of each inexact adder i are similar to the
mean ED and MSED of the error matrix ME,i, which leads to the following approximation
to compute the MSE(I,K):

MSE(I,K) ≈ a · erms + a · (a− 1) · µ2e (3.21)

For particular inexact adders, the authors derived the values of erms depending on µe,
leading to an expression of the PSNR solely depending on the mean ED of the inexact
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adders. Nevertheless this analytical framework is specific to particular inexact adder types
and specific to the considered application quality metric. To end with, the input distribu-
tion is generally not known which leads to question the hypotheses taken for this analytical
development.

The drawback of analytical techniques is their specificity to the considered application
as well as to the application quality metric, which makes them not automatic. Being
more generic and easier to automate, simulation-based techniques are often preferred to
analytical techniques to evaluate the quality metric.

3.5.2 Simulation-based techniques

Direct quality metric determination

Application quality metric can be directly evaluated at the output of the application
through simulations. In this case, the application has to be simulated on a representative
input data set and the quality metric is measured at the output. Nevertheless, some
quality function evaluation are very difficult to evaluate directly. For instance the BER
in digital communication systems, is long to directly evaluate because of the required
evaluation time. When a BER at receiver output of 10−k is targeted, 102+k simulations
are required for a good quality evaluation of the application. This metric is really long
to evaluate when introducing approximation in an application, which leads to the need to
separate the quality metric determination process in two steps. First, the impact of the
approximation on a intermediate quality metric is evaluated and then the link between
the intermediate accuracy metric and the application quality metric is established.

Error injection

To analyze the impact of an AC technique on the quality metric, the errors have to be
emulated within the application. Error emulation can be done at the bit level for finite
precision, or at the logic level for inexact operators. When error emulation is not directly
possible, perturbation-based methods can be implemented. In this case, errors are directly
injected in the application, as for instance proposed in the framework REACT [Wys]
with dynamic error injection that extends the ACCEPT framework [SBR+15]. To use the
REACT framework for error injection, the code has to be annotated with the approximable
parts and the injected errors are extracted from a pre-built library of several AC techniques,
provided by the user. Errors can be injected at two granularity levels. At the fine grain
level, errors are injected in the instructions, while at the coarse grain level, errors are
injected at the output of functions.

The error injection technique is widely used to derive the relationship between the
intermediate accuracy metric and the application quality metric. Chippa et al. [CCRR13]
propose the ARC framework to analyze the sensitivity of the different parts of an applica-
tion in order to identify the error-resilient parts. In this case, the intermediate accuracy
metrics are the error amplitude and the error rate. In the context of fixed-point refine-
ment, Parashar et al. [PRMS10] proposed to deal with the finite precision conversion of
a multi-kernels system by modeling the behavior of each kernel converted in fixed-point
by a single noise source located at the output of the kernel. In this case, the intermediate
accuracy metric is the noise power. This technique based on error-injection allows finding
the different noise power values at the output of each kernel subject to a quality constraint
at the output of the application. An optimization problem is formulated to budget the
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noise power on each kernel such that the quality constraint at the output of the application
is satisfied. A steepest descent greedy algorithm is used to solve this problem.

3.5.3 Conclusion

Analytical techniques have been proposed to determine the quality metric at the output
of an application but are often giving approximate values of the quality metric at the
output of an application. Simulation-based techniques can lead to very accurate esti-
mation of the quality metric at the output of an application but the accuracy depends
on the number of input samples simulated for the quality metric measurement. Besides,
simulation-based techniques are more generic for the determination of the quality metric
without relying on the type of implemented approximation. In the contributions of this
thesis, simulation-based techniques have been used. However, contrary to the previously
proposed approaches, the impact of the number of input samples on the accuracy of es-
timation has been studied and measured to avoid simulating large data sets. Moreover,
simulation-based techniques are long to evaluate the QoS at the output of an applica-
tion. In this thesis as well as in state-of-the-art techniques, the evaluation of intermediate
accuracy metrics can be preferred to the evaluation of the QoS.

3.6 Accuracy metric determination

As presented for the characterization of error metrics, two types of state-of-the-art ap-
proaches can be used to evaluate the accuracy metric: analytical and simulation-based
approaches. These techniques allow propagating errors within an application.

3.6.1 Analytical techniques

Analytical methods mathematically express the error characteristics at the output of the
application.

Interval/Affine arithmetic

In IA, an interval is assigned to each internal variable of the application. The interval is
then propagated within the different computations according to arithmetic rules. Let’s
define [x;x] = {x|x ≤ x ≤ x}}, with x and x the minimum and maximum values of a
variable x respectively. IA is particularly suited to simple operations, and the intervals
can be propagated from inputs to outputs through basic arithmetic operations as additions,
substractions, multiplications and divisions represented by the � operator in Equation 3.22,
and if the system is non-recursive. In this case, the non-recursivity means that a variable
in the system does not depend on its previous values as it is the case in Infinite Impulse
Response (IIR) filters. The general propagation rule is:

[x;x] � [y; y] = [min(x � y, x � y, x � y, x � y); max(x � y, x � y, x � y, x � y)] (3.22)

IA allows keeping track of measurement errors, errors caused by the inputs, and errors
caused by inexact computations. The asset of using IA is its ease to compute but the
produced error bounds are not tight and generally conservative and pessimistic. Indeed,
IA does not take into account any correlation between the variables to be composed and
is particularly pessimistic when variables are correlated. Numerous libraries have been
proposed to directly compute with intervals, as the C++ library Boost [BMP06].
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To improve the estimation of error bounds, Affine Arithmetic (AA) has been proposed
by Stolfi et al. [DFS04] in the 1990’s. The variables are no longer modeled with intervals
but with affine forms as presented in Equation 3.23. AA improves the tightness of the
error bounds by taking into account the first-order correlations between the variables to be
composed. In Equation 3.23, x0 is the central value of variable x, xi the partial deviations
and ei the error terms in [−1; 1]. Rules have been proposed to compose different affine
forms together and are presented in Equations 3.24-3.27, where x̂, ŷ are affine forms and c
is a constant. As shown for the composition of two affine forms by a multiplication, which
is not an affine operation, a residual error symbol is produced as rad(x̂)rad(ŷ), where rad
corresponds to the radius of the affine form. As proposed for IA, numerous libraries have
been proposed to compute with affine forms, as the C++ library LibAffa [GCH06].

x̂ = x0 +
n∑
i=1

xi × ei (3.23)

c× x̂ = c× x0 + c
∑n

i=1 xi × ei (3.24)

c± x̂ = (c± x0) +
∑n

i=1 xi × ei (3.25)

x̂± ŷ = (x0 ± y0)±
∑n

i=1(xi ± yi)× ei (3.26)

x̂× ŷ = x0y0 +
∑n

i=1(xiy0 + yix0)× ei + rad(x̂)rad(ŷ) (3.27)
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Figure 3.12 – Comparison of IA and AA in terms of tightness of the bounds.

As presented in Figure 3.12 with the area covered by both IA and AA, AA improves
the tightness of the error bounds by considering the first-order correlations of error signals
through the sharing of the error terms ei, but to the detriment of more complex compu-
tations. It should be noted though that both types of arithmetic ensure guaranteed error
bounds. To demonstrate the pessimistic error bounds obtained with IA compared to AA,
the evaluation of ẑ = x̂ + ŷ with both types of arithmetic and given several information
is done. A relationship between x̂ and ŷ is known since ŷ = −x̂ as well as their belonging
intervals since x̂ ∈ [−1; 1] and ŷ ∈ [−1; 1].

Using IA, the interval of ẑ is computed as:

ẑ = [−1; 1] + [−1; 1] = [−2; 2] (3.28)

While with AA the obtained output for ẑ takes into account the correlation between both
input variables and is more realistic and less pessimistic, as presented in Equation 3.29.

ẑ = 0 + 1 · ε+ 0− 1 · ε = 0 (3.29)

To sum up, a comparison of both types of arithmetic is proposed in Table 3.4.
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Assets Drawbacks

IA Numerically stable Unefficient for interval products
Linear convergence

AA More accurate for Less stable
interval products Higher computational

Keep track of correlation cost

Table 3.4 – Comparison between IA and AA.

Both techniques are well adapted to represent symmetric distributions, for instance the
errors induced by fixed-point arithmetic [FRC03]. Caffarena et al. [CLFHC10] proposed
a method based on AA to estimate the Signal-to-Quantization-Noise Ratio (SQNR) at
the output of a digital signal processing application converted in fixed-point and to target
non-linear algorithms.

Highly asymmetric distributions such as the errors produced by inexact arithmetic
operators are not well represented by either IA or AA. To better render their asymmetric
error distributions, modifed interval and affine arithmetics have been proposed.

Modified interval/affine arithmetic

Based on the error propagation method proposed with IA or AA, Huang et al. [HLR11,
HLR12] proposed an adaptation of these methods to inexact circuits, more adapted to the
highly asymmetric PMFs representing the errors induced by inexact operators as presented
in Figure 3.3. Indeed, IA and AA need to be centered and consequently fail to represent
errors of inexact operators. When implementing MIA or MAA, the error metric required
from Block 1 in Figure 3.1 is the PMF of the inexact operator.

In [HLR11], MIA and MAA are proposed to represent asymmetric distributions. The
proposed method allows statically estimating the impact of errors induced by inexact
operators on the application quality metric. In MIA or MAA, the whole distribution
is decomposed into multiple intervals/affine forms. In the case of MIA, each bar of the
PMF of an inexact operator is modeled by an interval as in Equations 3.30 and 3.31. In
Equation 3.31, the variable n represents the error magnitude.

MIA(x) = P (a ≤ x ≤ b), if a ≤ x ≤ b (3.30)

fX(n) =


P (2ε+n−1 ≤ X ≤ 2ε+n) if n > 0
P (−2ε+n+3 ≤ X ≤ −2ε+n+2) if n < −1
P (0 ≤ X ≤ 2ε) if n = 0
P (−2ε ≤ X ≤ 0) if n = −1

(3.31)

To compute the total error probability the function MIA(x) has to be integrated. The
rules to compose different intervals are similar to IA but in MIA, each bar of the first PMF
has to be composed with each bar of the second. MIA can be used to propagate the error
induced by inexact circuits through simple blocks. To do so, rules are proposed by Huang
et al. [HLR12]. Nevertheless, MIA is still very pessimistic on the error bounds and suffers
from range explosion.

In the case of MAA, each bar of the PMF of an inexact operator is modeled by an
affine form as in Equation 3.32.
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fX =


P1 : x1,0 + x1,1α0 + x1,2β0 + ...
P2 : x2,0 + x2,1α1 + x2,2β1 + ...
P3 : x3,0 + x3,1α2 + x3,2β2 + ...

(3.32)

The problem of range explosion is tackled since MAA takes into account the first order
correlation between variables. However, when dealing with operations such as multiplica-
tions or divisions, the output form is approximated to an affine form. Consequently, the
output of multiplications or divisions is not guaranteed to be more optimistic than the
result obtained with MIA. In addition to this problem of range explosion, MAA can suffer
from storage explosion due to the operation of several affine forms which can result in
the storage of numerous additional terms. The solution to this problem is to group some
terms of the PMF but then reducing the output accuracy. All these constraints pushed us
to develop another way to simulate quickly and without need for additional storage, large
bit-width inexact operators.

To propagate the error PMF through the inexact circuit, the PMF of the errors induced
by inexact operators have to be characterized. To do so, Huang et al. proposed exhaustive
simulations to derive the PMF and needed to store them for further computations. The
inputs of a circuit are represented by random variables since they can be affected by
external noise, and are consequently characterized by PMFs. The PMF of the error-free
input has to be propagated through the whole system then, the table storing the PMFs
information has to be accessed to know the error PMF of every approximate operator and
is finally propagated through the whole system. Nevertheless, if the range of input signals
increases, the runtime to execute the proposed method becomes prohibitive. One of the
main drawbacks of this method is that recursive systems as an IIR filter cannot be directly
handled by these techniques, since the recursion must be unrolled. Besides, the proposed
technique can be used to precisely estimate the error rate in the system but the estimation
of the maximum error amplitude is overly pessimistic and may lead to a wrong rejection
of the proposed approximation technique. The application of such techniques in complex
applications is then questionned.

Accuracy metric determination at the output of a Directed Acyclic Graph
(DAG)

Sengupta et al. [SSHS17] proposed an analytical framework to characterize the variance
of the error at the output of a DAG composed of inexact adders. Again, the proposed
method for application quality metric determination is particular to the implementation
of inexact adders. The circuit is represented as a DAG given as a dataflow graph. The
nodes of the DAG are the potentially approximated arithmetic units and the edges are the
connections between the different nodes of the circuit. The proposed framework, named
SABER, has been proposed to explore the quality versus power savings trade-off to know
how many bits should be approximated in each arithmetic operation.

In the proposed method, the approximation is supposed to be applied only on the
LSBs. For each node of the DAG composed of a potentially inexact adder, the variance of
the error is computed depending on the number y of LSBs approximated and on the error
distribution. For instance, if the error is uniformly distributed, the variance is expressed
as:

σ2e(y) =
(2y+1 − 1)2

12
(3.33)
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The variance is more generally expressed as:

σ2e(y) = a · (2b·y − 1) (3.34)

To determine the coefficients (a, b) for each considered inexact adder, exhaustive simula-
tions are used. This is the precharacterization phase, allowing characterizing the error
variance at gate level of multi-bit adders, depending on y, the number of approximated
LSBs. This phase allows building a library for several inexact adders.

+ +

x + x

+++

a b c d

...

z1 z2 z3

...

Figure 3.13 – Example of a DAG composed of adders and multipliers.

Once the variance at the output of each node of the DAG has been characterized,
the error at each node of the DAG are considered as independent random variables. An
example of a DAG is presented in Figure 3.13, where (a, b, c, d) are primary inputs of the
DAG, and (z1, z2, z3) primary outputs of the DAG. The presented DAG is composed of
adders and multipliers, the multiply operation can indeed be decomposed as adders and
shift operations. The variance at the output of each node in pink and blue is considered
as known through the precharacterization phase.

The structural correlations between the different nodes of the DAG have still to be
taken into account to compute the overall standard deviation of the error at the output
of the DAG. Indeed, the error induced by approximation on a node impacts the nodes
connected to it. The error variance at the output of the DAG is then expressed as a function
of the number of approximated LSBs in each node of the DAG, and is also dependent on
βi, the error sensitivity of a node to a primary output. The obtained expression is a non
linear expression detailed in Equation 3.35 for a DAG with T nodes. Variables yi and βi
are the values y and β at node i. The values βi are computed with a depth-first search of
the DAG.

σ =
T∑
i=1

a · (2b·yi − 1) · βi (3.35)

The major drawbacks of the proposed method are its restrictive assumption that the
approximation relies only on the LSBs, which restricts the type of considered inexact
adder, as well as the need to determine the relationship between the variance and the
number of approximated LSBs that has to be done with time-consuming simulations.

Sengupta et al. [SSHS18] then proposed a more generic analytical approach based on
the Fourier and Mellin transforms to evaluate the PMF of the error at the output of a
circuit implementing inexact operators. Again, the considered inexact circuit is represented
as a DAG.
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The PMF of individual inexact operators as adders or multipliers is first derived, and
if these operators are placed in a DAG, topological traversal is used to propagate the
errors induced by the operators through the application. The proposed method derives
an analytical expression of the PMF of the errors induced by inexact operators, from a
Boolean function representing the approximation at the logical level.

As proposed by Huang et al. [HLR11], the proposed method is based on the PMF
of the inputs of the circuit, in case they are tainted with errors, on the PMF of the
output with no error and on the PMF of the output error. The inputs and outputs of the
DAG are considered as random variables. Once the PMF of the individual nodes, adders,
substractors or multipliers, are obtained, the error PMF has to be propagated through the
DAG up to the output of the DAG. To compute the error PMF at the output of a node,
the error generated at the node has to be composed with the error PMF induced by the
input operands of the node. The different PMFs are modeled as sums of Dirac functions.

The propagation of the error PMF through an inexact adder is computed as the convo-
lution of the PMF of the errors on the inputs and of the error induced by the inexact adder.
The propagation through an inexact multiplier is more complex, since it is computed as
the sum of the product of random variables. The product of the PMF of the random
variables is computed with the Mellin transform [Spr79] and their sum if computed as for
the propagation through the inexact adder, with a convolution of the obtained PMFs. The
convolution operation is done with a Fourier transform.

To be able to use the Fourier and Mellin transforms, assumptions are required on the
independent nature of the inputs treated as random variables, as well as on the inde-
pendence between several full adders representing the global inexact operator. The asset
of this method is its applicability to various inexact operators. However, the proposed
method based on the Fourier and Mellin transforms has an exponential theoretical com-
plexity. The gain in terms of time are not sufficient to answer the growing space to explore
when implementing inexact operators in a complex application. This method has first been
derived for inexact multipliers [SS15] where the multiplication process is decomposed into
the generation of the partial product to which are assigned PMFs which are convoluted
to give the PMF at the output of the whole multiplication. The proposed method offers
a good quality on the computation of the error PMF as well as an improvement on the
characterization speed of one order of magnitude compared to Monte-Carlo simulations.
The major drawback is its exponential theoretical complexity.

Regression-based technique for output quality metric determination

Chan et al. [CKK+13] proposed a regression-based technique to compute the quality metric
at the output of a circuit composed with inexact arithmetic operators. After having
obtained the error metric characterization stored in a library for each arithmetic unit,
the goal of the proposed method is to obtain a function f giving the error metric EMout

depending on the error metrics EMi obtained at each arithmetic unit, such that:

EMout = f(EM1,EM2, ...,EMn) (3.36)

with n the number of arithmetic units in the considered circuit. The proposed method does
not assume that the inputs of the application are uniformely distributed. As presented
in Figure 3.14, the required information to compute an error metric at the output of an
arithmetic unit, are the standard deviation erms,a and erms,b, generated by the previous
unit that feed the considered unit, the error metric generated by the previous unit EMa

and EMb, and the intrinsic error metric EMi induced by the considered arithmetic unit.
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The standard deviation of the different units are obtained with topological traversal and
are stored in a Look-Up Table (LUT). A precharacterization allows getting the values EMi

for different standard deviation values.

+̂ EMi

{erms,z, EMz}

{erms,a, EMa} {erms,b, EMb}

Figure 3.14 – Example of the estimation of the error metric of an arithmetic unit.

Finally, general composition rules have been proposed to propagate the error through
a circuit composed of inexact adders. To adjust the composition rules depending on
the considered structure, regression is used. This technique has been compared to MIA
and for a similar runtime is 3.75× more accurate. For the error composition part, the
proposed method achieves a runtime reduction of 8.4×. Nevertheless, this technique is
only applicable to adder-based circuits.

Boolean analysis

Venkatesan et al. [VARR11] proposed a general methodology to analyze the quality at
the output of a circuit subject to timing-induced approximation as DVFS or the imple-
mentation of inexact arithmetic operators. The first step of the proposed methodology
is to generate an untimed version of the considered circuit, when subject to DVFS, that
represents its behavior under DVFS. This step corresponds to the conversion of the timing-
induced approximation into the functional domain. The indicated behavior of the circuit
is particular to a given clock period and voltage. The critical paths of the circuit with
delay larger than the clock period are analyzed to generate the untimed version of the
circuit. Subject to timing-induced approximations, the output of a combinatorial circuit
are dependent on the inputs at time t, as well as the previous at time t − k, k ∈ N.
The untimed version of the circuit functionnally exposes these dependencies. Then, the
comparison between the accurate circuit implementation and its inexact version is done
by generating a virtual error circuit. Finally, conventional verification tools as Boolean
satisfiability solvers or binary decision diagrams are applied on the obtained virtual error
circuit to generate the desired error metrics.

Fixed-point systems

Numerous analytical techniques have been proposed to propagate the different noise sources
in a finite precision system and evaluate the noise power at the output of an application.
Analytical methods mathematically express the noise power at the output of the applica-
tion due to finite precision. The study of the impact of finite precision on the accuracy
metric has firstly been developped for classical signal processing kernels. Liu et al. [Liu71]
developped an analytical model for digital filters. The different noise sources in the filter
are identified, as the quantization on the input signal, the quantization of the coefficients
and finally the accumulation of rounding errors in the arithmetical operations. Finally, the
analytical computation of the mean squared error at the output of the filter is analytically
derived. Hilaire et al. [HMS08] have proposed an analytical framework to derive the round-
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off noise at the output of filters and compare the noise values for different realizations of
the filter.

The analytical study of fixed-point errors has then been separated for smooth and
unsmooth applications (applications with non-linear operators). For smooth applications,
the used method depends on whether the application is Linear-Time Invariant (LTI) or not.
Menard and Sentieys [MS02] proposed an automatic analytical evaluation technique of the
SQNR at the output of an application implementing non-recursive and linear recursive
structures. Authors represent the application as Signal Flow Graph (SFG), listing all
the information of fixed-point format. The SFG allows obtaining the different transfer
functions whose frequency responses are then linked to the SQNR at the output of the
application. The proposed method takes into account the different quantization modes, for
instance rounding or truncation. This method is extended to non-LTI systems by Rocher
et al. [RMSS07] using possibly time-varying transfer functions or impulse responses to
model the application. The transfer function or impulse response of the application is
linked to the different noise sources, given their mean and variance to give the output
noise power.

Different approaches based on perturbation theory have been proposed to determine
the analytical expression of the noise power at the system output. Each quantization leads
to a noise source. The challenge is to determine the gain between each noise source and the
output. A linear model is used for the noise propagation through the different operations
thanks to a first order Taylor expansion of each operation. The gains can be computed
from time-varying impulse responses [RMSS07], affine arithmetic analysis [LCCNT08] or
simulation [LGC+06].

Nevertheless, analytical techniques are complex, hard to automate and their applica-
bility is limited to systems having only smooth operations, that is to say differentiable
operations.

3.6.2 Simulation-based techniques

When using simulation-based techniques, an intermediate accuracy metric is generally
evaluated. Indeed, the direct evaluation of the quality metric at the output of an applica-
tion may require numerous samples to be simulated. For instance, Huang et al. [HLR12]
illustrated the example of functional simulation technique on a length-10 dot product
with data formatted on 32-bit. To simulate the approximate application covering the
whole input space, 3220 ≤ 1.3×1030 different input vectors would be simulated. In digital
communication systems, to evaluate the BER metric, if it reaches 10−k, 102+k samples
have to be simulated.

For the evaluation of an intermediate accuracy metric as the noise power, the metric
is generally computed by simulating an arbitrary, and large, number of random inputs
NS [KHWC98]. For fixed-point arithmetic, in the literature the number of samples ranges
from 105 [KHWC98] to 1012 [KWCM98]. For determining the noise power P induced
by finite precision, two different versions of the application are simulated as presented in
Figure 3.10. The distance between the output of the application with infinite precision
and the output of the application with finite precision is measured and squared for each
simulated sample. The expected value of these distances is then computed to obtain the
value of the noise power P at the output of the application. The slow software simulation
of fixed-point data-types as well as the high number of samples to simulate makes generally
fixed-point conversion a long and tedious task. Sedano et al. [SLC12] proposed to improve
the speed of fixed-point conversion, to use inferential statistics to infer the number of
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inputs to simulate. They derived that for a noise constraint of 10−k, 10k+1 input points
were required for a fair evaluation of the noise power.

The number of significant bits for finite precision arithmetic can be considered as an
intermediate accuracy metric. In this context, discrete stochastic arithmetic has been
proposed by Jezequel and Chesneaux [JC08] for floating-point and fixed-point arithmetic.
In this method, for each data, the last significant bit is randomly perturbed and the
application is run N times using the same input data for each run. The average over
these N runs is used as an estimate of the exact value. A t-distribution is used to provide
a confidence interval for the estimated value. The number of significant bits is deduced
from the number of common bits between the obtained values and the estimation. The
main advantage of this approach is the low number of runs N required to obtain a good
estimation. In practice, N = 3 is used.

Finally, simulation-based technique are widely employed since they are not limited by
the applicability of analytical techniques. However, due to the long emulation time of the
approximations techniques, functional simulation techniques do not scale well with large
applications.

3.6.3 Conclusion

Analytical techniques have majorly been proposed to characterize errors induced by ap-
proximations. These techniques are particular to the considered error metric and the
considered approximation technique. Simulation-based techniques have the asset of being
generic but do not scale with large systems. In this thesis, simulation-based techniques
have been used to characterize errors induced by approximations using statistical mod-
els. Statistical models allow studying the number of simulations to lead so as to get an
estimation of the error properties according to user-defined confidence requirements.

3.7 Conclusion

The error analysis is an important step of implementing AC, as well as analyzing the errors
tolerated by the application. The errors due to approximations can be classified into three
separate classes as presented in Figure 3.15.

1. The fail small category of errors corresponds to errors with a high probability of
occurence but a small amplitude. Errors induced by finite precision and especially
fixed-point arithmetic fall in this category.

2. The fail moderate category of errors is a hybrid category corresponding to errors
with a moderate amplitude and probability of occurence.

3. The fail rare category of errors corresponds to errors with a low probability of
occurence but a high amplitude. Errors induced by inexact operators fall in this
category.

In this thesis, methods and tools have been proposed to quickly evaluate the effects
of various approximation techniques on an application quality metric. The proposed con-
tributions have tackled both the modelization of the error induced by approximations,
and the analysis of the impact of errors on the application quality metric as presented in
Figure 3.16. This thesis focuses on two different approximation techniques, namely the
implementation of inexact operators, a hardware-level AC technique, and the conversion
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Figure 3.15 – Different error categories in approximate computing: evolution of the error fre-
quency depending on the error amplitude.

to finite precision, which is a data-level AC technique. The first main contribution of this
thesis has been to develop a methodology to quickly characterize the category of errors
induced by an approximation technique. The statistical model of the approximation er-
ror has then be used to simulate and analyze the resilience of a given application to an
approximation technique.
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Figure 3.16 – Contributions of the thesis.

As presented in Figure 3.16, the error profile has been characterized for two different
levels of approximation: at hardware level with inexact operators and at data level with
finite precision arithmetic. The characterization of the errors induced by inexact operators
has been proposed with simulations in Chapter 5. The characterization of the error profile
is done in terms of error amplitude and error occurence. For fixed-point arithmetic, a
model for a commonly used intermediate accuracy metric is proposed in Chapter 7. For
both inexact operators and fixed-point arithmetic, the proposed characterization of the
error profile is done using adaptive simulations depending on confidence requirements on
the characterization.
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Then, for the error propagation step, a stochastic modelization of the errors induced
by inexact operators has been proposed, and can also be applied to fixed-point arithmetic.
The proposed stochastic modelization allows building a fast functional simulator, the Fast
and Fuzzy (FnF) simulator, mainly useful for inexact operators and presented in Chap-
ter 6. The simulator has been built to take data as inputs, and output data so as to be
able to measure the impact of the approximation on the application quality metric. The
characterization method for fixed-point arithmetic has been used to build a framework to
process the Approximation Design Space Exploration (ADSE) when converting an algori-
thm to fixed-point arithmetic described in Chapter 7. To end with, Fakeer, an estimation
method has been proposed to avoid simulation for the characterization of the error metric
for finite precision arithmetic. This contribution is detailed in Chapter 8.
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CHAPTER 4

Motivations for Approximation Error Modeling
Algorithm-level Approximation for Embedded Stereovision Algorithm

“Il y a de l’or dans l’erreur”

Matthieu Chédid

The first contribution of this thesis, after a non-exhaustive presentation of the existing
Approximate Computing (AC) techniques in Chapter 2 as well as the existing methods to
quantify and analyze the impact of approximations on the application quality of service
(QoS) in Chapter 3, is an AC technique at the computation level applied to a stereovision
algorithm. The majority of the contributions of this thesis are focused on the characteri-
zation of errors induced by AC techniques at the data or at the hardware level. This work
allows studying an AC technique at the computation level and has led to an interesting
comparison of the results obtained with two different QoS metrics, which motivated the
need for generic methods to evaluate the errors induced by AC. This contribution has been
presented at the International Conference on Embedded Computer Systems Architecture
MOdeling and Simulation SAMOS 2018 [BDM18b]. The contributions brought by the
proposed work are as follows:

• Presentation of the algorithm-level approximation technique

• Comparison of the theoretical results on the complexity reduction with the obtained
experimental results according to two different QoS metrics

The rest of this chapter is organized as follows: Section 4.1 introduces the stereo match-
ing algorithm and the related works. Section 4.2 presents the proposed approximation
method for computing the depth map, which is the output of the considered stereovision
algorithm. Then, the results are exposed in Section 4.3 for both metrics, followed by a
discussion on the need for efficient and generic quality metrics before implementing an
AC technique in an application.
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Algorithm-level Approximation for Embedded Stereovision Algorithm

4.1 Introduction and Related Works

4.1.1 Introduction

Most embedded applications incorporate data-oriented processing with sophisticated math-
ematical computations. The complexity of embedded applications is increasing even
though the energy constraints they must fulfill are more and more drastic. The design
challenge is to provide a real-time implementation of these applications without sacrific-
ing energy consumption. Currently, this challenge is answered with dedicated hardware
presenting two major drawbacks: they are costly to produce and can hardly be repro-
grammable. In this chapter, the considered application to embed is a computer vision ap-
plication, the stereo matching algorithm that can be used for Advanced Driver-Assistance
Systems (ADAS), for 3D reconstruction, or for replacing the Kinect active device [KE12]
that uses an infra-red grid emitted on the observed scene and is consequently limited to an
indoor use within a 5 meters range. The choice of this application has been done since the
targeted stereo matching algorithm is built with basic blocks massively used in computer
vision algorithms as in [ABBB13].

The stereo matching algorithm is used to extract a 3D information from two 2D im-
ages taken by two rectified cameras spaced by a small distance. This 3D information is
represented in a depth map, also called disparity map. The disparity map, whose size
is identical to the size of the input images, represents the horizontal distance between
the position of a pixel in the first image, and its position in the second image. The stereo
matching algorithm has been mostly designed and studied on Desktop Graphics Processing
Units (GPUs) which consume several hundred watts. Consequently, work is required to
optimize it for embedded systems. The high complexity of state-of-the-art stereo match-
ing algorithms limits their embeddability. Indeed, if no special care is taken during the
prototyping phase of an algorithm, the high precision of the produced results is often ob-
tained at the expense of high latency, memory storage or energy consumption. However,
embedded systems are interesting targets for computer vision applications. Instead of us-
ing dedicated hardware to embed the stereo matching algorithm, AC techniques can be
implemented to reduce the energy consumption of this application. AC is interesting for
the stereo matching algorithm since the end-user of the algorithm can be a human or a
neural network. These end-users are both error-resilient since the perception of a human
user limitates the required accuracy, and a neural network learns from the approximate
output and compensates the induced errors.

The challenge, when introducing AC in the stereo matching algorithm, is to reduce the
computational load of the algorithm to be able to embed it in widespread platforms, as
for instance Digital Signal Processorss (DSPs). Several techniques have been proposed to
reduce the complexity of the stereo matching algorithm.

For instance, Menant et al. [MPMN14] proposed two different AC techniques to trade-
off the accuracy of the algorithm for its energy so as to embed the stereo matching algo-
rithm on a C66x DSP. The first approximation proposed is at the data-level. The data
format is modified using fixed-point format. Indeed, formatting data in fixed-point al-
lows benefitting from Single Instruction Multiple Data (SIMD) instructions up to 8 ways.
Besides, reducing the operand bit-width allows saving energy as presented in Chapter 2.
The second approximation proposed is at the computation level and is mainly driven by
the fixed-point conversion. The sophisticated mathematical functions as exponential or
square root functions have been replaced by piecewise linear approximations. To evaluate
the quality degradation induced by these modifications, the Middlebury metric, which is
presented in Section 4.3.1 and which compares the obtained depth map with a ground
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truth, is used. The induced quality degradation leads to a difference between the reference
implementation and the approximate one of 0.5% of bad pixels obtained in the output
depth map compared to the ground truth. The negligible quality degradation leads to
a significant speed-up in terms of computation time, which amounts to 60× using SIMD
instructions.

Another approximation technique that can be implemented is the downsampling of the
input images as presented in Chapter 2. Downsampling the input images reduces the vol-
ume of computations but also drastically reduces the output quality. When implementing
an AC technique, quality deteriorations may appear. In order to check that the appli-
cation QoS is still met despite the induced approximations, several metrics can be used,
and may impact the obtained measurement of the QoS. This chapter describes a novel ap-
proximation technique at the computation level which allows reducing the computational
workload. The quality of the proposed approximation technique has been evaluated with
two different quality metrics, the reference Middlebury metric and the Structural Similar-
ity Index Measure (SSIM) metric. Despite an interesting quality/complexity trade-off, the
obtained results on the quality/computation time trade-off are strongly dependent on the
metric used.

4.1.2 Reference algorithm

Our contribution focuses on a binocular stereo matching algorithm. The considered al-
gorithm aims at reconstructing the depth information in an observed scene from a pair
of images. For each pixel in the observed scene, the algorithm outputs a disparity level,
which corresponds to the projection of the pixel present in the pair of images on a 3D
scene. The images have to be taken from distinct and rectified viewpoints. The stereo
matching algorithm mimics the human visual system. It outputs a depth map with the
disparity levels of each pixel, from the two rectified input images which correspond to
the images seen from the left and right eye respectively, in the human visual system, as
illustrated in Figure 4.1 extracted from [Dum15].

Figure 4.1 – Principle of the stereo matching algorithm.

In the stereo matching algorithm, a pixel in the first image is selected, and its matching
pixel in the second image is searched. The searched pixel corresponds to the same physical
point in the captured scene as the pixel in the first image. Then, the horizontal distance
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between those two pixels is computed: this is the disparity of this pixel. The disparity
of a pixel corresponds to its depth in the input images, and is found minimizing a cost
function. The cost function to minimize computes the cost of matching a pixel in the first
image to a pixel in the second image.

Two categories of algorithms have been proposed in the literature, depending on the
technique used to minimize the cost function. The minimization technique can be global
or local. Local methods optimize the computed cost of matching a pixel in the first
image with a pixel in the second image using only the neighboring pixels of the pixel
under consideration. Global methods optimize the computed cost over the whole image.
Intuitively, the matching cost will be lower for pixels with similar colors and layout of
neighboring pixels (similar gradient, colors, edges). Local methods provide a lower quality
compared to global methods but are more efficient in terms of computation time. The
chosen reference stereo matching algorithm uses a local minimization method to better
suit the constraints on embedded platforms.

The main steps of the stereo matching algorithm are detailed below and represented
in Figure 4.2:

• Cost Construction: computation of the cost of matching a pixel in the left image
with a pixel in the right image for a given disparity which represents the distance
between both pixels. This step is computed for each pixel and for each disparity
level.

• Cost Aggregation: refinement of the cost maps obtained from the cost computa-
tion step. This step is computed for each pixel and each disparity level.

• Cost Minimization: selection of the disparity leading to the minimum cost. This
step computes the argmin of the cost maps obtained in the cost aggregation step,
over the different possible disparity levels. This step is computed for each pixel.

Stereo pair Disparity Map

Stereo matching algorithm

Cost construction Cost aggregation

ar
gm

in

Cost construction

Cost construction

Cost construction

Cost aggregation

Cost aggregation

Cost aggregation

1

2

Nd-1

Nd

...
...

...

Figure 4.2 – Illustration of the reference stereo matching algorithm: exhaustive test of all the
disparity levels.

Let Np and Nd be the total number of pixels in the image and the number of tested
disparity levels, respectively. This computationally intensive algorithm studies, for a pair
of pixels, all the disparity possibilities in order to create the disparity map. In other words,
the cost construction, aggregation and minimization functions are applied Np ∗Nd times.
For instance, if the image is 375 pixels long, 450 pixels wide and if 60 disparity levels
are tested, the three functions are applied 375 × 450 × 60 times, that is to say 10125000
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times. An exhaustive search of the minimum of the cost function is processed. This
costly exhaustive search appears to be a challenge when it comes to embedding the stereo
matching algorithm.

4.2 Proposed algorithm-level approximation

4.2.1 The approximate stereo matching algorithm

The reference stereo matching algorithm requires the computation of the cost function on
each disparity level, to then select the disparity level leading to minimum cost function.
The proposed approximation method aims at skipping computations of the cost function.
Instead of computing the cost function on each disparity levels, a few disparity levels will
be selected to reduce the computational load. The proposed method is inspired by the
work of Lou et al. [LNLB16]. Lou et al. proposed an adaptation of loop perforation to
image processing, then called image perforation. Image perforation is the application of
loop perforation to image pipelines. An image pipeline is a succession of processing stages
where an intermediate image is produced in each stage, and is fed to the next stage. The
authors proposed to skip the computations of costly intermediate images to the benefit of a
speed-up in the algorithm computation time. Reconstruction is then applied to reconstruct
the missing intermediate images. A similar approach has been implemented by Mercat et
al. [MBP+17] for developing a low energy High Efficiency Video Coding (HEVC) encoder
where an optimization process is launched and the search space is reduced by applying
AC at the computation level. This process in HEVC is called the Rough Mode Decision.

In the case of the stereo matching algorithm, to avoid the exhaustive search of the
disparity level minimizing the cost function, an empirical study of the cost function is
proposed. The cost function computes the cost for each disparity level d, of matching
a pixel of coordinates (x, y) in the first image to a pixel of coordinates (x + d, y) in the
second image. The cost function computes the similarity between those two pixels and
their neighbourhood, in terms of intensity and local texture. In terms of complexity,
the computation of the matching cost for a given pixel and a given disparity requires
2 + 28 ∗ N multiplications, where N is a parameter of the algorithm representing the
number of iterations to refine the cost computation. N allows adjusting the accuracy of
the obtained matching and also controls the size of the considered neighbourhood.

The cost function is finally minimized over all the disparity levels. In the original
stereo-matching algorithm, the minimization is done by computing the cost function on
each disparity level and selecting the disparity level leading to minimum cost. Nevertheless,
analyzing the general shape of the cost functions, a property can be observed. A few
examples of the obtained cost functions depending on the disparity level d, C = f(d), are
presented in Figure 4.3.

As it can be observed in Figure 4.3, the studied cost functions are quasi-unimodal.
The unimodality property is defined in the following Proposition:

Proposition 4.2.1. A function f , defined on the interval I = [a; b], is unimodal on I if
it has a unique minimum x0 on I, it is strictly decreasing on [a;x0] and strictly increasing
on [x0; b].

The unimodality property is interesting to observe on a function since it implies that
it has a single peak. The extremum search can then be eased using methods as the Golden
Ratio method or Fibonnacci method for instance as presented by Malenge [Mal77]. These
methods are searching for the extremum in interval I = [a; b] by studying the sign of the
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Figure 4.3 – Cost against the disparity level for different pixels in image Teddy.

difference of the function taken in two points of I. In the case of the stereo matching
algorithm, the obtained cost functions are not strictly unimodals. Indeed, they possess
a global minimum but also local minima, as it can be seen in Figure 4.3. The strict
monotonicity is not guaranteed and methods to find the extremum of unimodal functions
have to be adapted. In our case, for each pixel, the cost function is quasi strictly monotonic
on each side of its minimum (pixel 50 and 150 in Figure 4.3). It can be noted that for
the first pixel in image Teddy, the cost function does not vary a lot, though a minimum
can still be observed by zooming at disparity level d = 3. This is due to the fact that this
pixel is located in the border of the image. Consequently, as proposed with the Golden
Ratio or Fibonnacci methods, a search space decimation technique can be implemented
to find the minimum of the function without testing all the disparity levels. A subset of
the disparity levels is tested. Iteratively refining the search space around local minima
converges towards the global minimum in case of a unimodal function, if the number of
iterations is big enough. If the search space is well derived, the output quality is acceptable.

The proposed method is composed of several iterations. The challenge of the proposed
search space decimation technique is to encompass the global minimum in the decimated
space. As an answer to this challenge, the proposed technique aims at exploring the more
disparity levels in the first iteration, so as to ensure the convergence towards the global
minimum and not a local one. In the next iterations, the global minimum is searched
around the minimum obtained in the first iteration.

The decimated search space is modeled by a tree structure T . At each level of the tree
T , the number of tested disparity levels is represented by the number of children T [i]. The
depth of the tree Nl represents the number of iterations to converge towards the solution
which is the searched global minimum. In Figure 4.3, the exhaustive search of the dispar-
ity leading to minimum cost for the considered pixel requires testing 60 disparity levels.
The disparity level leading to minimum cost is d = 33. With the proposed approximate
algorithm, an example of the tree structure used on this cost function is represented in
Figure 4.4. This example has been taken from the stereo matching algorithm applied on
the Teddy image [SS03].

In the proposed example, the original search space S, in which the disparity level
leading to minimum cost is searched, is composed of 60 disparity levels. The proposed
approximation method is applied on each pixel of the rectified image. The depth Nl of the
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Search space S = [0;59]

d3 d7 d11 d15 d19 d23 d27 d31 d34 d37 d41 d45 d49 d53 d57

d32 d36

d31 d33

Level 0

Level 1

Level 2

Figure 4.4 – Tree Structure T obtained for a given pixel in image Teddy (Nl = 3).

proposed tree structure is 3, which means that the algorithm is composed of 3 successive
iterations to refine the minimum found in each level of the tree. To ensure that the tested
tree structure encompasses the disparity level leading to the minimum cost, the higher
number of disparity levels are tested in the first level. The cost computation and cost
minimization steps are applied on a subset of the original search space S. The obtained
cost values on the tested disparity levels are compared and the disparity level leading to
minimum cost is extracted. Once the disparity leading to the minimum cost has been
found for each pixel, the neighboring disparity levels are tested in the following levels of
the tree. The proposed method is illustrated on the tree presented in Figure 4.4.

In Level 0 which corresponds to the first iteration of the algorithm, the number of
tested disparity levels has a strong impact on the obtained quality complexity trade-off.
The goal is to test a sufficient number of disparity levels to be close enough to the global
minimum of the cost function. In the proposed example, T [0] = 15, thus the cost is
computed on a subset of S composed of 15 disparity levels, for the considered pixel. The
disparity leading to the minimum cost is equal to 34. The minimum will be searched in
the following levels next to the disparity level 34.

In Level 1, the obtained result is refined. The disparity levels surrounding the disparity
level selected in Level 0 are studied. In the proposed example, T [1] = 2, thus, the cost is
computed on the 2 disparity levels surrounding the disparity level selected in the previous
level (disparity levels 32 and 36) and the disparity level leading to the minimum cost is
selected, d = 32. The minimum will be searched in the following levels next to d = 32.

In Level 2, T [2] = 2. The cost is computed on the 2 disparity levels surrounding the
disparity level selected in the previous level (disparity levels 31 and 33) and the disparity
level leading to the minimum cost is selected as being the disparity of the considered pixel,
d = 33. If the search space has been decimated encompassing the minimum of the cost
function, the disparity obtained at the end of the approximate algorithm is the disparity
level minimizing the cost function.

The tree T storing the decimated search space models a trade-off between the com-
plexity of the approximate stereo matching algorithm and the quality of the output depth
map. Indeed, the complexity of the algorithm, which impacts the computation time, is
reduced with the total number of tested disparity levels, since the cost computation and
cost minimization functions composing the stereo matching algorithm are called a smaller
number of times. On the exhaustive search, the three functions are called Nd ×Np times.
With the proposed method, the number of tested disparity levels for each pixel is equal
to the sum of numbers of disparity levels tested at each level of the tree T . With the tree
structure proposed in Figure 4.4, the number of tested disparity levels for each pixel is re-
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duced to
∑3

i=1 T [i] = 19 instead of 60 levels for exhaustive search. The global complexity
of the algorithm is reduced along with the output quality.

4.2.2 Selection of the tree structure

The proposed method is based on the selection of the tree structure T modeling the
decimation of the search space. To select T , a minimization problem under constraints is
solved. The tree of depth 1 has the highest computational complexity since each disparity
level is tested. The tree of depth 1 gives the reference quality, outputting a depth map
equivalent to the depth map given by the reference algorithm. The tree of maximum
depth, which is the number of factors in the prime factorization of the number of disparity
levels to test, tests the least disparity levels. If ε is the maximum acceptable degradation
on the output quality, compared with the reference output depth map, the problem to
solve can be described as follows.

Let T be the tradeoff tree, T [i] be the number of disparity levels tested at level i, Nl

be the depth of T , Nd be the maximum number of disparity levels and Q the degradation
on the output quality compared to the reference depth map:

minimize
i

∑
i

T [i]

subject to Q ≤ ε
Nl∏
i=1

T [i] = Nd

The first constraint expresses the acceptable quality degradation. The second constraint
indicates that no overlapping is tolerated when testing the disparity levels. This means
that a disparity level is only tested once. The deeper the tree, the lower the output quality.
Indeed, if the global minimum of the cost function has to be reached in a fixed number of
iterations, Nl, the more disparity levels are tested in the first iteration, the more chances
to reach the global minimum there are. The tree that tests the most disparity levels in
the first iteration is the least deep. On the proposed example, the maximum depth of the
tree T is 4.

The second constraint,
∏Nl
i=1 T [i] = Nd, can be relaxed so as to increase the output

quality while testing a lower number of disparity levels. Two other parameters can be
adjusted to derive the subset of different disparity levels to test: the spacing between each
tested disparity level at each level of the tree, represented in column S = {s1, ..., sn} of
Table 4.1, where si corresponds to the spacing considered at level i. The spacing is the
horizontal distance between two tested consecutive disparity levels. The second parameter
that can be adjusted is the set of the values used to compute the first disparity level at
each level of the tree, from the first disparity of the previous level of the tree, represented
in column F = {f1, ..., fn} of Table 4.1. For instance, the tree represented in Figure 4.4
corresponds to the tree in Table 4.1 T = {15, 2, 2}, with a spacing between consecutive
disparity levels of 4 in Level 0 of T , 2 in Level 1 and 1 in Level 2 and F = {3,−2,−1}. At
Level 0, the first tested disparity level is equal to f1. The computation of the ith tested
disparity level dij at level j of the tree is indicated in Equation 4.1 depending on Tables
S and F .
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T S F Complexity

Depth 1 {60} {1} {0} 60

Depth 2 {30, 2} {2, 1} {1,−1} 32
{20, 3} {3, 1} {1,−1} 23

Depth 3 {15, 2, 2} {4, 2, 1} {3,−2,−1} 19
{16, 2, 2} {4, 2, 1} {3,−2,−1} 20
{17, 2, 2} {4, 2, 1} {3,−2,−1} 21
{18, 2, 2} {4, 2, 1} {3,−2,−1} 22

Depth 4 {5, 3, 2, 2} {12, 4, 2, 1} {9,−6,−2,−1} 12

Table 4.1 – Different tested tree structures for an original search space S composed of 60 disparity
levels.

d00 = F(0) (4.1)

d0j = d0j−1 + F(j) (4.2)

dij = d0j + i× S(j) (4.3)

Then, to compute the first disparity level d01 at Level 1 depending on the first disparity
level d00 of Level 0, f2 is used as d01 = d00 + f2.

The different tree structures tested in the experimental results are presented in Ta-
ble 4.1. In Table 4.1, the complexity represents the number of tested disparity levels
on each pixel. The reference stereo matching algorithm computes the cost construction,
aggregation and minimization on Nd = 60 disparity levels. Reducing the number of compu-
tations of these three functions should reduce the computation time of the stereo matching
algorithm along with the output disparity map quality.

4.3 Analysis of the results and conclusion

The proposed algorithmic-level approximation provides a trade-off between the quality of
the output depth map and the complexity of the stereo matching algorithm, which should
have an impact on the computation time of the algorithm.

To analyze the obtained results, the proposed approximation is tested on the 2003
dataset of the Middlebury database [SS03] composed of two images in full resolution,
Teddy and Cones. The obtained results are compared in terms of quality to the Ground
Truth given by the Middlebury database and obtained thanks to laser measurements of
the depth of the pixels. The reference stereo matching algorithm, with no approximation,
and a downsampling method are tested and the quality of the three algorithms is evaluated
with two quality metrics. The first quality metric is the reference metric on the stereo
matching algorithm, the Middlebury metric, and the second one is more representative
of the subjective quality, the structural similarity metric. The obtained results are com-
pared to another type of approximation at the data-level, a downsampling technique. The
downsampling technique consists of applying the reference stereo matching algorithm to
a pair of images of resolution divided by 4.

The results have been obtained on an Odroid XU3 board1 possessing a Cortex A15
processor working at 1.8 GHz. The Odroid XU3 board is heavily used in the embedded

1http://www.hardkernel.com
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systems domain, since it is highly energy-efficient while offering an important computa-
tional capacity. This target allows being in the real conditions of embedding the stereo
matching algorithm.

4.3.1 Experimental Study with Middlebury Metric

The first considered quality metric is proposed along with the Middlebury database. The
quality measurements done with the Middlebury metric compares the disparity levels
obtained in the Ground Truth depth image to the disparity levels obtained at the output
of the stereo matching algorithm, for each pixel of the depth map. This metric outputs
a percentage of good pixels, corresponding to the percentage of pixels sharing the same
disparity level in both images. The complexity for each tested algorithm is computed
by computing the number of times Np × Nd that the cost construction, aggregation and
minimization functions are applied.
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(a) Image Teddy.
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(b) Image Cones.

Figure 4.5 – Quality/complexity, computation time trade-off for two images with the Middlebury
metric, percentage of good pixels.
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Figures 4.5(a) and 4.5(b) show the trade-off between the quality of the output depth
map measured with the Middlebury metric, and the complexity/computation time of the
algorithm, for the images Teddy and Cones respectively. The theoretical results on the
complexity reduction are compared with the obtained results on the computation time.
Both curves are following the same trend, but the normalized computation time is shifted
to the right compared to the normalized complexity. This shift means that the observed
execution time remains much higher than expected when studying the algorithm complex-
ity. Indeed, the reduction of the number of disparity levels to test requires the computation
of the cost functions on a non-regular pattern, which generates an overhead in terms of
computation time. This implementation overhead is not taken into account with the rep-
resentation of the complexity. Besides, computing the cost function on the whole disparity
map allows mutualizing the computations, thus saving computation time.

The reference algorithm, with no approximation is represented by the rightmost point
(Nl = 1). The three functions, cost construction, aggregation and minimization, are
evaluated on 60 disparity levels for each pixel. Then, the points are evolving with the
different tree configurations presented in Table 4.1, showing an interesting group of points
with a large complexity reduction while losing 15% of good pixels for Teddy, and 17% for
Cones.

The downsampling technique is represented. The input images have been downsampled
by a factor 4, hence the division of the theoretical complexity by 4. This method seems
to give better results than the proposed approximate algorithm. For both images, to get
a comparable quality of the output depth map, the downsampling technique takes half
the time of the proposed approximation technique. According to the Middlebury metric,
the proposed approximation technique possesses a non-negligible overhead compared to a
more simple technique as downsampling the input images.

4.3.2 Experimental Study with SSIM Metric

The degradation generated by the downsampling technique was evaluated as negligible us-
ing the Middlebury metric. When subjectively comparing the output depth maps obtained
with the downsampling technique, the quality seems to be strongly degraded though. Sim-
ilarly, massively used image quality metrics as the Mean-Squared Error (MSE) or the Peak
Signal to Noise Ration (PSNR) do not render the subjective quality perceived by the hu-
man visual system. AC techniques have been proposed to benefit from the imperfection
of the end-sensors of some algorithms, and new error metrics have also been developed
to better take into account the subjectively perceived quality. The SSIM is a metric
defined in [WBSS04] notably to better take into account the human perception when eval-
uating the degradation of an image signal. This metric is based on the assessment that
the human eye mostly detects the image structural modifications. It has been proposed
to evaluate the visibility of induced errors compared to a reference, using properties of
the human visual system. The other method to evaluate the visual perceived quality is
through subjective tests, which are time-consuming and expensive to lead. The SSIM aims
at objectively evaluating the image quality. Indeed, as presented in Figure 4.6 extracted
from [WBSS04], two images can have a similar value of MSE while rendering a completely
different visual quality. The image in Figure 4.6(a) has a SSIM of 0.9168 compared to the
reference image because it is contrast-stretched. The structural information of the image
still are preserved, hence the high value of SSIM. The closer to 1 the SSIM is, the higher
the quality is. On the contrary, the image in Figure 4.6(b), the image is blurred compared
to the reference image, losing important structural information, hence the lower SSIM.
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(a) MSE = 210 and SSIM = 0.9168 (b) MSE = 210 and SSIM = 0.7052

Figure 4.6 – Image quality perceived by the human visual system versus image quality metrics.

The computation of the SSIM Index is applied when the reference image is known. This
image is then considered as being of perfect quality. Then, the SSIM Index computation
takes into account different parameters to compare them on the two images. The struc-
tures of both images are compared since natural images are highly structured, their pixels
being highly spatially correlated. The structures of both images are compared ignoring
the classical luminance or contrast information, but using local luminance and constrast
information. Three information are compared to measure the similarity of both images:
luminance, contrast and structure. To compare the reference image and the approximated
one, the SSIM metric segments the images into blocks and compares statistical information
between the corresponding blocks in both images. If the input image signals are x and y,
the SSIM measurement is computed as:

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2x + µ2y + C1)(σ2x + σ2y + C2)
(4.4)

where µx and µy are the mean intensity of x and y respectively, σx and σy are estimates
of the contrast of x and y respectively, and σxy measures the correlation between x and y.
Finally, C1 is a constant to compensate for µ2x + µ2y when they are close to 0, similarly for
C2 and σ2x + σ2y .

The results obtained for the proposed algorithm-level approximation technique with
the SSIM metric are presented in Figures 4.7(a) and 4.7(b) for the Teddy and Cones images
respectively.

For the proposed method, the Ground Truth given by the Middlebury database is taken
as being the reference image. The closer to 1 the SSIM Index is, the better the result is.
Consequently, compared to a downsampling technique, which offers a quicker result but a
strong quality degradation, SSIM Index equal to 0.15 for Teddy and 0.16 for Cones, the
proposed method keeps the SSIM Index close to the reference quality and is, in the case of
the tree of depth 4, faster than the downsampling technique. The results of the proposed
approximation form a plateau that gives the possibility to reduce the computation time
by 50% while keeping almost the same output quality. With the SSIM quality metric, the
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(a) Image Teddy.
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(b) Image Cones.

Figure 4.7 – Quality/complexity, computation time trade-off for two images with the SSIM metric.

quality loss on the output image is limited for a relatively important computation time
saving.

4.3.3 Conclusion

To conclude, when implementing the proposed algorithm-level approximation technique, it
has been noted that the obtained results compared to a more basic downsampling method
are strongly dependent on the chosen quality metric. Indeed, the downsampling technique
does not preserve the contours and blurs the output disparity map. The reason why the
Middlebury quality metric is more in favor of the downsampling technique is that if the
selected disparity level in the compared disparity maps differs from less than 3 levels for
a given pixel, this pixel does not count as a wrong pixel. One may question the validity
of such a metric that does not render the perceived quality, contrary to the SSIM that
compares structural differences in both images and better render the quality subjectively
perceived by the human visual system.
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The proposed algorithm-level AC technique applied to the stereo matching application
exploits the error-resilience property of this algorithm. This property allows testing fewer
disparity levels per pixel using the quasi-unimodality property of the computed cost func-
tion to lighten the volume of computations. This cost is computed to select the disparity
level leading to the minimum cost for each pixel. By avoiding exhaustively testing all the
disparity levels for each pixel, the approximate algorithm has a reduced complexity and the
computation time is reduced compared to the reference stereo matching algorithm. Never-
theless, compared to a basic approximation technique as downsampling the input images,
the proposed contribution does not seem to be interesting using the reference metric. A
metric more representative of the subjectively perceived quality can be considered. The
SSIM has been chosen. The SSIM has been used to measure the approximation impact on
the output quality and the results show that the computation time of the stereo matching
algorithm can be halved using its approximated version while having a reduced impact on
the quality.

Along with new approximation techniques, robust error metrics have to be proposed to
quantify the loss of quality induced by the introduced approximations. Generic error met-
rics are required to quantify the errors induced by the approximation, and methods to link
these errors to the quality of service of the application have to be proposed. This challenge
is important to allow using approximations in industrial or safety-critical applications.



CHAPTER 5

Characterization of the Error Profile: Application to Inexact Operators

“Sauf erreur, je ne me trompe jamais”

Alexandre Vialatte

The first Approximate Computing (AC) technique under consideration in this thesis
has been inexact arithmetic operators. Numerous designs have been proposed to reduce
energy consumption, critical path or area but few methods are available to characterize
these designs in terms of induced errors. Currently, analytical techniques are not generic.
Simulation-based techniques are not possible for large bit-widths operators if done ex-
haustively and Monte-Carlo simulations are not giving any information on the confidence
on the obtained statistics. In this chapter, a novel characterization method for inexact
operators according to three different metrics, the Mean Error Distance (mean ED), the
Error Rate (ER) and the Maximum Error Distance (maximum ED), is proposed. This
characterization is done according to user-defined confidence parameters. The proposed
method has first been published in the international conference European Signal Process-
ing Conference EUSIPCO 2018 [BCDM18] for the estimation of the mean ED and the ER,
and extended in the journal Microelectronics Reliability [BCDM19]. The remainder of this
chapter is organized as follows: Section 5.1 introduces the problematic of error character-
ization for inexact operators, Section 5.2 presents the proposed methodology for inexact
operator characterization. The computation of error metrics used for the characterization
of inexact operators is recalled for clarity and the proposed framework combining the esti-
mation of the mean ED, ER and maximum ED is presented. Finally, Section 5.3 presents
the experimental setup and the obtained results in terms of number of simulated samples
and quality of the obtained estimation.

5.1 Introduction

Whether the approximation technique used in an application is based on the data, on
the computations or on the hardware structure of the system, a precise characterization
of the errors induced by the approximation is required. Indeed, to be implemented in
commercial or real-life applications, the quality of service (QoS) of the application im-
plementing AC has to be ensured. When it comes to inexact circuits, the emulation is
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very long as presented in Chapter 3, since done at the logic level. The determination of
the QoS at the output of an application based on the emulation of inexact circuits with
Bit-Accurate Logic-Level (BALL) simulations is consequently not possible. An efficient
method to determine the QoS at the output of an application implementing inexact cir-
cuits is to simulate the accurate version of the application and inject errors that model
the approximations. A thorough characterization of the errors induced by inexact circuits
is consequently required. For instance, the “Fast and Fuzzy” simulator of inexact circuits
proposed in [BDM18c] injects errors according to a model based on error characteristics
as the mean ED, or the ER, which are statistical error characteristics, and the maximum
ED, which is an extreme error characteristic.

Inexact operators generate errors with various amplitude and ER. The generated er-
ror amplitude depends on the location of the erroneous bits of the operator output. The
variety of error profiles generated by inexact operators proposed in the literature allows
targetting a particular inexact operator that may induce errors only on rare combinations
of inputs, for example. Before analyzing the effects of the errors induced by the chosen
approximations on the application quality metric, the errors induced by the inexact op-
erator have to be modeled, to avoid exhaustive simulation. A thorough characterization
of the approximation error allows choosing the most suitable operator with respect to
the implementation constraints and to quantify the impact of the approximation on the
application quality metric.

Currently, as presented in Chapter 3, the errors induced by inexact operators can
be evaluated with two types of approaches: 1) Analytical methods [LHL15, WLGQ17,
MHH+17] mathematically express error statistics as the mean ED or the ER, but are
dedicated to specific logic structures and can become really complex to implement in terms
of computation time and memory for large bit-widths operators. 2) Functional simulation
techniques [DVM12, JLL+17, CCSE18] simulate the inexact operator on a representative
set of data and computes statistics on the approximation error. To mimic the inexact
operator behavior, bit-accurate simulations at the logic-level are required to reproduce the
internal structure modifications of the operator. Nevertheless, BALL simulations are two
to three orders of magnitude more complex than classical simulations with native data
types, as presented in Chapter 3. Thus, exhaustively testing the operator for all the input
value combinations is not feasible for large bit-widths because of the required simulation
time.

Commonly, the error statistics are computed by simulating a given number of random
inputs [DVM12, JLL+17, CCSE18]. The quality of the statistical characterization obtained
from a random sampling is highly dependent on the number of samples taken and on the
chosen input distribution. Besides, classical simulation-based analysis do not provide any
confidence information on the obtained statistical estimation. Using a great number of
samples can be ineffective in terms of simulation time. Similarly, using a too small number
of samples can give distorted information on the obtained statistics.

When implementing inexact operators in an application, the objective is to derive the
impact of the induced approximations on the application quality metric. The evaluation
of the impact of the inexact operator on the application quality metric is done in two
steps as presented in Figure 5.1. The errors induced by the inexact operator have first
to be modeled (Block 1) for different error metrics. Then, these error metrics are used
to evaluate the application output QoS (Block 2) despite the induced approximations. In
this Chapter, we will focus on estimating the circuit error metrics of inexact operators
(Block 1).
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Figure 5.1 – Proposed framework for evaluating the impact of inexact operators on an application.

5.2 Inexact Operators Characterization Method

5.2.1 Considered Circuit Error Metrics

Numerous error metrics for inexact arithmetic operators have been proposed (Block 1 in
Figure 5.1) and are detailed in Chapter 3. The considered circuit error metrics in this
chapter are based on the absolute Error Distance (ED) of the calculation output for an
input sample, expressed as:

ei = |ẑ − z| (5.1)

where ẑ and z are the erroneous and exact outputs of the computation, respectively.
From the absolute ED, statistical error characteristics are extracted, the mean ED µe, the
Standard Deviation erms and the ER f defined on the whole sample set I as:

µe =
1

N

∑
i∈I

ei (5.2)

f = 1
N

∑
i∈I

fei ,with fei =

{
1 if ei 6= 0

0 else
(5.3)

erms =

√
1

N

∑
i∈I

ei2 (5.4)

where ei is the Error Distance of the ith stimuli on a sample set I of size N .

We have also characterized the error induced in terms of maximum ED M e defined as:

M e = max
i∈I

(ei) (5.5)

5.2.2 Error Characterization Framework

The proposed error characterization framework is intended to be used as Block 1 in Fig-
ure 5.1 to estimate the following metrics for inexact operators: the mean ED µe, the Error
Rate f and the maximum ED M e. The proposed method shows that the statistical study
of the approximation error can lead to a significant reduction in the size of the sample set
to simulate in order to characterize an inexact operator given user-confidence information.
The proposed framework is not specific to a class of inexact operators and can be applied
to adders, multipliers or even more sophisticated operators, which has not been proposed
yet. First, statistical parameters as the mean ED and ER are estimated with inferential
statistics. Then, the extremum bounds on the approximation error are derived with the
Extreme Value Theory (EVT).



98 Characterization of the Error Profile: Application to Inexact Operators

Statistical Estimation of the mean ED, the standard deviation and the Error
Rate

Inferential statistics, presented by Lowry [Low14], aim at reproducing the behavior of a
large population using a subset of this population. This statistical analysis is particularly
interesting in the case of high bit-width inexact arithmetic operators, where the exhaus-
tive characterization is not feasible. Using inferential statistics, the input operands set is
sampled to give an estimation with an accuracy h and a probability p that the estimated
value is contained within the estimated confidence interval, instead of simulating exhaus-
tively all the possible input operands combinations in I. This method is used to compute
confidence intervals on the mean ED µe and the Error Rate f . Since the probabilistic
laws used to estimate those parameters are centered, the obtained confidence intervals
also are. In this case, the accuracy h on the estimation of the confidence interval I = [a, b]
is expressed as h = b−a

2 . The objectives of the proposed method are:

1. To estimate the error characteristics more efficiently, using a reduced but sufficient
number of samples.

2. To provide the estimated error characteristics according to a given confidence infor-
mation.

The proposed method computes the minimal number of samples to simulate, to esti-
mate the error characteristics µe and the ER according to (h, p). Nµe and Nf represent
the minimal number of samples to estimate µe and the ER, respectively.

Computation of the minimal number of samples Nµe to estimate µe

The empirical mean µe, a punctual estimator of µe, is used to estimate the real value of
the mean error distance, µe. That is to say, µe is an estimation of µe computed over a
given number of samples. µe is used to compute the theoretical number of samples Nµe to
simulate to get an estimation according to the confidence parameters (h, p). To estimate
Nµe , the standard deviation of the simulated samples is needed. The empirical mean µe
and the empirical standard deviation S̃2, a biased estimator of the standard deviation σe,
are computed over T samples as:

µe =
1

T

T∑
i=1

ei (5.6)

S̃2 =
1

T

T∑
i=1

(ei − µe)2 (5.7)

The estimators µe and S̃2 are associated to confidence intervals ICµe and ICσe respectively,
defined such that they include µe and σe with a probability p. Then, according to the
Central Limit Theorem, since (e1, e2, ..., eT ) are belonging to the same probability set,
are independent and identically distributed, the property in Equation 5.8 is verified if the
number of samples Nµe is higher than 30 [Low14]. Consequently, no assumption has to be
made on the distribution of the population, which is generally an underlying assumption
of the different analytical methods proposed in the literature. In Equation 5.8, N (0, σ)
represents a gaussian distribution whose mean is 0 and standard deviation is σ.√

Nµe(µe − µe)
law−−→ N (0, σ) (5.8)
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The confidence interval ICp
µe is developed in Equation 5.9 and contains µe with a prob-

ability p. The term aαµe embodies the accuracy on the estimation and is computed as in
Equation 5.10.

ICp
µe = [µe − aαµe ;µe + aαµe ] (5.9)

In Equation 5.10, zα is given by the table of the standard normal distribution given p and
can be computed as in Equation 5.11, where erf represents the inverse error function [Str68].
Nµe is the minimal number of samples to simulate to get an estimation respecting the user-
defined parameters (h, p).

aαµe = zα · S̃√
Nµe−1

(5.10)

zα =
√

2 · erf−1(p) (5.11)

The desired accuracy h on the estimation of the mean ED impacts the number of samples
to simulate as expressed in Equation 5.12. To get a desired accuracy of h, aαµe must be
lower or equal to h.

Nµe >
z2α · S̃2

h2
(5.12)

According to Equation 5.12, if the standard deviation of the error generated by the inex-
act adder is very large, Nµe can be very high. Inexact operators with a large standard
deviation renders circuits with poor interest. In the proposed method, a maximal number
of simulated points Nmax has been set. If the required number of points is higher than
Nmax, the estimated mean ED and Error Rate ER are given according to p but with a
precision h depending on Nmax. In this case, the obtained accuracy h can be computed
depending on Nmax as:

h =
zα · S̃√
Nmax − 1

(5.13)

Estimation of the confidence interval on the standard deviation

To estimate a confidence interval on the standard deviation σe, the empirical standard
deviation S̃2, a biased estimator of σe, is used. The computation of S̃2 over T samples is
presented in Equation 5.7.

Then, if the data (e1, e2, ..., eN ) are independent and identically distributed as N (µ, σ2e)
[Low14], the sampling distribution associated with the sample variance S̃2 is a chi-square
distribution and Equation 5.14 is verified.

S̃2(N − 1)

σ2e

law−−→ χ2
N−1 (5.14)

where χ2
N−1 is a chi-square distribution with N − 1 degrees of freedom. Indeed, the sum

of random variables distributed as N (0, 1) is distributed as a chi-square distribution.
The confidence interval ICp

σ2
e

is developed in Equation 5.15 and contains σ2e with a

probability p = 1− α.

ICp
σ2
e

= [
S̃2(N − 1)

χ2
1−α/2

;
S̃2(N − 1)

χ2
α/2

] (5.15)

The number of samples Nσe is searched to find a confidence interval that contains σ2e with a
probability p such that the width of the interval is equal to h · S̃2. The obtained confidence
interval is asymmetric. The number Nσe is searched as:
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(N − 1)S̃2

χα/2
− (N − 1)S̃2

χ1−α/2
< hS̃2 (5.16)

(N − 1) · ( 1

χα/2
− 1

χ1−α/2
) < h (5.17)

Nevertheless, the number of samples to simulate to get a required accuracy of estimation
on the standard deviation σe is overshooting the obtained values for Nµe and Nf . Table 5.1
indicates for a few obtained values of max(Nµe , Nf ), the obtained width of the confidence
interval on the standard deviation if estimated with a similar number of samples, for
p = 95% and h = 0.05.

Nmax h

578 0.232

5041 0.078

11,765 0.051

35,873 0.029

178,930 0.013

3,130,201 0.003

25M 0.001

Table 5.1 – Obtained width of the confidence interval on σ2
e depending on Nmax

The estimation of a confidence interval on the standard deviation meets the required
accuracy on the width of estimated confidence interval from 35, 873 simulated samples. The
estimation of this parameter has consequently not been proposed, since no guarantee can be
given to the user on the accuracy of estimation. In addition, the standard deviation is not
a required parameter by the simulator of inexact operators “Fast and Fuzzy” [BDM18c].

Computation of the minimal number of samples Nf to estimate the ER

The proportion of input operands in I that generate an error is embodied by the Error
Rate ER. ER follows a hypergeometric law [Low14]. The estimator used for the error
rate is fe, the proportion of samples generating an error in the random sampling. The
estimator is computed as in Equation 3.4, applied on the sampled set. Such an estimator
can be associated to a confidence interval ICp

f that is defined such that the real ER f of the
population E is contained in this confidence interval with a probability p. The confidence
interval ICp

f is defined in Equation 5.18.

ICp
f = [fe − aαf ; fe + aαf ] (5.18)

In Equation 5.18, aαf represents the accuracy on the estimation of ER, zα is given by the
table of the standard normal distribution [Low14] and in Equation 5.20 and Nf represents
the minimal number of samples to simulate, to get an estimation with the user-defined
parameters (h, p).

aαf = zα ·
√

fe(1−fe)
Nf

(5.19)

zα =
√

2 · erf−1(p) (5.20)
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To get a desired accuracy of h, aαf must be lower or equal to h, which impacts Nf as in
Equation 5.21.

Nf >
z2α · fe(1− fe)

h2
(5.21)

Estimation of the maximum ED with Extreme Value Theory

The proposed method aims at estimating the maximum ED according to an in-range
probability p. An interesting AC technique rarely generates the maximum ED which can
consequently be considered as a rare event. Currently, simulation-based techniques are
used to estimate the maximum ED but no guarantee is obtained that the real maximum
value is not higher than the observed maximum value. The problematic of estimating
maximum error values has been massively studied for dynamic range evaluation in the
context of fixed-point arithmetic. In this case, if a value transiting through the algorithm
is greater than the theoretically derived maximum value, an overflow occurs and may
strongly damage the system. For instance, during the flight 501 of Ariane on the 4th of
June 1996, the rocket has exploded 36.7 seconds after the take-off because of an overflow
in the application system. The past industrial disasters lead to a growing concern towards
the study of extremal cases, particularly when tolerating approximations in systems.

The user-defined confidence parameter p allows being more or less conservative on the
estimation depending on the critical nature of the application. Our approach exploits the
statistical properties of the maximum approximation error, using the EVT. The probability
p corresponds to the probability that the real value of the maximum ED M e is lower or
equal to the estimated value of the maximum ED M̃ . The higher p, the more conservative
the estimation. The studied population for estimating the maximum ED is the set (e1, e2,
..., eT ) of error distance values, that are independent and identically distributed events.

EVT [Kin85], [RTR07] aims at describing the stochastic behavior of minima or maxima,
and is particularly useful in domains such as finance or insurance. EVT aims at predicting
the occurrence or amplitude of rare events even though no observation is available.

The Cumulative Distribution Function (CDF) of the set of error distance values is
called G and its associated survivor function is G = 1 − G. The ordered statistics on a
sample of size T can be defined as e1,T ≤ e2,T ≤ ... ≤ eT,T = MT . The proposed method
aims at estimating the value M̃ such that:

M̃ = G
−1

(αT )

where αT = 1 − p < 1
T when lim

T→∞
αT = 0. This corresponds to the estimation of the ex-

treme quantile value for αT . Nevertheless, the CDF and its survivor function are unknown.
To estimate M̃ , the following property from [Kin85] and [RTR07] is used:

Proposition 5.2.1. The distributions of extremum values, maxima or minima, converge
towards an extreme value distribution.

Three types of extreme value distributions exist, the Gumbel, Weibull and Fréchet
distributions. To identify the type of extreme value distribution followed by the obtained
experiments, several information on the shape of the obtained distribution or on condi-
tions on the maximum value can be used. For instance if the maximum is upper-bounded,
the followed distribution is Weibull. In the case of the distribution followed by the max-
imum ED of inexact operators, the shape of the experimentally obtained distribution
indicates that the followed distribution is a Gumbel distribution. Nevertheless, the Gum-
bel distribution is not always followed by extreme values as demonstrated by Chapoutot
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et al. [CDV12]. In this case, the assumption is not true in systems as Infinite Impulse
Response filters because of the dependency between the different variables.

Contrary to the estimation of mean ED or ER, no confidence interval can be computed
on the estimation of M e. The estimated value M̃ corresponds to the value that encom-
passes M e with a given user-defined probability p. The proposed method is inspired of the
dynamic range determination processed for fixed-point arithmetic as presented by Özer et
al. [ÖNG08].

To estimate the real value of the maximum ED, the value M̃ = G
−1

(αT ) is computed.
So as to compute M̃ for a given probability p, the distribution of the maximum error
values has to be studied and identified to a Gumbel distribution.

To derive the maximum error values distribution, T samples are simulated k times.
The maximum error value over each sample set of size T is extracted, and the obtained
list of maximum error values models the experimental maximum error values distribution.
Then, according to the observations of the realizations of the random variable modeling
the extreme value, the parameters corresponding to either Gumbel, Weibull or Fréchet
distributions are computed (scale and location parameters). In our case, this is a Gumbel
distribution. The parameters k and T have an impact on the estimated values of the pa-
rameters scale and location, detailed in Equations 5.24 and 5.25, as shown in Figure 5.2(a)
for T = 10 and Figure 5.2(b) for T = 1000. Nevertheless, according to [Kin85], “The
grouping of the measurements is usually easy to define because groups are derived from
uses of the data”. For instance, when studying floods, the measurements are grouped
during a year, while chemical measurements are grouped during a day. In this case, the
parameters (k, T ) do not have an impact on the type of extreme value distribution fol-
lowed, but on the parameters of the distribution. This is the reason why, in the proposed
experiments, the parameters k and T are varied to show the impact of the parameters on
the accuracy of estimation.

As shown in Figure 5.2(a) for the ACA8, when T is small, the approximation by the
limit may give poor results.

From the experiments, the obtained distribution of extremum values can be identified
to a Gumbel distribution defined hereafter by its density function g in Equation 5.22 and
its CDF G in Equation 5.23:

g(x) = 1
σ exp(− (x−µG)

σG
)exp(−exp(−−(x−µG)σG

)) (5.22)

G(x) = exp(−exp(− (x−µG)
σG

)) (5.23)

The parameters (σG, µG) are used to fit the Gumbel distribution to the experimental
distribution of maximum error values. The term σG is called the scale parameter and is
used to stretch or shrink the distribution. The term µG is called the location parameter
and is used to shift the distribution on the horizontal axis. The computation of (σG, µG)
is detailed in Equations 5.24, 5.25:

σG = 1
π ·
√

6S̃G (5.24)

µG = µG − σG · λ (5.25)

where S̃G is the empirical standard deviation of the experimental maximum error
values, µG is the empirical mean of the experimental maximum error values, and λ is
the Euler constant. The parameters (σG, µG) completely define the Gumbel distribution
fitting the maximum error values distribution.
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(a) 16-bit ACA8, T = 10, k = 10000.

(b) 16-bit ACA8, T = 1000, k = 10000

Figure 5.2 – Distribution of Upper Bound on the Error Distance for two carry chain length values
and 16-bit ACA.

Once the distribution of maximum error values has completely been defined, the goal
of our proposed method is to compute the value M̃ such that G(M̃) = P (X ≤ M̃) = p
where p is the in-range probability. Equations 5.26, 5.27 can then be derived.

p = P (X ≤ M̃) = exp(−exp− (M̃−µG)
σG

) (5.26)

M̃ = µG − σG · ln(ln(1p)) (5.27)

Proposed Algorithm

Algorithm 1 presents the estimation of the mean ED and the Error Rate ER with a fair
number of samples. From the simulated samples, the maximum ED is also estimated.
The population on which inferential statistics are applied is the set E = {ei/i ∈ I}. The
statistical variables mean ED µe, the Error Rate ER and the Standard Deviation (STD)
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σe are describing the population E and are consequently characterized by probability laws.
To sample the population E , a random sampling method without replacement is used. So
that the exhaustive sampling behaves like a non exhaustive sampling, T , the initial number
of simulated samples, is taken higher or equal to 30 [Low14].

To characterize an inexact arithmetic operator, the user provides the following infor-
mation: the desired accuracy on the estimation h, the probability p that the estimated
interval contains the real value for µe and f , and that the real maximum Me is lower than
the estimated maximum M̃ , and the refreshment period T . T is used to refine the number
of samples required. The population E is sampled and T samples are extracted (line 5).
The empirical mean µe, standard deviation S̃2 and empirical error rate fe are computed
on these samples (lines 9-11). The maximum of the extracted samples is also appended to
set J (line 8). From the empirical mean, standard deviation and empirical error rate, the
theoretical minimal numbers of samples to compute to estimate µe and f according to the
user’s accuracy constraints is obtained (lines 12-13).

Then, to estimate µe and f , the empirical standard deviation S̃, empirical mean µe
and error rate fe of the samples are used. Those three estimators are computed to de-
rive the theoretical numbers of samples to simulate to estimate µe and f , Nµe and Nf

respectively. The maximum of these two values, N , is taken as the reference number of
samples to simulate (line 14). The same process is repeated until the number of simulated
samples n exceeds N . The estimated values are consequently refined every T samples
to converge towards a minimized value of N , and every T samples, the maximum error
value is extracted and appended to the set J . Consequently, the higher T , the more the
computations of Nµe and Nf are accurate. If N is higher than Nmax, Nmax points are
simulated but the estimated results are not fulfilling the accuracy requirement, embodied
by h. In this case, the obtained accuracy h can be computed depending on Nmax as:

h =
zα · S̃√
Nmax − 1

(5.28)

Once the N points have been simulated, the set of maximum error values J is used to
identify the obtained distribution of maximum error values to a Gumbel distribution. The
parameters σG and µG are computed (lines 20-21) and used to compute the estimation of
the maximum ED according to the in-range probability p (line 22).

5.3 Experimental study

For this experimental study, inexact adders have been selected among three major kinds of
topology explored in the literature: timing-starved adders with the Almost Correct Adder
(ACA) [VBI08], speculative adders with the Inexact Speculative Adder (ISA) [CSE15,
ZGY09] and carry cut-back adders [CSE16]. The important error characteristics when
implementing inexact operators are the mean ED, ER and maximum ED.

5.3.1 Estimation of the mean ED and ER

The proposed experimental study aims at showing that:

1. The proposed method correctly estimates error characteristics mean ED µe and ER
f of circuits for various bitwidths.

2. This estimation remains consistent for higher bitwidths where exhaustive simulation
is not possible.
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Algorithm 1 Characterization of µe, ER and M e of population E
1: procedure characterizeµe,f,Me(E , h, p, T,Nmax)
2: α = 1− p, n = 0
3: J ← ∅, E ← ∅
4: repeat
5: E ← E ∪ sampling(E , T )

6: n← n+ T
7: M = max(E)
8: J = J ∪M
9: µe = computeMean(E,n) . Equation 5.6

10: S̃2 = computeSD(E,n, µe) . Equation 5.7
11: fe = computeFreq(E,n) . Equation 5.3

12: Nµe = computeNMean(S̃2, h) . Equation 5.12
13: Nf = computeNFreq(fe, h) . Equation 5.21

14: N = max(Nµe , Nf )
15: E = E\E
16: if N ≥ Nmax then
17: N = Nmax

18: end if
19: until n ≥ N
20: σG = computeScale(J, n) . Equation 5.24
21: µG = computeLocation(J, n, σG) . Equation 5.25
22: M̃ = computeMax(µG, σG, p) . Equation 5.27
23: end procedure

3. For the majority of inexact adders, the proposed method outperforms naive stochas-
tic simulation with a Fixed-Number of Samples (FNS).

In the experiments, two cases are shown: the proposed method requires less samples
and thus converges faster towards an accurate error estimation, or it requires more samples
than the traditional FNS simulation which is, in this case, not accurate enough.

Each above-mentioned adder architecture have been synthesized, with different bit-
widths, from 8 to 32 bits, and varying main design parameters, in order to cover a large
spectrum of error behaviors. The proposed characterizations have been completed with
h = 5 % and p = 95 % on an Intel Core i7-6700 processor. The consistency of the error
characterization remains the same even with various h and p. The higher p and the lower
h, the larger the sample set to simulate.

1) Quality of the estimation for small word-lengths

To first check the quality of the proposed method, small bit-width inexact adders have
been characterized with our method, as well as with an exhaustive characterization using
BALL simulations to obtain their real error characteristics. The ED values generated by
the inexact operators under consideration have been computed for all their possible input
values. For instance, for 16-bit inexact operators, the exhaustive characterization requires
the simulation of 232 operations.

Table 5.2 reports the confidence intervals on mean ED µe and ER f obtained by the
proposed method, compared to their real values, and the numbers of samples N used for
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the proposed characterization. The ratio N ratio between the number of simulations N
done using the proposed characterization method, and the number of simulations done
when using an exhaustive characterization is indicated. For 8-bit operators, the number
of simulations when using an exhaustive characterization is 216, while for 16-bit operators,
the number of simulations when using an exhaustive characterization is 232. N ratio is
computed as:

N ratio =

{
N
216

for 8-bit operators
N
232

for 16-bit operators
(5.29)

For both 8-bit and 16-bit adders, the obtained confidence intervals contain the real
values 87.5% of the time, demonstrating that our method is accurate. The 16-bit ACA8 is
the only design for which the obtained confidence intervals do not contain the real values
(c.f. bold numbers), but the relative error between confidence interval bound and real
value is extremely small. This is coherent, as by user decision, the confidence interval has
only 95 % chance to contain the real value.

For most operators, only a few tens of thousands of simulated samples were required
to get precise error characteristics. For both 16-bit ACA12 and ACA8, the number of
simulated samples has been saturated with Nmax = 25 millions (c.f. bold sample num-
ber). This is due to the fact that ACA adders have a large standard deviation in error
values. Though, the proposed method outputs very accurate estimated values of ER and
mean ED. The largest relative error on the estimated values compared to the exhaustive
characterization is on the estimation of the ER of the operator ACA8, and is equal to
1.27%.
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2) Consistency of the estimation for 32-bit operators

To check the consistency of the proposed method for 32-bit operators, the proposed
characterization has been compared to random FNS simulation with 5 million samples
from [CCSE18], which is the typical inexact circuit characterization method as exhaustive
simulation is not feasible. The chosen Carry-Cut Back Adder (CCBA) and ACA adders
are Pareto-optimal designs shown in the comparative study of [CCSE18]. Those adders
are realistic designs to be implemented, and thus represent ideal subjects for the proposed
characterization.

Table 5.3 reports the results for 32-bit inexact adder characterization. In the case of 32-
bit operators, it is to be noted that both characterizations, the proposed characterization
and the one obtained with FNS simulation, are statistical estimates. In case the two
methods do not converge towards the same estimation, bold numbers represent values
obtained with higher amount of samples, assumed more accurate. The ratio N ratio between
the number of simulations N done using the proposed characterization method, and the
total number of simulations for an exhaustive characterization (264) is indicated.

For 2 out of 8 designs (CCBA1,5 and ISA2,8), the obtained confidence intervals obtained
with less simulation samples than the FNS simulation do not contain the error values from
this latter. Nevertheless, the obtained estimated values of ER and mean ED are very close
from the random characterization. Inversely, for 3 of them (CCBA1,6, ISA2,2 and ACA17),
the proposed method has converged into different confidence intervals than the BALL
simulation, as it has determined that more samples were required for safe estimation.
This is coherent, as by user decision, the confidence interval has only 95 % chance to
contain the real value. The most critical case concerns ACA17. For this characterization,
naive BALL simulation has dangerously underestimated the mean ED compared to the
proposed method. This is due to the very low error rate of the 32-bit ACA, for which 5
million samples are insufficient to make good statistics on errors.

3) Number of simulations required for accurate estimation

Algorithm 1 refines the estimation of mean ED and ER given a refreshment period T .
Figures 5.3 and 5.4 illustrates the convergence of the estimation on the ER f and the mean
ED µe respectively. The different curves, corresponding to the different operators, have
different starting points depending on the chosen refreshment period T . The relative error
of estimation of mean ED and ER depending on the simulation length are represented.
To compute the relative error of estimation ε of the confidence interval on the mean ED,
ICµe = [a; b], the computation of the center of the estimated interval µe is required and is
computed as:

µe = a+
b− a

2
(5.30)

Finally, the center of the estimated interval µe is compared to the FNS value obtained
with 5-million BALL simulation µe,5M as:

ε =
|µe − µe,5M |

µe,5M
(5.31)

The same process is applied to compute the relative error of estimation of ER.

The final estimated values are all very accurate since the relative error of estimation is
always lower than 0.1 %. Small bumps can be noted in the convergence of the estimated
values due to the random sampling processed in each iteration of the algorithm. Besides,
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Figure 5.3 – Convergence of the proposed estimation for the ER fe with the number of simulated
samples N , p = 95% and h = 0.05 for different 32-bit adders.
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Figure 5.4 – Convergence of the proposed estimation for the mean ED µe with the number of
simulated samples N , p = 95% and h = 0.05 for different 32-bit adders.

the speed of convergence strongly varies depending of the chosen operator. This is why
the proposed method, which is an adaptive sample-size method, better fits any operator
rather than naive FNS simulations.

5.3.2 Estimation of the maximum ED

The proposed experimental study aims at showing that:

1. The proposed method correctly estimates the maximum ED of circuits for various
bitwidths.
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2. The quality of the estimated maximum error value is configurable depending on the
in-range probability p, the size of the sample sets T and the number of times the T
samples are simulated, k.

The total number of simulated points is then k× T . Two cases are shown: the depen-
dency of the quality of the estimation on the total number of simulated samples k×T and
on the in-range probability p. The estimations of the maximum ED have been completed
with varying p, T and k on an Intel Core i7-6700 processor.

1) Quality of the estimation for small bit-widths

To first check the quality of the proposed estimation method, the maximum ED of small
bit-width inexact adders has been compared to an exhaustive characterization using BALL
simulations which shows the real maximum error distance characteristics. Table 5.4 reports
the estimated values M̃ of the maximum ED obtained by the proposed method, compared
to their real values Me, depending on the parameters (k, T, p).

Nbits Op. type Name p k T M̃ Me

8

ISA

ISA2,2

90 10 100 8 8

95 10 100 8 8

98 10 100 8 8

ISA2,4

90 10 100 4 4

95 10 100 6 4

98 10 100 7 4

ACA ACA6

90 10 100 151 192

90 10 100 199 192

95 10 100 210 192

98 10 100 249 192

16

CCBA CCBA1,6

90 10 1000 4 4

95 10 1000 4 4

98 10 1000 4 4

ISA

ISA2,4

90 10 1000 64 64

95 10 1000 64 64

98 10 1000 64 64

ISA2,6

90 10 100 32 32

95 10 1000 32 32

98 10 1000 32 32

ACA

ACA12

90 10 1000 28467 61440

95 10 1000 41646 61440

98 10 1000 66068 61440

ACA8

90 10 1000 63305 65280

95 10 1000 67008 65280

98 10 1000 84188 65280

Table 5.4 – Estimation results of the maximum ED and comparison with exhaustive characteri-
zation for operators of small word-lengths (bold numbers if M̃ < Me).
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For most 8-bit adders, only k×T = 1000 simulations are required to correctly estimate
the maximum ED encompassing the real value Me. This corresponds to the simulation of
1.53% of the exhaustive input data set composed of 216 values. The in-range probability
p can be used to be more or less conservative on the estimation. For the example of the
ACA6, the in-range probability can also be used to adjust the accuracy of the estimation.
If p is lower than 95%, the obtained estimation M̃ does not always encompass the real
maximum Me. For an in-range probability p = 95%, the estimated maximum value
always encompasses the real maximum Me, demonstrating that the proposed estimation
is conservative.

For most 16-bit adders, the estimation of the maximum ED is accurate with only
k × T = 104 simulations. This corresponds to the simulation of 2.33 · 10−4% of the
exhaustive input data set composed of 232 values. The ACA8 still requires an in-range
probability of 95% to encompass the real maximum value Me. Nevertheless, the ACA12

is the only design for which the estimation is accurate only for p > 98%. This operator
has very scattered error values and the chance to catch the real maximum during the
determination of the error distance values distribution is lower than for the other inexact
operators. This characteristic makes the ACA12 hardly usable in an application.

2) Consistency of the estimation for 32-bit operators

Table 5.5 reports the results for 32-bit inexact adder maximum ED estimation. To check
the consistency of the proposed estimation method for this larger bit-width, the obtained
estimations have been compared to random BALL simulation with 5 million samples
from [CCSE18].

In the case of 32-bit operators, it is to be noted that both obtained values M̃ and Me

(5M) are estimates. No analytical derivation of the maximum ED has been given by the
inexact operator designer. For most 32-bit adders excepted the CCBA1,6 and ISA2,10, the
proposed method gives conservative estimates even with an in-range probability of 90%.
For the operator ISA2,10, the in-range probability has to be greater or equal to 95% to
obtain a correct estimation. However, the CCBA1,6 requires to set the in-range probability
up to 99.9% to encompass the maximum error distance estimated with 5 million samples.

3) Accuracy of the estimation depending on the in-range probability

The in-range probability allows being more or less conservative on the estimate of Me.
Figures 5.5 and 5.6 depict the link between the parameter p and the accuracy of esti-
mation. Indeed, when implementing an AC technique, the maximum ED must not be
underestimated. However, if the obtained value overshoots the real maximum ED, the
application designer may wrongly discard a technique, hence the importance of adjusting
the parameter p.

The estimated maximum error distance values M̃ are represented as a percentage of the
accurate maximum ED values Me for each inexact adder in Figures 5.5 and 5.6. Vertical
lines indicate for each inexact adder, when p is high enough to accurately estimate M̃
(M̃ = Me). The proposed method correctly estimates the maximum ED for both inexact
adders 8-bit ISA2,2 and 16-bit CCBA1,6 and for p varying from 25% to 100% since these
adders frequently generate the maximum error distance.

For the 8-bit ISA2,4, M̃ encompasses Me when p ≥ 72% and for the 16-bit ISA2,6,
when p ≥ 68. Nevertheless, for the ISA2,6, ACA6 and ACA8, the in-range probability p
has to be very high to encompass the real maximum error distance (higher than 85%, 88%
and 97% respetively). Indeed, the generated errors are scattered and local maxima may
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Nbits Op. type Name p k T M̃ Me (5M)

32

CCBA

CCBA1,5

90 500 1000 128 128

95 500 1000 128 128

98 500 1000 128 128

CCBA1,6

90 500 1000 1349 1641.6

95 500 1000 1409 1641.6

98 500 1000 1491 1641.6

99.9 500 1000 1743 1641.6

CCBA1,7

90 500 1000 32 32

95 500 1000 32 32

98 500 1000 32 32

CCBA1,9

90 500 1000 325 256

95 500 1000 373 256

98 500 1000 439 256

ISA

ISA2,2

90 500 1000 65536 65536

95 500 1000 65536 65536

98 500 1000 65536 65536

ISA2,8

90 500 1000 16384 16384

95 500 1000 16384 16384

98 500 1000 16384 16384

ISA2,10

90 500 1000 1945 2048

95 500 1000 2614 2048

98 500 1000 3289 2048

ACA ACA17

90 500 1000 4·109 2·109

95 500 1000 4·109 2·109

98 500 1000 4·109 2·109

Table 5.5 – Estimation results of the maximum ED and comparison with Monte-Carlo character-
ization (5M) for 32-bit operators (bold numbers if M̃ < Me).

be found in the different samples, leading to a lower value of M̃ . When p increases, the
estimated maximum ED becomes very conservative. Small bumps can be observed for the
ACA6 and ACA8, also caused by the large standard deviation generated by this type of
inexact adder. It is still to be noted that for 8-bit and 16-bit estimations, the number
of simulated samples is small, since equal to 1000 samples which represents 1.5% of the
whole input space for 8-bit operators, and only 2.3 · 10−5% of the whole input space for
16-bit operators.

4) Accuracy of the estimation depending on the number of simulated samples

The accuracy of the estimation can be controlled with the total number of simulated points
k × T taken to derive the distribution of the maximum error distance values. Figures 5.7
and 5.8 represent the evolution of the accuracy of estimation depending on the size of the
simulated samples T , with k set to 10, for different 8-bit and 16-bit adders, respectively.

Figures 5.7 and 5.8 represent the estimated value M̃ as a percentage of Me depending
on T . In this case, T samples are simulated and their maximum is extracted. This
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~

Figure 5.5 – Estimation of maximum ED as a percentage of Me depending on the in-range
probability p for a fixed number of simulated samples k × T , k = 10, T = 100, for 8-bit adders.
Vertical lines indicate M̃ = Me.

~

Figure 5.6 – Estimation of maximum ED as a percentage of Me depending on the in-range
probability p for a fixed number of simulated samples k × T , k = 10, T = 100, for 16-bit adders.
Vertical lines indicate M̃ = Me.

operation is done k = 10 times. For 8-bit adders, the estimates converge towards a value
for 8-bit ISA2,2 and ISA2,4 as soon as T ≥ 25. For 16-bit adders, the estimates converge
towards a value for ISA2,4, ISA2,6 as soon as T ≥ 250 and for CCBA1,6 as soon as T ≥ 50.
As soon as the size of the samples exceeds 25 for 8-bit adders, and 250 for 16-bit adders,
simulating additional samples does not impact the estimated maximum value M̃ . The
adders ISA2,2, 16-bit ISA2,4, ISA2,6 and CCBA1,6 are converging towards the real value
Me when T ≥ 25 for the 8-bit adder and T ≥ 250 for the 16-bit adders. For the 8-bit adder
ISA2,4, the estimation is conservative since Me = 4 and the estimate converges towards
M̃ = 5. This case is not problematic since the relative error of estimation is equal to 25%.

Nevertheless, to estimate correctly M̃ for the ACA6 and ACA8, the size of the simulated
samples has to be really high compared to the other considered inexact operators, 72 and
870 respectively. Indeed, as shown in Figure 5.5 and 5.6, for a fixed sample size T = 100,
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~

Figure 5.7 – Estimation of maximum ED as a percentage of Me depending on the T with k = 10,
p = 90%, for 8-bit adders. Vertical lines indicate M̃ = Me.

~

Figure 5.8 – Estimation of maximum ED as a percentage of Me depending on the T with k = 10,
p = 90%, for 16-bit adders. Vertical lines indicate M̃ = Me.

the estimation of M̃ for both inexact operators ACA6 and ACA8 needs a high in-range
probability to reach the accurate value Me.

Figures 5.9 and 5.10 represent the estimated value M̃ as a percentage of Me depending
on k. In this case, T samples (T = 100 for 8-bit adders, T = 250 for 16-bit adders) and
their maximum is extracted. This operation is done a varying number of times k. For
8-bit adders, the ISA2,2 and ISA2,4 converge towards a value as soon as k = 5. As shown in
Figure 5.7, the ACA6 would require more simulations to converge. Nevertheless, contrary
to the impact of T on the quality of the estimation, in this case, a single adder (ISA2,2)
has converged towards the exact value Me. This is due to the frequent generation of the
maximum error value with this inexact adder. For the ACA6, the estimated maximum M̃
is underestimated. Indeed, if the maximum extracted in the samples of size T is a local
maximum very far from the real maximum value, it induces parasite results when comput-
ing the Gumbel distribution. For the ISA2,4, the estimated maximum M̃ is overestimated,
with a relative error of estimation of 25%. For 16-bit adders presented in Figure 5.10, the
estimates converge towards a value as soon as k = 25. The curve representing the ISA2,4 is
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overlapping the curve representing the CCBA1,6. In this case, for both adders ISA2,4 and
CCBA1,6, only k = 5 simulations are required to correctly estimate the value M̃ . For the
ISA2,6, the value M̃ is slightly overestimated. Finally, for the same reasons as for the 8-bit
ACA6, the ACA8 underestimate the value M̃ . However, as stated for the estimation of
the ER and mean ED, inexact operators with a large standard deviation renders circuits
with poor interest.

~

Figure 5.9 – Estimation of maximum ED as a percentage of Me depending on k, p = 90%, 8-bit
adders, T = 100. Vertical lines indicate M̃ = Me.

~

Figure 5.10 – Estimation of maximum ED as a percentage of Me depending on k, p = 90%,
16-bit adders, T = 250. Vertical lines indicate M̃ = Me.

To draw a conclusion, to correctly estimate the maximum error distance for an inexact
adder, the user will mainly modify the in-range probability p, allowing to be more or less
conservative on the estimation without simulating additional samples, or the size of the
samples T to ensure to converge towards the real maximum value and not towards an
underestimated maximum value to derive the Gumbel distribution.
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5.4 Conclusion

In this contribution presented in the international conference EUSIPCO 2018 [BCDM18]
and in the journal Microelectronics Reliability [BCDM19], we have proposed a character-
ization method of the approximation error induced by inexact arithmetic circuits, that
exploits the statistical properties of the error. The benefits of the proposed method have
been demonstrated on different inexact arithmetic adders (ACA, ISA and CCBA) and
the mean error distance, error rate and maximum error distance have been estimated.
From user-defined confidence requirements, the proposed method automatically adjusts
the number of simulations required by using statistical properties of the approximation
error. Validated by its accurate estimation of error characteristics on 8 to 16-bit circuits,
the proposed method has been shown coherence and consistency on larger bit-widths, with
32-bit circuits, where exhaustive simulation is not feasible. This experimental study has
shown that the proposed method outperforms naive stochastic BALL simulations with a
fixed number of samples, either by converging towards a more accurate characterization, or
by drastically reducing the amount of samples required for an accurate estimation, saving
time and resources. As a future work, the proposed characterization framework could be
tested on other types of inexact arithmetic operators as multipliers.



CHAPTER 6

Application Quality Metric: Application to Inexact Operators

“If we didn’t have genetic mutations,
we wouldn’t have us. You need error to
open the door to the adjacent possible.”

Steven Johnson

Inexact circuits can be characterized in terms of approximation errors. Analytical
techniques, exhaustive or Fixed-Number of Samples (FNS) simulations have been pro-
posed in the literature. In Chapter 5, an efficient simulation-based method for a fast
characterization of the error induced by inexact operators has been proposed. To link
the approximation error induced by inexact circuits to the application quality of service
(QoS), the operators have commonly to be emulated at gate-level within the application.
As previously shown, this leads to long simulation time. To reproduce the modifications
of the internal structure of the operator, Bit-Accurate Logic-Level (BALL) simulations
are used. In this chapter, the error injection technique is exploited. A simulator has been
proposed to replace the slow BALL simulation of an inexact operator �̂ so as to fasten its
simulation and be able to link the circuit error metrics to the application quality metric.
The BALL simulation is replaced by the simulation of the exact operator � plus a Pseudo-
Random Variable (PRV) modeling the approximation error. The modelization of the error
induced by the inexact operator by a stochastic process is described in Section 6.2. In this
Section, two versions of the proposed simulator, called the Fast and Fuzzy (FnF) simu-
lator, are described. The first version of the FnF simulator (FnFi), has been presented
in the international conference GLSVLSI 2018 [BDPM18]. This version of the simulator
takes into account the correlation between the input values of the operator and the errors
of approximation. The second version of the FnF simulator (FnFo), has been presented in
the international conference ISCAS 2018 [BDM18a]. This version of the simulator takes
into account the correlation between the output values of the operator and the errors of ap-
proximation. The construction of the simulator is described in Section 6.3. A comparison
of both simulators is provided in Section 6.4.
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6.1 Introduction

In Chapter 5, a characterization of the error profile of inexact operators has been proposed.
This method allows deriving circuit error metrics to feed the application quality metric
evaluation block (Block 2) in Figure 5.1. Our contribution in Chapter 5 allows determining
metrics as the Mean Error Distance (mean ED), the Error Rate (ER) or the Maximum
Error Distance (maximum ED). The aim of the contribution presented in this chapter,
is to use these circuit error metrics to predict the impact of approximation errors on the
application quality metric. Indeed, the impact of the induced errors on the quality at the
output of the application has to be quantified and framed to ensure its behavior despite
the induced approximations.

The challenge when including inexact operators in an application, is to evaluate the
impact of the approximation on the QoS λ at the output of the application. Potential
approximations have to be evaluated to choose the best inexact operators with respect
to the different constraints on the application implementation. The Approximation De-
sign Space Exploration (ADSE) is large and requires a fast simulation to evaluate the
approximation impact on QoS. Indeed, several parameters can vary when selecting an ap-
proximation perspective, as for instance the operation replaced, the operator chosen, as
well as parameters set to adjust the precision of the simulation. For instance, the carry
chain length is a user-defined parameter for the Almost Correct Adder (ACA), and has
an impact on the quality and the energy savings of the approximation. For the Carry-Cut
Back Adder (CCBA) presented in [CCSE18], the positions of the cuts are also user-defined
parameters to trade-off the quality for the delay. Consequently, to be able to explore the
whole design space to fix the different parameters of the inexact operators and find which
operations should be approximated, a fast evaluation of inexact operators, that directly
links the approximation and the application quality metric, is needed.

As presented in Chapter 3, two families of state-of-the-art approaches exist to link
the errors induced by inexact operators and the application quality metric, analytical and
simulation-based techniques. Analytical methods provide mathematical expressions of an
error metric (mean ED or ER) on inexact operators. The chosen error metric can then
be quickly evaluated. For instance, when implementing an approximation based on fixed-
point coding, the error metric is the error power. To derive the error power, perturbation
theory is used [SB04]. Perturbation theory is however not applicable to inexact operators
because this theory builds on the hypothesis that errors are small compared to signal,
which is not the case in most inexact operators. Several analytical methods have thus
been proposed to analyze the impact of an inexact operator on an application, as Modified
Interval Arithmetic (MIA) or Modified Affine Arithmetic (MAA) [HLR11]. However, the
number of terms required to propagate the probability mass function (PMF) of an inexact
operator suffers from range explosion. For instance, to propagate the PMF through 4
Multiply-accumulate (MAC) operations, 8 million terms are needed [HLR11]. Analytical
techniques are completely describing the PMF of an inexact operator but do not give a
direct link between the error metric and λ, the application quality metric.

The straightforward method to determine the impact of the error on λ is to perform
a functional simulation of the application. A functional simulation of an inexact operator
simulates the operator at the logic level. Thus, the simulation time is significantly higher
than the one obtained with a classical execution using Central Processing Unit (CPU)
native data types, as presented in Chapter 3.

Nevertheless, the strength of simulation-based method is that they are generic, and
directly link the approximation to the application output quality. To the best of our
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knowledge, no method has been proposed to accelerate the simulation of inexact operators
by combining exact computation and statistical methods.

6.2 Modelization of the inexact operator error by a stochas-
tic process

Our proposed simulation technique for inexact operators simplifies the modeling of the
approximation error to fasten the simulation of inexact operators within the targeted
application. The proposed FnF simulators are set in the design flow presented in Figure 6.1.
The ADSE, corresponding to Block 4 in Figure 6.1, aims at finding the best inexact
operator for each operation in the application as well as the best parameters for their
tuning. For each test of a configuration C, λ the QoS, is evaluated from the results of the
fast simulation carried-out with the proposed FnF simulator (Block 3 in Figure 6.1).

Quality evaluationSimulator generation

Inexact operator 
characterization
Inexact operator 
characterization

Table 
generation

Table 
generation

Code 
generation

Code 
generation

Fast simulationFast simulation

Approximation design 
space exploration

OptimizationOptimization

Quality metric 
determination
Quality metric 
determination

Application description

Ops_FnF.h
Ops_FnF.c

Ops_BALL.h
Ops_BALL.c

2

1

3 4

Figure 6.1 – ADSE flow integrating the proposed FnF simulator to evaluate the QoS of an appli-
cation implementing inexact operators.

To take into account the correlation between input values for the FnFi simulator, out-
put values for the FnFo simulator, and the approximation errors, the input operand/output
set is decomposed into subspaces and a different Pseudo-Random Variable (PRV) is as-
sociated to each subspace. Each PRV is defined to mimic the error in terms of ER and
Error Distance (ED) generated by the approximation. The proposed simulator is designed
to be operator agnostic and is intended to be used during the ADSE process. The FnF
simulators are designed to quickly evaluate the impact of different approximations at the
hardware level on the QoS of an application.

The FnF simulators use pre-computed tables built in Block 2. The generation of the
tables requires the knowledge of the approximation error statistics. These statistics are
provided by the characterization process corresponding to Block 1 in Figure 6.1. Ana-
lytical techniques [MHH+17], Monte-Carlo simulations [HL11], exhaustive simulations or
the characterization method proposed in Chapter 5 are the different alternatives to obtain
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the statistics required in Block 1. In the rest of the Chapter, the statistics on the error
have been derived from exhaustive simulations for accuracy and generic purpose. The
required statistics on the error as the ER, mean ED or maximum ED have been computed
by simulating all the possible input values of the inexact operator.

Let’s consider an inexact operator �̂ whose input operands x ∈ Ix = [x;x] and y ∈
Iy = [y; y] are encoded on Nx and Ny bits respectively. x and x represent the minimum
and maximum values of x (same for y). The accurate original operator is �. The set of
all the possible input values for the operators � and �̂ is I = Ix × Iy and is composed of
2Nx+Ny elements. The output of the accurate operator �, z = x � y is encoded on Nz bits.
The set of all the possible output values for the accurate operator � is O. For an addition
or subtraction, the output set O is composed of 2max(Nx,Ny)+1 values and for a multiplier
O is composed of 2Nx+Ny values.

Our method reduces the software simulation time of an inexact operator by replacing
the BALL simulation of �̂ by the accurate version of the operator � plus a PRV ẽ whose
statistical characteristics are computed from the error generated by �̂, as presented in
Equation 6.1 and in Figure 6.2. According to the ER f determined during the operator
characterization phase, 0 or the error e is added to x � y.

x�̂y ⇔ x � y + ẽ (6.1)

z = x◇y^ ^

x y x y

f
e

0

 x◇y

z~

Figure 6.2 – Statistical equivalence between BALL and FnF simulation of x�̂y.

In the proposed approach, the error due to the approximation is modeled by a stochas-
tic process whose features are determined with an operator characterization phase. The
operator characterization phase differs whether the simulator is built on the input or on
the output values of the operator.

To determine the accurate error of approximation ê = x � y − x�̂y, a table addressed
by x and y can be considered to reproduce the exact behavior of the inexact operator.
Nevertheless, this table is composed of 2Nx+Ny elements. The amount of memory to
store this table is prohibitively large even for small values of Nx and Ny. The proposed
simulators are using smaller tables storing the characteristics of the approximation error
modeled by a PRV ẽ.

6.2.1 PRV to model the error for the input-based FnFi simulator

To reduce the size of the table storing the error characteristics while avoiding a coarse error
modeling, the input set I = Ix × Iy is decomposed in subspaces Sij = Ixi × Iyj such that⋃
i,j Sij = I, the input space is entirely covered by the subspaces. Since the ER is not equal
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to 1 in each subspace Sij , our method determines a pseudo-random variable PRV ẽij for
each Sij with statistical characteristics provided by the inexact operator characterization
phase (Block 1 in Figure 6.1). It is important to note that our FnF simulator can take as
input the statistics on the error provided by an analytical analysis as the one proposed by
Mazahir et al. [MHH+17], by exhaustive or by Monte-Carlo simulations. Our simulator
does not output the exact value of the approximate operation x � y + ê but generates
the error ẽ with the same statistical characteristics as the error at the output of the
approximate operator. Depending on the ER fij in Sij , either 0 or eij is added to x � y.

The size of the subspaces Sij controls the modeling grain and is embodied by the user-
defined fuzziness degree F . F has an impact on the accuracy of our FnF simulator. In
the case of the FnF simulator built on the input values of the inexact operator, the input
operands sharing the same N − F Most Significant Bits (MSBs) are grouped in the same
subspace Sij , and are then associated to the same PRV ẽij , hence the error on the result
of the simulation. The larger F is, the more different outputs of the simulated operator
are summarized with the same PRV ẽij , thus increasing the simulation inaccuracy.

Algorithm 2 FnFi Simulation of x�̂y
1: procedure FnF�̂(x, y,N, F )
2: x0 = x >> F . Pre-process operands
3: y0 = y >> F
4: k = Tidx[x0][y0]
5: if k == 0 then . Error-free test
6: return x � y
7: else . Pseudo-random number generation
8: M1 = 2F − 1
9: (aij , bij , fij) = Terr[k]

10: uij = generatePRNumber(M1, x, y)
11: eij = generateError(uij , fij , aij , bij)
12: return x � y + eij
13: end if
14: end procedure

Algorithm 2 details the proposed simulation process for Nx = Ny = N and Figure 6.3
illustrates the flow of our simulation. The first step of the FnFi simulation is to pre-process
the input operands x and y by extracting their N −F Most Significant Bits (MSBs) (lines
2-3). This leads to the values x0 and y0 respectively. x0 and y0 indicate to which subspace
Sij x and y belong to. The index k = Tidx[x0][y0] indicates if x�̂y may generate an error.
Tidx is a precomputed table that indicates if an error may occur in Sij . If k is equal to zero,
no error is generated and the accurate version of x � y is directly returned, thus avoiding
any simulation time overhead. If k is different from zero, a set of statistical characteristics
(aij , bij , fij) is retrieved from table Terr (line 10) and describes the PRV ẽij . According to
the parameter fij , the error value eij is finally generated. The pre-computed table Terr[k]
stores the sets of statistical characteristics for each Sij where an error occurs. Section 6.3
presents the generation of the two abovementioned tables. The error value eij is computed
with the following expression:

eij = pij · (aij · uij + bij) (6.2)

with uij a uniform random variable and pij a random boolean variable whose distribution
follows a Bernouilli law.
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Pseudo-random variable generation The random variable pij is equal to 1 with a
probability fij and to 0 with a probability 1 − fij . The random variable pij is obtained
from the random variable u′ij which corresponds to variable uij uniformly distributed in
the interval [0, 1] presented in Equation 6.3, after scrambling (operator S).

pij =

{
1 if u′ij < fij
0 else.

(6.3)

In the FnFi simulator, pij , is generated from the F Least Significant Bits (LSBs) of the
input operands. Indeed, the LSBs of a signal can be considered as a white random additive
noise non-correlated with the input signal as derived by Widrow [WK08]. The F LSBs of x
and y are concatenated and finally scrambled by a xor operation with a constant K. The
purpose of these operations is to map the input operands (x, y) ∈ Ix × Iy to pij ∈ [0; 22F [
in a bijective way.

Nx-F bits F bits
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Terror 
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Figure 6.3 – Graph flow of the proposed FnFi simulation.

Finally, an asset of our simulator is that the execution time depends on the number of
errors committed by the original inexact operator. The less errors an operator generates,
the faster our FnF simulator is, because lines 8-11 of Algorithm 2 can be skipped.

6.2.2 PRV to model the error from the output-based FnFo simulator

In the case of the FnF simulator built on the output values of the inexact operator, the
output set O is decomposed in 2Nz−F subspaces Oi. The fuzziness degree F also impacts
the accuracy of the modelization, the size of the subspaces and the simulation time. For
each subspace Oi, a PRV ẽi is used to model the error within the subspace Oi. Each
subspace Oi contains the output values z = x � y sharing the same Nz-F MSBs. These
output values are modeled by the same PRV ẽi, as presented in Figure 6.4. The bigger F
is, the bigger the subspaces Oi are and consequently the more information are summarized
within a single PRV ẽi.

The statistical characteristics of the PRV ẽi are stored in a table Terr and the Nz-
F MSBs of the variable z are used to address Terr as presented in Figure 6.4. Rather
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Algorithm 3 FnFo Simulation of x�̂y
1: procedure FnF�̂(x, y,N, F )
2: z = x � y . Compute accurate operation
3: z0 = z >> F . Pre-process output
4: k = Tidx[z0]
5: if k == 0 then . Error-free test
6: return z
7: else . Pseudo-random number generation
8: M1 = 2F − 1
9: (ai, bi, fi) = Terr[k]

10: ui = generatePRNumber(M1, z)
11: ei = generateError(ui, fi, ai, bi)
12: return x � y + ei
13: end if
14: end procedure

than indexing this table with the operator inputs, as in the FnFi simulator, the proposed
approach uses the output values to index the table Terr. Contrary to the FnFi simulator,
the table storing the error characteristics is a 1-dimension table since it is only indexed
with the output values z.

Numerous input combinations do not generate an error at the output of the approx-
imate operator �̂. Let fi be the frequency of error occurrence in the subspace Oi. The
accurate error ê in Oi is equal to 0 with a probability of 1 − fi. To model the error
committed in the subspace Oi, the error value ei is generated with the Equation 6.4.

ei = pi. (ai.ui + bi) (6.4)

In Equation 6.4, ui represents a uniform random variable and pi a random boolean variable
whose distribution follows a Bernoulli law. The random variable pi is equal to 1 with a
probability fi and to 0 with a probability 1 − fi. The random variable pi is obtained
from the random variable u′i which corresponds to variable ui uniformly distributed in the
interval [0, 1] presented in Equation 6.5, after scrambling (operator S). The variables (ai, bi)
are the coefficient of the affine form used to compute an error value with a pre-computed
amplitude.

pi =

{
1 if u′i < fi
0 else.

(6.5)

During the inexact operator error characterization phase to build the proposed simulator,
for each subspaceOi, the characteristics of the accurate error of approximation êi generated
by the inexact operator are extracted. For each Oi in O, the error values êi are computed
for the input combinations (x, y) such that z = x � y ∈ Oi. The triplet (ai, bi, fi) describes
the PRV ẽi and is used to compute the error ei. Then, from these error values in Oi, the
error amplitude represented by (ai, bi) and the threshold fi to generate an error with the
same frequency of error occurrence are computed and stored in the table Terr.

Algorithm 3 presents the simulation process of x�̂y and Figure 6.4 illustrates the flow
of the FnFo simulation. Two pre-computed tables are required, Tidx and Terr. Tidx, of
size 2Nz−F , is used to know if an error occurs in Oi. The table Terr stores the statistical
characteristics (ai, bi, fi) of the different PRV ẽi. The first step to simulate x�̂y with the
FnF simulator built on the output values is to compute the exact value z = x � y (line 2).
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Figure 6.4 – Graph flow of the proposed FnFo simulation.

Then, the Nz − F MSBs of z are extracted, leading to the value z0 (line 3), addressing
table Tidx. The value z0 indicates which subspace Oi the output value z belongs to (line
4).

The value Tidx[z0] indicates if x�̂y may generate an error. If Tidx[z0] is equal to zero,
no error is generated and the exact version of the arithmetic operator already computed z
is used, thus avoiding any supplementary processing (lines 5-6). Otherwise, Tidx[z0] gives
the index k to address the second table Terr and allows retrieving the parameters ai, bi
and fi of the PRV ẽi (line 9). The error ei is finally generated from the Equation 6.4 (line
11).

Like in the FnFi simulator, to generate the uniform random variable ui used to compute
the error ẽi, the LSBs of the accurate output value z are considered. The LSBs of z are
then xored with a constant K to scramble it. The obtained result is the uniform random
variable ui (line 10).

The C code developed to implement the proposed approach has been optimized to
waste the least cycles possible when simulating operands that do not generate any error.

6.3 Automated simulator construction

Our main contribution is to reduce the simulation time to get the value x�̂y with the two
error models detailed in Section 6.2. The error modeling is simplified using the tables
Tidx and Terr to store the characteristics of the Pseudo-Random Variables (PRVs) used
to compute the output value. The generation of these tables is done only once for each
operator and off-line.

For both simulators, Table Tidx indicates if the inexact operation does or not generate
an error. For FnFi, the size of Tidx is 2Nx+Ny−2F . The Nx − F and Ny − F MSBs of the
operands are extracted and operands obtaining the same extracted value are mapped to
the same subspace Sij in Tidx. Equation 6.6 presents the computation of Tidx.

Tidx[i, j] =

{
0 if ∀x, y ∈ Sij , x�̂y = x � y
k else.

(6.6)
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For FnFo, the size of Tidx is 2Nz−F . The Nz − F MSBs of the output of the accurate
operation are extracted and outputs obtaining the same extracted value are mapped to the
same subspace Si in Tidx. Contrary to FnFi, this table is only indexed with z, nevertheless
the computation of Tidx for FnFo is similar to Equation 6.6.

For both simulators, Terr stores the ED characteristics embodied by the affine form
(aij , bij) and the value fij corresponding to the ER in the considered subspace. The size
of Terr then depends on the number of subspaces where an error occurs.

To generate an error with the same statistical characteristics as the inexact operator,
a system with two equations for three unknowns is set. The system has been detailed for
the FnF simulator built on the input values, but is similar for the system on the output
values. The variables would just be indexed by a single variable i since the tables are
1-dimension tables.

Affine form modeling To allow solving the system, the value pij computed from the
ER fij , is computed to be equal to the number of errors to generate. We then have the
system S in Equation 6.7 to solve, with fij representing the ER in Sij , Aij , the maximum
ED in Sij , and µij the mean ED in Sij .

S :



pij = 22∗F (1− fij)
Aij = aij + bij ∗max

i,j
(pij)

µij ∗ fij = 1
22∗F
· (
∑22∗F−1

p=0 aij + bij ∗ p)

(6.7)

S is developed to extract aij and bij in Equation 6.8. Indeed, the maximum value of
the pseudo-random number pij is 22F − 1 and the third equation of the system can be
separated to highlight an arithmetic sequence whose first term is pij and common term 1.

bij =
22F+1µijfij−2Aij(22F−1−pij)

(22F−1−pij)(22F−3+pij−22F+1)

aij = Aij − bij(22F − 1)

(6.8)

Constant form modeling The error eij can also be modeled by only a constant value
if bij is set to zero. This reduces the complexity at the expanse of a loss in the accuracy
of our simulator. In this case, the value pij is computed for each Sij by equalizing the
mean ED of �̂ with the mean ED generated by the FnF simulation of �̂, as presented in
Equation 6.9.

µij ∗ fij = aij ∗ (1− pij
22∗F

) (6.9)

Thus, the value pij is equal to:

pij = 22∗F · (1− µij · fij
aij

) (6.10)

Besides, an inexact operator can be designed to generate errors always lower or equal to
x � y. In this case, the error eij cannot be greater than the value of the operation x � y,
since the output of the simulation is x � y + eij . The generated error eij is then equal to
max(− min

x,y∈Sij
(x � y), Aij). The maximum ED is not always generated. Consequently, to

keep the same mean ED, the threshold pij has to be lower to generate errors more often.
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The worst possible case is obtained when eij is always equal to x�y in Sij : in this case, the
value of tij is presented in Equation 6.11. Else, eij is always equal to Aij , the maximum
ED in Sij .

pij = 22∗F · (1− µij · fij
− min
x,y∈Sij

(x � y)
) (6.11)

Example on 3-bit operator The construction of the simulator from the table of error
amplitude values is illustrated for FnFi and bij = 0 in Tables 6.1 and 6.2. Table 6.1 indi-
cates the error amplitude values, that is to say z− ẑ, for an illustrative inexact arithmetic
3-bit operator depending on the input operands x and y. If the number of Fuzzy bits is
equal to 1, the input operands sharing the same 3− 1 = 2 MSBs are mapped to the same
subspace, as indicated with colors in Table 6.2.

x operand values
ê 0 1 2 3 4 5 6 7

0
0 0 0 0 0 0 0 0

1
0 0 0 -4 0 0 0 -4

2
0 0 0 0 0 0 -8 -8

3
0 -4 0 0 0 -4 -8 -8

y
o
p

e
ra

n
d

v
a
lu

e
s

4
0 0 0 0 -8 -8 -8 -8

5
0 0 0 -4 -8 -8 -8 -12

6
0 0 -8 -8 -8 -8 -8 -8

7
0 -4 -8 -8 -8 -12 -8 -8

Table 6.1 – Illustration of the proposed method: table of error amplitude values ê = x�̂y − x � y.

x0 values
ê 0 1 2 3

0
0 0 0 0 0 0 0 0
0 0 0 -4 0 0 0 -4

1
0 0 0 0 0 0 -8 -8
0 -4 0 0 0 -4 -8 -8

y 0
v
a
lu

e
s

2
0 0 0 0 -8 -8 -8 -8
0 0 0 -4 -8 -8 -8 -12

3
0 0 -8 -8 -8 -8 -8 -8
0 -4 -8 -8 -8 -12 -8 -8

Table 6.2 – Illustration of the proposed method: table of subspaces.

To build the table Tidx, each subspace is analyzed and if all the error amplitude values
in the subspace are equal to zero, the corresponding value in Tidx is zero, else it contains
the index to retrieve the subspace information in Terr. For instance, the value of Tidx for
the subspace S00 is zero, while for the subspace S23 it is 8. To build the table Terr, the ER
fij , maximum error amplitude Aij and mean error amplitude µij are computed for each
subspace in which an error may occur. For instance, for S23, the ER is equal to 1, the
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maximum error amplitude is equal to −12 and the mean error amplitude is equal to −9.
The corresponding tables Tidx and Terr are indicated in Tables 6.3 and 6.4 respectively.

k 0 1 2 3

0 0 1 0 2
1 3 0 4 5
2 0 6 7 8
3 9 10 11 12

Table 6.3 – Illustration of the proposed method: table Tidx.

k 1 2 3 4 5 6 7 8 9 10 11 12

µij -4 -4 -4 -4 -8 -4 -8 -9 -4 -8 -9 -8

Aij -4 -4 -4 -4 -8 -4 -8 -12 -4 -8 -12 -8

fij 0.25 0.25 0.25 0.25 1 0.25 1 1 0.25 1 1 1

Table 6.4 – Illustration of the proposed method: table Terr.

6.4 Experimental study

The FnF simulators propose to simulate an inexact operator using a simple error model.
To evaluate the impact on the simulation of the proposed method, four points have to be
highlighted

1. The time savings offered by the simulators for the simulation of a single operation
presented in Section 6.4.1.

2. The simulation time/accuracy trade-off of the proposed simulation depending on the
fuzzyness degree F , detailed in Section 6.4.2.

3. The overhead in terms of computation time and memory footprint due to the ap-
proximate operator characterization phase, presented in Section 6.4.3.

4. The accuracy of the QoS evaluation compared to the time savings in an ADSE
process, extended in Section 6.4.4.

The results have been obtained on a processor Intel i7-6700 with 32GBytes of RAM.

6.4.1 Simulation time savings for the FnF simulators

To quickly test the impact of an inexact operator in an application, the easiest solution is
to simulate the application in software with BALL simulation. The simulation time of our
FnF simulators is compared with the software BALL simulation time obtained with the
C code from the App Test framework [BSM17] for a single operation and various input
operand bit-width. The FnF simulators have been built if the error is modeled by an affine
form or a constant value, which impacts the accuracy of the simulation. The results are
presented for two types of inexact operators: the ACA and the Lower-Error Fixed-Width
Multiplier, called the Approximate Array Multiplier (AAM) in the rest of the Chapter
and presented in [VWF00]. Those operators have been chosen for the experimental study
since they are between the extremum presented in Table 3.2 in Chapter 3.
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FnF simulator built on the input values

Figure 6.5(a) represents the obtained simulation times for the ACA and Figure 6.5(b) for
the AAM. The time for simulating a single operation is represented depending on the input
operand bit-width. The obtained simulation times have been averaged for all possible
configurations of carry-chain length (for the ACA) and all possible values of F for both
operators. A BALL simulation of the ACA on 16-bit takes 300 more time than classical
execution of the exact operator with native data types, and the BALL simulation of the
AAM, for the multiplication of two 16-bit operands takes 4200 more time than a simulation
with native data types.
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Figure 6.5 – Simulation time for the FnFi and the BALL simulation of one operation for two
inexact operators.

The simulation times for the FnFi simulator are represented for bij 6= 0 and bij = 0,
the affine modeling being slightly longer to simulate than when bij = 0. For the ACA,
the FnF simulation is always faster than the BALL one with operand bit-width greater
than 6. On a single 16-bit addition, the BALL simulation takes 3.5 more time than the
FnF simulation. The gain for this operator is reasonable since the design of the ACA is
quite simple and can easily be reproduced with C-code. However, when it comes to the
AAM, whose design is much more complex than the one of the ACA, the FnF simulation
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is always faster and the BALL simulation takes 44 more time than the FnF simulation on
a single 16-bit operation.

FnF simulator built on the output values

Figure 6.6(a) represents the obtained simulation times for the ACA and Figure 6.6(b)
for the AAM. The time for simulating a single operation is represented depending on the
input operand bit-width. The obtained simulation times have been averaged for all the
possible configurations of carry-chain length (for the ACA) and all the possible values of
F for both operators.
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(b) AAM inexact operator.

Figure 6.6 – Simulation time for the FnFo and the BALL simulation of one operation for two
inexact operators.

The simulation times for the FnFo simulator are represented for bij 6= 0 and bij = 0.
For the ACA, the FnF simulation is always faster than the BALL one with operand bit-
width greater than 4. The affine modeling leads to similar simulation times than with the
modeling with a constant error value. On a single 16-bit addition, the BALL simulation
takes 5.5 more time than the FnF simulation with bij = 0 and 6.3 more time than the
FnF simulation with bij 6= 0, which is counter intuitive. The gain for this operator is
reasonable since the design of the ACA is quite simple and can easily be reproduced with
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C-code. When it comes to the AAM, whose design is much more complex than the one of
the ACA, the FnF simulation is always faster than the BALL simulation. Nevertheless,
because of the size of the required tables to build the simulator, leading to more cache
misses, the simulation times are increasing from N ≥ 10. The maximum time savings are
obtained when N = 10 and are equal to 63 if bij = 0 and to 28 if bij 6= 0. According to
the simulation time, from N = 10 for the AAM operator, the FnF simulator built on the
input values offer larger savings than the FnF simulator built on the output values.

Comparison of both simulators

Both simulators offer moderate time gains according to the simulation of the operator
ACA since the internal logic structure of the ACA is simple to reproduce with a C code,
the approximation simply consisting in cutting the carry-chain propagation in an addition.
The simulation time gains are up to 6.3× compared to the BALL simulation. The FnFo
simulator is faster than the FnFi since the tables to store are much smaller, and less
operations are needed when computing a simulation with no errors.

The FnFi simulator is particularly useful for the Design Space Exploration (DSE) of
an algorithm with more complex operators, as for instance the AAM. Indeed, for the simu-
lation of a 16-bit AAM, the FnFi was 44× faster than the BALL simulation. Nevertheless,
the behavior of the FnFo with a multiplier is more complex, as presented in Figure 6.6(b).
With the AAM, the FnFo simulation time gains are increasing up to 63× on a 10-bit AAM,
to then decrease up to 37 on a 16-bit AAM. The FnFi offers higher gains for multipliers
whose input bit-width is greater or equal to 11, but in both cases, the simulation time
savings on a 16-bit multiplier are considerable for the DSE of an application.

6.4.2 Trade-off simulation time/quality

The lower F is, the more accurate the simulation is, and the bigger the tables to store
are. The number of Fuzzy bits F embodies a trade-off between the simulation time, the
size of the tables to store and the quality of the simulation. The simulation time depends
on the number of errors generated by the original approximate operator �̂ and on F that
impacts the size of the tables and consequently the number of cache misses. The lower F
, the slower the FnF simulation. The following results have been obtained with bij = 0 for
FnFi and bi = 0 for FnFo.

To study the impact of the number of Fuzzy bits F on the simulation output quality,
the relative error of Normalized Rooted Mean Squared Error (NRMSE) between the ap-
proximation (computed with the BALL simulation) and the FnFi and FnFo simulations
are presented in Figure 6.7(a) for two operators, the ACA on 8 bits with a carry chain-
length cut at 4 and the ACA on 16 bits with a carry chain-length cut at 8. The relative
error between both NRMSE is called δNRMSE and is expressed in percent. For the ACA
on 8 bits, δNRMSE stays under 10% if F is lower or equal to half of the input bit-width. On
the 16-bit ACA, the margin is bigger. Indeed, δNRMSE stays under 10% until F is equal
to 12. The supplementary error due to the proposed model is acceptable for a number of
Fuzzy bits F between 50 to 75 % of the total operator word-length. As shown in the next
section, this leads to small tables to store for our approach.

The relative error of NRMSE between the approximation, computed with the BALL
simulation, and the FnFi and FnFo simulations are presented in Figure 6.7(b) for two
operators, the AAM on 8 bits and the AAM on 16 bits. The relative error between both
NRMSE is called δNRMSE and is expressed in percent. The choice of the simulator has
a strong impact on the quality contrary to the case of the operator ACA. For instance,
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(a) ACA inexact operator, carry chain-length cut at N/2.
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Figure 6.7 – Simulation time for the FnFo and the BALL simulation of one operation for two
inexact operators.

for the AAM on 8 bits, δNRMSE stays under 10% if F is lower or equal to half of the
input bit-width for FnFi. For FnFo, the induced error evolves in 9 to 18% if F is lower or
equal to half of the input bit-width. The simulator built on the input is more interesting
in this case. Nevertheless, this tendancy gets reversed from F = 5 bits. The behavior
of the relative error of NRMSE is similar on the 16-bit AAM. δNRMSE stays under 10%
until F is equal to 12 for the simulator FnFi, and between 16 and 21% for the FnFo. The
conclusion is similar, it is preferable to use the simulator built on the input values up to
F = 12. Afterwards the induced error becomes higher for the FnFi than for the FnFo.

The number of Fuzzy bits F also has an impact on the simulation time as shown in
Figure 6.8(a) for the inexact operator ACA and Figure 6.8(b) for the inexact operator
AAM. In both cases, the simulator is built on the input values. The FnF simulation time
is represented for different input bit-widths, depending on the number of Fuzzy bits F .
The highest F , the smallest the tables and the least cache misses.

For instance, for N = 13 and for the inexact operator AAM, F has to be at least equal
to 3 to be faster than the BALL simulation (simulation time gain of 2.4) and the maximum
simulation time gain if F = N−1 is equal to 49.2. For N = 13 and for the inexact operator
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ACA, F has to be at least equal to 4 to be faster than the BALL simulation (simulation
time gain of 1.44) and the maximum simulation time gain for F = N − 2 is equal to 5.82.
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Figure 6.8 – FnFi simulation time depending on the number of Fuzzy bits F .

6.4.3 Inexact operator characterization phase

Compared to the BALL simulation, a pre-processing phase is required to build the tables
Terr and Tidx for each operator. The inexact operator error êij or êi for the FnFi and
FnFo respectively, is characterized and the statistical characteristics of the PRV ẽij or ẽi
are computed and stored in Tidx and Terr. In Table 6.5, the memory footprint to store
the tables Terr and Tidx for an average value of F that is to say F = bN2 c for FnFi and

F = bNz2 c for FnFo is provided, as well as the time required to build the tables. The
characterization step is done once off-line for each new operator. The characterization
process used in this experimental set-up is an exhaustive characterization method and the
obtained results are given according to the worst-case characterization in terms of time. To
reduce the overhead of this step, Monte-Carlo simulations or the proposed characterization
method in Chapter 5 can be used. The FnFo simulator is longer to build by construction
because consecutive output values of an operator are not necessarily belonging to the
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same subspace, which induces a bad locality in terms of memory accesses. The results
are presented in the case of an exhaustive test of all the value x and y. Nevertheless, for
operators with a high operand word-length, an exhaustive test is not possible. Accurate
estimation of the statistical parameters ai, bi and fi can be obtained with a limited number
of operand values reducing dramatically the time required to build the tables. The main
advantage of the FnFo simulator compared to the FnFi is the significant reduction of the
size of the tables for the adder. For the ACA on 16 bits, the memory footprint is divided
by 166 with the FnFo compared to tables obtained with the FnFi simulator.

�̂ N t (FnFo) t (FnFi) Mem (FnFo) Mem (FnFi)

AAM 6 < 1ms < 1ms 764B 1KiB
7 < 1ms 0.2s 3KiB 3KiB
8 < 1ms 0.3s 45KiB 3KiB
10 0.4s 3.5s 12KiB 12KiB
16 4h20’ 137.5s 768KiB 768KiB

ACA 6 < 1ms < 1ms 192B 1.3KiB
7,8 < 1ms < 1ms 384B 4KiB
10 37s 2.98s 768B 16KiB
16 4h15’ 62.5s 6 KiB 1MiB

Table 6.5 – Time and Memory overhead to construct the FnF simulator.

6.4.4 ADSE for a stereo vision application

When designing an application with Approximate Computing (AC), several parameters
have to be tuned during the ADSE. During this phase, the application is run several times
to measure the quality of the result at the output of the application with the chosen param-
eters, to finally select the parameters leading to the best performances with respect to the
designer’s constraints. To give an idea of the intensiveness of this phase, a non exhaustive
list of tunable parameters is given hereafter. The percentage of replaced operators, the
replaced operations, the inexact operator that is used (ex: ACA or Error-Tolerant Adder
Type II (ETAII)), if the operator is tunable, the parameter to tune (ex: carry-chain length
for the ACA) and finally, the set of inputs on which the algorithm has to be tested, are
tunable parameters.

To illustrate the DSE phase, the stereomatching algorithm presented in Chapter 4
is considered [MPMN14]. This computer vision algorithm outputs a depth map given
two rectified input images. AC is particularly interesting for this algorithm since it is
computationally intensive. In this experiment, only the most computation intensive kernel
of this algorithm is considered for the ADSE. Only taking into account the percentage
of operators as well as the operations to replace, but no tuning of the operators, 158
simulations are needed for the DSE. If the replacement of multiplication operations is
solely considered, testing all the possible configurations with the BALL simulation takes
8.82 hours. The simulation using the FnF simulator built on the input values only
requires 12.71 minutes.

This test has been solely done using an input image from a test set extracted from
the Middlebury database [SS03]. To validate the approximation on the stereomatching
algorithm, the test needs to be done on a complete data set, hence increasing the number
of simulations to perform. Several configurations have been tested and are presented in
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Table 6.6. The quality metric used to measure the difference between FnF and the BALL
simulation is the Structural Similarity Index Measure (SSIM) presented in [WBSS04].
The terms rADD and rMULT represent the ratio of addition and multiplication which use
an inexact operator. The gain Gt = tBALL

tFnF
in terms of simulation time of the proposed

approach compared to a BALL simulation is provided. The accuracy degradation of the
application QoS evaluation is provided through ∆a that measures the relative difference
between the SSIM of both output images obtained with FnF and BALL simulations. The
multiply operations have been replaced by the AAM and the additions have been replaced
by the ACA with a carry-chain length equal to 7. Both operators are on 16-bit. The
most important accuracy degradation for QoS evaluation depends on which operation is
impacted by the approximation, but the degradation is always lower than 6%. The FnF
simulator leads to an accurate QoS evaluation and allows saving a non negligible simulation
time by dividing the simulation time between 1.38 to 87.59.

F rADD (%) rMPY (%) Gt ∆acc

5 0 14.3 65.59 < 0.1%
5 0 14.3 66.01 < 0.1%
5 0 14.3 65.71 < 0.1%
5 0 28.6 84.44 < 0.1%
5 0 28.6 83.37 < 0.1%
5 0 28.6 87.59 < 0.1%
8 20 0 1.38 5.69%

5(AAM) - 8(ACA) 20 14.3 52.24 0.578 %

Table 6.6 – ADSE for the stereomatching algorithm. Simulation time gain Gt and quality degra-
dation ∆acc of the proposed approach compared to a BALL simulation for different configurations
rADD and rMULT .

6.5 Conclusion

When implementing an AC technique, the link between the errors induced by the approx-
imation and the QoS at the output of the application implementing the approximations
has to be done. Analytical techniques fail to provide a generic method to compute the
QoS and simulation-based techniques can be preferred. To overcome the long simulation
time to measure this loss of quality, in this Chapter, a simulation technique based on error
injection has been proposed. Our fast simulation technique avoids to simulate the inexact
operator within the application at the logic level. Nevertheless, a thorough characteriza-
tion of the error induced by the inexact operator has to be done to inject an error with
the right characteristics. This characterization can be done with exhaustive simulations,
analytical techniques or the characterization method proposed in Chapter 5.

This contribution has been presented in the international conferences GLSVLSI 2018
[BDM18c] and ISCAS 2018 [BDM18a]. In these contributions, two different versions of
the fast simulator for inexact arithmetic operators have been proposed. The proposed
simulators are used for the DSE of an application implementing inexact operators. The
approximation error modeling of inexact operators is simplified to fasten the simulation.
Both simulators are demonstrated to induce an acceptable loss of simulation accuracy
in exchange for large simulation speedups. So as to reduce the simulation time and the
memory overhead to store the simulator, a parameter F called Fuzziness degree can be
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tuned. Through the experimental study, it has been shown that a value of 4 for F in
case of 8-bit inexact operators, and 12 in case of 16-bit operators was a good compromise
between the simulation time, memory overhead, and quality of the simulation.

The contributions presented in Chapter 5 and 6 both cover the spectrum of char-
acterization of the error profile and link with the application quality metric for inexact
arithmetic operators.
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CHAPTER 8

Fakeer: FAst Kriging-based Error Evaluation for fixed-point
Refinement

“Pour explorer le champ des possibles,
le bricolage est la méthode la plus
efficace.”

Hubert Reeves

To convert an application to fixed-point arithmetic, an efficient noise power modeliza-
tion has been proposed in the previous Chapter. The noise power modelization has been
exploited in the fixed-point refinement process to reduce the number of simulations done
for each noise power evaluation. In the previous Chapters, inferential statistics were used
to infer, from a reduced number of samples, metrics on the approximation error. In the
case of inexact arithmetic operators, inferential statistics were used to estimate the Mean
Error Distance (mean ED) and the Error Rate (ER) of the approximation error. In the
case of finite precision and particularly fixed-point arithmetic, inferential statistics were
used to estimate the noise power value at the output of the application. The noise power is
an intermediate accuracy metric massively used for fixed-point arithmetic. This Chapter is
is continuity of Chapter 7. In Chapter 7, the statistical properties of the noise power have
been exploited. The noise power is the second order moment of the error of approximation
and inferential statistics can be used to reduce the number of points used to estimate it.

In this Chapter, we have proposed a new method for the estimation of an accuracy
metric at the output of an application that can be used during fixed-point refinement. The
accuracy metric can be the noise power at the output of the application or the application
quality of service (QoS) metric. In particular, during the fixed-point refinement process,
numerous configurations of the word-lengths are tested, and the chosen accuracy metric at
the output of the algorithm is evaluated for each configuration. Classically, the accuracy
metric is evaluated by simulations for each configuration, which makes the refinement
process a time-consuming task. In Chapter 7, the time for fixed-point refinement was
reduced by using a reduced number of samples for the estimation of the intermediate
accuracy metric, the noise power. In this Chapter, we have proposed a new method
for accuracy and quality metric inference using kriging, a geostatistical method. In this
method, the inference is done using the already computed values of the metric. The
concept exploited here is to deduce from the behavior of the metric depending on the

159
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already tested configurations, the value of the metric in an unknown configuration. The
number of metric evaluations done with simulations is then reduced.

The motivations for using kriging for metric estimation are exposed in Section 8.1. The
method to infer the accuracy or quality metric at the output of an application is presented
in Section 8.2. The obtained experimental results on several benchmarks are presented in
Section 8.3.

8.1 Introduction

When implementing an Approximate Computing (AC) technique in an application, an
optimization problem has to be solved. The implementation cost C of the application has
to be minimized subject to a quality constraint λmin, as depicted in Equation 8.1:

min(C(e)) subject to λ(e) > λmin (8.1)

where e represents a Nv-length vector of the different sources of approximation. For
instance, this problem can be solved during a block-based sensitivity analysis as proposed
by Parashar et al. [PRMS10]. In this case, the vector e represents the noise power values
tolerated by each block in an application subject to a quality constraint at the output
of the application. This technique can be used before applying fixed-point refinement
on each individual block in the case of fixed-point arithmetic conversion. The problem
depicted in Equation 8.1 can also be solved for word-length optimization when converting
an application to fixed-point arithmetic. In this case, the vector e is the vector of the
word-lengths of the internal variables in the application.

Nevertheless, solving this problem is long and complex. This optimization problem
is commonly solved using functional simulation techniques with an arbitrary large pre-
defined input data set. For each tested configuration in vector e, the accuracy metric at
the output of the application λ(e) is evaluated by simulations. For fixed-point arithmetic,
classically, instead of measuring the impact of finite precision on the output QoS, an
intermediate metric is used. The quantization noise power P [Men08] is a massively used
accuracy metric. The quantization noise power measures the loss of accuracy due to finite
precision. The accuracy metric can also directly be the application QoS metric, but is
generally harder to evaluate.

To measure the impact of the approximation technique on the considered quality or
accuracy metric, it has to be emulated. The simulation time overhead due to the emulation
of the approximation combined with the great number of samples to simulate and numerous
configurations to test lead to long time to evaluate the metric. The total time topt for
solving this optimization problem is expressed in Equation 8.2.

topt = Nλ ·NS · tS (8.2)

where Nλ is the number of evaluations of the metric, NS, the number of samples to
simulate for each metric evaluation and tS , the simulation time of a single sample.

For fixed-point arithmetic, the time for solving this optimization problem has been
reduced in the literature with efficient emulation methods, reducing the time tS , as
for instance C++ fixed-point libraries proposed by MentorGraphics [Gra16] or by Sys-
temC [GLMS10]. We have proposed a framework based on inferential statistics to reduce
the number of samples to simulate NS for the intermediate accuracy metric, the noise
power evaluation in [BDM19a].
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In the proposed contribution, we aim at reducing the number of simulation-based
metric evaluations Nλ.

8.2 Fakeer methodology

8.2.1 Related works

Interpolation-based methods have already been proposed to solve the optimization prob-
lem in Equation 8.1 for fixed-point refinement. Sedano et al. [Sed12] have proposed an
interpolation method based on an optimization method proposed by Han et al. [HEKC01],
the preplanned search. The preplanned search is a greedy optimization algorithm
similar to the min + 1 bit algorithm, but it takes into account the sensitivity of each
variable in the competition between the variables. The different steps for the preplanned

search are as follows:

1. Search for the minimum vector of uniform word-lengths wu to meet the accuracy
constraint.

2. From the minimum vector of uniform word-lengths wu, search for the minimum
word-length for each variable wmin to meet the accuracy constraint, while the other
variables are set to wu. The word-lengths are decreased by 1 bit at each iteration.

3. During the search for wmin, compute and save the sensitivity si for each variable
such that si = λ(wi + 1)− λ(wi).

4. Iterative competition guided by the list of decreasing sensitivities until the accuracy
constraint is met.

The method proposed by Sedano et al. reduces the number of simulations during the
search for wmin and for the sensitivity of each variable by using interpolation. In this
method, the vector wmin is obtained with decrements of b bits at each iteration. The
accuracy is measured at each iteration, and the intermediate values are interpolated. The
measured values are stored in a matrix M in which line i corresponds to variable i and
column j to a word-length equal to j. If S is the set of measured values, the unknown
value M(i, j) can be interpolated as:

M(i, j) =
M(i, j − p) · 4p + M(i,j+q)

4q

2
(8.3)

where M(i, j − p) and M(i, j + q) are the nearest already measured points for variable i.
Nevertheless, a drawback of this technique is that the interpolator is based on the theory
on linear and smooth non-linear systems [Par07] as mentionned in [Sed12]. Moreover,
this interpolation is used during the search for wmin, only considering the contribution on
the noise power of a single variable. This type of interpolation is not considering a Nv-
dimension hypercube allowing taking into account the contributions on the noise power of
all the variables at the same time. Finally, this method is specific to the estimation of the
intermediate accuracy metric, the noise power.

Contrary to [Sed12], our method reduces Nλ using kriging, which is compatible with
non-linear systems and any type of accuracy or quality metric. Kriging allows interpolating
the value of the metric λ in a given configuration e, from previously measured values of λ
in other configurations.
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8.2.2 Kriging-Based Inference

The objectives of the proposed method are:

1. To reduce the number of simulation-based evaluations Nλ of the accuracy or quality
metric at the output of the application for solving the optimization problem in
Equation 8.1.

2. To provide an interpolation method not limited to linear and smooth non-linear
systems.

3. To provide an interpolation method generic for any metric at the output of the
application.

To solve the considered optimization problem, the value of the metric λ(ei) depends on
the considered configuration of the approximation sources ei. In the rest of the chapter,
the vector of size Nv, ei = (e0, e1, ...eNv) represents the configuration i of the different
approximation sources. To solve the optimization problem, the number of tested configu-
rations is large. For instance, for fixed-point refinement, in gradient ascent-based methods
as min+1 bit [Ca01], for each tested configuration, the best direction is searched and for
each configuration ei, NS samples have to be simulated to compute the accuracy met-
ric λ(ei). For the fixed-point refinement of small signal processing kernels as the Finite
Impulse Response (FIR) filter or the Infinite Impulse Response (IIR) filter, the accuracy
metric being the noise power and a noise constraint of −60dB, the number of accuracy
metric evaluations Nλ ranges between 145 and 844 but can be larger than 1000 for more
complex kernels with numerous variables to optimize.

If the components of vector e are forming a hypercube, the different values of vector
ek for each tested configuration are sampling this Nv-dimension hypercube. The proposed
method infers the value of the metric λ in a new sample of the hypercube ei from the
values of the metric λ already measured on the other samples, instead of evaluating by
simulations. The inference is done with kriging, a technique to estimate the value of a
random field, in this case λ, in an arbitrary sample ei depending on the values of λ already
measured in the samples ej, j 6= i.

Kriging description

Geostatistics [Wac14] applies the theory of random functions to spatially distributed data.
The goal of geostatistics is to model the behavior of a variable that is evolving in space
and/or time, and predict its value in unknown parts of space. Geostatistical methods
were first developed for mining, and have been used to estimate complex quantities such
as confidence intervals. The geostatistical method implemented to estimate the metric is
a simple kriging technique. Kriging is a stochastic spatial interpolation technique, that
allows predicting a random field λ(.), possibly non-linear, in an arbitrary sample ei using
the already known values of λ(.) in the points e0, ..., ei−1. The proposed method relies on
two steps:

1. The function indicating the correlation between points depending on their distance
is identified from the already known values of λ(.) in e0, ..., ei−1.

2. The obtained model is used to interpolate the value of λ(.) in point ei.
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The random field λ(.) is modeled by:

λ(ei) = m+

i−1∑
k=0

µkλ(ek) (8.4)

where m and µk are constant values. The weights µk are determined such that the esti-
mator λ(ei) is unbiased and leads to an estimation error of minimal standard deviation.

The first step of the proposed method consists in deriving the function indicating the
evolution of the correlation between the measured values of the random field λ(.) in samples
ej, j 6= i, depending on the distance r between the samples. This function is called the
semi-variogram γ̂. The computation of γ̂(r) is detailed in Equation 8.5.

γ̂(r) =
1

2|N(r)|
∑
N(r)

{λ(ej)− λ(ek)}2 (8.5)

where N(r) = {(j, k) such that |ej−ek = r|} and |N(r)| represents the number of distinct
couples (j, k) in the set N(r). ei is the sample in which the value of λ has to be infered.
From the already measured values of λ(.) in ej, j 6= i, the semi-variogram can be computed
and identified to a particular type of semi-variogram [Wac14]. This identification allows
computing the value γ̂(r) for any value of r.

Kriging is an optimal linear estimator and with no bias. The interpolated value of the
metric in sample ei is noted λ̂(ei) and the real value λ(ei). Kriging gives the interpolated
value by computing the weighted average of the available samples leading to an estimation
error of minimal standard deviation as presented in Equation 8.7. The methodology for
computing the unknown value is:

1. Writing the unknown value λ̂(ei) as a linear combination of the known values as in
Equation 8.4.

2. Writing the universality constraint, which indicates that kriging is an unbiased esti-
mator as in Equation 8.6.

3. Writing the optimality constraint, that is to say solving the Equation 8.7.

E[λ̂(ei)− λ(ei)] = 0 (8.6)

min(V ar[λ̂(ei)− λ(ei)]) (8.7)

The conditions for kriging (optimality and no bias) allow computing the interpolated value
λ̂(ei).

Let γ̂jk be γ̂(|ej − ek|), where ej and ek are samples in which the value of λ has been
measured. Let γ̂ik be γ̂(|ei − ek|), where ei is the sample in which the value of λ has to
be infered. For clarity, let’s denote λk = λ(ek). If we define two N + 1-length vectors λ
and Γi as:

λ = (λ0, λ1, ..., λN−1, 0) (8.8)

Γi = (γ̂i 1, γ̂i 2, ..., γ̂iN−1, 1) (8.9)

Let the (N + 1)× (N + 1) symmetric matrix Γ be:
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Γ =


γ̂0 0 γ̂0 1 ... γ̂0N−1 1
γ̂1 0 γ̂1 1 ... γ̂1N−1 1

...
γ̂N−1 0 γ̂N−1 1 ... γ̂N−1N−1 1

1 1 ... 1 0

 (8.10)

Then, the interpolated value λ̂(ei) is computed as in Equation 8.11.

λ̂(ei) = Γi · Γ−1 · λ (8.11)

The points e0, ..., ei−1 in which values of the random field λ are known used for the
interpolation can be discrete or continuous. Nevertheless, the limit of the proposed method
lies in the fact that the interpolated surface has to be continuous.

Exploitation for word-lengths optimization with min+1 bit algorithm To eval-
uate the number of points where kriging could be applied, the proposed method has been
integrated in the optimization algorithm min+1 bit. The challenge is to determine whether
the sequence of evaluated configurations allows predicting a large number of configurations
using kriging. The optimization algorithm has been launched on the exhaustive input data
set I to get the real accuracy metric values for each tested configuration. For each tested
configuration, the word-lengths wi of all the variables in the application are recorded as
well as the real accuracy metric value. The different vectors wi are corresponding to the
different configurations ei. Consequently, for each vector of size Nv wi = (wi0, w

i
1, ..., w

i
Nv

),
the real noise power value λi is measured. The points have been recorded in the order
in which they have to be measured, for comparison with the results obtained by kriging.
When the noise power value is obtained with simulations, the application is simulated with
the considered word-lengths vector wi on the exhaustive input data set I and the error
ex between the output of the application in floating-point and in fixed-point is measured
and saved in the set E. These steps are summarized as the following function:

E ← simulation(I,wi) (8.12)

From the set E of error values, the chosen accuracy metric is computed. For instance, if
the chosen accuracy metric is the noise power, the accuracy metric is computed as:

λ = E[e2x], x ∈ I (8.13)

In the rest of the chapter, the simulation of the word-lengths configuration wi and the
computation of the accuracy metric are summarized as:

λ = evaluateAccuracy(I,wi) (8.14)

The goal of the proposed method, is to replace the simulations for evaluating the accuracy
metric values by kriging.

Proposed algorithm

The proposed method to estimate the accuracy metric λ is implemented in the min + 1

bit optimization algorithm. For each tested word-lengths configuration w, the proposed
kriging-based technique has been applied to infer the accuracy metric value in point w
from the surrounding accuracy metric values on the hypercube and for a given distance d.
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Algorithm 8 Determination of wmin

1: procedure minKWL(λm, I, Nv, Nmax, d)
2: Wsim = ()0,0, λsim = ()0,1, Nsim = 0
3: for i ∈ [1;Nv] do . Min part
4: w← (Nmax, ..., Nmax)
5: repeat . Iterate on the variables
6: j = 0,Wtmp = ()0,0, λtmp = ()0,1, Nn = 0
7: repeat . Iterate on the simulated points
8: wj

sim ←Wsim(j, :)

9: dCur = ||w−wj
sim||1

10: if dCur ≤ d then
11: Wtmp ←Wtmp ∪wj

sim

12: λtmp ← λtmp ∪ λ(j)
13: Nn ← Nn + 1
14: end if
15: j ← j + 1
16: until j < Nsim

17: if Nn > 1 then . Process Kriging
18: λ = kriging(Wtmp, λtmp,w)
19: else . Simulation
20: λ = evaluateAccuracy(I,w)
21: Wsim ←Wsim ∪w
22: λsim ← λsim ∪ λ
23: Nsim ← Nsim + 1
24: end if
25: wi ← wi − 1
26: until λ ≤ λm ∨wi ≤ 1
27: wmin

i ← wi + 1
28: end for
29: return wmin

30: end procedure

The proposed methodology is described for Algorithm 8 for the determination of wmin

but is similar in Algorithm 9 for the determination of wres. Both algorithms takes as input
the following parameters: the accuracy constraint λm, the number of variables to optimize
Nv, the maximum word-lengths for the variables to optimize Nmax and the distance to
search for the neighbours of the interpolated point d. The impact of parameter d is studied
in the experimental study. The matrix Wsim storing the already simulated word-lengths
vectors, the vector storing the corresponding accuracy metric values as well as the number
of simulated points are initialized to the null elements and to zero (line 2), since no point
has been simulated for the moment. Then, for each tested word-length vector w, the
already simulated points are analyzed (lines 7-15) to determine if they can be used for
kriging. For each point wj

sim in matrix Wsim, its distance to the point w in which the
accuracy metric value is searched is computed. The distance is obtained by computing the
L1 norm between both vectors. If the obtained distance is lower or equal to the distance d,
the point wj

sim is kept as a neighbouring point to obtain the value of the accuracy metric
with kriging. This value is stored in Wtmp as well as the corresponding accuracy metric
value in λtmp (lines 11-12). If enough surrounding points have already been simulated,
that is to say if Nn is higher than 1 (line 16), kriging is applied, else the point is simulated.
When kriging is applied, from the already measured points, the matrix Γ in Equation 8.10
is computed and the accuracy metric value is estimated with Equation 8.11.
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If the point is interpolated, it is not used for kriging other points. The higher d, the
more points can be interpolated. The obtained optimization algorithm is described in
Algorithm 8 for the determination of minimum word-lengths vector, and Algorithm 9 for
the determination of the optimized word-lengths vector.

Algorithm 9 Determination of wres

1: procedure optimKWL(λm, I, Nv,w
min,Wsim, λsim, Nsim, d)

2: wres ← wmin

3: repeat
4: for i ∈ [1;Nv] do . Competition between variables
5: wi ← wi + 1
6: j = 0,Wtmp = ()0,0, λtmp = ()0,1, Nn = 0
7: repeat . Iterate on the simulated points
8: wj

sim ←Wsim(j, :)

9: dCur = ||w−wj
sim||1

10: if dCur ≤ d then
11: Wtmp ←Wtmp ∪wj

sim

12: λtmp ← λtmp ∪ λ(j)
13: Nn ← Nn + 1
14: end if
15: j ← j + 1
16: until j < Nsim

17: if Nn > 1 then . Process Kriging
18: λi = kriging(Wtmp, λtmp,w)
19: else . Simulation
20: λi = evaluateAccuracy(I,w)
21: Wsim ←Wsim ∪w
22: λsim ← λsim ∪ λi
23: Nsim ← Nsim + 1
24: end if
25: w← wres

26: end for
27: jc ← argmin

i
{λi}

28: wres
jc
← wres

jc
+ 1

29: λ← λjc
30: until λ ≥ λm
31: return wres

32: end procedure

8.3 Experimental study

The experimental study aims at showing that:

1. The proposed method can replace simulation for an important number of samples.

2. The quality of the obtained estimation depends on the number of samples taken for
inference, controlled by the parameter d.
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Word-length at 
the output of MPY

Word-length at 
the output of ADD

Figure 8.1 – Evolution of the accuracy metric (noise power in dB) depending on the word-lengths
of a FIR filter.

3. The proposed method can be applied to the estimation of the noise power or to the
estimation of an application QoS metric.

The kriging methodology has been implemented with the equations described in [FPTV92].
The proposed method has been applied on the fixed-point refinement algorithm min+1
bit. During this optimization process, numerous word-lengths configurations are tested
and their impact on the accuracy metric is measured. For instance, for a FIR filter with
two variables converted into fixed-point coding, the word-length at the output of the adder
and the word-length at the output of the multiplier, the different measurements of the ac-
curacy metric, in this case the noise power, lead to the creation of the surface presented
in Figure 8.1. The goal of the proposed method is to estimate with a sufficient quality a
non-negligible number of points of the surface without simulations.

In Table 8.1, the obtained results have been reported for the fixed-point refinement of
several benchmarks. The distance d, which is the L1-norm between the point to interpolate
and the already simulated points is indicated and varies between 2 and 5. For each
considered distance, the percentage of points that can be interpolated instead of being
simulated p(%) is indicated, as well as the average number of already simulated points
i that were used for each interpolation. Finally, quality metrics are provided. Let ε be
the difference between the interpolated and the real value. This difference is expressed
as an equivalent number of bits when the accuracy metric is the noise power. In this
case, the equivalent number of bits ni is computed from the noise power value P̂ (wi) in
configuration wi as:

P̂ (wi) =
2−n

i

12
(8.15)

which can be developed to compute ni as:

ni = − log2(12 · P̂ (wi)) (8.16)
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When the accuracy metric is the noise power, for each interpolated point, the equivalent
number of bits is computed as well as the equivalent number of bits for the real noise power
value. The difference between the number of interpolated and accurate bits is computed
and its maximum, average values and standard deviation over all the interpolations are
indicated, max ε, µε and σε respectively.

When another accuracy metric is considered, the difference between the interpolated
and the real value of the accuracy metric is expressed as a relative difference. If λ̂(wi) is
the interpolated value of the accuracy metric in configuration wi and λ(wi) is the accurate
value of the accuracy metric, the relative difference is computed as:

ε =
|λ̂(wi)− λ(wi)|

λ(wi)
(8.17)

The maximum max ε, average µε, and standard deviation σε of ε are indicated.

Among the considered benchmarks, three benchmarks belong to classical signal pro-
cessing kernels, a 64-th order FIR filter (Nv = 2), an 8-th order IIR filter (Nv = 5) and a
Fast Fourier Transform (FFT) applied on 64 points [Ca65] (Nv = 10). For these bench-
marks, the chosen accuracy metric is the noise power at the output of the filter. The
proposed method allows faithfully interpolating a large number of the noise power values
from close neighbours. Indeed, when using a distance contraint of d = 3 for the FIR filter,
52.78% of the points can be interpolated while inducing a low error of interpolation, on
average 0.43 bit. For the IIR filter, for d = 2, 47.52% of the points can be interpolated
inducing a similar error of interpolation. With a measured interpolation time of 10−6s
compared to a simulation time of 2.4s for the evaluation of a noise power by simulations,
the total time for fixed-point refinement is on average halved with our method. It is to be
noted that the low number of variables in these two benchmarks leads to a small fraction
of the configuration space that can be infered. According to the FFT, the number of vari-
ables is larger than for the two filters. As a matter of consequence, a significantly larger
number of points can be infered from d = 2, since 78.14% of the points can be infered
without using simulations. The error of interpolation also stays really low since it is on
average lower than 1 bit for d ∈ J2; 5K. In the case of the FFT, if 80% of the noise power
evaluations can be done without simulations, the time for fixed-point refinement is divided
by 5.

The following considered benchmark is the 2-D motion compensation module of a High
Efficiency Video Coding (HEVC) codec [Sa12]. This module has been used as a benchmark
in Chapter 7 and processes blocks of 8 × 8 pixels to interpolate the block in the case of
non-integer motion vector. For this module, 23 variables are considered in the word-length
optimization process. The considered accuracy metric is the noise power. As for the FFT,
since the number of variables in the optimization process is important, a large number of
noise power values can be infered, since for d = 2, 87.35% of the points can be infered.
Nevertheless, from d = 4, expanding the search space for interpolation is not useful since
the percentage of infered points is only evolving by 0.35%. The average error of estimation
is really low since lower or equal to 0.52 bit and the maximum difference is lower than
2.72 bit. In this case, the inference of the noise power values is really interesting since
with a constraint on the noise power of −50dB, 2473 evaluations of the noise power are
required. Each evaluation of the motion compensation module by simulation takes 1.37s.
Consequently, if 90% of the evaluations can be replaced by the Fakeer method, the time
for fixed-point refinement is divided by 10.

The last considered benchmark is a deep learning benchmark with Nv = 10 variables.
This benchmark is an image classification benchmark, the SqueezeNet deep convolutional
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neural network [IHM+16]. Contrary to the other tested benchmarks, the configurations
ei are no more the word-lengths of the data but the noise power allocated to the differ-
ent kernels of the application in a noise-budgeting problem. The accuracy metric for this
benchmark is the QoS metric of the application, that is to say the percentage of good
classification on the whole input data set composed of 300 images. This benchmark leads
to very similar results than the FFT in terms of percentage of points that can be inter-
polated without simulations since they have the same number of variables for fixed-point
refinement. The difference between the interpolated and the real value is expressed as a
relative difference as presented in Equation 8.17. The maximum relative difference ranges
between 15.72% and 33.58% but is on average lower than 12.16%. For a distance d = 3,
almost 90% of the configurations can be estimated with Fakeer instead of simulations,
while inducing an average relative error of 6.51%. Finally, when converting the SqueezeNet
benchmark with simulation-based fixed-point refinement, 290 configurations are tested for
a refinement time of 30 hours. If the Fakeer method is implemented with d = 3, 89.31%
of the configurations can be estimated with kriging. In this case, the time for fixed-point
refinement is divided by a factor 10.

λ Nv d p(%) i maxε µε σε

FIR Noise Power 2

2 33.33 3.78 0.98 0.28 0.35

3 52.78 5.44 1.66 0.43 0.53

4 58.33 7.00 2.29 0.46 0.68

5 66.67 8.61 2.42 0.51 0.67

IIR Noise Power 5

2 47.52 2.72 1.29 0.44 0.31

3 64.54 2.09 2.58 0.72 0.58

4 70.92 2.00 3.24 1.02 0.79

5 77.30 2.00 3.93 1.24 1.04

FFT Noise Power 10

2 78.14 3.48 0.82 0.18 0.16

3 89.07 2.01 1.21 0.34 0.26

4 91.90 2.04 2.07 0.54 0.38

5 95.55 2.05 2.88 0.68 0.55

HEVC Noise Power 23

2 87.35 3.60 1.86 0.07 0.15

3 93.33 2.38 1.86 0.15 0.20

4 95.63 2.11 2.24 0.30 0.27

5 95.96 2.01 2.72 0.52 0.36

SqueezeNet
Classification

rate
10

2 78.28 3.33 15.72% 3.50% 3.28%

3 89.31 2.18 25.75% 6.51% 5.68%

4 91.38 2.12 31.57% 9.11% 9.09%

5 93.10 2.09 33.58% 12.16% 10.59%

Table 8.1 – Experimental Results for Fakeer Method.
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8.4 Conclusion

The method presented in this Chapter is the Fakeer method, that has not been pub-
lished yet. The Fakeer method allows estimating the accuracy metric at the output
of an application depending on the word-lengths configuration of the internal variables
in the application. The estimation is done with a geostatistical method, kriging. The
number of estimated configurations during fixed-point refinement depends on the distance
d. The distance d corresponds to the distance between the estimated configuration and
its neighbours taken for estimation. We have verified that with a tight proximity in the
neighbouring points, kriging enables halving the number of accuracy metric evaluation
with simulations, while keeping an estimation error lower than 0.5 bit for small signal
processing benchmarks composed of a few variables. When the number of variables in the
considered benchmark increases, the search space for the configurations used for kriging
is larger and the number of points that can be estimated increases up to 90% on average.
However, when comparing the savings brought by the Fakeer method compared to the
savings obtained with the adaptive number of samples taken for noise power estimation
presented in Chapter 7, the results are less significant. The adaptive number of samples
taken for noise power estimation allows reducing the time for fixed-point refinement up to
3 orders of magnitude, while the Fakeer method reduces the time for fixed-point refine-
ment up to 1 order of magnitude. The major advantage of the Fakeer method is that
it is not dependent on a particular accuracy metric contrary to the method proposed in
Chapter 7. This advantage is particularly interesting when the chosen accuracy metric is
hard to evaluate.



CHAPTER 9

Conclusion

“I used the wrong method with the
wrong technique”

Depeche Mode

9.1 Summary

Approximate Computing (AC) is an energy-aware computing technique and has been
considered in this thesis. AC relies on the exploitation of the tolerance to imprecision of an
application. Energy-aware computing techniques are an active field of research to face the
end of Moore’s law while being able to answer the growing demand in computing capacity.
Numerous applications in image, signal or video processing are particularly tolerant to
imprecisions. To benefit from this error-resiliency, numerous approximation techniques
have been proposed at different abstraction levels, from the circuit to system level. An
overview of these techniques has been presented in Chapter 2. These techniques have
generally been characterized in terms of energy consumption, latency or area. Nevertheless,
it is of major concern to be able to characterize the approximations in terms of error
induced and their impact on the output application quality. In Chapter 3, the different
error and accuracy metrics as well as the methods proposed in the literature to evaluate
them have been presented.

In this thesis, methods and tools have been proposed to quickly evaluate the impact of
different AC techniques on the quality of service (QoS) of an application. AC techniques
have been considered at two different levels of approximation, the hardware level with
the study of inexact arithmetic operators and the data level with the study of fixed-
point arithmetic. Both approximation techniques allow studying two different categories
of errors. Inexact arithmetic operators generate errors of high amplitude with a low error
rate, they are called “fail rare” errors. Fixed-point arithmetic always generates errors with
a low amplitude, they are called “fail small” errors. When evaluating the error induced by
an AC technique on an application, two stages are required. First, the errors induced by the
approximations are characterized and modeled with different types of error metrics, and
they are then linked with the application QoS. The majority of the proposed techniques for
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modeling the errors induced by the approximations are analytical techniques. Analytical
techniques are specific to the considered approximation and hard to automate. To link the
induced errors with the application QoS, simulations are commonly used. Exhaustive or
Monte-Carlo simulations have been proposed, but exhaustive simulations are too long to
be used for sophisticated applications, while the existing techniques based on Monte-Carlo
simulations do not provide any confidence information on the obtained metrics. The study
of the impact of approximations on the application quality metric is critical to use AC
techniques in real applications.

In this document, five main contributions have been presented.

• An approximation technique at the computation level is presented in Chapter 4.

• Cassis, a characterization framework for the errors induced by inexact operators is
described in Chapter 5.

• A fast functional simulator of inexact operators, the Fast and Fuzzy (FnF) simulator
is proposed in Chapter 6.

• A framework for fast finite precision refinement is presented in Chapter 7.

• Fakeer, an interpolation-based technique to estimate a quality or accuracy metric
is detailed in Chapter 8.

In Chapter 4, another level of AC techniques has been explored. An approximation at
the computation level has been proposed for a stereovision algorithm. This case study has
demonstrated the strong link between the obtained quality at the output of an application
implementing approximations and the chosen accuracy metric. This work has motivated
the rest of our contributions to find generic methods and tools to measure the quality at
the output of an application.

The study of inexact arithmetic operators has been presented in Chapters 5 and 6.
Chapter 5 presents a statistical characterization method for the error induced by inexact
arithmetic operators. The proposed framework is based on adaptive simulations and char-
acterizes the error in terms of Mean Error Distance (mean ED), Error Rate (ER) and Max-
imum Error Distance (maximum ED) according to user-defined confidence requirements.
Contrary to analytical techniques, this method is operator agnostic. This framework has
been presented in two contributions [BCDM18, BCDM19]. In Chapter 6, the errors in-
duced by inexact arithmetic operators are linked with the application QoS through a fast
simulation process. The FnF simulator has been proposed for the Approximation Design
Space Exploration (ADSE) process to select the best approximation for the considered
application. The proposed simulator can replace the simulation of the operator at the
logic level and is up to 63 times faster than Bit-Accurate Logic-Level (BALL) simulation
of inexact arithmetic operators. The FnF simulator has been presented in two contribu-
tions [BDM18c, BDM18a]. The framework for the characterization of the errors induced
by inexact arithmetic operators can be used to build the FnF simulator.

The study on fixed-point arithmetic has been presented in Chapters 7 and 8. Chap-
ter 7 proposes a model for a particular intermediate accuracy metric massively used for
fixed-point arithmetic, the noise power. This error modeling allows estimating the value of
the noise power at the output of an application with a reduced number of simulations. The
noise power model has been implemented in a fixed-point refinement algorithm to deter-
mine the optimized word-lengths of the internal variables in an application under quality
constraint. The proposed refinement algorithm was faster than its original version by two
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to three orders of magnitude, saving time during this tedious process. These contributions
have been presented in [BDM19a, BDM19b] and exploited in a French patent [BMD19].
The last contribution of this thesis has not been published yet. The Fakeer method has
been presented in Chapter 8. It is used during fixed-point refinement of an application
but contrary to the contribution presented in Chapter 7, it is not specific to an accuracy
metric. The Fakeer method aims at estimating the accuracy metric at the output of
an application during fixed-point refinement, without simulations. This method is based
upon research on geostatistical methods as kriging. If the application to convert to fixed-
point arithmetic has numerous variables, this method is particularly efficient and allows
estimating 90% of the points without simulations for a low error of estimation.

The work constituting this thesis comes with the following conclusions:

• The errors induced by AC techniques such as inexact arithmetic operators are un-
smooth which jeopardize the implementation of such approximation techniques in
industrial applications. This is the reason why we have decided to consider other
approximation techniques as finite precision arithmetic during the thesis.

• To my mind, it is important to link the error metrics with statistics that can be
computed from a few samples and with a known confidence. Instead of using simu-
lations to compute a single value of the considered error metric, intervals appear as
being more relevant.

• To use AC in industry, a lot of work still has to be done to link the quality loss with
the implemented approximation. For instance, according to fixed-point arithmetic,
which is an old approximation technique, no efficient automatic method is available
to quickly study the approximation error and process the fixed-point refinement.
Analytical methods have mainly been proposed and the methods based on the per-
turbation theory are well defined. However, deriving equations from an application
description given as a C code is still a challenge. Simulation-based methods are
generic but were not scaling with large applications up to the work proposed in this
thesis. The results presented in Chapters 7 and 8 could solve a part of this problem.
There is still a long way to go for the other approximation techniques.

9.2 Future works

The work presented in this thesis opens many opportunities for future reasearch in the
error modeling field for AC. To my mind, interesting research has still to be done on finite
precision arithmetic.

Framework for refinement of finite precision systems First, the work proposed in
Chapter 7 is being integrated to a source to source compiler, the Generic Compiler Suite
(GeCoS) compiler developed in INRIA. The goal of this integration would be to provide the
embedded systems engineers with an automated tool to convert their applications from
double floating-point precision to finite precision, whether it be fixed-point or custom
floating-point arithmetic. The input of this automated tool would be floating-point C or
C++ code describing the application to convert to finite precision, and the output would
be a C or C++ code with optimized data-types in finite precision. The output of the
tool could be used as an input of High-Level Synthesis (HLS) tools. The optimization of
the word-lengths of the data in the application would be done with the evaluation tools
proposed in Chapters 7 and 8 so as to reduce the time for the design space exploration.
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Inferential statistics for custom floating-point Custom floating-point is an inter-
esting finite precision arithmetic has shown by Barrois et al [BS17]. For the refinement of
the word-lengths in the case of custom floating-point arithmetic, the size of the mantissa
and the exponent have to be explored. To use inferential statistics on custom floating-point
arithmetic, we expect that the framework proposed in Chapter 7 would be less efficient
because of the error distribution in floating-point arithmetic. For fixed-point arithmetic,
the error distribution is uniform while for floating-point arithmetic it is a uniform distri-
bution to which is applied a scale factor. Preliminary results have been obtained using
the GeCoS compiler. As expected, the proposed framework is less efficient since the noise
induced by floating-point arithmetic is not distributed as for fixed-point arithmetic.

Sustainability of the Fakeer method Further works on the Fakeer method include
testing the proposed method on different quality metric as for instance metrics to evaluate
the quality at the output of the stereo matching algorithm. The Fakeer method also has
to be tested on applications of various sizes to check its robustness. Finally, standard
deviation maps could be used to predict and control the interpolation error depending on
a user-defined confidence information. In this case, confidence intervals on the estimated
accuracy or quality metric can be computed.

Confidence intervals for various metrics The work based on adaptive simulations
to derive confidence intervals on error metrics could be extended to other classical metrics
that are expressed as a linear combination of statistical parameters as the Structural
Similarity Index Measure (SSIM) for instance. Another interesting error metric that is
being considered is the classification rate that could be dealt as the estimation of the ER.
The goal would be to provide a library of common metrics to the user.
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French Summary

A.1 Introduction

La compétition pour concevoir des systèmes électroniques plus rapides, moins chers et plus
économes en énergie a des raisons économiques mais cherche également à répondre à la
nécessité d’économiser les ressources énergétiques disponibles. En effet, selon la “Semicon-
ductor Industry Association et la Semiconductor Research Corporation”, l’énergie totale
requise par les systèmes informatiques dépassera la production énergétique mondiale es-
timée d’ici 2040, si aucune amélioration significative n’est obtenue en termes de réduction
de la consommation énergétique [AC15].

Une explosion en capacité de calcul

De 1965 à 2012, la capacité de calcul offerte par les systèmes informatiques, ainsi que leur
précision, ont augmenté de façon exponentielle. Selon la loi de Moore [Moo06], énoncée
moins d’une décennie après l’invention du circuit intégré à base de Silicium en 1958 par
Jack Kilby, le nombre de transistors sur une puce électronique devait doubler tous les
2 ans. En réalité, le nombre de transistors a doublé tous les 18 mois. Cette cadence a
permis d’augmenter la vitesse des calculs tout en réduisant le prix des puces électroniques.
Gordon Moore a en effet fait une prédiction tout à fait remarquable puisque le nombre
de transistors sur un circuit intégré a suivi de près cette tendance entre 1970 et 2016. La
réduction des coûts de fabrication et d’achat de puces électroniques a été rendue possible
grâce à de nouveaux procédés chimiques permettant de fabriquer les circuits intégrés tout
en optimisant les coûts. Au milieu des années 1960, l’utilisation de la lithographie optique
au lieu de la peinture à la main a rendu l’emballage des transistors plus coûteux que la fab-
rication du transistor elle-même. Analysée par Hutcheson [Hut05], la version économique
de la loi de Moore stipule que le coût par transistor est divisé par deux tous les 18 mois.
De 30 transistors sur les premiers circuits intégrés à base de silicium à 10 milliards de
transistors aujourd’hui, la production mondiale de puces électroniques a explosé, grâce à
des facteurs techniques tels que la réduction de la taille des caractéristiques des transistors,
un rendement accru et une densité de transistors sur puce accrus.

La facilité d’accès à des puces électroniques de plus en plus puissantes a fait également
exploser la demande. Néanmoins, depuis 2012, la loi de Moore a atteint ses limites. Les
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tendances de la technologie CMOS empêchent de respecter les rendements et les perfor-
mances prévus. En effet, comme Markov [Mar14] l’a démontré, l’efficacité du calcul est
intrinsèquement limitée dans sa nature fondamentale, matérielle, périphérique, circuit et
système/logiciel. Par exemple, l’interconnexion sur puce limite considérablement les per-
formances de cette dernière. Les transistors sont eux-mêmes limités par la largeur de la
grille diélectrique, qui a atteint la taille de quelques atomes. L’augmentation de la vitesse
des calculs a également induit une augmentation de l’énergie nécessaire à ces calculs.

Le matériel du futur propice aux erreurs

Un paradoxe est donc posé : les concepteurs de systèmes d’intégration à très grande
échelle doivent réduire le coûts de fabrication des puces électroniques pour répondre à la
demande croissante des utilisateurs ce qui implique de modifier leurs marges de conception
mais également de produire toujours plus de technologies sujettes aux erreurs. En effet,
selon la loi de Moore, si la densité de transistors sur une puce augmente, le nombre de
défauts dans une puce augmente elle avec la densité des transistors. Les technologies du
futur sont donc toujours plus propices aux erreurs.

En raison de la vulnérabilité aux erreurs des puces actuellement fabriquées, si l’on
souhaite assurer une précision stricte sur un résultat, une redondance dans les modules
de calcul est nécessaire. Ce processus augmente d’autant plus l’énergie nécessaire pour
alimenter la puce. Le futur matériel n’étant pas fiable, le processus de mise au rebut d’une
puce en raison d’une imperfection semble être une autre partie du paradoxe actuel.

Une quantité massive de données à traiter

Le volume de données à traiter a également explosé au cours des dernières années : “En
2010, pendant deux jours, le même volume d’information est produit qu’il l’a été en deux
milliards d’années jusqu’en 2003” (Eric Schmidt [Sie10]). Les centres de données devraient
traiter 175 zettaoctets de données d’ici 2025 [Ins19]. Ce volume croissant de données
à traiter s’accompagne d’une croissance exponentielle de la demande de stockage et de
capacité de calcul.

De nouvelles méthodes de calcul sont nécessaires pour traiter ce flux massif d’informations
à traiter. Par exemple, le plus grand radiotélescope du monde, le Square Kilometer Array
(SKA) [DHSL09], dont la construction est prévue pour 2020, sera composé de centaines de
milliers d’antennes réceptrices. Dans la première phase du projet SKA, 160 téraoctets de
données brutes par seconde seront générés et devront être analysés. Un autre exemple de
ce volume exponentiellement croissant de données produites est l’Internet des Objets qui
relie ensemble des milliards de dispositifs informatiques. Il est indispensable de travailler
sur de nouvelles méthodes de calcul économes en énergie, à tous les niveaux des systèmes
informatiques, que ce soit au niveau des capteurs ou au niveau des processeurs.

Ces nouvelles méthodes de calcul sont également recherchées afin de répondre aux
contraintes de temps réel et d’énergie lors de la conception des systèmes embarqués, et
d’économiser des ressources lors de la phase d’implémentation. Dans ce contexte, les
calculs approximés sont l’une des principales approches proposées et sont à l’étude dans
cette thèse. Les calculs approximés utilisent la précision numérique d’une application
comme nouveau paramètre sur lequel jouer pour concevoir des systèmes plus efficaces
en termes de surface, d’énergie ou de rapidité de traitements. La résilience aux erreurs
de nombreuses applications est exploitée afin d’économiser de l’énergie ou d’accélérer le
traitement. Cette résilience aux erreurs intrinsèques est particulièrement présente dans les
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algorithmes de traitement du signal, de l’image, de la vidéo, de l’intelligence artificielle ou
du data mining.

A.2 Méthodes de calcul efficaces en énergie

Plusieurs types de méthodes de calcul efficaces en énergie ont été proposés depuis les
années 1960. La consommation énergétique étant l’un des principaux facteurs limitant
pour augmenter la performance des applications, ces nouvelles méthodes de calcul ont été
proposées pour optimiser la consommation énergétique.

A.2.1 Le calcul stochastique

Le calcul stochastique a été proposé dans les années 1960 [Gai69, AH13]. Le principe du
calcul stochastique est de traiter les données comme des probabilités représentées par des
flux binaires. La probabilité est calculée en comptant le nombre de 1 dans le flux binaire
sans que la position des 1 n’aient d’impact sur la valeur obtenue. Un flux binaire est alors
appelé un nombre stochastique. Par exemple, pour représenter la valeur x = 0, 75, de
nombreux flux binaires peuvent être utilisés si l’on fait varier la longueur des flux utilisés,
puisque x représente la probabilité d’avoir un 1 dans le flux :

x = 0.75 =


(1, 1, 1, 0)
(1, 0, 1, 1)
(1, 1, 1, 1, 0, 0, 1, 1)

Le fait de traiter les informations sous forme de flux binaires permet d’utiliser des
unités de traitement moins coûteuses, moins complexes et consommant moins d’énergie.
En effet, une multiplication peut ainsi être implémentée à l’aide d’une porte ET.

Par exemple, au lieu de calculer directement la multiplication de x = 4
8 et y = 6

8 , ils
peuvent être représentés comme suit:

x =
4

8
=

{
(0, 1, 1, 0, 1, 0, 1, 0)
(0, 1, 0, 1, 1, 1, 0, 0)

y =
6

8
=

{
(1, 0, 1, 1, 1, 0, 1, 1)
(1, 1, 1, 0, 1, 0, 1, 1)

La multiplication de x et y sera ensuite traitée avec une porte ET, ce qui donne
comme résultat de l’opération sur les premières représentations de x et y le résultat
(0, 0, 1, 0, 1, 0, 1, 0) = 3

8 , tandis que pour les secondes représentations de x et y on ob-
tient le résultat (0, 1, 0, 0, 1, 0, 0, 0) = 2

8 .
Néanmoins, comme le montre l’exemple, en fonction du nombre stochastique utilisé

pour représenter les valeurs (x, y), la précision en sortie de l’opération est modifiée. Pour
générer un nombre stochastique représentant une donnée x, des générateurs de nombres
pseudo-aléatoires sont utilisés. La difficulté, en générant des nombres stochastiques pour
représenter les probabilités, est que chaque bit dans le flux binaire possède le même poids,
donc plusieurs nombres stochastiques peuvent représenter la même probabilité. Pour cal-
culer avec des nombres stochastiques non biaisés, ils doivent être non corrélés et suffisam-
ment aléatoires. La corrélation entre les nombres stochastiques peut générer des erreurs
pendant le calcul. Pour obtenir des statistiques sur les erreurs commises lors de calcul
stochastique, on utilise les techniques d’inférence statistique, d’estimation et de détection.
La précision d’un nombre stochastique est représentée par le nombre de bits utilisés pour
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coder les données. L’un des principaux problèmes du calcul stochastique est que la longueur
des flux binaires utilisés pour traiter les données augmente de façon exponentielle avec la
précision requise. Par conséquent, le calcul stochastique est généralement lent pour obtenir
une précision relativement faible. Malgré les inconvénients des traitements stochastiques,
la production actuelle de circuits matériels propices aux erreurs et le non-respect du ren-
dement ont poussé les chercheurs à reconsidérer ce types de calcul.

A.2.2 Le calcul quantique

Le calcul quantique est présenté ici [Gru99] comme ouverture sur les différents types de
calculs efficaces en termes de consommation énergétique. Le calcul quantique vise à repro-
duire la capacité des particules subatomiques, par exemple les hadrons, qui peuvent exister
dans plus d’un état à la fois. Les ordinateurs quantiques peuvent alors être plus efficaces
que les ordinateurs classiques pour résoudre des problèmes complexes, comme par exem-
ple lors de la factorisation d’entiers ou la résolution de logarithmes discrets [Sho99]. En
effet, contrairement aux traitements informatiques classiques où l’information est stockée
sur des bits qui ne peuvent exister que dans deux états distincts, 0 ou 1, en informatique
quantique, l’information est stockée sur des qubits, la généralisation quantique d’un bit.
Deux lois fondamentales régissent l’informatique quantique.

1. La superposition : les qubits peuvent exister sur un état |0 >, un état |1 > ou bien
sur une combinaison linéaire des deux exprimée comme |φ >= a · |0 > +b · |1 > où
(a, b) sont des nombres complexes.

2. L’enchevêtrement : il existe une corrélation entre les comportements aléatoires de
deux qubits pris individuellement.

Les qubits sont une superposition des différentes valeurs et peuvent exister dans plus de
2 états à la fois. Un qubit peut être positionné n’importe où sur une sphère de rayon 1. La
probabilité que le qubit soit dans l’état |0 > est égale à |a|2, et dans l’état |1 > à |b|2. Par
conséquent, les calculs avec des qubits permet de stocker plus d’informations avec moins
d’énergie. Cependant, la stabilité des qubits reste un problème, de même que les méthodes
de refroidissement des ordinateurs quantiques. En 2016, IBM a sorti un ordinateur sur 5
qubits disponible en ligne et programmable en Python pour les chercheurs, et a sorti plus
récemment un ordinateur quantique sur 20 qubits.

Néanmoins, l’informatique quantique nécessite de nouveaux systèmes logiciels pour
être viable.

A.2.3 Le calcul probabiliste

Contrairement au calcul stochastique ou quantique, le calcul probabiliste présenté par
Palem et al. [Pal03] est une technique pour estimer les économies d’énergie obtenues
lorsqu’on fait un compromis sur la précision des calculs. Le calcul probabiliste relie
l’énergie consommée par un calcul à sa probabilité d’être exact. Il est logique de re-
lier les calculs à la notion de probabilité puisque le comportement des erreurs est mieux
décrit par un comportement probabiliste. Palem considère que les économies d’énergie
peuvent être calculées avec des lois thermodynamiques. Un bit d’information égal à 0 ou
1 est alors appelé une valeur et est considéré comme un micro-état thermodynamique qui
peut être mesuré. L’équation de Boltzmann nous donne l’énergie qui peut être économisée
lors d’un calcul ayant une probabilité p d’être exacte, comme étant k · T ln(1p) Joules.
Le calcul probabiliste a été fortement influencé par la théorie des automates [VN56] de
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Von Neumann dans laquelle il affirme que “l’erreur devrait être traitée par des méthodes
thermodynamiques”.

A.2.4 Le calcul approximé

Le calcul approximé est la technique de calcul efficace en termes de consommation
énergétique considérée dans cette thèse. Le calcul approximé s’inspire de la conception de
l’erreur de Von Neumann, dans laquelle la tolérance à l’imprécision d’une application est
exploitée. En effet, en 1956, John Von Neumann [VN56] a étudié comment limiter une
erreur induite lors de la construction d’un automate utilisant des composants propices aux
erreurs. Au lieu de traiter les erreurs avec la volonté de les éliminer complètement, il a
montré que dans certaines conditions, la précision d’une opération réalisée par un auto-
mate peut être imparfaite, mais contrôlée et encadrée. De plus, tant que cette erreur était
limitée, l’automate était capable de donner des résultats acceptables malgré la présence
de valeurs erronées. Selon John Von Neumann, “l’erreur est considérée comme (...) un
élément essentiel du processus à l’étude”. L’erreur est alors traitée comme une informa-
tion nécessaire à prendre en compte tout au long du processus de calcul. Les processeurs
implémentant des techniques d’approximations essaient d’imiter les calculs faits par le
cerveau. Par exemple, lorsqu’on demande à quelqu’un d’évaluer rapidement un pourcent-
age en calcul mental, il réfléchit avec des approximations pour avoir une idée précise de la
réponse. Le cerveau possède environ 1010 neurones qui possèdent eux-mêmes environ 104

connexions. Le cerveau a besoin de 25 Watts de puissance continue pour pouvoir calculer
25 péta-opérations par seconde. Sûrement le meilleur processeur jamais créé ! Au cours
des deux dernières décennies, la recherche sur le paradigme des calculs approximés a été
très active. De nombreuses techniques d’approximations ont été proposées à différents
niveaux d’abstraction allant du circuit au système.

A.3 Le calcul approximé

A.3.1 La propriété de résilience aux erreurs

Appliquer les techniques de calcul approximé à une application nécessite une bonne con-
naissance de son comportement en cas d’erreur. La propriété de résilience aux erreurs d’une
application est le point clé de l’application de techniques de calcul approximé : utilisé dans
des domaines tels que le traitement vidéo ou d’images, le data mining ou les applications
de reconnaissance, le calcul approximé exploite le fait que la précision offerte par une ap-
plication est généralement supérieure à celle requise. De nombreuses applications peuvent
produire des résultats acceptables tout en différant du résultat exact attendu, comme ex-
pliqué dans [KIK+98] pour les algorithmes de codage vidéo. La propriété de résilience
aux erreurs, pour une application, est la capacité de l’application à produire des résultats
acceptables malgré le fait que certains calculs sont ignorés ou approximés et donc inexacts.
Cette propriété peut être induite par plusieurs facteurs :

• L’utilisateur final : le besoin de l’utilisateur final ou sa perception peut limiter le
besoin de précision sur la sortie d’une application. Par exemple, si l’utilisateur final
de la sortie de l’application est un réseau neuronal, il peut compenser les erreurs
induites par l’utilisation de l’approximation. Un autre exemple est dans le traite-
ment vidéo où l’utilisateur final est l’utilisateur humain et où la perception visuelle
humaine limite considérablement la précision nécessaire. Enfin, pour les applications
comme le data mining, il n’existe pas de résultat parfait.
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• L’entrée: les données en entrée d’une application peuvent être redondantes ou
bruitées, induisant de façon inhérente du bruit dans les calculs. Par exemple, les
données expérimentales peuvent généralement être traitées à l’aide d’approximations.

• Les calculs: les calculs au sein d’une application peuvent être statistiques, prob-
abilistes ou récursifs. De plus, les calculs itératifs peuvent compenser les erreurs
commises par l’utilisation de modules de calculs approximés.

Il est à noter cependant que certaines applications ne tolèrent pas d’erreurs. Par
exemple, dans les applications basées sur le contrôle, une petite erreur dans les calculs
peut conduire à une mauvaise décision et, en fin de compte, à une erreur non acceptable
à la sortie de l’application. En outre, dans les systèmes critiques, l’application doit être
prévisible, c’est-à-dire que, pour une entrée donnée, le résultat en sortie doit être connu à
l’avance.

En ce qui concerne les applications résilientes aux erreurs, l’erreur entre la sortie de
l’application de référence et la sortie de l’application approximée peut être utilisée pour
trouver un compromis en termes de performance, c’est-à-dire temps de calcul ou consom-
mation d’énergie, et de coût de mise en œuvre, c’est-à-dire mémoire requise ou complexité.
Le calcul approximé offre un nouveau degré de liberté pour concevoir une application
comme illustré dans la Figure A.1.

Néanmoins, la propriété de résilience aux erreurs d’une application n’est pas suffisante
pour appliquer les techniques de calcul approximé. Les programmeurs doivent clairement
identifier les parties de l’application qui tolèrent les approximations ainsi que les parties
où une précision stricte est requise. Par exemple, une application avec des opérations
non linéaires peut ne pas tolérer d’approximations à proximité de ces opérations. Les
approximations ayant un impact sur le flot de contrôle ou les accès en mémoire peuvent
conduire à des comportements désastreux comme Yetim et al. [YMM13] le présentent avec
une approximation conduisant à une erreur de segmentation mémoire. Une analyse de
sensibilité peut être conduite pour annoter l’algorithme et indiquer les parties les moins
sensibles, comme présenté dans [CCRR13]. Chippa et al. ont proposé un framework de
caractérisation de la résilience des applications pour identifier les parties tolérantes aux
erreurs, et les caractériser en fonction de diverses techniques d’approximations mises en
oeuvre.

De plus, pour choisir une stratégie d’approximation, une exploration de l’ensemble des
possibilités d’approximations est généralement effectuée afin de trouver la meilleure config-
uration par rapport aux contraintes de la plateforme sur laquelle l’algorithme est intégré.
Une fois qu’une stratégie d’approximation a été choisie, l’impact de l’approximation sur
la qualité en sortie de l’application doit être quantifié. La mesure de la qualité en sortie
de l’application dépend de l’application. Par exemple, pour une application de traitement
du signal, la métrique de qualité de l’application peut être le rapport signal sur bruit.
Pour une application de traitement d’image, la mesure de qualité de l’application peut
être l’indice de similitude structurelle [WBSS04].

A.3.2 Les différents niveaux de techniques d’approximations

Le calcul approximé peut être appliqué à différents niveaux, comme présenté sur la Fig-
ure A.2.

Un premier axe possible d’approximations est au niveau des données. Le nombre de
données à traiter peut être réduit menant à des données à traiter non à jour ou bien à un
plus petit volume de données à traiter. Les données peuvent également être stockées avec
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Figure A.1 – Un nouveau degré de liberté pour la conception d’application avec des calculs ap-
proximés.

une précision réduire, permettant d’économiser des bits et donc de l’énergie. Les données
peuvent aussi être compressées. Dans les programmes parallélisés, la synchronisation entre
différents threads peut être relachée afin d’utiliser des données moins à jour.

Un autre axe possible d’approximations est au niveau des calculs. Dans ce cas,
l’algorithme lui-même est modifié et ajusté de façon à trouver un compromis entre la
précision et la performance. On peut par exemple ne pas exécuter certains calculs ou
certains accès mémoires. L’approximation de fonctions peut également être utilisée, en
remplaçant les fonctions mathématiques sophistiquées par des polynômes, ou en stockant
certaines valeurs des fonctions dans des tables par exemple.

Enfin, des approximations peuvent être faites au niveau matériel. Dans ce cas, on
recherche une implémentation matérielle d’un circuit moins énergivore, comme par exem-
ple les nombreuses implémentations alternatives d’opérateurs arithmétiques exacts. Un
circuit peut également être approximé en termes de paramètres de fonctionnement : la
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Figure A.2 – Différents niveaux d’approximation.

modification de la tension ou de la fréquence de fonctionnement d’un circuit a un impact
sur la qualité du résultat et sur la consommation énergétique. Pour finir, un système de
stockage moins fiable peut être utilisé pour stocker des données résilientes aux erreurs.

Au-delà des trois axes distincts de calcul approximé, Hedge et al. [HS01] ont proposé
une technique pour identifier les parties d’une application pouvant être approximées à
différents niveaux d’abstraction. Les applications de recherche et synthèse de données
sont ciblées avec cette méthode s’appliquant aux différents niveaux d’abstraction, car elles
possèdent plusieurs propriétés intéressantes pour l’utilisation de calcul approximé : les
algorithmes statistiques et agrégatifs peuvent moyenner ou bien éliminer les erreurs, et les
algorithmes itératifs ont la propriété de compenser les erreurs.

Du point de vue du programmeur, il reste un long chemin à parcourir entre la mise
en œuvre d’une version approximée utilisable d’une application à partir d’un modèle de
référence exact de celle-ci. C’est la raison pour laquelle des méthodologies entières ont
été créées pour appliquer des techniques d’approximation à une application entière : de
la subdivision de l’application en blocs, au calcul des économies d’énergie apportées par
les approximations, de véritables recettes ont été proposées pour aider les programmeurs
à utiliser efficacement ces techniques.

Identifier le niveau d’application des approximations est un véritable défi actuel. En
effet, des approximations peuvent être appliquées du niveau du transistor jusqu’au pro-
cesseur lui-même.

A.4 Étendue de la thèse et contributions

Pour implémenter des calculs approximés dans une application, la fonctionnalité de l’application
doit être garantie et les erreurs induites par l’approximation doivent être encadrées et quan-
tifiées. Des outils sont nécessaires pour explorer rapidement les différentes perspectives
d’approximation et leur impact sur la qualité de sortie des applications. La difficulté
d’étudier l’impact des approximations sur un algorithme vient du fait que les versions ap-
proximées des algorithmes sont généralement plus complexes en termes d’implémentation
matérielle ou d’accès mémoire que leur implémentation d’origine. La simulation des algo-
rithmes appproximés est plus compliquée et l’effort d’adaptation pour les utiliser nécessite
généralement toute une équipe d’ingénieurs à la fois au niveau système et matériel. Le défi
majeur lorsqu’on introduit des approximations dans une application est d’évaluer l’impact
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de l’approximation sur la qualité de service à la sortie de l’application. Les approxima-
tions potentielles doivent être analysées et affinées pour choisir les meilleures approxima-
tions en fonction des différentes contraintes d’implémentation de l’application. L’espace
d’exploration possible est grand et nécessite de pouvoir simuler rapidement l’application
pour évaluer l’impact de l’approximation sur la qualité de service. Le choix de l’ensemble
des configurations à simuler est également un point critique.

Dans cette thèse, l’objectif est de proposer de nouvelles techniques pour résoudre le
problème de la caractérisation et de la propagation des erreurs dans les systèmes ap-
proximés. Les méthodes proposées pour caractériser les erreurs induites par les approxi-
mations sont présentées, ainsi que les méthodes permettant de relier les erreurs induites à
la qualité de sortie de l’application. Les principales contributions de cette thèse sont :

1. Un framework générique basé sur des simulations permettant de caractériser de façon
statistique l’erreur induite par les opérateurs inexacts. Cette méthode est basée
sur les statistiques inférentielles et la théorie des valeurs extrêmes. Ces méthodes
permettent de trouver un sous-ensemble à simuler pour avoir une estimation des
statistiques recherchées en fonction d’une confiance demandée par l’utilisateur de la
méthode. Cette contribution a été publiée dans [BCDM18] et [BCDM19].

2. Un simulateur rapide d’opérateurs arithmétiques inexacts a été développé. Ce sim-
ulateur permet de mesurer rapidement l’impact d’une approximation sur la qualité de
service de l’application. Cette contribution a été publiée dans [BDM18c] et [BDM18a].

3. Une nouvelle méthode permettant d’évaluer la puissance du bruit de calcul lors
d’une conversion d’une application en virgule fixe a été proposée. L’erreur induite
par l’arithmétique virgule fixe est caractérisée de façon statistique ce qui permet
de calculer une estimation de la puissance du bruit à l’aide d’un nombre réduit et
adaptatif de simulations. Cette contribution a été publiée dans [BDM19a].

4. Une nouvelle méthode basée sur les statistiques inférentielles a été développée pour
raffiner les largeurs des variables d’une application convertie en virgule fixe. Le
nombre de simulations est adapté en fonction de la précision d’estimation de la puis-
sance du bruit voulue. Cette contribution a été présentée sous forme de poster à la
conférence DAC 2019 et a mené au dépôt d’un brevet Français FR1903747 [BMD19].

5. Une méthode pour inférer une métrique de précision en sortie d’une application util-
isant le krigeage, une méthode géostatistique, a été développée. Celle-ci est illustrée
sur l’algorithme de raffinage des largeurs d’une application convertie en arithmétique
virgule fixe. Cette méthode permet de réduire le nombre d’évaluations de la métrique
de qualité par simulations. Cette contribution n’a pas encore été publiée.

Pour finir, durant cette thèse, une autre contribution a été une forte implication dans
les événements de vulgarisation scientifique. Le calcul approximé a été présenté dans
plusieurs conférences pour le grand public pendant des événements tels que le “Festival
des Sciences”, “En Direct du Labo” ou encore “A la découverte de la recherche”. Trois
articles pour le grand public ont été écrits et sont cités ci-dessous:

1. Une présentation générale de la problématique d’économie des ressources énergétiques
dans le domaine de l’Internet des Objets ainsi que les solutions apportées par le calcul
approximé sont présentées dans [Bon18a].
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2. Une courte présentation de la problématique globale de cette thèse est décrite dans
l’article [Bon18b].

3. Une vue d’ensemble de l’utilisation de l’Internet des Objets en médecine et partic-
ulièrement en rythmologie est présentée dans l’article [Bon].

A.5 Plan de la thèse

Cette thèse est organisée en deux parties : la Partie I introduit le concept de calcul
approximé et présente un panel de techniques d’approximations dans le Chapitre 2.
Ensuite, les différentes métriques proposées pour caractériser les erreurs induites par les
approximations sont présentées dans le Chapitre 3, ainsi que les modèles pour relier les
erreurs à la qualité de service de l’application. La Partie II présente et évalue formellement
les contributions de cette thèse. Chapitre 4 présente une technique d’approximation au
niveau algorithmique et l’évalue à l’aide de deux métriques d’erreur différentes. Ce chapitre
expose les motivations de la thèse. Ensuite, les contributions principales de cette thèse sont
présentées dans la Figure A.3. Chapitre 5 présente la méthode proposée pour caractériser
le profil des erreurs induites par l’utilisation d’opérateurs inexacts. Chapitre 6 décrit les
simulateurs conçus pour pouvoir simuler rapidement un opérateur inexact et mesurer son
impact sur la qualité de service en sortie de l’application. Dans le Chapitre 7, un modèle
basé sur des simulations pour l’évaluation de la précision des systèmes convertis en virgule
fixe est présenté. Les statistiques inférentielles sont également utilisées pour ce modèle.
Celui-ci a été implémenté dans un algorithme d’optimisation des largeurs des données
codées en arithmétique virgule fixe. La méthode proposée est basée sur le modèle d’erreur
statistique de la puissance de bruit proposé précédemment et réduit considérablement le
nombre de simulations nécessaires à l’évaluation de la puissance de bruit. Cherchant à
aller plus loin dans l’amélioration du temps d’évaluation de l’impact de la précision finie
sur la qualité d’une application, Chapitre 8 explique comment les simulations peuvent
être évitées en estimant la métrique de précision à la sortie d’une application à l’aide de
méthodes géostatistiques comme le krigeage. Enfin, Chapitre 9 conclut cette thèse et
propose des orientations pour de futurs travaux de recherche.

Caractérisation du profil de l’erreur

Evaluation de la qualité de l’application

Opérateurs
Inexacts

Arithmétique 
Virgule fixe

Métriques 
d’erreur

Partie II - 
Chapitres 7-8

Partie II - 
Chapitre 5

Partie II - 
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Partie II - 
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Figure A.3 – Contributions de la thèse
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A.1 L’erreur: un nouveau degré de liberté. . . . . . . . . . . . . . . . . . . . . . 181
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d’optimisation de longueurs de représentation de variables, April 2019. French
Patent, FR1903747. 14, 138, 173, 183

[BCDM19] Justine Bonnot, Vincent Camus, Karol Desnos, and Daniel Menard. Adap-
tive simulation-based framework for error characterization of inexact circuits.
Microelectronics Reliability, 96:60–70, 2019. 13, 95, 116, 172, 183

[BDM19a] Justine Bonnot, Karol Desnos, and Daniel Menard. Accuracy evaluation based
on simulation for finite precision systems using inferential statistics. In ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1508–1512. IEEE, 2019. 14, 138, 160, 173, 183

195



196 Personal Publications

[BDM19b] Justine Bonnot, Karol Desnos, and Daniel Menard. Fast simulation-based
fixed-point refinement with inferential statistics (work in progress). In DAC
2019-2019 Design Automation Conference (DAC). ACM, 2019. 138, 173

[MBP+17] Alexandre Mercat, Justine Bonnot, Maxime Pelcat, Karol Desnos, Wassim
Hamidouche, and Daniel Menard. Smart search space reduction for approxi-
mate computing: A low energy hevc encoder case study. In Journal of Systems
Architecture, 80:56–67, 2017. 85

[MBPHM17b] Alexandre Mercat, Justine Bonnot, Maxime Pelcat, Wassim Hamidouche,
and Daniel Menard. Exploiting computation skip to reduce energy consump-
tion by approximate computing, an hevc encoder case study. In Proceedings
of the Conference on Design, Automation & Test in Europe, pages 494–499.
European Design and Automation Association, 2017.

Popular science publications
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[JC08] Fabienne Jézéquel and Jean-Marie Chesneaux. Cadna: a library for esti-
mating round-off error propagation. Computer Physics Communications,
178(12):933–955, 2008. 75

[JHL15] Honglan Jiang, Jie Han, and Fabrizio Lombardi. A comparative review and
evaluation of approximate adders. In Proceedings of the 25th edition on Great
Lakes Symposium on VLSI, pages 343–348. ACM, 2015. 39

[JLL+17] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han. A review, classification and
comparative evaluation of approximate arithmetic circuits. In ACM Journal
on Emerging Technologies in Computing Systems (JETC), 2017. 54, 63, 96

[KE12] Kourosh Khoshelham and Sander Oude Elberink. Accuracy and resolution of
kinect depth data for indoor mapping applications. Sensors, 12(2):1437–1454,
2012. 82

[KEGA96] Sunder S Kidambi, Fayez El-Guibaly, and Andreas Antoniou. Area-efficient
multipliers for digital signal processing applications. IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, 43(2):90–95,
1996. 39

[KGE11] Parag Kulkarni, Puneet Gupta, and Milos Ercegovac. Trading accuracy for
power with an underdesigned multiplier architecture. In VLSI Design (VLSI
Design), 2011 24th International Conference on, pages 346–351. IEEE, 2011.
37

https://www.cbinsights.com/research/future-of-data-centers/#storage
https://www.cbinsights.com/research/future-of-data-centers/#storage
http://download.intel.com/pressroom/kits/events/moores_law_40th/MLTimeline.pdf
http://download.intel.com/pressroom/kits/events/moores_law_40th/MLTimeline.pdf


204 Bibliography

[KHWC98] Holger Keding, Frank Hurtgen, Markus Willems, and Martin Coors. Trans-
formation of floating-point into fixed-point algorithms by interpolation ap-
plying a statistical approach. In 9th International Conference on Signal Pro-
cessing Applications and Technology (ICSPAT 98), 1998. 74, 140, 144, 145,
156

[KIK+98] Aggelos K Katsaggelos, Faisal Ishtiaq, Lisimachos P Kondi, M-C Hong,
M Banham, and J Brailean. Error resilience and concealment in video cod-
ing. In Signal Processing Conference (EUSIPCO 1998), 9th European, pages
1–8. IEEE, 1998. 10, 179

[Kin85] Robert R Kinnison. Applied extreme value statistics. Battelle, 1985. 101, 102

[KWCM98] Holger Keding, Markus Willems, Martin Coors, and Heinrich Meyr. Fridge:
a fixed-point design and simulation environment. In Proceedings of the con-
ference on Design, automation and test in Europe, pages 429–435. IEEE
Computer Society, 1998. 74, 140
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Titre : Analyse d’erreurs pour les systèmes utilisant des calculs approximés 

Mots clés : approximation, erreur, qualité, énergie, statistiques inférentielles, systèmes embarqués  

Résumé :  Le calcul approximé est une technique de 
calcul efficace en énergie et reposant sur l'exploitation 
de la tolérance à l'imprécision d'une application. 
Développé pour faire face à la fin de la loi de Moore, il 
répond à une demande croissante en capacité de 
calcul. Les techniques d'approximation ont été 
proposées à différents niveaux d'abstraction, du 
circuit au système.  
Cette thèse porte sur le développement de méthodes 
et outils permettant d'évaluer rapidement l'impact des 
différentes techniques d’approximation sur la qualité 
du résultat en sortie d'une application. L'étude des 
erreurs induites est essentielle pour utiliser ces 
approximations dans l'industrie. Deux niveaux 
d’approximation ont été considérés, le niveau matériel 
avec l'étude des opérateurs arithmétiques inexacts et
le niveau des données avec l'étude de l'arithmétique 
virgule fixe.   
Premièrement, des méthodes efficaces de 
caractérisation basées simulation ont été proposées 
pour obtenir des statistiques sur les erreurs induites 
par l'approximation considérée.  Les statistiques  

inférentielles ont été utilisées pour quantifier le 
nombre d’observations nécessaires pour estimer les 
statistiques de l’erreur et ainsi réduire le temps 
d’évaluation. Les méthodes de caractérisation 
proposées sont basées sur des simulations 
adaptatives et caractérisent l'erreur d'approximation 
de façon statistique selon les exigences de 
confiance définies par l'utilisateur.  
Ensuite, les métriques d'erreur obtenues ont été 
reliées à la métrique de qualité de l'application. Pour 
les opérateurs inexacts, un simulateur a été conçu 
pour le processus d’exploration de l’espace 
d’approximation pour sélectionner la meilleure pour 
l’application considérée. Pour la virgule fixe, le 
modèle d’erreur a été intégré à un algorithme de 
raffinage pour déterminer la largeur optimisée des 
variables de l’application.  
Les résultats de cette thèse proposent des méthodes 
concrètes pour faciliter la mise en œuvre du calcul 
approximé dans les applications industrielles, 
accélérant les méthodes proposées dans l’état de 
l’art de un à trois ordres de grandeur. 

 

Title: Error Analysis for Approximate Computing Systems 

Keywords: approximation, error, quality, energy, inferential statistics, embedded systems 

Abstract: Approximate Computing is an energy-
aware computing technique that relies on the
exploitation of the tolerance to imprecision of an 
application. Developed to face the end of Moore’s 
law, it answers the growing demand in computing 
capacity. Approximation techniques have been 
proposed at different abstraction levels, from circuit to 
system level.  
This thesis focuses on the development of methods 
and tools to quickly evaluate the impact of different 
Approximate Computing techniques on the application 
quality metric. The study of the induced errors is 
critical to use approximations in the industry. 
Approximate Computing techniques have been 
considered at two different levels, the hardware level 
with the study of inexact arithmetic operators and the 
data level with the study of fixed-point arithmetic. 
First, efficient simulation-based characterization 
methods have been proposed to derive statistics on 
the errors induced by the considered approximation.   

Inferential statistics have been proposed to reduce the 
time for error characterization. The proposed 
characterization methods are based on adaptive 
simulations and statistically characterizes the 
approximation error according to user-defined 
confidence requirements.  
Then, the obtained error metrics are linked with the 
application quality metric.  For inexact operators, a 
simulator has been proposed for the approximation 
design space exploration process to select the best 
approximation for the considered application. For 
fixed-point arithmetic, the proposed error model has 
been implemented in a fixed-point refinement 
algorithm to determine the optimized word-lengths of 
the internal variables in an application. The results of 
this thesis are proposing concrete methods to ease 
the implementation of Approximate Computing in 
industrial applications, speeding up state-of-the-art 
methods from one to three orders of magnitude.    

 


