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Professeur, Universitat Politècnica de Catalunya, Barcelona, Spain Rapporteur

Mounir Haddou
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Professeur, Université de Perpignan - Via Domitia, France Directeur de thèse
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1
Introduction

This thesis covers two research topics: Topic I, we focused on quasi-variational inequality problems
and generalized Nash equilibrium problems; and Topic II, we studied the modeling and optimization of
eco-industrial parks.

Both of these two topics share as a common characteristic the concept of multi-leader-follower games.
Indeed on one hand multi-leader-follower games are actually particular cases of generalized Nash games
which themselves are often reformulated as quasi-variational inequalities. And on the other hand eco-
industrial parks optimal design will be obtain in this thesis thanks to a model based on multi-leader-follower
games.

Topic I: Quasi-variational inequality problems and generalized Nash
equilibrium problems
After their introduction by Stampacchia in the 1960s (see [3, 4]), variational and quasi-variational inequali-
ties have been a rich field of research for the mathematical community, with a lot of applications to physics,
mechanics, economics, among others. Nowadays, the modern quasi-variational inequality problem (in the
sense of Stampacchia) considers two set-valued operators K : C⇒C and T : C⇒X∗, where C is a nonempty
subset of a locally convex space X , and it consists in finding a point x ∈C satisfying

1. x is a fixed point of K; and

2. there exists x∗ ∈ T (x) such that for every y ∈ K(x), 〈x∗,y− x〉 ≥ 0.

One of the most recent existence results in this line can be found in [5], where it is assumed that the
operator T is quasi-monotone and locally upper sign-continuous. On one hand, quasi-monotonicity is
known to be one of the weakest monotonicity-type properties. On the other hand, local upper sign-continuity
has proved to be one of the most adapted and easily verified continuity-type property.

A particular form of quasi-variational inequalities that has a lot of interest in game theory, transportation
problems and economics is given by product sets, that is, when C = ∏iCi and so the involved set-valued
maps T and K take also a product form (i.e. T = ∏i Ti and K = ∏Ki).

The first purpose of this thesis is to address quasi-variational inequality problems over product sets
considering the assumptions of quasi-monotonicity and local upper sign-continuity only in the component

1
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operators. One of the most important difficulties, in order to obtain the existence results for quasi-variational
inequalities over product sets, is that quasi-monotonicity and local upper sign-continuity are not preserved
by the product of set-valued maps.

But the developments on quasi-variational inequalities on product sets have been done to provide
efficient answers for our main target problem, that is multi-leader-follower problems which are, as noticed
above specific generalized Nash equilibrium problems. Indeed, as it will be precisely explained in the
forthcoming subsection 1.1.2 generalized Nash games are complex problems that are often reformulated as
quasi-variational inequalities which are, due to the intrinsic structure of generalized Nash games, defined
on product sets.

Topic II: The modeling and optimization of eco-industrial park

The concept of Eco-Industrial Park (EIP) aims to reduce the ecological impact of industrial production
by diminishing the energy and/or raw material consumption. More precisely it consists in designing a
connection network between companies grouped into a park in order to be able to organize some exchange
of power/vapor, raw materials ... in such a way that, at the same time:

1. the production level of each company is maintained;

2. the production cost of each company is reduced;

3. the amount of energy/raw material needed on the full park is reduced.

This problem has been addressed since the 90’. Recently, in works of Boix et al. [6] and Kastner et al. [7], it
has been pointed out that there is still a lack of systematic methods for designing the optimal configuration
of an EIP. In previous studies [6, 8, 9], water integration networks (which is a classical example of EIP)
were modeled as a cooperative economy, in the framework of multi-objective optimization (MOO). This
approach consists in creating a vector function of n+1 coordinates given by

C(F) =
(
Cost1(F), · · · ,Costn(F),Z(F)

)
where Costi(·) is the cost function of the enterprise i, Z(·) is the global consumption of natural resources,
and F is the flux vector describing the distribution in the exchange network. Then, the aim is to solve the
problem of “minimizing” C with respect to F , satisfying the physical constraints of the model. The result of
such minimization is called a Pareto front, which consists in all vectors F for which none of the coordinates
of C can be made better off without making someone worse off. Usually the designer selects one of these
solutions considering as criteria the distance to an utopia point.

The main problem of such approach is that points of the Pareto front are not necessarily economically
stable: first, a Pareto point requires the enterprises to cooperate and share information, which is rarely the
case of an EIP. Second, due to the non-cooperative economy, the different enterprises may deviate from the
selection of the designer since they may improve their cost function by unilaterally change their operation.
In terms of game theory, the solutions of the MOO approach are a social optimization which may fail to
respect incentives (see [10, Chapter 1]).

To overcome the difficulty of the MOO approach, we have proposed an innovative approach to find
an optimal design of EIP, an approach based on tools of non-cooperative game theory. More precisely the
concepts of multi-leader-follower game have been implemented. This kind of model is a mixture between
bilevel optimization problems and generalized Nash equilibrium problems (GNEP for short). We refer the
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reader to [10, 11] for a primer in non-cooperative games, to [12, 13] for the theory of bilevel optimization,
and [14, 15] for a survey on generalized Nash equilibrium problems.

Two approaches, both based on multi-leader-follwer concepts, have been developed in this thesis in
order to improve the optimal design of EIP. The first one, called blind-input model (see subsection 1.3.1),
mainly revisit the pioneering work of [2] and make it more “efficient” by proposing under mild assumptions
a reformulation in a mixed integer linear programming problem (MILP). In the second approach, called
control-input model (see subsection 1.3.2), an alternative adaptation of the previous model is proposed,
giving more control to the companies/followers.

1.1 Variational analysis on product spaces

1.1.1 Quasi-variational inequality problems

The quasi-variational inequality is an extension of a variational inequality in which the constraint set is also
depending on the variable. This category of variational inequalities has proved to be a very tool for the
modeling of many problems in transport, telecommunications and economics, to give few examples. The
important of theory as well as applications of quasi-variational inequality has been developed by several
researchers. One of the most recent existence results in this line can be found in [5], where it is assumed
that the operator T is quasi-monotone and locally upper sign-continuous. On one hand, quasi-monotonicity
is known to be one of the weakest monotonicity-type properties, and it plays a fundamental role in quasi-
convex optimization. On the other hand,upper sign-continuity, introduced by Hadjisavvas in [16], has
proved to be one of the most adapted and easily verified continuity-type property, while being really weaker
than the classic upper semicontinuity assumption. The strategy of [5] is strongly based on [17], and it relies
on stability results for the solutions sets of parametrized variational inequalities, previously developed in
[18, 19, 20, 21].

A particular form of variational and quasi-variational inequalities that has a lot of interest in game
theory, transportation problems and economics is given by product sets, that is, when C = ∏iCi and so
the involved set-valued maps T and K take also a product form (i.e. T = ∏i Ti and K = ∏i Ki). This
decomposable structure, which is a particular case of systems of quasi-variational inequalities, has been
already studied in the literature, for both variational inequalities (see, e.g., [22, 23, 24, 25, 26, 27, 28, 29])
and quasi-variational inequalities (see, e.g., [30, 31]). However, all these works obtain existence results in
the context of pseudomonotonicity (or some modifications of this notion), which is known to be too strong
for many applications, in particular in economics.

One of the most important difficulties in order to replicate the existence results of [5, 17] for quasi-
variational inequalities over product sets is that quasi-monotonicity and local upper sign-continuity are not
preserved by the product of set-valued maps. This can be illustrated thanks to the following very simple
example:

Let C1 = [−2,2], C2 = [−2,2] and C = [−2,2]× [−2,2]. For any x2 ∈C2, let T1(·,x2) : C1⇒R
be defined by T1(x1,x2) =

{
x2

1
}

. For x1 ∈C1, let T2(x1, ·) : C2⇒R be defined by T2(x1,x2) ={
1+ x2

2
}

. Then, both component operators are quasi-monotone, but the product operator
T : C ⇒ R2 defined by T (x) =

{
x2

1
}
×
{

1+ x2
2
}

is not. The quasi-monotonicity of the set-
valued maps T1(·,x2) and T2(x1, ·) comes directly from the fact that they are the derivatives of
the quasi-convex functions x1 7→ x3

1/3 and x2 7→ x2 + x3
2/3, respectively. Now the non-quasi-

monotonicity of T can be observed by considering the points x = (0,1/2) and y = (−2,1).
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In the literature mentioned in the precedent paragraph, this difficulty is overcome either by exploiting
the stronger regularity of pseudomonotone operators, or assuming directly the hypothesis of generalized
monotonicity on the product operator T , rather than on the component operators Ti. But both of these
hypothesis are too strong for many applications.

In our work, we address the quasi-variational inequality problem over product sets considering the
assumptions of quasi-monotonicity and local upper sign-continuity only on the component operators. In
doing so, we present a new stability result, under the new notion of net-lower sign-continuity. This new
stability result is an improvement with respect to [19], and it is better adapted to the product structure than
[21].

In several senses, our result is an improvement of the existence theorems in [5] and [17]. First, it works
with quasi-variational inequalities in the infinite dimensional setting. Second, it shows the existence of
solutions for quasi-variational inequalities over product sets. Finally, net-lower sign-continuity is a weaker
hypothesis compared to the settings followed by [19] and [21]. Moreover importantly our result opens the
door to powerful applications to generalized Nash equilibrium problems (GNEP for short), since it is well
known that GNEPs can be reformulated as quasi-variational inequalities over product sets, respectively
(see, e.g., [32]). This application to game theory will be the main aim of the forthcoming section 1.1.2.

1.1.2 Generalized Nash equilibrium problems
The generalized Nash equilibrium problem (GNEP for short) was first introduced by Debreu [33] as early as
1952. The GNEP is an extension of the classical Nash equilibrium problem (NEP for short) in which both
the payoff function and strategy set of each player depend on the decision of the other players. GNEPs have
become an important part of the research and attracted much more attention over the years. In fact, GNEP
is at a crossroad of several different disciplines, for example, economics, computer science, engineering,
mathematics and operations research. From a mathematical point of view, the GNEP is a fundamental
modeling tool for non-cooperative multi-leader-follower games, for example in electricity markets (see
[34], [35] also other references) and in eco-industrial parks (see [2]). We refer the reader to [32] for the
detailed overview on the historical development of the GNEP as well as the literature overview, solution
theory, and algorithms and its many other applications.

Formally, the GNEP consists of p players and each player ν controls his strategy variables xν ∈ Rnν .
Let us denote by x the vector of all strategies

x = (x1, . . . ,xp) ∈ Rn with n = n1 +n2 + . . .+np,

and by x−ν the strategy vector of the other players except the player ν . To emphasize the νth player’s
strategies within x, we often write (xν ,x−ν) instead of x. The strategy of player ν belongs to a strategy set,
i.e, xν ∈ Kν(x−ν), that depends on the strategy variables of the other players. Given the strategies x−ν of
the other players, the aim of player ν is to choose a strategy xν solving

min
xν

θν(xν ,x−ν), subject to xν ∈ Kν(x−ν), (Pν(x−ν))

where θν : Rn→ R is the objective function of player ν . The GNEP is the problem of finding a vector
x̄ ∈Rn so that, for all ν , x̄ν solves Pν(x̄−ν). Such a vector x̄ is called generalized Nash equilibrium. A point
x̄ is, therefore, a generalized Nash equilibrium if no player can unilaterally decrease his objective function
by choosing a different strategy. If the feasible sets Kν(x−ν) of each player does not depend on the rival
player’s strategies (and are thus constant sets), then x̄ is called a (classical) Nash equilibrium.

GNEP is a difficult problem to solve and the best way to find solutions of GNEP is to reformulate it
into variational problems for which theoretical and numerical tools have been developed. Indeed, it is
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well known that when the objective functions θν(·,x−ν) are continuously differentiable and convex, and
the maps Kν are closed and convex valued for all ν , then the GNEP can be equivalently reformulated as
a quasi-variational inequality, see e.g. [32]. This reformulation has been extended in paper [36], thanks
to the concept of adjusted normal operator (see also [37], [38]), to the case where the objective functions
θν(·,x−ν) are semistrictly quasi-convex without assuming any differentiability and the constraint sets are
jointly convex. In [36], authors also proved an existence result for semistrictly quasi-convex GNEP.

Some work has been already studied for GNEP in certain specific structure setting the problems, see
[32] [36] [39] [40] [41] [42] [43] [44]. One of the classic existence results for GNEPs in the literature is the
results in the article of Debreu [33]. In [33], the authors assume that the objective function θν is continuous
for any ν , for every x−ν , the function θν(·,x−ν) is quasi-convex, and the set-valued map Kν is upper and
lower semicontinuous. Our main contribution in this article is to eliminate continuity of θν by replacing it
by a “continuity” of the sublevel sets of the payoff functions. Our approach is based on the concept of the
adjusted normal operator [37], the net-lower sign-continuity which was recently introduced in our previous
paper [45], and the reformulation of the GNEP in term of quasi-variational inequalities.

Moreover, the GNEP provides a mathematical model for noncooperative multi-leader-follower games
where each player solves a bilevel optimization problem. In the case where one or more players assume the
role of leader(s) in the game, then a multi-leader-follower game arises.

1.2 Some reminders on Stackelberg-type optimization problems

1.2.1 Bilevel optimization problems
Bilevel programming problems (BLPP) are hierarchical optimization problems in which some of the
variables are constrained to be optimal solutions to another parametric optimization problem. There are
two kinds of decision variables in such this optimization problem. The first decision variable is a so-called
leader, the second decision variable is a so-called follower, and the decisions are taken sequentially. The
leader makes his strategy first by anticipating the responses of the follower, and then the follower relies
on the leader’s strategy by solving an optimization problem with the strategy of the leader as a parameter.
Figure 1.2.1 illustrates a general BLPP arising with hierarchical leader-follower structures.

Figure 1.2.1: A general sketch of a bilevel problem. Figure obtained from [1].

BLPP was first realized in the domain of game theory by a German economist Stackelberg in his
monograph on market economy in 1934 [46] and in the domain of mathematical programing by Bracken
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and McGill in 1972 [47]. As it is well-known, BLPPs have a wide range of applications in real-world
problems, such as management science, economics, engineering, transportation, business, environmental
economics and others [48, 49]. BLPP is non-smooth and by nature non-convex, so to find optimality
conditions for it and to solve it, the problem has to be reformulated as a single-level problem. For a survey
on the historical development of BLPP, as well as a literature overview, and algorithms, we refer to [48].

Bilevel programming has two optimization problems where the constraint region of the first-level
optimization problem is partly determined through the other second-level optimization problem. The latter
problem is given as

min
y
{ f (x,y) : g(x,y)≤ 0,y ∈ Y} , (1.2.1)

where f : Rn×Rm→ R, g : Rn×Rm→ Rp, Y ⊆ Rm is a nonempty closed set. This problem is called the
lower level optimization problem or the problem of follower [48].

Let denote

ϕ(x) = min
y
{ f (x,y) : g(x,y)≤ 0,y ∈ Y} (1.2.2)

the optimal value function, and Ψ : Rn⇒Rm the solution set mapping of problem (1.2.1) for a fixed value
of x:

Ψ(x) := {y ∈ Y : g(x,y)≤ 0, f (x,y)≤ ϕ(x)} . (1.2.3)

Let

gphΨ = {(x,y) ∈ Rn×Rm : y ∈Ψ(x)}

be the graph of the solution set mapping Ψ. Then, the bilevel optimization problem is given as

“min
x

”{F(x,y) : G(x)≤ 0,(x,y) ∈ gphΨ,x ∈ X} , (1.2.4)

where F : Rn×Rm→ R, G : Rn→ Rq and X ⊆ Rn is a closed set. This problem is called the upper level
optimization problem or the problem of leader [48].

It is worthwhile noting that the lower level problem may have multiple lower level optimal solutions for
any given upper level decision vector. Thus bilevel problem (1.2.4) is ill-posed. This raises an ambiguity
in the computation of the upper-level objective function value, which is difficult for the leader to predict
which point in Ψ(x) the follower will choose. Obviously, it is hard to determine the leader’s solution. Thus,
the quotation marks around “min” in (1.2.4) are used to indicate this ambiguity. To overcome this such
obstacle, two main strategies have been widely studied are optimistic formulation (weak) and pessimistic
formulation (strong) [48]. In the optimistic formulation, the leader may assume that the follower always
selects a best optimal solution in Ψ(x) with respect to the leader’s objective function. It is formulated as:

min
x
{Φ0(x) : G(x)≤ 0,x ∈ X} ,

where

Φ0(x) = min
y
{F(x,y) : y ∈Ψ(x)} . (1.2.5)

Roughly speaking, this problem is almost equivalent to the problem

min
x,y
{F(x,y) : G(x)≤ 0,x ∈ X ,(x,y) ∈ gphΨ} (1.2.6)
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For the survey on existence of optimistic bilevel optimum and additional results on optimality conditions,
we would name [50, 51, 52, 53].

Alternatively, in the pessimistic formulation, the leader has to take into account the follower’s ability to
select the worst solution with respect to the leader’s objective function. Such a worst-case choice function
of the follower defined as:

min
x

{
Φp(x) : G(x)≤ 0,x ∈ X

}
,

where

Φp(x) = max
y
{F(x,y) : y ∈Ψ(x)} . (1.2.7)

For discussion pessimistic on existence of optimistic bilevel optimum and additional results on optimality
conditions, we refer to [51, 54, 55].

The bilevel programming model has much more advantages than single-level programming model.
They are summarized as follows [56].

1. The bilevel programming can analyze two different and even conflicting objectives at the same time
in the decision-making process.

2. The multiple criteria decision-making methods of bilevel programming can more accurately predict
real situations.

3. The bilevel programming method can explicitly represent mutual actions between two different levels
of the decision-makers.

Because of these advantages, bilevel programming becomes a useful tool for the design and optimization of
industrial water networks in eco-industrial parks.

1.2.2 Multi-Leader-Follower games
In a game, when one of the players, called the leader, can decide before the other players, called the
followers, make their decisions after observing the decision of the leader, the game is called the Stackelberg
game. The Stackelberg game, also known as the single-leader-follower game (SLFG), was proposed by von
Stackelberg in the 1930s [57]. Generally, in the SLFG, the leader optimizes the upper-level problem and
the followers optimize the lower-level problems jointly. More precisely, the leader makes their decisions
first by anticipating the responses of followers. Based on the leaders’ decisions, all followers compete
with each other in a parametric non-cooperative Nash or generalized Nash game in the lower-level with
the strategies of leaders as exogenous parameters. As a bilevel program, the Stackelberg game can be be
reformulated as a mathematical program with equilibrium constraints (MPEC), which has been studied
extensively in recent years, by incorporating the optimality conditions for the followers’ problems into the
constraints of the leader’s problem. Generally, an MPEC is an optimization problem which contains two
sets of variables called decision variables and response variables. Some or all of MPEC constraints are
represented by a parametric variational inequality or complementarity problem with respect to the response
variables, which is parameterized by the decision variables [58]. The MPEC has extensively been studied in
the last two decades [59]. Applications of SLFGs are found for example in electricity markets [58, 60] and
eco-industrial parks [2].

In the real world, we should have to consider the competition among several firms and a different of
agents. Such a problem can be modeled as the multi-leader-follower game (MLFG), such as a deregulated
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electricity market [58, 60]. MLFGs are a class of hierarchical games in which several players take the
position as leaders and the rest of players who serve as followers. As a bilevel program, all leaders compete
with each other in a non-cooperative Nash or generalized Nash game in the upper-level and make their
decisions first by anticipating the responses of followers. At the same time, all followers select their own
optimal responses by competing with each other in a Nash or generalized Nash game in the lower-level
parameterized by the leader’s decision. The MLFG has recently been studied by some researchers and used
to model several problems in game theory with many applications in economics, operations research and
other fields [61]. The MLFG may further be classified into the game which contains only one follower,
called the multi-leader single-follower (MLSF) game. An application of MLSF game is used to model
the design and optimization of industrial water networks in eco-industrial parks [2]. Moreover, it is very
recently the concept of Multi-Leader-Disjoint-Followers (MLDF) game that was first introduced in [34],
where several leaders act according to a generalized Nash equilibrium and each of the problem of the leader
only depends on the decision variables of the other leaders and of the decision variables of a list of followers
that only interact with the problem of the leader. This MLDF game is simpler than classical MLMF game
since the sets of feasible solutions of the follower problems does not depend on the choice of the other
leaders.

On the other hand, the MLFG can be reformulated as an equilibrium problem with equilibrium
constraints (EPEC), one of the major approaches for MLFG. The acceptability of this approach is discussed
in [62]. An EPEC is an equilibrium problem consisting of several parametric MPECs which contain the
players’ strategies as parameters. However, finding an equilibrium point of an EPECs is much more difficult
than solving a single MPECs, because the constraints of each leader’s problem depend on the other rival
leaders’ strategies, and all leaders share decision variables of the followers. Thus, the equilibria of an
EPEC can be achieved when all MPECs are solved simultaneously. For a survey on this approach, we refer
the reader to the references [63, 62]. Recently, in [62] the authors have provided an existence result for
optimistic SLMF games.

Now, we are in the position to state the general formulation of MLFG. Let N = {1,2, . . . ,N} and
M = {1,2, . . . ,M} denote the set of leaders and follower, respectively. Let xν ∈ Rnν denote the strategy
vector, Xν(x−ν)⊆ Rnν denote the strategy set depending on other leaders’ strategies, and θν : Rn+m→ R
denote the cost function of leader ν . Let yω ∈ Rmω denote the strategy vector, Yω(x,y−ω) ⊆ Rn+m−mω

denote the strategy set depending on other followers’ strategies and γω : Rn+m→R denote the cost function
of follower ω . Here n = n1 + . . . ,nN and m = m1 + . . .mM. In the conventional formulation of multi-leader
multi-follower games, leader ν ∈N solves a parametrized optimization problem of the following kind

min
xν ,y

θν(xν ,x−ν ,y)

s.t.
{

xν ∈ Xν(x−ν)
y ∈ Y (x)

where, x−ν = (x1, . . . ,xν−1,xν+1, . . . ,xN)∈Rn−nν and y= (y1, . . . ,yM)∈Rm, and Y (x) =∏
M
ω=1Yω(x,y−ω).

While the follower ω solves the following optimization problem

minyω
γω(x,yω ,y−ω)

s.t.
{

yω ∈ Yω(x,y−ω)

where, x = (x1, . . . ,xN) ∈ Rn−nν and y = (y1, . . . ,yM) ∈ Rm. Notice that the followers’ objective functions
and strategy sets depend on the leader’s strategy x. For a more general overview of the structure of MLFG,
we refer the reader to Figure 1.2.2.

In the forthcoming sections, the design and optimization of industrial water networks in eco-industrial
parks are studied by formulating and solving multi-leader-follower game problems.
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min
x1

y1,..,yM

θ1(x,y)

s.t.
{

x1 ∈ X1(x−1)
y ∈ Y (x)

. . .

min
xn

y1,..,yM

θn(x,y)

s.t.
{

xn ∈ Xn(x−n)
y ∈ Y (x)

↓↑ ↓↑

miny1 γ1(x,y)
s.t.

{
y1 ∈ Y1(x,y−1)

. . .
minym γm(x,y)

s.t.
{

ym ∈ Yω(x,y−m)

Figure 1.2.2: General structure for MLFG

1.3 Eco-Industrial Parks

1.3.1 Optimal design of exchange networks with blind inputs and its application
to eco-industrial parks

In the last few decades, the development of the industrialized countries has led to an increasing depletion of
natural resources such as freshwater and energy (see, e.g., [64, 65]). The conservation and sustainable use
of such resources play an important role in both, environmental impact and business success within the
industry. In response to preserve environment while increasing the utilities of the enterprises, the concept
of industrial ecology has emerged [6]. Industrial ecology (IE) was first introduced in 1989 by Frosch and
Gallopoulos [66]. They wrote “the consumption of energy and materials is optimized, waste generation
is minimized and the effluents of one process . . . serve as the raw material for another process”. This
is an approach to the industrial design of products and processes and the implementation of sustainable
manufacturing strategies. The idea is directly related to another concept, industrial symbiosis, which
involves “separate industries in a collective approach to competitive advantage involving physical exchange
of materials, energy, water and/or by-products” (see [67]). One key concept of industrial symbiosis is then
the exchange networks.

A perfect example of an exchange network which illustrates the notion of industrial symbiosis is
the concept of Eco-Industrial Parks (EIP). This notion has several definitions, but one widely accepted
is “an industrial system of planned materials and energy exchanges that seeks to minimize energy and
raw materials use, minimize waste, and build sustainable economic, ecological and social relationships”
[6, 9, 68].

The best-known case of EIP development took place in Kalundborg in Denmark. The primary partners
in Kalundborg are firms, local communities, and a lake. The participants exchange water, steam, and
electricity, and also exchange a variety of residues that become feedstocks in other processes. Some of the
benefits are reduction in carbon dioxide (CO2) and in sulfur dioxide (SO2) emissions; transformation of
wastes into raw materials; reduction in coal, oil, and water flows.
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Figure 1.3.1: Eco-Industrial Park in Kalundborg 1.

In the seminal work of Ramos et al. [2] a novel game theory approach has been proposed, by modeling
the EIP design problem as a Single-Leader-Multi-Follower (SLMF) game (see [61, 63]): at the upper level,
there is the EIP authority which wants to minimize the consumption of natural resources Z(F), while
at the lower level, each enterprise tries to minimize her cost function Costi(F), related to her processes,
consumption of natural resources and activity within the EIP. The authority of the park must choose the
connections of the exchange network as well as the operation of regeneration units, while each enterprise
controls their consumption of natural resources and their output distribution. Figure 1.3.2 shows the general
scheme of such a model. For Single-Leader-Multi-Follower games, we refer to [63] and the references
therein.

Designer

P1 P2 Pn

Figure 1.3.2: General scheme of SLMF Game

The main implicit assumption done in [2] is that each enterprise can only control her outlet distribution
and her own fresh water consumption, but they are forced to accept whatever is sent to them through the

1https://hanspeterhonkoop.wordpress.com/2014/10/22/analysis-of-a-regional-network-of-production-avr/

https://hanspeterhonkoop.wordpress.com/2014/10/22/analysis-of-a-regional-network-of-production-avr/
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exchange network. Furthermore, they have no knowledge about the particular actions of the other agents of
the network, excepting only the amount and quality of the final inlet flux that they receive. In practice, this
situation corresponds to the case where at the entrance each agent of the network has a mixer, and so she is
only aware of the total input she is receiving. In other words, when participating to the exchange network,
each agent accepts to have a blind input.

While this model respect incentive consistency, it has two main drawbacks: the first one is that the rule
that the park’s authority imposes, that is, the blind input, is too restrictive. Indeed, under this paradigm, an
enterprise may be forced to receive too much polluted water which could turn into higher costs than the
stand-alone operation outside the park (examples are easy to construct with two enterprises). This violates
the economical principle (well known in contract theory and mechanism design) of individual rationality:
an enterprise will participate in the EIP only if it is convenient to her (see [69, 70, 71]); the second one is the
strategy to compute a solution. In [2], the authors implemented the classic general approach to solve bilevel
games, that is, to reformulate it as a mathematical programming with complementarity constraints (MPCC).
Loosely speaking, for a given network, they write the Karush-Kuhn-Tucker conditions of each problem of
the lower level game, and put them as constraints in the authority’s problem. Then they implemented a
Branch-and-Bound heuristic to obtain an approximated optimal exchange network, solving at each iteration
the problem described above. However, it is known that the MPCC problems, which is a particular class of
mathematical programming with equilibrium constraints (MPEC), are hard to solve (see, e.g., [72, 73, 74])
and the heuristic itself doesn’t guarantee a real solution of the problem [75, 76]. The literature on theoretical
and algorithmic aspects of MPCC and MPEC problems is large and still an active field of research in
mathematics.

In this work, we further investigate the model proposed in Ramos et al. [2], but considering its abstract
form for general exchange networks. This abstract model is called Blind-Input model, since we consider the
constraint of full acceptance for each enterprise. To solve the drawback given by the Individual Rationality
constraint, we introduce the notion of Blind-Input contract, which is an economical contract between the
authority and each enterprise in order to participate in the blind-input model. We prove that, under some
linear structure of the costs functions Costi(·) of each enterprise, the blind-input model can be reduced from
a Single-Leader-Multi-Follower problem to a single mixed-integer optimization problem. Thank to this
reformulation, examples of EIP of realistic size are then studied numerically. For details of the data, we
refer the reader to [77]. The details per enterprise are given in Table 1.1.

Fresh Water Shared Water Social Cost
Stand-Alone 541.00 0 189.37
Optimal EIP 365.37 278.85 133.79

Table 1.1: Global Results without Reg. Units

The corresponding optimal configuration is the following.
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Figure 1.3.3: The configuration in the case without regeneration units, α = 0.95 and Coef = 1. Gray nodes
are consuming strictly positive fresh water. Dashed nodes are operating in stand-alone mode.

1.3.2 Optimal design of exchange networks with control inputs in eco-industrial
parks

Nowadays, increasing industrialization and urbanization are causing environmental problems when proper
methods and planning are absent. To remedy this situation, Eco-Industrial Parks (EIP) arise as a new way
to design and optimize industrial networks. The problem of EIPs is to reduce the environmental impact
of industrial production. This involves reducing the consumption of energy and/or raw materials (water,
energy-steam, etc) by a group of companies located in the same industrial park, or designing/creating new
industrial parks incorporating these aspects. This is achieved by reusing the waste from one industrial
process as a utility from another process, either in raw form if the “contamination” is low enough or via
regeneration facilities. However, to convince companies to take part in an EIP, it is essential to make sure
that each participant gains in competitiveness (reduction in production costs in most cases). Since these
advantages depend on its configuration, proper planning and design are critical. However, the system
methods for designing the optimal configuration of EIP are lacking and the optimal configurations in the
literature are limited in some respects [6, 67].

The design and optimization of water-exchange networks in EIP are a such complex problem. Recently,
the results in [77] developed an abstract Blind-Input model based on game theory approach, modeling the
EIP design problem as Single-Leader-Multi-Follower (SLMF) game: at the upper level, there is the EIP
authority which wants to minimize the consumption of natural resources, while at the lower level, each
enterprise tries to minimize there operating costs. More precisely, the EIP authority makes the decisions
first by anticipating the responses of enterprises at lower level. At the same time, all enterprises at lower
level select their own optimal responses by competing with each other in a GNEP parameterized by the
leader’s decision.

In [77], the authors introduced the notion Blind-Input contract. More precisely, when participating to
the exchange network, each enterprise accepts to have a blind input in the sense that enterprises control only
their outlet distributions and their own freshwater, and the designer commits to guarantee a minimal relative
improvement in comparison with the stand-alone operation of each agent. In [77], the authors implemented
that, under some linear structure of the costs functions Costi(·) of each enterprise, the blind-input model can
be reduced from a Single-Leader-Multi-Follower problem to a single mixed-integer optimization problem.

In this work, we further investigate the blind-input model proposed in [77]. This model is called
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Control-Input model, since, when participating in the exchange network, each enterprise has the ability to
control all of his inlet flux. The control-input model will be reduced from a Single-Leader-Multi-Follower
problem to a single mixed-integer optimization problem. The approach is validated on a case study of
exchange water network in EIP without regeneration units. Obtained results are compared against the
blind-input model.

Now, we compare the results of the control-input model with the blind-input model in the case model
without regeneration units. For details of the data, we refer the reader to [78].

Fresh Water Social Cost
Stand-Alone 418.13 146.34

Optimal EIP with blind-input model 318.97 114.45
Optimal EIP with control-input model 272.97 100.95

Table 1.2: Global Results without Reg. Units

The optimal configuration corresponding to control-input model:

1 3

2 12 8 6 7 14 15131110954

0

Figure 1.3.4: The optimal configuration in the case αi = 0.95 and Coef = 1. Gray nodes are consuming
strictly positive fresh water.

1.4 Our articles
The thesis content presented in this thesis is based on our four articles, namely:

• Article 1: D. Aussel, K. Cao Van, and D. Salas: “Quasi-Variational Inequality Problems over Product
Sets with Quasi-monotone Operators”, SIAM Journal on Optimization, vol 29, no. 2, pp 1558-1577,
2019.

• Article 2: D. Aussel, K. Cao Van, and D. Salas: “Existence Results for Generalized Nash Equilib-
rium Problems under Continuity-like Properties of Sublevel Sets”, submitted to SIAM Journal on
Optimization, 21p, 2020.

• Article 3: D. Salas, K. Cao Van, D. Aussel, and L. Montastruc: “Optimal Design of Exchange Net-
works with Blind Inputs: Applications to Eco-Industrial Parks”, Computers & Chemical Engineering,
vol. 143, p. 107053, 2020.
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• Article 4: D. Aussel and K. Cao Van: “Optimal Design of Exchange Networks with Control Inputs in
Eco-Industrial Parks”, submitted to Energy Economics, 23p, 2020.

These articles will be presented in chapters 2,3,4,5, respectively.

Multi-Leader-Follower models:
theoretical analysis, simulation and
application to eco-industrial parks

1. Quasi-Variational Inequality Problems over
Product Sets with Quasi-monotone Operators

2. Existence Results for Generalized
Nash Equilibrium Problems under

Continuity-like Properties of Sublevel Sets

3. Optimal Design of Exchange
Networks with Blind Inputs: Ap-
plications to Eco-Industrial Parks

4. Optimal Design of Exchange Networks
with Control Inputs in Eco-Industrial Parks

Figure 1.4.1: Organizational diagram of the articles that make up the thesis.
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Quasi-Variational Inequality Problems over Product
Sets with Quasi-monotone Operators

This article has been done in the common work with Didier Aussel and David Salas. It was published on
SIAM Journal on Optimization, vol 29, no. 2, pp 1558-1577, 2019.

Quasi-variational inequalities are variational inequalities in which the constraint map depends on the
current point. Due to this characteristic, specific proofs have been built to prove adapted existence
results. Semicontinuity and generalized monotonicity are assumed and many efforts have been made
in the last decades to use the weakest concepts. In the case of quasi-variational inequalities defined
on a product of spaces, the existence statements in the literature require pseudomonotonicity of the
operator, a hypothesis that is too strong for many applications, in particular in economics. On the other
hand, the current minimal hypotheses for existence results for general quasi-variational inequalities
are quasi-monotonicity and local upper sign-continuity. But since the product of quasi-monotone
(respectively, locally upper sign-continuous) operators is not in general quasi-monotone (respectively
locally upper sign-continuous) it is thus quite difficult to use these general-type existence result in the
quasi-variational inequalities defined on a product of spaces. In this work we prove, in an infinite-
dimensional setting, several existence results for product-type quasi-variational inequalities by only
assuming the quasi-monotonicity and local upper sign-continuity of the component operators. Our
technique of proof is strongly based on an innovative stability result and on the new concept of net-lower
sign-continuity.

Abstract

Keywords: Quasi-variational inequality, Quasi-monotone operator, Product sets, Fixed points, Stability,
Net-lower sign-continuity.
AMS subject classifications. 49J53, 47H05, 49J40
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2.1 Introduction
After their introduction by Stampacchia in the 1960s (see [3, 4]), variational and quasi-variational inequali-
ties have been a rich field of research for the mathematical community, with many applications to physics,
mechanics, and economics, among others. Nowadays, the modern quasi-variational inequality problem
(in the sense of Stampacchia) considers two set-valued operators K : C⇒C and T : C⇒X∗, where C is a
nonempty subset of a locally convex space X , and it consists in finding a point x ∈C satisfying that

1. x is a fixed point of K; and

2. there exists x∗ ∈ T (x) such that for every y ∈ K(x), 〈x∗,y− x〉 ≥ 0.

Since the classical existence result of Tan [79], which assumes upper semicontinuity of T and lower
semicontinuity of K, a lot of effort has been exerted to obtain existence results with weaker continuity
hypotheses, essentially by considering general monotonicity assumptions on the set-valued map T . We
refer the reader to [80, 81] for a comprehensive presentation of such developments in the finite-dimensional
setting, and to [82] for a survey in the Banach space setting.

One of the most recent existence results in this line can be found in [5], in which it is assumed that
the operator T is quasi-monotone and locally upper sign-continuous. On one hand, quasi-monotonicity
is known to be one of the weakest monotonicity-type properties, and it plays a fundamental role in quasi-
convex optimization. On the other hand, upper sign-continuity, introduced by Hadjisavvas in [16], has
proved to be one of the most adapted and easily verified continuity-type properties, while being really
weaker than the classic upper semicontinuity assumption. The strategy of [5] is strongly based on [17],
and it relies on stability results for the solutions sets of parametrized variational inequalities, previously
developed in [18, 19, 20, 21].

A particular form of variational and quasi-variational inequalities that has received a lot of interest in
game theory, transportation problems, and economics is given by product sets, that is, when C = ∏Ci and
so the involved set-valued maps T and K also take a product form (i.e., T = ∏Ti and K = ∏Ki). This
decomposable structure, which is a particular case of systems of quasi-variational inequalities, has been
already studied in the literature for both variational inequalities (see, e.g., [22, 23, 24, 25, 26, 27, 28, 29])
and quasi-variational inequalities (see, e.g., [30, 31]). However, all these works obtain existence results in
the context of pseudomonotonicity (or some modifications of the notion), which is known to be too strong
for many applications, and in particular in economics.

One of the biggest difficulties in replicating the existence results of [5, 17] for quasi-variational
inequalities over product sets is that quasi-monotonicity and local upper sign-continuity are not preserved
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by the product of set-valued maps. In the literature mentioned in the preceding paragraph, this difficulty is
overcome by either exploiting the stronger regularity of pseudomonotone operators or assuming directly the
hypothesis of generalized monotonicity on the product operator T , rather than on the component operators
Ti.

In this work, we address the quasi-variational inequality problem over product sets considering the
assumptions of quasi-monotonicity and local upper sign-continuity only on the component operators. In
doing so, we present a new stability result, under the new notion of net-lower sign-continuity. This new
stability result is an improvement with respect to [19], and it is better adapted to the product structure than
[21].

The work is organized as follows: in section 3.2 we present some preliminary definitions, notation, and
existing results, and formalize the quasi-variational inequalities over product sets. Also, in this section we
provide two simple counterexamples showing that quasi-monotonicity and local upper sign-continuity are
not preserved in general by the product operations. In Section 2.3 we introduce the notion of net-lower
sign-continuity and show our main stability result, Proposition 2.3.9. A comparison is made between our
result and the existing literature (specifically with [19, 20, 21]). In section 3.3 we present the main existence
results for quasi-variational inequalities over product sets. Finally, in Section 2.5, we close the paper with
some final comments.

2.2 Preliminaries and problem formulation

2.2.1 Preliminary notions and notation

In this section, we recall some notation and definitions that will be used latter.
In what follows, X and Y will be Banach spaces, and X∗ and Y ∗ their respective topological dual spaces.

We always use 〈·, ·〉 to denote the duality product for any Banach space and its dual. For a Banach space
X , we denote by w the weak topology on X and by w∗ the weak-star topology on X∗. The norm of X is
denoted by ‖·‖. For x ∈ X and r > 0, BX(x,r) (or simply B(x,r), if there is no ambiguity) stands for the
open ball centered on x of radius r. We say that a locally convex topology τ is consistent with the duality
〈X ,X∗〉 if the topological dual of (X ,τ) is X∗. For more details on dualities and the associated topologies,
we refer the reader to [83] and [84].

For a topological space (U,τU) and a point u ∈U , we write NU(u,τU) (or simply N (u,τU) or N (u)
if there is no confusion) to describe the family of neighbourhoods of u in U , given by the topology τU .
Recall that the topological space (U,τU) is said to be first countable if each point u ∈U has a countable
basis of neighbourhoods.

For a subset A ⊆U , we write intτU A and AτU to denote the interior and closure of A, respectively. If
there is no confusion, we may simply write intA and A, omitting the topology. For a Banach space X and a
subset A of X we write convA and convA to denote the convex hull and the closed convex hull of A. For
any x,y ∈ X , we use the notation [x,y], ]x,y[, and ]x,y] for the segments [x,y] = {(1− t)x+ ty : t ∈ [0,1]},
]x,y[ = {(1− t)x+ ty : t ∈]0,1[}, and ]x,y] = {(1− t)x+ ty : t ∈ ]0,1]}.

Recall that a pair (A ,≺) is said to be a directed set if ≺ is a preorder of A and for each α1,α2 ∈A
there exists α3 ∈A such that α1 ≺ α3 and α2 ≺ α3. In general, we will omit the preorder, saying simply
that A is a directed set. For a set U , a subset (uα)α∈A is said to be a net in U if the set of indexes A is
a directed set. If there is no ambiguity, we may simply write (uα)α or (uα) to denote the net. For a net
(uα)α∈A , we say that a net (uβ )β∈B is a subnet of it if
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1. there exists a function ϕ : B→A such that, for any α0 ∈A , there exists a β0 ∈B satisfying that

α0 ≤A ϕ(β ) ∀β ∈B such that β0 ≤B β ,

where ≤A and ≤B are the preorders of A and B, respectively;

2. for each β ∈B, uβ = uϕ(β ).

If (U,τU) is a topological space, a net (uα)α∈A in U is said to be τU -convergent to u ∈U if for every
neighbourhood V ∈N (u) there exists αV ∈A such that for every α ≥ αV , uα ∈V . For more details on
nets and subnets, we refer the reader to [83], [85] and [86].

For a family A := {Aα : α ∈A } of nonempty subsets of X , a family {zα : α ∈A } ⊆ X is said to
be a selection of A if for every α ∈A , zα ∈ Aα .

Let A and B be two nonempty sets. For a set-valued map T : A⇒B we denote by GrT the graph of T ,
that is,

GrT := {(a,b) ∈ A×B : b ∈ T (a)} .

If (B,τB) is a topological space, we respectively denote by intT and by T the interior and the closure
set-valued maps from A to B, given by

(intT )(a) := intT (a) ∀a ∈ A,

(T )(a) := T (a) ∀a ∈ A.

We assume the reader is familiar with the theory of set-valued maps and the different notions of
semicontinuity involved with them, like upper and lower semicontinuity, closedness (also known as outer
semicontinuity), the Painlevé-Kuratowski semilimits, etc. For a survey on such topics, we refer the reader to
[87], which presents a comprehensive analysis in the Banach space setting, and to [83] for a more complete
presentation involving general topological spaces.

Recall that, for a nonempty subset C of X and a set-valued map T : C⇒X∗, the Stampacchia variational
inequality associated with T and C is

find x ∈C such that ∃x∗ ∈ T (x) with 〈x∗,y− x〉 ≥ 0 ∀y ∈C. (2.2.1)

We denote by S(T,C) its solution set. We also consider the set of nontrivial solutions, S∗(T,C), defined by

S∗(T,C) := {x ∈C : ∃x∗ ∈ T (x)\{0} with 〈x∗,y− x〉 ≥ 0 ∀y ∈C} . (2.2.2)

Note that one always has S∗(T,C) = S(T \ {0},C) ⊆ S(T,C). Also, recall that the Minty variational
inequality associated with T and C is

find x ∈C such that 〈y∗,y− x〉 ≥ 0 ∀y ∈C,∀y∗ ∈ T (y). (2.2.3)

The solution set of the Minty variational inequality problem will be denoted by M(T,C). It is not hard to
see that M(T,C) is convex and closed, provided that C is convex and closed.

Finally, for C and T as before, and for a set-valued map K : C⇒C, the quasi-variational inequality
associated with T and K is

find x ∈ K(x) such that ∃x∗ ∈ T (x) with 〈x∗,y− x〉 ≥ 0 ∀y ∈ K(x). (2.2.4)
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We denote by QVI(T,K) its solution set. As before, we also consider the set of non-trivial solutions,
QVI∗(T,K), defined by

QVI∗(T,K) :=
{

x ∈C :
x ∈ K(x) and ∃x∗ ∈ T (x)\{0}
with 〈x∗,y− x〉 ≥ 0 ∀y ∈ K(x)

}
. (2.2.5)

Again, one always has QVI∗(T,K) = QVI(T \{0},K)⊆ QVI(T,K).
In what follows, we will use the notation S(T,C), S∗(T,C), M(T,C), QVI(T,K) and QVI∗(T,K) to also

denote indistinctly both the solution sets and the corresponding variational problems.
In the literature, existence results for S(T,C) and QVI(T,K) usually have two types of hypotheses on T

(and K): continuity-type assumptions and geometrical-type assumptions. One of the most classic existence
results for QVI(T,K) in the infinite-dimensional setting is [79, Theorem 1], which states the following

Theorem 2.2.1 [Tan, 1985] Let X be a locally convex Hausdorff space, C be a nonempty convex compact
subset of X, and T : C⇒X∗ and K : C⇒C be two set-valued maps such that

(i) K is lower semicontinuous with nonempty convex compact values,

(ii) T is upper semicontinuous with nonempty convex compact values.

Then QVI(T,K) is nonempty.
The analogous version of the above theorem for S(T,C) can be traced back to [88, Theorem 6]. In The-

orem 2.2.1, the continuity-type hypotheses of T and K are upper semicontinuity and lower semicontinuity,
respectively, while the geometrical-type hypotheses are that both are convex compact valued, and that C is
also convex and compact. In [88, Theorem 6], the same hypotheses on T and C are used.

However, once we need a weaker continuity-type hypothesis on T (that is, upper semicontinuity of T
is not verified), the geometrical-type hypothesis must be reinforced. The most classic way to do it is to
assume some general monotonicity on T . In this article, we focus only on the weakest one presented in the
literature: quasi-monotonicity. For a survey on the different types of general monotonicity of set-valued
operators, we refer the reader to [89].

Definition 2.2.2 Let C be a nonempty subset of X. A set-valued map T : C⇒X∗ is said to be

(i) quasi-monotone on C if for all (x,x∗),(y,y∗) ∈ GrT , the implication

〈x∗,y− x〉> 0 =⇒ 〈y∗,y− x〉 ≥ 0

holds;

(ii) properly quasi-monotone on C if for all x1,x2, . . . ,xn ∈C, and all x ∈ conv{x1, . . . ,xn}, there exists
i ∈ {1, . . . ,n} such that

〈x∗i ,xi− x〉 ≥ 0 ∀x∗i ∈ T (xi).

It is known that proper quasi-monotonicity implies quasi-monotonicity (see, for example, [21]).
While studying pseudomonotone operators, Hadjisavvas introduced in [16] the notion of upper sign-

continuity, which is a weak version of directional upper semicontinuity. After that, the concept was reused
in [5, 18, 19, 20, 21, 17] and it has been proved to be well adapted to quasi-monotone operators. It is worth
mentioning that this concept plays a fundamental role in the existence results of [5] and [17]. We recall the
definition of upper sign-continuity and its local version.
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Definition 2.2.3 Let C be a nonempty convex subset of X and let T : C⇒X∗ be a set-valued map with
nonempty values. We say that T is

(i) upper sign-continuous on C if for every x,y ∈C, the implication(
∀t ∈ ]0,1[, inf

x∗t ∈T (xt)
〈x∗t ,y− x〉 ≥ 0

)
=⇒ sup

x∗∈T (x)
〈x∗,y− x〉 ≥ 0

holds, where xt := (1− t)x+ ty;

(ii) locally upper sign-continuous on C if for every x ∈C, there exists a convex neighbourhood Vx and
an upper sign-continuous map Φx : Vx∩C⇒X∗ with nonempty convex w∗-compact values satisfying
that Φx(y)⊆ T (y)\{0} for all y ∈Vx∩C.

Remark 2.2.4 It is important to observe that, due to the condition that 0 is not an element of the submap
Φx(y), upper sign-continuity of a set-valued map does not imply in general its local upper sign-continuity.
Nevertheless, if 0 /∈ T (x) for each x ∈C and if T has nonempty convex w∗-compact values, then upper
sign-continuity implies local upper sign-continuity.

2.2.2 Product-type set-valued maps

Let I be a finite index set, that is, I = {1,2, . . . ,n}. For each i ∈ I, let Xi be a Banach space with dual X∗i ,
and Ci be a nonempty subset of Xi. We write

C = ∏
i∈I

Ci, C−i = ∏
j 6=i, j∈I

C j, X = ∏
i∈I

Xi, X∗ = ∏
i∈I

X∗i . (2.2.6)

For each x ∈ X and i ∈ I, we write x = (xi,x−i), which is a classical shortcut to denote the vector x =
(x1, . . . ,xi−1,xi,xi+1, . . . ,xn), where xi ∈ Xi.

For each i ∈ I and each x−i ∈C−i, let Ti (·,x−i) : Ci ⇒ X∗i and Ki (·,x−i) : Ci ⇒ Ci be two set-valued
maps. We set

T (x) = ∏
i∈I

Ti (xi,x−i) and K(x) = ∏
i∈I

Ki (xi,x−i) . (2.2.7)

In what follows, we will refer to the maps Ti(·,x−i) and Ki(·,x−i) (for all i ∈ I) as the component
operators and the maps T and K as the product operators.

As we stated before, our aim is to extend the results of [5, 17] to quasi-variational inequalities over
product sets, only assuming the hypotheses on the component operators. Indeed our motivation comes
from the fact that, even for variational inequality problems (that is, Ki(xi,x−i) =Ci for every (xi,x−i) ∈C)
the main hypotheses of the existence results in [5, 17], namely quasi-monotonicity and local upper sign-
continuity, are not preserved by the product operators.

Example 1 Let C1 = [−2,2], C2 = [−2,2], and C = [−2,2]× [−2,2]. For any x2 ∈C2, let T1(·,x2) : C1⇒R
be defined by T1(x1,x2) =

{
x2

1
}

. For x1 ∈ C1, let T2(x1, ·) : C2⇒R be defined by T2(x1,x2) =
{

1+ x2
2
}

.
Then, both component operators are quasi-monotone, but the product operator T : C ⇒ R2 defined by
T (x) =

{
x2

1
}
×
{

1+ x2
2
}

is not.
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Proof. First, let us observe that for any (x1,x2)∈C, the set-valued maps T1(·,x2) and T2(x1, ·) are both quasi-
monotone. Indeed, it is enough to note that they are the derivatives of the quasi-convex functions x1 7→ x3

1/3
and x2 7→ x2 + x3

2/3, respectively (for a survey in quasi-convexity and its relation with quasi-monotone
operators, see [82]).

However, the product operator T is not quasimotonone on C. Let us consider the points x = (0,1/2)
and y = (−2,1). Then, for x∗ ∈ T (x) we have

〈x∗,y− x〉=
〈(

x2
1

1+ x2
2

)
,

(
y1− x1
y2− x2

)〉
=

〈(
0

5/4

)
,

(
−2
1/2

)〉
=

5
8
> 0.

But, for y∗ ∈ T (y) we have that

〈y∗,y− x〉=
〈(

y2
1

1+ y2
2

)
,

(
y1− x1
y2− x2

)〉
=

〈(
4
2

)
,

(
−2
1/2

)〉
=−7 < 0,

which contradicts Definition 2.2.2.(i), finishing the proof.

Example 2 Let C1 = [−1,1], C2 = [−1,1], and C = [−1,1]× [−1,1]. For x2 ∈C2, let T1(·,x2) : C1 ⇒ R
be defined by T1(x1,x2) = {−1}. For x1 ∈C1, let T2(x1, ·) : C2 ⇒ R be defined by

T2(x1,x2) =


{1} if x2 < 0{1

2

}
if x2 = 0

{1} if x2 > 0.

Then, each component operator is upper sign-continuous but the product operator T : C ⇒ R2 given by
T (x) = T1(x1,x2)×T2(x1,x2) is not even locally upper sign-continuous.

Proof. Note first that, for any x2 ∈C2, T1(·,x2) is constant, and thus it is obviously upper sign-continuous
on C1. Now, for x1 ∈C1, let us show that T2(x1, ·) is also upper sign-continuous on C2. Indeed, choose
v,w ∈C2 such that

∀t ∈ ]0,1[, inf
v∗t ∈T2(x1,vt)

〈v∗t ,w− v〉 ≥ 0,

with vt = (1− t)v+ tw. Then, it is not hard to realize that w− v ≥ 0. Thus, since the only element
v∗ ∈ T2(x1,v) is positive, we get that supv∗∈T2(x1,v)〈v

∗,w− v〉 ≥ 0, thus concluding that T2(x1, ·) is upper
sign-continuous as we claimed.

Now, let us prove that the product operator T is not locally upper sign-continuous on C. Let us
consider x = (0,0) ∈C and r > 0. Since T is single valued, the only suboperator that one can consider is
Φx = T

∣∣
B(x,r)∩C.

However, considering y = (r/2,r/2) ∈ B(x,r)∩C and writing xt = (1− t)x+ ty = t(r/2,r/2) we have
that

inf
x∗t ∈Φx(xt)

〈x∗t ,y− x〉=
〈(
−1
1

)
,

(
r/2
r/2

)〉
= 0 ∀t ∈ ]0,1[,

but

sup
x∗∈Φx(x)

〈x∗,y− x〉=
〈(
−1
1/2

)
,

(
r/2
r/2

)〉
=− r

4
< 0,

which yields that Φx is not upper sign-continuous. Since Φx and r are arbitrary, T is not locally upper
sign-continuous.
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Remark 2.2.5 Note that, thanks to Remark 2.2.4, Example 2 shows that both, upper sign-continuity and
local upper sign-continuity are not preserved by the product operator.

Our main aim in this work is to state existence results for product-type quasi-variational inequalities.
As an example, we present the following main theorem, proved in Section 3.3 as Corollary 2.4.4, which
provides some weak sufficient condition for the existence of solutions of such problems.

Theorem 2.2.6 For each i ∈ I, let Ci be a nonempty weakly compact convex subset of Xi, Ti : Ci×C−i ⇒ X∗i
be a set-valued map with nonempty convex values and Ki : Ci×C−i⇒Ci be a set-valued map with nonempty
values. Consider T and K defined as in (2.2.7). Assume that

(i) for each i ∈ I, the set-valued map Ki : Ci×C−i ⇒Ci is weakly closed and its values are convex with
nonempty interior;

(ii) for each i ∈ I and each x−i ∈ C−i, Ti (·,x−i) : Ci ⇒ X∗i is quasi-monotone and locally upper sign-
continuous;

(iii) for each i ∈ I, the pair of set-valued maps (Ti, intKi) is weakly net-lower sign-continuous with respect
to the parameter pair (Ci,C−i).

Then QVI∗(T,K) is nonempty.

Note that in this theorem condition (iii) is based on a new concept, called net-lower sign-continuity,
linking the operators Ti and Ki. It will be introduced and studied in Section 2.3 and is used as a minimal
hypothesis in order to obtain some stability results needed in the proof of Theorem 2.2.6. These stability
results follow the spirit of [19] and [21].

In several senses, the above result is an improvement of the existence theorems in [5] and [17]. First, it
works with quasi-variational inequalities in the infinite-dimensional setting. Second, it shows the existence
of solutions for quasi-variational inequalities over product sets, regardless of the obstructions presented in
Examples 1 and 2. Finally, net-lower sign-continuity is a weaker hypothesis with respect to the settings
followed by [19] and [21].

The proof of Theorem 2.2.6 is based on Kakutani’s fixed point theorem (see, e.g., [83, Theorem 6.4.10])
and follows the technique inspired by the proof of [11, Theorem 4.3.1], also used in [5]. This theorem
presents the classic existence result for equilibria in abstract economies, and the main idea of the proof is to
apply a fixed point theorem to the product of specific parametrized argmin-sets. Even though the points
in these argmin-sets are not necessarily coherent with the abstract economy, a fixed point of their product
becomes an equilibrium. In [5], this technique is applied directly to the parametrized sets S∗(T,K(x)), when
T and K are not product operators. In our setting, this approach is not possible, since S∗(T,K(x)) may not
enjoy the necessary properties that we need. Thus, we introduced new suitable parametrized sets, associated
with perturbed Minty-type variational inequalities, and we adjust this technique to obtain our main result.

2.3 Stability for perturbed Minty-type problems

In this section we introduce the notions of net-lower sign-continuity (subsection 2.3.1) and extended-Minty
variational inequalities (subsection 2.3.2). As we mentioned before, both notions are needed to prove
Theorem 2.2.6.
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2.3.1 Net-lower sign-continuity
Definition 2.3.1 Let (U,τU) and (Λ,τΛ) be two topological spaces, Y be a Banach space, and τY be a
locally convex topology consistent with the duality 〈Y,Y ∗〉. Let T : Y ×Λ⇒Y ∗ and K : U×Λ⇒Y be two
set-valued maps. The pair (T,K) is said to be (τU × τΛ)-τY net-lower sign-continuous with respect to the
parameter pair (U,Λ) at (µ,λ ) ∈U×Λ and y ∈ K(µ,λ ) if for every net (µα ,λα)α ⊆U×Λ converging to
(µ,λ ), every z∈K(µ,λ )

τY , and every selection (zα)α of
(

K(µα ,λα)
τY
)

α
τY -converging to z, the following

condition holds:

If for every subnet (µβ ,λβ )β of (µα ,λα)α and every selection (yβ )β of (K(µβ ,λβ ))β

τY -converging to y one has that

limsup
β

sup
y∗

β
∈T (yβ ,λβ )

〈y∗
β
,zβ − yβ 〉 ≤ 0,

then, sup
y∗∈T (y,λ )

〈y∗,z− y〉 ≤ 0,

where (zβ )β is the corresponding subnet of (zα)α induced by the index set of (µβ ,λβ )β .
We simply say that (T,K) is (τU × τΛ)-τY net-lower sign-continuous with respect to the parameter pair

(U,Λ) if it is so at each (µ,λ ) ∈U×Λ and each y ∈ K(µ,λ ).
If there is no ambiguity, we may omit the parameter pair (U,Λ), and the topologies of U and Λ, saying

only that the pair (T,K) is τY net-lower sign-continuous. If τY is the norm topology, we say that (T,K) is
norm net-lower sign-continuous, and if τY is the weak topology, we say that (T,K) is weakly net-lower
sign-continuous.

If T is fixed and K depends only on U , that is, K : U ⇒Y , we will say that (T,K) is τU -τY net-
lower sign-continuous with respect to U if, considering the natural extension K̂ : U ×{0}⇒Y and T̂ :
Y ×{0}⇒Y ∗ given by K̂(µ,0) = K(µ) and T̂ (y,0) = T (y), the pair (T̂ , K̂) is (τU ×{ /0,{0}})-τY net-lower
sign-continuous with respect to the parameter pair (U,{0}).

Note that if τU , τΛ, and τY are first countable topologies, then we can replace nets by sequences in
Definition 3.3.2.

Proposition 2.3.2 Let (U,τU) and (Λ,τΛ) be two topological spaces, Y be a Banach space and τY be
a locally convex topology consistent with the duality 〈Y,Y ∗〉. Suppose that all three topologies are first
countable. Let T : Y ×Λ⇒Y ∗ and K : U ×Λ⇒Y be two set-valued maps. Then, the pair (T,K) is
(τU × τΛ)-τY net-lower sign-continuous with respect to the parameter pair (U,Λ) at (µ,λ ) ∈U×Λ and
y ∈ K(µ,λ ) if and only if for every sequence (µn,λn)n ⊆U×Λ converging to (µ,λ ), every z ∈ K(µ,λ )

τY ,
and every selection (zn)n of

(
K(µn,λn)

τY
)

n
τY -converging to z, the following condition holds:



If for every subsequence (µnk ,λnk)k of (µn,λn)n and every selection (ynk)k of
(K(µnk ,λnk))k τY -converging to y one has that

limsup
k

sup
y∗nk
∈T (ynk ,λnk )

〈y∗nk
,znk− ynk〉 ≤ 0,

then, sup
y∗∈T (y,λ )

〈y∗,z− y〉 ≤ 0.
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Proof. To simplify the notation, let us define the support function σ : Λ×Y ×Y → R given by

σ(λ ,y,z) := sup
y∗∈T (y,λ )

〈y∗,z− y〉.

Since there is no ambiguity, we will omit the involved topologies. For the sufficiency, assume that the
sequential condition holds for (µ,λ ) and y, but that there exist a net (µα ,λα)α converging to (µ,λ ), an
element z ∈ K(µ,λ ), and a selection (zα)α of

(
K(µα ,λα)

)
α

converging to z such that

∀(µβ ,λβ )β subnet,∀(yβ )β selection of (K(µβ ,λβ ))β converging to y,
limsupβ σ(λβ ,yβ ,zβ )≤ 0, and σ(λ ,y,z)> 0. (2.3.1)

Let us denote by A the set of indexes of this net. We claim that for every ε > 0 the following statement
holds:

∃αε ∈ A,∃Vε ∈N (y) ∀α ≥ αε ,∀yα ∈ K(µα ,λα)∩Vε ,σ(λα ,yα ,zα)≤ ε. (2.3.2)

If not, there would exist ε > 0 such that for all α ∈ A and all neighborhoods V ∈N (y), there exist αV ≥ α

and yαV ∈ K(µαV ,λαV )∩V with σ(λαV ,yαV ,zαV )> ε . Now, consider the index set D given by all tuples
(α,V,αV ) given as before, with the following preorder:

(α,V,αV )≥ (α ′,V ′,α ′V ′) ⇐⇒ α ≥ α
′,V ⊆V ′ and αV ≥ α

′
V ′.

Then, considering the function ϕ : D→ A given by ϕ(α,V,αV ) = αV , and noting that D is a directed
set, it is not hard to see that (µd,λd)d∈D (with the identification (µd,λd) = (µϕ(d),λϕ(d))) is a subnet of
(µα ,λα)α∈A. Now, for each d = (α,V,αV ) ∈ D we can choose the element yd = yϕ(d) ∈ K(µd,λd) given
by the construction of the index set D, entailing that yd → y and that

limsup
d

σ(λd,yd,zd)≥ ε.

This is a contradiction with (2.3.1) and so the claim is proved.
Now, let (On)n∈N and (Wn)n∈N be two decreasing bases of neighbourhoods of N (µ,λ ) and N (0),

respectively. Using condition (2.3.2), we may choose a sequence (αn)n in A such that for all n ∈ N

1. αn ≤ αn+1;

2. zαn ∈ z+Wn and (µαn,λαn) ∈ On;

3. αn ≥ α1/n, where (α1/n,V1/n) is the index-neighbourhood pair given by (2.3.2) for ε = 1/n.

Now, clearly (µαn,λαn)→ (µ,λ ) and zαn → z. Let (µαnk
,λαnk

)k be a subsequence of (µαn ,λαn) and (ynk)k

be a selection of K(µαnk
,λαnk

) converging to y. For every m ∈ N and every k large enough we have that

αnk ≥ α1/m and ynk ∈V1/m,

and so
limsup

k
σ(λαnk

,ynk ,zαnk
)≤ 1/m.

Since this holds for every m ∈ N, and the subsequence (µαnk
,λαnk

)k and the selection (ynk)k are arbitrary,
we deduce by (??) that σ(λ ,y,z)≤ 0, which is a contradiction. We conclude then that (T,K) is net-lower
sign-continuous at (µ,λ ) and y.
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For the necessity, assume that (T,K) is net-lower sign-continuous with respect to the parameter pair
(U,Λ) at (µ,λ ) ∈ U ×Λ and y ∈ K(µ,λ ), but suppose that there exists a sequence (µn,λn) in U ×Λ

converging to (µ,λ ), an element z ∈ K(µ,λ ) and a selection (zn)n of
(

K(µn,λn)
)

n
converging to z such

that for every subsequence (µnk ,λnk)k of (µn,λn)n and every selection (ynk)k of (K(µnk ,λnk))k converging
to y one has that

limsup
k

σ(λnk ,ynk ,znk)≤ 0,

but, σ(λ ,y,z) > 0. Then, there exists a subnet (µβ ,λβ )β converging to (µ,λ ) and a selection (yβ )β of
(K(µβ ,λβ ))β converging to y such that

limsup
β

σ(λβ ,yβ ,zβ )> 0.

Let B be the directed index set of the subnet (µβ ,λβ )β and let ϕ : B→N be the index function given by the
definition of subnets (see subsection 2.2.1). This yields that there exists ε > 0 such that

∀β ∈ B ∃β ′ ≥ β such that σ(λβ ′,yβ ′,zβ ′)> ε. (2.3.3)

Now, let (Wk)k∈N be a decreasing base of neighbourhoods of N (0). Using (2.3.3), we may choose a
sequence (βk)k in B such that, for all k ∈ N,

1. yβk
∈ y+Wk;

2. βk+1 ≥ βk and ϕ(βk+1)> ϕ(βk);

3. σ(λβk
,yβk

,zβk
)> ε,∀k ∈ N.

It is not hard to see that (µβk
,λβk

)k is a subsequence of (µn,λn)n, and (yβk
)k is converging to y. However,

we have that
limsup

k
σ(λβk

,yβk
,zβk

) = inf
k

sup
l≥k

σ(λβl
,yβl

,zβl
)≥ ε

which is a contradiction, finishing the proof.

Net-lower sign-continuity seems to be rather technical. Nevertheless, it can be verifiable for a large
family of set-valued maps. The following proposition gives a sufficient condition to have norm net-lower
sign-continuity.

Proposition 2.3.3 Let (Λ,τΛ) and (U,τU) be two first countable topological spaces and Y be a Banach
space. Let T : Y ×Λ⇒Y ∗ and K : U×Λ⇒Y be two set-valued maps with nonempty values. Suppose that
for every sequence (µn,λn)n ⊆U×Λ converging to (µ,λ ) and every y ∈ K(µ,λ ) we have that

T (y,λ )⊆ conv
(⋃

w∗-seq-LimsupkT (ynk ,λnk)
)
, (2.3.4)

where the union is taken over all subsequences (µnk ,λnk)k of (µn,λn)n and all selections (ynk)k of (K(µnk ,λnk))k
converging to y, and seq-Limsup stands for the Painlevé-Kuratowski sequential upper limit of sets (see, e.g.,
[87, Definition 1.1.3]). Then, the pair (T,K) is norm net-lower sign-continuous.
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Proof. For every (µ,λ ) ∈U×Λ and every y ∈ K(µ,λ ), let us denote by A(y,λ ) the set inside the closed
convex hull on the right-hand side of the inclusion of (2.3.4).

Let (µn,λn)n be a sequence in U×Λ converging to (µ,λ ), y ∈ K(µ,λ ), and let (zn)n be a selection of
(K(µn,λn))n converging to z ∈ K(µ,λ ), and suppose the hypothesis of the implication of (??) holds. Let
y∗ ∈ A(y,λ ). We claim that 〈y∗,z− y〉 ≤ 0.

Indeed, since y∗ ∈ A(y,λ ), there exists a subsequence (µnk ,λnk)k of (µn,λn)n and a selection (ynk)k of
(K(µnk ,λnk))k converging to y such that

y∗ ∈ w∗-seq-LimsupkT (ynk ,λnk).

Without loss of generality, we may assume that there exists a sequence (y∗nk
)k w∗-converging to y∗, with

y∗nk
∈ T (ynk ,λnk) for all k ∈ N. Since (y∗nk

)k is bounded thanks to the uniformly boundedness principle, we
can write

〈y∗,z− y〉= lim
k
〈y∗nk

,znk− ynk〉

≤ limsup
k

sup
w∗nk
∈T (ynk ,λnk )

〈w∗nk
,znk− ynk〉 ≤ 0.

Thus, our claim is proven. Then, it is not hard to see that

sup
y∗∈T (y,λ )

〈y∗,z− y〉 ≤ sup
y∗∈convA(y,λ )

〈y∗,z− y〉= sup
y∗∈A(y,λ )

〈y∗,z− y〉 ≤ 0,

proving, in view of Proposition 2.3.2, that the pair (T,K) is norm net-lower sign-continuous.

Remark 2.3.4 In Proposition 2.3.3, seq−Limsup can be replaced by the Painlevé - Kuratowski upper
limit, and the local boundedness of T must be assumed. Indeed, this assumption is necessary because when
one were to use the usual Limsup, then the sequence (y∗nk

)k would be replaced by a net, for which one
cannot directly apply the uniform boundedness principle.

Note that the inclusion (2.3.4) is quite well known in convex analysis. For example, let us consider two
finite dimensional spaces Y1 and Y2, and set Λ = Y2, and K : Y2⇒Y1 given by K(y2) := Y1. If we consider
any function f : Y1×Y2→ R which is convex in the first variable and jointly continuous, then defining the
operator T : Y1×Y2⇒Y ∗1 by

T (y1,y2) := ∂ ( f (·,y2))(y1),

where ∂ f (·,y2) stands for the convex subdifferential of f (·,y2), we get that inclusion (2.3.4) holds as a
direct consequence of [87, Theorem 7.6.4]. Indeed, following the notation of this theorem, for any sequence
(yn

2) ⊆ Y2 converging to y2 ∈ Y2 we can identify Vn := f (·,yn
2) and V := f (·,y2). Then, since V is the

graphical limit (see [87, Definition 7.1.1]) of Vn thanks to the continuity of f , we can conclude that, for
every y1 ∈ Y1,

T (y1,y2) = ∂V (y1) = Limsup
yn

1

Y1−→y1

∂Vn(yn
1) =

⋃
yn

1

Y1−→y1

LimsupnT (yn
1,y

n
2).

In particular, inclusion (2.3.4) is verified, and thus the pair (T,K) is norm net-lower sign-continuous.
We finish this section with the following proposition, which shows that net-lower sign-continuity is

weaker as a hypothesis than those assumed in [5], at least when the operator T is locally bounded, which is
the case in most of the applications. Recall that a map T : C⇒X∗ is said to be dually lower semicontinuous
if for any x ∈C and any sequence (yn)⊆C converging to y ∈C the following implication holds:

liminf
n

sup
y∗n∈T (yn)

〈y∗n,x− yn〉 ≤ 0 =⇒ sup
y∗∈T (y)

〈y∗,x− y〉 ≤ 0. (2.3.5)



29 Chapter 2. Quasi-Variational Inequality Problems over Product Sets

Proposition 2.3.5 Let C be a convex w-compact subset of X, and let K : C⇒C and T : C⇒X∗ be two
set-valued maps with nonempty values. Suppose that

(i) K is lower semicontinuous with convex values;

(ii) T is dually lower semicontinuous and locally bounded.

Then, considering U =C (with its induced strong topology), we have that both (T,K) and (T,K) are norm
net-lower sign-continuous with respect to U.

Proof. We will only prove that (T,K) is norm net-lower sign-continuous with respect to U . The case
(T,K) is similar. Since all the topologies involved are first countable, it is enough to prove the sequential
characterization of net-lower sign-continuity given by Proposition 2.3.2. Thus, let us consider a point
µ ∈U , a point y ∈ K(µ), a sequence (µn) converging to µ , and a selection zn of (K(µn))n converging to
some point z ∈ K(µ), and assume that the hypothesis of (??) holds. Since K is lower semicontinuous, there
exists a selection (yn) of K(µn) converging to y. Furthermore, without lose of generality, we may take
yn ∈ K(µn), for each n ∈ N. Then, we can write

liminf
n

sup
y∗n∈T (yn)

〈y∗n,zn− yn〉 ≤ limsup
n

sup
y∗n∈T (yn)

〈y∗n,zn− yn〉 ≤ 0.

Now, since T is locally bounded, for every ε ≥ 0, there exists nε ∈ N such that, for every k ≥ nε ,

sup
y∗k∈T (yk)

〈y∗k ,z− yk〉 ≤ sup
y∗k∈T (yk)

〈y∗k ,zk− yk〉+M‖z− zk‖

≤ sup
y∗k∈T (yk)

〈y∗k ,zk− yk〉+ ε,

where M > 0 is a constant such that T (yn)⊆ BX∗(0,M) for every n ∈ N large enough. We get that

liminf
n

sup
y∗n∈T (yn)

〈y∗n,z− yn〉 ≤ liminf
n

sup
y∗n∈T (yn)

〈y∗n,zn− yn〉+ ε ≤ ε,

and since ε is arbitrary, we deduce that liminfn supy∗n∈T (yn)〈y
∗
n,z− yn〉 ≤ 0. Since T is dually lower semi-

continuous, this yields supy∗∈T (y)〈y∗,z− y〉 ≤ 0, and so condition (??) is verified, finishing the proof.

2.3.2 Extended Minty variational inequalities
Definition 2.3.6 Let C be a nonempty subset of a Banach space Y , and let T : C⇒Y ∗ be a set-valued map.
We define the extended-Minty variational inequality as follows:

find y ∈C such that 〈z∗,z− y〉 ≥ 0, ∀z ∈C,∀z∗ ∈ T (z). (2.3.6)

We denote by ME(T,C) both the extended-Minty variational inequality associated with T and C and its set
of solutions.

Clearly, one always has M(T,C)⊆ME(T,C). Furthermore, if C is closed, then M(T,C) = ME(T,C).
A particularly interesting extended-Minty variational inequality is the one we obtain when we consider

intC instead of C. The following lemma shows the relations between ME(T, intC) and S(T,C) when C is a
nonempty convex closed set.
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Lemma 2.3.7 Let C be a nonempty closed convex subset of a Banach space Y with intC 6= /0 and let
T : C ⇒ Y ∗ be a set-valued map.

(i) If T is upper sign-continuous on C with w∗−compact convex values, then ME(T, intC)⊆ S(T,C).

(ii) If T is locally upper sign-continuous on C, then ME(T, intC)⊆ S∗(T,C).

(iii) If T is quasi-monotone, then S∗(T,C)⊆ME(T, intC).

Proof. (i) Let y be an element of ME(T, intC). Since C is convex, for any z ∈ intC and any t ∈ ]0,1[ we
have that yt = (1− t)y+ tz ∈ intC. Then, for every t ∈ ]0,1[,

inf
y∗t ∈T (yt)

〈y∗t ,z− y〉= 1/t inf
y∗t ∈T (yt)

〈y∗t ,yt− y〉 ≥ 0.

Finally, since T is upper sign-continuous and w∗−compact valued, we have

∀z ∈ intC, max
y∗∈T (y)

〈y∗,z− y〉 ≥ 0. (2.3.7)

Applying Sion’s minimax theorem (see [90]), we get that

inf
z∈intC

max
y∗∈T (y)

〈y∗,z− y〉= max
y∗∈T (y)

inf
z∈intC

〈y∗,z− y〉= max
y∗∈T (y)

inf
z∈C
〈y∗,z− y〉.

where the last equality follows since C = intC and each y∗ ∈Y ∗ is continuous. Then, by (2.3.7), we conclude
that y ∈ S(T,C).

(ii) Let y be an element of ME(T, intC). Since T is locally upper sign-continuous at y, there exists a
convex neighbourhood Vy of y and an upper sign-continuous map Φy : Vy∩C⇒Y ∗ with nonempty convex
w∗−compact values satisfying Φy(z)⊆ T (z)\{0} ,∀z ∈Vy∩C.

Now, let z ∈ intC. There exists z1 such that z1 = (1− t)y+ tz ∈ [y,z]∩Vy∩ intC (with 0 < t < 1), and so
one has

0≤ 〈v∗,v− y〉= t ′〈v∗,z1− y〉= t ′t 〈v∗,z− y〉 ,

for all v ∈ ]y,z1] ⊆ intC and all v∗ ∈ Φy(v) (where t ′ ∈ ]0,1] is such that v = (1− t ′)y+ t ′z1). Hence
infv∗∈Φy(v) 〈v

∗,z1− y〉 ≥ 0 and, according to the upper sign-continuity of Φy, supy∗∈Φy(y) 〈y
∗,z1− y〉 ≥ 0.

In addition, since Φy(y) is w∗-compact, there exists y∗ ∈ Φy(y) such that 〈y∗,z1− y〉 ≥ 0 and therefore
〈y∗,z− y〉 ≥ 0. In other words, we have

∀z ∈ intC, max
y∗∈Φy(y)

〈y∗,z− y〉 ≥ 0. (2.3.8)

At this point, we can do the same as in the proof of (i) and conclude that y ∈ S(Φy,C)⊆ S∗(T,C).
(iii) Let y be an element of S∗(T,C) and y∗ ∈ T (y)\{0} such that 〈y∗,z− y〉 ≥ 0 for all z ∈C. Then,

for all z ∈ intC, one has 〈y∗,z− y〉> 0 and thus, by quasi-monotonicity, 〈z∗,z− y〉 ≥ 0 for each z∗ ∈ T (z).
This yields that y ∈ME(T, intC), finishing the proof.

From [91], it is well known that if T is properly quasi-monotone (see Definition 2.2.2) and C is a weakly
compact and convex subset of a Banach space, then the (classical) Minty variational inequality admits at
least one solution, that is M(T,C) 6= /0. The proposition below describes some sufficient conditions under
which the extended-Minty variational inequality with respect to intC has some solutions, that is,
ME(T, intC) 6= /0.
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Proposition 2.3.8 Let C be a nonempty weakly compact convex subset of X with intC 6= /0 and let T :C ⇒X∗

be quasi-monotone and locally upper sign-continuous. Then ME(T, intC) is nonempty.

Proof. Since the set-valued map T is quasi-monotone and locally upper sign-continuous, then the set-valued
map T \{0} is also quasi-monotone and locally upper sign-continuous. In addition, since C is a nonempty
weakly compact convex set, we can apply [17, Theorem 2.1], obtaining that S(T \ {0},C) 6= /0. Since
S(T \{0},C) = S∗(T,C), the conclusion follows from Lemma 2.3.7(iii).

Let us now state the stability result for extended-Minty solution sets.

Proposition 2.3.9 Let U and Λ be two topological spaces and Y be a Banach space. Let T : Y ×Λ ⇒ Y ∗

and K : U×Λ ⇒ Y be two set-valued maps with nonempty values. Let us suppose that

(i) the set-valued map K : U×Λ⇒Y given by K(µ,λ ) := K(µ,λ ) is (τU × τΛ)-w-closed;

(ii) the pair (T,K) is weakly net-lower sign-continuous with respect to the parameter pair (U,Λ).

Then, the set-valued map Φ : U×Λ ⇒ Y given by

Φ(µ,λ ) := ME(T (·,λ ),K(µ,λ ))

is (τU × τΛ)-w-closed.

Proof. Let (µα ,λα)α ⊆U×Λ and (zα)α ⊆ Y be two nets satisfying that

(µα ,λα)→ (µ,λ ), zα

w−→ z and zα ∈Φ(µα ,λα).

We want to prove that z ∈ Φ(µ,λ ). Since K is (τU × τΛ)-w-closed, we have that z ∈ K(µ,λ ). Fix y ∈
K(µ,λ ), let (µβ ,λβ )β be a subnet of (µα ,λα)α , and let (yβ )β be a selection of K(µβ ,λβ )β w-converging
to y. Since zα ∈Φ(µα ,λα), we know that

〈y∗
β
,zβ − yβ 〉 ≤ 0 ∀y∗

β
∈ T (yβ ,λβ ).

This yields that
limsup

β

sup
y∗

β
∈T (yβ ,λβ )

〈y∗
β
,zβ − yβ 〉 ≤ 0,

and so, since the pair (T,K) is weakly net-lower sign-continuous with respect to the parameter pair (U,Λ),
we conclude that

〈y∗,y− z〉 ≥ 0 ∀y∗ ∈ T (y,λ ).

Since y is arbitrary, z ∈Φ(µ,λ ), finishing the proof.

Corollary 2.3.10 Let U and Λ be two topological spaces and Y be a Banach space. Let T : Y ×Λ ⇒ Y ∗

and K : U×Λ ⇒ Y be two set-valued maps with nonempty values. Let us suppose that

(i) the set-valued map K is (τU × τΛ)-w-closed and its values are convex with nonempty interior;

(ii) for every (µ,λ ) ∈U×Λ, T (·,λ ) is quasi-monotone and locally upper sign-continuous on K(µ,λ );

(iii) the pair (T, intK) is weakly net-lower sign-continuous with respect to the parameter pair (U,Λ).
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Then, the set-valued map Φ : U×Λ ⇒ Y given by

Φ(µ,λ ) := S∗(T (·,λ ),K(µ,λ ))

is (τU × τΛ)-w-closed.

Proof. Observe that, under hypothesis (ii), Lemma 2.3.7 entails that

S∗(T (·,λ ),K(µ,λ )) = ME(T (·,λ ), intK(µ,λ ))

for every (µ,λ ) ∈U ×Λ. Thus, since K(µ,λ ) = intK(µ,λ ), we can directly apply Proposition 2.3.9 to
obtain the desired conclusion.

Remark 2.3.11 Corollary 2.3.10 must be compared with [19, Theorem 4.2] and with [20, Proposition 3.1].
Both results are a direct consequence of Corollary 2.3.10 since the weakly net-lower sign-continuity of the
pair (T,K) can be easily derived as a combination of hypotheses (iii) and (iv) of [19, Theorem 4.2], as well
as a combination of hypotheses (i) and (iii) of [20, Proposition 3.1]. Furthermore, if the operator T is locally
bounded and it is fixed (it doesn’t depend on Λ), we can apply Proposition 2.3.5 to derive the net-lower
sign-continuity of the pair (T,K) from the lower semicontinuity of K and the dual lower semicontinuity of
T . Thus, the above corollary also generalizes [21, Proposition 4.3] for locally bounded operators.

2.4 Existence results for quasi-variational inequality problems

In this section we present our main results, namely, the existence of solutions for quasi-variational inequality
problems over product sets, following the hypotheses set out in [17, Theorem 2.1]. Recall that I, Xi, X−i, Ci,
C−i, Ki, Ti, X , K, and T are defined as in subsection 2.2.2, particularly as in (2.2.6) and (2.2.7).

We divide our results in two cases: (1) we consider the case when intK(x) 6= /0, for any x ∈C for which
we obtain positive results for both properly quasi-monotone and quasi-monotone operators (see Theorem
2.4.1); and (2) the general case, for which we obtain positive results only for properly quasi-monotone
operators (see Theorem 2.4.6).

2.4.1 Existence results for constraints mapping with nonempty interior values and
quasi-monotone operators

Theorem 2.4.1 For each i ∈ I, let Ci be a nonempty weakly compact convex subset of Xi and let Ti :
Ci×C−i ⇒ X∗i and Ki : Ci×C−i⇒Ci be two set-valued maps with nonempty values. Consider T and K
defined as in (2.2.7). Assume that

(i) for each i ∈ I, the set-valued map Ki : Ci×C−i ⇒ Ci is w-closed and its values are convex with
nonempty interior;

(ii) for each i ∈ I, the pair of set-valued maps (Ti, intKi) is weakly net-lower sign-continuous with respect
to the parameter pair (Ci,C−i);

(iii) for each i ∈ I, each xi ∈Ci, and each x−i ∈C−i, one has

ME(Ti(·,x−i), intKi(xi,x−i)) 6= /0.
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Then,

(a) if, for each i ∈ I and each x−i ∈ C−i, the map Ti (·,x−i) : Ci ⇒ X∗i is upper sign-continuous and
w∗-compact convex valued, then QVI(T,K) is nonempty;

(b) if, for each i ∈ I and each x−i ∈C−i, the map Ti (·,x−i) : Ci ⇒ X∗i is locally upper sign-continuous,
then QVI∗(T,K) is nonempty.

Before proving Theorem 2.4.1, let us state some useful lemmas that will be needed.

Lemma 2.4.2 Let K be a nonempty convex subset of X and let T : K ⇒ X∗ be a set-valued map. Then
ME(T, intK) is convex.

Proof. Let x1,x2 ∈ ME(T, intK) and t ∈ [0,1]. Set x = tx1 +(1− t)x2 and take y ∈ intK and y∗ ∈ T (y).
Since x1,x2 ∈ME(T, intK), we have that (for i = 1,2)

xi ∈ K and 〈y∗,y− xi〉 ≥ 0.

Therefore, x ∈ K due to the convexity of K, and

〈y∗,y− x〉= t〈y∗,y− x1〉+(1− t)〈y∗,y− x2〉 ≥ 0.

Since y and y∗ are arbitrary, we conclude that x ∈ME(T, intK), finishing the proof.

Lemma 2.4.3 For each i ∈ I, let Ci be a nonempty subset of Xi, let C = ∏i∈I Ci. Let ϕi : C⇒Ci be a
set-valued map, and let ϕ : C⇒C be the product set-valued map defined by ϕ(x) = ∏i∈I ϕi(x). Let T and
K be defined as in (2.2.7). If, for every i ∈ I and every x ∈C, ϕi is given by

(i) ϕi(x) := S (Ti (·,x−i) ,Ki (xi,x−i)), then

x̄ ∈ ϕ(x̄) ⇐⇒ x̄ ∈ QVI(T,K);

(ii) ϕi(x) := S∗ (Ti (·,x−i) ,Ki (xi,x−i)), then

x̄ ∈ ϕ(x̄) =⇒ x̄ ∈ QVI∗(T,K).

Proof. (i) For the necessity, assume x̄ ∈ ϕ(x̄). By definition, we can write

x̄ ∈ ϕ(x̄) ⇐⇒ ∀i ∈ I, x̄i ∈ ϕi(x̄)
⇐⇒ ∀i ∈ I, x̄i ∈ S (Ti (·, x̄−i) ,Ki (x̄i, x̄−i)) .

Thus, for every i ∈ I we have that x̄i ∈ Ki(x̄) and that there exists x̄∗i ∈ Ti(x̄) such that 〈x̄∗i ,yi− x̄i〉 ≥ 0 for
every yi ∈ Ki(x̄). Now, putting x̄∗ = (x̄∗1, . . . , x̄

∗
n) we get that x̄ ∈ K(x̄), x̄∗ ∈ T (x̄), and

〈x̄∗,y− x̄〉= ∑
i∈I
〈x̄∗i ,yi− x̄i〉 ≥ 0, ∀y = (y1, . . . ,yn) ∈ K(x̄).

In other words, x̄ ∈ QVI(T,K).
For the sufficiency, assume now that x̄ ∈QVI(T,K), that is x̄ ∈ K(x̄) and there exists x̄∗ = (x̄∗1, . . . , x̄

∗
n) ∈

T (x̄) such that
〈x̄∗,y− x̄〉= ∑

i∈I
〈x̄∗i ,yi− x̄i〉 ≥ 0, ∀y = (y1, . . . ,yn) ∈ K(x̄).
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Fix i ∈ I, choose yi ∈ Ki(x̄) and put z = (x̄1, . . . ,yi, . . . , x̄n) ∈ K (x̄). By applying the latter inequality, we get
that

〈x̄∗i ,yi− x̄i〉= ∑
j∈I
〈x̄∗j ,z j− x̄ j〉= 〈x̄∗,z− x̄〉 ≥ 0.

Therefore, for any i ∈ I, x̄i ∈ S (Ti (·, x̄−i) ,Ki (x̄i, x̄−i)) which implies that x̄ ∈ ϕ(x̄), finishing the proof.
(ii) Let x̄ ∈ ϕ(x̄). Following the same reasoning as that of the necessity proof in part (i), we can deduce

that for every i ∈ I, x̄i ∈ Ki(x̄) and there exists x̄∗i ∈ Ti(x̄)\{0} such that 〈x̄∗i ,yi− x̄i〉 ≥ 0 for every yi ∈ Ki(x̄).
This yields that x̄ ∈ K(x̄), that x̄∗ = (x̄∗1, . . . , x̄

∗
n) ∈ T (x̄)\{0}, and that 〈x̄∗,y− x̄〉 ≥ 0 for every y ∈ K(x̄). In

other words, x̄ ∈ QVI∗(T,K).

Proof of Theorem 2.4.1. For each i ∈ I, let us consider the set-valued map Φi : C ⇒Ci defined by Φi(x) :=
ME(Ti(·,x−i), int(Ki(x))), and Φ : C ⇒C defined by Φ(x) = ∏i∈I Φi(x).

Hypothesis (iii) implies that, for any i ∈ I, Φi(x) 6= /0 and therefore Φ(x) 6= /0 for any x ∈C.
Since intKi(x) 6= /0 for all i ∈ I and all x ∈C, and since hypotheses (i) and (ii) hold, Proposition 2.3.9

entails that for each i ∈ I, the set-valued map Φi is weakly closed. Hence, Φ is weakly closed. Moreover,
combining the weak compactness of C and the fact that Φ : C ⇒C is weakly closed, we deduce that Φ is
weakly upper semicontinuous.

Finally, for each i ∈ I, the set-valued map Ki : C ⇒Ci is convex valued and intKi(x) 6= /0 for all x ∈C.
Then Lemma 2.4.2 yields that for any i ∈ I and any x ∈C, Φi(x) is a convex set, implying thus that the map
Φ is convex valued.

By using Kakutani’s fixed-point theorem (see [83, Theorem 6.4.10]), there exists x̄ ∈Φ(x̄). Conclusion
(a) (resp., (b)) follows from Lemma 2.4.3 and Lemma 2.3.7(i) (resp., Lemma 2.3.7(ii)).

Assumption (iii) of Theorem 2.4.1, that is, the nonemptiness of the extended Minty variational inequali-
ties ME(Ti(·,x−i), intKi(xi,x−i)), is somehow “artificial” in the sense that it is not a direct assumption on
the data of the variational problem, namely, on Ti and Ki. The corollary below describes a complete set of
“direct assumptions” on Ti and Ki ensuring the existence of solutions for the quasi-variational inequalities
QVI(T,K) and QVI∗(T,K).

Corollary 2.4.4 For each i ∈ I, let Ci be a nonempty weakly compact convex subset of Xi and let Ti :
Ci×C−i ⇒ X∗i and Ki : Ci×C−i⇒Ci be two set-valued maps with nonempty values. Consider T and K
defined as in (2.2.7). Assume that

(i) for each i ∈ I, the set-valued map Ki : Ci×C−i ⇒Ci is weakly closed and its values are convex with
nonempty interior;

(ii) for each i ∈ I, the pair of set-valued maps (Ti, intKi) is weakly net-lower sign-continuous with respect
to the parameter pair (Ci,C−i).

Then,

(a) if for each i ∈ I and each x−i ∈C−i, Ti (·,x−i) : Ci ⇒ X∗i is properly quasi-monotone, w∗-compact
convex valued and upper sign-continuous, then QVI(T,K) is nonempty;

(b) if for each i ∈ I and each x−i ∈ C−i, Ti (·,x−i) : Ci ⇒ X∗i is quasi-monotone and locally upper
sign-continuous, then QVI∗(T,K) is nonempty.

Proof. We will prove each statement separately.
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(a) Since, for each i ∈ I and x−i ∈C−i, the set-valued map Ki (·,x−i) : Ci ⇒Ci is weakly compact convex
valued and Ti (·,x−i) : Ci ⇒ X∗i is properly quasi-monotone, it is known (see [91, Theorem 5.1 ]) that

M(Ti(·,x−i),Ki(xi,x−i)) 6= /0,

and thus ME(Ti(·,x−i), int(Ki(xi,x−i))) 6= /0. Finally, by Theorem 2.4.1(a), it follows that QVI(T,K)
is nonempty.

(b) Since, for each i ∈ I and each x−i ∈C−i, the set-valued map Ki (·,x−i) : Ci ⇒Ci is weakly compact
convex valued and Ti (·,x−i) : Ci ⇒ X∗i is quasi-monotone and locally upper sign-continuous, it
is known (see [17, Theorem 2.1]) that S∗(Ti(·,x−i),K(xi,x−i)) 6= /0 for every xi ∈ Ci. By Lemma
2.3.7(iii), we deduce that ME(Ti(·,x−i), intK(xi,x−i)) 6= /0, and so the conclusion follows by Theorem
2.4.1(b).

Remark 2.4.5 Note that the main result we presented in section 3.2, namely Theorem 2.2.6, is exactly part
(b) of Corollary 2.4.4.

2.4.2 Existence results for the general case with properly quasi-monotone opera-
tors

Our aim in this subsection is to state existence results for the quasi-variational inequalities QVI(T,K) and
QVI∗(T,K) without assuming the nonemptiness of the interior of the constraint sets Ki(·,x−i). The price to
pay for weakening this hypothesis is that the following theorem needs the nonemptiness of the parametrized
Minty solution sets M(Ti(·,x−i),Ki(xi,x−i)), and so the corresponding version of Corollary 2.4.4 will only
consider properly quasi-monotone operators.

Theorem 2.4.6 For each i ∈ I, let Ci be a nonempty weakly compact convex subset of Xi and let Ti :
Ci×C−i ⇒ X∗i and Ki : Ci×C−i⇒Ci be two set-valued maps with nonempty values. Consider T and K
defined as in (2.2.7). Assume that

(i) for each i ∈ I, the set-valued map Ki (·,x−i) : Ci×C−i⇒Ci is weakly closed with convex values;

(ii) for each i ∈ I, the pair of set-valued maps (Ti,Ki) is weakly net-lower sign-continuous with respect to
the parameter pair (Ci,C−i);

(iii) for each i ∈ I and each (xi,x−i) ∈Ci×C−i, M(Ti(·,x−i),Ki(xi,x−i)) 6= /0.

Then,

(a) if, for each i ∈ I and each x−i ∈C−i, Ti (·,x−i) : Ci ⇒ X∗i is upper sign-continuous and w∗-compact
convex valued, then QVI(T,K) is nonempty;

(b) if, for each i ∈ I and each x−i ∈ C−i, Ti (·,x−i) : Ci ⇒ X∗i is locally upper sign-continuous, then
QVI∗(T,K) is nonempty.

Proof. The proof follows the same arguments as that of Theorem 2.4.1, using directly the Minty solution
set M(Ti(·,x−i),Ki(xi,x−i)) and invoking [21, Lemma 3.1] instead of Lemma 2.3.7.
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Corollary 2.4.7 For each i ∈ I, let Ci be a nonempty weakly compact convex subset of Xi and let Ti :
Ci×C−i ⇒ X∗i and Ki : Ci×C−i⇒Ci be two set-valued maps with nonempty values. Consider T and K
defined as in (2.2.7). Assume that

(i) for each i ∈ I, the set-valued map Ki (·,x−i) : Ci ⇒Ci is weakly closed with convex values;

(ii) for each i ∈ I, the pair of set-valued maps (Ti,Ki) is weakly net-lower sign-continuous with respect to
the parameter pair (Ci,C−i);

(iii) for each i ∈ I and each x−i ∈C−i, Ti (·,x−i) : Ci ⇒ X∗i is properly quasi-monotone.

Then,

(a) if, for each i ∈ I and each x−i ∈C−i, Ti (·,x−i) : Ci ⇒ X∗i is upper sign-continuous and w∗-compact
convex valued, then QVI(T,K) is nonempty;

(b) if, for each i ∈ I and each x−i ∈ C−i, Ti (·,x−i) : Ci ⇒ X∗i is locally upper sign-continuous, then
QVI∗(T,K) is nonempty.

Proof. The proof is exactly the same as that of Corollary 2.4.4, invoking Theorem 2.4.6 instead of Theorem
2.4.1, and [91, Theorem 5.1].

2.5 Final comments
In this work, we have considered quasi-variational inequality problems over product sets considering the
assumptions of quasi-monotonicity and upper sign-continuity only in the component operators. One of the
most important difficulties, in obtaining the existence results for quasi-variational inequalities over product
sets, is that quasi-monotonicity and upper sign-continuity are not preserved by the product of set-valued
maps (see Examples 1 and 2). However, by introducing the new notion of net-lower sign-continuity, which
is used as a minimal hypothesis in obtaining the stability result of Proposition 2.3.9, and employing the
well known Kakutani fixed point theorem, we have overcome these difficulties and successfully established
the existence results for the solution of our problem in the infinite-dimensional setting.

Our existence results extend the approaches of the existing literature (see [22, 23, 24, 25, 26, 27, 28, 29,
30, 31]) to the quasi-monotone setting, but more importantly they open the door to powerful applications to
Nash equilibrium problems and generalized Nash equilibrium problems, since it is well known that they can
be reformulated as variational and quasi-variational inequalities over product sets, respectively (see, e.g.,
[32]). This application to game theory will be the main aim of a forthcoming work by the same authors.
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3.1 Introduction

The generalized Nash equilibrium problem (GNEP for short) was first introduced by Debreu [33] as early
as 1952. The GNEP is an extension of the classical Nash equilibrium problem (NEP for short) in which the
cost function and strategy set of each player depend on the decisions of the other players. GNEPs have
become an important part of applied mathematics research and attracted much more attention over the
years. In fact, GNEP is at a crossroad of several different disciplines, for example, economics, computer
science, engineering, mathematics and operations research. From a mathematical point of view, the GNEP
is a fundamental modeling tool for noncooperative multi-leader-follower games, for example in electricity
power markets (see [34], [35] and the references therein) and in Eco-Industrial Parks (see [2, 78, 77]).
We refer the reader respectively to [32] and [92] for a detailed overview on the history of the GNEP and
multi-leader-follower games, and their many other applications.

Formally, a GNEP consists of p players where each player ν ∈ I = {1, . . . , p} controls his strategy
variables xν ∈ Rnν . Let us denote by x the vector of all strategies

x = (x1, . . . ,xp) ∈ RN with N = n1 +n2 + . . .+np,

and by x−ν the strategy vector of the other players except the player ν . Following classical notations, we
often write (xν ,x−ν) instead of x to emphasize the ν-th player’s strategies within x. The strategy of player
ν belongs to a strategy set, i.e, xν ∈ Kν(x−ν), that depends on the strategy variables of the other players.

Given the strategies x−ν of the other players, the aim of player ν is to choose a strategy xν solving
Pν(x−ν)

min
xν

θν(xν ,x−ν),

s. t. xν ∈ Kν(x−ν),
(3.1.1)

where θν : RN → R is the objective function, also known as cost function, of player ν , and the set-valued
map Kν , known as the constraints map, takes values in a subset Cν of Rnν . The GNEP is the problem of
finding a vector x̄ ∈ RN so that, for all ν , x̄ν solves Pν(x̄−ν). Such a vector x̄ is called generalized Nash
equilibrium. A point x̄ is, therefore, a generalized Nash equilibrium if no player can unilaterally decrease
his objective function by choosing a different strategy. If the feasible sets Kν(x−ν) of each player do not
depend on the rival player’s strategies (and are thus constant sets), then the GNEP reduces to the NEP.

It is well known that when the objective functions θν(·,x−ν) are continuously differentiable and convex,
and the maps Kν are closed and convex valued for all ν , then GNEP(θ ,K) can be reformulated as quasi-
variational inequalities (see e.g. [32]). This reformulation has been extended in [36], thanks to the concept
of adjusted normal operator (see also [37, 38]), to the case where the objective functions θν(·,x−ν) are
semistrictly quasiconvex without assuming any differentiability, and the constraint sets are jointly convex.
In [36], authors also proved an existence result for semistrictly quasiconvex GNEP.

Some work has been already done concerning existence of solutions for GNEP, always under certain
specific structure the problems in (3.1.1) [32, 36, 40, 41, 42, 43, 44]. The most classical existence results for
GNEPs in the literature is due to Arrow and Debreu in [93] where it is assumed that the objective function
θν is continuous for any ν , for every x−ν , the function θν(·,x−ν) is quasiconvex, and the set-valued map
Kν is upper and lower semicontinuous. Latter on, Reny [94] (see also [95]) proved an existence result for
GNEP with discontinuous cost functions but assuming the so-called better-reply secure property.

Our main contribution in this article is to eliminate the continuity hypothesis of θν by replacing it by a
“continuity-type hypothesis” of the sublevel sets of the cost functions. Our approach is based on the concepts
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of the adjusted normal operator [37] and the net-lower sign-continuity, which was recently introduced in
[45], and on the reformulation of the GNEP in term of quasi-variational inequalities.

The work is organized as follows: Section 3.2 is dedicated to notations, definitions and preliminaries
while in Section 3.3 we prove our main existence results for generalized Nash equilibrium problem. Then
in Section 3.4 we show that our hypothesis are different, but complementary, with the ones used by
Arrow-Debreu and Reny. A short conclusion is given in Section 3.5.

3.2 Notation and preliminaries
In this section we first recall definitions and notations, which will be used. In the sequel Rp is equipped
with the Euclidian norm ‖·‖ associated with the scalar product 〈·, ·〉. For any x,y ∈ Rp, we set the
notation [x,y], ]x,y[, and ]x,y], respectively, for the segments [x,y] = {(1− t)x+ ty : t ∈ [0,1]}, ]x,y[ =
{(1− t)x+ ty : t ∈]0,1[}, and ]x,y] = {(1− t)x+ ty : t ∈ ]0,1]}. For x ∈ Rp and ρ > 0, we denote by
B(x,ρ) and B(x,ρ), the open ball and the closed ball of center x and radius ρ , respectively. We denote by
Sp the unit sphere of Rp. We denote the topological interior, the convex hull, and the closure of A⊆ Rp by
intA, convA, and clA, respectively.

Given an extended-real function f :Rp→R∪{∞}, the domain of f is the set dom f = {x ∈ Rp | f (x)<+∞}.
For any λ ∈ R, we denote by Sλ ( f ) and S<

λ
( f ) the sublevel set and the strict sublevel set, respectively,

associated with f and λ :

Sλ ( f ) = {x ∈ Rp : f (x)≤ λ} and S<
λ
( f ) = {x ∈ Rp : f (x)< λ} . (3.2.1)

If there is no confusion, we may omit the argument function f in the above notation, simply writing Sλ and
S<

λ
. We denote the set of global minimizers of f over a set K as argminK f . If K = Rp, we simply write

argmin f instead.
The function f : Rp→ R∪{∞} is said to be

- Quasiconvex on a convex subset of C ⊂ dom f if, for any x,y ∈C and λ ∈ [0,1], we have

f (λx+(1−λ )y)≤max{ f (x), f (y)} .

An equivalent and useful characterization of quasiconvexity is that the function f is quasiconvex on
dom f if and only if its sublevel set Sλ ( f ) is convex for any λ ∈ R.

- Semistrictly quasiconvex on a convex subset of C ⊂ dom f , if f is quasiconvex and for any x,y ∈C,

f (x)< f (y) implies f (z)< f (y) for all z ∈]x,y[.

Roughly speaking, a semistrictly quasiconvex function is a quasiconvex function which does not admit
“flat part”, except possibly for argmin f .

Let us now recall from [37] the fundamental concept of adjusted sublevel set which provides, for
quasiconvex functions, more information that the usual concepts of sublevel sets.

Definition 3.2.1 (Adjusted sublevel set) Given a quasiconvex function f : Rp→ R∪{∞}, the adjusted
sublevel set is defined by

Sa
f (x) = S f (x)∩B(S<f (x),ρx),
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where ρx = dist(x,S<f (x)), if x /∈ argmin f , and Sa
f (x) = S f (x) otherwise. Here

B(S<f (x),ρx) = cl
(

S<f (x)+B(0,ρx)
)

denotes the closed ρx-neighbourhood of the set strict sublevel set S<f (x).

It is important to notice that one always has the following inclusions, for all x ∈ Rp:

S<f (x)⊆ Sa
f (x)⊆ S f (x).

and that
f is quasiconvex ⇐⇒ Sa

f (x) is convex, ∀x ∈ dom f .

In [37], the concept of adjusted sublevel sets and its normal operator have proved to be useful on the
study of quasiconvex programming.

Definition 3.2.2 (Normal operator) Given a quasiconvex function f : Rp→ R∪{∞}, the normal operator
associated with f is a set-valued map Na

f : Rp⇒Rp which is given as

Na
f (x) =

{
z ∈ Rp : 〈z,y− x〉 ≤ 0,∀y ∈ Sa

f (x)
}
= (Sa

f (x)−{x})◦,

where (Sa
f (x)−{x})◦ is the (negative) polar set of the Sa

f (x)−{x}.
Observe that, in the case of a semistrictly quasiconvex function, Na

f (x) is simply the normal cone the
sublevel set S f (x) or to the strict sublevel set S<f (x), that is for any x /∈ argmin

Rp
f , Na

f (x) = N f (x) = N<
f (x).

It is worth mentioning the following definition of upper sign-continuity which was introduced by
Hadjisavvas [96].

Definition 3.2.3 (Upper sign-continuity) Let C be a nonempty convex subset of Rp and let T : C⇒Rp be a
set-valued map with nonempty values. We say that T is upper sign-continuous on C if for every x,y ∈C, the
following implication holds:(

∀t ∈ ]0,1[, inf
x∗t ∈T (xt)

〈x∗t ,y− x〉 ≥ 0
)

=⇒ sup
x∗∈T (x)

〈x∗,y− x〉 ≥ 0,

where xt := (1− t)x+ ty.

Let us recall from [87] the useful definitions of Lower limit and Upper limit in the sense of Kuratowski:
for any sequence (Sn)n of subsets of Rn,

x ∈ liminf
n

Sn ⇔∃(xn)n ⊂ Rn such that x = lim
n→∞

xn and xn ∈ Sn,∀n.

x ∈ limsup
n

Sn ⇔

{
∃(Snk)k subsequence of (Sn)n and ∃(xnk)k ⊂ Rn

such that x = lim
k→∞

xnk and xnk ∈ Snk ,∀k.

The concept of Mosco-convergence of a sequence of subsets has been introduced in [97] to study the con-
vergence properties of the solutions of variational inequalities. Let us recall the following characterization
of the Mosco-convergence of a sequence of sets:
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Definition 3.2.4 (Mosco-convergence) Let S be a subset of Rp and (Sn)n be a sequence of subsets of Rp.
We say that the sequence (Sn)n converges to a subset S in the sense of Mosco, if both of the following
equalities hold:

Lim sup
n

Sn ⊂ S and S⊂ Lim inf
n

Sn.

Recall that, for a sequence of sets (Sn)n and a sequence of set-valued maps Tn : Rp⇒Rp we define

Limsup
Sn3xn→x

Tn(xn) :=

y ∈ Rp :
∃(xn)n converging to x with xn ∈ Sn

and a sequence (yn)n with yn ∈ Tn(xn),
such that y is a cluster point of (yn)n.

 . (3.2.2)

Lemma 3.2.5 Let (Kn)n∈N be a sequence of convex closed sets of RN such that

(i) int(Kn) 6= /0, for all n ∈ N;

(ii) (Kn)n∈N Mosco-converges to a set K of RN with int(K) 6= /0.

Then, for every y ∈ int(K) and every sequence (yn)n∈N converging to y, there exists n0 ∈N large enough
such that

yn ∈ int(Kn), ∀n≥ n0.

Proof. Let y ∈ int(K) and (yn)n be a sequence converging to y. For any n, let us define zn = projKn
(yn).

Note that
‖zn− y‖ ≤

∥∥zn−projKn
(y)
∥∥+∥∥y−projKn

(y)
∥∥≤ ‖yn− y‖+d(y,Kn)→ 0.

Thus, the sequence (zn)n converges to y. Assume that the desired condition doesn’t hold, that is, there
exists a subsequence (ynk)k of (yn) such that ynk /∈ int(Knk), for any k. This yields that znk ∈ bd(Knk) for every
k ∈ N. By Separating Hyperplane Theorem, we have that for each k ∈ N, there exists ζnk ∈ NKnk

(znk)∩SN .
Without loss of generality, we may assume that (ζnk)k converges to ζ ∈ SN .

By [87, Corollary 7.6.5], we deduce that ζ ∈ NK(y), which is a contradiction since NK(y) = {0}.

For a nonempty subset C of Rn and a set-valued map T : C⇒Rn, the Stampacchia variational inequality
associated to T and C is

find x ∈C such that ∃x∗ ∈ T (x) with 〈x∗,y− x〉 ≥ 0,∀y ∈C.

We denote by S(T,C) its solution set.
Also, recall that the Minty variational inequality associated to T and C is

find x ∈C such that 〈y∗,y− x〉 ≥ 0,∀y ∈C,∀y∗ ∈ T (y).

The solution set of the Minty variational inequality problem will be denoted by M(T,C). It is not hard
to see that M(T,C) is convex and closed, provided that C is convex and closed.

Finally, for C and T as before, and for a set-valued map K : C⇒C, the quasi-variational inequality
associated to T and K is

find x ∈ K(x) such that ∃x∗ ∈ T (x) with 〈x∗,y− x〉 ≥ 0,∀y ∈ K(x).

The associated solution set will denoted by QVI(T,K).
One of the main advantages of the normal operator approach is that it provides the following sufficient

optimality condition for quasiconvex optimization.
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Proposition 3.2.6 ([98]) Let f : Rp→ R∪{∞} be a quasiconvex function, radially continuous on dom f ,
and C be a nonempty subset of dom f . If C ⊆ int(dom f ), then any solution of the Stampacchia variational
inequality defined by the operator Na

f \{0} on C is a global minimizer of f over C.
This is a very powerful result since it allows to recover the perfect situation of convex optimization

whereas a first order-type condition turns out to be sufficient for global optimality. Nevertheless the fact
that radial continuity is asked makes it less useful for the purpose of this work where our aim is to reduce
the continuity assumptions which will be made on the cost functions of the players. Therefore we state, in
the forthcoming Proposition 3.2.9, the same kind of sufficient optimality conditions but under alternative
hypothesis.

Definition 3.2.7 (sub-boundarily constant functions) A function f : Rp→ R is said to be sub-boundarily
constant on a subset C if, for every x ∈C, one has that

f is constant over Sa
f (x)\ intSa

f (x). (3.2.3)

Remark 3.2.8 The reader can easily verify the following observations concerning the above definition:

i) Note that due to the special structure of the adjusted sublevel sets Sa
f , the subset Sa

f (x)\ intSa
f (x) has

nothing to do in general with the level set L f (x) = {y ∈ Rn : f (y) = f (x)}, even whenever f is
quasiconvex.

ii) If f is radially continuous, which is one of the hypothesis considered in Proposition 3.2.6, then f is
sub-boundarily constant on dom f .

iii) Also, if p = 1, that is f is defined over R, and if f is quasiconvex, then f must be sub-boundarily
constant on its domain.

iv) Note that, if f is sub-boundarily constant, then for every λ > infRp f , the sublevel sets Sλ ( f ) must
have nonempty interior.

Proposition 3.2.9 Let f : Rp→ R be a quasiconvex and sub-boundarily constant function, and C ⊂ Rp be
a convex set. Then, any solution of the Stampacchia variational inequality defined by the operator Na

f \{0}
on C is a global minimizer of f over C, that is

S
(

Na
f \{0},C

)
⊂ argmin

C
f .

Proof. Let x̄ ∈ S
(

Na
f \{0},C

)
and x∗ ∈ Na

f (x̄)\{0} be such that

〈x∗,y− x̄〉 ≥ 0, ∀y ∈C. (3.2.4)

Since Sa
f (x̄) and C are convex, the above inequality yields that x̄ ∈ C \ int(Sa

f (x̄)). Now, assume, for a
contradiction, that there exists y ∈ C such that f (y) < f (x̄). Then, y ∈ S<f (x̄) ⊂ Sa

f (x̄). Combining the
definition of Na

f (x)\{0} together with (3.2.4), one immediately have 〈x∗,y− x̄〉= 0.
Now since f is sub-boundarily constant on dom f , y is also an element of intSa

f (x̄) and thus there exists
ε > 0 such that B(y,ε) is included into Sa

f (x̄). Since x∗ 6= 0 there exists d ∈ Rn such that 〈x∗,d〉> 0. Then
for t > 0 small enough, z = y+ td is an element of B(y,ε) and thus of Sa

f (x̄) and 〈x∗,z− x̄〉 ≤ 0. But this is
impossible since 〈x∗,z− x̄〉= 〈x∗,y− x̄〉+ t〈x∗,d〉> 0. As a conclusion and since y is arbitrary on C, this
proves that f (x̄) = minC f .
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3.3 Existence results of GNEP
In this section we present our main results, namely, the existence of solutions for the GNEP. Let us set I,
Cν , C−ν , θν and Kν as they are defined in Section 4.1 when we introduce the optimization problems (3.1.1).
Moreover let us define the following notations, which will be used in the sequel:

C := ∏
ν∈I

Cν ; C−ν := ∏
ν ′ 6=ν ,ν ′∈I

Cν ′, ν ∈ I. (3.3.1)

and

θ(x) := ∏
ν∈I

θν(xν ,x−ν); K(x) := ∏
ν∈I

Kν(x−ν). (3.3.2)

In what follows, we will use the notation GNEP(θ ,K) to denote the generalized Nash game induced
by the problems (3.1.1), as well as the solution set of this game. We divided our results in two cases: (1)
we consider the case of the general constraints set-valued maps Kν , for all ν ∈ I; and (2) we consider the
particular case with nonemptiness assumption on the interior of the values of the constraints set-valued maps
Kν , for all ν ∈ I. Under this extra assumption, we are able to deduce Corollary 3.3.8, which establishes
the main goal of this work: to deduce the existence of solutions for GNEP(θ ,K) under continuity-like
hypotheses over the sublevel sets of the cost functions θν . Proofs are based on the concept of adjusted
normal operator [37] and a reformulation of the GNEP in terms of quasi-variational inequalities.

3.3.1 Case of general constraints set-valued maps
We open this subsection by establishing its main result, where existence of solutions of GNEP(θ ,K) is
deduced in terms of a continuity-like property of the normal operators of the cost functions θν .

Theorem 3.3.1 For any ν ∈ I, let Cν be a nonempty, compact and convex subset of Rnν , θν : RN → R and
Kν : C−ν ⇒Cν . Then, the GNEP(θ ,K) admits a generalized Nash equilibrium if

(i) for every x−ν ∈C−ν , the function θν(·,x−ν) is quasiconvex, lower semicontinuous and sub-boundarily
constant on dom f ;

(ii) for every x ∈ RN , the intersection Cν ∩ argminRnν θν(·,x−ν) = /0;

(iii) the set-valued map Kν : C−ν ⇒Cν is closed with compact convex values;

(iv) for every sequence (xn
−ν)n∈N ⊆C−ν converging to x−ν and every yν ∈ Kν(x−ν) one has

Na
θν (·,x−ν )

(yν)⊆ Limsup
Kν(xn

−ν)3yn
ν→yν

Na
θν (·,xn

−ν )
(yn

ν). (3.3.3)

The proof of Theorem 3.3.1 is based on a quasi-variational inequality reformulation of the initial GNEP
and the net-lower sign-continuity concept will play a fundamental role into the proof. Let us first recall the
definition of the net-lower sign-continuity of a couple of set-valued maps (see [45, Definition 3.1]).

Definition 3.3.2 (net-lower sign-continuity) Let (U,τU) and (Λ,τΛ) be two topological spaces, Y be a
Banach space and τY be a locally convex topology consistent with the duality 〈Y,Y ∗〉. Suppose that all



3.3. Existence results of GNEP 44

three topologies are first countable. Let T : Y ×Λ⇒Y ∗ and K : U×Λ⇒Y be two set-valued maps. Then,
the pair (T,K) is said to be (τU × τΛ)-τY net-lower-sign continuous with respect to the parameter pair
(U,Λ) at (µ,λ ) ∈U ×Λ and y ∈ K(µ,λ ) if for every sequence (µn,λn)n ⊆U ×Λ converging to (µ,λ ),
every z ∈ clτY (K(µ,λ )) and every selection (zn)n of (clτY (K(µn,λn)))n τY -converging to z, the following
condition holds:

If for every subsequence (µnk ,λnk)k of (µn,λn)n and every selection (ynk)k of
(K(µnk ,λnk))k τY -converging to y one has that

limsup
k

sup
y∗nk
∈T (ynk ,λnk )

〈y∗nk
,znk− ynk〉 ≤ 0,

then, sup
y∗∈T (y,λ )

〈y∗,z− y〉 ≤ 0.

We simply say that (T,K) is (τU × τΛ)-τY net-lower sign-continuous with respect to the parameter pair
(U,Λ) if it is so at each (µ,λ ) ∈U×Λ and each y ∈ K(µ,λ ).

The definition we present here is in fact a characterization of the original definition given in [45], which
is given with generalized sequences without the requirement of first countable topologies. However, in our
setting, it is enough to give the sequential characterization as definition.

While the definition of net-lower sign-continuity may be hard to understand at first glance, it should be
interpreted as follows. The topological spaces U and Λ must be understood as the parameters set of the
variational inequality of the form S(T (·,λ ),K(µ,λ )). For a given parameter pair (λ ,µ), a point y∈K(λ ,µ)
and a point z ∈ cl(K(µ,λ )), one wants to estimate the value of supy∗∈T (y,λ )〈y∗,z− y〉, when (λ ,µ) and z
are being approximated by (generalized) sequences (λn,µn) and (zn), respectively. Then, the definition
of net-lower sign-continuity says that, if regardless of the approximating (generalized) subsequences
(µnk ,λnk) and (znk), and regardless the way of approximating y by a (generalized) sequence (ynk), one has
that supy∗nk

∈T (ynk ,λnk )
〈y∗nk

,znk − ynk〉 is nonpositive in the limit, then the value we are interested in, that is
supy∗∈T (y,λ )〈y∗,z− y〉, must remain nonpositive. This is a very weak notion of continuity, as it is discussed
in [45]. In practice, under some mild complementary conditions, when (zn) is a (generalized) sequence of
solutions of S(T (·,λn),K(µn,λn)), net-lower sign-continuity yields that the limit point z is also a solution
of S(T (·,λ ),K(µ,λ )).

Finally, in the forthcoming proof, we will use that in fact inclusion (3.3.3) entails net-lower sign-
continuity when Λ =C−ν , U = {0} and when, for λ = x−ν , K(µ,λ ) is replaced by Kν(x−ν) and T (·,λ ) is
set as Na

θν (·,x−ν )
(·)∩Snν

. This is given by [45, Proposition 3.3].
The following lemma will be useful to prove Theorem 3.3.1.

Lemma 3.3.3 Let (Λ,τΛ) and (U,τU) be two first countable topological spaces and Y be a Banach space.
Let T : Y ×Λ⇒Y ∗ and K : U×Λ⇒Y be two set-valued maps with nonempty values. Assume that (T,K)
is net-lower sign-continuous. Then (convT,K) and (cl(convT ),K) are net-lower sign-continuous, where
convT (y) = conv(T (y)) and cl(convT )(y) = cl(conv(T (y))).

Proof. Let (µn,λn)n be a sequence in U×Λ converging to (µ,λ ), y ∈ K(µ,λ ) and let (zn)n be a selection
of (cl(K(µn,λn))n converging to z ∈ cl(K(µ,λ )), and suppose that for every subsequence (µnk ,λnk)k of
(µn,λn)n and every selection (ynk)k of (K(µnk ,λnk))k τY -converging to y one has that

limsup
k

sup
y∗nk
∈convT (ynk ,λnk )

〈y∗nk
,znk− ynk〉 ≤ 0.



45 Chapter 3. Generalized Nash Equilibrium Problems

This implies

limsup
k

sup
y∗nk
∈T (ynk ,λnk )

〈y∗nk
,znk− ynk〉 ≤ 0.

Since (T,K) is net-lower sign-continuous, we deduce that

sup
y∗∈T (y,λ )

〈y∗,z− y〉 ≤ 0.

By noting that z− y is fixed, we deduce that

sup
y∗∈convT (y,λ )

〈y∗,z− y〉= sup
y∗∈T (y,λ )

〈y∗,z− y〉 ≤ 0,

proving that (convT,K) is net-lower sign-continuous. The proof for (convT,K) is similar.

Now we are ready to prove our theorem.

Proof of Theorem 3.3.1. Let us define the following set-valued map F : C ⇒ RN which, for any x =
(x1, . . . ,xp) ∈C1× . . .×Cp, is given by

F(x) := F1(x)× . . .×Fp(x),

where

Fν : Cν ×C−ν ⇒ Rnν

(xν ,x−ν) 7→ conv
(

Na
θν (·,x−ν )

(xν)∩Snν

)
.

Let us observe that, according to [99, Proposition 4.4] and [100, Proposition 2.2], the operator Fν(·,x−ν)
is upper sign-continuous with nonempty convex compact values on Cν .

By hypothesis (iv), for every sequence (xn
−ν)n ⊂C−ν converging to x−ν and every yν ∈ K−ν(x−ν) we

have that
Na

θν (·,x−ν )
(yν)⊆ Limsup

Kν (xn
−ν )3yn

ν→yν

Na
θν (·,xn

−ν )
(yn

ν).

Now, we claim that

F̂ν(yν ,x−ν)⊆ Limsup
Kν (xn

−ν )3yn
ν→yν

F̂ν(yn
ν ,x

n
−ν), (3.3.4)

where

F̂ν : Cν ×C−ν ⇒ Rnν

(yν ,x−ν) 7→ Na
θν (·,x−ν )

(yν)∩Snν
.

Indeed, let wν ∈ F̂ν(yν). We know then that

wν ∈ LimsupKν (xn
−ν )3yn

ν→yν
Na

θν (·,xn
−ν )

(yn
ν),

and so, there exist a sequence (yn
ν)n converging to yν with yn

ν ∈ Kν(xn
−ν) and a sequence (wn

ν)n with
wn

ν ∈ Na
θν (·,xn

−ν )
(yn

ν) such that wν is a cluster point of (wn
ν)n, namely, there exists a subsequence (wnk

ν )k of

(wn
ν)n such that wnk

ν → wν .
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Let us define the sequence ŵn
ν = 1

‖wn
ν‖
·wn

ν . Clearly ŵn
ν ∈ F̂ν(yn

ν ,x
n
−ν). Moreover, since ‖wν‖> 0,

ŵnk
ν =

1∥∥wnk
ν

∥∥ ·wnk
ν →

1
‖wν‖

·wν = wν .

Therefore, wν ∈ LimsupKν (xn
−ν )3yn

ν→yν
F̂ν(yn

ν ,x
n
−ν), proving our claim.

Now, it is direct that

Limsup
Kν (xn

−ν )3yn
ν→yν

F̂ν(yn
ν ,x

n
−ν)⊆ conv

(⋃
Limsup

k
F̂ν(y

nk
ν ,xnk

−ν)

)
,

where the union is taken over all subsequences
(
xnk
−ν

)
k of

(
xn
−ν

)
n and all selections

(
ynk

ν

)
k of

(
Kν

(
xnk
−ν

))
k

converging to yν . Hence,

F̂ν(yν ,x−ν)⊆ conv
(⋃

Limsup
k

F̂ν(y
nk
ν ,xnk

−ν)

)
.

This last inclusion yields, by [45, Proposition 3.3], that (F̂ν ,Kν) is net-lower sign-continuous. Using Lemma
3.3.3, we get that (Fν ,Kν) is net-lower sign-continuous.

Now, fix x ∈ C. We will prove that M(Fν(·,x−ν),Kν(x−ν)) is nonempty. Since θν(·,x−ν) is lower
semicontinuous and Kν(x−ν) is compact, we get that the set Aν := argminKν (x−ν )θν(·,x−ν) is nonempty
and closed. Let α := min

Kν (x−ν )
θν(·,x−ν) and let us denote by S<α the strict sublevel set of θν(·,x−ν) of level

α . Since Kν(x−ν)∩ argmin
Rnν

θν(·,x−ν) = /0, we have that S<α is nonempty and so, we may choose x̄ν ∈ Aν

such that
dist(x̄ν ,S<α ) = min

yν∈Aν

dist(yν ,S<α )

Note that, with this construction, x̄ν ∈ Sa
θν (·,x−ν )

(yν) for all yν ∈ Kν(x−ν). Indeed, on one hand if
θν(yν ,x−ν)> α , then

x̄ν ∈ Aν = Sα(θν(·,x−ν))⊂ S<
θν (·,x−ν )

(yν)⊂ Sa
θν (·,x−ν )

(yν).

On the other hand, if θν(yν ,x−ν) = α , then

dist(x̄ν ,S<α )≤ dist(yν ,S<α ) =: ρyν

and thus, x̄ν ∈ Sα ∩B(S<α ,ρyν
) = Sa

θν (·,x−ν )
(yν).

Now, choose yν ∈ Kν(x−ν) and y∗ν ∈ Fν(yν ,x−ν). Since x̄ν ∈ Sa
θν (·,x−ν )

(yν), we have that

〈y∗ν ,yν − x̄ν〉 ≥ 0.

Then, all the hypotheses in [45, Theorem 4.6] are fulfilled, showing that the quasi-variational inequality
QVI(F,K) admits at least a solution.

Let x̄ be such a solution. We claim that x̄ ∈ GNEP(θ ,K), or equivalently that for any ν ∈ I, x̄ν is
an element of Aν (see notation above). Fix ν ∈ I. Since Sa

θν (·,x̄−ν )
(x̄ν) has nonempty interior thanks to

hypotheses (i) and (ii), one has that Na
θν̄ (·,x̄−ν̄ )

(x̄ν̄) is a pointed cone, and so Fν̄(x̄) ⊂ Na
θν̄ (·,x̄−ν̄ )

(x̄ν̄)\{0}.
(see, e.g., [36, Lemma 3.1]). Therefore

x̄ν̄ ∈ S
(

Na
θν̄ (·,x̄−ν̄ )

\{0} ,Kν̄(x̄−ν̄)
)
.

Then, Proposition 3.2.9 yields that x̄ν ∈ Aν , proving our claim and completing the proof.
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3.3.2 Existence results of GNEP for constraints maps with nonempty interior val-
ues

Our aim in this subsection is to state existence results for the generalized Nash equilibrium problem
GNEP(θ ,K) in the same line that Theorem 3.3.1, but profiting from the extra hypothesis of nonemptiness
of the interior of the constraint sets Kν(x−ν), in order to weaken the continuity-type hypothesis. We start
this section by presenting a first result, very similar to Theorem 3.3.1.

Theorem 3.3.4 For any ν ∈ I, let Cν be a nonempty, compact and convex subset of Rnν , θν : RN → R and
Kν : C−ν ⇒Cν . Then, the GNEP(θ ,K) admits a generalized Nash Equilibrium if

(i) for every x−ν ∈C−ν , the function θν(·,x−ν) is quasiconvex, lower semicontinuous and sub-boundarily
constant on dom f ;

(ii) for every x ∈ RN , the intersection Cν ∩ argminθν(·,x−ν) = /0;

(iii) the set-valued map Kν : C−ν ⇒Cν is closed and its values are compact and convex, with nonempty
interior;

(iv) for every sequence (xn
−ν)n∈N ⊆C−ν converging to x−ν and every yν ∈ int(Kν(x−ν)) one has

Na
θν (·,x−ν )

(yν)⊆ Limsup
intKν(xn

−ν)3yn
ν→yν

Na
θν (·,xn

−ν )
(yn

ν).

Proof. Let us define the set-valued maps F,Fν , F̂ and F̂ν as we did in the proof of Theorem 3.3.1. Following
the same strategy we did before, we can prove that for every sequence (xn

ν)n ⊂C−ν converging to xν and
every yν ∈ int(Kν(x−ν)) one has that

F̂ν(yν ,x−ν) = Limsup
intKν (xn

−ν )3yn
ν→yν

F̂ν(yn
ν ,x

n
−ν),

and so, we can also deduce that (F̂ν , intKν) and (Fν , intKν) are both net-lower sign-continuous.
In this case, following the same arguments as in proof of Theorem 3.3.1, we can show that ME(Fν(·,x−ν), intKν(x−ν))

is nonempty, where ME(T,K) stands for the extended-Minty variational inequality defined by the map T
and the subset K (see [45]).

Then, all the hypotheses of in [45, Theorem 4.1] are fulfilled, showing that there exists a solution x̄ of
QVI(F,K).

Let x∗ ∈ F(x̄) be such that 〈x∗,y− x̄〉 ≥ 0, for any y ∈ K(x̄). Since K(x̄) = ∏ν∈I Kν(x̄−ν), it is not hard
to realize that for every ν ,

〈x∗ν ,yν − x̄ν〉 ≥ 0, ∀yν ∈ Kν(x̄−ν).

In particular, combining again hypotheses (i) and (ii), and an adaptation of [36, Lemma 3.1], we obtain
that x∗ν 6= 0 and therefore the above inequality is strict for every yν ∈ intKν(x̄−ν). Now, assume that x̄ν is not
a minimizer of θν(·, x̄−ν) on Kν(x̄−ν). Then, there exists x′ν ∈Kν(x̄−ν) such that θν(x′ν , x̄−ν)< θν(x̄ν , x̄−ν)
and so

x′ν ∈ int
(

Sa
θν (·,x̄−ν )

(x̄ν)
)
.

This yields that there exists yν ∈ int
(

Sa
θν (·,x̄−ν )

(x̄ν)
)
∩ intKν(x̄−ν) and so

〈x∗ν ,yν − x̄ν〉 ≤ 0,
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which is a contradiction. We conclude then that x̄ν ∈ argminKν (x̄−ν )θν(·, x̄−ν). Since the index ν is arbitrary,
x̄ is a solution of GNEP(θ ,K).

Our aim now, is to replace the technical assumption (iv) in Theorem 3.3.4 by a more natural one which
will use the following convergence concept.

Definition 3.3.5 Let ( fn)n be a sequence of quasiconvex functions. We will say that:

1. the sequence ( fn)n sub-converges to a function f at the point y if there is a sequence (yn)n∈N ⊆ RN

converging to y such that Sa
fn(yn) Mosco-converges to Sa

f (y);

2. the sequence ( fn)n sub-converges to a function f on the set K if ( fn)n sub-converge to f at any y ∈ K.

Lemma 3.3.6 Let ( fn)n be a sequence of quasiconvex, lower semi-continuous functions and let (Kn)n∈N be
a sequence of nonempty closed convex subsets of RN such that

(i) int(Kn) 6= /0, for all n ∈ N;

(ii) (Kn)n∈N Mosco-converges to a subset K of RN with int(K) 6= /0;

(iii) ( fn)n sub-converges to a function f on int(K).

Then, for every y ∈ int(K),
Na

f (y)⊆ Limsup
int(Kn)3yn→y

Na
fn(yn).

Proof. Fix y ∈ int(K). Let (yn)n∈N be the sequence given by hypothesis (iii). Wlog, by Lemma 3.2.5, we
can assume that yn ∈ int(Kn) for all n ∈ N. Let us define the sets

∀n, Cn = Sa
fn(yn)∩Kn and C = Sa

f (y)∩K.

We claim that (Cn)n∈N Mosco-converges to C.
First, on the one hand, let x be any element of LimsupCn. Then, there exists a sequence (xn)n such

that xn ∈ Sa
fn(yn)∩Kn for every n ∈ N and x is a cluster point of this sequence. This yields that x ∈

LimsupnSa
fn(yn)⊂ Sa

f (y) and x ∈ LimsupnKn ⊂ K. Thus, x ∈C, proving that,

LimsupnCn ⊂C.

On the other hand, choose x ∈ C′ = intK ∩ Sa
f (y), which is nonempty since y ∈ C′. Then, we have that

x ∈ Sa
f (y) ⊂ Liminfn Sa

fn(yn) and so, there exists a sequence (xn)n converging to x with xn ∈ Sa
fn(yn). By

Lemma 3.2.5, there exists n0 ∈ N large enough such that for all n≥ n0, xn ∈ intKn. Thus, for all n≥ n0, we
have that xn ∈Cn, which proves that x ∈ LiminfnCn, and so

C′ ⊂ Liminf
n

Cn.

Note that C′ is dense in C, that is, cl(C′) = C. Indeed, choose x ∈ C. Then, since x ∈ K and y ∈ intK,
convexity of K yields that the open segment ]x,y] is included in intK. Since Sa

f (y) is also convex, we
have that ]x,y]⊂ Sa

f (y), showing that ]x,y]⊂C′. This proves that x ∈ cl(C′) and, since x is arbitrary, that
C = cl(C′). Since (Cn)n is a sequence of closed sets, then LiminfnCn is also closed, and so

C = cl(C′)⊂ Liminf
n

Cn.
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This proves our claim. Then, [87, Corollary 7.6.5] entails that

NC(y) = Limsup
Cn3y′n→y

NCn(y
′
n).

Now, since y ∈C ⊂ Sa
f (y) (which are both convex sets) then Na

f (y) ⊂ NC(y). Furthermore, for each
n ∈ N and each y′n ∈ int(Kn)∩Sa

fn(yn) we have that

y′n ∈ bd(Sa
fn(yn)) =⇒ Sa

fn(y
′
n)⊂ Sa

fn(yn). (3.3.5)

Indeed, choose y′n ∈ bd(Sa
fn(yn)). First, by Definition 3.2.1, one has that y′n ∈ S fn(yn)( fn) and so f (y′n) ≤

f (yn). If fn(y′n)< fn(yn), then

Sa
fn(y
′
n)⊂ S fn(y′n)( fn)⊂ S<fn(yn)

( fn)⊂ Sa
fn(yn),

and thus, the implication (3.3.5) holds. Now, if fn(y′n) = fn(yn), then, denoting by α the common value,
Definition 3.2.1 entails that

ρ
′ := dist(y′n,S

<
α ( fn))≤ dist(yn,S<α ( fn)) =: ρ,

and thus,
Sa

fn(y
′
n) = Sα( fn)∩B(S<α ( fn),ρ

′)⊂ Sα( fn)∩B(S<α ( fn),ρ) = Sa
fn(yn).

This proves that implication (3.3.5) always holds. Therefore, again by locality of normal cones, for any
y′n ∈ int(Kn)∩Sa

fn(yn), we can write

NCn(y
′
n) = (S fn(yn)− y′n)

◦ ⊂

{
Na

fn(y
′
n) if y′n ∈ bd

(
Sa

fn(yn)
)

{0} otherwise.

Either way, we always have that NCn(y
′
n)⊆ Na

fn(y
′
n). Finally, defining the sets An := int(Kn)∩Sa

fn(yn)
and applying Lemma 3.2.5, we can write

Na
f (y) = NC(y)

= Limsup
Cn3y′n→y

NCn(y
′
n)

= Limsup
An3y′n→y

NCn(y
′
n)⊆ Limsup

An3y′n→y
Na

fn(y
′
n)

⊆ Limsup
int(Kn)3y′n→y

Na
fn(y
′
n).

The conclusion follows.

Remark 3.3.7 As one can observe, in the above proof, one can use a weaker version of assumption (iii)
that is the sub-convergence hypothesis. Indeed Lemma 3.3.6 still hold true if one only assume that for any
y ∈ int(K), the sequence ( fn)n sub-converges at y to a certain quasiconvex function fy. Then of course the
conclusion would be that, for every y ∈ int(K),

Na
fy(y)⊆ Limsup

int(Kn)3yn→y
Na

fn(yn).
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Now, combining Lemma 3.3.6 and Theorem 3.3.4, we immediately obtain the following existence result
of solution for a generalized Nash equilibrium problem, which is the result we announced at the beginning
of the article.

Corollary 3.3.8 For any ν ∈ I, let Cν be a nonempty, compact and convex subset of Rnν , θν : RN →R and
Kν : C−ν ⇒Cν . Then, the GNEP(θ ,K) admits a generalized Nash Equilibrium if

(i) for every x−ν ∈C−ν , the function θν(·,x−ν) is quasiconvex, lower semicontinuous and sub-boundarily
constant on dom f ;

(ii) for every x ∈ RN , then the intersection Cν ∩ argminθν(·,x−ν) = /0;

(iii) the set-valued map Kν : C−ν ⇒ Cν is closed and its values are compact convex with nonempty
interior;

(iv) for every sequence (xn
−ν)n∈N converging to x−ν , the sets Kν(xn

−ν) Mosco-converge to Kν(x−ν);

(v) for every sequence (xn
−ν)⊆C−ν converging to some x−ν , the sequence θν(·,xn

−ν) sub-converges to
θν(·,x−ν) on intKν(x−ν).

3.4 Comparisons with existing results

In the previous section several existence theorems have been proved for quasiconvex generalized Nash
equilibrium problems. It is nevertheless important to be able to compare the considered hypotheses to the
ones assumed in the classical result of Arrow-Debreu for GNEP or in the discontinuous approach of Reny
for NEP. Each of the forthcoming subsections is thus devoted to the comparison between our results and
these two baseline existence results.

3.4.1 Continuity vs convergence of adjusted sublevel sets
In their seminal work, Arrow and Debreu [93] proved the existence of generalized Nash equilibrium
assuming, for any player ν , the quasiconvexity of the cost function θν(xν ,x−ν) with respect to the player’s
variable xν and the continuity of this cost function with respect to both xν and x−ν . Thus to understand
the extent and limitation of our contributions, this subsection is devoted to comparison of this continuity
assumption to our new hypotheses ((iv) in Theorem 3.3.1 and (v) in Corollary 3.3.8).

In order to simplify the context of the comparison, one can consider problems where, for any ν ,
Kν(x−ν) = Cν and Cν has nonempty interior. Namely, we want to now weather for a function θ : Cν ×
C−ν → R which is quasiconvex and lower semicontinuous in the first variable, the continuity with respect
of its second variable is weaker or stronger than the Mosco-convergence of its adjusted sublevel sets in the
sense of hypothesis (v) of Corollary 3.3.8.

The main conclusion is that these two hypotheses are non-comparable, since it is possible to construct
examples where one of them is verified, but not the other one.

First it is an immediate to construct discontinuous functions satisfying the Mosco-convergence of the
sublevel sets. Just consider, for example, f : R2→ R defined by

f (x,y) =
{

x if x≤ 0
x+1 otherwise
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Let us now describe the converse case, that is a continuous function failing the convergence of adjusted
sublevel sets.

Example 3 Consider the function f : [0,1]2× [−1,1]→ R given by

f (x,y) =


‖x‖∞ if ‖x‖∞ ∈ [0,1/3]
1
3 + |y|

(
‖x‖∞− 1

3

)
if ‖x‖∞ ∈ (1/3,2/3)(

‖x‖∞− 2
3

)
+ |y|+1

3 if ‖x‖∞ ∈ [2/3,1] .

−0.2 0.2 0.4 0.6 0.8 1
−0.2

0.2

0.4

0.6

0.8

1

‖x‖∞

f (x,y)

Figure 3.4.1: f with respect to ‖x‖∞. Plotted for
y = 1 (red), y = 2/3,1/3 (dashed blue), and y = 0
(green).

0 0.2 0.4 0.6 0.8 1 0

0.5

1
0

0.5

Figure 3.4.2: f (x,y) for y = 1/2.

It is not hard to realize that f is continuous with respect to both variables x and y, that it is quasicon-
vex in the first coordinate x = (x1,x2), and that for every y 6= 0, the sublevel sets coincide with the sublevel
sets of the supremum norm, that is,

S f (·,y)(x) = S‖·‖
∞
(x), ∀x ∈ [0,1]2.

Now, choose x̄ ∈ [0,1]2 such that 1/3 < x̄1 < 1/2 and x̄2 > 1/2. This yields that ‖x̄‖∞ ∈]1/3,2/3[ and so,
x̄ is in the flat part of f (·,0). Assuming that ρx̄ := dist

(
x̄;S<f (·,0)(x̄)

)
≤ 1/3, then

Sa
f (·,0)(x̄) = B

(
S<f (·,0)(x̄),ρx̄

)
= 1

3B∞ +ρxB,

where B∞ denotes the unit ball of the supremum norm. Now, fix any sequence (yn)n ⊂ (0,1] converging to
0, and any sequence (xn)n ⊂ [0,1]2 converging to x̄. For every n ∈ N large enough, one has that

x2,n ≥ x1,n,

where xi,n denotes the ith coordinate of xn. Thus,

Na
S f (·,yn)

(xn) = NS f (·,yn)
(xn) = N‖·‖

∞
(xn) = R+ · (0,1).

This yields that for every sequence (yn)n ⊂]0,1] converging to 0,

Limsup
xn→x̄

Na
f (·,yn)

(xn) = R+ · (0,1).

where the Limsup is taken over all sequences (xn)n in [0,1]2 converging to x̄. However, as Figure 3.4.3
illustrates, the adjusted normal cone of f (·,0) at x̄ is given by

Na
f (·,0)(x̄) = R+

(
x̄−proj

(
x̄, 1

3B∞

))
= R+(x̄− (1/3,1/3)) 6= R+ · (0,1).

Thus, hypothesis (iv) in Theorem 3.3.4 is not verified and, as a consequence of Lemma 3.3.6, neither is
hypothesis (v) of Corollary 3.3.8.
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−0.2 0.2 0.4 0.6 0.8

−0.2
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x̄

x1

x2

Figure 3.4.3: In red, the sublevel set and strict sublevel set of f (·,0) at x̄. In green, the adjusted sublevel set
of f (·,0) at x̄. Dashed in blue, the lines x1 = x2 and x1 = 1/3. Thick in blue, the adjusted normal cone of
f (·,0) at x̄.

The above example shows that convergence of adjusted normal cones or adjusted sublevel sets are not
weaker hypotheses than continuity of cost functions in the general case. However, if the cost functions are
semistrictly quasiconvex in the first variable instead of simply quasiconvex, hypotheses (iv) of Theorem
3.3.4 and (v) of Corollary 3.3.8 are automatically verified by continuous functions.

This result is based on [101], where it is shown that epi-convergence can be characterized by convergence
of sublevel sets. Recall that a sequence of lower semicontinuous functions ( fn : Rp→ R : n ∈ N) epi-
converges to a lower-semicontinuous function f : Rp→ R if the following two conditions hold:

(a) f (x)≤ liminf fn(xn), whenever a sequence (xn)⊂ Rp converges to x ∈ Rp; and

(b) for all x ∈ Rp, there exists a sequence (xn)⊂ Rp such that fn(xn)→ f (x).

Epi-convergence is already a classic tool in nonsmooth variational analysis and it can be found in classic
monographs as [102]. In what follows, we will say that a function f : Rnν ×Rn−ν → R is epi-continuous in
the second variable if

(a) for every x−ν ∈ Rn−ν , f (·,x−ν) is lower-semicontinuous.

(b) for every sequence (xn
−ν)n ⊂ Rn−ν converging to a point x̄ν ∈ Rn−ν , one has that

f (·,xn
−ν) epi-converges to f (·, x̄−ν).

It is not hard to verify that if f is lower semicontinuous in the first variable and continuous in the second
variable, then it is epi-continuous in the second variable as well. Moreover, it is easy to construct examples
where the converse doesn’t hold.

Theorem 3.4.1 Let f : Rnν ×Rn−ν → R be a function such that

(i) for every x−ν ∈ Rn−ν , the function f (·,x−ν) is lower semicontinuous and semistrictly quasiconvex.

(ii) f is epi-continuous in the second variable.

Then, hypothesis (v) of Corollary 3.3.8 holds, that is, for every sequence (xn
−ν)n ⊂ Rn−ν converging to x−ν

and every yν ∈ Rnν \ argmin f (·,x−ν), there exists a sequence (yn
ν)n ⊂ Rnν such that

S f (·,xn
−ν )

(yn
ν) Mosco-converges to S f (·,x−ν )(yν).
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Proof. By hypothesis (i), we have that for every (xν ,x−ν) ∈ Rnν ×Rn−ν , the adjusted level set of f (·,x−ν)
at xν coincides with the level set of f (·,x−ν) at xν , that is,

Sa
f (·,x−ν )

(xν) = S f (·,x−ν )(xν).

Now, fix a sequence (xn
−ν)n⊂Rn−ν converging to x−ν and a point yν ∈Rn−ν which is not a global minimizer

of f (·,x−ν). Let α = f (yν ,x−ν). Since f (·,xn
−ν) epi-converges to f (·,x−ν) by hypothesis (ii), we have by

[101, Theorem 3.1] that there exists a sequence (αn)n ⊂ R converging to α such that

Sαn( f (·,xn
−ν)) Mosco-converges to Sα( f (·,x−ν)).

where Sα( f (·,x−ν)) denotes the sublevel set of the function xν 7→ f (xν ,x−ν)) at level α . To simplify
notation, let us write An = Sαn( f (·,xn

−ν)) and A = Sα( f (·,x−ν)). Since A ⊂ Liminfn An, there exists a
sequence (yn

ν)n ⊂ Rnν such that yn
ν ∈ An for every n ∈ N and converging to yν . Let βn = f (yn

ν ,x
n
−ν) and let

Bn = Sβn( f (·,xn
−ν)).

By epi-continuity of f and the fact that βn ≤ αn for all n ∈ N, we have that

βn converges to α and LimsupnBn ⊂ A.

To finish the proof, it is enough to show that A ⊂ Liminfn Bn. To do so, let us write B = Liminfn Bn and
suppose that there exists z ∈ A\B. On the one hand, since z ∈ A, we have that f (z,x−ν)≤ α . On the other
hand, by epi-continuity, there exists a sequence (zn)n ⊂ Rnν such that f (zn,xn

ν) converges to f (z,x−ν). In
particular, since z /∈ B, there exists a subsequence (znk)k of (zn)n such that znk /∈ Bnk . Thus,

f (z,x−ν) = lim
k

f (znk ,x
nk
−ν)≥ lim

k
βnk = α.

We conclude that f (z,x−ν) = α .
Choose now m ∈ Rnν such that f (m,x−ν) < f (yν ,x−ν). By epi-continuity, there exists a sequence

(mn)n ⊂ Rnν converging to m and such that f (mn,xn
−ν)→ f (m,x−ν). Since βn→ α > f (m,x−ν), a simple

convergence argument tell us that for n ∈ N large enough, one has that

f (mn,xn
−ν)< βn,

and thus, we may assume without loss of generality that mn ∈ Bn for all n ∈ N. We conclude then that
m ∈ B. Now, since z /∈ B and B is closed, there exists ε > 0 small enough such that B(z,ε)∩B = /0. Now,
let u = z+ ε

2(m− z). By construction, u ∈ A\B, and so, following the same reasoning we did for z, we
conclude that f (u,x−ν) = α . However, this is a contradiction, since f (m,x−ν) < f (z,x−ν) and so the
semistrict quasiconvexity of f (·,x−ν) yields that f (u,x−ν)< f (z,x−ν). We conclude that A⊂ LiminfBn,
which completes the proof.

3.4.2 Comparison with Reny-type result
In the case of a Nash game (not generalized Nash game) Corollary 3.3.8 reduces to

Corollary 3.4.2 For any ν ∈ I, let Cν be a nonempty compact and convex subset of Rnν , θν : RN → R.
Then, the NEP(θ ,C) admits a Nash Equilibrium if

(i) for every x−ν ∈C−ν , the function θν(·,x−ν) is quasiconvex, lower semicontinuous and sub-boundarily
constant on dom f ;
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(ii) for every x ∈ RN , the intersection Cν ∩ argminθν(·,x−ν) = /0;

(iii) for each ν ∈ I, Cν has nonempty interior.

(iv) for every sequence (xn
−ν)n ⊆C−ν converging to some x−ν , the sequence θν(·,xn

−ν) sub-converges to
θν(·,x−ν) on intCν .

As mentionned for the Generalized Nash case, the advantage of the above result is that only lower
semicontinuity of the objective functions θν is assumed, instead of the classical continuity hypothesis. To
our knowledge, the only work in which existence of equilibria is proved under semicontinuity assumption
is due to Reny [94](see also Bich-Laraki [95]).

Proposition 3.4.3 (Reny) For any ν ∈ I, let Cν be a nonempty, compact and convex subset of Rnν , θν :
RN → R. Then, the NEP(θ ,C) admits a Nash Equilibrium if

(i) for every x−ν ∈C−ν , the function θν(·,x−ν) is quasiconvex and lower semi-continuous;

(ii) the game is better-reply secure.

Let us recall, adapting the notations of Laraki-Bich, that the game satisfies the Better-reply secure if, for
any

(x,λ ) := ((xν)ν ,(λν)ν)) ∈ cl
{
((uν)ν ,(θν(uν))ν) : (uν)ν ∈C = ∏

ν

Cν

}
with (x,λ ) not a Nash equilibrium of the game, then for at least one of the players ν , there exists dν ∈Cν

such that

θ̄ν(dν ,x−ν) := limsup
x′−ν→x−ν

θν(dν ,x′−ν)< λν . (3.4.1)

As it will be shown in the following simple example, Corollary 3.4.2 furnishes, in this restricted context of
Nash equilibrium problem (instead of Generalized Nash equilibrium case), an alternative set of assumptions
compared to the ”better-reply secure” hypothesis.

Example 4 Set N = 2, C1 =C2 = [0,1] and the players’ objective functions θ1 and θ2 by

θ1(x1,x2) =

{
x1 if x2 ∈ ]0,1]
x1−2 if x2 = 0

and θ2(x2,x1) =

{
0 if x2 >−1
−1 if x2 ≤−1.

We claim that this game is not better reply secure. Indeed, consider the point x∗ = (1/2,0) and λ =
θ(1/2,0) = (−3/2,0), which is clearly not an equilibrium of the game. Since the cost function of player 2
is constant over C2, there exists no d2 ∈C2 satisfying (3.4.1) for ν = 2.

Now, choose any point d1 ∈ C1 = [0,1] and a neighbourhood U ∈ N (0), and choose any point
x2 ∈U ∩ [0,1] with x2 6= 0. We have then that

θ1(d1,x2) = d1 ≥ 0 >−3/2.

It follows that there exist no d1 ∈C1 satisfying (3.4.1) for ν = 1. The claim is then verified.
In contrast, by construction of the cost functions θ1 and θ2, and recalling Remark 3.2.8.iii), the

equilibrium problem NEP(θ ,C) clearly satisfies hypotheses (i)− (iii) of Corollary 3.4.2.
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To verify hypothesis (iv), fix ν ∈ {1,2}, a sequence (xk
−ν)k ⊂ [0,1] converging to any x−ν ⊂ [0,1] and

fix any yν ∈]0,1[. Define the sequence (yk
ν)k by yk

ν = yi. Regardless if ν = 1 or ν = 2, it always holds in
this example that

Sa
θν (·,xk

−ν )
(yν) =]−∞,yν ].

Thus, Sa
θν (·,xk

−ν )
(yi) Mosco-converges to Sa

θν (·,x−ν )
(yν) trivially. Hypothesis (iv) holds, and so Corollary

3.4.2 applies.

3.5 Conclusions
In this work, we prove existence results for generalized Nash equilibrium problem in the finite dimensional
setting. They provide alternative set of assumptions compared to the Arrow-Debreu pioneering work and
the ”better-reply secure” approach of Reny. More precisely, we eliminate the continuous assumption of θν

by replacing it by a “continuity-type” of the sublevel sets of the cost functions. Our approach is based on
the concept of the adjusted normal operator [37], the net-lower sign-continuity[45], and the reformulation
of the generalized Nash equilibrium problem in term of quasi-variational inequalities.

Of course some important open research questions and perspectives remain. First of all our existence
results are proved in the finite-dimensional setting. Thus, it could interesting, but out of the scope of this
work, to consider possible adaptations of our approach in the infinite-dimensional setting in order to tackle
GNEP in which the decision variables of the players are possibly functions. Second, the hypothesis, used
all along our paper, that ”For every x ∈ RN , the intersection Cν ∩ argminθν(·,x−ν) = /0” could appear to
be quite technical. It has been introduced since the normal operator has ill behavior at the argmin of the
function due to the very definition of the adjusted level sets. A modification of the proof of Theorem 3.3.1
by using an adapted version of the operators Fν (possibly taking inspiration from [36]) could be a possible
way to drop this hypothesis.

Finally, our results hold for quasiconvex functions that are also sub-boundarily constant, which represent
a large class of nonpathological functions. Morally speaking, these are the functions that don’t present
any oscillatory behavior along the boundary of adjusted sublevel sets. It is hard to imagine that first order
optimality conditions can entail global optimality (in the spirit of Proposition 3.2.9) without a property like
sub-boundarily constant condition. However, it is worth to pay some more attention to this definition, to
try to better understand what should be the underlying property for quasiconvex programming that can
guarantee sufficient first order optimality conditions, well known for the ideal case of convex programming.
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Optimal Design of Exchange Networks with Blind In-
puts: Applications to Eco-Industrial Parks

This article has been done in the common work with David Salas, Didier Aussel, and Ludovic Montastruc.
It was published on Computers & Chemical Engineering, vol. 143, p. 107053, 2020.

Motivated by the design and optimization of the water exchange networks in Eco-Industrial Parks (EIP),
we investigate the abstract Blind-Input model for general exchange networks. This abstract model is
based on a Game Theory approach, formulating it as a Single-Leader-Multi-Follower (SLMF) game: at
the upper level, there is an authority (leader) that aims to minimize the consumption of natural resources,
while, at the lower level, agents (followers) try to minimize their operating costs. We introduce the
notion of Blind-Input contract, which is an economic contract between the authority and the agents
in order to ensure the participation of the latter ones in the exchange networks. More precisely, when
participating in the exchange network, each agent accepts to have a blind input in the sense that she
controls only her output fluxes, and the authority commits to guarantee a minimal relative improvement
in comparison with the agent’s stand-alone operation. The SLMF game is equivalently transformed
into a single mixed-integer optimization problem. Thanks to this reformulation, examples of EIP of
realistic size are then studied numerically.

Abstract

Keywords: Single-Leader-Multi-Follower game, Eco-industrial park, mixed integer programming, water
networks.
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4.1 Introduction
In the last few decades, the development of the industrialized countries has led to an increasing depletion
of natural resources such as freshwater and energy (see, e.g., [64, 65]). The conservation and sustainable
use of such resources play an important role in both, environmental impact and business success within
the industry. In response to preserve the environment while increasing the utilities of the enterprises, the
concept of industrial ecology has emerged [6].

Industrial ecology (IE) was first introduced in 1989 by Frosch and Gallopoulos [66]. They wrote “the
consumption of energy and materials is optimized, waste generation is minimized and the effluents of one
process . . . serve as the raw material for another process”. This is an approach to the industrial design of
products and processes and the implementation of sustainable manufacturing strategies. The idea is directly
related to another concept, industrial symbiosis, which involves “separate industries in a collective approach
to competitive advantage involving physical exchange of materials, energy, water and/or by-products” (see
[67]). One key concept of industrial symbiosis is then the exchange networks.

A perfect example of an exchange network which illustrates the notion of industrial symbiosis is
the concept of Eco-Industrial Parks (EIP). This notion has several definitions, but one widely accepted
is “an industrial system of planned materials and energy exchanges that seeks to minimize energy and
raw materials use, minimize waste, and build sustainable economic, ecological and social relationships”
[6, 9, 68].

Recently, in works of Boix et al. [6] and Kastner et al. [7], it has been pointed out that there is still a lack
of systematic methods for designing the optimal configuration of an EIP. In previous studies [6, 9, 8], water
integration networks (which is a classical example of EIP) were modeled as a cooperative economy, in the
framework of multi-objective optimization (MOO). This approach consist in creating a vector function of
n+1 coordinates given by

C(F) =
(
Cost1(F), · · · ,Costn(F),Z(F)

)
where Costi(·) is the cost function of the enterprise i, Z(·) is the global consumption of natural resources,
and F is the flux vector describing the distribution in the exchange network. Then, the aim is to solve the
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problem of “minimizing” C with respect to F , satisfying the physical constraints of the model. The result of
such minimization is called a Pareto front, which consists in all vectors F for which none of the coordinates
of C can be improved without worsen another one [103, 104]. Usually an authority, representing the EIP’s
designer, selects one of this solutions considering as criteria the distance to an utopia point.

Nomenclature

Latin symbols:
n number of independent agents
m number of regulated agents
P set of independent agents
R set of regulated agents
IP index set of independent agents
IR index set of regulated agents
I assembly of index sets IP and IR

I0 assembly of index set I and sink node 0
E network topology
Emax set of all admissible connections of the

network
Ec set of connections that are not in E
Ei,act set of active arcs of agent i
Est stand-alone topology
E set of all valid topologies
Costi(·) operating cost of agent i
STCi stand-alone cost of agent i
C(i, j) arc class of (i, j)
Ci family of all arc classes exiting from agent i
D set of all arc classes of active agents
y boolean variable
xi, j flux through the connection (i, j)
xi outlet flux vector of agent i
x−i vector of all fluxes not exiting from agent i
xP
−i vector of all fluxes exiting from an indepen-

dent agent other than i
x complete vector of fluxes through the network
zi consumption of natural resource of the ith

agent
Z(·) total consumption of natural resources
gi(·) input validation function of agent i
Fi vector of fluxes exiting from enterprise i (wa-

ter exchange network)
F−i vector of all fluxes not exiting from enterprise

i (water exchange network)
FP vector of fluxes exiting from enterprises (wa-

ter exchange network)

FP
−i vector of all fluxes exiting from an enterprise

other than i (water exchange network)
FR vector of fluxes exiting from regeneration

units (water exchange network)
F flux vector describing the distribution in the

water exchange network
Mi contaminant load of enterprise i [g/h]
Ci,in,Ci,out maximum contaminant concentration allowed

in inlet/outlet of processes [ppm]
Cr,in minimum inlet concentration allowed of reg.

units [ppm]
Cr,in exact outlet contaminant concentration of reg.

units [ppm]
A the lifetime of the park [h]
Coef Penalization coefficient of stand-alone agents

Acronyms:
EIP Eco-Industrial Park
GNEP generalized Nash equilibrium problem
Eq the set of equilibria for the induced GNEP
KKT Karush-Kuhn-Tucker
MILP Mixed-integer linear programming
MPEC mathematical programs with equilibrium

constraint
SLMF Single-Leader-Multi-Follower
STC stand-alone cost

Greek Symbols:
α the minimal relative gain that each agent ask

for participating in the network
c the marginal cost of freshwater consumption

[$/T]
βi,0 the discharge cost of polluted water of enter-

prise i [$/T]
δi, j the cost sending polluted water from enter-

prise i to j [$/T]
Γr the marginal cost of regenerating water [$/T]
ψ power associated to Γr

The main problem with such an approach is that points of the Pareto front are not necessarily economi-
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cally stable: first, a Pareto point requires the enterprises to cooperate and share information, which is rarely
the case of an EIP. Second, due to the noncooperative economy, the different enterprises may deviate from
the selection of the authority since they may improve their cost function by unilaterally changing their
operation. In terms of game theory, a solution of the MOO approach is a social optimization which may fail
to respect incentives (see [10, Chapter 1]).

To solve this incompatibility, again in the context of water integration networks, in the seminal work
of Ramos et al. [2], further developed in [105], a novel game theory approach has been proposed, by
modeling the EIP design problem as a Single-Leader-Multi-Follower (SLMF) game (see [61, 63]): since
the agents do not want to exchange information, a confidential centralization through an authority of
the park is introduced. Then, at the upper level, there is the EIP authority which wants to minimize the
consumption of natural resources Z(F), while at the lower level, each enterprise tries to minimize her
cost function Costi(F), related to her processes, consumption of natural resources and activity within the
EIP. The authority of the park must choose the connections of the exchange network and the operation
of the regeneration units, while each enterprise controls their consumption of natural resources and their
output flux distribution. Based on the EIP authority decisions, all enterprises compete with each other in a
parametric non-cooperative generalized Nash game with the strategies of the EIP authority as exogenous
parameters. Figure 4.1.1 shows the general scheme of such a model, where the enterprises are considered
the economic agents of the game. We refer the reader to [10, 11] for a primer in noncooperative games,
to [14, 15] for a survey of Generalized Nash Equilibrium problems, and [12, 13] for the theory of bilevel
optimization. For Single-Leader-Multi-Follower games, we refer to [63] and the references therein.

LEADER: Authority
Minimize: Freshwater consumption
Subject to:
Physical constraints of regeneration units
Individual rationality constraint of each agent

Topological constraints
Equilibrium constraint

FOLLOWERS

Agent 1
Minimize: Cost1(F)

Subject to:
Physical constraints of agent 1

Topological constraints

Agent 2
Minimize: Cost2(F)

Subject to:
Physical constraints of agent 2
Topological constraints

Agent n
Minimize: Costn(F)

Subject to:
Physical constraints of agent n

Topological constraints

Figure 4.1.1: General scheme of SLMF Game

The main implicit assumption done in [2] is that each enterprise can only control her outlet distribution
and her own fresh water consumption, but they are forced to accept whatever is sent to them through the
exchange network. Furthermore, they have no knowledge about the particular actions of the other agents
of the network, excepting only the amount and quality of the final inlet flux. In practice, this situation
corresponds to the case when, at the entrance, each agent of the network has a mixer, and so she is only
aware of the total input she is receiving, as Figure 4.1.2 illustrates. In other words, when participating in the
exchange network, each agent accepts to have a blind input.

While this model respects incentive consistency, it has two main drawbacks: the first one is that the rule
that the park’s authority imposes, that is, the blind input, is too restrictive. Indeed, under this paradigm, an
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zi

Fk,i

Fr,i

Mixer Process i

Figure 4.1.2: Blind-Input Schema. zi,Fk,i and Fr,i are freshwater consumption, wastewater sent from agent
k to i, and regenerated water sent from regeneration unit r to i, respectively.

enterprise may be forced to receive too much polluted water which could turn into higher costs than the
stand-alone operation outside the park (examples are easy to construct with two enterprises). This violates
the economical principle (well known in contract theory and mechanism design) of individual rationality:
an enterprise will participate in the EIP only if it is convenient to her (see [69, 70, 71]); the second one is
the strategy to compute a solution. In [2], the authors implemented the classic general approach to solve
bilevel games, that is, to reformulate it as a mathematical programming with complementarity constraints
(MPCC): loosely speaking, for a given network, they write the Karush-Kuhn-Tucker (KKT) conditions of
each problem of the lower level game, and put them as constraints in the authority’s problem. Then they
implemented a Branch-and-Bound heuristic to obtain an approximated optimal exchange network, solving
at each iteration the problem described above. However, it is known that the MPCC problems, which is
a particular class of mathematical programming with equilibrium constraints (MPEC), are hard to solve
(see, e.g., [72, 73, 74]) and the heuristic itself doesn’t guarantee a real solution of the problem [75, 76]. The
literature on theoretical and algorithmic aspects of MPCC and MPEC problems is large and still an active
field of research in mathematics.

In this work, we further investigate the model proposed in Ramos et al. [2] for water exchange networks,
briefly described in Section 4.2 and fully exposed in Section 5.2, but considering its abstract form for
general exchange networks in Subsection 4.3.2. This abstract model is called Blind-Input model, since
we consider the constraint of full acceptance for each enterprise. To solve the drawback given by the
Individual Rationality constraint, we introduce in Section 4.3.3 the notion of Blind-Input contract, which is
an economical contract between the authority and each enterprise in order to participate in the Blind-Input
model. We prove that, under some linear structure of the costs functions Costi(·) of each enterprise, the
Blind-Input model can be reduced from a Single-Leader-Multi-Follower problem to a single mixed-integer
optimization problem. This reduction, which is our main contribution, is presented in Section 4.4.

The proposed reformulation of the Blind-Input model opens the door to a lot of new developments,
from the numerical treatment of huge size problems thanks to classical MILP solvers to exhaustive search
of equilibria for small/medium size applications. This is illustrated in the second part of the article for water
exchange networks in Eco-Industrial Parks: Section 4.6 illustrates a case of study and the obtained results
which are then discussed in Section 4.7. Conclusions and perspectives are presented in Section 4.8.

It is worth to mention that, even though this work is motivated by the design problem of water exchange
networks, its abstract formulation presented in Section 4.3 allows to apply it to other type of networks, as
for example energy networks ([6, 106]). In Section 4.8, we will comment which are the main elements
needed to apply the Blind-Input model to other contexts.

To survey our contributions, a comparison between this work and [2] is given in Table 4.1. It is important
to mention that the nooncoperative approach using SLMF games in EIPs is very recent and, up to our
knowledge, there is no other reference in the literature different from [2, 105] to compare our results with.
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Comparison criteria Ramos et al [2]. This work

Number of enterprises 3 15

Number of processes per
enterprise

5 1

Regeneration units Yes Yes

Several processes per en-
terprise

Yes No

Tools to model the EIPs SLMF game SLMF game

Presence of Blind-Input
model

Implicitly used. Not formalized. Economic drawbacks.
Explicit formalization. Introduction of Blind-Input
contract as economic instrument.

Solution Method MPCC reformulation + Branch-and-Bound Heuristic
Mixed-Integer Linear programming (MILP) reduc-
tion.

Properties of the solution
MPCC is hard to solve and existing algorithms are not robust.
The solution of the MPCC may fail to be a solution of the
SLMF game.

MILP alogirthms are robust. Commercial solvers are
available. Any global solution of the MILP problem
is a global solution of the SLMF game.

The operating cost of each
participating enterprise in
the EIP is lower than that
of stand-alone.

No Yes

Table 4.1: Comparison between Ramos et al. [2] and the present work. The first two rows are related to the
numerical examples used in each article.

4.2 Motivation: EIP model for water exchange

In this section, we briefly describe the model of water exchange network used to describe Eco-Industrial
Parks. The model can be found in [6, 2] among others. A detailed version is further exposed in Section 5.2.

In an Eco-Industrial Park (EIP), several enterprises exchange wastes to reduce the global consumption
of natural resources. Each time an enterprise uses the natural resource in her industrial process, it comes out
degraded, but still can be used as input for other enterprises in the park. One of the most classical examples
of EIP (see, e.g., [6, 107] corresponds to the modeling of water exchange networks: each enterprise needs
to consume water for her industrial processes and the outcoming water is partially polluted. Other examples
using different natural resources like energy or heat can be found in [8, 108].

In [2], the design of a water exchange network is treated according to the following assumptions: first,
the park has a fixed number of n enterprises, each enterprise i has to dilute an amount Mi of contaminant,
and the outlet concentration of contaminant must be less than a fixed concentration Ci,out. It is usually
assumed that each enterprise i has always an optimal operation, in the sense that the outlet concentration of
contaminant is always equal to Ci,out.

Second, each enterprise i can accept partially polluted water, but with a maximal concentration Ci,in.
This concentration is measured after a mixer (see Figure 4.1.2) in such a way that no enterprise can really
know the operation of the other enterprises. However, this measurement, that we will denote gi and which
depends on the actions of the other enterprises, allows enterprise i to perform two fundamental actions: 1)
report infeasibilities to the authority of the park, whenever the income water after the mixer doesn’t fulfill
the constraints; and 2) compute how much fresh water she needs to complete its process attaining the outlet
concentration Ci,out.

Third, each enterprise has a cost function that depends on four factors: 1) the marginal cost of fresh
water that she consumes, that we denote ci; 2) the marginal cost of polluted water that she discharges to the
environment, that we denote γi,0; 3) the cost of sending polluted water through a connection of the park;
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and 4) the cost of receiving water from other agents of the park (other enterprises but also regeneration
units controlled by the authority). The authority transfers the investment cost of the EIP to the enterprises
via the last two costs: the first one, via a marginal cost γ which depends on the connections that enterprise i
uses to send water; and the second one via a cost function Costini that will depend on the actions of the other
enterprises.

Moreover, the main assumptions for the pricing instruments are that the prices of fresh water and
discharged water are exogenous, and that the authority has no interest of making any profit, and therefore
she will fix the prices of using the connections only to recover the investment and maintenance costs. This
yields to the following scenario: each enterprise wants to minimize its cost of the use of water while the
authority is in charge of the ecological concerns by minimizing the fresh water consumption.

Finally, as we mentioned before, the authority may have regeneration units. Each regeneration unit
r receives polluted water and reduces its contaminant concentration up to a certain value Cr,out. Then, it
sends the water to the enterprises for reuse. The costs associated to the regeneration units are charged to the
enterprises through the inlet cost function Costini .

4.3 Blind-input model
Taking inspiration from the water management model described in Section 4.2, our aim in this section is to
define the concept of abstract Blind-Input model for general exchange networks. We divided the model in
two parts: the physical model, which gives the constraints that the network must satisfy; and the economical
model, which gives the incentives of each agent of the network, as well as the Blind-Input contract between
the agents and the authority, which will ensure the participation of the agents.

4.3.1 Network Model
We first consider two main actors: a set of agents participating to an exchange network, and an authority
that aims to minimize the consumption of natural resources. Among the agents, we differentiate a set
P := {P1, . . . ,Pn} of independent agents, and a set R = {R1, . . . ,Rm} of regulated agents (controlled by
the authority). Regulated agents don’t have economical motivations, but they act on the exchange network
following the indications of the authority. In the context of water exchange in EIP, the independent agents
are the enterprises, and the regulated ones model the regeneration units [2].

We identify the independent agents with the index set IP = {1, . . . ,n} and the regulated agents with
IR = {n+1, . . . ,n+m}. We set I = IP∪ IR and I0 = {0}∪ I, where 0 represents the sink node.

We define an exchange network as a simple directed graph (I0,E), where the edge e = (i, j) ∈ E means
that the agent i can send part of her output to the agent j. The extra node 0 is identified as a sink node,
which represent the possibility of discharge of the output. A valid network (I0,E) must satisfy the following
five conditions:

I. E ⊆ Emax, where Emax is the set of all admissible connections of the network.

II. (I0,E) is a simple graph, that is, there is no multiple edges nor graph loops in E.

III. Each independent agent i ∈ IP is connected with the sink node, that is, (i,0) ∈ E.

IV. Each regulated agent r ∈ IR is not connected with the sink node, that is, (r,0) /∈ E.

V. The sink node has not exit edges in E that is (0, i) /∈ Emax, for any i ∈ I.
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In what follows, we will call E the topology of the network (I0,E), and we will denote by E the set of all
valid topologies. Nevertheless, in order to simplify notations, the network (I0,E) will be only represented
by its topology E. Observe that this representation may lead to ambiguity, since the set E doesn’t allow to
distinguish possible isolated regulated agents (independent agents are never isolated, given hypothesis III).
However, this is not a problem, since any isolated regulated agent will be simply removed from the network.

For each edge (i, j) ∈ Emax, we set the variable xi, j which represents the flux through the connection
(i, j). For each agent i ∈ I, we set xi := (xi, j : (i, j) ∈ Emax), being thus the outcome vector of agent i.
Finally, we set x = (xi, j : (i, j) ∈ Emax), the complete vector of fluxes through the network.

To simplify the mathematical model we use, let us introduce some notation. We put xR := (xr : r ∈ IR)
and xP := (xi : i ∈ IP). In what follows, for an agent i ∈ I, we will write

x−i :=
(
xk, j : (k, j) ∈ Emax, k ∈ I \{i}

)
,

xP
−i :=

(
xk, j : (k, j) ∈ Emax, k ∈ IP \{i}

)
.

For a topology subset A⊆ Emax, we write

x
∣∣
A := (xi, j : (i, j) ∈ A).

Similarly, we define xi
∣∣
A, x−i

∣∣
A, xP

∣∣
A, xP
−i

∣∣
A and xR

∣∣
A. It will be useful also to denote Ac := Emax \A.

4.3.2 Physical Model
Let us fix a network topology E ∈ E . If E is implemented, then for each agent i ∈ I, the physical model of
the network is given by the following six operational constraints:

1. Null fluxes outside the network: each agent can use only the connections in the topology E. Thus,
we set

xi
∣∣
Ec = 0, (4.3.1)

that is, for every edge (i, j) /∈ E, the flux xi, j is zero.

2. Consumption of natural resource: the consumption of natural resource of the ith agent is given by
the output fluxes of the other players, that is,

zi = zi(x−i). (4.3.2)

This assumption is derived from an optimal response hypothesis: we assume that, for a given value of
x−i, the agent i is capable of compute exactly the minimal amount of natural resource zi that she has
to consume in order to perform her inner processes.

3. Balance constraint: the fluxes must satisfy the Kirchoff’s law for the agent i ∈ I, that is,

zi(x−i)+ ∑
(k,i)∈E

xk,i = ∑
(i, j)∈E

xi, j. (4.3.3)

Since 0 is the sink node, it is not subject to this balance constraint.
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4. Input consistency: there exists a real-valued function gi which allows the agent i ∈ I to validate the
input coming from the other agents. We write this validation as an abstract inequality constraint

gi(x−i)≤ 0. (4.3.4)

This constraint may represent maximal inlet fluxes, maximal inlet contaminant concentration, minimal
inlet temperature, etc.

5. Positivity of fluxes: we assume that the fluxes on the graph, as well as the consumed natural resource
are all positive, that is,

xi ≥ 0 and zi(x−i)≥ 0. (4.3.5)

6. Extra authority constraints: the exchange network may require additional constraints. We will
model them here through an abstract inclusion

x ∈ X ,

where X ⊂ R|Emax| represents the abstract additional feasible set.

Remark 4.3.1 Here, we assume that the degradation of the natural resource is implicit in the connections
of the topology E. In this general model, we suppose that agent i can compute the degradation of its inlet
flux through the functions gi and zi.

An important element of this model is the total lack of direct information among the agents. We suppose
that agent i cannot know the actions of other agents, that is, she doesn’t have access to the exact value of
x−i. However, she counts with indirect observations: even though x−i is unknown, the values of zi(x−i),
gi(x−i) and the total inlet flux ∑(k,i)∈E xk,i are available. For water exchange, this could be interpreted as a
measurement of the amount of water and contaminant concentration after the mixer of Figure 4.1.2. This
is a very important feature of our model, since enterprises want to keep as much private information as
possible. The only agent that has all information is the authority, who has access to the full vector x.

4.3.3 Economical Model
In this setting, the network authority has two vectors of decision variables: she must choose the topology of
the network E ∈ E and she controls the operation of the regulated agents, that is, the output vectors xr, for
every r ∈ IR. Each independent agent i ∈ IP controls her output vector xi.

We assume that the authority doesn’t pay any cost associated to the implementation and operation of
the network. Instead, she transfers all these costs through a function γ : Emax→ R+, where γ((i, j)) = γi, j
represents the marginal cost for sending one unit of flux through the connection (i, j). Using this pricing,
the independent agents will pay the investment cost of the network and also the operation of the regulated
agents. Thus, if there is a connection (r1,r2) ∈ Emax between two regulated agents r1,r2 ∈ IR, we assume
that γr1,r2 = 0.

Since all the investment cost is transfered to the independent agents, the authority is only concerned
about minimizing the consumption of the natural resources, and so she aims to minimize the function

Z(x) := ∑
i∈I

zi(x−i). (4.3.6)
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Remark 4.3.2 It could be argued that the authority must be also concerned about efficiency of the network,
by considering the total investment cost of the park. However, we assume that the pricing instrument γ is
given exclusively to pay the investment and maintenance cost of the park, and that it will be implemented
as efficiently as possible. The discussion over efficiency and right pricing instruments, is out of the scope of
this work.

On the other hand any independent agent i ∈ IP wants to minimize her global cost Costi, which can be
separated into three components: the consumption of the natural resource zi(x−i), the cost of discharging
(using the connection (i,0)), and the use of the exchange network. Therefore her cost function Costi is
given as:

Costi
(
xi,xP

−i,x
R,E
)
= A

[
ci · zi(x−i)+Costini

(
xP
−i,x

R)+ ∑
(i, j)∈E

γi, j · xi, j

]
. (4.3.7)

where A[h] is a time constant that measures the lifetime of the park and Costini
(
xP
−i,x

R) is the inlet operating
cost of an agent i, and it satisfies that

∑
(k,i)∈Emax

xk,i = 0 =⇒ Costini
(
xP
−i,x

R)= 0.

Observe that, the cost concerning the exit connections is linear, and so, the cost function is linear in the first
component xi.

Remark 4.3.3 Again, in terms of costs, agent i doesn’t have direct access to the actions of the other agents.
However, she must pay an operating cost Costini (x

P
−i,x

R) that is communicated to her by the authority. The
choice of this function as pricing instrument could be studied, but this is out of the scope of the work. For
now, we will suppose that agent i has enough indirect information (through measurements after the mixer
of Figure 4.1.2) to consider the cost Costini

(
xP
−i,x

R) as correct and therefore to accept it.
With this model, the minimization problem of the ith independent agent (parametrized by the topology

E, the actions of regulated agents xR and the actions of the other independent agents xP
−i) leads to problem

Pi
(
xP
−i,x

R,E
)
:

min
xi

Costi
(
xi,xP

−i,x
R,E
)

s.t.



zi(x−i)+ ∑
(k,i)∈E

xk,i = ∑
(i, j)∈E

xi, j

gi(x−i)≤ 0
zi(x−i)≥ 0
xi ≥ 0
xi
∣∣
Ec = 0.

(4.3.8)

We denote by Eq(xR,E) the set of equilibria for the induced generalized Nash equilibrium problem (GNEP,
for short) given by the vector xR and the topology E, that is

xP ∈ Eq(xR,E) ⇐⇒ ∀i ∈ IP, xi solves Pi
(
xP
−i,x

R,E
)
. (4.3.9)

As we already discussed in Section 4.1, the main problem of this model is that each independent agent
only controls her output vector xi, which is not realistic. She is forced by the authority to fully accept
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any inlet fluxes, which may be harmful. Thus, without any extra constraint, agent i may not be willing to
participate in the network.

Thus, to solve this problem, the authority must “buy” the participation of agent i. This is modeled by
the Blind-Input contract: agent i accepts to control only her output fluxes, and the authority commits to
guarantee a minimal relative improvement of her cost, with respect to the stand-alone operation of agent i.

To formalize this requirement in the contract, let us denote the stand-alone topology by Est ∈ E , that is,

Est := {(i,0) : i ∈ IP}.

For each independent agent i ∈ IP we define the stand-alone cost STCi, as the optimal value of the problem
Pi(0,0,Est), that is,

STCi = (ci + γi,0) · zi(0)

In other words, STCi is the cost of the ith agent assuming that all other agents (independent and regulated)
are inactive, i.e. when agent i only send fluxes to the sink node and doesn’t receive any complementary
fluxes from other agents. Then, for each independent agent Pi, we can formulate the commitment of minimal
improvement in the Blind-Input contract as the following constraint:

Costi(xi,xP
−i,x

R,E)≤ α ·STCi, (4.3.10)

where α ∈ ]0,1[ is the minimal relative gain that each agent ask for participating in the network. We
assume that α > 0 since, it is impossible to eliminate all costs, and that α < 1 since no agent is indifferent
concerning her participation in the network. Indeed, if Costi(xi,xP

−i,x
R,E) = STCi, then the agent i will

prefer not to participate, since she has no gain, entering an exchange network is complicated and she knows
she may be “helping the competition”.

Finally, we can write the authority’s problem as

min
E∈E ,x∈R|Emax|

Z(x)

s.t.



x ∈ X ,

zr(x−r)+ ∑
(k,r)∈E

xk,r = ∑
(r, j)∈E

xr, j, ∀r ∈ IR,

zr(x−r)≥ 0, ∀r ∈ IR,

gr(x−r)≤ 0, ∀r ∈ IR,

xR ≥ 0,
xR
∣∣
Ec = 0,

xP ∈ Eq(xR,E),
Costi(xi,xP

−i,x
R,E)≤ α ·STCi, ∀i ∈ IP.

(4.3.11)

The optimization problem (4.3.11) can be interpreted as follows: the authority will propose to the agents
a topology E and an operation x ∈ R|Emax| which satisfy all the physical constraints and also, such that
the operation x respects: 1) the incentive consistency, in the sense that no agent will have incentives to
unilaterally deviate from the proposal due to the constraint xP ∈ Eq(xR,E); and 2) the individual rationality
of each agent, in the sense that all agents will participate in the network since their participation has been
bought through the constraint (4.3.10). The first criteria solves the economical inconsistency of MOO
approach, and the second criteria solves the participation problem of the Single-Leader-Follower approach.
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Remark 4.3.4 In this work, we do not claim novelty in the constraint xP ∈ Eq(xR,E). This is the main
contribution of [2]. However, the constraint (4.3.10) is new. In terms of modeling and in this context, the
fact to “attract” the independent agents towards a participation in the general exchange network constitutes
one of the important novelties of this work.

Remark 4.3.5 After reading the forthcoming Section 4.4, the reader will observe that all proofs and
reductions could be made considering different values of α for each independent agent, that is, putting a
value αi ∈ ]0,1[ for each i ∈ IP. The value of αi represents the “cost” of buying the participation of the ith
independent agent, which is exactly (1−αi)STCi. However, allowing to have different costs depending on
the enterprise rises the natural question of how to decide these values. This problem lies in contract theory
(for an introduction to the field, we refer to [70, 71]) and it is out the scope of the article. Thus, we will
consider only uniform values of α , which can be interpreted as a public call for participation in the network.
Uniform values of α , however, imply that the cost of buying the participation of an agent is proportional to
her size, due to the factor STCi.

Remark 4.3.6 An important factor we do not consider in this work is the rebound effect that costs
reductions may have on the operation of agents. For example, it terms of water exchange, a diminution
of costs of agent i with respect to STCi may induce an increment of wastes production, that is, a variation
in Mi. Thus, this rebound effect may change the value of zi(x−i). Even though this is a very interesting
problem, we suppose that the demand of natural resource is given by a fixed process, on which the costs
within the network have no effect. In other words, the consumption of natural resource of each agent is
inelastic.

4.4 Mixed-Integer programming reduction
The formulation of the authority’s problem (4.3.11) has the form of a general MPEC problem (see, e.g.,
[72, 73, 74]). This section is devoted to prove that this MPEC formulation, which is known to be hard to
solve, can be reformulated as a single Mixed-Integer programming problem.

This reduction can be interpreted as follows: Blind-Input models are a social optimization problem
where, through Blind-Input contracts, the cooperation of each independent agent has been bought. This
social optimization is also economically stable, since implicitly it respect an equilibrium constraint (xP ∈
Eq(xR,E)). This reduction/reformulation will be presented in three steps.

4.4.1 Characterization of equilibria

The following theorem characterizes the equilibrium set Eq(xR,E) as a system of equations. This allows to
reduce the MPEC of problem (4.3.11) to a single optimization problem. The reduction we do here is based
on the observation that, once every agent has committed to a Blind-Input contract, her actions become
predictable through the cost functions. Thus, the authority can choose the network E such that each action
of an independent agent is induced to reach the social optimum.

To formalize this idea, let us introduce the notion of active arcs. Given a topology E, for each
independent agent i ∈ IP we define the set of active arcs of i, denoted by Ei,act, as all the arcs e ∈ E having
minimum cost, that is,

Ei,act :=
{
(i, j) ∈ E : γi, j = γ

∗
i := min

(i,k)∈E
γi,k

}
. (4.4.1)
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As convention, for any regulated agent r ∈ IR, we set Er,act = {(r, j) : (r, j) ∈ E}.

Theorem 4.4.1 For E ∈ E and xR ≥ 0 fixed, the equilibrium set Eq(xR,E) is given by

Eq(xR,E) =


xP : ∀i ∈ IP,

zi(x−i)+ ∑
(k,i)∈E

xk,i = ∑
(i, j)∈E

xi, j

gi(x−i)≤ 0
zi(x−i)≥ 0
xi
∣∣
Ec

i,act
= 0

xi ≥ 0


(4.4.2)

Thus, the authority’s problem (4.3.11) is equivalent to the following Mixted-Integer Programming problem:

min
x∈R|Emax|,E∈E

Z(x)

s.t.



x ∈ X ,

zi(x−i)+ ∑
(k,i)∈E

xk,i = ∑
(i, j)∈E

xi, j, ∀i ∈ I

xi
∣∣
Ec

i,act
= 0, ∀i ∈ I

gi(x−i)≤ 0, ∀i ∈ I
zi(x−i)≥ 0, ∀i ∈ I
Costi(xi,xP

−i,x
R,E)≤ αi ·STCi, ∀i ∈ IP

x≥ 0.

(4.4.3)

Proof. The second part of the proof is easily verified by replacing the constraint xP ∈ Eq(xR,E) by the
system of equations in the right hand of equality (4.4.2), and then just reorganizing. Thus, we only need to
prove (4.4.2).

To simplify notation, let us denote by S(xR,E) the right-hand set of (4.4.2). First, let us prove that
S(xR,E) ⊆ Eq(xR,E). Fix xP ∈ S(xR,E). Since Ei,act ⊂ E for each i ∈ IP, it is not hard to see that xi is a
feasible set of Pi(xP

−i,x
R,E).

Now, fix i ∈ IP and let x′i be another feasible point of Pi(xP
−i,x

R,E). Then, x′i ≥ 0 and it satisfies the
balance constraint (4.3.3), which yields that

∆Costi = ∑
(i, j)∈E

γi, jx′i, j− γ
∗
i

 ∑
(i, j)∈Ei,act

xi, j


≥ γ
∗
i

 ∑
(i, j)∈E

x′i, j− ∑
(i, j)∈Ei,act

xi, j


≥ 0,

where ∆Costi := Costi(x′i,x
P
−i,x

R)−Costi(xi,xP
−i,x

R) and the last inequality is due to the fact that

∑
(i, j)∈E

x′i, j = zi(x−i)+ ∑
(k,i)∈E

xk,i

= ∑
(i, j)∈E

xi, j = ∑
(i, j)∈Ei,act

xi, j.
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Thus, xi solves Pi(xP
−i,x

R,E), and since this holds for every i ∈ IP, we deduce that xP ∈ Eq(xR,E).
Now, let us prove that Eq(xR,E)⊆ S(xR,E). Let xP ∈ Eq(xR,E), and suppose that xP /∈ S(xR,E). Since

for each i ∈ IP the vector xi is a feasible point of P(xP
−i,x

R,E), the only way for xP not to belong to S(xR,E)
is that there exist i0 ∈ IP such that xi0

∣∣
Ec

i0,act
6= 0. Thus, there is (i0, j0) ∈ E \Ei0,act such that xi0, j0 > 0. Let

(i0, j1) ∈ Ei,act (which is nonempty by definition) and let us consider the vector x′i0 given by

x′i0,k =


xi0,k if k ∈ I \{ j0, j1},
0 if k = j0,
xi0, j1 + xi0, j0 if k = j1.

We have that x′i0 ≥ 0 (since xi0 ≥ 0) and also

zi(x−i0)+ ∑
(k,i0)∈E

xk,i0 = ∑
(i0, j)∈E

xi0, j = ∑
(i0, j)∈E

x′i0, j.

Thus, since x−i0 remains the same, x′i0 is a feasible point of Pi(xP
−i0,x

R,E). Furthermore, denoting by
∆Costi0 = Costi0(x

′
i0,x

P
−i0,x

R,E)−Costi0(xi0,x
P
−i0,x

R,E), we have that

∆Costi0 = ∑
(i0, j)∈E

γi0, jx
′
i0, j− ∑

(i0, j)∈E
γi0, jxi0, j

=
(
γi0, j1− γi0, j0

)
xi0, j0

=
(
γ
∗− γi0, j0

)
xi0, j0 < 0,

since, by construction, γi0, j0 > γ∗. This yields that xi0 doesn’t solve Pi(xP
−i0 ,x

R,E), which is a contradiction.
Thus, xP ∈ S(xR,E), finishing the proof.

Intuitively, the above theorem says that, given a topology E, each independent agent i ∈ IP will only
use the connections of minimal cost to send the excess of flux, that is, she will use only her active arcs.
Furthermore, each independent agent is indifferent to the distribution of fluxes among the active arcs, so
any feasible vector xP satisfying the constraint xi

∣∣
Ec

i,act
= 0 for every i ∈ IP must be an equilibrium. This

simplification is strongly based on the linearity of the costs functions with respect to the agent’s variable xi.

4.4.2 Mixed-Integer formulation
Theorem 5.3.1 establishes the remarkable fact that the MPEC formulation of the authority’s problem
can be reformulated as a “classical” programming problem. But actually, a part of the variables of this
programming problem lies in the set of topologies of the exchange network and so, it can be considered as
difficult to implement numerically. This is why, in this section, we will show how one can finally work with
a more classical mixed-integer programming problem.

Let us first introduce the key notion that we will use to arrive to the final formulation, that is, what we
call arc classes: let (i, j) ∈ Emax. We define the arc class of (i, j) as the set

C(i, j) :=

{
{(i,k) ∈ Emax : γi,k = γi, j} if i ∈ IP

{(i,k) ∈ Emax} if i ∈ IR
. (4.4.4)
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We denote by Ci the family of all arc classes exiting from i, that is, Ci = {C(i, j) : (i, j) ∈ Emax}. Finally,
for C ∈ Ci we define the utilization cost of the class by

γ(C) := γi, j,

where (i, j) is any representative of C.
Observe that, for two arcs (i, j),(i,k) ∈ Emax such that γi, j = γi,k, one has that C(i, j) =C(i,k). Thus,

a class C ∈ Ci may have many representations of the form C(i, j). Furthermore, the family Ci induces a
partition of the set of arcs “exiting from” agent i, that is

•
⋃

C∈Ci
C = {e ∈ Emax : e = (i, j) for some j ∈ I0}.

• For any two classes C,C′ ∈ Ci, either C =C′ or C∩C′ = /0.

Moreover, it is not hard to verify that for each topology E ∈ E and for each agent i ∈ IP, there exists one
class C ∈ Ci such that

Ei,act ⊆C, (4.4.5)

and this class must satisfy that

γ(C)≤ γ(C(i,0)). (4.4.6)

This class is then given by C =C(i, j) where (i, j) is any element of Ei,act. We will call it the active class of
E of the agent i, and we will denote it by Ci(E).

Without loss of generality, we will assume that every class C ∈Ci satisfies (4.4.6). If not, any connection
in a class violating (4.4.6) would never been used, and therefore, in practice, they can be erased from Emax
without changing the problem.

Now, let D =
⋃

i∈IP
Ci, the set of all arc classes of independent agents. We introduce the boolean variable

y = (yC)C∈D ∈ {0,1}|D| in the following way: for each independent agent i ∈ IP and each arc class C ∈ Ci,
we set

yC =

{
1 if C is the active class of i,
0 otherwise.

From y ∈ {0,1}|D|, we will build the graph associated to y as

E(y) =
(⋃
{C : yC = 1}

)
∪{ (i,0) : i ∈ IP}∪{(r, j) ∈ Emax : r ∈ IR}.

(4.4.7)

We consider then the following Mixed-Integer optimization problem:
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min
x∈RN ,y∈{0,1}|D|

Z(x)

s.t.



x ∈ X ,

zi(x−i)+ ∑
(k,i)∈Emax

xk,i = ∑
(i, j)∈Emax

xi, j, ∀i ∈ I,

∑
C∈Ci

yC = 1, ∀i ∈ IP,

∑
(i, j)∈C

xi, j ≤ B · yC, ∀C ∈ D,

gi(x−i)≤ 0, ∀i ∈ IP,

zi(x−i)≥ 0, ∀i ∈ I,
Costi(xi,xP

−i,x
R,E(y))≤ αi ·STCi, ∀i ∈ IP,

x≥ 0,

(4.4.8)

where B is a real number chosen arbitrarily, but bigger than the maximum of the total entering flux over
all enterprises. A simple option to set B is the value Z(0), which corresponds to the total consumption of
the natural resource when there is no exchange network.

Here, the constraint ∑C∈Ci yC = 1 says that, for the ith agent, only one class is active. Also, the constraint

∑
(i, j)∈C

xi, j ≤ B · yC, ∀C ∈ D

ensures that, whenever (i, j) doesn’t belong to the active class of the ith agent, then xi, j = 0.

Theorem 4.4.2 For every feasible point (x,y) of (4.4.8), the pair (x,E(y)) is a feasible point of (4.4.3).
Conversely, for every feasible point (x,E) of (4.4.3), the pair (x,yE) is a feasible point of (4.4.8), where
yE ∈ {0,1}|D| is given by

yE
C =

{
1 if C =Ci(E) for some i ∈ IP,

0 otherwise.

Finally, one has that

1. if (x,E) is an optimal solution of (4.4.3), then (x,yE) is an optimal solution of (4.4.8).

2. if (x,y) is an optimal solution of (4.4.8), then (x,E(y)) is an optimal solution of (4.4.3).

Proof. Let (x,y) be a feasible point of (4.4.8). Let us fix an agent i ∈ IP and let Ci be the unique class in Ci
such that yCi = 1. Then, by construction, we know that

E(y)i,act =Ci and ∑
(i, j)∈Emax\Ci

xi, j ≤ B · ∑
C∈Ci\{Ci}

yC = 0.

We deduce then that
xi
∣∣
E(y)c

i,act
= 0.

Since this constraint is valid for every active agent i ∈ IP, and since E(y) contains all exiting arcs for every
regulated agent r ∈ IR, we can rewrite the balance constraint in problem (4.4.8) as

z(x−i)+ ∑
(k,i)∈E(y)

xk,i = ∑
(i, j)∈E(y)

xi, j,∀i ∈ I.
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We deduce then that (x,E(y)) is a feasible point of problem (4.4.3).
Now, let (x,E) be a feasible point of problem (4.4.3). By inclusion (5.3.5), for each independent agent

i ∈ IP, there exists a unique active class Ci(E). Let us define yE ∈ {0,1}|D| as in the statement of the
theorem.

Then, for every i ∈ IP, ∑C∈Ci yE
C = 1. Now, fix a class C ∈ D, and let i ∈ IP such that C ∈ Ci. We have

that

∑
(i, j)∈C

xi, j ≤

{
B = B · yE

C if C =Ci(E),
0 = B · yE

C if C 6=Ci(E),

where the second inequality comes from the fact that, whenever C 6=Ci(E), then C ⊆ Ec
i,act and so xi

∣∣
C = 0.

For an agent i ∈ IP, the fact that Ei,act ⊆ E(yE) lead us to the fact that

Costi(xi,xP
−i,x

R,E(yE)) = Costi(xi,xP
−i,x

R,E),

and so, the constraint (4.3.10) is satisfied. We deduce that (x,yE) is a feasible point of (4.4.8), since all
other constraints are directly satisfied given that (x,E) is feasible for problem (4.4.3).

Now, let us assume that (x,E) is also optimal for problem (4.4.8). From the development above, for
every other feasible point (x′,y′) of (4.4.8), we know that (x′,E(y′)) is also a feasible point of problem
(4.4.3), and so, Z(x)≤ Z(x′). Thus, (x,yE) is optimal for the problem (4.4.8).

Let now assume that (x,y) is an optimal solution of problem (4.4.8) and suppose, by absurd, that
(x,E(y)) is not optimal for problem (4.4.3). Then, there exists a feasible point (x′,E ′) of problem (4.4.3)
such that Z(x′) < Z(x). But, as proved above, (x′,yE ′) is also feasible for problem (4.4.8), showing that
(x,y) is not optimal for (4.4.8), which is a contradiction. The proof is then completed.

The reader could observe that, a priori, the mixed-integer problem (4.4.8) is smaller than problem
(4.4.3) in some sense, since it admits only certain topologies (those ones of the form E(y) for some feasible
point y ∈ {0,1}|D|). However the above theorem shows that the set of flux distributions x for which (x,E)
is an optimal solution of (4.4.3) for at least one topology E coincides with the set of flux distributions x for
which (x,y) is an optimal solution of (4.4.8) for at least one y.

4.4.3 Null Class as exit option

Physically, we know that the network has always a feasible point, which is the stand-alone configuration,
that is, the topology Est and the fluxes given by the individual operations of the independent agents and
inactivity of the regulated ones. However, when we include the individual rationality constraint (4.3.10),
the problem may become infeasible.

Infeasibility of problem (4.4.3) means that the authority is not capable to find a solution that respect the
Blind-Input contracts with all the agents. Thus, we need to include the possibility of excluding some agents
from the network.

Formally, for each independent agent i ∈ IP, we include a boolean variable yi,null ∈ {0,1} such that

yi,null =

{
1 if i breaks the Blind-Input contract,
0 otherwise.

With this new variable, we modify problem (4.4.8) as follows:
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1. For each agent i ∈ IP, we put

yi,null + ∑
C∈Ci

yC = 1,

meaning that, either one arc class is active or the agent is outside the network.

2. For each agent i ∈ IP, we put

∑
(i, j)∈C(i,0)

xi, j ≤ B · (yC(i,0)+ yi,null)

∑
(i, j)∈Emax, j 6=0

xi, j ≤ B · (1− yi,null)

This is to ensure that, if the agent breaks the Blind-Input contract, then she will use the discharge arc
(i,0).

3. For each agent i ∈ IP, we put

∑
(k,i)∈Emax

xk,i ≤ B · (1− yi,null).

This constraint establishes that, if the agent breaks the Blind-Input contract, then nobody can send
her any flux.

4. For each agent i ∈ IP, we put

Costi(xi,xP
−i,x

R,E(y))≤ αiSTCi · (1− yi,null)+STCi · yi,null. (4.4.9)

Here, the individual rationality constraint is active only when yi,null = 0. Otherwise, since the agent is
not connected to the network, her cost will coincide with STCi.

We set D=D∪{Nulli : i∈ IP}, where Nulli is the null class, associated to yi,null, and D0 =D\{C(i,0) :
i ∈ IP}. Denoting

STCi(yi,null) := αiSTCi · (1− yi,null)+STCi · yi,null,
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the new optimization problem becomes

min
x∈RN ,y∈{0,1}|D|

Z(x)

s.t.



x ∈ X ,

zi(x−i)+ ∑
(k,i)∈Emax

xk,i = ∑
(i, j)∈Emax

xi, j, ∀i ∈ I,

yi,null + ∑
C∈Ci

yC = 1, ∀i ∈ IP,

∑
(i, j)∈C

xi, j ≤ B · yC, ∀C ∈ D0,

∑
(i, j)∈C(i,0)

xi, j ≤ B · (yC(i,0)+ yi,null), ∀i ∈ IP,

∑
(i, j)∈Emax, j 6=0

xi, j ≤ B · (1− yi,null), ∀i ∈ IP,

∑
(k,i)∈Emax

xk,i ≤ B · (1− yi,null), ∀i ∈ IP,

gi(x−i)≤ 0, ∀i ∈ IP,

zi(x−i)≥ 0, ∀i ∈ I,
Costi(xi,xP

−i,x
R,E(y))≤ STCi(yi,null), ∀i ∈ IP,

x≥ 0.

(4.4.10)

Observe that, whenever yi,null = 0, then all constraints for the ith agent are the same that those established
in problem (4.4.8). Also, if yi,null = 1, the only feasible solution for i is the stand-alone operation. Thus, in
this new problem, the authority first choose all the agents that will participate in the network, represented
by the set

I′P = {i ∈ IP : yi,null = 0},

and then it solves problem (4.4.8) replacing I by I′ = I′P∪ IR. Of course, as it is formulated, the authority
takes both decisions simultaneously, by solving problem (5.3.9). It is not hard to verify that any optimal
solution of problem (5.3.9) is an optimal solution of Problem (4.4.8) for the reduced set of agents I′. We
leave this verification to the reader.

4.5 Blind-Input model for water exchange networks
In this section we come back to our original motivation presented in Section 4.2, the water exchange
networks in Eco-Industrial Parks. We are now ready to describe in detail the model, and how it fits into the
Blind-Input model developed so far.

First, an EIP consists in a set of enterprises P := {P1, . . . ,Pn}, that are connected in an exchange
network. Each enterprise Pi can be connected either to other enterprises, or to some regeneration units,
which we denote R := {R1, . . . ,Rm}. The regeneration units are controlled by a central authority. This
authority plays the role of designer (when deciding the connections within the network) and regulator of
the park’s operation. Finally, we include a sink node 0, that represents a wastes’ pit to discharge useless
polluted water. We identify P with the index set IP := {1, . . . ,n} and R with IR := {n+1, . . . ,n+m}. We
put I = IP∪ IR and I0 = {0}∪ I. Finally, for an agent of the park we refer either to an enterprise or to a
regeneration unit.
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Each enterprise i ∈ IP generates a fixed amount of pollutant Mi [g], coming from her internal production
process, that needs to be diluted before exiting the enterprise. To do so, enterprise i must buy an amount of
fresh water zi [T/h] such that, after dilution, the pollutant concentration in the exit flux is less than a limit
concentration Ci,out [ppm]. If the enterprise discharges this polluted water into the sink node, she has to pay
a tax associated to the contamination she is producing. We will assume a hypothesis of optimal response:
each enterprise i ∈ IP consumes exactly the fresh water she needs to attain Ci,out, and therefore, her output
pollutant concentration is always equal to this constant.

We denote the marginal cost of fresh water as c [$/T], and the tax of discharged water as β [$/T].
Observe that, if the enterprise i doesn’t participate in the EIP, then her water consumption zi must be

zi =
Mi

Ci,out
.

Then, the cost of her stand-alone operation, which we denote by STCi [$], is given by

STCi = A · (c+β )
Mi

Ci,out
,

where A [h] is a time constant that measures the lifetime of the park.

The goal of the authority is to built (and operate) an exchange network so part of this polluted water
could be reused by other enterprises, minimizing the global consumption of fresh water within the park.
Here, an exchange network for the EIP is a simple directed graph (I0,E), where the connection (i, j) ∈ E
means that the agent i can send her output water to the agent j. In this sense, if agent i uses the connection
(i,0), then it means that she is discharging water outside the park, to the environment.

Defining the sets

Est := {(i,0) : i ∈ IP}
Emax := {(i, j) : i ∈ IP, j ∈ I0}∪{(r, j) : r ∈ IR, j ∈ IP},

(4.5.1)

a valid exchange network must satisfy that Est ⊂ E ⊂ Emax. This definition yields that: 1) for every
enterprise there is always the possibility of discharge; 2) the regeneration units can send water only to
enterprises; and 3) the sink node doesn’t have any exit connections (it is not possible to recover water once
it is discharged). We denote by E the family of valid networks for the EIP. Finally, for any E ∈ E , we
denote by Ec the set of connections that are not in E, that is, Ec = Emax \E.

Note that, on the one hand, the set Est is the stand-alone configuration, where each enterprise only has
access to fresh water and, after using it, she must discharge it to the sink node. On the other hand, Emax
stands for the complete park, in the sense that all enterprises are connected between them, and all of them
have access to the regeneration units.

If an enterprise i ∈ IP receives fluxes from other agents within the EIP, then these fluxed pass through a
mixer. After the mixing, the inlet flux is then mixed with the purchased fresh water zi. Then, the contaminant
concentration of the total flux cannot surpass a limit inlet concentration Ci,in, which is given by technical
constraints. We always have that Ci,in <Ci,out. This structure is illustrated in Figure 4.5.1.
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zi

Fk,i

Fr,i

Mixer Splitter

Max inlet pollutant
concentration Ci,in

Process Pi

Max outlet pollutant
concentration Ci,out

Fi,0

Fi, j

Fi,r

Figure 4.5.1: Water mixture description for a given enterprise. Here Ci,in ≤Ci,out
.

Every regeneration unit r∈ IR, as the enterprises, has limit concentrations as well. The inlet concentration
for r must be between a threshold given by a minimal inlet concentration, Cr,in [ppm]. The output
concentration Cr,out [ppm] denotes the concentration of the output flux after the regeneration process. The
main difference with the enterprises is that, while enterprises increase the contaminant concentration of
fluxes, regeneration units reduce it. Therefore, we always have Cr,out ≤Cr,in. Figure 4.5.2 illustrates the
operation of regeneration units.

Fk,r

Fi,r

Mixer Splitter

Min inlet pollutant
concentration Cr,in

Regeneration units r

Exact outlet pollutant
concentration Cr,out

Fr,i

Fr, j

Figure 4.5.2: Water mixture description for a given regeneration unit. Here Cr,in ≥Ct,out.The indexes i, j,k
belong to IP.

For each (i, j) ∈ Emax we denote by Fi, j [T/h] the water flux going from i to j through the connection
(i, j). We consider the following notation:

• Fi = {Fi, j : j ∈ I} is the vector of fluxes exiting from agent i.

• F−i = (Fk, j : k ∈ I \{i}) is the vector of all fluxes not exiting from agent i.

• FP
−i = (Fk, j : k ∈ IP \{i}) is the vector of all fluxes exiting from an enterprise different than i.

• FR = (Fr : r ∈ IR) is the vector of fluxes exiting from regeneration units.

• FP = (Fi : i ∈ IP) is the vector of fluxes exiting from enterprises.

Finally, for an agent i ∈ I, we may write F = (Fi,F−i), to stress the exiting fluxes of agent i. Moreover, if
i ∈ IP, we may also write

F−i = (FP
−i,F

R) and F = (Fi,FP
−i,F

R),

to distinguish the actions of other enterprises and the actions of regeneration units. This is classic notation
in game theory (see, e.g., [10, 11, 14]).

Then, for a fixed network E, a valid flux vector F = (Fi, j : (i, j) ∈ Emax) must satisfy the following
constraints:



4.5. Blind-Input model for water exchange networks 80

1. Use of connections in E: Since E represents the available connections, we must put

∀(i, j) ∈ Ec, Fi, j = 0. (4.5.2)

2. Water mass balance: Around an agent i ∈ I (different from the sink node), we have that

zi + ∑
(k,i)∈E

Fk,i = ∑
(i, j)∈E

Fi, j. (4.5.3)

If i ∈ IR then zi = 0, that is, the regeneration units don’t consume fresh water. The sink node is not
subject to balance constraints.

3. Contaminant mass balance: Around an enterprise i ∈ IP, we have that

Mi + ∑
(k,i)∈E

Ck,outFk,i =Ci,out ∑
(i, j)∈E

Fi, j, (4.5.4)

where the right-hand term corresponds to the inlet contaminant mass coming from other agents,
and the left-hand corresponds to the outlet contaminant mass. Thanks to the hypothesis of optimal
response, the inlet mass of an agent can be expressed in terms of fluxes, since for each agent k ∈ I,
the outlet concentration Ck,out is always attained. Observe that regeneration units are not subject to
contaminant mass balance, since they clean the water that pass through them.

4. Inlet/outlet concentration constraints: For an enterprise i ∈ IP we have that:

∑
(k,i)∈E

Ck,outFk,i ≤Ci,in

(
zi + ∑

(k,i)∈E
Fk,i

)
. (4.5.5)

In parallel, for regeneration unit r ∈ IR we have that:

Cr,in ∑
(k,r)∈E

Fk,r ≤ ∑
(k,r)∈E

Ck,outFk,r. (4.5.6)

Both constraints are formulated in terms of contaminant mass, but in practice they represent constraints
of concentration.

5. Positivity of fluxes: All the fluxes in the park must be positive:

∀(i, j) ∈ E, Fi, j ≥ 0 and ∀i ∈ IP, zi ≥ 0. (4.5.7)

Observe that, combining equations (5.2.3) and (4.5.4) we obtain:

Mi + ∑
(k,i)

Ck,outFk,i =Ci,out

(
zi + ∑

(k,i)∈E
Fk,i

)
, ∀i ∈ Ip,

and so, the fresh water bought by the enterprise i ∈ IP is given by the fluxes of the other agents, that is,

zi(F−i) =
1

Ci,out

(
Mi + ∑

(k,i)∈E

(
Ck,out−Ci,out

)
Fk,i

)
. (4.5.8)
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In this model, each enterprise i ∈ IP has a cost function that she wants to minimize, defined by

Costi(F) = A

[
c · zi(F−i)+βFi,0 +2δ ∑

r∈IR

(Fi,r +Fr,i)+δ ∑
k, j∈IP

(Fk,i +Fi, j)+ ∑
r∈IR

ΓrF
ψ

r,i

]
, (4.5.9)

where Γr [$/T] is the marginal cost of regenerating water depending on the technology of the regeneration
unit and δ [$/T] is the marginal cost of using a sharing connection. Note that the regenerated water cost is
non-linear, due to the power ψ < 1, which we usually set between 0.6 and 0.8 (see e.g. [2]). In fact the
higher the volume of regenerated water, the lesser the operating cost of the regeneration unit. We assume
that β � 2δ , that is, that the cost β is much higher than 2δ .

Observe also that each enterprise pays both for the entering water and the exiting water, for every
connection she has. In the case of the connections between two enterprises, this means that the cost of the
connection is divided uniformly between the sending enterprise and the receiving enterprise. In the case of
regeneration units, the 2δ factor means that the enterprise must pay for the operation (when sending to and
receiving from) of the regeneration unit.

On her part, the authority wants to minimize the consumption of the natural resources, and so she tries
to minimize the function

Z(F) = ∑
i∈IP

zi(F−i). (4.5.10)

All investment costs are trespassed to the enterprises by the marginal prices δ and Γr and the exponent ψ .
In order to get each enterprise i ∈ IP to participate in the EIP, the authority engages in a Blind-Input

contract with them of constant α ∈ ]0,1[. On the one hand, for each enterprise i ∈ IP, the authority must
ensure a relative improvement of α in the costs, with respect to the stand-alone operation, that is,

Costi(Fi,F−i)≤ αSTCi. (4.5.11)

On the other hand, each enterprise commits to accept every inlet flux sent to her through the connections
of the park, whenever these fluxes respect her physical constraints (which are given by (5.2.5)).

With all these considerations, for a given network E ∈ E , the problem of each enterprise is given by
problem Pi (F−i,E)

min
Fi

Costi (Fi,F−i)

s.t.


Equations (5.2.1)-(5.2.3)-(5.2.5),
zi(F−i)≥ 0,
Fi ≥ 0.

(4.5.12)

Observe that constraint (4.5.4) is implicit in the expression of zi(F−i) given by (4.5.8). For a network
E ∈ E and a fixed operation of the regeneration units FR, we say that a vector FP is an equilibrium for the
enterprises if and only if

∀i ∈ IP, Fi solves the problem Pi (F−i,E) .

We denote by Eq(FR,E) the set of equilibria for FR and E. Then, the problem of the authority is
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min
F∈R|Emax|,E∈E

Z(F)

s.t.



∑
(i,r)∈E

Fi,r = ∑
(r, j)∈E

Fr, j, ∀r ∈ IR,

∑
(k,r)∈E

Ck,outFk,r ≤Cmax
r,in ∑

(k,r)∈E
Fk,r, ∀r ∈ IR,

Cmin
r,in ∑

(k,r)∈E
Fk,r ≤ ∑

(k,r)∈E
Ck,outFk,r, ∀r ∈ IR,

Fr, j = 0, ∀(r, j) ∈ Ec,r ∈ IR,

FP ∈ Eq(FR,E),
FR ≥ 0,
Costi(Fi,F−i)≤ αSTCi, ∀i ∈ IP.

(4.5.13)

It is not hard to verify that Problem (5.2.12) together with the lower level problems (5.2.9) fit into the
general Blind-Input model developed in Section 4.3. Indeed we only need to identify the variable x with the
flux vector F , to observe that the costs functions have the structure described in Section 4.3.3 and to note
that constraint (5.2.5) can be rewritten with the form

gi(F−i)≤ 0.

Thus, in the following, we will apply the reformulation described in Section 4.4.

4.5.1 Problem formulation without regeneration units
Now, we can reduce problem (5.2.12) to a Mixed-Integer programming problem. In this section, we analyze
the case when there is no regeneration unit, that is, IR = /0.

To do so, we need to identify the pricing function γ : Emax→ R+ which gives the marginal price of
using exiting connections in the park and then, for each i ∈ IP, we need to find the arc classes

C(i, j) = {(i,k) ∈ Emax : γ(i, j) = γ(i,k)}.

Finally, we compute for each enterprise i ∈ IP the class set Ci = {C(i, j) : (i, j) ∈ Emax}.
Looking at the cost function (5.2.8) and assuming that there is no regeneration units, the pricing function

γ is given by

γ(i, j) =

{
δ if j ∈ IP,

β if j = 0.
(4.5.14)

Thus, for each enterprise i ∈ IP, the set Ci is equal to {Ci,p,Ci,0} where

Ci,p = {(i, j) ∈ Emax : j ∈ IP}
Ci,0 = {(i,0)}.

Now, for each agent i ∈ IP, we include three integer variables, yi,p,yi,0,yi,null ∈ {0,1} with the following
interpretation:

• If yi,p = 1, it means that the connections in Ci,p are included in the network.
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• If yi,0 = 1, it means that the connection (i,0) is the only exit connection for i, and i participates in the
EIP.

• If yi,null = 1, it means that the connection (i,0) is the only exit connection for i, and i does not
participate in the EIP (she works in stand-alone mode).

The main point is that only one of these variables takes the value 1, and in doing so it determines the
network E to be implemented and the operation that each enterprises can do within this network. We denote
by y ∈ {0,1}3n the vector of all integer variables of all enterprises. If an enterprise i is considered in the
park, then equation (5.2.11) is active, but if not, then her cost coincides with STCi. Thus, we define the
upper bound for the costs of enterprises as a function of the variable yi,null given by

STCi(yi,null) = αSTCi · (1− yi,null)+STCi · yi,null. (4.5.15)

Then, applying the reformulation of Section 5.3.2 we obtain the following problem:

min
F,y

Z(F)

s.t.



zi(F−i)+ ∑
(k,i)∈Emax

Fk,i = ∑
(i, j)∈Emax

Fi, j, ∀i ∈ IP,

yi,null + yi,p + yi,0 = 1, ∀i ∈ IP,

∑
(i, j)∈Ci,p

Fi, j ≤ B · yi,p, ∀i ∈ IP,

Fi,0 ≤ B · (yi,0 + yi,null), ∀i ∈ IP,

∑
(i, j)∈Emax, j 6=0

Fi, j ≤ B · (1− yi,null), ∀i ∈ IP,

∑
(k,i)∈Emax

Fk,i ≤ B · (1− yi,null), ∀i ∈ IP,

∑
(k,i)∈Emax

Ck,outFk,i ≤Ci,in

(
zi(F−i)+ ∑

(k,i)∈Emax

Fk,i

)
, ∀i ∈ IP,

zi(F−i)≥ 0, ∀i ∈ IP,

Costi(F)≤ STCi(yi,null), ∀i ∈ IP,

F ≥ 0.

(4.5.16)

Here, B is a constant large enough so all fluxes within the park, regardless the connections, are less than B.
In practice, we set B as

B := ∑
i∈IP

zi(0) = ∑
i∈IP

Mi

Ci,out
, (4.5.17)

that is, the total fresh water consumption assuming that each enterprise works in stand-alone operation.

4.5.2 Problem formulation including regeneration units
Let us now consider a network with regenaration units. Again, we need to identify the pricing function
γ : Emax→ R+ and the class sets Ci, for each enterprise i ∈ IP. Recall that we don’t need to work with
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classes for regeneration units, since they are controlled by the authority and so they don’t have economic
incentives.

The function γ in this situation is given by

γ(i, j) =


δ if j ∈ IP,

2δ if j ∈ IR,

β if j = 0.
(4.5.18)

Thus, for each enterprise i ∈ IP, the set Ci = {Ci,p,Ci,r,Ci,0} where

Ci,p = {(i, j) ∈ Emax : j ∈ IP}
Ci,r = {(i,r) ∈ Emax : r ∈ IR}
Ci,0 = {(i,0)}.

As in Subsection 4.5.1, for each agent i ∈ IP, we include four integer variables, yi,p,yi,ryi,0,yi,null ∈ {0,1}
with the following interpretation:

• If yi,p = 1, it means that the connections in Ci,p are included in the network.

• If yi,r = 1, it means that the connections in Ci,r are included in the network.

• If yi,0 = 1, it means that the connection (i,0) is the only exit connection for i, and i participates in the
EIP.

• If yi,null = 1, it means that the connection (i,0) is the only exit connection for i, and i does not
participate in the EIP (she works in stand-alone mode).

Again, only one of this variables can take the value 1. Keeping the same notation y ∈ {0,1}4n for the
complete vector of integer variables, setting STCi(yi,null) and B as in definitions (4.5.15) and (5.3.8),
respectively, and applying the reformulation of Subsection 5.3.2, we obtain the following problem:
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min
F,y

Z(y)

s.t.



zi(F−i)+ ∑
(k,i)∈Emax

Fk,i = ∑
(i, j)∈Emax

Fi, j, ∀i ∈ IP,

∑
(k,r)∈Emax

Fk,r = ∑
(r, j)∈Emax

Fr, j, ∀r ∈ IR,

yi,null + yi,p + yi,r + yi,0 = 1, ∀i ∈ IP,

∑
(i, j)∈Ci,p

Fi, j ≤ B · yi,p, ∀i ∈ IP,

∑
(i, j)∈Ci,r

Fi, j ≤ B · yi,r, ∀i ∈ IP,

Fi,0 ≤ B · (yi,0 + yi,null), ∀i ∈ IP,

∑
(i, j)∈Emax, j 6=0

Fi, j ≤ B · (1− yi,null), ∀i ∈ IP,

∑
(k,i)∈Emax

Fk,i ≤ B · (1− yi,null), ∀i ∈ IP,

∑
(k,i)∈Emax

Ck,outFk,i ≤Ci,in

(
zi(F−i)+ ∑

(k,i)∈Emax

Fk,i

)
, ∀i ∈ IP,

∑
(r,k)∈Emax

Cmin
r,in Fr,k− ∑

(k,r)∈Emax

Ck,outFk,r ≤ 0, ∀r ∈ IR,

∑
(k,r)∈Emax

Ck,outFk,r− ∑
(r,k)∈Emax

Cmax
r,in Fr,k ≤ 0, ∀r ∈ IR,

zi(F−i)≥ 0, ∀i ∈ IP,

Costi(F)≤ STCi(yi,null), ∀i ∈ IP,

F ≥ 0.

(4.5.19)

4.6 Simulation with some academic examples

In this section we present numerical examples of the Blind-Input model applied to water exchange networks
in Eco-Industrial Parks. The detailed model we use is described in Section 5.2. The optimization problems
we solve correspond to adaptations of problem (5.3.9) to the EIP: specifically, we solve problem (5.3.7) for
parks without regeneration units, and problem (4.5.19) for parks with regeneration units.

The study case we present consists on an EIP made up of 15 enterprises, each one including only
one process, and 3 regeneration units. Data is partially inspired from [2, 109]. It is assumed that the EIP
operates for one hour, that is, A = 1 h. We consider three different regeneration units which differ by their
capacity to regenerate water. Concerning the power ψ , we fix ψ = 0.6.

The data of 15 enterprises is given in Table 5.2. Prices are shown in Table 5.1. In addition, the operating
parameters of regeneration units are illustrated in Table 4.4. In terms of concentration limits, we set
Cr,out =Cr,in for each r ∈ IR, to simplify the problem.
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Enterprise i Ci,in(ppm) Ci,out(ppm) Mi(g/h)
1 0 100 7500
2 0 200 6000
3 50 100 5000
4 80 800 30000
5 400 800 4000
6 20 100 2500
7 50 100 2200
8 80 400 5000
9 100 800 30000

10 400 1000 4000
11 30 60 2000
12 25 50 2000
13 25 75 5000
14 50 800 30000
15 100 200 13000

Table 4.2: Enterprises’ Parameters.

Parameter Value ($/tonne)
c 0.13
β 0.22
δ 0.01

Table 4.3: Associated costs.

Unit r Cr,out =Cr,in (ppm) Γr ($/tonne)
1 30 0.85
2 40 0.695
3 50 0.54

Table 4.4: Different regeneration units. We suppose Cr,in =Cr,out.

Since the optimization problems we solve (problems (5.3.7) and (4.5.19)) may have several solutions
(see Section 4.6.3 for an example), we introduce a penalization term in the objective function in order to
obtain the one having more participating enterprises. We replace Z(F) by

Z(F)+Coef ·∑
i∈IP

yi,null, (4.6.1)

where Coef≥ 0 is a coefficient to penalize those optimal solutions that leave more enterprises outside the
park. If Coef is too large, we may sacrifice optimality of fresh water consumption by forcing enterprises
into the park. Numerical experiments show that Coef = 1 is a good value. The selection and impact of this
coefficient should be further studied but such analysis is out the scope of the article.

All simulations where implemented with Julia v1.2.0 programming language [? ], using Gurobi

v8.1.1 as solver [? ].
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4.6.1 Numerical experiment without regeneration units

Here, we present the results of the simulations with the data exposed before. The optimized configuration
of the EIP is presented in Figure 4.6.1, and it corresponds to a Blind-Input contract with α = 0.95 and
Coef = 1. Detailed results are summarized in Table 4.5. Detailed results of fluxes within the network are
presented in Table 4.10.

Of course, the optimization results are sensible to the parameter α chosen for the Blind-Input contract.
Figure 4.6.2 shows the results when considering α ∈ [0.5,0.99], in terms of total fresh water consumption
and the number of enterprises left out of the EIP, that is, the number of stand-alone enterprises. For values
of α smaller than 0.5, it would mean that the authority is offering an improvement of more than 50% to
each participant of the park, which is unrealistic.
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Figure 4.6.1: The configuration in the case without regeneration units, α = 0.95 and Coef = 1. Gray nodes
are consuming strictly positive fresh water. Dashed nodes are operating in stand-alone mode.
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Figure 4.6.2: Sensitivity Analysis for α ∈ [0.50,0.99] and Coef = 1. Total fresh water consumption and
number of stand-alone enterprises.
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Enterprise Fresh Water Fresh Water Costi Costi
Stand-Alone in EIP Stand-Alone in EIP

1* 75.00 75.00 26.25 26.25
2* 30.00 30.00 10.50 10.50
3 50.00 42.08 17.50 6.52
4 37.50 8.33 13.13 10.58
5 5.00 0.00 1.75 1.31
6 25.00 20.83 8.75 3.13

7* 22.00 22.00 7.70 7.70
8 12.50 3.13 4.38 3.97
9 37.50 0.00 13.13 9.86

10 4.00 0.00 1.40 1.02
11 33.33 35.42 11.67 5.13
12 40.00 53.33 14.00 8.00
13 66.67 66.67 23.33 9.33
14 37.50 6.66 13.13 10.00
15 65.00 1.92 22.75 20.49

Total 541.00 365.37 189.37 133.79

Table 4.5: Summary of results of the EIP without regeneration units. Marked enterprises (*) are left outside
the park, operating stand-alone.

4.6.2 Numerical experiment including regeneration units
The main difficulty to solve Problem (4.5.19) is that the function Costi described in (5.2.8) is nonlinear
under the presence of Regeneration Units. To tackle this obstruction, for each unit r ∈ IR we construct a
piecewise linear approximation of the functions fr : x 7→ Γr ·xψ , which is the marginal costs of regenerating
water. This approximation, that we denote `r, is constructed in the interval [0,B] (where B is the constant
given in (5.3.8)), with the reference points S = (s0,s1,s2,s3,s4,s5) = (0,0.1B,0.2B,0.4B,0.6B,B). Figure
4.6.3 shows the approximations `r for the regeneration units described in Table 4.4.
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Figure 4.6.3: Piecewise linear approximations (dashed red) of marginal cost of regenerating water. The
function `r corresponds to Reg. Unit r ∈ IR = {1,2,3}. The original function fr is given in blue. The
parameters of fr correspond to the data presented at the beginning of Section 4.6.

The nonuniform partition of the interval [0,B] is due to the fact that B is not a tight bound: each value
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Fr, j with r ∈ IR and i ∈ IP should be a lot less than B. Thus, the approximation `r must be more precise in
the first part of the interval.

As we did in Subsection 4.6.1, we present the detailed results of the simulations for α = 0.95 and
Coef = 1 in Table 4.6. The obtained configuration of the park is given in Figure 4.6.1. Detailed results of
fluxes within the network are presented in Table 4.11.

Enterprise Fresh Water Fresh Water Costi Costi
Stand-Alone in EIP Stand-Alone in EIP

1 75.00 75.00 26.25 10.50
2 30.00 30.00 10.50 4.20
3 50.00 0.00 17.50 11.16
4 37.50 0.00 13.13 5.58
5 5.00 0.00 1.75 1.53
6 25.00 10.42 8.75 5.98
7 22.00 0.00 7.70 6.50
8 12.50 0.00 4.38 12.47

10 4.00 0.00 1.40 0.15
11 33.33 7.15 11.67 11.08
12 40.00 18.94 14.00 13.30
13 66.67 16.67 23.33 17.75
14 37.50 0.00 13.13 6.41
15 65.00 0.00 22.75 21.40

Total 541.00 158.17 189.35 132.17

Table 4.6: Summary of results of the EIP considering regeneration units with Coef = 1.
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Figure 4.6.4: The configuration considering regeneration units, α = 0.95 and Coef = 1. Gray nodes are
consuming strictly positive fresh water. Regeneration unit R3 is not used and therefore removed from the
park.

Finally, the sensitivity analysis of the results with respect to α ∈ [0.5,0.99] is shown in Figure 4.6.5,
again, showing the variation of total fresh water consumption and the number of stand-alone enterprises.
As in the case without regeneration units, we neglect values of α smaller than 0.5 due to the impossibility
of implement such a contract.
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Figure 4.6.5: Sensitivity Analysis for α ∈ [0.50,0.99] and Coef = 1. Total fresh water consumption and
number of stand-alone enterprises.

4.6.3 Small case with multiple solutions

In this last part, we present an small example to show that problem (5.3.7) may have multiple optimal solu-
tions. This example presents two optimal solutions that have different number of participating enterprises.
The case of study consists on an EIP made up of 5 enterprises described in Table 4.7. The prices of the
example are the same as before, presented in Table 5.1, and the Blind-Input parameter is fixed as α = 0.99.

Enterprise Ci,in(ppm) Ci,out(ppm) Mp(g/h)
1 175 898 30010
2 90 200 3000
3 30 35 1000
4 150 530 32030
5 400 1095 90000

Table 4.7: Enterprises’ Parameters for small size case of study

Given that the example is small, we were able to explore all combinations of participating enterprises:
each time, we chose a subset A⊂ IP = {1,2,3,4,5} and we solved problem (5.3.7) with the extra constraint

yi,null =

{
0 if i ∈ A
1 otherwise.

This exhaustive exploration can be done only because the set of enterprises is small, since the number of
possible subsets A⊂ IP is 2|IP|.

After exploring all possible combination, we found two different optimal configurations that are shown
in Figures 4.6.6 and 4.6.7.
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Figure 4.6.6: The configuration in the case without regeneration units, α = 0.99. Gray nodes are consuming
strictly positive fresh water.
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Figure 4.6.7: The configuration in the case without regeneration units, α = 0.99. Gray nodes are consuming
strictly positive fresh water.

The results of fresh water consumption and economic cost are summarized in tables 4.8 and 4.9.

Enterprise Stand-Alone First Solution Second Solution

1 33.42 33.42* 32.36

2 15 18.65 15

3 28.57 33.98 64.68

4 60.43 60.43 62.26

5 82.19 2.03 0

Total 219.61 148.51 148.51

Table 4.8: Fresh Water consumption [T/h]. Stand-alone configuration and optimal solutions. In the first
solution, Enterprise 1 is left in stand-alone operation.

Enterprise Stand-Alone First Solution Second Solution

1 11.70 11.70* 11.58

2 5.25 2.65 2.1

3 10 4.76 8.30

4 21.15 8.46 5.39

5 28.77 26.71 27.45

Total 76.87 54.28 54.82

Table 4.9: Economic cost [$/h]. Stand-alone configuration and optimal solutions. In the first solution,
Enterprise 1 is left in stand-alone operation.
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4.7 Discussion

The results presented for our academic example, in both cases without and with regeneration units, show
that optimal networks under Blind-Input contracts provide substantial improvements in terms of reducing
the global consumption of water and the cost of each participating enterprise. Relatively speaking, the EIP
without regeneration units reduces the amount of consumed water in 32% with respect to the stand-alone
configuration, while the EIP with regeneration units reduces it is more than 70%.

Moreover, each participating enterprise has a cost reduction of at least 5%, as promised by the Blind-
Input contract. Exploring both, tables 4.5 and 4.6, the reader can observe that the reduction is not uniform
among the enterprises. This unbalanced benefit is due to the nature of the problem: the authority is only
concerned by the total water consumption, and therefore, the costs of the enterprises is not relevant beyond
the Blind-Input contract. This is acceptable recalling that the Blind-Input model maintains the information
of each enterprise private.

From the perspective of each enterprise, she only interacts economically with the authority and so she
only perceives her gains. It is therefore economically appealing to participate in the EIP under the network
proposed by the authority. However, the model presented in this work may not be economically efficient in
the sense that the total cost for the enterprises may not be optimal. Figure 4.7.1 shows a sensitivity analysis
of total cost for enterprises depending on the Blind-Input parameter α ∈ [0.50,0.99].

One would expect that total cost, at least starting from some threshold where enough enterprises
participate into the park, should be increasing with respect to α , since larger the α , less exigent are the
enterprises. However, this is not the case. The behavior of the total cost is quite chaotic, which is more
evident for the case with regeneration units. In terms of total cost of enterprises, the only behavior that is
natural is that the influence of regeneration units not only reduces the total water consumption, but also the
total cost the enterprises.
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Figure 4.7.1: Sensitivity Analysis for α ∈ [0.50,0.99] and Coef = 1. Total cost of the park for both study
cases: without and with regeneration units.

This behavior in economic cost can be explained by the multiplicity of optimal configurations. The small
size example presented in Section 4.6.3 emphasizes that there may be several optimal configurations in
terms of total water consumption, differing in the number of stand-alone agents and total cost of enterprises.
An interesting question rising from this example and the behavior of costs showed in Figure 4.7.1 is how to
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select the “best” optimal configuration.
In order to minimize the number of stand-alone enterprises we introduce the penalization (5.4.2).

However, some other penalization could be considered to try to force economic efficiency. In real-size
problems (more than 10 enterprises), it is not possible to explore all configurations, and therefore penalized
objective functions seem to be the solution. This could also be regarded in the sense of multi-objective
optimization: the authority could consider not only the total water consumption, but also the number
of stand-alone enterprises and the economic efficiency as optimization criteria. However, this could be
delicate, since it is important to keep the minimization of fresh water consumption as the primary goal
of the park. In the case of study without regeneration units, Figure 4.6.2 shows that the minimization of
stand-alone enterprises could be relegated for a better solution in terms of water consumption: for α = 0.71,
9 enterprises are left in stand-alone operation, while for α = 0.72, 10 enterprises are left in stand-alone
operation. While this could be interpreted as an ill behavior of the algorithm, it is completely correct.
Since α = 0.72 is bigger, the authority has more freedom to built the optimal network, and while she could
implement the same solution that for α = 0.71, she chooses to left one extra enterprise outside of the park,
and then reducing the fresh water consumption from 450.79 [T/h] (the optimal value for α = 0.71) to
443.08 [T/h] (the optimal value for α = 0.72).

This same example shows another limitation for the Blind-Input contract: on the one hand, if enterprises
are too exigent (α small), the authority may be incapable to find a economically feasible configuration. In
fact, for α ≤ 0.70, the optimal solution is the stand-alone configuration, which means that the authority
cannot build a park that attracts the exigent agents and also that reduces the total fresh water consumption.
On the other hand, if enterprises are too polluting, they may not be able to participate in the park, even
without economic constraints. Indeed, starting from α = 0.89, the authority leaves three enterprises outside
the park, since their participation doesn’t contribute to the minimization of fresh water. This is solved only
by introducing regeneration units, where full participation is attained starting from α = 0.92.

4.8 Conclusion and perspectives
Models for general exchange could lead to quite difficult problems like single-leader-multi-follower
problems. In this work, our aim is to emphasize that under the Blind-Input paradigm which is economically
consistent, one can find some solutions by simply solving a mixed-integer linear problem. This clearly
allows to tackle large scale problems efficiently and propose exchange politics that attract enterprises to
participate.

In order to apply the Blind-Input model to an exchange network, the following main elements must
be present: 1) for each independent agent of the park, Kirchoff’s law and positivity of fluxes must be the
only constraints of the her optimization problem that include their own variables (i.e., the vector xi); 2) the
quality of each inlet flux must depend only on the sending agent; and 3) the optimal response hypothesis
must allow each agent to compute the amount of natural resources needed. These three conditions are
present in many other examples. Particularly, energy networks also fit this profile (see, e.g., [6, 106]). Under
these conditions, our general model of Section 4.3 (and of course the reductions and methods of Section
4.4) can be adapted and so, the network can be designed/operated following the Blind-Input paradigm. It is
important to note that the economic model is a design decision, suitable for Eco-Industrial Parks involving
noncooperative enterprises.

Of course, the Blind-Input paradigm can appear to be quite restrictive since followers are forced to
accept the incoming fluxes. While this aspect is compensated by the Blind-Input contract, it could be
interesting for a future work to consider exchange models in which agents could have more “control”
on their exchanges. Taking advantage of the MILP formulation, some other theoretical results could be
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deduced on the exchange models; for example, stability results, dual formulations, among others.

In terms of the physical model, several other developments can be considered for future research. In
this work, we only treat enterprises with single processes. Multi-process agents should also be explored.
Specifically in terms of the water exchange model, we only consider a single-pollutant model. Multi-
pollutant exchange networks (where enterprises must dilute different types of pollutants) introduce a
particular difficulty with the inlet and outlet concentrations. The optimal response hypothesis changes,
since each enterprise will have several outlet concentrations (one for each pollutant) to observe, entailing
that these concentrations would become variable, changing the contaminant mass balance constraints as
well as the formula for the fresh water consumption. A concrete perspective of this work is to include the
multi-contaminant problem coupled with the energy network, following the developments of [110]. Finally,
Eco-Industrial Parks with several exchange networks could be explored as well under the Blind-Input
paradigm, following the spirit of [105].

4.9 Network fluxes of simulations

The values of the flux corresponding to the case without and with regeneration unit in sections 4.6.1 and
4.6.2 are given in Tables 4.10 and 4.11, respectively. The entrance (i, j) of both tables corresponds to the
flux sent from agent i to agent j.

Enterprise 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sink
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 75.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 30.00
3 0.00 0.00 0.00 7.79 0.00 0.00 0.00 12.50 42.86 4.44 0.00 0.00 0.00 0.00 6.15 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 41.67
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.71
6 0.00 0.00 0.00 25.54 5.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.63
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 42.86

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.44
11 0.00 0.00 0.00 0.00 0.00 10.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 33.33 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 80.00 0.00
13 0.00 0.00 31.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.33 26.67 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 40.00
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 88.08

Table 4.10: The values of the flux in the case without regeneration units, α = 0.95 and Coef = 1.
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Enterprise and 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 R1 R2 R3 Sink
Regeneration units

1 0.00 0.00 10.82 9.60 0.00 0.00 8.31 10.61 18.50 0.00 0.00 0.00 0.00 11.43 5.74 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 8.30 6.67 0.00 0.00 0.00 10.03 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 41.67 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.67
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 31.25 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 44.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.63
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 42.86

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 66.67 0.00 0.00 0.00 0.00
12 0.00 0.00 35.08 0.00 0.00 0.00 3.24 1.90 0.00 0.00 10.72 0.00 0.00 0.00 20.62 0.00 0.00 0.00 0.00
13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 62.55 37.45 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 40.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 93.02
R1 0.00 0.00 0.00 23.76 0.00 20.83 9.10 3.09 14.33 0.00 48.79 52.65 83.33 28.57 0.00 0.00 0.00 0.00 0.00
R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.11: The values of the flux in the case with regeneration units, α = 0.95 and Coef = 1.
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Optimal Design of Exchange Water Networks with
Control Inputs in Eco-Industrial Parks

This article has been done in the common work with Didier Aussel. It has been submitted to Energy
Economics, 23p, 2020.

Industrial water conservation is an important adaptation to preserve the environment. Eco-Industrial
Parks (EIPs) have been designed to encourage the establishment of water exchange networks between
enterprises in order to minimize freshwater consumption and wastewater discharge by maximizing
wastewater reuse. This control-input model presents a mathematical programming formulation for
designing and optimizing industrial water networks in EIPs based on formulating and solving Single-
Leader Multi-Follower (SLMF) game problems. Enterprises (followers) aim to minimize their operating
costs by reusing wastewater from other enterprises, while the designer (leader) aims to minimize the
consumption of natural resources within the ecopark. Moreover, when participating in the ecopark,
enterprises can control all their input fluxes and the designer guarantees a minimal relative improvement
in comparison with the stand-alone operation of each enterprise. The SLMF game is transformed into a
single mixed-integer optimization problem. The obtained results are compared with the results of the
blind-input model [77].

Abstract
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5.1 Introduction

The development of industrialization and urbanization along with other human activities on the environment
in many countries around the world makes the earth heavily polluted. Therefore, decision makers need to
have practical policies and actions to prevent these risks. Facing these issues, numerous approaches/concepts
have been proposed, in the last few decades, for protecting the global environment while increasing the
economic utilities based on the concept of sustainable development. Some concepts linked to sustainable
development such as Industrial Ecology (IE) have emerged [6]. IE was first introduced in 1989 by Frosch
and Gallopoulos [66]. They proposed that resource consumption and waste generation are minimized by
allowing the waste materials from one industry to serve as raw material for another. This idea is directly
related to another concept, namely Industrial Symbiosis (IS), which involves “separate industries in a
collective approach to competitive advantage involving physical exchange of materials, energy, water and
by-products” [67]. Industrial symbiosis can be realized through single-industry dominated complexes
including chemicals and petrochemicals, pulp and paper, waste management which includes material reuse
and recycle, etc. As a feature of IS, the geographical proximity between participating industries is essential
because the transportation of waste materials is expensive. The most widespread manifestations of these
kinds of IS are Eco-Industrial Parks (EIPs).

The objective of EIPs is to reduce the production cost of each participating enterprise and the envi-
ronmental impact of industrial production while the production level of each industry is maintained. This
involves reducing the consumption of energy and/or raw materials (water, energy-steam, etc) of a group of
companies located in the same industrial park, or designing/creating new industrial parks incorporating
these aspects. This is achieved by reusing the waste from one industrial process as a utility from another
process, either in raw form if the “contamination” is low enough or via regeneration facilities. However,
to convince companies to take part in an EIP, it is essential to make sure that each participant gains in
competitiveness (reduction in production costs in most cases). Since these advantages depend on the
EIP configuration, proper planning and design are critical. However, the system methods for designing
the optimal configuration of EIP are lacking and the models of water exchange network used to model
Eco-Industrial Parks in the literature are limited in some respects [6, 2, 67, 77].

The design and optimization of water-exchange networks in EIPs are complex problems due to their
actual sizes, their range of physical constraints, to be taken into account. In the literature, there are two main
approaches for designing and optimizing water-exchange networks in the EIP: multi-objective optimization
(MOO) on one hand and non-cooperative game theory on the other hand. The MOO perspective is based on
coalition cooperative games in which enterprises make binding agreements to coordinate their strategies
and share their information. The solution of such an approach is called Pareto optimal. A solution is said
to be Pareto optimal if no one can be made better off without making someone worse off [103]. After
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solving the multi-objective optimization problem the designer selects one of Pareto optimal solutions
considering an auxiliary criterion, usually the distance to a utopia point. The basic obstacle to EIP is the
need for cooperation between enterprises with different interests, in particular by sharing data on their
production processes. This kind of cooperation between enterprises can only be implemented when there
is trust between partners. Note that such an issue usually does not exist in designing and optimizing of
exchange networks in EIPs [111]. Therefore, due to the non-cooperative context, the different enterprises
may deviate from the selection of the designer since they may improve their benefits by unilaterally change
their operation. We refer the reader to [6, 8, 9], for the survey on multi-objective optimization approach.

Another suitable approach for designing and optimizing a water-exchange networks in EIPs is the
non-cooperative game theory approach. A game is non-cooperative if the participants do not make
binding commitments to coordinate their strategies. The theory of non-cooperative games corresponds
to a mathematical analysis of strategy and conflict, in which a player success in making choices depends
on the choice of others. In fact, an EIP can be considered as a collection of non-cooperative agents by
introducing an EIP impartial authority whose role is to collect all necessary data, in a confidential way, to
design the EIP. More precisely, enterprises optimize their operating costs while the EIP authority aims to
minimize resource consumption. This kind of problem can be modeled as Single-Leader-Multi-Follower
(SLMF) game with leader-follower strategy. The upper-level decision-maker (leader) is the EIP authority
and the enterprises are the lower-level decision-makers (followers). The EIP authority makes his decision
first by anticipating the responses of enterprises. Based on the EIP authority’ decisions, all enterprises
compete with each other in a parametric non-cooperative generalized Nash game at the lower-level with
the strategies of the EIP authority as exogenous parameters. It’s worth mentioning that, at the lower level,
enterprises play a generalized Nash equilibrium between them, so enterprises involved would be able to
keep confidential data, without the need to share them with the other enterprises of the park. In the context
of non-cooperative games, an optimal solution for EIP design can be achieved and proposed by obtaining a
generalized Nash equilibrium. Due to the Nash equilibrium concept, no enterprise can unilaterally deviate
in order to improve his payoff by choosing a different strategy. We refer the reader to [11] for a primer in
non-cooperative games, to [15] for a survey of generalized Nash equilibrium problems. For SLMF games,
we refer to [61, 63, 112, 113] and the references therein. Figure ?? shows the general scheme of such a
model.

LEADER: Authority
Minimize: Total wastewater discharge
Subject to:
Individual rationality constraint of each agent
Topological constraints
Equilibrium constraint

FOLLOWERS

Agent 1
Minimize: Cost1(F)

Subject to:
Physical constraints of agent 1
Topological constraints

Agent 2
Minimize: Cost2(F)

Subject to:
Physical constraints of agent 2
Topological constraints

Agent n
Minimize: Costn(F)

Subject to:
Physical constraints of agent n
Topological constraints

Figure 5.1.1: General scheme of SLMF Game

It is clear that the latter approach is more realistic in designing and optimizing the water exchange
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network in the EIP because first, it helps to reduce the overall freshwater consumption; second, it reduces
the operating costs of each enterprise; third, enterprises operating in the EIP do not need to share their
information with other enterprises of the park, which is clearly a very important issue in the design of
an optimal EIP. The SLMF approach of the optimal design of EIP has been introduced for the first time
in [2] and then specialized in [77, 108]). In fact in [77], the authors have profundly revisited the SLMF
approach of [2] and have developed an abstract Blind-Input model for water exchange networks in EIPs.
The main implicit assumption done in the blind-input model [77] is that each enterprise can only control
his outlet distribution. They are thus forced to accept whatever is sent to them through the exchange
network. This assumption seems actually quite restrictive since the enterprise may be forced to receive too
much polluted water which could turn into higher costs than the stand-alone operation outside the park.
However, to overcome this obstacle, the authors came up with the concept of a Blind-Input contract, which
guarantees that the designer commits a minimal relative improvement of his operating cost, with respect to
the stand-alone operation of the enterprise.

In the present work, we propose another model for designing and optimizing exchange water networks
by considering that each enterprise controls his input flux, which seems more realistic in the case of
exchange networks. In other words, when participating in the exchange network, each enterprise has the
ability to control the amount of water coming from the other enterprises. This model is called control input
model. Under some linear structure of the costs functions Costi(·) of each enterprise, the control-input
model can be reduced from a SLMF problem to a single mixed-integer linear optimization problem. The
approach is validated on a case study of exchange water network in EIPs without regeneration units.
Obtained results are compared with the blind-input model [77].

The rest of this paper is organized as follows. Section 5.2 provides the general problem statement which
briefly describes the problem addressed in this article and present a control input model for water exchange
networks in EIPs, based on a single-leader-multiple-follower model. A reformulation of the control input
problem as a mixed integer linear programming problem is addressed in Section 5.3. Numerical experiments
on reasonably large EIP are presented in Section 5.4 where comparisons with blind input approach are also
provided. Finally, Conclusions and perspectives are presented in Section 5.5.

5.2 Control-Input model for water exchange networks in EIPs

5.2.1 Problem statement
Let us consider a set of enterprises P := {P1, . . . ,Pn} that are co-located in the same industrial park and
are governed by rules made in the park. Each enterprise has its own pre-defined water input requirement
and quality characteristics, as well as the quantity and quality of available output wastewater. After the
operation of each enterprise, the discharge wastewater can be used as input for other enterprises in the park.
Contrary to the model developed in [77] and [2], our Control-Input model is based on the assumption that
each enterprise has a control on his polluted inputs, namely, each enterprise has the ability to set the amount
of water coming from the other enterprises. The goal of the model is to establish an optimal exchange
network so that the total freshwater consumption, the total discharge wastewater, and the operating cost
of each participating enterprise in the park are minimized, while satisfying all process and environmental
constraints. The problem is structured as a SLMF problem wherein the EIP authority is the upper-level
decision-maker and the enterprises interact through a GNEP as lower-level decision-makers. Each enterprise
wants to minimize his cost of the use of water while the designer is in charge of the ecological concern by
minimizing the fresh water consumption, thus encouraging the recycling or reuse of wastewater streams.

The n enterprises of the considered EIP are connected thanks to an exchange network. A sink node,
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represented by the index 0 is of course included. It represents a waste pit to discharge polluted water. Each
enterprise Pi can be connected to other enterprises and/or to the sink node. Setting by I := {1, . . . ,n} the
index set of the P we also define I0 = {0}∪ I.

5.2.2 Enterprises’ problem
The goal of the designer is to built an exchange network so that part of this polluted water could be reused
by other enterprises, reducing the global consumption of fresh water within the park. Here, an exchange
network for the EIP is a simple directed graph (I0,E), where the connection (i, j) ∈ E means that the
enterprise i can send its output water to the enterprise j. In this sense, if the enterprise i uses the connection
(i,0), then it means that it is discharging water outside the park, to the environment.

Defining the sets

Est := {(i,0) : i ∈ I},
Emax := {(i, j) : i ∈ I, j ∈ I},
Emax

0 := {(i, j) : i ∈ I, j ∈ I0}= Emax∪Est,

a valid exchange network E0 is the set of connections satisfying Est ⊂ E0 ⊂ Emax
0 . Note that the set Est is

the stand-alone configuration, where each enterprise only has access to fresh water and, after using it, he
must discharge it to the sink node. On the other hand Emax

0 stands for the complete park, in the sense that
all enterprises are connected between them, and each enterprise has a connection with the sink node. This
definition yields that: 1) for every enterprise there is always the possibility of discharge; and 2) the sink
node doesn’t have any exit connections (it is not possible to recover water once it is discharged). We denote
by E the family of valid networks for the EIP. Finally, for any E0 ∈ E , the associated networks E and Ec

0
stands respectively for E = E0 \Est and the set of connections that are not in E0, that is, Ec

0 = Emax \E0.
For each (k, i) ∈ Emax we denote by Fk,i [T/h] the water flux going from k to i through the connection

(k, i). We consider the following notation:

• Fi = (Fk,i : k ∈ I) is the vector of fluxes going to enterprise i,

• F−i = (Fk, j : j ∈ I \ {i}) is the vector of all fluxes not going to enterprise i and not going to sink
node,

• F = (Fi : i ∈ I) is the vector of fluxes between enterprises,

• for any i ∈ I, zi stands for the inlet fresh water and Fi,0 is the flux sent by enterprise i to the sink node.

Finally, following classical notations of game theory, for an enterprise i ∈ I, we may write F = (Fi,F−i),
to stress the vector of fluxes between enterprise i. Then, for a fixed network E0, a valid flux vectors
F = (Fk,i : (k, i) ∈ Emax) and F0 = (Fi,0 : i ∈ I) must satisfy the following constraints:

1. Use of connections in E0: since E0 represents the available connections, we must put

∀(k, i) ∈ Ec
0, Fk,i = 0. (5.2.1)

2. Positivity of fluxes: all the fluxes in the park must be positive:

∀(k, i) ∈ E0, Fk,i ≥ 0 and ∀i ∈ I, zi ≥ 0. (5.2.2)
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3. Water mass balance: since no water losses are considered, for any valid network E0 and for each
enterprise i ∈ I, we have

zi + ∑
(k,i)∈E

Fk,i = ∑
(i, j)∈E

Fi, j +Fi,0. (5.2.3)

It is important to note that while each enterprise i controls his inlet flux Fi and the oulet fluxes F−i are under
the control of the concurrent enterprises, the fluxes (Fi,0)i∈I corresponding to the amounts of discharged
water are directly deduced by the water balance constraint (5.2.3) and will not be variables neither of the
enterprises nor of the designer.

Thus for an given couple (E0,F) of valid network and associated fluxes, an enterprise will be:

• in semi-stand-alone situation if, for any k ∈ I, Fk,i = 0;

• in stand-alone situation if, for any k, j ∈ E, Fk,i = 0 and Fi, j = 0.

In the first situation the enterprise i doesn’t exchange any flux with the other enterprises while in the
semi-stand-alone case, the enterprise i send some polluted water to the other enterprises but doesn’t receive
any polluted water.

Each enterprise i ∈ I thus receives the fluxes from other enterprises within the EIP. Nevertheless for
technical constraints on the process Pi, the pollutant concentration delivered by the other enterprises cannot
exceed a certain maximum value denoted here by Ci,in [ppm]. We assume here that each enterprises i, in
order to use less fresh water, will actually accept a maximum of polluted water. The inlet flux is then
mixed with the purchased fresh water zi generating therefore the inlet flux zi +∑(k,i)∈E Fk,i. On the other
hand enterprise i generates a fixed amount of pollutant Mi [g], coming from his internal production process.
This pollutant is then diluted into the outlet water flux ∑(i, j)∈E Fi, j +Fi,0, for which is usually assumed, in
the design of EIP, that the pollutant concentration is less than a maximum value Ci,out [ppm]. Actually
considering that enterprise i will optimize his process, we will assume, as it is classically done for EIP the
so-called hypothesis of optimal response that each enterprise i ∈ I consumes exactly the fresh water it needs
to attain Ci,out, and therefore, its output pollutant concentration is always equal to this constant. Obviously
we have that 0 <Ci,in <Ci,out. This functioning is illustrated in Figure 5.2.1.

F1,i

Fn,i

Fi,1

Fi,n

Mixer Dispatcher

Freshwater zi

Max inlet pollutant
concentration Ci,in

Process Pi

Max outlet pollutant
concentration Ci,out

Discharge Fi,0

Figure 5.2.1: Water mixture description for a given process Pi.

Taking into account the above explainations, for any valid network E0, the water mixture model
immediately leads to the following constraints:
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1. Contaminant mass balance: each enterprise i ∈ I wants to receive the maximum of pollutant and thus
the contaminant mass balance is

Mi +Ci,inΦi(zi,(Fk,i)k) =Ci,out

(
∑

(i, j)∈E
Fi, j +Fi,0

)
, (5.2.4)

where the auxiliary function Φi : R×Rn−1→ R is defined as

Φ(zi,(Fk,i)k) =

 zi + ∑
(k,i)∈E

Fk,i If there exists k such that Fk,i > 0

0 otherwise.

Note that the auxiliary function Φi allows to take into account that when enterprise i doesn’t receive
any polluted water, thus being in a semi-stand-alone or stand-alone situation, then the pollutant only
comes from the internal generation Mi.

2. Inlet/outlet concentration constraints: for an enterprise i ∈ I we have that:

∑
(k,i)∈E

Ck,outFk,i ≤Ci,in

(
zi + ∑

(k,i)∈E
Fk,i

)
. (5.2.5)

Observe that, in the case of an enterprise i in semi-stand-alone or stand-alone situation, combining equations
(5.2.3) and (5.2.4) we obtain:

Mi =Ci,out

(
∑

(i, j)∈E
Fi, j +Fi,0

)
,

and so, the discharge of wastewater by the enterprise i ∈ I is given by the fluxes controlled by the other
enterprises, thanks to the formula

Fi,0(F−i) =
Mi

Ci,out
− ∑

(i, j)∈E
Fi, j. (5.2.6)

For all the other enterprises, neither in semi-stand-alone nor in stand-alone situation, by combining (5.2.3)
and (5.2.4), one gets

Mi +Ci,in

(
∑

(i, j)∈E
Fi, j +Fi,0

)
=Ci,out

(
∑

(i, j)∈E
Fi, j +Fi,0

)
,

and so, the discharge of wastewater by the enterprise i ∈ I is given by the fluxes controlled by the other
enterprises, thanks to the following formula

Fi,0(F−i) =
Mi

Ci,out−Ci,in
− ∑

(i, j)∈E
Fi, j. (5.2.7)

Now we denote by c [$/T] the marginal cost of fresh water, and for any enterprise i by γi,0 [$/T] the
unit tax for discharged water. Observe that, if the enterprise i doesn’t receive polluted water (i.e. is in
semi-stand-alone or stand-alone situation), then its fresh water consumption zi must be

zi =
Mi

Ci,out
.
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Then, the cost of stand-alone operation, which we denote by STCi [$], is given by

STCi = A · (c+ γi,0)
Mi

Ci,out
,

where A [h] is a time constant that measures the lifetime analysis of the park.
In the SLMF model, given a valid exchange network E0, each enterprise i ∈ I has a cost function that he

wants to minimize, defined by

Costi(zi,Fi,F−i,E0) = A

[
c · zi +

(
∑

(k,i)∈E
γk,iFk,i + ∑

(i, j)∈E
γi, jFi, j

)
+ γi,0Fi,0(F−i)

]
, (5.2.8)

where γl,m [$/T] is the unit cost for the use of shared connection between node l and m, for any (l,m) ∈ E.
Observe that each enterprise pays for each connection he uses, both for the inlet fluxes and outlet fluxes. In
the case of the connections between two enterprises, this means that the cost of the connection is divided
uniformly between the sending enterprise and the receiving enterprise.

With all these considerations, for a given valid exchange network E0 ∈ E , the problem of each enterprise
i is given by problem Pi (z−i,F−i,E0):

min
zi,Fi

Costi (zi,Fi,F−i,E0)

s.t.


Equations (5.2.1) -(5.2.3) -(5.2.5),
zi ≥ 0,
Fi ≥ 0
Fi,0(F−i)≥ 0.

(5.2.9)

Observe that constraint (5.2.4) is implicit in the expressions of Fi,0(F−i) given by (5.2.6) and (5.2.7) and
thus finally by the cost function expression (5.2.8). For a network E0 ∈ E , we say that a vector (z,F) is an
equilibrium for the enterprises if and only if

∀i ∈ I, (zi,Fi) solves the problem Pi (z−i,F−i,E0) .

We denote by Eq(E0) the set of equilibriums for the valide exchange network E0.

5.2.3 Designer’s problem
The designer being in charge of the reduction of the environmental impact of the park, he wants to minimize
the total wastewater discharge, that is function

F0(F) = ∑
i∈I

Fi,0(F−i). (5.2.10)

So by selecting an appropriate network E0 and a compatible operation (z,F) ∈ Eq(E0), the designer will
propose an optimal design for the park. Nevertheless there is no a priori guarantee that doing so the resulting
cost of each enterprise will be lower than his stand-alone cost STCi and thus that every enterprise will
finally accept to participate to the EIP. Thus in order to have strong arguments to encourage enterprise
to be involved into the EIP, the designer engages in a contract with them. This contract will guarantee a
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minimal relative gain, with respect to the stand-alone operation, denoted by α ∈ ]0,1[, on the cost of every
enterprise.

Costi(zi,Fi,F−i,E0)≤ α ·STCi. (5.2.11)

This type of minimal relative gain contract was first introduced in [77].
Then, the problem of the designer is

min
E0∈E0,z∈Rn,F∈R|Emax|

F0(F)

s.t.

{
(z,F) ∈ Eq(E0),

Costi(zi,Fi,F−i,E0)≤ α ·STCi, ∀i ∈ I.

(5.2.12)

The optimization problem 5.2.12 can be interpreted as follows: the designer will propose to the enterprises
a valied exchance network E0, a vector z, and an operation F ∈ R|Emax| which satisfy all the physical
constraints and also, such that the operation F respects:

1) the incentive consistency, in the sense that no enterprise will have incentives to unilaterally deviate
from the proposal due to the constraint (z,F) ∈ Eq(E0);

2) the individual rationality of each enterprise, in the sense that all enterprises will participate in the
network since their participation has been bought through the constraint (5.2.11).

Let us finally bring to the fore that the designer problem corresponds to the so-called optimistic approach
of the SLMF game. Indeed for any given valid exchange network E0, the set Eq(E0) can contain more than
one equilibrium and the designer choose the one which minimizes the function F0(F). For more details on
the different possible approaches for SLMF games the reader can refer to [61].

5.3 Mixed-Integer programming reduction

The formulation of designer’s problem (5.2.12) has the form of a mathematical programming with equilib-
rium constraints (MPEC). This section is devoted to prove that this MPEC formulation, which is known
to be hard to solve (see, e.g., [72, 73, 74]), can be reformulated as a single Mixed-Integer programming
problem.

5.3.1 Characterization of equilibriums

The following theorem characterizes the equilibrium set Eq(E0) as a system of equations. This allows to
reduce the MPEC of problem (5.2.12) to a single optimization problem.

Let us denote by Ii,act =
{

k ∈ I \{i} : γk,i = minl∈I,l 6=i γl,i
}

. This minimal marginal cost will be denoted
by γ∗i while Ei,act stands for the set {(k, i) : i ∈ Ii,act}.
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Theorem 5.3.1 For any valid exchange network E0 ∈ E0 and denoting by S(E0) the set

S(E0) =


(z,F) : ∀i ∈ I,

zi + ∑
(k,i)∈Ei,act

Fk,i = ∑
(i, j)∈E0

Fi, j +Fi,0(F−i)

∑
(k,i)∈Ei,act

Ck,outFk,i−Ci,in

(
zi + ∑

(k,i)∈E0

Fk,i

)
≤ 0

zi ≥ 0
Fi
∣∣
Ec

i,act
= 0

Fi ≥ 0
Fi,0(F−i)≥ 0


(5.3.1)

then, one has S(E0)⊆ Eq(E0). Furthermore, any optimal solution (E0,z,F) of the auxiliary mathematical
programming problem

min
E0∈E0,z∈Rn,F∈R|Emax|

F0(F)

s.t.

{
(z,F) ∈ S(E0)

Costi(zi,Fi,F−i,E0)≤ α ·STCi, ∀i ∈ I.

(5.3.2)

is an optimal solution of the SLMF problem (5.2.12).

Proof. We only need to prove the inclusion S(E0) ⊆ Eq(E0) since the second part of the statement is
a direct consequence by replacing, in the formulation of (5.2.12), the constraint “(z,F) ∈ Eq(E0)” by
“(z,F) ∈ S(E0)”.

Thus let us fix (z,F) ∈ S(E0). It is not hard to see that, for any i, (zi,Fi) is a feasible point of
Pi(z−i,F−i,E0).

Now, fix i ∈ I and let (z′i,F
′
i ) be another feasible point of Pi(z−i,F−i,E0). Then, z′i ≥ 0, F ′i ≥ 0 and the

water mass balance constraint (5.2.3) is satisfied.
Therefore one has

Costi(z′i,F
′
i ,F−i,E0)−Costi(zi,Fi,F−i,E0) = A

[
c
(
z′i− zi

)
+ ∑

(k,i)∈E0

γkiF ′k,i− γ
∗
i ∑

k∈Ii,act

Fk,i

]

≥ A

[
c
(
z′i− zi

)
+ γ
∗
i

(
∑

(k,i)∈E0

F ′k,i− ∑
k∈Ii,act

Fk,i

)]

≥ A

[
min{c,γ∗i }

[(
z′i + ∑

(k,i)∈E0

F ′k,i

)
−

(
zi + ∑

k∈Ii,act

Fk,i

)]]
= 0

(5.3.3)

because, using that Fi
∣∣
Ec

i,act
= 0 and the mass balance constraint (5.2.3) for (z′i,F

′
i ) and (zi,Fi),

z′i + ∑
(k,i)∈E0

F ′k,i = ∑
j∈I

Fi, j +Fi,0(F−i) = zi + ∑
(k,i)∈E0

Fk,i = zi + ∑
k∈Ii,act

Fk,i. (5.3.4)

Note that equality (5.3.4) is still valid is enterprise i is in semi-stand-alone or stand-alone situation with
(zi,Fi) or/and with (z′i,F

′
i ). Thus, (zi,Fi) solves Pi(z−i,F−i,E0), and since this holds for every i ∈ I, we

deduce that (z,F) ∈ Eq(E0).
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Even if the resolution of the SLMF game has been drastically simplified thanks to Theorem 5.3.1 and
its description of a subset of solutions of the SLMF as solutions of the single optimization problem (5.3.2),
an adaptation of this optimization problem is still needed since one of its variables is an exchange network.

Definition 5.3.2 (Arc Classes) Let (k, i) ∈ Emax. We define the arc class of (k, i) as the set

C(k, i) := {(l, i) ∈ Emax : γl,i = γk,i}.

We denote by Ci the family of all arc classes going to i, that is, Ci = {C(k, i) : (k, i) ∈ Emax}.
Observe that, for two arcs (k, i),(h, i) ∈ Emax such that γk,i = γh,i, one has that C(k, i) =C(h, i). Thus,

a class C ∈ Ci may have many representations of the form C(k, i). Furthermore, the family Ci induces a
partition of the set of arcs “going to” agent i, that is

•
⋃

C∈Ci
C = {e ∈ Emax : e = (k, i) for some k ∈ I}.

• For any two classes C,C′ ∈ Ci, either C =C′ or C∩C′ = /0.

Moreover, it is not hard to verify that for each valid exchange network E0 ∈ E0 and for each agent i ∈ I,
there exists one class C ∈ Ci such that

Ei,act ⊆C, (5.3.5)

This class is then given by C =C(k, i) where (k, i) is any element of Ei,act. We will call it the active class of
E of the agent i, and we will denote it by Ci(E).

Now, let D =
⋃

i∈I Ci, the set of all arc classes of active agents. We introduce the boolean variable
y = (yC)C∈D ∈ {0,1}|D| in the following way: for each independent agent i ∈ I and each arc class C ∈ Ci,
we set

yC =

{
1 if C is the active class of i,
0 otherwise.

From y ∈ {0,1}|D|, we will build the graph associated to y as

E0(y) =
(⋃
{C : yC = 1}

)
∪{ (i,0) : i ∈ I}. (5.3.6)

Then, we consider the following Mixed-Integer optimization problem:

min
F,z,y

F0(F)

s.t.



zi + ∑
(k,i)∈Emax

Fk,i = ∑
(i, j)∈Emax

Fi, j +Fi,0(F−i), ∀i ∈ I,

∑
(k,i)∈Emax

Ck,outFk,i ≤Ci,in

(
zi + ∑

(k,i)∈Emax

Fk,i

)
, ∀i ∈ I,

∑
C∈Ci

yCi = 1, ∀i ∈ I,

∑
(k,i)∈C

Fk,i ≤ K · yC, ∀C ∈ D,

zi ≥ 0, ∀i ∈ I,
F ≥ 0,
Fi,0(F−i)≥ 0, ∀i ∈ I,
Costi(zi,Fi,F−i,E0(y))≤ α ·STCi, ∀i ∈ I.

(5.3.7)
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Here, K is a constant large enough so all fluxes within the park, regardless the connections, are less than
K. In practice, we can set K as

K := ∑
i∈I

Fi,0(0) = ∑
i∈I

Mi

Ci,out−Ci,in
, (5.3.8)

that is, the total fresh water consumption assuming that none of the enterprises works in stand-alone
situation.

Theorem 5.3.3 For every feasible point (F,z,y) of (5.3.7), the triple (E0(y),z,F) is a feasible point of
(5.3.2). Conversely, for every feasible point (F,z,E0) of (5.3.2), the triple (F,z,yE) is a feasible point of
(5.3.7), where yE ∈ {0,1}|D| is given by

yE
C =

{
1 if C =Ci(E0) for some i ∈ I,
0 otherwise.

As a consequence,

1. if (E0,z,F) is an optimal solution of (5.3.2), then (F,z,yE
0 ) is an optimal solution of (5.3.7).

2. if (F,z,y) is an optimal solution of (5.3.7), then (E0(y),z,F) is an optimal solution of (5.3.2).

Proof. Let (F,z,y) be a feasible point of (5.3.7). Let us fix an enterprise i ∈ I and let Ci be the unique class
in Ci such that yCi = 1. Then, by construction, we know that

E(y)i,act =Ci and ∑
(k,i)∈Emax\Ci

Fk,i ≤ K · ∑
C∈Ci\Ci

yC = 0.

We deduce then that
Fi
∣∣
E(y)c

i,act
= 0.

Since this constraint is valid for every active enterprise i ∈ I. We deduce then that (E0(y),z,F) is a feasible
point of problem (5.3.2).

Now, let (E0,z,F) be a feasible point of problem (5.3.2). By inclusion (5.3.5), for each enterprise i ∈ I,
there exists a unique active class Ci(E0). Let us define yE

0 ∈ {0,1}|D| as in the statement of the theorem.
Then, for every i ∈ I, ∑C∈Ci yE0

C = 1. Now, fix a class C ∈D, and let i ∈ I such that C ∈ Ci. We have that

∑
(k,i)∈C

Fk,i ≤

{
K · yE0

C if C =Ci(E0),

0 = K · yE0
C if C 6=Ci(E0),

where the second inequality comes from the fact that, whenever C 6=Ci(E0), then C ⊆ Ec
i,act and so Fi

∣∣
C = 0.

For an enterprise i ∈ I, the fact that Ei,act ⊆ E(yE0) lead us to the fact that

Costi(zi,Fi,F−i,E0(yE0)) = Costi(zi,Fi,F−i,E0),

and so, the constraint (5.2.11) is satisfied with E0(yE0). We deduce that (F,z,yE0) is a feasible point of
(5.3.7).

The two last implications of the theorem follows directly from the above developments.
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5.3.2 Involved enterprises: an automatic process

Physically, we know that the network has always a feasible point, which is the Stand-Alone configuration,
that is, the topology Est. However, when we include the individual rationality constraint (5.2.11), the
problem may become infeasible since α < 1.

Infeasibility of problem (5.3.7) means that the designer is not capable to find a solution that respect the
contracts with all the enterprises. Thus, we need to include the possibility of excluding some enterprises
from the network.

Formally, for each enterprise i ∈ I, we define a boolean variable yi,null ∈ {0,1} such that

yi,null =

{
1 if i breaks the contract (5.2.11),
0 otherwise.

and denote by ynull the vector ynull = (yi,null)i∈I . With this new variable, we modify problem (5.3.7) adding
the following constraints

1. For each enterprise i ∈ I, we put
yi,null + ∑

C∈Ci

yCi = 1,

meaning that, either one arc class is active or the enterprise is outside the network.

2. For each enterprise i ∈ I, we put

∑
(i, j)∈Emax

Fi, j ≤ K · (1− yi,null).

This is to ensure that, if the enterprise breaks the contract, then he cannot send his polluted water to
any enterprises.

3. For each enterprise i ∈ I, we put

∑
(k,i)∈Emax

Fk,i ≤ K · (1− yi,null).

This constraint establishes that, if the enterprise breaks the contract, then nobody can send him any
flux.

4. For each enterprise i ∈ I, we put

Costi(zi,Fi,F−i,E0(y))≤ αiSTCi · (1− yi,null)+STCi · yi,null.

Here, the individual rationality constraint is active only when yi,null = 0. Otherwise, since the
enterprise is not connected to the network, his cost will coincide with STCi.

Denoting
STCi(yi,null) := αSTCi · (1− yi,null)+STCi · yi,null,
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the new optimization problem becomes

min
F,z,y,ynull

F0(F)

s.t.



zi + ∑
(k,i)∈Emax

Fk,i = ∑
(i, j)∈Emax

Fi, j +Fi,0(F−i), ∀i ∈ I,

∑
(k,i)∈Emax

Ck,outFk,i ≤Ci,in

(
zi + ∑

(k,i)∈Emax

Fk,i

)
, ∀i ∈ I,

yi,null + ∑
C∈Ci

yCi = 1, ∀i ∈ I,

∑
(k,i)∈C

Fk,i ≤ K · yC, ∀C ∈ D,

∑
(i,k)∈Emax

Fi,k ≤ K · (1− yi,null), ∀i ∈ I,

∑
(k,i)∈Emax

Fk,i ≤ K · (1− yi,null), ∀i ∈ I,

zi ≥ 0, ∀i ∈ I,
F ≥ 0,
Fi,0(F−i)≥ 0, ∀i ∈ I,
Costi(zi,Fi,F−i,E0(y))≤ STCi(yi,null), ∀i ∈ I.

(5.3.9)

Observe that, whenever yi,null = 0, then all constraints for the ith enterprise are the same that those
established in problem (5.3.7). Also, if yi,null = 1, the only feasible solution for i is the stand-alone operation.
Thus, in this new problem, the designer first choose all the enterprises that will participate in the network,
represented by the set

I′ = {i ∈ I : yi,null = 0},

and then it solves problem (5.3.7) replacing I by I′. Of course, as it is formulated, the designer takes both
decisions simultaneously, by solving problem (5.3.9). It is not hard to verify that any optimal solution of
problem (5.3.9) is an optimal solution of Problem (5.3.7) (and thus also of the associated SLMF problem)
for the reduced set of enterprises I′. We leave this verification to the reader.

5.4 Numerical experiments

In this section we present numerical examples of the control-input model for water exchange networks in
Eco-Industrial parks. To simplify, we assume that the unit cost of using a sharing connection between two
nodes is uniform. More precisely,

γl,m = δ , for all l,m ∈ I and γi,0 = δ , for all i ∈ I. (5.4.1)

Thus, for each enterprise i ∈ I, the family of all arc classes going to i defined by Ci =
{

Cp,i
}
= {(k, i) ∈

Emax : k ∈ I}.
Now, for each agent i ∈ I, we include two integer variables, yp,i,yi,null ∈ {0,1} with the following

interpretation:

• If yp,i = 1, it means that the connections in Cp,i are included in the network.
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• If yi,null = 1, it means that the connection (i,0) is the only exit connection for i, and i does not
participate in the EIP (he works in stand-alone mode).

Since the optimization problem (5.4.3) may have several optimal solutions, we introduce a penalization
term in the objective function in order to obtain the solutions involving more participating enterprises. We
replace F0(F) by

F0(F)+Coef ·∑
i∈I

yi,null, (5.4.2)

where Coef≥ 0 is a coefficient to penalize those optimal solutions that leave more enterprises outside the
park. The choice of an appropriate value for Coef will be descussed in the forthcoming subsection 5.4.3.

Finally it’s worth mentioning that we will add the constraint Fi,i = 0 for all i ∈ I to avoid that enterprises
send his polluted water to himself. Therefore, the considered problem is the following Mixed Integer Linear
Programming problem

min
F,z,y

F0(F)+Coef ·∑
I∈I

yi,null

s.t.



zi + ∑
(k,i)∈Emax

Fk,i = ∑
(i, j)∈Emax

Fi, j +Fi,0, ∀i ∈ I,

∑
(k,i)∈Emax

Ck,outFk,i ≤Ci,in

(
zi + ∑

(k,i)∈Emax

Fk,i

)
, ∀i ∈ I,

yp,i + yi,null = 1, ∀i ∈ I,

∑
(k,i)∈Cp,i

Fk,i ≤ K · yp,i, ∀i ∈ I,

∑
(i,k)∈Emax

Fi,k ≤ K · (1− yi,null), ∀i ∈ I,

∑
(k,i)∈Emax

Fk,i ≤ K · (1− yi,null), ∀i ∈ I,

zi ≥ 0, ∀i ∈ I,
F ≥ 0,
Fi,0(F−i)≥ 0, ∀i ∈ I,
Fi,i = 0, ∀i ∈ I,
Costi(zi,Fi,F−i,E0(y))≤ STCi(yi,null), ∀i ∈ I.

(5.4.3)

All simulations have been implemented with Julia v1.3.1 programming language using Gurobi

v9.0.1 as solver.

5.4.1 Results and discussion of case study

The study case which we present here consists on an EIP made up of 15 enterprises, each one including
only one process. It is assumed that the EIP operates for one hour, that is, A = 1 h.

Prices are shown in Table 5.1 and the data of 15 enterprises is given in Table 5.2.
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Parameter Value ($/tonne)
c 0.13
β 0.22
δ 0.01

Table 5.1: Associated costs.

Enterprise Ci,in(ppm) Ci,out(ppm) Mp(g/h)
1 0 100 7500
2 0 200 6000
3 50 100 8000
4 80 800 30000
5 90 400 4000
6 20 900 8000
7 150 1000 40000
8 80 200 7000
9 70 800 20000
10 90 900 9000
11 30 800 6000
12 25 500 2000
13 25 750 5000
14 50 1000 30000
15 60 700 13000

Table 5.2: Process data for the water allocation problem.

Here, we present the results of the simulations with the above data. The resulting optimized EIP network
is shown in Figure 5.4.1, and it corresponds to α = 0.95 and Coef = 1. This optimal network provides
operating cost of each enterprise and total freshwater consumption that are lower than a stand-alone network
as shown in Table 5.3.
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Enterprise Freshwater Freshwater Costi Stand-Alone Costi in EIP % Reduction
Stand-Alone (T/h) in EIP (T/h) (MMUSD/hour) (MMUSD/hour) in Costi

1 75.00 75.00 26.25 10.50 60.00

2 30.00 30.00 10.50 8.04 23.47

3 80.00 91.74 28.00 14.21 49.26

4 37.50 8.33 13.13 10.58 19.37

5 10.00 1.29 3.50 3.12 10.78

6 8.88 7.27 3.11 2.96 5.00

7 40.00 0.00 14.00 10.82 22.69

8 35.00 12.31 12.25 9.95 18.76

9 25.00 8.22 8.75 7.29 16.71

10 10.00 1.11 3.50 2.69 23.17

11 7.50 5.45 2.63 2.45 6.79

12 4.00 3.16 1.40 1.33 5.00

13 6.67 5.17 2.33 2.21 5.42

14 30.00 15.79 10.50 9.16 12.78

15 18.57 8.13 6.50 5.65 13.13

Total 418.13 272.97 146.34 100.95 31.02

Table 5.3: Summary of results of the EIP.

1 3

2 12 8 6 7 14 15131110954

0

Figure 5.4.1: The optimal configuration in the case αi = 0.95 and Coef = 1. Gray nodes are consuming
strictly positive fresh water.

For this case study, when the enterprises operate stand alone, then the entire system consumes a total
418.13 (T/h) of freshwater and, of course, generates 418.13 (T/h) of wastewater. The optimal design obtain
with SLMF approach allows to reduce its freshwater requirement to 272.92 (T/h), and thus generates 272.92
(T/h) of wastewater, which is equivalent to a reduction of 34.73 %. Furthermore, the water demand of
enterprise 7 is entirely supplied by other enterprises.

Each participating enterprise has a cost reduction of at least 5%, as promised by the contract. Total
operating cost is decreased regarding the standalone case, as expected, from 146.34 ($/h) to 100.95 ($/h),
which means a decrease of 31.02%. Nevertheless, exploring Table 5.3, the reader can observe that the
cost reduction is not uniform among the enterprises. In the optimized network, enterprise 1 achieves the
highest percentage reduction of operating cost corresponding to 60.00% while enterprises 6 and 12 have
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the lowest reduction corresponding to 5.00% with respect to the stand-alone configuration. Moreover this
repartition of the relative gain change with the contract, that is with the value of α . Figure 5.4.2 is a box
plot to describe the distribution of the cost reduction of participating enterprises in the park with parameters
α in the interval [0.80,0.99].
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Figure 5.4.2: % Reduction of cost with α ∈ [0.80,0.99] and Coef = 1. The small circles are drawn on the
chart to indicate outlier points.

A box plot is a standardized way of displaying the distribution of data based on a five number summary:
lower limit, lower quartile (Q1: 25th Percentile), median (Q2: 50th Percentile), upper quartile (Q3: 75th
Percentile), and upper limit. The difference (Q3−Q1) is called the interquartile range or IQR. If an
observation falls outside of the interval

[lower limit,upper limit] = [Q1−1.5× IQR,Q3 +1.5× IQR],

then it is considered as an outlier. Outliers are usually treated as abnormal values that can affect the overall
observation due to its very high or low extreme values. To understand more about the box plot, we refer to
[114]. Let us choose α = 0.95 to analyze the distribution of the cost reduction of enterprises, and other
parameters α can be analyzed analogously. All enterprises will reduce less than or equal to 44.15% (upper
limit). All enterprises can reduce operating costs by at least 5% (lower limit). At least 75% of enterprises
can reduce costs by 8.79% or higher. The lower (resp. upper) quartile Q1 (resp. Q3) is 8.79% (resp. 22.93%)
which is equivalent to that there are 25% (resp. 75%) of enterprises can reduced their operating costs less
than or equal to 8.79% (resp. 22.93%), while the median reduction Q2 in this case is 16.71%, so exactly
haft the enterprises are reduced lesser or higher 16.71%. compared to their stand-alone operating costs.
There are two outlier points outside the boxplot: 49.25% and 60.00%, respectively.

The impact of the value of the contract coefficient α on the total cost, total wastewater discharge or the
number of stand alone enterprises will be illustrated in the forthcoming subsection 5.4.2. Nevertheless it is
interesting to compare the optimal design (network and table of results) obtained with a more ambitious
contrat garanteeing a relative gain of 14%, that is with α = 0.86.
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Enterprise Freshwater Freshwater Costi Stand-Alone Costi in EIP % Reduction
Stand-Alone (T/h) in EIP (T/h) (MMUSD/hour) (MMUSD/hour) in Costi

1 75.00 75.00 26.25 10.50 60.00

2 30.00 30.00 10.50 9.03 14.00

3 80.00 82.50 28.00 13.22 52.80

4 37.50 8.33 13.13 10.58 19.37

5 10.00 1.29 3.50 3.01 14.00

6* 8.88 8.89 3.11 3.11 0.00

7 40.00 8.47 14.00 11.84 15.43

8 35.00 11.67 12.25 10.54 14.00

9 25.00 9.83 8.75 7.48 14.51

10 10.00 1.11 3.50 2.69 23.17

11* 7.50 7.50 2.63 2.63 0.00

12* 4.00 4.00 1.40 1.40 0.00

13* 6.67 6.67 2.33 2.33 0.00

14 30.00 15.79 10.50 9.03 14.00

15 18.57 8.13 6.50 5.59 14.00

Total 418.13 279.16 146.34 102.97 29.64

Table 5.4: Summary of optimal results of the EIP with α = 0.86. Marked enterprises (*) are left outside the
park, that is operating stand-alone.

A first observation that we can do is that the total freshwater consumtion (=wastewater discharge) and
the total cost obtained with α = 0.86 are almost the same as the one with α = 0.95. But by garanteeing an
higher relative gain for each involved enterprise, four enterprises (6, 11, 12 and 13) are not included in the
EIP network because their characteristics (Mi, Ci,in, Ci,out) would “penalize” the optimal design. Thus the
increase of relative gain only benefit to selected subset of enterprises.

The optimal network obtained with α = 0.86 is also quite different from the one corresponding to
α = 0.95. For example the enterprise 7 which was not using fresh water but was reusing water from
enterprises 3 and 8 for α = 0.95, now received water from five different enterprises and moreover use 40
(T/h) of fresh water.

1

3 2 14 4 1015859

12

13

6

11

7

0

Figure 5.4.3: The optimal configuration in the case αi = 0.86 and Coef = 1. Gray nodes are consuming
strictly positive fresh water. Dashed nodes are operating in stand-alone mode.
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5.4.2 Comparison between the control input model and the blind input model

One of the goals of the control input model is to propose an alternative approach to the blind input model
developed in [77]. It is therefore important to compare the optimal results of both approaches. The criteria
we used for comparing the two models are as follows: first, the ability to reduce freshwater consumption
and thus wastewater; second, the number of enterprises involved into the optimal EIP and last, the ability to
reduce the operating costs of each enterprise. These criteria will be discussed step by step.

First of all and for both models, the total of freshwater consumption and wastewater discharge decreases
when α increases as shown in Figure 5.4.4. Note that only the wastewater discharge curve is included below
because, of course, both are the same. But the control input model allows an strong reduction of freshwater
consumption and wastewater discharge compare to the blind input model. One of the reason why is that,
as it will be see in Figure 5.4.4 for the same relative cost reduction α there are always more enterprises
participating in the EIP for control input model than with the blind input model. In the optimized networks,
the control input model achieves a minimum total of freshwater consumption as well as wastewater discharge
is 272.71 (T/h) corresponding to 34.78% with respect to the stand-alone configuration, while the blind input
model achieves a minimum total freshwater consumption is 318.67 (T/h) corresponding to 23.78% with
respect to the stand-alone configuration.
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Figure 5.4.4: Sensitivity analysis for α ∈ [0.65,0.99] and Coef = 1. Total discharge wastewater.

The number of enterprises which operate stand-alone for both models is shown in Figure 5.4.5. Roughly
speaking, for α ∈ [0.65,0.99], the number of enterprises operating stand-alone with control inputs is always
less than that of enterprises with blind inputs. Moreover, with α ∈ [0.76,0.80], the control input model
shows its clear superiority on the blind input model. Indeed with the control inputs the designer can build a
park for which not only a wastewater discharge reduction is achieved compare to blind input results but also
the designer can attracts the exigent enterprises by garanteeing a relative gain of more than 20% while with
such a rate blind input model only propose full stand alone situation. Another interesting feature is that if
α ≥ 0.92 then the control input model can ensure that all enterprises will participate in the park while blind
input model reach this full involvement only for α > 0.96. Finally, for α ≤ 0.75, the optimal solution is the
stand-alone configuration for both models, thus 0.75 playing the role of a threshold value for the relative
gain.
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Figure 5.4.5: Sensitivity analysis for α ∈ [0.65,0.99]
and Coef = 1. Number of stand-alone enterprises in
the park..
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Figure 5.4.6: Sensitivity analysis for α ∈ [0.65,0.99]
and Coef = 1. Total operating cost in the park.

As observed from Figure 5.4.6, the total operating cost in the EIP with control inputs is always less
than the one with blind inputs. The behavior of the total cost with both models is declining evenly. In
the optimized networks, the control input model achieves a minimum total operating cost is 100.86 ($/h)
corresponding to 31.08% with respect to the stand-alone configuration, while the blind input model achieves
a minimum total operating cost is 114.10 ($/h).

5.4.3 Sensitivity analysis for coefficient Coef

The aim of the penalization of the objective function of the designer (representing the total wastewater
discharge) by the term Coef ·∑i∈I yi,null is to force the algorithm to select optimal solution for which the
maximum of enterprises are involved into the EIP. Figure 5.4.7 confirms the effect of this penalization since
the number of enterprise in stand alone situation decreases as the coefficient Coef increases. But on the
other hand figures 5.4.8 and 5.4.9 bring to the fore the somehow intuitive drawback that by encouraging
solution with more enterprises, the total discharged water and the total cost of the park naturally increase.
Indeed the “additional enterprises” involved thanks to the penalization have not favorable characteristics
(Mi, Ci,in, Ci,out) and thus they penalize, in a sense, the efficiency of the EIP.
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Figure 5.4.7: Sensitivity analysis for Coef ∈ [0,15]
and α = 0.80. Number of stand-alone enterprises in
the park.
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Figure 5.4.8: Sensitivity analysis for Coef ∈ [0,15]
and α = 0.80. Total operating cost in the park.
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Figure 5.4.9: Sensitivity analysis for Coef ∈ [0,15] and α = 0.80. Total discharge wastewater.

5.5 Conclusion and perspectives

In this work, we address the design and optimization of water exchange networks in eco-industrial parks by
formulating and solving Single-Leader-Multi-Follower games. Using the particular characteristics of the
SLMF model, we show that some solutions can be found by simply solving an auxiliary Mixed-Integer
Linear programming problem, allowing thus to tackle larger EIP networks. In our model, we consider that
each participating enterprise can control the amount of water coming from other enterprises. In another
word, when participating in the network, each enterprise can control his input flux, which is more realistic
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than other models in the literature [2, 77]. The results show that the proposed approach is efficient. Indeed,
the total discharge wastewater (=the total freshwater consumption) and total network cost in the optimal
network have been reduced by 34.73% and 31.02% respectively in which the designer ensures that each
participating enterprise has a cost reduction of at least 5%.

Nevertheless our approach use the assumptions that each enterprise only manages one industrial process
and that no regeneration units are used. This represents a limitation of our work, in particular concerning
the second hypothesis since as it has been emphasized in [2] and [77], the introduction of regeneration units
usually allows some significant improvements of the results. It would be thus interesting, but out of the
scope of this work, to analyse to which extend it could be possible to use our calculus and reformulation for
an EIP in which either enterprises handle more than one processes or regeneration units are involved.
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6.1 Conclusion

Rounding this thesis, we would like to collect the new results presented here. The results presented in this
thesis relate to a number of topics of quasi-variational inequality problems, generalized Nash equilibrium
problems, and the modeling of eco-industrial parks, respectively. Of course, each topic is related to each
other.

In the first part, we have considered quasi-variational inequality problems over product sets considering
the assumptions of quasi-monotonicity and upper sign-continuity only in the component operators. One
of the most important difficulties, in order to obtain the existence results for quasi-variational inequalities
over product sets, is that quasi-monotonicity and upper sign-continuity are not preserved by the product of
set-valued maps. However, by introducing the new notion of net-lower sign-continuity, which is used as
a minimal hypothesis in order to obtain the stability result of Proposition 2.3.9, and employing the well
known Kakutani’s fixed point theorem, we have overcome these difficulties and successfully established the
existence results for the solution of our problem in the infinite dimensional setting. These classic results open
the door to powerful applications to Nash equilibrium problems and generalized Nash equilibrium problems,
since it is well known that they can be reformulated as variational and quasi-variational inequalities over
product sets, respectively (see, e.g., [32]). Thus it become the main motivation for us to work on generalized
Nash equilibrium problem. More precisely, we have considered the existence solutions for generalized
Nash equilibrium problem in finite dimensional setting. Our existence results are an extension of the classic
result of Debreu [33]. Specifically, we eliminate the continuous assumption of θν payoff function in [33]
by replacing it by a “continuity” of the sublevel sets of the payoff functions. Our approach is based on the
concept of the adjusted normal operator [37], the net-lower sign-continuity[45], and the reformulation of
the generalized Nash equilibrium problem in term of quasi-variational inequality over product sets.

121
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In the second part, we design and optimize the industrial water networks in eco-industrial parks
formulating and solving multi-leader-follower game problems. Indeed, multi-leader-follower games are
actually particular cases of generalized Nash games. Each follower’s objective is to minimize the operating
cost at the lower-level problem, while the leader’s objective is to minimize the total consumption of
freshwater within the ecopark at the upper-level problem. We propose in this thesis two models for
designing and optimizing the water exchange networks in eco-industrial parks: the first model, we assume
that each enterprise can only control his consumption of freshwater and his output flux, with this type of
model we call it is Blind Input model. The second model, we assume that each enterprise has control over
his polluted input, namely, each enterprise has the ability to set the amount of water coming from the other
enterprises, with this type of model we call it is Control Input model. Models for exchange networks could
lead to quite difficult problems like multi-leader-follower game problems. However, using the particular
characteristics of the multi-leader-follower model, we show that some solutions can be found by simply
solving an auxiliary mixed-integer linear programming problem. This clearly allows to tackle large scale
problems efficiently and propose exchange politics that attract enterprises to participate. The results show
that both models are efficient and practical for modeling eco-industrial parks. A comparison between the
blind input model and the control input model is considered. And the results show that the control input
model has better results than the blind input model.

6.2 Perspectives
There are still multiple aspects which could lead to further developments and research. An important
generalization that would be to consider is the type of equilibrium and quasi-equilibrium problem over
product sets. The existence results for generalized Nash equilibrium problems in the infinite-dimensional
setting are actually challenging for the researcher as well as numerical methods to solve such kinds of
problems. So, it would be interesting to consider these developments in future research. Eco-industrial
parks are a hot topic for researchers. There are many questions for this topic, especially for the blind input
model and the control input model. For example, what would we do if we considered more than one process
for each enterprise for both models? or what happens to the model when instead of a single contaminant,
multiple contaminant information is to be handled for both models? So far, the control input model only
works for the case without regeneration units, thus it could be a possibility to extend the control input model
for the case with regeneration units.
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[12] S. Dempe, G. A. Kalashnikov, V. Pérez-Valdés, and N. Kalashnykova, Bilevel programming problems
: theory, algorithms and applications to energy networks. Heidelberg New York: Springer, 2015.

123



Bibliography 124

[13] S. Dempe and A. Zemkoho, Bilevel optimization: advances and next challenges. Springer, New
York: Springer, 2020.

[14] J.-S. Pang and M. Fukushima, “Quasi-variational inequalities, generalized Nash equilibria, and
multi-leader-follower games,” Comput. Manag. Sci., vol. 2, no. 1, pp. 21–56, 2005.

[15] F. Facchinei and C. Kanzow, “Generalized Nash equilibrium problems,” Ann. Oper. Res., vol. 175,
pp. 177–211, 2010.

[16] N. Hadjisavvas, “Continuity and maximality properties of pseudomonotone operators,” J. Convex
Anal., vol. 10, no. 2, pp. 465–475, 2003.

[17] D. Aussel and N. Hadjisavvas, “On quasimonotone variational inequalities,” J. Optim. Theory Appl.,
vol. 121, no. 2, pp. 445–450, 2004.

[18] M. Ait Mansour and D. Aussel, “Quasimonotone variational inequalities and quasiconvex program-
ming: Quantitative stability,” Pac. J. Optim., vol. 2, no. 3, pp. 611–626, 2006.

[19] M. Ait Mansour and D. Aussel, “Quasimonotone variational inequalities and quasiconvex program-
ming: Qualitative stability,” J. Convex Anal., vol. 15, no. 3, pp. 459–472, 2008.

[20] D. Aussel and J. Cotrina, “Semicontinuity of the solution map of quasivariational inequalities,” J.
Global Optim., vol. 50, no. 1, pp. 93–105, 2011.

[21] D. Aussel and J. Cotrina, “Stability of quasimonotone variational inequality under sign-continuity,”
J. Optim. Theory Appl., vol. 158, no. 3, pp. 653–667, 2013.

[22] E. Allevi, A. Gnudi, and I. Konnov, “Generalized vector variational inequalities over product sets,”
Nonlinear Anal., vol. 47, no. 1, pp. 573 – 582, 2001.

[23] E. Allevi, A. Gnudi, and I. V. Konnov, “Generalized vector variational inequalities over countable
product of sets,” J. Global Optim., vol. 30, no. 2, pp. 155–167, 2004.

[24] Q. H. Ansari and Z. Khan, “Relatively B-pseudomonotone variational inequalities over product of
sets,” J. Inequal. Pure Appl. Math., vol. 4, no. 1, p. Article 6, 2003.

[25] Q. H. Ansari and Z. Khan, “Densely relative pseudomonotone variational inequalities over product
of sets,” J. Nonlinear Convex Anal., vol. 7, no. 2, pp. 179–188, 2006.

[26] M. Beldiman and V. Preda, “Some existence results for a class of relatively B-pseudomonotone
variational inequalities over product sets,” Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci.,
vol. 8, no. 1, pp. 11–17, 2007.

[27] D. Inoan, “Existence and behavior of solutions for variational inequalities over products of sets,”
Math. Inequal. Appl., vol. 12, no. 4, pp. 753–762, 2009.

[28] I. V. Konnov, “Relatively monotone variational inequalities over product sets,” Oper. Res. Lett.,
vol. 28, no. 1, pp. 21–26, 2001.

[29] Q. Zhao, S. Xu, T. Peng, and X. Huang, “Weighted variational inequalities in normed spaces,”
Optimization, vol. 59, no. 4, pp. 501–514, 2010.



125 Bibliography

[30] Q. H. Ansari, W. K. Chan, and X. Q. Yang, “Weighted quasi-variational inequalities and constrained
Nash equilibrium problems,” Taiwanese J. Math., vol. 10, no. 2, pp. 361–380, 2006.

[31] Q. H. Ansari, S. Schaible, and J. C. Yao, “Generalized vector quasi-variational inequality problems
over product sets,” J. Global Optim., vol. 32, no. 4, pp. 437–449, 2005.

[32] F. Facchinei and C. Kanzow, “Generalized nash equilibrium problems,” 4OR, vol. 5, pp. 173–210,
Sep 2007.

[33] G. Debreu, “A social equilibrium existence theorem,” Proceedings of the National Academy of
Sciences, vol. 38, no. 10, pp. 886–893, 1952.

[34] D. Aussel, G. Allende, S. Dempe, and S. Lepaul, “Genericity analysis of multi-leader-disjoint-
follower game: Theory and appications to contract design in electricity market,” preprint, 2019.

[35] J. Pang and M. Fukushima, “Quasi-variational inequalities, generalized nash equilibria, and multi-
leader-follower games,” Computational Management Science, vol. 2, pp. 21–56, Jan 2005.

[36] D. Aussel and J. Dutta, “Generalized nash equilibrium problem, variational inequality and quasicon-
vexity,” Operations Research Letters, vol. 36, no. 4, pp. 461 – 464, 2008.

[37] D. Aussel and N. Hadjisavvas, “Adjusted sublevel sets, normal operator, and quasi-convex program-
ming,” SIAM J. on Optimization, vol. 16, pp. 358–367, June 2005.

[38] S. Al-Homidan, N. Hadjisavvas, and L. Shaalan, “Transformation of quasiconvex functions to
eliminate local minima,” Journal of Optimization Theory and Applications, vol. 177, pp. 93–105,
Apr 2018.

[39] C. Dutang, “Exitence theorems for generalized nash equilibrium problems,” Journal of Nonlinear
Analysis and Optimization: Theory & Applications, vol. 4, no. 2, pp. 115–126, 2013.

[40] D. Aussel and A. Sultana, “Quasi-variational inequality problems with non-compact valued constraint
maps,” Journal of Mathematical Analysis and Applications, vol. 456, no. 2, pp. 1482 – 1494, 2017.

[41] A. Dreves and J. Gwinner, “Jointly convex generalized nash equilibria and elliptic multiobjective
optimal control,” Journal of Optimization Theory and Applications, vol. 168, pp. 1065–1086, Mar
2016.

[42] M. Hintermüller and T. Surowiec, “A pde-constrained generalized nash equilibrium problem with
pointwise control and state constraints,” Pacific Journal of Optimization, vol. 9, 04 2013.

[43] M. Hintermüller, T. M. Surowiec, and A. Kämmler, “Generalized nash equilibrium problems in
banach spaces: Theory, nikaido-isoda-based path-following methods, and applications,” SIAM
Journal on Optimization, vol. 25, pp. 1826–1856, 2015.

[44] C. Kanzow, V. Karl, D. Steck, and D. Wachsmuth, “The multiplier-penalty method for generalized
nash equilibrium problems in banach spaces.,” SIAM Journal on Optimization, vol. 29, no. 1, pp. 767
– 793, 2019.

[45] D. Aussel, K. Cao Van, and D. Salas, “Quasi-variational inequality problems over product sets with
quasi-monotone operators,” SIAM Journal on Optimization, vol. 29, no. 2, pp. 1558–1577, 2019.



Bibliography 126

[46] H. v. Stackelberg, Marktform und Gleichgewicht. 1934.

[47] J. Bracken and J. McGill, “Mathematical programs with optimization problems in the constraints,”
vol. 21, pp. 37–44, 1973.

[48] S. Dempe, Bilevel Optimization: Theory, Algorithms and Applications. Preprint, TU Bergakademie
Freiberg, Fakultät für Mathematik und Informatik, 2018.

[49] S. Dempe, V. Kalashnikov, G. A. Prez-Valds, and N. Kalashnykova, Bilevel Programming Prob-
lems: Theory, Algorithms and Applications to Energy Networks. Springer Publishing Company,
Incorporated, 2015.

[50] S. Dempe, J. Dutta, and B. S. Mordukhovich, “New necessary optimality conditions in optimistic
bilevel programming,” Optimization, vol. 56, no. 5-6, pp. 577–604, 2007.

[51] S. Dempe, “Foundations of bi-level programming,” 01 2002.

[52] P. T. Harker and J.-S. Pang, “Existence of optimal solutions to mathematical programs with equilib-
rium constraints,” Operations Research Letters, vol. 7, no. 2, pp. 61 – 64, 1988.

[53] J. Outrata, “Necessary optimality conditions for stackelberg problems,” Journal of Optimization
Theory and Applications, vol. 76, pp. 305–320, 02 1993.

[54] S. Dempe, B. Mordukhovich, and A. Zemkoho, “Necessary optimality conditions in pessimistic
bilevel programming,” Optimization, vol. 63, no. 4, pp. 505–533, 2014.

[55] W. Wiesemann, A. Tsoukalas, P.-M. Kleniati, and B. Rustem, “Pessimistic bilevel optimization.,”
SIAM Journal on Optimization, vol. 23, pp. 353–380, 2013.

[56] S. Yaakob and J. Watada, “Solving bilevel programming problems using a neural network approach
and its application to power system environment,” SICE Journal of Control, Measurement, and
System Integration, vol. 4, pp. 387–393, 01 2012.

[57] H. von Stackelberg, S. Von, and A. Peacock, The Theory of the Market Economy. Oxford University
Press, 1952.

[58] M. Hu and M. Fukushima, “Variational inequality formulation of a class of multi-leader-follower
games,” Journal of Optimization Theory and Applications, vol. 151, no. 3, pp. 455–473, 2011.

[59] Z.-Q. Luo, J.-S. Pang, and D. Ralph, Mathematical Programs with Equilibrium Constraints. Cam-
bridge University Press, 1996.

[60] J.-S. Pang and M. Fukushima, “Quasi-variational inequalities, generalized Nash equilibria, and
multi-leader-follower games,” Computational Management Science, vol. 6, pp. 373–375, August
2009.

[61] D. Aussel and A. Svensson, A short state of the art on Multi-Leader-Follower Games, p. 25 pp.

[62] D. Aussel and A. Svensson, “Some remarks about existence of equilibria, and the validity of the epcc
reformulation for multi-leader-follower games,” Journal of Nonlinear and Convex Analysis, vol. 19,
pp. 1141–1162, 01 2018.



127 Bibliography

[63] M. Hu and M. Fukushima, “Multi-leader-follower games: models, methods and applications,” J.
Oper. Res. Soc. Japan, vol. 58, no. 1, pp. 1–23, 2015.

[64] U. U. N. E. Programme), “Global environmental outlook 2000. earthscan, london,” 2000.

[65] U. U. N. E. Scientific and C. Organization), “The united nations world water development,” Water in
a Changing World; Report 3, 2009.

[66] A. Frosch and N. E. Gallopoulos, “Strategies for manufacturing,” Scientific American, vol. 261,
pp. 144–152, 1989.

[67] M. R. C., “Industrial symbiosis: Literature and taxonomy,” Annual Review of Energy and the
Environment, vol. 25, no. 1, pp. 313–337, 2000.

[68] B. Alexander, G. Barton, J. Petrie, and J. Romagnoli, “Process synthesis and optimisation tools for
environmental design: Methodology and structure,” Computers and Chemical Engineering, vol. 24,
pp. 1195–1200, 2000.

[69] M. O. Jackson, Mechanism Theory. 2014. Available at SSRN: https://ssrn.com/abstract=2542983 or
http://dx.doi.org/10.2139/ssrn.2542983.
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Titre: Modèles Multi-leader-follower: analyse théorique, numérique et application aux parc éco-
industriels

Mots clés: optimisation, inégalité quasi-variationnelle, équilibres de Nash, multi-leader-follower game,
parc éco-industriel.
Résumé: Les travaux de recherche présentés dans cette thèse portent sur deux sujets: nous nous sommes
d’abord concentrés sur les problèmes d’inégalités quasi-variationnelles et sur les problèmes d’équilibre de
Nash généralisés; nous avons ensuite étudié la modélisation et l’optimisation des parcs éco-industriels (EIP).

Dans la première partie, nous obtenons des résultats d’existence d’inégalités quasi-variationnelles sur des
ensembles produits en dimension infinie en considérant les hypothèses de quasimonotonie et de continuité
locale upper-sign uniquement sur les opérateurs de composants. Une des difficultés les plus importantes, pour
obtenir les résultats de l’existence d’inégalités quasi-variables sur des ensembles de produits, est que la quasi-
monotonicité et la continuité du signe supérieur local ne sont pas préservées par le produit de multiapplications.
En outre, des résultats d’existence pour les problèmes d’équilibre de Nash généralisés sont également obtenus
dans cette partie grâce au concept d’opérateur normal ajusté et à la reformulation des problèmes d’équilibre
de Nash généralisés en termes d’inégalités quasi-variables.

Dans la deuxième partie, nous concevons et optimisons des réseaux d’eau dans les parcs éco-industriels
en les formulant et en les résolvant grâce à des problèmes multi-leader-follower. Ce type de modèle est un
mélange entre un problème d’optimisation à deux niveaux et un problème d’équilibre de Nash généralisé.
L’objectif de chaque entreprise est de minimiser le coût d’exploitation au problème de niveau inférieur, tandis
que l’objectif de l’autorité EIP, au problème de niveau supérieur, est de minimiser la consommation totale
d’eau douce au sein de l’écoparc. Nous concevons et optimisons les réseaux d’échange d’eau dans l’EIP selon
deux approches : premièrement, dans le modèle Blind Input, nous supposons que chaque entreprise ne peut
contrôler que sa consommation d’eau douce et son flux de sortie. Dans la seconde approche, appelée Control
Input, nous supposons que chaque entreprise a le contrôle de ses entrées polluées, c’est-à-dire que chaque
entreprise a la possibilité de fixer la quantité d’eau provenant des autres entreprises. Les résultats montrent
que les deux approches proposées sont efficaces. Une comparaison entre le modèle Blind Input et le modèle
Control Input est également menée.

Title: Multi-leader-follower models: theoretical analysis, simulation and application to eco-industrial
parks
Keywords: optimization, quasi-variational inequality, Nash equilibrium, multi-leader-follower game,
eco-industrial park.
Abstract: The research work presented in this thesis covers two topics: first, we focused on quasi-variational
inequality problems and generalized Nash equilibrium problems; and second, we studied the modeling and
optimization of the eco-industrial park (EIP).

In the first part, we obtain the existence results for quasi-variational inequality problems over product
sets in the infinite-dimensional setting considering the assumptions of quasi-monotonicity and local upper
sign-continuity only in the component operators. One of the most important difficulties, in order to obtain
the existence results for quasi-variational inequalities over product sets, is that quasi-monotonicity and local
upper sign-continuity are not preserved by the product of set-valued maps. Furthermore, existence results
for generalized Nash equilibrium problems are also obtained in this part through the concept of adjusted
normal operator and reformulation of the generalized Nash equilibrium problem in terms of quasi-variational
inequalities.

In the second part, we design and optimize the industrial water networks in eco-industrial parks formulating
them and solving them thanks to multi-leader-follower game problems. This kind of model is a mixture
between the bilevel optimization problem and the generalized Nash equilibrium problem. Each enterprise’s
objective is to minimize the operating cost at the lower level problem, while the objective of the EIP authority,
at the upper-level problem, is to minimize the total consumption of freshwater within the eco-park. We design
and optimize the water exchange networks in EIP with two approaches: first, in the Blind Input model, we
assume that each enterprise can only control his consumption of freshwater and his output flux. In the second
approach, called Control Input model, we assume that each enterprise has control over his polluted inputs,
namely, each enterprise has the ability to set the amount of water coming from the other enterprises. The
results show that both proposed approaches are efficient. A comparison between the blind input model and
the control input model is also considered.
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