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Introduction

The advent of quantum mechanics at the beginning of the 20th century had impli-
cations in many fields of classical physics, and in particular optics. The main difference
appears when dealing with interference : in classical optics we deal with interference in
electric field amplitudes, whereas in a quantum mechanical treatment we have to consider
interference in probability amplitudes. In many cases, there is no difference between those
two frameworks. Observing experimentally features of quantum mechanics in optics is
actually an entire research field called quantum optics. The development of this field from
the beginning of the sixties lead to impressive fundamental results, and in particular the
resolution of one of the major controversy of the 20th century beyond physicists : the
Einstein-Podolsky-Rosen paradox (EPR paradox). According to the EPR paradox, quan-
tum mechanics theoretical description is not complete as it doesn’t take into account some
"elements of reality"; this lead to a hidden-variable theory to depict quantum mechanics.
One of the milestones in quantum optics is Alain Aspect’s experiment [7] exhibiting the
Bell’s inequality violation, which directly contradicts any hidden-variable theory.

Electron quantum optics is an emerging field whose goal is to mimic quantum optics
experiments replacing photons by electrons. For this aim, physicists used a peculiar type
of system, called two dimensional electron gas (2DEG), in which electrons are confined
to a plane. 2DEG can be formed at the surface of liquid He, or at the interface of
semiconducting heterostructures as the widely studied GaAs/AlGaAs. Interestingly, at
very low temperature (typically below 100mK in GaAs/AlGaAs heterostructures), an
analogue of fiber optics is obtained for electrons through the chiral edge states, formed
in the quantum Hall regime appearing when a strong perpendicular magnetic field is
applied on a 2DEG. This enables to guide electrons up to the electronic equivalent of
a beam splitter, thanks to which one can recreate quantum optics experiments. Using
these techniques, a team achieved a first electronic Mach Zehnder interferometer (MZI)
in 2003 [37].

This pioneering experiment paved the way towards the generation of entangled states
thanks to a double MZI structure, as proposed by Samuelsson et al. [74]. Entangled
electronic states are of primary importance for theoretical and practical purposes. Indeed,
theoretically, this double MZI experiment should enable to exhibit a Bell’s inequality
violation as in Alain Aspect’s experiment, but with electrons replacing photons, which
is fundamentally important as electrons are fermions, whereas photons are bosons. On
the other hand, electronic entangled states are essential to envision quantum computing
using the flying qubit approach. This approach was developed in electron quantum optics
in analogy with the single photon qubits manipulated in quantum optics. The state
of the flying qubit is encoded into the electron trajectory, and a superposition of two
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trajectories can be obtained thanks to an electronic equivalent of a beam splitter (as a
quantum point contact for instance), forming an Hadamard gate. In this framework, the
double MZI geometry generating entangled states is an essential building block to achieve
multi-qubits quantum gates.

Unfortunately, the coherence in GaAs/AlGaAs heterostructures is fragile, and the
decoherence was too strong to observe experimentally a Bell’s inequality violation [60].
Moreover, this weak coherence makes it difficult to envision quantum computation, thanks
to a complex set of quantum gates, in semi-conducting heterostructures. The solution to
these problems could come from a novel material with extraordinary properties, isolated
by a team from Manchester University [65] in 2005 : the famous graphene. Graphene
is a perfectly two-dimensional crystal of Carbon atoms arranged in a honeycomb lattice.
Each Carbon atom has 4 Valence electrons : three forming co-valent bounds with other
Carbon atoms, and an extra one above the sheet. The set of all the extra electrons forms
a 2DEG, at the surface of the graphene sheet, and, as in GaAs/AlGaAs heterostructures,
when a perpendicular magnetic field is applied on a graphene sheet, it also gives rise to
a quantum Hall effect and chiral edge states are created. In addition, the coherence in
graphene was predicted to be much steadier, making it an interesting potential candidate
for electron quantum optics. In 2015, Morikawa et al. [58] achieved the first electronic
Mach Zehnder interferometer in graphene using a pn junction, opening the way for the
more complete study carried out in the Yacoby group in 2017 [84].

A striking feature of graphene is the existence of the valley degree of freedom, which
adds up to the spin to generate a four fold spin and valley degeneracy. The degeneracy is
lifted under strong perpendicular magnetic field, generating chiral edge channels polarized
in valley and spin. Recently, the possibility to encode information into the valley degree
of freedom in two-dimensional layered materials with broken spatial inversion symmetry
has generated a lot of interest [10][75], as it could give rise to a new kind of electronics :
the valleytronics. Valleytronics in monolayer graphene has been less studied [30] in exper-
iments because of the difficulty to manipulate valley isospin by electrostatic means; the
inversion symmetry cannot be broken by usual gate voltage that generates electrostatic
potential smoothly changing on an atomic distance scale. Unlocking this issue is valu-
able, since it implies the robustness of the valley isospin, a crucial merit of valleytronics in
monolayer graphene. Finally, for quantum computing, it opens interesting perspectives,
as we could achieve a new type of steadier flying qubits, where the information is not
encoded into the trajectory, but into the valley isospin.

During my PhD, the main goal was to demonstrate that the valley-isospin can be
electrically controlled, in monolayer graphene, thanks to an electronic Mach Zehnder
interferometer with tunable transmissions. For this aim, I used as Wei et al. [84] a pn
junction acting as MZI, mixing occurs at the two ends of the junction which play the
role of electronic beam splitters. In their experiment, they cannot tune directly the beam
splitters transmissions, which is necessary to obtain an output state with a controlled
valley polarization. In order to overcome this difficulty, our idea was to add local gates at
the junction ends to be able to tune the transmissions, and thus to obtain a full electrical
control over the valley polarization of the output state. Then, another important aim of
my work was to study the steadiness of the coherence of these valley polarized states, as
this is the stumbling block if one wants to achieve quantum computations using valley
flying-qubits.
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Hereafter, is detailed the outline of this thesis. Chapter 1 is a reminder about
electron quantum optics, where the previous experimental studies on MZI and entangled
states in GaAs are detailed. In a second part, I tried to briefly summarize the essential
properties of graphene, and to expose why it is a good candidate to carry out electron
quantum optics experiments. Afterwards, in chapter 2, I present the sample geometry
that we elaborated, and the fabrication procedure that we developed. The sample is
composed of a home made graphene sheet encapsulated between two hexagonal Boron
Nitride crystals (hBN). Using conventional electron beam nano-lithography techniques, we
patterned gates, and ohmic contacts on top of the graphene stack. Finally is detailed the
experimental measurement set-up, which was completely developed and installed during
my PhD, as the fridge arrived a few months after me. Chapter 3 describes the core
experiment carried out during my PhD, in which we demonstrated, that thanks to our
sample geometry, we have a full electrical control over the valley polarization of the output
state. Then, in chapter 4, is exposed the experimental investigation of characteristic
coherence energy scales of the valley polarized states. For this purpose, we studied the
dependence of MZI interference on the energy of incoming electrons : first by applying a
DC bias on a edge state incoming on the MZI, then by increasing the temperature of the
whole system. Chapter 5 is centered on the experimental determination of the coherence
length thanks to our sample, which has never been done in graphene in the quantum Hall
regime. The coherence length is a length scale characterizing the quantum coherence
of a system, it represents the typical propagation length on which an excitation looses
its phase coherence due to information exchange. To measure it, one needs to measure
the temperature dependence of interferences in at least three MZIs of different lengths.
Remarkably, we could achieve this measurement with one sample. Finally, in chapter 6,
is presented a study of spin waves (or magnons) and their effect on the coherence of the
system. Magnons correspond to magnetic excitations propagating through a magnetic
system, and may be an important source of decoherence in quantum Hall systems which
can present a ferromagnetic bulk. By studying the effects of magnons on interference in
a MZI, we showed that the coherence is effectively limited in DC bias by these collective
bulk excitations.
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Chapter 1

Electron quantum optics and
Graphene

1.1 Electron quantum optics

1.1.1 Principle

Electron quantum optics is an emerging field whose goal is to mimic quantum optics
experiment replacing the photons by electrons. This has fundamental implications as
it changes the nature of the particles from bosons to fermions. In order to carry out
electron quantum optics experiments, electronic equivalents of the basic elements used in
quantum optics are needed. Typically a quantum optic experiment requires the following
components :

• Beam splitters to split the incident photon into a quantum supperposition of two
trajectories

• A way to guide the photons : fiber optics, mirrors...

• A single photon source and a single photon detector

In the last decades, equivalent electronic structures have been developed in GaAs/AlGaAs
semiconducting heterostructures, the state of the art for each electronic component is
briefly presented hereafter.

Guiding the electrons with the quantum Hall effect

Interestingly, at the interface of GaAs/AlGaAs heterostructure, a quantum well con-
fines electrons, creating a two dimensional electron gas (2DEG).The application of a
strong magnetic field perpendicularly to the 2DEG gives rise to the quantum Hall effect
discovered in 1980 [43]. As illustrated in figure 1.1a, the bulk of the 2DEG becomes insu-
lating as the electrons are trapped due to their cyclotron motion induced by the magnetic
field. The current is only flowing through one dimensional chiral wires at the edges of
the 2DEG, also called edge channels, and which can be seen as electron beams. In the
presence of strong magnetic field, the zero field continuum of electronic states becomes
quantified in energy, giving rise to the so called Landau Levels. The number of edge
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6 CHAPTER 1. ELECTRON QUANTUM OPTICS AND GRAPHENE

channels corresponds to the number of filled Landau levels given by the filling factor
ν. This leads to a quantification of the Hall resistance Rh = h

ie2 with i the number of
edge channels. Measurement wise, the quantum Hall effect is characterized, as shown
in figure 1.1b, by the appearance of plateaus of Hall resistance at the quantified values,
associated with a zero longitudinal resistance.

(a)
(b)

Figure 1.1: Illustration of the quantum Hall effect. (a) Illustration of the chiral edge
channels (red) created in a 2DEG (light blue) when a strong magnetic field is applied.
A few cyclotron orbits are traced to represent the trapping of the bulk electrons. (b)
Hall resistance and longitudinal resistance measurements of a 2DEG while varying the
magnetic field (from [15]).

The quantum point contact : an electronic beam splitter

A structure called quantum point contact (QPC) is a common way to obtain a beam
splitter for electrons. As shown in figure 1.2a, it is composed of small metallic constriction
deposited above the electron gas. By applying a voltage on the QPC, one can deplete
the 2DEG below the gates thanks to the semiconductor gap. It is then possible to con-
trol the number of transmission channel through the QPC and even to tune the partial
transmission of one channel continuously from 0 to 1, as shown in figure 1.2b.

(a) QPC layout

(b) QPC conductance

Figure 1.2: Historical measurement of the QPC conductance, extracted from [81]
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Single electron sources :

Single electron sources are an essential building block to envision quantum compu-
tation with electrons. A first single electron source defined in energy was achieved in
2007 [24]. More recently a single electron source defined in time has been developed [21].

As shown in figure 1.3, the source defined in energy is composed of a quantum dot
coupled to a conductor via a tunnel barrier (achieved thanks to a QPC). The idea is
to apply a voltage step ∆ on a gate capacitively coupled to the dot. When the highest
energy level of the dot is driven above the Fermi sea, an electron can tunnel through the
barrier at a rate 1

τ = D∆
h , with D the transmission of a single edge state through the

QPC. One of the drawback of the single electron sources defined in energy is the lack of
control on the escape time of the electron. In addition, it has been demonstrated [23]
that the energy-resolved single electron excitations present a fast relaxation followed by
a spin-charge separation, and thus modeling the electronic wave-function after a certain
propagation time is difficult.

Figure 1.3: Layout of the on-demand energy defined single electron source, and the single
electron injection scheme associated (extracted from [21]).

Another type of single electron source, called Leviton source, defined in time and not
in energy was developed [21]. The idea is to directly apply a Lorentzian shape voltage
pulse on an ohmic contact. A random voltage pulse affects all states below the Fermi
energy, injecting a complex superposition of particle and hole excitations in the system.
However, as shown theoretically by Levitov and co-workers [36][41][49], the application of
a Lorentzian time-dependant potential should result in a minimal particle excitation free
of holes. An experimental study [21], carried out in 2013, exhibited a minima of charge
fluctuations (or shot noise) for a lorentzian wavefunction, the so called Leviton, injected



8 CHAPTER 1. ELECTRON QUANTUM OPTICS AND GRAPHENE

onto a tunnel barrier (QPC). This is in agreement with the picture of an excitation free of
electron-hole pairs. Contrarily to the energy resolved electron source, the Leviton source
does not exhibit a fast relaxation, but only a spin-charge separation [23] enabling a better
understanding of the electron wave packet [20].

1.1.2 The electronic Mach Zehnder

Thanks to those building blocks it was possible to achieve the electronic equivalent of
"Fabry-Pérot and Mach Zehnder interferometer (MZI), providing the necessary quantum
gate for an all-linear quantum computation" [24]. The MZI is at the center of this PhD,
so hereafter are presented a brief reminder of the principles of the optical MZI and a state
of the art of its electronic version in GaAs/AlGaAs heterostructures.

Figure 1.4: Optical MZI layout (a). Schematic of the first MZI achieved at the Weizman
Institute (b), and SEM image of the actual sample (c). Figure extracted from [37].

In optics, the MZI is a simple set up composed of two mirrors and two beam splitters
as shown in the (a) layout in figure 1.4. An incident light beam is separated in two on
a first beam splitter with a transmission (reflection) amplitude t1 (r1). As the flux is
conserved : |t1|2 + |r1|2 = T1 + R1 = 1. The two light beams are then recombined on a
second beam splitter with a transmission (reflection) amplitude t2 (r2). If the coherence
length of the photon is larger than the size of the MZI, the amplitude on the outputs,
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tD1 and tD2, correspond to the sum of the complex amplitudes from the upper path and
the lower path. One can express tD1 and tD2 in the form of the equations 1.1 and 1.2
(as explained in [35]), where φup (φdown) are the phase accumulated on the upper (lower)
path.

tD1 = r1e
iφdownt2 + t1e

i(φup+π)r2 (1.1)

tD2 = r1e
iφdownr2 + t1e

iφupt2 (1.2)

A π shift appears in equation 1.1 because on the second beam splitter there are two
incident beams of different direction [35]. From the transmission amplitudes, one can
compute the probability transmissions in outputs D1 and D2 as shown in equations 1.3
and 1.4, where φ is a phase coming from arg(ti) and arg(ri).

TD1 = |r1t2|2 + |t1r2|2 − 2|r1t1r2t2| cos(φdown − φup + φ) (1.3)

TD2 = |r1r2|2 + |t1t2|2 + 2|r1t1r2t2| cos(φdown − φup + φ) (1.4)

Therefore, the two light intensities measured in D1 and D2 oscillate sinusoidally in phase
opposition with the difference φdown − φup. In the case where the two arms of the MZI
have equal lengths, there is no phase difference : φdown − φup = 0. A phase difference
can be introduced by adding a transparent medium with a different optical index or by
changing the length of one path. Finally, one can remark that TD1 + TD2 = 1, which
means that no photon is lost.

In 2003, the first electronic MZI was achieved at the Weizmann Institute [37] in
GaAs/AlGaAs heterostructure. As shown in the schematic of their sample in figure 1.4,
two QPCs act as the two electronic beam splitters of a MZI, and ohmic contacts serve
as electronic detectors. Thanks to the chiral edge channels created in the quantum Hall
regime, they can guide the electrons injected from ohmic contact S to QPC1, where the
incoming edge current is splitted between the upper and the lower trajectories. Later on
the two trajectories are recombined on QPC2, the transmitted current is then measured
through contact D1. The reflected current at QPC2 is collected thanks to the grounded
ohmic contact D2, avoiding the reinjection of the current inside the interferometer. Due
to the Aharanov Bohm effect, the flux of the magnetic field B through the area enclosed A
by the upper and the lower part generates a phase difference between the two trajectories
φ = 2πBA

Φ0
, with Φ0 the quantum flux. The modulation gates MG1 and MG2 enables to

tune the length of the lower path, thus to control the area enclosed and the phase shift
between the two paths. As shown in figure 1.5a and 1.5b, sinusoidal oscillations of the
current intensity in D1 as a function of the magnetic field B and as function of the voltage
MGs where obtained. Therefore this system is an electronic equivalent of the MZI, where
the oscillations in light intensity are replaced by oscillations in current intensity.

The oscillations can be characterized thanks to a quantity called visibility V , defined
as :

V = Tmax − Tmin
Tmax + Tmin

(1.5)

Tmax (Tmin) is the maximum (minimum) value of the oscillating current intensity. In
other words, the visibility corresponds to the ratio between the amplitude of the sinusoidal
oscillations and their offset. Using equations 1.3 and 1.4, one can determine the expected
visibility of the current oscillations in D1 (equation 1.6) and in D2 (equation 1.7) as
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(a) (b)

Figure 1.5: Measurements of the first electronic MZI at ν = 1, extracted from [37]. (a)
Sinusoidal oscillations of the current collected in D1 as a function of the magnetic field
and the voltage applied on the MG gates, while the two QPCs are set to transmission
T1 = T2 = 0.5. (b)Single traces (corresponding to the dotted line in the color map in (a))
of the current collected in D1 as a function of the modulation gate voltage VMG in blue,
and as a function of the magnetic field B in red.

a function of the probability of transmission and reflection of both beam splitters T1,
R1 = 1− T1, T2, and R2 = 1− T2.

VD1 = 2
√
R1T1R2T2

R1T2 + T1R2
(1.6)

VD2 = 2
√
R1T1R2T2

R1R2 + T1T2
(1.7)

The maximum visibility VD1 = 1 is obtained when both beam splitters are exactly half-
transmitting (T1 = T2 = 0.5). In the experiment of the Weizmann institute [37], the
maximum visibility in this configuration is 0.62, which means that some decoherence ef-
fects limit the maximum visibility. In following works in GaAs/AlGaAs heterostructures,
visibilities as high as 0.9 have been found [62]. Finally in [37], they measured the vis-
ibility as function of the transmission probability T1 of QPC1, while the transmission
probability of QPC2 was fixed at T2 = 0.5. In this configuration, equation 1.6 becomes
VD1 = 2

√
T1(1− T1). As shown in figure 1.6, the experimental visibility dependence on

T1 is in good agreement with this law when adding a renormalization coefficient η = 0.6.

1.1.3 Entangled states and quantum computation

In electron quantum optics, a novel and appealing approach, the flying qubit [9][28],
was developed in analogy with the single photon qubits manipulated in quantum optics.
The state of the flying qubit is encoded into the electron trajectory, and a superposition of
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Figure 1.6: Visibility of the interference pattern (blue points) as a function of the trans-
mission T1 of QPC1, while the transmission at QPC2 is fixed at T2 = 0.5. Red dashed
line corresponds to 2η

√
T1(1− T1) with η = 0.62. Extracted from [37]

two trajectories can be obtained thanks to a QPC, forming an Hadamard gate. This allows
to perform "quantum operations on qubits while there are coherently transferred" [9], thus
generating a new paradigm for quantum information processing in which one can envision
non-local architectures. The achievement of the electronic MZI paved the way towards
the creation of quantum gates for flying qubits in electron quantum optics. Indeed, one of
the building blocks to envision multi-qubits quantum gates is the possibility to generate
entangled states.

In 2004, Samuelsson et al. [74] proposed an electronic implementation of the Hanbury
Brown Twiss (HBT) experiment, based on a double MZI geometry as shown in figure 1.7,
giving rise to a two-particle interference effect. Electrons streams are injected from ohmic
contacts 2 and 3, and are respectively partitioned into two streams at QPC C and D.
The electrons emitted in 3 (2) reflected at QPC D (C) interfere on QPC A (B) with the
electrons emitted in 2 (3) and transmitted at QPC C (D). If one electron is detected
in 5 and one in 8, two quantum mechanical probability amplitude contribute to this
event : an electron going from 3 to 5 and one from 2 to 8, or an electron going from
2 to 5 and one from 3 to 8. As those two-particle scenarii are indistinguishable, they
can interfere. One can demonstrate that the current cross correlations between 5 and 8
are given by S58 = −e3V

4h (1 + cos(Φ1 + Φ2 − Φ3 − Φ4)), with Φi the phases accumulated
on the different sections of the double MZI (as shown in figure 1.7). A magnetic field is
applied creating an Aharanov Bohm flux through closed loops, therefore the total phase
accumulated in the double MZI is : Φ1 + Φ2 − Φ3 − Φ4 = 2πBA

Φ0
, with B the magnetic

field, A the area enclosed, and Φ0 the flux quantum. Moreover, as ohmic contacts 1 and 7
are grounded, single particle trajectories never form a closed loop, thus the magnetic field
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Figure 1.7: Schematic of the double MZI proposed by Samuelsson et al. [74]. It is com-
posed of 4 QPCs A,B,C,D, and 8 ohmic contacts : 2 and 3 are the injection ohmic
contacts, 4 and 1 are grounded, output current is measured through 5,6,7, and 8. An
Aharanov Bohm flux is imposed at the center of the sample, but has no influence on the
single particle properties.

has no influence on them. Finally, the two-particule interference effect should generate
oscillations of the cross current correlator S58 with the magnetic field, while the single
particle quantities (currents, autocorrelations) should be independent of the magnetic
field. In addition, violation of Bell’s inequality, accompanying the generation of entangled
pairs, can be obtained for specific tuning of the beam splitters transmission in analogy
with the optimal polarization in the Aspect experiment.

This proposal was experimentally implemented by Neder et al. [62] in a GaAs/AlGaAs
sample. As shown in figure 1.8a, the sample used is composed of two symmetrical loops
separated by the Middle Gate (MG), each one containing two QPCs. By opening the
MDG, one can go from a configuration with two separated MZI to a two-particle interfer-
ometer as proposed by Samuelsson et al. [74]. In the latter configuration, auto-correlation
measurement in D2 and D4 exhibited no dependence on magnetic field B or modulation
gate voltage VMG (which changes the area enclosed). However, the cross-correlation of
currents in D2 and D4 exhibits oscillations directly visible in B and VMG (figure 1.8c),
and more clearly appearing in the FFT (figure 1.8b).This measurement is thus a clear sig-
nature of a two-particle interference. Nevertheless, the low visibility of the oscillations in
the current cross correlations was not sufficient to observe a violation of Bell’s inequality,
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and thus to prove the presence of entangled states.

(a) Schematic of the two-particle interferom-
eter. Electrons are injected from ohmic con-
tacts S1, S2. Ohmic contacts D1 and D3
are grounded. Current fluctuations are mea-
sured in D2 and D4.

(b) FFT of current cross-correlations mea-
sured between D2 and D4.

(c) Cross-correlation measured between D2 and D4.

Figure 1.8: Two-particle interferometer sample achieved by Neder et al. [62].

1.1.4 Limitations of GaAs/AlGaAs heterostructures and graphene per-
spectives

To observe interference effects in GaAs/AlGaAs heterostructures, experimental studies
were typically carried out at very low temperature, around 20mK, because the quantum
coherence of the system is extremely fragile. Indeed, as shown in figure 1.9, the visibility
of the MZI oscillations completely vanishes above 100mK, and for applied DC voltages of
a few tens of µV . In addition, most of the studies were actually achieved at filling factor
ν = 2 (steadier than ν = 1) as the edge channel spectroscopy in the integer quantum
Hall regime [4], the origin of decoherence [73], or the Hong Ou Mandel experiment [13].
Thanks to all these studies, it was understood that a strong capacitive coupling between
the 2 co-propagating edge channels was at the origin of decoherence. As shown in [73], in
these conditions the coherence length lφ is around 20µm at 20mK. Thus a MZI should
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not exceed this size, which imposes an important constraint on sample fabrication. An
interferometer of 0.1mm, much bigger than lφ, was recently achieved by Duprez et al. [22]
thanks to a clever sample design limiting the coupling between co-propagating edge chan-
nels, however the sample fabrication is challenging as it requires a lot of gates. Therefore,
it seems difficult to envision more advanced quantum operations in GaAs/AlGaAs het-
erostructures.

Figure 1.9: Measurement at filling factor ν = 2 of the visibility of a MZI as a function of
the DC bias applied, and of the temperature (extracted from [37]).

The discovery of graphene in 2004 [65], a monolayer of carbon atoms, opened countless
research avenues. In particular the demonstration of its unconventional quantum Hall ef-
fect [66] [91] revealed that electrons in graphene are behaving as a two dimensional gas of
massless Dirac fermions. But the existence of the quantum Hall effect also made graphene
a potential candidate for electron quantum optics experiment. The main advantage of
graphene compared to GaAs/AlGaAs heterostructures is that it exhibits steady quantum
properties. For instance, the quantum Hall effect, which was never observed above 30K
in any other materials, was obtained at room temperature [64] (at high magnetic field).
This persistence is due to the large cyclotron gaps ~ωc in graphene. Finally the width
of the edge channels was estimated to be 4nm thanks to a measurement of edge mag-
netoplasmons [48], whereas it is much larger in GaAs/AlGaAs heterostructures around
2µm [92] [46]. Therefore the geometrical capacitance between edge channels should be
much smaller in graphene than in GaAs, limiting the decoherence effects. Due to all this,
graphene is a promising material for electron quantum optics.
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1.2 Graphene a new material for electron quantum optics

1.2.1 Graphene a brief presentation

Figure 1.10: Artist view of a graphene layer.

Graphene is a monolayer of carbon atoms arranged in an honeycomb lattice, as shown
in figure 1.10. It is the basic unit of graphite, which is a stack of graphene layers attached
by van der Walls forces. For a long time, it was believed that graphene could not exist on
its own, as it would be unstable according to some thermodynamical argument. However,
as briefly evoked in the previous section, thanks to a simple scotch tape technique a team
from Manchester University was able to isolate a graphite composed of few graphene layers
in 2004 [65], and a single graphene layer in 2005 [67]. The principle of the scotch tape
technique, or micromechanical exfoliation, is really simple. A small graphite crystal is
deposited on scotch tape, which is then closed and opened several times. By doing so, one
can overcome the Van der Walls forces, which glue together the graphene layers composing
the graphite crystal. Thus the repetition of this process leads to the formation of thinner
and thinner graphite crystals up to the monolayer. These crystals are then deposited
on silicium chips with a 300nm thick oxyde on top, which enables to directly spot the
graphene layers thanks to their color with an optical microscope [12] (see figure 1.11).
This raised a lot of interest as it was the first observation of a perfectly bi-dimensional
crystal, and A. Geim and K. Novoselov were awarded the Physics Nobel price in 2010 for
this discovery.

But more than being just a perfectly bi-dimensional crystal, graphene has exceptional
properties that caused the scientific effervescence after its discovery. In particular, in
the first publication on graphene [65] an electric field effect was reported, which means
that by simple application of a gate voltage one can control the carrier density in a
graphene sheet. This property opens wide potential applications in electronics. More-
over, electrons in graphene show a relativistic behavior and the low-energy excitations
can be described by a relativistic quantum mechanics equation, the so called Dirac equa-
tion [29]. This was demonstrated through transport measurements done in parallel by
the Manchester group [66], and P. Kim’s group at Columbia University [91]. Therefore
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(a) (b)

Figure 1.11: Optical microscope observations of my exfoliation of graphene mono-
layer, and few layers graphite deposited on silicium chip with a 300nm thick Si02 oxyde.
(a) Big monolayer graphene flake. (b) Crystal with graphene (light purple), bi-layer, and
few layers graphite. The darker the more layer there are.

electrons in graphene may be viewed as massless charged fermions, whereas all existing
massless elementary particles are charge neutral. This makes graphene a good candidate
to test quantum electrodynamics properties, such as the Klein paradox or unusual An-
dreev reflection [10]. The Klein paradox predicted by the physicist of the same name
in 1929 corresponds to the "the unimpeded penetration of particles through high and
wide potential barriers" [40], this phenomenon was so far not observed with elementary
particles. However, as predicted by Katsnelson et al. [40], the massless Dirac fermions
in grahene confronted to an electrostatical barrier should give the possibility to test the
Klein tunneling, this was experimentally observed in graphene pn junction in 2009 [79].
This phenomenon underlines the possible use of graphene as bridge between condensed
matter and high energy physics.

Most of the striking properties of graphene described above are coming from its crys-
tallographic structure and the resulting band structure, which will be described hereafter
following M. Goerbig’s review [29].

Crystal structure of graphene

A carbon atom has 6 electrons and its ground state is 1s22s22p2. Two of these are
core electrons, close to the nucleus, and only the four outer electrons, or valence electrons,
form chemical bounds. In the presence of other atoms, the four valence electrons spread
in four equivalent quantum mechanical states, |2s〉, |2px〉, |2py〉, and |2pz〉. In the case of
graphene, we have a quantum mechanical superposition of states |2s〉, |2px〉, |2py〉, called
the sp2 hybridization, where the three hybridized orbitals are in the graphene plane with
120◦ between each of them (see figure 1.12b). The |2pz〉 orbital is unhybridized and
orthogonal to the plane. The three inplane orbitals form the covalent bounds generating
graphene honeycomb lattice, whereas the delocalisation of all the |2pz〉 electrons, called
π electrons, create a 2DEG.

As shown in figure 1.12a, the graphene honeycomb lattice is composed of two nonequiv-
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(a)
(b)

(c)

Figure 1.12: (a) Graphene honeycomb lattice. The carbon atoms are separated by a
distance a = 0.142nm. The vectors a1 and a2 are the basis vector of the triangular
lattice. (b) Schematic view of the sp2 hybridization. The orbitals form an angle of
120◦. (c) Reciprocal lattice of the triangular lattice with primitive vectors a∗1 and a∗2.
The shaded region represent the first Brillouin Zone (BZ), with its center Γ and the two
inequivalent corners K (black squares) and K ′ (white squares). The three inequivalent
crystallographic points M , M ′, and M” are also represented (white triangles). Extracted
from M. Goerbig’s review [29]

alent crystallographic sites A and B, forming two sulattices. Consequently, it is not a
Bravais lattice. However graphene can be described as a triangular Bravais lattice with a
two-atom basis, with one atom from A sublattice and one atom from B sulattice. The ba-
sis vector a1 and a2 of this triangular lattice are represented in figure 1.12a. The distance
between nearest neighbor C atoms is a = 0.142nm. The reciprocal Bravais lattice is also
a triangular lattice with basis vectors a∗1 and a∗2, as represented in figure 1.12c. The first
Brillouin zone (BZ) corresponds to the shaded hexagon, whose submits are composed of
two inequivalent point K and K ′. The low-energy excitations are centered around these
points in the reciprocal space. Finally, these two inequivalent points are extremely impor-
tant as they give rise to the valley degree of freedom in graphene (which will be detailed
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in what follows).

Graphene band structure

A tight-binding computation of the energy bands for the π electrons, responsible for
the low energy electronic properties of graphene, can be achieved as explained in [29].
The band structure obtained is shown in figure 1.13. It is composed of a valence band
π (lower band) and a conduction band π∗ (higher band) meeting at the so-called Dirac
points D and D′, which coincides with the points K and K ′ of the reciprocal lattice.
Each C atom has one electron |2pz〉, thus the valence band π is completely filled and
the conduction band completely empty. In this configuration, the Fermi surface is only
formed of the two Dirac points. Since we have a pair of Dirac points D and D′, the
low-energy excitations around these points are doubly degenerate, forming the so called
twofold valley degeneracy. Moreover, two spin states are accessible to electrons, spin-up
and spin-down, generating another twofold degeneracy. The combination of the valley
and spin degeneracies give rise to a fourfold degeneracy in graphene. At the vicinity of

Figure 1.13: Energy dispersion as a function of the wave-vector components kx and ky,
obtained within the tight-binding approximation. One distinguishes the valence band π
from the conduction band π∗. Right inset : zoom in on a Dirac cone structure, at the
vicinity of K. Figure extracted from [29] (see review for precisions).

the Dirac points, as we consider low energy excitations, one can linearise the dispersion
relation which can be expressed as follow (computation done in [29]) :

ελq,ζ = λ~vF |q| (1.8)

In equation 1.8, ζ represents the valley degree of freedom K or K ′, q the wave vector,
and ε the energy. The band is labeled by λ = ± : λ = − corresponds to the valence band
π, λ = + denotes the conduction band π∗. The Fermi velocity vF is approximately of
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106ms−1 in graphene, and thus 300 times smaller than the speed of light c. Interestingly,
the dispersion relation becomes linear as a function of the wave vector q, forming locally
around the points K and K ′ the Dirac cones. Another remarkable point is that energy
dispersion is electron-hole symmetric : ελq,ζ = −ε−λq,ζ .

The electric effect in graphene (measured by Novoselov et al. [65]), which is the possi-
bility to tune the carrier density by simple application of a gate voltage, can be explained
thanks to the Dirac cone picture. Indeed, as shown in figure 1.14, the graphene resistance
is symmetrical with the gate voltage applied, and presents a peak at zero-bias. As shown
in the cartoon, at zero-bias the Fermi level is exactly located at the Dirac point, where
there is no charge carrier. For positive (negative) voltage, the Fermi level is moved in
the conduction (valence) band inducing electrons (holes) charge carriers, and resistance
decreases.

Figure 1.14: Resistance measurement through a graphene sheet as a function of the gate
voltage applied. In the insets are shown cartoons of the low-energy excitation spectrum, or
Dirac cones, with the different Fermi energy depending on gate voltage. Figure extracted
from [26].

1.2.2 Quantum Hall effect in graphene

An unusual quantum Hall effect

The discovery of graphene and its electric field effect was followed one year later
by experimental evidences of an unconventional quantum Hall effect, called relativistic
quantum Hall effect (RQHE), through two studies one by the Manchester University
group [66] and one by P. Kim’s group at Colombia University [91]. As explained briefly
at the beginning of this part (section 1.2.1), these were milestones experiments as it proved
the relativistic nature of low energy excitations in graphene. As shown in M. Goerbig
review of electronic properties of graphene in strong magnetic field [29], by solving the
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Hamiltonian for charged particles in a magnetic field, one can obtain the energy spectrum
for relativistic Landau Levels (LL) :

ελ,n = λ
~vF
lB

√
2n (1.9)

In equation 1.9, the quantum number λ = ± denotes the states of positive and negative
energy. lB≈26nm/

√
B[T ] is the magnetic length in graphene, and n is the LL index. As

Figure 1.15: Relativistic Landau levels as a function of the magnetic field. Figure ex-
tracted from [29].

shown in figure 1.15, the LL energies are proportional to λ
√
Bn, with B the magnetic

field. One can remark that this LL structure is quite different from the one observed
in GaAs/AlGaAs heterostructures, where the LL spacing is constant at fixed magnetic
field. Furthermore, LLs are highly degenerate states with the number of flux quanta. One
usually quantify the filling of these levels thanks to the filling factor ν which corresponds
to the ratio between the electronic density nel and the flux density nB :

ν = nel
nB

= hnel
eB

(1.10)

As evoked in section 1.1.1, in GaAs/AlGaAs heterostructures the quantization of
the LLs leads to the integer quantum Hall effect (IQHE), which is characterized by the
quantization of the Hall resistance RH = h

ie2 with i the integer part of the filling factor
ν. This IQHE is accompanied by a twofold spin degenaracy, which means that the Hall
resistance quantization is achieved for even filling factors : ν = 2n. This spin degeneracy
can be lifted at high enough magnetic field through the Zeeman effect which generates
an energy difference between the two spin branches given by ∆Z = gµBB (with g the
g-factor of the material and µB the Bohr magneton). One of the main difference when
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comparing the quantum Hall effect in graphene and in GaAs/AlGaAs heterostructures, is
that there is, in addition to the usual twofold spin degeneracy, a twofold valley degeneracy
due to the presence of Dirac cones at the inequivalent points K and K ′ of the first BZ.
This generates the so called fourfold spin and valley degeneracy. One can show that the
Hall resistance is thus quantized for the RQHE following the filling factor sequence given
in equation 1.11.

νRQHE = 2(2n+ 1) (1.11)

Each plateau in the RQHE is separated by four in terms of filling factor, and not by two
as in the IQHE in GaAs/AlGaAs heterostructures. Moreover, when ν = 0, i.e. at the
Dirac point, all the negative energy states (λ = −) are filled and all the positive ones are
empty (λ = +). Therefore, ν = 0 corresponds to a half filled n = 0 LL. The quantum
Hall effects appears for completely filled (empty) n = 0 LL, i.e. ν = 2(−2), explaining
equation 1.11 sequence of filling factor for the RQHE.

Experimentally, P. Kim group measured the Hall resistance and the longitudinal re-
sistance of graphene sample under strong magnetic field B = 9T as a function of a global
gate voltage. By changing the gate voltage, one can tune the carrier density, and therefore
control the filling of the different LLs. As shown in figure 1.16, the Hall resistance exhibits
plateaus quantized following equation 1.11, thus proving the existence of the RQHE.

Figure 1.16: Hall resistance (black) and longitudinal resistance (orange) as a function of
gate voltage at fixed magnetic field B = 9T and at 20mK. The inset in the upper left
corner shows a detailed view for high filling factors plateaus. Figure extracted from [91]

Lifting the spin-valley fourfold degeneracy

Experimental observations : As explained in the previous section, each LL has a
fourfold spin-valley degeneracy, which gives rise to the unusual sequence of the RQHE with
Hall plateaus appearing at filling factors ν = ±2,±6... However for high quality graphene
samples, measurements in 2006 revealed intermediate plateaus of resistance for integer
filling factors ν = ±1,±4 [90][38] in addition to the latter sequence, indicating a partial
lifting of the degeneracy. Later on, a full lifting of the fourfold spin-valley degeneracy was
observed by Dean et al. [16] thanks to extremely high quality graphene samples, obtained
by the deposition of the graphene on top of a thin exfoliated Boron Nitride (BN) crystal.
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This was the first step of the full encapsulation technique, developed by P. Kim’s group,
where graphene is placed in between of two BN crystals. The encapsulation technique
group was a major advance for the achievement of high quality graphene samples; this
is the procedure we used for our samples (detailed in chapter 2). An example of a
longitudinal resistance measurement (Zimmermann et al. [94]) performed on a state of the
art encapsulated graphene sample is displayed in figure 1.19. The longitudinal resistance
is cancelled around each integer value of the filling factor ν for a magnetic field B > 7T ,
thus exhibiting the full degeneracy lifting.

(a) ∆Z > ∆kek
(b)

Figure 1.17: (a) Fan diagram of longitudinal resistance RL measured at 0.05K as a
function of the back gate voltage Vbg and of the magnetic field B. The indexed blue
strips indicate bulk quantum Hall states, and N is the LL index. (b) Energy diagram
showing energy degeneracy lifting of N = −1, 0, 1 LLs into broken symmetry states.
Arrows indicate the spin polarization of each electron (blue) and hole (red) level. Figure
extracted from [94]

Concerning the fractional quantum Hall effect, which is a marker of strongly cor-
related two dimensional electron systems, it was first observed at ν = 1

3 in suspended
graphene [14][19][27], and later on Dean et al. sample [16]. Recent studies (by R. Ribeiro-
Palau et al. [69]) on fully encapsulated graphene with graphite back gate and top gate
exhibited a rich variety of fractional states, as shown in figure 1.18.

How the degeneracy is lifted ? As in GaAs/AlGaAs heterostructures, the Zeeman
effect can lift the spin degeneracy, thanks to the energy difference induced between the
different spins ∆Z = gµBB (with g ∼ 2 the g-factor of the material and µB the Bohr
magneton). However, while the Zeeman effect breaks the spin symmetry, it does not
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Figure 1.18: Longitudinal conductivity in the n = 0 LL as a function of the magnetic
field and the filling factor, measurement done at 300mK. Figure extracted from [69]

break the valley symmetry. Remarkably in the n = 0 LL, there is an equivalence between
the valley isospin K or K ′ and the sublattice A or B. Therefore "a valley degeneracy
lifting of the zero-energy LL n = 0 may be achieved through fields that couple to the
sublattice index" [29]. As explained in M. Kharitonov’s article [42] electron-electron and
electron-phonon interactions can play the role of the valley symmetry breaking fields.
The electron-phonon is generated by out of plane distortions of the lattice, or in plane
distortions called Kekulé. In what follows the characteristic energy breaking the valley
symmetry is noted ∆kek. For ∆Z > ∆kek, the energy levels with lifted spin-valley of the
n = 0 LL are ordered as shown in figure 1.19a. In this configuration, two of the LLs cross
at the Fermi energy, which would generate at ν = 0 an insulating graphene bulk associated
with counter-propagating edge states. For ∆Z < ∆kek, as shown in figure 1.19b, there is
no crossing of the lifted degeneracy levels of the n = 0 LL, thus generating an completely
insulating state at ν = 0 (with no edge channels). The two hole states are polarized in
valley K ′, whereas the electron states are polarized in K.

Anyway, the essential point is that when the spin-valley degeneracy is lifted, each edge
channel (created when the Fermi energy crosses the energy level) is carrying a different
spin-valley couple (K ′, ↓), (K ′, ↑), (K, ↓), or (K, ↑). In reality the valley pseudospin of
edge states is not necessarily K or K ′, but can be a superposition ±−→w of those valleys
(with ± noting two opposite valleys). The valley polarization is highly dependent on the
nature of the physical edge (zigzag or armchair) [80].
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(a) ∆Z > ∆kek
(b) ∆Z < ∆kek

Figure 1.19: Possible scenarios for the lifted spin-valley degeneracy at ν = 0. Figure
extracted from [29]

1.2.3 Building blocks of electron quantum optics in graphene

With the existence of the quantum Hall effect in graphene, we find back one of the
building block for electron quantum optics (see section 1.1.1). Indeed, thanks to the edge
channels created at integer filling factors, one can guide the electrons in graphene as in
GaAs/AlGaAs heterostructures.

The second essential element is the beam splitter, created through quantum point
contacts (QPCs) in GaAs. The QPCs benefit from the semiconducting gap to create a
constriction of the 2DEG, however the gapless structure of graphene makes it much more
difficult to envision this kind of structures. Nevertheless, in a work by Zimmermann et
al. [94], they developed a split gate structure in graphene analogous to QPCs structure in
GaAs, which enabled them to control in a limited range of parameters the transmission
of one edge channel in quantum Hall regime. However, the principle is quite different
from a QPC as the transmission is based on local pn junctions formed below the split
gates. In addition, a QPC analogue has been developed in bilayer graphene [45]. Anyway,
the fabrication of these structures is complex and the range of tuning limited, making it
difficult to envision electron quantum optics experiments, as Mach Zehnder interferometry
(MZI), thanks to this structure.

Another original approach was explored in graphene using the possibility to create
pn junctions thanks to the electric field effect. Indeed, by covering covering half of the
graphene sheet by a top gate on top of an insulator and using global back gate (see
figure 1.20), one can tune the carrier density to the p-doped regime in one half of the
graphene sheet and to the n-doped regime in the other half. This generates a pn junction
in the graphene sheet at the border of the top gate. The first experimental studies of
graphene pn junction in the quantum Hall regime [85][53] revealed fractional plateaus of
conductance in the bipolar regime (pn junction), whereas integer plateaus were present in
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the unipolar regime. This was explained by the presence of quantum Hall edge channels
along the pn junction, with electron and hole modes that can mix [1][54]. The presence
of partitioning and mode mixing along the pn junction made it a potential candidate for
a beam splitter in graphene. But for this, the mode mixing mechanism has to be elastic :
shot noise measurements gave encouraging results in this direction [47].

Figure 1.20: Schematic of a device used to create a pn junction in a graphene layer. A
global graphite back gate enables to n-dope the graphene layer. A top gate covering half of
the layer is tuned to p-dope the covered region. A picture of the Dirac cone configurations
is presented for each region. Figure extracted from [85]

However, as we will see in the next section 1.2.4, this story is not complete, and the
physics behind the pn junctions in graphene in the quantum Hall effect is even richer than
what was thought, making it an essential block for electron quantum optics in graphene.

1.2.4 Mach Zehnder interferometry in graphene

In a pioneering work in 2015, Morikawa et al. [58] studied conductance oscillations
over a pn junction in the quantum Hall regime as a function of the magnetic field and gate
voltages. They interpreted their observations not as a simple beam splitter, but as a fully
working Mach Zehnder interferometer (MZI). Indeed, they claimed that the mixing of
the co-propagating edge channels formed along the pn junction was strongly suppressed
for high quality encapsulated devices (as shown in [5]), except at the two ends of the
pn junction where the junction encounters the physical edge of graphene. Therefore,
those two mixing points act as the two beam splitters of a MZI, and the co-propagating
edge channels as the two arms of the MZI. Their experiment was confirmed by studies
carried out in Yacoby’s group at Harvard [84], which enriched the picture by considering
edge channels fully polarized in spin and valley i.e. a lifted fourfold degeneracy. Further
discussion on the nature of the oscillations was achieved at the Schoenenberger’s group
in Basel [56].

I will now present the experimental results and analysis for MZI of the Yacoby
group [84], which is the actual state of the art concerning graphene MZI. As shown
in the schematic (see figure 1.21a), they used a pn junction defined thanks to a top gate
and a bottom gate. The left part of the sample is n-doped and thus as a filling factor
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(a)

(b)

Figure 1.21: (a) Schematic of the device used in [84] as spin- and valley-polarized MZI.
An edge-contacted monolayer graphene flake encapsulated in BN. The top gate (Au) and
the bottom gate (graphite) define the pn junction : p-doped region in red color with a
filling factor νT ; n-doped region in blue color with a filling factor νB. The back gate (Si)
is used to strongly enhance the p-doping of the graphene leading up to the right lead
and to reduce the contact resistance. (b) Two-terminal conductance measurement of the
device in the pn regime at B = 4T . We distinguish four regions : I with νB = 1, νT = −1,
II with νB ≥ 2, νT = −1, III with νB = 1, νT ≤ −2, and IV with νB ≥ 2, νT ≤ −2. Figure
and legend extracted from [84]

νB > 0, the right part is p-doped and thus as a filling factor νT < 0. They achieved
two-terminal conductance measurements in the pn junction at B = 4T as a function of
νB and νT , the result is depicted in figure 1.21b. Four different regions depending on the
filling factors are visible :

• Region I : νB = 1 and νT = −1
In this region, as illustrated in figure 1.22a, one n-type spin-down and one p-type
spin-up edge channel copropagate along the junction. As the edge channels have
opposite spin the scattering should be suppressed between them. Indeed, the con-
ductance is almost zero in the whole area.

• Region II : νB ≥ 2 and νT = −1
As represented in the schematic 1.22c, two n-type (with opposite spins) and one p-
type spin-up edge channels are copropagating along the pn junction. As the second
n-type edge channel is also spin up, interchannel scattering is no longer forbidden.
The observed conductance is not uniformly zero as in region I, it varies from 0 to e2

h .
This is consistent with a transmission occurring through one pair of edge channels.

• Region III : νB = 1 and νT ≤ −2
It’s the same case as region II, but with two edge channels on the p side and one
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on the n side.

• Region IV : νB ≥ 2 and νT ≤ −2
The configuration is presented in figure 1.22b, this time two p-type (with opposite
spins) and two n-type (with opposite spins) edge channels are copropagating along
the pn junction. The p-type and n-type edge channels with the same spin can be
mixed thanks to interchannel scattering, thus the transport through the pn junction
should be mediated by two pairs of edge channels. In this region, the measured
conductance is consistently fluctuating between 0 and 2e2

h .

(a) νB = 1, νT = −1 (b) νB = 2, νT = −2

(c) νB = 2, νT = −1

Figure 1.22: Schematic illustration of the formation of MZIs at a graphene pn junction.
Green and purple colors denote quantum Hall edge channels of opposite spins. Figure
and legend extracted from [84]

According to Yacoby’s interpretation, edge channels from higher LLs (n 6= 0) are not
contributing to any transport mechanism as they are too far away from the junction,
thus the trans-junction conductance is only mediated by the n = 0 LL. In addition, it is
important to highlight that each MZI is formed by a pair of edge channels with the same
spin, and therefore which belongs to different valleys. In the configuration νB = 1 and
νT = −2, where only one pair of edge channels mediate the transmission (as in 1.22c),
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they obtained sinusoidal conductance oscillation by sweeping the magnetic field from 8
to 9T with a periodicity ∆B = 66mT . As displayed in figure 1.23, the amplitude of the
oscillations goes from 0 to almost e2

h , giving a 98% visibility. This is much higher than
what was observed in GaAs/AlGaAs heterostructures; and it implies an almost perfect
phase coherence along the pn junction, which is quite promising for the future use of
graphene in electron quantum optics.

Figure 1.23: Mach Zehnder oscillations with the best visibility as a function of the mag-
netic field at filling factors νB = 1 and νT = −2. Figure extracted from [84]

The conductance oscillates sinusoidally with the Aharanov-Bohm phase Φ which is
proportional to the flux of the magnetic field B through the area A enclosed by the two
arms of the MZI : Φ = 2πBA

Φ0
with Φ0 the flux quantum. Considering that the length of

the pn junction corresponds to the length of the interferometer, one can deduce from the
magnetic field periodicity ∆B an estimation of the edge channels separation across the
junction. Numerically one obtains 52nm.

In order to justify the length equality between the pn junction and the interferome-
ter, Yacoby et al. claim that the intervalley scattering only occurs on the physical edge
of graphene and is completely suppressed along a clean gate-defined edge. Thus they
measured the trans-conductance through several pn junction with different lengths, the
evolution of the magnetic field periodicity ∆B is in qualitative agreement with this hy-
pothesis. Therefore all the data obtained at high field (around 8T ) seems quite consistent
with the MZI picture.

However, P. Makk et al. [56] refined the analysis of the oscillations observed over a
wide range of filling factors as in figure 1.21b. Indeed, they claim that at low filling factors
|ν| ≤ 2 the oscillations observed corresponds to a MZI, but that at higher filling factors
and intermediate field (B ∼ 5T ) the MZI oscillations can be mixed with oscillations
coming from snake states along the junction.

1.2.5 Still a lot needs to be understood !

These first studies of MZI thanks to a pn junction in graphene are really promising,
but they also raise numerous questions. First of all, the main issue is the control of the
transmission of each beam splitter. Indeed, by tuning the top gate and bottom gate,
oscillations can be obtained. However, there is no direct control on the transmission of
each beam splitter. A clear demonstration of the MZI through a study of the oscillations
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visibility dependence on the transmission can not be carried out as in GaAs (see figure 1.6).
In addition, the underlying mechanism for the inter-channel mixing is still not clear.

In my PhD, the goal was to obtain a direct control over the transmissions of each
beam splitter created at the ends of a pn junction in graphene in the quantum Hall
regime. First this would enable us to check the consistency of the MZI picture as ex-
plained in the previous paragraph. But beyond this, it would lead to the possibility of
coherently manipulating the valley degree of freedom in graphene. Indeed, as explained
in section 1.2.4, the pair of edge channels forming a MZI along the junction have the
same spin and opposite valleys. Therefore, the MZIs created are mixing the valley while
being spin polarized. This implies that at the first beam splitter an incident electron is
scattered between two states carrying different valleys and can be described thanks to a
quantum mechanical superposition of them. Controlling the beam splitter transmission
mean being able to tune the electronic valley, in other words it can act as a valley splitter.
In addition, the fact that high visibility is observed in latter experiments shows that the
underlying mechanism for the valley splitting is a coherent process. Finally, obtaining a
tunable transmission could give us some insights on the physical nature of this mixing
mechanism.

In order to obtain tunable valley splitter, we implemented local gates located at the
two ends of the pn junction, i.e. where the mixing occurs. I will detail in the next part, our
sample geometry, its principles, and also all the fabrication challenges that we overcame
to achieve such a sample.
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Chapter 2

Experimental set up and sample
fabrication

As explained in section 1.2.5, the goal of my PhD is to coherently manipulate the
valley degree of freedom in graphene by achieving a valley splitter. The purpose of this
chapter is to present how it was experimentally implemented. First are described the
valley splitter sample geometry and the its principles. Then the sample specifications and
the fabrication procedure (in particular the encapsulation technique) are presented. And
in a last part, I detail the experimental set up and techniques.

2.1 Design of the valley splitter sample

2.1.1 Sample geometry

The stumbling block of our study are the experiments of Mach Zehnder interferometry
(MZI) carried out by a few teams [58][84][56] in graphene. All these studies are based
on the same concept : a graphene pn junction in the quantum Hall regime act as an
electronic MZI (as detailed in section 1.2.4).

Therefore, the building block of our sample geometry, presented in figure 2.1, is also a
pn junction created by electric field effect in graphene. The p-doped region is colored in
red, and the n-doped one in blue. In the presence of a magnetic field, counter-propagating
edge channels are formed in the n and p regions. These edge channels meet at the pn
junction, where they form co-propagating edge states along it, acting as the arms of the
MZI. The inter-channel mixing occurs at the two points where the pn junction meets
the physical edge of graphene; these points play the role of the beam splitters. If the
magnetic field is strong enough (typically ≥ 7T ), the fourfold spin-valley degeneracy is
lifted (see section 1.2.2). In this regime the edge channels are polarized in spin and valley
pseudospin, and by changing the filling factors in each region one can directly control
the number of edge channels on the p side and on the n side. Let’s now consider the
configuration represented in figure 2.1, with :

• In the n-doped region : νn = 2, with a spin up edge state | ↑, TR〉 (blue) and a spin
down one | ↓, TR〉 (yellow), where TR denotes an edge channel incoming on the pn
junction from the top right part of the sample.

31
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• In the p-doped region : νp = −1, with a spin down edge state | ↓, TL〉 (red), where
TL denotes an edge channel incoming on the pn junction from the top left part of
the sample.

Figure 2.1: Schematic representation of the pn junction. n region is depicted in blue,
p region in red. Electrons are injected from the upper right ohmic contact (defining an
injected current I0), and transmitted current IT is measured on the lower left ohmic con-
tact. Buried ohmic contacts enable to simultaneously tune the filling factor by measuring
the two-points Hall resistance on both sides of the junction (noted RH on the figure).

| ↓, TL〉 encounters | ↓, TR〉 and | ↑, TR〉 at the intersection between the top graphene edge
and the pn junction. Concerning the same spin states | ↓, TL〉 and | ↓, TR〉, they can be
polarized in identical or different valleys depending on the nature of the physical border
(zigzag or armchair). However, along the junction those incident spin down states form
interface states with opposite valley pseudospins ±−→ω : | ↓,−→w 〉 in the n-doped region and
| ↓,−−→w 〉 in the p-doped one. On his part, the edge state | ↑, TR〉 is preserved all along its
trajectory, staying in the n-doped region, as the exchange energy to flip a spin is too large.
An electron injected in the state | ↓, TR〉 is splitted between the spin down interface states
along the junction, where it can be described by the quantum mechanical state |Ψinitial〉
superposition of | ↓,−−→w 〉 and | ↓,−→w 〉. If one notes t1 (r1) the transmission (reflection)
coefficient from | ↓, TR〉 to | ↓,−−→w 〉 (| ↓,−→w 〉), the state |Ψinitial〉 can be expressed in the
following way :

|Ψinitial〉 = r1| ↓, ~w〉+ t1| ↓,−~w〉 (2.1)

For the current conservation, the transmission probability T1 = |t1|2 and the reflection
probability R1 = |r1|2 must verify : T1 + R1 = 1. In addition, whatever the valley
polarization of | ↓, TR〉, all the valley polarization of |Ψinitial〉 are accessible, provided that
scattering on the physical edge can supply the large momentum transfer from one valley
to the other [80].

In order to develop a valley splitter we need to control the valley polarization of the
output state |Ψinitial〉 through electrical means. In other words, we want to tune the valley
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polarization via an electrical bias, so that we can , in the ideal case, continuously go from
a state fully polarized in valley −→w to a state polarized in the opposite valley −−→w . For
this aim, we fabricated two small side gates above the intersection between the graphene
physical edge and the pn junction, i.e. where the mixing occurs between edge states with
same spin. Biases on the side gates modify the profile of the electrostatic potential at
both ends of the pn junction and, therefore the degree of the valley isospin mixing. When
the filling factor below a side gate is set to ν ≤ −1, situation of the top side gate (or
side gate 1) in figure 2.1, the pn junction intersects the physical edge; there the sharp
potential change facilitates the isospin mixing. On the other hand, when the filling factor
is set to ν = 0, situation of the bottom side gate (or side gate 2), the pn junction ends
on the edge electrically defined by the side gate; the potential change is gentle and the
isospin does not mix.

2.1.2 Experimental measured quantities

As shown in figure 2.1, in addition to the complex gate structure, four ohmic contacts
are located on both sides of the sample. Electrons are injected on the n-side from the
upper right ohmic contact, defining the injected current I0. This current is carried by the
two TR edge channels on the top graphene border up to the pn junction. Here, the half
of the current having a spin up is completely reflected, as it cannot flow to the P region,
because of large energy cost for spin flip. The other half I0/2 of spin down, on which
we focus hereafter, is partitioned on the first valley splitter (top side gate), propagates
along the junction through the copropagating edge states, and finally is recombined on
the second valley splitter (bottom side gate). The transmitted current IT through the
junction is measured on the lower left ohmic contact on the p-side. Moreover, the two-
points Hall resistance (noted RH in figure 2.1) is measured on the n-doped region and
p-doped region simultaneously, as depicted in the schematic. In order to carry out this
measurement, the ohmic contacts used for the two-points measurements are followed by
a grounded ohmic contact, which also avoids looping currents.

2.2 Sample fabrication
In order to experimentally implement valley splitters, we fabricated a sample in a

stack made of graphene encapsulated in hexagonal Boron Nitride (hBN) with a global
graphite back gate. During my PhD, we developed the stacking procedures, solved several
fabrication challenges (the achievement of edge contacts), and tested different geometries.
The final sample used in this study was fabricated by Myunglae JO, and is the outcome
of all these preliminary works. Hereafter are presented the characteristics of the valley
splitter sample and important fabrication processes.

2.2.1 The samples specifications

The stack used

An optical micrograph of the stack used for the valley splitter sample (before nanofab-
rication) is presented in figure 2.2a. It is composed of (from bottom to top) : a 9nm-thick
graphite back gate, a bottom hBN of 33nm, a monolayer graphene sheet, and a top hBN
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of 27nm. On the picture, the graphene is delimitated thanks to the green dashed line,
the hBN flakes appear in green, end the graphite back gate in purple. Graphene, hBN,
and graphite flakes were mechanically exfoliated onto the surface of SiO2/Si using the
conventional scotch tape method (from NGS Naturgraphit GmbH for graphene, and from
NIMS crystals for hBN). By optical microscope, single-layer graphene was chosen. The
monolayer nature of the graphene sheet has been further confirmed with Raman spec-
troscopy after successful encapsulation with hBNs (see figure 2.2b). By doing this we can
avoid any spurious signature in the Raman spectrum of graphene [68]. All the crystals
were carefully checked with optical microscopy and noncontact mode AFM to detect any
defects, contamination and in-homogeneities in thickness before stacking. Using the van
der Waals (vdW) dry transfer method (see section 2.2.2), graphene was encapsulated
in hBNs [82]. Then this BN/graphene/BN stack was transferred on a flake of graphite
(9nm), which is used as a back gate. The finished stack was annealed in vacuum at ap-
proximately 350◦C to enhance the quality of the sample and finally it was checked with
non-contact mode AFM to locate bubbles and defects.

(a) (b)

Figure 2.2: (a) Optical image of BN/graphene/BN/graphite stack. The green dashed line
indicates the edge of graphene. Red line indicates graphene mesa which would be defined
by subsequent RIE etch. Purple circles indicate bubbles in the stack which later would
be eliminated by ohmic contacts fabrication or mesa etching. (b) Raman spectroscopy of
encapsulated single-layer graphene. This data was taken after successful encapsulation
of graphene with top and bottom hBN but before adding additional graphite. We could
minimize the spurious substrate effect and also avoid overlapping with the spectrum of
graphite underneath.

Nanofabrication

After obtaining the stack, we used nano-fabrication techniques to achieve top gates,
side gates, to contact graphene and graphite, to etch the graphene... Starting from the
bare stack, the different steps of this complex fabrication process are the following :

• Realization of the ohmic contacts
For this aim, a poly-methyl-methacrylate (PMMA) pattern defined by e-beam
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lithography was used as a mask for O2/CHF3 reactive ion etch (RIE) to expose
the 1D edge of graphene. And using the same PMMA layer as a lift off mask, edge
contacts were defined by evaporating Cr/Au=10/30nm while rotating the sample
using a tilted rotation stage (see section 2.2.2)

• Etching of the mesa
We etched the graphene channel into desired mesa geometry by using the same
RIE procedure with PMMA resist mask. PMMA resist was cleanly removed in hot
Acetone later.

• Deposition of a hBN flake on top
To prevent any possible leakage between the exposed graphene edge and additional
gates, 10nm hBN was picked up and dry transferred on top of the sample. When
removing PPC, annealing was not used this time to avoid any possible degradation
of ohmic contacts. Melted PPC was cleaned with hot Acetone.

• Evaporation of side gates
Side gates were defined by evaporating Cr/Au=10/30nm.

• Deposition of a hBN flake on top
An additional 15nm BN was picked up and dry transferred on top of the sample
like described before.

• Definition of the top gates
Then finally top gates were defined by evaporating Cr/Au=10/40nm.

.

Sample description

An optical micrograph of the sample after nano-fabrication is presented in figure 2.3.a.
There are actually two top gates, which correspond to the two main golden plates visible
on the picture. In this study, we only used the right part of the sample, centered on one
of the top gates, and delimited by the red dashed line in the sample picture. A layout of
the used part of the sample is presented in figure 2.3.c. The region below the top gate is
doped n, whereas the rest of the graphene is p-doped thanks to the graphite back gate.
Therefore we have a pnp junction : the right pn junction has no side gates and it was just
used as a test sample, whereas the left one has side gates and corresponds to the valley
splitter sample as depicted in section 2.1.1. Burried ohmic contacts are placed below
the top gate enabling to completely isolate the two junctions from each other thanks to
cold grounds. Therefore, it is possible to measure, at the same time and independently,
the transmission through both junctions and the two-point Hall resistance below the top
gate (noted RH,tg on the schematic). The precise dimensions of the sample, as the width
of the pn junction or side gates size, are summarized in figure 2.3.b. The length of the
rigth pn junction corresponds to the width of the graphene ribbon ≈ 1.0µm. The left
pn junction length depends on the side gates tuning, when the pn junction follows the
side gates border, its length is ≈ 1.5µm. One can notice that the side gates size is non
negligible compared to the junction length. Indeed, half of the junction is covered by the
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Figure 2.3: (a) Optical micrograph of the finalized device. The dashed red line indicates
the pnp-junction actually used in our study, it is defined by applying gate voltages of
opposite sign from the graphite back gate and the metallic top gate. (b) Characteristic
dimensions of the valley splitter sample : the sample width 1.0µm, the distance between
the side gates 0.6µm, a side gate width of 0.5µm, and a side gate length of 0.2µm. (c)
Schematic representation of the real sample used in the pnp configuration (circled by the
red dashed line in (a)) : n region is depicted in blue, p region in red. The light blue
grounds correspond to cold grounds.

side gates. This is the results of several tests that we carried out on samples with different
widths. For longer junctions without side gates, the visibility MZI oscillations was always
quite low; it is only when we reduced the length of the junction that we could obtain high
visibilities as in Wei et al. work [84].

In order to visualize the arrangement of the different elements (gates, ohmic con-
tacts...), a vertical cut of the sample is drawn in figure 2.4. As one can understand from
the layout, by applying a negative bias on the graphite back gate, it is possible to p-dope
the full graphene layer. The application of a positive bias on the top gate can compensate
in the graphene underneath the effect of the back gate, and even enable to n-dope the
top gate covered region. Considering the side gates, they are isolated from the top gate
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thanks to one layer of hBN (which is insulating). One half of the side gate is below the
top gate whose potential is screened. Finally, the buried edge contact are also covered by
hBN to isolate it electrically from the top gate.

Figure 2.4: Schematic cut view of the sample layers.

2.2.2 Fabrication procedures

In this section, I will detail the main fabrication procedures used and developed at
the laboratory. First of all, the encapsulation technique, which enabled us to fabricate
the graphene and hBN stacks, is presented. Then is depicted one of the main challenges
in the nanofabrication of encapsulated graphene stacks : contacting the graphene thanks
to edge contacts.

Encapsulating graphene

The use of a simple scotch tape technique, by the Manchester team, to isolate graphene
was mind blowing. Moreover, as shown in [66], this scotch tape technique is also appli-
cable to a lot of different crystals as BN, MoS2, NbSe2... Rapidly, an idea emerged from
this possibility to isolate different two-dimensional crystals : What if we stack those crys-
tals to form heterostructures ? This simple idea gave rise to the rich field of Van der
Walls heterostructures [25] where one can stack graphene, 2D chalcogenides, 2D oxides in
the desired sequence. The inplane stability of the crystals is maintained through strong
covalent bounds, whereas the different layers are hold together thanks to the weak Van
der Walls forces. An important advent in this field was the high quality graphene devices
obtained thanks to encapsulation in hBN [16]. Nowadays, a lot of intriguing phenom-
ena have been observed in many different types of heterostrustures, and I would like to
underline in particular a recent achievement : the twisted bilayer graphene encapsulated
in hBN which exhibited superconducting properties [87]. The emergence of this entire
research field is based on the development of transfer techniques which enabled to achieve
the stacking of the crystals. The first wet transfer techniques were developed in Colombia
university by C.R. Dean et al. [17]. After a few years of developments the technique was
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improved and gave rise to the state of the art dry transfer technique [82], which is detailed
hereafter as it is the one we used.

The encapsulation procedure : Prior to any transfer, one has to carry out microme-
chanical exfoliation of graphene and hBN crystals on Si/Si02 (290nm) chips thanks to the
scotch tape technique. The clean crystals with the good thicknesses are found by optical
microscopy, and can eventually be checked by atomic force microscope (AFM) imaging.
Then the transfer process can start thanks to a transfer station (see figure 2.5a) composed
of : a microscope, a heated copper stage, and a micromanipulator where a glass slide can
be fixed.

(a)

(b)

(c)

Figure 2.5: (a) Picture of the transfer station composed of a microscope, an heated copper
stage, and a micromanipulator where the glass slide is fixed. (b) Schematic of the glass
slide used for the transfer procedure. At the end of the glass, a sticky polymer (PPC)
is placed on top of a PDMS cylinder. (c) Schematic of the van der Waals technique for
polymer-free assembly of layered materials (extracted from [82]).

The exfoliation chips are placed on the copper stage. Glass slides (figure 2.5b) are
prepared upstream with a sticky polymer, the poly-propylene carbonate (PPC), placed on
top of a transparent elastomer stamp in poly dimethyl siloxane (PDMS). For the transfer,
a glass slide is placed on the micromanipulator, and the copper stage is heated at 40◦.
By putting the stamp in contact with a BN crystal on the Si/Si02 chip, one can detach
it from the substrate as the adhesion to the PPC is stronger. Afterwards, as depicted in
the schematic 2.5c, one can stack the graphene layer on the BN attached, as again the
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adhesion of graphene to BN is stronger than to the substrate. The procedure is repeated
for the bottom BN, and other layers could be added using the same technique. During
the procedure the crystals are aligned thanks to the optical microscope. Once the stack is
done, one can deposit it on a clean Si/SiO2 chip by putting the stamped stack in contact
with the substrate and raising the temperature up to 130◦. Indeed, at high temperature
PPC is melting, thus releasing the stack. In order to remove all PPC residues the sample
is finally annealed at 350◦ for 30min.

Why is the encapsulation so important ? As I briefly mentioned before, encap-
sulating graphene in BN was a key element in order to obtain high quality samples.
Historically the first graphene samples studied were graphene flakes on top of SiO2, their
mobility was quite low due to the defects and charge puddles induced by the substrate.
Therefore, in order to obtain higher mobility, suspended graphene was developed, but the
the fabrication process was extremely challenging. However, thanks to encapsulation, it
is now possible to obtain mobilities as high as in suspended graphene, but with much
easier fabrication processes.

Microscopically the effect of encapsulation is astonishing as shown in this nice scanning
tunneling microscopy (STM) study [18]. Indeed, on the obtained topograph and charge
density map for graphene/SiO2 important puddles and defects are visible (figure 2.6.b
and d), whereas an extraordinarily flat graphene layer with almost no puddle is displayed
when it is placed on top of BN (figure 2.6.a and c). The suppression of puddles gives rise
to the high mobilities observed in encapsulated graphene. Actually, all the state of the
art studies on fragile effects such as the MZI [58][84][56] or FQHE [69] have been achieved
in encapsulated samples.

Nowadays, people are even going further by using a global graphite back gate (in
addition to the BN encapsulation) which is supposed to screen any charge inhomegeneity
from the substrate. In addition, a recent scanning nanothermometry study [32] enabled
to visualize atomic-scale defects in graphene. As clearly visible in their measurement
(see figure 2.7) defects are mainly located on the graphene physical edges. This is why,
recently, R. Ribeiro-Palau et al. [69] developed an encapsulated graphene sample with a
global graphite back gate but also a graphite top gate, which enables, thanks to the ν = 0
band gap, to electrostatically define the edges of the graphene layer in the presence of a
magnetic field.

Edge contacts

Van der Walls heterostructures made of two-dimensional crystals assembled together
were predicted to have exceptional properties; however to benefit from those properties
several technical challenges had to be overcome, and in particular obtaining high-quality
electrical contact for 2D materials using 3D metallic electrodes. For graphene the first
approach was to metalize 2D surfaces, but this leads to high contact resistance due to
the lack of surface bounding sites. In 2013, Wang et al. [82] developed an innovative
approach, the so-called edge contacts. As depicted in figure 2.8, the idea is to etch
graphene following a mask designed by electron beam lithography. The exposed graphene
edge is then metalize thanks to the same mask. As shown in the STEM images of their
ohmic contatcs (figure 2.8.B), the etched border forms a 45◦ angle with the plane of the
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Figure 2.6: Comparing topography and charge density for graphene/BN vs graphene/Si02.
(a,b) The 60nm x 60nm STM topographs of (a) graphene/BN and (b) graphene/SiO2.
(c,d) Charge density maps obtained from conductance maps taken in the same area si-
multaneously are shown for (c) graphene/BN, and (d) graphene/SiO2. Figure extracted
from [18].

stack. Thus, only one or two lines of C atoms are exposed, creating a real edge contact.
During my PhD, the obtention of high-quality edge contacts was an important chal-

lenge, which required a lot of developments. The final recipe we used is based on a PMMA
mask which is designed by electron beam lithography. Before spin-coating the PMMA,
the stack was etched with a 02 plasma for a short time (between 5 to 10s). Indeed, we
noticed that, without this step the PMMA mask tend to crack after the electron beam
lithography. Then the stack is etched following the mask design thanks to CHF3/02 reac-
tive ion etching (RIE). Controlling the etching rate is essential as we want to fully etch the
stack bellow the graphene layer, but we should not make a shortcut to the graphite back
gate by fully etching the bottom BN (see figure 2.4). Afterwards, we have an evaporation
step of Cr/Au=10nm/40nm. The conditions of evaporation are extremely important for
the contact quality.
After many tests we obtain the following set of conditions :

1. Low vacuum : ∼ 10−8mbar
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Figure 2.7: Observing individual dissipation sources in a graphene heterostruc-
ture. (A) Schematic side view of the measurement setup with the hBN-graphene-hBN
heterostructure and SQUID-on-tipnanothermometer. (B) Optical image of the device
patterned into a square chamber (bright; 4µm x 4µm). (C) Scanning ac nanothermome-
try Tac(x, y) the area outlined in (B). Figure extracted from [32].

2. Deposition with a tilt 15◦ and a rotation 18◦/s of the stage

3. Low deposition rates : 0.05nm/s for Cr, 0.1nm/s for Au

Thanks to this process we were able to obtain reliable contact resistance of few hundred
ohms per micron.

Figure 2.8: Edge-contact.(A) Schematic of the edge-contact fabrication process. (B)
High-resolution bright-field STEM image showing details of the edge-contact geometry.
Figure extracted from [82].
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2.3 Experimental set up
All the measurements were achieved at very low temperature thanks to a cryoconcept

dilution fridge with a base temperature of 15mK. Inside the fridge, a superconducting
coil can produce magnetic field up to 14T perpendicularly to the sample plane. When I
arrived in the team, the fridge hasn’t been delivered yet, therefore I participated to the set
up of the fridge, and in particular to the installation of DC lines and noise measurement
lines.

During all this study, we achieved differential conductance measurements through the
ohmic contacts thanks to Lock-in amplifiers with low noise preamplifiers. AC excitations
1nA-5nA with different frequencies (70Hz-300Hz) were used. Buried ohmic contacts un-
derneath top gates enabled us the direct determination of filling factors from regions of
interest. In order to inject small signal and to protect the sample, we added dividers,
capacitors, and big resistances on the DC lines going to the sample. The different circuit
used are briefly presented hereafter :

• For AC injection on ohmic contacts : as depicted in figure 2.9a, after the Lock-
in amplifier output we placed a divider followed by a big resistance to polarize in
current the sample.

• For AC and DC injection on an ohmic contact : it is the same circuit as in the
previous case, but with an additional Yokogawa DC source in serie with a resistor
(see figure 2.9b).

• For DC injection on the gates (figure 2.9c) : we used a divider in parallel with a
small capacitor. The time constant of the RC circuit was tuned to be short enough
(around 50µs) compared to the time constant of the Lock-in and to the wait time
between two measured points.
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(a) AC injection circuit on ohmic contacts (b) AC and DC injection circuit on ohmic
contacts

(c) DC injection circuit for gates

Figure 2.9: Schematics of the different electrical circuits used for signal injection on the
sample. R1 = 100kΩ, R2 = 1kΩ, R3 = 1MΩ, R4 = 10kΩ, R5 = 10kΩ, R6 = 1kΩ, and
C1 = 10µF .
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Chapter 3

Coherent manipulation of the
valley

In this chapter, I will present how, by using the valley splitter sample, we implemented
the coherent manipulation of the valley isospin. First, I will show how we can fully tune
the valley polarization of the output state of our system, by controlling the transmission
between the incoming and outgoing states below each side gate, and present simulations
corroborating those results. Then the coherence of the mixing process is investigated
thanks to Mach Zehnder interferometry. Finally, the prospects for valleytronics of the
coherent valley manipulation are discussed.

3.1 A full control of the valley polarization

3.1.1 Experimental tuning of the valley thanks to the side gates

The principles of the valley splitter sample are described in details in section 2.1.1.
For this study, a bipolar quantum Hall state is obtained by tuning, in the presence of
a strong magnetic field (B ≈ 9T ), the back and top gates in order to juxtapose : a n-
doped region with νn = 2, and p-doped region with νp = −1. Counter-propagating edge
states formed in the n and p regions co-propagate along the pn junction (figure 3.1a).
The valley isospin mixing only occurs at the two points where the pn junction meets the
graphene physical edge. In order to control the mixing, we implemented side gates which
can change locally the filling factor at the ends of the junction : for νsgi = 0 (i = 1, 2
denoting the side gate 1 or 2) no valley mixing should occur as the junction ends on a gate
defined border (figure 3.1a), whereas for νsgi ≤ −1 (figure 3.1b) or νsgi ≥ 2 (figure 3.1c)
the mixing should be preserved. As shown in figure 3.1a, experimentally we injected a
current I0 from the contact at the top right of the junction, and measured the current
transmitted IT on the bottom left contact. Half of I0 is injected into the spin down state
| ↓, TR〉, at the junction it is split between the same spin co-propagating interface states
formed along the junction : | ↓,−→w 〉 in the n-doped region, and | ↓,−−→w 〉 in the p-doped
one. The other half of I0 is injected into the spin up state | ↑, TR〉. Due to its opposite
spin this current is preserved all along the junction and fully transmitted to the | ↑, BR〉
state. Therefore, the maximum value of the transmitted current is IT = I0/2, and in all
the following measurements IT is normalized in units of transmission D = IT /(I0/2).

45
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(a) Fully reflecting configuration : νsg1 = νsg2 = 0

(b) Zoom transmitting configuration : νsg1 =
νsg2 = −1.

(c) Zoom transmitting configuration : νsg1 =
νsg2 = 2.

Figure 3.1: Schematic representation of the valley splitter sample in the fully reflecting and
the transmitting configurations. n region is depicted in blue, p region in red. Electrons
are injected from the upper right ohmic contact (defining an injected current I0), and
transmitted current IT is measured on the lower left ohmic contact. Buried ohmic contacts
enable to simultaneously probe the filling factor on both sides of the junction by measuring
the two-points Hall resistance (noted RH on the figure).
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Suppression of the valley mixing

The first step was to check that a full suppression of the valley mixing was achievable,
i.e. a zero-transmission D = 0 can be obtained for some tuning of the voltages on the side
gates. In what follows, we call V1 the voltage applied on side gate 1 (top one), and V2 the
one on side gate 2 (bottom side gate). As depicted in figure 3.1a, when νsg1 = νsg2 = 0, the
valley mixing should be suppressed, generating a fully reflecting configuration in which all
the current flows to the ground on the n side. To check the existence of such a regime, we
applied an identical voltage on both side gates V1 = V2, and measured the transmission D
as a function of this bias. The curve obtained is plotted in figure 3.2. For a certain range
of voltage, between 0 and 1 V, no current is transmitted giving rise to a full reflection of
the current. Outside of this fully reflecting region, the transmission fluctuates and can
reach high values, up to 0.8 (indicating that most of the current is transmitted).

Figure 3.2: Transmission as a function of gate voltages V1 = V2, noted Vsg, applied on
the side gates for a magnetic field of 13.5T.

When decreasing the voltage applied on the side gates, the filling factor below them
νsgi (with i = 1, 2 denoting the side gate) is diminished. At some point νsgi reaches -1,
implying that the | ↓, TL〉 (red) edge channel propagates below the side gates as depicted
in figure 3.1b. Therefore, the pn junction ends on the physical edge of graphene, enabling
valley mixing at its extremities. In the latter configuration, an electron injected from
| ↓, TR〉 or | ↓, TL〉 can be scattered on the physical edge in | ↓,−→w 〉, | ↓,−−→w 〉, or any
superposition of them depending on the momentum transfer conferred by the scattering.
The interface states cannot mix along the junction because it is defined in the clean
graphene bulk which prevents the presence of any scatterer. At the bottom end of the pn
junction, interface states encounter again graphene physical edge, where the valley mixing
is enabled, and are splitted between the output states | ↓, BL〉 and | ↓, BR〉. Valley mixing,
occurring at the two ends of the pn junction for νsgi ≤ −1, enables the transmission of the
current carried by the | ↓, TR〉 to | ↓, BL〉. As we inject from the n-doped region at filling
factor νn = 2, a full transmission D = 1 would give a transmitted current IT = I0/2,
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because the spin up current is fully reflected. All intermediate transmission values can
be generated depending on the transmission at each mixing point. The increase of the
transmission for negative voltages can be explained thanks to this picture. Finally, the
transmitted current observed above 1V can be explained in an analogue way : when
νsgi ≥ 2, the | ↓, TL〉 (yellow) edge state propagate below the side gates, creating a
configuration equivalent to the previous case (figure 3.1c).

Tuning the valley mixing

In the previous section, I showed that, by changing the bias applied on both side
gates, we can set the valley splitter sample in a transmitting configuration (figure 3.1b
and 3.1c) or in a fully reflecting configuration (figure 3.1a) where the mixing is suppressed
at the ends of the junction. If now we tune each side gate independently, as depicted in
figure 3.3, we can set the bottom side gate at a bias V2 suppressing the mixing between
incoming edge states (i.e. νsg2 = 0), and sweep the bias V1 applied on the top side gate.
In that configuration, the measurement of the transmitted current IT gives us a direct
access to the transmission T1 of the top valley splitter (side gate 1) as a function of the
bias V1 applied on it.

Figure 3.3: Schematic representation of the valley splitter sample with the bottom side
gate fully reflecting : νsg1 = −1, νsg2 = 0.

Experimentally, T1 was measured as a function of the bias V1 on side gate 1 and of
the magnetic field. The resulting measurement is presented in the form of a color map
in figure 3.4.a. We observe irregular oscillations of the transmission with the mangetic
field and the side gate voltage V1. The average period in V1 is roughly ∆V1 ∼ 100 mV. In
magnetic field it is approximately : ∆B1 ∼ 300 mT. The single trace in red representing
T1 oscillations as a function of the voltage V1 at a fixed magnetic field in figure 3.4.b,
exhibits that T1 can be continuously tuned from 0 to 0.89 electrostatically, through the
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bias V1. Therefore, by killing the mixing at the bottom side gate and by playing on
the bias on the top side gate, we are able to continuously go from an output state fully
polarized in valley −→w (T1 = 0) to an output state in valley −−→w (T1 ∼ 1). In other words
we control the degree of valley mixing, and our sample acts as a valley splitter.

Similarly, one can suppress the mixing at the top side gate by fixing V1 so that νsg1 = 0.
In this configuration the same study can be carried out by this time sweeping the bias V2
applied on the bottom side gate (see black trace in figure 3.4.b). The transmission T2 of
the bottom valley splitter presents a dependence, similar to T1, on the magnetic field and
V2.

Figure 3.4: (a) Measured T1 as a function of V1 and the magnetic field with V2 tuned so
that νsg2 = 0. (b) Measured transmission as a function of side gate voltage for different
configurations: in red T1 as a function of V1 for filling factor ν1 ≤ −1 and ν2 = 0 at
B = 9.23 T. In black T2 as a function of V2 for ν1 = 0, ν2 ≤ −1 at B = 8.96 T.



50 CHAPTER 3. COHERENT MANIPULATION OF THE VALLEY

3.1.2 Origin of the tunability

As shown previously, we can experimentally tune by electrical means the valley degree
of freedom. Indeed, the valley mixing can be completely suppressed by imposing a filling
factor νsgi = 0 below the side gates. This can easily be understood, because we push
the ends of the pn junction inside the graphene bulk where no scatterer can provide
the large momentum transfer necessary to go from one valley to another. In addition,
the transmission T1 of the top valley splitter can be tuned continuously from 0 to 0.89,
by electrical means. This fine control obtained on the valley isospin raises fundamental
questions about the underlying physical mechanism. Theoretically, we still don’t have
a clear picture for it, however simulations carried out by our collegue from SPEC, G.
Fleury, seems to corroborate the experimental behaviors observed. In this section, I will
first detail a few elements of theoretical description of our system, followed by a discussion
of G. Fleury’s numerical simulations.

Elements of theoretical description

In this paragraph, I will present how one can theoretically describe our system. First,
as explained before, we call interface states, states that propagate along the pn junction.
In the configuration depicted in figure 3.3, they have a spin down and are noted : | ↓,−→w 〉
in the n region, | ↓,−−→w 〉 in the p region. Splitting of the incoming edge channel | ↓, TR〉
into the two interface states implies that the interface scattering state is a superposition
defined as follows :

|Ψinitial〉 = t1| ↓,−−→w 〉+ r1| ↓,−→w 〉 (3.1)

r1 and t1 in equation 3.1 satisfy |r1|2+|t1|2=1. However, we still don’t have a clear
theoretical framework to explain how by changing V1, one can change t1.

(a)

Figure 3.5: (a) Schematic of the δd displacement of the pn junction interface along the
top side gate induced by a change ∆V1 of the applied bias.
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Simulations

Figure 3.6: Simulations done by G. Fleury. Local current of spin down electrons injected
from the upper left contact, in the vicinity of the pn interface and of the top sample
edge. The latter is modeled as a disordered zigzag edge in KWANT simulations. The two
interface states are superimposed within the considered non-interacting model.

Valley splitting relies on the atomic defect of the upper physical edge and therefore
depends both on the edge configuration (zigzag or armchair) and the disorder. We numer-
ically calculate T1 with KWANT [31] considering a local current of spin down electrons
injected from the upper left contact in a pn junction (see Appendix A for detailed ex-
planations). Position x0 of the bottom interface is fixed while position x1 where the np
interface and the sample edge intercept is varied (see layout in figure 3.6). Note that ex-
perimentally the position of x1 is set by V1. We first consider the ideal case in the absence
of disorder for a zigzag edge configuration. In figure 3.7.a, T1 is plotted as a function of x1,
and oscillates with a period a (a being the lattice constant). In the physical case, we have
no control on the edge configuration (random mix between zigzag and armchair) and the
disorder. In figure 3.7.b, we add roughness at the zigzag physical boundary and on-site
disordered potential. Oscillations are robust to edge disorder, though the amplitude and
the period of the oscillations (well defined locally) vary with x1. In particular, this period
is found to fluctuate roughly between a and 2a. Since the comparison between experimen-
tal measurement (figure 3.4.b) and numerical simulation with disorder (figure 3.7.b) are
in good qualitative agreement, we interpret the oscillations of T1(V1) as the hallmark of
the manipulation of |Ψinitial〉 valley polarization with side gate voltage. This also means
that applying 100meV on the side gate typically shifts the interface state by 1nm.

If now we consider the Bloch sphere, with |−→w 〉 as North pole and |−−→w 〉 as South pole,
to represent the valley mixing process, by changing the transmission T1 (thanks to the bias
V1), we can directly tune the azimutal angle of a valley-isospin qubit. When the azimutal
angle is chosen to be π/2 (the top valley splitter is half-open as T1 = |t1|2 = 0.5), the valley
isospin of the initial state |Ψinitial〉 = (| ↓, ~w〉+eiθ| ↓,−~w〉)/

√
2 (θ being an irrelevant phase
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Figure 3.7: Simulations done by G. Fleury. (a) Transmission T1 of the configuration
depicted in figure 3.6, calculated with KWANT as a function of the N-P interface position
x1 in the absence of disorder. T1(x1) oscillates between 0 and 1 with period a (lattice
spacing). (b) Same as (a) when roughness and disorder are added at the upper zigzag
edge.

set to 0 here) at the entrance of the PN interface lies on the equator. However, without
taking into account the magnetic field, the manipulation of the state in the equatorial
plane is not possible.

3.2 Probing coherence of valley polarized state by MZI

The electrical control over the splitting of the incoming states between the interfacial
states | ↓,−−→w 〉 and | ↓,−→w 〉 thanks to the bias V1 gives us a completely tunable valley
polarization of the |ψinitial〉 state, i.e. we directly manipulate the valley degree of freedom.
The observed experimental results are in agreement with numerical simulations, indicating
that we have a fine control over the interface position with the electrical gating. However,
in order to envision electron quantum optics experiments with the valley polarized states
propagating along the junction, the valley mixing process has to be coherent. We used
Mach Zehnder interferometry (MZI) to probe the coherence of the valley polarized state.
In this section, I will first present how we carried out a MZI experiment, a theoretical
framework describing the experiment, and the results obtained. Then a quantitative study
of MZI oscillations depending on the side gates transmissions is developed.

3.2.1 MZI in the valley splitter sample

Principle and theoretical description

By tuning the filling factor below both side gates to νsgi ≤ −1, pseudo spin can mix at
the top and bottom corners defining a closed loop or "valley" interferometer (as depicted
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Figure 3.8: Schematic representation of the valley splitter sample in the MZI configura-
tion, i.e. each side gate tuned in a transmitting configuration, here : νsg1 = νsg2 = −1.

in figure 3.8). The two arms of the interferometer are formed by the two spin down
interface states propagating along the pn junction, which are split in space as a result
of electron-electron interactions (not included in numerical simulations discussed above).
Electrons propagate on each side of the pn interface and accumulate an Aharanov-Bohm
phase which is at the bottom end of the junction ΦAB/2 (−ΦAB/2) for electrons coming
from the left (right) arm. ΦAB is expressed in equation 3.2 as a function of B the applied
magnetic field, A the area enclosed by the two arms of the interferometer and Φ0 = h/e
the flux quantum.

ΦAB = 2πBAΦ0
(3.2)

Taking into account this Aharanov-Bohm phase, the state |Ψinitial〉 after propagating
along the junction gives rise to the state |Ψfinal〉 as expressed in equation 3.3. As shown
in figure 3.9, this corresponds in the Bloch sphere representation to a rotation of the
|Ψinitial〉 state of an angle ΦAB around the z-axis.

|Ψfinal〉 = r1| ↓,−→w 〉+ t1e
−iΦAB | ↓,−−→w 〉 (3.3)

Bottom end of the pn junction being a physical edge, it facilitates valley mixing. For the
top mixing point, we introduced a scattering process converting | ↓, TR〉 → |Ψinitial〉, we
can introduce a similar process at the bottom end by considering an interface "eigen"-state
|Ψ̃〉 that perfectly goes to the left. In other words, at the bottom mixing point, we have
a scattering process such that |Ψ̃〉 → | ↓, BL〉. |Ψ̃〉 can be expressed in the following way :

|Ψ̃〉 = r2| ↓,−−→w 〉+ t2| ↓,−→w 〉 (3.4)

Again, r2 and t2 satisfy |r2|2+|t2|2=1. Note that the state orthogonal to |Ψ̃〉, perfectly
goes to the right, i.e. to | ↓, BR〉. The valley interferometer transmission TVI is given by
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the following equation :

TVI = |〈Ψ̃|Ψfinal〉|2 = |r1t2|2 + |r2t1|2 + 2|r1t1r2t2|cos(ΦAB + φ) (3.5)

where φ = arg(t1t2r∗1r∗2). We recognize the standard form of the Mach Zehnder interfer-
ence.

Figure 3.9: Formal equivalence of the interferometer in the Bloch representation, where
the poles stand for the interface states |−→ω 〉 and | − −→ω 〉. If the first valley splitter is half-
open (T1 = |t1|2 = 0.5), the vector representing the scattering state (|−→ω 〉+ eiθ|−−→ω 〉)/

√
2

(θ being an irrelevant phase set to 0 here) at the entrance of the junction lies in the
equator and subsequently rotates around the z-axis when it accumulates an AB phase
upon propagation.

Experimental measurements

To measure the transmission of the top side gate T1, we swept the voltage V1 applied
on it and the magnetic field B, while keeping a constant bias V2 on the bottom side gate
so that νsg2 = 0 (i.e. T2 = 0). In order to experimentally investigate the MZI regime,
we achieved the same experiment but with a different fixed bias V2 so that T2 ∼ 1/2.
In figure 3.10, the valley interferometer transmission TV I = IT /(I0/2) is plotted on the
same magnetic field and V1 range as in figure 3.4 but for T2 ∼ 1/2. A clear interference
pattern is observed. To change the Aharanov-Bohm phase ΦAB, we can either sweep the
magnetic field (B) or change the enclosed area (A) defined by the two arms using side
gates. This is why in figure 3.10 the interference fringes depend on the magnetic field and
on V1.

Afterwards, we concentrated on a small B−V1 window in which T1 was almost constant
and around 1/2, while keeping V2 fixed so that T2 ∼ 1/2. The resulting oscillations, pre-
sented in figure 3.11a, have a magnetic field periodicity of ∆B = 25mT . These smaller
period oscillations are naturally interpreted as interference fringes of a Mach-Zehnder
interferometer. From the Aharanov-Bohm phase (equation 3.2), we get the valley in-
terferometer area A = Φ0/∆B = 0.15µm2, and a spatial separation of 110nm between
the two interface channels, given a 1.5µm long pn junction. The separation results from
electron-electron interactions [84].
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Figure 3.10: Valley interferometer transmission TV I as a function of the magnetic field B
and V1 for T2 ∼ 1/2 (same B − V1 range as in figure 3.4).

The period ∆V1 = 50meV indicates that the interferometer area A is tuned by V1. The
gate voltage V1 generates potential to the p side and the n side asymmetrically, resulting
in change δs of the spatial separation between the interface channels and shift δd ∼ δs/2
of the pn interface below the top side gate (as depicted in figure 3.11b). When changing
the voltage V1 by ∆V1, the Aharanov-Bohm phase undergoes a 2π rotation generated
by a δsLs change of the area enclosed by the interferometer arms, with the side-gate
length Ls = 450 nm. From this, we estimate δs ∼ 1 nm, hence δd ∼ 0.5 nm (considering
B = 9.2T ). This implies that ∆V1 = 100 meV applied on the top side gate voltage V1
enables to shift the pn interface by a distance of δd ∼ 1 nm, supporting that the depen-
dence of T1 on V1 in figure 3.4 is related with the valley isospin. The two measurements
in figure 3.4 and 3.10 are perfectly consistent and confirm our interpretation. We remark
that independent control of the two valley splitters is crucial for characterization of the
valley splitters and the Mach-Zehnder interferometers, as there are the multiple periodici-
ties of different origin : oscillations of T1 and MZI oscillations TV I . This was not achieved
previously [84][33]. Moreover, using the MZI configuration we checked that the reflection
and transmission through the pn junction are oscillating in phase opposition, and that
their sum is equal to the injected current, i.e. the current is conserved (see appendix A.2
for details).

The visibility of the MZI oscillations is an essential tool to study the coherence in the
system. As explained in the introductive section about MZI (section 1.2.4), the visibility
V can be computed thanks to the maximum MZI transmission value TV I,max and the
minimum one TV I,min (equation 3.6). In order to determine the experimental visibility,
we fitted the MZI oscillations by a sinusoidal function. Indeed, as shown in equation 3.6,
the visibility of the oscillation is directly given by the ratio between the amplitude Aosc
and the offset Bosc of the sinusoidal fit function.

V = TV I,max − TV I,min
TV I,max + TV I,min

= Aosc
Bosc

(3.6)
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(a)

(b)

Figure 3.11: (a)Valley interferometer transmission TV I as a function of the magnetic field
and V1 with T1 ∼ T2 ∼ 1/2. (b) Schematic of the δd displacement of the pn junction
interface along the top side gate induced by a change ∆V1 of the applied bias.

An example of a sinusoidal fit is presented in figure 3.12. One can note the good agreement
between the fit function and the experimental data. Thanks to this procedure, a visibility
of 70% was extracted from data presented in figure 3.11a.

Figure 3.12: Sinusoidal fit (red) of TV I oscillations as a function of the magnetic field.

Similarly to the side gates, back and top gates can change the area A enclosed by
the two arms of the interferometer. Thus, we also obtained oscillations of the valley
interferometer transmission TV I by sweeping the bias applied on the back and top gates.
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Nevertheless, the periodicities obtained are different for each gate as the lengths on which
they act are not the same.

Finally, I would like to underline that our study represents the first experimental
realization of a fully tunable valley-MZI in graphene, i.e. a MZI with tunable transmissions
T1 and T2. Thanks to this tunability we could carry a quantitative study of the visibility
dependence on the transmissions of the valley splitters, as will be detailed in the following
section.

3.2.2 Quantitative study of the visibility dependence on transmission

In the brief recap of chapter 1 about MZI in GaAs/AlGaAs heterostructures (see
section 1.2.4), I underlined an important feature of MZI : the dependence on T1 of the
visibility υ = 2

√
T1(1− T1) when T2 = 1/2. Similar measurements were not achievable

in graphene MZI up to now, as in the previously implemented interferometers, there was
no control over the transmission at each mixing point. Thanks to our tunable valley
splitters, we are able in our sample to tune independently the transmissions T1 and T2.
Therefore, we can carry out an experimental study of the visibility dependence on the
valley splitters transmissions, and check the consistency of the results obtained with
theoretical predictions. This would further confirm the MZI picture along graphene pn
junction with tunable valley splitters at its extremities. First, I will present a theoretical
framework for the graphene MZI predicting the visibility dependence on the transmission
T1 when T2 = 1/2. Then the experimental results are described and compared to the
theoretical prediction.

Theoretical dependence of the visibility

As explained previously, the visibility υ of the oscillations can be computed thanks to
the following formula :

υ = (TV I,max − TV I,min)/(TV I,max + TV I,min) (3.7)

with TV I,min (TV I,max) the minimum (maximum) transmission TV I through the valley
interferometer. In addition, we obtained the following expression for our graphene MZI :

TVI = |〈Ψ̃|Ψfinal〉|2 = |r1t2|2 + |r2t1|2 + 2|r1t1r2t2|cos(ΦAB + φ) (3.8)

Considering |t2|2 = |r2|2 = 1/2 and T1 = |t1|2, using equations 3.7 and 3.8, one gets :

υ = 2
√
T1(1− T1) (3.9)

We recover a standard transmission dependence of the visibility in a Mach-Zehnder.

Experimental result

As underlined by equation 3.9, the visibility of the MZI transmission TV I oscillations
is directly related to the transmission of the top valley splitter T1, when the bottom one is
tuned at a transmission T2 ∼ 1/2. Our goal was to experimentally measure the visibility
(V ) dependence on T1, in order to compare it to theoretical predictions and see the degree
of control obtained in our MZI.
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For this aim, the starting point was to find a region where T1 could be continuously
tuned, thanks to the bias V1, on the biggest span as possible between 0 and 1. As clearly
visible in figure 3.4.a of section 3.1, T1 oscillates while sweeping V1, and in some spots the
span covered by T1 is effectively large. The transmission also depends on the magnetic
field B and oscillates with a big periodicity δB ∼ 0.3T . Since we want to compute the
oscillations visibility for a fixed T1, this latter needs to be constant with the magnetic field.
A constant transmission while sweeping the magnetic field can be obtained by adding, for
each magnetic field value B, a linear correction to the gate voltage V1,corr(B) = aB + b
(with a and b the computed coefficients). In figure 3.13a, the gate voltage V1(B) was
swept around the corrected value V1,corr(B) following formula : V1(B) = V1,corr(B) + δV1
with δV1 going from -110 to 80mV. Thanks to this, an almost B-independent T1, going
from 0.018 to 0.812, is achieved as a function of the relative bias δV1. Since T1 does not
reach neither 1 nor 0, we introduce T̄1 = (T1 − T1,min)/(T1,max − T1,min) (figure 3.13b).
This normalization procedure is based on the assumption that a part of the current is
reflected at another point, and does not flow through the interferometer, explaining the
lower value of the maximum transmission. An analogue assumption can be made to
explain the slightly above zero minimum of the T1.

(a) (b)

Figure 3.13: (a) Transmission T1 of the top valley splitter as a function of the magnetic
field and the bias δV1 applied on it (with νsg2 = 0). (b) Transmission T1 averaged over
the magnetic field span as a function of δV1. T1 is the normalized value of T1 defined by
T1 = (T1−T1,min)/T1,max with T1,max the maximum value of T1 and T1,min its minimum.

Then, we tuned T2 ∼ 1/2 in the same B-range. As seen on figure 3.14, one can obtain
a relatively stable value of T2, roughly around 1/2, with the magnetic field B by following
the brown line in the B − V2 space.

By combining the tuning of T1 and T2, we were able to achieve a map showing the
evolution of the oscillations with the magnetic field as a function of T1, while T2 ∼ 1/2.
The TV I map obtained is shown in figure 3.15. Qualitatively, one can observe that the
oscillation amplitude is maximal when T1 ∼ 1/2, whereas for T1 ∼ 1 and T1 ∼ 0 the
oscillations are completely washed out.

Quantitatively, for each value of δV1, corresponding to a fixed value of T1, we computed
the experimental visibility thanks to sinusoidal fits (method explained in section 3.2.1).
The experimental visibility as a function of T1 is plotted in figure 3.16. It is compared
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(a) (b)

Figure 3.14: (a) Transmission T2 of the bottom valley splitter as a function of the magnetic
field and the bias V2 applied on it (while νsg1 = 0). (b) Transmission T2 as a function of
V2 following the brown line in (a).

Figure 3.15: (a) Transmission TV I of the valley interferometer as a function of the mag-
netic field B and the bias δV1 on the top valley splitter, same B − δV1 window as in T1
measurement (figure 3.13) with T2 ∼ 1/2 (figure 3.14).

to the theoretical dependence (black line) for T2 ∼ 1/2 derived previously in equation 3.9
with the addition of a decoherence prefactor z, giving the following equation :

V = 2z
√
T̄1(1− T̄1) (3.10)

z was fixed at 0.59 using the maximum experimental visibility. The averaged value of
T2 over the magnetic field range is 0.53 (confirming the assumption T2 ∼ 1/2). The
good agreement between the experimental visibility and the theoretical law support the
formation of the Mach-Zhender valley interferometer and confirms the coherence of the
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valley superposition in equation 3.1.

Figure 3.16: Orange dots : experimental visibility measured as a function of the normal-
ized T̄1 with T2=0.5. Black solid line : Computed visibility V = 2z

√
T̄1(1− T̄1) with

z = 0.59.

3.2.3 Phase shift

Experimental observations

A closer look at the interference pattern of TV I at fixed V2 reveals unusual phase shifts.
They are highlighted in figure 3.17b and analyzed in view of data for T1 in the same range
of V1 and B parameters (see figure 3.17a). In both panels, black dashed lines are added
to indicate trajectories in the (B, V1) plane along which T1 shows a local maximum. By
comparing the oscillation pattern of TV I along those two (adjacent) trajectories for each
value of B (vertical green grid in figure 3.17b), we observe a sudden change ∼ π of the
phase of the oscillations within the magnetic-field change of ≤ 30mT at certain parameter
regions (see the third and fourth vertical lines). The change ∼ 30mT is much smaller
than the period (∆B ∼ 300mT ) of the top and bottom valley splitters, so it is unlikely
that the phase shift originates from the phase change of the valley-splitter amplitudes
ti=1,2 and ri=1,2 by the magnetic field; such nontrivial phase shifts have not been found
in Mach-Zehnder interferometers in GaAs.

Theoretical leads

We attribute the sudden change (∼ π) of the phase shift to the valley-isospin rotation
at the top valley splitter. It was theoretically predicted [80] that the valley isospin of the
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(a) (b)

Figure 3.17: (a) T1 as a function of the magnetic field B and V1. In this interesting
region, local maximum of T1 has been highlighted with a black dashed curve. (b) TVI
in the same magnetic field and V1 range as in figure 3.17a with now ν2 ≤ -1 set at the
bottom side gate. We note phase shift of TVI between two adjacent values of maximum
T1 at a fixed magnetic field (vertical dashed lines). The phase shift shows sudden change
∼ π around the third and fourth vertical lines (the area with phase shift π is framed with
a dashed white line).

interface states rotates by a large angle Θww′ ∼ π when a PN interface is parallel shifted
on the top edge by the period of the atomic structure while fixed on the bottom edge
(by tuning V1 for instance). Before a parallel interface shift, the initial interface state
|Ψinitial〉 and the junction transmission probability TV I are described by equations (3.1)
and (3.8). After the parallel interface shift, the valley isospin rotates from ±~w to ± ~w′,
and the initial state becomes :

|Ψ′initial〉 = r′1| ↓,
−→
w′〉+ t′1| ↓,−

−→
w′〉 (3.11)

with Θww′ the valley-isospin rotation angle from ~w to ~w′. After propagating along the pn
junction, an Aharanov-Bohm phase ΦAB is accumulated, and |Ψ′initial〉 gives rise to the
state :

|Ψ′final〉 = r′1| ↓,
−→
w′〉+ t′1e

−iΦAB | ↓,−
−→
w′〉 (3.12)

However, the expression of the state going to the left at the bottom |Ψ̃〉 is unchanged,
and one has :

|Ψ̃〉 = r2| ↓,−−→w 〉+ t2| ↓,−→w 〉 (3.13)

Therefore, when |Ψinitial〉 is modified into |Ψ′initial〉, the valley interferometer transmission
becomes :

T ′V I = |〈Ψ̃|Ψ′final〉|2 = |r′1t̃∗2 + t′1r̃
∗
2e
−iΦAB |2

= |r′1t̃∗2|2 + |r̃∗2t′1|2 + 2|r′1t′1r̃∗2 t̃∗2|cos(φAB + φ′)
(3.14)

where φ′ = arg(t′1t̃2r′∗1 r̃∗2). As shown in equation 3.15, t̃∗2 and r̃∗2 are related to t∗2 and
r∗2 by the unitary matrix U representing the change of basis from (| ↓,−→w 〉, | ↓,−−→w 〉) to
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(| ↓,
−→
w′〉, | ↓,−

−→
w′〉). (

t̃∗2
r̃∗2

)
= U

(
t∗2
r∗2

)
(3.15)

Matrix U can be expressed as a function of the rotation angle of the valley Θww′ :

U =
(
cos(Θww′

2 ) sin(Θww′
2 )

−sin(Θww′
2 ) cos(Θww′

2 )

)
(3.16)

The oscillation phase shift between TVI and T ′VI is the difference between φ = arg(t1r∗1t2r∗2)
and φ′ = arg(t′1r′1

∗t̃2r̃
∗
2). Using the parametrization of t2 = eiϕ sin(γ/2) and r2 = cos(γ/2)

with γ ∈ [0, π] and ϕ ∈ [0, 2π], we find :{
2t1r∗1t2r∗2 = t1r

∗
1e
iϕ sin γ

2t′1r′1
∗t̃2r̃

∗
2 = t′1r

′
1
∗(sin Θww′ cos γ + sin γ cosϕ cos Θww′ + i sin γ sinϕ)

(3.17)

So, the rotation angle Θww′ can affect the interference pattern, which may explain the
unusual abrupt ∼ π jump as a function of the magnetic field in certain parameter regions.

3.3 Towards valleytronics in monolayer graphene
Recently, the possibility to encode the information into the valley degree of freedom

in two-dimensional layered materials has generated a lot of interest [10][75]. For example,
optical control of the valley isospin has already been demonstrated in monolayer MoS2 [55],
and the pure valley current [78] and the domain wall effects [39] have been observed in a
biased bilayer graphene. Valleytronics in monolayer graphene has been less studied [30]
in experiments because of the difficulty in manipulating valley isospin by electrostatic
means — the inversion symmetry cannot be broken by usual gate voltage that generates
electrostatic potential smoothly changing on an atomic distance scale. Unlocking this
issue is valuable, since it implies the robustness of the valley isospin, a crucial merit of
valleytronics in monolayer graphene.

In order to achieve valleytronics devices in monolayer graphene, a full electrical control
of the valley isospin is necessary. Being able to tune the valley isospin scattering at
graphene edge is a way of resolving the difficulty. Indeed, the analysis achieved in the
previous section (3.2.2) indicates that, thanks to the side gates, the valley isospin direction
of the superposition |Ψfinal〉 can be tuned over the range of |t1|2 = 0.03 - 0.89 and φAB =
0 - 2π by changing V1 and B. As shown in figure 3.18, this implies that we can cover
almost all the states in the Bloch sphere representation of the valley qubit. Hence the
valley splitters would enable the basic operations of a valley-isospin qubit.

However, if we want to use valley-isospin qubits for quantum operation they have to
be sufficiently sturdy. In the next chapter, I will study the characteristic energies of the
decoherence of the system in order to investigate the steadiness of the coherent valley
mixing process.
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Figure 3.18: Equivalence of the interference and the rotation of a valley-isospin qubit on
the Bloch sphere, where the poles stand for the valley isospin ±~w of the copropagating
PN interface channels. The azimutal angle of the valley-isospin qubit is tuned by V1.
When the azimutal angle is chosen to be π/2 (the top valley splitter is half-open as
T1 = |t1|2 = 0.5), the valley isospin of the initial state |Ψinitial〉 = (| ↓, ~w〉+eiθ| ↓,−~w〉)/

√
2

(θ being an irrelevant phase set to 0 here) at the entrance of the PN interface lies on the
equator and subsequently further rotates around the z-axis by the polar angle φAB while
the qubit evolves to |Ψfinal〉 while accumulating an Aharonov-Bohm phase φAB upon
propagation.
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Chapter 4

Characteristic energies of the
coherence

Thanks to the side gates, we obtained a coherent control over the valley degree of
freedom. Indeed, by adjusting the transmission below the side gates and inducing an
Aharanov-Bohm phase via the magnetic field, one can tune the valley isospin direction of
the output state over the almost whole parameter range in a Bloch sphere representation
for a valley-isospin qubit. However, in order to envision quantum operations via the valley
encoding, the coherence of the system has to be steady. In this chapter, we investigate the
characteristic energy scales of the coherence, by studying the MZ interferences visibility
dependence on the energy of incoming electrons. Two different techniques are commonly
used to tune the energy of incoming electrons : applying a DC bias on the arms of the
interferometer, and increasing the temperature of the whole system. This chapter begins
with a reminder of the visibility dependences observed experimentally, in temperature
and in DC bias, in GaAs/AlGaAs MZIs, followed by the presentation of different theoret-
ical frameworks developed to explain these results. Then, I will expose the experimental
study that we carried out in our graphene valley splitter sample in order to investigate
the visibility dependence on the electrons energy and the associated characteristic energy
scales. Finally, is discussed how the theoretical frameworks, enabling to model the behav-
iors observed in GaAs/AlGaAs, can be adapted to graphene MZIs, taking into account
the peculiarities of this new material.

4.1 Reminder of GaAs case

In order to understand the coherence properties in quantum Hall edge channels in
GaAs/AlGaAs heterostructures, extensive studies have been carried out in MZIs to in-
vestigate the visibility dependence on the temperature and the DC bias. In this section,
I briefly summarize the results obtained in these studies, and in particular the character-
istic energy scales extracted. First is described the case of the DC bias studies, followed
by the temperature studies. In a second time, I detail two theoretical frameworks that
have been developed in order to understand the decoherence experimentally observed in
both cases.

65
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4.1.1 Finite bias visibility in GaAs MZIs

The basic idea of DC bias studies is to superimpose a finite bias to the injected AC
signal on the input channel of the MZI, and then to measure the evolution of the MZ
interferences visibility with the applied bias. Experimentally in GaAs MZIs, as detailed
hereafter, an intriguing and unexpected finite bias visibility dependence was observed.
Furthermore, at ν = 2, the decay of the visibility with the DC bias was shown to present
different characteristics depending on the number of incoming edge channels biased :
two or one. In particular, in the case of one edge channel biased an intriguing lobe
structure was observed. The different experimental observations obtained in those two
configurations are detailed sequentially hereafter.

Configuration with one biased edge-channel

In an experiment carried out in 2006 [59] at the Weizmann institute, they studied an
electronic MZI defined thanks to two QPCs (noted QPC1 and 2 in figure 4.1), with the
addition of an extra QPC (named QPC0) before the MZI. This QPC enables to reflect
back one of the incoming edge channels on the MZI. After QPC0, the outer edge state
(OES) is at the bias imposed by the source S2, while the inner edge state (IES) is fixed
at the ground potential; therefore, they are in a configuration where only one of the edge
channels incoming on the MZI is biased.

Figure 4.1: Sample used by Neder et al. [59]. A top scanning electron microscope micro-
graph of the MZI. QPC 1 and 2 correspond to the two beam splitters of the interferometer,
while QPC 0 is used to reflect back the desired edge channel.

In this configuration, they obtained a surprising result when measuring the MZI oscil-
lations as a function of the DC bias : a beating appeared in the oscillation contrast as the
DC bias was increased, as clearly visible in figure 4.2a. In order to quantitatively study
this, they computed the visibility of the oscillations for each DC bias value and observed
an intriguing lobe structures varying with the filling factor :

• at ν = 1 : a central lobe is surrounded by two side lobes (see figure 4.2c).

• at ν = 2 : five major lobes are visible, each ∼ 14µV wide (see figure 4.2b).
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(a) (b)

(c)

Figure 4.2: Measurement by Neder et al. [59] of the interference oscillations and visibilities.
(a) Two-dimensional color plot of the differential transmission as a function of the applied
DC bias, at filling factor ν = 2. (b) Visibility and phase interference pattern at ν = 2
as a function of the applied DC bias. Five major lobes are visible, each ∼ 14µV wide.
The phase at each lobe is constant and slips abruptly by π at each node. (c) Similar
measurement at ν = 1 exhibiting only three major lobes with the same stick-slip phase
behavior.

Remarkably, in this configuration, the central lobe and the side lobes have the same width.
In figure 4.2b and 4.2c, the phase associated with the MZ interferences is plotted

in parallel of the visibility. Interestingly, the phase at each lobe is constant and slips
abruptly by π at each node. The existence of a one side lobe structure was confirmed
by the measurements of Roulleau et al. [72] one year later, however they did not observe
the multiple side lobe structure. A transition between one side lobe to several side lobes
depending on the filling factor was reported later on by Litvin et al. [51].

Configuration with two edge channels biased

In the case of a bias applied on both of the incoming edge channels, the visibility
dependence on DC bias, although decaying, presents different characteristics. This con-
figuration and the resulting visibility dependence on DC bias were first studied in the
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pioneering work by Ji et al. [37]. They observed a monotonous decay of the visibility with
the temperature and the DC bias, as shown in figure 4.3.

Figure 4.3: Ji et al. measurement [37] in GaAs of the visibility of a MZI, at filling factor
ν = 2, as a function of the DC bias applied, and of the temperature.

The decay of the visibility, observed in this configuration (with a bias applied on
two edge channels), was studied in more details by Bieri et al. [11], who measured its
evolution with the transmission of the first beam splitter, and in particular in the weak
back-scattering (WB) and in the weak-tunneling (WT) regimes. As shown in figure 4.4,
in the WT regime, they observed a lobe-type structure, but with a central lobe two times
wider than the side lobes. In the WB regime, no lobe structure is visible, the visibility
still decays with DC bias but non-monotonously. Indeed, one can notice an unexpected
enhancement of the visibility, compared to its zero-bias value, when the DC bias is moved
away from zero.

To summarize, when the two incoming edge channels are biased the visibility evolution
with the DC bias presents a strong dependence on the transmission of the first beam
splitter forming the MZI. In addition, in this configuration, no phase rigidity is observed,
contrarily to the case where one edge channel is biased.

The energy scales involved

Finally, I would like to stress the energy scale of coherence in the case of GaAs/AlGaAs
heterostructures revealed by the measurements of the visibility dependence on the DC
bias. Typically the MZ oscillations completely vanish for |VDC | ∼ 40µV , and in the
case of a lobe structure, the main lobe width is approximately 20µV , as one can see in
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Figure 4.4: Bieri et al. experimental results in [11]. (a) The dependence of the
visibility on the DC bias voltage VDC scaled to the zero-bias value for five different TA
(transmission of the first QPC) values TA = 0.96, 0.71, 0.49, 0.34, and 0.13 and QPCB
(second QPC) fixed. In the weak back-scattering (WB) limit, the visibility first grows
with increasing VDC , whereas it decays in the opposite case of weak-tunneling (WT). (b)
The phase evolution is visible in the measured differential transmission through the MZI
as function of VDC in the WB, WT, and an intermediate regime.

figure 4.2. Therefore, the oscillations are really fragile, electrons injected with an energy
of a few tens of µV are sufficient to destroy the coherence along the interferometer.

4.1.2 Temperature dependence of the visibility in GaAs MZIs

The second technique to increase the energy of the incoming electrons is to enhance the
temperature of the system. As shown in the pioneering work by Ji et al. [37], the visibility
of Aharanov-Bohm oscillations in GaAs MZIs decreases rapidly with the temperature,
and completely disappears around 100mK (see figure 4.3). Therefore, the coherence in
MZI formed in GaAs/AlGaAs heterostructures is really fragile considering temperature
increase of the system, consistently with the dependency observed in DC bias. These very
low temperatures, necessary to avoid decoherence in these systems, represent an important
experimental constraint as it requires state of the art He3/He4 dilution fridges.

The temperature dependence of the visibility was investigated further by later stud-
ies [73][51], which exhibited an exponential decay of the visibility with the temperature
at filling factor ν = 2. As shown in figure 4.5a, in P. Roulleau et al. measurement [73],
the visibility follows an exponential decay even at the lowest temperatures (∼ 20mK).
In comparison, the measurement of Litvin et al. [51], displayed in figure 4.5b, exhibits a
deviation from the exponential decay below roughly 40mK. This deviation may be due
to a thermal saturation in their sample, i.e. their electronic temperature never goes below
40mK.
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(a) (b)

Figure 4.5: Exponential decay of the visibility with the temperature. (a) P.
Roulleau et al. [73] measurement of the logarithm of the visibility normalized by the
visibility at 20mK. The measurement has been done for three samples of different sizes,
at the magnetic field for which the visibility decay is the smallest. (b) Litvin et al. [51]
measurement of the temperature dependence of visibilities for large (open symbols) and
small (full symbols) MZIs at different magnetic fields. The curves “a” and “b” for B=4.8
T correspond to different QPC half transmission points.

4.1.3 Existence of a capacitive coupling between edge channels

In order to apprehend the temperature and DC bias dependence of the visibility, one
has to understand the decoherence processes. Interestingly, in GaAs/AlGaAs heterostruc-
tures the highest visibility was not observed at filling factor ν = 1, as one could expect,
but at ν = 2. As claimed in [70], this may be due to decoherence induced by collective
spin excitations, typically the skyrmions described in [8], which enables spin flip processes.
Hence, most of the experiments have been carried out at ν = 2. In this regime, one of the
source of decoherence could be related to the coupling between the co-propagating edge
channels, as will be detailed in the next section 4.1.4. Hereafter, I will just give some
experimental evidences of the existence of a capacitive coupling.

For probing this coupling, P. Roulleau et al. [70] used the same sample as in their
previous study [73]. As depicted on the layout in figure 4.6.a, the inner edge state (in
red), linked to the voltage source V2, is completely reflected by the QPC G0, while the
outer edge state (in blue) is fully transmitted. By sweeping the voltage applied on the
side gate, noted SG on the schematic, they change the area enclosed by the two arms of
the interferometer, and thus the Aharanov-Bohm phase. The oscillations of the current
transmitted through the outer edge state as a function of the voltage VSG on SG are
presented in figure 4.6.b. As shown in figure 4.6.c, the phase oscillations of the transmitted
current can also be obtained via the application of a bias V2 on the inner edge channel.
This implies that the inner edge channel is acting as a local gate thanks to its capacitive
coupling to the outer one. Indeed, the interfering part I∼ of the transmitted current
in the presence of a capacitive coupling was computed in [71], and its expression is the
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Figure 4.6: Figure extracted from [70]. (a) Tilted SEM view of their device, with
schematic representation of the edge states. G1 and G2 are Quantum Point Contact
(QPC) which define the two beam splitters of the MZ interferometer. They are set to
transmission T1 ∼ T2 ∼ 1/2 for the outer edge state (OES), while fully reflecting the
inner edge state (IES). SG is a side gate. G0 is an additional beam splitter which makes
it possible to bias the IES by V2, while the other is biased by V1. G0 is tuned such that
the OES is fully reflected, while the IES is transmitted with a probability T0. (b) Phase
sweeping by varying the side gate voltage VSG. (c) Phase sweeping by varying V2 with
T0 = 1 for two different magnetic fields. The periodicity V0 depends on the magnetic
field.

following :

I∼ = IDe
−V12/(2Vlob2) × cos(φ− 2πV2

V0
) (4.1)

where ID = e2

h VDC
√
T1R2T2R1, V1 (V2) is the bias applied on the OES (IES), and Vlob

is a fitting parameter. Finally, the differential conductance of the current transmitted
through the OES dI∼/dV1 is proportional to cos(φ−2πV2/V0), explaining the appearance
of conductance oscillations with V2.

4.1.4 Theoretical description of decoherence in GaAs/AlGaAs heterostruc-
tures

The simple single particle picture of edge states, where the electronic edge excitations
propagate as plane waves with the group velocity vF at the Fermi level, fails to explain
the experimental observations for MZIs. Indeed, within this framework, the visibility of
the interferences does not depend on the DC bias applied on the interferometer arms,
while experimentally the dependence is quite strong and associated with peculiar behav-
iors such as lobe structures. The physical origin of the dependence of the visibility has
been the subject of intense theoretical debates. A phenomenological approach, detailed
in the first part of this section, was developed by Roulleau et al. to describe the lobe
structures they obtained in DC bias when only the interfering edge channel was biased.
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In a second time, I will detail another framework which considers the dephasing, induced
on the interfering edge channel, by the noise on the capacitively coupled non-interfering
edge channel; this enabled to fit experimental dephasing observed when increasing the
temperature or injecting shot noise on the inner edge state (IES). Finally, is described
a model of dephasing based on the spin-charge separation induced by the coupling be-
tween edge states, which can describe most of the experimental features in DC bias of
interferences.

A first phenomenological explanation

P. Roulleau et al. in [70], by applying a bias V on the interfering IES while the OES
is grounded, observed as in [59] a lobe structure in visibility. Interestingly, they found
an almost perfect fit for the lobe structure by assuming a gaussian phase averaging. The
model used, presented hereafter, is detailed in the PhD of P. Roulleau [71].

Considering a stochastic distribution of the phase Φ during the measurement, the
interfering part of the current I∼ at a bias V is given by the following equation :

I∼ = e2

h
V
√
T1R2T2R1〈sin(φ)〉 (4.2)

where T1 (T2), R1 (R2) are the transmission and reflection coefficient at the top (bottom)
side gate, and 〈〉 denotes the average over the phase distribution. By supposing that
the number of electronic excitations participating to the dephasing is large, we have a
gaussian phase distribution, which leads to :

〈sin(φ)〉 = sin(〈φ〉)e−〈δφ
2〉/2 (4.3)

Moreover, by assuming a variance to be of the form 〈δφ2〉 = V 2/V0
2, with V0 a fitting

parameter and V the applied bias, one obtains :

I∼ = e2

h
V
√
T1R2T2R1sin(〈φ〉)e−

V 2
2V02 (4.4)

Finally, the differential conductance G∼ can be expressed as :

G∼ = dI∼
dV

= e2

h
V
√
T1R2T2R1sin(〈φ〉)e−

V 2
2V02 (1− V 2/V0

2) (4.5)

When V is swept around a value VDC,0 such that VDC,02/V0
2 = 1, equation 4.5 implies

that G∼ crosses zero and changes its sign, causing a π shift of the phase. The visibility υ,
directly proportional to the difference (G∼,max−G∼,min), can be expressed by equation 4.6,
where υ0 corresponds to the visibility at zero bias.

υ = υ0e
−V 2/(2V02)

∣∣∣∣1− V

V0
2

∣∣∣∣ (4.6)

As one can deduce from equation 4.6, the VDC,0 values correspond to the visibility nodes.
Consistently with the experimental measurements these visibility nodes are associated
with a π shift of the oscillations. Using V0 as a fit parameter, they could fit with a
good accuracy the experimental lobe structure obtained for one edge channel biased with
equation 4.6. In order to explain, in this framework, the results obtained by Bieri et
al. [11] in the case of two biased edge channels, according to [71], one has to take into
account the gating effect of the IES on the OES.
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Decoherence induced by the capacitive coupling to a noisy environment

In the previous experimental reminder, I detailed evidences of the existence of a capac-
itive coupling between the interfering OES and the non-interfering IES. This capacitive
coupling has also been considered as a source of decoherence in MZIs at filling factor
ν = 2. In this section, I will detail a first theoretical approach that have been developed
in order to model the dephasing effect induced by this coupling, and in particular to
predict the experimentally observed decay of the visibility with the temperature and the
injection of shot noise in the IES.

The idea of the model developed here is to take into account the dephasing effect
of the noise generated in the non-interfering edge channel. Indeed, due to the capacitive
coupling, noise on the inner edge state (IES) generates dephasing on the outer one (OES).
Hence, a noisy IES will induce decoherence, characterized by a decrease in the visibility
of Aharanov-Bohm oscillations occurring in the OES. The characteristic energy scale
of the electronic excitations in the IES can be represented by EC = max(2kBT, eV2),
with V2 the bias in the IES, and T the temperature. In addition, one can define the
frequency ν = 1/τ , with τ = vD/L, vD being the drift velocity and L the interferometer
arm length. τ represents the characteristic residency time of an electron in the MZI. If
hν � EC = max(2kBT, eV2), the number of electronic excitations is large, inducing a
gaussian phase distribution on the OES. In this configuration the IES can be described as
a gaussian noise source. When hν � EC = max(2kBT, eV2), a few electronic excitations
are coupled with the OES, inducing a non-gaussian noise.

The gaussian regime : The starting point is again the expression of the interfering
part of the current given in equation 4.2, while assuming a gaussian phase distribution,
due to the large number of electronic excitations, giving rise to equation 4.3. However,
here, the phase variance is directly linked to the noise power spectrum S22 in the IES
through a coupling constant V0 and the unknown bandwidth ∆ν :

〈δϕ2〉 = (2π)2S22∆ν/V0
2 (4.7)

When eV2 � kBT , the noise is dominated by the Johnson-Nyquist noise, thus S22 =
4kBTRQ with RQ = h/e2. Finally, one can express the visibility in the following way :

υ = υ0e
−T/Tϕ (4.8)

where Tϕ−1 = 16π2kBRQ∆ν/V0
2. From equation 4.19, we directly recover the exponential

decay of the visibility with the temperature observed experimentally.
In [70], they also apply this theory to the case were S22 is dominated by the shot noise

due to partitioning on the QPC G0. In this case the visibility can be expressed by :

υ = υ0e
−T0(1−T0)(V2−2kBT/e)/Vϕ (4.9)

where Vϕ−1 = 4π2eRQ∆ν/V0
2. Interestingly, they could fit with a really good accuracy

the experimental visibility dependence on the transmission T0 (of the partitioning QPC
G0) for different values of V2, as shown in figure 4.7. This validates the assumption of a
gaussian phase distribution in the case of shot noise in the IES created by partitioning
on G0.
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Figure 4.7: Figure extracted from [70]. (a) Visibility of the interferometer as a function
of V2 at T0 = 1/2 for two different magnetic field 4.7 and 3.9T . The solid lines are fit
to the data υ = υ0 × exp(−2π2∆S22∆ν/V0

2) with an electronic temperature of 25mK
and T0 ∼ 1/2. The Vϕ parameter is determined thanks to high bias fit of the exponential
decrease υ = υ0 × exp(−T0(1− T0)V2/Vϕ). (b) Visibility decrease of the interferometer
as a function of T0 for V2 = 0, 21, 31, 42, 53, and 63µV from top to bottom. The solid
lines are fit to the data using equation 4.9 with υ0 = 0.45, Vϕ = 7.2µV , and T = 25mK.
(c) V0 and Vϕ as a function of the magnetic field. The dashed line is the general behavior
of 4kBTϕ/e measured in reference [73], on the same sample.

In addition, thanks to the fits they extracted the parameter Vϕ for different magnetic
field. The result is plotted in 4.7.c. Similarly from fits of temperature measurements, they
extracted the parameter Tϕ on the same magnetic field range. From previous equations,
one can directly express Vϕ as a function of Tϕ : eVϕ = 4kBTϕ. In figure 4.7.c, the Vϕ
computed from the measured Tϕ is plotted, it agrees almost perfectly with the measured
Vϕ. This indicates that the assumption of gaussian phase averaging is also valid to describe
the dephasing effect of temperature.

The non-gaussian regime : The non-gaussian regime was studied by Neder et al. [61]
in 2007 in a sample with a similar geometry than the one used by Roulleau et al. (see
schematic in figure 4.6.a) with a close experimental set up : ν = 2, OES fully transmitted
under G0, bias Vdet (≡ V2) is applied on the IES. They measured the differential conduc-
tance of the interfering current propagating in the OES, while inducing shot noise on IES.
The shot noise is controlled by the transmission TQPC0 of the IES.

As shown in figure 4.8, they studied the visibility of the Aharanov-Bohm oscillations
as a function of TQPC0 for different values of Vdet. Interestingly, for low values of Vdet, they
could fit the experimental data by assuming a gaussian phase averaging. However, for
Vdet = 15µV (figure 4.8.b), their experimental data has a V-shape which notably deviates
from the gaussian model. They could fit this V-shaped dependency by assuming that the
dephasing in the interfering current in the OES was caused by a single electron in the
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Figure 4.8: The effect of partitioning the detector channel (thanks to QPC0) on
the visibility of the interfering signal, at three different detector bias values.
Figure extracted from [61]. Dotted lines show the best fitted gaussian model; solid
lines show the ‘microscopic’ non-gaussian predictions. As Vdet increases, the dependence of
the visibility on TQPC0 turns from a smooth one to a sharp V-shape (at Vdet = 15µV ). (a)
Data points and theoretical predictions for Vdet = 4µV and 9.5µV . The gaussian model
(dotted lines) is adequate at low bias (4µV ) and gives a reasonable fit at intermediate
bias (9.5µV ). The dashed line is the V-shaped prediction of a single-detector-electron
model (equation) for Vdet = 9.5µV . (b) Data points and theoretical predictions for
Vdet = 15µV (data from [60]). The V-shape is observed experimentally, as predicted by
the ‘microscopic’ non-gaussian model. The gaussian model fails for the arbitrary fitting
parameter; the best fit (upper curve) strongly overestimates the visibility at TQPC0 = 0.5
and underestimates the visibility for 0.7 < TQPC0 < 0.9.

IES. Therefore, they analysed this measurement as a direct evidence of a non-gaussian
regime, in which the dephasing is caused by a few electrons implying a peculiar phase
distribution.

A decoherence induced by spin-charge separation

In 2008, two theoreticians, Levkivskyi and Sukhorukov, developed in [50] a different
theoretical framework to explain decoherence in electronic MZ experiments in GaAs/AlGaAs
heterostructures at filling factor ν = 2. Starting from the observation that a theoreti-
cal description of the system thanks to a single-particle model of the edge states cannot
explain the peculiar properties observed, the idea of Levkivskyi and Sukhorukov is to
consider that the "two chiral channels at the edge of ν = 2 electron systems interact
via the long-range Coulomb potential". In their model, the strong "Coulomb interaction
at the ν = 2 edge leads to the separation of the spectrum of edge excitations in a fast
(charged) mode with the speed u and slow (dipole) mode with the speed v" [50]. They
considered interactions only between the two co-propagating edge channels, and neglected
the coupling to edge channels located on another border of the 2DEG. In addition, due
to the difficulty to find a general framework, they limited their investigations to the cases
of weak tunneling (WT) and weak back-scattering (WB) under the first QPC. This leads
to the configurations depicted in figure 4.9 for one biased edge channel and in figure 4.11
for two biased edge channels. Hereafter, the results of their simulations achieved in the
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two different configurations for the WB and WT regimes are presented.

One edge channel is biased : First, I will detail the case where only one of the
incoming edge channels is biased at the potential ∆µ. The chemical potential distribution
between the MZI arms is represented in figure 4.9 : the left panel corresponds to the WT
regime, while the right one depicts the WB regime. Interestingly, in this configuration,
the WT regime and the WB regime are symmetrical. Indeed, to go from one configuration
to another, one simply needs to vertically flip the interferometer. This symmetry implies
that the WT and WB regimes are equivalent when one edge channel is biased, given that
the length LU of the upper arm is equal to the length LD of the lower one.

Figure 4.9: Schematic representation of a MZI with a voltage ∆µ applied on one of the
incoming edge channels. The left panel represents the weak-tunneling (WT) regime where
the outer edge state is almost fully reflected at the first QPC. The right panel depicts the
weak back-scattering (WB) regime where the outer edge state is completely transmitted
through the first QPC. Figure extracted from [50].

Figure 4.10 presents the visibility and phase dependence computed by Levkivskyi and
Sukhorukov in this configuration while considering slight asymmetries of the MZI arms.
As shown in the upper panel of figure 4.10, the visibility oscillates with the potential ∆µ,
and the central lobe has the same width as the lateral ones. Furthermore, the computed
phase, depicted in the lower panel of figure 4.10, appears to be almost constant on the
lobes width, while it abruptly shifts by π at the points where the visibility vanishes.
Interestingly, the configuration presented here with one of the incoming edge channels
biased directly corresponds to the experiment carried out by Neder et al. [59], and their
experimental results, plotted in figure 4.2, are in good agreement with all the theoretical
predictions detailed previously.

Two edge channels are biased : Let’s see now if their model can explain the exper-
imental observations obtained when two of the incoming edge channels are biased. The
chemical potential distribution in this configuration is presented in figure 4.11 for the WT
regime (left panel) and for the WB regime (right panel). One should notice an important
difference compared to the previous case : the WT and WB regimes are asymmetrical,
implying that they present different visibility and phase dependence on the potential ∆µ.
The visibility dependence on the potential ∆µ, computed thanks to their model, is shown
in figure 4.12 : the black line corresponds to the WT regime, and the blue one to the
WB regime. In the WT regime, a lobe structure appears in the visibility, however this
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Figure 4.10: Simulations in the case of one biased edge channel extracted
from [50]. The top panel : Intrinsic visibility of Aharanov-Bohm (AB) oscillations
|IAB| plotted as a function of the bias ∆µ in units v/LU for LD = 1.15LU (solid line)
and for LD = 1.35LU (dashed line), with LU (LD) the length of the upper (lower) arm of
the MZI. The bottom panel : AB phase shift, corresponding to Arg(IAB), plotted for
LD = 1.15LU .

Figure 4.11: Schematic representation of a MZI with a voltage ∆µ applied on two of the
incoming (co-propagating) edge channels. The left panel represents the weak-tunneling
(WT) regime. The right panel depicts the weak back-scattering (WB) regime. Figure
extracted from [50].

time the central lobe is two times wider than the lateral ones. Furthermore, in the WB
an intriguing evolution of the visibility is observed. Indeed, on the blue curve, one can
note that unexpectedly the visibility is not maximum when ∆µ = 0, in other words the
application of a potential can increase the visibility. In order to obtain this dependency,
Levkivskyi and Sukhorukov considered an important asymmetry between the arms of the
MZI : LD = 1.8LU . However, they claim that a similar result can be obtained by consid-
ering the coupling with the opposite arm of the MZI. Once again the theoretical results
obtained via their model are in good agreement with the experimental observations in
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this configuration and in particular with Bieri et al. [11] work (see figure 4.4).

Figure 4.12: Simulations in the case of two biased co-propagating edge channel
extracted from [50]. The intrinsic visibility of Aharanov-Bohm (AB) oscillations |IAB|
is plotted as a function of the bias ∆µ in units v/LU for a strongly asymmetric interfer-
ometer LD = 1.8LU , with LU (LD) the length of the upper (lower) arm of the MZI. The
WT regime is represented by the solid black line, while the WB is depicted by the blue
line.

Remark on the temperature dependence : Finally, I would like to stress that the
spin-charge separation model developed by Sukhorukov can also explain the exponential
decay of the visibility with the temperature observed experimentally [73].

4.2 DC bias dependence of the coherence in graphene
I presented in the previous section, the essential characteristics of the visibility de-

pendence on the DC bias observed in MZIs in GaAs/AlGaAs heterostructures, and two
theoretical frameworks developed to explain them. These measurements indicates that
in GaAs/AlGaAs heterostructures the coherence is really fragile : the application of a
40µV bias is sufficient to completely suppress Aharanov-Bohm oscillations. In graphene,
the quantum properties are supposed to be much steadier, making it a good candidate
for electron quantum optics experiments and quantum computations. The results of the
first DC bias measurements carried out in graphene MZIs seems to comfort the previous
statement, as detailed in the first part of this section. In the second part, are detailed
the DC bias measurements that we achieved in our valley splitter sample.

4.2.1 Previous DC bias studies in graphene MZIs

In graphene, the first MZI experiment was carried out by Morikawa et al. [58] in 2015.
They studied the DC bias dependence of their magnetoconductance oscillations. As shown
in figure 4.13, the oscillations vanish at a certain DC bias, and appear again at higher
DC bias voltages with a π shift, forming a check board pattern characteristic of a lobe
structure in visibility. Strikingly, the oscillations are still clearly visible at 8mV , which is
200 times bigger than the observed 40µV in GaAs/AlGaAs heterostructures. However,
as will be underlined afterwards, two parameters in their experimental conditions are
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essential to understand their result : the magnetic field is quite low B ∼ 5T , the filling
factors on both sides of the pn junction are high.

Figure 4.13: Color plot of differential conductance G = dI/dVDC as a function of DC bias
voltage VDC and magnetic field B. Extracted from [58]

In the study carried out two years later in the Yacoby group [84], they observed a
much smaller energy scale for the decoherence. Indeed, as clearly visible in figure 4.14,
the Aharanov-Bohm oscillations completely vanish for an applied DC bias VDC ∼ 1.5mV ,
which is still 40 times higher than in GaAs/AlGaAs heterostructures. Interestingly, the
visibility as a function of the DC bias (figure 4.14.B) presents a single main lobe, but no
side lobes. Contrarily to Morikawa et al. study, in Yacoby’s measurement, the magnetic
field is quite high B ∼ 8T , and the filling factors are fixed at νp = −2 and νn = 1. The
DC bias is applied on the two edge channels incoming on the junction in the p side. Along
the junction in the p side, the outer edge channel is not interfering due to its opposite
spin, whereas the inner one interferes with the edge channel on the n side, forming the
two arms of the MZI. The monotonous decay of the visibility observed by Wei et al. in
this configuration reminds the dependency measured in GaAs/AlGaAs heterostructures
when two incoming edge channels are biased.

More recently, P. Makk et al. [56] reported the existence of different sets of oscillations
in graphene pn junction in the quantum Hall regime which they associated to different
physical origins. In their study, they designated each set by a color (red, orange, cyan,
green) and measured for each one the DC bias dependence, the experimental measure-
ments are presented in figure 4.15. I will now quickly summarize the features of each set
of oscillation with their analysis :

• The red set corresponds to big oscillations observed at low field B ∼ 3T and at filling
factors |ν| going from 3 to 6, whose periodicity decreases with the magnetic field,
as shown in figure 4.15.a. In DC bias this set present a check board pattern similar
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Figure 4.14: Mach-Zehnder oscillations as a function of magnetic field and dc
voltage bias. (A) Two-terminal differential conductance as a function of magnetic field B
and DC voltage bias VDC at filling factors (νn,νp)=(1,-2), for which only one interferometer
is formed at the pn interface. (B) Visibility of the conductance oscillations shown in (A)
as a function of DC bias. Extracted from [84]

to Morikawa et al. study, and persists to DC voltages as high as |VDC | ∼ 10mV .
Interestingly they associated this set, not with Aharanov-Bohm oscillations, but
with snake states along the junction.

• The orange set regroups oscillations occurring at filling factors |ν| going from 6 to 20,
and at low magntic field between 3.0− 4.0T . As visible in the DC bias dependence,
presented in figure 4.15.b, the orange oscillations also persists up to high energies
up to |VDC | ∼ 10mV . P. Makk et al. associated this set with Aharanov Bohm
oscillations.

• The cyan set appears at for magnetic fields B ≥ 4T , and persists up to low filling
factors |ν| ∼ 2. They also associated the cyan set with Aharanov-Bohm oscillations.
As shown in figure 4.15.c, this set is more fragile and disappear for DC biases
VDC ∼ 1.5mV , similarly to the oscillations observed by Wei et al. [84].

• Finally the green set also presented in figure 4.15.c was associated to dots.

I would like to underline that in this study, as in previous MZI experiments in
graphene, oscillations coming from a displacement of the pn junction at one of its ends,
in other word the mechanism behind the valley splitters described in chapter 3 , was not
considered. One of the oscillation set observed by P. Makk could also be created by this
kind of mechanism.
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Figure 4.15: Bias spectroscopy (extracted from [56]). (a)–(c) Measurement of different
sets of magnetoconductance oscillations as a function of bias and magnetic field where a
smooth background was subtracted. Gate voltages remain fixed at high filling factors on
both sides of the junction.

The comparison between this study and the previous experiments can give us some in-
sights on the origin of the different energy scales observed by Morikawa et al. (oscillations
still clearly present at VDC ∼ 8mV ) and Wei et al. (oscillations killed at VDC ∼ 1.5mV ).
Indeed, the red oscillation set was observed in the same magnetic field range and filling
factor range than in Morikawa’s experiment. In addition, the DC bias dependence is
similar in both cases and oscillations persist up to identically high values. Therefore, I
think that the red set and the oscillations used in the DC bias analysis by Morikawa et
al. are of the same physical origin and are not Aharanov-Bohm oscillations (P. Makk
associated them to snake states).

On the other hand, the cyan set appears in the same conditions than the oscillations
studied by the Yacoby group. Remarkably, those two experiments have identical DC
bias energy scales : the oscillations disappear at VDC ∼ 1.5mV . Therefore, I think that
those two have the same origin : Aharanov-Bohm oscillations. The persistence of these
oscillations up to VDC ∼ 1.5mV is remarkable, it is 40 times higher than in equivalent
samples in GaAs/AlGaAs heterostructures. We carried out similar experiment with our
sample, and obtained complementary results to those previous studies.

4.2.2 Visibility dependence on DC bias in the valley splitter sample

In our valley splitter sample, we investigated the coherence of the valley polarized
output state using MZI, and similarly to previous studies in graphene we checked, for this
aim, the DC bias dependence of the visibility. Remarkably, thanks to the control over
the transmissions, one can distinguish, in our sample, Aharanov-Bohm oscillation in the
MZI configuration from oscillations due to the displacement of the intersection between
the pn junction and the graphene physical edge. I will start by presenting the DC bias
measurements that we carried out on our valley splitter sample, in which we observed
a lobe structure in visibility similar to the case of MZIs in GaAs/AlGaAs. Afterwards,
the dependence of this lobe structure on other parameters such as the transmission T1 is
discussed.
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(a) (b)

Figure 4.16: (a) TVI as a function of the applied DC bias VDC and the magnetic field at
νn = +2,νp = −1. (b) Measured visibility (yellow dots) as a function of VDC . Computed
visibility (black solid line) based on gaussian phase fluctuations is in agreement with the
experimental data.

Observation of a lobe structure

In order to carry out this study, we set our sample in the MZI configuration depicted
in chapter 3, i.e. we have a pn junction in the quantum Hall regime with νn = 2 and
νp = −1. Moreover, the top and bottom side gates are tuned at filling factor νsgi ≤ −1
to have mixing at the two ends of the pn junction. A DC bias was superimposed to
the Lock-in AC oscillation applied on the top right contact (see layout in figure 3.8).
In figure 4.16a, the transmission through the valley Mach Zehnder TV I is plotted as a
function of the bias VDC applied. As expected, for VDC = 0, we have Aharanov-Bohm
oscillations of TV I as a function of the magnetic field with a maximum visibility around
65%. When |VDC | is increased the oscillations amplitude diminishes symmetrically for
positive and negative voltages. At VDC ≈ ±0.25mV the oscillations vanishes, however
when |VDC | exceeds this value the oscillations appear again with a π shift, forming the
so-called check board pattern. Finally, the oscillations amplitude seems to approach zero
for biases around 1mV . More quantitatively the visibility was computed for each value
of VDC thanks to sinusoidal fits, the result is displayed in figure 4.16b. As one can see,
the visibility is maximal at 0 bias, and decreases at higher biases following a peculiar lobe
structure : a main lobe, centered at VDC = 0 and limited by two minima in visibility
at VDC = ±0.25mV , is surrounded by two slightly asymmetrical side lobes which are
completely washed out around |VDC | ≈ 0.8mV . The width at half height of the main
lobe is similar to the one of the side lobes. And finally, the minima in visibility coincide
with the π-shift point.

Interestingly, we observed, as Morikawa et al. [58], a check board pattern for the
MZI oscillations dependence over the DC bias. However, the oscillations in our experi-
ment vanish at VDC ∼ 0.8mV , whereas in Morikawa’s work they are still well defined at
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VDC ∼ 8mV . As discussed previously, P. Makk’s study might give us an insight on the
origin of this difference. Indeed, they carried out a similar experiment, but they identify
different sets of oscillations, and in particular : one with the same energy scale as ours,
and one similar with Morikawa’s experiment. And they claimed that this second one does
not correspond to Aharanov-Bohm oscillations, contrarily to the first one. In addition,
the oscillation set that they associated with Aharanov-Bohm oscillations has a depen-
dence on DC bias really close to the one observed by Wei et al. [84]. In both cases, the
oscillations vanish around VDC ∼ 1.5mV , which is much closer to the 0.8mV obtained in
our measurement. However, they both reported a monotonous decay of the visibility with
the DC bias, similarly with what was observed in the case of two biased edge channels by
Ji et al. [37] in GaAs/AlGaAs heterostructures.

But in our experiment a clear lobe structure with lobes of same width appears, which
is closer to what was observed in the configuration where only one edge channel is biased
in GaAs/AlGaAs heterostructures, although here we apply the bias on two edge channels.
Therefore, we fitted the data using the formula derived by Roulleau et al. in [72] for the
case of one biased edge channel by assuming a gaussian phase averaging. In figure 4.16b,
the visibility fit, represented by the thick dark line, is in good agreement with the experi-
mental measurement (yellow dots). The fact that a model, used when only the interfering
edge state is biased in GaAs MZIs, works well to explain our experimental data when
both edge states are biased could indicate that the coupling between the co-propagating
edge states at ν = 2 in graphene is small. However, the physical origin of the different
behaviors observed in our experiment and in Wei et al. work remains unclear at the
moment.

Anyway, this measurement indicates that the coherence of the valley polarized states
propagating along the pn junction is impressively steady. Indeed, in GaAs MZI, the visi-
bility is completely washed out around 40µV (figure 4.2b), whereas in our valley splitter
graphene sample the visibility goes to zero around 0.8mV . In other words, the coherence
persists in graphene at energies 20 times larger than in GaAs/AlGaAs heterostructures.
This is a promising result for quantum computations based on information encoded in
the valley isospin thanks to our valley splitter set up.

Dependence of the lobe structure on other parameters

In this sections, I present two experiments that we conducted in order to investigate
the origin of the lobe structure observed.

In a first experiment, we studied the effect of the transmission T1 of the first beam
splitter on the lobe structure. Indeed, in GaAs/AlGaAs heterostructures, in the config-
uration with two edge channels biased, the visibility evolution with the DC bias experi-
mentally exhibited a strong dependence on the transmission T1, as shown by Bieri et al.
(see figure 4.4). In our sample, we measured the visibility dependence on DC bias for the
following values of transmission T1 = 0.09, 0.29 and 0.85. The results are presented in
figure 4.17a. Interestingly here we observe almost identical lobe structures in the weak
back-scattering regime (T1 = 0.85), and in the weak tunneling regime (T1 = 0.09), which
clearly differs from the case of two edge channels biased in GaAs/AlGaAs.

Moreover, all the previous measurements were achieved by applying a DC bias voltage
from the top right ohmic contact on the n side where the filling factore is νn = 2. There-
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(a) (b)

Figure 4.17: Transmission dependence. (a) Measured visibility as a function of VDC
for three different transmissions of the first valley splitter T1. (b) Measured visibility for
a DC bias injection on the n side (from the top right contact), or on the p side (from the
top left contact).

fore, we had two co-propagating biased edge channels on the n side of the junction. If
now, we inject the DC bias on the top left ohmic contact from the p doped region where
the filling factor is νp = −1, only one of the incoming edge channels is biased. As detailed
previously, in GaAs/AlGaAs heterostructures, really different behaviors were observed in
the configuration with one biased edge channel, and in the configuration with two. This
why, we decided to measure the visibility dependence on DC bias for an injection on the p
and n side, the resulting curves are plotted in figure 4.17b. Here, no noticeable difference
is visible. Once again, this seems to indicate that the non-interfering edge state is less
coupled to the interfering one than in GaAs/AlGaAs MZIs.

Origin of the asymmetries in the lobe structure

Asymmetries in the lobe structure are clearly visible in figure 4.17, which is surprising
as we would expect the dephasing to be symmetrical in DC bias. One possible origin for
this asymmetry could be a non constant value with the DC bias of the transmissions T1
under the top side gate, and T2 under the bottom side gate.

In the previous measurements of the DC bias dependence of the visibility, we applied a
fixed voltages V1 on the top side gate and V2 on the bottom side gate. The corresponding
transmissions T1 and T2 were supposed to be constant and equal to their value at zero
DC bias. In figure 4.18b, an experimental measurement of a visibility lobe structure is
shown. By fixing V2 so that νsg2 = 0 and V1 at the same value than in the lobe structure
measurement, we could measure the evolution of the transmission T1 with the DC bias.
Similarly, we measured the T2 dependence on DC bias. Experimental dependence of T1
and T2 are presented in figure 4.18a, important changes of the two transmissions are visible
with DC bias. In particular, T1 goes from 0.2 to approximately 0.7. Such big fluctuations
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(a) (b)

Figure 4.18: Transmission dependence. (a) Evolution of the transmission T1 (T2) of
the top (bottom) valley splitter as a function of the applied DC bias on the top right
contact on the n side. (b) Measured visibility with the same voltage applied on the top
(bottom) side gate as in the measurement of T1 (T2) in (a). The theoretical visibility is
computed theoretically from the measured value of T1 and T2 for each DC bias. Note that
no gaussian phase averaging is taken into account here, explaining the absence of decay
observed in the theoretical visibility.

will have a clear impact on the visibility dependence on DC bias. Using the formula 1.7
derived in chapter 1, we plotted, in figure 4.18b, the theoretical visibility expected from
the values of transmissions T1 and T2 for each DC bias. The resulting red curve exhibits
an almost 100% visibility for the negative DC biases up to −0.5mV , where it drops and
reaches almost 60% at VDC = 0. One should note that in this visibility computation, we
don’t take into account any dephasing with DC bias, which explains why the visibility does
not vanish when the DC bias is increased. Qualitatively, the lower theoretical visibility
at VDC = 0 tends to damp the height of the main lobe compared to the side lobes one.
Moreover, the theoretical visibility is not exactly symmetrical in DC bias. Indeed, from
the almost 100% visibility reached at VDC = 0.5mV , the visibility starts to decrease for
increasing DC bias reaching a minimum value of 85%. This asymmetry could explain the
asymmetry observed in the lobe structure.

To summarize, if one wants to fully understand the visibility dependence, it is essential
to measure the transmissions T1 and T2 dependence. However, we have noticed in our
measurements that the lobe structure could not be explained by the T1 and T2 fluctuations.
Indeed, most of the time, the transmissions changes by ±10% around an initial T1 ∼ 0.5,
inducing only slight changes in the visibility, which can not explain the lobe structure.
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4.3 Temperature dependence of the coherence in graphene
In the previous part, we have studied how steady the oscillations are with the DC

bias applied on the input channels of the MZI formed in our valley splitter sample. Inter-
estingly, the coherence is preserved up to energies 20 times larger than in MZI formed in
GaAs/AlGaAs heterostructures. Another important energy scale for the coherence is the
temperature, studied in this section. First, is presented the only preliminary temperature
measurement achieved in graphene MZI. Then, is exposed the detailed study carried out
in our valley splitter sample, which exhibited an exponential decay as in GaAs, but also
the co-existence in the same sample of two different regimes of decoherence.

4.3.1 Previous study in graphene samples

In graphene MZI, surprisingly, only P. Makk et al. studied (in [56] supplementary) the
temperature dependence of their magneto-conductance oscillations. Their measurement,
presented in figure 4.19, exhibits a decrease of the oscillations amplitude with the tem-
perature. But they have not computed the visibility to check if its decay was exponential
as in GaAs case, maybe because of the slope and high base temperature in their measure-
ment. However, what is striking in this measurement is the temperature energy scale :
the oscillations are still clearly visible at 2K, which is again 20 times larger than in GaAs
experiments. The existence of Aharanov-Bohm oscillations at this range of temperatures
would enable to achieve MZI experiments, and more generally electron quantum optics,
in graphene without using an He3/He4 dilution fridge. Indeed, a simple liquid Helium
fridge with a Helium pumping can reach this range of temperature.

(a) (b)

Figure 4.19: Temperature dependence of oscillations in graphene (extracted
from [56]). (a) Conductance as a function of the global back gate and temperature.
(b) Normalized area below a given oscillation as a function of temperature at a series of
densities, the colors corresponding to the x axes of the plots of (a).

4.3.2 Measurements in the valley splitter sample

I will now present the study of the temperature dependence of Aharanov-Bohm os-
cillations in the valley splitter sample. In order to carry out this experiment, we set our
sample in the MZI configuration as depicted in the DC bias study, i.e. we have a pn
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junction in the quantum Hall regime with νn = 2 and νp = −1. Moreover, the top and
bottom side gates are tuned at filling factor νsgi ≤ −1 to have mixing at the two ends
of the pn junction. In this configuration, we have Aharanov-Bohm oscillations of the
transmission TV I through the valley interferometer as a function of the magnetic field.
This is a direct consequence of the Aharanov-Bohm phase proportionality to the flux of
the magnetic field through the area enclosed. Identically, oscillations can be obtained
by changing the area enclosed thanks to the side gates, the top gate, or the back gate.
In figure 4.20, we measured the oscillations of TV I as a function of the top gate voltage
starting from the base temperature of the fridge (20mK) up to 1.65K. Interestingly, at
1.2K the oscillations are still well defined, whereas in GaAs they completely vanish at
100mK.

Figure 4.20: Temperature dependence of the Aharanov-Bohm oscillations in the
valley splitter sample. (a) Aharanov-Bohm oscillations of the transmission TV I of the
valley interferometer as a function of the top gate voltage, for four different temperatures
T = 0.02, 0.6, 1.2, and 1.65K.

More quantitatively, we computed the visibility of the oscillations for temperatures
up to 1.65K. In figure 4.21, the visibility is plotted in logarithmic scale as a function of
the temperature. Below a certain temperature (indicated by the dashed line), temper-
ature dependence is linear, i.e. there is an exponential decay of the visibility with the
temperature, and thermal dephasing is weak. Above the threshold temperature, thermal
dephasing is strong, but the temperature dependence is still linear.

A first explanation for the existence of two regimes could be a simple thermal satura-
tion of the electronic temperature in our sample. However, the threshold temperature is
around 400mK, which seems too high compared to the electronic temperature expected
with our set up. Interestingly, the co-existence of two regimes can be explained within
the two theoretical frameworks that are detailed in the last section of this chapter. For
instance, when considering a model where the dephasing arises from the capacitive cou-
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pling of an interferometer arm to a noisy edge channel, two decoherence regimes are
predicted : a gaussian regime where a lot of electrons are present in the environment cre-
ating a gaussian phase distribution, and a non-gaussian regime where there are only a few
electronic excitations. The non-gaussian regime could correspond to the regime observed
at low temperature, while the gaussian regime would be associated to the regime at high
temperature. In the framework of dephasing induced by spin-charge separation, it is also
possible to recover the observed dependency under certain conditions. The adequation of
those models to the experimental data are discussed in more details in section 4.4.

Figure 4.21: Temperature dependence in log scale of the visibility of the Aharanov-Bohm
oscillations, divided by its maximum, in the valley splitter sample for two configuration
of the pn junction: (νn=+2,νp=-1) in red and (νn=+2,νp=-2) in black. Below a certain
temperature, the temperature dependence is linear and thermal dephasing is weak. Above
a threshold temperature, a different dephasing regime is present : a linear dependence is
still visible, but with a much faster decay.

Finally, we measured temperature dependence of oscillations obtained when the filling
factors are set to νn = 2 and νp = −2, black curve in figure 4.21. At νn=2 and νp=-1
there is only one edge channel coupled to the MZI, whereas at νn=2 and νp=-2 there
are two. Below the threshold temperature, temperature dependence of the visibility is
the same for both setting. If the slope is larger for νn=2 and νp=-2 above the threshold
temperature, we do not find a factor 2, as could be expected, naively, from the addition
of a second noisy edge channel coupled to the MZI.

4.4 Theoretical description of decoherence in graphene
Graphene MZIs are quite different from their GaAs/AlGaAs counterpart. Indeed,

in graphene the MZI is formed along a pn junction in the quantum Hall regime : the
same spin edge channels propagating on both sides of the junction represent the arms
of the interferometer, and the two points of intersection between the junction and the
graphene physical edge act as beam splitters. The physics of the pn junction and the
proximity of the interferometer arms (∼ 100nm) may generate important differences
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in the description of the decoherence processes compared to the case of GaAs/AlGaAs
heterostructures. Furthermore, in our study, we used different filling factors on both
sides of the pn junction : νp = −1 and νn = 2. This implies that, contrarily to MZIs in
GaAs/AlGaAs heterostuctures, the MZI we studied is asymmetric with one arm composed
of two edge channel on the n-side, while the arm on the p-side is composed of only one
edge channel. Finally, in our graphene MZI, we cannot, as in GaAs MZIs, impose the
bias only on the interfering edge channel due to the lack of QPC.

In the first part of this section, I will discuss the relevance for the graphene MZI of
the phenomenological model developed by Roulleau et al. in order to explain the lobe
structure in GaAs/AlGaAs heterostructures at ν = 2 when one edge channel is biased.
Then, is detailed and discussed the application to our system of the model of a capacitive
coupling to a noisy environment in order to explain the temperature dependence observed
experimentally. Afterwards, the main lines of a spin-charge separation model applied to
the graphene case are sketched, followed by a discussion of its relevance.

4.4.1 A phenomelogical explanation of the lobe strucuture

In our graphene valley interferometer, the transmission probability is given by the
following formula :

TV I = |〈↓, BL|Ψfinal〉|2 = |r1t
∗
2 + t1r

∗
2e
iφAB |2

= |r1t2|2 + |r2t1|2 + 2|r1t1r2t2|cos(φAB + φ),
(4.10)

where φ = arg(t1t2r∗1r∗2), and φAB is the Aharanov-Bohm phase. This has the standard
form of the Mach-Zehnder interference, but now includes the effect of the valley isospin.
Therefore, in order to understand the dephasing effect of a bias V applied on the interfer-
ing edge channel, one can follow the phenomenological approach developed by Roulleau
et al. and detailed in section 4.1.4. The idea is to consider that the phase has a gaussian
distribution, with a variance of the form 〈δφ2〉 = V 2/V0

2 (V0 being a fitting parameter).
This leads to :

〈cos(φ)〉 = cos(〈φ〉)e−〈δφ
2〉/2 (4.11)

From this, one can extract the following expression for the visibility υ :

υ = υ0e
−V 2/(2V02)

∣∣∣∣1− V

V0
2

∣∣∣∣ (4.12)

In the case of GaAs/AlGaAs MZIs, the latter formula for the visibility can only
describe the case when only the interfering OES is biased and not the non-interfering
IES. Indeed, to model the case of a bias applied on the IES and on the OES, one has to
take into account the gating effect of the IES, due to the capacitive coupling between IES
and OES (see P. Roulleau thesis [71]).

In our graphene MZI, the bias is applied on the n-side at νn = 2, which implies that
both the interfering IES and non-interfering OES are biased. One should note that in the
graphene MZI, the interfering and non-interfering edge states on the n-side are interverted
compared to MZIs in GaAs/AlGaAs heterostructures. Experimentally, the lobe structures
observed in our graphene MZI can be directly fitted by the formula 4.12, without adding
any gating effect. An explanation for this, could be that the actual coupling between the
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IES and the OES is much smaller in graphene than in GaAs. Comforting this assumption,
when we injected the bias from the other side (p-side) at νp = −1, we observed an almost
identical lobe structure with the DC bias. This seems to indicate that whether or not we
apply a bias on the non-interfering edge channel it does not affect the decoherence. Finally,
in GaAs, when the OES and IES are biased, a strong dependence on the transmission T1
of the first QPC was observed, which is not the case here.

All this comforts the hypothesis than in graphene MZIs the coupling between the OES
and IES is much smaller than in GaAs/AlGaAs MZIs.

4.4.2 Capacitive coupling to a noisy environment

I would like to introduce now a detailed theoretical framework describing the dephasing
effect induced in the graphene MZI by a capacitive coupling to a noisy environment (for
instance a noisy edge channel). In particular, I will describe two limit cases :

• the gaussian regime, where numerous electronic excitations are coupled to the in-
terfering edge state, generating a gaussian phase distribution

• the non-gaussian regime, where a few electronic excitations are present

The Gaussian limit

In the Gaussian limit [70], where many detection electrons are involved, using the
same approach than the one developed in section 4.1.4, one can explain in an analogue
way the temperature dependence of the oscillations. The dephasing effect of temperature
was modeled, by taking into account a capacitive coupling to the noisy non-interfering and
co-propagating spin up edge channel, called detector edge channel in what follows, which
scrambles the phase of the interfering electrons in | ↓,−→ω 〉 and results in an additional
dephasing term z2 = e−iδϕ2 in the interferometer transmission:

TVI = |r1t2|2 + |r2t1|2 + 2z2|r1t1r2t2|cos(φAB + φ) (4.13)

In the gaussian regime, the averaged dephasing term becomes :

〈z2〉 = 〈e−iδϕ2〉 = e−〈δϕ
2
2〉/2 (4.14)

with 〈δϕ2
2〉=Sϕ2ϕ2(ω)∆ν and ∆ν=v/L. Internal potential of the interfering | ↓,−→ω 〉 edge

state is noted U2, and U2 fluctuations give rise to phase fluctuations through :

ϕ2(τ) =
∫ τ

0

eU2(t)
~

dt (4.15)

with τ=L/v. We can relate phase noise to internal potential noise :

Sϕ2ϕ2(ω) = 4e
2

~
SU2U2(ω)

sin(ωτ2 )2

ω2 (4.16)

To express U2 as a function of the electrochemical potential of non-interfering detector
edge state, noted VD, we need to introduce the admittance between the detector spin
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up edge state and | ↓,−→ω 〉 : G2,D = dI2(ω)
dVD(ω) [76]. Calculations of the admittance (see in

appendix A.3) leads to :

SU2,U2 = | C

2C + i
ω
e2

h (1− eiωτ )
|2SVD,VD (4.17)

When eVD � kBT , the noise is dominated by the Johnson-Nyquist noise, thus
SVD,VD=4kBTRQ∆ν with RQ = h/e2. This leads to the following equation for z2 :

〈z2〉 = e−T/Tϕ,G with

1/Tϕ,G = 4kB
~ τI(γ) = 4kBT

~
RQC
γ I(γ)

I(γ) =
∫∞

0
sin2(x)γ2dx

sin2(x)+2γsin(2x)+4γ2x2

(4.18)

Finally, following the procedure detailed in section 4.1.4, one recovers a similar expression
than in GaAs/AlGaAs heterostructures for the visibility dependence on temperature in
the gaussian regime :

υ = υ0e
−T/Tϕ,G (4.19)

This framework gives us an exponential decay of the visibility with the temperature
when a large number of electrons are involved in the dephasing.

The non-Gaussian limit

In the non-Gaussian limit [61], less than one electron will scramble the phase of the
interferometer. Probability that a thermal electron is present in the edge coupled to the
interferometer is noted η. Visibility is reduced by the following factor :

z2 = |(1− η) + ηei2πVD/V0 | (4.20)

In the limit VD/V0 � 1 and η � 1, we can extend z2 to the second order:

z2 = e
−η( 2πVD

V0
)2

(4.21)

A rough assumption would be : V2
D ∼ SVD,VD∆ν , with ∆ν the bandwidth given by

∆ν=1/τ . Following this, one obtains as previously an exponential decay of the visibility
with the temperature with a different constant :

1
Tϕ,NG

= 4kBT
~

RQC

γ

πη(1− η)
(2 + 1/γ)2 (4.22)

In addition, within this rough description, at very low temperature η �1, phase scram-
bling induced by the detector edge state is suppressed. Finally, one should note that :

Tϕ,G/Tϕ,NG = πη(1− η)
I(γ)(2 + 1/γ)2 (4.23)

The assumptions achieved here to describe the non-gaussian limit are rough, and further
theoretical developments have to be carried out to have a proper description of this regime.
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Discussion of this approach

The exponential decay of the visibility with the temperature, and the existence of two
regimes are also consistent with this framework : the regime observed at low temperature
could be associated to a non-gaussian configuration, while the regime at high temperature
would correspond to a gaussian configuration. Indeed, an exponential decay is predicted
for the gaussian regime in this framework, however further theoretical developments are
needed to see if the exponential decay in the non-gaussian regime can be explained within
a more complete theoretical model.

4.4.3 The spin-charge separation in graphene

Our Korean collaborator, HS Sim, worked on the adaptation of a spin-charge separa-
tion model in order to explain the results observed in our graphene MZI, and in particular
the existence of a lobe structure in DC bias, and the presence of two different regimes of
decoherence in temperature.

In a first model, represented in figure 4.22, only the coupling between edge states
on the same side of the junction was considered. Describing this model in a spin-charge
separation framework, they could fit the two different slopes obtained in temperature at
(νp = −2,νn = 2) and at (νp = −1,νn = 2). For this aim, they used the ratio u/v0 as
a fitting parameter, with u representing the interaction between the edges and v0 the
velocity in absence of interaction. Unfortunately, the ratio u/v0 extracted is too small to
reproduce within this framework the lobe structures observed in DC bias.

Figure 4.22: Schematic representation of the first coupling model considered by H. Sim
to simulate the experimental results in temperature and DC bias thanks to a spin-charge
separation model. Here are represented in red the spin down edge states and in blue
the spin up ones existing along the pn junction for two MZI configurations used in our
measurements : (νp = −1,νn = 2) and (νp = −2,νn = 2). In this first model, only
the coupling between edge states on the same side of the junction, i.e. p or n side, is
considered.
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This is why, they considered a second model for the coupling, represented in figure 4.23,
where the outer edge state is this time coupled to the inner edge state on the same
side of the junction, but also to the closest edge state on the other side. Thanks to
this model, they could fit again the two different slopes obtained at (νp = −1,νn = 2)
and at (νp = −2,νn = 2), but the corresponding u/v0 ratio is larger than previously.
In this framework, they obtained a velocity ∼ 0.66 × 104m/s for the slow mode, and
∼ 4.9× 104m/s for the bare velocity v0. The value of v0 is low compared to the velocity
measured on the graphene edges ∼ 106m/s [48], however one should note that here v0
corresponds to the velocity along a pn junction created thanks to electrostatic gates,
and thus where the potential is much smoother than along the graphene physical edge.
Furthermore, using these values for u and v0, they could predict lobe structures but
with multiple side lobes, and not one as experimentally observed. However, this could
be explained by the existence at higher bias of another decoherence source that would
erase all interferences. For me, the main weakness of this approach is that it considers
an identical coupling of the outer edge state to the inner edge state on the same side of
the junction than to the closest edge state on the other side of the junction. Indeed, due
to the existence of a ν = 0 region in the center of the pn junction, I would expect the
coupling to be much stronger between edge states on the same side of the junction.

Figure 4.23: Schematic representation of the second coupling model considered by H. Sim
to simulate the experimental results in temperature and DC bias thanks to a spin-charge
separation model. Here are represented in red the spin down edge states and in blue
the spin up ones existing along the pn junction for two MZI configurations used in our
measurements : (νp = −1,νn = 2) and (νp = −2,νn = 2). In this second model, only
the outer edge state is coupled, as previously, to the inner edge state on the side of the
junction, but also to the closest edge states on the other side.

The models of decoherence presented previously can predict some of the features
observed experimentally, however further investigations are needed to have a more com-
prehensive understanding of the underlying physics.
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4.5 Partial conclusion
In chapter 3, we have shown that thanks to our side gates, we obtained a full electrical

control over the valley isospin. Indeed, the valley isospin direction of the output state
of the system, noted |ψfinal〉, can cover almost all the accessible states in a valley Bloch
sphere representation. In order to achieve, quantum operations via these valley polarized
states (valleytronics), their coherence needs to be steady. In this chapter, we studied the
typical energy scales, in DC bias and temperature, of the coherence of the system using
MZI. In particular, our valley splitter sample exhibited the persistance of Aharanov-Bohm
oscillations up to a DC bias voltage as high as 0.8mV , and a temperature of 1.5K. These
values are almost 20 times larger than the one observed in GaAs MZI. The DC bias study
also exhibited a lobe structure, similar to the one observed in GaAs MZI, but which has
never been reported in previous studies in graphene at this energy scale. Finally, for
the temperature dependence, a comprehensive study for graphene MZI was lacking; our
measurement showed an exponential decay of the visibility with the temperature as in
GaAs, but with the coexistence of two different regimes of decoherence. On the theoretical
point, the two frameworks that I detailed give some clues to understand the decoherence
in the system. To conclude, the coherence properties of valley isospin largely surpass the
state of the art values of charge state reported in high-mobility semiconductors, making
it an interesting platform to achieve quantum computations thanks to valley-polarized
states, and valleytronics devices.



Chapter 5

Coherence length in graphene

As exhibited in chapter 4, the coherence properties in graphene quantum Hall edge
states, formed along a pn junction, are much steadier than in their GaAs counterpart.
Indeed, Aharanov Bohm oscillations persist at energies 20 times higher in DC bias and
in temperature. In the physics of quantum conductors, an essential physical scale to
characterize the coherence of the system is the quantum coherence length, noted lϕ. It
represents the typical propagation length on which an excitation loses its phase coherence
due to information exchange with the environment. In 2001, the coherence length was
measured for the first time in a 2DEG formed in a GaAs/AlGaAs heterostructure without
magnetic field, thanks to a ring shaped sample [34]. The achievement of an electronic
MZI by Ji et al. [37] paved the way towards the measurement of lϕ in the quantum Hall
edge channels. Indeed, in 2007, Roulleau et al. [73] directly measured it at filling factor
ν = 2, by checking the temperature dependence of the Aharanov-Bohm oscillations in
MZIs of different sizes. We used a similar procedure to evaluate the coherence length in
the quantum Hall edge channels formed along a pn junction in graphene. Therefore, I
will first present the experimental procedure followed by Roulleau et al., to measure the
coherence length in GaAs. Then, is detailed how we achieved MZIs of different lengths in
graphene thanks to our valley splitter sample. Afterwards, I will describe our experimental
study of the coherence length lϕ in the quantum Hall edge channels formed along a pn
junction in graphene. Finally, is detailed the quantum dots behavior that we observed
experimentally and their possible link with the record coherence length measured in our
sample.

5.1 Measurement of the coherence length in GaAs

In order to directly measure the coherence length lϕ in the quantum Hall edge states
formed in a GaAs/AlGaAs heterostructures at filling factor ν = 2, Roulleau et al. [73]
used three different samples, having a MZI geometry as depicted in figure 4.6.a, with
different arm lengths : L = 5.6, 8, and 11.3µm (noted respectively small, medium and
large in what follows). As shown in figure 5.1a, they measured the evolution of the
Aharanov-Bohm oscillations visibility V with the temperature for each sample. The
plotted quantity ln(V/VB), where VB is the visibility at the base temperature TB = 20mK,
exhibits a clear linear dependence on the temperature for the three samples, indicating an

95
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exponential decay of the visibility. Interestingly, the longer the arm, the faster the decay.
More quantitatively, they plotted in figure 5.1b the slope Tϕ−1 = ln(V/VB)/(T − TB) of
each curve in figure 5.1a as a function of the arm length. Tϕ−1 appears to be directly
proportional to the arm length. This result was interpreted thanks to the introduction of
a coherence length lϕ(T ) verifying the following expression :

V = V0e
−2L/lϕ(T ) (5.1)

where V0 contains the temperature independent part of the visibility. The scaling of the
slope Tϕ−1 with the arm length L implies that :

{
Tϕ
−1 = ln(V/VB)

(T − TB) = aL

}
⇒
{

ln (V ) = A+ aLT

}
(5.2)

with a a constant corresponding to the slope in figure 5.1b, and A a temperature inde-
pendent constant corresponding to ln (V0). From equations 5.1 and 5.2, one obtains the
following formula for lϕ(T ) :

lϕ(T ) = −2
aT

(5.3)

Following this procedure, Roulleau et al. extracted a coherence length of 20µm at 20mK.
Finally, the spurious effect of thermal smearing could be ruled out as the length

difference between the two arms required to explain the dephasing in this framework is
too big. Consistently, the locked phase with the DC bias implies energy independent
excitations, which also excludes the appearance of thermal smearing [73].

(a) (b)

Figure 5.1: Coherence length measurement in GaAs (extracted from [73]). (a)
ln(V/VB) versus temperature for the three samples, VB is the visibility measured at
TB = 20mK. The measurement has been done at the magnetic field for which the
visibility decay is the smallest. (b) Slope measured for the three curves in (a) as a
function of the interferometer length.
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5.2 On chip interferometers with different sizes

The essential point, to measure the coherence length in the edge states of the quan-
tum Hall effect, is to have interferometers of different lengths. The fabrication of MZI in
graphene is tedious, making this study experimentally challenging. Moreover, we noticed
in our preliminary samples presenting longer pn junctions that the visibility of Aharanov-
Bohm oscillations was always much lower. However, an unexpected experimental obser-
vation enabled us to carry out the coherence length measurement with a single sample !
Indeed, as is detailed in this section, with our valley splitter sample, by tuning the side,
top, and back gates in a peculiar regime, we can obtain three MZIs of different lengths
going from 1.5 to 0.5µm.

5.2.1 Introduction : going from the MZI to the full reflection

(a) Zoom transmitting configuration :
νsg1 = νsg2 = −1.

(b) Zoom reflecting configuration : νsg1 =
νsg2 = 0.

Figure 5.2: Schematic representation of the valley splitter sample in the fully reflecting
and the transmitting configurations. n region is depicted in blue, p region in red.

As explained in chapter 3, when the pn junction is in a quantum Hall bipolar regime
with νp = −1 and νn = 2 (see figure 5.2), by tuning the voltage applied on the side gates,
one can go from a configuration where the pn junction ends on the graphene physical edge
to a configuration where it ends on a gate defined edge. Indeed, in the case νsgi ≤ −1
(identically νsgi ≥ 2) with i = 1, 2 denoting the top (respectively bottom) side gate, as
shown in the schematic 5.2a, the pn junction ends on the graphene physical edge which
can supply the large momentum transfer necessary to go from one valley to another,
enabling the mixing between the red and yellow edge channels. In this configuration,
the system acts as a valley MZI with the two mixing points playing the role of the beam
splitters, and the co-propagating edge states along the junction representing the two arms.
Contrarily, when νsgi = 0, situation depicted in figure 5.2b, the pn junction ends on the
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side gate edge inside the graphene bulk. The potential there is much smoother, and no
mixing should occur between the edge states with different valleys (the red and yellow).

In figure 5.3, the transmission TV I = IT/(I0/2) through the pn junction (with I0 the
injected current and IT the transmitted one) is plotted as a function of the voltage V1
on the top side gate and V2 on the bottom one for a fixed magnetic field, and, fixed
top and back gates voltages. For negative gate voltages V1 (νsg1 < 0) and V2 (νsg2 <0),
TVI oscillates. For positive V1 (νsg1 ≥ 0) and V2 (νsg2 ≥ 0), the interference pattern is
completely washed out and TVI=0. This illustrates the two regimes described previously.

Figure 5.3: Valley-interferometer transmission TVI as a function of V2 and V1 (voltage on
the top and bottom side gates). Transition between ν1 = ν2 = −1 and ν1 = ν2 = 0 occurs
for V1 ∼ V2 ∼ 0.

In the MZI configuration with νsgi ≤ −1, the flux of the magnetic field B through the
area A enclosed by the two arms of the interferometer imposes a dephasing between them
given by the Aharanov-Bohm phase φAB = 2πBA/Φ0, Φ0 = h/e being the flux quantum.
To change this phase, we can either sweep the magnetic field or the area enclosed A
thanks to V1, which explains the inclined oscillations observed in figure 5.4 corresponding
to a magnetic field periodicity of ∆B = 25mT . From the Aharonov-Bohm phase, we get
the interferometer area A = Φ0/∆B = 0.165µm2 and the spatial separation of 110 nm
between the two interface channels, given the length 1.5 µm of the PN interface.

5.2.2 Mixing along a gate defined edge

As explained previously, when the side gates are set at filling factor νsgi = 0, no
mixing should occur between the edge states propagating along the pn junction, as only
the graphene physical edge can provide the large momentum transfer necessary to go from
one valley to another. However, in this paragraph, I will show that surprisingly in our
experiments we observed valley splitting in this configuration for some peculiar tuning of
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Figure 5.4: Valley-interferometer transmission TVI for νsg1 ≤ −1 and νsg2 ≤ −1 as a
function of B and V1 with T1 = T2 ∼ 1/2.

the system, enabling us to achieve MZIs with three different lengths.

An intermediate MZI

We slightly changed the top gate and back gate voltages compared to the one used
in figures 5.3 and 5.4. In this new configuration, we measured TV I as a function of the
magnetic field and the voltage V2 with νsg1 = −1. The resulting color plot, presented in
figure 5.5.a, is intriguing. As expected, at νsg2 ≤ −1 (i.e. V2 ≤ 0.15V ), there are TVI
oscillations with B and with a small periodicity in V2 indicating that the area A enclosed
by the interferometer is tuned by the bias applied on the bottom side gate. However, on
top of these fast oscillations in V2, we observe oscillations in magnetic field which hardly
depend on the bias V2 and persists in the νsg2 = 0 region (V2 ≥ 0.3V ). And, as visible in
the black single trace in figure 5.5.a taken at at V2 = 0.55V , the periodicity in magnetic
field ∆B ∼ 34.5mT is much larger than the 25mT periodicity observed in the normal
MZI configuration (see figure 5.4).

Furthermore, we checked the V1 periodicity of these steady V2-independent oscilla-
tions. For this aim, we fixed V2 = 0.55V (spot of the black dashed line in figure 5.5.a),
corresponding to a region where νsg2 = 0 and where we have only V2-independent oscil-
lations. Then, we measured TV I as a function of the magnetic field and the voltage V1
this time. As shown in figure 5.5.b, for νsg1 ≤ −1 (i.e. V1 ≤ 0.15V ), we observe oscilla-
tions, corresponding to the V2-independent oscillations in figure 5.5.a, with a periodicity
∆B ∼ 34.5mT in magnetic field and a small periodicity in V1. This indicates that V1
directly tunes the area A enclosed in this configuration. When νsg1 reaches zero (i.e.
V1 ≥ 0.3V ), the oscillations are completely washed out.

We attribute these robust V2-independent oscillations to the formation of a smaller
interferometer where the top mixing point is defined at the intersection between the top
side gate and the graphene physical edge, and the bottom one is at the intersection
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Figure 5.5: Intermediate length interferometer. (a) Valley-interferometer transmis-
sion TVI as a function of magnetic field B and V2 for νsg1=-1. For νsg2 ≤ -1 (V2 ≤ 0.15V ),
TVI oscillates in B with ∆B ∼ 34.5mT , and in V2 with a small period ∆V2 indicating
that the interferometer area A is directly tuned by V2. On top of these oscillations, we
note oscillations that hardly depend on V2. For νsg2=0 highlighted by a black dashed
line (V2 = 0.55V ), fast oscillations in V2 are washed out but V2-independent oscillations
persist. We interpret them as originating from an intermediate size interferometer. (b)
Valley-interferometer transmission TVI as a function of B and V1 for fixed V2 = 0.55V
(black dashed line in figure 5.5.a), corresponding to the region where νsg2 = 0 and only
V2-independent oscillations persist. For νsg1 = −1 highlighted by a blue dashed line, TVI
oscillates in B with ∆B ∼ 34.5mT , and in V1 with a small period ∆V1. This means that
the V2-independent oscillations are modulated by V1, indicating that the interferometer
area A is tuned by V1. For νsg1=0 highlighted by a black dashed line, oscillations are
washed out. (c) Schematic representation of the intermediate size interferometer.

between the pn interface and the upper edge of the bottom side gate (i.e. along ν = 0), as
depicted in figure 5.5.c. This implies a smaller enclosed area consistently with the larger
pariodicity observed : ∆B ∼ 34.5mT while ∆B ∼ 25mT for a normal MZI configuration
(i.e. νsgi ≤ −1). Moreover, as the mixing point is at the top edge of side gate 2 (i.e.
the bottom one), changing the bias V2 on it should have no impact on the oscillations.
Contrarily, for the top side gate, V1 should directly tune the are enclosed A. Therefore, our
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picture qualitatively explains our experimental observations. Finally, from the Aharonov-
Bohm phase, we get the interferometer area A = 0.12µm2 and the spatial separation of
114nm between the two interface channels, given the length 1.05µm of the pn interface.

We can also form a 1.05µm-long interferometer where the top mixing point is defined
along ν = 0 in the bulk and the bottom one at the intersection between the graphene
physical edge and the pn junction; in other words using a reverse configuration compared
to the one depicted in figure 5.5.c.

A small MZI

Following the same reasoning, we can find another set of gate voltages where both
mixing points are along ν= 0 in the bulk, giving rise to a small MZI as depicted in
figure 5.6.c.

Figure 5.6: Small length interferometer. (a) Valley-interferometer transmission TVI
as a function of B and V1 for νsg2=0. TVI oscillates in B with ∆B ∼ 83 mT for νsg1=0
(black dashed line). (b) Valley-interferometer transmission TVI as a function of B and
V2 for νsg1=0. TVI oscillates in B with ∆B ∼ 83 mT for νsg2=0 (black dashed line). We
interpret these ocillations to originate from a small size interferometer. (c) Schematic
representation of the small size interferometer.

In figure 5.6.a, νsg2 is fixed at 0, and TVI is measured as a function of the magnetic field
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and V1. Interestingly, when νsg1 = 0 (region around the black dotted line), TV I oscillates
with B with period ∆B ∼ 83mT and hardly depend on V1. Similarly, in figure 5.6.b,
we fix νsg1 = 0 and we sweep the magnetic field and the voltage V2. When νsg2 = 0
(region around the black dotted line), we observe oscillations with the same magnetic
field periodicity of ∼ 83mT hardly depending on V2. To summarize, for νsg1 = νsg2 = 0,
we have big oscillations in magnetic field not depending on either V1 or V2, indicating
a small MZI as depicted in figure 5.6.c. From the Aharonov-Bohm phase, we get the
interferometer area A = 0.05µm2 and the spatial separation of 82.7 nm between the two
interface channels, given the length 0.6 µm of the PN interface. This is the smallest
electronic Mach Zehnder ever reported.

Conclusion

We have shown that by playing on the back and top gate voltages, we can obtain
mixing of the valley inside the graphene bulk along the edge of the side gates under which
the filling factor is fixed at ν = 0. Therefore, with our valley splitter sample, three MZI
of different lengths L = 0.6, 1.05, and 1.5µm can be measured, enabling us to carry out
an experimental study of the coherence length in graphene. This unexpected mixing of
edge states meeting on a gate defined border for some peculiar tuning might be due to the
coupling between edge states and the ν = 0 phase below the side gates. Indeed, at Landau
level filling factor ν= 0, different phases are in competitions with distinct symmetry-
breaking properties, and very little is known about interactions between propagating
edge state and ν= 0 in the bulk. Among these phases, one can cite the ferromagnet
(F) state, the antiferromagnet (AF) state, or canted antiferromagnetic (CAF) state that
can be addressed by changing the ratio between the Zeeman energy and the Coulomb
energy [42].

5.3 Measurement of the coherence length in graphene

Following Roulleau et al. method [73], to evaluate the coherence length lϕ, one needs
to measure the dependence of Aharanov-Bohm oscillations visibility on temperature for
at least three interferometers of different size. Unexpectedly, we experimentally observed
that, thanks to our valley splitter samples, we can achieve by playing on the back and
top gates three configurations corresponding to MZIs of different length, respectively L =
0.6, 1.05, and 1.5µm. This enabled us to carry out the first experimental measurement
of the coherence length in the quantum Hall edge channels formed along a graphene
pn junction. Moreover, in our valley splitter sample, we observed two different regimes
of decoherence (described in chapter 4) presenting exponential decays of the visibility
with the temperature : one at low temperature (below ∼ 400mK), and one at high
temperature. Therefore, we should obtain two different coherence lengths corresponding
to the two regimes. In this section, I will first present the temperature measurement
corresponding to those three configurations, then the extraction of the coherence length
from these measurements for the low temperature and high temperature regimes. Finally
is discussed the visibility dependence on the DC bias for the different sizes of MZI.
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5.3.1 Temperature dependence and coherence length

In figure 5.7.a, visibility is plotted as a function of the temperature in log scale for
the long (1.5µm), intermediate (1.05µm) and small size (0.6µm) interferometers. Below
a threshold value (indicated by a dashed line in figure 5.7.a), the temperature dependence
of the visibility is weak and linear with the temperature confirming an exponential decay
of the visibility with the temperature. Above this threshold value, temperature depen-
dence of the visibility is more pronounced and still linear. If we interpret this threshold
temperature as the crossover between a gaussian regime (at high temperature) and a non-
gaussian regime (at low temperature), the threshold temperature will verify kBT = hν.
The frequency ν can be expressed thanks to the drift velocity v along the pn junction
and the length L of the interferometer arm : ν = v/L. In figure 5.7.b, the threshold
temperature is plotted as a function of the arm length what gives, in this framework, a
drift velocity v ∼ 0.98×104m.s−1. Note that this velocity is smaller than reported values
along sample edges in GaAs/AlGaAs heterostructures (typically 2-5 104m.s−1) probably
due to the gentle potential profile of the PN junction. Below or above this threshold, the
trend is clear : the longer the interferometer, the faster the decay of the visibility.

Figure 5.7: (a) Temperature dependence in log scale of the visibility divided by its max-
imum value for the three interferometer sizes. Below a size-dependent temperature (in-
dicated by the dashed line), temperature dependence is linear and thermal dephasing is
weak. Above the threshold temperature, thermal dephasing is strong. (b) Threshold tem-
perature for the three interferometer sizes (red dots). Expected length dependence (red
solid line). (c) Slope ln(V /V0)/T as a function of the arm length in the high temperature
(blue dots) and low temperature (red dots) regimes.

For each size, we extract the slopes T−1
ϕ,low (T−1

ϕ,up) below (above) the threshold tem-
perature and plot it as a function of the arm length (figure 5.7.c). The slope scales with
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the length of the interferometer arm defining a coherence length lϕ(T ) such that :

V = V0e
−2L/lϕ(T ) (5.4)

Below the threshold temperature, we get lϕ = 0.37mm at 20mK, a record value in 2D
material. Above it, we have : lϕ = 1.2µm at 1K.

From the two slopes, 1/Tϕ,up at high temperature and 1/Tϕ,low at low temperature, we
extracted a ratio Tϕ,up/Tϕ,low ' 0.16. Considering the theoretical framework of gaussian
and non-gaussian regimes to analyse the temperature dependence of the visibility (see
section 4.4.2), we can attribute to the previous ratio a physical meaning. Indeed, in the
non gaussian regime, we introduced the probability η that a thermal electron is present
in the edge coupled to the interferometer. Considering the rough assumptions made in
section 4.4.2, η can be directly determined from the ratio Tϕ,up/Tϕ,low, here we obtain :
η ' 0.11.

5.3.2 Lobe structure and interferometer size

Finally, we will compare the DC bias dependence of the visibility for the small MZI
(mixing inside the bulk along the side gates edges) and long MZI (mixing at the graphene
physical edge). The measured visibibility dependence on the DC bias for the two config-
urations are presented in figures 5.8.A and B.

Figure 5.8: Valley Splitter. (A) TVI as a function of the applied DC bias VDC and
the magnetic field for the long interferometer size. (B) TVI as a function of the applied
DC bias VDC and the magnetic field for the small interferometer size. (C) Measured
visibility as a function of VDC for the long (yellow dots) and small (red) interferometer
size. Computed visibility (black solid line) based on Gaussian phase fluctuations.

It has been demonstrated, as detailed in section 4.4.1, that a Gaussian distribution
of phase at finite energy leads to a visibility ∝ e−V

2/V2
lob |1 − V 2/V 2

lob| (black solid line
in figure 5.8.C) with Vlob an adjustable parameter [72]. In this model, the gaussian
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distribution of phase is induced by the presence of an important number of electronic
excitations. In the case of an applied DC bias, if the lobe structure originates from this, it
should disappear at the crossover between gaussian and non-gaussian limit corresponding
to eVlob = hν. In figure 5.8.C Vlob = 217µV implying eVlob/hν= 8.74 for the long size
interferometer and 3.49 for the small one. If the crossover is not reached, the lobe structure
is less pronounced for the small size interferometer.

5.4 Quantum dots and coherence length

Thanks to our valley splitter sample, we were able to measure for the first time the
coherence length lϕ in graphene quantum Hall edge states. Impressively, in the low
temperature regime, we obtained an exceptionally long coherence length : lϕ ∼ 370µm
at 20mK, which is 40 times higher than in GaAs/AlGaAs heterostructures. This opens
the way to numerous applications of graphene for electron quantum optics and long-
lived flying qubits, however it also raises fundamental question about the physical origin
of this long coherence length. Interestingly, in the valley splitter sample, we observed
some quantum dots behavior, characterized by the existence of Coulomb diamonds in DC
bias measurements, which might explain our result for lϕ. Indeed, as detailed in the first
part of this section, a recent study in GaAs/AlGaAs heterostructures by Duprez et al. [22]
exhibited a strong enhancement of the coherence length, by engineering the adjacent edge
states into closed loops. The quantum dots behavior that we measured in our sample,
and which is presented in the second part of this section, may act as naturally formed
closed loops, thus enhancing the coherence length, via the same mechanism.

5.4.1 Enhancing the coherence length in GaAs/AlGaAs heterostruc-
tures

For MZI in GaAs/AlGaAs heterostructures, the best Aharanov-Bohm oscillations visi-
bilities were obtained at filling factor ν = 2, and not ν = 1 where the stronger decoherence
is still not clearly understood. Therefore, most of MZIs experiments in GaAs/AlGaAs
heterostructures were carried out at ν = 2; configuration in which an unusual lobe struc-
ture in the DC bias dependence of the visibility [72][11][59] and an exponential decay
of the visibility with the temperature [73][51] were reported. As detailed in chapter 4,
a probable source of decoherence in this configuration, explaining those observations,
is the long range Coulomb interaction, which generates a capacitive coupling between
co-propagating edge states.

In [22], Duprez et al. followed a novel approach in order to enhance the coherence
length in a MZI at ν = 2 in a GaAs/AlGaAs heterostructure. The idea is to limit the
dephasing effect of the capacitive coupling between the co-propagating edge channels.
For this aim, they added to the classic MZI geometry a small gate depicted in light gray
in figure 5.9.a. By tuning the bias applied on the gate, one can reach a configuration
in which the outer interfering edge state trajectory, depicted by the black line on the
schematic, is almost not affected by the presence of the gate, while the inner edge state
(in gray) is strongly modified. Indeed, as depicted on the layout in figure 5.9.a, the inner
edge channel is "closed in micron-scale loops of frozen internal degree of freedom combined
with a loop-closing strategy providing an essential isolation from the environment". For
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their experimental study, they achieved two samples using this geometry one with a
24µm-long arm (figure 5.9.b), and one with a 0.1mm-long arm (figure 5.9.c).

Figure 5.9: Nanocircuit engineering of electronic coherence, extracted from [22].
(a) Sample schematic. Two chiral edge channels (black and gray lines with arrows)
propagate along a 2D electron gas (blue) set in the integer quantum Hall regime at filling
factor ν = 2. The outer channel (black) follows two separate paths between tunable
beam splitters implemented by quantum point contacts (orange),thereby forming a Mach-
Zehnder interferometer. The inner edge channel (gray) can be closed into well-separated
loops with specific comb-shaped gates (light gray) voltage biased to reflect only this
channel. Sweeping the voltage on a lateral plunger gate(green) results in MZI oscillations
of the current transmitted from source (S) to detector (D). (b) Colored scanning electron
micro-graph of the sample with MZI arms of symmetric length L ≈ 24µm. (c) Optical
image of the L ≈ 0.1mm MZI. The inner edge channel loops have nominally identical
perimeters of 9µm, except one of 5µm for the lower left loop of each sample.

Experimentally, the results are striking. In figure 5.10, are presented the transmission
through the MZI τMZI : in the normal MZI configuration without gate voltage (red
curve), and in the closed loops configuration depicted in figure 5.9.a (blue curves). For
the 24µm sample, as visible in figure 5.10.d, the blue oscillations are strongly enhanced
compared to the red one, giving a visibility of 80%. Considering the 0.1mm long sample,
no interference should be visible as its length is much longer than the coherence length,
and consistently the red curve in figure 5.10.e exhibits no oscillations. However, the blue
trace clearly oscillates, with a visibility estimated to 40%. From these measurements,
they evaluated that the corresponding coherence length was around lϕ ≈ 0.25mm at
20mK in the closed loops configuration, which is 10 times higher than the coherence
length measured using a normal MZI geometry at ν = 2.

To summarize, by engineering the inner edge state in micron-scale loops combined to
a loop closing strategy, Duprez at al. could strongly enhance the coherence length, which
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Figure 5.10: Measurement of quantum oscillations while engineering the elec-
tronic coherence, extracted from [22]. (a)–(c) Schematics of the different config-
urations. (d),(e) Continuous lines show, versus plunger gate voltage Vpl, the measured
fraction τMZI of current transmitted from S to D along the outer channel of the L ≈ 24µm
(d) and 0.1 mm (e) MZI [same color as the box enclosing the corresponding schematic in
panels (a), (b), or (c); darker shade for the shorter device].Horizontal dashed lines display
the predicted τMZI extrema for the same lϕ ≈ 0.25mm in both MZIs. (f) Continuous
lines show the power spectral density of τMZI(Vpl) determined along large Vpl sweeps
(extending between 50 and 80 mV) measured several times[same color code as in panels
(d),(e)]. For the challenging case of L ≈ 0.1mm in configuration (c) (light blue line),
the Fourier analysis is restricted to plunger gate-voltage windows exhibiting oscillations
larger than 66% of their maximum amplitude.

means that they effectively reduced the dephasing effect of the capacitive coupling between
the inner and the outer edge state. In what follows, I will show that a similar mechanism
may naturally occur in our sample, explaining the long coherence length observed in the
quantum Hall edge channels formed along a pn junction in graphene.

5.4.2 Quantum dots in graphene pn junction

In our valley splitter sample tuned in the bipolar quantum Hall regime we observed
a surprising quantum dot behavior, which may play the role of the micron-scale loops in
Duprez et al. work. In this section, I will first expose the experimental evidences of a
quantum dot behavior. Then, is presented the mechanism that we proposed to explain
the appearance of this quantum dot. Finally, is discussed the reduction of the capacitive
coupling between co-propagating edge channels thanks to the presence of a quantum dot.

Experimental evidence for quantum dot behaviors

For this study, we first used the right pn junction (without side gates) in a configuration
depicted in figure 5.11.A. In the n region the Landau-level filling factor is νn = 2 and two
channels of the opposite spin (↑ , ↓) counterclockwise circulate along the boundary. In
the p region the filling factor is νp = −2 and two channels of the opposite spin circulate
clockwise. Along the bottom edge, the injected current I0 is carried by the two edge
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channels of the n region. Transmitted IT and reflected IR currents are represented in
figure 5.11.B; their sum in black is constant and equal to I0. We observe interference
fringes of a Mach-Zehnder interferometer. Scattering of the valley isospin occurs at the
bottom end and top end of the pn junction due to the atomic structure at the intersection
between the interface of the pn junction and the physical edge.

Figure 5.11: Aharonov-Bohm and Coulomb blockade regime. (A) Schematic rep-
resentation of the pn junction. n region is depicted in blue, the p one in pink. Electrons
are injected from the bottom left ohmic contact (defining an injected current I0), trans-
mitted IT and reflected IR currents are measured at the upper right and left contact. (B)
Valley-interferometer transmission TV I (in blue), reflection RV I (in red), and their sum
(in black) as a function of the magnetic field. (C) Valley-interferometer transmission TV I
as a function of back gate voltage Vback and top gate voltage Vtop. On top of Aharonov
Bohm oscillations, we note regularly spaced transmission peaks (black dotted lines). (D)
Valley-interferometer transmission TV I as a function of Vback and VDC . Vback range is
chosen to get both Aharonov-Bohm oscillations (yellow dashed lines) and transmission
peaks. (E) Same as (D) with a Vback range that suppressed Aharonov Bohm oscillations.

In figure 5.11.C, the transmission probability TV I = IT /I0 of the pn junction is plotted
as a function of the global back gate voltage Vback and the top gate voltage Vtop. On top of
the expected Aharonov-Bohm oscillations, we note sharp transmission peaks highlighted
by black dotted lines. The sign of the slope of Aharonov-Bohm oscillations with the top
gate Vtop is opposite to the one of the transmission peaks, indicating that the underlying
physical mechanism is different. In figure 5.11.D, we tune Vback in a range where both
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oscillations coexist and plot it as a function of the applied bias voltage VDC . If Aharonov-
Bohm oscillations (yellow dashed lines) disappear above 0.4 meV, one can also distinguish
Coulomb blockade diamonds. To confirm this observation, we tune Vback in a range where
Aharonov-Bohm oscillations are completely washed out while Coulomb blockade peaks
are still there. The bias dependence measurement shows Coulomb blockade diamonds
and confirms a Coulomb-blockade effect along the pn junction (in figure 5.11.E). Com-
paring with graphene/BN quantum anti-dot measured in the quantum hall regime [57], we
roughly estimate the dot area to be A ∼ 0.3µm2 for a charging energy ∆EC ∼ 0.75meV .
pn junction length being equal to 1µm, we get an island width of 300nm. When Vback is
tuned to obtain Aharonov-Bohm oscillations, we get a periodicity of 15mT what gives a
distance between co-propagating edge states equal to 276nm. Sizes of the Coulomb island
and the valley inteferometer are comparable.

In a mere pn junction, valley-isospin tunneling between the two co-propagating states
can not be tuned. In the following, we consider the left pn junction in our sample on
which two valley splitters are located at its ends, enabling us to control the transmissions
at those two points, and, therefore, to study separately the Aharonov-Bohm regime from
the Coulomb Blockade regime. As depicted in figure 5.12.A, we used when studying a
pn junction with valley splitters, the normal MZI configuration : νn = 2 and νp = −1.
Therefore, in the n region, two channels of opposite spins circulate counter-clockwise along
the boundary, while in the p region one spin down edge channel circulates clockwise.

When the filling factors below the top and bottom side gates verify νsg1 ≤ −1 and
νsg2 ≤ −1, valley scattering occurs at the two intersection points of the junction with the
graphene physical edge and we observe Aharanov-Bohm oscillations. For filling factors
νsg1 = νsg2 = 0, valley scattering is suppressed and TV I = 0 (see in figure 5.12.B). For
intermediate regime, when filling factor below the side gates goes from -1 to 0, we observe
sharp peaks that we interpret as Coulomb blockade peaks. In figures 5.12.C to F, we plot
valley-interferometer transmission TV I as a function of the magnetic field and VDC for the
Aharonov-Bohm regime (figure 5.12.C and D) and Coulomb blockade regime (figure 5.12.E
and F). In figure 5.12.C, νsg1 ≤ −1 and νsg2 ≤ −1, valley scattering occurs at the top and
bottom intersection. From the Aharonov-Bohm phase φAB = 2πBA/Φ0, Φ0 = h/e being
the flux quantum, we get the interferometer area A ∼ 0.15µm2 (taking ∆BV I = 17.6mT )
and the spatial separation of 157nm between the two interface channels, given the length
1.5µm of the pn interface. In figure 5.12.E, νsg1 ≤ 0 and νsg1 ≤ 0, weak valley tunneling
occurs at the top and bottom intersection. We observe Coulomb blockade diamonds, with
charging energy ∆EC ∼ 1meV . From ∆EC , we extract an island size A ∼ 0.169µm2. pn
junction length being equal to 1.5µm, we get an island width of 113nm. In figure 5.12.D,
νsg1 ≤ −1 and νsg2 = 0, the larger magnetic field periodicity of the Aharanov-Bohm
oscillations compared to figure 5.12.C indicates that the interferometer length is shorter;
we are in the intermediate length MZI configuration. In figure 5.12.F, we are also in the
intermediate-length MZI configuration (i.e. νsg1 ≤ −1 and νsg2 = 0), and we observe
Coulomb blockade diamonds, with charging energy ∆EC ∼ 1meV . pn junction length
being equal to 1.05µm, we get an island width of 160nm.
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Figure 5.12: Aharonov-Bohm and Coulomb blockade regime. (A) Schematic rep-
resentation of the pn junction with the two valley splitters on the top and bottom end of
the pn junction. (B) Valley-interferometer transmission TV I as a function of Vside (both
sides gates are at the same voltage) and Vback. At the transition between between ν ≤ −1
and ν = 0 filling factor below the side gates, we observe Coulomb blockade peaks. (C)
TV I as a function of magnetic field and VDC for the long length interferometer. (D) TV I
as a function of the magnetic field and VDC for the intermediate length interferometer.
(E) Coulomb diamonds for the long length closed loop. (F) Coulomb diamonds for the
intermediate length closed loop.

Origin of the quantum dots

In this section, I detail an underlying physical mechanism that can account for the
observed Coulomb blockade regime. Graphene ground state at ν = 0 is a degenerate SU(4)
ferromagnetic multiplet. In the presence of symmetry breaking terms, different type of
spin-isospin phases in the bulk but also along the edges can be obtained : among them
are a ferromagnatic state (F), a canted antiferromagnetic state (CAF), a Kekule distorted
state (K), and a charge density wave state (CDW). Main contributions of the Hamiltonian
are the kinetic energy Ekin and the Coulomb energy which have full SU(4) symmetry. To
break the SU(4) symmetry, Zeeman energy EZ has to be considered together with lattice-
scale effect that includes short range Coulomb electron interactions and electron-phonon
couplings which are encoded into anisotropics terms uz and u⊥, following Kharitonov’s
terminology [42]. Note that energy difference between two kinetic Landau levels energy
is larger than Zeeman energy by two orders of magnitude. In [42], Kharitonov derives the
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following analytic expression for the single particle energy spectra ε :

ε = EZ

√(
Ekin(p)
EZ

− (1− ∆0z
EZ

)
)2

+
(∆zx

EZ

)2
(5.5)

with :
{

∆0z = − cos(θ)
2 (uz + 2u⊥)

∆zx = − sin(θ)
2 (uz − 2u⊥)

, and θ describes the angle between the spin and the

isospin.

Figure 5.13: Single particle energy spectrum. (A) Energy spectrum of the single
particle ground state in the CAF phase as a function of the distance to the pn junction
interface at ν = 1 (blue) and ν = 2 (red). (B) Top part: energy spectrum of the single
particle ground state in the CAF phase for νp = −2 and νn = 1. Bottom part: edge
state configuration. Close to the pn junction interface, two closed loops are formed. (C)
Schematic representation of the pn junction with the two closed loops.

In figure 5.13.A, the single particle energy spectrum is plotted as a function of the
distance to the interface state of the pn junction for anisotropic terms uz = 5EZ and
u⊥ = −EZ corresponding to the CAF state in the bulk ground state phase diagram. To
account for the Coulomb blockade regime, energy spectra are represented on both sides
of the pn junction interface (see in figure 5.13.B). The top part of the figure describes
the intersection of the Fermi energy EF with the different Landau levels as a function of
the distance to the interface. For ν = −2 bulk, EF crosses two Landau levels leading to
two co-propagating edge states. For ν = −2 close to the interface, EF crosses a single
Landau level twice leading to two counter-propagating edge states (see the bottom part
of figure 5.13.B) and the formation of a large quantum dot. For the used parameters
in figure 5.13.A, width of the dot is ∼ 200nm. One should note also the presence of a
second quantum dot in the ν = +1 region. In figure 5.13.B, spin states are depicted and
propagating electrons inside quantum dots have canted spins and isospins. It has been
proposed that spin and isospin degree of freedom do not remain independent, separable
variables, but can become entangled [44].

Considering this picture, quantum dots should appear as depicted in the layout in
figure 5.13.C. Along the graphene pn junction interface, the interfering edge channel is
naturally protected from the adjacent edge state by a closed loop. This may explain
the macroscopic coherence length lϕ of 370µm observed at 20mK in our graphene valley
splitter sample.
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A dephasing protection

Finally, I will discuss some DC bias measurements in this configuration that corrob-
orates the existence of a dephasing protection. Indeed, at finite DC bias, dephasing in
GaAs/AlGaAs MZIs at ν = 2, and in particular the lobe structure, can be described by
taking into account the capacitive coupling between co-propagating edge channels. When
a single edge channel is biased, oscillations visibility as a function of the applied bias
voltage shows a lobe-type structure with almost equal widths of lobes. When the two
edge states are biased, the central lobe should be approximately two times wider than
side lobes [50].

In figure 5.14.A, TV I is shown as a function of the magnetic field and the bias voltage
applied on the upper left ohmic contact for the injection, which implies that only a single
edge channel is biased. On the other hand, figure 5.14.B represents a similar measurement,
but with this time a bias voltage applied on the upper right ohmic contact, and therefore
with two biased edge channels. Strikingly, the lobe width is equal for both configurations,
as visible in figure 5.14.C. This contradicts the expected larger lobe structure predicted
for two biased edge channels, considering a capacitive coupling. This seems to indicate
the absence of coupling between adjacent edge states, inducing a similar response for a
bias applied on the right side or on the left side. These results are consistent with our
picture of quantum dots formed by closed loops, and limiting the capacitive coupling
between adjacent edge states.

Figure 5.14: Dephasing protection. (A) TV I as a function of the applied DC bias VDC
and the magnetic field for two biased edge channels. (B) TV I as a function of the applied
DC bias VDC and the magnetic field for a single biased edge channel. (C) Measured
visibility as a function of VDC for both configurations.



Chapter 6

Spin waves and decoherence

In chapter 4, the DC bias and temperature measurements exhibited the exceptional
coherence obtained in our graphene pn junction, with Aharanov Bohm oscillations per-
sisting at energies up to twenty times larger than in GaAs/AlGaAs heterostructures.
Consistently, as detailed in the previous chapter, the measured coherence length is also
much longer, making graphene pn junction a good building block to achieve valleytronic
devices, and quantum operations via valley-polarized states. On the way towards the new
field of valleytronics, understanding the decoherence processes is a key point. A recent
work by Wei et al. [83] made a step forward considering the comprehension of one of the
main decoherence process, the so called magnons. Magnons are spin waves propagating
through the bulk of a 2DEG in the quantum Hall regime, their absorption is a direct
source of decoherence. Wei et al. managed to directly generate and detect magnons in an
encapsulated graphene device in the quantum Hall regime. Hereafter, I will first present
how they could experimentally control the magnons, then is detailed the study that we
carried out about the decoherence, induced by magnons, using MZI.

6.1 Introduction to spin waves in graphene

6.1.1 Spin waves and ferromagnetic phases in graphene

Spin waves, or magnons, corresponds to collective excitations propagating through a
magnetic system. Interestingly, in 2DEG in the quantum Hall regime, the interaction of
electrons within the Landau levels gives rise to quantum Hall ferromagnetism, character-
ized by the appearance of peculiar magnetic phases. In graphene, the ground states of
the N = 0 Landau level at one quarter filling (ν = −1) and three-quarters filling (ν = 1)
correspond to a fully spin polarized quantum Hall ferromagnet [3][86][63][29] with an in-
sulating bulk and spin polarized edge states. The nature of the ground state at filling
factor ν = 0 remains a matter of theoretical debate, according to Kharitonov’s paper [42]
different phases, represented in figure 6.1b, are possible : a Kékulé distorsion (KD) order,
a ferromagnetic (F) order, a charge density wave order (CDW), and an anti-ferromagnetic
order (AF). Those phases are competing following the phase diagram in figure 6.1a. The
experimental study by Young et al. [89] ruled out the ferromagnetic order in their sample.
Moreover, a few years later, A.F. Young [88] showed the existence of a quantum spin Hall
state at ν = 0, in the presence of a strong in plane magnetic field, exhibiting a transition
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to a canted antiferromagnetic phase. Finally, when the Landau level is completely filled
(ν = 2) or completely empty (ν = −2), the bulk is spin unpolarized and the magnons
cannot propagate through it.

(a)

(b)

Figure 6.1: Competing magnetic phases at ν = 0 in graphene. (a) Phase diagram of
the ν = 0 of the quantum Hall states minimizing the isospin anisotropy energy in the space
of the anisotropy energies (u⊥,uz). Figure extracted from [42]. (b) Candidate quantum
Hall ferromagnetic states at ν = 0 : the spin ferromagnet (i), the canted antiferromagnet
(ii), the charge density wave order (iii), or Kékulé distorsion order (iv). Figure extracted
from [89].

To conclude, the ferromagnetic phases present at filling factor ν = ±1 in graphene
constitute an ideal platform to investigate the propagation of spin waves, and are the
building blocks of the experimental study of magnons in graphene carried out by Wei et
al. [83], presented hereafter.

6.1.2 Experimental observation of spin waves in graphene

Wei et al. [83], in their pioneering experiment, achieved a direct electrical control
of the generation and detection of spin waves in a graphene quantum Hall ferromagnet
by imposing an imbalance in chemical potential between edge states of opposite spins.
An optical micrograph of the sample used in their study is presented in figure 6.2.E. A
graphene sheet connected to two leads is deposited on top of a global back gate. The
central part of the sample is covered by a top gate, enabling to locally tune the filling factor
in this region. In their study, they fixed the filling factor below the top gate at ν = 1, i.e.
a three-quarter filled N=0 Landau level corresponding to a fully spin-polarized quantum
Hall ferromagnet. The surrounding regions are tuned to the non-magnetic fully filled
Landau level ν = 2, as depicted in the layouts of figure 6.2.A-C. As the spin degeneracy is
lifted, the co-propagating edge channels have opposite spins : the inner one is spin down,
whereas the outer one is spin up. A DC bias voltage is applied on the left ohmic contact,



6.1. INTRODUCTION TO SPIN WAVES IN GRAPHENE 115

imposing a chemical potential µ to the two outgoing channels, whereas the edge channels
originating from the right ohmic contact are fixed at zero bias.

Figure 6.2: Magnons in a quantum Hall ferromagnet. Figure extracted
from [83]. (A to C) A chemical potential difference (µ) is applied between the left
and right leads. Spin-up and spin-down polarization are denoted by the green and orange
arrows, respectively. The central region is tuned to ν = 1 and the adjacent regions to
ν = 2. (A) The chemical potential difference between the spin-up and spin-down edge
channel is less than the Zeeman energy (EZ) and scattering is suppressed. (B) µ ≥ EZ :
Electrons have enough energy to flip their spins and transfer spin angular momentum
(magnons) into the bulk (at the encircled minus sign). (C) µ ≤ −EZ : Magnons are
generated at the location denoted by the encircled plus sign. (D) Bulk spin polarization
before and after magnon creation, conserving the total spin angular momentum. (E)
Optical micrograph of the device, graphene is outlined in white. TG, top gate. (F)
Differential conductance as a function of the dc bias. (G) differential conductance as a
function of bias and magnetic field. Blue dashed line: Zeeman energy calculated from the
perpendicular magnetic field B⊥. Black dashed line: Zeeman energy computed from the
total magentic field BT

In figure 6.2.F, the conductance through the sample is plotted as a function of the
applied DC bias voltage Vdc. As expected, when Vdc = 0, the conductance is quantified and
equal to e2/h. However, when |Vdc| reaches a threshold value ∼ 0.7mV , the conductance
deviates notably from the quantized value. They interpreted this limit value as a magnon
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emission threshold corresponding to the Zeeman energy EZ , i.e. the energy necessary
to flip a spin. When the potential imbalance between a spin up and a spin down edge
channel exceeds EZ , at hot spots where the high-energy state (red on the layouts) meet
the low-energy one (blue) electrons can be scattered by emitting magnons. As the bulk is
a spin up ferromagnet, only magnons with a spin down angular momentum can propagate
through it. No spin flip is possible in the absence of magnons, as it is the only way to
conserve the angular momentum. This gives rise to three possible configurations for the
system :

• In the case −EZ ≤ µ ≤ EZ (figure 6.2.A) : Spin flips are not allowed, therefore the
scattering between the edge channels is suppressed.

• In the case µ ≥ EZ (figure 6.2.B) : The potential imbalance between the high-energy
spin down edge channel (red) and the low energy spin up one (blue) exceeds the
Zeeman energy. Therefore at the spot, denoted by the circled minus sign, where
those two edge channels meet, spin-down electrons from the red state can flip their
spin and relax into the blue state while emitting spin down magnons.

• In the case µ ≤ −EZ (figure 6.2.C): Same case as previously but inverting the high-
energy and low-energy states, generating a magnon emission site at the circled plus
sign location.

After propagating through the bulk, magnons can be absorbed via the reverse process
of their emission. It is this magnon absorption that generates the deviations of the
conductance from the quantized value above the Zeeman energy EZ . Indeed, the emission
processes at the plus or minus circled signs do not change the total potential incoming on
the contacts.

In addition, Wei et al. noticed that when the filling factor of the whole graphene sheet
is tuned to ν = 1, the same deviations of the conductance are present as when the ν = 1
region below the top gate is surrounded by two ν = 2 regions. They interpreted this as a
consequence of the local doping around the ohmic contacts, which creates a local ν = 2
region around the contacts, emitting magnons via the same mechanisms as previously
described.

Finally, they studied the magnon absorption signature via non-local voltage measure-
ment using the sample sketched in figure 6.5.A. For this aim, a DC bias Vdc is applied
between L2 and L3, and thanks to a superimposed AC voltage Vac they can measure the
resulting differential conductance dI/dV (with V = Vac+Vdc). At the same time, the non
local voltage signal SNL = dVNL/dV induced by the magnon absorption, where VNL is
the voltage between L4 and L5, is recorded. In figure 6.5.B, the differential conductance
g (in green) and the non-local signal SNL (in purple) are plotted as a function of Vdc.
Interestingly, at the same threshold value, corresponding to the Zeeman energy, a clear
magnon signal appears on both curves. This indicates that magnons propagate through
the whole sample, i.e. over a few microns.

6.2 Study of the decoherence induced by spin waves
The physical processes behind decoherence are usually difficult to explore experimen-

tally, as a direct way to tune them is most of the time not accessible. One phenomenon
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Figure 6.3: Non-local voltage signal due to magnon absorption. Figure ex-
tracted from [83]. (A) Schematic circuit configuration for measuring a non-local volt-
age. The filling factor is fixed at ν = 1. (B) Non-local signal SNL = dVNL/dV (with
V = Vac + Vdc) in purple, superimposed to the differential conductance dI/dV between
L2 and L3 in green. The sample is tuned at ν = 1, the local doping around the contacts
can generate magnons.

that may explain the decoherence observed at high DC bias, indicated for instance by
the finite bias visibility in MZI experiments, is the emission of spin waves (or magnons).
Interestingly, in a recent experiment, Wei et al. [83] presented a technique which enables
to control the emission and detection of spin waves by electrical means using a quan-
tum Hall ferromagnet formed in graphene at filling factor ν = 1. In our valley splitter
sample, the same quantum Hall ferromagnet regime is achievable, thus we can use the
same process as Wei et al. to obtain a controlled emission of magnons. Thanks to this,
our idea was to study the decoherence induced by magnons using a MZI as a quantum
sensor. Hereafter, I will first show that we can emit magnons in our valley splitter sample
using the same technique, based on the contact doping, as in [83]. Then is detailed a new
magnon emission technique that we developed based on a chemical potential imbalance
between edge states along a pn junction. Finally, is exposed the effect of the injected
magnons on the coherence, using the visibility of Aharanov Bohm oscillations in a MZI,
formed along a pn junction, as an indicator.

6.2.1 Spin waves in our valley splitter sample

Spin waves emission thanks to contact doping

The first step to study the effect of magnons on coherence in a MZI is to control the
spin wave emission. As Wei et al., by tuning our valley splitter sample to ν = 1 and
imposing a DC bias on the contact, we can control the spin wave emission due to the
local doping around the contact. I will detail hereafter how we implemented in practice
this controlled emission technique.
The full schematic of the sample is shown in figure 6.4.a, the filling factors are fixed
at νT = νB = 1. Experimentally, we directly have access, by two points resistance
measurements, to the Hall resistance in the region covered by the top gate and in the
region outside of it, as shown in figure 6.4.b. In our study, we fix the top gate and focus
on a back gate voltage range where the filling factors νB and νT are well defined (and
equal to one). At filling factor ν = 1, spin wave emission occurs through locally doped
regions in the vicinity of the metallic contacts where the filling factor is increased to ν = 2.
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This is depicted in the layout (figure 6.4.a) by localized edge states on each contacts. In
order to generate spin waves, one has to apply a finite bias on one ohmic contact. This
creates a chemical potential imbalance between edge channels incoming on a contact at
two different locations : the contact where the DC bias is applied ( e- location) and the
following contact ( e+ location). The emission takes place when the chemical potential
imbalance reaches a threshold value, and its location depends on the sign of the voltage
as shown in [83]. For positive (negative) voltage the emission occurs at the e+ ( e- )
site. After propagation in the insulating bulk, the magnon absorption leads to a change
in chemical potential of the edge states which is detected with a lockin as a non local
voltage signal dVnl/dV where dV is the AC excitation applied at the same location as the
DC bias. The net DC voltage Vnl due to spin waves absorption can be computed from :

Vnl = 1
e

∫ eVDC,nl

0

dVnl
dV

(ε)dε

where VDC,nl is the DC bias used to generate spin waves.

Figure 6.4: Spin wave emission configuration of the valley splitter sample. (a)
Schematic representation of the device at νB = νT = 1, creating a spin up edge state.
Doping near the metallic contacts increase locally the filling factor to ν = 2 and is
represented by a localized spin down edge state on each contact. The black cross denotes
a non-working contact. A back gate covers all the sample and is used to tune both νB
and νT , while the top gate covers only the middle part shown by the vertical dotted black
lines and is used to adjust νT only. For positive (negative) voltage the spin wave emission
site is represented by the encircled sign e+ (e-). Spin waves absorption lead to a change in
chemical potential of the inner edge state ε20 and outer edge state ε0. (b) Determination
of the filling factors νT and νB by two points measurement as a function of back gate
voltage.

In figures 6.5a and 6.5b, we show, at νB = 1, the non local voltage dVnl,20/dV and
dVnl,18/dV measured in contacts 20 and 18 as a function of the DC bias VDC,nl applied
on contact 2. Ohmic contacts 20 and 18 are decoupled from 2 by a ground sink. At
low voltage VDC,nl, the non local signals are zero which confirms that there is no direct
coupling between contacts 20 or 18 and the biased edge channel. However, a clear non local
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voltage develops when eVDC,nl > EZ+δ, where δ is a phenomenological density dependent
term which is tuned by the back gate voltage. We interpret this signal as a non local
voltage induced by spin wave absorption. Considering the magnon emission/absorption
framework, the current conservation at ohmic contact 20 implies the following expression
for the chemical potential µ20 :

µ20 = ε20 + µ0 − ε0 (6.1)

where ε0 (ε20) is due to spin waves absorption at the ground (contact 20), and µ0 corre-
sponds to the chemical potential imposed by the ground sink. The absorption site ε0 is
closer to ohmic contact 2 than the second absorption site on ohmic contact 20 (see layout
in figure 6.4.a). Therefore, we have ε0 > ε20, leading to a decrease of chemical potential,
i.e. an increase of voltage.

(a) (b)

(c) (d)

Figure 6.5: Electrical emission of spin waves. (a) Non local voltage signal in 20
as a function of DC bias VDC,nl in 2, when νB = 1 is well defined. The magnons are
propagating over the 5µm distance between 20 and 2. The voltage threshold for spin
waves emission is eVDC,nl > EZ + δ where δ is density dependent and can be tuned with
the backgate voltage. (b) Non local voltage signal in 18 as a function of DC bias VDC,nl
in 2, when νB = 1. This implies that spin waves can propagate over at least 10µm. (c)
Non local voltage signal in 20 as a function of DC bias VDC,nl in 2, when νB = 2. The
signal is much weaker. The remaining signal might be due to density fluctuations in the
border of the νB = 2 plateau which enable spin waves emission by locally decreasing the
filling factor. (d) Non local voltage signal in 18 as a function of DC bias VDC,nl in 2,
when νB = 2.

Interestingly, contact 20 is located at 5µm from contact 2, while contact 18 is at 10µm.
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Therefore, our interpretation, of a non-local signal created in 18 and 20 by the absorption
of magnons emitted from 2, implies that magnons can propagate over a distance of at
least 10µm in the graphene bulk at ν = 1. Comforting this interpretation, when the
filling factor νB is tuned to 2, giving rise to a non-magnetic phase where magnons should
not propagate, we observe an important decrease of the non local signal in 20 and 18, as
shown in figures 6.5c and 6.5d. The very weak non local voltages detected are probably
due to density fluctuations on the border of the νB = 2 plateau, enabling spin waves
emission and detection by locally decreasing the filling factor to νB = 1.

To summarize, we showed here that by tuning the filling factor to ν = 1, we can control
the spin wave emission in our valley splitter sample. Applying a DC bias on a contact
allows us to manage the magnons emitted thanks to the natural contact doping. Analogue
experiments were carried out in the hole regime, i.e. at filling factor ν = −1, exhibiting
the absence of spin wave absorption in this regime, as detailed in the appendix A.4. In
the following, I will present an experimental study of the magnon propagation depending
on the filling factor.

Study of spin wave propagation depending on the filling factor

Our goal here is to study the magnon propagation depending on the filling factor. For
this aim, we use a similar set up as previously (see figure 6.6.a) : the filling factor outside
of the top gate is νB = 1, magnons are emitted by applying a DC bias VDC,nl on contact
2, and we measure the non local voltage in 18 and 19. However, this time, we fix the back
gate voltage at VBG = −0.1V , while we modulate the filling factor under the top gate
νT through the voltage VTG applied on it. The two point Hall resistance measurements,
under the top gate and outside of it, as a function of top gate voltage are presented in
figure 6.6.b. Consistently, the filling factor outside of the top gate νB does not depend
on the top gate voltage and is equal to one. On the other hand, νT varies a lot with the
top gate voltage : the green dashed lines delimit the top gate range for which νT = 1, the
region after the blue dashed line corresponds to νT = 2.

Let’s now study, on the same top gate range, the non local voltage in contact 19 as
a function of VDC,nl. The resulting color map is plotted in figure 6.6.c. A ground sink
between 2 and 19 insures that no charge current directly flows from 2 to 19, and indeed
experimentally there is no signal in 19 at VDC,nl = 0. At finite bias, above a threshold
value, we observe a signal that we interpret within the framework of spin wave absorption,
as detailed now. At νT = νB = 1, the current conservation on contact 19 implies that its
chemical potential µ19 verifies :

µ19 − µ0 = ε19 − ε0,19 (6.2)

where ε0,19 (ε19) is due to spin waves absorption at the ground (contact 19), and µ0 is the
chemical potential imposed by the ground sink. As the ground is closer to the spin wave
emission site (contact 2) than contact 19, the absorption coefficients verify ε0,19 > ε19,
leading to a decrease of chemical potential and thus an increase of voltage.

In the νT = 2 region the situation is different due to the reflection of one of the two
edge states below the top gate at the right top gate border, therefore, we have:

µ19 − µ0 = (−ε0,19 + εc)/2 (6.3)



6.2. STUDY OF THE DECOHERENCE INDUCED BY SPIN WAVES 121

where εc is due to spin wave absorption at the site denoted by the circled C in figure 6.6.a,
corresponding to the intersection between the lower graphene edge and the top gate. A
net absorption voltage is observed.

Figure 6.6: Spin wave propagation in the fully spin polarized QHF and in the
Skyrme ground state. (a) Schematic representation of the device at νB = νT = 1.
The DC voltage VDC,nl is applied on contact 2. For positive (negative) voltage the spin
wave emission site is represented by the encircled e+ (e-) sign. Spin wave absorption
leads to a change of the chemical potential of the edge states ε. The circled C denotes
another magnon absorption site that appears when νT = 2. (b) Determination of the
filling factors νT and νB = 1 by two points measurement as a function of top gate. Green
vertical dotted lines delimit νT = 1, and the blue dotted line the beginning of νT = 2. (c)
Non local voltage signal on contact 19, dV19

dV , as a function of DC bias VDC,nl. Spin waves
are emitted when eVDC,nl > Ez + δ. The detection signal is high for νT = 1 and low for
νT ≤ 1. (d) Non local voltage signal in 18 as a function of DC bias. Here the situation
is reversed, the detection signal is high for νT ≤ 1 and low for νT = 1. Spin waves are
deviated from 19 to 18 when the ground state of the system changes from the fully spin
polarized QHF to the Skyrme ground state at filling factors νT ≤ 1.

For νT ≥ 1, we expect and observe experimentally the same trend for the non local
voltage in 18, as visible in figure 6.6.d. However, for νT ≤ 1 we observe in 19 a decrease of
the non local voltage compared to the νT = 1 region, whereas, on the contrary, in contact
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18 the non local voltage is larger for νT ≤ 1 than for νT = 1. This could be explained
by the peculiar spin order at νT ≤ 1. Indeed, due to the usually large ratio between the
exchange EX = e2

εlB
and the Zeeman energy EZ = gµBB in quantum Hall systems, the

ground state at ν = 1 ± ε, can consist in smooth spin texture which involves many spin
flips to minimize the exchange interaction rather than a single spin flip. These topological
defects in the spin orientation are known as skyrmions. A recent experiment [93] reported
in graphene the existence at filling ν ≤ 1 of solids of quantum Hall skyrmions, also called
Skyrme ground state. The phenomenon that we observed at νT ≤ 1 seems to indicate
that the Skyrme ground state deviates spin waves.

A new way to emit spin waves using a biased pn junction

In the previous sections, I showed that we can control, in our valley splitter sample, the
emission of magnons, thanks to an unintentional local doping due to the metallic contact
as in [83]. This emission mechanism cannot be used in samples with electrostatically
doped contacts [69], where the graphene region along the contact is set at high filling
factor. These samples are of outmost importance to probe the spin physics of the fractional
quantum Hall effect. Hereafter I will detail another approach that we developed to emit
spin wave thanks to a pn junction, which enables to overcome the limitations due to the
use of the contact doping.

Figure 6.7: Schematic representation of the valley splitter sample in the spin
wave emission configuration. The filling factors are fixed at νT = 1 and νB = −2.
Two MZIs are formed on both sides of the top gate. A DC bias is applied on ohmic
contact 16 and superimposed to an AC lock-in signal. Magnons are emitted from the left
pn junction where the transmissions at its ends can be controlled thanks to side gates.

In order to carry out this study, we used the pn junction formed on the left side of the
top gate, where the side gates are located (see layout in figure 6.7). As in chapter 3, the
sample is set in a MZI configuration, but this time with νB = −2 and νT = 1. Therefore,
two edge states of opposite spin, | ↓, TL〉 and | ↑, TL〉, are incoming on the pn junction
from the top left ohmic contact 16 (see figure 6.8). From the top right ohmic contact
18, only a single spin down edge state | ↓, TR〉 is incoming. In the absence of DC bias,
the current carried by the spin up state | ↑, TL〉 is conserved all along the junction due
to the large energy cost to flip a spin, and one half of the current directly goes to the
bottom left ohmic contact 6. On the other hand mixing between the same spin state is
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Figure 6.8: Schematic of the spin wave emission mechanism at νB = −2 and νT = 1. For a
negative bias, electrons can relax into the colder edge state along the pn junction (emission
site e-) by emitting a spin wave in the insulating bulk. For a positive bias, magnons can
be emitted from the site e+ at the ground after the junction. The absorption of the
emitted spin wave leads to a non local voltage signal.

allowed at the two ends of the pn junction where the graphene physical edge can provide
the large momentum transfer necessary to go from one valley to another : the two ends
of the pn junction act as beam splitters. Along the junction the two spin down states
form co-propagating interfacial states which are split again at the bottom end of the pn
junction, generating a MZI. As detailed in chapter 3, by tuning the bias applied on the
top and bottom side gates, we can control the transmission T1 at the entrance of the MZI
and T2 at its output. For the study of magnon generation thanks to a pn junction, a DC
voltage VDC and a lock-in AC excitation VAC are applied on ohmic contact 16, such that
the left pn junction is biased.

The emission mechanism of the pn junction is described in figure 6.8. After the first
beam splitter of transmission T1, the bias of the inner edge state in the ν = −2 region
is V = (1 − T1)VDC , whereas the outer edge state is at the potential VDC . Emission of
spin waves occurs for negative bias when the potential imbalance between the inner and
outer edge states on the p-side exceeds the Zeeman energy, giving rise to the following
condition : |eT1VDC | > (EZ + δ). For positive bias, emission occurs after the pn junction
at the ground due to contact doping in the νT = 1 region, when eTVDC > EZ + δ where
T is the global transmission through the pn junction.

In figure 6.9a, we show, for three different values of Vsg1, the non local voltage due
to spin wave absorption on contact 20, from which the net voltage Vnl is computed and
shown in figure 6.9b. For positive and negative DC voltages VDC , the emission threshold
changes with the bias applied on the upper side gate Vsg1, as indicated by the vertical
dashed line in figure 6.9a (for VDC > 0). The voltage Vsg1 modulates the transmission T1
(and therefore T ), thus the dependence of the threshold value on Vsg1 could be explained
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(a) (b)

Figure 6.9: Spin waves emission across a pn junction. (a) Non local voltage signal
on contact 20 as a function of DC bias for different voltage applied on the upper side
gate. Spin waves are detected, at positive bias when eTVdc > EZ + δ and at negative bias
when eT1Vdc < −(EZ +δ), the transmission coefficients are modulated with the side gate.
The emission threshold for positive bias is shown with the dashed line. (b) Computed
non local voltage Vnl due to spin waves absorption as a function of DC bias.

within our model, however further and more quantitative investigations are needed.
To summarize, thanks to this new method, one may control the magnon emission via

a biased pn junction, without using the natural doping of ohmic contacts. This could be
really useful when using samples with highly doped contact leads, for instance to study
the effect of magnons in the fractional quantum Hall regime.

6.2.2 Effect of spin waves on MZI

In the valley splitter sample at ν = 1, we can achieve as Wei et al. [83] a controlled
emission of magnons by applying a DC bias on a ohmic contact, but also thanks to new
method that we developed based on a biased pn junction. Interestingly, we can set our
sample in a configuration in which a magnon source is in the vicinity of a pn junction
tuned in the MZI regime. This enables us to directly investigate the effect of magnons
on the coherence, by measuring the visibility of Aharanov-Bohm oscillations as function
of the magnon emission. First, I will detail how we coherently detect magnons thanks to
a MZI, and in particular the correlations that we observed between the magnon emission
and the visibility. In a second part, is exposed a study dealing with a direct measurement
of the magnon effect on the MZI phase. In what follows, we used magnons emitted thanks
to the contact doping, an analogue study was carried out with magnons generated thanks
to a biased pn junction and is presented in appendix A.5.
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Coherent detection of magnons with a MZI

For this study, we want to use a MZI as a quantum sensor to measure the decoherence
induced by magnons. Therefore, we need to have on the same sample a MZI and a magnon
source. To do so, the filling factors were tuned at νB = 1 and νT = −2, generating a MZI,
as depicted in figure 6.10.a, along the top gate border with side gates. The dephasing φ
imposed between the two paths of the interferometer corresponds to the Aharanov-Bohm
phase, which can be tuned linearly thanks to the magnetic field B. On the other hand, a
DC bias is applied on contact 16 in order to generate magnons.

In figure 6.10.b, we show the non local voltage signal, dV18/dV , measured in 18 due
to a lock-in excitation in 16, dV , as a function of DC bias applied in 16, VDC,nl. Due to
the chirality of the quantum Hall states, no current should flow from contact 16 to 18.
Indeed, experimentally, at VDC,nl = 0, we observed a zero non local voltage. When the
DC bias is decreased, this non local voltage dV18/dV is zero up to a negative threshold
value ∼ −1mV , where a clear signal appears. For positive voltage, a threshold is also
present around the same absolute value ∼ 1mV , even though the increase in the signal
is less pronounced. We interpret this as an effect of magnon absorption on contact 6 at
the entrance of the MZI. Indeed, when the DC bias reaches a threshold value, given by
|eVDC,nl| > EZ + δ, spin waves are electrically emitted from contact 16 or the ground
following it. The emitted magnons propagate through the νB = 1 bulk up to contact
6, where they are absorbed. This leads to a decrease in chemical potential of the lower
edge state which enters in the interferometer and is detected in 18. Considering an
absorption ε0 on contact 6 (which is fixed at a chemical potential µ0), the spin up edge
channel incoming on contact 18 is at the potential µ0−Tε0 (with T the total transmission
through the MZI), whereas the non-interfering spin down edge channel (also incoming on
18) stays at the potential µ0. If one notes µ18 the chemical potential of the edge channels
leaving contact 18, the current conservation on 18 leads to :

µ18 − µ0 = −Tε0/2 (6.4)

In addition, this non local signal dV18/dV , appearing above a threshold value, oscillates
with the magnetic field. In the model developed above, these oscillations can easily be
interpreted as Aharanov-Bohm oscillations.

In order to investigate the magnon effect on the coherence, we applied an additional
lock-in excitation at a different frequency on contact 6 and measured the transmission
TV I through the interferometer (via contact 18). In figure 6.10.c, the transmission TV I
is plotted as a function of the DC bias applied in 16, VDC,nl. Oscillations with the
magnetic field, corresponding to interference fringes, are clearly visible. The visibility
of the interference is computed over the oscillations and plotted in blue in figure 6.10.d,
together with the averaged electric signal due to spin waves absorption (red). While
the visibility remains constant at low voltage, it quickly decreases above the threshold
of spin waves emission (black dashed lines in figure 6.10.d), eVDC,nl = EZ + δ, where
the absorption signal is detected. The correlation between the visibility decay and the
magnon emission leans towards a dephasing effect of magnons. In addition, the slower
decay observed for positive DC bias compared to the negative side is consistent with
an emission site e+ (for VDC,nl > 0) further from the pn junction than the site e- (for
VDC,nl < 0).
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Figure 6.10: Coherent detection of spin waves with an electronic interferometer.
(A) Schematic representation of the device at νB = 1 and νT = −2. The DC voltage
VDC,nl, is applied in 16 to emit spin waves on the interferometer without charge current.
Spin wave absorption in 6 leads to a reduction of the chemical potential of the lower
edge state by −ε0. (B) Non local voltage signal on contact 18, from a lockin excitation
applied in 16, as a function of DC bias VDC,nl, applied in 16. Spin waves are emitted
when eVDC,nl > EZ + δ. The non local voltage oscillates with the flux φ which modulates
the interferometer transmission T. (C) Interference as a function of VDC,nl in 16. The
transmission is measured in 18 from a lockin excitation in 6. (D) Visibility (blue curve)
and non local voltage signal dV18/dV averaged over the magnetic field span (red curve), as
a function of VDC,nl applied in 16. At the emission threshold shown by the vertical dotted
lines the non-local voltage is detected and the visibility decreases. (E) Interferences as
a function of DC bias applied in 6 directly on the interferometer, VDC. (F) Visibility
as a function of DC bias in 6. The visibility envelope lies within the spin wave emission
threshold shown by the vertical dotted lines.

We further investigate the MZI oscillations dependence on local DC bias VDC , i.e. a
DC bias directly applied on contact 6. The result is plotted in figure 6.10.e, and present
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a characteristic check board pattern. The corresponding visibility, shown in figure 6.10.f,
presents a lobe structure, which completely vanishes around 1mV . Therefore, the visi-
bility envelope lies within the observed energy scale for the magnon emission threshold,
indicating that in the case of a local bias another mechanism of decoherence dominates
below 1mV . However, the decoherence effect of magnons could explain the absence of
extra side lobes above the threshold energy ∼ 1meV .

To conclude, the experimentally measured coincidence of the visibility decay and the
magnon signal (figure 6.10.d) in the case of a non local DC bias seems to indicate that
the coherence in electronic MZIs in graphene is limited by magnons for DC bias above
the threshold energy. In the last section, we substantiate this claim thanks to a direct
measurement of magnons dephasing effect above the threshold bias.

6.2.3 Aharanov-Bohm phase and magnons

In the previous part, the measurements were achieved at a back gate voltage VBG =
−0.13V . Strikingly, as shown in figure 6.11.a, when we set the back gate at VBG =
−0.15V , using the same set up as in figure 6.10.a (with a non local voltage VDC,nl applied
in 16), we observed a strong phase shift of the MZI interferences at the threshold voltage
for spin wave emission, i.e. e|VDC,nl| ≥ EZ + δ. For each DC bias voltage VDC,nl we
computed the phase of the oscillations, taking a zero phase reference at VDC,nl = 0; the
result is plotted in figure 6.11.b. The phase is almost constant and equal to zero for low
non local voltages |VDC,nl| ≤ 1mV , but above this threshold the phase changes strongly.
Indeed, for VDC,nl < 0, the phase goes from 0 rad at VDC,nl ≈ −1mV to almost -3 rad at
VDC,nl ≈ −2mV . Considering positive DC bias, the dephasing effect is less pronounced,
the phase is around -1.5 rad at VDC,nl ≈ 2mV . This is consistent with an emission site e+
for VDC,nl > 0 further away from the pn junction than the site e- for VDC,nl < 0. In the
phase plot (figure 6.11.b), we added the non local signal in 18, dV18/dV , averaged over
the magnetic field range. Interestingly, the resulting signal exhibits the same threshold
in VDC,nl as the phase. Indeed, for |VDC,nl| ≤ 1mV , the dV18/dV is constant and equal
to zero, indicating that no magnon is absorbed in 6, explaining the absence of dephasing
on this bias span. However, above the threshold a clear non local signal appears, due
to the magnon absorption; the signal is stronger for negative than for positive voltages,
consistently with the asymmetry in phase.

Naively, one could think that this phase shift originates from a chemical potential
increase on the edge channel incoming on the MZI, due to magnon absorption on contact
6. In order to check this, we computed the DC voltage Vnl induced on contact 6 (18) at
the input (output) of the MZI, resulting from this phenomenon, thanks to the non local
signal dV6/dV (dV18/dV ) in 6 (18), via the following formula :

Vnl = 1
e

∫ eVDC,nl

0

dVnl
dV

(ε)dε

The resulting DC voltages Vnl are plotted in figure 6.11.c, in red for the output bias
measured in 18 and in orange for the input bias measured in 6. The amplitude of these
DC voltages induced on the MZI by magnon absorption is less than 40µV. Now we look
at the MZI response when the DC bias, VDC , is directly applied on the interfering edge
states, i.e. on contact 6, to check if such voltage can generate a similar phase shift.
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Figure 6.11: Spin waves induced flux modulation. (a) Interferences as a function
of DC bias, VDC,nl, applied in 16. (b) Phase and averaged non local voltage signal over
the oscillations, as a function of DC bias. The phase of the interferences shows a strong
modulation at the spin wave emission threshold. (c) DC non local voltage Vnl induced in
contacts 6 (orange) and 18 (red) by the magnons emitted in contact 16, and computed
from the non local voltage signals dVnl

dV . The DC voltages induced by magnon absorption
are small : Vnl < 40µV. (d) Interferences as a function of DC bias, VDC , applied on the
interferometer arm in 6. (E) Phase as a function of the local DC bias in 6. The vertical
dotted lines are drawn at VDC = ±40µV.

Figure 6.11.d shows the AB oscillations as a function of local DC bias, VDC , from which
the phase, in figure 6.11.e, is extracted. The phase shift at ±40µV in local DC bias, shown
by the vertical dotted lines, corresponds to a few tenth of radiant and thus is negligible
compared to the phase shifts observed with the non local bias measurement, where the
dephasing can reach π. Therefore, the dephasing induced by magnons is not due to the
trivial effect of the chemical potential increase generated by magnon absorption on the
input edge channel. We think that it is generated by the itinerant electric dipoles carried
by spin waves at ν = 1, modulating the phase of the interference. This assumption needs
further studies to support it.

We now look at the MZI response to a DC bias applied in 16, VDC,nl, for different
values of the back gate voltage to probe the responses at ν = 1, i.e. in the quantum Hall
ferromagnet configuration, and at ν ≤ 1. In figure 6.12.a, we show the determination of
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the filling factor together with the non local voltage signal dV18/dV at zero DC bias. The
different back gate voltage values where the MZI response has been studied are indicated
by the following symbols : square, triangle, arrow... Note that the back gate voltage
values indicated by the cloud and the arrow, also in the quantum Hall ferromagnet, are
shown in figure 6.10 and 6.11, respectively; and additional data, for the star symbol, are
presented in appendix A.6. With these different measurements, we observed a variety of
phase behaviors with VDC,nl depending on the back gate tuning, whose understanding
would require further investigations.

To conclude, in this chapter, we have shown that spin waves can be generated on
demand in our valley splitter sample at ν = 1 thanks to the local doping around ohmic
contacts. In addition, by combining a magnon source and a MZI, we have shown that
the decay of the oscillations visibility with the non local DC bias is correlated to the
magnon emission, which indicates that it represents the dominant decoherence process in
this configuration. Finally, the visibility and the phase signals show a sharp, electrically
controlled, variation at the emission threshold, which opens interesting perspectives for
detection schemes.
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Figure 6.12: Probing interference dependence on spin waves for different back
gate values. (a) Determination of the filling factor νB and non local voltage signal mea-
sured at zero DC bias. Symbols show the back gate values where the MZI response has
been studied. (b-d) Back gate voltage fixed at : VB = −0.14V (circle symbol, in the
QHF phase). In (b), we plot the interferences as a function of DC bias, VDC,nl. The corre-
sponding visibility is traced in (c), with the non local voltage signal transmitted through
the MZI, as a function of bias. Finally, the phase of the oscillations are represented in (d)
as a function of the DC bias. It exhibits a positive variation at the spin wave emission
threshold. (e-g) Same study as in (b-d), but at VB = −0.17V (square symbol in
the QHF phase). Here the phase (g) as a function of bias shows a negative variation at
the spin wave emission threshold. (h-j) Same study as in (b-d), at VB = −0.18V
(triangular symbol) in the Skyrme ground state. Phase (j) as a function of the DC bias
shows a negative variation at the spin wave emission threshold for negative voltages and
a positive variation at the spin wave emission threshold for positive voltages.



Conclusion

The development of electron quantum optics, an emerging field based on the repro-
duction of quantum optics experiments but using electrons, leads to interesting perspec-
tives, in particular for quantum computations. Up to now, the experiments carried out
in semi-conducting GaAs/AlGaAs heterostructures exhibited the possibility to encode
information in the charge or the spin of an electron, but strong decoherence in these
systems implies a great weakness of these quantum states, which survives only below a
temperature of 100mK and an electrical bias of 40µV . This fragility makes it difficult to
achieve entangled states and limits the development of complex quantum computations.
In 2005, the discovery of a novel material, graphene, opened new prospects with on one
hand the prediction of a larger phase coherence, and on the other hand the existence,
in addition to the spin, of a new degree of freedom, called the valley. The purpose of
this PhD thesis is to investigate the possibility to encode information in the valley degree
of freedom in graphene, and to study the coherence of the associated valley-polarized
electronic quantum states.

For this aim, we used, in the quantum Hall regime, a graphene pn junction, formed
thanks to gates deposited on top of a stack composed of a graphene sheet encapsulated
between two Boron Nitride (BN) crystals. The first part of the project was to develop
the stacking process of crystals, then to design the sample geometry corresponding to our
study, and finally to develop and achieve the nano-fabrication of the sample. I participated
with M. Jo to the refinement of the stacking set-up and procedures developed by F.
Parmentier, giving rise to a reliable stacking procedure. Concerning the sample nano-
fabrication, the achievement of good quality ohmic contacts was a real challenge. After
long technical developments, we converged to a fabrication process enabling us to obtain
ohmic contacts with a low-resistance (of a few hundreds ohms) in a repeatable way.
In order to obtain an electrostatic control over the valley polarization, different sample
geometries were tested. The final sample is composed of a 1µm long pn junction, with
ohmic contacts on the p and n sides, and local gates (called side gates) — isolated from
the other gates by an extra BN — deposited at the intersections between the pn junction
and the graphene physical edge.

Thanks to the sample achieved, we studied experimentally the coherent manipulation
of the valley polarization of incoming electrons on a pn junction in the quantum Hall
regime, with filling factors fixed at νn = 2 on the n-side and νp = −1 on the p-side. In
this configuration, two edge states of opposite spins are incoming on the junction from
the n-side, while a spin down edge state is incoming from the p-side. Due to the mixing of
the two spin-down edge channels at the intersection between the graphene physical edge
and the pn junction, two hybridized interfacial states, with opposite valley polarization,
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are formed on each side of the junction. These interfacial states mix again at the bottom
end of the pn junction, where it meets again the graphene physical edge. By tuning the
voltage applied on the side gates, i.e. by locally tuning the filling factor of the graphene
below them, we demonstrated a full control over the valley polarization of the output
state when injecting electrons from one of the spin down edge states. In addition, the
interface states form a closed loop, and thus the magnetic flux through the area enclosed
generates an Aharanov-Bohm phase between the two paths. Associating the electrostatic
control of the side gates to a tuning of the Aharanov-Bohm phase via the magnetic field,
we showed that it is possible to coherently manipulate the valley of an electronic state
almost over the whole Bloch sphere, in a valley representation.

Afterwards, the coherence of the quantum states was investigated thanks to Mach
Zehnder interferometry, by measuring the interferences dependence on the chemical po-
tential of incoming electrons and on the temperature of the system. The quantum states
formed are exceptionally steady, they persist up to 1.5K and 1mV, in other words at ener-
gies 20 times higher than what was observed in GaAs/AlGaAs. Intriguingly, we observed,
as in GaAs/AlGaAs MZIs, lobe structures in the evolution of the interference visibility
with the DC bias. Different theoretical frameworks were developed in order to model the
experimental decoherence observed.

Then, we studied the coherence length, i.e. the distance on which an electron can prop-
agate while keeping its phase coherence, which has never been measured in the quantum
Hall regime in graphene. To that end, the interference dependence on the temperature
was measured in three pn junctions of different lengths. By doing so, two coherence
lengths, corresponding to two different regimes of decoherence, were extracted; in the
regime occurring at low temperature, a record value of 374µm at 20mK was obtained.
This long coherence length may be linked to the quantum dots behaviors observed in our
system.

Finally, we investigated one of the mechanisms of decoherence in our system, the spin
waves, which propagates in the graphene bulk when it is magnetized. In particular, we
measured the dephasing induced by the spin waves on Mach Zehnder interference.

During this project, we have shown the possibility to encode information in the valley
and to manipulate coherently this degree of freedom in graphene pn junction. This opens
interesting new perspectives for a domain that has recently driven a lot of attention : the
valleytronics, where the valley degree of freedom would be used to store, manipulate, and
read out bits of information. Furthermore, the coherence of the system is exceptional,
enabling to envision the achievement of entangled electronic states by using a double
Mach Zehnder interferometer geometry. This opens promising prospects for quantum
computing, but also for fundamental purposes, with the possibility to demonstrate, for
the first time with fermions, the validity of the Copenhagen interpretation of quantum
physics within the EPR paradox framework. Another appealing perspective arises when
considering the electron flying qubit approach, where, the state of the qubit is "encoded,
for example, by the presence or absence of an electron in a wave packet" [22]. In this
context, a further development would be the realization of single electron sources in
graphene quantum Hall edge channels, thanks to radio frequency pulses, which would
also pave the way towards Hong-Ou-Mandel experiments in graphene.



Appendix

A.1 Numerical simulations
This appendix contains a detailed presentation of the models developed and simula-

tions carried out by G. Fleury.
Hereafter, we study numerically the 3-terminal np junction sketched in figures A.1.1(a),

A.1.2(a), and A.1.3(a) modeling a valley splitter with disorder (figures A.1.1(a) and
A.1.3(a)) or roughness (figure A.1.2(a)) along the physical edge. A graphene rectan-
gular sample of length L and width W is connected to two left and right horizontal leads
of width Wh and to one top vertical lead of width L. The Zeeman term that lifts spin
degeneracy is not taken into account. We use the spinless scaled tight-binding model
of graphene [52] with interatomic distance ã = sf ã0 and nearest-neighbor hopping term
t = t0/sf , where ã0 = 0.142 nm and t0 = 2.8 eV are respectively the interatomic distance
and the hopping term for real graphene while sf is a scaling parameter. The Hamiltonian
of the total system (including the leads) reads :

H = −
∑
〈i,j〉

teiΦijc†icj +
∑
i

(Vi − µ)c†ici +
∑
i∈B

V dis
i c†ici (5)

where c†i and ci are respectively the creation and annihilation operators of an electron at
site ri = (xi, yi), the sum

∑
〈i,j〉 is restricted to nearest neighbors, and Φij = (e/~)

∫ ri
rj A.dr

is the Peierls phase accounting for the presence of the perpendicular magnetic field B =
∇×A applied everywhere. Note that technically, the expression of Φij as a function of
the spatial coordinates xi and yj depends on the choice of the electromagnetic gauge. In
practice, the Landau gauge A(x, y) = −By ( 1

0 ) is chosen in the horizontal leads while
a rotated gauge A(x, y) = Bx ( 0

1 ) is chosen in the vertical lead so as to guarantee that
the expression of the Peierls phase is invariant by translation along the lead axis in all
leads [77]. Inside the sample, we choose a gauge which interpolates smoothly between
the two aforementioned gauges in order to avoid spurious reflections at the interface
between the leads and the scattering region (this requires W � Wh). The second term
on the right-hand side of equation (5) mimics a np junction induced experimentally by
the top/bottom gates and the side gate. µ is a constant potential applied everywhere and
Vi = V (ri) defined by

V (ri) = Vg
2

[
1 + tanh

(2(xi − c(yi))
l

)]
, (6)

interpolates from 0 in the left part (x � 0) to Vg in the right part (x � 0), over a
characteristic length l. The position c(yi) = x1 + x0−x1

2 [1 + tanh[(2(yi − Lsg +W/2)/l]]
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of the np interface varies from x1 (when it intercepts the sample boundary) to x0 (deep
inside the sample). Here Lsg is a parameter corresponding to the length of the side gate
and the site of coordinates (0, 0) is taken at the center of the sample. When x0 = x1, the
np junction is translationally invariant (see figures A.1.1(a) and A.1.2(a)) and the system
models the valley splitter in the vicinity of the graphene physical edge. If x0 6= x1, the
np junction is twisted (see figure A.1.3(a)) and the modeled valley splitter includes the
whole region from the physical edge to the end of the side gate. Finally, the last term in
equation (5) is a disordered potential applied only on the outermost sites at the bottom
boundary edge B inside the sample (and not in the leads). V dis

i are random numbers
uniformly distributed in [−Vdis/2, Vdis/2].
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Figure A.1.1: (a) Sketch of the translationally invariant np junction connected to 3 ter-
minals. Two (spin-degenerate and) valley polarized edge states L and R coming from the
left and the right lead respectively are scattered into two (spin-degenerate and) valley-
degenerate states A and B at the np interface. The color scale shows the value of the
potential on each site (in eV). The zoom-in to the boxed region at the bottom boundary
highlights the disordered zigzag edge. The top right inset shows a 2D plot of the local
current in the system, coming from the left lead. (b) Transmission TAL as a function of
the position x1 = x0 of the np interface. Data are shown for one given disorder configura-
tion but different disorder amplitudes (Vdis = 0, 0.25, 0.5, and 1 eV from top to bottom).
(c) Same as (b) but TAL is plotted as a function of the amplitude Vg of the np step at
fixed x1 = x0 = −50 nm (red lines) and fixed x1 = x0 = −50 nm+a/2 ≈ −49 nm (blue
dashed lines) (upon remaining in the regime (νN , νP ) = (2,−2)). In all panels, B = 10T,
µ = 0.05 eV, sf = 8, l = 10nm≈ 5a, W = 300nm. In (a), L = 200nm and Wh = 50nm
while in (b) and (c), L = 280nm and Wh = 70nm. In (b), Vg = 0.11 eV.

In the following, we consider samples with zigzag edges along the x (horizontal) axis.
Perfect edges are considered in figures A.1.1 and A.1.3 while in figure A.1.2, roughness
is added along the bottom physical edge. We fix the scaling factor to sf = 8 and take
B = 10T, µ = 0.05 eV and Vg between roughly 0.05 eV and 0.15 eV (the zero of energy
being taken at the Dirac point at zero field). With this choice of parameters, the filling
factors are respectively νN = 2 and νP = −2 in the left (N) and in the right (P )
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Figure A.1.2: Same as figure A.1.1 by adding roughness at the zigzag bottom boundary
(but no on-site disordered potential i.e. Vdis = 0). Near the np interface (and not in
the leads), the y-position of the bottom boundary at x is taken as the maximum value
between ymin (i.e. the y-position of the bottom boundary in the leads) and a random
number drawn from a gaussian probability with standard deviation σr and center ymin.
(a) Sketch of a sample with edge roughness (σr = 2a). (b) Transmission TAL as a function
of the position x1 = x0 of the np interface, for various roughness depths (σr = 0, a, 2a, and
3a from top to bottom). (c) Same as (b) but TAL is plotted as a function of the amplitude
Vg of the np step at fixed x1 = x0 = 0 nm (red lines) and x1 = x0 = a/2 ≈ 1 nm (blue
dashed lines). All other parameters are the same as in figure A.1.1.

parts, upon restoring the twofold spin degeneracy. We note L the (spin-degenerate) edge
state coming from the left lead, and R the one coming from the right lead. Along the np
interface, a pair of valley-degenerate (and spin-degenerate) channels, denoted by A and B,
co-propagate. Note that within our non-interacting model, A and B are superimposed on
each other. Using the KWANT software [31], we compute the transmission probabilities
TAL and TBL for a (spinless) electron at zero energy to be scattered from the state L to
the state A or B. Obviously, TAL + TBL = 1. In the main paper, TAL and TBL are called
reflection and transmission probabilities of the beam splitter.

In panels (b) of figure A.1.1, A.1.2 and A.1.3, the transmission TAL is plotted as
function of the position x1 of the np interface for a translationally invariant np junction
with disorder (figure A.1.1(b)) or roughness (figure A.1.2(b)) along the bottom edge, and
for a twisted np junction with a disordered bottom edge (figure A.1.3(b)). When the
bottom zigzag edge is clean (Vdis = 0) and perfect (no roughness), data are perfectly
fitted by TAL(x1) = [1+cos(2πx1

λ1
+ϕ1)]/2 where ϕ1 is an adjustable phase and the period

λ1 equals λ1 = 3a for the twisted junction (top panel of figure A.1.3(b)) and λ1 = a
for the translationally invariant one (top panel of figure A.1.1(b) and of figure A.1.2(b)),
a = sf

√
3 × 0.142 nm being the lattice spacing of the scaled model (fits are not shown).

This oscillating behavior of the beam splitter transmission is a signature of the rotation
of the valley isospin of the interface states induced by a shift of the position x1 of the
np interface [80]. Note that when the clean translationally invariant np junction is tuned
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to the symmetric point (so that the states A and B are perfectly centered around the
np interface), TAL = 0 [resp. 1] when the np interface position x1 = x0 intercepts an
inner [resp. outer] carbon atom of the zigzag boundary (i.e. x0 = x1 ≡ 0 [a] [resp. a/2 [a]]
in our geometry). This is not perfectly the case in the top panels of figures A.1.1(b)
and A.1.2(b) because the chosen parameters µ = 0.05 eV and Vg = 0.11 eV correspond
to a np junction which is slightly asymmetric (and the above phase ϕ1 depend on those
parameters). Moreover, when disorder or roughness is added along the bottom zigzag
edge (bottom panels of figures A.1.1(b), A.1.2(b) and A.1.3(b)), the periodic pattern
of TAL(x1) is lost but the transmission keeps oscillating between minimal and maximal
values close to 0 and 1. Changing the disorder or edge configuration leads to plots of TAL
which are quantitatively different but qualitatively similar. This illustrates the fact that
the transmission pattern TAL(x1) is a fingerprint of the local edge configuration in the
vicinity of the region where the np interface and the physical bottom edge intersect.
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Figure A.1.3: Same as figure A.1.1 for a twisted np junction (a). The transmission TAL
is plotted as a function of the position x1 of the bottom np interface at fixed x0 = 50nm
(b) and as a function of Vg (c) at fixed x0 = 30nm, x1 = −30 nm (red lines) and at fixed
x0 = 30nm, x1 = −30 nm+3a/2 ≈ −27nm (blue dashed lines), for different disorder
amplitudes (Vdis = 0, 0.25, 0.5, and 1 eV from top to bottom). All other parameters are
the same as in figure A.1.1 with additionally Lsg = 100nm. Note that TAL is independent
of (finite) Lsg as long as Lsg � 2lB (lB being the magnetic length).

Besides, when the positions x0 and x1 of the np interface are fixed, we find that the
transmission TAL plotted as a function of the height Vg of the np potential step also
oscillates between 0 and 1 in an apparent erratic way (figures A.1.1(c), A.1.2(c) and
A.1.3(c)). We interpret these oscillations as follows. When Vg is varied (so as to remain
in the regime (νN , νP ) = (2,−2)), the position of the (superimposed) interface states A
and B is shifted along x and their valley isospin rotate, which results in a variation of TAL.
Experimentally, x0, x1, and Vg are varied simultaneously by tuning the gate voltages. A
more advanced theoretical description should account for the mixed quantum-electrostatic
problem [6] to extract the model parameters from the experimental configurations. This
is left for future works.
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As a side comment, let us add that all data shown in figures A.1.1, A.1.2, and A.1.3
have been obtained with a characteristic length l = 10 nm≈ 5a for the np step (a being
defined here for the scaled model, see above). We have reproduced (up to a shift along
the x−axis) the oscillations of period a and 3a shown in the top panels of figures A.1.1(b),
A.1.2(b), and A.1.3(b) for different values of l ranging from l = 2nm≈ a to l = 25nm≈
12.7a (data not shown). The latter value is still much smaller than in experiments,
yet numerical instabilities occurring for large l as well as finite-size effects hinder further
numerical investigations. We expect the oscillations of period a of TAL(x1) (corresponding
to the translationally invariant junction) to be robust for large l since even a smooth np
interface is predicted to induce intervalley scattering near a physical zigzag edge [2]. On
the contrary, we expect the oscillations of period 3a of TAL(x1) (corresponding to the
twisted junction) to be modified as l becomes large enough not to induce intervalley
scattering in the (bulk) region where the np interface changes direction.
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A.2 Current conservation
We check experimentally that the injected current is equal to the sum of the reflected

and transmitted current through the pn junction with the side gates (device described
in the main text, see in figure A.2.1.A). In the n region the Landau-level filling factor
is νn = 1 and one spin-down channel circulates counterclockwise, while in the p region
νp = −2 and two channels of the opposite spin (↑, ↓) circulates clockwise. As shown in
figure A.2.1.B, transmitted current in red is in phase opposition with the reflected current
(in blue). Total current (in black) is conserved.

Note that the AB periodicity of B=12mT (figure A.2.1.B) is two times smaller than
described in chapter 3. In the main text, (νn, νp)=(-1,+2) while here (νn, νp)=(+1,-
2). (νn, νp)=(-1,+2) is reached with top gate voltage VTG=2.54V and back gate voltage
VBG=-0.59V leading to a voltage difference ∆VG,1=3.13V. (νn, νp)=(+1,-2) is reached
with top gate voltage VTG=-2.16V and back gate voltage VBG=0.13V leading to a voltage
difference ∆VG,2=2.29V. Ratio of these potential differences for the two opposite chiral-
ity is ∆VG,1

∆VG,2 =1.37, which leads to a sharper potential profile for (νn, νp)=(-1,+2) than
(νn, νp)=(+1,-2) and a reduced distance between edge states.

Figure A.2.1.C shows transmitted and reflected current for the test sample without
side gates at (νn, νp)=(+2,-2) (test sample). Total current (in black) is conserved. The
AB periodicity is larger, in figure A.2.1.D, mostly because the total length of the inter-
ferometer, L=1µm, is smaller, due to the absence of side gates.
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Figure A.2.1: Current conservation in two interferometers. (A) Schematics repre-
sentation of an interferometer with side gates (yellow). A current I0 is injected on the n
side (blue) at filling factor νn = 1. After its transfer through the pn junction, we measure
the reflected, IR, and transmitted, IT , current with two ohmic contacs (grey). Additional
ohmic contacts are used as ground sinks. (B) Transmitted (red) and reflected (blue)
current normalized by the injected current I0, as a function of magnetic field B. These
current oscillate with opposite phase and their sum (black) is conserved. (C) Schematics
representation of an interferometer without side gate. A current I0 is injected on the n
side (blue) at filling factor νn = 2. (D) Transmitted (red) and reflected (blue) current
normalized by the injected current I0, as a function of magnetic field B. These currents
oscillate with opposite phase and their sum (black) is conserved.
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A.3 Admittance between capacitively coupled edge chan-
nels

In what follows, is presented P. Roulleau computation of the admittance between
capacitively coupled edge channels. We note VD the potential of non-interfering detector
edge state (also noted D©), and U2 the potential of the interfering | ↓,−→ω 〉 edge state (also
noted 2©). We introduce the admittance between | ↑, TR〉 and | ↓,−→ω 〉 : G2,D = dI2(ω)

dVD(ω) .
We call ψα(r;E) an incident state from the contact α at energy E. The charge distribution
can be described by the Fermi field :

Ψ̂(r, t) =
∑
α

∫
dE√
hνα,E

e−iEt/~ψα(r;E)âγ(E) (7)

The charge density in the PN junction at point r and time t is given by :

ρ̂(r, t) = eΨ̂†(r, t)Ψ̂(r, t) (8)

After Fourier transforming and quantum averaging we get ρ(r, ω) where :

ρ(r, ω) =
∑
α,β

∫
dE√

hνα,Ehνα,E+~ω
ψ∗α(r;E)ψβ(r;E + ~ω)〈â†α(E)âα(E + ~ω)〉 (9)

This averaged charge density can be split into an equilibrium part ρ0(r, ω) and a fluctuat-
ing one: ρ(r, ω)=ρ0(r, ω)+δρα(r, ω). δρα(r, ω) resulting from voltage fluctuations Vα(ω),
it is natural to write 〈â†α(E)âα(E + ~ω)〉 as the sum of two terms:

〈â†α(E)âα(E + ~ω)〉 = δ(~ω)f(E) + e

h
Vα,ωFα(E,ω) (10)

Vα,ω is the Fourier component at frequency ω of Vα(t) and Fα(E,ω) is defined as
Fα(E,ω)=fα(E)−fα(E+~ω)

~ω .

In the following we will assume that the first valley splitter is tuned to 1/2. Scattering
states of the PN junction that interfere can be written :

ψ2(r;E) = 1√
2
eikEx+ϕ2 (11)

with ϕ2 the accumulated phase along the arm length while the detector state which is
fully transmitted is ψD(r;E) = eikEx+ϕD . The fluctuating charge into one edge state is
obtained by integrating the charge density over the arm length :

Q2(ω) =
∫ L

0
δρ2(x, ω)dx (12)

For the interfering edge state, we get :

Q2(ω) = e2

2h

∫
dE

i

ω
(1− eiωτ )V2,ωF2(E,ω) (13)
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For the detector edge state :

QD(ω) = e2

h

∫
dE

i

ω
(1− eiωτ )VD,ωFD(E,ω) (14)

The limit hω � kBT leads to the simplification
∫
FD(E,ω)dE ∼1. Here, the detector

edge state is the only source of thermal dephasing noise. Therefore, we have :{
QD(ω) = e2

h
i
ω (1− eiωτ )VD(ω)

Q2(ω) = 0
(15)

If we now consider interaction, excess injected charge will in turn induce screening charge
proportional to the internal potential Uα(ω). This leads to :{

QD(ω) = e2

h
i
ω (1− eiωτ )(VD(ω)− UD(ω))

Q2(ω) = e2

h
i
ω (1− eiωτ )(−U2(ω))

(16)

Since QD(ω) = −Q2(ω) = C(UD(ω)− U2(ω)) we finally obtain :

G2,D = GQ(1− eiωτ )
2 + iGQ(1− eiωτ )/ωC (17)

We want to relate U2(ω) to VD(ω) :

U2(ω) = − CVD(ω)
2C + i

ω
e2

h (1− eiωτ )
(18)

This leads to :
S22 = | C

2C + i
ω
e2

h (1− eiωτ )
|2SVD,VD (19)

Finally, using the fact that T/Tϕ=〈ϕ2〉/2 we get :

1
Tϕ

= 4kBT
~

τI(γ) = 4kBT
~

RQC

γ
I(γ) (20)

With :

γ = C/(GQτ)
I(γ) =

∫∞
0

sin2(x)γ2

sin2(x)+2γsin(2x)+4γ2x2dx.
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A.4 Propagation and absorption of spin waves in the hole
states

In section 6.2.1, we studied the spin wave emission from an ohmic contact using the
natural local doping around it. In the latter experiment, the whole sample, below and
outside of the top gate, was tuned to ν = 1. By applying a DC bias and a lock-in signal on
contact 2 (see figure A.4.1) we could detect a clear magnon absorption signal in contact 20
but also in 18 and 19 which are below the top gate. In this appendix, we investigate the
magnon signal observed using a similar configuration (shown in figure A.4.1) : a magnon
signal is emitted from contact 2 from a region at filling factor νB = 1, and we measure
the non local signal induced in contacts 18, 19, and 20. However, the top gate is now
fixed at filling factor νT = −1, enabling us to check if we can detect a magnon signal in
the hole states, i.e. with a negative filling factor, via contacts 18 and 19.

Figure A.4.1: Schematic representation of the valley splitter sample νT = −1
and νB = 1. Two pn junctions are formed on both sides of the top gate. A DC bias
is applied on ohmic contact 2 and superimposed to an AC lock-in signal, this enables to
generate magnons thanks to the contact doping. The non-local signals, resulting from
magnons absorption are measured in contacts 18, 19, and 20.

In figure A.4.2.A, we show the determination of the filling factors by two point resis-
tance measurement as a function of top gate such that νB = 1 (VB = −0.1V ) and only
νT is changed. The region situated in between the dotted red lines corresponds to the
top gate voltage range where νT = −1 is well defined, whereas the region before the blue
dotted line corresponds to a well defined νT = −2. Note that the chirality below the top
gate is reversed compared to the rest of the sample.

Non local voltage on contact 20 which remains at νB = 1, shown in figure A.4.2.B,
is constant on the top gate voltage span, and the values are consistent with the mea-
surement at νT = νB = 1. Figure A.4.2.C and A.4.2.D show respectively the non local
voltage measured in 19 and in 18, only weak signals are visible on these color maps. Our
interpretation is that at ν = −1 the local doping of the metallic contact is not effective,
therefore there is no absorption of magnons in the central region at νT = −1, which
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implies: {
µ19 = µ0

µ18 = µ0
(21)

Another interpretation would be that magnons are simply stoped at the pn junction.
However, it has been shown by Wei et al. [83], using a similar configuration, that magnons
generated from a ν = 1 region can travel through a ν = −1 region below a top gate, and
be detected on the other side in again a ν = 1 region. In their experiment, they did
not have contacts below the top gate, so they could not check the absorption in the hole
states.

Figure A.4.2: Propagation of spin waves in the hole states. The DC bias is applied
on contact 2. (A) Determination of the filling factors νT and νB = 1 by two points
measurement. (B) Non local voltage in 20 as a function of DC bias. Contact 20 is not
below the top gate. (C) Non local voltage in 19 as a function of DC bias. (D) Non local
voltage in 18 as a function of DC bias.

At νT = −2, similarly there is a weak signal in 18 and 19. Interestingly, the small
non-local signal, observed at νT = −1 and νT = −2, is bigger in 18 than in 19, maybe
because it is due to absorption along the left pn junction at νT = −2 and at contact 6 at
νT = −1.

Some signal is observed at νT = 0, figure A.4.2.D. But, because the detection contact
is in the νT = 0 region, this non local voltage signal is not understood.
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A.5 Decoherence induced by magnons emitted from a pn
junction

In the last section of chapter 6, we studied the decoherence induced by magnons
generated thanks to a DC bias applied on an ohmic contact, using a pn junction in the
MZI regime as a quantum sensor. Interestingly, we developed a new technique to emit spin
waves not based on local doping. Indeed, as detailed in section 6.2.1, by applying a bias
on a pn junction, with on the p-side νp = −2 and on the n-side νn = 1, one can control the
spin wave emission. In this appendix, I will present a study of the decoherence induced
by magnons produced thanks to this new technique. We followed a similar approach than
in section 6.2.2 based on a MZI playing the role of a quantum sensor.

The set up used for this experiment is described in figure A.5.1. The filling factors
are fixed at νT = 1 under the top gate and νB = −2 outside the top gate. This generates
two pn junctions at the two borders of the top gate, and thus 2 two MZIs : the right
one is used as a magnon emitter, whereas the left one is the quantum sensor MZI. The
DC bias used to generate spin wave is applied on contact 2 with a lock-in excitation for
the electric detection. Another lock-in excitation is applied in 18 to measure the usual
transmission of the MZI in 6.

Figure A.5.1: Schematic representation of the valley splitter sample in the spin
wave emission configuration. The filling factors are fixed at νT = 1 and νB = −2.
Two MZIs are formed on both sides of the top gate. A DC bias is applied on ohmic
contact 2 and superimposed to an AC lock-in signal. Magnons are emitted from the right
pn junction, and we measure the effect on the coherence of the MZI formed at the left pn
junction.

At the threshold voltage for spin waves emission, a strong phase shift of the MZI
interferences can be observed, as shown in figure A.5.2.a. Both the extracted visibility in
figure A.5.2.b and the phase in figure A.5.2.c exhibit a threshold voltage. Note that the
threshold voltages are different at positive and negative bias due to the spin wave emission
mechanism of the pn junction which is different depending on the DC bias (VDC) sign.
Indeed, as described in section 6.2.1 :
• for VDC < 0, the emission takes place along the pn junction

• for VDC > 0, the emission takes place at the ohmic contact after the pn junction
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From the averaged non local voltage signals presented in figure A.5.2.b, we compute the
DC non local voltage felt by the interferometer due to spin waves absorption:

Vnl =
∫ VDC,nl

0

dVnl
dV

dVDC,nl

The computed Vnl for contacts 18 (red) and 6 (orange) are shown in figure A.5.2.d. The
amplitudes of these non local voltages are less than 15µV. Now we look at the MZI
response when the DC bias, VDC , is directly applied on the interfering edge states, on
contact 18, to check if such voltage can generate similar phase shift. Figure A.5.2.e shows
the AB oscillations as a function of DC bias, VDC , from which the visibility figure A.5.2.f
and the phase figure A.5.2.g are extracted. The phase shift at ±15 µV in DC bias, shown
by the vertical dotted lines, is negligible compared to the non local bias measurement.

Figure A.5.2: Coherent detection of spin waves emitted by a pn junction. (a)
Interferences as a function of DC bias, VDC,nl, applied on a edge state decoupled from
the interferometer by ground sinks. (b) Visibility and non local voltage signal (red in 18
and orange in 6) due to the bias VDC,nl. (c) The phase of the interferences show a strong
modulation at the spin wave emission threshold. (d) DC non local voltage (red in 18 and
orange in 6), Vnl, transmitted in the MZI, computed from the non local voltage signals
dVnl
dV . The DC non local voltage are less than Vnl < 15µV. (e) Interferences as a function
of DC bias, VDC , applied directly on the interferometer arm. (f) Visibility as a function
of bias. The vertical dotted lines are drawn at VDC = ±15µV. (g) Phase as a function of
bias. The vertical dotted lines are drawn at VDC = ±15µV.
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A.6 Complementary data for back gate points in ν ≤ 1 re-
gion

In figure A.6.1, we provide additional data concerning the measurement presented in
the last section of chapter 6 (see figure 6.12.h) taken at a back gate voltage VB = −0.18V .
This data set corresponds to the triangular symbol (in figure 6.12.a) in the Skyrme ground
set (filling factor ν ≤ 1).

Figure A.6.1: Data for the triangular symbol (see figure 6.12). The filling factor
are νB = 1 and νT = −2 (VB = −0.18V, triangular symbol). (a) AB oscillations as
a function of DC bias applied on contact 16. (b) Visibility as a function of bias. (c)
Phase as a function of bias. (d) Non local voltage transmitted in the MZI. The non local
voltages are less than Vnl < 80µV in the range where the interferences are visiblible. (e)
AB oscillations as a function of bias applied in 6 directly on the interferometer arm. (f)
Visibility as a function of bias. The vertical dotted lines are drawn at VDC = ±80µV. (g)
Phase as a function of bias. The vertical dotted lines are drawn at VDC = ±80µV.
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In figure A.6.2, we plot additional data corresponding to another back gate point in
the Skyrme ground state, VB = −0.182V , noted by the star symbol in figure 6.12.a.

Figure A.6.2: Data for the star symbol (see figure 6.12). The filling factor are
νB = 1 and νT = −2 (VB = −0.182V, star symbol). (a) AB oscillations as a function of
DC bias applied on contact 16. (b) Visibility as a function of bias. (c) Phase and non
local voltage signals as a function of bias. (d) Non local voltage transmitted in the MZI.
The non local voltages are less than Vnl < 150µV. (e) AB oscillations as a function of
bias applied in 6 directly on the interferometer arm. (f) Visibility as a function of bias.
(g) Phase as a function of bias.
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Résumé

Le développement de la mécanique quantique au début du XXe siècle a eu des impli-
cations dans de nombreux domaines de la physique classique, et en particulier en optique.
La différence principale apparaît lorsque l’on considère des interférences : en optique clas-
sique on étudie des interférences en amplitude de champ électrique, alors qu’en mécanique
quantique on considère des interférences en amplitude de probabilité. Dans la plupart des
cas, il n’y a aucune différence entre ces deux approches. L’observation expérimentale
d’effets relevant de la mécanique quantique en optique constitue en fait un champ de
recherche entier, appelé l’optique quantique. Au début des années 60, le développement
de ce domaine a conduit à d’impressionnants résultats sur le plan fondamental, et, en
particulier, à la résolution de l’une des controverses majeures de la physique du XXe siè-
cle : le paradoxe d’Einstein-Podolsky-Rosen (paradoxe EPR). Selon le paradoxe EPR, la
théorie de la mécanique quantique n’est pas complète et ne prend pas en compte certains
"éléments de la réalité"; cela a conduit au développement d’une théorie à variables cachées
pour décrire la réalité du monde quantique. L’une des expériences essentielles de l’optique
quantique est l’expérience menée par Alain Aspect [7] en 1982 démontrant une violation
des inégalités de Bell, contredisant ainsi l’existence de variables cachées.

L’optique quantique électronique est un domaine émergent, dont le but est de reproduire
des expériences d’optique quantique mais en remplaçant les photons par des électrons.
Pour ce faire, les physiciens ont utilisé des systèmes particuliers, nommé gaz électronique
bi-dimensionnel (2DEG), constitués d’électrons confinés dans un plan. Un 2DEG peut être
formé à la surface de l’Hélium liquide, ou à l’interface d’hétérostructures semi-conductrices
comme le très répandu GaAs/AlGaAs. A très basse température (typiquement en-dessous
de 100mK dans les hétérostructures de GaAs/AlGaAs), un analogue de la fibre optique
pour les électrons est obtenu grâce aux canaux de bord chiraux, formés en régime Hall
quantique apparaissant lorsqu’un fort champ magnétique est appliqué perpendiculaire-
ment au 2DEG. Cela permet de guider les électrons jusqu’à l’équivalent électronique de la
lame semi-réfléchissante, grâce auquel il est possible de recréer des expériences d’optique
quantique. En utilisant ces techniques, une équipe a pu réaliser pour la première fois en
2003 une version électronique de l’interféromètre de Mach Zehnder (MZ) [37].

Cette expérience pionière a ouvert la voie à la génération d’états intriqués grâce à une
structure de double MZ, comme proposé par Samuelsson et al. [74]. Les états électron-
iques intriqués sont d’une importance primordiale aussi bien pour des raisons théoriques
que pratiques. En effet, d’un point de vue théorique, cette expérience de double MZ pour-
rait permettre de démontrer une violation des inégalités de Bell comme dans l’expérience
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d’Alain Aspect, mais cette fois-ci avec des électrons à la place des photons, ce qui fonda-
mentalement est important, les électrons étant des fermions, alors que les photons sont
des bosons. D’un autre côté, la formation d’états électroniques intriqués est essentielle
dans l’optique d’une informatique quantique basée sur des qubits volants. L’approche des
qubits volants a été développée en optique quantique électronique par analogie avec les
qubits composés d’un photon unique manipulés en optique quantique. L’état du qubit
volant est encodé dans la trajectoire de l’électron, et une superposition de deux trajectoires
peut être obtenue en utilisant l’équivalent électronique de la lame semi-réfléchissante (par
exemple un point de contact quantique), formant ainsi une porte d’Hadamard. Dans ce
cadre, la géométrie de double Mach Zehnder permettant de générer des états intriqués
est une brique essentielle pour la réalisation de portes quantiques à plusieurs qubits.

Malheureusement, la cohérence dans les hétérostructures de GaAs/AlGaAs est frag-
ile, et la présence d’une forte décohérence a empêché l’observation expérimentale d’une
violation des inégalités de Bell [60]. D’autre part, la fragilité de la cohérence rend diffi-
cile de concevoir des calculs quantiques, via des agencements complexes de portes quan-
tiques dans ces hétérostructures semi-conductrices. La solution à ces problèmes pourrait
provenir d’un matériau novateur aux propriétés extraordinaires, isolé pour la première
fois en 2004 [65] par une équipe de l’université de Manchester : le fameux graphène.
Le graphène est un cristal parfaitement bi-dimensionnel composé d’atomes de Carbone
arrangés selon un réseau en nid d’abeille. Chaque atome de Carbone possède quatre
électrons de Valence : trois formant des liaisons co-valentes avec d’autres atomes de
Carbone, et un additionnel au-dessus du plan du cristal. L’ensemble de ces électrons
supplémentaires forme un 2DEG à la surface de la couche de graphène, et, comme dans
les hétérostructures de GaAs/AlGaAs, l’application d’un champ magnétique perpendicu-
laire donne naissance à l’effet Hall quantique et à des canaux de bords chiraux. En 2015,
Morikawa et al. [58] ont réalisé le premier interféromètre de Mach Zehnder électronique
dans le graphène en utilisant une jonction pn en régime Hall quantique, ce qui a ouvert la
voie à l’étude détaillée menée par la suite dans le groupe de Yacoby au sein de l’université
d’Harvard en 2017 [84].

L’une des propiétés marquantes du graphène est l’existence d’un degré de liberté adi-
tionnel, la vallée, qui s’ajoute au spin, créant ainsi une quadruple dégénérescence en spin
et en vallée. Cette dégénérescence est levée en présence d’un champ magnétique perpen-
diculaire intense, générant des canaux de bords chiraux, polarisés en spin et en vallée.
Récemment, la possibilité d’encoder de l’information dans le degré de liberté de vallée au
sein de matériaux bi-dimensionnels, présentant une brisure de leur symétrie d’inversion
spatiale, a généré beaucoup d’intérêt [10] [75], car cela pourrait engendrer une nouvelle
forme d’électronique : la valléetronique. La valléetronique dans le graphène mono-couche
a été moins étudiée expérimentallement [30] à cause de la difficulté de manipuler l’isospin
de vallée par des moyens électrostatiques; l’inversion de symétrie ne peut pas être brisée
par de simples grilles, créant des potentiels changeant doucement sur l’échelle de la dis-
tance atomique. Ouvrir cette possibilité est intéressant, car cette difficulté assure la
solidité de l’isospin de vallée, ce qui est l’un des principaux avantages de la valléetronique
dans le graphène monocouche. Finallement, concernant l’informatique quantique, cela
ouvre des perspectives intéressantes, comme la réalisation d’un nouveau type de qubit
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volant, où l’information ne serait plus encodé dans la trajectoire, mais dans l’isospin de
vallée.

Durant ma thèse, le but principal était de démontrer que, l’isospin de vallée peut
être électriquement contrôlé dans le graphène mono-couche, grâce à un interféromètre de
Mach Zehnder électronique avec des transmissions contrôlables. Dans ce but, j’ai employé
comme Wei et al. [84] une jonction pn comme interféromètre de MZ, le mélange se pro-
duisant aux deux extrémités de la jonction pn, jouant le rôle des lames semi-réfléchissantes.
Dans leur expérience, ils ne peuvent directement contrôler les trasmissions des deux lames
semi-réfléchissantes, ce qui est nécessaire à l’obtention d’un état en sortie avec une po-
larisation de vallée contrôlée. Afin de surmonter cette difficulté, nous avons ajouté des
grilles locales aux extrémités de la jonction pour pouvoir contrôler les transmissions, et
ainsi obtenir un contrôle complet de la polarisation en vallée de l’état de sortie. Par la
suite, un autre but important de mon travail a été l’étude de la solidité de la cohérence
de ces états polarisés en vallée, car cela est un point essentiel à la réalisation de calculs
quantiques en utilisant un qubit volant de vallée.

Dans la suite, est exposé un résumé de la structure de ce manuscrit de thèse. Le chapitre
1 présente brièvement ce qu’est l’optique quantique électronique, ainsi que quelques ex-
périences clefs sur l’interférométrie de MZ et la génération d’états intriqués dans les
hétérostuctures semi-conductrices de GaAs/AlGaAs. Dans un deuxième temps, j’ai es-
sayé de résumer brièvement les propriétés essentielles du graphène, et de montrer en quoi
ce matériau constituait un bon candidat pour mener des expériences d’optique quantique
électronique.

Dans le chapitre 2, je présente la géométrie que nous avons élaborée pour notre échan-
tillon, ainsi que la procédure de fabrication développée. L’échantillon est composé d’une
mono-couche de graphène fabriquée au laboratoire, encapsulée entre deux cristaux de ni-
trure de bore (BN). A l’aide de techniques conventionnelles de nano-lithographie, nous
avons réalisé des grilles, ainsi que des contacts métalliques sur l’échantillon de graphène
encapsulé. Comme visible dans la représentation schématique de l’échantillon, présen-
tée dans la figure A.6.3, l’élément de base de l’expérience est une jonction pn, créée
par effet de grille, étudiée en régime Hall quantique. Dans ce régime, apparaissant en
présence d’un champ magnétique intense appliqué perpendiculairement à l’échantillon,
des canaux de conductions chiraux contre-propageants se forment dans les régions n et
p; ces canaux se rejoignent à la jonction pn pour former deux canaux co-propageants
cette fois se propageant le long de l’interface. Il a été démontré dans de précédentes
études [58][84][56] qu’un tel système se comporte comme un interféromètre de Mach Zehn-
der, avec des points de mélange localisés aux deux points d’intersection de la jonction pn
avec le bord physique du graphène. Pour autant, dans ces études aucun contrôle de la
transmission en ces deux points n’était obtenu, ce qui s’avère nécessaire pour démontrer
la complète équivalence du système avec un interféromètre de Mach Zehnder; d’autre
part, contrôler la transmission aux niveaux des deux points de mélange permet de con-
trôler la polarisation en vallée des excitations électroniques se propageant le long de la
jonction. Afin d’obtenir un tel contrôle, nous avons ajouté dans notre échantillon deux
grilles latérales aux extrémités de la jonction pn, nous permettant de contrôler localement
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le dopage aux points d’intersection de la jonction pn avec le bord physique du graphène.
Des contacts ohmiques sont placés respectivement dans la région dopée n et dans celle
dopée p. Le principe de notre expérience est d’injecter un courant sur le contact ohmique
en haut à droite de la jonction, et de mesurer l’intensité du courant transmise via le
contact ohmique en bas à gauche.

Dans la fin de ce chapitre, est détaillé le montage expérimental de mesure, qui a été
entièrement développé et installé durant ma thèse, le cryostat étant arrivé quelques mois
après moi.

Figure A.6.3: Représentation schématique d’une jonction pn. La région dopée n est
représentée en bleu, la région dopée p en rouge. Les électrons sont injectés depuis le con-
tact ohmique en haut à droite (définissant un courant injecté I0), et un courant transmis
IT est mesuré sur le contact ohmique en bas à gauche. Des contacts ohmiques enterrés
permettent de mesurer simultanément le facteur de remplissage par une mesure deux
points de la résistance de Hall de chaque côté de la jonction pn (notée RH sur la figure).

Dans le chapitre 3 est décrit l’expérience centrale de ma thèse, dans laquelle on a
démontré que, grâce à la géométrie de notre échantillon, on a un contrôle électrostatique
complet de la polarisation en vallée de l’état de sortie.

La première étape pour ce faire a été de démontrer que, grâce aux grilles latérales, on
pouvait contrôler la transmission aux deux points de mélange. La modulation expérimen-
talement obtenue des transmissions T1 et T2, correspondant respectivement aux points
de mélange en haut et en bas de la jonction pn, est présentée dans la figure A.6.4. On
observe que par la modulation de la tension de grille, on peut aller d’une configuration
sans mélange T1,2 ≈ 0 à une transmission presque totale T1,2 ≈ 0.9.

Dans un deuxième temps, on a étudié quantitativement l’évolution des oscillations
Aharanov-Bohm dans la configuration de Mach Zehnder en fonction de la transmission
T1 avec T2 ≈ 0.5. L’évolution de la visibilité des interférences en fonction de T1 est
présentée dans la figure A.6.5. Ces mesures expérimentales présentent une très bonne
adéquation avec la dépendance théorique de la visibilité attendue dans un interféromètre
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Figure A.6.4: Mesure de la transmission en fonction des tensions sur les grilles latérales.
En rouge T1 en fonction de V1 pour un facteur de remplissage ν1 ≤ −1 et ν2 = 0 à
B = 9.23 T. En noir T2 en fonction de V2 pour ν1 = 0, ν2 ≤ −1 à B = 8.96 T.

de Mach Zehnder; ainsi ces résultats confirment que, dans le graphène, la jonction pn en
régime Hall quantique se comporte comme un interféromètre de Mach Zehnder. D’autre
part, on a pu montrer que le contrôle des transmissions T1 et T2 associé à la phase
Aharanov-Bohm permettait d’obtenir une maîtrise complète de la polarisation en vallée
de l’excitation électronique en sortie du système.

Figure A.6.5: Points oranges : Visibilité mesurée expérimentalement en fonction de la
transmission normalisée T̄1 avec T2=0.5. Ligne noire : Visibilité calculée via la formule
V = 2z

√
T̄1(1− T̄1) avec z = 0.59.

Ensuite, dans le chapitre 4, est présentée l’étude expérimentale des énergies carac-
téristiques de la cohérence de ces états polarisés en vallée. Dans ce but, on a étudié, la
dépendance des interférences de Mach Zehnder en fonction de l’énergie des électrons inci-
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dents : premièrement par l’application d’une tension DC sur un canal de bord en entrée
de l’interféromètre de Mach Zehnder; deuxièmement en augmentant la température de
l’ensemble du système.

Dans le cas de l’application d’une tension DC, on a observé, comme visible dans la fig-
ure A.6.6a, une disparition des oscillations autour de VDC ≈ 0.8mV , ainsi que l’apparition
d’un déphasage de π autour de VDC ≈ 0.25mV . De manière plus quantitative, la visibilité
extraite de cette mesure présente une structure de lobe avec un lobe central entouré de
deux lobes latéraux. Ces résultats sont similaires à ceux obtenus dans les hétérostruc-
tures semi-conductrices de GaAs/AlGaAs. Pour autant, les échelles d’énergie sont com-
plètement différentes ; dans les expériences utilisant du GaAs/AlGaAs, les oscillations
disparaissent autour de VDC ≈ 40µV , soit des énergies vingt fois plus faibles.

(a) (b)

Figure A.6.6: (a) Transmission TVI en fonction du bias DC VDC et du champ magnétique
à νn = +2,νp = −1. (b) Visibilité mesurée (points jaunes) en fonction de VDC . Visibilité
calculée (ligne noire) en considérant des fluctuations gaussiennes de la phase.

L’évolution expérimentale de la visibilité des oscillations avec la température est
tracée dans la figure A.6.7. On observe une température seuil autour de 400mK au-
delà de laquelle la visibilité décroit de manière exponentielle. Dans les hétérostructures
de GaAs/AlGaAs une même décroissance exponentielle avait été observée, mais pas de
température seuil. D’autre part, une fois encore les échelles d’énergies sont complètement
différentes. En effet, dans le graphène les oscillations persistent jusqu’à 1.5K, alors que
dans les hétérostructures de GaAs/AlGaAs elles disparaissent autour de 100mK.

Le Chapitre 5 est centré sur la détermination expérimentale de la longueur de co-
hérence grâce à notre échantillon, ce qui n’a encore jamais été fait dans le graphène en
régime Hall quantique. La longueur de cohérence est une longueur caractéristique de la
cohérence quantique d’un système, elle représente la distance de propagation sur laquelle
une excitation perd sa cohérence de phase à cause de l’échange d’informations. Pour
la mesurer, il est nécessaire de mesurer la dépendance en température des interférences
dans au moins trois interféromètres présentant des longueurs différentes. De manière
remarquable, nous avons pu réaliser cette mesure en utilisant un seul échantillon. Les
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Figure A.6.7: Dépendance en température en échelle logarithmique de la visibilité des
oscillations Aharanov-Bohm, dans les configurations suivantes : (νn=+2,νp=-1) en rouge
et (νn=+2,νp=-2) en noir.

dépendances expérimentales de la visibilité avec la température pour les trois différentes
tailles de MZ sont présentées dans la figure A.6.8.a. On observe que plus la taille de
l’interféromètre est grande plus la décroissance est rapide. D’autre part, la température
seuil, présente dans les trois échantillons, diminue avec la longueur de la jonction, comme
visible dans la figure A.6.8.b. Pour finir, l’évolution de la pente dans le régime à haute
température et dans le régime à basse température de la figure A.6.8.a est linéaire avec la
taille de l’interféromètre (voir figure A.6.8.c). Cela nous a permis d’extraire une longueur
de cohérence de lϕ = 1.2µm à 1K pour le régime à haute température, et de lϕ = 0.37mm
à 20mK pour le régime à basse température.

Finalement, dans le chapitre 6, est exposée l’étude des ondes de spin (ou magnons),
ainsi que leur effet sur la cohérence du système. Les magnons correspondent à des ex-
citations magnétiques se propageant à travers un système magnétique, et ils pourraient
être une source importante de décohérence en régime Hall quantique lorsque le coeur du
graphène est ferromagnétique. En étudiant l’effet des magnons sur les interférences, on a
effectivement pu démontrer que la cohérence est limitée en tension DC au-delà de 1mV
par l’existence de ces excitations collectives, pour autant la structure de lobe ne peut être
expliquée par ce mécanisme puisqu’elle apparait en-deça de 1mV.
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Figure A.6.8: (a) Dépendance en température en échelle logarithmique de la visibilité
pour les trois différentes tailles d’interféromètre. (b) Température seuil en fonction de
la longueur de l’interféromètre (points rouges). Dépendance sur la longueur attendue
théoriquement (ligne rouge). (c) Pente ln(V /V0)/T en fonction de la longueur du bras
de l’interféromètre dans le régime à haute température (points bleus), ainsi que dans le
régime à basse température (points rouges).
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Résumé : L’optique quantique électronique, i.e. la 
réalisation de l’analogue électronique d’expériences 
d’optique quantique, constitue un champ de 
recherche récent, en plein développement, et offrant 
des perspectives intéressantes pour l’informatique 
quantique. Dans ce cadre, l’un des enjeux est la 
réalisation de bits quantiques en utilisant des états 
électroniques, ainsi que la formation d’états 
électroniques intriqués, éléments de bases pour 
réaliser des calculs quantiques plus élaborés. Les 
expériences menées jusqu’à présent dans des 
hétérostructures semi-conductrices de GaAs/AlGaAs 
ont mis en évidence la possibilité d’encoder 
l’information dans la charge ou le spin d’un électron, 
mais la décohérence importante de ces systèmes 
induit une grande fragilité de ces états quantiques, 
qui ne peuvent exister qu’en-dessous de 100mK et 
pour des tensions résiduelles inférieures à 40𝜇𝑉. 
Cette fragilité rend difficile la fabrication d’états 
intriqués, et est limitante pour le développement de 
calculs quantiques complexes. 
En 2005, la découverte d’un matériau novateur, le 
graphène, a ouvert de nouvelles perspectives avec la 
prédiction d’une cohérence de phase plus grande, et, 
d’autre part, l’existence en plus du spin d’un nouveau 
degré de liberté, la vallée, donnant accès à de 
nouvelles possibilités pour encoder l’information. 
Dans un premier temps, ce travail de thèse porte sur 
la manipulation cohérente de la vallée, nécessaire à 
la réalisation d’un bit quantique de vallée dans le 
graphène. Pour cela est utilisée, en régime Hall 
quantique, une jonction pn, formée à l’aide de grilles 
déposées sur un échantillon de graphène encapsulé 
dans du nitrure de Bohr. Afin d’obtenir un contrôle 
électrostatique sur la polarisation en vallée des 
électrons incidents, des grilles locales ont été 
déposées, à l’intersection de la jonction pn avec le 
bord physique du graphène. En alliant ce contrôle 
électrostatique à celui de la phase Aharanov-Bohm, il 
nous est possible de manipuler de manière cohérente 
la vallée d’un électron sur l’ensemble de la sphère de 

Bloch représentant la polarisation en vallée. 
Dans la suite, la cohérence des états quantiques 
formés est étudiée grâce à un interféromètre de 
Mach Zehnder, via l’observation de la dépendance 
des interférences en fonction de la tension 
appliquée sur les électrons incidents, et de la 
température du système. Les états quantiques 
obtenus sont exceptionnellement résistants, ils 
persistent au-delà de 1.5K et de 1mV, soit à des 
énergies près de 20 fois supérieures à celles 
observées dans le GaAs/AlGaAs. 
Puis, ce manuscrit décrit l’étude de la longueur de 
cohérence, correspondant à la distance sur laquelle 
un électron peut se propager en gardant sa 
cohérence de phase, ce qui n’avait encore jamais 
été mesuré dans le graphène. Pour ce faire, la 
dépendance des interférences vis-à-vis de la 
température a été mesurée sur trois jonctions pn 
de longueurs différentes. Une longueur de 
cohérence a ainsi été extraite pour les deux 
régimes de décohérence observés ; dont une 
record, pour le régime à basses températures, de 
plus de 374𝜇𝑚 à 20mK. 
Pour finir, est investigué un des mécanismes 
causant la décohérence dans le système : les ondes 
de spin, se propageant lorsque le cœur du 
graphène est magnétique. 
Ainsi, au cours de ce projet, nous avons mis en 
évidence la possibilité d’encoder de l’information 
dans la vallée, ouvrant la voie vers un nouveau 
domaine : la vallée-tronique. D’autre part, la 
cohérence du système est exceptionnelle, 
permettant d’envisager la réalisation d’états 
intriqués grâce à une géométrie de double Mach 
Zehnder. Cela offre des perspectives prometteuses 
du point de vue de l’informatique quantique, mais 
aussi d’un point de vue fondamental avec la 
possibilité de démontrer pour la première fois, avec 
des fermions, la validité des prédictions de 
l’interprétation de Copenhague de la physique 
quantique dans le cadre du paradoxe EPR.  
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Abstract : Electron quantum optics, i.e. the 
realization of the electronic analogue of quantum 
optics experiments, represents a developing and 
recent research field, offering interesting 
perspectives for quantum computing. In this context, 
one of the main stakes is the achievement of 
quantum bits using electronic states, as well as the 
creation of entangled electronic states, which are the 
building blocks to achieve complex quantum 
computations. Up to now, the experiments carried 
out in semi-conducting GaAs/AlGaAs 
heterostructures exhibited the possibility to encode 
information in the charge or the spin of an electron, 
but strong decoherence in these systems implies a 
great weakness of these quantum states, which 
survives only below temperatures of 100mK and 
electrical biases of 40𝜇𝑉. This fragility makes it 
difficult to achieve entangled states and limits the 
development of complex quantum computations. 
In 2005, the discovery of a novel material, graphene, 
opened new prospects with on one hand the 
prediction of a larger phase coherence, and on the 
other hand the existence, in addition to the spin, of a 
new degree of freedom, named the valley, giving 
access to new possibilities to encode information. In 
a first part, this PhD work deals with the coherent 
manipulation of the valley, which is necessary to 
achieve a valley quantum bit in graphene. For this 
aim, we used, in the quantum Hall regime, a 
graphene pn junction, formed thanks to gates 
deposited on top of a stack composed of a graphene 
sheet encapsulated in Boron nitride crystals. In order 
to obtain an electrostatic control of the valley 
polarization of incoming electrons, we deposited 
local gates at the intersections between the pn 
junction and the graphene physical edge. Associating 
this electrostatic control to a tuning of the Aharanov-
Bohm phase, we can coherently manipulate the valley 
of an electron over the whole states described by a 
valley Bloch sphere. 
 

In what follows, the coherence of the quantum 
states is investigated thanks to Mach Zehnder 
interferometry, by measuring the interferences 
dependence on the chemical potential of incoming 
electrons and on the temperature of the system. 
The quantum states formed are exceptionally 
steady, they persist up to 1.5K and 1mV, in other 
words at energies 20 times higher than what was 
observed in GaAs/AlGaAs. 
Then, the manuscript describes the study of the 
coherence length, i.e. the distance on which an 
electron can propagate while keeping its phase 
coherence, which has never been measured in the 
quantum Hall regime in graphene. To that end, the 
interferences dependence on the temperature was 
measured in three pn junctions of different lengths. 
By doing so, two coherence lengths, corresponding 
to two different regimes of decoherence, were 
extracted; in the regime occurring at low 
temperature, a record value of 374𝜇𝑚 at 20mK was 
obtained. 
Finally, we investigated one of the mechanisms of 
decoherence in our system: spin waves, 
propagating in the graphene bulk when it is 
magnetized. 
During this project, we have shown the possibility 
to encode information in the valley and to 
manipulate coherently this degree of freedom, 
paving the way towards a new domain: the 
valleytronics. Furthermore, the coherence of the 
system is exceptional, enabling to envision the 
achievement of entangled electronic states by 
using a double Mach Zehnder interferometer 
geometry. This opens promising prospects for 
quantum computing, but also for fundamental 
purposes, with the possibility to demonstrate, for 
the first time with fermions, the validity of the 
Copenhagen interpretation of quantum physics 
within the EPR paradox framework.  
 

 


