
HAL Id: tel-03008637
https://theses.hal.science/tel-03008637

Submitted on 16 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling of irradiation effect on the plasticity of
alpha-Iron using dislocation dynamics simulations :

plasticity through multi-scale modeling
Malik Shukeir

To cite this version:
Malik Shukeir. Modeling of irradiation effect on the plasticity of alpha-Iron using dislocation dy-
namics simulations : plasticity through multi-scale modeling. Structural mechanics [physics.class-ph].
Sorbonne Université, 2019. English. �NNT : 2019SORUS363�. �tel-03008637�

https://theses.hal.science/tel-03008637
https://hal.archives-ouvertes.fr


Université Pierre et Marie Curie

Thèse

Présentée par
Malik SHUKEIR

Pour obtenir le grade de

Docteur de l’Université Pierre et Marie Curie

École doctorale Physique et Chimie des Matériaux (ED397)

Titre de la thèse
Modeling of irradiation effect on the plasticity of α-Iron using

dislocation dynamics simulations

Plasticity through multi-scale modeling

Soutenance publiquement le 12 Juin 2019

Devant un jury composé de :

David RODNEY Professeur (HDR) Université Lyon1 Président
Charlotte BECQUART Professeur (HDR) UMET-Lille Rapporteur
Frédéric MOMPIOU Chargé de Recherche (HDR) CEMES-CNRS Rapporteur
Matthieu MICOULAUT Professeur (HDR) Sorbonne Université Examinateur
Ghiath MONNET Ingénieur de Recherche (HDR) EDF-MMC Examinateur
Benoit DEVINCRE Directeur de Recherche (HDR) CNRS-ONERA Directeur de thèse
Laurent DUPUY Ingénieur de Recherche CEA-SRMA Encadrant





Résumé: Ce travail vise à reproduire les interactions individuelles entre les dislo-
cations vis et les boucles induites par l’irradiation en utilisant les simulations de
dynamique des dislocations en accord avec les simulations de dynamique moléculaire.
Un tel accord se caractérise par la reproduction de la réaction et avoir un valeur des
contraintes critiques résolues pour franchir les obstacles. Cette approche fournit le
moyen de calibrer notre code de dynamique des dislocations avec les paramètres des
simulations de dynamique moléculaire. Par conséquent, il permet d’effectuer des
simulations massives à l’échelle mésoscopique. Dans ce cadre, ce travail se compose
de deux parties, une identification du modèle énergétique et une identification des
mécanismes élémentaires. Dans la première partie, nous proposons une procédure
de calibrage de la tension ligne basée sur le mécanisme d’Orowan en utilisant une
étude de sensibilité. Dans la deuxième partie, nous avons identifié les mécanismes de
glissement dévié et le maclage/antimaclage comme étant essentiels pour reproduire
les interactions individuelles de dislocation-boucle. Les simulations de la dynamique
des dislocations sont réalisées à l’aide d’un code nodal 3D appelé NUMODIS, où
les développements récents dans ce code sont présentés. Un des caractéristiques
de ce code est sa capacité à gérer et contrôler les collisions entre les segments des
dislocations. Cela se fait au moyen en utilisant un ensemble d’algorithmes génériques
avec un minimum de règles locales.

Mots clés: dynamiques des dislocations; dynamiques moléculaires; plasticité
cristalline; simulation

Abstract: This work aims to reproduce the individual interactions between screw dis-
locations and radiation-induced loops using dislocation dynamics in good agreement
with molecular dynamics simulations. Such agreement is characterized by reproduc-
ing the dynamics of the reaction and obtaining the critical resolved stress to overcome
the obstacles. This approach provides the mean to calibrate our dislocation dynamics
code with parameters from the molecular dynamics simulations. Consequently, it
permits to perform massive simulations at the mesoscopic scale. In this scope, this
work consists of two parts, an identification of the energetic model and identification
of elementary mechanisms. In the first part we propose a procedure to calibrate the
line tension based on Orowan’s mechanism using a sensibility study. In the second
part, we have identified the cross-slip and twining/anti-twinning mechanisms to be
essential to reproduce the individual dislocation-loop interactions. The dislocation
dynamics simulations are done using a 3D nodal code called NUMODIS, where
the recent developments in this code are presented. The uniqueness of this code is
its ability to manage and control collisions and core reactions between dislocation
segments. This is done through a set of generic algorithms with the minimum amount
of local rules.

Keywords: dislocation dynamics; molecular dynamics; crystal plasticity; simulation
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General introduction

Industrial context
Most of the world’s currently operating nuclear power plants have a life span of

30-40 years that could be possibly extended if safety conditions allow. During this period,
several structural components suffer from a degradation in the mechanical properties. Such
degradation is due to corrosion, mechanical stresses, neutron irradiation and other factors.

The reactor pressure vessel (RPV) is considered as the main critical structural
component in nuclear power reactors, since it contains the core and it is connected to
steam generators and other structural elements. In addition, the RPV serves as the second
barrier against irradiation, the first being the fuel cladding, therefore it should maintain
its integrity during normal conditions and in case of accidents [1]. A schematic diagram of
a nuclear power plant and the pressure vessel is shown in Figure (1).

Figure 1 – Schematic diagram of the major components of a nuclear power plant of a
pressurized water reactor. The RPV is situated inside the confinement, where fuel and

control rods are indicated [2].

In pressurized water reactors (PWR), the RPV is designed to operate under a high
pressure of 155 bar and a temperature around 300 ◦C [3]. During its lifetime, it is subjected
to microstructural changes due to the presence of highly energetic fast neutrons. The
microstructural damage occurs when such neutrons collide with atoms of the RPV. Atoms
collided with neutrons are then displaced from their lattice site position in a relatively short
time of few ps. This process leads to a continuous generation of radiation-induced defects
such as self-interstitial atoms (SIA), clusters of solute atoms and voids [4]. Displacement
per atom (dpa) is the unit used to describe the irradiation damage in the material. It
represents the average number of lattice position change per atom and it was first proposed
by Norgett et al. in [5].
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Plastic deformation in crystalline materials, such as the steel used in RPV, is mainly
related to the movement of dislocations. Strain hardening in metals can be attributed to
the progressive introduction of barriers to the free movement of dislocations. The existence
of radiation-induced defects also hinders the movement of dislocations. This leads to an
increased hardness and embrittlement of the material [6]. Figure (2a) illustrates the effect
of irradiation on the tensile stress of polycrystalline Iron. Figure (2b) shows the irradiation
effect on the ductile to brittle transition (DBT) temperature.

(a) (b)

Figure 2 – (a) Irradiation effect on stress-strain curve of polycrystalline Fe [7].
(b) Irradiation effect on the ductile to brittle transition temperature of iron [8].
One of the major design basis accidents in a nuclear reactor is the loss of coolant

accident (LOCA) from the primary cooling circuit. When the DBT temperature decreases
due to irradiation, in case of a LOCA for example, the temperature of the RPV might
drop to values below the DBT temperature. It leads therefore to the initiation of a brittle
fracture in the RPV. Hence, it is important to provide the end-users (operators) and
decision makers with accurate models that describes the microstructural evolution of the
RPV. Such models are used to predict the residual lifetime of the existing nuclear reactors
to ensure safe operation in conformity with national and international regulations.

Irradiation effects on the RPV and internal steels was the core topic of successive
European projects such as LONGLIFE, PERFECT and PERFORM 60. This study is part
of a sequel project called SOTERIA. It stands for "Safe long-term operation of light water
reactors based on improved understanding of radiation effects" [9]. This project is focused
on the radiation-induced defects and microstructural heterogeneities using a combination
of experimental and modeling work. In order to achieve the goals of SOTERIA, a materials
multi-scale modeling (MMM), from atomic to macroscopic scale, is adopted. MMM is
necessary to provide the means to understand the different phenomena that occur in the
material due to irradiation.
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Objectives
As a part of this MMM approach, the global objective of this work is to build in

mesoscale simulations, namely dislocation dynamics (DD) simulations, as many inputs from
atomistic simulations regarding the interaction between dislocations and radiation-induced
defects. More specifically, the objective of this PhD work, is to reproduce the individual
interactions of screw dislocations with different radiation-induced defects.

There are two types of dislocations in materials depending on the direction of
their Burgers vector relative to the dislocation line, screw or edge dislocations, where a
dislocation of mixed character can also exist [10]. In body-centered cubic (BCC) metals,
yield stress is affected by the thermally activated motion of screw dislocations. The
temperature above which the lattice resistance vanishes is identified as the athermal
transition temperature (Ta) and it is found to be 340 K in α-Fe [11–13]. Because of this
phenomenon, screw dislocations have a lower mobility at low and moderate temperatures
and the deformation process is mainly controlled by their movement rather than edge
dislocations.

In the case of interactions between dislocations and radiation-induced loops, molecular
dynamics (MD) results show that the nature of the interactions does not depend only
on the character of the dislocation (edge or screw), but also on the type of the defect,
its size and the strain rate [14]. Interactions with screw dislocations have a high critical
yield stress compared to those with edge dislocations. In this work, we concentrate on
studying the interactions of screw dislocations with radiation-induced loops for the reasons
mentioned before.

Irradiation defects are generated through rapid cascades in the RPV. These cascades
take place in short length and time scales and they have consequences on the long-term at
the macroscopic scale [15]. Displacement cascades have been extensively studied using
atomistic simulation methods (ab-initio or molecular dynamics) [16]. Nevertheless, these
methods lack the capacity to perform simulations at representative volumes relatively
close to the macroscopic scale. Therefore, a materials multi-scale modeling is adopted to
provide the link between different physical phenomena and processes at different time and
space scales. A typical scheme of multi-scale modeling is shown in Figure (3).
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Figure 3 – Time-length scale in the materials multi-scale modeling from atomistic to
macroscopic scale. The upper half shows the experimental techniques, while the lower half

represents different simulation techniques (after SOTERIA) [9]

Materials multi-scale modeling aims to provide the link between different physical
phenomena occurring at different time and space scales, which ultimately result in the
macroscopic mechanical properties. The range of multi-scale modeling spans from atomistic
to the macroscopic scale. More specifically, time scale spans from 10−15 seconds to few
minutes at the laboratory scale, while the space or length scale ranges from 10−12 m3 to
few cm3. At each scale, there are different experimental techniques that provide an insight
of the plasticity. The extracted information from each scale can be passed to the superior
scale as input parameters.

Among the different simulation techniques is the ab-initio method1. It provides
a precise evaluation of the structure and energy of defects such as their formation and
migration energies. Such values are not only used in some analytical models at the
macroscopic scale, but also in Monte-Carlo simulations (cf. Fu et al. in [18]) and
cluster dynamics (cf. Barouh et al. in [19]). In addition, ab-initio method helps in
the development of semi-empirical interatomic potentials that can be used in molecular
dynamics simulations.

At a larger scale of few nanometers, classical molecular dynamics provides an insight
on the elementary deformation processes in materials by solving the equations of motion at
the atomic scale2. These calculations are based on semi-empirical interatomic potentials,
such as EAM potentials (ex: [20–22]).

At the mesoscopic scale comes the dislocation dynamics, it represents an intermediate
level linking the atomic scale to the level of continuum mechanics of mono/polycrystals [23].
It is based on linear elastic theory, in which dislocations are moving in an elastic continuum
medium [24]. DD technique is a powerful tool to gain an insight into crystal plasticity

1Latin word which means "from the beginning" [17].
2MD simulations can also be performed using ab-initio evaluations of effective interatomic forces
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through the complex evolution of dislocations. DD calculations are not only performed at
the nanometric scale but also at the size of grains (few µm) to provide and enrich crystal
plasticity laws. The latter describe the mechanical behavior of statistically representative
population of dislocations based on their density only.

At a scale higher comes the finite-elements method (FEM). This method aims at
solving the set of partial differential equations describing the continuum motion and/or
equilibrium of an object. In this MMM approach, it is mainly used to simulate the time
evolution of the microstructure at space and time scale in the range of few cm3 and few
seconds, respectively. Crystal plasticity laws are used in FEM. The results of FEM help in
deriving polycrystalline plasticity laws that describe the deformation at the macroscopic
scale [25].

This work was performed using a 3D nodal DD code developed at CEA, CNRS
and INRIA, called NUMODIS which stands for NUmerical MOdeling of DISlocations [26].
The originality of this work lies in the attempt to reproduce the individual interactions
of "screw dislocations" with radiation-induced defects in DD in a good agreement with
prior MD studies. This approach ensures the validity of our results when performing
massive simulations. The latter is used to predict plasticity at a larger scale using complex
geometries of junctions and radiation-induced defects, showing the power of DD to handle
such calculations.

Organization of manuscript
This thesis is organized in the following way:

Chapter 1 is a literature review of the most important topics related to the scope of this
work. It consists of a general description of the steel used in French RPV concerning its
chemical composition, metallurgical and mechanical properties. A description of radiation-
induced defects and their effect on the mechanical properties of RPV steel is then made.
The importance of screw dislocations in controlling the deformation mechanism in RPV
steel is also underlined. Finally, results from available molecular dynamics studies are
presented for later comparison with dislocation dynamics.

Chapter 2 is an overview of our methodology to compare dislocation dynamics to
molecular dynamics and how to transfer information through different scales. This chapter
provides a detailed description of the code NUMODIS used for this work, with particular
focus on one of the most important features; the nodal split algorithm.

Chapter 3 is dedicated to the description of the modifications and models implemented
in the code to reproduce molecular dynamics results using our dislocation dynamics code.

Chapter 4 represents the core of this thesis. In this chapter we present the work done to
reproduce each individual interaction between a screw dislocation and radiation-induced
loops. In particular, interaction with 〈1 0 0〉 square SIA loops of different orientations and
1/2[1 1 1] hexagonal SIA loops of different size. We present the details of each interaction
and how to reproduce it correctly with DD in NUMODIS.
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9 1.1. Steel in the nuclear industry

Introduction
This chapter is essentially a bibliographic review of the mechanical behavior of the

French reactor pressure vessel steel. We mainly focus on the radiation-induced defects and
study their influence on the mechanical properties of the steel at the microscopic scale.

In this chapter, the first section is a briefing on steels used in the nuclear industry.
Then we focus on the low-alloy steel used in RPV, its chemical composition, metallurgical
and microstructural properties. In section (1.3), we concentrate on the mechanical
properties of the RPV steel and the difference between irradiated and unirradiated states
at the macroscopic scale. The origin of the mechanical degradation of the RPV steel is then
related to the presence of radiation-induced defects. We focus mainly on self-interstitial
loops and precipitates for the sake of this study. Comparison of the interactions between
radiation-induced defects and dislocations using either molecular dynamics or dislocation
dynamics is finally presented.

1.1 Steel in the nuclear industry
Nuclear energy proved itself as a reliable and efficient technology that provides a

stable source of energy. Many countries adopted the nuclear technology not only for
electricity generation, but also for research purposes. The total capacity of nuclear energy
is around 383 GW(e) and delivers around 2410 TW(e).h of electricity supply in 31 countries
around the world [1]. There are several types of nuclear power reactors, in this study we
concentrate on the pressurized water reactors. PWR is the most predominant design and
it represents around two-thirds of world’s nuclear reactors [1].

The selection process of nuclear reactors materials is of a specific importance. Due
to irradiation effect, nuclear power plants are subjected to a unique operation environment
that differs from any other application. Hence, certain properties are required for the
selected materials to ensure a safe long term operation of the nuclear reactors [2]. These
requirements are listed below:

• Mechanical properties; strength, ductility, toughness and structural integrity.
• Production; machinability, fabricability, compatibility, availability and cost.
• Thermal properties; heat transfer, thermal stability.
• Chemical properties; stability, corrosion resistance.
• Neutronic properties; irradiation stability.

Different grades of steels are widely used in nuclear power plants. Steels are mostly
used for structural materials such as the steam generators, piping, reactor pressure vessel
and internals. They have a great resistance against internal and external stresses while
maintaining the integrity of the structure. Regarding their thermal properties, they show
a good stability against deformation at high temperatures. In terms of production, iron
exists in immense amount and it has a competitive cost and availability compared to other
metals. Steels manufacturers have wide experience with steel fabrication and machining.
In addition to the above mentioned properties, the need for a material able to withstand
the harsh irradiation environment made steels a viable option in the nuclear industry [2].



Chapter 1. State of the art 10

Table (1.1) shows the different types and grades of steel used in nuclear reactors.
The choice of each type of steel depends mainly on the function of the component. Carbon
steels are mainly used for components with low irradiation exposure, e.g. piping in the
secondary circuit. The latter are connected to the RPV from the outer side, the irradiation
dose is therefore low [2].

Table 1.1 – Different types of steels used in nuclear reactors. Details of the crystallographic
structure, mechanical properties and corrosion resistance are indicated for each type.
Examples of the components for each type of steel is also listed. (after [2–4])

Carbon Steel Low-Alloy Steel Austenitic S.S.

Crystal structure BCC BCC FCC
Microstructure Ferrite, Bainitic Ferrite, Bainitic Austenitic
Main alloying elements Mn, Si Mn, Mo, Ni, Cr ∼10%Ni, ∼18%Cr
Yield stress (MPa) 250-450 250-450 ∼200
Toughness/Ductility High High Very high
DBT Yes Yes No
Irradiation resistance N/A Moderate High
Corrosion resistance Risk for FAC Moderate High

Components Secondary
piping

Vessel
Pressurizer

RPV liner
piping, Pump

The nuclear reactor coolant system transfers the generated heat in the reactor core
to the turbines. Its main function is to maintain the temperature of the fuel within limits
to avoid any meltdown. Light water is used as a coolant and a moderator in PWRs. Water
circulates under a pressure of around 155 bars (15.5 MPa). The existing pressure prevents
water from boiling before it reaches the steam generators.

Ferritic or low alloyed steels are commonly used to produce reactor pressure vessels
and the pressurizer [5]. Although these components are less exposed to irradiation damage
than the fuel, their mechanical behavior remains crucial during the lifetime of the nuclear
reactor. One of the major problems that encounters nuclear engineers is the ductile-brittle
transition phenomenon. Below this specific temperature, the material undergoes a brittle
fracture instead of a ductile one [3]. This phenomenon might be detrimental in case of
accidents such as loss of coolant accidents [5].

Austenitic stainless steels are a good choice for components in direct contact with
water due to their corrosion resistance properties. Furthermore, they are mainly used in
components of moderate and high exposure to irradiation e.g. primary piping, pumps
and steel liner inside the RPV [2]. Generally, austenitic steels are like other face-centered
cubic (FCC) crystals, they do not exhibit a ductile to brittle transition. Nevertheless,
Mullner et al. reported that DBT is observed in some types of austenitic steels of specific
compositions at certain temperatures [6].
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In summary, low-alloy steels are used in the reactor pressure vessel for their mechanical
properties, corrosion and irradiation resistance. In the next section, we concentrate on the
RPV steel through a general overview of the bainitic structure.

1.2 Generalities on the RPV steel
In this section we focus on the low-alloy steel used in RPV. Mainly, its chemical

composition and the heat treatment to obtain the desired microstructure. We also present
metallurgical and microstructural observations.

1.2.1 RPV as a primary component in nuclear reactors
The RPV is considered as the primary component of the reactor coolant system. The

RPV consists of a thick-walled cylinders stacked on top of each other and two hemispheres
all welded together. One hemisphere is in the bottom and the other on the top. The latter
contains openings for the control rod driving system. The RPV is coated inside with a
stainless steel liner of small thickness for purposes of anti-corrosion protection. The vessel
contains the reactor core which is composed of fuel assemblies, control rods and supports
internal structures. It is shown as a cut-away in Figure (1.1).

Figure 1.1 – Schematic diagram of the reactor pressure vessel and the internal
components including fuel and control rods (after Kok 2009) [5].

The nuclear island is composed of the RPV connected to four steam generators,
reactor coolant pumps and one pressurizer. The aforementioned components are connected
to the RPV through inlet and outlet nozzles located on its upper half. A schematic
diagram of the nuclear island is depicted in Figure (1.2).
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Figure 1.2 – Schematic diagram of the nuclear island. The reactor pressure vessel is
connected to four steam generators. A reactor coolant pump is connected to each steam
generator, while only one pressurizer is connected to the hot leg of one steam generator

(after Kok 2009) [5].

The size of the pressure vessel is inversely related to the power density of the reactor.
For example, a pressurized water reactor has a smaller vessel than a boiling water reactor [7].
Several aspects must be taken into account in the design process of a PWR pressure
vessel [2]:

• geometry, specify its height, external and internal diameter, top and bottom geometry,
internal configuration of structural supports and the location of penetrations of inlets
and outlets.

• operating conditions, including maximum temperature and pressure in steady-state
and in case of accidents or transient-state.

• mechanical degradation due to irradiation conditions in terms of swelling and creep.

• ease of access for refueling, inspection and maintenance.

1.2.2 Chemical composition and heat treatment
The RPV is made with industrial low alloyed steel 16MND5 of bainitic structure.

The French RPV is similar to the A508CL3 (forged) pressure vessels used in US reactors.
The chemical composition of French RPV steel as specified by the French code of design
and construction (RCC-M) is indicated in Table (1.2) [8]. Each alloying element has a
specific effect on the microstructure and the final properties of the pressure vessel.
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Table 1.2 – Chemical composition of RPV in French nuclear reactors in weight percent as
specified in the French code of design and construction (RCC-M) [8].

C Mn Ni Mo Cr P S Si Al, Co, Cu, N, V

0.16 1.15-1.55 0.5-0.8 0.45-0.55 0.25 0.008 0.005 0.1-0.3 <0.1

As mentioned before, the RPV is composed of forged rings, flanges and nozzles
welded together. The forging process of the initial ingot takes place in several steps at
different temperatures between 1000 and 1300 ◦C [9]. In order to obtain the desired
bainitic-ferritic microstructure, three distinct phases of heat treatments are applied to the
initial forged pieces as follow [10, 11]:

• Homogenization phase:
– Slow cooling in the furnace after the forging process until 350 ◦C.
– Austenization at 900 - 950 ◦C during at least 6 hours.
– Quenching in water down to 350 ◦C during 20 - 42 minutes.
– Annealing at 650 ◦C during at least 6 hours for stress relief purposes.
– Cooling inside or outside the furnace.

• Enhancement of the mechanical properties:
– Austenization at 865 - 890 ◦C during 3 - 6 hours, to obtain a fine grain size.
– Quenching in water during 58 - 62 minutes, this gives the desired bainitic

structure.
– Annealing at 635 - 655 ◦C during 5 hours and half to remove internal stresses.
– Cooling inside or outside the furnace.

• Tempering phase:
– by reheating the vessel up to 615 ◦C and maintaining the temperature for 10

hours followed by slow cooling at 20 ◦C/h. This phase is necessary to increase
the toughness of the steel and for stress relief in the welding zones.

The initial temperature of the ingot and the cooling rate during quenching from
the austenitic phase is the main factor to obtain the bainitic-ferritic microstructure. The
resulting microstructure is described using the continuous cooling transformation diagram
(CCT) as in Figure (1.3). A unique CCT diagram exists for each alloy. The bainitic
microstructure is formed using a moderate cooling rate, slower than that used to form
martensite and faster than that to form pearlite. Bainite is formed of two distinct categories,
upper and lower bainite [3].
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Figure 1.3 – Continuous cooling transformation diagram of the RPV. Based on the
cooling rate and the initial temperature of the ingot, three microstructures are identified
in this diagram, martensite, bainite and ferrite-bainite. The blue arrows indicate the
different cooling rates of the inner and outer sides of the RPV due to its considerable

thickness (after Raoul 1999) [12].

Since the RPV has a considerable thickness of more than 20 cm, the inner and
outer sides are subjected to different cooling rates. This has an an effect on the resulting
microstructure of the RPV, which is discussed in the following section.

1.2.3 Microstructure of the RPV
The microstructure of the RPV steel is not homogeneous along its thickness. Since

the RPV has a thick-walled geometry, it is subjected to different cooling rates at the inner
and outer surfaces. The outer shell cools down at a rate of ∼ 1-2 ◦C/s which leads to a
totally bainitic microstructure. On the other side, the core cools down at a slow rate of ∼
0.1-0.2 ◦C/s. The bainitic structure, in general, consists of a dislocation-rich ferrite with
carbides grouped in carbon-enriched clusters. Upper bainite is comprised of lath bundles,
while lower bainite is in the form of individual plates. [13]. Observations of the bainitic
microstructure of 16MND5 RPV steel is done by optical microscope and scanning electron
microscope (SEM). Observations using these techniques are shown in Figure (1.4) [14].
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(a) (b)

Figure 1.4 – Bainitic microstructure of 16MND5 RPV steel. Observed with (a) optical
microscope, (b) SEM at lower scale. The dark constituent is a bundle of bainitic ferrite

laths, while the lighter phase is made of carbides (after Hausild 2002) [14].

As can be seen from Figure (1.4), the microstructure of bainitic steels looks like the
martensitic steel. It is therefore hard to be distinguished only by images, even when high
resolution microscopy techniques are used. The similarities in the morphology are due to
the existence of laths of different orientations.

During the previously described heat treatment of the RPV steel, it is possible to form
carbon rich zones in form of cementite (FexC), where x ranges between 2-3. More precisely,
it is formed by a chemical segregation during the solidification process [15]. Observation
of the carbides in the RPV steel using SEM in the inter-granular and intra-granular sites
is shown in Figure (1.5).

Figure 1.5 – SEM observation of carbides in the RPV formed by a chemical segregation
during the solidification process. (1) at austenitic intra-granular site (2) at inter-granular

site in the ferrite (after Carassou 2000) [16].

Carbide segregation phases contribute to the degradation of the mechanical properties
of the RPV steels, because they are considered as susceptible zones for crack initiation [17].
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In conclusion, we presented the bainitic structure of the RPV steel and how to obtain
such microstructure. In the next section, we present the mechanical properties of the
bainitic steel at the macroscopic scale.

1.3 Mechanical behavior of RPV
In this section, we present the mechanical properties of the RPV. We also show the

difference between the irradiated and unirradiated states as reported in literature.

The mechanical behavior of 16MND5 RPV steels has been widely studied in the
literature at microscopic and macroscopic scales [18–20]. The RPV steel has a body-
centered cubic crystallographic structure, the stress-strain relation is therefore affected by
temperature. Such relation is shown in Figure (1.6) for 16MND5 RPV steel under a strain
rate of 5× 10−4 s−1 [18].

Figure 1.6 – Stress-strain curve for 16MND5 steel at different temperatures under a strain
rate of 5× 10−4 s−1 (after Libert 2007) [18].

As can be seen in Figure (1.6), the yield stress increases when temperature decreases.
Furthermore, the fracture stress decreases when temperature increases due to the ductile to
brittle transition. The transition temperature between the thermal and athermal regimes
was reported to be around 300 K at a strain rate of 10−4 s−1. DBT temperature is closely
related to the strain rate [15, 18]. The fracture morphology of the RPV steel of a brittle
and ductile fractures is shown in Figure (1.7).



17 1.3. Mechanical behavior of RPV

(a) (b)

Figure 1.7 – Fracture morphology of RPV steel (a) brittle fracture (after Bouchet et al.
2005) [21], (b) ductile fracture (after Tanguy et al. 2008) [22].

Due to the existence of DBT phenomenon, the temperature of the RPV should be
maintained above a certain value to ensure the structural integrity of the RPV. The DBT
temperature increases when the irradiation dose increases and it exhibits a shift of the
upper shelf energy as illustrated in Figure (1.8).

Figure 1.8 – Evolution of the ductile-brittle Charpy transition curve in irradiated and
unirradiated states of RPV steel. Results for irradiated state are done under a fluence

Φ = 4.65× 1019 n/cm2. ∆T56J is the reference temperature for Charpy energy as specified
by the French nuclear authority (after Bouchet et al. 2005) [21].

Embrittlement due to irradiation can be characterized using the Charpy test. In
French nuclear reactors, the reference temperature for DBT temperature is taken when
the average rupture energy equals 56 joules [21]. As mentioned before, a degradation in
the mechanical properties occurs due neutron-induced embrittlement. The yield stress is
observed to increase when the irradiation dose increases.



Chapter 1. State of the art 18

Figure 1.9 – Irradiation effect on the yield stress as function of strain of pure iron at T =
320 K (after Victoria et al. 2000) [23].

The increase in the yield stress leads to a substantial hardening of the material.
Stress-strain curves can be fitted using Ramberg–Osgood correlation [24]:

ε = σ

E
+ 0.002( σ

σ0.2
)n (1.1)

where E is the Young’s modulus, σ0.2 is the equivalent yield stress at 0.2% elongation
and n is the hardening exponent. The latter is a fitted parameter that describes the knee
sharpness in the stress-strain curve with respect to irradiation.

In summary, the ductile to brittle transition is observed in RPV steel. The DBT
temperature increases with irradiation, the material therefore might be fragile at high
temperatures. This could be detrimental in case of accidents in nuclear reactors. In sections
(1.4, 1.5), we present a review of dislocations, their relation to mechanical deformation
and the origin of the irradiation effect on the mechanical properties at microscopic scale.

1.4 Dislocations and plastic deformation
This PhD thesis, among many other dissertations written by students such as

[19, 20, 25, 26], discusses the role of dislocations in the mechanical deformation of materials.
Moreover, basic information about the theory of dislocations can be found in general
textbooks such as [3, 27–29]. We dedicate this section to remind of the most important
basic concepts of dislocations that are discussed in the following chapters.
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1.4.1 Dislocations in general
In the early 20s of the bygone century, the difference between theoretical and

experimental values of applied shear stress to plastically deform a single crystal was
explained by the existence of dislocations. Plastic deformation occurs by atomic planes
sliding over each other when shear stress is applied. A dislocation is simply a line defect
in crystalline material that allows for such plastic shear without moving all the atoms
in the shear planes. There are two main types of dislocations; edge and screw. An edge
dislocation is formed by the insertion of an extra half-plane of atoms in the crystal. It
has a Burgers vector normal to the dislocation line. A screw dislocation is created by
displacing part of the crystal in opposite directions relative to each other. It has a Burgers
vector parallel to the dislocation line. In addition, a dislocation of mixed character can
also exist. Such dislocation is by definition a partial superposition of dislocation with edge
and screw character. The formation process of edge or screw dislocations is explained in
Figure (1.10).

Figure 1.10 – (a) Model of a simple cubic lattice, the atoms are represented by filled
circles, (b) positive edge dislocation DC formed by inserting an extra half-plane of atoms
in ABCD, (c) left-handed screw dislocation DC formed by displacing the faces ABCD
relative to each other in direction AB, (d) spiral of atoms adjacent to the line DC in (c)

(after Hull et Bacon 2001) [28].

1.4.2 Cross-slip mechanism
The cross-slip is known phenomenon for screw dislocations where the dislocation

may deviate in a cross-slip plane. The dislocation Burgers vector is along the intersection
of the primary and the cross slip planes. A simple illustration of such process is depicted
in Figure (1.11).
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Figure 1.11 – A screw dislocation part in a curved dislocation undergoes a cross-slip
process to a secondary plane (after Hull et Bacon 2001) [28].

1.4.3 Twinning and anti-twinning directions
Experiments performed on single crystals made of pure iron by Spitzig and Keh

in 1970 [30] and Molybdenum by Him, Lau and Dorn in 1972 [31] showed asymmet-
rical deformation processes around {1 1 2} planes in BCC metals. This feature, called
twinning/anti-twinning, can be related to the atomic asymmetry around these planes as
illustrated by Figure (1.12) (e.g. Chaussidon 2007). If we imagine cutting the crystal
in two parts along the (1 1 2) plane, this asymmetry makes shifting the upper-part with
respect to the lower part along the b vector more difficult that in the opposite direction.
This argument can be extended to the motion of 〈1 1 1〉 screw dislocations in {1 1 2} planes,
which is clearly asymmetrical along 〈1 1 0〉 directions.

Figure 1.12 – Illustration of the origin of twinning / anti-twinning directions for 〈1 1 1〉
screw dislocations: (left) Atomic structure of BCC as seen from a [1 1 1] direction. Along
this direction, the BCC structure can be seen as the superposition of three atom strings
as highlighted by three colors (green, blue, red), shifted by b/3 along the [1 1 1] direction.
(right) Atomic structure as seen from the side. The atomic arrangement is not symmetric

{1 1 2} planes (after Chaussidon 2007) [32].

Figure (1.13) shows the possible twinning and anti-twinning {1 1 2} planes associated
to a [1 1 1] screw dislocation with both a line vector and Burgers vector pointing outwards.
This phenomenon has also a direct influence on the ability of screw dislocations to cross-slip
between {1 1 0} planes (dashed green line in Figure 1.13) under an applied resolved shear
stress (e.g. Chaussidon 2007). In a nutshell, these screw dislocations will effectively avoid
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cross-slipping in the [-30◦; +30◦] angular sectors around {1 1 2} anti-twinning planes, while
cross-slip will be favored between neighboring {1 1 0} planes if the maximum resolved
shear stress direction lies in a twinning angular sector.

Figure 1.13 – Principle crystallographic orientations in crystals. The twinning and
anti-twinning directions of each plane are indicated as (T) or (AT) respectively (after

Chaussidon 2007) [32].

1.5 Radiation-induced defects
In this section, we present the different types of radiation-induced defects. We mainly

focus on the self-interstitial atom loops and precipitates, because of their high density
and obstacle strength. Moreover, we present different molecular dynamics studies of the
interaction between dislocations and radiation-induced defects. A comparison between
MD and DD is also done for some interactions.

Microstructural defects are continuously generated in RPV through rapid cascades
(few ps) at a fine scale (few nm) when subjected to fast neutron flux [33]. When an
energetic particle collides with an atom, the latter might be knocked out from its lattice
position. The first displaced atom is then called a primary knocked atom (PKA). The
PKA might travel to an interstitial site creating a vacancy behind. If the PKA has a
high energy, it might launch a cascade and create a large agglomeration of knocked atoms.
Such nuclear reactions between lattice atoms and neutron irradiation occur in the RPV
steel. After certain reactions, atoms transmutation can also take place which produce a
new metal atom, or gas such as Hydrogen or Helium [33].

Radiation damage is generally described in terms of displacements per atom from
their lattice positions as proposed by Norgett et al. [34]. Atoms of the RPV in light-water
reactors (LWR) normally has a displacement rate of 0.03 dpa/yr. In addition, dpa in
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research reactors is much higher than that for LWR [4]. Generally, a small fraction of
the displaced atoms actually induce defects. This is because most of the displaced atoms
recombine with existing vacancies through an annihilation process. Atoms that do not
recombine, migrate to sinks such as grain boundaries, dislocations and existing cavities [35].

There are several types of radiation-induced defects in nuclear reactors, such as
Cu-rich precipitates, cavities, solute cluster (e.g. Mn, Cr, etc.) and loops. Their density
and volume fractions as function of neutron dose were reported in Meslin et al. (see Figure
1.14) for several chemical compositions.

Figure 1.14 – Microstructural evolution of the number density as function of neutron dose
of different types of radiation-induced defects for several alloy compositions using different

characterization techniques (after Meslin et al. 2010) [36].

In general, transmission electron microscopy (TEM) is used to observe the radiation-
induced loops and dislocations [28]. Other techniques can be used to characterize different
radiation-induced defects. Atom probe tomography (APT), scanning electron microscopy
and positron annihilation spectroscopy (PAS) are examples of such characterization
techniques.

The characterization of radiation-induced defects provides information on the size
and concentration. In the following, we present the effect of each type of defects on the
mechanical properties. Lambrecht et al. in [37] investigated the size and concentration of
radiation-induced defects in pure iron and in different alloys including the RPV alloy. The
contribution of each type of radiation-induced defects to the hardening process is shown
in Figures (1.15, 1.16).
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(a) (b)

Figure 1.15 – Microstructural evolution of radiation-induced defects for different alloy
compositions using different characterization techniques at dose = 0.1 dpa. (a) obstacle

size, (b) Defect concentration (after Lambrecht et al. 2010) [37].

In case of low irradiation dose, radiation-induced loops are not observed in RPV
steel. However, Lambrecht et al. suggested that there are invisible loops in the RPV steel.
Such invisible loops have a high obstacle strength factor (as presented in Equation 1.2)
and contribute to the hardening process following the equation [37].

∆σ = αMµb
√
N.d (1.2)

where α represents the obstacle strength, M is Taylor factor = 3.06, µ is the shear modulus
= 71.8 GPa and b is the Burgers vector = 0.249 nm. N is the number density of radiation
defects and d is the mean size. The values of N and d are obtained from the experimental
methods.

The contribution of each defect to the hardening process is a function of the obstacle
strength and their density as shown in Figure (1.16). SIA loops have a high obstacle
coefficient α in Equation (1.2) compared to other defects. Although SIA loops have a high
obstacle strength, their contribution to hardening is lower than the precipitates. This is
because the latter have a much higher density than the SIA loops.
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(a) (b)

Figure 1.16 – (a) The obstacle strength from Equation (1.2) of the different types of
defects in the investigated alloys. (b) the hardening contribution of each defect in

function of the hardening measured by tensile tests (after Lambrecht et al. 2010) [37].

Radiation-induced defects have a substantial influence on the mechanical properties
of the RPV steel [38, 39]. For example, embrittlement and fracture, hardening, swelling
and creep. At the operation temperature of a RPV, the embrittlement is attributed to the
presence of solute cluster and point defects cluster. The latter consists of dislocation loops
or cavities [38, 40–42].

The four types of radiation-induced defects are discussed in the following.

1.5.1 Copper-rich precipitates
Although Copper is present only in minor concentrations in the composition of the

RPV steel, it tends to form nanometric defects under the influence of irradiation. Other
alloying elements form precipitates as well e.g. Ni, Mn, Si and Cr. However, Buswell et al.
show that Cu precipitates are found to be pure [43]. Other experimental (cf. Pareige et
al. [44]) and modeling (cf. Odette et al. [45]) studies show that other alloying elements
are concentrated at the Cu-Fe matrix interface. The morphology of such precipitates
is revealed using atom probe tomography. Figure (1.17) shows the pure precipitates in
irradiated binary iron-copper alloy (Fe-0.7%Cu, Fe-1.4%Cu) at 288 ◦C.
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Figure 1.17 – Atomic probe tomography of binary iron-copper alloy (Fe-1.4%Cu)
irradiated with neutrons at 288 ◦C (a) concentration profile of Cu precipitates with

distance through the precipitate (b) cluster of Cu atoms (after Pareige et Auger 1994) [44].

Odette et al. reported that Cu precipitates have a size of about 1.5 nm and a
concentration of around 1024/m3 when steel is irradiated at 1019 n.cm−2 and 290 ◦C [45].
The crystallographic structure depends on the size of the precipitate. The precipitates
might undergo a martensitic transformation from BCC to FCC when the size increases [46].
The previous finding is coherent with prior studies obtained with atomistic simulations
(cf. Bacon et Osetsky in [47]). The martensitic transformation is also reported by Harry
et Bacon, when a screw dislocation interacts with Cu precipitates [48].

Copper precipitates are considered as a pinning source to the dislocation motion.
Bacon and Osetsky 2003 and 2004 studied the contribution of Cu precipitates to the
mechanical strengthening at the atomic level. The mechanism of dislocation-precipitate
interaction depends on the size of the Cu precipitate. For small diameters, no climb or
martensitic transformation is observed. For large diameters, the observed reactions are
non-conservative and the production of vacancy and interstitial point defects is observed.
Such interaction is found to cause the precipitate to change its crystallographic structure
and lead to possible climb of the dislocation [47, 49]. The relation between the critical
shear stress (CSS) and the size of the precipitates and temperature is given in Figure
(1.18a)
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(a) (b)

Figure 1.18 – MD results of the strengthening due to Cu precipitates (a) CSS as function
of Cu precipitate diameter for different lengths of the dislocation, (b) CSS as function of
temperature for different sizes of the Copper precipitates (after Bacon et al. 2004) [47].

1.5.2 Cavities
Vacancies are known to migrate to sinks in the crystal at high temperature and

irradiation dose. They agglomerate in a three dimensional manner and form cavities
of large geometry [50–52]. Cavities can be divided into two types, bubbles and voids,
depending on gas content and pressure. Bubbles are Helium gas atoms generated by (n,α)
reaction with boron atoms in the steel. Commonly, the nanometric cavities have a nearly
spherical morphology. It is suggested that their shape is influenced by the presence of
alloying elements [53, 54].

Cavities are generally considered as strong obstacles to the motion of dislocations.
Thus, they have a higher contribution in the hardening process [40, 55]. Several studied
of cavities using MD and DD simulations are found in literature [56–58]. Osetsky et al.
studied the effect of temperature on the critical shear stress of an edge dislocation to
overcome a 2 nm cavity. The latter study was performed using atomistic simulations. The
result is shown in Figure (1.19). As the temperature increases, the critical shear stress
continuously decreases.
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Figure 1.19 – MD result of the temperature influence on the normalized critical shear
stress of an edge dislocation to overcome a periodic array of voids of 2 nm size (after

Osetsky et al. 2005) [59].

Terentyev et al. in [55] also studied the temperature effect on CSS of an edge
dislocation to overcome a periodic array of voids in α-iron using molecular dynamics. The
configuration is shown in Figure (1.20). Two different interatomic potentials [60, 61] are
used for comparison.

Figure 1.20 – Interaction of an edge dislocation with a periodic array of voids in α-Fe
using quasi-static MD simulations based on Ackland 2004 interatomic potential at

T = 1 K. Black and green lines represent the critical configuration of dislocation line
shape in the glide plane for voids with D = 2 nm and (L + D) = 21 or 41 nm

respectively (after Terentyev et al. 2008) [55].

The normalized CSS as function of temperature for different sizes of voids is shown
in Figure (1.21).
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Figure 1.21 – CRSS as function of temperatures of the interaction between edge
dislocation with voids of 1 or 2 nm diameter for different interatomic potentials as

in [60, 61] using static and dynamic MD simulations
(after Terentyev et al. 2008) [55].

In a static simulation study at 0 K, Osetsky and Bacon investigated the critical
shear stress dependence on void’s size and regular mean spacing as shown in Figure (1.22).
It is clear that the critical shear stress is directly related to the size of the void. However,
it is inversely proportional to the center-to-center spacing for a periodic row of voids in a
crystal. Such dependence is formally predicted with Equation (1.3) [62]:

τc = Gb

2πL [ln(D−1 + L−1)−1 +B] (1.3)

Figure 1.22 – Dependence of the critical shear stress, τc using static MD simulations at
T = 0 K on void’s diameter and dislocation length (after Osetsky et al. 2003) [40].

1.5.3 Solute Cluster
Solute atoms might be alloying elements intentionally added to adjust certain

properties of materials. They can also be impurities from the elaboration process, or they
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can be created through nuclear reactions during the lifetime of the RPV. Typical solute
atoms in the RPV steel are Cu, Ni, Mn, P and Si [63]. They are characterized using atom
probe tomography or by small angle neutron scattering (SANS). These techniques revealed
the existence of clusters smaller than 1.5 nm with a density of around 1024 m−3 when steel
is irradiated at 1019 n.cm−2 neutron fluence and 290 ◦C [64]. Solute cluster are known to
have a dilute morphology compared to copper-rich precipitates, as they might contain up
to 85% Fe atoms [63].

Radiation-induced segregation is affected by the presence of point defects since they
might act as sinks trapping solute atoms or cause them to repel. An extensive description
of the formation process of solute clusters and their microstructural evolution under
irradiation is reported in Vincent 2006 [65].

Becquart et Domain reported that the interaction between solute atoms and point
defect (SIAs or vacancies) in iron has elastic and chemical parts. The size and the electronic
structure of solute clusters determine the predominant effect. The elastic effect is found
to be predominant for large clusters. The chemical effect is more important in case of
different electronic structures between solute clusters and the matrix [42].

Pascuet et al. studied the segregation of solute atoms around an edge dislocation
dipole using MD. They also investigated the effect of solute atoms on the pinning of
dislocation lines [66]. A visualization of such segregation is shown in Figure (1.23).

Figure 1.23 – Solute atoms distribution around an edge dislocation dipole. The chemical
composition of the alloy is Fe-0.7%Ni-1.4%Mn. The segregation temperature is 300 K.

The dislocation dipole is presented in black lines, while colors of solute atoms are: Cu in
green, Mn in violet and Ni in red (after Pascuet et al. 2017) [66].

The segregation of solute atoms at the dislocation core plays an important role in
the mobility of dislocations. The latter is reduced due to the presence of solute clusters
that act as strong obstacles for edge dislocations [66].

1.5.4 Radiation-induced loops
There are two types of dislocation loops based on their formation mechanism. Loops

are formed either due to a collapse of atomic planes over an agglomeration of vacancies, or
by a set of self-interstitial atoms. Only the latter are observed in the RPV and they are
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discussed in this section.

Prismatic dislocation loops are characterized by their Burgers vector, which is
perpendicular to their plane. They can only glide in the direction of their Burgers vector.
Therefore, they cannot expand or shrink unless a thermally activated climb occurs, and by
an absorption process of other SIAs created by subsequent damage [28, 67].

As mentioned in the previous section, TEM is used to observe dislocation loops
in irradiated materials. Zinkle et Singh showed that dislocation loops are only visible
using TEM at high irradiation dose ∼ 0.2 dpa [50]. Figure (1.24) gives the microstructural
evolution of irradiated steel at different doses.

Figure 1.24 – TEM images of the microstructure of RPV steel at different irradiation
doses. SIA loops are only observed at high irradiation dose > 0.2 dpa

(after Zinkle et Singh 2006) [50].

The majority of observed dislocation loops are interstitials and have a Burgers
vector equal to 1/2[1 1 1] in {1 1 1} planes. MD simulations show that the lowest energy
configuration of dislocation loops is for Burgers vector 1/2〈1 1 1〉 with segments in 〈1 1 2〉
directions [68]. Other studies showed the existence of square dislocation loops of Burgers
vector equal to 〈1 0 0〉 in the 〈1 0 0〉 or 〈1 1 0〉 directions [50, 69–71]. This configuration is
most observed at high temperatures [72]. The evolution of density and size with radiation
damage in dpa is depicted in Figure (1.25a) [50].
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(a) (b)

Figure 1.25 – Experimental observation of the evolution of density and diameter of
dislocation loops as function of displacement damage (dpa) when irradiated at T = 340 K

(after Zinkle et Singh 2006) [50].

Molecular dynamics is used to investigate the effect of loop’s size and orientation on
the interaction mechanism with screw of edge dislocations. In the following, three main
MD studies are discussed. The first study is focused on edge dislocations, while the second
and third studies are focused on screw dislocations.

All of these studies used an interatomic potential for pure iron by Ackland et al. [61].
This interatomic potential is fitted to ab-initio simulations using the embedded atom
method (EAM). There are many other potentials used in the literature depending on
the chemical composition of the studied material [60, 73, 74]. However, the interatomic
potential of Ackland et al. provides a better prediction of the dislocation core structure in
good agreement with ab-initio simulations [41, 75, 76].

Interaction between edge dislocations and SIA loops

There are several factors that determine the nature of the interaction between a
dislocation and a loop, such as the strain rate, the character of the dislocation (screw
or edge), size and orientation of the loop [77]. Interactions between edge dislocations
and radiation-induced defects are widely studied in literature compared to that of screw
dislocations. A summary of such interactions in iron are found in Granberg 2016 and in
Bacon et al. 2009 [38, 78].

A study by Bacon et al. shows the interaction between an edge dislocation with a
hexagonal loop with b =1/2[1 1 1] and 1/2[1 1 1] of 37 and 331 SIAs. The EAM interatomic
potential used in this study is Ackland et al. in [61]. They performed static and dynamic
simulations at T = 0 K and at different temperatures in the range between 100-450 K. The
applied strain rate in this study is 107 s−1. The initial configuration is shown in Figure
(1.26) [79].
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Figure 1.26 – Schematic representation of the initial configuration of the interaction
between a b =1/2[1 1 1] edge dislocation and a b =1/2[1 1 1] hexagonal loop used in MD
simulations. The applied shear direction is indicated with arrows on the top and bottom

of the simulation box (after Bacon et al. 2006) [79].

The primary results of static simulations at T = 0 K shows that the loop of 37
SIAs is transformed into a superjog of the same Burgers vector as the dislocation. The
formation of the superjog in this case is done through the change of the crowdion axis of
the loop from [1 1 1] to the [1 1 1] direction. A visualization of such interaction mechanism
is also shown in Figure (1.27). In this case, the dislocation-superjog combination is glissile
and can glide along the plane of the original dislocation.

Figure 1.27 – Different stages of static MD simulation at T = 0 K between an edge
dislocation and 1/2[1 1 1] hexagonal loop of 37 SIAs. A glissile superjog is formed as a

result of this interaction (after Bacon et al. 2006) [79].
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The same mechanism of superjog formation is observed when dynamic simulations
are performed at 300 K with a large loop of 331 SIAs. The dislocation is first attracted
to the loop, then a [0 1 0] segment is formed. The formed [0 1 0] segment is sessile. The
dislocation is therefore blocked and then glides and bows in the [1 1 1] direction. With the
increased stress level, the sessile segment is transformed into a [1 1 1] segment. After this
reaction, a superjog is immediately formed. The overall process is illustrated in Figure
(1.28).

Figure 1.28 – Different stages of dynamic simulation at T = 300 K between edge
dislocation and a 1/2[1 1 1] hexagonal loop of 331 SIAs (after Bacon et al. 2006) [79].

A summary of the critical stress for different temperatures for small and large loops
of 37 and 331 SIA, respectively, is shown in Figure (1.29). Two main results can be noted
from this figure; i) temperature has nearly no effect on the critical stress for small loops
of 37 SIAs, ii) for large loops of 331 SIAs, the critical stress decreases when temperature
increases, iii) the critical stress of large loops is higher than that for small loops regardless
of the temperature.
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Figure 1.29 – Calculation with molecular static and molecular dynamics of the
temperature effect on the critical stress defining the interaction strength between a screw
dislocation and loops of 37 and 331 SIAs under different strain rates (indicated by sr)

(after Bacon et al. 2006) [79].

In another study, Terentyev et al. studied the influence of loop’s orientation and its
position relative to the glide plane on the critical shear stress. They studied the interaction
mechanisms between an edge dislocation and SIA loops of b =〈1 0 0〉 [80]. Recently, with
dislocation dynamics simulations, Shi et al. succeeded in reproducing MD results by
Terentyev et al. [81]. Figures (1.30 - 1.33) are snapshots of two different cases studied
using MD [80] and compared directly to DD [81]. A good agreement was found between
the two simulation methods.

Figure 1.30 – Configuration C2 of MD simulation result of the interaction between edge
dislocation and a [1 0 0] SIA loop introduced in the middle of the glide plane. A double

superjog is formed in this mechanism (after Terentyev et al. 2008) [80].

Figure 1.31 – C2 configuration in [80] reproduced using dislocation dynamics simulations
(after Shi et al. 2015) [81].
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Figure 1.32 – Configuration C4U of MD simulation result of the interaction between edge
dislocation and a [100] SIA loop. The lower corner of the loop is placed in the glide plane.
Two loops are left behind of b =1/2[1 1 1] and 1/2[1 1 1] connected by a shared segment of

b =[1 0 0] (after Terentyev et al. 2008) [80].

Figure 1.33 – C4U configuration in [80] reproduced using dislocation dynamics
simulations (after Shi et al. 2015) [81].

Comparison between the critical stress to overcome the obstacle calculated with the
two simulation methods is shown in Figure (1.34). The difference between the critical
stress found in MD and DD in the three cases was 14%, 18% and 19% for C2, C4U and C5
cases, respectively. Although there is a gap between MD and DD results, it is completely
justified due to the computational accuracy and approximations in the physical models in
DD.

Figure 1.34 – Comparison of the stress-strain curve for MD and DD results for C2, C4U
and C5 configurations (after Shi et al. 2015) [81].

Interaction between screw dislocations and SIA loops

Screw dislocations in BCC metals are known to have a thermally activated glide
controlled by the double-kink mechanism [75, 76]. The difference in the core structure
between screw and edge dislocations mainly leads to different reaction mechanisms.
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Terentyev et al. studied the interaction between a screw dislocation and 〈1 0 0〉
radiation-induced loops of 128 SIAs in α-iron. The authors performed dynamic simulations
at different temperatures of 100 K, 300 K and 600 K. The applied strain rate equals
1×107 s−1 that corresponds to a steady state velocity of 27 m/s. The initial configuration,
the simulation box and the different orientations of SIA loops are depicted in Figure (1.35).

Figure 1.35 – Geometrical configuration of the simulation box that contains a screw
dislocation and SIA loops of different orientations. Arrows in top and bottom of

simulation box indicate the direction of the applied strain rate (after Terentyev et al.
2010) [82].

The outcome of the different interactions at different simulation temperatures is
summarized in Table (1.3). The notation for each reaction is described by a letter and
a number, e.g A2. Letters represent the Burgers vector of loops, where A, B and C
correspond to [001], [010] and [100] respectively. Numbers 1, 2 and 3 correspond to the
reaction temperature of 100 K, 200 K and 300 K respectively. A schematic representation
of the initial interaction step for the three different mechanisms is indicated in Figure
(1.36).
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Table 1.3 – Reaction summary between 1/2[1 1 1] screw dislocation and square 〈1 0 0〉
radiation-induced loops of 128 SIAs in α-iron at different temperatures. The critical
stress represents the stress needed to overcome the obstacle without the flow stress of the
dislocation alone (after Terentyev et al. 2010) [82].

Reaction Temperature (K) Burgers Outcome CSS (µb/L)

A1 100 [001] Restored as [001] loop 0.40
B1 100 [010] No reaction 0.09
C1 100 [100] Bi-loop 0.56
A3 300 [001] Restored as [001] loop 0.42
B3 300 [010] Absorbed as helix 0.68
C3 300 [100] Absorbed as helix 0.68
A6 600 [001] Bi-loop 0.59
B6 600 [010] Absorbed as helix 0.62
C6 600 [100] Absorbed as helix 0.62

Figure 1.36 – Schematic representation of the first step of the interactions between a
1/2[1 1 1] screw dislocation and square 〈1 0 0〉 radiation-induced loops of 128 SIAs in
α-iron at different temperatures. (a) reaction C1, (b) reaction A3, (c) reaction B3 [82].

The interactions at 300 K (ambient temperature) are discussed below, notably A3
and B3. In the case of A3, the loop has a Burgers vector of [0 0 1] and after the interaction,
the loop was restored with the same initial Burgers vector. First, the dislocation cross-slips
to meet the lower part of the loop at point C. Dislocation arms then convert segments BC
and CD to 1/2[1 1 1] by the following reaction in Equation (1.4).

[0 0 1]− 1/2[1 1 1] = 1/2[1 1 1] (1.4)

When dislocation arms bow out, the two sides of the mobile dislocation line recombine.
The segments of the loop are then restored as [0 0 1] when the dislocation breaks away.
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Figure 1.37 – Snapshots of reaction A3 between a 1/2[111] screw dislocation and a square
SIA loop of b = [001] at 300 K using MD simulations. The original loop is restored at the

end of this reaction (after Terentyev et al. 2010) [82].

In the case of B3, the original loop is absorbed as a helical turn. The first interaction
is reported to be repulsive. As the level of stress is increased, the dislocation cross-slips
and encounters the SIA loop at point D. Segment AD is transformed to 1/2[1 1 1] through
the following reaction.

1/2[1 1 1] + 1/2[1 1 1] = [0 1 0] (1.5)

The formation of the helical turn then takes place. The dislocation is liberated as in
Hirsch’s mechanism, similar to the interaction mechanism with loop of 37 SIAs in Liu et
Biner in [83].
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Figure 1.38 – Interactions steps between a screw dislocation and a SIA loop of b = [0 1 0]
at 300 K using MD simulations. The original loop is absorbed as helical turn and restored
as 1/2[1 1 1] loop when the dislocation breaks away (after Terentyev et al. 2010) [82].

A summary of the normalized critical stress of each reaction in [82] is shown in
Figure (1.39). As can be seen in this figure, the critical stress of the mechanisms that
result in a helical turn is always higher than the other mechanisms. Reactions that restore
the original loop have the lowest critical stress.

Figure 1.39 – A summary of the normalized critical stress as function of temperature for
loops of different orientations and number of SIAs (after Terentyev et al. 2010) [82].

In another study, Liu et Biner studied the interaction of screw dislocation with
1/2〈1 1 1〉 hexagonal SIA loops of different sizes in α-iron. The diameter of each loop
was determined by the number of SIAs contained in the loop. The latter quantity is
given by a(2N)1/2/3. The studied loops had 37, 127 and 271 SIAs which is equivalent
of cluster size of 1.6, 3.0 and 4.4 nm respectively. The length of the screw dislocation
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was equal to 30 nm extending along the length of the simulation box. Periodic boundary
conditions were applied along the directions of the dislocation line and free surfaces in
the glide direction. Furthermore, free boundaries were applied on the upper and lower
surfaces. These simulations were performed at 300 K and at a strain rate 8× 106 s−1 that
corresponds to a steady state velocity of 30 m/s [83].

Two interaction mechanisms are observed for this configuration depend on the size of
the SIA loop. For the smaller loop of 37 SIAs a helical turn is observed (see Figure 1.40).

Figure 1.40 – Interaction mechanism between screw dislocation and loop of 37 SIAs using
MD simulations. The original loop is transformed into a helical turn, the dislocation is

liberated as in Hirsch’s mechanism (after Liu et Biner 2008) [83].

At the beginning of the simulation, the screw dislocation glides in the 〈1 1 0〉 plane
toward the loop. The loop then moves along its crowdion axis below the glide plane then
moves again toward the dislocation under the effect of the applied stress field and the
attraction by the dislocation stress field. A sessile junction of type [0 0 1] is formed when
the dislocation meets the loop. The sessile junction blocks the movement of the dislocation.
Under increased stress, the junction is dissociated and converted to a 1/2[1 1 1] segment.
The rest of the loop is transformed into a helical turn through successive steps of cross-slip
during a relatively short time. The helical turn has six segments. It can only glide along
the direction of its Burgers vector which is parallel to the direction of the dislocation.

This mechanism was previously described by Hirsch and therefore it is often called
as Hirsch’s mechanism [84]. In this mechanism, in order for the dislocation to be liberated
it has to close the helical turn. It leaves a loop of the same Burgers vector as the initial
screw dislocation, in this case it is 1/2[1 1 1].

Regarding loops of large size, a planarization mechanism is observed for loops of 127
and 271 SIAs. In this mechanism, the formation of the first junction is similar to that of
37 SIAs. However, the formation of the helical turn is not favorable due to the large size
of the loop. The MD results of this interaction are shown in Figure (1.41).
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Figure 1.41 – Interaction mechanism of screw dislocation with a loop of 127 or 271 using
MD simulations. A planarization mechanism is observed where the loop is transformed

into a [1 0 0] faulted loop (after Liu et Biner 2008) [83].

Segment 3 of the loop (indicated in the schematic Figure (1.42)) is attracted by the
right arm of the dislocation under higher stress levels. The character of this segment is
changed to an energetically favorable [0 1 0] segment under Frank’s rule. Once segment 3
is transformed, the other segments follows directly. The loop is finally transformed to a
[0 1 0] loop in the (1 1 0) plane.

Figure 1.42 – Schematic representation of the planarization interaction mechanism (after
Liu et Biner 2008) [83].

The critical stress for the three cases was measured at the junction breakup shear
stress minus the flow stress needed to move the dislocation alone. A summary of these
results is shown in Table (1.4).
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Table 1.4 – Critical hardening stress and strength coefficient α for different sizes of SIA
loops at T = 300 K (after Liu et Biner 2008) [83].

∆σ (MPa) α

300 K 300 K

SIA 37 320 0.51
SIA 127 260 0.38
SIA 271 250 0.38

The strength coefficient is calculated using Orowan’s relationship as ∆σ = αµb/L,
where µ is the 〈1 1 1〉 shear modulus (71 GPa), b is the length of Burgers vector. L is the
difference between the length of the straight screw dislocation and the loop diameter d.
The values of α ranged between 0.4–0.6 for 300 K. As can be seen from Table (1.4), the
formation of a helical turn leads to a critical stress 25% higher than the planarization
mechanism. Such calculations are in good agreement with previous experiments made
with neutron irradiation [71, 85].

1.6 Conclusion
In this chapter we show the following:

• Irradiation has a major influence on the degradation of the mechanical properties of
the RPV. Such influence is mainly characterized by an increase in the yield stress
and a shift in the DBT temperature.
• Mechanical properties of the RPV steel are affected by irradiation due to the presence

of radiation-induced defects. There are main four types of defects; precipitates, SIA
loops, cavities and solute clusters.
• Defect’s concentration and size are the main two factors that determine the effect
of each defect to the embrittlement. In this study we concentrate on the effect of
precipitates and SIA loops since they have the highest obstacle strength. In case of
SIA loops, Burgers vector of the loop and character of the dislocation determine the
nature of their interaction.
• Interactions of defects with screw dislocations are reported to have a higher critical

stress than that with edge dislocations. This is because of the nature of the observed
mechanisms, also the thermally activated glide of screw dislocation.
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Introduction
Dislocation dynamics provides the link between the atomistic and macroscopic scale.

It is based on the linear elastic theory. In this theory, dislocations glide in an elastic
continuum medium [1]. In case of a single dislocation, a mathematical solution for the
stresses can be found analytically. However, in the presence of N dislocations, the problem
becomes chaotic and no analytical solution can be found. This is because each dislocation
segment generates a stress field that is affected by the stress field of all other segments in
the simulation box. The main purpose of DD simulations is to provide crystal plasticity
laws that depend on initial parameters (ex, crystallographic properties, temperature and
the corresponding elastic constants, deformation regime, etc.).

The advantage of DD is that it can handle massive simulations of large population
of dislocations and radiation-induced defects. The present PhD is mainly focused on this
scale and make use of a DD code that will be described later in this chapter.

This work is part of a multi-scale materials modeling approach done within the
framework of the European project SOTERIA [2]. SOTERIA aims to study the plasticity
in nuclear reactor pressure vessel and internals. It focuses on the effect of radiation-
induced defects and microstructural heterogeneities using a combination of experimental
and modeling work.

In this chapter, we present the history and categories of DD codes. In section (2.1),
we present the general algorithm on the DD code, NUMODIS, used in this study. In
section (2.2.2) we put emphasis on one particular aspect of this code, which is the set of the
local rules and core reactions used to handle interactions of dislocations. My contributions
to the developments of NUMODIS code are illustrated in this chapter.

DD codes: history and present
The history of DD goes back to the 60’s of the bygone century. The very first 2D

DD codes were developed by Foreman in 1967 and Bacon in 1967 after the introduction of
self-stresses concept by Brown in 1964 [3–5]. The aim was to evaluate the critical shear
stress of certain mechanisms. Among these mechanisms is the activation of a Frank-Read
source, or Orowan’s mechanism (a dislocation bypassing an obstacle). In the late 80’s
other 2D DD codes were developed to simulate the interaction between several infinite
straight dislocations [6, 7].

The beginning of three dimensional DD codes goes back to 1992 [8]. The aim was
to develop a code capable of handling individual or collective 3D dislocation behavior in
a more realistic manner. Different mechanisms were studied such as climb, cross-slip or
junction formation. Later on, more codes were developed and each showed an outstanding
capability to model various physical problems. In particular, mechanical behavior of ferrite
laths, fatigue studies, strain hardening induced by forest dislocations or other crystalline
defects like precipitates or grain boundaries. Detailed description of the history of 3D DD
codes can be found in Kubin 2013 [9]. Currently, a limited number of 3D DD codes are
available because of the efforts and time needed for the development of such codes.
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In general, DD codes can be classified into two main categories: lattice-based or
nodal codes. This classification is based on the discretization scheme of the dislocation
lines. Different approaches of discretization in DD codes are shown in Figure 2.1).

(a) (b)

(c)

Figure 2.1 – Discretization schemes of dislocation line in 3D DD codes. (a) Lattice-based
discretization of type Edge-Screw, (b) Lattice-based discretization of type

Edge-Mix-Screw, (c) Nodal discretization.

Dislocation lines are discretized into segments of constant line character [8]. The
nodes of Lattice-based DD codes are found at the corners of a three dimensional lattice.
Hence, nodes are authorized to move on lattice positions only. Consequently, the degrees
of freedom (dof ) of the nodes are reduced to a finite number. Tridis (SIMaP, Grenoble
INP) or microMegas (LEM, CNRS-Onera) are two examples of lattice-base DD codes. In
the former, dislocations are discretized in a succession of Edge-Screw segments, where in
the latter, dislocations are discretized in a succession of Edge-Mix-Screw segments.

On the other hand, nodal codes provide a better representation of the initial dis-
location line than lattice-based codes. More specifically, segments orientation and nodal
position vary in a continuous way. Therefore, complex geometries and reactions can be
described with more precision in nodal codes. NUMODIS (CEA, France) is an example
of such an approach. Paradis (LLNL, USA) is another example of nodal DD codes. For
these reasons, the work of this PhD is done using NUMODIS code.

Most of the existing DD codes share the same concept of discretization, forces
and velocity calculations. The major difference lies in the analysis of core reactions.
For example, annihilation reactions, junction formation, cross-slip and other reactions.
Detailed description of the general algorithm of the NUMODIS code and some other
features are presented in the next two sections; (2.1) and (2.2.2).
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2.1 NUMODIS: a nodal DD code
NUMODIS is a nodal dislocation dynamics code. It is jointly developed by the

SRMA-CEA (Commissariat à l’Energie Atomique), the SIMaP (Grenoble INP) and the
INRIA (Bordeaux I). This code is written using an Object-oriented C++ language and
runs on Linux platforms. The general algorithm used in this code is illustrated in Figure
(2.2). The steps listed in this figure are repeated at each time step until the end of the
simulation.

Figure 2.2 – Scheme of the main loop in the NUMODIS DD code at each time step during
the simulation.

1. Nodal discretization of curvilinear dislocations present in the simulation box. Each
two nodes are connected by a segment. Dislocation segments are assigned a Burgers
vector, glide plane and tangential vector. Each node has a fixed number of degrees
of freedom.

2. Stress calculation at the nodes of the dislocation configuration.
3. Force calculation on each dislocation segment with the help of the Peach-Koehler

form. The complexity of the interaction is of order O(N2). This is because each
segment in the N-body system interacts with all the other segments.

4. Velocity calculation at the nodes based on the force calculation made in step (3).
Velocity depends on the form of mobility laws. In NUMODIS, in the simplest case
of a linear mobility law, a set of linear equations with the form KV = F are solved
to find the nodes velocity, where K is the viscosity matrix, V and F are the nodal
velocity and force vectors respectively. Each node is then displaced to its new position
in the simulated volume.

5. Discrete events are then treated. Such events include interaction between dislocations
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or collisions of dislocations with different obstacles (other dislocations, precipitates,
grain boundaries, etc.).
At each time step, the concept of power dissipation, following the concept of virtual

work (see [10, 11]), is used. When a dislocation-dislocation reaction takes place, the
selected reaction pace is that with the maximum power dissipation.

NUMODIS 1.0 is a sequential code that runs on one processor of a computer. There
is another parallel version of the code called NUMODIS 2.0. It runs on several processors
using hybrid OpenMP / MPI implementation. As a result, it can simulate larger spatial
and temporal scales within substantially shorter simulation time. The parallel version
(NUMODIS 2.0) is however still under development and does not include all the physical
models today developed in NUMODIS 1.0. This is why, in this PhD, NUMODIS 1.0 was
preferred. Some details of the general algorithm are presented in sections (2.1.1-2.1.7).

2.1.1 Discretization of dislocation line
Dislocation lines in NUMODIS are discretized into nodes connected by segments.

Two types of nodes, physical and topological nodes are considered. Physical nodes are those
connecting more than two segments, or at the intersection of two segments in different
gliding planes. These nodes have a physical meaning. On the other hand, topological
nodes are introduced to discretize the geometry and curvature of dislocation lines between
physical nodes. Each topological node is therefore connected to two segments sharing the
same Burgers vector and glide plane.

Line discretization is made as follows. Straight segments are connected through a
set of nodes. Each segment is assigned a Burgers vector b, a unit vector tangent to its
length ξ and a normal to the glide plane n. These vectors are essential to determine the
force acting on the corresponding segment as well as the velocity of the nodes.

Figure 2.3 – Nodal discretization of dislocation line in NUMODIS. The Burgers vector b,
the tangent unit vector ξ and the normal to the glide plane n are indicated. Physical

nodes are red and topological nodes are blue (after Shi 2015) [12].

To ensure a non-redundant discretization, a pair of nodes is connected only by one
segment. Furthermore, the summation of Burgers vector at physical nodes must equal
zero in agreement with the Frank’s Rule [13]. In general, the Burgers vector of segments
is kept unchanged during the simulation, but it can be modified in certain cases when the
segment undergoes specific reactions. This is explained in detail in section 2.2.2.

A fine discretization of a dislocation line is achieved by decreasing the distance
between nodes and therefore by increasing the number of topological nodes. As the CPU
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calculation time increases with the number of segments, it is of importance to optimize
the line discretization in simulations. In particular, regions with high stress gradients need
more nodes, as certain reactions may be hindered if the dislocation curvature is not well
captured while using coarse segments.

2.1.2 Nodal force calculation
Nodal forces are calculated to find the response of a dislocation to an external applied

stress or due to its own self-stress. Nodal forces are expressed as the negative gradient of
the total energy of the dislocation with respect to the segment position (cf. Equation 2.1).

fi = −∂Etot(ri, bij)
∂ri

(2.1)

It is convenient to split the total energy into two separate terms. The first term
represents the long range elastic field and the other is the core energy.

Etotal = Eelastic + Ecore (2.2)

The elastic strain energy has the dominant contribution in comparison with the core
energy. In case of isotropic elasticity, the self-energy per unit length of a dislocation of an
infinite straight dislocation takes the form (2.3):

Eelastic(θ) = µb2

4π(1− ν)(1− ν cos2 θ) ln(R0

r0
) (2.3)

where µ is the isotropic shear modulus, ν is the Poisson ration, b is the Burgers vector, R0
and r0 are the outer and inner radii of the dislocation line elastic energy, respectively. One
can notice that this equation is orientation dependent on the character of dislocations.

For reasons of simplicity, core energy in NUMODIS is assumed to be a small fraction
(percentage αcore) of the elastic energy of an infinite straight dislocation [9, 13].

Ecore(θ) = αcore ∗ Eelastic(θ) = αcore ∗
µb2

4π(1− ν)(1− ν cos2 θ) ln(R0

r0
) (2.4)

For more convenience, we introduce at this point a term called the core energy
parameter ζcore. This constant quantity take the form:

ζcore = αcore ln(R0

r0
) (2.5)

Another approach to express forces on dislocation line is done by line tension
approximation models. Generally, a curved dislocation line tends to straighten out to
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minimize its strain energy and length in a process analogous to an elastic string. This
phenomenon is known as the line tension. Line tension is defined as the change in the
elastic self energy of a dislocation with respect to its length. The concept of line tension is
applied in two ways in NUMODIS, either an isotropic or anisotropic model. The latter is
derived using the following equation [14]:

F core(θ) = Ecore(θ) ∗ T + dEcore(θ)
dθ

∗N (2.6)

where T and N are two vector tangential and normal to the dislocation line, respectively.

Figure 2.4 – Forces acting on a dislocation according to the line tension model. ds is an
infinitesimal part of the dislocation (a) the applied stress field on the dislocation by

Peach-Koehler force, where such force is balanced by the line tension, (b) the line tension
is the gradient of the forces exerted on a dislocation segment of length ds (after Dupuy et

Fivel 2002) [15].

The concept of line tension and the calibration of related parameters are discussed
in section (3.3).

Once elastic and core energies are determined, nodal forces can be expressed in terms
of the negative gradient of the two dislocation line energy contributions as:

f i = f elastici + f corei (2.7)

The elastic force can be calculated with the well-known formula proposed by Peach-
Koehler in 1950 [16]. It should be noted that Equation (2.1) is a formulation to calculate
the nodal force which is not directly related to the Peach-Koehler force. The latter takes
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the form (2.8):

fPK elastic(x) = (σ(x) · b)× ξ(x) (2.8)

where σ(x) is the stress at position x. In this equation, the stress is calculated as the
sum of external applied stress and internal stress. In the case of curved dislocations or
dislocation loops, internal stresses are calculated as follows [1].

σαβ(x) = µ

8π

∮
∂i∂p∂pR[bmεimαdx′β + bmεimβdx

′
α]

+ µ

4π(1− ν)

∮
bmεimk(∂i∂α∂βR− δαβ∂i∂p∂pR)dx′k (2.9)

where µ is the isotropic shear modulus, ν is the Poisson ration and εijk is the Levi-Civita
notation; a permutation term used for the asymmetric properties.

Mathematical singularity appears in the dislocation elastic energy when R goes to
zero, i.e. at the dislocation line. In order to avoid such problem, a method based on the
non-singular model proposed by Cai et al. [17] is used. This standard method is now used
in many simulation codes like the ParaDis code [18]. Cai et al. distributed the Burgers
vector of the dislocation through a regularization function. R is therefore replaced by
Ra =

√
R2 + a2

0. In this formulation, even if R equals zero, Ra is not null. The singularity
is therefore eliminated near the dislocation core. The strength of this method is that
it requires only one parameter (a0), which is commonly defined as a core regularization
parameter. This makes it convenient for implementation in DD simulations and this
method is used in this PhD work.

There are several simplified models in the literature of Equation (2.9). All the above
mentioned models reduce the triple integral into a double integral. This last integral can
be simplified to a line integral over a closed path using Green’s function as follows:

¯̄σint = σij(x) = Cijkl

∮
dislocation

εlnhCpqmnGkp,q(x− x′)bmdx′h (2.10)

Gij(x− x′) = 1
8πµ [δij∂p∂pR−

1
2(1− ν)∂i∂jR] (2.11)

2.1.3 Nodal mobility laws
In this section, calculation of the nodal responses to the applied forces is presented.

This process is governed by predefined nodal mobility laws, whose purpose is to make a
link between the force acting on a dislocation segment and its velocity. This relation is
an important input of dislocation dynamics simulations and depends on many physical
parameters especially when thermally activated mechanisms are involved [19].
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The most general form of mobility function used in DD simulations is the Newtonian
motion of dislocations. In such case, the system reaches a steady state condition in a
relatively short time. This solution does not apply under extreme strain rates (e.g. shock
propagation) where the driving force is not constant [20]. This point is considered as a
limitation of DD codes to simulate deformations under high strain rates. A general form
of mobility function is Equation (2.12).

vi = M(fj) (2.12)

where vi is the velocity, M(fj) is a mobility function. As mentioned before, mobility laws
depend on many factors that are not explicitly defined in equation (2.12). The simplest
form of mobility law is v = τb/B, where v is the nodal velocity, τ is the shear stress, b is
the Burgers vector and B is a drag coefficient. Assuming that, we can define a viscosity
matrix on the nodes, the nodal velocity can then be calculated with Equation (2.13).

KV = F (2.13)

where K is the viscosity matrix, V is the corresponding nodal velocity vector and F is the
force vector exerted on nodes. In NUMODIS, the viscosity matrix K has large dimensions.
The computational time needed to solve this system is high. To speed up this calculation,
NUMODIS divides the matrix K into blocks of sub-matrices dedicated to topological or
physical nodes. Such solution takes advantage of the fact that the topological sub-matrix
is a sparse band matrix.

In this work, we considered mobility laws used for BCC materials, such as (Fe-α).
This is because it represents the main class of materials used in nuclear reactor pressure
vessel. A simple mobility law is defined for edge and screw dislocations (see Bulatov et
Cai [20]). An edge dislocation has two possible moves in the crystal, glide and climb. The
mobility law for a pure edge dislocation is then expressed as:

B(ξ) = Beg(m⊗m) +Bec(n⊗ n), when ξ⊥b, (2.14)

where Beg is the drag coefficient in the glide direction and Bec is the drag coefficient in the
climb direction. Because climb is controlled by diffusion processes [13], the climb mobility
used in the simulation is commonly phenomenological and does not account for all the
details of the real physical process. The unit vectors are defined as n ≡ b× ξ/ ‖ b× ξ ‖
and m ≡ n× ξ. n is a unit vector perpendicular to the glide plane, m is the unit vector
in the glide direction and ξ is the tangential unit vector of the segment as indicated in
Figure (2.3).

There is an equation to specify the drag coefficient tensor for all segments orientations
in [20]. This drag tensor is singular and cannot be inverted. The problem is illustrated
by Arsenlis et al. [18]. The reason is the alignment of dislocation segments. If two
segments connected by a discretization (topological) node become collinear, the nodal drag
tensor becomes ill-conditioned. No drag coefficient is indeed explicitly specified for the
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configuration forces on a discretization node along the segment direction. This problem is
mitigated when a specific contribution is added to B. One can take the following form:

B(l) = Bg(l)(m⊗m) +Bc(l)(n⊗ n) +BI
t (ξ⊗ ξ) (2.15)

where Bt is a tangential drag viscosity associated with the discretization nodes. Bt should
be much less than Beg, Bec and Bs. This ensures that the mechanical behavior of the
system is not affected.

The tangential viscosity also prevents the rotation of the dislocation around itself.
This implies that this term was introduced only for numerical stabilization and does not
correspond to any physical process.

2.1.4 Time integration
The nodal equation of motion is based on the forces and mobility laws calculated at

the nodes (the function gi({rj})) in the form:

vi = dri
dt

(2.16)

There are several numerical techniques to solve ordinary differential equations.
Each method has its advantages and disadvantages in terms of accuracy, stability and
computational time. One of the simplest methods is the Euler forward expressed in
Equation (2.17).

ri(t+ ∆t) = ri(t) + vi∆t (2.17)

where ri(t) is the position of the node i and at time t. ∆t is the elementary time step. In
case of stiff equations, a very small time step is needed to ensure stability and accuracy of
results. Therefore, time steps must be carefully chosen in explicit Euler forward method.
One of the advantages of Euler forward method that it is computationally inexpensive. In
addition, it is easy to implement in DD codes. Therefore, this method is used in most DD
code (including NUMODIS) as the numerical time integrator.

The Trapezoid method is a combination between Euler-forward and Euler-backward.
It is a good example of implicit methods. Other methods could be used in DD codes
(not used in NUMODIS for the moment) such as Newton-Raphson (matrix inversion) or
Euler-Trapezoid (explicit method but it is computationally expensive) [18, 20–22].

2.1.5 Topological changes and operations
In DD simulation, dislocation segments interact with one another or with other

radiation-induced defects. During this reactions, the length and curvature of dislocation
lines evolve. Consequently to ensure a better representation of the dislocation line, the
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number of discretization (topological) nodes need to be modified on-the-fly.1

The key point in topological changes is the conservation of the Burgers vector. It
is also important to ensure that each pair of nodes is connected by only one segment.
Topological operations in NUMODIS, as in other nodal DD codes, can be summarized into
two main algorithms, merge and split algorithm. The former is used to delete an existing
node. The two neighboring segments are then merged. In this process, the number of
degrees of freedom is reduced. The latter is responsible for adding a node in the middle
of a segment. Thus, the number of degrees of freedom is increased. All other complex
topological changes (i.e., in case of junction formation) are discussed in section (2.2.2).

To ensure an adequate representation of the dislocation lines in DD simulations,
discretization nodes are added or deleted on-the-fly. Introduction and elimination of nodes
are subjected to a simple and robust criterion. Such criterion depends on the length of
the segment. Whenever the segment is longer than (Lmax), a node is added along the line
in the middle of the segment. The initial segment is therefore cut into two segments. On
the other hand, if it is shorter than (Lmin) a node is deleted. If Lmin and Lmax are not
carefully chosen, repetitive discretization may happen during a simulation. This is why,
it is recommended to set the values of the lower and upper boundaries of the segment’s
length as Lmax>2Lmin. The two discretization operations are illustrated in Figure (2.5).

Figure 2.5 – Schematic representation of the discretization of topological operations on
dislocation segments. A long segment is split when a new node is added in the middle.
Short segments are merged when the node in between is removed (after Bulatov et Cai

2006) [20].

2.1.6 Periodic boundary conditions
Computational methods at the microscopic or mesoscopic scales are inherently limited

in terms of simulation cell size due to elevated time cost. The concept of periodic boundary
condition (PBC) is a commonly used strategy to reduce the simulation volume. In this
approach, the simulated volume is assumed periodic and we consider only a reference
volume surrounded by a set of identical replicas.

In the present work, the elastic interaction of each dislocation segment with all the
other segments of the simulation cell is performed under the concept of minimum image

1Topological operations are not needed in the case of MD simulation or in case of 2D DD [20].
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convention [20]. This interaction is actually computed with respect to the nearest replica
of each segment. This concept is illustrated in Figure (2.6).

Figure 2.6 – Schematic representation of the concept of periodic boundary condition. A
simulation unit cell is indicated by the dashed square and it has periodic replicas in a

two-dimensional space. The interaction of any element in the unit cell is calculated with
the nearest neighbor using the minimum image convention (after Frenkel et Smith

2001) [23].

In the NUMODIS code, one can actually go beyond the minimum image convention
and choose the minimum number of replicas considered in all three axial directions. This
choice nevertheless comes at higher computational cost, with no guaranteed convergence
unless specific conditions are met [20]. In the following, we use the minimum image
convention unless specified elsewhere.

It is important to avoid a cubic simulation box when PBC is used in massive
simulations [24]. This is done to eliminate the auto-annihilation of dislocation lines with a
dislocation image of opposite sign from the other side. This process is illustrated in Figure
(2.7). Solution to optimize the shape of the simulated volume in relation to this problem
can be found in [25].
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Figure 2.7 – Illustration of the problem of dislocation auto-annihilation induced by PBC
in DD simulation (after Madec 2001) [26]. When a cubic (here a square in 2D) volume is
used, a dislocation loop expanding in a plane of type [1 1 0] self-annihilates after passing
two times the boundaries of the simulated volume. This is because the dislocation line is

re-introduced in its initial glide plane.

Details of the implementation of periodic boundary conditions and validation are
discussed in section (3.1).

2.1.7 Control modes in NUMODIS
There are several ways to apply a mechanical deformation on the simulation box.

Constant strain rate or constant stress solutions are commonly used to apply external load.
Control modes are implemented in NUMODIS. The desired control mode is a user-defined
option.

Constant applied stress on the simulation box is the simplest loading condition in
Dislocation Dynamics simulations. Although useful for some problems, it is not well suited
to measure critical stress values for many phenomena. In contrast, constant strain rate
control is preferred [12]. Since most performed computations in the present PhD work
involve dislocation-obstacle interactions analogous to existing MD studies, the constant
strain rate mode was used.

The plastic deformation is mainly related to the movement of dislocations in the
materials [1, 13]. It is then calculated as the summation of all segments displacements
along the dislocation lines.

¯̄εplastic =
∑

segments

binj + bjni
2Ω ∗ dA (2.18)

where b, n are the Burgers vector and a vector normal to the glide plane, respectively.
dA is the area swept during the movement of a dislocation segment and Ω represents
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the simulation volume. The strain rate at each time step is defined as the derivative of
equation (2.18) with respect to time. In addition, the averaged stress is evaluated at each
time step. Any mismatch between the total strain and the plastic strain is by definition
¯̄εelastic = ¯̄εtotal − ¯̄εplastic. This difference is applied at the subsequent time step following
Hook’s law (cf. Bulatov et Cai [20]).

2.2 Recent developments of NUMODIS
During this PhD, original developments have been made in the NUMODIS code. The

aim of such development is to cope with different physical phenomena and to reproduce
MD simulation conditions. In this section we present such developments.

2.2.1 Nodal mobility laws
In section (2.1.3), we showed earlier that Arsenlis et al. introduced a term of

tangential viscosity for topological nodes to prevent spurious motion along the segments
to which there are connected. Alternatively, no specific viscosity is attributed to the
physical nodes. Unlike topological nodes, physical nodes are not virtual and cannot be
replaced. We should remind here that physical nodes are nodes at the intersection of
two or more segments of different Burgers vector or glide planes. In some reactions we
observed in DD simulations, physical nodes tend to propagate rapidly. Such behavior is
thought to have two origins; i) a real specific viscosity exists on physical nodes, which
is not implemented in NUMODIS (this possibility is discussed in chapter 4), ii) it is the
result of an ill-conditioned matrix when two dislocation segments connected by a physical
node are quasi collinear. Hence, to prevent the rapid propagation of physical nodes, we
proposed to assign a specific viscosity term to the physical nodes. This is analogous to the
tangential viscosity added in Equation (2.15) for the topological nodes.

B(l) = Bg(l)(m⊗m) +Bc(l)(n⊗ n) +BI
t δ

I(l)(ξ⊗ ξ) +BI
pδ

I(l) (2.19)

Four different models of physical viscosity are now proposed in NUMODIS. These
models are based on the nature of the physical node; either connected to only two segments
or more, or if the viscosity term is added in an isotropic or anisotropic matter. Different
methods in the code can be used to apply the viscosity to the physical nodes.

• Model 1: Isotropic viscosity on physical nodes of two or more connections.

• Model 2: Isotropic viscosity on physical nodes of two connections.

• Model 3: Anisotropic viscosity on physical nodes of two connections.

• Model 4: Anisotropic viscosity on physical nodes of two or more connections.

Although these four models are implemented in NUMODIS, they are not used by
default. The desired model to apply should be specified by the user in the input files. The
choice of certain model is made based on the simulated mechanism. For example, Model 2
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is applied only to reproduce a reaction between screw dislocation and a radiation-induced
loop. More details on this additional mobility laws are given and illustrated in chapter (4).

2.2.2 Core reactions in NUMODIS
This section is part of the general algorithm of NUMODIS, but since I contributed

to a major development in this part of the code during my PhD, it is presented here in a
separate section.

General description of the "split node" algorithm
In a typical DD simulation, a dislocation undergoes certain reactions either with

obstacles or with other dislocations. Hence, a DD code should be able to handle the
occurrence of an interaction before it takes place e.g., collisions, displacement or junction
formation. The split algorithm intervenes at the step of nodal velocity calculation. This
algorithm determines the evolution of a physical node connected to multiple segments,
which includes the possibility to split this node in multiple new nodes connected by new
dislocation segments. Following the pioneer algorithm used in the Paradis code, this
algorithm first constructs a comprehensive list of possible outcomes, then selects the most
likely one based on the concept of maximum power dissipation (see [10, 11]).

At each time step of the simulation, all the physical nodes are examined to determine
if they are splittable or not. In NUMODIS, a splittable node must have at least three
connected segments(referred to as connections in the code parlance) and must not be
arbitrarily pinned (i.e., F-R source). A typical splittable node of multiple-connections is
shown in Figure (2.8).

Figure 2.8 – A susceptible splittable node i (in black color) with n connections.

The general algorithm of split node is described as follows:

• Determination of possible outcomes (thereafter called split options) for each splittable
node.

• Calculation of force and velocity for each possible split option.

• Calculation of the power dissipation for each split option as well as consistency
verification. The split option with the highest dissipation is chosen.
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This algorithm has geometrical, crystallographic and energetic aspects. They are discussed
in detail in the following sections.

Geometrical and crystallographic aspects
This part of NUMODIS corresponds to the first step of the split node algorithm.

The geometrical aspects are determined as follows:

1. The connections to each splittable node are identified and sorted by glide plane.

2. If a glide plane contains more than three connections, they are sorted by the angle
in that plane with respect to the first connection of the list.

3. All the possible connections dispatched into several (non-empty) groups are con-
sidered. This process explores all dispatches from one unique group for all the
connections, to a number equal to the number of connections (one connection per
group). Such a dispatch is referred to as an assignation. In practice, three groups at
the most are explored by NUMODIS for assignation and assessment of the properties
of the corresponding nodes and junctions.

The purpose of the third step is to dispatch each group of different connections
of splittable nodes into assignations using a special routine. This routine is based on
permutation operators (combinatorial part). Its objective is first to ensure that an
assignation is not treated more than once. The second objective is to prevent any
geometrical conflicts that could occur when there are four or more connections in a given
plane. This possible issue is illustrated in Figure (2.9).

(a) (b) (c)

Figure 2.9 – Illustrative example of the verification of any geometrical incompatibilities
for two cases: (a, b) connections of the splittable node are in the same glide plane, (c)

connections of the splittable node have different glide planes.

Crystallographic aspects
For each assignation, the NUMODIS code then builds the corresponding topological

configuration in terms of new nodes and new junctions, which are referred to as virtual
nodes and virtual junctions all along this algorithm. This configuration is itself call a split
option. As indicated before, the number of groups (and therefore virtual nodes) goes from
one to three. These split options are shown in Figures (2.10, 2.11, 2.12).
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Figure 2.10 – Schematic representation of a no split case. In this case, the splittable node
in Figure (2.8) is transformed to a virtual node. The four connections are connected to

the same virtual node.

(a) (b) (c)

Figure 2.11 – Schematic representation of split options of initial configuration of four
connections into two virtual nodes. The arrow b5 is the Burgers vector of the virtual

junction [12].

(a) (b)

Figure 2.12 – Schematic representation of split options for an initial configuration of four
connections into three virtual nodes (B,C and D). Segments 5 and 6 (in yellow color) are

virtual junctions connected to the virtual nodes.

Splitting a node into two virtual nodes is the canonical approach in nodal DD
simulations [20] and is implemented as such in the Paradis [18] and NUMODIS codes.
Interestingly, a careful examination of the interaction mechanisms observed in the MD
simulations, on which this study is based on, leads to the need for a more general algorithm,



Chapter 2. Methodology 66

which could lead to three (or even more) virtual nodes. One example of such splitting is
illustration in Figure (2.12) and will be discussed in more detail in chapter (4).

Once constructed, the split options are tested from geometrical and crystallographic
aspects. The following algorithm is therefore valid for split into one, two and three virtual
nodes.

1. Compute the degrees of freedom of each virtual node considering the glide planes of
its connections and computing their intersection.

2. Compute the properties of each virtual junction (Burgers vector, glide plane) and
update the degrees of freedom of each virtual node accordingly.

3. Check the consistency of the split option: a virtual junction can obviously only be
formed if at least of the virtual nodes at its ends is mobile. If not, the split option is
discarded.

4. Compute the generalize coordinates of virtual nodes. They contain the dof and
position.

5. Store the split option for later analysis from a dynamical point of view.
In point (1), the dof of virtual nodes is calculated without considering any virtual

junction in between. The possible dof are 0,1,2.

• a zero dof is when the node is sessile and cannot move in the space, for example a
pinned node.

• a dof equals to one means that the node can move only in one direction, for example
if the node lies on the intersection of two different planes, it can move in the common
direction between the two planes. An example of such a situation is when one
segment has a constraining plane and it is sessile as in the case of sessile lock.

• a dof equals 2 when the node is restricted to move in all the plane in the space.

In point (2), the properties of a possible virtual junction are determined. Such
properties are the direction, glide plane and Burgers vector. The latter is calculated by
the summation of Burgers vector of all other real connections on a virtual node. A split
option of two virtual nodes is shown in Figure (2.13). The summation of Burgers vector
for nodes B and C is b1 + b2 = bB, where bB is the Burgers vector of the created junction
B and b3 + b4 = bC , where bC is the Burgers vector of the created junction C.
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(a) (b)

Figure 2.13 – Schematic representation of a split option for a node of five connections,
where Burgers vector of the connections and the virtual junctions are indicated: (a) the
first set of connections to the first virtual node (b) the second set of connections to the

second virtual node.

In case of split into two virtual nodes, the summation of Burgers vector b1+b2 = b3+b4
is logical. However, in case of split into three virtual nodes or more, the summation of
Burgers vector of the created junctions could be different. Moreover, the created junction
between two virtual nodes can have many possible glide planes. Such planes are filtered
based on a criterion that only those planes that contain the dof of nodes A and B are
chosen.

In point (3), the possibility to create a virtual junction between two virtual nodes
is verified. In the case of split into two virtual nodes, if the dof of both virtual nodes
equal zero, then they cannot move apart. No junction is therefore formed. In the case
of split into three virtual nodes, the criterion is modified. Two out of three nodes must
have a non-zero dof in order to form two virtual junctions. In points (4,5), the generalize
coordinates of virtual nodes are computed. They contain the dof and position of the nodes.
The split option is then stored and the virtual nodes are added to the virtual graph to be
later analyzed from a dynamical point of view.

So far, the direction of the virtual junctions created in a split option of two or three
virtual nodes is known. In some case, the direction of such junctions is unknown. In order
to find a specific direction to build a split option, the non-linear solver intervenes. This
point is discussed more in the following section.

In summary, at this point in the code, only geometrical and crystallographic treatment
of the different split options is performed. In the next section, the physical or energetic
verification is performed to choose the most favorable configuration. The notion of virtual
junctions and the technique to calculate forces and dissipation is explained in the next
section.

Dynamical aspects of the split node algorithm
When performing DD simulations, the system should always evolve in a way that

lowers the energy. Following the original work by Cai et Bulatov, the outcome of our
splitting algorithm is based on the maximum dissipation criterion. This method is therefore
general and does not rely on a set of hardwired rules. We first recall how to compute the
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power dissipation of any given dislocation configuration based on the forces and velocities
at nodes, which includes here virtual nodes using Equation (2.20).

P =
∑
i

Fi · vi (2.20)

where P is the dissipated power due to the formation of this configuration, F is the force
acting on a segment i attached to a node n and v is the velocity of that segment. The
summation is done on all existing split options.

In order to calculate the power dissipation of a split option, nodal forces and velocities
should be determined. In the following, we present the importance of the core energy
contribution of virtual junction to the force calculation. We also present how NUMODIS
handles the situation where the direction of the virtual junction is unknown. Here for
simplicity reason, we first assume the case of two virtual nodes connected by one virtual
junction. Then the algorithm goes as follows:

1. Calculate the total force acting on each virtual node by adding the forces due to all
its connections, as well as the core energy due to its virtual junctions.

a) Determine if the virtual junction is a predefined junction direction (i.e. at the
intersection of two planes).

b) Use the non-linear solver if the direction or the sense of a virtual junction is
unknown (i.e. it lies in one plane).

2. Calculate the velocities at all the nodes, including virtual nodes and compute the
total power dissipation.

3. Verify that no collisions will take place in the first (∆t) between the created virtual
nodes, or one node with the connections of the other node.

Here it must be noted that the core energy contribution to the force acting on virtual
nodes is a key feature to avoid possible deadlocks in DD simulations.

To illustrate this point, we consider a node with four connections at time = t (cf.
Figure (2.10) and assume that our algorithm decides to split this node into two virtual
nodes separated by a virtual junction considering no core energy for the virtual junction.
At time = t+ ∆t, the force acting on the new nodes now includes a core energy that tends
to reduce the junction length, possibly leading to the collapse of these two nodes. This
would lead to an endless split and merge deadlock that could prevent other possible split
options to be selected. This is explained in Figure (2.14).
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(a)

(b)

Figure 2.14 – Schematic representation of an oscillation process between consecutive time
steps for an example case of split option. (a) A splittable node at time = t has a tendency
to split due to the forces of its connections (in black arrows), (b) the split option into two
virtual nodes is chosen with a junction in between, in this case back-stress forces points to
the direction opposite to the forces exerted by the connections. The back-stress forces are

elevated and this configuration has a tendency to merge the two nodes.

The direction of the virtual junction should be known at the moment when the core
energy contribution is included, which is the more likely case. For example, assume that
connections (1,4) and (2,3) in Figure (2.14a) are in glide planes (P1) and (P2), respectively.
If the split option contains two virtual nodes (cf. Figure 2.14b), the virtual nodes then
have one common degree of freedom at the intersection of the two glide planes. This case
is or instance observed in the Lomer-Cottrell configurations as illustrated in Figure (2.15).
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Figure 2.15 – Schematic diagram of a Lomer-Cottrell junction [13]. Connections (1,3) and
(2,4) are found in planes 1 and 2 respectively. The virtual nodes (in red color) have a dof
equal one, they can move only in one direction. The virtual junction (in yellow color) is

therefore a 1D junction.

In some reactions, the direction of the virtual junction is however unknown. For
example, the interaction of two coplanar dislocations may lead to the formation of a
junction whose direction is not known beforehand. It is therefore impossible to account
for the core energy of the virtual junction in a simple manner, as its contribution depends
directly on the velocity of its two virtual nodes which is not known a priori. In such a
case, the core energy and thus the nodal forces become function of the velocity. Therefore,
we have to solve a non-linear system of the form presented in Equation (2.21).

KF (V ) = V (2.21)

The non-linear solver we use is based on the Newton-Raphson method. In order to
enhance the convergence, a back-tracking algorithm is used. More details on this algorithm
can be found in [27]. One of the pitfalls of the non-linear solver is its inability to converge
for all proposed slip-nodes possibilities. Regardless of numerical difficulties (possible bugs,
bad initial guess, etc.), this solver may actually not converge if there is no possible velocity
field satisfying Equation (2.21). The convergence problem in the non-linear solver can be
explained by three possible categories: programming, numerical or physical.

• programming: despite about two hundred benchmarks, implementation bugs and
unforeseen situations are still present. Several bugs were identified and fixed during
my PhD, but some problems in the solver probably remain.

• numerical: ill-conceived (initial guess, non-robust iterative process, etc.). since the
non-linear solver is based on Newton-Raphson method, the divergence can be related
to the initial guess used by the solver which is far from the solution. In such case, a
possible divergence occurs despite the number of performed iterations.

• physical: a split-option can simply not happen because it is energetically not physical,
at least considering the current energetic parameterization. This situation typically
occurs if the core energy of the possible junctions is too high, regardless of their
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orientations as explained in Figure (2.14). A priori identification of such a situation
is however hard to perform, and leads to spurious (and sometimes harsh) oscillations,
which must be mitigated.

In the case where the solver does not converge for one of the previously mentioned
reasons, the direction of the virtual junction is hard to determine. The non-linear solver is
allowed to perform 50 iterations to converge toward a solution. When the solver did not
converge in 50 iterations, we exit the corresponding subroutine and this split option is
excluded from the list of split options. So we skip this particular split option and search
for another one that converges.

In point (2), we mentioned that at this stage, the nodal velocities are computed
within a finite element approach, which involves the resolution of a possibly huge system
in the form KF = V . In order to expedite this calculation and additionally to the sub-
division of K, we further divide the physical nodes into splittable nodes and non-splittable
nodes as described in Figure 2.16. This simplifies tremendously the calculation of their
velocities for all the split options using the Schur complement method [28]. We also note
that the non-linear system of Equation (2.21) can be limited to this splittable part of the
system and makes it computationally tractable.

Figure 2.16 – The KV = F matrices divided into sub-matrices of similar characters
(splittable, non-splittable nodes) to facilitate the calculation of the Schur complement.

In point (3), we verify that the dissipated power is positive in agreement with
thermodynamics laws. No energy should be created during split option reactions. In
conclusion, the power dissipation should always be positive in this approach. This criterion
is tested when the core energy of the virtual junction is added to the split process. In
summary, the sense of the virtual junction should not be reversed when the core energy
contribution is added.

In the scope of preventing deadlocks or any anomalies in the system, certain reactions
should be anticipated before they occur. In point (4), a test is used to verify that no
collisions will take place between the nodes formed, or one node with the segments of the
other node in the first (∆t). An example of such a situation is shown in Figure (2.17).

According to nodal velocity, the position of a node can be calculated at time = t+∆t.
If node B is going to interact with one of the connections of the other node, the split
option that leads to this situation must be rejected.



Chapter 2. Methodology 72

Figure 2.17 – Schematic representation of a configuration where a created virtual node
has a velocity vector that leads to the interaction with one of the connections of the other
virtual node in the next time step. The dashed black arrow is the velocity vector of node

B.

If the split option is accepted, the nodal velocities are stored. Finally, the split
option that leads to the maximum power dissipation is chosen. The graph is then updated
and all virtual nodes become real nodes in the system.

Special treatment of a specific configuration

Lastly, a special case is encountered when a splittable node has three connections or
more (cf. Figure 2.18a). A possible outcome may involve the splitting of this configuration
into two virtual nodes, separated by a virtual junction sharing the same Burgers vector
as the connection attached to a node, but gliding in another glide plane. This evolution
bears similarities with a cross-slip mechanism that would not be a thermally activated
mechanism in this case. As we will see later in chapter (4), this splitting mechanism
is important and has been observed in MD simulations. We, nevertheless, restrict this
option when the angle θ between the connection and its Burgers vector is above a critical
angle. If not, it would first lead to numerical instabilities because the connection and the
virtual junction are almost aligned. Here we use a local rule introduced as cosminXslip
to prevent any cross-slip if the angle between the two segments is less than 15◦. It is a
hard-coded value and has no particular scientific justification. This prevents any numerical
instabilities in velocity calculations. Such instability was explained in section (2.1.3). The
viscosity matrix becomes ill-conditioned and could result in an overestimation of the nodal
velocities.
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(a) (b)

Figure 2.18 – Schematic representation of a split option for a node of three connections.
(a) the initial configuration of splittable node of three connections, (b) split option into
two virtual nodes, where segments 1 and 2 are connected to a virtual node and segment 3
is connected to the other virtual node. θ is the critical angle between the connection and

its Burgers vector. A minimum value is authorized in order to prevent numerical
instability.

The virtual junction and connection (3) in Figure (2.18b) should have the same
Burgers vector simply by the summation of in and out vectors. However, the virtual
junction and connection (3) must have different glide planes. This criterion ensures that
the virtual junction is not aligned with the side arm of the virtual node. A cross-slip of
the virtual junction is therefore prohibited. The artificial cross-slip reaction presented
here is different from the more usual thermally activated cross-slip processes.



Chapter 2. Methodology 74

2.3 Conclusion
Dislocation dynamics is a powerful tool to study the interactions of dislocations

with radiation-induced defects. It provides the link between atomistic and macroscopic
scale. Our methodology and the originality of this work is the attempt to reproduce the
individual screw dislocation-defects interactions previously reported in molecular dynamics
studies, but within the framework of the elastic theory of dislocations.

Our DD simulations are made with the NUMODIS code that I contributed to improve
during my PhD. It is a 3D nodal based code, where each dislocation is discretized into a
set of topological and physical nodes. The uniqueness of this code is its ability to manage
and control collisions and core reactions between dislocation segments and many different
irradiation defects. This is done through a set of generic algorithms with the minimum
number of local rules.

During this PhD, several models and algorithms were implemented. The three major
and key developments made in NUMODIS are:

• Implementation of a new viscosity model. This model increases the stability of nodal
velocity calculation. An application of this technique is illustrated in chapter (4).

• Separation into three virtual nodes and not just only two. This configuration is
required in some of the reactions we investigated.

• The core energy contribution of virtual node is considered in the force summation of
split options. This allows avoiding deadlock configurations between successive time
steps.

One should pay attention in future simulations when the artificial viscosity on physical
node is used. Since the nodal energy balance is affected and certain reactions are altered.

Several geometrical and crystallographic aspects are considered in the process of
proposing different split options. Later in this manuscript these split options are verified
from a dynamical point of view. Regarding the core energy contribution of the virtual
nodes, the modifications made in the code allow estimating more correctly the direction
of the virtual junction. In the case where the direction of the virtual node is unknown,
a non-linear solver is activated to identify possible reaction path. This non-linear solver
is based on Newton-Raphson method. One of the pitfalls of the non-linear solver is its
inability to converge for all proposed slip-nodes possibilities. This non-linear solver needs
some additional work in the future.



75 References

References
[1] J. P. Hirth and J. Lothe, Theory of dislocations. Krieger Pub. Co, 1982.
[2] SOTERIA, “Safe long-term operation of light water reactors based on improved

understanding of radiation effects,” 2015.
[3] A. J. E. Foreman, “The bowing of a dislocation segment,” Philosophical magazine,

vol. 15, no. 137, pp. 1011–1021, 1967.
[4] D. J. Bacon, “A method for describing a flexible dislocation,” physica status solidi

(b), vol. 23, no. 2, pp. 527–538, 1967.
[5] L. M. Brown, “The self-stress of dislocations and the shape of extended nodes,”

Philosophical Magazine, vol. 10, no. 105, pp. 441–466, 1964.
[6] N. M. Ghoniem and R. Amodeo, Computer Simulaltion of Dislocation Pattern For-

mation, vol. 3. Trans Tech Publ, 1988.
[7] J. Lepinoux and L. Kubin, “The dynamic organization of dislocation structures: a

simulation,” Scripta metallurgica, vol. 21, no. 6, pp. 833–838, 1987.
[8] L. P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, and Y. Bréchet, “Dislo-

cation microstructures and plastic flow: a 3d simulation,” in Solid State Phenomena,
vol. 23, pp. 455–472, Trans Tech Publ, 1992.

[9] L. Kubin, Dislocations, Mesoscale Simulations and Plastic Flow, vol. 5. Oxford
University Press, 2013.

[10] R. V. Kutka, Observations on the kinetics of relaxation in epitaxial films grown on
conventional and compliant substrates: A continuum simulation of dislocation glide
near an interface. 1998.

[11] D. Weygand, L. Friedman, E. Van der Giessen, and A. Needleman, “Aspects of
boundary-value problem solutions with three-dimensional dislocation dynamics,”
Modelling and Simulation in Materials Science and Engineering, vol. 10, no. 4, p. 437,
2002.

[12] X. Shi, Étude par simulations de dynamique des dislocations des effets d’irradiation
sur la ferrite à haute temperature. PhD thesis, Université Pierre et Marie Curie -
Paris VI, 2015.

[13] D. Hull and D. J. Bacon, Introduction to dislocations. Butterworth-Heinemann, 2001.
[14] G. deWit and J. S. Koehler, “Interaction of dislocations with an applied stress in

anisotropic crystals,” Phys. Rev., vol. 116, pp. 1113–1120, Dec 1959.
[15] L. Dupuy and M. C. Fivel, “A study of dislocation junctions in FCC metals by an

orientation dependent line tension model,” Acta Materialia, vol. 50, no. 19, pp. 4873–
4885, 2002.

[16] M. Peach and J. Koehler, “The forces exerted on dislocations and the stress fields
produced by them,” Physical Review, vol. 80, no. 3, p. 436, 1950.

[17] W. Cai, A. Arsenlis, C. R. Weinberger, and V. V. Bulatov, “A non-singular continuum
theory of dislocations,” Journal of the Mechanics and Physics of Solids, vol. 54, no. 3,
pp. 561–587, 2006.

[18] A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T. G. Pierce, and



Chapter 2. Methodology 76

V. V. Bulatov, “Enabling strain hardening simulations with dislocation dynamics,”
Modelling Simul. Mater. Sci. Eng., vol. 15, no. 6, p. 553, 2007.

[19] D. Caillard and J.-L. Martin, Thermally activated mechanisms in crystal plasticity,
vol. 8. Elsevier, 2003.

[20] V. Bulatov and W. Cai, Computer Simulations of Dislocations, vol. 3. Oxford
University Press, 2006.

[21] B. Devincre, R. Madec, G. Monnet, S. Queyreau, R. Gatti, and L. Kubin, “Modeling
crystal plasticity with dislocation dynamics simulations: The ‘micromegas’ code,”
Mechanics of Nano-objects, pp. 81–100, 2011.

[22] N. M. Ghoniem and L. Sun, “Fast-sum method for the elastic field of three-dimensional
dislocation ensembles,” Physical Review B, vol. 60, no. 1, p. 128, 1999.

[23] D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to
applications, vol. 1. Academic press, 2001.

[24] R. Madec and L. Kubin, “Dislocation interactions and symmetries in bcc crystals,”
in IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials
Strength, pp. 69–78, Springer, 2004.

[25] R. Madec, B. Devincre, and L. Kubin, “On the use of periodic boundary conditions in
dislocation dynamics simulations,” in IUTAM Symposium on Mesoscopic Dynamics
of Fracture Process and Materials Strength, pp. 35–44, Springer, 2004.

[26] R. Madec, B. Devincre, and L. P. Kubin, “New line model for optimized dislocation
dynamics simulations,” MRS Proceedings, vol. 653, p. Z1.8, 2000.

[27] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes
3rd edition: The art of scientific computing. Cambridge university press, 2007.

[28] F. Zhang, The Schur complement and its applications, vol. 4. Springer Science &
Business Media, 2006.



Chapter 3

Identification of DD model
parameters

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1 Periodic boundary conditions . . . . . . . . . . . . . . . . . . . . 78

3.2 Thermally activated glide . . . . . . . . . . . . . . . . . . . . . . . 79

3.2.1 Double-kink model in DD simulations . . . . . . . . . . . . . . 79

3.2.2 Implementation in NUMODIS . . . . . . . . . . . . . . . . . . 80

3.2.3 Validation of the model . . . . . . . . . . . . . . . . . . . . . . 83

3.3 Line tension calibration . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.2 Theoretical background . . . . . . . . . . . . . . . . . . . . . . 86

3.3.3 Simulation technique . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.5 Discussion and concluding remarks . . . . . . . . . . . . . . . 93

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

77



Chapter 3. Identification of DD model parameters 78

Introduction
One major objective of this work is to make DD as accurate as reasonably possible,

accurate meaning here "as close as possible to MD". This approach was coined by J. Marian
as "atomistically-informed dislocation dynamics" [1]. Before tackling the issue of radiation-
induced defects, it is first important to ensure that basic features of DD simulations such
as mobility laws and line tensions are well implemented and calibrated with respect to MD.
The calibration method is discussed in this chapter, as well as the developments to which
I contributed in the NUMODIS code to reach this objective. More specifically, in section
3.1, we present the implementation of periodic boundary conditions. Then, in section
(3.2) we present the implementation and a validation of thermally activated glide of screw
dislocations. Finally, in section 3.3, we reveal the importance of carefully choosing the
parameters related to the dislocation energy by performing a parametric study on Orowan
mechanism.

3.1 Periodic boundary conditions
Periodic boundary conditions are used in most of the MD simulations to which we

want to compare our DD simulations. PBC in DD are described by the existence of image
replicas of the original simulation cell in the periodic direction. It also implies the ability
of nodes along the dislocation line to cross the boundary and reappear from the other
side. Such boundary conditions were implemented in NUMODIS code during this PhD to
enable better comparison with MD simulations.

Additionally, we added the possibility to go beyond the minimum-image convention
for the stress field calculation and choose the number of replicas in all three directions in
the input files. For example, a node on the dislocation line can interact with one or two
layers of replicas of the segments in the reference volume (see Figure 3.1). Using multi-
dimensional replicas substantially increases the simulation time, as well as the precision of
the calculated stresses. In the following chapter, the minimum image convention is used
by default for all simulation results.

Figure 3.1 – Schematic representation of the implementation of the minimum image
convention concept in NUMODIS. Different number of layers can be chosen for nodal

force calculations.
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3.2 Thermally activated glide
In this section, we present the implementation of a thermally activated model for

the glide of screw dislocations. The model is based on the double-kink mechanism. Lastly,
the implementation is tested and verified.

3.2.1 Double-kink model in DD simulations
It is known that at low temperatures, the flow stress in α-Fe, like other BCC materials,

exhibits strong temperature dependence. This dependence is due to an increasing difference
of mobility between screw and edge dislocations when decreasing the temperature. Indeed,
screw dislocations must face a strong lattice resistance when edge dislocations mobility is
essentially temperature independent. It is due to differences in the core structure between
edge and screw dislocations [2].

Screw dislocations move between local energetic minima called Peierls valleys. This
motion is a process done through the nucleation and migration of kink pairs along
dislocations. Kink mobility is generally known to be very high in metals. Hence, at low
temperature, plasticity is thought to be controlled by the nucleation of the kink pairs along
the screw dislocation lines [3, 4]. The formation of a double-kink on a screw dislocation
using MD simulation is shown in Figure (3.2).

Figure 3.2 – Formation of a double-kink on a [111] screw dislocation using MD simulation.
Screw dislocation glides in the [1̄21̄] direction in the (1̄01) (after Narayanan et al.

2014) [5].

There are several models in literature that describe the double-kink formation, i.e.
in [6–8]. One of the double-kink models is the one presented in Equation (3.1) as in [7].
The velocity of screw parts is calculated based on this thermally dependent kink pair
nucleation model. The specificity of this model comes from the fact that it considers the
stress variation along screw dislocation segments. The line integral of the double-kink
mechanism is therefore described by the following equation:

υscrew = hνD
b

l∗2

∫ L

0
exp

[
−∆G(σ(x))

kBT

]
dx (3.1)
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where h is the average distance between Peierls valley, νD is Debye frequency in the order of
1013 s−1, b is Burgers vector and l∗ is the critical length of a double-kink. The integration
is done on the range [0− L], where L is the critical length for nucleation of a kink pair.
∆G is the activation energy, σ is the average stress calculated on the screw segment, KT

is Boltzmann’s constant and T is the temperature.

The exponential part in Equation (3.1) represents the nucleation probability of a
double-kink on the dislocation line. The activation energy is calculated by Equation
(3.2) [9].

∆G(τ) = ∆G0

(
1−

(
τ

τ0

)p)q
(3.2)

where ∆G0 is the energy barrier at T=0 K. p and q are dimensionless activation parameters.
This equation was later modified by Garcia 2011 [10]. They added an entropic correction
factor A and the equation becomes:

∆G(τ, T ) = ∆G0

(
1−

(
τ

τ0

)p)q
− AκBT (3.3)

For pure iron, the constant A is chosen to result in an athermal transition temperature
around 300 K for ∆G0 ' 1 eV . The activation parameters p and q used in the later
simulation are equal to 0.5 and 2, respectively, as in [11].

3.2.2 Implementation in NUMODIS
The general algorithm for the implementation of the thermally activated glide of

screw dislocations on NUMODIS is illustrated in Figure (3.3). The different steps are then
discussed in details.
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Figure 3.3 – Thermally activated glide algorithm implemented in NUMODIS.

Based on Equation (3.1), the length of the screw dislocation is an important parameter
that must be evaluated to calculate the velocity of screw dislocation segments. This is
because the probability to nucleate a kink pair is directly related to the effective length of
screw segments. In case of curved dislocations, it is essential to determine the character
of the dislocation section along the line. Furthermore, the length of the segment with a
screw character must be defined.

To determine the nature of segments we apply a criterion based on the direction
of tangent line of the segment. If the dislocation tangent is parallel or nearly parallel to
the Burgers vector it is considered as a screw segment. This criterion is mathematically
expressed as | ξ(ι) · b |= 1 + δ. In this equation ξ(ι) is the direction of the segment, b
is Burgers vector and δ is a user defined value. In the present work, we consider the
dislocation segment to be of screw character if the critical angle θ between Burgers vector
and the tangent is less than a specific value. Otherwise, it is considered as a non-screw
segment. The value of the critical angle θ is taken to be 10◦ in NUMODIS. This choice of
(θ) affects the length of the detected screw segment. In the case of a straight dislocation
of length L0, if θ = 10◦ then the detected length of a screw segment is equal to 1.015L0.
According to Equation (3.1), the difference in the predicted velocity is 0.1%.
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At each time step in NUMODIS, screw segments are detected and their length is
stored. Lebon showed three different situations that should be treated to determine the
length of each screw segment. Two possible configurations are shown in Figure (3.4).

(a) (b)

Figure 3.4 – Schematic representation of two different cases treated by the screw segment
detection algorithm (a) a curved dislocation line, it contains three screw segments between
nodes [1-5], [20-50] and [80-85] (b) continuous dislocation loop, it contains two screw
segments between nodes [20-50] and [80-10]. The blue arrow is the Burgers vector

direction. (after Lebon 2011) [12].

In NUMODIS each line has its own tag with the nodes contained in that line. The
algorithm starts scanning the dislocation line from the first node until the last node in
the line. Figure (3.4a) represents a curved dislocation line where three screw segments
are identified in such configuration, nodes in the range [1-5], [20-50] and [80-85]. The
mentioned segments satisfy the tangent criterion. They are all aligned with the Burgers
vector and therefore considered as screw segments.

Figure (3.4b) represents a delicate situation in the case of a dislocation loop. One
must pay attention that node [1] is a common node between the two lines [1-10] and [80-1],
though they should be considered as a single line for the following reason. As stated
previously in Equation (3.1), the velocity of the screw segment depends on its length.
Therefore, the velocity of two adjacent screw segments of length (a) and (b) respectively,
if considered as separate lines, is lower than the velocity of one screw segment of length
(a+b). As a result, the two segments [1-10] and [80-1] are considered as one line in the
range [80-10].

In the following we discuss a special configuration that is shown in Figure (3.5). This
is a definition of a zero length segment as described in Lebon 2011. A zero length segment
consists of one node between two edge segments under the following condition. The two
segments should be at the same side with respect to the plane perpendicular to the glide
direction, as in Figure (3.5a). In order to detect zero length screw segments the nodes are
consequently analyzed. The analysis is done on the ensemble of nodes n− 1, n and n+ 1
on each dislocation line.



83 3.2. Thermally activated glide

(a) (b)

Figure 3.5 – Schematic representation of the configuration of a zero length screw
dislocation segment. (a) the two dislocation segments are on the same side with respect to
the glide direction, the red node is then a zero length segment, (b) the two dislocation
segments are not on the same side with respect to the glide direction, the red node is not
a zero length segment. b is the Burgers vector and d is the glide direction. The dashed

line is the plane perpendicular to glide direction (after Lebon 2011) [12].

When the length of each screw segment is determined, the stress profile is then
calculated. The line integral in Equation (3.1) is then calculated using the trapezoid
method. The last step then is to calculate the velocity of screw dislocation parts based on
the double-kink model. In NUMODIS, nodal velocities are calculated by solving a set of
linear equations in a matrix form. It is done by the inversion of a viscosity matrix of the
form KV = F .

First, the velocity of screw segments is calculated using Equation (3.1) as proposed
by Guyot et al. in [7]. Second, the calculated velocity is imposed (υimp) on the nodes
found on screw parts similar to Dirichlet boundary conditions in solver of the KV = F
matrix. The velocity is imposed by multiplying the terms kii in matrix K by a huge
number (∼ 1010) and replace Fi in the vector F by kiiυimp. The system is then solved to
find the values of the V vector. Such mathematical technique is used in [12] and is called
matrix penalization. An advantage of this implementation is that it requires the minimum
changes in the general algorithm of NUMODIS.


k11 . . . x1n
... kii

...
km1 . . . kmn


 υ1
υimp
υn

 =

 F1
kiiυimp
Fn

 (3.4)

Once the velocity of screw parts is calculated, the code advances one time step. The
process is then repeated at each time step of the simulation.

3.2.3 Validation of the model
In order to validate the implementation of this model, a simple configuration of

Franck-Read source of screw nature was tested at T = 250 K. When loading is applied,
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screw parts in the Frank-Read source propagates in the crystal at a lower rate that the
non-screw parts. The reaction is shown in Figure (3.6).

Figure 3.6 – Simulation result of the propagation of Frank-Read source of using
NUMODIS. The Frank-Read source initially has a screw character. The thermally

activated glide is based on the double-kink model. Screw dislocation parts (a-b), (c-d)
and (e-f) has a low glide velocity compared to other non-screw parts.

It should be noted that in the F-R multiplication process, the difference in velocity
of screw and non-screw parts is observed before the critical curvature at normal and high
strain rates. At very low strain rates, dislocations are at a quasi-static condition. In such
condition, screw and non-screw parts are then in equilibrium and have the same velocity.

Another test to validate the implementation of the thermally activated glide is to
study the effect of temperature. It is shown in Figure (3.7).

Figure 3.7 – Velocity as function of temperature for a screw dislocation that glides in Fe
crystal calculated by NUMODIS compared to the theoretical model. The red line

represents the velocity as predicted by the double-kink model in [7].

The lattice friction on screw dislocation is higher at low temperatures. It tends to
stabilize at higher temperature. The average difference between the velocity calculated
using NUMODIS and that predicted by the double-kink model is 0.35%. As stated in
Equation (3.1), screw velocity increases with temperature. This is because the probability
of double-kink nucleation increases with temperature.

In conclusion, thermally activated glide mechanism was successfully implemented in
NUMODIS, but further investigation and analysis are required to use this model in future
DD simulations.



85 3.3. Line tension calibration

3.3 Line tension calibration
This work is submitted as an article to the journal of “Computational Materials

Science” Shukeir et al. 2019 (in press).
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Abstract

The motion of dislocations as computed by dislocation dynamics simulations, depends
on the underlying energetic model casted within a continuum approach. This model is
nevertheless still debated due to the difficulty in capturing the behavior of the atoms in the
core of dislocations. Here, we investigate the influence of the corresponding material core
parameters on the outcome of simulations of the Orowan bypassing mechanism within the
framework of the non-singular theory of elasticity by Cai et al. (2006). A parametric study
first reveals a large dispersion of the critical stress. Within a semi empirical approach, a
new predictive equation is then motivated to encompass the core parameters and extend
the original formula proposed by Bacon, Kocks and Scattergood (1973). Emphasizing the
need to carefully selecting these parameters, we finally advocate the use of the Orowan
mechanism to calibrate dislocation dynamics simulations.

3.3.1 Introduction
Dislocation Dynamics (DD) simulations inherently rely on a continuum description

of dislocations based on the linear elasticity (e.g. [13]), whose accuracy in capturing the
strain and stress fields around dislocations has been proven experimentally over the years
(e.g. [6]). As such, this simulation method nevertheless fails at describing the discrete
atomic positions in the immediate vicinity of a dislocation and consequently its energy.
As pointed out by Bulatov and Cai, this remark holds even for non-singular elasticity
models [14–16] where the stress field remains finite in the core of the dislocation. Most
DD simulations therefore partition the total energy of a dislocation into an elastic and
a core energy contribution [17], the latter being added to account for whatever is left
by the former in the dislocation core. There are noticeable efforts in feeding atomistic
information to these models [1, 18–20]. For example, Dang et al. fitted a0 parameter
on MD simulations for dislocation loops in Al. At 300 K, a0 is calibrated to be equal
to 0.6 of the lattice parameter [20]. Nevertheless, limited efforts have been made so
far to identify the relevant parameters on atomistic data, nor to assess their influence
on classical dislocation mechanisms such as the Orowan process. The objective of this



Chapter 3. Identification of DD model parameters 86

study is therefore to address this issue and provide guidelines to choose the corresponding
parameters.

Among the various approaches used in current DD codes ( [17, 21–25]) to account
for dislocations total strain energy, the choice was made here to use the isotropic non-
singular elastic model of Cai et al. [16] in combination with a basic core energy model.
In the absence of a comprehensive atomistic data base, the latter is simply based on the
orientation dependent line tension approach [26]. The former offers many mathematical
and computational advantages and is currently widely used. As it will be later discussed,
these choices limit the relevant energy parameters to two values. We therefore believe that
this study should be of use and applicable to almost all the DD codes.

The Orowan mechanism [27] was selected in this study as our reference case. This
mechanism, which is the bypassing of strong precipitates by a dislocation line moving
in a given glide plane, was preferred to other elementary phenomena for the following
reasons. First, it has an important impact on plastic strain hardening [28, 29] and has been
widely studied in the literature at the mesoscopic scale using dislocation dynamics [30–34].
Secondly, it does not rely on nonphysical arbitrarily pinned dislocation ends by contrast with
the Frank-Read source [35] and can therefore be simultaneously investigated using molecular
dynamics (MD) [29, 36, 37]. Finally, the Orowan mechanism questions simultaneously
the underlying dislocation strain energy through its effective line tension and the stress
required to bow out the side arms of the dislocation, as well as its stress field and
the corresponding elastic interaction between the arms as the dislocation bypasses the
precipitates [30]. Previous studies investigated the effect of precipitate size and distribution
on the mechanical properties, but to our knowledge, no study investigated in a systematic
manner the influence of the dislocation strain energy parameters used in DD simulations.

This paper is organized as follows. In the next section we present a brief overview
of dislocation elastic theory and parameters appearing in the dislocation strain energy
definition used in most DD simulations, as well as the standard model used to predict
Orowan stress in the case of impenetrable obstacles. In section (3.3.3), we describe the
details of the parametric study performed in this article. The corresponding results are
presented in section (3.3.4). The last section is dedicated to a discussion and concluding
remarks.

3.3.2 Theoretical background
In linear theory of elasticity, it is convenient to split the total energy Etotal of a

dislocation into two separate terms, one for the long range elastic field Eelastic and the
other for the core energy Ecore [6].

Etotal = Eelastic + Ecore (3.5)

Most of the total energy of a dislocation comes from the elastic strain energy
contribution, while the core energy is reported to constitute a few percent of the total
elastic strain energy [13, 38]. Assuming isotropic elasticity, the self-energy per unit length
of a dislocation stored in a cylindrical ring of inner radius r0 (core radius) and outer radius
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R0 in the case of infinite straight dislocations is

Einf
elastic = µb2

4π(1− ν)(1− ν cos2 θ) ln(R0

r0
) (3.6)

where µ is the isotropic shear modulus, b is the Burgers vector and ν is the Poisson’s ratio.
The dislocation character term θ is the angle between the Burgers vector and the tangent
vector along the dislocation line. From Equation (3.6), we simply see that the elastic
energy of a dislocation depends on i) the dislocation core definition via r0, ii) the initial
and boundary condition via the definition of R0 and iii) the dislocation character (edge or
screw) via the pre-logarithmic energy constant [6, 13].

Because of the inability of the elastic theory to represent the core energy of a
dislocation and in the absence of comprehensive atomistic information, the choice was
made here to define the core energy as being directly proportional to the elastic energy per
unit length of an infinite straight dislocation through a single parameter, αcore, such as:

Ecore = αcoreE
inf
elastic (3.7)

This approach is consistent with several available atomistic studies (e.g. [13, 39]) in
which the core energy amounted to a few percent of the elastic energy. For convenience, we
introduce at this point a term called the core energy parameter ζcore. The latter constant
quantity take the form:

ζcore = αcore ln(R0

r0
) (3.8)

The core energy can therefore be written as:

Ecore = ζcore
µb2

4π(1− ν)(1− ν cos2 θ) (3.9)

The driving force controlling dislocation dynamics is mainly a function of the
loading stress and internal stresses generated by each dislocation line. The calculation of
the internal stress field associated with an ensemble of curved dislocations requires the
integration of the following equation [6, 16, 40]:

σαβ = µ

8π

∮
∂i∂p∂pR[bmεimαdx′β + bmεimβdx

′
α]

+ µ

4π(1− ν)

∮
bmεimk(∂i∂α∂βR− δαβ∂i∂p∂pR)dx′k (3.10)

where R is the distance between points α and β on the dislocation line and εijk is Levi-Civita
notation.
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A major difficulty in calculating the stress field of dislocations is related to the fact
that Equation (3.10) is divergent when R approaches zero. Different solutions have been
proposed to eliminate such singularity as in [15, 16, 41]. Among those solutions, the
one proposed by Cai et al. [16] features some specifications which makes it particularly
convenient for DD simulations. In brief, it modifies the singular stress field solution through
a mathematical transformation where R in Equation (3.10) is replaced by Ra =

√
R2 + a2

0.
This transformation implies the definition of a new regularization parameter a0 coined as
the dislocation core width parameter.

Hence, the dislocation strain energy definition used in this study reduces to two
major parameters: the dislocation core width parameter a0 and the core energy parameter
ζcore. In order to assess the impact of these parameters, we perform DD simulations on
the Orowan mechanism.

In a seminal work, Bacon et al. [30] investigated the bypass of a periodic row of
impenetrable spherical obstacles by an infinite dislocation with the Orowan mechanism [27].
From an analysis of the influence of the obstacle size (D) and the inter-obstacle distance
(L) on the flow stress, they defined the following equation (hereinafter referred to the BKS
model):

τ = A
µb

L
[lnD̄ +B] (3.11)

In Equation (3.11), A is a pre-logarithmic factor that depends on the character of
the dislocation. A = 1 and A = 1/(1− ν) for edge and screw dislocations, respectively. B
is a fitting parameter evaluated to 0.7 in the BKS paper. This model equation is widely
used in the literature as a reference for Orowan-like interactions [33, 34].

3.3.3 Simulation technique
Simulations were carried out using NUMODIS [25, 42], a 3D nodal dislocation

dynamics (DD) code based on the isotropic elastic theory of dislocations. Dislocation
lines are represented by a set of nodes, interconnected by straight segments nodes, whose
properties are their Burgers vector and their glide plane.

This study is performed on a single crystal of BCC Iron at 300 K. At this temperature,
the lattice parameter equals 0.2855 nm, b the Burgers vector of slip systems 1/2[111](11̄0)
equal 0.2475 nm and the shear modulus µ equals 63 GPa. The x, y and z axes of the
simulated volume are oriented in the [111], [1̄1̄2] and [11̄0] crystallographic directions,
respectively. Periodic boundary conditions are applied in the [111] and [1̄1̄2] directions,
while no particular conditions are applied to the boundary surfaces in the [11̄0] direction
since they are normal to the dislocation glide direction.

Following a robust methodology previously used to simulate the Orowan process
[33, 34, 43], one 1/2[111](11̄0) edge or screw dislocation is introduced in the periodic volume
in front of an impenetrable spherical obstacle with diameter D and cut by the dislocation
glide plane at its center (Figure 3.8). This obstacle is considered as an incoherent inclusion,
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whose elastic properties are equal to the surrounding crystal. No specific stress field is
therefore associated with the obstacle. The spacing L between periodic images of the
obstacle is varied by changing the size of the simulation box along the direction parallel
to the dislocation line. The dimension of the simulated volume in the glide direction is
systematically adjusted to allow for Orowan loop formation before the dislocation line
reach the boundary of the periodic volume. The z-axis is systematically adjusted to be
three times the obstacle diameter.

Figure 3.8 – Illustration of the DD Simulation volume. The green surface represents the
glide plane of the mobile dislocation, while arrows at the top and bottom surfaces indicate
the direction of the applied shear stress. The straight dislocation represents the initial
dislocation configuration while the curved one is the critical configuration observed before

the formation of the Orowan loop.

Pure shear stress is applied in the b direction to impose a constant strain rate which
corresponds to a constant dislocation velocity in the glide plane close to 3 m/s. For
reasons of simplicity and to allow for comparison with previous computations made in
FCC materials, we consider a simple linear over-damped mobility law similar to [44], in
the form:

vs = τb

B
(3.12)

where τ is the effective resolved shear stress and B is a viscosity coefficient set to 8× 10−5

Pa.s. The latter quantity accounts for dissipating processes like dislocation-phonon
interactions. All simulations are done in a quasi-static condition and tests have been made
to verify that the viscosity coefficient value has no influence on the computed critical
stress. Here, it must be noted that although thermally activated bypassing mechanisms are
reported in the literature in case of small obstacles, for reasons of simplicity no thermally
activated dislocation property like, dislocation cross-slip or climb, are considered in the
present simulations. All the material parameters used in the DD simulations are consistent
with prior molecular dynamics simulations found in [45–47].

In order to investigate the influence of the two core parameters, a parametric study
of the Orowan mechanism was conducted. The range of the many combinations we tested
are summarized in Table (3.1).
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Table 3.1 – Energy and geometrical simulation parameters we explored to calculate the
Orowan stress.

Parameter Symbol Range Unit

Regularization parameter a0 1.5, 2.5, 4.0, 5.0 Å
Core energy parameter ζcore 0.09, 0.43, 0.86, 1.28 -
Poisson ratio ν 0.0, 0.2, 0.33, 0.435, 0.495 -
Inter-obstacle distance L 100.0, 316.2, 1000.0 b

Obstacle size D 10.0, 31.62, 100, 316.2 b

3.3.4 Simulation results
The results of all the calculations of the Orowan critical stress we conducted are

plotted in Figure (3.9). For comparison with the BKS model, the Orowan stress is plotted
as a function of the harmonic mean of the inter-obstacle spacing and obstacle diameter,
(L−1 +D−1)−1. A large dispersion of the values is found when changing the parameters
controlling the dislocation elastic energy. In the edge dislocation case and for different
values of the harmonic mean, an increase of 100% in the critical stress is observed. Such
dispersion is found to be even more important in the case of screw dislocations, where the
critical stress increases of approximately 280% for the different sets of parameters.

Figure 3.9 – Result of the Orowan stress calculation with screw and edge dislocations in
reduced units. Each mark is a unique combination of the parameters reported in Table

(3.1). Continuous lines are the prediction of the BKS model (Equation 3.11).

To understand the effect of each parameter, our simulation results are now plotted
separately by fixing all but one of the energy parameters. In Figure (3.10), we show the
effect of changing the Poisson ratio while the other simulation parameters are L = 1000b
(247 nm), D = 100b (24.7 nm), a0 = 0.4 nm and ζcore = 0.86.
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Figure 3.10 – Variation of the Orowan stress as function of the Poisson ratio for screw and
edge dislocations. Other simulation parameters are L = 1000b (247 nm), D = 100b

(24.7 nm), a0 = 0.4 nm and ζcore = 0.86.

The critical stress of an edge dislocation is observed to be quasi-independent of the
Poisson ratio ν, while a non-linear dependence of the form 1/(1− ν) is observed in the
case of a screw dislocation. This observation is in agreement with the line tension model
proposed by deWit [26] that accounts for the effect of the dislocation character and the
simulation results first reported in [30]. Figure (3.10) as well shows that when ν equals
zero, the Orowan stress is independent of the dislocation character and the Orowan stress
is independent of the dislocation line character as expected.

The second analyzed simulation parameter is the core energy parameter ζcore. As
shown in Equation (3.7), ζcore has a linear influence on the total strain energy of the
dislocation and therefore on dislocation line tension. The same tendency is observed on
screw and edge dislocations (see Figure 3.11). More precisely, increasing ζcore by a factor
of 10 increases the critical stress by about 33%. This reveals a fairly high dependence
of DD simulations on the definition of the dislocation core energy. This point has been
probably been overlooked in several existing studies.
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Figure 3.11 – Variation of the Orowan stress as function of the core energy parameter
ζcore. Other simulation parameters are set to L = 100b (24.7 nm), D = 10b (2.47 nm),

a0 = 0.15 nm and ν = 0.435.

Regarding the effect of a0, the core width parameter, we see that the Orowan stress
has an inverse logarithmic dependence. Such behavior is shown in Figure (3.12), where
other simulation parameters are L = 1000b (247 nm), D = 100b (24.7 nm), ζcore = 0.86
and ν = 0.435.

Figure 3.12 – Variation of the normalized Orowan stress as function of core width
parameter a0. Other simulation parameters are set to L = 1000b (247 nm),

D = 100b (24.7 nm), ζcore = 0.86 and ν = 0.435.

The inversely logarithmic dependence observed in Figure (3.12) can be motivated
by the dislocation energy expression computed by Cai et al. [16] in the context of the
non-singular theory. Indeed, the core width parameter a0 appears in the denominator of
the logarithmic term, as if r0 was replaced by a0 in Equation (3.6). Consequently, the
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simulated Orowan stress is decreased by approximately 18% and 16%, for screw and edge
dislocations respectively, when increasing the core width parameter a0 by a factor of 3.
This result raises doubts about the relevance of DD simulations, which use regulation
parameters 10 to 100 times larger than the core radius of the dislocations defined by
atomic simulations for computational reasons.

Lastly, we show that in agreement with the BKS model for a given set of simulation
parameters, the Orowan stress is logarithmically dependent on the harmonic mean of
inter-obstacle distance and obstacle size. This result is presented in Figure (3.13) with
a set of simulation parameters (a0 = 0.45 nm, ζcore = 0.86 and ν = 0.33) and is in good
agreement with the solution found in previous simulations. As discussed in [30], the
evolution of the Orowan stress is here well described with the help of a harmonic mean
between the inter-obstacle distance L and the obstacle diameter D. When L is much
larger than D the average tends to L and the required stress to overcome the precipitate
decreases, since the line tension of a dislocation in inversely proportional to its length and
vice-versa.

Figure 3.13 – Normalized Orowan stress vs the harmonic mean of inter-obstacle length
and obstacle diameter. The simulation parameters controlling the elastic energy are set to

a0 = 0.45 nm, ζcore = 0.86 and ν = 0.33. The continuous lines are the BKS model
prediction with the fit parameter calculated in [30].

3.3.5 Discussion and concluding remarks
In this work, we studied in α-iron the interaction of infinite 1/2[111](11̄0) screw and

edge dislocations with a periodic array of impenetrable obstacles of different size and
spacing. These configurations are standard simulation problems previously used to study
the Orowan mechanism with MD and DD simulations. The reported results are in good
agreement with previous studies, but reveal a large dispersion of results when changing
the simulation parameters used to define the dislocation strain energy. More specifically,
for the different solutions of simulation parameters, the calculated Orowan stress can vary
by 100% and 280% for edge and screw dislocations, respectively.
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In order to reveal the collective effect of the studied parameters to the Orowan
stress, we propose to combine them in a new equation. This equation represents the sum
of two contributions. It reflects the strain energy decomposition into elastic and core
energy contributions (see Equation 3.5). The first contribution is similar to the one defined
in the BKS model, but includes the contribution of the core width parameter a0, as it
modifies the elastic strain energy in the framework of the non-singular dislocation theory.
The second term accounts more specifically for the contribution of the dislocation core
energy via the parameter ζcore. Indeed, as revealed in Figure (3.11), this contribution
contributes significantly to the dislocation line tension and cannot be neglected when
modeling phenomena involving dislocations curvature like the Orowan process. The
following modified Orowan equation is the outcome of a fit made with more than 1000
simulations run with different parameters.

τOrowan = µb

L

A

2π [1.23( ln D̄
a0
− 0.18 )+ζcore] (3.13)

The harmonic mean term of L and D appears in the numerator in conformity with
the BKS model, while the core width parameter (a0) appears in the denominator since
τOrowan has an inverse dependence on this term. The additional right hand side term of the
equation account for the linear contribution of the core energy to the Orowan process. As
illustrated in Figure (3.14), prediction made with Equation (3.13) gives excellent results
with a correlation factor of 0.9965 when considering all our simulation data.

Figure 3.14 – Comparison between simulation results and Equation (3.13) prediction for
the 1000 combinations of parameters taken from Table (3.1) and tested in the present

study.

It should be noted that Equation (3.13) is generic and can be used to interpolate any
type of results on the Orowan mechanism. Thus, it becomes possible to perform a reverse
analysis to identify the parameters of a DD simulation that can reproduce experimental
data or other simulation results. In the following, an example of such adjustment is given.
Equation (3.13) is used to define the parameters that are needed in our DD simulation
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to reproduce the results on the Orowan stress obtained by Lehtinen et al. with MD
simulations [48]. These results are discussed and compared to the BKS model.

Lehtinen et al. studied the interaction between 1/2[111](11̄0) edge dislocation with
non-coherent cementite precipitate (Fe3C) of different spacing using molecular dynamics.
These calculations were produced using the interatomic potential H13 proposed by Hen-
riksson et al. describing the FeCrC system [49]. Parameters that can be directly shared
between MD and DD simulations are µ = 75 GPa, ν = 0.379 at T = 750 K, b = 0.2502 nm
and obstacle diameter D = 2 nm. Use is then made of Equation (3.13) to identify the
missing parameters needed in the DD simulations to correctly adjust the dislocation strain
energy and to be in agreement with the prediction of the interatomic potential used in
the MD simulations. Such adjustment gives for the dislocation core width parameter
a0 = 0.45 nm and for the dislocation core energy parameter ζcore = 0.51. Both parameters
value are physically meaningful and allow running DD simulations to either reproduce
quantitatively the MD simulation results in a few seconds or to upscale the MD simulation
results. To illustrate this point, a comparison is made in Figure (3.15) between the initial
results of Lehtinen et al., the results we obtained with the adjusted DD simulation and
the BKS model predictions.

Figure 3.15 – Comparison between critical Orowan stress as function of the inter-obstacle
distance L for obstacle of D = 2 nm found using MD and BKS model and DD model in

Equation (3.13). DD simulation parameters are a0 = 0.45 nm, ζcore = 0.51.

The results of DD simulations when parametrized with the help of Equation (3.13)
show an excellent match with the Orowan stresses computed with MD simulations. More
precisely, the difference between the stress found in DD and MD simulations at different
obstacles spacing is on average less than 2.4%. It is worth noting also that this difference
is 53% between the BKS model and the MD simulation results. Such a difference could be
interpreted as coming from the existence of thermally activated phenomena in the MD
simulations that cannot be reproduced with any approach based only on the elastic theory.
Our study, rather suggests that the dislocation strain energy that controls the dislocation
dynamics in the MD simulations is simply different from the definition used initially in
the BKS model.
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In conclusion, it should be noted that the parameterization of the dislocation strain
energy in the framework of the non-singular dislocation theory is governed by the idea that
the total dislocation energy should remain unchanged when changing the regularization
amplitude. Hence, when increasing the dislocation core width parameter in a DD simulation
(to avoid using tiny time steps), the dislocation core parameter is usually also increased
to keep the total energy constant. As illustrated by our study, such solution without a
systematic investigation of the parameterization effect could be problematic. Indeed, we
show that the dislocation dynamics are not affected in a simple manner by both parameters.
For instance, some new DD simulations to be published in a forthcoming paper have
shown that when modeling the interaction between a dislocation and radiation-induced
loop defects, a drastic effect is observed on the dislocation dynamics by changing a0 a few
percent. Such parameterization change may even lead to the modeling of very different
contact reactions.

In summary, a large dispersion is observed in DD simulation results depending on
the choice of parameters used to control the dislocation strain energy. Such uncertainty
has to be eliminated so that DD simulation results can be compared with MD and DD
simulations or even experiment. A parametric study is proposed to incorporate the effect
of essential simulation parameters in an equation form useful to predict the Orowan stress.
This model reveals the existing coherence between the many simulations we performed and
provides the means to calibrate rigorously future DD simulations. The model was tested
and validated by a direct comparison with MD simulations. This work opens the door to
more quantitative comparison between DD simulations and other simulation techniques.
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3.4 Conclusion
In conclusion, some methodological aspects were successfully implemented, tested

and used in NUMODIS during this PhD work. Such progresses allow for much better
comparison between DD and MD simulations.

First, periodic boundary conditions are implemented. PBC are essential to minimize
the calculation time as the size of the simulation cell is reduced. A specific parameter is
assigned to control the number of replicas used to calculate forces based on the concept
of minimum image convention. The implementation of PBC in DD simulations allows
to compare our results more rigorously and precisely with MD simulations. PBC has
several advantages; mainly to reduce the size of the simulation box and consequently the
computation time.

Secondly, the thermally activated glide mechanism was successfully implemented in
NUMODIS. We presented a robust algorithm to detect screw segments at each time step.
The velocity of screw parts is then calculated based on a double-kink nucleation model
in [7]. In order to validate the implementation we tested a simple case of a Frank-Read
source expansion in pure iron. In addition, the effect of temperature was investigated on
the glide of an infinite straight screw dislocation. The temperature dependence found
using NUMODIS is in agreement with the analytical solution of the double-kink model.
Although the thermally activated glide was successfully implemented, the interactions in
the next chapter are based on a linear mobility law (cf. Equation 3.12). The idea was to
insure that the core reactions (presented in section 2.2.2) are correct and the algorithm is
working properly for different types of interactions. The thermally activated glide can be
therefore used in future simulations using the NUMODIS code.

Lastly, in section (3.3), we showed that a large dispersion in DD simulation results can
be observed. This dispersion is mainly related to the influence of simulation parameters
associated to the dislocation strain energy definition. These parameters are the core
energy parameter ζcore and the regularization parameter a0 from the non-singular theory
of elasticity. A parametric study is proposed to understand the detail influence of each
parameter. This study is based on Orowan mechanism. We propose an equation to predict
Orowan stress based on the simulation parameters selection. This model provides the mean
to rigorously calibrate future DD simulations. The model was tested and validated by a
direct comparison with MD simulations. This work opens the door to more quantitative
comparison between DD simulations and other simulation techniques. The values of the
main parameters ζcore and a0 are 0.56 and 0.25 nm respectively. These values are generally
used in the next chapter, unless specified elsewhere.

It should be noted that the parameterization of the dislocation strain energy in the
framework of the non-singular dislocation theory is governed by the idea that the total
dislocation energy should remain unchanged when changing the regularization amplitude.
Hence, when increasing the dislocation core width parameter in a DD simulation (to avoid
using tiny time steps), the dislocation core parameter is usually also increased to keep the
total energy constant. As illustrated by the present study results, such solution without a
systematic investigation of the parameterization effect is potentially the source of problems.
Indeed, we show that the dislocation dynamics are not affected in a simple manner by
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both parameters. Such parameterization change may even lead to the modeling of very
different contact reactions.

In conclusion, DD simulations include, like every mesoscopic simulations, some
constitutive and partly phenomenological rules that must be educated to reproduce the
results of simulations made at atomic scale. In Tables (3.2, 3.3), a list of the adjusted
parameters in DD simulations to reproduce the MD results for iron at 300 K. Some of the
these parameters are fitted, others are directly extracted from atomistic simulations.

Table 3.2 – List of the adjusted parameters in DD simulations to reproduce the MD results
for iron at 300 K.

Parameter Symbol Unit Value Ref.

lattice parameter a nm 0.286 Terentyev et al. 2008
shear modulus µ GPa 65 Terentyev et al. 2008
Poisson ratio ν - 0.48 Terentyev et al. 2008
core energy parameter ζcore - 0.56 Shukeir et al. 2019

0.26 Shi 2015
core width parameter a0 nm 0.25 Shukeir et al. 2019

0.14 Shi 2015

Table 3.3 – Identification of mobility law parameters in iron at 300 K. The drag coefficients
and the friction stress of different glide systems are indicated (after Shi 2015 [50]).

Burgers vector Plane B (10−5Pa.s) τ0 (MPa)

1/2〈1 1 1〉 {1 1 0} 8 10
1/2〈1 1 1〉 {1 1 2} 8 10
1/2〈1 1 1〉 {1 2 3} 8 10
〈1 0 0〉 {1 1 0} 80 300
〈1 0 0〉 {1 0 0} 9000 300
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Introduction
In the previous two chapters, we presented several models and developments made

in the NUMODIS code. In this chapter, such models and developments are used to
investigate, with DD simulations, the individual interactions between screw dislocations
and radiation-induced loops. Here it must be noted that, some reactions could not be
reproduced correctly. We therefore present an analysis of the problems.

In this work, we focus on the interactions of the 〈1 0 0〉 square SIA loops (cf. section
4.1) and the 1/2[1 1 1] hexagonal SIA loops (cf. section 4.2). Different reaction mechanisms
are observed when modeling SIA loops of different sizes and orientations. The details of
the reaction process are discussed. In the following, the DD simulation results are divided
in different sections corresponding to the different orientations of the SIA loop.

Several important points are discussed in this chapter. First, we highlight the
importance of the split node algorithm on the reproduced reaction mechanisms in the DD
simulations. In particular, we show the effect of split into three virtual nodes to investigate
the interaction between a screw dislocation with a [0 0 1] square loop at 300 K. This split
algorithm, presented in section (2.2.2), plays a key role in the case of interactions with
large 1/2[1 1 1] SIA loops.

Secondly, a detailed analysis is presented for the formation of a helical turn in the
case of interaction with small [1 1 1] SIA loops. The possible effect of an additional viscosity
term on the physical nodes on the helical turn formation mechanism is here discussed.
This section shows the need for additional input from molecular dynamics simulations.

In the last section, we present the results of a new MD investigation. The results
of such simulations show the importance of including the thermally activated cross-slip
mechanism and the twinning/anti-twinning mechanism in DD simulations.

4.1 Interaction of screw dislocation with 〈1 0 0〉 loops
In this section, the interaction of a screw dislocation with 〈1 0 0〉 loops is studied

using DD simulations. The reference study for this type of interaction was discussed in
section (1.5.4) (cf. [1]). We only present the calculations made at 300 K which corresponds
to the room temperature. This is because of the need to understand the increase in the
yield stress at room temperature.

The simulation conditions used in the DD and MD simulations are similar: The
size of the simulation box is (24 ∗ 28 ∗ 24) nm3. Axes x, y and z are oriented along
the crystallographic directions [1 1 2], [1 1 0] and [1 1 1], respectively. Periodic boundary
conditions are applied in the [1 1 1] and [1 1 2] directions, while no particular conditions
are applied to the boundary surfaces in the [1 1 0] direction since they are parallel to
the simulated dislocation glide plane. A screw dislocation is introduced parallel to the
x-axis and a square loop of 128 SIAs is introduced at the center of the simulation box.
A constant shear strain rate ε̇ = −107 s−1 is applied in the x direction. Such strain rate
corresponds to a steady state velocity of 27 m/s. The simulated configuration is shown in
Figure (4.14).
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Figure 4.1 – Illustration of the DD simulation volume used to reproduce Terentyev et al.
simulations [1]. The green surface represents the glide plane of the mobile screw

dislocation, while arrows at the top and bottom surfaces indicate the direction of the
applied shear stress. The SIA loop is introduced at the center of the simulation box and
intersects the glide plane of the mobile screw dislocation. The arrows on the loop indicate

the Burgers vector.

Additional DD simulation parameters are taken as follows. The discretization method
ensures that the minimum length of a segment is 2.5 Å and the maximum is 6.0 Å. A small
time step equal to 0.5 ps is taken to prevent numerical instabilities due to the explicit
time integration algorithm used in our simulations. The stress calculation is done within
the framework of non-singular elasticity theory (cf. section 2.1.2). The regularization
parameter a0 is equal to 2.5 Å (cf. Equation 3.10), while the core parameter is set to
ζcore = 6.85 in agreement with the line tension identification (cf. Equation 3.8).

In this study, two main reactions were observed according to the orientation of the
burgers vector of type 〈1 0 0〉. The first reaction (A3) results in the restoration of the
original loop (see section 4.1.1), while the formation of a helical turn is observed for the
reaction B3 and C3 (see section 4.1.2).

4.1.1 Reactions ending with the restoration of the original loop

This case is observed when a screw dislocation is interacting with a loop of b = [0 0 1]
with sides lying in {1 0 0} planes (A3). The loop is subjected to strong drag coefficient of
0.8 MPa.ns and a high threshold stress of 300 MPa. The presented values are based on
trial and error calculations made by Shi et al. when the interaction of an edge dislocation
with [0 0 1] loops was studied using NUMODIS [2]. Hence, one must keep in mind that
the mobility of such loops is reduced. The initial configuration is shown in Figure (4.2a).
As a result of the applied stress, the dislocation moves in the glide plane to meet the loop
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at the point (A) as shown in Figure (4.2b).

(a) (b)

Figure 4.2 – Visualization of the first interaction between 1/2[1 1 1](1 1 0) screw
dislocation and 128 SIAs loop of b=[0 0 1] (case A3 in Terentyev et al. [1]) as reproduced
in DD simulations. (a) the initial configuration, (b) the dislocation encounters the loop

and node A is considered a node to be splitted.

At the moment of collision, the split node algorithm is involved. Node (A) (visualized
in Figure 4.2b) is a node to be split according to the criteria presented in section (2.2.2).
The list of split options to be considered after the collision is shown in Table (4.1). For
each split option we show the number of virtual nodes (VN), the possible dof of each
virtual node, the virtual junctions (VJ), the Burgers vector and planes of the created
junctions and the total energy dissipation of the split option.

Table 4.1 – Split options of node (A) in Figure (4.2b) at the time step after the collision
between the 1/2[1 1 1] screw dislocation with a [0 0 1] loop.
* VN: number of virtual nodes, ** VJ: number of virtual junctions, dof are 0,1 or 2

Split option VN* dof VJ** Burgers Plane Dissipation rate (eV/ps)

#0 1 1 0 - - 0.0021
#1 2 1,1 0 - - 0.0023
#2 2 1,1 1 [1 1 1] (0 1 0),(1 1 0) solver did not converge
#3 2 1,1 1 [1 1 1] (1 1 0) solver did not converge

The non linear solver did not converge in case of split options (#2, #3). We already
know from MD simulations that such reactions are not expected for such configuration as
they will eventually lead to a helical turn formation due to the creation of a 〈1 1 1〉{1 1 0}
junction.

In this table, split option #0 corresponds to the unchanged configuration (see 2.10).
Split option #1 implies the creation of two virtual nodes but no junction in between.
It basically correspond to the dislocation crossing and shearing the loop without any
particular junction formation. Despite the fact that this solution is not the one observed
in MD simulations, it is the solution selected by our DD simulation. Indeed, the virtual
power dissipation we calculate in option #1 (0.0023 eV/ps) is found to be higher than
that for option #0 (0.0021 eV/ps). The final configuration we obtain after split option #1
is shown in Figure (4.3)
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(a) (b)

(c)

Figure 4.3 – Snapshots of the interaction between 1/2[1 1 1](1 1 0) screw dislocation and
128 SIAs loop (b=[0 0 1] case A3 in Terentyev et al. [1]) as reproduced in DD (a) no

junction is formed and the dislocation continues gliding, (b) the dislocation approaches
the second node to be splitted but no interaction takes place similar to point (a), (c) the

original loop is restored and the CSS to pass the loop equals 208 MPa.

Figure (4.3b) is useful to see that the screw dislocation mobility is affected by the
stress field of the loop. The critical shear stress to unpin the dislocation is 208 MPa (∼20%
lower than the CSS found in MD). This type of reaction is illustrated in Terentyev et
al. [1].

The only way to reproduce the reaction observed in MD simulations (see Figure
1.37) in the DD simulation is to allow node (A) in Figure (4.2b) to dissociate into three
virtual nodes connected by two virtual junctions. This development in the code was
previously illustrated in section (2.2.2). At this stage, it should be pointed out that before
the implementation of the split into three nodes, I "manually" forced the code to take
such option by creating the configuration as in Figure (4.4a). As a result of the creation
of three nodes, the dislocation propagates along the side of the loop (see Figure 4.4) in
good agreement with MD results. This leads to the conclusion that the interaction was
physically possible, yet our algorithm could not treat the split into three nodes and the
problem was not related to a numerical problem in the non-linear solver.

The split into three nodes is successfully implemented in our DD code. An updated
list of split options including a split into three nodes is illustrated in Table (4.2). With this
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new degree of freedom in the reaction path, there is a total of 16 possibilities to consider in
the split node algorithm. Here, we highlight only a few examples to illustrate the analysis
made in the split node algorithm. Further details about the outcome of the proposed split
options are presented in Appendix (A).

Table 4.2 – Split options of node (A) shown in Figure (4.2b) after the collision between
the 1/2[1 1 1] screw dislocation with a [0 0 1] loop.
* VN: number of virtual nodes, ** VJ: number of virtual junctions, dof are 0,1 or 2

Split option VN* dof VJ** Burgers Plane Dissipation rate (eV/ps)

#0 1 1 0 - - 0.0042
#1 2 1,1 0 - - 0.0043
#2 3 0,1,1 2 [1 1 1],[1 1 1] (0 1 1),(2 1 1) 0.0043
#3 3 0,1,1 2 [1 1 1],[1 1 1] (1 0 1),(1 0 1) 0.1233
#5 3 0,1,1 2 [1 1 1],[1 1 1] (1 2 1),(3 2 1) solver did not converge
#6 2 0,1 1 [1 1 1] (0 1 1) solver did not converge
#15 3 0,1,1 2 [1 1 1],[1 1 1] (2 3 1),(2 1 1) solver did not converge

As can be seen from table (4.2), some split options imply splitting into three virtual
nodes connected by two virtual segments. Such solutions imply different combinations
of slip systems and connections between the nodes. Split option (#3) is finally selected
because this reaction solution leads to a larger energy minimization. As a result of this
solution involving 3 nodes, one of the created segments is aligned with the segment 2 in
the loop (see Figure 4.2b). The outcome of this reaction is shown in Figure (4.4a).

(a) (b)

Figure 4.4 – (a) Visualization of the split node reaction selected in the case (A3) when 3
nodes reactions are considered in the DD simulations. Two junctions are created on the
[1 1 1](1 0 1) and the [1 1 1](1 0 1) slip systems in agreement with MD simulations. The
virtual power dissipation due to this configuration equals 0.1233 eV/ps. (b) the same

interaction as observed in MD simulations.

In the next steps of the reaction, the created [1 1 1](1 0 1) (indicated by arrow in
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Figure 4.4a) glides along the loop segment until it reaches the lower corner of the loop.
Then at this step, a segment in the loop is completely changed. As illustrated in Figure
(4.5), this segment has a new Burgers vector and a new glide plane.

Figure 4.5 – Visualization of the successful creation of the first half of the reaction
observed in the MD simulation with the DD simulations thanks to the split option into

three nodes.

The first half of the reaction observed in MD simulation is then correctly reproduced
in DD with the help of split into three nodes. The second part of the reaction implies the
cross-slip of the [1 1 1](1 0 1) segment to convert the [0 0 1](0 1 0) on the right side of the
loop to a segment of type [1 1 1](1 0 1). Once this step is done, the dislocation continues
the glide in the (1 1 0) plane and overcomes the loop with a process similar to the Orowan
mechanism. This second part of the reaction observed in MD simulations could not be
reproduced in the DD simulations in the absence of cross-slip model. To end this process,
the node in the lower part of the loop is to be splitted into two nodes. A [1 1 1](1 0 1)
junction has to be created in between the node.

In order to provide an insight of the expected reaction, the cross-slip reaction
missing in the DD simulations was manually reproduced by forcing the code to chose a
specific configuration. In the following, the [0 0 1](0 1 0) segment is manually converted
to a [1 1 1](1 0 1) segment. Then, the load is applied to this configuration without any
relaxation of the handmade configuration. The outcome of this simulation is shown in
Figure (4.6).
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(a) (b)

Figure 4.6 – Snapshots of the interaction of 1/2[1 1 1](1 1 0) screw dislocation in (A3)
when the cross-slip is manually produced. The original loop is restored with a bi-loop in

the [1 1 1](1 0 1). The CSS to unpin the mobile dislocation is 530 MPa.

Thanks to this handmade reaction, the original loop is restored with a bi-loop in the
[1 1 1](1 0 1). This reaction is similar to MD predictions. The critical stress to overcome
the new configuration is 530 MPa, which is ∼%100 higher than the CSS reported in MD.
Though the original loop is restored at the end of this reaction, the gap between the
critical stress found in MD and in DD is huge. No explanation could be found to justify
such difference.

4.1.2 Reactions ending in a helical turn formation
According to MD, the interaction of a screw dislocation with a loop of b = [0 1 0]

(B3) and [1 0 0] (C3) should result in a helical turn formation. In this section, we present
the results we obtained for both cases in DD simulations. The initial configuration of case
(B3) is shown in Figure (4.7a). A repulsive force exists initially between the dislocation
and the loop. As a result of the applied stress, the dislocation moves in its glide plane to
meet the loop and forms a [1 1 1](1 1 2) junction as shown in Figure (4.7b).

(a) (b)

Figure 4.7 – Snapshots of the interaction between 1/2[1 1 1](1 1 0) screw dislocation and
128 SIAs loop of b=[0 1 0] (case B3 in Terentyev et al. [1]) as regarded in DD. A formation

of a [1 1 1](1 1 2) junction is observed.

The list of proposed split options when the first collision occurs between the disloca-
tion and the loop is listed in Table (4.3).
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Table 4.3 – Split options at the time step after the collision between the 1/2[1 1 1] screw
dislocation with a [0 1 0] loop (case B3).
* VN: number of virtual nodes, ** VJ: number of virtual junctions, dof are 0,1 or 2

Split option VN* dof VJ** Burgers Plane Dissipation rate (eV/ps)

#0 1 1 0 - - 0.1057
#1 2 1,1 0 - - 0.1078
#2 2 1,1 1 [1 1 1] (1 1 2) 0.1511

Following the creation of a first [1 1 1](1 1 2) segment, several contact reactions are
tested with the split node algorithm. Such reactions are equivalent to test easy cross-slip
reaction at a specific location along the dislocation loop. The most favorable sequence of
the reaction is shown in Figure (4.8).

(a) (b)

(c) (d)

Figure 4.8 – Snapshots of the interaction between 1/2[1 1 1](1 1 0) screw dislocation and
128 SIAs loop (b=[0 1 0] case B3 in Terentyev et al. [1]) as reproduced with DD
simulations. No formation of the helical turn is observed in this reaction in DD

simulations. The CSS to bypass the loop equals 476 MPa.

At the end of this reaction, the original loop is transformed into a [1 1 1] loop, with
a small surviving triangle of the original character [0 1 0]. The helical turn could not be
reproduced in the DD simulations. This result comes from the absence of the creation
of [1 1 1] segment by the split node algorithm as shown in Table (4.3). Neither the final
configuration in Figure (4.8) nor the intermediate state are similar to MD simulations.
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The critical shear stress to overcome the helical turn in MD was reported to be equal
to 430 MPa, while in DD it is 476 MPa. Despite the difference in (B3) reaction between
MD and DD, the critical stress to unpin the dislocation is only ∼ 10% higher in DD than
MD calculation. This result suggests that this weak reaction is dominated by long range
elastic interaction and the details of the contact reaction may not be important. For this
reason the solution we reproduce in DD simulation was considered acceptable for massive
simulations and no further investigations was carried out for such reaction.

The second reaction, found with MD simulations, resulting in the formation of a
helical turn is the interaction with a [1 0 0] loop (case C3). The initial configuration is
shown in Figure (4.9a). When the stress is applied, the screw dislocation approaches the
loop but no interaction occurs as illustrated in Figure (4.9b).

(a) (b)

Figure 4.9 – Snapshots of the initial configuration of the interaction between
1/2[1 1 1](1 1 0) screw dislocation and 128 SIAs loop (b=[1 0 0] case C3 in Terentyev et
al. [1]) as observed in DD simulations. No interaction collision takes place between the

screw dislocation and the first interacting segment in the loop.

In this case (C3), no reaction occurred between the dislocation and the [1 0 0](0 0 1)
vertical segment in Figure (4.9a). When the dislocation reaches the other [1 0 0](0 0 1)
vertical segment, the first reaction occurs. This reaction is shown in Figure (4.10).
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(a) (b) (c)

(d) (e)

Figure 4.10 – Snapshots of the interaction between 1/2[1 1 1](1 1 0) screw dislocation and
128 SIAs loop (b=[1 0 0] case C3 in Terentyev et al. [1]) as regarded in DD simulations.

The CSS to overcome the loop equals 750 MPa.

In Figure (4.10c), a [1 1 1](1 3 2) segment is created as a result of split node algorithm.
This segment expands rapidly along the original dislocation and crosses the simulation
boundary to reenter from the other side. This segment glides in the cross-slip plane
and bows out under increased stress level. Segment [1 1 1](1 1 0) in Figure (4.10d) is now
blocked by the curved [1 1 1](1 3 2) segment. The CSS to unpin the [1 1 1](1 3 2) segment
from the loop is 750 MPa. The reaction mechanism in DD simulations is different from
that in MD simulations. In the latter, a helical turn formation is observed in case C3.
The CSS to overcome the loop in MD is found to be equals 430 MPa. The CSS in DD is
∼ 73% higher than in MD simulations.

This large difference in CSS is related to the creation of the [1 1 1](1 3 2) segment. In
Table (4.4), we examine the list of possible tested split reactions that lead to choosing
such option by the split node algorithm.

Table 4.4 – Split options tested at the collision between the 1/2[1 1 1] screw dislocation
with a [1 0 0] loop (case C3) where the creation of (1 3 2) segment is observed.
* VN: number of virtual nodes, ** VJ: number of virtual junctions, dof are 0,1 or 2

Split option VN* dof VJ** Burgers Plane Dissipation rate (eV/ps)

#0 1 0 0 - - 0.4049
#1 1 1 1 [1 1 1] (1 1 0) 0.4117
#2 1 1 1 [1 0 0] (0 0 1) 0.4055
#3 1 1 1 [1 1 1] (1 3 2) 0.8946
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The creation of such segment in the cross-slip glide plane should not be favored.
Ultimately, to prevent the previous cross-slip, the node to split (#1 in Figure 4.11) is
manually changed to a pinned node. Hence, the node could not be split. As a result the
original dislocation continues the glide in the (1 1 0) plane. The result of the reaction is
now shown in Figure (4.12).

Figure 4.11 – Visualization of the node to be pinned in order to prevent the creation of a
split option in the (1 3 2) plane in case C3.

(a) (b)

Figure 4.12 – Snapshots of (a) the critical configuration, (b) the final configuration of the
interaction between 1/2[1 1 1](1 1 0) screw dislocation and 128 SIAs loop b=[1 0 0] case C3.
No creation of a (1 3 2) segment is observed due to the pinning of the node to split in

Figure (4.11).

4.1.3 Conclusion
In summary, the interaction mechanism between a [1 1 1] screw dislocation with 〈1 0 0〉

square loops at 300 K has been studied. Three different orientations were investigated
in DD; [0 0 1], [0 1 0] and [1 0 0] named A3, B3 and C3 respectively. The case A3 in MD
is reported to be a restoration of the original loop. The first attempt in DD shows no
interaction between the dislocation and the segments of the loop. This is because no
proper split option was tested in the DD simulation for such reaction. However, the critical
stress equals 208 MPa which is ∼ 21.7% lower than CSS in MD simulations. This reaction
could not be reproduced in DD without the split into three nodes. The critical shear
stress after using split into three nodes equals 530 MPa. In conclusion, the use of split
in 3 nodes is not always of a great advantage from a quantitative point of view. This is
because, hard configurations could be created during the process that lead to high critical
stress to unpin the dislocation from the obstacle.

Regarding the case B3 and C3, the formation of a helical turn is observed in MD.
This helical turn is not observed in both cases in the DD simulations. The critical stress
in the case B3 is 476 MPa, which is very close to the 430 MPa found in MD. Though the
reaction mechanism is not the same, this result is considered good enough for massive
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simulations. Indeed, when running massive simulations, the critical stress for individual
interactions is more important than the details of the reaction path.

In case C3, the creation of a segment in the (1 3 2) plane favored the cross-slip of such
segment. This segment expanded along the original dislocation leading to its elimination.
The critical stress to unpin the new segment from the loop is high (750 MPa) compared
to MD (430 MPa). When such cross-slip is manually prevented, the new critical stress
is 500 MPa in much better agreement with MD simulations. A summary of the critical
stress we calculated with the DD simulations in the three different cases tested in this
section is shown in Figure (4.13).

Figure 4.13 – Comparison of the critical shear stress between MD and DD of the
interaction of a 1/2[1 1 1](1 1 0) screw dislocation with 〈1 0 0〉 square loops of 128 SIAs.
The loops have different Burgers vector [0 0 1], [0 1 0] and [1 0 0] named A3, B3 and C3

respectively.

In conclusion, the reaction mechanism is affected by the size of the obstacle, orienta-
tion, angle of attack of the dislocation and other factors. Our goal to reproduce the same
reaction with 〈1 0 0〉 loops in MD and DD simulations could not be achieved. However, for
the sake of calibration of DD simulations based on the individual interactions, obtaining
a critical stress in agreement with MD is sufficient. The reaction mechanism becomes
more important when performing massive simulations, where each obstacle can be crossed
several times by different dislocation lines. For, this reason, some phenomena such as the
clear band formation can hardly be investigated with the present simulation code.
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4.2 Interaction of screw dislocation with 1/2[11̄1] loop

In this section, the interaction of a screw dislocation with 1/2[1 1 1] loop is studied
by DD. The reference MD simulations for these types of interactions were discussed in
section (1.5.4) (cf. [3]). We only present the results of the interactions at a temperature
of 300 K. Two reactions are mainly observed; the formation of a helical turn and a loop
planarization mechanism.

The simulation conditions in DD are taken similar to MD simulations. The size of
the simulation box is (30 ∗ 16 ∗ 30) nm3 and the crystallographic orientation of x, y and z
axes are parallel to the [1 1 2], [1 1 0] and [1 1 1] directions, respectively. Periodic boundary
conditions are applied in the [111] and [1̄1̄2] directions, while no particular conditions are
applied to the boundary surfaces in the [110̄] direction since those surfaces are normal
to the mobile dislocation glide direction. A screw dislocation is introduced parallel to
the z-axis and a SIA loop is introduced at the center of the simulation box. A constant
shear strain rate ε̇ = 8× 106 s−1 is applied. This strain rate corresponds to a steady state
dislocation velocity of 30 m/s. The DD simulation box is shown in Figure (4.14).

Figure 4.14 – Illustration of the DD Simulation volume. The green surface represents the
glide plane of the mobile screw dislocation, while arrows at the top and bottom surfaces
indicate the direction of the applied shear stress. The SIA loop is introduced at the center
of the simulation box and intersects the glide plane of the dislocation. The arrows on the

loop indicate its Burgers vector.

The DD simulation parameters used in this section are the same as those mentioned
in section (4.1). The topological discretization ensures that the minimum length of a
segment is 2.5 Å and the maximum is 6.0 Å. A small time step equal to 0.5 ps is used
to prevent oscillation in the nodal velocity calculation. The stress calculation is done
within the framework of non-singular elasticity theory (cf. section 2.1.2). The core width
parameter a0 is equal to 2.5 Å (cf. Equation 3.10), while the core regularization parameter
is set to ζcore = 6.85 (cf. Equation 3.8).

The SIA loop in this case is glissile and is found to be highly mobile. It can migrate
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along its crowdion axis 〈1 1 1〉. At the beginning of the simulation, the loop migrates below
the glide plane then in the direction of the dislocation. Such behavior results from the
elastic attraction between the loop and the dislocation. The loop at some point comes in
contact with the dislocation and a first junction is formed. This junction belongs to the
[0 1 0](1 0 1) slip system. This feature is illustrated in Figure (4.15).

(a) (b)

Figure 4.15 – Snapshots of the formation of the first junction as a result of the interaction
between 1/2[1 1 1](1 1 0) screw dislocation and a 1/2[1 1 1] hexagonal SIA loop. The

junction belongs to the [0 1 0](1 0 1) slip system and it is a sessile junction.

The first junction formation we observe in the simulation is the same for 37, 127 and
271 SIA loops. This result is in good agreement with the molecular dynamics simulations
made by Liu et Biner [3] (see Figures 1.40, 1.41).

Though the first formed junction is common for all loop sizes, the complete reaction
was found to depend on the size of the SIA loop in agreement with MD simulations.
A planarization mechanism is observed for the larger loops of 127 and 271 SIAs, while
a helical turn is formed for the smaller loops of 37 SIAs. The details of both reaction
mechanisms are discussed in the following sections.

4.2.1 Reactions ending with the planarization of the original
loop

In section (1.5.4), we showed the MD results of the interaction between a 1/2[1 1 1]
screw dislocation and large [1 1 1] loops of 127 and 271 SIAs. A planarization mechanism
is observed, where the loop is transformed into a sessile [0 1 0](1 1 0) loop. In this section,
we present the results of such interaction using DD simulations.

As shown in Figure (4.15), the formation of the first junction for the interaction of
1/2[1 1 1] loop with 1/2[1 1 1] screw dislocation is identical in the case of loops of 37,127
and 271 SIAs. This junction is sessile and it is a [0 1 0](1 0 1) segment type. In the case of
a loop of 127 SIAs, the complete reaction mechanism observed in dislocation dynamics is
shown in Figure (4.16).
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(a) (b)

(c) (d)

Figure 4.16 – Snapshots of the interaction between 1/2[1 1 1](1 1 0) screw dislocation and
127 SIAs loop (b=[1 1 1]) as observed in DD in the current version of the code. A helical
turn is formed in the process instead of the planarization of the loop along the glide plane

(1 1 0).

In the first snapshot, the formation of a helical turn is observed. This is similar to
the results discussed previously in the case of a small loop of 37 SIAs. The critical shear
stress to unpin the dislocation of the loop is 1006 MPa. This value is 287% higher than
the CSS reported in MD for the same reaction.

The helical turn formation in the case of the interactions with large loops in DD
simulations is contradictory to MD simulations. The [0 1 0] sessile segment should not be
transformed into a [1 1 1] segment. Indeed, the latter facilitates the successive transfor-
mation of the segments of the loop to a helical turn of b =[1 1 1] segments. The correct
mechanism found in MD is reported in Figure (4.15b). The segment (1) of the loop should
cross-slip under increasing stress and react with the dislocation arm on the right side.
As a result of such interaction, the interacting segment is transformed into a [0 1 0](1 1 0)
segment. The other segments of the loop undergo the same transformation until the plane
of the loop is completely changed.

In order to investigate the origin of the problem found in DD simulations, we precisely
analyzed the solutions tested in the split node algorithm described in section (2.2.2). In
this reaction, the split node into three virtual nodes is made possible. Nevertheless,
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no split solution with three nodes is finally investigated in the simulation. Indeed, as
explained in section (2.2.2), the investigation of a particular split node solution requires
the determination of the directions (tangent vector) of all virtual junctions created for this
configuration. If one of the created virtual nodes has a dof=2, the node can move in two
directions. In such case, the virtual junction connected to this node can have any direction
in the plane. Therefore, the direction of the virtual junction cannot be determined from
a crystallographic point of view, since the virtual junction is not bounded by specific
crystallographic directions. This direction is then determined with the non-linear solver.
Since no possible direction was found by the non-linear solver, this split option is discarded.

In order to reproduce the planarization mechanism correctly, the creation of a
[0 1 0](1 0 1) segment is necessary. The desired split option is shown in Figure (4.17).

(a) (b)

Figure 4.17 – Schematic representation of the node to split at the time step where split
node algorithm proposes different split options. (a) the initial configuration, (b) the

desired split option into 2 virtual nodes, the created junction should be of type
[0 1 0](1 0 1).

The list of split options tested at the beginning of the formation of the helical turn
is reproduced in Table (4.5).

Table 4.5 – Split options tested at node (1) in Figure (4.17) at the time step before the
beginning of the formation of the helical turn for the reaction of 1/2[1 1 1] screw dislocation
with a 1/2[1 1 1] loop of 127 SIAs.
* VN: number of virtual nodes, ** VJ: number of virtual junctions, dof are 0,1 or 2

Split option VN* dof VJ** Burgers Plane Dissipation rate (eV/ps)

#0 1 0 0 - - 8.1623
#1 2 1,1 1 [1 1 1] (1 0 1) 15.1956
#2 2 1,1 1 [1 1 1] (1 0 1) 8.5429
#3 2 1,1 1 [0 1 0] (1 0 0) solver did not converge

As can be seen from the Table (4.5), the split option of type [0 1 0](1 0 1) is not
proposed in the list of configurations to be tested. Two virtual nodes connected by one
virtual junction are needed for such solution. According to the analysis of split node
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algorithm, the first virtual node has one degree of freedom, while the other has two degrees
of freedom. If one of the created virtual nodes has two dof, the direction of the virtual
junction connected to such node cannot be determined from a crystallographic point of
view. This direction is then determined with the non-linear solver. In this case, no possible
direction was found by the non-linear solver. A possible justification is that the initial
guess of the junction direction is far from the right configuration. Such divergence occurs
despite the number of performed iterations. As a result, this split option is eliminated.

Results of the interaction of a screw dislocation with a loop of 127 SIAs are similar
to that with 271 SIAs. A planarization mechanism should be observed in conformity with
MD simulations. However, the formation of a helical turn occurs in the DD simulations.
The interaction mechanism we reproduce with DD simulations is shown in Figure (4.18).
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(a) (b)

(c) (d)

(e)

Figure 4.18 – (a - d) Snapshots of the interaction between 1/2[1 1 1](1 1 0) screw
dislocation and 271 SIAs loop (b=[1 1 1]). Here, a helical turn is formed instead of the

planarization of the loop along the glide plane (1 1 0) as observed in MD simulations. The
dislocation in (d) breaks away in the anti-twinning direction as shown in (e), (e) twinning

and anti-twinning directions in BCC crystals.



Chapter 4. Confrontation of MD and DD simulations 122

In case of the interaction with 127 SIAs loop in DD simulations (cf. Figure 4.16),
the [1 1 1](1 0 1) segment crosses the simulation boundaries and bows out until the critical
stress. At such stress, the [1 1 1](0 1 1) segment is unpinned from the helical turn.

The difference we found between the reaction in 127 and 271 is attributed to the
size of the loop. The stress field of the loops evolves rapidly with its size (≈ 1/r3). The
force needed to unpin the screw dislocation is therefore strongly affected by the size of the
loops.

Finally, it must be noted that the planarization reaction could not be achieved in
our DD simulations due to the absence of cross-slip mechanism rule in the code. Another
important observation from Figure (4.18) is that the liberated dislocation glides in the
(0 1 1) plane which is an anti-twinning direction as discussed earlier in section (1.4.3). The
dislocation is supposed to glide in the twinning plane (1 0 1) as in Figure (4.16). Such
mechanism is not implemented yet in NUMODIS, it is further discussed in section (4.3.2).

In the following analysis, the planarization mechanism is therefore manually investi-
gated. In other words, the formation of new junction of the corresponding slip systems is
preset in the entry files. The resulting configuration is shown in Figure (4.19).

(a) (b)

Figure 4.19 – DD simulation of the planarization mechanism manually produced to show
the outcome of MD simulation for this reaction (a) side view, (b) top view.

4.2.2 Reactions ending with a helical turn formation
In chapter (1), it was reported that a helical turn is expected during the interaction of

screw dislocations with small SIA loops. Reaction mechanisms that lead to the formation of
helical turns are considered to have a strong contribution to hardening. This is because the
dislocation motion is blocked until the helical turn is closed following Hirsch’s mechanism.

The first interaction reproduced with DD simulation between a SIA loop and a
dislocation is described in Figure (4.15). In this case, involving a small loop of 37 SIAs, a
helical turn is formed. The formation of the helical turn starts when the junction [0 1 0] is
transformed into a 1/2[1 1 1] segment at stress level equals to 134 MPa. The formation
of the first [1 1 1] segment is shown in Figure (4.20). The hexagonal loop is transformed
into a helical turn of five segments through progressive creation of [1 1 1] segments as a
result of the split node algorithm. This process is similar to an artificial cross-slip without
activation energy, for this reason it is called "easy cross-slip" in the following. At 200 MPa,
the helical turn formed after the complete transformation of the hexagonal loop is shown
in Figure (4.21).
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Figure 4.20 – Visualization of the transformation of the hexagonal loop into a helical turn
after the appearance of the first 〈1 1 1〉 segment. The Burgers vectors and the glide plane
of each segment are illustrated. The resolved shear stress on the (1 1 0) glide plane is 134

MPa.

Figure 4.21 – The 37 SIA loop is completely transformed into a helical turn of segments
with burgers vectors 〈1 1 1〉 segments. The resolved shear stress on the principal glide

plane is 200 MPa. The resolved CSS in the [1 1 1](0 1 1) is 100 MPa.

Then, the helical turn extends rapidly along the [1 1 1] direction. The propagation
occurs from the side of the segment [1 1 1](0 1 1) which then crosses the boundary of the
simulation box from the left side. Due to PBC in the [1 1 1] direction, the segment enters
from the other side and continues its propagation until meeting the [1 1 1](1 0 1) segment
on the other side of the helical turn. As a result, the original dislocation is now fully
transformed and the new line configuration is shown in Figure (4.22).
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Figure 4.22 – Visualization of the configuration after the complete disappearance of the
original dislocation. The resolved CSS in the [1 1 1](1 1 0) equal 522 MPa, while the

resolved CSS on the extended helical turn segment equal 100 MPa.

The [1 1 1](0 1 1) segment is then unpinned when the helical turn is closed under
increased stress level. Since this segment belongs to the (0 1 1) plane, it continues to glide
in a secondary glide plane. The hexagonal loop is restored, but with a Burgers vector
similar to the original dislocation b =[1 1 1]. The final configuration is shown in Figure
(4.23).

Figure 4.23 – Visualization of the final stage of the reaction. The [1 1 1](0 1 1) segment
glides in the cross-slip plane, the helical turn is then closed following Hirsch’s mechanism.

A hexagonal loop is finally left behind with the same Burgers vector of the original
dislocation. The resolved CSS in the primary glide plane equal 750 MPa, while it is 360

MPa in the cross-slip (secondary) plane.

The critical resolved shear stress in the (0 1 1) plane is 360 MPa. Here, it must be
noted that this cross-slip (secondary) plane where the screw dislocation glides after being
unpinned is different from the one observed in MD simulations. This is because in the DD
simulations, Hirsch’s mechanism (closure of the helical turn) is observed. This mechanism
simply explains why the critical shear stress in the primary plane calculated in the DD is
747 MPa, which is 126% higher than the reported value in MD (320 MPa). A much better
agreement could be observed if the unpinned dislocation was in the primary plane.
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In Figure (4.22), we show that the helical turn extended along the simulation box
and crossed the boundary from one side to the other. As a result, the original dislocation
disappeared. This disappearance of the original dislocation is not in agreement with the
MD results. To elucidate such difference several calculations have been made.

First, we expanded the length of the helical turn in order to see if the original
dislocation does not disappear with larger dimensions of the simulation box. In order to
do such test, a 1/2[1 1 1] loop and a screw dislocation are placed in a larger simulation box
with dimensions (100, 16, 100) nm3. Results of this test are shown in Figure (4.24).

Figure 4.24 – Snapshots of the interaction between 1/2[1 1 1](1 1 0) screw dislocation and
37 SIAs loop (b=[1 1 1]) in a large simulation box. The dimensions of the simulation box
are (100, 16, 100) nm3. The helical turn is formed and closed in agreement with MD

results.

Here, the maximum length of the helical turn we observed in the simulation is 400 Å.
The physical node at the intersection of the intersection between the first segment of the
helical turn and the dislocation has a high velocity. It is equal to 2 × 104 m/s, which
is considered as a supersonic velocity (speed of sound in iron equal 0.5 × 104 m/s [4]).
The reason behind this huge velocity is explained in section (2.1.3). In brief, the segment
[1 1 1](0 1 1) in Figure (4.21) is almost aligned with the dislocation arm. Hence, it leads to
an ill-conditioned nodal viscosity matrix. When this matrix is inverted to calculate the
nodal velocities, the velocity of the node is tremendous.

Based on the simulation results of the interaction of a screw dislocation and a SIA
loop, it was proposed that a specific viscosity of the physical nodes could exist and should
be included in the DD simulations. When two segments connected to a physical node
become nearly collinear, the viscosity matrix tends to be ill conditioned. This problem
leads to a rapid propagation of the physical node when a helical turn is formed by the
Hirsch’s mechanism [5] and to the complete elimination of the original screw dislocation in
the helical turn. In order to decrease the velocity of these fast moving nodes and to give
more time to the dislocation to bend and close the loop again, we tested the possibility to
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add a specific viscosity on the physical nodes in the direction parallel to the dislocation
line.

Such proposition was made because the physical nodes at the intersection of two
quasi-collinear planes are the source of an ill-conditioned viscosity matrix KV = F . Such
nodes tend to have a high velocity and propagate only in the common direction between
the two planes. This configuration implies the need for an additional anisotropic viscosity
term for the nodes connected to two segments in different glide plane. The corresponding
viscosity model for such configuration is the model 3 presented in section (2.1.3). In this
DD simulation, the applied viscosity on physical nodes is set equal to 30 MPa.ns. As
expected, the two physical nodes at the extremities of the helical turn faced an extra
resistance to their motion along the dislocation line. With this additional rule in the DD
simulation, the formation and closure of the helical turn are reproduced as shown in Figure
(4.25).

(a) (b) (c)

(d) (e) (f)

Figure 4.25 – Interaction between 1/2[111](11̄0) screw dislocation and 37 SIAs loop
(b = [11̄1]) when the viscosity on physical nodes is increased to 30 MPa.ns in the screw

direction.

This time, the maximum length of the helical turn calculated in the DD simulations
was 62 Å (see Figure 4.25c). Due to the bowing of the dislocation arms, the summation of
forces exerted on the helical turn led to its closure, thus completing Hirsch’s mechanism.
The critical shear stress to overcome this obstacle and to complete the process is decreased
to 462 MPa (including the flow stress of 22.5 MPa for the screw dislocation without any
obstacle). Such value is still larger than the value obtained with MD (320 MPa (44%)).
Despite the large difference in the critical shear stress between MD and DD, this result is
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considered satisfactory. First, the reaction mechanism we reproduce is in relatively good
agreement with the observation made in MD. This is mainly, the formation and closure of
the helical turn without the disappearance of the original dislocation. Second, our DD
simulations for simplicity reason was made by considering a constant linear drag coefficient
on the screw dislocations, while in MD screw dislocation mobility is thermally activated
and controlled by the double kink mechanism.

In conclusion, the implementation of a viscosity model on physical nodes in the screw
direction allows reproducing the interaction mechanism of screw dislocation with small
sized SIA loops in the DD simulations in good agreement with MD. Further optimization
of the model and the used values should be made in order to reach a more quantitative
agreement between MD and DD. The value of the viscosity needed on the physical nodes
can be obtained from MD simulations. In section (4.3), MD simulations on the flow stress
of a single screw dislocation are performed. Those simulations are similar to those made
by Liu et Biner.

4.2.3 Conclusion
In summary, the interaction of a screw dislocation with 1/2[1 1 1] hexagonal loops of

different sizes was studied with DD. In the case of small loops of 37 SIAs, a helical turn
formation is observed in DD in good agreement with MD simulations. In the case of large
loops of 127 and 271 SIAs, a planarization mechanism is expected from MD simulations.
However, in these cases we also see the formation of a helical turn. A summary of the
critical shear stress found in the MD and DD simulations is given in Figure (4.26).

Figure 4.26 – Comparison of the critical shear stress between MD and DD simulations for
the interaction of a 1/2[1 1 1](1 1 0) screw dislocation with [1 1 1] hexagonal loops of 37,

127 and 271 SIAs.
In the three investigated cases, the helical turn expansion leads to a complete

transformation of the original dislocation. The segment bowing out of the helical turn
has a different glide plane than the original dislocation. In the case of 127 and 271 SIA,
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the planarization mechanism is not observed due to the absence of the proper split option
or the absence of cross-slip rule in the simulation. The crystallographic directions are
correctly proposed, but split option is rejected due to the divergence of the non-linear
solver. The selected split option during the DD simulation is the creation of segments of
b =[1 1 1] which is energetically most favorable.

4.3 Molecular dynamics investigation
In sections (4.2, 4.1), we presented the reaction mechanisms between a screw dis-

location and radiation-induced loops using DD simulations. Some reactions observed in
MD could not be reproduced using DD simulations because further development of the
split node algorithm and the implementation of the cross-slip mechanism are required.
However, in the case SIA37 (cf. section 4.2.2) could not be achieved without an extra
viscosity term on the physical nodes. Such results open questions regarding the cross-slip
and the viscosity of physical nodes which is not addressed in the reference studies [1, 3].
Hence, an insight investigation of the MD studies is mandatory.

In this section, MD simulations are made for comparison with the DD simulations
presented in the previous sections. For simplicity, the simulation parameters used regarding
the interatomic potential, temperature, simulation box, loading, etc., are the same as in
Liu et Biner [3].

4.3.1 About the existence of viscosity on physical nodes
In section (4.2), we pointed out the need for an extra viscosity term on physical

nodes in the DD simulations. This quantity is needed in the DD simulations to prevent
the rapid propagation of the helical ending segments along the dislocation line. Hence,
the use of a strong viscosity reducing the mobility of physical nodes appears to be a key
parameter to reproduce the same mechanism in MD and DD simulations.

In an attempt to verify the existence of a specific viscosity on physical nodes we
compared the flow stress in the case of single edge dislocation and a jogged dislocation. The
latter results from the interaction of an edge dislocation with a [1 0 0] loop (see Terentyev
et al. [6]). The configuration of the jogged dislocation is shown in Figure (4.27).

Figure 4.27 – Configuration of the super-jog on an edge dislocation as a result of the
interaction with a [1 0 0] square loop. The red dots are topological nodes, while black dots

are physical nodes by definition.

The calculated flow stress we found in the case of a single edge dislocation and a
jogged dislocation as function of the dislocation velocity is given in Figure (4.28).
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Figure 4.28 – Flow stress as function of initial dislocation velocity in the case of a single
straight edge dislocation and a jogged dislocation made after interacting with a square
loop. The total length of the dislocation segments is higher in the case of a jogged

dislocation.

As can be seen in Figure (4.28), the difference in the flow stress when comparing the
mobility of a jogged and a straight dislocation lines is low. This result does not support
the possible existence of large viscosity on the physical nodes at high strain rates. The
difference in the flow stress we found ranges between (1.9 - 13.7 MPa) for velocities between
(20 - 160 m/s). Such difference is small and can be explained as the outcome of the extra
length of dislocation line coming from the presence of a super-jog.

We are now convinced that an extra viscosity term on physical nodes has no significant
meaning. Nevertheless, we are still unable to understand the disappearance of the original
dislocation in DD simulations after the formation of a helical turn in Liu et Biner. In
order to have an insight of interaction mechanism we performed the same simulations
using molecular dynamics.

This investigation was made using the Lammps code [7]. Results are visualized
using the Paraview code [8]. The size of the simulation box is (30 ∗ 16 ∗ 30 nm3), while a
constant strain rate of ε̇ = 8× 106 s−1 is applied. The input file for Lammps contains the
positions of atoms of the dislocation line and the SIA loop. In order to create a dislocation
lines and loop, a specific module in NUMODIS is used to benefit from the manipulation
of crystallographic directions already implemented in NUMODIS. The simulated initial
configuration is relaxed before the load is applied. Ackland et al. EAM inter-atomic
potential is used [9]. The simulation results are shown in Figure (4.29), while the shear
stress as function of shear strain is plotted in Figure (4.30).

The critical stress to overcome the loop is 410 MPa. Once the dislocation is liberated,
it glides in the (3 2 1) plane as shown in Figure (4.29d). The corresponding glide velocity
of the screw dislocation is 43 m/s. Such velocity is higher than the initial glide velocity
of a single dislocation in the simulation box at the same applied strain rate. A possible
explanation is discussed later in this section.
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(a) (b)

(c) (d)

Figure 4.29 – Visualization of our MD results of the interaction between a 1/2[1 1 1](1 1 0)
screw dislocation with a 1/2[1 1 1] hexagonal loop with the same simulation conditions as
in Liu et Biner. The green surface represents the glide plane of the original dislocation.
The inset figure in (a) represents the twinning/anti-twinning directions in BCC crystal.

The observed formation of the helical turn is in good agreement with Liu et Biner.
However, the helical turn is found to extend rapidly along the dislocation line leading
to the elimination of the original dislocation. The [1 1 1](0 1 1) segment on the helical
turn bows out under increasing stress. As a result, the original dislocation is found to
disappear unlike what was previously reported in Liu et Biner. They only discussed the
process of unpinning the dislocation from the loop. However, the disappearance of the
original dislocation and the existence of a cross-slip on the unpinned dislocation in the
(3 2 1) direction was not mentioned in Liu et Biner.

The cross-slip of the original dislocation was discussed with Liu and Biner through a
private communication in an attempt to understand the reaction mechanism with a loop
of 37 SIA. Regarding the glide of a single dislocation, without the existence of any obstacle
in the simulation box, they observed the following: "For 300 K case, the dislocation travels
closer to the surface after some strain level so it must be the cross-slip effect, since it is most
likely that the shift is a gradual process rather than an abrupt one" [10]. This confirms
our results found using MD simulations of the same interaction. More importantly, such
results open questions regarding the cross-slip and the stability of screw dislocations in
the glide plane even with the highest resolved shear stress which is discussed in the next
section.

In conclusion, in section (4.2.2) we emphasized the need for an extra viscosity term
on physical nodes to reproduce the interaction reported by Liu et Biner. Based on the



131 4.3. Molecular dynamics investigation

Figure 4.30 – Stress-strain curve of the interaction between a [1 1 1] screw dislocation with
a 1/2[1 1 1] loop of 37 SIAs using our MD simulations. The used interatomic potential is
Ackland 2004. The velocity of the screw dislocation is 20 m/s. The red line indicates the

averaged shear stress as function of strain.

results of the MD simulations made to test such possibility we are now convinced that
there is no evidence of an additional viscosity on physical nodes. Rather, DD simulations
appear to be in good agreement with MD simulations without including such viscosity.

4.3.2 Cross-slip and twinning mechanisms in α-iron
The next point we investigated is the abnormal cross-slip of a dislocation segment

along the observed helical turn we observed in MD simulations. In the simulations we
made, a screw dislocation is created in the middle of the simulation box. The size of the
simulation volume is (35*35*16 nm). Different shear strain rates are applied that result in
a dislocation glide velocity of 5, 10 and 20 m/s. The simulation temperature is set to 300
K. Results of such simulations are given in Figure (4.31).
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(a) (b)

(c) (d)

Figure 4.31 – Snapshots of our MD simulations of the glide path of a 1/2[1 1 1] screw
dislocation in iron at different velocities 5, 10 and 20 m/s. The MD simulations are made
at 300 K using Ackland et al. EAM interatomic potential. The colored lines indicate
possible crystallographic glide planes. (a) the initial configuration of three screw

dislocations in the simulation box, (d) screw dislocations at high velocity (10, 20 m/s)
glide in the (3 2 1) plane, but in the (1 1 0) plane at low velocity. The inset figure in (a)

represents the twinning/anti-twinning directions in BCC crystal.

Figure (4.31) shows that the simulated screw dislocation glides in different directions
(glide planes) at different applied strain rates. The simulated stress-strain curves are
plotted in Figure (4.32a) and the average flow stress (plateau stress) as function of the
imposed velocity is shown in Figure (4.32b).
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(a) (b)

Figure 4.32 – Glide of a 1/2[1 1 1] screw dislocation in iron at 300 K at different velocities
using Ackland 2004 potential. (a) stress strain diagram, (b) flow stress as function of

velocity.

In Figure (4.32b), the flow stress is found to increase by ∼ 53% when the velocity is
increased by 300%. At low velocity (5 m/s), the screw dislocation glides in the primary
(1 1 0) plane, when at intermediate and high velocity (10 and 20 m/s), the screw dislocation
glides in the secondary (3 2 1) plane.

Domain et Monnet in [11] studied the temperature dependence of the CRSS for
screw dislocations using Mendelev et al. [12] EAM interatomic potential. Although the
used potential is slightly different than the one used in our simulations [9], a simple
comparison can be still made. The velocity of the screw dislocation in their study is 4 m/s.
Such result can be compared to our results for the velocity of 5 m/s at 300 K. At such
temperature and dislocation velocity, no cross-slip of the dislocation was mentioned. This
is not in agreement with our MD simulations and with the information obtained through
private communication with Liu and Biner. The MD simulations we made show that the
dislocation preferentially glides in a secondary plane at high velocity. This is in agreement
with the study of Chaussidon, in which the same phenomenon was reported. As explained
by these authors, dislocation motion can occur both in the primary plane but also in a
secondary plane where the RSS is half of the applied stress in the twinning direction.

At low velocity (5 m/s), the screw dislocation glides in (1 1 0) plane but with a
behavior similar to the pencil glide. To illustrate this point, the dislocation motion in the
[1 1 0] and [1 1 2] directions as function of simulation time is traced in Figure (4.33).
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Figure 4.33 – Glide of 1/2[1 1 1] (z-axis) screw dislocation along Y=[1 1 2] (in violet) and
Z=(1 1 0) (in green) as function of time. A positive shear strain rate ε̇ = 107 s−1 is

applied in the xz direction where the MRSS is in the (1 1 0) plane.

Each time the dislocation crosses the boundary of the simulation it reappears again
from the other side due to periodic boundary conditions in this direction. The motion
along z-axis, i.e. [1 1 0], is indicated by the green line. A dislocation jump is observed to
occur each 200 Å on average. The step of the dislocation is estimated to be ∼ 2 Å. A
justification for such amplitude shift lies in the crystallography of the iron BCC unit cell
(see Figure 4.34).

Figure 4.34 – Schematic representation of a BCC unit cell. The lattice parameter a0 equal
0.2856 nm in iron. The arrow indicates the [1 1 0] direction.

This distance is equal to the dislocation jump on z-axis from one [1 1 0] glide plane
to the next one in the atomic lattice as indicated in Figure (4.33). This distance is by
definition

√
2 ∗ a2

0

2 = 2.02Å (4.1)

In a second step, we reversed the sign of the applied strain rate imposed to the
simulation to see if the shifts observed in the MD simulation take place in both dislocation
glide direction. The result of such simulation is reproduced in Figure (4.35).



135 4.3. Molecular dynamics investigation

Figure 4.35 – Glide of 1/2[1 1 1] (x-axis) screw dislocation along Y=[1 1 2] (in violet) and
Z=(1 1 0) (in green) as function of time. A negative shear strain rate ε̇ = −107 s−1 is

applied in the xz direction where the MRSS in in the (1 1 0) plane.

Glide shifts are observed again along the positive (1 1 0) direction despite inverting
the direction of the applied stress. This behavior can easily be explained by the well-known
existence of twinning and anti-twinning directions in iron.

Lastly, twinning and anti-twinning directions in BCC iron were tested with a set of
MD simulations. A screw dislocation is created along the [1 1 1] direction. The crystal
orientation is adjusted to force the glide of the dislocation in the plane with the maximum
resolved shear stress. The results of this MD study are reproduced in Figure (4.36).
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Figure 4.36 – The flow stress of a screw dislocation for different glide planes in BCC iron.
Twinning and anti-twinning directions are indicated for each plane. The [1 1 1] direction is
perpendicular to the surface of the circle. Each inner circle represents 50 MPa flow stress.

As can be seen in Figure (4.36), twinning and anti-twinning directions are alternating
each 60◦. The flow stress takes the shape of a sinusoidal function of local extrema alternating
between twinning and anti-twinning directions respectively. The maximum difference in
the flow stress between the twinning and anti-twinning directions is ∼ 63%.

The interaction between a screw dislocation with large hexagonal loops (127 and 271
SIAs) of b =1/2[1 1 1] is investigated in section (4.2.1) using DD simulations. In Figure
(4.18), a segment in the (1 3 2) glide plane is created during the reaction. Such segment lies
in the anti-twinning direction. The split node algorithm should be modified to privilege
split options in the twinning directions since they are more energetically favorable.

4.4 Conclusion
In this chapter, a comparison is made between the individual interactions of screw

dislocations with SIA loops between DD and MD simulations. The studied SIA loops are
square (b =〈1 0 0〉) of different orientations and hexagonal (b =[1 1 1]) of different size. The
dynamics of each reaction is studied and compared to MD simulations to calibrate our DD
code. The aim of this work is to provide a generic algorithm capable of treating different
configurations to reproduce the MD results.

The observed reaction mechanisms for such interactions are the restoration of the
original loop, planarization and helical turn formation. An insight analysis of the split node
algorithm is done to determine whether the configuration found in the DD simulations
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agrees with MD predictions. In some cases, the correct split configuration could not be
reproduced by the split node algorithm due to the inability of the non-linear solver to
determine the direction of the junctions involved in the reactions. In addition, we show
that the split into three virtual nodes is a key algorithmic element to reproduce some
reactions. Finally, we showed that in other cases, the correct configuration could not be
obtained due to the absence of cross-slip mechanisms in DD simulations.

In the following a summary of the studied reactions and how to reproduce them in
DD in agreement with MD simulations:

• Interaction with 〈1 0 0〉 square SIA loops:

– Case A3, the original loop is not restored in DD as in MD simulations. This is
due to the absence of a split into three virtual nodes the configurations proposed
by the split node algorithm.

– Case B3, the formation of the helical turn could be reproduced in the DD
simulations. This result comes from the absence of the creation of [1 1 1]
segment by the split node algorithm.

– Case C3, this reaction is not in agreement with MD simulations. This is because
of the artificial cross-slip due to the creation of a (1 3 2) segment which should
be eliminated.

• Interaction with 1/2[1 1 1] hexagonal SIA loops:

– Cases SIA127 and SIA271, the planarization mechanism could not be achieved
because the proper split option cannot be determined from a crystallographic
point of view in the split node algorithm. This direction is then determined
using the non-linear solver. No possible direction is found due to convergence
problem in the non-linear solver.

– case SIA37, a helical turn is formed in agreement with MD simulations.

In a nutshell, further development of the split node algorithm is needed in order
to reproduce most of the reaction in DD simulations in agreement with MD simulations.
Moreover, the implementation of the cross-slip mechanism is inevitable.

In conclusion, the reaction mechanism is affected by the size of the obstacle, orien-
tation, angle of attack of the dislocation and other factors. When performing massive
simulations, where each obstacle can be crossed several times by different dislocation lines,
the details of the reaction mechanism become important. For this reason, some phenomena
such as the clear band formation cannot be studied.
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General conclusion and perspective

General conclusion
Irradiation has a major influence on the mechanical properties degradation of the

RPV due to the existence of radiation-induced defects. There are four types of defects:
precipitates, SIA loops, cavities and solute clusters. In this work we concentrate on the
interaction between screw dislocations and the SIA loops. The global objective of this
PhD work, is to reproduce the individual interactions of screw dislocations in dislocation
dynamics in a good agreement with molecular dynamics simulations. Such agreement
is characterized by two aspects, the dynamics of the reaction and the critical stress to
overcome the obstacles.

A dislocation dynamics code is used, which is a powerful tool to study the interactions
of dislocations with radiation-induced defects. The uniqueness of this code is its ability to
manage and control collisions and core reactions between dislocation segments. This is
done through a set of generic algorithms with the minimum amount of local rules.

In a primary step we identified the parameters in the DD model that allows for better
comparison with MD simulations. First, the periodic boundary conditions are implemented.
PBC are essential to minimize the calculation time as the size of the simulation cell is
reduced. The minimum image convention is used by default. Second, the thermally
activated glide mechanism was successfully implemented in NUMODIS. We presented a
robust algorithm to detect screw segments at each time step. The implementation was
tested with the help of a simulation of a Frank-Read source expansion in pure iron. The
temperature dependence is also tested. It is in a good agreement with the results of the
analytical solution of the used double-kink model. Finally, in section (3.3), we showed
that a large dispersion in DD simulation results can be observed depending on the values
of core energy parameter ζcore and the regularization parameter a0 from the non-singular
theory of elasticity.

In chapter (4), a comparison is made of the individual interactions of screw dis-
locations with SIA loops between DD and MD simulations. The studied SIA loops are
square (b =〈1 0 0〉) of different orientations and hexagonal (b =[1 1 1]) of different size. The
dynamics of each reaction is studied and compared to MD simulations to calibrate our
DD code.

Unlike in MD simulations, the studied phenomena should be implemented as prede-
fined models in DD codes. In order to reproduce the studied interactions in this thesis in
agreement with MD simulations the following improvements are required:

• an insight analysis of the split node algorithm, whether the problem comes from
missing possible split options or simply related to the non-linear solver.

• the convergence problem in the non-linear solver can be divided into two categories;
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numerical or dynamical. The numerical origin can be directly related to the fact that
a Newton-Raphson solver is used. In the case where the initial guess is far from the
solution, a possible divergence occurs despite the number of iterations. On the other
hand, if the problem is dynamical, as explained in Figure (2.14), then no possible
physical solution is found due to inherent oscillation of creation and removal of a
virtual junction.

• the implementation of the cross-slip and twinning/anti-twinning mechanisms is
inevitable. The individual reactions in certain DD simulations cannot be regarded
and compared to MD simulations without modelling such dislocation properties.

The reaction mechanism is affected by the size of the obstacle, orientation, angle of
attack of the dislocation and other factors. When performing massive simulations, where
each obstacle can be crossed several times by different dislocation lines, the details of the
reaction mechanism become important. For this reason, some phenomena such as the
clear band formation cannot be studied.

Perspectives
A materials multi-scale modeling provides the link between different physical phe-

nomena and processes at a different time and space scales. At the mesoscopic scale, the
ultimate objective of this work is to enrich existing crystal plasticity laws using dislocation
dynamics. This is done by taking into account the nature of the interaction with the
different types of radiation-induced defects. So far in this work, we have treated the
loops and the homogeneous precipitates. In the future work, it is essential to provide an
assessment of the contribution of cavities and solute atoms to crystal plasticity.

In order to provide a robust crystal plasticity law, massive simulations on represen-
tative samples are required at the scale of DD. Therefore, the validation of the individual
interactions of different radiation-induced defects with dislocations is important before
performing massive simulations.

In this work, we identified the problem of some interactions between dislocations and
radiation loops. The next step, is to implement the necessary models, such as cross-slip and
twinning-anti twinning mechanisms, in NUMODIS to validate such individual interactions
in DD. On the long term, all simulations should be performed using the thermally-activated
model of dislocations instead of a linear viscosity law.

Regarding the MD simulations, it is a direct method to provide an insight of the
individual interactions between dislocations and radiation-induced defects. It is of a great
importance to identify the origin of the abnormal cross-slip observed of screw dislocations
at different velocities. One way to identify such problem is simulate the interactions using
other interatomic potentials in MD, as Ackland 2003 or Mendelev 1997.

An important part of this work is centered on the comparison between MD and
DD simulations, in an attempt to pass, from the former to the latter, all the elementary
features to capture the dislocation-loop interactions. Beyond the technical and missing
physical mechanisms that were identified so far, the intrinsic limits of atomistically-informed
dislocation dynamics should be questioned. One may in particular wonder whether this
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(almost) deterministic method can capture nano-scale phenomena, in which the role of
thermal fluctuations may be critical. An example of such short-coming is the cross-slip
mechanism in faced-centered cubic materials, which involves the constriction of the two
Shockley partial dislocations of a screw dislocation through thermal fluctuations. These
thermal fluctuations, and more generally stochasticity, are undoubtedly missing in our
approach and should be considered in the future.

Adopting a stochastic approach as pioneered by Hiratani et al. [1] is one interesting
direction. A general review of this topic is found in [2, 3]. Dudarev et al. in [4] and
Li et al. in [5] used stochastic DD to study the interaction and diffusion of prismatic
dislocation loops in irradiated iron. One promising option is the use of Langevin dynamics
(e.g. [6]), where random force terms, related to the dislocation mobility through the
fluctuation-dissipation theorem (e.g. [7]), are added to dislocation segments to account for
the effective temperature effect.

Finally, when the previous discussed points are verified and validated, they should
be implemented in the parallel version of NUMODIS. This is essential to increase the
computational power and facilitate performing massive simulations.
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Appendix: Outcome of Split node
algorithm

This is the split options for the first splittable node when the dislocation meets the loop at
its corner in case (A3) as reported in section (4.1.1). There are 15 proposed split options,
here we highlight few examples only.
GC : generalized coordinates, ndof : number of degrees of freedom

===============
Time step # 1702
===============
Stress = [ 0 0 0 0 25.3196 0 ]
Strain = [ -3.40909e-08 3.40909e-08 0 -1.2053e-08 0.000260609 7.83653e-07 ]

———————————————
Consider a GraphPossibility:
———————————————
GraphPossibility: 1 splittable nodes.
Splittable node[0]:
SplitOption #0
=> Number of virtual nodes = 1
+ VirtualNode[0]: GC[ tag = 0 ndof = 1 -0.57735,-0.816497,0 ]
=> connected to 4 lines: 0 1 2 3 => connected to 0 junctions:
=> Number of junctions = 0
=> Input assignation:
- plane #0 : node #0 ( 0 1 )
- plane #1 : node #0 ( 2 )
- plane #2 : node #0 ( 3 )
Virtual segments:
- [ GC[ tag = 0 ndof = 1 -0.55,-0.81,0 ],GC[ tag = 0 ndof = 1 0.037,-0.9,0 ] ]
- [ GC[ tag = 40 ndof = 1 -0.005,-0.996,0 ],GC[ tag = 0 ndof = 1 -0.55,-0.81,0 ] ]
- [ GC[ tag = 49 ndof = 1 0.57,0.82,-0.0098 ],GC[ tag = 0 ndof = 1 -0.57,-0.87,0 ] ]
- [ GC[ tag = 0 ndof = 1 -0.57,-0.87,0 ],GC[ tag = 50 ndof = 1 -0.58,-0.811,0.005 ] ]
=> Dissipation=6.79455e+06
=> ACCEPTED

———————————————
Consider a GraphPossibility:
———————————————
GraphPossibility: 1 splittable nodes.
Splittable node[0]:
SplitOption #2
=> Number of virtual nodes = 3
+ VirtualNode[0]: GC[]
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=> connected to 2 lines: 0 2 => connected to 1 junctions: (0,front)
+ VirtualNode[1]: GC[ tag = 0 ndof = 1 1,0,0 ]
=> connected to 1 lines: 1 => connected to 1 junctions: (1,front)
+ VirtualNode[2]: GC[ tag = 0 ndof = 1 0,-0.866025,-0.5 ]
=> connected to 1 lines: 3 => connected to 2 junctions: (0,back)(1,back)
=> Number of junctions = 2
+ Junction[0]:
+ Burgers[-1,-1,1] = 2.47337 Angstrom
+ constraining planes:
* Plane(0,1,1)
+ Junction[1]:
+ Burgers[1,1,1] = 2.47337 Angstrom
+ constraining planes:
* Plane(2,-1,-1)
=> Input assignation:
- plane #0 : node #0 ( 0 ) node #1 ( 1 ) node #2 ( )
- plane #1 : node #0 ( 2 ) node #1 ( ) node #2 ( )
- plane #2 : node #0 ( ) node #1 ( ) node #2 ( 3 )
Virtual segments:
- [ GC[],GC[ tag = 0 ndof = 1 0.03724,-0.929,0 ] ]
- [ GC[ tag = 40 ndof = 1 -0.0052615,-0.9986,0 ],GC[ tag = 0 ndof = 1 1,0,0 ] ]
- [ GC[ tag = 49 ndof = 1 0.527,0.8292,-0.00982777 ],GC[] ]
- [ GC[ tag = 0 ndof = 1 0,-0.865,-0.5 ],GC[ tag = 50 ndof = 1 -0.538,-0.841,0.0646 ] ]
=> Dissipation=6.8782e+06
=> ACCEPTED

———————————————
Consider a GraphPossibility:
———————————————
GraphPossibility: 1 splittable nodes.
Splittable node[0]:
SplitOption #3
=> Number of virtual nodes = 3
+ VirtualNode[0]: GC[]
=> connected to 2 lines: 0 2 => connected to 1 junctions: (0,front)
+ VirtualNode[1]: GC[ tag = 0 ndof = 1 1,0,0 ]
=> connected to 1 lines: 1 => connected to 1 junctions: (1,front)
+ VirtualNode[2]: GC[ tag = 0 ndof = 1 0.57735,-0.408248,-0.707107 ]
=> connected to 1 lines: 3 => connected to 2 junctions: (0,back)(1,back)
=> Number of junctions = 2
+ Junction[0]:
+ Burgers[-1,-1,1] = 2.47337 Angstrom
+ constraining planes:
* Plane(1,0,1)
+ Junction[1]:
+ Burgers[1,1,1] = 2.47337 Angstrom
+ constraining planes:
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* Plane(1,0,-1)
=> Input assignation:
- plane #0 : node #0 ( 0 ) node #1 ( 1 ) node #2 ( )
- plane #1 : node #0 ( 2 ) node #1 ( ) node #2 ( )
- plane #2 : node #0 ( ) node #1 ( ) node #2 ( 3 )
Virtual segments:
- [ GC[],GC[ tag = 0 ndof = 1 0.0376824,-0.99929,0 ] ]
- [ GC[ tag = 40 ndof = 1 -0.0052615,-0.999986,0 ],GC[ tag = 0 ndof = 1 1,0,0 ] ]
- [ GC[ tag = 49 ndof = 1 0.56927,0.822092,-0.00982777 ],GC[] ]
- [ GC[ tag = 0 ndof = 1 0.55,-0.40,-0.70 ],GC[ tag = 50 ndof = 1 -0.582,-0.813,0.005 ] ]
=> Dissipation=1.97339e+08
=> ACCEPTED

———————————————
Consider a GraphPossibility:
———————————————
GraphPossibility: 1 splittable nodes.
Splittable node[0]:
SplitOption #5
=> Number of virtual nodes = 3
+ VirtualNode[0]: GC[]
=> connected to 2 lines: 0 2 => connected to 1 junctions: (0,front)
+ VirtualNode[1]: GC[ tag = 0 ndof = 1 1,0,0 ]
=> connected to 1 lines: 1 => connected to 1 junctions: (1,front)
+ VirtualNode[2]: GC[ tag = 0 ndof = 1 0.258199,0.912871,0.316228 ]
=> connected to 1 lines: 3 => connected to 2 junctions: (0,back)(1,back)
=> Number of junctions = 2
+ Junction[0]:
+ Burgers[-1,-1,1] = 2.47337 Angstrom
+ constraining planes:
* Plane(1,-2,-1)
+ Junction[1]:
+ Burgers[1,1,1] = 2.47337 Angstrom
+ constraining planes:
* Plane(3,-2,-1)
=> Input assignation:
- plane #0 : node #0 ( 0 ) node #1 ( 1 ) node #2 ( )
- plane #1 : node #0 ( 2 ) node #1 ( ) node #2 ( )
- plane #2 : node #0 ( ) node #1 ( ) node #2 ( 3 )
Virtual segments:
- [ GC[],GC[ tag = 0 ndof = 1 0.034,-0.9,0 ] ]
- [ GC[ tag = 40 ndof = 1 -0.005,-0.999986,0 ],GC[ tag = 0 ndof = 1 1,0,0 ] ]
- [ GC[ tag = 49 ndof = 1 0.56,0.892,-0.0097 ],GC[] ]
- [ GC[ tag = 0 ndof = 1 0.2589,0.9871,0.318 ],GC[ tag = 50 ndof = 1 -0.538,-0.841,0.005 ] ]
=> solver did not converge

==================================================
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=> OUTCOME:
GraphPossibility: 1 splittable nodes.
Splittable node[0]:
SplitOption #3
=> Number of virtual nodes = 3
+ VirtualNode[0]: GC[]
=> connected to 2 lines: 0 2 => connected to 1 junctions: (0,front)
+ VirtualNode[1]: GC[ tag = 0 ndof = 1 1,0,0 ]
=> connected to 1 lines: 1 => connected to 1 junctions: (1,front)
+ VirtualNode[2]: GC[ tag = 0 ndof = 1 0.57735,-0.408248,-0.707107 ]
=> connected to 1 lines: 3 => connected to 2 junctions: (0,back)(1,back)
=> Number of junctions = 2
+ Junction[0]:
+ Burgers[-1,-1,1] = 2.47337 Angstrom
+ constraining planes:
* Plane(1,0,1)
+ Junction[1]:
+ Burgers[1,1,1] = 2.47337 Angstrom
+ constraining planes:
* Plane(1,0,-1)
=> Input assignation:
- plane #0 : node #0 ( 0 ) node #1 ( 1 ) node #2 ( )
- plane #1 : node #0 ( 2 ) node #1 ( ) node #2 ( )
- plane #2 : node #0 ( ) node #1 ( ) node #2 ( 3 )
Virtual segments:
- [ GC[],GC[ tag = 0 ndof = 1 0.0376824,-0.99929,0 ] ]
- [ GC[ tag = 40 ndof = 1 -0.0052615,-0.999986,0 ],GC[ tag = 0 ndof = 1 1,0,0 ] ]
- [ GC[ tag = 49 ndof = 1 0.56927,0.822092,-0.00982777 ],GC[] ]
- [ GC[ tag = 0 ndof = 1 0.5,-0.48,-0.70 ],GC[ tag = 50 ndof = 1 -0.58,-0.811,0.0057 ] ]
=================================================




