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Abstract

T he quantum nature of nuclei yields unexpected and o�en paradoxical behaviors. Hydrogen,
because of the lightness of its nucleus, is a most likely candidate for such e�ects. Indeed, as

demonstrated about 20 years ago,1 the pressure-induced transition from the proton-disordered
ice VII to the hydrogen-bond symmetric ice X phase is signi�cantly downshi�ed by the proton
zero-point energy and tunneling. Using up-to-date methods and increased simulation capa-
bilities, we now investigate more complex hydrated systems, namely, the brucite minerals
(Mg(OH)2), the methane hydrate (CH4-H2O) and the sodium hydroxide (NaOH), which display
complex mechanisms driven by the proton quantum properties.

Brucite exhibits the coexistence of thermally activated hopping and quantum tunneling with
opposite behaviors as pressure is increased. �e unforeseen consequence is a pressure sweet spot
for proton di�usion. Simultaneously, pressure gives rise to a “quantum” quasi two-dimensional
hydrogen plane, non-trivially connected with proton di�usion.

Methane hydrate displays an important increase of the inter-molecular interactions between
water and enclosed methane molecules. In contrast with ice, the hydrogen bond transition does
not shi� by H/D isotopic substitution. �is is explained by an important delocalization of the
proton which also triggers a transition toward a new MH-IV methane hydrate phase, stable up
to 150 GPa which represents the highest pressure reached to date by any hydrate.

Sodium hydroxide has a phase transition below room temperature at ambient pressure only in
its deuterated version. �is radical isotope e�ect can be explained by the quantum delocalization
of the proton as compared with deuteron shi�ing the temperature-induced phase transition of
NaOD towards a pressure-induced one in NaOH.
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Résumé

L a nature quantique des noyaux produit des comportements ina�endus et souvent paradoxaux.
L’hydrogène, en raison de la légèreté de son noyau, est le candidat le plus susceptible de

présenter de tels comportements. En e�et, comme il a été démontré il y a environ 20 ans,1
la transition, induite par la pression, de la glace VII présentant des protons désordonnés à la
phase de glace X, aux liaisons hydrogènes symétriques, était considérablement abaissée par le
biais de l’énergie de point-zéro et des e�ets tunnels relatifs aux protons. À l’aide de méthodes
modernes et grâce à l’augmentation des capacités computationnelles, nous pouvons maintenant
étudier des systèmes physiques plus complexes. Lors de ce�e thèse, nous nous sommes a�ardés
sur l’étude de trois systèmes hydratés, à savoir la Brucite (Mg(OH)2), l’hydrate de méthane
(CH4-H2O) et l’hydroxyde de sodium (NaOH), dont les mécanismes complexes sont déterminés
par les propriétés quantiques des protons.

Au sein des brucites coexistent deux e�ets en compétition: un mécanisme de réorientation ther-
miquement activé, et un processus de dissociation déclenché par les e�ets quantiques nucléaires.
Ces deux e�ets s’opposent à mesure que la pression augmente, entrainant l’existence d’un point
de pression favorable à la di�usion des protons. Simultanément, la pression donne naissance à
un plan d’hydrogène ”quantique” quasi bidimensionnel, non trivialement lié à la di�usion de ces
derniers.

Les hydrates de méthane présentent une augmentation importante des interactions inter-
moléculaires entre l’eau et les molécules de méthane qui y sont enfermées. Contrairement
à la glace, la transition de symétrisation de la liaison hydrogène ne change pas par substitution
isotopique H/D. Ceci s’explique par une importante délocalisation du proton qui déclenche
également une transition vers une nouvelle phase d’hydrate de méthane que nous avons
découverte, le MH-IV, stable jusqu’à 150 GPa, qui représente la pression la plus élevée at-
teinte par tout hydrate connu à ce jour.

L’hydroxyde de sodium présente une transition de phase en-dessous de la température ambiante
et à pression ambiante uniquement dans sa version deutérée. Cet e�et isotopique important
peut s’expliquer par la plus grande délocalisation quantique et par l’importance de l’énergie de
point-zéro du proton par rapport au deutérium. De façon surprenante, la substitution isotopique
H/D change la transition induite par la température dans NaOD en une transition déclenchée
par la pression dans NaOH.
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Introduction

T he use of quantum mechanics in condensed ma�er simulations is routinely con�ned to the
description of the electronic properties, while the behavior of nuclei remains in the domain

of Newton’s classical dynamics. If this framework provides a good approximation for heavy
particles in general, nuclei are not in principle restricted to a classical description. In some cases,
they can exhibit wave behavior as other quantum particles, and show what is known as Nuclear
�antum E�ects (NQE). �e limit between the classical and quantum domains is sometimes
unclear, and can be appreciated through the wave nature of particles as brought out by L. de
Broglie in 1924 referring to Einstein’s 1905 discovery of photons and wave-particle duality: each
particle having a momentum can be seen as a wave with a wavelength that describes the wave
packet spread related to the particle.

L. de Broglie thermal wavelength

λB =
h

√
2πmkBT

Where kB is the Boltzmann constant,m the mass of the particle, T the temperature and h
the Planck constant.

�erefore, for cases in which the de Broglie wavelength is of the order of magnitude of the
characteristic length scale of its environment (la�ice parameters, inter-atomic distances, mean
free path …), the particle quantum nature cannot be neglected, and the classical approximation
cannot be applied. In the present study, we aim at investigating cases for which the quantum
nature of nuclei, in particular, zero-point motion and tunneling e�ect, is essential to fully
describe their behavior. From the de Broglie thermal wavelength, one can observe that light
nuclei or low-temperature systems are those for which nuclear quantum e�ects are in principle
signi�cant. In this thesis, we mainly address the nuclear e�ects that happen for light nuclei, such
as hydrogen and deuterium atoms present in hydrated crystals, usually at ambient temperature,
for which the proton de Broglie wavelength is about 1 Å, therefore comparable to the typical
O-H bond length. However, we will see that the strength of nuclear quantum e�ects can be
highly unpredictable as it results from a subtle balance between localization, usually induced by
the potential, and quantum spread, which results from the wave-particle duality at the typical
λB length scale.

Among the di�erent approaches to address NQE within ab-initio simulations, the Path
Integral (PI) methods,2 based on Feynman description of quantum mechanics, and the so-called
�antum �ermal Bath (QTB),3 arising from the Langevin equation, have been successfully
employed for several systems.4,5,6,7 In particular, the description of the ice VII→ X transition,
have been shown to be quantum driven through Path Integral Molecular Dynamics (PIMD)1

and con�rmed later with the QTB.4 �is transition of the ice represents a case-study where the
importance of the nuclear quantum e�ects along a one-dimensional double-well potential is
now well understood. However, when other degrees of freedom are involved, sophisticated and
somehow non-intuitive e�ects can arise. In the present study, we therefore address complex sys-
tems where the quantum behavior of nuclei leads to complex mechanisms sometimes entangled
with other phenomena.

1



�is thesis is organized as follows:

• �e �rst part is devoted to the theory and the description of the di�erent numerical ap-
proaches we used in the following. In particular, in Chapter 1 we introduce the density operator
formalism of quantum mechanics leading to the PI formalism, then we recall the basis of the
Linear response theory and the �uctuation-dissipation theorem at the root of the QTB and Ring
Polymer Molecular Dynamics (RPMD) methods. �is �rst chapter then ends with the description
of Born Oppenheimer molecular dynamics and a quick reminder of the electronic quantum
description with the Density Functional �eory (DFT).
�en, in Chapter 2 we describe the di�erent approaches to treat nuclear quantum e�ects in our
simulations. Firstly, we introduce the Langevin equation and related QTB approach. Secondly,
we describe the Feynman path integral formalism leading to the PIMD method allowing a correct
quantum statistical description of nuclei. To conclude this chapter, we present the RPMD method,
which allows to approximate time correlation functions within the PI formalism.
Finally, in Chapter 3 we describe the Nudged Elastic Band (NEB) method allowing one to have
access to the minimum energy path for phase transition descriptions, and we also present the
Metadynamics (MTD) giving rise to a free energy sampling along the chosen Path Collective
Variables (Path CVs).

• �e second part presents the di�erent quantum driven mechanisms observed through our
investigation of real physical systems.
In Chapter 1, we present the case of proton di�usion in Brucite minerals X(OH)2 ( X= Mg, Ca,
Ni … ), which is triggered by the presence of nuclear quantum e�ects enhanced by pressure.
We will see that the competition between quantum driven and thermally driven mechanisms
leads to a pressure sweet spot for the proton di�usion in the system and that within its mineral
family, Brucite could be a speci�c case. In this chapter, we will also show how the quantum
delocalization of the proton could induce the creation of a 2D proton plane.
�en in Chapter 2, we present a study of methane hydrate (CH4-H2O) under high pressure.
We �rst describe how the methane molecules con�ned within a hydrogen-bonded water frame
reorganize into an orientationally ordered system upon compression, leading to an interaction
enhancement between the la�er molecules and their environment. �en, we present the quantum
driven hydrogen bond symmetrization of MH-III, which displays important di�erences with the
ice VII→ X phase transition regarding H/D isotopic substitution. In particular, we will see how
a two-dimensional description of the quantum delocalization impacts this mechanism. �en, we
will present a new high-pressure phase we discovered, the MH-IV, and describe its quantum
induced phase transition.
Finally, in Chapter 3, we present the case of sodium hydroxide (NaOH) in which nuclear quantum
e�ects change the structural stability of the system, leading to a strong isotope e�ect. In particular,
we will describe why a phase transition occurs for NaOD with increasing temperature, and
disappears while substituting deuterons with protons. �is analysis of sodium hydroxide will
also allow us to compare the equivalence of temperature and pressure e�ect within this system.

2
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er 1
�eoretical framework

1.1 Introduction

I n this part, we introduce the necessary theoretical foundations to describe the di�erent
methods allowing investigation of NQE within the same framework.

First, we will introduce the formalism of quantum mechanics via the density operator and
its properties both at equilibrium and its evolution under an external perturbation. It will
naturally be involved in the description of the Feynman PI formalism, and also will be an
essential asset to derive the Fluctuation-Dissipation �eorem (FDT) from the Linear Response
�eory framework. �e la�er will be treated in a second part, where the di�erent de�nitions of
the generalized susceptibility, correlations functions, and spectral densities will be introduced
as well as their di�erent properties leading to the FDT. Finally, in the present work, all the
electronic description and the inter-atomic forces are derived from the DFT within the Born-
Oppenheimer approximation. �erefore, a brief description of the Kohn-Sham equations and
inherent approximation will be provided.

�e reader could �nd more detailed information about the di�erent subjects in the following
resources this document is inspired by:
Density matrix: Mark Tuckerman. Statistical mechanics: theory and molecular simulation.
Oxford university press, 2010
Linear response theory: Noëlle Po�ier. Physique statistique hors d’équilibre-Processus
irréversibles linéaires. EDP Sciences, 2012; Nicolas Borghini. Topics in Nonequilibrium Physics.
[Online; accessed 05-May-2019]. 2016. url: https://www.physik.uni-bielefeld.
de/∼borghini/Teaching/Nonequilibrium/Nonequilibrium.pdf
Density Functionnal �eory: Fabio Finocchi. Density Functional �eory for beginners. [Online;
accessed 05-May-2019]. 2011. url: http://www.attaccalite.com/wp-
content/uploads/2017/04/pdf DFT4beginners.pdf
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Chapter 1. �eoretical framework

1.2 Density matrix

While dealing with quantum systems, one usually describe their states with the related wave
function |Ψ〉 of Hilbert space H . �is de�nition only refers to so-called “pure” states which are
unequivocally de�ned by a single state vector. However, in a statistical ensemble representation,
we have to treat a statistical mixture of pure states or so de�ned “mixed” states. �e density
operator here described allows describing both pure and mixed states in a generalized formulation.
In this section, we will �rst de�ne the density matrix of a pure state, generalize it to include
mixed states and then describe its properties. In the second part, we will introduce the time
evolution of the density matrix and operators in this representation and study the case of
perturbed Hamiltonian. Finally, we will de�ne the density operator for a system in thermal
equilibrium.

1.2.1 Pure and mixed states

• Pure states
�antum systems states are usually described by the related eigenfunctions |Ψ〉 which can be
expressed as a linear combination of basis state vectors {|Un〉}:

|Ψ〉 =
∑
n

cn |Un〉 (1.2.1)

where
∑

n |cn |
2 = 1.

�is state vector describes a “pure” state and in this representation any operator Â has its
expectation value de�ned as:〈
Â
〉
= 〈Ψ|Â|Ψ〉 (1.2.2)

We now introduce another formulation of quantum states with the density operator ρ̂ being the
outer product of the pure state vector and its conjugate:

ρ̂ = |Ψ〉〈Ψ| (1.2.3)

which matrix element in the {|Un〉} representation is:

ρmn = 〈Um | ρ̂ |Un〉 = c
∗
ncm (1.2.4)

Both representations are identical, and one can notice that the integral 〈ξ | ρ̂ |ξ 〉 de�nes the
probability to �nd the system in the state |ξ 〉. �en we can obtain the expectation value of any
operator Â using the density operator:〈
Â
〉
=

∑
n,m

c∗ncm 〈Un | Â |Um〉

=
∑
n,m

ρmn 〈Un | Â |Um〉

=
∑
n,m

〈Um | ρ̂ |Un〉 〈Un | Â |Um〉

=
∑
m

〈Um | ρ̂Â |Um〉〈
Â
〉
= Tr

(
ρ̂Â

)
(1.2.5)
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1.2. Density matrix

where Tr(O) stands for the trace of matrix O.
In this de�nition, the density operator is analogous to the wave function which only describes
pure states. Once mixed states are involved, we thus want to include them in a more general
de�nition of the density matrix.

• Mixed states
In a statistical ensemble representation, we cannot express the ensemble quantum state with a
single state vector |Ψ〉 but rather with a probabilistic de�nition: �e macroscopic system can
be in the microstate |Ψi 〉 with the probability pi (

∑
i pi = 1). We thus extend the de�nition of

the density operator ρ̂i of the related pure state |Ψi 〉 to include a mixture of pure states in the
generalized density matrix ρ̂:

Density operator

ρ̂ =
∑
i

pi |Ψi 〉〈Ψi | (1.2.6)

=
∑
i

pi ρ̂i

Expectation value of any operator Â expressed in terms of ρ̂ is then:〈
Â
〉
=

∑
i

pi 〈Ψi | Â |Ψi 〉

=
∑
i

pi Tr
(
ρ̂iÂ

)
�erefore, the expectation value of Â can be extracted from the trace of the product of ρ̂Â:

Operator expectation value

〈
Â
〉
= Tr

(
ρ̂Â

)
(1.2.7)

�is property will be extensively used in the following, in particular, it will ease the derivations
taking advantage of the trace properties.

• Density matrix properties
Looking at the density matrix element in the basis {|Un〉} of H :

ρ̂nm =
〈
U (i)n

��� ρ̂ ���U (i)m

〉
(1.2.8)

=
∑
i

pic
(i)∗
n c(i)m (1.2.9)

We can distinguish the di�erent components of ρ̂:
First, the diagonal element ( n =m ), called the population, gives the probability of occupying
state |Un〉. Secondly, the o�-diagonal elements (n , m) refers to the quantum correlation be-
tween the states |Un〉 and |Um〉. �e la�er elements have a time-dependent phase factor and are
called coherences, these elements are therefore inexistent in the classical description.

Finally, from the de�nition of the density operator, one can obtain the following properties:
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Chapter 1. �eoretical framework

• �e density operator is Hermitian: ρ̂† = ρ̂

• It is positive semi-de�nite: 〈ξ | ρ̂ |ξ 〉 ≥ 0 ∀ |ξ 〉

• It is normalized: Tr(ρ̂) = 1

1.2.2 Time evolution

�e time evolution of pure states, described by the Hamiltonian Ĥ (t), is de�ned by the time-
dependent Schrödinger equation:

i~
∂

∂t
|Ψ(t)〉 = Ĥ (t) |Ψ(t)〉 (1.2.10)

Where ~ is the Planck constant
And we can express the system time evolution with the propagator operator Û(t, t0) which
evolves the pure state from t0 to t :

|Ψ(t)〉 = Û(t, t0) |Ψ(t0)〉 (1.2.11)

�is operator being solution of the following di�erential equation:

i~
∂

∂t
Û(t, t0) = Ĥ (t)Û(t, t0) (1.2.12)

And formally de�ned asa:

Û(t, t0) = e−
i
~ Ĥ (t ,t0) (1.2.13)

• Evolution of the density operator
In a similar way, we can derive analogous to the Schrödinger an equation which is for the density
operator. Taking the time derivative of the density operator we obtain:

∂

∂t
ρ̂(t) =

∂

∂t

(∑
i

pi |Ψi (t)〉〈Ψi (t)|

)
=

∑
i

pi

(
∂

∂t
|Ψi (t)〉〈Ψi (t)| + |Ψi (t)〉

∂

∂t
〈Ψi (t)|

)
=

∑
i

pi

(
1
i~
Ĥ (t) |Ψi (t)〉〈Ψi (t)| + |Ψi (t)〉

1
−i~
〈Ψi (t)| Ĥ (t)

)
=

1
i~

(
Ĥ (t)ρ̂(t) − ρ̂(t)Ĥ (t)

)
(1.2.14)

Leading to the Liouville-Von Neumann equation:
Liouville-Von Neumann equation:

∂

∂t
ρ̂(t) =

1
i~

[
Ĥ (t), ρ̂(t)

]
(1.2.15)

where
[
Ĥ (t), ρ̂(t)

]
is the commutation operation between Ĥ (t) and ρ̂(t)

ais Ô if a generic operator, then exp(iÔ) ≡ I +
∑∞
n=1

in
n!

∏n
i=1 Ô ...Ôi Here we consider Ô as an hermitian operator

so that exp(iÔ) is unitary.
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1.2. Density matrix

�e solution of which gives:

ρ̂(t) = Û(t, t0)ρ̂(t0)Û
†(t, t0) (1.2.16)

Introducing the Liouville superoperator ˆ̂L(t) de�ned as:

i ˆ̂L(t) · =
1
i~

[
· , Ĥ (t)

]
(1.2.17)

We can now express equation 1.2.15 as:

∂

∂t
ρ̂(t) = −i ˆ̂L(t)ρ̂(t) (1.2.18)

Isolated system: In the particular case of a time-independent hamiltonian, the following
property of the propagator operator arises:

Û(t, t0) = e
−i
~ (t−t0)Ĥ (1.2.19)

= Û†(t0, t)

�erefore, in the case of an isolated system the Liouville superoperator is also time independent
and the density operator can be expressed as:

ρ̂(t) = e
−i
~ (t−t0)Ĥ ρ̂(t0)e

i
~ (t−t0)Ĥ (1.2.20)

= e−i(t−t0)
ˆ̂L ρ̂(t0) (1.2.21)

• Operator time evolution
Schrödinger picture:b Following the density operator time evolution, we will now describe the
time evolution of operators within the density operator frame. From equation 1.2.7 and 1.2.16
we derive the time evolution of the expectation value of the operator Â within the Schrödinger
picture:

〈A(t)〉 = Tr
(
ρ̂(t)Â

)
(1.2.22)

= Tr
(
Û(t, t0)ρ̂(t0)Û

†(t, t0)Â
)

(1.2.23)

Heisenberg picture: Within the Heisenberg picture, the pure states and thus the density
operator are time independent.
�erefore we have:

|Ψ〉H = |Ψ(t0)〉 (1.2.24)
ρ̂H = ρ̂ (1.2.25)

�e time dependency resides however in the operator de�nition:

ÂH (t) = Û
†(t, t0)Â(t)Û(t, t0) (1.2.26)

Ensuring both representations to be equivalent:

H 〈Ψ| ÂH (t) |Ψ〉H = 〈Ψ(t)| Â |Ψ(t)〉 (1.2.27)
bWithout speci�c notation, state vectors or operators are de�ned within the Schrödinger picture (Ψ(t) ≡ ΨS (t)

and Â ≡ ÂS ).
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Chapter 1. �eoretical framework

Taking advantage of the cyclic invariance of the trace allows to verify also the equivalence of
the expectation value of the operator Â in both pictures:〈
ÂH (t)

〉
= Tr

(
ρ̂H (t)ÂH (t)

)
= Tr

(
ρ̂H (t0)Û

†(t, t0)Â(t)Û(t, t0)
)

= Tr
(
Û(t, t0)ρ̂H (t0)Û

†(t, t0)Â(t)
)

〈
ÂH (t)

〉
=

〈
Â(t)

〉
(1.2.28)

De�nition 1.2.26 leads to the time derivative of the operator ÂH (t):

d
dt ÂH (t) =

1
i~

[
ÂH (t), Ĥ

]
+

(
∂

∂t
ÂH (t)

)
(1.2.29)

If ÂH (t) does not explicitly depend on the time and following the de�nition of the Liouville
superoperator we �nd:

d
dt ÂH (t) = i

ˆ̂LH (t)ÂH (t) (1.2.30)

Isolated system
Finally, for time independent Hamiltonian and Liouville operators, the solution of the la�er
equation is:

ÂH (t) = e−i(t−t0)
ˆ̂LH ÂH (t0) (1.2.31)

ÂH (t) = ei(t−t0)
Ĥ
~ ÂH (t0)e

−i(t−t0)
Ĥ
~ (1.2.32)

• Dirac interaction picture
We now describe the case of the time-independent Hamiltonian Ĥ0 under the in�uence of
perturbation Ŵ (t):

Ĥ (t) = Ĥ0 + Ŵ (t) (1.2.33)

As we will see, a convenient way to describe such a case is to go beyond the Schrödinger and
Heisenberg pictures, toward the Dirac, or so-called interaction picture. In this representation,
the time dependence resides both in the state vectors and the operators.
Let us �rst de�ne the propagator operators related to the time-independent Hamiltonian Ĥ0 and
the total Hamiltonian Ĥ :

Û(t, t0) = e
−i
~ Ĥ (t−t0) (1.2.34)

Û0(t, t0) = e
−i
~ Ĥ0(t−t0) (1.2.35)

We can now introduce the state vectors |ΨI (t)〉 and operators ÂI (t) in the Dirac picture:

|ΨI (t)〉 = Û
†
0 (t, t0) |Ψ(t)〉 (1.2.36)

ÂI (t) = Û
†
0 (t, t0)Â(t)Û0(t, t0) (1.2.37)
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1.2. Density matrix

In this way, one can easily check that the Dirac representation is equivalent to both Schrödinger
and Heisenberg pictures:

〈ΨI (t)| ÂI (t) |ΨI (t)〉 =H 〈Ψ| ÂH (t) |Ψ〉H = 〈Ψ(t)| Â |Ψ(t)〉 (1.2.38)

Finally, the state vector in this representation evolves as:

i~
d
dt |ΨI (t)〉 = ŴI (t) |ΨI (t)〉 (1.2.39)

Where only the pertubative term of the total hamiltonian acts. We then obtain the density matrix
and operators time evolution to be governed by the following di�erential equations:

∂

∂t
ρ̂I (t) =

1
i~

[
ŴI (t), ρ̂I (t)

]
(1.2.40)

d
dt ÂI (t) =

1
i~

[
ÂI (t), Ĥ0

]
+

(
∂

∂t
ÂI (t)

)
(1.2.41)

�erefore the density operator time evolution is also only subjected to the perturbative hamil-
tonian ŴI (t), and the unperturbed term reside in the evolution of the operator ÂI (t). Doing
so, the interaction picture allows to remove the time dependency of the unperturbed Hamilto-
nian Ĥ0, which is transferred to the operators, focusing on the perturbation which causes the
states(density operator) to evolve. �e Dirac representation is therefore convenient to treat the
perturbations.

1.2.3 �ermal equilibrium

In the following, and for all investigations we made during this work, we treat quantum systems in
the canonical ensemble, at thermal equilibrium. �erefore, the statistical probabilities introduced
in the density operator will be expressed in term of the Boltzmann factor:

pi ∝ e
−βEi (1.2.42)

where β= 1
kbT

is the inverse temperature, and kb is the Boltzmann constant.
Including this probability in the de�nition of the density operator, and normalizing the la�er
with the partition functionZ leads to the canonical de�nition:

Canonical density operator

ρ̂eq =
1
Z

∑
i

e−βEi |Ψi 〉〈Ψi | =
e−βĤ

Z
(1.2.43)

Where the partition function reads:

Z = Tr
(
e−βĤ

)
(1.2.44)

For the sake of clarity in the following sections, we de�ne the diagonal elements of the canonical
density operator as:

Πn = 〈Un | ρ̂eq |Un〉 (1.2.45)

=
e−βEn

Z
(1.2.46)
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Chapter 1. �eoretical framework

From equations 1.2.7 and 1.2.43, it naturally follows that the expectation value of the operator
Â is de�ned as:〈
Â
〉
= Tr

(
ρ̂eqÂ

)
(1.2.47)

=
1
Z

Tr
(
e−βĤ Â

)
(1.2.48)

From this de�nition, one can recover the de�nition of the thermodynamic quantities of the
canonical ensemble.
In particular, the energy can be derived as:

E =
〈
Ĥ

〉
=

1
Z

Tr
(
e−βĤ Ĥ

)
(1.2.49)

= −
∂

∂β
ln

(
Tr

(
e−βĤ

))
(1.2.50)

= −
∂

∂β
lnZ (1.2.51)

While the entropy is:

S = −
〈
kb ln

(
ρ̂eq

)〉
(1.2.52)

= −kb Tr
(
ρ̂eq ln ρ̂eq

)
(1.2.53)

And the Helmoltz free energy:

F = −
1
β

lnZ (1.2.54)
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1.3. Linear Response theory

1.3 Linear Response theory

�e linear response theory describes the response of a physical system to a perturbation, which
slightly drives it away from equilibrium. In particular, it relates the properties of response,
susceptibility, and relaxation of the unperturbed system in terms of the equilibrium correlation
function. �is development has been originally formalized by R. Kubo11 in 1966.

Let us begin by considering a system at thermal equilibrium described by the time-independent
Hamiltonian Ĥ0, therefore described by the canonical density operator ρ̂eq as de�ned in equation
1.2.43. At time t0 the system is slightly shi�ed from equilibrium due to a perturbation described
by the additional hamiltonian term Ŵ (t):

Ŵ (t) = −f (t)Â (1.3.1)

Where Â is an hermitian operator (observable) of the system associated with the generalized
force f (t) which is supposed to be “small”, compared to the eigenvalues of the unperturbed
system. While t0 → −∞ we assume the system to be at thermal equilibrium. �e perturbed
system is then described by the perturbed hamiltonian Ĥ :

Ĥ = Ĥ0 + Ŵ (t) (1.3.2)

As already discussed in Section 1.2 a convenient way to treat the perturbation is to describe
the system within the interaction picture, for which we recall the principal de�nitions in the
following. We associate two quantum propagator Û(t, t0) and Û0(t, t0) with the perturbed
hamiltonian Ĥ and the time independent (at equilibrium) one Ĥ0:

Û(t, t0) = e−
i
~ Ĥ (t−t0) Û0(t, t0) = e−

i
~ Ĥ0(t−t0) (1.3.3)

�e equilibrium term being separated, we can now express the state vector |ΨI (t)〉 and any
operator ÂI (t) in the interaction picture:

|ΨI (t)〉 = Û
†
0 (t, t0) |Ψ(t)〉 (1.3.4)

ÂI (t) = Û
†
0 (t, t0)Â(t0)Û0(t, t0) (1.3.5)

⇒ ŴI (t) = Û
†
0 (t, t0)Ŵ (t)Û0(t, t0) (1.3.6)

Finally the Liouville-Von Neuman theorem (equation 1.2.15) leads to:

d
dt ρ̂I (t) =

1
i~

[
ŴI (t), ρ̂I (t)

]
(1.3.7)

As we have seen in Section 1.2, the density operator allows us to compute the expected value of
any operator. One might derive the la�er by integrating the Liouville-von Neuman equation in
the Dirac representation:

ρ̂I (t) = ρ̂I (t0) +
i

~

∫ t

t0

f (t ′)
[
ÂI (t

′), ρ̂I (t
′)
]
dt ′ (1.3.8)

As the system is initially at thermal equilibrium (ρ̂I (t0) = ρ̂eq ) and making t0 tend to −∞ we
obtain:

ρ̂I (t) = ρ̂eq +
i

~

∫ t

−∞

f (t ′)
[
ÂI (t

′), ρ̂I (t
′)
]
dt ′ (1.3.9)
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Recursively, one can now introduce the de�nition of ρ̂I (t) into itself and end up with a perturba-
tion expansion in terms of the density matrix to be truncated at the �rst order as we describe
a linear relation in terms of f (t). For the la�er reason and in an equivalent ending, one also
replaces ρ̂I (t ′) with ρ̂eq in the commutator, hence:

ρ̂I (t) = ρ̂eq +
i

~

∫ t

−∞

f (t ′)
[
ÂI (t

′), ρ̂eq
]
dt ′ + O

(
f 2) (1.3.10)

1.3.1 Response function

We now want to describe the response of any arbitrary observable B̂ of the system to the pertur-
bation associated with the operator Â. Having computed the density operator in the interaction
picture and using de�nition 1.2.7, we can derive the expectation value of the observable B̂ out
of equilibrium:〈
B̂I (t)

〉
n .eq . = Tr

(
B̂I (t)ρ̂I (t)

)
(1.3.11)

=
〈
B̂(t)

〉
eq +

i

~

∫ t

−∞

f (t ′)Tr
(
B̂I (t)

[
ÂI (t

′), ρ̂eq
] )

dt ′ (1.3.12)

=
〈
B̂(t)

〉
eq +

i

~

∫ t

−∞

f (t ′)Tr
(
ρ̂eq

[
B̂I (t), ÂI (t

′)
] )

dt ′ (1.3.13)

=
〈
B̂(t)

〉
eq +

i

~

∫ t

−∞

f (t ′)
〈[
B̂I (t), ÂI (t

′)
]〉

eq dt ′ (1.3.14)

where we use the invariance of the trace under cyclic permutation. Taking advantage of the
la�er property once again and using the commutation relation between ρ̂eq and Ĥ0, we �nally
obtain:〈
B̂I (t)

〉
n .eq . =

〈
B̂(t)

〉
eq +

i

~

∫ t

−∞

f (t ′)
〈[
B̂I (t − t

′), ÂI
]〉

eq dt ′ (1.3.15)

=
〈
B̂(t)

〉
eq +

i

~

∫ +∞

−∞

f (t ′)
〈[
B̂I (t − t

′), ÂI
]〉

eq θ (t − t
′)dt ′ (1.3.16)

=
〈
B̂(t)

〉
eq +

∫ +∞

−∞

χBA(t − t
′)f (t ′)dt ′ (1.3.17)

In the last line we de�ned the linear response function, also knows as susceptibility, χBA(τ )
through the Kubo formula:

Kubo’s formula

χBA(τ ) =
i

~

〈[
B̂I (τ ), Â

]〉
eq θ (τ ) (1.3.18)

where θ is the Heaviside function.

So de�ned, the linear response function describes the relation between the perturbation related
to the time correlation function between operators Â and B̂ at equilibrium. As the perturbation
could only modify the system a�er it has been switched on, the linear response function should
vanish for t < t ′. In order to respect the causality relation we introduced the Heaviside function
θ (τ ) and extended the upper integration boundary.
Using the formalism de�ned in equations 1.2.46 we can also reformulate equation 1.3.18 on the
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eigenstates basis {|Un〉} as:

χ (τ ) =
i

~
θ (τ )

∑
n,m

(Πn − Πm)BnmAmne
−iωmnτ (1.3.19)

where we introduced the Bohr frequency ωmn =
Em−En
~ , the matrix elements Bnm and Anm are

de�ned as Xnm = 〈Un | X̂ |Um〉 (X̂ = Â, B̂) and Πn as de�ned in equation 1.2.46.

1.3.2 Generalized susceptibility

We can then de�ne the generalized susceptibility, as being the Fourier transform of the linear
response function in the frequency space:

χ̃BA(ω) = lim
ϵ→0+

∫ +∞

−∞

χBA(τ )e
iωτ e−ϵτ dτ (1.3.20)

where we introduced the last exponential term e−ϵτ in the limit of ϵ → 0+ to ensure that the
la�er expression does not diverge for τ → +∞.
Taking the inverse Fourier transform we naturally have:

χBA(τ ) =
1

2π

∫ +∞

−∞

χ̃BA(ω)e
−iωτ dω (1.3.21)

Finally, through equation 1.3.19 we can also express the generalized susceptibility in the basis
of the eigenstates {|Un〉}:

χ̃BA(ω) =
i

~

∑
n,m

(Πn − Πm)BnmAmn lim
ϵ→0+

1
ωmn − ω − iϵ

(1.3.22)

As a time convolution product of the linear response function χBA and f , the expectation value〈
B̂I (t)

〉
n .eq . can therefore be computed by the product of the generalized susceptibility and the

Fourier transform of f (t). �e generalized susceptibility can be recast in a complex function of
a real frequency of the form:

χ̃BA(ω) = χ
′

BA(ω) + i χ
′′

BA(ω) (1.3.23)

And one can derive that:

χ
′

BA(ω) =

∫ 1
2 [χBA(τ ) + χBA(−τ )]e

iωτ dτ (1.3.24)

χ
′′

BA(ω) =

∫ 1
2 [χBA(τ ) − χBA(−τ )]e

iωτ dτ (1.3.25)

In the case A = B, the imaginary part χ̃ ′′BA(ω) is therefore governed by the non-invariant
(under time reversal) term of the generalized susceptibility. �us it is related to dissipation
process. �e real and imaginary parts of the complex generalized susceptibility are linked by the
Kramers-Kronig relations, which allow one to reconstruct the entire susceptibility from either
the imaginary or real part.

In the following, we will de�ne a set of correlation functions referring to the �uctuation, the
dissipation, and relaxation. We will also systematically provide the de�nitions in the basis of
the energy eigenstates |Un〉 which will ease the derivation of the relation between them.
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Chapter 1. �eoretical framework

1.3.3 Fluctuations

In this de�nition, the general correlation between �uctuating quantities as well as the symmetric
correlation function for which relation with the susceptibility will be given. �e general de�nition
of time correlation function between two observables Â and B̂ is de�ned as follows:

CBA(τ ) =
〈
B̂I (τ )Â

〉
eq (1.3.26)

Which can be recast using equation 1.3.19 as:

CBA(τ ) =
∑
n,m

ΠnBnmAmne
−iωmnτ (1.3.27)

One can notice that even in the case of hermitian operators ( related to observables ) Â and B̂
the la�er correlation function is in general complex. �erefore, in order to represent observable
�uctuations of a quantum system, we de�ne the following symmetric correlation function SBA:

Symmetric correlation function

SBA(τ ) =
1
2

〈{
B̂I (τ ), Â

}〉
eq (1.3.28)

=
1
2 (CBA(τ ) +CAB(−τ )) (1.3.29)

In case of Hermitian operators, Â and B̂ the symmetric correlation is real as suggested by the
expression of CAB(−τ ):

CAB(−τ ) = CBA(−τ ) (1.3.30)
= C∗BA(τ ) (1.3.31)

In addition, considering B̂ = Â at τ = 0 we obtain:

CAA(τ ) = SAA(τ ) (1.3.32)
=

〈
A2〉

eq (1.3.33)

�en if Â is centered, both CAA and SAA correspond to the variance of the la�er observable.
�us, in these conditions they relate to the �uctuations of the system.
�rough Fourier transform, one can obtain the symmetric correlation function in the frequency
domain:

S̃BA(ω) =

∫ +∞

−∞

SBA(τ )e
−iωτ dτ (1.3.34)

In order to express the la�er de�nition in the basis of the energy eigenstates we will use
expression 1.3.29 as well as the following relation:

CAB(−τ ) =
∑
n,m

ΠnAnmBmne
iωmnτ (1.3.35)

=
∑
n,m

ΠnAnmBmne
−iωnmτ (1.3.36)

=
∑
n,m

ΠnAmnBnme
−iωmnτ (1.3.37)
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1.3. Linear Response theory

�us, we �nd:

SBA(τ ) =
1
2

[∑
n,m

(Πn + Πm)BnmAmne
−iωmnτ

]
(1.3.38)

Hence:
S̃BA(ω) = π

∑
n,m

(Πn + Πm)BnmAmnδ (ω − ωmn) (1.3.39)

1.3.4 Relaxation

�e following correlation function is also real-valued and was introduced by Kubo:
Kubo’s canonical correlation function

KBA(τ ) =
1
β

∫ β

0

〈
eλĤ0Âe−λĤ0B̂I (τ )

〉
eq

dλ (1.3.40)

=
1
β

∫ β

0

〈
ÂI (−i~λ)B̂I (τ )

〉
eq dλ (1.3.41)

�e la�er correlation function describes the relaxation of the system,12 which is initially driven
out of equilibrium. One can obtain:

KBA(τ ) =
1
β~

∑
n,m

(Πn − Πm)
BnmAmn

ωmn
eiωnmτ (1.3.42)

Leading to the de�nition of the canonical correlation function in the frequency domain:

K̃BA(ω) =

∫ +∞

−∞

KBA(τ )e
iωτ dτ (1.3.43)

= 2π
∑
n,m

Πn − Πm

β~ωmn
BnmAmnδ (ω − ωmn) (1.3.44)

1.3.5 Dissipation

We now de�ne the spectral density as the expectation value of the commutator of operators
B̂I (τ ) and Â:

ξBA(τ ) =
1

2~
〈[
B̂I (τ ), Â

]〉
eq (1.3.45)

In analogy with the derivation of the symmetric correlation function, one can �nd that:

ξBA(τ ) =
1

2~ (CBA(τ ) −CAB(−τ )) (1.3.46)

Leading to the spectral density ξ̃BA(ω):

ξ̃BA(ω) =
π

~

∑
n,m

(Πn − Πm)BnmAmnδ (ω − ωmn) (1.3.47)

Which, in the case of hermitian operators, leads to the following property:
ξ̃ ∗BA(ω) = ξ̃AB(ω) (1.3.48)

In addition, in the case B̂ = Â† one can obtain that:
ξ̃Â†Â(ω) = Im

{
χ̂Â†Â

}
(ω) = χ̂

′′

Â†Â
(ω) (1.3.49)

�e la�er quantity therefore describes the dissipation.
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Chapter 1. �eoretical framework

1.3.6 Fluctuation-Dissipation theorem

�anks to the derivation of the di�erent correlations functions as well as the spectral density,
we can then establish several important relationships between �uctuation, dissipation, and
relaxation.

• Correlation-Susceptibility
We �rst describe the relationship between the correlation functions and the generalized sus-
ceptibility. In the time domain, the linear response function is linked to the spectral density
as:

χBA(τ ) = 2iθ (τ )ξBA(τ ) (1.3.50)

While it is related to the Kubo canonical correlation function as:

χBA(τ ) = βθ (τ )KB ÛA(τ ) (1.3.51)

χ̃BA(ω) = β

∫ +∞

0
KB ÛA(τ )e

iωτ dτ (1.3.52)

• Correlation-Spectral density
We now focus on the relations between correlation function and spectral density. In the frequency
domain, the antisymmetric correlation function is linked to the dissipation, represented by the
spectral density as:

C̃BA(ω) =
2~

1 − e−β~ω
ξ̃BA(ω) (1.3.53)

• Kubo correlation-Spectral density
To describe the relation between the dissipation and the relaxation, we take advantage of the
canonical correlation function:

K̃BA(ω) =
2
β

ξ̃BA(ω)

ω
(1.3.54)

Finally, the following relation, derived by H. Callen et T. Welton in 1951,13 known as the FDT,
describes the link between the symmetric correlation function S̃BA(ω) and the spectral density
ξ̃BA(ω):

�antum Fluctuation-Dissipation theorem

S̃BA(ω) = ~ coth
(
β~ω

2

)
ξ̃BA(ω) (1.3.55)

It therefore links the �uctuations described by S̃BA(ω) to the dissipation described by ξ̃BA(ω).
From the la�er theorem, we can derive the �uctuation-dissipation relation in the classical picture
as:

lim
~→0
~ coth

(
β~ω

2

)
=

2kbT
ω

(1.3.56)

For which we �nd:
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1.3. Linear Response theory

Classical Fluctuation-Dissipation theorem

S̃BA(ω) =
2kbT
ω

ξ̃BA(ω) (1.3.57)
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Chapter 1. �eoretical framework

1.4 Ab-Initio Molecular Dynamics

In this section, we will describe the ab-initio scheme used in the simulations presented in this
thesis. First, we will recall the Born-Oppenheimer approximation allowing the decoupling of
the nuclear and electron wavefunction and then describe the treatment of the electronic part via
the DFT. In the next section, we will then see how to describe the nuclear counterpart.

1.4.1 �e Born-Oppenheimer approximation

We consider the following many body hamiltonians of the N nuclei and n electron system:

Ĥ = T̂n + T̂e + V̂NN + V̂ee + V̂eN (1.4.1)

Where we introduced:

�e nuclear kinetic operator: �e electronic kinetic operator:

T̂N = −
~

2

N∑
a=1

1
Ma
∇2
a T̂e = −

~

2me

n∑
i=1
∇2
i

�e electron-nuclear Coulomb a�raction: �e nuclear-nuclear Coulomb repulsion:

V̂eN = −
N∑
a=1

n∑
i=1

Zae
2

|ri − Ra |
V̂NN =

N∑
a=1

N∑
b=1

ZaZbe
2

|Ra − Rb |

�e electron-electron Coulomb repulsion:

V̂ee =
n∑
i=1

n∑
j=1

e2

|ri − r j |

Unfortunately, the related Schrödinger equation cannot be solved analytically for complex
systems. To address this issue, we have to use the Born-Oppenheimer approximation, which
allows decoupling the electronic and nuclear degrees of freedom. �e underlying idea behind
the Born-Oppenheimer approximation is that the nuclei being much heavier than electrons, they
are assumed to be stationary as compared to the electrons. �is allows to write the wavefunction
in terms of nuclear χ (R) and electronic Ψ(r ;R) wavefunctions:

ϕ(r ;R) = Ψ(r ;R)χ (R) (1.4.2)

In this context, the electrons are assumed to follow the nuclei adiabatically, and can be de-
scribed considering an electronic hamiltonian Ĥe (R) which depends on the nuclei position R
parametrically.

Ĥe = T̂e + V̂ee + V̂eN + V̂NN (1.4.3)

In the la�er expression, the nuclear positons are assumed to be �xed, due to their in�nite mass.
�erefore, the nuclear positions can be considered as parameters which will only shi� the related
energy. �en at each �xed con�guration R the electronic wavefunction Ψ(r ;R) is then the eigen
vector of the electronic hamiltonian Ĥe with eigenvalue Ee (R):

Ĥe |Ψe (r ;R)〉 = Ee (R) |Ψe (r ;R)〉 (1.4.4)

�e la�er time-independent Schrödinger equation, allows one to describe the electronic part
only without having to describe the nuclear part. �is remarkable property is extensively used in
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1.4. Ab-Initio Molecular Dynamics

several ab-initio approaches. In particular, DFT describes the quantum electronic structure while
nuclei are treated with classical Newtonian mechanics. �e aim of the present work is exactly
to go beyond this partly quantum description, however in the adiabatic approximation. Finally,
once the electronic wavefunction is solved, we obtain an e�ective potential energy surface for
the nuclei de�ned by Ee (R):

ĤN = T̂N + Ee (R) (1.4.5)

Which is therefore described by:

ĤN |χ (r ;R)〉 =
[
−
~

2

N∑
a=1

1
Ma
∇2
a + Ee (R)

]
|χ (r ;R)〉 (1.4.6)
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Chapter 1. �eoretical framework

�e interactions between atoms can be computed at di�erent levels of precision: one way is to
use interatomic potentials, which express the interactions as depending on the nuclear positions
®RI in an analytical form. An example is provided by Lennard-Jones potentials. However, most
of them cannot reproduce the bond breaking-reforming nor be applied for (P, T) conditions they
were not suited for an exception is provided by the so-called reactive force �elds. In this case, we
must describe the bonding with direct reference to electronic structure. One current reference
method is the DFT resulting from the work of P. Hohenberg, L.J. Sham and W. Kohn14,15 who
received the Nobel prize for the la�er.

1.4.2 �e Density Functional �eory

As we have seen, the Born-Oppenheimer approximation allows us to treat the electronic and
nuclear wavefunctions separately. However, the quantum wavefunction associated with a large
number of electrons is both an extraordinary complex quantity and might not be the most useful
one: the electron density n(r ) is su�cient to describe all properties of the electronic ground
state, such as the energy and the bonding. Indeed, the electronic density:

n(r ) = n

∫
dr2...drn |Ψ0(r , .., rn)|

2 (1.4.7)

Reduces the number of degrees of freedom to deal with from 3n to only 3. In 1964,15 this
motivates P. Hohenberg and W. Kohn to formalize the onset of the DFT.

• Hohenberg and Kohn theorem

Hohenberg and Kohn
For the non-degenerate ground state, it exists a one to one correspondence between the
Hamiltonian and the ground state electron density, which determines all the properties
of the system. �e energy as a functional of the electron density:

E [n] = T [n] + EH [n] + Exc [n] +Vext [n] (1.4.8)

is minimal when the density is the actual ground state density:

min (E [n]) = E [n0] (1.4.9)

for which E[n0] is the ground state energy.

In the la�er theorems, we de�ned four components of the total functional of density:
• �e kinetic energy functional T [n]

• �e Hartree functional EH [n]

• �e exchange and correlation functional Exc [n] which describes the electronic exchange
and correlation contributions

• �e external potential energy Vext

�e problem of �nding the ground-state electron density is recast into a minimization problem
of the energy functional E [n] at constant number of electrons (N =

∫
d3r n(®r ) ).

δ

δn(®r )

[
E [n] − µ

∫
d3r n(®r )

]
= 0 (1.4.10)

24



1.4. Ab-Initio Molecular Dynamics

Where µ is the Lagrange multiplier that is associated with the conservation of the number of
electrons and can be shown to be equal to the Fermi energy.

• Kohn-Sham equations

In 1965, W. Kohn and L.J. Sham introduced the following idea: for a given system of interacting
electrons, one could �nd a virtual system of non-interacting electrons which has the same energy
density of the system of interacting electrons. �e density is therefore expanded on a basis of
one-particle orbitals:

n(®r ) =
N∑
i=1
|ψi (®r )|

2 (1.4.11)

For which the energy functional is therefore recast as:

E[n] = TKS [n] +V
ef f
KS (1.4.12)

Where V ef f
KS is the e�ective potential of the one-particle orbitals.

�is represents the next step of the developement of the DFT introduced by Kohn and Sham in
1965. By minimizing the energy with respect to the {ψi (®r )} we obtain the Kohn-Sham equations:

Kohn-Sham equations

n(r ) =
N∑
i

|ψ (r )|2 (1.4.13)

�e ground-state electron density is found by solving:[
−~2∇2

2m +V
ef f
KS (r )

]
ψi (r ) = ϵiϕi (r ) (1.4.14)

V
ef f
KS (r ) = Vext (r ) + e

2
∫

dr ′
n(r ′)

|r − r ′ |
+Vxc (r ) (1.4.15)

With Vxc (r ) =
δExc
δn(r ) the exchange correlation potential.

�e two last terms on the right-hand side of equation (1.4.15) depend on the density. �erefore,
starting from a given trial density nt (r ), we obtain a new potential V t

s (r ). �en solving (1.4.15),
we obtain the orbitals {ψi (®r )} that are reinjected in equation (1.4.13) to provide a new density.
�ese equations thus have a self-consistent loop:

nt (r ) → V t
s (r ) → ψ t

i → nt+1(r ) → ...

Finally, for each set of atomic position, we can calculate inter-atomic forces fi (t) that will be
used for dynamics simulations.

DFT requires several parameters to be set properly. Indeed, in order to describe correctly
a system, one should �rst pay a�ention to which exchange-correlation functional to use depend-
ing on the system under study.
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Chapter 1. �eoretical framework

• Functionals
One can distinguish two main approximations concerning the exchange-correlation energy

functional.

Local Density Approximation
�e Local Density Approximation (LDA) is based on the Homogeneous Electron Gas (HEG)
model. It considers that the electron density of the system can be seen as locally homogeneous
despite the fact that globally it is not. Since the exchange energy of HEG is known and that its
correlation energy can be calculated from quantum Monte-Carlo calculation or perturbation
theory, the exchange-correlation energy of HEG can thus be derived (Equation (1.4.16)).

EHEG
xc (n̄) = Vn̄e

HEG
xc (n̄) (1.4.16)

With V the volume of the system, n̄ the mean value of electron density, and eHEG
xc the exchange-correlation energy per

electron for the HEG model.

Based on this model, the local density approximation takes advantage of this known HEG
exchange-correlation energy and proposes the following formulation:

ELDAxc [n] =

∫
d3r n(®r ) eHEG

xc (n(®r )) (1.4.17)

With n(®r ) the local electronic density at ®r .

�erefore, this approximation can be a good model for system close to the homogeneous
electron gas c. Moreover, LDA does not describe well long range interaction as it is focused on
the local density. Among the most popular LDA functionals we can cite the Vosko-Wilk-Nusair
(VWN) and the Perdew-Zunger (PZ).

Generalized Gradient Approximation
�e main approximation that we use in this report is the Generalized Gradient Approximation
(GGA). �e purpose of this approximation is to describe the variation of the electron density in
the frame of the local density approximation. To do so, functionals taking into account both the
density (through LDA) and the gradient of the density of the system were constructed as:

EGGAxc [n,σ ] = ELDAxc [n,σ ] +

∫
d3r f GGAxc (n(®Ûr ); s(Ûr )) (1.4.18)

With f GGAxc the exchange-correlation energy per electron in the generalized gradient approximation,
and s(Ûr ) = |∇n( Ûr ) |

(n(r ))
4
3

.

�is approximation is thus a correction of the local density approximation that extends it
to non-homogeneous electron densities. As for the LDA, there are several non-equivalent GGA
fonctional that di�er by the particular choice of f GGAxc such as BLYP, PBE or PW91.

Pseudo-potentials
While representing the di�erent electrons of the system, the pseudo-potentials characterize
the way they will be taken into account during the calculations. Indeed, since only valence

ci.e. with an electron density that does not vary too much
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1.4. Ab-Initio Molecular Dynamics

electrons are responsible of the chemical properties, a clever way to describe the system is to set
an e�ective potential for core electrons, and describe valence states by pseudo-wavefunctions.
�erefore, core states are frozen and valence orbitals are expanded in plane-waves via Bloch’s
theorem; the interaction between core and valence electrons are de�ned by the pseudo-potential.

ψm, ®k (®r ) = eik ®rum, ®k (®r ) (1.4.19)

Where k is the wavevector and u ®k (x) a periodic function having the periodicity of the crystal ( ®G).

um, ®k (®r ) is a periodic function, which can be expanded in a Fourrier series runing on the ®G
vectors as:

um, ®k (®r ) =
∑
{
®G
} exp

(
i ®G®r

)
Ũm(®k + ®G) (1.4.20)

An exact representation of valence electrons implies an in�nite expansion in plane-waves.
Unfortunately, from a computational point of view an in�nite expansion is not conceivable, thus
a truncation is required.
�erefore we include in equation 1.4.20 expansion only the ®G reciprocal la�ice vectors such
that:

~2 | ®k + ®G |2

2m 6 Ecut (1.4.21)

As the cuto� energy Ecut is systematically increased, the quality of the plane-wave basis im-
proves and the corresponding total energy decreases. Although a large expansion gives a be�er
description, a well-chosen cut-o� energy can optimize the computational resource cost with a
good description of wavefunctions.

In�uence of Brillouin zone sampling
As we have seen, several parameters need to be checked and set correctly, in particular, the
cut-o� energy that depends upon the choice of pseudo-potential. Another parameter to be
optimized is the number of k-points de�ning the Brillouin zone sampling. In order to describe
many properties of the system, an integral over the wave vectors of the Brillouin zone is required.
Let’s consider X (®k) a function de�ned in the reciprocal space, which can be either the density of
states, electron density, total energy or other physical quantity, we must compute its expectation
value as:

< X >=
1

ΩBZ

∑∫
X (®k)d3k (1.4.22)

With ΩBZ the volume of the Brillouin zone.

�is integral is computed via a discrete sum, by using a grid of k-points in the Brillouin zone.
�e thinner the grid, the be�er the precision, but the slower the calculation is.
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Modelisation of Nuclear quantum e�ects

2.1 Introduction

U ntil recent awareness, the usual description of condensed ma�er systems implied a classical,
Newtonian, description of nuclei while electrons were treated as quantum particles through

well-known methods, as the DFT. Although NQE are known since Bohr and Planck discoveries,
only recently e�cient “all-quantum” methods treating both electrons and nuclei as quantum
particle have emerged. With the development of these new methods, the importance of the
NQE has been demonstrated in many cases.1,4,6,5 In this thesis, our approach aims to describe
both nuclei and electrons as quantum particles, by the use of the DFT, PIMD, and QTB methods.
While PIMD gives access to correct quantum distribution, QTB and RPMD allow describing the
dynamical properties of a system through approximate velocity correlation functions.

�erefore, in this chapter, we will �rst describe the Langevin equation in order to introduce
the QTB method. In the second part, we will focus on the Feynman description of quantum
mechanics to depict the PIMD. Finally, we will present the RPMD method as derived from PIMD.

A detailed and reference book describing (not only) Path Integrals and related methods:
Mark Tuckerman. Statistical mechanics: theory and molecular simulation. Oxford university
press, 2010
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Chapter 2. Modelisation of Nuclear quantum e�ects

2.2 Langevin methods

While studying pollen particles through his microscope, the biologist R. Brown observed that
their motions at the surface of water16 were irregular and somehow random, so-called Brownian
motion. �e physical mechanism behind Brown’s observation remained unclear until 1905, where
A. Einstein paved the way of the atomic theory and recent statistical mechanics approach.17

He described the di�usion process of a Brownian particle through a probabilistic description of
atomic collisions between the la�er and the �uid’s molecules. �is theory was then con�rmed
in 1909 by the work of J-B. Perrin.18 �e Brownian motion description is therefore important in
physics, one could cite the kinetic theory of gases, but also has a broader landscape of application
as �nancial mathematics and is at the root of stochastic processes.

2.2.1 Langevin equation

In addition to Einstein’s phenomenological description, P. Langevin proposed his approach
in 1908,19 allowing one to describe the trajectory of such Brownian particles. To characterize
Brownian motion, P. Langevin introduced two forces:

• a viscous friction force due to the �uid which is of the form −γ Ûx , following Stokes law,
and characterized by the friction coe�cient γ

• a random force R(t) resulting from the random collisions with the �uid’s molecules.

�erefore, for a particle of mass m in an external conservative potential, the Newtonian descrip-
tion of such Brownian motion leads to the Langevin equation (in one dimension):

Langevin equation

m Üx = −∇V (x) −mγ Ûx + R(t) (2.2.1)

Where f (x) = −∇V (x) describes the inter-atomic forces due to the conservative potential
V (x), m is the mass of the particle at the position x(t), γ the friction coe�cient, and R(t) is
the Langevin random force. Originally, the Langevin equation is given without the potential
term.

Although devised for this, the Langevin equation applications are not restricted to the description
of a Brownian particle immersed in a �uid but is generalizable to a broader landscape and is
nowadays extensively used as a thermostat for molecular dynamics simulations. At this stage, we
have to characterize the �uctuating Langevin forceR(t), and present the di�erent approximations:
�rst, the bath is assumed to be in a stationary state, in thermodynamic equilibrium. �e random
force is therefore described by a stationary stochastic process leading to the time-independent
expectation value of the random force 〈R(t)〉 and 〈R(t)R(t ′)〉 only depends on the di�erence
t − t ′.
Besides, at rest, the particle should remain motionless on average, we, therefore, assume the
expectation value of the random force to be null:

〈R(t)〉 = 0 (2.2.2)

We now introduce the spectral densities of the position Sx (ω) and random force SR(ω) through
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2.2. Langevin methods

the Wiener-Khintchine theorem:

〈x(t)x(t + τ )〉 =
1

2π

∫ +∞

−∞

Sx (ω)e
−iωτ dω Sx (ω) =

〈
|x(ω)|2

〉
(2.2.3)

〈R(t)R(t + τ )〉 =
1

2π

∫ +∞

−∞

SR(ω)e
−iωτ dω SR(ω) =

〈
|R(ω)|2

〉
(2.2.4)

As de�ned in Section 1.3, the classical �uctuation-dissipation theorem leads to the following
relation between the power spectral density of the position S̃x (ω) and the imaginary part of the
generalized susceptibility χ ′′(ω):

S̃x (ω) =
2kbT
ω

χ ′′(ω) (2.2.5)

�rough linear response theory, the generalized susceptibility links the position and random
forces Fourier transforms as:

x̃(ω) = χ̃ (ω)R̃(ω) (2.2.6)

Which thus leads to the following relation:

S̃x (ω) = | χ̃ (ω)|
2SR(ω) (2.2.7)

We can now replace the power spectral density of the position in equation 2.2.5:

S̃R(ω) =
ω

2kbT
χ ′′(ω)

| χ̃ (ω)|2
(2.2.8)

For simplicity sake, as we work in the linear response frame, we consider a simple one dimension
harmonic oscillator at frequency ω0. �is result can be easily generalized by considering
the expansion 1.3.22. In this context, in order to determine the de�nition of the generalized
susceptibility, one can deduce from the Fourier transform of the Langevin equation that:

x̃(ω) =
1

(−mω2 + iγmω +mω2
0)
R̃(ω) (2.2.9)

Where the de�nition of the generalized susceptibility naturally writes:

χ̃ (ω) =
1

(−mω2 + iγmω +mω2
0)

(2.2.10)

Hence we have:

| χ̃ (ω)|2 =
1

m2((ω2 + ω2
0)

2 + γ 2ω2)
(2.2.11)

And the imaginary part of the generalized susceptibility is thus:

χ ′′(ω) =
γω

m2((ω2 − ω2
0) + γ

2ω2)
(2.2.12)

Finally, we end up characterizing the random force with the relation between the power spectral
density of the la�er and the dissipation coe�cient by replacing these terms in equation 2.2.8:

Langevin white noise

S̃R(ω) = 2mγkbT (2.2.13)
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�e FDT in its classical form applied to the Langevin equation, therefore describes the random
force as being a Gaussian white noise. On the right-hand side of the la�er de�nition, we �nd
the classical thermal term kbT as being the same for all ω modes, according to the equipartition
theorem. �e la�er de�nition leads to the classical Langevin thermostat, where a classical
particle is plunged into a classical bath, at temperature T.

2.2.2 �antum �ermal Bath

�e Langevin thermostat is commonly used in molecular dynamics simulation to sample the
canonical distribution. However, in the la�er de�nition, the quantum nature of the particle is
completely neglected. In order to take into account NQE, Dammak and coworkers introduced in
2009 a new method,3 the QTB, based on the Langevin equation, but characterizing the random
force through the quantum FDT:

S̃x (ω) = ~ coth
(
β~ω

2

)
χ ′′(ω) (2.2.14)

Which can be recast as:

S̃x (ω) = 2~
(
1
2 +

1
eβ~ω − 1

)
χ ′′(ω) (2.2.15)

Noticing that:

coth
(
β~ω

2

)
=
eβ~ω − 1 + 2
eβ~ω − 1

(2.2.16)

= 2
(
1
2 +

1
eβ~ω − 1

)
(2.2.17)

�erefore, following the same derivation as for the classical FDT, we obtain the following
de�nition of the random force:

�antum �ermal Bath Colored noise

S̃R(ω) = 2mγ~ω
(
1
2 +

1
eβ~ω − 1

)
(2.2.18)

In this framework, the power spectral density of the random force now depends on the frequency,
leading to a Gaussian colored noise. On the right-hand side of this de�nition, we �nd the quantum
energetic term of the mode ω as the sum of the zero-point energy ~ω2 and the Bose-Einstein
distribution. Each mode is thus thermalized with an appropriate e�ective temperature accounting
for the zero-point energy. In contrast with the white noise derived from the classical FDT, the
QTB colored noise does not vanish in the low-temperature limit, reducing the energy term to
the zero-point energy:

lim
T→0

S̃R(ω) = 2mγ ~ω2 (2.2.19)

However at high temperature the system reaches the classical limit, leading to the same expres-
sion as the classical white noise:

lim
T→∞

S̃R(ω) = 2mγkbT (2.2.20)
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0

2

Figure 2.1. Description of the quantum distribution sampling through QTB simulations

So de�ned, the QTB method allows one to have access to NQE through the colored noise
embedded in the Langevin equation. However, the system remains a classical object; therefore,
this method describes a classical particle plunged in a quantum bath. �e quantum distributions
can, thus, be extracted from the trajectories propagated by the QTB, as schematically represented
in Figure 2.1.
Although the QTB method is exact in the harmonic limit, while dealing with anharmonicity,
this semi-classical approach is subjected to the Zero-Point Energy Leakage (ZPEL). Indeed, in
this framework, the coupling between the modes of the classical system can induce an energy
redistribution between them, which tends toward classical energy equipartition. �is implies
high-frequency modes to end up with a lower e�ective temperature while lower ones to be
higher and could imply non-physical behavior of the system under study. However, the friction
coe�cient γ can be tuned to save the day. Indeed, the la�er parameter couples the system to the
bath and can be increased to lower the ZPEL e�ect, the main downside being a broadening of
the vibrational spectra. In addition, a recent development20 brought out a new criterion derived
from the FDT to quantify the ZPEL and estimate χ ′′(ω) along the trajectories, allowing the use of
equation 2.2.14 in an adaptive scheme of the friction coe�cient, giving rise to the adaptive-QTB
addressing the departure of QTB from the quantum FDT.
Despite its drawbacks, the QTB approach has been successfully applied to several systems.4,5,6,21,22

Moreover, not only can it give access to NQE but also provide somewhat reliable vibrational
spectra7 in many di�erent systems. Finally, combined with ab-initio simulations for the determi-
nation of the forces, this approximation is computationally inexpensive and therefore can be
applied for large systems with many degrees of freedom in contrast with accurate but costly
PIMD simulations.

In this work, we decided to use the QTB method as a magnifying glass to probe NQE in the
di�erent systems and also to obtain reliable vibrational spectra to be compared with experimental
results. �en, we used more sophistical approaches to sample the correct quantum distributions.
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2.3 Path integral formalism

Based on the work presented in 1933 by P. Dirac on the use of Lagrangian in quantum me-
chanics,23 in 1948, R. Feynman introduced a new formalism of quantum mechanics24 based on
a generalization of the classical action principle. �e idea behind the so-called path integral
formalism is the following: the quantum amplitude for a particle at position xi at time ti to
reach the position xf at time tf is given by the sum over all possible paths linking the two points
weighted by their respective classical action S[x(t)].〈
xf ; tf

��xi ; ti 〉 = ∫
Dx(t) e

i
~S [x (t )] (2.3.1)

Doing so, both the classical action arising from the mininum action principle as the integral
of the Lagrangian, and an in�nite number of non-classical actions contribute to the quantum
amplitude. �e Feynman path integral formalism satis�es the Schrödinger equation, and one
can notice that the classical regime is also accessible. Indeed in the case ~→ 0 the weighted
factor e i

~S [x (t )] is oscillating rapidly, thus the main contribution arises from the stationary path,
hence the classical action.
In this section, we will �rst de�ne the density operator in the path integral formalism and its
properties. �en we will use this new de�nition to recast the canonical partition function from
which the classical isomorphism will naturally outcome. Finally, we will present a molecular
dynamics scheme for the path integral formalism to take into account the NQE and brie�y
describe an approximate approach to extract time correlation functions.

To begin, we consider Hamiltonian operator Ĥ as the sum of the kinetic T̂ and potential V̂
operators:

Ĥ = T̂ + V̂ (2.3.2)

For the sake of clarity, we rede�ne the density operator in equation 1.2.43 as follows:

ρ̂eq = e−βĤ (2.3.3)

So that the partition function is now de�ned as the trace of the density operator:

Z = Tr
(
ρ̂eq

)
(2.3.4)

�e idea behind path integrals resides in the reformulation of the space-coordinate quantum
propagator matrix elements U(x, x ′;τ ) (equation 1.2.19) in terms of a sum over all possible
path from x to x ′ in time τ . �erefore, in this context, we want to treat the density operator in
space-coordinate which matrix elements are:

ρeq(x, x
′; β) = 〈x | ρ̂eq |x ′〉 (2.3.5)

�ere are several derivations of the �nal expression (equation 2.3.22), here we present it through
the convolution property of the density operator.

• Convolution property
Let us de�ne the convolution product C between the two density operators matrix elements
ρeq(x, x

′; β1) and ρeq(x ′, x ′′; β2) at di�erent temperature β1 and β2:

C =

∫
dx ′ρeq(x, x ′; β1)ρeq(x

′, x ′′; β2) (2.3.6)
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2.3. Path integral formalism

�en introducing de�nition 2.3.5 in this equation leads to:

C =

∫
dx ′

∑
i , j

|Ψi (x)〉 e
−β1Ei

〈
Ψi (x

′)
��Ψj (x

′)
〉
e−β2Ej

〈
Ψj (x

′′)
�� (2.3.7)

=
∑
i , j

|Ψi (x)〉 e
−β1Ei

∫
dx ′

〈
Ψi (x

′)
��Ψj (x

′)
〉
e−β2Ej

〈
Ψj (x

′′)
�� (2.3.8)

=
∑
i

|Ψi (x)〉 e
−β1Eie−β2Ei 〈Ψi (x

′′)| (2.3.9)

=
∑
i

|Ψi (x)〉 e
−(β1+β2)Ei 〈Ψi (x

′′)| (2.3.10)

We �nally end up with the pratictal property of the space-coordinate canonical density operator:

C =

∫
dx ′ρeq(x, x ′; β1)ρeq(x

′, x ′′; β2) = ρ̂eq(x, x
′′; β1 + β2) (2.3.11)

�erefore, the convolution of ρeq(x, x ′; β1) at temperature β1 and ρeq(x ′, x ′′; β2) at β2 de�nes a
new density operator matrix elements ρeq(x, x ′′; β1 + β2) at temperature β1 + β2. �e underlying
e�ect of this property is thus to be able from a density matrix de�ned as temperature β to
compute the density matrix at lower temperature but evaluated at two di�erent positions.
Indeed, if we consider the case β1 = β2 = β in equation 2.3.11 we �nd that:

ρ̂eq(x, x
′′; 2β) =

∫
dx ′ρeq(x, x ′; β)ρeq(x ′, x ′′; β) (2.3.12)

�en using the same convolution property on ρeq(x, x
′′; 2β) we can compute another matrix

element ρeq(x, x ′′′; 4β) at twice lower temperature, repeating the process thus gives access to
ρeq(x, x

(P ); Pβ) in the full quantum regime T → 0. However, one can notice that it requires an
integral over all x (i) elements, so de�ne “path integrals”. In addition, we can also notice that
expanding this convolution property produces paths equally distributed in terms of β which
therefore acts as a “duration” or “slice” of an imaginary time as we will now discuss.

• Imaginary time slicing
To introduce the imaginary time slicing, we recall the de�nition of the quantum propagator
operator (equation 1.2.13) whose space-coordinate matrix elements are de�ned as:

〈x | Û(τ ) |x ′〉 = U(x, x ′; t, t0) (2.3.13)
= U(x, x ′;τ ) (2.3.14)

In this way we can derive the relationship between the canonical density operator ρ̂(β) and the
quantum propagator Û(τ ):

ρ̂(β) = Û(−iβ~) (2.3.15)

Û(τ ) = ρ̂(
−i

~
τ ) (2.3.16)

As suggested before, we �nd that the density operator at temperature β can be expressed as
a quantum propagator which evolves the system in an imaginary time −iβ~. On the other
hand, the quantum propagator can be seen as a density operator at a temperature − i

~τ . �is
operation is known as the Wick rotation. �us, introducing the convolution property of the
density operator in the la�er expression allows expressing the quantum propagator as a sum
over all P paths x (i) of the density operator evaluated at the temperature − i

~
τ
P . �is approach

is schematically described in Figure 2.2 and describes the onset of Feynman path integrals
formulation of quantum mechanics.
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Figure 2.2. Description of time slicing within path integrals

2.3.1 Path Integral Molecular Dynamics

In this section, we take advantage of the Feynman’s path integrals to derive a simulation scheme
to introduce NQE in our molecular dynamics simulations.
We start from the de�nition of the partition function:

Z = Tr
(
ρ̂eq

)
=

∫
dx 〈x | ρ̂eq |x〉 (2.3.17)

We then rename x to x0 for the sake of clarity in the following and introduce the space-coordinate
density matrix element:

Z =

∫
dx0ρeq(x0, x0; β) (2.3.18)

�en we introduce P times the convolution property 2.3.11:

Z =

∫
dx0

∫
dx1ρeq(x0, x1; β2 )ρeq(x1, x0; β2 ) (2.3.19)

=

∫
dx0

∫
dx1

∫
dx2ρeq(x0, x2; β4 )ρeq(x2, x1; β4 )ρeq(x1, x2; β4 )ρeq(x2, x0; β4 ) (2.3.20)

=

∫
dx0dx1...dxP−1ρeq(x0, x1; β

P
)ρeq(x1, x2; β

P
)...ρeq(xP−1, x0; β

P
) (2.3.21)

=

∫
dx0...dxP−1 〈x0 | ρ̂eq(

β

P
) |x1〉 〈x1 | ρ̂eq(

β

P
) |x2〉 ... 〈xP−1 | ρ̂eq(

β

P
) |x0〉 (2.3.22)

Finally we end up with a new de�nition of the canonical partition function in the path integral
formalism:

Z =

∫
dx0...dxP−1 〈x0 | e

−βPĤ |x1〉 ... 〈xP−1 | e
−βPĤ |x0〉 (2.3.23)
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where we de�ned: βP =
β
P .

We now want to expand the density operator despite the fact that the kinetic and potential part
of the hamiltonian operator do not commute:

e−βPĤ = e−βP(T̂+V̂ ) (2.3.24)

, e−βPT̂ e−βPV̂ (2.3.25)

To overcome this issue, we note that βP can be in�nitely small when P → ∞ and we take
advantage of the symmetric Baker-Campbell-Hausdor� formula25 leading to:

e−βP(T̂+V̂ ) = lim
P→∞

e−βP
V̂
2 e−βPT̂ e−βP

V̂
2 + O

(
β2

P
)

(2.3.26)

Which, when introduced into equation 2.3.23, leads to the symmetric Tro�er expansion:

e−β (T̂+V̂ ) = lim
P→∞

[
e−βP

V̂
2 e−βPT̂ e−βP

V̂
2
]P
+ O

(
β2

P
)

(2.3.27)

We thus obtain under this approximation:

ρ̂eq(βP) = e−βP
V̂
2 e−βPT̂ e−βP

V̂
2 (2.3.28)

�erefore:

Z = lim
P→∞

∫
dx0...dxP−1 〈x0 | ρ̂eq(βP) |x1〉 ... 〈xP−1 | ρ̂eq(βP) |x0〉 (2.3.29)

From which we evaluate the matrix elements 〈xi | ρ̂eq(βP) |xi+1〉:

〈xi | ρ̂eq(βP) |xi+1〉 = 〈xi | e
−βP

V̂
2 e−βPT̂ e−βP

V̂
2 |xi+1〉 (2.3.30)

= e−βP
V (xi )

2 〈xi | e
−βPT̂ |xi+1〉 e

−βP
V (xi+1)

2 (2.3.31)

= e−
βP
2 (V (xi )+V (xi+1)) 〈xi | e

−βPT̂ |xi+1〉 (2.3.32)

We then introduce the closure relation
∫

dp |p〉 〈p | = 1 and evaluate the kinetic part of the
density operator in the momentum-coordinate, leading to:

〈xi | ρ̂eq(βP) |xi+1〉 = e−
βP
2 (V (xi )+V (xi+1))

∫
dp 〈xi |p〉 〈p | e−βPT̂ |xi+1〉 (2.3.33)

= e−
βP
2 (V (xi )+V (xi+1))

∫
dpe−βP

p2
2m 〈xi |p〉 〈p |xi+1〉 (2.3.34)

�en recalling that 〈x |p〉 = 1√
2π~

e
i
~px we obtain:

〈xi | ρ̂eq(βP) |xi+1〉 = e−
βP
2 (V (xi )+V (xi+1)) 1

2π~

∫
dpe

ip
~ (xi−xi+1)e−βP

p2
2m (2.3.35)

We de�ne:

A =
βP
2m B =

i

~
(xi − xi+1) (2.3.36)

So that:

−
βP
2mp2 +

i

~
(xi − xi+1)p = −[Ap

2 − Bp] = −A

[
p −

B

2A

]2
−

B2

4A (2.3.37)
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Allowing us to integrate by completing the square:∫
dp e

ip
~ (xi−xi+1)e−βP

p2
2m =

∫
dp e−A[p−

B
2A ]

2
e−

B2
4A (2.3.38)

= e−
B2
4A

∫
dp e−A[p−

B
2A ]

2
(2.3.39)

We then apply the change of variable z = p − B
2A and take advantage of the gaussian integral:∫

dp e
ip
~ (xi−xi+1)e−βP

p2
2m = e−

B2
4A

∫
dz e−Az2 (2.3.40)

=

√
π

A
e−

B2
4A (2.3.41)

=

√
2mπ
βP

e
−
m(xi−xi+1)2

2~2βP (2.3.42)

Hence:

〈xi | ρ̂eq(βP) |xi+1〉 = e−
βP
2 (V (xi )+V (xi+1))

√
m

2πβP~2e
−
m(xi−xi+1)2

2~2βP (2.3.43)

=

√
m

2πβP~2e
−
βP
2 (V (xi )+V (xi+1))−

m(xi−xi+1)2

2~2βP (2.3.44)

We can now introduce these matrix elements in the de�nition of the partition function:

Z = lim
P→∞

(
m

2πβP~2

) P
2
∫

dx0...dxP−1e
−

[∑P
i=0

βP
2 (V (xi )+V (xi+1))+

m(xi−xi+1)2

2~2βP

]
(2.3.45)

Where one can see that:
P∑
i=0
[V (xi ) +V (xi+1)] = 2

P∑
i=0

V (xi ) (2.3.46)

Which simpli�es the expression to:

Z = lim
P→∞

(
m

2πβP~2

) P
2
∫

dx0...dxP−1e
−

[∑P
i=0 βPV (xi )+

m(xi−xi+1)2

2~2βP

]
(2.3.47)

Finally, we introduce series of gaussian integrals through the prefactor:(
m

2πβP~2

) 1
2
=

1
2π~

∫
dp e−

βP
2m p2 (2.3.48)

Leading to:

Z = lim
P→∞

(
1

4π 2~2

) P
2
∫

dp0...dpP−1

∫
dx0...dxP−1e

−

[∑P
i=0

βP
2mi

p2
i +βPV (xi )+

m(xi−xi+1)2

2~2βP

]

In order to clarify the expression, we de�ne:

ωP =

√
P

β~
(2.3.49)

Uef f =

P∑
i=0

1
P
V (xi ) +

1
2mω

2
P(xi − xi+1)

2 (2.3.50)

m̃i =

√
P

β~
(2.3.51)
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Leading to the �nal form of the canonical partition function in the path integral formalism:
Path integral canonical partition function

Z = lim
P→∞

(
1
h

)P ∫
dp0...dpP−1

∫
dx0...dxP−1e

−βP

[∑P
i=0

p2
i

2m̃i
+Uef f (x0 ...xP−1)

]
(2.3.52)

• Classical isomorphism
�e term in the exponential can be recast as a Hamiltonian Hrp describing a ring polymer
lying in the potential V (xi )

P , the beads of the ring polymer necklace interacting via harmonic
forces between nearest neighbors, with a frequency ωP which is usually called the intra-chain
frequency:

Hrp (p, x) =
P∑
i=0

p2
i

2m̃i
+Uef f (x0...xP−1) (2.3.53)

=

P∑
i=0

p2
i

2m̃i
+

1
P
V (xi ) +

1
2mω

2
P(xi − xi+1)

2 (2.3.54)

�erefore, the path integral canonical partition function:

Z = lim
P→∞

(
1
h

)P ∫
dp0...dpP−1

∫
dx0...dxP−1e

−βPHrp (2.3.55)

is analogous to the classical canonical partition function of a ring polymer at an e�ective
temperature β

P . �is analogy is known as the classical isomorphism which therefore allows
representing a quantum particle as a classical ring polymer, for a number of beads composing this
ring which tends to in�nity. �e description of the interaction between the beads is presented
in Figure 2.3. Let’s note that any operator is here evaluated as an average over equivalent
beads (i=1,…,P) at di�erent con�gurations. �e beads are therefore distinguishable objects. �e

Figure 2.3. Description of the interactions between classical ring polymer.

generalization to a number N of particles in a 3-dimensional space is straightforward, and one
can obtain the following generalized ring polymer hamiltonian:

Hrp (p,q) =
P∑
i=0

[
N∑
n=1

p(i)n
2

2m̃n
+

1
P
V (q(i)1 , ...,q

(j)
N ) +

1
2mnω

2
P(q
(i+1)
n − q(i)n )

2

]
(2.3.56)
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Where the �rst sum is over the beads and the second over the N particles of the system. �anks
to this description, a molecular dynamics scheme can be derived from the Hamiltonian Hrp .
Hamilton equations give us:

Ûq(i)n =
∂Hrp

∂p(i)n
Ûp(i)n = −

∂Hrp

∂q(i)n
(2.3.57)

=
p(i)n
m̃n

= −mω2
P(2q

(i)
n − q

(i)
n+1 − q

(i)
n−1) −

1
P

∂V (q(i)1 , ...,q
(i)
N )

∂q(i)n
(2.3.58)

�anks to this approach, one has access to the quantum distributions through the ring polymer
dynamics governed by the la�er hamiltonian, as presented in Figure 2.4.Finally, these equations
can be coupled to a thermostat to ensure proper canonical sampling.

0

2

Figure 2.4. Description of the quantum distribution sampling through PIMD simulations
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2.3.2 Ring Polymer Molecular Dynamics

Although in principle exact for quantum distributions in the P →∞ limit, the PIMD does not
give access to dynamical properties. Missing these properties not only prevents one to explore
dynamical processes such as di�usion behaviors or reaction rates but also make impossible
the systematic comparison with a large part experimental results, in particular concerning
vibrational spectra.

• Time correlation function
�erefore, before describing one way to obtain such information, we �rst recall some properties
of time correlation functions. In Section 1.3 we described several correlation functions in
particular, the standard quantum time correlation function de�ned as:

CAB(t) =
〈
Â(0)B̂(t)

〉
(2.3.59)

However, other correlation functions can be used. In particular, the Kubo correlation function:

KAB(t) =
1

βZ(β)

∫ β

0
dλ Tr

(
e−(β−λ)Ĥ Âe−λĤeiĤ t B̂e−iĤ t

)
(2.3.60)

is real valued and invariant under time reversal making it more symmetrical than the quantum
time correlation function. In addition, it is more comparable to the classical correlation function.
Moreover, as we have seen it is linked to the standard correlation function as:

C̃AB(ω) =
βω

1 − e−βω
K̃AB(ω) (2.3.61)

�erefore, the Kubo correlation function appears to be a be�er choice as compared to the stan-
dard quantum correlation function, in particular for semi-classical approaches. Non-surprisingly,
several approaches to approximate the la�er correlation function have been investigated. In
particular, the Centroid Molecular Dynamics (CMD)26 and more recently RPMD27 have been
applied successfully to address dynamical concerns in several systems. Recently, these two
approaches were rederived as a particular approximation of the more general mean-�eld frame-
work of Matsubara dynamics.28 In the following, we chose to describe the formalism of the Ring
Polymer Molecular Dynamics as this approximation was used in the present study.

• �e Ring Polymer Molecular Dynamics formalism
In 200427 I. R. Craig and D. E. Manolopoulos introduced the so-called RPMD method allowing
one to have access to approximate Kubo correlation function in the path integral scheme. Fol-
lowing previous work,29 they chose the �ctitious mass m̃ of each bead to be the physical one. In
this formalism the Hamiltonian de�ned in equation 2.3.56 can be used to propagate classical
molecular dynamics trajectories in an extended phase space of P degrees of freedom with an
e�ective classical temperature of T ∗ = PT .
�e expectation value of an operator A(x) is, therefore:〈
Â
〉
=

1
Z

Tr
(
ρeqÂ

)
(2.3.62)

=
1

(2π~)PZ

∫
dp

∫
dxe−βpHrp (p,x)AP (x) (2.3.63)

With dx = dx0, ..., dxP−1 and dp = dp0, ..., dpP−1
Where AP (x) is averaged over all the beads:

AP (x(t)) =
1
P

P−1∑
i=0

A(xi (t)) (2.3.64)
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In analogy equation 2.3.63 I. R. Craig and D. E. Manolopoulos generalized this de�nition to
a product of two operators Â(x) and B̂(x) which naturally leads to the Kubo time correlation
function of the two operators in the short time limit:〈
ÂB̂

〉
=

1
(2π~)PZ

∫
dp

∫
dxe−βpHrp (p,x)AP (x)BP (x) (2.3.65)

= lim
t→0

KAB(t) (2.3.66)

�erefore, thanks to this analogy, the RPMD method approximates the Kubo correlation function
as:

Ring Polymer Molecular Dynamics Kubo correlation function

KAB(t) ≈
1

(2π~)PZ(β)

∫
dp

∫
dxe−βpHp (p,x)Ap (x(0))Bp (x(t)) (2.3.67)

Although the expression 2.3.66 is an approximation which cannot be derived formally, it can
be shown to be exact in the classical limit of high temperature, in the short time limit, for the
simple case of the harmonic oscillator and �nally in the case of unitary operators.
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2.4 Conclusion

In this section, we described two methods allowing the quantum description of nuclei in our
molecular dynamics simulations. �e QTB is derived from the Langevin equation; it is a semi-
classical approach to account for the NQE, and in particular, the zero-point energy. In addition to
approximate quantum distributions, this method also provides reliable vibrational spectra, which
is a required asset while comparing theoretical results with experimental ones. Moreover, the
QTB scheme is computationally cheap while it is used on top of ab-initio calculations accounting
for inter-atomic forces. However, due to the inherent semi-classical model, QTB is subjected to
ZPEL. Although it can be reduced by tuning the coupling between the system and the quantum
bath, while dealing with strong anharmonic systems, it can lead to incorrect physical properties.
�erefore, QTB has to be carefully used, and the resulting physical properties systematically
checked whether by investigating the e�ective temperature of the di�erent degrees of freedom
or with more sophistical approaches recently brought out.
On the other hand, in contrast with QTB, PIMD which arises from the Feynman quantum
mechanics formalism, provides correct quantum distributions at equilibrium and in the limit of a
high number of replicas (beads) of the system. �e inherent drawback being the computational
cost of each simulation. Although recent development allows reducing the number of replicas
signi�cantly to reach convergence, PI-based methods providing correct quantum time correlation
functions are still lacking. �erefore, several approximations to the Kubo correlation function,
as RPMD and CMD, have been derived in order to obtain approximate time correlation function
in the PI framework. However, these two methods are expensive in comparison with QTB and
do not provide deeper information concerning the dynamical properties of the studied systems.

�erefore, we see in both QTB and PIMD two complementary methods to sample the NQE
in our investigations. We used the QTB as a magnifying glass to probe NQE and also to obtain
reliable vibrational spectra from the velocities correlation function. Doing so, we can have a
fast and cheap way to obtain the pressure or temperature of interest for example. �en, we
used PIMD simulations to obtain correct quantum distributions and a �ner description of the
di�erent physical behaviors.
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3.1 Introduction

I n the following, we discuss two methods to understand the underlying process of phase
transition.

As a �rst approach, the NEB method allows �nding the Mininum Energy Reaction Path
(MEP) and the saddle point of a transition, given a set of intermediate con�gurations that are
optimized. Secondly, the MTD method allows sampling the free energy landscape in a Molecular
Dynamics (MD) scheme allowing one to add thermal and quantum e�ect. �e la�er approach,
however, requires to de�ne a coordinate of reaction/transition. �erefore, in the last part, we
will present the Path CVs along with the Path Invariant Vector (PIV), which will allow one to
describe a transition through topological concerns.
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3.2 Mininum energy path sampling with Nudged Elastic Band

�e NEB method allows determining under certain conditions the MEP of a transition. It is
common while dealing with phase transitions or chemical reactions to know the initial and
�nal states of the la�er. However, the processes behind a transition can be complex, and the
di�erent stages could remain unknown. In order to explore the di�erent transition stages, the
NEB method allows one to optimize a series of images of the related system along the transition.

We are looking for the di�erent steps of the transition of a system of N atoms at initial po-
sitions r 0

1 , r
0
2 , ..., r

0
N and �nal positions r F1 , ..., r FN de�ning the initial R0(r

0
1 , ..., r

0
N ) and the �nal

RF (r
F
1 , ..., r

F
N ) con�gurations. Given a number of imagesK , we construct a serie ofK intermediate

con�gurations Ri (r i1, ..., r IN ); i = 1, ...,K by linear interpolation of the extreme con�gurations R0
and RF . �en, we link all images with springs of constant ks and keep the extreme con�gurations
(i = 1,K ) �xed.
Several objectives have to be reached: we want to ensure proper spacing between images, but
we also need the spring forces not to interact with the convergence to the MEP. To ensure these
two conditions, we �rst de�ne a unit vector tangent to the transition at the con�guration Ri ,
®τ ‖i =

®Ri+1− ®Ri
| | ®Ri+1− ®Ri | |

, and then decompose the di�erent forces applied to Ri in the space (®τ ‖i -®τ⊥i ):

• Interatomic forces: −∇U (Ri ) = −(∇U (Ri ) · ®τ ‖i )®τ
‖

i − (∇U (Ri ) · ®τ⊥i )®τ⊥i
• Spring forces: Fs (i) = (Fs (i) · ®τ⊥i )®τ⊥i + (Fs (i) · ®τ

‖

i )®τ
‖

i

with Fs = ks (|Ri+1 − Ri | − |Ri − Ri−1 |).
Finally, we reduce the inter-atomic forces to their orthogonal (®τ⊥i ) component only and the NEB
spring forces to their parallel component one (®τ ‖i ), giving rise to the total NEB force:

Nudged Elastic Band forces

FNEB = −
(
∇U (Ri ) · ®τ⊥i

)
®τ⊥i + Fs ®τ

‖

i (3.2.1)

= −∇U (Ri ) +
[
∇U (Ri ) · ®τ ‖i + Fs · ®τ

‖

i

]
®τ ‖i (3.2.2)

i-1 i+1i

Figure 3.1. Description of the NEB convergence to the MEP.

A description of NEB forces is presented in Figure 3.1. �e la�er force can then be minimized
through gradient descent or other optimizing schemes. As the NEB relies on di�erent images
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that are optimized through energy minimization under the constrained that are imposed by the
presence of the springs, the corresponding barrier is an energy barrier at T=0K.

Although fast and easy to apply, this method is very likely to miss the saddle point due
to the inherent discretized transition path with spaced steps. One possible solution has been
suggested with the so-called Climbing Image NEB. A�er several NEB iterations, the image of
the highest energy is driven toward the saddle point as:

FCI−NEB = −∇U (Ri ) + 2∇U (Ri ) · ®τ ‖i ®τ
‖

i (3.2.3)

Doing so, one of the images climbs up the energy surface along the reaction path while mini-
mizing the inter-atomic forces. Finally, one can notice that the NEB spring forces do not act,
inducing a non-uniform con�guration spacing. Although uneven, one can take advantage of the
la�er property to be�er sample the saddle point using variable spring forces constant ki ’s along
the path.
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3.3 Free energy sampling with Metadynamics

In order to accurately describe a phase transition, a free-energy sampling is required. Indeed,
while NEB calculations allow in some cases to have a simple idea of the di�erent stages it
completely neglects thermal and quantum e�ects, and is limited by its inherent sequential
description accounting only for internal energy, and does not give access to a full picture of the
energy landscape. �erefore, we go beyond the NEB approach towards a free energy sampling,
which in the canonical ensemble ( F (N ,V ,T ) ), is described by the Helmholtz free energy:

F = −kbT log(Z) (3.3.1)

WhereZ is the partition function classically described as:

Z =
1

N !h3N

∫
d3x1..d3xN d3p1..d3pN e

−βH (x1, ...,xN ,p1, ...,pN ) (3.3.2)

where N is the number of particle, xi and pi the respective position and momenta of the particle i,
and H the hamiltonian of the system.

While describing transitions, the reaction coordinate is o�en unknown as it can involve
several mechanisms. In this context, and based on the relevant known characteristic of the
transition, the choice of an order parameter χ to describe the reaction coordinate can be a fair
approximation:

χ (x1, ..., xN ,p1, ...,pN ) (3.3.3)

�e la�er can be either atomic distances, angles or any relevant quantity describing the reaction.
So de�ned, the probability of being at χ0 along the free energy pro�le de�ned by this order
parameter is given by:

P(χ0) =
1
Z

∫
d3x1..d3xN d3p1..d3pN e

−βH (x1, ...,xN ,p1, ...,pN )δ (χ (x1, ..., xN ,p1, ...,pN ) − χ0)

(3.3.4)

where δ is the Dirac delta function
Doing so, we end up with an integral over the full phase space that cannot be reached in our
simulations. We thus have to use approximations to overcome this issue. First, we assume that
we do not need a complete picture of the phase space to describe the transition, and secondly that
our simulation is su�ciently long, or with su�cient initial conditions to verify the ergodicity
property.
In this context, the probability P(χ0) is given by:

P(χ0) =
1
t

∫ t

0
δ (χ (x1, ..., xN , t

′) − χ0)dt ′ (3.3.5)

And the free energy at this point is given by:

F (χ0) = −kbT log(P(χ0))δ (χ (x1, ..., xN ,p1, ...,pN ) − χ0) (3.3.6)

�en, under the de�ned approximations, we can extract a free energy pro�le from state I to
state F along any order parameters χ from our MD simulations. However, for this to work and
to obtain reliable free energies, the MD trajectories need to sample both states properly. While
dealing with rare events and high barriers this condition is not always reachable due to either
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MD Metadynamics MD

Gaussian deposition

Vbias

Figure 3.2. Description of the MTD approach to accelerate rare events and sample the free energy
landscape.

non-su�cient thermal and quantum energies or the computational cost of ab initio simulations.
�erefore, to address this issue, Laio and Parrinello introduced in 2002 a new method, the
MTD,30 to accelerate rare events and escape from a potential well and therefore accelerate the
free energy landscape sampling. �e idea behind MTD is the following: we want to force the
system to explore a broader region than that around a local minimum of the collective variable
χ , by penalizing the already explored ones. To this purpose, we add a local bias potential V (χ )
to the free energy along the coordinate χ during the MD simulationa.
�is approach is formalized as follows:
First, we de�ne a Collective Variable (CV)s S = {S1, ..., SD } as a set of D reaction coordinates, or
order parameters, which can describe the related transition or reaction process collectively. �is
CV depends on the 3N coordinates of the system and at time t with con�guration {x1(t), ...xN (t)}
will take the value s = {s1, ..., sD } = s(t).
�en, we de�ne a history bias potential Vbias which will evolve with time and always be added
to the free energy. At t = 0 Vbias = 0.
At another time t ′, we add to the history bias potential a Gaussian potential h0e

−
(S−s )2

2σ 2 centered
at s(t ′) with a free energy height h0 and a width of σ , all of these parameters being a set of D
variables.
We then repeat the process at the time t ′′, the di�erence t ′′−t ′ de�nes the bias period deposition
τ . Doing so, at a certain time t , N Gaussian potential have been added to the history bias
potential each period τ leading to the following history potential:

Vbias (t) = h0
∑

t ′=τ ,2τ , ...,Nτ
e−
(S−s (t ′)2

2σ 2 (3.3.7)

�is allows penalizing already explored space, or previous con�gurations, and �ll the potential
well allowing the system to explore other parts of the free energy landscape along the CV, as
described in Figure 3.2. �en, for a su�ciently long time, the system should have explored the
la�er completely, and the history bias potential should have �lled the di�erent potential wells.
�erefore, the sum of the di�erent deposited Gaussians can be seen as a mold of the free energy

a�is approach is also shared by other methods such as umbrella sampling which we will not discuss here.
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landscape, leading to the following approximation of the free energy along S :

F (S) = lim
t→∞
−V (t) (3.3.8)

In practice, the convergence is a�ained when the free energy di�erences between the distinct
basins is not anymore modi�ed when adding more gaussians.

MTD is, therefore, useful to accelerate rare events and obtain an approximate free energy
landscape. In contrast with the NEB approach, it gives rise to a broader picture and �ner descrip-
tion of the transition mechanism. In addition, through its molecular dynamics approach, we can
have access to free energy accounting to both thermal e�ects when coupled to a thermostat and
also to nuclear quantum e�ects. In particular, in the PI framework where we already de�ned the
free energy as:

F = −kbT log(Z) (3.3.9)
= −kbT log

(
Tr

(
ρeq

) )
(3.3.10)

However, several parameters need to be tuned. �e height and width of the Gaussian bias
potential need to be carefully chosen considering the related process. To do so, a �rst NEB
approach can give a bare idea of the barrier height potential to be reached. In parallel, a too high
frequency of gaussian deposition needs to be avoided to let the system explore the potential, and
a good balance between the la�er parameter and the Gaussian free energy height is required.
Overall, the most important parameter is the choice of CV.

3.3.1 Path collective variables and the path invariant vector

While studying phase transitions, the set of order parameters needs to catch the di�erent physical
properties involved in the la�er thoroughly. �is makes the choice of the CV complex and
somehow imposes a particular view of the transition. In this context, several developments
of Path CVs were done to address this issue.31 �e idea behind this Path CVs is the following:
assuming we have an hypothetical set of n path con�gurations from the initial Ri to the �nal Rn
we de�ne the Path CVs S(t) and z(t) as:

Path collective variables

S(t) =

∑n
k=1 ke

−λD(R(t ),Rk )∑n
k ′=1 e

−λD(R(t ),Rk′ )
(3.3.11)

z(t) = −
1
λ

log
(

n∑
k=1

e−λD(R(t ),Rk )

)
(3.3.12)

With R(t) the con�guration coordinates at time t, λ a tunable parameter and D the chosen
metric between R(t) and Rk ,k ′

�e �rst variable S(t) de�nes the progress of the transition while the second, z(t) refers to the
distance of the hypothetical path. �e second step is naturally the de�nition of the chosen
metric. Recent studies have shown the e�ciency of metrics based on the path invariant vector,
which we now describe. �e PIV is constructed from the atom-type-speci�c ordered blocks vkk ′
linking the atom types k and k ′, and the components of which are de�ned as:

v
ββ ′

kk ′ = ckk ′S[(
Ω0
Ω
)

1
3 |rβk − rβ ′k ′ |] (3.3.13)
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Where rβk de�nes the position of the atom β of type k , Ω the volume of the simulated box, Ω0 a
reference volume, and S a switching function which decreases from 1 to zero as |rβk −rβ ′k ′ | increases.
�en the elements of the di�erent blocks vkk ′ are sorted in ascending order and concatenated
leading to the PIV of Natoms (Natoms−1)

2 componentsVα . Doing so, an invariance upon permutation
of identical atoms arises and the metric D is then de�ned as the Euclidian distances between the
PIVs:

DAB =
∑
α

(VBα −VAα )
2 (3.3.14)

�anks to this approach, the description of the transition is not governed by arbitrary order
parameters such as atomic bond length angles, etc. but instead by topological similarities
and di�erences between con�gurations. �is is an essential improvement for phase transition
descriptions that we naturally followed in our investigations, and that demonstrated its reliability
in several cases, in particular, it allows reconstruction of the phase diagram of water.32
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3.4 Conclusion

In this section, we described the NEB and MTD methods to investigate phase transitions.

As we have seen, the NEB approach provides information on the MEP and saddle point of
the reaction, without de�ning any reaction coordinate. �is method has the advantage of being
easy to apply and computationally e�cient. However, neither thermal nor quantum e�ects
are considered, and although this method can be reliable to �nd saddle points, it can drive to
incorrect MEP.

On the other hand, the MTD method provides a broader complete picture of transitions
as it forces the system to explore the free energy landscape. �e counterpart is the choice of
the CV. Indeed, if the la�er is not suitable for the studied transition, it can lead to an incorrect
representation. To address this issue, we presented the Path CVs complete by the PIV topological
metric to avoid any arbitrary choice of the CV.

�erefore, to provide information of the transition we present in the following, we used the
NEB method as a �rst approach to have an approximate idea of the transition path and barrier
of reaction in order to parametrize the MTD simulations, as a second step.

52







Part II
Investigation of Nuclear �antum E�ects

1 �antum driven proton di�usion in brucite minerals 57
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.2 Brucite mineral structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.3 Proton di�usion mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.3.1 In plane reorientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.3.2 Out of plane dissociation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.3.3 Proton di�usion sweet spot . . . . . . . . . . . . . . . . . . . . . . . . . 63

1.4 Comparison with Portlandite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2 Methane hydrate: towards a quantum-induced phase transition 69
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.1.1 MH-III structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.2 MH-III under pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.2.1 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.2.2 Methane ordering and locking-in . . . . . . . . . . . . . . . . . . . . . . 75
2.2.3 Methane-Water interaction . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.3 �e methane hydrate IIIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.3.1 From MH-III to MH-IIIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.3.2 Nuclear quantum e�ects and isotopic substitution . . . . . . . . . . . . . 83

2.4 �e methane hydrate IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.4.1 Structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.4.2 Hydrogen bond symmetrization: MH-IVs . . . . . . . . . . . . . . . . . 93
2.4.3 Vibrationnal properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.5 Transition description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.5.1 Transition stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.5.2 Stability of the ice frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.5.3 Transition path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3 �e �antum equilibrium structure of sodium hydroxide 105
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.2 Sodium hydroxide structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.3 �antum mechanical description of structural properties . . . . . . . . . . . . . 106
3.4 Towards a dynamical paraelectric state . . . . . . . . . . . . . . . . . . . . . . . 109
3.5 From temperature- to pressure-induced transition . . . . . . . . . . . . . . . . . 112
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

55



56



C
h
a
pt

er 1
�antum driven proton di�usion in brucite minerals

1.1 Introduction

D i�usion is among the most complex theoretical problems in solid state physics and materials
science. Hydrogen di�usion, in particular, constitutes a signi�cant challenge, for many

reasons. Firstly, Hydrogen is the most abundant element in the Universe. Hydrogen atoms are
amphoteric and can be incorporated almost in any mineral or material, forming stable bonds
with cations and anions. When bound to O to form hydroxyl groups, the high O-H stretching
frequency implies non-negligible zero-point energy of about 0.2 eV that could be crucial when
hopping through local sites which are separated by barriers that classical nuclei cannot overcome
simply by thermal �uctuations.1,33,4 Despite the complexity and computational cost of accounting
for the quantum nature of light nuclei in simulations, a new �eld is rapidly growing with potential
applications in an eclectic collection of issues including protonic conduction,34 hydrogen in
biological ma�er,35 water circulation in Earth’s mantle,5,36 or hydrogen storage.37,38

All of the previous phenomena are deeply a�ected by proton di�usion, which is di�cult
to probe directly from proton quantum trajectories, although crucial for the determination of
thermodynamic properties, such as proton conduction or isotope exchange. While Portlandite is
of interest for industrial applications as the main component of concretes, Brucite is considered
a vector for water transport into Earth’s mantle that proton di�usion could trigger.

�erefore, we address the proton di�usion process occurring in Brucite Mg(OH)2 that
appears to be a particular case among the di�erent minerals of this class, as compared with
Portlandite Ca(OH)2, which is also discussed. �ite a number of proton di�usion mechanisms
were considered in the past: we show that the so-called “relay” mechanism,39 a two-step process
in which the proton hops from one oxygen atom to another and rotate with a hydrogen-
containing group, is at work in Mg(OH)2 under high pressure. We also show in the following
that at least the �rst step (H hopping through hydrogen bonds) is quantum driven.

Technical details of the simulations employed for this analysis can be found in the Appendix A.
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1.2 Brucite mineral structure

b
a

c

Mg, Ca, Ni ...

O
H (P3m1)
H (P3)
Unit cell

Figure 1.1. Description of Brucite minerals structure. The hydrogen atoms labeled P3m̄1 (light grey) are
in the 2d Wycko� sites, while the P3 hydrogen atoms (dark grey) are in the disordered 6i Wycko� sites.
The la�er is the stable structure at the pressures of our simulations.

�e Brucite minerals are layered structures composed by stacks of metallic ions, oxygen, and
hydrogen atoms in a CaI2

– type structure. �e metallic element (Mg, Ca, Ni …) has an impact
on several physical parameters, in particular, the la�ice parameters and the compressibility
of the system are di�erent in the two systems we studied: Brucite (Mg(OH)2) and Portlandite
(Ca(OH)2).40

At ambient pressure and temperature, the Brucite minerals belong to the P3m̄1 space group
with hydrogen atoms located on the threefold axis above or below oxygen atoms (2d Wycko�
sites) with a 1

1 occupancy factor as shown in Figure 1.1. However, in accordance with previous
experimental and simulation results,41,42,43,44,45 as pressure is slightly increased, due to the
increase of the H-H repulsive interaction between opposite layers, we �nd that the hydrogen
nuclei do not remain strictly above the corresponding oxygen atom and the Brucite minerals
adopt a P3 con�guration. �e la�er is characterized by the location of hydrogen atoms in the 6i
Wycko� sites with a 1

3 occupancy factor. �is e�ect has been shown to induce a frustration of
the proton orientation upon compression.46,47,41

�e stability of both Brucite and Portlandite upon compression have been investigated in the
past and an amorphization of Portlandite was found to occur between 10 and 15GPa46 while
a phase transition to a tetragonal structure was suggested in Brucite above 20GPa at 800K by
ab-initio simulations,48 however up to now, no such transition was observed experimentally to
our knowledge.47,49

1.3 Proton di�usion mechanism

In a recent study50 a proton di�usion process scheme was proposed for the case of Brucite
minerals. �is process requires two mechanisms to be present: a proton reorientation in the
(a,b) plane, and a proton dissociation out of that plane. Indeed, if a di�usion process, that is,
non-spatially limited motion of the protons from site to site, is to occur, both mechanisms must
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Reorientation

Dissociation

Figure 1.2. Proton hopping mechanisms, reorientation, and dissociation; di�usion requires both. Oxygen
atoms are colored in red, hydrogen atoms in grey.

be present. Dissociation is necessary as it allows hopping from one oxygen atom to another,
but if no reorientation happens, the proton will only be able to return to its original position:
reorientation enables the proton to move on to another O-O segment and thus to hop to yet
another oxygen atom (Figure 1.2). Proton di�usion in Brucite minerals is, therefore, a two-step
compound process, di�erent from a standard Gro�huss mechanism.51,39

In practice, the above mentioned P3 con�guration generates an e�ective triple-well potential
for reorientations within the (a,b) plane: this we refer to as “in-plane” motion. �e proton
dynamics on these sites describes the reorientation motion. On the other hand, the “out of plane”
dissociation mechanism involves an e�ective double well potential along the O-O direction
characterizing the covalent and hydrogen bonds similar to the ice case.1 It has been shown42

that only weak hydrogen bonds could be present in Brucite. However, as we will discuss later,
taking into account nuclear quantum e�ects, a double-well potential is found along the O-O
direction at low pressure suggesting the H-bond interaction, which can be enhanced by the
pressure-induced creation of a quasi-2D hydrogen layer in the structure.
Finally, the thermal activation of the reorientation motion was assumed50 to be a limiting factor
for di�usion, while nuclear quantum e�ects are suggested as being a facilitating factor for the
dissociation mechanism. However, proton dissociation has not been observed yet and nuclear
quantum e�ects for the la�er mechanisms have been neglected up to now.

�erefore, in the following, we undertake to unravel the complex and quantum driven
proton di�usion mechanisms in Brucites by including NQE: �rst, we will discuss both the
reorientation and dissociation mechanism upon compression, for which we will compare thermal
and quantum e�ects. In the second part, we will address the evolution of the di�usion process
upon compression. Finally, a comparison with Portlandite will be provided.

1.3.1 In plane reorientation

First, we discuss in this part the reorientation mechanism. As already described, within the P3
structure, protons move in-plane between the 6i sites. �erefore, this motion can be e�ectively
described by the azimuthal angle φ, as shown in the sketch of Figure 1.3. From the probability
distribution of the la�er Pr(φ), we extracted the Gibbs free-energy pro�le G = −kBT logPr(φ),
which includes both thermal and quantum e�ects.
As shown in Figure 1.3, the proton e�ective potential along this coordinate has a three-fold
2π
3 symmetry with equivalent barrier heights between the three wells, as expected from the

symmetry of the P3 con�guration.

59



Chapter 1. �antum driven proton di�usion in brucite minerals

F
re

e 
E

ne
rg

y 
(e

V
)

φ (°)
-200 -150 -100 -50 0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

KbT

2 KbT

3 KbT

4 KbT

30 GPa (classical)
90 GPa (PIMD)
70 GPa (PIMD)
50 GPa (PIMD)
30 GPa (PIMD)

ϕ

c

b

a

Figure 1.3. Free energy profile along the coordinate φ. Comparison between classical and PIMD
simulations at 30GPa shows that the reorientation mechanism is dominated by thermal e�ects.

�e barrier width between the wells of this potential is essentially proportional to 2π
3 dO−H cosθ ,

θ being the zenith polar angle, that is, how far the O-H bond slants away from the c axis; dO−H
being the covalent O-H bond distance.
Upon compression, we observe that the free energy barrier heights increase, from 20meV at
30GPa up to 100meV at 90GPa, revealing a pressure induced con�nement of the proton along
this coordinate. �is stems essentially from the fact that the average polar angle θ increases
with pressure so that the separation of the wells also increases. �us, as the overall atom-atom
separations decrease, mainly through the compression of the layers along the ®c axis, the H-H
repulsive interaction increases and the reorientational dynamical disorder, thermally activated at
low pressure, tends to slow down, eventually to halt. It can be noted that the classical simulations,
not including NQE, yield almost identical distributions meaning that the quantum behavior is in
this case limited within the pressure range that was explored.

�e e�ect of pressure contrasts with that of temperature, which tends to allow the proton to
explore equivalently all the wells50 by usual thermal activation.

1.3.2 Out of plane dissociation

In this section, we now focus on the out of plane dissociation by proton hopping between the
two oxygen layers. Upon compression, the hydrogen planes get closer, due to the important
compressibility of the system along the ®c axis. �is, in turn, can favor proton hopping from one
oxygen atom to another, that is dissociation and thus out-of-plane delocalization.

• �antum quasi 2D hydrogen plane
Figure 1.4 shows the probability distribution of the hydrogen nuclei along the c direction. Ini-
tially, each hydrogen atom belongs to either the upper or lower plane. During the simulation,
the “lower layer” distribution refers to the hydrogen atom initially in the lower layer while
the “upper layer” refers to those initially in the upper layer. We distinguish both the upper
and lower hydrogen layers distributions from the overall one. As pressure is increased, the
overall distribution width decreases as the two hydrogen layers distributions get closer, meaning
that the pressure tends to merge the two hydrogen layers. At the two lower pressures, 30 and
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Figure 1.4. Probability distribution of the proton position along ®z. The green lines relate to the bo�om
layer of hydrogen nuclei (Figure 1.1), the blue lines to the top layer, while the purple lines are the sum of
both.

50GPa, bo�om and top layer protons can be distinguished, although hopping does occur, as the
protons return to their original layer by a second hop in reverse: the protons initially situated
on one layer will remain on that layer with, from time to time, a short exploration of the other.
At 70GPa, lower and upper layers are not distinguishable as reverse hopping does not always
follow: the protons do not belong to one particular layer. �is speci�c case will be discussed
later. At the highest pressure, 90GPa, the overall distribution becomes narrower, but the lower
and upper protons can again be distinguished as they return to their initial layer, despite a
signi�cant distribution overlap.

�e characterization of the two hydrogen layers is however highly dependent on the quan-
tum spread of protons. Indeed, for a delocalization of the same order of magnitude as the
separation between the two layers, one cannot distinguish upper from lower layer due to quan-
tum indetermination. In this context, the RPMD simulations account for NQE by representing
each particle by a set of replicas (or beads), thus, the spread of these replicas provides insight into
the quantum delocalization of the particles. �erefore, we investigated the standard deviation,
in each cartesian coordinate, of the proton replicas with respect to the instantaneous centroid
position. As shown in Figure 1.5 the in-plane delocalization σa and σb of the particle along
the ®a and ®b axes are similar and both decrease upon compression. In contrast, the out-of-plane
delocalization along the ®c axis, described by σc is less than in the two other directions but
increases upon compression. Finally, at high pressure (90GPa) the delocalization σz is of the
order of the distance between the two hydrogen layers. �is indicates that the two hydrogen
planes merge through quantum indetermination into a so-called “�antum 2D proton layer”.
Such con�guration allows the protons to form covalent bonds either with the upper or lower
oxygen layer, thus easing the proton hopping.
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• Proton dissociation
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Figure 1.6. Proton free energy profile along the coordinate χ .

In addition to the formation of the single proton layer, with increasing pressure, the in-plane
localization produces quasi-linear O-H-O groups through the H bond formation. �is results in
an e�ective double-well potential along the O-O direction as seen by the protons. In order to
investigate this e�ective potential, one relevant order parameter χ is the di�erence between
the distances that separate the hydrogen atoms from their nearest and second nearest neighbor
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1.3. Proton di�usion mechanism

oxygen atoms projected on the O-O direction (see the sketch in Figure 1.6).

χ = (dO,2−H − dO,1−H) · ®uOO (1.3.1)

with ®uOO the unitary vector in the O-O direction.

�e free energy pro�les along this coordinate presented in Figure 1.6 show that the proton
hopping barrier height decreases upon compression, from 4kBT at 30GPa to 0.5kBT at 90GPa.
�is occurs while the O-O distance shrinks with pressure along the ®c axis bringing the two
equilibrium positions closer along χ . Under high pressure, a proton can, therefore, hop from
one oxygen atom to another through either quantum tunneling or thermal activation, which
constitutes the so-called “dissociation” process.50 �e di�erence between classical and quantum
simulations is signi�cant as it was evaluated to ∼ 3kBT on this barrier. �erefore, although
the proton reorientation mechanism is thermally activated, the dissociation process is mainly
quantum driven.

1.3.3 Proton di�usion sweet spot
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Figure 1.7. Free energy barriers evolution upon compression for Brucite and Portlandite.

�e e�ect of the pressure on the proton reorientation mechanism is opposed to the e�ect
on the dissociation one. However, as described earlier, the proton di�usion in Brucite minerals
requires both. �erefore, due to competition between pressure e�ects, a pressure sweet spot
exists, allowing both reorientation and dissociation mechanisms, enhancing the proton di�usion
in Brucite minerals. �us, we studied the maximum probability of di�usion, considering both
the reorientation and the dissociation mechanism to be independent. �is approximation was
checked by calculating the correlation between the two probabilities. Under this assumption,
the maximum di�usion probability is given by the product of the reorientation and dissociation
maximum probabilities Pr and Pd which reduces to the sum of the two barrier heights, ∆Gr and
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∆Gd , in terms of free energy.

P = Pr × Pd (1.3.2)
∆G = −kbT log(Pr × Pd ) (1.3.3)
= ∆Gr + ∆Gd (1.3.4)

�e evolution of the free energy barrier heights upon compression is given in Figure 1.7. For
the case of Brucite, we observe that the barrier height for dissociation decreases from ∼ 0.11
eV at 30GPa to ∼ 0.01 eV at 90GPa. In contrast, the reorientation barrier increases from 0.03
eV to 0.1 eV within the same pressure range. �us, the two curves cross at ∼70GPa, giving rise
to a minimum of di�usion free energy barrier ∆G. Hopping rates for the two processes have
the same order of magnitude at this pressure, while reorientation dominates at lower pressures
and dissociation does so at higher pressures. �erefore, 70GPa represents the sweet spot for a
maximum di�usion probability.
In order to give a rough estimate of the di�usion reaction rate κ, one can use the di�usion free
energy barrier obtained above in the chemical kinetics Eyring-Polanyi equation:

κ =
kBT

h
e−

∆G
kBT (1.3.5)

As shown in Table 1, the estimation of this reaction rate in Brucite naturally follows the same
trend as the free energy evolution upon compression. It decreases by a factor of four between
30 and 70GPa, for which the characteristic time evaluation is κ−1 = 8ps, and then increases by a
factor of three at 90GPa.

Brucite Mg(OH)2 Portlandite Ca(OH)2
P (GPa) 30 50 70 90 5 10

Tr
an

sit
io

n 15
κ (THz) 0.029 0.076 0.131 0.043 6.7 10−5 5.6 10−4 3.7 10−3

κ−1 (ps) 35 13 8 23 14300 1775 267

Table 1. Eyring-Polanyi reaction rate κ and inverse, computed for Brucite (le�) and Portlandite
(right). The transition pressure for Portlandite is reported in refs. [52, 53].

• In-plane proton distribution
�e barrier height analysis above is con�rmed by Figure 1.8 which shows the probability
distribution of the proton positions in the (a,b) plane. For P = 30GPa, the situation is as expected:
the proton distribution shows three broad peaks next to each oxygen atom, thus revealing
reorientation processes between the 6i sites. As pressure is increased to 50GPa, the peaks
become narrower and at a greater distance from the oxygen sites, therefore displaying the
hindering of the reorientations and the �a�ening of the O-H bonds within the (a,b) plane. In
addition, the density midway between oxygen atoms increases as the dissociations become
easier. At P = 70GPa, we observe evidence of proton di�usion process as the hydrogen nuclei
spread beyond the simulation box. �e onset of dissociation, while reorientations still occur,
allows the protons to migrate beyond their immediate vicinity. Finally, at the highest pressure,
P = 90GPa, although dissociations are important, the reorientations are locked in prohibiting
proton di�usion. �is con�rms the particularity of the pressure of 70GPa as being a sweet spot
for proton di�usion.

It has to be noticed that in order to observe such a di�usion process, the simulation duration
requires to be higher than the estimation of κ−1. �erefore, the proton di�usion described in
this paper should occur at lower pressure and can be at the root of destabilization of the system
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Figure 1.8. Probability distribution of the proton positions in the (a,b) plane at 30, 50, 70 and 90GPa
for Brucite Mg(OH)2. The circles represent the projection of the oxygen sites on the (a,b) plane (light
red: bo�om layer, light blue: top layer). Periodic boundary conditions are not used in computing this
distribution in order to visualize the displacement of the protons.

easing suggested phase transition, or could bring information concerning the water transfer in
the earth mantle.

1.4 Comparison with Portlandite

Finally, we close our discussion of proton di�usion in Brucite minerals by a comparison with
Portlandite (Ca(OH)2) which presents the same structure for pressures up to approximately
15GPa. �e same analysis as for the Brucite was done systematically for Portlandite. In Figure
1.7, we present the evolution of free energy barriers of the proton reorientation and dissociation
mechanisms. We observe that in Portlandite the reorientational barrier at 10GPa is close to
that of Brucite at 50GPa. However, the pressure e�ect on the la�er barrier is more important
in Portlandite as shown by the larger increase rate of 2.8 meV/GPa while it is evaluated to
be 1.6 meV/GPa in Brucite. �is rapid increase can be understood from the fact that the Van
der Waals radius of calcium atoms is larger than for magnesium and thus tends to expand the
la�ice in the (a,b) plane. Indeed, our calculations at 10GPa give the in-plane �rst neighbor O-O
distances to be ∼ 3.45Å in Portlandite while ∼3.06Å in Brucite. In addition, the out-of-plane
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Portlandite Ca(OH)2.

�rst neighbor O-O distances are equivalent in both systems. �is implies larger polar angles θ
in Portlandite, that e�ciently hinder the reorientation mechanism, including at relatively low
pressures. On the other hand, the dissociation barriers in Portlandite are greater than in Brucite
but decrease much faster with a decay of 14 meV/GPa as compared to 2meV/GPa in Brucite. �is
derives from the larger compressibility of the Portlandite with respect to the Brucite structure,
as demonstrated in recent work.40 It has to be noticed that the large value of the dissociation
barrier in Portlandite implies a long simulation duration in order to be observed, well beyond
the scope of path integral methods, to address properly the statistic of the la�er, and thus barrier
height evaluation. Nevertheless, some events are detected as some of the replicas of the RPMD
simulations do occasionally reach the top giving rise to estimation provided here. Finally, the
crossing point of the two barriers in Portlandite should occur beyond 20GPa with a di�usion
barrier comparable to that of Brucite at 70GPa. However, a transition towards an amorphous
phase is reported between 10 and 15GPa52,53 and our own simulations reveal the instability of
the system at 20GPa. �erefore, as shown in Figure 1.9, no di�usion was observed for Portlandite
within the time scale of our simulations. Indeed, the reaction rate estimates, given in Table 1,
yield much longer times than in Brucite.

�is comparison suggests that Brucite could be a particular case for proton di�usion within
its mineral family. Among the other systems sharing the same structure, our �rst analysis
of �eophrastite (Ni(OH)2) indicates that this system should present the same mechanism at
approximately the same pressure, due to comparable Van der Waals radii between magnesium
and nickel atoms.
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1.5 Conclusion

To summarize, we analyzed the proton di�usion mechanism50 in both Brucite (Mg(OH)2) and
Portlandite (Ca(OH)2) under pressure, taking into account nuclear quantum e�ects. Proton
di�usion in those crystals involves two stages to be active: a reorientation motion within the
(a,b) plane, and a proton dissociation between two oxygen atoms on opposite layers. Firstly, we
have seen that the reorientation mechanism is thermally activated and that the pressure tends
to localize the proton in a certain orientation, making reorientation motion less likely. Secondly,
in contrast with the reorientation, we showed that the dissociation mechanism was quantum
driven and was made easier by increasing pressure through the formation of a quantum quasi-2D
hydrogen layer.

�ese two antagonistic e�ects give rise to a pressure sweet spot for proton di�usion through
those minerals, found to be 70GPa in Brucite. However, this di�usion process could also occur
at much lower pressure, although it is less probable, and could be at the root of destabilization of
the structure, as suggested by a possible phase transition48 at 20GPa or decomposition into MgO
and H2O at 30GPa.49 Beyond this pressure threshold, the reorientation becomes a bo�leneck for
proton di�usion, while dissociation is the rate-limiting step at lower pressure.

Finally, by systematic comparison with Portlandite, we demonstrate the speci�city of Brucite
for proton di�usion. Indeed, the proton di�usion barrier minimum in Portlandite occurs at
pressures well beyond its transition towards an amorphous phase.
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Methane hydrate: towards a quantum-induced phase transition

2.1 Introduction

G as hydrates are inclusion compounds, in crystalline clathrate structures composed of a
hydrogen-bonded water network forming polyhedral cavities wherein small non-polar gas

molecules are con�ned.54,55,56 �ey spontaneously form in Nature with several guest molecules
such as carbon dioxide, hydrogen, nitrogen, and methane. However, the kinetics of their
formation is largely unknown and only recently has been addressed.57,58,59,60 Gas clathrates
have been subjected to growing interest last decades61 in particular for energy issues and
global warming concerns. �e gas storage capacity of such compounds are indeed relevant for
addressing the global demand for fossil energy, hydrogen storage62,63 or for CO2 sequestrations.64

In addition, the guest-host repulsive interactions make clathrate hydrates interesting systems
for the study of hydrophobic interactions, and their unexpected stability is also of interest for
the description of planetary interior.

Due to the character of the guest-host interaction, clathrate hydrates were expected to be
stable for relatively modest pressures. However, it was observed quite recently65,66 that upon
compression, gas clathrates usually present phase transitions67,68,66,69 involving reorganization
of the polyhedral ice cages toward hydrogen bonded structure close to the ice phases. �ese
structures are thus known as �lled ices,65 in which the water network forms channels occupied
by the guest molecules.66 �ese structures allow stabilization at high pressure of both low-density
ice phases such as the Ic or ice II phases induced by the guest-host interactions but also can
be used to form metastable phase of ice (XVII) by removing guest molecules from the water
network at ambient pressure.70 Among the di�erent �lled ice phases, only three structures have
been observed so far in addition to a recently discovered “chiral hydrate”.70,71 In this study, we
focus on the �lled ice structure shared by krypton, argon, nitrogen, and methane hydrates.72,66

In particular, we studied the methane hydrate III �rst observed by Loveday et al.,67 and found to
be stable beyond a pressure of a few GPa at ambient temperature.

�is work has been conducted in collaboration with an experimental team composed of U.
Ranieri, R. Gaal, W.F. Kuhs and led by L. E. Bove. �erefore, if not explicitly indicated, the
experimental results presented in this chapter come from their work.
Technical details of the simulations employed for this analysis can be found in the Appendix B.

69
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Methane hydrate is the most widespread naturally occurring gas hydrate as it is present in
large quantities in subsurface deposits, both in oceanic shelves sediments and in permafrost
regions.56 �erefore, as ocean warms up, a destabilization of the compound could release a
signi�cant quantity of greenhouse methane gas.73 On the other hand, methane hydrates are
present on Titan67,74 and on giant ice planets such as Uranus or Neptune where methane and
water are abundant and coexist at very high pressure. In addition, methane hydrates are also
suspected to exist at depth in many water-rich objects populating the outer solar system72 and
space probes have sporadically detected the presence of methane in the atmosphere of Mars75

whose origin might be linked to the destabilization of hydrates existing at depths.76 �erefore,
several experimental studies in the last years focused on the high-pressure behavior of methane
hydrates.65,72,66,77,78,79,80,81,82,83,84,85,86,87,88,89,90

a

b

c a

b

c

Figure 2.1. Sketch of the MH-III structure.

2.1.1 MH-III structure

�e MH-III phase structure belongs to the Imcm space group with oxygen atoms located on
the 8i Wycko� sites and carbon atoms located on the 4e sites.66 As shown in Figure 2.1, the
MH-III structure has its water network related to the ice Ih, in particular within the (a,b) plane
where six-fold water rings are stacked thus leading to hexagonal channels along c wherein are
enclosed the methane molecules. In contrast, it presents di�erences with the ice Ih within the
(b, c) plane where we �nd 4-fold and 8-fold water rings, the la�er forming octagonal channels
along a where methane molecule are arranged in a zig-zag fashion along b and c . In addition, due
to the di�erent water rings present in the structure, inequivalent O-H-O bond lengths are found
due to di�erent O-O distances (2.811, 2.807 and 2.783 Å). �ese di�erent O-O distances are
shown in Figure 2.2, as we will discuss, they can induce several hydrogen bond symmetrization
in the structure. �e optimal H2O:CH4 ratio is two, which is the stoichiometry we used to model
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a
b

c 2.811 Å

2.783 Å

2.807 Å

Figure 2.2. Sketch of inequivalent O-O distances present within the MH-III structure. Values of the
O-O distances are given for pressure of ∼2.3 GPa

the structure.

�e di�erent experimental results provided by Raman spectroscopy,82,83,84,85,86,87,91 x-ray
di�raction,65,82,77,78,80,81,87,79 neutron di�raction65,72,92 and also theoretical calculations93 raised
several open questions that we want to address in this chapter.

• Guest-Host interactions
Upon compression, many entangled phenomena are expected to occur in the system. Notably, the
enhancement of the guest-host interactions could give rise to a coupling between the guest and
host dynamics, which are expected to stabilize the structure.94,95 In particular, a Fermi resonance
between the O-D stretching mode of the water frame and the overtone of the D2O bending
was observed88 at 15GPa. In this context, a spli�ing of the C-H stretching mode occurring
above 20GPa was observed by Raman spectroscopy80,87,85 and has been assumed to be a marker
of a possible methane orientational ordering along with an eventual distortion of the la�er
molecules.88 However, up to now, no microscopic description of the guest-host interactions has
been provided, and neither the possible orientational ordering of the methane molecule nor the
guest-host coupling has been con�rmed.

• Hydrogen bond symmetrization
As being composed of a hydrogen-bonded water network, a symmetrization transition96 of the
MH-III structure is expected to occur upon compression. A hydrogen bond symmetrization
transition was �rst observed in the VII→X transition of ice for which the quantum properties
of the hydrogen nuclei play an essential role.1,4 �e most striking one regards the computed
transition pressure at room temperature, which is reduced in ice from approximately 100 GPa
within the classical frame down to 65 GPa, in agreement with the experimental �ndings, when
nuclear quantum e�ects are included. In methane hydrate, the symmetrization transition was
guessed to occur above 60 GPa from an analysis of the O-O distances within ab-initio molecular
simulations89,88 without taking into account NQE, but it has not been con�rmed yet.

• New high-pressure phase
Finally, a pressure-induced phase transition from MH-III toward another high-pressure phase of
methane hydrate was suggested by several experimental studies. In particular, new features were
observed in X-ray di�raction experiments81,97,80,87 suggesting another structure which appears
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beyond 40-50GPa.80,81,85,87 As conjectured by these results, this new high-pressure structure
remains stable to at least 86GPa.81 However, X-ray di�raction pa�erns did not allow to identify
it, and the new phase remains unsolved up to now.

�erefore, in the present chapter, we address these issues by accounting for the nuclear quantum
e�ects which, as we will see, are essential to describe the methane hydrate under high pressure.
In the �rst section, we will discuss the behavior of the enclosed methane molecules within
MH-III and the pressure-enhanced guest-host interactions. �en, in the second section, we will
describe the hydrogen bond symmetrization mechanism leading to the MH-IIIs phase. In the
third part, we will present the new MH-IV phase we discovered and characterized the MH-IIIs
→MH-IV transition in the last part.
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2.2 MH-III under pressure

Most available experimental data concern vibrational spectra in MH-III, mainly obtained by
Raman spectroscopy under high pressure. �erefore in order to interpret the Raman data and
to understand the behavior of both methane and water molecules and their interaction in MH-
III, we �rst provide an analysis of the vibrational spectra from QTB simulations at ambient
temperature. From a dynamical matrix analysis, we can characterize each vibrational mode
revealed by the Fourier transform of the velocity autocorrelation functions.

2.2.1 Spectral analysis
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Figure 2.3. Methane and water frame vibrational spectra calculated with the Fourier transform of
the velocities autocorrelation functions. le�: deuterated system CH4:D2O; right: protonated system
CH4:H2O.

In Figure 2.3, we present the vibrational spectra of the deuterated and protonated ice frames.
In both structures, we can distinguish the water and methane bending and stretching modes
as well as the methane rocking mode. In the deuterated system, the water stretching modes
intensities �a�en and their frequencies downshi� upon compression providing a hint of H-bond
symmetrization transition, as we will discuss in the next Section 2.3. Moreover, as its frequency
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downshi�s, the peak relative to the O-D stretching becomes wider with pressure and extends
over the CH4 rocking mode. �us, this gives rise to the progressive mode coupling and eventually
the resonance between these modes, occurring at ∼ 20-25GPa in CH4:D2O.
In the protonated system, the water stretching modes also �a�en, and their frequencies downshi�
but at much higher frequencies while the methane rocking and H2O bending modes vibrate
at the same frequency as the deuterated system, even at the lowest pressure. �erefore, in
CH4:H2O, the coupling already occurs at the formation of the system, between the H2O bending
and the CH4 rocking modes, while the OH stretching is not likely to interfere with the CH4
bending modes.
From the simulated vibrational spectra, we extract the frequency of each well-de�ned mode, in
order to investigate the possible change of behavior of the system upon compression.
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Figure 2.4. CH4 stretching (le�) and rocking (right) mode frequencies as a function of pressure for the
CH4:D2O system. Simulation results are extracted from QTB trajectories. Dashed lines are linear fit
of the experimental data points below 25GPa. A deviation from the linear trend is evident for all data
points above 25GPa.

In Figure 2.4, we reported the calculated frequencies of the methane stretching and rocking
modes of the deuterated system to be compared with experimental Raman results. Despite the
di�erence of about 35 cm−1 between the observed and calculated CH4-rocking mode, the la�er
frequency at 25GPa is located at a value that is quite similar to the calculated one reported in
ref,88 and remains within the expected DFT precision.
Interestingly, both experimental and theoretical results show that the observed vibrational
modes follow the same evolution upon compression. Indeed, all frequency dependencies on
pressure deviate present a slight change of slope occurring at P ≈ 20GPa. It involves the methane
molecules but also the D2O network as the experimental values of the la�ice mode present the
same behavior. We do not present these results here as the la�er mode was not characterizable in
our simulation. �e observed changes of slope of the pressure dependence in both water frame
and guest modes around 20GPa suggest an enhanced coupling of the guest and host dynamics,
which has been conjectured but never detailed so far.
Further investigations are thus required to understand the role of methane and water molecules
and their interactions. To do so, in the next section, we focus our a�ention on the methane
behavior in MH-III upon compression, by a microscopic description of the la�er.
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2.2. MH-III under pressure

2.2.2 Methane ordering and locking-in

In this section, we focus on the dynamics and orientation of the methane molecules. �e
orientation of the methane molecules enclosed within the water frame was investigated by
calculating the Orientational Probability Density Function (OPDF) PCH(θ,ϕ) of the C-H bonds
for di�erent pressures. For the sake of clarity, we �rst performed this analysis for a single
methane molecule.
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Figure 2.5. Probability distributions of CH vector polar angles PCH(θ,ϕ) extracted from PIMD simulation
of CH4:D2O at 6.9, 16.4, 25.3 and 36.4GPa, for one methane molecule.

As shown in Figure 2.5, at 2.4GPa, the probability distribution does not display clear favored
orientational con�gurations. �is indicates an important methane orientational disorder at
low pressure probably induced by the molecule rotations. However, upon compression to-
ward 25.3GPa, a clear structure appears in the OPDF where four well-de�ned peaks at ϕ, θ ∼
{−90◦, 50◦; 40◦, 70◦; 150◦, 70◦;−90◦, 170◦}, corresponding to the four C-H bonds of the molecule.
�is indicates a progressive methane orientational ordering, occurring in MH-III upon compres-
sion.
By analyzing all the methane molecules present in the system, we can distinguish the four OPDF
at 36GPa corresponding to four con�gurations that the methane molecules can adopt at high
pressure, as shown in Figure 2.6.a. We labeled A± and B± these four con�gurations and present
them in Figure 2.6.b. In our formalism, A and B con�gurations are equivalent by a rotation of π
around ®b and a rotation of π around ®a while the di�erence between + and - con�gurations of
the same type (A or B) corresponds to a rotation of π around ®b. �erefore, the high-pressure
structure yieldsA+/B− (orA−/B+) stacking along the b axis, while we observeA+/B+ (orA−/B−)
stacking along axis c and �nally A+/A− (or B+/B−) stacking along a. �is characterizes the
methane orientational ordering, which is not altered as pressure is increased up to 35GPa.
�ese results also tend to demonstrate the progressive locking-in of the methane rotational
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Figure 2.6. (a) Methane molecule configurations at 36GPa. (b) Sketch of the corresponding configura-
tions in the structure.

motion as suggested by the increasing anisotropy of the OPDF upon compression. Indeed, at
low pressure, we observe non-negligible probability density between the four con�gurations,
that disappears for higher pressure. �us, in order to be�er estimate the pressure dependence of
the methane rotational motions, the OPDF PCH (θ ,ϕ) were integrated either on ϕ or θ to yield
marginal distributions PCH (θ ) and PCH (ϕ).
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Figure 2.7. Methane orientational marginal probability distributions PCH (θ ) (le�) and PCH (ϕ) (right).

As shown in Figure 2.7, PCH (ϕ) displays three main peaks at the positions de�ned earlier. �e
probability between them is non-negligible at low pressure but almost disappear at 6.9GPa.
However, the probability distribution over θ shows a broad peak, almost isotropic over the angle
range at the lowest pressure with no de�ned structure, indicating a considerable disorder along
this coordinate. �e related rotation motions were characterized (see Section B) and shown to be
fully described by reorientation motions along one of the ternary axis of the methane molecules.
Upon compression, two main peaks appear at 80◦ and 160◦. While at the two intermediate
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2.2. MH-III under pressure

pressures, namely 6.9 and 16.4GPa, the non-negligible probability density which is present
between the maxima, disappears at 25.3GPa, and the probability distribution does not evolve
anymore upon compression. �ese results reveal the progressive locking-in of the methane
rotations from 2.4GPa where it is almost free in particular along θ to 25.3GPa where all rotations
are forbidden. �is pressure threshold is speci�c to MH-III and the locking-in of the methane
rotations could be at the root of the enhanced water-methane interactions revealed by the change
of slope of the modes frequencies occurring at the same pressure.

2.2.3 Methane-Water interaction

Both the orientational ordering and the rotation locking-in of the methane molecules induce
an increase in the interaction between methane and water molecules. In this section, we will
discuss the di�erent consequences caused by this interaction on both the methane symmetry
and on their vibrational mode coupling.

• Methane distortion
As shown in Figure 2.8, the methane molecule ordering and locking-in in�uences the system
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Figure 2.8. La�ice parameter ratios as a function of pressure. Experimental data from ref. [93].

compressibility. Indeed, the la�ice parameter ratios as a function of pressure present the same
behavior observed on the evolution of the mode frequency upon compression. While the a

b
la�ice parameter ratio is almost constant within the explored pressure range, ratios involving
the la�ice parameter c present a change of slope at 20GPa. �is change brings out the signi�cant
steric hindrance induced by the methane ordering and locking-in and points out the reinforced
molecule-ice repulsive interaction, which could be at the root of molecule deformations. �ey
are con�rmed by the direct inspection of the angular distribution of the six �HCH angles. We
observe that at low pressure (3GPa), all angle probability distributions P(αn) are centered around
the tetrahedral angle of 109.47◦, while, upon increasing pressure, two of them shi� progressively
away from the tetrahedral angle. We labelled these two �HCH angles α1, which are almost parallel
to the (a,b) plane, and α2 the angles lying in the (b, c) plane. In Figure 2.9.a, we report the
evolution of their mean value upon compression. �e angle α2 decreases with pressure due to
the compressibility anisotropy observed along c , thus it makes the methane H − H distances
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decrease along this direction. In contrast, the angle α1 increases with pressure. �is gives rise to
the molecule �a�ening in the b direction where the nearest neighbors are the hydrogen atoms
(see Figure 2.6).
�e distortion of methane molecules enclosed in MH-III induces the observed change in the
related vibrational modes. In addition, a signature of this distortion is accounted for by a
li� of degeneracy of the CH4 stretching modes: around 15GPa for the antisymmetric ν3 and
around 25GPa for the symmetric ν1 C-H mode as shown in Figure 2.9.b. �is li� of degeneracy
present in static calculations within the harmonic approximation instead appears as a broadening
(approximately 60cm−1) while taking into account the dynamics of the molecules at ambient
temperature.

• Mode coupling
�e analysis provided earlier predicts a coupling between methane and water. Although the
mode analysis within the harmonic approximation shows that at low pressure (P < 10GPa), the
eigenvectors of the CH4 rocking modes are fully localized on the methane molecules, as pressure
increases, they progressively mix with the atomic displacements of the water frame. In order
to quantify this coupling, we projected the mode eigenvectors ®e(ν ) at each pressure on atomic
displacements that are centered either on the deuterated water frame or the methane molecules:

®e(ν ) =
∑
i ∈D2O

b(ν )i ®xi +
∑
j ∈CH4

c(ν )j ®x j (2.2.1)

where b(ν )i and c(ν )j are the coe�cients of the respective expansions for the mode at frequency ν .
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2.2. MH-III under pressure

We then calculated a methane participation ratio PCH4(ν ) which describes the participation of
the methane Degrees of Freedom (DoF) to the vibrational mode ν :

PCH4(ν ) =
DoF∑
CH4

c(ν )
2

j

®e(ν ) · ®e(ν )
(2.2.2)

where the sum runs over all the CH4 DoF.
�e same expression holds for PD2O (ν ) in which c(ν )j is replaced with b(ν )i , which ensures that:

PCH4(ν ) = 1 − PD2O (ν ) (2.2.3)

When PCH4(ν ) = 1 the mode ν is totally characterized by the methane DoF contribution, while
if PCH4(ν ) = 0 it is localized in the water frame. Figure 2.10 shows the participation ratios
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Figure 2.10. Mode participation ratios for methane (blue) and D2O frame (red), computed according to
equations 2.2.1 and 2.2.2.

(PCH4, PD2O ) calculated for each methane bending and OD stretching modes as pressure increases.
Up to 20GPa, PCH4 ∼1 or 0, the investigated modes are totally described either by the methane
or the water DoF contribution. Starting at 20GPa some vibrational modes are described by
a combination between the methane and water DoF contributions leading to a contribution
coe�cient 0 < PCH4 < 1. Due to the pressure induced mode coupling occuring in MH-III at
20GPa, it is not possible to a�ribute these modes to a methane bending or an OD stretching
vibrational mode but rather to a mixed one. �eir characters therefore deeply change in this
pressure range.

To summarize, in this section, we mainly present the pressure e�ect on the methane molecules
embedded in MH-III. We have shown that at low pressure, methane molecules almost behave
as “free rotors” while upon compression, the progressive methane orientational ordering fully
locks this rotation which becomes forbidden at 25GPa. �is induces the distortion of methane
tetrahedral angles triggering both the change of compressibility of the system along the la�ice
parameter c and the important coupling between methane and water vibrational modes. Having
described the guest behavior, in the following section, we will focus our a�ention on the behavior
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of the host, in particular, we will discuss the hydrogen bond symmetrization occurring within
the water network.
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2.3. �e methane hydrate IIIs

2.3 �e methane hydrate IIIs

In order to describe the hydrogen bond symmetrization transition in the MH-III structure, we
�rst start by introducing this mechanism process in the simpler case of the ice VII→ X transition.

Doo>2.42Å

Zero-point Energy

Doo~2.42Å

Doo<2.42Å

Figure 2.11. Description of the hydrogen bond symmetrization transition in the case of the ice VII→ X
transition.

�e ice VII→ X transition mechanism can be reduced to the description of the O-H…O bond
in one dimension, as described in Figure 2.11. At low pressure, the proton between two oxygen
atoms forms a covalent bond with one out of the two and a hydrogen bond with the other. �is
con�guration leads to an e�ective double-well potential along the O-O direction98,99 as seen
by the proton. �is double-well potential is characterized by the OH vibrational frequency
(stretching in 1D) of ∼100THz, the two equilibrium positions at ∼0.96Å from the oxygen atoms,
and the e�ective barrier heights which depends on the O-O distance. Indeed, as pressure
increases, the O-O distance decreases, lowering the barrier of the double-well potential. �is
decrease of the potential barrier induces proton delocalization in the two wells by the increase
of tunneling. Finally, when the proton energy, taking into account zero-point contribution,
is higher than the barrier height, the proton becomes centered in between the two oxygen
atoms: this describes the hydrogen-bond symmetrization transition. We note in passing that the
symmetrization transition can occur before the barrier has disappeared, because of zero-point
energy.
In the case of the ice VII→ X transition, it occurs for a pressure of ∼60GPa, and O-O distance of
∼ 2.42 Å. It has been shown,1,4 that taking into account NQE in the description of this transition
is crucial as they downshi� the transition pressure by ∼ 40GPa. �erefore, with a classical
description of the nuclei, or by H/D isotopic substitution, the transition pressure is shi�ed
toward ∼ 100GPa.
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To describe such a mechanism, a standard order parameter χ has been extensively used4 to
account for the location of the hydrogen nucleus between the two nearest oxygen atoms:

χ = d(O[1] − H) − d(O[2] − H) (2.3.1)

where d(O[n] − H) is the distance between the selected proton and its nth oxygen nearest neighbor.

So de�ned, this order parameter is null for proton-symmetric hydrogen bonds while its probabil-
ity distribution allows one to observe the evolution of the proton position toward the transition,
and could give information concerning proton tunneling or thermal �uctuation. In MH-III
several considerations concerning the expected hydrogen bond symmetrization transition need
to be addressed: �rstly, as the O-O distances are shorter than in ice VII at all pressures, it is
reasonable to expect the transition to occur at a lower pressure. Secondly, as described before,
three di�erent O-H-O bonds can be distinguished in MH-III due to inequivalent O-O distances.
�erefore, we can expect a complete symmetrization of the structure to occur in three steps.
�en, in contrast with the ice case, the host(water network)/guest(methane molecules) inter-
actions could interfere during the transition. Finally, in analogy with the ice transition, it is
reasonable to expect nuclear quantum e�ects to be relevant, and isotopic substitution to have
an impact.

2.3.1 From MH-III to MH-IIIs

• Complete symmetrization
In Figure 2.12, we present the di�erent probability distributions of the order parameter χ in
protonated(le�) and deuterated(right) MH-III systems calculated from all O-H-O bonds(top) and
distinguishing the di�erent inequivalent O-O pairs(bo�om). In both systems, P(χ ) evolves from
a distribution with two maxima, which is characteristic of asymmetric hydrogen bonds, with
signi�cant tunneling between the two positions, to a single-peak distribution, which denotes
the symmetric hydrogen bonds, around 40GPa. �is points towards a symmetrization transition
of the ice network in MH-III around 40GPa, therefore at a much lower pressure than in pure ice,
as expected. We named the H-bond symmetrized MH-III phase “MH-IIIs”.
One can also note that even at quite low pressure the distribution does not vanish for χ = 0
(P(χ = 0) , 0) showing that the ice skeleton is proton disordered even at P ∼ 10GPa.
A second con�rmation of the transition is given by the vibrational spectra through the Fourier
transforms of the time correlation functions. In particular, we examined the velocity-velocity
time correlation functions 〈Ûrα (t)Ûrα (0)〉, where rα is the α component of vector joining the proton
(deuterium) in the ice cage and its oxygen �rst neighbor O[1] − H. We then considered the
projections of the previous vectors parallel or perpendicular (r ‖ and r⊥, respectively) to the
O[1]−O[2] axis. As shown in Figure 2.13, the spectra of the parallel components Ûr ‖ show a shallow
minimum around 35-40GPa, which is consistent with the so�ening of the shorter hydrogen
bonds. Such a so�ening is a signature of the symmetrization transition, as discussed in the case
of pure ice,4,99 which points towards a critical pressure around 35-40GPa, consistently with the
indications from the distribution of the corresponding order parameter χ .

• Two steps process
In order to address the expected H-bond symmetrization in three steps, we pursue the same
analysis by distinguishing the three inequivalent O-H-O bonds present within the MH-III
structure. �e corresponding probability distributions for the order parameter P (α )(χ ), α = a,
b or c are presented in Figure 2.12.b. P (α )(χ ), for α = a and b, superimposed and shows two
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Figure 2.12. Distributions of the order parameter P(χ ) calculated from QTB simulations of the proto-
nated (le�) and deuterated (right) ice skeleton, at several pressures. Upper panels: P(χ ) is computed by
integrating on all hydrogen bonds. Bo�om panels: Distributions of the order parameter P(χ ) for each
group of O-O equivalent distances (a,b, c) (see text).

maxima at 40.6GPa and 43.4GPa for the deuterated and protonated ice skeletons, respectively,
while P (c)(χ ) is �at around χ = 0. �e di�erence between the distributions reveals that the
transition �nally takes place in two steps due to the comparable O-O distances of two of them:
at slightly lower pressures, the hydrogen bonds are symmetrized along the shorter O-O axes in
group (c), and those in the remaining groups follow, with a delay corresponding to a few GPa.
�e picture that emerges from the P (α )(χ ) distributions is that of a symmetrization transition
that extends over ∼ 5GPa around 40GPa rather than happening at a precise critical pressure, as
in the case of pure ice.4

2.3.2 Nuclear quantum e�ects and isotopic substitution

In contrast with the case of pure ice, the isotopic substitution does not induce essential di�erences
in the hydrogen bond symmetrization transition of the MH-III structure. Indeed, P(χ ) behaves
somewhat similarly in both protonated and deuterated water network. Secondly, as for the P(χ )
distributions, the spectra for protonated and deuterated ice cages li�le di�er once the la�er
have been renormalized by the mass ratio

√
2. �is implies that isotope e�ects are practically

negligible, and suggest modest overall nuclear quantum e�ects, in striking contrast with the
case of ice VII→ X transition for which isotope e�ects induce a shi� of ∼40GPa in the transition
pressure. As shown in Figure 2.14, at 40GPa, PIMD simulations gives the MH-III structure to
be symmetrized, while a classical Langevin description still describes an asymmetric hydrogen

83



Chapter 2. Methane hydrate: towards a quantum-induced phase transition

Figure 2.13. Fourier transforms in the frequency domain of the parallel component of the velocity-
velocity time-correlation functions 〈Ûr ‖(t)Ûr ‖(0)〉 along the O-O axis extracted from QTB trajectories.
Thick lines are for CH4-D2O, thin lines for CH4-H2O. The frequencies of the la�er spectra were
divided by

√
2 in order to take into account the mass di�erence.

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

P
(χ

)

Classical
PI+GLE

χ (Å)

Figure 2.14. Comparison of the H-bond symmetrization occurring in deuterated MH-III between
classical and quantum description around 40GPa. The nuclear quantum e�ects are taken into account by
the use of path integral with a Generalized Langevin Equation (GLE) thermostat to reduce the number
of replica.

bond. �e in�uence of NQE has been evaluated to shi� the transition by about 10GPa. �is
di�erence is much lower than the case of the ice VII→ X transition. We note in passing that it
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also shows a small di�erence (few GPa) between PIMD and QTB descriptions.
�erefore, to understand both the unexpected absence of H/D isotope e�ect and the low

overall NQE on the la�er transition, a more in-depth analysis is required. �us, in the follow-
ing part, we will go beyond the usual one-dimensional representation of the hydrogen bond
symmetrization by distinguishing the proton motion along or normal to the O-O axis.

• �e proton normal delocalization
Using simulation data from4 , we compare the hydrogen (and deuterium) distribution of MH-III

σσ

Figure 2.15. Sketch of the normal (r⊥) and parallel (r ‖) components of the proton (deuteron) delocaliza-
tion.

with that of ice under pressure, by decomposing the normal r⊥ and parallel r ‖ delocalization
components as shown in Figure 2.15.
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Figure 2.16. Probability density P(r ‖, r⊥) calculated from QTB simulations of CH4:(H2O)2 (le�)
CH4:(D2O)2 (middle) and ice (right) systems at three pressures: one below the transition, one close to it
and one above. Pressure values have been selected so that the mean OO distances < doo > in the three
systems match, as the hydrogen bond symmetrization process is controlled by this parameter.

Figure 2.16 shows the proton probability distribution P(r ‖, r⊥) for both ice and methane hydrate
with protonated or deuterated water frame. One observes that the OH r ‖ distances are approx-
imately the same in both compounds as are the parallel widths, while the normal extension
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is larger for the hydrates at all pressures, with a signi�cant amplitude up to r⊥ ≈ 0.4 Å. �e
inverted comma shape of the distribution indicates that the hydrogen atoms, as they move,
tend to retain a relatively constant O-H distance. As pressure is increased, the shape of the
distribution changes: the parallel contribution is sensitive to increased tunneling and thus
broadens until approximately 40GPa while the normal contribution tends to shrink slightly. �is
analysis con�rms a broader distribution in the normal direction than along the O-O axis, for all
three systems, and suggests that purely one-dimensional model Hamiltonians, like those usually
adopted99,98 are unable to catch the complexity of the hydrogen bond in methane hydrate or
other highly anisotropic systems. A �ner analysis based on the di�erences of P(r ‖, r⊥) between
the protonated and deuterated cages shows that the radial delocalization is larger in the case of
CH4:(H2O)2 than in CH4:(D2O)2 which itself is more signi�cant than in the ice case.

• 2D representation
In this section, we aim at describing the e�ect of the normal proton delocalization in the
symmetrization process. As we have seen, the usual,99,4,6 convenient one-dimensional model
along the O-O axis does not e�ciently describe the H-bond symmetrization in MH-III. �erefore,
we analyzed the system in a two-dimensional model with cylindrical symmetry around the O-O
axis to describe the e�ective proton potential while a harmonic normal contribution can be
tuned to model con�nement e�ect. �en we solved the related Schrödinger equation. �e two
degrees of freedom are thus r ‖ and r⊥ and OH interactions are described by the sum of two
Morse potentials:

VM (r ‖, r⊥) = V0 (e+(e+ − 2) + e−(e− − 2)) (2.3.2)

e± = e−
√
(r‖±rO )2+r

2
⊥
−re

rw (2.3.3)

where V0 is the potential depth, ±rO the positions of the two neighboring oxygen atoms, re the
equilibrium distance and rw a measure of the width of the potential well.

�e full potential, the hydrogen atom is submi�ed to, thus writes:

V (r) = VM (r ‖, r⊥) +
k⊥
2 r 2
⊥ (2.3.4)

where the last term is a normal harmonic potential that tends to con�ne the hydrogen atom to the
O-O axis.
We present the potential in Figure 2.17.
�e resulting wave functions shown in Figure 2.18 are clearly a�ected by the con�nement term,
which favors the symmetrization. In addition, an estimate of the importance of the NQE can be
given by the tunneling rate ∆E/~, where ∆E = E[1st ] − E[GS ] is the energy di�erence between
the �rst excited state and the ground state. �e non-intuitive result of this analysis, shown in
Figure 2.19, is that ∆E increases with the con�nement of the hydrogen atom along the normal
direction: conversely, when the hydrogen atom is allowed to move sideways, as in MH-III,
the NQE tend to disappear. �is model gives an insight into the reason why NQE are hardly
visible in MH-III. In addition, as the normal delocalization of the protons is larger for the case
of the protonated compound as compared with the deuterated one, the NQE along the parallel
component is compensated, lowering the di�erence between the two systems. �is explains
the low di�erence of symmetrization pressure for H/D isotopic substitution. �erefore, rather
than an absence of NQE in MH-III, we stress that the normal and parallel proton (deuteron)
delocalization play opposite roles and tend to compensate each other.
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2.3. �e methane hydrate IIIs

Figure 2.17. Double Morse potential as defined in equation 2.3.4 without the normal harmonic
term (i.e. k⊥ = 0). The e�ect of the la�er is to upcurve the edges in the perpendicular direction.
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Figure 2.18. Ground state and first excited state wave functions resulting from the potential in
equation 2.3.4 with no harmonic normal contribution (le�) and with (right). Energy units are eV
and length Å.

• H-H repulsive interaction
�e conditional probability of the methane hydrogen to water hydrogen (resp. deuterium)
distances given the normal delocalization ρ(dHH |r⊥) (resp. ρ(dDH |r⊥)) presented in Figure 2.20,
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Figure 2.19. Energy di�erence ∆E = E[1st ] − E[GS ] between first excited state and ground state as
a function of k⊥.

show a clear correlation between the presence of a methane hydrogen and the sideways displace-
ment of the cage hydrogen (deuterium) atoms. When protons in the CH4 molecules approach
the cage hydrogen (deuterium) below a typical distance (∼ 2.0Å at P=10GPa, ∼ 1.9Å at P=35GPa
and ∼ 1.7Å at P=65GPa), r⊥ tends to increase, in order to maximize dHH (resp. dDH). �is shows
that the normal delocalization is mainly a consequence of the repulsive interaction between the
hydrogen (or deuterium) of the water network and those in the methane molecules.
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Figure 2.20. Conditional probability ρ(dHH |r⊥) for a protonated cage (le� panels) or deuterated
cage (right panels) extracted from QTB simulations.
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2.3. �e methane hydrate IIIs

Finally, the stability of the hydrogen bond network was analyzed by removing the methane
molecules while keeping the oxygen atoms �xed to their original positions and le�ing the cage
hydrogen atoms move freely. �e result thereof is that these hydrogen atoms escape from the
O-O axes, which shows that the repulsive interactions between the hydrogen of the guest CH4
molecules and the hydrogen (resp. deuterium) of the water frame is also a key ingredient for the
stability of the hydrogen bonds and thus of the overall system.
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2.4 �e methane hydrate IV

As discussed in the introduction, several experimental results suggest a pressure-induced phase
transition of the MH-III at ∼ 40GPa. In particular, X-ray di�raction experiments81,80,87,97 indicate
the presence of a new structure at 40GPa, as the di�raction peaks are not compatible with MH-III.
Raman spectroscopy yields two new vibrational modes and an important broadening of the two
C-H stretching modes. Although guessed, this new structure has not been solved yet. In this
context, we investigated a hypothetic destabilization of the MH-III structure from the proton
dynamics as given by our QTB simulations.
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Figure 2.21. Probability distributions of the water protons (resp. deuterons) spatial delocalization within
the (a,b) plane in MH-III, as given by the QTB simulations.

As shown in Figure 2.21, the analysis of the spatial delocalization of the water proton of MH-III
within the (a,b) plane presents a pressure-induced di�usion of the proton within the ice frame.
While in the protonated ice frame this process seems to start from 20GPa and mainly increases
at 40 and 60GPa, a signi�cant isotope e�ect is observed in the deuterated system, where the
di�usion process seems to start for pressures close to 60GPa. As we have seen for the case of
Brucite minerals, the proton di�usion is indeed largely dependent of the NQE, which could ease
the overcome of dissociation barriers. In addition, this process is visible by tracking the proton
trajectories. However, this process begins to have a signi�cant impact at 40GPa only for the
protonated system, and as discussed earlier, QTB method could overestimate proton hopping
probabilities. �erefore, although we cannot rely on the exact pressure allowing di�usion as
given by QTB simulations, these results provide an essential hint for structure destabilization
through proton quantum delocalization. �is was the starting point leading to the discovery of
the new high-pressure methane hydrate phase.

In order to solve the new structure, a serie of MH-III destabilized systems were optimized by
force minimization through variable simulation cell relaxation. �ese structures were constructed
by starting from MH-III from which one proton was taken away from a water molecule and
replaced to form a non-stable H3O+ molecule within the ice frame to mimic the suggested proton
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2.4. �e methane hydrate IV

delocalization. All these new structures relaxed into the same con�guration. While the methane
molecules organization almost did not change, the ice frame reorganized into a structure much
closer to the ice Ih phase as compared to MH-III. �is result is unexpected, as a pressure-induced
transition suggests a new denser ice phase for the composition of the host structure, as ice VII
or X could be. However, taking the ice Ih as the host ice network and the methane molecules
arrangement from our relaxation calculations led to a new stable high-pressure methane hydrate
phase we named MH-IV, presented in Figure 2.22. In order to check the stability of the structure,
we �rst tested other hypothetical systems with the MH-IV positions for the oxygen atoms and
the MH-III positions for the methane, or the inverse. All these structures spontaneously relaxed
to the MH-IV phase. Secondly, replacing methane molecules with large-radius rare gas atoms
(Ar, Kr) resulted in a di�erent structure, suggesting that the (quasi-)tetrahedral symmetry of
methane molecule is a crucial parameter for this transition. �is strengthens the emerging view
of high-pressure methane hydrate as a strongly interacting inclusion compound, where a global
optimization of both water and methane molecules should be ful�lled.

c

a b

b

c a a

c

b

Figure 2.22. Ball-and-stick representation of the new high-pressure methane hydrate MH-IVs phase,
seen in the three crystal planes. O atoms in red, C atoms in black, H in light gray. The reader can note in
the le� panel that methane molecules have a C-H bond oriented either along c (le�) or c̄ (right).

Finally, to conclude on the stability of MH-IV, we calculated the free enthalpy di�erence ∆H =
HMH−III−HMH−IV atT = 0K as a function of pressure, obtained from static calculations. As shown
in Figure 2.23, the MH-IV structure becomes more stable than MH-III for pressures higher than
∼ 30GPa while experimentally, MH-III seems to transform to a new phase at 40GPa.80 Such a
di�erence can be a�ributed to several factors. In particular, the fact that static energy calculations
take into account neither thermal nor quantum e�ects but also the neglected entropy term of
the methane rotational disorder. �erefore, from now on, we adopt 40GPa as the transition
pressure. Upon further compression, the free enthalpy di�erence grows up to 400 meV per
methane molecule at 150GPa. Its trend shows that the stability of the new phase, with a smaller
volume, increases steadily with pressure.

2.4.1 Structural properties

We investigated the structural similarities between the D2O network in methane hydrate phases
III and IV with respect to ice Ih through the topological distance DX as given by:

DX = ΣNi=1

√
(rX
i − r

Ih
i )

2 (2.4.1)

where N is the number of atoms; rX
i indicates the reduced atomic positions of the ith atom for the

phase X (X=MH-III or MH-IV) and r Ih
i the corresponding ones in ice Ih.
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Figure 2.23. Computed free enthalpy di�erenceHMH−III−HMH−IV between MH-III and MH-IV structures
at T=0K.

�is allows us to determine that the topology of the D2O network in the MH-IV phase (DMH−IV =
1.76) is way closer to that of ice Ih than the MH-III phase (DMH−III = 10.87). In addition, in
MH-III there are four-, six- and eight-fold water rings while in MH-IV the H-bonded water
network is composed of corrugated (a-b) sheets of edge-sharing six-member rings of water
molecules which are cross-linked along ®c as in ice Ih, thus avoiding the angular frustration that
4-member water rings imply.
�erefore, the new phase has an orthorhombic crystal cell based on an ice Ih skeleton. Both
MH-III and MH-IV share the same stoichiometry, i.e. a 2:1 D2O:CH4 ratio. MH-IV space group
is Pmcn (n◦62) where oxygen and carbon atoms occupy 4c Wycko� sites (Table 2).
In addition to a di�erent water frame, MH-IV contains methane orientational ordering which
di�ers from MH-III. Indeed, in MH-IV, the carbon atoms and a C-H bond in each methane
molecule are aligned along the ®c direction, where two symmetrical con�gurations that di�er
by a rotation of π

6 around ®c alternate (Figure 2.22, lower le� panel). Along ®b, methane ordering
presents another alternation by a rotation of π

3 around ®a (Figure 2.22, upper panel). In this
arrangement, all C-H bonds of the methane point toward the hexagonal channels formed by the
host D2O molecules, thus reducing repulsive methane-water interactions but also preventing
methane rotations.
Finally, we reported in Figure 2.24 the simulated X-ray di�ractogram of the MH-IV, for compari-
son with experimental observation present in the literature.87

We can observe that the MH-IV simulated X-ray di�ractogram quantitatively reproduces the
location and intensity ratios of the main experimental x-ray di�raction peaks from ref.[87]. �is
provides a strong indication that the atomic positions of the C and O atoms of the simulated
MH-IV structure match the experimental ones. Moreover, the suggested la�ice parameters as
calculated from the la�er experimental X-ray study match the ones we obtained from variable-
cell relaxation of MH-IV. We believe that such an excellent agreement is not accidental and that
the MH-IV structure we propose corresponds to the unsolved one as obtained in ref. [87]. In
Figure 2.25, we provide the evolution of the la�ice parameters of the methane hydrate upon
compression.
We can see that at the transition, while a and b increase a li�le, the signi�cant change concerns
c , which decreases by about 3.2% due to the particular methane ordering along this axis.
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2.4. �e methane hydrate IV

Phase Group Atom Site x y z

MH-III Imcm O 8i 0.250 0.080 0.830
74 C 4e 0.250 0.680 0.000

MH-IIIs
Pmcn O 4c 0.250 0.400 0.190

62 O 4c 0.250 0.420 0.810
C 4c 0.250 0.800 0.980

MH-IV Pmcn O 4c 0.250 0.420 0.045

MH-IVs 62 O 4c 0.250 0.420 0.455
C 4c 0.250 0.750 0.715

Table 2. Space group and fractional coordinates of oxygen and carbon atoms in the MH-III, MH-IIIs,
MH-IV and MH-IVs phases of methane hydrate at 40GPa, as obtained from the AIMD simulations.
For coherence sake with Imcm, the space group of the higher pressure phases is given in the
non-conventional representation. The uncertainty on the fractional coordinates is ±0.005. Despite
the di�erent space group between MH-III and MH-IIIs, the full oxygen positions are very similar.
In MH-IVs (H-bond symmetric phase IV), the oxygen and carbon atomic positions do not change
significantly from those in MH-IV. Computed la�ice parameters: MH-IIIs (40GPa): a = 4.006 Å,
b = 6.911 Å, c = 6.249 Å; MH-IV (40GPa): a = 4.063 Å, b = 6.981 Å, c = 6.063 Å.
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Figure 2.24. X-ray di�ractogram at 55GPa from ref.[87], showing with red arrows the new peaks
associated with the new phase, along with the simulated di�ractogram (λ = 0.4163Å) for our MH-IV
structure.

2.4.2 Hydrogen bond symmetrization: MH-IVs

�e increase of the a and b la�ice parameters also induces an increase of the O-O distances
within this plane. As discussed in Section 2.3, O-O distances is the key parameter in�uencing
the hydrogen bond symmetrization in such structures. �erefore, although before the transition
toward MH-IV the system is already symmetrized, the increase of the O-O distances drive
deuterons back to non-symmetric hydrogen bonds.

In order to characterize the hydrogen bond symmetrization, we calculated the probability
distribution of the order parameter χ , already de�ned in Section 2.3, from our Path Integral
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Figure 2.26. (a) Sketch of the main transitions from MH-III to MH-IVs, according to AIMD simulations.
(b) Probability distributions of the order parameter χ of MH-III at 30GPa, MH-IIIs at 40GPa, MH-IV at
40GPa and MH-IVs at 60GPa, as obtained by PIMD.

Molecular Dynamics (PIMD) simulations. As shown in Figure 2.26.b, a slight desymmetrization
e�ect indeed occurs while passing from MH-IIIs to MH-IV. �en, further pressure increase
triggers another transition, from MH-IV to MH-IVs, where hydrogen bonds become symmetric.
�is leads to the following a sequence of high-pressure methane hydrate phases: MH-III, from
2.4 to 35GPa; MH-IIIs around 35GPa; MH-IV at 40GPa; and �nally MH-IVs as shown in Figure
2.26.a.
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2.4. �e methane hydrate IV

2.4.3 Vibrationnal properties

�e phase transition from MH-III to MH-IV can also be detected by looking into the behavior
of the vibration modes as a function of the increasing pressure. In particular, and similarly
to what occurs in MH-III, an important broadening of the C-H stretching mode is observed
experimentally at 80GPa. In addition, two new vibrational modes appear beyond 100GPa. As
these two experimental results could be signatures of the MH-IV(s) phase, we will �rst investigate
the C-H stretching mode and then the presence of new vibrational modes.

• C-H stretching modes
As shown in Figure 2.27.a, the experimental full width at half maximum (FWHM) of the two
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Figure 2.27. (a) Full width at half maximum (FWHM) of the CH4 ν1 and ν3 stretching modes versus
pressure as obtained from Raman spectra. (b) Angular distortion of one of the �HCH tetrahedral angles
in MH-IV upon compression.

methane stretching modes in Raman spectra changes slope around 80GPa. To address this
issue, in analogy with the methane distortion occurring in MH-III, we investigated the di�erent
tetrahedral angles evolution upon compression of the methane molecules in MH-IV. Indeed, as
we have seen, in the MH-III structure, the methane molecules undergo an increasing distortion
from tetrahedral symmetry upon compression leading to a broadening of the C-H stretching
modes. It is interesting to note that a�er the transition to MH-IV, the �HCH angles of methane
almost recover their tetrahedral value, as shown in Figure 2.27.b. However, while increasing
pressure, we observe an important departure of the methane �HCH angle from the tetrahedral
symmetry occurring at 80GPa. �erefore, the degenerate ν3 and ν1 modes split in similar, but
non-degenerated modes. �e computed width of the related frequency distribution explains the
large broadening of the C-H stretching modes observed experimentally. A similar analysis also
holds for MH-III under increasing methane distortion (Figure 2.27.b).
�is e�ect deeply depends on the structure, as the methane distortion is due to both the steric
hindrance and H-H repulsive interaction between methane and water molecules. In addition,
as shown in Figure 2.28, the C-H stretching modes frequency evolution as a function of the
pressure as obtained from our MD simulations perfectly match the experimental ones. �erefore,
this experimental observation con�rms the stability of the MH-IV phase up to, at least, 150GPa
and this new phase represents the highest-pressure gas hydrate known up to now.

• Characteristic modes of MH-IV
Second con�rmation is provided by the two new modes appearing beyond 100GPa, revealed
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by Raman spectroscopy. �ese modes present between 900 and 1100 cm−1 are also detected in
our MD simulations, as shown in Figure 2.28. Our theoretical analysis, within the harmonic
approximation, describes these modes as being shared among the water and methane degrees
of freedom in the MH-IV-structure. Indeed, this mixed vibrational mode involves both CH4
bending and D2O stretching modes. We denote them as IV-modes, as they are characteristic of
the la�er structure.
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Figure 2.28. Experimental Raman frequencies (circles) and theoretical frequencies (lines) upon com-
pression of the methane stretching and rocking modes, D2O stretching modes, the la�ice mode and
the MH-IV characteristic modes (IV-modes). Theoretical frequency values were computed through the
velocity time correlation functions as extracted from QTB trajectories, with the only exception of D2O
stretching modes, which were calculated in the harmonic crystal framework.

To summarize, we found a further high-pressure methane hydrate phase, the MH-IV, which
follows the MH-III phase upon compression. �is new phase is characterized by oxygen atoms
arranged as in ice Ih and a signi�cant deuterium tunneling or a symmetric hydrogen bond. �e
methane molecules are trapped in the ice-frame with a more symmetric orientational ordering
as compared to MH-III. Several signatures of MH-IV was observed: (i) two new vibrational
modes arise beyond 100GPa, (ii) a large broadening of the C-H stretching modes occurs at
80GPa and (iii) new X-ray peaks appears at 40GPa. �e evolution of Raman spectra, as well as
our theoretical analysis, con�rm the stability of the structure up to, at least, 150GPa. At the
transition, the hydrogen bonds slightly desymmetrize and give rise to another transition from
MH-IV to MH-IVs with increasing pressure.
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2.5 Transition description

In this section, we will describe the instability of the MH-IIIs phase towards the MH-IV one,
and characterize this transition. We will �rst describe the di�erent atomic displacements this
transition involves, and based on this analysis, we will analyze the di�erent sources of instability
in MH-III. Finally, minimum energy and free energy sampling along the transition will give
access to a full characterization of the transition and reaction barrier.

2.5.1 Transition stages

MH-IIIs MH-IV

ba

c

Figure 2.29. Description of the MH-IIIs→MH-IV transition: mainly two hydrogen bonds are impacted
changing one of the oxygen atoms they were bonded to. Along with the hydrogen bond reorganization,
the oxygen atoms involved are displaced along ®c , forming 6-fold rings as in ice-Ih. The methane molecules
also present several rearrangements: a displacement along ®b and a small rotation along ®a lead to a
perfect alignment of one of their C-H bond around ®c ; a rotation of π around ®c gives rise to the methane
orientational ordering of MH-IV.

In Figure 2.29 we sketched the di�erent atomic displacements required in MH-IIIs phase to form
MH-IV. As we can see, it requires both a structural reorganization of the hydrogen bonds as
well as a signi�cant change of the methane orientation. Interestingly, only half of the cell is
mainly impacted along the transition. Indeed, while all the methane molecules require a small
translation along ®b and a small rotation along ®a, only one half of them require a large rotation
of π around ®c . �e second signi�cant change concerns one half of the MH-III water network. In
this part of the structure, both a reorganization of the hydrogen bonds and a displacement of
the oxygen atoms are required. �e rearrangement of the hydrogen bond occurs along ®c , where
the two hydrogen bonds forming 4-fold water rings break, while two other ones are created
between oxygen atoms that were not bounded in phase III. �ese structural changes can be seen
as a transfer of protons between O-O couples. Following the hydrogen bond rearrangement, the
oxygen atoms are also displaced, in the same direction, in a “seesaw” mechanism. �is induces
the disappearance of the 4-fold and 8-fold water rings in favor of 6-fold water rings composing
the water network of MH-IV and leads to hexagonal channels along both a and c directions,
where the methane molecules are arranged.
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�ese key displacements describing the transition reveal the essential mechanisms to be ac-
counted for to understand the transition and the higher stability of the MH-IV phase under
very high pressure. �e organization of the methane molecule is not optimized within MH-III,
which displays noticeable distortion of the molecules, thus decreasing the stability of the overall
structure upon compression. Furthermore, the presence of 4-fold within the water network could
lead to the instability of the structure by inducing an angular frustration of the water molecules
as compared to their natural tetrahedral symmetry. Finally, the proton transfer between O-O
pairs is one of the most important mechanism triggering the transition; it is, therefore, essential
to account for nuclear quantum e�ects and describe the quantum spread of protons(deuterons)
in order to have a faithful picture of the transition. �erefore, we �rst address the stability of the
ice frame and related water rings. �en, we discuss a transition path as given by the minimum
and free energy paths, and �nally, we conclude on the importance of the NQE in this transition.

2.5.2 Stability of the ice frame

In order to distinguish the di�erent contributions leading to the instability of MH-IIIs, towards
MH-IV, we compute the distinct contributions to their enthalpy at T = 0K. To do so, from the
optimized methane hydrate structures, we removed either the methane molecules or the water
network and calculated their energies by �xing the ion positions. �is leads to an estimation of
the water-water interaction energy E(H2O−H2O) and of the methane-methane interaction energy
E(CH4−CH4), to be compared with the full hydrate energy E(MH). �e water-methane interaction
energy is computed through the di�erence: E(H2O−CH4) = E(MH) − E(H2O−H2O) − E(CH4−CH4) while
�e term PV is added to the internal energies to recover the corresponding enthalpy H(MH) =
E(MH) + PV(MH) at T = 0K.
As shown in Figure 2.30, while the water-methane interaction energy largely contributes to
the stability of MH-III, both the methane-methane and water-water interaction energies favor
MH-IV. Although the sum of these energies (∆Etot ) goes in the direction of the stability of
MH-III, while taking into account the pressure energy term P∆V , the enthalpy di�erence (∆H )
gives the MH-IV denser structure stabler than MH-III.
As already discussed, to accurately describe the stability of MH-III, we have to take into account
the entropy related to methane orientational disorder, which disappears beyond 25GPa. Indeed,
we note that the locking-in of methane molecules should signi�cantly contribute to reducing
the stabilizing con�gurational entropy in the MH-III phase as pressure increases. To estimate
its contribution, we consider methane molecules to be free rotors below 5GPa. �en for 5 <
P < 25GPa, we consider the disorder between the 4 (A±,B±) con�gurations to be equiprobable.
Finally, these entropy terms have been used to estimate the Gibbs free energy (∆G) presented in
Figure 2.30.
From this analysis, we understand that the main instability of MH-IIIs resides in the structural
arrangement of the water network, which is the major contribution favoring MH-IV. �erefore,
we analyzed the stability of the di�erent 8-fold, 6-fold and 4-fold water rings present in MH-IIIs
in comparison with the 6-fold ones present in MH-IV (see Figure 2.31). To this purpose, we
extracted water clusters by cu�ing the di�erent water rings present in both structures and
calculated their respective cohesive energy freezing the oxygen positions. By doing so, the O-O
distances are reminiscent of the pressure in the original crystal, while the deuterons are free to
rearrange.
As shown in Table 3, the energy analysis gives the MH-IV water rings more stable than the
MH-III ones at any pressure. In particular, in accordance with other study of the H-bond angular
�exibility,100 4-member rings, which are found in MH-III only, display the most important
reduction of the cohesive energy with increasing pressure. �is type of ring is thus the main
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Figure 2.31. Sketch of the di�erent water rings present in MH-III and MH-IV phases.
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Cohesive energy (eV/H2O) O-O distances (Å)
Rings 60GPa 20GPa 60GPa 20GPa

M
H

-II
I 4 0.177 0.348 2.32, 2.28 2.49, 2.46

6a 0.181 0.363 2.29, 2.28 2.46, 2.44
8 0.201 0.367 2.32, 2.29, 2.28 2.49, 2.46, 2.44

M
H

-IV 6a 0.270 0.391 2.37, 2.35, 2.33 2.56, 2.54, 2.51
6b 0.262 0.380 2.37, 2.35, 2.33 2.56, 2.54, 2.51

Table 3. Cohesive energy and O-O distances of the di�erent kinds of ice clusters: 4-member,
6-member, and 8-member rings (see Figure 2.31), in eV per H2O molecule. The zero of the energy is
that of an isolated water molecule. Second and third columns report the cohesive energy of ice
rings obtained from MH-III and MH-IV, where O atoms are clamped at their values in the respective
crystals (MH-III or MH-IV) at the indicated pressures (20 or 60GPa). The di�erent 4, 6a, and 6b
rings are sketched in Figure 2.31.

source of the MH-III instability upon compression. �is e�ect is due to a signi�cant angular
frustration in 4-fold ice rings, where hydrogen bonds signi�cantly deviate from linearity. In
contrast, the MH-IV rings are more symmetric, and the O-O distances show less dispersion.
�us, they are closer to hexagonal symmetry and compatible with the high-pressure structure
in which the methane molecules are stacked along an e�ective 3-fold symmetry axis.
On the other hand, as the O-O distances shorten under increasing pressure, the O-H covalent
bond weakens, and the O…H hydrogen bond strengthens. However, the overall cohesive energy
of the O-H…O con�guration decreases when moving away from the optimal O-O distances in
the fully optimized clusters. �erefore, in addition to the instability of the 4-fold and 8-fold water
rings present in MH-III, the contraction of O-O distances favors proton(deuteron) tunneling
and hydrogen bond symmetrization which triggers the transition toward MH-IV. A detailed
analysis of the MH-III→ MH-IV transition path provides relevant information on the sequence
of transformations and the signi�cance of nuclear quantum e�ects.

2.5.3 Transition path

In order to investigate both the transition stage sequence and the reaction barriers, �rst, we
investigated the minimum energy path and then the free energy landscape. While the initial
path was chosen from T = 0 K calculations employing the Nudged Elastic Band (NEB),101 it was
re�ned through metadynamics using PIV as the metric for the Path CVs allowing a free energy
sampling within the (s −z) space. As the transition only involves tiny changes in terms of la�ice
parameters and volume, we were able to study the transition at constant volume, taking an
average value of the MH-III and MH-IV la�ice parameters. �is approximation was checked by
monitoring the internal stress tensor at each point of the transition, giving a maximum error of
±5GPa out of 40GPa. �erefore, our approximation should provide a reasonably good estimate
of the corresponding free energy barrier at constant pressure.

• Classical picture
As shown in Figure 2.32, the reaction path from MH-IV to MH-III provided by free energy
sampling is complex and passes through several stages which display the di�erent mechanisms
that we mentioned earlier:

• Between s = 1 and s = 1.6 a rather large and deep free energy well is found and corresponds
to structures within the MH-IV basin, which di�er by hydrogen bond disorder.

• For 1.6 ≤ s ≤ 1.7, the transition path shows a peculiar trend and varies mostly along
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Figure 2.32. Free energy landscape of the (s, z) space as given by metadynamics. s ' 1.3, z ' 0.1:
MH-IV; s ' 1.9, z ' 0.4: MH-III. The free energy values in the right part of the plot, shadowed in gray,
are biased, in the absence of recrossing dynamics. The estimated barrier of reaction (white circle) is
Er = 0.36 eV per unit CH4:(D2O)2 formula.

z. �is stage is characterized by the change of the orientation of half of the methane
molecules. Methane ordering in MH-IV follows an A/B/A… stacking along ®b, where A
describes methane molecule oriented upward along ®z and B downward along the same
direction. Half of the methane molecules in this (s, z) region rotate, inducing an A/A/A
ordering along ®b. �is is the onset of the typical MH-III methane ordering. �is also
happens along the NEB reaction coordinate but, according to metadynamics, the precise
rotations of methane molecules are di�erent and occur before any hydrogen bond breaking
or formation, in contrast with the NEB sequence that we adopted as an input.

• At s ' 1.7, z ' 0.4, we �nd the transition state which is related to the “seesaw” displace-
ment of the oxygen atoms and hydrogen bond reorganization. Following the methane
rotation, some hydrogen bonds break down and other are formed, so that the ice network
of MH-IV, which is formed by 6-fold rings, reorganizes. In Figure 2.32, we see the onset
of 4-fold water rings induced by the shortening of the related oxygen atoms with the
consequent formation of hydrogen bonds, while other O atoms move apart from each
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Chapter 2. Methane hydrate: towards a quantum-induced phase transition

other, breaking the related hydrogen bonds and beginning the formation of 8-fold rings,
in a seesaw fashion.

• Finally, for 1.8 ≤ s ≤ 2.0, we recover the MH-III phase by completing the hydrogen bond
reorganization and the �nal reorientation of the methane molecules. �e energy cost that
is connected to those steps is small compared to the barrier, as the system moves within
the MH-III basin.

According to our metadynamics simulations, the seesaw displacement, which involves the
rearrangement of the O atoms as well as some hydrogen bond breaking and formation, is the key
point and the broadest part of the free energy landscape along the transition. When adopting a
classical picture for the nuclei, the corresponding MH-IV→MH-III energy barrier amounts to
Er = 0.36 eV/unit formula.

• �antum corrections
Whereas the displacement of the O atoms is li�le a�ected by NQE, the quantum deuteron
delocalization plays a key role in the hydrogen bond breaking and reforming. As we have
seen, this delocalization is enhanced by both the hydrogen bond symmetrization and the NQE.
�erefore, we took into account both thermal and quantum e�ects in a perturbative way, by
performing PIMD simulation along the MEP with �xed oxygen atomic positions, in order to
estimate their importance on the transition barrier. In addition, we performed the same analysis
taking into account thermal e�ects only, at 300K, via Langevin dynamics.
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Figure 2.33. Average energy of the structure following the path given by NEB.

As shown in Figure 2.33, while the thermal e�ects are negligible, quantum corrections change
the classical picture and signi�cantly decrease the barriers corresponding to H-bond breaking,
mainly because of deuterium quantum spread due to tunneling and zero-point energy. Indeed,
within the quantum description, we observe a decrease of the energy barrier at the transition
state of about 0.15 eV/unit formula. �us, we expect the reaction barrier found with MTD
simulations to be downshi�ed by roughly the same value at Er ' 0.2 eV/unit formula. �is
reveals the importance of NQE which therefore triggers the MH-III→ MH-IV transition, �rstly
by inducing the proton symmetrization and secondly allowing proton exchange between O-O
pairs through quantum delocalization.
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2.6 Conclusion

In this chapter, we studied the behavior of methane hydrate under high pressure in the [2-150]
GPa range.

Firstly, we characterized the behavior of the methane molecules enclosed within the water
frame. We observed their progressive orientational ordering and the locking-in of their rotation,
which induces an enhancement of the guest-host interactions. Leading to distortion of the
methane molecule tetrahedral symmetry, these interactions are also observed in the vibrational
mode coupling occurring between the water network and the methane molecules. �erefore by
increasing pressure, the system undergoes a transformation from pure methane-�lled ice to a
strongly interacting mixed molecular crystal.

Secondly, we investigated the expected hydrogen bond symmetrization transition from the
MH-III to the MH-IIIs phase. �is transition occurs around 40GPa within a broad pressure range
due to non-equivalent O-O distances in MH-III. Interestingly, the hydrogen bond symmetrization
occurring leading to the MH-IIIs phase di�ers from that in pure ice1 in several respects. Indeed,
due to the H(guest)-H(host) repulsive interaction, a noticeable delocalization of the protons
normal to the O-O direction is found. �erefore, the widely-used one-dimensional model of the
transition is not relevant for methane hydrates. While the normal delocalization weakens the
hydrogen bond, the parallel delocalization strengthens it. �e two e�ects roughly compensate
each other, which results in almost null isotope e�ects, for H→D substitution. �erefore,
rather than the absence of NQE in methane hydrate, we point out that they are more complex
than those occurring in the ice VII→X transition. Both the balance between normal and
parallel proton(deuteron) delocalization and host-guest strong interaction makes isotope e�ects
negligible along the MH-III→MH-IIIs transition.

�irdly, we discovered a new high-pressure methane hydrate phase: the MH-IV which
follows the MH-III phase by increasing pressure. �is phase has been found to become more
stable than MH-III between 30 and 40GPa and remains stable up to at least 150GPa, which
represents the highest pressure reached by any hydrate. MH-IV is characterized by a water
network similar to the ice Ih wherein methane molecules are ordered. Several signatures of
the la�er con�rm the presence of this phase under very high pressure. �e MH-IV structure
matches the experimental X-ray di�ractogram, and our simulations con�rm the presence of two
new vibrational modes appearing beyond 100GPa along with a signi�cant broadening of the C-H
stretching modes starting at 80GPa observed in the Raman spectra. In addition, although the
volume of the la�er phase is slightly lower than MH-III, two of its la�ice parameters increases,
leading to an increase of the O-O distances within this plane. �erefore, the transition occurs from
MH-IIIs, with symmetric hydrogen bonds, to MH-IV, whose ice skeleton is proton-disordered
with massive proton tunneling. Upon further compression, another transition towards the
MH-IVs phase takes place characterized by symmetric hydrogen bonds. Unexpectedly, the ice
la�ice could preserve the methane from dissociation, which has been observed in some102 but
not all103 Raman experiments on pressurized methane at ambient temperature and suggested by
ab-initio calculations.104

Finally, we studied the instability of the MH-III phase in favor of the MH-IV one, and we
characterized this transition by investigating both the minimum energy path and the free energy
landscape taking into account nuclear quantum e�ects. �e main instability of the MH-III
structure comes from the presence of 4-fold water cycles, methane repulsion, and a larger
volume than the phase IV. In particular, the angular frustration of both water and methane
molecules drastically increases the internal energy of MH-III upon compression. In addition, the
hydrogen bond symmetrization of the la�er structure weakens the water network. On the other
hand, the complex transition path found by minimum and free energy sampling shows that
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Chapter 2. Methane hydrate: towards a quantum-induced phase transition

the hydrogen bond reorganization is the most signi�cant contribution to the reaction barrier.
�erefore, nuclear quantum e�ects, which are at the root of both hydrogen bond symmetrization
and proton delocalization o� the water rings, favor the destabilization of the MH-III phase and
thus drastically lower the transition barrier and might induce proton di�usion within the water
frame.

�is study, therefore, illustrates how a relatively complex system can give rise to both subtle
and o�en paradoxical quantum e�ects. �e MH-III→MH-IV transition is a clear example where
NQE not only trigger the phase transition (as in ice under pressure) but also cause a deep and
complex rearrangement of the who structure, including carbon and oxygen atoms, in contrast
with the ice VII→X transition.
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�e �antum equilibrium structure of sodium hydroxide

3.1 Introduction

U pon increasing temperature, sodium hydroxide displays several phase transitions before
the melting point at 596K.105 �e protonated system evolves from an orthorombic106,107

structure at low temperature toward a P21/m monoclinic crystal at 500K and then a Fm3m cubic
structure at 566K. In striking contrast, the deuterated system displays a �rst order,108,109 phase
transition110,111 toward a monoclinic structure below 153K which is not observed in NaOH.
�is speci�c low-temperature structure is characterized by a proton-ordered antiferroelectric
con�guration of the O-H bonds. In addition, induced by a signi�cant decrease of one la�ice
parameter, a formation of hydrogen bonds108,112 along that direction occurs by cooling the
system. NaOH, as LiOH, does not adopt the hydrogen-bond structure that the chemically analog
NaOD counterpart shows, as other hydroxides of heavy alkali metals (KOH, RbOH).107,113,114

�is puzzling behavior cannot be explained on a classical basis and is purely quantum-induced.
In addition to x-ray di�raction experiments,108,106 the low-temperature NaOD phase transition
has been observed by a change in IR absorption115 and Raman spectra,107 while both heat
capacity,109,116 and dielectric measurements116 present anomalies at the transition temperature.
Excess of heat capacity in NaOH as compared with NaOD has been related115,116 to the thermal
population of quantum states connected to tunneling in an e�ective double-well potential.117

On the other hand, NaOH presents a phase transition upon compression toward a struc-
ture expected to be analogous to the low-temperature hydrogen-bonded NaOD phase.117,107 It
has been suggested116 that H/D isotopic substitution could change the temperature-induced
transition as observed in NaOD to a pressure-induced transition in NaOH.

While both transitions were observed experimentally,117,116,118,109,107 a microscopic descrip-
tion of the transition mechanism, and the associated nuclear quantum e�ects, are still lacking
up to now. �erefore, in this study, we address this important isotope e�ect by the use of ab-
initio simulations taking into account nuclear quantum e�ects within the path integral scheme.
Firstly, we will demonstrate the importance of nuclear quantum e�ects in the description of
the la�ice parameters evolution upon increasing temperature. Secondly, we will focus on the
speci�c ordering of proton and deuteron, which evolves at the transition. Finally, we will
conclude by a comparison between the low-temperature transition occurring in NaOD and the
pressure-induced one of NaOH.

Technical details of the simulations employed for this analysis can be found in the Appendix C.
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3.2 Sodium hydroxide structure

c
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c

b b
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a

Figure 3.1. Sketch of the orthorhombic sodium hydroxide structure, in an antiferroelectric configuration.

As shown in Figure 3.1, sodium hydroxide is a layered structure composed of stacks of sodium,
oxygen, and hydrogen atoms along la�ice parameter c . At room temperature, the sodium
hydroxide structure belongs to the Bmmb space group while at low temperature, the NaOD
system undergoes a phase transition toward a monoclinic structure of the P21/a space group
due to the particular deuteroxide group ordering. �e la�er structure can be approximately
reproduced by the use of an orthorhombic supercell that we employed in both NaOH and NaOD
simulations. In doing so, we neglect the small departure (<1◦) from the orthogonality between
a and c of the monoclinic structure which induces rather small variations of the stress tensor,
below our precision threshold of ±0.5 kbar.

3.3 �antum mechanical description of structural properties

As introduced earlier, the phase transition occurring in NaOD at 153K induces noticeable struc-
tural changes. Between the low-temperature monoclinic structure and the ambient-temperature
orthorhombic crystal, the major structural change concerns the c la�ice parameter. It drastically
increases (∼4.6%), as a result of the weakening of the inter-layer hydrogen bonds, as detailed
later. Being a signature of the transition, this important structural change must be reproduced in
our simulations to describe the transition mechanisms faithfully. As shown in Figure 3.2, la�ice
parameter c is correctly reproduced neither at low nor at ambient temperature when the nuclei
are described as classical particles. Indeed, classical AIMD simulations, thermosta�ed through a
Langevin equation, yield some major di�erences with respect to the experimental picture: �rst,
the c parameter increases smoothly with temperature from the low-T to ambient-T phases (Figure
3.2.c); second, c di�ers as much as 10% from the experimental value, a much larger di�erence
than what is usually provided by the GGA in related compound (Mg(OH)2,Ca(OH)2…). �ird, as
expected, isotope e�ects are completely absent. �ose facts suggest that the overall mechanism
of the transition is missed within the classical frame for the nuclei. �e quantum nature of
nuclei (especially the lightest, H and D) indeed plays a crucial role. By volume optimization of
the structures within the Path Integral scheme shown in Figure 3.1, we recover the experimental
values of la�ice parameters. �ey are almost constant within our temperature range for NaOH.

106



3.3. �antum mechanical description of structural properties

L
at

ti
ce

 p
ar

am
et

er
s 

(Å
)

NaOD
NaOH

Classical
Exp.

3.4

3.1

3.2

3.3

3.5

3.6

3.7

100 200 300

a

Temperature (K)

10.4

10.6

10.8

11.0

11.2

11.4

100 200 300

c

3.2

3.3

3.4

3.5

3.6

3.7

3.8

100 200 300

b

Figure 3.2. La�ice parameters evolution of NaOH and NaOD with increasing temperature as described
by PIMD, or classical Langevin dynamics. Reported experimental values are taken from ref. [108] for
NaOD and [119] for NaOH.

In contrast, NaOD displays a sharp increase of the la�ice parameter c occurring at 200K. �is
demonstrates that the presence of nuclear quantum e�ects within this system is an essential
factor to characterize the transition. As compared with the experimental value, the transition
is up-shi�ed by about 100K, which can be traced back to a di�erence of 8meV of the reaction
barrier, a rather precise value within our approximation. �e change of the c la�ice parameter in
NaOD induces an increase of the O-O interlayer distance by about 4.4% which accompanies the
deuteron order-to-disorder transition. �us, this e�ect suggests a strong correlation between the
O-O interlayer distance and the electric dipole orientation, which can be characterized by the
O-H polar angles as presented in Figure 3.3, which is also related to the O-H bending vibrational
mode.

c

b a

θnθn+1

Figure 3.3. Sketch of successive θ O-H polar angles characterizing the proton ordering.

�e la�er assumption is con�rmed by investigating the joint probability density P(DOO , θ ), of
the O-O interlayer distance DOO and the angle θ . As shown in Figure 3.5, a strong correlation
is indeed observed between the two parameters in NaOD at 77K and is also found at higher
temperatures and for the case of NaOH. As the O-O interlayer distance increases, the θ angle
gets closer to 0◦, namely a paraelectric disordered state.
�erefore, the cohesion between the NaO layers is expected to be the key parameter triggering
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Figure 3.4. Probability distribution of the O-O interlayer distance as a function of the OH polar angle θ
in NaOD at 77K.

the transition. In the low-temperature antiferroelectric phase of NaOD, this cohesion is mainly
due to hydrogen bonding, whereas in NaOH at the same temperature, the O-H covalent bonds
are in a paraelectric con�guration, oriented predominantly along c , and the protons do not form
hydrogen bonds with the atoms of the other layers leading to the observed increase of the c
la�ice parameter.

• Isotope e�ects on the hydrogen bonds
In this respect, nuclear quantum e�ects can either stabilize hydrogen bonds by enhancing
the proton delocalization along the bond direction, related to the O-H stretching motion, or
destabilize the hydrogen bonds due to the proton quantum delocalization in the normal direction,
here linked to the O-H bending motion. �e net balance between these two competing e�ects
depends on the nature of the system. Michaelides120 and coworkers have shown that NQE tend
to strengthen strong H-bonds and to weaken the weak ones. Experimentally, the impact of NQE
on the H-bond strength can be probed by measuring the change in the X-X distance upon H→D
substitution. In the context of H-bonded crystals and H-bonded ferroelectrics, this is known as
the “Ubbelohde” e�ect:121 in systems with relatively strong H-bonds, an increase of the hydrogen
bond length is observed upon deuteration, characteristic of a weakening of the bond (due to
the decrease in zero-point energy). �is corresponds to the positive (normal) Ubbelohde e�ect,
whereas in more weakly-bonded systems, negative (inverse) Ubbelohde e�ect is observed with a
shortening of the hydrogen bond length upon deuteration. In order to address this issue, we
investigated the in�uence of the nuclear quantum e�ects on the quantum spread of the O-H
covalent bonds and the quantum delocalization along the O-H bending motion.
Firstly, we focus on the O-H and O-D covalent bond lengths, shown in Figure 3.5.a. While
simulating the NaOH system at 77K within the la�ice parameters optimized for NaOD at the same
temperature, we observe that although the mean value of the covalent O-H bonds is comparable
for both systems, the spread of the protonated one is signi�cantly larger. Secondly, as shown in
Figure 3.5.b, the probability distribution P(θ ) indicates the presence of a double-well potential
along this coordinate, as suggested in the literature,116 whose equilibrium positions are closer
one to the other in the protonated, not-optimized, system than in NaOD, with probability to
overcome the barrier which is signi�cantly larger in NaOH. While the more extensive quantum
spread of the O-H covalent bond tends to strengthen the hydrogen bonds, the zero-point bending
motion dominates, leading to an overall weaker H-bond in NaOH. Although in competition
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Figure 3.5. Probability distributions of the O-H length (a) and of the O-H polar angle θ (b). n.o. stands
for “not optimized”, referring to the NaOH structure within the same la�ice parameters as NaOD at 77K.

concerning H-bond stability, the combination of the two delocalization e�ects induces a pressure
increase along the c direction. Indeed, the analysis of the stress tensor shows a signi�cant isotope
e�ect: the kinetic stress tensor di�erence σNaOH

zz − σNaOD
zz ' 2GPa at the constrained NaOD

la�ice parameters at 77K. �e overall pressure (P = Tr{σ })) of NaOH is around 1.5GPa, showing
a clear tendency for NaOH to expand, essentially along the c axis. �e interlayer distance stretch
and destroys the weak hydrogen bonds in NaOD upon D→H substitution. �erefore, the proton,
because of its larger intrinsic quantum spread and zero-point motion, prevents the contraction
of the inter-layer spacing and the formation of strong hydrogen bonds between them. �e two
phenomena are truly entangled and are at the root of the absence of transition for NaOH.

�e quantum description of nuclei is central in these conclusions. Not only, nuclear quantum
e�ects lead to profound structural changes, but they also impact the dynamical properties of the
proton and deuteron which characterize the transition. Indeed, the la�er can not be captured
by harmonic zero-point corrections on top of a classical picture: the potential energy surface
is highly anharmonic and thus rather sensitive to the mode amplitude. Only a dynamical, self-
consistent treatment of the intrinsically quantum di�erence between protons and deuterons can
provide a comprehensive picture of the NaOD transition and its absence for NaOH at ambient
pressure. �erefore, in order to complete the picture of the low-temperature NaOD transition,
we address in the following the NaOH and NaOD dielectric properties, related to the orientation
of the O-H and O-D bonds, as well as their thermal behavior and response to external pressure.

3.4 Towards a dynamical paraelectric state

In the anti-ferroelectric con�guration at low temperature (Figure 3.1), NaOD is characterized
by slanted O-D bonds in the (a,c) plane, making a θ angle with the c axis. �is con�guration is
characterized by successive θn angles which change sign while moving along the b axis, giving
the speci�c alternating pro�le of OD groups as sketched in Figure 3.1. Each slanted OD group
carries a dipole moment along a, which is globally null in the AFE con�guration. �e θn angles,
therefore, appear as the natural order parameters to characterize the transition from the AFE to
the para-electric (PE) con�gurations in NaOD. In particular, joint angle probability distribution
P(θn, θn+1) of two adjacent OD groups along b allows the characterization of three classes of the
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proton(deuteron) ordering: AFE (θn and θn+1 are non-zero and have opposite sign), FE (θn and
θn+1 are non-zero and have same sign, either negative or positive), and PE (θn and θn+1 are both
centered at zero).
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Figure 3.6. Probability distribution P(θn, θn+1) of adjacent O-D bonds describing the dielectric character
of NaOD (top) and NaOH (bo�om) at 77K (le�) and 300K (right). AFE: anti-ferroelectric, FE: ferroelectric,
and PE: paraelectric

As shown in Figure 3.6, at low temperature, NaOD displays the three classes. However, the
P(θn, θn+1) maxima are clearly at θn = 25◦, θn+1 = −25◦ or the reverse, that are characteristic of
the AFE con�guration. �e FE con�gurations represent local maxima with a much lower proba-
bility as compared to the AFE state but at the same time the AFE→FE→AFE paths correspond
to the lower barrier to overcome while passing from one AFE to the other AFE con�guration. In
contrast, the PE appears as a maximum along the path connecting either the two AFE or the
two FE con�gurations. �erefore, in accordance with experimental results, at 77K, NaOD is in
an almost permanent AFE state which is a more stable state than FE which here act as “bridge”
con�gurations allowing the transfer between the two AFE con�gurations.
Signi�cant changes are observed while increasing the temperature to 300K of NaOD. While the
same topology is recovered, the FE maxima fade and the probability of the PE con�guration,
which is still a minimum, is appreciable. �e AFE maxima are much lower than at T=77K and get
closer (θn = 15◦, θn+1 = −15◦, or reverse), with a mild slope when approaching θn = −θn+1 ∼ 0.
�e angles are thus much less correlated than at low temperature, which is related to a signi�cant
weakening of the hydrogen bonds between opposite layers. �e system indeed goes back and
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3.4. Towards a dynamical paraelectric state

forth through the AFE con�gurations, spending a non-negligible time in the PE con�guration,
which is typical of a deuteron-disordered con�guration leading in this case to a dynamical
PE con�guration. Upon further increase of temperature, the PE minimum at θn = θn+1 = 0
eventually becomes a maximum; however, this could appear at the onset of other structural
transitions.117

�e behavior of NaOH upon increasing temperature is very di�erent as compared with NaOD.
Indeed, while the probability distribution at low temperature displays almost isotropic distribu-
tions centered at θn = θn+1 ' 0◦, at ambient temperature, the two AFE con�gurations become
distinguishable, as very shallow minima, at θn = 8◦, θn+1 = −8◦ or inverse. Counter-intuitively,
the e�ective double-well potential wherein the proton lay recovers a barrier by increasing the
temperature. �is e�ect is due to the temperature-induced population of the excited state of the
la�er. Indeed, as shown in Figure 3.7, the probability distribution of the �rst excited states of
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Figure 3.7. Probability density |Ψ(x)|2 of the ground and first excited state of a particle within a
one-dimensional double-well potential.

the generic example of a particle in a one-dimensional double-well is signi�cantly lower at the
barrier maximum as compared with the ground state. �erefore, by increasing the population of
the �rst excited state, the overall probability density of the particle decreases at x = 0 leading,
in the case of NaOH, to a transition from a static toward a dynamical PE state.

As suggested earlier, the topological di�erence between the two crystals is induced by the
combination of the larger quantum spread for protons than deuterons and the signi�cant zero-
point energy e�ect on the O-H(D) bending mode: the typical proton angular spread in NaOH is
∆θ ∼ 40◦, thus larger than the angular displacement that we computed by considering the proton
as a purely classical particle. �e para-electric state is thus stabilized by the zero-point quantum
�uctuations, which is typical of quantum para-electrics.122,123 Interestingly, the distortion here
impacts angular distributions, while in perovskites, such as SrTiO3, the order parameter is a
linear displacement of Ti from the cell center.

• �e bending zero-point motion
To complete the previous picture, we investigated the double-well potential along θ , characteriz-
ing the O-H bending motion. From the probability distribution P(θ ), we computed an e�ective
free energy F (θ ) = −kbT log P(θ ), as a function of the azimuthal angle θ , as shown in Figure 3.8.
Expectedly, we observe a free-energy barrier at θ = 0◦ in NaOD at low and ambient temperature.
�is barrier, that includes quantum e�ects, decreases with temperature, from ∼ 112 meV at
77K to ∼31meV at 300K. �erefore NaOD qualitatively behaves as a “classical” system: at low
temperatures, the barrier is higher than the thermal energy and the system has two symmetric
distorted states at θ = −20◦ and θ = 20◦ while it is comparable to thermal energy at ambient
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Chapter 3. �e �antum equilibrium structure of sodium hydroxide
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Figure 3.8. Free energy profile along the O-H θ angle of NaOD(le�) and NaOH (right) at 77 and 300K.

temperature allowing the system to �uctuate around the symmetric θ = 0◦ orientation.
In contrast, the NaOH corresponding free-energy F (θ ) shows a minimum at θ = 0◦, at all
temperatures. While at low temperature it is direct evidence of the observed static PE state, at
ambient temperature it depicts both the large proton quantum spread (> 20◦), and the fact that
both AFE states almost merge. �erefore, in addition to the destabilization of the H-bonds, the
important zero-point contribution to the O-H bending motion also prevents NaOH from any
symmetry-breaking transition.

3.5 From temperature- to pressure-induced transition

In agreement with experimental results,116,109 our simulations show that, at ambient pressure,
NaOH remains a quantum para-electric at all temperatures. However, a pressure-induced
transition117 is found to occur at 1GPa toward a structure expected to be analogous to the
deuterated system at low temperature. Nonetheless, as the positions of hydrogen atoms could
not be re�ned, the high-pressure, ambient temperature, structure of NaOH is not fully resolved,
but compressibility measurements suggest the formation of H-bonds upon compression of
the structure. In this context, it was suggested116 that the protonation of NaOD could change
the temperature-induced transition of NaOD toward a pressure-induced one in NaOH. �is
assumption is strengthened by the resulting pressure of 1.5GPa, that we found for NaOH
constrained at the NaOD la�ice parameter at 77K.

�erefore, we simulated the NaOH system at 300K for pressure of 1GPa in a similar orthorom-
bic cell with la�ice parameters optimized taking into account nuclear quantum e�ects. As shown
in Table 4, the resulting parameters well agree with the experimental ones. �is optimization
mainly impacts the la�ice parameter c , which almost recovers the value of the NaOD structure
at 77K. As shown in Figure 3.9.a, the probability distribution P(θn, θn+1) brings out the AFE

a b c
Exp. 3.338 3.338 10.843

�eory 3.373 3.403 10.899

Table 4. Optimized la�ice parameters of NaOH at 300K and 1GPa. Experimental data from ref.
[117].

character of NaOH at ambient temperature and 1GPa. �e two maxima are indeed recovered at
θn = 25◦, θn+1 = −25◦ or reverse, similarly to NaOD at 77K. Moreover, the FE con�gurations are

112



3.5. From temperature- to pressure-induced transition

-60 -40 -20 0 20 40 60
0

0.01

0.02

0.03

0.04

0.05

0.06

θ (°)

F
ree energy (eV

)

NaOH
NaOD

P
(θ

n+
1)

 (
°)

x10-4

-60
-40
-20

0
20
40
60

-60-40-20 0 20 40 60

NaOH at P=1GPa and T=300K

P(θn) (°)

0

1

2

3

4

5
(a)

(b)

Figure 3.9. (a)Probability distribution P(θn, θn+1) of adjacent O-D bonds describing the dielectric
character of NaOH (b) Free energy profile along the O-H θ angle. Probability distribution for NaOD
at 77K and 300K are reported for comparison. Results are provided by simulations of NaOH ambient
temperature and pressure of 1GPa.

less negligible than in the la�er case but still represent “bridge” states between the two AFE
con�gurations while PE state, although non-negligible, represents a probability minimum. In
Figure 3.9.b, we report the free energy F (θ ), where we observe the pressure-induced double-well
formation occurring in NaOH upon compression. Its barrier height as high as 60 meV (thus
almost 3kbT ) is found at θ = 0◦, which can be overcome by thermal �uctuations. �ese two
analyses, therefore depict the NaOH at ambient temperature and 1GPa to be analogous to NaOD
at 77K and ambient pressure. Indeed, both the stabler AFE state and the double-well potential
along θ , characteristic of the la�er structure, are recovered by increasing the pressure in NaOH
at 300K. �us, it con�rms that the protonation of NaOD change the signi�cant thermodynamical
parameter determining the transition from temperature to pressure.
However, the similarity between AFE and FE states probabilities in NaOH at high pressure
suggests that at lower pressure or for higher temperatures both state could be equivalently
stable, leading to a disordered FE or AFE. Further studies are therefore needed in order to
determine the competition between the two con�gurations and to see whether the temperature
increase or a pressure decrease below 1GPa might induce proton disordering. In this respect,
accurate measurements of the evolution of la�ice parameter c under decreasing pressure and
increasing temperature would be highly desirable. As found for NaOD at ambient pressure and
varying temperature, the discontinuous evolution of the la�ice parameter c that governs the
interlayer distance might indeed reveal the existence of a phase transition.
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Chapter 3. �e �antum equilibrium structure of sodium hydroxide

3.6 Conclusion

In this study, we addressed the low temperature phase transition occuring in NaOD at 153K,
not observed in NaOH. Among other e�ects, the phase transition is characterized by a sig-
ni�cant increase (+5%) of the c la�ice parameter in NaOD. �is change is completely absent
upon protonation, as the structural parameters of NaOH are well continuous in the 77-300K
temperature range. �is dramatic isotope e�ect cannot be reproduced if nuclear quantum e�ects
ar not taken into account. Both the quantum delocalization of protons as well as the zero point
motion prevent the protonated system from displaying such a transition.

At low temperature, NaOD is a hydrogen-bonded structure which presents a proton-ordered
anti-ferroelectric con�guration. Analysis of the O-H bond orientation shows that along with
the more stable anti-ferroelectric states, ferroelectric ones are also present at 77K. �e la�er
con�gurations act as “bridge” states allowing the switching from one anti-ferroelectric state
to the other while direct transition through a para-electric con�guration is hindered. Beyond
the transition temperature, this mechanism is thermally activated, leading to a dynamical
para-electric deuteron disordering.
In contrast, while the NaOH system displays a static quantum para-electric state at low temper-
ature, at ambient temperature, due to the increasing population of the excited state along the
bending degree of freedom, a transition toward a dynamical quantum para-electric con�guration,
analogous to the observed one in NaOD at the same temperature, occurs.

Both AFE and FE con�gurations imply the formation of weak inter-layer hydrogen bonds,
which are broken in paraelectric con�gurations, whatever their nature (classical, static quantum
or dynamical quantum). As a consequence, the interlayer spacing signi�cantly increases in PE
con�gurations, which explains the abrupt change of the c la�ice parameter upon the AFE→PE
transition in NaOD. �e change of the macroscopic parameter c is intimately related with
quantum delocalization, which in the case of NaOH is strong enough to destroy the weak
hydrogen bonds between the layers and to lower the barrier of the e�ective double-well potential
along the OH bending motion. �is transition is therefore recovered while submi�ing the
system to an external pressure of 1GPa, thus con�rming that H/D isotopic substitution in sodium
hydroxide changes the temperature-induced phase transition in NaOD toward a pressure-induced
one in NaOH.
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Conclusion

F rom Planck’s discovery in the XIX century up to today, the study of quantum mechanics led
to non-intuitive and unexpected e�ects within the various �elds which were explored. In this

study, we have seen that nuclear quantum e�ects in condensed ma�er do not escape that rule.
�e description of quantum systems remains a delicate subject. Solving Schrödinger’s

equation for real physical systems with many degrees of freedom is not feasible in practice.
Approximation and smart modelization are thus required to account for the quantum nature
of particles. While standard reference methods to describe the electronic part (DFT, �antum
Monte-Carlo,…) already exist, the nuclei have been considered as being classical particles
for a long time. �is thesis is dedicated to cases of light and/or cold nuclei for which the
classical approximation is no more valid. In this framework, Feynman’s Path integrals formalism,
and Langevin equation based QTB were employed to successfully address both the quantum
statistical distribution and the dynamical properties of the hydrogen atom present in three
di�erent hydrated environments.

One of the well-known examples of nuclear quantum e�ects consequence is the pressure-
induced transition of ice, from VII to the X phase, occurring around 60 GPa. While investigating
this system with PIMD simulations, Benoit et al.1 brought out the importance of both zero-point
energy and tunneling of the proton in the mechanism of the hydrogen-bond symmetrization.
Accounting for nuclear quantum e�ects yields a downshi� of the transition pressure. �is e�ect
is characteristic of a particle in a double-well potential for which the barrier is indeed lowered
by pressure as the oxygen atoms move closer to one another: the e�ect of the zero-point energy
then becomes quite important. �is situation is also present in the case under study in this
thesis, but important conclusions one can draw from this work are the variety and subtlety of
e�ects in which nuclear quantum e�ects are involved.

�is complexity not only arises from nuclear quantum e�ects but is also entangled with
other phenomena of di�erent kinds. Speci�cally, we saw how the competition between nuclear
quantum and thermal e�ects could drastically in�uence the di�usion mechanism in Brucite
minerals. �is layered hydroxide structure was expected to display a proton di�usion mechanism
involving two processes: a reorientation, and dissociation of the hydroxyl groups. While thermal
�uctuations mainly drive the former, the la�er depends strongly on the proton nuclear quantum
e�ects. �ermal study50 of this di�usion mechanism concluded that the reorientation motion
enhanced by the temperature was the proton di�usion limiting factor. In contrast, we saw
that, in analogy with the hydrogen bond symmetrization, the pressure tends to increase the
dissociation process while reorientation is hindered. While both mechanisms are required for
long-range proton di�usion within this structure, these two opposite e�ects lead to a pressure
sweet spot, with the highest probability for proton di�usion. In this pressure range, the potential
barriers are reachable with thermal �uctuations or nuclear quantum e�ects for the reorientation
and dissociation processes, respectively.

In addition, the di�erent delocalization induced by nuclear quantum e�ects can, in some
cases, be in competition. In compounds where hydrogen bonds coexist with other bonding types
in anisotropic environnements, the simple and elegant picture of a proton in a one-dimensional
double-well is no more able to account for the complex phenomena that we observed. �e
competition between quantum delocalization along non-equivalent directions, on one side, and
between quantum and classical degrees of freedom, on the other side, could even lead to a
small overall impact of nuclear quantum e�ects. �is was seen in our study of methane hydrate
under high pressure (CH4-H2O). �is is indeed composed of methane molecules con�ned within
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channels formed by hydrogen-bonded water structure close to the ice phase Ih. �erefore, a
hydrogen bond symmetrization transition was expected to occur as pressure is increased, and
in comparison with the ice VII→ X transition, both nuclear quantum e�ects and H/D isotopic
substitution were expected to be signi�cant. Remarkably, isotope e�ects are negligible, and
the pressure downshi� of the transition induced by nuclear quantum e�ects is relatively low
while quantum delocalization is present. From our analysis, we concluded that the larger normal
delocalization with respect to the hydrogen bond of the protonated water frame as compared
with both the deuterated system and the pure ice induced disappearance of isotope e�ects and
the lowering of the nuclear quantum e�ects contribution. �is is a prototypical case where the
usual one-dimensional double-well approximation cannot explain the observed phenomena.

On the other hand, nuclear quantum e�ects can be an essential factor to consider while
investigating phase transitions. Not only can they facilitate the overcome of reaction barriers as
we have seen for the ice, but they can also trigger them. In particular, along with experimental
results, the important proton quantum delocalization of the water network in the MH-IIIs
structure led us to the discovery of a new methane hydrate high-pressure phase, the MH-IV,
stable at pressures never reached by any hydrate before. �e study of this transition demonstrated
the importance of nuclear quantum e�ects while the thermal contribution was negligible. �is
transition was indeed found to be triggered by both the water structure destabilization through
hydrogen bond symmetrization, and proton exchange between O-O pairs. Both mechanisms
represent the main contributions to the transition path between MH-IIIs and MH-IV; nuclear
quantum e�ects roughly half the classical barrier that includes purely thermal �uctuations.

�antum delocalization in layered hydroxides gives rise to non-intuitive and sometimes
contrasting e�ects. Indeed, for both Brucite (Mg(OH)2) and sodium hydroxide (NaOH) the
classical picture of point particle does not allow the understanding of mechanism involving
quantum indetermination. In Brucite minerals, layers of hydrogen atoms are facing each other
and get closer with increasing pressure. In a classical picture, this mechanism leads to two distin-
guishable space probability distributions which eventually merge. However, within the quantum
picture, at some point, the proton quantum spread is of the order of the distance separating
these two distributions, leading to indiscernible layers and thus a “quantum” two-dimensional
plane of protons.
�e changes induced by the quantum representation of nuclei is even more apparent in sodium
hydroxide, where the quantum delocalization of protons drives the structural properties. Indeed,
while a classical description gives rise to wrong la�ice parameters, a quantum description allows
recovering experimental results of this system. In this study, we showed that this important
di�erence was due to both the proton kinetic energy contribution to the pressure, along with the
quantum spread of nuclei. �erefore, this e�ect can be understood by the large volume occupied
by hydrogen atoms within the structure, through quantum delocalization, in addition to the
zero-point bending motion causing H-bond breaking. Although a deuteron is also a light particle
and should be considered as a quantum particle, the e�ective volume it occupies and the related
zero-point energies are less than for a proton. In sodium hydroxide, this induces an important
isotope e�ect. While a phase transition from a deuteron ordered antiferroelectric structure
toward a deuteron disorder para-electric phase is observed as the temperature is increased
above 153K, the protonated structure only presents a proton disordered para-electric structure.
We demonstrate the correlation of this transition with the structural properties of the system.
Indeed, as the deuteron and proton disordered phase share the same la�ice parameters, the
deuteron structure shows a signi�cant increase of one la�ice parameter at the transition. �e
important quantum delocalization and the zero-point contribution to the kinetic energy of the
protonated system hinder the transition that occurs in NaOD. �is result was then con�rmed by
increasing the pressure in the protonated system, recovering a proton-ordered anti-ferroelectric
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state analogous to the low-temperature deuterated system.

�roughout our investigations, we have seen how the quantum nature of nuclei deeply impacted
both structural description and dynamical properties of the complex systems we studied. In
the light of these �ndings, it appears that nuclear quantum e�ects are fundamental properties
which should be accounted for in theoretical simulations of many physical systems. Taking
into account the quantum nature of nuclei in condensed ma�er systems can pave the way for a
be�er understanding of physical properties and lead to the discovery of new structures.
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Appendices

T he simulation results present in this thesis were carried out within the NVT ensemble. �ey
were performed using the �antum Espresso package124 for the DFT calculations while

nuclear quantum e�ects were taken into account through QTB with a local modi�ed version
of �antum Espresso and PIMD simulations via the i-Pi125 interface. �ese methods allowed
to compute approximate velocity-velocity time correlation functions, and correct quantum
distributions respectively.
�e electronic structure and atomic forces were described within the GGA approximation and
the interaction between ionic cores and valence electrons were described by ultra-so� pseudo-
potentials provided by �antum Espresso. La�ice parameters were obtained through systematic
volume relaxation of the system ensuring isotropic stress tensors for each pressure and the
typical duration time of the simulations was 30 ps with a time step of 0.48 fs.
In the following section, we provide the technical requirement, and set of parameters, to
reproduce the simulations of the di�erent systems investigated in this thesis.
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Brucite minerals

A.1 Computational details

Both Brucite (Mg(OH)2) and Portlandite (Ca(OH)2) were simulated by the use of a tetragonal
supercell containing 15 atoms with 4 magnesium (or calcium), 8 oxygen and 8 hydrogen atoms.
�e following pseudo-potentials were used with a plane-waves expansion cuto� of Ecut = 50Ry
ensuring total energy convergence.

• Mg.pw91-np-van.UPF

• Ca.pw91-nsp-van.UPF

• O.pw91-van ak.UPF

• H.pw91-van ak.UPF

�e Brillouin zone was sampled with a 2 × 2 × 2 k-point grid.
On top of DFT calculations, we used PIMD-based RPMD approach to account for the nuclear
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Figure A.1. Convergence of the potential and kinetic energies as a function of the number of beads
within RPMD simulations of Brucite.

quantum e�ects. �e number of beads in the RPMD simulations was set to 24 and checked to
provide convergence of kinetic and potential energies as shown in Figure A.1.
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ix B

Methane hydrate

B.1 Computational details

For each phase, the samples consist of 4 methane and 8 water molecules (CH4:(D2O)2) in an
orthorhombic crystal cell. Finite-size e�ects on equilibrium con�gurations were systematically
checked. We added a Van der Waals correction via the semi-empirical D2 scheme by Grimme,126

in order to be�er reproduce the experimental la�ice constants and compressibility of MH-III. �e
resulting la�ice parameters were chosen to provide an isotropic stress tensor, at all simulated
pressures.
�e following pseudo-potentials were used with a plane-waves expansion cuto� of Ecut = 40Ry.

• O.pbe-rrkjus.UPF

• H.pbe-rrkjus.UPF

• C.pbe-rrkjus.UPF

�e Brillouin zone was sampled with a 2 × 1 × 2 k-point grid.
Both QTB and PIMD approaches were used to describe dynamical properties and quantum
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Figure B.1. Convergence of the potential and kinetic energies as a function of the number of beads
within RPMD simulations of Methane Hydrate.

distributions. Speci�cally, we used the Path Integral Generalized Langevin Equation �ermostat
(PIGLET)127,128 method which, as other methods such as PI-QTB,129,130 allows a faster conver-
gence, thus reducing the required number of replicas. �e friction coe�cient used in QTB
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Appendix B. Methane hydrate

simulations was set to γ = 10THz and the number of beads in the PIGLET simulations was set
to 8 and checked to provide convergence of kinetic and potential energies as shown in Figure
B.1.

B.2 Methane rotation characterization

In order to characterize the methane rotational motions, we extract this motion while removing
other internal vibrational modes by the use of the following method.
Let ®rm

`
, ` ∈ [1,n] designates the unit vectors that point to the atoms in the molecule (i. e. a bond

vector), this in the molecular frame. �ese are constants that de�ne the molecule.
Now the molecule may have undergone a rotation in the laboratory (or crystal) frame. �e
vectors that point to the atom now write:

®r lab` (t) = R−1(t)®rm` = RT (t)®rm`

where R(t) is the rotational matrix that goes from the laboratory frame to the molecular frame
(and R−1 = RT since it is a rotation matrix). �is matrix can be de�ned through Euler angles
(ϕ, θ ,ψ ) or quaternions Q = (q0,q1,q2,q3) with q2

0 + q
2
1 + q

2
2 + q

2
3 = 1, and

q0 = cos θ2 cos ϕ +ψ2 (B.2.1)

q1 = sin θ2 cos ϕ −ψ2 (B.2.2)

q2 = sin θ2 sin ϕ −ψ2 (B.2.3)

q3 = cos θ2 sin ϕ +ψ2 (B.2.4)

(B.2.5)

while

R = ©­«
q2

0 + q
2
1 − q

2
2 − q

2
3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q

2
1 + q

2
2 − q

2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q

2
1 − q

2
2 + q

2
3

ª®¬
One can also carry out the same operation at time t + dt where dt is presumably small:

®r lab` (t + dt) = RT (t + dt)®rm`

Assuming one can extract the quaternions at time t , Q(t), and t +dt , Q(t +dt), one can estimate
the time derivative ÛQ thereof.
We now have the relation:

ÛQ =
1
2

©­­­«
q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

ª®®®¬
©­­­«

0
ωm
x

ωm
y

ωm
z

ª®®®¬
where, of course

�� ÛQ��2 = 2( Ûq0q0 + Ûq1q1 + Ûq2q2 + Ûq3q3) = 0, which can be easily checked from the
above equation. �is is thus, in practise, a (3 × 3) system which yields the rotation vector in the
molecular frame:
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B.2. Methane rotation characterization

®Ωm =
©­«
ωm
x

ωm
y

ωm
z

ª®¬
where ωm

x , ωm
y and ωm

z are the angular velocities. �e same vector can be obtained in the
laboratory frame:

®Ωlab = RT ®Ωm

Finally, in order to extract the quaternions from a molecular dynamics con�guration, one may
write:

χ 2 =
∑̀ (
®r`(t) − RT ®rm`

)2
+ λ(q2

0 + q
2
1 + q

2
2 + q

2
3 − 1)

where ®r`(t) are the units vectors associated with each atom, and λ is a Lagrange multiplier that
ensures the quaternion normalization.
We want to �nd a set of quaternions for χ 2 to be at a minimum, thus:

∂χ 2

∂qα
= 2

∑̀ (
RT ®rm` − ®r`(t)

) ∂ (
RT ®rm

`

)
∂qα

+ 2λqα = 0, α ∈ [0, 3]

∂χ 2

∂λ
= q2

0 + q
2
1 + q

2
2 + q

2
3 − 1 = 0

a set of non-linear equations to be solved by standard Newton-style methods or through a direct
minimization of χ 2 via a conjugate-gradient method.
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Sodium hydroxide

C.1 Computational details

NaOD and NaOH were simulated by the use of an orthorhombic supercell containing 24 atoms
with 8 sodium, 8 oxygen and 8 hydrogen (or deuterium) atoms.
�e following pseudo-potentials were used with a plane-waves expansion cuto� of Ecut = 40Ry.

• Na.pbe-mt �i.UPF

• O.pbe-rrkjus.UPF

• H.pbe-rrkjus.UPF

�e Brillouin zone was sampled with a 2 × 1 × 3 k-point grid.

On top of DFT calculations, we used PIMD-based PIGLET approach to account for the nuclear
quantum e�ects. �e number of beads in the PIGLET simulations was set to 24 and checked to
provide convergence of kinetic and potential energies as shown in Figure C.1.
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Figure C.1. Convergence of the potential and kinetic energies as a function of the number of beads
within RPMD simulations of Brucite.
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C.2 Volume optimization

As the pressure could trigger the transition observed in NaOD and NaOH, we performed simu-
lations within the NVT ensemble in order to prevent arti�cial transition that a barostat could
induce. �erefore, a systematic optimization of the volume was performed at di�erent tem-
peratures in order to obtain la�ice parameters at an hydrostatic pressure as provided in Table
5.

NaOD NaOH NaOH (1GPa)
T a b c a b c a b c

77K 3.389 3.445 10.819 3.393 3.412 11.280
100K 3.389 3.445 10.819
150K 3.395 3.455 10.800
200K 3.400 3.455 10.821
250K 3.405 3.445 11.195
300K 3.411 3.446 11.196 3.412 3.440 11.290 3.373 3.403 10.899

Table 5. Optimized la�ice parameters of NaOH and NaOD.
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dissolution à l’aide de l’électricité galvanique”. Ann. Chim. 58 (1806), 54–73.

[52] Charles Meade and Raymond Jeanloz. “Static compression of Ca(OH)2 at room tempera-
ture: observations of amorphization and equation of state measurements to 10.7 GPa”.
Geophysical Research Le�ers 17.8 (1990), pp. 1157–1160.

[53] T Nagai, T Ha�ori, and T Yamanaka. “Compression mechanism of brucite: An investi-
gation by structural re�nement under pressure”. American Mineralogist 85.5-6 (2000),
pp. 760–764.

[54] George A Je�rey. “Water structure in organic hydrates”. Acc. Chem. Res. 2.11 (1969),
pp. 344–352.

[55] Jr E Dendy Sloan and Carolyn Koh. Clathrate hydrates of natural gases. CRC press, 2007.
[56] Ayhan Demirbas. Methane gas hydrate: as a natural gas source. Springer, 2010.
[57] M. Mitarai et al. “Surfactant E�ects on the Crystal Growth of Clathrate Hydrate at the

Interface of Water and Hydrophobic-Guest Liquid”. Cryst. Growth Des. 15 (2015), p. 812.
[58] P. M. Naullage, A. A. Bertolazzo, and V. Molinero. “How do surfactants control the

agglomeration of clathrate hydrates?” ACS Cent. Sci. 5 (2019), p. 428.
[59] Marco Lauricella et al. “Methane Clathrate Hydrate Nucleation Mechanism by Advanced

Molecular Simulations”. �e Journal of Physical Chemistry C 118 (Oct. 2014), pp. 22847–
22857.

[60] Flavio Romano and Francesco Sciortino. “Pa�erning symmetry in the rational design of
colloidal crystals”. Nature communications 3 (2012), p. 975.

[61] E Dendy Sloan and Carolyn A Koh. “Clathrate Hydrates of Natural Gases (3rd ed.)” CRC
Press 119 (2008).

[62] Wendy L Mao and Ho-kwang Mao. “Hydrogen storage in molecular compounds”. PNAS
101.3 (2004), pp. 708–710.

[63] Viktor V Struzhkin et al. “Hydrogen storage in molecular clathrates”. Chem. rev. 107.10
(2007), pp. 4133–4151.

[64] Peter G Brewer et al. “Direct experiments on the ocean disposal of fossil fuel CO2”.
Science 284.5416 (1999), pp. 943–945.

[65] JS Loveday et al. “Transition from cage clathrate to �lled ice: the structure of methane
hydrate III”. Phys. Rev. Le�. 87.21 (2001), p. 215501.

[66] JS Loveday and RJ Nelmes. “High-pressure gas hydrates”. Phys. Chem. Chem. Phys. 10.7
(2008), pp. 937–950.

[67] JS Loveday et al. “Stable methane hydrate above 2 GPa and the source of Titan’s atmo-
spheric methane”. Nature 410.6829 (2001), pp. 661–663.

[68] H Hirai et al. “Structural changes in gas hydrates and existence of a �lled ice structure
of methane hydrate above 40 GPa”. J. Phys. Chem. Sol. 65 (2004), p. 1555.

[69] Wendy L Mao, Carolyn A Koh, and E Dendy Sloan. “Clathrate hydrates under pressure”.
Physics Today 60 (2007), p. 42.

[70] Leonardo Del Rosso, Milva Celli, and Lorenzo Ulivi. “New porous water ice metastable
at atmospheric pressure obtained by emptying a hydrogen-�lled ice”. Nature communi-
cations 7 (2016), p. 13394.

138



[71] Daniel M Amos et al. “A Chiral Gas–Hydrate Structure Common to the Carbon Dioxide–
Water and Hydrogen–Water Systems”. J. Phys. Chem. Le�. 8.17 (2017), pp. 4295–4299.

[72] JS Loveday and RJ Nelmes. “High-pressure neutron di�raction and models of Titan”.
High Pres. Res. 23.1-2 (2003), pp. 41–47.

[73] Amanda Mascarelli. “A sleeping giant?” Nat. rep. Clim. Change (2009), pp. 46–49.
[74] Hisako Hirai et al. “Methane hydrate, amoeba or a sponge made of water molecules”.

Chem. Phys. Le�. 325.5 (2000), pp. 490–498.
[75] A Witze. “Mars methane hunt comes up empty, �ummoxing scientists.” Nature 568.7751

(2019), p. 153.
[76] Olivier Mousis et al. “Methane clathrates in the solar system”. Astrobiology 15.4 (2015),

p. 308.
[77] Hisako Hirai et al. “Methane hydrate behavior under high pressure”. J. Phys. Chem. B

104.7 (2000), pp. 1429–1433.
[78] H Hirai et al. “High-pressure structures of methane hydrate observed up to 8 GPa at

room temperature”. J. Chem. Phys. 115.15 (2001), pp. 7066–7070.
[79] H Hirai et al. “Retention of �lled ice structure of methane hydrate up to 42 GPa”. Phys.

Rev. B 68.17 (2003), p. 172102.
[80] Hisako Hirai et al. “Stabilizing of methane hydrate and transition to a new high-pressure

structure at 40 GPa”. Amer. Mineral. 91 (2006), p. 826.
[81] S-I. Machida et al. “A new high-pressure structure of methane hydrate surviving to

86GPa and its implications for the interiors of giant icy planets”. Phys. Earth Planet. Inter.
155.1 (2006), pp. 170–176.

[82] I-Ming Chou et al. “Transformations in methane hydrates”. PNAS 97.25 (2000), pp. 13484–
13487.

[83] Tatsuya Kumazaki et al. “Single-crystal growth of the high-pressure phase II of methane
hydrate and its Raman sca�ering study”. Chem. Phys. Le�. 388.1 (2004), pp. 18–22.

[84] Hiroyasu Shimizu et al. “In situ observations of high-pressure phase transformations in
a synthetic methane hydrate”. J. Phys. Chem. B 106.1 (2002), pp. 30–33.

[85] S-I. Machida et al. “Raman spectra of methane hydrate up to 86 GPa”. Phys. Chem. Miner.
34.1 (2007), pp. 31–35.

[86] Mathieu Choukroun et al. “Stability of methane clathrate hydrates under pressure:
In�uence on outgassing processes of methane on Titan”. Icarus 205.2 (2010), pp. 581–593.

[87] Takehiko Tanaka et al. “Phase changes of �lled ice Ih methane hydrate under low
temperature and high pressure”. J. Chem. Phys. 139 (2013), p. 104701.

[88] DD Klug et al. “Hydrogen-bond dynamics and Fermi resonance in high-pressure methane
�lled ice”. J. Chem. Phys 125.15 (2006), p. 154509.

[89] Toshiaki Iitaka and Toshikazu Ebisuzaki. “Methane hydrate under high pressure”. Phys.
Rev. B 68.17 (2003), p. 172105.

[90] Umbertoluca Ranieri et al. “Fast methane di�usion at the interface of two clathrate
structures”. Nature Comm. 8 (2017), p. 1076.

[91] L Bezacier et al. “Experimental investigation of methane hydrates dissociation up to
5GPa: Implications for Titan’s interior”. Phys. Earth Planet. Inter 229 (2014), pp. 144–152.

139



[92] J. S. Loveday. “Neutron Di�raction Studies of Ices and Ice Mixtures”. High-Pressure
Crystallography. Ed. by Andrzej Katrusiak and Paul McMillan. Dordrecht: Springer
Netherlands, 2004, pp. 69–80.

[93] T. Tanaka et al. “Phase changes of �lled ice Ih methane hydrate under low temperature
and high pressure”. J. Chem. Phys. 139.10 (2013), p. 104701.

[94] J Baumert et al. “La�ice dynamics of methane and xenon hydrate: Observation of
symmetry-avoided crossing by experiment and theory”. Phys. Rev. B 68.17 (2003), p. 174301.

[95] H Schober et al. “Guest-host coupling and anharmonicity in clathrate hydrates”. Eur.
Phys. J. E 12 (2003), p. 41.

[96] �omas Meier et al. “Observation of Nuclear �antum E�ects and Hydrogen Bond
Symmetrisation in High Pressure Ice”. Nature Communications 9 (July 2018).

[97] Hirokazu Kadobayashi et al. “In situ Raman and X-ray di�raction studies on the high
pressure and temperature stability of methane hydrate up to 55 GPa”. J. Chem. Phys. 148
(2018), p. 164503.

[98] Lin Lin, Joseph A Morrone, and Roberto Car. “Correlated tunneling in hydrogen bonds”.
J. Stat. Phys. 145.2 (2011), pp. 365–384.

[99] Kenneth S Schweizer and Frank H Stillinger. “High pressure phase transitions and
hydrogen-bond symmetry in ice polymorphs”. J. Chem. Phys. 80.3 (1984), pp. 1230–1240.

[100] Frank Smallenburg and Francesco Sciortino. “Tuning the liquid-liquid transition by
modulating the hydrogen-bond angular �exibility in a model for water”. Physical review
le�ers 115.1 (2015), p. 015701.

[101] Hannes Jónsson, Greg Mills, and Karsten W. Jacobsen. “Nudged Elastic Band Method for
Finding Minimum Energy Paths of Transitions”. Classical and �antum Dynamics in
Condensed Phase Simulations. Ed. by G. Cicco�i B. J. Berne and D. F. Coker. Singapore:
World Scienti�c, 1998.

[102] H Hirai et al. “Solid methane behaviours under high pressure at room temperature”. J.
Phys.: Conf. Series. Vol. 121. 2008, p. 102001.

[103] JE Proctor et al. “Raman spectroscopy of methane (CH4) to 165 GPa: E�ect of structural
changes on Raman spectra”. J. Raman Spectr. 48 (2017), p. 1777.

[104] Guoying Gao et al. “Dissociation of methane under high pressure”. J. Chem. Phys. 133
(2010), p. 144508.

[105] William M Haynes. CRC handbook of chemistry and physics. CRC press, 2014.
[106] H-J Bleif and H Dachs. “Cystalline modi�cations and structural phase transitions of NaOH

and NaOD”. Acta Crystallographica Section A: Crystal Physics, Di�raction, �eoretical and
General Crystallography 38.4 (1982), pp. 470–476.

[107] MP Krobok, PG Johannsen, and WB Holzapfel. “Raman and FTIR study of NaOH and
NaOD under pressure”. Journal of Physics: Condensed Ma�er 4.41 (1992), p. 8141.

[108] TJ Bastow et al. “Low Temperature Phase of NaOD”. Zeitschri� für Naturforschung A
41.1-2 (1986), pp. 283–285.

[109] Mary Anne White and Stanley A Moore. “A calorimetric investigation of the low-
temperature phase transition in NaOD”. �e Journal of chemical physics 85.8 (1986),
pp. 4629–4632.

140



[110] Mizuhiko Ichikawa and Takasuke Matsuo. “Deuteration-induced structural phase tran-
sitions in some hydrogen-bonded crystals”. Journal of molecular structure 378.1 (1996),
pp. 17–27.

[111] TJ Bastow, MM Elcombe, and CJ Howard. “Low temperature phase transition in CsOH
and CsOD”. Solid state communications 62.3 (1987), pp. 149–151.

[112] DT Amm et al. “A low temperature phase transition in NaOD near 150 K”. �ermochimica
acta 95.2 (1985), pp. 447–451.

[113] James A Ibers, Junji Kumamoto, and Robert G Snyder. “Structure of Potassium Hydroxide:
An X-Ray and Infrared Study”. �e Journal of Chemical Physics 33.4 (1960), pp. 1164–1170.

[114] H Jacobs et al. “Bonding conditions in crystalline phases of RbOH and RbOD”. Zeitschri�
fuer Anorganische und Allgemeine Chemie (1950) 544 (1987).

[115] Mary Anne White et al. “�ermodynamic characterization of the low-temperature phase
transformations in KOH and KOD”. �e Journal of chemical physics 89.7 (1988), pp. 4346–
4348.

[116] Paul WR Bessone�e and Mary Anne White. “Why is there no low-temperature phase
transition in NaOH?” �e Journal of chemical physics 110.8 (1999), pp. 3919–3925.

[117] Horst P Beck and Gunda Lederer. “High pressure transformations of NaOH”. �e Journal
of chemical physics 98.9 (1993), pp. 7289–7294.

[118] William R Busing. “Infrared spectra and structure of NaOH and NaOD”. �e Journal of
Chemical Physics 23.5 (1955), pp. 933–936.

[119] H Jacobs, J Kockelkorn, and � Tacke. “Hydroxide des Natriums, Kaliums und Rubidiums:
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