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T he quantum nature of nuclei yields unexpected and o en paradoxical behaviors. Hydrogen, because of the lightness of its nucleus, is a most likely candidate for such e ects. Indeed, as demonstrated about 20 years ago, 1 the pressure-induced transition from the proton-disordered ice VII to the hydrogen-bond symmetric ice X phase is signi cantly downshi ed by the proton zero-point energy and tunneling. Using up-to-date methods and increased simulation capabilities, we now investigate more complex hydrated systems, namely, the brucite minerals (Mg(OH) 2 ), the methane hydrate (CH 4 -H 2 O) and the sodium hydroxide (NaOH), which display complex mechanisms driven by the proton quantum properties.

Brucite exhibits the coexistence of thermally activated hopping and quantum tunneling with opposite behaviors as pressure is increased. e unforeseen consequence is a pressure sweet spot for proton di usion. Simultaneously, pressure gives rise to a "quantum" quasi two-dimensional hydrogen plane, non-trivially connected with proton di usion.

Methane hydrate displays an important increase of the inter-molecular interactions between water and enclosed methane molecules. In contrast with ice, the hydrogen bond transition does not shi by H/D isotopic substitution. is is explained by an important delocalization of the proton which also triggers a transition toward a new MH-IV methane hydrate phase, stable up to 150 GPa which represents the highest pressure reached to date by any hydrate.

Sodium hydroxide has a phase transition below room temperature at ambient pressure only in its deuterated version. is radical isotope e ect can be explained by the quantum delocalization of the proton as compared with deuteron shi ing the temperature-induced phase transition of NaOD towards a pressure-induced one in NaOH.

i Résumé L a nature quantique des noyaux produit des comportements ina endus et souvent paradoxaux.

L'hydrogène, en raison de la légèreté de son noyau, est le candidat le plus susceptible de présenter de tels comportements. En e et, comme il a été démontré il y a environ 20 ans, 1 la transition, induite par la pression, de la glace VII présentant des protons désordonnés à la phase de glace X, aux liaisons hydrogènes symétriques, était considérablement abaissée par le biais de l'énergie de point-zéro et des e ets tunnels relatifs aux protons. À l'aide de méthodes modernes et grâce à l'augmentation des capacités computationnelles, nous pouvons maintenant étudier des systèmes physiques plus complexes. Lors de ce e thèse, nous nous sommes a ardés sur l'étude de trois systèmes hydratés, à savoir la Brucite (Mg(OH) 2 ), l'hydrate de méthane (CH 4 -H 2 O) et l'hydroxyde de sodium (NaOH), dont les mécanismes complexes sont déterminés par les propriétés quantiques des protons.

Au sein des brucites coexistent deux e ets en compétition: un mécanisme de réorientation thermiquement activé, et un processus de dissociation déclenché par les e ets quantiques nucléaires.

Ces deux e ets s'opposent à mesure que la pression augmente, entrainant l'existence d'un point de pression favorable à la di usion des protons. Simultanément, la pression donne naissance à un plan d'hydrogène "quantique" quasi bidimensionnel, non trivialement lié à la di usion de ces derniers.

Les hydrates de méthane présentent une augmentation importante des interactions intermoléculaires entre l'eau et les molécules de méthane qui y sont enfermées. Contrairement à la glace, la transition de symétrisation de la liaison hydrogène ne change pas par substitution isotopique H/D. Ceci s'explique par une importante délocalisation du proton qui déclenche également une transition vers une nouvelle phase d'hydrate de méthane que nous avons découverte, le MH-IV, stable jusqu'à 150 GPa, qui représente la pression la plus élevée atteinte par tout hydrate connu à ce jour. L'hydroxyde de sodium présente une transition de phase en-dessous de la température ambiante et à pression ambiante uniquement dans sa version deutérée. Cet e et isotopique important peut s'expliquer par la plus grande délocalisation quantique et par l'importance de l'énergie de point-zéro du proton par rapport au deutérium. De fac ¸on surprenante, la substitution isotopique H/D change la transition induite par la température dans NaOD en une transition déclenchée par la pression dans NaOH.
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Introduction I State of the art

Introduction

T he use of quantum mechanics in condensed ma er simulations is routinely con ned to the description of the electronic properties, while the behavior of nuclei remains in the domain of Newton's classical dynamics. If this framework provides a good approximation for heavy particles in general, nuclei are not in principle restricted to a classical description. In some cases, they can exhibit wave behavior as other quantum particles, and show what is known as Nuclear antum E ects (NQE). e limit between the classical and quantum domains is sometimes unclear, and can be appreciated through the wave nature of particles as brought out by L. de Broglie in 1924 referring to Einstein's 1905 discovery of photons and wave-particle duality: each particle having a momentum can be seen as a wave with a wavelength that describes the wave packet spread related to the particle.

L. de Broglie thermal wavelength

λ B = h √ 2πmk B T
Where k B is the Boltzmann constant, m the mass of the particle, T the temperature and h the Planck constant.

erefore, for cases in which the de Broglie wavelength is of the order of magnitude of the characteristic length scale of its environment (la ice parameters, inter-atomic distances, mean free path …), the particle quantum nature cannot be neglected, and the classical approximation cannot be applied. In the present study, we aim at investigating cases for which the quantum nature of nuclei, in particular, zero-point motion and tunneling e ect, is essential to fully describe their behavior. From the de Broglie thermal wavelength, one can observe that light nuclei or low-temperature systems are those for which nuclear quantum e ects are in principle signi cant. In this thesis, we mainly address the nuclear e ects that happen for light nuclei, such as hydrogen and deuterium atoms present in hydrated crystals, usually at ambient temperature, for which the proton de Broglie wavelength is about 1 Å, therefore comparable to the typical O-H bond length. However, we will see that the strength of nuclear quantum e ects can be highly unpredictable as it results from a subtle balance between localization, usually induced by the potential, and quantum spread, which results from the wave-particle duality at the typical λ B length scale.

Among the di erent approaches to address NQE within ab-initio simulations, the Path Integral (PI) methods, 2 based on Feynman description of quantum mechanics, and the so-called antum ermal Bath (QTB), [START_REF] Laroche | antum thermal bath for molecular dynamics simulation[END_REF] arising from the Langevin equation, have been successfully employed for several systems. [START_REF] Bronstein | antum-driven phase transition in ice described via an e cient Langevin approach[END_REF][START_REF] Bronstein | ermal and nuclear quantum e ects in the hydrogen bond dynamical symmetrization phase transition of δ -AlOOH[END_REF][START_REF] Bronstein | antum versus classical protons in pure and salty ice under pressure[END_REF][START_REF] Calvo | Vibrational spectra of polyatomic molecules assisted by quantum thermal baths[END_REF] In particular, the description of the ice VII → X transition, have been shown to be quantum driven through Path Integral Molecular Dynamics (PIMD) [START_REF] Benoit | Tunnelling and zero-point motion in highpressure ice[END_REF] and con rmed later with the QTB. [START_REF] Bronstein | antum-driven phase transition in ice described via an e cient Langevin approach[END_REF] is transition of the ice represents a case-study where the importance of the nuclear quantum e ects along a one-dimensional double-well potential is now well understood. However, when other degrees of freedom are involved, sophisticated and somehow non-intuitive e ects can arise. In the present study, we therefore address complex systems where the quantum behavior of nuclei leads to complex mechanisms sometimes entangled with other phenomena. is thesis is organized as follows:

• e rst part is devoted to the theory and the description of the di erent numerical ap- proaches we used in the following. In particular, in Chapter 1 we introduce the density operator formalism of quantum mechanics leading to the PI formalism, then we recall the basis of the Linear response theory and the uctuation-dissipation theorem at the root of the QTB and Ring Polymer Molecular Dynamics (RPMD) methods. is rst chapter then ends with the description of Born Oppenheimer molecular dynamics and a quick reminder of the electronic quantum description with the Density Functional eory (DFT).

en, in Chapter 2 we describe the di erent approaches to treat nuclear quantum e ects in our simulations. Firstly, we introduce the Langevin equation and related QTB approach. Secondly, we describe the Feynman path integral formalism leading to the PIMD method allowing a correct quantum statistical description of nuclei. To conclude this chapter, we present the RPMD method, which allows to approximate time correlation functions within the PI formalism. Finally, in Chapter 3 we describe the Nudged Elastic Band (NEB) method allowing one to have access to the minimum energy path for phase transition descriptions, and we also present the Metadynamics (MTD) giving rise to a free energy sampling along the chosen Path Collective Variables (Path CVs).

• e second part presents the di erent quantum driven mechanisms observed through our investigation of real physical systems. In Chapter 1, we present the case of proton di usion in Brucite minerals X(OH) 2 ( X= Mg, Ca, Ni … ), which is triggered by the presence of nuclear quantum e ects enhanced by pressure. We will see that the competition between quantum driven and thermally driven mechanisms leads to a pressure sweet spot for the proton di usion in the system and that within its mineral family, Brucite could be a speci c case. In this chapter, we will also show how the quantum delocalization of the proton could induce the creation of a 2D proton plane.

en in Chapter 2, we present a study of methane hydrate (CH 4 -H 2 O) under high pressure. We rst describe how the methane molecules con ned within a hydrogen-bonded water frame reorganize into an orientationally ordered system upon compression, leading to an interaction enhancement between the la er molecules and their environment. en, we present the quantum driven hydrogen bond symmetrization of MH-III, which displays important di erences with the ice VII → X phase transition regarding H/D isotopic substitution. In particular, we will see how a two-dimensional description of the quantum delocalization impacts this mechanism. en, we will present a new high-pressure phase we discovered, the MH-IV, and describe its quantum induced phase transition. Finally, in Chapter 3, we present the case of sodium hydroxide (NaOH) in which nuclear quantum e ects change the structural stability of the system, leading to a strong isotope e ect. In particular, we will describe why a phase transition occurs for NaOD with increasing temperature, and disappears while substituting deuterons with protons. is analysis of sodium hydroxide will also allow us to compare the equivalence of temperature and pressure e ect within this system. I n this part, we introduce the necessary theoretical foundations to describe the di erent methods allowing investigation of NQE within the same framework. First, we will introduce the formalism of quantum mechanics via the density operator and its properties both at equilibrium and its evolution under an external perturbation. It will naturally be involved in the description of the Feynman PI formalism, and also will be an essential asset to derive the Fluctuation-Dissipation eorem (FDT) from the Linear Response eory framework. e la er will be treated in a second part, where the di erent de nitions of the generalized susceptibility, correlations functions, and spectral densities will be introduced as well as their di erent properties leading to the FDT. Finally, in the present work, all the electronic description and the inter-atomic forces are derived from the DFT within the Born-Oppenheimer approximation. erefore, a brief description of the Kohn-Sham equations and inherent approximation will be provided. e reader could nd more detailed information about the di erent subjects in the following resources this document is inspired by: Density matrix: Mark Tuckerman 

Part I

State of the art

Density matrix

While dealing with quantum systems, one usually describe their states with the related wave function |Ψ of Hilbert space H . is de nition only refers to so-called "pure" states which are unequivocally de ned by a single state vector. However, in a statistical ensemble representation, we have to treat a statistical mixture of pure states or so de ned "mixed" states. e density operator here described allows describing both pure and mixed states in a generalized formulation. In this section, we will rst de ne the density matrix of a pure state, generalize it to include mixed states and then describe its properties. In the second part, we will introduce the time evolution of the density matrix and operators in this representation and study the case of perturbed Hamiltonian. Finally, we will de ne the density operator for a system in thermal equilibrium.

Pure and mixed states

• Pure states antum systems states are usually described by the related eigenfunctions |Ψ which can be expressed as a linear combination of basis state vectors {|U n }:

|Ψ = n c n |U n (1.2.1)
where n |c n | 2 = 1. is state vector describes a "pure" state and in this representation any operator  has its expectation value de ned as:

 = Ψ| Â|Ψ (1.2.2)
We now introduce another formulation of quantum states with the density operator ρ being the outer product of the pure state vector and its conjugate:

ρ = |Ψ Ψ| (1.2.3)
which matrix element in the {|U n } representation is:

ρ mn = U m | ρ |U n = c * n c m (1.2.4)
Both representations are identical, and one can notice that the integral ξ | ρ |ξ de nes the probability to nd the system in the state |ξ . en we can obtain the expectation value of any operator  using the density operator:

 = n,m c * n c m U n |  |U m = n,m ρ mn U n |  |U m = n,m U m | ρ |U n U n |  |U m = m U m | ρ  |U m  = Tr ρ  (1.2.5)
where Tr(O) stands for the trace of matrix O.

In this de nition, the density operator is analogous to the wave function which only describes pure states. Once mixed states are involved, we thus want to include them in a more general de nition of the density matrix.

• Mixed states

In a statistical ensemble representation, we cannot express the ensemble quantum state with a single state vector |Ψ but rather with a probabilistic de nition: e macroscopic system can be in the microstate |Ψ i with the probability p i ( i p i = 1). We thus extend the de nition of the density operator ρi of the related pure state |Ψ i to include a mixture of pure states in the generalized density matrix ρ:

Density operator ρ = i p i |Ψ i Ψ i | (1.2.6) = i p i ρi
Expectation value of any operator  expressed in terms of ρ is then:

 = i p i Ψ i |  |Ψ i = i p i Tr ρi Â
erefore, the expectation value of  can be extracted from the trace of the product of ρ Â:

Operator expectation value

 = Tr ρ  (1.2.7)
is property will be extensively used in the following, in particular, it will ease the derivations taking advantage of the trace properties.

• Density matrix properties

Looking at the density matrix element in the basis {|U n } of H :

ρnm = U (i) n ρ U (i) m (1.2.8) = i p i c (i) * n c (i) m (1.2.9)
We can distinguish the di erent components of ρ: First, the diagonal element ( n = m ), called the population, gives the probability of occupying state |U n . Secondly, the o -diagonal elements (n m) refers to the quantum correlation between the states |U n and |U m . e la er elements have a time-dependent phase factor and are called coherences, these elements are therefore inexistent in the classical description.

Finally, from the de nition of the density operator, one can obtain the following properties:

• e density operator is Hermitian:

ρ † = ρ • It is positive semi-de nite: ξ | ρ |ξ ≥ 0 ∀ |ξ • It is normalized: Tr( ρ) = 1 1.2.

Time evolution

e time evolution of pure states, described by the Hamiltonian Ĥ (t), is de ned by the timedependent Schrödinger equation:

i ∂ ∂t |Ψ(t) = Ĥ (t) |Ψ(t) (1.2.10)
Where is the Planck constant And we can express the system time evolution with the propagator operator Û(t, t 0 ) which evolves the pure state from t 0 to t:

|Ψ(t) = Û(t, t 0 ) |Ψ(t 0 ) (1.2.11)
is operator being solution of the following di erential equation:

i ∂ ∂t Û(t, t 0 ) = Ĥ (t) Û(t, t 0 ) (1.2.12)
And formally de ned as a :

Û(t, t 0 ) = e -i Ĥ (t ,t 0 ) (1.2.13)

• Evolution of the density operator

In a similar way, we can derive analogous to the Schrödinger an equation which is for the density operator. Taking the time derivative of the density operator we obtain:

∂ ∂t ρ(t) = ∂ ∂t i p i |Ψ i (t) Ψ i (t)| = i p i ∂ ∂t |Ψ i (t) Ψ i (t)| + |Ψ i (t) ∂ ∂t Ψ i (t)| = i p i 1 i Ĥ (t) |Ψ i (t) Ψ i (t)| + |Ψ i (t) 1 -i Ψ i (t)| Ĥ (t) = 1 i Ĥ (t) ρ(t) -ρ(t) Ĥ (t) (1.2.14)
Leading to the Liouville-Von Neumann equation:

Liouville-Von Neumann equation:

∂ ∂t ρ(t) = 1 i Ĥ (t), ρ(t) (1.2.15)
where Ĥ (t), ρ(t) is the commutation operation between Ĥ (t) and ρ(t)

a is Ô if a generic operator, then exp(i

Ô) ≡ I + ∞ n=1 i n n! n i=1 Ô.
.. Ôi Here we consider Ô as an hermitian operator so that exp(i Ô) is unitary. e solution of which gives:

ρ(t) = Û(t, t 0 ) ρ(t 0 ) Û † (t, t 0 ) (1.2.16)
Introducing the Liouville superoperator L(t) de ned as:

i L(t) • = 1 i • , Ĥ (t) (1.2.17)
We can now express equation 1.2.15 as:

∂ ∂t ρ(t) = -i L(t) ρ(t) (1.2.18)
Isolated system: In the particular case of a time-independent hamiltonian, the following property of the propagator operator arises:

Û(t, t 0 ) = e -i (t -t 0 ) Ĥ (1.2.19) = Û † (t 0 , t)
erefore, in the case of an isolated system the Liouville superoperator is also time independent and the density operator can be expressed as:

ρ(t) = e -i (t -t 0 ) Ĥ ρ(t 0 )e i (t -t 0 ) Ĥ (1.2.20) = e -i(t -t 0 ) L ρ(t 0 ) (1.2.21) 
• Operator time evolution Schrödinger picture: b Following the density operator time evolution, we will now describe the time evolution of operators within the density operator frame. From equation 1.2.7 and 1.2.16 we derive the time evolution of the expectation value of the operator  within the Schrödinger picture:

A(t) = Tr ρ(t) Â (1.2.22) = Tr Û(t, t 0 ) ρ(t 0 ) Û † (t, t 0 ) Â (1.2.23)
Heisenberg picture: Within the Heisenberg picture, the pure states and thus the density operator are time independent. erefore we have:

|Ψ H = |Ψ(t 0 ) (1.2.24) ρH = ρ (1.2.25)
e time dependency resides however in the operator de nition:

ÂH (t) = Û † (t, t 0 ) Â(t) Û(t, t 0 ) (1.2.26)
Ensuring both representations to be equivalent:

H Ψ| ÂH (t) |Ψ H = Ψ(t)| Â |Ψ(t) (1.2.27)
b Without speci c notation, state vectors or operators are de ned within the Schrödinger picture (Ψ(t) ≡ Ψ S (t) and  ≡ ÂS ).
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Taking advantage of the cyclic invariance of the trace allows to verify also the equivalence of the expectation value of the operator  in both pictures:

ÂH (t) = Tr ρH (t) ÂH (t) = Tr ρH (t 0 ) Û † (t, t 0 ) Â(t) Û(t, t 0 ) = Tr Û(t, t 0 ) ρH (t 0 ) Û † (t, t 0 ) Â(t) ÂH (t) = Â(t) (1.2.28)
De nition 1.2.26 leads to the time derivative of the operator ÂH (t):

d dt ÂH (t) = 1 i ÂH (t), Ĥ + ∂ ∂t ÂH (t) (1.2.29)
If ÂH (t) does not explicitly depend on the time and following the de nition of the Liouville superoperator we nd:

d dt ÂH (t) = i LH (t) ÂH (t) (1.2.30)

Isolated system

Finally, for time independent Hamiltonian and Liouville operators, the solution of the la er equation is:

ÂH (t) = e -i(t -t 0 ) LH ÂH (t 0 ) (1.2.31) 
ÂH (t) = e i(t -t 0 ) Ĥ ÂH (t 0 )e -i(t -t 0 ) Ĥ (1.2.32)

• Dirac interaction picture

We now describe the case of the time-independent Hamiltonian Ĥ0 under the in uence of perturbation Ŵ (t):

Ĥ (t) = Ĥ0 + Ŵ (t) (1.2.33)
As we will see, a convenient way to describe such a case is to go beyond the Schrödinger and Heisenberg pictures, toward the Dirac, or so-called interaction picture. In this representation, the time dependence resides both in the state vectors and the operators. Let us rst de ne the propagator operators related to the time-independent Hamiltonian Ĥ0 and the total Hamiltonian Ĥ :

Û(t, t 0 ) = e -i Ĥ (t -t 0 ) (1.2.34) Û0 (t, t 0 ) = e -i Ĥ0 (t -t 0 ) (1.2.35)
We can now introduce the state vectors |Ψ I (t) and operators ÂI (t) in the Dirac picture:

|Ψ I (t) = Û † 0 (t, t 0 ) |Ψ(t) (1.2.36) ÂI (t) = Û † 0 (t, t 0 ) Â(t) Û0 (t, t 0 ) (1.2.37)
In this way, one can easily check that the Dirac representation is equivalent to both Schrödinger and Heisenberg pictures:

Ψ I (t)| ÂI (t) |Ψ I (t) = H Ψ| ÂH (t) |Ψ H = Ψ(t)| Â |Ψ(t) (1.2.38)
Finally, the state vector in this representation evolves as:

i d dt |Ψ I (t) = ŴI (t) |Ψ I (t) (1.2.39)
Where only the pertubative term of the total hamiltonian acts. We then obtain the density matrix and operators time evolution to be governed by the following di erential equations:

∂ ∂t ρI (t) = 1 i ŴI (t), ρI (t) (1.2.40) d dt ÂI (t) = 1 i ÂI (t), Ĥ0 + ∂ ∂t ÂI (t) (1.2.41)
erefore the density operator time evolution is also only subjected to the perturbative hamiltonian ŴI (t), and the unperturbed term reside in the evolution of the operator ÂI (t). Doing so, the interaction picture allows to remove the time dependency of the unperturbed Hamiltonian Ĥ0 , which is transferred to the operators, focusing on the perturbation which causes the states(density operator) to evolve. e Dirac representation is therefore convenient to treat the perturbations.

ermal equilibrium

In the following, and for all investigations we made during this work, we treat quantum systems in the canonical ensemble, at thermal equilibrium. erefore, the statistical probabilities introduced in the density operator will be expressed in term of the Boltzmann factor:

p i ∝ e -β E i (1.2.42)
where β= 1 k b T is the inverse temperature, and k b is the Boltzmann constant. Including this probability in the de nition of the density operator, and normalizing the la er with the partition function Z leads to the canonical de nition:

Canonical density operator ρeq = 1 Z i e -β E i |Ψ i Ψ i | = e -β Ĥ Z (1.2.43)
Where the partition function reads:

Z = Tr e -β Ĥ (1.2.44)
For the sake of clarity in the following sections, we de ne the diagonal elements of the canonical density operator as:

Π n = U n | ρeq |U n (1.2.45) = e -β E n Z (1.2.46)
From equations 1.2.7 and 1.2.43, it naturally follows that the expectation value of the operator  is de ned as:

 = Tr ρeq  (1.2.47) = 1 Z Tr e -β Ĥ  (1.2.48)
From this de nition, one can recover the de nition of the thermodynamic quantities of the canonical ensemble.

In particular, the energy can be derived as:

E = Ĥ = 1 Z Tr e -β Ĥ Ĥ (1.2.49) = - ∂ ∂β ln Tr e -β Ĥ (1.2.50) = - ∂ ∂β ln Z (1.2.51)
While the entropy is:

S = -k b ln ρeq (1.2.52) = -k b Tr ρeq ln ρeq (1.2.53)
And the Helmoltz free energy:

F = - 1 β ln Z (1.2.54)

Linear Response theory

e linear response theory describes the response of a physical system to a perturbation, which slightly drives it away from equilibrium. In particular, it relates the properties of response, susceptibility, and relaxation of the unperturbed system in terms of the equilibrium correlation function. is development has been originally formalized by R. Kubo 11 in 1966. Let us begin by considering a system at thermal equilibrium described by the time-independent Hamiltonian Ĥ0 , therefore described by the canonical density operator ρeq as de ned in equation 1.2.43. At time t 0 the system is slightly shi ed from equilibrium due to a perturbation described by the additional hamiltonian term Ŵ (t):

Ŵ (t) = -f (t) Â (1.3.1)
Where  is an hermitian operator (observable) of the system associated with the generalized force f (t) which is supposed to be "small", compared to the eigenvalues of the unperturbed system. While t 0 → -∞ we assume the system to be at thermal equilibrium. e perturbed system is then described by the perturbed hamiltonian Ĥ :

Ĥ = Ĥ0 + Ŵ (t) (1.3.2)
As already discussed in Section 1.2 a convenient way to treat the perturbation is to describe the system within the interaction picture, for which we recall the principal de nitions in the following. We associate two quantum propagator Û(t, t 0 ) and Û0 (t, t 0 ) with the perturbed hamiltonian Ĥ and the time independent (at equilibrium) one Ĥ0 :

Û(t, t 0 ) = e -i Ĥ (t -t 0 ) Û0 (t, t 0 ) = e -i Ĥ0 (t -t 0 ) (1.3.3) 
e equilibrium term being separated, we can now express the state vector |Ψ I (t) and any operator ÂI (t) in the interaction picture:

|Ψ I (t) = Û † 0 (t, t 0 ) |Ψ(t) (1.3.4) ÂI (t) = Û † 0 (t, t 0 ) Â(t 0 ) Û0 (t, t 0 ) (1.3.5) ⇒ ŴI (t) = Û † 0 (t, t 0 ) Ŵ (t) Û0 (t, t 0 ) (1.3.6)
Finally the Liouville-Von Neuman theorem (equation 1.2.15) leads to:

d dt ρI (t) = 1 i ŴI (t), ρI (t) (1.3.7)
As we have seen in Section 1.2, the density operator allows us to compute the expected value of any operator. One might derive the la er by integrating the Liouville-von Neuman equation in the Dirac representation:

ρI (t) = ρI (t 0 ) + i ∫ t t 0 f (t ) ÂI (t ), ρI (t ) dt (1.3.8)
As the system is initially at thermal equilibrium ( ρI (t 0 ) = ρeq ) and making t 0 tend to -∞ we obtain:

ρI (t) = ρeq + i ∫ t -∞ f (t ) ÂI (t ), ρI (t ) dt (1.3.9)
Chapter 1.
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Recursively, one can now introduce the de nition of ρI (t) into itself and end up with a perturbation expansion in terms of the density matrix to be truncated at the rst order as we describe a linear relation in terms of f (t). For the la er reason and in an equivalent ending, one also replaces ρI (t ) with ρeq in the commutator, hence:

ρI (t) = ρeq + i ∫ t -∞ f (t ) ÂI (t ), ρeq dt + O f 2 (1.3.10)

Response function

We now want to describe the response of any arbitrary observable B of the system to the perturbation associated with the operator Â. Having computed the density operator in the interaction picture and using de nition 1.2.7, we can derive the expectation value of the observable B out of equilibrium:

BI (t) n.eq . = Tr BI (t) ρI (t) (1.3.11) = B(t) eq + i ∫ t -∞ f (t ) Tr BI (t) ÂI (t ), ρeq dt (1.3.12) = B(t) eq + i ∫ t -∞ f (t ) Tr ρeq BI (t), ÂI (t ) dt (1.3.13) = B(t) eq + i ∫ t -∞ f (t ) BI (t), ÂI (t ) eq dt (1.3.14)
where we use the invariance of the trace under cyclic permutation. Taking advantage of the la er property once again and using the commutation relation between ρeq and Ĥ0 , we nally obtain:

BI (t) n.eq . = B(t) eq + i ∫ t -∞ f (t ) BI (t -t ), ÂI eq dt (1.3.15) = B(t) eq + i ∫ +∞ -∞ f (t ) BI (t -t ), ÂI eq θ (t -t )dt (1.3.16) = B(t) eq + ∫ +∞ -∞ χ BA (t -t )f (t )dt (1.3.17)
In the last line we de ned the linear response function, also knows as susceptibility, χ BA (τ ) through the Kubo formula:

Kubo's formula χ BA (τ ) = i BI (τ ), Â eq θ (τ ) (1.3.18)
where θ is the Heaviside function.

So de ned, the linear response function describes the relation between the perturbation related to the time correlation function between operators  and B at equilibrium. As the perturbation could only modify the system a er it has been switched on, the linear response function should vanish for t < t . In order to respect the causality relation we introduced the Heaviside function θ (τ ) and extended the upper integration boundary. 

χ (τ ) = i θ (τ ) n,m (Π n -Π m )B nm A mn e -iω mn τ (1.3.19)
where we introduced the Bohr frequency ω mn = E m -E n , the matrix elements B nm and A nm are de ned as

X nm = U n | X |U m ( X = Â, B
) and Π n as de ned in equation 1.2.46.

Generalized susceptibility

We can then de ne the generalized susceptibility, as being the Fourier transform of the linear response function in the frequency space:

χBA (ω) = lim ϵ →0 + ∫ +∞ -∞ χ BA (τ )e iωτ e -ϵτ dτ (1.3.20)
where we introduced the last exponential term e -ϵτ in the limit of ϵ → 0 + to ensure that the la er expression does not diverge for τ → +∞.

Taking the inverse Fourier transform we naturally have:

χ BA (τ ) = 1 2π ∫ +∞ -∞ χBA (ω)e -iωτ dω (1.3.21)
Finally, through equation 1.3.19 we can also express the generalized susceptibility in the basis of the eigenstates {|U n }:

χBA (ω) = i n,m (Π n -Π m )B nm A mn lim ϵ →0 + 1 ω mn -ω -iϵ (1.3.22)
As a time convolution product of the linear response function χ BA and f , the expectation value BI (t) n.eq . can therefore be computed by the product of the generalized susceptibility and the Fourier transform of f (t). e generalized susceptibility can be recast in a complex function of a real frequency of the form:

χBA (ω) = χ BA (ω) + i χ BA (ω) (1.3.23)
And one can derive that:

χ BA (ω) = ∫ 1 2 [χ BA (τ ) + χ BA (-τ )]e iωτ dτ (1.3.24) χ BA (ω) = ∫ 1 2 [χ BA (τ ) -χ BA (-τ )]e iωτ dτ (1.3.25)
In the case A = B, the imaginary part χ BA (ω) is therefore governed by the non-invariant (under time reversal) term of the generalized susceptibility. us it is related to dissipation process. e real and imaginary parts of the complex generalized susceptibility are linked by the Kramers-Kronig relations, which allow one to reconstruct the entire susceptibility from either the imaginary or real part.

In the following, we will de ne a set of correlation functions referring to the uctuation, the dissipation, and relaxation. We will also systematically provide the de nitions in the basis of the energy eigenstates |U n which will ease the derivation of the relation between them.
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Fluctuations

In this de nition, the general correlation between uctuating quantities as well as the symmetric correlation function for which relation with the susceptibility will be given. e general de nition of time correlation function between two observables  and B is de ned as follows:

C BA (τ ) = BI (τ ) Â eq (1.3.26)
Which can be recast using equation 1.3.19 as:

C BA (τ ) = n,m Π n B nm A mn e -iω mn τ (1.3.27)
One can notice that even in the case of hermitian operators ( related to observables ) Â and B the la er correlation function is in general complex. erefore, in order to represent observable uctuations of a quantum system, we de ne the following symmetric correlation function S BA :

Symmetric correlation function

S BA (τ ) = 1 2 BI (τ ), Â eq (1.3.28) = 1 2 (C BA (τ ) + C AB (-τ )) (1.3.29)
In case of Hermitian operators, Â and B the symmetric correlation is real as suggested by the expression of C AB (-τ ):

C AB (-τ ) = C BA (-τ ) (1.3.30) = C * BA (τ ) (1.3.31)
In addition, considering B = Â at τ = 0 we obtain:

C AA (τ ) = S AA (τ ) (1.3.32) = A 2 eq (1.3.33)
en if  is centered, both C AA and S AA correspond to the variance of the la er observable. us, in these conditions they relate to the uctuations of the system. rough Fourier transform, one can obtain the symmetric correlation function in the frequency domain:

SBA (ω) = ∫ +∞ -∞ S BA (τ )e -iωτ dτ (1.3.34)
In order to express the la er de nition in the basis of the energy eigenstates we will use expression 1.3.29 as well as the following relation:

C AB (-τ ) = n,m Π n A nm B mn e iω mn τ (1.3.35) = n,m Π n A nm B mn e -iω nm τ (1.3.36) = n,m
Π n A mn B nm e -iω mn τ (1.3.37) us, we nd:

S BA (τ ) = 1 2 n,m (Π n + Π m )B nm A mn e -iω mn τ (1.3.38) Hence: SBA (ω) = π n,m (Π n + Π m )B nm A mn δ (ω -ω mn ) (1.3.39)

Relaxation

e following correlation function is also real-valued and was introduced by Kubo:

Kubo's canonical correlation function

K BA (τ ) = 1 β ∫ β 0 e λ Ĥ0 Âe -λ Ĥ0 BI (τ ) eq dλ (1.3.40) = 1 β ∫ β 0 ÂI (-i λ) BI (τ ) eq dλ (1.3.41)
e la er correlation function describes the relaxation of the system, [START_REF] Kubo | Statistical-Mechanical eory of Irreversible Processes. I. General eory and Simple Applications to Magnetic and Conduction Problems[END_REF] which is initially driven out of equilibrium. One can obtain:

K BA (τ ) = 1 β n,m (Π n -Π m ) B nm A mn ω mn e iω nm τ (1.3.42) 
Leading to the de nition of the canonical correlation function in the frequency domain:

KBA (ω) = ∫ +∞ -∞ K BA (τ )e iωτ dτ (1.3.43) = 2π n,m Π n -Π m β ω mn B nm A mn δ (ω -ω mn ) (1.3.44)

Dissipation

We now de ne the spectral density as the expectation value of the commutator of operators BI (τ ) and Â:

ξ BA (τ ) = 1 2 BI (τ ), Â eq (1.3.45)
In analogy with the derivation of the symmetric correlation function, one can nd that:

ξ BA (τ ) = 1 2 (C BA (τ ) -C AB (-τ )) (1.3.46)
Leading to the spectral density ξBA (ω):

ξBA (ω) = π n,m (Π n -Π m )B nm A mn δ (ω -ω mn ) (1.3.47)
Which, in the case of hermitian operators, leads to the following property:

ξ * BA (ω) = ξAB (ω) (1.3.48)
In addition, in the case B = Â † one can obtain that:

ξ Â † Â(ω) = Im χ Â † Â (ω) = χ Â † Â(ω) (1.3.49)
e la er quantity therefore describes the dissipation.
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Fluctuation-Dissipation theorem

anks to the derivation of the di erent correlations functions as well as the spectral density, we can then establish several important relationships between uctuation, dissipation, and relaxation.

• Correlation-Susceptibility

We rst describe the relationship between the correlation functions and the generalized susceptibility. In the time domain, the linear response function is linked to the spectral density as:

χ BA (τ ) = 2iθ (τ )ξ BA (τ ) (1.3.50)
While it is related to the Kubo canonical correlation function as:

χ BA (τ ) = βθ (τ )K B A (τ ) (1.3.51) χBA (ω) = β ∫ +∞ 0 K B A (τ )e iωτ dτ (1.3.52)

• Correlation-Spectral density

We now focus on the relations between correlation function and spectral density. In the frequency domain, the antisymmetric correlation function is linked to the dissipation, represented by the spectral density as:

CBA (ω) = 2 1 -e -β ω ξBA (ω) (1.3.53) 

• Kubo correlation-Spectral density

To describe the relation between the dissipation and the relaxation, we take advantage of the canonical correlation function:

KBA (ω) = 2 β ξBA (ω) ω (1.3.54)
Finally, the following relation, derived by H. Callen et T. Welton in 1951, [START_REF] Callen | Irreversibility and Generalized Noise[END_REF] known as the FDT, describes the link between the symmetric correlation function SBA (ω) and the spectral density ξBA (ω):

antum Fluctuation-Dissipation theorem

SBA (ω) = coth β ω 2 ξBA (ω) (1.3.55)
It therefore links the uctuations described by SBA (ω) to the dissipation described by ξBA (ω).

From the la er theorem, we can derive the uctuation-dissipation relation in the classical picture as:

lim →0 coth β ω 2 = 2k b T ω (1.3.56)
For which we nd:

Classical Fluctuation-Dissipation theorem

SBA (ω) = 2k b T ω ξBA (ω) (1.3.57)

Ab-Initio Molecular Dynamics

In this section, we will describe the ab-initio scheme used in the simulations presented in this thesis. First, we will recall the Born-Oppenheimer approximation allowing the decoupling of the nuclear and electron wavefunction and then describe the treatment of the electronic part via the DFT. In the next section, we will then see how to describe the nuclear counterpart.

e Born-Oppenheimer approximation

We consider the following many body hamiltonians of the N nuclei and n electron system:

Ĥ = Tn + Te + VN N + Vee + VeN (1.4.1)
Where we introduced:

e nuclear kinetic operator: e electronic kinetic operator:

TN = -2 N a=1 1 M a ∇ 2 a Te = -2m e n i=1
∇ 2 i e electron-nuclear Coulomb a raction: e nuclear-nuclear Coulomb repulsion:

VeN = - N a=1 n i=1 Z a e 2 |r i -R a | VN N = N a=1 N b=1 Z a Z b e 2 |R a -R b |
e electron-electron Coulomb repulsion:

Vee = n i=1 n j=1 e 2 |r i -r j |
Unfortunately, the related Schrödinger equation cannot be solved analytically for complex systems. To address this issue, we have to use the Born-Oppenheimer approximation, which allows decoupling the electronic and nuclear degrees of freedom. e underlying idea behind the Born-Oppenheimer approximation is that the nuclei being much heavier than electrons, they are assumed to be stationary as compared to the electrons. is allows to write the wavefunction in terms of nuclear χ (R) and electronic Ψ(r ; R) wavefunctions:

ϕ(r ; R) = Ψ(r ; R)χ (R) (1.4.2)
In this context, the electrons are assumed to follow the nuclei adiabatically, and can be described considering an electronic hamiltonian Ĥe (R) which depends on the nuclei position R parametrically.

Ĥe = Te + Vee + VeN + VN N (1.4.3)
In the la er expression, the nuclear positons are assumed to be xed, due to their in nite mass. erefore, the nuclear positions can be considered as parameters which will only shi the related energy. en at each xed con guration R the electronic wavefunction Ψ(r ; R) is then the eigen vector of the electronic hamiltonian Ĥe with eigenvalue E e (R):

Ĥe |Ψ e (r ; R) = E e (R) |Ψ e (r ; R) (1.4.4)
e la er time-independent Schrödinger equation, allows one to describe the electronic part only without having to describe the nuclear part. is remarkable property is extensively used in several ab-initio approaches. In particular, DFT describes the quantum electronic structure while nuclei are treated with classical Newtonian mechanics. e aim of the present work is exactly to go beyond this partly quantum description, however in the adiabatic approximation. Finally, once the electronic wavefunction is solved, we obtain an e ective potential energy surface for the nuclei de ned by E e (R):

ĤN = TN + E e (R) (1.4.5)
Which is therefore described by:

ĤN |χ (r ; R) = -2 N a=1 1 M a ∇ 2 a + E e (R) | χ (r ; R) (1.4.6)
e interactions between atoms can be computed at di erent levels of precision: one way is to use interatomic potentials, which express the interactions as depending on the nuclear positions ì R I in an analytical form. An example is provided by Lennard-Jones potentials. However, most of them cannot reproduce the bond breaking-reforming nor be applied for (P, T) conditions they were not suited for an exception is provided by the so-called reactive force elds. In this case, we must describe the bonding with direct reference to electronic structure. One current reference method is the DFT resulting from the work of P. Hohenberg, L.J. Sham and W. Kohn 14,[START_REF] Hohenberg | Inhomogeneous electron gas[END_REF] who received the Nobel prize for the la er.

e Density Functional eory

As we have seen, the Born-Oppenheimer approximation allows us to treat the electronic and nuclear wavefunctions separately. However, the quantum wavefunction associated with a large number of electrons is both an extraordinary complex quantity and might not be the most useful one: the electron density n(r ) is su cient to describe all properties of the electronic ground state, such as the energy and the bonding. Indeed, the electronic density:

n(r ) = n ∫ dr 2 ...dr n |Ψ 0 (r, .., r n )| 2 (1.4.7)
Reduces the number of degrees of freedom to deal with from 3n to only 3. In 1964, [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF] this motivates P. Hohenberg and W. Kohn to formalize the onset of the DFT.

• Hohenberg and Kohn theorem

Hohenberg and Kohn

For the non-degenerate ground state, it exists a one to one correspondence between the Hamiltonian and the ground state electron density, which determines all the properties of the system. e energy as a functional of the electron density:

E [n] = T [n] + E H [n] + E xc [n] + V ex t [n] (1.4.8)
is minimal when the density is the actual ground state density:

min (E [n]) = E [n 0 ] (1.4.9)
for which E[n 0 ] is the ground state energy.

In the la er theorems, we de ned four components of the total functional of density: 

N = ∫ d 3 r n(ì r ) ). δ δn(ì r ) E [n] -µ ∫ d 3 r n(ì r ) = 0 (1.4.10)
Where µ is the Lagrange multiplier that is associated with the conservation of the number of electrons and can be shown to be equal to the Fermi energy.

• Kohn-Sham equations

In 1965, W. Kohn and L.J. Sham introduced the following idea: for a given system of interacting electrons, one could nd a virtual system of non-interacting electrons which has the same energy density of the system of interacting electrons. e density is therefore expanded on a basis of one-particle orbitals:

n(ì r ) = N i=1 |ψ i (ì r )| 2 (1.4.11)
For which the energy functional is therefore recast as:

E[n] = T K S [n] + V e f f K S (1.4.12)
Where V e f f K S is the e ective potential of the one-particle orbitals. is represents the next step of the developement of the DFT introduced by Kohn and Sham in 1965. By minimizing the energy with respect to the {ψ i (ì r )} we obtain the Kohn-Sham equations:

Kohn-Sham equations n(r ) = N i |ψ (r )| 2 (1.4.13)
e ground-state electron density is found by solving:

-2 ∇ 2 2m + V e f f K S (r ) ψ i (r ) = ϵ i ϕ i (r ) (1.4.14) V e f f K S (r ) = V ex t (r ) + e 2 ∫ dr n(r ) |r -r | + V xc (r ) (1.4.15) With V xc (r ) = δ E x c
δ n(r ) the exchange correlation potential.

e two last terms on the right-hand side of equation (1.4.15) depend on the density. erefore, starting from a given trial density n t (r ), we obtain a new potential V t s (r ). en solving (1.4.15), we obtain the orbitals {ψ i (ì r )} that are reinjected in equation (1.4.13) to provide a new density.

ese equations thus have a self-consistent loop:

n t (r ) → V t s (r ) → ψ t i → n t +1 (r ) → ...
Finally, for each set of atomic position, we can calculate inter-atomic forces f i (t) that will be used for dynamics simulations.

DFT requires several parameters to be set properly. Indeed, in order to describe correctly a system, one should rst pay a ention to which exchange-correlation functional to use depending on the system under study.

• Functionals

One can distinguish two main approximations concerning the exchange-correlation energy functional.

Local Density Approximation e Local Density Approximation (LDA) is based on the Homogeneous Electron Gas (HEG) model. It considers that the electron density of the system can be seen as locally homogeneous despite the fact that globally it is not. Since the exchange energy of HEG is known and that its correlation energy can be calculated from quantum Monte-Carlo calculation or perturbation theory, the exchange-correlation energy of HEG can thus be derived (Equation (1.4.16)).

E H EG xc ( n) = V ne H EG xc ( n) (1.4.16)
With V the volume of the system, n the mean value of electron density, and e H EG xc the exchange-correlation energy per electron for the HEG model.

Based on this model, the local density approximation takes advantage of this known HEG exchange-correlation energy and proposes the following formulation:

E LDA xc [n] = ∫ d 3 r n(ì r ) e H EG xc (n(ì r )) (1.4.17) 
With n(ì r ) the local electronic density at ì r .

erefore, this approximation can be a good model for system close to the homogeneous electron gas c . Moreover, LDA does not describe well long range interaction as it is focused on the local density. Among the most popular LDA functionals we can cite the Vosko-Wilk-Nusair (VWN) and the Perdew-Zunger (PZ).

Generalized Gradient Approximation

e main approximation that we use in this report is the Generalized Gradient Approximation (GGA). e purpose of this approximation is to describe the variation of the electron density in the frame of the local density approximation. To do so, functionals taking into account both the density (through LDA) and the gradient of the density of the system were constructed as:

E GGA xc [n, σ ] = E LDA xc [n, σ ] + ∫ d 3 r f GGA xc (n( ì r ); s( r )) (1.4.18)
With f GGA xc the exchange-correlation energy per electron in the generalized gradient approximation, and s( r

) = | ∇n( r ) | (n(r )) 4 3
. is approximation is thus a correction of the local density approximation that extends it to non-homogeneous electron densities. As for the LDA, there are several non-equivalent GGA fonctional that di er by the particular choice of f GGA xc such as BLYP, PBE or PW91.

Pseudo-potentials

While representing the di erent electrons of the system, the pseudo-potentials characterize the way they will be taken into account during the calculations. Indeed, since only valence c i.e. with an electron density that does not vary too much electrons are responsible of the chemical properties, a clever way to describe the system is to set an e ective potential for core electrons, and describe valence states by pseudo-wavefunctions. erefore, core states are frozen and valence orbitals are expanded in plane-waves via Bloch's theorem; the interaction between core and valence electrons are de ned by the pseudo-potential.

ψ m, ì k (ì r ) = e ik ì r u m, ì k (ì r ) (1.4.19)
Where k is the wavevector and u ì k (x) a periodic function having the periodicity of the crystal ( ì G).

u m, ì k (ì r ) is a periodic function, which can be expanded in a Fourrier series runing on the ì G vectors as:

u m, ì k (ì r ) = ì G exp i ì Gì r Ũm ( ì k + ì G) (1.4.20)
An exact representation of valence electrons implies an in nite expansion in plane-waves. Unfortunately, from a computational point of view an in nite expansion is not conceivable, thus a truncation is required. erefore we include in equation 1.4.20 expansion only the ì G reciprocal la ice vectors such that:

2 | ì k + ì G | 2 2m E cut (1.4.21)
As the cuto energy E cut is systematically increased, the quality of the plane-wave basis improves and the corresponding total energy decreases. Although a large expansion gives a be er description, a well-chosen cut-o energy can optimize the computational resource cost with a good description of wavefunctions.

In uence of Brillouin zone sampling

As we have seen, several parameters need to be checked and set correctly, in particular, the cut-o energy that depends upon the choice of pseudo-potential. Another parameter to be optimized is the number of k-points de ning the Brillouin zone sampling. In order to describe many properties of the system, an integral over the wave vectors of the Brillouin zone is required. Let's consider X ( ì k) a function de ned in the reciprocal space, which can be either the density of states, electron density, total energy or other physical quantity, we must compute its expectation value as:

< X >= 1 Ω BZ ∫ X ( ì k)d 3 k (1.4.22)
With Ω BZ the volume of the Brillouin zone.

is integral is computed via a discrete sum, by using a grid of k-points in the Brillouin zone. e thinner the grid, the be er the precision, but the slower the calculation is. U ntil recent awareness, the usual description of condensed ma er systems implied a classical, Newtonian, description of nuclei while electrons were treated as quantum particles through well-known methods, as the DFT. Although NQE are known since Bohr and Planck discoveries, only recently e cient "all-quantum" methods treating both electrons and nuclei as quantum particle have emerged. With the development of these new methods, the importance of the NQE has been demonstrated in many cases. [START_REF] Benoit | Tunnelling and zero-point motion in highpressure ice[END_REF][START_REF] Bronstein | antum-driven phase transition in ice described via an e cient Langevin approach[END_REF][START_REF] Bronstein | antum versus classical protons in pure and salty ice under pressure[END_REF][START_REF] Bronstein | ermal and nuclear quantum e ects in the hydrogen bond dynamical symmetrization phase transition of δ -AlOOH[END_REF] In this thesis, our approach aims to describe both nuclei and electrons as quantum particles, by the use of the DFT, PIMD, and QTB methods. While PIMD gives access to correct quantum distribution, QTB and RPMD allow describing the dynamical properties of a system through approximate velocity correlation functions. erefore, in this chapter, we will rst describe the Langevin equation in order to introduce the QTB method. In the second part, we will focus on the Feynman description of quantum mechanics to depict the PIMD. Finally, we will present the RPMD method as derived from PIMD.

A detailed and reference book describing (not only) Path Integrals and related methods: Mark Tuckerman. Statistical mechanics: theory and molecular simulation. Oxford university press, 2010

Langevin methods

While studying pollen particles through his microscope, the biologist R. Brown observed that their motions at the surface of water [START_REF] Brown | e miscellaneous botanical works of Robert Brown[END_REF] were irregular and somehow random, so-called Brownian motion. e physical mechanism behind Brown's observation remained unclear until 1905, where A. Einstein paved the way of the atomic theory and recent statistical mechanics approach. [START_REF] Einstein | Über die von der molekularkinetischen eorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen[END_REF] He described the di usion process of a Brownian particle through a probabilistic description of atomic collisions between the la er and the uid's molecules. is theory was then con rmed in 1909 by the work of J-B. Perrin. [START_REF] Perrin | Translated from[END_REF] e Brownian motion description is therefore important in physics, one could cite the kinetic theory of gases, but also has a broader landscape of application as nancial mathematics and is at the root of stochastic processes.

Langevin equation

In addition to Einstein's phenomenological description, P. Langevin proposed his approach in 1908, [START_REF] Langevin | On the theory of Brownian motion[END_REF] allowing one to describe the trajectory of such Brownian particles. To characterize Brownian motion, P. Langevin introduced two forces:

• a viscous friction force due to the uid which is of the form -γ x, following Stokes law, and characterized by the friction coe cient γ

• a random force R(t) resulting from the random collisions with the uid's molecules. erefore, for a particle of mass m in an external conservative potential, the Newtonian description of such Brownian motion leads to the Langevin equation (in one dimension):

Langevin equation m x = -∇V (x) -mγ x + R(t) (2.2.1)
Where f (x) = -∇V (x) describes the inter-atomic forces due to the conservative potential V (x), m is the mass of the particle at the position x(t), γ the friction coe cient, and R(t) is the Langevin random force. Originally, the Langevin equation is given without the potential term.

Although devised for this, the Langevin equation applications are not restricted to the description of a Brownian particle immersed in a uid but is generalizable to a broader landscape and is nowadays extensively used as a thermostat for molecular dynamics simulations. At this stage, we have to characterize the uctuating Langevin force R(t), and present the di erent approximations: rst, the bath is assumed to be in a stationary state, in thermodynamic equilibrium. e random force is therefore described by a stationary stochastic process leading to the time-independent expectation value of the random force R(t) and R(t)R(t ) only depends on the di erence tt . Besides, at rest, the particle should remain motionless on average, we, therefore, assume the expectation value of the random force to be null:

R(t) = 0 (2.2.2)
We now introduce the spectral densities of the position S x (ω) and random force S R (ω) through the Wiener-Khintchine theorem:

x(t)x(t + τ ) = 1 2π ∫ +∞ -∞ S x (ω)e -iωτ dω S x (ω) = |x(ω)| 2 (2.2.3) R(t)R(t + τ ) = 1 2π ∫ +∞ -∞ S R (ω)e -iωτ dω S R (ω) = |R(ω)| 2 (2.2.4)
As de ned in Section 1.3, the classical uctuation-dissipation theorem leads to the following relation between the power spectral density of the position Sx (ω) and the imaginary part of the generalized susceptibility χ (ω):

Sx (ω) = 2k b T ω χ (ω) (2.2.5)
rough linear response theory, the generalized susceptibility links the position and random forces Fourier transforms as:

x(ω) = χ (ω) R(ω) (2.2.6)
Which thus leads to the following relation:

Sx (ω) = | χ (ω)| 2 S R (ω) (2.2.7)
We can now replace the power spectral density of the position in equation 2.2.5:

SR (ω) = ω 2k b T χ (ω) | χ (ω)| 2 (2.2.8)
For simplicity sake, as we work in the linear response frame, we consider a simple one dimension harmonic oscillator at frequency ω 0 . is result can be easily generalized by considering the expansion 1.3.22. In this context, in order to determine the de nition of the generalized susceptibility, one can deduce from the Fourier transform of the Langevin equation that:

x(ω) = 1 (-mω 2 + iγmω + mω 2 0 ) R(ω) (2.2.9)
Where the de nition of the generalized susceptibility naturally writes:

χ (ω) = 1 (-mω 2 + iγmω + mω 2 0 ) (2.2.10)
Hence we have:

| χ (ω)| 2 = 1 m 2 ((ω 2 + ω 2 0 ) 2 + γ 2 ω 2 ) (2.2.11)
And the imaginary part of the generalized susceptibility is thus:

χ (ω) = γ ω m 2 ((ω 2 -ω 2 0 ) + γ 2 ω 2 ) (2.2.12)
Finally, we end up characterizing the random force with the relation between the power spectral density of the la er and the dissipation coe cient by replacing these terms in equation 2.2.8:

Langevin white noise

SR (ω) = 2mγk b T (2.2.13)
e FDT in its classical form applied to the Langevin equation, therefore describes the random force as being a Gaussian white noise. On the right-hand side of the la er de nition, we nd the classical thermal term k b T as being the same for all ω modes, according to the equipartition theorem.

e la er de nition leads to the classical Langevin thermostat, where a classical particle is plunged into a classical bath, at temperature T.

antum ermal Bath

e Langevin thermostat is commonly used in molecular dynamics simulation to sample the canonical distribution. However, in the la er de nition, the quantum nature of the particle is completely neglected. In order to take into account NQE, Dammak and coworkers introduced in 2009 a new method, [START_REF] Laroche | antum thermal bath for molecular dynamics simulation[END_REF] the QTB, based on the Langevin equation, but characterizing the random force through the quantum FDT:

Sx (ω) = coth β ω 2 χ (ω) (2.2.14)
Which can be recast as:

Sx (ω) = 2 1 2 + 1 e β ω -1 χ (ω) (2.2.15)
Noticing that:

coth β ω 2 = e β ω -1 + 2 e β ω -1 (2.2.16) = 2 1 2 + 1 e β ω -1 (2.2.17)
erefore, following the same derivation as for the classical FDT, we obtain the following de nition of the random force:

antum ermal Bath Colored noise

SR (ω) = 2mγ ω 1 2 + 1 e β ω -1 (2.2.18)
In this framework, the power spectral density of the random force now depends on the frequency, leading to a Gaussian colored noise. On the right-hand side of this de nition, we nd the quantum energetic term of the mode ω as the sum of the zero-point energy ω 2 and the Bose-Einstein distribution. Each mode is thus thermalized with an appropriate e ective temperature accounting for the zero-point energy. In contrast with the white noise derived from the classical FDT, the QTB colored noise does not vanish in the low-temperature limit, reducing the energy term to the zero-point energy:

lim T →0 SR (ω) = 2mγ ω 2 (2.2.19)
However at high temperature the system reaches the classical limit, leading to the same expression as the classical white noise: So de ned, the QTB method allows one to have access to NQE through the colored noise embedded in the Langevin equation. However, the system remains a classical object; therefore, this method describes a classical particle plunged in a quantum bath. e quantum distributions can, thus, be extracted from the trajectories propagated by the QTB, as schematically represented in Figure 2.1.

lim T →∞ SR (ω) = 2mγk b T (2.2.20)
Although the QTB method is exact in the harmonic limit, while dealing with anharmonicity, this semi-classical approach is subjected to the Zero-Point Energy Leakage (ZPEL). Indeed, in this framework, the coupling between the modes of the classical system can induce an energy redistribution between them, which tends toward classical energy equipartition. is implies high-frequency modes to end up with a lower e ective temperature while lower ones to be higher and could imply non-physical behavior of the system under study. However, the friction coe cient γ can be tuned to save the day. Indeed, the la er parameter couples the system to the bath and can be increased to lower the ZPEL e ect, the main downside being a broadening of the vibrational spectra. In addition, a recent development [START_REF] Mangaud | e uctuation-dissipation theorem as a diagnosis and cure for zero-point energy leakage in quantum thermal bath simulations[END_REF] brought out a new criterion derived from the FDT to quantify the ZPEL and estimate χ (ω) along the trajectories, allowing the use of equation 2.2.14 in an adaptive scheme of the friction coe cient, giving rise to the adaptive-QTB addressing the departure of QTB from the quantum FDT. Despite its drawbacks, the QTB approach has been successfully applied to several systems. [START_REF] Bronstein | antum-driven phase transition in ice described via an e cient Langevin approach[END_REF][START_REF] Bronstein | ermal and nuclear quantum e ects in the hydrogen bond dynamical symmetrization phase transition of δ -AlOOH[END_REF][START_REF] Bronstein | antum versus classical protons in pure and salty ice under pressure[END_REF][START_REF] So Ane Schaack | H-bond symmetrization in high pressure methane hydrate[END_REF][START_REF] So | Orientational Ordering, Locking-in, and Distortion of CH4 Molecules in Methane Hydrate III under High Pressure[END_REF] Moreover, not only can it give access to NQE but also provide somewhat reliable vibrational spectra 7 in many di erent systems. Finally, combined with ab-initio simulations for the determination of the forces, this approximation is computationally inexpensive and therefore can be applied for large systems with many degrees of freedom in contrast with accurate but costly PIMD simulations.

In this work, we decided to use the QTB method as a magnifying glass to probe NQE in the di erent systems and also to obtain reliable vibrational spectra to be compared with experimental results. en, we used more sophistical approaches to sample the correct quantum distributions.

Path integral formalism

Based on the work presented in 1933 by P. Dirac on the use of Lagrangian in quantum mechanics, [START_REF] Paul | e Lagrangian in quantum mechanics". Feynman's esis-A New Approach To antum eory[END_REF] in 1948, R. Feynman introduced a new formalism of quantum mechanics [START_REF] Phillips | Space-time approach to non-relativistic quantum mechanics". Feynman's esis-A New Approach To antum eory[END_REF] based on a generalization of the classical action principle. e idea behind the so-called path integral formalism is the following: the quantum amplitude for a particle at position x i at time t i to reach the position x f at time t f is given by the sum over all possible paths linking the two points weighted by their respective classical action S[x(t)].

x f ; t f x i ; t i = ∫ Dx(t) e i S [x (t )]
(2.3.1) Doing so, both the classical action arising from the mininum action principle as the integral of the Lagrangian, and an in nite number of non-classical actions contribute to the quantum amplitude. e Feynman path integral formalism satis es the Schrödinger equation, and one can notice that the classical regime is also accessible. Indeed in the case → 0 the weighted factor e i S [x (t )] is oscillating rapidly, thus the main contribution arises from the stationary path, hence the classical action.

In this section, we will rst de ne the density operator in the path integral formalism and its properties. en we will use this new de nition to recast the canonical partition function from which the classical isomorphism will naturally outcome. Finally, we will present a molecular dynamics scheme for the path integral formalism to take into account the NQE and brie y describe an approximate approach to extract time correlation functions.

To begin, we consider Hamiltonian operator Ĥ as the sum of the kinetic T and potential V operators:

Ĥ = T + V (2.3.2)
For the sake of clarity, we rede ne the density operator in equation 1.2.43 as follows:

ρeq = e -β Ĥ (2.3.3)
So that the partition function is now de ned as the trace of the density operator:

Z = Tr ρeq (2.3.4)
e idea behind path integrals resides in the reformulation of the space-coordinate quantum propagator matrix elements U(x, x ; τ ) (equation 1.2.19) in terms of a sum over all possible path from x to x in time τ . erefore, in this context, we want to treat the density operator in space-coordinate which matrix elements are:

ρ eq (x, x ; β) = x | ρeq |x (2.3.5)
ere are several derivations of the nal expression (equation 2.3.22), here we present it through the convolution property of the density operator.

• Convolution property

Let us de ne the convolution product C between the two density operators matrix elements ρ eq (x, x ; β 1 ) and ρ eq (x , x ; β 2 ) at di erent temperature β 1 and β 2 :

C = ∫ dx ρ eq (x, x ; β 1 )ρ eq (x , x ; β 2 ) (2.3.6)
en introducing de nition 2.3.5 in this equation leads to:

C = ∫ dx i,j |Ψ i (x) e -β 1 E i Ψ i (x ) Ψ j (x ) e -β 2 E j Ψ j (x ) (2.3.7) = i,j |Ψ i (x) e -β 1 E i ∫ dx Ψ i (x ) Ψ j (x ) e -β 2 E j Ψ j (x ) (2.3.8) = i |Ψ i (x) e -β 1 E i e -β 2 E i Ψ i (x )| (2.3.9) = i |Ψ i (x) e -(β 1 +β 2 )E i Ψ i (x )| (2.3.10)
We nally end up with the pratictal property of the space-coordinate canonical density operator:

C = ∫ dx ρ eq (x, x ; β 1 )ρ eq (x , x ; β 2 ) = ρeq (x, x ; β 1 + β 2 ) (2.3.11)
erefore, the convolution of ρ eq (x, x ; β 1 ) at temperature β 1 and ρ eq (x , x ; β 2 ) at β 2 de nes a new density operator matrix elements ρ eq (x, x ;

β 1 + β 2 ) at temperature β 1 + β 2 .
e underlying e ect of this property is thus to be able from a density matrix de ned as temperature β to compute the density matrix at lower temperature but evaluated at two di erent positions. Indeed, if we consider the case

β 1 = β 2 = β in equation 2.3.11 we nd that: ρeq (x, x ; 2β) = ∫ dx ρ eq (x, x ; β)ρ eq (x , x ; β) (2.3.12)
en using the same convolution property on ρ eq (x, x ; 2β) we can compute another matrix element ρ eq (x, x ; 4β) at twice lower temperature, repeating the process thus gives access to ρ eq (x, x (P ) ; P β) in the full quantum regime T → 0. However, one can notice that it requires an integral over all x (i) elements, so de ne "path integrals". In addition, we can also notice that expanding this convolution property produces paths equally distributed in terms of β which therefore acts as a "duration" or "slice" of an imaginary time as we will now discuss.

• Imaginary time slicing

To introduce the imaginary time slicing, we recall the de nition of the quantum propagator operator (equation 1.2.13) whose space-coordinate matrix elements are de ned as:

x | Û(τ ) |x = U(x, x ; t, t 0 ) (2.3.13) = U(x, x ; τ ) (2.3.14)
In this way we can derive the relationship between the canonical density operator ρ(β) and the quantum propagator Û(τ ):

ρ(β) = Û(-iβ ) (2.3.15) Û(τ ) = ρ( -i τ ) (2.3.16)
As suggested before, we nd that the density operator at temperature β can be expressed as a quantum propagator which evolves the system in an imaginary time -iβ . On the other hand, the quantum propagator can be seen as a density operator at a temperaturei τ . is operation is known as the Wick rotation. us, introducing the convolution property of the density operator in the la er expression allows expressing the quantum propagator as a sum over all P paths x (i) of the density operator evaluated at the temperaturei τ P . is approach is schematically described in Figure 2.2 and describes the onset of Feynman path integrals formulation of quantum mechanics. 

Path Integral Molecular Dynamics

In this section, we take advantage of the Feynman's path integrals to derive a simulation scheme to introduce NQE in our molecular dynamics simulations. We start from the de nition of the partition function:

Z = Tr ρeq = ∫ dx x | ρeq |x (2.3.17)
We then rename x to x 0 for the sake of clarity in the following and introduce the space-coordinate density matrix element:

Z = ∫ dx 0 ρ eq (x 0 , x 0 ; β) (2.3.18)
en we introduce P times the convolution property 2.3.11:

Z = ∫ dx 0 ∫ dx 1 ρ eq (x 0 , x 1 ; β 2 )ρ eq (x 1 , x 0 ; β 2 ) (2.3.19) = ∫ dx 0 ∫ dx 1 ∫ dx 2 ρ eq (x 0 , x 2 ; β 4 )ρ eq (x 2 , x 1 ; β 4 )ρ eq (x 1 , x 2 ; β 4 )ρ eq (x 2 , x 0 ; β 4 ) (2.3.20) = ∫ dx 0 dx 1 ...dx P -1 ρ eq (x 0 , x 1 ; β P )ρ eq (x 1 , x 2 ; β P )...ρ eq (x P -1 , x 0 ; β P ) (2.3.21) = ∫ dx 0 ...dx P -1 x 0 | ρeq ( β P ) |x 1 x 1 | ρeq ( β P ) |x 2 ... x P -1 | ρeq ( β P ) |x 0 (2.3.22)
Finally we end up with a new de nition of the canonical partition function in the path integral formalism:

Z = ∫ dx 0 ...dx P -1 x 0 | e -β P Ĥ |x 1 ... x P -1 | e -β P Ĥ |x 0 (2.3.23)
where we de ned: β P = β P . We now want to expand the density operator despite the fact that the kinetic and potential part of the hamiltonian operator do not commute:

e -β P Ĥ = e -β P ( T + V ) (2.3.24) e -β P T e -β P V (2.3.25)
To overcome this issue, we note that β P can be in nitely small when P → ∞ and we take advantage of the symmetric Baker-Campbell-Hausdor formula [START_REF] Gilmore | Baker-Campbell-Hausdor formulas[END_REF] leading to:

e -β P ( T + V ) = lim P →∞ e -β P V 2 e -β P T e -β P V 2 + O β 2 P (2.3.26)
Which, when introduced into equation 2.3.23, leads to the symmetric Tro er expansion:

e -β ( T + V ) = lim P →∞ e -β P V 2 e -β P T e -β P V 2 P + O β 2 P (2.3.27)
We thus obtain under this approximation:

ρeq (β P ) = e -β P V 2 e -β P T e -β P V 2 (2.3.28)
erefore:

Z = lim P →∞ ∫ dx 0 ...dx P -1 x 0 | ρeq (β P ) |x 1 ... x P -1 | ρeq (β P ) |x 0 (2.3.29)
From which we evaluate the matrix elements x i | ρeq (β P ) |x i+1 :

x i | ρeq (β P ) |x i+1 = x i | e -β P V 2 e -β P T e -β P V 2 |x i+1 (2.3.30) = e -β P V (x i ) 2 x i | e -β P T |x i+1 e -β P V (x i +1 ) 2 (2.3.31) = e -β P 2 (V (x i )+V (x i +1 )) x i | e -β P T |x i+1 (2.3.32)
We then introduce the closure relation ∫ dp |p p| = 1 and evaluate the kinetic part of the density operator in the momentum-coordinate, leading to:

x i | ρeq (β P ) |x i+1 = e -β P 2 (V (x i )+V (x i +1 )) ∫ dp x i |p p| e -β P T |x i+1 (2.3.33) = e -β P 2 (V (x i )+V (x i +1 )) ∫ dpe -β P p 2 2m x i |p p|x i+1 (2.3.34) en recalling that x |p = 1
√ 2π e i px we obtain:

x i | ρeq (β P ) |x i+1 = e -β P 2 (V (x i )+V (x i +1 )) 1 2π ∫ dpe ip (x i -x i +1 ) e -β P p 2 2m (2.3.35)
We de ne:

A = β P 2m B = i (x i -x i+1 ) (2.3.36)
So that:

- β P 2m p 2 + i (x i -x i+1 )p = -[Ap 2 -Bp] = -A p - B 2A 2 - B 2 4A (2.3.37)
Allowing us to integrate by completing the square:

∫ dp e ip (x i -x i +1 ) e -β P p 2 2m = ∫ dp e -A[p-B 2A ] 2 e -B 2 4A (2.3.38) = e -B 2 4A ∫ dp e -A[p-B 2A ] 2 (2.3.39)
We then apply the change of variable z = p -B 2A and take advantage of the gaussian integral:

∫ dp e ip (x i -x i +1 ) e -β P p 2 2m = e -B 2 4A ∫ dz e -Az 2 (2.3.40) = π A e -B 2 4A (2.3.41) = 2mπ β P e - m(x i -x i +1 ) 2 2 2 β P (2.3.42)
Hence:

x i | ρeq (β P ) |x i+1 = e -β P 2 (V (x i )+V (x i +1 )) m 2π β P 2 e - m(x i -x i +1 ) 2 2 2 β P (2.3.43) = m 2π β P 2 e - β P 2 (V (x i )+V (x i +1 ))- m(x i -x i +1 ) 2 2 2 β P (2.3.44)
We can now introduce these matrix elements in the de nition of the partition function:

Z = lim P →∞ m 2π β P 2 P 2 ∫ dx 0 ...dx P -1 e -P i =0 β P 2 (V (x i )+V (x i +1 ))+ m(x i -x i +1 ) 2 2 2 β P (2.3.45)
Where one can see that:

P i=0 [V (x i ) + V (x i+1 )] = 2 P i=0 V (x i ) (2.3.46)
Which simpli es the expression to:

Z = lim P →∞ m 2π β P 2 P 2 ∫ dx 0 ...dx P -1 e -P i =0 β P V (x i )+ m(x i -x i +1 ) 2 2 2 β P (2.3.47)
Finally, we introduce series of gaussian integrals through the prefactor:

m 2π β P 2 1 2 = 1 2π ∫ dp e -β P 2m p 2 (2.3.48)
Leading to:

Z = lim P →∞ 1 4π 2 2 P 2 ∫ dp 0 ...dp P -1 ∫ dx 0 ...dx P -1 e -P i =0 β P 2m i p 2 i +β P V (x i )+ m(x i -x i +1 ) 2 2 2 β P
In order to clarify the expression, we de ne:

ω P = √ P β (2.3.49) U e f f = P i=0 1 P V (x i ) + 1 2 mω 2 P (x i -x i+1 ) 2 (2.3.50) mi = √ P β (2.3.51)
Leading to the nal form of the canonical partition function in the path integral formalism:

Path integral canonical partition function

Z = lim P →∞ 1 h P ∫ dp 0 ...dp P -1 ∫ dx 0 ...dx P -1 e -β P P i =0 p 2 i 2 mi +U e f f (x 0 ...x P -1 )
(2.3.52)

• Classical isomorphism e term in the exponential can be recast as a Hamiltonian H r p describing a ring polymer lying in the potential V (x i ) P , the beads of the ring polymer necklace interacting via harmonic forces between nearest neighbors, with a frequency ω P which is usually called the intra-chain frequency:

H r p (p, x) = P i=0 p 2 i 2 mi + U e f f (x 0 ...x P -1 ) (2.3.53) = P i=0 p 2 i 2 mi + 1 P V (x i ) + 1 2 mω 2 P (x i -x i+1 ) 2 (2.3.54)
erefore, the path integral canonical partition function:

Z = lim P →∞ 1 h P ∫ dp 0 ...dp P -1 ∫ dx 0 ...dx P -1 e -β P H r p (2.3.55)
is analogous to the classical canonical partition function of a ring polymer at an e ective temperature β P . is analogy is known as the classical isomorphism which therefore allows representing a quantum particle as a classical ring polymer, for a number of beads composing this ring which tends to in nity. e description of the interaction between the beads is presented in Figure 2.3. Let's note that any operator is here evaluated as an average over equivalent beads (i=1,…,P) at di erent con gurations. e beads are therefore distinguishable objects. e generalization to a number N of particles in a 3-dimensional space is straightforward, and one can obtain the following generalized ring polymer hamiltonian:

H r p (p, q) = P i=0 N n=1 p (i) n 2 2 mn + 1 P V (q (i) 1 , ..., q (j) N ) + 1 2 m n ω 2 P (q (i+1) n -q (i) n ) 2 (2.3.56)
Where the rst sum is over the beads and the second over the N particles of the system. anks to this description, a molecular dynamics scheme can be derived from the Hamiltonian H r p . Hamilton equations give us:

q (i) n = ∂H r p ∂p (i) n p (i) n = - ∂H r p ∂q (i) n (2.3.57) = p (i)
n mn = -mω 2 P (2q (i) nq (i) n+1q (i) n-1 ) -

1 P ∂V (q (i) 1 , ..., q (i) N ) ∂q (i) n (2.3.58)
anks to this approach, one has access to the quantum distributions through the ring polymer dynamics governed by the la er hamiltonian, as presented in Figure 2.4.Finally, these equations can be coupled to a thermostat to ensure proper canonical sampling. 

Ring Polymer Molecular Dynamics

Although in principle exact for quantum distributions in the P → ∞ limit, the PIMD does not give access to dynamical properties. Missing these properties not only prevents one to explore dynamical processes such as di usion behaviors or reaction rates but also make impossible the systematic comparison with a large part experimental results, in particular concerning vibrational spectra.

• Time correlation function

erefore, before describing one way to obtain such information, we rst recall some properties of time correlation functions. In Section 1.3 we described several correlation functions in particular, the standard quantum time correlation function de ned as:

C AB (t) = Â(0) B(t) (2.3.59)
However, other correlation functions can be used. In particular, the Kubo correlation function:

K AB (t) = 1 βZ(β) ∫ β 0 dλ Tr e -(β -λ) Ĥ Âe -λ Ĥ e i Ĥ t Be -i Ĥ t (2.3.60)
is real valued and invariant under time reversal making it more symmetrical than the quantum time correlation function. In addition, it is more comparable to the classical correlation function.

Moreover, as we have seen it is linked to the standard correlation function as:

CAB (ω) = βω 1 -e -β ω KAB (ω) (2.3.61)
erefore, the Kubo correlation function appears to be a be er choice as compared to the standard quantum correlation function, in particular for semi-classical approaches. Non-surprisingly, several approaches to approximate the la er correlation function have been investigated. In particular, the Centroid Molecular Dynamics (CMD) [START_REF] Cao | e formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics[END_REF] and more recently RPMD [START_REF] Craig | antum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics[END_REF] have been applied successfully to address dynamical concerns in several systems. Recently, these two approaches were rederived as a particular approximation of the more general mean-eld framework of Matsubara dynamics. [START_REF] Timothy | Boltzmann-conserving classical dynamics in quantum timecorrelation functions:"Matsubara dynamics[END_REF] In the following, we chose to describe the formalism of the Ring Polymer Molecular Dynamics as this approximation was used in the present study.

• e Ring Polymer Molecular Dynamics formalism

In 2004 27 I. R. Craig and D. E. Manolopoulos introduced the so-called RPMD method allowing one to have access to approximate Kubo correlation function in the path integral scheme. Following previous work, [START_REF] Parrinello | Study of an F center in molten KCl[END_REF] they chose the ctitious mass m of each bead to be the physical one. In this formalism the Hamiltonian de ned in equation 2.3.56 can be used to propagate classical molecular dynamics trajectories in an extended phase space of P degrees of freedom with an e ective classical temperature of T * = PT . e expectation value of an operator A(x) is, therefore:

 = 1 Z Tr ρ eq  (2.3.62) = 1 (2π ) P Z ∫ dp ∫ dxe -β p H r p (p,x) A P (x) (2.3.63)
With dx = dx 0 , ..., dx P -1 and dp = dp 0 , ..., dp P -1

Where A P (x) is averaged over all the beads:

A P (x(t)) = 1 P P -1 i=0 A(x i (t)) (2.3.64)
In analogy equation 2.3.63 I. R. Craig and D. E. Manolopoulos generalized this de nition to a product of two operators Â(x) and B(x) which naturally leads to the Kubo time correlation function of the two operators in the short time limit:

 B = 1 (2π ) P Z ∫ dp ∫ dxe -β p H r p (p,x) A P (x)B P (x) (2.3.65) = lim t →0 K AB (t) (2.3.66)
erefore, thanks to this analogy, the RPMD method approximates the Kubo correlation function as:

Ring Polymer Molecular Dynamics Kubo correlation function

K AB (t) ≈ 1 (2π ) P Z(β) ∫ dp ∫ dxe -β p H p (p,x) A p (x(0))B p (x(t)) (2.3.67)
Although the expression 2.3.66 is an approximation which cannot be derived formally, it can be shown to be exact in the classical limit of high temperature, in the short time limit, for the simple case of the harmonic oscillator and nally in the case of unitary operators.

Conclusion

In this section, we described two methods allowing the quantum description of nuclei in our molecular dynamics simulations. e QTB is derived from the Langevin equation; it is a semiclassical approach to account for the NQE, and in particular, the zero-point energy. In addition to approximate quantum distributions, this method also provides reliable vibrational spectra, which is a required asset while comparing theoretical results with experimental ones. Moreover, the QTB scheme is computationally cheap while it is used on top of ab-initio calculations accounting for inter-atomic forces. However, due to the inherent semi-classical model, QTB is subjected to ZPEL. Although it can be reduced by tuning the coupling between the system and the quantum bath, while dealing with strong anharmonic systems, it can lead to incorrect physical properties. erefore, QTB has to be carefully used, and the resulting physical properties systematically checked whether by investigating the e ective temperature of the di erent degrees of freedom or with more sophistical approaches recently brought out. On the other hand, in contrast with QTB, PIMD which arises from the Feynman quantum mechanics formalism, provides correct quantum distributions at equilibrium and in the limit of a high number of replicas (beads) of the system. e inherent drawback being the computational cost of each simulation. Although recent development allows reducing the number of replicas signi cantly to reach convergence, PI-based methods providing correct quantum time correlation functions are still lacking. erefore, several approximations to the Kubo correlation function, as RPMD and CMD, have been derived in order to obtain approximate time correlation function in the PI framework. However, these two methods are expensive in comparison with QTB and do not provide deeper information concerning the dynamical properties of the studied systems. erefore, we see in both QTB and PIMD two complementary methods to sample the NQE in our investigations. We used the QTB as a magnifying glass to probe NQE and also to obtain reliable vibrational spectra from the velocities correlation function. Doing so, we can have a fast and cheap way to obtain the pressure or temperature of interest for example. en, we used PIMD simulations to obtain correct quantum distributions and a ner description of the di erent physical behaviors. I n the following, we discuss two methods to understand the underlying process of phase transition.

As a rst approach, the NEB method allows nding the Mininum Energy Reaction Path (MEP) and the saddle point of a transition, given a set of intermediate con gurations that are optimized. Secondly, the MTD method allows sampling the free energy landscape in a Molecular Dynamics (MD) scheme allowing one to add thermal and quantum e ect. e la er approach, however, requires to de ne a coordinate of reaction/transition. erefore, in the last part, we will present the Path CVs along with the Path Invariant Vector (PIV), which will allow one to describe a transition through topological concerns.

Mininum energy path sampling with Nudged Elastic Band

e NEB method allows determining under certain conditions the MEP of a transition. It is common while dealing with phase transitions or chemical reactions to know the initial and nal states of the la er. However, the processes behind a transition can be complex, and the di erent stages could remain unknown. In order to explore the di erent transition stages, the NEB method allows one to optimize a series of images of the related system along the transition.

We are looking for the di erent steps of the transition of a system of N atoms at initial positions r 0 1 , r 0 2 , ..., r 0 N and nal positions r F 1 , ..., r F N de ning the initial R 0 (r 0 1 , ..., r 0 N ) and the nal R F (r F 1 , ..., r F N ) con gurations. Given a number of images K, we construct a serie of K intermediate con gurations R i (r i 1 , ..., r I N ); i = 1, ..., K by linear interpolation of the extreme con gurations R 0 and R F . en, we link all images with springs of constant k s and keep the extreme con gurations (i = 1, K) xed. Several objectives have to be reached: we want to ensure proper spacing between images, but we also need the spring forces not to interact with the convergence to the MEP. To ensure these two conditions, we rst de ne a unit vector tangent to the transition at the con guration R i ,

ì τ i = ì R i +1 -ì R i | | ì R i +1 -ì R i | |
, and then decompose the di erent forces applied to R i in the space (ì τ i -ì τ ⊥ i ):

• Interatomic forces: -∇U (R i ) = -(∇U (R i ) • ì τ i )ì τ i -(∇U (R i ) • ì τ ⊥ i )ì τ ⊥ i • Spring forces: F s (i) = (F s (i) • ì τ ⊥ i )ì τ ⊥ i + (F s (i) • ì τ i )ì τ i with F s = k s (|R i+1 -R i | -|R i -R i-1 |).
Finally, we reduce the inter-atomic forces to their orthogonal (ì τ ⊥ i ) component only and the NEB spring forces to their parallel component one (ì τ i ), giving rise to the total NEB force:

Nudged Elastic Band forces

F N EB = -∇U (R i ) • ì τ ⊥ i ì τ ⊥ i + F s ì τ i (3.2.1) = -∇U (R i ) + ∇U (R i ) • ì τ i + F s • ì τ i ì τ i (3.2.2)
i-1 i+1 i A description of NEB forces is presented in Figure 3.1. e la er force can then be minimized through gradient descent or other optimizing schemes. As the NEB relies on di erent images that are optimized through energy minimization under the constrained that are imposed by the presence of the springs, the corresponding barrier is an energy barrier at T=0K.

Although fast and easy to apply, this method is very likely to miss the saddle point due to the inherent discretized transition path with spaced steps. One possible solution has been suggested with the so-called Climbing Image NEB. A er several NEB iterations, the image of the highest energy is driven toward the saddle point as:

F C I -N EB = -∇U (R i ) + 2∇U (R i ) • ì τ i ì τ i (3.2.3)
Doing so, one of the images climbs up the energy surface along the reaction path while minimizing the inter-atomic forces. Finally, one can notice that the NEB spring forces do not act, inducing a non-uniform con guration spacing. Although uneven, one can take advantage of the la er property to be er sample the saddle point using variable spring forces constant k i 's along the path.

Free energy sampling with Metadynamics

In order to accurately describe a phase transition, a free-energy sampling is required. Indeed, while NEB calculations allow in some cases to have a simple idea of the di erent stages it completely neglects thermal and quantum e ects, and is limited by its inherent sequential description accounting only for internal energy, and does not give access to a full picture of the energy landscape. erefore, we go beyond the NEB approach towards a free energy sampling, which in the canonical ensemble ( F (N , V ,T ) ), is described by the Helmholtz free energy:

F = -k b T log(Z) (3.3.1)
Where Z is the partition function classically described as:

Z = 1 N !h 3N ∫ d 3 x 1 ..d 3 x N d 3 p 1 ..d 3 p N e -β H (x 1 ,...,x N ,p 1 ,...,p N ) (3.3.2)
where N is the number of particle, x i and p i the respective position and momenta of the particle i, and H the hamiltonian of the system.

While describing transitions, the reaction coordinate is o en unknown as it can involve several mechanisms. In this context, and based on the relevant known characteristic of the transition, the choice of an order parameter χ to describe the reaction coordinate can be a fair approximation:

χ (x 1 , ..., x N , p 1 , ..., p N ) (3.3.3) 
e la er can be either atomic distances, angles or any relevant quantity describing the reaction. So de ned, the probability of being at χ 0 along the free energy pro le de ned by this order parameter is given by:

P(χ 0 ) = 1 Z ∫ d 3 x 1 ..d 3 x N d 3 p 1 ..d 3 p N e -β H (x 1 ,...,x N ,p 1 ,...,p N ) δ (χ (x 1 , ..., x N , p 1 , ..., p N ) -χ 0 ) (3.3.4)
where δ is the Dirac delta function Doing so, we end up with an integral over the full phase space that cannot be reached in our simulations. We thus have to use approximations to overcome this issue. First, we assume that we do not need a complete picture of the phase space to describe the transition, and secondly that our simulation is su ciently long, or with su cient initial conditions to verify the ergodicity property.

In this context, the probability P(χ 0 ) is given by:

P(χ 0 ) = 1 t ∫ t 0 δ (χ (x 1 , ..., x N , t ) -χ 0 )dt (3.3.5)
And the free energy at this point is given by:

F (χ 0 ) = -k b T log(P(χ 0 ))δ (χ (x 1 , ..., x N , p 1 , ..., p N ) -χ 0 ) (3.3.6)
en, under the de ned approximations, we can extract a free energy pro le from state I to state F along any order parameters χ from our MD simulations. However, for this to work and to obtain reliable free energies, the MD trajectories need to sample both states properly. While dealing with rare events and high barriers this condition is not always reachable due to either

MD Metadynamics MD

Gaussian deposition V bias non-su cient thermal and quantum energies or the computational cost of ab initio simulations. erefore, to address this issue, Laio and Parrinello introduced in 2002 a new method, the MTD, [START_REF] Laio | Escaping free-energy minima[END_REF] to accelerate rare events and escape from a potential well and therefore accelerate the free energy landscape sampling. e idea behind MTD is the following: we want to force the system to explore a broader region than that around a local minimum of the collective variable χ , by penalizing the already explored ones. To this purpose, we add a local bias potential V (χ ) to the free energy along the coordinate χ during the MD simulation a .

is approach is formalized as follows: First, we de ne a Collective Variable (CV)s S = {S 1 , ..., S D } as a set of D reaction coordinates, or order parameters, which can describe the related transition or reaction process collectively. is CV depends on the 3N coordinates of the system and at time t with con guration {x 1 (t), ...x N (t)} will take the value s = {s 1 , ..., s D } = s(t).

en, we de ne a history bias potential V bias which will evolve with time and always be added to the free energy. At t = 0 V bias = 0.

At another time t , we add to the history bias potential a Gaussian potential h 0 e -(S -s ) 2 2σ 2 centered at s(t ) with a free energy height h 0 and a width of σ , all of these parameters being a set of D variables. We then repeat the process at the time t , the di erence t -t de nes the bias period deposition τ . Doing so, at a certain time t, N Gaussian potential have been added to the history bias potential each period τ leading to the following history potential:

V bias (t) = h 0 t =τ ,2τ ,...,N τ e -(S -s (t ) 2 2σ 2 (3.3.7)
is allows penalizing already explored space, or previous con gurations, and ll the potential well allowing the system to explore other parts of the free energy landscape along the CV, as described in Figure 3.2. en, for a su ciently long time, the system should have explored the la er completely, and the history bias potential should have lled the di erent potential wells.

erefore, the sum of the di erent deposited Gaussians can be seen as a mold of the free energy a is approach is also shared by other methods such as umbrella sampling which we will not discuss here.

landscape, leading to the following approximation of the free energy along S:

F (S) = lim t →∞ -V (t) (3.3.8)
In practice, the convergence is a ained when the free energy di erences between the distinct basins is not anymore modi ed when adding more gaussians. MTD is, therefore, useful to accelerate rare events and obtain an approximate free energy landscape. In contrast with the NEB approach, it gives rise to a broader picture and ner description of the transition mechanism. In addition, through its molecular dynamics approach, we can have access to free energy accounting to both thermal e ects when coupled to a thermostat and also to nuclear quantum e ects. In particular, in the PI framework where we already de ned the free energy as:

F = -k b T log(Z) (3.3.9) = -k b T log Tr ρ eq (3.3.10)
However, several parameters need to be tuned. e height and width of the Gaussian bias potential need to be carefully chosen considering the related process. To do so, a rst NEB approach can give a bare idea of the barrier height potential to be reached. In parallel, a too high frequency of gaussian deposition needs to be avoided to let the system explore the potential, and a good balance between the la er parameter and the Gaussian free energy height is required. Overall, the most important parameter is the choice of CV.

Path collective variables and the path invariant vector

While studying phase transitions, the set of order parameters needs to catch the di erent physical properties involved in the la er thoroughly.

is makes the choice of the CV complex and somehow imposes a particular view of the transition. In this context, several developments of Path CVs were done to address this issue. [START_REF] Branduardi | From A to B in free energy space[END_REF] e idea behind this Path CVs is the following: assuming we have an hypothetical set of n path con gurations from the initial R i to the nal R n we de ne the Path CVs S(t) and z(t) as:

Path collective variables

S(t) = n k=1 ke -λD(R(t ),R k ) n k =1 e -λD(R(t ),R k ) (3.3.11) z(t) = - 1 λ log n k =1 e -λD(R(t ),R k ) (3.3.12)
With R(t) the con guration coordinates at time t, λ a tunable parameter and D the chosen metric between R(t) and R k ,k e rst variable S(t) de nes the progress of the transition while the second, z(t) refers to the distance of the hypothetical path. e second step is naturally the de nition of the chosen metric. Recent studies have shown the e ciency of metrics based on the path invariant vector, which we now describe. e PIV is constructed from the atom-type-speci c ordered blocks kk linking the atom types k and k , and the components of which are de ned as:

β β kk = c kk S[( Ω 0 Ω ) 1 3 |r β k -r β k |] (3.3.13)
Where r β k de nes the position of the atom β of type k, Ω the volume of the simulated box, Ω 0 a reference volume, and S a switching function which decreases from 1 to zero as |r βk -r β k | increases. en the elements of the di erent blocks kk are sorted in ascending order and concatenated leading to the PIV of N at oms (N at oms -1) 2 components V α . Doing so, an invariance upon permutation of identical atoms arises and the metric D is then de ned as the Euclidian distances between the PIVs:

D AB = α (V Bα -V Aα ) 2 (3.3.14)
anks to this approach, the description of the transition is not governed by arbitrary order parameters such as atomic bond length angles, etc. but instead by topological similarities and di erences between con gurations. is is an essential improvement for phase transition descriptions that we naturally followed in our investigations, and that demonstrated its reliability in several cases, in particular, it allows reconstruction of the phase diagram of water. [START_REF] Pipolo | Navigating at Will on the Water Phase Diagram[END_REF] 

Conclusion

In this section, we described the NEB and MTD methods to investigate phase transitions.

As we have seen, the NEB approach provides information on the MEP and saddle point of the reaction, without de ning any reaction coordinate. is method has the advantage of being easy to apply and computationally e cient. However, neither thermal nor quantum e ects are considered, and although this method can be reliable to nd saddle points, it can drive to incorrect MEP.

On the other hand, the MTD method provides a broader complete picture of transitions as it forces the system to explore the free energy landscape. e counterpart is the choice of the CV. Indeed, if the la er is not suitable for the studied transition, it can lead to an incorrect representation. To address this issue, we presented the Path CVs complete by the PIV topological metric to avoid any arbitrary choice of the CV. erefore, to provide information of the transition we present in the following, we used the NEB method as a rst approach to have an approximate idea of the transition path and barrier of reaction in order to parametrize the MTD simulations, as a second step. D i usion is among the most complex theoretical problems in solid state physics and materials science. Hydrogen di usion, in particular, constitutes a signi cant challenge, for many reasons. Firstly, Hydrogen is the most abundant element in the Universe. Hydrogen atoms are amphoteric and can be incorporated almost in any mineral or material, forming stable bonds with cations and anions. When bound to O to form hydroxyl groups, the high O-H stretching frequency implies non-negligible zero-point energy of about 0.2 eV that could be crucial when hopping through local sites which are separated by barriers that classical nuclei cannot overcome simply by thermal uctuations. [START_REF] Benoit | Tunnelling and zero-point motion in highpressure ice[END_REF][START_REF] Dammak | Isotope e ects in lithium hydride and lithium deuteride crystals by molecular dynamics simulations[END_REF][START_REF] Bronstein | antum-driven phase transition in ice described via an e cient Langevin approach[END_REF] Despite the complexity and computational cost of accounting for the quantum nature of light nuclei in simulations, a new eld is rapidly growing with potential applications in an eclectic collection of issues including protonic conduction, [START_REF] Liang | High-temperature protonic conduction in mixed perovskite ceramics[END_REF] hydrogen in biological ma er, [START_REF] Rossi | Nuclear antum E ects in H + and OH -Di usion along Con ned Water Wires[END_REF] water circulation in Earth's mantle, [START_REF] Bronstein | ermal and nuclear quantum e ects in the hydrogen bond dynamical symmetrization phase transition of δ -AlOOH[END_REF][START_REF] Sano-Furukawa | Direct observation of symmetrization of hydrogen bond in δ -AlOOH under mantle conditions using neutron di raction[END_REF] or hydrogen storage. [START_REF] Zhang | antum nuclear e ects on the location of hydrogen above and below the palladium (100) surface[END_REF][START_REF] Wahiduzzaman | Hydrogen adsorption in metal-organic frameworks: e role of nuclear quantum e ects[END_REF] All of the previous phenomena are deeply a ected by proton di usion, which is di cult to probe directly from proton quantum trajectories, although crucial for the determination of thermodynamic properties, such as proton conduction or isotope exchange. While Portlandite is of interest for industrial applications as the main component of concretes, Brucite is considered a vector for water transport into Earth's mantle that proton di usion could trigger. erefore, we address the proton di usion process occurring in Brucite Mg(OH) 2 that appears to be a particular case among the di erent minerals of this class, as compared with Portlandite Ca(OH) 2 , which is also discussed. ite a number of proton di usion mechanisms were considered in the past: we show that the so-called "relay" mechanism, [START_REF] Yaroslavstev | Proton conduction of inorganic hydrates[END_REF] a two-step process in which the proton hops from one oxygen atom to another and rotate with a hydrogencontaining group, is at work in Mg(OH) 2 under high pressure. We also show in the following that at least the rst step (H hopping through hydrogen bonds) is quantum driven.

Part II

Technical details of the simulations employed for this analysis can be found in the Appendix A. e Brucite minerals are layered structures composed by stacks of metallic ions, oxygen, and hydrogen atoms in a CaI 2 -type structure. e metallic element (Mg, Ca, Ni …) has an impact on several physical parameters, in particular, the la ice parameters and the compressibility of the system are di erent in the two systems we studied: Brucite (Mg(OH) 2 ) and Portlandite (Ca(OH) 2 ). [START_REF] Ulian | Equation of state and second-order elastic constants of portlandite Ca (OH) 2 and brucite Mg (OH) 2[END_REF] At ambient pressure and temperature, the Brucite minerals belong to the P 3 m1 space group with hydrogen atoms located on the threefold axis above or below oxygen atoms (2d Wycko sites) with a [START_REF] Benoit | Tunnelling and zero-point motion in highpressure ice[END_REF] 1 occupancy factor as shown in Figure 1.1. However, in accordance with previous experimental and simulation results, [START_REF] Raugei | Pressure-induced frustration and disorder in Mg(OH) 2 and Ca(OH) 2[END_REF][START_REF] Mookherjee | High-pressure proton disorder in brucite[END_REF][START_REF] John B Parise | Pressure-induced H bonding: Neutron di raction study of brucite, Mg (OD) 2, to 9.3 GPa[END_REF][START_REF] Ca | Static compression and H disorder in brucite, Mg(OH) 2 , to 11 GPa: a powder neutron di raction study[END_REF][START_REF] Xu | In situ neutron di raction study of deuterated portlandite Ca(OD) 2 at high pressure and temperature[END_REF] as pressure is slightly increased, due to the increase of the H-H repulsive interaction between opposite layers, we nd that the hydrogen nuclei do not remain strictly above the corresponding oxygen atom and the Brucite minerals adopt a P 3 con guration. e la er is characterized by the location of hydrogen atoms in the 6i Wycko sites with a [START_REF] Benoit | Tunnelling and zero-point motion in highpressure ice[END_REF] 3 occupancy factor. is e ect has been shown to induce a frustration of the proton orientation upon compression. [START_REF] Kruger | Vibrational spectra of Mg (OH) 2 and Ca (OH) 2 under pressure[END_REF][START_REF] Omas S Du Y | High-pressure phase transition in brucite, Mg(OH) 2[END_REF][START_REF] Raugei | Pressure-induced frustration and disorder in Mg(OH) 2 and Ca(OH) 2[END_REF] e stability of both Brucite and Portlandite upon compression have been investigated in the past and an amorphization of Portlandite was found to occur between 10 and 15GPa [START_REF] Kruger | Vibrational spectra of Mg (OH) 2 and Ca (OH) 2 under pressure[END_REF] while a phase transition to a tetragonal structure was suggested in Brucite above 20GPa at 800K by ab-initio simulations, [START_REF] Hermann | High-pressure phase of brucite stable at Earth's mantle transition zone and lower mantle conditions[END_REF] however up to now, no such transition was observed experimentally to our knowledge. [START_REF] Omas S Du Y | High-pressure phase transition in brucite, Mg(OH) 2[END_REF][START_REF] Fei | Static compression of Mg(OH) 2 to 78 GPa at high temperature and constraints on the equation of state of uid H 2 O[END_REF] 

Proton di usion mechanism

In a recent study 50 a proton di usion process scheme was proposed for the case of Brucite minerals. is process requires two mechanisms to be present: a proton reorientation in the (a,b) plane, and a proton dissociation out of that plane. Indeed, if a di usion process, that is, non-spatially limited motion of the protons from site to site, is to occur, both mechanisms must be present. Dissociation is necessary as it allows hopping from one oxygen atom to another, but if no reorientation happens, the proton will only be able to return to its original position: reorientation enables the proton to move on to another O-O segment and thus to hop to yet another oxygen atom (Figure 1.2). Proton di usion in Brucite minerals is, therefore, a two-step compound process, di erent from a standard Gro huss mechanism. [START_REF] De Gro Huss | Sur la décomposition de l'eau et des corps qu'elle tient en dissolution à l'aide de l'électricité galvanique[END_REF][START_REF] Yaroslavstev | Proton conduction of inorganic hydrates[END_REF] In practice, the above mentioned P3 con guration generates an e ective triple-well potential for reorientations within the (a,b) plane: this we refer to as "in-plane" motion.

e proton dynamics on these sites describes the reorientation motion. On the other hand, the "out of plane" dissociation mechanism involves an e ective double well potential along the O-O direction characterizing the covalent and hydrogen bonds similar to the ice case. [START_REF] Benoit | Tunnelling and zero-point motion in highpressure ice[END_REF] It has been shown [START_REF] Mookherjee | High-pressure proton disorder in brucite[END_REF] that only weak hydrogen bonds could be present in Brucite. However, as we will discuss later, taking into account nuclear quantum e ects, a double-well potential is found along the O-O direction at low pressure suggesting the H-bond interaction, which can be enhanced by the pressure-induced creation of a quasi-2D hydrogen layer in the structure. Finally, the thermal activation of the reorientation motion was assumed [START_REF] Dupuis | antum Nuclear Dynamics of Protons within Layered Hydroxides at High Pressure[END_REF] to be a limiting factor for di usion, while nuclear quantum e ects are suggested as being a facilitating factor for the dissociation mechanism. However, proton dissociation has not been observed yet and nuclear quantum e ects for the la er mechanisms have been neglected up to now. erefore, in the following, we undertake to unravel the complex and quantum driven proton di usion mechanisms in Brucites by including NQE: rst, we will discuss both the reorientation and dissociation mechanism upon compression, for which we will compare thermal and quantum e ects. In the second part, we will address the evolution of the di usion process upon compression. Finally, a comparison with Portlandite will be provided.

In plane reorientation

First, we discuss in this part the reorientation mechanism. As already described, within the P 3 structure, protons move in-plane between the 6i sites. erefore, this motion can be e ectively described by the azimuthal angle φ, as shown in the sketch of Figure 1.3. From the probability distribution of the la er P r (φ), we extracted the Gibbs free-energy pro le G = -k B T log P r (φ), which includes both thermal and quantum e ects. As shown in Figure 1.3, the proton e ective potential along this coordinate has a three-fold 2π 3 symmetry with equivalent barrier heights between the three wells, as expected from the symmetry of the P3 con guration. e barrier width between the wells of this potential is essentially proportional to 2π 3 d O-H cos θ , θ being the zenith polar angle, that is, how far the O-H bond slants away from the c axis; d O-H being the covalent O-H bond distance. Upon compression, we observe that the free energy barrier heights increase, from 20meV at 30GPa up to 100meV at 90GPa, revealing a pressure induced con nement of the proton along this coordinate. is stems essentially from the fact that the average polar angle θ increases with pressure so that the separation of the wells also increases. us, as the overall atom-atom separations decrease, mainly through the compression of the layers along the ì c axis, the H-H repulsive interaction increases and the reorientational dynamical disorder, thermally activated at low pressure, tends to slow down, eventually to halt. It can be noted that the classical simulations, not including NQE, yield almost identical distributions meaning that the quantum behavior is in this case limited within the pressure range that was explored. e e ect of pressure contrasts with that of temperature, which tends to allow the proton to explore equivalently all the wells 50 by usual thermal activation.

Out of plane dissociation

In this section, we now focus on the out of plane dissociation by proton hopping between the two oxygen layers. Upon compression, the hydrogen planes get closer, due to the important compressibility of the system along the ì c axis. is, in turn, can favor proton hopping from one oxygen atom to another, that is dissociation and thus out-of-plane delocalization.

• antum quasi 2D hydrogen plane Figure 1.4 shows the probability distribution of the hydrogen nuclei along the c direction. Initially, each hydrogen atom belongs to either the upper or lower plane. During the simulation, the "lower layer" distribution refers to the hydrogen atom initially in the lower layer while the "upper layer" refers to those initially in the upper layer. We distinguish both the upper and lower hydrogen layers distributions from the overall one. As pressure is increased, the overall distribution width decreases as the two hydrogen layers distributions get closer, meaning that the pressure tends to merge the two hydrogen layers. At the two lower pressures, 30 and 50GPa, bo om and top layer protons can be distinguished, although hopping does occur, as the protons return to their original layer by a second hop in reverse: the protons initially situated on one layer will remain on that layer with, from time to time, a short exploration of the other. At 70GPa, lower and upper layers are not distinguishable as reverse hopping does not always follow: the protons do not belong to one particular layer. is speci c case will be discussed later. At the highest pressure, 90GPa, the overall distribution becomes narrower, but the lower and upper protons can again be distinguished as they return to their initial layer, despite a signi cant distribution overlap.

e characterization of the two hydrogen layers is however highly dependent on the quantum spread of protons. Indeed, for a delocalization of the same order of magnitude as the separation between the two layers, one cannot distinguish upper from lower layer due to quantum indetermination. In this context, the RPMD simulations account for NQE by representing each particle by a set of replicas (or beads), thus, the spread of these replicas provides insight into the quantum delocalization of the particles. erefore, we investigated the standard deviation, in each cartesian coordinate, of the proton replicas with respect to the instantaneous centroid position. As shown in Figure 1.5 the in-plane delocalization σ a and σ b of the particle along the ì a and ì b axes are similar and both decrease upon compression. In contrast, the out-of-plane delocalization along the ì c axis, described by σ c is less than in the two other directions but increases upon compression. Finally, at high pressure (90GPa) the delocalization σ z is of the order of the distance between the two hydrogen layers. is indicates that the two hydrogen planes merge through quantum indetermination into a so-called " antum 2D proton layer". Such con guration allows the protons to form covalent bonds either with the upper or lower oxygen layer, thus easing the proton hopping. In addition to the formation of the single proton layer, with increasing pressure, the in-plane localization produces quasi-linear O-H-O groups through the H bond formation. is results in an e ective double-well potential along the O-O direction as seen by the protons. In order to investigate this e ective potential, one relevant order parameter χ is the di erence between the distances that separate the hydrogen atoms from their nearest and second nearest neighbor 

χ = (d O,2-H -d O,1-H ) • ì u OO (1.3.1)
with ì u OO the unitary vector in the O-O direction.

e free energy pro les along this coordinate presented in Figure 1.6 show that the proton hopping barrier height decreases upon compression, from 4k B T at 30GPa to 0.5k B T at 90GPa. is occurs while the O-O distance shrinks with pressure along the ì c axis bringing the two equilibrium positions closer along χ . Under high pressure, a proton can, therefore, hop from one oxygen atom to another through either quantum tunneling or thermal activation, which constitutes the so-called "dissociation" process. [START_REF] Dupuis | antum Nuclear Dynamics of Protons within Layered Hydroxides at High Pressure[END_REF] e di erence between classical and quantum simulations is signi cant as it was evaluated to ∼ 3k B T on this barrier. erefore, although the proton reorientation mechanism is thermally activated, the dissociation process is mainly quantum driven. e e ect of the pressure on the proton reorientation mechanism is opposed to the e ect on the dissociation one. However, as described earlier, the proton di usion in Brucite minerals requires both. erefore, due to competition between pressure e ects, a pressure sweet spot exists, allowing both reorientation and dissociation mechanisms, enhancing the proton di usion in Brucite minerals. us, we studied the maximum probability of di usion, considering both the reorientation and the dissociation mechanism to be independent. is approximation was checked by calculating the correlation between the two probabilities. Under this assumption, the maximum di usion probability is given by the product of the reorientation and dissociation maximum probabilities P r and P d which reduces to the sum of the two barrier heights, ∆G r and ∆G d , in terms of free energy.

P = P r × P d (1.3.2) ∆G = -k b T log(P r × P d ) (1.3.3) = ∆G r + ∆G d (1.3.4)
e evolution of the free energy barrier heights upon compression is given in Figure 1.7. For the case of Brucite, we observe that the barrier height for dissociation decreases from ∼ 0.11 eV at 30GPa to ∼ 0.01 eV at 90GPa. In contrast, the reorientation barrier increases from 0.03 eV to 0.1 eV within the same pressure range. us, the two curves cross at ∼70GPa, giving rise to a minimum of di usion free energy barrier ∆G. Hopping rates for the two processes have the same order of magnitude at this pressure, while reorientation dominates at lower pressures and dissociation does so at higher pressures. erefore, 70GPa represents the sweet spot for a maximum di usion probability. In order to give a rough estimate of the di usion reaction rate κ, one can use the di usion free energy barrier obtained above in the chemical kinetics Eyring-Polanyi equation:

κ = k B T h e -∆G k B T (1.3.5)
As shown in Table 1, the estimation of this reaction rate in Brucite naturally follows the same trend as the free energy evolution upon compression. It decreases by a factor of four between 30 and 70GPa, for which the characteristic time evaluation is κ -1 = 8ps, and then increases by a factor of three at 90GPa. • In-plane proton distribution e barrier height analysis above is con rmed by Figure 1.8 which shows the probability distribution of the proton positions in the (a,b) plane. For P = 30GPa, the situation is as expected: the proton distribution shows three broad peaks next to each oxygen atom, thus revealing reorientation processes between the 6i sites. As pressure is increased to 50GPa, the peaks become narrower and at a greater distance from the oxygen sites, therefore displaying the hindering of the reorientations and the a ening of the O-H bonds within the (a,b) plane. In addition, the density midway between oxygen atoms increases as the dissociations become easier. At P = 70GPa, we observe evidence of proton di usion process as the hydrogen nuclei spread beyond the simulation box. e onset of dissociation, while reorientations still occur, allows the protons to migrate beyond their immediate vicinity. Finally, at the highest pressure, P = 90GPa, although dissociations are important, the reorientations are locked in prohibiting proton di usion. is con rms the particularity of the pressure of 70GPa as being a sweet spot for proton di usion.

It has to be noticed that in order to observe such a di usion process, the simulation duration requires to be higher than the estimation of κ -1 . erefore, the proton di usion described in this paper should occur at lower pressure and can be at the root of destabilization of the system easing suggested phase transition, or could bring information concerning the water transfer in the earth mantle.

Comparison with Portlandite

Finally, we close our discussion of proton di usion in Brucite minerals by a comparison with Portlandite (Ca(OH) 2 ) which presents the same structure for pressures up to approximately 15GPa. e same analysis as for the Brucite was done systematically for Portlandite. In Figure 1.7, we present the evolution of free energy barriers of the proton reorientation and dissociation mechanisms. We observe that in Portlandite the reorientational barrier at 10GPa is close to that of Brucite at 50GPa. However, the pressure e ect on the la er barrier is more important in Portlandite as shown by the larger increase rate of 2.8 meV/GPa while it is evaluated to be 1.6 meV/GPa in Brucite. is rapid increase can be understood from the fact that the Van der Waals radius of calcium atoms is larger than for magnesium and thus tends to expand the la ice in the (a,b) plane. Indeed, our calculations at 10GPa give the in-plane rst neighbor O-O distances to be ∼ 3.45 Å in Portlandite while ∼3.06 Å in Brucite. In addition, the out-of-plane rst neighbor O-O distances are equivalent in both systems. is implies larger polar angles θ in Portlandite, that e ciently hinder the reorientation mechanism, including at relatively low pressures. On the other hand, the dissociation barriers in Portlandite are greater than in Brucite but decrease much faster with a decay of 14 meV/GPa as compared to 2meV/GPa in Brucite. is derives from the larger compressibility of the Portlandite with respect to the Brucite structure, as demonstrated in recent work. [START_REF] Ulian | Equation of state and second-order elastic constants of portlandite Ca (OH) 2 and brucite Mg (OH) 2[END_REF] It has to be noticed that the large value of the dissociation barrier in Portlandite implies a long simulation duration in order to be observed, well beyond the scope of path integral methods, to address properly the statistic of the la er, and thus barrier height evaluation. Nevertheless, some events are detected as some of the replicas of the RPMD simulations do occasionally reach the top giving rise to estimation provided here. Finally, the crossing point of the two barriers in Portlandite should occur beyond 20GPa with a di usion barrier comparable to that of Brucite at 70GPa. However, a transition towards an amorphous phase is reported between 10 and 15GPa [START_REF] Meade | Static compression of Ca(OH) 2 at room temperature: observations of amorphization and equation of state measurements to 10.7 GPa[END_REF][START_REF] Nagai | Compression mechanism of brucite: An investigation by structural re nement under pressure[END_REF] and our own simulations reveal the instability of the system at 20GPa. erefore, as shown in Figure 1.9, no di usion was observed for Portlandite within the time scale of our simulations. Indeed, the reaction rate estimates, given in Table 1, yield much longer times than in Brucite.

is comparison suggests that Brucite could be a particular case for proton di usion within its mineral family. Among the other systems sharing the same structure, our rst analysis of eophrastite (Ni(OH) 2 ) indicates that this system should present the same mechanism at approximately the same pressure, due to comparable Van der Waals radii between magnesium and nickel atoms.

Conclusion

To summarize, we analyzed the proton di usion mechanism [START_REF] Dupuis | antum Nuclear Dynamics of Protons within Layered Hydroxides at High Pressure[END_REF] in both Brucite (Mg(OH) 2 ) and Portlandite (Ca(OH) 2 ) under pressure, taking into account nuclear quantum e ects. Proton di usion in those crystals involves two stages to be active: a reorientation motion within the (a,b) plane, and a proton dissociation between two oxygen atoms on opposite layers. Firstly, we have seen that the reorientation mechanism is thermally activated and that the pressure tends to localize the proton in a certain orientation, making reorientation motion less likely. Secondly, in contrast with the reorientation, we showed that the dissociation mechanism was quantum driven and was made easier by increasing pressure through the formation of a quantum quasi-2D hydrogen layer.

ese two antagonistic e ects give rise to a pressure sweet spot for proton di usion through those minerals, found to be 70GPa in Brucite. However, this di usion process could also occur at much lower pressure, although it is less probable, and could be at the root of destabilization of the structure, as suggested by a possible phase transition [START_REF] Hermann | High-pressure phase of brucite stable at Earth's mantle transition zone and lower mantle conditions[END_REF] at 20GPa or decomposition into MgO and H 2 O at 30GPa. [START_REF] Fei | Static compression of Mg(OH) 2 to 78 GPa at high temperature and constraints on the equation of state of uid H 2 O[END_REF] Beyond this pressure threshold, the reorientation becomes a bo leneck for proton di usion, while dissociation is the rate-limiting step at lower pressure.

Finally, by systematic comparison with Portlandite, we demonstrate the speci city of Brucite for proton di usion. Indeed, the proton di usion barrier minimum in Portlandite occurs at pressures well beyond its transition towards an amorphous phase. G as hydrates are inclusion compounds, in crystalline clathrate structures composed of a hydrogen-bonded water network forming polyhedral cavities wherein small non-polar gas molecules are con ned. [START_REF] Rey | Water structure in organic hydrates[END_REF][START_REF] Sloan | Clathrate hydrates of natural gases[END_REF][START_REF] Demirbas | Methane gas hydrate: as a natural gas source[END_REF] ey spontaneously form in Nature with several guest molecules such as carbon dioxide, hydrogen, nitrogen, and methane. However, the kinetics of their formation is largely unknown and only recently has been addressed. [START_REF] Mitarai | Surfactant E ects on the Crystal Growth of Clathrate Hydrate at the Interface of Water and Hydrophobic-Guest Liquid[END_REF][START_REF] Naullage | How do surfactants control the agglomeration of clathrate hydrates?[END_REF][START_REF] Lauricella | Methane Clathrate Hydrate Nucleation Mechanism by Advanced Molecular Simulations[END_REF][START_REF] Romano | Pa erning symmetry in the rational design of colloidal crystals[END_REF] Gas clathrates have been subjected to growing interest last decades [START_REF] Dendy | Clathrate Hydrates of Natural Gases (3rd ed.)[END_REF] in particular for energy issues and global warming concerns. e gas storage capacity of such compounds are indeed relevant for addressing the global demand for fossil energy, hydrogen storage [START_REF] Wendy | Hydrogen storage in molecular compounds[END_REF][START_REF] Viktor V Struzhkin | Hydrogen storage in molecular clathrates[END_REF] or for CO 2 sequestrations. [START_REF] Peter | Direct experiments on the ocean disposal of fossil fuel CO2[END_REF] In addition, the guest-host repulsive interactions make clathrate hydrates interesting systems for the study of hydrophobic interactions, and their unexpected stability is also of interest for the description of planetary interior.

Due to the character of the guest-host interaction, clathrate hydrates were expected to be stable for relatively modest pressures. However, it was observed quite recently [START_REF] Loveday | Transition from cage clathrate to lled ice: the structure of methane hydrate III[END_REF][START_REF] Loveday | High-pressure gas hydrates[END_REF] that upon compression, gas clathrates usually present phase transitions [START_REF] Loveday | Stable methane hydrate above 2 GPa and the source of Titan's atmospheric methane[END_REF][START_REF] Hirai | Structural changes in gas hydrates and existence of a lled ice structure of methane hydrate above 40 GPa[END_REF][START_REF] Loveday | High-pressure gas hydrates[END_REF][START_REF] Mao | Clathrate hydrates under pressure[END_REF] involving reorganization of the polyhedral ice cages toward hydrogen bonded structure close to the ice phases. ese structures are thus known as lled ices, [START_REF] Loveday | Transition from cage clathrate to lled ice: the structure of methane hydrate III[END_REF] in which the water network forms channels occupied by the guest molecules. [START_REF] Loveday | High-pressure gas hydrates[END_REF] ese structures allow stabilization at high pressure of both low-density ice phases such as the Ic or ice II phases induced by the guest-host interactions but also can be used to form metastable phase of ice (XVII) by removing guest molecules from the water network at ambient pressure. [START_REF] Del Rosso | New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-lled ice[END_REF] Among the di erent lled ice phases, only three structures have been observed so far in addition to a recently discovered "chiral hydrate". [START_REF] Del Rosso | New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-lled ice[END_REF][START_REF] Daniel | A Chiral Gas-Hydrate Structure Common to the Carbon Dioxide-Water and Hydrogen-Water Systems[END_REF] In this study, we focus on the lled ice structure shared by krypton, argon, nitrogen, and methane hydrates. [START_REF] Loveday | High-pressure neutron di raction and models of Titan[END_REF][START_REF] Loveday | High-pressure gas hydrates[END_REF] In particular, we studied the methane hydrate III rst observed by Loveday et al., [START_REF] Loveday | Stable methane hydrate above 2 GPa and the source of Titan's atmospheric methane[END_REF] and found to be stable beyond a pressure of a few GPa at ambient temperature. is work has been conducted in collaboration with an experimental team composed of U. Ranieri, R. Gaal, W.F. Kuhs and led by L. E. Bove. erefore, if not explicitly indicated, the experimental results presented in this chapter come from their work. Technical details of the simulations employed for this analysis can be found in the Appendix B.

Methane hydrate is the most widespread naturally occurring gas hydrate as it is present in large quantities in subsurface deposits, both in oceanic shelves sediments and in permafrost regions. [START_REF] Demirbas | Methane gas hydrate: as a natural gas source[END_REF] erefore, as ocean warms up, a destabilization of the compound could release a signi cant quantity of greenhouse methane gas. [START_REF] Mascarelli | A sleeping giant?[END_REF] On the other hand, methane hydrates are present on Titan [START_REF] Loveday | Stable methane hydrate above 2 GPa and the source of Titan's atmospheric methane[END_REF][START_REF] Hirai | Methane hydrate, amoeba or a sponge made of water molecules[END_REF] and on giant ice planets such as Uranus or Neptune where methane and water are abundant and coexist at very high pressure. In addition, methane hydrates are also suspected to exist at depth in many water-rich objects populating the outer solar system [START_REF] Loveday | High-pressure neutron di raction and models of Titan[END_REF] and space probes have sporadically detected the presence of methane in the atmosphere of Mars [START_REF] Witze | Mars methane hunt comes up empty, ummoxing scientists[END_REF] whose origin might be linked to the destabilization of hydrates existing at depths. [START_REF] Mousis | Methane clathrates in the solar system[END_REF] erefore, several experimental studies in the last years focused on the high-pressure behavior of methane hydrates. [START_REF] Loveday | Transition from cage clathrate to lled ice: the structure of methane hydrate III[END_REF][START_REF] Loveday | High-pressure neutron di raction and models of Titan[END_REF][START_REF] Loveday | High-pressure gas hydrates[END_REF][START_REF] Hirai | Methane hydrate behavior under high pressure[END_REF][START_REF] Hirai | High-pressure structures of methane hydrate observed up to 8 GPa at room temperature[END_REF][START_REF] Hirai | Retention of lled ice structure of methane hydrate up to 42 GPa[END_REF][START_REF] Hirai | Stabilizing of methane hydrate and transition to a new high-pressure structure at 40 GPa[END_REF][START_REF] Machida | A new high-pressure structure of methane hydrate surviving to 86GPa and its implications for the interiors of giant icy planets[END_REF][START_REF] Chou | Transformations in methane hydrates[END_REF][START_REF] Kumazaki | Single-crystal growth of the high-pressure phase II of methane hydrate and its Raman sca ering study[END_REF][START_REF] Shimizu | In situ observations of high-pressure phase transformations in a synthetic methane hydrate[END_REF][START_REF] Machida | Raman spectra of methane hydrate up to 86 GPa[END_REF][START_REF] Mathieu Choukroun | Stability of methane clathrate hydrates under pressure: In uence on outgassing processes of methane on Titan[END_REF][START_REF] Tanaka | Phase changes of lled ice Ih methane hydrate under low temperature and high pressure[END_REF][START_REF] Klug | Hydrogen-bond dynamics and Fermi resonance in high-pressure methane lled ice[END_REF][START_REF] Iitaka | Methane hydrate under high pressure[END_REF][START_REF] Ranieri | Fast methane di usion at the interface of two clathrate structures[END_REF] 

MH-III structure

e MH-III phase structure belongs to the Imcm space group with oxygen atoms located on the 8i Wycko sites and carbon atoms located on the 4e sites. [START_REF] Loveday | High-pressure gas hydrates[END_REF] As shown in Figure 2.1, the MH-III structure has its water network related to the ice Ih, in particular within the (a, b) plane where six-fold water rings are stacked thus leading to hexagonal channels along c wherein are enclosed the methane molecules. In contrast, it presents di erences with the ice Ih within the (b, c) plane where we nd 4-fold and 8-fold water rings, the la er forming octagonal channels along a where methane molecule are arranged in a zig-zag fashion along b and c. In addition, due to the di erent water rings present in the structure, inequivalent O-H-O bond lengths are found due to di erent O-O distances (2.811, 2.807 and 2.783 Å).

ese di erent O-O distances are shown in Figure 2.2, as we will discuss, they can induce several hydrogen bond symmetrization in the structure. e optimal H 2 O:CH 4 ratio is two, which is the stoichiometry we used to model e di erent experimental results provided by Raman spectroscopy, [START_REF] Chou | Transformations in methane hydrates[END_REF][START_REF] Kumazaki | Single-crystal growth of the high-pressure phase II of methane hydrate and its Raman sca ering study[END_REF][START_REF] Shimizu | In situ observations of high-pressure phase transformations in a synthetic methane hydrate[END_REF][START_REF] Machida | Raman spectra of methane hydrate up to 86 GPa[END_REF][START_REF] Mathieu Choukroun | Stability of methane clathrate hydrates under pressure: In uence on outgassing processes of methane on Titan[END_REF][START_REF] Tanaka | Phase changes of lled ice Ih methane hydrate under low temperature and high pressure[END_REF][START_REF] Bezacier | Experimental investigation of methane hydrates dissociation up to 5GPa: Implications for Titan's interior[END_REF] x-ray di raction, [START_REF] Loveday | Transition from cage clathrate to lled ice: the structure of methane hydrate III[END_REF][START_REF] Chou | Transformations in methane hydrates[END_REF][START_REF] Hirai | Methane hydrate behavior under high pressure[END_REF][START_REF] Hirai | High-pressure structures of methane hydrate observed up to 8 GPa at room temperature[END_REF][START_REF] Hirai | Stabilizing of methane hydrate and transition to a new high-pressure structure at 40 GPa[END_REF][START_REF] Machida | A new high-pressure structure of methane hydrate surviving to 86GPa and its implications for the interiors of giant icy planets[END_REF][START_REF] Tanaka | Phase changes of lled ice Ih methane hydrate under low temperature and high pressure[END_REF][START_REF] Hirai | Retention of lled ice structure of methane hydrate up to 42 GPa[END_REF] neutron di raction [START_REF] Loveday | Transition from cage clathrate to lled ice: the structure of methane hydrate III[END_REF][START_REF] Loveday | High-pressure neutron di raction and models of Titan[END_REF][START_REF] Loveday | Neutron Di raction Studies of Ices and Ice Mixtures[END_REF] and also theoretical calculations [START_REF] Tanaka | Phase changes of lled ice Ih methane hydrate under low temperature and high pressure[END_REF] raised several open questions that we want to address in this chapter.

• Guest-Host interactions

Upon compression, many entangled phenomena are expected to occur in the system. Notably, the enhancement of the guest-host interactions could give rise to a coupling between the guest and host dynamics, which are expected to stabilize the structure. [START_REF] Baumert | La ice dynamics of methane and xenon hydrate: Observation of symmetry-avoided crossing by experiment and theory[END_REF][START_REF] Schober | Guest-host coupling and anharmonicity in clathrate hydrates[END_REF] In particular, a Fermi resonance between the O-D stretching mode of the water frame and the overtone of the D 2 O bending was observed [START_REF] Klug | Hydrogen-bond dynamics and Fermi resonance in high-pressure methane lled ice[END_REF] at 15GPa. In this context, a spli ing of the C-H stretching mode occurring above 20GPa was observed by Raman spectroscopy [START_REF] Hirai | Stabilizing of methane hydrate and transition to a new high-pressure structure at 40 GPa[END_REF][START_REF] Tanaka | Phase changes of lled ice Ih methane hydrate under low temperature and high pressure[END_REF][START_REF] Machida | Raman spectra of methane hydrate up to 86 GPa[END_REF] and has been assumed to be a marker of a possible methane orientational ordering along with an eventual distortion of the la er molecules. [START_REF] Klug | Hydrogen-bond dynamics and Fermi resonance in high-pressure methane lled ice[END_REF] However, up to now, no microscopic description of the guest-host interactions has been provided, and neither the possible orientational ordering of the methane molecule nor the guest-host coupling has been con rmed.

• Hydrogen bond symmetrization

As being composed of a hydrogen-bonded water network, a symmetrization transition [START_REF] Meier | Observation of Nuclear antum E ects and Hydrogen Bond Symmetrisation in High Pressure Ice[END_REF] of the MH-III structure is expected to occur upon compression. A hydrogen bond symmetrization transition was rst observed in the VII→X transition of ice for which the quantum properties of the hydrogen nuclei play an essential role. [START_REF] Benoit | Tunnelling and zero-point motion in highpressure ice[END_REF][START_REF] Bronstein | antum-driven phase transition in ice described via an e cient Langevin approach[END_REF] e most striking one regards the computed transition pressure at room temperature, which is reduced in ice from approximately 100 GPa within the classical frame down to 65 GPa, in agreement with the experimental ndings, when nuclear quantum e ects are included. In methane hydrate, the symmetrization transition was guessed to occur above 60 GPa from an analysis of the O-O distances within ab-initio molecular simulations [START_REF] Iitaka | Methane hydrate under high pressure[END_REF][START_REF] Klug | Hydrogen-bond dynamics and Fermi resonance in high-pressure methane lled ice[END_REF] without taking into account NQE, but it has not been con rmed yet.

• New high-pressure phase

Finally, a pressure-induced phase transition from MH-III toward another high-pressure phase of methane hydrate was suggested by several experimental studies. In particular, new features were observed in X-ray di raction experiments [START_REF] Machida | A new high-pressure structure of methane hydrate surviving to 86GPa and its implications for the interiors of giant icy planets[END_REF][START_REF] Kadobayashi | In situ Raman and X-ray di raction studies on the high pressure and temperature stability of methane hydrate up to 55 GPa[END_REF][START_REF] Hirai | Stabilizing of methane hydrate and transition to a new high-pressure structure at 40 GPa[END_REF][START_REF] Tanaka | Phase changes of lled ice Ih methane hydrate under low temperature and high pressure[END_REF] suggesting another structure which appears beyond 40-50GPa. [START_REF] Hirai | Stabilizing of methane hydrate and transition to a new high-pressure structure at 40 GPa[END_REF][START_REF] Machida | A new high-pressure structure of methane hydrate surviving to 86GPa and its implications for the interiors of giant icy planets[END_REF][START_REF] Machida | Raman spectra of methane hydrate up to 86 GPa[END_REF][START_REF] Tanaka | Phase changes of lled ice Ih methane hydrate under low temperature and high pressure[END_REF] As conjectured by these results, this new high-pressure structure remains stable to at least 86GPa. [START_REF] Machida | A new high-pressure structure of methane hydrate surviving to 86GPa and its implications for the interiors of giant icy planets[END_REF] However, X-ray di raction pa erns did not allow to identify it, and the new phase remains unsolved up to now. erefore, in the present chapter, we address these issues by accounting for the nuclear quantum e ects which, as we will see, are essential to describe the methane hydrate under high pressure. In the rst section, we will discuss the behavior of the enclosed methane molecules within MH-III and the pressure-enhanced guest-host interactions. en, in the second section, we will describe the hydrogen bond symmetrization mechanism leading to the MH-IIIs phase. In the third part, we will present the new MH-IV phase we discovered and characterized the MH-IIIs → MH-IV transition in the last part. In Figure 2.3, we present the vibrational spectra of the deuterated and protonated ice frames.

Spectral analysis

Frequency (cm

In both structures, we can distinguish the water and methane bending and stretching modes as well as the methane rocking mode. In the deuterated system, the water stretching modes intensities a en and their frequencies downshi upon compression providing a hint of H-bond symmetrization transition, as we will discuss in the next Section 2.3. Moreover, as its frequency downshi s, the peak relative to the O-D stretching becomes wider with pressure and extends over the CH 4 rocking mode. us, this gives rise to the progressive mode coupling and eventually the resonance between these modes, occurring at ∼ 20-25GPa in CH 4 :D 2 O. In the protonated system, the water stretching modes also a en, and their frequencies downshi but at much higher frequencies while the methane rocking and H 2 O bending modes vibrate at the same frequency as the deuterated system, even at the lowest pressure. erefore, in CH 4 :H 2 O, the coupling already occurs at the formation of the system, between the H 2 O bending and the CH 4 rocking modes, while the OH stretching is not likely to interfere with the CH 4 bending modes. From the simulated vibrational spectra, we extract the frequency of each well-de ned mode, in order to investigate the possible change of behavior of the system upon compression. In Figure 2.4, we reported the calculated frequencies of the methane stretching and rocking modes of the deuterated system to be compared with experimental Raman results. Despite the di erence of about 35 cm -1 between the observed and calculated CH 4 -rocking mode, the la er frequency at 25GPa is located at a value that is quite similar to the calculated one reported in ref, [START_REF] Klug | Hydrogen-bond dynamics and Fermi resonance in high-pressure methane lled ice[END_REF] and remains within the expected DFT precision. Interestingly, both experimental and theoretical results show that the observed vibrational modes follow the same evolution upon compression. Indeed, all frequency dependencies on pressure deviate present a slight change of slope occurring at P ≈ 20GPa. It involves the methane molecules but also the D 2 O network as the experimental values of the la ice mode present the same behavior. We do not present these results here as the la er mode was not characterizable in our simulation. e observed changes of slope of the pressure dependence in both water frame and guest modes around 20GPa suggest an enhanced coupling of the guest and host dynamics, which has been conjectured but never detailed so far. Further investigations are thus required to understand the role of methane and water molecules and their interactions. To do so, in the next section, we focus our a ention on the methane behavior in MH-III upon compression, by a microscopic description of the la er.

Raman shift (cm

Methane ordering and locking-in

In this section, we focus on the dynamics and orientation of the methane molecules. e orientation of the methane molecules enclosed within the water frame was investigated by calculating the Orientational Probability Density Function (OPDF) P CH (θ, ϕ) of the C-H bonds for di erent pressures. For the sake of clarity, we rst performed this analysis for a single methane molecule. is indicates a progressive methane orientational ordering, occurring in MH-III upon compression. By analyzing all the methane molecules present in the system, we can distinguish the four OPDF at 36GPa corresponding to four con gurations that the methane molecules can adopt at high pressure, as shown in Figure 2.6.a. We labeled A ± and B ± these four con gurations and present them in is characterizes the methane orientational ordering, which is not altered as pressure is increased up to 35GPa.

ese results also tend to demonstrate the progressive locking-in of the methane rotational motion as suggested by the increasing anisotropy of the OPDF upon compression. Indeed, at low pressure, we observe non-negligible probability density between the four con gurations, that disappears for higher pressure. us, in order to be er estimate the pressure dependence of the methane rotational motions, the OPDF P C H (θ ,ϕ) were integrated either on ϕ or θ to yield marginal distributions P C H (θ ) and P C H (ϕ). As shown in Figure 2.7, P C H (ϕ) displays three main peaks at the positions de ned earlier. e probability between them is non-negligible at low pressure but almost disappear at 6.9GPa. However, the probability distribution over θ shows a broad peak, almost isotropic over the angle range at the lowest pressure with no de ned structure, indicating a considerable disorder along this coordinate. e related rotation motions were characterized (see Section B) and shown to be fully described by reorientation motions along one of the ternary axis of the methane molecules. Upon compression, two main peaks appear at 80 • and 160 • . While at the two intermediate pressures, namely 6.9 and 16.4GPa, the non-negligible probability density which is present between the maxima, disappears at 25.3GPa, and the probability distribution does not evolve anymore upon compression. ese results reveal the progressive locking-in of the methane rotations from 2.4GPa where it is almost free in particular along θ to 25.3GPa where all rotations are forbidden. is pressure threshold is speci c to MH-III and the locking-in of the methane rotations could be at the root of the enhanced water-methane interactions revealed by the change of slope of the modes frequencies occurring at the same pressure.
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Methane-Water interaction

Both the orientational ordering and the rotation locking-in of the methane molecules induce an increase in the interaction between methane and water molecules. In this section, we will discuss the di erent consequences caused by this interaction on both the methane symmetry and on their vibrational mode coupling.

• Methane distortion

As shown in compressibility. Indeed, the la ice parameter ratios as a function of pressure present the same behavior observed on the evolution of the mode frequency upon compression. While the a b la ice parameter ratio is almost constant within the explored pressure range, ratios involving the la ice parameter c present a change of slope at 20GPa. is change brings out the signi cant steric hindrance induced by the methane ordering and locking-in and points out the reinforced molecule-ice repulsive interaction, which could be at the root of molecule deformations. ey are con rmed by the direct inspection of the angular distribution of the six HCH angles. We observe that at low pressure (3GPa), all angle probability distributions P(α n ) are centered around the tetrahedral angle of 109.47 • , while, upon increasing pressure, two of them shi progressively away from the tetrahedral angle. We labelled these two HCH angles α 1 , which are almost parallel to the (a, b) plane, and α 2 the angles lying in the (b, c) plane. In Figure 2.9.a, we report the evolution of their mean value upon compression. e angle α 2 decreases with pressure due to the compressibility anisotropy observed along c, thus it makes the methane H -H distances decrease along this direction. In contrast, the angle α 1 increases with pressure. is gives rise to the molecule a ening in the b direction where the nearest neighbors are the hydrogen atoms (see Figure 2.6). e distortion of methane molecules enclosed in MH-III induces the observed change in the related vibrational modes. In addition, a signature of this distortion is accounted for by a li of degeneracy of the CH 4 stretching modes: around 15GPa for the antisymmetric ν 3 and around 25GPa for the symmetric ν 1 C-H mode as shown in Figure 2.9.b. is li of degeneracy present in static calculations within the harmonic approximation instead appears as a broadening (approximately 60cm -1 ) while taking into account the dynamics of the molecules at ambient temperature.

• Mode coupling

e analysis provided earlier predicts a coupling between methane and water. Although the mode analysis within the harmonic approximation shows that at low pressure (P < 10GPa), the eigenvectors of the CH 4 rocking modes are fully localized on the methane molecules, as pressure increases, they progressively mix with the atomic displacements of the water frame. In order to quantify this coupling, we projected the mode eigenvectors ì e (ν ) at each pressure on atomic displacements that are centered either on the deuterated water frame or the methane molecules:

ì e (ν ) = i ∈D 2 O b (ν ) i ì x i + j ∈CH 4 c (ν ) j ì x j (2.2.1)
where b (ν ) i and c (ν ) j are the coe cients of the respective expansions for the mode at frequency ν .

We then calculated a methane participation ratio P C H 4 (ν ) which describes the participation of the methane Degrees of Freedom (DoF) to the vibrational mode ν :

P C H 4 (ν) = DoF C H 4 c (ν ) 2 j ì e (ν ) • ì e (ν ) (2.2.2)
where the sum runs over all the CH 4 DoF. e same expression holds for P D 2 O (ν ) in which c (ν ) j is replaced with b (ν ) i , which ensures that:

P C H 4 (ν) = 1 -P D 2 O (ν ) (2.

2.3)

When P C H 4 (ν ) = 1 the mode ν is totally characterized by the methane DoF contribution, while if P C H 4 (ν ) = 0 it is localized in the water frame. (P C H 4 , P D 2 O ) calculated for each methane bending and OD stretching modes as pressure increases.

Up to 20GPa, P C H 4 ∼1 or 0, the investigated modes are totally described either by the methane or the water DoF contribution. Starting at 20GPa some vibrational modes are described by a combination between the methane and water DoF contributions leading to a contribution coe cient 0 < P C H 4 < 1. Due to the pressure induced mode coupling occuring in MH-III at 20GPa, it is not possible to a ribute these modes to a methane bending or an OD stretching vibrational mode but rather to a mixed one. eir characters therefore deeply change in this pressure range.

To summarize, in this section, we mainly present the pressure e ect on the methane molecules embedded in MH-III. We have shown that at low pressure, methane molecules almost behave as "free rotors" while upon compression, the progressive methane orientational ordering fully locks this rotation which becomes forbidden at 25GPa. is induces the distortion of methane tetrahedral angles triggering both the change of compressibility of the system along the la ice parameter c and the important coupling between methane and water vibrational modes. Having described the guest behavior, in the following section, we will focus our a ention on the behavior of the host, in particular, we will discuss the hydrogen bond symmetrization occurring within the water network.

e methane hydrate IIIs

e methane hydrate IIIs

In order to describe the hydrogen bond symmetrization transition in the MH-III structure, we rst start by introducing this mechanism process in the simpler case of the ice VII → X transition.

D oo >2.42Å

Zero-point Energy D oo ~2.42Å D oo <2.42Å e ice VII → X transition mechanism can be reduced to the description of the O-H…O bond in one dimension, as described in Figure 2.11. At low pressure, the proton between two oxygen atoms forms a covalent bond with one out of the two and a hydrogen bond with the other. is con guration leads to an e ective double-well potential along the O-O direction [START_REF] Lin | Correlated tunneling in hydrogen bonds[END_REF][START_REF] Kenneth | High pressure phase transitions and hydrogen-bond symmetry in ice polymorphs[END_REF] as seen by the proton.

is double-well potential is characterized by the OH vibrational frequency (stretching in 1D) of ∼100THz, the two equilibrium positions at ∼0.96 Å from the oxygen atoms, and the e ective barrier heights which depends on the O-O distance. Indeed, as pressure increases, the O-O distance decreases, lowering the barrier of the double-well potential. is decrease of the potential barrier induces proton delocalization in the two wells by the increase of tunneling. Finally, when the proton energy, taking into account zero-point contribution, is higher than the barrier height, the proton becomes centered in between the two oxygen atoms: this describes the hydrogen-bond symmetrization transition. We note in passing that the symmetrization transition can occur before the barrier has disappeared, because of zero-point energy.

In the case of the ice VII → X transition, it occurs for a pressure of ∼60GPa, and O-O distance of ∼ 2.42 Å. It has been shown, [START_REF] Benoit | Tunnelling and zero-point motion in highpressure ice[END_REF][START_REF] Bronstein | antum-driven phase transition in ice described via an e cient Langevin approach[END_REF] that taking into account NQE in the description of this transition is crucial as they downshi the transition pressure by ∼ 40GPa. erefore, with a classical description of the nuclei, or by H/D isotopic substitution, the transition pressure is shi ed toward ∼ 100GPa.

To describe such a mechanism, a standard order parameter χ has been extensively used [START_REF] Bronstein | antum-driven phase transition in ice described via an e cient Langevin approach[END_REF] to account for the location of the hydrogen nucleus between the two nearest oxygen atoms:

χ = d(O [1] -H) -d(O [2] -H) (2.3.1)
where d(O [n] -H) is the distance between the selected proton and its n t h oxygen nearest neighbor.

So de ned, this order parameter is null for proton-symmetric hydrogen bonds while its probability distribution allows one to observe the evolution of the proton position toward the transition, and could give information concerning proton tunneling or thermal uctuation. In MH-III several considerations concerning the expected hydrogen bond symmetrization transition need to be addressed: rstly, as the O-O distances are shorter than in ice VII at all pressures, it is reasonable to expect the transition to occur at a lower pressure. Secondly, as described before, three di erent O-H-O bonds can be distinguished in MH-III due to inequivalent O-O distances. erefore, we can expect a complete symmetrization of the structure to occur in three steps. en, in contrast with the ice case, the host(water network)/guest(methane molecules) interactions could interfere during the transition. Finally, in analogy with the ice transition, it is reasonable to expect nuclear quantum e ects to be relevant, and isotopic substitution to have an impact.

From MH-III to MH-IIIs

• Complete symmetrization

In Figure 2.12, we present the di erent probability distributions of the order parameter χ in protonated(le ) and deuterated(right) MH-III systems calculated from all O-H-O bonds(top) and distinguishing the di erent inequivalent O-O pairs(bo om). In both systems, P(χ ) evolves from a distribution with two maxima, which is characteristic of asymmetric hydrogen bonds, with signi cant tunneling between the two positions, to a single-peak distribution, which denotes the symmetric hydrogen bonds, around 40GPa. is points towards a symmetrization transition of the ice network in MH-III around 40GPa, therefore at a much lower pressure than in pure ice, as expected. We named the H-bond symmetrized MH-III phase "MH-IIIs". One can also note that even at quite low pressure the distribution does not vanish for χ = 0 (P(χ = 0) 0) showing that the ice skeleton is proton disordered even at P ∼ 10GPa. A second con rmation of the transition is given by the vibrational spectra through the Fourier transforms of the time correlation functions. In particular, we examined the velocity-velocity time correlation functions r α (t) r α (0) , where r α is the α component of vector joining the proton (deuterium) in the ice cage and its oxygen rst neighbor O [START_REF] Benoit | Tunnelling and zero-point motion in highpressure ice[END_REF] -H. We then considered the projections of the previous vectors parallel or perpendicular (r and r ⊥ , respectively) to the O [START_REF] Benoit | Tunnelling and zero-point motion in highpressure ice[END_REF] -O [2] axis. As shown in Figure 2.13, the spectra of the parallel components r show a shallow minimum around 35-40GPa, which is consistent with the so ening of the shorter hydrogen bonds. Such a so ening is a signature of the symmetrization transition, as discussed in the case of pure ice, [START_REF] Bronstein | antum-driven phase transition in ice described via an e cient Langevin approach[END_REF][START_REF] Kenneth | High pressure phase transitions and hydrogen-bond symmetry in ice polymorphs[END_REF] which points towards a critical pressure around 35-40GPa, consistently with the indications from the distribution of the corresponding order parameter χ .

• Two steps process

In order to address the expected H-bond symmetrization in three steps, we pursue the same analysis by distinguishing the three inequivalent O-H-O bonds present within the MH-III structure. e corresponding probability distributions for the order parameter P (α ) (χ ), α = a, b or c are presented in Figure 2.12.b. P (α ) (χ ), for α = a and b, superimposed and shows two maxima at 40.6GPa and 43.4GPa for the deuterated and protonated ice skeletons, respectively, while P (c) (χ ) is at around χ = 0. e di erence between the distributions reveals that the transition nally takes place in two steps due to the comparable O-O distances of two of them: at slightly lower pressures, the hydrogen bonds are symmetrized along the shorter O-O axes in group (c), and those in the remaining groups follow, with a delay corresponding to a few GPa.

e picture that emerges from the P (α ) (χ ) distributions is that of a symmetrization transition that extends over ∼ 5GPa around 40GPa rather than happening at a precise critical pressure, as in the case of pure ice. [START_REF] Bronstein | antum-driven phase transition in ice described via an e cient Langevin approach[END_REF] 

Nuclear quantum e ects and isotopic substitution

In contrast with the case of pure ice, the isotopic substitution does not induce essential di erences in the hydrogen bond symmetrization transition of the MH-III structure. Indeed, P(χ ) behaves somewhat similarly in both protonated and deuterated water network. Secondly, as for the P(χ ) distributions, the spectra for protonated and deuterated ice cages li le di er once the la er have been renormalized by the mass ratio √ 2. is implies that isotope e ects are practically negligible, and suggest modest overall nuclear quantum e ects, in striking contrast with the case of ice VII → X transition for which isotope e ects induce a shi of ∼40GPa in the transition pressure. As shown in Figure 2.14, at 40GPa, PIMD simulations gives the MH-III structure to be symmetrized, while a classical Langevin description still describes an asymmetric hydrogen bond. e in uence of NQE has been evaluated to shi the transition by about 10GPa. is di erence is much lower than the case of the ice VII → X transition. We note in passing that it

2.3.
e methane hydrate IIIs also shows a small di erence (few GPa) between PIMD and QTB descriptions. erefore, to understand both the unexpected absence of H/D isotope e ect and the low overall NQE on the la er transition, a more in-depth analysis is required. us, in the following part, we will go beyond the usual one-dimensional representation of the hydrogen bond symmetrization by distinguishing the proton motion along or normal to the O-O axis.

• e proton normal delocalization

Using simulation data from [START_REF] Bronstein | antum-driven phase transition in ice described via an e cient Langevin approach[END_REF] , we compare the hydrogen (and deuterium) distribution of MH-III σ σ Figure 2.16 shows the proton probability distribution P(r , r ⊥ ) for both ice and methane hydrate with protonated or deuterated water frame. One observes that the OH r distances are approximately the same in both compounds as are the parallel widths, while the normal extension is larger for the hydrates at all pressures, with a signi cant amplitude up to r ⊥ ≈ 0.4 Å. e inverted comma shape of the distribution indicates that the hydrogen atoms, as they move, tend to retain a relatively constant O-H distance. As pressure is increased, the shape of the distribution changes: the parallel contribution is sensitive to increased tunneling and thus broadens until approximately 40GPa while the normal contribution tends to shrink slightly. is analysis con rms a broader distribution in the normal direction than along the O-O axis, for all three systems, and suggests that purely one-dimensional model Hamiltonians, like those usually adopted [START_REF] Kenneth | High pressure phase transitions and hydrogen-bond symmetry in ice polymorphs[END_REF][START_REF] Lin | Correlated tunneling in hydrogen bonds[END_REF] are unable to catch the complexity of the hydrogen bond in methane hydrate or other highly anisotropic systems. A ner analysis based on the di erences of P(r , r ⊥ ) between the protonated and deuterated cages shows that the radial delocalization is larger in the case of CH 4 :(H 2 O) 2 than in CH 4 :(D 2 O) 2 which itself is more signi cant than in the ice case.

• 2D representation

In this section, we aim at describing the e ect of the normal proton delocalization in the symmetrization process. As we have seen, the usual, [START_REF] Kenneth | High pressure phase transitions and hydrogen-bond symmetry in ice polymorphs[END_REF][START_REF] Bronstein | antum-driven phase transition in ice described via an e cient Langevin approach[END_REF][START_REF] Bronstein | antum versus classical protons in pure and salty ice under pressure[END_REF] convenient one-dimensional model along the O-O axis does not e ciently describe the H-bond symmetrization in MH-III. erefore, we analyzed the system in a two-dimensional model with cylindrical symmetry around the O-O axis to describe the e ective proton potential while a harmonic normal contribution can be tuned to model con nement e ect. en we solved the related Schrödinger equation. e two degrees of freedom are thus r and r ⊥ and OH interactions are described by the sum of two Morse potentials:

V M (r , r ⊥ ) = V 0 (e + (e + -2) + e -(e -- 2)) (2.3.2) 
e ± = e - √ (r ±r O )2+r 2 ⊥ -re rw (2.3.3)
where V 0 is the potential depth, ±r O the positions of the two neighboring oxygen atoms, r e the equilibrium distance and r w a measure of the width of the potential well. e full potential, the hydrogen atom is submi ed to, thus writes:

V (r) = V M (r , r ⊥ ) + k ⊥ 2 r 2 ⊥ (2.3.4)
where the last term is a normal harmonic potential that tends to con ne the hydrogen atom to the O-O axis.

We present the potential in Figure 2.17. e resulting wave functions shown in Figure 2.18 are clearly a ected by the con nement term, which favors the symmetrization. In addition, an estimate of the importance of the NQE can be given by the tunneling rate ∆E/ , where ∆E = E [1st ] -E [GS ] is the energy di erence between the rst excited state and the ground state. e non-intuitive result of this analysis, shown in Figure 2.19, is that ∆E increases with the con nement of the hydrogen atom along the normal direction: conversely, when the hydrogen atom is allowed to move sideways, as in MH-III, the NQE tend to disappear. is model gives an insight into the reason why NQE are hardly visible in MH-III. In addition, as the normal delocalization of the protons is larger for the case of the protonated compound as compared with the deuterated one, the NQE along the parallel component is compensated, lowering the di erence between the two systems. is explains the low di erence of symmetrization pressure for H/D isotopic substitution. erefore, rather than an absence of NQE in MH-III, we stress that the normal and parallel proton (deuteron) delocalization play opposite roles and tend to compensate each other. Ground state show a clear correlation between the presence of a methane hydrogen and the sideways displacement of the cage hydrogen (deuterium) atoms. When protons in the CH 4 molecules approach the cage hydrogen (deuterium) below a typical distance (∼ 2.0 Å at P=10GPa, ∼ 1.9 Å at P=35GPa and ∼ 1.7 Å at P=65GPa), r ⊥ tends to increase, in order to maximize d HH (resp. d DH ). is shows that the normal delocalization is mainly a consequence of the repulsive interaction between the hydrogen (or deuterium) of the water network and those in the methane molecules. Finally, the stability of the hydrogen bond network was analyzed by removing the methane molecules while keeping the oxygen atoms xed to their original positions and le ing the cage hydrogen atoms move freely. e result thereof is that these hydrogen atoms escape from the O-O axes, which shows that the repulsive interactions between the hydrogen of the guest CH 4 molecules and the hydrogen (resp. deuterium) of the water frame is also a key ingredient for the stability of the hydrogen bonds and thus of the overall system.
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e methane hydrate IV

As discussed in the introduction, several experimental results suggest a pressure-induced phase transition of the MH-III at ∼ 40GPa. In particular, X-ray di raction experiments [START_REF] Machida | A new high-pressure structure of methane hydrate surviving to 86GPa and its implications for the interiors of giant icy planets[END_REF][START_REF] Hirai | Stabilizing of methane hydrate and transition to a new high-pressure structure at 40 GPa[END_REF][START_REF] Tanaka | Phase changes of lled ice Ih methane hydrate under low temperature and high pressure[END_REF][START_REF] Kadobayashi | In situ Raman and X-ray di raction studies on the high pressure and temperature stability of methane hydrate up to 55 GPa[END_REF] indicate the presence of a new structure at 40GPa, as the di raction peaks are not compatible with MH-III. Raman spectroscopy yields two new vibrational modes and an important broadening of the two C-H stretching modes. Although guessed, this new structure has not been solved yet. In this context, we investigated a hypothetic destabilization of the MH-III structure from the proton dynamics as given by our QTB simulations.

-2 As shown in Figure 2.21, the analysis of the spatial delocalization of the water proton of MH-III within the (a,b) plane presents a pressure-induced di usion of the proton within the ice frame. While in the protonated ice frame this process seems to start from 20GPa and mainly increases at 40 and 60GPa, a signi cant isotope e ect is observed in the deuterated system, where the di usion process seems to start for pressures close to 60GPa. As we have seen for the case of Brucite minerals, the proton di usion is indeed largely dependent of the NQE, which could ease the overcome of dissociation barriers. In addition, this process is visible by tracking the proton trajectories. However, this process begins to have a signi cant impact at 40GPa only for the protonated system, and as discussed earlier, QTB method could overestimate proton hopping probabilities. erefore, although we cannot rely on the exact pressure allowing di usion as given by QTB simulations, these results provide an essential hint for structure destabilization through proton quantum delocalization. is was the starting point leading to the discovery of the new high-pressure methane hydrate phase.
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In order to solve the new structure, a serie of MH-III destabilized systems were optimized by force minimization through variable simulation cell relaxation. ese structures were constructed by starting from MH-III from which one proton was taken away from a water molecule and replaced to form a non-stable H 3 O + molecule within the ice frame to mimic the suggested proton delocalization. All these new structures relaxed into the same con guration. While the methane molecules organization almost did not change, the ice frame reorganized into a structure much closer to the ice Ih phase as compared to MH-III. is result is unexpected, as a pressure-induced transition suggests a new denser ice phase for the composition of the host structure, as ice VII or X could be. However, taking the ice Ih as the host ice network and the methane molecules arrangement from our relaxation calculations led to a new stable high-pressure methane hydrate phase we named MH-IV, presented in Figure 2.22. In order to check the stability of the structure, we rst tested other hypothetical systems with the MH-IV positions for the oxygen atoms and the MH-III positions for the methane, or the inverse. All these structures spontaneously relaxed to the MH-IV phase. Secondly, replacing methane molecules with large-radius rare gas atoms (Ar, Kr) resulted in a di erent structure, suggesting that the (quasi-)tetrahedral symmetry of methane molecule is a crucial parameter for this transition. is strengthens the emerging view of high-pressure methane hydrate as a strongly interacting inclusion compound, where a global optimization of both water and methane molecules should be ful lled. Finally, to conclude on the stability of MH-IV, we calculated the free enthalpy di erence ∆H = H MH-III -H MH-IV at T = 0K as a function of pressure, obtained from static calculations. As shown in Figure 2.23, the MH-IV structure becomes more stable than MH-III for pressures higher than ∼ 30GPa while experimentally, MH-III seems to transform to a new phase at 40GPa. [START_REF] Hirai | Stabilizing of methane hydrate and transition to a new high-pressure structure at 40 GPa[END_REF] Such a di erence can be a ributed to several factors. In particular, the fact that static energy calculations take into account neither thermal nor quantum e ects but also the neglected entropy term of the methane rotational disorder. erefore, from now on, we adopt 40GPa as the transition pressure. Upon further compression, the free enthalpy di erence grows up to 400 meV per methane molecule at 150GPa. Its trend shows that the stability of the new phase, with a smaller volume, increases steadily with pressure.

Structural properties

We investigated the structural similarities between the D 2 O network in methane hydrate phases III and IV with respect to ice Ih through the topological distance D X as given by:

D X = Σ N i=1 (r X i -r Ih i ) 2 (2.4.1)
where N is the number of atoms; r X i indicates the reduced atomic positions of the i th atom for the phase X (X=MH-III or MH-IV) and r Ih i the corresponding ones in ice Ih. 2). In addition to a di erent water frame, MH-IV contains methane orientational ordering which di ers from MH-III. Indeed, in MH-IV, the carbon atoms and a C-H bond in each methane molecule are aligned along the ì c direction, where two symmetrical con gurations that di er by a rotation of π 6 around ì c alternate (Figure 2.22, lower le panel). Along ì b, methane ordering presents another alternation by a rotation of π 3 around ì a (Figure 2.22, upper panel). In this arrangement, all C-H bonds of the methane point toward the hexagonal channels formed by the host D 2 O molecules, thus reducing repulsive methane-water interactions but also preventing methane rotations. Finally, we reported in Figure 2.24 the simulated X-ray di ractogram of the MH-IV, for comparison with experimental observation present in the literature. [START_REF] Tanaka | Phase changes of lled ice Ih methane hydrate under low temperature and high pressure[END_REF] We can observe that the MH-IV simulated X-ray di ractogram quantitatively reproduces the location and intensity ratios of the main experimental x-ray di raction peaks from ref. [87]. is provides a strong indication that the atomic positions of the C and O atoms of the simulated MH-IV structure match the experimental ones. Moreover, the suggested la ice parameters as calculated from the la er experimental X-ray study match the ones we obtained from variablecell relaxation of MH-IV. We believe that such an excellent agreement is not accidental and that the MH-IV structure we propose corresponds to the unsolved one as obtained in ref. [87]. In Figure 2.25, we provide the evolution of the la ice parameters of the methane hydrate upon compression. We can see that at the transition, while a and b increase a li le, the signi cant change concerns c, which decreases by about 3.2% due to the particular methane ordering along this axis. For coherence sake with Imcm, the space group of the higher pressure phases is given in the non-conventional representation. The uncertainty on the fractional coordinates is ±0.005. Despite the di erent space group between MH-III and MH-IIIs, the full oxygen positions are very similar. 

Hydrogen bond symmetrization: MH-IVs

e increase of the a and b la ice parameters also induces an increase of the O-O distances within this plane. As discussed in Section 2.3, O-O distances is the key parameter in uencing the hydrogen bond symmetrization in such structures. erefore, although before the transition toward MH-IV the system is already symmetrized, the increase of the O-O distances drive deuterons back to non-symmetric hydrogen bonds.

In order to characterize the hydrogen bond symmetrization, we calculated the probability distribution of the order parameter χ , already de ned in Section 2. is leads to the following a sequence of high-pressure methane hydrate phases: MH-III, from 2.4 to 35GPa; MH-IIIs around 35GPa; MH-IV at 40GPa; and nally MH-IVs as shown in Figure 2.26.a.

Vibrationnal properties

e phase transition from MH-III to MH-IV can also be detected by looking into the behavior of the vibration modes as a function of the increasing pressure. In particular, and similarly to what occurs in MH-III, an important broadening of the C-H stretching mode is observed experimentally at 80GPa. In addition, two new vibrational modes appear beyond 100GPa. As these two experimental results could be signatures of the MH-IV(s) phase, we will rst investigate the C-H stretching mode and then the presence of new vibrational modes. methane stretching modes in Raman spectra changes slope around 80GPa. To address this issue, in analogy with the methane distortion occurring in MH-III, we investigated the di erent tetrahedral angles evolution upon compression of the methane molecules in MH-IV. Indeed, as we have seen, in the MH-III structure, the methane molecules undergo an increasing distortion from tetrahedral symmetry upon compression leading to a broadening of the C-H stretching modes. It is interesting to note that a er the transition to MH-IV, the HCH angles of methane almost recover their tetrahedral value, as shown in Figure 2.27.b. However, while increasing pressure, we observe an important departure of the methane HCH angle from the tetrahedral symmetry occurring at 80GPa. erefore, the degenerate ν 3 and ν 1 modes split in similar, but non-degenerated modes. e computed width of the related frequency distribution explains the large broadening of the C-H stretching modes observed experimentally. A similar analysis also holds for MH-III under increasing methane distortion (Figure 2.27.b).

• C-H stretching modes

is e ect deeply depends on the structure, as the methane distortion is due to both the steric hindrance and H-H repulsive interaction between methane and water molecules. In addition, as shown in Figure 2.28, the C-H stretching modes frequency evolution as a function of the pressure as obtained from our MD simulations perfectly match the experimental ones. erefore, this experimental observation con rms the stability of the MH-IV phase up to, at least, 150GPa and this new phase represents the highest-pressure gas hydrate known up to now.

• Characteristic modes of MH-IV

Second con rmation is provided by the two new modes appearing beyond 100GPa, revealed by Raman spectroscopy. ese modes present between 900 and 1100 cm -1 are also detected in our MD simulations, as shown in Figure 2.28. Our theoretical analysis, within the harmonic approximation, describes these modes as being shared among the water and methane degrees of freedom in the MH-IV-structure. Indeed, this mixed vibrational mode involves both CH 4 bending and D 2 O stretching modes. We denote them as IV-modes, as they are characteristic of the la er structure. To summarize, we found a further high-pressure methane hydrate phase, the MH-IV, which follows the MH-III phase upon compression. is new phase is characterized by oxygen atoms arranged as in ice Ih and a signi cant deuterium tunneling or a symmetric hydrogen bond. e methane molecules are trapped in the ice-frame with a more symmetric orientational ordering as compared to MH-III. Several signatures of MH-IV was observed: (i) two new vibrational modes arise beyond 100GPa, (ii) a large broadening of the C-H stretching modes occurs at 80GPa and (iii) new X-ray peaks appears at 40GPa. e evolution of Raman spectra, as well as our theoretical analysis, con rm the stability of the structure up to, at least, 150GPa. At the transition, the hydrogen bonds slightly desymmetrize and give rise to another transition from MH-IV to MH-IVs with increasing pressure.

Transition description

In this section, we will describe the instability of the MH-IIIs phase towards the MH-IV one, and characterize this transition. We will rst describe the di erent atomic displacements this transition involves, and based on this analysis, we will analyze the di erent sources of instability in MH-III. Finally, minimum energy and free energy sampling along the transition will give access to a full characterization of the transition and reaction barrier. In Figure 2.29 we sketched the di erent atomic displacements required in MH-IIIs phase to form MH-IV. As we can see, it requires both a structural reorganization of the hydrogen bonds as well as a signi cant change of the methane orientation. Interestingly, only half of the cell is mainly impacted along the transition. Indeed, while all the methane molecules require a small translation along ì b and a small rotation along ì a, only one half of them require a large rotation of π around ì c. e second signi cant change concerns one half of the MH-III water network. In this part of the structure, both a reorganization of the hydrogen bonds and a displacement of the oxygen atoms are required. e rearrangement of the hydrogen bond occurs along ì c, where the two hydrogen bonds forming 4-fold water rings break, while two other ones are created between oxygen atoms that were not bounded in phase III. ese structural changes can be seen as a transfer of protons between O-O couples. Following the hydrogen bond rearrangement, the oxygen atoms are also displaced, in the same direction, in a "seesaw" mechanism. is induces the disappearance of the 4-fold and 8-fold water rings in favor of 6-fold water rings composing the water network of MH-IV and leads to hexagonal channels along both a and c directions, where the methane molecules are arranged.

ese key displacements describing the transition reveal the essential mechanisms to be accounted for to understand the transition and the higher stability of the MH-IV phase under very high pressure. e organization of the methane molecule is not optimized within MH-III, which displays noticeable distortion of the molecules, thus decreasing the stability of the overall structure upon compression. Furthermore, the presence of 4-fold within the water network could lead to the instability of the structure by inducing an angular frustration of the water molecules as compared to their natural tetrahedral symmetry. Finally, the proton transfer between O-O pairs is one of the most important mechanism triggering the transition; it is, therefore, essential to account for nuclear quantum e ects and describe the quantum spread of protons(deuterons) in order to have a faithful picture of the transition. erefore, we rst address the stability of the ice frame and related water rings. en, we discuss a transition path as given by the minimum and free energy paths, and nally, we conclude on the importance of the NQE in this transition.

Stability of the ice frame

In order to distinguish the di erent contributions leading to the instability of MH-IIIs, towards MH-IV, we compute the distinct contributions to their enthalpy at T = 0K. To do so, from the optimized methane hydrate structures, we removed either the methane molecules or the water network and calculated their energies by xing the ion positions. is leads to an estimation of the water-water interaction energy E (H 2 O-H 2 O) and of the methane-methane interaction energy E (CH 4 -CH 4 ) , to be compared with the full hydrate energy E (MH) . e water-methane interaction energy is computed through the di erence:

E (H 2 O-CH 4 ) = E (MH) -E (H 2 O-H 2 O) -E (CH 4 -CH 4 ) while
e term PV is added to the internal energies to recover the corresponding enthalpy

H (MH) = E (MH) + PV (MH) at T = 0K.
As shown in Figure 2.30, while the water-methane interaction energy largely contributes to the stability of MH-III, both the methane-methane and water-water interaction energies favor MH-IV. Although the sum of these energies (∆E t ot ) goes in the direction of the stability of MH-III, while taking into account the pressure energy term P ∆V , the enthalpy di erence (∆H ) gives the MH-IV denser structure stabler than MH-III. As already discussed, to accurately describe the stability of MH-III, we have to take into account the entropy related to methane orientational disorder, which disappears beyond 25GPa. Indeed, we note that the locking-in of methane molecules should signi cantly contribute to reducing the stabilizing con gurational entropy in the MH-III phase as pressure increases. To estimate its contribution, we consider methane molecules to be free rotors below 5GPa. en for 5 < P < 25GPa, we consider the disorder between the 4 (A ± ,B ± ) con gurations to be equiprobable. Finally, these entropy terms have been used to estimate the Gibbs free energy (∆G) presented in Figure 2.30. From this analysis, we understand that the main instability of MH-IIIs resides in the structural arrangement of the water network, which is the major contribution favoring MH-IV. erefore, we analyzed the stability of the di erent 8-fold, 6-fold and 4-fold water rings present in MH-IIIs in comparison with the 6-fold ones present in MH-IV (see Figure 2.31). To this purpose, we extracted water clusters by cu ing the di erent water rings present in both structures and calculated their respective cohesive energy freezing the oxygen positions. By doing so, the O-O distances are reminiscent of the pressure in the original crystal, while the deuterons are free to rearrange. As shown in Table 3, the energy analysis gives the MH-IV water rings more stable than the MH-III ones at any pressure. In particular, in accordance with other study of the H-bond angular exibility, [START_REF] Smallenburg | Tuning the liquid-liquid transition by modulating the hydrogen-bond angular exibility in a model for water[END_REF] 4-member rings, which are found in MH-III only, display the most important reduction of the cohesive energy with increasing pressure. is type of ring is thus the main source of the MH-III instability upon compression. is e ect is due to a signi cant angular frustration in 4-fold ice rings, where hydrogen bonds signi cantly deviate from linearity. In contrast, the MH-IV rings are more symmetric, and the O-O distances show less dispersion. us, they are closer to hexagonal symmetry and compatible with the high-pressure structure in which the methane molecules are stacked along an e ective 3-fold symmetry axis. On the other hand, as the O-O distances shorten under increasing pressure, the O-H covalent bond weakens, and the O…H hydrogen bond strengthens. However, the overall cohesive energy of the O-H…O con guration decreases when moving away from the optimal O-O distances in the fully optimized clusters. erefore, in addition to the instability of the 4-fold and 8-fold water rings present in MH-III, the contraction of O-O distances favors proton(deuteron) tunneling and hydrogen bond symmetrization which triggers the transition toward MH-IV. A detailed analysis of the MH-III→ MH-IV transition path provides relevant information on the sequence of transformations and the signi cance of nuclear quantum e ects.

Transition path

In order to investigate both the transition stage sequence and the reaction barriers, rst, we investigated the minimum energy path and then the free energy landscape. While the initial path was chosen from T = 0 K calculations employing the Nudged Elastic Band (NEB), [START_REF] Jónsson | Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions[END_REF] it was re ned through metadynamics using PIV as the metric for the Path CVs allowing a free energy sampling within the (sz) space. As the transition only involves tiny changes in terms of la ice parameters and volume, we were able to study the transition at constant volume, taking an average value of the MH-III and MH-IV la ice parameters. is approximation was checked by monitoring the internal stress tensor at each point of the transition, giving a maximum error of ±5GPa out of 40GPa. erefore, our approximation should provide a reasonably good estimate of the corresponding free energy barrier at constant pressure.

• Classical picture

As shown in Figure 2.32, the reaction path from MH-IV to MH-III provided by free energy sampling is complex and passes through several stages which display the di erent mechanisms that we mentioned earlier:

• Between s = 1 and s = 1.6 a rather large and deep free energy well is found and corresponds to structures within the MH-IV basin, which di er by hydrogen bond disorder.

• For 1.6 ≤ s ≤ 1.7, the transition path shows a peculiar trend and varies mostly along is is the onset of the typical MH-III methane ordering. is also happens along the NEB reaction coordinate but, according to metadynamics, the precise rotations of methane molecules are di erent and occur before any hydrogen bond breaking or formation, in contrast with the NEB sequence that we adopted as an input.

• At s 1.7, z 0.4, we nd the transition state which is related to the "seesaw" displacement of the oxygen atoms and hydrogen bond reorganization. Following the methane rotation, some hydrogen bonds break down and other are formed, so that the ice network of MH-IV, which is formed by 6-fold rings, reorganizes. In Figure 2.32, we see the onset of 4-fold water rings induced by the shortening of the related oxygen atoms with the consequent formation of hydrogen bonds, while other O atoms move apart from each other, breaking the related hydrogen bonds and beginning the formation of 8-fold rings, in a seesaw fashion.

• Finally, for 1.8 ≤ s ≤ 2.0, we recover the MH-III phase by completing the hydrogen bond reorganization and the nal reorientation of the methane molecules. e energy cost that is connected to those steps is small compared to the barrier, as the system moves within the MH-III basin.

According to our metadynamics simulations, the seesaw displacement, which involves the rearrangement of the O atoms as well as some hydrogen bond breaking and formation, is the key point and the broadest part of the free energy landscape along the transition. When adopting a classical picture for the nuclei, the corresponding MH-IV→ MH-III energy barrier amounts to E r = 0.36 eV/unit formula.

• antum corrections

Whereas the displacement of the O atoms is li le a ected by NQE, the quantum deuteron delocalization plays a key role in the hydrogen bond breaking and reforming. As we have seen, this delocalization is enhanced by both the hydrogen bond symmetrization and the NQE. erefore, we took into account both thermal and quantum e ects in a perturbative way, by performing PIMD simulation along the MEP with xed oxygen atomic positions, in order to estimate their importance on the transition barrier. In addition, we performed the same analysis taking into account thermal e ects only, at 300K, via Langevin dynamics.

Average energy (eV) As shown in Figure 2.33, while the thermal e ects are negligible, quantum corrections change the classical picture and signi cantly decrease the barriers corresponding to H-bond breaking, mainly because of deuterium quantum spread due to tunneling and zero-point energy. Indeed, within the quantum description, we observe a decrease of the energy barrier at the transition state of about 0.15 eV/unit formula. us, we expect the reaction barrier found with MTD simulations to be downshi ed by roughly the same value at E r 0.2 eV/unit formula. is reveals the importance of NQE which therefore triggers the MH-III → MH-IV transition, rstly by inducing the proton symmetrization and secondly allowing proton exchange between O-O pairs through quantum delocalization.

Conclusion

In this chapter, we studied the behavior of methane hydrate under high pressure in the [2-150] GPa range.

Firstly, we characterized the behavior of the methane molecules enclosed within the water frame. We observed their progressive orientational ordering and the locking-in of their rotation, which induces an enhancement of the guest-host interactions. Leading to distortion of the methane molecule tetrahedral symmetry, these interactions are also observed in the vibrational mode coupling occurring between the water network and the methane molecules. erefore by increasing pressure, the system undergoes a transformation from pure methane-lled ice to a strongly interacting mixed molecular crystal.

Secondly, we investigated the expected hydrogen bond symmetrization transition from the MH-III to the MH-IIIs phase. is transition occurs around 40GPa within a broad pressure range due to non-equivalent O-O distances in MH-III. Interestingly, the hydrogen bond symmetrization occurring leading to the MH-IIIs phase di ers from that in pure ice 1 in several respects. Indeed, due to the H(guest)-H(host) repulsive interaction, a noticeable delocalization of the protons normal to the O-O direction is found. erefore, the widely-used one-dimensional model of the transition is not relevant for methane hydrates. While the normal delocalization weakens the hydrogen bond, the parallel delocalization strengthens it. e two e ects roughly compensate each other, which results in almost null isotope e ects, for H→D substitution. erefore, rather than the absence of NQE in methane hydrate, we point out that they are more complex than those occurring in the ice VII→X transition. Both the balance between normal and parallel proton(deuteron) delocalization and host-guest strong interaction makes isotope e ects negligible along the MH-III→MH-IIIs transition.

irdly, we discovered a new high-pressure methane hydrate phase: the MH-IV which follows the MH-III phase by increasing pressure. is phase has been found to become more stable than MH-III between 30 and 40GPa and remains stable up to at least 150GPa, which represents the highest pressure reached by any hydrate. MH-IV is characterized by a water network similar to the ice Ih wherein methane molecules are ordered. Several signatures of the la er con rm the presence of this phase under very high pressure. e MH-IV structure matches the experimental X-ray di ractogram, and our simulations con rm the presence of two new vibrational modes appearing beyond 100GPa along with a signi cant broadening of the C-H stretching modes starting at 80GPa observed in the Raman spectra. In addition, although the volume of the la er phase is slightly lower than MH-III, two of its la ice parameters increases, leading to an increase of the O-O distances within this plane. erefore, the transition occurs from MH-IIIs, with symmetric hydrogen bonds, to MH-IV, whose ice skeleton is proton-disordered with massive proton tunneling. Upon further compression, another transition towards the MH-IVs phase takes place characterized by symmetric hydrogen bonds. Unexpectedly, the ice la ice could preserve the methane from dissociation, which has been observed in some [START_REF] Hirai | Solid methane behaviours under high pressure at room temperature[END_REF] but not all [START_REF] Proctor | Raman spectroscopy of methane (CH 4 ) to 165 GPa: E ect of structural changes on Raman spectra[END_REF] Raman experiments on pressurized methane at ambient temperature and suggested by ab-initio calculations. [START_REF] Gao | Dissociation of methane under high pressure[END_REF] Finally, we studied the instability of the MH-III phase in favor of the MH-IV one, and we characterized this transition by investigating both the minimum energy path and the free energy landscape taking into account nuclear quantum e ects.

e main instability of the MH-III structure comes from the presence of 4-fold water cycles, methane repulsion, and a larger volume than the phase IV. In particular, the angular frustration of both water and methane molecules drastically increases the internal energy of MH-III upon compression. In addition, the hydrogen bond symmetrization of the la er structure weakens the water network. On the other hand, the complex transition path found by minimum and free energy sampling shows that the hydrogen bond reorganization is the most signi cant contribution to the reaction barrier. erefore, nuclear quantum e ects, which are at the root of both hydrogen bond symmetrization and proton delocalization o the water rings, favor the destabilization of the MH-III phase and thus drastically lower the transition barrier and might induce proton di usion within the water frame.

is study, therefore, illustrates how a relatively complex system can give rise to both subtle and o en paradoxical quantum e ects. e MH-III→MH-IV transition is a clear example where NQE not only trigger the phase transition (as in ice under pressure) but also cause a deep and complex rearrangement of the who structure, including carbon and oxygen atoms, in contrast with the ice VII→X transition.

e antum equilibrium structure of sodium hydroxide

Introduction

U pon increasing temperature, sodium hydroxide displays several phase transitions before the melting point at 596K. 105 e protonated system evolves from an orthorombic 106,107 structure at low temperature toward a P2 1 /m monoclinic crystal at 500K and then a Fm3m cubic structure at 566K. In striking contrast, the deuterated system displays a rst order, [START_REF] Tj Bastow | Low Temperature Phase of NaOD[END_REF][START_REF] Moore | A calorimetric investigation of the lowtemperature phase transition in NaOD[END_REF] phase transition [START_REF] Ichikawa | Deuteration-induced structural phase transitions in some hydrogen-bonded crystals[END_REF][START_REF] Tj Bastow | Low temperature phase transition in CsOH and CsOD[END_REF] toward a monoclinic structure below 153K which is not observed in NaOH.

is speci c low-temperature structure is characterized by a proton-ordered antiferroelectric con guration of the O-H bonds. In addition, induced by a signi cant decrease of one la ice parameter, a formation of hydrogen bonds [START_REF] Tj Bastow | Low Temperature Phase of NaOD[END_REF][START_REF] Dt Amm | A low temperature phase transition in NaOD near 150 K[END_REF] along that direction occurs by cooling the system. NaOH, as LiOH, does not adopt the hydrogen-bond structure that the chemically analog NaOD counterpart shows, as other hydroxides of heavy alkali metals (KOH, RbOH). [START_REF] Mp Krobok | Raman and FTIR study of NaOH and NaOD under pressure[END_REF][START_REF] James A Ibers | Structure of Potassium Hydroxide: An X-Ray and Infrared Study[END_REF][START_REF] Jacobs | Bonding conditions in crystalline phases of RbOH and RbOD[END_REF] is puzzling behavior cannot be explained on a classical basis and is purely quantum-induced. In addition to x-ray di raction experiments, [START_REF] Tj Bastow | Low Temperature Phase of NaOD[END_REF][START_REF] Bleif | Cystalline modi cations and structural phase transitions of NaOH and NaOD[END_REF] the low-temperature NaOD phase transition has been observed by a change in IR absorption [START_REF] Mary | ermodynamic characterization of the low-temperature phase transformations in KOH and KOD[END_REF] and Raman spectra, [START_REF] Mp Krobok | Raman and FTIR study of NaOH and NaOD under pressure[END_REF] while both heat capacity, [START_REF] Moore | A calorimetric investigation of the lowtemperature phase transition in NaOD[END_REF][START_REF] Paul Wr | Why is there no low-temperature phase transition in NaOH?[END_REF] and dielectric measurements [START_REF] Paul Wr | Why is there no low-temperature phase transition in NaOH?[END_REF] present anomalies at the transition temperature. Excess of heat capacity in NaOH as compared with NaOD has been related [START_REF] Mary | ermodynamic characterization of the low-temperature phase transformations in KOH and KOD[END_REF][START_REF] Paul Wr | Why is there no low-temperature phase transition in NaOH?[END_REF] to the thermal population of quantum states connected to tunneling in an e ective double-well potential. [START_REF] Horst | High pressure transformations of NaOH[END_REF] On the other hand, NaOH presents a phase transition upon compression toward a structure expected to be analogous to the low-temperature hydrogen-bonded NaOD phase. [START_REF] Horst | High pressure transformations of NaOH[END_REF][START_REF] Mp Krobok | Raman and FTIR study of NaOH and NaOD under pressure[END_REF] It has been suggested [START_REF] Paul Wr | Why is there no low-temperature phase transition in NaOH?[END_REF] that H/D isotopic substitution could change the temperature-induced transition as observed in NaOD to a pressure-induced transition in NaOH.

While both transitions were observed experimentally, [START_REF] Horst | High pressure transformations of NaOH[END_REF][START_REF] Paul Wr | Why is there no low-temperature phase transition in NaOH?[END_REF][START_REF] William R Busing | Infrared spectra and structure of NaOH and NaOD[END_REF][START_REF] Moore | A calorimetric investigation of the lowtemperature phase transition in NaOD[END_REF][START_REF] Mp Krobok | Raman and FTIR study of NaOH and NaOD under pressure[END_REF] a microscopic description of the transition mechanism, and the associated nuclear quantum e ects, are still lacking up to now. erefore, in this study, we address this important isotope e ect by the use of abinitio simulations taking into account nuclear quantum e ects within the path integral scheme. Firstly, we will demonstrate the importance of nuclear quantum e ects in the description of the la ice parameters evolution upon increasing temperature. Secondly, we will focus on the speci c ordering of proton and deuteron, which evolves at the transition. Finally, we will conclude by a comparison between the low-temperature transition occurring in NaOD and the pressure-induced one of NaOH.

Technical details of the simulations employed for this analysis can be found in the Appendix C. As shown in Figure 3.1, sodium hydroxide is a layered structure composed of stacks of sodium, oxygen, and hydrogen atoms along la ice parameter c. At room temperature, the sodium hydroxide structure belongs to the Bmmb space group while at low temperature, the NaOD system undergoes a phase transition toward a monoclinic structure of the P2 1 /a space group due to the particular deuteroxide group ordering. e la er structure can be approximately reproduced by the use of an orthorhombic supercell that we employed in both NaOH and NaOD simulations. In doing so, we neglect the small departure (<1 • ) from the orthogonality between a and c of the monoclinic structure which induces rather small variations of the stress tensor, below our precision threshold of ±0.5 kbar.

antum mechanical description of structural properties

As introduced earlier, the phase transition occurring in NaOD at 153K induces noticeable structural changes. Between the low-temperature monoclinic structure and the ambient-temperature orthorhombic crystal, the major structural change concerns the c la ice parameter. It drastically increases (∼4.6%), as a result of the weakening of the inter-layer hydrogen bonds, as detailed later. Being a signature of the transition, this important structural change must be reproduced in our simulations to describe the transition mechanisms faithfully. As shown in Figure 3.2, la ice parameter c is correctly reproduced neither at low nor at ambient temperature when the nuclei are described as classical particles. Indeed, classical AIMD simulations, thermosta ed through a Langevin equation, yield some major di erences with respect to the experimental picture: rst, the c parameter increases smoothly with temperature from the low-T to ambient-T phases (Figure 3. In contrast, NaOD displays a sharp increase of the la ice parameter c occurring at 200K. is demonstrates that the presence of nuclear quantum e ects within this system is an essential factor to characterize the transition. As compared with the experimental value, the transition is up-shi ed by about 100K, which can be traced back to a di erence of 8meV of the reaction barrier, a rather precise value within our approximation. e la er assumption is con rmed by investigating the joint probability density P(D OO , θ ), of the O-O interlayer distance D OO and the angle θ . As shown in Figure 3.5, a strong correlation is indeed observed between the two parameters in NaOD at 77K and is also found at higher temperatures and for the case of NaOH. As the O-O interlayer distance increases, the θ angle gets closer to 0 • , namely a paraelectric disordered state. erefore, the cohesion between the NaO layers is expected to be the key parameter triggering the transition. In the low-temperature antiferroelectric phase of NaOD, this cohesion is mainly due to hydrogen bonding, whereas in NaOH at the same temperature, the O-H covalent bonds are in a paraelectric con guration, oriented predominantly along c, and the protons do not form hydrogen bonds with the atoms of the other layers leading to the observed increase of the c la ice parameter.

• Isotope e ects on the hydrogen bonds

In this respect, nuclear quantum e ects can either stabilize hydrogen bonds by enhancing the proton delocalization along the bond direction, related to the O-H stretching motion, or destabilize the hydrogen bonds due to the proton quantum delocalization in the normal direction, here linked to the O-H bending motion. e net balance between these two competing e ects depends on the nature of the system. Michaelides 120 and coworkers have shown that NQE tend to strengthen strong H-bonds and to weaken the weak ones. Experimentally, the impact of NQE on the H-bond strength can be probed by measuring the change in the X-X distance upon H→D substitution. In the context of H-bonded crystals and H-bonded ferroelectrics, this is known as the "Ubbelohde" e ect: [START_REF] Monteath | Structure and thermal properties associated with some hydrogen bonds in crystals I. e isotope e ect[END_REF] in systems with relatively strong H-bonds, an increase of the hydrogen bond length is observed upon deuteration, characteristic of a weakening of the bond (due to the decrease in zero-point energy). is corresponds to the positive (normal) Ubbelohde e ect, whereas in more weakly-bonded systems, negative (inverse) Ubbelohde e ect is observed with a shortening of the hydrogen bond length upon deuteration. In order to address this issue, we investigated the in uence of the nuclear quantum e ects on the quantum spread of the O-H covalent bonds and the quantum delocalization along the O-H bending motion. Firstly, we focus on the O-H and O-D covalent bond lengths, shown in Figure 3.5.a. While simulating the NaOH system at 77K within the la ice parameters optimized for NaOD at the same temperature, we observe that although the mean value of the covalent O-H bonds is comparable for both systems, the spread of the protonated one is signi cantly larger. Secondly, as shown in Figure 3.5.b, the probability distribution P(θ ) indicates the presence of a double-well potential along this coordinate, as suggested in the literature, [START_REF] Paul Wr | Why is there no low-temperature phase transition in NaOH?[END_REF] whose equilibrium positions are closer one to the other in the protonated, not-optimized, system than in NaOD, with probability to overcome the barrier which is signi cantly larger in NaOH. While the more extensive quantum spread of the O-H covalent bond tends to strengthen the hydrogen bonds, the zero-point bending motion dominates, leading to an overall weaker H-bond in NaOH. Although in competition 0.7 0.8 0.9 concerning H-bond stability, the combination of the two delocalization e ects induces a pressure increase along the c direction. Indeed, the analysis of the stress tensor shows a signi cant isotope e ect: the kinetic stress tensor di erence σ N aO H zz σ N aO D zz 2GPa at the constrained NaOD la ice parameters at 77K. e overall pressure (P = Tr{σ })) of NaOH is around 1.5GPa, showing a clear tendency for NaOH to expand, essentially along the c axis. e interlayer distance stretch and destroys the weak hydrogen bonds in NaOD upon D→H substitution. erefore, the proton, because of its larger intrinsic quantum spread and zero-point motion, prevents the contraction of the inter-layer spacing and the formation of strong hydrogen bonds between them. e two phenomena are truly entangled and are at the root of the absence of transition for NaOH.

e quantum description of nuclei is central in these conclusions. Not only, nuclear quantum e ects lead to profound structural changes, but they also impact the dynamical properties of the proton and deuteron which characterize the transition. Indeed, the la er can not be captured by harmonic zero-point corrections on top of a classical picture: the potential energy surface is highly anharmonic and thus rather sensitive to the mode amplitude. Only a dynamical, selfconsistent treatment of the intrinsically quantum di erence between protons and deuterons can provide a comprehensive picture of the NaOD transition and its absence for NaOH at ambient pressure. erefore, in order to complete the picture of the low-temperature NaOD transition, we address in the following the NaOH and NaOD dielectric properties, related to the orientation of the O-H and O-D bonds, as well as their thermal behavior and response to external pressure.

Towards a dynamical paraelectric state

In the anti-ferroelectric con guration at low temperature (Figure 3.1), NaOD is characterized by slanted O-D bonds in the (a,c) plane, making a θ angle with the c axis. is con guration is characterized by successive θ n angles which change sign while moving along the b axis, giving the speci c alternating pro le of OD groups as sketched in Figure 3.1. Each slanted OD group carries a dipole moment along a, which is globally null in the AFE con guration. e θ n angles, therefore, appear as the natural order parameters to characterize the transition from the AFE to the para-electric (PE) con gurations in NaOD. In particular, joint angle probability distribution P(θ n , θ n+1 ) of two adjacent OD groups along b allows the characterization of three classes of the As shown in Figure 3.6, at low temperature, NaOD displays the three classes. However, the P(θ n , θ n+1 ) maxima are clearly at θ n = 25 • , θ n+1 = -25 • or the reverse, that are characteristic of the AFE con guration. e FE con gurations represent local maxima with a much lower probability as compared to the AFE state but at the same time the AFE→FE→AFE paths correspond to the lower barrier to overcome while passing from one AFE to the other AFE con guration. In contrast, the PE appears as a maximum along the path connecting either the two AFE or the two FE con gurations. erefore, in accordance with experimental results, at 77K, NaOD is in an almost permanent AFE state which is a more stable state than FE which here act as "bridge" con gurations allowing the transfer between the two AFE con gurations. Signi cant changes are observed while increasing the temperature to 300K of NaOD. While the same topology is recovered, the FE maxima fade and the probability of the PE con guration, which is still a minimum, is appreciable. e AFE maxima are much lower than at T=77K and get closer (θ n = 15 • , θ n+1 = -15 • , or reverse), with a mild slope when approaching θ n = -θ n+1 ∼ 0. e angles are thus much less correlated than at low temperature, which is related to a signi cant weakening of the hydrogen bonds between opposite layers. e system indeed goes back and forth through the AFE con gurations, spending a non-negligible time in the PE con guration, which is typical of a deuteron-disordered con guration leading in this case to a dynamical PE con guration. Upon further increase of temperature, the PE minimum at θ n = θ n+1 = 0 eventually becomes a maximum; however, this could appear at the onset of other structural transitions. [START_REF] Horst | High pressure transformations of NaOH[END_REF] e behavior of NaOH upon increasing temperature is very di erent as compared with NaOD. Indeed, while the probability distribution at low temperature displays almost isotropic distributions centered at θ n = θ n+1 0 • , at ambient temperature, the two AFE con gurations become distinguishable, as very shallow minima, at θ n = 8 • , θ n+1 = -8 • or inverse. Counter-intuitively, the e ective double-well potential wherein the proton lay recovers a barrier by increasing the temperature. is e ect is due to the temperature-induced population of the excited state of the la er. Indeed, as shown in Figure 3.7, the probability distribution of the rst excited states of the generic example of a particle in a one-dimensional double-well is signi cantly lower at the barrier maximum as compared with the ground state. erefore, by increasing the population of the rst excited state, the overall probability density of the particle decreases at x = 0 leading, in the case of NaOH, to a transition from a static toward a dynamical PE state.

As suggested earlier, the topological di erence between the two crystals is induced by the combination of the larger quantum spread for protons than deuterons and the signi cant zeropoint energy e ect on the O-H(D) bending mode: the typical proton angular spread in NaOH is ∆ θ ∼ 40 • , thus larger than the angular displacement that we computed by considering the proton as a purely classical particle. e para-electric state is thus stabilized by the zero-point quantum uctuations, which is typical of quantum para-electrics. [START_REF] Müller | Indication for a novel phase in the quantum paraelectric regime of SrTiO 3[END_REF][START_REF] Roussev | eory of the quantum paraelectric-ferroelectric transition[END_REF] Interestingly, the distortion here impacts angular distributions, while in perovskites, such as SrTiO 3 , the order parameter is a linear displacement of Ti from the cell center.

• e bending zero-point motion

To complete the previous picture, we investigated the double-well potential along θ , characterizing the O-H bending motion. From the probability distribution P(θ ), we computed an e ective free energy F (θ ) = -k b T log P(θ ), as a function of the azimuthal angle θ , as shown in Figure 3.8. Expectedly, we observe a free-energy barrier at θ = 0 • in NaOD at low and ambient temperature.

is barrier, that includes quantum e ects, decreases with temperature, from ∼ 112 meV at 77K to ∼31meV at 300K. erefore NaOD qualitatively behaves as a "classical" system: at low temperatures, the barrier is higher than the thermal energy and the system has two symmetric distorted states at θ = -20 • and θ = 20 • while it is comparable to thermal energy at ambient temperature allowing the system to uctuate around the symmetric θ = 0 • orientation. In contrast, the NaOH corresponding free-energy F (θ ) shows a minimum at θ = 0 • , at all temperatures. While at low temperature it is direct evidence of the observed static PE state, at ambient temperature it depicts both the large proton quantum spread (> 20 • ), and the fact that both AFE states almost merge. erefore, in addition to the destabilization of the H-bonds, the important zero-point contribution to the O-H bending motion also prevents NaOH from any symmetry-breaking transition.

From temperature-to pressure-induced transition

In agreement with experimental results, [START_REF] Paul Wr | Why is there no low-temperature phase transition in NaOH?[END_REF][START_REF] Moore | A calorimetric investigation of the lowtemperature phase transition in NaOD[END_REF] our simulations show that, at ambient pressure, NaOH remains a quantum para-electric at all temperatures. However, a pressure-induced transition [START_REF] Horst | High pressure transformations of NaOH[END_REF] is found to occur at 1GPa toward a structure expected to be analogous to the deuterated system at low temperature. Nonetheless, as the positions of hydrogen atoms could not be re ned, the high-pressure, ambient temperature, structure of NaOH is not fully resolved, but compressibility measurements suggest the formation of H-bonds upon compression of the structure. In this context, it was suggested [START_REF] Paul Wr | Why is there no low-temperature phase transition in NaOH?[END_REF] that the protonation of NaOD could change the temperature-induced transition of NaOD toward a pressure-induced one in NaOH. is assumption is strengthened by the resulting pressure of 1.5GPa, that we found for NaOH constrained at the NaOD la ice parameter at 77K. erefore, we simulated the NaOH system at 300K for pressure of 1GPa in a similar orthorombic cell with la ice parameters optimized taking into account nuclear quantum e ects. As shown in Table 4, the resulting parameters well agree with the experimental ones. is optimization mainly impacts the la ice parameter c, which almost recovers the value of the NaOD structure at 77K. As shown in Figure 3.9.a, the probability distribution P(θ n , θ n+1 ) brings out the AFE a b c Exp.

3.338 3.338 10.843 eory 3.373 3.403 10.899 Table 4. Optimized la ice parameters of NaOH at 300K and 1GPa. Experimental data from ref. [117].

character of NaOH at ambient temperature and 1GPa. e two maxima are indeed recovered at θ n = 25 • , θ n+1 = -25 • or reverse, similarly to NaOD at 77K. Moreover, the FE con gurations are less negligible than in the la er case but still represent "bridge" states between the two AFE con gurations while PE state, although non-negligible, represents a probability minimum. In Figure 3.9.b, we report the free energy F (θ ), where we observe the pressure-induced double-well formation occurring in NaOH upon compression. Its barrier height as high as 60 meV (thus almost 3k b T ) is found at θ = 0 • , which can be overcome by thermal uctuations. ese two analyses, therefore depict the NaOH at ambient temperature and 1GPa to be analogous to NaOD at 77K and ambient pressure. Indeed, both the stabler AFE state and the double-well potential along θ , characteristic of the la er structure, are recovered by increasing the pressure in NaOH at 300K. us, it con rms that the protonation of NaOD change the signi cant thermodynamical parameter determining the transition from temperature to pressure. However, the similarity between AFE and FE states probabilities in NaOH at high pressure suggests that at lower pressure or for higher temperatures both state could be equivalently stable, leading to a disordered FE or AFE. Further studies are therefore needed in order to determine the competition between the two con gurations and to see whether the temperature increase or a pressure decrease below 1GPa might induce proton disordering. In this respect, accurate measurements of the evolution of la ice parameter c under decreasing pressure and increasing temperature would be highly desirable. As found for NaOD at ambient pressure and varying temperature, the discontinuous evolution of the la ice parameter c that governs the interlayer distance might indeed reveal the existence of a phase transition.

Chapter 3.

e antum equilibrium structure of sodium hydroxide

Conclusion

In this study, we addressed the low temperature phase transition occuring in NaOD at 153K, not observed in NaOH. Among other e ects, the phase transition is characterized by a signi cant increase (+5%) of the c la ice parameter in NaOD. is change is completely absent upon protonation, as the structural parameters of NaOH are well continuous in the 77-300K temperature range. is dramatic isotope e ect cannot be reproduced if nuclear quantum e ects ar not taken into account. Both the quantum delocalization of protons as well as the zero point motion prevent the protonated system from displaying such a transition. At low temperature, NaOD is a hydrogen-bonded structure which presents a proton-ordered anti-ferroelectric con guration. Analysis of the O-H bond orientation shows that along with the more stable anti-ferroelectric states, ferroelectric ones are also present at 77K. e la er con gurations act as "bridge" states allowing the switching from one anti-ferroelectric state to the other while direct transition through a para-electric con guration is hindered. Beyond the transition temperature, this mechanism is thermally activated, leading to a dynamical para-electric deuteron disordering. In contrast, while the NaOH system displays a static quantum para-electric state at low temperature, at ambient temperature, due to the increasing population of the excited state along the bending degree of freedom, a transition toward a dynamical quantum para-electric con guration, analogous to the observed one in NaOD at the same temperature, occurs.

Both AFE and FE con gurations imply the formation of weak inter-layer hydrogen bonds, which are broken in paraelectric con gurations, whatever their nature (classical, static quantum or dynamical quantum). As a consequence, the interlayer spacing signi cantly increases in PE con gurations, which explains the abrupt change of the c la ice parameter upon the AFE→PE transition in NaOD.

e change of the macroscopic parameter c is intimately related with quantum delocalization, which in the case of NaOH is strong enough to destroy the weak hydrogen bonds between the layers and to lower the barrier of the e ective double-well potential along the OH bending motion.

is transition is therefore recovered while submi ing the system to an external pressure of 1GPa, thus con rming that H/D isotopic substitution in sodium hydroxide changes the temperature-induced phase transition in NaOD toward a pressure-induced one in NaOH.

F rom Planck's discovery in the XIX century up to today, the study of quantum mechanics led to non-intuitive and unexpected e ects within the various elds which were explored. In this study, we have seen that nuclear quantum e ects in condensed ma er do not escape that rule.

e description of quantum systems remains a delicate subject. Solving Schrödinger's equation for real physical systems with many degrees of freedom is not feasible in practice. Approximation and smart modelization are thus required to account for the quantum nature of particles. While standard reference methods to describe the electronic part (DFT, antum Monte-Carlo,…) already exist, the nuclei have been considered as being classical particles for a long time.

is thesis is dedicated to cases of light and/or cold nuclei for which the classical approximation is no more valid. In this framework, Feynman's Path integrals formalism, and Langevin equation based QTB were employed to successfully address both the quantum statistical distribution and the dynamical properties of the hydrogen atom present in three di erent hydrated environments.

One of the well-known examples of nuclear quantum e ects consequence is the pressureinduced transition of ice, from VII to the X phase, occurring around 60 GPa. While investigating this system with PIMD simulations, Benoit et al. [START_REF] Benoit | Tunnelling and zero-point motion in highpressure ice[END_REF] brought out the importance of both zero-point energy and tunneling of the proton in the mechanism of the hydrogen-bond symmetrization. Accounting for nuclear quantum e ects yields a downshi of the transition pressure. is e ect is characteristic of a particle in a double-well potential for which the barrier is indeed lowered by pressure as the oxygen atoms move closer to one another: the e ect of the zero-point energy then becomes quite important. is situation is also present in the case under study in this thesis, but important conclusions one can draw from this work are the variety and subtlety of e ects in which nuclear quantum e ects are involved.

is complexity not only arises from nuclear quantum e ects but is also entangled with other phenomena of di erent kinds. Speci cally, we saw how the competition between nuclear quantum and thermal e ects could drastically in uence the di usion mechanism in Brucite minerals. is layered hydroxide structure was expected to display a proton di usion mechanism involving two processes: a reorientation, and dissociation of the hydroxyl groups. While thermal uctuations mainly drive the former, the la er depends strongly on the proton nuclear quantum e ects. ermal study [START_REF] Dupuis | antum Nuclear Dynamics of Protons within Layered Hydroxides at High Pressure[END_REF] of this di usion mechanism concluded that the reorientation motion enhanced by the temperature was the proton di usion limiting factor. In contrast, we saw that, in analogy with the hydrogen bond symmetrization, the pressure tends to increase the dissociation process while reorientation is hindered. While both mechanisms are required for long-range proton di usion within this structure, these two opposite e ects lead to a pressure sweet spot, with the highest probability for proton di usion. In this pressure range, the potential barriers are reachable with thermal uctuations or nuclear quantum e ects for the reorientation and dissociation processes, respectively.

In addition, the di erent delocalization induced by nuclear quantum e ects can, in some cases, be in competition. In compounds where hydrogen bonds coexist with other bonding types in anisotropic environnements, the simple and elegant picture of a proton in a one-dimensional double-well is no more able to account for the complex phenomena that we observed. e competition between quantum delocalization along non-equivalent directions, on one side, and between quantum and classical degrees of freedom, on the other side, could even lead to a small overall impact of nuclear quantum e ects. is was seen in our study of methane hydrate under high pressure (CH 4 -H 2 O). is is indeed composed of methane molecules con ned within channels formed by hydrogen-bonded water structure close to the ice phase Ih. erefore, a hydrogen bond symmetrization transition was expected to occur as pressure is increased, and in comparison with the ice VII → X transition, both nuclear quantum e ects and H/D isotopic substitution were expected to be signi cant. Remarkably, isotope e ects are negligible, and the pressure downshi of the transition induced by nuclear quantum e ects is relatively low while quantum delocalization is present. From our analysis, we concluded that the larger normal delocalization with respect to the hydrogen bond of the protonated water frame as compared with both the deuterated system and the pure ice induced disappearance of isotope e ects and the lowering of the nuclear quantum e ects contribution. is is a prototypical case where the usual one-dimensional double-well approximation cannot explain the observed phenomena.

On the other hand, nuclear quantum e ects can be an essential factor to consider while investigating phase transitions. Not only can they facilitate the overcome of reaction barriers as we have seen for the ice, but they can also trigger them. In particular, along with experimental results, the important proton quantum delocalization of the water network in the MH-IIIs structure led us to the discovery of a new methane hydrate high-pressure phase, the MH-IV, stable at pressures never reached by any hydrate before. e study of this transition demonstrated the importance of nuclear quantum e ects while the thermal contribution was negligible. is transition was indeed found to be triggered by both the water structure destabilization through hydrogen bond symmetrization, and proton exchange between O-O pairs. Both mechanisms represent the main contributions to the transition path between MH-IIIs and MH-IV; nuclear quantum e ects roughly half the classical barrier that includes purely thermal uctuations. antum delocalization in layered hydroxides gives rise to non-intuitive and sometimes contrasting e ects. Indeed, for both Brucite (Mg(OH) 2 ) and sodium hydroxide (NaOH) the classical picture of point particle does not allow the understanding of mechanism involving quantum indetermination. In Brucite minerals, layers of hydrogen atoms are facing each other and get closer with increasing pressure. In a classical picture, this mechanism leads to two distinguishable space probability distributions which eventually merge. However, within the quantum picture, at some point, the proton quantum spread is of the order of the distance separating these two distributions, leading to indiscernible layers and thus a "quantum" two-dimensional plane of protons.

e changes induced by the quantum representation of nuclei is even more apparent in sodium hydroxide, where the quantum delocalization of protons drives the structural properties. Indeed, while a classical description gives rise to wrong la ice parameters, a quantum description allows recovering experimental results of this system. In this study, we showed that this important di erence was due to both the proton kinetic energy contribution to the pressure, along with the quantum spread of nuclei. erefore, this e ect can be understood by the large volume occupied by hydrogen atoms within the structure, through quantum delocalization, in addition to the zero-point bending motion causing H-bond breaking. Although a deuteron is also a light particle and should be considered as a quantum particle, the e ective volume it occupies and the related zero-point energies are less than for a proton. In sodium hydroxide, this induces an important isotope e ect. While a phase transition from a deuteron ordered antiferroelectric structure toward a deuteron disorder para-electric phase is observed as the temperature is increased above 153K, the protonated structure only presents a proton disordered para-electric structure. We demonstrate the correlation of this transition with the structural properties of the system. Indeed, as the deuteron and proton disordered phase share the same la ice parameters, the deuteron structure shows a signi cant increase of one la ice parameter at the transition. e important quantum delocalization and the zero-point contribution to the kinetic energy of the protonated system hinder the transition that occurs in NaOD. is result was then con rmed by increasing the pressure in the protonated system, recovering a proton-ordered anti-ferroelectric state analogous to the low-temperature deuterated system. roughout our investigations, we have seen how the quantum nature of nuclei deeply impacted both structural description and dynamical properties of the complex systems we studied. In the light of these ndings, it appears that nuclear quantum e ects are fundamental properties which should be accounted for in theoretical simulations of many physical systems. Taking into account the quantum nature of nuclei in condensed ma er systems can pave the way for a be er understanding of physical properties and lead to the discovery of new structures. x , ω m and ω m z are the angular velocities. e same vector can be obtained in the laboratory frame:

ì

Ω l ab = R T ì Ω m
Finally, in order to extract the quaternions from a molecular dynamics con guration, one may write:

χ 2 = ì r (t) -R T ì r m 2 + λ(q 2 0 + q 2 1 + q 2 2 + q 2 3 -1)
where ì r (t) are the units vectors associated with each atom, and λ is a Lagrange multiplier that ensures the quaternion normalization. We want to nd a set of quaternions for χ 2 to be at a minimum, thus:

             ∂χ 2 ∂q α = 2 R T ì r m -ì r (t) ∂ R T ì r m ∂q α + 2λq α = 0, α ∈ [0, 3]
∂χ 2 ∂λ = q 2 0 + q 2 1 + q 2 2 + q 2 3 -1 = 0 a set of non-linear equations to be solved by standard Newton-style methods or through a direct minimization of χ 2 via a conjugate-gradient method. 

C.2 Volume optimization

As the pressure could trigger the transition observed in NaOD and NaOH, we performed simulations within the NVT ensemble in order to prevent arti cial transition that a barostat could induce. erefore, a systematic optimization of the volume was performed at di erent temperatures in order to obtain la ice parameters at an hydrostatic pressure as provided in Table 5. 
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 11 Figure 1.1. Description of Brucite minerals structure. The hydrogen atoms labeled P 3 m1 (light grey) are in the 2d Wycko sites, while the P 3 hydrogen atoms (dark grey) are in the disordered 6i Wycko sites.The la er is the stable structure at the pressures of our simulations.
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 12 Figure 1.2. Proton hopping mechanisms, reorientation, and dissociation; di usion requires both. Oxygen atoms are colored in red, hydrogen atoms in grey.

FreeFigure 1 . 3 .

 13 Figure 1.3. Free energy profile along the coordinate φ. Comparison between classical and PIMD simulations at 30GPa shows that the reorientation mechanism is dominated by thermal e ects.
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 14 Figure 1.4. Probability distribution of the proton position along ìz. The green lines relate to the bo om layer of hydrogen nuclei (Figure1.1), the blue lines to the top layer, while the purple lines are the sum of both.
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 1516 Figure 1.5. Standard deviations of the ring polymer beads positions with respect to the centroid.

1. 3 .

 3 Proton di usion mechanism oxygen atoms projected on the O-O direction (see the sketch in Figure 1.6).
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 17 Figure 1.7. Free energy barriers evolution upon compression for Brucite and Portlandite.
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 18 Figure 1.8. Probability distribution of the proton positions in the (a, b) plane at 30, 50, 70 and 90GPa for Brucite Mg(OH) 2 . The circles represent the projection of the oxygen sites on the (a,b) plane (light red: bo om layer, light blue: top layer). Periodic boundary conditions are not used in computing this distribution in order to visualize the displacement of the protons.
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 19 Figure 1.9. Probability distribution of the proton positions in the (a,b) plane at 5, 10 and 15GPa for Portlandite Ca(OH) 2 .
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 22 Figure 2.2. Sketch of inequivalent O-O distances present within the MH-III structure. Values of the O-O distances are given for pressure of ∼2.3 GPa
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 24 Figure 2.4. CH 4 stretching (le ) and rocking (right) mode frequencies as a function of pressure for the CH 4 :D 2 O system. Simulation results are extracted from QTB trajectories. Dashed lines are linear fit of the experimental data points below 25GPa. A deviation from the linear trend is evident for all data points above 25GPa.
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 25 Figure 2.5. Probability distributions of CH vector polar angles P CH (θ, ϕ) extracted from PIMD simulation of CH 4 :D 2 O at 6.9, 16.4, 25.3 and 36.4GPa, for one methane molecule.
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 2 6.b. In our formalism, A and B con gurations are equivalent by a rotation of π around ì b and a rotation of π around ì a while the di erence between + and -con gurations of the same type (A or B) corresponds to a rotation of π around ì b. erefore, the high-pressure structure yields A + /B -(or A -/B + ) stacking along the b axis, while we observe A + /B + (or A -/B -) stacking along axis c and nally A + /A -(or B + /B -) stacking along a.
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 26 Figure 2.6. (a) Methane molecule configurations at 36GPa. (b) Sketch of the corresponding configurations in the structure.
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 27 Figure 2.7. Methane orientational marginal probability distributions P CH (θ ) (le ) and P CH (ϕ) (right).
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 2828 Figure 2.8. La ice parameter ratios as a function of pressure. Experimental data from ref. [93].
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 29 Figure 2.9. (a)Mean angles < α 1,2 > in CH 4 as a function of pressure from static relaxed configurations and PI-GLE simulations. (b) Lines: Fourier transform of the C-H autocorrelation function extracted from QTB simulations; Dots: Methane stretching modes obtained within the harmonic approximation.
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 2210 Figure 2.10. Mode participation ratios for methane (blue) and D 2 O frame (red), computed according to equations 2.2.1 and 2.2.2.
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 211 Figure 2.11. Description of the hydrogen bond symmetrization transition in the case of the ice VII → X transition.
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 212 Figure 2.12. Distributions of the order parameter P(χ ) calculated from QTB simulations of the protonated (le ) and deuterated (right) ice skeleton, at several pressures. Upper panels: P(χ ) is computed by integrating on all hydrogen bonds. Bo om panels: Distributions of the order parameter P(χ ) for each group of O-O equivalent distances (a, b, c) (see text).
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 213 Figure 2.13. Fourier transforms in the frequency domain of the parallel component of the velocityvelocity time-correlation functions r (t) r (0) along the O-O axis extracted from QTB trajectories. Thick lines are for CH 4 -D 2 O, thin lines for CH 4 -H 2 O. The frequencies of the la er spectra were divided by √ 2 in order to take into account the mass di erence.
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 214 Figure 2.14. Comparison of the H-bond symmetrization occurring in deuterated MH-III between classical and quantum description around 40GPa. The nuclear quantum e ects are taken into account by the use of path integral with a Generalized Langevin Equation (GLE) thermostat to reduce the number of replica.
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 215216 Figure 2.15. Sketch of the normal (r ⊥ ) and parallel (r ) components of the proton (deuteron) delocalization.
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 217 Figure 2.17. Double Morse potential as defined in equation 2.3.4 without the normal harmonic term (i.e. k ⊥ = 0). The e ect of the la er is to upcurve the edges in the perpendicular direction.
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 218 Figure 2.18. Ground state and first excited state wave functions resulting from the potential in equation 2.3.4 with no harmonic normal contribution (le ) and with (right). Energy units are eV and length Å.
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 219 Figure 2.19. Energy di erence ∆E = E [1st ] -E [GS ] between first excited state and ground state as a function of k ⊥ .
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 220 Figure 2.20. Conditional probability ρ(d HH |r ⊥ ) for a protonated cage (le panels) or deuterated cage (right panels) extracted from QTB simulations.
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 221 Figure 2.21. Probability distributions of the water protons (resp. deuterons) spatial delocalization within the (a,b) plane in MH-III, as given by the QTB simulations.
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 222 Figure 2.22. Ball-and-stick representation of the new high-pressure methane hydrate MH-IVs phase, seen in the three crystal planes. O atoms in red, C atoms in black, H in light gray. The reader can note in the le panel that methane molecules have a C-H bond oriented either along c (le ) or c (right).
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 223 Figure 2.23. Computed free enthalpy di erence H MH-III -H MH-IV between MH-III and MH-IV structures at T=0K.
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 224 Figure 2.24. X-ray di ractogram at 55GPa from ref.[87], showing with red arrows the new peaks associated with the new phase, along with the simulated di ractogram (λ = 0.4163 Å) for our MH-IV structure.
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 225226 Figure 2.25. Simulated pressure evolution of the la ice parameters of the methane hydrate.
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 2 27.a, the experimental full width at half maximum (FWHM) of the two Angle (
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 2 Figure 2.27. (a) Full width at half maximum (FWHM) of the CH 4 ν 1 and ν 3 stretching modes versus pressure as obtained from Raman spectra. (b) Angular distortion of one of the HCH tetrahedral angles in MH-IV upon compression.
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 228 Figure 2.28. Experimental Raman frequencies (circles) and theoretical frequencies (lines) upon compression of the methane stretching and rocking modes, D 2 O stretching modes, the la ice mode and the MH-IV characteristic modes (IV-modes). Theoretical frequency values were computed through the velocity time correlation functions as extracted from QTB trajectories, with the only exception of D 2 O stretching modes, which were calculated in the harmonic crystal framework.
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 229 Figure 2.29. Description of the MH-IIIs → MH-IV transition: mainly two hydrogen bonds are impacted changing one of the oxygen atoms they were bonded to. Along with the hydrogen bond reorganization, the oxygen atoms involved are displaced along ì c, forming 6-fold rings as in ice-Ih. The methane molecules also present several rearrangements: a displacement along ì b and a small rotation along ì a lead to a perfect alignment of one of their C-H bond around ì c; a rotation of π around ì c gives rise to the methane orientational ordering of MH-IV.
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 230231 Figure 2.30. Di erence of the ice-ice, methane-methane, ice-methane and PV energies between MH-III and MH-IV, for all contributions: ∆E ≡ E (MH-III) -E (MH-IV) ∆V ≡ V (MH-III) -V (MH-IV) Negative (resp. positive) values therefore stabilize MH-III(resp. MH-IV) with respect to MH-IV(resp. MH-III). ∆G induces an estimate of the orientational disorder of CH 4 molecules in MH-III. Values are in eV per unit formula CH 4 :(D 2 O) 2 .MH-III MH-IV
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 232 Figure 2.32. Free energy landscape of the (s, z) space as given by metadynamics. s 1.3, z 0.1: MH-IV; s 1.9, z 0.4: MH-III. The free energy values in the right part of the plot, shadowed in gray, are biased, in the absence of recrossing dynamics. The estimated barrier of reaction (white circle) is E r = 0.36 eV per unit CH 4 :(D 2 O) 2 formula.
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 233 Figure 2.33. Average energy of the structure following the path given by NEB.
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 31 Figure 3.1. Sketch of the orthorhombic sodium hydroxide structure, in an antiferroelectric configuration.
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 32 Figure 3.2. La ice parameters evolution of NaOH and NaOD with increasing temperature as described by PIMD, or classical Langevin dynamics. Reported experimental values are taken from ref.[108] for NaOD and[119] for NaOH.
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 33 Figure 3.3. Sketch of successive θ O-H polar angles characterizing the proton ordering.
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 34 Figure 3.4. Probability distribution of the O-O interlayer distance as a function of the OH polar angle θ in NaOD at 77K.
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 35 Figure 3.5. Probability distributions of the O-H length (a) and of the O-H polar angle θ (b). n.o. stands for "not optimized", referring to the NaOH structure within the same la ice parameters as NaOD at 77K.
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 36 Figure 3.6. Probability distribution P(θ n , θ n+1 ) of adjacent O-D bonds describing the dielectric character of NaOD (top) and NaOH (bo om) at 77K (le ) and 300K (right). AFE: anti-ferroelectric, FE: ferroelectric, and PE: paraelectric

Figure 3 . 7 .

 37 Figure 3.7. Probability density |Ψ(x)| 2 of the ground and first excited state of a particle within a one-dimensional double-well potential.
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 38 Figure 3.8. Free energy profile along the O-H θ angle of NaOD(le ) and NaOH (right) at 77 and 300K.
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 539 Figure 3.9. (a)Probability distribution P(θ n , θ n+1 ) of adjacent O-D bonds describing the dielectric character of NaOH (b) Free energy profile along the O-H θ angle. Probability distribution for NaOD at 77K and 300K are reported for comparison. Results are provided by simulations of NaOH ambient temperature and pressure of 1GPa.
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 1 Computational detailsNaOD and NaOH were simulated by the use of an orthorhombic supercell containing 24 atoms with 8 sodium, 8 oxygen and 8 hydrogen (or deuterium) atoms.e following pseudo-potentials were used with a plane-waves expansion cuto of E cut = 40Ry.• Na.pbe-mt i.UPF• O.pbe-rrkjus.UPF• H.pbe-rrkjus.UPF e Brillouin zone was sampled with a 2 × 1 × 3 k-point grid.On top of DFT calculations, we used PIMD-based PIGLET approach to account for the nuclear quantum e ects. e number of beads in the PIGLET simulations was set to 24 and checked to provide convergence of kinetic and potential energies as shown in Figure C.1.

Figure C. 1 .

 1 Figure C.1. Convergence of the potential and kinetic energies as a function of the number of beads within RPMD simulations of Brucite.
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Table 1 .

 1 Eyring

	Brucite Mg(OH) 2	Portlandite Ca(OH) 2
	P κ κ -1 (ps) (GPa) (THz) 0.029 0.076 0.131 0.043 6.7 10 -5 5.6 10 -4 30 50 70 90 5 10 35 13 8 23 14300 1775	Transition	15 3.7 10 -3 267

-Polanyi reaction rate κ and inverse, computed for Brucite (le ) and Portlandite (right). The transition pressure for Portlandite is reported in refs.

[52, 53]

.

Table 2 .

 2 Space group and fractional coordinates of oxygen and carbon atoms in the MH-III, MH-IIIs, MH-IV and MH-IVs phases of methane hydrate at 40GPa, as obtained from the AIMD simulations.

	2.4.	e methane hydrate IV

Table 3 .

 3 Cohesive energy and O-O distances of the di erent kinds of ice clusters: 4-member, 6-member, and 8-member rings (see Figure 2.31), in eV per H 2 O molecule. The zero of the energy is that of an isolated water molecule. Second and third columns report the cohesive energy of ice rings obtained from MH-III and MH-IV, where O atoms are clamped at their values in the respective crystals (MH-III or MH-IV) at the indicated pressures (20 or 60GPa). The di erent 4, 6a, and 6b rings are sketched in Figure 2.31.

Table 5 .

 5 Optimized la ice parameters of NaOH and NaOD.
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Appendices

T he simulation results present in this thesis were carried out within the NVT ensemble. ey were performed using the antum Espresso package [START_REF] Giannozzi | QUANTUM ESPRESSO: a modular and open-source so ware project for quantum simulations of materials[END_REF] for the DFT calculations while nuclear quantum e ects were taken into account through QTB with a local modi ed version of antum Espresso and PIMD simulations via the i-Pi [START_REF] Cerio I | i-PI: A Python interface for ab initio path integral molecular dynamics simulations[END_REF] interface. ese methods allowed to compute approximate velocity-velocity time correlation functions, and correct quantum distributions respectively.

e electronic structure and atomic forces were described within the GGA approximation and the interaction between ionic cores and valence electrons were described by ultra-so pseudopotentials provided by antum Espresso. La ice parameters were obtained through systematic volume relaxation of the system ensuring isotropic stress tensors for each pressure and the typical duration time of the simulations was 30 ps with a time step of 0.48 fs. In the following section, we provide the technical requirement, and set of parameters, to reproduce the simulations of the di erent systems investigated in this thesis.

A

A

Brucite minerals

A.1 Computational details

Both Brucite (Mg(OH) 2 ) and Portlandite (Ca(OH) 2 ) were simulated by the use of a tetragonal supercell containing 15 atoms with 4 magnesium (or calcium), 8 oxygen and 8 hydrogen atoms.

e following pseudo-potentials were used with a plane-waves expansion cuto of E cut = 50Ry ensuring total energy convergence. For each phase, the samples consist of 4 methane and 8 water molecules (CH 4 :(D 2 O) 2 ) in an orthorhombic crystal cell. Finite-size e ects on equilibrium con gurations were systematically checked. We added a Van der Waals correction via the semi-empirical D2 scheme by Grimme, [START_REF] Grimme | Semiempirical GGA-type density functional constructed with a long-range dispersion correction[END_REF] in order to be er reproduce the experimental la ice constants and compressibility of MH-III. e resulting la ice parameters were chosen to provide an isotropic stress tensor, at all simulated pressures. e following pseudo-potentials were used with a plane-waves expansion cuto of E cut = 40Ry. distributions. Speci cally, we used the Path Integral Generalized Langevin Equation ermostat (PIGLET) [START_REF] Cerio | E cient rst-principles calculation of the quantum kinetic energy and momentum distribution of nuclei[END_REF][START_REF] Cerio | Accelerating the convergence of path integral dynamics with a generalized Langevin equation[END_REF] method which, as other methods such as PI-QTB, [START_REF] Brieuc | antum thermal bath for path integral molecular dynamics simulation[END_REF][START_REF] Schran | Converged Colored Noise Path Integral Molecular Dynamics Study of the Zundel Cation Down to Ultralow Temperatures at Coupled Cluster Accuracy[END_REF] 

B.2 Methane rotation characterization

In order to characterize the methane rotational motions, we extract this motion while removing other internal vibrational modes by the use of the following method. Let ì r m , ∈ [1, n] designates the unit vectors that point to the atoms in the molecule (i. e. a bond vector), this in the molecular frame. ese are constants that de ne the molecule. Now the molecule may have undergone a rotation in the laboratory (or crystal) frame. e vectors that point to the atom now write:

where R(t) is the rotational matrix that goes from the laboratory frame to the molecular frame (and R -1 = R T since it is a rotation matrix). is matrix can be de ned through Euler angles (ϕ, θ,ψ ) or quaternions Q = (q 0 , q 1 , q 2 , q 3 ) with q 2 0 + q 2 1 + q 2 2 + q 2 3 = 1, and

2(q 1 q 2 + q 0 q 3 ) 2(q 1 q 3q 0 q 2 ) 2(q 1 q 2q 0 q 3 ) q 2 0q 2 1 + q 2 2q 2 3 2(q 2 q 3 + q 0 q 1 ) 2(q 1 q 3 + q 0 q 2 ) 2(q 2 q 3q 0 q 1 ) q 2 0q 2 1q 2 2 + q 2 3 One can also carry out the same operation at time t + dt where dt is presumably small:

Assuming one can extract the quaternions at time t, Q(t), and t + dt, Q(t + dt), one can estimate the time derivative Q thereof. We now have the relation:

q 0 -q 1 -q 2 -q 3 q 1 q 0 -q 3 q 2 q 2 q 3 q 0 -q 1 q 3 -q 2 q 1 q 0

where, of course Q 2 = 2( q 0 q 0 + q 1 q 1 + q 2 q 2 + q 3 q 3 ) = 0, which can be easily checked from the above equation. is is thus, in practise, a (3 × 3) system which yields the rotation vector in the molecular frame:
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