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Introduction 

 

With the development of science and technology and the growing of people's awareness of 

environmental protection around the world, the issues of global warming and air pollution have been 

given more attention. Decreasing of carbon dioxide emissions was recognized as necessary, as CO2 is 

one of the most important greenhouse gases. Two types of technologies are proposed to solve the 

problem - CCU (Carbon Capture and Utilization) and CCS (Carbon Capture and Storage). The former 

aims at utilization of carbon dioxide, among others treating it as a feedstock for chemical reactions.  In 

this way CO2 may play an important role in the sustainable development towards carbon-free 

economy. One of the possibilities of obtaining added-value is the production of synthesis gas which is 

currently used as feedstock in several chemical processes, among them liquid fuels production via 

Fischer-Tropsch or methanol synthesis.  

Reforming of methane processes can be classified as the CCU methods. Nowadays, syngas is 

obtained mainly through steam methane reforming (SRM). Still, SRM yields a syngas with a far too high 

H2/CO ratio and needs to be pre-treated before further use in liquid fuel synthesis. The other well-

established technologies are autothermal reforming and partial oxidation of methane. Dry reforming 

of methane (called also CO2 reforming) could lead to useful utilization of this greenhouse gas but until 

now was not introduced on a large industrial scale because of the lack of an appropriate catalyst, as 

well as high endothermicity of the process. The main problem connected with catalysts lies in their 

inadequate stability which is caused by the formation of carbon deposits and active metal sintering 

resulting from high temperature of the reaction. Noble metals were found to be fairly resistant to the 

formation of catalytic coke, but their high price and low availability make them difficult to be accepted 

by industry. Materials containing nickel have been proposed as promising alternative to noble metal-

based ones, as Ni is available and low cost, and it is characterized by good catalytic performance. 

Moreover, the role of the support is crucial as strong interactions between support and active phase 

can decrease sintering and thus improve stability. Adding an appropriate promoter can also influence 
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both activity and stability. Double-layered hydroxides were reported to show good performance in the 

processes of reforming of methane. These materials show flexibility in composition, as divalent and 

trivalent cations may be introduced into the structure, allowing to determine their physico-chemical 

properties. Moreover, the thermal treatment allows to form the homogenous nano-oxides. Some 

added promoters, such as e.g. Zr or Ce were reported to have a positive influence. However, still 

improvements concerning stability are required. Thus, a design of new catalysts for chemical CO2 

utilization is an important aspect for future development of the reforming processes. Moreover, 

combining dry reforming of methane with other oxidative reactions could significantly help in oxidizing 

the formed carbon deposits. Partial oxidation of methane combined with dry reforming, which is under 

research, is an interesting alternative suggested in literature. The most promising, however, seems to 

be tri-reforming of methane (TRM). This process proposes the application of gases, such as CH4, CO2, 

H2O and O2 in order to obtain a mixture of H2 and CO with the ratio of 1.5-2.0. TRM could be also used 

as an effective way for chemical CO2 utilization without the separation of carbon dioxide from flue 

gases from natural gas fuel-fired power stations. The process was found to be thermodynamically 

feasible but until now there is very little experimental research on this subject. 

Though double-layered hydroxides have gained more and more interest lately, there are still a lot 

of unsolved problems. The first group of them is connected with the search for new more effective 

promoters, or the use of co-promoters. In that respect yttrium is an interesting choice, as it was found 

to be effective both as a support in DRM, and as promoter in other catalytic reactions. Having chosen 

a promoter, it is of importance to determine the most effective way of introducing it into a catalyst, 

and here co-precipitation, impregnation or co-impregnation (in case of using two promoters) may be 

considered. The second group of not fully solved problems is connected with the addition of oxygen, 

or oxygen and water, to the reaction mixture, i.e., moving from DRM to CRPOM or TRM, which should 

improve the catalyst stability where carbon deposition is concerned.  
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Goals of doctoral thesis 

 

The thesis focuses on the design of new catalysts for chemical CO2 utilization processes, such as dry 

reforming of methane (DRM), CO2 reforming combined with partial oxidation of methane (CRPOM) 

and tri-reforming of methane (TRM). Ni-containing Mg/Al double-layered hydroxide catalysts were 

prepared by co-precipitation method, and were further promoted with Y and Zr, or Ce by co-

precipitation, co-impregnation or incipient wetness impregnation methods. The physico-chemical 

properties of the synthesized materials were evaluated by means of different techniques, in order to 

study the influence of the different textural, structural and chemical parameters on the activity, 

stability and selectivity. The main goals of the thesis are: 

1. Improvement of the activity and/or stability in the DRM process of hydrotalcite catalysts 

containing Ni through: 

• Introducing a new promoter (Y) or co-promoting with Y and Zr or Y and Ce, and 

• Testing the effectiveness of various promotion methods. 

2. Characterization of physico-chemical properties of so-promoted catalysts and determination 

of the relation between these properties and the activity and stability in DRM. 

3. Determination of the effect of the addition of oxygen, or oxygen and water, on the 

effectiveness of selected hydrotalcite catalysts, and thus the determination of the possibilities 

of their application in processes of partial oxidation of methane combined with CO2 reforming 

and tri-reforming. 

 

The realization of these goals allowed to confirm the hypothesis that the modification of double-

layered hydroxides (application of promoters-Y and Zr or Ce) allows to tailor catalytic properties of 

DLHs catalysts, which will further lead to the optimization of the catalyst activity and stability in 

methane reforming reactions.  
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Chapter 1 – Current status and literature review on CO2 utilization  

1.1.  CO2 and climate 

Growing awareness of environmental problems have triggered global efforts to reduce the levels of 

gases recognized as harmful. Greenhouse gases (GHGs) are believed to have the effect of trapping the 

sun’s heat, and further result in the global warming and climate change [1].  

Carbon dioxide (CO2) is a gaseous compound which is considered to be one of the main causes of 

greenhouse effect, and according to the Intergovernmental Panel on Climate Change (IPCC) its rising 

concentration in the atmosphere mainly originates from fossil fuel combustion, petrochemical, 

chemical and cement industry [2]. In 2017, among the total anthropogenic GHGs emissions, two thirds 

belonged to energy sector, and 80% were assigned to the CO2 presence. The estimations performed 

by the statistical office of the European Union (Eurostat) showed that CO2 emissions significantly 

increased in 2017. Compared with the previous year the change 2017/2016 was at level +1.8% [3]. This 

is almost five times more than the registered in 2016, when the change was ca. +0.4%, and also higher 

than in 2015 when the CO2 emissions increased by +0.7% [4,5]. The emissions growths recorded in 

years 2015-2017 are in contrast to the declines which were observed from 2011 to 2014, with the total 

decrease of CO2 emissions of ca. -2.1%, -2.5% and -5.0%, respectively in 2011/12, 2012/13 and 2013/14 

[6–8]. 

Other statistical source (BP Statistical Review of World Energy) shows that the global CO2 emissions 

arising from oil, gas and coal consumption reached 33.4 Gt in 2017, and increased in comparison to 

the 30.1 Gt reported in 2007 [9]. The released CO2 by country or region, depends on the geopolitical 

situation and economy. Asian-Pacific countries, including China, India, Japan were recognized as the 

biggest producers of CO2 (Fig. 1.1). It is important to mention, however, that other nations are being 

in the rest of 51.17% of global emissions. In this worldwide classification Europe stands on the third 

place with Germany showing the significant production of carbon dioxide. On the other hand, Germany 

showed a negative growth rate as compared to last year. Comparing selected European countries – 
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Poland, France and Italy showed similar trends in 2017, with CO2 release of ca. 300 Mt and the annual 

growth rate lower than +2.0%.  

 

 

Fig. 1.1 The CO2 emissions through consumption of oil, gas and coal for combustion related activates: (A) by 

region recorded in 2017, (B) by chosen European countries in 2017 [9]. 
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The “carbon footprint”, defined as the production of CO2 per person can be controlled at a personal 

level through, e.g. choosing a way of transportation, recycling, consumption of less energy, etc. [10]. 

The most effective way of the reduction of anthropogenic CO2 emission would be a decrease of the 

energy use, the energy efficiency improvement and application of alternative energy sources instead 

of fossil fuels. To fully address the threat of global warming, governments delegate measurements to 

limit levels of CO2 and other greenhouse gases.  

 

1.2.  Reduction of CO2 emissions – solutions and technologies 

Many efforts have been undertaken to establish regulations which may lead to the decrease of 

concentrations of greenhouse gases in the atmosphere.  

Kyoto Protocol was the first international agreement to reduce GHGs emissions (CO2, CH4, N2O, 

HFCs, PFCs, SF6) in the developed countries. It was signed in 1997 and entered into force in 2005 [11]. 

The global scale target was to decrease the emissions by 5.2% during the years 2008-2012, as 

compared to the level from 1990, with the individual reduction levels for each country considering its 

economy and political situation. The second commitment period (2013-2020) assumed reduction of at 

least 18% of emissions compared with the levels from 1990 [11,12]. 

During recent years the United Nations Framework Convention on Climate Change (UNFCCC) 

organized a number of conferences dedicated to the controlling of the CO2 emissions. In 2009, the 

Copenhagen accord decided to continue with the Kyoto Protocol and the world-wide community 

agreed that climate change is the main concern, which can impact people living around the world. The 

Paris Climate Agreement, also known as Conference of Parties (COP21), gathered policy experts, 

scientists, and climate economists from 118 countries, who decided to combat the climate change, 

with the ultimate goal of keeping the global temperature increase below 2 °C (with the respect to 1990 

levels). In 2016, COP22 took place in Marrakech (Morocco), where the roadmap for the development 

of Paris agreement was announced, and aimed at an intensive work to reach its fundamental decisions 

by 2018 [13]. During the COP23 in Bonn (Germany), the work program for the developing a roadmap 
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to 2020 was established [14]. 24th Conference of Parties (COP24) took place in Katowice (Poland) in 

December 2018, where the participating countries agreed to use “a rulebook” of the 2015 Paris 

Agreement, entering into force in 2020. It defines how the member nations will measure the carbon-

emissions and report their emissions-cutting efforts [15]. 

European Union (EU) regulates the concentration of GHGs emissions in the atmosphere via long-

time approaches. This includes 20/20/20 strategy in the 2020 climate & energy package, which 

assumes: (i) 20% cut of GHGs emissions (from 1990 levels), (ii) 20% share of renewables, and (iii) 20% 

improvement in energy efficiency. In 2014, EU adopted a new 2030 climate & energy framework, 

settings three following targets: (i) 40% lower emissions of GHGs in respect to 1990 levels, (ii) at least 

27% share of renewables in the energy sector, and (iii) at least 27% improvement in energy efficiency. 

Afterwards, the European Commission proposed 2050 low-carbon economy with the roadmap that 

suggests: (i) GHGs cut to 80% in comparison to 1990 levels, (ii) 40% lower emissions by 2030 and 60% 

by 2040, and (iii) a contribution of all sectors, i.e., transport, building, industry and agriculture [16]. 

Moreover, the EU issued a CO2 Storage Directive (Directive 2009/31/EC), also known as “CCS 

Directive”, to encourage all members to prepare appropriate regulations for CO2 storage, accompanied 

by other provisions on the capture and transport components of CCS.  

Imposing taxes on CO2 emitted, or increasing taxes on gasoline, are other solutions to solve the 

problem of rising greenhouse gases emissions. A number of governments attempted to implement a 

widespread set of climate solutions that includes the development of renewable energy usage, 

building clean energy economy with the aid of fundamental science and translational technology, 

higher vehicle efficiency, limiting carbon emissions by introducing a carbon tax, diminishing tropical 

deforestation, etc. [10]. Although these large- and/or small-scale efforts can help in decreasing 

pollution, they are not satisfactory enough to solve the CO2 problem. 

To facilitate decreasing CO2 emissions related to energy production and use, the following 

methods/technologies are proposed: an improvement of energy efficiency, carbon capture and 
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storage processes (CCS), carbon capture and utilization processes (CCU), and/or the application of 

renewable energy sources. 

 

1.2.1. Carbon dioxide capture and storage (CCS) 

Carbon dioxide capture and storage (CCS) is considered a crucial method for meeting CO2 emission 

reduction targets. It covers broad types of technologies which aim at transporting carbon dioxide (from 

fossil fuels) via pipelines to safe underground storage, such as deep saline formations, coalbeds, 

mature and depleted oil and gas fields etc. [17]. Despite many CCS projects realized in Europe, 

Americas, Middle East and Asia Pacific, the technology has not yet been launched on an appropriate 

scale [18]. CO2 capture systems involve the following types of capture: (i) post-combustion, (ii) pre-

combustion, and (iii) oxyfuel combustion as schematically presented in Fig. 1.2. 

 

 

Fig. 1.2 Technological concepts of carbon dioxide capture (adapted from [19,20]) 
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Post-combustion assumes the removal of carbon dioxide from the products of fuel combustion with 

air. Carbon dioxide is captured in the separation unit, and the rest gases (N2, O2, and remaining CO2) 

are vented to atmosphere [21]. Wet scrubbing with different aqueous amine solutions is the most 

commercially advanced method used for CO2 separation [19]. CO2 is usually removed from the post-

reaction solvent, by heating to around 120 °C, before being cooled and recycled continuously. This 

method found application in enhanced oil recovery, urea production and in food/beverage industry 

[20]. The CO2 removed from the solvent in the regeneration process is dried, compressed and 

transported to safe geological storage [19]. 

Pre-combustion engages gasification or partial oxidation with sub-stoichiometric amounts of 

oxygen separated from the air, to subsequently give a mixture of synthesis gas (H2 and CO). The formed 

hydrogen may be used in e.g. gas turbines, engines, furnaces or fuel cells [22]. Hydrogen content is 

increased and carbon monoxide removed via the water-gas shift reaction: CO + H2O = CO2 + H2. The 

separation of CO2 can be carried out by absorption, adsorption or membranes [23]. The pre-

combustion can be used in power plants which employ integrated gasification combined cycle (IGGC) 

technology.  

Oxyfuel combustion is performed with pure oxygen, which may be obtained by cryogenic air 

separation. After combustion, a part of the flue gas is recycled to the burner, in order to moderate the 

temperature of combustion [23,24]. The remaining flue gas is cooled to remove water, compressed, 

and separation of O2 and N2 from CO2 takes place [25].  

The captured carbon dioxide can be either stored or treated as a carbon source for the chemical 

supply chain. Thus, it may become an alternative feedstock for fuels production, replacing oil and gas 

in many applications. The processes, which deal with CO2 utilization technologies are called Carbon 

Capture and Utilization (CCU). 
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1.2.2. Current and emerging carbon dioxide utilization technologies 

Carbon capture and utilization (CCU) processes assume that CO2 is used as feedstock in syntheses of 

desirable chemicals. Thus, carbon dioxide is treated as a valuable resource, with almost zero costs of 

production [8]. CCU shares the same initial steps as CCS, but instead of storing CO2 underground, the 

gas is either directly utilized or converted into commercial products (Fig. 1.3). After capture and 

separation of CO2, purification, and compression take place based on the type of transportation and 

the required purity of the receiver. The fifth step is the CO2 transportation to the receiver. The type of 

transportation is determined by the stream characteristics (i.e., flowrate, purity), and the distance 

between source and sink. The final step is utilization with CO2 delivered to the receiver at the required 

purity and flowrate, and converted to the final product [17].  

 

 

Fig. 1.3 Chain steps of carbon capture and utilization (CCU) (adapted from [17]). 

 

Both Carbon Capture and Storage (CCS) and Carbon Capture and Utilization (CCU) processes aim at 

the application of non-converted carbon dioxide. CO2 as non-converted molecule, may be used in the 

technologies, such an enhanced oil recovery (EOR), enhanced gas recovery (EGR) and enhanced coal 

bed methane recovery (ECBM) (Fig. 1.4). Most anthropogenic CO2 currently being geologically stored 

is associated with CO2-EOR. However, to be considered as CCS, the CO2-EOR must demonstrate that 

the injected CO2 is stored permanently. Regulations and policy are required to transition from CO2-
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EOR to CCS [26]. Table 1.1. and 1.4 illustrate the pathways for converted or unconverted CO2 

applications. 

 

 

 

Fig. 1.4 Pathways of carbon dioxide reduction in which CO2 is converted and non-converted. 
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Table 1.1 CCU technologies based in which CO2 is non-converted.  

Technology Summary Ref. 

Enhanced oil recovery (EOR) CO2 is injected into an oil reservoir and acts as a solvent 

which helps to expand oil more easily to production wells 

[27–29] 

Enhanced gas recovery (EGR) CO2 injection into gas field in order to recover e.g. methane  [29,30] 

Enhanced coal bed methane 

recovery (ECBM) 

CO2 is injected into a coal field in order to enhance the 

recovery of methane 

[31] 

 

CO2-Enhanced Oil Recovery (CO2-EOR) assumes CO2 injection into depleted oil fields, to help 

recovering part of unmineable oil [32,33]. It is a well-established technology, with its biggest potential 

in USA and the North Sea. The first project of CO2-EOR was SACROC Unit in West Texas in 1972, using 

carbon dioxide extracted from natural gas [34]. The possibility of utilization of CO2 from cheaper, and 

naturally occurring fields resulted in establishing the net of pipelines connecting New Mexico, Colorado 

and Mississippi. In 2014, 136 projects of CO2-EOR were registered in USA [29]. It was established that 

the CO2-EOR could potentially produce 2.4 and 3 billion barrels of oil in UK Continental Shelf (UKCS) 

and in the Danish and Norwegian sectors, respectively [35]. However, the problems associated with 

the supply of CO2 to offshore EOR make the investment difficult in this area [29]. 

CO2-Enhanced Gas Recovery (CO2-EGR) is a technology, where CO2 is injected into a depleted gas 

field. It has not yet been commercially applied as it is still at an early stage of development. Likewise, 

they have been only three known field-testing programs, namely, K12-B Reservoir with Gaz de France 

as operator (the Netherlands), Budafa Szinfeletti Field (Hungary), and in the Krechba gas field in deep 

Sahara Desert (Algeria) [29,36]. The K12-B is located in the North Sea and it undertakes injection of 

CO2 coming from the same field from which it was produced, together with CH4. The mixture 

containing 80% of CO2 and 20% of CH4 was injected into a depleted gas reservoir. Comparing, the 

Hungarian reservoir undertakes usage of the offshore gas, which contains 13% of carbon dioxide [30]. 

In Algeria, CO2 content in the gas reservoir is 5%-10%. In Krechba, carbon dioxide is injected into a 20 

m thick reservoir with moderate permeability from three horizontal wells [36,37]. 
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Using carbon dioxide to extract methane is known as CO2-enhanced coal bed methane recovery 

(CO2-ECBM). An unmineable coal bed may store 3-200 Gt of CO2, with the simultaneous extraction of 

natural gas [29]. A number of projects has been conducted, namely, in the San Juan Basin (USA), Fenn 

Big Valley (Canada), Recopol (Poland) or Hokkaido (Japan) [31]. The ECBM is currently developed, in 

contrast to the EOR and EGR which are mature technologies. 

It must be mentioned, however, that the possible CO2 leakage is a major concern for geological 

storage, as well as utilization of CO2. 

Other applications of non-converted CO2 assume the direct application of this molecule, e.g. as an 

inert medium in food industry or packaging, in beverage carbonation, during wine production, etc. 

[17,38]. Carbon dioxide is also used in metal industry, e.g. for chilling parts for shrink fitting and 

hardening of sand cores, in paper industry to reduce pH during pulp washing operations, or in water 

treatment for remineralization and for pH control. Furthermore, the gas is used in fire extinguishers, 

industrial air conditioning and refrigeration units [17,39].  

The conversion of CO2 into chemicals and fuels can be carried out by different routes, such as  

reactions of hydrocarbons to syngas, hydrogenation to hydrocarbons, alcohols, dimethyl ether and 

formic acid production, photochemical conversion, electrochemical reactions, biochemical pathways, 

solar thermochemical conversion, and plasma technologies etc. [40,41].  

One of the proposed processes to apply CO2 is dry reforming of methane (CH4 + CO2 = 2CO + 2H2). 

The stochiometric ratio between the products is 1, but the side reactions occurrence, such as e.g. 

reverse water-gas shift (RWGS), lowers the H2/CO ratio to values lower than unity. Dry reforming of 

methane is an endothermic reaction, posing several problems with finding a proper catalyst which 

would be active, selective and resistant to catalysts deactivation [42]. Dry reforming of methane can 

be combined together with partial oxidation of methane (an exothermic reaction), which makes the 

overall process more favorable thermodynamically. On the other hand, the tri-reforming of methane 

(TRM), proposed by Song et al. [43], makes use of the gas containing CO2, H2O, O2 and CH4, the three 

former products are present in flue gas emitted from combustion.  
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Carbon dioxide can be hydrogenated to hydrocarbons through direct and indirect routes. For the 

former a well-known example is CO2 methanation, for the first time reported by the French chemist 

Paul Sabatier in 1902 (Sabatier reaction) [44]. The CO2 methanation takes place at relatively low 

temperature window (25-400 °C), due to the reaction exothermicity (DH0=-165.3 kJ/mol) [45]. 

Moreover, other products such as methanol, dimethyl ether, and formic acid may be produced through 

CO2 hydrogenation process via the indirect route in (i) a multi-stage approach, e.g. with different 

reactors, or (ii) a single-stage approach, using hybrid catalysts to perform simultaneously the multi-

step transformation [40].  

The photochemical reaction uses energy of light to enhance a chemical process and can be realized 

by one of two routes, via: (i) photovoltaic (PV) cells, which form the adequate photovoltage 

subsequently supplied to the cathode (for CO2 reduction) or anode (for water oxidation), or (ii) direct 

photocatalytic approach where light-absorbing semiconductor particles are dispersed in aqueous 

solution to attain light harvesting, charge separation and interfacial charge transfer [46]. 

Electrochemical CO2 reduction utilizes electric current and redox potential, mainly at ambient 

conditions used. In a CO2 electrolyzer, two chambers contain anode and cathode, which are separated 

with an ionic conducting membrane. In the former, water is oxidized to molecular oxygen, in the latter 

CO2 is reduced to carbon species [47]. 

Biochemical pathways involve conversion of solar energy into chemical energy (via photosynthesis) 

in order to produce biofuels. The best example is biodiesel production from microalgae. The latter 

capture carbon dioxide from three different sources: (i) from atmosphere, (ii) from emissions produced 

by power plants, or (iii) from soluble carbonates [48]. The development of appropriate technologies 

for high-efficiency algal biodiesel production is relevant also for biohydrogen, biogas, bioethanol and 

biomass-to-liquid (BTL) approaches [41]. 

Thermochemical CO2 conversion assumes the use of thermal energy of solar furnaces or nuclear 

reactor to supply the required energy to split carbon dioxide, according to the reaction CO2=CO+½ O2 

[40]. Through this method, methanol and hydrocarbons can be formed if the latter reaction is coupled 
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with thermochemical water splitting, which results in production of H2, O2 and a mixture of H2/CO. Two 

types of direct solar energy conversion can be distinguished: (i) thermal conversion (sunlight is 

absorbed as thermal energy and extracted as work), or (ii) quantum conversion (the work output is 

taken directly from the light absorber) [41]. 

Plasma is a fourth state of matter, defined as ionized gas [49]. Two types of plasma are 

distinguished: (i) thermal (with the high temperature of gas and similar to temperature of electrons), 

and (ii) non-thermal (low, even ambient temperature, however the temperature of electrons and 

excited and ionized species is high) [49]. Non-thermal plasma may be used as a reaction medium in 

catalytic processes. The conversion of CO2 may be carried out via different plasma catalytic processes, 

in which ionized gas created by plasma discharge activates carbon dioxide molecule. The efficiency of 

the plasma catalytic reactions is dependent on the geometry of reactor used, applied parameters and 

used catalysts [50,51]. 

Mineral carbonation, is a second route for CO2 utilization, assuming conversion of this gas (Fig. 1.4). 

Carbon dioxide reacts with calcium- and/or magnesium-containing minerals to form stable carbonate 

materials. The reaction is thermodynamically favored at low temperature and results in heat release 

[52]. Industrial waste, such as ashes, metallurgic slags, mining tailings, asbestos containing materials, 

can be utilized in the mineral carbonation process [53]. The final products may be used in building 

industry, in the form of calcite (CaCO3), dolomite (Ca0.5MgO·5CO3), magnesite (MgCO3) and siderite 

(FeCO3) [52–56].  

 

1.2.2.1. Chemicals production - mature technologies 

From the CO2 reduction routes, presented above, many chemicals can be produced. The main 

chemical products manufactured currently from CO2 on industrial scale are urea, salicylic acid, some 

cyclic carbonates and polycarbonates [57]. Table 1.2 summarizes these chemicals formed via CCU 

technologies. 
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Table 1.2 Examples of chemicals and fuels produced via CCU technologies (full industrial production) [58]. 

Chemicals and fuels Description of carbon dioxide usage Ref. 

Urea  CO2 reacts with NH3 via ammonium carbamate  

Production of urea (100 Mt/year) 

[59] 

Salicylic acid CO2 reacts with sodium phenolate at high pressures and temperatures 

Production of salicylic acid (0.03 Mt/year)  

[60] 

Carbonates, 

Cyclic carbonates, 

Polycarbonates 

Cycloaddition of CO2 to an alcohol or epoxide, or using liquid ionic 

solvents which act like catalyst 

Production of cyclic carbonate (0.05 Mt/year) 

[42,61] 

 

The production of urea uses carbon dioxide (from different sources) and ammonia [59,62]. The 

production of ammonia is based on the Haber-Bosch synthesis process [63]. Urea synthesis is the best-

known process of utilizing CO2. It is an important product, used among others to reduce NOx emission 

from exhaust gases of power plants or Diesel engines (selective catalytic reduction process), or as a 

nitrogen fertilizer [57]. 

The production of salicylic acid is carried out by Kolbe-Schmitt reaction in which sodium phenoxide 

and carbon dioxide react at 120-140 °C under pressure [60]. Salicylic acid is used in pharmaceuticals, 

food preservatives, etc. [57].  

Traditional synthesis of carbonates, cyclic carbonates and polycarbonates involves the reaction of 

appropriate alcohols with toxic phosgene [64]. The one of alternative routes is synthesis via 

cycloaddition of CO2 to an epoxide [42,58,61]. Another route is a usage of ionic solvents which act as 

catalysts e.g. in cyclic carbonates or polycarbonates formation [42]. Cyclic carbonates are used as 

solvents, and components of electrolytes in Li-batteries, while polycarbonates are used for 

manufacture optical, automotive, and electronic components. 
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1.2.2.2. Chemicals production – mature and emerging technologies, and future prospects  

Synthesis gas, also known as syngas, is a mixture of hydrogen and carbon monoxide. As shown in 

Fig. 1.5, this mixture may be applied in many processes, leading to production of valuable chemical 

products.  

 

Fig. 1.5 Synthesis gas conversion processes in chemical industry (adapted from  [64,65]). 

 

In general, there are six reforming processes proposed in the literature, which produce syngas: 

1. Steam reforming of methane (SRM), 

2. Partial oxidation of methane (POM), 

3. Autothermal reforming (ATR), 

4. Dry reforming of methane (DRM), 

5. Combined partial oxidation with dry reforming of methane (CRPOM), and 

6. Tri-reforming of methane (TRM). 



Chapter 1 – Current status and literature review on CO2 utilization 

 

 39 

The first three processes are well established and widely used by industry. The synthesis gas in 

produced via steam reforming of methane (CH4+H2O) on nickel-based catalysts [64]. However, the 

reforming processes which assume conversion of CO2 are very interesting in terms of utilization of this 

gas. The last three methods mentioned above (processes 4 to 6) are innovations to minimize this 

greenhouse gas emissions, minimize energy consumption and improve the reforming process yields. 

These methods differ in the composition of produced synthesis gas i.e., their H2/CO molar ratio [66]. 

The reforming processes will be discussed in detail further in Subchapter 1.3.2. 

Apart from reforming reactions, syngas may be formed through gasification of coal, and also via an 

electrochemical process. The former, involves coal conversion into suitable fuel gas by the reaction 

with air, steam, CO2 or their mixtures, leading to the production of a mixture of CO, H2, CO2 and CH4 

[67,68]. In the electrochemical processes, a mixture of CO and H2 is produced from the CO2-water 

electrochemical reduction [69]. Different metals were studied as catalysts for this purpose. Recently, 

the researchers from Berkeley (USA) and Toronto (Canada) developed synthesis gas production from 

a pinch of copper atoms sprinkled atop a gold surface [70]. Moreover, another possibility for 

conversion of CO2 is usage of different plasma catalytic processes, in which CH4 and CO2 are activated 

or dissociated by means of high energy electron impact and react with each other at low temperatures 

[49,50]. The detailed mechanism of plasma excitation in CH4-CO2 process was described by Bogaerts 

et al. [50] and De Bie et al. [71].  

As presented in Fig. 1.5, hydrogen, derived from syngas, can be used in fuel cells, or e.g. in the 

production of urea, etc. However, the biggest consumer of H2 from syngas is ammonia synthesis. 

Lately, it is also planned to utilize hydrogen as a fuel for non-polluting vehicles. Carbon monoxide is 

used in the production of paints, plastics, pesticides, insecticides, etc. [66].  

Fischer-Tropsch (F-T) synthesis is a technology to produce hydrocarbons from syngas [72]. Franz 

Fischer and Hans Tropsch invented this process in 1923 to convert coal into synthetic liquid 

hydrocarbons at the Kaiser Wilhelm Institute for Coal Research (KWI) in Mulheim Ruhr. First, Fischer 

and Tropsch hydrocracked the coal by reacting it with steam to produce synthesis gas, and converted 
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the gases to petroleum-like synthetic liquid [72]. First a cobalt catalyst was designed and developed. 

The Co-based catalysts are considered the most favorable materials for the synthesis of long chain 

hydrocarbons due to high activity, high selectivity to linear paraffins and low water–gas shift (WGS) 

activity [73]. Moreover, cobalt is the best compromise between catalytic performance and cost for the 

production of hydrocarbons [74]. The water-gas shift reaction (WGS) on Fe-based catalysts in the F-T 

synthesis is more active than that on Co-based material. The activity of WGS leads to the production 

of more CO2 that CO, which at the same time allows the utilization of synthesis gas which contains 

carbon dioxide or hydrogen depleted syngas [72]. The first commercial Fischer-Tropsch processes were 

used in Germany. About 14% of motor fuels were produced by the Fischer–Tropsch (FT) method in 

Germany during World War II [72]. 

Methanol is the most important product of synthesis gas conversion [75]. It has been estimated 

that methanol synthesis from catalytic hydrogenation of CO2 will become commercial within a few 

years, as it has already been commercially interesting when cheap sources of renewable H2 are 

available, or when it was used to store an excess of electrical energy. This development would be 

pushed by the experience in pilot or pre-commercial industrial plants, such as the Mitsui plant (pilot in 

Japan, and large unit expected in Singapore) and methanol plant in Iceland (Carbon Recycling 

International - CRI). The latter produces renewable methanol at a large scale (VulcanolTM), using CO2-

containing flue gas (from industrial and geothermal emissions) and hydrogen using renewable sources 

of electricity [76]. Methanol can be used both as a chemical (directly or as an intermediate for other 

products, including light olefins) and as a fuel (directly, or to produce fuel additives/components)[75]. 
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Table 1.3 Summary of the possibilities for the CO2 fixation as a function of their maturity (adapted from [64,77]). 

 

 

Po
te

nt
ia

l 
de

ve
lo

pm
en

t  

Ec
on

om
ic 

pe
rs

pe
ct

iv
es

 

Po
te

nt
ia

l 
vo

lu
m

e 
of

 C
O

2 

Ex
te

rn
al

 u
se

 o
f 

en
er

gy
 

Du
ra

tio
n 

of
 C

O
2 

se
qu

es
tr

at
io

n 

O
th

er
 im

pa
ct

s 

Al
re

ad
y 

in
du

st
ria

l 

Enhanced oil 
recovery 4 4 2 3 4 4 

Industrial 
utilization 4 4 3 2 1.5 4 

Organic 
synthesis 4 3 2 3 3 3 

Sh
or

t 

te
rm

 Hydrogenation 3 3 4 4 2 3 

Algae open 
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Mineralization 1 1 1 3 4 3 

Thermo-
chemical 1 2 4 4 2 3 

Electrolysis 1 unknown 2 4 2 2 

Photo-electro 
catalysis 1 unknown 4 4 2 2 

Bio catalysis 
1 unknown 4 4 2 3 

 
Potential development: 1, more than 10 years → 4, industrial  
Economic perspectives: 1, difficult to estimate → 4, available industrial data  
External use of energy: 1, difficult to decrease → 4, no need  
Potential volume of CO2: 1, less than 10 Mt → 4, more than 500 Mt 

 

 

Table 1.3 presents the techno-economic study of the potential as well as currently used 

technologies for CO2 utilization. The study was prepared by Thybaud and Lebain [77] for the French 

Environment and Energy Management Agency. One can note that the reforming of hydrocarbons, 

hence the reforming of methane processes, are already considered as a medium-term technology with 

a capability for industrialization. Among them, dry reforming of methane (DRM) is discussed.  
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A DRM demonstration plant was co-launched by Shanghai Advanced Research Institute of the 

Chinese Academy of Sciences, Shanxi Lu'an Coal Corporation Limited and Shell Global Solutions 

International. The plant can produce more than 200,000 Nm3 of syngas and convert 60 tons of CO2 per 

day, and is currently the world's largest test DRM plant [78]. Another example is the JAPAN-GTL 

demonstration plant located in Niigata City (Japan) with three main units: (i) synthesis gas section, (ii) 

Fischer-Tropsch synthesis section, and (iii) upgrading section (hydrocracking). The first unit includes 

steam and dry reforming of methane. 

The European example is a DRM pilot plant established in 2015 by the Linde Group at Pullach in 

Germany [79]. The company is testing two catalysts. A nickel-based catalyst, similar to those used in 

steam reforming, and a cobalt-based one which has lower tendency to carbon deposition than Ni 

catalysts [80]. 

Tri-reforming of methane is a technology with a great potential. The tri-reforming may be especially 

suited for CO2, without prior separation. One example may be a usage of non-conventional (CO2-rich) 

natural gas, in pilot scale in Korea (KOGAS) for di-methyl-ether (DME) production [81]. This process 

provides a lower operating temperature, a desirable H2/CO in the range of 1.2 and 1.5, and lower coke 

formation.  

 

1.3. Tri-reforming of methane: reactions, mechanism and catalysts 
 

A novel concept of reforming process has been proposed for the first time by Song et al. [43,82], 

assuming the usage of the gas feed containing CH4, CO2, H2O, and O2.  

The presence of the oxygen and water vapor improve energy efficiency and can positively affect 

coke mitigation [83]. However, the biggest advantage of the process is the production of synthesis gas 

which may be further converted into methanol, di-methyl ether (oxo-synthesis) and liquid fuels (via 

Fischer-Tropsch synthesis). Another application of the tri-reforming of methane could be converting 

low-quality CO2-rich natural gas into industrially useful products [83]. The syngas obtained in methane 

tri-reforming process has molar ratios in the range of 1.5-2.0 [82]. The synthesis gas can be also further 
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processed into either hydrogen or carbon monoxide alone, so that the obtained gas can be used in 

other processes, e.g. hydrogenation or carbonylation. It should be stressed, however, that for the 

future implementation of tri-reforming on industrial scale, an active, stable (free from coke formation), 

and selective catalyst is a key requirement. 

 

1.3.1. Two concepts of tri-reforming of methane  
 

1.3.1.1. Flue gases from natural gas power station for tri-reforming of methane 
 

The scenario applies to fossil fuel-fired power plants, where carbon dioxide is one of the components 

of flue gases. The process does not require the pre-separation of carbon dioxide, and mixtures 

containing CO2, H2O and O2 (with methane added) may be directly used for the synthesis gas 

production (H2 and CO).  

Fig. 1.6 shows the visualization of the concept where flue gases from a power station, with natural 

gas added, are directed to the tri-reformer. As a result, synthesis gas, which is a raw material for a 

number of chemical syntheses, is obtained. In this concept the direct CO2 usage, without its pre-

separation, is assumed. This results in energy savings, since conventional methods, such as CO2-MEA 

absorption, require high energy for absorbent regeneration [84]. 

 

 

Fig 1.6 Scheme of chemical CO2 utilization by tri-reforming process implementation in gas-fired power stations. 
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Typical outlet temperature of flue gases leaving a boiler in a power plant is ca. 1200 °C, and it decreases 

steadily, as the temperature of flue gases at the tail end is ca. 150 °C [43]. Typical composition from 

flue gases from natural gas-fired power plants is presented in Table 1.4 [82]: 

 

Table 1.4 Gas composition of flue gases derived from natural gas-fired power station. 

Components of flue gases from natural 

gas-fired power station [vol.%] 

CO2  H2O  O2  N2  

8–10 18–20 2–3 67–72 

 

Pollution control installations, such as flue-gas desulfurization and selective catalytic reduction, can 

remove SOx and NOx, respectively. The particulate matter is also removed in separate units, while, 

CO2, H2O and O2 remain largely unchanged [83]. Thus, the average composition may be assumed as 

follows: CO2–H2O–O2–N2 (9:19:2.5:69.5 parts by volume). Adding 15 vol.% of natural gas and 19 vol.% 

of air, the condition of thermoneutrality is met at 827 °C and 1 bar pressure by the reaction [84]: 

15 CH4 + 9 CO2 + 19 H2O + 6.8 O2 + 85.6 N2 = 8.71 CO2 + 17.89 H2O + 15.29 CO + 31.1 H2 + 0.003 CH4 + 

85.6 N2 

Halmann and Steinfield [84] reported the possible CO2 emission avoidance, as well CH4 savings 

which could be gained when syngas was produced via tri-reforming (instead of traditional steam 

reforming) and further applied to obtain typical bulk chemicals (methanol, ammonia, etc.), as 

illustrated by Fig. 1.7. The highest CO2 emission avoidance (50 %) occurs for methanol production. The 

largest fuel (natural gas) savings, however, are possible for hydrogen production. 
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Fig. 1.7 Carbon dioxide emissions avoidance and methane savings when methanol, hydrogen or ammonia are 

produced with H2 or syngas obtained via implementation of tri-reforming process in natural gas-fired power 

stations, instead of current industrial processes. The numerical data taken from [84]. 

 

1.3.1.2. CO2 separation for tri-reforming of methane 
 

Another approach to utilization of carbon dioxide flue gases is based on its separation and purification 

(via absorption, adsorption or membrane separation). Tri-reforming of methane is then a following 

processes applying pure CO2. In this case, different molar ratios between the reactants can be used, 

compared to the ones which are present in the real flue gas. The adjusted mixture should lead to the 

thermodynamically more favorable results, than in case of the gas mixture typical for flue gases.  

Tri-reforming of methane can be carried out with various feed gas compositions as described by 

Song and Pan [83]. Their thermodynamic calculations showed that high conversions of both CH4 and 

CO2 (respectively over 95, and ca. 80 % at 850 °C) may be obtained, assuming molar ratios of CO2/H2O 

= 1.0, O2/CH4 = 0.1, and (CO2+H2O+O2)/CH4 = 1.05. Some experimental catalytic studies of TRM 

assumed the same and/or very close gas compositions to those proposed in literature calculations [2]. 

Majewski et al. [85] and Garcia-Vargas et al. [86] studied TRM process with the feed of CH4/CO2/H2O/O2 
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= 1/0.5/0.5/0.1. Pino et al. [87], worked with feed gas composition of CH4/CO2/H2O/O2 = 

1/0.46/0.46/0.1, while Si et al. [88] studied catalysts at CH4/CO2/H2O/O2 = 1/0.5/0.375/0.25., Sun et al. 

[89] applied in their study CH4/CO2/H2O/O2 = 1/0.45/0.45/0.1, and Song and Pan [43,82,83] assumed 

CH4/CO2/H2O/O2= 1/0.475/0.475/0.1 and CH4/CO2/H2O/O2= 1/0.56/0.48/0.1. The presence of oxygen 

may improve catalytic performance of the reforming process. However, it has to be stressed that 

possible methane ignition should be prevented, and upper and lower flammability limits (UFL, LFL, 

respectively) have to be considered. Above the upper flammability limit the CH4 concentration is too 

high, thus in the presence of spark methane will not combust. The flammability limits are found 

through calculations, and from methane and oxygen mixture UFL is: 1.57, while for methane in air it is 

0.94. On the other hand, when CH4 concentration is below the LFL its content is too low to start 

ignition. The lower flammability limits are: CH4/oxygen = 0.22, and for CH4/air: 0.05 [90]. 

 

1.3.2. Tri-reforming of methane (TRM): three main reactions 
 

Tri-reforming of methane is considered as a sum of dry reforming of methane (Eq. 1), steam reforming 

of methane (Eq. 2) and partial oxidation of methane (Eq. 3), and be written as (Eq. 4):  

CH4 + CO2 = 2CO + 2H2  ΔH0 = 247 kJ/mol   (Eq. 1) 

CH4 + H2O = CO + 3H2  ΔH0 = 206 kJ/mol   (Eq. 2) 

CH4 + ½O2 = CO + 2H2   ΔH0 = -38 kJ/mol   (Eq. 3) 

3CH4 + CO2 + H2O + ½O2 = 4CO + 7H2     (Eq. 4) 

Here some inaccuracy is included, as both the complete oxidation of methane (Eq. 5) and water-gas 

shift (Eq.6) are not considered. 

CH4 + 2O2 = CO2 + 2H2O   ΔH0 = 880 kJ/mol   (Eq. 5) 

CO + H2O = CO2 +H2  ΔH0 = -41 kJ/mol   (Eq. 6) 

During the process many types of side or consecutive reactions take place, involving coke formation, 

such as direct methane decomposition (Eq. 7) or Boudouard reaction (Eq. 8);  

CH4 = C + 2H2   ΔH0 = 75 kJ/mol    (Eq. 7) 
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2CO = C + CO2   ΔH0 = -171 kJ/mol   (Eq. 8) 

 

and coke destruction, such as gasification of carbon with CO2 (Eq. 9), steam (Eq. 10), or oxygen (Eq. 11) 

[87,91]: 

C(ads) + CO2 = 2CO  ΔH0 = 172 kJ/mol     (Eq. 9) 

C(ads) + H2O = CO + H2  ΔH0 = 131 kJ/mol   (Eq. 10) 

C(ads) +O2 = CO2   ΔH0 = -394 kJ/mol   (Eq. 11) 

 

Coupling exothermic partial and total oxidation reactions with endothermic CO2-steam reforming 

reactions results in generating in situ the heat that can be used to increase energy efficiency and 

achieve a thermo-neutral balance of reactions [83]. The final H2/CO ratio can also be adjusted by 

controlling the amount of steam and CO2 added to the reaction [92–94]. Moreover, in comparison to 

dry reforming of methane, catalyst deactivation by carbon formation is lower in this process due to 

the presence of steam and oxygen [82].  

Dry reforming, steam reforming and partial oxidation of methane, considered to take place during 

the process of tri-reforming of methane are discussed separately in detail below. 

 

1.3.2.1. Dry reforming of methane (DRM) 
 

Dry methane reforming (DRM), also called CO2 reforming, is considered one of the promising processes 

for chemical CO2 utilization [44,67,95–100]. The process was introduced by Fischer and Tropsch for the 

first time in 1928 [101,102]. However, the extensive investigation on the DRM started when increasing 

concerns about greenhouse effects were raised by the international scientific community in the 1990s 

[103].  

DRM leads to synthesis gas production, a mixture of hydrogen and carbon monoxide that is 

appropriate for products including Fischer-Tropsch fuels (process on Fe-based catalysts) and dimethyl 

ether (DME) [104]. In comparison to conventional technologies, i.e., steam reforming and partial 
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oxidation of methane, the DRM is also suitable for remote natural gas or crude oil fields, where water 

supplies are limited [105]. Moreover, since natural gas deposits include large amounts of CO2, its 

emission to the atmosphere can be avoided if carbon dioxide were used in DRM. This would lower the 

purification costs [106]. Due to the strong endothermicity of dry reforming of methane, the process 

can be environmentally valuable only if the required reaction heat comes from nuclear or renewable 

energy [96,102,103]. 

Similarly as TRM, the DRM reaction is accompanied by several side reactions, including previously 

mentioned direct methane decomposition (DMD) (Eq. 7), and Boudouard reaction (Eq. 8). 

Stoichiometric H2/CO ratio of dry reforming of methane is 1.0, but it is often lower due to the reverse 

water-gas shift (RWGS) reaction (Eq. 12). 

 

CO2 + H2= CO + H2O   ΔH0 = 41 kJ/mol  (Eq. 12) 

 

The main reaction of DRM (Eq. 1) is favored at high temperatures and low pressures, conditions 

which also favor DMD (Eq. 7). Minimum operating temperatures for DRM and DMD, calculated using 

the standard free energy, are 645 °C and 557 °C, respectively [103,107–109] (Fig. 1.8). The exothermic 

character of Boudouard reaction will decrease its role at temperatures higher than 701 °C, while the 

RWGS accompanies DRM reaction in a wide temperature range [107,109]. In the temperature range 

of 557-645 °C, where DRM reaction is not favored, both methane decomposition and Boudouard 

reaction contribute to carbon formation [110]. Therefore, high reaction temperatures (i.e., 700 °C and 

above) are more favorable [109]. 



Chapter 1 – Current status and literature review on CO2 utilization 

 

 49 

 

Fig. 1.8 Temperature ranges in which the main side reactions during DRM process are favorable.  

 

Two types of classical heterogenous models are considered for dry reforming of methane,  the Eley-

Rideal (ER) and Langmuir-Hinshelwood (LH) mechanisms [111,112]. The former assumes that one 

reactant (CH4 or CO2) is associatively adsorbed on the catalyst surface, in an adsorption equilibrium. 

The adsorbed species of the reactant are subsequently reacting with the other reactant from the gas 

phase, leading directly to products. The LH mechanism assumes adsorption of both reactants. CH4 

decomposes to CHx species and hydrogen, whereas CO2 dissociates producing CO and adsorbed oxygen 

species. Oxygen species can react with CHx species leading to H2 and CO. The Langmuir-Hinshelwood 

mechanism was most often considered valid in the literature, e.g. for DRM reaction on Ni catalysts 

[113–115]. The comparison between these two models is presented in Fig. 1.9. 
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Fig. 1.9 Comparison of (A) Eley-Rideal mechanism and (B) Langmuir-Hinshelwood (adapted from [111]). 

 

The elementary steps may be described as follows [102,116–118]:  

Methane activation (“dehydrogenation”): 

CH4 (gas) + 2* = CH3* + H*    (Eq. 13) 

CH3* + * = CH2* + H*     (Eq. 14) 

CH2* + * = CH* + H*     (Eq. 15) 

CH* + * = C* + H*     (Eq. 16) 

CO2 activation: 

CO2 + * = CO2*     (Eq. 17) 

CO2* + * = CO* + O*     (Eq. 18) 

CO* = CO + *     (Eq. 19) 

Surface reactions:  

C* + O* = CO* + *     (Eq. 20) 

CO* = CO + *      (Eq. 21) 

H* + H* = H2 + 2*      (Eq. 22) 

 

Methane dehydrogenates step by step, which in the end leads to active carbon (*C) and hydrogen 

species (*H) adsorbed on metallic active site “*”, i.e., Ni0. CO2 decomposes to CO and adsorbed oxygen 
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(O*). Subsequently, C* is oxidized to CO* with adsorbed *O. In the next step CO* desorbs as CO(g), and 

two H* species recombine to H2. Hence, the active sites (*) are recovered [117]. 

The particular conditions needed for DRM are directly linked to its thermodynamic and kinetic 

barriers that hinder its practical industrial application. Depending on DRM application, the  processes 

differ in operating parameters and feed composition (e.g. SPARG–Sulfur Passivated Reforming or 

CALCOR–CO through CO2 Reforming processes) [96,102,119]. Their main goal is, however, to adjust 

syngas quality to the needs of its subsequent use, and not the valorization of CO2 itself.  

 

1.3.2.2. Steam reforming of methane (SRM) 
 

Steam reforming of methane (Eq. 2) is a chemical process assuming conversion of a hydrocarbon rich 

feedstock to hydrogen and syngas (hydrogen, carbon monoxide and carbon dioxide). Syngas, as 

previously mentioned, is an important industrial raw material, and it is used to produce a wide variety 

of commercially significant products, such as hydrogen (via WGS reaction) for further synthesis, e.g. 

ammonia [120,121]. Steam reforming of methane produces synthesis gas with high H2/CO molar ratio 

of ca. 3, that is higher than the one required for downstream methanol and hydrocarbon conversion 

processes. SRM was developed at the beginning of the 20th
 
century to produce hydrogen [122]. The 

main reason for expanding production of hydrogen was connected to the discovery of the Haber-Bosch 

process, important for the ammonia synthesis. The process was further developed in the 1970's [123].  

According to Rostrup-Nielsen [67], replacing carbon dioxide with steam in the reforming reaction 

has no drastic effect on the mechanism. In the steam reforming process CH4 is dissociated on the 

surface of a catalyst, typically Ni-based, molecular hydrogen is formed, and the remaining carbon 

reacts with water to form additional molecular hydrogen and carbon monoxide [124]. The process 

takes place at high temperatures and, most economically, if the carbon-to-oxygen ratio in the feed gas 

is close to stoichiometric. Such conditions, however, lead to the graphitic carbon formation, which 

deactivates a used catalyst. The rate of carbon formation is known to be far lower on noble metals 

than on nickel-based catalysts, which is ascribed to a lower dissolution of carbon into these metals 
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[67]. Rostrup-Nielsen [119,125,126] reported a suppression of carbon deposition caused by sulfur 

poisoning in steam reforming of methane. This effect was explained by a partial blockage of a catalyst 

surface/sites. The process has been developed industrially by Haldor Topsøe AS, and known as the 

SPARG process [127]. 

Typically nickel-based catalysts are used for industrial steam reforming [128]. The catalysts are 

heated to temperatures of up to 900 °C to obtain a satisfying conversion of methane [128,129]. The 

demand for high throughput, low pressure drop and high pressures in synthesis loops dictates the 20–

40 bar pressure in reforming units [129].  

 

1.3.2.3. Partial oxidation of methane (POM) 
 

In the 1940s, Prettre et al. [130] first reported the formation of synthesis gas by the catalytic partial 

oxidation of CH4. In contrast to dry and steam reforming of methane, methane partial oxidation is 

mildly exothermic, leading to savings in energy use. On the other hand, the partial oxidation requires 

pure oxygen, which is produced in expensive air separation units that are responsible for up to 40% of 

the cost of a synthesis gas plant. It should be additionally taken into account that the two reagents 

(CH4 and O2) are explosive if the reaction is not conducted under appropriate conditions. Therefore, 

the catalytic partial oxidation of methane did not attract much interest for nearly half a century, and 

steam reforming of methane remained the main commercial process to manufacture synthesis gas 

[131–133]. The H2/CO molar ratio of POM is close to 2, which is suitable for Fischer-Tropsch process 

(over cobalt-based catalysts) and methanol synthesis [104]. Moreover, the POM can be performed 

under very high gas hourly space velocities (GHSV) of 100,000-500,000 h-1 [134]. The application of 

POM in chemical technology up to date are gas-to-liquids (GTL) plants operated by the Royal Dutch 

Shell PLC [135].  

There are two mechanisms of partial oxidation of methane discussed in literature, is: (i) total 

combustion and the following reforming reactions mechanism (CRR), or (ii) direct partial oxidation 
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(DPO). The former was suggested for the first time by Prettre et al. [130] and assumes the following 

steps:  

1. The initial reaction of total oxidation of part of the methane consuming all oxygen in the gas 

feed, and 

2. The reduction of water and carbon dioxide with residual methane, amounting to approximately 

three quarters of that originally taken, leading to the production of carbon monoxide and 

hydrogen.  

 

The second pathway, direct partial oxidation mechanism (DPO), was discussed by Hickman and 

Schmidt [136–138]. It consists of the following steps: 

1. Methane first dissociates to generate hydrogen and carbon,  

2. Hydrogen desorbs and carbon is oxidized to carbon monoxide by surface oxygen species. H2 

and CO are the primary products in this mechanism. 

 

1.3.2.4. Autothermal steam reforming (ATR) 
 

To avoid the high energy demand for SRM, the concept of autothermal reforming (ATR) was 

developed. The autothermal steam reforming is a hybrid of steam reforming (Eq. 2) and partial 

oxidation of methane (Eq. 3) [128]. Autothermal reforming was introduced in the 1950s by the Danish 

catalyst company Haldor Topsøe AS [139]. Typically, the values of H2/CO between 1 and 2 are obtained. 

The main drawback of ATR process is high cost of oxygen separation [128]. 

 

1.3.2.5. Combined dry reforming and partial oxidation of methane (CRPOM)   
 

Ashcroft et al. [140], Choudhary et al. [141], and Ruckenstein and Hu [142] have studied the combined 

process of dry reforming and partial oxidation of methane, in contrast to the other researchers who 

concentrated on autothermal steam reforming.  
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The combined reactions of dry (CO2) reforming (Eq. 1) and partial oxidation of methane (POM) (Eq. 

3) have a number of advantages. Firstly, by coupling the exothermic partial oxidation reaction with the 

endothermic reforming reaction, the methane-to-syngas conversion can be operated in a safer manner 

than partial oxidation, and more energy-efficient manner than CO2 reforming. Secondly, the H2/CO 

ratio and the selectivity for various Fischer-Tropsch synthesis products can be tailored to the 

customers’ needs. Thirdly, the addition of oxygen to the CRPOM process can reduce the carbon 

deposition on the catalytic surface and to increase the methane conversion, although this can also 

cause the reduction in the process selectivity. Finally, the raw material of this process is readily and 

easily available from those numerous natural gas reserves, which contain substantial amounts of CO2 

[143,144]. 

 

1.3.3. Catalysts for tri-reforming of methane 
 

According to literature, a proper catalyst for tri-reforming catalyst must be thermally stable, have a 

high surface area, good redox properties, high oxygen storage capacity (OSC), provide resistance to 

coke formation, and be economically advantageous in order to be feasible as a renewable energy 

alternative [91,145,146].  

Ni-based catalysts have shown good potential for reforming of methane and provide a more 

economical option than noble metals. However, the main drawback for their application is 

susceptibility to carbon formation leading to fast deactivation [96,147]. Since the addition of oxygen 

and steam limit the carbon formation, this drawback may be greatly limited. Deactivation is directly 

related to catalyst structure and composition (various promoters) and, therefore, research is aimed at 

producing a suitable catalyst. 

The tri-reforming process requires an efficient catalyst which would be catalytically active in three 

processes separately. Djéga-Mariadassou [148] considers the process over Ni-based catalysts, as 

follows (* abbreviation for free radical): 
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1. CH4 is chemisorbed dissociatively on reduced metallic Ni0 (dry and steam reforming, partial 

oxidation of methane), 

2. CO2 is activated via dissociative chemisorption; the used catalyst requires basic properties (dry 

reforming), 

3. H2O activation proceeds with the formation of radical O and gaseous hydrogen (steam 

reforming), 

4. surface reactions are: (i) carbon radical *C reacts with oxygen radical *O (or hydroxyl radical 

*OH) in order to form CO of syngas, and (ii) two hydrogen radicals form hydrogen gas (2 *H = 

H2) via associative desorption (dry and steam reforming). 

 

In case of partial oxidation of methane (POM), it has been shown by Djéga-Mariadassou [148] and 

Nishimoto et al. [149] that total CH4 oxidation takes place on reduced metal: metal oxide MO (thanks 

to oxygen sites O□) interface, followed by dry reforming, and steam reforming (thanks to Ni0). DRM 

proceeds satisfactorily either on precious metals (Pt, Rh, Ru, Ir) or metallic Ni, the latter preferred 

because it is much cheaper and more available [9]. SRM uses Ni-based catalysts. The summary of TRM 

reactions and the required properties of possible catalysts, together with catalytically active 

component are presented schematically in Fig. 1.10. The presence of H2O and O2 can positively 

influence the stability of the used catalyst, by the inhibition of catalytic coking, thus decreasing or 

avoiding deactivation problem common for dry reforming process, and improving lifetime of the 

catalyst [82,91,146]. 
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Fig. 1.10 Major components of tri-reforming of methane catalyst (based on: [148,149])  

 

The stability problem observed for Ni-based catalysts may be, however, solved by the approaches 

proposed in literature. Dębek et al. [96] listed the most important of them, namely: 

1. Employing an appropriate preparation method in order to control Ni crystal size and thus 

inhibit coke growth, 

2. Using metal oxides with strong Lewis basicity as supports or promoters, since basic sites 

enhance CO2 adsorption. Metal oxides can promote the oxidation of carbon deposits (i.e., via 

the reverse Boudouard reaction), but, on the other hand, the supports exhibiting Lewis acidity 

enhance formation of coke deposits, 

3. Addition of a second metal, i.e., a noble metal, which may enhance the transport of hydrogen 

and/or oxygen between active sites and support by spillover, and can influence the mechanism 



Chapter 1 – Current status and literature review on CO2 utilization 

 

 57 

of coke formation. Addition of promoters, such as Ce, Zr or La, with the aim of modifying the 

selectivity of the DRM process and/or enhancing the gasification of the carbon deposits, 

4. Sulphur passivation of Ni catalysts, which blocks the step edge sites where coke build-up is 

initiated, 

5. Changing reaction conditions by the addition of oxidizing agents, such as water or oxygen, 

which can help oxidize carbonaceous deposits. 

 

Some studies attempted to design a catalyst that would be active, stable and selective in TRM. The 

patented catalyst for tri-reforming of methane is a Ni-based impregnated zirconia support, with 

zirconia doped with yttrium and another metal (cerium) in order to distort the crystal lattice of zirconia 

[150]. The proposed yttrium content was 5-10 mol.% relative to zirconia. It was identified, that when 

the Y amount was less than 5 mol.%, the lattice of zirconia could not be deformed and the mobility of 

oxygen ion was not sufficient. If the amount was higher than 10 mol.%, the activity of catalyst in the 

tri-reforming reaction of methane was decreased due to too high deformation of zirconia lattice. It 

was also reported that zirconia could at high temperature undergo the transformation into a more 

stable fluorite structure, by adding 8 wt.% of yttria. Moreover, the addition of 8 mol.% yttria exhibited 

the highest ionic conductivity of oxygen [150]. 

 There are only a few literature reports on catalysts investigated for TRM. Table 1.5 shows examples 

of such catalysts, where Ni was the active component based on various supports, with or without a 

promoter. 
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Table 1.5 Ni-based catalysts studied in tri-reforming of methane process. 

Support Ni loading 

[wt.%] 

Promoter Performance Ref. 

MgO, MgO/CeZrO, 

CeO2, ZrO2,  CeZrO, 

Al2O3 (ICI) 

6 ; 

Expect for 

Ni/MgO (8), 

Ni/ZrO2 (3.8) 

none Mg improved CO2 adsorption, NiO-MgO 

solid solution increased contact between Ni 

and Mg 

Song et al. 

[83] 

Ce-ZrO2 3 none Ce improved catalyst stability by increasing 

the mobility of oxygen ions on the surface 

Lee et al. 

[151] 

ZrO2 4.8 none  Strong interaction between Ni-ZrO2 resulted 

in high activity; the best results for 4.8% Ni-

loaded catalyst at 800°C 

Singha et 

al. [152] 

ZrO2 n.d. MgO 2) Mg improved CO2 adsorption resulted in 

high activity; and increase of thermal 

stability 

Sun et al. 

[89] 

ZrO2 n.d. CaO 2) Samples calcined at 700°C, and co-

precipitated at pH of 10–12 gave the best 

catalytic results 

Si et al. [88] 

SiO2 spheres 11.0 none 11% Ni/SiO2 showed stable activity at 750 °C 

(4 hours) without deactivation. Presence of 

oxygen impacted positively coke formation 

and improved catalytic performance  

Majewski 

et al. [85] 

β-SiC 5.0 Mg 1) Adding Mg to the Ni/β-SiC (molar ratio 

Mg/Ni = 1/1) decreased coke formation, 

increased basicity, and improved Ni-Mg 

interaction.  

The sequence of Ni–Mg impregnation was 

important  

García-

Vargas et 

al. [86] 

CeO2 5.0 4) La 3) Adding La (10 at.%) resulted in strong 

interactions between Ni–La; Ce provided 

surface oxygen vacancies 

Pino et al. 

[87] 

n.d. – no data 
1) impregnation  
2) co-precipitation,  
3) combustion synthesis. 
4) expressed in [at.%] 
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The first authors who tested different Ni supported catalysts for tri-reforming were Song et al. [83]. 

In this study, the decreasing activity was observed for different supports: Ni/MgO > Ni/MgO/CeZrO > 

Ni/CeO2 ≈ Ni/ZrO2 ≈ Ni/Al2O3(ICI) > Ni/CeZrO. The higher CO2 conversion for Ni/MgO and 

Ni/MgO/CeZrO in tri-reforming was related to the interaction of CO2 with MgO and more contact 

between Ni and MgO resulting from the formation of NiO/MgO solid solution. The applied feed 

composition of CH4/H2O/CO2/O2 = 1/0.56/0.48/0.1 gave the highest conversion results between 700 

and 850 °C. The CH4 conversion reached a maximum of 87% at 850 °C with a H2/CO ratio of 1.67. 

Nevertheless, the most important drawback of these supports was their textural properties, i.e., the 

low surface area. Moreover, these supports had weak acid sites, high oxygen storage capacity and 

strong metal support interaction. 

Lee et al. [151] examined Ni-based catalysts supported on cerium-zirconia oxides. The major role 

was ascribed to weak acidic sites, strong basic sites, and high redox ability of Ce-ZrO2. The catalyst 

showed very good catalytic behavior, expressed by inhibition of the coke formation on the surface of 

catalyst, as well as on the reactor walls. The oxidant (steam or oxygen) positively influenced the 

inhibition of carbon deposition, while the addition of cerium increased the mobility of oxygen ions on 

the catalyst surface. 

Singha et al. [152] examined Ni supported on ZrO2 without any additional promoter. 

It was noted that the rising Ni loading resulted in increasing Ni particle size. 4.8 wt.% Ni was reported 

as optimal for the used reaction conditions. High metal dispersion and strong metal support 

interactions (due to Ni–ZrO2 presence) were found to be the most important factors in achieving high 

activity and stability. The authors showed that the catalyst was stable for more than 100 h time on 

stream with high conversions of 95% at 800 °C. The H2/CO ratio (1.9) was almost constant. 

Similar observations were reported by Sun et al. [89]. The catalyst with Ni-Mg-ZrO2 exhibited strong 

metal–support interactions. The addition of Mg improved the basic character of the catalyst, and, as a 

consequence, improved CO2 chemisorption. High temperature also had a positive impact on the 

conversion of CH4 and CO2. 
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Other authors focused on the conditions of the preparation of catalysts, such as pH of co-

precipitation and calcination temperature as factors which influence the catalytic performance. Si et 

al. [88] observed that under the certain preparation conditions (pH value of 10–12 and the following 

thermal treatment in the air at 700 °C) it was possible to obtain proper surface area, nano-sized Ni 

particles, and very good Ni–ZrO2 interaction which resulted in the more than 70% conversion of CH4 

(measurement at 700 °C, 1 atm). 

Majewski et al. [85] tested silica spheres which were covered by three–dimensional nickel. This 

resulted in a shell structure which allowed the catalyst to encapsulate, and prevented the migration of 

nanoparticles during the catalytic reactions. In the catalytic tests an increase in oxygen content 

resulted in coke reduction and CH4 conversion improvement (to 90%). The catalyst containing 11% Ni 

showed stable activity at 750 °C (4 hours) without deactivation.  

García-Vargas et al. [153] studied the influence of the impregnation order (of nickel and magnesium 

on silicon carbide SiC) on catalyst properties. Materials with Mg impregnated in the first step were 

more stable and showed good catalytic performance. When Ni impregnation was the first step, weaker 

interaction between Ni and Mg was observed which, according to the authors, could have explained 

the blockage of Ni particles by Mg, the reduction of the number of Ni active sites and inferior catalytic 

results. The Ni-Mg/SiC (1Ni:1Mg) catalyst was very active and stable in tri-reforming, with low coke 

formation. The highest conversion of 97.9%, reached at 800 °C, was stable during 25 h on stream. 

Pino et al. [87] studied Ni–CeO2 materials loaded additionally with lanthanum (10 at.%). These 

catalysts showed strong interactions between Ni and La, and better Ni dispersion. Due to lanthanum 

loading, the CH4 conversion increased from 93% to 96%, as well as CO2 conversion from 83% to 86.5%. 

 

1.3.3.1. Dry reforming of methane (DRM) 
 

Similarly as TRM, the dry reforming of methane shows very good properties on Ni as the active 

material. The latest DRM studies are mainly focused on stability increase because of the coke 

formation problem. In recent years, reviews were published by Pakhare and Spivey [114], Kawi et al. 
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[147], Dębek et al. [96], Taniewski et al. [57], Seo et al. [154] and Aramouni et al. [155]. The studied 

DRM catalysts were mainly Ni, supported on Al2O3 [156,157], MgO [158–161], CeO2 [157,162–164], 

ZrO2 [157,161,164], SiO2 [165–167], ordered mesoporous silica SBA-15 [168–171] and KIT-6 [172], 

La2O3 [157,173], TiO2 [174,175], mixed oxides (MgO–Al2O3 [176–178], CeO2–ZrO2 [164], CeO2–Al2O3 

[179]), zeolites (zeolite Y, zeolite A, zeolite X, ZSM-5, clinoptolite) [180–183], clays (diatomite [184], 

vermiculite [185], montmorillonite [186], hydrotalcites [187–192], natural Tunisian clays [193–195]), 

and carbon-based materials (activated carbon [196]). Below, some selected examples of literature 

studies are discussed in more detail.  

Alumina shows excellent textural properties. Under appropriate conditions Ni/Al2O3 catalyst can 

form a spinel phase (NiAl2O4), which can considerably hinder carbon formation. On the other hand, 

such phase was reported by Becerra et al. [156], as leading to low catalytic activity, especially at 

relatively low temperatures.  

MgO is a support with high Lewis basicity. Therefore, Ni/MgO catalysts have high CO2 sorption 

capacity. However, the activation of side reactions, such as reverse water-gas shift is very likely on this 

kind of materials [158–160]. Ni/MgO-Al2O3 catalysts also showed good catalytic behavior. Modification 

with 20 wt.% of nickel led to increased catalytic activity, although enhanced formation of carbon 

deposit was reported [177]. The possible reason of the latter could be inferior Ni dispersion, originating 

from modifying the support with high contents of Ni.  

 MgAl2O4 spinel was also considered as a support. Alvar and Rezaei [178] examined this mesoporous 

material  modified with nickel, in dry reforming of methane. The catalyst showed high specific surface 

area and nanocrystalline structure, which benefited catalytic activity, as well as stability of DRM 

catalysts (no deactivation after 50 h). 

CeO2 is known to have high oxygen storage capacity. Its use as support for nickel DRM catalysts led 

to improved stability through the participation of labile oxygen in the oxidation of carbon deposits 

[162]. Asami et al. [163] reported almost negligible deactivation of a Ni/CeO2 catalyst during DRM at 

850 °C. At lower reaction temperatures, i.e., 700 °C, a decrease in stability was, however, registered. 
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Cerium can be also used as a promoter in DRM process. As studied by Dębek et al. [188] the addition 

of this metal to Ni-based Mg/Al-mixed oxides derived from hydrotalcites resulted in better activity 

compared to non-promoted material. According to the authors, cerium contributed to the enhanced 

reduction of nickel species. The authors also tested Zr-promoted hydrotalcite catalysts [188]. The 

addition of zirconium significantly improved stability in the DRM test at 550 °C. The improvement 

originated from the inhibition of direct methane decomposition. However, the modification with both 

Ce and Zr resulted in better stability, though, in the same time, decreased catalytic activity. This was 

ascribed to higher amount of strong basic sites [197].  

Zirconium oxides were also studied as carriers for DRM because of their appropriate basicity and 

weak acid properties. As reported by Rezaei et al. [198], zirconia supports promoted with K2O showed 

improved catalytic activity and stability, which was due to enhanced basicity in the materials.  

Natural clays may also find application as supports of DRM catalysts. Liu et al. [193] examined the 

influence of ceria or zirconia promotion of Cu- or Fe-pillared clays. Such modification increased the 

number of medium and weak basic sites, together with increasing Ni0 crystalline size, which resulted 

in increased catalytic activity during DRM test, but also a presence of carbon forming reactions.  

Mesoporous silica was also considered an attractive carrier due to its high specific surface area, 

porosity in the mesopore region and good thermal stability [165]. Huang et al. [165] studied SiO2 

supports loaded with Ni. The use of SiO2 allowed to obtain very high dispersion of the Ni phase and 

controlled crystallite sizes, leading to improved catalytic performance. Lovell et al. [167] studied SiO2 

supports, which were prepared through flame spray pyrolysis and subsequently loaded with nickel. 

The best catalytic performance in DRM was registered for the catalysts with the highest specific surface 

area and the smallest Ni crystallite size of the series.  

Recently, considerable attention was also been paid to the ordered mesoporous silica SBA-15. 

Gálvez et al. [168] studied Ni/SBA-15 catalysts, which were synthesized by three different ways 

(impregnation, co-precipitation and co-precipitation with ascorbic acid). The pre-reduction of the Ni-

phase using ascorbic acid resulted in a very accurate control of Ni-crystallite size, leading to Ni particles 
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placed inside the mesopores of the SBA-15 structure, resulting in enhanced activity, selectivity and 

stability. 

Promotion with a second metal can also positively influence catalytic behavior of DRM catalyst. 

Several different promoters were tested: (i) noble metals – Pt, Pd, Rh, Ru and Ir (ii) alkali, or alkaline 

earth metals – K, Li, Mg, Ca, Ba, (iii) rare earth metals – Ce, Zr, La, Y and (iv) other metals – Au, Ag, Sn, 

Bi, As, Pb, Cu.  

Table 1.6 presents some examples of metals used as promoters.  

 

Table 1.6 Ni-supported catalysts promoted with different metals studied in dry reforming of methane.  

Support Ni (loading 

[wt.%]) 

Promoter (loading 

[wt.%]) 

Effect of promoter addition Ref. 

Al2O3 6.0 Pt (1.0) Improved activity and selectivity; 

inhibited formation carbon whisker-like 

deposits 

Gould et al. 

[199] 

CeO2-ZrO2 4.5 Rh (0.5) Increased activity and stability Koubaissy et 

al. [200]  

MgAlO 

hydrotalcite 

10.0 Rh (1.0) Increased dispersion of active sites, 

increased Ni reducibility  

Lucrédio et 

al. [201] 

MgO-ZrO2 3.0 Co (3.0) High conversion and resistance to coke 

formation 

Fan et al. 

[113] 

SBA-15 4.0 Co (1.0) Increased activity and stability, significant 

inhibition of carbon formation  

Erdogan et al. 

[202] 

MgAlO 

hydrotalcite 

17.3 Zr (2.5) Enhanced stability due to inhibition of 

direct methane decomposition, 

decreased activity  

Dębek et al. 

[188,203,204] 

MgAlO 

hydrotalcite 

17.9 Ce (3.7) Good activity, selectivity and stability, 

gasification of carbon deposits 

Dębek et al. 

[188,204,205] 

MgAlO 

hydrotalcite 

12.0 Ce (2.84) High activity and enhanced stability due 

to the surface oxygen taking part in 

oxidation of formed carbon deposits  

Niu et al. 

[206] 

MgAlO 

hydrotalcite 

15.0 La (4.0) Increased stability due to gasification in 

situ of amorphous carbon deposits  

Liu et al. 

[207] 

a-Al2O3 4.3 Y (1.5) Increased catalytic activity and stability, 

small degree of graphitic carbon  

B. Li et al. 

[208] 
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SBA-15 9.0 Y (9.0) Increased activity and superior stability 

due to low carbon formation  

J.F. Li et al. 

[209] 

 

Gould et al. [162] studied Pt promoted Ni/alumina catalysts. No formation of whiskers-type of 

carbon deposits was observed for the Pt-Ni catalyst which was synthesized by atomic layer deposition 

method. The improved catalytic behavior of this bimetallic catalyst was ascribed to the fact that Ni-Pt 

surfaces formed Ni-terminated surfaces which were associated with higher DRM rates than Pt-

terminated surfaces. The presence of Pt on the edges of Ni crystallites inhibited carbon diffusion and 

thus resulted in higher resistance towards coking. 

Koubaissy et al. [159] reported that Rh addition to Ni/CeO2-ZrO2 catalyst enhanced its stability and 

activity. However, carbon deposits were still present on the catalyst surface after DRM test. 

Thermogravimetric experiments revealed that the addition of Rh had influenced the type of formed 

carbon deposits. Amorphous carbon was detected, which did not decrease conversions of CH4 and 

CO2. 

Lucrédio et al. [201] related that Ni dispersion increased by Rh addition when Mg(Al)O hydrotalcite-

derived material was the support, while Rh led to the aggregation of Ni supported on g-Al2O3. When g-

Al2O3 was used as a carrier the addition of Rh did not increase catalyst stability. 

The influence of Co, Ca, Ba, K, La, Mn or Ce promotion on Ni/MgO-ZrO2 catalyst was studied by Fan 

et al. [166]. The activity of the prepared materials tested in DRM at 750 °C decreased in the sequence: 

Ni-Co > Ni-La ≈ Ni-Ce > Ni-Ba > Ni-Mn > Ni-K > Ni-Ca. The best catalytic performance of Ni-Co catalyst 

was attributed to the Ni-Co solid solution which led to the reduced carbon formation and improved 

both CH4 and CO2 conversions. Ni-La and Ni-Ce catalysts showed similar performance. The activity of 

Ni-Ba and Ni-Mn catalyst decreased within 40 h on stream. On the other hand, a moderately stable 

performance was shown by Ni-K and Ni-Ca catalysts. The activity sequence followed that of metal 

dispersion. Carbon deposits were detected in all studied catalysts after 40 h catalytic tests, with the 

highest amount of C registered for Ni-Mn catalyst.  
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Erdogan et al. [202] examined the effect of nickel and cobalt addition to SBA-15 support. The co-

impregnation of Ni (4 wt.%) and Co (1 wt.%) on SBA-15 resulted in the formation of Ni-Co alloy that 

hindered the agglomeration of nickel particles, resulting in the suppressed carbon deposit formation. 

High CH4 and CO2 conversions were obtained.  

Dębek et al. [188,203,204] examined the promotion of Zr in Ni/Mg/Al hydrotalcites-derived 

catalysts. Zirconia was found to strongly influence both activity and selectivity. Zr considerably 

inhibited the direct methane decomposition reaction, favoring the interaction of methane with CO2 

(DRM reaction). The catalytic activity was, however, lower than the one reported for unmodified 

catalyst (Ni/Mg/Al hydrotalcite).  

Dębek et al. [188,204,205] found that the addition of Ce, by ion-exchange with [Ce(EDTA)]− 

complexes, to Ni-containing hydrotalcite-derived catalysts enhanced reducibility of nickel species and 

resulted in the formation of new strong basic sites, which improved catalytic stability in the 5-hour 

catalytic test). The increased basicity led to the higher CO2 adsorption capacity. Additionally, ceria led 

to the gasification of carbon deposits by the reverse Boudouard reaction [38]. 

Niu et al. [206] examined CeO2, ZrO2 or ZnO modified Ni/Mg/Al hydrotalcites. All metals were 

introduced by incipient wetness impregnation. The best results were observed for CeO2-Ni. The 

improved performance was linked with a higher concentration of surface oxygen which allowed to 

oxidize the carbon deposits, thus prolonging the lifetime of the material. The activity, however, was 

lower than that of the unpromoted catalyst.  

La-promoted Ni-containing hydrotalcite-derived catalysts were studied by Liu et al. [207]. 

Lanthanum contributed to the gasification of amorphous carbon deposits, through the formation of 

oxycarbonate species, thus resulting in overall lower carbon formation during 5-hour isothermal 

experiments performed at 550 °C. Unfortunately, the presence of La resulted also in the promotion of 

undesirable side reactions, such as direct methane decomposition. 

B. Li et al. [208] tested Ni-Y modified Al2O3 catalysts prepared by different methods. The catalyst 

prepared via sequential-impregnation had better stability than the one prepared by co-impregnation. 
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The better performance of Ni/Y-Al2O3 catalyst (first impregnated with Y nitrate, then with Ni nitrate) 

was linked to smaller metallic nickel particles and more basic sites. Low degree of graphitization and 

the lower amount of carbon deposit was registered for this catalyst. On the contrary, in case of 

Co/Al2O3 catalyst, Y2O3 addition negatively affected DRM catalytic performance, as it led to inadequate 

reduction, as well as metal sintering in reduced and spent catalysts.  

J.F. Li et al. [209] also reported a positive effect of Y-promotion in case of Ni (9 wt.%)/SBA-15 

catalysts. 6, 3 and 9 wt.% yttrium containing materials were prepared. The 9%Y-Ni/SBA-15 catalyst 

showed superior stability and low carbon deposition during 50 h on stream, as well as the highest 

catalytic activity of the studied series.  

1.3.3.2. Steam reforming of methane (SRM) 
 
Steam reforming of methane is a well-known process on large industrial scale. This process is focused 

on hydrogen production, and usually operates in the 750-1450 °C and 5 to 25 atm in the presence of 

nickel catalyst supported on alumina (Ni/Al2O3) [210]. 

According to Sehested [211], nickel-based catalysts for steam reforming of methane are facing four 

main challenges: (i) activity, (ii) sulfur poisoning, (iii) carbon formation, and (iv) sintering. Firstly, Ni 

catalyst for SRM must be catalytically active. Secondly, catalyst should be tolerant to sulfur containing 

feeds poison, as exposed to sulfur the catalysts creating H2S compounds blocking active sites on the 

nickel surface. Next, the material should be resistant to coke formation, as the latter leads to blocking 

of active sites, increased pressure drops, and decreased heat transfer. Finally, sintering resistant 

material should be used, as high temperatures causes growth and aggregation of nickel particles, 

which lowers activity. 

The endothermic nature of steam reforming of methane results in poor conversion at low 

temperatures. However, in the literature may be found one example described by Nieva et al. [212], 

where good catalytic performance was reported at relatively low temperatures between 500 and 600 

°C. The authors used Ni/Zn/Al catalyst, which showed high conversions and only low formation of 

amorphous carbon. This improved behavior was ascribed to a better interaction of small metal nickel 
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particles with the non-stoichiometric zinc aluminate-like phase formed during thermal treatments of 

the catalyst precursor than for conventional catalysts studied in this temperature range.  

Numerous Ni/Al-based catalysts were examined in SRM process, in combination with other metals. 

Hufschmidt et al. [213] studied Ni/La/Al catalysts using Ni/La perovskite. Near full conversion of 

methane at 850 °C was registered using a steam to carbon ratio (S/C) of 1.24, with very low carbon 

deposition, proving very good long-term stability.  

Ni/Al promoted by molybdenum was found to have better stability than pure Ni/Al catalysts [214]. 

For a catalyst with Ni/Al molar ratio of 3 with 0.05% Mo and a steam to carbon ratio of 4, stable 

conversion of ca. 85% was obtained. With increased Mo loading a decrease in specific surface area was 

found leading to a decrease in conversion. For S/C ratio of 2, rapid deactivation occurred during the 

first three hours, followed by the stabilization at ca. 60% conversion. 

Xu et al. [215] tested 15 wt.% Ni/g-Al2O3 promoted with 0.5 and 1.0 wt.% boron. The latter content 

was found to increase the initial methane conversion and decreased deactivation of Ni/Al catalysts by 

decreasing coke formation. The addition of boron 1.0 wt.% also reduced the first order deactivation 

rate coefficient by a factor of 3, and the activity loss after 10 h from 70 to 30% (GHSV=660,000 

cm3/(h·gcat).  

Takeguchi et al. [216] compared the performance of Ni-based hydrotalcite catalyst (Ni-HT) with 

commercial Ni/Al2O3. The former showed high activity and a higher resistance to coke formation than 

the latter. The selectivity of coke formation on this catalyst was as low as 0.2% at a steam to carbon 

(S/C) ratio of 0.45. 

 

1.3.3.3. Partial oxidation of methane (POM) 
 

It was shown that Ni-based catalysts were also efficient in partial oxidation of methane, although the 

optimal support is still searched. The following oxides, or mixed oxides, were investigated as carriers 

[90]: Al2O3 [134,217–222], MgAl2O4 [223], MgO [224], SiO2 [225], CeO2 [132,226], ZrO2 [226], CeO2–ZrO2 
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[226,227], perovskite [117,228], phosphate [229],TiO2 [230], hydrotalcites [231–235], SiC [236], Y2O3 

[237–239], ZSM-5 zeolite [240] BEA zeolite [241], and more.  

In the literature on POM, different promoters of Ni-based catalysts were considered: (i) noble 

metals – Pt, Pd, Ru, Rh, Ir, (ii) alkali, earth alkali metals – Na, K, B, Ca, Mg, Li, and (iii) rare earth metals 

– Ce, Zr, La, Y, Sm. Table 1.7 presents selected examples of promoters used for Ni catalysts supported 

on different carriers studied in partial oxidation of methane.  

 

Table 1.7 Ni-supported catalysts promoted with different metals in partial oxidation of methane process.  

Support Ni (loading 

[wt.%]) 

Promoter (loading 

[wt.%]) 

Effect of promoter addition Ref. 

Al2O3 18.7 Pt 

Pd  

(0.1, 0.5, 2.5) 

Decrease of ignition temperature, 

improvement in selectivity  

Choudhary et 

al. [242] 

Al2O3 7.56 Yb 

(Ni/Yb/Al=1:1:10)1) 

Improved methane conversion and 

minimizing carbon deposition 

Ding et al. 

[218] 

g-Al2O3 10.0 Li (1.25) 

La (n.d.) 

Improved stability – suppression of 

carbon and inhibition of sintering 

Liu et al. 

[243] 

MgAlO 

hydrotalcite 

18.06 La (6.5)2) Inhibition of nickel sintering and carbon 

formation 

Zhang et al. 

[234] 

MgAlO 

hydrotalcite 

6.0 Rh (0.1)3) Enhanced the resistance to carbon 

deposition 

Basile et al. 

[235] 

n.d. – no data 
1) as atomic ratio 
2) expressed in [mol.%] 
3) expressed in [at.%] 
 

Choudhary et al. [242] illustrated the beneficial effect of noble metal promotion on the ignition 

temperature over Ni/Al2O3. Promoting with 0.1 wt.% noble metal reduced the ignition temperature 

from 790 to 605 °C with Pt, and to 520 °C with Pd. At 0.5 wt.% noble metal loading the ignition 

temperature decreased further to 530 °C with Pt and 460 °C with Pd promotion. With 2.5 wt.% Pt, Pd 

or Ru promotion the ignition temperature was about the same as for the Ni-free catalyst containing 

noble metal with the same loading. 
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Ding et al. [218] examined ytterbium addition to Ni/Al2O3 catalysts in POM reaction. It reduced 

effectively the Lewis acidity of Al2O3 and improved resistance towards coking. It also improved the 

interaction of Ni with the support, thus preventing the growth of Ni nanoparticles, and minimizing coke 

formation. The 1Ni1Yb10Al catalyst proved to be the most active, with CH4 conversion of 98%, CO 

selectivity of 98% and H2 selectivity of 83% (800 °C, space velocity of 50,000 mL/g·h). Yb contributed 

also to the methane combustion and adsorption of CO2, improving methane conversion and 

minimizing the carbon deposition.  

Liu et al. [243] reported that when Li and La were added to alumina-supported Ni, they improved 

the stability of the support and suppressed sintering and loss of Ni, as well as they enhanced the  

resistance to carbon deposition. LiLaNiO/g-AI2O3 catalyst not only possessed excellent reaction 

performance (CH4 conversion ca. 95%, CO selectivity ca. 98%), but also had comparatively stable pore 

structure and stable crystalline phase during a 500 h-test at at 850 °C, with natural gas/O2 ratio of 1.90 

and space velocity of 270,000 L/(kg·h). 

Zhang et al. [234] studied La/Ni/Mg/Al-hydrotalcites in POM. The addition of 6.5 mol.% La3+ gave 

rise to the strong basicity and small Ni particle sizes. This catalyst showed the highest catalytic 

performance (CH4 conversion of 99%, CO selectivity of 93% and H2 selectivity of 96%), which was 

mainly attributed to inhibition of both carbon deposition and nickel sintering. Almost no deactivation 

was observed even after 86 h-test at 780 °C. 

Basile et al. [34] studied Ni, Rh and Ni–Rh catalysts derived from Mg–Al hydrotalcite precursors. A 

synergistic effect of promoting Ni with Rh was reported in partial oxidation of methane. Adding 0.1 

at.% Rh to 6.0 at.% Ni was shown to maintain Ni in a reduced state, even when the conversion of 

oxygen was not complete. The presence of Rh also enhanced the resistance to carbon deposition. 

 

1.3.4. Double layered-hydroxides as potential catalysts for tri-reforming of methane  
 

Double-layered hydroxides (DLHs), also known as hydrotalcites (HTs), are natural layered minerals and 

can be described by the following formula [MII
1−xMIII

x(OH)2]x+(An−)x/n·mH2O, where MII and MIII are 
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divalent and trivalent cations of metals, respectively, An− is an n-valent anion and m is the number of 

molecular water [96,244,245]. In this structure, the Mg2+ cations are partially substituted by Al3+ 

cations resulting in a positive charge. An− represents an inorganic or organic anions and x is the molar 

ratio of cations usually between 0.20 ≤ x ≤ 0.33. The counter-anions An− are intercalated in the 

interlayer space, together with molecular water, to compensate the charge introduced by the cations. 

(Fig. 1.11). Typically, MII/MIII ratios in double-layered hydroxides vary from 2.0-3.0 [244,246].  

 

Fig. 1.11 Schematic representation of the double-layer hydroxide/hydrotalcite structure.  

 

From a crystallographic point of view, the ordering of hydroxide layers is similar to that of brucite 

Mg(OH)2, where each Mg2+ cation is octahedrally surrounded by six OH− anions and the different 

octahedra [Mg(OH)6]4- (Fig. 1.11) [245]. As with brucite, octahedral units are linked by edges. It results 

in hydroxide layers with a net positive charge, which has to be neutralized by interlayer anionic species. 

Depending on the arrangement of the layers, the hydrotalcite structure may have rhombohedral or 

hexagonal symmetry, in which the unit cell is built up of three and two hydrotalcite layers, respectively. 

For both naturally occurring and synthetic hydrotalcite materials, the rhombohedral symmetry is 

generally more common.  
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1.3.4.1. Properties, synthesis and application 
 

In double-layered hydroxides some of the Mg2+, as well as Al3+ ions, can be replaced, respectively, by 

other divalent (e.g. Ni, Cu, Co, Zn) and/or trivalent (Fe, Co, Ce, Cr, Y) cations. Moreover, it is possible 

to produce hydrotalcites containing large variety of different interlayer anions (e.g. CO3
2−, NO2

3−, SO4
2−, 

Cl−, ClO4
−, WO4 2−, CrO4 2−)[247–250]. 

The structure and catalytic properties after calcination depend on the chemical composition of the 

LDH precursor, as well as temperature and atmosphere of calcination. 

The heating of freshly synthesized DLHs results in structural changes. The materials may undergo 

four phase transformations: (i) from room temperature to ca. 200 °C, (ii) at 200 °C, (iii) from ca. 300 to 

ca. 600 °C and (iv) over 600 °C [251]. The layered structure of HTs can turn to almost amorphous at 

around 200 °C and only the structural water is lost, followed by the formation of mixed (nano-)oxides 

of the periclase-like structure at 300-600 °C. The spinel structure is formed at the temperature over 

900 °C. As mentioned above, hydrotalcites lose their layered structure which results in the formation 

of amorphous nano-oxides. This process is reversible, and DLHs are characterized by the so-called 

memory effect, if the applied heating temperature does not exceed 550-600 °C [252]. It was reported 

that the thermal treatment, in the range of 450-500 °C, results in a modest increase in specific surface 

area reaching about 120 to 200 m2/g (N2 sorption) and the pore volume increasing to about 0.6 to 1.05 

cm3/g (Hg intrusion). At this temperature region a change in the XRD pattern from that of hydrotalcite 

to a poorly crystalline magnesium oxide (brucite-like) happens [252]. So calcined materials exhibit also 

thermal stability, good homogeneity and high dispersion of metals [1].  

Synthesis of hydrotalcite is simple and inexpensive to carry out in the laboratory. Seven main 

methods of DLHs preparation were proposed in literature: co-precipitation, urea method, sol-gel 

method, salt-oxide method (induced hydrolysis), reconstruction, anionic exchange and hydrothermal 

treatment [64,244]. Co-precipitation is the method most often used. It gives compositions optimal for 

hydrotalcite like-compounds. It is carried out by the addition of a mixture of di- and tri-valent cations 

to a base. The synthesis may be performed at variable or constant pH. The latter is recommended 
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when hydrotalcite-like material with high chemical homogeneity is required [64]. The co-precipitation 

method was shown to result in double-layered hydroxides-like materials with high specific surface 

area, high average pore diameter, high crystallinity, and small particle sizes, making these materials 

suitable for industrial applications. The co-precipitation method is especially appropriate for non-noble 

metal-based catalysts.  

Double-layered hydroxides are used as adsorbents (water treatment), in medicines (stabilizer), as 

an additive to polyvinyl chloride polymers (PCV), as molecular sieves, ion exchangers, flame retardants, 

etc. [96,244]. Moreover, hydrotalcite-based metal oxides are potentially useful as catalysts or catalyst 

precursors due to their unique properties. The following description is focused on applications of DLHs 

in catalysis.  

The mixed oxides derived from DLHs were studied in various base catalyzed and redox reactions, 

such as DeNOx with ammonia [253,254], DeSOx process [255], decomposition of N2O [256], CO2 

hydrogenation [257–260], methanol incineration [261], Fischer-Tropsch synthesis [262,263], 

isomerization of glucose [264,265], epoxidation [266], esterification of aldehydes [267], 

cyanoethylation [246,268], aminohydroxylation [269], aldol condensation [270], and most 

importantly, in reforming reactions. The next section is devoted to the description of these materials 

in dry reforming, steam reforming and oxidative reforming processes.  

 

1.3.4.2. Double layered-hydroxides in methane reforming processes 
 

Hydrotalcites (double-layered hydroxides DLHs) were found to be especially interesting for methane 

reforming processes as it was already described in the previous section of this thesis. These materials 

contain Mg and Al and the desired metal cation/s in their structure, thus fulfilling the requirements for 

appropriate redox and basic properties.  

Ni-based HTs are the main focus of this chapter, although noble metals and cobalt are also active 

in reforming processes [271–275]. Nickel may be incorporated into DLHs by different methods, i.e. by 

co-precipitation, ion exchange or simply by impregnation, as illustrated examples in Table 1.8 [96].  
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Table 1.8 Examples of Ni-supported double-layered hydroxides with Ni introduced by the different methods in 

catalysts for methane reforming processes (adopted from [96]).  

Ni 

(loading 

[wt.%]) 

Method of 

hydrotalcite 

synthesis 

Calcination 

conditions 

DRM test conditions Catalytic performance 

Ref. GHSV 

[h-1] 

Temp 

[°C] 

TOS 

[h] 

CH4 

[%] 

CO2 

[%] 

H2/CO 

[mol/

mol] 

Dry reforming of methane 

63 Co-precipitation 

at constant pH 

550 °C, 4 h,  

air 

20,000 550 1 48 57 2.7 Dębek et al. 

[276]  

0.8  Adsorption of 

[Ni(EDTA)]2- 

550 °C, 4 h,  

air 

20,000 550 1 25 38 1.6 Dębek et al. 

[277] 

n.d. Co-precipitation 

with [Ni(EDTA)]2- 

500 °C, 16 h, 

air 

n.d. 800 150 98 95 1.0 Tsyganok  

et al. [190] 

10 Co-precipitation 

at constant pH 

900 °C, 5 h,  

air 

50,000 750 10 85 93 0.98 Guo et al. 

[278] 

 25.1 Co-precipitation 

at constant pH 

650 °C, 14 h, 

air 

54,000 800 6 94 n.d. n.d. Shishido  

et al.[279] 

25.1 Impregnation of 

Ni2+ on MgAl HT 

850 °C, 14 h, 

air 

54,000 800 6 92  n.d. n.d. Shishido 

 et al. [279] 

15 Sol-gel method  750 °C, 5 h, 

air 

36,000 800 40 84 89 n.d. Min et al. 

[280] 

Steam reforming of methane 

16.3 Co-precipitation 

at constant pH 

850 °C, 5 h,  

air 

2,500 800 600 90 n.d n.d. Takehira  

et al. [281] 

Combined steam and dry reforming  

75 Co-precipitation 

at constant pH 

500 °C, 15 h, 

air 

14,000 850 2 65.1 60 1.1 Bhattachary

ya et al. 

[187] 

Partial oxidation of methane  

10 1) Co-precipitation 

at constant pH 

900 °C, 16 h, 

air 

n.d. 750 8 n.d. - 35%2) Basile et al. 

[282] 

25.1 Co-precipitation 

at constant pH 

650 °C, 14 h 

and  

580 °C, 5 h 

1.05003) 800 6 94 - n.d. Shishido  

et al. [231] 

n.d.- no data 
1) atomic ratio percentage, 
2) selectivity of both H2 and CO, 
3) expressed in [ml/(h· g)] 
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Dębek et al. [276,277] examined the influence of the method of nickel introduction into 

hydrotalcite-based materials. The authors also compared the catalytic behavior of Ni-Al-co-

precipitated mixed oxides with the ones containing Mg and Al onto which Ni was introduced via the 

adsorption of [Ni(EDTA)]2− complexes. Both types of prepared materials were active in DRM at 550 °C. 

However, the nickel introduction via [Ni(EDTA)]2− chelates resulted in the higher activity per gram of 

active material, as compared to the catalysts into which nickel was introduced into the brucite-like 

layers by co-precipitation method. 

Tsyganok et al. [190] studied the Ni introduction into HTs by co-precipitation with a solution of 

[Ni(EDTA)]2− chelates. The nickel-EDTA species were present in the interlayer spaces of the HT 

structure. The reduction pre-treatment was not required, but the stabilization of the catalytic systems 

needed from 30 to 90 min induction time. The tested material showed stable conversions in DRM tests 

at 800 °C during 150 h. Various types of carbonaceous deposits were detected on the surface of the 

spent catalysts, indicating the presence of carbon-forming reactions. The carbon formation did not, 

however, affect the catalytic activity.  

A conventional co-precipitation method with Ni was applied in the study of Guo et al. [278]. The 

authors prepared nickel supported on MgAl2O4 spinels, the latter obtained from Mg/Al hydrotalcite 

precursors upon calcination at 800 °C. Catalytic activity of such materials was compared to similarly 

prepared Ni/g-Al2O3 and Ni/MgO-Al2O3 catalysts. Using the MgAl2O4 spinel resulted in a highly active 

catalytic system with excellent stability under reaction conditions. Highly dispersed Ni species and low 

acidity of MgAl2O4, as compared to Al2O3, as well as strong interactions between Ni and MgAl2O4 were 

found responsible for high activity and stability of such catalysts. 

Shishido et al. [279] compared the co-precipitated Ni/Mg/Al hydrotalcite-derived catalyst with 

those obtained by impregnation of Ni onto MgAl2O4, Mg/Al hydrotalcite-derived, and two other 

conventional Ni/MgO and Ni/Al2O3 materials. The first mentioned exhibited the highest activity at  

800 °C, which was ascribed to the highly dispersed and stable nickel species on the catalyst surface. 
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Min et al. [280] compared the catalytic behavior of two Ni-containing catalysts, one prepared by a 

sol-gel, and the second by a co-precipitation method. Both catalysts showed high conversions of CH4 

and CO2 and were stable for 40 h on stream. The catalysts did not differ in catalytic activity; however, 

the characterization of spent materials proved that Ni crystallites had larger size (metal clusters) in the 

co-precipitated catalyst than the one prepared via the sol-gel method. The bigger crystal size points a 

higher deactivation degree due to sintering. As a consequence, lower resistance to coke formation was 

registered for the co-precipitated catalyst.  

Takehira et al. [281] tested Ni-containing hydrotalcites in the steam reforming of CH4. No decrease 

in the catalytic activity was observed for 600 h of reaction time, even under a low steam to carbon 

ratio of 1.6. The CH4 conversion and the distribution of products followed thermodynamic equilibrium 

during the reaction. The obtained results were compared to a commercial Ni/a-Al2O3 catalyst, which 

showed a clear decline in the activity. The Ni dispersion was enhanced after the co-preparation 

method, resulting in the recorded high activity for this catalyst when Ni/Mg was larger than 0.2, and 

the most suitable ratio of Mg/Al was 1/3.  

Bhattacharyya et al. [187] reported on hydrotalcite-derived Ni/Al and Ni/Mg/Al mixed oxides as 

catalysts for combined steam/dry reforming. The authors compared their catalytic behavior to that of 

commercial Ni/Al2O3 or Ni/MgAl2O4 catalysts at 815 °C and 300 psi pressure. The DLHs derived catalysts 

showed identical performance as the commercial ones. Additionally, the catalysts based on double-

layered hydroxides were more active under more severe reaction conditions (higher gas hourly space 

velocity (GHSV), and lower H2O/CH4).  

Basile et al. [282] tested Ni/Mg/Al DLHs catalysts in partial oxidation of methane, with a mixture 

containing CH4/O2/He=2/1/4. The residence time dependence of the reactivity features was examined. 

Calcination of the precursors generated materials in which the Ni species were differently distributed 

between NiO, (Ni,Mg)Al2O4 phases and NiO–MgO periclase structures. The relative amount of the 

different phases depended on Ni content and affected the reduction behavior as well as reactivity in 

POM. The catalysts with high Ni-content (71, 61 and 34 atomic ratio percentage) completely 
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deactivated after 2-3 hours of time-on-stream due to carbon formation. On the contrary, catalysts with 

low Ni-content (10 atomic ratio percentage) did not show any deactivation during an 8 h test.  

Shishido et al. [231] examined POM over Ni/Mg-Al mixed oxides derived from hydrotalcites. The 

materials were prepared by co-precipitation from appropriate metal nitrates. The obtained material 

showed high activity and selectivity to synthesis gas even at high space velocity. When Ni was 

supported by impregnation on Mg-Al mixed oxide prepared from Mg-Al HT, its activity was higher than 

that of Ni/a-Al2O3 and Ni/MgO and close to the activity of co-precipitated-Ni/Mg-Al. 

Based on the above-mentioned literature studies, it may be concluded that the co-precipitation 

method allows to obtain DLHs materials with the good catalytic performance in methane reforming 

processes.  
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Chapter 2 – Experimental part  

2.1. Catalyst preparation 
 

The catalysts studied in this thesis were synthesized by the following methods:  

• Co-precipitation technique, 

• Co-impregnation technique, 

• Incipient wetness impregnation. 

 

2.1.1. Co-precipitation technique 
 

The co-precipitation can be applied for the preparation of precursors (such double-layered 

hydroxides/hydrotalcites) with definite stoichiometry, which further can be easily converted to 

catalyst, or the catalysts themselves. Thermal treatments, such as e.g. calcination or reduction, lead to 

well mixed agglomerates of the components. Such dispersion of catalyst components is hard to achieve 

with other types of precipitation, which makes co-precipitation an important technique in solid 

catalyst synthesis [244,283,284].  

Four series of catalysts were prepared with the co-precipitation technique: (i) Y-promoted double-

layered hydroxides, (ii) Zr-promoted double-layered hydroxides, (iii) Zr- and Y-promoted double-layered 

hydroxides and (iv) Ce-promoted double-layered hydroxides. 

 

Table 2.1 Chemical reagents used in the synthesis of the studied materials.  

Symbol  Name Provider 

Mg(NO3)·6H2O Magnesium nitrate hexahydrate Sigma Aldrich, 99% pure 

Al(NO3)2·9H2O Aluminum nitrate nonahydrate Fluka, 98% pure 

Ni(NO3)2·6H2O Nickel (II) nitrate hexahydrate Sigma Aldrich, 98.5% pure 

Y(NO3)3·6H2O Yttrium (III) nitrate hexahydrate Aldrich, 99.8% pure 

ZrO(NO3)2·xH2O  Zirconium (IV) oxynitrate hydrate Sigma Aldrich, 99% pure 
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Ce(NO3)3·6H2O  Cerium (III) nitrate hexahydrate Sigma Aldrich, 99% pure 

NaOH Sodium hydroxide ACS reagent, 97% pure 

Na2CO3 Sodium carbonate  AnalaR NORMAPUR, 99.9% pure 

 

(i) Y-promoted double-layered hydroxides: Two solutions were prepared, one containing 

Mg(NO3)·6H2O,  Al(NO3)2·9H2O, Ni(NO3)2·6H2O and Y(NO3)3·6H2O (listed in Table 2.1), and the second a 

2M solution of NaOH to control pH. These two solutions were added dropwise to sodium carbonate 

solution (25 wt. %). The pH of a mixture was kept in the range of 9.8-10.2. The molar ratios of Ni2+/Mg2+ 

and M2+/M3+ were adjusted to 0.33 and ca. 3.0, respectively. Five samples were prepared with the 

assumed yttrium content of 0.2, 0.4, 0.6, 2.0 and 3.0 wt.%. After co-precipitation, the mixture was 

aged for 24 h, and the slurry was then filtered and washed with distilled water. The final product was 

calcined in air at 550 °C for 5 h. The temperature of  550 °C was found to result in complete 

transformation of the layered structure to mixed nano-oxides, as reported in literature for 

hydrotalcites with various compositions [197,203,251,276,285]. So prepared catalysts were labeled 

HTNi, HTNi-Y0.2, HTNi-Y0.4, HTNi-Y0.6, HTNi-Y2.0 and HTNi-Y3.0. 

(ii) Zr-promoted double-layered hydroxides: An aqueous solution of following salts was used: 

Mg(NO3)·6H2O, Al(NO3)2·9H2O, Ni(NO3)2·6H2O, and ZrO(NO3)2·xH2O for the co-precipitation of Zr-

modified catalysts (the parameters the same above for Y-promoted catalysts). The nominal amount of 

Zr was 5 wt.%, whereas 20 wt.% of Ni, 30 wt.% of Mg and 12 wt.% of Al were assumed. After calcination 

at 550 °C for 5 h, the catalyst was designated HTNi-Zr.  

(iii) Zr- and Y-promoted double-layered hydroxides: An aqueous solution of: Mg(NO3)·6H2O,  

Al(NO3)2·9H2O, Ni(NO3)2·6H2O, ZrO(NO3)2·xH2O, and Y(NO3)3·6H2O were used for the co-precipitation 

of Zr- and Y-promoted catalyst. 5.0 wt.% of Zr, 0.4 wt.% of Y, 20 wt.% of Ni, 30 wt.% of Mg and 12 wt.% 

of Al were presumed. The ratio between Al/Zr was assumed as 5.0. The material was calcined at 550 

°C for 5 h. The catalyst was designated HTNi-ZrY0.4.  
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 (iv) Ce-promoted double-layered hydroxides: Co-precipitation method was carried out with the 

aqueous solution of following nitrates: Mg(NO3)·6H2O, Al(NO3)2·9H2O, Ni(NO3)2·6H2O, and 

Ce(NO3)3·6H2O. 3 wt.% was presumed in the Ce-containing samples. The Ni/Mg/Al solid support 

assumed 20 wt.% of Ni, 30 wt.% of Mg and 12 wt.% of Al. After calcination at 550 °C for 5 h, the material 

was labelled HTNi-Ce. 

 

2.1.2. Co-impregnation technique 
 

For comparison, selected materials were prepared by co-impregnation. 

Zr- and Y-promoted double-layered hydroxides: A mixture of aqueous solutions of ZrO(NO3)2·xH2O 

and Y(NO3)3·6H2O was used for the incipient wetness impregnation on the dried Ni/Mg/Al solid support 

(20 wt.% of Ni, 30 wt.% of Mg and 12 wt.% of Al). The nominal amount of Zr was 5 wt.% and that of 

yttrium was 0.2, 0.4 or 0.6 wt.%, this corresponding to Y/Zr molar ratio of 0.05, 0.08 and 0.12, 

respectively. The final solid product was calcined in air at 550 °C for 5 h. The prepared catalysts were 

labelled HTNi/Zr, HTNi/ZrY0.2, HTNi/ZrY0.4 and HTNi/ZrY0.6, respectively. 

 

2.1.3. Incipient wetness impregnation 
 

The co-precipitated Ni/Mg/Al double-layered hydroxides samples containing either Zr or Ce were 

impregnated with Y.  

Co-precipitated Zr-containing catalyst impregnated with Y: The dried HTNi-Zr (not calcined) was 

divided into four portions and three of them were impregnated with aqueous solution of Y(NO3)3, with 

the assumed Y content of 0.2, 0.4, and 0.6 wt.%. The designation of the catalysts was: HTNi-Zr/Y0.2, 

HTNi-Zr/Y0.4, HTNi-Zr/0.6. 

Co-precipitated Ce-containing samples impregnated with Y: The freshly synthesized material was 

divided into four portions, and three of them were impregnated with yttrium nitrate, assuming Y 
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content of 0.2, 0.4 or 0.6 wt.%. The dried materials were calcined at 550 °C for 5 h, and labelled HTNi-

Ce, HTNi-Ce/Y0.2, HTNi-Ce/Y0.4 and HTNi-Ce/Y0.6.  

The full list of the prepared materials is presented in Table 2.2.  

Table 2.2 List of the prepared catalysts. All catalysts assumed 20 wt.% of Ni, 30 wt.% of Mg and 12 wt.% of Al. 

The nominal contents of the promoters (yttrium, zirconium and cerium) are given in brackets.  

Designation Co-precipitation  Co-impregnation Incipient wetness 
impregnation 

HTNi Ni2+, Mg2+, Al3+ - - 

HTNi-Y0.2 Ni2+, Mg2+, Al3+, Y3+ (0.2 wt.%) - - 

HTNi-Y0.4 Ni2+, Mg2+, Al3+, Y3+ (0.4 wt.%) - - 

HTNi-Y0.6 Ni2+, Mg2+, Al3+, Y3+ (0.6 wt.%) - - 

HTNi-Y2.0 Ni2+, Mg2+, Al3+, Y3+ (2.0 wt.%) - - 

HTNi-Y3.0 Ni2+, Mg2+, Al3+, Y3+ (3.0 wt.%) - - 

HTNi-Zr Ni2+, Mg2+, Al3+, Zr4+ (5.0 wt.%) - - 

HTNi-Zr/Y0.2 Ni2+, Mg2+, Al3+, Zr4+ (5.0 wt.%) - Y3+ (0.2 wt.%) 

HTNi-Zr/Y0.4 Ni2+, Mg2+, Al3+, Zr4+ (5.0 wt.%) - Y3+ (0.4 wt.%) 

HTNi-Zr/Y0.6 Ni2+, Mg2+, Al3+, Zr4+ (5.0 wt.%) - Y3+ (0.6 wt.%) 

HTNi-ZrY0.4 Ni2+, Mg2+, Al3+, Zr4+ (5.0 wt.%),  

Y3+ (0.4 wt.%) 

- - 

HTNi/Zr Ni2+, Mg2+, Al3+ Zr4+ (5.0 wt.%) - 

HTNi/ZrY0.2 Ni2+, Mg2+, Al3+ Zr4+ (5.0 wt.%), Y3+ (0.2 wt.%) - 

HTNi/ZrY0.4 Ni2+, Mg2+, Al3+ Zr4+ (5.0 wt.%), Y3+ (0.4 wt.%) - 

HTNi/ZrY0.6 Ni2+, Mg2+, Al3+ Zr4+ (5.0 wt.%), Y3+ (0.6 wt.%) - 

HTNi-Ce Ni2+, Mg2+, Al3+, Ce3+ (3.0 wt.%) - - 

HTNi-Ce/Y0.2 Ni2+, Mg2+, Al3+, Ce3+ (3.0 wt.%) - Y3+ (0.2 wt.%) 

HTNi-Ce/Y0.4 Ni2+, Mg2+, Al3+, Ce3+ (3.0 wt.%) - Y3+ (0.4 wt.%) 

HTNi-Ce/Y0.6 Ni2+, Mg2+, Al3+, Ce3+ (3.0 wt.%) - Y3+ (0.6 wt.%) 

“-“ not used 
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2.2. Characterization methods 
 

Catalysts described in this PhD thesis were characterized by the following methods:  

• X-ray diffraction (XRD),  

• X-ray fluorescence (XRF),  

• Low temperature nitrogen sorption,  

• Temperature programmed reduction in H2 (TPR-H2),  

• Temperature programmed desorption of CO2 (TPD-CO2),  

• H2 chemisorption,  

• Transmission electron microscopy (TEM), 

• High-resolution transmission electron microscopy (HRTEM), 

• Thermogravimetric analysis (TGA) or thermogravimetric analysis coupled by mass 

spectrometry (TGA/MS), and 

• Raman spectroscopy. 

 

2.2.1. X-ray diffraction (XRD) 
 

X-ray diffraction is a characterization method commonly used to identify bulk structures crystalline 

structures of solids [286,287].  

XRD analysis is typically limited to the identification of specific lattice planes that produce reflections 

at their corresponding angular positions 2q, determined by Bragg’s law (Eq. 1): 

2𝑑 sin θ = nλ      (Eq. 1) 

where: 

n - the order of the reflection,  

λ - the wavelength of the beam,  

d - the distance between diffracting planes,  

q - the Bragg angle.  
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The technique can only identify crystalline phases, and fails to provide information on the 

amorphous or highly dispersed solid phases commonly met in catalysts. Additionally, due to its low 

sensitivity, the concentration of the crystalline phase needs to be high enough in order to be detected. 

Moreover, XRD probes bulk phases, and is not able to selectively identify the surface structures where 

catalytic reactions take place [286,287].  

 On the other hand, the medium size of crystallites can be determined based on the Scherrer 

equation (Eq. 2): 

< 𝐿 >	= -.
/0123

      (Eq. 2) 

where:  

L – a measure of the dimension of the crystal in the direction perpendicular to the reflecting plane,  

λ – the X-ray wavelength,  

β – the half-width of the reflection used in the calculation, 

q – the Bragg angle, 

K – the dimensionless shape factor, assumed as 0.9 [245]. 

 

X-ray diffraction (XRD) patterns were registered to analyze phase composition of the obtained 

catalysts and the crystallite size of Ni. PANalytical-Empyrean diffractometer, equipped with CuKα (λ = 

0.15406 nm) radiation source was used. The XRD patterns were registered within the range of 2q from 

3.0066° to 89.9766°, with the step of 0.013°, and 68.5950 sec for each scan. The measurements were 

carried out at room temperature.  

Phase identification was carried out by comparing the collected spectra with the database of the 

HighScore Plus software. Ni crystallite size was calculated basing on Scherrer equation and the half-

width of 2q = 52°. 

 

2.2.2. X-ray fluorescence (XRF) 

X-ray fluorescence (XRF) is a widely used method for qualitative, quantitative and non-destructive 

spectroscopic analyzes. The technique can analyze both solid and liquid samples, and reveals the 
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atomic compositions of a material [288]. It allows to detect elements from Na to U using energy-

dispersive X-ray fluorescence spectrometry (EDXRF), whereas the application of wavelength-dispersive 

spectrometers (WDXRF) allows efficient determination of low-Z elements down to even Be [289]. Most 

commercially available instruments show limitations in their ability to precisely and accurately 

measure the abundances of elements with Z<11 in most natural earth materials [290]. 

The principle of XRF technique is the usage of X-ray beam, which causes excitation of electrons and 

their ionization. Firstly, the electrons in the inner shells eject to outer shells, which later transit to the 

vacant positions of the exited electrons. The emitted radiation is known as fluorescent X-rays [290]. 

This radiation is typical for the element and proportional to the atomic mass and the concentration of 

the element [291].  

X-Ray Fluorescence (XRF) analysis was used to examine elemental composition of the studied 

catalysts after calcination. The analysis was carried out by Wavelength Dispersive X-Ray Fluorescence 

(WDXRF) using a Supermini200 instrument. 50 mg of the calcined materials were diluted in 2 g of boric 

acid and pelletized under a press (10 bar) for 15 min. The pellets were deposited in sample holders, 

and covered with 6 µm polypropylene film. The analyzes were carried out under vacuum at 36.5 °C in 

the presence of P-10 gas (a mixture of 10% CH4 in Ar with 24.7 cm3/min of flow). The contents of metals 

were calculated by ZSX software.  

 

2.2.3. Low temperature nitrogen sorption  
 

The most common method used to describe the textural parameters of solids is the analysis of 

adsorption–desorption isotherms of either nitrogen or argon [286]. Six types of adsorption isotherms 

have been identified according to a classification made by IUPAC. The most common met in catalysis 

are types II, IV, I, VI [286,292].  

• Type II – macroporous solids, where the prevailing adsorption processes are the formation of 

a monolayer at low relative pressures, 
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• Type IV – mesoporous solids, in which condensation occurs sharply at a pressure determined 

by Kelvin-type rules. It is present for most oxides used as carriers, 

• Type I – microporous solids. Typical examples of microporous solids are active carbons, zeolites 

and zeolite-like crystalline solids, 

• Type VI – uniform ultramicroporous solids, at which adsorption takes place on surface 

adsorbate interaction, and shows isotherms with various steps, each corresponding to 

adsorption on one group of energetically uniform sites. 

 

The Brunauer-Emmett-Teller (BET) method is the most widely used procedure to calculate the 

textural parameters. The monolayer capacity is determined from the following equation (Eq. 3) (in the 

linear form): 

4
56∙(49:4)

= <
5=6 ∙>

+ (>:<)∙4
5=6 ∙>∙49

    (Eq. 3) 

where: 

p – partial pressure of N2, 

p0 – saturation pressure at a given temperature, 

na – amount of adsorbed at the relative pressure p/p0,  

n@A  – the monolayer capacity, 

C – constant. 

 

Monolayer capacity is used to calculate specific surface area SBET according to equation (Eq. 4). 

𝑆CDE =
5=6 ∙F∙G
H∙IIJKK

      (Eq. 4) 

 

where: 

N – Avogadro constant (6.023∙1023 mol-1), 

a – effective cross-sectional area of one adsorbate molecule, in square meters (e.g. 0.162 nm2 for nitrogen) 

m – mass of the tested sample, 

22400 – volume occupied by one mole of the adsorbate gas at standard temperature and pressure. 
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The Barrett, Joyner and Halenda (BJH) method is a procedure for calculating pore size distribution from 

experimental isotherms. It uses the modified Kelvin model of pore filling, in order to relate the amount 

of absorbent removed from the pores of the material to the size of the pores. The method applies only 

to the mesopore and small macropore size range [293,294].  

 

Nitrogen sorption was measured by a Micromeritics TriStar II 3020 in order to determine textural 

properties of the materials. The isotherms were determined at liquid N2 temperature (-196 °C) within 

p/p0 rage of 0.0 to 1.0. 100 mg of samples were degassed for 3 h at 110 °C in VacPrep 061 Degasser 

unit before the measurements. The specific surface area was calculated using BET equation, while the 

mesopore volume and pore diameter were calculated by the Barrer, Joyner and Halenda (BJH 

desorption method).  

 

2.2.4. Temperature programmed reduction (TPR-H2) 
 

TPR-H2 is mostly used to investigate the reduction behavior of the bulk of solids and to find out the 

efficient reduction conditions of supported reducible species, solid solutions, promoted metal 

catalysts, metals in zeolites, and of supported sulfides and of nitrides etc. [283]. The experiments are 

carried out under controlled heating in hydrogen flow. The information obtained from the TPR analysis 

is the temperature required for the complete reduction of the sample, and the presence of different 

reducible species of the same element over the catalyst surface [295]. 

 

In order to measure the reducibility of the Ni based double-layered hydroxides, temperature-

programmed reduction (TPR-H2) experiments were carried out in a BEL Japan BELCAT-M equipped with 

a thermal conductivity detector (TCD). 60 mg of a calcined sample were first treated in helium at 100 

°C for 2 h and then reduced in 5 % H2/Ar mixture with a heating rate of 10 °C/min starting from 100 to 

900 °C.  
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2.2.5. Temperature programmed desorption (TPD-CO2) 
 

Temperature-programmed desorption (TPD) is employed to gain information about specific sites in 

catalysts. The temperature at which desorption occurs indicates the strength of adsorption, whereas 

either the amount of gas consumed in the uptake or the amount of desorption upon heating gives 

information on the concentration of the surface sites [286,296]. The peak temperatures can be 

correlated to the basic or acid strength of the adsorption sites, depending on the type of used probe 

adsorbate. Commonly used molecules are NH3, CO and CO2. 

 

Temperature programmed desorption (TPD-CO2) measurements were carried out in order to 

determine basicity of the catalysts. The measurements were performed after TPR-H2 runs, using BEL 

Japan BELCAT-M. CO2 was adsorbed at 80 °C for 1 h from a mixture of 10% CO2/He. Then gas flow was 

switched to helium for 15 min at 80 °C, in order to desorb weakly adsorbed CO2. Finally, the materials 

were heated from 80 to 800 °C in helium to determine the temperature of CO2 desorption. TPD profiles 

were deconvoluted into three Gaussian peaks corresponding to weak, medium and strong basic sites, 

in agreement with literature [207,259,285,297]. 

 

2.2.6. H2 chemisorption 
 

Chemisorption requires strong bond between the probe molecule and the surface site and negligible 

interaction with the support at the chosen temperatures and pressures. H2, CO, NO, and N2O are used 

as probes at or above room temperature [283]. The reactive gas is injected repeatedly into the reactor 

in the form of pulses, and gets chemisorbed on a catalyst. The principle of the method is to measure 

the chemisorbed amount of gas as a function of the equilibrium pressure, and consequently to obtain 

an adsorption isotherm. The adsorbed amount corresponding to one monolayer, is determined by 

extrapolating the linear part of the isotherm to zero pressure. If the chemisorption stoichiometry is 

known, dispersion, which is directly related to particle size and particle size distribution, can be 

calculated [283].  
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Hydrogen chemisorption was used to determine nickel dispersion (the number of surface metal 

atoms divided by the total number of metal atoms present in the catalyst) using a Micromeritics, ASAP 

2020S. 200 mg of a calcined material was placed between quartz wool and loaded into a U-shaped 

quartz reactor. Prior to the experiments, evacuation at 40 °C for 1 h and in situ reduction in pure H2 at 

900 °C for 1 h was applied (heating ramp 10 °C/min). After reduction, the sample was treated in helium 

of 50 cm3/min for 30 min at 900 °C and subsequently for 1 h at 40 °C. Then the sample was continuously 

evacuated for 30 min at 40 °C. Adsorption isotherm was recorded at 40 °C and the metal dispersion 

was calculated based on the hydrogen uptake. For Ni-based catalysts theoretical amount of hydrogen 

that would be used for full reduction of Ni was assumed. The stoichiometric ratio of H:Ni was taken as 

1. It was also assumed that neither Y, Zr, Ce nor the support contributed to chemisorption.  

The percentage metal dispersion (D) was calculated from Eq. 5, assuming that reduced part of the 

nickel was present in a separate dispersed layer in intimate contact with the support [298]:  

D = <.<N∙O
P∙Q

  [%]      (Eq. 5) 

where:  

D – dispersion, 

X – hydrogen uptake in micromoles per gram of the catalyst, 

W – weight percentage of nickel, 

f – fraction of nickel reduced to the metal.  

 

From the above formula (Eq. 5), the crystallite size was calculated, assuming spherical metal crystallites 

with a uniform size (Eq. 6). The calculation method was similar to that described by Mustard et al. 

[298]: 

D = RN.<
S

  [nm]      (Eq. 6) 

where: 

d – average nickel crystallite diameter.  
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2.2.7. Transmission Electron Microscopy (TEM) 
 

In Transmission Electron Microscopy (TEM), electromagnetic lenses are used to focus an electron beam 

on the specimen. Two modes are available in TEM, a bright-field mode where the intensity of the 

transmitted beam provides a two-dimensional image of the density or thickness of the sample, and a 

dark-field mode, where the electron diffraction pattern is recorded. A combination of topographic and 

crystallographic information, including particle size distributions, can be obtained in this way [286]. 

 

The micrographs obtained from Transmission Electron Microscopy (TEM, JOEL JEM-100XCII) were 

used for the determination of Ni crystallite size distribution, and the type of formed carbon deposits 

in the spent catalysts. The samples were prepared by the dropwise addition of a colloidal solution in 

ethanol onto a copper grid covered with amorphous carbon film. 400 particles were measured in the 

ImageJ software in order to obtain the average Ni particle size in the reduced and spent catalysts. TEM 

analyzes were performed by Sandra Casale (Sorbonne Université). 

 

2.2.8. High-Resolution Electron Microscopy (HRTEM) 
 

High-Resolution Transmission Electron Microscopy (HRTEM) is capable of imaging individual planes in 

crystalline particles, and can provide more detailed structural information on the surface of the 

catalysts than TEM [299]. However, the electron microscopy has some limitations. The technique 

requires special sample preparations. Any electron beam-induced effects (such as changes in the 

specimen due to local heating), electronic excitations, or deposition of contaminants during 

observation, must be minimized [286]. Additionally, statistical analysis of a large number of 

micrographs is needed to get meaningful information on particle size distributions. Thus it is best to 

correlate such results with information obtained by other characterization methods [286]. 

 

High-Resolution Transmission Electron Microscopy (JEOL JEM-2010 with EDS) was used to 

characterize carbon deposits and to obtain precise analysis of the planes registered at the nanometer 
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scale. The specimens were prepared in the same way as for TEM analysis. HRTEM analyzes were 

performed by Patricia Beaunier (Sorbonne Université). 

 

2.2.9. Thermogravimetric analysis coupled by mass spectroscopy (TGA/MS) 
 

Thermogravimetry is associated with the changes in sample weight under inert, reduced and oxidative 

atmosphere. The experiments are carried out as a function of temperature. The temperature increases 

linearly over time, while the weight changes are recorded. Sometimes, it is coupled with MS (Mass 

Spectrometer) in order to identify the gaseous composition of the sample [286]. 

 

Thermogravimetric analyzes were carried out by a TGA-MS (TGA: Netzsch STA 449C Jupiter, MS: 

Netzsch Aërlos QMS 403C) in order to evaluate the catalytic coke formation on the spent catalysts. A 

mixture of air flow of 100 cm3/min and argon protective gas flow of 20 cm3/min were applied. 10 mg 

of a spent sample was heated starting from room temperature to 900 °C with a heating rate of 10 

°C/min. The amount of the formed carbon deposits was estimated by mass loss in TGA analysis, and 

confirmed by CO2 formation derived from MS results. 

 

2.2.10. Raman spectroscopy 
 

Raman spectroscopy is a vibrational characterization method, which is used to study the structure of 

solids, liquids and gases. Raman scattering is a function of the molecular vibrations and symmetries of 

chemical bonds. It offers a high spatial resolution in the micrometer range [300]. Among other 

possibilities, Raman spectroscopy gives information on disordered and heterogeneous carbonaceous 

materials, by revealing the presence of characteristic D bands and G bands [301]. The D band (ca. 1330 

cm-1) indicates structural imperfections of graphite, while the G band (ca. 1590 cm-1) is ascribed to in-

plane carbon–carbon stretching vibrations of graphite layers [166]. 

The technique does suffer from some limitations. Firstly, Raman intensities of surface species are often 

quite low. Also, the high laser intensity required for Raman characterization tends to heat the sample, 
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and often causes changes in the physical properties of the solid [286]. Finally, the heterogeneity can 

constitute a severe limitation to a quantitative characterization of the materials [301]. 

Raman measurements were performed using a Horiba Jobin Yvon LabRam HR800 

spectrophotometer in order to characterize carbon deposition on the spent catalysts after DRM. The 

spectra were recorded in range of 3000-1000 cm-1 at room temperature. The excitation source was 

633 nm of Ne-Ne laser. The spectra were recorded with an accumulation of 3 and an acquisition time 

of 20 s. A diffraction grating of 1800 gr/mm and a 50x objective were applied. 

 

2.3. Catalytic tests 

All catalytic tests, dry reforming of methane (DRM), partial oxidation of methane (POM), combined 

partial oxidation with dry reforming of methane (CRPOM) and tri-reforming of methane (TRM), were 

performed using a U-shaped reactor presented in Figure 2.1 A. A precise mass of a catalyst, 

corresponding to GHSV (20,000 h-1) was placed in the reactor. Quartz wool was used to retain catalyst 

powder inside the reactor. K-type thermocouple was used to control the temperature in the catalytic 

bed.  
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Fig. 2.1 Set-up of catalytic reactor (A) and catalytic test (B) 

 

Catalytic experiments were performed in a fixed bed reactor. Flow rate of each reactant was 

controlled by mass flow controllers (BROOKS Instruments) (Fig. 2.1 B). All experiments were conducted 
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at total flow rate of 100 cm3/min. The following reagents were used: CH4 (Air Liquide, N45 purity), CO2 

(Air Liquide, N45 purity), O2 (Air Liquide, Alphagaz 1), H2 (Air Liquide, Alphagaz 1), Ar (Air Liquide, 

Alphagaz 1). 

For the SRM and TRM experiments using steam, the water content in the reaction mixture was 

controlled using the vapor pressure of H2O at the temperature of the saturator (52 °C). All lines 

downstream of the saturator were heated to temperature above 100 °C to prevent condensation.  

The following substrates/products: CH4, CO2, H2 and CO were analyzed by a 490 Varian Micro-GC 

equipped with injector, COX column, and a micro thermal conductivity detector (μTCD) installed in 

separate small temperature-controlled compartments. 

 

Prior a catalytic test, a catalyst was reduced in situ at 900 °C for 1 h with 5% H2/Ar gas mixture 

(flow 100 cm3/min). The gas composition used for tests were as follows: 

• Dry reforming of methane CH4/CO2/Ar=1/1/8 (10%CH4/10%CO2/80%Ar), 

• Partial oxidation of methane CH4/O2/Ar=1/0.5/8.5 (10%CH4/5%O2/85%Ar), 

• Combined partial oxidation with dry reforming of methane CH4/CO2/O2/Ar=1/1/0.5/7.5 

(10%CH4/10%CO2/5%O2/75%Ar). 

• Tri-reforming of methane CH4/CO2/H2O/O2/Ar=1/0.5/0.5/0.1/7.9 (10%CH4/5%CO2/5%H2O/ 

1%O2/79%Ar), and CH4/CO2/H2O/O2/Ar=3/1/2/0.3/3.7 (30%CH4/10%CO2/20%H2O/3%O2/ 

37%Ar), 

Additionally, direct methane decomposition (DMD) was also studied in order to examine 

selectivity towards this important carbon forming reaction, using a mixture of CH4/Ar= 2/8. 

 

 There were two types of tests: 

•  A first series of the experiments was performed in the temperature range of 850-600 °C 

(starting from 850 °C) with a temperature step every 50 °C, and the cooling time of 15 min 
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between the steps. The duration of the test at each temperature was 30 minutes 

corresponding to steady-state measurements, as presented in Fig. 2.2.  

 

Fig. 2.2 Scheme of methodology used in catalytic tests, with different temperatures of reactions (TPSR).  

• Experiments at the second series were carried out in isothermal conditions at 700 °C for 5 

hours in order to evaluate the catalysts stability, as presented in Fig. 2.3. 

 

Fig. 2.3 Scheme of methodology used in catalytic tests under isothermal conditions.  
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Conversions of CH4 and CO2, and H2/CO ratios were calculated using the following equations (7), (8), 

(9): 

𝑋>UV = W	
𝒏
YZV

[\:𝒏YZV]^_

𝒏
YZV

[\
	` · 100   [%]   (Eq. 7) 

𝑋>ab = W
	𝒏
Ycb

[\:𝒏Ycb]^_

𝒏
Ycb

[\
	` · 100  [%]   (Eq. 8) 

𝐻I 𝐶𝑂⁄ = h	
𝒏Zb]^_

	𝒏Yc]^_
	i      (Eq. 9) 

 

Where nCH4,initial and nCO2,initial are the inlet numbers of moles of methane and carbon dioxide, 

respectively. And nCH4,final, nCO2,final, nH2,final, nCO,final are outlet number of moles of methane, carbon 

dioxide, hydrogen and carbon monoxide, respectively. 

 

CH4 conversion in direct methane decomposition was calculated based on Eq. 10:  

𝑋jkj,>UV = W	
𝒏
YZV

[\:𝒏YZV]^_

𝒏
YZV

[\
	` · 100  [%]   (Eq. 10) 

 

2.4. Thermodynamic calculations 
 

2.4.1 Minimization of Gibbs free energy 

The Gibbs free energy analysis was used to study the equilibrium of the system containing several 

species. The total Gibbs free energy is expressed in Eq. 11 [115,302,303]: 

𝐺nonGp =q 𝑛s t𝐺sK + RTln x
y[
y9
z{

F

s|<

    (Eq. 11) 

Where the 𝐺sK is standard Gibbs free energy of formation of species i, R stands for molar gas constant, 

T is temperature of the system, and a number of moles is assigned to ni of species i. Standard-state is 

expressed as 25 °C and 1 bar, while fi is a fugacity at this state of species i, and f0 refers to operating 

state. In view of Eq. 11, ni moles of species has to fulfill the following relation: 
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} 𝑎�s𝑛 = 𝑏�
F

s|<
     (Eq. 12) 

Where the number of element j expressed in grams or atoms of molecule i is assigned to aji. bji is a 

total number of moles of element j in the feed. Additionally, the following equality: 1≤j≤M, where M 

is the number of elements in the mixture, has to be fulfilled.  

 

2.4.2. Calculation method 

Thermodynamic calculations were carried out by HSC Chemistry 5 software. The minimization of Gibbs 

free energy method was used. The influence of temperature and feed gas composition were examined 

in an isobaric system in order to calculate the equilibrium amount of CO2, CH4, CO, H2, H2O, C, and 

equilibrium conversions of CO2, CH4, and H2/CO molar ratio. 

For the calculations, the chemical reactions in methane reforming processes were considered 

(Table 2.3) [302,304,305]. The following reactants were taken into account: Ar(g), CH4(g), CO2(g), CO(g), 

H2(g), H2O(g), O2(g) (only for POM and TRM), C(s), C2H2(g), C2H4(g), C2H6(g), CH3OCH3(g), CH3OH(g), HCOOH(g), 

while the substrates were assumed as: CH4(g), CO2(g) and Ar(g) for DRM; CH4(g), O2(g) and Ar(g) for POM; 

CH4(g), H2O(g) and Ar(g) for SRM; CH4(g), CO2(g), O2(g), H2O(g) and Ar(g). All calculations were performed with 

constant pressure of 1 bar.  

 

Table 2.3 The list of reactions present in tri-reforming of methane [302,304,305]. 

Number Name Reaction ΔH0 [kJ/mol] 

1 Dry reforming of CH4 CH4 + CO2 = 2CO + 2H2 247 

2 Steam reforming of CH4 CH4 + H2O = CO + 3H2 206 

3 Partial oxidation of CH4 CH4 + ½O2 = CO + 2H2 -36 

4 Total oxidation of CH4 CH4 + 2O2 = CO2 + 2H2O -880 

5 Oxidation of CH4 CH4 + O2 = CO2 + 2H2 -319 

6 Reverse water-gas shift CO2 + H2 = H2O + CO  41 

7 Methanation of CO2 CO2 + 4H2 = CH4 + 2H2O  -165 

8 Methanation of CO CO + 3H2 = CH4 + H2O  -206 
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9 Hydrogenation of CO2 CO2 + H2 = HCOOH  15 

10 Hydrogenation of CO2 CO2 + 3H2 = CH3OH + H2O  -49 

11 Hydrogenation of CO  CO + 2H2 = CH3OH  -91 

12 Hydrogen oxidation H2 + ½O2 = H2O -58 

13 Oxidation of CO CO + ½O2 = CO2 -283 

14 Dehydration of CH3OH to CH3OCH3 2CH3OH = CH3OCH3 + H2O  -37 

15 Reforming of CH3OCH3 CH3OCH3 + H2O = 2CO + 4H2 205 

16 Reforming of CH3OCH3 CH3OCH3 + CO2 = 3CO + 3H2 258 

17 Oxidative coupling of CH4 2CH4 + CO2 = C2H6 + CO + H2O  106 

18 Reforming of C2H6 C2H6 + 2CO2 = 4CO + 3H2  430 

19 Oxidative coupling of CH4 2CH4 + 2CO2 = C2H4 + 2CO + 2H2O  284 

20 Reforming of C2H4 C2H4 + 2CO2 = 4CO + 2H2  290 

Reactions of coke 

21 Methane decomposition CH4 = C(s) + 2H2 75 

22 Boudouard reaction 2CO = C(s) + CO2 -172 

23 Hydrogenation of CO2 CO2 + 2H2 = C(s) + 2H2O -90 

24 Steam on C C(s) + H2O = CO + H2 131 

25 Partial oxidation of C C(s) + ½O2 = CO -110 
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Chapter 3 - Thermodynamic analysis of DRM, SRM, POM, TRM 

In this chapter, thermodynamic equilibrium calculations are presented for dry reforming of methane 

(DRM). A comparison of DRM with thermodynamic results obtained for steam reforming of methane 

(SRM), partial oxidation of methane (POM), and tri-reforming of methane (TRM) was also carried out. 

Finally, for tri-reforming of methane, a feed composition was examined, which may be useful for a 

natural gas-based power plant. 

The analyzes assumed the volumetric ratios of feed compositions considering two scenarios 

described in the Subchapters 1.3.1.1. and 1.3.1.2:  

(i) CO2 can be separated from flue gases, and TRM reaction may be carried out according to 

the gas composition suggested in the literature [85,86]: (CH4/CO2/H2O/O2/Ar= 

1/0.5/0.5/0.1/7.9), and 

(ii) direct usage of CO2 from flue gases from a power plant fired with natural gas, and the gas 

composition suggested for the first time in this thesis. 

 

Table 3.1 presents the feed compositions which were proposed for the calculations. The following 

compositions refer to the volumetric ratios of the components: (1) DRM: CH4/CO2/H2O/O2/Ar = 

1/1/0/0/8, (2) SRM: CH4/CO2/H2O/O2/Ar = 1/0/1/0/8, (3) POM: CH4/CO2/H2O/O2/Ar = 1/0/0/0.5/8.5, 

and (4) TRM: CH4/CO2/H2O/O2/Ar = 1/0.5/0.5/0.1/7.9.   

 

Table. 3.1 Feed gas compositions used for the thermodynamic calculations. 

Number Process 

 

Feed gas composition 

CH4 CO2 H2O O2 Ar CH4/O2 ratio 

1 DRM 1 1 0 0 8 - 

2 SRM 1 0 1 0 8 - 

3 POM 1 0 0 0.5 8.5 2 

4 TRM 1 0.5 0.5 0.1 7.9 10 
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The second part of this chapter describes thermodynamic calculations which were proposed based 

on the assumption that tri-reforming process may be introduced on industrial scale. A typical flue gas 

composition from natural gas-fired power plant was used in order to simulate the TRM (8–10% CO2, 

18–20% H2O, 2–3% O2, and 67–72% inert). The following feed gas compositions were proposed, 

assuming four different methane volumetric share in the mixture of the gases i.e., 1, 1.5, 2.0 and 3.0 

mol as presented in Table 3.2. The obtained CH4/O2 ratios are above upper flammability limit (UFL) and 

should not cause ignition of the mixture in the presence of spark [90].  

 

Table 3.2 Feed gas compositions of tri-reforming of methane used for the thermodynamic calculations. 

Number TRM 

Process 

Feed gas composition 

CH4 CO2 H2O O2 Ar CH4/O2 ratio 

1 1 1 2 0.3 5.7 3.33 

2 1.5 1 1 0.3 5.2 5 

3 2 1 2 0.3 4.7 6.67 

4 3 1 2 0.3 3.7 10 

 

 
3.1. Thermodynamic equilibrium analysis of methane reforming processes 
 
3.1.1. Dry reforming of methane calculations  

Fig. 3.1 presents the equilibrium of reactants as a function of temperature for dry methane 

reforming (CH4/CO2/H2O/O2/Ar = 1/1/0/0/8, p = 1 bar). The results are in good agreement with 

literature [114,306]. Due to the endothermic nature of the process, and the fact that DRM is 

accompanied by many parallel reactions, a large variation in the quantity of components is observed 

with the temperature increase (from 0 to 1000 °C). At 500 °C, a large amount of carbon is formed, 

together with water, and a higher amount of H2 than that of CO.  
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Fig. 3.1 Equilibrium amounts for gaseous components and coke in the dry reforming of methane process 

(CH4/CO2/Ar=1/1/8, p= 1 bar). 

 
At 500 °C, CO2 equilibrium reaches a maximum, which refers to the lowest conversion of this gas in 

the entire temperature range (0-1000 °C) (Fig. 3.2). This suggests a high probability of the occurrence 

of parallel reactions other than methane dry reforming. Above this temperature (ca. 600 °C and more), 

a fast decrease in carbon and water formation is observed. In addition, H2 and CO, which represent a 

sufficient value of molar ratio (around 1) for further use in fuel production, are observed. It is 

consistent with generally accepted opinion that DRM is likely to proceed efficiently at very high 

temperature (over 700 °C), although from the economical point of view it would be desirable to run 

the process at lower temperature with a very active and stable catalyst. 
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Fig. 3.2 Equilibrium conversions of CH4, CO2, and H2/CO molar ratio in the dry reforming of methane process 

(CH4/CO2/Ar=1/1/8, p= 1 bar). 

 
3.1.2. Dry reforming of methane versus other reforming processes 
 
Syngas formation from methane may be realized in three different reacting mixtures. Dry methane 

reforming (DRM), also called CO2-reforming, has long been considered as one of the prospective 

operations for the valorization of carbon dioxide (CH4+CO2=2CO+2H2, ΔH0 = 247 kJ/mol)[44,100,154]. 

However, it does not give a satisfactory H2/CO molar ratio for the e.g., methanol production. 

Therefore, is it recommended to perform dry reforming combined with steam reforming (SRM) [2], 

the latter being the currently used commercial method producing synthetic gas with a higher H2/CO 

ratio, around 3.0 (CH4 + H2O = CO + 3H2, ΔH0= 206 kJ/mol). The partial oxidation of methane (POM) is 

a slightly exothermic reaction which may give a H2/CO ratio equal to 2.0 (CH4 + ½ O2 = CO + 2H2, ΔH0 = 

-36 kJ/mol). For this reason, the POM is very advantageous from the application point of view. A new 

process, which is a combination of DRM, SRM and POM, was proposed in literature [2]. This process is 

called tri-reforming of methane and allows CO2 utilization and the production of synthesis gas with 
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molar ratio of H2/CO=1.5-2.0. The presence of H2O and O2 in the process improves stability of a catalyst 

by the removal of carbon deposits [2].  

The influence of temperature on methane reforming processes was examined for four feed gas 

compositions presented in Table 3.1. For TRM the following gas composition was investigated 

CH4/CO2/H2O/O2/Ar = 1/0.5/0.5/0.1/7.9, and compared with DRM, SRM and POM. 

Figure 3.3 shows CH4 equilibrium conversion versus temperature. As it may be seen, all results are 

relatively high (above 65% at the temperature range from 550 to 900 °C). For all methane reforming 

processes a significant increase in CH4 conversion may be observed in the range of 550 to 720 °C, with 

a smaller increase over 720 °C. In the temperature range from 850-900 °C, CH4 conversion was almost 

100%.  

 

 

Fig. 3.3 Influence of temperature on the equilibrium concentration of methane (DRM: CH4/CO2/Ar=1/1/8, SRM: 

CH4/H2O/Ar=1/1/8, POM: CH4/O2/Ar=1/0.5/8.5, TRM: CH4/CO2/H2O/O2/Ar=1/0.5/0.5/0.1/7.9; p= 1 bar). 

 



Chapter 3 – Thermodynamic analysis of DRM, SRM, POM and TRM  

 

 106 

 

Fig. 3.4 The influence of temperature on the reforming of carbon dioxide (DRM: CH4/CO2/Ar=1/1/8, SRM: 

CH4/H2O/Ar=1/1/8, POM: CH4/O2/Ar=1/0.5/8.5, TRM: CH4/CO2/H2O/O2/Ar=1/0.5/0.5/0.1/7.9; p= 1 bar). 

 

The changes in CO2 content as a function of temperature are shown in Fig. 3.4. The results originate 

from CO2 conversion, as well as the occurrence of the CO2 producing side reactions (listed in Table 1 in 

Chapter 2). The equilibrium carbon dioxide content declines with the increase in temperature. Only 

negligible amounts of CO2 are observed for SRM and POM over 800 °C. Theoretically, carbon dioxide 

is not the main substrate in SRM and POM. Thus, it may be assumed that in case of SRM the amount 

of CO2 in the system was linked with the reverse water-gas shift process, i.e., reaction 6 in Table 2.3 

(Chapter 2). In POM, carbon dioxide could be produced via CH4 oxidation (reaction 5), or CO oxidation 

(reaction 13). In dry reforming and tri-reforming, the carbon dioxide was present as a reactant, hence 

significantly higher equilibrium amounts were recorded. For all methane processes, the CO2 conversion 

was calculated as a difference between inlet and outlet number of moles divided by initial number of 

moles (Subchapter 3.1.2.; Eq. 4.)   
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Fig. 3.5 The influence of temperature on the equilibrium concentration of carbon dioxide. (DRM: 

CH4/CO2/Ar=1/1/8, TRM: CH4/CO2/H2O/O2/Ar=1/0.5/0.5/0.1/7.9; p= 1 bar). 

 

In Fig. 3.5 a comparison between carbon dioxide equilibrium conversion for DRM and TRM are 

presented. For both processes, conversion increased with the temperature growth. For DRM process 

CO2 conversion was always higher than for TRM, in the whole temperature range. The highest 

conversions were obtained at 850 °C and 900 °C, where CO2 conversion was close or equal to 100%, 

respectively. Nevertheless, the TRM results are relatively good, since ca. 73% of CO2 may be converted 

at 700 °C.  

Synthesis gas may be used directly in the liquid fuels production, e.g. Fischer-Tropsch or methanol 

synthesis followed by Methanol To Gasoline (MTG) process, when the H2/CO ratio is in the range of 

1.5-2.0. According to the calculations performed by HSC Chemistry 5.0, the desired ratio may be 

received for POM and TRM feed gas compositions presented in the Fig. 3.6 at temperatures 700 to 900 

°C. Steam reforming of methane and dry reforming have, respectively, too high or too low molar ratios 

of the considered gaseous components. Therefore, the idea of the combination of these two reforming 

reactions may be promising in terms of receiving desired H2/CO ratio. 
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Fig. 3.6 The influence of temperature on the H2/CO molar ratio (DRM: CH4/CO2/Ar=1/1/8, SRM: 

CH4/H2O/Ar=1/1/8, POM: CH4/O2/Ar=1/0.5/8.5, TRM: CH4/CO2/H2O/O2/Ar=1/0.5/0.5/0.1/7.9; p= 1 bar). 

 

3.1.3. The influence of feed gas composition on carbon deposition  
 

Fig. 3.7 presents equilibrium carbon content as a function of temperature. Almost no carbon 

formation was observed over 900, 850, 830 or 715 °C for DRM, POM, SRM or TRM, respectively. This 

result proves the positive influence of H2O and O2 in the feed on carbon formation, in good agreement 

with conclusions drawn by Song and Pan [83].  
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Fig. 3.7 Equilibrium carbon content as a function of temperature (DRM: CH4/CO2/Ar=1/1/8, SRM: 

CH4/H2O/Ar=1/1/8, POM: CH4/O2/Ar=1/0.5/8.5, TRM: CH4/CO2/H2O/O2/Ar=1/0.5/0.5/0.1/7.9; p= 1 bar). 

 

 

3.2. Thermodynamic calculations for tri-reforming of methane assuming direct application of CO2 

from flue gases 

 
In order to examine the industrial feasibility of tri-reforming of methane process, a calculation was 

carried out for typical flue gas compositions from natural gas-fired power station, assuming different 

amounts of methane added. The gas compositions used in the calculations are listed in cp. Table 3.2, 

i.e.: 

(i) CH4/CO2/H2O/O2/Ar = 1/1/2/0.3/5.7,  

(ii) CH4/CO2/H2O/O2/Ar = 1.5/1/2/0.3/5.2,  

(iii) CH4/CO2/H2O/O2/Ar = 2/1/2/0.3/4.7,  

(iv) CH4/CO2/H2O/O2/Ar = 3/1/2/0.3/3.7. 
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Fig. 3.8 presents methane conversion as a function of temperature. Different conversions can be 

obtained considering lower or higher CH4 content. Generally, with the higher methane content in the 

system, the 100% conversion may be reached at higher temperatures of the process.  

 

 

Fig. 3.8 CH4 conversion as a function of temperature for TRM, assuming flue gas content of CO2, H2O and O2 in 

the range typical for a natural gas-fired power station with different amounts of methane added. 
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Fig. 3.9 CO2 conversion as a function of temperature for TRM, assuming flue gas content of CO2, H2O and O2 in 

the range typical for a natural gas-fired power station with different amounts of methane added. 

 

CO2 conversion as a function of temperature is reported in Fig. 3.9. Significant effect of the addition of 

methane may be observed. Higher amount of CH4 allows to convert more CO2. For the composition of 

CH4/CO2/H2O/O2/Ar = 3/1/2/0.3/3.7, carbon dioxide started to be converted at temperature of 575 °C. 

When the mixture contained lower CO2/CH4 ratio higher temperature was required, i.e., 2, 1.5 and 1 

at 625, 649 and 717 °C, respectively. At 700 °C, from the thermodynamic point of view, it is possible to 

convert ca. 15, 30 or 50% of CO2, with respectively 1.5, 2 or 3 mol of CH4 (per 1 mol of CO2) in the gas 

feed. 



Chapter 3 – Thermodynamic analysis of DRM, SRM, POM and TRM  

 

 112 

 

Fig. 3.10 H2/CO molar ratio as a function of temperature for TRM, assuming flue gas content of CO2, H2O and O2 

in the range typical for a natural gas-fired power station with different amounts of methane added. 

 

The H2/CO molar ratio was calculated for the assumed gas compositions. A significant decrease in 

H2/CO ratio may be observed with the increase in temperature. The most desired ratio, ca. 2.0, is 

observed at temperatures starting from 700 °C.  

Fig. 3.11 presents carbon formation during TRM process. No carbon is formed at 500 °C when 

CH4/CO2/H2O/O2/Ar = 1/1/2/0.3/5.7. The appropriate amount of methane added can lead to the 

suppression of carbon formation at the respectively higher temperatures. For feed gas composition 

containing 1.5, 2.0 and 3.0 vol.% of CH4 respectively, 580, 637 and 740 °C is required. 
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Fig. 3.11 Carbon equilibrium amount as a function of temperature for TRM, assuming flue gas content of CO2, 

H2O and O2 in the range typical for a natural gas-fired power station with different amounts of methane added. 

 

3.3. Conclusions 
 

Thermodynamic equilibrium analysis was performed to examine possible conversions of CH4 and 

CO2. The thermodynamic calculations for the processes, such as dry reforming of methane (DRM), 

steam reforming of methane (SRM), partial oxidation of methane (POM), and tri-reforming of methane 

(TRM) were carried out. 

Dry reforming of methane is likely to occur with high efficiency at very high temperature (over 700 

°C), thus 700 °C was selected as a condition parameter for the catalytic experiments, in order to avoid 

carbon deposition, mainly taking place at low temperature (below 650 °C), and to limit possible metal 

sintering, likely the increase with the increase of temperature. Moreover, inhibition of side reactions, 

taking place at high temperature (higher than 800 °C), was considered. 
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The thermodynamic analysis of tri-reforming of methane carried out for typical flue gas 

composition from natural gas-fired power plant showed that it is possible to obtain at 700 °C high 

conversions of CH4 (from 87 to 99%) and reasonable conversion of CO2 (from 15 to 50%), as well as to 

avoid carbon formation even at 500 °C. The amount of natural gas (source of methane) added to the 

flue gases determined the conversion of CO2 and the obtained H2/CO ratio. There is a growing CO2 

conversion with higher contents of CH4 in the feed. A possible suppression of carbon formation 

required at least 740 °C when CH4/CO2/H2O/O2/Ar = 3/1/2/0.3/3.7, which is a higher temperature that 

the ones registered for other gas feed compositions. Also, 30 vol.% of methane allowed to obtain the 

highest possible conversion of CO2. However, the key role for such gas conditions would be finding a 

stable catalyst, which would prevent deactivation caused by carbon deposition. 
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Chapter 4 – Dry reforming of methane (DRM) 
 
4.1. Yttrium promotion of Ni-based double layered-hydroxides 
 

Yttrium is a rare-earth element that has recently attracted large interest for catalytic applications. 

As reported by Francis and Whitlow [307] yttrium oxides show high temperature oxidation resistance 

in the presence of carbon dioxide. Many literature studies are focused on yttrium oxide studied as a 

support for DRM catalysts [308–310]. However, there are only a few literature reports describing the 

role of yttrium as a possible promoter in the DRM reaction [172,311–313]. B. Li et al. [311] observed 

high resistance towards carbon deposition for Y-promoted Ni-SBA-15 catalysts, which was attributed 

to high dispersion of yttrium with nickel nanoparticles, and the ability of yttrium to create oxygen 

vacancies. Similar properties were also observed in Y-Ce0.75Zr0.25O2 catalysts [312]. Taherian et al. [313] 

reported a positive influence on controlling the nickel size and its dispersion into the mesopores of 

Ni/SBA-15 catalyst after modification with Y2O3. Moreover, Ni-Y/KIT-6 catalyst exhibited better 

dispersion of nano-sized Ni particles inside the pores of the support as compared to Ni/KIT-6 material 

[172]. Also, the formation of coke was lower for Y-modified catalyst in the initial stability test at  

700 °C. Furthermore, B. Li et al. [208] studied Ni/Y/Al2O3 catalyst with yttrium introduced via different 

types of impregnation, and observed improved stability of the modified samples. However, in a recent 

study by Huang et al. [314] the impregnated NiO-Y2O3-Al2O3 mesoporous catalysts were reported to 

be less stable than the samples prepared with a one-pot evaporation-induced self-assembly method. 

The former resulted in the creation of loosely attached Ni particles on the support, which was the 

reason for fast deactivation of the catalyst due to graphitic carbon formation. The second method 

revealed the presence of Ni particles strongly anchored to the Al2O3 support. This resulted in an 

improvement of catalytic activity and stability. The best results were obtained for a catalyst containing 

ca. 2 wt.% of yttrium, which was attributed to the high surface area, small nickel particles and very 

high nickel dispersion. 
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No studies concerning the influence of yttrium on Ni-Mg-Al double-layered hydroxides have been 

reported in the literature. Only a few studies have dealt with Mg-Al hydrotalcites modified with Y for 

epoxidation [266], cyanoethylation [268] and aldol condensation [270]. 

Thus, the aim of the work presented in this subchapter was to examine the influence of Y promotion 

on the physico-chemical properties of the resulting catalysts, their structure and performance in DRM. 

Five yttrium-modified catalysts, containing 0.2, 0.4, 0.6, 2.0 and 3.0 wt.% of Y were prepared.  

 

4.1.1. Physicochemical properties  

 

Fig. 4.1 XRD patterns of fresh synthesized catalysts HTNi, HTNi-Y0.2, HTNi-Y0.4, HTNi-Y0.6, HTNi-Y2.0 and HTNi-

Y3.0.  

 
XRD diffractograms of freshly synthesized catalysts are presented in Figure 4.1. The layered 

rhombohedral structure of Mg6Al2(OH)16CO3·4H2O (ICOD 00-014-0191) was registered at 2q = 11, 22, 

35, 61 and 62°, corresponding to (003), (006), (009), (110) and (113) planes, respectively. A small shift 

of the d003 and d006 towards lower angles was registered after promotion with 2 wt.% and 3 wt.% of 
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yttrium, indicating the presence of intercalation anions. This shift indicates that CO3
2- was not the only 

anion in the interlayer regions [248–250,284].  

 

Table 4.1 Structural parameters of the freshly synthesized materials. Elemental composition and textural 

properties for the calcined materials. The numbers in brackets are nominal values. 

Catalyst XRD XRF N2 sorption 

Structural parameters 
Fresh materials 

Elemental composition 
Calcined materials 

Textural properties 
Calcined materials 

a [Å]1) c [Å]2) c’ [Å] Ni2+ 

[wt.%] 
Y3+  

[wt.%] 
M2+/M3+ 

[-] 
SBET 

[m2/g]3) 
Vp 

[cm3/g]4) 
dp  

[nm]5) 

HTNi 3.06 23.45 7.8 20 - 3.6 (3.0) 120 0.6 19 

HTNi-Y0.2 3.06 23.36 7.8 19 0.2 
(0.2) 

3.2 (3.0) 127 0.5 16 

HTNi-Y0.4 3.06 23.38 7.8 21 0.4 
(0.4) 

3.5 (3.0) 120 0.5 15 

HTNi-Y0.6 3.06 23.37 7.8 19 0.6 
(0.6) 

3.5 (3.0) 162 0.5 11 

HTNi-Y2.0 3.06 23.42 7.8 18 1.8 
(2.0) 

3.4 (3.0) 192 0.6 14 

HTNi-Y3.0 3.06 23.54 7.8 17 2.8 
(3.0) 

3.8 (3.0) 142 0.5 13 

1) calculated from (110) spacing a=2d(110) as suggested by Cavani et al. [244] 

2) calculated from XRD patterns of the fresh catalysts, from the position of the three first reflections c=d(003) + 

2d(006) + 3d(009), as suggested by Liu et al. [207] 

3) specific surface areas calculated from the BET equation  

4) mesopore volumes derived from the BJH desorption calculation method 
5) pore size distribution obtained from the BJH desorption calculation method 

 

The values of the unit cell parameters a and c (for non-calcined materials) are shown in Table 4.1. 

The obtained values of c, which refers to the triple distance between brucite-like layers, remained 

practically unchanged after Y-modification as compared to the non-modified material, except for HTNi-

Y3.0. For the latter catalyst some deposition of Y compound on the external surface may be assumed. 

Pavel et al. [266] studied Ni-free Mg/Al hydrotalcites modified with Y (0.49 and 1.25 wt.%). For both 

materials the authors found an increase of c parameter suggesting Y aggregation on the external 
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surface. The c’ parameter, equal to one brucite-like sheet and one interlayer (c´=c/3), is 7.8 Å and 

constant for our HTNi-Y catalysts, indicating the presence of interlayer CO3
2- (7.65 Å) and NO3

- (8.79 Å) 

anions [244,248–250]. According to Kuśtrowski et al. [248], in theory the calculated values are in 

agreement with the size of the anions intercalated into the interlayer space. It should be noted, 

however, that the gallery heights are slightly lower than the corresponding free anions diameters due 

to a high content of Al3+ in the hydrotalcites, leading to the strong interaction of the interlayer anions 

with the brucite-like sheets. The lattice parameter a is stable for all catalysts (3.06 Å), although García-

García et al. [315] assumed that the introduction of yttrium into DLHs layers, considering its ionic radius 

bigger than that of Mg and Al (Y3+=1.04 Å, Mg3+=0.86 Å, Al3+=0.675 Å) [316], may cause lattice 

distortions, i.e. changes in the lattice parameter a. On the other hand, Fernández et al. [316], reported 

that only yttrium loading higher than 4 wt.%, could result in distortions in the DLHs layers, recognised 

as very low crystallinity observed in XRD patterns. As the amount of Y introduced into the studied 

catalysts was lower, the stability of the lattice parameter a does not contradict the possibility of 

introduction of Y into the structure of double-layered hydroxides.  

Fig. 4.2 presents XRD patterns of the calcined materials, showing reflections of Ni-Mg-Al periclase-

mixed oxides (ICOD 00-045-0946) (2q ca. 36.7, 43 and 62.5°), which are characteristic for double-

layered hydroxides after thermal treatment at 550 °C [203,285,317]. For the HTNi-Y3.0 catalyst 

calcination at 550 °C resulted in the stabilization of the Mg6Al2(OH)16CO3·4H2O phase (ICOD 00-014-

0191), as evidenced by reflections  at 2q of ca. 11, 22 and 35°, corresponding to crystal planes of (003), 

(006), (009), respectively [285]. No separate yttrium phase was registered in XRD patterns, either due 

to low loading of this metal or the presence of Y-compound in amorphous form. 
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Fig. 4.2 XRD patterns of the calcined catalysts HTNi, HTNi-Y0.2, HTNi-Y0.4, HTNi-Y0.6, HTNi-Y2.0 and HTNi-Y3.0. 

 

The contents of Ni and Y, together with the assumed M2+/M3+ ratio, are listed in Table 4.1. The 

studied catalysts contained ca. 20 wt.% of Ni and yttrium contents close to the nominal values, i.e., 

0.2, 0.4, 0.6, 1.8 and 2.8 wt.%. The calculated ratios of M2+/M3+, i.e., (Ni+Mg)/(Al+Y), were relatively 

close to the values which were assumed during the synthesis step. 

Fig. 4.3 shows IV type isotherms for the calcined materials, which are characteristic for mesoporous 

structures [206,260]. The obtained hysteresis loop indicates the presence of slit shaped pores with 

nonuniform size and shape [292]. The adsorbed amounts decreased with the increasing doping with 

yttrium (up to 0.4 wt.%), which possibly may be related to the observed decrease in pore size. After 

promotion with 0.6 and 2.0 wt.% of yttrium an increase in amount adsorbed was registered, and for 

the catalyst containing 3.0 wt.%-loading again a decrease was found. Specific surface area for the 

calcined catalysts varied from 120 to 192 m2/g, with the highest SBET observed for HTNi-Y2.0 (Table 

1.1). As presented in Fig. 4.4, small contents of yttrium did not change the SBET (within experimental 

error), higher amounts of 0.6 and 2.0 % increased the specific surface area while doping with 3 wt.% 
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resulted in decreased SBET. Total pore volume remained stable after modification with yttrium. 

However, pore diameters slightly decreased as compared to HTNi catalyst.  

 

 

Fig. 4.3 N2 adsorption/desorption isotherms and pore size distribution for HTNi, HTNi-Y0.2, HTNi-Y0.4, HTNi-

Y0.6, HTNi-Y2.0 and HTNi-Y3.0. 
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Fig. 4.4 Correlation between nominal yttrium loading and specific surface area.  

 

The significant increase in SBET for the catalysts promoted with 0.6 wt.% and 2 wt.% Y, positively 

influences the textural properties of Ni-based catalyst and is supported by literature findings. As 

reported by Kim et al. [318] a partial crystal deformation of double-layered hydroxides occurs upon 

calcination, in which octahedral Al3+ ions migrate to tetrahedral positions resulting in the enhancement 

of SBET and in evolution of mesopores. Similar effect was observed by Huang et al. [314], who reported 

that the modification of NiO-Al2O3 supports within yttrium loading of 1.3-2.44 wt.% led to the SBET 

enhancement. On the other hand, the decrease in SBET observed for HTNi-Y3.0 suggests a possible 

partial blocking of porous system, and together with the increase in the lattice parameter c for HTNi-

Y3.0, may indicate that some yttrium aggregates were deposited on the external surface of this 

catalyst, similarly as suggested by Pavel et al. [266]. Thus the improvements in the catalytic 

performance in dry reforming of methane can be expected for HTNi-Y2.0, as suggested by the relation 

between specific surface area and stability in DRM reported in the article of Huang et al. [314]. 
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4.1.2. Reducibility, basicity, Ni dispersion and crystallite size  

 

Fig. 4.5 Temperature-programmed reduction (TPR-H2) profiles of the calcined catalysts. 

TPR-H2 profiles of calcined Y-modified Ni/Mg/Al double-layered hydroxides are presented in Fig. 4.5. 

The profile for HTNi shows two wide peaks with maxima at 386 and 829 °C, respectively, which may 

be attributed to NiO weakly-bonded to the mixed oxides structure and NiO present in the structure of 

mixed oxides, respectively [197,205,207,319]. According to Hu et al. [320] only a part of nickel can be 

reduced, i.e., Ni–O–Ni species, while the Ni–O–Mg species are almost impossible to reduce. After the 

yttrium addition, the temperature of the maximum of the peak at the high temperature region (Tmax) 

showed a shift to higher values, indicating stronger interaction of Ni species with the support as 

compared to HTNi catalyst. The shift depended on the amount of introduced yttrium and the Tmax 

formed a sequence: 873 °C (Y 0.2 wt.%) > 866 °C (Y 0.4 wt.%) ≈ 870 °C (Y 0.6 wt.%) > 858 °C (Y 2.0 wt.%) 

> 829 °C (HTNi). For the catalyst modified with 3.0 wt.% of yttrium a minimal shift to lower temperature 

was observed (823 °C). The shift of the Tmax towards higher temperatures, together with the presence 

of NiO, was also observed by Huang et al. [314] for NiO-Al2O3 materials modified with similar amounts 

of Y2O3 (1.30 and 2.44 wt.%). However, when higher amounts of Y were introduced (4.86 wt.%) the 

Tmax had lower value, in good agreement with the presented results (cp. Fig. 4.5). Different trends in 

reducibility changes depending on the amount of introduced promoter were reported for other 
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studied catalysts based on double-layered hydroxides [203], e.g. when double-layered hydroxide-

derived catalysts were modified with low amounts of zirconia a decrease in reducibility was observed, 

in contrast to reducibility increase caused by higher ZrO2 loadings [203]. The authors ascribed this 

effect to the location of ZrO2 in or out of hydrotalcite structure. Higher loading of zirconia led to its 

deposition outside the periclase structure, resulting in weaker interactions with Ni, and the presence 

of weakly bonded NiO, in agreement with the observations for the here studied HTNiY-catalysts. Then, 

this supports the hypothesis of Y-compound at least partly deposited on the outer surface of HTNi-

Y3.0, discussed above.  

Additionally, Y-modification influenced the amount of weakly bonded Ni (low temperature peak, 

shown in more detail in the right hand-side enlargement of Fig. 4.5). For HTNi an additional medium-

strong peak may be observed at 386 °C, which was reported for numerous catalysts with Ni introduced 

onto a support by e.g. impregnation [297,321–323], or co-precipitation method [205,285,324,325]. A 

shorter peak at this temperature region may be observed only for HTNi-Y2.0. Additionally, very weak 

peaks appear at ca. 450 and 500 °C for HTNi, HTNi-Y2.0 and even for HTNi-Y3.0. They arise from either 

weakly-bonded NiO or bulk NiO [259]. For the latter Mile et al. [326] reported that two reduction peaks 

may arise from reduction of bulk NiO: (i) at ca. 250 °C from Ni3+ reduction, and (ii) reduction of Ni2+ at 

ca. 400 °C. Similar was reported by Kadkhodayan et al. [327], who observed a double peak arising from 

the reduction of bulk NiO species at the temperature range of 300-400 °C. 

Hydrogen consumption values obtained during reduction of the calcined materials are listed in Table 

4.2. The highest consumption of 0.209 mmol H2/g was observed for non-modified HTNi catalyst. After 

promotion with yttrium, the values of hydrogen uptake decreased to 0.143, 0.151, 0.145, 0.165 and 

0.148 mmol H2/g for HTNi-Y0.2, HTNi-Y0.4, HTNi-Y0.6, HTNi-Y2.0 and HTNi-Y3.0 catalysts, respectively. 

The higher H2 consumption in the HTNi catalyst, together with lower temperature of reduction 

maximum, may be due to the weaker interaction between Ni and the support, as well as the presence 

of bigger NiO crystallites loosely attached to the surface for the HTNi catalyst. 
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Table 4.2 Hydrogen consumption and chemisorption results for the Y-promoted catalysts. 

Catalyst TPR-H2 

Calcined materials 

H2 chemisorption 

Calcined materials 

N2 sorption  

Reduced materials 

H2 consumption 

[mmol H2/g] 

Ni dispersion  

[%] 

SBET  

[m2/g]1) 

Vp  

[cm3/g]2) 

dp  

[nm]3) 

HTNi 0.209 8.9 68 0.4 21 

HTNi-Y0.2 0.143 9.5 50 0.3 14 

HTNi-Y0.4 0.151 10.7 51 0.4 11 

HTNi-Y0.6 0.145 17.7 44 0.3 9 

HTNi-Y2.0 0.165 19.8 67 0.6 12 

HTNi-Y3.0 0.148 11.9 117 0.4 13 

1) specific surface areas calculated from the BET equation 
2) mesopore volumes derived from the BJH desorption calculation method 
3) pore size obtained from the BJH desorption calculation method 

 

The dispersion of metallic nickel calculated from H2 chemisorption is shown in Table 4.2. Fig. 4.6 

shows the relation between dispersion and the content of promoting Y. Thus, a positive influence of 

yttrium promotion resulting in higher Ni dispersion may be clearly seen. The dispersion values are 8.9, 

9.5, 10.7, 17.7, 19.8 and 11.9 % for HTNi, HTNi-Y0.2, HTNi-Y0.4, HTNi-Y0.6, HTNi-Y2.0 and HTNi-Y3.0, 

respectively. However, it may be also observed (Fig. 4.6) that there is an optimal amount of Y-

promotion where the increase in dispersion is concerned (2.0 wt.%). For too high amounts of Y, which, 

as suggested by other results discussed above, is at least partly deposited on the outer surface of the 

catalysts, the increase in dispersion is similar as that for HTNi-Y0.4. As reported by Huang et al. [314], 

enhanced dispersion leads to more stable catalytic performance in dry reforming of methane, since a 

higher number of accessible metallic sites are created on the surface of the catalyst. So, it may be 

expected that HTNi-Y0.4 and HTNi-Y3.0 may show similar activity. However, it should be taken into 

account that apart from dispersion, also the size of crystallites and basicity play a very important role 

in DRM. 
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Fig. 4.6 Correlation between nominal yttrium loading and metallic Ni dispersion.  

 

The textural properties of the reduced materials are listed in Table 4.2. The specific surface area 

decreased twice for the unmodified material HTNi. Comparable effect was observed for the Y-

promoted catalysts, for which much lower SBET than for the calcined samples were registered (cp. Table 

4.1). The decrease in the specific surface area is related to the transformation of the NiO-MgO-Al2O3-

(Y2O3) mixed-oxides into Ni0-MgO-Al2O3-(Y2O3). The nickel oxide was reduced and partially covered the 

surface with its metallic phase. Only a small SBET decrease was observed for HTNi-Y3.0, i.e., 142 m2/g 

for the calcined sample versus 117 m2/g for the reduced one. This could have arisen from the 

stabilization of hydrotalcite structure (as described further in the text in XRD section). For all samples 

the mesopore volume and pore diameters decreased in contrast to the porous properties recorded for 

calcined samples.  
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Fig. 4.7 Temperature-programmed desorption (TPD-CO2) profiles for the reduced materials. 

 

Table 4.3 The number of basic sites and their percentage distribution derived from TPD-CO2. 

Catalyst TPD-CO2 

Number of basic sites [µmol/g] Percentage distribution [%] 

Weak Medium Strong Total basicity Weak Medium Strong 

HTNi 16 44 46 107 15 41 43 

HTNi-Y0.2 12 32 19 63 18 45 34 

HTNi-Y0.4 16 20 23 59 28 34 38 

HTNi-Y0.6 12 32 11 55 22 58 20 

HTNi-Y2.0 11 36 30 77 15 47 38 

HTNi-Y3.0 - 106 66 173 - 62 38 
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Basicity of the reduced catalysts, measured by TPD-CO2, is shown in Fig. 4.7. Three types of basic 

sites can be distinguished with maxima at (i) 135-150 °C, (ii) 203-247 °C and (iii) ca. 316-367 °C, 

respectively. According to literature, they are ascribed to weak (Brønsted basic sides, such as hydroxyl 

groups), medium (Lewis acid-base sites), and strong basic sites (Lewis basic sites associated with 

oxygen anions) [205,207]. The data in Table 4.3 show that total basicity was the highest for the non-

modified HTNi catalyst, and similar in value to a comparable HT-25Ni studied by Dębek et al. [285]. The 

latter was found to have optimal basicity for DRM. It should be mentioned additionally, that the 

dependence of CO2 conversion on the basicity of double-layered hydroxides with different basicity was 

rather weak, with the exception of the catalyst containing low amount of Ni (5 wt.%) (Fig. 4.8). The 

catalysts studied by Dębek et al. (cp. Fig. 4.8) containing 25 to 100% Ni showed CO2 conversion 

between ca. 37 and 40 %, despite a large difference in basicity. This indicates that a certain level of 

basicity is necessary for DRM, but other factors, such as reducibility, dispersion and the size of 

crystallites also play an important role, so an appropriate balance of all must be kept.  

 

Fig. 4.8 Average conversions of methane (A), carbon dioxide (B) and H2/CO molar ratio (C) registered during 5 h 

DRM catalytic tests (CH4/CO2/Ar=1/1/8, 550 °C, GHSV= 20,000 h-1) as a function of catalysts basicity in the study 

of Dębek [64]. Reprinted with permission of the author.  

The addition of Y modified both the number and the distribution of basic sites. After promotion with 

this metal in the range of 0.2-2.0 wt.%, the total basicity decreased, showing the lowest value of 55 
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µmol/g for HTNi-Y0.6, and slightly higher for other catalysts, i.e., 59, 63, and 77 µmol/g for HTNi-Y0.4, 

HTNi-Y0.2 and HTNi-Y2.0, respectively. The amount of each type of sites (weak, medium and strong) 

in the HTNi-Y materials studied in this work also decreased compared to HTNi. A decrease of total 

basicity caused by Zr or Ce promotion was also reported elsewhere [188,203,204]. Although the 

basicity was lower, it did not negatively affect DRM performance of the promoted catalysts. Indeed, 

the modification with Zr or Ce resulted in better stability and/or activity. On the other hand, the HTNi-

Y3.0 showed different basicity distribution compared to the materials having 0.2-2.0 wt.% of Y. A shift 

to stronger sites was recorded, significantly increasing a number of medium ones, at the expense of 

the weak sites. As a result, the HTNi-Y3.0 catalyst showed the highest total basicity among all studied 

catalysts, i.e., 173 µmol/g (Table 4.3). Similar results were reported by Wierzbicki et al. [259] for La-

promoted Ni-based double-layered hydroxides. As suggested by these authors, low loading of 

promoter may cause a partial blocking of the basic sites in the mixed oxides of DLHs, and only higher 

loading of metal can result in the creation of new basic sites.  

 

Fig. 4.9 XRD patterns for the reduced catalysts HTNi, HTNi-Y0.2, HTNi-Y0.4, HTNi-Y0.6, HTNi-Y2.0 and HTNi-Y3.0. 
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Fig. 4.9 shows XRD diffractograms of the reduced catalysts, in which characteristic metallic nickel 

phase (ICOD 01-087-0712) is evidenced by the presence of reflections at 2q ca. 44.5, 53, 76.5°, 

corresponding to crystal planes of (111), (200), (220). Also, a periclase-mixed oxides phase (2q ca. 36.7, 

43, 62.5°) is observed [172,205,207,328]. Table 4.4 compares the size of Ni particles, calculated from 

the 2q diffraction peak at ca. 53° (corresponding to (200) crystal plane of Ni0) using the Scherrer 

equation. It may be seen that the yttrium addition resulted in a decrease of nickel crystallites from ca. 

8 nm for the unpromoted HTNi to ca. 6 nm for HTNi-Y (Table 4.4), with the exception of HTNi-Y3.0 

catalyst which showed Ni crystallite size similar to that of HTNi (ca. 8 nm).  A similar effect was observed 

for the Ni-Y-Al2O3 catalysts and better performance in DRM was attributed to the formation of these 

smaller Ni0 particles [208,314]. The difference observed for HTNi-Y3.0 agrees well with the hypothesis 

that at least part of introduced yttrium formed aggregates on the external surface of the catalysts and 

was in poor contact with Ni. 

 

Table 4.4 Average diameters of nickel particles in the reduced HTNi-Y catalysts.  

n.m. – not measured 
1) based on the Scherrer equation, from the width at half-maximum of the XRD reflections at 2q ca. 53° 
2) calculated from d = 97.1/(%D) based on the assumption of spherical crystallites of uniform size 
3) average diameter of Ni particles obtained from TEM image 

 
The smaller Ni crystallite size is linked with improved dispersion, as confirmed by calculation carried 

out assuming spherical crystallites of the uniform size (Table 4.4). These values are in good agreement 

Catalyst dNi from XRD [nm]1) dNi from H2 chemisorption [nm]2) dNi from TEM [nm]3) 

HTNi 8 11 27 

HTNi-Y0.2 6 10 n.m. 

HTNi-Y0.4 5 9 n.m. 

HTNi-Y0.6 
 

6 5 16 

HTNi-Y2.0 6 5 14 

HTNi-Y3.0 8 8 n.m. 
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with XRD calculations (Scherrer equation). A number of other studies also showed that H2 or CO 

chemisorption results were in line with the values obtained from XRD [329–332]. 

In order to verify the Ni particle size, TEM analysis was carried out for three selected catalysts: HTNi, 

HTNi-Y0.6 and HTNi-Y2.0. For the reduced catalysts, randomly distributed Ni particles are observed 

(dark spots in the micrographs presented in Fig. 4.10). Smaller nickel particle sizes were registered for 

Y-promoted catalysts. The average particle size varies from 27 nm for the unpromoted HTNi, to 16 nm 

and 14 nm for HTNi-Y0.6 and HTNi-Y2.0, respectively (Table 4.4).  

 

 

Fig. 4.10 TEM micrographs of HTNi reduced. 

 

The reason for obtaining higher values from TEM analysis, as compared to XRD, may lie in differences 

in measurement techniques. By TEM, the particle size of all nickel aggregates is measured, irrespective 

if they are crystalline or amorphous. On the other hand, XRD data gives information on the average 

size of crystalline nickel particles. 

The Ni crystallite size, calculated from the data obtained in these three characterization techniques, 

clearly shows a decrease in Ni particle size with Y addition (Table 4.4), with the exception of HTNi-Y3.0. 

The accuracy of these characterization methods was examined by Mustard et al. [298]. The authors 

described the application of TEM, H2 adsorption and XRD for the determination of Ni crystallite size on 

supported catalysts, such as Ni/SiO2, Ni/Al2O3 and Ni/TiO2. As stated by the authors, the precision of 

each technique depends on Ni loading and its dispersion, as well as the textural properties of the used 

support.  
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4.1.3. Catalytic activity and stability in DRM 
 
The discussion of the results of catalytic tests was divided into two parts, i.e., (i) promotion with 

yttrium of 0.2 and 0.4 wt.%, and (ii) promotion with yttrium of 0.6 and 2.0 wt.%, and compared to the 

performance of the unmodified material. 

Figs. 4.11 A and 4.11 B present the CH4 and CO2 conversions of HTNi, HTNi-Y0.2 and HTNi-Y0.4 

catalysts for DRM as a temperature programmed surface reaction (TPSR) in the range of 850-600 °C. 

The yttrium doping positively affected the activity of Ni-containing double-layered hydroxides, which 

is proven by higher conversion. It should be mentioned that experimental error (indicated by bars) is 

ca. 5%. The difference is higher in CH4 conversion results (up to 700 °C), with the non-modified HTNi 

showing the lowest activity (Fig. 4.11 A). For CO2 conversion, the catalysts reached values close to the 

equilibrium, and the differences were smaller for the discussed catalysts. It may be concluded that the 

addition of Y significantly improved catalytic performance, and a correlation between the increase of 

catalytic activity and the increasing Y content is clearly observed. In the temperature range of 600-700 

°C, the materials doped with 0.2 and 0.4 wt.% of Y presented conversions higher than the one reported 

for the unmodified catalyst. However, at temperatures of 700 °C and higher, the positive influence of 

Y-promotion on CH4 conversion decreased. At 700 °C HTNi and HTNi-Y0.2 showed similar activity, while 

HTNi-Y0.4 was still more active. CO2 conversion was slightly higher than that of CH4, and the H2/CO 

ratio is presented in Fig. 4.11 C. Moreover, the values of H2/CO ratio were lower than 1. The latter may 

be ascribed to the occurrence of reverse water-gas shift, which is a side reaction usually accompanying 

DRM [314]. Additionally, when more CH4 than CO2 was converted, the other side reactions such as 

direct methane decomposition and Boudouard reaction could have taken place [205], as discussed in 

Chapter 1 (Subchapter 1.3.2.1). 
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Fig. 4.11 Catalytic activity of HTNi-Y catalysts (with 0.2 and 0.4 wt.% of yttrium) in the temperature range of 850 

to 600 °C: CH4 conversion (A), CO2 conversion (B), and H2/CO molar ratio (C) versus temperature in DRM process 

(CH4/CO2/Ar=1/1/8, GHSV= 20,000 h-1). The solid line represents the thermodynamic equilibrium (cp. Chapter 3). 

 

Fig. 4.12 Catalytic activity of HTNi-Y catalysts (with 0.6 and 2.0 wt.% of yttrium) in the temperature range of 850 

to 600 °C: CH4 conversion (A), CO2 conversion (B), and H2/CO molar ratio (C) versus temperature in DRM process 

(CH4/CO2/Ar=1/1/8, GHSV= 20,000 h-1). The solid line represents the thermodynamic equilibrium (cp. Chapter 3). 

 

Figs. 4.12 A-C show catalytic performance of Ni-based double-layered hydroxides modified with 0.6 

or 2.0 wt.% yttrium (HTNi-Y0.6 and HTNi-Y2.0). The same positive trend may be observed as for the 
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materials doped with low amounts of yttrium (0.2 or 0.4 wt.%). Again, the non-modified HTNi had the 

lowest activity, both for CH4 and CO2 conversions (Figs. 4.12 A and B). The addition of Y significantly 

improved catalytic performance, and a correlation between the increase of catalytic activity and the 

increasing Y content can be observed. For example, at 700 °C, CH4 conversion was 66, 74 and 76.2%, 

while CO2 conversion was 76, 78 and 80.8%, respectively for HTNi, HTNi-Y0.6 and HTNi-Y2.0 catalysts. 

The same activity sequence was observed at 750 °C. Comparing the performance of HTNi-Y0.6 with 

HTNi-Y2.0, it may be observed that the one promoted with 2.0 wt.% Y is the most efficient in the whole 

temperature range of the experiment. Fig. 4.12 C presents H2/CO molar ratio, with a similar trend as 

observed for 0.2 or 0.4 wt.% Y-doped materials, i.e., Y-modification led to values higher than for HTNi. 

Differences in the produced H2/CO ratios at the lowest studied temperature of 600 °C are the highest. 

Most probably, other side reactions started to be more dominant than the dry reforming reaction, 

resulting in a slowly increasing fraction of CO compared to H2 [313]. 

Comparing the catalytic results carried out for the whole series of the Y-modified catalysts, i.e., 

HTNi-Y(0.2-2.0), one can note that yttrium addition enhances the catalytic performance in dry 

reforming of methane (CH4/CO2=1) giving conversions for both CH4 and CO2 from 5% to 15% higher 

than for the unpromoted HTNi catalyst. However, no clear correlation between increasing yttrium 

loading and increasing activity may be drawn from this type of test.  

Considering the experimental error, the conversions are only slightly different from each other. The 

differences are the highest in the moderate temperature range (600-700 °C), with HTNi-Y2.0 catalyst 

showing the highest activity. Considering thermodynamic limitations of the DRM reaction, and the 

decreasing carbon formation with the rising temperature (as discussed in Chapter 3, Subchapter 

3.2.2.), longer experiments were carried out at 700 °C, in which the conversions could be ca. 10% 

higher than at 650 °C.  

The isothermal runs were carried out at 700 °C for 5 hours under the same GHSV (flow, catalysts 

volume), as in the previously discussed experiments. The catalysts containing 0.4 or 2.0 wt.% Y and 
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additionally, in order to examine the influence of higher Y loading, the catalyst modified with 3 wt.% 

of Y were studied. 

As shown in Figs. 4.13 A-C in the isothermal test, catalytic activity formed a sequence: HTNi < HTNi-

Y2.0 < HTNi-Y0.4 < HTNi-Y3.0. All studied catalysts revealed relatively stable conversion values for 5 h. 

The conversion change, expressed as D = (|xi-x5h|/xi·100), where “xi” and “x5h” relate to the initial values 

and those after 5 hours, respectively, are listed in Table 4.5. The initial and final gas conversions were 

considered. The initial CH4 conversions recorded respectively for HTNi, HTNi-Y0.4, HTNi-Y2.0 and HTNi-

Y3.0 were 74.0, 83.9, 74.4 and 90.2 %. In case of CO2 conversion, the following initial values were 

obtained: 75.7% for HTNi, and 87.0%, 78.6 % and 84.9 % for HTNi-Y0.4, HTNi-Y2.0, and HTNi-Y3.0, 

respectively. Both increase and decrease in CH4 and CO2 conversions were observed. The extent was 

dependent on the catalyst. The highest stability, expressed by the lowest relative change were 

registered for HTNi-Y2.0 with D values of only 0.7 and 0.4%, respectively for CH4 and CO2 conversions. 

These relative changes were much smaller than for the unpromoted HTNi (2.3 and 1.8%, respectively), 

proving the positive influence of Y promotion on the catalyst’s stability. For HTNi-Y0.4 catalyst, activity 

increase online with D values of 0.4 and 1.6%, respectively for CH4 and CO2 conversions. On the other 

hand, HTNi-3.0 catalyst showed D value for CO2 conversion higher than that for HTNi (2.7 versus 1.8 

%). This may be due to different distribution of basic sites, with the absence of weak sites. 
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Fig. 4.13 Catalytic activity of HTNi-Y catalysts (with 0.4, 2.0 and 3.0 wt.% of yttrium) in the isothermal experiments 

at 700 °C: CH4 conversion (A), CO2 conversion (B), and H2/CO molar ratio (C) versus temperature in DRM process 

(CH4/CO2/Ar=1/1/8, GHSV= 20,000 h-1).  

It should be mentioned, however, that there were some differences between the values of CO2 and 

CH4 conversions, as well as H2/CO ratios registered in the TPSR and isothermal tests. This may have 

originated from differences in the methodology of the experiments, due to a possible slight initial 

deactivation of the catalysts, which in TPSR were examined first at temperatures higher than 700 °C.  
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Table 4.5 Stability results showing initial and final (after 5 hours) activity, and the relative changes ascribed to 

deactivation. 

1) calculated as (|xi-x5h|/xi·100), where x is CH4 or CO2 conversion expressed in percentage, and subscripts stand 

for i – initial, 5 h – after 5 h catalytic test; symbols ↓and ↑ denote that appropriate conversion respectively 

decreased or increased after 5 hours on line  

 

The trends discussed above are in good agreement with those reported in literature for other Y-

promoted DRM catalysts. A positive effect of the Y promotion was also observed for Ni,Y-Al2O3 [208], 

Ni-Y/SBA-15 [311,313], Ni-Y/KIT-6 [172], NiO-Y2O3-Al2O3 [314] and Y-Ce0.75Zr0.25O2 [312]. Similarly as 

shown above, CO2 conversion was reported to be slightly higher than that of CH4, and the values of 

H2/CO ratio lower than 1, which was ascribed to the occurrence of the reverse water-gas shift side 

reaction (CO2+H2=CO+H2O) [98,172,313,314,333,334]. According to literature, other side reactions 

such as gasification of carbon deposits and the Boudouard reaction could have also taken place 

Catalyst CH4 conversion [%] CO2 conversion [%] H2/CO [-] 

HTNi 

Initial  

After 5h  

D : relative change after 5h [%]1) 

 

74.0 

72.3 

↓2.3 

 

75.7 

74.3 

↓1.8 

 

0.90 

0.89 

HTNi-Y0.4 

Initial  

After 5h  

D : relative change after 5h [%] 1) 

 

83.9 

84.1 

↑0.2 

 

87.0 

88.4 

↑1.6 

 

0.98 

0.96 

HTNi-Y2.0 

Initial  

After 5h  

D : relative change after 5h [%] 1) 

 

74.4 

73.9 

↓0.7 

 

78.6 

78.3 

↓0.4 

 

0.92 

0.92 

HTNi-Y3.0 

Initial  

After 5h  

D : relative change after 5h [%]1) 

 

84.9 

84.6 

↓0.4 

 

90.2 

87.8 

↓2.7 

 

0.99 

0.97 
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[172,205,334]. On the other hand, Li et al. [311] observed CH4 conversion higher than that of CO2 for 

SBA-15 supported catalysts with Y/Si molar ratio of 0.02, 0.06 and 0.08 and ascribed it to methane 

decomposition. Such result was not registered in our study. This explains possible enhanced stability 

of the Y modified double-layered hydroxides. As reported by Dębek et al. [285] the methane 

decomposition (which causes catalyst deactivation) was less pronounced for smaller Ni particles. Thus, 

the fact that Y promotion resulted in smaller crystallites may play an important role in suppression of 

this unwanted reaction.  

As discussed above, the yttrium modification resulted also in better dispersion of metallic Ni, 

enhanced specific surface area and changes in basicity. The better dispersion of nickel is of importance 

for catalytic performance, as better distribution of smaller Ni particles makes them more accessible to 

CH4 in DRM process [155,314]. The increased specific surface area is another positive factor. As 

reported by Huang et al. [314], the enhanced SBET of NiO-Y2O3-Al2O3 materials was linked with the good 

catalytic behavior in CO2 reforming. On the other hand, the weak and medium basic sites may be also 

of advantage for DRM reaction rather than the strong sites, as suggested by Liu et al. [207]. Dębek et 

al. [285] found that high basicity hinders carbon formation and/or contributes to oxidation of formed 

coke. In contrast, too strong CO2 adsorption, which results in carbon formation, was reported as 

originating from the presence of the strongest basic sites [197]. 

The mechanism of DRM can be shorty described as (i) decomposition of methane on Ni active site 

and (ii) dissociative adsorption of carbon dioxide on the metal surface and metal-surface interface 

[154,155]. During the first step, carbon atoms are formed on the Ni surface as a product of CH4 

decomposition (CH4 = C + 2H2). The carbon atom can be oxidized by atomic oxygen derived from CO2. 

It was reported that doping with Y3+ improved the rate of carbon removal due to oxygen vacancies, 

which induced oxygen radicals from CO2 to react with coke [209,309,313,335,336]. Thus, a possible 

removal of carbon could have taken place (to some extent) according to the reverse Boudouard 

reaction (CO2 + C = 2CO) (cp. Table 4.5) [209].  
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In order to better understand the catalysts behavior in terms of side reactions and thus avoid 

deactivation, the direct methane decomposition (DMD) was studied for two selected catalysts, HTNi 

and HTNi-Y0.4. The latter catalyst was selected because it showed the highest decrease in H2/CO molar 

ratio during the isothermal test (cp. Fig. 1.13). HTNi was chosen for comparison to elucidate the role 

of Y promotion. CH4 conversion is presented in Fig. 4.14. As it may be seen, HTNi is more active in 

methane decomposition (DMD) than the catalyst promoted with yttrium. Moreover, stable methane 

conversion was registered for HTNi catalyst, whereas HTNi-Y0.4 showed decreasing values after first 

30 min, pointing to an evolution of surface properties resulting in the suppression of this reaction. 

Small size of Ni crystallites present in the Y-promoted material could have contributed to this 

phenomenon, similar as reported in the study of Dębek et al. [285]. Thus, it may be concluded that the 

Y promotion inhibited the direct methane decomposition, and thus the C formation via this reaction. 

The carbon suppression was also reported for other Y-promoted materials [172,209].  

 

Fig. 4.14 Catalytic test of direct methane decomposition for HTNi and HTNi-Y0.4 as a function of temperature 

(GHSV=20,000 h-1, CH4/Ar=2/8, total flow rate 100 cm3/min). 
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4.1.4. Characterization of the spent catalysts  
 

Table 4.6 summarizes selected properties of the spent catalysts: (i) texture – SBET, total pore volume 

and medium pore diameter, (ii) Ni crystallite size, as well as (iii) ID/IG intensity ratio obtained from 

Raman spectrum and (iv) the mass loss registered in TGA.  

Specific surface area of the unpromoted spent catalyst was 125 m2/g, and increased in comparison 

to the reduced sample. Similar effect was observed for the 0.4 wt.% Y-promoted spent catalyst. The 

partial reconstruction of the hydrotalcites may explain this fact (discussed further in the text). On the 

other hand, SBET decreased for HTNi-Y2.0 and HTNi-Y3.0. No significant changes in pore volumes and 

diameters of pores were registered.  

 

Table 4.6 Textural and structural properties of the spent catalysts. Numbers in brackets {..} relate respective 

values for the reduced samples (taken from Table 4.2). 

1) specific surface areas calculated from the BET equation 
2) mesopore volumes derived from the BJH desorption calculation method 
3) pore size obtained from the BJH desorption calculation method 
4) based on the Scherrer equation, calculated from the half-width of the XRD reflections at 2q ca. 52° 

 

 

 

Catalyst Textural properties 

Spent materials 

XRD 

Spent 
materials 

Raman 

Spent 
materials 

TGA 

Spent 
materials 

S
BET

 
[m2/g]1) V

p
 [cm3/g]2) d

p
 [nm]3) Ni0 crystallite 

size [nm]4) 
ID/IG [-] Mass loss 

[mg] 

HTNi  125 {68} 0.3 10 7 1.83 2.0 

HTNi-Y0.4  95 {51} 0.3 10 6 1.65 2.6 

HTNi-Y2.0 51 {67} 0.4 11 7 1.23 1.7 

HTNi-Y3.0 85 {117} 0.6 14 8 0.84 2.8 



Chapter 4 – Dry reforming of methane (DRM) 

 

 143 

 

Fig. 4.15 XRD diffractograms of the spent catalysts (CH4/CO2/Ar=1/1/8, 700 °C for 5 h). 

 

XRD diffractograms were recorded for the spent catalysts in order to verify the Ni0 crystallite size, 

the possible changes in the support after the catalytic process, and the carbon formation. The results 

are presented in Fig. 4.15, where reflections typical for metallic nickel phase (ICOD 01-087-0712) and 

periclase-like mixed oxides phase can be found (ICOD 00-045-0946) [172,205,207,328], similarly as for 

the reduced catalysts (cp. Fig. 1.9). Crystallite size of Ni0 did not change significantly after the tests. For 

all catalysts the values are close to those recorded for the reduced catalysts (cp. Table 4.6). This 

suggests the lack of sintering of the nickel particles upon DRM and thus confirms the stability of the Y 

doped catalysts during DRM in stability runs. Additionally, the reflections of graphite carbon (ICOD 01-

075-2078) at 2q=26.6° were registered for all catalysts (Fig. 4.15), which shows that the studied 

materials had suffered from carbon deposition during time on stream experiments. For the HTNi 

catalyst additional reflections of Mg6Al2(OH)16CO3·4H2O (ICOD 00-014-0191) were registered at 

2q=11.5 and 22.9°. The partial reconstruction cannot be excluded for HTNi-Y0.4 sample, as small 
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shoulders were recorded at 2q = 11.5 and 22.9°, and the SBET increased (cp. Table 4.6). The 

Mg6Al2(OH)16CO3·4H2O phase is typical for DLHs after synthesis and before calcination at around  

500 °C [259,285,337]. The presence of hydrotalcite phase (H) was reported before for Ni-based LDHs 

after DRM tests, and indicates a partial regeneration of the support in the presence of water. This 

property, so-called memory effect of DLHs, facilitates reconstruction of mixed oxides to the original 

DLHs phase or meixnerite [318,338]. The partial reconstruction could have been produced by side 

reactions during DRM, such as RWGS or hydrogenation, as reported elsewhere [285]. The reflections 

of Mg6Al2(OH)16CO3·4H2O were not observed in the spent HTNi-Y3.0, in contrast to both the calcined 

(cp. Fig. 4.2) and reduced catalysts (cp. Fig. 4.9). A possible explanation could be that the catalyst was 

fully transformed into the periclase phase during dry reforming of methane experiment, and the 

occurrence of side reactions did not lead to the partial regeneration of hydroxides. 

 

Fig. 4.16 TGA over the spent catalyst (CH4/CO2/Ar=1/1/8, 700 °C for 5 h). 

 



Chapter 4 – Dry reforming of methane (DRM) 

 

 145 

TGA data are presented in Fig. 4.16, where 20.0, 25.1, 16.7 and 27.4 % weight losses were recorded 

for HTNi, HTNi-Y0.4, HTNi-Y2.0 and HTNi-Y3.0, respectively. Additionally, a weight increase may be 

observed at 300 °C for the spent HTNi and HTNi-Y0.4 catalysts. According to Tsyganok et al. [191], this 

increase arises from Ni0 oxidation to NiO. The registered weight decrease at ca. 600 °C was linked to 

CO2 formation, which occurs due to the oxidation of carbonaceous species, formed upon dry reforming 

of methane [191,206]. The registered temperature suggests the formation of carbon filaments [317]. 

The formation of carbon filaments cannot be, however, linked directly to the CH4 decomposition 

because, as discussed in the previous subchapter, the activity of HTNi-Y0.4 for this reaction was lower 

than for HTNi (cp. Fig. 4.14). 

 

Fig. 4.17 Raman spectra of the spent catalysts (CH4/CO2/Ar=1/1/8, 700 °C for 5 h). The ID/IG ratio describes the 

degree of crystallinity of the formed carbon. 
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In order to examine the properties of carbonaceous species on the spent catalysts Raman 

spectroscopy was used. For HTNi and the Y-promoted materials, four bands were registered: D band, 

G band, D’ band and G’ band (Fig. 4.17). The D and Dʹ bands arise from a disorder in graphite structure 

and they were ascribed to the non-zone centered phonons associated to the disorder-induced 

vibration of C–C bond. The G and Gʹ bands refer to the stretching vibrations in the aromatic layers of 

graphite and they are only present in perfect crystalline graphite [339]. Table 4.6 presents the 

calculated ratios of the intensity of D and D’ bands to the intensity of G and G’ bands, ID/IG, which 

describe the graphitization degree of carbon and the disorder in its structure. The relative intensity of 

the D and G bands (ID/IG) gives valuable information about the crystallinity degree of the carbon formed 

during the DRM. The lower ID/IG ratio refers to a high crystallinity and high graphitization degree due 

to the higher contribution of the graphitized carbon fractions formed [340,341]. The Y-modified 

materials showed decreasing ID/IG ratios with 1.83 for HTNi versus 1.65, 1.23 and 0.84 for HTNi-Y0.4, 

HTNi-Y2.0 and HTNi-Y3.0, respectively (Table 4.6). Therefore, it can be concluded that different carbon 

structures were formed on the studied catalysts, and the carbon deposited on Y promoted materials 

is more graphitic [179]. The graphitic carbon is mainly responsible for deactivation, and acts like a shell 

covering the Ni particle layer by layer [334]. This shows that yttrium promotion influenced the DRM 

mechanism in favoring side reactions, such as for example CO2 hydrogenation.  

 

4.1.5. Conclusions 
 
Ni-containing Mg/Al double-layered hydroxides (DLHs) were promoted with Y. The catalysts were 

tested in dry reforming of methane in the temperature range of 850-600 °C, and in the stability tests 

at 700 °C for 5 h.  

The promotion with yttrium did not result in a separate crystalline phase formation but led to a 

decrease in the size of Ni crystallites as compared to non-modified Ni-DLHs. Also, a decrease in H2 

consumption was reported (Ni species strongly interacting with the periclase structure). In the HTNi-

Y2.0 and HTNi-Y3.0 catalysts, a stabilization of weakly bonded NiO was also observed. After 
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modification with yttrium amount of 0.2 to 2.0 wt.% the total basicity decreased, whereas the 

promotion with 3 wt.% led to a significant increase in the total number of basic sites, with mainly the 

number of Lewis pairs increased. The best material features were observed for Ni-based double-

layered hydroxides modified with 2.0 wt.% of Y. This catalyst, as compared to unmodified Ni-double 

layered hydroxide, showed: (i) smaller Ni crystallite size, (ii) higher specific surface area, and (iii) 

enhanced dispersion of Ni0.  

During DRM for HTNi-Y2.0, carbon formation was minimized as evidenced by TGA analysis. 

However, the presence of graphitic carbon formation was still proven by the XRD and Raman 

characterization techniques.  

During isothermal experiments the catalyst modified with 2.0 wt.% yttrium revealed the highest 

and the most stable values of H2/CO molar ratio. For all studied materials the H2/CO ratio was always 

lower than 1.0, with the lower ratios for HTNi-Y0.4 and HTNi-Y3.0 catalysts. This may have arisen from 

the consumption of H2 caused by the side reactions occurrence. Considering that HTNi-Y0.4 showed 

suppression of direct methane decomposition (CH4= C(s) + 2H2), it suggests that the formed carbon 

deposits could have originated from e.g. CO2 hydrogenation (CO2 + 2H2 = C(s) + 2H2O), which, in 

consequence, led to the decrease in H2 content in the product stream and the decrease of H2/CO ratio 

during DRM. It should be also mentioned that a partial reconstruction of the support was registered 

only in case of the unpromoted catalyst HTNi, and possibly HTNi-Y0.4, and manifested itself in the 

presence of Mg6Al2(OH)16CO3·4H2O reflections in XRD patterns. As this reconstruction requires the 

presence of CO2 and water, this shows that Y promotion leads to a better structural resistance to the 

side reactions which produce H2O, such as e.g. reverse water-gas shift reaction or CO2 hydrogenation.  
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4.2. Co-impregnation with zirconium and yttrium of Ni-based double layered-

hydroxides 

 
The promotion with zirconium oxide was reported as beneficial in terms of catalytic stability. Dębek 

et al. [203] studied three different concentrations of added zirconia (2.5, 5.4 and 9.7 wt.%) into 

Ni/Mg/Al hydrotalcites. The addition of Zr (2.5 wt.%) to the catalyst composition resulted in the 

enhancement of stability, which originated from the suppression of direct methane decomposition. 

On the other hand, this improvement resulted in the decrease in activity, together with a lower H2/CO 

product molar ratio. The catalyst modified with 5.4 wt.% of Zr provided satisfactory activity results, 

but it suffered in terms of stability [203]. Thus, to find a balance between activity and stability, 

stabilization of the catalytic system with zirconia (5 wt.% phase) was considered. The properties of 

ZrO2 can be tailored by the introduction of a cation with valence lower than 4+, e.g. Y3+ [309,342,343]. 

This results in the formation of defects in the crystal structure of zirconia, together with oxygen 

vacancies in its oxygen sub-lattice, which are known as beneficial in the minimization of carbon 

deposits [309,329,344,345]. The ZrO2-Y2O3 solid solution was studied in the past in different reforming 

processes [329,345–347]. Bellido et al. [309] prepared different Y/Zr catalysts with a varying mole 

fraction of Y (4 to 12 mol.%). The synthesized supported nickel 8YZ catalyst showed the best results in 

terms of activity and stability in the DRM [9]. The authors ascribed these properties to the increased 

formation of oxygen vacancies in the synthesized support.  

The aim of the study presented in this subchapter was to examine the influence of Ni/Mg/Al double-

layered hydroxides co-impregnated with a mixture of zirconium and yttrium, on the final physico-

chemical features of the resulting catalysts, their structure and catalytic behavior in DRM. 

Three zirconium and yttrium-modified catalysts were examined assuming 5.0 wt.% of Zr and 0.2, 0.4 

or 0.6 wt.% of Y. Moreover, a sample only impregnated with Zr was prepared in order to analyze the 

differences between Y-free and Y-promoted material. 
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4.2.1. Physicochemical properties  

 

Fig. 4.18 XRD diffractograms of the freshly synthesized materials promoted with Zr and Y (HTNi/Zr, 

HTNi/ZrY0.2, HTNi/ZrY0.4, HTNi/ZrY0.6) compared to HTNi. 

 

Fig. 4.18 presents XRD diffractograms of the freshly synthesized catalysts HTNi/Zr, HTNi/ZrY0.2, 

HTNi/ZrY0.4, HTNi/ZrY0.6 compared to HTNi. All materials showed a typical layered structure of 

hydrotalcite (ICOD 00-014-0191), which is recognized by the presence of (003), (006), (009), (110) and 

(113) planes reflections at 2q=11, 22, 35, 60 and 62°, respectively [197,205,244,316]. After 

modification with 0.4 and 0.6 wt.% yttrium, small shifts towards lower angles were registered, in the 

reflections arising from (003) and (006) planes. This indicates that the existing interlayer anions were 

not only carbonates but possibly also nitrate anions [197,248–250,284]. It is important to note that no 

additional reflections were observed, either for nickel or promoting zirconium and yttrium. Table 4.7 

presents the structural parameters of the freshly synthesized materials. The unit cell parameters a 

(cation-cation distance) remained stable after modification with Zr and Y. The obtained values of c (the 
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triple distance between brucite-like layers) slightly increased after promotion with metals, as Zr and Y 

were placed on the surface of catalysts. Based on the latter parameter, the c’ parameter was 

calculated. The value of 7.77-7.91 Å was obtained for all materials, indicating the presence of CO3
2- 

(7.65 Å) and NO3
- (8.79 Å) between the layers of hydrotalcite [197,244,248]. 

 

Table 4.7 Structural parameters of the freshly synthesized materials.  

Catalyst XRD 

d(003) d(006) d(009) a [Å]1) c [Å]2) c’ [Å] 

HTNi 7.84 3.91 2.60 3.06 23.45 7.82 

HTNi/Zr 7.84 3.91 2.58 3.06 23.40 7.80 

HTNi/ZrY0.2 7.79 3.89 2.58 3.06 23.31 7.77 

HTNi/ZrY0.4 8.02 3.97 2.59 3.06 23.72 7.91 

HTNi/ZrY0.6 7.91 3.94 2.59 3.07 23.56 7.85 

1) calculated from (110) spacing a=2d(110) as suggested by Cavani et al. [244] 

2) calculated from XRD patterns of the fresh catalysts, from the position of the three first reflections c=d(003) + 

2d(006) + 3d(009), as suggested by Liu et al. [207] 

 

Fig. 4.19 presents XRD patterns for the catalysts after calcination at 550 °C with characteristic 

reflections of nano-oxides having a periclase-like structure (ICOD 00-045-0946) (2q ca. 36.7, 43 and 

62.5°). Additionally, a separate phase of tetragonal zirconia (ICOD 01-079-1765) was recorded in 

HTNi/Zr sample [203,348]. This indicates the deposition of this oxide on the surface of the support. 

Similar observations were made by Dębek et al. [203]. The authors examined different concentrations 

of Zr (ca. 3, 5 and 10 wt.%) introduced into Ni/Mg/Al-hydrotalcites, and found that only the lowest 

amount of this metal could be introduced into the periclase-like structure, while the loading higher 

than 3 wt.% resulted in the formation of a separate phase of zirconia. On the other hand, the 

modification with yttrium did not result in the formation of a separate phase, which may be due to 

either the low loading of this metal or the presence of amorphous Y-compound. However, the 

existence of the ZrO2-Y2O3 phase (ICOD 01-070-4426) cannot be excluded. The position of the 
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reflection at 2q of ca. 30° differs for each sample, and is 30.66, 30.34, 30.28 and 30.30° for HTNi/Zr, 

HTNi/ZrY0.2, HTNi/ZrY0.4, and HTNi/ZrY0.6, respectively. The shift towards lower Bragg angles after 

the addition of yttrium, can arise from formation of ZrO2-Y2O3 phase [309,342,349–351]. This will be 

further examined in more detail for the reduced and spent materials.  

 

Fig. 4.19 XRD diffractograms of the calcined samples co-impregnated with Zr and Y (HTNi/Zr, HTNi/ZrY0.2, 

HTNi/ZrY0.4, HTNi/ZrY0.6) compared to HTNi. 

 

The elemental analysis of the calcined materials revealed the Ni content within 15-20 wt.% (Table 

4.8). During the synthesis step, 5 wt.% of Zr and Al3+/Zr4+=5.0 nominal values were assumed. However, 

the content of Zr and the Al3+/Zr4+ molar ratio were, respectively, 2.5, 2.7, 2.6, 2.4 wt.% and 15.3, 14.1, 

15.9, 16.1 for HTNi/Zr, HTNi/ZrY0.2, HTNi/ZrY0.4 and HTNi/ZrY0.6. These results show that Zr was only 

partially incorporated into the double-layered hydroxides structure, similarly as described by Dębek et 

al. [203]. The yttrium content was found to be the same as the nominal values, i.e., 0.2, 0.4 and 0.6 

wt.%. The Ni2+/Mg2+ molar ratio is close to the nominal values only for the unmodified material. The 
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values lower than 0.33 for other studied catalysts (containing zirconium and yttrium) suggest that Mg2+ 

ions were only partly substituted by assumed number of Ni2+.  

 

Table 4.8 Structural parameters, elemental composition, and textural properties for the calcined samples (HTNi, 

HTNi/Zr, HTNi/ZrY0.2, HTNi/ZrY0.4, HTNi/ZrY0.6). The values in brackets are nominal ones. 

Catalyst XRF N2 sorption 

Mg 
[wt.%] 

Al 
[wt.%] 

Ni  
[wt.%] 

Zr 
[wt.%] 

Y  
[wt.%] 

Ni2+/Mg2+  
molar 
ratio 

Al3+/Zr4+  
molar 
ratio 

S
BET

 

[m
2
/g]

 

1)
 

V
p
 

[cm
3
/g]

 

2)
 

d
p
 

[nm]
 

3)
 

HTNi 30 12 20 - - 0.29  
(0.33) 

- 120 0.6 19 

HTNi/Zr 31 12 16 2.5  
(5.0) 

- 0.21 
(0.33) 

15.3 
(5.0) 

105 0.6 18 

HTNi/ZrY0.2 30 11 18 2.7 
(5.0) 

0.2 
(0.2) 

0.24 
(0.33) 

14.1 
(5.0) 

107 0.6 18 

HTNi/ZrY0.4 32 12 15 2.6 
(5.0) 

0.4 
(0.4) 

0.19 
(0.33) 

15.9 
(5.0) 

107 0.5 19 

HTNi/ZrY0.6 32 12 15 2.4 
(5.0) 

0.6 
(0.6) 

0.20 
(0.33) 

16.1 
(5.0) 

107 0.5 18 

1) specific surface areas calculated from the BET equation  
2) mesopore volumes derived from the BJH desorption calculation method 
3) pore size distribution obtained from the BJH desorption calculation method 
 

The modification of HTNi with zirconium caused a slight decrease of the specific surface area SBET, 

from 120 m2/g to ca. 105 m2/g for HTNi/Zr (Table 4.8). This may be linked to the formation of the 

surface phase of ZrO2, which was registered in the XRD analysis. No significant changes of the textural 

properties were observed after the modification with yttrium. SBET had the same value of 107 m2/g for 

each of the Y-modified catalysts. Specific mesopore volume varied from 0.5 to 0.6 cm3/g, and pore 

diameters from 18 to 19 nm in all prepared catalysts.  
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4.2.2. Reducibility, basicity, Ni dispersion and crystallite size 
 
TPR-H2 profiles of the calcined materials showed a wide reduction peak starting from 600 °C and 

centered at ca. 850 °C (Fig. 4.20). According to the literature, this peak corresponds to NiO 

incorporated within the structure of periclase [203]. Zr and Zr/Y addition resulted in a rightward shift 

of the peak maximum, together with lower H2 consumption, and these features reflect the decrease 

of reducibility of the studied solids. The samples modified with 0.2% and 0.6% of Y show a peak 

maximum at ca. 847 °C. A more pronounced shift was observed for the Y0.4-promoted catalyst, which 

suggests stronger interaction of Ni particles with the support [285]. At lower temperatures, additional 

small peaks were registered. The one observed at 385 °C for HTNi catalyst is assigned to weakly-

bonded NiO [197]. After modification with Zr the doublet at 330 and 394 °C is probably due to the 

presence of bulk NiO [326,327]. The subsequent modification with 0.2 and 0.6 wt.% yttrium resulted 

in the stabilization of bulk NiO. This was not observed in the HTNi/ZrY0.4 catalyst, in which only one 

reduction peak centered at 400 °C was registered, indicating the absence of bulk NiO. 

 

Fig. 4.20 TPR-H2 profiles registered for HTNi/Zr, HTNi/ZrY0.2, HTNi/ZrY0.4 and HTNi/ZrY0.6 compared to HTNi. 
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Fig. 4.21 TPD-CO2 profiles of HTNi/Zr, HTNi/ZrY0.2, HTNi/ZrY0.4 and HTNi/ZrY0.6 compared to HTNi.  

 

Basicity was examined by TPD-CO2 technique. The obtained profiles are presented in Fig. 4.21, and 

the calculated values in Table 4.9. The total basicity decreased after promotion of HTNi material, from 

107 to, 72, 84, 85 and 79 µmol/g for HTNi/Zr, HTNi/ZrY0.2, HTNi/ZrY0.4 and HTNi/ZrY0.6, respectively. 

The promotion with Zr decreased the percentage of strong surface basic sites and slightly increased 

the percentage of medium and weak sites. After promotion with 0.2 wt.% of yttrium, the percentage 

of strong sites increased again from 29% for HTNi/Zr to 57%. This sample had the highest percentage 

of the strong basic sites. Higher yttrium loading caused gradual decrease of the percentage of the 
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strong sites, to 38% and 22% for HTNi/ZrY0.4 and HTNi/ZrY0.6, respectively. The opposite tendency 

was observed for the percentage of the medium basic sites, which increased after yttrium loading of 

0.4 and 0.6 wt.%. The basic sites of medium strength have been already reported to play a significant 

role in DRM [207].  

 

Table 4.9 Basic properties, Ni0 crystallite size and Ni0 dispersion for catalysts co-impregnated with Zr and Y.  

1) based on the Scherrer equation, from the width at half-maximum of the XRD reflections at 2q ca. 53° 

2) calculated from d = 97.1/(%D) based on the assumption of spherical crystallites of uniform size 

 

XRD patterns of the reduced samples are presented in Fig. 4.22. Characteristic reflections of 

periclase mixed oxides, metallic nickel Ni0 and ZrO2 are observed [204,285,352]. Additionally, XRD 

analysis revealed the possible presence of magnesium-zirconium oxide and aluminum-zirconium 

oxide, indicating strong interactions of Zr with the support. No separate phase of yttrium was 

registered, probably due to its low content, which makes it undetectable by XRD. However, Y-doping 

with 0.4 and 0.6 wt.% resulted in a shift of the reflection at 2q of ca. 30° (originating from ZrO2-Y2O3 

tetragonal phase: ICOD 01-070-4426), towards lower Bragg angles, which suggests an increase in the 

interlayer distance of zirconia, as reported elsewhere [309,342,349–351]. Yttrium ions can enter the 

zirconia crystal lattice, resulting in the formation of ZrO2-Y2O3 solid solution, and this was confirmed 

by HRTEM analysis over the spent materials, discussed further in the text. The size of ZrO2 crystallites 

Catalyst TPR-H2 TPD-CO2 XRD H2 chemisorption 

H2 uptake 
[mmol 
H2/g] 

Weak 
[%] 

Medium 
[%] 

Strong 
[%] 

Total 
basicity 

[µmol/g] 

Ni0 

crystallite 
size [nm]1) 

Ni0 

dispersion 
[%] 

Ni0 

crystallite 
size [nm]2) 

HTNi 0.209 16 41 43 107 8 8.9 11 

HTNi/Zr 0.179 22 49 29 72 10 7.8 12 

HTNi/ZrY0.2 0.174 13 30 57 84 10 9.8 10 

HTNi/ZrY0.4 0.154 20 42 38 85 11 10.0 10 

HTNi/ZrY0.6 0.177 20 58 22 79 10 11.1 9 
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(calculated from the Scherrer equation using the half-width of the 2q diffraction line at 31°), was 11 

nm for the Zr-containing materials. Asencios et al. [329] studied NiO/Y2O3/ZrO2 catalysts in which a 

decrease of the ZrO2 crystal size was observed after yttrium promotion (4.87-29.52 wt.%). As the 

content of Y introduced into the Zr,Y-co-impregnated catalysts was lower, the stable crystallite size of 

ZrO2 does not contradict the possibility of Y3+ introduction into the ZrO2 lattice to form the solid 

solution. The calculated mean size of Ni crystallites (based on at reflection at 2q ca. 52°) was found to 

be practically the same for all studied catalysts. No shift of Ni0 reflections was observed for any of the 

tested materials, indicating the absence of either Y2O3-NiO or ZrO2-NiO solid solutions [329]. 

 

 

Fig 4.22 XRD patterns recorded for Zr,Y-impregnated catalysts reduced in a mixture of H2/Ar at 900 °C. 

 

The dispersion of nickel for the HTNi material slightly decreased after the modification with 

zirconium, from 8.9% for HTNi to 7.8% for HTNi/Zr (Table 4.9). After further promotion with yttrium 

an increase of Ni dispersion was observed, showing the highest value for HTNi/ZrY0.6 catalyst. Such 

increase of dispersion after Y-promotion was also reported by Huang et al. [314] and Li et al. [311], as 

well as observed for the hydrotalcite HTNi samples (without Zr promotion) as discussed in Subchapter 

4.1. 
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4.2.3. Catalytic activity and stability in DRM 

 

Fig. 4.23 DRM performance tests (CH4- and CO2-conversion, H2/CO molar ratio) conducted for co-impregnated 

Zr- and Y- Ni/Mg/Al hydrotalcites; tests conditions: CH4/CO2/Ar=1/1/8, GHSV=20,000 h-1, the temperature range 

600-850 °C. Solid lines represent thermodynamic equilibrium. 

 

Fig. 4.23 presents catalytic results of the DRM in terms of CH4 and CO2 conversion and H2/CO 

product ratio in the 600-850 °C range. All catalysts were active under the tested DRM conditions, 

showing within experimental error, a similar methane and carbon dioxide conversion, with the 

exception of HTNi/ZrY0.2 catalyst with a worse performance. The CO2 conversion was higher than that 

of CH4, indicating the occurrence of side reactions, mainly RWGS, which is in agreement with the 

obtained H2/CO ratio which was lower than unity [96,114,329]. 
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Stability tests were carried out at 700 °C for 300 min (5 h) for HTNi/Zr and HTNi/ZrY0.4 catalysts and 

compared to unpromoted HTNi (Fig. 4.24). For the HT/ZrY0.4 catalyst, the conversions were higher 

than for HTNi/Zr. For the latter, the conversions constantly increased with TOS during the first 75 min 

of DRM. This may suggest unstable performance of the Zr-impregnated catalyst, and a possible 

enhancement of the stability due to the yttrium addition since HTNi/ZrY0.4 did not show such 

behavior. The worst catalytic performance was obtained for the unmodified material, where after 75 

min of DRM CH4 and CO2 conversions of respectively 72.7% and 74.7%, were registered. These results 

are in contrast to those reported by Dębek et al. [197,203], which were obtained for Ni-based 

hydrotalcites at 550 °C (CH4/CO2=1, GHSV=20,000 h-1). The latter study reported that the unpromoted 

catalyst (HT) showed considerable selectivity towards direct decomposition of CH4, which led to 

increasing H2/CO ratio due to the excess hydrogen. Also, the HT catalyst presented higher activity than 

the Zr-modified materials (3-10 wt.%). A similar trend was observed in other activity tests of Dębek et 

al. [203] carried out at 650 and 750 °C, over the HNi and HNiZr3 samples. Thus, in this study, it is shown 

that impregnation of Ni/Mg/Al double-layered hydroxides with Zr (5 wt.%) and Y (0.4 wt.%) not only 

enhanced the stability in DRM but also improved the catalytic activity as compared to the unmodified 

Ni-based catalyst. 
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Fig. 4.24 DRM performance tests (CH4- and CO2-conversion, H2/CO molar ratio) conducted for Zr,Y-promoted 

Ni/Mg/Al hydrotalcites; tests conditions: CH4/CO2/Ar=1/1/8, GHSV= 20,000 h-1 at 700 °C for 5 h. 

 

The differences in catalysts stability are related with the improvement of Ni dispersion (H2 

chemisorption) and changes in basicity (TPD-CO2). Both were reported to contribute to better catalytic 

performance [154,161,205].  

The formation of ZrO2-Y2O3 solid solution (observed in XRD for HTNi/ZrY0.4 and HTNi/ZrY0.6) did 

not lead to an increased reducibility of the Y-loaded materials, in contrast to the previously reported 

other materials containing Zr and Y oxides [311,329,345]. The increase of H2 uptake observed in TPR 

could be explained by the possible formation of oxygen vacancies. However, the identification and 

characterization of oxygen vacancies is still challenging and requires more sophisticated techniques, 

such as: scanning tunneling microscopy (STM), atomic force microscopy (AFM), or electron 

paramagnetic resonance (EPR) [353]. The oxygen vacancies (called by Pacchioni [354] “the invisible 
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agents on oxide surfaces”) are believed to  increase the rate of removal of carbon  located in the vicinity 

of active nickel. This can be realized via the reverse Boudouard reaction (CO2 + C = 2 CO) [355]. Although 

the decreased reducibility was observed in the HTNi/ZrY0.4 catalyst, the detected ZrO2-Y2O3 phase was 

largely able to lead to the reduction of the surface NiO by decreasing the formation of bulk NiO. This 

may contribute to the better stability and less coke formation. 

 

4.2.4. Characterization of the spent catalysts after the TPSR test 

 

Fig. 4.25 XRD diffractograms recorded for the spent catalysts (after TPSR catalytic test). 

 

XRD patterns of the spent catalysts after TPSR tests are presented in Fig. 4.25. Apart from the 

reflections arising from Ni0, ZrO2, ZrO2-Y2O3 and periclase phases, the ones resulting from hydrotalcite 

(H) are also observed for HTNi/Zr, HTNi/ZrY0.2 and HTNi/ZrY0.6 catalysts. This indicates a partial 

regeneration of the support during DRM, which may be observed in hydrotalcite-derived materials in 

the presence of water [285]. This suggests that one of the side reactions, such as RWGS (CO2 + H2 = CO 
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+ H2O), had a significant involvement in the DRM of these catalysts. On the other hand, the HTNi/Zr-

Y0.4 did not reveal the presence of (003), (006) and (009) planes characteristic for hydrotalcite, proving 

a better stability of this material.  

 

Fig. 4.26 HRTEM micrographs with EDS analysis for the spent HTNi/Zr (A) and HTNi/ZrY0.4 (B) catalysts. 

 

HRTEM images of the spent catalysts are shown in Figs. 4.26 A and B. On the left-hand side (Fig. 

4.26 A), the micrographs of the spent HTNi/Zr catalyst are presented. The histogram of Ni particles size 

showed values in the range of 4 to 18 nm. Carbon nanotubes were also registered in this material. The 

EDS analysis proved the existence of Ni and Zr. A detailed examination showed the presence of ZrO2 

aggregates with the particle sizes in the range of 6 to 11 nm, and interplanar distance in the 0.29-0.30 

nm range. No ZrO2-NiO solid solution was found. On the right-hand side (Fig. 4.26 B), the images of the 

spent HTNi/ZrY0.4 catalyst are presented. The histogram of Ni particles revealed similar average size 

of Ni aggregates as for HTNi/Zr. These values are also similar to Ni0 crystallite size for both HTNi/Zr and 

HTNi/ZrY0.4 reduced samples (cp. Table 4.9). For the latter sample, the EDS analysis revealed the 
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presence of zirconium in the direct vicinity of yttrium. ZrO2-Y2O3 solid solution (with d-spacing of 0.29, 

0.28, 0.30 nm) was observed in the form of aggregates. For both HTNi/Zr and HTNi/ZrY0.4 spent 

catalysts, graphitic carbon was registered with an interlayer distance of 0.27 to 0.32 nm [356,357]. It 

can be observed that certain Ni crystallites are encapsulated in carbon, which is considered as one of 

the main reasons for catalysts deactivation in DRM [96]. 

 

4.2.5. Characterization of the spent catalysts after the isothermal tests 

The phase composition, carbon formation, and crystallite size of the active metal (Ni0) were examined 

by XRD. XRD diffractograms are presented in Fig. 4.27 for HTNi/Zr and HTNi/ZrY0.4 catalysts after 

isothermal tests, and compared with the XRD pattern of HTNi (also after DRM reaction). The reflections 

characteristic for the thermal decomposition of hydrotalcite (periclase-mixed oxides) at 2q, ca. 37, 43 

and 63° (ICOD 00-045-0946), metallic nickel at 2q ca. 44, 53° (ICOD 01-087-0712) and graphitic carbon 

at 2q ca. 27° (ICOD 01-075-2078) were recorded. For the latter, the intensities of the XRD reflections 

differ for HTNi, HTNi/Zr and HTNi/ZrY0.4 samples. As suggested by Dębek et al. [197] lower intensity 

of graphite reflections may be linked with better stability of the catalyst, and in the current study, the 

lowest intensity was observed for HTNi/ZrY0.4 sample. The crystallite sizes of metallic nickel calculated 

by Scherrer equation (using the half-width of reflection at 2q ca. 53°) are presented in Table 4.10. For 

all the catalysts the Ni crystallite size did not change as compared to the reduced materials (cp. Table 

4.9). Thus, the deactivation of catalysts was not linked with the sintering of nickel particles.  

Moreover, the separate phases of ZrO2 and ZrO2-Y2O3 were recorded, similarly as for the reduced 

materials (cp. Fig. 4.22). Also, the same as for the spent catalysts after TPSR tests, no partial 

reconstruction of hydrotalcite was found for the catalysts promoted with 0.4 wt.% yttrium, indicating 

an increased structural resistance, i.e., only the unmodified material HTNi as well as HTNi/Zr catalyst 

showed hydrotalcite reflections after 5 h-catalytic runs at 700 °C. Thus, it can be concluded that the 

promotion with 0.4 wt.% Y considerably stabilized the periclase phase (solid solution NiO-MgO-Al2O3). 
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Fig. 4.27 XRD diffractograms of the HTNi/Zr and HTNi/ZrY0.4 spent catalysts (after isothermal catalytic test) 

compared to HTNi. 

 

Table 4.10 Properties of the spent catalysts (HTNi/Zr and HTNi/ZrY0.4) compared to unmodified HTNi.  
 

1) based on the Scherrer equation, from the width at half-maximum of the XRD reflections at 2q ca. 52° 
2) resulting from carbon oxidation, calculated assuming the initial mass of the analyzed sample, i.e., 10.5-10.0 mg 

Catalyst 

XRD TGA Raman 

Type of carbon (based on XRD, 
TGA and Raman) Ni0 crystallite 

size [nm] 1) 

Mass loss due 
to carbon 

oxidation [%] 

Mass loss 
[mg] 2) ID/IG [-] 

HTNi  7 20.0 2.0 1.83 Graphite-like carbon (with low 
order) + filamentous carbon 

HTNi/Zr  9 13.9 1.5 1.47 Graphite-like carbon + 
filamentous carbon 

HTNi/ZrY0.4 12 18.2 

 

1.9 

 

1.02 Graphite-like carbon (with high 
order) + filamentous carbon + 

amorphous carbon 
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Fig. 4.28 TGA plots for the HTNi/Zr and HTNi/ZrY0.4 spent catalysts (after isothermal catalytic test) compared to 

HTNi. 

 

TGA plots for the spent catalysts after isothermal tests are presented in Fig. 4.28. Three regions of 

carbon removal may be distinguished basing on the oxidation temperature: (i) amorphous carbon (T < 

300 °C), (ii) ordered carbon nanotubes (400–700 °C), and (iii) graphite (>800 °C) [358–360]. According 

to Zhang et al. [173] amorphous carbon can participate in the formation of synthesis gas via gasification 

with CO2 or H2O, while graphite leads to catalysts deactivation. Additionally, in Fig. 4.28  the mass loss 

from ambient temperature to ca. 200 °C is assigned to the removal of adsorbed water [172,285,360]. 

The weight loss, from 200 to 380 °C, was only recorded for the spent HTNi/ZrY0.4 catalyst (6.8%), and 

resulted from the oxidation of amorphous carbon [361]. In all samples, the main mass loss occurred 

between ca. 450 °C and ca. 600, 650 or 750 °C for HTNi, HTNi/Zr or HTNi/ZrY0.4 catalysts, respectively. 

This mass loss results from oxidation of filamentous carbon, such as for example carbon nanotubes 

and carbon nanofibers (CNTs and CNFs) [334]. Respectively for HTNi, HTNi/Zr and HTNi/ZrY0.4 catalysts 
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this mass loss was 20.0%, 13.9% and 11.4%. No mass change in the TGA plot at ca. 800 °C was 

registered. 

The properties of the formed carbon deposit were investigated by Raman spectroscopy (Fig. 4.29). 

Five peaks at 1328 cm-1 (D band), 1590 cm-1 (G band), 1603 cm-1 (D’ band), 2648 cm-1 (G’ band) and 

2911 cm-1 (D+G band) were detected for all samples. The first two peaks are typical for CNTs [334,362]. 

The D band indicates structural imperfections of graphite, while the G band is ascribed to in-plane 

carbon–carbon stretching vibrations of graphite layers [166]. Another disorder, known as Dʹ-band, 

appears as a shoulder of the classical G-band. The Dʹ mode is observed for graphitic defects or 

disordered carbons, and does not exist in pure graphite [334]. The G’ band is the most intense peak in 

the spectrum of crystalline graphite and graphene, whereas the G+D band is a combination of the G 

and D modes, typical for disturbed graphitic structures [341,363]. The degree of crystallinity of the 

formed carbon was determined by estimation of the relative intensity of the D and G-bands (ID/IG). An 

ID/IG ratio near zero indicates well-structured hard carbon, whereas high value of ID/IG suggests the 

formation of soft carbon with amorphous character [179]. The calculated values are presented in Table 

4.10, and follow the order HTNi (ID/IG=1.83) > HTNi/Zr (ID/IG=1.47) > HTNi/ZrY0.4 (ID/IG=1.02). This 

shows that different carbon structures were formed on the spent catalysts. Although the oxidation of 

amorphous carbon was only reported in HTNi/ZrY0.4 (cp. Fig. 4.28), on the whole this sample showed 

the highest degree of graphitization. The differences between TGA and Raman spectroscopic results 

may originate from the heterogeneity of the studied catalysts, similarly as reported by Saché et al. 

[179], who found, at two different spots of the Ni-Sn sample, totally different ID/IG ratios, of 2.01 

(amorphous character) and 0.61 (well-structured hard carbon). The value given in Table 4.10 and Fig. 

4.29, is an average of the ID/IG values obtained at four different points on the sample. 
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Fig. 4.29 Raman spectra for the spent HTNi/Zr and HTNi/ZrY0.4 catalysts compared to HTNi. The ID/IG ratio 

describes the degree of crystallinity of the formed carbon. 

 

4.2.6. Conclusions 

In this subchapter, Ni/Mg/Al hydrotalcites (HT) were co-impregnated with Zr and Y (0.2, 0.4, 0.6 wt.%) 

and tested in the two types of dry reforming of methane (DRM) tests, i.e., in the temperature range of 

850-600 °C (TPSR), and in the stability tests at 700 °C for 5 h.  

Dry impregnation of HT with a mixture of Zr and Y nitrates resulted in the formation of segregated 

phase of ZrO2 in all Zr-containing samples, and ZrO2-Y2O3 solid solution in these samples which were 

promoted with 0.4 or 0.6 wt.% Zr and Y. A decrease in reducibility, together with lower H2 consumption 

and stronger interactions of nickel with the modified-HT support were observed. All Zr- and Y-

promoted catalysts showed presence of bulk NiO, except the HTNi/ZrY0.4 catalyst. The promotion with 

Zr led to the decreased basicity as well as changes in basicity distribution. The percentage of medium 

basic sites was increasing with the increasing yttrium loading, whereas the opposite effect was 
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observed for the strong sites. For the latter, higher yttrium loading caused gradual decrease of the 

percentage of the strong sites.  

During the DRM test, all catalysts showed similar catalytic behavior (within experimental error), 

except the sample modified with 0.2 wt.% Y for which CH4 and CO2 conversions were lower. However, 

only HTNi/ZrY0.4 presented structural resistance to the products of the RWGS side reaction, as 

supported by the absence of hydrotalcite reflections in the XRD patterns of the spent catalyst. The 

material promoted with Zr and 0.4 wt.% of Y was catalytically active and stable in DRM (CH4/CO2=1) at 

700 °C. Moreover, the improvement of catalyst stability was clearly shown at 700 °C for 5 h of TOS, 

where the HTNi/ZrY0.4 catalyst was more stable than the Y-free material. The observed better stability 

may have arisen from favorable changes in the distribution of surface basic sites, reduction of bulk 

NiO, improved Ni dispersion and formation of ZrO2-Y2O3 solid solution.  

The characterization of the spent catalysts showed the formation of graphite-like carbon, 

filamentous and amorphous carbon deposits. The latter was observed to a higher extent in the 

HTNi/ZrY0.4 catalyst.  
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4.3. Co-precipitation with zirconium and impregnation with yttrium versus co-

precipitation with zirconium and yttrium 

 
This subchapter is a continuation of the study focused on the Zr and Y promotion discussed in 

Subchapter 4.2. The aim of the study was to examine the influence of the method of introduction of 

promoters on physico-chemical features of the resulting catalysts, their structure and catalytic 

behavior in dry reforming of methane (DRM). Ni/Mg/Al double-layered hydroxides promoted with Zr 

and Y introduced via co-precipitation of Ni, Mg, Al and Zr compounds and impregnation with yttrium 

were prepared, while in Subchapter 4.2 the catalysts promoted via impregnation of both Zr and Y onto 

Ni/Mg/Al hydrotalcite were discussed. Five catalysts were prepared. Three were modified with 

zirconium (5.0 wt.%) and yttrium (0.2, 0.4 or 0.6 wt.%) via co-precipitation of Ni/Mg/Al/Zr and by 

incipient wetness impregnation with Y. The fourth catalyst was prepared similarly, without Y. The fifth 

catalyst was prepared by co-precipitation of all Ni, Mg, Al, Zr and Y components, and contained 

(assumed) 5.0 wt.% of Zr and 0.4 wt.% of Y. The 0.4 wt.% concentration of yttrium was chosen taking 

into account the following experimental findings (discussed in more detail in Subchapter 4.2.): (i) high 

catalytic activity and significantly better stability than for HTNi/Zr, (ii) the structural resistance towards 

the side reaction products (water), and the lack of the partial reconstruction of the hydrotalcite 

structure, and (iii) the considerable presence of amorphous carbon, which can contribute to the 

synthesis gas production via gasification. The mentioned materials were compared with Ni/Mg/Al/Zr 

co-precipitated catalyst.  

  

4.3.1. Physicochemical properties 

The XRD of fresh double-layered hydroxides is presented in Fig. 4.30. All recorded diffractograms 

have reflections typical for double-layered hydroxides (hydrotalcite) at 2q ca. 11, 22, 35, 61 and 62°, 

originating from (003), (006), (009), (110) and (113) planes, respectively. Structural parameters a, c, 

and c’ are summarized in Table 4.11. Unit cell parameter, indicating the average cation-cation 
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distances, slightly increased after the addition of Zr (3.6 versus 3.7 Å). Since ionic radius of Zr4+ (0.72 

Å) is bigger than Al3+ (0.675 Å), this suggests a partial substitution of alumina by zirconia ions increasing 

the distance between the cations in periclase layers [203,316,364,365]. The values for the c and c’ 

parameters of the unit cell are respectively in the range of 23.43-23.62 Å and 7.81-7.87 Å, indicating 

the presence of carbonate anions between the layers of hydrotalcite (7.65 Å). The slight increase of 

parameter c suggests the deposition of yttrium on the catalysts surface. As described in Subchapters 

4.1 and 4.2, a slight shift towards lower angles of d003 was registered, indicating, additionally, the 

possible presence of interlayer NO3
2- anions [248–250,284].  

 

Fig. 4.30 XRD diffractograms of the freshly synthesized materials co-precipitated with Zr and impregnated with 

Y (HTNi-Zr, HTNi-Zr/Y0.2, HTNi-Zr/Y0.4, HTNi-Zr/Y0.6) compared to HTNi. “-“ in the name of the sample 

designates the introduction of promoter/s via co-precipitation with Ni, Mg and Al; “/” designates the introduction 

via impregnation of Y onto HTNi-Zr. 
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The textural features of the studied catalysts are summarized in Table 4.11. Specific surface area 

was between 120-150 m2/g, typical for this kind of materials [197,203,253,258]. Co-precipitation with 

Zr resulted in an increase of SBET and a decrease in pore size diameter, similarly as reported in the 

literature [188,203], while no change in mesopore volume was registered.  After promotion of HTNi-

Zr sample with yttrium, specific surface area decreased from 150 m2/g to 131, 126 and 122 m2/g for 

HTNi/ZrY0.2, HTNi/ZrY0.4 and HTNi/ZrY0.6, respectively, as a consequence of the metal deposition on 

the catalyst surface and blockage of the pores. The co-precipitation with Zr and 0.4 wt.% Y also led to 

a decrease of SBET and the volume of the mesopores was slightly reduced.  

 

Table 4.11 Structural parameters of the freshly synthesized materials and textural features of calcined materials. 

Catalyst XRD N2 sorption 

a [Å]1) c [Å]2) c’ [Å] S
BET

 [m2/g]3) V
p
 [cm3/g]4) d

p
 [nm]5) 

HTNi 3.06 23.45 7.82 120  0.6  19  

HTNi-Zr 3.07 23.56 7.85 150  0.5  11  

HTNi-Zr/Y0.2 3.07 23.48 7.83 131  0.5  10  

HTNi-Zr/Y0.4 3.07 23.62 7.87 126  0.4  10  

HTNi-Zr/Y0.6 3.07 23.55 7.85 122  0.4  10  

HTNi-ZrY0.4 3.07 23.43 7.81 95 0.3 6 

1) calculated from (110) spacing a=2d(110) as suggested by Cavani et al. [244] 

2) calculated from XRD patterns of the fresh catalysts, from the position of the three first reflections c=d(003) + 

2d(006) + 3d(009), as suggested by Liu et al. [207] 
3) specific surface areas calculated from the BET equation  

4) mesopore volumes derived from the BJH desorption calculation method 
5) pore size distribution obtained from the BJH desorption calculation method 

 

The co-precipitation with both Zr and Y led to the different porosity than that registered after the Zr,Y-

co-impregnation (Table 4.12), with much lower average pore dimeter and pore volume registered for 

the former. This shows that the way of yttrium introduction influences the volume of the pores and 

average pore diameter. Possibly upon Zr and Y co-precipitation synthesis, not only Zr, but also yttrium 



Chapter 4 – Dry reforming of methane (DRM) 

 

 171 

was incorporated in the framework of periclase-like structure, leading to the creation of smaller 

mesopores with less volume (Table 4.12). 

 

Table 4.12 Comparison of textural properties of the calcined samples depending on the way of Zr and Y 

introduction.  

Catalyst 
Promoter introduced via: 

Zr-coP Zr-Y-coP Zr-Y-Imp Zr-coP, Y -Imp 

Designation HTNi-Zr HTNi-ZrY0.4 HTNi/ZrY0.4 HTNi-Zr/Y0.4 

SBET [m2/g] 150 95 107 126 

Vp [cm3/g] 0.5 0.3 0.5 0.4 

dp [nm] 11 6 19 10 

coP - co-precipitation 

Imp - dry impregnation 

 

The composition of the studied catalysts is given in Table 4.13. The calcined materials had Ni 

contents within 20-25 wt.%, which is close to the value assumed during the synthesis step. The zirconia 

content differs from the nominal value of 5.0 wt.%, and for the Zr-containing materials the following 

values were recorded: 3.6, 2.8, 3.5, 4.6 and 4.1 wt.% for HTNiZr, HTNiZr/Y0.2, HTNiZr/Y0.4, 

HTNiZr/Y0.6, HTNiZrY0.4, respectively. According to Dębek et al. [203], lower values of detected 

zirconia content may arise from the loss of Zr to another oxide phase. Moreover, as mentioned in 

Subchapter 4.2., the presence of magnesium-zirconium oxide and aluminum-zirconium oxide cannot 

be excluded. The Ni2+/Mg2+ molar ratio is close to the nominal values only for the unmodified material 

HTNi, and HTNi-Zr, HTNi-Zr/Y0.2 catalysts. The impregnation with 0.4 and 0.6 wt.% Y resulted in the 

increased Ni2+/Mg2+ molar ratio. The value below 0.33 for HTNi-ZrY0.4 indicates that Mg2+ ions were 

only partly substituted by the assumed number of Ni2+. The M2+/M3+ molar ratio was only slightly higher 

than assumed 3.0.  
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Table 4.13 Structural parameters, elemental composition, and textural properties for the calcined samples (HTNi-

Zr, HTNi-Zr/Y0.2, HTNi-Zr/Y0.4, HTNi-Zr/Y0.6 and HTNi-ZrY0.4) compared to unpromoted HTNi. The numbers in 

brackets are nominal values. 

Catalyst 

XRF 

Mg 
[wt.%] 

Al 
[wt.%] 

Ni  
[wt.%] 

Zr 
[wt.%] 

Y  
[wt.%] 

Ni2+/Mg2+  
molar  
ratio 

M2+/M3+ 

molar 
ratio 

Al3+/Zr4+  
molar 
ratio 

HTNi 30 12 20 - - 0.29 
(0.33) 

3.6 
(3.0) 

- 

HTNi-Zr 26 9 23 3.6 
(5.0) 

- 0.36 
(0.33) 

3.8 
(3.0) 

8.9 
(5.0) 

HTNi-Zr/Y0.2 29 9 20 2.8  
(5.0) 

0.2 0.29 
(0.33) 

3.7 
(3.0) 

10.8 
(5.0) 

HTNi-Zr/Y0.4 23 8 25 3.5  
(5.0) 

0.4 0.46 
(0.33) 

3.8 
(3.0) 

8.0 
(5.0) 

HTNi-Zr/Y0.6 23 9 24 4.6 
(5.0) 

0.7 0.44 
(0.33) 

3.4 
(3.0) 

6.7 
(5.0) 

HTNi-ZrY0.4 32 13 20 4.1 
(5.0) 

0.5 0.26 
(0.33) 

3.4 
(3.0) 

10.9 
(5.0) 

 

Upon calcination, the double-layered hydroxides were transformed into mixed oxides with a 

periclase-like structure (Fig. 4.31). The co-precipitation with Zr led to the formation of a separate phase 

of tetragonal ZrO2 (ICOD 01-079-1765), similarly as shown in the diffractograms for HTNi/Zr, 

HTNi/ZrY0.2, HTNi/ZrY0.4, HTNi/ZrY0.6 (Subchapter 4.2.).  
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Fig. 4.31 XRD patterns for Zr- and Y-promoted catalysts calcined at 550 °C for 5 h. 

 

Table 4.14 presents the comparison of the phases registered during XRD analysis. The XRD patterns 

for HTNi-Zr/Y0.4 and HTNi-ZrY0.4 samples still reveal three reflections which are characteristic for 

hydrotalcite structure. This shows that for both materials a higher calcination temperature is required 

to fully transform their structure into periclase-mixed oxides. This was not observed for the samples 

co-precipitated with Zr and co-impregnated with Zr and Y. For the latter, more crystalline form of ZrO2 

was recorded, as more sharp reflections were registered at 2q ca. 30° and 50° (cp. Fig. 4.19 in 

Subchapter 4.2.). For the Zr co-precipitated catalysts, however, only a small shoulder was observed in 

XRD patterns (Fig. 4.31). Similar shoulder was observed elsewhere [203] for calcined HNiZr5 sample.  
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Table 4.14 Comparison of phase composition of the calcined samples depending on the way of Zr and Y 

introduction.  

Catalyst Promoter introduced via: 

Zr-coP Zr-Y-coP Zr-Y-Imp Zr-coP, Y -Imp 

Designation HTNi-Zr HTNi-ZrY0.4 HTNi/ZrY0.4 HTNi-Zr/Y0.4 

Hydrotalcite (H) - + - + 

Periclase (p) + + - + 

Zirconia (Z) + + + + 

Zirconia-Yttria (ZY) - - + - 

coP - co-precipitation 

Imp - dry impregnation 

“+” indicates the presence, “-“ the absence  

 

4.3.2.  Reducibility, basicity, Ni dispersion and crystallite size 

 

Fig 4.32 TPR-H2 profiles for Zr- and Y-modified catalysts. 

 

Fig. 4.32 presents the TPR-H2 profiles for the calcined double-layered hydroxides modified with Zr 

and Y. All profiles exhibit a wide asymmetric peak at temperatures between 805 and 857 °C, arising 

from the reduction of nickel oxide species in the periclase-like structure. The maximum temperature 

for these peaks is shifted to higher values after introduction of Zr via co-precipitation with Ni, Mg and 

Al, pointing to stronger interactions of NiO, due the formation of a highly stable NiO–MgO solid 
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solution. Similar observation was reported in the study of Dębek et al. [203]. In case of the Y-doped 

catalysts presented in Fig. 4.32, a shift towards lower reduction temperatures was observed for the 

Ni-phase, pointing to easier NiO reduction upon the introduction of yttrium species. The shifts towards 

lower temperature were more distinct after promotion with 0.2 and 0.4 wt.% Y, with values even lower 

than that for the unpromoted HTNi catalyst. After addition of 0.6 wt.%, the temperature was only 

slightly higher than for the unmodified catalyst, i.e., 833 versus 828 °C for HTNi. The increased 

reductivity arising from yttrium addition was not observed for co-impregnated catalysts (cp. 

Subchapter 4.2.). H2 uptake values, calculated from the area under the TPR-H2 profiles, are listed in 

Table 4.15. Zr modification resulted in the decreased H2 consumption in comparison to the one 

registered for HTNi catalyst, due to the stronger interactions of Ni species with the support. However, 

after further promotion with yttrium (0.2-0.6 wt.%) only small differences in H2 consumption were 

registered. The HTNi-Zr/Y0.2 and HTNi-ZrY0.4 catalysts which had the lowest reduction temperature 

(cp. Fig. 4.32), did not show the highest H2 consumption. Similar observation was reported for the 

HTNi-Y3.0 catalyst discussed in Subchapter 4.1. The hydrogen consumption formed the following 

sequence: 0.110, 0.142, 0.133, 0.148 and 0.196 mmol H2/g respectively for HTNi-Zr, HTNi-Zr/Y0.2, 

HTNi-Zr/Y0.4, HTNi-Zr/Y0.6 and HTNi-ZrY0.4. Thus, the promotion with metals decreased the H2 uptake 

in contrast to unpromoted HTNi.  
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Table 4.15 Hydrogen uptake, textural properties, basicity and Ni dispersion for Zr and Y-modified catalysts. 

 

n.m. – not measured 
1) specific surface areas calculated from the BET equation  

2) mesopore volumes derived from the BJH desorption calculation method 
3) pore size distribution obtained from the BJH desorption calculation method 
4) before H2 chemisorption the samples were reduced in situ  
 

XRD diffractograms acquired for the reduced catalysts are presented in Fig. 4.33. Similarly, as for 

the co-impregnated Zr and Y materials, characteristic reflections of periclase-mixed oxides, metallic 

nickel and ZrO2 were recorded. The reduced materials showed sharper reflections of tetragonal 

zirconia than the calcined materials (cp. Fig. 4.31). Crystallite size calculated for ZrO2 (at 2q=30°) was 5 

nm for HTNi-Zr, HTNi-Zr/0.2, HTNi-Zr/Y0.4, HTNi-Zr/Y0.6 and HTNi-ZrY0.4 catalysts. This value is lower 

than the one registered for co-impregnated Zr,Y materials described in previous Subchapter 4.2. (ZrO2 

crystallite size of 11 nm). This suggests that co-precipitation led to the formation of smaller particle 

size of this promoter, thus its better dispersion, which, as discussed later, influenced the catalytic 

performance. Moreover, neither impregnation nor co-precipitation with yttrium resulted in the 

formation of its segregated phase, thus indicating the deposition of yttrium on the surface of the 

studied materials. Similarly as described in the previous chapters, the lack of the yttrium separate 

Catalyst 

TPR-H2 

Calcined 
materials 

N2 sorption 

Reduced materials 

TPD-CO2 

Reduced materials 

H2 
chemisorp- 

tion 

Calcined 
materials4) 

H2 uptake 
 [mmol H2/g] 

SBET 

[m2/g]1) 
Vp

 

[cm3/g]2) 
dp

 

[nm]3) 
Weak 

[%] 
Medium 

[%] 
Strong 

[%] 
Total 

basicity 
[µmol/g] 

Ni 
dispersion 

[%]  

HTNi 0.209 68  0.4  21  15 42 43 107 8.9 

HTNi-Zr 0.110 90  0.4  16  24 50 26 62 8.6 

HTNi-Zr/Y0.2 0.142 91  0.4  16  7 30 63 114 5.1 

HTNi-Zr/Y0.4 0.133 79  0.4  11 14 35 51 43 6.9 

HTNi-Zr/Y0.6 0.148 101  0.5  15  13 47 41 64 6.6 

HTNi-ZrY0.4 0.196 n.m n.m n.m - 58 42 153 10.2 
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phase may arise from either the low content of the metal and/or its high dispersion. No shift of the 

reflection arising from Zr was observed, indicating that ZrO2-Y2O3 solid solution was not formed.  

 

 

Fig 4.33 XRD patterns for Zr,Y-modified catalysts reduced in a mixture of H2/Ar at 900 °C. “-“ in the name of the 

sample designates the introduction of promoter/s via co-precipitation with Ni, Mg and Al; “/” designates the 

introduction via impregnation of Y onto HTNi-Zr. 
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The Ni0 crystallite sizes calculated for the reduced samples are listed in Table 4.16. Co-precipitation 

with Zr resulted in the decreased crystallite size in contrast to HTNi catalyst (6 nm versus 8 nm, 

respectively). The further impregnation with yttrium nitrate led to the creation of bigger crystallites (9 

nm), as detected by XRD. A comparable result was recorded for the sample co-precipitated with Zr and 

Y 0.4 wt.%. 

 

Table 4.16 Average diameters of nickel particles in the reduced catalysts modified with Zr and Y. 

n.m. – not measured 
1) based on the Scherrer equation, from the width at half-maximum of the XRD reflections at 2q ca. 52° 
2) calculated from d = 97.1/(%D) based on the assumption of spherical crystallites of uniform size 
3) average diameter of Ni particles obtained from TEM images 

 
The recorded values are slightly lower than for the sample co-impregnated with both Zr and Y (Table 

4.17). For the latter, Ni crystallite size was 11 nm, which is the highest value among the Zr,Y-modified 

materials.  

 
Table 4.17 Comparison of Ni0 crystallite size (XRD) in the reduced samples depending on the way of Zr and Y 

introduction.  

Catalyst Promoter introduced via: 

Zr-coP Zr-Y-coP Zr-Y-Imp Zr-coP, Y -Imp 

Designation HTNi-Zr HTNi-ZrY0.4 HTNi/ZrY0.4 HTNi-Zr/Y0.4 

Ni crystallite size [nm]  6 8 11 9 

coP - co-precipitation 

Imp - dry impregnation 

Catalyst dNi from XRD [nm] 1) dNi from H2 chemisorption [nm] 2) dNi from TEM [nm] 3) 

HTNi 8 11 27 

HTNi-Zr 6 11 12 

HTNi-Zr/Y0.2 8 19 n.m. 

HTNi-Zr/Y0.4 9 15 17 

HTNi-Zr/Y0.6 8 15 n.m. 

HTNi-ZrY0.4 8 10 n.m. 
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The textural properties of the materials reduced in a mixture of 5 vol.% of H2 in Ar are presented in 

Table 4.15. A considerable decrease of the SBET was observed for all catalysts in contrast to the results 

acquired for the calcined materials. Additionally, a slight increase in average pore diameter was 

observed, while there were no changes in mesopore volume. The changes within textural features may 

be attributed to the transformation of NiO into Ni0. 

To determine the strength and number of basic sites in the reduced Zr/Y-promoted mixed-oxides, 

TPD-CO2 was applied. The results are presented in Fig. 4.34 and Table 4.13. All catalysts presented 

three desorption peaks, except the HTNi-ZrY0.4 material with only two (the lack of weak basic sites). 

The total basicity decreased after the modification with metals in a sequence: HTNi-ZrY0.4 (153 

µmol/g) > HTNi-Zr/Y0.2 (114 µmol/g) > HTNi (107 µmol/g) > HTNi-Zr (62 µmol/g) ≈ HTNi-Zr/Y0.6 (64 

µmol/g) > HTNiZr/Y0.4 (43 µmol/g). The number of total basic sites of HTNi-Zr is in agreement with the 

value registered by Dębek et al. [203] for HZrNi5 (61 µmol/g). The presence of zirconium affected also 

the distribution of the weak, medium and strong basic sites. Similarly as in case of Zr and Y co-

impregnated materials, the gradual increase of the yttrium content (added via impregnation), led to 

the decreased percentage share of strong basic sites, while the opposite trend was observed for the 

medium-strength sites which % increased after doping with yttrium. Furthermore, the content of 

yttrium and the way of its introduction (impregnation and co-precipitation) also influenced the basic 

properties of catalysts. The co-precipitation with both Zr and Y resulted in the formation of new basic 

sites, mostly in the form of Lewis acid-base pairs (medium strength sites) and low coordinated oxygen 

species (strong sites). Moreover, the maximum temperatures of desorption peaks were shifted 

towards higher values, pointing to the increased strength of the basic sites for HTNi-ZrY0.4 catalyst 

[9,10]. Among all the tested materials, the number of total basic sites was the highest for the HTNi-

ZrY0.4, i.e., the one with both promoters introduced into HTNi via co-precipitation (Table 4.13).  

Comparing the results registered in this study with the series presented in Subchapter 4.2., the 

total number of basic sites were two times higher after having both Zr and Y on the surface 

(HTNi/ZrY0.4) than only yttrium (HTNi-Zr/Y0.4) (Table 4.18). The introduction of Zr within the 
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framework of the structure obviously decreased the total basicity, as Zr may strongly interact with Mg 

and Al. However, when zirconia was incorporated together with yttrium the effect was opposite, 

resulting in an increased basicity. The calculated number is almost two times higher for HTNi-ZrY0.4 

than HTNi/ZrY0.4. 

 

Table 4.18 Comparison of basic properties for the reduced samples depending on the way of Zr and Y 

introduction. The total basicity for unmodified HTNi catalyst was 107 µmol/g. 

Catalyst Promoter introduced via: 

Zr-coP Zr-Y-coP Zr-Y-Imp Zr-coP, Y -Imp 

Designation HTNi-Zr HTNi-ZrY0.4 HTNi/ZrY0.4 HTNi-Zr/Y0.4 

Weak [%] 24 - 20 14 

Medium [%] 50 58 42 35 

Strong [%] 26 42 38 51 

Total basicity 

[µmol/g] 

62 153 85 43 

coP - co-precipitation 

Imp - dry impregnation 

“-“ indicates the absence 
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Fig 4.34 TPD-CO2 profiles for the reduced Zr and Y promoted catalysts. “-“ in the name of the sample designates 

the introduction of promoter/s via co-precipitation with Ni, Mg and Al; “/” designates the introduction via 

impregnation of Y onto HTNi-Zr. 

 

Hydrogen chemisorption allowed to determine metal dispersion which is presented in Table 4.13. 

It can be seen that the modification with Zr did not affect the Ni dispersion as compared to the 

unpromoted HTNi material. Similar observation was reported by Yu et al. [366] for NiZr hydrotalcite. 

However, the promotion with both Zr and Y resulted in a decrease of this parameter. The latter may 

be explained by the presence of yttrium species on the surface of the material, covering a part of the 
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available Ni active sites [367]. Yu et al. [368] also reported a decrease of Ni dispersion for La-Ni/Mg/Al 

hydrotalcites for hydrotalcite with La/Al molar ratio=0.18, as well as an increase of Ni0 crystal size. The 

observations of these authors are in agreement with the current study, in which the addition of yttrium 

led to the formation of bigger Ni crystallites. After co-precipitation with Zr and Y the dispersion of Ni 

increased, possibly as a consequence of yttrium presence inside the structure. 

TEM images (Figs. 4.35 A,B) confirmed the presence of well dispersed Ni particles (darkest places, 

as indicated by the arrows). Better dispersion may be observed for HTNi-Zr than for HTNi-Zr/Y0.4, in 

agreement with H2 chemisorption results (cp. Table 4.13). Moreover, according to the recorded 

micrographs the Ni particle size was smaller for HTNi-Zr catalyst than for HTNi-Zr/Y0.4. For the former, 

the particle size ranged from 1 nm to 33 nm, while after the yttrium impregnation the registered 

particles were bigger (from 1 nm to 50 nm). A possible sintering upon reduction at 900 °C of the 

metallic nickel particles may explain this fact.  

Table 4.14 summarizes the average particle size of the metallic nickel calculated via three different 

characterization techniques (XRD, H2 chemisorption and TEM). The differences between these 

methods were discussed in Subchapter 4.1. It is important to note that for each technique, the 

impregnation with yttrium resulted in the increased crystallite size of Ni0 as compared to the HTNi-Zr 

catalyst.  
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Fig. 4.35 TEM images for the reduced HTNi-Zr and HTNi-Zr/Y0.4 catalysts and the distribution of Ni particle sizes. 
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4.3.3.  Catalytic activity and stability in DRM 

The activity of all catalysts was examined in the dry reforming of methane process in the 

temperature range of 850-600 °C. The CH4 conversion as a function of temperature is presented in Fig. 

4.36 A. The highest methane conversion was registered for HTNi-Zr catalyst, followed by HTNi-Zr/Y0.4, 

HTNi-Zr/Y0.2, HTNi-Zr/Y0.6 and HTNi. A similar trend was observed for CO2 conversion (Fig. 4.36 B). 

The decrease of conversion caused by yttrium addition is a consequence of a partial blockage of the 

available nickel sites as confirmed by the obtained Ni dispersion values. Moreover, as mentioned in 

the previous chapters, the proper basicity contributes to the enhanced CO2 adsorption and thus higher 

CO2 conversion. However, there is no straight correlation between the basicity and the obtained 

catalytic activity results. According to Dębek et al. [203], both surface basicity and reducibility of Ni 

species in Zr-containing Ni/Mg/Al double-layered hydroxides influence the catalytic performance of 

hydrotalcites in DRM and a proper balance between both have to be found. In the study of these 

authors, the increasing Zr content led to the decreased basicity and increased maximum reduction 

temperature. This shows that stronger interactions of Ni with support improved the catalytic 

performance in DRM. For the tested Zr,Y-modified series, the increasing activity sequence is in the 

good agreement with the decreasing H2 consumption acquired from TPR-H2 (cp. Table 4.13). This 

correlation is significant at the temperatures of 600 and 650 °C. Among the studied yttrium-

impregnated catalysts, the 0.4 wt.% loading resulted in the best conversion. On the other hand, the 

highest catalytic activity registered for Zr co-precipitated material, is in contrast with the results of 

both Yu et al. [366] and Dębek et al. [203]. Both articles related that Zr led to the decreased catalytic 

activity compared to the unmodified material. Nevertheless, in the study of Dębek et al. [203] the low 

CH4 and CO2 conversions were accompanied with the enhanced stability as proven by the less carbon 

deposit on the surface of the Zr-modified catalyst.  

The H2/CO molar ratio (Fig. 4.36 C) was always lower than unity, which confirms the coexistence of 

parallel reactions, resulting in the formation of excess CO, e.g. reverse-water gas shift (RWGS). 
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Fig. 4.36 DRM performance tests (CH4- and CO2-conversion, H2/CO molar ratio) modified with Zr and Y using 

different methods; “-“ in the name of the sample designates the introduction of promoter/s via co-precipitation 

with Ni, Mg and Al; “/” designates the introduction via impregnation of Y onto HTNi-Zr. Tests conditions: 

CH4/CO2/Ar=1/1/8, GHSV= 20,000 h-1, the temperature range 600-850 °C. Solid lines represent thermodynamic 

equilibrium.  

 

Activity tests were additionally carried out at 700 °C for 5 h in order to evaluate the stability of the 

catalysts. For this test HTNi, HTNi-Zr and HTNi-Zr/Y0.4 were chosen, and additionally zirconium and 

yttrium co-precipitated material (HTNi-ZrY0.4). The conversions of CH4 and CO2, and H2/CO molar 

ratios are shown in Figs. 4.37 A, B, C. The unmodified catalyst showed the lowest CH4 and CO2 

conversions. The sequence of both was: HTNi < HTNi-Zr/Y0.4 ≈ HTNi-Zr < HTNi-ZrY0.4. For the HTNi-

ZrY0.4 catalyst an increase in CH4 and CO2 conversions with time on stream was registered, pointing 

to a further evolution of Ni-species with TOS. The HTNi, HTNi-Zr, HTNi-Zr/Y0.4 catalysts showed more 
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stable performance, though conversions were lower. The H2/CO molar ratio was also enhanced for the 

catalyst with Zr and Y promoted by the co-precipitation (HTNi-ZrY0.4). After first 50 min the ratio 

reached the value of 1.0, and constantly increased with TOS up to 1.02 after 88 minutes, followed by 

a gradual decrease till molar ratio of 0.99 was reached after 237 minutes. The values slightly above 

unity point to the occurrence of side reactions which result in higher H2 production, such as e.g. CH4 

decomposition.  

 

Fig. 4.37 DRM performance tests (CH4- and CO2-conversion, H2/CO molar ratio) modified with Zr and Y using 

different methods; “-“ in the name of the sample designates the introduction of promoter/s via co-precipitation 

with Ni, Mg and Al; “/” designates the introduction via impregnation of Y onto HTNi-Zr. Tests conditions: 

CH4/CO2/Ar=1/1/8, GHSV= 20,000 h-1 at 700 °C for 5 h.  

 

In general, the promoting effect of zirconia may be related to the enhanced catalyst stability by 

inhibiting carbon nanofibers formation through direct decomposition of methane [203]. It was also 
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reported in literature that ZrO2 may increase the content of oxygen vacancies on the catalysts surface, 

which plays an important role in the dissociative adsorption of CO2 [200,206]. An introduction of 

yttrium into zirconia lattice results in the stabilization of tetragonal phase of ZrO2 and formation of 

oxygen vacancies that are believed to contribute to the carbon removal [309]. In the current study, the 

addition of zirconia led to the improved catalytic activity and stability (as further confirmed by the 

characterization of the spent materials). The impregnation with 0.2 and 0.6 wt.% of yttrium, however, 

did not have such positive effect because of a partial blockage of the available nickel sites and 

decreased dispersion.  

Table 4.19 Comparison of catalytic results in the isothermal DRM tests at 700 °C for 5 h for Zr,Y-modified 

catalysts. 

Catalyst 
Promoter introduced via: 

Zr-coP Zr-Y-coP Zr-Y-Imp Zr-coP, Y-Imp 

Designation HTNi-Zr HTNi-ZrY0.4 HTNi/ZrY0.4 HTNi-Zr/Y0.4 

CH4 conversion [%] 

Initial  

After 5h 

D : relative change after 5 h [%] 1) 

 

78.6 

77.7 

↓1.14 

 

84.3 

90.9 

↑7.83 

 

81.9 

82.3 

↑0.50 

 

76.9 

77.1 

↑0.26 

CO2 conversion [%] 

Initial 

After 5h 

D : relative change after 5 h [%] 1) 

 

82.7 

82.6 

↓0.12 

 

86.3 

90.2 

↑4.52 

 

79.7 

82.1 

↑3.00 

 

82.8 

82.0 

↓0.97 

H2/CO molar ratio [-] 

Initial 

After 5 h 

 

0.99 

0.98 

 

0.99 

0.98 

 

0.88 

0.90 

 

0.90 

0.88 
1) calculated as (|xi-x5h|/xi·100) [%], where x is CH4 or CO2 conversion expressed in percentage, and subscripts 

stand for i – initial, 5 h – after 5 h catalytic test; symbols ↓ and ↑ denote that appropriate conversion 

respectively decreased or increased after 5 hours on line  

 

Table 4.19 shows the comparison of the initial results and results after 5 h for CH4 and CO2 

conversions and H2/CO molar ratio. From the activity point of view, the co-precipitation with both Zr 

and Y resulted in the best catalytic performance, giving the highest initial and after-5 h CH4 and CO2 
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conversions. The conversions for this catalyst increased with TOS, whereas the H2/CO ratio remained 

stable around 1. For the other catalysts, the sequence of the activity was: HTNi/ZrY0.4 > HTNi-Zr > 

HTNi-Zr/Y0.4. However, the H2/CO ratio results did not follow the same sequence, pointing out to 

different side reactions during DRM.  

4.3.4. Characterization of the spent catalysts after the isothermal tests 

Textural properties of the spent materials are presented in Table 4.20. The specific surface area 

increased after reaction in comparison to the reduced materials, obtaining values similar to those 

registered for the calcined materials (cp. Table 4.11). The mesopore volume and average diameter of 

the pores were also similar to the values registered for the materials after calcination.  

Table 4.20 Textural and structural properties, and types of formed carbon for the spent Zr,Y-modified catalysts. 

Numbers in brackets {..} relate respective values for the reduced samples (taken from Table 4.15).  

1) specific surface areas calculated from the BET equation  

2) mesopore volumes derived from the BJH desorption calculation method 
3) pore size distribution obtained from the BJH desorption calculation method 
4) based on the Scherrer equation, from the width at half-maximum of the XRD reflections at 2q ca. 52° 
5) due to carbon oxidation, calculated assuming the initial mass of the analyzed sample, i.e., 10.5-10.0 mg 
6) Raman spectrum was registered at two different places of the catalyst. At these two places the registered ratios 

were different 

Catalyst 

N2 sorption XRD TGA Raman 
Type of carbon 

(based on XRD, TGA 
and Raman) 

SBET 

[m2/g]1) 
Vp 

[cm3/g]2) 
dp 

[nm]3) 

Ni0 
crystallite 
size [nm]4) 

Mass 
loss [%]5) ID/IG [-] 

HTNi  125 {68} 0.3 10 7 

{8} 

20.2 1.83 Graphite-like carbon 
(with low order) + 

filamentous carbon 

HTNi-Zr  124 {90} 0.4 11 4  

{6} 

7.3 2.08 Trace amount of 
graphite-like carbon 

+ filamentous carbon 
+ amorphous carbon  

HTNi-Zr/Y0.4 98 

{79} 

0.3 10 7 

{9} 

11.9 1.67 

2.246) 

Graphite-like carbon 
(with low order) + 

filamentous carbon + 
amorphous carbon 

HTNi-ZrY0.4 98 

{n.m.} 

0.3 8 7 

{8} 

18.8 n.m. Graphite-like carbon 
+ filamentous carbon  
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Diffractograms for the materials after isothermal tests are shown in Fig. 4.38. After catalytic tests 

the reflections typical for hydrotalcite-derived materials were recorded, i.e., periclase-mixed oxides 

phase at 2q of ca. 37, 43 and 63° (ICOD 00-045-0946), metallic nickel at 2q of ca. 44, 53° (ICOD 01-087-

0712) and graphitic carbon at 2q of ca. 27° (ICOD 01-075-2078).  

 

Fig. 4.38 XRD diffractograms of the spent catalysts modified with Zr and Y using different methods (after 

isothermal catalytic test) compared to HTNi. “-“ in the name of the sample designates the introduction of 

promoter/s via co-precipitation with Ni, Mg and Al; “/” designates the introduction via impregnation of Y onto 

HTNi-Zr. 

 

The reflection of graphitic carbon registered for spent HTNi-Zr has very low intensity, indicating the 

enhanced stability of this material. After impregnation with 0.4 wt.% yttrium intensity of C reflection 

was still low, while the co-precipitation of all components, including Zr and Y, resulted in the presence 

of sharper and more intense graphite line.  

All zirconia containing materials revealed additionally the presence of the tetragonal ZrO2 phase 

(ICOD 01-079-1765) at 2q of ca. 30 and 50°. Moreover, the hydrotalcite reflections were observed for 

the spent HTNi and HTNi-Zr/Y0.4 materials. Very small hydrotalcite reflections were also observed for 
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HTNi-Zr. This is in contrast to the results described in Subchapter 4.2., where the co-impregnation with 

Y0.4 and Zr stabilized the periclase-mixed solid solution. Metallic nickel crystallite size calculated for 

the spent catalysts are listed in Table 4.15. A significant decrease of the Ni crystal size was observed 

after reaction for the material co-precipitated with Ni, Mg, Al and Zr, i.e., 4 nm, versus 6 nm registered 

for the reduced sample. The catalysts containing Y, irrespective of the method of introduction, were 

also smaller after reaction than for the reduced samples, and reached the same values as for the spent 

unpromoted HTNi (cp. Table 4.20). Dębek et al. [203] reported a similar effect for the spent HNiZr3, 

HNiZr5, and HTNiZr10 catalysts, and explained it by a possible re-dispersion having taken place during 

DRM. Considering CO2 as a source of oxygen, once it is adsorbed on the catalyst surface, it may be 

involved in the oxidation of Ni0 sites to NiO. By adsorption of H2, CO or perhaps H-species originating 

from methane molecules activated on the catalyst surface, the Ni-sites are subsequently reduced and 

thus ready to participate in the DRM reaction. The oxidation of Ni sites may lead to the regeneration 

of mixed NiMg oxides that, in the presence of the reducing atmosphere generated under reaction 

conditions, may yield Ni0 species of smaller crystallite size than those present on the catalyst upon 

reduction pre-treatment prior to the catalytic tests. The balance between Ni0 and NiO in DRM remains 

a possible hypothesis explaining the re-dispersion observed in XRD. 

Thermogravimetric analysis (TGA) profiles of the spent materials are presented in Fig. 4.39. The 

results show two main weight loss regions, (i) < 300 °C and (ii) 300-800 °C, the former connected with 

sample dehydration and amorphous carbon oxidation; the latter with filamentous and graphitic type 

of carbon removal. Additionally, a small increase of the mass observed is related to oxidation of 

metallic nickel to nickel oxide [191]. The oxidation of filamentous carbon occurred for the studied 

materials at the following temperature ranges: 335-660 °C, 374-617 °C, 438-673 °C and 418-732 °C for 

HTNi-Zr, HTNi-Zr/Y0.4, HTNi-ZrY0.4 and HTNi, respectively. The shift towards lower temperature of 

carbon removal for Zr and Zr/Y0.4 samples indicates the type, which is easier to remove via oxidation. 

The same sequence as for the oxidation temperatures was observed for the percentage mass loss (cp. 

Fig. 4.39).  
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Fig. 4.39 TGA profiles of catalysts modified with Zr and Y using different methods (after isothermal catalytic test) 

and compared to HTNi. “-“ in the name of the sample designates the introduction of promoter/s via co-

precipitation with Ni, Mg and Al; “/” designates the introduction via impregnation of Y onto HTNi-Zr. 

 

The type of carbon present on the surface of the spent catalysts was estimated from Raman spectra 

(Fig. 4.40). Four bands at 1325 cm-1 (D band), 1579 cm-1 (G band), 1602 cm-1 (D’ band) and 2679 cm-1 

(G’ band) were recorded for all samples. The origin of the bands was discussed in detail in the previous 

subchapters. The ratio of intensities of D and G bands (ID/IG) is presented in Table 4.20. The ID/IG ratios 

were higher than 2 for both HTNi-Zr and HTNi-Zr/Y0.4 catalysts suggesting that the quantity of 

amorphous carbon is higher than the proportion of crystalline carbon. At two different places of the 

HTNi-Zr/Y0.4 sample different ID/IG ratios were recorded, i.e., 1.67 and 2.24. Similarly, as described in 

the Subchapter 4.2., this may have arisen from the heterogeneity of the materials as also observed by 

Saché et al. [179]. The presence of the amorphous carbon in the Zr/Y samples is in good agreement 

with TGA results, proving oxidation of carbon species at lower temperature region than for HTNi and 

HTNi-ZrY0.4.  
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Fig. 4.40 Raman spectra for the spent HTNi-Zr and HTNi-Zr/Y0.4 catalysts compared to HTNi. The ID/IG ratio 

describes the degree of crystallinity of the formed carbon. The numbers in brackets beside the sample 

designation denote the number of Raman measurement; “-“ in the name of the sample designates the 

introduction of promoter/s via co-precipitation with Ni, Mg and Al; “/” designates the introduction via 

impregnation of Y onto HTNi-Zr. 

 

4.3.5. Conclusions 

In this subchapter, Ni-based Mg/Al-hydrotalcites (HT) were co-precipitated with Zr (5 wt.%) and 

impregnated with Y (0.2, 0.4, 0.6 wt.%), and compared to the catalyst co-precipitated with both Zr (5 

wt.%) and Y (0.4 wt.%). The DRM catalytic performance was determined in the TPSR tests (temperature 

range of 850-600 °C) and in the stability tests at 700 °C for 5 h.  

The co-precipitation with Zr resulted in the formation of tetragonal phase of ZrO2 in all Zr-containing 

samples, which was partly incorporated within the framework of periclase-like structure, and partly 

located on the surface of the support. A decrease in reducibility, together with lower H2 consumption 

and stronger interactions of nickel with the modified-HT support were observed for the sample 
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promoted only with zirconia. Additionally, the promotion with Zr decreased basicity. The further 

impregnation with yttrium led to the percentage share of medium basic sites increasing with the 

increase of yttrium content. Moreover, considering the promotion with 0.4 wt.% Y, the total number 

of basic sites was two times higher after having both Zr and Y on the surface (HTNi/ZrY0.4) than only 

yttrium (HTNi-Zr/Y0.4) (Table 4.18). Then, the incorporation of Zr within the framework of the 

structure decreased the total basicity, as Zr may strongly interact with Mg and Al. However, when 

zirconia is incorporated together with yttrium the effect is opposite, resulting in an increased basicity.  

No ZrO2-Y2O3 solid solution was evident by XRD characterization method. The yttrium promotion, 

however, led to bigger Ni crystallites size in contrast to HTNi-Zr. Moreover, the Ni dispersion was 

decreased due to the decoration of the surface with Y-species, leading to the blockage of available 

nickel sites.  

The TPSR catalytic tests showed the highest catalytic activity for the HTNi-Zr catalyst, whereas the 

Y impregnation led to the slightly lower CH4 and CO2 conversions. All Zr and Y promoted samples were, 

however, more active than unpromoted HTNi. The H2/CO molar ratios were below 1.0, pointing to the 

reverse-water gas shift reaction accompanying DRM.  

The co-precipitated Y and Zr catalyst (HTNi-ZrY0.4) presented the highest catalytic activity and a 

H2/CO close to 1 after 5 h-isothermal test at 700 °C. The registered ratio slightly above 1.0 may indicate 

the presence of CH4 decomposition side reaction, leading to the carbon formation as evidenced by XRD 

and TGA for this catalyst. On the other hand, the other catalysts only promoted with Zr or impregnated 

with Y and Zr led to lower activities or lower H2/CO ratios under the same experimental conditions. 

The ranking in the catalytic activity is in agreement with the results of metal dispersion. HTNi-ZrY0.4 

catalyst presented the dispersion of 10.2% in comparison to 8.6% for HTNi-Zr catalyst, and 6.9% for 

HTNi-Zr/Y0.4 catalyst. Almost no graphitic carbon was observed for the catalyst which was promoted 

only by Zr (added during hydrotalcite co-precipitation process). The HTNi-Zr/Y0.4 did not show a 

structural resistance to the products of the RWGS side reaction, as supported by the presence of 
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hydrotalcite reflections in the XRD patterns of the spent catalyst. This resistance was however 

observed in HTNi-ZrY0.4 material.  

Taking into account both activity and structural resistance the best results were obtained for the 

catalyst promoted with Zr and Y via co-precipitation with Ni, Mg and Al. On the other hand, when the 

type of the carbon deposits formed during DRM is considered the catalyst promoted with Y via 

impregnation of HTNi-Zr sample showed better results, as this catalyst had both less carbon deposits 

than HTNi-ZrY0.4 and in the same time a higher proportion of amorphous carbon than the catalyst 

obtained by co-precipitation of all components (HTNi-ZrY0.4). Possibly the structural stability of the 

former could be improved by changing calcination temperature. 
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4.4. Co-precipitation with cerium and impregnation with yttrium of Ni-based double 

layered-hydroxides 

The literature reports that promotion with cerium oxide is beneficial for dry reforming of methane, 

due to oxygen storage capacity and redox properties of Ce [204,205,317,359,369,370]. According to 

Daza et al. [371], 3 wt.% of Ce had a positive effect on carbon removal, and it was reported as the 

optimal content in Ni-based hydrotalcites. Dębek et al. [205] observed less graphitic carbon and 

amorphous carbon formed on Ce-modified Ni-DLHs. The latter can be more easily gasified during DRM 

[204]. In another study of Daza et al. [317], the co-precipitation with cerium nitrate (assuming different 

ratios of Al/Ce: 1.5, 4.0, 9.0 and 24.0) resulted in the best performance at 700 °C for the catalyst with 

the highest Al/Ce ratio. In the previous chapters, the promotion of Ni-based double-layered hydroxides 

(DLHs) with Y was described. Particularly the yttrium addition (0.2-0.6 wt.%) to the zirconia co-

precipitated DLHs presented interesting findings on material basicity, Ni crystallite size, dispersion, and 

correlation between reducibility (H2 uptake) and catalytic activity.  

As no recent literature studies dealt with Mg/Al/Ni double-layered hydroxides promoted with Ce 

and Y in dry reforming of methane, this Subchapter is dedicated to their examination. The materials 

were tested in dry reforming of methane (CH4/CO2 = 1/1) for the first time. 3 wt.% of ceria was assumed 

(theoretical value during preparation) and different concentrations of yttrium (0.2, 0.4 or 0.6 wt.%). 

The mentioned contents of yttrium were chosen basing on the results described in previous 

Subchapters (4.2, 4.3). 

4.4.1. Physicochemical properties 

XRD diffractograms of freshly synthesized double-layered hydroxides are presented in Fig. 4.41. The 

XRD patterns show the sharp reflections for (003), (006), (009), (015), (110) and (113) planes at 2q ca. 

11, 23, 35, 39, 60, and 62° arising from Mg6Al2(OH)16CO3·4H2O (ICOD 00-014-0191), respectively. 

Structural parameters a and c’, calculated similarly as described in previous Chapters (based on the 

first three reflections) are summarized in Table 4.21. The parameter a remained the same after 
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promotion with both cerium alone and cerium and yttrium. The c’ values suggest the presence of CO3
2− 

ions (7.65 Å) [204,244]. Apart from hydrotalcite structure, a separate phase of fluorite structure of 

CeO2 (ICOD 00-023-1048) is revealed in XRD diffractograms (Fig. 4.41). However, existence of Ce(OH)3 

or CeCO3OH cannot be excluded. The former arises from Ce3+, which oxidizes fast to Ce4+ in the 

presence of H2O, resulting in CeO2. On the other hand, CeCO3OH was considered to be a precursor of 

cerium oxide upon precipitation in the presence of carbonates. The CeCO3OH was recorded by Daza et 

al. [317] only for the sample with higher cerium content (Al/Ce = 1.5). However, the authors concluded 

that well dispersed cerium carbonate hydroxide could also be formed in the low-loaded cerium 

materials (with the assumed Al/Ce = 4.0, 9.0, 24.0). The reason for cerium deposition on the surface 

of the brucite-like layers is its bigger ionic radius (Ce3+ = 1.019 Å versus Mg3+ = 0.86 Å, Al3+ = 0.675 Å) 

[316]. It is expected that also Y is deposited on the surface of DLHs, since dry impregnation was used 

to introduce this promoter, but no separate phase of Y2O3 was recorded in XRD patterns, probably due 

to its low content. 

 

Fig. 4.41 XRD patterns of freshly synthesized Ce- and Y-modified catalysts: HTNi-Ce, HTNi-Ce/Y0.2, HTNi-

Ce/Y0.4, HTNi-Ce/Y0.6, compared to HTNi. 
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Table 4.21 reports the metal contents for the prepared catalysts determined by XRF. The nickel 

content was found in the range of 20–25 wt.%, and for all Ce-containing catalysts the amount of cerium 

was close to the one assumed during the synthesis step, i.e., 3 wt.%. The amount of introduced yttrium 

was also close to the assumed one. Ni2+/Mg2+ molar ratio showed values lower than 0.33, especially in 

Ce- and Y-promoted catalysts. It suggests that Mg2+ were only partially substituted by Ni2+, similarly as 

discussed for Ni/Mg/Al catalysts co-impregnated with Zr and Y. Al/Ce molar ratios calculated for the 

modified catalysts were in the range of 28-36, and are higher than those in the study of Daza et al. 

[317]. 

Table 4.21 Structural parameters, elemental composition, and textural properties of Ce- and Y-promoted 

catalysts. The numbers in brackets are nominal values.  

Catalyst 

XRD 
Freshly 

Synthesized 

XRF 

After Calcination 

N2 sorption 

After calcination 

a 
[Å]1) 

c’ 
[Å]2) 

Ni 
[wt.%] 

Ce 
[wt.%] 

Y  
[wt.%] 

Al/Ce  
[-] 

Ni2+/Mg2+  
[-] 

SBET   
[m2/g]3) 

Vp   
[cm3/g]4) 

dp  
[nm]5) 

HTNi 3.06 7.82 20  -  -  - 0.29  
(0.33) 

120  0.6  19  

HTNi-Ce  3.07 7.84 25  2.5  
(3.0)  

-  34 0.21  
(0.33) 

97  0.5  20  

HTNi-Ce/Y0.2  3.07 7.83 23  2.9  
(3.0)  

0.3 
(0.2) 

30 0.18 
(0.33) 

132  0.7  21  

HTNi-Ce/Y0.4  3.07 7.84 23  3.2 
(3.0)  

0.5 
(0.4) 

28 0.18  
(0.33) 

133  0.6  19  

HTNi-Ce/Y0.6  3.07 7.85 20  2.6 
(3.0)  

0.7 
(0.6) 

36 0.15  
(0.33) 

126  0.6  20  

1) calculated from d-spacing a = 2d(110) as suggested by Cavani et al. [244] 

2) c’ = c/3, where (c = d(003) + 2d(006) + 3d(009)) [204] 

3) specific surface area calculated from the BET equation  

4) pore volumes derived from the BJH desorption calculation method 

5) pore size distribution obtained from the BJH desorption calculation method 

 
Table 4.21 contains also textural properties for the calcined. The modification with cerium led to a 

decrease of specific surface area due to a partial blockage of the porous system, as suggested by a 

decrease of total pore volume from 0.6 for HTNi to 0.5 cm3/g to HTNi-Ce. Similar observations were 

reported both for Ni-hydrotalcites promoted with an aqueous solution of Ce[EDTA]− complexes via ion-
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exchange [205], and those obtained by co-precipitation with Ce(NO3)3·6H2O [317]. Further 

modification with yttrium positively affected SBET resulting in an increase of this value, and similarly in 

some increase in total pore volume. The pore size remained almost unchanged. 

 

4.4.2. Reducibility, basicity, Ni dispersion and crystallite size 

TPR-H2 profiles for the calcined Ce-Y-modified catalysts are presented in Fig. 4.42, with the low-

to-medium temperature region additionally enlarged in the right-hand side Fig. 4.42. One broad 

reflection, arising from the reduction of NiO located in the layer of DLHs is observed at ca. 860 °C. 

Maximum temperature of peaks shifted towards higher values after promotion with Ce (829 for HTNi 

versus 876 °C for HTNi-Ce). After the addition of 0.6 wt.% of Y the temperature shift is more 

pronounced (873, 864 and 895 °C for HTNi-Ce/Y0.2, HTNi-Ce/Y0.4, and HTNi-Ce/Y0.6, respectively) 

(Table 4.22). Lower amounts of Y did not have an observable influence on reduction temperature as 

compared to HTNi-Ce. Thus, the Ce- or Ce/Y-promotion led to a decrease in reducibility, as confirmed 

additionally by the uptake of hydrogen (Table 4.22). Apart from the high-temperature maximum also 

less intense peaks were recorded at moderate temperatures. Nickel oxides weakly-bonded with the 

surface of hydrotalcite were reduced at 350 °C on the HTNi catalyst. For the samples containing Ce 

alone or Ce and Y, the peaks registered at temperatures lower than 400 °C arise from the reduction of 

either NiO weakly interacting with the surface of the catalyst, or from bulk NiO [197,326,327]. For Ce-

promoted samples, the peaks arising from the reduction of the promoter may be also expected. Three 

species of ceria, with increasing reduction temperatures, were reported in literature, the reduction of 

surface oxygen at 400-420 °C and surface lattice oxygen at 450-600 °C, as well as bulk reduction to 

Ce2O3 up to 880 °C [13]. The former two species, overlapped, can be detected in the right-hand side 

Fig. 4.42. Temperature of bulk reduction lies in the same region as the main peak for Ni reduction and 

thus cannot be distinguished. 
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Fig. 4.42 Temperature-programmed reduction (TPR-H2) profiles recorded for Ce- and Y-modified catalysts. 

The right-hand picture presents the enlargement of low-to-medium temperature region (200-600 °C) only 

for the promoted samples. 

 

XRD patterns for the reduced samples are shown in Fig. 4.43. Metallic nickel (ICOD 01-087-0712), 

fluorite CeO2 phase (ICOD 00-023-1048) and the periclase mixed-oxides (ICOD 00-045-0946), (the latter  

typically formed upon calcination [205,317]) may be detected. The Ni crystallite sizes are summarized 

in Table 4.22. There is no increase of Ni0 particle size after doping both with cerium and 

cerium/yttrium. This is in contrast to Daza et al. [317], who observed an increase in Ni particles size 

and connected it to the fact that the co-precipitation with Ce led to the formation of free nickel oxides. 
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Fig. 4.43 XRD diffractograms of the prepared catalysts after reduction in the mixture 5 vol.% of H2/Ar. 

 

Textural properties for the studied materials after reduction in a mixture of 5 vol.% of H2 in Ar are 

presented in Table 4.22). A significant decrease of SBET can be observed for all samples, as compared 

to the materials after calcination (cp. Table 4.21). The highest decrease was registered for the sample 

modified only with ceria, similarly as reported in literature for NiCeAl catalyst [359]. A decrease in the 

pore volumes and pore diameters was also observed, in contrast to the values obtained for the HTNi 

sample. 
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Table 4.22 Texture, reducibility and Ni dispersion and Ni crystallite sizes for the studied materials after 

reduction in a mixture of 5 vol.% H2/Ar. 

Catalyst 

N2 sorption 

Reduced materials 

TPR-H2 XRD H2 chemisorption 

H2  

consumption 

[mmol H2/g] 

Ni 

crystallite 

[nm] 

Ni 

dispersion 

[%] 

Ni  

crystallite 

[nm] 
SBET  

[m2/g] 1) 

Vp  

[cm3/g] 2) 

dp  

[nm] 3) 

HTNi 68 0.4 21 0.209  9 8.9  11 

HTNi-Ce  45 0.2 14 0.137  7 11.5  8 

HTNi-Ce/Y0.2  99 0.7 28 0.135  7 10.2  10 

HTNi-Ce/Y0.4  91 0.6 27 0.134 7 11.6 8 

HTNi-Ce/Y0.6  99 0.7 26 0.119  8 11.5  8 

1) specific surface area calculated from the BET equation  

2) pore volumes derived from the BJH desorption calculation method 

3) pore size distribution obtained from the BJH desorption calculation method 

 

Table 4.22 contains also Ni dispersion obtained from chemisorption of H2. After the modification 

with Ce and Y a small increase of Ni0 dispersion is observed, from 8.9 for HTNi to 11.5, 10.2, 11.6, and 

11.5% for HTNi-Ce, HTNi-Ce/Y0.2, HTNi-Ce/Y0.4, HTNi-Ce/Y0.6, respectively. The similar increase of 

dispersion was discussed for Y-promoted catalysts in the previous Subchapters 4.1., 4.2. The crystallite 

sizes calculated from H2 chemisorption (assuming spherical Ni crystallites) are in good agreement with 

the ones obtained by XRD calculations. 

TPD-CO2 results for the catalysts after TPR-H2 tests. Both the number and distribution of basic sites 

were influenced by the promotion are presented in Fig. 4.44 and Table 4.23. The sequence of the total 

basicity is: 63, 107, 111, 212, 286 μmol/g for HTNi-Ce < HT < HTNi-Ce/Y0.4 < HTNi-Ce/Y0.2 < HTNi-

Ce/Y0.6 catalysts, respectively. The decrease in total basicity originating from ceria promotion was 

previously reported in literature [2,3], and it was similar as was in case of co-precipitation with Zr 

(Subchapter 4.3.). Co-promotion with cerium and yttrium resulted in a higher number of basic sites in 

comparison to HTNi-Ce. This is in contrast to the catalysts described in Subchapter 4.1, where the total 
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number of sites for Y-promoted samples was lower than for HTNi. It should be reminded, however, 

that the catalysts described in Subchapter 4.1. were promoted by Y via co-precipitation with other 

components of hydrotalcites, while in the case described in the current Subchapter, yttrium was 

introduced by dry impregnation. Thus, in the latter case it could not be introduced into the brucite 

layers. This emphasizes the importance of the choice of the method of promoter introduction. 

However, there is no straight correlation between the increasing Y concentration and the number of 

basic sites, similarly as for HTNi-Y catalysts described in Subchapter 4.1. The increase in total number 

of sites is especially significant for the samples with 0.2 and 0.6 wt.% Y added, which is in the 

agreement with the results registered for the HTNi-Zr series (Subchapter 4.3.). 

 

Table 4.23 Distribution of basic sites and total basicity for Ce/Y modified catalysts.  

 

Catalyst 

TPD-CO2 

Reduced materials 

Weak [%] Medium [%] Strong [%] Total basicity [µmol/g] 

HTNi 15 42 43 107 

HTNi-Ce - 70 30 63 

HTNi-Ce/Y0.2 - 52 48 212 

HTNi-Ce/Y0.4 - 45 55 111 

HTNi-Ce/Y0.6 - 53 47 286 
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Fig. 4.44 TPD-CO2 curves for Ce- and Y-modified catalysts. The numbers in brackets are given in µmol/g.The 

Table illustrates the distribution of sites.  

4.4.3. Catalytic activity and stability in DRM 

CH4 and CO2 conversions and H2/CO molar ratio in dry reforming of methane tests are presented in 

Fig. 4.45 and Table 4.24. It may be seen that the promotion with cerium resulted in an enhanced 

conversion for both methane and carbon dioxide at the temperature range of 750-600 °C. The 

beneficial effect of Ce may be assigned to the increase of Ni0 dispersion as reported elsewhere 

[372,373]. On the other hand, in contrast to the observations of Daza et al. [1], in current study the 

increase in the activity cannot be directly linked with the basicity. This seems to be in line with the 

observations discussed in Subchapter 4.1., where HTNi-Y catalysts showed higher conversion than 



Chapter 4 – Dry reforming of methane (DRM) 

 

 204 

HTNi despite lower basicity. This again proves that for Ni-double-layered hydroxides a proper balance 

between basic sites and dispersion is important. The former need to reach a certain value, above which 

their influence is not so pronounced. Ni dispersion slightly higher for HTNi-Ce, and Ce/Y promoted 

catalysts seems to be more responsible. Both CH4 and CO2 conversions were similar for HTNi-Ce and 

the catalyst promoted with Y 0.4 wt.%. However, a decrease in activity was observed for HTNi-Ce/Y0.6 

catalyst, which had the highest basicity. It may be thus speculated that in the latter case, reducibility 

could have played an additional role, as illustrated by the fact that the sample HTNi-Ce/Y0.6 showed 

the highest temperature of reduction (cp. Fig. 4.42).   

 

 

Fig. 4.45 The results of DRM catalytic tests over Ce- and Y-modified catalysts: (a) CH4 conversion, (b) CO2 

conversion and (c) H2/CO molar ratio. Reaction conditions: T= 850-600 °C, 30 min at each temperature, GHSV = 

20,000 h−1, CH4/CO2/Ar = 1/1/8, total flow rate 100 cm3/min.  
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Table 4.24 DRM catalytic results over Ce and Ce,Y modified catalysts at different temperatures (from 850 

to 600 °C, GHSV = 20,000 h−1, CH4/CO2/Ar = 1/1/8, total flow rate 100 cm3/min). 

Temperature [°C] 850 800 750 700 650 600 

 
CH4 conversion 

 
HTNi 98.2 93.3 82.5 66.0 45.4 28.9 

HTNi-Ce  96.5 93.2 86.9 75.7 60.0 42.2 

HTNi-Ce/Y0.2  96.2 92.9 86.8 76.1 61.2 44.7 

HTNi-Ce/Y0.4  96.2 93.1 86.8 76.1 61.7 45.2 

HTNi-Ce/Y0.6 93.2 87.9 78.4 65.0 49.9 35.3 

 
CO2 conversion 

 
HTNi  96.8 93.0 86.5 76.0 56.6 40.2 

HTNi-Ce  97.5 94.8 91.9 81.0 66.1 48.4 

HTNi-Ce/Y0.2  97.4 94.7 90.1 81.4 67.9 52.0 

HTNi-Ce/Y0.4  98.4 95.1 91.8 81.5 68.4 52.2 

HTNi-Ce/Y0.6 95.4 90.1 82.3 76.1 54.2 38.0 

 
H2/CO molar ratio 

 
HTNi  0.99 0.97 0.93 0.87 0.80 0.75 

HTNi-Ce  0.96 0.94 0.92 0.89 0.83 0.78 

HTNi-Ce/Y0.2  0.96 0.95 0.92 0.89 0.84 0.78 

HTNi-Ce/Y0.4  0.97 0.95 0.93 0.89 0.85 0.79 

HTNi-Ce/Y0.6 0.95 0.92 0.89 0.84 0.79 0.74 

In order to further examine the influence of Y promotion, isothermal tests were performed at  

700 °C for 5 h for the best performing samples from the previous test: HTNi-Ce, HTNi-Ce/Y0.2 and 

HTNi-Ce/Y0.4, and compared to the unmodified catalyst HTNi. The results are presented in Fig. 4.46. 

The catalytic activity followed the sequence: HTNi < HTNi-Ce/Y0.4 < HTNi-Ce. For HTNi-Ce/Y0.2 

catalyst, a constantly increasing CH4 and CO2 conversions were observed, indicating unstable structure 

during DRM. The lowest values of H2/CO were obtained for the unmodified catalyst (H2/CO = 0.90), 

whereas for both HTNi-Ce/Y0.4 and HTNi-Ce the values were higher, respectively ca. 0.94 and ca. 0.97 

after 300 min. Considering that the registered H2/CO molar ratio is stable from 50 min to 300 min, and 
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the obtained values are always lower than unity, side reactions such as reverse water-gas shift 

(CO2+H2=CO+H2O) may have occurred. This is to some extent was inhibited in the presence of Y, and 

was previously observed for the HTNi-Y catalysts discussed in Subchapter 4.1., HTNi/ZrY0.4 described 

in Subchapter 4.2., and HTNi-Zr and HTNi-ZrY0.4 presented in Subchapter 4.3.   

 

Fig. 4.46 The results of DRM catalytic tests over Ce- and Y-modified catalysts: (A) CH4 conversion, (B) CO2 

conversion and (C) H2/CO molar ratio. Reaction conditions: T= 700 °C, 5 hours, GHSV = 20,000 h−1, 

CH4/CO2/Ar = 1/1/8, total flow rate 100 cm3/min. 

The role of cerium may be explained taking into account the DRM mechanism, which, as discussed 

in Subchapter 4.1., included the decomposition of methane taking place on Ni active site and  

dissociative adsorption of carbon dioxide on the metal surface and metal-surface interface [154,155]. 

As a result of the former step (CH4 decomposition). A catalyst may be deactivated by carbonaceous 
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deposits. It can, however, be removed in situ via another side reaction (reverse Boudouard reaction, 

i.e., CO2+C=2CO) [154,188]. The promoting effect of Ce has been mainly ascribed in literature to its 

large oxygen storage capacity, which favors the oxidation of the carbon deposits [200,205]. The 

addition of Ce-species into the hydrotalcite structure was also found to increase the reducibility of the 

nickel species, as well as the number of basic sites, both strong (low-coordinated surface O2-) and 

medium-strong (Lewis acid/base pairings), thus increasing the CO2 adsorption capacity [205]. In this 

case, the Ce and Y addition does not enhance reducibility, but leads to higher Ni dispersion. The 

increase in Ni dispersion upon promotion with CeO2 agrees with the literature reports [374–376]. Akri 

et al. [374] studied Ce-modified Ni/illite clay-supported catalysts, where enhanced Ni dispersion was 

observed on the clay surface. Sepehri et al. [375] observed promoting effect of ceria on Ni dispersion 

in Ni/Al2O3 catalysts, as well as a reduction of the bulk NiO on the catalysts surface, pointing the role 

of the redox properties of Ce. Li et al. [376] also showed that the promotion with CeO2 of Ni/Al2O3-

ZrO2 resulted in the improved dispersion of nickel particles, further enhancing the CO2 adsorption on 

the surface. Wang et al. [377] examined series of catalysts of Ni supported on ceria or yttria-doped 

ceria (YDC). The usage of YDC led to the enhanced catalytic activity and stability in dry reforming of 

methane, as compared to examined ceria support. The extent of enhancement decreased with 

increased yttria loading (Ni/5YDC > Ni/10YDC > Ni/20YDC > Ni/40YDC). The beneficial effect of Y3+ ions 

into the ceria lattice is known to arise from the oxygen storage/transport characteristic of yttria-doped 

ceria phase [377–381]. Thus, the improved stability and increased resistance to carbon deposits 

formation may arise from the synergic effect of ceria and yttria. The characterization over spent 

catalysts (HRTEM described further in the text) proved that Ce was always present together with Y, 

indicating a possible existence of CeO2-Y2O3 phase, which favors Ni0 dispersion and limits the sintering 

and the carbon formation. 
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4.4.4. Characterization of the spent catalysts after the isothermal tests 

Textural properties for the spent catalysts after methane dry reforming tests at 700 °C for 5 h are 

shown in Table 4.25. Specific surface areas increased after reaction as compared to the reduced 

samples, considerably so in case of HTNi and HTNi-Ce and reached the values similar to those for the 

calcined catalysts (cp. Table 4.21). Total pore volumes were slightly smaller for the spent than for the 

reduced samples, except HTNi-Ce. The mean pore size decreased after the reaction. 

Table 4.25 Textural properties, Ni crystallite size, and Raman of spent catalysts  

Catalyst 
N2 sorption XRD TGA Raman 

SBET  
[m2/g] 1), 4) 

Vp   
[cm3/g] 2) 

dp   

[nm] 3) 
Ni crystallite 
size [nm] 4) 

Mass loss 
[mg] 5) 

ID/IG  

[-] 
HTNi 125 {68} 0.3 10 7 {9} 2.02 1.83 

HTNi-Ce  108 {45} 0.4 13 7 {7} 1.97 1.47 

HTNi-Ce/Y0.2  139 {99} 0.3 8 7 {7} 2.80 1.63 

HTNi-Ce/Y0.4  120 {91} 0.4 12 7 {7} 2.53 1.51 

1) specific surface area calculated from the BET equation 

2) pore volumes derived from the BJH desorption calculation method.  

3) pore size distribution obtained from the BJH desorption calculation method 
4) the numbers in brackets are for the reduced samples are added for comparison. They are taken from Table 4.21  
5) resulting from carbon oxidation, calculated assuming the initial mass of the analyzes sample in TGA, i.e., 10.5-10.0 mg 

 

XRD patterns for the spent catalysts after DRM tests are presented Fig. 4.47. The Ni crystallite size, 

carbon formation and changes in the crystallographic structure were examined and compared to the 

results obtained for the reduced materials (see Fig. 4.43). For the spent catalysts, typical reflections of 

metallic nickel (ICOD 01-087-0712) and periclase-like mixed oxides can be found (ICOD 00-045-0946). 

As presented in Table 4.24, the Ni0 crystallite sizes did not change after the DRM tests. Thus, sintering 

of nickel can be excluded, confirming similar observations reported by Dębek et al. [205]. In contrast 

to the results of Daza et al. [317], no spinel phase was observed. The lack of the spinel phase may be 

also confirmed by the study of Sepehri et al. [375], where the NiAl2O4 has been eliminated due to the 
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addition of 3 and 6 wt.% Ce to Ni/Al2O3 materials. The addition of Ce or Ce/Y decreased the intensity 

of additional hydrotalcite phase reflections in comparison to HTNi, thus proving the beneficial effect 

of these promoters on structural stability of the catalysts. Similar was observed for the catalysts of 

HTNi-Y series (Subchapter 4.1.). On the other hand, the presence of Zr seems not to have this beneficial 

effect, as shown in Fig. 4.27 in Subchapter 4.2 and Fig. 4.38 in Subchapter 4.3. Although CH4 and CO2 

conversions were stable, carbon deposits were formed, as confirmed by the presence of graphite 

reflections at 2q = 26.6° (ICOD 01-075-2078).  

Fig. 4.47. XRD diffractograms recorded for the spent catalysts after isothermal tests at 700 °C for 5 h. 

 

The quantity and the type of carbon formed on the catalysts upon the DRM were examined by TGA 

(Fig. 4.48) and Raman spectroscopy (Fig. 4.50).  

The carbon deposition in TGA was quantified basing on the CO2 ion current detected during its 

combustion (Fig. 4.49). During the thermal decomposition of the spent materials, a small decrease of 
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the mass is registered in the temperature range of 40–300 °C, which is connected with water vapor 

removal (Fig. 4.49). An increase of the mass observed over 300 °C arises from the oxidation of metallic 

nickel to nickel oxides [42]. At 400 °C, a significant decrease of the weight due to the combustion of 

carbon deposits on the surface of the catalysts was registered. This is confirmed by a CO2 formation 

presented in Fig. 4.49. The peak centered at 610 °C corresponds to carbon filaments, as shown by TEM 

results discussed below. The intensities of CO2 signals agree with the amount of formed carbon 

obtained from TGA, which were 1.97, 2.02, 2.53 and 2.80 mg respectively for HTNi-Ce, HTNi, HTNi-

Ce/Y0.4 and HTNi-Ce/Y0.2 (Table 4.24).  

 

Fig. 4.48 Thermogravimetric analysis (TGA) for the catalysts after isothermal DRM tests. 
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Fig. 4.49 Mass spectrometry (MS) signals of water vapor and carbon dioxide during thermal decomposition 

of the spent catalysts. 

Raman spectroscopy was performed after isothermal tests and the results are presented in Fig. 

4.50. Four characteristic peaks located at 1473 cm−1 (D band), 1573 cm−1 (G band), 1602 cm−1 (D’ band), 

and 2644 cm−1 (G’ band) can be observed for all studied samples, D-bands is related to the disordered 

structural form of crystalline carbon species and G-bands associated with graphitic carbon, as 

discussed in more detail in previous subchapters. The degree of the carbon crystallinity (ID/IG) is shown 

in Table 4.23. The highest contribution of the graphitized carbon, related to the lowest ID/IG ratio of 

1.47, was registered for HTNi-Ce catalyst. For the HTNi-Ce/Y0.2 catalyst less graphitic carbon was 

observed than for HTNi-Ce, despite the higher mass loss in the TGA analysis (cp. Fig. 4.48). Thus, 

although the low loadings of yttrium (0.2 wt.%) led to the creation of higher amount of carbon, such 

deposits should be easier to remove. 
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Fig. 4.50 Raman spectra recorded for the spent catalysts. 

To gain more information on the structure of carbon deposits, high-resolution transmission 

electron microscopy analyzes were carried out for the samples after dry reforming of methane tests 

at 700 °C for 5 h. The micrographs of the spent HTNi-Ce and HTNi-Ce/Y0.4 catalysts are presented in 

Figs. 4.51 A and B. Helix-shaped carbon nanotubes are observed together with the high number of 

straight tubes, with well-defined graphite sheets with d-spacing of 3.3 Å for (111) planes. The helix-

shaped nanotubes can be formed due to periodic incorporation of pentagon-heptagon pairs into a 

hexagonal carbon framework, generating curved surfaces [382]. Fig. 4.51 A also shows a high-

resolution detail of tightly wound helix-shaped carbon nanotube containing 20–22 graphene sheets. 

Moreover, well-dispersed cylindrical nickel particles of the mean size of 11–12 nm were registered. 

However, most of them were encapsulated with the carbon layers of dhkl = 3.35 Å (Figs. 4.51 A and B). 

In HTNi-Ce catalyst, cerium oxide particles were detected with distance of 3.2 Å (111) and the particle 

size of 7–13 nm. Such CeO2 particles formed aggregates in close vicinity to Ni. In case of the Y-modified 
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sample, the particles of cerium oxide were present separately or together with small particles of 

yttrium (Fig. 4.51 B). Based on the recorded distance of 3.05 Å, it is hard to distinguish if a solid solution 

of CeO2-Y2O3 was formed (dhkl = 3.12 Å for cubic) or two particles of cerium oxide and yttrium oxide 

are just neighboring each other (dhkl = 3.12 Å for cubic CeO2, dhkl = 3.06 Å for cubic Y2O3). As proposed 

in literature [29], such yttria-doped ceria (YDC) phase could explain the high catalytic activity and 

better Ni0 dispersion for the studied catalysts. 

Moreover, the mixed oxides have been partially reconstructed, as confirmed by presence of the Mg 

and Al signals in EDS, and distance of dhkl = 2.52 Å probably arising from (009) plane. Also, the textural 

properties obtained for the spent samples, as SBET increased and showed similar values to those for the 

calcined materials (Table 4.25 vs. Table 4.21). 
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Fig. 4.51 HRTEM micrographs of (A) HTNi-Ce; and (B) HTNi-Ce/Y0.4 catalysts after dry reforming of methane 

test at 700 °C for 5 h. 
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4.4.5. Conclusions 

In this subchapter, the dry reforming of methane was presented over the double-layered 

hydroxides modified with cerium (by co-precipitation method) and with 0.2, 0.4 or 0.6 wt.% yttrium 

(by the incipient wetness impregnation method).  

The co-promotion with Ce and Y led to the decrease of reducibility of Ni, an increase of the basicity, 

enhanced Ni dispersion and smaller Ni crystallite size as compared to the HTNi catalyst. This can be 

explained by a possible formation of yttria-doped ceria (YDC) phase. The modification with the smallest 

loading of yttrium (0.2 wt.%) led to the increase of both CO2 and CH4 conversions during isothermal 

DRM tests for 5 hours. This enhancement of the activity is partly arising from side reactions. No 

deactivation was reported during the isothermal tests, despite the formation of carbon deposits. The 

amount of catalytic coke was higher for Y-promoted samples; however, the deposits were less 

graphitic than for the HTNi-Ce catalyst.  
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4.5. Overall conclusions on dry reforming of methane  

Ni-containing double-layered hydroxides were prepared with a fixed M2+/M3+ molar ratio of 3, and 

Ni2+/Mg2+ of 0.33, and tested in dry reforming of methane. The influence of Y, Zr and Ce promotion on 

the physico-chemical properties of these series of catalysts was analyzed by means of XRD, XRF, low 

temperature N2 sorption, TPR-H2, TPD-CO2, H2 chemisorption, transmission electron microscopy, high-

resolution microscopy, thermogravimetric analysis coupled with mass spectroscopy and Raman 

spectroscopy. The promotion with Y, Zr or Ce was carried out by different techniques such as co-

precipitation and incipient wetness impregnation. The activity in dry reforming of methane and direct 

methane decomposition was tested at the temperature range between 850 and 600 °C, and in the 

isothermal 5-hour tests at 700 °C. 

The general conclusion is that the promotion with Y influenced physico-chemical properties 

(specific surface area, Ni dispersion, basicity and reducibility), to an extent depending on both the 

amount of introduced yttrium and the method of preparation. This, in turn, influenced the catalytic 

performance. The presence of two promoters (Y, with Zr or Ce) strongly influenced activity, stability 

and the selectivity of tested catalysts in DRM. Although all catalysts after DRM showed the presence 

of carbon deposits, the type of such species and their amount was dependent on the presence of both 

Y, and Zr or Ce. Regarding activity, the best observed after 5 h was for the catalyst co-precipitated with 

both Zr (assumed 5 wt.%) and Y (0.4 wt.%). Regarding the amount and type of formed carbonaceous 

deposits, the best performing catalyst was HTNi-Zr, which showed mostly amorphous carbon. 

For the Ni/Mg/Al hydrotalcite-based catalysts, Y promotion via co-precipitation of Ni/Mg/Al with 

Y resulted in increased specific surface area, and Ni dispersion, without creating a separate crystalline 

phase of this metal. The modification of Ni/Mg/Al hydrotalcite with 0.2-2.0 wt.% Y resulted in 

incorporation of yttrium into hydrotalcite layers, whereas the promotion with 3 wt.% led to the 

deposition of this metal on the catalyst’s surface. The latter resulted in the stabilization of hydrotalcite 

structure, and calcination at 550 °C led to only partial transformation to periclase. The presence of 

yttrium on the surface led to the increased basicity (mainly Lewis pairs), in contrast to the decrease 
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that was registered when Y was incorporated into the structure (0.2-2.0 wt.%). Yttrium present in the 

framework of periclase-like structure led additionally to the decreased reducibility, whereas the 

presence of the metal on the surface increased the H2 consumption.  

The yttrium addition increased catalytic activity in dry reforming of methane. The loading of 0.4 

wt.% inhibited important carbon forming reaction – direct methane decomposition. However, three 

types of carbon were still observed in the spent catalysts, amorphous, filamentous and graphitic-like 

coke.  

The co-impregnation with zirconium and yttrium led to formation of ZrO2-Y2O3 solid solution on 

the surface of HTNi material, thus resulting in a decrease of SBET. Although the dispersion of metallic Ni 

increased, the presence of bulk NiO was observed for all Zr,Y-impregnated samples, except the 

HTNi/ZrY0.4. The formation of the zirconia-yttria phase led to the decreased total basicity. The doping 

with yttrium clearly influenced the distribution of the basic sites, as percentage of medium-strong basic 

sites was increasing with yttrium loading. The promotion with 0.4 wt.% was optimal, as confirmed by 

the enhanced stability. No deactivation was observed in the isothermal DRM catalytic test. Stability 

improvement was also expressed by the absence of reconstruction to the hydrotalcite structure. 

However, considerable amounts of amorphous carbon were registered.  

The co-precipitation of Ni/Mg/Al with Zr revealed ZrO2 partly incorporated into the brucite-like 

layers of catalysts precursors, and partly deposited on the surface. When compared to impregnation, 

the co-precipitation, led to the formation of smaller ZrO2 particles and thus better dispersion. Further 

impregnation with yttrium decreased the specific surface area and did not lead to the creation of 

ZrO2-Y2O3 solid solution. The Ni dispersion decreased for yttrium impregnated samples, due to the 

partial blockage of these active sites. Also, in this case the percentage of medium-strength basic sites 

was increasing with yttrium loading. In DRM test, the catalytic activity was the highest for HTNi-Zr and 

HTNi-Zr/Y0.4, hence these catalysts were tested in isothermal test showing no deactivation in 5-hour 

on stream. The characterization of the spent catalysts showed, however, that impregnation with Y0.4 
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led to the significant amount of graphitic-like carbon deposits in contrast to only Zr-containing material 

for which traces of carbon were detected upon 5 h of DRM reaction at 700 °C.  

Co-precipitation of all components (Ni, Mg, Al, Zr and Y) led to a significant decrease of the specific 

surface area. The Ni dispersion was higher as compared to the HTNi-Zr. The total number of total basic 

sites increased, and new intermediate strength (Lewis acid-basic pairs) basic sites, and strong (O2-) sites 

were formed. The isothermal test revealed increasing CH4 and CO2 conversions, pointing to the further 

evolution of Ni-species with TOS. Characterization of the used catalyst did not show sintering of the 

nickel, as almost the same crystallite size as for the reduced sample was recorded. However, the 

undesired graphitic carbon was observed.  

The co-precipitation of Ni/Mg/Al hydrotalcite with cerium resulted in the formation of the 

segregated phase of CeO2. Specific surface area and Ni reducibility were decreased. Further 

impregnation with yttrium benefited the textural properties, as SBET increased considerably. As shown 

by HRTEM, most probably yttrium-doped ceria phase (YDC) was formed. The crystallite size of Ni0 

decreased and dispersion of this metal increased. The basicity was influenced by ceria addition, as the 

percentage share of medium and strong basic sites was enhanced. In contrast to Ni/Mg/Al and 

Ni/Mg/Al/Zr hydrotalcites promoted with Y, no dependence of the number of basic sites on Y content 

was registered. The CH4 and CO2 conversions were stable for all catalysts, except for HTNi-Ce/Y0.2 for 

which increasing trend was recorded. All samples showed the unwanted graphitic carbon. Helix-

shaped carbon nanotubes were also observed in the jungle of straight nanotubes. 
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Chapter 5 – Tri-reforming of methane and other reactions on selected catalysts 

In this chapter, an unpromoted catalyst HTNi and a catalyst promoted with 2 wt.% Y (HTNi-Y2.0) 

were examined in the partial oxidation of methane (POM), assuming (CH4/CO2/O2/Ar)=(1/0/0.5/8.5) 

and CO2 reforming combined with partial oxidation of methane (CRPOM), i.e., 

(CH4/CO2/O2/Ar)=(1/1/0.5/7.5). These catalysts were chosen as promotion with 2.0 wt.% Y resulted in 

the improved textural properties and the highest recorded Ni dispersion, i.e., 19.8%. HTNi was tested 

to determine the influence of yttrium addition on catalytic performance, as compared to the 

unmodified material. Additionally, these two selected catalysts were examined in tri-reforming of 

methane assuming two different gas compositions, i.e.,  

(i) (CH4/CO2/H2O/O2/Ar) = (1/0.5/0.5/0.1/7.9), similar as proposed in literature [83,85–

87,89], and  

(ii) (CH4/CO2/H2O/O2/Ar) = (3/1/2/0.3/3.7) simulating the flue gases from natural-gas-fired 

power plants. This feed gas has been chosen among three others compositions as the one 

giving the results most favorable according to thermodynamic analysis. 

 

The choice of Ni-hydrotalcites for tri-reforming is based on several literature arguments. The first 

of them is their good performance in dry reforming of methane, also confirmed in this PhD study.  

Ni-based double-layered hydroxides were also reported before as potential catalysts in partial 

oxidation of methane [231,233–235,383–385].  Shishido et al. [231] reported that the Ni-based double-

layered hydroxides can minimize the carbon formation during POM reaction. Zheng et al. [233] 

observed that nickel-based hydrotalcites with two different loadings (8 wt.% and 15.5 wt.% Ni) had 

similar catalytic activity in POM.  

Mg/Al double-layered hydroxides were also examined by Tsyganok et al. [386] in the process of dry 

reforming combined with partial oxidation of methane (CRPOM). Ru-promoted Mg/Al double-layered 

hydroxides under the tested conditions (850 °C; CH4/O2/CO2/N2 = 35.2/16.2/3.18/45.8; vol.%) showed 

the best catalytic performance towards CRPOM, among three metals tested as promoters (Pt, Rh, Ru). 
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Thus, the above-mentioned findings suggest good catalytic performance of hydrotalcites in 

oxidative reactions systems. However, in the existing literature, no studies of tri-reforming of methane 

over Ni/Mg/Al double-layered hydroxides and the DLHs promoted with yttrium were reported.  

 

5.1. Partial oxidation of methane – one of main reactions in tri-reforming of methane  
 

5.1.1. TPSR catalytic tests 
 

Methane conversion during partial oxidation of methane (CH4/CO2/O2/Ar=1/0/0.5/8.5, 

GHSV=20,000 h-1, temperature range of 850-600 °C) is presented in Fig. 5.1. For both studied catalysts 

methane conversion was over 70% in the considered temperature window. As predicted by 

thermodynamic calculations, the conversions were the highest for high temperatures (here studied 

850 °C). HTNi and HTNi-Y2.0 revealed similar CH4 conversion results, showing the promoting effect of 

yttrium only to a small extent, in contrast to the results discussed in Subchapter 4.1. for dry reforming 

of methane (CH4/CO2/Ar=1/1/8). Nevertheless, the CH4 conversions were still higher in POM than in 

DRM, showing the beneficial role of oxygen. In POM, high conversions of CH4 were observed before in 

the range of 600-700 °C, suggesting that the combustion of methane was predominant [387]. In the 

literature, the POM mechanism was described by two pathways leading to either CO2 or CO as a 

primary reaction product. The combustion and reforming reaction mechanism (CRR) was first 

suggested by Prettre et al. [130], and also considered by many other researchers [131,222,388,389]. It 

assumes that CO2 and H2O are produced via combustion reaction of CH4 and O2, followed by reforming 

(steam and dry), resulting in the formation of H2 and CO. The second pathway is the direct oxidation 

mechanism (DPO), and was proposed by Hickman and Schmidt [136–138]. This mechanism assumes 

the formation of CO via methane pyrolysis, followed by the oxidation of carbon-containing species to 

CO without pre-formation of CO2. 
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Fig. 5.1 CH4 conversions registered for HTNi and HTNi-Y2.0 catalysts during POM catalytic test. The reaction 

conditions (CH4/CO2/O2/Ar=1/0/0.5/8.5, GHSV=20,000 h-1, temperature range of 850-600 °C, steady-state at 

each 50 °C for 30 min). 

 

Fig. 5.2 H2/CO molar ratio for the HTNi and HTNi-Y2.0 catalysts in the POM catalytic test. The reaction conditions 

(CH4/CO2/O2/Ar=1/0/0.5/8.5, GHSV=20,000 h-1, temperature range of 850-600 °C, steady-state at each 50 °C for 

30 min). 
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The H2/CO molar ratio obtained during POM reaction is presented in Fig. 5.2. The H2/CO ratio 

decreased for both catalysts with increasing reaction temperature, from 2.4 at 600 °C to 1.9 at 850 °C. 

The decreasing trend is in agreement with the equilibrium calculations as well as with literature 

[132,219]. At higher temperatures H2 is consumed due to the endothermic nature of the accompanying 

reforming processes - dry or steam CH4 reforming, as well as reverse water-gas shift reaction (RWGS) 

[132,241]. However, it should be mentioned that the ratio value of 2.4 obtained at lower temperature 

(600 °C) is far from ideal for subsequent liquid fuel synthesis.  

In order to illustrate the composition of the mixture after reaction, as well as the changes in 

concentration during the 30 minutes on line at a given temperature, the TPSR profiles for the partial 

oxidation of methane (POM) for HTNi and HTNi-Y2.0 are presented in Fig. 5.3 A and B, respectively.  
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Fig. 5.3 TPSR results for (A) HTNi and (B) HTNi-Y2.0:  volumetric percentage of reaction compounds as a function 

of 30 minutes online at the studied temperatures. The reaction conditions (CH4/CO2/O2/Ar=1/0/0.5/8.5, 

GHSV=20,000 h-1, temperature range of 850-600 °C). 
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After the first 6 min of the catalytic test, these values decreased as a result of the partial oxidation of 

methane. It has been clearly shown that the POM reaction took place in the temperature range of 750-

850 °C, because only CO was formed and no CO2 was detected. However, below 750 °C, both CO and 

CO2 were formed, confirming the co-existence of partial and total oxidation of methane (TOM) [228]. 

Modified hydrotalcite-derived catalysts were reported as active in total combustion of methane [390–

396]. The TOM resulted also in H2O formation, but the latter was not quantified during these 

experiments. Similar results were observed by Chalupka et al. [241] for C-Ni5AlBEA and C-Ni5SiBEA 

catalysts. The TPSR tests revealed the occurrence of TOM in the temperature range of ca. 420-425 to 

720-770 °C, whereas POM reaction started above the latter temperature. The presence of CO2 at lower 

temperatures and its absence at higher temperatures is in good agreement with thermodynamics (cp. 

Fig. 3.4, Chapter 3) predicting the gradual decrease of carbon dioxide concentration in the products 

with the increase in temperature. This behavior is in agreement with the mechanism proposed by 

Prettre et al. [130], in which CO2 is a primary product of POM, undergoing further the reaction with 

either CH4 or H2O (the product of total methane oxidation) to form CO and H2. This would explain why 

CO2 is registered only at lower studied temperatures where DRM and SRM, due to their highly 

endothermic nature, have lower conversions than at higher temperatures.  

 

5.1.2. Isothermal catalytic tests of partial oxidation of methane 
 

Fig. 5.4 shows the isothermal POM test for HTNi and HTNi-Y2.0 catalysts at 700 °C for 5 h. As it can 

be seen, both catalysts were stable during this reaction without any decrease in catalytic activity. The 

HTNi showed 87.5% of converted CH4, while HTNi-Y2.0 revealed slightly higher value of 93.1%. This is 

in the agreement with the results obtained previously in the TPSR test (cp. Fig. 5.1).  
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Fig. 5.4 CH4 conversion in the isothermal POM test at 700 °C for 5 h (CH4/CO2/O2/Ar=1/0/0.5/8.5, GHSV=20,000 

h-1). 

 

Fig. 5.5 shows the H2/CO molar ratio recorded during the isothermal test at 700 °C for 5 h. The 

obtained ratio is around 2.04 for both catalysts. No evident decrease was observed, pointing to a stable 

behavior under POM conditions of the both catalysts, modified or unmodified by Y.  
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Fig. 5.5 H2/CO molar ratio recorded for HTNi and NTNi-Y2.0 catalysts during POM test at 700 °C for 5 h 

(CH4/CO2/O2/Ar=1/0/0.5/8.5, GHSV=20,000 h-1). 

 

Apart from CO and H2 only traces of CO2 were recorded during the test at 700 °C for 5 h. This could 

suggest an insignificant role of total oxidation of methane but is also consistent with the mechanism 

of Prettre et al. [130] discussed above.   
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Fig. 5.6 Results of isothermal test of (A) HTNi and (B) HTNi-Y2.0 - the volumetric percentage of reaction 

compounds as a function of time. The reaction conditions (CH4/CO2/O2/Ar=1/0/0.5/8.5, GHSV=20,000 h-1, at 700 

°C for 5 h). 
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5.2. Combined CO2 reforming and partial oxidation of methane as a part of the process of tri-

reforming of methane 

 

Fig. 5.7 presents the CH4 conversion values in combined CO2 reforming and partial oxidation of 

methane (CH4/CO2/O2/Ar)=(1/1/0.5/7.5). The addition of 10 vol.% of CO2 resulted in an increase of CH4 

conversion only for HTNi-Y2.0 catalyst, in comparison to the POM results (cp. Fig. 5.1). Similar 

observation was reported by Meshkani et al. [224]. The authors investigated the CRPOM process over 

Ni/MgO prepared by impregnation technique. They reported higher CH4 conversion for CRPOM than 

for DRM and POM, as well as amounts of carbon deposits lower for the POM reaction than for DRM, 

and no carbon deposition in the CRPOM process. This catalytic behavior was ascribed to the presence 

of oxygen as a substrate and its beneficial role in the removal of C deposits. 

 

Fig. 5.7 CH4 conversion as a function of temperature for HTNi and HTNi-Y2.0 catalysts in CRPOM process. The 

reaction conditions: (CH4/CO2/O2/Ar)=(1/1/0.5/7.5), the temperature range of 850-600 °C, steady-state at each 

50 °C for 30 min. 
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The CO2 conversion as function of temperature is presented in Fig. 5.8. For both catalysts, the 

carbon dioxide conversions were similar (within experimental error). The values are lower under 

oxidative CO2 reforming than in DRM. Additionally, in dry reforming, the CO2 conversion was higher 

than the CH4 conversion due to the reverse water-gas shift reaction. The results presented in Fig. 5.8 

are significantly lower due to CO2-forming side reactions, which are thermodynamically feasible in this 

temperature window [397].  

 

Fig. 5.8 CO2 conversion as a function of temperature for HTNi and HTNi-Y2.0 catalysts in CRPOM process. The 

reaction conditions: (CH4/CO2/O2/Ar)=(1/1/0.5/7.5), the temperature range of 850-600 °C, steady-state at each 

50 °C for 30 min. 

 

The H2/CO molar ratio at different temperatures in combined partial oxidation and dry reforming 

is presented in Fig. 5.9. The obtained values decreased with the temperature, and, apart from the 

lowest studied temperature (600 °C) coincide with the thermodynamic equilibrium values. 
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Fig. 5.9 H2/CO molar ratio as a function of temperature for HTNi and HTNi-Y2.0 catalysts in CRPOM process. The 

reaction conditions: (CH4/CO2/O2/Ar)=(1/1/0.5/7.5), the temperature range of 850-600 °C, steady-state at each 

50 °C for 30 min. 

 

The addition of oxygen to reaction mixture should prevent or decrease catalyst deactivation caused 

by carbon formation [144,304,398]. However, the controlled amount of oxygen is required, as low O2 

concentrations will not have the desired effect and high O2 amount results in lower selectivity, hot 

spots formation and sintering [131,143,144,399]. Moreover, side reactions (direct methane 

decomposition (DMD) and Boudouard reaction) can occur parallelly during CRPOM and they are the 

main sources of carbon deposits. Literature studies, however, showed significant inhibition of carbon 

deposition, as confirmed by the lack of the graphitic carbon reflection in XRD of the spent catalysts of 

combined CO2 reforming with partial oxidation (CRPOM) [400,401].  

The studied catalysts HTNi and HTNi-Y2.0 were characterized after TPSR tests.  

XRD patterns of the spent catalysts are presented in Fig. 5.10. Characteristic XRD reflection of 

graphitic carbon (2q ca. 27°) was not observed in either of the spent catalysts. The metallic nickel phase 
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was detected (ICOD 01-087-0712), together with the periclase structure (ICOD 00-045-0946). Ni0 

crystallite size, calculated from Scherrer equation was 6 and 3 nm for HTNi and HTNi-Y2.0 respectively. 

Since the carbon formation is favored on large Ni crystallites [402,403], higher resistance of HTNi-Y2.0 

catalyst is expected. 

 

Fig. 5.10 XRD patterns of the spent catalysts after TPSR tests of combined partial oxidation and CO2 reforming. 

 

5.3. Tri-reforming of methane 
 

5.3.1. Feed gas composition of (CH4/CO2/H2O/O2/Ar=1/0.5/0.5/0.1/7.9) 
 
5.3.1.1. Catalytic tests 
 

Catalytic activity for tri-reforming of methane in the isothermal 5-hour test at 700 °C is presented 

in Fig. 5.11. The CH4 conversion increased in the first 27 minutes, from 85% to 99%, whereas a decrease 

in the CO2 conversion from 99% to 55-80% was revealed. The presence of oxygen in the feed promotes 

the exothermic partial oxidation or total oxidation of a fraction of the CH4 feed, sustaining the 
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reforming steps [87]. The methane oxidation reactions result in CO2 formation which in turn could 

affect the net CO2 conversion. The other CO2-forming reaction is water-gas shift (CO+H2O=CO2+H2).  

 
Fig. 5.11 CH4 and CO2 conversion for HTNi catalyst recorded in tri-reforming of methane catalytic test. The test 

conditions: (CH4/CO2/H2O/O2=1/0.5/0.5/0.1/7.9, GHSV=20,000 h-1, 700 °C for 5 h). 

 

On the other hand, CO2 conversion could also originate from the oxidation of carbon deposit, formed 

upon dry and/or steam reforming, methane decomposition or Boudouard reaction [85]. The HTNi 

catalyst showed stable activity during the 5 h of the test under the specified experimental conditions. 

The experimental data obtained for the CO2 showed huge variations, and do not provide straight 

answer about the changes of carbon dioxide conversion. The mean value, however, is ca. 69%. 
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Fig. 5.12 H2/CO molar ratio for HTNi catalyst recorded in tri-reforming of methane catalytic test. The test 

conditions: (CH4/CO2/H2O/O2=1/0.5/0.5/0.1/7.9, GHSV=20,000 h-1, 700 °C for 5h). 

 

H2/CO molar ratio for HTNi material is presented in Fig. 5.12. The obtained values were in the range 

1.7-2.2. Because of the unstable CO2 conversion, the obtained experimental values show fluctuations 

within time on stream. However, some trends may be recognized. At the beginning of the test the ratio 

increased. Then, after first 50 min it remained stable within the range of 2.1-1.9, and started to decline 

after 250 min. The mentioned initial increase may have originated from the formation of additional 

hydrogen via methane partial oxidation, as suggested before [85]. The final decline in H2/CO molar 

ratio may be, on the other hand, ascribed to the production of extra amount of carbon monoxide. The 

latter could be a final product of reactions directly linked with carbon oxidation, such as C(ads) + CO2 = 

2CO, and/or C(ads) + H2O = CO + H2 [91].  
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Fig. 5.13 CH4 and CO2 conversion for HTNi-Y2.0 catalyst recorded in tri-reforming of methane catalytic test. The 

test conditions: (CH4/CO2/H2O/O2=1/0.5/0.5/0.1/7.9, GHSV=20,000 h-1, 700 °C for 5 h). 

 

For HTNi-Y2.0, the catalytic performance of tri-reforming of methane is presented in Fig. 5.13. 

There is an interesting evolution of the side reactions for this material. During the first 90 min of the 

TRM, the CO2 conversion was higher than CH4 conversion, indicating that e.g. reverse water-gas shift 

reaction could have taken place. The latter is thermodynamically favored at high temperature. 

Moreover, the reverse water-gas shift reaction would consume a part of the H2 produced by methane 

reforming and thus lead to more CO, which may be observed in Fig. 5.14. The totally opposite result 

was registered after 90 min. CH4 conversion became higher than CO2 conversion (Fig. 5.13), indicating 

the change of the selectivity upon tri-reforming. This can be explained by oxidation of either methane, 

or carbonaceous deposits. The former seems to be more probable, considering that the CH4 conversion 

decreased in the same time as CO2 conversion increased. Moreover, additional carbon monoxide was 

produced, and the H2/CO molar ratio decreased (Fig. 5.14). This shows the possible total oxidation of 
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methane as the side reaction, in which CO2 and H2O are produced. These products seem to influence 

the subsequent carbon monoxide production.  

 
Fig. 5.14 H2/CO molar ratio for HTNi-Y2.0 catalyst recorded in tri-reforming of methane catalytic test. The test 

conditions: (CH4/CO2/H2O/O2=1/0.5/0.5/0.1/7.9, GHSV=20,000 h-1, 700 °C for 5 h). 

 
 
5.3.1.2. Characterization of the spent catalysts 
 

The formation of carbon deposits is an important issue in reforming processes. One of the 

advantages of tri-reforming process is believed to be the inhibition of carbon deposition on catalysts 

surface. The catalysts after isothermal TRM test (700 °C for 5 h) were characterized by XRD and TGA. 

XRD diffractograms of the spent catalysts after tri-reforming (CH4/CO2/H2O/O2=1/0.5/0.5/0.1/7.9) 

are presented in Fig. 5.15. For both materials, reflections of Ni0 and periclase-mixed oxides were 

observed, and no reflection of graphitic carbon was recorded. This shows the beneficial effect of TRM 

gas composition. For both catalysts, the calculated Ni0 crystallite size was 5 nm. 
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Fig. 5.15 XRD patterns for HTNi and HTNi-Y2.0 spent catalysts after tri-reforming of methane 

(CH4/CO2/H2O/O2=1/0.5/0.5/0.1/7.9) isothermal tests. 

 
Fig. 5.16 Thermogravimetric analyzes of HTNi and HTNi-Y2.0 spent catalysts after tri-reforming of methane 

(CH4/CO2/H2O/O2=1/0.5/0.5/0.1/7.9) isothermal tests. 
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Thermogravimetric analyzes were carried out for HTNi and HTNi-Y2.0 catalysts. Both materials 

represent a similar trend. First, in the range starting from ambient temperature up to ca. 250 °C the 

weight decreased to 95.4% and 94.5% of the initial value for, respectively, HTNi and HTNi-Y2.0. As 

discussed in previous Subchapters (4.1., 4.2., 4.3., 4.4.), this decline arises from the moisture removal 

and possibly from the oxidation of amorphous carbon, as suggested by Han et al. [359]. The former is 

obvious, as steam was a reagent in TRM process. In the next temperature region of 250-450 °C the 

weight increase was registered, which originates from oxidation of metallic nickel to nickel oxide [191]. 

Over 450 °C the mass for both catalysts slightly declined, showing mass loss of 0.9% and 1.0% for HTNi 

and HTNi-Y2.0, respectively. This proves much lower content of carbon deposits than for DRM and, in 

connection with XRD results, also the presence of non-graphitic type, which would in consequence be 

easier to remove during regeneration. 

 
5.3.2. Gas composition of flue gases from natural-gas-fired power station (CH4/CO2/H2O/O2/Ar = 

3/1/2/0.3/3.7) 

5.3.2.1. Catalytic tests 
 
 

CH4 and CO2 conversions for HTNi catalyst in an isothermal test at 700 °C are presented in Fig. 5.17. 

Though some fluctuations are observed, the obtained values of CO2 conversion remained fairly stable, 

while a small decrease of CH4 conversion was registered. CO2 conversion was always higher than that 

of CH4. Possibly one of the reactions resulting in the formation of additional CO2 was inhibited in the 

TRM tests over hydrotalcite-derived catalysts. However, further studies are necessary to confirm this 

hypothesis.  
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Fig. 5.17 CH4 and CO2 conversion for HTNi catalyst recorded in tri-reforming of methane catalytic test. The test 

conditions: (CH4/CO2/H2O/O2=3/1/2/0.3/3.7, GHSV=20,000 h-1, 700 °C for 5 h). 

 

The H2/CO molar ratio is shown in Fig. 5.18. The gradually decreasing values were recorded over 

the time of the measurement, with initial value of 1.7 and 1.5 as the final one after 5 h. This indicates 

that CO was additionally produced during this TRM test. The enhanced conversion of CO2 and extra 

production of CO may also suggest significant increase of reverse-water gas shift (CO2+H2=CO+H2O) 

during TRM. Izquierdo-Colorado et al. [397] observed that, under the catalytic conditions of 

CH4/CO2/O2/Ar = 2.5/1/0.5/6, the intrinsic properties of the hydrotalcite-derived catalysts favored 

reverse-water gas shift reaction, leading to the conversion of CO2 and H2, the former produced from 

the complete combustion of methane and the latter arising from methane decomposition, 

respectively. 
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Fig. 5.18 H2/CO molar ratio for HTNi catalyst recorded in tri-reforming of methane catalytic test. The test 

conditions: (CH4/CO2/H2O/O2=3/1/2/0.3/3.7, GHSV=20,000 h-1, 700 °C for 5 h).  

 

Catalytic behavior of HTNi-Y2.0 in the tri-reforming of methane is presented in Fig. 5.19. Similarly, 

as for HTNi catalyst, the CO2 conversion was higher than that of CH4. The latter remained more stable 

than in case of HTNi. The increase in the stability of the Y-containing catalyst may be related to the 

enhanced Ni0 dispersion in HTNi-Y2.0 catalyst (as described in Subchapter 4.1. it was 19.8% for HTNi-

Y2.0 and 8.9% for HTNi). Again, CO2-converting side reactions had a major contribution to the overall 

process of TRM. Average values of H2/CO molar ratio were constant for HTNi-Y2.0 (Fig. 5.20) and 

presented lower fluctuations, in contrast to those registered for HTNi. The average value of the H2/CO 

molar ratio for HTNi-Y2.0 was 1.65. 
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Fig. 5.19 CH4 and CO2 conversions for HTNi-Y2.0 catalyst recorded in tri-reforming of methane catalytic test. The 

test conditions: (CH4/CO2/H2O/O2=3/1/2/0.3/3.7, GHSV=20,000 h-1, 700 °C for 5 h). 

 

 
Fig. 5.20 H2/CO molar ratio for HTNi catalyst recorded in tri-reforming of methane catalytic test. The test 

conditions: (CH4/CO2/H2O/O2=3/1/2/0.3/3.7, GHSV=20,000 h-1, 700 °C for 5 h). 
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5.3.2.2. Characterization of the spent catalysts 
 
Similarly, as for the TRM process described in Section 5.3.1.2., XRD and TGA were performed for the 

catalysts after tri-reforming of methane described in this Subchapter (under conditions: 

CH4/CO2/H2O/O2=3/1/2/0.3/3.7).  

XRD diffractograms for the materials after TRM catalytic tests are presented in Fig. 5.21. HTNi 

revealed the presence of metallic Ni, periclase-mixed oxides and graphitic carbon, while HTNi-Y2.0 

showed complete transformation of mixed oxides into layered hydrotalcite structure (“H” reflections). 

Metallic nickel and graphitic coke were also observed after promotion with yttrium. This shows that 

yttrium led to the reconstruction of the support, as the consequence of the memory effect of double-

layered hydroxides, despite a fairly high temperature of the studied process [338]. The metallic Ni did 

not oxidize to NiO for both HTNi and HTNi-Y2.0, and the Ni0 crystallite sizes were 8 nm for unmodified 

material, and 6 nm for the one modified with yttrium.   

 
 
Fig. 5.21 XRD patterns recorded for HTNi and HTNi-Y2.0 spent catalysts after tri-reforming of methane 

(CH4/CO2/H2O/O2=3/1/2/0.3/3.7) isothermal tests. 
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TGA results are presented in Fig. 5.22. The profile obtained for HTNi is similar to that recorded for 

the spent catalyst after dry reforming of methane. The recorded mass loss is, however, lower for the 

sample after TRM, i.e., 17.3%, than after DRM, i.e., 20.0%.  

The HTNi-Y2.0 sample showed thermal decomposition typical of double-layered hydroxides. As 

described by Tsyganok et al. [190,191], first region of mass decrease arises from the removal of 

physically sorbed water, whereas desorption of structural water requires higher temperature of ca. 

190 °C. The third region of decrease is mostly assigned to the removal of amorphous carbon. The 

weight decrease observed at temperatures higher than 400 °C arises from oxidation of different form 

of carbonaceous species.  

  
 

Fig. 5.22 Thermogravimetric analyzes of HTNi and HTNi-Y2.0 spent catalysts after tri-reforming of methane 

(CH4/CO2/H2O/O2=3/1/2/0.3/3.7) isothermal tests. 

5.4. The comparison of HTNi and HTNi-Y2.0 catalysts in DRM, POM, CRPOM and TRM 
 

Table 5.1 summarizes the obtained results, in comparison with the data registered for dry reforming 

of methane (Subchapter 4.1.). 
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Table 5.1. Average CH4 and CO2 conversions and H2/CO molar ratio for DRM, POM, CRPOM and TRM processes 

for HTNi and HTNi-Y2.0 catalysts in the isothermal tests at 700 °C, GHSV 20,000 h-1. 

Catalyst 
Catalytic 

performance 

DRM POM CRPOM* TRM TRM 

CH4/CO2 = 1/1 CH4/O2 = 1/0.5 CH4/CO2/O2 = 

1/1/0.5 

CH4/CO2/H2O/O2= 

1/0.5/0.5/0.1 

CH4/CO2/H2O/O2 = 

3/1/2/0.3 

HTNi CH4 conversion [%] 73.2 87.4 94.8 98.2 75.9 

CO2 conversion [%] 75.0 - 40.5 69.3 90.8 

H2/CO molar ratio  0.90 2.0 1.12 1.97 1.59 

HTNi-Y2.0 CH4 conversion [%] 74.2 93.1 96.3 91.9 78.4 

CO2 conversion [%] 84.8 - 37.3 85.1 89.8 

H2/CO molar ratio 0.92 2.0 1.12 1.63 1.65 

* at 700 °C for 30 min in TPSR test 
 

 

The tested catalysts were active in partial oxidation of methane (POM) at 700 °C. The obtained 

molar ratio of H2/CO was 2.0, which is the stoichiometric value for the POM reaction. The conversion 

of oxygen was 100%.  

The results of the partial oxidation combined with dry reforming of methane (CRPOM) proved that 

the addition of oxygen to the DRM results in a significant increase of CH4 conversion, which is higher 

than either in dry reforming or partial oxidation. This may be ascribed to the presence of two strong 

oxidants in CRPOM, CO2 and O2. The CO2 conversion, however, is lower than that of CH4. It is also much 

lower than CO2 conversion in dry reforming. Other carbon dioxide forming reactions may have 

contributed to this effect. For both catalysts, the obtained H2/CO molar ratio was 1.12. In CRPOM, 

oxygen was totally converted.  

Decreasing the amount of CO2 and O2 in the feed, together with the addition of H2O 

(CH4/CO2/H2O/O2= 1/0.5/0.5/0.1), resulted in the enhanced CO2 conversion and H2/CO molar ratio. 

The improvement in the CO2 conversion may be either due to enhanced selectivity of side reactions 

leading to the extra conversion of CO2, or the inhibition of CO2 forming reactions (e.g. total oxidation 

of methane). In case of gas composition of CH4/CO2/H2O/O2 = 3/1/2/0.3 with increased content of CH4, 

H2O and O2 in comparison to CO2, it had a more pronounced effect on CO2 conversion. The CH4 

conversion decreased, as the added amount of this gas was too high to be totally converted. For both 
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tested catalysts the reached molar ratio of the TRM products was close to 1.6. Under the conditions of 

both tests of tri-reforming of methane, oxygen was converted in 100%. 

 

Table 5.2 The comparison of selected data concerning carbon deposits for the spent HTNi and HTNi-Y2.0 catalysts 

after DRM, CRPOM and TRM in isothermal tests at 700 °C, GHSV 20,000 h-1. 

Catalyst 

Presence of carbon 

deposits 

(based on XRD  

or TGA) 

DRM CRPOM* TRM TRM 

CH4/CO2 = 1/1 CH4/CO2/O2 = 

1/1/0.5 

CH4/CO2/H2O/O2= 

1/0.5/0.5/0.1 

CH4/CO2/H2O/O2 = 

3/1/2/0.3 

HTNi XRD 

Presence of graphitic 

carbon reflection 

+ - - + 

TGA 

Amount (%) and 

temperature range of 

oxidation   

20.0% 

400 – 720 °C 

n.m. 0.9% 

400 – 900 °C 

17.3% 

450 – 700 °C 

Type of carbon  Graphite-like 

carbon + 

filamentous 

carbon + 

amorphous 

carbon 

No carbon or 

traces of 

amorphous 

carbon** 

No carbon or 

traces of 

amorphous carbon 

Graphite-like 

carbon + 

filamentous carbon 

+ amorphous 

carbon 

HTNi-Y2.0 XRD 

Presence of graphitic 

carbon reflection 

+ - - + 

TGA 

Amount (%) and 

temperature range of 

oxidation   

16.7% 

400 – 650 °C 

n.m 1.0% 

450 – 900 °C 

18.1% 

400 – 680 °C 

Type of carbon 

 

Graphite-like 

carbon + 

filamentous 

carbon + 

amorphous 

carbon 

No carbon or 

traces of 

amorphous 

carbon** 

No carbon or 

traces of 

amorphous carbon 

Graphite-like 

carbon + 

filamentous carbon 

+ amorphous 

carbon 

* after TPSR test in the temperature range of 850-600 °C 
** only XRD information 
n.m. – not measured 
“+” indicates presence of graphite reflections, “-“ carbon not detected (XRD measurements) 
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Table 5.2 compares the experimental information on carbon deposits which is important for the 

discussion of the stability of the tested materials. During dry reforming of methane considerable 

amount of catalytic coke was formed, as supported by XRD and TGA characterization methods. 

Graphite-like carbon, filamentous and amorphous carbon were registered. Promotion with yttrium 

had a beneficial effect, confirmed by lower amount of carbon deposits (16.7% versus 20.0% for HTNi). 

The combination of dry reforming of methane with partial oxidation (CRPOM) resulted in the improved 

stability, as no graphitic carbon reflection was found in XRD. This is ascribed to the oxygen presence in 

the feed. The addition of steam and oxygen, CH4/CO2/H2O/O2= 1/0.5/0.5/0.1, positively influenced the 

catalytic stability as compared to DRM. Considerably lower amount of carbon deposition observed in 

spent HTNi and HTNi-Y2.0 catalysts after TRM than after DRM. This indicates, that the carbon formed 

by side reactions was oxidized with oxidants such as CO2, O2 and H2O. Nevertheless, the gas 

composition is crucial for determining the stable behavior of the catalysts, as proven by the different 

amount of carbon deposits for the mixtures with the composition of CH4/CO2/H2O/O2=1/0.5/0.5/0.1 

(the ratios CO2/H2O=1, O2/CH4=0.1 and (CO2+H2O+O2)/CH4=1.1) and that of 

CH4/CO2/H2O/O2=3/1/2/0.3 (with the ratios CO2/H2O=0.5, O2/CH4=0.1 and (CO2+H2O+O2)/CH4=1.1). 

For the latter mixture considerable amount of carbonaceous species were deposited on the surface, 

as presented in the Table 5.2. For both tested catalysts, amorphous, filamentous and graphitic types 

of carbons were found. Higher amount of coke (%) was observed for HTNi-Y2.0 (18.1%), however its 

oxidation took place at lower temperature range (400-680 °C) as compared to the unmodified material 

(17.3%, 450-700 °C). 

 
5.5. Conclusions  

 
In this chapter, HTNi and HTNi-Y2.0 double-layered hydroxides were examined in partial oxidation 

of methane, partial oxidation combined with dry reforming of methane, and tri-reforming of methane.  

The partial oxidation of methane was feasible on both HTNi and HTNi-Y2.0 catalysts. The obtained 

CH4 conversions were high, and the ratio of products was equal 2.0, which is appropriate for Fischer-



Chapter 5 – Tri-reforming of methane and other reactions on selected catalysts 

 

 248 

Tropsch process with a cobalt based catalyst, requiring synthesis gas ratio (H2:CO) of 2:1 [104], as well 

as for methanol synthesis [404]. At lower tested temperatures (650-600 °C), the parallel reactions took 

place, which resulted in production of additional amounts of CO2. At higher temperatures (over  

700 °C) the amount of CO2 in the products decreased, possibly due to the consecutive reactions 

consuming carbon dioxide (dry reforming and/or steam reforming). This is in agreement with the 

mechanism of POM proposed by Prettre et al. [130]. 

The test of partial oxidation of methane in the presence of carbon dioxide (CRPOM) showed good 

catalytic performance of both HTNi and HTNi-Y2.0 catalysts. The methane conversion in combined 

reforming was higher than that observed in either dry reforming or partial oxidation. However, the 

CO2 conversion was lower due to the presence of side reactions. HTNi and HTNi-Y2.0 showed a high 

potential to produce syngas (H2-CO) with hydrogen-to-carbon monoxide ratio slightly above unity, i.e., 

1.12. The addition of oxygen considerably decreased the catalyst deactivation caused by carbon 

formation, as evidenced by the absence of graphite reflection in XRD patterns.  

Tri-reforming of methane experimental tests (CH4/CO2/H2O/O2=1/0.5/0.5/0.1/7.9) for HTNi and 

HTNi-Y2.0 showed good catalytic performance under the used conditions. HTNi resulted in H2/CO ratio 

of ca. 2.0 which is suitable for F-T process over Co-based catalysts [104], and methanol production 

[404]. On the other hand, HTNi-Y2.0 showed lower ratio, in the range of 1.45-1.75, and could be used 

in e.g. DME production. The latter requires H2/CO=1.2-1.5 [81]. However, considerable fluctuations in 

CO2 conversion were observed, especially for HTNi. No sintering of Ni was observed. The enhanced 

stability was also proved by the inhibition of carbon formation in comparison to the catalytic behavior 

observed for dry reforming of methane. 

The higher content of CH4, H2O and O2 in the feed gas composition of tri-reforming of methane 

(CH4/CO2/H2O/O2=3/1/2/0.3/3.7) led to the enhanced CO2 conversion and decreased CH4 conversion 

as compared to the results for the first analyzed gas system. The CH4 could not be completely 

converted due to low ratio of CO2/H2O=0.5. Possibly DRM and SRM processes compete. Carbon 

formation took place, probably as a consequence of CH4 decomposition. The presence of graphitic 
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carbon was confirmed by XRD and TGA analyzes. However, it should be mentioned that structural 

stability of Y-promoted catalyst was negatively influenced, as evidenced by the transformation of 

periclase-like structure during reaction into the layered structure of hydrotalcites. The latter was not 

registered for HTNi sample.
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General conclusions 

 
The presented doctoral thesis was focused on the application of double-layered hydroxide catalysts 

for reforming of methane processes, which belong to the chemical CO2 utilization methods. The 

literature review concerning utilization of carbon dioxide was presented in Chapter 1, and showed that 

DRM, CRPOM and TRM may become important industrial processes for synthesis gas production. The 

commercialization of these processes is, however, limited until a low-cost, active and stable catalyst is 

offered to industry.  

Supported noble metal catalysts (Rh, Ru, Ir, Pt and Pd) show efficient catalytic performance and low 

sensitivity to carbon deposits, but their high price and low availability prevent their industrial 

application in contrast to Ni-based catalysts. The latter represent a promising alternative. However, 

the main drawback of their application is fast deactivation caused by coke formation, sintering of active 

phase and metal oxidation. The deactivation may be limited by a possible improvement of the physical 

properties, e.g. the formation of Ni particle size smaller than 10 nm, high dispersion of the metal 

species as well as proper basicity which will allow to adsorb CO2. Thus, finding a highly active, selective 

and stable catalyst remains a serious problem for industrialization of reforming processes, and the 

design of a novel catalyst is still a challenge. The choice of proper support may contribute to an 

improvement. Synthetic double-layered hydroxides (DLHs), show good properties as precursors due 

to their double layered and homogeneous structure with appropriate basic properties and the 

presence of Mg2+ and Al3+ introduced by co-precipitation method. These cations may by partly 

substituted by ions of a promoter, in order to improve properties of the material. The presented 

studies focused on Ni/Mg/Al double-layered hydroxides into which yttrium, and zirconia or ceria was 

added.  

The prepared catalysts were characterized by XRD (for structural parameters and identification of 

the crystalline phases), XRF (elemental composition), low temperature N2 sorption (evaluation of 

textural properties), TPR-H2 (reducibility of Ni species), TPD-CO2 (evaluation of basicity), H2 
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chemisorption (dispersion of Ni species), transmission electron microscopy and high-resolution 

microscopy with EDS (evaluation of the formed carbon and identification of formed phases), 

thermogravimetric analysis coupled with mass spectroscopy (quantity and type of formed carbon) and 

Raman spectroscopy (type and graphitization of formed carbon deposits).  

The results and discussion concerned the four following topics: (i) co-precipitation of yttrium in Ni-

DLHs in DRM, (ii) effect of zirconia and yttrium introduction on Ni-DLHs in DRM, (iii) effect of cerium 

co-precipitation and yttrium impregnation in Ni-DLHs in DRM, (iv) influence of yttrium promotion on 

POM, CRPOM and TRM catalytic performance.  

Physico-chemical properties of the obtained DRM catalysts promoted with Y, as well as their DRM 

performance, strongly depended on both the amount of introduced Y, as well as the method of its 

introduction and the presence of a co-promoter. The catalytic performance was, as a consequence, 

influenced. In more detail, the following trends were registered. 

Yttrium could be introduced into the structure of double-layered Ni/Mg/Al hydroxides when added 

at the co-precipitation stage and for loadings of yttrium in the range of 0.2-2.0 wt.%. The addition of 

3.0 wt.% Y resulted in a partial deposition of this metal on the surface. After modification with 0.2 to 

2.0 wt.% yttrium the total basicity decreased, whereas the promotion with 3 wt.% led to a significant 

increase in the total number of basic sites. Finally, the highest specific surface area and Ni0 dispersion 

were found for the sample promoted with 2 wt.% Y.  

In DRM, the highest catalytic activity in CH4 and CO2 conversion was found for the HTNi-Y3.0 

catalyst, with average 85% for CH4, and 89% for CO2, which could be attributed to the enhanced 

number of total basic sites. However, the most stable behavior was observed for HTNi-Y2.0 sample 

with average 74% for CH4, and 78% for CO2 at 700 °C for 5 h. 

In the case of both Y and Zr promotion, it was clearly evidenced that the co-impregnation with Zr 

and Y leads to the formation of yttrium stabilized zirconia (YSZ) phase located on the surface of the 

double-layered hydroxide. On the contrary, co-precipitation with zirconia and impregnation with 

yttrium did not result in YSZ phase formation. ZrO2 was partially introduced within the periclase-like 
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structure, whereas yttrium was located on the surface leading to its partial blockage. This led to the 

decreased dispersion of metal active sites and slightly decreased Ni crystallite size. 

For both promotion techniques, the percentage of medium basic sites was increasing with the 

increasing yttrium loading. 

These two series were compared to the catalyst co-precipitated together with Zr (assumed 5 wt.%) 

and Y (0.4 wt.%). The incorporation of these two metals inside the structure led to the extended 

number of total basic sites, increased Ni dispersion and increased reducibility. This influenced DRM 

performance in a positive way, since, among all the Zr- and Y-promoted materials, this one showed 

the highest activity in CH4 and CO2. Moreover, the catalyst modified with Zr and Y (0.4 wt.%) presented 

structural resistance to the products of the RWGS side reaction, as supported by the absence of 

hydrotalcite reflections in the XRD patterns of the spent catalyst.  

Co-promotion with Ce and Y resulted in a decrease of reducibility of Ni, an increase of the basicity, 

enhanced Ni dispersion and smaller Ni crystallite size as compared to the HTNi catalyst. The highest 

catalytic performance in DRM was evidenced for HTNi-Ce, where CH4 conversion was 86%, CO2 

conversion of 88% and H2/CO molar ratio of ca. 0.97. For Ce and 0.4 wt.% Y-promoted sample the 

amount of carbon was higher, but less graphitic as compared to the only-Ce-modified material. No 

deactivation was observed during the isothermal test at 700 °C for 5 hours.  

Based on the results in DRM, two catalysts were tested in oxidative reforming reactions. 

For the yttrium promoted catalyst (HTNi-Y2.0) a good catalytic performance in partial oxidation of 

methane, with a high CH4 conversion of 93% and the desired ratio of H2/CO of ca. 2.0, were obtained. 

The combined partial oxidation of methane with dry reforming of methane (CRPOM) led to the 

increased CH4 conversion, as compared to the POM, whereas CO2 conversion decreased significantly 

due to the other parallelly occurring reactions. The addition of oxygen to the feed of dry reforming of 

methane, considerably contributed to the removal of carbon deposits, as confirmed by the absence of 

graphitic carbon reflection in XRD patterns for the spent material.  
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Two gas feed compositions were used in TRM reaction. The tri-reforming of methane composition 

of CH4/CO2/H2O/O2=1/0.5/0.5/0.1 led to an improved CO2 conversion, as compared to CRPOM, and 

increased H2/CO molar ratio. The tested material was stable, and only traces of carbon could be 

observed in TGA analysis. No reflection of graphitic carbon was recorded in XRD.  

On the contrary, the composition of CH4/CO2/H2O/O2= 3/1/2/0.3 tri-reforming of methane presented 

lower CH4 conversion (in contrast to the first gas composition) but similar H2/CO molar ratio. The 

presence of carbon was confirmed by XRD and TGA analyzes, where reflection of graphitic carbon was 

observed, as well as significant mass loss was registered in TGA. The HTNi-Y2.0 underwent the 

complete transformation of the periclase-like structure into hydrotalcites.  

Some of the future recommendations can be given, considering the promising data on double-

layered hydroxides in the dry reforming of methane and oxidative reforming reactions. Firstly, 

different yttrium introduction methods may be suggested, e.g. wet impregnation with a solution of 

yttrium nitrate, adsorption from Y[EDTA]- solution or co-precipitation with Y[EDTA]-. Moreover, some 

improvements of the preparation conditions should be studied, such as e.g. the influence of different 

calcination conditions (mainly temperature) on structural stability of hydrotalcites, as well as the size 

of Ni crystallites. The former is based on the fact that e.g. HTNi-ZrY0.4 catalyst which presented very 

good catalytic performance in DRM, but it did not show the complete transformation upon the 

calcination of layered structure into mixed oxides. The latter is of primary importance, as DRM is a 

structure sensitive reaction and inappropriate Ni crystallite size leads to unrequired methane 

decomposition resulting in formation of carbon deposits.   

The formation of carbon deposit is one of the main problems that may be faced when the process 

would be introduced on industrial scale. Thus, catalyst regeneration should be studied to prolong the 

useful life of the catalysts. One of the possibilities, including additional application of carbon dioxide, 

could be utilizing it for the regeneration step. Then, gasification of carbonaceous deposits via reverse 

Boudouard reaction could be expected.  
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Currently, tri-reforming of methane is the most promising process among the studied reforming 

reactions, considering the net energy used and inhibition of catalyst deactivation. However, as it was 

shown in this thesis, the proper conditions such as temperature and gas composition are crucial for 

fulfilling the TRM advantageous aspects. It was clearly shown that when molar ratio of CO2/H2O was 

equal 0.5 in the gas feed, the tested catalysts were suffering from the carbon formation. It would be 

thus recommended to test other compositions of TRM mixture to reduce the negative effects on the 

lifetime of the catalysts. Moreover, more catalysts (studied only in dry reforming of methane) should 

be tested in the oxidative reforming reactions, for example HTNi-Y0.4, HTNi-ZrY0.4, HTNi-Zr/Y0.4, 

HTNi-Ce/0.2 or HTNi-Ce/Y0.4. 
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Summary  

The CO2 atmospheric levels have been continuously increasing in recent years, which mainly 

originated from fossil fuels combustion, petrochemical, chemical and cement industry. The awareness 

of the global warming, mainly connected to carbon dioxide emissions, led to the implementation of 

different CO2 reduction strategies, with a special emphasis laid on technologies of CCS (Carbon Capture 

and Storage) and CCU (Carbon Capture and Utilization). The latter approach allows to convert CO2 into 

valuable products, chemicals and fuels. Among the technologies that can convert CO2 into valuable 

products are processes of reforming of methane - dry reforming of methane (DRM), partial oxidation 

combined with dry reforming of methane (CRPOM) and tri-reforming of methane (TRM). They all may 

be considered as an attractive route for syngas production.  

The literature reported that the most appropriate active metal for the reforming processes is nickel, 

due to its low cost, availability and good catalytic performance. Although the noble-metal based 

catalysts showed higher activity in methane reforming processes, their application is limited due to 

high price and low availability. However, the industrial application of Ni-based materials may be limited 

because of sintering of Ni nanoparticles and catalyst deactivation caused by carbon deposits. The 

catalyst preparation, including the support used and the addition of promoters, significantly influence 

the catalytic behavior, contributing to both catalytic activity and stability with time on stream. 

Double-layered hydroxides (DLHs), also known as hydrotalcites (HTs), show good properties as 

potential carriers due to their double-layered structure and the presence of NiO, MgO and Al2O3 

introduced by co-precipitation. Therefore, the goal of this PhD thesis was to evaluate catalytic 

performance of different double-layered-hydroxide catalytic systems containing nickel in dry 

reforming of methane, partial oxidation of methane, partial oxidation combined with dry reforming 

of methane, and tri-reforming of methane. A review of the literature revealed that there are several 

areas of research concerning application of DLHs-derived materials in reforming processes which have 

not been studied yet, thus this thesis focused on filling these gaps. In order to address these issues a 

number of different hydrotalcite-based catalysts was synthesized by co-precipitation and incipient 
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wetness impregnation method. An emphasis was laid on the influence of promoters, especially yttrium 

which was not studied as an additive to hydrotalcite-based catalysts before. The physico-chemical 

properties of the prepared materials were evaluated by means of XRD, XRF, low temperature N2 

sorption, TPR-H2, TPD-CO2, H2 chemisorption, transmission electron microscopy, high-resolution 

microscopy, thermogravimetric analysis coupled with mass spectroscopy and Raman spectroscopy. 

The obtained catalysts were characterized at various steps of the process – the freshly prepared, 

calcined, reduced, as well as after reaction. The materials were tested in the set of methane reforming 

processes, carried out in the temperature range of between 850 and 600 °C, and some of them in 

isothermal tests at 700 °C. 

The thesis covers six main parts: 

1. Literature part, reviewing the reduction of CO2 emissions, solutions and technologies 

(Chapter 1), 

2. Experimental part, describing the used preparation techniques, instrumental methods used 

and types and conditions of catalytic experiments (Chapter 2), 

3. Thermodynamic calculations (Chapter 3),  

4. Discussion of catalytic performance in dry reforming of methane of yttrium promoted 

catalysts, zirconium and yttrium promoted catalysts, and cerium and yttrium promoted 

catalysts (Chapter 4, with Subchapters 4.1, 4.2., 4.3., 4.4.), 

5. Discussion of catalytic behavior in partial oxidation of methane, combined partial oxidation 

with dry reforming of methane, and tri-reforming of methane (Chapter 5), and 

6. General conclusions. 

 

The third part (Chapter 3) covers thermodynamic equilibrium calculations for CH4 and CO2 

conversions as well as for H2/CO molar ratio. The calculations were carried out for dry reforming of 

methane (DRM), steam reforming of methane (SRM), partial oxidation of methane (POM) and tri-

reforming of methane (TRM) processes and showed that they can be efficiently carried out at high 
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temperatures (over 700 °C). Moreover, the calculations of tri-reforming of methane presented a 

considerable potential of catalytic CH4 and CO2 conversions under the feed gas composition of 

CH4/CO2/H2O/O2=1/0.5/0.5/0.1 and CH4/CO2/H2O/O2=3/1/2/0.3. 

The promoting effect of yttrium loading, discussed in Subchapter 4.1., was evaluated by the 

comparison of the physico-chemical properties and catalytic activity of double-layered hydroxides 

containing 0.2, 0.4, 0.6, 2.0 and 3.0 wt.% of yttrium prepared by co-precipitation. It was shown that 

yttrium in the range of 0.2-2.0 wt.% was introduced into the periclase-like structure, whereas the 

addition of 3.0 wt.% resulted in partial deposition of this metal on the surface. The best physico-

chemical properties, such as extended specific surface area and increased dispersion of Ni, were found 

for the sample promoted with 2 wt.% Y. After modification with 0.2 to 2.0 wt.% yttrium the total 

basicity decreased, whereas the promotion with 3 wt.% led to a significant increase in the total number 

of basic sites. The highest catalytic activity in CH4 and CO2 conversion was found for the HTNi-Y3.0 

catalysts, with average 85% for CH4, and 89% for CO2, which could be attributed to the enhanced 

number of total basic sites. However, the most stable behavior was observed for HTNi-Y2.0 sample 

with average 74% for CH4, and 78% for CO2 at 700 °C for 5 h. 

Subchapter 4.2. and 4.3 cover the evaluation of different ways of promotion of DLHs with Zr 

(assumed 5 wt.%) and Y (0.2, 0.4 and 0.6 wt.%) and their influence on the catalytic performance in dry 

reforming of methane. The samples co-impregnated with Zr and Y showed formation of yttrium 

stabilized zirconia (YSZ) phase located on the surface of the double-layered hydroxide. The hydrotalcite 

sample modified with Zr and Y (0.4 wt.%) presented structural resistance to the products of the RWGS 

side reaction, as supported by the absence of hydrotalcite reflections in the XRD patterns of the spent 

catalyst. The co-precipitation with zirconia and impregnation with yttrium did not result in YSZ phase 

formation. ZrO2 was partially introduced within the periclase-like structure, whereas yttrium was 

located on the surface leading to its partial blockage. This resulted in the decreased dispersion of metal 

active sites and slightly decreased Ni crystallite size. Irrespectively of the method of Zr and Y 

introduction, the percentage of medium basic sites was increasing with the increasing yttrium loading. 
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These two series were compared to the catalyst co-precipitated together with Zr (assumed 5 wt.%) 

and Y (0.4 wt.%). The incorporation of these two metals inside the structure led to the extended 

number of total basic sites, increased Ni dispersion and increased reducibility. This influenced DRM 

performance in a positive way, since, among all the Zr- and Y-promoted materials, this one showed 

the highest activity in CH4 and CO2.  

Subchapter 4.4. describes the examination of Ce (introduced by co-precipitation method with 

assumed 3 wt.%) and Y promoting effect (impregnation with 0.2, 0.4 or 0.6 wt.%) in Ni-based DLHs in 

dry reforming of methane. Co-promotion with Ce and Y resulted in a decrease of reducibility of Ni, an 

increase of the basicity, enhanced Ni dispersion and smaller Ni crystallite size as compared to the HTNi 

catalyst. The highest catalytic performance was registered for HTNi-Ce, where CH4 conversion was 

86%, CO2 conversion of 88% and H2/CO molar ratio of ca. 0.97. For Ce and 0.4 wt.% Y-promoted sample 

the amount of carbon was higher, but less graphitic as compared to the only Ce-modified material. No 

deactivation was observed during the isothermal test at 700 °C for 5 hours. 

All series of the catalysts discussed in Subchapters 4.1. to 4.4. tested in dry reforming of methane 

resulted in the formation of different types of carbonaceous deposits upon the catalytic test for 5 h at 

700 °C - amorphous, filamentous and graphitic-like. However, the amount of each type was dependent 

on both the preparation method used, the amount of introduced Y and the addition of a second 

promoter. The lowest amount of carbon deposits was registered for Zr co-precipitated catalyst. The 

least graphitic deposits were found after reaction for HTNi-Zr and HTNi-Zr/Y0.4. 

Chapter 5 discusses the promoting effect of Y in Ni-based DLHs in oxidative reforming reactions, 

partial oxidation POM, partial oxidation with the addition of carbon dioxide CRPOM and tri-reforming. 

Two chosen catalysts were examined, unpromoted double-layered hydroxide (HTNi) and double-

layered hydroxide promoted with 2 wt.% of Y (HTNi-Y2.0).  

In partial oxidation of methane (POM) experiments, the materials showed high CH4 conversions of ca. 

90% and the H2/CO ratio close to stoichiometric (ca. 2.0). No deactivation was observed within the 5-

hour experiment at 700 °C. The partial oxidation of methane combined with CO2 reforming revealed 
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that addition of oxygen to DRM considerably improved stability of the catalysts, where carbon removal 

was concerned, as only traces were detected. The obtained CO2 conversions were lower than those 

registered for dry reforming as a consequence of occurrence of parallel reactions. 

Catalytic performance of Y-Ni-DLHs in tri-reforming of methane was examined for two gas 

compositions (i) CH4/CO2/H2O/O2=1/0.5/0.5/0.1 as suggested by the literature, and (ii) 

CH4/CO2/H2O/O2=3/1/2/0.3 as proposed by the thermodynamic calculations. The application of the 

former showed very good performance with limited carbon formation for both HTNi and HTNi-Y2.0 

catalysts. The materials were catalytically active, both showing conversions of ca. 91-98% for CH4 and 

70-86% for CO2. The average molar ratio for HTNi was 1.97, which is suitable for methanol synthesis, 

whereas HTNi-Y2.0 showed lower value (1.63) which may be applied for e.g. dimethyl ether 

production. The second studied gas composition led to somewhat inferior performance of the tested 

materials, with the conversion values lower for both tested catalysts - 76-78% for CH4, and 89-91% for 

CO2 conversion, and the average H2/CO molar ratio for both of ca. 1.62. Additionally, this gas feed 

composition led to a significant amount of formed carbon on both tested samples, pointing to the 

important role which the applied reaction conditions. 
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Résumé  

Les niveaux atmosphériques de CO2 ont constamment augmenté ces dernières années, 

principalement à cause de la combustion de combustibles fossiles, de la pétrochimie, de la chimie et 

de l'industrie du ciment. La prise de conscience du réchauffement climatique, principalement liée aux 

émissions de dioxyde de carbone, a conduit à la mise en œuvre de différentes stratégies de réduction 

de CO2, en mettant un accent particulier sur les technologies de captage et de stockage du carbone et 

de captage et d’utilisation du carbone. Cette dernière approche permet de convertir le CO2 en produits 

de forte valeur ajoutés tels que des produits chimiques et des carburants. Parmi les technologies 

permettant de convertir le CO2, on peut citer les procédés catalytiques de reformage du méthane - 

reformage à sec du méthane (DRM), l’oxydation partielle associée au reformage à sec du méthane 

(CRPOM) et le tri-reformage du méthane (TRM). Malgré le fait que ces procédés ne soient pas encore 

dans un grand degré de maturité, Ils peuvent tous être considérés comme une voie intéressante pour 

la production de gaz de synthèse. 

Dans la bibliographie, parmi les nombreux catalyseurs utilisés pour ces procédés, il est indiqué que 

le nickel est le métal actif le plus approprié pour les procédés de reformage, en raison de son faible 

coût, de sa disponibilité et de ses bonnes performances catalytiques. Bien que les catalyseurs à base 

de métaux nobles aient montré une activité plus élevée dans les processus de reformage du méthane, 

leur application est limitée en raison du prix élevé et de la faible disponibilité. Cependant, l'application 

industrielle de matériaux à base de Ni peut être limitée en raison du frittage de nanoparticules de Ni 

et de la désactivation du catalyseur provoquée par des dépôts de carbone. Ainsi, la préparation du 

catalyseur, le support utilisé et l'addition de promoteurs ou de dopants sont des paramètres qui 

influencent de manière significative le comportement catalytique, contribuant à la fois à l'activité 

catalytique et à la stabilité dans le temps. 

Les hydroxydes doubles lamellaires (HDL), également appelés hydrotalcites (HT), présentent de 

bonnes propriétés en tant que support du fait de leur structure à double couche et de la présence de 

NiO, MgO et Al2O3 introduits majoritairement par co-précipitation. L'objectif de cette thèse était donc 
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d'évaluer les performances catalytiques de différents systèmes catalytiques à base d’hydroxydes 

doubles lamellaires contenant du nickel dans le reformage à sec du méthane, l'oxydation partielle 

du méthane, l'oxydation partielle combinée au reformage à sec du méthane et le tri-reformage du 

méthane. L’étude bibliographique a montrée que les matériaux du type HDL n'ont pas encore été 

étudiés dans les certains procédés de reformage. Un des objectifs de cette thèse a donc été de combler 

ces lacunes. Ainsi, un certain nombre de catalyseurs différents à base d’hydrotalcite ont été synthétisés 

par la méthode de co-précipitation et d’imprégnation à l’humidité naissante. L'accent a également été 

mis sur l'influence des promoteurs, en particulier de l'yttrium, qui n'avait pas été étudié jusque-là 

comme promoteur aux catalyseurs à base d'hydrotalcite. Les propriétés physico-chimiques des 

catalyseurs préparés ont été évaluées par diffraction de rayons X, Fluorescence X, adsorption de N2 à 

basse température, chimisorption d’hydrogène, Réduction en température programmée de H2, TPD-

de CO2, microscopie électronique à transmission, microscopie à haute résolution, analyse 

thermogravimétrique couplée à la spectroscopie de masse et spectroscopie Raman. Les catalyseurs 

obtenus ont été caractérisés avant réaction (après calcination et après réduction), mais également 

après la réaction catalytique. Les matériaux ont été testés en reformage du méthane (DRM, CROM, 

TRM), dans une plage de température comprise entre 850 et 600 °C, et pour certains d’entre eux en 

isotherme à 700 °C. 

Cette thèse comprend six parties principales : 

1. Une partie bibliographique consacrée à la réduction des émissions de CO2, aux solutions et aux 

technologies (chapitre 1), 

2. Une Partie expérimentale décrivant les techniques de préparation utilisées, les méthodes 

instrumentales utilisées ainsi que les types et les conditions des tests catalytiques (chapitre 2), 

3. Les calculs thermodynamiques (chapitre 3), 

4. Une discussion sur les performances catalytiques en reformage à sec du méthane des catalyseurs 

contenant de l’yttrium, du zirconium et de l’yttrium, et du cérium et de l’yttrium (chapitre 4, avec les 

sous-chapitres 4.1, 4.2., 4.3., 4.4.). 
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5. Une discussion du comportement catalytique en oxydation partielle du méthane, oxydation 

partielle combinée avec reformage à sec du méthane et tri-reformage du méthane (chapitre 5), et 

6. Des conclusions générales. 

La troisième partie (chapitre 3) traite des calculs d'équilibre thermodynamique pour les 

conversions de CH4 et de CO2 ainsi que pour le rapport molaire H2/CO. Les calculs ont été effectués 

pour le reformage à sec du méthane (DRM), le reformage à la vapeur du méthane (SRM), l’oxydation 

partielle du méthane (POM) et le tri-reformage du méthane (TRM). Ces résultats ont confirmé que les 

réactions pouvaient être effectués efficacement à haute températures (supérieures à 700 °C). De plus, 

les calculs de tri-reformage du méthane présentaient un potentiel considérable de conversions 

catalytiques de CH4 et de CO2 avec des compositions de gaz tels que CH4/CO2/H2O/O2 = 1/0,5/0,5/0,1 

et CH4/CO2/H2O/O2 = 3/1/2/0,3. 

L'effet promoteur de l'yttrium, décrit dans le sous-chapitre 4.1., a été évalué en comparant les 

propriétés physico-chimiques et l'activité catalytique des HDL contenant 0,2, 0,4, 0,6, 2,0 et 3,0% 

massique d'yttrium préparé par co-précipitation. Il a été montré que de pour des teneurs en yttrium 

comprises entre 0,2 et 2,0% massiques, l’yttrium était introduit dans la structure même de la périclase, 

alors que l'ajout de 3,0% massique entraînait un dépôt partiel de ce métal à la surface. Les meilleures 

propriétés physico-chimiques, telles qu'une plus grande surface spécifique et une plus grande 

dispersion du Ni0, ont été mises en évidence pour l'échantillon promu avec 2% massique en Y. Après 

modification avec 0,2 à 2,0% massique en yttrium, il a été montré que la basicité totale diminue, tandis 

que la promotion avec 3% massique a entraîné une augmentation significative du nombre total de 

sites basiques (TPD-CO2). L'activité catalytique la plus élevée, donnée par la conversion du CH4 et du 

CO2, a été constatée pour les catalyseurs HTNi-Y3.0, avec une moyenne de 85% de conversion de CH4 

et de 89% de conversion de CO2, ce qui pourrait être attribué au plus grand nombre de sites basiques 

totaux. Cependant, le comportement le plus stable a été observé pour l'échantillon HTNi-Y2.0 avec 

une moyenne de 74% de conversion pour le CH4 et 78% de conversion pour le CO2 à 700 °C pendant 5 

h. 
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Les sous-chapitre 4.2. et 4.3 traitent des différentes méthodes de dopage des HDL par le Zirconium 

(supposée 5% massique) et l’Yttrium (0,2, 0,4 et 0,6% massique) et leurs influences sur les 

performances catalytiques lors du reformage à sec du méthane. Les échantillons co-imprégnés par Zr 

et Y ont montré la formation d'une phase de zircone stabilisée à l'yttrium (YSZ) située à la surface de 

l’hydroxyde double lamellaire. Le catalyseur d'hydrotalcite modifié avec Zr et Y (0,4% massique) 

présentait une résistance structurelle, comme en témoigne l'absence de pic de diffraction 

correspondant à l'hydrotalcite en diffraction des rayons X sur le catalyseur après réaction. La co-

précipitation avec Zr et l'imprégnation avec Y n'ont pas entraîné la formation de la phase YSZ. Le ZrO2 

a été partiellement introduit dans la structure de la périclase, tandis que l’yttrium était situé à la 

surface, entraînant ainsi son blocage partiel. Cela a entraîné une diminution de la dispersion des sites 

actifs (Ni0) et une légère diminution de la taille des particules de Ni0. Indépendamment de la méthode 

d’introduction du Zr et du Y, le pourcentage de sites basiques de moyenne intensité augmentait avec 

l’augmentation de la masse en yttrium. Ces deux séries ont été comparées au catalyseur co-précipité 

avec Zr (supposé 5% en poids) et Y (0,4% en poids). L'incorporation de ces deux métaux dans la 

structure a entraîné une augmentation du nombre de sites basiques totaux, une dispersion accrue du 

nickel et une réduction de la réductibilité. Cela a donc conduit à une influence positive sur les 

performances catalytiques en reformage à sec, car parmi tous les catalyseurs promus par le Zr et le Y, 

celui-ci a montré l'activité la plus élevée. 

Le sous-chapitre 4.4 décrit l'étude de l’introduction de Ce (3% massique) (introduit par la méthode 

de la co-précipitation) et de l'effet dopant de Y (imprégné avec 0,2, 0,4 ou 0,6% massique) sur des 

catalyseurs Ni/HDL en reformage à sec du méthane. La co-promotion avec Ce et Y a entraîné une 

diminution de la réductibilité du nickel, une augmentation de la basicité des matériaux, une dispersion 

accrue du Ni0 et une taille de particule de Ni0 inférieure par rapport au catalyseur de référence HTNi. 

La performance catalytique la plus élevée a été obtenue pour le catalyseur HTNi-Ce, avec une 

conversion de CH4 de 86%, une conversion de CO2 de 88% et un rapport molaire H2/CO d’env. 0,97. 

Pour le catalyseur à base de Ce et de Y (0,4% massique), la quantité de carbone mesurée après réaction 
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était supérieure, mais le carbone obtenu était moins graphitique que pour le catalyseur dopé 

uniquement par le cérium. Par ailleurs, aucune désactivation n'a été observée au cours de l'essai en 

isotherme à 700 °C pendant 5 heures sur ce catalyseur. 

Sur toutes les séries des catalyseurs décrites dans les sous-chapitres 4.1 à 4.4, il a été observé, après 

DRM (test catalytique pendant 5 h à 700 °C), la formation de différents types de dépôts carbonés tels 

que du carbone amorphe, du carbone filamenteux et enfin du carbone graphitique. Cependant, la 

quantité de chaque type de carbone dépendait à la fois du procédé de préparation utilisé, de la 

quantité de Y introduit et, de l’addition d’un second promoteur. La quantité la plus faible en dépôt de 

carbone a été obtenue pour le catalyseur co-précipité au Zr. Les dépôts les moins graphitiques ont été 

trouvés après la réaction de DRM en présence de HTNi-Zr et HTNi-Zr/Y0.4. 

Le chapitre 5 présente l'effet promoteur de Y dans les HDL à base de nickel dans les réactions de 

reformage en présence d’oxygène telle que l'oxydation partielle POM, l'oxydation partielle avec 

addition de dioxyde de carbone CRPOM et le tri-reformage. Deux catalyseurs sélectionnés ont été 

testés, le catalyseur de référence non dopé (HTNi) et l’HDL dopé avec 2% massique en Y (HTNi-Y2.0). 

Dans les expériences d'oxydation partielle du méthane (POM), les matériaux ont montré des 

conversions élevées de CH4 d'environ 90% et un rapport H2/CO proche de la stœchiométrie (environ 

2,0). Par ailleurs, aucune désactivation n'a été observée au cours de l'expérience de 5 heures à 700 °C. 

L'oxydation partielle du méthane associée au reformage du CO2 a révélé que l'addition d'oxygène au 

reformage à sec améliorait considérablement la stabilité des catalyseurs, en ce qui concerne 

l'élimination du carbone, car seules des traces de carbone ont été détectées lors des études de 

caractérisation après réaction. Les conversions de CO2 obtenues étaient inférieures à celles obtenues 

pour le reformage à sec du fait de la présence de nombreuses réactions parallèles. 

La performance catalytique des Y-Ni-DLH en tri-reformage du méthane a été étudiée pour deux 

compositions de gaz (i) CH4/CO2/H2O/O2 = 1/0,5/0,5/0,1 comme suggérée par la bibliographie, et (ii) 

CH4/CO2/H2O/O2 = 3/1/2/0,3 donnée par les calculs thermodynamiques. En présence de la première 

composition gazeuse, de très bonnes performances ont été obtenues avec une formation limitée de 
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carbone pour les catalyseurs HTNi et HTNi-Y2.0 ; les deux catalyseurs présentant des conversions 

d’environ. 91-98% pour le CH4 et 70-86% pour le CO2. Lors de cette réaction un rapport H2/CO de 1,97 

a été obtenu avec le catalyseur HTNi, ce qui convient parfaitement à la synthèse du méthanol. Avec le 

catalyseur HTNi-Y2.0, le rapport H2/CO obtenu était de 1,63, ce qui correspond plus à la production de 

diméthyl-éther, par exemple. La deuxième composition de gaz étudiée a conduit à une performance 

catalytique quelque peu inférieure. En effet, les conversions obtenues sur les catalyseurs HTNi et HTNi-

Y2.0 ont été de 76-78% pour le CH4 et de 89-91% pour la conversion du CO2, avec un rapport H2/CO 

pour les deux d’environ 1,62. De plus, la réaction de TRM avec cette composition de gaz a conduit à la 

formation d’une quantité importante de carbone sur les deux catalyseurs, soulignant le rôle important 

des conditions opératoires dans la conversion de CO2/CH4 et dans la stabilité des matériaux de type 

HDL. 
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Streszczenie  

 
Na przestrzeni ostatnich kilkudziesięciu lat odnotowujemy stale wzrastające poziomy emisji CO2. 

Pochodzą one głównie ze spalania paliw kopalnych, jak również z przemysłu petrochemicznego, 

chemicznego i cementowego. Świadomość globalnego ocieplenia, związanego przede wszystkim z 

emisją ditlenku węgla, doprowadziła do zaproponowania różnych technologii poświęconych jego 

redukcji, ze szczególnym naciskiem na technologie CCS (wychwyt i sekwestracja ditlenku węgla) i CCU 

(wychwyt i utylizacja ditlenku węgla). Zastosowanie nowoczesnych rozwiązań umożliwia 

przekształcenie CO2 w wartościowe produkty takie jak chemikalia i paliwa. Wśród technologii, które 

mogą przetwarzać CO2 na produkty, są m.in. procesy reformingu metanu – suchy reforming metanu 

(DRM), częściowe utlenianie metanu w połączeniu z suchym reformingiem (CRPOM) i tri-reforming 

metanu (TRM). Procesy te mogą odegrać znaczącą rolę w produkcji gazu syntezowego. 

Literatura przedmiotu wskazuje, iż najodpowiedniejszym metalem aktywnym w procesach 

reformingu metanu jest nikiel, między innymi ze względu na jego niski koszt, dostępność i dobre 

właściwości katalityczne. Wprawdzie katalizatory na bazie metali szlachetnych wykazują wyższą 

aktywność w procesach reformowania metanu, lecz ich zastosowanie jest ograniczone ze względu na 

wysoką cenę i niską dostępność. Przemysłowe zastosowanie materiałów na bazie Ni jest jednak 

utrudnione ze względu na spiekanie nanocząstek niklowych i deaktywację katalizatora spowodowaną 

powstawaniem depozytów węglowych. Jednak można zauważyć, iż odpowiednia preparatyka 

katalizatora, w tym stosowanie odpowiednich nośników oraz dodatek promotorów, znacząco 

wpływają na jego właściwości, przyczyniając się zarówno do zwiększenia aktywności katalitycznej, jak 

i stabilności.  

Podwójne warstwowe wodorotlenki (DLHs), znane również jako hydrotalkity (HTs), wykazują 

bardzo dobre właściwości jako potencjalne nośniki ze względu na dwuwarstwową strukturę i obecność 

NiO, MgO i Al2O3 wprowadzanych do struktury na drodze współstrącania. Mając na względzie wyżej 

opisane aspekty, niniejsza praca doktorska miała na celu ocenę właściwości katalitycznych różnych 
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hydrotalkitowych katalizatorów zawierających nikiel w suchym reformingu metanu, częściowym 

utlenieniu metanu oraz częściowym utlenianiu w połączeniu z suchym reformingiem metanu i tri-

reformingu metanu. Literatura wskazuje, iż istnieje kilka obszarów dotyczących zastosowania 

materiałów pochodzących z DLHs w procesach reformingu metanu, które nie były jeszcze przedmiotem 

naukowych badań, a zatem idea pracy koncentrowała się na wypełnianiu tych luk. Mając powyższe na 

względzie, przygotowano szereg różnych katalizatorów na bazie materiałów hydrotalkitowych metodą 

współstrącania oraz metodą mokrej impregnacji. Nacisk położono na wpływ promotorów, zwłaszcza 

itru, który wcześniej nie był badany jako promotor katalizatorów opartych na hydrotalkicie. 

Właściwości fizyko-chemiczne otrzymanych materiałów oceniano za pomocą XRD, XRF, absorpcji N2 w 

niskiej temperaturze, TPR-H2, TPD-CO2, chemisorpcji H2, transmisyjnej mikroskopii elektronowej, 

mikroskopii HRTEM, analizy termograwimetrycznej, oraz spektroskopii Ramana.  

Otrzymane katalizatory scharakteryzowano na różnych etapach procesu - świeżo przygotowany, 

kalcynowany, zredukowany, a także po reakcji. Materiały badano w procesach reformingu metanu w 

zakresie temperaturowym od 850 do 600 °C, a wybrane, dodatkowo w testach izotermicznych w 

temperaturze 700 °C. 

Praca obejmuje sześć głównych części: 

1. Część literaturową - dotyczącą redukcji emisji CO2, rozwiązań oraz nowych technologii 

(Rozdział 1). 

2. Część eksperymentalną - opisującą stosowane techniki preparatyki, metody instrumentalne 

oraz rodzaje i warunki testów katalitycznych (Rozdział 2). 

3. Obliczenia termodynamiczne (Rozdział 3). 

4. Omówienie budowy katalizatorów oraz ich właściwości katalitycznych w suchym reformingu 

metanu dla materiałów hydrotalkitowych promowanych itrem, cyrkonem i itrem lub cerem i itrem 

(Rozdział 4, z podrozdziałami 4.1, 4.2., 4.3., 4.4.). 
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5. Omówienie właściwości katalitycznych wybranych katalizatorów w reakcjach częściowego 

utleniania metanu, częściowego utleniania metanu połączonego z suchym reformingiem metanu 

oraz w tri-reformingu metanu (Rozdział 5). 

6. Wnioski ogólne. 

 

Rozdział trzeci obejmuje obliczenia równowagi termodynamicznej dla stopnia konwersji CH4 i CO2, 

a także dla stosunku molowego H2/CO. Obliczenia przeprowadzono dla suchego reformingu metanu 

(DRM), parowego reformingu metanu (SRM), częściowego utleniania metanu (POM) i tri-reformingu 

metanu (TRM). Wyniki wykazały, iż procesy zachodzą z wysoką wydajnością, w temperaturze ok. 700 

°C. Ponadto obliczenia tri-reformingu metanu wykazały wysoki stopień konwersji katalitycznej dla CH4 

i CO2 przy składzie mieszaniny reakcyjnej CH4/CO2/H2O/O2 = 1/0,5/0,5/0,1 i CH4/CO2/H2O/O2 = 

3/1/2/0,3. 

Rolę itru jako promotora przedyskutowano w podrozdziale 4.1. porównując właściwości fizyko-

chemiczne i aktywności katalityczne podwójnych warstwowych wodorotlenków zawierających 0,2, 

0,4, 0,6, 2,0 i 3,0 % wagowych itru. Wykazano, że itr w zakresie 0,2-2.0% wag. został wprowadzony do 

struktury peryklazu, podczas gdy dodanie 3,0% wag. spowodowało częściowe osadzanie tego metalu 

na powierzchni. Najlepsze właściwości fizyko-chemiczne, takie jak wzrost powierzchni właściwej oraz 

zwiększony stopień dyspersji Ni, odnotowano dla próbki promowanej 2% wag. Y. Po modyfikacji 0,2 do 

2,0% wag. itru całkowita zasadowość zmniejszyła się, podczas gdy promowanie 3,0% wag. 

doprowadziło do znacznego wzrostu całkowitej liczby grup zasadowych. Najwyższą aktywność 

katalityczną stwierdzono dla katalizatora HTNi-Y3.0. Średni stopień konwersji CH4 i CO2 wynosił 

odpowiednio 85% i 89%, co można przypisać zwiększonej liczbie centrów zasadowych. Jednak 

najbardziej stabilny charakter zaobserwowano dla próbki HTNi-Y2.0 ze średnią wartością stopnia 

konwersji (zarejestrowaną w teście 5-cio godzinnym w 700 °C) równą 74% dla CH4 i 78% dla CO2. 

Podrozdziały 4.2. i 4.3. obejmują ocenę różnych metod promowania podwójnych warstwowych 

wodorotlenków za pomocą Zr (zakładano 5% wag.) i Y (0,2, 0,4 i 0,6% wag.) i ich wpływu na pracę 
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katalizatorów w suchym reformingu metanu. Próbki ko-impregnowane Zr i Y wykazały tworzenie fazy 

ditlenku cyrkonu stabilizowanego tlenkiem itru (YSZ) zlokalizowanej na powierzchni podwójnego 

warstwowego wodorotlenku. Próbka hydrotalkitu modyfikowana za pomocą Zr i Y (0,4% wag.) 

wykazywała odporność strukturalną na produkty reakcji ubocznej (RWGS odwrotna reakcja z gazem 

wodnym), na co wskazuje brak refleksów hydrotalkitowych w dyfraktogramach katalizatora po reakcji 

DRM. Współstrącanie hydrotalkitu z dodatkiem cyrkonu i impregnacja itrem w kolejnym kroku nie 

spowodowały utworzenia fazy YSZ. ZrO2 został częściowo wprowadzony do struktury peryklazu, 

podczas gdy itr znajdował się na powierzchni częściowo ją blokując. Spowodowało to zmniejszenie 

stopnia dyspersji metalicznego niklu i nieznaczne zmniejszenie wielkości jego krystalitów. Niezależnie 

od metody wprowadzania Zr i Y, procentowa zawartość centrów zasadowych wzrastała wraz ze 

wzrostem zawartości itru. Obie omówione serie katalizatorów porównano do katalizatora 

otrzymanego przez współstrącanie z Zr (założono 5,0% wag.) i Y (0,4% wag.). Włączenie tych dwóch 

metali do struktury doprowadziło do zwiększenia całkowitej ilości grup zasadowych, zwiększonego 

stopnia dyspersji Ni i zwiększonej redukowalności. Wpłynęło to w pozytywny sposób na właściwości 

katalityczne w procesie suchego reformingu, ponieważ wśród wszystkich materiałów promowanych 

przez Zr i Y, ten wykazał najwyższą aktywność w CH4 i CO2. 

Podrozdział 4.4. opisuje badania ko-promowania DLHs z Ce (wprowadzonego metodą 

współstrącania z założeniem 3,0% wag.) i Y (impregnacja 0,2, 0,4 lub 0,6% wag.) i testy suchego 

reformingu metanu. Ko-promowanie z Ce i Y doprowadziło do zmniejszenia redukowalności Ni, 

wzrostu zasadowości, zwiększenia stopnia dyspersji Ni i zmniejszenia wielkości krystalitów Ni w 

porównaniu z niepromowanym katalizatorem HTNi. Najwyższą aktywność katalityczną odnotowano 

dla HTNi-Ce, dla którego stopień konwersji CH4 był równy 86%, stopień konwersji CO2 był na poziomie 

88%, a stosunek molowy H2/CO wynosił ok. 0,97. Dla katalizatora promowanego Ce i 0,4% wag. Y ilość 

depozytu węglowego była wprawdzie wyższa niż dla HTNi-Ce, ale odznaczał się on mniejszym stopniem 

grafityzacji niż dla materiału modyfikowanego tylko cerem. Nie zaobserwowano deaktywacji podczas 

testu izotermicznego w temperaturze 700 °C przez 5 godzin. 
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Dla wszystkich serii katalizatorów, omówionych w podrozdziałach 4.1. do 4.4. zarejestrowano, po 

teście suchego reformingu metanu przez okres 5 h w temperaturze 700 °C, różne rodzaje depozytów 

węglowych. Ilość każdego typu była jednak zależna zarówno od zastosowanej metody preparatyki, 

ilości wprowadzonego Y i dodania drugiego promotora. Najmniejszą ilość depozytów węglowych 

zarejestrowano po reakcji dla katalizatora współstrąconego z Zr, a najmniejszy stopień grafityzacji dla 

HTNi-Zr i HTNi-Zr/Y0.4. 

Rozdział 5 omawia badania niklowych podwójnych warstwowych wodorotlenków w reakcjach 

reformingu z dodatkiem tlenu lub tlenu i wody, tj. w częściowym utlenianiu metanu (POM), w 

częściowym utlenieniu metanu połączonym z suchym reformingiem metanu (CRPOM) i w tri-

reformingu metanu (TRM). Przebadano dwa wybrane katalizatory, niepromowany podwójny 

warstwowy wodorotlenek (HTNi) i podwójny warstwowy wodorotlenek zawierający Ni i promowany 

2,0% wag. itru (HTNi-Y2.0).  

W eksperymentach częściowego utleniania metanu (POM) oba katalizatory wykazywały wysokie 

stopnie konwersji CH4 na poziomie ok. 90%, a odnotowany stosunek molowy H2/CO był zbliżony do 

stechiometrycznego (około 2,0). Nie zaobserwowano deaktywacji w ciągu 5-godzinnego testu 

katalitycznego w temperaturze 700 °C. Częściowe utlenianie metanu w połączeniu z suchym 

reformingiem wykazało, iż dodanie tlenu do DRM znacznie poprawia stabilność katalizatorów. Na 

powierzchni zaobserwowano jedynie śladowe ilości depozytu węglowego. Uzyskane stopnie konwersji 

CO2 były niższe niż te zarejestrowane dla suchego reformingu metanu na skutek wystąpienia reakcji 

ubocznych.  

Aktywność katalityczną Y-Ni-DLH w tri-reformingu metanu badano dla mieszanin reakcyjnych o 

dwóch składach (i) CH4/CO2/H2O/O2=1/0,5/0,5/0,1, sugerowanej przez literaturę, i (ii) CH4/CO2/H2O/O2 

= 3/1/2/0,3 wybrane na podstawie obliczeń termodynamicznych. Przy zastosowaniu tej pierwszej, 

odnotowano bardzo dobrą pracę obu katalizatorów HTNi i HTNi-Y2,0 przy ograniczonym tworzeniu 

depozytu węglowego. Materiały były aktywne katalitycznie, oba wykazywały średni stopień konwersji 

ok. 91-98% dla CH4 i 70-86% dla CO2. Średni stosunek molowy H2/CO dla HTNi wynosił 1,97, który jest 
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odpowiedni dla syntezy metanolu, podczas gdy HTNi-Y2.0 wykazał niższą wartość (1,63), którą można 

stosować np. do produkcji eteru dimetylowego. Druga badana mieszanina reakcyjna dała nieco gorsze 

wyniki, z niższymi wartościami stopnia konwersji dla obu badanych katalizatorów - 76-78% dla CH4 i 

89-91% dla konwersji CO2, i średnim stosunkiem molowym H2/CO ok. 1,62 w obu przypadkach. 

Dodatkowo, w przypadku mieszaniny o tym składzie zarejestrowano tworzenie znacznej ilości 

depozytu węglowego na obu badanych próbkach, co wskazuje na ważną rolę stosowanych warunków 

reakcji w stabilności materiałów typu DLH. 
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