Nicolas H Thurin 
email: nicolas.thurin@u-bordeaux.fr
  
Régis Lassalle 
  
Martijn Schuemie 
  
Marine Pénichon 
  
Joshua J Gagne 
  
Jeremy A Rassen 
  
Jacques Benichou 
  
Alain Weill 
  
Patrick Blin 
  
Nicholas Moore 
  
Cécile Droz-Perroteau 
  
Cécile Droz- Perroteau 
  
  
Empirical assessment of case-based methods for drug safety alert identification in the French National Healthcare System database (SNDS): Methodology of the ALCAPONE project

Keywords: Drug safety, Case-control, Case-population, Self-controlled case series, Calibration, Acute Liver Injury, Upper-gastrointestinal bleeding

drug control implementation highlighted that a low systematic error seemed to be generated by the optimum variants in the SNDS but that protopathic bias and confounding by indication remained unaddressed issues.

These results showed that self-controlled case series were well suited to detect drug safety alerts associated with UGIB and ALI in the SNDS in an accurate manner. A clinical perspective remains necessary to rule out potential false positive signals from residual confounding. The application in routine of such approaches extended to other outcomes of interest could result in substantial progress in pharmacovigilance in France.
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RESUME

La France possède une large base de données nationale regroupant les données de liquidation de l'Assurance Maladie, de mortalité et des données hospitalières : le Système National des Données de Santé (SNDS). Celui-ci couvre actuellement la quasi-totalité de la population française de la naissance (ou immigration), au décès (ou émigration), en incluant tous les remboursements de frais médicaux ou paramédicaux. En recueillant de manière systématique et prospective les dispensations médicamenteuses, les événements hospitaliers et les décès, le SNDS est doté d'un fort potentiel pour l'évaluation du médicament en vie réelle. Suite au retrait mondial du rofecoxib en 2004, de nombreuses initiatives visant au développement et à l'évaluation de méthodologies adaptées aux bases de données populationnelles pour la surveillance des risques liés à l'usage du médicament ont vu le jour, en particulier le réseau EU-ADR en Europe (Exploring and Understanding Adverse Drug Reactions by integrative mining of clinical records and biomedical knowledge) et OMOP (Observational Outcomes Partnership) aux États-Unis. Ces travaux ont démontré l'utilité des approches pharmaco-épidémiologiques pour la détection de signaux de pharmacovigilance. Cependant, le SNDS n'a jamais été testé dans cette optique. L'objectif de cette thèse était d'évaluer de manière empirique, 3 approches pharmaco-épidémiologiques basées sur les cas pour la génération d'alerte(s) de pharmacovigilance dans le SNDS : étude cas-population, étude cas-témoins et séries de cas autocontrôlés. Ces approches ont été appliquées à deux événements médicaux d'intérêt récurrents en pharmacovigilance : l'hémorragie digestive haute (UGIB) et l'hépatite aigue (ALI).

Le projet a été composé de 4 principales étapes : (1) le formatage des données selon les spécifications du modèle commun de données d'OMOP et la sélection des médicaments témoins positifs et négatifs pour chaque événement d'intérêt ; (2) l'analyse des médicaments témoins sélectionnés en utilisant les 3 approches basées sur les cas, en déclinant chaque approche selon plusieurs variantes (par exemple, en testant différentes fenêtres de risque, stratégies d'ajustement, etc.) ; (3) la comparaison des performances des variantes selon leur aire sous la courbe ROC (AUC), leur erreur quadratique moyenne (MSE) et leur probabilité de couverture ;

(4) la sélection de la meilleure variante pour chaque événement d'intérêt et son étalonnage.

Sur les 3 approches étudiées, c'est la série de cas autocontrôlés qui a montré les meilleures performances dans UGIB et ALI avec des AUC respectifs de 0,80 et 0,94 et des MSE de 0,07 et 0,12. Pour UGIB, les performances optimales ont été observées lorsque l'ajustement tenait compte des traitements concomitants et lorsque les 30 premiers jours d'exposition au médicament d'intérêt étaient utilisés comme fenêtre de risque. Pour ALI, les performances optimales ont été également obtenues lors de l'ajustement en fonction des traitements concomitants, mais en utilisant une fenêtre de risque correspondant à l'ensemble de la période couverte par les dispensations de médicament d'intérêt. L'utilisation de médicaments témoins négatifs a montré que l'erreur systématique résultant de l'application de l'approche et des paramètres optimaux dans le SNDS semblait faible, mais que les biais protopathiques et de confusion restaient présents. 

ABSTRACT

France has a large nationwide longitudinal database with claims and hospital data, the Système National des Données de Santé (French National healthcare database -SNDS), which currently covers almost the complete French population, from birth or immigration to death or emigration, and includes all reimbursed medical and paramedical encounters. Since SNDS systematically and prospectively captures drug dispensings, death and events leading to hospital stays, it has a strong potential for drug assessment in real life settings. Following the worldwide withdrawal of rofecoxib in 2004, several initiatives aiming to develop and evaluate methodologies for drug safety monitoring on healthcare databases emerged. The EU-ADR alliance (Exploring and Understanding Adverse Drug Reactions by integrative mining of clinical records and biomedical knowledge) and OMOP (Observational Outcomes Partnership) were respectively launched in Europe and in the Unites-States. These experiments demonstrated the usefulness of pharmacoepidemiological approaches in drug safety signal detection. However, the SNDS had never been tested in this scope. The objective of this thesis was to empirically assess 3 case-based designscase-population, case-control, and self-controlled case series -for drug-safety alert generation in the SNDS, taking as examples two health outcome of interest: upper-gastrointestinal bleeding (UGIB) and acute liver injury (ALI).

The overall project consisted of 4 main stages: (1) preparation of the data to fit the OMOP common data model and the selection of positive and negative drug controls for each outcome of interest; (2) analysis of the selected drug controls using the 3 case-based designs, testing several design variants (e.g. testing different risk windows, adjustment strategies, etc.); (3) comparison of design variant performances through the calculation of the area under the receiver operating characteristics curve (AUC), the mean square error (MSE) and the coverage probability; (4) the selection of the best design variant and its calibration for each health outcome of interest.

Self-controlled case series showed the best performances in both outcomes, ALI and UGIB, with AUCs reaching respectively 0.80 and 0.94 and MSEs 0.07 and 0.12. For UGIB optimal performances were observed when adjusting for multiple drugs and using a risk window corresponding to the 30 first days of exposure. For ALI, optimal performances were also observed when adjusting for multiple drugs but using a risk window corresponding to the overall period covered by drug dispensings. Negative

RESUME SUBSTANTIEL DES TRAVAUX EN LANGUE FRANÇAISE § Introduction

Les données de sécurité fournies lors de la mise sur le marché d'un médicament se basent essentiellement sur les essais cliniques réalisés lors de leur développement.

Cependant, ces essais peuvent faillir à identifier certains effets indésirables. Ils manquent souvent de puissance, sont restreints à des patients spécifiques, sans comorbidités, et sont conduits selon des paramètres fixes et préalablement établis ne reflétant que très peu la pratique clinique habituelle. La surveillance du médicament après sa commercialisation à travers la pharmacovigilance et les études de pharmaco-épidémiologie demeure donc cruciale pour pallier à ces manques et identifier les effets indésirables jusque-là inconnus, en particulier ceux graves et de faible fréquence de survenue. Actuellement, la notification spontanée reste l'outil privilégié à travers le monde pour l'identification de ces effets indésirables. Bien qu'ayant fait ses preuves, cette approche ne permet cependant pas de quantifier le risque potentiellement identifié : il est impossible de déterminer quelle proportion de la population a été exposée au médicament et quelle proportion a effectivement présenté un événement indésirable.

Alors que la notification spontanée fait état de données concernant un patient à un moment donné, les grandes bases de données populationnelles regroupent au cours du temps l'ensemble des informations relatives à l'historique médical des individus constitutifs d'une population. Elles peuvent se présenter sous la forme de bases de données de remboursement, de dossiers médicaux électroniques ou encore de bases de données hospitalières. Les informations relatives aux événements et aux expositions sont collectées indépendamment, de manière systématique et prospective. Elles sont donc peu affectées par les biais de sélection, et ne sont pas sujettes aux biais de mémorisation ni à l'effet Hawthorne. En étudiant l'impact de l'utilisation des médicaments en situation réelle de soins, la pharmaco-épidémiologie rend possible l'exploitation de ces bases, notamment la caractérisation des effets du médicament au niveau populationnel, y compris ceux indésirables. En outre, la présence d'un dénominateur permet de quantifier ces effets et donc leur impact potentiel en termes de santé publique. Il en résulte que les bases de données populationnelles représentent une source précieuse de données pour l'identification et la validation des signaux de pharmacovigilance.

La France dispose d'un bel exemple de base de données populationnelle, le Système National des Données de Santé (SNDS). Il couvre 99% de la population française de la naissance (ou immigration) jusqu'au décès (ou émigration). Le SNDS est une base de données qui utilise un identifiant pseudonymisé unique pour chainer les informations de remboursement des soins de ville (dispensations de médicaments, actes de biologie, visites médicales, etc.) contenu dans Système National d'Information Inter Régimes de l'Assurance Maladie (SNIIRAM), avec les données d'hospitalisation (diagnostics hospitaliers, actes médicaux, etc.) provenant du Programme de médicalisation des systèmes d'information (PMSI) et la Base de Causes Médicales de Décès géré par le CépiDc.

En 2004, suite au retrait mondial du rofecoxib du marché, une réflexion internationale a été menée sur la manière de mieux évaluer les bénéfices et anticiper les risques au cours du cycle de vie des médicaments. Le désir permanent d'étudier des événements et des expositions toujours plus rares a conduit les acteurs de l'évaluation des produits de santé à considérer l'intérêt des bases de données populationnelles, celles-ci permettant d'inclure toujours plus de patients. Ainsi, au cours des dernières années, différents réseaux de recherche et consortia incluant de multiples bases de données ont vu le jour à l'international. A l'initiative de la Commission Européenne, en 2007, le réseau EU-ADR, Exploring and Understanding Adverse Drug Reactions by integrative mining of clinical records and biomedical knowledge, a été lancé avec pour objectif de développer de nouvelles méthodologies pour la surveillance du médicament en s'appuyant sur 8 bases de données de pays membres. Aux États-Unis, entre 2009 et 2013, le consortium OMOP, Observational Outcomes Partnership, a conduit une évaluation de différentes méthodes pour l'identification de signaux de sécurité liés aux médicaments sur 10 bases de données. Dans la plupart de ces projets, les analyses étaient conduites à travers les bases partenaires selon un modèle de réseaux distribué (distributed network approaches). Cependant, l'hétérogénéité résultant de la mise en commun de ces multiples sources demeurait un problème substantiel malgré l'utilisation de modèles communs de données ou l'utilisation de méta-analyses.

En France, le SNDS permet d'étudier la population nationale, soit plus de 66,6 millions de personnes, sans problèmes d'hétérogénéité. Lors de la mise en place des réseaux EU-ADR et OMOP, les données du SNDS n'étaient pas encore disponibles.

De fait, l'intérêt du SNDS pour la génération de signaux de pharmacovigilance par de telles approches n'a pas été évalué.

En 2014, la plateforme Bordeaux PharmacoEpi, a soumis une lettre d'intention dans le cadre d'un appel à projets national sur les performances des soins de santé organisé par le Ministère de la santé français (PREPS), le projet ALCAPONE : Alert generation using the case-population approach in the French National healthcare databases. ALCAPONE a été approuvé (PREPS 2014, 0635) et lancé en 2016, avec pour objectif de déterminer dans quelle mesure le SNDS était un outil adapté à la génération de signaux de pharmacovigilance. L'idée principale était de s'appuyer sur la méthodologie développée par OMOP pour comparer, à partir de médicament témoins, plusieurs méthodes de génération de signaux afin de trouver la plus appropriée pour quatre événements d'intérêt : l'hépatite aigue (acute liver injury -ALI), l'insuffisance rénale aiguë (acute kidney injury -AKI), l'infarctus du myocarde (myocardial infarction -MI) et l'hémorragie digestive haute (upper-gastrointestinal bleeding -UGIB). Parce qu'elles quantifient le risque en même temps qu'elles le détectent, les approches habituellement employées en pharmaco-épidémiologie ont été retenues. Les signaux ainsi détectés étant directement validés au niveau populationnel, ils constituent de fait une « alerte ». L'objectif de cette thèse basée sur le projet ALCAPONE, était d'évaluer de manière empirique 3 approches pharmaco-épidémiologiques basées sur les cas pour la génération d'alerte(s) de pharmacovigilance dans le SNDS : la série de cas autocontrôlées (self-controlled case series -SCCS), l'étude cas-témoins (case- A partir des médicaments utilisés comme référence dans les projets OMOP et EU-ADR et commercialisés en France, un set de médicaments témoins positifs et négatifs a été définis pour chacun des événements d'intérêt. Les témoins positifs correspondaient à des médicaments présentant une association connue avec l'événement étudié. Les témoins négatifs correspondaient à des médicaments pour lesquels il n'existait aucune preuve permettant d'établir une relation de cause à effet avec l'événement. En fonction du nombre de patients présents dans chaque population d'intérêt, seuls les médicaments témoins ayant suffisamment de puissance pour être détectés au sein du SNDS ont été conservés (i.e. ceux avec un risque relatif minimum détectable < 1,30).

• Analyse des médicaments témoins

Trois approches basées sur les cas ont été utilisées : SCCS, CC et CP. Le SCCS consiste à comparer chez un même sujet la survenue d'événements sur une période où il est exposé au médicament d'intérêt par rapport à une période où il ne l'est pas.

Le CC compare la distribution de l'exposition au médicament avant la survenue de l'événement chez un cas par rapport à celle-ci chez un témoin susceptible de présenter ce même événement. Tout comme le CC, le CP s'intéresse à la distribution de l'exposition du médicament chez les cas mais utilise comme comparateur la distribution de l'exposition dans l'ensemble de la population source d'où les cas sont extraits. Chaque approche a été déclinée suivant plusieurs variantes qui différaient les unes des autres par leurs paramètres (ex : stratégie d'ajustement, fenêtre de risque, nombre de témoins appariés par cas, etc.). Un total de 96 variantes de SCCS, de 20 variantes de CC et de 80 variantes de CP ont été appliquées dans les différentes populations pour évaluer l'association entre les médicaments témoins et les événements d'intérêt considérés. Pour optimiser les temps de calcul, les populations MI, UGIB et AKI ont été échantillonnées à des proportions respectives de 1/20, 1/10 et 1/3 avant l'exécution des analyses.

• Évaluation des performances

Pour chaque variante exécutée, les mesures d'associations générées pour chaque médicament témoin ont servi à calculer des indicateurs de performance : sensibilité, spécificité, aire sous la courbe ROC (AUC), erreur quadratique moyenne (MSE) et probabilité de couverture.

• Sélection et étalonnage de l'approche et des paramètres optimaux

Afin de différencier certaines variantes d'une même approche aux performances parfois très proches, des régressions logistiques univariées ont été réalisées pour identifier les paramètres ayant un impact significatif sur le pouvoir discriminant du modèle concerné, c'est à dire sa capacité à différencier les témoins positifs des témoins négatifs pour un événement d'intérêt donné. La variable dépendante à expliquer était la probabilité qu'une variante ait une AUC supérieure au 70ème centile de la distribution des AUC. Les covariables indépendantes explicatives testées correspondaient aux paramètres qui différaient d'une variante à une autre.

Par exemple, pour le SCCS, les covariables indépendantes incluaient l'ajustement en fonction des traitements concomitants (codée en oui / non), l'utilisation d'une fenêtre de pré-exposition à 0, 7 ou 30 jours, etc. 
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Pharmacoepidemiology

Definition

Pharmacoepidemiology can be defined as the study of the use and the effects of drugs on large number of people. 1 This research area borrows from both pharmacology and epidemiology. On one hand clinical pharmacology focus on the effects of drugs on humans, looking to understand the relationship between drug exposure and its response. Epidemiology on the other hand analyses the distribution and determinants of diseases in population through various descriptive and analytical methods. 2 Thus, pharmacoepidemiology can be seen as the application of epidemiological methods to pharmacological issues, combining the interest of epidemiology for real life and large populations to the concern of pharmacology for drug effects. One might consider it as just another method in experimental pharmacology. However, instead of testing drugs on individual animals or humans, pharmacoepidemiology works on a much larger scale, considering overall populations. Therefore, pharmacoepidemiology studies the determinants and consequences of drug utilization among populations in real life settings.

Scope

At the time of their marketing, the effects of drugs and especially their efficacy have been studied mostly in randomized controlled clinical trials (RCT), comparing them to placebo or to existing drugs. RCTs have the greatest inferential power: they ensure that the treatment "causes" the outcome. 3 However, they are by nature limited. They are restrictive in terms of age (children and elderly often being excluded), gender (pregnant women being excluded), co-morbidities (patients with liver or renal diseases, or multiple comorbidities being excluded) and co-prescriptions (patients treated with several drugs being excluded). 4 Since RCTs are very expensive to setup, they are usually undersized and too short in time to detect delayed outcome or outcome of low frequency. An outcome occurring 1/1000 will not be detected in an RCT including 500 patients. Similarly, delayed effects such as cancer will not be detected in a 12-month RCT. Hence, proof is needed to ensure that the benefit-risk balance observed during clinical trial phases and justifying the marketing authorization, is still true in real world situations, and that the drug is used correctly in the day-to-day practice. 5 Where RCTs aim to demonstrate efficacy, pharmacoepidemiology focuses on effectiveness: efficacy under real conditions of prescription and use. 6 Furthermore, when several concurrent drugs are launched within a short time frame (e.g. direct acting anticoagulants), in most cases, there is no comparative RCT: 7 it is very unlikely that any pharmaceutical company will conduct at great cost a directly comparative RCT, taking the risk to conclude on the inferiority of his own product with respect to direct competitors. Because the introduction of new drugs on the market may impact the benefit-risk balance of other treatments, comparative effectiveness research -the assessment of the different therapeutic options for a given medical condition, taking into account the reality of the daily clinical practice -is crucial. Using databases, exploiting registries, enrolling patients, pharmacoepidemiology tries to take up these challenges, avoiding as much as possible any modification to the real life that could be caused by the study itself. 6 The rising need of real world evidence in the recent years has considerably increased the public health authorities' interest in pharmacoepidemiology. This bridge science provides information about the impact of a drug in the population and therefore can also be useful to assess practical consequences and cost-effectiveness of public health decision.

Interface with pharmacovigilance

Pharmacovigilance is defined by the World Health Organization (WHO) as "the science and activities relating to the detection, assessment, understanding and prevention of adverse effects or any other drug-related problem". 8 In practice, pharmacovigilance refers almost exclusively to the spontaneous reporting systems, which allow health care professionals and others to report adverse drug reactions to a central agency. 9 However, other activities such as case-control (CC) or cohort studies can be used to monitor drug safety. Although pharmacovigilance mainly considers safety outcome, one of its ultimate goals is still the assessment and communication of the risks and benefits of drugs on the market. 10 In this scope, pharmacoepidemiology meets the pharmacovigilance. Benefit-risk assessment cannot be conducted without both safety and effectiveness: safety data are not selfsufficient to rule on drug effectiveness, and pharmacoepidemiology makes no sense if safety outcomes are not taken into consideration. In that respect, we can say that pharmacovigilance and pharmacoepidemiology are two aspects of a same activity: assessing drugs in real world settings for a rational, efficient and safe use.

Strengths and weaknesses

The strengths of pharmacoepidemiology respect of RCTs have already been partially

discussed. The rise of healthcare data (e.g. national claims database, electronic medical records) allows pharmacoepidemiology to assess in reduced timelines and for tiny cost drugs in large population, even sometimes in overall national population, over years of follow-up. Pharmacoepidemiology also borrows two classical epidemiology advantages: the presence of a well-defined "denominator" corresponding to the study population, and the ability of implementing a comparison group. Those two elements enable risks and benefit quantification. 11 As a global population is considered during a study, the proportion of patients exposed and/or the proportion of cases observed can be used to estimate relative risks, which is impossible with spontaneous reporting.

The main strength of pharmacoepidemiology is also its weakness. Because by definition, exposure and outcomes are assessed in real life settings, surrounding factors are not controlled and randomization is not present to balance them. 2 Some methodological and mathematical solutions exist to address such issues (e.g. active comparator new user study design, 12,13 high-dimensional propensity scores 14 ), however we do not know to what extent residual confounding could persist. Thus, pharmacoepidemiology studies are often criticized since the strength of causal inferences that can be drawn remains uncertain. 4 The limits of pharmacoepidemiology directly depend on the source of data available.

Just any database cannot be used to answer any questions. The consistency between the topic of interest and the data source considered is crucial. For example:

minor health issues usually addressed by general practitioners (GP) will not be found in hospital discharge summaries. Similarly, it is very unlikely that serious events such as myocardial infarction are systematically recorded in GP electronic charts.

Furthermore, intrinsic weaknesses and biases relative to the data source chosen will also impact the study when interpreting the results (e.g. missing data, discrepancies between prescribed, dispensed and administrated drug, etc.).

Data sources 1.1.5.1. Primary data collection

Ad-hoc studies can be conducted through primary data collection. In that case, specific data such as quality of life, lifestyle, blood or DNA samples, etc. can be collected for a well-defined research problem. 15 This will consist mainly in field studies. Exposure and outcome are directly collected from physician and/or patients by a study center. Patients can be recruited using pre-existing disease or exposure registries, or through hospitals, specialists or surveillance centers, most of the time to answer etiological questions. 16,17 Cohort of patients can be set up and followed during years for etiological but also more descriptive purposes. 18,19 Primary data collection is important in pharmacoepidemiology: allowing in-depth case assessment by clinical experts for a large source population, it enables the evaluation of drugdisease associations for rare complex conditions. 20 However, such studies are often affected by selection bias during the recruitment process: patients participating to the study may not be representative of the whole patient population. 21,22 They may also be affected by what patients or physicians remember (recall bias), 23 or subsequent changes in patients or physicians behavior caused by research participation (Hawthorne effect). 24,25 Moreover studies relying on primary data collection remain expensive and complex to set up. As with RCTs costs are proportional to the size of the population and the duration of the follow-up. 26

Secondary use of data

Most recent pharmacoepidemiology studies rely on secondary use of data, most of the time already available electronic patient healthcare data. Healthcare databases are longitudinal databases. Patients are followed over time. As data are collected prospectively and systematically, they are affected neither by recall bias nor by the Hawthorne effect. In this scope, they are considered as more exhaustive than primary data collection, especially over the long-term. Healthcare databases can be divided in two types of records: electronic health records (EHRs) and claims databases.

• Electronic health records (EHRs)

EHRs are continuously fed after anonymization by the information entered by a health professional as part of patient management (e.g. diagnostics, prescribed drugs, laboratory tests or imaging procedure results, etc.). The nature of the information available is directly related to the nature of the EHR itself. EHRs consisting of electronic medical charts from a GP network will group events regularly observed in primary care (e.g. fevers, high blood pressure, diabetes, etc.). This is the case of the Clinical Practice Research Datalink (CPRD) database in the United Kingdom. 27 Conversely, those related to hospital settings will mainly focus on serious events (e.g. myocardial infarction, acute renal failure, cancer, etc.). Lifestyle details such as smoking status or body mass index are often present. Data completeness depends on the propension of the physician to complete the patient's chart carefully, and on patient loyalty to their physician. In so far as EHRs are not universal, switching physicians may induce interruption of the data. Moreover, the exploitation of collected data may present some challenges since all variables may not be uniformly coded, or sometimes not coded at all. Complex approach such as natural language processing may be necessary to extract the useful information from free text. According to national legislations, healthcare databases (claims databases, EHRs, death and pathologies registries, etc.) can be linked together offering additional opportunities to the investigators. In the last years we have witnessed the development of the possibility of linkage: in France, merging primary collected data to healthcare database became possible. Such practices allow to address respective limits of each database, for example gathering specific ad-hoc medical data of the field to large and exhaustive healthcare histories available in claims data. 30 CONSTANCES cohort is an example of this linkage between primary collected and claims data. 31

Consortia and networks involved in pharmacoepidemiology research

In 2004, following the unexpected worldwide withdrawal of rofecoxib (Vioxx) an international reflection was introduced on how to better assess benefit-risk balanced throughout the life of a drug. 32,33 The permanent desire to study ever-rarer events and exposures, led to try to include ever more patients. To do so, research networks were set-up at a national or international level. Additional knowledge on the consistency of the information collected and on the generalizability of the results generated were also provided by this approach: is the effect observed in several countries and if not, why? 20 This search for power came with the necessity to develop new tools to improve accuracy and consistency of the results. Hence, different networks have been set-up in the last years, sometimes prompted by politics or health authorities and sometimes as part of public-private partnership.

EU-ADR

Exploring and Understanding Adverse Drug Reactions by integrative mining of clinical records and biomedical knowledge, the EU-ADR project, was launched by the European Commission in 2007 to develop new methodologies for drug safety monitoring on large databases following the withdrawal of Vioxx. 34 Eight European databases located in four countries (Italy, Netherland, United Kingdom and Denmark)

were involved in a common data framework through a "distributed network approach" for a total study population of almost 20 million people. Using standardized input files, the ad-hoc developed software Jerboa © queried and aggregated patient-level data in each participating database. Resulting data where then pooled and analyzed.

EU-ADR project worked a lot on signal detection approaches. [35][36][37] The framework developed was also used in multidatabase European studies such as the SOS project, on the safety of non-steroidal anti-inflammatory drug. 38 [42][43][44][START_REF] Norén | Empirical Performance of the Calibrated Self-Controlled Cohort Analysis Within Temporal Pattern Discovery: Lessons for Developing a Risk Identification and Analysis System[END_REF][START_REF] Ryan | Empirical Performance of a New User Cohort Method: Lessons for Developing a Risk Identification and Analysis System[END_REF][START_REF] Ryan | Defining a Reference Set to Support Methodological Research in Drug Safety[END_REF][START_REF] Suchard | Empirical Performance of the Self-Controlled Case Series Design: Lessons for Developing a Risk Identification and Analysis System[END_REF][START_REF] Ryan | Evaluating Performance of Risk Identification Methods Through a Large-Scale Simulation of Observational Data[END_REF][START_REF] Schuemie | Empirical Performance of LGPS and LEOPARD: Lessons for Developing a Risk Identification and Analysis System[END_REF] One of the side effect of these OMOP experiments was the creation of a Common Data Model (CDM). [START_REF] Reich | OMOP Common Data Model and Standardized Vocabularies[END_REF] The latter was initially designed to be able to apply same methodology across all the involved databases for comparison purposes. [START_REF] Overhage | Validation of a common data model for active safety surveillance research[END_REF] In 2013, at the end of the 5 years, the research laboratory moved to the Reagan-Udall Foundation for the FDA under the Innovation Medical Evidence Development and Surveillance (IMEDS) Program 53 and OMOP research investigators initiated the Observational Health Data Sciences and Informatics (OHDSI). 54

Sentinel

As previously mentioned, the Sentinel initiative started in 2008 with the aim of obtaining information from multiple existing databases to assess the safety of approved medical products. 40 As part of this initiative, the Mini-Sentinel program was launched in 2009. This pilot program included 31 academic and private organizations. [START_REF] Platt | Food and Drug Administration's Mini-Sentinel program: status and direction[END_REF] Mini-sentinel was based on a distributed data-system: each data partner maintained physical and operational control over their own data, but also transformed them into a CDM according to well defined specifications. [START_REF] Curtis | Design considerations, architecture, and use of the Mini-Sentinel distributed data system[END_REF] Then, ad-hoc or standardized program data were distributed and locally executed.

Generated outputs were reviewed and transferred to the Operation Center. With Mini-Sentinel semi-automated method to address confounding issue were developed or assessed, such high-dimensional propensity scores [START_REF] Rassen | Using high-dimensional propensity scores to automate confounding control in a distributed medical product safety surveillance system[END_REF] or instrumental variables. [START_REF] Myers | Effects of Adjusting for Instrumental Variables on Bias and Precision of Effect Estimates[END_REF] After 2011, involved databases were usable for distributed queries, enabling the conduct of original investigations [START_REF] Toh | Comparative risk for angioedema associated with the use of drugs that target the renin-angiotensinaldosterone system[END_REF] In 2016, Mini-Sentinel transitioned from its pilot stage to a full-fledged program: the Sentinel System, an active surveillance system to monitor the safety of regulated medical product. 40 [START_REF]Frequently Asked Questions[END_REF] The works conducted rely on the OMOP CDM, which the group maintained and developed with its associated standardized vocabulary. Whereas OMOP was restricted to methodological research, OHDSI develops and applies methods to observational data to answer real-world clinical questions. OHDSI's overall approach is to create an open network of data holders, and require that they translate their data to the OMOP CDM and its standardized vocabularies. [START_REF] Hripcsak | Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers[END_REF] Tools are provided to help this conversion. Besides the community developed a large library of visualization tools and analytical methods in free access that can be implement in whatever database meeting the OMOP CDM requirement. [80][START_REF] Schuemie | Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data[END_REF][START_REF] Reps | Design and implementation of a standardized framework to generate and evaluate patientlevel prediction models using observational healthcare data[END_REF][START_REF] Schuemie | Interpreting observational studies: why empirical calibration is needed to correct p-values[END_REF][84] This enables to conduct multicenter study on a distributed network model, carrying out analyses locally and transmitting results to the coordinating center. As OHDSI is fully collaborative, any collaborator can propose to the community a study project. Once the study synopsis posted on the OHDSI research forum, 85 the project will be reviewed by other collaborators. If multiple sites show interest for it, a common protocol will be produced. Interested collaborators will then be invited to join the study, run the code and share the results. [START_REF] Vashisht | Association of Hemoglobin A1c Levels With Use of Sulfonylureas, Dipeptidyl Peptidase 4 Inhibitors, and Thiazolidinediones in Patients With Type 2 Diabetes Treated With Metformin: Analysis From the Observational Health Data Sciences and Informatics InitiativeHbA1c Levels and Second-Line Therapy for Type 2 Diabetes Treated With MetforminHbA1c Levels and Second-Line Therapy for Type 2 Diabetes Treated With Metformin[END_REF][START_REF] Hripcsak | Characterizing treatment pathways at scale using the OHDSI network[END_REF] Large databases in US are available to members of the OHDSI community and have 

Signal generation in longitudinal databases

Since their creation, pharmacoepidemiology networks and consortium devoted considerable effort to methodology research, especially safety signal detection, the availability of these large healthcare databases opening new opportunities to overcome traditional spontaneous reporting limits. [START_REF] Schneeweiss | A review of uses of health care utilization databases for epidemiologic research on therapeutics[END_REF][START_REF] Pariente | Impact of safety alerts on measures of disproportionality in spontaneous reporting databases: the notoriety bias[END_REF][START_REF] Moride | Under-reporting of adverse drug reactions in general practice[END_REF][START_REF] Hartnell | Replication of the Weber effect using postmarketing adverse event reports voluntarily submitted to the United States Food and Drug Administration[END_REF] Disproportionality methods differ by the way they "field" the contingency table (how they generate drug safety reports from healthcare longitudinal data), and how the ratio observed-to-expected is calculated. 36,[START_REF] Zorych | Disproportionality methods for pharmacovigilance in longitudinal observational databases[END_REF] Such methods are easy to implement but do not provide risk estimates. Moreover, despite methods enhancement, they are still very sensitive to numerous confounders including protopathic bias and channeling by indication, resulting in bad performances. 50

Sequence symmetry analyses

The idea is to compare the sequence of initiation of two drugs, A and B, within a given time window where drug A is the exposure of interest and drug B a surrogate for the potential adverse event. [START_REF] Petri | Prescription sequence analysis: a new and fast method for assessing certain adverse reactions of prescription drugs in large populations[END_REF] If drug A actually induces an adverse event that needs to be treated with drug B, the number of patients initiating first drug A and then drug B will be higher than the number of patient initiating drug B before drug A. Even if some adjustments are proposed, such approach can be affected by time-varying confounding as changes in prescription trends with an uncorrelated increase or decrease of drug A or B prescription during the study period. [START_REF] Hallas | Evidence of depression provoked by cardiovascular medication: a prescription sequence symmetry analysis[END_REF] Protopathic bias and confounding by indication can also impact the results. Even if the method is not applicable for death, sequence symmetry analysis remains very interesting since it is easily understandable and shows good performances. 97

Sequential statistical testing approach

Those methods aim to test sequentially (e.g. on a monthly basis), on prospective cohort data, the null hypothesis: "Is the event rate higher among exposed patients compared to unexposed?". Each new analysis takes into account the number of new exposed and unexposed patients since the last one, and the increment in exposure time for patients previously included. A signal is raised when the generated test statistic exceeds a predefined value. Approaches differ by the way in which noncases are handled and the way they managed exposed and non-exposed subjects. 98- 100 Maintaining the type I error at 0.05 across multiple testing is sometimes challenging but the main limitations of such methods are the absence of risk estimate and its sensitivity to protopathic bias and confounding by indication. Moreover they seem to perform worse than random signal detection. 101

Temporal association rule approach

Such approaches rely on two rules: (1) the event must follow drug exposure, and (

the event must occur during a prespecified time window (i.e. the period considered at risk). For a given drug, all potential events are mined sequentially, and a correlation score is computed using measure of interestingness. Control periods are set-up and considered differently according to the method. 102,103 Additional metrics may be computed and integrated or not to the final score to make them more robust. 104,105 However, most of those methods neither provide any risk estimate nor a natural threshold for discriminating positive and negative signals. As the disproportionality analyses, this approach is very susceptible to confounding and show poor performances. 106

Supervised machine learning approach

Supervised machine learning approach consists of two stages. The first one is to train a classifier (a random forest model) by using a sample that includes drugoutcome pairs with previously known related or not-related association. For each pair, a vector of predetermined parameters corresponding to proxies for the association is generated. Using resampling methods and an impurity criterion, the classifier selects the best parameters: the ones enabling the detection of the true associations in the training sample. The second stage consists in the extraction of the selected parameters and to apply the trained classifier in the data of interest to predict associations that could be new drug safety issues. Supervised machine learning does not generate risk estimates. Running such an approach calls for a significant computational load: one random forest model needs to be defined by drug screened, and to be defined efficiently, a large training sample with numerous drugoutcome pairs is required. Performances seem to be excellent, 107, 108 but it is important to note that the condition of evaluation directly impacts method's ability for prediction.

Tree-based scan statistic method

The fundamental principle of the tree-based scan statistic method proposed is to map a tree according to the basis of the hierarchical structure of classifications used for coding events: the root corresponds to the broadest definition of a given event, the nodes correspond to the different sublevel definitions, the leaves correspond to the codes with the finest definitions, and the branches link the three elements together. 109 For each leaf, the observed and the age and sex-adjusted expected number of exposed persons who experienced the selected event is computed. Then, all the possible samples of a given root-node-leaf event pathway are tested simultaneously using the log-likelihood ratio test statistic. The method uses Monte-Carlo-based p-values to formally adjust them for multiple testing due to the many overlapping definitions of the events to maintain the overall type I error at α = 0.05. 110 Like most of the methods presented, this approach does not generate risk estimate and is unable to handle confounders including protopathic bias. No formal assessment using a reference set was conducted to assess its performances, however a safety signal justifying further investigation was detected through this approach. 109

Traditional pharmacoepidemiological approach

Several of those pharmacoepidemiological designs have been tested in the US during the OMOP experiments, and in Europe by EU-ADR. 36,37,42,[START_REF] Ryan | Evaluating Performance of Risk Identification Methods Through a Large-Scale Simulation of Observational Data[END_REF]101 Most of those designs, which have been extensively used in ad-hoc studies in epidemiology and pharmacoepidemiology, consist in a two-step process: (1) to constitute from the database two groups of patients based on exposures (cohort approach) or events (case-based approach), and (2) to compare the rate of the drug-outcome association in these groups. Statistical tools are usually available to control for putative confounders (e.g. co-prescription). The strength of such methods is that risk estimates are provided, allowing a first approximation of the impact of a potential signal.

New user cohort design

Cohorts of patients are followed prospectively from the first start of a drug exposure:

one cohort includes patients initiating the drug of interest, while another cohort includes patients newly exposed to another drug. [START_REF] Ryan | Empirical Performance of a New User Cohort Method: Lessons for Developing a Risk Identification and Analysis System[END_REF] The drug used for comparison generally shared the same indication with the drug of interest to address confounding by indication. 12 The rate of occurrence of the event(s) of interest is then compared in those two populations. The cohort design provides many solutions for addressing confounder such using age and sex, propensity scores or high dimensional propensity scores, to match patients in both cohorts or weight incidence rate ratio or adjust model. 14 In the assessment conducted, new user cohort designs seem to perform better when high dimensional propensity scores are used. 36,37,101 To be able to detect signals relative to rare events with a cohort design, a dataset including a large number of persons is required. Moreover, since a (high dimensional) propensity score represents the probability for a patient to be treated with a defined drug, one score has to be computed for each drug of interest (or drug pair in case of a comparison), which can be problematic when screening a large set of drugs. In the context of a cohort study considering only few outcomes of interest but multiple exposures, disease risk score adjustment appears to be a valuable alternative to adjust for confounding. 111 Like the propensity score, the disease risk score is a summary measure derived from the observed values of the covariates. 112,113 However, disease risk score derives the probability of disease occurrence, characterizing the relationship of risk factors with a given outcome of interest.

Matched case-control designs

The basic principle of matched cased control design is to analyze retrospectively, starting from a given date, prior drug exposure(s) among two groups of subjects matched on confounders (e.g. age, gender). 44 The first group includes patients (i.e.

the cases), and the second, patients free of the event (i.e. the controls). Odds of exposure to the drug(s) of interest are then compared in the two groups. The availability of large health-care databases popularized the use of CC designs nested in a cohort of patients, which improves the comparability across groups. 114 Again, a large number of subjects is required to handle rare event and/or exposure. Classical matched CC design showed comparable performances to new-user cohort designs, but approaches using more advanced settings to control for confounders such as propensity scores, or disease risk score, have not been tested for signal detection so far. 36,37,42,101 Particular care must be taken in control sampling and in the definition of covariate assessment period to avoid as much as possible potential confounding. 115, 116

Case-population design

This approach was not presented in the original literature review. In the casepopulation (CP) design, the rate of exposure to the drug of interest in cases is compared to the rate of exposure in the entire population from which cases were extracted. [117][118][119] This approach is also called population-based case-cohort study, or case-only study, since this design only differed from the CC design by the way the control group is selected. 120 Here, the global population is used as controls. No individual data are required for them. Exposure can be approximate by drug sales or from aggregated data, as long as data are representative of the considered population. 119,121 In circumstances where exposure in the population and cases are either rare or very rare, cohort and CC approach may be ineffective because of power issues. In this context CP can be helpful as long as the exhaustivity of the cases and a measure of the exposure for a territory are available. 117 Studies have compared results provided by the CP to other study designs: generated estimates were of the same order of magnitude as the corresponding relative risks estimated with a standard control group. 118,[122][123][124] Only one study exploring the performances of the CP design as tool for signal detection has been identified. 125 Results showed that this population-based approach was able to detect known teratogen risks for several widely used nervous system drugs and to not detect association for drugs considered to be safe. By definition case-population is very sensitive to bias, and performances of the design seem to be directly correlated to the incidence of the exposure and the event in the population.

Self-controlled designs

Self-controlled designs differ from the previous approach in that only one cohort of patients is considered and each patient is his/her own control. The effect of a drug on the occurrence of an event is measured for each patient by comparing the event rate in risk periods (usually the exposed periods) to the control periods (usually the unexposed periods). One strength of this kind of design is that all time-invariant confounders are implicitly controlled (e.g. chronic comorbidities, gender, genetic factors, area of residence, etc.). The self-controlled case series (SCCS) design considers only patients who have been both exposed to the drug of interest and experienced the event at least once. Statistical tools through penalized regression models were developed to apply high-dimensional multivariate adjustment to control for time-varying confounders (seasonality, comedications, age, etc.). [START_REF] Suchard | Empirical Performance of the Self-Controlled Case Series Design: Lessons for Developing a Risk Identification and Analysis System[END_REF]126 Self-control cohort differs from SCCS by considering all the exposed patients whether or not they have experienced the event. However, contrary to the SCCS, no specific statistical tool has been yet developed to control for time-varying confounder. 127 The case crossover design is similar to SCCS in the sense that only cases exposed at least once to the drug of interest are considered. However, we are not looking here to the event rate during exposure period. Cases are considered retrospectively from their event onset. Risk and control periods are defined arbitrarily with respect to the event. Exposed/unexposed status is then determined based on whether exposure to the drug of interest overlaps with one of the risk periods. The probability of exposure during risk and control periods are then compared. 101 An interesting variant of the case-crossover design is the case-time-control design where adjustment for timetrends in exposure is obtained using a set of control subjects. 128 OMOP experiments showed very good performances for SCCS and self-controlled cohort.

Case-crossover has been less studied and no assessment of case-time-control design has been conducted. [START_REF] Ryan | Empirical Performance of a New User Cohort Method: Lessons for Developing a Risk Identification and Analysis System[END_REF][START_REF] Suchard | Empirical Performance of the Self-Controlled Case Series Design: Lessons for Developing a Risk Identification and Analysis System[END_REF]101 1.4. Drug safety monitoring in France

Actors

In France, the agency in charge of the safety of health products (drugs, biologics, medical devices, cosmetics and biocides) is the Agence nationale de sécurité du médicament et des produits de santé 129 (ANSM), formerly called Agence française de sécurité sanitaire des produits de santé (AFSSAPS) from 1999 to 2012 and Agence du médicament from 1993 to 1999. ANSM is involved in the safety surveillance of drugs throughout their lifecycle. It issues RCT and marketing authorization. Once the product launched on the market, the agency is in charge of the regular assessment of its benefits-risks balance. To this end, the ANSM coordinates the national pharmacovigilance system with its network of 31 regional pharmacovigilance centers in charge of the adverse event spontaneous reporting system. 130,131 In the last years, as a result of the Mediator ® crisis, the agency has demonstrated an increasing interest on pharmacoepidemiology. In addition to studies it may require from the drug marketing authorization holders, ANSM decided to build capacity for independent pharmacoepidemiology investigation. In 2012, it set up a department of health product epidemiology and initiated a collaboration with the Caisse Nationale The Base Nationale de Pharmacovigilance (BNPV) holds all the anonymized suspected adverse event cases spontaneously reported by health professionals and patients to the regional pharmacovigilance centers. 138 Before their inclusion in the database, a causality assessment is conducted for each report where experts estimate the putative causal relationship between the drug(s) involved and adverse event reported. 139 Data from the BNPV are regularly uploaded to EudraVigilance which centralized all the adverse events reported in the countries where drugs from the European economic space are available. Cases are also uploaded to VigiBase, which is the WHO global database of individual case safety reports managed by the Uppsala Monitoring Centre. Researchers from regional pharmacovigilance centers can access BNPV, EudraVigilance and Vigibase.

SNDS

The • Inpatients details: ICD10 diagnostic codes resulting from hospital discharge summaries with the date and duration of the hospital stay, the medical procedures performed, and the related costs. Three different kind of diagnostic codes can be found:

-Primary diagnosis is the health problem that motivated the admission in the hospital. It is determined at hospital discharge.

-Related diagnosis can exist only if the primary diagnosis is a medical procedure with a code Z of the ICD10 classification (e.g. chemotherapy session), and indicates the pathology at the origin of procedure.

-Associated diagnoses correspond mainly to underlying chronic diseases increasing the cost of the patient management.

In case a patient visits different medical units, units' summaries are conserved. Drugs included in the diagnosis related group cost are not captured. However, expansive drugs (i.e. the one charged in addition to the group cost) are.

Because data stored in the SNDS are pseudonymized and not anonymized, a re-identification risk remains. Thus, access to SNDS is carefully regulated. The procedures codes and some free text reports were charged into a I2B2 data scheme.

Institut

147, 148

In 2017, CNIL allowed the construction of the data warehouse of the Assistance Publique -Hopitaux de Paris 149 (AP-HP), which involves 39 hospitals in Paris area, including the former one, for a total of 20 700 beds and around 28 000 physicians and residents. 150 At the end of 2018, this warehouse contained data from 8.8 millions patients. So far, on the 33 projects having received an approval for using EHRs from AP-HP (also called "Greater Paris University Hospitals Clinical Data Warehouse"), only one focused on drug misuse. AP-HP data framework example has recently led other hospitals to set-up/enhance their own data warehouse (e.g. Montpellier,

Rennes, Nantes, etc.). 151

Safety signal management

In recent years, automated safety signal detection has been implemented in BNPV using a variant of the Gamma Poisson shrinker method, a Bayesian approach of disproportionality analyses. 152,153 Although this approach may contribute to signal generation, the impossibility to quantify the potential risk and the high number of false positives generated remain major issues. 5,154,155 In the frame of DRUG-SAFE platform and as part of his thesis works, Arnaud M.

implemented sequence symmetry analysis design to EGB data, developed a prioritization algorithm and assess the full system through one drug class. This approach allowed to detect already known signals as proof as good performances of the methods, and also one previously unknown signal, showing its potential interest in routine detection. However, further research is needed to fully validate this system across other drug classes. 156,157 Since 2014, the CNAM and the École Polytechnique have been collaborating

together to develop data-mining approach to enjoy the wealth of SNDS data. Their works consist in designing a new data model, "flattening" data to made them easily accessible, and to develop an algorithm based on SCCS for adverse event screening. 158,159 Pilot stages have been completed, tools are currently being implemented in a raw extraction of the SNDS but no results have been published so far.

Whatever the source, once a signal is generated, it needs to be confirmed, usually through an expert board or/and a literature review, and assessed. Risk evaluation of suspected drugs is conducted on the behalf of the ANSM by platforms with pharmacoepidemiology skills such as DRUGS-SAFE and EPI-PHARE through ad-hoc studies. 160-162

Background and thesis context

Frequent adverse events or events resulting from a widely used drug are most of the time already known. Hence, signal generation takes place in a context where exposure and outcomes are either rare or very rare, for instance in the first months of a drug launch. This is particularly true since health authorities ask for real-world safety proof even earlier in product lifecycles, as reflected by the implementation of the risk management plans. 163 As discussed earlier, one of the answers provided to this need of power at the international level was the development of research networks using distributed network approaches to set up source population of significant size. However, such approaches are not without problems. Heterogeneity resulting from pooling data sources covering different populations remains a potential problem. 164 Although some consortia try to increase homogeneity using a CDM, the consecutive loss in data details (e.g. vocabulary translation) do not help much to overcome the discrepancies resulting from the measured and unmeasured confounders present in the original source populations.

SNDS is an exception in the international database landscape. It combines the large size of some US claims databases to the completeness and the quality of the data available in the European Nordic countries. Hence, it is often seen as the largest homogeneous health database worldwide, enabling studies on a very large population without heterogeneity issues. However, SNDS data were not as available as now at the time of EU-ADR and OMOP experiments, and no empirical assessment of signal generation methodology were conducted on it.

In 2014, a letter of intent was submitted in the frame of a national call for projects about healthcare performances organize by the French Ministry of Health (Programme de recherche sur la performance du système des soins -PREPS), the ALCAPONE project: Alert generation using the case-population approach in the French National healthcare databases. ALCAPONE was approved (PREPS 2014, 0635) and was initiated in 2016. The main idea was to empirically compare signal detection methods in the SNDS to find the most suitable for each one of the four health outcomes of interest (HOI) included: acute liver injury (ALI), acute kidney injury (AKI), myocardial infarction (MI), and upper-gastrointestinal bleeding (UGIB). To do so, pharmacoepidemiological approaches were considered. Because they provide risk estimates, they enable to quantify the risk at the same time they detect it, switching from signal detection to "alert generation". By law, only extractions of the SNDS are available for research purposes. The easiest way to fulfill our drug screening perspective in light of this technical limitation was to deal with case-based extractions (one by HOI), de facto excluding the possibility to run cohort-based approaches. SCCS, CC and CP approaches were chosen. The first two because OMOP experiment provided a sort of benchmark and they were available through R package in the OHDSI library, 126, 165 and the case-population because precisely, it has never been properly tested. Case-crossover was not retained because of the similarity with SCCS.

The present thesis relies on the ALCAPONE project. Works achieved range from protocol and statistical analyses plan redaction, to results interpretation, including data management and statistical analyses stages. For the last two, technical work was supported by the statisticians and the data management team of the Bordeaux PharmacoEpi platform. Results generated throughout ALCAPONE progress were regularly presented to national and international conferences (Appendix 1). Some of these presentations are introduced here. A total of five publications are planned to cover the overall project, one focusing on the methodology and one for each HOI.

The methodology manuscript depicting the overall process of the project is presented in the next pages. UGIB and ALI manuscripts are then developed to enrich general results and to give practical applications.

Transparency, scientific independency and legality

The 

Research question and objectives

Considering the previous works conducted by OMOP and OHDSI, ALCAPONE was set up to determine to what extent, the French Healthcare databases -the SNDS and the EGB -were suitable to perform drug safety signal detection, what the preferred methodology was to identify ALI, AKI, MI and UGIB related risk, and how accurate were the estimates generated.

To do so, the following main objectives were defined:

• To develop the CP approach in the SNDS

• To assess the performances of SCCS, CC and CP in the SNDS for drug safety signal detection based on the OMOP reference set Derived specific objectives were:

• To describe qualitative changes required for the adaptation of the OMOP reference set to SNDS

• To assess the feasibility of the project using the EGB

• To apply SCCS, CC and CP to SNDS and compare their performances

Methodology for the assessment of case-based methods in the SNDS

ALCAPONE involves 3 different pharmacoepidemiological approaches, 4 distinct

HOIs, and 136 drug controls for a total of 546 drug-outcome pairs. To have the opportunity to present the overall project design and to discuss in depths the methodological choices, we chose to publish the research protocol separately.

Herewith, the manuscript below deals with the methods developed and applied to conduct ALCAPONE assessment and validation process, the rationale for important aspects of the considered designs, the difficulties encountered, and the preliminary results. It prepares future papers exploring systematically the different safety domains. 

INTRODUCTION

Spontaneous reporting has historically been the mainstay approach for drug safety alert generation. 1 The increasing accessibility of population databases has brought new opportunities to identify drug-related alerts, using very different methods from those used to analyze spontaneous reporting data.

Unlike spontaneous report data, longitudinal healthcare databases, such as claims databases, typically accrue automatically and prospectively. Information about events and exposures are collected independent of any research project and are therefore largely unaffected by recall biases. 2 Electronic health records (EHRs) may also contain a large numbers of time-stamped medical records from routine clinical practice. 3 As a result, such data represent a valuable source of information for safety signal strengthening and validation. Furthermore, because they capture the very first prescriptions of new drugs prospectively, these databases have potential for early detection of drug safety signals. Methods used to explore longitudinal observational data can be divided into a few main categories based on entry in the study through exposure (cohort-based designs) or events (case-based designs). Other general design options can be considered, especially concerning control groups that may range from self-controlled methods to population-wide controls. 4 A number of initiatives have been undertaken to develop methods and systems for safety signal identification and evaluation in longitudinal healthcare databases. In Europe, the Exploring and Understanding Adverse Drug Reactions project (EU-ADR) has combined data from several databases from different countries and settings to demonstrate the capacity to assess drug safety signals. [5][6][7] In the United States, the Food and Drug Administration (FDA) has developed the Sentinel System to monitor the safety of regulated medical products with a network of healthcare databases. 8 The Observational Medical Outcomes Partnership (OMOP) performed an empirical assessment of analytical methods for signal identification in healthcare data standardized to a Common Data Model (CDM). [9][10][11][12][13][14][15][16] The performance of various gastrointestinal bleeding (UGIB). These four events have led to drug withdrawals from the market. 17 Positive pairs represented known drug-event associations, and negative pairs represent drug event pairs with no known association. The same methods were also applied to six European EHRs or claims databases from EU-ADR covering nine million persons, using the same test cases. 5, 6 The OMOP CDM was then improved and used for the development of updated analysis packages maintained by the Observational Health Data Sciences and Informatics (OHDSI) consortium. 18 France has a large nationwide longitudinal claims and hospital database --the National healthcare data system (Système National des données de Santé, SNDS) -which currently includes about 99,9% of the French population (66.6 million persons), from birth or immigration to death or emigration. It Includes all reimbursed medical and paramedical encounters, including among others all dispensed drugs, hospitaldischarge summaries and dates of death. 19 Because SNDS was not available at the time, it was not included in the European replication of the OMOP experiment.

The case-population design (CP), a case-based approach where drug exposure in cases is compared to aggregate data from the entire population 4,[20][21][22] was not included in OMOP experiment. This approach, made possible by the complete national coverage by SNDS, seems well suited to an alert generation environment.

Case-population provides absolute event rates in addition to the relative risks or odds ratios also found from other case-based approaches 4 , providing another measure of risk to help decision-making. As CP neither involves control selection nor complex calculation, it is easy to implement and the results generated are comprehensible to non-specialists.

This paper presents the ALCAPONE project (Alert generation using the case population approach), which is funded by the French Health Ministry (PREPS 2014, 0635) and aims to empirically compare and calibrate within SNDS case-based methods (including the CP design) using the OMOP methodology and the OHDSI environment, i.e. a collection of positive control and negative control drug-outcome pairs across all four HOI (ALI, AKI, UGIB and MI).

DESIGN AND RESEARCH PLAN

ALCAPONE tests case-based approaches using case data from the SNDS associated with a drug control reference set.

The ALCAPONE process consists of 4 main stages (Figure 1): (I) the preparation of SNDS data to fit the OMOP CDM and the selection of the detectable positive and negative drug controls; (II) the application of 3 case-based designs: CP, case control (CC), and self-controlled case series (SCCS), including design variants for each method; (III) the assessment and comparison of design performance; and (IV) the identification of the best design variants and their calibration.

DATA SOURCE AND DATA MAPPING PROCESS

France has a universal single-payer health care system covering most outpatient Durations of drug exposures were estimated at the ATC level according to drug dispensings and medians of treatment durations.

medical

REFERENCE SET CONSTRUCTION

The reference set used to assess the different methodological approaches includes the four HOI (ALI, AKI, UGIB and MI) with a collection of positive and negative drug controls for each HOI. Positive controls are drugs with a known association with the outcome. Negative controls are drugs with no evidence to support causal association with the outcomes. This set results from a fusion of the OMOP and EU-ADR reference sets, adapted to drug availability on the French market. 23, 24

Health outcome of interest

HOI were identified from hospital discharge summaries ICD10 codes. Specific and sensitive definitions were developed for each HOI.

AKI and UGIB were selected using the ICD10 codes corresponding to the ICD9 codes used in the original OMOP exercise. Patients with previous renal transplantation, metal intoxication or specific kidney diseases were excluded from the AKI population.

Relevant codes resulting from ad-hoc SNDS studies were chosen to enrich OMOP codes for ALI and MI. 25 The specific definition applied to MI covered acute transmural MI and acute subendocardial MI (STEMI, NSTEMI). The sensitive definition also included unstable angina. The corresponding codes have been used in several studies in the SNDS. [26][27][28][29] For AKI, UGIB and MI, patients with more than 15 cumulative hospital days in the month preceding the outcome onset were excluded, because in-hospital exposure to common drugs is not ascertainable.

The patient selection process for ALI and the corresponding inclusion and exclusion criteria were replicated from the EPIHAM study. 30,31 They were defined as "toxic liver disease" and "acute and subacute hepatic failure". Patients with codes related to liver injury resulting from other causes than potential drug toxicity were excluded (e.g. chronic viral hepatitis, alcoholic liver disease, etc.). The full list of inclusion and exclusion criteria is available in Appendix 1.

Positive and negative controls

The original OMOP and EU-ADR reference sets were merged and screened at the ATC level to rule out drugs that are not marketed or not reimbursed in France. Only systemic forms of the drugs were conserved as positive controls. The control selection process is presented in Figure 1. For ALI, the original OMOP reference set included 118 controls, of which 75 were available and reimbursed on the French market. Adding 2 positive controls and the 4 negative ones from the EU-ADR reference set, a total of 58 positive and 23 negative ALI controls were retained.

Twenty-two positive and 36 negative controls were identified for AKI. The MI reference set was formed from 28 positive and 42 negative controls, including 7 from EU-ADR. Twenty-two positive and 42 negative controls were retained for UGIB. The ALCAPONE reference set thus included 139 distinct drugs and 273 drug-outcome pairs. Based on the number of exposed patients in the relevant HOI population, we restricted the drug-outcome pairs to those with a sufficient power to detect a minimum relative risk of 1.30. 32

METHODOLOGICAL APPROACHES

Three case-based approaches -SCCS, CC and CP -were applied with different settings to identify the variants with the best performances. To optimize machine time processing the MI, UGIB and AKI population were sampled at respectively 1/20 th , 1/10 th , and 1/3 rd proportions before screening. The best variant of each approach was then replicated in the whole population.

The characteristics of the servers and software and package versions used in this experiment are available in Appendix 2.

Self-controlled case series

The self-controlled case series was tested using the OHDSI SelfControlledCaseSeries R package. This consists of comparing each case to itself: the event rate during periods exposed to the drug of interest is compared to the event rate during unexposed periods. The self-controlled case series assumes that outcomes associated with the target condition arise from a non-homogeneous Poisson process. 15 This design requires two additional strong assumptions: (i) outcomes must not influence the occurrence or timing of subsequent exposure; and

(ii) outcomes must not influence the duration of the observation period. Violation of these assumptions will induce bias. 33 To address these and other potential biases, further settings of the OHDSI R package were tested resulting in 96 SCCS variants.

The minimum duration of a subject for inclusion in the analysis was set to 182 days.

Two different risk windows were considered. In order to address potential indication bias, three different pre-exposure windows were tested: 0, 7 or 30 days. The model was applied to all occurrences of the HOI or only to the first one. Some variants also adjusted for age, seasonality and for multiple drugs.

Case-control

Case-control methods compare the distribution of exposure prior to outcomes in cases with the distribution in patients at risk for the outcome. 10 We used the OHDSI CaseControl R package. As explained above, controls were selected from the EGB subjects (SNDS 1/97 th sample) that did not present with the HOI The age of each potential control was calculated for each year of the data extraction sample (6 ages in total). Controls were matched with cases according to their gender and their age at index-date. Each selected control was given the same index date as their corresponding case. The number of controls per case was set to 2 or 10 according to the variant. Unmatched cases were removed. To be included, cases and controls must have had at least 182 days of observation prior to their "index date". When only the first occurrence of the HOI was considered, the patient was excluded if it occurred within the 182 days of the washout period. To address protopathic and confounding by indication a lag period of 7 or 15 days was introduced before the event onset in some variants. The risk windows applied was of 7, 30 or 60 days.

Case-population

As in the CC design, the exposure distribution among cases is compared to the distribution among controls. The novelty of the method is that the control group consists of the complete population, which increases statistical precision. In our application, exposure distribution for the complete population was extrapolated from the EGB over the study period using 1) an age and sex stratified extrapolation, and

2) a raw extrapolation (i.e. no stratification on age or sex). To be included in the case group or the aggregated control data, a patient had to be enrolled in the database for at least 182 days. Risk windows, exclusion periods and outcome selection were defined in same way as for CC. Two approaches were tested: (1) a count data approach, considering the number of patients exposed or not in the control population; and (2) a person-time approach, considering the person-time units of exposure in the reference population. (e.g. person-months). Two measures of associations were calculated: the case population ratio (CPR) 4 , and the predicted relative risk (pRR). 22 In the CPR calculation we assumed that the number of cases and the exposure rate are so small that the overall number of cases and the overall population can respectively approximate the number of unexposed cases and the unexposed population. In the pRR calculation the proportion of unexposed persons in the case group and in the population are not disregarded. In addition, CP allows the measure of relative risks based on per-patient exposure or per patient-time exposure.

The 80 CP variants were executed using an in-house program developed in R. A part of the analyses was replicated in SAS ® to ensure internal validity.

METRICS

To assess the ability of the methods and their variants to distinguish between positive and negative controls, the area under the receiver operating characteristic curve (AUC) was estimated. Sensitivity and specificity were also estimated. These elements give information about the discriminating power of the approaches, but we were also interested in the accuracy of the magnitude of the effect estimated. Even if the true effect size of positive controls remains unknown, we can assume that the log relative risk of the negative controls is zero. Using this assumption, we computed for each method and its specific settings the mean square error (MSE), which is the average squared difference between the log relative risk and zero. The smaller the MSE is, the better the estimation is. The "coverage probability" is the frequency over many replications (one for each negative control) that the 95% confidence interval contains the true RR: 1. In the case of an unbiased estimator we would expect the coverage probability to be 95%.

CALIBRATION

Calculation of p-value in traditional significance testing relies on the use of the theoretical null distribution. In ALCAPONE, once the best performing design variant for an HOI was identified and replicated in the non-sampled population, the EmpiricalCalibration R package was used to derive an empirical null distribution from the observed effect estimates for the negative controls, and to generate a "calibrated" p-value. 34 35 This calibrated p-value takes into account the random error (as the traditional p-value does), but also the systematic error distribution inherent to the application the SNDS. Numbers of included patients are presented in Table I. 

RESULTS

HEALTH OUTCOMES OF INTEREST

POSITIVE AND NEGATIVE CONTROLS

DISCUSSION

In this large-scale analysis, we empirically compared three case-based approaches for alert generation for each of four HOIs. Results corresponding to the methods comparison and calibration for ALI, AKI, MI and UGIB will be presented in forthcoming papers. Because the central idea of the ALCAPONE study is to develop alert generation based on pre-specified HOIs across a large number of drugs, it was easier to perform an extraction for the four HOI rather than one for each drug examined, which is why we focused only on case-based methods. The exposure of these cases to different drugs, here the reference sets, is compared to the exposure in selected controls populations, from the same patient in SCCS, to matched patients in CC, and to unmatched and unselected controls in the CP approach. We need to identify cases and controls from the same population, and to this end we can access either the main SNDS database (66 million persons) or its 1/97 th sample, EGB, over one or several years. Though in some cases it might be sufficient to identify cases in the EGB (e.g., myocardial infarction, with about 500 cases per year), for rarer events, such as ALI, the only way to accrue sufficient numbers of cases for meaningful analyses is to access the full nationwide database over several years. However, controls do not need to be taken from the whole national database. EGB, with 700 000 persons, should be enough, providing two-step sampling: first, a first random sampling of the nationwide SNDS database to its 1/97 th representative sample, EGB;

then either using that sample entirely in the CP approach, or selecting specific controls in the CC.

The choice to include CP to the methods screened arose from the observation that in the alert generation environment, exposure in the population and cases may be both very rare, especially in the early stages of marketing a drug. In this context, the low level of exposure could make matching or adjustment impossible in a classical casecontrol design. The case population is a potential solution as the control group is the whole population. The case population approach has been compared to several other study designs and results show that the CPR computed were of the same order of magnitude as the corresponding relative risks estimated with a standard control group. 22,[36][37][38][39] A theoretical analysis showed that the rarer the exposure and the outcome rate, the better the CPR approximates the actual RR. 4 In addition, because all cases are identified and there is an analysis of the whole-country exposure, actual event rates per patient and per patient-year can be quantified.

Originally, we planned to conduct this project using only the controls of the OMOP reference set, with a threshold to consider a control as detectable set to 1.25 as in the original OMOP experiment. The OMOP set resulted from work conducted in the USA and counted 165 positives and 233 negative controls. Of these, only 120 positive and 126 negative control drugs are on the French market. In small populations, as with the specific ALI definition, only two drug controls were considered detectable with these parameters. In addition to the population size, this could be explained by differences between the US and French prescription patterns.

We decided to add control drugs from EU-ADR, which includes drugs more often prescribed in the French market. We also increased the minimum detectable relative risk threshold from 1.25 to 1.30. These adjustments allowed us to reach 7 detectable negative controls for the 5 152 patients meeting the ALI specific definition. Almost all the control drugs tested were identified as detectable in the large HOI populations: in the UGIB sensitive definition population, 59 controls out of 66 were considered detectable.

Even though the selection process of the control drugs was carefully described 23,24 , one of the limitations of our project is the possibility that negative controls actually form drug-outcome pairs with a causal relationship. A prior investigation found that 17% of the OMOP negative controls are misclassified or potentially misclassified but without any assertion of the causal relationship with the HOI. 40 Confounding by indication (or contraindication) and protopathic bias could also affect the findings.

Although there are many technical options to reduce such biases, a clinical assessment of the negative controls wrongly detected as positive will likely be necessary.

As detailed in the Methods section, we have many drug-outcome pairs and many variants of the method designs: ALCAPONE project aims to give rise to calibrated gold-standard method, but so far, we have not addressed calibration. As detailed in the Methods section, metrics were calculated based on the assumption that negative control true effect sizes are 1.

However, in real world settings this is not always the case. The distribution of the negative controls point estimates reflects the systematic error distribution inherent to the database and the considered design, i.e. the background noise of the database, assuming a similar confounding structure for a drug of interest and all of the negative control drugs, on average. In the environment of alert generation, knowing this distribution could help to reduce the number of false positives when screening drugs. 34,35 While analyses of spontaneous reports often consider associations among all drugs and all HOIs, signal detection approaches in longitudinal healthcare databases may be better tailored to specific drugs and/or HOIs. In ALCAPONE, we focus on four HOIs that are among the most common safety reasons for withdrawing drugs from the market. We aim to understand the best performing methods for each outcome in SNDS to inform future drug safety surveillance. Signal detection in such large databases could be used to validate drug safety signals obtained through other mechanisms (e.g. spontaneous reporting, social media) or to directly generate novel HOI-related alerts. The resulting point estimates can be assessed in view of the SNDS background noise and will provide a quantification of the potential risk. The same methodology could be applied to other HOIs such as the "critical terms" list identified by the Uppsala Monitoring Centre, or reported from the analysis of event-related drug withdrawals. 17 From there a systematic specific alert monitoring system could be set up, for the systematic detection of new drug-related alerts concerning these preselected HOI, over time. 

HEALTH OUTCOME OF INTEREST ICD10 CODES § ALCAPONE-ALI

Inclusion codes for acute liver injury

In order to take into account specificities of ALI, specific rules and exclusion criteria will apply:

• Outcomes presenting during hospitalizations with end dates between the 1 st and the 30 th day before their onset will be excluded;

• Outcomes presenting during hospitalizations with end dates on the same day as their onset, and corresponding hospitalization start date preceding the onset by more than 7 days, will be excluded;

• Hospitalizations starting and ending in a 7 days period prior to the outcome occurrence with concomitant stays separated by less than 1 day will be aggregated (this rule also applies to the hospitalization of interest);

• Outcomes with less than 182 days of observation prior to their onset will be excluded.

• Outcomes presenting with an associated diagnosis, related diagnosis or main diagnosis corresponding to the following codes in the 182 days prior to the index date will be excluded 

Exclusion codes for acute liver injury § ALCAPONE-MI

Inclusion codes for myocardial infarction

In order to minimize information bias:

• Outcomes with less than 182 days of observation prior to their onset will be excluded;

• Outcomes with a total of 15 cumulative days of hospitalization or more in the 30 days prior their onset will be excluded. 

Inclusion codes for upper gastrointestinal bleeding

In order to minimize information bias:

• Outcomes with less than 182 days of observation prior to their onset will be excluded;

• Outcomes with a total of 15 cumulative days of hospitalization or more in the 30 days prior their onset will be excluded. 

Inclusion codes for acute kidney injury

In order to minimize information bias:

• Outcomes with less than 182 days of observation prior to their onset will be excluded;

• Outcomes with a total of 15 cumulative days of hospitalization or more in the 30 days prior their onset will be excluded.

• Outcomes presenting with an associated diagnosis, related diagnosis or primary diagnosis corresponding to the following codes in the 182 days prior to the index date will be excluded. 

Methodological aspects

Selection of detectable controls

Drug controls were considered as detectable or not detectable on the basis of their minimal detectable relative risks (MDRR). MDRRs were calculated according to the following formula: 169
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Where:

• α denotes the size of the test (type I error, in this case α was set to 0.05);

• 1-β denotes the power of the test (in this case 1-β was set to 80%);

• z 4 denotes the cut-off point for the upper 100(α/2) percentile (two-sided test) of a standard normal distribution, for α = 0.05, z 4 = 1.96;

• z +,5 denotes the cutoff point for the upper 100(1-β) percentile of a standard normal distribution, for 1-β = 0.8, z +,5 = -0.842 (note, z +,5 is negative for power greater than 50%);

• E is the number of HOIs expected in the cohort of interest.

However, as in ALCAPONE we were dealing with case-based extractions including the totality of the population cases, we decided to approximate E by the observed number of patients exposed to the drug of interest in the relevant HOI sub-population.

More accurate methods exist to calculate sample size requirements for SCCS and CC designs. 170,171 However, those formulas are design-specific. Controls may have been considered as detectable for one design and not detectable for another, which would have considerably complicated the comparison step. Here, the idea was to use a generic method applicable across all the designs to generate a common reference set for each HOI, as it was done in the OMOP experiment. 44,127 

Self-controlled case series

Options tested in the SCCS included pre-exposure window adding, age adjustment, seasonality adjustment and multiple drug exposure adjustment.

As an outcome may temporarily reduce (e.g. contra-indication, NSAID prescription after UGIB) or increase (e.g. indication: sucralfate prescription after UGIB) the probability of exposure to the drug of interest, a deficit or an excess of outcomes in the period preceding the exposure may be observed. 172 This prescribing behaviour may lead to a biased relative incidence in this period just prior to exposure and affect the overall unexposed period. One solution to this problem is to introduce a separate risk window, the "pre-exposure window", just prior to exposure, to separate it from the remaining unexposed time.

Both, the rate of exposure and outcomes may change with age, and can even depend on the season. This may lead to confounding and bias the estimates. To correct for this, age and/or season can be included in the model. The effect of both age and season are assumed to be constant within each calendar month, and the rate from one month to the next can be different, even if subsequent months have somewhat similar rates. This is implemented using cubic spline functions. All people that have the outcome are used to estimate the effect of age and seasonality on the outcome. 126 Initially, we planned to also use the "Considering event-dependent observation time" option of the OHDSI SCCS package. 126 This option seemed very interesting since it was supposed to address an issue often observed in SCCS: the violation of the independence between outcomes and observation period. However, it appeared that, at the moment of the project, this option was not stable.

Case-control design

One of the major challenges when implementing CC design in ALCAPONE was the way controls were selected. As previously mentioned, 4 extractions were received from the SNDS, one for each HOI. At the beginning, we envisioned to select controls for one HOI amongst the patients of the 3 other extractions. However, this idea was rapidly dismissed in view of the potential selection bias that would have been induced. Subjects included through the 3 other HOIs could have had a potentially higher probability to be exposed to the drug controls than the general population, inducing an admission bias, also called Berkson bias. 173 The alternative solution was to exclude patients presenting the relevant HOI from the 800 000 subjects counting the EGB, the 1/97 th SNDS sample, and to select controls in the remaining population.

That did not present any difficulty for ALI and KI patients. However, with nearly 180 000 and 600 000 patients respectively, it was more challenging for UGIB and MI, especially considering a 1 to 10 matching approach. EGB option was chosen however, and it was decided that a given patient could be used as control for several cases and that unmatched cases were removed. The sampling of the largest patient extractions also helped to address this issue.

Case-population approach

As noted above, CP had never been formerly tested and was not present in the OHDSI Methods library. A full script was developed in-house relying on the following principles for both the per-user and the person-time approach.

• Per-user approach Risk estimates generated from CP per-user approach are based on the following contingency table ( Where, over the study period:

• a denotes the number of cases exposed to the drug of interest;

• c denotes the number of cases not exposed to the drug of interest;

• n denotes the total number of cases whether they are exposed or not;

• e denotes the total number of exposed subjects in the source population (i.e. the total number of subjects with at least one dispensing of the drug of interest over the study period in the overall population);

• f denotes the total number of unexposed subjects;

• N denotes the total number of subjects of the source population.

From this, the following elements can be derived:

• Case-population Ratio
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Person-time approach

In the person-time approach, rate from the control group (i.e. the overall population)

are measured in observation time per-person as presented in Table 2. Where, over the study period:

• a denotes the number of cases exposed to the drug of interest;

• c denotes the number of cases not exposed to the drug of interest;

• n denotes the total number of cases whether they are exposed or not;

• PTE denotes the exposed person-times in the source population (i.e. the cumulative duration corresponding to the dispensings of the drug of interest over the study period);

• PTNE denotes the unexposed person-times in the source population (i.e.

PTPOP -PTE);

• PTPOP denotes the overall person-times in the source population (i.e. the duration of the study period multiplied by the catchment population).

Only CPR and pRR formula are impacted by these changes:

• Case-population Ratio
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As mentioned in the article, the difference between CPR and pRR flows from the fact that in the former, the number of cases (a) and the exposure rate (e or PTE) are considered as so small that the overall number of cases (n) and the overall population (N or PTPOP) can respectively approximate the number of unexposed cases (c) and the unexposed population (f or PTNE). A theoretical demonstration showed that the rarer the exposure and the event rate, the better the CPR approximates the actual pRR. 117 CPR might be useful when only relative exposures of cases and population are known without any information about the exact number of exposed and unexposed patients. Both estimates are used in the literature. 117,118,121 The influence of the different extrapolation options of the aggregated data from the EGB was also assessed. In the raw extrapolation, for each year of the study, a single 

Assessment and comparison of design performances

• Discriminating ability

The discriminating ability of the methods was assessed through the area under the receiver operating characteristic (ROC) curve (AUC). AUC tells how much the variant is capable to distinguish between positive and negative controls. In our works ROC curve was plotted and AUC was computed using the R package pROC. 174 Considering Table 3, pROC plotted the ROC curve with the true positive rate [TP/(TP+FN)] against the false positive rate [FP/(TN+FP] (i.e. sensitivity vs.

1-specificity), using different thresholds to classify controls according to the log of the estimate generated by a design variant. An excellent model has an AUC near 1, which means it is capable of correctly classifying positive and negative controls.

When AUC is 0.5, it means that classification is random and that no discriminative capacity exists. •

Accuracy of the estimates

We were also interested in the accuracy of the point estimates we generated. Since the true value of the positive control estimates are not known, we were only able to presume of the negative control ones, which should be 1.

Mean square error was calculated as described above and represents the average squared difference between the log estimate (RR) and zero. The smaller the MSE is, the better the estimation is.
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In some OMOP papers, accuracy was also assessed using "the bias" that is the average difference between the log estimate and 0. 42,[START_REF] Suchard | Empirical Performance of the Self-Controlled Case Series Design: Lessons for Developing a Risk Identification and Analysis System[END_REF] However, it appeared that a variant generating negative biases (RRest<0) and positive biases (RRest>0) in the same proportion get a bias near 0, the negative error cancelling the positive one, inducing bias in the bias calculation.

Coverage probability was also computed as metrics to assess the accuracy. It can be seen as the probability that the interval generated by a variant contain the parameter of interest. In ALCAPONE the coverage for a design variant corresponds to the number of times the confidence interval generated for the negative control estimates included the true value, 1.

OHDSI proposed a methodology to measure the accuracy of estimates generated for positive controls (i.e. with true estimate >1). To do so, starting from negative control, synthetic outcomes are injected in target exposure period until a desired ratio. 175,176 However, such an approach could not be implemented in ALCAPONE as only casebased designed were considered.

Why did we sample from the population?

According to the ALCAPONE protocol, 96 SCCS, 20 CC and 80 CP were planned across 4 HOIs, each HOI presenting a specific and a sensitive definition. Considering the number of drug controls to test, the total number of analyses to run was 61 338.

Generating such a number of estimates in a reasonable timeframe across the SNDS extractions (more than 825 000 patients) would have required large computing capacity. At that time no such resources were available in-house. It would have been necessary to fall back on cloud computing services such as Amazon Web Services. 177 However, by law, SNDS data extraction are attached to a data processor which is supposed to be fully controlling its IT environment, the former having been previously declared during the regulatory phase. We then made the choice to do a first assessment of the design performances in sampled populations before going through a complete calibration of the best design variant in the unsampled ones.

Parameters with major impact

This stage has been added to the methodology when first results were generated.

Although it was clear that some approaches were performing better than others, metrics of some design variants were so close that it was not easy to distinguish them. Hence, for the best-performing approach of each HOI, we computed logistic analyses to screen for the parameters with major impact on the discriminative ability.

The dependent variable was the probability that a variant had an AUC above the 70 th percentile of the AUC distribution. The independent covariates included the parameters that were varied in the different design variants. For example, independent covariates used in the logistic analyses applied to SCCS would be multiple drug adjustment: yes / no; pre-exposure duration: 0, 7 or 30 days, seasonality adjustment: yes / no, etc. When it was possible, multivariate analyses were then run with the parameters that appeared to be significant in the univariate one.

Calibration of the reference design

Calibration, through the use of negative controls, is particularly important in ALCAPONE since it allows to see if the SNDS is suitable for alert generation (i.e. if controls are actually detected) and to what extent generated estimates can be trusted (i.e. if controls are correctly detected). At a glance, distribution of the negative control estimates gives a first idea of the global accuracy of the methods. To go into more depth, we used OHDSI EmpiricalCalibration R package to characterize the systematic error generated by the application of the design variant in the SNDS and to calibrated the p-value accordingly. [START_REF] Schuemie | Interpreting observational studies: why empirical calibration is needed to correct p-values[END_REF]178 In traditional significance testing, p-value indicates the probability that a study finding greater than or equal to the one observed could have arisen under the null hypothesis (i.e. the hypothesis of no effect). In other worlds, it is the probability that the difference observed results from random error. The theoretical null distribution is usually used to compute it. In ALCAPONE, the negative controls give an indication of what is really happening under the null hypothesis, uncovering a potential systematic bias. Considering their estimates for which a theoretical value of 1 was expected and based on how often p-value was below 0.05 while the null hypothesis was true, a Gaussian probability distribution was fitted to effect estimates, modelling the distribution of the residual bias under the null hypothesis. Parameters of this "empirical null distribution" (mean and the standard deviation) helped to appreciate the bias induced by the design in the SNDS and were then used to compute calibrated p-values. Under the strong assumption that residual bias in the effect estimates is drawn from the same distribution as the residual bias in the set of negative controls, the calibrated p-value is supposed to take into account both random and systematic errors inherent to the application of a design variant. However, since there is no guarantee that this assumption is met -negative and positive controls may not be affected by the same biases -calibrated p-value must be interpreted with caution. Simulation studies showed that while this calibration process can help to control type I error rate (wrongly concluding to an effect by rejecting the null), type II error rate often increases (wrongly concluding to an absence of effect by not rejecting the null): a few highly biased negative controls may induce overestimated p-values, masking potentially true associations. 179 The EmpiricalCalibration package also enabled the calibration of confidence intervals. [START_REF] Schuemie | Empirical confidence interval calibration for population-level effect estimation studies in observational healthcare data[END_REF] However, to be conducted efficiently, such an approach requires to generate synthetic positive controls in a cohort, injecting artificial outcomes during periods covered by negative controls. It was deemed not suitable for ALCAPONE case-based extractions.

Feasibility study

The previous section introduced the overall ALCAPONE methodology implemented in the SNDS extractions. However, prior to this step, a feasibility study was conducted in the EGB involving phases 1a) Data extraction and management, and 1b) Selection of the detectable control of the full process.

Assessment of the mapping of the SNDS to the OMOP CDM

A major part of the statistical analyses planned in the ALCAPONE project was based on R packages made available by OHDSI, requiring data formatted according to OMOP CDM specifications to run. Starting from the EGB extractions, an assessment of the works necessary to conform with OMOP CDM v5 was conducted. 180 The findings of this assessment were presented during the 1 st OHDSI European symposium in Rotterdam, Netherlands, in March 2018.

Introduction

The Système National des Données de Santé (SNDS) is the French Nationwide Healthcare System Database covering about 99% of the French population (about 66.6 million persons) from birth (or immigration) to death (or emigration). The SNDS database merges anonymous information of reimbursed claims from all French health care insurance plans, linked to the national hospital-discharge summaries database system (PMSI) and the national death registry. The database includes demographic data; health care encounters such as physician or paramedical visits, medicines, medical devices, and lab tests (without results); chronic medical conditions (ICD10 codes); hospitalisations with ICD10 codes for primary, linked and associated diagnoses, date and duration, procedures, diagnostic-related groups, and cost coding; date but currently not cause of death. EGB (Echantillon Généraliste de Bénéficiaires) is the 1/97th random permanent representative sample of SNDS database (780 000 subjects), with planned 20-year longitudinal data 1 . EGB is powerful enough to study common issues with widespread drugs. Furthemore its structure is similar to SNDS, which makes it a perfect platform to develop feasibility studies before their implementation in the SNDS. This makes EGB an ideal candidate for assessing the possibility to apply the OMOP CDM v5 to the SNDS.

Methods

An extraction of all the myocardial infarctions between 2009 and 2014 were conducted in the EGB. The 74 resulting datasets were data managed according to the Bordeaux PharmacoEpi standardized operating procedure to generate 14 transitional datasets including socio-demographic data, medical visits, chronic medical conditions, hospitalization diagnoses, drug dispensing, lab tests, and outpatient and inpatient procedures. A theoretical mapping plan from the EGB extraction to the OMOP CDM v5.0.1 was realized through WhiteRabbit and RabbitInAHat softwares (Figure 1) 2 . Mapping from source to standardized vocabularies was assessed (Table 1) 3 . Treatment durations for the drug_exposure table were generated according to drug dispensing data and medians of treatment durations, taking into account 3 months drug packaging.

The poster displayed is available on OHDSI Europe website: https://www.ohdsi-europe.org/images/symposium-2018/posters/22-Nicolas-Thurin.pdf

Results

To date, person, observation_period, location and drug_exposure tables have been generated. Death, condition_occurence, care_site, provider and visit occurrence tables have not yet been created but do not seem to present technical barriers. However the utilization of national nomenclatures (CCAM and NABM) to code procedures and lab tests in the EGB prevents the utilization of the OMOP Standardized Vocabularies to generate the procedure_occurence table.

Conclusion

Most of the standardized clinical data tables can be generated following the OHDSI Extract Transform and Load (ETL) processes. However, the mapping of the French terminologies for procedures and lab tests to standard vocabularies is required to complete fully the transformation of the clinical part of EGB and SNDS to the OMOP CDM, thus enabling the use of the whole set of OHDSI tools. 

Adaption of the reference set and power consideration

Results

To be sure of their presence and their reimbursement on the French market, drugs contained in the original OMOP reference set have been mapped to Medic'AM by their international non-proprietary names. [START_REF] Ryan | Defining a Reference Set to Support Methodological Research in Drug Safety[END_REF] Medic'AM contains aggregated data corresponding to the monthly dispensings of all the drugs reimbursed by the French national health insurance. 182 Drugs that do not appear in this database were not retained. Drugs with more than 2 years without any reimbursed box between 2009 and 2014 were dismissed. Methotrexate, tetracosactide and neostigmine were ruled out because of their different usage pattern and the difficulty in estimating the treatment duration. Non-topical and non-ophthalmic ATC of the remaining drugs were extracted to constitute a reference set adapted to the French market. As presented in the Table 4, between 70% and 80% of the positive controls from the original OMOP set have been conserved, however more than 40% of the negative controls have been dismissed.

Table 4. Percentage of loss of positive (CTR+) and negative (CTR-) controls resulting from the restriction of the OMOP reference to the drugs available on the French market.

We then checked if it was possible to detect an association ≤1.25 for these controls in the EGB. To do so, we computed MDRRs according to EGB settings for each one of the remaining drugs of the set. MDRR were then extrapolated to the SNDS.

Results showed that the EGB was not powerful enough to detect associations ≤1.25 among a sufficient number of drug-outcome pairs, in particular when the outcome and/or the exposition was rare (Table 5). Nevertheless, the results extrapolated to the SNDS seemed to be conclusive. The low number of controls considered as detectable in the ALI and KI population could be explained by the small size of the extraction and the random error: only two exposed cases in the EGB are required to be considered as detectable in the SNDS. 183 The corresponding poster is available in Appendix 6.

Conclusion of the feasibility study

The feasibility study concluded that ALCAPONE overall process could not be conducted in the EGB, but that the SNDS seemed to have a sufficient size to implement such a process. It also highlighted that the number of detectable controls had to be confirmed in SNDS settings and that the addition of controls from EU-ADR reference set or the adjustment of the MDRR threshold should be considered if power issue remained.

As presented in the article about methodology, for the execution of ALCAPONE in the SNDS, EU-ADR drug controls were actually added to the reference set adapted to the French market. MDRR threshold was also re-evaluated and set to 1.30 instead of 1.25.

Preparation of SNDS data

Data extraction

To date 143 data tables with 3 714 variables are stored in the SNDS. 184 tables), the following were considered for mapping

• IR_BEN_R: the referential of the person covered by the national health insurance.

• ER_PHA_F: contains all the drugs dispensed by community pharmacies and reimbursed by the national health insurance. Drugs dispensed in hospital settings are not included

• T_MCO_B: contains hospital stay general information (dates, duration, hospital, location, etc.)

• T_MCO_C: table enabling to link hospital data to primary care data

• T_MCO_D: contains ICD10 diagnostic codes for associated health condition

• T_MCO_UM: contains primary and secondary diagnostics codes corresponding to the cause of the hospitalization.

Data mapping

A complete extract, transform, and load process (ETL) was designed to map the source tables to the OMOP CDM. Figure 1 displays an overview of this process. The full ETL, including the selected variables as well as the drug duration construction is available in Appendix 7.

Figure 1. Overview of the Extract Transform and Load process from the SNDS to the OMOP Common Data Model (CDM) v5

OMOP CDM specifications define "standard vocabularies" that must be used in the CDM (e.g. SNOMED-CT for diagnostic codes, RxNorm for drug codes, etc.). This is particularly useful when different databases are involved in a same project. However, switching from the source vocabulary to the standard one call for time and resources, and sometimes impact information quality. In the case of ALCAPONE, we tried to avoid such process since no other partners were involved. Each definition (sensitive or specific) of each HOI (ALI, AKI, MI, UGIB) was matched to a cohort_definition_id running from 1001 to 1008 in the cohort_definition table. This cohort_definition_id was then used in the cohort table to flag corresponding patients. This way to process, allowed to skip the stage of implementation of the overall diagnostic codes of the patients in the database. Regarding drugs, ATC codes were conserved even if translated into concept_ids: in the CDM codes are under a numeric format, cross-files are available to translate code from a defined classification to an OMOP concept_id.

For example, the ATC code for ibuprofen is "M01AE01", this code corresponds in the OMOP CDM to the concept_id "21603967". Transformed data were then loaded into a PostgreSQL database schema to be queried using R software.

Results

General results

The first observation that can be draft from ALCAPONE is that SCCS seems to performed better than CC and CP for the identification of drugs associated with ALI, MI, AKI and UGIB, in both the specific and the sensitive definition. Figure 2 and Figure 3 presented respectively for the specific and the sensitive definition of each HOI, the variant with the highest AUC and the lowest MSE of each approach (SCCS, CC and CP). 

Figure 2. Overall performances of self-controlled case series (SCCS), case-population (CP) and case-control (CC) designs in the detection of drugs associated with upper-gastrointestinal bleeding (UGIB), myocardial infarction (MI), acute liver injury (ALI) and acute kidney injury (AKI), specific definitions

Figure 3. Overall performances of self-controlled case series (SCCS), case-population (CP) and case-control (CC) designs in the detection of drugs associated with upper-gastrointestinal bleeding (UGIB), myocardial infarction (MI), acute liver injury (ALI) and acute kidney injury (AKI), sensitive definitions

It clearly appears that in both definitions, most of the time, the best-performing SCCS variant had the highest discriminant ability with AUC values running from 0.7 to 0.94, and the best predictive accuracy with MSE up to 0.07. This difference was less marked for ALI than for the other HOIs. In most of the cases CC and CP AUC were relatively close but CP always showed significantly higher MSE. 

Key words:

Upper gastrointestinal bleeding, self-controlled case series, case-control, casepopulation, calibration, claims database Key points:

• Self-controlled case series approaches show the best performances for the identification of drug associated with upper gastrointestinal bleeding in the French National Healthcare System database (SNDS) with very small systematic error

• Adjusting for multiple drugs and using a risk window corresponding to the 30 first days of exposure seem crucial to consider when assessing upper gastrointestinal bleeding risk

• Using a specific definition of the disease can help reduce bias, especially in reduced samples

• Negative controls are useful to check for performances of the method

• Clinical expertise is necessary to ensure a correct interpretation of the results 

Word

INTRODUCTION

Upper gastrointestinal bleeding (UGIB) is a serious medical emergency, related to bleeding from the esophagus, stomach, or duodenum. 1 The incidence of UGIB ranges from 36 to 172/100 000 inhabitants per year and has been declining in recent decades. [2][3][4] This trend could be explained by the decreasing prevalence of Helicobacter pylori and the large increase in the use of proton pump inhibitors (PPI), especially with high-dose, long-term non-steroidal anti-inflammatory drugs (NSAIDs). 1,2 UGIB leads to death in about 10% of cases. 5,6 The high incidence of UGIB and the role of drugs as potential causes, especially NSAIDs, has made UGIB an important focus of pharmacoepidemiology. [7][8][9][10] UGIB was included in the 10 events studied in the Exploring and Understanding Adverse Drug Reactions by integrative mining of clinical records and biomedical knowledge (EU-ADR) project as well as among the health outcomes of interest screened in the Observational Medical Outcomes Partnership (OMOP) experiment. [11][12][13][14] NSAIDs and UGIB were also assessed in the Safety Of non-Steroidal anti-inflammatory drugs (SOS) project, an international initiative partially funded by the European Commission following rofecoxib withdrawal, through a metaanalysis and a multi-database nested case-control study. 15,16 The French National Healthcare System database -the Système National des données de Santé (SNDS) -currently includes 66.6 million persons, capturing all reimbursed medical and paramedical encounters, including all dispensed drugs, hospital-discharge summaries and dates of death, 17 was not available at the time of SOS project. With the whole French population, SNDS is twice as large as the combined databases in SOS without the same degree of heterogeneity, which makes it a valuable tool to address drug safety questions. Other databases in Europe were part of the OMOP experiment, 18 which tested and calibrated various methods to measure drug-outcome associations, using reference lists of known associations and non-associations. ALCAPONE (Alert generation using the case population approach in the French databases), a project funded by the French Health Ministry (PREPS 2014, 0635), aimed to further the objectives of OMOP by empirically assessing and calibrating case-based methods -self-controlled case series (SCCS), case-control controls only, assuming no association (i.e., true point estimate of 1 for the measure of relative association). The AUC (ranging from 0 to 1) measures discrimination between positive and negative controls, with higher values indicating better discrimination. The MSE quantifies the accuracy of an estimator, combining both bias and random error, with smaller values indicating better accuracy. The coverage probability is the proportion of the 95% confidence interval estimator that includes the true parameter value, 1 in our case. Values as close as possible to nominal 95% coverage are desirable.

Once the best performing case-based approach was identified, we conducted an univariable logistic regression analysis to screen for parameters that best discriminated the performance of the different design variants. The dependent variable was the probability that a variant had an AUC>0.75 with the specific definition (AUC>0.78 with the sensitive definition). AUC thresholds were selected as the 70th percentile of the AUC distributions of the variants. The independent covariates included the parameters that were varied in SCCS analyses (multiple drug adjustment: yes/no; pre-exposure length: 0, 7 or 30 days, etc.).

In the second step, the best-performing variant was applied to the full, unsampled case population.

Considering the estimates from the negative controls, for which a theoretical value of 1 was expected, we observed how often p < 0.05 while the null hypothesis was true, and we fitted distribution to the effect estimates, modeling the distribution of the residual bias under the null. [20][21][22] Estimated parameters of this "empirical null distribution" was then used to compute "calibrated" p-values, taking into account random and systematic error (i.e. the background noise) inherent to the application of a design variant to the SNDS.

RESULTS

POPULATION

The selection process of UGIB cases according to specific and sensitive definition is presented in Figure 1 

BEST PERFORMING DESIGN VARIANT AND MAJOR IMPACT PARAMETERS

SCCS globally showed better discrimination (Figure 2) and MSE (Figure 3) than CC and CP. For the specific case definition, AUCs ranged from 0.64 to 0.80 for SCCS, from 0.44 to 0.61 for CC and from 0.50 to 0.67 for CP. MSE ranged from 0.07 to 0.39 for SCCS, from 0.83 to 1.33 for CC and from 1.96 to 4.6 for CP. For the sensitive definition, the same trends were observed with some AUC reaching 0.84 for SCCS.

The lowest MSE was also observed for SCCS (MSE<0.3), although the distribution was more heterogeneous with some very large MSE values (e.g. >2000).

Performances of the all the design variants tested in the 1/10 th sampled population are available in Appendix 4.

For the specific definition, the design variants with the highest AUC (0.80) and smallest MSE (0.07) were the SCCS 2066 and 2068, with a coverage probability of 86% (Table 1). SCCS variant 2066 (see Appendix 3) only considered the first occurrence of the outcome, used a risk window corresponding to the first 30 days following the dispensing of the drug of interest and adjusted for multiple drugs. Variant 2068 further adjusted for seasonality. These design variants also performed quite well when applied to the sensitive definition with AUC≥0.82, MSE=0.29 and a coverage probability of 82%. Variant 2090 yielded a higher AUC (0.84) but at the expense of the MSE (MSE=5.9) (Table 2).

Although SCCS clearly appeared as the best performing approach, identifying why this design variant was optimal remained challenging. Univariable logistic regression analyses showed that, for both the specific and the sensitive definitions, the strongest determinant of a high AUC was multiple drug adjustment (Table 3 and Table 4). In the specific UGIB definition, considering the first 30 days after drug dispensing as the risk window and considering only the first occurrence of UGIB were also associated with a high AUC (Table 3). Since adjusting for seasonality appeared to have no impact on SCCS discriminative ability, we determined SCCS 2066 to be the optimum variant.

CALIBRATION OF THE BEST DESIGN VARIANT

Specific case definition

In the unsampled specific case population, SCCS 2066 showed a better AUC (0.84 vs.

0.80) with slightly increased MSE and reduced coverage (respectively 0.14 vs. 0.07 and 75% vs. 86%) as compared to what was observed in the 1/10 th sampled population. Out of 36 negative controls, 26 were not significantly associated with UGIB (Figure 4). Nine negative controls (i.e., miconazole, sucralfate, lactulose, sitagliptin, erythropoietin, nitrofurantoin, loratadine, methocarbamol and zopiclone) had the lower bounds of their confidence intervals above 1 whereas scopolamine had an upper bound below 1 (protective effect). Almost all the positive controls were significantly associated with UGIB except clindamycin, sulindac, etodolac and mefenamic acid (Figure 5).

An empirical null distribution (!̂=0.12; $ % = 0.17) was derived based on the negative control estimates and used to compute calibrated p-values for SCCS 2066. Using conventional p-values, 10 out of the 36 negative controls and 18 out of the 22 positive controls were significant. Using the calibrated p-values, only two negative controls were still significant (sucralfate and scopolamine) (Table 5), and 9 positive controls moved from significant to non-significant (potassium chloride, prednisolone, indomethacin, ibuprofen, fenoprofen, nabumetone, fluoxetine, citalopram, sertraline) (Table 6). Figure 6 illustrates this calibration process. The gray zone (below the dashed line) represents the area where the conventional p-value is smaller than 0.05. The orange zone shows the area where calibrated p-value is under 0.05. We can see that the 8 negative controls significantly associated with UGIB according to the conventional p-value are below the dashed line but out of the orange area, meaning that once the p-value calibrated they are no longer considered as significant.

Sensitive case definition

As compared to the 1/10 th sampled population, an improvement in AUC (0.85 vs. 0.82)

and MSE (0.14 vs. 0.29) for SCCS 2066 was observed after execution in the unsampled sensitive population. The coverage probability decreased slightly (78% vs. 82%). SCCS 2066 generated estimates comparable to those found for specific definition for both negatives and positives controls (Figure 7 and Figure 8). The empirical null distribution was derived (!̂=0.12; $ % = 0.17) and used to compute calibrated p-values (Table 6). The same trends as those observed for the specific definition appeared in the calibration process, except for sertraline which remained significantly associated after calibration, and escitalopram which did not.

All estimates generated in the unsampled population are available in Appendix 5.

DISCUSSION

Overall, the SCCS clearly showed better results than CC and CP in terms of discrimination and accuracy of point estimates in this large-scale assessment in the SNDS. Using both specific and sensitive definitions for UGIB, adjustment for multiple drugs seemed to be the strategy with the largest impact on accurately classifying positive and negative controls. Restricting the risk window to the 30 first days from dispensing appeared to increase performance of SCCS when using the specific definition. This may be related to the exclusion of non-specific bleeding that happens long after treatment initiation and that is unrelated to the drugs of interest, or to a depletion of susceptibles. 23 Although the corresponding coefficient was not statistically significant in the regression model, restricting outcomes to incident events seemed to have positive effect. Such an approach is often used in SCCS when recurrences of an event are not independent, which may be the case for UGIB. [24][25][26] The AUC obtained in the unsampled population for these best-performing designs (0.84 and 0.85 for the specific and the sensitive definitions, respectively) are consistent with what was observed in the original OMOP experiment assessing SCCS and UGIB in US databases (0.77 to 0.88), even if settings differed. 27 In addition, adjustment for multiple drugs and the restriction to the first 30 days from initial exposure were also the settings of the best performing SCCS (AUC = 0.84) in the European replication of the OMOP experiment, for UGIB. 18 When considering CP, analyses 3001 to 3040 using the actual number of persons exposed (per user approach), clearly yielded a better AUC (>0.6) compared to analyses 3041-3080 using cumulated person-time exposure (person-time approach) (<0.6). As with the SCCS 30-day risk window, this observation suggests that UGIB is globally a patient-dependent effect (i.e. type B idiosyncratic reaction) that occurs early after initiation of exposure. 28 Optimal conditions for CP are low exposure and event rates. 29 Given the high level of events observed in the population, the absence of adjustment may be the principal explanation for the relatively lower performance of the CP approach.

Even if less biased than CP, CC results showed poor performances with AUC<0.6 for most settings. Since we have access to all cases of interest in the SNDS, but not all non-cases, cases were matched to controls selected from a 1/97 th sample of the database. The limited pool of controls available combined may have affected the performance of the CC approach. 30,31 Moreover, cases and controls were matched on age and sex only. More advanced methods for adjustment, such as propensity score or disease risk score matching or stratification, may have reduced residual confounding and increased method performance. 32,33 Regardless of the population or the SCCS variant, some negative control drugs always appeared as significantly associated with UGIB. Some of these associations can be easily explained. For example, the protective effect of scopolamine is not surprising, since it is a strong anticholinergic agent. 34 SNDS captures outcomes through hospital discharge diagnosis codes and drugs such as sucralfate, a standard treatment of evolving gastric and duodenal ulcer, could have been dispensed to the patients following a general practitioner visit for the initial symptoms of UGIB prior to the hospitalization (protopathic bias). 35 Such bias could also be observed with erythropoietin, which is indicated to manage anemia, potentially resulting from bleeding. Lactulose is indicated to prevent hepatic encephalopathy by lowering ammonia concentrations in the digestive tract after bleeding. Hepatic encephalopathy usually results from liver failure, including cirrhosis. 36 Patients with cirrhosis are well known to have higher risk of esophageal varices. Thus, the association between lactulose and UGIB may be due to confounding by indication. 37 Similarly, arthritic patients are often medicated with methocarbamol, a muscle relaxant, in addition to NSAIDs during flares. Since NSAIDs carry a major risk of UGIB, methocarbamol's association with UGIB could also result from confounding. Lastly, azole antifungals are well known inhibitors of cytochrome P450 enzymes (miconazole and CYP2C9, ketoconazole and CYP3A4). Vitamin K antagonists and direct oral anticoagulants are metabolized respectively by CYP2C9 and CYP3A4, respectively. By inhibiting these enzymes, drug plasma level may increase, increasing risk of major bleeding, leading to an association due to confounding.

All of these examples show that even the optimal SCCS variant is not always able to address protopathic bias and confounding by indication without further consideration and additional forms of adjustment. Clinical and pharmacological inputs are essential to interpret final results.

Estimates from NSAIDs included in the reference set were consistent with the results from the SOS project for ibuprofen, ketoprofen, naproxen and meloxicam, and lower for piroxicam and indomethacin. 15 We had insufficient power to properly assess sulindac, etodolac and mefenamic acid. However, these drugs are rarely used and are therefore of less public health importance. We also observed consistency in results for clopidogrel and selective serotonin reuptake inhibitors (SSRIs), which is reassuring since SSRIs and clopidogrel facilitate UGIB by the same mechanism -inhibition of platelet aggregation.

Given the huge statistical power afforded by the SNDS (>66 million people), one may question the relevance of the p-value since random error approaches 0 with increasing sample size and even small clinically irrelevant findings can become statistically significant. Under the strong assumption that residual bias in the effect estimate is drawn from the same distribution as the residual bias in the set of negative controls, calibrating the p-value can further account for systematic error. Systematic error seems to be small when certain SCCS variants are applied to investigate UGIB in the SNDS.

However calibrated p-values have to be interpreted carefully since the distribution of residual bias described in effect estimates of negative controls may differ from those of the drugs of interest (i.e., the positive controls). Moreover, simulation studies showed that type II error rates often increase with this calibration process -few highly biased negative controls may lead to overestimated p-values, masking potential true associations, which can be problematic in the context of signal detection. 22 Although the use of p-value calibration is debated, we think that the implementation of negative controls provides some reassurance about the performance of the SCCS method.

The SCCS had the best performance for the identification of drug-related UGIB in SNDS. Adjusting for multiple drugs and considering the initial period of treatment seemed to be important features of this design. However, not all the possibilities of SCCS have been assessed here and specific design adjustment may be required in the context of a particular study. Outcome definitions must be carefully selected to ensure good accuracy of the method. The calibration process showed that low systematic error was generated by SCCS in the SNDS when applied to UGIB.

However, the analysis of negative controls indicated that some biases such as protopathic bias and confounding by indication remained unaddressed and indicate a need for a clinical expert input to ensure a correct interpretation of the results. 

TABLES

FIGURES Figure 1. Selection of patients with upper-gastrointestinal bleeding (UGIB) according to sensitive and specific definitions

Patients hospitalized for gastric, duodenal, peptic or gastrojejunal ulcer or acute haemorrhagic gastritis or hematemesis or melaena (K25.0; K25.2; K25.4; K25.6; K26.0; K26.2; K26.4; K26.6; K27.0; K27.2; K27.4; K27.6;K28.0; K28. 

INTRODUCTION

Acute liver injury (ALI) can range from simple elevation of liver enzymes to acute liver failure leading to liver transplantation or death. 1,2 In more than half of cases, severe ALI is drug induced, making medicines the most frequent cause of liver failure in most Western countries. [3][4][5] Because of its incidence (14 to 19 cases per 100 000 persons), 6,7 its challenging management, 8 and its potentially fatal consequences, drug-induced ALI is a major clinical burden and cause of regulatory action related to medications. 9- 12 Nearly all drug classes can lead to ALI. 13,14 Even if some are well known for their proven hepatotoxicity (e.g. antimycobacterial agents, paracetamol, etc.), further investigations are needed to explore the potential of other drugs. 8,15,16 As demonstration of the importance of ALI, it was included among the top 10 events studied in the Exploring and Understanding Adverse Drug Reactions by integrative mining of clinical records and biomedical knowledge (EU-ADR) project, 17,18 among the health outcomes of interest screened in the Observational Medical Outcomes Partnership (OMOP) experiment, 19,20 and was included as a key adverse event investigated by the Pharmacoepidemiological Research on Outcomes of Therapeutics by a European ConsorTium (PROTECT) project coordinated by the European Medicine Agency. [21][22][23][24] The French National Healthcare System database -Système National des données de Santé (SNDS) currently includes 66.6 million persons, capturing all reimbursed medical and paramedical encounters, including all dispensed drugs, hospitaldischarge summaries and dates of death. 25 The database not included in the aforementioned international consortiums but has been useful in the identification of severe ALI and acute liver failure. 15,26 ALCAPONE (Alert generation using the case population approach in the French databases), a project funded by the French Health Ministry (PREPS 2014, 0635), was designed to further the common objective of these different collaborations in the SNDS: to evaluate methodological standards in real life settings applicable to drug safety issues. ALCAPONE aimed to leverage the wealth of data in SNDS to empirically assess case-based methods -self-controlled case series (SCCS), case-control (CC) and case-population (CP) -to determine and calibrate the top design for the identification of drugs associated with ALI.

cases with the distribution in individual patients at risk for the outcome, and CP which compares the exposure distribution in cases with the distribution in the overall population. Different settings, such as adjustment strategies, risk window lengths, etc., were applied to these three case-based approaches forming different design variants. These variants were applied in two steps to generate point estimates (relative incidence for SCCS, odds ratio for CC and case population ratio or predicted relative risk for CP) between ALI and each drug control, as described below. A total of 96 SCCS, 20 CC and 80 CP variants were tested. The exact settings of each design variant are described in Appendix 3.

All design variants were run in both the specific and the sensitive case population to identify the best-performing variant based on area under the receiver operating characteristics curve (AUC), mean square error (MSE) and coverage probability. MSE and coverage probability were estimated for negative controls only, assuming no association (i.e., true point estimate of 1 for the measure of relative association). The AUC (ranging from 0 to 1) measures discrimination between positive and negative controls, with higher values indicating better discrimination. The MSE quantifies the accuracy of an estimator, combining both bias and random error, with smaller values indicating better accuracy. The coverage probability is the proportion of the 95% confidence interval estimates that include the true parameter value, 1 in our case.

Values as close as possible to nominal 95% coverage are desirable.

We also conducted an univariable logistic regression analysis to identify for the most influential parameters that best discriminated the performance of the design variants.

The dependent variable was the probability that a variant had an AUC above the 70 th percentile of the AUC distribution, here 0.90. The independent covariates included the parameters that were varied in the design variant considered. For example, for the SCCS, the independent covariates were: multiple drug adjustment: yes / no; preexposure length: 0, 7 or 30 days, etc.

Using the estimates from the negative controls, for which a theoretical value of 1 was expected, we observed how often p < 0.05 while the null hypothesis was true, and we fitted a distribution to the effect estimates, modeling the distribution of the residual bias under the null. [28][29][30] Estimated parameters of this "empirical null distribution" were then used to compute "calibrated" p-values, taking into account random and systematic error (i.e. the background noise) inherent to the application of a design variant to the SNDS. Bayesian 95% credible intervals (CI) were then computed using Markov Chain Monte Carlo.

RESULTS

POPULATION

The selection process of ALI cases according to specific and sensitive definitions is presented in Figure 1 

BEST PERFORMING DESIGN VARIANTS AND MAJOR IMPACT PARAMETERS

SCCS globally showed better discrimination (Figure 2) and MSE (Figure 3) than CC and CP. This difference was stronger with the sensitive definition than the specific. For the specific case definition, AUCs ranged from 0.78 to 0.94 for SCCS, from 0.64 to 0.92 for CC and from 0.48 to 0.85 for CP. MSE ranged from 0.12 to 0.40 for SCCS, from 0.22 to 0.39 for CC and from 1.03 to 5.29 for CP. For the sensitive definition, almost no changes were observed in AUC of SCCS and CP whereas the top-CC AUC was slightly inferior (0.89). The MSE distribution followed the same trend as with the specific definition, with lower values for SCCS (0.17-0.46) and CC (0.20-0.54) than for CP (1.08-4.59). The performances of all the tested design variants are available in Appendix 4. Case-population variants using cumulated person-time exposure (persontime approach) showed better performance than those using the actual number of persons exposed (per user approach) (AUC≥0.76 and MSE≤1.9 vs. AUC<0. 53 and MSE>2.3). No such clear trend appeared in CC performance even though variants that used an exclusion period prior to the outcome onset obtained lower AUC.

For the specific definition, the design variants with the highest AUC (0.94) and smallest MSE (0.22) were the SCCS 2089, with a coverage probability of 57% (Table 1). SCCS variant 2089 only considered the first occurrence of the outcome and used the period covered by drug dispensing as the risk window without using any adjustment methods (see Appendix 3). SCCS 2090 and 2092 used the same parameters of SCCS 2089 but also adjusted for multiple drug use (SCCS 2090) and multiple drug use and seasonality (SCCS 2092), resulting in a slightly lower AUC (0.93) but in substantially higher coverage probability (86%). SCCS 2090 and 2092 also performed well with the sensitive definition with AUC = 0.92, MSE = 0.19 and coverage probability = 86%. However, a slightly better AUC (0.93) was obtained with SCCS 2046, 2048, 2094 and 2096 with comparable values for MSE and coverage (Table 2).

Univariable logistic regression analyses showed that, for both the specific and the sensitive definitions, the strongest significant determinant of a high AUC was the utilization of a risk window corresponding to the period covered by drug dispensing and not a fixed 30-day window (Table 3 andTable 4). In the overall results (Appendix 4), higher coverage probabilities were obtained adjusting for multiple drug use.

As adjusting for seasonality appeared to have no impact on SCCS discriminative ability, we determined SCCS 2090 to be the top-performing variant owing to its good overall performances with both the specific and the sensitive definitions.

CALIBRATION OF THE OPTIMUM DESIGN VARIANT

With the specific definition, out of 7 negative controls, 6 were not significantly associated with ALI (Figure 4) according to SCCS 2090. Only sitagliptin had a confidence interval excluding 1 (1.03 -2.58) with a relative incidence of 1.64. Of the 18 positive controls 13 were significantly associated with ALI. Diltiazem, terbinafine, erythromycin, piroxicam and naproxen were not (Figure 5).

The empirical null distribution with mean 0.15, CI = [-0.15 -0.38] and precision (=1/! "^2) of 198, CI = [3 -915] was derived based on the negative control estimates and used to compute calibrated p-values. Using the calibrated p-values, sitagliptin was no longer significant but inhaled fluticasone was (Table 5), and two positive controls, fluconazole and celecoxib, moved from significant to non-significant (Table 6). Figure 6 illustrates this calibration process. The gray zone (below the dashed line) represents the area where the conventional p-value is smaller than 0.05. The orange zone shows the area where calibrated p-value is under 0.05. The red band represents the uncertainty in the calibration process We can see that the only negative control (blue dot) significantly associated with ALI according to the conventional p-value is below the dashed line but out of the orange area, meaning that once the p-value is calibrated it is no longer considered as significant.

Using the sensitive definition, estimates generated for the drug controls were consistent with those observed in the specific definition. Two extra positive controls, rifampicin and etodolac, showed a significant association and no association with ALI, respectively. The empirical null distribution was derived (mean = 0.16, CI = [-012 -0.40]; precision = 198 CI = [3 -957]) and used to compute calibrated p-values (Table 6). The same trends as those observed for the specific definition appeared in the calibration process for negative controls. However more positive controls moved from significant to not significant: erythromycin, fluconazole, celecoxib, valproic acid.

All estimates generated using the different design variants are available in Appendix 5.

DISCUSSION

Overall, the self-controlled case series showed better results than CC and CP in terms of discrimination and accuracy of point estimates in this large-scale assessment of ALI in the SNDS. Using both specific and sensitive definitions for ALI, the utilization of the period covered by drug dispensings as risk window seemed to be the key parameter in the generation of a high AUC, which could be explained by the nature of the selected positive controls and the inclusion criteria. Drug-induced liver injury is typically classified as either direct or idiosyncratic. 16 Most of the positive drug controls included in ALCAPONE belong to this second category. Idiosyncratic hepatotoxicity appears in a variable timeframe from days to weeks, sometimes months, from initial exposure. 31,32 This difference in latency is related to liver injury phenotypes: first symptoms of cholestatic hepatitis do not appear for weeks, whereas those resulting from acute hepatocellular hepatitis, the most common and serious manifestation of idiosyncratic liver injury, may occur within a few days. 6,32,33 The majority of the positive controls included in our reference set can lead either to hepatocellular or cholestatic hepatitis.

However, since ALCAPONE focused on serious events, toxic liver disease with cholestasis (ICD = K71.0) was not included. Thus, most of the ALIs analyzed in this study probably resulted from hepatocellular toxicity. The better performance observed in SCCS using the actual period covered by dug dispensings as the risk window compared to those considering a fixed period of 30 days, even in non-chronic drugs, suggests that such events are more likely to occur during the exposure period and that non-exposed time may be less at risk. Similar conclusions were observed in the PROTECT project. 22,23 However, it is important to stress that restricting the risk window to the period of treatment does not allow assessment of the risk related to more delayed hepatocellular ALI for non-chronic drugs. This may explain the non-significant estimates of some positive controls, such as piroxicam or naproxen for which hepatotoxic mechanism remains unclear. 34,35 Although no direct impact was observed on the AUC, perhaps because of the low number of negative controls included, multiple drug adjustment appeared to have a beneficial effect on the coverage probability, improving the true negative rate. This approach has already demonstrated its greater ability to discriminate between positive and negative drug-outcome pairs, compared to unadjusted SCCS. 36 In this study, AUC values obtained through the top SCCS variants (AUC>0.92) were higher than those observed in the OMOP experiment (AUC≤0.70). 37 These discrepancies may result from the difference in our respective drug reference set. It is also possible that the care taken to carefully define the ALI population, ruling out potential alcohol or viral-related outcomes as well as non-acute hepatitis, and excluding patients for whom it was impossible to assess previous drug exposures, may have contributed to the improved performance. This process may have reduced the rate of misclassification, increasing the accuracy of the results, 38 or reduced the susceptibility to confounding. 39,40 For example, we might have observed a significant association between lactulose and ALI, had alcohol-related liver injury and cirrhosis not been excluded: lactulose is most likely given to patients at risk for hepatic encephalopathy, which most of the time results from cirrhosis. [START_REF] Sibae | Current trends in the treatment of hepatic encephalopathy[END_REF]42 The same rationale could explain the good performance observed across the best-performing CC variants (AUC≥0.89), which had higher AUCs compared to those from the original OMOP experiment (AUC≤0.60 for 4 out to 5 databases tested).

When considering CP, analyses 3041 to 3080 using person-time approach, yielded better AUC (>0.75) compared to analyses 3041-3080 using per user approach (<0.55).

Such results diverge from previous conclusions. 43 Since most of the controls were supposed to lead to idiosyncratic ALI without dose-related effect, we were expecting that an approach that does not take into account cumulated-exposure, such as the peruser approach, would generate the best results. However, given the low number of negative controls, small discrepancies in their classification may have an important impact in overall variant performances measurements. Further investigation with more drugs controls, and an advanced classification regarding their exposure typology and expected related effect would be necessary to better understand their association with ALIs.

The calibration process, including the derivation of the empirical null distribution, tended to show that systematic error inherent to the application of SCCS to investigate ALI in the SNDS was small. Even if the uncertainty resulting from the restricted number of subjects and negative controls is large, credible intervals of calibrated p-values usually included the traditional p-values. Positive control estimates, especially for antibiotics, were of the same order as those generated by SCCS in PROTECT project. 23 As described above, false negatives may result from the non-detection of delayed effect. The absence of association for erythromycin could also be the consequence of lack of power, which at the national level would mean that this drug would not represent an important public health safety concern. No explanation was found for the significant estimate generated for ALI and sitagliptin. This association could either result from random error or could turn out to be a potential safety issue, since two cases were published in 2018. 44 The SCCS had the best performance for the identification of ALI-associated drugs in SNDS. Adjusting for multiple drugs and considering the actual period covered by drug dispensings appeared to be important features of this design. The careful selection of the study population seemed to limit residual bias. The calibration process showed that minimal systematic error was generated by the optimum SCCS in the SNDS when applied to ALI. However, not all possible SCCS implementations have been assessed and this conclusion mainly apply to idiosyncratic hepatocellular ALI. Specific adjustments may be required in the context of particular studies, especially when evaluating the risk related to other liver injury phenotypes. 

TABLES Table 1. Performances of the 10 most discriminant self-controlled case series variants for acute liver injury specific definition with the corresponding settings

IT constraints

IT constraints was something we didn't really envisage when we were designing the project. However, we spent almost one year overcoming them. We faced our first IT issues at the implementation stage of ALCAPONE, at the beginning of the feasibility study, with the deployment of the SelfControlledCaseSeries package. As an open-source package in a collaborative framework, OHDSI SCCS package is regularly enhanced, with the integration of new options or bug correction. Through ALCAPONE we went very deep in the package options, testing some specific combinations of parameters in sometimes very large datasets. In a way, we were "the guinea pig" as M. Schuemie said. Considering coding error and the package debugging, we spent almost 6 months to be able to run a first complex SCCS design.

We then tried to replicate it in a different machine, and a new surprise arose. The same script executed with the same R and package version gave different results.

Thinking it was some sort of software issue we tried to boot the different machines, one after the other, on a same hard drive, but the problem was still present. Seeing no software solution to the problem, we tried to investigate more deeply the source of the discrepancies in the R package. It appeared that the discrepancy was observed for SCCS adjusting for event-dependant observation time as proposed by Farrington et al.. 188 We went through some tests of the event-dependant observation period using simulated data, and it appeared that even if the optimum for the censor model computed by each platform was the same, slightly different estimates were generated. As no clue were found to the sensitivity to the choice of the hardware, and given that the discrepancies observed could have had significant impact on the final results, we lastly decided not to consider this option for the experiment. This example shows that even if this kind of complex model go through a large set of automated validations tests and simulation studies during its development, as is the case for packages developed by OHDSI, 189 there is always room for unexpected issues.

Integrating comprehensive tests across different hardware environments to quality insurance routine could be a solution to control this type of issue. However, since not all possible configurations will ever be tested, the best way to ensure the consistency of a tool (and a potential result) is to test it across its own IT framework. Moreover, a descriptive of the platform and the hardware used to run analyses should always be provided in appendix of publications and reports.

In addition, ALCAPONE project taught us that computational power and calculation time are also to be carefully considered when designing a project involving large databases and complex calculations since they directly impact study timelines and deliverables.

Interest of health professional point of view

There is always a great temptation to consider results of such experiment just as numbers, going no further than applying bias-proofed supposed state-of-the-art methodology and taking the design variant apparently showing the best performances, whether generated results seem to be consistent or not. Here, however, in looking to the controls in more details, it clearly appeared that even the most advanced design does not address all the biases, and it is at this point that the first part or the word pharmacoepidemiology takes on its full meaning. Clinical pharmacology and physician point of view are required to correctly interpret the generated results: to judge if provided estimates likely result from a pharmacological effects or potential biases. Context matters when interpreting. It is the context which incites a physician to prescribe one drug rather than another, inducing potential channeling bias. In this case, context can take the form of patient symptoms, prescription guidelines, healthcare environment, drug reimbursement, or even physician class of age. Given that context is multifactorial by nature and therefore complex, who can help better understand its influence if not the actors themselves: the healthcare professionals? In this thesis work, a full comprehension of the SNDS variables was necessary to achieve a faithful ETL to the OMOP CDM, especially the outcome and drug related ones. Since drug information in primary care is almost fully captured by pharmacies, a pharmacist point of view was very valuable to correctly interpret SNIIRAM information. Dispensing rules and patients-pharmacist relationship are country specific. Even if some documents provide guidelines on how drugs should be dispensed, only a health professional involved in a day-to-day practice has a global vision of what is really happening on the field, how patients behave, how the rules are interpreted, how they are applied… or not, and especially how this is translated in the database. In the same way as a physician is not able to describe what happen in a pharmacy, a pharmacist is not able to depict what can occur in a doctor practice. A significant part of the confounding observed in pharmacoepidemiological studies could be understood appreciating how physicians managed their patients. GPs are the backbone of patient management. They are responsible for patient follow-up in primary care, including dose adjustment, prescription renewal, as well as non-serious acute disease treatment. They know how to interpret global patient care pathways. However, since SNDS reports hospital discharge summaries, specialist physician inputs are of special importance. They are the ones who have a comprehensive view of the disease management from the symptoms to the treatment, including the diagnostic stage. As pharmacists help to understand SNIIRAM data, specialists are the key to interpret PMSI. However, although drugs in primary care settings are entered in the SNDS directly when they are dispensed, medical procedures and diagnostics code lead to a rather complex process in hospitals. Most of the time, the physician involved in patient treatment is not coding. According to the hospital or the department, coding process can be achieved through other physicians, residents, nurses or sometimes secretaries, with or without specific formation. 190 Since coding quality is correlated to the funds paid to the hospitals, most of them have also a dedicated "Medical information department" including physicians, in charge of the management and the quality of the data entered to the PMSI. 191 Sometimes finding or interpreting a procedure or diagnostic code can be quite challenging, medical nomenclatures being complex. In this case, data-coding specialist input are very valuable. They help to make the link between the original medical condition and the way it is translated in the database. Through the definition of accurate HOI in the first stage of the project, the ETL of SNDS data to the OMOP CDM and the understanding of the generated estimates, ALCAPONE demonstrated that the best way to achieve a faithful decoding of the data, an appropriate data processing and a comprehensive interpretation of the results is to get a multidisciplinary team to work together.

Routine implementation and generalizability

SNDS is often considered as the world's largest continuous homogeneous claims database. 140 Information about outpatient drug exposure is recorded almost exhaustively and in detail, even if the fact that the dispensed drugs were actually taken by the patient, it is always subject to uncertainty. The quality of the outcome information available in hospital discharge summaries is ensured by the daily work of medical information departments. 191,192 Obviously, there may always be some discrepancies between the captured data and the actual patient conditions, but ad-hoc validation studies seem to prove that SNDS provide specific diagnostic information. 193 Even if medical results, risk factors and outpatients conditions are missing, the quality and the richness of data available often allow to overcome this limitation. Proxies can serve in place of untracked diagnoses: dyslipidemia are not well tracked since the disease is mainly managed by GPs, but lipid lowering therapies dispensings are. Moreover, succession of cares are suggestive enough to confirm the doubtful health status of patients. 194,195 With 99% of the 66.6 million French inhabitants included, SNDS representativeness against French population is not a matter for discussion; nor is its power. These assets combined make of the SNDS a good support to perform signal detection and validation.

Comparing pharmacoepidemiological case-based approaches, this thesis aimed to take advantage of this potential. Obviously, even the best-performing designs identified in this work could be further improved, but the empirical assessment showed that performances of SCCS as it is, with carefully selected parameters, were decent enough and superior to those of CC and CP for the identification of drugs associated with ALI, AKI, MI and UGIB. Through the UGIB example, false positives revealed that some biases remained, especially protopathic bias and confounding by indication. However, most of the time, a clinical point of view allowed discrimination between true and false positives. Moreover, as we have seen in ALI example, a restrictive selection of cases could help to reduce this residual confounding. Besides, some positive controls were not detected during the experiment, sometimes showing no effect at all, or positive but non-significant effect. The positive but non-significant effect can be reasonably attributed to a lack of power resulting from a small number of outcomes or a weak exposure. One wonders about the real impact of such a drug in the overall population. Furthermore, since pharmacoepidemiology captures the actual effect of a drug in real life conditions, the absence of association can reasonably suggest that the event of interest is not a safety issue for the considered medicine in the day-to-day practice. This could be the consequence of the actual innocuity of the drug, or of confounding by (contra)indication, which would mean that the existing risk is correctly managed.

All in all, these works showed that SNDS is perfectly suitable to generate drug safety alerts in an accurate manner. Thus, a pertinent interpretation by health specialists of the estimates generated by the previously highlighted reference designs in the SNDS should provide valuable input for drug safety alert generations at a national level.

Such method can be used to validate a signal generated through another source and quantify the potential risk, or to screen routinely a large set of newly marketed drugs.

To do so, reference methods could first be applied across all the drugs of a SNDS extraction. Risk already documented would be ruled out, and emerging alerts carefully studied to distinguish between biased, potential, and confirmed alerts.

Second, newly marketed or suspected drugs could be screened on a yearly basis. This approach extend to other outcomes of interest for drug safety could consist in substantial progress in pharmacovigilance in France. However, the development of such tools should not overshadow a significant part of the adverse events observed in clinical practice are well-known adverse reactions of old drugs. 196 Patients, pharmacists and physicians must understand that drugs are not without risk. The more effective or powerful the drug is, the greater the risk of adverse reactions. In the end, there are only more or less safe (or dangerous) ways of prescribing and using them. • To present the methodology of the ALCAPONE project.

• To assess the feasibility of the project through preliminary results from the EGB database. • The feasibility study shows that the EGB is not powerful enough, especially when the event and/or the exposition is rare. The SNIIRAM seems to have a sufficient size to implement the ALCAPONE process.

Methods
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• The step 1b) "Selection of detectable controls" must be repeated after SNIIRAM extraction to confirm the number of detectable drug controls. If necessary, additional ones could be added to enhance the French market Reference set.

• The identification of the optimal design for a health outcome of interest will enable the generation and the validation of drug safety alerts.

Conclusion

Alert generation using the case-population approach in the French claims databases: -Case-control: number of controls per case, matching strategy… -Self-controlled case series: adjustment strategy, pre-exposure window… -Case-population exposure window, exclusion period… • Each setting of a design is considered as a variant. # Generation of one measure of association by drug-outcome pair and design variant. 

Results

!"#$ = !"#$ log !!!"# -log !!!"#$ !"# = !"#$ log !!!"# -log !!!"#$ ! • The left part of Table 1 shows the number of controls with MDRR≤1.25 in a database of the OMOP experiment. The right side displays the results of the feasibility study and its extrapolation to the SNIIRAM. Table 2 presents the number of outcomes extracted from the EGB.

Background

• The SNIIRAM 1 is the French nationwide healthcare insurance system database covering 99% of the French population. It has not ben tested for drug safety signal generationa

• The EGB 2 is a 1/97 th SNIIRAM sample

• ALCAPONE (Alert generation using the case-population approach in the French claims databases) is a project aiming to: ! Develop on SNIIRAM the case-population approach for drug safety signal generation ! Compare the performances of this approach with the case-control design and selfcontrolled case series ones, according to the Observational Medical Outcome Partnership (OMOP) methodology • The low number of detectable controls in ALI and KI could result from the small size of the extraction and the random error: to be considered as detectable in the SNIIRAM, only 2 exposed cases are required in the EGB. 

Table 2: Outcomes included in the ALCAPONE project and corresponding number of patients by health outcome of interest definition in the EGB; Expected number for SNIIRAM [stage 1a of the Figure 1] Table 1: Number of positive and negative controls (CTR+ and CTR-) by health outcome of interest, present in the OMOP experiment, available in the French market, detectable in the EGB and expected in the SNIIRAM [stage 1b of the

  Au total, ces travaux ont montré que les séries de cas autocontrôlées sont à considérer comme une approche adaptée à la détection d'alertes de pharmacovigilance associées à ALI et à UGIB dans le SNDS. Un point de vue clinique demeure toutefois nécessaire pour écarter tout risque de faux positif résultant de potentiels biais résiduels. L'application d'une telle approche à d'autres événements d'intérêt et son utilisation en routine constitueraient des progrès substantiels en matière de pharmacovigilance en France. Titre Évaluation empirique d'approches basées sur les cas pour la génération d'alertes de pharmacovigilance à partir du Système National des Données de Santé (SNDS) Mots-clefs Pharmaco-épidémiologie ; SNDS ; Pharmacovigilance ; Cas-témoins ; Caspopulation ; Série de cas autocontrôlés ; base de données ; Étalonnage ; Hépatite aigue ; Hémorragie digestive haute Intitulé et adresse du laboratoire Bordeaux Population Health Research Center INSERM U1219, Equipe «Pharmacoépidémiologie et impact des médicaments sur les populations » Université́ de Bordeaux Site de Carreire, Bâtiment Pharmacie, quatrième tranche, troisième étage.
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 123 control -CC) et l'étude cas-population (case-population -CP). Deux exemples d'application ont été plus largement développés : UGIB et ALI. Les travaux présentés vont de la rédaction du protocole et du plan d'analyses statistiques à l'interprétation des résultats et leur valorisation, en passant par la supervision des étapes de gestion des données et la conduite des analyses statistiques réalisées avec le support des équipes de la plateforme Bordeaux PharmacoEpi et les outils développés par la communauté OHDSI, Observational Health Data Sciences and Informatics. § Méthodologie Le projet se composait de 4 principales étapes présentées ci-après. Extraction des populations d'intérêt du SNDS, mise en forme des données selon le modèle commun de données OMOP (OMOP CDM), et sélection des médicaments témoins positifs et négatifs présentant suffisamment de puissance pour pouvoir être détectés ; Analyse des médicaments témoins sélectionnés en utilisant les 3 approches basées sur les cas, en déclinant chaque approche selon plusieurs variantes (par exemple, en testant différentes fenêtres de risque, stratégies d'ajustement, etc.) ; Évaluation des performances des variantes de chaque approche selon leur aire sous la courbe ROC (AUC), leur erreur quadratique moyenne (MSE) et leur probabilité de couverture ; 4. Sélection et étalonnage de l'approche et des paramètres optimaux selon la variante retenue pour chaque événement d'intérêt. • Mise en place et sélection des médicaments témoins La loi française rend disponible les extractions du SNDS uniquement à des fins de recherche. Afin de limiter le nombre d'extractions à conduire (une extraction par événement d'intérêt), seules les approches basées sur les cas ont été retenues : SCCS, CC et CP. Les patients ayant présentés un des événements d'intérêt -ALI, AKI, MI et UGIBentre le 01/01/2009 et le 31/12/2014 ont été extraits du SNDS à partir des codes diagnostics présents dans les résumés de sortie d'hospitalisation. Pour chaque événement une définition spécifique et une définition sensible ont été utilisées. Les 612 tables extraites ont été synthétisées en 14 tables transitoires puis formatées selon le OMOP CDM.

  Une fois la variante optimum identifiée pour un événement d'intérêt, celle-ci a été répliquée dans la population totale, puis calibrée. Les paramètres d'une « distribution empirique sous l'hypothèse nulle » ont été calculés en supposant la distribution des mesures d'association des témoins négatifs, y compris ceux pour lesquels p<0.05, comme gaussienne. Cette distribution modélise le biais résiduel sous l'hypothèse nulle, c'est-à-dire le bruit de fond inhérent à l'application de l'analyse dans le SNDS.Les paramètres calculés (moyenne et variance) ont par la suite été utilisés pour estimer des valeurs « calibrées » de la p-value, tenant compte de l'erreur aléatoire et de l'erreur systématique. § Résultats • Mise en place et identification des populations d'intérêt au sein du SNDS La définition spécifique d'ALI a conduit à l'identification de 5 152 patients dans le SNDS sur la période 2009-2014. Un total de 355 patients supplémentaires a été identifié à partir de la définition sensible. Sur la même période 304 369 patients ont présenté un MI (définition spécifique). Ce chiffre passait à 717 920 lorsque que l'on tenait compte de l'angor instable (définition sensible). La définition spécifique d'AKI a permis d'identifier 12 317 patients. La définition sensible portait ce nombre à 89 186. Pour UGIB les définitions spécifique et sensibles ont permis d'identifier sur la période d'étude 139 172 et 178 384 patients, respectivement. Les événements d'intérêt avec les effectifs les plus élevés étaient ceux présentant le plus grand nombre de médicaments témoins potentiellement détectables (i.e. avec un risque relatif minimum détectable <1,30). Pour les définitions sensibles de MI et UGIB, 64 témoins positifs et négatifs sur 70, et 59 sur 64 ont été respectivement considérés comme détectables. Seuls 18 témoins positifs sur 58 et 7 témoins négatifs sur 23 ont été considérés comme détectables pour la définition spécifique de ALI. L'échantillonnage des populations présentant les plus grands effectifs à des fins de diminution des temps de calcul a été accompagné d'une réduction du nombre de témoins détectables. • Résultats Généraux Globalement, les SCCS semblaient générer de meilleurs résultats que les CC et CP pour l'identification des médicaments associés aux ALI, AKI, MI et UGIB. Que ce soit pour les définitions spécifiques ou sensibles, les SCCS présentaient le plus grand pouvoir discriminant avec des AUC allant de 0,70 à 0,94, et la meilleure précision avec des MSE allant jusqu'à 0,07. Cette différence était moins marquée pour ALI que pour les autres événements d'intérêt. Les AUC des CC et CP étaient relativement proches, mais les CP présentaient toujours des MSE significativement plus élevées. • UGIB En ce qui concerne la définition spécifique de UGIB, les AUC s'étendaient de 0,64 à 0,80, 0,44 à 0,61 et 0,50 à 0,67, pour respectivement les SCCS, CC et CP. Les MSE variaient respectivement de 0,07 à 0,39, 0,83 à 1,33 et 1,96 à 4,6. Les régressions univariées ont montré que les AUC élevées étaient obtenues via les SCCS ajustant sur l'utilisation de traitements concomitants et utilisant une fenêtre de risque fixe correspondant au 30 premiers jours suivant la dispensation du médicament d'intérêt plutôt que de la période totale de traitement. Lorsque exécutée dans la population non échantillonnée, la variante la plus performante de SCCS était associée à une AUC = 0,84 et une MSE = 0,14, avec 10 témoins négatifs sur 36 présentant des estimations significatives. Le processus de calibration a mis en valeur une faible erreur systématique potentielle, résultant principalement du biais d'indication et du biais protopathique affectant fortement certains témoins négatifs. • ALI En ce qui concerne la définition spécifique de ALI, les AUC s'étendaient de 0.78 à 0.94, 0.64 à 0.92 et 0.48 à 0.85, pour respectivement les SCCS, CC et CP. Les MSE variaient respectivement de 0.12 à 0.40, 0.22 à 0.39 et 1.03 à 5.29. Les variantes ajustant sur la l'usage de traitements concomitants présentaient une probabilité de couverture plus élevée. Les régressions univariées ont montré que les AUC élevées étaient obtenues via les SCCS utilisant une fenêtre de risque correspondant à la période de couverture par le traitement, et non pas une fenêtre fixe de 30 jours. La variante optimale du SCCS avait une AUC = 0,93 et une MSE = 0,22 pour une couverture = 86%, avec 1 témoin négatif sur 7 et 13 témoins positifs sur 18 présentant des estimations significatives. Le processus d'étalonnage tendait à montrer que l'erreur systématique inhérente à l'application du SCCS dans le SNDS pour la mesure de l'association entre des médicaments et ALI était minime, le nombre limité de témoins négatifs inclus dans cette étude étant néanmoins à la source d'une incertitude élevée. § Discussion Le SNDS est souvent considéré comme la plus grande base de données homogène du monde. L'exposition aux médicaments dans le secteur ambulatoire y est enregistrée de manière précise et quasi exhaustive, même si un doute persiste quant au fait que les médicaments délivrés aient été réellement consommés par le patient. La qualité de l'information relative aux événements est assurée par le travail quotidien des services hospitaliers d'information médicale. Des divergences entre les données saisies et l'état actuel du patient restent possible, mais des études de validation tendent à montrer que les diagnostics que l'on retrouve dans le SNDS présentent une bonne spécificité. La qualité et la richesse de l'information disponible dans cette base de données permettent souvent de surmonter l'absence de certains éléments non collectés tels que certains facteurs de risque (statut tabagique, indice de masse corporel), les événements survenant dans le secteur ambulatoire, ou les résultats d'examen médicaux. La puissance et la représentativité du SNDS en font ainsi un excellent support pour la détection et la validation de signaux de pharmacovigilance. En comparant différentes approches pharmaco-épidémiologiques, cette thèse visait à identifier comment tirer le meilleur parti de ce potentiel. Bien entendu, les designs identifiés comme optimums dans ces travaux pourraient encore être améliorées, mais l'évaluation empirique conduite montrent que, en l'état, dans le SNDS, le SCCS est supérieur au CC at au CP pour la détection d'alertes de pharmacovigilance associées à ALI et à UGIB. La présence de faux positifs a révélé que, bien que faible, de la confusion résiduelle pouvait persister, en particulier à travers les biais protopathique et d'indication. Cependant, des connaissances en pharmacologie clinique et un point de vue médico-pharmaceutique permettent une interprétation correcte des résultats et la différenciation des vrais et des faux positifs. Par ailleurs, des témoins positifs ont donné lieu à des mesures d'associations proche de 1 ou supérieur à 1 mais non significatives (faux négatifs). Ces effets positifs mais non significatif peuvent être attribués à un manque de puissance résultant d'un faible nombre d'événements ou à une faible utilisation du médicament étudié au niveau populationnel. On peut dans ce cas de figure être amené à s'interroger sur l'intérêt porté à un traitement dont l'impact potentiel en termes de santé publique est limité. En outre, comme la pharmaco-épidémiologie capture l'effet du médicament dans ses conditions réelles d'utilisation, une absence d'effet mesuré peut raisonnablement donner à penser que l'événement qui nous intéresse ne constitue pas un problème dans la pratique clinique quotidienne. Cela peut être la conséquence de l'innocuité réelle du médicament ou bien d'un biais de (contre-)indication, traduisant la gestion correcte du risque existant en situation réelle de soins. Au total, ces travaux ont montré que le SCCS était une approche adaptée à la détection d'alertes de pharmacovigilance associées à ALI et à UGIB dans le SNDS. Un point de vue clinique demeure toutefois nécessaire pour écarter tout risque de faux positif résultant de potentiels biais résiduels, les faux négatifs, quant à eux, ne posant pas de réel problème. Outre leur utilisation pour la validation de signaux de sécurité générés par d'autres sources (ex : la notification spontanée) et la quantification du risque associé, ces outils calibrés pourraient être utilisés en routine au sein du SNDS, de manière automatisée, pour la génération d'alerte de sécurité dans de larges panels de médicaments, en particulier ceux nouvellement commercialisés. Dans un premier temps, une analyse serait exécutée sur l'ensemble des médicaments commercialisés au niveau national. Les risques déjà documentés seraient exclus et les alertes émergentes soigneusement étudiées afin de distinguer celles d'intérêt. Les médicaments nouvellement commercialisés ou suspects feraient par la suite l'objet d'une analyse périodique. L'extension d'une telle approche à des événements d'intérêt autres que ceux étudiés dans cet ouvrage (ex : rhabdomyolyse, Syndrome de Lyell, etc.) constituerait un progrès substantiel en matière de pharmacovigilance en France.
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  d'Assurance Maladie (CNAM), the data holder of the Système National des Données de Santé (SNDS) database (the French National Healthcare System database), which already had experience in conducting such studies.132 In 2014, a call for application was launched to fund for 4 years two platforms with pharmacoepidemiology abilities and no links with pharmaceutical industries, whereupon in 2015, agreements were made with the "Drugs systematized assessment in real-life environment" (DRUGS-SAFE) platform 133 in Bordeaux led by Pr. Antoine Pariente, the Pharmaco-Épidémiologie des Produits de Santé (PEPS) consortium in Rennes led by Pr. Emmanuel Oger and the ANSM.134 In December 2018 the teams involved in health product epidemiology from both the ANSM and the CNAM merged into a single structure, EPI-PHARE, with the aim of efficiently conduct and coordinate health product epidemiology studies using SNDS data.135, 136 In September 2009, the DRUG-SAFE platform obtained a renewal of its 4-year funding to support EPI-PHARE in its pharmacoepidemiology missions.137 

  National des Données de Santé (INDS) is in charge of it. All the data requests are reviewed by the Comité d'expertise pour les recherches, les études et les évaluations dans le domaine de la santé and the French data protection commission (CEREES), an expert committee in charge of assessing the global scientific quality of the project, including the consistency with the data requested. In a second stage the demand is forwarded to the French data protection commission (Commission Nationale de l'Informatique et des Libertés -CNIL), which is the only one legally allowed to issue the data processing authorization. Works on data can be then conducted through a remote secured access on CNAM platform "le portail", or data extractions can be provided to research teams that have an homologated secured IT framework.143 Data from SNIIRAM are uploaded to the SNDS throughout the year. It is admitted that a lag of around 6 months is required to catch 90% of the dispensings. PMSI is uploaded in one time, at the end of the following year. Hence, we consider complete data of year Y are available in January of the year Y+2. This lag of around 13 months allows to follow drug consumption and potential related issues in quite a small delay, some say "almost in live".1.4.2.3. EHRSomeprivates EHR suitable for pharmacoepidemiology research (and so, potential signal detection) are available in France: the Longitudinal Patient Database and the Disease Analyzer. 144, 145 Both of them were owned by IMS Health TM , now forming part of IQVIA TM . They are fed by data proceeding from patients charts of GP samples (around 1 200 GP each). Elements such as symptoms, diagnostics, prescriptions, demographics, risk factors, laboratory test results as well as GP profile are captured. 146 On the public sphere, in 2008, the George Pompidou European Hospital, an 890beds university hospital in Paris, was one of the first hospital to set-up a clinical data warehouse gathering 1.2 million patient records to research purposes. After anonymization, laboratory results, drug prescriptions, clinical observations, medical
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 41 Submitted article: Empirical assessment of case-based methods for drug safety alert identification in the French National Healthcare System database (SNDS): Methodology of the ALCAPONE project Nicolas H. Thurin, Régis Lassalle, Martijn Schuemie, Marine Pénichon, Joshua J. Gagne, Jeremy A. Rassen, Jacques Benichou, Alain Weill, Patrick Blin, Nicholas Moore, Cécile Droz-Perroteau, Pharmacoepidemiology and Drug safety (1 st submission) Key words: calibration, case population, claims database, SNDS, method assessment, pharmacoepidemiology, pharmacovigilance Key points: • French National Healthcare System database (SNDS) is a powerful source for drug safety alert generation • ALCAPONE aims to establish in the SNDS gold standard calibrated methods to measure associations between drugs and specific health outcomes of interest (HOI): acute liver injury, acute kidney injury, myocardial infarction, and upper gastrointestinal bleeding • The performances of case-control, case-population and self-controlled case series designs will be compared using positive and negative drug controls • The best performing method (gold standard) can be used to validate drug safety signals obtained elsewhere or to directly generate new HOI-related alerts. Word count excluding abstract, tables, figures and references: 4211 Statement about prior postings and presentations, name(s) of any sponsor(s) of the research contained in the paper, along with grant number(s): ALCAPONE (Alert generation using the case population approach) methodology and related results were presented during the 33rd and 35th International Conference on Pharmacoepidemiology & Therapeutic Risk Management and at the 1 st and 2 nd OHDSI European Symposium. The ALCAPONE project is funded by the French Ministry of Health (PREPS 2014, 0635).

  methods was evaluated in five large US observational databases (four claims databases of respectively 1.2, 4.6, 10.8 and 46.5 million persons, and one EHR of 11.2 million persons) through a reference set composed of 165 positive and 234 negative drug-event pairs across four health outcomes of interest (HOI): acute liver injury (ALI), myocardial infarction (MI), acute kidney injury (AKI), and upper
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  coefficient of extrapolation was applied to the whole population, irregardless of the age class or the gender. In the extrapolation stratified on age and gender, one coefficient was used for each age and gender class. Those coefficients are shared every year by the Institut National de la Statistique et des Études Économiques (INSEE), the French National Institute of Statistics and Economic studies.

  count excluding abstract, tables, figures and references: 2994 Statement about prior postings and presentations, name(s) of any sponsor(s) of the research contained in the paper, along with grant number(s): ALCAPONE (Alert generation using the case population approach) methodology and related results were presented during the 33rd and 35th International Conference on Pharmacoepidemiology & Therapeutic Risk Management and at the 1 st and 2 nd OHDSI European Symposium. Pharmacoepidemiology and Drug safety is currently reviewing an article about ALCAPONE methodology (PDS-19-0255). The ALCAPONE project is funded by the French Ministry of Health (PREPS 2014, 0635).
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 2345678 Figure2. Area under the receiver operating characteristics curve (AUC) for case-control (CC), self-controlled case series (SCCS) and case-population (CP) approaches in the 1/10 th sampled population according to upper-gastro-intestinal bleeding definition. For each approach, variant with the highest AUC is mentioned.
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 3 ALI example, submitted article: Empirical assessment of case-based methods for identification of drugs associated with acute liver injury in the French National Healthcare System database (SNDS) Nicolas H. Thurin, Régis Lassalle, Martijn Schuemie, Marine Pénichon, Joshua J. Gagne, Jeremy A. Rassen, Jacques Benichou, Alain Weill, Patrick Blin, Nicholas Moore, Cécile Droz-Perroteau, Pharmacoepidemiology and Drug safety (1 st submission) Key words: Acute liver injury, self-controlled case series, case-control, case-population, calibration, claims database Key points: • Self-controlled case series yielded the best performance for the identification of drugs associated with acute liver injury in the French National Healthcare database (SNDS) with very small systematic error • Using a risk window corresponding to the period covered by drug dispensings is important to consider when assessing acute hepatocellular liver injury risk • Adjustment for multiple drug use helps improve the true negative rate • Careful definition of inclusion criteria can help reduce bias, especially confounding by indication Word count excluding abstract, tables, figures and references: 2977 Statement about prior postings and presentations, name(s) of any sponsor(s) of the research contained in the paper, along with grant number(s): ALCAPONE (Alert generation using the case population approach) methodology and related results were presented during the 33 rd and 35 th International Conference on Pharmacoepidemiology & Therapeutic Risk Management and at the 1 st and 2 nd OHDSI European Symposium. Pharmacoepidemiology and Drug safety is currently reviewing two articles about ALCAPONE methodology (PDS-19-0255) and UGIB results (PDS-19-0409) The ALCAPONE project is funded by the French Ministry of Health (PREPS 2014, 0635).

  . Over 6 years, 5 225 ALI episodes among 5 152 patients were included according to the specific ALI definition; 20 patients presented more than one outcome. The sensitive definition added 368 outcomes from 363 patients for a total of 5 580 outcomes. Median age was 54 and 52 for the specific and sensitive definitions, respectively; 60% were male. From the 81 drugs of interest screened in the unsampled population, 25 and 27 presented a minimum detectable relative risk ≤1.30 and were deemed detectable according to the specific and sensitive definition, respectively. The specific definition enabled the detection of 18 positive drugs controls out of 58 and 7 negative controls out of 23. Sensitive definition enabled the detection of 20 positive controls out of 58 and 7 negative controls out of 23 (see Appendix 2).

  all, Risk window: period of dispensation, Adjusted on age and first, Risk window: period of dispensation, Adjusted on age and first, Risk window: period of dispensation, Adjusted on seasonality and multiple drugs 2090 first, Risk window: period of dispensation, Adjusted on multiple drugs A drug control was considered as positive for a given variant, when the left bound of its confidence interval was >1 AUC = area under the receiver operating characteristics curve; MSE = mean square error

  all, Risk window: period of dispensation, Adjusted on seasonality and multiple drugs 2042 all, Risk window: period of dispensation, Adjusted on multiple first, Risk window: period of dispensation, Adjusted on seasonality and multiple drugs 2090 first, Risk window: period of dispensation, Adjusted on multiple all, 7-day pre-exposure window, Risk window: period of dispensation, Adjusted on age, seasonality and first, 7-day pre-exposure window, Risk window: period of dispensation, Adjusted on age, seasonality and multiple drugs A drug control was considered as positive for a given variant, when the left bound of its confidence interval was >1 AUC = area under the receiver operating characteristics curve; MSE = mean square error

FIGURESFigure 1 .

 1 FIGURES

Figure 4 .

 4 Figure 4. Point estimates of negative controls for ALI specific definition (SCCS variant 2090) Estimates that are significantly different from 1 (a = 0.05) are marked in orange, others are marked in blue.
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 5 Figure 5. Point estimates of positive controls for ALI specific definition (SCCS variant 2090).Estimates that are significantly different from 1 (a = 0.05) are marked in orange, others are marked in blue.
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 6 Figure 6. Point estimates from SCCS variant 2090, (ALI specific definition). Estimates below the dashed line have p<0.05 using traditional p-value calculation. Estimates in the orange area have p<0.05 using calibrated p-value calculation. Uncertainty in the p-value calibration is indicated by the red band. Blue dots indicate negative controls. Yellow diamonds indicate positive controls.
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 2111 Figure 1. EGB data Mapping Approach to CDM v5 (clinical part only, without devices)ETL design! To date, 4 data tables have been generated• person " drug_exposure• location " observation_period ! Drug treatment duration for the drug_exposure table has been generated using medians of treatment duration and taking into account the 3-month drug boxes. ! The theoretical mapping of the 14 transitional tables corresponding to the clinical part of the EGB has been realized through WhiteRabbit and RabbitInHat softwares (Figure1.)
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Objectives • Study design !

 design OMOP reference set o 4 health outcomes of interest • Acute liver injury (ALI) " Myocardial infarction (MI) • Acute kidney injury (KI) " Upper gastrointestinal bleeding (UGIB) o Drug controls • Positive controls (CTR+) = have been associated with the outcome of interest (RR>1) • Negative controls (CTR-) = have not been associated with the outcome of interest (RR≈1) ! Historical data o From the EGB (feasibility study) and from the SNIIRAM (final study) o Case-based extractions between 01/01/2009 and 12/31/2014 • Project stages 1. Case-based patients extraction and selection of the detectable drug controls o Extraction (from EGB or SNIIRAM) of 4 sub-populations : ALI, MI, KI, UGIB • According to a narrow definition • According to a broad definition. o Selection of the drugs available and reimbursed in the French community pharmacies among the ones of the OMOP Reference set . o Calculation of the minimum detectable relative risk (MDRR) with α = 0,05 and 1-β = 0,80 of each drug-outcome pair. o Elimination of the controls with MDRR > 1,25. # Generation of 4 sub-study databases composed of the cases extracted for a health outcome of interest and the corresponding reference containing the detectable drug controls. 2. Drug-outcome pairs detection o Generation of a measure of association for each drug-outcome pair • Via 3 study designs: (1) case-control, (2) self-controlled case series and (3) casepopulation • Each study design is repeated according to different settings e.g.:

3 .

 3 Comparison of design and design variants performances o Discriminating power • Detected CTR+ et CTR-# Specificity & Sensitivity # Area under the ROC curve o Accuracy of the measure of association (for CTR-only) • • • Coverage probability: frequency over replications that the confidence interval contains the true value. # Selection of the best design variant for each health outcome of interest. # Calibration of the selected design variant based on the CTR-.
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 1 Figure 1 : Overall ALCAPONE process
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  Système national d'information inter-régimes de l'Assurance maladie -2 Echantillon généraliste de bénéficiairesAbstractBackground: France has a nationwide healthcare insurance system database -the SNIIRAM (Système national d'information interrégimes de l'Assurance maladie) -that covers about 99% of the French population. A 1/97th sample -the EGB (Echantillon généraliste de bénéficiaires) -is also available. SNIIRAM has not been tested for drug safety alert generation. Objectives: To present the methodology and assess the feasibility of the ALCAPONE project. Methods: ALCAPONE is based on historical data from the SNIIRAM, and the OMOP reference set which, consists of 4 main outcomes -Acute Liver Injury (ALI), Myocardial Infarction (MI), Acute Kidney Injury (KI), and Upper Gastrointestinal Bleeding (UGIB) -and 165 positive and 235 negative drug controls. ALCAPONE consists of 3 main stages: (i) selection of detectable positive and negative controls (ie. with a minimum detectable relative risk ≤ 1.25) through the realization of a feasibility study in the EGB; (ii) detection of the selected controls via 3 case-based designs: casepopulation approach (CP), case-control design (CC) and self-controlled case series (SCCS), including several variants (number of controls, risk window, adjustment strategy, etc.); and (iii) comparison of design performance using area under the ROC curve. Cases were identified between 01/01/2009 and 12/31/2014 according to hospitalization primary diagnoses. A narrow and a broad definition have been developed for each outcome. For each design and outcome, the accuracy of the measures of association will be used to calibrate the methods. Results: The feasibility study is currently ongoing. Based on the broad outcome definitions, 40 ALI, 6,334 MI, 758 KI and 1,771 UGIB have been identified in the EGB, versus 33 ALI, 3,202 MI, 94 KI and 1,390 UGIB for the narrow one. In respect of the reference set, 120 positive and 126 negative drug controls are present in the EGB. Power calculations are in process to determine which controls will have enough power to be investigated through the 80 CP, 40 CC and 336 SCCS variants. Conclusions: This project will identify and calibrate the best design to investigate ALI, MI, KI and UGIB in the SNIIRAM, thus enabling the generation and validation of drug safety alerts.

EGB ( 1 /

 1 97th SNIIIRAM sample)!"## = 1 + !! -!!!! 2 !"#$%&#'!!"#$%!& ! Example ofTable1. reading: Among the 81 positive controls of the ALI OMOP Reference set, only 56 are available on the French market. The number of exposed cases in the EGB is not enough to detect an association ≤1.25 whatever the definition. By extrapolation, the SNIIRAM would be powerful enough to detect an association ≤1.25 for 15 of the 56 positive controls and 1 of the 19 negative ones (narrow definition).
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1.2.4. AsPEN

  

	safety and effectiveness. Methodological research is also conducted. 71-73 This
	network consists of seven Canadian provincial databases and two international ones:
	the CPRD from United Kingdom and the US MarketScan database, gathering over
	100 millions patients in total. In order to take advantage of local expertise and
	analytical capacities, CNODES also chose a distributed network model but applies it
	in a different way than Sentinel or AsPEN. When Health Canada submit a question to
	CNODES, a project team including people from each province is set up to develop
	common scientific and analytical protocols. After getting local approval for the
	research, analyses are conducted separately in each database. 74 Algorithm or
	statistical analysis software can be share but do not involved the use of any CDM.
	Results from the different databases are then pooled together through a meta-
	The Asian Pharmacoepidemiology Network 60 (AsPEN) started during the 4 th Asian analysis. 75-77
	Conference on Pharmacoepidemiology in 2009 in Tainan, Taiwan. It is a
	multinational research network formed to provide mechanism to support the conduct 1.2.6. OHDSI
	of pharmacoepidemiological studies and the prompt identification and validation of OHDSI 78 is a multi-stakeholder, interdisciplinary collaborative initiated by the former
	emerging safety issues among the Asian Countries. 61 As Sentinel, AsPEN uses a OMOP investigators. The initiative is coordinated in the US by the Columbia
	distributed network approach. Data holders maintain raw data in their site. When a University (New York), and in Europe by the Erasmus Medical Center (Rotterdam,
	study is set-up, each participating center is in charge of managing their data under Netherlands). OHDSI comprises academics, industry scientists, health care providers
	the instructions of the coordinating center to fit a common structure. Unique analytic and regulators. Funds are provided by a variety of sources, including grants from
	program is then applied at the local level. Results from multiple sites are then pooled government agencies, foundations and industry.
	and analyzed. In the early phase of AsPEN, this common structure was study-
	specific. 62-64 In 2014, at the 30 th International Conference on Pharmacoepidemiology
	& Therapeutic Risk Management (ICPE), AsPEN started a reflection on its
	infrastructure development through the Surveillance of Health Care in Asian Network
	(SCAN) project, with the view of implementing a formal global CDM and chose the
	OMOP one. 62, 65 AsPEN members count with Taiwan, Japan, Korea, Australia, China
	Thailand, Singapore, Hong-Kong, Canada, US and Sweden. The most often involved
	databases are those from Australia, Hong-Kong, Japan Korea and Taiwan. 64, 66, 67
	1.2.5. CNODES
	The Canadian Network for Observational Drug Effect Studies 68 (CNODES) was
	created in 2011. It is part of the Drug Safety and Effectiveness Network (DSEN), a
	joint initiative of Health Canada 69 and the Canadian Institutes of Health Research
	(CIHR). 70 CNODES was set up to answer Canadian regulators queries about drug

  A 1/97 th representative and permanent sample of this database, counting now around 800 000 subjects, is also available: the Échantillon Généraliste de Bénéficiaires (EGB). Both EGB and SNDS contains individual pseudonymized Affection longue durée in French) with the corresponding diagnostic code according to the International classification of Diseases, 10 th revision (ICD10). LTD Registration is obtained at the request of a patient's GP to obtain the full reimbursement of expenditures related to a chronic

	information on: 140, 142
	•	General characteristics: gender, year of birth, affiliation scheme, area of
	residence;
	•	Date and cause of death for those concerned
	•	Long-term disease registration (LTD -ALD:

SNDS covers about 99% of the French population (about 66.6 million persons) from birth (or immigration) to death (or emigration).

140 

SNDS is a database that using a unique pseudonymized identifier merges information from the Système National d'Information Inter Régimes de l'Assurance Maladie (SNIIRAM) containing all reimbursed claims from all French health care insurance schemes, the Programme de médicalisation des Systèmes d'information (PMSI) gathering hospital-discharge summaries from the French public and private hospitals, and the Base de Causes Médicales de Décès (BCMD) which is the national death registry managed by the CépiDc.

141 

diseases or expensive treatments. Registration must be validated by a health insurance's physician.

•

Outpatient reimbursed healthcare expenditures: visits to GP and specialists, medical and diagnostic procedures, nursing acts, physiotherapy, laboratory tests, drugs with dosage and number of boxes dispensed, medical devices, transports, sick leaves, etc. For each expenditure, associated costs, prescriber and caregiver information (specialty, private/public practice) and the corresponding dates are provided. However, neither medical indication nor result are recorded;

  TableIIshows the number of positive and negative controls with a minimum detectable relative risk < 1.30, i.e. those for which the SNDS is powerful enough to detect such an association, based on exposure. HOIs with the largest numbers are

	the one with the most detectable controls: for MI sensitive definition, 64 detectable
	controls out of 70 total potential positive and negative controls, and for UGIB 59 out
	of 64. The sampling of these large populations for computational purposes was
	accompanied by a decrease in power and in number of detectable drugs. The ALI

specific definition enabled 18 detectable positive controls out of 58 and 7 negatives out of 23.

  extraction to a physical research structure and the data are not allowed outside of this structure. As a result, use of external servers such as the ones maintained by Amazon Web Services is not possible. Running all the analysis with our IT capacity would have called for years of machine processing time. So, we chose to sample our biggest data extractions in order to obtain more tractable populations. This process also simplified the case-control selection of controls: even for only one control per case, working with the raw population would have required reselecting the same controls several times in EGB, or going to SNDS to identify them. Extracting data from SNDS involves a complex administrative approach involving third-party access to the full data.

	20 CC, 96 SCCS and 80 CP. If we consider the
	sensitive MI definition, before sampling, this represents a total of 12 544 analyses to
	run across 558 538 patients. When we consider all the drug-outcome pairs across all

HOI definitions, 73 696 analyses were forecast in ALCAPONE. The large number of cases is not an issue for CP, but requires substantial computing time for the complex calculations involved in some designs. For data protection purpose, French law assigns SNDS data Data extractions were transformed and loaded into the OMOP CDM. The OHDSI environment was chosen to take advantage of a scalable framework with an open source and transparent toolbox. In the first version of the protocols we had planned to assess more design variants. However, during the feasibility and testing phases we experienced some failures with some of the packages and noticed that some package options gave different results according the machine they were run on. We thus reduced the number of variants to only the stable ones. Even though opensource programs are often considered very reliable because they are peerreviewable, this maturity takes time and internal validity tests should be systematically conducted when a new package or update is made available and executed in a new IT framework.
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TABLES

Table II .

 II Number of detectable controls (MDRR≤1.30) according to HOI and population sampling

			ALI		MI		AKI		UGIB
		Narrow Def. Broad Def.	Narrow Def. Broad Def.	Narrow Def. Broad Def.	Narrow Def. Broad Def.
	n (outcomes)	5225	5580	354109	717920	12633	89186	156057	204442
	n (patients)		5152	5490	304369	558538	12317	82610	139172	178384
								SNDS	
			French	raw		1/3 rd sample	1/10 th sample	1/20 th sample
	Drug controls	market Reference set	Narrow Number of detectable Broad controls 1	Narrow Number of detectable Broad controls 1	Narrow Number of detectable Broad controls 1	Narrow Number of detectable Broad controls 1
				definition	definition	definition	definition	definition	definition	definition	definition
	ALI	+ -	58 23	18 7	20 7				
	MI	+ -	28 42	25 36	26 38					26 20	21 30
	AKI	+ -	22 36	17 13	21 31	11 10	20 17		
	UGIB	+ -	22 42	22 36	22 37			19 22	19 22
				1 Drug controls with MDRR≤1.30				

ALI: acute liver injury; MI: myocardial infarction; AKI: acute kidney injury; UGIB: upper gastro-intestinal bleeding.

  Analysis were run using 2 servers: a Nec ® Flex server with two Intel ® Xeon ® e5645 (6 cores, 12 threads each), 64GB RAM and 18TB storage, and a Dell ® T640 with a two Intel ® Xeon ® 4110 (8 cores, 16 threads each) 64GB RAM and 37TB storage.

	Exclusion codes for acute kidney injury APPENDIX 2 IT FRAMEWORK AND SOFTWARE USED	
	I12	Hypertensive renal disease		
	N99.0	Postprocedural renal failure		
	P96.0	Congenital renal failure		
	N18	Chronic kidney disease		
	ICD10 T79.5 E14.2 O90.4	Definition Traumatic anuria Unspecified diabetes mellitus with renal complication Postpartum acute renal failure	Narrow definition	Broad definition
	N17.0 N14.3	Acute kidney failure with tubular necrosis Nephropathy induced by heavy metals	yes	yes
	N17.1 N14.4	Acute kidney failure with acute cortical necrosis Toxic nephropathy, not elsewhere classified	yes	yes
	N17.2 N16	Acute kidney failure with medullary necrosis Renal tubulo-interstitial disorders in diseases classified elsewhere	yes	yes
	N17.8 N29	Other acute kidney failure Other disorders of kidney and ureter in diseases classified elsewhere	yes
	N17.9 N15	Acute kidney failure, unspecified Other renal tubulo-interstitial diseases		yes
	N19 Q61	Unspecified kidney failure Cystic kidney disease		yes
	N04.9	Nephrotic syndrome		
	Z94.0	Kidney transplant status		
	Z49	Care involving dialysis		
	N08	Glomerular disorders in diseases classified elsewhere		
	N28.0	Ischaemia and infarction of kidney		
	N26	Unspecified contracted kidney		
	N12	Tubulo-interstitial nephritis, not specified as acute or chronic		
	N10	Acute tubulo-interstitial nephritis		
	N11	Chronic tubulo-interstitial nephritis		
	T39	Poisoning by nonopioid analgesics, antipyretics and antirheumatics		
	T40	Poisoning by narcotics and psychodysleptics [hallucinogens]		
	T41	Poisoning by anaesthetics and therapeutic gases		
	T42	Poisoning by antiepileptic, sedative-hypnotic and antiparkinsonism		
		drugs		
	T43	Poisoning by psychotropic drugs, not elsewhere classified		
	T44	Poisoning by drugs primarily affecting the autonomic nervous system	
	T45	Poisoning by primarily systemic and haematological agents, not		
		elsewhere classified		
	T46	Poisoning by agents primarily affecting the cardiovascular system		
	T47	Poisoning by agents primarily affecting the gastrointestinal system		
	T48	Poisoning by agents primarily acting on smooth and skeletal muscles	
		and the respiratory system		
	T49	Poisoning by topical agents primarily affecting skin and mucous		
		membrane and by ophthalmological, otorhinolaryngological and		
		dental drugs		
	T50	Poisoning by diuretics and other and unspecified drugs,		
		medicaments and biological substances		

Table 1 )

 1 Table 1. Contingency table for CP per-user approach

		Cases	Population (persons)
	Exposed	a	e
	Not exposed	c	f
	Total	n	N

Table 2 .

 2 Contingency table for CP person-time approach

		Cases	Population (person-time)
	Exposed	a	PTE
	Not exposed	c	PTNE
	Total	n	PTPOP

Table 3 .

 3 Contingency table computed for each design variant of each health outcome of interest

		Positive detectable controls	Negative detectable controls
	Drug-outcome pairs detected as positive	TP (True Positives)	FP (False Positives)
	Drug-outcome pairs detected as negative	FN (False Negatives)	TN (True Negatives)

Table 1 .

 1 Presence of EGB vocabularies in the OMOP vocabulariesAs a significative part of the terminologies used in the SNDS were not available in the OMOP vocabulary, mapping its overall clinical part to the CDM would have required extra time and resources. As a result, in the frame of the ALCAPONE project, it was

	Domains	EGB+vocabularies Presence+is+the+OMOP+
			vocabularies
	Conditon	ICD10	Yes
	Drug	ATC	Yes
		CIP	No
	Procedure	CCAM	No
		NABM	No

ICD:%International+Classification+of+diseases;+ATC:+Anatomical+ Therapeutic+Chemical;+CIP:%Code&identifiants&de&présentations;+CCAM:% Codage&des&actes&médicaux;+NABM:%Nomencalture&des&actes&de& biologie&médicale Figure 1. EGB Data Mapping Approach to CDM V5 (clinical part only)
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The patient has then to come monthly to the pharmacy to refill. Based on this observation, in ALCAPONE, once the 90-pill boxes identified, a duration of 1 month was set to all the dispensings of chronic drugs. Median durations of treatment were then used for dispensings of non-chronic drugs. The drug_exposure table was then used to generate the drug_era table, which is the one queried by the R packages to run the analyses. Area of treatment were built using a 30-day grace period. No extra duration resulting from potential pill storage was applied.

Table 5 .

 5 Calculated number of detectable controls in the EGB and estimated number of detectable controls in the SNDSThese results were presented to the 33 rd ICPE in Montréal, QC, Canada in August 2017.

			OMOP Reference set	Restricted Reference set*	Loss
	ALI	CTR+	81	56	31%
		CTR-	37	19	49%
	MI	CTR+	36	26	28%
		CTR-	66	37	44%
	KI	CTR+	24	19	21%
		CTR-	64	32	50%
	UGIB	CTR+	24	19	21%
		CTR-	66	38	42%
	* taking into account the different administration routes for a same drug

  Global results of ALCAPONE were presented during the 2 nd European OHDSI Symposium in Rotterdam, Netherlands and during the 35 th ICPE in Philadelphia, PA, USA in August 2019.186, 187 Links to oral presentation are provided in Appendix 1.

	AUC		Coverage of 95% CI	MSE	Sensitivity	Specificity	
		0.84	0.81	5.9	0.58	0.86	SCCS
	UGIB	0.64	0.86	2.58	0.16	0.86	CP
		0.62	0.38	1.05	0.79	0.41	CC
		0.8	0.67	0.19	0.62	0.67	SCCS	outcome
	MI	0.58	0.86	2.73	0.19	0.86	CP
		0.57	0.38	0.51	0.5	0.38	CC
								v
		0.93	0.86	0.19	0.75	0.86	SCCS
	ALI	0.85	0.29	1.08	1	0.29	CP
		0.89	0.57	0.27	0.95	0.57	CC
		0.8	0.76	0.13	0.8	0.76	SCCS
	AKI	0.62	0.06	4.89	0.95	0.06	CP
		0.65	0.12	1.31	0.7	0.12	CC

  The sensitive definition added 50 120 patients with 54 547 gastrointestinal hemorrhages for a total of 204 442 outcomes. With both definitions, median age was 72 and 57% were men. From the 64 drugs of interest screened in the unsampled population, 58 and 59 presented a minimum detectable relative risk ≤1.30 and were then deemed detectable according to the specific and sensitive definition, respectively. Moving to the 1/10 th sampled population, both specific and sensitive definitions enabled the detection of 19 positive drugs controls out of 22 and 22 negative controls out of 42.

. Over 6 years, 139 172 patients with 156 057 UGIB episodes were included according to the specific UGIB definition; 1 661patients presented with more than one outcome.

Table 1 .

 1 Performances of the 10 most discriminant self-controlled case series variants for UGIB specific definition (1/10 th sampled population)

	Analysis ID	Sensitivity	Specificity	AUC	MSE	Coverage probability
	2066	0.737	0.864	0.801	0.074	86%
	2068	0.737	0.864	0.799	0.074	86%
	2020	0.737	0.909	0.797	0.093	91%
	2018	0.737	0.909	0.794	0.092	91%
	2060	0.737	0.818	0.792	0.092	82%
	2024	0.737	0.909	0.792	0.098	86%
	2070	0.737	0.864	0.789	0.080	86%
	2058	0.737	0.864	0.789	0.092	82%
	2022	0.737	0.909	0.789	0.098	86%
	2072	0.737	0.864	0.787	0.080	86%
	A drug control was considered as positive for a given variant, when the left bound of its
	confidence interval was >1				
	AUC = area under the receiver operating characteristics curve		
	MSE = mean square error				

Table 2 .

 2 Performances of the 10 most discriminant self-controlled case series variants for UGIB sensitive definition (1/10th sampled population)

	Analysis ID	Sensitivity	Specificity	AUC	MSE	Coverage probability
	2090	0.579	0.864	0.837	5.905	81%
	2092	0.579	0.864	0.837	69.639	81%
	2068	0.684	0.818	0.828	0.291	82%
	2094	0.632	0.818	0.828	2181.224	81%
	2096	0.632	0.818	0.825	2201.157	81%
	2066	0.684	0.818	0.823	0.291	82%
	2082	0.579	0.864	0.823	5.911	86%
	2084	0.579	0.864	0.823	69.637	81%
	2058	0.684	0.818	0.818	0.301	82%
	2060	0.684	0.818	0.818	0.301	82%
	A drug control was considered as positive for a given variant, when the left bound of its
	confidence interval was >1				
	AUC = area under the receiver operating characteristics curve		
	MSE = mean square error				

Table 3 .

 3 Univariate logistic regression analysis of self-controlled case series parameters influencing on the discriminating power (UGIB specific definition, 1/10 th sampled population)

		Variants with low AUC	Variants with high AUC	High vs. Low AUC	p	AUC of the univariate
		n=59	n=37	OR [IC à 95%]		model
	Age				0.8375	0.51
	No	30 (50.8)	18 (48.6)	1	
	Yes	29 (49.2)	19 (51.4)	1.09 [0.48 -2.48]	
	Seasonality				0.8375	0.51
	No	30 (50.8)	18 (48.6)	1	
	Yes	29 (49.2)	19 (51.4)	1.09 [0.48 -2.48]	
	Outcome				0.0087	0.64
	All occurrences	36 (61.0)	12 (32.4)	1	
	First occurrence	23 (39.0)	25 (67.6)	3.17 [1.34 -7.50]	
	Multiple drugs				<0.0001	0.80
	No	43 (72.9)	5 (13.5)	1	
	Yes	16 (27.1)	32 (86.5)	15.58 [5.30 -45.77]	
	Pre-Exposure Window				0.1404	0.62
	No	16 (27.1)	16 (43.2)	1	
	7 days	19 (32.2)	13 (35.1)	0.69 [0.26 -1.86]	
	30 days	24 (40.7)	8 (21.6)	0.35 [0.12 -0.99]	
	Risk window				<0.0001	0.73
	Period of dispensing	40 (67.8)	8 (21.6)	1	
	30 days from dispensing first day	19 (32.2)	29 (78.4)	7.21 [2.80 -18.54]	
	AUC = area under the receiver operating characteristics curve;	
	A high AUC was defined as an AUC≥0.75			

Table 4 .

 4 Univariate logistic regression analysis of self-controlled case series parameters influencing on the discriminating power (UGIB sensitive definition, 1/10th sampled population)

		Variants with low AUC	Variants with high AUC	High vs. Low AUC	p	AUC of the univariate
		n=56	n=40	OR [IC à 95%]		model
	Age				0.4183	0.54
	No	26 (46.4)	22 (55.0)	1	
	Yes	30 (53.6)	18 (45.0)	0.71 [0.32 -1.60]	
	Seasonality				1.0000	0.50
	No	28 (50.0)	20 (50.0)	1	
	Yes	28 (50.0)	20 (50.0)	1.00 [0.45 -2.24]	
	Outcome				0.1067	0.59
	All occurrences	32 (57.1)	16 (40.0)	1	
	First occurrence	24 (42.9)	24 (60.0)	1.97 [0.88 -4.51]	
	Multiple drugs				<0.0001	0.93
	No	48 (85.7)	0 (0.0)	1	
	Yes	8 (14.3)	40 (100.0)	462.25 [56.08 ->999.99]	
	Pre-Exposure Window				0.3292	0.59
	No	16 (28.6)	16 (40.0)	1	
	7 days	18 (32.1)	14 (35.0)	0.78 [0.30 -2.07]	
	30 days	22 (39.3)	10 (25.0)	0.47 [0.17 -1.26]	
	Risk window				0.4183	0.54
	Period of dispensing	26 (46.4)	22 (55.0)	1	
	30 days from dispensing first day	30 (53.6)	18 (45.0)	0.71 [0.32 -1.60]	
	AUC = area under the receiver operating characteristics curve;	
	A high AUC was defined as an AUC≥0.78			

Table 5 .

 5 . Negative controls with significant association with UGIB according to traditional and calibrated p-value(SCCS variant 2066, unsampled population) 

			UGIB specific definition	UGIB sensitive definition
	ATC	INN	Traditional	Calibrated	Traditional	Calibrated
			p-value	p-value	p-value	p-value
	A01AB09	MICONAZOLE	0.046	0.476	0.167	0.780
	A02BX02	SUCRALFATE	<0.001	0.018	<0.001	0.034
	A04AD01	SCOPOLAMINE	0.011	0.009	0.001	0.001
	A06AD11	LACTULOSE	<0.001	0.100	<0.001	0.097
	A10BH01	SITAGLIPTINE	<0.001	0.359	<0.001	0.257
	B03XA01	ERYTHROPOIETIN	<0.001	0.092	<0.001	0.038
	J01XE01	NITROFURANTOINE	<0.001	0.418	<0.001	0.523
	M03BA03	METHOCARBAMOL	<0.001	0.416	<0.001	0.383
	N05CF01	ZOPICLONE	<0.001	0.920	<0.001	0.908
	R06AX13	LORATADINE	0.007	0.775	0.008	0.845
	ATC = Anatomical Therapeutic and Chimical classification			
	INN = International nonproprietary name				

Table 6 .

 6 Traditional and calibrated p-value for positive controls according to UGIB definition (SCCS variant 2066, unsampled population)

			UGIB specific definition	UGIB sensitive definition
	ATC	INN	Traditional	Calibrated	Traditional	Calibrated
			p-value	p-value	p-value	p-value
	A12BA01	POTASSIUM CHLORIDE	<0.001	0.318	<0.001	0.303
	B01AB01	HEPARIN	<0.001	<0.001	<0.001	<0.001
	B01AC04	CLOPIDOGREL	<0.001	0.044	<0.001	0.034
	H02AB06	PREDNISOLONE	<0.001	0.133	<0.001	0.111
	J01FF01	CLINDAMYCIN	0.412	0.991	0.639	0.801
	M01AB01	INDOMETHACIN	0.044	0.285	0.011	0.175
	M01AB02	SULINDAC	0.549	0.782	0.122	0.293
	M01AB08	ETODOLAC	0.856	0.724	0.792	0.735
	M01AC01	PIROXICAM	<0.001	<0.001	<0.001	<0.001
	M01AC06	MELOXICAM	<0.001	0.002	<0.001	0.002
	M01AE01	IBUPROFEN	<0.001	0.125	<0.001	0.114
	M01AE02	NAPROXEN	<0.001	<0.001	<0.001	<0.001
	M01AE03	KETOPROFEN	<0.001	<0.001	<0.001	<0.001
	M01AE04	FENOPROFEN	0.043	0.194	0.037	0.196
	M01AE09	FLURBIPROFEN	<0.001	<0.001	<0.001	<0.001
	M01AG01	MEFENAMIC ACID	0.140	0.109	0.518	0.344
	M01AX01	NABUMETONE	<0.001	0.247	<0.001	0.299
	N02BA01	ACETYLSALICYLIC ACID	<0.001	0.011	<0.001	0.009
	N06AB03	FLUOXETINE	<0.001	0.182	<0.001	0.137
	N06AB04	CITALOPRAM	<0.001	0.357	<0.001	0.339
	N06AB06	SERTRALINE	<0.001	0.058	<0.001	0.034
	N06AB10	ESCITALOPRAM	<0.001	0.038	<0.001	0.073
	ATC = Anatomical Therapeutic and Chimical classification			
	INN = Internation nonproprietary name				

Table 2 .

 2 Performances of the 10 most discriminant self-controlled case series variants for acute liver injury sensitive definition with the corresponding settings

	2094 0.750 0.857 0.929 0.189 86%	2096 0.750 0.857 0.929 0.188 86%	2046 0.750 0.857 0.929 0.186 86%	2048 0.750 0.857 0.929 0.185 86%	Analysis ID Sensitivity Specificity AUC MSE Coverage probability
	Occurrence considered: first, Risk window: period of dispensation, Adjusted on age and multiple drugs	Occurrence considered: first, Risk window: period of dispensation, Adjusted on age, seasonality and multiple drugs	Occurrence considered: all, Risk window: period of dispensation, Adjusted on age and multiple drugs	Occurrence considered: all, Risk window: period of dispensation, Adjusted on age, seasonality and multiple drugs	Variant settings

Table 3 .

 3 Univariate logistic regression analysis of self-controlled case series parameters influencing on the discriminating power, acute liver injury specific definition

		Variants with low AUC	Variants with high AUC	High vs. Low AUC	p	AUC of the univariate
		n=51	n=45	OR [95% Confidence Interval]		model
	Age				0.841	0.51
	No	26 (51.0)	22 (48.9)	1	
	Yes	25 (49.0)	23 (51.1)	1.09 [0.49 -2.41]	
	Seasonality				0.841	0.51
	No	26 (51.0)	22 (48.9)	1	
	Yes	25 (49.0)	23 (51.1)	1.09 [0.49 -2.41]	
	Outcome				0.841	0.51
	All occurrences	26 (51.0)	22 (48.9)	1	
	First occurrence	25 (49.0)	23 (51.1)	1.09 [0.49 -2.41]	
	Multiple drugs				0.548	0.53
	No	24 (47.1)	24 (53.3)	1	
	Yes	27 (52.9)	21 (46.7)	0.78 [0.35 -1.73]	
	Pre-Exposure Window				0.703	0.54
	No	16 (31.4)	16 (35.6)	1	
	7 days	16 (31.4)	16 (35.6)	1.00 [0.38 -2.64]	
	30 days	19 (37.3)	13 (28.9)	0.69 [0.26 -1.83]	
	Risk window				<0.001	0.97
	Period of dispensing	3 (5.9)	45 (100.0)	1	
	30 days from dispensing first day	48 (94.1)	0 (0.0)	0.00 [0.00 -0.01]	
	AUC = area under the receiver operating characteristics curve; A high AUC was defined as an AUC≥0.90

Table 4 .

 4 Univariate logistic regression analysis of self-controlled case series parameters influencing on the discriminating power, acute liver injury sensitive definition

		Variants with low AUC	Variants with high AUC	High vs. Low AUC	p	AUC of the univariate
		n=56	n=40	OR [95% Confidence Interval]		model
	Age				0.418	0.54
	No	30 (53.6)	18 (45.0)	1	
	Yes	26 (46.4)	22 (55.0)	1.40 [0.62 -3.16]	
	Seasonality				1.000	0.5
	No	28 (50.0)	20 (50.0)	1	
	Yes	28 (50.0)	20 (50.0)	1.00 [0.45 -2.24]	
	Outcome				0.418	0.54
	All occurrences	26 (46.4)	22 (55.0)	1	
	First occurrence	30 (53.6)	18 (45.0)	0.71 [0.32 -1.60]	
	Multiple drugs				0.418	0.54
	No	30 (53.6)	18 (45.0)	1	
	Yes	26 (46.4)	22 (55.0)	1.40 [0.63 -3.16]	
	Pre-Exposure Window				0.084	0.61
	No	16 (28.6)	16 (40.0)	1	
	7 days	16 (28.6)	16 (40.0)	1.00 [0.38 -2.64]	
	30 days	24 (42.9)	8 (20.0)	0.35 [0.12 -0.96]	
	Risk window				<0.001	0.93
	Period of dispensing	8 (14.3)	40 (100.0)	1	
	30 days from dispensing first day	48 (85.7)	0 (0.0)	0.00 [0.00 -0.02]	
	AUC = area under the receiver operating characteristics curve; A high AUC was defined as an AUC≥0.90

Table 5 .

 5 Traditional and calibrated p-value for acute liver injury (ALI) negative controls, SCCS

	variant 2090				
			Traditional		Traditional	
			p -value		p -value	
	C01DA02	NITROGLYCERIN	0.171	0.632 [0.170 -0.982]	0.203	0.711 [0.242 -0.988]
	A06AD11	LACTULOSE	0.197	0.693 [0.190 -0.985]	0.157	0.711 [0.204 -0.988]
	A10BH01	SITAGLIPTIN	0.033	0.216 [0.040 -0.722]	0.016	0.171 [0.027 -0.680]
	G04BD04	OXYBUTYNIN	0.672	0.405 [0.136 -0.930]	0.760	0.441 [0.153 -0.924]
	R03AC13	FORMOTEROL	0.840	0.759 [0.375 -0.986]	0.660	0.811 [0.417 -0.993]
	R03BA05	FLUTICASONE	0.082	0.048 [0.016 -0.309]	0.056	0.031 [0.010 -0.221]
	R01AD08	FLUTICASONE	0.580	0.493 [0.380 -0.700]	0.989	0.835 [0.630 -0.

Table 1 .

 1 Presence of EGB and SNDS vocabularies in the OMOP vocabularies

1]

  

			OMOP Reference set	Narrow OMOP Experiment 1 Broad Number of detectable controls 2	French market Reference set	Narrow Number of detectable Broad controls 2	Narrow SNIIRAM Broad Expected number of detectable controls 2
				definition	definition		definition	definition	definition	definition
	ALI	CTR+ CTR-	81 37	57 32	63 32	56 19	0 0	0 0	15 1	18 2
	MI	CTR+ CTR-	36 66	26 37	33 46	26 37	3 1	5 5	23 29	23 31
		CTR+	24	19	-	19	0	3	11	18
		CTR-	64	34	-	32	0	0	5	16
		CTR+	24	24	22	19	5	7	18	19
		CTR-	66	53	49	38	1	1	30	31

1 

Results from the MarketScan Commercial Claims and Encounters database

2 

Drug controls with MDRR≤1.25

KI UGIB

  Homeopathic treatments, errors of deliverance and topical medications have been excluded;• Treatment dispensations were merged with the medians of treatment durations ("ALCAPONE_DCI_duration_v0.2_20160928.xls") by ATC code;• Remaining ATC codes without duration were reviewed and merged by ATC code with ad-hoc files containing the missing medians.Reading from T_MCO_B.csv, T_MCO_C.csv, T_MCO_D.csv, T_MCO_UM.csv Cohort table only contains patients responding to ALCAPONE inclusion criteria.

	• Table name: observation_period Reading from IR_BEN_R.csv Destination Field Source Field Logic Comment observation_period_id To be generated person_id num_enq_ano observation_period_start_date year_of_birth • If year of birth ≥ 01/01/2009 then observation_period_start_date = • Table name: drug_era Reading from drug_exposure Destination Field Source Field Logic Comment drug_era_id drug_exposur e_id To be generated person_id person_id • • Treatments containing 90 or 84 units were merged with a specific file of drug_concept_id drug_concept Agregated at 7th ATC level 01/01/YEAR OF BIRTH • If year of birth < 01/01/2009 then observation_period_start_date = medians of treatment durations for 90 and 84 _id units drug_era_start_date drug_exposur ("ALCAPONE_box90_v0.2_20180125.xls") by ATC code; e_start_date
	drug_era_end_date	drug_exposur	01/01/2009 Constructed from drug_exposure end_date :
	observation_period_start_datetime	e_end_date	two exposures with a gap of 30 days or less
	observation_period_end_date	ben_dcd_ame	• If death date < 31/12/2014 then form a single drug era
	drug_exposure_count		observation_period_end_date = death The number of individual Drug exposure
	gap_days	date • If death date ≥ 31/12/2014 then occurrences used to construct the Drug era o "ALCAPONE_DCI_duration_nonMerge_v0.3_20180129.xls" The number of accumulated gap days in the
	observation_period_end_date = 31/12/2014 corresponding to the unmapped ATC codes identified during the observation_period_end_datetime feasibility study whole drug era
	period_type_concept_id		44814722 Period while enrolled in insurance
		o "ALCAPONE_DCI_duration_nonMerge_v0.4_20180406.xls"
	• Table name: location corresponding to the remaining unmapped ATC codes	
	o ATC codes were finally translated into OMOP concept_id Reading from IR_BEN_R.csv Destination Field Destination Field Source Field Logic Comment (vocabulary_id=ATC) using the OMOP vocabulary cohort_definition_id 1001 Source Field Logic Comment county location_id address_1 address_2 location_source_value ben_res_dpt Department number in numeric format city state zip Destination Field 1002 Source Field Logic Comment drug_exposure_id 1003 To be generated person_id 1004 num_enq_an 1005 o drug_concept_id pha_atc_c07 1006 Vocabulary = ATC drug_exposure_start_date 1007 exe_soi_dtd 1008 drug_exposure_start_datetime drug_exposure_end_date exe_soi_dtd pha_unt_nbr_ According to cohort_definition tables drug_exposure_end_date=drug_exposure_ subject_id num_enq_an start_date+days_supply o dses cohort_start_date exe_soi_dtd drug_exposure_end_datetime drug_type_concept_id 38000175 « Prescription dispensed in cohort_end_date exe_soi_dtf
					pharmacy »				
	stop_reason									
	refills										
	quantity										
	days_supply			Median of treatment duration
	sig										
	route_concept_id								
	effective_drug_dose			Narrow Def. Broad Def. ALI	Narrow Def. Broad Def. MI	Narrow Def. Broad Def. KI	Narrow Def. Broad Def. UGIB
	dose_unit_concept_id	EGB (observed)	n (outcomes) n (patients)	33 32	40 40	3202 2757	6334 4962	94 758	93 712	1390 1213	1771 1522
	lot_number			SNIIRAM (expected)	n (outcomes) n (patients)	3960 3840	4800 4800	384240 760080 330840 595440	11280 90960	11160 85440	166800 212520 145560 182640
	provider_id										
	visit_occurrence_id								
	drug_source_value	pha_atc_c07	ATC code in character	
	drug_source_concept_id		44819117					
	route_source_value								
	dose_unit_source_value								
	Scan me to download	poster								

• Table name: cohort

THE ALCAPONE PROJECT

GENERAL DISCUSSION, CONCLUSION AND PERSPECTIVE

Acknowledgments .................................................................................................... Résumé ...................................................................................................................... ACKNOWLEDGMENTS ALCAPONE project is funded by the French Ministry of Health (PREPS 2014, 0635).

ACKNOWLEDGMENTS

The ALCAPONE project was funded by the French Ministry of Health (PREPS 2014,

0635).

The authors wish to thank the SNDS database management team, and ADERA, the non-profit organization that provides managerial and human resource support to Bordeaux PharmacoEpi.

ACKNOWLEDGMENTS

The ALCAPONE project was funded by the French Ministry of Health (PREPS 2014, 0635).

The authors wish to thank the SNDS database management team, and ADERA, the non-profit organization that provides managerial and human resource support to Bordeaux PharmacoEpi.

Background: SNDS, the French nationwide healthcare system database covering 99% of the French population, provides a potentially valuable opportunity for drug safety alert generation.

Methods: ALCAPONE uses a reference set adapted from OMOP and EU-ADR, with 4 HOI -Acute Liver Injury (ALI), Myocardial Infarction (MI), Acute Kidney Injury (AKI), and Upper Gastrointestinal Bleeding (UGIB) -and positive and negative drug controls. ALCAPONE consists of 4 main stages: data preparation to fit the OMOP Common Data Model and select the drug controls; detection of the selected controls via 3 case-based designs: case-population, case-control, and self-controlled case series, including design variants (risk window, adjustment strategy, etc.); assessment and comparison of design performance (area under the ROC curve, mean square error, etc.); selection of the best design variants and their calibration for each HOI.

Results: Over 6 years, considering specific definitions, 5 152 cases of ALI, 12 317 KI, 304 369 MI and 139 172 UGIB were identified. The number of detectable drugs ranged from 61 for MI to 25 for ALI providing enough power for a valid assessment of methods.

Conclusions: If successful, ALCAPONE will provide a better understanding of the performance of different case-based designs for signal identification in SNDS. 

UGIB example

Empirical assessment of case-based methods for identification of drugs associated with upper gastrointestinal bleeding in the French National

Healthcare System database (SNDS) Short title: Case-based methods for UGIB-associated drug identification in the SNDS Nicolas H Thurin 1, 2,* , Régis Lassalle 1 , Martijn Schuemie 3,4 , Marine Pénichon 1 , Joshua J Gagne 5 , Jeremy A Rassen 6 , Jacques Benichou 7,8 , Alain Weill 9 , Patrick Blin 1 , Nicholas Moore 1,2 Methods: All cases of UGIB were extracted from SNDS (2009-2014) using two definitions. Positive and negative drug controls were used to compare 196 selfcontrolled case series (SCCS), case-control (CC), and case-population (CP) design variants. Each variant was evaluated in a 1/10 th population sample using area under the receiver operating curve (AUC) and mean square error (MSE). Parameters that had major impacts on results were identified through logistic regression. Optimum designs were replicated in the unsampled population.

Results: Using a specific UGIB definition, AUCs ranged from 0.64 to 0.80, 0.44 to 0.61 and 0.50 to 0.67, for SCCS, CC and CP, respectively. MSE ranged from 0.07 to 0.39, 0.83 to 1.33 and 1.96 to 4.6, respectively. Univariate regressions showed that high AUCs were achieved with SCCS with multiple drug adjustment and a 30-day risk window starting at exposure. The top-performing SCCS variant in the unsampled population yielded an AUC=0.84 and MSE=0.14, with 10/36 negative controls presenting significant estimates.

Conclusions: SCCS adjusting for multiple drugs and using a 30-day risk window showed good performances for the identification of UGIB in the SNDS. Negative control implementation highlighted that low systematic error was generated but that protopathic bias and confounding by indication remained unaddressed issues.

(CC) and case-population (CP) -to determine the best-performing design and corresponding settings to assess associations between drugs and UGIB in the SNDS.

METHODS

The overall ALCAPONE methodology has been fully described elsewhere (manuscript under review PDS-19-0255).

Patients with UGIB were identified in the SNDS (2009-2014) using ICD10 codes from hospital discharge summaries based on either a specific or a sensitive definition. The specific definition included codes for gastric ulcer, duodenal ulcer, peptic ulcer, gastrojejunal ulcer, acute hemorrhagic gastritis, hematemesis and melaena. The more sensitive definition also considered patients hospitalized for unspecified gastrointestinal hemorrhage (Appendix 1). The index date was the date of hospital admission. Since inpatient drug use is not captured in the database, outcomes with more than 15 days of hospitalization in the month preceding the index date were excluded to ensure completeness of exposure assessment. Outcomes with less than 182 days of observation prior to the index date were also excluded.

Drugs of interest were restricted to those with enough power to be detected in the population (minimum detectable relative risk ≤1.30). 19 Positive controls were drugs with a known association with UGIB. Negative controls were those with no known association with UGIB. The full ALCAPONE reference set for UGIB is available in Appendix 2. Different settings, such as adjustment strategies, risk window lengths, etc., were applied to the three case-based approaches (SCCS, CC and CP), forming different design variants. These variants were applied in two steps to generate point estimates (relative incidence for SCCS, odds ratio for CC and case population ratio or predicted relative risk for CP) between UGIB and each drug control, as described below. A total of 96 SCCS, 20 CC and 80 CP variants were tested. The exact settings of each design variant are described in Appendix 3.

In a first step, all design variants were run in a 1/10 th sample of the case population to identify the best-performing approach based on area under the receiver operating characteristics curve (AUC), mean square error (MSE) and coverage probability. Only drug controls that had sufficient power to detect a relative risk ≤1. 30 Background: Drug induced ALI is a frequent cause of liver failure. A calibrated method for ALI-associated drugs identification would enable efficient drug safety alert generation from the SNDS.

Methods: All cases of ALI were extracted from SNDS (2009-2014) using specific and sensitive definitions. Positive and negative drug controls were used to compare 196 self-controlled case series (SCCS), case-control (CC), and case-population (CP) design variants, using area under the receiver operating curve (AUC), mean square error (MSE) and coverage probability. Parameters that had major impacts on results were identified through logistic regression.

Results: Using a specific ALI definition, AUCs ranged from 0.78 to 0.94, 0.64 to 0.92 and 0.48 to 0.85, for SCCS, CC and CP, respectively. MSE ranged from 0.12 to 0.40, 0.22 to 0.39 and 1.03 to 5.29, respectively. Variants adjusting for multiple drug use had higher coverage probabilities. Univariate regressions showed that high AUCs were achieved with SCCS using exposed time as the risk window. The top SCCS variant yielded an AUC=0.93 and MSE=0.22 and coverage=86%, with 1/7 negative and 13/18 positive controls presenting significant estimates.

Conclusions: SCCS adjusting for multiple drugs and using exposed time as risk window showed good performances for the identification of ALI-associated drugs in the SNDS. Specific adjustments may be required in the context of particular studies, especially when evaluating the risk related to non-hepatocellular ALI.

METHODS

The overall ALCAPONE methodology has been fully described elsewhere (manuscript under review PDS-19-0255).

Patients with ALI were identified in the SNDS (2009-2014) using ICD10 codes from hospital discharge summaries based on either a specific or a sensitive definition. The specific definition included codes for toxic liver disease with hepatic necrosis or hepatitis or acute hepatitis (ICD10 = K71.1, K71.2, K71.6), and acute or subacute hepatic failure (K72.0). A more sensitive definition also considered patients hospitalized for unspecified toxic liver disease (K71.9). The index date was set to the hospital admission date. Consecutive hospital stays separated by less than 24 hours were aggregated.

To ensure good clinical characterization, the following outcomes were excluded To ensure the completeness of data, and of drug exposure, in particular, outcomes presenting at with least one of the following were also excluded:

• Less than 182 days of observation prior to the index date • Hospital stays (whatever the diagnosis) ending within 30 days prior to or starting more than 7 days before and ending on the index date Drugs of interest were restricted to those with enough power to be detected in the population (minimum detectable relative risk ≤1.30). 27 Positive controls were drugs with a known association with ALI. Negative controls were those with no known association with ALI. The full ALCAPONE reference set for ALI is available in Appendix 2. Three case-based approaches were considered: SCCS which consists of comparing each case to itself, CC which compares the exposure distribution prior to outcomes in