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Problémes d’éxistence globale pour des équations d’évolution non-linéaires
critiques a données petites et analyse semi-classique

Résumé. Cette thése est consacrée a ’étude de I’éxistence globale de solutions pour des équations
de Klein-Gordon — ou des systémes ondes-Klein-Gordon — quasi-linéaires critiques, & données petites,
réguliéres, décroissantes & l'infini, en dimension un ou deux d’éspace. On étudie d’abord ce probléme
pour des équations de Klein-Gordon a non-linéarité cubique en dimension un, pour lesquelles il est connu
qu’il y a existence globale des solutions lorsque la non-linéarité vérifie une condition de structure et les
données initiales sont petites et a support compact. Nous prouvons que ce résultat est vrai aussi lorsque
les données initiales ne sont pas localisées en espace mais décroissent faiblement & l'infini, en combinant
la méthode des champs de vecteurs de Klainerman avec une analyse micro-locale semi-classique de la
solution. La deuxiéme et principale contribution a la thése s’attache a I’étude de D’existence globale de
solutions pour un systéme modéle ondes-Klein-Gordon quadratique, quasi-linéaire, en dimension deux,
toujours pour des données initiales petites réguliéres & décroissance modérée & l'infini, les non-linéarités
étant données en termes de «formes nulles ». Notre but est d’obtenir des estimations d’énergie sur la
solution sur laquelle agissent des champs de Klainerman, et des estimations de décroissance uniforme
optimales, dans une version para-différentielle. Nous prouvons les secondes par une réduction du systéme
d’équations aux dérivées partielles du départ & un systéme d’équations ordinaires, stratégie qui pourrait
nous emmener, dans le futur, a traiter le cas de non-linéarités plus générales.

Mots Clés. Existence globale de petites solutions, équations dispersives, équations de Klein-Gordon,
systémes ondes-Klein-Gordon, champs de vecteurs de Klainerman, formes normales, analyse micro-locale
semi-classique, structure nulle.

Global existence problem for non-linear critical evolution equations with
small initial data and semi-classical analysis.

Abstact. In this thesis we study the problem of global existence of solutions to critical quasi-linear
Klein-Gordon equations — or to critical quasi-linear coupled wave-Klien-Gordon systems — when initial
data are small, smooth, decaying at infinity, in space dimension one or two. We first study this problem
for Klein-Gordon equations with cubic non-linearities in space dimension one. It is known that, under
a suitable structure condition on the non-linearity, the global well-posedness of the solution is ensured
when initial data are small and compactly supported. We prove that this result holds true even when
initial data are not localized in space but only mildly decaying at infinity, by combining the Klainerman
vector fields’ method with a semi-classical micro-local analysis of the solution. The second and main
contribution to the thesis concerns the study of the global existence of solutions to a quadratic quasi-
linear wave-Klein-Gordon system in space dimension two, again when initial data are small smooth and
mildly decaying at infinity. We consider the case of a model non-linearity, expressed in terms of "null
forms". Our aim is to obtain some energy estimates on the solution when some Klainerman vector fields
are acting on it, and sharp uniform estimates. The former ones are recovered making systematically use
of normal forms’ arguments for quasi-linear equations, in their para-differential version. We derive the
latter ones by deducing a system of ordinary differential equations from the starting partial differential
system, this strategy maying leading us in the future to treat the case of the most general non-linearities.

Keywords. Global existence of small solutions, dispersive equations, Klein-Gordon equations, wave-
Klein-Gordon systems, Klainerman vector fields, normal forms, semi-classical micro-local analysis, null
structure.
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Introduction

Le but de cette thése est d’apporter des contributions a I’étude de I'existence de solutions globales
pour des équations de Klein-Gordon — ou des systémes couplés ondes-Klein-Gordon — quasi-
linéaires, & données petites, réguliéres, décroissantes & 'infini.

Les premiers articles concernant ces questions remontent aux années 1970 en ce qui concerne
I’équation des ondes. Nous renvoyons au chapitre 6 de la monographie d’Hérmander [12]| pour
une discussion compléte de ces travaux précurseurs, et aux références bibliographiques qui y
sont données. On peut d’ores et déja remarquer qu’une dichotomie apparait naturellement,
entre problémes sous-critiques et critiques (ou sur-critiques). Considérons en effet un opérateur
différentiel elliptique linéaire d’ordre deux P (qui pour nous sera soit —A ou —A + m? avec
m > 0) sur l'espace euclidien R?, et intéressons-nous & une équation d’évolution du type

(1) (0} + P)w = N(w, 0w, d*w)

ot N(+) est une non-linéarité C'*°, nulle au moins a 'ordre p > 2 en zéro, qui est de plus affine
en 0%w, de maniére que soit une équation hyperbolique quasi-linéaire. Nous nous intéressons
uniquement au cas ot les données initiales w|;—g, dyw|t—o sont trés réguliéres et présentent une
certaine décroissance (a préciser) lorsque z tend vers l'infini. Dans ce cas, le caractére dispersif
de I'équation fait que les solutions de I’équation linéaire décroissent en norme L en t~* lorsque
t tend vers l'infini, avec un taux x > 0 dépendant de P et de I'équation (k = (d — 1)/2 si
P=—-Aetr=d/2si P=—A+m?). Silon écrit alors formellement la non-linéarité sous la
forme V (w, 0w)0?w, avec V(-) potentiel non-linéaire nul & I’ordre p — 1 en zéro, on constate que,
si 'on conjecture que les solutions du probléme non-linéaire décroitront comme les solutions de
I’équation linéaire, le potentiel V() aura une norme uniforme en O(t~*~1) lorsque ¢ tend vers
I'infini. Cela conduit a distinguer un cas sous-critique, (p — 1)k > 1, pour lequel le norme L
de V est intégrable en temps, d'un cas critique ou sur-critique (p — 1)k < 1. Le cas sous-critique
est le plus facile en ce qui concerne 'existence globale, puisqu’on espére que toute non-linéarité
donnera alors lieu & des solutions globales, & partir du moment ot les données initiales sont assez
petites dans un espace de fonctions réguliéres et décroissantes. Par exemple, pour ’équation
des ondes avec non-linéarité quadratique, c’est le cas en dimension supérieure ou égale a quatre
(cf. [12] et les références qui y sont données). Par contre, en dimension trois pour cette méme
équation, il existe des non-linéarités pour lesquelles les solutions peuvent exploser en temps
fini, et 'existence globale n’est vraie que sous une condition de structure sur le non-linéarité
(cf. [21] et |12] pour les résultats ultérieurs). En ce qui concerne ’équation de Klein-Gordon,
I’analyse ci-dessus semblerait indiquer que la limite entre cas critique et cas sous-critique, pour
une non-linéarité quadratique, est atteinte en dimension deux d’espace. En fait, il se trouve
que la méthode des formes normales de Shatah [33] permet de réduire le cas d’une non-linéarité
quadratique pour cette équation a celle d’une non-linéarité cubique. Le seul cas critique apparait
donc comme celui de la dimension un. Nous renvoyons & la premiére partie de cette thése pour



les références bibliographiques concernant les résultats connus en dimension supérieure ou égale
& deux pour I’équation de Klein-Gordon.

Notre but ici est d’étudier deux cas critiques, lorsque les données considérées sont petites,
réguliéres, et n’ont qu’une décroissance modérée a 'infini.

La premiére partie de cette thése, que nous décrivons plus en détail dans la premiére section ci-
dessous, est consacrée a I’étude de 'existence globale a données petites réguliéres pour I’équation
de Klein-Gordon & non-linéarité cubique en dimension un, lorsqu’on ne fait que des hypothéses
de faible décroissance a l'infini pour les données.

La seconde, et principale contribution que nous présentons, s’attache a I’étude de 1’existence
globale de solutions pour des systémes ondes-Klein-Gordon en dimension deux d’espace, toujours
pour des données petites réguliéres a décroissance modérée a l'infini. Plusieurs travaux récents
ont été consacrés & ces questions au cours des années récentes. L’un des premiers remonte
a Georgiev |11]. Il observe que la méthode des champs de vecteurs de Klainerman doit étre
adaptée pour pouvoir traiter simultanément des équations d’ondes massives et sans masse, a
cause du fait que le champ de vecteur S = t9; + = - V, ne commute pas avec 'opérateur de Klein-
Gordon. Il introduit ainsi une condition de structure forte pour des non-linéarités semi-linéaires,
qui assure l'existence globale des solutions. Une telle condition a été ultérieurement affaiblie par
Katayama |19] afin d’inclure la condition nulle de Klainerman [22]. Le résultat qu’il obtient peut,
par conséquent, s’appliquer a d’autres systémes physiques, notamment aux équations de Dirac-
Klein-Gordon, Dirac-Proca, et encore Zakharov-Klein-Gordon. Plus tard, ce sujet a été étudié
aussi par LeFloch-Ma [26] et Wang [35] comme modéle pour I’équation d’Einstein-Klein-Gordon
compléte
(E-KG) { Ricog = Dat/Dat) + 56°gas
gt =1

Ces auteurs prouvent ’existence globale de solutions lorsque la non-linéarité est quasi-linéaire
quadratique, satisfaisant des conditions de structure, et les données initiales sont petites, lisses
et & support compact, en utilisant la méthode dite du feuilletage par des hyperboloides introduite
dans [26]. La stabilité globale pour a ensuite été prouvée par LeFloch-Ma [25] 23] dans le
cas de données initiales qui coincident avec une solution de Schwarzschild en dehors d’un compact
(cf. aussi |34]). Récemment, Ionescu-Pausader [17] ont prouvé un résultat de régularité globale
et de diffusion modifiée dans le cas de données initiales lisses et convenablement décroissantes a
Iinfini. Le systéme quadratique qu’ils étudient est le suivant

—Ou = Ao‘ﬁaavagv + Dv?

—O+1)v= uB*39,0pv
avec A®? B8 D constantes réelles. Ce systéme garde la méme structure linéaire de en
jauge hyperbolique, mais fait apparaitre seulement des non-linéarités quadratiques impliquant le
champ scalaire massif v (non-linéarités semi-linéaires dans ’équation des ondes, quasi-linéaires
dans celle de Klein-Gordon). De plus, la non-linéarité considérée n’a pas de structure nulle, mais
plutdt une certaine structure résonante. Leur méthode, qui combine des estimations d’énergie
controlant la régularité de la solution en espace et dans des normes de Sobolev grandes, avec
une analyse de Fourier, des arguments de formes normales et d’analyse de résonances, permet
de prouver des estimations dispersives et la décroissance de la solution dans certaines normes a

faible régularité. Les seuls résultats que nous connaissons aujourd’hui en dimension 2 d’espace
sont dus & Ma, qui considére le cas de données initiales & support compact. Dans |31], il adapte



la méthode de feuilletage par des hyperboloides, précédemment citée, aux systémes ondes-Klein-
Gordon en dimension d’espace-temps 2+1, en la combinant ensuite avec un argument de formes
normales pour traiter certaines non-linéarités quadratiques quasi-linéaires (voir [30]). Plus récem-
ment, il prouve le méme résultat de stabilité globale aussi dans le cas de certaines interactions
quadratiques semi-linéaires (|29)]).

La plupart des travaux que nous venons de citer concernent soit des cas sous-critiques, soit des
cas critiques, avec données initiales trés décroissantes a 'infini. Nous nous sommes donc posé le
probléme suivant : quels résultats d’existence globale peut-on obtenir pour un systéme ondes-
Klein-Gordon en dimension deux d’espace, avec une non-linéarité quasi-linéaire quadratique, et
des données petites réguliéres, mais n’ayant qu'une décroissance modérée en espace 7 Comme
rappelé plus haut, I’équation de Klein-Gordon & données quadratiques n’est pas vraiment critique
en dimension deux, puisqu’elle peut étre réduite a une équation cubique. Par contre I’équation
des ondes générale est sur-critique, et n’admet en général de solutions globales que si la non-
linéarité vérifie deux conditions nulles (voir les travaux d’Alinhac |3, 4]). Un objectif de long
terme serait donc de déterminer, pour un systéme formé d’une équation de Klein-Gordon quasi-
linéaire, couplée & une équation des ondes quasi-linéaire, les conditions nulles optimales que
doivent vérifier les non-linéarités afin que des données petites, peu réguliéres et décroissantes a
I'infini, donnent lieu & des solutions globales. Nous nous contentons dans cette thése de faire
un premier pas dans un tel programme, en étudiant un modéle d’interaction, pour lequel nous
prouvons un tel résultat d’existence globale. Nous décrivons nos résultats dans la deuxiéme
section ci-dessous.

1 Equation de Klein-Gordon quasi-linéaire en dimension un

Comme nous l'avons noté ci-dessus, en dimension d = 1 d’espace, une équation de la forme
avec non-linéarité quadratique ou cubique, est sur-critique ou critique. De fait, il existe des
exemples de non-linéarités pour lesquelles des données petites, réguliéres, décroissantes & 'infini
donnent lieu & des solutions explosant en temps fini (cf. Keel et Tao |20] et Yordanov [36]).
Delort |7] a construit des solutions approchées du probléme de Cauchy pour I’équation

(1) (0 — 9% + 1)u = P(u, 8;0yu, 0>u; Oyu, Oyu)

ol P est un polynéme, nul a 'ordre deux & 'origine, dont la dépendance en les dérivées secondes
est affine. Cela lui a permis de dégager un condition nulle portant sur les termes quadratiques
et cubiques de la non-linéarité, dont on conjecture qu’elle est nécessaire et suffisante pour que
le probléme soit globalement bien posé lorsque les données sont petites, réguliéres et ont une
certaine décroissance a l'infini. La suffisance de cette condition a été établie dans |10, 9] pour
des données qui sont de plus a support compact, cette restriction étant liée & la méthode utilisée.
De plus, le comportement asymptotique des solutions, permettant de mettre en évidence une
propriété de diffusion modifiée, a également été établie dans ces articles. Le but de la premiére
partie de cette thése est d’étendre, dans le cas des non-linéarités cubiques, ces résultats a des
données dont la décroissance a l'infini est essentiellement en O(|z|~!). Plus précisément, nous
allons prouver le résultat suivant :

Théoréme 1. Supposons que la non-linéarité P de vérifie la condition nulle (nous renvoyons
a la premiére partie de la these pour l'expression explicite de cette derniére). Il existe alors s > 0,
o >0, g9 €]0, 1], tels que pour tout couple (ug,u1) € H¥T1(R) x H*(R), a valeurs réelles, vérifiant

(2) [uoll g+t + lluallers + llzuoll g2 + [leud| g <1,



pour tout £ €]0,e9[, I’équation avec les données initiales u|i—1 = ug, Oyuli=1 = w1, ait une
unique solution globale u € C°([1,+oo[, H*TH(R)) N C*([1, +oo[, H*(R)). De plus, il existe une
famille & un parametre de fonctions continues (ag)e, uniformément bornées, supportées dans
[—1,1], telles que la solution globale ait le comportement asymptotique

() 0 (F ]| + vt

ot o(x) = V1 — 22, r(t,z) est uniformément borné dans L? N L™ et ®1 est une fonction qui se
calcule explicitement a partir des coefficients de la non-linéarité P.

(3) u(t,z) = Re {\jiaa(QIf) exp [zt@(%) + ig?

Notre approche se distingue de |10, 9] en ce sens que nous n’utilisons pas un passage en coordon-
nées hyperboliques (équivalent pour notre probléme de dimension un a la méthode de feuilletage
par des hyperboloides utilisée en particulier dans les travaux récents de LeFloch et Ma |24} 28|
27| en dimension supérieure). Expliquons notre stratégie sur le modeéle semi-linéaire suivant

(4) (D= VI+ DZ)w = aw? + Blwfw + 1wl + 6w,
ol w est une inconnue & valeurs complexes, Dy = %%, D, = %a% et «, 3,7, sont dans C.

Introduisons le champ de Klainerman Z = td, + xd;. Il est classique que, pour obtenir un
résultat d’existence globales, pour des données de taille ¢ < 1 dans un espace de fonctions
réguliéres, décroissantes comme |z|™' a Dinfini dans L2, il suffit d’obtenir des estimations du

type

w(t, Y[ peo < Act™2
(5) |w(t, )| gs < Bet?
1Zw(t, )| 2 < Bet?,

ot A et B sont des constantes, s > 1, et ¢ > 0 est petit. Nous établissons ces inégalités par
induction, sous I’hypothése que les constantes A, B ont été fixées au départ assez grandes, en
supposant vérifié sur un certain intervalle de temps [1, 7], et en prouvant que, si € est assez
petit, ces inégalités valent en fait sur l'intervalle considéré en remplagant A (resp. B) par A/2
(resp. B/2).

Pour le modele , la démonstration des estimations Sobolev pour w est conséquence immédiate
des inégalités d’énergie, et du fait que la premiére des estimations a priori entraine que la
norme H*® du terme source dans est O(%Hw(t, I #s). L'estimation L? de Zw se traite de
méme. Par contre, 'inégalité L*>° dans ne peut se déduire par estimations de Klainerman-
Sobolev des bornes Sobolev de w et L? de Zw, puisque celles-ci ne sont pas uniformes lorsque le
temps tend vers l'infini. Pour les propager, ainsi que pour obtenir le comportement asymptotique
de nos solutions, nous utilisons une méthode inspirée d’Alazard-Delort |1} 2|, Ifrim-Tataru [15],
Delort [10]. Nous écrivons d’abord une version semi-classique de 1’équation pour 'inconnue v
définie a partir de w par w(t,z) = t~?v(t, z/t), de telle maniére que la borne L> cherchée en
#73 pour w équivaille & une estimation uniforme de |lv(t,-)||zee. Sinous introduisons la constante
de Planck h = % et la quantification semi-classique d’un symbole a par

1 o NE (T FY
w i(z—y)
(6) Opj, (a)v = oh e ha( 5 )v(y) dydg,

on constate que v résout 1’équation

(7) (Dy = Opf (A, €)))v = h(av® + Bluf*v +1[v[*v + 60°)



ou Az, &) = x€++/1 + £2. Par ailleurs, on déduit de 'équation vérifiée par w et des estimations
L? de Zw que, si l'on définit £ par £ = +0py (deA(z,£)), alors [|[Lv]p2 est O(Beh™). Soit
A la sous-variété lagrangienne de T*R donnée pas A = {(z,&); 0¢A(x,§) = 0}. Alors A est un
graphe qui se projette sur U'intervalle | — 1,1[ et s’écrit donc A = {(x,dp);x €] — 1,1[}, avec
¢(x) = /1 — 22. Nous décomposons alors v = vy + vpe, ol vp est obtenue par microlocalisation
de v sur un voisinage d’ordre VA de A, et vpe est microlocalement supportée hors d’un tel
voisinage. Gréce a cela, ce dernier terme peut essentiellement s’écrire vpe ~ nt/ 2Op}fj(b)Lv, ou b

-1
est un symbole qui est O<<&\/§15)> ), et une estimation de Sobolev semi-classique permet de

montrer que ||vpe| pe = O(hifo), ce qui est mieux que l'estimation uniforme souhaitée pour v.
La contribution principale est donc vp. Pour I’étudier, on écrit d’abord a partir de I’équation
vérifiée par cette fonction, qui, grace aux bonnes propriétés de commutation entre la troncature
microlocale permettant de définir vy et 'opérateur linéaire, est essentiellement dans laquelle
v est remplacée par vy, modulo un terme de reste au membre de droite en O(h'*7) pour un
o > 0. On développe alors le symbole de la partie linéaire sur A, i.e. on écrit

(8) Mz, €) = Az, dp(x)) + O((§ — dp(2))?).

L’action de 'opérateur de symbole le dernier terme de sur v est essentiellement de la forme
h%LvA, ce qui permet, par une nouvelle estimation de Sobolev semi-classique combinée aux
estimations a priori de Lvp dans L2, de la majorer dans L> par O(h'*?). On déduit donc de
une équation différentielle ordinaire de la forme

©) (Ds = Mz, dp(x)))ua =t~ (av} + Bloa*va +v|val*oa + 60a%) + O 77).

Il reste & voir que cette équation a des solutions globales bornées lorsque la donnée est assez
petite, et & obtenir le comportement asymptotique de celles-ci. On prouve cela par une méthode
de formes normales habituelle, lorsque le coefficient 3 est réel. Cela permet de propager des
estimation uniformes pour vp donc pour v, donc des estimations L optimales en O(t_l/ 2) pour
w, et conclut la preuve des majorations de type dans le cas du modéle .

Bien entendu, pour la véritable équation , la méthode précédente est nettement plus délicate
a mettre en ccuvre. En particulier, les estimations de type L* dans doivent également faire
intervenir un certain nombre de dérivées de la fonction. Par ailleurs, ’équation semi-classique
analogue a (|7 fait également intervenir I’action d’opérateurs (pseudo-)différentiels sur les facteurs
de la non-linéarité, et ceux-ci doivent étre également réduits & des opérateurs de multiplication
locaux par développement de leur symbole sur A. En outre, le fait que la phase p(z) = v1 — 22
soit singuliére au bord de son domaine de définition | — 1, 1[ nécessite un traitement adéquat.
Nous renvoyons & la premiére partie de la thése pour ces détails. Précisons simplement ici
comment la “condition nulle” que nous supposons sur la non-linéarité intervient. Nous avons vu
sur le modéle que pour montrer que @ admet des solutions globales bornées, nous avons besoin
de I’hypothése que [ est réel. Lorsque nous partons de 1’équation générale , nous obtenons
aprés réduction une équation différentielle ordinaire de la forme @D dans laquelle le coefficient
0 se calcule explicitement & partir de la non-linéarité P de . Le fait que S soit réel est alors
équivalent au fait que P vérifie la condition nulle.

Nous avons indiqué au début de cette section que notre méthode pourrait également s’appliquer
au cas ou P dans contient des termes quadratiques, quitte a procéder dans une premiére étape
a élimination de ces termes dans ’équation aux dérivée partielles par une méthode de forme
normales “a la Shatah” |33]. Nous avons préféré nous limiter & 1’équation purement cubique pour
nous épargner cette étape technique, qui est indépendante du reste du raisonnement. Dans la
deuxiéme partie de cette thése, les méthodes de formes normales sur les équations aux dérivées



partielles joueront toutefois un réle crucial. C’est ce que nous allons décrire dans la section
suivante de cette introduction.

2 Systéme couplé ondes-Klein-Gordon

Le but de cette deuxiéme partie de la thése est d’étudier I'existence globale pour un systéme
couplé ondes-Klein-Gordon, avec données petites, réguliéres, et & décroissance modérée a I'infini,
en dimension deux d’espace. Comme déja indiqué, nous ne pouvons espérer obtenir I'existence de
solutions globales pour toute non-linéarité. En effet, 'équation des ondes scalaire en dimension
deux peut avoir des solutions explosives, si ’on ne fait pas une hypothése convenable de condi-
tion nulle. Par ailleurs, un systéme comme celui que nous allons considérer n’est hyperbolique
que sous des conditions de compatibilité entre les équations qui le constituent. En dimension
trois d’espace, pour des systémes couplés ondes-Klein-Gordon, LeFloch et Ma déterminent les
hypothéses optimales que doit vérifier le couplage afin d’obtenir des solutions globales |24, 28|
217).

Il est donc naturel de se poser la question analogue en dimension deux d’espace, pour laquelle
on peut s’attendre a des conditions plus complexes, en raison du moindre effet dispersif de
I’équation des ondes libre. A la lumiére de notre résultat concernant Klein-Gordon en dimension
un décrit dans la section précédente, pour lequel la condition nulle & supposer se dévoile sur
I’équation différentielle réduite que nous déduisons de I’équation aux dérivées partielles de départ,
on pourrait s’assigner le programme suivant : Partant d’un systéme général ondes-Klein-Gordon,
déduire de celui-ci un systéme d’équations différentielles ordinaires et d’équations de transport,
analogue a , dont ’analyse révélerait la condition optimale sur les non-linéarités assurant
Iexistence globale. Un tel objectif n’est atteignable qu’a long terme, aussi nous sommes-nous
limités dans cette thése a la considération d’un modéle dans lequel le couplage entre les deux
équations se fait & I'aide d’une “forme nulle” au membre de droite de chacune de celles-ci. Notre
but sera d’obtenir des estimations d’énergie sur la solution sur laquelle agissent des champs de
Klainerman, et des estimations de décroissance uniforme optimales. Nous prouverons celles-
ci par une réduction du systéme d’équations aux dérivées partielles & un systéme d’équations
différentielles, stratégie qui pourrait, dans de futur travaux, nous amener & aborder le cas de
systémes plus généraux.

Nous décrivons notre résultat et les principales étapes de sa preuve dans les sous-sections suiv-
antes.

2.1 Modéle étudié et théoréme principal

Nous considérons le couplage quasi-linéaire quadratique entre une équation des ondes et une
équation de Klein-Gordon, donné par le modéle suivant :

(8,52 — A)u(t,z) = Qo(v, 01v)

(1) (02 — A+ 1w(t,z) = Qo(v, dru)

ot les deux fonctions inconnues u, v sont définies sur I x R2, avec I intervalle de R, et ot Qq est
la “forme nulle”

(2) Qo(v, w) = (9w)(Grw) — (Vav)(Vaw).

Nous allons étudier le probléme d’évolution sur intervalle I = [1,+o0] (plutdt que sur
[0, +00], uniquement pour simplifier certaines notations), en nous donnant a I'instant ¢ = 1 des



données initiales
(3) (u7 U)(17 ‘T) = E(UO, UO)’ (815“’ 8tv)(17 1") = 5(”15 Ul)
ot (Vzug,u1) est dans la boule unité de H™(R?,R) x H"(R? R) et (vo,v1) dans la boule unité
de H"t1(R?,R) x H"(R?,R) pour un n assez grand, et ou de plus I'inégalité
(4) > (Ie*Vatol giar + 1200l grarer + le®ul| giar + 201 || 1) < 1,
1<]a|<3

est vérifiée. Nous supposons donc que les données initiales sont trés réguliéres, et qu’elles ont
une décroissance modérée en espace, donnée par la condition . Notre principal résultat affirme
alors :

Théoréme 2. I existe ¢9 > 0 tel que pour tout € €]0,e0], le systéme avec des domnées
vérifiant et (4) admette une unique solution définie sur [1,+o00[, avec Oy u continue a valeurs
H"™ et (v,04v) continue & valeurs H™ 1 x H™.

La preuve du théoréme précédent nous donnera en outre des bornes convenables pour les normes
des solutions.

Nous ré-exprimons tout d’abord le systéme en fonction des inconnues
(5) ut = (D¢ £ [Da|)u, v = (D £ (Da))v,

ou Dy, = %am, et nous introduisons les champs de Klainerman ayant de bonnes propriétés de
commutation & la fois & 'opérateur des ondes et a celui de Klein-Gordon, a savoir

(6) QO =210y — 1901, Zj = xjat + tﬁj, 73 =1,2.

Nous désignerons par la suite par Z = {I'1,...,I's} la collection des trois champs précédents et
des deux dérivées en espace, et si I = (i1,...,ip) est une élément de {1,...,5}?, par Tw la
fonction obtenue en faisant agir successivement les champs I'; ,...,T";, sur w. Nous posons alors

(7) ul = (Dy £+ |D,)T T, vl = (Dy £ (D,))T v
et nous introduisons les énergies suivantes
Eo(t;us,vs) = /2 (Jus (&, 2) [ + Ju(t,2)* + |og (¢, 2)* + |o-(t, 7)) dr
R
puis pour n > 3
(8) En(tius,vi) = > Eolt; Dyus, Divs),
la<n
qui contrdle la régularité H™ de uy, v+ et enfin, pour tout entier k£ compris entre zéro et deux,
9) By(tus,ve) = Y Eo(t; Diul, Dgvl)

oo +[1]<3
[7|<3—k

qui prend en compte la décroissance de u4,v4+ et d’au plus trois de leurs dérivées en espace a
I'infini en x. Par les résultats d’existence locale, une estimation a priori uniforme de FE,, sur un
certain intervalle de temps suffit & s’assurer du prolongement de la solution sur cet intervalle.

La preuve du résultat d’existence locale est ainsi ramenée & celle de I’énoncé suivant, dans lequel
nous désignons par R = (R, Ra) les transformées de Riesz :



Théoréme 3. Soient K1, Ky deux constantes strictement plus grandes que 1. 1l existe des entiers
n>p>1, e €]0,1], des réels 0 < 6 K dy € §1 K 0y < 1 et deuzr constantes assez grandes
A, B telles que, si sur un certain intervalle [1,T], les fonctions uy,vy définies par a partir
d’une solution de (1)) vérifient les estimations a priori

(D2 s (t, | + (D) Rus(t, )| oo < Act™2
[{Dg)Pvs e < Act™

En(t;us,vs) < B2

B (tus,vi) < B2242B+ 0 < k<2,

(10)

pour tout t dans [1,T], alors, en fait, sur le méme intervalle [1,T], on a

A 1
(D) ug (¢, )| o + [1(Da) ' Rus (8, )| oo < EEL‘_Q

A
D sl < et
1
(11) 2 2,26
E,(t;ug,vy) < ?225 t

B2
E:I)f(t;ui,vi) < 2t253—’“, 0< k<2

?225
La démonstration du théoréme consiste d’une part & prouver, & 'aide d’inégalités d’énergie
que implique que les deux derniéres inégalités de sont vraies. Ensuite, on montre
par réduction a des équations différentielles ordinaires ou des équations de transport que
implique les deux premiéres inégalités de . Nous décrivons les méthodes utilisées pour réaliser
ces deux étapes dans les sous-sections suivantes.

2.2 Inégalités d’énergie 1. Paralinéarisation et symétrisation

Nous pouvons réécrire le systéme en faisant agir dessus une famille de champs I'!, puis en
passant aux inconnues . Nous obtenons alors un nouveau systéme ayant la structure suivante

(Dt F |Dm‘)ui = NLW(”:IbUi)
(Dt F | D2|)vh = NLig (v}, ul)

ol les non-linéarités, pour ’expression explicite desquelles nous renvoyons au membre de droite
de (2.1.2)), sont des quantités bilinéaires en leurs arguments respectifs, présentant une structure
de forme nulle. La premiére étape consiste & réécrire ce systéme sous forme paradifférentielle.

(12)

Rappelons 'idée de base du calcul paradifférentiel : si u et v sont deux distributions ayant un
minimum de régularité, leur produit peut se décomposer en une somme de trois termes

(13) wv = Tyv + Tyu + R(u,v)

qui correspondent aux transformées de Fourier inverses des trois termes du membre de droite
dans ’expression

uv (&) = /X(§ —n,n)u(§ —n)o(n) dn + /x(m& —n)a(§ —n)o(n) dn
+ /(1 —x(&=n,n) —x(n, & —n))a(& —n)d(n) dn,



x(&,m) désignant une fonction C°°, supportée pour || < (1 + |n|)/10, égale & un sur le domaine
|€] < (14 |n])/100 par exemple. Nous réécrirons sous la forme

(14) uv = Op®(u)v + Oph (u)v

ott OpB(u)v = T,v. A partir du moment ot u est assez réguliére, ce terme a la méme régularité
que v, alors que Opg(u)’u a lui la méme régularité que u. Plus généralement, si I'on considére
une expression bilinéaire ¢(u,v), dans laquelle des opérateurs (pseudo)-différentiels agissent sur
les deux arguments, elle peut de méme se décomposer en

OpB(a(u, ))’U + Opﬁ(a(u, ))U

dans laquelle le premier opérateur a le méme ordre que celui agissant sur v dans l’expression de
q. Cela permet de réécrire un systéme de la forme ([12]) sous la forme suivante. Notons

ufr 0

I 0 I vl I I I
vi=| i | vi= ] wi=ut v
) ol

[an}

Alors entraine que W' est solution d'un systéme paradifférentiel de la forme

DW= A(DYW! + OpP(A'(V,n))W! + Op®(C'(W!,n))V + Opg (A’ (V, ) W'

(15) LOPP(A" (V] ))U + OpP(C"(U. )V + OpB(A" (VT a)U + Qi(V, W),

ol nous avons utilisé les notations suivantes :

e Lopérateur A(D) est un multiplicateur de Fourier associé a une matrice diagonale, & coefficients
réels et d’ordre un.

e La contribution quasi-linéaire dans le membre de droite de est donnée par ’expression
OpB(A'(V,n))W!. En effet, A’ est une matrice de symboles d’ordre un. L’opérateur associé agit
sur W, terme qui porte le maximum de dérivées possibles en termes du nombre de champs de
vecteurs agissant dessus. La norme L? de Op®(A4’(V,7n))W?! ne peut donc se controler que par
|W|| 1, cas typique d’une contribution quasi-linéaire.

e L’expression OpB(C"(U,n))V! est elle semi-linéaire, car C” est une matrice d’opérateurs
d’ordre zéro, dont I’action sur V! ne perd donc aucune dérivée. Il en est de méme pour la
contribution Qé(V, W), qui est une expression quadratique, ayant une structure nulle, et qui ne
fait apparaitre qu'un nombre de dérivées égal au plus a |I|. Les termes en OpE(A’ (V,m)w!
peuvent également étre considérés comme semi-linéaires, car leur norme L? s’estime a partie de
la norme L% de W7,

e Le termes en OpB(C" (W1, n))V, OpB(A”(V1,7))U, OpE (A”(V1,7))U méritent un commentaire
particulier. Ils ont en effet une structure semi-linéaire, puisque leur norme L? peut s’estimer &
partir de la norme L? de U, V. Toutefois, une telle majoration se fait au prix d’une borne sur
les “coefficients” W ou V! dans L>. Or on ne dispose dans les estimations a priori (10)) que
d’un contréle L>® que pour essentiellement p dérivées de W, alors que W' peut contenir soit
n > p dérivées en espace, soit des dérivées par les champs de Klainerman, pour lesquelles nous
ne disposons pas de bornes L°°. Par conséquent, de tels termes devront étre estimés en fonction
de la norme L? des coefficients W, V! et d’une norme de type L de V, U et devront donc faire
I'objet d’une étude séparée par rapport aux autres.

Le systéme ne peut faire 'objet d’une inégalité d’énergie sans traitement préalable. Il
se trouve en effet que le symbole principal du membre de droite est donné par une matrice a



coefficients réel qui n’est pas symétrique. L’étape préliminaire de ’étude, menée a bien dan la
section [2.1] consiste donc a effectuer un changement d’inconnues qui symétrise cette matrice.
Désignant par WSI la nouvelle inconnue obtenue aprés cette opération de symétrisation, on est
ramené & une nouvelle équation, de la forme

(16) DW! = A(D)W! + Op®(A1(V,n))W! + Oph (A" (V! n)U
+ Opp(A" (V1)U + Op®(C" (U, )V + QE(V, W) + R(U, V),

dans laquelle A; est un nouveau symbole d’ordre un, donné par une matrice symeétrique a coef-
ficients réels, et YR est un terme de reste. Pour prouver les deux derniéres inégalités de (11]), on
aurait besoin de pouvoir estimer, en utilisant les estimations a priori (10]), la partie imaginaire

Ce
du produit scalaire L? de W/ et du membre de droite de par THWI lz2. Grace au fait que

lopérateur OpB(fll(V, n)) est autoadjoint d’ordre un, et que la norme L* de V est O(g/t), une
telle borne peut étre obtenue pour la contribution de ce terme la. Il en est de méme pour les
autres termes dans sauf ceux en Op®(C” (U, 1))V 4+ OpB (A" (V! 1)U 4+ OpB (A" (V1 n)U.
En effet, la norme L? de ces trois termes ne peut étre estimée qu’en faisant apparaitre la norme
L sur U et la norme L? sur V!, V! (puisqu’on de dispose pas de bornes a priori sur || V/|| . pour
|I| grand). Or ||U(t,-)||re est en t~/2 décroissance trés insuffisante pour permettre d’obtenir
les estimations d’énergie cherchées. Nous devons donc effectuer une forme normale pour éliminer
ces termes quadratiques et les remplacer par des termes cubiques.

2.3 Inégalités d’énergie 11. Formes normales

Rappelons que la méthode des formes normales pour des équations dispersives, introduite par
Shatah dans [33], peut se résumer de la maniére suivante : considérons par exemple une équation
d’évolution semi-linéaire de la forme

(Dt _p(Dw>)u = u2‘

Soit B(u,u) la forme bilinéaire donnée par

Blarw)(©) = [ (&) = p(€ =) — plm) (€ ~ m)i(o)
Alors, si on dispose d’une minoration de la forme

(&) — p(§ = n) — p(n)| > min(|¢ — nl, )~

pour un certain Ny > 0, B est bien définie, envoie H® x H*® dans H® pour s assez grand, et
(D¢ = p(Da))(u — B(u, u)) = O(u?),

ce qui rameéne donc & une équation cubique pour la nouvelle inconnue v = u— B(u, u). Dans le cas
qui nous occupe, ’équation est quasi-linéaire, et une application brutale de la méthode donnerait
un terme correctif B(u,u) qui ne serait plus borné de H® dans H®, mais ferait apparaitre la perte
d’une dérivée. Toutefois, des formes normales pour des équations quasi-linéaires ont été utilisées
par divers auteurs au cours des années récentes. Nous citons |32 6, |5, 8] pour les équations
de Klein-Gordon quasi-linéaires et |14} |13} |18 |2, |16] pour des équations issues de la mécanique
des fluides. L’idée essentielle consiste a remarquer qu’il n’est pas nécessaire d’éliminer toutes les
contributions quadratiques, mais uniquement celles qui vont effectivement contribuer a 'inégalité
d’énergie. Dans la sous-section [2.2.1] nous effectuons donc une telle forme normale pour traiter
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le terme en Op®(C”(U, 7))V, dans (16)). Pour cela, nous déterminons une matrice de symboles
d’ordre zéro E(U;n), linéaire en U, telle que, si nous posons

(17) Wl = (Is+ Op®(E(U; )WY,

nous obtenons une nouvelle inconnue, dont la norme L? est comparable a celle de W/, et qui est
solution d’une équation de la forme

(18)
(D — A(D))W/! = Op® ((14 + E§(U;n)) Ay (V,n) (1s + F(U; n)))WSI + Opi (A" (V! n))U
+OpR (A" (VI m)U + Q4(V, W) + T_n (U)W + R (U, V),

ot Eg,Fél sont des matrices diagonales de symboles d’ordre zéro, T_n(U) est un opérateur
régularisant gagnant N dérivées, linéaire en U, et R’ un nouveau reste. On définit alors a partir
des normes L2 des W/ de nouvelles énergies E,(t; W),E'§ (t; W), équivalentes aux énergies de
(8). Par construction, les dérivées en temps de ces énergies s’expriment & partir de quantités
qui ne font plus intervenir le premier terme du membre de droite de ([18]). Par contre, les termes
en OpB(A"(V1 n)U, OpE(A"(V!,n))U, T_n(U)W! de cette équation fournissent toujours une
contribution & la dérivée de I'énergie, dont la décroissance en temps, données par ||U(t, )| L
n’est pas suffisante, ainsi que nous ’avons déja fait remarquer.

Nous sommes donc conduits & effectuer une deuxiéme étape de formes normales, afin d’éliminer
ces derniéres contributions. Nous avons toutefois désormais I'avantage de pouvoir perdre quelques
dérivées sur U dans le processus, puisque cette fonction ne porte aucune dérivée dans expressions
que nous souhaitons éliminer. Ce deuxiéme pas de formes normales, qui fait 'objet de la sous-
section [2.2.2] est donc de type semi-linéaire : nous construisons des correcteurs quadratiques de
I'inconnue (ou cubiques de I’énergie), qui sont des perturbations négligeables dans les normes
considérés de 'inconnue (resp. de I’énergie) que nous avons définie a I’étape précédente, et qui ne
modifient la dérivée en temps de cette inconnue (resp. de cette énergie) que par des contributions
cubiques (resp. quartiques), qui ont les bonnes estimations de décroissance que nous souhaitons
faire apparaitre.

Une fois cette deuxiéme étape de formes normales terminée, il ne nous reste plus qu’a propager les
estimations des énergies modifiées ainsi construites (qui sont équivalentes aux énergies initiales
de (8)) afin de conclure la premiére partie de la preuve, a savoir que implique les deux
derniéres inégalités de ((11)).

2.4 Estimations uniformes I. Formulation semi-classique

Il reste désormais & prouver, pour conclure la démonstration du théoréme[3let donc du théoréme[2]
que implique les deux premiéres estimations de . La stratégie que nous allons suivre est
trés voisine de celle qui a été mise en ceuvre dans la premiére partie de cette thése pour I’équation
de Klein-Gordon cubique en dimension 1, & savoir déduire du systéme pseudo-différentiel un
systéme couplé formé d’une équation différentielle ordinaire, provenant de la composante “Klein-
Gordon”, et d’une équation de transport, issue de la composante “ondes”. L’étude de ce dernier
systéme fournira les estimations L nécessaires.

Nous commencons notre analyse en procédant encore & une forme normale, éliminant toutes
les contributions quadratiques, a ’exception du seul terme résonant en (v4,v_) dans ’équation
des ondes qui est traité convenablement dans la suite, et nous réduisant a des équations & non-
linéarité cubique. Nous n’utilisons pas directement les formes normales obtenues dans le cadre
de la preuve des inégalités d’énergie, car nos buts et contraintes sont désormais différents. En
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effet, nous cherchons & obtenir des estimations L pour essentiellement p dérivées, en disposant
d’hypotheéses sur des normes H?® avec s > p. Nous pouvons donc nous permettre de perdre
quelques dérivées dans la réduction par formes normales, ce qui en particulier signifie que le fait
que le systéme soit quasi-linéaire n’importe plus guére.

Nous définissons donc & partir des fonction u_,v_ de , de nouvelles inconnues uV¥" vV

définies & partir des précédentes en leur rajoutant une perturbatlon quadratique, qui sont solu—
tions d’équations

(19) (Dy + | Do )uNF = qu + co + 187, (Di + | D)o = rlF,

les membres de droite T’N F cw,r,iv I ¢tant cubiques, et ot qw(t,x) est une certaine expression

bilinéaire en vy, v_, qui ne peut étre éliminée par forme normale, mais dont la structure est telle
qu’elle fournira des termes de reste dans la section & suivre. Afin de déduire de ces équations des
NE wNFE nous reformulons le probléme dans un cadre
semi-classique. Celui-ci est introduit dans la sous-section dans laquelle nous établissons
également les divers résultats techniques liés au calcul pseudo-différentiel semi-classique qui nous
sont utile dans la suite de I'article. Nous indiquons seulement ici les principales notations.

équations différentielles ordinaires pour

Désignons par h un paramétre dans ]0,1] (qui dans nos applications sera l'inverse du temps
h = %) Si a(x,€) est un symbole sur R? x R? (qui peut également dépendre de h) i.e. une
fonction C°°, dont les dérivées vérifient des estimations de la forme

(20) |(hah)k3§18?2a(x, &) = O(M(:L’, f)h_5(|a1‘+|a2‘)),

ot M est un poids fixé, vérifiant des hypothéses convenables, et § une constante dans [0, %] La
quantification de Weyl semi-classique de ce symbole est donnée par

(21) Oni(@) = sz [ e Fa(T € oty du
Si 'on définit

(22) u(t, ) = tu¥ (¢, tz), O(t, ) = to™N (¢, tx),

on obtient que ces deux fonctions vérifient les équations

(D¢ = Opj(x - € = €)= h™" [qu(t, te) + cult, tz) + 15T (¢, ta)]
(Dy — Opj, (2 - € — <€>))'17= h™lrg” (t t).

Nous introduisons également les opérateurs

1 1 ;
(24) Mng(?L’j\ﬁl—ﬁj)a 5j=h<%—<§€">>,
dont les symboles sont donnés respectivement (& multiplication prés par |€] dans le cas du pre-
mier) par la dérivée en £ des expressions - € — |£] et x - £ — (£) de . En utilisant ’équation,
on peut exprimer M;u (resp. £;v) en fonction de ZjuNF (resp. Zjv ) et de G, Cuw, N (resp.
rli\;F ). Ces expressions étant établies au début de la section on peut passer a l’obtention des
équations locales vérifiées par u,v.

(23)

2.5 Estimations uniformes II. Equations différentielles ordinaires

Nous avons vu dans la description de la premiére partie de la thése comment, en dimension un,
on déduit d’une équation de Klein-Gordon non-linéaire de la forme de la seconde équation ([23)
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une équation différentielle ordinaire. La méthode que nous utilisons ici est semblable : Nous
introduisons la lagrangienne

(25) My = { (w8152 = 75 =0}

et décomposons essentiellement ¥ en une partie microlocalisée sur un voisinage d’ordre vh de
Ajg, et une partie microlocalisée hors d’un tel voisinage. La deuxiéme contribution peut étre
estimée dans L en h3~0 fois des normes L2 d’itérés de champs £ agissant sur v (qui seront
elles-mémes contrélées par les hypothéses L? du théoréme . La contribution principale a v
est donc fournie par la partie microlocalisée prés de Agg, soit vy, ,. Par commutation d’une
troncature pseudo-différentielle & la seconde équation , on obtient pour cette derniére

[Di — Opy/(z - & — (§))]va,, = h_ll“kg[r,%F(t,t:c)] + reste,

I'*9 désignant la troncature microlocale prés de Ajg. Développant le symbole du membre de
gauche sur Ag,, on en déduit finalement I’équation différentielle cherchée. Combinant enfin cette
équation différentielle avec les estimations a priori du reste, on déduit des inégalités la
seconde estimation (avec p = 0, le cas d'un p général étant traité de méme, au prix de
quelques difficultés techniques supplémentaires).

Nous utilisons la méme stratégie pour obtenir des estimations uniformes de w, avec toutefois une
différence importante. La lagrangienne naturelle & faire intervenir est ici

(26) Aw:{(m, );m—izo}

qui, contrairement a Ay, n’est pas un graphe, mais se projette sur la base selon une hypersurface.
A cause de cela, le probléme classique associé & la premiére équation n’est plus une équa-
tion différentielle ordinaire, mais une équation de transport. Celle-ci est obtenue en procédant
mutatis mutandis comme pour le cas de Klein-Gordon, au prix de quelques difficultés techniques
supplémentaires liées aux petites fréquences. On décompose u en une contribution wu,, microlo-

calisée dans un voisinage

x — é—l‘ < —— de Ay, (avec o > 0 petit), et une contribution localisée
h2™°

hors d’un tel voisinage, qui sera convenablement controlée grace aux estimations L? d’opérateurs

itérés de la forme M; agissant sur . Par microlocalisation de la premiére équation (23| prés de

A, on obtient une équation
[Dy — Opy)(z - € — [€])]ua, = terme contrdlé

puis, développant le symbole x - £ — [£| sur A, on en déduit ’équation de transport cherchée.
En fait, comme il est nécessaire de tenir compte des dégénérescences qui se produisent pour
les petites fréquences, la stratégie précédente doit étre affinée, en procédant & une troncature
dyadique en fréquence supplémentaire, et en écrivant une équation de transport pour chacune de
ces fréquences avant de resommer. Une fois I’équation de transport établie, il reste a 'intégrer
par la méthode des caractéristiques, afin d’obtenir les estimations de la premiére inégalité ((11)).
Nous prouvons d’ailleurs des inégalités plus précises, qui donnent également le comportement
quasi-optimal loin du cone d’onde (voir sous-section .

Une fois les estimations précédentes établies, le théoréme [3| en découle, et par conséquent le
théoréme [2] également.
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F-93430 Villetaneuse

Let u be a solution to a quasi-linear Klein-Gordon equation Ou + u = P(u, yu, Oyu; 8;0,u, 0%u) in one-
space dimension, where P is a homogeneous polynomial of degree three, and with smooth Cauchy data of
size € — 0. It is known that, under a suitable condition on the nonlinearity, the solution is global-in-time
for compactly supported Cauchy data. We prove in this paper that the result holds even when data are
not compactly supported but just decaying as (z)~! at infinity, combining the method of Klainerman
vector fields with a semiclassical normal forms method introduced by Delort. Moreover, we get a one
term asymptotic expansion for v when ¢ — +oo.

Introduction

The goal of this paper is to prove the global existence and to study the asymptotic behaviour
of the solution u of the one-dimensional nonlinear Klein-Gordon equation, when initial data are
small, smooth and slightly decaying at infinity. We will consider the case of a quasi-linear cubic

Keywords: Global solution of quasi-linear Klein-Gordon equations, Klainerman vector fields, Semiclassical Ana-
Lysis.
The author is supported by a PhD fellowship funded by the FSMP and the Labex MME-DII.
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nonlinearity, namely a homogeneous polynomial P of degree 3 in (u, yu, O,u; 0;0zu, 02u), affine
in (0;0,u,0?u), so that the initial valued problem is written as

Ou + u = P(u, 0;0,u, 02w ; Ou, Opu)
(1) u(l,z) = eug(x) t>1,z€R,e€]0,1].
Ou(l,z) = euq ()

Our main concern is to obtain results for data which have only mild decay at infinity (i.e. which
are O(|xz|7!),  — +00), while most known results for quasi-linear Klein-Gordon equations in
dimension 1 are proved for compactly supported data. In order to do so, we have to develop a
new approach, that relies on semiclassical analysis, and that allows to obtain for Klein-Gordon
equations results of global existence making use of Klainerman vector fields and usual energy
estimates, instead of L? estimates on the hyperbolic foliation of the interior of the light cone, as
done for instance in an early work of Klainerman [24] and more recently in the paper of LeFloch,
Ma [26].

We recall first the state of the art of the problem. In general, the problem in dimension 1
is critical, contrary to the problem in higher dimension which is subcritical. In fact, in space
dimension d, the best time decay one can expect for the solution is ||u(t, )|~ = O(f%):
therefore, in dimension 1 the decay rate is t_%, and for a cubic nonlinearity, depending for
example only on u, one has ||P(u)||2 < Ct~Y|u(t,-)||12, with a time factor =1 just at limit of
integrability. In space dimension d > 3, it is well known from works of Klainerman [24] and
Shatah [33] that the analogous problem has global-in-time solutions if ¢ is sufficiently small. In
[24], Klainerman proved it for smooth, compactly supported initial data, with nonlinearities at
least quadratic, using the Lorentz invariant properties of [1+ 1 to derive uniform decay estimates
and generalized energy estimates for solutions u to linear inhomogeneous Klein-Gordon equations.
Simultaneously, in [33] Shatah proved this result for smooth and integrable initial data, extending
Poincaré’s theory of normal forms for ordinary differential equations to the case of nonlinear
Klein-Gordon equations. For space dimension d = 2, in [15] Hérmander refined Klainerman’s
techniques to obtain new time decay estimates of solutions to linear inhomogeneous Klein-Gordon
equations. He showed that, for quadratic nonlinearities, the solution exists over [—7,T.] with
an existence time T, such that lim. ,gelogT. = oo (while lim. ,0e?7T. = oo for d = 1). In
addition, he conjectured that T, = oo (while for d = 1, liminf._, e2logT. > 0). The first
conjecture has been proved by Ozawa, Tsutaya and Tsutsumi in [30] in the semi-linear case, after
partial results by Georgiev, Popivanov in [10]|, and Kosecki in [25] (for nonlinearities verifying
some "suitable null conditions"). Later, in [31] Ozawa, Tsutaya and Tsutsumi announced the
extension of their proof to the quasi-linear case and studied scattering of solutions. In space
dimension 1, Moriyama, Tonegawa and Tsutsumi [29] have shown that the solution exists on
a time interval of length longer or equal to e/ 52, where ¢ is the Cauchy data’s size, with a
nonlinearity vanishing at least at order three at zero, or semi-linear. They also proved that the
corresponding solution asymptotically approaches the free solution of the Cauchy problem for
the linear Klein-Gordon equation. The fact that in general the solution does not exist globally
in time was proved by Yordanov in |35, and independently by Keel and Tao [21]. However,
there exist examples of nonlinearities for which the corresponding solution is global-in-time: on
one hand, if P depends only on u and not on its derivatives; on the other hand, for seven
special nonlinearities considered by Moriyama in |28]. A natural question is then posed by
Hormander, in |16, 15]: can we formulate a structure condition for the nonlinearity, analogous to
the null condition introduced by Christodoulou [3] and Klainerman [23| for the wave equation,
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which implies global existence? In [7, [6] Delort proved that, when initial data are compactly
supported, one can find a null condition, under which global existence is ensured. This condition
is likely optimal, in the sense that when the structure hypothesis is violated, he constructed in
[4] approximate solutions blowing up at eA/ 82, for an explicit constant A. This suggests that also
the exact solution of the problem blows up in time at e/ 52, but this remains still unproven.

Once global existence is ensured, a natural question that arises concerns the long time behaviour
of the solutions. While for d > 2 it is known that the global solution behaves like a free solution,
in space dimension one, only few results were known, including for the simpler equation

Ou 4 v = au? 4+ fu® + order 4 .

For this equation, Georgiev and Yordanov [11]| proved that, when o = 0, the distance between
the solution » and linear solutions cannot tend to 0 when ¢ — oo, but they do not obtain an
asymptotic description of the solution (except for the particular case of sine-Gordon Du+sinu =
0, for which they use methods of "nonlinear scattering"). In |27], Lindblad and Soffer studied
the scattering problem for long range nonlinearities, proving that for all prescribed asymptotic
solutions there is a solution of the equation with such behavior, for some choice of initial data,
and finding the complete asymptotic expansion of the solutions. In [14], a sharp asymptotic
behaviour of small solutions in the quadratic, semilinear case is proved by Hayashi and Naumkin,
without the condition of compact support on initial data, using the method of normal forms of
Shatah. The only other cases in dimension one for which the asymptotic behaviour is known
concern nonlinearities studied by Moriyama in [28|, where he showed that solutions have a free
asymptotic behaviour, assuming the initial data to be sufficiently small and decaying at infinity.

Some results about global existence and long time behaviour are also known for solutions to
systems of coupled Klein-Gordon equations. In dimension d = 3, we cite the work of Germain
[12], and of Ionescu, Pausader |18], for a system of coupled Klein-Gordon equations with different
speeds, with a quadratic nonlinearity, respectively in the semilinear case for the former, and in
the quasi-linear one for the latter. For data small, smooth and localized, they prove that a
global solution exists and scatters. In dimension d = 2, Delort, Fang and Xue proved in [§|
the global existence of solutions for a quasi-linear system of two Klein-Gordon equations, with
masses mi,mo, mi # 2mg and me # 2mq, for small, smooth, compactly supported Cauchy
data, extending the result proved by Sunagawa in [34] in the semilinear case. Moreover, they
proved that the global existence holds true also in the resonant case, e.g. when m; = 2meo, and
a convenient null condition is satisfied by nonlinearities. The same result in the resonant case is
also proved by Katayama, Ozawa [19], and by Kawahara, Sunagawa [20], in which the structural
condition imposed on nonlinearities includes the Yukawa type interaction, which was excluded
from the null condition in the sense of [8]. We should cite also the paper [32] by Schottdorf,
where he proved global well-posedness and scattering result in the semilinear case, in dimension 2
and higher, for small H* data, using the contraction mapping technique in U?/V? based spaces.
There are some results also in dimension 1. In [22]|, Kim shows that the solution to a system
of semilinear cubic Klein-Gordon equations, verifying a suitable structure condition, and with
small, non compactly supported initial data in some appropriate Sobolev space, is global-in-time
and has the optimal decay ¢~/2, as ¢ tends to infinity. We should also cite the work of Guo,
Han and Zhang [13] on the global existence and the long time behaviour of the solution to the
one dimensional Euler-Poisson system, under weak conditions on the initial data, and of Candy
and Lindblad [2|, on the one dimensional cubic Dirac equation.

In most of above mentioned papers dealing with the one dimensional scalar problem, two key
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tools are used: normal forms methods and/or Klainerman vector fields Z. In particular, the
latter are useful since they have good properties of commutation with the linear part of the
equation, and their action on the nonlinearity ZP(u) may be expressed from u, Zu using Leibniz
rule. This allows one to prove easily energy estimates for ZFu, and then to deduce from them
L* bounds for u, through Klainerman-Sobolev type inequalities. However, in these papers the
global existence is proved assuming small, compactly supported initial data. This is related to the
fact that the aforementioned authors use in an essential way a change of variable in hyperbolic
coordinates, that does not allow for non compactly supported Cauchy data. Our aim is to extend
the result of global existence for cubic quasi-linear nonlinearities in the case of small compactly
supported Cauchy data of |7, 6], to the more general framework of data with mild polynomial
decay. To do that, we will combine the Klainerman vector fields’ method with the one introduced
by Delort in [5].

In [5], Delort develops a semiclassical normal form method to study global existence for nonlin-
ear hyperbolic equations with small, smooth, decaying Cauchy data, in the critical regime and
when the problem does not admit Klainerman vector fields. The strategy employed is to con-
struct, through semiclassical analysis, some pseudo-differential operators which commute with
the linear part of the considered equation, and which can replace vector fields when combined
with a microlocal normal form method. Our aim here is to show that one may combine these
ideas together with the use of Klainerman vector fields to obtain, in one dimension, and for
nonlinearities satisfying the null condition, global existence and modified scattering.

In our paper, we prove the global existence of the solution u by a boostrap argument, namely by
showing that we can propagate some suitable a priori estimates made on u. We propagate two
types of estimates: some energy estimates on u, Zu, and some uniform bounds on u. To prove the
propagation of energy estimates is the simplest task. We essentially write an energy inequality for
a solution u of the Klein-Gordon equation in the quasi-linear case (the main reference is the book
of Hérmander [15|, chapter 7), and then we use the commutation property of the Klainerman
vector fields Z with the linear part of the equation to derive an inequality also for Zu. Moreover,
Z acts like a derivation on the nonlinearity, so the Leibniz rule holds and we can estimate Z P
in term of u, Zu. Injecting a priori estimates in energy inequalities and choosing properly all
involved constants allow us to obtain the result.

The main difficulty is to prove that the uniform estimates hold and can be propagated. Actually,
as mentioned above, the one dimensional Klein-Gordon equation is critical, in the sense that the
expected decay for |lu(t,-)||2« is in t7!, so is not integrable. A drawback of that is that one
cannot prove energy estimates that would be uniform as time tends to infinity. Consequently, a
Klainerman-Sobolev inequality, that would control ||u(t, )|z by t~'/? times the L? norms of
u, Zu, would not give the expected optimal L°°-decay of the solution, but only a bound in tmato
for some positive o, which is useless to close the bootstrap argument. The idea to overcome this
difficulty is, following the approach of Delort in [5], to rewrite in semiclassical coordinates,
for some new unknown function v. The goal is then to deduce from the PDE satisfied by v an
ODE from which one will be able to get a uniform L bound for v (which is equivalent to the
optimal t~1/2 L*°-decay of u). Let us describe our approach for a simple model of Klein-Gordon
equation. Denoting by D;, D, respectively %c%, %E)x, we consider the following :

(2) (D — /1 + D2)u = au® + Blu*u + y|u*a + §u,

where «, 3,7, 0 are constants, 3 being real (this last assumption reflecting the null condition on
that example). Performing a semiclassical change of variables and unknowns u(t, z) = %v(t, ),
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we rewrite this equation as
(3) [De — Opjy (A, €))Jo = h(aw® + Blv[v +~|v[*o + 60°)

where A\p(z,£) = x€ + /1 + &2, the semiclassical parameter h is defined as h := 1/t, and the
Weyl quantization of a symbol a is given by

Opy) ( QWh//eh@c 13 f”y L&) v(y) dyd¢ .

\/@ = 0} as in figure which is the graph of
the smooth function dp(z), where ¢ :] — 1,1[— R is ¢(x) = v/1 — 2.

One introduces the manifold A = {(z,§) |z +

Figure .1: A for the Klein Gordon equation.

One can deduce an ODE from , developing the symbol Ay (x,£) on A, i.e. on & = dp(z). One
obtains a first term a(z) independent of £ and a remainder, which turns out to be integrable in
time as may be shown using some ideas of Ifrim-Tataru 17| and the L? estimates verified by v
and by the action of the Klainerman vector field on v. In this way, one proves that v is solution
of the equation

(4) Dy = a(z)v + hB|v|*v + non characteristic terms + remainder of higher order in h.

Then the idea is to eliminate non characteristic terms by a normal forms argument, introducing
a new function f which will be finally solution of an ordinary differential equation

(5) Dif = a(x)f + hB|f|2f + remainder of higher order in .

From this equation, one easily derives an uniform control L* on f, and then on the starting
solution u. The analysis of the above ODE provides as well a one term asymptotic expansion of
the solution of equation (or, more generally of the solution ), as proved in the last section
of this paper. This expansion shows that, in general, scattering does not hold, and that one has
only modified scattering. This is in contrast with higher dimensional problems for the Klein-
Gordon equation where, as we already said, global solutions have at infinity the same behaviour
as free solutions.

We end this introduction with few words about the case of quadratic nonlinearities, in one space
dimension. In [7], Delort proves global existence and modified scattering for an equation of the
form , where the nonlinearity may have a quadratic component, i.e. for the equation

Ou + u = F(u, 0;0,u, 02w ; Ou, Opu)
(6) u(l,x) = eug(x) t>1,zeR,e€]0,1].

Ou(1, ) = euq(x)
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where
F(u, 0:0yu, &%u ; Opu, Opu) = Q(u, 00y u, &%u ; Opu, Opu) + P(u, 0p0yu, (ﬁu ; Opu, Opu)

with @ (resp. P) homogeneous polynomial of degree 2 (resp. 3), and where one assumes a
convenient null condition, that generalizes the one we impose here on the sole cubic terms. We
believe that our method could be extended to that framework, providing global existence and
modified scattering for @, with small, mildly decaying initial data (instead of the compactly
supported ones considered in [7]). Actually, it is well known that one may always perform a
Shatah’s normal form argument in order to reduce a Klein-Gordon equation with quadratic
nonlinearities to a cubic one, when solutions are small. For quasi-linear equations, one should be
cautious in order not to increase the number of derivatives in the nonlinearity, but this technical
difficulty may be overcome using paradifferential calculus. Consequently, the case of quadratic
nonlinearities can be reduced, at least in principle, to the cubic one, if one accepts to replace
local cubic nonlinearities by nonlocal ones. We decided here to limit ourselves to the purely cubic
case, in order to avoid the technicalities that are inherent to such reductions and keep the paper
reasonably long.

1 Statement of the main results

The Cauchy problem we are considering is

Ou + v = P(u, 0;0,u, 02w ; Ou, Opu)
(1.1) u(l,z) = eup(x) t>1,zeR

Ou(l,x) = euy ()
where [0 := 92 — 9?2 is the D’Alembert operator, £ €0, 1], ug,u; are smooth enough functions.
P denotes a homogeneous polynomial of degree three, with real constant coefficients, affine in

(040,u, 0%u). We can highlight this particular dependence on second derivatives following the
approach of |7] and decomposing P as

(1.2) P(u, 8;0,u, 0*u ; Opu, Oyu) = P'(u; dpu, Oyu) + P (u, 0p0pu, 02w ; Opu, Opu) ,

where P, P" are homogeneous polynomials of degree three, P” linear in (9;0,u, 9?u). Moreover

3
P/(X1; Y1,Ya) = Y iFP(Xy; —iYh, —iY?)

k=0
(1.3) -
P"(X1, Xg, X3; V1,Y2) = Y iFP/(X1, —Xa, — X3; —iY7, —iY?)
k=0

where P}, is homogeneous of degree k in (Y7, Y2) and of degree 3—k in X1, while P} is homogeneous
of degree 1 in (X2, X3) and of degree k in (Y1,Y2). We denote P, = P + P}. For x €] — 1,1],
define

wo(x) := $,
(1.4) vi-a?
“le) ==
and
(1.5)

®(z) := P{(L;wo(x), wi(z)) + P/'(1, wo(2)wi (), w?(z); wo(x),wr (z)) + 3P5(1;wo(z), wi (x)) .
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Definition 1.1. We say that the nonlinearity P satisfies the null condition if and only if ® = 0.

Our goal is to prove that there is a global solution of (1.1)) when e is sufficiently small, ug, uy
decay rapidly enough at infinity, and when the cubic nonlinearity satisfies the null condition. We
state the main theorem below.

Theorem 1.2 (Main Theorem). Suppose that the nonlinearity P satisfies the null condition.
Then there exists an integer s sufficiently large, a positive small number o, an ¢ €]0,1[ such
that, for any real valued (ug,u1) € H*T1(R) x H*(R) satisfying

(1.6) uoll grs+1 + llurll s + |zuol g2 + [lzur |l g <1,

for any 0 < & < &g, the problem has an unique solution u € CO([1,+oc[; H**1) N
CY([1, 4+o0[; H). Moreover, there exists a 1-parameter family of continuous function a. : R — C,
uniformly bounded and supported in [—1,1], a function (t,z) — r(t,z) with values in L*(R) N
L>(R), bounded in t > 1, such that, for any € €]0,¢e¢], the global solution u of has the

asymptotic expansion
_ Ea(® to (2 4 g2 z\|? (E) _c
(1.7)  wu(t,z) =Re [ (t)exp |:Ztg0<t)+15 ag(tﬂ ol . logt” +t%+ar(t,x),

Qe
Vi

where p(z) = V1 — 22, and
1

ws) ®1(2) = < (wn(e)) ™ BPo(L, wiw)er (@), @1 (2)% wi(e), w1 (2)

with (x) = V1 + 22.

We denote by Z the Klainerman vector field for the Klein-Gordon equation, that is Z := t0,+x0k,
and by I' a generic vector field in the set Z = {Z,9;,0,}. The most remarkable properties of
these vector fields are the commutation with the linear part of the equation in (1.1]), namely

(1.9) [O+1,T]=0,

and the fact that they act like a derivation on the cubic nonlinearity. We also denote by
WHro© a modified Sobolev space, made by functions ¢ — (¢,-) defined on an interval, such
that (D,)P~*Diu € L™, for i < 2, with the norm

2
(1.10) 1 (, Miweoooy = Y (D)~ Diah(t, )| oo ) -
=0

The proof of the main theorem is based on a bootstrap argument. In other words, we shall prove
that we are able to propagate some a priori estimates made on a solution u of (1.1)) on some
interval [1, 7], for some T' > 1 fixed, as stated in the following theorem.

Theorem 1.3 (Bootstrap Theorem). There exist two integers s,p large enough, s > p, an
eo €0, 1[ sufficiently small, and two constants A, B > 0 sufficiently large such that, for any
0 < e <eg, if uis a solution of (1.1) on some interval [1,T], for T > 1 fized, and satisfies

(1.11a) [u(t, ) |[wemo < Act™2
(1.11b) 1 Zu(t, )| g < Bet®, |0 Zult,")|| 2 < Bet®
(1.11c) lu(t, || = < Bet®, 18pu(t, )| jro—1 < Bet?,
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for every t € [1,T], for some o > 0 small, then it verifies also

A
(1.12a) (DY —— T;f%
B B
(1.12b) |Zutt N < Set, 9Zult,)lpe < Set?
B B
(1.12¢) lutt, Yae < Fet”, Jwu(t, s < Set”

In section |2 we show that energy bounds , (1.11c) can be propagated, simply recalling an
energy inequality obtained by Hérmander in |15 for a solution u of a quasi-linear Klein-Gordon
equation, and applying it to 95 'u and Zu. Sections from [3| to |5| concern instead the proof of
the uniform estimate’s propagation. Furthermore, in section [5] we derive also the asymptotic
behaviour of the solution w.

To conclude, we can mention that we will mainly focus on not very high frequencies, for it is
easier to control what happens for very large frequencies which correspond to points on A in
figure [.1] close to vertical asymptotic lines. This is justified by the fact that contributions of
frequencies of the solution larger than h=?, for a small positive 3, have L? norms of order O(h™)
if s > N, assuming small H® estimates on v. In this way, most of the analysis is reduced to
frequencies lower than h 7.

2 Generalised energy estimates

With notations introduced in the previous section, we define

(2.1) Eo(t,u) = ([|0u(t, )22 + [0zult, )22 + ut,-)]2)"

as the square root of the energy associated to the solution u of (L.1)) at time ¢, and EL (t,u) =
N

Z (Eo(t,Fku)z)l/ 2, for a fixed I'. The goal of this section is to obtain an energy inequality
k=0

involving E]I\}(t, u). In particular, since the aim is to propagate a priori energy bounds on wu,
te. |u(t, )ms, |0wult, ) gs—1, [|Zult, )||m and ||0Zu(t,-)||r2, we will consider on one hand
E?fl(t, u) where all I' are equal to d,, and on the other EZ (t,u) where I' = Z. Often in what
follows we will denote partial derivatives with respect to t and x respectively by dy and 0;.

We will use the following result, which concerns the specific energy inequality for the Klein-
Gordon equation in the quasi-linear case, and which is presented here without proof (see lemma
7.4.1 in |15] for further details).

Lemma 2.1. Let u be a solution of

(2.2) Ou + u + 4" 9p01u + Y02 u + 1 0ou + v 01w = f,
L ]
where functions v =~ (t,x), ¥/ =+ (t,z) are smooth, such that Z v+ 1] < 5 Then,
i—=0
¢
(2.3) Ey(t,u) < C[Eo(1,u) —|—/ (I1f (7, )2 + C(7)Eo(T,u))dr]
1

26



1

where C(T Z up |ah’Y T,2)| + \Bh'yj(r,x)D,
4,7,h=0

We can rewrite the equation in (1.1)) in the same form as in lemma especially highlighting
the linear dependence on second derivatives,

(2.4) Ou + u + 41 9gd1u + v 0% + 4°0gu + y'u =0,

where coefficients 7%,/ are homogeneous polynomials of degree two in (u,dou, d1u). Let us
apply 81”/, s’ :== s — 1, to this equation. If u is a solution of (2.4)), then 8f,u satisfies

(2.5) 00w+ 8 u+ 0 (7010081u + 12U + 4 0gu + 'ylalu) =0,

and applying the Leibniz rule, we obtain that (‘)f,u is solution of the equation

(26) 00wt 05'u+4"0000 (05 u) + 41D u) + 100 (8 ) + 41010 w) = [,
where f* is a linear combination of terms of the form

o (af:l 0 u) (af:? 992u) (aff Ou)

(0107 u) (9705 u) (01° D)

for i,7,h, a1, a0 = 0,1, s} + sh+ s = &', s < §'. So taking the L? norm and observing that at
most one index s can be larger than s'/2, we have

51+
28) I < (0 10ROt ) BE (810) <t ) e B (1 0)

1+7=0

J<2

for any finite p > [%’] + 3. Rewriting inequality (2.3) for 8f/u, where s’ = s — 1 and C(7) <
HU(T, ')HI%Vt,Q,oo, we obtain

t
(2.9) EQ (tu) <C [Efilu,u) + / (s MFyeoe B (7, u)dr
1

On the other hand, we want to obtain an analogous of (2.9) for EZ (t,u). Applying Z to (2.4)),
Leibniz rule and commutations, we derive that Zu is solution of the equation

(2.10) OZu + Zu + 40001 Zu + v 0% Zu + A28 Zu + 10, Zu = 7,

where fZ is linear combination of [fyijafj,Z]u and [y"y, ZJu. We calculate for instance the
term [y°103,, Z]u and we find that it is equal to —(Z+"1)93u — v*1[93,, Z]u, that is a linear
combination of

(07" u) (95 Zu) (fyu)

2.1
(2.11) (07 u) (052 u) (D)

for 4,4, h, k, a1, a0 = 0,1. Therefore, the L2 norm of fZ can be estimated as follows

(212) T ||L2<(Z||azafu W ) BE (1) < ult, ) e B (8 10)

i+35=0
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and applying lemma for Zu, we derive
t

(2.13) E{(t,u) <C [E1Z(17U) +/ (T, MIyea.00 BT (7,-) dr
1

Remark 2.2. To make the above proof fully correct, one should check as well that the energy of
Zu is actually finite at every fixed positive time. One may do that either using that the vector
field Z is the infinitesimal generator of the action on the equation of a one parameter group,
along the lines of appendix A.2 in |1|. Alternatively, one may instead exploit finite propagation
speed, remarking that if the data are cut off on a compact set, the solution remains compactly
supported at every fixed time, so that the energy of Zu is actually finite, and that the bounds
we get are uniform in terms of the cut off.

Proposition 2.3 (Propagation of Energy Estimates). There exist an integer s large enough, a
p = [%] +3, p < s, an gg €)0, 1] sufficiently small, a small o > 0, and two constants A, B > 0
sufficiently large such that, for any 0 < € < gq, if u is a solution of on some interval [1,T],
for T > 1 fized, and satisfies

(2.14a) [u(t, ) |[wemee < Ast™2
(2.14Db) E% (t,u) < Bet?,
(2.14c¢) EZ(t,u) < Bet®,

for every t € [1,T], then it verifies also
B
(2.15a) E% (t,u) < St

B
(2.15b) EZ(t,u) < et

Proof. Both estimates (2.14b)) and (2.14c)) can be propagated injecting a priori estimates (2.14])
in energy inequalities ([2.9)) and ([2.13)) derived before, obtaining

t 9 3
Bt () < O (L) + 488 [ ar] < B2 () + S5
1 o
' A%BCe?
ElZ(tau) < C[Elz(l,u) + AQB€3/ 7_—1+Ud7_] < CElz(l,u) n %ta '
1

Then we can choose B > 0 sufficiently large such that CEfil(l,u) + CEf(1,u) < Ze, and
€0 > 0 sufficiently small such that % < %, to obtain (2.15a)), (2.15b)).

3 Semiclassical Pseudo-differential Operators.

As told in the introduction, in order to prove an L estimate on u and on its derivatives we
need to reformulate the starting problem in term of an ODE satisfied by a new function v
obtained from u, and this will strongly use the semiclassical pseudo-differential calculus. In the
following two subsections, we introduce this semiclassical environment, defining classes of symbols
and operators we shall use and several useful properties, some of which are stated without proof.
More details can be found in [9] and [36].
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3.1 Definitions and Composition Formula

Definition 3.1. An order function on R xR is a smooth map from RxR to Ry : (z,&) — M(x,§)
such that there exist Nop € N, C' > 0 and for any (z,¢), (y,n) € Rx R

(3.1) M(y,n) < Cle —y)™No (& = m)No M (x,8),
where (z) = V1 + z2.

Examples of order functions are (z), (§), (x)(§).

Definition 3.2. Let M be an order function on R x R, >0, § > 0. One denotes by S5 g(M)
the space of smooth functions

(:L‘7 5’ h) % a(l'7 57 h)
R x Rx]0,1] - C

satisfying for any a1, a9, k, N € N bounds
(3.2) 01 9g2 (hdn)*al, €, )| < OM (x,€) h=21+02)(1 4 ghPJe]) Y

A key role in this paper will be played by symbols a verifying (3.2)) with M (z,§) = (Ljﬁ(@>_N )

for N € N and a certain smooth function f(£). This function M is no longer an order function

l”:}%(f)>fN).
Definition 3.3. We will say that a(z,§) is a symbol of order r if a € S53((£)"), for some 6 > 0,
B >0.

because of the term h~2 but nevertheless we continue to keep the notation a € S5 5((

Let us observe that when 8 > 0, the symbol decays rapidly in h?|¢|, which implies the following
inclusion for » > 0

(3.3) Ss5.6((6)") C h™ PS5 5(1),

which will be often use in all the paper. This means that, up to a small loss in h, this type of
symbols can be always considered as symbols of order zero. In the rest of the paper we will not
indicate explicitly the dependence of symbols on h, referring to a(z, &, h) simply as a(z, §).

Definition 3.4. Let a € S53(M) for some order function M, some 6 > 0, 5 > 0.

(i) We can define the Weyl quantization of a to be the operator Op}’(a) = a”(x, hD) acting
on u € §(R) by the formula :

w (z— z + Tty
(3.4) O (el ))uta) = 3 [ [ et a2 ) uty) dya:
(ii) We define also the standard quantization :

(35 Omm(ale. u(w) = 5 [ [ e a(e. uly) duds.

It is clear from the definition that the two quantizations coincide when the symbol does not
depend on x.

We introduce also a semiclassical version of Sobolev spaces, on which is more natural to consider
the action of above operators.
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Definition 3.5. (i) Let p € N. We define the semiclassical Sobolev space W} (R) as the
space of families (vp)peo,1) of tempered distributions, such that (hD)Pvy, := Opp((§)?)vy, is
a bounded family of L*°, i.e.

(3.6) WPe(R) = {vh € 8'(R) ’ h51]10p1] [{hD)Pvp || oo () < +oo} )
€|0,

(ii) Let s € R. We define the semiclassical Sobolev space H}(R) as the space of families
(Uh)gem,l] of tempered distributions such that (hD)%vy, := Opp((£)*)vp, is a bounded family
of L*, ie.

(3.7) H}(R) = {vh e S'(R)| sup /R (1+\h§|2)5\@h(€)!2d§<+oo}-

helo,1]

For future references, we write down the semiclassical Sobolev injection,
1

(3.8) lonllwpe < Coh™*onll_ypeor V0 >0.

h

The following two propositions are stated without proof. They concern the adjoint and the
composition of pseudo-differential operators we are considering, and a full detailed treatment is
provided in chapter 7 of |9], or in chapter 4 of [36].

Proposition 3.6 (Self-Adjointness). If a is a real symbol, its Weyl quantization is self-adjoint,
(3.9) (Op}(@)" = Op}(a).

Proposition 3.7 (Composition for Weyl quantization). Let a,b € $(R). Then

(3.10) Opj, (a) © Opj;(b) = Opj; (afh) ,

where

1 2i .
1) e 8)i= g [ [ ROt O b€t dydnic

and
o(y,n; z,¢) =nz —yC.

It is often useful to derive an asymptotic expansion for afb, which allows easier computations than
the integral formula (3.11]). This expansion is usually obtained by applying the stationary phase
argument when a,b € Ssg(M), 0 € [0, %[ (as shown in [36]). Here we provide an expansion at
any order even when one of two symbols belongs to S 15 (M) (still having the other in Ss g, (M)

for § < %, and f1, B2 either equal or, if not, one of them equal to zero), whose proof is based on
the Taylor development of symbols a, b, and can be found in detail in the appendix.

Proposition 3.8. Let a € S5, 8,(M1), b € S5, 3,(M2), 61,62 € [0, %], 01 +62 <1, B1,80 >0
such that

(3.12) B1=pB2>0 or  [Bi#B2andBi=0,8;>0,i#je{1,2}].
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Then afb € S5 (M1 Ms), where § = max{d,d2}, B = max{f1, B2}. Moreover,

h h ul - a1 9o Qg o
(3.13) aﬁb:ab+2—i{a,b}+ Z 21> (a!> 97102020, b+
a=(a1,02)
2<]al<k

where {a,b} = 0¢adyb — Ogbdya, 1), € WFHNA=(1+02) Gs o (M M) and

(3.14)
h k41 k+1 (—1)0‘1 2i 1
= — *(ﬁZ*yC) ] HO2 Y
ri(x,§) <2z> (<h)? (z: | = /R4€h {/0 951 0¢%a(w + tz, § + Q) (1 — t)"dt
a=(a,0
|a|=k+1

x 0200 b(x +y, & + 77)} dydndzd( .

More generally, if KD 9% € Sy, 5 (M), hE+1%299p € S5, 5, (M3, for |a| =k + 1, for
order functions M{Hl, M§+1, then ry € h(k+1)(1_(51+52))5’5,ﬂ(MfHMé‘:H),

Remark 3.9. Observe that

h

2
1 1 atb
22) [Qagaagb + 5 0Fadib azagaawagb} +rP,

h
(3.15) afb = ab+ ?{a, b} + <
i
so the contribution of order two (and all other contributions of even order) disappears when we
calculate the symbol associated to a commutator

(3.16) afb — bfla = %{a, b} + 1o,

where 79 = rgﬁb — rgﬂa € hg(l_(‘Sl*‘S?))Sgﬁ(MlMg).

The result of proposition [3.8]is still true also when one of order functions, or both, has the form

<Ljﬁ(g))*1, for a smooth function f(&), f/(£) bounded, as stated below and proved as well in the

appendix.

Lemma 3.10. Let f(§) be a smooth function, f'(§) bounded. Consider a € 5’51751(<Ljﬁ(§))*d),

deN, andb € Ss, g, (M), for M order function or M(z,§) = <Lfﬁ(§))_l, l €N, some 1 €0, 3],

09 € [O,%[, B1,P02 > 0 as in (3.12). Then afb € S(;’g(<L\};E£)>7dM), where § = max{d,da},

B = max{f1, P2}, and the asymptotic expansion (3.13)) holds, with ry given by (3.14), rr €
h(k+1)(17(51+52))55ﬁ(<x+\j£5) >fdM).

More generally, if h*t1)0gaq ¢ 5'51751(<x%5)>_d/) and hFHD%29% € S5, o (MFHY), |a| =
k+ 1, MM order function or M*+1(x, &) = <Lf(5)>*l/, for others d',l' € N, then r, €

Vh
h(k+1)(1—(61+62))55ﬁ(<x-*jﬁ(§)>—d’Mk+1)_

3.2 Some Technical Estimates

This subsection is mostly devoted to the introduction of some technical results about symbols
and operators we will often use in the entire paper, first of all continuity on Sobolev spaces.
We also introduce multi-linear quantizations which will be used in the next section (and which
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are fully described in [5]), especially because they make our notations easier and clearer at first.
Moreover, from now on we follow the notation p(§) := /1 + &£2.

The first statement is about continuity on spaces Hj(R), and generalises theorem 7.11 in [9)].
The second statement concerns instead a result of continuity from L? to W,f "°°. In the spirit of
[17] for the Schrédinger equation, it allows to pass from uniform norms to the L? norm losing
only a power h™ 47 for a small o > 0, and not a h=3 as for the Sobolev injection.

Proposition 3.11 (Continuity on Hj). Let s € R. Let a € Ssp((€)"), r € R, 6 € [0, 3], 8> 0.
Then Opy(a) is uniformly bounded : Hy(R) — H; "(R), and there exists a positive constant C
independent of h such that

(3.17) 108 @)l gz ze—ry <C. ¥h€]0.1].

Proposition 3.12 (Continuity from L? to W/"™). Let p € N. Let a € S@g((w\/%(f)fl), J e

[0, %}, B> 0. Then Op¥(a) is bounded : L*(R) — W/***(R), and there exists a positive constant
C independent of h such that

(3.18) 10p5 (a) [l g L2,y < Ch™i 7, Vh €]0,1],

where o > 0 depends linearly on 5.

Proof. Firstly, remark that thanks to symbolic calculus of lemma to estimate the W}lf e
norm of an operator whose symbol is rapidly decaying in \hﬁf | corresponds actually to estimate
the L norm of an operator associated to another symbol (namely, a(z,€) = (€)*a(z, €)) which
is still in the same class as a, up to a small loss on h, of order h=*

From the definition of Op}’(a)v, and using thereafter integration by part, Cauchy-Schwarz in-
equality, and Young’s inequality for convolutions, we derive what follows :

|Op}, (a)v] =
) % /]R /Rei%yxa(“;/ﬁy,mg)v(ﬁy)dydf

[
e LR L, (H}} y);}) () [,
oY ey dydean

z+Vhy / .
s T N2 =28 TN +p'(VhE)\ -1
| [ L6 = e - w2 vig (= P ayacay

(3.19)

er\/Ey / —
| Yo/ —2 & ag v/ P (VRE)\
(\/E) p (K2 P R<\/E )WV he) < Vh > N 12
| N ) vy B 4 (VRE) 1
< On ol [ (72wt vig () |z
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where N > 0 is properly chosen later. We draw attention to two facts, when we integrated by
parts: in the third equality in (3.19]), we use that

L—i(% —y)o (1 +i(€ — 77)8y>2 [ei(\%fy)§+iny _ i u)riny
1+ (7 —y)? 14 (§=n)?

so, integrating by part, derivatives fall on (-% N — )71 (¢ —n)71, giving rise to more decreasing

factors, and/or on a <x+{y, \/E§>, the symbol a belongs to S55(1) with a § < %, but the loss

of h=9 is offset by the factor vk coming from the derivation of a(L\Q/ﬁy, Vhé) with respect to y
and &.

y .
To estimate ||(h?v/he) N<+(m> 1HL§ we consider a Littlewood-Paley decomposition,

ie.

+o0
(3:20) 1= ¢i(€)
k=0

where ¢ (§) € C°(R), supppo C B(0,1), vx(§) = @(2_"35) and supp C {A7! < €] < A}, for
a constant A > 0. Then,

(3.21)
m—&-\/ﬁy 4 /(\/Ef) B x+\/ﬁy +p/(§) _9
hBhe) N (2 p 3 2N 2 d
R @\fg/ o2 (2N P ey
Z Ik: )
k>0
where
z+Vhy /
_ e 2 TP )N
(322) f= [ woe N (2B Tagae,
and
z+Vhy /
_ [ ppey-an( T2 PN ok
o= [ 0og (R ot
z+vhy 4 riokg)\ —2
3.23 _ ok Boke 2N/ 32 p'(27) k> 1
(3.23) 2 [ (o) () Ttie, >
x+\/ﬁy ! (ok _
2N o(—2N+1)k  —28N 5 +p'(27)\ 2
< apvgaeniy-aa [ (2 PR Toeyae.
For k < kg, for a fixed kg, p”(2¥¢) # 0 on the support of p. As £ — £00 we have the expansion
(324 HO) = =215 40l
Vite @ |
and then
—2k
(3.25) PO = £1F T+ 0(25¢] ),
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For k > ko, the function § — gi(€) = 228 (25/1) 1 22/ (2%¢) is such that |g},()| = I¢ (3 ().
ge(€) = 14+ 0(272%1¢|72), and |g},(€)| ~ 1 on the support of ¢, so for every k we can perform a
change of variables z = gi(§) in the last line of (3.23)). Hence,

2N o(—2N+1)k —28N 2 \—2 -1
I < AN W [ el ()

(3.26) SA2N2(—2]\/+3)/f<;h—25N\/E/<Z>—2dz
< 022N+ 28N/}

so taking the summation of all Iy for £ > 0 we deduce

(3.27)

z+vhy (v 1 _
<hﬁ\/ﬁf)’N< 2 J\r/g (\Q)> < Ch AN Y ol Z5 Ok < AN

2
LE k>0

if we choose N > 0 such that =25+% < 0 (e.g. N =2). Finally

1

(3.28) 10p5 (a) g (z2;wpeey = O(R™377),

where o(f8) = (N + p)5 depends linearly on 3. O

The following lemma shows that we have nice upper bounds for operators acting on v whose
symbols are supported for || > h=P, B > 0, provided that we have an a priori H ; estimate on
v, with large enough s.

Lemma 3.13. Let s’ > 0. Let x € C§°(R), x =1 in a neighbourhood of zero, e.g.

=1, f <C
. X(€) orf¢] < 1
x(§) =0, for €] > C5.
Then
(3.30) |Opn((1 — x)(hﬁf))vllH;/ < O Do s Vs > s

Proof. The result is a simple consequence of the fact that (1 — x)(R?¢) is supported for [£] >
C1h™#, because

[0pA((1 = X) (W0l = / (1+ [RER)T|(1 = x) (WP he)[2]o(€) [2de
(3.31) = / (1+ [RE[)* (1 + [RE[2)¥ (1 — x) (WPRe) P o (€) P de

< O ol

where the last inequality follows from an integration on |h¢| > C1h™?, and from the two following
conditions §' — s < 0, (1 + |h&[2)¥ 5 < Ch=28(' =), o

This result is useful when we want to reduce essentially to symbols rapidly decaying in |h5¢|,
for example in the intention of using proposition [3.12| or when we want to pass from a symbol of
a certain positive order to another one of order zero, up to small losses of order O(h™7), o > 0
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depending linearly on 3. We can always split a symbol using that 1 = y(h%¢) + (1 — x)(h5€),
and consider as remainders all contributions coming from the latter.

Define the set A := {(z,£) e R x R|z 4 p/(§) = 0}, i.e. the graph of the function x €] — 1,1[—
do(x), o(x) = V1 — 22, as drawn in picture|.l, We will use the following technical lemma, whose
proof can be found in lemma 1.2.6 in [5]:

Lemma 3.14. Let v € C§°(R). If the support of 7y is sufficiently small, the two functions defined
below
(3.32)

ex(z,€) = P

£ F do(r)

verify estimates

£ F dp(x)

mW (<§>2($ +p/(££)))

(€@ +p/(££)) and éx(z,€) =

1050 e (2, €)| < Capl§) #1277,

3.33
339 020784 (2, €)] < Cagl)*+27.

Moreover, if suppy is small enough, then on the support of y({(€)?(z+p'(££))) one has (dp) ~ ()
and there is a constant A > 0 such that, on that support

ATHO TP <+ 1< A%, o+

3.34
(339 ATHO TP < Fo+1< A2, §— —o0
Finally, as v — +1, for every k € N

(3.35) 0" (dip(x)) = O({dp) ' *2").

Lemma 3.15. Let v € C§°(R) such that v = 1 in a neighbourhood of zero, and define I'(x, &) =

7(x+5ﬁ(€)), ThenT € S%7O(<x+f;ﬁ(g y=NY, for all N > 0.

Proof. Let N € N. Since v € C§°(R), p” € Sp0(1), we have

() < |r<x>Nv<x>||Lw<“fﬁ/@>-N,
(€ 1 r+p'(§), N
I I v f\ < by @l (RN
06T (o, €)= | (EEEN I < o 2Hp”(f)HLwH<x>N7’(x>HLw<W>‘N,
and going on one can prove that |03 9¢*I'| < Cay a8~ 2("‘1+0‘2)( +p/(£))*N. O

Vh

Multi-linear Operators. We briefly generalise some definitions given at the beginning of this
section in order to introduce multi-linear operators. As we will consider multi-linear operators
with symbols depending only on £ and, for such symbols, in the linear case, Weyl quantization
coincide with classical quantization, for simplicity we will directly talk about the Kohn-Nirenberg
quantization.
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Let n € N* and set £ = (§1,...,&). An order function on R x R™ will be a smooth function
(x,&) — M(x,§) satisfying (3.1)), where (¢ — 1) is replaced by

n

[1¢ = n™

=1
Equivalently, we define the class S5g(M,n), for some § > 0, 5 > 0 and M (x,§) order function
on R x R™, to be the set of smooth functions

(x7§17" . 7§7’L7h) — a($7§,h)
R x R"x]0,1] - C

satisfying the inequality (3.2]), Vay € N, s € N Vk, N € N.

Definition 3.16. Let a be a symbol in Ss5g(M,n) for some order function M, some § > 0,
B =>0.

(i) We define the n-linear operator Op(a) acting on test functions vy, ..., v, by

(3.37)  Op(a)(vi,...,v,) = (2717)” /ne vt ton)g (2, &1, En) Hv (&) dér ... d&, .

(ii) We also define the n-linear semiclassical operator Opy,(a) acting on test functions vy, ..., vy,
by

(3.38) Oph(a)(vl,---,vn)zmlhyl/ﬂgneh skt (2,61, L En) H (&) déy ... dE, .

For a further need of compactness in our notations, we introduce I = (i1,...,,) a n-dimensional
vector, i € {1,—1} for every k =1,...,n. We set |I| =n and define

(3.39) wr = (Wi, ... w5, , wy=w, w_1 =1,
while m(§) € Ssg(M,n) will be always in what follows a symbol of the form

(3.40) m(&) =mi(&)--m) (&) .

Note that, when all variables &; in m;(£) are decoupled, as in (3.40), Op(m;)(wy) is only a
compact way of writing || j Op(mjl- Jw;;. We also warn the reader that in following sections, when
we focus on a fixed general symbol my(£), we will often refer to components m? (&) as my (&),
forgetting the superscript I in order to make notations lighter. Sometimes we will also write
my (&) if this makes no confusion.

4 Semiclassical Reduction to an ODE.

In this section we want to reformulate the Cauchy problem and to deduce a new equation
which can be transformed into an ODE. It is organised in three subsections. In the first one,
we introduce semiclassical coordinates, rewrite the problem in this new framework and state the
main theorem. The second and third sections are devoted to the proof of the main theorem.
In particular, in the second one we introduce some technical lemmas we often refer to and we
estimate v when it is away from A. In the third one, we first cut symbols in the cubic nonlinearity
near A and away from points z = 41, and develop them at { = dy(z), transforming multi-linear
pseudo-differential operators in smooth functions of x; then, we repeat the development argument

for Opyy (x€ + p(§))-
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4.1 Semiclassical Coordinates and Statement of the Main Result

Let u be a solution of (|1.1)) and set

(4.1) w= (D + /14 Du u= (D)1 (*5%)
: W= —(Dy —/1+ D2)u’ Dy — w0 :

2
With notations introduced in (1.3]), the function w satisfies the following equation

3 _ _ _
(D — T+ Dhw =3+ P} <<Dx>—1(w R e R R “”))

k=0 2 2 2
2
, w4 w—w WA
(42) +ka,g(<Dx> L), (M), DHDL) ()
k=0

Observe that operators which take the place of second derivatives have symbols of order one,
while all other symbols are of order zero or negative (—1). Let us simplify the notation for
the rest of the section by rewriting the nonlinearity in term of multi-linear pseudo-differential
operators introduced in the previous section, namely as

(4.3) > Op(my)(wr) + Y Op(inr)(wy)

[1]=3 [1]=3

where symbols mj, my are of the form . Moreover, my will denote symbols of order equal
or less than zero, in the sense that all occurring symbols mi are of order equal or less than zero,
while in m; there will be exactly one symbol of order one, thanks to the quasi-linear nature of
the starting equation. Therefore is rewritten as

(4.4) (De —/1+D2)w= Y Op(my)(wr) + > Op(ir)(wy)

11]=3 1]=3

and passing to the semiclassical framework by

1 T 1

(4.5) w(t,x) = Wv(t, f) , h:= T

we obtain

(4.6) (Dt — Op (x€ + p())v = h Y Opn(mr)(vr) +h > Opu(ir)(vr),
[7]=3 |1]=3

where p(§) = /1 + &2 and where we used the equality Opp(z€ + p(€) + %) = Opy (z€ + p(§))

following from

h h
Opy(x€) = —Dyx + 51‘Dm

2
h h

= — D.’B = — .
5 Toh T + Opp(x€)
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Furthermore, we write explicitly the nonlinearity of the equation, which will be useful hereinafter

(4.7)

Let us also define the operator £ to be

(4.8) £ = O+ 7(©)).

The equation represents for us the starting point to deduce an ODE satisfied by v, from
which it will be easier to derive an estimate on the L® norm of v. In reality, we will need
more than an uniform estimate for v, namely we have to involve also a certain number of its
derivatives, and then to control its W,f’oo norm for a fixed p > 0. With this in mind, we set

[(z,&) = 7(‘”“’/(5)), for a function v € C§°(R), v = 1 in a neighbourhood of zero, with a small

vh

support. From lemma |3.15, I' € S1 0((%\%@))_1\[) for every N € N*, and case by case we will
27

choose the right power we need. We consider also 3(§) = (£)” (in practice, at times we consider
p—1 € N, with p introduced for u in theorem [1.3] when we prove the bootstrap, or p = —1 when

we develop asymptotics), and define

(4.9) v> = Opp(D)v,
together with

vy = Op(T)v”,

4.10
(4.10) vxe 1= Op¥ (1 — D)™,

and symbols

3 3
m7 () = [[ ™ (&) = [ mi&)=(&) ™,
(4.11) o o
mr() = [ (&) = [ [ mi(&)S(&) ™
k=1 k=1

The main result we want to prove in this section is the following:

Theorem 4.1 (Reformulation of the PDE). Suppose that we are given constants A', B’ > 0,
some T > 1 and a solution v € L®([1,T]; Hy) N L*>([1,T}; W"™) of the equation ([4.6) (or,
equivalently, of (4.7)), satisfying the following a priori bounds, for any e €]0,1], t € [1,T],

(4.12) ot e < Ale,
(4.13) 1&o(t, gz + otk )l < B,
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or some o > 0 small enough. Then, with preceding notations, vy is solution o
g g A

(4.14)
Dy = (2)0n(x)vy + h®Y (2)0h(2) vy |*vx

+ hOp (D) [B5(2)0(2)(03)° + @, (1)On(@)oF 20, + %4 (2)00 () (0)°] +hR(),

with (O (x))n a family of smooth functions compactly supported in | — 1,1[, some smooth coeffi-
cients @?(m), ]@jz(x)\ = O(h=7") on the support of Oy, for j € {3,1,—1, -3} and a small ¢’ > 0.
Moreover, R(v) is a remainder verifying the following estimates

P

(4.15) 1Rz < Ch277 ([ Lol 22 + [[0l[m;)
.

(4.16) 1R() [z < ChA77 ([[Lv] L2 + [[vll )

for a new small o > 0.

Smooth coefficients <I>]Z () in (4.14)) may be explicitly calculated starting from the nonlinearity

in (4.7), and in particular this will be done for ®7(z) at the beginning of section [5| Afterwards,
we will use the notation R;(v) to refer to a remainder satisfying the following estimates:

Lo

(4.17) 1B ()l gy < Ch272([[L0] L2 + [[vllag)
1 o

(4.18) [B1(0)llLe < CRATT([[L0] L2 + [ollm;)

for a small o > 0.

4.2 Technical Results

We estimate v%c as follows :

Lemma 4.2. Let ['(€) a smooth function such that |0°T| < (€)%, x as in lemma B> 0.
Then

@9 o ECTEE) — opy (SO

where Ry (v) is a remainder satisfying (4.17)), (4.18]).

z+p' (&)

) ok ).

Proof. We consider a function x as in lemma [3.13] and we write

opp F(EFPE s _ o @ ETE Oy o s (hPe) o

(4.20) Vh +¢’,7(£)
w L TP w
+ O (D(——="2))Op}y (Z(€) (1 = ) (°€))v,
vh
for B > 0. The second term in the right hand side represents a remainder R;(v) satisfy-

ing the two inequalities of the statement just because f(”\%g)) S 1 o(1) (so, for instance,

||Op%’(f(x+%£)))||L(HZ+1;W£,OQ) = O(hfé) by Sobolev inequality (3.8) and proposition [3.11)) and

(1 — x)(hP€) is supported for [¢] > h™P so that we can use essentially lemma 3.13l

On the other hand, since |9°T| < (€)= and 2(€)y(hP¢€) € h=75p 5(1), with

(4.21) o= {pﬁ ifpeN

0 ifp<O
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we use the composition formula of lemma [3.10] for the first term in the right hand side, i.e.

w Tt ' w w T+
(422) O (L om (e = on (SOPOTCEED) Yot oo,
Vh Vh
where 7o € h2 7S, (<x+f}(£)> ). So Opy(ro)v satisfies inequalities (4.17)), respectively
by propositions [3.11] ‘ 1 and [3.12 O

Lemma 4.3. Let F(f) be a smooth function such that |0O‘f] <67, ez, €) € S55(1), d(x,€) €
Sr0(1), with 6,6" € [0, 5[, B> 0. Then

4z Ok () = o OF Lt p0) 1
with r € S%ﬁ(l), and

a2 ok el OF I oy (©))0p el < W eolzn + Dol
(4.25) }|0pz“(c<x,ef<“fp};@><x+p'<e>)0ph ol < BT (1L 0] 2 + llel)

with o = o(8,8',8) = 0 as §,',8 — 0.

Moreover, if I = T_y, with [0°T_1| < (€)1, then in [@.23) r € S%’ﬁ(<x+\l/);;(§))_1), and the L™

estimate can be improved

420)  [0p (el O (" EE) o+ @) OB (ol < 0 e0lzn + ol
Proof. The result is immediate if we use the development of proposition at order one,
ol T s 4 (0)) = el OF L) 04 ()
(4.27) Vh . \/er ©
+ 5 {e@ oD @y f 4
where r; € ™28 1 5(1), while by direct calculation the Poisson bracket is equal to:
{ete. OFCHE) @100} =TT e - o),
f(z+\%£))(8§c —p"0c) € h*‘SS%ﬁ(l). Therefore
0 (el OF L 04/ (€) O (¢ -
(1.25) = h0p (el ST LED ) cop o
h - /
- Q—Z,Opf‘/j (I‘(x—i_\fph(g))(ﬁgc — p"0zc) + 2ir1) Opy (v,

and the application of proposition along with Sobolev injection , immediately im-
plies that the second term in the rlght hand side satisfies estimates , Moreover,
[£,0p¥ ()] = i(8ec — p"8,c’) + R =21, 1 being a symbol in Sy (1) hence 1t belongs to
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Y Ss1.0(1), and its quantization is a bounded operator from L? to L? by proposition up to
a small loss in h=%. This remark, together with c(x,f)f(%\/%(g)) € S%ﬁ(l), d € Sy o(1), propo-
sition and Sobolev injection imply that also the first term in the right hand side verifies
estimates in , - The same reasoning as above can be applied when F = I'_; with

|0°T_1| S (¢ ) ~<. In this case, the development in is justified by lemma [3.10, Moreover,

(;EJ:]}(&)) stay in S (<7x+\pf(£)>

instead of Sobolev 1nJect10n to control the L°O norm, losing only a power h™ 1o for a small
o >0 (and not h~ 2 due to Sobolev estimate) and so deriving the improved estlmate . O

symbols involving ¢(z, £)I'— 1), so we can apply propos1t10n 3.12

Pr0p051t10n 4.4 (Estimates on vy.). There exist s € N and a constant C > 0 independent of h
such that vAC can be considered as a remainder R(v) satisfying (4.15) -, -

Proof. Firstly, we want to reduce to the study of the action of Op¥(1 —I') on v and not on v*>,

SO we can use lemma withT'=1— v, obtaining

29 op (=) — o (s 0 - LD o+ i),

where R(v) satisfies (4.15)), (4.16)). Then it remains to analyse

ont (SO - ) o

We write the symbol of the operator as Z(ﬁ)x(hﬂf)F,l(%\/%g))(H%S)), with I'_1(§) = %,

and we can apply the previous lemma with c(z,£) = X(&)x(h?E) € h™78 (1), o as in ([E.21)),
d(z,€) =1, to derive that it is a remainder R(v) satisfying (4.15]), (4.16)). O

We want to apply first Opy’(X(€)) to . As Opy’(X(§)) commutes with Dy — Op? (x€ + p(&))
(because %(D) commutes Wlth Dt (D)) we obtain the equation:

(430)  (Dy = Opf(a +p(©))v™ = hOpy ()| Y- Opulma)(vr) + Y Opalis)(vr)]
[1|=3 |1|=3

Then, we apply also Op}’(T") to (4.30), so we have to calculate its commutator with the linear
part of the equation, as done in the following:

Lemma 4.5.

(4.31) [De — Op}; (€ + p(£)), Op}; (T(x,€))] = Opjy(b)
where
_ 2+ () z+P (&), , ;3.

re S;O((mt’/’%g))_l), and T'_1 satisfies |0°T _1(€)| < (€)=,
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Proof. First we start by calculating [Dy, Opy (I')] = D;Opp(I") — Opy(I') Dy -

(4.33)
. THY 4 o/ (h
D;Op} (D)v = lat [;ﬂ/ / e’(x‘y)gv(w)v(t,y) dydf]

;7}:: [277 / / e (h@) (t,y)dyd§]

T &) Y (h)he
g | [ et PR 1) dyde

Vh Vh
z+ z+
i(x—y)E o/ y+p(hf) y+p(h£)
4m// e (N (2 ()

e AP (hE)
- i(x—y) 2
w30 [ [ R D) dys

v, O b (et () @+ )
PN ) o - Do () )

= ih Opy, (W'(
+ Op¥(T) Dy

Then, using (3.14) and (3.16|) we write

wW w h W € + !
@31 Op€). 0w+ p(€)] = F0p (R a4 p@}) 4 1o,
with ro € h%S%D((w\/%(&))_l) from lemma |3.10, since 0°T" € h_‘%‘S%’O(@tl;%(é))_l), 0% (x€ +
P'(§)) € So,0(1) for |a| = 3. On the other hand, developing the braces in (4.34)) we find
h z+p/'(8) , ( i A p"(§)£>
—Opy) , x€ + = —ih Op}/
, +7'(8), =+ >
+ hO w 1T ,
o (/(“HEE L))
so when we add it to [Dy, Opy’(T")] calculated before, we obtain the result just choosing I'_1 () =
1./
27 (8)- o

We apply Opy’(I") to equation (4.30). Using lemma we obtain

(D, — Opf (& + pl€))vF = h Opy (D)0} (2) | Y- Oplmp)(wr) + > Opi(ir) (v1)
|1]=3 [1]=3

r+p' (&), x+p(§) % 3w N
YLD ) o ndopgr)e®

res 1 70((%\;8)*1), where the second and third term in the right hand side are of the form

(4.35)

 hOpY (r_1<

h

hR(v), R(v) satisfying the estimates (4.15)),(4.16). In fact, using lemmawith f(f) =T_1(§)¢&,
and lemma we have

(4.36)

w z+p' (&), x+p (&) oE — Opv 5 z+p' (&), +p (&) ; ;
Op: (r_1< 2L >) _ op <E(€)x(h T >)  R@)

= R(v),
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while r can be split via a function y as in lemma 3.13|7 with 8 > 0, obtaining r(x, &)x(h%€) €

S1 5((%%5 to which we can apply proposition [3.12, and r(x, £)(1 — x)(h5€) to which can
27

be instead applied lemma Then also h%Op}f(r)vE = hR(v). Therefore, the equation we
want to deal with becomes
(4.37)

(D — Opy (a€ + p(€))ok = hOp(T)OP(Z) | 3 Opn(mi)(or) + S Opulin)(vn)] + hR(),
|1]=3 11|=3

with a remainder R(v) which satisfies (4.15]), (4.16].

4.3 Development at { = dp(z)

The next step now is to develop the symbol of the characteristic term in the nonlinearity, i.e. the
one corresponding to I = (1,1, —1), at £ = dip(z). This will allow us to write it from |v¥[*v} up
to some remainders, transforming the action of pseudo-differential operators acting on it into a
product of smooth functions of x. Such development is not essential on non characteristic terms,
which will be eliminated through a normal form argument in the next section. However, some
results, such as proposition and lemma apply suitably also to non characteristic terms,
so we will freely make use of them to get some simplifications.

We want to prove the following result:

Proposition 4.6. Suppose that v satisfies the a priori estimates in (4.12)), (4.13)). Then there
exists a family of functions Oy(x) € C3°(] — 1,1[), real valued, equal to one on an interval
[—1+ch?8,1 — ch?P], |0%04|| L = O(h™28%), for a small B > 0, such that the nonlinearity in
(4.37) can be written as

(4.38)

ey (2)0n(x)[vx *vx + hOpy (T) | @5 ()0 () (vy)® + %4 (2)6) () vy vy + q>§3(x)9h(g;)(v§)3]

+ hR(v),

where @?(x) are smooth functions of x, |<I)j2(x)| = O(h™7) on the support of Oy, for j €
{3,1, -1, =3}, and where the remainder R(v) satisfies estimates (4.15)), (4.16)), witho = o(5) >0

small.

Before proving this proposition, we need the following general result.
Proposition 4.7. Let a(x,§) be a real symbol in S50((§)?), ¢ € R, for some 6 > 0 small. There

exists a family (0,(x))n, of C°° functions, real valued, supported in some interval [—1+ ch?? 1 —
ch?8], for a small B > 0, with (hd},)*6), bounded for every k, such that

(4.39) Opy, (a)v = Op(z)a(x,dp(z))v + Ri(v),

where R1(v) is a remainder satisfying estimates (4.17)), , with o = 0(B8,0) >0, 0 — 0 as
8,0 — 0. The same equality holds replacing v by v™.

Proof. In order to develop the symbol a(z,£) at £ = dp(x) we need to stay away from points
x = +1, so the idea is to truncate near A and to estimate different terms coming out.
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First, let us consider a function x € C§°(R) as in lemma [3.13] 8 > 0 small. We decompose
a(z,§) as follows

(4.40) a(z,€) = a(z,x(h¢) + a(x, £)(1 — x)(h€).

It turns out from symbolic calculus, proposition lemma and Sobolev injection ,
that Op¥'(a(x, £)(1 — x)(hP€))v is of the form Ry (v), if we choose s > 1 sufficiently large, so we
have just to deal with a(z,£)x(h?¢). Since this symbol is rapidly decaying in |h?¢|, we notice
that, to prove that the estimate holds for terms of interest, we can turn the H ,’i norm into
the L? norm up to a small loss in h, and then simply estimate the L? norm of these terms. This
is obvious when p < 0, for H} injects in L?, while for p € N this follows using the definition
, symbolic calculus, and the fact that (€)Px(h?¢) < h™P8. Therefore, it is sufficient for
our aim to prove that terms coming out are remainders R(v), in the sense of inequalities ,
(4.16)).

Secondly, we consider a smooth compactly supported function v € C§°(R), v = 1 in a neigh-
bourhood of zero, with a sufficiently small support, and we split a(z, £)x(h?€) as

z +p/'(§) 1’+p’(€)>
Vh Vh
Again, the second symbol in the right hand side gives us a remainder. In fact, since (1 — v)(&)
is supported for || > i, we can write
z +p'(§) w+p’(§))(ﬂf+p’(§))
Vh Vh Vi
where T'_1(€) = 20 90T 1(¢)] < (€)' Lemma [1.3] with c(z,£) = a(z, ©)x(h?€) €
h=?S55(1), o > 0 small (either equal to g8 for ¢ > 0, or to 0 for ¢ < 0), ¢(z,§) = 1, implies
that Op! (ol )X (WPET 1 (HLE) (L)) o satisfies (T5), (ET0).

(4.41) a(z, x(h’€) = a(z, &) x(hPE)~( )+ a(x, )X (hPE)(1 — ¥)(

(4.42) a(z, )x (7€) (1 — ~)( ) = a(z, E)x(hPET _1(

The last remaining symbol is a(z, f)x(hﬁg)fy(%\//ﬁ(é)), which is supported in {(z,£) € RxR } €] <

Coh™8 | ‘%\/’E@)’ < as}, so x is bounded in a compact subset of | -1, 1[ of the form [~1+4ch?#,1—
ch?P], for a suitable positive constant ¢. We may find a smooth function 0y,(z) € C5°(] — 1, 1[),
0n =1 on [—1+ ch?%,1 — ch?P], satisfying ||0%0 ||z~ = O(h~2*), and write
z+p'(8) 96+P’(§))

Vh Vh

Since on the support of 6, we are away from x = +1, we may now develop a(x, &) at £ = dp(x),

(4.43) a(z, )x(h7€)y( ) = a(z, )0 (z)x(h"€)(

1
a(z,§) = a(z, dp(x)) + /0 Oea(w, 16 + (1 — t)dp(x))dt (§ — dp(x))

(4.44)
= (e dip(a)) + b, ) a +/(6)).
where
| sl B O Sk G))

(4.45) €)= [ Ocalonte+ (1= Ddpla)) 0.

Then,

(4.46)

ala 0@ (h* (" EED) = ata,dpt@) ) + ol dpta))n(o) [P (D) 1]

U PO w40,
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Let us call I; and Iy the Weyl quantizations respectively of the second and third term in the

right hand side of (4.46]). We want to show that they satisfy (4.15)), (4.16)).
First we analyse the third term in the right hand side of (4.46)). We may find another smooth

function %, with a small support, such that

m+p’(§)) z+p'(§)
Vh Vh

From a € S5((£)9) and lemma B(x,€) = b(x, ) x(WPEFE)?(z + p/(€))) is an element of

h°S05,5((€)*T) € K78y (1),

(4.47) X(P7€)( = x(h7&)n( A& (x +p'(€))).

for 6’ = max{d,28}, o > 0 small depending on 3 and . Moreover, |0%y(£)] < (£)7172, so lemma
implies that OpY (B(z, &)y (ZJFP )(m +p/(€))) is a remainder h%R(v).

On the other hand, I; has a symbol whose support is included in the union {|¢| > C1h~#} U
{|I+p | > a1}. Take ¥ € C°(R), X = 1 in a neighbourhood of zero, suppx C {|¢| < C1h~"},
SO that xX = X. We make a further decomposition,

x(h%)v(”fi@) —1=
(448) = (x(h%)v(g”*fi(% _ 1) R(hoE) + (X(hﬁé)v(xt%(% - 1) (1- %) (h%)
_ (w”““t}j;“)) - 1) W09 + <x(h5§)'y(x+\%<§)) - 1) 1)),
a:+p

The first term in the right hand side is supported for | | > a1, so it can be written as

>z<hﬂe>rx“j%'(f))(“fﬁ'@),

and it is a remainder by lemmal[£.3] Besides, the second term in the right hand side is supported
for [£| > C1h™ ", so0 it is essentially an application of lemma to show that it is a remainder
R(v). This shows finally that the development in holds. For the last statement of the
proposition, one can show that the same proof we did for v can be applied for v*, just changing
a(z,§) into a(z,£)X(€) trough lemma [4.2] when needed, and for a new o > 0 depending also on
p.

O

Proof of Proposition[{.6 The idea of the proof is to develop all symbols my(&), m;(€) occurring
in the cubic nonlinearity at £ = dp(x) using the previous proposition. Remark that, when
1 = —1, v;, = v and we have

(4.49) Opp(mi(£))v = Opp(my(—§))v = Opp(my.(ixé))v,

so the development at { = dy(x) will give us a term my(irdp(z))v;, , since my (&), dp(z) are real
valued.

We first write Opy (i (€))vs, = Opg(mi(€))vs, = Opf (mi(€)S(E)~)oZ = Op (mF () (fol-
lowing the notation introduced in (4.11)) - remind that classical quantization coincide with the
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Weyl one on symbols depending only on &) and then we apply proposition From a-priori esti-

mates (1.12), [(.13), we have [|mj; (ixdp(2))0n(2)v;; | = O(h™7), |y (irdip(2))0n ()0} | 5y =

O(h™7), for a o > 0 depending on 3, so we immediately obtain that

3
Opp(mr)(vr) Hm (ixde(x))0(z )vzzk + R1(v),
k=1

R (v) satisfying estimates (4.17)), (4.18), and we can perform the passage from the term
(4.50) > Opu(my)(vr) + Y Opp(ir)(vr)

1]=3 1]=3
to its development

(4.51) Z m¥ (dpr(2))0p(z)vF + Z mr (dpr ()0, (z)vF + Ri(v).

[1]=3 |I|=3

The nonlinearity in (4.37) becomes

h Opy, (T')Opy, (X Z my (der(x))0n(x)v7 + Z my (depr())0n(x)v7
[7]=3 |7]=3

+ hOpj (1) Opy; (X(8)) R (v),

where R;(v) satisfies , so that Op)(I')Op}’ (X(£))R1(v) is a remainder of the form R(v),

satisfying the estimates - ), by propositions |3.11] u and [3 -

The following three lemmas allow us to conclude the proof. In particular, we underline that in
lemma we only need an L? estimate on what we denote R(v), because we will apply to it the

(4.52)

operator Op¥(I'), which is continuous from L? to L* with norm [|Op¥ (Dl e(r2sz00) = O(hfif")
by proposition [3.12 O

Lemma 4.8. Let I = (i1,1i2,13), ix € {1,—1} for k =1,2,3, be a fized vector. Denote by A(&)
the function X(€)x(hPE), with x as in lemma B > 0. Then

Opk((8)) (mF (dpi ())0n (e (Zudso ) )mF (dr ()0 (2)0F + hER(v),
(4.53)

O} (2(6)) (F (dir (2))n(2)0F) = A( Zudw ))F (dor (2)0()0F + hER(v),

where R(v) satisfies the estimate (4.15)).

Proof. Before proving the result, let us make some observations: first, in all the proof we will
use generically the letter o to denote a small non-negative constant depending on 3, that goes
to zero when f3 goes to zero; the symbol $(£) can be reduced to %(€)x(h?€) € h=9Sy (1), o as
in (4.21), up to remainders (essentially using lemma [3.13)); from the a priori estimates (4.12)),

([13) made on v, we have ||m¥ (der(x))0n(z)vy| 2 = O(h™°).

Let us consider a smooth function 6,(z) € C§°(] — 1,1[), such that 6;,0), = 6, and let us write

my (der(x))0n(z)or = O (@)my (dpr(x))0n(x)or
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We enter 6, (z) in Op¥ (3(€)x(h°€)) applying symbolic calculus of proposition to be able to
3
develop the symbol at £ = Z iide(x). We have
=1

(4.54) SE)x (W0 (x) = (€)X (W0 (x) + 70,

with rg € hl_"S(;,g(l), 6 > 0 small, so proposition implies that its quantization gives a
remainder as in the statement, when applied to m¥ (dp;(z))0s(x)vy. Now, since we are away
3

from = 41, we can develop A(¢) = 2(€)x(RP€) at € = Zildgo(x) by Taylor’s formula, i.e.

3 3
(4.55) A() = A( D adp(@)) + A, (€ — Y indip(a)
=1 =1
with
1 3
(4.56) Az, &) = / A(te+ (11N idp(x))) di
0 =1

A'(z,€)0),(x) belonging to h~7S50(1). To conclude the proof, we also need to show that
1
Opi! (A (2, )0 (w) (¢ - Zzzdw ) (¥ (der(2))0n(2)0F) = hER ()

So let us consider a new function éh(x) € C5°(] — 1,1]), such that ghéh = 6. Since 0),(& —

3
Z iidp(x)) € h™7S550((§)), and using symbolic calculus of proposition we write
=1

(4.57) Az, §)6’h ( Zzldap ) Al(z, )0y (2 Zzldga )+ 70,

where 7(, € h1_055,0(1). Again proposition and the uniform bound on v imply that
Op¥ (14)(m¥ (dpr(z))0n(z)vy) is a remainder h2 R(v). We can focus on the term

~ 5 3
(458)  Op (A, €)0n(2))Opf (Bu(@)(€ = D irdp(w)) ) (mF (depr (@) O (2)0F)
=1

and we can go further, limiting ourselves to consider the action of these operators when v? is

replaced by
(4.59) WY = H Op2 (2(6)x(hPE))vy,

again up to terms with symbols supported for |¢| > h™#, which are remainders from lemma

The operator Op}’ <9h Z iidep(x ) has a symbol linear in &, so
- 1, - 1- .
Op (Qh(x)(f - Z ildgo(x))) = ShD.0n(x) + 50n(@)hDs = n(x) Y irdip(a)
(4.60) = i =
_ 0 (@)
=h 9 + Hh Z 7fld90
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and if we choose éh such that éheh = 0}, we have that ‘% = 0 on the support of 6, giving no
_ 3
contributions when hahT(z) is multiplied by m¥ (der(x))0n(2)v?. Here (hD, — Zildgo(a:)) acts

=1
like a derivation on v?, so the Leibniz’s rule holds and

Ot (O ()€ - Zzldso )) (mF(dior (@) (@)0]) =

%2

(461) = Zudso (mF (der(2))6n(x)0?)

3
— (WD (m (dior(2))0h ()] o) + mF (dir (2)) B (2)0n (@) (WD — 3 indip(x)) (o)
=1

Then, if for instance v = (v9)? (i.e. I = (1,1,1), and the same idea can be applied with [v%]?v?,

[v0|209 and (v9)3), we derive
On(x)(hDy — 3dip())(v°)? = 3(v°)*01(z) (hDy — dip(x))0”
= 3(v")?0p}; (On () (€ — dp()))0° — %héﬁz(fv)(vo)3,

using the relation in the last equality (however, the second term in the right hand side
disappears when we mJect - in - Now we can re-express the first term in the right
hand side from hLv". In fact, up to further remainders, Op}’ (0 (z) (€ —dp(z)))v° can be reduced
to Opt (On(z)x(hP€) (€ — dgp( )))v°, and this term can be split with the help of a v € C§°(R),

v =1 in zero, namely

(4.63)

(4.62)

Ont () X(17)(€ ~ apta))) o° = Ot (oL e~ dplo) ) o
+0pt (Bl )1 =) LE e gt ) o

Both terms have an L? norm controlled from above by
Ch™7 (1€l 2 + [[v]l ) -

In fact, on one hand, we can take up the observation made in (4.47)), and rewrite the first term
in the right hand side as

PR te)) o

where é4 is defined in (3.32). On the other hand, also the symbol associated to the second
operator in the right hand side can be rewritten highlighting the factor (x + p’(€)), as follows

()X (H°€) (HW)) 1 -0 1 ey,

(4.64) Oy (éh@:)x(hﬁsm

z +p/(§) Vh
with 0y, (z)x(hP€) (igp(&))) (1-— ’y)(%\/ﬁ(g)) € h” "S% (1). Then, to both operators we can
apply lemma for ¢(z, &) respectively equal to 0, (z)x(RP€)é, and 6y (z)x(hP€) (iﬁf@)

d(z,€) = B(6)x(hBE), obtaining that they satisfy (4.24). Summing all up, together with -,
(4.61)), , the fact that A’(z,€)0),(x) € h~7S50(1), and propositions [3.11, we obtain the
result of the lemma. O
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From now on, we will denote by ®3(x), ®T(z), ®*,(z), ®*;(x) respectively the coefficients of
(v™)3, o™ 2™, |07 [20E, (v=)3. Since they come from m¥ (dpr(x))0n (), M7 (der(x))0p(x) which
are O(h™7), for a small o > 0, they are also O(h™%).

Lemma 4.9. With same notations as before,
(4.65) Opyy (D) (7 ()01, (x)[v™|*0™) = ®F ()04 (2)[v™[*v™ + R(v)
where R(v) satisfies estimates (4.15)), (4.16]).

Proof. Let us write Opy(I') = 1 — Opy’(1 = I'). We want to show that the action of Op}’(1 —T)
on &5 (z)0)(x)|v*|?v* gives us a remainder R(v). First, we can reduce the symbol 1 — T to
(1 — T)x(hP€), with x cut-off function, 8 > 0, up to remainders from lemma 3.13l Moreover,

we can consider a smooth function 8, (x) € C§°(] — 1, 1[) such that 6;,0), = 0),, and use symbolic

calculus to enter 9:h(:c) in Op?((1 — I)x(kP€)) (again up to a remainder R(v)). Then, we can
write

466 (1= DN ) = bl 0T (L o)(e - dpla)).
where b(z,§) = X(hﬁﬁ)éh@)(g:f;(é))) € h™7855(1), I'_1(&) = u}w, 0,6 > 0 small depending

on 3, and 6 (x) a new smooth function in C°(] — 1,1]), identically equal to 1 on the support of

éh(x) Applying symbolic calculus of lemma [3.10, we derive

(4.67)
b O (R @)(€ - o) = bl T (EEED L 016 - do(o)
+50 {ote 9r (D o) e — ot}
+7r1,
with 71 € h%_"S%ﬁ“%\/gé)flL for a new small ¢ > 0. An explicit calculation, and the
observation that HNL = 0 on the support of th, show that the Poisson bracket is equal to
P2 [BuGo) - Oeb(o, Pp(a) - Dub(a )] +
(4.68)
N AN R AN [—d% z)p”(§) — 1]
and since x + p/(dp) = 0, we have —d?p(z) = W and
(4.69)
5 _d290(x> ") -1 X(hBS)QN (z) " -
B _ _ o
i) [ ~EE L) XOIRED [Fyne i (1— fagtyar e nsa0).
Therefore, from I'_y (Z28)) 17 (22O ztp©)) ¢ S1 (<M>_1), other appearing symbols

Vh Vh Vh Vh

in (4.68) belonging to h™7.55 (1), we can rewrite the second and third term in the right hand

side of (4.67)) as h2=r, with r € S1 /3(<"B+\%5)>*1), so their action on ®F ()0, (z)|v™|>v> gives
5>

us a remainder R(v) by propositions [3.11} [3.12] In this way, we are reduce to estimate

@10 S-0p (e 9T EED) ) 0p (01016 - dpla)) @ @),
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Taking up (£.59), [@.60), (£.61) for I = (1,1,—1), we obtain that Opy (6 (x)(& — dp(z))) acts

like a derivation on its argument and

(4.71) 10D}, (B1(2) (€ — dip())) @Y ()01 (@) 0™ ™| 2 < OB (Lol 2 + [|vl| )

for a new small ¢ > 0 still depending on 3, so the fact that b(m,ﬁ)F,l(%\/%(g)) belongs to

S1 5((%%1), along with propositions[3.11}3.12, imply that the term in (4.70)) is a remainder
2 9
R(v) satisfying (4.15]), (4.16]). This concludes the proof. O

Proposition allows us to arrive at the following equation
(Dr = Opy; (w6 + p(&))vy =h&y (2)0n(x)[v™[*v™ + hOp}y () [@5 (2)0n () (v*)°

(4.72) + 05, ()0 ()05 205 4+ q)§3($)9h($)(172)3] + hR(v),

which is not entirely in v%, so to transform to the right equation we use the following lemma,
whose proof comes directly from proposition [£.4] and this is the reason why we omit the details.

Lemma 4.10. Under the same hypothesis as in theorem[{.1], there exists s > 0 sufficiently large,
and a constant C' > 0 independent of h, such that

1o

(4.73) lo7 = (wX)illpe < CR2=7 (| Lol g2 + lloll;) -
1o

(4.74) lo7 = (vX)1llze < ChT™7 (L0l 2 + [lv]la) -

for a small 0 > 0 depending on (3.

Therefore v% is solution of the following equation :

(D — Op (i + p(€))0F = hF (@)1 (x)|o% 20X + hOp (1) [9F (2)0 () (%)
+ O, (2)0n (1) [oX 0% + O3 ()00 (2) (0F)°] + hR (),

R(v) being a remainder satisfying estimates (4.15]), (4.16].

(4.75)

To conclude this section, we develop Op¥ (z€ + p(€))v¥ at & = dp(x).
Proposition 4.11. Under the same hypothesis as in theorem [{.]]

(4.76) Opi; (€ + p())vx = ¢(@)0n()o + hR(v),
where R(v) satisfies the estimates in , . Then, v% 18 solution of the following equation:
Dy = p()0n(2)0F + hOF (2)6n(2) |03 203
(477 + OB (D) [0F ()00 () (0F)° + 0%, ()00 () [0 0T + B4 ()00 () (0F)°
+ hR(v),
Proof. Consider a cut-off function x as in lemma [3.13] and 8 > 0. One can split as follows
(4.78) vx = Opi (X(WPE)T (2, €))v™ + O (1 = x) (&L (,€))v*

and easily show that Op¥ (z£+p(€))Op¥ ((1—x)(RPE)T (x, €))v® is a remainder of the form hR(v),
R(v) satisfying estimates (4.15)), (4.16]), just using symbolic calculus and lemma
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Therefore, we have to deal with Op¥ (z&+p(€))Op¥ (x (hPE)T (x, £))v™. We have already observed

that for (z,€) in the support of X(hﬂﬁ)fy(%\/%(s)),  is bounded on a compact set [—1+ ch?, 1 —
ch?P], which allows us to consider a smooth function 8y, (z) € C§°(] — 1,1[), identically equal to
z+p/(€)

one on this interval, and then on the support of X(hﬂf)'y(T), so that:

w+p’(§)) w+p’(§))
Vh Vh
Moreover, the derivatives of 6, are zero on the support of 9%(x (h’¢ )7(%/(5))), for every multi-

vh

index a. This implies that products of 6 (x) with X(hﬁf)’y(ﬂf/}%@)) and all its derivatives are

(4.79) X(hPE)( = O (2)x(hP)~(

always zero so, by lemma [3.10}

z+p'(§) z+p'(§)
Vh Vh

s({x)7), for N as large as we want. In this way we can factor out 6y (),

(4.80) On(2)x (hE)~( ) = On(x)x(R7€)( ) + Too s
where ro, € BV S

write the equality

o=

Ol (€ + p(€))Op: (eh<x>x<hﬂm<“m>) 5

(4.81) i)t
. _ ow w 8 z+p'(§) b
— Opat + )10 (T ) % s i),

and return to v% by

asy ot (e (EED ) = of - opp (1 - a0y () )om.
Then,

Opta€ + p)0nx)0p (129 (L )=
" Op} (€ + p(€))0n (@)X — Op (2 + p())0n(w)Opy (1 x(hﬁf))v(QH;%(Q))vE !

and one can show that the second term in the right hand side is a remainder hR(v) essentially
using symbolic calculus, lemma [3.13] and Sobolev injection. Symbolic calculus enables us also
to put O (x) in Opy’(z€ + p(§)), as the following deduction shows,

(4.84)
Opy (€ + p(€))0n(z)vx = Opy (€ + p(€))0h(x)) v} + %Opz” (6, (2)(z + p(€))) vy + hR(v)
= Opy ((x€ + p(€))0n(x))vx + hR(v),

with R(v) satisfying (4.15), (4.16)), using proposition and Sobolev injection. In the last

equality, 20p¥ (6}, (z)(z + p'(£)))v} enters in the remainder, for 7(x+\1/9;;(§)) € S;O((%\/%(EU”)

by lemma [3.15 0 (z)(z + p'(€)) € h™%S50(1) for a small § > 0, and using symbolic calculus.
Actually, we first write
(4.85)
h h2 x+p (&), x+p (¢
(0 apy(EE LA (21

50k (Bh(2)(w + 1/ (€))% = 5 -Opi (6 = v

))vE + h%Op}‘L’(m)vE ,

o1



where rg € h_Q‘SS%,O«%\/%@)_l), and then we use lemmawith L(€) = ~(€)¢, and lemma
to deduce that it is a remainder hR(v).

We can now analyse Op¥((z€ + p(€))0n(x))vy. As we are away from points x = &1, we can
develop the symbol x£ + p(§) at £ = dp(x), and since O¢(z€ + p(&))|¢=dp(x) = 0 We have

1
af+p@%—me)+MwM@)+K;ﬂ@é+0—¢ﬂw@»0—iﬂﬂ§—wﬂﬂf
= wdp(x) + p(de(x)) + bz, &) (z +p'(£))?,

(4.86)

where

_ ! " _ _ f—d(p(l‘) ?
b6 = [ 91+ (1= @)1 - ar (£

Observe that xdp(z) + p(de(z)) = ¢(x). To conclude the proof, we need to show that

Opiy (b(z,€)0n(2)(x + p'(€))?) vy

gives rise to a remainder, too. First, we may consider a function y as in lemma g >0, and

split b(z, €)65 () (x + p'(€))? as the sum of bz, €)6) () (x + p(€))(1 — x(h7€)) € h™7S50((£)?),
for small §,0 > 0, whose quantization acts on v% as a remainder because of lemma and

b(x, )0 (z)(x + p'(€))2x(hPE). For b(x,&)0n(x)x(hP€)(x + p' (€))%, we can perform a further
splitting through a function 5 € C§°(R), such that % ((€)*(z + p'(€))) = 1 on the support of

(PO (=5, fe.
b(z, €)0n (x)x(hP€)(x + (€))% (€)% (= + 1'(9)))
+b(@, €)0n ()X (h%(azw(s))?( —3) (€)= +9(€)) -

As discussed before, this implies that (1 —)((£)%(z + p/(£))) and all its derivatives are equal to
zero on that support. Since b(z, £)0y,(z)x(RP€)(z + p'(€))*(1 —7) (€)% (z + p'(€))) € h7S55(1)
for 0,9 > 0 small depending on /3, one can apply symbolic calculus (up to a large enough order)
to obtain

(4.87)

z+p'(€)
Vh

/
00 9

(4.88) b(x, €)0n(2)x(h7€) ( +p(€))*(1 = 7) () (= +9'(€))) t(

)=r
with 7 = hV.Sy 5(1), N sufficiently large, to have
29

O}t (b, 0@ (€)@ + 1 (€)*(1 = ) ((©%( +P/(€))) ) v} = hR(v).

On the other hand, B(z,£) = b(z,£)0n(z)x(RPE)F((E)*(z + p'(£))) belongs to h=7 S5 5(1), for
0 > 23, by lemma |[3.14] Using twice lemma [3.10, together with the fact that 'y(xﬂ?/(g)) €

Vh
S o((HZE) =3) and B(w, €)(w +p/(€))? € W77 85,5((Z5E)2), we derive

x+p/(§)
Vh

z+p' (&)

T )z +p'(€))* + hro,

(4.89) (B(z,&)(z +1'(€)?) #(

) = B(z,&)(

and




where 79, 7( € h%_05%75(<x+§%5)>_1). Therefore
(4.91)

(Bl &)@ + 7)) tiv(xt%(@) - (B(asn(“}j;@)(x +p'<s>>) o+ 9/(6)) + h(ro—r))
and
(4.92)

O (B, €)(o + /(€))% = h0 (Bl (L w4 59 £0% 4 10 10 = 710

so one can show that the right hand side is a remainder hR(v), commutating £ with Op}y’(X(€)),

using that B(x,f)’y(%\/lﬁ(g))(a: +p'(§)),ro—1( € h%*"S%ﬂ((%\/lﬁ(g)fl) , and propositions |3.11

We finally obtain
(4.93) Opjy (€ + p(§))v = p(2)0n(x)vx + hR(v),

and according to ([{.75), vy is solution of

Dyvy = ()0 (x)vy + h®y ()0 () 5oy

(199 + OB (D) [0 (2)0n(2) (0)° + B, ()00 () [0F 0T + B4 (2)00 () (0F)°
+ hR(v),
where R(v) is a remainder satisfying estimates (4.15)), (4.16]). O

5 Study of the ODE and End of the Proof

5.1 The uniform estimate

The goal of this subsection is to the derive from the equation an ODE for a new function
fE obtained from v%, from which we can deduce uniform bounds for v%, and for the starting
function v, with a certain number p € N of its derivatives. The idea is to get rid of contributions
of non characteristic terms (i.e. of cubic terms different from |v¥|?vY) by a reasoning of normal
forms. This will allow us to eliminate all terms still containing pseudo-differential operators, to
finally write an ODE, and to prove the required L estimate, if the null condition is satisfied.

In the previous section, we denoted by ®3(x), ®F(z), ®*,(x) and ®*;(x) (modulo some new

smooth terms) respectively the coefficients of (v¥)3, [v¥|?vY, |v¥[>v}, (v})? in the right hand
side of . One can calculate them explicitly, using both the expression of the nonlinearity
obtained in proposition and its polynomial representation as in equation . In the latter,
after the development at £ = dy(x), we essentially replaced hD by dp(x) when it is applied to

vY, and by —dp(z) when it is applied to v¥, modulus some new smooth coefficients ar(x) :=
3

A(Z idp(x))X(de(z)) 73, for every I = (i1,i2,i3) (the factor ¥(de(x))~® coming out from
=1

We are interested in particular in ®7(z) or, to be more precise, to its real part. In fact, the
null condition introduced in definition at the very beginning is the same as requiring for the
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coefficient of |v%|2v% to be real, i.e. its imaginary part must be equal to zero. Since polynomials
P/, P/ are real as well as dy(z), (dp(z)), the only contribution to the imaginary part comes
from P}, P} for k = 1,3 (which have a factor i¥) and produces a multiple of the function ®(x)
defined in . Therefore, if we suppose that the nonlinearity satisfies this null condition (as
demanded in theorem then we find for ®7'(z) that

BF(r) = an(@)lde) ™ [3Po(1L dolde), (do)?: (dip), de)

(5.1)
+P(1, dp(de), (de)?; (dy),dp)] -

Proposition 5.1. Suppose we are given two constants A", B" > 0, some T > 1 and a 0 > 0
small. Let v% be a solution of the equation (4.77)) on the interval [1,T], v% satisfying the a priori
estimates

(5.2) [vx (£, )l ) < A,
(5.3) lox (¢, ) 2@y < B"eh™7,

for all t € [1,T). Let O(x) € C°(] — 1,1]), such that 0,0), = 6y, and define

(5.4) ~ N
2= o} + Op(T) —g il((:j)) 5 ()P + 10n(@)

ﬁéh(x) by
2 () ®

4 QD(.%') —3('%)(@)3

%, () vy "o} +

Then fl% 1s well defined and it is solution of the ODE:
(5.5) Dify = ()05 (2) fX + hop()OT ()| X2 FX + hR(v)

where R(v) is a remainder satisfying estimates (4.15)), (4.16)).

Proof. Firstly, we would like to underline that, if we suppose bounds in (4.12)) and (4.13) on v,
then hypothesis and follow immediately, because of the definition of v% as Op}‘L’(F)vE.
In fact, estimate follows from proposition and the a priori estimate , with
B” = B'. Regarding the estimate (5.2)), we can write

(5.6) vy = v¥ — Ve,

and since ||[v™(t, )|z~ = ||v(t, ')HW}’L”‘"}’

lox (&, lzoe < Jlo™ (8, Mz + loxe(t, )|z

(5.7)
= [[o(t, )lwpe + [vxe (t, )l L=

where we estimated [[v3.(t,-)| 1> in proposition Therefore, using that for o > 0 sufficiently
small hi=7 < hs, we have

1
10X (8 Mlzee < Jlo(t,)llwpe + Ch3 ([Lo(t, ) g2 + ot -)llag)
(5.8) < Ae4+CBehs—®
< A'e,

if we choose A” > 0 sufficiently large to have A’,CB’ < AT”.

o4



Secondly, ¢(x) # 0 for all z in the support of 6. In fact, we consider ), such that 6,0, = 6,
so we can suppose that its support is of the form [—1 + C'h?P 1 — C’hm], for a suitable small
positive constant C’. On this interval 22 < (1 — C"h?%)2 =14 C"2h*P — 2C'h?P| so

(5.9) pla) = V1 a? > \JCn(2 - 1) 2 1P,

0n(@) §s well defined and ]%\ < h™P. Then, set

o(x)

On ()
o(x)

with ki1, k9, k3 € R to be properly chosen, and apply D; to this expression. We have already
calculated D;Opj’(T") in (4.33)), obtaining that the commutator is

G0 1D 0p )] = it (2D ) - Fon (R R )

where both appearing symbols belong to S1 0((%%”. The truncation of these symbols
3

through a function x(h%¢) as in lemma and propositions together with estimates
(5.2), (5.3) on v%, show that the action of the commutator on brackets in ([5.10]) gives rise to a
remainder hR(v).

Denoting by O(5) all terms of order 5 in (v%,@), and using (4.77)), we can compute

(5.10) X := v} + Op}(T) [h (k1% () E>3+k2@§1<m>rv§%+k3<1>§3<x><v§>3)] :

On(x)
o(z

)
(5.12) 62 ()l (R T + 106)

Dy fx = Dyvx + Opj(T) | kih 5 (2)[30(2)0h (2) (vx)* + h*O(5)]

On(x)
p(z)

where hR(v) includes also terms coming out from D;(hf),(x)), and
Dyfx = @(x)0n(x)ox + hoy, ()@Y (x
(5.13) + Opy, (I') [hHh(w) ((3k1 + 1)®F(2)(0})® + (ks + 1), (2) v} [P}
H(=3ks + )0, (2) (o)) | + hR(v),

where h20(5) entered in hR(v) from propositions estimates (5.2]), (5.3]), and the
fact that involved coefficients are O(h™7), for a small o > 0. We use again the definition of
f% to replace vy in the linear and in the characteristic part. We have hj,(z)®F (z)[v}|?vy =

Wy ()93 ()| FY127F + h20(5) and
(5.14)

(2)0n(2)vx = @(2)0h(x) [ — ()04 (2)Opj (T) [h -

+Hhgh—2 =B (2)[—3(x)0n () () + K20(5)] | + hR(v),

)lvx Pox

(k1 9% (2)(0F)? + ka®, (@) |0F 20y

+hs®%5(2)(0F)?) |
= (@)0n(@) f7 — OpR(T) 10 (2) (1 ®F (@) (0F)® + k@7 (&) [0F U}
s @73 (2) (03)°) | + (V).
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where the last equality is consequence of the fact that, by lemma [o(x)0h (), Opy (I)]

héf"Opﬁ(ro), ro € S%7O(<M>_l), o > 0 small. Again a truncation through x(h”¢), and the

vh

application of propositions together with estimates on v%, ensure that the contribution
coming from the action of the commutator on its argument enters in the remainder. We finally

obtain

Dif¥ = o(2)0n(2) fX + hoy ()T ()| FX12 X
(5.15) + OB (D) [0 () ((2hy + DR @)(0R)? + (~2k2 + 1)@, (@)|oF 20}

(4 + 1)<1>§3(x)@)3)] + hR(v),

and we get rid of non-characteristic terms by requiring

2k1+1 =0 ki =—1
—4ks+1 =0 ks =1,

from which the statement.

O]

Proposition 5.2. Let fE be the function defined in (5.4)), solution of the ODE (j5.5)) under the

a priori estimates (5.2)), (5.3). Then the following inequality holds :

t 5
(5.16) IFx (@ lzee < X (L) oo + 0/1 T (1Lo(r M ez + v(r,)lag) dr

for o > 0 small, and a positive constant C' > 0.

Proof. Using the equation (/5.5)), we can compute

(5.17)

§t|fE<t, 2)[* = 23(fX DY)t @) = 23(p(@)0n(@) | fX[* + hOn(@) 27 (2)| 31" + hR(0) f) (¢, )

from which follows an integral inequality

ENR) (T, )| oo
(5.18) IR < 1R e + [ gy,
Using the estimate (4.16|) for R(v), we obtain the result
t
5.,
(5.19) IFX () oo < IFA ) +C/1 T (1 Lu(r, ) e2) + lo(r )llag) dr-

O]

Finally, the L estimate we found for f/% in the previous proposition enables us to propagate

the uniform estimate on v, as showed in the following:

Proposition 5.3 (Propagation of the uniform estimate). Let v be a solution of the equation
(4.7) on some interval [1,T], T > 1 and o > 0 small. Then, for a fixed constant K > 1, there
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exist two constants A, B' > 0 sufficiently large, eg > 0 sufficiently small, s,p € N with s > p,
such that, if 0 < € < g9, and v satisfies

(A1) [[o(t, e < A'e
(5.20) (B [[v(t, )y < B'eh™7,

(B2)[|Lv(t, )2 < B'eh™ ",

for every t € [1,T), then it satisfies also

/

(5.21) (A folt, g < e vie[LT).

Proof. The proof of the proposition comes directly from proposition and from the equivalence
between |[vY|z~ and ||fi|/z=. In fact, functions @?(x) are cubic expressions in dg(x) and

(dp(z)), so they are bounded up to a loss A%, § > 0 depending on 3, on the support of 0y (z),
where also () > h# > 0. This implies that |9h(x <I>E( )| < Ch™0, j € {3,—1,-3}, with a new

6 > 0 depending linearly on 3, so that by the deﬁmtlon of fE, proposition and estimates
(5.2), (5.3) (which follow from ([5.20)), as already observed in proposition , we find

(5.22) *HUA Mo < IFXE )z < 20vx(E, )z -

Furthermore, the a prior: estimate on the W{; "°® norm of v extends to the L> norm of v/E\ just
by the decomposition

(5.23) vy = 0> — Ve,
and by proposition so for example at time ¢ = 1 we have

[ (L, ) zoe < 0= (1, )l pee + oxe (L, )| poe

< lo(L, ) lwpee + C(1L0(L, )2 + [Jo(1, ) la;)
/

<
— 32K
Al
<
~ 16K

(520 cecp

€ 9

- A A
where we choose A’ > 0 sufficiently large such that HU(L')HW}‘Z"X’ < e and OB < 5.
Therefore

!/

A
(5.25) IFE (L e < 20R (1, )| ree < K

Using proposition (5.25)) and the a priori estimates (B.1), (B.2), we find that

A t s
Xt )| < —=¢+ CB'e /T4+f’dr
X @)l Sk .

!/

A
(5.26) <z 'Ble
8K€ +C

A/
< P
SAKS

where again the last inequality follows from the choice of A’ > 0 large enough to have C'B’ < é“—;(.
Then we have
A/

(527 ORI
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and

b » b
[0=(t, ) Loe < [Jox (4, Lo + [[oRe(t, )|l e
/

A / l_o_/
(5.28) < ﬁg + CB'eht
/

< —e¢.
_KE

5.2 Asymptotics

We want now to derive the asymptotic expansion for the function (hD)~'v, v being the solution
of (4.7), when it exists on [1,+o0c[. The reader can refer to the next subsection to find the
proof of the global existence of v, which implies also the global existence of the solution w of the

starting problem ([1.1)).

Proposition 5.4. Under the same hypothesis as theorem with T = +oo, there exists a
family (0,(x))n of C™ functions, real valued, supported in some interval [—1 4 ch®,1 — ch?P],
0y = 1 on an interval of the same form, such that (h0y)*0)(x) is bounded for any k, and a family

(ae)z€)0,60) of C-valued functions on R, supported in [—1, 1], uniformly bounded, such that

(5.29)
(hD)" ' = ea.(x) exp [up(m)/l 017 (x)dT + igz\ag(:r)IQCI'lE(JIJ)/l Hl/T(m)al:] + t—%-ﬁ-ar(t,m) ,

where h =1, 0 > 0 is small and stl>111) |lr(t, M r2are < Ce.

Proof. Let us take ¥(¢) = (€)7!, so that v = (hD)~!v. Summing all prevoius results, we have
obtained that under the a priori estimates (4.12)), (4.13)), the function fE defined in (|b.4)) satisfies

(5.5)), with a remainder R(v) = Opconp2 (st_%”’), for a sufficiently small o > 0. Inequality (5.17)
and the bound (4.16) show that

t 5
IFX () = fR (|2 < C/t, T (1Lo(r M ez + v(r, ) lmg) dr -

Combining with the a priori estimate (4.13]), there is a continuous function  — |a(z)| such that
[[fX(t2)]* = |a(z)]?] = O(Et_%—’—g), for a new small ¢ > 0, and replacing this new function in
(5.5) we obtain the equation

(5.30) Difx = 0n(x) [p(x) + h®y (2)|a(z)|*] fX + hr(t,z),

for r = Opeony2 (et_i‘w), which is a linear non homogeneous ODE for f{'. This implies that
there is a O(e) continuous function a such that

dr

t t 1
630 f¥(t.0) = ata)exp |ig(a) [ 0y (adar + ila@)PeF) [ 00T 414 r(00).

for a new r. Finally, using the definition of f}’ and proposition we have [|f¥ — v p2nne =
O(st_%‘“’) and |[v¥ — v¥||p2npe = O(st_%‘“’), so we can deduce from (5.31) the asymptotic
expansion for v* = (hD)™'v. Since [#.39) for a = 1 shows that v* vanishes to main order when

x ¢ [—1,1] and t — 400, we get that a(x) is supported for z € [—1,1], and we conclude the
proof choosing a(x) = ea.(z) for a bounded a.(z) as in the statement. O
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5.3 End of the Proof

Proof of Theorem[1.2. Let us prove that, for small enough data, the solution of the initial Cauchy
problem is global. We show that we can propagate some convenient a prior: estimates on
u, as stated in theorem namely we want to show that there are some integers s > p > 1,
some constants A, B > 0 large enough, ¢¢ €]0,1] and o > 0 small enough such that, if u €
CO[1, T[; HTY) N CY([1,T[; H?) is solution of for some T' > 1, and satisfies

[u(t, )lemee < Act™2
| Zu(t, Mg < Bet®, |0 Zu(t,")|| > < Bet’
ult, )| s < Bet? 18su(t, )| o1 < Bet”

for every t € [1,T], then in the same interval it verifies improved estimates,

A 1
Ju(t, Ywen < Get b

B B

1Zut, M < Set”, 0 Zult, )|z < et”
B B

u(t, i < et 1Beu(t, | a-r < et

We can immediately observe that from , these bounds are verified at time ¢ = 1. In theorem
in section |2, we proved that we can improve the energy bounds || Zu(t, )| g1, [|0:Zu(t, )| 12,
||u(t, )| s and [|O¢u(t, )| grs—1. To show that the propagation of the uniform bound ||u(t, -)||yt.e.0
holds, we passed from equation to (4.2)) at the beginning of section [4f and then we showed
that the function v is solution of . The a priori assumptions made on u imply the following
estimates on v,

llv(t, ‘)HW;Z—LOO < ChAe,

(5.32) B B
|£o(t, Vi <5Beh™,  |lo(t, )|y < Beh™,

for =1 :=t in [1,7]. In fact, from (4.1]), the definition (4.5) of v in semiclassical coordinates
and the equation (|1.1)),

_1
Collu(t, lwrose < 5[0t )lyypre < Cullult, llwrsos

[0t M gy = lwlt Mgs < 10t o + ults ) gorsa s

for some positive constants C1, Cy, so the first and third inequality in (5.32)) are satisfied. More-
over, Lv can be expressed in term of w, Zw, as showed below using equation (4.7)),

*Zw(t y)

%[(1—.77 )D —l—tth—i—zz} (t,x)\x:%

(5.33)

2
s+ OpE (p(©)] v+ h3aP) |,y

h
( %{1—3: VD, +ta:0ph($§+l)(§>)+iq”"‘h%xﬁ) ’F%
(110

where P denotes the right hand side of (4.7) multiplied by h~!'. Using symbolic calculus of
proposition 38|

1 114w I w 1~

Zulty) = (1 10 (ap(€) + €) — ORW(O)] v+ 15P) Loy

(5:34) _(hé%@ﬁ@@»Lv—zOﬁﬂﬂ@DU+xﬂ>h=%
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where we used that p(§) = /14 &2, p/'(§) = §/p(§). Therefore, since Opy'(p'(€)) : Hi — H;}
are uniformly bounded for all s € R by proposition and from [[v(t,-)||z2 = [|w(t, )| 12, we
derive ||[Lv(t, )| g1 < [|Zw(t, )]Iz2 + w(t, )]l 2 + 2P| 12, where

lzP(t, )2 < Cllo(t, -)H%V’,:fl,oo(llﬁv(t, Nz + lw(E, )llms) -
Then, from definition (4.1]),

lw(t; )z < 0sult; )2 + llult, )l

12w, )2 < 0cZult, )2 + [ Zult, )l + 10eult, L2 + [ult, g
so we can use the uniform estimate [v(t,-)|l;;p-1.00 < C1Ag, choose €9 < 1 small enough such
h

that CCy A%e3 < %, and use the a priori energy bounds on w in (1.11)), to have
Lot )l < 201 Zult, )l pz + 2l ult, )2 + llult,)llzs < 5Beh™ .

Under these bounds on v, in proposition we proved that, for A’ = C1 A and B’ = 5B, the uni-
form estimate on v can be propagated, choosing for instance K = % to obtain [[v(t, )|l p-1.00 <
h

%5, and then ||u(t,)||ptpee < gst_é, which concludes the proof of the boostrap and of global

existence.

We prove now the asymptotics. We consider $(&) = (£)P*! and we write
(hD)~tv = Opyy (&) &) "~ 1w
Using proposition we develop the symbol (£)7°~2 at & = dp(x),
Op (€)™ 720 = 1 (2) (dp(2)) ™"~ + Opoeryp2 (ehT™7),

and using the expression obtained in ([5.29)), along with the uniform bound on v
in the limit ¢ — 400 the function a(x) = ca(z) verifies

¥ we derive that

(5.35) a(2)| < 0a(2){dp(2)) "2 + O(et $+9) < Celdip(a)) 2.

For points z in | —1, 1 such that (de(z)) > ah™?, for a small a > 0, we have |a(z)| = O(eh” p+2))
and then the corresponding contribution to the right hand side of (5.29)) is O(et™ min(B(p+2), 3 U))
in L>® N L2,

Let us now consider points x in ] — 1, 1[ such that (dy(z)) < ah™?, and remind that the function
Oy (x) in (5.29) is identically equal to one on some interval [—1 + ch?®,1 — ch?5]. We can write

(5.36) /1 01/ (x)dr =t -1+ /lm(Hl/T(x) — 1)dr — /tOO(OI/T(x) — 1)dr,

observing that on the support of 0 ,,(z) — 1, 7 < max ¢ (1 —z,x 4+ 1) 28. Therefore the last
integral is taken on a finite interval and since |z £+ 1| ~ (d¢(x )>* as x — F1 by (8.34), this

1
implies that at the same time we have 7 < ¢{dp(z))? and (dp(z)) 5 < at. For t<tand a>0
small, this leads to a contradiction and to the fact that the last integral in is equal to zero.

Then in (5.29) we can write
t
acl)exp iple) [ byole)ir| = aca) explico)t + ig(a)]
1
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with g(z) = ¢(z) [ [° (017 (z) — 1)dr — 1], and similarly, for z satisfying (de(z)) < ah=8,

0:@) P (@) [ 01/0(0)T = Jacla) DT (@) logt + ).

for §(z) = |ac(z)[*@F (x) [ [7° (61, (x) — 1)%7 — 1]. Moreover, for (dp(x)) < ah™ the coefficient
—1, since X(hﬂdnp(x))’y(%j{(m) = 1if
 is chosen sufficiently small, which implies that ®7(x) is exactly ®;(x) introduced in (T.8).

Modifying the function a.(x) by a factor of modulus one, we derive from (5.29) the asymptotic
behaviour for (hD)~1v:

a(,1,—1)(z) appearing in 7 (x) is equal to (dp(z))

(5.37) (hD)~'v = ea.(z) exp [ip(z)t + i(logt)e|a-(z)|* @1 (z)] + t=Or(t,z),

for some 6 > 0 and ||r(¢,-)||z~ = O(e), and reminding the relationship between v and w in (4.5)),
and between w and w in (4.1)), we finally obtain the asymptotics for u in (|1.7).

O]

Appendix

This appendix is devoted to the detailed proof of proposition [3.8 and lemma [3.10, which are
technical.

Proof of Proposition[3.8 Let us expand a(x + z,€ + () at (x,&) with Taylor’s formula :

2 : 1 a1 Qo al o
a($+2>£+<):a(x>§)+ aaxla§2a(x7§)z 1< 2
a=(a1,a2)
1<]a|<k

1
.. k:+'1251462/ O 0P alw + t2,€ +10)(1 - t)F dt
. 0

B=(B1,82)
|8]=k+1

and replace this development in (3.11)), obtaining :

1 2i (o
agh = (rh)2 /R4 en 1 Va(z, O)b(x +y, & + n) dydndzd(
! R (2= 1 gaiga a1 fo
+ (7rh)2 /R4eh(n y¢) Z a821652a(x’§)b(x+y75+n)2 1¢%2 dydndzd(
a=(a1,02)
1<]al<k
1 i k 1 1
+ (7h)? / ei(WZyC){ Z ;‘ ZBIC52 / 8fla?2a(x ttz, €+ t0)(1— t)k dt}
B B=(Br.5) 0
|Bl=k+1
x b(z + y, & +n) dydndzd¢
=5+ 1+ Ig .

From a direct calculation and using that the inverse Fourier transform of the complex exponential
is the delta function, i.e.

1

Zxy
— dY = dp(X
h o€ 0(X),

(A)
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we derive

AL / e# W aa, )b(x +y. & + ) dydndzd¢
R4
(0:6) [ bo 026+ )l dody = a(e. (,),
and
I =
1
(nh)?2 / e (770) 971 0¢%a(z, )bz +y, & +n) 21 ¢** dydndzd(
R4
1_<\o¢1|7<l§)
1

1/ h\™ 2

i a1 (_ a5 (nz—yC) Ha1 o2
(wh)? (Z ol <21> /Rzlan (=0y2)en v 03102 a(w, )b(e +y, & + 1) dyddzd(
a=(aq,a2

1<|a|<k

1 —1)1 [k || L o o
", >( o (3) [ o000 a0 05205 o + .6 ) dudndc
a=(a1,a2

1<]a|<k

—1) h ‘04| o o
> O (5) weaeorgwe.
a=(a1,02)

1<]al<k

The same calculation shows that I3 is given by

k+1 [ h\"! —1)n i !
=t () 2 S Lo [ amarae e ot
a=(a1,02) )

|a|=k+1

X D200 b(x + y, & + n)} dydndzdc
and it belongs to h(kF+D(1=(01402)) Gy o(M; My) since

1

3 /R4 (nz yC){ /0 3:?18?2(1(:18 +tz,E+tQ)(1 — t)kdt8;28f)‘1 bx +y,&+ 77)} dydndzd¢ =

[ oo f [ amoprate + evhe g+ VRO~ 't 35205 o + V& + Vi) }
R4 0

dydndzd(
B 1+ 2iyd \ ™ (1= 2ind.\" (1= 2i20,\™ (1 +2i¢0,\" sieyo)
_/R4< 1+ 42 ) ( 1+ 4n? ) ( 1+ 422 > ( 1+ 4¢2 > c
{ /0 13;;1@32 (& + tVhz, &+ tVRO) (1 — £)Fdt 92202 b(x + Vhy, € + VI n)}dydndzdg
so integrating by parts,
< O~ Gr+b2) (a1 Faz)

()™M= ()N
R4

1
—N{ / My (x4 tVhz, € + tVh¢)dt
0

x Ma(z + Vhy, € + \/En)} dydndzd¢
< Ch—(51+62)(k+1) /

() =N N () =N () NN () mNEN dydpdzdC My (, €) Mo, €)
R4
< Ch*(‘Sl*‘S?)(’““)Mﬂx, E)My(x,€).
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Equivalently, one can show that [0%I3] < ChKE+HDA=001402))=0lal Ny () €)My (x, €). The last state-
ment of the proposition follows immediately if we replace in previous inequalities M7 and My
respectively by Mf“, M§+1. O

Proof of Lemma[3.10, The proof of the lemma is the same as the previous one if, when we
calculate to which class the remainder r; belongs, we remark that

z + tvVhz + f(€ +tVh) _d_ z+ f(&) - z+ fO\
< 7 > —<ﬂ +tz+tb<£,<><> 5<tz>N<tc>N<ﬂ >
etV FEAVI\ T Jat () , ! z+ f(E)\
< 7 > —<\/ﬁ +y+b(£7n)n> §<y)N<n>N<\/E >

with b(€, ) = [ f/(€+stvRC)ds S 1,V (&,m) = [} f'(€+svVhn)ds < 1, for a certain N € N. [
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PARTIE 11

SOLUTIONS GLOBALES D'UN SYSTEME
COUPLE ONDES-KLEIN-GORDON A
DONNEES PETITES MODEREMENT
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Global existence of small amplitude
solutions for a model quadratic
quasi-linear coupled wave-Klein-Gordon
system in two space dimension with
mildly decaying Cauchy data

A. Stingo
Université Paris 13,
Sorbonne Paris Cité, LAGA, CNRS (UMR 7539),
99, Avenue J.-B. Clément,
F-93430 Villetaneuse

Introduction

The result we present in this paper concerns the global existence of solutions to a quadratic
quasi-linear coupled system of a wave equation and a Klein-Gordon equation in space dimension
two, when initial data are small smooth and mildly decaying at infinity. We prove this result for
a model non-linearity, with the aim of extend it, in the future, to the most general case. Keeping
this long term objective in mind, we shall try to develop a fairly general approach, in spite of the
fact that we are treating here a simple model. The Cauchy problem we consider is the following

(atz - Ax)u(ta IE) = QO(Ua 811]) )
(0?2 — A, + Du(t,z) = Qo(v, Ou),
with initial conditions

(2) { (1w, 0)(1,2) = e(uo(@), vola))

(1) (t,z) €]1, +0o[xR>

(Opu, O) (1, 2) = e(uy (z),v1(x)),
where € > 0 is a small parameter, and ()¢ is the null form:
Qo(v,w) = (Ow)(Ow) — (V) - (Vyw) .

We also suppose that, for some n € N sufficiently large, (V ug,u1) is in the unit ball of
H™"(R%,R) x H*(R% R), (vg,v1) in the unit ball of H"*!(R? R) x H"(R? R), and that

(3) D (12 Vauoll grrar + [12%voll graisr + 12w [l 1ol + l2%01 ] grar) < 1.
1<[a|<3
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Some physical models, especially related to general relativity, have shown the importance of
studying such systems, to which several recent works have been dedicated. Most of the results
known at present concern wave-Klein-Gordon systems in space dimension 3. One of the first ones
goes back to Georgiev [|9]. He observed that the vector fields method developed by Klainerman
was not well adapted to handle at the same time massless and massive wave equations, because
of the fact that the scaling vector field S = t9; + = - V. is not a Killing vector field for the Klein-
Gordon equation. To overcome this difficulty, he adapted Klainerman’s techniques, introducing
a strong null condition, to be satisfied by semi-linear nonlinearities, that ensures global existence.
In 2012, Katayama [18] showed the global existence of small amplitude solutions to coupled sys-
tems of wave and Klein-Gordon equations under certain suitable conditions on the non-linearity,
that include the null condition of Klainerman (|19]) on self-interactions between wave compo-
nents, and are weaker than the strong null condition of Georgiev. Consequently, the result he
obtains applies also to certain other physical systems such as the Dirac-Klein-Gordon equations,
the Dirac-Proca equations and the Klein-Gordon-Zakharov equations. Later, this problem was
also studied by LeFloch, Ma [22] and Wang [30] as a model for the full Einstein-Klein-Gordon
system (E-KG)
{ Ricag = DatDgt) + 9 gas
gt =1
The authors prove global existence of the solution to the wave-Klein-Gordon system with quasi-
linear quadratic non-linearities satisfying suitable conditions, when initial data are small, smooth
and compactly supported, using the so-called hyperboloidal foliation method introduced by Le
Foch, Ma in [22]. Global stability for the full (E-KG) has been then proved by LeFloch-Ma [21]
20] in the case of small smooth perturbations that agree with a Scharzschild solution outside
a compact set (see also Wang [29]). In a recent paper [16|, Ionescu, Pausader prove global
regularity and modified scattering for small smooth initial data that decay at suitable rates at
infinity, but not necessarily compactly supported. The quadratic quasi-linear problem they deal
with is the following
—Ou = Ao‘ﬁﬁav@gv + Dv?
—(O+ 1)v = uB*9,0v

where A%, B3 D are real constants. The system keeps the same linear structure as (E-KG) in
harmonic gauge, but only keeps quadratic non-linearities that involve the massive scalar field v
(semilinear in the wave equation, quasi-linear in the Klein-Gordon equation). Moreover, the non-
linearity they consider does not present a null structure but shows a particular resonant pattern.
Their result relies on a combination of energy estimates, to control high Sobolev norms and
weighted norms using the admissible vector fields, and on a Fourier analysis, in connection with
normal forms and analysis of resonant sets, to prove dispersive estimates and decay in suitable
lower regularity norms. The only results we know about global existence of small amplitude
solutions in space dimension 2 are due to Ma, who considers the case of compactly supported
initial data. In |25], he adapts the hyperboloidal foliation method mentioned above to 2 + 1
spacetime wave-Klein-Gordon systems, and combines it with a normal form argument to treat
some quasi-linear quadratic non-linearities (see [24]). More recently, he also proved this result in
the case of some semi-linear quadratic interactions ([23]).

The result we prove in this paper is the following:

Theorem 1. There exists g > 0 such that for any € €]0, o[, system with initial data satisfy-
ing (2), admits a unique global solution defined on [1,+oo[, with O zu € CO([1, +-o0[; H"(R?))
and (v, Opv) € CO([1, +oo[; H*H(R?) x H™(R?)).

We briefly discuss the strategy of the above theorem’s proof. First of all, we rewrite system
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in terms of unkowns

(4) ur = (D¢ £ |Dy|)u, vy = (D¢ £ (Dy))v,

where Dy, = %at,x, and introduce the admissible Klainerman vector fields for this problem, i.e.
N =2x100 — 2201, Zj=uz;0+10;, j=12.

We also denote by Z = {I'1,...,I's} the family made of the above vector fields together with
the two derivatives in space, and if I = (i1,...,4,) is an element of {1,...,5}?, I'w will be the
function obtained letting vector fields I'; ,...,T";, act successively on w. We then set

(5) ul = (Dy + | D) Tu, ol = (D; £ (D,)) T,

and introduce the following energies
2 2 2 2
Eo(t;Ui,vi)Z/Q(lqu(th + lu—(t,2)]" + o4 (8, 2)[7 + Jo—(t, 2)[7) da,
R

then for n > 3,
En(tius,vi) = > Eolt; Dyus, DYvs),

laj<n

which controls the H" regularity of uy,vy and finally, for any integer k£ between 0 and 2,

Bj(tus,vx) = Y Eo(t; Dful, Dgvl)
e +|11<3
11<3=k

that takes into account the decay in space of u4, v+ and of at most three of their spatial deriva-
tives. By a local existence argument, an a-priori uniform estimate on F, on a certain time
interval will be enough to ensure the extension of the solution to that interval. For this rea-
son, we are led to prove a result as the following one, in which R = (Rj, Rs) denotes the Riesz
transform:

Theorem 2. Let K1, Ko two constants strictly bigger than 1. There exist two integers n > p >
1, g9 €]0,1[, some small real 0 < § K 02 K §1 K dg < 1 and two constants A, B sufficiently
large such that, if functions uy, v+ defined by from a solution to satisfy

(D) s (8, Yoo + (D) Rug (¢, )| oo < Act™3
{Da)Pos g < Act™

E,(t;uy,vy) < B2e%20

EX(t;uy,ve) < BEXPs-k 0 <k <2,

(6)

for every t € [1,T], then on the same interval [1,T] we have
A 1
(D) s (t, )| e + (D) ' Rus(t, ) p < o

A
D)ozl < et

B? 4 05
E,(t;ug,vy) < ﬁe t
2

B2
E:ISC(tQ Uy, vg) < ﬁgt%g*k? 0<k<2
2
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The proof of the theorem consists, on the one hand, to prove that @ implies the latter two
inequalities by means of energy inequalities. On the other, by reduction of the starting problem
to a coupled system of ordinary differential equations or transport equations, we prove that @
implies the first two inequalities in (7]).

In order to recover the mentioned energy inequality that allows us to propagate the a-priori
energy estimates, we rewrite system by letting act on it a family I'! of vector fields, and then
pass to unknowns . We obtain a new system of the form

(D¢ F |Dy|)ul = NLy (v, vl)
(Dt + ‘DI‘)U:II: = NLkg(v:Ibuﬁ:)

where the non-linearities (whose explicit expression may be found in the right hand side of
(2.1.2)) are bilinear quantities of their arguments. Because of the quasi-linear nature of our
problem, the first step towards the derivation of the mentioned inequality is to highlight the very
quasi-linear contribution to above non-linearities, and make sure that it does not lead to a loss
of derivatives. For this reason, we write the above system in a vectorial fashion by introducing
vectors

ui 0
I 0 I vl I I I
vi= |G V= wh=ut v
07 vl

we para-linearize the vectorial equation satisfied by W/ (using the tools introduced in subsection
1.2.1]) to stress out the quasi-linear contribution to the non-linearity, and then symmetrize it (in
the sense of subsection [2.1.3)) by introducing some new unknown W/ comparable to W7.

What we would need to show in order to prove the last two inequalities in , is that, using
the estimates in @, the derivative in time of the L? norm to the square of W/ is bounded by
%HWI |z2. By analysing the remaining semi-linear contributions in the symmetrized equation
satisfied by W/, we find out that the L2 norm of some of those ones can only be estimated making
appear the L norm on the wave factor and the L? norm on the Klein-Gordon one. Because
of the very slow decay in time of the wave solution (the decay rate being t~1/2 as assumed in
the first inequality of @), we are hence very far away from the wished estimate. Consequently,
the second step for the derivation of the right energy inequality consists in performing a normal
form argument to get rid of those quadratic terms, and replace them with cubic ones. For that,
we first use a Shatah’ normal form adapted to quasi-linear equations (see subsection as
already used by several authors (we cite |27, |5, 4, 6] for quasi-linear Klein-Gordon equations,
and [13, 12, 17, |1, [15] for quasi-linear equations arising in fluids mechanics), but also a semi-
linear normal form argument to treat some other terms on which we are allowed to lose some
derivatives (see subsection . These two normal forms’ steps lead us to define some new
energies Fy, (t;uy,vy), E§(t; U4, vt ), equivalent to the starting ones E,, (t;ut, vy), E§ (t;ug,ve),
and that we are able to propagate. That concludes the first part of the proof, i.e. the deduction
of the latter two inequalities in from @

The last thing that remains to prove, in order to conclude the proof of theorem [2| and hence
of theorem (1}, is that (@ implies the first two estimates in . The strategy we employ is very
similar to the one developed in 28], i.e. we deduce from the starting system a new coupled
one made of an ordinary differential equation, coming from the “Klein-Gordon component”, and
of a transport equation, derived from the wave one. The study of this system will provide us
with the wished L°° estimates.

We start our analysis by another normal form to replace almost all quadratic non-linear terms
in the equations satisfied by u4,v+ with cubic ones. The only contributions that cannot be
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eliminated are the ones depending on (v4,v_), which are resonant and should be suitably treated.
We do not use directly the normal forms obtained in the previous step. In fact, our aim is basically
to obtain an L estimate for at most p derivatives of the solution, having a control on their H*®
norm for s 3> p. This permits us to lose some derivatives in the normal form reduction, so the
fact that the system is quasi-linear is no longer important.

We define some new unknowns u™VF, oV ¥

bations, so that they are solution to

in terms of u_,v_ by adding some quadratic pertur-

(8) (Dt + [Da|)u™ = qu + o + 15, (D + Do )0 = ril,

where 77 c,, T‘I%F are cubic terms, whereas ¢,, is the mentioned bilinear expression in vy, v_

that cannot be eliminated by normal forms, but whose structure will successively provide us with
remainder terms. Then, if we define

(9) u(t, ) = tu¥ (¢, tz), (t, ) = o™V (¢, tx),
and introduce h := t~! the semi-classical parameter, we obtain that %, v verify

(Dy — Opj(x - & — [€))a = h™" [qu(t, tx) + cult,tz) + 1y 7 (8, t2)]

10
1o (Dy = Opj(x - € — (€))7 = h™ gy (¢, t)

where Op;) is the Weyl quantization introduced, together with the semi-classical pseudo-differential
calculus, in subsection We also consider the following operators

My = (m,lel - &), £5= ,ﬁ(%é@)’

whose symbols are given respectively (up to the multiplication by |{] for the former case) by the
derivative with respect to £ of symbols z - — |¢] and x - £ — (§) in . Using the equation, we
can express M;u (resp. £;0) in terms of ZjulNt" (vesp. Z;oNF) and of quy, ¢y, 7T (vesp. r,i\gF)

As done in [28|, we first introduce the lagrangian

S
Agg {(x, )i x © 0}
which is the graph of ¢ = d¢(z), with ¢(z) = /1 — |z|?, and decompose v into the sum of
a contribution micro-localised on a neighbourhood of size v/h of Ajg, and another one micro-
localised out of that neighbourhood (in the spirit of [14]). The second contribution can be
basically estimated in L™ by h3~0 times the L2 norm of some iterates of operator £ acting on
¥ (which are controlled by the L? hypothesis in theorem . The main contribution to v is then
represented by 5Akg, which appears to be solution to

[Dt — Opy/(z - € — (€))]va,, = controlled terms.

Developing the symbol in the above left hand side on Ajg, we finally obtain the wished ODE,
which combined with the a-priori estimate of the controlled terms allows us to deduce from @
the second estimate (with p = 0, the general case being treated in the same way up to few
more technicalities).

The same strategy is employed to obtain some uniform estimates on u. We introduce the la-
grangian
£

Aw:{(x,f):x—m:()}
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which, differently from Agg, is not a graph but projects on the basis as an hyper-surface. For
this reason, the classical problem associated to the first equation in is rather a transport
equation than an ordinary differential equation. It is obtained in a similar way by decomposing
u into two contributions: one denoted by ua, and micro-localised in a neighbourhood of size
h2=o (for some small o > 0) of A,,; another one micro-localised away from this neighbourhood.
As for the Klein-Gordon component, this latter contribution can be easily controlled thanks to
the L? estimates that the last two inequalities in @ infer on the iterates of M; acting on u. By
micro-localisation, we derive that uy,, satisfies

[D; — Opy(x - € — |&])]up,, = controlled terms,

and by developing symbol z - & — || on A, we derive the wished transport equation. Integrating
this equation by the method of characteristics, we finally obtain the first estimate in @ and
conclude the proof of theorem 2]
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Chapter 1

Main Theorem and Preliminary Results

1.1 Statement of the Main Theorem

NOTATIONS: We warn the reader that, throughout the paper, we will often denote 9; (resp. 0,
j =1,2) by 0y (resp. 0;, j = 1,2), while symbol 0 without any subscript will stand for one of
three derivatives 0,, a = 0,1,2. V. f is the classical spatial gradient of f, D := %8, and R, for
j = 1,2, denotes the Riesz operator D;|D,|~!. We will also employ notation ||d; ,w|| with the
meaning |9w] + |0, and [Ruw| = 3, [Rjwl.

We consider the following quadratic, quasi-linear, coupled wave/Klein-Gordon system

(t,x) €]1, +00[xR?

(1.1.1) { (07 — Az)u(t, z) = Qo(v,d1v),

(02 — Ay + Dv(t, ) = Qo(v, u),
with initial conditions

(1.1.2) { (u,v)(1,2) = e(uo(@), v0(2)),
(O, 9v)(1, ) = e(ur (2), v1(2)) ,

where € > 0 is a small parameter, and Qg is the null form:

(1.1.3) Qo(v,w) = (Ow)(Ow) — (Vv) - (Vaw) .

Our aim is to prove that there is a unique solution to Cauchy problem (1.1.1)-(1.1.2]) provided
that e is sufficiently small, and wug, vg, u1,v; decay rapidly enough at infinity. The theorem we
are going to demonstrate is the following;:

Theorem 1.1.1 (Main Theorem). There exist an integer n sufficiently large and €¢ €]0, 1]
sufficiently small such that, for any € €]0,&¢[, any real valued ug,vo,u1,v1 satisfying:

IVauollmn + llvoll grsr + [Juallge + Jo1llae <1,
(1.1.4) > a o o o
([2*Veuoll giar + lz%0 || glai+1 + 2wt gral + [2%01 ] g1a) < 1,

la)=1

system (LLI)-(L.L2) admits a unique global solution (u,v) with Oy ,u € C° ([1,00[; H"(RQ)),
veC? ([1,00[; H”+1(R2)) NnCt ([1,00[; H”(RQ)).
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The proof of the main theorem is based on the introduction of four new functions w4, u_, vy, v_,
defined in terms of u, v as follows:

(1.1.5) { Uy = (Dt + ‘Dx’)u’ { Uy 1= (Dt + <Dx>)v,

u_ = (D¢ — |Dg|)u, v := (D¢ — (Dg))v,

where D := %6, and on the propagation of some a-priori estimates made on them in some interval
[1,T], for a fixed T > 1. In order to state this result, we consider the admissible Klainerman
vector fields for the wave/Klein-Gordon system:

(1.1.6) Q:=2107 — 1201, Zj = l’jat + taj ,j=1,2
and denote by I' a generic vector field in Z = {Q, Z;,0;,7 = 1,2}. If
(1.1.7) Z={Ty,...,T5}

is assumed ordered (e.g. with I'y = Q,I'; = Z;_ for j = 2,3, I'; = 0;_3 for j = 4,5), then for a
multi-index I = (i1,...,in), i; € {1,...,5} for j = 1,...,n, we define the length of I as |I| := n,
and I'M := T, --- T, the product of vector fields I, €2,5=1,...,n.

Vector fields I' have two relevant properties: they act like derivations on non-linear terms; they
exactly commute with the linear part of both wave and Klein-Gordon equation. This is the
reason why we exclude of our consideration the scaling vector field S = t9, + > y x;0;, which is
always considered in the so-called Klainerman vector fields’ method for the wave equation, but
does not commute with the Klein-Gordon operator.

We also introduce the energy of (uy,u_,vy,v_) at time t > 1 as

(1.1.8) Eo(t§uj:77):i:) = / (\u+(t,x)’2 + ‘u_(t,x)’Q + ‘U+(t,$)’2 + ‘u_(t,x)ﬂ) dx,

together with the generalized energies

(1.1.9a) En(tius,vs) = Y Eo(t; Dius, Dfvi), Yn€N,n >3,
jal<n

and

(1.1.9b) By(tus,vs) = Y Bo(t; Dgul; Dgvl), 0<k<2,
|a|+]7]<2
0<|1|<3—k

where, for any multi-index I,
(1.1.10) ul = (Dy £ |Dy|)Tu, ol :=(Dy 4+ (D))o

Energy E,(t;us,vy), for n > 3, is introduced with the aim of controlling the Sobolev norm H™
of u+, v+ for large values of n. The reason of dealing with E¥(; us, v+) is, instead, to control the
L? norm of IMuy, oy, with general I' € 2, for any |I| < 3, and superscript k indicates that we
are considering only products I'! containing at most 3 — k vector fields in {2, Z,,,m = 1,2}. For
instance, the L? norms of Q3uy, QZ%v. are bounded by E3(t;ut,v4), but not by Fa(t;us, vy),
while the L? norms of Z?uy,320Zsvy are estimated by both E3(t;ug,vy), ES(t;us,vy), etc.
The interest of distinguishing between k£ = 0, 1,2, is to take into account the different growth in
time of the L? norm of such terms, linked to the number of vector fields €2, Z,, acting on w4, v+,

as emerges from a-priori estimate (|1.1.11d)).
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Theorem 1.1.2 (Bootstrap Argument). Let K1, Ko > 1, and HP*° be the space defined in|1.2.]]
(#i1). There exist two integers n, p sufficiently large, with n. > p, some 0y, 41, 02,0 > 0 small such
that § < 6 < 61 < &0, two constants A, B > 0 sufficiently large, and &g €)0, (2A + B)~!, such

that, for any 0 < e < gq, if (u,v) is solution to (1.1.1)-(1.1.2)) on some interval [1,T], for a fixed
T > 1, and ugy,vy defined in (1.1.5)) satisfy:

1.1.11&) ||ui(t, ~)”Hp+1,oo + ||Ru:|:(t, -)HHp-o-l,oo S AEtié,
1.1.11b) e (, )| rovee < Ast™,

(
(
(1.1.11c) En(tus,vs)? < Bets,

é
(1.1.11d) E¥(t;us,vi)? < Bet?, Y0<k<2,

for every t € [1,T], then in the same interval they verify also

A 1
(1.1.12a) i (6 e + R (8, g e < et 5,
1
A
(1.1.12b) lox(t, )| mee < —et™ ",
K
B
(1.1.12¢) Ep(tius,vi)? < —ct?,
Ky
k 1 B S
(1.1.12d) Ef(fus,v4)? < Z=et?, YOSk <2
2

The a-priori estimates on the uniform norm of w4, Ru4, v+, made in above theorem, translate
in terms of uy, vy the sharp decay in time we expect for the solution (u,v) to starting problem

(1.1.1). Indeed, from definitions ([1.1.5)), it appears that

Dtu:L;“‘, Dxu:R<u+gu_>,

DtU:U+—;U7’ U:<D:C>_1 <U+;U>)

so (1.1.11a)), (1.1.11b)) imply

1
10wt Moo < Act™5, (B0t Mo + [0t Y ronce < Act™.
Furthermore,
1
10cu(t, M am + IVeut, )l + 100, ) lan + [[Vav @, )llmn + lo@, )l zn < En(t ut, ve)?,

and the propagation of energy a-priori estimate ((1.1.11¢) is equivalent to the propagation of the
same estimate on the above Sobolev norms. This fact will imply theorem [I.1.1] thanks to a local
existence argument.

Before ending this section and going into the core of the subject, we briefly remind the general
definition of null condition for a multilinear form on R and a result by Hérmander (see |11]).

Definition 1.1.3. A k-linear form G on R is said to satisfy the null condition if and only if,
for all € € R", & = (£, - -,&n), such that & — >0, & =0,

(1.1.13) G(E,...,6)=0.
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EXAMPLE: The trilinear form &2¢, — Z §J2-§a associated to Qo(v,d,w), for any a = 0,1, 2,
j=1,2
satisfies the null condition (|1.1.13). It is the most common example of null form.

Lemma 1.1.4 (Hérmander 10|, Lemma 6.6.5.). Let G be a k-linear form on R™*™ k = ki +
-+ +ky, with k; positive integers, and T’ € Z. For all uj € CFTL(R™) all aj € N |a;| = Ky,
and u'™) .= 9%y,

g =y,

G((Tuy)®) )y

T

+ G, (Cu) ) + G,

TG, ... ulk)
(1.1.14) (w1 )

where G1 satisfies the null condition.

Remark 1.1.5. Previous lemma simplifies when the multi-linear form G satisfying the null
condition is Qo (v, yw), for any a = 0, 1,2. Indeed, the structure of the null form is not modified
by the action of vector field I', in the sense that

(1.1.15) I'Qo(v, dgw) = Qo(T'v, dgw) + Qo(v, 0T'w) + Gy (v, dw) .

where G1(v,0w) =0 if I' = 9,,, m = 1,2, and

—Qo (v, Opw), ifa=0,T=2,,me{l1,2},
0, ifa=0,T"=QQ,
(1.1.16) G1(v,0w) = < —Qo(v, dyw), ifa#0,I' =27,
0, ifa#0,T = Zn,me{1,2}\ {al},
(=1)?Qo(v, Opw), with m € {1,2}\ {a}, if a #0,T = Q.

If '/ contains at least k& < |I| space derivatives 0, then

(1117)  T'Qo(w,0w)= > QuT"w,aT”w)+ Y e QoMM a7 w),
11|+ 12|=]1] k<|I1 |+|I2|<|1]

with ¢r, 7, € {—1,0,1}. In above equality, we should think of multi-index I; (resp. I) as
obtained by extraction of a |I;|-tuple (resp. |I2|-tuple) from I = (i1,...4,), in such a way that
each i; appearing in I, and corresponding to a spatial derivative (e.g. Iy, = Dy, form € {1,2}),
appears either in I or in Is, but not in both. For further references, we define

(1.1.18) I(I) := {(I1, I2)|I1, I> multi-indices obtained as described above} .

1.2 Preliminary Results

The aim of this section is to introduce most of the technical tools that will be used throughout
the paper. In particular, subsections and are devoted to recall some definitions and
results about, respectively, paradifferential and pseudo-differential calculus; subsection and
[1.2.4) are dedicated to the introduction of some special operators, that we will frequently use
when dealing, respectively, with the wave and the Klein-Gordon component. Subsections [1.2.1
1.2.2] barely contain proofs (we refer for that to [3], [26], [8], [31]), whereas subsections
[[.2:4) are much longer and richer in proofs and technicalities.
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1.2.1 Paradifferential Calculus

In this subsection we recall some definitions and properties that will be useful in chapter
We first recall the definition of some spaces (Sobolev, Lipschitz and Holder spaces) in space
dimension d > 1, and afterwards some results concerning symbolic calculus and the action of
paradifferential operators on Sobolev spaces (see for instance [26]). We warn the reader that we
will use both notations w(§) and Fy¢w for the Fourier transform of a function w = w(x).

Definition 1.2.1 (Spaces). (i) Let s € R. H*(R?) denotes the space of tempered distribu-
tions w € 8'(R%) such that @ € L? (R?) and
1 P
ol ey = gy [ (14 16121 10(E) P <+

(i) For p € N, W»>(R%) denotes the space of distributions w € D’(RY) such that 9%w €
L>®(RY), for any o € N, with |a| < p, endowed with the norm

[wllwees = > 05wl Loo;

lal<p

(iii) For p € N, we also introduce H”>(R?) as the space of tempered distributions w € 8'(R%)
such that
[w][meee == [[{Dz)fw]| e < +o0.

Definition 1.2.2. An operator T is said of order < m € R if it is a bounded operator from
H5*™(RY) to H*(R?) for all s € R.

Definition 1.2.3 (Smooth symbols). Let m € R.

(i) SF*(R?) denotes the space of functions a(z,n) on R? x RY, which are C°° with respect to
n, and such that for all & € N? there exists a constant Cy, > 0, and

l05aC mliz= < Ca(l+ 7ol vy e RY.

Y7 (R?) denotes the subclass of symbols a € SF*(RY) satisfying

(1.2.1) Je <1 : Fpsea(€,n) =0 for [¢] > e(1+ |n|).

Sy is equipped with seminorm M{*(a;n) given by

(1.2.2) Mg (a;n) = sup sup [|(1+ [n)"="0la(-,n)]|, -
|8]<n neR?

(i) More generally, for r > 0, S™(R?) denotes the space of symbols a € S§*(R?) such that for
all o € N and all € R?, function 2 — Opa(x,m) belongs to W (R?) if r € N (resp. to
C"(R?) if r €]0, 0o[—N), and there exists a constant C, > 0 such that

105a(-,n)lwree < Ca(1+ )™l wneR? ifreN,

(resp. [|9pa(-sn)llcr < Ca(l + )1l v € RY, if r €]0, 00[—N). X7 (R%) denotes the
subclass of symbols a € ST (R?) satisfying the spectral condition (1.2.1)). S™ is equipped
with seminorm M (a;n), given by

(1.2.3) M™a;n) = sup sup ||(1+ [n))?="0Ca(-,n)|| e, if7EN,
|B]<n neR?
(resp. || - |lwre replaced with || - ||cr, if 7 €]0, 00[—N).
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These definitions extend to matrix valued symbols a € SJ* (a € £*), m e R, r > 0. If a € S]"
(resp. a € 37), it is said of order m.

Definition 1.2.4. An admissible cut-off function (&, n) is a C* function on R? x R? such that

(i) there are 0 < &1 < ey <1 and

{ D(En) =1, for €] <er(1+ |n))

(1.2.4)
(&) =0, for [¢] = ea(l+[n]);

(ii) for all (o, 8) € N4 x N, there is a constant C, g > 0 such that
(125) 108 0(&m] < Cap(L+ ) ™77, w(g, ).

EXAMPLE: If x is a smooth cut-off function, x(z) = 1 for |z| < e; and supported in the open
ball B.,(0), with 0 < e1 < &2 < 1, function ¢ (§,n) := X((%) is an admissible cut-off function
in the sense of definition We will consider this type of admissible cut-off functions for the
rest of the paper.

Definition 1.2.5. Let x be an admissible cut-off function and a(x,n) € S, m € R,r > 0. The
Bony quantization (or paradifferential quantization) Op®(a(x,n)) associated to symbol a, and
acting on a test function w, is defined as

Op® (a(, ) (z) = —

(2m)?
with oX(x,n) := (271r)d /Rd ei@=v)Cy ((77%) a(y,n)dydc .

The operator defined above depends on the choice of the admissible cut-off function x. However,
if a € S7 for some m € R,r > 0, changing x modifies Op®(a) only by the addition of a r-
smoothing operator (i.e. an operator which is bounded from H® to Ht" see |3|), so the choice
of x will be substantially irrelevant as long as we can neglect r-smoothing operators. For this
reason, we will not indicate explicitly the dependence of Op®? (resp. of o) on Y to keep notations
as light as possible. Let us also observe that, with such a definition, the Fourier transform of
Op®(a)w has a simple expression

(126)  Fane(Op(ale )@)€ = g [ (S ) aule - mnatman,

/ ¢ ()b ()
]Rd

(2m) (n)
where a,(§, 1) = Fy_e (a(y, 77)), and the product of two functions u,v can be developed as
(1.2.7) wv = Op® (u)v + Op® (v)u + R(u,v),

where remainder R(u,v) writes on the Fourier side as

128 Fwo© = g [ (10 (55) 3 (g ) )t - it

We remark that in the above integral frequencies 1 and £ — n are either bounded or equivalent,
and R(u,v) = R(v,u). Just to conform notations for what will follow, we introduce the operator
Opg associated to a symbol a(x,n), and acting on a function w, as

Of(alam)uls) == g [ & 83wy,

with 8X(z, ) = (er)d / gila—y)- < <<> ( >>>a(yﬂ7)dydc.
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For future references, we recall the definition of the Littlewood-Paley decomposition of a function
w.

Definition 1.2.6 (Littlewood-Paley decomposition). Let x : R? — [0, 1] be a smooth, decaying,

radial function, supported for |z| < 2 — %07 and identically equal to 1 for |z| <1+ %0. Let also

€)= x(€) — x(26) € C52(R2\, {0}), supported for § < [¢] < 2, and pi(€) = (2 k¢), for all
k € N*, with the convention that (g := y. Then Y, .y ¢(27%¢) = 1, and for any w € §'(R%)

(1.2.10) w=> op(Dy)w
keN

is the Littlewood-Paley decomposition of w.

The following proposition is a classical result about the action of para-differential operators on
Sobolev spaces (see [3| for further details). Proposition shows, instead, that some results
of continuity over L? hold also for operators whose symbol a(z,7) is not a smooth function of 7,
and that map (u,v) — R(u,v) is continuous from H** x L? to L2

Proposition 1.2.7 (Action). Let m € R. For all s € R, and all a € S§*, OpP(a) is a bounded
operator from H3t™(RY) to H*(RY). In particular,

d
(1.2.11) |0p% (@wllss S Mg (a: [5] 4+ 1) lwll e
Proposition 1.2.8. (i) Let a(x,n) = ai(x)b(n), with a; € L>®(R?) and b(n) bounded, sup-
ported in some ball centred in the origin, and such that |0°b(n)| <a |n|~1%*1 for any
a € N2 with |a| > 1. Then Op®(a(x,n)) : L?> — L? is bounded and for any w € L*(R?)
10p" (a(z, ))wll 2 < llar ]| o]l 2.
The same is true for OpB(a(z,n));

(i) Map (u,v) € HH® x L? = R(u,v) € L? is well defined and continuous.

Proof. As concerns (i), we have that

O0p® (al, n))wl) = / K(z— 2,7 — y)ar (y)w(z)dydz

with
1

(2m)1 / eWHy'CX(mC))b(n)dnd(,

where x is an admissible cut-off function. After the hypothesis on b, we have that for every
a,f € N?,

K(.CL‘, y) =

‘a? [X<<f,>)b(”)” S Limisiylas (Ol
¢

9592 [e(55)p]| £ L o™ 5O ol 2 1,
where functions gg are bounded and compactly supported. Lemma (1) and corollary (1)
of appendix [A| imply that |K(x,y)| < |2|~Hz)~2({y)~3 for any (x,y), and statement (i) follows
by an inequality such as (A.4) with L = L.
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In order to prove assertion (i), we consider a cut-off function ¢ € C§°(R?) equal to 1 in some
closed ball B&(0), for a C' > 1, and decompose R(u,v) as follows, using (1.2.8):

R(u,v) = /Ko(x -,y — 2)u(y)v(z)dydz + /K1 (z — v,y — 2)[(Da) ) (y)v(z)dydz,

)) ¥(n)dgdn,

)) 0 (€ —ny~dedn,

with

Kor.y) (271T)2 /eix.§+iy.n (1 - X (W) (
Ky (e,y) — (271r)2 /eia:~§+iy.n (1 - X (W) (

Since frequencies &, are both bounded on the support of ( ( 57]) ) — ( - 77))) ¥(n), one

can show, through some integration by parts, that |Ko(z,y)| < (2)73(y)~3 for any (z,v), and
then deduce that

S llullzeelvllz2-
L2(dx)

L

Kernel Kj(x,y) can be split using a Littlewood-Paley decomposition,

Ko = Y- sz [ e (1ox (520) = x () ) (= o)t apte = n)~dedn,

k>1

K1,k (z,y)

where ¢ € C$°(R? \ {0}). On the support of (1 - X <%> - X (ﬁ)) (1 — ) (n)p(27*n),
frequencies 7, £ — 1 are either bounded, or equivalent of size 2¥ (which implies in particular that
(€ —n)~* < (6)73(n)~1). After a change of coordinates and some integration by parts one can
show that |K1 (7, y)| < 2F(x)~3(2ky) =3, for any k > 1, and therefore that

| [t et oy = D ol

L2(dx)
s> 2 / T2y — 2)) Do) uly)||w(2)|dydz
k>1 L?(dw)
sy 2 /<y>_3<2kz>_3\|[(Dm>4u](' —yYw(- —y = 2)| 2@ dydz S [lull o w] 2,
k>1
which concludes the proof of statement (ii). O

Last results of this subsection are stated without proofs. All the details can be found in chapter
6 of |26] (see theorems 6.1.1, 6.1.4, 6.2.1, 6.2.4).

Proposition 1.2.9 (Composition) Consider a € ST, b€ S, r >0, m,m' € R.

(i) Symbol afb := Z e a(z,§)Dyb(x,§) is well defined in ) gmtm' =i

J<r r 7 ’
|a|<r

(i1) Op®(a)OpP(b) — Op®(aib) is an operator of order < m +m' —r, and for all s € R, there
exists a constant C > 0 such that, for all a € S™(RY), b€ S™ (RY), and w € H™+m™ = (RY),

|0p” (a)Op® (b)w — Op® (aftb)w]| s
< C(M™(a;n) ME (b;no) + M (a;n) M™ (b;10)) [ w]] grosmsms—rs
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[—

where nyg

= [% 1, n = no + [r]+ ([r]+ denoting the smallest integer I, I > r). Moreover,
Op® (a)Op” (b) — :

+1,
Op®(atb) = &, (x, D,) with

0.) = in)0) = (s
+ Y et [ ([ gote e i) - 0 ) 06, Doty v

oe]=[r]+
with @ = 1 in a neighbourhood of the support of Fynop(n,§).
These results extend to matriz valued symbols and operators.

Remark 1.2.10. If symbol a(z,§) only depends on &, then o4fo), — oqg = 0 and &, reduces to
the only integral term. Moreover,

(1212)  Toso(.6) = (/ B (e + tn)(1 tﬂ”“dt)x({g))naéy(n,g),

Ia\ [r]+
where X(%) is the admissible cut-off function defining oy.

Corollary 1.2.11. For d = 2 and all s € R, there exists a constant C' > 0 such that, for
acS™beS™, r>1, andwe Hstmm' =1

|0p? (a)Op® (b)w — Op(ab)w|| gs
< C(M{"(a; 3)ME (b;2) + M (a; 3)M™ (b; 2)) | wl| pscem-+mi—1

Proposition 1.2.12 (Adjoint). Consider a € ST(R?), and denote by Op®(a)* the adjoint ope-
rator of Op®(a), by a*(z,€) = a(x,€) the complex conjugate of a(x, ).

. 1 o o, gm
(i) Symbol b(x, &) = Z anag “(z,€) is well defined in Y, . S, ]J,
|a]<r

(ii) Operator OpB(a)* — OpB(b) is of order < m —r. Precisely, for all s € R there is a constant
C > 0 such that, for all a € S™(RY) and w € H¥T™~"(R?),

|00 (a)*w — Op® (b)w]|

o« < CM™(a;n)[wl grssm—r,

withng = [4] + 1, n=mng + [r]4.

These results extend to matriz valued symbols a, with a*(x,€&) denoting the adjoint of matriz

a(z, §).

Corollary 1.2.13. Ford =2 and all s € R, there exists a constant C > 0 such that, fora € S,
r>1and we HTm L

HOpB(a)*w — Op(a®)wl||gs < CM{"*(a;3)||w]| grs+m—1.

1.2.2 Semi-classical Pseudodifferential Calculus
In this subsection we recall some definitions and results about semi-classical symbolic calculus

in general space dimension d > 1, which will be used in section We refer the reader to [8],
[31] for more details.
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Definition 1.2.14. An order function on R% x R¢ is a smooth map from R? x R? to Ry :
(x,&) — M(x,€) such that there exist Ng € N, C' > 0 and for any (z,&), (y,n) € R? x R?

(1.2.13) M(y,n) < Cle—y)N (& — )N M (z,€),

where (x) = /1 + |z|2.

Definition 1.2.15. Let M be an order function on R% x R%, § > 0, ¢ > 0. One denotes by
Ss,0(M) the space of smooth functions

(x7 57 h) % a('x’ 5’ h)
RY x R%x]0,1] — C

satisfying for any oy, as € N4 k, N € N

(1.2.14) 1091952 (hoh)Fa(z, &, h)| S M(x,§) h=oelHleel (1 4 gho|gl) =

A key role in this paper will be played by symbols a verifying ([1.2.14)) with M (x, &) = (xt}%@) YN,
for N € N and a certain smooth function f(§). This function M is no longer an order function
because of the term hfé, but nevertheless we continue writing a € 5570(<Lf(§)>_N).

vVh

Definition 1.2.16. In the semi-classical setting, we say that a(x, &, h) is a symbol of order r if
a € S55((§)"), for some § > 0, 0 > 0.

Let us observe that when o > 0 the symbol decays rapidly in h?|¢|, which implies the following
inclusion for » > 0:

S5,U(<§>r) C h_grsé,cr(l)-

This means that, up to a small loss in h, this type of symbols can be always considered as symbols
of order zero. In the rest of the paper we will not indicate explicitly the dependence of symbols
on h, referring to a(z, &, h) simply as a(z, §).

Definition 1.2.17. Let a € S5,(M) for some order function M, some § > 0, o > 0.

(i) We can define the Weyl quantization of a to be the operator Opy’(a) = a"(x, hD) acting
on u € §(R%) by the following formula:

O (ala O)ule) = gz [ [ et ea(T 2 ) u(y) dyas:

(ii) We define also the standard quantization of a:
1 i
—_ +(z—y)-€
Omn(ae.€))uta) = gy [ [ eH ata ) uly) dyie.

It is clear from the definition that the two quantizations coincide when the symbol does not
depend on z. We also introduce a semi-classical version of Sobolev spaces, on which the above
operators act naturally.

Definition 1.2.18. (i) Let p € N. We define the semi-classical Sobolev space H*(R?) as
the space of tempered distributions w such that (hD)Pw := Opp(({)P)w € L, endowed
with norm

[wll g = [[{RD) w]| Loo;
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(ii) Let s € R. We define the semi-classical Sobolev space Hj(R?) as the space of tempered
distributions w such that (hD)*w := Opy,({€)*)w € L?, endowed with norm

[wl[ms = [[(hD) w] 2.

For future references, we write down the semi-classical Sobolev injection in space dimension 2:

(1.2.15) [Vnll g0 v2) Sor h—1|yvh||H£+1+a(R2) ., Yo>0.

The following two propositions are stated without proof. They concern the adjoint and the
composition of pseudo-differential operators, and all related details are provided in chapter 7 of
[8], or in chapter 4 of [31].

Proposition 1.2.19 (Self-Adjointness). If a(x,&) is a real symbol, its Weyl quantization is self-
adjoint,
(Opi(a))” = Op};(a) .

Proposition 1.2.20 (Composition for Weyl quantization). Let a,b € $(R?). Then

Opy)(a) o Opy (b) = Opy, (afd)

where
1 2 (e 2
(1216) asb (r.6) = o /R d /R d /R d /R RO a4 26 b+, €+ ) dydndzdC,

and
o(y,m z,()=n-z2—y-(.

It is often useful to derive an asymptotic expansion for afib, as it allows easier computations than
integral formula . This expansion is usually obtained by applying the stationary phase
argument when a,b € S5, (M), § € [0, 3] (as shown in [31]). Here we provide an expansion at
any order even when one of two symbols belongs to S 1oy (M) (still having the other in Sj ., (M)

for § < %, and o1, 09 either equal or, if not, one of them equal to zero), whose proof is based on
the Taylor development of symbols a, b, and can be found in the appendix of |28| (for d = 1).

o

Proposition 1.2.21. Let M, My be two order functions and a € Ss, 5,(M1), b € S5, ,(M>2),
01,09 € [0, %], 01+ 02 <1, 01,09 > 0 such that

(1.2.17) o1 =09>0 or [al#agand 0¢20,0j>0,i7éj6{1,2}].
Then atb € S5 (M1 M), where 6 = max{d,d2}, 0 = max{o1,02}. Moreover,

(-l
o

al
(1.2.18) ap= > (;)l 0y 0¢%a(x,§) 020 b(x,§) + i,

a=(a1,a2)
|a|=0,...,N—1

where ry € hN(1*(51+52))5570(M1M2) and

N —1)leal 2i
(1.2.19) rN(x,f):<;) (W%Qd 3 (L)! /th(n_zy.o

a=(a1,a2)
lo|=N

1
X </0 971 0% a(z +tz, £+ Q) (1 — t)Nfldt)(???@g“b(x +y,& 4+ n) dydndzd( ,
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or

N _1)la1] ;
(1.2.20) ry(z, &) = (;) (ﬂ]hV)Zd > ( 3 /ei(’i'z—yf)aglag?a(m+z,§+()
a=(a1,a2) ' R
la|=N

1
X ( / 0520 b(x + ty, & + tn) (1 — t)N—ldt) dydndzd( .
0

More generally, if hN19% € 851,01(M1]V)7 NO292p ¢ 552702(M2N), for |a] = N, some order
functions M, MY, then vy € BNO=01+02) G5 (AN MY).

Remark 1.2.22. From previous proposition it follows that, if symbols a € Ss, », (M1), b €
S5y.04(M2) are such that suppa Nsuppb = 0, then afb = O(h™°), meaning that, for every N € N,
atb = ry with ry € ANO=(1+82) G (M My).

Remark 1.2.23. We draw reader’s attention to the fact that symbol § is used simultaneously
in Bony calculus (see proposition and in Weyl semi-classical calculus (as in ) with
two different meaning. However, we avoid to introduce different notations, as it will be clear by
the context if we are dealing with the former or the latter one.

The result of proposition [[.2.2T] and remark [T.2.22] are still true even when one of the two order

functions, or both, has the form <Ljﬁ(£)>_l, for a smooth function f(£), Vf(¢) bounded, as

stated below (see the appendix of [28]).

Lemma 1.2.24. Let f(¢) : RY — R be a smooth function, with |V f(&)| bounded. Consider a €

551,01(<xt}%(£)>_m), m €N, and b € Ss, 5, (M), for M order function or M(x,&) = (:CJ:}%('E)Y”,

n €N, some & € [0,3], 02 € [0,1[, 01,00 > 0 as in ([.2.17). Then afb € S@A(Ljﬁ({))_mM),
where § = max{d1,02}, 0 = max{o1,02}, and the asymptotic expansion (1.2.18|) holds, with

ry € hN(1*(51+52))55,g((Lfﬁ(é)me) given by (1.2.19) (or equivalently ((1.2.20]) ).

More generally, if hN19% € 351,01(<$4jg(§)>_m/) and hN%20% € S5, 5, (MN), |a| = N, MV

order function or M™(z,€) = <Ljfgg))*”/, for some m',n' € N, then remainder ry belongs to
hN(l_(JH(SQ))S&U«xt}%(g)>_m,MN)-

1.2.3 Semi-classical Operators for the Wave Solution: Some Estimates

From now on, we place ourselves in space dimension d = 2. This technical subsection focuses on
the introduction and the analysis of some particular operators that we will use when dealing with
the wave component in the semi-classical framework (subsection . Lemma will be
often recalled when we want to prove that some operator belongs to £(L?; L) and compute its

norm; in propositions|1.2.27} [1.2.30{we prove the continuity of some important operators (e.g I'*"*
defined in (3.2.43))), while propositions|1.2.28] [1.2.31| are devoted to prove the continuity of some

other operators often arising when we consider the quantization of symbolic integral remainders.
Finally, lemmas [1.2.33] and [1.2.35] deal with the development of some special symbolic products:
while [1.2.33] will be used several times throughout the paper, lemma [1.2.35] is stated explicitly

on purpose to prove lemma [3.2.13]

Lemma 1.2.25. There exists a constant C > 0 such that, for any function A(z, &) with 8%(9?/1 €
L? for |a|,|B| <3, and any function w € L?,

(12.21)  [Op} (A(z, €))w(@)| < Clluwl)z2 /R - Y [epai[a(FEne)]|
loel,|BI<3

dy.
L2(d€) Y
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Moreover, if A(x,§) is compactly supported in x there exists a smooth function, supported in a

neighbourhood of suppA, such that
(T +Y o T+y
(1222) |05k (Al )wie)| < Clul [ [0(5Y) % s [ac o™

ol

Proof. Let us prove the statement for A € §(R? x R?), w € §(R?). The density of §(R? x R?) into
{A € L?(R? x R2)|8§‘3§A € L*(R? x R?),|al,|8| < 3}, and of 8(R?) into L?, will then justify
the definition of Op}?(A(z, §))w for A, w as in the statement, together with inequalities (.2.21]),
[z2).

Using integration by parts, Cauchy-Schwarz inequality, and YoungaAZs inequality for convolu-
tions, we can write the following:

00 (A (o) = gz | [ <A ("2 ) wlr) dyag

1 N . . Qj_|-y

— i(z—y)-&+iyn

i /ng(n)/w/we A(TEY ge) dydﬁdn‘

_ 1 / / / (1—196— y) - 85>3<1+i(£—n)-8y>3e,~(x_y).§+iy.n
4 Jre Rr2 JR2 1L+ |z —y? 1+ [&—n?

xA(IT—HJ,M) dyd¢ dn‘

opaf A" ;L Y. ne))|dyde dn

s [l [ [ @-ne-n Y

laf,|8]<3

) _ _ wa[ T+
S Wilzzcan 100 lorian [ =)™ 3 [oped a2 ne)]|

laf,|8]<3

Sholes [ =0 3 [ogor[a(5206)] 20

2
o |81<3 (¢

e ™Y

If symbol A(z,&) is compactly supported in 2 we can consider a smooth function 6’ € C§°(R),
identically equal to 1 on the support of A(z,§), and write

1+i(e - 77)3>3'—-w
)d / / ( cH@—y)-&+iyn
/R? () r2 Jrz \ 14§ —n?

xA(xT—w,hg) dydf’

< [ototan [ [ 0C 0000 5 (= 50e) o

o] <3
Sl [

x + x +
(57 2 Haﬂ (57 n)]]
|a|<3
A very important role in this subsection and in subsection will be played by function
fy( :5';5 )1/1(2*’“5) (or by functions strictly related to it) and its quantization, where v € C*°(R?)
is such that [0%y(2)| < (z)71°l) 4 € C°(R? — {0}), 0 > 0 is a small fixed constant, and k is an
integer belonging to set K, defined as

K:i={keZ : h<2F<h™).

1

Opy (A(z, §))w(x)| = o)

L2(d) dy-

O
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In various results (e.g. proposition [1.2.30)), instead of having such a v, we will need a more
decaying smooth function, denoted by 71, such that |9%y;(2)| < (z)~(+eD). We introduce here
some notations we will keep throughout the whole paper:

Notation 1. For any n € N, =, denotes a smooth function in R? such that 0%, (z)|
(z)=(tle) for any o € N2, We use the simple notation + instead of 7o;

Notation 2. For any integer m € Z, by, (€) will denote any function satisfying [0°b,,(€)| <p
|£|m—|,3|’ for any £ in its domain, any 8 € N2,

The following lemma is a useful reference when we need to deal with some derivatives of 7( ﬁfl;g ) .

Lemma 1.2.26. Let us take o > 0 sufficiently small and n € N. For any multi-indices o, 3 € N?
we have that

ansl. (Tl —¢ o ~(lal+k) (2 —0) z[§| - ¢
k=0

Furthermore, if § = 0(x) € C§°(R?), there exists a set {0k () }1<k<|p of smooth compactly
supported functions such that

- 61 1 ~
(1.2.24)  O(a)020; [%(ﬂf/’?_f)} = Zh('”%")'vn+|a|+k(:2|f/|2_f)9k(x)b|a|+k/3|(5)‘
k=1

Proof. Let (5f be equal to 1 if ¢+ = j, 0 otherwise, and Z/ be a concise notation to indicate a
linear combination. For ¢ = 1,2,

(1.2.25)
2 6N, oo T =&\ e s
Oe; [7”< hi/2—o )} = b g ( hi/2—o )(%&I&I %)
=Y 0 (L) (26 g +Zh 3= @) (D5 e b2 — o),

j=1
which can be summarized saying that

Oe, | (a;lf/';fﬂ =Y (ﬂf);f)bl(ﬁ) +h Gy (W)bo(g),

for some new functions 7y, ¥n1,b0, b_1. Iterating this argument, one finds that, for all 3 € N2,

aﬁ[ (215)20)] —Ozlﬁlh (3-2)y, k(ﬂg;ﬁ)bkmﬂf),

and obtains (1.2.23) using that, for any m € N, o € N?,

fel $’€| al(s—0o x’ﬂ _§ e
N =) ISR =
Equality is obtained replacing (|1.2.25)) with

o), [ (DEL=E)] = 3= é(ajm (=8 otmseie — o)),
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which means that

0@ [ (25m)] = S (2SN oy,

where 61 (z) is a new compactly supported function. By iteration one finds that, for any 8 € N2,
there is a set of |3] compactly supported functions 0x(z), 1 < k < |8, such that

18]
03¢ [ (2525 = 2 A Gt PSS}

which combined with (|1.2.26)) gives (1.2.24)). ]

Proposition 1.2.27 (Continuity on L?). Let o > 0 be sufficiently small, k € K and p € Z.
Let also ¢ € C§(R?\ {0}) and a(x) be a smooth function such that |0%a(z)] < 1. Then

Opy (7(265‘2:?,)¢(2_k£)a(m)bp(§)) - L2 — L2 is bounded and

e Jork (¢ (2= ot epimec) ., 52

Proof. Fix k € K such that h < 2k < pl/2-9 It @h,@;l denote the operators such that
Opv(z) :== v(Vhz), O} 'w(z) = w(%) for any h €]0, 1], then for any function A(z,§)

Opl (A(z, €))v(z) = [0,0p¥ (A(x,£))0; o(z),

with A(z,§) := A(Z2,Vhe). Tt Az, €) = ¥ (ZELE )y (27%€)alx)by(€), then one can check, using
lemma [1.2.26] that A € 2kp5’%70(1), so theorem 7.11 of |8] implies that Op}f(g(:n,ﬁ)) L2 — L2

is bounded with norm O(2*P). For indices k € K such that h'/2=7 < 2% < b= the very symbol
A(z, ) belongs to 2"7S51 (1), and the statement follows again by theorem 7.11 of [8]. O
3

Proposition 1.2.28. Let us take o > 0 sufficiently small, k € K and p,q € Z. Let us also
consider 1,9 € CS(R2\ {0}), a(x),d’(z) smooth functions such that [0%a| + |0%d'| < 1, and
f e C(R). Define
(1.2.28)

0, = o [0 [ [ (L) oteyae@) F(t)at

g\ . (7I'h>4 0 pl/2—c p (z+t2,6+tC)

XG(27H(E +m)a (@ + )by (§ + )] dydzdndC.

Then Opy (IF (x,€)) : L* — L? is bounded and ||Opy(IE (z,€) HL(LQ < 2kP+9) | The same
results holds for

(1.2.29) JE (2,€) == 2) / (rz=yQ) [/ DTHE+10))a (2 + t2)bg (€ + 1) f(t)dt

X (’Y( ],L|§/’2ja' )¢(2—k§)a(x)bp(f)) |(cc+y7§+77):| dydzdnd(.

Proof. We show the result for operator Op}’j([zﬁq), leaving the reader to check that a similar
argument can be used for Op}/ (Jk ).
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We distinguish between two ranges of frequencies. For indices k € K such that hY/277 <
2¥ < h™7, we observe that I¥ (z,£) € 2 p+Q)Sl o(1). Indeed, it follows from lemma [1.2.26

that 7(55h=5)¥(2 7 )a(@)by(€) € 275, (1), while §(27€)a’(2)b,(€) € 2k, (1), hence,

performing a change of variables y — Vhy, z — Vhz, n— Vhn, ¢ — Vh(, writing
(1.2.30)

; 3 . 3 . 3 . 3
Q2i(12-yC) _ <1 + 2iy - 8<> (1 — 2iz - 877> (1 — 2in - az) <1 + 2i¢ - ay> Pilr=v )
1+ 4jyl? 1+ 422 1+ 4n)? 1+4[¢]?
and integrating by parts in all variables, we get that

‘ pa(T:8) ‘ S 24Pt /<3/>_3<Z>_3<77>_3<C>_3 dydzdnd( < 2kPTa),

without any loss in h~%, due to the fact that we are considering symbols A(x,&) € S5, (1),
with § = 0,1/2 — 0,1/2, and derivating A(x + Vhy, £ + Vhn) (or A(z + tv/hz, & + tV/h()) with
respect to y and 7 (resp with respect to z and (). In a similar way, one can also prove that

\6%0?[57 (,8)] Saph” 2 (el 2k(p+a) Theorem 7.11 of [8] implies then the statement for this
case.

When indices k € K are such that h < 28 < h1/279 we consider operators Oy, G)}:1 defined as
Opv(z) == v(Vhz), 6] 'w(z) = w(%), and replace Opy' (I, I* (7, €)) with @hOp}f(Nk’q(x,é))@gl,
where ¥ (,€) i= I% (%, Vhe). Since v(5055 — 7€) w2 Vhe)a(Z)by(Vhe) € 278, (1)
and ¢(27%Vhe)a ( =)b (\Ff) € 2’“151 (1), we deduce that Ik € 2k(p+Q)S1 o(1). Theorem 7.11
of 8] implies that Oph( L2 L2 is bounded, uniformly in A, and so is for Oph( - O

Proposition 1.2.29 (Continuity on LP). Let 1 < p < +o0, v € C§°(R?) be radial, 1 € C§°(R?\
{0}), a(z) be a smooth function such that |0%a(x)| S 1. Let also o > 0 be small, k € K ={k €
Z:hS28 ShoY and g € Z. Then OpY (v(ZE=5) 0 (275 €)a(z)by(€)) : LP — LP is a bounded

hl/2—0c
operator such that

< oka,
L(LP)

ot (3 (5515 Ytz eraton (o)

Proof. In order to prove the result of the statement, we need to show that the kernel K*(x,y)
associated to Op}/ (fy(lfl‘%:i)w(Z_kf)a(:L‘)bq(f)), ie.

K@) = G [ e %(%)w “e)a( Y Yoy ),

is such that
sup / K (2, y)ldy S 2%, sup / K" (2, )| de < 24,
T Yy

From the symmetry between variables z,y, it will be enough to show that one of the two above
inequalities is satisfied.

In order to prove the statement, we will study the kernel associated to the operator of interest,
separately, in different spatial regions, and distinguishing between indices £ € K such that
2k < pl/2=0 and 28 > KY/279. We hence introduce three smooth cut-off functions 6, 6,0,
supported respectively for [x| < m < 1, |z| > M > 1, and for 0 < m/ < |z| < M’ < 400, for
some constants m, m/, M, M’  and such that 8, + 6 + 6 = 1. Denoting concisely by A*(x,£) the
multiplier in the above kernel, we split it as follows

AF(2,8) = Al(2,€) + Af(2,€) + Al (2, ),
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with A¥(xz,€) = A (z,£)0(z), AF(z,€) := A¥(2,€)0y(x) and AY(z,&) := A¥(z,€)0(z).

Case I: Let us consider k € K such that h < 28 < h'/2=7. According to the above decomposi-
tion, we have that

K*(z,y) = K (2,y) + K} (z,y) + Kf (2, ),
with clear meaning of kernels K¥, Kf, KF.

Let us first prove that

(1.2:31) o [ 1KE Gy +sup [ 1KE Gy S 2.
X X

First of all, we observe that for |z| < 1 (resp. |z| > 1), we have that ‘ﬁf > 2 h=1/24e g
(resp. |ZIS=¢ | > h=V/240|¢||z] 2 h=Y/29(¢]), and by lemmal|1.2.26

hl/2—0c
1.2.32 o2 [y (M =8y | < 3 pith=o (2= b < Jg)e
(1.2.32) (G| |s 2 A5 @1 < i
=0
Therefore,
(1.2.33) ’85A§(x,2k§’ Z 2Bl 9k ¢ | =181l 9=k (1Al |51|)+kq]l|£‘ L S 2R g,
1B11<I8]

so making a change of coordinates & — 25¢ and some integration by parts, we derive that
-3
K, y)| S 2@ (2 @ —y))

for every (z,7) € R? x R2. The same argument applies to Ké“(:c, y), so taking the L' norm, we

obtain (|1.2.31]).
As concerns kernel Kf(z,y), we deduce from lemma [1.2.26] the fact that 6 (z) is supported for
|z| ~ 1, and that 28 < h1/2-7 the following:

|8l

‘aﬁ[#;(x;ygkgm < 281 [gMaIA) Zh TG b, jg144(2%0)1| S 207,

Performing a change of coordinates ¢ — 2*¢, and making some integration by parts, one finds
that

Kb o)| £ 2907 (F0 ), i),
and consequently that
sup/ |K* (2, y)|dy < 2%
Summing up with , we deduce that
Opiy (AM(x,€)) = O}l (A3 (2,€)) + Opj (A5 (2, €)) + Opj (Af (2, €))
is a bounded operator on LP, for every 1 < p < 400, with norm O(2%9).

Case II:

Let us now suppose that k € K is such that hY/277 < 28 < =7 If @, 6),:1 are the operators
such that ©xv(z) = v(Vha), 0, 'w(z) = w(%), we have that, for any symbol a(z,§),

Opj (a(z,€)) = ©10p} (a(,§))O),
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with a(x,§) = a(%,\/ﬁg). In order to prove that Op¥(A%(z,€)) (vesp. Op¥(AF(x,€))) is
a bounded operator on LP, we reduce to prove that this holds true for Op}f(;lv]; (x,€)) (resp.
OP}“{’(E’“(J«“ §)))

From , the fact that A¥(z,&) = ( ,Vh€), we derive that

~ 18]
‘8?A’;(:z, 5)’ DA e e A B
1B11<|8

and hence

’(‘)?A’;(%Qkh*l/?g)’ S S 2MBlighg IBlghUBI-BD ey ) < gkeg
|B11<]8]

for every (z,€). By making a change of coordinates £ — gkhfl/ 2¢, some integrations by parts
and using the above inequality, one can show that kernel K¥(x,y) associated to Op¥ (A% (z, ¢)),

ie.
~ 1 e L (T Y
KF — (z—y)-€ Ak
s($>y) (27rh>2/eh As( 7§)d§7

is such that
k kqoky—3 k -3
Bi )l S 2922 (P 3@ —y)) T, V),
which implies that sup, [ |I~(§ (z,y)|dy < 2. The same argument, and hence the same estimate,
holds for Kf(z,y).

The last thing to prove is that Op¥ (A (z,€)) € L(LP), for every 1 < p < +o0. So let K¥(z,y)
be its associated kernel,

-

(a- y>57(%)¢( (T )b (6)de,

and assume, without loss of generality, that vy(x) = v(|z|?). Set

(1.2.34) K (z,y) = (2771h)2/e

x—i—y
2

r[cos 0, sin 0],

with m’ < r < M’ on the support of 6 (%ry), and for fixed r, 6 let

(1.2.35) ¢ = plcos B, sin O] + rQ[—sin b, cos ).

We immediately notice that the Jacobian [86((5;’62))] =7 ~ 1, and that |¢|? = p? +r2Q2. Moreover,

‘(m+y>’§| f‘ [ p2+7’292—p}2+r2§22.

If the support of « is of size « sufficiently small, with 0 < a < 1, from the above equality and
the fact that |¢| ~ 2% on the support of ¥(27%¢), with h1/2=7 < 28 < h=7 we deduce that

Q) < ah'?77 and |p| ~ |¢] ~2F and W <Va

and consequently that

2
ahl=20 > {r\/m_p} > p?r — 1%

94



We should remark that, from the first of above inequalities, it follows that p > 0, and this
condition infers the second one. Moreover

2

res + 20?2

1+ -1

2
ahl"2 > {r\/m_p] + 202 = p? [(r— 1)+

= IOQ‘T - 1|2 + TQQQ [1 + CL(T, Qv P)] 3

2

with a(r, €2, p) bounded such that, for any {,m,n € N,
|0Log D a(r, 2, p)| = O(p~ ™),

and if

prlr—1* | r*Q? k. /2 1 202
Dy = (B + 1 L+ a2 0)] )Y@ V2 +7222)a(r, )b, (),

1

from all the observations made above, along with the fact that h=1/2t7 < p=! we deduce that

for any m,n € N
(1.2.36) |00 T,| = O(2"p™™) and  |9BTK| = O(2%p™™).

With the change of coordinates considered in (1.2.35)), and setting w := z —y, eg := [cos 0, sin 0],
kernel K¥(z,y) transforms into

1
(2mh)?

/ e%purea—f—%rﬂuweg-rh rdpdSQ,

and is restricted to |p| ~ 2¥, |Q| < h'/?77, so by making some integrations by parts, using
(1.2.36)), and reminding that |r — 1] < 2-kp1/2=9 <« 1 on the support of ', we find that, for
any N € N|

k < p—3-09k 2" - 2" 1 -
K (z,y)| Sh™2772 7 woce ] ]lll%l—1|<<1'

Now, as w = (z — y), eg = éiz', and |z + y| = 2r ~ 1 on the support of I',, we have that

w - eg| ~ [[2f2 = [y?], |- eF| ~ (@ + )@ +y)*] ~ 2l - y*| = 2a1ys — 291, and consequently

k

-3 5 2+ n 2 -
b S a0 (TP ) (o) e

Taking successively the L!(dy) norm of K¥(x,y), and using the above estimate we find that:
o if x| < |y| or |z| > |z,

2t o 2 - N(3+0)
<h“x‘ — |yl }> ]1\|%|_1|<<1 Sk

as follows from the fact that h2=% < h1/2t7 and we obtain that,
sup [ |G, )ldy S 1320 E) <1

by taking N € N sufficiently large (e.g. N > 3) and o > 0 small.
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o if || ~ |y|, from the fact that H%ﬂ" —-1] < Vah'/2=727k on the support of I', we deduce that
|x| > ¢ > 0. Without loss of generality, we can assume that x = Aej (this always being possible
by making a rotation), and [A| > ¢ > 0. If w:=z 4y,

2 =y =w-(z—y) =w- (22 —w) = w- (2Xe; — w) = 2 w; — w? — w3,

and then

22—y (= A2 =A2  fwy 2
o 0 * (ﬁ)
while

T1Y2 — T2y1 = Awa,

which implies that

k -N k -N
b 00 (-2 =) (G}

Since [ |K¥(z,y)|dy = [ |K¥(z,y)|dw, from the above estimate (with a fixed N € N sufficiently
large) this integral is bounded by 2%¢, when restricted to |z| ~ |y|. Indeed, when the integral
is taken in a neighbourhood of w; = 0 or wy = 2\, (w1 — A?) — A% can be considered as the
variable of integration, and by a change of coordinates, along with the fact that 2=%F < p=1/2+o,
one deduces that

Kk x dw < h %_"2’“(1 Q)h22_2k < 2kq
’ 1( 7y)| ~Y ~ )
UogUUs

where Uy (resp. Usy) is a neighbourhood of w; = 0 (resp. of w; = 2)); outside of Uy U Usy,

ok N ,
<h (w1 =2)% = A2)> S (27N fun) ™ S WNGED )N

SO
/ K @ y)ldw b2 o9k(H0) po—kpN(3+0) < okq,
(UoUUs»)

This finally proves that also Op¥ (A% (z,€)) is a bounded operator on LP with norm O(2%). O

Let us introduce
Qp, == 21hDy — 22h D1 = Op} (2162 — 7261)

the Euclidean rotation in the semi-classical setting.

Proposition 1.2.30. Under the same assumptions as in proposition with v replaced by
71, we have that, for any w € L*(R?) such that Quw € L? (R?),

loc
(1237)  [Jon (1 (2552 ) w ety (@) )| < 2Ph 37 (huilze + 1000lz2)

where Oy is a smooth function, supported in some annulus centred in the origin.

Proof. We prove the statement distinguishing between three spatial regions. For that, we
introduce three cut-off functions: 6s(z) supported for || < m < 1; () supported for
|| > M’ > 1; 6(z) supported for m’ < |z| < M’', for some 0 < m’ < 1,M > 1, such

that 05 + 0, + 0 = 1, and we define respectively A¥(z,¢) := v, (;ﬁ%ﬁﬁ>¢(2_k£)a(:v)bp(§)05(x),
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Af(a, &) = 1 (55 )2 (@)t ()6 (), and A% (w, &) = 1 (S )2 Fa(2)b, ()6 (),
so that

(2o a(@b(€) = A5G, €) + AF,€) + A4z, )

The fact that Op}’(AF), Op¥(AF) € L(L?) and their norm is a O(2fPh~1/277) follows from
lemmas [1.2.25 and [1.2.26| Indeed, when |z| < 1 (resp. |z| > 1) we have that |- zlé] - 5‘

hl/2—0c
h=1/247 €] (resp. ‘iﬁ;i ‘ > b4 |g||z| = h=Y/2Ho|¢)), so using lemma |1.2.26| we derive that
18] —1—Jal—j
(6% B x|§| _5 6% 7—0- $|€‘ l_a —1—
020 [ (53| € e o 1a1(€)] S AA7lg 711,

Consequently, as 27%h < 1, we deduce that ]8%8? (AR (222 hg)]| < 2kPh=1/279|¢| 7L for any
a, 5 € N2. Therefore

1
2
| soonie ([ jgtag) st
L2(dg) [€]~2kh—t

The same holds for Alg(:v,f) S0, injecting these estimates in inequality (|1.2.21)), we derive that
1

10D} (A% (2, €))wl Lo + |0p} (Af (2, €))wl Lo < C2PRT77||w]| 2.

A different analysis is needed for Op¥ (A¥(z, €))w, since it is no longer true that |z|¢| —¢&| > C|¢],

for a constant C' > 0, on the support of A¥(z,¢). In this case, we exploit the fact that A*(z,¢)

is supported in an annulus, in order to localize Opf(Ak(x,f))w and then perform a change of
variables. If ) € C5°(IR?\ {0}) is a cut-off function equal to 1 on the support of 8, we have that,

for any N € N, A¥(z, &) = 0p(x)§A%(2, &) + r¥ (2, &) by means of proposition [1.2.21} where

|o‘| 2i 1
R (x,€) = <2hz> (i Z /eh(”‘z—y'@/o %00 (z + tz)(1 — )N Ldt

lal=N

sad (=5 .0

x (08 AF)(x, & +n) dydzdnd}.

If we take N sufficiently large it turn out that the quantization of 7%, satisfies a better estimate
than ((1.2.37)). Indeed, using lemma [1.2.26| and integrating in dyd(, it can be rewritten as

N-j(3-0) 2
(1.2.38) rh(z,6) =Y h(;h)z/eh”'z/l fo(x + t2)(1 — )Nt
0

J<N

o (A ok )0 () s (€ )

for some new functions 6o, y14j,%,0;,a,b,1;—n, and as it is compactly supported in x, we know
by lemma |1.2.25| that for a new cut-off function (that we still call )

10} (P& (2, €))w] S Jlwll 2 / ()] S|
o]

o5 s (50|
a’|<3

One can check that the action of 85‘, on 7K (Z+¥ h¢) makes appear factors (h~1/2T7h|¢ +1|), for

i < ||, without changing the underlining structure of the integral, and this term is bounded by
(h=1/2479k)i on the support of ¥(27¥h(€ 4+ n)). After a change of variables 1 — hn in (T.2.38),

dy.
L2(d§) Y
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1+4[n? 1+4[2]2
for convolutions, and fix N > 7, in order to deduce the following chain of inequalities:

ag’rfv($ ; v h§> i

‘ 4 3 /0 o o N3
we use that e*1?% = (1_2”"82) (1 21z 8") e?™% integrate by parts, apply Young’s inequality

L2(d¢)
' . 2
< Z h2N—2j(%—a)(h—%+02k)2122k(p+3 df‘/ 3|¢) kh(§+77))|dzd17
i<|a/|,j <N
< Z R2N=2j(3—0) (h—§+02k)2i22k(p+j—N)/1/,(2—%5)‘2(15
i<la/|,j<N

< Z h2N—2j(%—a)(h—%+a2k)2i22k(p+j—N)(h—12k)2<22kp7
i<la/[,j<N

and that ||Op7]:LU(T§€V)||L(L2;Loo) < 2P, We can then focus on the analysis of the L> norm of

00(x)Op¥ (A¥(z,€))w, which is restricted to an annulus where we can perform the change of
variables © = pe’®. In these coordinates, operator €, reads as D, so, using classical one-
dimensional Sobolev injection with respect to variable «, one-dimensional semi-classical Sobolev
injection with respect to variable p, and successively returning back to coordinates x, we deduce
that

1
180(2)Op (A (&, €))ew| S 1™ {110} (A%)ewll p2(az) + OB (€)OPE (A 2y
+ 194000py (A¥)w]| 12 () + 10} (€)2000p (A¥)w]| 124
< 2R3 w12 + (60wl 2]

last inequality derived observing that the commutator between €2 and Op}‘l’(Ak) is a semi-
classical pseudo-differential operator, whose symbol is linear combination of terms of the form

(2L E w2 ealn @ty @)

for some new v1,%,a,6,b,, and from the fact that operators Op}f(Ak(z,ﬁ)), Op}f(gAk(:n,f)) :
L? — L? are bounded (see proposition [1.2.27), respectively with norm O(2FP), O(2F®+1), and
that 2% < h=°.

O

Proposition 1.2.31. Under the same hypothesis as proposition Oph(  (7,8))
L° is bounded and

(1.2:39) om0 $ Y 20 (a2,

L(L2;L°) ™ =
The same result holds for Op}’ (Jk ).

Proof. As in proposition [1.2.28, we prove the statement only for Op}’ ( ¢)» leaving to the reader
to check that the result is true also for Opj(J;, k Q)

2 G| 1k (z+ ; ;
Let w € L*. After lemma [1.2.25, we should prove that ‘ 9, 0; [Inq(%, hf)] ‘ L is estimated

by the right hand side of (1.2.39), for any |«|,|3] < 3. A change of variables n — hn, { — h(
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o Tk (ot
allows us to write I} (%52, h¢) as

. , 1 1
i4 /621(77‘2—11 ) [/0 (fy(h§+"(x]§| _ 5))¢(2—kh§)a(x)bp(h§))\(m+tz,g+tg)f(t)dt

™

e ) (T34 o ol + )| dy dedndc,

and to observe that the action of J on the integrand makes appear a factor (h7%+g|h(§ +tO)|),

with ¢ < |a|, while that of 8? doesn’t affect the estimates of above integral, as one can check

using lemma [1.2.26{ and the fact that 27%h < 1. With this in mind, we can reduce to the study
of the L?(d¢) norm of an integral function as

Sty [l [ (o (134 ale] — )02 R0 g 11 110 0N

i<3

X (2 (e + )’ (T2 44 )by (b€ + )|y dzdnd.

for some new functions v, 1, a, b, @Z, a’, by, with the same properties as their homonyms. We use
that

i/ ) _ <1 + 2iy’ - a¢>3 (1 — 2in - 8z>3 <1 — 2z - a,7>3 <1 + 2i¢ - 8y/>3 S2il2—y/)
1+ 4]y |? 1+ 4jn? 1+ 4|z|? 1+ 4|¢|?
and integration by parts to obtain the integrability in dy’dzdnd(, up to new factors (h_%J“’\h({ +
t¢)|)?, with j < 3, coming out from the derivation of the integrand with respect to z. Then,
using that functions h7b,_;(h(¢ + t¢)) (vesp. hib,_j(h(§¢ +1))), j < 3, appearing from the
derivation of b,(h(£ +t¢)) with respect to ¢ (resp. the derivation of by(h(£ + 7)) with respect to
1), are such that [h7b,_;(h(¢ + t¢))| < hI2FP=1) < 2k on the support of (2 Fh(€ + t¢)) (resp.

|h7by—;(h(£4n))| < 2% on the support of (27 %h(£41))), and the fact that || f(n>_3]$(2_kh(§+
Il L2eae) < 19(27%h-)|| 2 < h~12F, we obtain the result of the statement. O

Lemma 1.2.32. Let us take o > 0 sufficiently small, k € K and p,q € N. Let also v, w €
C§(R2\ {0}), a(z) be either a smooth compactly supported function or a = 1, and f € C(R).
For a fized integer N > 2(p+ q) + 9, we define

(1.2.40) 7§, (2,6) = 7rh —1 Z /eh(nz y-C) {/ 8“( (Q;JSQ = )w(2_k§)a($)bp(f))|(m+tz,£+t<)

lee|=N

X ()] 0F (bg ()2 7E) | 4y.4m) dydzdnd],

and
(1.2.41) N 1
heals) = o o [t [ azmar (v, (B =5 Yo a0y (©)eramerio
X (0] 02202 (b ()2 76) ety ¢ 4) dydzdndC
Then
(1.2.42)

||Opfzf(7“§€v,p)”L(L2) + [|Opy) (TN,p)HL r2) + |Opy (TN,p)HL(m .z<) + [|Op} (TN,p)HL(m L) S hPHa,
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Proof. We remind definition ([1.2.28)) of integral I}]f’q(:c,ﬁ) for general k € K,p,q € Z. After an
explicit development of derivatives appearing in (|1.2.40) we find that ’I";g\ﬂp(il?, ¢) may be written
as
_q(i_
SN (o
J<N

where 7 is replaced with 41, and @’ = 1 in I;If+j,q—N‘ Propositions |1.2.28| and |1.2.31|7 combined

with the fact that h < 2¥ < h=7, imply, respectively, that

il g e
0 (K lez) § - NGt

JEN
N—j(3—0)+p+j+q—N N—j(3—0)—o(p+j+q—N +
< Z pN—i(g=o)tptita—N Z pN=i(G=0)=o(ptita—N) < ppta,
J<N J<N
p+j+g<N pt+j+g>N

and

HOPE (K lepzny S Y BN 7IGgkprita=N) (=g tagkyi(p-1gh)

i<6,j<N
< Z RV 1= (i) (5 —0)+ptiti+a—N+1 | Z RN —1=(i45) (3 —0)—o(p+itj+a—N+1)
~Y
i<6,j<N i<6,j<N
ptitj+q<N-1 ptitj+q>N-1

S hp+q7

as N >2(p+q)+9.

As regards (|1.2.41)), we first observe that index ay is such that |ag| < 1 since xan(f)zz 2 k¢
is linear in x,,. An explicit development of derivatives in (|1.2.41f), combined with lemma |1.2.26

shows that 7%, »(@, &) splits into two contributions:

hN 1 21 1 —_
Jo(x,€) = ) Z h*Z(E*")/eT("'Z’y'O/O (’Y1+z’(%)10(2%5%@)%%(5))|(z+tz,5+tc)f(t)dt

X (23 + Yn)bg—n (€ +m)P(27F (€ + 1)) dydzdndc,

coming out when |ap| = 0, for some new functions a, 1,1, and clear meaning for v;, b,1;, bg—n;

N . . ’L
']1(1"5) = h Z h_(l-f-])(;—a)/ei(n.z_y.g)

(mh)* i<N—1,5<1
1 J—
« | (m@-ﬂ-(”jjf)zf)w<2—kf>a<x>bp+i+j1<5>)r(w+tig+t<>f<t>dt
X by n+1(§ + 0w (27H(€ + ) dydzdndc,

corresponding instead to |ag| = 1, for some new other a, 1, QZ One has that

—(i4+) (L -0
Ji(@,&) = Y RNTEIGTI v, ),
i<N-1,5<1

with ~ replaced with 1, @’ = 1, so propositions [1.2.28| and [1.2.31] along with the fact that
N >2(p+q)+9 imply

0Py (J1 (2, )l cr2) S Z RN (i+5)(5—0) ok(p+iti+q—N) < pPta
i<N-1,j<1
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1ODE (T (@, ooy S > RN EHDGmOghloritita=N) (= gtoghyl(p-1gk) < pr+a,

iI<N—1,j<1
1<6

In order to derive the same estimates for Jy(z, §), we split the sum x,, +y,, and analyse separately
the two out-coming integrals, that we denote Jy ,(,&), Joy(z,€). In the latter one, we use that

yn(f%y'C = —2%8@67%3/'4 and successively integrate by parts in d(,, obtaining, with the help of
lemma |1.2.26] that

(1.243) Joy(z,&) = Y RNTLEH a)/eh n2—y-C)

i<N,j<1
1 J—
<[ (i (92 el ri151()eringrao O
% by (€ = P27 (€ + ) dydzdnd,

for some new functions a,, v, f. Again by propositions [1.2.28 m m 1.2.31] and the fact that h <
2k <h77 N >2(p+q) +9, we deduce that:

(1.2.44a) 10Dy, (Joy (2, ) c(r2) S Z RN +1=(i+5)(5—0) gk(p+iti+q—N—1) < hrta,
i<N,j<1
(1.2.44b)
i+7) (4 —o i+j+q—N— . —
||Op}7,l}(‘]0,y(m7f))HL(L2;L°°) 5 Z hN"l‘l—(H-])(z )Qk(P+ +i+q—N 1)(h 3 2k)l(h 12k)§hp+q.
i<N,j<1
1<6

In Joo(z,§) we first integrate in dyd(, and then we split the occurring integral into two other
contributions, called Jy x+tz(x €), Jo - (z, 5) by writing x,, = (z, +tzy,) — tz,. Similarly to what
done above, we use that z,e Gz h 8%6 R i Jo 2, and successwely integrate by parts in dn,,:
as 27%h < 1, we obtain that Jo,tz has an analogous form as , with some new b,_ v, ¢, and

verifies (1.2.44). Finally, using that x, + tz, = h’_a(%)m*l + &al€17Y, we derive
that

Jo a:+tz(1: 5)
Y RN / e3in / H;Jf/g )2 ) al@)bpri1(8) )iz ()t

<N

X bg—n (€ +n) (275 (& + n))dzdn,
s 3w [ [ (3 =) o @i ©) werme S0

i<N
X by (& +m)p(278(E +n))dzdn,

so by propositions [1.2.28] [1.2.31

—i(i_s itg—
1OPY (Joattz (@, ))lgrey S D BN am)gkrita=N) < prta,
i<N

10Dy (Jo,z+t2 (2, ) (12;000) S Z WN =il =) gh(ptita=N) (=g ookl (p=19k) < prta
i<NI<3

As ?ﬂ‘{,’p = Joz+tz + Joz + Joy + J1, that concludes the proof. O
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We introduce the following operator:
1
h

for j = 1,2, and use the notation | MYw|| = |[M]*MJ*w||, for any v = (y1,72) € N2, We have
now all the ingredients to state and prove the following two results.

(1.2.45) M; = —Opy)(z;[¢] = &),

Lemma 1.2.33. Let us take o > 0 sufficiently small, kK € K and p € N. Let us also consider
Y € C(R?\ {0}), a(z) either a smooth compactly supported function or a = 1, and a(x) such
that

)= @=1),

) or (a compactly supported and aa = a)).

(a compactly supported ) = [(a =
We have that

(1.2.46) Opy (71 (”2'15/’2_5)¢(2‘k£)a(x)bp(£)(xn|£| - £n))
= 0pf (1 (25125 Y2 )ata)by €) )alw) VG, + OpE (1, €)),
where
(1.2.47a) 10w} (ry (2, ))w]| > S Bl 2,
(1.2.47b) lOp} (rh (@, )| o S B2 (w22 + 19600 12),

for some 6 € C$°(R?\ {0}), and a small >0, 83— 0 as ¢ — 0. Consequently,

(12.480) |opt (1 (2= w2 E)ata)by ) (anle] — &) Y

o ST (lwllze + [ Mow]lz2),

z|é] — ¢
hl/2—c

(12480) [or (n (25,25 Y w2 ata)by(€)(aale] &0 Yu|

1
S ST (110020) w2 + [1(B0S20) N 2 ).
©n=0

Proof. The statement of the lemma is just the result of tedious calculations and the application

of propositions [1.2.27] [1.2:30] along with lemma [T.2:32}

Let ¢ € Cs°(R? \ {0}) such that ¢ = 1 on the support of 1. From symbolic development’s
formula ([1.2.18)) and ([1.2.19)) we derive that for a fixed N € N, and up to negligible multiplicative
constants,

(1.2.49)
{% (ﬂf/';f)w@kf)a(m)bp@} ¢ [(aalé] — &n)a@)d(2 )]
= (3215/’2;5)w@_kf)a(x)bp(ﬁ)(xn\él &)

o (e oz alalty(©). (anlé] - &)}

D DR LA o (ﬂf/';f)wz’ff)a(x)bp@} 052 0¢* [(@nlé] = &)] + (. ©),
2<|a|<N
ot [+|ea|=|e|
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with
1.2.50
( k | hN 2i ! o zl¢] — € k
(T, €) = Z /ef(n'z—y() |:/0 031 0¢* ["/1 (hl/T)zb@_ f)a(m)bp(g)} |(ettz.6410)

h 4
() aren

x (1= )N 1dt] 02202 [(wlé] = £)a) B2l 4y.¢4n) dydzdnd

If @ = 1, we observe that Téfvp can be decomposed into the sum of integrals of the form (|1.2.40))
and (1.2.41)) with ¢ = 1, so its £(L?) and £(L?; L*°) norms are a O(h'*?) if N is taken sufficiently
large (e.g. N > 2p+ 11). The same is true if functions a,a are compactly supported, as follows

by propositions [1.2.28] [1.2.31] since, using lemma [1.2.26/ and reminding definition (1.2.28) of I*
Py

for general k € K, p,q € Z, we realize that

k _ N—(i+j)(3—0) 1k
(@, §) = E h 2 Ip+i+j_|a2|,1_\a1|(fﬁa§)-
o [+|oa|=N
i<laa|1<j<]az|

An explicit computation of the Poisson bracket in (|1.2.49) shows that it is equal to

(1.2.51) h(ayl)(azf/’;f) (xligl/;_a;z&)w(Q_kg)a(:E)bp(g)
+3 n (ZEL=E Y wateyaany @)

where in the latter contribution > is a concise notation to indicate a linear combination, and
1, a, b, are some new functions with the same features of their homonyms. After writing (z1&2 —
12&1) = (z1]|€] — €1)&|E| ™ — (m2]€] — &)€1|€]7, we recognize that the quantization of
verifies estimates thanks to propositions , and the fact that 257 < B=°P.

Let us denote concisely by t* the |a|-order contributions in (T.2.49)), for 2 < |a| < N. As factor
xn|&| — &, is affine in x,, the length of multi-index ag is less or equal than 1 and, using lemma
1.2.26], t* appears to be the sum of two terms: the first one, corresponding to |as| = 0, has the
form

Z /h|a‘*"(%7”)’h+i <9§1’1£/|2:f > D27 ) a(@)byyit1 ) (€) 2,

i<|a

with g = 0 or 1, for some new functions 1, a (if @ = 1 then p = 0, for the derivation |a;|-times
with respect to x of 11 ( :5';3) makes appear, inter alia, a factor |£||*1 that allows us to rewrite
¢ (znl€] = &n) from (zn €] — &n) 4 bo(§) for some new by, and 0511 (2)2y is of the form 74,((2));

the second one, corresponding instead to |ag| = 1, is

Z ,h‘a|_(i+j)(%_g)71+i+j (%) ¢(2_k5)a(x)bp+i+j+1—\a| (©);

i<[al-1,j<1

for some new other functions 1, a. From propositions 1.2.30| we then deduce that

(05 7+ W) ] g2,
1
O+ n2 ) (w2 + [10Qw] 2),

(1.2.52a) 10w} (ta)wl 2 <

~

la]—1

(1.2.52b) |0py (th)wllzee < (B2
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which concludes that

(S Yo alany (@) £ [anle] - )it )

=1 (2 Y2 e alaby (€ ale] — &) (),

with 7 satisfying (1.2.47).

Finally, by symbolic calculus we have that, up to some multiplicative constants,

OpY (x4 l€] — €2)a(2)P(275€)) = a(a)Opy ((wnl€] — &2)(275€)) + Opp (r* (2, €))
= Op}Y (1(277€))a(a) AM,, + haa(2)Opy (9) (27 €)(27"|¢]))
+ Op (P (2, €))AM,, + Opl (r*(x, €)),

where

h

@6 = 5

Q/Ghn /a Az + t2)dt Og[(xnl] — &)(27E)] |4 g1 dzdn,

h27k [ _ ~
P@.8) = oz [ €7 [ouita+ t2)at i) 274+ n)dzan,
are such that [|Op¥ (r¥)||. cz2) = O(h), ||Opy (7 )||L r2) = O(1). An explicit computation shows
also that ||[Qp,, Op}’(r k)]H o) = O(h) and ||[Q4, Op} (Nk)]HL(Lz) = O(1). Therefore, since ¢ = 1
on the support of ¥, @ = 1 on the support of a, one can use remark together with

propositions [1.2.28] 1.2.31 and also propositions 1.2.30}, to show that

Ont (1 (2512 2 )a(e by (©) ) Opt (rale] — &0 )() T2 6))
= g (o (=2 Y w2 €)ala)by ©) ale) M, + O (2, ),

for a new Opy/(rp k(z,€)) satisfying (1.2.47a)). This concludes the proof of (1.2.46) and of the
entire statement, applylng propositions 1.2.30] to the first operator in the above right

hand side. O

Lemma 1.2.34. Let us take 0 > 0 small, k € N, p € N. Let also v € C§°(R?) be equal to 1 in a
neighbourhood of the origin, ¥ € C°(R?\ {0}), and a € C§°(R?). For any function w € L*(R?)
such that Mw € L*(R?), any m,n = 1,2, we have that

Ont (v (£ Y0 21wy ()€l — ) ale] — &)Y

= 0p (1 (ZEL £ ) w2 €)a@)by (€) el — &) ) ING] + O (127 (ol + e 12)).

with B >0 small, B — 0 as o — 0.

Proof. Let 5(2) := ¥(2)2m, and ¢ € C§°(R?\ {0}) be identically equal to 1 on the support of .
We saw in the proof of the previous lemma that the symbolic product

(55 e e (o) el - )32 o)
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develops as in (|1.2.49)), (1.2.50)), with vy replaced with ¥ and @ = 1. From ([1.2.51]), the fact that

if m =n,

" (1€ — o), if m £ m,
and that (x1&s — &ox1) = (21]€] — €1)& €7 — (22]¢] — &2)&1/€]7E, we derive that the first order
term of the symbolic development is a linear combination of products of the form
s rz|§] =& _
ny (S Y w a@b € skl - &),

for some new functions v, 1, a, and its quantization acting on w is a remainder as in the statement
after lemma [1.2.33

The second order term is given, up to some negligible multiplicative constants, by

0,
{zm|€] — &Em,znlé| — &n} = {(_1)

W25 (099) (D8 Y2 e an () (€) (el — )

|a|=2

IS 0 (S ) a2 ma(albyia )

|laf=1

1Y (G a2 st

for some new smooth, compactly supported, 1,3, a1, as, asg, while for the third order one we
have

R 3 (00 (DS w2 e ()b (€) (] — )

|laf=3

223 (B8 Y ey 6)

for some other 91, a1, a2, and a new v, € C§°(R?). As the derivatives of v vanish in a neigh-
bourhood of the origin, when |a| = 1 we can replace (0%y)(z) with >, v (2)zj, vi(z) =

(0°v)(2)zj|z| 2. Applying lemma |1.2.33[ to sums on |a| = 1,2,3, and proposition [1.2.27 to
the remaining ones, we derive that also the quantizations of the second and third order term are,
when acting on w, a Opz (K2~ P(||w| g2 + || Mw]|2)), for a small 3> 0, 8 — 0 as 0 — 0.

In all the other |a|-order terms, with 4 < |a] < N — 1, and in integral remainder ré’“\,p, we look
at ’y(ﬁiﬁﬁ)w(Q*kf)a(az)bp(f)(a:mlé\ — &n) as a symbol of the form

(L ) w awtya @

for anew a; € C5°(R?). From (1.2.52a]) and the fact that Op}f(rﬁvp)w = Oy2(h'*P) when N > 11,
we derive that also the quantizations of these terms, acting on w, are also a Op2 (h2_5 (lwl 2 +

[ Mw||2)).
We finally obtained that

On (v (2= E ) 0 2 €1y () €] — ) ale] — &)Y

= 0pp (+( 25 =) w2 )ty € wmle] — &) ) O (ale] — 6)F26))
+ Op (WA (w2 + M 12)).
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The conclusion of the proof comes, then, from the fact that, by symbolic calculus,
T (9— W (o— h w o - -
Opiy ((wal€] = €)11(277€)) = hOP (¥1(274)) M — 52Oy ((941)(277¢) - (279)),
and by remark |1.2.22 since all derivatives of 1; vanish on the support of 1. O

The following lemma is introduced especially for the proof of lemma [3.2.13] Even if quite similar
to lemma [1.2.33] we are going to see that the particular structure of symbolic product in the
left hand side of (|1.2.53)) allows for a remainder r’; satisfying enhanced estimate (|1.2.54b|) rather

than (T.2.47D).

Lemma 1.2.35. Let us take o > 0 sufficiently small, k € K and p,q € N. Let also v € C§°(R?)
such that v = 1 in a neighbourhood of the origin, 1,1 € C$°(R? \ {0}) such that ¢) =1 on the
support of ¥, a(x) be a smooth compactly supported function. Then

(1253) [(eale] €034yt (2= Ywiae)]

_ 7(aclf\ - €)J(2—k£)a(x)bp(g)(xn|gy — &) + (2, 6),

hl/2*0
where
3_
(1.2.54a) |op k@ oye| , S B3Pz + 1V0wllz2) + Bl e,
1
(1:2.54b) |op @] S h 773 (1060 w2 + [1(B0n) M 12 ),
n=0

for some 6 € C5°(R?\ {0}), and a small >0, B — 0 as o — 0.

Proof. Using proposition[I.2.2]] for a fixed N € N and up to multiplicative constants independent
of h, k, we have the following symbolic development:

(1.2.55)
[(Canlel — €T a8 [+ Del=S w2t

- <a;1‘f/|2_0£)J@_k)a(x)bp(f)(xnm — &)

+h {(msr — &2 )a()bp(€). (ﬁ/'if) }

TN Al [(wale] - €D )a(@)by(€) 052 0p" [w(ﬁf/';f)] + 7N (2, €).

a=(a1,a2)
2<|a|<N

with

Tk x = hN
N,p( 75) ( )4

X 1 N
3 / eH oz ) [ /0 021022 [ (€] — £2)a(2)bp ()P [rst2.e410

|at|+|az|=N

x (1= )N tat] oo [v(”;'f/';f )07y dydzdndC.

106



For sake of simplicity, we denote by ¥ (resp. £, |a| = 2,..., N — 1) the Poisson brackets (resp.
the |a/-th contribution) in (L.2.55). An explicit computation of ¢}, combined with the fact that
T1€o — x0&1 = (w1|€] — €1)& €| — (wo|€] — €2)€1]€| 7L, shows that it is linear combination of terms
of the form

(o) (=5 (B S5) Gareyatainy ),

for j € {1,2} and some new functions {/;, a, by, so by inequalities ([1.2.48) we derive that

3_
(1.2:563) [om byl , <32 (ollze + 19wl 2)
1
(1.2.56b) G I ([T AL PR [CHNE T T
©n=0

The improvement of these estimates with respect to (1.2.47) is attributable to the choice of
1 identically equal to 1 on the support of . All derivatives of v vanish against 1/), so in the
development of t} we avoid terms like ’y(z‘f/g_i' )w( k&) a(x)by(€)(0)(27%€)(27F(€]), coming out

from {zp|&| — &n, ¥(2 *kﬁ)}’y(zlf/g_i')@(Q*kﬁ)a(x)bp(f), that do not enjoy estimates like ([1.2.56)).

Using formula (1.2.24]) and looking at (z,|{| — fn)J(2_k§)a(:c)bp(f) as a linear combination of
terms ¥(27%¢)a(z)by41(€), for some new v, a, b1, we realize that, for any 2 < |a| < N,

tk — Z plal- (y+a2|)(—a>7j+a2|(‘Z’f/‘;f)J(2—’f§)aj(x)bp+j+1_|m|(f),

|a1|+|az|=|a|
1<j<]on|

for some new other zZ, aj, with a; compactly supported, and then that

10pY (¢5 Y w| 2 < Z plol=GtlazD (G =0) gk(prit1=lenl) |yl 5,

|1 |+ ez | =]
1<5<] ]

10}, (te)wl| <
1
S Z h\oz| (]+\a2|)(**o)2k(l’+J+1 |a1|)h***0 Z(H(QOQh)HwHLQ + H(QOQh)#Mw”L2)a

ot [+ 2| =]l p=0
1<j<]u|

after propositions 1.2.30, For |a| > 3, the above estimates imply [[Opy (tE)|| ¢ (z2) < h3—8
and [|0p (85 w1 < AP St (B0 )l + [[(662%)“Muo]| ). For |a| = 2, we exploit
the fact that functions 7;4|q,| vanish in a neighbourhood of the origin, as they come from 7’s
derivatives, and define ’Ygi‘+|a2|(z) = Yjtlas|(2)zil2| 72, i = 1,2, so that

= S plelmGHazG-e (ﬂf/l;f) (:C;Llf/'ziggi)i(2_k€)aj (@)1 s (),

lay[+|az|=|af
1<j< o ],i=1,2

to which we can then apply lemma [1.2.33] After inequalities (T.2.48), Op¥ (t£) with |a| = 2 also

satisfies (|1.2.56)).
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Finally, reminding definition (|1.2.29) of Jﬁq(x,ﬁ) for general k € K,p,q € Z, and developing
derivatives in rfv , using lemma (1.2.26] we observe that

- N—(azl+i)(1-0) 7k

o= >, b 2" p1 Jas) el 4o | (5 €);
lon|+az|=N
0<j<o|

hence propositions [1.2.28| and [1.2.31| give that

HOquIL}(erV,p)HL(LQ) < Z hN—(|042|+j)(%—‘7)2k(17+1+j—\0¢1|) < h1+p’

la1|+|az|=N
0<j<] o |

0P (R pllequezmy S D0 BNl Gmolghorttmlenh g togkyi(ntal) < 7,
|ai|+|az|=N
0<j<]a1],i<6
if N is chosen sufficiently large (e.g. N > 10 4 2p). We should also highlight the fact that, at
the difference of ((1.2.54b)), (1.2.54al) does not improve (|1.2.47a)): if we get a h3 =P factor in front
of the first term in the right hand side, the second term h'*P||w|| 2 is just a O(h'~#) in the case
p =0, coming from |a;| = N, j = |aa| =0, p = 0 above. O

1.2.4 Operators for the Klein-Gordon Solution: Some Estimates

This subsection is mostly devoted to the introduction of some symbols and operators, along
with their properties, that we will often use in the paper when dealing with the Klein-Gordon
component of the solution to starting system (1.1.1). From now on, we will use the notation

(&) := /1 +|£]? (thus, p/'(§) denotes the gradient of p(§), p”(§) = (8%p(f))ij the 2 x 2 Hessian
matrix of p(§)).

The first statement is a general result about continuity of operators with symbols of order r € R
on spaces H;(R?), and generalises theorem 7.11 in [8]. The second statement is a result of
continuity from L? to H ,’;’oo of a particular class of operators that will act on the Klein-Gordon
component. In the spirit of [14] for the Schrédinger equation, it allows to pass from uniform
norms to the L? norm losing only a power h=27 for a small B > 0, instead of a h™! as for
the semi-classical Sobolev injection. Proposition is, instead, a result of uniform LP — LP
continuity of such operators, for every 1 < p < +o0, and it will particularly useful in the case
p = +o00.

Proposition 1.2.36 (Continuity on Hj). Let s € R. Leta € S5,((€)"), 7 € R, 6 € [0,1], o > 0.
Then Opy(a) is uniformly bounded : Hj(R?) — H; "(R?), and there exists a positive constant
C independent of h such that

||Opﬁ(a)||L(Hi;H;_T) <C, Vh €]0,1].

Proposition 1.2.37 (Continuity from L? to H{™). Let p € N. Let a € 55,0(<&\/%(£)>_1),

5 €1[0,3], 0 > 0. Then Op¥(a) is bounded : L*(R?) — H}***(R?), and there ezists a positive
constant C' independent of h such that
10p (@)l (z2smpey < ChT277, Vh €)0,1],

where B > 0 depends linearly on o.
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Proof. We first remark that, after definition [1.2.18| (i) of the H}"*® norm,

10py (@)wll g = [[(hDz)? Opy (a)w| Lee

and that, by symbolic calculus of lemma [1.2.24] (£)Pfa(x, &) belongs to Sg7g(<§>p<%\/%(£)>fl) C

h_p”S57g(<l\/lﬁ(5)>_l). This means that estimating the H}"* norm of an operator whose symbol
is rapidly decaying in |h?&| corresponds actually to estimate the L norm of an operator asso-
ciated to another symbol (namely, a(z, &) = (§)?fa(z,&)) which is still in the same class as a, up

to a small loss h™7.

From definition |1.2.17] (i) of Op}’(a)w, and using a change of coordinates y Vhy, € — VhE,
integration by part, Cauchy-Schwarz inequality, and Young’s inequality for convolutions, we
derive what follows:

(1.2.57)
‘Oph(

- an/" G0V e (Vi) dyde

dﬁ// =) Etiny ($+\fy \fﬁ)d de

/o
. —y) % ’ L+i(€—m)-9,\° iz —yreriny
~[em /(5 //( 1+\f oP ) (Tep) ¢

si/ \//—ygynwm@wﬂﬁgwmwan
_ z \fy
<1 w(ﬁ) N e | [ () g (RPN, »

Y,

w48 (e
L2(§)

-3
Shobolse [ (v oo vie (=2
sh-bluls [ (Je—v)  [rvig 7
where N > 0 will be properly chosen later. We draw attention to two facts: in the third equality

in , we use that

1—i(Z —y)-0\° 144 a3 . . , ,
Vh ¢ < +i€—n)- y) [el(ﬁ*y)fﬂn-y — MRy ety
L+ (7 —v)? L+ (§—n)?

T

so, integrating by part, derivatives dy,0¢ fall on <ﬁ — )71 (€ —n)~! (giving rise to more
decreasing factors) and/or on a (L\Q/ﬁy, \/Eﬁ); symbol a belongs to Ss,(1) with § < 1, but the

loss of A9 is offset by the factor v/h coming from the derivation of a(Lg/Ey, Vhé) with respect
to y and &.

In order to estimate |[(h7v/hE)~N {
z—&-\fy)

Yy (VRE) )1
N

with y supported in some ball Bo(0), to distinguish between the case when

I 12 We first introduce a smooth cut-off func-

z+vhy
tion x( =
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is bounded from the one where |%‘/ﬁyl — +00. In the latter situation, say for |%\/ﬁy\ > 2, we

x+ﬁ7/ _
< 2y\/§(\/ﬁ£)>15\/ﬁand

have

ShO.

~

00 (EE378 vy N

L2(£)

On the other hand, when x+;/7ly is bounded we consider a Littlewood-Paley decomposition and

write

(1.2.58)
z+Vh / z+vVh /
o —N 2 y—p(\/ﬁf) -1 1 o 2N 2 S by p(ﬁ) -2
e e > o Z%/hs ) e
=h') I,
k>0
where VR
z+vhy _ _
- [rgv (P o ggae,
and
x+\/ﬁy o _
=/ﬁf@2N<2\mf@9>2w2k©&
z+\/ﬁy /(ok _
ekt — — p(27) \ 2
(1.2.59) :22k/<h 2kg) 2N< 2 N > p(€)de k>1
< 2(—2N+2)k:h—2aN/<Hﬁ’\;}’/(2k§)>2¢(g)d§.
~ h

For a fixed ko and any k < ko, | det(p”(25¢))| > C > 0 on the support of . For k > kg, function
T k
€ = gn(€) = 294(25/B) — 295/(25¢) is such that det(g}(€)) = ez, and |det(g}(€))] ~ 1

on the support of ¢. We may thus split the d¢ integral in a finite number (independent of

k) of integrals, computed on compact domains, on which & — g¢x(£) is a change of variables
2N+2)kp,— 20Nf Z+gk(§0)>—2d

i<y, %

z+vhy
2

with jacobian of size 1. We are then reduced to estimate 2(~

where C' is a positive constant and &y is in suppy. Since we assumed that is bounded,

lgx(&0)| = O(23k) and we get

I. < 2(—2N+2)kh—2aN/ ? -2,
e o 2

S 2(—2N+8)kh—20Nh/ <z>_2dz

j2lSh1/2
< 2(72N+8)kh720N+1 log(h’l) 7

so taking the sum of all I, for kK > 0 we deduce that

£l b p’(\/ﬁé)>—1
Vh

-

(h7V/he) ™ (

< h—aN—é(ZQ(—QN—HS) )5 < poN-3
L2(¢) k>0

110



for 6 > 0 as small as we want, if we choose NV > 0 such that —2N +8 < 0 (e.g. N =5). Finally

1

10p5 (a) | ¢ (z2; 1oy = O(h~27P),
where B(0) = (N + p)o + 6. .

Proposition 1.2.38 (Continuity from LP to LP). Let v,x € C°(R?) be equal to 1 in a neigh-
bourhood of the origin, with sufficiently small support, ¥(§) = (£)P with p € N, and o > 0. Then

Opy (v(i\/%@))x(h"f)il(f)) . LP — LP is bounded, with L(LP) norm bounded by h=P=P for a

small >0, 8—0 as o — 0, for every 1 < p < +00.

Proof. The first thing to observe it that, as the support of fy(m_\%g))x(hgf )X(§) is included in

{(z,0)]¢] £ h77,]z| < 1— ch®}, for a small constant ¢ > 0, we may find a smooth function
05 (z), equal to 1 for |z| < 1 — ch?® and supported for |z| < 1 — ¢;h??, for some 0 < ¢1 < ¢, with
10| L = O(h=2%l7) and (hd},)*6), bounded for every k € N, such that

) (“”“‘\}’h(@) V(W7E)S(€) = 0u(2)y (‘j’%@) V(B7E)S(6).
Moreover, ~ (:c—\z/)%(ﬁ)) x(h7€)X(§) is localised around manifold Ay := {(z,§) :  — p/(§) = 0},

which appears to be the graph of function £ = —d¢(z), with ¢(x) = /1 — |z|?. We can therefore
find a new smooth cut-off function ;, suitably supported, so that

ot (v (“=EE ) xrez©m@ ) = o (+ (T ) xrgsom (S o )

where 8 > 0 is a small constant, 5 — 0 as ¢ — 0, that takes into account the degeneracy of
the equivalence between the two equations of Ay, when approaching the boundary of suppfy,. If

we look at the kernel associated to above operator, denoting ~y (x—\%(g)) X(h7&)X(&) concisely by
Az, ),
1 iamyre 4 (Y E+do(FH)\, (T+y
K(Sﬂ,y) . (27Th)2/eh A( 2 75) 71( hl/Q_/B >0h< 9 )dé
o~ i (@—y)-do(*FY)

DR 9h<x;y)/€:‘(xy){“‘<I;y’f—d¢(%§y>>“(ﬁz—ﬁ)d&

we observe that, since

EAET (@'aaae;@—y).g
Vh i ¢

and h‘o‘|/zﬁgA(x2ﬂ, €) is bounded by R, for any a € N?, by making some integration by parts
one obtains that

(x)aK(x,y)‘ < h_2_"”/ de <h1P2 (g, y) € R? x R2.
vh lelsht/z=s

This means in particular that
x

i K (2,9)| S h 7170028 ) 3 (a,y)

K(z,y)| S h 170 2P
[K(z,9)] S { Th

implying that

Sup/ K (,y)|dy S h=7P7%, Sup/ K (z,y)|dz < ™72,
v Y

and its associated operator is bounded on LP with norm O(h=77=2%) for every 1 < p < +oo. [
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The following lemma shows that we have nice upper bounds for operators whose symbol is
supported for large frequencies [£| > h™7, o > 0, when acting on functions w that belong to H},
for some large s. We state it in space dimension 2, but it is clear that it holds in general space
dimension d > 1. This result is useful when we want to reduce to symbols rapidly decaying in
|h?&|, for example in the intention of using proposition or when we want to pass from a
symbol of a certain positive order to another one of order zero, up to small losses of order O(h™?),
B > 0 depending linearly on 0. We can always split a symbol using that 1 = x(h7&)+(1—x)(h7E),
for a smooth y equal to 1 close to the origin, and consider as remainders all contributions coming
from the latter.

Lemma 1.2.39. Let s’ > 0 and x € C°(R?), x = 1 in a neighbourhood of zero. Then

1098 (1 = ) (h7E)wl| o < CHTE™ ]|y Vs> s

Proof. The result is a simple consequence of the fact that (1—y)(h?¢) is supported for |{] = h™7,
because

10p; (1L = X)(h7€))wlfyr = /(1 + [REP)YI(L = x) (h7hE) P | (€)|*de
= /(1 + [REP) (14 RE[P) 2| (1 = x) (h7h&) P |(€)[Pdé

< CRp2o(s=) HUJH%{; 7

where the last inequality follows from an integration on |h§| 2 h™7, and from the fact that
s’ —s <0, (L+|hE?)¥— < Ch20("=9), O

We introduce the following operator:

(1.260) Ly = 10p(e —p(E), j=12,

and use the notation ||£Yw|| = ||£]*£32w]|, for any v = (y1,7v2) € N2

Lemma 1.2.40. Let v € C§°(R?) be equal to 1 in a neighbourhood of the origin, c(z,£) € Ss5.,(1)
with § € [0, %] and o > 0. Then y(* \f(g )e(x, &) belongs to S1 o1 )(<i\/’ﬁ(g)>,]\;)’ for all N > 0.
Proof. Straightforward. O

< {2yl for

Lemma 1.2.41. Let n € N and v,(2) be a smooth function such that |0%y,(z)]
[l S h™. Up to

all o € N2, Let also c(z,€) € S5(1), with § € [0,3[, ¢ > 0, be supported for
some multiplicative constants independent of h, we have the following equality:

O e ) | E R O R G S [ Ry
P'(€)

+hon (7 ) [@e,0) + (850) - (9e2))] +h|a22 (ﬂ'@)cms)@?p;)(o+r<m,s>,

with r € h3/2*‘SS%70((x7%5)>*”), and if x € C°(R?) is such that x(h°E) =1 on the support of
c(z,§),

Z WP Opi (x (h7E) LT 12
|v|=0

(1.2.62a) “Opﬁ(c(x,&)vn(gc_m)(xj—p] )
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(2.020) |0k (et 1 (“EE ) - sy(€n)o]|

S Z B2l Opi (X (7€) LT 12,
[v|=0

(o]

where 6, = 1 if n > 0, 0 otherwise, and > 0 is small, B — 0 as §,0 — 0.

Moreover, if n € N* and 0%y, vanishes in a neighbourhood of the origin whenever |a] > 1, we
also have that

(1.2.63a) “Opf(c(x,g)’)’n(x_\/{;;(@)(w ~ i) a5 — P}(€) L5
> PP Opy (X (h7€) L7 12,
0<|v[<2
w =P (e @ — i (e))T
(1.2.63) Hoph(c@,sm( o) N~ O)T| 5
> b0 (T E)LTT 1o

0<|v|<2

Proof. As c(z, §)’yn<m \pf( )> € S ((i\/%(g)f”) and 97 ¢ (z; — p}(£)) € Soo(1) for any |af > 1,

equality m 1.2.61)) follows from last part of lemma [1.2.24] and symbolic development (|1.2.18]) until
order 2, after having observed that

(1.2.64) {c(x, )7n (x—;%’(g)) Jxj — p;@)} = Yn (JU_};;(@) [(9e;¢) + (8x0) - (9p))],

and that, up to some multiplicative negligible,

h? Z o2 [C(x,f)’yn(x_\%(g))} D)) =h Z ( \/f;(f)) (z,€)(0gp})(E)

|a|=2 |a|=2

it S ) (F D) @m0 + 12 S (2 D) @so e )08 6)-

la|=2 Ja|=2
laa],|az|=1

If x is a cut-off function as in the statement, its derivatives vanish on the support of ¢(z, £), and
from remark [1.2.22]

(1.2.65) (& (“EE) = et 9 (L) | vt 4 7l

with 7o € hNS (<m_\%(§)>_”), N €N as large as we want. Estimates (|1.2.62]) follow then as a

straight consequence of (1.2.61)), definition (1.2.60]) of £;, proposition |1.2.36| and semi-classical
Sobolev’s injection (T.2.15) (resp. proposition [1.2.37) when n = 0 (resp. n > 0).

If n € N* and 0%y, vanishes in a neighbourhood of the origin whenever |a| > 1, we have
the following equality, obtained using (1.2.61)) with =, replaced by 7,-1(2) = vn(2)z;, where
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x—p'(§) / / z —p'€)
(@.6) ( - )(:cz O e~ () = e (“D ) s - i) e - i (€)
o (D = ) [00) + (0r0) - 0]
03 @) (S el 08 - Vi)

jal=2

with r € h%—‘sséﬂ«%\/%f)f("—l)). As 0%7,,_1 vanishes in a neighbourhood of the origin for
la| = 2, we rewrite it as 37, Y 1o(2)z1, where 3! 5 (2) = (0°Y—1)(2)z1|z| 72 is such that
1057% 5 (2)] S (2)~1B1=("+2) " Then, using again equality (T.2.61)) for all products different from
r(z,&) in the above right hand side (with ¢ replaced with hﬁ[(agj ¢) = (9z¢) - (O¢p})] in the second
addend, and -y, and c replaced, respectively, with 7£z+2 and c(ag‘p;-) in the third one, [ = 1,2)
we find that

el (1 ) i = (€ s — (60 =

x—p'(§ / / /
el () oo = )80 — 1506 + s, 08005 — 14(6) — Vir(a ),
for a new ry € h_‘sS;’o((x*\%(g))_”). Estimates are then obtained using and
propositions [1.2.36] . O

We will also need the following result, which is detailed in lemma 1.2.6 in |7] for the one-
dimensional case.

Lemma 1.2.42. Let v € C{°(R?), and ¢(z) = /1 — |z|2. If the support of v is sufficiently
small,

2

(1.2.66a) (w1 — PRV ((©)*(x Ze (x,6)(& + digp(€)),
=

(1.2.66b) (& + dr(@))y((€)* (= = & (@, &) (@ — pi(€)),
=1

for any k = 1,2, where functions ef(m,f),glk(x,f) are such that, for any o, 8 € N2,

(1.2.67a) |aga§egf(x,§)| Sop (£)3T2l=I8]
(1.2.67b) 0702 (@, )] Sap (717,

for any k,1 =1,2.
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Chapter 2

Energy Estimates

The aim of this chapter is to derive a suitable energy inequality that would allow us to propagate
the a-priori estimates we made on energies Ey(t;u+,vs), E5(t;us,v+), 0 < k < 2, in theorem
[[.1.2] ie. to pass from (L.1.11) to (1.1.12d), (I.1.12d). This energy inequality is deduced from
the quasi-linear system solved by vector (ufr, vfr, u! ,v!l), for a fixed multi-index I, in two steps:
we paralinearize our system and symmetrize the quasi-linear contribution to the non-linearity in
order to avoid any loss of derivatives (see section ; successively, we perform two normal forms
to get rid of some contributions that decay very slowly in time (see section . The first of
these normal forms is performed directly on the mentioned system (subsection , the second
one on the energy (subsection .

2.1 Paralinearization and Symmetrization

As briefly anticipated above, the first step towards the derivation of the right energy inequality is
to make sure that the quasi-linear nature of our system does not lead to a loss of derivatives when
computing the derivative in time of the energy. For that, we proceed by writing our system in a
vectorial fashion and by para-linearising it, in order to highlight the very quasi-linear contribution
to its non-linearity (see subsection . We realize that this term appears in equation ([2.1.20))
through a para-differential operator, whose symbol is a real non symmetric matrix. As we need
this operator to be self-adjoint (up to an operator of order 0), we symmetrize equation (2.1.20)
by defining a new function W/ in terms of W7, that will be solution to a new equation in which
the symbol of the quasi-linear contribution is a real symmetric matrix (see subsection .
Also, we set aside subsection to the estimate of the L? norms of the non-linear terms in the

right hand side of ([2.1.20)).

2.1.1 Paralinearization

Let us remind definition ([1.1.10]). Since admissible vector fields considered in Z = {Q, Z;,0;,j =
1,2} exactly commute with the linear part of system ([1.1.1)), we deduce from remark and
(T.1.17) that, for any multi-index I, (I''u, T''v) is solution to

@2 —A;)TTu= > QoThv,orv)+ Y ep ,Qo(Iw,0r"w),

(I,I2)€3(I) (I1,12)€3(1)
[T1|+[I2]=]1] [I1|+[I2]< |1
(0} — Ay +1) T = Z Qo(Iw, 01T20) + Z cr,.1,Qo(T1v, 0T 2w),
(I1,12)€3(1) (11,12)€3(1)
1|+ I2]=|1| 1|+ L2] <1
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with set J(I) introduced in (1.1.18), coefficients ¢y, 1, € {—1,0,1}, c1, .5, = 1 for || + |Lo| = |1
in which case the derivative 0 acting on I''2v (resp. on I''?u) is equal to 01, and 9 = 9, for
a € {0,1,2}. Let us remind that, if T/ contains at least k (< |I|) space derivatives, above
summations are taken over indices I, I3 such that k < |I;| 4 |I2| < |I|. Hence, introducing from

C.L3), @I,

Q) (v+, Davy) == i |:(U+ +v_)Dg(vy +v_) — <gu’v> (vy —v_)- IZ;D; (vy — v_)] ,
(2.1.1) ) D“’” b ’b
QU0 Datvs) = § |04 + 0Dl +u) = D55 (05— 0-) - D508y )

for any a =0, 1,2, we deduce that (ufr, vi, ul, vi) is solution to

(D — |DCL‘|)U{F(7§7$) = Z Qo (U:I:’Dlv ?) + Z cn, Qo (U:I:va ?)
(I,I2)eI(I) (I1,12)€I(1)
[11]+|12]=|1| [11]+|12]<|{] .
(D — <D$>)v£r(t7x) = Z 0 (U:I:7D u °) + Z Ch,IQQO (Uzl:aDu ?)
(I,I2)€I(I) (I1,I2)€3(1)
(2.1.2) 1l al=1] I AR
(De+ Dol (t2) = > QYD)+ D enpQy (v, Do)
(I1,12)€3(I) (I1,I2)€I(T)
1]+ 12|=|1| 1|+ 12| <|1]
k; kg
(De+ (D)ol (tm) = ) (Wi, D)+ Y e nQpF(vl, Duf?)
(I1,12)€3(I) (I1,I2)€J(I)
1]+ 12]=|1| [T+ 2 |<|1|

The quasi-linear structure of the above system can be emphasized by using (| and decom-
posing QY (vy, D1vl), QO (vg, Dul) as follows:

QY (v+, D1vl) = (QL)1 + (SL)1,

(2:4:) Qk¥(vs, Dyuk) = (QL)2 + (SL)a,
with
(@I i= 5 (09 (0 +om)oh +0) = 0P (P25 (ws 0 TBY - 1)
(SLh = [OPB(DM +01)) (vr +0-) - OpB(fggl (Wl —ol). %)m )
+OP((os + v ym) wh + 01) = Opf ({555 (o2 = o) Y =)
QL) = § |09 (o + o m)(wh + ) = 0p (125 o = 0)- Tl — ).
(SL)y 1= % [OpB (D1 (ul +ul)) (04 +v_) — OpP (%ﬁl (uh —ul) %) (v — )
FOP((vs +v-ym) o+ ) = Opf (P55 s =) M) =)

where the Bony quantization Op? (resp. OpB) has been defined in (resp. in (1.2.9)). We
do a similar decomposition also for the semi-linear contribution Qog(vi,Dlui), for this term
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will thereafter be the object of the two normal forms mentioned at the beginning of this section:

(2.1.4)

Qgg(vi, Dyuy) = % [OpB((vi +ol)m) (ug +us) — OpB<<Dz> (vl —ol). %) (uy — u_)]
1 DD n
& 09 (Drfas +u) (w4 01 = 09 (D50 s =) ) od =)
+ % [Opg((vfr +ol)m) (ug +us) — Opg(<gz> (vl —ol)- %) (uy — u)] :

In order to handle system (2.1.2) in the most efficient way, we proceed to write it in a vectorial
fashion. To this purpose, we introduce the following matrices:

ml 0 0 0 0 axm 0  bgm
0 (m 0 0 / agm 0 bom O
2.1.5 A(n) = ., A(Vin) =
( ) (n) 0 0 —|n (Vin) 0 am 0 bpm
0 0 0 —(n apn: 0 bonr O
0 0O 0 O
I T
oI, apm 0 b0771 0
(2.1.6) A"(VEiin) = 0o o0 o0 ol
agm 0 bym 0
0 cb 0 d 00 0 0
’ I. L 0 66 0 OI 11 . 0 €0 0 fO
0 e 0 fl 0 e 0 fo
where
a, = ap(ve;n) = 3[(ve +v-) = By (ve —v-) - o]
b = br(vesn) = L](vy +v_) + (vy —v_) - 7]
(2.18) k (V£ 7 7 [\V+ (Dyy \U+ )
ag = ap(ve;n) = g [(v4 +v-) = gy (g —vo) - ]
bO = bO(Ui;n) = i[(?)+ —f—’l),) + D >(U+ U*) %]
co = co(ve;m) := ﬂDl(U+ +vo) — ?ﬁf)l (04 —v-) %]
(2 ) 9) dO = do(U:bn) = i[Dl(’U+ + ’1)7) + ?li?)l (’U+ — ’U,) %]
eo = eo(ug;n) := ﬂDl(U+ +u_)— ?ﬁﬁl (ur —u_)- (ZT]
fo= foluz;n) = §[Dr(us +u) + G573 (ug —u) - 7]
I I T I T I I I
ap = ag(vi;n), by =bo(vi;n),cy=co(vi;n), dy=do(vi;n),
(2.1.10) 0 o(vi;n) 0 0(vi;n), co o(vi;n) 0 o(vy;m)

eh =eo(ul;m), fl(ud;n),

vectors W, U, V:

U 0 U4
(2.1.11) wee |, v |, v=]|Y]|.

U_ 0 U_

v_ v_ 0
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along with W (resp. VI, U") defined from W (resp. V,U) by replacing u, v+ with ul,vl; and
finally

[ (1, 1yean e, QY (vE, Dvi) T
[T2|<|1| e 1 ;
> (. I)ea(r) Ch L Q" (v, Du?)
(2.1.12) Qlv,w) = | Jhhlzl<l]
0 2(11,12)63(1) CIl,IQQO (’U:I:7DU )
[T2|<|1]

kg I Ip
2(11,12)63(1) Ch,Ion (Ui ) Du:t)
L L] 2 |<| T -

Let us remind that, if '/ contains at least k(< |I|) space derivatives, above summations are
taken over indices Iy, I such that k < |I1| + |I2| < |I|. The quantization Op®? (resp. OpZ) of
a matrix A = (a;j)1<i j<n is meant as a matrix of operators Op?(A) = (Op®(aij))1<i j<n (resp.
OpB(A) = (OpB(aij))i<ij<n), and for a vector X = [z1,..., 2],

> 0pP(ayy)z;
j=1

OpP(A)XT = : ,

n

Z OPB (anj)xj
Lj=1 i

XT being the transpose of X. Moreover, we will talk about the L> or L? norm of a matrix A =

1
(ai;j) with the meaning of evaluating A "component by component", i.e. [|[A| 2 = (Z” lai;]?)?
and [|A||fe = sup;; lagj].

With notations introduced above, system (|2 writes in the following compact fashion, which
has the merit to well highlight, among all non- hnear terms, the very quasi-linear contributions
(QL)1, (QL)2, represented below by OpB(A'(V:n))W!:

DW! = ADYW! + OpP (A (V)W + Op® (C'(Win))V + OpR (A (Vi) W!

2.1.13
(2.1.13) L OpP ANV )U + OpP(C (U )V + OpB(A"(VE U + Q(V. W),

Furthermore, the energies defined in ((1.1.9)) take the form

(2.1.14a) En(tus,ve) = > |IDSW(t, )2, YneN,n >3,
la|<n
(2.1.14b) By(tus,ve) = > (IDSWI(t,)|I7., VO<Ek<2,
ja+|1]<3
0<|I|<3—k

and we can refer to them, respectively, as E,(t; W), E5(t;W). We also notice that, since

0 if I' e {Q,9;,j = 1,2},
(2.1.152) [T, D, + |Dy] = i1 19,05, ;

:|:|D|(Dti|D ) ifl'=2,,m=1,2,
and

0 if '€ {Q,9;,j = 1,2},
(2.1.15b) [T,Dy £ (Dy)] =14 _ p 1 (.05, J

:Fﬁ(Dt:I:<Dz>) itl'=2,m=1,2,
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there exists a constant C' > 0 such that

(2.1.16) CTUY Wt )17 < EYHW) < C Y ITTW(E,)17s
Iedk Iegk
where
(2.1.17) 75 .= {|I| <3:T! = DT with |a| + |J| = [I|,0 < |J| < 3 —k}.

For convenience, we also introduce the following set:

(2.1.18) I, == {|I| <n:T! = D2 with |a| = |I]}.

Matrices A(n), A'(V;n), A”(VI;n) are of order 1, although A’'(V:n), A”(VI:n) are singular at
n =0 (i.e. some of their elements are singular at n = 0), while C'(WZ;7n), C"(U;n) are of order
0. Since we will need to do some symbolic calculus on A’(V'; 1), we need to isolate the mentioned
singularity. For that we define

(2.1.19)
0 am 0 bom 0 (ax —ao)m O (bp—bo)m
fiirooy . laom 0 bom 0 / v 10 0 0 0
AVim) = 0 aom O bom|’ A (Vin) o= 0 0 0 0 ’
am 0 bom 0 0 (ar—ao)m 0 (bg—bo)m

Al (V;n) being a matrix of order 1, A" ;(V;n) of order —1, both singular at n = 0, and write
AL (Vin) = AL(Vin)(1—x)(n) + AL(V;m)x(n), where x € C§°(IR?) is equal to 1 in the unit ball.
Equation (2.1.13)) hence becomes

(2.1.20)
DW= ADYW' 4 OpP (AL (Vi) (1 = Xx) ()W + OpP (AL (Vim)x(n)W!
+ OpP (A (Vi)W + OpP(C'(Wim))V + OpR(A' (Vi)W + OpP(A"(VE;m)U
+Op®(C"(Us )V + Opp (A" (V) U + Q4(V, W),

and quasi-linear term Op®(A}(V;n)(1 — x)(n))W! is no longer singular at = 0. We observe
that A1 (V;n)(1 — x)(n) is a real matrix, since i(vy + v_) = 20w, i<g—z>(v+ —v_) =20,v and v
is a real solution, but not symmetric. Such a lack of symmetry could lead to a loss of derivatives
when writing an energy inequality for W/, but the issue is only technical, in the sense that
A1(Vi;n)(1 — x)(n) can be replaced with a real, symmetric matrix, as explained in subsection
(see proposition . Before proving such result, we need to derive some L? estimates
for the semi-linear terms in the right hand side of .

2.1.2 Estimates of quadratic terms

In this subsection we recover some estimates for the L? norm of the non-linear terms in the right
hand side of equation ([2.1.20)).

Lemma 2.1.1. Let I be a fized multi-index. The following estimates hold:

SV ) e W) 2

2 "~

(2:1.21a) ||[0p" (41 (Vim)x(m) + Op” (AL, (Vi) | W' (2.)|

(2.1.21b) [Op" (@ WEm)V ()| o S IV (&) arose W (E )] 25
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(2.1.21c) lOPR (A" (Vi)W Iz S IV aree W (E ) 2

(2.1.21d) [|OpZ(A"(VEm)U (2, )| 2 + [|OpR (A" (VI m)U (2, ) | 2
S (IRU e + U ) VT )2

(21.21e)  [lOpP(C" UMVt )2 S (IRU ) arzee + U ) 2o ) IW(E ) 2

Proof. Inequality (2.1.21a) m ) follows applying propomtlon to Op (ALI(V; 7)(1—x) (77)) wi,
whose symbol A’ {(V;n)(1 — x)(n) is of order —1 and has M seminorm bounded from above

by [V (¢, )|l 1,00, after definitions (1.2.2), (2.1.19) and (|2.1.8|).
Since from definition (2.1.7) of matrix C'(W7;n),

0" (" WEm)V |2 S |OpP (D1(vl + vl ))ve 2 + HOpB(lzggl (vl —ol)- <Z—>)vi
D, D,

Ui
(ui —ul). @)vi

L2

)
L2

+ HDl(ufr + uI_))UiHm + HOPB( | Dq|

we reduce to prove inequality (2.1.21Dj m for Op®? (l() xD>1 (vl —ol)- <77> )v+, the same argument being

applicable to all other L? norms appearing in the above right hand side. Using equality (1.2.6)),
and considering a new admissible cut-off function y1, identically equal to 1 on the support of ¥,
we first derive that

09 (8504 +01) - 25 )or(6) = s xS BB+ D) e - By

1 /\ —
(2 /X(£<n>n) (&( ) )< m(vh +0L)(€ = n) - Dyvy(n)dn
1 T~ . L ————= .
~ (@22 /Xl (§<n> ) [X(%>% ey (v +ol )} (€ = 1) Dav-(n)dn
= 00" (x(8) ey ok + 1)) D ),

so that by decomposition and the fact that R(u,v) is symmetric in (u,v),

OpB<DxD1(Ui+U£)-<Z>>U+:X|:(DI>D1 Dy (ui+v£)} - Dyv,

(Dg) (m)/ (n) (D)
D,\Dy D,
— [0p®(Dyvy) + OpB(Dyv {X ——p— vl + ol
[ ( +) R( +)] <<77>) <77> <Dx>( + )
Propositions |1.2.7,|1.2.8 (i7), and the fact that X(%ﬁ) % <gi> is an operator uniformly bounded

on L?, imply then that

HOpB<l<)Ef>l (vl +ol)- %)U.ﬂr

By definition (2.1.5) of A'(V;n),

s vae, MooV (E, )l 2
L

D

HOpR(A’(V n))WI HL2 < HOpR (vy +v_ viHLQ HOpR DI>(U+—U ) %)vi L2
D

—i—HOpR vy + - uj[HL2 HOpR Dx>(v+—v) %)ui "

120



so we limit ourselves to show that inequality (2.1.21d) holds for Op® ( <g§> (vy —v_)- W"'l)ufr For
a smooth cut-off function ¢ equal to 1 in the unit ball we write

Orf <<Dx> (W =) |77|1> uh = O (75 (v = v-) - Jpolm

Dy nm
FORR(p (en =) 1A= )0l

where, by proposition [1.2.8] (4),

o (pstws =00 Mol

[l (2, )l 2
LOO

g HV(t, ')HHLOO ”Wl(ta ‘)HL27

5|t -

while

Onf (755 = o) - T = o))l = [ () [(D2)7 (0 = 6} (& = )] L (e,

mien = (1 (") - (el ) ) - o= T

On the support of m(§,n) frequencies & — n and n are either bounded or equivalent so, since
\agaffm(g, n)| < (€)73(n)~3 for any a, B € N2, m(&,n) satisfies the hypothesis of lemma (1),
and by inequality (A.2al)

ok (ps o =00 1= o))

From definition (2.1.6) of A”(V;n),

" Dw
lop" (A" (V;m)U ()| 2 S [0P7 (v + vl )ue| o + HOPB(U%) e %)ui

(the same inequality holds evidently when Op?® is replaced by Opg) hence, as done for previous

cases, we reduce to show (2.1.21d)) for OpB(<gi> (vfr — v{) : %)mr (resp. for Op® replaced with

Opg). Using decomposition (1.2.7)) and the fact that R(u,v) is symmetric in (u,v) we have that

with

s va. Mmoo W (E, )l 2
L

I

L2

D, nm Dy 1 1y DaDi
OpP (=2 (vl —ovl) 2 uy = =2 (vl —0l)- U
<<Dgg>(+ ) \n|> * = g ) T
D,D D,D
_opB(E= NN T Ty o, BT
Op < ‘D:c‘ U4 <n>>(v+ U—) OpR( |D$‘ U4 <n>)(v+ U—)?
and

B( Dz 1 1y 1M _nB(DPD1 N g
OpR<<Da;> (er 'Uf) ‘77| >’LL+ - OpR( |D$| U4 <77>>(’U+ 07)7

so a direct application of propositions and (ii) gives that the L? norm of the above
right hand sides is bounded by H%zll um VI S IRIUG o [V (2, g2, which
gives inequality .

Finally, from definition of matrix C"(U;n),

10p2 (C"(U; )V |12 <

Dy Dy n
05 (D1t + u el + o) + 00 (Bt — - ) =)
‘ :B’ <77> L2
so estimate (2.1.21¢)) follows immediately from proposition O

121



Lemmas [2.1.2] and [2.1.3 below are introduced with the aim of deriving an estimate of the L?
norm of vector Qé(V, W) given by (see corollary . We remind that the summations
defining QJ(V,W) come from the action of the family T of admissible vector fields on the
quadratic non-linearity Qqo(v,01v) (resp. Qo(v,d1u)) in the equation satisfied by u (resp. by
v) in (I.I.)), often indicated by I Q¥ (v, Divy) (resp. FIQgg(vi,Dlui)) when dealing with
functions w4, vy. According to remark if I € J,, and I'! is a product of spatial derivatives
only, the action of T on Q¥ (vi, Divy) (resp. Qgg(vi,Dlui)) "distributes" entirely on its
factors, meaning that

IQY (ve, Dive) = Y QY (vl Div),

(I1,I2)€I(1)
[T1]+|1T2]=|1]

(the same for I Qlo(g(vi, Diuy)), and all coefficients ¢y, r, in the right hand side of are
equal to 0. On the contrary, if I € J’?f for 0 < k < 2, and T'! contains some Klainerman vector
fields Q, Z,,,,m = 1,2, the commutation between '/ and the null structure gives rise to new
quadratic contributions, in which the derivative D1 is replaced with D5, Dy. As already seen in
(1.1.17)), in this case we have

(2.1.22) QY (vi, Dyvy) = Z Q¥ (v, Dyvf2) + Z c1,.,QY (vl Dv2),

(I1,I2)€I(1) (I1,I2)€3(1)
[11]+|12|=|1] |11 |+[I2]<| 1]

with some of the coefficients ¢y, 1, being equal to 1 or —1, and D € {D;, Do, D;} depending on
the addend we are considering (similarly for I/ Qgg(vi, Dyuy)). For our scopes, there will be no
difference between the case D = Dy and D = D, the two associated quadratic contributions
enjoying the same L? and L* estimates. When D = D;, we should make use of the equation
satisfied by ’Uf (resp. by uf_f) in system to replace QF (U:I: , Dtv 2) (resp. Qg (Ui , Dtu %))
with

Q¥ (W, (D)) + Qi (v, T2 QE¥(vs, Drus) )

(2.1.23)
(vesp. with QF*(v2t, |Duful2) + QFF (v}, TQ5 (v, Divs) ) ).

where the left hand side quadratic terms are given by
(2.1.24)

Q5 (v, (Davi?) = (il+v£1)<D:c>(vf—v£2)—<gi>(vh o) Dy (v +02)
D

<resp. Qgg(vf_d, | Dy |ul?) = (vil +v£1)|Dx|(ui2 —u®) - <Dx>( il — ol Dx(uff +u1_2)> ,
X

while the right hand side ones in (2.1.23)) are cubic. On the Fourier side, these new quadratic
contributions write as

E—n 1 Né
3 /y( S <77>><> (& — o (n)dedn,

Ji.ge€{+,—}

§—n ol (¢ I
e S0 [ (1 ) el — myatstndean ).

Ji.gee{+,—}
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and are basically the same as the starting ones

T D) - ST TP
QY (v Dy majug%}/< e W)mﬂ@ n)ol (m)dédn,

resp. Q¥ Db) ()= Y ( S n)nf[f(ﬁ a2 (n)dedy
A }/ =0 Il !

For this reason, as long as we can neglect the cubic terms in , we will not pay attention
to the value of D € {Dy, D9, D;} in the second sum in the right hand side of . Lemma
is meant to show that the mentioned cubic terms are, indeed, remainders. With an abuse
of notation, we introduce

(2.1.25) D {(Dm), if it acts on the Klein-Gordon component,
. . 3 =

|Dyl, if it acts on the wave component,

and refer, throughout this chapter, to QY (vi,Dvi) (resp. QO (vil,Du )) for D = Dj, j =
1,2, 3, instead of D € {Dy, D2, D;}.

Before proving lemmas we need to introduce a new set of indices. According to the
order established in Z at the beginning of section (see (1.1.7)), we define

(2.1.26) K = {I = (i1,i2) : i1,42 = 1,2, 3},

as the set of indices I such that I'! is the product of two Klainerman vector fields, together with

(2.1.27) V.= {I €35 :3(I, ) € I(I) with I, € K},

which is evidently empty when & = 2. We also warn the reader that, in inequality (2.1.31f) with
k =2, E3(t; W) stands for E3(t; W), this double notation allowing us to combine in one line all
cases k =0,1,2.

Lemma 2.1.2. Let Iy, I be multi-indices.

(i) Let n € N and 3, := {(I1, )||I1] + |I2| < n,|l2] <n and TTt = DA T2 = D2}, Then
(2.1.28)

1
|l D) | " S ||etEeh, Dae)| S IV gisns Balt W),
(I1,12)€Tn I1,I2)€dn
\11|<[ ]
1
(2129) > Q6 D), S (U grgreee + IRIUE )l rgrras ) Balt, W),
(I1,I2)€dn
[1]>[5]

(ii) Let 0 < k < 2 and J5 be the set of couples (I1,I2) such that |I1| + |I2| < 3,|I2| < 3 and
Iar = DOr with and |a| +|J| = |I1|+|12] and 0 < |J| < 3—k. There exists a constant C > 0
such that, if we assume a-priori estimates (1.1.11a), (1.1.110) satisfied, and 0 < g9 < (2A+B)~!
small, for any x € CSO(RQ) equal to 1 in a meighbourhood of the origin, and o > 0 small,

(2.1.30a) > QY D) =Rt ),
(117[2)63§
(2.1.30b) S QkEelDul) = Y Qk (vi, (t°D )Duﬁg) +RjE(t,2),
(11,12)633 I eX
|I1|<3 [2|<1
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where
(2.1.31) I9RE (¢, )12 < C(A+ B)et “EX(t,W)2 + CBet 1,

with > 0 small, B — 0 as 0 — 0, for all t € [1,T]. The same result holds with D:,cvi2 (resp.
Du'?) replaced with (D,)v2 (resp. |Dy|ul?

Proof. The proof of (i) follows straight from with @ = 1,2, by bounding the L? norm of
each product with the L® norm of the factor 1ndexed in J € {I1, I} such that |J| < [%], times
the L? norm of the remaining one.

The same argument (combined also with (2.1.23])) used for (7), and the fact that, by definition
of g% and of J% in (2.1.17)), (I3,0), (0, I5) € % if and only if I, I € J%, also shows that

(21.32) )@ (v+, D)2 + > 1IQF (v, Dvs)| e

IgEjk Ileﬂk
\12|<3

k 1
+ > Q0 (v, Du) 12 S NV ()| 2e B (85 W)2.
Iedk
[I2]<3
Moreover, for indices (I1,I2) € % such that |I1],|I2] > 1 and either T'/t, or I'’2, is a product of
spatial derivatives only,

1
(2.1.33) 1Q8 (vl Dav’) 12 S [V ()l gae S (613,

and for (I1, 1) € 8§ such that ' is a product of spatial derivatives,
1
(2.1.3) IQKE@E, Dyul2)ll o S V(8 )l o S (1 W) .

The remaining quadratlc contrlbutlons to summations in the left hand side of ( m are,
respectively: Q (vil,D v 2) where both products I''*, T'”2 contain at least one Klainerman
vector field (I''* containing exactly one Klainerman vector field and I'’? containing one or two of
them, and conversely); kg (U:tl , Dy u ?) with I'/* containing one or two Klainerman vector fields.

Let us first analyse the L? norm of the QO (vil,va), for all remaining indices I1, I mentioned
above, together with that of QIS (vj[1 , Du ?) for Iy such that I'! contains exactly one Klainerman
vector field. The underlying ides is to decompose in frequencies the Klein-Gordon factor carrying
only one of those vector fields, by means of operator x(t~?D,), for some smooth cut-off function
x and o > 0 small. Basically, the L°® norm of the factor truncated for large frequencies |£| = t7
can be bounded by making appear a power of ¢ as negative as we want, as long as we have a
control on high Sobolev norms H® of that factor. On the other hand, we make use of the sharp
decay in time O(¢t~1) enjoyed by the uniform norm of the Klein-Gordon component when only
one vector field is acting on it and when it is localised for frequencies with moderate growth (less

or equal than ¢, see lemma |B.3.21]).

Therefore, by making use of corollary in appendix [B] with L = L%, w = v, we find that,
for some x € C§°(R?):

e if I'/* contains exactly one Klainerman vector field,

|@v @l Do)t )|| , 5 xRk @), el
L2 H1l,00
650 (ot iz + 1D ) (3 100 + A2, ).
|4|=0
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and

|QtEeh, pul)e, )| |, s o paele)|| |kl

8N s 1 e+ 10w ) (3 1 D, i+ 2, )

|u|=0
e if "2 contains exactly one Klainerman vector field,
|Qv Doy )| < ek Ik s
65 (o, e+ [Dews ) (3 o6 e + 1o 6 2,
|1+]=0

where, in all above inequalities, N(s) > 3 if s > 0 is large enough. From inequalities (B.1.5al),
(B.1.6al), estimates (B.1.17)), lemma |B.3.21| and the boostrap assumptions (1.1.11]), we derive

that, for multi-indices I, I» considered in above inequalities,

|@rh, Doyt

for some positive constant C', where we also used the fact that §,d; < 1 are small, for j =0, 1, 2.

+||@tEl, Duk)e, ||, < CBet S (WS + CBet S,

The remaining quadratic terms are Qla (vl!, Dyul?) with I; € X (and hence |I] < 1). Applying
corollary to these contributions, with L = L2, w = u, and the same s as before, and making
use of estimates (1.1.11f), (B.1.17)), together with inequality (B.1.5al), we see that

oot bt ], 5 [ (a3
(Zum g + o (¢ g ) (e (b ) lzs + |1 Dy 8, ) r2)
|n|=0

< [k (vl oxe D puk) (1|, + CBat,

i.e. the main contribution to Qg (vil, Dul 2) is the one where Duf is truncated for frequencies
less or equal than t”. Therefore, we can write

0 (U:tvD 12) = lgg (Uile(t_an)Dquf) +%§v

which concludes the proof of (ii). We should highlight the fact that the quadratic contribution
in the above left hand side is treated differently from the previous ones, because we do not have
a sharp decay O(t~1) for v} when I} € X (neither when truncated for moderate frequencies),
but only a control in O(t Hﬁ ), for some small 5’ > 0 (see lemma E Moreover, the decay
enjoyed by the uniform norm of x(t~?D )Dui, appearing in the quadratic term in the above
right hand side, is very weak (only ¢~ 1248 see lemma . Such terms, that contribute to

the energy and decay slowly in time, will be successively eliminated by a normal form argument
(see subsection [2.2.2]). O

We prove in the following lemma an analogous result to that presented in lemma (14),
where the space derivative Dj, for j = 1,2, 3, is replaced with D;. We highlight the fact that
the below summations are considered for multi-indices I, Iy € J’§ such that |I;| + |I2| < 2. This
is explained by the fact that such contributions appear when the family I'! of admissible vector
fields commute with the null form Qg (the remaining products I''*, I'2 acting on the arguments
of Qo are hence such that |I1| + |I3] < |I]).
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Lemma 2.1.3. Under the same hypothesis of lemma (i),

(2.1.35a) Y QUi D) = Ri(t,x),
(I1,12)€d%
|11H—|IQ|<2
(2.1.35b) Z 0 (vl Dyul?) ZQ (v, x(t 77 Dy)|Dylus) + RE(t, ),
(I1,I2)€d% JeX
1 |+[12]<2

with RE(t, ) satisfying (2.1.31)).

Proof. The result of the statement follows using the equations satisfied by uf@,vf in system
(2.1.2) with I = I3, which give that

(2.1.36a) Z QY (Ui,DtU ) = Z Qo (U:I:7< >”f)

(I1,12)€d% (I1,12)€d%
[11]+[12|<2 [T1]+]I2|<2

+ Z Z c 1, Q0 (Uil; o8 (vft, Duf ))

(I1,12)€d% (J1,J2)€9(12)
|I1|+|12]<2

(2.1.36b) > QE@E D)= > QL |Dyluf)

(I1,12)€dk (I1,I2)€dk
[11]+]12|<2 [11]+]12|<2

Y Y ennQF (v Qv Do),

(I1,12)€dk (J1,J2)€I(I2)
[11]+[12]<2

with coefficients ¢y, 7, € {—1,0,—1}, and where Q¥ (v}, (D,)v'2), (vi,|D lul2) are given
explicitly by (2.1.24). After lemma (7i), we know that

> (@@ Do) + QL D) = DT QF L IDslu) + R,

(11,12)€3§ (11,]2)6:]]3?
|11H>|12|§2 IlefK,HQl:O

with RE verifying (2.1.31)). The only thing that remains to prove to derive the statement is that
the cubic terms in the right hand side of (2.1.36] are also remainders SR'g

First of all, we should observe that, as |I3| < 2,
(2137) > QP Duf)= > QL Diup)

(Jl,JQ)GJ(IQ) (J1,J2)€j(]2)
[J1]+]J2|=|12]

£ Y (@0l Dus) + Qs Duf)|

(J1,J2)€3(12)

[ 1|+ J2|< | T2
and
(2.1.38) > QD)= > Qi D)
(J1,J2)€3(12) (J1,J2)€f]([2)
[J1|+]J2]|=|12]

+ > |QEed D)+ Q5 (vs, Do)
(Jl,JQ)GJ(IQ)
[J1]+|J2|< | T2
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After lemma (1), the fact that |I3] < 2 (if (J1,J2) € J and J; € K, then |Jo| = 0), and
a-priori estimates ({1.1.11]), we have that

(2.1.39a)

ST QgL Dy e SIREE e + D Q5 (wL, Dix(t™7 Do)us) | e
(J1,J2)€I(12) |J]<2
[J1|+|J2]=|12]

1
S5 2 + 17 (Jus(t, ) oo + Raus(t, )| =) B (t; W)2
< CBet~3t6+%

with 8 > 0 small, 3 — 0 as ¢ — 0, and moreover

(2139b) > Qv Dus)llz +11Q6% (vs, Duzf)| 2
(Jl,Jz)Ej(Ig)
|1 |+]J2] <[ 2]

S (W ()20 + 1Dy (£, )| pooe ) B3 (5 W) 2 < CABe™ 3

last estimate following from (B.1.5b|) with s = 1, (B.1.7) and a-priori estimates (1.1.11)). Con-
sequently, as the L? norm of cubic terms in the right hand side of (2.1.36al), for which index

I; is such that I'* € {D2, |a| < 2}, can be bounded by the L™ norm of the Klein-Gordon
component times the L? norm of the remaining quadratic contribution, and is less or equal than
CABe%— 3+ , for a small 5/ >0, 8/ — 0 as 0,00 — 0, after (I.1.11b]) and (2.1.39).

Cubic terms corresponding to |I;| = 2 (and hence |I3]| = 0), are instead estimated, using (B.1.4€)

and a-priori estimates, as follows:

o (o @ )

k _3 /
S B )21 Q68 (v, Drug)||pee < CBet™2+,

for a new 3’ > 0, small as long as o, §y are small.

Finally, cubic terms such that Tt € {Q, Z,,,, m = 1,2} (and |I5| < 1), are estimated by means of
corollary in appendix [B] with L = L?, w = v. For some smooth cut-off function y, some
o > 0 small, we have that

> | (vk ekl pul >)< )

(J1,J2)€I(12)

p
S Y ok | |@bEed, puke |
(J1,J2)€I(I2)

+ Y NIt s + | Dt )| e)
(J1,J2)€j(]2)

1
X ( Z Hm“Qgg (vft, DuP)(t, - ‘L2

|n|=0

L2

| @bl Dudye. )

L2>’

where

> @il Dukye)|

(Jl,JQ)Gj(Iz) L
=Y H o) et (k) + IDd 6 ) z2)
|u|=0,1 Lo
[J|<1

HlzvL(t, )z (IR*us (t, ) gz + IDeR us(t, )| prreo)] -
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Therefore, choosing s > 0 large enough to have N(s) > 4, and using estimates (2.1.39)), together
with (B.1.5a]), (B.1.5¢), (B.1.7)), (B.1.10a)), (B.1.10bf), (B.1.17), and lemma [B.3.21} we find that

Z HQO <’U:|:7 (U:t ,Du )) (, .)HL2 < C’Bngt_%‘*‘ﬁ'

(Jl,JQ)Gf](IQ)

and this cubic contribution can also be considered as a remainder %I?f . A similar analysis shows
that the same can be said for the cubic terms in the right hand side of (2.1.36b)), and that
concludes the proof of the statement. O

Corollary 2.1.4. Let Q}(V, W) be the vector defined in (2.1.12). There exists a constant C > 0
such that, if we assume that a-priori estimates (1.1.11)) are satisfied in interval [1,T], for some
fized T > 1, with g9 < (2A + B)™! small:

() if I € 3, withn > 3:
(2.1.40) QL(V, W) 12 < CAet™3+5;

(ii) if I € I%, with 0 < k < 2,

5k

(2.1.41) IQL(V, W)l 12 < C(A+ B)et™3+F.

Proof. Inequality (2.1.40) is straightforward after definition (2.1.12)) (all coefficients cr, j, are
equal to 0 when I € J,,), lemma [2.1.2] (i), and a-priori estimates (L.1.11a)), (1.1.11D).

If I € J% for a fixed 0 < k < 2, we have by definition (2.1.12), and lemmas that
Z Qy (Uiv 2) :%Ig(t>x)?

(11712)63(1)
[2|<|1]

with E)‘i’?f(t,:v) satisfying (2.1.31) and hence bounded by the right hand side of (2.1.41)), after
a-priori estimates and the fact that 9,9, < 1 are small, for 0 < k < 2. Moreover, for some
smooth y € C§°(R?), equal to 1 in a neighbourhood of the origin, and ¢ > 0 small,

(2.1.42) ST QEh. Dul) =5, Y Qi (vﬁg, x(t_"Dm)Duf) + vkt 2),
(I1,12)€I(1) (I1,I2)€3(1)
[I2|<|1] LeX,|I2]<1

with sets K, Vj, given, respectively, by (2.1.26), (2.1.27)), oy, = 1 if I € V}, 0 otherwise (remind
that Vs is empty), and

(2.1.43) Hngg (vi, (t=°Dy) )

Zth DR ()| () e

|u|=0

Consequently, if I € I3 then dy, = 0 and we immediately have, after (T.1.11d)), that

d
1QEV. W)l S IR5(E, Il < C(A+ B)et ™2

If I € 9%, for k = 0,1, and (I, I3) € I(I), two situations may occur: we could have I; € X and
I'2 € {D2, |a| < 1}, in which case product '/t could contain the same number of Klainerman
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vector fields as in I'/, and V1 would be at the same energy level as V! (i.e. its L? being controlled
by E(t; W)/2). In this case, for any p € N,
(2.1.44)
1 1
o (8, )z (It Dayul2 (0, llsrooe + (" D) Ru2 (8, Y ane ) < Act™3 B (1)’

)
< ABet 3t

as follows from a-priori estimate (1.1.11a). If, instead, (I;,I>) € J(I) with I; € X and I such
that T2 € {Q, Z,,,m = 1,2} is a Klainerman vector field, we automatically have that I'! is
a product of three Klainerman vector fields, and that V1 is at an energy level strictly lower
than V' (i.e. its L? norm is controlled by energy Ei(t; W)l/ 2 whereas that of V! is bounded
by E(t; W)%) The small loss ¢# in the uniform estimate of x(t=7D,)RFU™2, |u| = 0,1, with
positive f — 0 as 0 — 0 (see lemma is hence compensated by the fact that §; < dy,
meaning that

(2145) od (6 Ve (X Dl (e o + (7 D) Rul (2, ) 1100 )
< C(A+ B)et 3+ EY(t; W)} < C(A+ B)Be2t 3+ %,

last inequality following from lemma [B.2.10] a-priori estimate (|1.1.11d}), and taking ¢ > 0 suffi-
ciently small so that S+ 61 < dp/2. For any k = 0, 1, we then have that

3
o2 (&, )z (I DU (1) lmee + (7 Da)RuZ (1, )l ne ) < C(A + B)BeH3 4,

and from (2.1.42)), (2.1.43)), we derive (2.1.41]). O

2.1.3 Symmetrization

Proposition 2.1.5. As long as |V (t,-)|[g1.e is sufficiently small, there evists a real matriz
P(Vin) of order 0, and a real, symmetric matriz A1 (V;n) of order 1, vanishing at order 1 at
V =0, such that W := OpP (P(V;n))WI is solution to

DW! = ADYW! + OpP (A1 (Vi) )W! + OpP (A" (V1m)U

2.1.46
(2.1.46) L OPP(C Us)V + OpE(A"(VEs U + QL(V.W) + R(U, V),

where R(U, V') satisfies, for any 0 €]0,1],
IR VE )z S IV o+ 1V e
[V e 1V ) (NU 2o + [RaU ()2
(2:1.47) V(e (U + IRk ) 10 [ ()l
UV (I lames + [RUGE oo ) W)l
1V () e QG (V. W) 2
Moreover, for any n,r € N, with the notation introduced in ,

(2.1.48) MY (P(Vin) = Lisn) S V() ieres,
(2.1.49) MHALV;m);n) SV (E )| e,
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and there is a constant C = C(||V || g2.~) > 0 such that
(2.1.50) CHWI (e < WL e < CIW(E )z,
as long as ||V (t,-)|pg2.ec is small.

In order to prove proposition [2.1.5] we first need to introduce the following lemma.

Lemma 2.1.6. Let o, 8 € R, L € M(R) and My, N(«, 8) € M4(R) given by

o1 L o [aL BL]
L_|:1 0:|7 ]\40_|:02 _1-2:|7 N(a’ﬁ)_[aL 5L:|_

S oo ©
oW o
o o™

e
0
e
0
There exist a small § > 0 and a smooth function defined on open ball Bs(0) of radius 0,

(o, B) € Bs(0) — P(a, B) € Symy(R),

with values in the space of real, symmetric, 4 x 4 matrices Symy4(R), such that P(0,0) = Iy,
P(a, 8) = Is+O(|a| +8]), and P(a, B)~" (Mo + N(a, 8)) P(a, B) is symmetric for any (o, B) €
Bs(0). Furthermore, P~ (o, 8) = Iy + O(|a| + |B]).

Proof. Let € be the vector space of 2 x 2 matrices B(«, ) = aly+ L, and F be the set of 4 x 4

matrices of the form
[Fn F12:|
Fy1 Fyo

with Fj; € €. We look for a matrix P of the form

P(B) = (I, - BY)"% [ o —Iﬂ

with B € & close to zero (so that in particular (Iy — B%)Y/? is well defined). We remark that
matrix P(B)~! has the form

-1 2 _1 IQ B

P(B) _(-[2 B) 2|:B -[2:|’

and that P(0) = P~ 1(0) = I;. We consider ® : R? x & — JF defined by ®(a,3,B) =
P(B)"'[My + N(a, B)] P(B) = (q)ij(a’B’B))1<ij<2’ where ®;; € € as € is a commutative

sub-algebra of Ms(R), and we define ¥(«, 5, B) := ®12(av, 8, B) — @;1((1, B, B), with @;1 denot-
ing the transpose of ®2;. We have that ¥(0,0,0) = 0 and

0 B 0 B 0 —-B
pu000) 5= % F -8 2] < [8 7]

from which follows that Dp¥(0,0,0)- B = —4B, i.e. Dp¥(0,0,0) = —4I. Therefore, there exist
asmall 6 > 0 and a smooth function («, §) € Bs(0) — B(a, §) € &, such that B(0,0) = 0 (which
implies P(B(0,0)) = I4), and ¥(a, 8, B(a, B)) = 0, ¥(ev, B) € Bs(0). This is equivalent to say
that ®(«, 3, B(a, 3)) is symmetric, and moreover P(B(a, 3)), P(B(a, 8))™! = I, + O(Ja| + |8)).
Defining P(a, B) := P(B(«, 8)) concludes the proof of the statement. O
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Proof of proposition[2.1.5. With notations introduced in lemma and in (2.1.5), (2.1.19),
A(n) = (n)Mo + S(n) and A3 (Vin)(1 = x)(n) = (mN(a, B), with

In[ = (n) 0 0 0
0 0 0 0 1
S(n) = whose elements are O , |n| — 400,
(n) 0 0 —(jn|— () 0 (In17); Inl
0 0 0 0

and o = ao(vi;n)%(l - x)(n), B = bo(vi;n)%(l — x)(n), ao, by defined in (2.1.8). Since
sup,, (lo| + 18]) S IV(t, )|l gree, by lemma we have that, as long as ||V (¢, )| g1, is suf-
ficiently small, there exists a real, symmetric matrix P = P(V;n) such that P(V;n)~! [Mo +
N (e, B)] P(V;n) is real and symmetric. Moreover P = I, + Q(V;n), P~ = I + Q'(V;n), where
Q(V;n), Q(V;n) depend smoothly on «, 3 (which are symbols of order 0), are null at order 1
at V =0, and verify, for any n,r € N,

M2 (Q(V;in);n) + MY (Q'(Vin)in) SV, ) grsree.

We define B
A1(Vin) == P(Vin) " [(n) (Mo + N(a, B)) | P(Vn) — (n) Mo,

which is a matrix of order 1, and W/ := OpB(P~1(V;n))W!. From the fact that A,(V;n) also
writes as

) [Q'(Vin) Mo+ P~ (Vin)MoQ(Vin) + P~ (Vin)N(a, B)P(V;n)]

we see that it vanishes at order 1 at V = 0, and is such that M (A (V:n);n) < ||V (L, )| grerce.
Moreover, from proposition m (74) with » = 1 it follows that

(2.1.51) I=0pP(P(Vin)0p® (P~ (Vin)) + T-1(V),

where T_1(V) is an operator of order less or equal than —1 and £(L?) norm O(||V (¢,-)| g2.)-
Therefore, W! = OpP(P(V;n))W! +T_1(V)W!, and from proposition we deduce that the
L? norms of W!, W are equivalent as long as ||V (¢,-)|| g2. is small. Using equation (2.1.20) we
find that:

(2.1.52)

A5 (Vin)x(n)) + Op® (A’_I(V;n))} W
C'(Whm)V + OpE(A'(V; n))WI]

"(VEm)U + OpP (C"(Usm)) VT + OpR (A" (VI m)U

~— ~— —
-
=
o
—~~ —~ —

where

(2.1.53)

= Op® (P~ (V;m)Op® ((n) (Mo + N (o, 8))) W' + Op®(S(n))W' + Op”(Q'(V;n)Op® (S(n)) W'
= Op®(P~(V;1)0p® ((n) (Mo + N(a, B))) Op®(P(Vi0))W!
( ) T (VYW + OpP(S(n))W!
)



where Ty(V'), T"(V) are also operators of order 0 and £(L2) norm O(||V (¢, -)|| 2. ). Indeed, last
equality follows from the fact that, by proposition m (7) with » = 1, and proposition

OpB(P~H(V;m)Op® [(n) (Mo + N(a, B))|Op® (P(V;n))
= Op® (P(Vyn) ™' [(n) (Mo + N(a, 8))]P(Vin)) + To(V),

and Op?(S(1n))OpB(Q(V;n)), OpB(Q'(V;7))OpP(S(n)) are operator of order 0, too (the former
of the form Ty(V'), the latter of the form Ty(V)), while OpP(S(n))T-1(V) is of order —1 (and
can be included in Ty(V)). After the equivalence between the L? norms of W}, W, we deduce
that To(V)WI +T'o(V)W! in is a remainder R(U, V).

All operators appearing in the second and third line of are also remainders R(U, V)
because, from proposition the fact that MJ(P~Y(V;n);2) = O(1 + ||V (t,)||g1.~), and
lemma thelr L? norm is bounded by [V (&, ) a7ee (L4 |V )|z |WE(E, ) || 2. Last
term in also contributes to R(U, V), for matrix D;P~1(V;n) is of order 0, its MJ(-,2)
Seminorm is bounded by ||D:V (t,-)| g1,00, and from with s = 1, we have that, for any
6 € [0,1],

1DV (8 M S IV g2e + IV IV (s 102 + [RATE 7o)
F IV Mz (0 + IR ) 10 )%

Finally, in remaining contributions in , we replace Op®(P~1(V;n)) with operator I +
OpB(Q'(V;n)), and all of the terms on which Op?(Q’(V'; 7)) acts are remainders R(U, V), as fol-
lows combining proposition [1.2.7] _ the fact that Mg (Q (Vin);2) = O(||V(t, )| g1, ), and lemma
-. Interchanging the notation of P(V;n) and P~1(V;n), we obtain the result of the state-
ment. O

2.2 Normal forms and energy estimates

Before going further in writing an energy inequality for W/ we should make few remarks. As
we previously anticipated, the L? norm of some of the semi-linear terms appearing in equation
have a very slow decay in time. It is the case of OpB (A" (V1:n))U, OpP(C"(U;n))V!
and OpB(A”"(V;n))U, whose L? norms are estimated in (2.1.21d), (2.1.21¢) and depend on the
uniform norms of U, R1jU, which after a-priori estimates (1.1.11a}) are only a O(t_l/Q), and of
some contributions in Qf(V, W) which, after corollary i, are a Op2(t~1/2+F"), for some small
8 > 0.

Nevertheless, OpB (A" (V1;n))U, OpE(A”(V;n))U and the mentioned contributions to Qf(V, W)
can be easily eliminated by performing a semi-linear normal form argument in the energy in-
equality (see subsection . However, this is not the case for Op?(C"(U;n))V!, for which
such type of argument leads to a loss of derivatives linked to the quasi-linear nature of the prob-
lem, i.e. the fact that matrix A;(V;7) in the right hand side of is of order 1. This latter
contribution should instead be eliminated through normal forms directly on equation ,
which is the object of the subsection [2:2:1]

2.2.1 A first normal forms transformation and the energy inequality

First of all, let us replace Op®(C"(U; 7))V, in equation (2.1.46)), with Op®(C”(U;7))V{ (having
defined VI := OpB(P~1(V;7))VT), up to a new remainder R(U, V) that satisfies (2.1.47) thanks
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to estimate (2.1.21€]), and deal from now on with

(D — A(D))W! = OpP(Ay(Vin)W! + OpP (A" (V1)U + OpP(C"(U;m)) V!
+ OpR(A"(VE)U + Q§(V, W) + R(U, V),

for a new R(U, V) satisfying ([2.1.47)).

We are going to prove the following result:

(2.2.1)

Proposition 2.2.1. Let N € N*. There exist three matrices of symbols, Eg(U; n),Ed_l(U;n),
Ena(U;n), linear in (uy,u_), with EQ(U;n) real, diagonal, of order 0, E;"(Usn) and Enq(Usn)
of order -1, such that, for any n,r € N, any x € C§°(R?) equal to 1 close to the origin and
supported in open ball B:(0), with € > 0 sufficiently small,

(2.2.22) (25 (x () i) in) S IR0 oo,
(22.2) it (57t (x (T3 i) on) S 10 o
(2.2.20 M (B (x (0 ) vim) in ) S 10 s

and, as long as |RiU(t,)|| 2. is small, there is a real diagonal matriz F3(U;n) of order 0, with
0( 0 Dy
(2.2.3) M, (Fd <X <<77>> U;n) ;n) SRLU(E, ) || grisrioos

so that, if one defines W := OpB(Iy + E(U;n))W!, with E(U;n) := ESU;n) + E;NU;m) +
E,qi(U;n), there is a positive C' such that

(2.24) CHIWL ()2 < WL ()2 < CIWL )z,
as long as |[RiU (L, ) || grze + |U(E, )| 5o is small, and W is solution to

(Dy — AD)WI = Op ((Iy + YU m) A1 (Vi) (I + FY(Usm)) ) W

(2.2.5)
+OpP(A"(VEm)U + OpR (A" (VEn)U + Q5 (V,W) + T_y (U)W + R (U, V).

In the above right hand side T_n(U) is a pseudo-differential operator of order less or equal than
—N, T_N(U) = (045(U, Dy))ij where symbols (U, n)i; are such that

0, otherwise,
with J;?(f, n) supported for |£] < e(n), for a small e > 0, and for any a, B € N?
(2.2.6b) 080056 )| Say €171 ) NP e {2, 4}

Moreover, for any s € R,

(2.2.7) TN e(rrs=n;msy S IRAU ) veece + [[U )| rvoce,
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and R'(U, V) is a remainder satisfying, for any 6 €]0,1[

(2.2.8)
IR'(U,V)(t, )z S A+ [RUE ) zrvee + U ) ars.ee) IR, V) 22

(RO e + U ree) [1QEV, W)z
+ (IRU ) ee + 10 zoe) (14 (L4 IR o) [V (E )z
X (L IV (o) I (8l | + IV ) VG I W ) 2

with R(U, V') verifying (2.1.47)).

Remark 2.2.2. From propositions it follows that, as long as |[RiU(t, )| g2.c,
U (t, )| g5, and ||V (¢, )| g2, are small, there is a constant C' > 0 such that

(2.2.9) CTHW ()2 < (IWS(E)lze < CUW(E, )| 2
Introducing the following modification of the energy:

(2.2.108) En(t;W):= > ||OpP(I4 + E(U;n))Op(P(Vin)DIW (t,-)] 2, YneN,n>3,

laj<n

(2.2.10b) E5(t:W):= > [|0p”(Ls+ E(U;n)Op® (P(Vin) DeW! (1. )| 1. VO < k <2,
o +[1]<3

0<|I1<3—k
there exists a constant C7 > 0 such that
CrlEn(tW) < En(t; W) < CLEn (W), Vi > 3,

(2.2.11) ~
CTYEF( W) < EE(#; W) < C1ES (W), VY0 <k <2,
and we can rather focus on the derivation of an energy inequality for En(t; W), Eg,f (t; W).

For reasons of clarity, we split C”(U;n) defined in (2.1.7) into the sum of the following two

matrices:

0 0 0 O 0 0 0 0
oy [0 € 00 vy = 100 0 fo
0 0 0 fo 0 €0 0 0

and proceed to eliminate Op?(C(U;n))V{ and OpP(C”,(U;n))VE in ([2:21) separately. For
compactness, we denote by (x) the right hand side of equation (2.2.1). In order to get rid
of OpP(CY(U;n))VY (resp. OpB(C",(U;n)VY) in 2.2.1), we seek for matrix Eg(U;n) (resp.
E,4(U;n), depending linearly on (uy,u_), such that W/ := OpP(Iy + E4(U;n) + Enq(U;n)) W1
is solution to

(2.2.13)
(Dy — A(D))W! = (%) + OpP (D Ea(Us )W — [A(D), Op® (Ba(Usm)]W! + Op® (Ea(Us ) (+)
+ Op” (D Ena(Us )W/ — [A(D), Op® (Ena(U;n) WS + Op® (Ena(Usn)) (%),

and

(2.2.14)  Op"(CH(U; )V + OpP (DyE4(U;s )W — [A(D), Op” (Ea(Usn))|W
=T _n(U)W] +R(V,V),
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(2.2.15)  OpB(C! (U;n))VE + OpP (D Ena(U;n))WE — [A(D), Op® (Epg(U; n) W1
=T _n(U)W] +R(V,V),

where T_n(U) is an operator of order less or equal than — N, for a certain N > 0, and R'(V, V)
is a new remainder satisfying a suitable L? estimate. The results we obtain are the following:

Lemma 2.2.3. Let N € N*. There exists a diagonal matriz Eq(U;n) of order 0, linear in
(us,u_), such that

(22.16)  Op®(CJ(U;m)V{ + OpP(DyEa(Usn)) W) — [A(D), Op” (Ea(U; )W/
=T_n(U)W] + R (V,V),

where R (V, V') satisfies, for any 6 €]0,1],

(2.2.17) I (V, V) (&, ) e S IV e 1V & e 1V () 2

and T_n(U) is a pseudo-differential operator of order less or equal than —N such that, for any
s €R,

(2.2.18) TN (@)l gars-n,ms) S IRLU ) veese + U )| vrese,

whose symbol o(U,n) = (0i;(U,n)),<; j<4 15 such that

(2.2.108) %%(%(U,n))(g):{%ﬁ(ﬁm)%(f)+05<£,n)ﬁ—(€), i=je{24),

0, otherwise,
with 05(5, n) supported for |£| < e(n), for a small e > 0, and verifying, for any o, f € N2,
(2.2.190) 0200 (€, )] Saus 1€ 1 )N o = 2,4,

Moreover, if x € C’(‘)X’(]R2) s equal to 1 close to the origin and has a sufficiently small support,

o o ()0 () ()

the former matrixz in the above right hand side being real, of order 0 and satisfying (2.2.2a)), the
latter being of order —1 and verifying (2.2.2b)).

Proof. Because of the diagonal structure of C//(U;7n), we look for a matrix Ey = (eij)1<ij<4
satisfying such that e;; = 0 for all ¢, j but i = j € {2,4}, with symbols eg2, €44 of order 0
and linear in (uy,u_). If we remind that matrix A(n), defined in (2.1.5)), is of order 1, and make
the ansatz that Ey is of order 0, then by symbolic calculus of proposition [I.2.9] we have that

N
(2221)  ~[AD), 0P (ELU )] =~ 3~ 0p” (9 AG)DEEU) + T-n(U),
laj=1 "

with T_x(U) pseudo-differential operator of order less or equal than —N such that, for any
s €R,
(2.2.22)

TN )| e (rrs— a0y S Musa (A(); N+ 3)Mg (Ea(U;n); 2) + Mg (A(n); N + 3)MR 41 (Ba(Us )5 2),
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and whose symbol o(U,n) = (04;(U,7)),; is such that oy;(U,n) = 0 for all i, j but i = j € {2,4}.
Therefore, for any fixed y € C§°(R?) equal to 1 in B, (0) and supported in B, (0), for some
0 <e; <eg <1, welook for E4(U;n) such that

N
D, 1., . ‘ B
X <<77>> Cg(U; n) + DiEa(Usm) - |Z|:1 aanA(”)Dx EqU;n)| = 0.

In fact, since Ey is required to be linear in (u4,u_), we should write Eq(U;n) as Eg(uy,u_;n)
to then realize that, as u; (resp. wu_) is solution to the first (resp. to the third) equation in

[B12) with |1] = 0,

DyEg(us,u_;n) = Eq(|Dy|ug, —|Deu—;n) + Eq(QY (v+, Divt), QY (v+, Divs);n),
DgEd(UJmU—;W) :Ed(DacckquD?U%U), \V/OZGN2,

and rather look for E4(U;n) such that

N
D, . ) )
X(<n>) CH(U; ) + BalIDslus, —|Dalusn) = 3 = 0% A(n) Ba( D, Diu_sm) | =0,
laj=1 "

temporarily neglecting contribution Eq(QY (v+, D1v+), Qf (v+, D1v+);n), whose quantization
acting on W/ is going to give rise to a remainder R’ (V, V) satisfying (2.2.17). Recalling definition
(2.1.5) of matrix A(n), the above equation corresponds to the following:

e22 (X () (1P=1 - i $3$(<n>)D$)u+7—x (5;) (1Da] + g: ;!ag(<n>)pg)u;n)

lal=1 |a]=1

~x ()
( (5) (1Da] + Z Loz () D2 s, ~x (5») CEEDY ;!af;((m)pg)um)

la|= 1 ¢ ! la|=1

=-X (%) Jfo,

with eg, fo defined in ([2.1.9)), and if we look for e;; of the form

(2.2.23) eii(Ut,u—;n) = /Gim'gan(ﬂﬁ)mr(f)df + / e Bii (€, m)ii— (&) dE,
above system imply, inter alia, that according to the definition (2.1.9)) of e

N

[emo () (161= 3 SamtmeJantc.mis @ -

a=1
_ jl/e“””fx (<§77>> (1 - TZ) é|>§1u+(§)d§

As N - v
F YD o Mig | =17 L € V'),
la)=1 k=1
and

k 2
(O 1 + Onyn) (1) = (n’f,L (1 - <<Z> ‘ ‘Z) ) beEm).
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for every 2 < k < N, where bi(§,n) is a polynomial of degree k — 2 in % . é—l, we derive that

2.2.24 1 & 15 L. §> 15b
(2220 ( :Flzl L 5) (1% 05 &) aF et
with b1 (§,n) :== fo:Z %|§|k_1<n> )(1 + <77> \5|)bk(€’ n) such that, for any u,v € N2,
(2.2.25) |0 Byb (€, )| Sy €1 () =1,
and we can then choose a92(&,n) in such that, when [¢| < e2(n),
(22.26) (€)= =5 (1= belem) " L.
Similarly, we choose multipliers S22, a4, 844 such that, as long as [£] < e2(n),
i 1 &
L b St
cus(em) = — 5 (b ()™ S Bualem) = £ (1 bilem) L
’ 4 ’ &l ’ 4 ’ €l

We also observe that, since by (&,1) = O(|¢|(n)~1), we have that (14£b;(&,1)) "1 = 1Fb;(&,n) +
O(El*(m~2), j € {+,—}, as 10ng as [¢] < e2(n), and hence

ax(€,n) = 4|§| +any (6,1), Baa(ém) = 4 ’€| =+ B35 (&),
oua(En) =~ o). Bulen) = 1+ A ).

where, for any p,v € N?, |9{0) o] + \6?8}7’551\ S €171V Tnjecting the above
iy Biiy T € {2,4}, in (2.2.23]) we find that
U, X u—snj,
()

o ( (B () ) e o 5
Dy Dy i - z Dy
(e (o) i (B () )
where, for i € {2,4},
2 (55 (B) -

1x-€ i -1 ~ 1x-€ £> -1 ~
Jemo (S ) attemini@ae + [ e () satema-ae
After lemma (i) and above estimates for a;;!, 8- kernels

Kl (o) = [ e <<§>> Qe K ()= [ e (@) B (€, m)(€) e

are such that, for any 8 € N2, lagKZi(x,n)\ < ||~ x) "2 ()18l for every (x,7n), from which
follows that

et (x (%) wen (5;) win)| <

[0 ynD | + | [ 05K o = (D) 0] S 1O o )
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and ei_il is a symbol of order —1, for i = 2,4. Moreover, using definition (1.2.3]) and the fact that
space W™ injects in H"1>° one can check that for any r,n € N,

M (%1 <x (5;) Uy, X <57‘§> um) ;n> SNUE ) s+ros,

and therefore that

M2 (e (o (25 ) unox (5 ) i) ) S IR iporoe + 10 oo

Defining

0 0 0 0 0 0 0 0
0 —iRi(uy—u_) O 0 _ 0 e 0 0O
07747 — 1A%+ Trron) — 22
0 0 0 —iRy(uy—u-) 0 0 0 e,

decomposition (2.2.20]) and estimate (2.2.2a)), (2.2.2b|) hold. Consequently, as

(2227) Ed(Q‘())v(’U:b DIU:I:)7 QBV(U:IU DIU:I:); 77) = Ed_l (QBV(U:IU DIU:I:)a Q‘(])V(U:b DIU:I:); 77)7
for any n € N, any 0 €]0, 1], we have that

MY (Eq(QY (ve, Diva), QY (va, D1vs)in)in) < QY (v, D1vs)]| race

SV ISV (),

last inequality obtained using (B.1.3d) with s = 4, and its quantization acting on V! verifies

(2.2.17)) after proposition Also, ([2.2.18]) is deduced from (2.2.22)) while properties (2.2.19)
are obtained essentially using (1.2.12)). O

Lemma 2.2.4. Let N € N*. There exists a purely imaginary matriz FE,q(U;n), linear in
(us,u_), of order —1, satisfying estimate (2.2.2c)), such that

(2.2.28) OpP(Cl(U; )V + OpP(DyEna(U;n))WE — [A(D), Op® (Ena(U;n)) W
=T_n(U)W] +R(V,V),

where R'(V, V) is a remainder satisfying (2.2.17)), and T_n(U) is a pseudo-differential operator
of order less or equal than —N such that, for any s € R,

(2.2.29) TN (U ears—n;ms) S NUE )l praeee.

Moreover, its symbol o(U,n) = (04;(U,n)),<; j<4 s such that

o5 (&) (€) + o (& ma—(€), (i,7) € {(2,4), (4,2)},

0, otherwise,

(2.2.30a) Fpse(oi(U,m))(E) = {

with az?? supported for || < e(n), for a small € > 0, and verifying, for any a, 3 € N?,
(2.2.30b) |3gaggz;lj;(§7n)| Sop eV T2lal gy —N=1-18],

for (i,5) € {(2,4),(4,2)}.
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Proof. Because of the structure of C,(U;n), we seek for a matrix E,q(U;n) satisfying ,
of the form E,4(U;n) = (eij)i<ij<a with e;; = 0 for all 4, j, except (4,75) € {(2,4),(4,2)}. If
we make the ansatz that E,4(U;n) is linear in (u4,u—), of order —1, and remind that A(n) in
is of order 1, from symbolic calculus of proposition we have that

—[A(D), Op® (Ena(U;n))] = — Op” (A(n) Ena(Usn) — Epna(Usn)A(n))

N
1
- 0P (07 A() - DFEpa(Usn)) + T-n(U),
laj=1

where T_n(U) = o(U, D,) is a pseudo-differential operator of order less or equal than —N, such
that, for any s € R,

(2.2.31)

IT-N @)l e e ey S M1 (A); N+ 3) My (Bra(U3 n); 2) + Mg (A(n); N + 3) My, (Ena(Us )5 2),

and whose symbol o (U, n) = (0;;(U,n));; is such that o;; = 0 for all ¢, j but (4, j) € {(2,4), (4,2)}.
Hence, for any fixed x € R? equal to 1 in B, (0) and supported in B, (0), for some 0 < 1 <
g9 < 1, we look for E,4(U;n) such that

D,

(2.2.32) ¥ ((77)

) [CLaT3) + D) = A EUs1) + B30 A0
~ Z —80‘A D;}End(U;n)} —0.
|a|= 1

Furthermore, as E,q(U;n) = Epg(us,u—_;n) is linear in (uy,u_), and uy (resp. u_) is solution
to the first (resp. the third) equation in (2.1.2)) with |I| = 0, we have that

D¢Epg(ty,u—;n) = Eng(|Dalus, —|Dylu—;n) + Eng(QY (v4, D1v+), QF (v, Div+);n),
DgEnd(u+7u7;"7) :End(DgUJergu*;n)a Va € N?

while
o 0 0 0
0 0 0 —2(ne
—AMEuaUin) + Baa Ui Am) = |, 4 (g> 2|
0 2(mesz 0 0

so we rather search for symbols eay, €42 such that

x () e ((um - Lormos — 2 ~(10+ 3 ;aa<<n>>pg+z<n>)u;n)

laj=1 la|=1
¥ () eaz ((iDzi+ > =0 (NDg +2(0) )us,— (102l = Y M8“(<n>)D§—2<n>)u;n)
la|=1 la|=1

=X (<n>) €0,

with e, fo given by (2.1.9), neglecting contribution FE,4 (Qg(vi, Divy), Qf (v+, Divy); 77), whose
quantization acting on W/ gives rise to a remainder /(V, V), as we will see at the end of the
proof. We look for e;; of the form

eij(Uy,u—;n) = /eix{az‘j(&n)ﬁJr(ﬁ)der/eix'gﬁz‘j(fm)ﬁ—(é)d&
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for (i,7) € {(2,4), (4,2)}, thus reminding (2.2.24)), (2.2.25)), we choose the above multipliers such
that, as long as |¢] < e2(n),

2 (€,m) = —% (1 + % : é') <<1 - % . é|> (1= by (&) — 2<|€77|>>1 E}|
n

Bl =~ (1 - é,) ((H ok |§|) (1+b—(§,77))+2<|2‘>)1%,

O£42(£, 77) = /8247 542 Ea 77) = 0424(57 77)
One can check that, on the support of X((%) and for any u,v € N2, \agagaij\ + \8gaﬁi’ﬂij| Suw
|11 (n) =1~ and then that, if

K@) = [ (Fs)agen(@ e K= [ () sy n o e,

for (i,7) € {(2,4),(4,2)}, 105 K (z,n)| < ||~ @)=2(n) 71717, for any B € N?, any (x,7) €
R? x R?, as a consequence of lemma Therefore, for any 3 € N2,

85@1»]» (X (Z{;) Ut X (5;) u;n>’ <

\ [onxi- y,n>[<Dz>4u+}<y>dy] " \ [opr- y,n>[<Dm>4u1<y>dy’ <O gee ()18,

which implies that eaq, 42 are symbols of order —1. Moreover, for (i,7) € {(2,4), (4,2)} and any
n,r € N, one can prove that

M,

o <eij (X <5;> Uty X (5;) U;n> ;n) SNUE ) s+ree,

using definition (1.2.3) and the fact that space W™ injects in H"*! for any » € N. There-
fore, End(X(%)U ;M) is a matrix of order —1 satisfying (2.2.2¢). Moreover, for any s € R

| T-NO)l s .msy S WU )||gnveoe after (2.2.31)), and its symbol satisfies (2.2.30), as one
can check using (1.2.12)) and the estimates derived above for «;;, 8;;, while from (B.1.3d) with

s =4, for any 6 €]0, 1],
My (Ena(QY (v, D1va), QY (v, Diva);n);n) S V(¢ | IV ()
0 nd o U+, U104 ), g (U4, 1V4 )5 M) ~ ) 5,00 ) H7

and its quantization acting on W/ is a remainder verifying (2.2.17) by proposition m O

Proof of Proposition[2.2.1. After lemmas there exist two matrices E4(U;n) and
Enq(U;n), linear in (uy,u_), satisfying, respectively, equations (2.2.16) and (2.2.28)), and with

Ed(x(%;)U; 7]) decomposed as in (2.2.20]), for any x € CSO(RQ) equal to 1 close to the origin

and with sufficiently small support.
If we define W/ := OpB(I4 + E(U;n))W/, with W/ solution to (2.2.1) and

E(U;n) := Ea(Usn) + Ena(U;n),
we deduce from (2.2.13)), (2.2.16)), (2.2.28) that

(D¢ — A(D)W! = OpP (A1 (Vi)W + OpP (A" (V1)U + OpB(A" (V1)U
+ Q§(V. W) + R(U, V) + Op (B(WU:m) [ 0p” (Au(Vs )W + OpP (A" (VT m))U

+ Op” (C"(Usn))V + OpR(A"(VIsm)U + Q{(V, W) + R(U, V)| + T_n(U)W] + R (V, V),
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where R(U, V) satisfies (2.1.47), R'(V, V) satisfies (2.2.17), and T_(U) is a pseudo-differential
operator of order less or equal than —N verifying (2.2.6)), (2.2.7). Contribution
Op®(E(Usn)) [OPB(A”(VI; MU + Op®(C"(Usm)V + OpR (A" (Vs m))U
+QHV. W) +R(UV)
is a remainder of the form R'(U,V) satisfying estimate (2.2.8]), as a consequence of proposi-

tion m estimates (2.2.2) with » = 0, lemma and the fact that |[VI(t,")|2 < (1 +
IV (&, )| 100 |VE(E, )| 2, Dy the definition of V.

According to the definition of E(U;n),
OpP(E(U;n))Op” (AL(Vim) = Op” (EJ(U;))Op® (A1 (V)
+0p® (B (U;n) + Ena(U; ) OpP (A1(Viin)),

where, by proposition and estimates (2.1.49), (2.2.2b)), (2.2.2c) with » = 0, the latter
addend in above right hand side is a bounded operator on L?, whose norm is estimated by
|U(t, )| 5.0 ||V (£, ) || 1.0, While the former one writes as Op®(E9(U; mAL(V;n)) + To(U, V),
for an operator Tp(U, V') of order less or equal than 0, and norm O(||R1U (¢, -) || g2, ||V (£, ) || gr2.< ),
as follows from corollary and estimates (2.1.49)), (2.2.2a)) with » = 1. Hence,

Op®(E(U;1)0pP (A1 (Vi) W! = OpP (EY(U;n) A1 (Vim)) + R/ (U, V),

for a new R/ (U, V) satisfying (2.2.8)).
As long as ||[R1U(t,")| g1 is sufficiently small, matrix I + EY (X(%)U;ﬁ) is invertible and

Fg(U;n) = [14 + Eg(x(%)U; 77)]71 — I, is such that, for any n,r € N,

(B (x(£5)vin)in ) & IR0 i

Moreover, matrix FC?(U; n) is real, diagonal, of order 0, and by corollary |1.2.11| with r = 1,
Op® (s + F§(U;m)Op® (I + EJ(Us ) = Id + T-1(U),

with T_1(U) of order less or equal than 0, with £(H*~!; H®) norm bounded by ||[R1U (%, )| g2,
for any s € R. Since W = OpB(I4 + E(U;n))W/!, this implies that

OpP (Ly + FYU;mW! = w! + Ty (U)W,

with T_1(U) = T_1(U) + OpB(E;Y(U;n) 4+ Ena(Usn)) of order less or equal than —1, and
L(H*1; H®) norm bounded by ||[RiU(t,-)||g2.e0 + [|U(t,)|| 5,00, for any s € R, and as long as
this quantity is small, there exists a positive constant C' such that (2.2.4)) holds. Also,
Op® (Is + EJ(U; ) Op® (AL (V' n)) W]
= Op® (L4 + EY(U;n))0p® (A1(Vin))OpP (I + FJ (U)W
— Op® (L + Eg(U; m)Op® (Ax (Vi) T (U)W,

where, from proposition 1.2.7L [@2.1.49), (2.2.24), and the estimate on the norm of T4 (U), the
L? norm of the latter term in the above right hand side is estimated by

(22.33) (L4 [RaU () roe) IV (E oo (RLU(E )l gzoo + 10 ) arsee) W ()2,
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and it is a remainder X'(U, V), reminding that |[WI(t,)|lp2 < (14 |V, ) e IWE(E, )| 12
after the definition of W/ and estimate (2.1.48). On the other hand, by corollary [1.2.11] with
r =1, we get that

Op® (Iy + EY(U;1))Op® (A1 (V1)) OpP (I + F3(Us ) ) W!
— O0p® ((Is + ES(U; n) A (Vi) Ly + FQ(Usm))) W,
+OpP (Ly + ES(U; ) To (U, VIWE + To (U, V)WL,

with Ty(U, V),TO(U, V) operators of order less or equal than 0, and £(L?) norm controlled,
respectively, by |[RiU (¢, )| g2 |V (£, )| 2. and (2.2.33), so the last two terms in above right
hand side are also remainders R'(U, V) after proposition and estimate (2.2.2a). That
concludes the proof of the statement. O

2.2.2 A second normal forms transformation.

In previous subsection (see proposition we introduced, for every multi-index I, a new
function WSI defined in terms of W/ (and hence in terms of W), solution to equation (2.2:5)), in
which we got rid of very slowly-decaying-in-time term Op}’ (C” (U; 17))V81 appearing in .
That naturally led to the introduction of new energies E,(t; W),E’g,f (t; W) as in (2.2.10a)), for
integers k,n € N with n > 3,0 < k < 2, respectively equivalent to starting E,,(t; W), E¥(t; W)
whenever some uniform norms of U,V are sufficiently small. These modified energies, however,
are not the good ones we were looking for, because they do not permit to obtain the wished energy

inequality with which we can propagate a-priori estimates (1.1.11d|), (1.1.11d}), as explained below.

For multi-indices I € J , for 0 < k < 2, this can be seen in the fact that, when computing

OELE(t W) = > renk <6tW W1, for 0 < k < 2, with % introduced in (2.1.17), we find from
equation - ) the followmg contribution

(2231 = > SO (A" (VEm)U + OpR(A"(VEm)U W) + (T (U)W W)
Iedk

for which we only have, after Cauchy-Schwarz inequality, lemma [2.1.1] and a-priori estimates

([L.LII), that
(OB (A" (V15m) + OpR(A" (VI JU, W) | + (T (U)W, W[ S et 2 BS (5 W),

~1/2

with a decay rate t very far away from integrability.

Moreover, from (2.2.5)) we also find —S[(QL(V, W), W!)] which, from Cauchy-Schwarz inequality
and estimate ([2.1.41]), is such that

8
(QLV, W), Wh| S et™2+ % E§ (1 W)3.

To be more precise, the slow decay in time of this scalar product is due to some particular
quadratic term appearing in Q¥ (V, W). In fact, according to definition (2.1.12)), and to (2.1.30a)),
(2.1.31)) and ([2.1.354), we have that
(2.2.35a)
I 1
S @k, Dule) w4+ ul)| S IR0 8, )le < C(A+ Bler™ % Bl ),

(11,12)69(1)
2] <|1]
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where last estimate is obtained from a-priori estimates (1.1.11d)) (resp. it k =2, as
E3(t; W) stands for Es(t; W)). Also, reminding definitions (2.1.26)), (2.1.27), for indices I ¢ V¥
we also have, after (2.1.30b]) and (2.1.35bj), that

(2.2. 35b)

14k 1
(@i, Dulz), ol + oL )| S IR 2V (8 ) < CLA+ Bt~ F B (5 W),

(I1, 12)63(1)
[I1],|12|<|1]

The decay rate O(t‘““s’f/ 2) in the right hand side of the two above inequalities, is the slowest
one that allows us to propagate a-priori estimate ((1.1.11d)), and it gives us back exactly the slow
growth in time t%/2 enjoyed by EX(t; WHY2 for 0 < k < 2.

However, for I € V¥ with k = 0,1, we find from (2.1.30b)) and (2.1.35b)) that, for some smooth
cut-off function x and some ¢ > 0 small,

kg k o
E : 611,12Q0 (Ui’D 12)_ E : ChJQQOg <viv (t™D )Duﬁf) +9‘{§(7§,x),
(I1,12)€3(1) (I1,12)€3(I)
[I1 ], 12| < |1 I eX,|I2|<1

where the derivative D in the right hand side is to be meant equal to D;, with j = 1,2,3 (remind
that we introduced D3, with an abuse of notation, in (2.1.25)). The L? norm of the first sum in
the right hand side is bounded by

> (I Da)ul2 () e + (7 Do) R (8, g2 ) B (1503,
|12<1

and decays in time with a rate slower than ¢~21%/2 because of the very slow decay in time of the
uniform norm of x(t=7D,)U"2, X(ft;"Dm)RUI2 (see (B.2.52))). Therefore, the very contribution
that has to be eliminated from 9, E%(t; W), when k = 0,1, is

(2.2.36) -3 Y ennS (@ (VR D) DU ) ol 40l
1€V, (11712)63(1)
1LEX, L1

When I € 7, (see definition (2.1.18))), the same contributions as in (2.2.34)) appear when com-
puting 0, E, (t; W), for any integer n > 3, and they come along with another slow decaying term,
represented by

(2.2.37) - Z Z & [( 0 g(vlt, D1uf?), vl +U£>} ;
1€7, (11,12)63(1)
[Lh<in|<|1]

which is estimated by t~'/2E,,(t; W) after Cauchy-Schwarz inequality, ([2.1.29) and a-priori esti-
mate (|1.1.11al).

The aim of current subsection is, therefore, to introduce two new modified energies E}; (t; W),
Ez],f’T(t; W) for any integer k,n, n > 3,0 < k < 2, in such a way that they are equivalent, respec-
tively, to E,(t; W), Ek(t W) (and, then, to starting generalized energies E, (t; W), E5(t; W),
and such that their time derivative is suitably decaying in time. For this purpose, it is useful to
remind that, after system , for any multi-index I vector (ﬁfr, @fr, ol , 1) is solution to
(2.2.38)

Sl @ (W2 Dyo) + 34 gy €0, Q8 (v, D)
Dy — (€))L (4,) = X2 1141w j=i M) + 20+ < 1] Cﬁ,[ﬁﬁf\w)

(t,2) = Xy @ (V3 D1v2) + 21 g 00,6 Q8 (v, Dvg)
S =t @oE W, Dyu2) + 32 1 oy epy €01 Qo (02, DulZ)

©
|
o~
=
>
£~
—
\'@F
i
SN—
Il

S
+
—_
I
S~
~—
S
| ™~
—~
o+
8

SN—
Il
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with coeflicients cr, 1, € {—1,0, 1}, and indices I, I in above right hand side such that (I3, I2) €
J(I). We proceed to write the contributions we want to get rid off under a more explicit form,
focusing first on terms in (2.2.34), which are common to 8,E,, and 8tE3

From definition (2.1.6]) of matrix A”(V! n), Plancherel’s formula, and the fact that vl L=

—v! | we observe that

(OpP (A" (V) U, WY = (0p® (a0 (vl m)m)us + Op® (bo (vl m)m)u_, vl +vL)

SN (VY S Ve e Y70 e ) S S AL o g

1o [ (52 [ e - s - =L ’”L\ M- n)
x(ug —u=)(n)] mL +vl)(—=¢)ddn,

where x denotes here a smooth function equal to 1 in B, (0) and supported in Be,(0), for some
0 < &1 < g9 < 1, and hence that

(2.2.39) —S[OPPA"VEMUWH] = > Cliy i
jke{+7_}

with

(2.2.40)

1 §—n S e/
I _ _

for any j1, jo, js € {+, —}. Analogously, from equality (1.2.8]) we deduce that

(2.2.41) —S[(OpRA" (VI UWh] = > i
jke{+7_}

with

Sl (=)

o (& — n)up(n) o (—=§)dEdn.

(2242) CfF = 4(2;)2 / [1 _ X(5<77>77> _

After proposition we know that T_n(U) = (045(U.

) )i; with symbols 0;;(U, n) satisfying
(2.2.6). Introducing p : {+, —} — {2,4}, such that p(+)

Dy)
= 2,p(—) = 4, we have that

(2.2.43)
(T N@WI W) = " (op0),0)(U, Da)v], v])
ije{+,—}
1 o I
g 5[ o (€~ W€~ i (), (~€)dcn,
jke{“h*}

with the convention that —jr € {+,—} \ {jx}, and where multipliers aﬁjg) p(jl)(n,£ — 1) are
supported for |n| < e|¢ — 5|, and such that, for any «, 3 € N2,

Oe0 o o &= )| Sas VTN E — )TN,

for any (£,7) € R? x R?, any ji1, j2,j3 € {+,—}.
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Equalities (2.2.39), (2.2.41)) and (2.2.43) lead us to introduce the following integrals, for any
multi-index I belonging either to J,, or to I8, 0 < k < 2, and any triplet (j1, jo, j3), jr € {+, —}:

(2.244a) DY = 4(2;)2 /x <§<n>n> B, o) &m0, (€ = n)itg, (n) ], (=€) dédn,

w20 24 =y | [ (55 ()| Pt

X B (€ — )iy (n)o], (—&)dédn,

1 - . A
2410 DU = Re |y [ €l (€~ il (~€dcan

N
with multipliers B(J g2:33)? C (j1.32.73

) given by

1 . &= 77>
2.2.45)  BF . (&n) = - : : (1— = ), k=1,2,
@2245) Bousnan &) = s @ Ly ) ™
and
o2 (6 —n)
p(j3),p(G1)\'D
(2.2.46) Tl gy (&) 1= P

Jil€& —n) + jalnl — 4a(&)
It is useful to also introduce

2. B3 = 72 ( = )
(2.2.47) (i auds) (&5 71) J1(€ — ) + ja|n| + js (&) Loy (€ - 77> Wl i

and to refer to B, simply as Byj, j, j;) When we are not interested in distinguishing between

(J1,52,J3)
k=1,2,3.
Let us also observe that, for any triplet of indices (I3, Iz, I), by (2.1.1) we have that
(2.2.480) S [(@EEh, D) ol +0l)] = S0 ol
jk€{+’7}
(2.2.48D) -9 [< o501, x(t ™7 Dy) Dul?), vl + UQ} = X Felhay
jk€{+77}

where in above (2.2.48b)) x denotes a smooth cut-off function, with

(22492)  ClL :4(217r)2 / <1—j1j2 (5—77 ,’7> 81 (€ — m)a ()i, (—€)dedn,

E—mn) Inl
(2.2.49b)
1 . &=n 0 5 V7R
I, 1o _ _ I _ o 1 I/
Note that in our notations factor n, in the multiplier defining F(;l’ injs)’ corresponds to 77 (resp.

to M2, j2|n|), depending on whether Dui in the left hand side of ([2.2.48b]) corresponds to Dlui?
(resp. to Doul?,|D,|u’?) in (2.2.485). We hence consider integrals:

(2.2.50a) D = m / Blj, i (& (€ = m)a2 ()0, (=€) dédn,

(2.2.50b) G@-{fim:m / B(j, jaja) (&) O1L(E = )X (t77 Dy )ul? () o], (—€)ddn, ,

and finally give the following;:
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]Qeﬁnition 2.2.5. Let n > 3 and 0 < k < 2. We define the second modification of the energy
E}(t; W) as follows:

ot (4. e I (4. I I,R 1T N
(2.251a) Ej(tW) = E,(6W)+ > (D(jhjws)+D(jhj27j3)+D(].hj27j3)>

1€,
Ji€{+—}
I,1
+ D > Dl
) 1€dy, (11712)63(1)
et <n<n
~k7—i- .
and of E3"'(t; W) as
kg, k(g I IT_N
(2.2.51b) By (6 W) = E5(t; W) + Z (D(J1 gaoga) T D(]ng) T D(j1,j27j3)>
Iedk
jie{+.—}

§ : § : 11,12
+ Op<2 Chl G(J'17J'2,j3)’

1€V, (11712)65(1)
Ji€{+,—} L EeX,|2|<1

with 0p<o = 1 if k£ = 0,1, 0 otherwise, and coefficients ¢y, 5, € {—1,0,1}.

In lemmas we will check that, with definition (2.2.51)), the slow decaying contributions
highlighted in ([2.2.34)) are replaced in 8tEJL(t; W), 8tE§ o7 (t; W) by some new quartic terms. These
latter ones are obtained from integrals ([2.2.44)) by replacing each factor f)[ y Uj, @I at a time with

the non-linearity appearing in the equation that factor satisfies in 1} Lemma 2.2.10| (resp.
lemma } shows that the same is for troublesome contributions (2.2.37) in O E} (t: W) (resp.

for in O.E. ’T(t W)). We are also going to see that, if N € N* is chosen sufficiently
large (e g. N = 18) these quartic terms suitably decay in time, and that modified energies
E}, (t; W), E kT(t W) are equivalent, respectively, to E, (t; W), E5(t,W). We point out the fact
that the normal form’s step performed in previous section was necessary to avoid here some
problematic quartic contributions, coming from quasi-linear terms in and that could
lead to some loss of derivatives.

Before proving the mentioned lemmas, we need to introduce two preliminary results, that will
be useful in the proof of lemmas [2.2.8]

Lemma 2.2.6. For any j; € {+,—}, i = 1,2,3, let B’“]1 s 33)(5 n) be the multiplier defined

in (2.2.45) for k = 1,2, and 11,112,103 be three smooth cut-off functions such that ¥q(x) is
supported for |x| < ¢, Pa(x) is supported for ¢ < |x| < C', 3(x) is supported for |x| > C, for
some 0 <c,d <1, C,C" > 1, and 11 + s + 13 = 1.

(i) For any j voosgs € {H, =), i = 1,2, and any uy,ug,uz, ug, such that vy € HH(R?),
ug, ug € L2(R?), uz € H'H*°(R?) and Ruz € H">®(R?),

‘ / (5 ) Bl (€0 (1y4j5éz_g> é) Cuita (€ — 1 — C)ita ()i (n) i (—€)d

S lwallmae lJugl 2 (Tusll oo + [[Rus|| 7o) lual|z2;

(ii) For any ji,...,j5 € {+,—}, and any u1,us, us, us, such that uy € H>®°(R?), uy € H'(R?),
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ug € L?(R?), uz € H¥*(R?) and Rug € L>®(R?),

(2.2.53)
(S Bt (1= dais e =8 6 ) Gutnle — = On(Qania(~dcandc

S llwallgmee lugll s (lusll s + [Rusllzee) lual|z2-

If in above integrals we consider ijl’jzngj) for k =3 (see definition (2.2.47)) ), inequality (2.2.52)
(resp. (2.2.53)) holds with ||us||gi1.0 + |[Rus||gre (resp. ||us|| e + ||[Rusl/re) replaced with
llus|l 1100 (Tesp. with |Jusl| a0 ).

Proof. Throughout the proof we will refer to B(Jl Jas) simply as Bj, j, j;), and rather use a
superscript to define a decomposition of this multiplier (see (2.2.54])). We also adopt the notation
7 without subscript k, just reminding that it takes the values 11, 12, j2|n|.

In order to prove the statement, we first observe that multiplier By
as

j1,jz,j3)(§ ) 77) can be rewritten

31§ = n) + jaln| — j3()
2j152(§ — ) [n|

B(jl,jmj:s)(f’ n) =

Y
and that, introducing

0 _ & —m) +janl — js(&)
Blngaan &) =, Gl )

for any smooth cut-off function ¢, equal to 1 in a neighbourhood of the origin,

"
(2.2.55) By jags) (1) = By iy i) (&5 n)m + B, i Em{m)™.

o(n),
(2.2.54)

1 e
B(jlva’jS) (67 ,’7) T

According to above decomposition, we have that, for any i = 1,2, 3,

(2.2.56)

Ju(® ) B (€ n)( msm |§|) Crinn (€ — 1 = C)ita(C) g (n)ira(—€)dédndC

/ %5 " ) B (€ n>< jmm @)@m(& 1 — Q)2 () Rz (n) a (~€) d
57 —J '75 n=¢ ¢ U U /\4u Uyg(—
05 Bl (1= ety 16 ) il = 1= el D))

d€dndc
=104 1.
(1) The first thing we observe concerning integral I¥ (resp. I¥), for k = 0,1, is that |¢—n)|, [¢] < (1)

on the support of 1 (%) (resp. of 19 (%)), and that || < (§—n—()(n). Therefore, introducing
the following multipliers

ik §—n o &=n—=¢C ¢ _
B &m0 =SBl e (1= s S ) o e -0

for any ji,...j5 € {+,—}, £ = 0,1, i = 1,2, a straight computation shows that, for any
a, B,y € N?,

CONBEE (&m0 S (g + 1z1(0) ™) lgaa&om)l

(2.2.57) i i B
ozagorBlr €m0 S (Lggld P+ 1021007 lgas(&ml, 1 = 1,
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with
(2.2.58) 190,006 M| S (Lgisa + Lygpza (M) ™) (€)7,
) 90,56 ] S (Mapa '™+ Tzt =*) (97, 1612 1,

and if
i,k ix-E+iy-n+iz: i,k
K o(@,y,2) = / rerItEC gl (€, Q)dédnd,

by lemma [A.1] (i) we first find that, for any «, 3 € N2,

0¢0) / e"Z'CBE;’j,,,_,j5)(5,n,odc' S 12712 90,8 (E )],

and successively that

o8 / R (e OdndC| S lyl 7 ()2l ) 2,

for every € € R?, (y,z) € R? x R2. Corollary |A.2| (i) hence implies that |K(zjk )(x v, 2)| S
(@) 2lylHy) 721271 (z) 72, for any @y, 2. As

1= [ BiS_ s €1 0B ur(€ ~ 1 - C)ia(O) D) Rusa(n)ia(~6)

= /Kz}?,_..,j5)(t —z,x — 2z, — y) (D) ur)(2)uz(y) [(De) Rus)(2)us (t)dedydzdt,

I} = / BE (€O Da) s (€ — 1 — O)a(C)(Da) Tus()ia(—E) dédndC

= /KEJ? ,35)(t —z,x — 2,2 — ) [(D) ur ) (@)uz (y) [(De) M us] (2)ug(t) dedydzdt,

for any i = 1,2, inequality (2.2.52) follows by the fact that, for any @,...us € L? N L, any
f,g,h € L', integrals such as

(2.2.59) / F(t = 2)g(a — ) — )i (@) [a(y)| [ (=) ()| dedyd=dt

can be bounded from above by the product of the L? norm of any two functions %y, times the
L norm of the remaining ones.

(ii) By means of the same cut-off function ¢, introduced at the beginning of the proof, we
decompose integral I¥, k = 0,1, distinguishing between |¢| < 1 and |¢| > 1. On the one hand,
for any ji1,...,45,k = 0,1, we consider

§—m . §—n—C ¢
SI) OB, o) (1= dnisre S S e = - 0

B?jinu]ﬁ)(&uny C) ¢3<

and observe that, since |{] < (¢ —n — {) on the support of %(%)qﬁ((), the above multiplier
satisfies estimates (2.2.57)), (2.2.58]), which implies, from the same argument as before, that

(2.2.60)

Jg = / B (€0.0)(Da)ur(€ — 0 — Q)i (C)Rus ()i (—€)dédnd

S llwallgs.oo [[ug | 2|[Rus|| oo |[uall 22,
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together with

(2.2.61)

Js = / BYL (€ O Da)Pus (€ — 0 — Q)in(C)(Da) us (n)ita (—€)dédnd(
S Nl s Nl g2 s rra.co | ual | 2-

On the other hand, we make a further decomposition on the integral restricted to || 2 1 by
means of functions 9,7 = 1,2,3, distinguishing between three regions: for || < ¢(¢ — 7)), for
A€ —n) <|C] <C{&—n), and |¢| > C(§ —n). For any ji,...,j5 € {+,—}, we hence introduce
the following multipliers: for ¢ = 1,3,k =0, 1,

B en0) = (S 1= 0O (e27)
¢

. E=n—
XB@LJ'ZJB)(&’”) <1_J4J5<€_77_Q |C!>C1<§ n—¢)"

fort=2,k=0,1,

(2.2.62) B32k €m0 = ¢3<§<;>77>(1—¢)(0¢2<<§_C,7>>

. E-n—C ¢
X B,y (6:71) <1 - J4J5m \C!) GO
Since [¢] ~ [€ = n| ~ [¢ =1 — (| on the support of ¥3 () (1 ¢)(C)¢1(ﬁ) (resp. [€] ~

1€ —n] < |¢| ~ |& —n— (| on the support of 1113(5(_7;7)( qS)(C)z/)g( = 77))), a straight computation
shows that above multipliers verify (2.2.57)), (2.2.58)), from which follows that

2263) |0 [ B (€n OBl — 1 - On(O)Raa(n)ia(-€)dednd

S Nuall s luel| el Rus | Lo [[uall 22,
along with
@260) |7 [BEL S (€ OBl — 1 - 0ia(6H D) a(n)aa(~€) s

S Nuallgres el 2 llus|| mrace [[uall L2,
for i =1, 3.
Finally, on the support of w;;(£<77> )(1 ( E ), we have that [£| ~ | — n| ~ |(], and
|€ —n — (| < [¢], so replacing ¢ with f C by a Change of coordinates, we find that, for any
a,B,v € N?,

B (€6~ Q] San MO
B 6 € = O] S (mltny ™) Piny gl 181 > 1.

If we introduce a Littlewood-Paley decomposition such that

Bt (&me=Q =Y BEt L (&m&—0p27'),

>1
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with ¢ € C§°(R? \ {0}), from above estimates we deduce that

87[ 32’635)(‘5 n,&—C)p(27 )} Sa,'y <7]>_3a
oo [BE2 | (En.&— Oe2)]| < (nltm ™)), 18] > 1.

for any [ > 1, and therefore that

(2.2.65)

Kbl z) = [ ErmmmisCat ey ¢ - O p(2-le)dedndC

is such that

(2:2.66) KR ()] S 22 @)y )2

for any x,y, z, any [ > 1, as one can check using lemma (i) to obtain the decay in y, making

a change of coordinates ¢ — 2!¢, some integration by parts, and using inequalities (2.2.65)).

Moreover, since |£| ~ |§ — (| on the support of B? 2.k sy there are two other cut-off functions

©1, 2, with suitable support, such that (2 lﬁ) = go( l§)g01(2_l§)g02(2_l§ — (), forany I > 1,
and if Aéw := ¢j(27'D,)w, we finally obtain that

jg’o = /B?leo Js)(5 17,0 (§ —n— C)@Q(C)@?)(T})ﬂz;(—f)dfdndc
:/ 5312,0 J5) (€ n,§ = Q)ia (¢ —n)(D z>u2(§—C)f{a:’)(n)ﬁzl(—f)d{dndg

= Kt v = 2= )@ (D2usl ()R] (2) A 1)y,

>1

and by (2.2.66)), together with Cauchy-Schwarz inequality, we derive that
(2.2.67)

72,0
T30 S N || oo | Raws oo D A (Daua | r2 | Abuallre S N[l zos lluzll g | Raus|| poo |uall r2-
I>1

Similarly, we obtain that

Brim [ B €€~ (e — m)D2ug(e — D) uy ()i (~€)dedndc
satisfies

72,0
(2.2.68) I3 S ull oo l[uzl e sl graco l[ual| 2

The result of statement (ii) follows then from inequalities (2.2.60), (2.2.61), (2.2.63)), (2.2.64),
(2.2.67)), (2.2.68), after recognizing that

[ (S ) B e (1= i e &) Guinle - Oa(aatn)ia(-€)deindc
1 1
Sy
k=0 k=0 1=1

Finally, the same proof applies to multiplier B(j1 Joa) introduced in ([2.2.47)), after observing that
it decomposes as

ng(h J2,J3) (5’ )+B(11 J2,43) (5 n){n >4
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with the same B(]m2 jy) S in (2.2.54)), and

Bl g €)= LS I I 11— ),

The lack of factor n;|n|~! against B? i1jaia)? in comparison to decomposition ([2.2.55]), is the reason
why inequality (2.2.52) (resp. (2.2.53))) holds with [lug||gi1.c + ||Rus||gr. (resp. |lus||gas +
||IRusl|| L) replaced with [Jus]| 11,00 (resp. with ||ug]| ga.e). O

Lemma 2.2.7. For any j; € {+,—}, i = 1,2,3, let Bkj1 p J3)(5 n) be the multiplier defined

mn m 2.2.45)) for k = 1,2, and 1,19,13 be three smooth cut-off functions such that iy (z) is
supported for |z| < ¢, 1/12( ) is supported for ¢ < |z| < C', Ys(x) is supported for |xz| > C, for
some 0 <c,d <1,C,C">1, and 11 + 1o + 13 = 1.

(i) For any ] voosds € {H, =), i = 1,2, and any uy,ug,uz, ug, such that vy € HH(R?),
ug, ug € L2(R?), uz € H'H*°(R?) and Ruz € H">®(R?),

(2.2.60) ’/Hm (&= £ (hjzh)@'n>( +3&%<§+_3 K.)<11< € — O)iia(C)ing (m)ia(€ — nc&dnd4

S |l e [Juzl pz ([[usll v + [|Rus|[g7.0o) [[uall 2
(ii) For any j1,...,j5 € {+,—}, and any u1, u, u3, us, such that u; € H">®(R?), us € L*(R?),
ug € HY(R?), us € H4°°(R2) and Ruz € L>®(R?),

r¢ ¢ -

S lluallarelluell e (Tusll e + [Rus|lzee) [[uall mr-

If in above integrals we consider B@1,j2,j3) for k =3 (see definition ([2.2.47)) ), inequality (2.2.52))

(resp. (2.2.53)) holds with ||us|| g1, + [|[Rus||gr.e (resp. ||us||ga + ||[Rusl/re) replaced with
lusl| g1t (resp. with ||ug|| ga.00 ).

(2.2.70) ’/ws('f<;>77)3@1,j2,j3)(§,n) (1 + Jajs

Proof. The proof of the statement is analogous to that of lemma[2.2.6] after a Change of coordi—
nates =€ — & —n. In 1) we take the H' norm on uy, instead of us as done in ), by
replacing multiplier B(J s | n (2.2.62) with

£—n _ ¢ k R ¢ < -1

U (> ) = D (1= ) Blisaan (&) (1= dds e — = 17 @€
O
Lemma 2.2.8 (Analysis of quartic terms. I). Let I be a general multi-inder, C’(IJ1 o)’ (I]?IR].2 is)
be the integrals defined, respectively, in (2.2.40), (2.2.42), and D(j1 iogs)” Pliv.ians) introduced,

respectively, in (2.2.44al), (2.2.44Y), for any jx € {+,—},k =1,2,3. Then

(2.2.71) 01 (Dl i) + D i | = =Clivsain) = Cll iy + D

(J1,5243) J2:73) (71,52,03)
where quart satisfies, for any 6 €]0, 1],

(2.2.72)
|©quart )|
S [IVEATE IV @G 7 IV e (10 s + RO o) | 1W (8132
Y QR DU e (10 rmnee + IRaU s IV (2 o

(I1,12)€I(I)
[I2]|<|I|
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Proof. Using definitions (2.2.40), (2.2.44a), (2.2.45) with & = 1, and system ({2.2.38)), we find
that

(2.2.73)
1
- 4<27T> [at (1 zes) T C(jl,j2:j3)}

— / x<5<n>") BL @) | S ennQFh Dul) | (€ — nyig, ()l (~€)dgdy

(I1,12)€3(I)

T / x<5<n>’7) Bl (&) 0 (€ = m)QY (ve, Dyvs) (n)ol, (—€)dedn

+/X <£< >77) B(Jb]%]g)(f 7’) j1(§ n)ujz( ) Z 611712m (_f)dé‘dn
! (I,I2)€3(I)

=: 51+ S2 + 53,
where coefficients ¢y, , € {—1,0,1}, ¢, 1, = 1 when |I1] + |I2| = |I], and x € C§°(R?) is equal

to 1 close to the origin and has a sufficiently small support. All integrals in the above right hand
side are quartic terms, for they involve the quadratic non-linearities of ([2.2.38]).

The fact that S is a remainder ’Déuart follows by inequalities (A.13]), (B.1.3d)) with s = 7, and
the fact that

2—0)0
(2:2.74) IR1Q3 (v, Dros)lamee S V(s IV (2l
for any 6 €]0,1[. The above inequality is justified by the fact that, for any function w €
Wbt n H! peN, and any 6 €]0, 1], setting p = % €]2, ool
(22.75)  [{D2)’Riwl|ze S (D) Rawllwrr S [(Da) wllwrr S I[(Da)?wlly o [{Da) ]| G
S IKD2)Pw| e (D) w0l 1

as a consequence of Morrey’s inequality, continuity of Ry : LP — LP for p < 400, interpolation
inequality, and the injection of W1> into H*°°. This implies that

(2.2.76) |IR1QQ (v+, D1vt)|| eee S || Q) (V45 DlUﬂ:)HHp+2 Q0 (v, Dl”ﬁ:)”?ﬂ“ﬂ

for any p € N, and gives (2.2.74) when p = 7, after inequalities (B.1.3c) with s = 8, (B.1.3d))
with s = 9. Therefore, for any 6 €]0, 1],

12 S (IV RNV (Mo + IV (NS IV E IS ) IVl

Inequality allows also to bound all integrals in summations S7, S3 corresponding to indices
(I1,I) € I(I) with |Iz| < |[I|. This is not the case for integrals with Iy = I, that contain the
quasi-linear term Qgg(vi, Dyul), because a straight application of would give a bound
at the wrong energy level n + 1, as HQgg(vi, Dyul)|z2 SV, )|l gree | D1UL(t, )| 2. Instead,
since

211 QPG Di©) = X [ (1-dusgg

Ja,js€{+,—}

eI CUNGESUAGES

we can rather write those integrals as the sum over ji € {4+, —},k = 1,...4, of the following:
(2.2.78a)

§ € ¢ < o
/ X( <n>n>3<h,m,j3><€ m(1- J4J5ﬁ |q) G5 (6 =0 = )iy ()i, ()07, (=€) déelnd,
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(2.2.78b)

£ L E+C ¢
/x( W )B(gl,yz,Jg ($ n)( LT |C|>C1 (€= M)y, (), (—€ — Q)i (¢) dédndc,

and estimate them by using, respectively, inequalities (2.2.52) and (2.2.69)). We hence obtain
that
151 + 13| S NV (& )l graee (U ) pnee + [RaU(E ) [ aree) [W(E, 172

+ > QR Du)(t )z (1T ) e + IRU ()l mee) 1V (1) 224

(I,I2)€9(I)
[I2[<[1]

I,R

this also concludes the proof of the state-
(Jl J2,73)

and, since the same argument applies to 0;D
ment.

O]

IT N

be
(41,32,33)

Lemma 2.2.9 (Analysis of quartic terms. II). Let I be a general multi-indez, and D
defined as in (2.2.44d), for any ji € {+,—},k =1,2,3. Then,

(2.2.79) DN =S [T nO)W! W]+ 2L

(41,72,33)

quart’

and, if N > 18, ol tsatz'sﬁes, for any 6 €0, 1],

quar

D] SV IZ s IV s IV ()11
(2.2.80) + Y [@kEek pul)| Ul VI 2
(I1,12)€I(I)
[I2|<|T

Proof. For any triplet (j1, jo, j3), we compute the time derivative of DI"T-~ | defined in (2.2.44d),
making use of system (2.2.38)). Recalling (2.2.43) and ([2.2.46[), we find that

(2.2.81)

o > DiN | - ST NO)w! Wl =

(41,92,73)
Jre{+,—}

1 /\
Re |G [alen | X enn@ el DubE — )| )i, (-e)dsar
(11,12)63(1)

—I_(271r)2/0-6]1,]271;)(g )0 Jl(f n)@()(/UiaDl\Ui)( ) ( &)d&dn

+(271T)2 / Y Emil € —mianm) | S e QRO Dul) (=€) | dedn

(I1,12)€3(1)
= SN S, N S

After lemma and inequality (B.1.3d]) with s = N + 3, we deduce that, if N > 15, for any
6 €]0,1],

T

12 | SV (5o IV Gy IV (2, ) 2,

and also that each contribution in 5] =~ S, TN corresponding to (I1,Iy) € I(I) with |I3| < |I], is
bounded by

|@tet, Dul2)

MO s [V (1) 2.
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Reminding instead (| m, we find that the remaining contribution in S corresponding to
I, = I, is equal to the sum over ji,...,j5 € {+,—} of the (imaginary part) of the following
integrals:

2282) [ 06 (1 duise = s e )Gati €~ Q)i (Vi () (=€) dedndc,

while that corresponding to Is = I in S3_N is the sum, over jx € {+,—},k=1,...,5, of:

2289) [ g (€n) (1 gy 1) (€ = )i () (=€ = Q)i () dcnc

Since oY . .. (€,7) satisfies (A.17)), and is supported for || < €|¢ — ]|, for a small 0 < ¢ < 1,

(J1:92:93)\>7 y
we rewrite above integrals, respectively, as

N N E-n—¢ ¢ -
288 [ €™ (1= )l == 0

x (Do) 0,,(6 = — O, (Do) ouy, ()l (—€) dédndc,

and
~ N Y
(2.2.85) /Ugl,jz,js)(ﬁ,nﬂm N 7<1 + jajs ) !C\>€1<§+Q
x 01 (€ = ) (D) N Tuy, () (Do) o;, (—€ — Q)i () dedndC,

in such a way that the corresponding multipliers, that we denote concisely by Eglk j5)(§ 1, ¢),

k = 0,1, verify, for any a, 3,7 € N2,
opopa Lt (60| S (Lyaen + Lygsn Q) ™) 19d5(6))
LORO0G(E (&, O) (]1{|<\<1}!C! IR NI (4 )’3) 90O, M >1,
with ggﬁ(ﬁ, n) supported for || < e[§ —n[, and such that

|98 (&, m)| S (€ — m) SN HalF2AB V=181 gy =N =8,

If N € N* is sufficiently large (e.g. N 2 8), for any a,ﬁ of length less or equal than 3,

\gé\fﬁ(f, Ml < (<13 + Lgn=13(m) ~2) (€)72, so by lemma [A 1| (i), together with corollary
(i), we obtain that

Kévf ey 2) = [ EmSIEGEE n, Cdedndc,

is such that | L (z,y,2)] < (@) 3y~ Hy)~2|2|1(z) 72, for any z,y,2 € R? any k = 0, 1.
By (2.2.84), 12 2. 85h integrals (12.2.82)), (2.2.83]) are respectively equal to

J NS st =2 = 202 = D 03 )l () (D)) 2oy )y,

and

/ KN (2= 2w — g,z — 00k (@) (Da) N T, ) () [(De) v, (2)ud, (1) drdydzdr,

and, since integrals such as (2.2.59)) can be bounded from above by the product of the L? norm

of any two functions uy times the L° norm of the remaining ones, they are estimated by
I
IV (& e [U ) gneroe [WE ) 122,

which concludes the proof of the statement. ]
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Lemma 2.2.10 (Analysis of quartic terms. III). Let n > 3, I €3, and (I1,12) € I(I) such that

[‘ |] < |Ii| < [I|. Let also C(I;l’I;Z s D(I;.l’lj.z i) be the integrals defined, respectively, in ([2.2.49al),

[@:2.508), for any ji, € {+,~},k = 1,2,3. Then
(2.2.86) oD ol plhulb

(41,52,33) (41,92,73) quart)

where D111 > satisfies, for any 0 €]0, 1],

quar

2
(2:2.87) \@2;’i£t<t>],s[(||w< Mtz + IRUE ) igrvs0c )

IV IV ] B W),

Proof. We compute the time derivative of D(I;I’I;.z i) making use of system (2.2.38). We remind

that, after remark and definition , if I' is a product of spatial derivatives, all couples
of indices (I1, I3) belonging to J(I) are such that |I1| + |I2| = |I|, and T'/1, T2 are also products
of spatial derivatives. Therefore, all coefficients ¢y, 1, appearing in the right hand side of
are equal to 0. By definitions (2.2.45)), (2.2.49a)), (2.2.50a)), we find that

I I,
D 12 I
Oy (91,3233) +C(]1J27J3)

1 /\
_4(27_‘_)2/3(1]‘1,]'2,]'3)(5777) Z Qe (vl Dyu2) (& — 1) '&fi(n) o (=8)d&dn
(Jl,JQ)GJ(Il)
228%) o [ BlpEn ii€—n | X QL Dub)| il (-odedy

(Jl,JZ)Gj(IQ)

1 o ) —
~ 17 [ Bl €€~ midsio) Qo D) | (~)dean
(Jl,Jz)Gf](I)

_. gh,I2 I,12 I,12
= gl gl | ghulz,

Since |J1| + |J2| = |I1| < |I] < n in SII’I2 we can estimate all its contributions using inequality
(A.13). Using lemma (1), the fact that |I2| < [§] by the hypothesis and, hence, that

I I
[uZ (8 ) a7ee + IR1ud (8 ) aree SNUE )| i3148.000
we hence deduce that

1,12
&

< (IW ) grares + IR grene ) 100 grgiese Balts W),

and above estimate holds also for all integrals in S:,{I’IQ Correspondlng to |Ja| < |I|. The same

inequality (A.13), combined with (2.2.76)) applied to Qf (Ui ,Dlv ), and with corollary in
appendix [Al gives that, for any 6 €]0, 1],

|Sgl712|
5 Z |:HQO (vj: 7D1'U 700 + HQO v:t 7D1’U:|: 9,00 HQO Uﬂ: ,Dlvi ) ‘ :l En<t’ W)
|J1|+\J2|_|12\
(2—6)6
SJ ”V( )” +1100H ( )H [7L]l_12 n(t; W).
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Finally, the last remaining integral in Sél’b

written, using , as
-1
4(2m)2 Z / (J1,2,73) 5 ) ( + Jajs <£+< ‘ ) 1 Ajlll(f 77) NG O@ (€)

, corresponding to indices J; = 0,Js = I, can be

e £+0) €]
d&dndc,

and is estimated, after lemma and the fact that |I;| < |I|, by

||V(t7 ')||H7’°° (HU(ta ‘)HH[%]+12,00 + ||R1U(t7 ')HH[%]Jr&OO) En(tv W)u
which hence gives that

2
I, 1

(552 S (I8 grrorece + IRIUE ) gigrasce ) Balls W),

That concludes the proof of the statement. O

Lemma 2.2.11 (Analysis of quartic terms. IV). Let Vi be the set introduced in (2.1.27)), I € Vy,
for k = 0,1, (I, o) € I(I) be such that I € X and |Io| < 1. Let also F2 -G
be the integrals defined in (2.2.49b)), (2.2.50b)), for any j; € {+,—},i = 1,2,3. For any triplet

(J1,J2,73), we have that

1,13 _ _phl2 I, I3
(2.2.89) 0 G(sz,JS) o F(jhjz,js) T 6‘1““”’

and there is a constant C' > 0 such that, if a-priori estimates (1.1.11)) are satisfied in interval
[1,T)] for a fived T > 1, with g9 < (2A + B)~! small, then QSII’Izt satisfies

quar

[

[
(2290)  [BLE0] < C(A+ B H [BfW)E + o0, t" 3 B, W) 40757 F],

quart

with dy, =1 if I € Vo, 0 otherwise, and B > 0 as small as we want, for every t € [1,T].

Proof. First of all, we remind the reader that, as shown at the end of proof of corollary for
any (Il,IQ) € J(I) such that I € X, |I2‘ <1,
(2.2.91)

5k

VI, (I DU () [amoe + [ D)RU (¢, )l 1n) < C(A+ B)Be 3+ 4,
for every t € [1,T].

For any fixed (j1,j2,73), we compute 8tG81’{J2.27j3) recurring to system ([2.2.38)), along with its
compact form

(Dt F (Da))vk = T1QF (vs, Divg),
(D1 F [Dal)ul, = T1QgE (v, Dyus),
and using that [Dy, x(t 77 D;)] =t 1x1(t 77 D,), with x1(&) := i (9x)(€) - £&. We find that

(J1,d2,93) + (J1,d2,93)

—den)? [aGEn, o FR

— [ Bosiaio € 0) [T @ (v Drus) (€ — )] (" Doy )i, (~)dea

4 [ B (€002 €~ ) [T D@ (o Drvm) o)+ a0 Dl )] o, (~€)dc
4 [ Bapanl€milt € —ix@ D0 Y e nQfFol Duf)(-6)]acan

(J1,J2)€I(I)
I, I, Io,I
= Sll 2 + 521 2 _’_S?)l 2’
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with Byj, i, ;) given by (2.2.45) or (2.2.47). We are going to show that quartic terms 511’12

k =1,2,3, are remainders Qjélu’;ft satisfying ([2.2.90)).

Applying (A.13) to 551’12, using (2.2.75) with w = T'2Q¥ (v4, D1vs) and p = 7, together with
the fact that operators x(¢t~?Dy), x1(t~?D,) are bounded from L*> to H”> for any p > 0, with
norm O(t°?), and from L? to H® for any s > 0, with norm O(t°%), we deduce that, for any
6 €]0,1],

(2.2.92) S50 SV, ) 2|Vt ) e
IT2QF (v, Dyv)l|ze + [T2QY (v, Dyvw)[| 10T QF (v, Dyv) |92
(T D2 (8 ) e + 7 xa (47T D) R (1) e |
Since |I3] <1 and
T2Q¥ (ve, Dyvy) = Q¥ (v, Dyvs) + QY (ve, D1v2) + G¥ (vy, Dvy),

with GY(vy, Dvy) = Gi(v,0v) given by (1.1.16]), by using lemma in appendix [B| with
L = L*, when estimating the L°° norm of the first two quadratic terms in the above right hand
side, we have that, for some new y € C§°(R?),

IP2QE (v, Dyl S (D)o (1|, lles(t, ) len

1O (st i+ 1Dt i) (3 [ 0st, i + e, )
|u]=0

+ (o (&, oo (£ (8 ) 20 + | Deve (8, )| 1.00)

< CABe*t™2,

for some constant C' > 0 and some positive 8/ — 0 as 0,59 — 0, as follows by picking s > 0
sufficiently large so that N(s) > 4, and using (B.1.6a)), (B.1.6b)), (B.1.10a)), lemma [B.3.21
together with a-priori estimates.

Also, using (B.1.6a) with s = 0 and a-priori estimates, we derive that

[
IT2Q (v, Dive)ll 2 S IV (E azee (V2 + 1DV (E)12) < CABHS

Therefore, using lemma [B.2.10| and taking 6,0 > 0 sufficiently small, we deduce from (2.2.92))
and the above estimates that

(2.2.93) |SIvP2| < CABEX S EE (1, W)2,

for a new C > 0.
We use inequality (A.13]) also to estimate S{l’b. From ([1.1.17)) we have that

I Qe¥ (v, Dius) = QY , Diux) + Y ¢s,nQ¢ (v, Duf),

(J1,J2)€3(17)
[J1]<| 11|

with ¢y, 7, € {—1,0,1}, and then, from (2.1.30b)), (2.1.35b]), and the fact that I € K,

FIngg(Ui, Dyuy) = gg(vil,X(ngx)Dlui) + M5 (t, ),
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with % satisfying (2.1.31)) and
1Qs* (v, x(t ™ D) Drus) 12 < (1UE, Mlzrze + [RUE, )l gr2.00) [V (2 )l 2
So
ST S [T e + IRU(E lprzee) [Vl + IR lze
(2.2.94)  (IIX(t=7D)U (t, )| g7 + XA D)RU (t, )| 7o ) IV (2, )| 2
< CAB“HEF W),

last estimate following from (2.1.31)), (2.2.91)), lemma [B.2.10| and priori estimates (1.1.11)).

As concerns S, [l2 - we estimate all its contributions corresponding to |J5| < |I| again by means

of { m We observe that, by (2.1.30b]) and (| m,

(2295) Y ennQPl Duf) = Y cnnQf Wl x(t77Dy) Dult) + R (t, ),
(J1,J2)€3(I) (J1,J2)€I(I)
J1€X,|J2|<1

the set of indices on which the sum in the above right hand side is taken being non-empty since
I €V, k=0,1. As already observed in the proof of corollary [2.1.4] (see (2.1.44]), (2.1.45)),

|l Xt D) Du?)

ZHX (7 D)RAU2 (8, )| o IV (E )2
lu|=0

_ JoAe B W)2 if 172 € {D2 |a| < 1},
C(A+ B)et W0+ 3 B L W), if TR € {Q, Zpn,m = 1,2},

Therefore, those integrals are bounded by

1
IV Gz (D I D)RAU (1) )
|1|=0

[N T DR o [V () 12 + [, 2]
(Jl,JQ)Gj([)
J1€fK,|J2|S1
|[=0,1

and hence, after (2.1.31]), (2.2.91]) and the above estimate, by

8 5 s
C(A+B)Be % [Bf (W) + 0v,t ™3 BY (1, W)3 + 4757 %

for a new constant C' > 0, and 8 > 0 small as long as ¢ > 0 small. Finally, last contribution to
Sh’l2 corresponding to |Ji| = 0,Jy = I, in which D = Dy, can be rewritten, using (2.2.77), as
the sum over jg, j5 € {4+, —} of

e ¢ e,
[ Bl saspten (14 duis s &) Quin(—6 — O O Do)l )il € — s

and its absolute value can be estimated, by means of lemma [2.2.7] with

1
IVt Yoo (D2 I 7D DIRIUT (8, ) e ) IVE ) g 107 (1)
|11]=0
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Using a-priori estimate (1.1.11b|) and lemma |B.2.10 we find that the above product is bounded
by CA(A + B)€2t*%+ﬁ/E§(t; W), with 8/ > 0 small as long as o,y are small. Summing up, we
obtained

o,

k

S
S5 < C(A+ B E BN W)E + 0, BR (e, )3 + 475 ]

and, together with (2.2.93)), (2.2.94)), the result of the statement. O

2.2.3 Propagation of the energy estimate

Proposition 2.2.12 (Propagation of the energy estimate). Let us fix Ko > 0. There exist
two integers n, p sufficiently large, with n > p, two constants A, B > 0 sufficiently large, and
g0 €]0, (24 + B)~[ sufficiently small, such that, for any 0 < & < o, if (u,v) is solution to
— in some interval [1,T], for a fired T > 1, and uy, vy defined in satisfy

a-priori estimates (1.1.11)), for every t € [1,T], for a small § > 0, then they also verify (1.1.12¢),
(1.1.12d)) on the same interval [1,T].

Proof. For any integer k,n € N, with 0 < k <2, n > 3, let En(t; W), Eé“(t; W) (resp. Eib(t; W),
E:],f’T(t; W)) be the first (resp. the second) modified energies introduced in (2.2.10) (resp. in
([2.2.51))). Let us also remind the definitions of integrals D/ pLf DLIN i (2.2.44)),

= i (1.52:33)" 2 (G1sj2da)? 2 G gzeda) !
1,42 1,42 : -
of D(jhjz,ja)’ G(j1,j2,j3) in (2.2.50)), and fix N = 18.

The first thing we observe is that, as long as estimates (1.1.11a)), (1.1.11b]) are satisfied, and
p € N is sufficiently large (e.g. p > max{[5] + 8,21}), there is a constant C' > 0 such that

(2.2.96a) C'E,(t; W) < El(t; W) < CE,(t; W),
(2.2.96D) CUEF (W) < EXY (6 W) < CEE(t; W).

Above equivalences follow from ([2.2.11f), a-priori estimate (|1.1.11a)), the fact that for a general
multi-index [

I.R
S Pl + (PG| S WU me + IR U o) IV ()22,
jie{+.—}
by inequality (A.13)),

1T
S D S UMz I 2,12

jk€{+7_}

by inequality (A.18]), and:
e as concerns especially (2.2.96al), from the fact that, for any I € J,,, any (I1,12) € I(I) with
(3] < Inl <11,

§ : Dth
(J1,92,43)

jie{+.—}

S (U= e + IRU () [ roe) IV )21V (E ) 12

< (10 ygrene + IRIUE ) gigranse ) Ealt W),

by (A.13);
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e as concerns especially (2.2.96b)), the fact that, for any I € Vi (see definition ([2.1.27))), any
(11,12) S j(]) with I1 € X (see 2126) and |12| <1,

all .
> oleit s lext D) DRIU (4, )| grroe [V (8, ) 2 |V (8, ) 22
(2.2.97) Jie{+,—} l|=0

< CBet= 3+ F B (1, W)3,

after and m

Let us now consider a general multi-index I (I € J,,, or I € J% for 0 < k < 2). From equation
(12.2.5)) we deduce the following equality:

SOWL ()| = =S [(DTL W)
= =S [(ADWL W) + (09" (s + BYUm) A(Vin) (L + Ff(Usm) )WL W)

HOPP(A"(VIm)U + OpR(A" (VI ) U, WY + Q5 (v, W), W])
L)W W) + (R (U, V), W]

(2.2.98)

and immediately notice that S[(A(D)WZ, W1)] = 0 because of the fact that matrix A(n), intro-
duced in (2.1.5)), is real and diagonal, and its quantization is a self-adjoint operator.

Since (I4+E9(U;n)) A1 (V; n)(Is+F9(U; 1)) is a real symmetric matrix of order 1, with semi-norm
M} (s + EQUm) Ay (Vi) (I + F(U3m)),3) S (L4 IRy U (L) o) IV (L) g2,

as follows by estimate ([2.2.2a)) on Eg, 2.2.3)) of Fg, and (2.1.49)) on gl(V;n), corollary [1.2.13
and a-priori estimates ((1.1.11a)), (1.1.11b)) imply that the second term in the right hand side of

[2.2.98)) reduces to (To(U, V)WL, W), with To(U, V) operator of order less or equal than 0, such
that

1T V)lleqzay S ME((I+ BSW ) As (Vin) (I + F§(U3n)), 3) < CAet™,
and is a remainder R(t), satisfying
(2.2.99) IR(t)| < CAet MW (¢, )],

for every t € [1,T], after Cauchy-Schwarz inequality and equivalence (2.2.9 between the L?
norms of WI and WZ. More precisely, by the definition of WI in proposmon and of W/

in proposition [2.1.5] we have that

(2.2.100)
(=it )|, <1008 (P(Vsn) = L)W 2 + |0pP (B3 )W |12

S UV zree + U zsee + RUE ) ne) [WHE )2,

the latter inequality following from proposition estimate (2.1.48)), the fact that E(U;n) =
ES(uin) + E7 (Usn) + By (Usn) verifies, after (222,

g (B (25 )vim)sn) S 10 s + IRaT(e ) e
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for any admissible cut-off function x, and equivalence (2.1.50)). We can then replace third and
fifth brackets in the right hand side of (2.2.98)) with

(OpP(A"(VIim)U + OpB (A" (Vi) U, Wy +(T_1s(U)W!, W),

up to some new remainders R(t) satisfying (2.2.99)) after Cauchy-Schwarz inequality, lemma
estimates (2.2.7)), (2.2.100)), and a-priori estimates ((1.1.11a), (1.1.11bj).

Consequently, equality (2.2.98]) reduces to:

(2.2.101)

]_ —
gatHWf(t, Nz = —%[<OPB(A”(VI;77))U + OpR (A" (Vi) U, why

QB W), W) 4+ (Tas (U)W W) + (R (U, V), W] + R().

We need, at this point, to distinguishing between indices I € J,, and I € J%, in order to analyse
the behaviour of the second and fourth brakets in above right hand side, and we discuss separately
about the propagation of estimates ([1.1.11c|) and (1.1.11d)).

Propagation of a-priori estimate (|1.1.11¢|): Let us suppose that I € J,,. Using (2.2.100) and
estimate (2.1.40)), together with the fact that ||[WZ(¢,-)| 2 < En(t; W)%, we find that

(2.2.102) (@QE(V, W), W) = (QE(V, W), W) + Ra(2),
where
(2.2.103) IRn(t)] < CAet W5 B, (t;W)3,

for a new constant C' > 0, for every ¢t € [1,7]. Reminding definition of QL(V,W),
and the fact that coefficients ¢y, 7, are all equal to 0 when I € J,, we notice that some of the
contributions to the scalar product in the right hand side of are also remainders R,,(t).
These are precisely the following ones:

Z <Q8V(vilaDlvi2)vui+u£>+ Z < gg(vilaDlqu)vv—If—_‘_’U£>7
(I1,12)€3(1) (I1,12)€3(1)
<2

in consequence of Cauchy-Schwarz inequality and estimates (2.1.28)), (1.1.11b)), (1.1.11c). More-

over, (R (U, V), Wi ) is also a remainder R, (t), because of Cauchy-Schwarz, (2.2.100)) and a-priori
estimates (1.1.11a)), (1.1.11b)), along with the fact that

IR (U, V)| 2 < C At~ 12,

which follows choosing § < 1 in (2.2.8)), using (2.1.40) and (1.1.11a)-(1.1.11c).

Observing that remainder R(t) in (2.2.101)) can be enclosed in R, (t) after (1.1.11c)), we then
obtain that equality (2.2.101)) can be further reduced to

1 —
SOWS ()72 = —%[<OPB(A”(VI;77))U + Opp(A" (V) U, W)
Y (@R D)ol + ol + (@)W W] + Ra(t),

(I1,12)€3(1)
(Lh<|n|<|1|
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and from definition (2.2.51a)), equalities (2.2.39), (2-2.41), (2.2.43) with N = 18, and (2.2.484)),
together with (2.2.71)), (2.2.79) with N = 18, (2.2.86]), we deduce that

1 ~
5L EW)] S R + D (k@] + [Phie®]) + X > |[Paaw),
1ed, I€dy (11,12)€I(I)
[3<Inl<1]

where quartic terms unart,Qéulfrt,@ét’ift satisfy, respectively, (2.2.72)), (2.2.80) with N = 18,
m If 6 €]0, 1] is chosen sufficiently small in such inequalities, these quartic terms can also
be considered as remainders R, (t) thanks to lemma [2.1.2 (i) and a-priori estimates (1.1.11]),

which implies that

‘@Ejl(t; W)‘ < CAet "5, (4 W)E,

for some new C' > 0, for every ¢ € [1,T], and then that
EIL(t,W)% < El(1w) 74 / CAer—F3dr.
After equivalence (2.2.96a)) and a-priori estimate ([1.1.11c]), we find that

t
E,(t; W)z < CE,(1;W)? +/ CAer—F3dr
1

N 2CAe s
)

[NIES

< CE,(1; W)

t2,

again for a new C' > 0, and taking B > 1 sufficiently large so that E,(1; W)2 < Be and

2CK;
ZCA <3 K , we finally obtain (1.1.12¢]).

Propagation of a-priori estimate ((1.1.11dJ): Let us now suppose that I € .'J’g, for 0 < k < 2.
After (2.1.41)) and (2.2.100)), we have that

(QO(V, W), WE) = (Q§(V, W), W) + Rk(t),
where
(2.2.104) |RE(t)] < CA%%*”%’“E;)“(@ W2,
and moreover

(2.2.105)

—S[QEVM). W] ==dv, D enn® [(QF (vl (@D DU ) Wl 40l )|+ RE(1),
(11,12)€3(I)
LEX,|[[<1
with dy, = 1 if I € Vi, 0 otherwise, as already seen in (2.2.35) and (2.2.36]). Therefore, as R(t)
and (R (U, V), W!) are also remainders R5(t), in consequence of the same argument used in the

previous case, but with estimate (2.1.40) replaced with (2.1.41)), we further reduce ([2.2.101)) to

the following equality:
1, .= —
SO (L, )32 = =S [(OpP(A"(VEm)U + Opf(A" (V)T W) 4+ (Toas (U)W, W)

— (5vk E 0117[2% [< l(;g <’U:|:, (t UD )Duf) ,’Ui + ’U£>} + ngf(t),
(I1,12)€I(1)
LEeX,|I2<1
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and deduce from definition (2.2.51b)), equalities (2.2.39), (2.2.41), (2.2.43) with N = 18, and
(2.2.48b]), together with (2.2.71)), (2.2.79) with N = 18, and ([2.2.89)), that

(a EM @ W)’ SRS+ (\”unart )| + ’@éjagrt D o2 Y, D ‘681’?243)

Iegk A€V (I1,12)€1(I)
Jie{+,—} LeX|I2|<1

with dpcs = 1 for k£ < 2, O otherwise. On the one hand, quartic terms Qéuam@éul:rt satisfy,

respectively, (2.2.72)) and ( with N = 18, and are remainders R§(t) after (2.1.41) and

a-priori estlmates if <« 1is chosen sufficiently small; on the other hand, Qﬁfl Ij is) verifies

estimate . Consequently, there is a constant C' > 0 such that

EST(t; W) < EXT(1;W) + C(A + B)% 2/ —1+%’“E§(t; W)2dr
1

t t
+ 0k<2C (A + B)262 [5k=0/ 7'_1+571E§(7'; W)%dT +/ T_idT] ,
1 1

with dp—g = 1 if kK = 0, 0 otherwise, 8 > 0 as small as we want and, after equivalence (2.2.96b)),

t
BN W) < CEN(L W) + C(A + 3)252/ I B W) bdr
1

t s t
+ 6peaC(A + B)%e2 [5“ / WS BN W)zdr + / T—idT] ,

1 1
for a new C' > 0. Injecting (|1.1.11dJ) in above inequality and integrating in d7, we obtain that

1 2
E¥(t; W) < CEY¥(1;W) 4+ C(A + B)*B&? [5 % 4 Sp—o 5#1]
k

and using that §; < &y, choosing B > 1 sufficiently large so that E%(1; W) < 4CK2 and B > A,

and g9 > 0 sufficiently small so that g < (4B)~!, we finally derive enhanced estimate (1.1.12d)
and the conclusion of the proof. O
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Chapter 3

Uniform Estimates

3.1 Semilinear Normal Forms

In proposition [2.2.12] of previous chapter, we proved the propagation of the energy a-priori
estimates made on functions (u4,v4), i.e. that there are some constants A, B > 0 large enough,
€0 > 0 small, such that estimates imply (1.1.12d)), (1.1.12d)). To conclude the proof of
theorem [I.1.2] it only remains to show that estimates also imply ((1.1.12a)), (1.1.12b)).
In particular, as uy = —u—, vy = —u_, it will be enough to prove this result only for (u_,v_),
which is solution to the following system:

(3.1.1)

(Dt + ‘Da;’) U_ = QBV(’U:E, Dlvi),
(D¢ + (Dy)) v = Q¥ (vs, Dius),

with QY (vs, D1v+), Q¢ (v+, Dyus) given by ([2:11).

As for the simpler case of the one-dimensional Klein-Gordon equation (see [28]), the main idea is
to reformulate system in terms of two new functions u, v, defined from u_,v_, and living
in a new framework (the semi-classical framework), and to deduce a new simpler system, made
of a transport equation and of an ODE. Through this new system, we will be able to recover the
required enhanced estimates (|1.1.12al), (1.1.12b)).

Before introducing the semi-classical framework, in which we will work for the rest of the paper,
we need to replace some quadratic non-linearities in (3.1.1)) with cubic ones by a normal form’s
argument. This is the object of the following two subsections. We highlight the fact that do
not make use directly of the of the normal forms obtained in the proof of the energy inequality,
because our goals and constraints are henceforth different. In fact, we want to obtain some L
estimates for essentially p derivatives of our solution having a control on its H® norm, for s > p.
Therefore, we are allowed to lose some derivatives in the normal form’s reduction, which means
that we do not care any more about the quasi-linear nature of our problem.

3.1.1 Normal Forms for the Klein-Gordon equation

The aim of this subsection is to introduce a new unknown vV, defined as in by adding
some quadratic perturbations to v_, in such a way it is solution to a half Klein-Gordon equa-
tion with a cubic non-linearity, instead of the quadratic one Qgg(vi,Dlui) appearing in the
equation satisfied by v_ in (3.1.1). This normal form is motivated by the fact that the L2

norm of Qgg(vi, Diuz) decays too slowly in time (only a O(t~1+%/2)), because of the fact that
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o (t, Ylgree = OF™Y) and |Jux(t, )|z = O(t5/2) by a-priori estimates (1.1.11b)), (1.1.11c).
This decay is not enough in view of proposition (the required one being strictly faster than
=3/ 2), and must be replaced with a faster one.

It is fundamental to observe that, after inequality (3.1.7b|) below, with # < 1 small enough (e.g.
6 < (246)~1), and a-priori estimates (T.1.11)), vV¥ and v_ are comparable in the following sense

(3.1.2) o (t, Mmoo — [[VNE (@, ) |[moe | < C*H,

where C' is some positive constant. Then, bootstrap assumption (|1.1.11b}) implies that the new
unknown vVF disperses in time at the same rate t~! as v_, and a suitable propagation of the
H?> norm of vN¥ will provide us with the enhanced estimate (I.1.12b)).

Proposition 3.1.1. Assume that (u,v) is solution to (1.1.1) in [1,T), for a fired T > 1, consider
(ug,v4,u_,v_) defined in (1.1.5) and solution to (2.1.2) with |I| = 0, and remind definition
(2.1.11) of vectors U,V . Let

(3.1.3) R D / ETEBL (€m0, (€ — )iy ()ded,

Ji.ge€{+,—}

wi;hthjlszng)(évn) introduced in ([2.2.45) for any j1,j2,753 € {+,—}, k = 1,2. Then vV is
solution to

(3.1.4) (D¢ + (Dy)) UNF(t, x) = r,ngF(t,x),

for every t € [1,T], where

(315) Tk:g (t l‘) _4(2i7T 2 Z / mf (]1 J2,+ g’ )

Ji.gee{+,—}
x [ NLig(€ = 1) (n) + 05, (€ — ) NLu(n)| dedn,

satisfies
(3.1.6a) [lrig” (8, )2 S Z IV (s Moo [IRYT (8 ) [z 10 e+ 1V () oo [V ()12
and for any x € C(R?), o > 0,

(31.6b) (7Dl (k) S IV (- HHm(ZHR“U iz ) + V(L
©n=0

Moreover, for every s,p >0, any 0 €]0,1],

(3.1.72) | Mg S Z IVt as IRYU(E ) oo + 1V (& oo 1T (E )l e

1
@ =0 ) )| e S Z IV (s M e 1V (8, ) g2 [REU (2, ) 0o
(3.1.7b) -

+ZHV Moo IRYU ()70 U (8 ) g
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(3.1.7¢)
1

[N =)t 2 S D NV IRTU e + V() e [Q4U(E )]
p,v=0

NV E )2 lUE [ + 11V 2l QUE ) 2,

and

(3.1.8a) X7 D) (N =0 ) ()| 2 S NV E ) e U (E )2,

(3.1.8b)  [|x(t 7 Dy) QN —v_)

(t,-) HL2

ZHQV M2 IREU(E, 1o + [V (s nee [Q4TU (2, )] 12

Proof. From the definition of vV, system (2.1.2)) with |I| = 0, and the fact that

(3.1.9) QE(vs, Dyuy) = 4(2;)2 > / e ( .71;25 ) Ty o € s (e,
J1,j2€{+,—} g

it immediately follows that vV is solution to (3.1.4), with r,i\;F given by (13.1.5). We observe
that, after formula (A.11]), we have the following explicit expressions:

(3.1.10) |
oV oy = —é {(wr + v )Ri(uy —u_) — <gl> (v —v_)(ug +u_)
+ D1 [[(Da) ™ (04 = v-))(ug +u-)] = (Da) [{Da) ™ (04 — v-)Ra(uy — U—)]],
and
(3.1.11) ) = 2 [NL;W Ri(uy —u_) — <gz> (v4 —v_) NLy + D1 [(Dz) "N vy —v-) NLw]]

Inequalities (3.1.7al), (3.1.7h) are straightforward from (3.1.10) and corollary in appendix
Inequality (3.1.7¢|) is also obtained from corollary and bounding the L norm of Qu, Quy

with their H? norm by means of the classical Sobolev injection, after having applied Q to (3.1.10)
and used the Leibniz rule. Finally, inequalities (3.1.8a}), (3.1.8b) are also straightforward if one
observes that operator x(¢t =7 D,), with y € C§°(R?) and o > 0, is L? — H' continuous with norm
O(t7).

On the other hand, after (3.1.11]) and corollary

lrig” ()22 < Z INLieg (¢, )| 2 IRYU (¢, oo + 1V (E ) 2| N (2, )| oe
+ HV( s M zoe [N (8, ) |1

and

(=7 D g (&) S Z INLyg (t, ) Lo IRYU (2, )l Loe + 71V (E ) oo | VL (£, )| Lo
n=0

then (3.1.6al) and (3.1.6b|) follow by (B.1.3c) with s =1, (B.1.3b]), (B.1.4a)) and (B.1.4b|. O
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3.1.2 Normal Forms for the Wave Equation

We now focus on the wave equation satisfied by u_:

(D¢ + | Dy))u—(t,x) = Qf (v+, D1v+),

and perform a normal form argument in order to replace (a part of) the quadratic non-linearity
in the above right hand side with a cubic non-local one. The fundamental reason for that is to
be found in lemma where we have to prove that the L? norm of some operator, acting
on the non-linearity of the equation satisfied by u_, decays like O(til/ 2+8), for a small 8 > 0.
That decay is obtained if the L? norm of the non-linearity is a O(t_3/ 2“3/), for some new small
B' > 0, which is not the case for Q) (v+, Divy). This normal form can be actually performed
only on contributions depending on (v4,v4) and (v_,v_), but not on the ones in (v4,v_), which
are resonant. Nevertheless, the structure of these latter contributions allows to recover the right
mentioned time decay for their L? norm (see lemmas .

Thanks to inequalities (3.1.20b)), (3.1.20c|), and a-priori estimates (1.1.11)), the new unknown
uNF we define in 13.1.15i below is equivalent to the former u_, meaning that

1
(3.1.12) D IIRFu(t, Mazore = IREuN (1, ) o | < O3,
k=0

Therefore, we expect for u™* and Riju™* to decay in the H?T1:% norm at the same rate ¢t—1/2

as u_,Rju_, and a suitable propagation of this norm will provide us with the enhanced estimate
(1.1.12a)).

With this aim, we rewrite Q) (v+, D1v+) as follows, reminding that vy = —v_:

1
QY (v, Dyvy) = == [v+ Dyv_ +

D, D, Dy ]
5 v_

(Do) " (Da)
5 D / e < g_ Z> : <Z>> mo;(€ —n)o;(n)dédn,

J€{+ -}

(3.1.13)

and introduce, for any j € {+, —},

(1 =k <n>)’71
JE—m) +im) +1€El

We warn the reader that, for seek of compactness, from now on we will often denote non-linearity

QY (v, D1vy) (resp. Qgg(vi,Dlui)) concisely by NL (resp. NLyg).

Proposition 3.1.2. Assume that (u,v) is solution to (1.1.1) in [1,T), for a fired T > 1, consider
(Ug,v4,u_,v_) defined in (1.1.5)) and solution to (2.1.2) with |I| = 0, and remind definition
@.1.11) of vectors U,V , and (3.1.3) of vV, Let

(3.1.14) D;(&,n) =

el W s 2 / D, (€, )iy (€ — )i ()ded,

j€{+,
with Dj defined in (3.1.14)). For every t € [1,T1, uNF is solution to

(3.1.16) (D¢ + D NN (8, 2) = qu(t, z) + cu(t, z) + +rNE (L, 2),
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where quadratic term q,, s given by

(3.1.17) qu(t,z) = =S I:UNF DN - ZEgNF L2, ] ,
2 D" (D)
while cubic terms ¢y, rNT are equal, respectively, to
1 _ _
co(t,x) = 5% [(v, — oNF) Dyv_ + oNF Dy (v_ — o)
(3.1.18) .
D, DD D, D.D
— (v —oNF) Ly - e NFL 2Ly vNF>] ,
(Dy) (De) (De) (Dy)
and
(3.1.19) .
rat(tx) = —4(%) > / €€ D;(€,1) | NLig(€ —1)85(n) + 8;(6 — 1) NLig (1 )] dgdn.
Je{+—}
For any s,p >0, any t € [1,T],
(3.1.20a) [ () = u (b ) s S ANV [V () sss,
(3.1.20b) [u™F () = ue(t M oriee SNV Lo [V (E )| os,
(3.1.20c) IRju™ (¢, ) = Rju—(t, )| orroe S NV () oo [V (E ) ors, 5= 1,2,

Moreover, for any cut-off function x € C§°(R?),a > 0, there exists some x1 € C§°(R?) such that

(3.1.21a)
HX(tian)cw(tﬂ )‘

Hs ~ tﬁ HXl t7D )( ’U_)(t, ')HL2 (HV(t, ')HHLOO + HUNF(tv )HHlOO)

NN o) (2, ~>HH1 (Vs + 10N 2 )lla)

(3.1.21b)  [[x(t77Dy)ewl(t, )]
<t

Hs:o©
X D2) (N = v2) (8 e IV 2oe + [0V (1))

(3.1.21¢)
| x(t 7 D) Qe (¢ HLgstxl (t77 D)2 v NF—v_><t,->HL2 IV @tz + [0NF () oo
+ VO QN — o) (8, (HV( s + [0V ()| are)

7 [ =) () e X Z 124V (8, )l + 1207 (2, )] 2)

with B > 0 small such that f — 0 as 0 — 0, N(s) > 0 as large as we want as long as s > 0 is
large, and

(3.1.22a) (7 Do)y (& M S NV (&) s U

(8.1.22b)  (t 7D (6 Y laee S PNV 2pame (N0 oo + [RAT(E, llprze)
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and for any 0 €]0, 1],

(3.1.22¢)
X (=7 D)y T () |2 S tB[IIV( Moo IV & e (WU E e + [IRAUE ) roe)

V(e (10 + IR 8 ) NU s | 12V ) 2
+ LIV e Ul e + 12U )
(U oo + IRIU(E N grzee) IV (2 + 19V (& z2) [1V e

Proof. By the definition of uV¥', system (2.1.2)) with |I| = 0, (3.1.13) and (3.1.14)), it follows that
uNF is solution to

D, DD
(D) " (Da)

1
(D¢ + | D )uNT (t,2) = —5% vy Div_ + v_] + N (1),

with rNF" given by (3.1.19), so reminding that v, = —o_, and replacing each occurrence of v_ in
the quadratic contribution to the above right hand side, we find that uN is solution to (3.1.16]).
The first part of lemma and the fact that any H?T1 injects into H**3 by Sobolev inequality,
immediately imply estimates (3.1.20)) and

(=7 Da)ra ™ (¢, Yz S ¢ NLig (£ ) 21V (8 ) prrse,

X (=7 Da)ray ™ (, Mece S 7| NLig(t, ) o [V (5 )| pr1s.ce,
with 8 > 0 small, 5 — 0 as 0 — 0 for every s, p > 0. Moreover, from (A.31a)) we derive that

X7 Da)Qry T (8, )2 S t7 (I NLig (8, )l 2 + 12NLg (£, ) 22) [V (2, )17
+ 17| NLyg (£, )| r1s.< [ QV (2, )| 2,

so estimates (3.1.22)) are obtained using (B.1.4al), (B.1.4¢|) with s = 15, and (B.1.4f).

Finally, inequality is obtained by using the fact that operator x(¢~?D,) is continuous
from L? to H* with norm O(t°%), for any s > 0, together with lemma in appendix
with L = L?, w = v_ — vV, Inequality is straightforward, while is deduced
applying 2 to and using the Leibniz rule. The L? norm of products in which € is acting
on v_ —vNVF is estimated by means of lemma with L = L?, w = v_ —vNF', whereas the L?
norm of the remaining products is simply estimated by taking the L> norm on v_ — v™¥ times
the L? norm of the second factor.

O]

3.2 From PDEs to ODEs

In previous section we showed that, if (u_,v_) is solution to system in some interval [1, 77,
for a fixed T > 1, one can define two new functions, v as in (3.1.15) and vV as in ,
respectively comparable to u_ and v_ in the sense of (3.1.12)), (3.1.2), such that (u™N¥,vNF) is
solution to a new cubic wave-Klein-Gordon system:

(3.2.1) {<Dt #ID) U (10) = ) + alts ) + 7L (1),

(Dy + (D)) vNF (t, ) = rkg F(t,x),
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for every (t,z) € [1,T] x R?, where quadratic inhomogeneous term q,, is given by (3.1.17), and

cubic ones ¢, TN and r,]c\;F respectively by (3.1.18)), (3.1.19)) and (3.1.5)).

As anticipated before, our aim is to deduce from a system made of a transport equation
and of an ODE, from which it will be possible to deduce suitable estimates on (u™", vV) (and
consequently on (u—_,v_)). Thanks to , , these estimates will allow us to close the
bootstrap argument and prove theorem [I.1.2]

In subsection [3.2.1] we focus on the deduction of the mentioned ODE starting from the Klein-
Gordon equation satisfied by vV while in subsection we show how to derive a transport
equation from the wave equation satisfied by uN¥'. The framework in which this plan takes place
is the semi-classical framework, introduced below.

Let us introduce the semi-classical parameter h :=t~! and two new functions:
(3.2.2) u(t,x) = tu™N (¢, tx), o(t, ) =tV (¢, tx).

With notations introduced in subsection a straight computation shows that (u,v) satisfies
the following coupled system of semi-classical pseudo-differential equations:

{ (D — Op (- € — D]t &) = h™t [qu(t, t2) + cu(t, tx) + N F (¢, t2)]

(323 (D2~ Opila - € — (E)]ilt, ) = h=r¥F (1 ).

Moreover, from definition (3.2.2)), a-priori estimates (1.1.11a)), (1.1.11bf) and inequalities (3.1.12)),
(3.1.2)), we are now led to suitably propagate the following estimates:

(3.2.4a) [t ) g1 + |Opy (&11€]71) HHPHOO < Ceh™z,
(3.2.4b) [o(t 7')||Hfl’°° < Ck,

for some large enough positive constant C' > 0, in order to obtain enhanced estimates ([1.1.12al),
(1.1.12b)).

If M; (resp. £j), j = 1,2, is the operator introduced in (1.2.45) (resp. (1.2.60)), M;u (resp.
£;0) can be expressed in term of Z;u™M (resp. Z;uNT"). We have the following general result:

Lemma 3.2.1. (i) Let w(t,x) be a solution to the inhomogeneous half wave equation
(3.2.5) (Dt + |Delw(t, ) = f(t ),
and w(t,x) = tw(t,tx). For any j = 1,2,

(3.2.6) Zjw(t,y) = ih [ M;w(t,x) + O <|£‘> @(t,:n)} |$:% +iy; f(t,y);

(i) If w(t,x) is solution to an inhomogeneous half Klein-Gordon equation

(3:27) Dy + (Do) wit, @) = f(t,2),
then

, i w §j .
(3:28)  Zu(ty) =ih [—Oph«@)/: it )+ 50pf ()7 <,x>} ot + i £ (8,1).

Proof. (i) As we seen few lines above, if w is solution to half wave equation (3.2.5), w(t, )
satisfies

[Dy — Opjf (- & — €] @(t, @) = k™ f(t, ),
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SO

ij(ta y) -

7 2Dt O g €)+ | (0.2))

—
T=%

. w h ~
=1 [:L"th +Opy (& —xjr- &) + %$j] w(t, )

—
T=%

~ a0 (o€~ 10@(0.0) + OB (& — 20 (0 0) + st ) + 7k (1)

&
§

for j = 1,2. We should specify that last equality was obtained by a trivial version of symbolic
calculus ([1.2.18)), that applies also to symbols b(§) singular at £ = 0. Indeed, if symbol a = a(z, )
is linear in z, and b(€) is lipschitz, the development afb is actually finite:

—
T=%

=ih [—Mﬂ’b(t, ) + %Op}l” < > w(t, :c)] o=z +iy; f(ty),

h
agb(z, §) = a(z,§)b(€) — 5-Ira(z, £) - F¢b(€)-
The result of (i) follows in a similar way, using that w satisfies

[D: — Opp (- € — ()] w(t, ) = h™f(t, tx).

Since

N 1 D,
M w(t, x) = {yle | —tD; +2\Dd w(t, y)ly=te,

w ~ . . Dj
hOpy, ((§))Ljw(t, x) = {yJ<Dy> —tDj — Z(Dy>] w(t, y)|y=ta>

for any j = 1,2, we deduce from previous lemma that, if w is solution to half wave equation

(3.2.5)) (resp. to half Klein-Gordon (3.2.7))),

3290 |0yl eD; ¢ girph| vt = iZuwten) + gt + ),
(3.2.9b) (resp. [(Dy)y; —tD;lw(t,y) = iZw(t,y) — i<g;>w(t,y) + yjf(t,y)> )

Moreover, from system (|3.2.3) we deduce also the following relations, for any ¢ = 1, 2:
(3.2.10a)

ZauNE (t,y) = ih [ Mjilt, z) + 5 O <|£|> a(t,x)] o=y + Y5 [qw +co + 7" ] (),

(3.2.10b)  Z;uNF(t,y) = ih [_opg(<g>)aj5(t,x) + 10@5(%)5@,@]

. NF
, Fiyireg (L)

T=%

In view of lemma [3.2.14] it is also useful to write down the same relation between (Z,,Z,u)—
and M[t(Zyu)—(t,tx)], where (Z,u)_ is solution to

(Dt + |Dg|) (Znu)— = ZnNLy(t, z),

172



with NL,, concisely denoting Q) (v+, Div4), and
ZyNLy = QY ((Znv)+, D1vy) + QY (v, D1(Znv) 1) — 02 QY (va, Dyva),
with 6} = 0 for n = 1, 0 otherwise, as follows by (1.1.15)), (1.1.16), (1.1.5) and (T.1.10]). Observe
that, from inequality (B.1.6a)) with s =0,
(3:2.11) (| ZnNLuw(t, M2 S N1 ZaV &) IV (E ) 2o + IV E )
+ V(e NUE e + IRUE e ) + IV E M poe 10U E ) IV E e

Applying equality (3.2.6) with w = (Z,u)—, commutating Z,, with D; — |D,| (see (2.1.15a)),

and considering index .J such that I'V = Z,,, we then have

(3212) (ZynZyu)—(t.y) = ih] — Ml (1.2) + ;iopg(%)aJ(t,x)] o+ 2 VL (1,1)
Dy,
- @(Znu>—(tay)>

with @’ (t, x) := t(Z,u)_(t, tx).

3.2.1 Derivation of the ODE and Propagation of the uniform estimate on the
Klein-Gordon component

Let us firstly deal with the semi-classical Klein-Gordon equation satisfied by v:
(3.2.13) [Dy — Opj(z - & — p(€))]o(t, ) = h_lr,]c\gF(t, tx),

where p(§) = (£), and r,i\;F is given by (3.1.5)) and satisfies (3.1.6)). We remind that p/(§) denotes
the gradient of p(&) while p” (&) is its 2 x 2 Hessian matrix.

We introduce the following manifold
Agg = {(2,€) 12— p'(§) =0},

for some small o > 0, which is actually the graph of function £ = —d¢(z), with ¢(x) = /1 — |z,
as shown in picture The main idea to obtain an uniform-in-time control on the H ,’;’oo norm of
v is to decompose this function into the sum of two components, one localized in a neighbourhood
of Ay, and another one localized out of this neighbourhood. Up to assume a moderate growth
for the L? norm of £V, with 0 < |u| < 2, the contribution localized away from Ay, shows
a better decay in time h'/270 than the one in ([3.2.4D) (see corollary [3.2.3)). Thus, the main
contribution to v appears to be the one localized around Ay,. We are going to show that it is
solution to some ODE (see proposition , and derive from this equation an uniform control
on its H"*® norm with which we will be finally able to propagate (3.2.4D)), and hence
(see proposition . We consider a neighbourhood of size vk, in the spirit of [14].

For a fixed p € Z, let X(§) := (£)” and

(3.2.14) % .= Opy <7 (W) x(h”€)> :

for some v, x € C§°(R?) equal to 1 close to the origin, o > 0 is small (e.g. o < %) We observe
that, as the support of y(i\/’ﬁ(g))x(hgg) is included in {(z,&)||¢] < h77,|z| < 1—ch?}, for a
small constant ¢ > 0, we may find a smooth function 6, (z), equal to 1 for |x| < 1 — ch?® and
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T

Figure 3.1: Lagrangian for the Klein-Gordon equation

supported for |z| < 1 — ¢h%7, for some 0 < ¢; < ¢, with [|0%0,||L~ = O(h=21%1%) and (hd},)*6),
bounded for every k € N, such that

x—p’(€)> (ﬁ-ﬂ(&))
3.2.15 — h?&) = 0 (x — h7g).
(32.15) 7 (SR ) xore = st (S ) v
We also introduce the following notations:
(3.2.16) 7> = Opl (2(€))7,
together with
(3.2.17a) Uy, = Mo~

~> . w _ T — pl(é) o ~3
(3.2.17b) Uxg, = Opj. (1 vy <\/E x(h7€) | v=,
so that 7~ = 5%@ —H;/%i , and remind that ||[£Yw|| = [|£]*£32w]|, for any v = (y1,7v2) € N2

g

Lemma 3.2.2. Let 7 € C*®(R?) vanish in a neighbourhood of the origin and be such that
1027(2)| < (2)7101, e(x,€) € Ss.,(1) with § € [0, %], o >0, be supported for |£| S h™7. Then, for
any x € C§°(R?) such that x(h°E) =1 on the support of c(z,§),

(3.2.18a) ”Opﬁ (&(W)c(x,g))w 5 21: W22 Opg (X (h7€) &w]| 2
|u|=0

(3.2.18b) Hop,?@(m\fi(é))c(x, ))w 5 21: h=P || Opy (x(h7€)) L w2
|2|=0

and

(3.2.19a) Hop}g (a(fc\}ﬁf))c(m,g))w B < 22: W2 0P (x (h€)) LM 12
|u|=0

(3.2.19b) HOp}f (?(W)c(m,f))w . < 22: 28 |Opy, (x(R7€)) LHw|| 2
|11]=0
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for a small 8 >0, 8—0 as o — 0.

Proof. The proof of (3.2.18) (resp. of (3.2.19)) follows straightly by inequalities (1.2.62]) (resp.
(1.2.63)), after observing that, as 7 vanishes in a neighbourhood of the origin,

o 2 T —1 T —1n
ﬁ(m)dw,s):;%( )0,

Vh Vh

where ﬁ{(z) :=5(2)z;]2| 72 is such that |8§‘7{(z)| < (z)~ 1ol (resp.

-7 2 z—7p xz—p
%(j%@)cm,ﬁ):;%( S () e,

where 3o(2) := 7(2)|2|~2 is such that [097(z2)| < (z)~2~le). O

Corollary 3.2.3. There exists s > 0 sufficiently large such that

(3.2.20a) H’ﬁ%k
g

LS ('17H; + > OPﬁ(X(h"é“))L“”vaz) ;

1<|p|<2

~ 1_ ~ w o ~
(3.2.20b) Hv%zg Sh2 0 ollg + > 0Py (x(h7€) LD 12

1< |u|<2

LOO
for a small positive § = (o) — 0 as o — 0.

Proof. Since symbol 1 — ’y(i\/%(g))x(h"f) is supported for ‘%\/;?(O‘ >dy > 0or |7 > dy >0,

for some small dy,ds > 0, we may consider a smooth cut-off function Y, equal to 1 close to the

origin and such that Xx = X, so that (1 — ’y(i\/ﬁ(@)x(hgf)) writes as

1 (2D j0r0 + 12 (T 29D) wwre)] @ - e

the first symbol being supported in {(x,{)Hx*\%é)\ > dy, €] S h77}, the second one for large

frequencies [£| 2 h™7.

Using lemma |1.2.24] and the fact that ’y(mf\%@)x(h"ﬁ) € S%’J(<‘T7\%
we have that, for a fixed N € N*,

3]

>7M), for any M € N,

1 (o] (- 10re) = (- x0e)s |1 - (T ane)
+ Y X(ha(,€) + ra(x,€),

1<j<N

where function x;(h?§) is still supported for large frequencies |£| 2 h™7, for every 1 < j < N,
and up to negligible multiplicative constants,

(. 6) = 15 T (o) (F ) xaog) € wites, (T,

laf=j
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and ry € pNGHo) g, U(<i\/;€(£)>fM). Lemma (1.2.39 proposition |1.2.36, and semi-classical
2’
Sobolev injection imply that

‘ opi([1- fy(“"f‘\%(f))x(h”g)} (1 =R)(h7e) )7
o (=20 - more)

where N(s), N'(s) > 1if s > 2 is sufficiently large.

S WV o)y,
2

S WO g,
LOO

On the other hand, as function (1 —~) (%\/ﬁ(@) vanishes in a neighbourhood of the origin, and
is such that [02(1 —v)(2)| < (2)71%, by lemma and the fact that, using symbolic calculus
to commute £ with (&),
(3.2.21) 1OP} (X (W ENLH T |2 S BT Y (1OpE (X (h7€) L7 2,

1| <|pl

with v = po if p > 0, 0 otherwise, we have that

on (1= (2 ) vy )

SO RPOpE (x(RTE)LFB(E, ) 2

\/E |ul<2
Jow (- w)(”“\};@)x<h%>)ﬂz<t,-> S 30 W 10RO
Lee <2
for asmall >0, 83— 0as o — 0. O

In the following lemma we show how to develop a symbol a(z,§), associated to some operator
acting on 5/%@, at &€ = —do(z), where ¢p(x) = /1 — |z|2.

Lemma 3.2.4. Let a(x,&) be a real symbol in S50((€)?), ¢ € R, for some § > 0 small. There
exists a family (On(x))n of C§° functions, real valued, equal to 1 on the closed ball By_ 2+ (0)
and supported in By_, 20(0), for some small 0 < ¢; < ¢, > 0, with |00, = O(h2l2l7)
and (hop)%0), bounded for every k, such that

(3.2.22) Op} (a)0x,, = On(@)a(z, —dg(x))0y,, + Ri(D),

where Ry (V) satisfies

(3.2.23a) |R1(D)]| 72 S AP <5H; + ) Op%f(x(h”«f))mﬂm) :
Ivl=1

(3.2.23b) 1Ry (D)2 S h2~7 | |17 g+ > 10pE (x(h€)) L7 12 |
[v|=1

with = B(0,6) >0, 8 — 0 as 0,6 — 0. Moreover, if@ga(ﬂv,f)‘gz—dqﬁ(x) = 0, the above estimates
can be improved and Ry (V) is rather a remainder Ry (v), such that

(3.2.24a) 1R2(@)ll2 S 0277 (ol + Y 109K ((B7E)L7T g2 |
1<|<2

(3.2.24b) | Bo(@®)[ 10 < 2™ (UH5+ > llopi(x h”&))ﬁ”’vw)-
1<p|<2
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Proof. We have already observed that the symbol associated to operator I'*9 is localised in space
in a closed ball B;_ 20 (0), and that there exists a family of smooth cut-off functions (6,(z))xe0,1)
as in the statement, such that

V(D) 09 = 0u(wn (2 e

In addition, we highlight the fact that the support of any derivative of 6; has empty intersection
with that of ’y(%\/g(g))x(h%) and its derivatives. After remark |1.2.22] this implies that ﬁ%kg =
Hh(x)@%kg + oo, Where 7o € hNS%,U((@_OO), and hence that Opﬁ(a)@\kg = Op}f(a)@h(:z‘)@%kg +

Op}l”(rgo)'ﬁj%kg, re = afre € hN*'YS%J((a:)*OO) with v = ¢qo if ¢ > 0, 0 otherwise. It follows

at once, from proposition [1.2.36/and semi-classical Sobolev injection, that Opj’ (rgo)@%kg satisfies
enhanced estimates ([3.2.24)) if IV is taken sufficiently large.

Up to negligible multiplicative constants, a further application of symbolic calculus gives also
that

N-1
Opy (a(x,€))0n ()T, = Opit (a(x,€)0n(x))Tx,, + Y WOpy (9 a(x, £)0561(2)) T3,

|al=1
T Oy (v (2, €))%,
where ry € hN7BSs o((€)9N(z)=%°), for a new small 3 = B(5,20) and § = max{4,c}.
As before, Op}f(rN)@%kg verifies enhanced estimates (3.2.24]) if N is suitably chosen. Also,
since for any |a| > 1 the support of d¢a(z,§) - 07 0h(x) has empty intersection with that of

’y(z \I/)E( ) (h9€), all the |aj-order terms, with 1 < |a| < N, are of the form OpY(roo)v>, for a

new 7o € hNS1 ((z)™°°) with N € N as large as we want, and are remainders Ry(7).
3

Now, as symbol a(z, £)0;,(x) is supported for |z| < 1 — ¢1h?? < 1, we are allowed to develop it

at & = —do(z):

a(, €)00(x) = a(z, —dd(@))0n(z) + 3 / (02a) (., 16 + (1 — 1)do(x))dt Oy (x) (€ + do(x))®
|a| 1
(3.2.25) = a(z, —dé(x +Zb 2,8)(z; — p;(6)),
with
(3.2.26)
(€ +do(@)(a; - pj()
by(,€) = Z/ (B ). 6+ (1 = o))ty () = LI =12

laf=1

If x1 € Cg° (R?) is a new cut-off function equal to 1 close to the origin, we can reduce ourselves to

the analysis of symbol b;(z, §)(x;—p}(£))x1(h7E), for bj(z, &) (2;—p’;(£))(1—x1) (A7) is supported
for large frequencies and its operator acting on v% is a remainder O2nz0 (A ||7]| m; ), with N >
0 large as long as s > 0 is large, as one can prove usmg semi-classical Sobolev injection, symbolic
calculus of [[.2.21] lemma [T.2.39) and proposition [I Furthermore, considering a smooth cut-

off function 7 € C§°(R?), equal to 1 close to the origin and such that 7((£)*(z — p'(€))) =1 on

the support of 'y(x \pf(f)) (h?¢), which is possible if o < 1/4, we have that

bi(z,)(x; — pi(€)x1(h7E) = bj(x,&) (x5 — 1 (€))x1(h7E)F((€)* (= — P (€)))
+ b (2, ) (x; — Pi())x1(h7E) (1 = F) ((€)* (= — P'(€)))-
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Since bj(z, &) (x; —p;(g)))(l(h”ﬁ)(l—'vv)(({)2(33—])’(5))) € h=585,(1), for some new small 3,8 > 0,

and its support has empty intersection with that of ’y(x_\%(g)) (which instead belongs to class

5’%70((%\@(5))_1‘4), for M € N as large as we want),

30 )(a; - B OO0 =D (€e ~ O e[ (0] =
where 7, € hNSlya((l\/%(g))_M) with N € N as large as we want, as follows from lemma |1.2.24

and remark Therefore,
Opiy (bj(a,€)(x; — P3(E))x1 (h7E)(L = F) () (= — p(€)))) k,, = Opk (rec)T™,

where, as before, OpY (7)™ is an enhanced remainder Ry (7).

If ¢(z,€) == b;j(z,&)x1(R7E)F(()*(x — p'(€))) € hPSa0 (1), with B depending linearly on o,
the very contribution that only enjoys estimates (3.2.23) is Op}’ (c(x, §)(xj — p;- (5)))2}%}C , whose
symbol is in h1/2*552070(<i\/%(5)>) by lemma [1.2.42, In fact, if we assume that the support of
x1 is sufficiently small, so that y1x = x1 and all derivatives of y vanish on that support, by
using symbolic development ((1.2.18]) until a sufficiently large order IV, and observing that

{et0. 9 - ) 2(“ED) } = {et0.94(“EE) f @5 - 1060

= [G%C)-(av)(azi;;Kg))—+(8gc)-(ay)<”’fjgff))p~(£4 (mj—;g?QD>

, we derive, up to negligible constants, that

does not lose any power h~1/2
z—p'(§)

T )] = () (o e)ete (s - 5(©)

Vh
FE:%?(E1Zf9>axﬁ)+TN@%®7

e, €)(w; — p5(€))]|#[+(

where 3" is a concise notation to indicate a linear combination, 5 € C§°(R?\{0}), ¢ € h=5S5,(1),
for some new small 3,5 > 0, and ry € hN/Q_BS%p«i\//E(f)Y(M_l)). From inequalities (1.2.62)

and (3.2.21)), we deduce that Opy’ (7(&\/%(5))%}105)0(3:,{)(% —p}(f)))'ﬁE is a remainder R;(v)

satisfying (3.2.23)). The quantization of all other contributions in above right hand side, when

acting on 0>, is estimated, on the one hand, by using that 7(z) vanishes in a neighbourhood of
the origin and can be rewritten as 3, ,72(2 ) , with 72(2) := 5(2)|2| 72 such that |0272(2)| <
(z)=2led, Inequahtles (1.2.63)), and successive commutatlon of L7, |v] = 1,2, with X, give then

that hOpy (¥ ( ) c(z, )) is a remainder R2(v). On the other hand, as ry(z,§)X(§) €
—(M

h3—B-1S, ), with 4 = op if p > 0, 0 otherwise, it follows that it is a remainder
just from m 1.2. 3 ﬁxmg N € N sufficiently large (e.g. N = 3)

If symbol a(z, §) is such that Ocale—_q¢ = 0, instead of equality (3.2.25 , with b; given by (j3.2.26)),

we have

a(z, )0 (z) = a(x, —dd(z + ) b, &) (5 — p(9))?,

7j=1,2
with
(& + do(z))”

.= 30 2 [ 0gaies - (1 - o)1 - o) EELEN

laf= 2@
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and the same argument as before can be applied to Op¥ (b(x, £)0)(z)(z; — p;(f))Q)ﬁ%kg to show
that it reduces to

Oy (b, £)6n(2) (x5 — D€ 1 (W OT((€)* (@ — #(£))) )X, + Ra(@),
with Ry (v) satisfying (3.2.24). If
B(x,€) := b(x, )0 (x)x1 (AT ((£)*(x — P'(€)))
B(x,&)(z; — pj(€))? € hP85 »(1) by lemmal [1.2.42] for some new small 3,5’ > 0 depending on

0,0, so using lemma [1.2.24) and symbolic development (|1.2.18]) until order 4, and assuming that
the support of y; is sufficiently small so that xx1 = x, we derive that

(B9 - @2t 1 (R w009)] = B9 (T s - 002
+2 : o) (“2D) (LY o) + S0, Ble)| (2~ 5}(©)

where 7y, € (780(R2 \ {0}), Ba(z,§) € S5 (1), and ry(z,§) € h2*45/**35’%7g(<&\/%(£)>*M). As

ra(w, 1) € h2'Sy ((ZLE)=M) for §' = 2 — 46’ — f—poif p >0, f' =245 —

otherwise, it immediately follows from propositions that Opf(m)'ﬁE is a remainder
Rs(v). After inequalities with 7, = v and ¢ = B (resp. inequalities with
Yn(2) = 07y(2)zj and ¢ = KO [(O, B) + (0. B) - (9epy + Oeph)] € Sy (1), for 4,5 = 1,2), and
(3.2.21)), we deduce that the quantization of the first (resp. the second) contribution in above
symbolic development is a remainder Ro(7), when acting on v*. Finally, as -, vanishes in a
neighbourhood of the origin, we write

’Ya(x_fi(% _ ih1%<x P2V O12 (g @, Jal=2,

Vh vh
o (=59)
(D) =LA (RO i =3

% (=9)
and obtain that the quantization of a-th order term with |a| = 2 (resp. |a| = 3) is a remainder

Rs (), when acting on o, after inequalities (1.2.63)) (resp. (1.2.62))) with y,, = Fa (resp. v, = 7%,
k=1,2) and ¢ = B,. O

The following two results allow us to finally derive the ODE satisfied by i?%kg.

Lemma 3.2.5. We have that

(3.2.27) (D¢ — Op} (z - € — p(£)), T¥] = Opj (b),
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where

(3.2.28)
ba.§) = = @) (") (S g - T (T Y @) - (g
ot 3@ (- \;%(5)>(3?p'(€))x(h”§) +r(x,€),

|a|=3

and r € h5/2S;J(<i\//E(£)>*N), for any N > 0. Therefore, function ’17%@ is solution to the
27

following equation:
(3.2.29) [Di — Op}i (- € — p(€))]ox,, = TMOpy (2(6)) [Py (8 t2)] + Ra(0),
with Ro (V) satisfying estimates (3.2.24)).

Proof. Recalling the definition (3.2.14)) of I'*9, one can prove by a straight computation that

[D1%0) = 2o ((00) (“EE) - )

+ %Op’é’((av) (£ _\/p%(f)) (2 _f;;(g))x(h”«f)) -4 t.g)hOpi’j (+(% _f%(g))(ax)(hag) (h79)).

On the other hand, since the development of a commutator’s symbol only contains odd-order
terms, lemma |1.2.24| gives that the symbol associated to [Fkg, Opy(x- & — p(f))] writes as

H (D) e e} + gpnd > 0 (“=EE) 9@ +rate. 0

with 75 € h%/2S: U(<x_\%§)>*N), for any N > 0. Developing the above Poisson brackets, one
29
finds that

h z— i
T47,0p(e € = )] =~ H0pi (00 (1) ey

= 2o () (“EE) - (SR w0 9) + 2o (+(“E D) @uie - ()

i ol (T =D s o b)),
oh zgaph(@ () @ EX6)) + Op 152, €))
which summed to the previous commutator gives .

Last part of the statement follows applying to equation (3.2.13) operators Opjy’(X(&)) (which
commutes exactly with the linear part of the equation, evident in non semi-classical coordinates)
and T'*9. Since

hopz"((aw(‘” _p/@) : (w — p/(g))x(hffg))ﬁ =

Vi Vi
(TP () g — I -
>_0r (H() - P @)~ p() 7
with v¥(2) = (07)(2)zk|2| 72, and
o (00 (1) e (€) = now (o (1) g ©) o — st 7
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with v%(2) = (0%y)(2)2x|2| 72, we obtain from inequalities (T.2.63) (resp. (1.2.62)) and (3.2.21))
that hOpy ((97) (73) - () x(h°€) 7 (resp. h*/20pk ((9°7) (72) (@7 (©))). lal = 3
is a remainder Ry(v). The same holds true for Op}’ (V(w)(ax)(h"{) - (h¢))v>, as follows

vh
combining symbolic calculus and lemmall.2.39] because its symbol is supported for large frequen-
cies [¢| 2 h™7. From propositions |1.2.36 it immediately follows that Op¥(r5)v* satisfies
(3.2.244)), (3.2.24b)). O

Proposition 3.2.6 (Deduction of the ODE). There exists a family (0n(x))n of C§° functions,
real valued, equal to 1 on the closed ball By_ .25 (0) and supported in By_ . p20(0), for some small
0<eci<ec o>0, with |00, L = O(h=27) and (hdy)*6), bounded for every k, such that

(3.2.30) Opj(x - & = p(€))0x,, = —o(x)0n(2)T5,, + Ra(0),

where ¢p(z) = \/1 — |x|? and R2(v) satisfies estimates (3.2.24)), for a small positive 8 = (o) — 0

as 0 — 0. Therefore, 512\]“] is solution of the following non-homogeneous ODE:
(3.2.31) Doy, = —¢()0(2)0x, , + TO0p (S(6)) [ iy (¢, te)] + Ra(),
with r,i\;F given by (3.1.5)).

Proof. The proof of the statement follows directly from lemma [3.2.4] if we observe that J¢(x -
E—p(&)) =0at & = —do(x) and z - (—do(z)) — p(—dp(x)) = —p(x). Therefore, (3.2.30) holds
and, injecting it in (3.2.29)), we obtain (3.2.31]). [

Proposition 3.2.7 (Propagation of the uniform estimate on V). Let us fix K1 > 0. There exist
two integers n, p sufficiently large, with n > p, two constants A, B > 1 sufficiently large, and
g0 €]0, (24 + B)~[ sufficiently small, such that, for any 0 < & < o, if (u,v) is solution to
(LLI)-(L.1.2) in some interval [1,T), for a firzed T > 1, and uy,vs+ defined in (LL5) satisfy

a-priori estimates (1.1.11)), for every t € [1,T], for a small 6 > 0, then it also verify :1.1.12bi
in the same interval [1,T].

Proof. We warn the reader that, throughout the proof, we will denote by C' a positive constant,
and by 3 (resp. ') a small positive constant, such that 8 — 0 as ¢ — 0 (resp. ' — 0 as
9,0 — 0). These constants may change line after line. We also remind that h = 1/¢.

In proposition we introduced function v, defined from v_ through , and proved
that its H”° norm differs from that of v_ by a quantity satisfying (3.1.7h)), for all p € N. Hence,
for 6 €]0, 1] sufficiently small (e.g. § < 1/4), by a-priori estimates (1.1.11af), (1.1.11b}), (1.1.11c)
there exists a constant C' > 0 such that

(3.2.32) o (£, Mmoo < [0VF ()| oo + CAZOBI2¢ 5

We successively introduced v in (3.2.2]), and decomposed it into the sum of functions 5%@ and
NE . .
Uhe (see (3.2.17)). We will show in lemma [B.2.14] that, for any s < n,

2
(3.2.33) 5t mz + Y 0Py (x(hE)LT(t, )| > < CBeh™,
lvI=1
for all t € [1,T], so inequality (3.2.20b)) gives that
(3.2.34) 5% (¢, )|l < CBehi ™ = CBet™2+7.
g
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On the other hand, we proved in proposition that ’17%@ is solution to ODE (3.2.31f), with
r,i\;F given by (3.1.5)) and satisfying (3.1.6)), and Ry (v) verifying (3.2.24)). From (3.2.33)), we then

have that ,
|Ra (@) (¢, )|l oo < Cet ™2,

We also have that

(3.2.35) HFkQOpﬁ(E(é))[tr,i\gF(t, m)]H < O(A+ B)AB3 347,

LOO

In fact, by symbolic calculus of lemma [1.2.24] we derive that, for a fixed N € N (e.g. N > p),
and up to negligible multiplicative constants,

k w R It w e $_p,(£)
TR (2(6) = 3 1% op () (7

|| =0

JX(ATE7)(E)) + Opl (@, €)).

where ry € h> S 1 ’0(<i\//ﬁ(é)>_1). Choosing N sufficiently large, we deduce from proposition
1.2.37] the fact that [[tw(t,t)||z2 = ||lw(t, )| 12, inequality (3.1.6a) and a-priori estimates, that

Hop}f(rN(mv5))[757"1];;F(t,tx)]HLoo < CA2BE3t72,

for every ¢t € [1,T]. Using, instead, proposition |1.2.38| with p = +o0, and lemma in
appendix [B], we deduce that

=

-1
lo|

hz2
0

- p'(§)

Opf (0% (F—= )X @*2)(€) ) Ok (cr (W ) ey (1 )]

Lo

laf

ST D) (8,)] . < C(A+ B)ABEY 317,
Summing up, FkgOpﬁ(E(f))[tflr,i\gF(t,t:v)] + Ro (V) = Fyy(t, z), where

| Frg(t, )|z < [C(A+ B)ABE® + CBelt = +7,

where 3/ > 0 is small as we want as long as o, dy are small, so using equation (3.2.31)) we deduce
that

1, e I
(3.2.36) SOUTR, (o) =9 (Ufngtvgkg) < [o%,, (t,2) || Fig(t, 7)1,
and hence
t
[k, (& Iz < 17K, (1, )£ +/1 ([ Erg (7, )l Lo dr
< |[ox,, (1, )z + CA*(A+ B)e® + CBe.

As H'ﬁ%kg(l, Mire S 0(1, )|z < CBe, as follows by proposition and a-priori estimate
(1.1.11c|), above inequality, (3.2.34)), and definition (3.2.2) of v, give that

|oNE(t, )|z < (C(A + B)ABe® + CBe)t ™1,

which, injected in (3.2.32)), leads finally to (|1.1.12h) if we take A > 1 sufficiently large such that
CB < %, and gg > 0 sufficiently small to verify C(A + B)Be3 + CA'=9B%, < ﬁ O
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3.2.2 The Derivation of the Transport Equation

We now focus on the semi-classical wave equation satisfied by u:

(3.2.37) [Dy — Opyf(z- € — |€])]ult,x) = b~ [qu(t, to) + cult ta) + 0 F (¢, tx)]

with qu, cw, 7Y given, respectively, by (3.1.17), (3.1.18)), (3.1.19), and on the derivation of the
mentioned transport equation. As we will make use several times of proposition [1.2.30] and
inequalities , we remind the reader, once for all, that 6y(z) will denote a smooth radial
cut-off function (often coming with operator €,) and x € C§° (R2), suitably supported, equal to
1 in a neighbourhood of the origin.

In order to recover a sharp estimate for @ (and consequently for u_), we study its behaviour,
separately, in different regions of the phase space (z,¢) € R? x R2. We start by fixing p € Z,
and by introducing X(€) := (£)? (or X;(€) := (£)P¢;|¢| 71, for j = 1,2). Taking a smooth cut-off
function xg, equal to 1 in a neighbourhood of the origin, a Littlewood-Paley decomposition, and
a small o > 0, we write the following:

(3.2.38)  Op}y(£(6)a = Opi (E(€)xo(h™'€))u+ Y Opiy (S(€)(1 = x0) (W™ E)p(27"E) x0(h7€))
k

+ Opj, (B(€) (1 = x0)(h7€)),

observing that the above sum is actually finite, and restricted to indices k € K :=={k € Z : h <
2% < h=7}. From classical Sobolev injection,

(3.2.39) 10D} (Z(&)x0(h™ 1)) a(t, )|z = |Z(AD)xo(D)u(t, ) ro S [lalt, )l z2,
while
(3.2.40) 10p} (B(€) (1 = x0) (R7EN [ Lo S BN ([t )| oz

with N > 0 if s > 0 is sufficiently large, as follows by semi-classical Sobolev injection and
lemma as (1 — x0)(h?&)) is a smooth function supported for large frequencies || = h™7.
Remaining terms OpY (£(€)(1 — x0)(h™1€)@(27%¢)x0(h7€)) 1, localised for frequencies |¢| ~ 2F,
need a sharper analysis, because a direct application of semi-classical Sobolev injection only gives
that

|opk (2@ (1 = x0) ('R N0 (h7 )| < 25 il e,
with = op if p > 0, 0 otherwise, and factor 2°A~17# may grow too much when h — 0.

For fixed k € K, p € Z, let us introduce

(3.2.41) @ () == Opjy (S(€)(1 = x0) (h™€)p(27"¢) xo (h7€)) ult, ),

and observe that, from the commutation of Op (Z(€)(1 — x0)(h™1€)(27%¢)x0(h7€)) with the
linear part of equation ([3.2.37)), we get that u>* is solution to

(3.2.42)
[D; — Opji (z - & — |€])]a™" (¢, )
= Opiy (2(&)(1 = x0) (W) (27" x0(h7€)) [h " [qu(t, t2) + cu(t,tx) + ¥ (¢, tw)]]
—ih Op}y (2(€)(Ox0) (™€) - (B 1w (275€) ) — ioh Opjy (S(€)9(27€) (Ox0) (h7€)) - (h7E) ).

We also introduce operator ' as

(3.2.43) Ik .= Opy! <v(x}lf/|ij>w(2_’“§)),
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with v € C§°(R?) equal to 1 close to the origin, 1 € C§°(R?\ {0}) equal to 1 on suppyp, together
with

(3.2.44a) Uyt = Tokgsk

32400 a5t = opg (1) (225 wiare ),

so that u>F = ﬁff + ﬂ%gk. Analogously to the Klein-Gordon case, the above two functions are
obtained by localizing 7>"* respectively in a neighbourhood of A, and outside of this neighbour-
hood, with manifold A, given by

¢

Figure 3.2: Lagrangian for the wave equation

depending on h. Up to control the L? norm of (6o, )*M” >* with a small negative power of h,
for p,|v| <1, we find that the contribution ﬂjz\;k, localized outside A,,, decays in the L norm

as h™0, faster than what expected for @ in (3.1.12)) (see proposition [3.2.8). Therefore, remaining
flff appears to be the main contribution to #>*. We are going to show that this function is

solution to a transport equation (see proposition |3.2.17, from which we will be able to derive a
suitable estimate of its uniform norm, and to finally propagate (3.1.12]) (see proposition [3.3.7)).

Proposition 3.2.8. There exists a constant C' > 0 such that, for any h €]0,1], k € K,

~ 1_ ~ ~
(3.2452) X (8, g2 < Ch2=P ([T ()| g2 + [MESR (2, ) 12)

1
(3.2.45D) Hai;f(t, Moo < CBPY 7 (10092 HT (£, ) 2 + 1(BoS2) M= (E, )| 12)
n=0

for a small B >0, B(c) — 0 as o — 0.
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Proof. The proof is straightforward if one writes
2
Sk w( _j z|§] - ¢ x]’f‘ =& —key =5k
Uag, = ZOph (’71( hi/2—o )( hi/2—o >¢(2 f))u ’
=1

where 4/ (z) 1= U=0E)% g guch that 10297 (2)| < (z)~Uel+D) | and uses inequalities (1.2.48) with

EN

a(xz) =b,(&) = 1. O

Lemma 3.2.9. Let ¢ € C°(R?\ {0}) such that $ = 1 on suppyp, and has sufficiently small
support so that 1o = 1. Then

(3.2.46) Tk, Dy — Opf (€ — 1€DB(270)) | Op (p(274€)) = Opg (b(a,€)).

where, for any w € L? such that OoQpw, (0pQ) Mw € L?(R?), for p = 0,1,

(3.247a) 10p} (b(z, €))wl 2 S B (|wllz2 + [Muw]2)
1
(3.2.47b) 10} (b, ) wllzoe < 12D 7 (1I(B020) w2 + 1| (Bo20)* Muw]| 2),
n=0

with 8 >0 small, B — 0 as o — 0.

Proof. We warn the reader that most of the terms arising from the commutator considered in
the statement satisfy a better L? estimate than (3.2.47al), namely

3_
(3.2.48) I llzz < B2 (|lw] g2 + Ml 2 ).

The only contribution whose L? norm is only a O(h||w||;2) is the integral remainder called 7%;,
appearing in symbolic development (3.2.50)).

Since §; = —h?0), an easy computation shows that

1 h zlf] =&\ (=l &y o
[Fw’k7 Dt] :<§ + U) ;Opz) <<8,7)( hl/Q_U ) : ( hl/Z—o’ >¢(2 k§)>
h zl€] — ¢ k —k
+ 200 (155 ) @02 - (2749),

The first term in the above right hand side satisfies (3.2.48) and (3.2.47b|) after inequalities
(1:2:48). The same estimates hold also for the latter one when it acts on Op¥ (¢ (27%¢))w, for the
derivatives of ¢ vanish on the support of ¢ (and then of ¢) as a consequence of our assumptions.
In fact, introducing a smooth function ¢ € C§°(R?\ {0}), 1> = 1 on the support of 9%, and using
symbolic calculus, we have that, for any fixed N € N,

(3.2.49)

ontt (13 is ) @02+ (7)) O (2 He)

= Opj! (v(ﬁl’f/';f){/?<2’f§><2’%>) O}y ((09)(27*)(277€)) — Opil (1),

where the first term in the above right hand side is 0, and integral remainder ré“v is given by

A= ()" 3 HEUE [eroevo oy (BEE) 0)et0) - @0 loseeerrot

24
la|]=N

x 02 (V(27%€)) | (g4 dydzdndC.
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Developing explicitly the above derivatives, and reminding definition (|1.2.28)) of 1ntegrals p o
for general k € K, p,q € Z, one recognizes that, up to some multiplicative constants, r% ~ has the

form )
hN_N(E_U)2_kNI]k\;f,O(x7 g))

with a,a’,b, = 1, p = N, ¥(275¢) replaced with (9v)(27%¢)(27%¢). Propositions and
imply then that [|Opy (k) |l c(r2) + 10PY (P5 ) | o (z2.00) S h, if N € N is chosen sufficiently
large (e.g. N > 9), which implies that the £(L?) and £(L?; L>) norms of the latter operator in
 00),

As regards [Tk, Op¥((z - € — [£])@(27%¢€))], we first remind that the symbolic development of a
commutator’s symbol only contains odd order terms. Consequently, its symbol has the following
development, for a new fixed NV € N and up to multiplicative constants independent of h, k:

(3250 h{r(252) 6~ kDBt )
b welamap (S8 oo [0 € - leba o) + )

3<|a|<N
laf=laz]+|oz]

with

o= (3)" T S e%-zN/;aslaszwlst_f)w%,Mdt

la1[+]az|=N
X 05208 [(x - & — 1ENG27")] | (aty.etm) dydzdndC .

The Poisson braket in the above sum reduces to

n >0 (o) 0522 (U= ok
7,0

hl/2—0c
(3.2.48]), (3.2.47b|) since Oy vanishes on the support of ¢.

An explicit calculation of terms of order 3 < |a| < N, with the help of lemma [1.2.26|and the fact
that \0@] < 1as (z-6—|€))@(27%€) is affine in 2, shows that they are linear combination of products

plel=1olG o)y (L) B2 k) b (€) and hlel= (o= DG 005 (SN 52k €), with v €
N? of length at most 1, |9%bo(€)| <p |¢]717], a new cut-off 7, @, and furthermore

because {’y( ‘T‘g'*g),x & — ¢} = 0, and its quantization acting on Op}(p(27%¢))w satisfies

ha||a|<;o),ya|<xh‘f/|2jf>¢(2kg)ijl(g) plel=el-G=e)zd |( hf/|2 = )@(Z’ké)bo(ﬁ)

L plol-lolG=o)y (}11’5)2_0)@(2—’%)&170(5),

for j = 1,2, where ifcd(z) := Va|(2)2;. From propositions|1.2.27}1.2.30, the fact that |a| > 3, and

that 2% < h=7 we deduce that the quantization of these |a|-order terms acting on Op¥ (p(27%¢))w
satisfy (3.2.48)), (3.2.47D)).

Finally, we notice that integral remainder ?ﬁ, can be actually seen as the sum of two contributions,

one of the form (|1.2.40)), the other like (|1.2.41)), with ¢ = 1 and p = 1. Lemma [1.2.32| implies
then that the £(L?) and £(L?; L>) norms of Op¥ (%) are a O(h), as foretold, which concludes

the proof of the statement. ]
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Lemma 3.2.10. Function ﬁif 1s solution to the following equation:

(3.2.51)
[Dy — Opy (2 € — [ENB27R) Juy (¢, 2) = fi2(t, )
+TFOpp (S(6) (1 = xo)(h~ 15)90(2 ng hf’s ) [h71 [qu(t,tx) + cw(t, ta) + riF (¢, ta)]]
— ih T*Opj (£(€)(Ox0) (h1E) - (W' E)p(27%¢))
—ichT"*Op}! (S(£)¢(2 kf)(axO)(h”ﬁ))'(h"ﬁ)) u,

where g € C°(R2\ {0}) is equal to 1 on suppyp, and there exist two constants C,C" > 0 such
that, for any h €]0,1],k € K,

(3.2.52a) Lt )2 < CRYO(I@™5 ()l + M@ (E, ) 12)

))u

1
(32.52b)  [If#(t ) pee < CRTEY T (1002 T (E, | 12 + ([ (BoQn)FME(E, )| 2)
n=0
with >0 small, f(c) — 0 as o — 0.

Proof. If we consider a cut-off function @ € C§°(R? \ {0}) such that ¢ = 1 on the support of ¢
(¢ being the truncation on u>*’s frequencies), we have the exact equality Op¥ (x - £ — |¢])a™F =

Op¥((z - &€ — |€))@(27%¢))u™*. Moreover, if we assume that its support is sufficiently small so
that w«z = @, and apply operator ¥ to equation ([3.2.42)), lemma gives us the result of
the statement. O

The transport equation we talked about at the beginning of this section will be deduced from
equation , by suitably developing symbol (z - & — |€))@(27%¢). To do that, we first need
to restrict the support of that symbol to bounded Values of z through the introduction of a new
cut-off function #(z). We remind that ¥’ is a concise notation that we use to indicate a linear
combination of a finite number of terms of the same form.

Lemma 3.2.11. Let 6 = 0(x) be a smooth function equal to 1 for |x| < Dy and supported for
|x| < Da, for any 0 < D1 < Dy. Then,

<3£§§ E(mf— E)F(274€)) = Opy (0(2) (x- € — [€)F(274E)) + (1 —0) (2)Op} (- € — [ENF(27*¢))
+ 3 0(2)0py (B1(275)) + O (r(x, €)),
where 0 is a smooth function supported for Dy < |x| < Dy, &1 € C3°(R2\ {0}) and
1088 (1)l (22 + OPE ()2 (12:5) = O(h).

Therefore, Uy verifies
g

(3.2.54)
| D= Opi (0(a) (- € = IgN@(27+0) iy (t.2) = fi' (¢, 2)
+ (1= 0)(@)0p} (- ¢ — [ED@@ NN + 3 @) Oopf (Br(2 eyt
FTEOp (SO0 —x0) (1 )p(2 Oralh”)) [h” [qwu,tx)+cw<t,m>+r5F<t7mm

(
— ik T"FOpp (S(€)(Ox0) (h1€) - (W' )p(27%¢) )
— ioh Tk Opy (Sp(277) (0x0) (7€) - (h7€))T,
where f;¥ satisfies estimates (3.2.52)).
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Proof. Let 6(x) be the cut-off function of the statement. Symbol (z - & — |£])@(27F€) can be
decomposed into the sum 6(z)(z-&—|€))B(27%E) +(1-0)(x)(x-£ —|£])p(27F¢), and by proposition
L2211 we have that
(3.2.55)
(1= 0)(2)(z- &~ [ENP(27"E) = (L - O) (@)t [(x - € — [€N@(277¢)]
h k
: (o€~ €D2.0(2) - (0F) 2 4e) + (.

L o.00) - (2~ ) Fee -
EECR]

—(1 - 0)@)t [P )@ ¢ — léD)] - 5 [axe@)m}ﬂ 5(274) + e 0u0(a)|
— L ab@a]: [ ORI )] + Lo [(2*\51)(6@(? &)] + b (@, ) + (.9,
where function 9,0 is supported for Dy < |z| < Dz, and 75(¢, ) (vesp. 75(¢,z)) is an integral of
the form

h22 - / Rz /1 O(z +tz)(1 — t)%dt 2 5(27%(€ + n))dzdn,

with [v| =0,1 (resp |1/| = 0) and some new 0, € C§°(R?\ {0}). By writing x as (z +t2) — tz,
using that zezh mE = ( )856 i % and making an integration by parts, 75(¢, ) can be rewritten
as the sum over |v| =0, 1, of integrals such as

2ok —ky 2i 1
W / /0 Ola + ) (D)t G2 (€ +m))dzdn,

for some new smooth 6, f, @, 0, p compactly supported, and one can show that, for any «, 3 € N2,
|8°‘8ﬁ[ (r5 +75) (@, hE)]| Sa,p B?27% Sa,p h. Thus (r5 +75)(x, hE) € hSp(1), which means that,
by classical results on pseudo-differential operators (see for instance [11]), Op¥ ((r§ +7%)(z,&)) =
Op™ ((r§ +75)(z, h€)) is an element of £(L?) with norm O(h).

Furthermore, one can also show that ||Op¥ (r§ + 7"2)HL(L2 Loy S h using lemma [1.2.25) and the
fact that, by making some integrations by parts, for any multi-indices «, f € N2, and for a new

B e Coe(R2\ {0)),
’ 020 [(r§ +i) (S hg)]

These considerations, along with continuity of I'* on L2, uniformly in h and k (see [1.2.27)),
imply that Opy (rk + Flf)ﬂff is a remainder f;’. O

< p22k
L2(d¢)

< h.
L2(dg)

/ ()13 *R(E + ) dn

Lemma 3.2.12. We have that |¢| —z - € = 3(1 — |2*)z - £ + e(, €), with

(3.2.56) e(x,ﬁ):;\ﬂ’x—m‘ + - (( é)f)(m—é)(m—i—é)

Proof.

2
61— a6 = 516l [o = |+ 5l€l(1 = o)
1 2
=kl fo = [+ 50— 0 —laP) + 50~ af)a ¢
e ) ) (5
=2l i) e g =) ¢ g =) g o) 750 e

e(z,€)
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Lemma 3.2.13. Let v € C§°(R?), 6 € C§°(R?), and § € C°(R? \ {0}) such that =1 on the
support of ¢ ,and has a sufficiently small support so that v = @. Let also

(3.2.57) B(z,€) == 7(5”}1;5)2_05)@(2%)9(:5) (g;m - fg) m e {1,2}.

For any function w € L*(R?) such that Mw € L*(R?), any m,n € {1,2},

(3:2580) | Opt (0()3(@ ) (m — ) ale] — &0 )T ] < R (ol + Ml 2),
€] .
w =(9— gm w,
(3:2.580) |Opy (8(x)B(27"¢) (wm - |€|)<xn15|—§n>)r ol

W0 ((lw] 2 + [1Mwl|2) + B~ Op}; (B(=, €)€) Muw|| 2,

with 8> 0 small, 5 — 0 as o0 — 0.

Proof. After lemma [1.2.35 with p = 0, we have that

O} <0<x>¢<2’%> (2 — fg) (znlé| - m) Tk = Opy! (B(w,€)(@alé] = ) + Op} (1§ (2. €)).

where, since Op¥ (rf(z, €)) satisfies ([.2.54), the L? (resp. L>) norm of Op¥ (r&(z,£))w is boun-
ded by the right hand side of (3.2.58al) (resp. (3.2.58bf)). We can then focus our attention on
proving that Opl (B(z,&)(zn|€| — &))w verifies the statement.

Estimate (3.2.584]) is a straight consequence of lemma|1.2.33] In order to control the L*> norm of

Opy (B(x, &) (xn|€| — fn))w and prove (3.2.58b|), we start by applying classical Sobolev inequality.
For that, we first consider a new cut-off function @; € C§°(R?\ {0}) equal to 1 on supp@, so
that its derivatives vanish against ¢, and use symbolic calculus to write

Opiy (B(x, &) (wnlé] = &) = Op} (G1(27")) Oy (B(x,€) (wnl€] — &) + O (k1 (2, €))

where T%,l($,f) is obtained using ([1.2.20)), and is analogous to integral (1.2.41]) with p = 1, up
to interchange the role of variables y and z (resp. 7 and () and to consider e W¢=C) instead of
e (rz=y) (which does not affect estimate (1.2.42))). If N € N is chosen sufficiently large (e.g.
N > 11), lemma |1.2.32| implies that ||Op}fb’(r§“\,71)||ﬁ(L2;Loo) = O(h).

Since @1 localises frequencies £ in an annulus, classical Sobolev injection gives that

0wt @127)08 (B, &) (walé] - €)oo
S [|0pi (B(z, ) (2al€] = &) wl[ 12 + | D2Opi; (B(z, ) (wal€] = &a))w]| 2

where, as we previously saw, the former norm in the above right hand side satisfies inequality
(13.2.58a)). As concerns the latter one, we remark that, thanks to the specific structure of symbol
B(x,§), its first derivative with respect to x does not lose any factor h~1/2+9 hecause, when 9,
hits (5%,
(3.2.59)

zlf] — &N ~ - £ z§] — &N~ - Tml€| — €
o, [7( v )} P06 (am — ) = 0G5 ) B0 (T ).
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Consequently, by using symbolic calculus we derive that
D, 0pyy (B(x, &) (zalé] — &) w = h™Op}y (B(x, &) (xalé] — &n)€)w
+ 3 0n (v(2E =5 ) a2 eatebo(e) aslel &)

where Z/ is a concise notation to indicate linear combinations, j € {m,n}, 7, ¢, a are some new
smooth functions, with a(x) compactly supported. Again by lemma [1.2.33] the L? norms of
latter contributions in the above right hand side are bounded by h'=(||Jw]|z2 + |Mw||2).

Finally, we observe that symbol B(z,&)¢ can be seen as

(3.2:60 (2L el ~ €32 00 (@),
which implies, after lemma that
h™Op} (B(w, &) (walé] — £n)€)w = Op}y (B(, )€)Muw + Opa (B P ([|w] g2 + [ Muw] £2)).
O

Lemma 3.2.14. Let e(z,€) be the symbol defined in (3.2.56), 6 € C§°(R?), and ¢ € C5°(R?\{0})
with sufficiently small support so that v = @. There exists s > 0 sufficiently large, and x €
C§°(R?), such that

(3:261a) ||opr (0@)E@ e, ©) )iyt , S BT Tz + VG2, )12),

LS

(3.2.61b)

|omi (0@ e, )ik

S B (I )l 22 + 0By (e €)M, e+ 3 Nz (t, )12
lvl=1

+ ROV + IV 2T @ ise + IRIUEaree) + 1V E oo |U )
< (V&) rae + RNV s) + BN ZaV () [V (E ) aires

_1_
+h72 PV, -)H?psooHU( i

+h (e, i+ 3 108240 g ) I3 )l s

lul=1
+ b2 P (77 D) (0N = v ) (8| (1V (8 ) Lz + [0V (1) 1)

3
+h2 [N =0 ) () | (V) s + 10N ()0
with 8 >0 small, B — 0 as o — 0.

Proof. Since symbol e(z, ) writes as

2 2
o085 3 (o g ol =15 3 (om =)ol - (g g )

m=1

,n=

it follows from lemma that OpY (0(z)p(27%¢)e(x ,5))ﬂ§f satisfies and
0wk (01 e, ) )art|

S (R g2+ MG )12
+ 077 Opy; (B(x, €)€) Ma™
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with B(z, &) defined in (3.2.57), and 8 > 0 small, 5 — 0 as o — 0.

First of all, we remind that B(z, )¢ can be seen as a symbol of the form (3.2.60]), which implies,
from proposition that

(3.2.62a) |0py (B(2,)¢) llc(12) = O(h2 ),
but also
(3.2.62b) 10} (B(z, £)€)wll2 S P (|lw]l L2 + [Mw] 2),

using instead (T.2.48a)). We also recall definition (3.2.41)) of u>"*, denoting concisely by ¢ (&)
function 3(€)(1 — xo0)(h ™€) (27*&)x0 (h7€).

Commutating operators M and Opj’ (¢ (€)), and recalling relation (3.2.10a)), we find that for any
n=1,2,

108} (B, ) MGT (1)1 22 S 108 (B, £)€) Opi (6 (€)M Za™ ), t2)] 20
+||omi (B, )¢) [Omk (€ale] (27 56)2(©)) + Op (1€10nor(©) | Tt ) |
+[|Opi (B, ©)€)Opi (04(6)) [1(tz0) [au (k. t2) + cut,t) + 7 ¢, t2)]]|| 1oy

with u™ defined in (3.1.15), qu, cw and rNF given, respectively, by (3.1.17), (3.1.18) and
(3.1.19). Evidently, the second L? norm in the above right hand side is estimated, after (3.2.62D)
and a further commutation between M and, respectively, operators Opy’ (&,[¢| 71 o(27%¢)2(€)),

Op (1€|0n 1 (€)), by

RO ([t ) L2 + 10pE O (h? €)Mk (¢, )| 2),
for some new y € C§°(R?), and 8 > 0 small, 3 — 0 as 0 — 0.

e Estimate of ||Op (B(z, £)€)Opy (¢1(€))[t(ZnuT)(t, tz)]|| f2: This L? norm is basically esti-

mated in terms of the L? norm of (Z#u)_, for |u| < 2. In fact, after definition (3.1.15]) and the
fact that [Z,, Dy — |Dy|Ju = ‘giz‘uﬂ

D,
(3.2.63) (ZnuNF)(t,t:r):(Znu)_(t,ta:) (|D| )(t tz)

Z / ZyﬁD (& mvi(&—n)oi(n )didn}‘y =tx’

J€{+, }

ior

with D; given by (3.1.14). On the one hand, taking a new smooth cut-off function 61, equal to 1
on the support of 6, using (1.2.46)) with a = 6;, together with (|1.2.47a)), proposition [1.2.27] and

the continuity on L? of the commutator between M,, and Op¥(¢x(€)), with norm O(h="), we
deduce that

HOP}‘Z(B(%5)5)019}{’(%(5))[ (Znu)- (&, t2)]] L2
S Z 1161(2)Op}y (61 (€)M [t(Zow) — (¢, )]l 2 + B[ (Znw) - (8, )l 2,

where, after relation (3.2.12)),

101 (z)Opp (91 (&) Min[t(Znu) - (¢, tx)]l[ L2 < 1(ZmZnu)— (¢, )2 + [[(Znw)-(t, )| 2
+ H91 (%)%(Dx) [Zm Zn NLy| (t, .)‘

2’
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Since

01(F ) o(Do)t = 101, (5 ) 61(Da) + 01 (5 ) [06(D2). 2,

where 01 ,(2) = 01(2)2m and [pg(Dz), o) is a bounded operator on L?, with norm O(t) as
one can check computing its associated symbol by means of symbolic calculus, and using that
27k < =1 = ¢, we deduce from ([3.2.11)) and above inequalities that

(3.2.64)

Hoph (2. )€)Opk (&1(€)) [ Zn0) - (¢, )|

L2(dz)

< Z hI(Z" ) (t, )l e + 122V (& IV & azee + [V E )]
lul=1

V(2 U E oo + IRWUE e ) + 1V E Lo 1UE ) a1V E e

On the other hand, it is a straight consequence of (3.2.62b)) and the mentioned commutation
between M,, and Op}’(¢x(§)), that

(3.2.65)  ||Opy (B(@,€)&)Opy (61(€)) [H(Dn| Do | )~ (t, t2)]|| .
S EB(fat, )| g2 + 1OpE (x(h7€)Ma(t, )| 12),

where, as before, x € C§°(R?).

Finally, by symbolic calculus we have that

h
(3.2.60) Op} (B(, €)€) = Opf (B(a, ©))(hD) + 209} (2B (x, ).
where, after (3.2.59)), 9, B is of the form

(3.2.67) (T E) T tentamte),

for some new v, 0 € C§°(R?). Consequently,

|osi (B 19000 @) 1120 [ 7<Dyemis(é ~ mosadedn]l,.,

L?(dz)

S [xteoDD.2, [ <Dy miyte -~ nyos(nydean)

L2(dx)

(D)2, [ €D (6 m)is(€ — )iy e

L2(dx)

the above right hand side being bounded by

PAVE I IV E 2T E ) e + IRUE o) + 11V E < [U ) a)
< (IV(t, e + RV () ms) + BN ZaV () 2V ()l ires,

with 8 — 0 as 0 — 0, after inequalities (A.31b)), (A.31cd), and (B.1.6a)) with s = 0.

After (3.2.63)), the above estimate, together with (3.2.64), (3.2.65)), gives that the L? norm of
contribution Opl¥ (B(z,£)€)Opl (0(27%)) [t(ZnuNT)(t, tz)] is estimated with the right hand side

of (3.2.61D).

e Estimate of ||Op}(B(x,)¢) [t(tzn)quw(t, tz)] || L2 ()
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We first notice that, after definition (3.1.17)) of ¢, and (3.2.2)) of v,

(3.2.68) tqu(t, tx) = qu(t,z) = g% vOpy (&1)0 — OpY (él>>v Opy, <§§;> ] (t,z),

10p} (B(x, €)€) [t(txn)qu (. t2)] | L2(a) = B~ O (B(=, €)€) [£ndu (¢, )] || 2.

As B(z, &) is compactly supported in z, by symbolic calculus we can morally reduce to the study
of the L? norm of

W™ Opy (B(, €)§)Opyy (61(€))du (¢, 2)
up to a Op2(h™1||qul|/z2), where from (3.2.68),

(3.2.69) 1w (t; )2 S PIOCE ) e [[0(E )]

Using (3.2.66)), (3.2.67)), together with proposition [1.2.27, we deduce that

h= | Opy (B(x, £)6)Opy (61(€)) G (t, )l 12 S B 1OD} (01(€)) (WD) G (8, )| 2 + |G (£, )| 2,
so it follows from lemma below and estimate that

(3.2.70)  h™H|Op}; (6k(€)) (hDz)qu(t, )| 2

< W (e, i+ 3 10BN 2t I GBI

lul=1

e Estimate of ||Op}’(B(x,&)&)O0py (¢(E)) (t(tzn)cw(t, t2)|| L2 ()
As for the previous estimate, we can reduce to the study of the L? norm of
O}y (B(x,€)€)Opy (61 () [t cu(t, t2))],

up to a Op2(||Opp (x(h7E))cwl12), so using (3.2.62a)), the fact that |[tw(t,t-)| 2 = ||w(t, )|l L2,
and (3.1.21a)) with s > 0 sufficiently large so that N(s) > 2, we obtain that

10p} (B(x,€)€)Opy (61(€) [t cw (t, )]l 2
) (WM =) () o IV + 107 ()] 2)
+ 12 [N = o) (Vs + [0 (e

(3.2.71)

e Estimate of [Opy(B(z,£)€)0p} (64()) (1) (1, 2)] 2 an)
Analogously, from ([3.1.22al) we obtain that

10 (B(=, €)€)Op (o (NN F (1, 4]l 12 < ™2 8| (7 Do )rE (£, )] .
SE TPV ) 2ae |U () o

(3.2.72)

Lemma 3.2.15. Let a;(§) be two smooth real symbols of order j = 0,1. Then

(3:2.73) |0k (p(27*)(AD.) [aE)(hD?)aal(th)ﬁ} (t,)]

L2

< pi- 5<||U Mg + Z 10py (x(R7€)) LH0(t, )HL?)HU( Moo

lul=1

193



Proof. Let us split both v in the left hand side of (3.2.73)) into the sum UAgg —i—'ﬁAc , with v, ,vAc
introduced in (3.2.17), with ¥ = 1, and remind mequahty 3.2.20al)) satisfied by VA, Since

lao(hD2)o(t, )|z + lao(hDa)oa,, (¢, )| Lo S BPI[0(E, | g.cc

for a small 8 >0, 3 — 0 as 0 — 0, as follows from lemma [[.2.38 with p = +00 and the uniform
continuity of ag(hD,) from H'* to L>, we deduce that, for any wy,ws € {7, 5Akg,5A;g}, with
at least one w; equal to '17/\29,

|owt (o275 (hD2) [ao(AD:wrar (hD, |

L2

< 14 e, i + 3 108 x(h )20 iz ) 1506 g

lul=1

We are thus reduced to proving inequality (3.2.73) for

|owi(e2*) (hD,) [ao(hD, ), a1 (RDL)BN,, | (1)

Furthermore, by means of proposition [3.2.4, we can replace the action of a;(hD;), j = 1,2, in
the above L? norm, with the multiplication operator by a real function, up to new remainders
bounded in L? by the right hand side of (3.2.73)), for

a;j(hDy)0n,, = On(z)aj(—do(z))on,, + R1(v), j=1,2,

where 0, is a smooth cut-off function, supported in some ball By_,2-(0) for a small ¢ > 0, and

such that |00, ||~ = O(h~27), ¢(z) = /1 — [z[2, and R1(?) satisfies (3-2.23a)). Now,
ADfin,, |2 = (OB (€ + dblw)0n(x))in,,] Ty, — B, [OFETE T+ A0

where ¢ + dg(x) € h™27S5,0({€)) on the support of 6, and

2’

1(hDy — de(2)8n(2))Tn,, (¢, )22 S h'7 Z 10pk (x(h7€)) LHo(t, )| 2,

|u|=0

as follows from lemma [3.2.16] below. This implies, after having applied the Leibniz rule, that
[nDy [ao(—dg(x))ar (—dg(a))0p(x) On,, [ (1, - ]HLQ

< WP (e, B e T W2 )15 e

lnl=1

and the conclusion of the statement. O

Lemma 3.2.16. Let v, x € C§°(R?) be equal to 1 in a neighbourhood of the origin, o > 0 small,
(On(z))n be a family of C3°(B1(0)) functions, equal to 1 on the support ofv(&/(f)) (h7E), with

N
102604 L = O(h=2%17) and (hdp,)*0), bounded for every k. Let also ¢(zx) = /1 — |z[2. Then
|oni6s + sotammnont (+(“ D)o )ite. )|

<A BZ |OpY (X (h7 €))L (L, )| 2,

|u|=0

with 8> 0 small, 8 — 0 as 0 — 0.
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Proof. By symbolic calculus of lemma and the fact that 6, = 1 on the support of

fy(i\/%(f))x(h"{), we have that, for any j = 1,2,

(3.2.74)

O (&5+az0te)n(2)0p (3 (“EE) w007 = 0 (4 (F 2 a6y 6 + o)
+ Y opi (o (“ 2 >) um)
i, s re)
5 2 Onk () (= P €000 () (7))

k=1

S ZOp%(v(“””‘};;@)ak<dj¢<x>eh<x>><akx><h%>)’ﬁ+ OBt (ra(z, )V
k=1

with é?; satisfying ({1.2.67b)) on the support of ’y(%\/%(g))x(h"ﬁ), its L? norm can be estimated
using (|1.2.63a]).

On the other hand, as 9y vanishes in a neighbourhood of the origin, the L? norm of the second
and third term in the right hand side of (3.2.74)) can be estimated using (3.2.18a}).

The two remaining contributions to the right hand side of (3.2.74]), that already carry the right
power of h, can be estimated with A'=8||5(t,-)|| 2 simply by proposition |1.2.36 O

We can finally state the following result:

Proposition 3.2.17 (Deduction of the transport equation). For any fited T > 1, D > 0, let
L = {(t,2) : 1 <t < T,|z| < D} be the truncated cylinder, and assume that (u,v) is solution

to (LLI)-(T12) in interval [1,T]. Then function Gy (t,z) =Y, ﬁif(t,x) is solution to the

following transport equation:

h ~
—(1=2|z*)| T}, (t,2) = Fu(t,x), Y(t,z) € €],

1
(3.2.75) D; + 5(1 — |z|*)z - (D) + 2Z_(
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and there exists s > 0 sufficiently large such that

(3.2.76)
[ Fw (t, )l Lo

S APt g+ 110pi Oc(h €)Mt )| z2 + 1 (Bon) @™ (8, ) 22 + Z (602 )* Ma™* (¢, )] 2
pn=0

+hz BHXlt "D, )( M=o ) ()| (VS Warzee + 0™ (8 ) i)
+h§_6|| M=o ) () g (IVE ) e + [0V () ae)
+h7 27 xa(t™7Ds )Q(UNF v) () (IV (2, ')||H2$°°+||UNF(t7')||H1v°°)
+ 3PN — o) ()| e (Ve + 10N (@) )

1
N =0 ) () Z 19V (&l + 12087 (2, )l 2)

S (ORI £ 3 I0MTE)L e )5 ) g

|pu|=1

+RTEAV () U (%)
WPVl IV ) par (U e + (R U ) )
V(e (IG5l e + 1RO 38 ) DU ] 19V (2, ) 2
R IV e (UG + QU)o
+ (|U(t, ) g2 + |RLU(E |2 ) [V (E, ')HL?} IV (& 7o

+RES (27 u) ()l + 2P [IIV(t, M + V&2 (JUE ) e + [RLU(E )| 1r000)
lvl=1

+ V(& )= U2, ')HHl} UVt M raee + RV (E ) mis) + RPN ZoV (& IV ()| e
+hT 2OV ) o U ),

for some x € C§°(R?), and 3> 0 small, 3 — 0 as o — 0.

Proof. By the assumption in the statement, all that we are going to say is to be meant in time
interval [1,T]. We also remind the reader that, by the definition of ﬁff in (3.2.44a)) and of u>*
in (3.2.41)), the sum defining ﬁ%w is finite, and restricted to indices k € K :={k € Z : h <2F <
h=7}.

In lemma [3.2.11{ we proved that, for any k € K, any two constants 0 < D; < Ds, function u/z\ ok

is solution to (3.2.54), with 6 (resp. ) being a smooth function equal to 1 in closed ball Bp, (0)
(resp. supported for D1 < |z| < D2), 3,81 € C§(R%\ {0}), xo € C(R?), qu, ¢y and 7T
respectively given by (3.1.17), (3.1.18)) and (3.1.19)), and f* verifying (3.2.52).

On the one hand, reminding (3.2.68)) and using the L> — L> continuity of operator I'"’F with
norm O(h™?) (see proposition [1.2.29)), together with the classical Sobolev injection, and the fact

that

(3:277) |oprEE©@ - xo)(e Ox (k)| |
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with p = op if p > 0, 0 otherwise, we find that

(3:278a) |T"*0p (S (1~ xo) (W €)p X0 (h7E) tau (t, )]
S B Gu(t, Mz + 0P OpR (27 )) (D) (8, )
so from and, it is bounded by

(3.2.78b) w8 (e, ) e+ 3 100 (o)) 253 Wiz )15 g1
|n|=1

On the other hand, using proposition estimate and the fact that the commutator
between Op (2(€)(1 — x0)(h™1€)p(27%¢)x0(h7€)) and €, is also continuous on L? with norm
O(h™#), and equality ||tw(t,t-)||r2 = ||w(t,-)||r2, we deduce that, from (3.1.21a), (3.1.21¢c) (in
which we choose s > 0 large enough to have, say, N(s) > 2),

T 0Py (Z(€)9(277€)) (h™ ew(t, t))l| o
S (7 D) (0N = v ) ()| o (Ve + [0V (e

+ [N — 0 ) () [ (VG s+ 10T () o)

(3.2.79) + 1317 HXl(t_"Dx)Q(vNF —0)(t )| o (Ve + 10V (8, rnoe)
+ 673N — o) (8, (||v s+ 108 () )
+ 2N = o) (1) e xZ 12V (&) s+ 1207 (1)l 2)

for some x; € C§°(R?), and from (3.1.22a)), (3.1.22d) we get that

[P0 (S(E)p(2 ™€) (0¥ (1, 1)) e S 121V (0, )3 NUE,
IVl IV e U i + IRl )
(3.2.80) Ve (068 + IR ) N0 s 19V (2, )l o
Ve U + 190 ) 0)
U e+ IRIT(E )z ) [Vl g2 IV (8l o

for a small >0, 3 —0as o — 0.

Moreover, since function (9xo)(h~1€) is localized for frequencies & of size h, we have that
ihTFOp ((9x0) (K1) - (h71€)(27%¢))u appearing in the right hand side of (3:2.54)) is non-
zero only for values of k € Z such that 2 ~ h. In that case, by commutating I'*"* with
Opy ((9x0)(h7YE) - (R1)p(275¢)), and using the classical Sobolev injection, together with
proposition we have that

(3.2.81) |inTetopy ((0x0)(h716) - (2RO i, )| S mlct, e

L

Since (Oxo)(h7€) is, instead, localized for large frequencies |£| = h™7, by applying the semi-
classical Sobolev injection and lemma [1.2.39] we find that

(3.2.82) |ioh T 0Py (w(275) (Ox0) (7)) - ()it )|| | S B it ),
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with N = N(s) > 1 as long as s > 0 is sufficiently large.
After lemma [3.2.12

— O (0w (- € — |ENB2 )T = SOk (0() (1~ o)z - €32 He) )
+ Op} (B(x)e(z, ) B2 )iy,

where e(z,€) is given by (3.2.56)) and latter term in the above right hand side satisfies (3.2.61)).
By symbolic calculus we find that

SO0k (002) (1 = o) - €5(2+)) 75

= 0x) [0~ la)a - (hD) + (1 — 2la)] Opf (B2 )

L (@0)(x) - 2(1— [o)0p (B2 RO
+ > 11 (@)} (1275 n + Opi (r(w, )iy,

with >~ being a concise notation to indicate a linear combination, 96(z) supported for |z| > Dy,
some new 61 € C§°(R?), $1 € C°(R? \ {0}) coming out from the derivatives of @, and 7(z, )
integral remainder of the form

N
(:h)2/eh’7z/ On(x+t2)(1— )N dt on (27" (& +n))dzdn,

for some Oy € C(R?), oy € C3°(R?\ {0}), and N € N, verifying that

(3.2.83) 10py (r (2, )l ¢ (L2;100) = O(h)

if N is taken sufficiently large. Therefore, from the L? — L? continuity of I'""* by proposition

1.2.27, and from (3.2.77)),

|optr@.enaytia)| <ttt e

Moreover, since @ = 1 on the support of ¢ (which defines 4™*), we can replace Op¥ (p(275¢ ))ﬂff
with " >k up to some remainders Ope (hV||@||;2) with N € N as large as we want, obtained
from symbohc calculus, by commutating Op}’(¢(2 —k¢)) with I'F, and successively using remark
. For the same reason, since @1 is obtalned from the derlvatlves of ¢, and hence vanishes
on the support of ¢, all terms 610p}’ (p1(2 k§)) s ¥ are remainders Oz (B ||i]|2) with N € N

large. Therefore, we deduce that

— Op (0w - & ~ 6B = 0() 51~ e} - (D) + 5 (1 — 2l

+%“‘”)(%)'%(1—!%!2) * oy opy (8(2)p(27 ) e(x, €)) Tt
+ Opee (WP (1, ) 12),

which implies, summed up with estimates from ([3.2.78]) to (3.2.82), that for any &, ﬁif is solution
to

[Dt+9( )1(1—I=’E!) ~(hDyz) + 6(x )h(l—Q\x!) Uyt (@) = Fy(tz)

+ [ 0)(@)Op (-6~ DB +€) + @) 0pf (B1(274)) — 1-(00) () - 2(1 o) | T )
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where FFE(t,z) satisfies (3.2.76)).

Therefore, choosing D1 = D, we obtain that ﬂ%w is solution to (3.2.75) in cylinder €%, with
Fy(t,x) :== 3, FX(t,z) (this sum being finite and restricted to indices k € K) satisfying the
same L™ estimate as Ff,, up to an additional factor h™°. ]

3.3 Analysis of ODEs and end of the proof

In previous section (see proposition [3.2.7) we firstly showed how to propagate a-priori uniform

estimate (|1.1.11b)) on the Klein-Gordon component v_, in the sense of deducing (|1.1.12h]) from
estimates ([1.1.11)). We then passed to the study of the wave equation, and proved that, if (u_,v_)

is solution to in some interval [1,7], a new certain function ﬂ%w, defined from u_, is
solution to transport equation in truncated cylinder CL := {(t,x) : 1 <t < T,D > 1},
for any D > 0. The aim of this section is to study such a transport equation, in order to deduce
some information on the uniform norm of its solutions. This will allow us to finally propagate
a-priori estimate on the wave component u_, and to close the bootstrap argument. At
the end, we will give a short proof of main theorem [1.1.1

3.3.1 The Inhomogeneous Transport Equation

The aim of this subsection is to study the behaviour of a solution w to the following transport
equation

1

(3:3.1) D 50— e (hD2) —

(1= 20| w1,

in a cylinder € = {(t,z) : t > 1,|z|] < D}, for a large constant D > 1, and where f =
Ope(et™18), e > 0 small, 0 < 8 < 1/2. We distinguish in € two subregions:

to\3 t \3
I = {(t,x):t21,|x| < (t—l)Q,m gD}, Iy = {(t,:n):t>1, (t—l)Q < || gD},

and denote by I, Io; their sections at a fixed time ¢ > 1,

t \3 t o\
I = { : <7) , <D}, Iy = { : <7> < <D}.
L=zl < (p—7) el = =i () Slhels

The result we prove is the following.

Proposition 3.3.1. Let € > 0 small and w be the solution to

(3.3.2) { [Di + 3(1 = [z*)z - (hDy) — 5;(1 = 2[z[})] w = f,

w(l,x) = ewy(z),

with f = Opec(et™'%8), for 0 < B < 1/2. Let us suppose that |wo(x)| < (x)72, and that
lw(t,z)| < et? when |x| > D > 1, for some § > 0. Therefore,

(35.3) wit, )| S ellwoll=t® (1+ o) =3+ 1 al) =3+,

for every (t,x) € Cp = {(t,z)|t > 1, |z| < D}, with " = max{3, 5'}.
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I

Figure 3.3: Regions I7 and I» in space dimension 1

t

Figure 3.4: Characteristic curves of initial point (7;,z;) € I1, i = 1,2, in space dimension 1

We observe that, if W (t,x) =t tw(t,t12), the above inequality implies that

1 _l.gn
W (t,2)| < ellwolloe (E+ |2]) 72 (1 + [t — [a]) 7277,

showing that the uniform norm of W(t,-) decays in time at a rate t~1/2

t=1+8" out of the light cone t = |z|.

In order to prove the result of proposition we fix a time T' > 1 and = € Bp(0), and look
for the characteristic curve of (3.3.2) with initial point (7', x), i.e. map t — X (¢; T, z) solution of

, which is enhanced to

(3.3.4)

{jtxu; To) =5 (1 - XGToP) X6 Te)

X(T;T,z)==x
Lemma 3.3.2. Solution X (t;T,x) to (3.3.4) writes explicitly as

Vi
(T — (T —t)|z?)?

(3.3.5) XtT,z)=

il

and it is well defined for all t > T(1 — |z|~2). Moreover, if t > T is fized, map v € R?

1
XT, G{x < (== 5} s a diffeomorphism of inverse Y (t, - VTy
(1) € {Jal < () feomorphism of (t) = — Sy
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Proof. Multiplying equation (3.3.4) by 2X (¢; T, x), we deduce that | X (¢t; T, z)|? satisfies the equa-
tion: J )

FXET o) = - (1= X6 T,2)) X (6T, 2),
from which follows that 1 — |X(;T,x)|* = % Injecting this result in (3.3.4) and
integrating in time, we obtain expression (3.3.5) and observe that the map we obtained is well
defined for all ¢t > T(1 — |z|~2).

Let now suppose to fix ¢t > T. In order to prove the second part of the statement, we fix
1
Yy € {|1‘| < (#)5} and look for Y (¢,y) such that X (¢;T,Y (¢,y)) = y. In other words,

)= VY (t,y)
= T
(T = (T =Y (t,9)*)>
1
which implies that Y (¢,y) = %, and this map is well defined as long as |y| < (ﬁ)E
(t+(T=t)lyl*)2
O
Along the characteristic curve X (¢; T, z) function w satisfies
d 1 9 .
aw(t,X(t;T,az)) = —2—t(1 —2IX(t;T,2))?) w(t, X (4T, z)) +if (6, X (T, 2))
17T —T|z|? - t|z|? ,
=—— t, X(t; T t, X(t; T
2t T (=g WX ET ) +if (L XET ),
and then
d P 1T —T)z|? - 7]z|?
3.3.6) — — d t, X(t;T,
(336 G [(e"p 7 T e ) e X ET )
1T —T|z)? - 7|z)?
=1 — d t, X(t;T :
Z<6Xp 7 21 T— (T —7)af? T)f(’ (T.2))
Lemma 3.3.3.
Y1 T =Tl — 7]zf? t N\ (T = T|x|* + t]z]*\ -1
(3.3.7) exp [ — o = 7zl dr = (—) 2( [ + t]a] ) .
21 T—(T—71)|z? T T
Proof. The result follows writing
AT T -7z 1 |22
2r T— (T —7)|z2 21 T -Tz]?+ 7|z’
taking the integral over 7 € [T, t] and then passing to its exponential. O

Let us first study function w in I, so assume that 7' = 1. Integrating equality (3.3.6) over [1,¢],
we find that

t11-— |x\2 — 7'|93|2
211 — (1 —7)|z|?

t S 11— |z?— s]z)?
=w(1 ; ————d X(s;1 d
w( 71.) + Z/l <eXp 1 27_ 1 _ (1 _ S)’x‘g S) f(87 (87 7‘%.)) 87

(3.3.8) <exp 1 dT> w(t, X(t;1,2))
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so using (3.3.7) and the fact that f = Op(et~'*+#), we obtain that

(339) |w(t, X(t1,2))] <t72(1 - [ + tle2)w(1, )
ds
1—|z]2+ s|a:|2)s%7ﬁ .

t
T+ Ot (1— |22 + t\x|2)/ :
1

Lemma 3.3.4.

(3 3 10) /t ds < t%_‘—ﬁ (1 + ‘ |)71+25+5'
. ~ iy )
U (1= |22+ s|z2)s2 8 T (L Vi)

forallt>1,0<3<1/2, 8/ >0 small.

Proof. For \/ﬂx] < 1, we have that

t 318
/ - St p = (1 [a])
1 (1= |2)? + s|z[2)s2 B (14 Vt|a|)1+26

Suppose then that v/t|z| > 1. For ¢ < 2,

t ds
/ < (14 J2l)?log(1 + [2?)
L (L Jap 1 sle?)si P

B
and |z|"%log(1 + M%% < (14 |2))~+281og(1 + |z/|?), so we immediately derive in-
t2
equality (3.3.10)). If ¢ > 2 we can split the integral as follows

¢ ds 2 ds t ds
2 Nt B 2 2\ 2B + 2 N ez—B"
1 (1—|z|>+ s|z|?)s2 1 (1 —|z|? + s|z|?)s? 2 (1 —|z]? + s|z|?)s2

where the first integral is bounded from the right hand side of (3.3.10). The second one is less

or equal than flt_l W, so if |z| > 1 it follows that

t—1 t—1
ds ds
/ — < Iw\_Q/ 7 S (L+]z]) 72
1 (1+s|z[2)s27F 1 52 f

for all 0 < 8 < 1/2, and since (Vi) r20 < (14 |2[)**2P, this implies the right bound of the

1
PR
statement. If |z| < 1, a change of variables gives us
t—1 (t=1)z|? 2)3+5 148
= R e e e
1 (It fzfPs)sz P o2 (1+5)s277 (L+t2[?) =z~ (L +t|zf2)2t7
O

If initial condition wq(x) is sufficiently decaying in space, e.g. |wo(x)| < (z)72, we deduce

~

from inequalities (3.3.9) and (3.3.10]) the following bound for w along the characteristic curve
X(t;1,x):

(3.3.11) Jwit, X (t: 1,)| S ellwol| oet” (1 + Vi)' =2 (1 + || 7120

0<B<1/2,8 >0 small.
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Figure 3.5: Characteristic curve of initial point (7, z) € I

Proposition 3.3.5. Let w be the solution to transport equation (3.3.2)), with ||f(t,-)||pee <
et~ B and initial condition |wo(x)| < (x)72, Vo € R, Then

1
(3.3.12) w(t, )] Set? [t 4|1 — [2]]] 27,

1
for every (t,z) € I = {(t,x) : t > 1,|z| < ()7, |z| < D}, and 0 < B < 1/2.

1

Proof. Inlemmal3.3.2, we proved that, fixedt > T =1,z € R? — X(t;1,2) € {a: |2] < ()7}

is a diffeomorphism with inverse Y (t,y) = y(t + (1 — t)|y|>)~'/2, so from inequality (3.3.11]) we
1

deduce that, for any y such that |y| < (+45)?,

w(t,y)| S et (L+ VIV (L)) (1L + Y (8 y))) 207

[

In particular, as t(1 — [y|?) + |y|?) ~ |1 — |y[*| + |y|* when |y| < (45)2 and t >ty > 1, and

t1 — |y|?| + |y|* ~ t|1 — |y|| + |y| when |y| < D, we find for those values of (¢,y) that

1-28
t _1
it S et (14— YW ) o ety

UL — ol + 1)

simply using that (14 |Y (¢, y)])~1T2+8" < 1. Moreover, for t — 1 and |y| < D,
_1
w(t,) Se e’ [+ 1yl 72",

O

Proposition 3.3.6. Let ¢ > 0 small and w be the solution to transport equation (3.3.2)), with
£ (t, )z < et 8, and suppose that |w(t,z)| < et? for |z| > D, B, > 0 small. Then

w(t,z)| S et? (> — 1) 77,

N[

for every (t,z) € Iy = {(t,z) : t > 1, (45)2 < |#| < D}, with 0 < 8 < 1/2, 8" = max{8, 5’}

Proof. Fixed a point (T, z) € Iz, we consider the characteristic equation with initial point (7', x),

X(t;T,x) = %, and observe that there exists a time 7%, 1 < T* < T, such that
(T—(T—t)|z|?)2
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X (t;T,x) hits the boundary |y| = D at t = T™*. In other words, ¢ = T™* is the first time when
X (t;T,z) enters in the region {(¢,z) : ¢ > 1,|x| < D}, to never leave it again (for function
t— | X(t; T, )| is strictly decreasing), and time 7™ can be expressed in terms of T" as

D2
(3.3.13) T = (- 2| )T < T.

Integrating expression (3.3.6]) over [T*,T] and using (3.3.7)), we find that

T*)§<T—T(1—\w|2)

w(T,2) = () (7= o |x|72)>w(T*,X(T*;T, z))

+i /T (;)é(f__TT((ll__’Lj’__j)))f(t, X(T,x))dt.

From (3.3.13)), T* - T(1—|z|72) = 5751 — 2| )T, & = Dg?il(l — |z|72), and if we knew
that |w(t,z)| < et? whenever |z| > D, for some 3’ > 0, we could control the first contribution
in right hand side of previous equality by Ce(|x|? — 1)_%(T*)5/7 for a constant C' > 0. In the
integral term, |f (¢, X (t;T,z))| < et~'*# by hypothesis, thus

T

[ LT sy v -y i

T
=T / (t=T* +c(1 — |2|~2)T) "t 2 404t

*

T-7*
SeTé/ dt 1
0 (t+c(l—|z|2)T)tz"F

1

SeT3((1—[2[)T)" 72 = eTP(1 — [272)7 72,

_ 1
for ¢ = 55— O

3.3.2 Propagation of the uniform estimate on the wave component

Proposition 3.3.7 (Propagation of the a-priori estimate on U, RU). Let us fizt K1 > 0. There
exist two integers n, p sufficiently large, with n > p, two constants A, B > 1 sufficiently large,
and g €0, 1[ sufficiently small, such that, for any 0 < € < &g, if (u,v) is solution to -
in some interval [1,T], for a fited T > 1, and uy,vy defined in satisfy a-priori
estimates (1.1.11)), for every t € [1,T], for some small 0 < § K Jg K 61 <K g, then it also verify
(1.1.128) in the same interval [1,T].

Proof. We warn the reader that, throughout the proof, C, 3,3’ will denote some positive con-
stants that may change line after line, such that 8 — 0 as 0 — 0 (resp. ' — 0 as §,0 — 0). We
also remind that h = 1/¢.

In proposition we introduced function u™*', defined from u_ through (3.1.15)), and showed
that its HPT1°° norm (resp. the HP+1:°° norm of R;u™N*") differs from that of u_ (resp. of Rju_)

by a quantity satisfying (3.1.20b)) (resp. (3.1.20c])). If n is sufficiently large with respect to p (at
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least n > p 4 18), a-priori estimates (1.1.11b]), (1.1.11c]) give that

2
(3314 (8 Mgz + D IRy (8 gz
=1

2

)

<Nt ) oo + D IIRGuN T (E, ) [ moce +2AB* 12,
j=1

for every t € [1,T]. We successively considered (¢, z) := tu™*(t,tz), and decompose it as in

3.2.38)), with $(&) = (£)? or X;(€) = (£)P&;|¢|7, 7 = 1,2, showing that it satisfies (3.2.39) (resp.
3.2.40))) when restricted to small frequencies [¢| < ¢~! (resp. large frequencies |¢| 2> 7). So we
focused on u>F, defined in (3.2.41]), and localized for frequencies supported in an annulus of size

2F with k € K = {k € Z : h < 2% < h™9}, and further split it into the sum of functions ﬂif,
Uy (see (3:2:44)).
On one hand, from inequality (3.2.45b)) and lemma we deduce that

g (2, ) oo < Cet?,

for every t € [1,T].
On the other hand, we proved in proposition that, for any D > 0, and any (¢, x) in trun-
cated cylinder €], = {(t,z) : 1 <t < T,|z| < D}, uy (t,z) =3, ﬂif(t,x) is solution to in-

homogeneous transport equation (3.2.75)), with inhomogeneous term F, (¢, z) satisfying (3.2.76)),
B.2.14

and hence such that ||Fy(t, )|z~ < Cet~'*# in time interval [1,T], after lemmas
below, and a-priori estimates (1.1.11). We notice that |ﬂ§w(1, z)| < e(x)~2 for every x € R?, as

a consequence of the fact that e (z)uy € L? (if not, ||(-) 7|2 < e |[()ay, (1,-)]z2), because
X, (1, ) g2 + 2T, (1) 2 S (1, )l 2 + 0py (e (h7€)Ma(L, )| 12 < Ce,

by definition (1.2.45)) of M, symbolic calculus, and proposition [1.2.36, Moreover, if D > 1 is
sufficiently large,

~ log |z, _ w ooy w o ~
(3.3.15) [Lppspik, (b o) sc|x’|'h (0w (€N )ia(t, 2 + 108 (e(h7€)M(t, ] 12)
S Celc)gimf;ﬁ/’
B

as follows from lemmas [3.3.9] and [B:2.1] and then proposition [3.3.1] implies that

~ ~ / 1, _ _1 /
[, (6 2)] S 1R, (1, Meeet” (14 |2)) 72 (7 4 1= Jal) =, v(t,0) € €,
with [|ay, (1,-)[z~ < Ce.
Summing up,
/ _1,4 5 ’
@ (t,2)| < Ce []legtﬁ (1) "2 (¢ + 11— |a]) 2”} +Cet?,
for every (t,x) € [1,T] x R?, Ler denoting the characteristic function of cylinder €L, and this
means, returning back to function u* via , that

2
(3.3.16)  [(Dy)PuF(t,2)| + Y [(Da) RjuNF (¢, 2)| <
j=1
e []l{h:ISDt}(t +a) 72 (L [t |z)) 72|+ et
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Finally, reminding definition m (7i1) of space H”*°, injecting the above inequality in (3.3.14)),
and choosing A > 1 sufficiently large such that C < 3‘%, o > 0 sufficiently small so that
CBeg < (3K1)~!, we deduce enhanced estimate (1.1.12a). O

Remark 3.3.8. Beside the propagation of estimate (|1.1.11al), by combining inequalities (3.3.14))
and (3.3.16)), together with ((1.1.5)), we also deduce the following inequality

Drut, 2)] + [ Vaut, 2)] < Ce [Lai<pay(t + 2) 3 (L+ [t — [all)7547] + e+,

which shows the optimal decay in time s enjoyed by the wave solution u out of the light
cone |x| = t.

Lemma 3.3.9. Let x € C°(R?) be equal to 1 in a neighbourhood of the origin, and o > 0
be small. Let also ¢ € C°(R?\ {0}). There exists a constant C > 0, such that for every
h €]0,1[, R > 1, any function w(t,z) such that w(t,-),Op¥ (x(h7€))Muw(t,-) € L*(R?),
(3.3.17)
1
le(5)omrtcnenut. )| < CR™ (tog R+ 1og hl) . 09k (e(A7€)Nw( ) 12
Iv|=0

oo

Proof. Let us fix R > 1 and, for seek of compactness, denote Opy’(x(h7€))w by wX. For a new
smooth cut-off function y1, equal to 1 on the support of y, we have that

X

w(%)()p}f(x(h"ﬁ))w = Opy, (x1(h7¢)) [@(%)w"} + [w(R),Opk“(xl(h”@) wX,

where the symbol associated to above commutator is given by

ralie€) = = [ | [ (SHE it @€+ e,

as follows from (1.2.19) and integration in variables y,(. Since (9x1)(h?&) is supported for
frequencies |¢] < h~7, and R™!, h'T? < 1, by making a change of coordinates /h + 7, and

: 2in-z _ (1=2in-0;\ (1-2i2:0y\ 2in-z : : :
using that e = ( ]2 )( T2 )e , together with some integration by parts, one can

check that H@;‘@? [TR(%, hé)] Ir20ae) S R, for any o, 8 € N2, and hence obtain that

10p; (i (2, €))wX(¢, )|z € R™HlwX(E, )l 2,

after lemma [[.2.25]

Successively, taking a Littlewood-Paley decomposition such that

SRy

O+ Y a-a(r)ue o e,

hR=1<2i<h—©

MGGENE
with ¢ € C§°(R?), ¢ =1 close to the origin, 1 € C§°(R? \ {0}), we derive that
Ba18) [omeateene(F)e] @], <[om (o(Fe)uwmea)fo(f)u e

+ > i

Opi: (1= 0)(5:€) w7979 [ 5 ) w¥| &)
hR=1<j<h=°

Lo
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and immediately notice that

(3.3.19) HOp}f (o(3e)ae) [o (%) w¥] ¢, .

6(RD,)OpY (1 (h7€)) | (5 )| (8. )|| < RVt )l e,
H ()] e,

just by classical Sobolev injection and uniform continuity of Op¥ (x1(h?€)) on L%

On the other hand, introducing operators Oz, @I_%l, where Oru(z) := u(Rx), G)I_%lu(a;) =u(%),
we have the following equality,

(3320) Opf (1~ ) () w2 (w0)) [o(5 )]
¢

= (05 0nt,, (1= 0) () ¥l (726) ) (@),

J

with hgj = % < 1, and by hgj-symbolic calculus (that is proposition |1.2.21f with h replaced
by hg;),

Ont, (1= 0) (o )l (1729 ) ola) =
Onk,, (1= 0) (o WO (H720)0()) + Oy (12 ).
with
(o) = gt [ [ o100 (5 viena e | pyt] 00+ v

Similarly as before, one can prove that Haga? [T(Lgy, hé )] < 1, observing that no negative

2 ae)
power of hg; appears in the right hand side of this inequality, for the product of 1(§) with any
derivative of (1 — qﬁ)(%) is supported for hp; ~ |£] ~ 1, and hence that operator Op}’l’Rj (r(z,€))

is uniformly bounded from L? to L, thanks to lemma |1.2.25| Consequently,
|08, (r(@, )0 RwX (1, )| S 10RWX(E, 12 S BT (e, Y12 S R (e, )2

Symbol (1 — ¢)(%)¢(f)x1(h”2jf)¢(x) is supported for |x| ~ |{| ~ 1, so we can write it as

§

hrj

(1= 9)(7= ) (O (7P E)e(a)

2 (1= 0)(72)v(Exa(h72€)p(a)(Rmy|27€] — 27&)

|Rz|27€| — 27¢2 (Rxi|27¢| - 276),

ap (Ivé)

=1

with a;(z,€) € R712778; (1) as long as R > 1, and by hp;-symbolic calculus

2
(1-0) (55 Je©x (Do) = 3 mlr O] (Ra|Pe] ~ V6)T(E)] +ry(a.6)

hr; =1

with ¢ € C§°(R? \ {0}) such that Y = 9, and TRj € hrjSo0(1). From semi-classical Sobolev
injection it follows that

10p}, (rRj(2, ©)ORWX (¢, )|z S |ORwX(E, )l 2 < BTHwX(E, )l 2,
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while

(3.3.21) B
Opi, (a(,€))Op,, ((Rur|27¢] — 29€)(€)) © g

— Opty, ((w,€))Or | Opy ((w1]€] - €)B(277€))w]
o h . -
= Opl, (. €)Or [ OBk (B2 Opf (wile] — O — 2 Opp((2796) - () 2w,
Last thing to do to conclude the proof is to study continuity of operator Op}ij (a(z,€)).

Lemma 3.3.10. Operator Opj) (al(m €)): L? — L™ is bounded, with norm

HOpqiluRj(al(x’5))HL(L2;L°°) <h

Proof. The result comes straightly from lemma[1.2.25/ Indeed, since symbol a;(x, &) is compactly
supported in z, there is a smooth cut-off function ¢, € C§°(R?\ {0}), ¢1¢ = ¢, such that

w x+y
081 ala, )] S Nwlzan [ [or (55 [ ; wm)} o™
and, for o] < 3,
[ (x+y he €>]
L2(d¢)
R (1= ¢)(©)v(hi€)x1(hrih®27€) o1 () xl+yl ]
1 P [ < R €l -
% ( [0 (i) ) G
€2 Y h
where ¢ € C§°(R?\ {0}). O

Finally, summing up all formulas from (3.3.20) to (3.3.21)), and using lemma |3.3.10, we obtain
that

lomt (0 -0 (Ge) e e re) [ (5 )wx(e. )] | . < B Ut )l + 10wt )12,

for any index j € Z such that hR™' < 2/ < h™7, so injecting the above inequality, together with
(3-3.19), in (3.3.18)), and using that [M, Opy’(x(h?E))] = iOp}’ ((Ox)(R7€)(R7|£])) is uniformly
continuous on L%, we deduce (3.3.17) (the loss in log R + |log k| arising from the fact that we
bounded a sum over indices j, with logh —log R < j < log(h™1)). O

3.3.3 Proof of the main theorems

Proof of theorem [I.1.9. Straightforward after propositions [2.2.12] [3:2.7] B:3.7] O

Proof of theorem[1.1.1] Let us prove that, for small enough data satisfying ((1.1.4)), Cauchy prob-
lem (|1.1.1))-(1.1.2) has a unique global solution. This result follows by a local existence argument,
after having proved that there exist two integers n > p > 1, two constants A’, B’ > 0 sufficiently
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large, €9 > 0 sufficiently small, and 0 < § < d9 < 1 < dg small, such that, for any 0 < € < &g, if
(u,v) is solution to (L.I.I)-(1.1.2)) in [1,7] x R2, for some T > 1, with 9, ,u € C°([1,T]; H"(R?)),
v e CO[1,T); HMH(R?)) N CH([1,T]; H*(R?)), and satisfies

(3.3.22a)
2
10u(t, M osr.0e + [IVarlts )| gorroe + [ Dalult, )l gorroe + Y ROt )| oo < Alet™,
j=1
(3.3.22b) 10cv(t, Y meoe + [0t )| gosroo < Alet™

[
(3.3.22¢) |Opu(t, ) lam + [ Veult, )llam + 100wt )l + IVav(t, llam + ot )| an < B'etz,

(3.3.22d) > [0 ult, gz + Vel ult, )2 + 10T o(t, )| g2 + VeI o(t, )| 12
\I|=k

I ) 08k
+||F v(ta')HL?] < B'et ™2 ) ]-Skg?)a

for every t € [1,T], then in the same interval it satisfies

(3.3.23a)
2 A
10wt | zzor.00 + I Varslts M pgoeroe + |1 Dalult, M osroe + > ROt )| gosroe < 2¢et
j=1
A/
(3.3.23b) 0v(t, )| moee + [0t )| gosroe < ?st_l,

!/

B s
(3.3.23¢) [|0cu(t, )l + [Voult, )l + 100t )z + Voot llan + ot )l < —-etz,
(3.3.23d)

(3323¢) >[0T ult, )llz2 + [IVaT ult, )2 + 10T v(t, )2 + VT o(t, )l 2
\I|=k

3—k

I B' s
+IT (¢, )| p2] < et 7 1<k<3.

We remind that, if I = (i1,...,4,), with ¢; € {1,...,5}, is a multi-index of length |I| = n,
't =T, -- Ty, is a product of vector fields in family 2 = {Q, Z;,9;|j = 1, 2}.

A in
We can immediately observe that the above bounds are verified at time ¢ = 1 after (1.1.4)) and
Sobolev injection. By definition (1.1.5)), we also notice that

(3-3.24a) Jux(t, )l go+1.00 + Z IRjus(t, ) pro+1.00 < 20| 0pult, )| protr.00 + 2/|[Da|ult, ) o+

j=1

2
Z 105u(t, M mo+1.00 + [IR;Opult, )| osro0)

(3.3.24b) s (b0 < 200500t Y zmee + 20t ) prosioe,
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and, conversely,

(3.3.25a)
[0cu(t, )| ro+1.00 + ([ Dalult, )l gosrce + Z [05u(t, ) o100 + [[RjOru(t, ) | otroe) <
7=1
2
s (& Moo + Nl (M morroe + D (Rjus (8 ) | oo + [Rju(t, )l osioe)
7j=1
(3.3.25b) 10c0(t, )| oo + [0t ) o100 < g (8 )| mooe + Jo-(, ) 000

Moreover, reminding definition (T.1.9) of generalized energies FE, (t;us,vy), E5(t;us,vy), for
n>3and 0 <k <2, and of set Jlg in (2.1.17)), there is a constant C' > 0 such that

(3.3.26a) C~ g, (tug,ve) < [H@tu(t, )HHn + || Vau(t, )HHn
O, M + Va0t M + [0t ) im] < CEn(t;us, v,

and for any 0 < k < 2,

(33.26b) C'Ej(tus,vq) < Y [0 ult, )72 + | Val ult, )|
Iedk

HIOT o(t, )72 + Vel o(t, )72 + P10 (t, )I[72] < CE§(t ux, ve).

Therefore, after (3.3.24)), (3.3.26)), and (3.3.22), we deduce that estimates (1.1.11]) are satisfied
with A = 2A4’, B = C1B’, for some new C; > 0, so choosing for instance K; = 4 and Ko
sufficiently large, theorem and inequalities (3.3.25)), (3.3.26) imply (3.3.23]). O
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Appendix A

Lemma A.1. (i) Let d € N* and a(&,n) : R? x R — C such that, for any 3 € N there exists a
function gg(n) and

00a(&,n)| Sp (€)Plgs(n)l,
18808a(e,n)| Sas (EHEHINE Blgs(n), 1< |of < 4.

Let also

(A1) Kan) = [ e ale,ns

Then for any B € N? |85K(a;,77)\ < |~ H @) 2 gs(n)|, for every (z,m) € R?2 x RY. The same
result holds true if |8§‘85a(£,77)| Za lfa©llgs(n)], with fo € LY(R?) for any |a| < 3;

(i1) If a(€,m) only satisfies |0gD]a(&,n)] Sa (F<1|€l71 + die51(€) )lgs(n)] for any a € N?,

la| <3, any B € N, then |95 K (x, )| < (x)~2|gs(n)|.

Proof. (i) We consider a cut-off function ¢ € C§°(R?) equal to 1 in the unit ball, split K (x,n) =
Ko(z,n) + Ki1(z,n), with

Ko(z,n) := / Ea(E, m(E)de, K (xin) = / e €a(E,n)(1 — ) (€)dE,

and fix B € N By the hypothesis on a(&,n), we have that |8§8§a(§,n)| Sap (©)73g9s(n)| on
the support of (1 — ¢)(&), for any |a| < 4, thus integrating by parts and using such inequality
we deduce that |05 K, (z,7)| < (2)74|gs(n)| for any 8 € N,

On the other hand, after an integration by parts we find that
20 Kalrn) = [ = <af (€ m)de,

where af({,n) is supported for |{| < 1 and is such that, for any |a] < 3, |8§‘af(£,n)\ <

€|l |gg(n)| for every (£,m). We immediately have that |x85K0(:1c,77)| Sp lgs(n)|, for every
(z,7n), and furthermore \xo‘x&’?Ko(x,nﬂ Sa lgs(n)] for any |a| < 3. This certainly holds when
|z| < 1. When |z| > 1, we prove it taking a Littlewood-Paley decomposition

0
¢(&) = p(€) {mﬂ%w > w(2'“£)],

k=Lo+1
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with supppy C B1(0), ¢ € C(R?\ {0}), and Ly < 0 is such that 250 ~ |z|~!, and splitting
;1:85[(0(30, n) into Kg(x, n) + Zg:LoH K,’f(:v,n), with

K (z,n) ::/em.gaf(f,77)@0(2‘L°€)d£, K}l (x,n) ::/emga?(ém)w(2‘k£)d£.

Performing a change of coordinates and some integrations by parts, we observe that | K 5 (x,n)| <
22Lo|g5(n), |K,'f(:c,n)| < 22k (2k2) 73| g(n)|, for any Lo + 1 < k < 0, and from these inequalities
we deduce that |28y Ko(z,n)| S 2250]gs(n)] ~ |2|72|gs(n)].

Last part of statement (¢) follows by the fact that, integrating by parts,

20K wn)| £ [ 15a(©llgsmlde Sa g5t

for any |a] < 3,8 € N?, which implies that |35K(;1:,17)\ < <:U)*3|g/3(77)\ < ]3:|*1<x>*2]g/3(17)|, for
any (z,n) € R? x R%

(ii) The result follows splitting K (x,7n) into the sum of previously defined Ky(z,n), K1(z,n),
and making for 85 Ko(z,n) the same decomposition and analysis as we did for x&g Ko(z,n) in
the proof of (). O

Corollary A.2. (i) Let d € N*, N € N, and a(§,n) as in lemma (i). If gg € LY(R?) for
every |5| < N, then

] / eiwf”y'”a(g,n)dsdn] < o @) 2N, W(ay) € R x RY

Moreover, if d =2 and N = 3, for any u,v € L*(R?) N L*>(R?)

(A.22) H [ esate mate - mondsan| < fulgalells (or S ellslollze)
L2(dz)
and
(A.2b) H [ e=Satemate —motndsan| % fullslolle,
L (dx)

(1) If a(&§,m) is a function as in lemma (i1), and gs € LY(R?) for every |B] < N, then
‘ / RIS n)dﬁdn‘ S @) 7)Y, ¥@y) eR? xR
Moreover, if d =2, N = 3, for any u,v € L*(R?)

(A.3a) H [ e <atemate - mitmdean

S llullz2llvllze,
L2(dx)

while if u € L*>(R?),v € L®(R?),

(A3) H [ é=sate.mite - mitmagan

S llullzzlfvllze-
Lo°(dx)
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Proof. Let K (z,v) = [ €YK (z,n)dn, with K(z,n) introduced in (A.1)). Then

Rx,y) = / TEG(¢ ) dedn,

and, both for (7) and (i), the first part of the statement is a straight consequence of lemma
and integration by parts.

If d =2, N =3, and a(§,n) is as in lemma [A.1] (i), inequality (A.2a]) from the following equality

/ ¢ Sa(€,m)i(§ — m)o(n)dn = / K(z = y,y = 2)uly)v(z)dyda,

and the fact that

H/ K(z = y,y = 2)u(y)v(z)dydz

< H / &~y — )2y — =) ST dydz

L(dz) L(dz)
S [ 1017 )72l — 9~y - 2l duds
S llallzelfollz (or S [lallzlo]lzee),
with L = L? or L = L*™.
If a(&,n) is instead as in lemma (77), then inequalities follows from the fact that

H/ K(z —y,y — 2)u(y)v(z)dydz

L2(dz) : H/<x =) "2y — 2) " lu(y)lv(z)|dyd=

L2(dx)

< [ e < [l ( fu-75m)" (flo-upa) o

1
2
S vl 2 </<y— 2>_3IU(y)I2dde> S llullz2flvllz2,

H/ K(z —y.y = 2)u(y)v(z)dydz

A

/ (@ — 1) "2y — 2) " fu(y)llo()|dydz
/ (& — )2 Ju(y)|dy

Lo°(dx) ‘ Loe(dx)

S [Jvllzes S llullzz o]l zee-

Lo°(dx)

Lemma A.3 (Sobolev norm of a product). Let s € N*. For any u,v € H*(R?) N L>(R?),
(A.5) [wvllzs S ullmslvllzee + lull o [0l 25

for any u,v € HS*®(R?) N H*2(R?), any 0 €]0,1],

(A.6) vl zrs.0e S llull et Nl fose 0l 2o + lull oo [0 e [0l 3o

Proof. Inequality (A.5) is a classical result (see, for instance, [2]).
In order to deduce (A.6]), we decompose the product uv as follows:

(A.7) wv =Ty + Tyu + R(u,v),
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where T, v is the para-product of u, v, defined by

T,v := S_suSov + Z Sp_3ulgv,
k>1

where Sy = x(27%D,), x(§) = 1 for |¢| < 1/2, x € C§(R?) such x(&) = 0 for |£] > 1,
Ay = S — Si—1 for k > 1 (with the convention that Ay = Sp), and R(u,v) = >, ApulAgv, with
Ap = Ag—1 + A + Ag4q. Since

T, = Z Aj(Tyv) = Z A [Sk_sulgv],
j=0 J:k
li—k[<No

for a certain Ny € N, by the definition of H*> in [1.2.1] (i47), and the fact that |[Apv| e <
28| Apvl| 2, we deduce that, for any fixed 6 €]0, 1],

(A.8)
|Tuwvlloe = (D) Tyl e lroe < > 27| A;[Sh_sulgo]|| 1o
7.k
\j=k|§N0
< Y S sulzlAwle <D 2 Jull g (27 A (D) 0l o) 0 (28] Ao 12)°
Jik gk
|7=k|<No |7=FK|<No
S Y BRSO ||| A (D)0 520 A D) 20|
j7k
|7=F|<No

S Il oo loll 2 ol G-

Similarly,
I Toullzrsce + [ R, 0) o S Julljpathe lullfese o]l o

O

Corollary A.4. Let s € N*, a1(€) € S§" (R?), az(€) € 5§ (R?), for some my, mg > 0. For any
u € H¥T™M1(R?) N H™1°(R?), v € HST™2(R?) N H™2°°(R?),

(A.9) a1 (Da)u] [az(De)v]ll gs S lJull gstma [0l rma.co + [l mmaoo [[0]] gresms
for any v € HST™1:°(R2) N {HsT™1+2(R2) v € H5T2:°0(R?) N H5P2T2(R?), any 6 €]0,1],

(A.10)  [[fa1(Dy)u] [az(Da)v]l| gro.oc

S Ml oy o 1l Gy w2 0 Erma oo+ lfall o [0 7 oo 1011 ma o
Proof. The result of the statement follows writing [a1 (D, )u] [a2(D,)v] in terms of para-products,
as in (A.7)), using that T, (p),(a2(D)v), Ty, (pyy(a1(D)u) and remainder R(a1(D)u, az(D)v) can
be written from u = (D)™ u, v = (D,)™?v, as done below for the former of these terms,
Tay (pyulaz(D)v) = [S—3a1(D){Dz) "™ ul[Soaz(D)(Dz)~"*v]
+ Y [Sk-3a1(D)(Dy) "™ ][ Agaz(D){Dy) 7],
k

and observing that, since a1(£)(€)™™ € SJ(R?) (resp. a2(£)(€)™™2 € SJ(R?)), operators
Skaj(D)(Dg)™™i, Agaj(D)(Dy)~™, for j = 1,2, have the same spectrum (i.e. the support
of the Fourier transform), respectively, of Sk, A (up to a negligible constant). O
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In the following lemma we prove a result of continuity for a trilinear integral operator defined
by multiplier Bé& i js)(g,n) given by ([2.2.45)) (resp. by (2.2.47)) for any k = 1,2 (resp. k = 3),
any ji,j2,j3 € {+, —}. It is useful to observe that, as from ([2.2.45)),

Bk _ 1€ —m) + jalnl — j3(&)
(J17]27]3)(€’ ) 21720 — )|

while from ([2.2.47)),

Tk k= 1727

- Ji{§ —m) + jaln| — j3 (&)
B?jl;jQJS)(g’n) = : 2<§ _277> 2 ’

we have that, for k =1, 2,

(A1) (er) [ Bl (€ mile — mystdgdn = 2 uRyo)@) - 2 ( £i>“)4 ()
J - J -
5D (D) o] () = 53 D)D)~ ) (R (),

and for k = 3,

(A12) g [ EBY (€ )€~ mitnded = 5(u)(@) + 2D 0l Defe) )

= B5D,) (D) )] ().

Lemma A.5. Let s,p € N and B(j1 nia) (§,n) be defined in (2.2.45) (resp. in (2.2.47)), for
k=1,2 (resp. k=3), any j1,j2,j3 € {+,—}. Let also o, =1 if k € {1,2}, 6y =0 if k = 3. For
any u,w € L?>(R?),v € H>*®(R?) such that 6,Rxv € H>*(R?),

(A.13) '/Bél7j2,j3)(€an)ﬂ(£ = n)@(n)@(—f)dfdn‘ S llullze (vl g.ee + Okl Rivl| oo ) [[wll 2.

Proof. First of all, we observe that for k =1, 2,

(A.14a)
[ By nal€mite - momyi-azan =2 [wRm©o-ods -2 [ Bmu)elea-oe
J1 1 e Vo (i (— _J3 <€>a—/\vu§—
5 [ gl — momyi(~dedn - 32 / oLl = )R () ()i,

while for k = 3,

(A11b) [ B, (€ mile — myo(myin(~dedy = 5 [ @(©i(-€)de

2
Je [T s € e Vol —
+ 22 [ [ D€ - 252 [ Erite —miotmyi(-)ae

First two terms in the above right hand sides satisfy inequality (A.13)) just by Holder inequality, while for
last two contributions in (A.14a)), and the latter one in (A.14b)), it follows by proving that the mentioned
inequality is satisfied by

/ A€, )ity (€ — )ita(n)its (—€)dedn,

with a(¢,n) = &(€ — 1)~ or a(&,n) = (£)(€ —n)~!, and some general functions uy,uz € L?*(R?),uy €
L>(R?). Taking a Littlewood-Paley decomposition, we split the above integral as follows

(A.15) > / (&, Mo (€) o (n)an (€ — n)an(n)its(—€)dedn,

k,1>0

215



with g € C5°(R?), pi(¢) = p(27%¢) and ¢ € C5°(R? \ {0}), for any k& € N*, and immediately observe
that, since frequencies &, are bounded on the support of ¢g(&)eo(n), kernel

Ko(z,y) := / e Na(g, m)po(§)po () ddn
is such that |Ko(z,y)| < (x)~3(y)~® for any (z,y), after lemma[A.1] (i) and corollary [A.2] (i). Therefore

] [ ateme@eotminte - n)@2(n)ﬁs(—€)d§dn‘

_ ] [ Folz = . = g @ualy)us )y

< /(z =)o — ) lua(@)]Juz(y)|lus(2)|dzdydz

Slluzllze /<w>’3|m(z = o)[|ug(2)|dedz < [Jur| 2 [Jue] Lo |us] 22,

last inequality obtained by Hoélder inequality.

For indices | > k+ Ny > 0, for a suitably large integer Ny > 1 (resp. |l—k| < Np), we have that || < |n| ~
€ — | (vesp. [§] ~ n]) on the support of ¢y (€)¢i(n), so if we define ai>kn, (§,1) := a(§,1)(n) " (vesp.
a—k|<ny (&) == a(&,n)(n)~7), it is a computation to check that |8?8§ [ars kv, (27€,20)]| < 27! (same
for aj_pj<n,(§,m)) for any o, 3 € N2 such that |al, || < 3. Hence, its associated kernel K~ n,(z,v)
(resp.  Kji_k|<n,(%,y)) is such that |Kispyn,(z,y)| S 22721(28z)=3(2'y) =3 for any (,y) (same for
Kj—rj<n,(z,y)), as follows after a change of coordinates and some integrations by parts, and then, for
any | > k + Ny (resp. |l — k| > Np)

\ [atemen@atmine - n)ﬁz(n)as(—ﬁ)dfdn‘

_ \ [ e = 2 = s @Dl (s (o=

2% ’/(2’“(2 = 2)) 722 (2 = ) lur (2)|[(Da)uz (y)Jus (2) ldadydz

<27 5275 fuy | 22 fJuz | grovee lusl| 2,

(resp.
\ [atemaeramine - n)ﬂz(n)ﬁs(—ﬁ)dfdn‘

- \ [ Eit-siem (= . = s @) (D) ua)(9)us(2)dwdydz

2| [ (216 = )22 (0 — ) @)} (D2) a0 (2 sy

<27 | gz e s 22 )-

Finally, for positive indices k such that k > [ — Ny, we observe that frequencies £ and & — 7 are equiv-
alent, of size 2%, so if we take ar>;_n,(£,1) = arsran, (€,n) (and associated kernel Kis; n,(z,y) =
Ki~k+n,(z,7)), and introduce two new smooth cut-off function ¢!, p? € C§°(R?), equal to 1 on the
support of ¢, together with operators Al := p1(27%D,), A2 := ©?>(27*D,), we deduce that

\ [ atemor@ratmine - n)ﬁz(n)ﬂa(—ﬁ)dédn‘

= \ / Kyt (2 — 2,2 — y)[ALur)(@)[{ D2 yuz) (9)[AZus] (=) dedyds

222! V@k(z = 2)) (2 (2 = ) [ Agua] (@) [[(Da )ua () | [Afus] (2) | dwdydz

S27M | Akuall g2 luz| oo | AR us | 2.
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Combining decomposition (A.15)), above inequality and Cauchy-Schwarz inequality, we then obtain that

(A.16) ‘/a(ﬁ,n)%(f = n)iz(n)is(=&)dsdn| < llurllpzlluzllmr.ellus| L2,
and the conclusion of the proof. O

Lemma A.6. For any ji,j2,j3 € {+,—}, any N € N*, let U& ia js)(f, n) be a function supported

for |&| < e(n), for a small € > 0, and sucNh that, for any o, 3 € N2, \3?350&7].2%)(5,77” <
lal /- N— ~ T (i1 gy (HE=T)
NIl ) NI IF G s (6 = R e then for any o, B € N7,

(A.17)

LT, o) (&) | Sy (€ — )7 N HAFE2I V=I5,

and moreover, if N > 15, for any u,w € L?(R?), v € HN*+3°(R?)

(A.18) ' / N (Emae - n)@(nm(—g)dsdn\ < el 2 ol e el 2

N

Proof. Let us write RN under the following form:

N _ = m gl +4s€) N B
70152098 = 55, g~ ajlal — 20 — ) - G2 S

First of all we observe that denominator jij2(¢ —n)|n| — (§ —n) - 7 is bounded in absolute value
from below by c|n| if |¢ — 7| is bounded, and by |n[{(¢ —n)~! if |¢ —n| — 400, which hence implies
that [j172(¢ —n)|nl — (€ —n) 0]t < (€ —n)|n|~! for any (£, 7n) € R? x R2. Moreover, an explicit
calculation shows that for any multi-indices a, 3 € N? of positive length, and up to negligible
multiplicative constants,

|08 [(172(& = m)lnl — (€ —n)-m)™"]|
S Y ligel&—n)nl = (€ —n) -l gllerl(g — ) ~UelTlead,

1<) [<]al

‘05 [(G172(6 =m)Inl — (€ —n) -77)‘1]‘
< N0 e =)l — (€ —n) g7 UIEED N e i),

0<|B11<IBl i+j=|8|-2|81]
i,5<|8]—1B1l
Combining the above information, we can deduce that, on the support of ng i jg)(n, &E—mn) (ie.

for |n| < el¢ —n|) and for any a, 3 € N2,

0205 [(12(€ = m il = (€ = m) - m) 7] | S (€ — )M HeH281y =112,

and therefore that

ans | J1{€—n) +j2nl + j5(§) ”< _\2+Hal 42181, ~1-16] _ yLHlal+218] ), —~1- 18]
: W[lejﬂgmmmn).n o (€ 1) n 18+ () (e — ) 2191,

which summed up with the fact |a?65[0g1,j2,j3)(77’§ — )| Sap (€ —n) NIl NF1=181 - gives
the first part of the statement.
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Let us now suppose that N > 15, and take x € C§°(R?) equal to 1 in a neighbourhood of the
origin. We have that

[ 58 s €t = mii(-ededn = [ K3 2,2~ yutw)o()u()dodydz
+ [ KV G = a0 = a0l () dadyd
with
K (z,y) = / et (& m)x(n)dédn

KN (z,y) = / werivngN (e ) () N=3(1 = x)(n)déd,

where above multipliers, that we denote by o N (f ,m) with £ = 0,1, are such that, for any

(Jl,m ,J3)

a, 3 € N? of length less or equal than 3, \80‘85~]§1k]2 33)(5 M| Sap (€)73(n) 73, as follows from

(A.17)) and the fact that they are supported for |n| < /¢ —n|. We deduce by integration by parts
that K} (z,y)| < (x)73(y) =3 for any (z,y) € R? x RQ, k = 0,1, and then obtain the last part of
the statement using that, for any w,w € L?,7 € L™,

/<Z — )"z —y) " a(@)|[o(y)|Jw(2)|dzdydz < [vl pe /<Z>_3|ﬂ(x)||7ﬂ(z — x)|dxdz
S [l zaflvll o [[wl] g2

O]

In the following lemma we derive some results on the Sobolev continuity of the bilinear integral
operator

(u,0) / eTED G, ) (Em)alé — )o(n)dédn,

with D(;, j2) deﬁned in (3.1.14), and we warn the reader that we do not get advantage of factor

(1— 57 in Dy, j,y(§,m) when deriving the estimates mentioned below. Our choice is mo-
tlvated by tile fact that that continuity does not depend on the null structure of the nonlinearity

QY (v+, Dyv4).

Lemma A.7. Let p € N and D(£,7) a function satisfying, for any multi-indices o, B € N2, the
following:

(@) if €] S 1,

0, D& )| Sp ()7,
[080) D(&,m)| Sayp ()TN T e Tleal etz tAl o) > 1

o1 |+]ez|=|af
(1) for [€] 2 1, Inl < (€ =),
|020) D(&.m)| Sa, (€ —m)P T,
(i12) for [€| 2 1, |n| Z (€ —n):

020 D(&,m)| Sayp ()T
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Then for any s >0, any u,v € HSTPTB3(R?) N L2(R?) (resp. u,v € HTPT13:0(R2) N L2(R?))

H [ e=eniemate - n)@(n)dédnH < ullgospsslfoll o + lullzoe ol gemsrs

(A.19a) Hs (dx)

(or S Nullgstorrsool[oll 2 + [lull 2l o]l gotosrs.0),

and for any u,v € H¥TPH13.50(R2)
(A.19b)

‘L/ﬁzxfl>s ni(€ — )i <>dsdn’

S [[ull gsvoris.co [0l oo + ([l Lo V]| rotot1s,00
Hs»°°(dx)

Furthermore, if ¢ € C°(R?), t > 1, o > 0 small, there exists § > 0 depending linearly on o,
such that

ch(t”Dz) [ e=eniemite - n)@(n)dfdnu < Ol o] e
Hs(dx)
(A.200) (or < Olfullgor s o] 2)
(or < Olful = el grosrs),
(or < Ollull 2lloll rorise),
t~D, /eMD A€ —n)o ddH <t oo || ]| o
ooy AP [ D it —mpitdean| S sl

(or S t[|ull oo | 0]| o 13.00).
Finally, if D(&,n) = l~?(§,n) satisfies, for any a, B € N2, (i4), (iii) when |€| = 1, together with:
() if gl 1
OEOEDE ] Sap () 4 3T eIl ggpeatils
oy [+|oez|=|a|

then, for any u,v € H*TPT13(R?) N L>2(R?),
(A.21a)

| [ e=<Btemte - mitmasan]

S lullgeiollvlle + lullstorsllvllzee + ulloo ([l motorrs
Hs#(dz)

(or % lullzsllolresso + ol esossnm Joll o + Jull ol erossne),
and for any u,v € HTPH130(R2) with u € HPTO(R?) (or u € L*(R?)),

(A.21b) H [ e <bre.mite - n)@(n)d&dnH <

Hso°(dx)
[ull oo l[oll oo + llull gototrs.ce [0l Lo + [l Lo 0] frators.oo

(or < Tullz2lloll o000 + llullrososisee follzoe + el oo [0l rssosisos)-

Proof. After definition m (i) of space H® (resp. (iii) of H*>>), we should prove that the L?
norm (resp. the L*) norm of

(A22) / e EDS (€, m)al€ — )i (n)dedn,
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with D*(¢,n) = D(&,n)(€)*, satisfies inequalities (A.19a) and (A.20a)) (resp. (A.19D) and
(A.20Db). Let us first take xy € C§° (R?) equal to 1 in a neighbourhood of the origin and split the

above integral, distinguishing between bounded and unbounded frequencies &, as

(A.23) /eix'EDs(é,n)x(ﬁ)@(E — n)o(n)dédn + /ei”'EDs(ﬁ,n)(l —X)(©)a(& — n)d(n)dédn.

On the support of x(§) frequencies £ — 7,7 are either bounded or equivalent, thus if af(&,n) ==
D3 (&,m)x(&)(€ —n)=P10 (or also a§(€,m) = D*(&,m)x(&)(n)~P~1Y), this multiplier satisfies the
hypothesis of lemma (i) with gg(n) = (n) =3 for any |B| < 3, after hypothesis (i) on D(&,n),
and corollary (i) implies that, for L = L? or L,

(A.242)
H/eifos(fW)x(f)ﬂ(f — )0 (n)dédn

_ H [ a2y ute - onydsan
L(dz) L(dx)
< D) 0ull o]l or (D2} O o o]l
or
A24b
H [ =< € an@ite - mitasan

H/ @45 (¢, )€ —n)(Da)? T 00(n)dédn
L) L(dz)

S lull o (D) vl (or full[[(D2)? 0] L)

Successively, we consider a Littlewood-Paley decomposition in order to write

(A25) [ €=EDH €)1~ )(al€ ~ n)o(m)dedn

= > [ em - @Ol - mindsdn,
k>1,1>0

where g € C§°(R?), ¢ (¢) = ¢(27%¢) with ¢ € C$°(R? \ {0}), for any k € N*,

On the support of i (&)ei(n), with k& > [+ Ny and Ny € N* sufficiently large, we have that || <

[€—nland [ —n| ~ ] ~ 2% TEaf_,, n (€,m) := D2 (&) (€)pi(n) (€ —n) =713, by hypothesis
(i) we deduce that, for any a, 8 € N? of length less or equal than 3, |O¢" 85 [aZ~11 N, (2F¢, 2in)]| <
27%, and kernel K}, N, (2,y) defined as follows

. . . . . k . . l .
Kisiyn (:y) = / e ENNGE N, (6, m)dEdn = 27F2% / PRGN (27, 20)dedn,

verifies that |K*k > [+ No(z,y)| < 2822 (2k2)=3(2ly) =3 for any (z,y) € R? x R?, as one can
check doing some integration by parts. Therefore, for L = L? or L™,

”/SZ‘:U{DS(E, )i (&)pr(n) (€ — n)d(n)dédn

L(dz)

- H/ Kisryny (@ = 5,y = 2)[{Da) ) (y)o(2) dydz

L(dx)

/(2'“(1‘ =) 22y = 2) D) Puly)||o(2)|dyd=

L(dzx)
< 2ho? / (289) 32 2) (D) 0] (- — y)o(- — 5 — 2)| 1 am) dydd2

_k 1 _k L
S27227 2 (D) Bl vl Lo (or 272272 [(Dy) P ul| oo 0| ).
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Analogously, for 1 < k < [+ Ny, we have that | — n| < |n| on the support of ¢r(&)yi(n),
thus in this case we define aj;, n (&) = D3(&,0)or(€)pr(n)(n)~57P~13, which satisfies, for

any multi-indices «, 5 of length less or equal than 3, |8§‘8§[ai§l+% (2k¢,2i0)]| Sap 271, after
hypothesis (iii). We therefore deduce that the associated kernel Kj_;, v, (z,y) is such that
| K ctiong (@, 9)] S 2262/(2F2) 73(21y) = for any (2, y), and

H/engs(é,n)wk(f)soz(n)ﬂ@ — n)d(n)dédn

(A.27) L(dz)

_k 1 _k 1
< 272272 Jul < (D) TP 0l (or 272272 [lul| £ [[{ D)0 o).

Combining inequalities (A.24]), (A.26)), (A.27) with L = L? (resp. L = L*°), and taking the sum
over k > 1,1 > 0, we deduce inequality (A.19a)) (resp. (A.19Db])).

In order to derive inequalities ({A.20]), we first observe that, up to a factor t°, we can reduce to
study the L? and L* norm of (A.22)) with s = 0 and D(¢,n) multiplied by ¢(t~7¢). Here we use
again decomposition (A.23)), (A.25)), and only need to modify some of multipliers defined above,

depending on if we want derivatives falling entirely on u, or entirely on v. In fact, in order to prove
the first two inequalities in ((A.20a)), and the first one in (A.20b)), we first observe that for any & >
[+ No, |n] < |€] ~ |€ —n| on the support of ¢ (£)wi(n); for |k—1| < Ny, |n| ~ |£| on the mentioned
support; while for any [ > k+ No, [n| ~ [£—n|. So if aj.;., x (€,1) = D(&n)x(t7E)er()pi(n),

and af>k+NO (&,m) == D(E,n)x(t7E)or(&)ei(n) (€ —n) P73, we deduce from hypothesis (ii) —
(7i7) on D(&,7n), and the fact that |{| < t7 on the support of ¢(t77¢), that, for any a, €

N? of length less or equal than 3, |8?85[af<k+No(2k§,2ln)]] < t%27F for a § > 0 depending
linearly on o, while |8§‘8§ [ald)>k+No (2F¢,2')]| < 27! Kernel K;Z;k_FNO (z,y) (resp. Kld)>k+N0 (x,9)),

associated to ald)ngrNo (resp. to a?>k+N0), verifies |Kl¢§k+No (z,y)| < 9272212k 1) =3 (2ly) =3 (resp.
‘Kl(ik—&—No (z,y)| < 22k20(2F2)=3(21y)~3), and then for any I < k + Ny

H [ e=<Diemota©atmit — mitndsdn

L(dz)
(A.28) < 1275275 ful o] o
L(dx)

_k 1
(or St°27 2272 Jull L= v L),

_ H [ Ko @ .0 ooy

(resp. for I > k+ Ny

H [ <Dt matera©atmite - notndsdn

L(dx)

_k L
< 272272 (Do) Pul v Lo

L(dz)
(or S 275273 (D) Bull oo u]11) )

B H/ KL o (@ = 3,y = 2)[(Da) 5] (y)v(2)dydz

Combining these two inequalities with (A.24a)), and taking the sum over k£ > 1,1 > 0, we obtain
the wished estimates.

Last two inequalities in (A.20a)), and last one in (A.20b]), are instead obtained combining ({A.24b)
with (A.27) (that evidently holds for D*(£,n) replaced with D(&,n)¢(t?€)) and (A.28).

Finally, last part of the statement follows from the same argument of above, with the only
difference that, after (i), multiplier a$(&,n) = D(&,n)x(€)(n) P10 satisfies the hypothesis of
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lemma [A.1] (id), with [gs(n)| < ()~ for any |8| < 3, and

H/emﬁs(i, mx(&§)a(§ — n)o(n)dédn

L(dz)

H [ ésatie. Do — mitndean]| < 1Dl ol
L(dz)
or
H/JMEW&WMGMSWWW%M
L(dx)
= | [ e=astemite - 0 omasan| 5 D 0l
L(dz)

with L = L? or L*°, by corollary (17). O

Lemma A.8. Let j € {+,—}, $ € C*(R?), t > 1,0 > 0, and D;(&,m) be defined as in (3.1.14).
For any s >0, i = 1,2, Dj({,n) and Ii\D (&,n) satisfy inequalities (A.19), (A.20) with p = 2,
and

(A.29a)

| e oupite e —msenaan| <l ol + el + ol
Hs(dx

(resp. S llullslfolloz + llullgesiocvllLz + fJull 2 [v]| zovre.e),

(Awm‘UQN%QQMM@www%mH

Hs:2°(dx)

S lullgsl[vllzee + lull gerioce vl e + [JullLes 0] gesre.o,
together with

< Cllull s (o]l 2 + [lollze)
Hs(dz)

(or S lullzz ([[vll o + loll s ),

(A-300) Hqs(t—wx) [ é=sacny (e myate ~ ot >dfdn'

(A.30b)
Has@—mx) [ e=<acnytemate - n)@(n)dfdnH < 19 (lullans + ull ioce) o]l

Hs>°(dx)
é
(or S t° ([lullz2 + llullzee) [[v]| Fris.00)-

Moreover, if Q = x10o — 201, and Z,, = x,0 + tOy,

(A.31a) Hx(t_"Dm)Q/e”'EDj(f’W)ﬁ(f_ n)o(n)dEdn

L2(dz)
s
S [(lullpz + (1QullL2) [[oll mrree + ull mas.c [[Qv]| 2] ,

(A.31b) Hx(tffwn [ e=<Ditemyats ~ mitmdedn

L2(dx)
St l0eullzz[[v]l rree + s |1Bevll 2 + | Znull p2 [[v]l zras.ce + [lull s.ce | Znol| 2]
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(A.310) qu-mmwjzn [ e=<nytemite - micasan

L2(dz)
S 10| 2 [|v] rsce + ull e 1000l L2 + | Znull 2ol amoe + [ull mimoe | Znv]l 2]

for 6 > 0 depending linearly on o.

Proof. The statement follows essentially from the observation that, for j € {+,—}, functions
D;(&,m) and [(&0g, ) (10, )" Dj](€, ), satisfy inequalities (i) — (i4i) in lemma respectively

with p = 2 and p = 2+ 2(k; + k), while 8 D; (€, ) satisfies (), (i), (iii) with p = 3. Indeed, we
first remark that, for every &, n, denominator 1+ (¢ —n)(n) — (§ —n) - is bounded from below

by a positive constant; secondly, deriving that denominator gives rise to losses in (§ — ), (n):

e, L+ (E=mn) —(E—n)-n) = % — )+

(€=m
(14 (€ =) = (€ =) ) = =) + (6 = 1) 2+ i — 6= o).
For |£] < 1, we have that (¢ —n) < (1), and after previous remarks
929 |: ]<§ - 77> +.7<77> :| <, 2+|o¢|+\6|’

O T = — € —ma" | o

for any «, 3, while

98 [ €] } < 1+181.
(e Rk | I
o8 €] } ‘ < —Jan|+1/,\ 1+]az|+18]
%o {1 oy T e B | =S R B ezt

lar|+|az|=|al

For [§] 2 1 and [n] S (€ —n) (resp. [n] Z (€ —mn)) we have that [§] S |€ —n| (resp.[¢] S [n]), so
each time a derivative hits the denominator of D;(&,n) we loose a factor (£ —n) (resp. (n)).

These observations immediately imply that inequalities (A.19) hold when D = D; and p = 2,
and inequalities (A.29)), while inequalities ({A.31]) follow by the further remark that, after some
integration by parts,

Q / "t D; (&, m)a(€ — n)o(n)dédn

= / e E(&10¢, — £206,)F (10, — 120y,)" D3)(€,m)Qksu(€ — n)Qkav(n)dédn,
ki+ko+ks+ks=1

Zn / €D, (€, m)a(€ — n)o(n)dedy
= [ e <0c, D€ D[t — mon)dsan-+ [ <10, D)€l — ) Distndea

+ / D, (€,1) Znul€ — n)o(n)dEdn + / D, (€, m)a(€ — n) Zpo(n)dEdn,

and, for 07 = 1if j = n, 0 otherwise,
DjZn/emej (&, ma(€ —n)v(n)dsdn = &7 / " D;(&,n) Dy [a(€ — n)d(n)] dédn
+ /6”'5% [€,D;1(&,m) Dy [6(€ — n)o(n)|dédn + /6”'53% [€;D,)(¢,m)a(¢ — n)Dyv(n)dédn

+ / ;D (€,m) Znu(€ — n)o(n)dédn + / ¢, Dy (€, m)a(€ — 1) Znv(n)dEdn.
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Appendix B

The aim of this chapter is to show how, from the bootstrap assumptions , it is possible to
derive a moderate growth in time for the L? norm of £+, with 0 < |u| < 2, and of QZM”&E”“,
with u,|v| = 0,1, that are used in propositions [3.2.7] and [3.3.7, Moreover, we also prove in
lemma a sharp decay estimate for the uniform norm of the Klein-Gordon solution when
one Klainerman vector field is acting on it (and when considered for frequencies less or equal
than t7, with ¢ > 0 small).

B.1 Some preliminary lemmas

In the current section we list, on the one hand, some inequalities concerning the H® and H***°

norm of the quadratic non-linearities Q) (v, Div+), Qgg(vi,Dlui) (lemmas , as

they are very frequently recalled in the second part of the paper; on the other hand, we introduce
some preliminary small results that will be useful in sections [B.2} [B-3]

For seek of compactness, we denote Qff (v+, D1v+) (resp. Qgg(vi, Diuy)) by NLy, (resp. NLyg),
ie.

i Dy DD
(B.1.1a) NL,, = 1 [(v+ +v_)Dy(vy +v-) — D) (vy —v_)- <Dx>1 (vy — v_)] ,
(B.1.1b) NLyg := i [(U+ +v_)D1(uy +u_) — é;i) (vy —v_)- ly);)jl(mr - u_)] .

We recall the result of lemma [[.2:39] that can be also stated in the classical setting:
(B.1.2) (1 = X)(t " Dy)wl| e < Ct7C"wl|gs, Vs> s,

It is also useful to remind, in view of upcoming lemmas, that the L? norm of (I'u)., (I'v)+ is
estimated with:

N|=

En(t; W)
E5(t; W)

, whenever |I| < n and I'! is a product of spatial derivatives;

[NIES

, whenever |I| < 3 and at most 3 — k vector fields in T belong to {Q, Z,,,,m = 1,2}.

As assumed in (1.1.11d)), (1.1.11d)), such energies are supposed to have a moderate growth in
time, and a hierarchy is established among them in the sense that

0<iKhKh <Kl

We warn the reader that this hierarchy is often implicitly used throughout this chapter.
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Lemma B.1.1. For any s > 0, any 0 €]0, 1], NL,, satisfies the following inequalities:

(B.1.3a) INLu (8, ) g2 S IV (& ) e IV E )l s

(B.1.3b) INLu(t, Yz S IV (e

(B.1.3¢) INLo (t, ) zs S NIV (E ) s [V ) oo

(B.1.3d) INLu (8, Warsce S WV (G780 1V () Fess

(B.1.3¢) [QNLow(t, )l Lz SV (E )l gzee (IVE )z + 1QVE )l a)

while for NLp, we have that:

(B.1.4a) INLrg(t, Mz S NIV () e [U ) e

(B.1.4b) INLig (8, )| zoe SV (& e (1UE )| g2ee + [RAUE )l g2e)

(B.1.4¢)
INLig(t, s SNV &) ms AU E ) mree + [IROUE [ mree) + 1V E )2 1UE ) o
(B.1.4d)

INLig (£, )l zrswoe SNV () et 1V (E M Gpore WU rroe + IRIU () o)

B.1.4e

. IV Haee (100N + IR V) 1O ) et
and

(B.1.4f) [QNLyg(t, )2 S (V& )2 + [1QVE )l 22) (U E ) m2ee + [RIUE, )| g2e0)

+ V@) e [[QUE, ) a1

Proof. Inequalities (B.1.3a), (B.1.3b)), (B.1.4a), and (B.1.4b) are straightforward. The same is
for (B.1.3€), (B.1.4f), after commutation of {2 with the operators appearing in (2.1.1). All other
inequalities in the statement are rather derived using corollary O

Lemma B.1.2. For any s > 0, any 6 €]0,1],

(B.1.5a) DU () s SNUE ) s+ + IV E ) s [V E Ol ree,

(B.1.5b) DU, msee S NUE M gssace + 1V E ) aelsoe [V () Gess,

(B.1.5¢) [DRAU(E, ) e S RAUE, ) s + [V E ) o3 |V (E )l oo,

(B.1.5d) [D:QU (¢, )2 < ([QUE ) g + 1V E )z (VE )22 + 1QVE ) ),

and

(B.1.6a) 1DV (&) SNV E s+ + N1V E ) as ([UE ) e + [IRUE )| o)
+ [V e |U () | o1,

(B.1.6Db)

1DV (&, s S IV (& rreroe + 1Vl 1V e (U@ arrse + [RUE o)
V() e (105 e+ IRIUE 5 0) 10 ) e,
(B.1.6¢)
1DVt )2 < [1QV(E )l + (V2 + 1QVE I 22) (U E )2 + [IRUE )l 200)
IV E a1 QU E ) o
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Proof. Straight consequence of the fact that (ui, vy, u_,v_) is solution to system (3.1.1)) and
previous lemma. Here, (B.1.5c|) is derived using that

IRy Nt Moo S IV Lot ) g2,
after classical Sobolev injection and continuity of Ry : H®* — H?, for any s > 0. O

Lemma B.1.3. Let |I| =1 be such that T € {Q, Z,,,m = 1,2}. Then

(B.L7) (IDUT (8, )2 S MU )l + [V (2, )2 {Hvl(t7’)HH1

1
+ V) (1 +> IRfUG, -))HHLoo) IV )z [UE ) |
n=0

(BL8) [DVI(E ) S IV, HH1+ZHR*‘U Magzee IV (1, )l

+ V(& )l e (IIUI( e+ MU E D + 1V E ) e [V E ) ) -

Proof. The result of the statement follows using the equation satisfied, respectively, by u} and
vk, together with (B.1.5a)), (B.1.6a) with s = 0. In fact, by (T.1.15) with |I| = 1,
Dyl = 4D, il + QY (v, Dyvs) + QY (v, Dyvl) + GY (vs, Dug),
Dyl = £(D)vh + Q¥ (v, Dyus) + Qg (v, Dyuk) + G (vs, Dus),

with GY(v,0vy) = Gi(v,0v) and Glfg(vi,Dui) = G1(v,0u), Gy given by (L.1.16), and one
estimates the L? norm of the first two quadratic terms in above equations with the L? norm
of factors indexed in I, times the L> norm of the remaining one. The L? norm of the latter
quadratic terms can be, instead, bounded by taking the L? norm of one of the two factors, times
the L™ norm of the remaining one, indifferently. We choose here to consider the L? norm of
factors Duy, Dvy, and use (B.1.5a)), (B.1.6a]) if the derivative D is a time derivative. O

It is useful to remind that, if w(¢,x) is solution to inhomogeneous half wave equation (3.2.5)),

then after (3.2.9al),

(B.1.9a)

Dy, 1 Dj
| Dy
|D|[”“’J‘ it D]

—~0p(5 (K))m) w(t, )

=i Ziw(ta) + plesf (o)) + 1Rt e).

Analogously, if w(t, ) is solution to inhomogeneous half Klein-Gordon , from we
have that
(B.1.9b)
w(t,z) = (Dy) ' [(Dy)xj — tDj] w(t, ) +tDj{Dy) tw(t, z)
= i(Dy) "' Zjw(t,x) — iDj{Dy) *w(t, ) + (D) [z f(t, )] + tD;j(Dy) " tw(t, x).

zjDpw(t, z) =

D;D
}w(t,x)%—t J kw(t,a:)
| D |

We also remind the reader about equivalence (2.1.16)), so we won’t particularly care if we are
dealing with I'ug, oL, instead of (I'Mw)+, (I'v)4, when we bound the L? norm of those terms

with the energy defined in (|1.1.9)).
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Lemma B.1.4. There exists a positive constant C' > 0 such that, if a-priori estimates (1.1.11])
are satisfied in some interval [1,T], for a fized T > 1, with ¢9 < (2A + B)™! small, then

(B.1.10a) |zjvs(t, )| < CBet'T3,
D 5
(B.1.10b) ijvi(t, Mate + :ijvi(t,-)’ < C(A+B)€t72,
<DCC> H1l,00

for every t € [1,T], every j = 1,2. Moreover,
(B.1.11) |2 Dyus (t, )| 12 < CBet'*s,
for every j =1,2, t € [1,T).

Proof. We warn the reader that, throughout the proof, C' will denote a positive constant that
may change line after line. As vy = —v_, it is enough to prove the statement for v_.

Since v_ is solution to equation (3.2.7) with f = NLjg, from (B.1.9b)) it immediately follows that

(B.1.12a) lzjo— (& e S NZjo- (&) lez + o (& )l + (2 NLrg (¢, ) 22,
along with
(B.1.12b) [zjo (&, ) gree < Zjv—(E, )z + Hlo- ()| m2ee + |25 NLrg (L, -) || 2,

derived by using the classical Sobolev injection. Notice that the above inequality holds also for
the H%* norm of :Uij(Dm)’lv_. As

2 NLyg = [xj(vy —v_)|Di(uy +u_) — D) [2;(vy —v_)] - D) (ug —u_)

we derive that
(B.1.13a)
|2 NLig(t, )2 < lzjo—(t, )llp2 (U E ) g2 + [RUE ) g2ee) + 1V (&) |2 [RU(E )| 2o

and, without commutating z; to D, (D,)~",

x

Dy )

(BL13b) [l NLig(t, ) e < (uzwt,-)um + [le;

1
) ST IREU(t, ) g2
pn=0

Thus, if g > 0 is assumed sufficiently small to verify eg < (24)~!, by injecting (B.1.13a)) (resp.

(B.1.13b))) into (B.1.12a)) (resp. in (B.1.12b))), and using a-priori estimates (1.1.11]), we obtain
that

>

o (8, < C [B(EW)E + tBy(t; W)H| + [RaU (2, ) | 2o Eolt5 W)

< CBatH%,
(resp.
D, 2 1 Sz
lzju_(t, )| gre + ||2; D >v_(t, ) " < CE5(t;W)2 +t||[V(t, )| g2e < C(A+ B)et? ),
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and the conclusion of the proof of (B.1.10)).
Analogously, from (B.1.9a)) with w = u_ and f = NL,,

[
lwj D (8, ) p2 S 1 Zus(t, )|z + tllux(t, ez + llag NLw(t, )l 2 < CBet'*2,

as follows (|1.1.11¢)), (1.1.11d]), (B.1.10b) and the fact that

[ox(t, )l -

1
(B.1.14) i NLw(t, )2 S
|pu|=0

xj (é;)vi(t, )

Lee

O]

Corollary B.1.5. There exists a constant C > 0 such that, under the same hypothesis as in

lemma

5+6
(B.1.15a) |2 NLig(t, )| 12 < C(A + B)Bet =
[
(B.1.15b) |2 NLpg (£, ) || e < C(A + B)Bth—%+%,
and
5+6
(B.1.16a) 2 NLu(t, )| 12 < C(A + B)Be*t 5+,
5
(B.1.16b) |25 NLy (£, )| oo < C(A+ B)Be*t 47,
for every t € [1,T], 7 =1,2.
Proof. From
25 NLig (£, )| 12 < Z ||;(D s ()| oo llus(E ) g,
and (B.1.13b|), together with (B.1.14]) and
2 NLu (t, )| e < Z (D “H0x(t, )] oo [0t ) | r20e

we immediately derive the estimates of the statement, using (B.1.10b)) and a-priori estimates. [J

Lemma B.1.6. There exists a positive constant C' > 0 such that, under the same hypothesis as
in lemma[B.1.4), for any multi-index I of length k, with 1 < k <2, any j = 1,2,

53
(B.1.17) (Do) (¢, )| g2 + [l Do (PTu) s (8, )| 12 < OBt ™5
for every t € [1,T].
Proof. We warn the reader that, throughout the proof, C' will denote a positive constant, that

may change line after line. As I'Mw, = —T'lw_, for any I and w = v, u, it is enough to prove the
statement for T v_, Tu_.

From (B.1.9a), (B.1.90)), together with the fact that, for any multi-index I, (I''v)_, (I'u)_ are
solution, respectively, to

(B.1.18a) [Ds + (Dz)] (T 0) - (¢, @) = T NLy,,
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and

(B.1.18b) (Dt + (D) (T u)_(t,2) = TTNL,,

we derive that

(B-1198) [y (T7o)_(t, )l < 125 (0T 0)— (¢, gz + I (DT0)— (1, ) g2 + o T N (8, ) 12,
together with

(B-119b) [l DT ) (¢, g2 < 1Z5(0 ) (8, ) g2 + (T )= (8, o + D NLu (1) | 24

for any j,k = 1,2. Therefore, the quantities that need to be estimated to prove the statement
are the L? norms of 2;T'' NL,, 2,1 NL,, for 1 < |I| < 2.

We first prove (B.1.17) for |[I| = 1 and I'V = T' € Z, with Z given by (1.1.7), reminding that,
from (|1.1.15)),

(B.1.20a) T'NLy = Qa2 ((T0) 1, Dius) + Qg (v, D1(Tu)s ) + G (v, Duy),
along with
(B120b) FNL’U) = QBV((FU):E) Dl”:l:) + QBV (v:t7 Dl(rv)i) + G{V (”U:t, DU:I:)?

with Glfg(vi,Dui) = G1(v,0u), GY (vi,Dvi) = G1(v,0v), and G1 given by ((1.1.16)).
By multiplying x; against the Klein-Gordon component in each product of I'NLy,, we find that

(B.1.21) ;TN Ly, (2, HL2<Z||@’ To) (&, )2 WU E ) 2o + [RIUE, )| r2.00)

Lw(II(FU)( e + lluse @ )l + [ Deus(E, )l 2)

5>

lu|=0

which injected, together with (B.1.5a)) with s = 0, (B.1.10b)), and a-priori estimates ([1.1.11)), into
(B-1.19a)) with I'! =T, gives that

S
|2;(T0)—(t,)|| 1 < CBet'*3

x]( ) ve(t,-)

Similarly, combining the above estimate together with (B.1.6a) with s = 0, (B.1.10b)) and a-priori
estimates, we derive that

|51 N Ly (¢ ||L2<ZH:L‘ To) (t, )z lv (¢, )l 2o
(B.1.22)
+ Z

15| v|=0 (

< C(A+ B)Bet™.

Hlm(ll(Tv)( W + o )l + [ Dev(ts )l )

) Ui(tf)'

Plugging the above inequality in (B.1.19b)) for I'Y = I', and using again a-priori estimates, we
deduce that s
|l Di(Tw) (£, )|l 2 < CBet'* 2,
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and conclude the proof of (B.1.17) when |I| = 1.
When |I| = 2, we observe that, from (1.1.17)),

(B.1.23) T'NLpy = Qe*(vh, Dius) + Q¥ (v+, Diul) + Y Q¥ Diu)

(I1,12)€9(1)
[11|=|12|=1

kg
+ § 611712Q0 (U:tﬂDu )
(I1,I2)€3(1)
|1 |+|I2|<1

and

I'NL, = Q (vh, D1vs) + QY (v+, Divd) + > QF (vl DivP)

(11712)63(1)
1 |=[12|=1

+ Z Cfl,IQQO (U:I:17Dv )

(I1,I2)€3(1)
|11+ 12|<2

with ¢, 1, € {—1,0,1}. For the term indexed in Iy, I such that |I;| = |I2| = 1, we can use the
Sobolev injection to write the following:

(B.1.24) [Eor N

Z o (t, )zl Dyl (2, )] 2

and then derive that
1

;T NLggl 12 S D IR ws (8, )l zie Y |25 (P 0) = (8, )]l 2
p=0 |J]<2
v=0,1

[l (s + D2 () + Dk 2, 122)|
|J|<2

Lee

I
+ Z IIUi(t,')IIHzHﬁﬁDluj?(t')IILz-

As before, injecting the above inequality into (B.1.19a)), using a-priori estimates (T.1.11)) and the

fact that eg < (24)71, together with (B.1.10b), (B.1.5a) with s = 0, (B.1.7), and (B.1.17)) with

k =1, we obtain that

&
(B.1.25) 2 (Cw)_(t, )| < CBet'*=

Analogously, as

;T NLw g2 $ ) (D7 0) (8 )2 o (8, ) pr2.oe
|]<2

©n=0,1
D v

%‘(x)vi(tﬁ\ 7 IE70) Y s+ ot ) + 1Dre ()2

<DZB> H1l,00 |J‘<2

+ > @)t ) el (TRo)£ (8, ) 2,
[i|=|I2|=1
n=0,1
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from (B.1.6a) with s = 0, (B.1.10b}), (B.1.17) with |I| = 1, (B.1.25) and a-priori estimates
(1.1.11)), we deduce

5
|l De (T u) (£, )| g2 S CBet'* 2,
and hence conclude the proof of inequality (B.1.17) also for the case |I| = 2. O

Corollary B.1.7. There exists a positive constant C' > 0 such that, under the same hypothesis
as in lemma for any I' € Z, with Z given by (1.1.7)),

(B.1.26a) |2, T NLig(t, )|l 12 < C(A + B)Be*t2ts
(B.1.26D) |2, T NLy (t, ) || 2 < C(A + B)Be?t*,

for every t € [1,T].

Proof. Estimate (B.1.26a)) follows straightly from (B.1.21)), (B.1.5a)) with s = 0, and estimates
(1.1.11), (B.1.10b)), and (B.1.17)) with & = 1, while (B.1.26b|) has already been proved in (B.1.22]).

O
Lemma B.1.8. There exists a constant C' > 0 such that, under the same hypothesis as in lemma
1B.1.4
(B.1.27a) lwizjvs(t, )2 < CBet?+% ,
D 5
(B.1.27b) |ziz s (t, )|z + ||zjzr—vs(t, )| < C(A+ B)et't=
(Dz) L
for everyi,j =1,2, every t € [1,T].
Moreover, for any ' € Z, with Z given by (1.1.7)),
&
(B.1.28) 232 (Tv)+(t, )| 2 < CBet** 7,

for every t € [1,T].
Proof. The proof of the statement follows from the fact that, by multiplying (B.1.9b)) by x;,
making some commutations, and using that

1

|l2iz NLkg(t, )2 S > el a0 ()2 (Jus(t, )l gzee + [Raus(t, )| o)
p1,2=0

together with
[ 32 NLkg (L, )| oo

5Qmwvw»mw+

T

Dﬁ? . u 2,00 U 2,00
<Dﬁv@,>Lm>U|i< Migzo + Rati (£, ) 7200

we derive that

1

lzszjo— (¢, )2 S Y (l2f (Zjo)- (2, )l 2 + tllzfv-(t, ) 2)

n=0

+ Y o () llze (st )z + IRius () | g2e)
p1,p2=0

(B.1.29)

—_
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and

1
a8l £ 32 (I (Z50)- (i + o0, )
H p, Dz
+ 3 (et um + ehaipy o) ) Qluslt )l + [Ruws () i)
=0 T [oo

(the above inequality holding true also for the uniform norm of z;z; D, (D.) " v_), obtained by
using that operator (D,)~! is bounded from H'! to L>®. As gy > 0 verifies that g9 < (24)71
inequality (B.1.10a)), (B.1.17) with I' = Z;, and a-priori estimates (1.1.11)) imply that

S iy (6, sz € OBt
7,k=1

while, from (B.1.10b)), (B.1.17) with £ = 1 and a-priori estimates,

< C(A+ B)et'*%.
Loo

D
T ——v_(t,)

(Dy)
As vy = —v_, that implies the first part of the statement.

Analogously, using (B.1.9b)) with w = (I'v)_, and multiplying that relation by z;, we find that
(B.1.30)

|zizjo_(t,-)||Le +

1
iz (To)— (8 ez € D [} Zi(To) (¢, ) g2 + tllaf (o) (t, )22 + oD NLg (8, )l 2]
p=0

where after (B.1.17)), (B.1.26a)) and a-priori estimates,

1
3
(B3 Y [l Z;(T0)-(t, )l g2 + tllef (Do) (1, )l g2] + T NLig (¢, )12 < OB+
n=0
By multiplying both z;,z; against each Klein-Gordon factor in I'NLy,, given by (B.1.20a)), we
derive that

it Ny 6 S 3 (B
p1,p2v=0

1
+ 3 llziw;(Da{Da) ™ ox(t, e (1wt ) + us(t )l + [ Deus(t ) 2),
=0

1 u2 T'v)_(t, )H IRTux(t, )| 2.0

so by (B.1.5a) with s = 0, (B.1.17)), (B.1.27b)), a-priori estimates and the fact that gg < (24)71

1
32D NLkg (£, )| 2 < 5[5 (P0) - (£, )| 2 + C(A + B)Be?t!+02,

which injected in (B.1.30)), together with (B.1.31]), implies (B.1.2§]). O

Corollary B.1.9. There exists a constant C > 0 such that, under the same hypothesis as in

lemma

(B.1.32) st NLig (¢, )| 2 + [l NLu(t, )| 2 < C(A+ B)Be

for every i,j5 =1,2, every t € [1,T].
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Proof. Straightforward after (1.1.12¢), (B.1.27b)) and the following inequality

i NLg (8, )| L2 + ||z NLw(, )| L2

D

iy () "ws)| sl + ot i)

LOO

O

Corollary B.1.10. There exists a constant C > 0 such that, under the same hypothesis as in
lemma [B1.7,

(B.1.33) |zixjarve(t, )| 2 < CBet*+%

forany i,j,k =1,2, every t € [1,T].

Proof. The proof is a straight consequence of (B.1.9b)), (B.1.10a)), (B.1.27a)), (B.1.17), (B.1.2§),
a-priori estimate and inequality

1

oot e S Y (Il (Zeo) ()l + el al0 2, )12
p1,p2=0

1
+ 0 e ePaPoo (b )l (lus(t )z + IRius(t )l rees)

H1,p2,13=0
analogous to (B.1.29)) with two factors x. O

B.2 First range of estimates

In this section, we show how the a-priori estimates imply a moderate growth in time for
the H® norm of #>* introduced in , and for the L? norm of this function when some of
the semi-classical operators €y, M act on it (see lemma . We also show, with much more
effort, that we have the same type of control for the H® norm of ¥ and the L? norm of £¥ (see

lemma [B.2.14]

Lemma B.2.1. Let w,u>F be defined, respectively, in and m, and s < n — 15.
There exists a constant C' > 0 such that, under the same hypotheszs as in lemma[B1), for any
90,)( S CSO(RQ),

(B.2.1a) it g + [T () oy < CBets**,
(B.2.1b) 1QRTER (E, )| 12 < CBet 27,
5
(B.2.1¢) > (0B (B ML, g2 + [MUTZE (2, )12 ) < C(A+ B)et T+,
lul=1
(B.2.1d) S 1180 (@) M TE (8, ) 2 < CBet 3,
lul=1

for every t € [1,T], with k = op if p > 0, 0 otherwise.
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Proof. We warn the reader that, throughout the proof, C will denote a positive constant that
may change line after line, and 5 > 0 is small as long as ¢ is small. We will also use the following
concise notation, reminding that h = ¢t—1:

Pr(€) == 2(§)(1 = x0) (') e(277¢)x0(h7¢),

and observe that

(B:2.2) 10PE (Yr(E)l] ¢ (22) = OR™7),

with kK = gp if p > 0, 0 otherwise.
It is straightforward to check that the Hj norm of u is bounded by energy E,(t; W)%, whenever

n > s+15, after definitions (3.2.2)), (3.1.15)), inequality (3.1.20a)), and a-priori estimate :1.1.11b).
The same is true for u>* (up to a factor %) after (B.2.2). A-priori estimate (1.1.11c) implies

hence (B-2.1a).

We notice that the remaining estimates of the statement can be proven for u>* replaced with ,
by commutating Op}’ (¥ (€)) with M (the commutator with Qj, being zero if ¢, xo are supposed
to be radial), and using (B.2.2)). More precisely, we have that

19205 (t, )22 S B Oy (xo(h7€)Qma(t, )| 2,

1
IMEF(E, )2 S B lOpy (x(R7€))MYa(t, -) || 2,
|v|=0

for a new smooth cut-off function y, and
160 (2) QM@ ()| 2

1
< 1160 (2) O (ke ()Mt ) 2 + B~ Y~ Op (x(h7€)2pa(t, )|l 2.

n=0
What we need to show is that, for any y € C§°(R?),
(B.2.3a) |09y (x(h7€) (1, )| 12 < CBet T,
5.
(B.2.3b) 1OpK (x(h7€))Mi(t, -)|| 2 < C(A+ B)et ?
5
(B.2.3¢) 180 () O} (w1 (€))Ma(t, )| 2 < CBet 7 .

Estimate (B.2.3a]) follows from (3.2.2)), (3.1.15]), inequality (A.31al) with v = v = vy, and a-priori
estimates (1.1.11: , which give the following:

10p} (x(h7€)mu(t, ) > S 1(Qu) ()l 2 + X7 D)™ —u)(t, )| 2
SNQUE )z + 7 (V& 2 + 1QV(E ) z2) V() e
1 d2
<O+ At 1PYE2(t; W)z < CBet =,

for every t € [1,T].
As concerns (B.2.3b)), from relation ([3.2.10al) and definition (3.1.15)) of uN¥', we deduce that

(B.2.4)
10}, (x(h7E)NMa(t, ) 2 S N ZaU (#,)lz2 + IX(t7 D) Zn (W = us)(t,-) || 2

+ a2 + 10wy (7))t () lgw + cwl (1)l 2(a0) + XX Da)(@nryy D) (E, 22,
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with ¢y, ¢, and T{XF given, respectively, by (3.1.17)), (3.1.18]) and (3.1.19]). We first notice that,
after inequality (A.31b)) with u = v = vy, (B.1.6a)) with s = 0, a-priori estimates, and the fact
that Aegg <1,

(B-2.5) [[x(t™7 D) Zn(u™" —u)(t, )| 2 S
7 (1DV (8, ) 21V (&, arss + 1V (E ) ppisee | ZaV (2, )] 12) < OBt

Let us also observe that, from (3.1.17)), (3.1.18)), we have that (3.2.68])

oy o= N
fjo[voph@l)v oph(fg))v Op (fg)v} (t2).

having introduced YN/(t, x) := tv_(t, tx), which is such that, for every s,p > 0,

V(g = o=t ass 1V g = tlo— () ees,

and
16570 gy % 1Z50- 02 + o (1)
(B.2.7) )
 (lasose i+ [espseste)]| )Wl

as follows by (3.2.8) with w = v_ and f = NL,. Using (B.2.6) along with the definition of £;
in ((1.2.60[), we derive that

tlt;)law + ol 1) = 59 [VOp;':(a)(hW)+V0pﬁ(f<1§)?+ﬁxj70p,?<sl>ﬁ
(B.2.8) —oph(é>)v Op (fg)(hﬁ 7) - Op (é)v.opz(%@)v

ot ()7 [0k (55)] 7 e

so after a-priori estimates (1.1.11]) and (B.1.10b)),

108 (A7)t gw + cul (t, Mz S [IT (g + ULV (&g |1V (8o

(B.2.9) )
< CA(A + B)é’t2

Moreover, from (|3.1.19)), the fact that :L‘jemf = Dg.e””‘g , integration by parts, and inequalities

with p = 2 (after the first part of lemma , ,
(B.2.10)
X (77 D) (g ©) () 2
S P ll@nv—(ts )| zoo | NLig (8, )| eprs + IV (8, ) sl Nag (¢, )| oo
+||NLkg( Wiz (V) grs + 1V (E ) see) + [V (E )l s | Nigg (¢, -) | <]
< CBatT,

last estimate following from (B.1.10b)), (B.1.13b)), inequalities (B.1.4a)), (B.1.4b}), (B.1.4c) with
s = 15, and a-priori estimates (1.1.11]). Consequently, from (B.2.4), (B.2.5), (B.2.9), (B.2.10),
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(B.2.1a) and a-priori estimate (1.1.11d)) with & = 2, along with the fact that Aeg < 1, we get
(B2.30).

In order to prove (B.2.3c)), we apply 90(%)¢k(Dx)Q to both sides of (3.2.10al). We find that

(B.2.11)
160 (2)Opy (¥ (€)Mt ) 2 S 12Z2U (¢, )| 2

|60 (3) (D)2 (N = u)t.0)

LT Z |0 (o (Bt ) 12
+ 1160 (2)Opy (¥r () Qn [t () (qw + cw) (X, t:c) 2 + (|60 () O (Wi (€)@t (twn ) "Nt D 2 -
The first norm in above right hand side is bounded by E3(¢; W)%, while the third one is estimated

by (B.2.1a)), (B.2.3a]). In order to estimate the second one, we first commute Z, to Q ([, Z1] =
—Zy and [Q, Z3| = Z1), and use that

00 (5 ) 0u(D2)Z; = [103 (5 ) v (Da) + 00 (7 ) (D), 1] 0+ 160 (5 ) (D)0,

with 6)(2) := 0(2)zj, and commutator [¢y,(Ds), ;] being bounded on L2, with norm O(t), and
symbol still supported for moderate frequencies || < ¢77. Therefore,

[00(3)0(D)QZ0 ™ —us)it,)| S X D)o @™ = )t 1o
+ Xt D2)ea N = us) (8|

for a new y € C§°(R?), so using (A.20a) with p = 2 (because of first part of lemma [A.8)), and
(A.31a]), both considered with u = 0y zv4+,v = vy, and u = v4,v = 0 ,v+, we obtain that the
above right hand side is estimated by

(100 V (E, 2 + 19062V (2, ) 12) [V (E, )| rameee
+ V@ ez + 19V (E ) L2) 1002V (E, ) rrmee]

From (B.1.6a)) and (B.1.6b|) with s = 0, along with (B.1.6c) and a-priori estimates, we deduce

that

(B.2.12) Heo(g)wk(px)azn(uw )t .)HL2 < CBetP+%.

As concerns, instead, the estimate of the fourth L? norm in the right hand side of (B.2.11)),
we recall (B.2.8]) and apply the Leibniz rule, obtaining, from the uniform continuity of operator

B0(x)Op}! ($x(€)) on L?, that
(B2.13)  [|00(x)Opl (5 (€)) [t (t2)[aw + cul (. t2)] 2 < va Mgz |6V () 1y
+Zhuv Mg 1LV (E e+ RIQRV (L) e 15V (8 gy

We immediately observe that, from the semi-classical Sobolev injection, (B-2.7), (B.1.10%)), the
fact that [|[QuV (¢, )|[mg = [|Qu_(¢,-)|[m= for any s > 0, and a-priori estimates,

~ ~ ~ ~ 35
(B.2.14) MRV (@, )l Lo L5V (@ ) S NQVE a2 ll L5V (E )l gy < CBet ™=
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Again from (3.2.8) with w = v_ and f = NLj4, we find that

120L5V (2, )2 S 19Z50-(t, )] 22 + Z 19250 (¢, ) L2 + (1€ (25 NLig) | 2

where, after making a commutation between €2 and x;, and using (B.1.15a), (B.1.26a)) with
I'=9Q,

8
1 (2 NLig)|| 12 < C(A+ B)B*t3+7.

Therefore,

BRIV (t, )] roe | QL V (8, )| 12 < CAB(A + B)e*t—3+ %,

Mg

which combined with (B.2.13]), (B.2.14) and a-priori estimates, gives that

(B-2.15) 160 ()0} ($r(€))m[E(t) gus + cul(t, )] 2 < CBet =

We estimate the latter L? norm in (B.2.11)) recalling definition (3.1.19) of T{XF, commutating 2
and x,,, and using that

00(x)Opj, (¥ (&))xn = 05 (2)Opy (Y1, (€)) + bo(2) [Opy (Vr(€)), 2,
where
[Opy) (¥k(8)), Tn] = —ihOpy (Onthr(§))
is uniformly bounded on L?. We derive that, for some y € C§°(R?),

1
160()Op (W1 ()t (twn)r 1t )| 2 gy S D HIXE D) (8, )22 < CBe
n=0

after (3.1.22a)), (3.1.22¢|) with 8 < 1 small, and a-priori estimates (|1.1.11]). Combining (B.2.11)),
(B.2.12)), (B.2.15)) and above estimate, and assuming 3dy < d1, we finally obtain (B.2.3c)) and the

conclusion of the proof. O

In the following lemma we explain how we estimate the L? or the L> norm of products supported
for moderate frequencies || < t7, when we have a control on some high Sobolev norm of, at
least, all factors but one. This type of estimate will be frequently used in most of the results
that follow.

Lemma B.2.2. Let n € N, n > 2, and wy,...,w, such that w; € L*(R?), ws,...,w, €
L>®(R?) N H*(R?), for some large positive s. Let also x € C§°(R?). There exists some x1 €
C§°(R?), equal to 1 on the support of X, such that

X (t77Da) fwr ... wa)|, S || xa(tDa)uwn] [ x(t7Ds)

Jj=2 L

n
+ N w2 Y [T Hlwellzes llws e,

=2 k#j

with L = L? or L = L, and N(s) as large as we want as long as s > 0 is large.
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Proof. The idea of the proof is to decompose each factor w;, for j = 2,...,n into
Xt Dg)wj + (1 = x) (™7 Dy)wy,

and to estimate the L? norm of product

(B.2.16) X(tDy) fwr [ @ [(1 =) 7 Da)uwy] |,
k=2,...,n

where 0y, is either wy, or x (¢t =7 Dy )wy, with the L? norm of w; times the L> norm of all remaining
factors, reminding that x(¢~?D,) is uniformly bounded on L*°, and that by Sobolev injection

and (B.1.2),
(B.2.17) (1= )t Da)ws| oo S a5,

with N(s) as large as we want as long as s > 0 is large. The L norm of (B.2.16]) is estimated in
the same way, using the L? — L> continuity of operator x(t~?D,) acting on the entire product.

Then, when all factors wj, for j = 2,...,n, are truncated for frequencies less or equal than ¢,
the fact that the entire product is also restricted to this range of frequencies infers the same
localization also for wq, and that concludes the result of the lemma. ]

Lemma B.2.3. Let n € N* and some functions wi, ..., w, be given, w € {u,v}, x € C(R?)
and o > 0. Let also I = (i1, ...,ip) be such that M=ry--- [, is a family of Klainerman vector
fields, i.e T'y; € {Q, Zm,m = 1,2}, forall j=1,...,p. Then, for |u[ =0,1,

(B2.18) || DA w)wwn ...wn|, S | [t D2) Hw]H

P p n
V(ST josapwsln ) (Y e ﬁleL2>H|wj”L°°

atlal=1 b+|8|=0

for L =L? or L = L™, where N(s) € N is as large as we want as long as s > 0 is large, and
where the second product in the above right hand side has to be meant equal to 1 if n = 2.

Proof. The idea behind the result of the statement is to truncate factor D4 (I'!w)+ in frequencies
by writing
DE(T"w) s = x(¢77Dy) D (T w)s + (1= X) (177 D) D (T w) .

When L = L* and D% (I'!w) is supported for large frequencies |¢| > 17, we first use the L? — L>®
continuity of operator x(¢t~?D,) acting on the entire product, with norm O(t?), to bring us to
estimate the L? norm of that product (up to a factor 7). Then, when dealing with

[(1- X)(t_UDm)Dg(FIw)i]wl R TI

we first commute I'! with Dy (D; + |D,|) if w = u (resp. with Dy (D; + (D,)) if w = v), and
then write each below I'/ as a linear combination of derivations t*z?9802, for a + |a| = |J|,
b+ |B| < |J]|, so that

/

DH(T1w) Z FJD“wi— Z 2P 980 D w .
l71<H1| at|a|<|I]
b+|BI<|1]
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Z/ being a concise notation to indicate a linear combination. Up to a commutation with operator
(1 — x)(t77D,), all these factors t?2® can be discharged, say, on w;. Finally, we bound the L?
norm of this product by taking the L? norm of t’zfw, the L> norm of the remaining factors,
and using the classical Sobolev injection together with inequality to control the L*° norm
of 8?85 DHw, obtaining the second contribution to the right hand side of . O

Corollary B.2.4. Under the same hypothesis as in lemma[B.2.3,

(B2.19) [ D (Quw)swy ... wnll, S || [x(t7 D) D Q)] [T w

j=1 L
VO g (8, e 5 ol ) H w22,
|u|=0
and, form=1,2,
n
(B.2.20) || D¥(Zpw)sw: ... wull, S ||[x(t 7 Dy) DE(Zpmw) s H

L

F NG (g (¢, )| g + | Dewa(t, )| z2) (Z b wi |l 2 + t||w1||L2) H [[wjl| zoe-

Remark B.2.5. The same decomposition in frequencies made on D% (I'!w)+ in the proof of the
lemma, can be eventually repeated for the remaining factors wq, ..., w,, obtaining that

(B2.21) ||DE(Iw)swy .. wnHLNH (t77Da) H HL
p p )
FNO (3 omapualne) (D0 1 wlez) T ol
atlal=1 b+|8]=0 =2

n
+ N ONDEC w) a2 3 [T llwwllnee s -
i=1 k]

Moreover, if product D (I'w)tw; ... w, is truncated for frequencies |¢| < t°, we can choose
a jo € {2,...,n} and restrict the last sum in the right hand side of (B.2.21) to the set of
indices j € {2,...,n} such that j # jo. This is due to the fact that a product such as

x(t~7D,) [wl H oxi(t "Dx)wj], with x, x1 € C5°(R?), vanishes if w; is supported for large
frequencies |¢| > ¢, which means that there exists some x2 € C§°(IR?) such that

X(t™7Dy) w1Hx1 “"Dg)wj| =x(t"7Dz) | x2(t™°D w1Hx1 D,)

This reasoning allows to avoid to consider the H* norm, for large s, of some factor wj, for which
we could not have such a control.

Lemma B.2.6. For any x € C§°(R?), any o > 0 small, if w(t,z) := tw(t, tz) then
(B.2.22) X (¢ Da)w(t, )| oo S 7 Z 1Op} (x(h7€)£Ha(t, e

|n|=0

with 8> 0 small, 8 — 0 as 0 — 0.
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Proof. Since
X(t77 Da)w(t,y) =t~ 0p} (x(K7E) (¢, )| =1,

the goal is to prove that

(B.2.23) 0P (X (€)Y (t, ) || oo S h P Z 10p} (x(h7€) L@ (¢, )| 2
|u|=0

with h = 1/¢t, for a small 8 >0,  — 0 as 0 — 0.
Let wX := Op¥(x(h°¢))w and x1 € C§°(R?), equal to 1 on the support of y, so that
Opy (x(h7&))w = Opy (x1 (7€) )wX

For a v € CSO(RQ), equal to 1 in a neighbourhood of the origin, and with sufficiently small
support, we consider the following decomposition:

on (+(“ ) vawee) )+ op (1 - ) (S o) Y

Vh Vh
and immediately observe that, from inequality ,
Op? _ z —p'(§) TN\ X (4 . < p=P 1 w o BamX (4.
ot (- (= E D mwee)aes| s Y 1omame )T e s

oo
L |u|=0

As we remarked at the beginning of subsection (see (3.2.15))), there exists a family of
smooth functions 6y (z), equal to 1 for |z| < 1— ¢h?® and supported for |z| < 1 —c1h?7, for some
0 < ¢1 < ¢, with [|0%0, || = O(h=21%17) and (hd})*6), bounded for every k € N, such that

V() e = outen (S ) aoe)

and by symbolic calculus and remark [1.2.22

ont (+ (") wae9)) @ = @10k (3 (1) 11097+ O s, N

with ro, € AV 51 U(<w \%(5)>—1)’ N € N as large as we want. It is enough to take NV =1 to

have that ||Op}’ (roo)wx(t Mlpes < APl wX(t,-)|| 12 by proposition [1.2.37, We can also replace

Opy (v(* \%5 Jx1(h?€)) with Op}l”(xg(h"lg))Op}f(’y(%\/%(g)))(l(h"{)), for a new cut-off x2 €

C’(‘)’O(RQ) equal to 1 on the support of x1, and a new small o1 > ¢, modulo an operator of the
form Op}(r). As function ¢(z) := /1 —|z|? is well defined on the support of ), we are
allowed to to write the following:

au()0m Gt )0 (3 (“HE ) o))
= [etn@on e enon (s (“EE ) waro) )|
< Jostvateren [eronwon (+ (“EE) )|+ 1omeam e i

for a new ro, € AV S1 A(i\/%@)fl). This latter ro comes out from the commutation between
2 b

e%‘ﬁ@h(:ﬁ) and Opy(x2(h?1€)), whose symbol is computed using (1.2.18) until a large enough
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order M. We notice that, as 07 > o, at each order of the mentioned asymptotic development
we gain a factor hl*(®1=9): moreover, those terms write in terms of derivatives of y2, and hence
vanish on the support of xj. By proposition [I.2.21] and remark [1.2:22] we then deduce that
the composition of the mentioned commutator with Opﬁ( (m \pf( )) Xl(h"{)) is an operator of

symbol r, with N as large as we want.

By classical Sobolev injection and symbolic calculus, we find that

ot atiere) {e“f’h(@%“ O () tra)e

' Vi -
< loghl | 1@ (t, j[e’%h ok (4 (W) xl<h“5>)m] Lz]
< loghl | 1@ (t, ||Lz+zh 2 (& + ()0 (x))Opz”(v<"’”};;@)xl<has>)m ]
< gl |1@(t, )2 +87 3 |opz%xl(h%»wxa,->||L2] ,
L [p|=0

last inequality following from lemma [3.2.16

Finally, commutating £ with Op}’(x(h?§)) defining wX, and reminding that x; = 1 on the
support of x, we obtain

1
10py (x (W)@ (£, poe S B2 10pY (x (W €))L (. )| 2,

[]=0
for every t € [1,T], and hence (B.2.23). O
Lemma B.2.7. Let I be a multi-index of length j, with j = 1,2, and
(B.2.24) ‘
P a) = (T ()~ s Y / ETEBL (€ m)ol (€ — n)iy, (m)dédn,

J17]2€{+7

with B(lj1 ot gz’ven by (2.2.45) with js = + and k = 1. Then there exists a constant C' > 0 such
that, if a-priori estimates (1.1.11)) are satisfied in some interval [1,T], for a fixred T > 1, with
g0 < (2A + B)~! small, for any x € C°(R?), o > 0 small,

(B.2.25)  ||x(t7Dg) (v = (T0)-) (¢, ) || oo < % [x(t"7Dy)(T0)—(t,)|| oo + CBet ™,

for every t € [1,T]. Moreover,

d3— ]‘HSQ

(B.2.26) Xt~ Dy) Zn (v = (TT0) ) (t,9)|| ;. < C(A + B)Be**+ :

v' HL2
for every m =1,2, t € [1,T].

Proof. First of all, we observe that after (B.2.24)), (A.11]) and (1.1.10]) (notice that Ry (uqy—u_) =

2D1u), we have an explicit expression for the difference between v/"¥" and (I'v)_
(B.2.27)

vV (ly) = _% [(DeT"0)(D1u) — (D1 v)(Dy) + Di[(D0) Dyu) — (Dy) [(T0) D]
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From the above equality together with (1.1.5), (1.1.10), and lemma with L = L* and
wy = (I'v)4, we deduce that there exists some y; € C§°(R?), equal to 1 on the support of Y,

such that

(B.2.28)
(7D o)) 1 3 a7 Do) 6 e DR 1)
n=0

VO () () g2 s (8,

where the second addend in the above right hand side is estimated with B2e2t=3/2 after a-priori
energy estimates, if s > 0 is taken sufficiently large so that N(s) > 2.

What we actually want to do is to truncate (I''v), in the first norm in the above right hand
side, by means of the same operator x(t~7D,) appearing in the left hand side. For that, we
proceed to decompose x(t77D;)Rfuy as follows:

(B.2.29) X7 Dy)RYur = x(#"Dy)Rius + (1 — x)(t"Dy)x(t77 Dy) R u,

for some k > 1 that we will choose later, noticing that, as x(t"¢) is supported for very small
frequencies [£] S t7F,
IX(#" Do) RYux(t, ) oo St " Nus(t, )l o

Consequently, using the L? — L> continuity of x1 (¢~ D,) with norm O(#2?), along with (1.1.11d),
(1.1.11d)), for 4 = 0,1 we have that

D2 (77 D) (D)2 (8, ) (" Do) R s (8 ) || oo S 277 [T 0) (8 ) 2 e (£ )22

< O Bet— 2ot 63_2] ;

so choosing k =1+ 20 + %, we deduce from (B.2.29)) that

(B2.30) ||[x1(t77 D) (M) (£, )x (6™ Do) R e (1, )| o

S (t 7 D) (D) £ (¢, )] (1 — x) (#° D) x (¢ D) R u (¢, + CBet™.

M g

At this point, we decompose (I''v)+ in frequencies using the wished operator x(t~?D,). In order
to estimate the L°° norm of

[(1=X)(t 7 Da)x1(t ™7 D) (T0) 1] (1 = X) (¢" D) x (¢t~ Da)Rius,

we first commute I'/ to operator Dy & (D,), and successively look at it as a linear combination
of derivations of the form z%t?0%0?, with 1 < |a| +a < 2, 1 <|B| + b < 2. Commutating z® to
(1=x)(t77D,)x1(t?D,) and multiplying it against the wave factor, and successively combining
the classical Sobolev injection with inequality , we find that

(B2.31) H[(l—x)(fffD >xl<t-<’D YT )£ (1)) (L = ) (D)X (" Do) R us (1,)]| o

SN (Jos(t, e + 1Dt s + [|1DFv () me)
X Z on‘t“ 1— X)(tHDx)X(fUDa;)R’fUiHLOO )
1<[alta<?
|14]=0,1

Using system ([2.1.2) with |I| = 0 and a-priori estimates, we check that

s, Ve + | Dsva(t, e + [ DFve(t, s < CBetd,
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and also that

(1= X Do)t DR S 2 s )2 < OBt #2075,
On the other hand, for |o| = 1,2,
(B-2.32) (1 = )" D)X (" Do) R | o < B3,

In fact, when |a| = 1 this latter inequality is deduced by commutating x® with operator (1 —
X)(t" D )x(t7° D), where

[n, (1= X) (" Dy )x(t7 Do) = —it™(9nx)(t"Da) + it~ (Onx)(t”° Dz), n=1,2,
is bounded from L? to L> with O(1) norm, and by using (1.1.11d)), (B.1.16al) together with

(1 = x)(t"Da)x(t7 D) [2°REus] (¢, )| oo

Y2 us(t ) 2+ tlus () |+ 2 NLw(t, )| 2
lul=1

which is consequence of the following equality, with (&) := (1 — x)(¢)|¢]71,
(1 = x)(t"Dy)x(t™7Dy)z,RY
=t"X1(t"Dy)X(t 77 Dy)xn| Dy |RY + t"X1(t"Dy) X (t77 Dy)[| Ds|, z]R
1 D,
"2 1D,]

] + 8=t X1 (" D) x (7 D) Op(|€]0n (€11€] 1))

=t"X1(t"D;)x(t~ 7 D,)RY [:cn\ny —tD

+t"X1(t" Dy )x (7 D,)RY [tDn % D]

—it"X1(t" D) x(t 77 Dy)RuRY,

and of relation (3.2.9a) with w = wy. When |a] = 2, we also commutate z® with (1 —
X)(t*D;)x(t~?D,) (this commutator being now bounded from L? to L> with norm O(t*)), and
derive an analogous relation to the one of above by considering function x2(&) := (1 —x)(€)|¢]72
instead of X1, making some commutation, and expressing each occurrence of x,|D,|, for n = 1,2,
%n term§ of z,|Dy| — tD,, + %Hg—:l in order to make use of relation (3.2.9a)). We end up with an
inequality as
11 =20 (D) (t77 De) [a* R ] (8| o
2
<2 | ST Z0unt Ve + 30 BN 20wt W+ S N VLt

|p|=2 lul<1 lul=1

< CBthH’”g :

last estimate following from a-priori estimates, (B.1.16a]) and (B.1.32)).

Therefore, choosing s > 0 in (B.2.31)) sufficiently large so that N(s) > 6, from above estimates
and the fact that kK = 1+ 20 + +21, with o, 9, d1 small, we deduce that
(B.2.33)

111 =) (7 Da)xa (™7 D) (TTo) (8, ) (1 = x) (" D) x (7 D) R u (1,

HLOO < C’Bst_%,

so from (B.2.28)), (B.2.30)),(B.2.33), and the uniform continuity on L> of x(t77D,),

1
(7 D2) (05N = L) (1) e S 3 I DT 0) (1) o [RE s 8, | e + CBet ™
©n=0
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As o is small and g < (24)7!, from (1.1.11a)) we then obtain (B.2.25).
In order to estimate the L2 norm of x (=7 D) Zy, (v"M —v!), for m = 1,2, and prove (B.2.26),
we first apply the Leibniz rule and, since

(B.2.34) (Zim, D] = =Dy, [Zm, D1] = =61 Di,  [Zim, (Dy)] = =Dy (D,) "1 Dy,

we find that

(B.2.35)
2 Zp (VN — 1)
= (D1 ZmT10)(D1u) — (D1 Zp T 0) (Dyu) + D1[(Zn T 10) (Dyw)] — (D) [(Zm T v) (D1u)]
+ (D) (D1 Zmu) — (DT 0)(Dy Zyyu) + D1 [(T0)(Dy Zyu)] — (Do) [(T0) (D1 Zmu)]

— (D T10)(Dyuw) + 6% (DT o) (Dyu) — 6%, D [(T10) (Dyu)] + <gm> Dy[(Tfw)(Dyu)]

= 0y (De ) (Dy) + (DT 0) (D) = 8, D1[(D0) (Dg)] + 85 (Do) (P 0) Dy

The L? norm of all products (when truncated for frequencies |¢| < %) in the above second, fourth
and fifth line, i.e. those in which Z,, is not acting on the wave component u, is estimated by

1
(B2.36) Y 7 (I(Zml0) (b, )l g2 + (T 0) (8, )l 2 ) (IR (¢, )| e + | D (2, )| )
n=0

5
< CABe2t—3+3+0,

after inequality (B.1.5b) with s = 0 and a-priori estimates. The L? norm of products in the
second above line are, instead, estimated by using (B.2.20) with L = L?, w = w and s > 0
sufficiently large so that N(s) > 2, combined with remark It is hence bounded by

t7 [ x (™7 Da)(TT0) (8, )| oo |(Zimte) £ (2, )] 2

1
72 (3 e () (1)l + U 0) (1)) (s () s + | Detea (8, ) re)
| u|=0

03— j+02

)

where the latter estimate is obtained using the fact that x(t~?D,) is a bounded operator from L?
to L with norm O(t?), together with (B.1.5a), (B.1.17)) and a-priori estimates. That concludes,
together with (B.2.36)), the proof of (B.2.26)) and of the statement. O

In the following lemma we provide a first estimate on the uniform norm of the Klein-Gordon
component when one Klainerman vector is acting on it, and when it is localised for frequencies
less or equal than 7, for a small ¢ > 0. It is not the sharpest one, and will be refined at the end

of this chapter (see lemma |B.3.21)).

Lemma B.2.8. There exists a constant C > 0 such that, under the same assumption as in
lemma foranypeN, y € CSO(RQ), equal to 1 in a neighbourhood of the origin, and o > 0
small,

S
(B.2.37) > IXE T D)Vt ) [ geoe < CBet™ 1S
11=1

for a small 8 >0, 8—0 as o — 0.
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Proof. Since x(t7?D,) is a bounded operator from L> to H*® with norm O(t°?), for any
p € N, we can reduce to prove the statement for the L> norm of x(t~°D,)V’, up to a loss t77.
Moreover, as inequality @ is automatically satisfied when I' is a spatial derivative, after
a-priori estimate @ and the fact that operator x(¢~?D,) is uniformly bounded on L, for
the rest of the proof we will suppose that I' € {Q, Z;, j = 1,2} is a Klainerman vector field. We
also warn the reader that, throughout the proof, C, 8 will always denote some positive constant,
that may change line after line, with 5 — 0 as ¢ — 0.

Instead of proving the result of the statement directly on x(t~7 D, )vk, we do it for (¢~ D, )v! N

where v1"M has been introduced in and is considered here for [I| =1 and I'Y =T. In
fact, by (B223),

(B.2.38) |x(t 7Dy )vl (¢ < 2||x(t™7 D)o M (2 + CBet™!,

7')“Loo " HLOO

and the advantage of dealing with this new function is related to the fact that it is solution to a
half Klein-Gordon equation with a more suitable non-linearity (see (B.2.39)) than the equation
satisfied by v’ .

In fact, it is a computation to show that, from definition (B.2.24)),

(B.2.39) Dy + (Do) M (¢, 2) = NL ™
where
(B.2.40) NLY = Mt @) + QP (ve, Diud) + GY8(ve, Dusy),
and
I,NF i
(B.241) r " (tw) = -

—

4(2m)
S / TEBL, (&) [NLL (€ = mas, () = vl (€ = m) NLu (n)] ddn,

Ji.gj2€{+,—}

with B(lj L) given by ([2.2.45) when j3 = + and k = 1, and NLﬁg = FINLkg = I'NLy,. After

(B.2.24)), m, it appears that r,ﬁ N has the following nice explicit expression

i
(B.2.42) et = -3 [NLi,Dyu — (D1T 0) NLy, + Di[(T'v) NLy)] -

Applying lemma and relation (3.2.8) with w = v/*¥' and reminding that |tw(t,t)|| 2 =
llw(t,-)||r2, we find the following inequality

(B.2.43) [t DI, )]

1
SN (T D) 2V () +Zt 2 (o D) N (8, )|
|p|=0

From equality (B.2.27)), along with (1.1.5)), (1.1.10)), and a-priori estimates ({1.1.11al), (1.1.11d)),

we immediately see that

2’

X (Do) (08 = 1) (8, )| 2 S M0k (8, )z (lus(t, )l + [Raus(t, )l zoe)

(B.2.44)
< CABEZtﬁt?*”,
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and therefore, as 0,02 < 1 are small, that

X7 D)o N, )| 1o < [IX(t T D)ol (8,9 12 + [|[x(t 7 D) (0" — T )(2, )

(B.2.45) i R
< CBet>2.

Moreover, from (B.2.26]) and a-priori estimate (1.1.11d)),

(B.2.46) X(t~7 D) Zono " NE (8 < CBet'?,

) HL2
for every m = 1,2, t € [1,T].

Finally, from (B.2.42), (1.1.5), (1.1.10), (B.1.10b)), (B.1.26a)) and a-priori estimates, we derive
that

HX (t7°D,) [azjrégNF} (t7.)‘

s Sl NLgg (8, ) g2 (lus (t, )|z + [Raus(t,)llzo)

oy t)

(B.2.47) +Zt” (||x vt (t, )| L +

) Bkl o, o
o>
<C(A+ B)B52t7,
while from (B.1.5a)) with s =0, (B.1.10b|) and a-priori estimates
. k
|t Da) [2,Q8 (02, D) | (1.

< (legos (el + ) Qe+ 1D )2
< C(A + B)Bet®.

+ Hx(t_"Dx) [:Ulel(g (vi,DUi)} (t, )‘

L2

Zj

Therefore, from (B.2.40) we deduce that

(B.2.48) IX (77 Da)a; NL (¢, )| 12 < C(A + B) B,

so injecting (B.2.45)), (B.2.46[), (B.2.48]) into (B.2.43), and summing it up with (B.2.3§), we
obtain the result of the statement. O

As done for the Klein-Gordon component in the above lemma, we derive an estimate also for
the uniform norm of the wave component with a Klainerman vector field acting on it, when
supported for moderate frequencies less or equal than t7 (see lemma . We first need the
following result.

Lemma B.2.9. Let T € 2, with Z given by (T.1.7), and @’ (t,z) := t(T'u)_(t,tz). There exists a
constant C > 0 such that, under the same hypothesis as in lemma for any 6y, x € C§°(R?),
o >0,

(B.2.49a) @ (¢, )| 2 < CBet?,

(B.2.49b) |03 (¢, |2 < CBet 7,
(B.2.49¢) M@ (£, )| 2 < CBet?,
(B.2.49d) 860D} (x(h7 €)M (¢, )| .o < CBet*.
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Proof. We warn the reader that, throughout the proof, C will denote a positive constant that
may change line after line. We also recall that

[Dy + (Dy)](Tuw)—(t,x) = T NLy(t, x).
Estimates (B.2.49a)) and (B.2.49b|) are straightforward after (1.1.11d|) and the fact that
@7 (¢, )l = 1) (8 )z, 192087 ()22 = [(QTw) - (¢, )| 2.

From ([3.2.6) with w = (Tw)_ and f = I'NL,, estimates ({1.1.11d]), (B.1.26b|), along with the fact
that 02 < 91 (e.g. 202 < 1), and (A + B)eg < 1, we obtain (B.2.49¢]).

By (3.2.6)) we also derive that, for any n = 1,2,

1

10005 (x (7)) M T (8, -] 12 S 19QZn(Tw)~ (8-l 2 + Y 194 (Tu)~ (¢, )| 2
(B.2.50) 1i=0

+ |60 (3)x(t " Do) QUL VL,

The first two norms in the above right hand side are controlled by ES(¢; W)'/2, and are hence

bounded by CBet¥. By commutating z,, with x(¢77 D), and using that 6 (%), = 05 (%),
with 67 (z) := 0y(2)zy, we deduce that

1
|00(%)x(t=" D) QLT VL] HL2 St (D) TNL, | 1.
pn=0

On the one hand, from ,
(B.2.51)

HITNLy||gz < tlow(t, )z (IT0)£(t ) a + lost, ) + [ Drwslt, )iz2) S OBet?,
as follows from with s = 0 and a-priori estimates.

On the other hand, when computing QI'NL,,, among the out-coming quadratic terms we find

Qo (), D1(Tv)x)  and - Q¢ (F'v)+, D1(w)<),

and we estimate their L? norm (when truncated for frequencies less or equal than ) by means
of (B.2.19)), together with remark with L = L? and s > 0 large enough to have N(s) > 3.
From (B.1.17)), (B-2.37) and a-priori estimates, we obtain that

Xt D2) QY ()+, D1 (Tv)+)|| o + || x(t7D )Qo((rv)i,lh(ﬂv )| 2

S 7X@ De) Q) (¢, )| oo [(T0) £, )l + Z t2 o (¢, )l azsll2* (Do) (8, ) |

|u|=0
61+62

)

with 8 > 0 small such that 8 — 0 as 0 — 0.

All remaining quadratic contributions to QI'NL,, are estimated with

1QC0) £ (&, ) lv(Es )l 2o + 1 Q)= ()2 (lo(E ) mree + 1 Do (E, )l L)
+ o (s )l e (1[(20) £ )l + [ De(Qu)£ (2, )l 22) 5
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5
and are hence bounded by C(A—i—B)Bth_H?l, after (B.1.6b)), (B.1.6c|) and the a-priori estimates.
This finally implies that

61+09
2

t||x(t"7D2)QCNLy|| ., < C(A+ B)Be*tP*

which, together with (B.2.51)) and the fact that 8+ @ < %0, as 0o € 01 < §p and B > 0 is as
small as we want (provided that o is small) gives

[
Ha()@) X(fUDx)Q[%FNLw}H | < COBet?,
L
and concludes the proof of the statement when injected in (B.2.50)). O

Lemma B.2.10. There ezists a constant C > 0 such that, under the same hypothesis as in
lemma foranypeN, x e CSO(RQ) equal to 1 in a netghbourhood of the origin, and o > 0
small,

1
(B.2.52) ST ST INETD)RIU (4, ) e < C(A+ B)et—3+6+%
|J|=1 |u[=0

for a small 3 >0, 8 —0 as o — 0.

Proof. Since x(t7?D,) is a bounded operator from L*™ to H/*°, with norm O(t°?), for any
p € N, we can reduce to prove the statement for ||x(t~7D,)RFU(t,)||r e, for any |J| = 1,
|| = 0,1, up to a small loss t?” in the right hand side of (B.2.52]).

This estimate is automatically satisfied when .J is such that I'/ = D, as a consequence of a-priori
estimate (I.1.11a)). We therefore assume that I'/ is one of the Klainerman vector fields §, Z,,,
m=1,2.

Introducing @’ (t, z) := tu’ (t,tx), so that ||a”/(t,-)|| 2 = ||u”’(t,-)|| .2, passing to the semiclassical

setting (t — t, x = ¥, and h := 1/t), and reminding that ui = —u’, inequality (B.2.52])
becomes

91

(B.2.53) Z HOph< (h )€l ) )a (t,-)HLoo < C(A+ B)eh~35- %,

|u|=0

We consider a Littlewood-Paley decomposition such that

(B.2.54) x(h7€) = X(h~1¢) +Z 1= X) (A2 x(h7€),

for some suitably supported X € C§°(R?), ¢ € C§°(R? \ {0}), and immediately observe that the
above sum is restricted to indices k such that h < 2¥ < h=7. By the classical Sobolev injection,
the uniform continuity of Opﬁ({\ﬂ_l) on L?, and a-priori estimate (I.1.11d)), we derive that

|0 (X(R &) (ELEI™ )@ (2, )| oo = X (D) Opiy (€I (2, ) | 22

(B.2.55) y sy
S llul(t, )2 < CBeh™ %,

for any |u| <1, every t € [1,T].
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If we concisely denote by ¢ (§) the k-th addend in decomposition (B.2.54]), and introduce two
smooth cut-off functions xq, v, with xo radial and equal to 1 on the support of ¢, and v with
sufficiently small support, we can write

zlg| = ¢
hl/2—c

Oy (on(€)(€1 1) & = Opp (v(2 25 ) ox(E) (€111 ) O (xo (7€)
zlé| €

+ 0 (1= (530 ) SO (€l ™) ) Opi (xo (7€)

On the one hand, after proposition [1.2.30, the fact that 2¢ < h~, and a-priori estimates
(1.1.11d)), we have that, for any |u| <1,

B250) [0 (555 el on ey’ (e )|

S B2 (|0pk (xo (7)) (¢, ) | 2 + 10020 (xo(h7€) ()] 12)
S B8 (a6l + 1907 (0, )|2) < CBeh45-%,

with 8 > 0 small, 5 = 0as o0 — 0.

On the other hand, using that (1 —~)(2) = ’y{(z)zj, where 47 (z2) == (1— v)(2)zj|z| 72 is such that
10277 (2)| < (2)~'7lel] we derive from (T.2.48b), the commutation between M with Op’(xo(h7€)),
and lemma that

o (=) (3 entereie ) on e

LOO
1
SHPD T (800 MO (o (7€) (1) 12 < OBet™* 4,
v,lv|=0
for some small 5 >0, 8 — 0 as 0 — 0. Combining this estimate with (B.2.56[), we deduce that

91

_ - _1_g.9%1
1O}, (r(€)(EIEI™N") @ (t, )| < C(A+ B)eh™27P7 2,
for any |pu| < 1, and hence (B.2.53) after (B.2.54), (B.2.55)), up to a further loss |logh|, as

a consequence of the fact that the sum in (B.2.54) is finite, taken over indices k such that
logh <k Slogh™t. O

Lemma B.2.11. There exists a positive constant C' > 0 such that, under the same hypothesis
as in lemma for any x € CSO(RQ) equal to 1 in a neighbourhood of the origin, and o > 0,

1

(B.2.57) >

|u|=0

XD, [y (55 ) (o))

[
< C’Bstﬁ+71,
Lo

for every t € [1,T], with § > 0 small, 8 — 0 as 0 — 0.

Proof. We warn the reader that, throughout the proof, C, 8 will denote two positive constants,
that may change line after line, with 8 — 0 as ¢ — 0. As I'v; = —I'v_, it is enough to prove
the statement for I'v_.

First of all, we observe that by (B.1.9b), with w = (I'v)— and f = I'NLy,, along with the classical
Sobolev injection,
(B.2.58)

1 1
2 wj(é;””))“(rv)(t, I SNZT0)- (&I T0) - () 2D 4T NLgg (2, ) 20,
|14|=0

pu=0

T oo
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where, from (B.1.20a)) and corollary with L = L* and s > 0 large enough so that N(s) > 3,

(B.2.59)
I NLig (L, )| o
1

S Y (IX(E D) (o)<t )| oo IR e (8 ) zioe + o (8 ) e [ (7 Do) () ()| o)
pn=0

+ lox (@t )1 X Z (IR*ur(t, ) m2oo + | DeR* us(t, )| 1)
|pn|=0

7 (ot )l + 1Dt ) ) (anwlui ez + st ez )
|n[=0

+t3(Z||x“vi Mz + tlos(t Nz ) (s ) e + I Deu () 12)
[1|=0

< CAB&~ 353,

last estimate derived from (B.1.5a)), (B.1.5b), (B.1.5¢), (B.1.6al), (B.1.10a), (B.1.11)), (B.2.37),
(IB.2.52) and a-priori estimates. Moreover, as

(B.2.60) H%Qgg(@%m“ﬂ\\mSW;V:O (o) O] IRt e,

(B.2.61)

Je6i#0s. D) 5 3 i) ot (e + | Drs () ).
-

|]=0

and by corollary with L = L*°, w = ug, and s > 0 large enough so that N(s) > 3,

X (™7 Dy) (Tu) 1 (t, )| 2.0

_ L
(B.2.62) =0
#1793 (Ilauat, )| o + s () e ) Qs 6, ) e + 1 Do (8,
|, v=0
we derive from (B.1.20a]) that
(B.2.63)

1
|2, T NLg (£, )| oo < CAet™2 Y
|l ,v=0

4 (A + B)Be2 3+5+75™
LOO

Zj

) o))

as follows after (B.1.5a), (B.1.5b)) with s = 1, (B.1.10al), (B.1.10b)),(B.1.27a)), (B.2.52)) and a-priori
estimates. By injecting the above inequality into (B.2.58)), and using the fact that ¢g < (2C4)~1
we initially obtain that

5
< CBet't3
LOO

(B.2.64) [l ()~ (¢, )| Lo + ||

S T~

Now, by taking any smooth cut-off function y, and using again (B.1.9b)), instead of (B.2.58|) we
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find that

(B.2.65)
1
s x.&“v < Z:(Tw Moy iy o) (£
“;0 X(f D$)|: j(<Daz>) (F )*(t, )} Loo = ||Z](F ),(t, )HH +t||X(t Dx)(F ) (t, )HL
1
LD NURESIER WD) |

n=0

where now

(7 D2 [, U N (8 )] S PN L (1) o < C(A + B) BT,

oo

after injecting (B.2.64) into (B.2.63|). Therefore, using also (B.2.59), lemma and a-priori
estimate (|1.1.11d)) with k£ = 2, we find that

(B266) (D) oy (T0)- (0] + [0 [ < oBetit,

for any x € C§°(R?).

Finally, if instead of estimating the uniform norm of the first quadratic term in the right hand

side of (B.1.20a)) as in (B.2.60)), we make use of lemma with L = L, w; = z(I'v)+, and

s > 0 such that N(s) > 2, we would find that, for some y; € C5°(R?),

[ D)@ (), Dy
1

S 2

|l ,v=0

X1(t°Dy) [xj (é;)”(rv)_(t, .)}

(77 Do )Ry ue (E, )| 2,00
LOO

Lo =t ) e

+ let—Q ng(rv)i(t, -)\
1=0

Then, combining the above inequality with (B.2.61]), (B.2.62)), together with (B.1.17)), (B.2.66),
and all the other inequality to which we already referred before, from (B.1.20a)) we find that

|X(t77Dy) [2;T NLyy (t, )] || ;o0 < C(A+ B)e2t%2,

[P

which injected into (B.2.65)) finally implies, together with (1.1.11d)) with & = 2, lemma
and (|B.2.59)), the wished estimate (B.2.57)). O

Making use of lemmas B.2.11| estimate (B.2.47) can be improved of a factor t~2. This

improvement, that will be useful to derive (B.3.77)), is showed in the following corollary.

Corollary B.2.12. Let I be a multi-index of length 1, and r,ﬁquF be defined by and
having the explicit expression . There exists a constant C' > 0 such that, under the same
assumption as in lemma forany p e N, x € CSO(RQ), equal to 1 in a neighbourhood of the
origin, o >0 small, j = 1,2,

5453

B2 e ] ], <o ma b

for every t € [1,T], with § > 0 small, 8 — 0 as o — 0.
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Proof. Let us consider the cubic contribution z; NLkg(Dlu) to r,ﬁ N Reminding (T.1.5), and

applying lemma with L = L? and s > 0 sufficiently large so that N(s) > 2, together with
(B.1.26a)) and a—priori estimates, we derive that there is some x; € C§°(R?) such that

Ix(t77Dy) [2;NLi,(Dyu)] (t,-)]] .
(B:2.68) S |x1(t77 D) [25NLEy) (&, )] o IRvus (t, )| poe + 2|l NLjy (£, ) || 2l|us (2, )| s

< CAet™ ||x1(t77D,) [z;NLL,] (¢,)]| . + C(A + B)B*t7,

Then, recalling (B.1.20a)) and using again lemma with L = L?, wy = (I'v)4, and s large as

before, in order to estimate the contribution coming from the first quadratic term in the right
hand side of (B.1.20a]), we find that there is a new ya € C§°(R?) such that

[x1(t7 D) [ NI (¢

<y

IMI*0
e |
|12]=0

< C(A+ B)B2P+" 5"

">HL2

Lmllﬂi( W + 2|z (To)£(t, )l 2 lws (¢, ) e

X2(t7?Dy) [l‘j (é;)u(Fv)i] (t,)

J(155) x| 0l + s e + Des )]

where the latter estimate is obtained from (B.1.5a)) with s = 0, (B.1.10b), (B.1.17) with k = 1,
(IB.2.57) and a-priori estimates. This implies, combined with (B.2.68]), that

5+§1

|x(t7 D) [x;NL;,(D1u)] (t < C(A+ B)ABS3 2 tP+73+

7')HL2

and from (B.2.42), (B.1.10b|) and a-priori estimates,

Pe(t77 Da) [ NLy (Dru)] (¢

|xt=7D2) [zl ] 0|, 5 DI

+ Zt" (g e Mo+ [ p5svste)| ) ke i boste, Vi
7(Dy) Lo
< C(A+ B)ABe’t™ 2+ﬁ+6+61
which concludes the proof of the statement. O

Lemma B.2.13. Let I be a multi-index of length 2. There exists a constant C > 0 such that,
under the same hypothesis as in lemma [B-2.7,

01402

(B.2.69) |21 NLiy (¢, )| o < C(A+ B)Be*t3 757

with B> 0 small, B — 0 as 0 — 0, for every j =1,2, t € [1,T].

Proof. We remind the reader about (| m Instead of using , obtained by Sobolev
injection, we apply corollary n B.2.4| with L = L?, w = u, and s > 0 sufficiently large so that
N(s) > 3, and we exploit the fact that we have an estimate of the L> norm of Dju!2 when
truncated for frequencies less or equal than t° (see lemma [B.2.1)). So, for (I1,15) € I(I) such
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|I1| = |I2] = 1, we deduce that

|es@k® (vl 1) MDY ()|

L2 H2,00

1
I
LS ek
©n=0

+ 1% (lus(t, )| s + | Drus(t, )| ars) Z it (¢, )| 2 + Z v (£, )| 2
|u]=0 ||=0

61+69
2

< C(A+ B)Betzt5+

last estimate following from lemma |B.2.10| and (B.1.17) with & = 1, together with (B.1.5a)),
(B.1.17) with k = 1, (B.1.28)), a-priori estimates, and the fact that §;,d9 < 1 are small. Conse-
quently, from the following inequality

I J
[T NiLkg [ 2 S ZIIR"Ui Mazee D N2 (T70)- (2, )12
u=0 |J]<2
n=0,1

() o) [kt lon + 3 (e el -+ [1Deade,110)]

lul=0 |/]<2
k
+ Z HxJQOg <’Uil,D1UIf> (tv .)’LQ,
[ |=|12[=1
together with (B.1.10b)), (B.1.5a) with s =0, (B.1.7)), and (B.1.17) with k& = 1, we finally derive
(B.2.69). O

Lemma B.2.14. Let us fir s € N. There exists a constant C' > 0 such that, if we assume that
a-priori estimates (1.1.11)) are satisfied in some interval [1,T], for a fived T > 1, with n > s+ 2,
then we have, for any x € C§°(R?) and o > 0 small,

(B.2.70a) 3¢, )|z < CBet,

(B.2.70b) S 0Py ((h7€)£¥5(t, )| 12 < CBet#,
lul=1

for every t € [1,T].

Proof. We warn the reader that, throughout the proof, C, 5 will denote two positive constants
that may change line after line, and 8 > 0 is small as long as ¢ is small.

It is straightforward to check that the H} norm of v is bounded by energy E,,(; W)%, whenever

n > s+ 2, after definitions (3.2.2)), (3.1.3)), inequality (3.1.7a)), and a-priori estimates ((1.1.11a]),
(T.1.110).

In order to prove (B.2.70b), we first use relation (3.2.10b)) and definition (3.1.3]) to write that

10p} (X (W€D Lm(t, ) 2 S NZmV (t, )2 + IX(E 7 Da) Zin (0N = 0)(2, )| 2
+ (100t )2 + X7 Da) [ty (8 ) 2

with T‘,]C\QF given by (3.1.5). Using (1.1.5), we can rewrite (3.1.10) and (3.1.11)) similarly to

[B2.27), (B:2.42), as:

(B.2.72) oNF gy = _% (Dy)(Dyu) — (D1v)(Dyu) + Di[vDgu] — (D)o Dyul]

(B.2.71)
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and

i
(B.2.73) Thy = 5 NIy Dy — (D1v) NLy + D1 (vNLy)]

Reminding (1.1.5), and combining (B.2.73) with (B.1.10b|) and a-priori estimates (1.1.11f), we
(B.2.74)

D

T 0 (L‘, )

deduce that
I Do)yt i 517 (Jlwo 0o+ o5 )
DR .

< [ AUz + IR gre) N0z + 1V gz [V ]

(6+62)
2 .

Tn

IV ()2 IV ()l < C(A+ B)AB3 30+

Similarly to ,
(B.2.75)
21 Z (VN —v_) = (Dy Zpv)(D1u) — (D1 Zyv)(Dyw) + D1[(Zmv)(Dyw)] — (D) [(Zmv)(D1u)]
+ (Dw)(D1Zpu) — (D1v) (D Zmu) + Dy[v(DiZmu)] — (Dy)[v(D1 Zpu)]

— (D) (D1u) + 6L (D) (Dsu) — 81 Dy[v(Dyu)] + &Dt [v(D1u)]

= 0, (Do) (Dyw) + (D10) (Dyw) = 8 D1 [v(Dyu)] + 6, (Da) [o( D)

so bounding the L? norm of all products in the first line of above equality (when truncated for
frequencies less or equal than ¢7) by means of lemma and all the others with the L> norm
of the Klein-Gordon factor times the L? norm of the wave one, we derive that

Xt Da) Zn (0™ — 02 )(t, )| 12
St X1 (D) (Zinv) < () || oo Nt (8, ) |2 + NV ON(Zinw) £ (8, )| 2 s (£, ) 12

+ 7ot oo ([(Zmw)£(E )l z2 + [lux )22 + [ Deus(t, )l z2)

for some x1 € C§°(R?). Consequently, picking s > 0 sufficiently large such that N(s) > 1, and
using (B.1.5a)), lemma and a-priori estimates, we obtain that

5+51

(B.2.76) IX(E~7 D) Z (v™NF — 0 )(t, )| 12 < C(A+ B)Be?~ 145+

which plugged into (B.2.71)), along with (B.2.74)), (B.2.70a)) and (1.1.11d]), gives (B.2.70b). [

B.3 Second range of estimates and the sharp decay of the Klein-
Gordon solution with a vector field

This subsection is focused on the derivation of a control in O(tﬁ/), for a small 8’ > 0, of the L?
norm of £17, with || = 2 (see lemma[B.3.7)), and on the proof of a sharp decay estimate for the
uniform norm of (I'v)s, where I' is an admissible vector field in Z (see (1.1.7)) and when this
term is truncated for frequencies less or equal than ¢7, for some small ¢ > 0 (lemma .

In order to prove lemma [B:3.7, we need to introduce the following technical results.
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Lemma B.3.1. Let us consider vVI" introduced in (3.1.3), v/'N' as in with [I| = 1
and I = Z,,, and remind equalities and (B.2.27)). There exists a constant C > 0 such
that, if we assume that a-priori estimates are satisfied in some interval [1,T], for a fized
T > 1, withn > s+ 2, then we have, for any x € C{)’O(Rz) and o > 0 small,

5481
2 )

(B.3.1) Xt D) [(Znv)- — oV (8, N <CA+ B)Be?t~ 1A+

(B.3.2) Hx(t*UDx) [mmZn(vNF —v_)(t,)] HL2 + ||X(t7"D$) [2m ((Znv) - — vI’NF)] (¢, -)HL2

§1+692

< C(A+ B)Be*P*+7=

for every t € [1,T]. The same estimates hold true if Z, in replaced with SQ.

Proof. We warn the reader that we will denote by C and [ some positive constants, that may
change line after line, with 5 — 0 as ¢ — 0.

First of all, we observe that the difference (Z,v)_ — v/ whose explicit expression is given by

(B.2.27) with I = Z,,, appears in the first line of the explicit expression (B.2.75)) of Z, (v"VF' —v_).

Therefore, as inequality (B.2.76]) has been obtained analysing term by term, it implies (B.3.1)).
For the same reason, it will be enough to prove that

61409
’

Xt~ D) [xm Zn (0™ —v_)(¢, )] |2 <CA+ B)Be*Pt5
to deduce .

One can immediately check that this estimate holds true when considering all products appearing
from second to fourth line in the right hand side of , as follows using with s =0,
and a-priori estimates, since their L? norm (when truncated for frequencies less or equal
than t7) is estimated with

1
>
=0

h(p5) 0| sl + sl + 1D 0.

The L? norm of the remaining terms, i.e. those coming out from the multiplication of z,, with
products in the first line of (B.2.75)) (and when truncated for moderate frequencies less or equal

to t7), can be estimated using lemma So by ([1.1.5)), (1.1.10)), it is bounded by
1

H,v=0

Dy
(Da)

[t (2, )| 2
Lo

xa D) [alh (555 ) (Zmo)= ()]

1
+ 3 Ok (Zv) £ (b ) 2 s (t ) 1o,
n=0

for some smooth cut-off function x1, and with N(s) > 2 if s > 0 is large. By (B.1.17)) and
(B.2.57) with I' = Z,,,, together with a-priori estimates, we derive that the above contribution is

5+6
estimated with CB2e2t? +%, and that concludes the proof of (B.3.2)).
When Z, is replaced with €2, instead of referring to (B.2.75)) one uses that

2iQ (VN — v_) = (D w)(D1u) — (D1Qv)(Dyu) + D1 [(Qw)(Dyu)] — (Dy)[(Qv) (Dyu)]
+ (D) (D1Qu) — (Dyv) (D) + Dy [v(DiQu)] — (Dg)[v(D19u)]
— (D) (D2u) + (D2v)(Dyu) = Da[v(Dyw)] + (Dq)[v(Dyu)]

and applies the same argument as above to recover the wished estimates. ]
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Lemma B.3.2. Let vV be defined as in (3.1.3). There exists a constant C > 0 such that, under
the same assumptions as in lemma for any x € C°(R?), o > 0 small, m = 1,2,

(B.3.3a) |Opi (x (x(RTEN [t Zn™N T (8, 1))

[
(B.3.3Db) HOph (h7¢))L [thvNF(t,tm)]HLQ(dx) < CBet?,
for every t € [1,T].
Proof. From the fact that |[tw(t,t-)||r2 = ||w(t, )| 2, equality

D, D,
(B.3.4) Z, N = Z, (0N —w ) + [(Zyv)- —vI’NF] + o N 4 D >vNF+ D >(v_ — oV,

with vI"M" given by (B.2.24) with |I| = 1 and I'Y = Z,,, and from estimates (B.2.45),(B.2.76)),
(B.3.1)), along with (3.1.8a)), a-priori estimates and

HX(t_UDx)Dn<Dx>_IUNF(ta 2
5
< Ix(t™7 D) Dn(Da) " o (t, )12 + [IX (¢ De) Dn(Dy) " (v — vVF)(t, )| 12 < CBetz,

we immediately have (B.3.3a)).
From (B.3.4) we also derive that

(B.3.5)

|0p3 (X(hE) L[t Zn o™ (8 82)]|] 1240y S 110D O(BTE) L [tZ0 (0N F = v ) (1 t2)]]
+ [|0pk Oc(h? &) Lom [t((Znv) - = ")t t)] | 2 + [|OpE (c(h7€)) Lom [t (1, t2)] |1
+[|0P (X (1)) £ [tDn (D) 0™ (1, t2)] 1.

+ [0k (A7) e [tDn( D)™ (0 = ™) (8, t2)] | 1o

Using relation (3 with w = /"M and estimates (B.2.45)), (B.2.46)), (B.2.48)), we observe that

08 (x(h7€)) £ [tV (1, 12)] | 0 < CBet

2

while from (3.2.2) and (B.2.70b))

0Py (x(h7€))L [tDn<D$>*1vNF(t,t:c)]}|L2gCBat%z.

All other remaining L? norms in the right hand side of (B.3.5) are estimated reminding definition

(11.2.60) of £, and using the fact that
(B.3.6)

10p} (x(h7€)) Lmltw(t, t)]l| 2 < [IX(E™7 Da) [zmw(t, )l 2 + tlx(t7 D) Din( D)~ w(t, )| 2.
Therefore, by (B.2.76) and lemma we derive that

HOph (h7E)L [th(vNF — v,)(t,tzn)] HL2 + ‘}Opﬁ(x(h"&))ﬁm [t((va), — UI’NF) (t,t;z:)] HL2
< C(A + B)Bé?
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while from (3.1.8a)), a-priori estimates, and the following inequality

(i) -

1

(¢ D) [em(v- = o™tz S D ¢

=0

Jux(t, )l 22
Lo

+52

< C(A+ B)B&*t°t =2~

which follows by (B.2.72f), (1.1.5), (B.1.10b)), and (1.1.11b)), (1.1.11¢), we derive

(5+62)

10D} (X(h7€)) L [t D (Dz) ™ (v — vV ) (¢, t2)]|| ,» < C(A+ B)Be*t* ,

which combined with previous estimates gives (B.3.3b]) and concludes the proof of the statement.
O

In the following lemma we are basically going to show that, instead of having
e ~ - _s
[t )l 2 S N0 )L a(t, )| 2 < CABe*h™,

15
2

[t Yo S IO(E )|z llT(t, )z < CA%2RT2T

following from (B.2.1a)), (B.3.8)), (B.3.9), we actually have that

~ ~ 1.6
[ou(t, ) 2 SO, ) ||eelltlt, )| 2 < CABe*hz™ 2,
~ ~ _s
150t )| oo S O(E, )| oo [[(t, )| Lo < CA%E*h72,
which enhance the former ones of a factor h2 (i.e. of =1 2). The reason for these enhanced

estimates is to be found in the fact that the main contribution to the Klein Gordon component
v is around the lagrangian Aj,, with

My = { @92 — & =0l

while that to the wave component u is localised around A,

and these two manifolds have empty intersection (see picture [B.1]).

Lemma B.3.3. Let h = t!, 4,70 be defined in (3.2.2)), ap(§) € Soo(1), and bi(§) = & or
bi(€) = &&l€|7Y, with §,k € {1,2}. There exists a constant C > 0 such that, under the same
assumptions as in lemma for any x,x1 € C°(R?), o > 0, we have that

5+51

(B3.7a) [[0pk (x(h€)ao(€)i(t, Y[Op} (1 (7€)1 (€))ii(t, ]| 12 < C(A+ B)Be2hs P~ "5*,

5+51

(B.3.7b)  |[[OpF (x(h7€)ao(€))T(t, )] [Opy (x1(h7E)b1(€))u(t, )]|| oo < C(A+ B)Be*h™"

with 8 >0 small, B — 0 as o — 0.

Proof. Before entering in the details of the proof, we warn the reader that C' and 8 denote two
positive constants, that may change line after line, with 8 — 0 as 0 — 0. Also, we will denote by
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Akg

Figure B.1: Manifolds Ay, and A,

R(t,x) any contribution, in what follows, that satisfies inequalities (B.3.7)), and by x2 a smooth
cut-off function, identically equal to 1 on the support of 1, so that

Opy, (x1(h?&))u = Opy (x1(R7€))Opy (x2(h?§))u,

assuming that, at any time, u can be replaced with Op}’(x2(h?¢))u. Finally, we remind that
from (3.2.2)), (3.1.15]), (3.1.20b)), (3.1.20c]), and a-priori estimates,

~ w v~ _1
(B.3.8) [t ) gro+r.00 + > 0P (€1l ) ult, )l gosr o < CAeh™ 2,
lul=1

while by (3.1.3), (3.1.7b) (for a small § < 1) and a-priori estimates,

(B:3.9) [0t g < CAe,

for every t € [1,T].

First of all, we introduce v € C§°(R?), equal to 1 in a neighbourhood of the origin and with
sufficiently small support, and define

i, (:2) 1= 09 (1 (“ a7 000(©)) . 2),

—p'(€)

g, (6:) = O (1= ) (F 727 Jx (7 ao(@) ) (1,2,

where p(&) := (£), so that
Op (X(h7€)an(€))F = Ty, + g,

We observe that, by proposition [1.2.38| with p = +00 and (B.3.9),

(B.3.10a) [Tay, (t, )| Lo < CAeh™,
and that

9
(B.3.10b) g, (£, )| L < CBeh2 ™7~ %
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In fact, if we write
/

(1= () eyaale J}ijlv{( ) xreante) (“LE)

with ’y{(z) := (1 — v)(2)2;]2| 7! such that \a‘z’"y{(zﬂ < (z)7lel and use (.2.61) with c(z,€) =

X(h7&)ag (&), we deduce the following inequality

(B.3.11)
[, uLoo<Zf H (=) ean(e) )it

Lo

+ g Vi o (+ (“fp}f@) 0, (x(h"€)ao(©)) ) (¢, )

Lo

3 3 Vom0 (“EO) sorgane @),

7=1 |a|=2

+ 10py (r(2,£))0(t, )| o<,

LOO

with r € hl_BS; (<%;l(£)>_1). As 'y{ and its derivatives vanish in a neighbourhood of the

ag
origin, we can use (|3.2.18b]) and successively derive, from lemma (B.2.14] that the second and
third norm in the above right hand side are bounded by the right hand side of (B.3.10b)). The

same estimate holds for the latter L norm of above, just by proposition [1.2.37|and (B.2.70al).
As concerns the first norm in the right hand side of (B.3.11]), it satisfies the mentioned estimate,
as one can check using relation (3.2.8)), followed by (3.2.18b)), lemmas [B.2.14} [B.3.2{and (B.2.74).

Consequently, from (B.2.1a}), (B.3.8), and (B.3.10b)), we obtain that
Opi, (x(h7&)ao(£))v Opy (x(h7§)b1(§))u = Va,, Opjy (x(A7E)b1(§))u + R(¢, ).

On the other hand,

Opiy (x1(h7€)b1(€)) = Oyt (xo (A" )br(€))a + Y Opf (1 = x0) (h ™€) p(27"€)x1 (h7E)b1 (€))7,
k

for some suitably supported xo € C§°(R?), ¢ € C§°(R? \ {0}). From proposition [1.2.36{ and the
classical Sobolev injection, we have that

0P (xo (R E)bL(€))a(t, )| 1o + [|OPF (xo (R E)b1(€))ult, ) || oo S BT, )| 2,

so after (B.3.10a)) and (B.2.1a)) we also derive that

(B.3.12) Tny OPR (X (R7E)b1(£))i = > Ta,,, Op} (¢r()b1(€))T + R(t, ),

k

with ¢ (€) := (1 — x0)(h2)p(275E) x (k). We further decompose Op¥ (¢ (£)b1(€))u by defin-

ing

ik, (1) = g (4 (25T antermn (@) )it ),

i (1) = g (1 =) (P ) autermn (@) it ).
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e (e, < ni [u Mt 3 10PN ot -m}
H,|v|=0
< CBeh3 P4,
and
[
[ ], <27 {u et 3 NN OB Cca 7€), s | < e
wslv|=0

as follows by writing
2 . P .
(1= (B onteme) = 3 (HE=8) (2 25 ) autepmi o),
j=1

with 'y{(z) = (1—7)(2)2;]2|72, and using (1.2.48) with a = 1, p = 1, together with lemma
we derive that ZAkQHﬁC is a remainder R(¢, ), too, from (B.3.10al).

Now, reminding (3.2.15)) and the fact that, by symbolic calculus,
(B.3.13) rk9 = Th99), (2) + Op¥ (roo(t, ),

with [|Opy) (7o (t, @) || c(22:000) = O(RN), N € N as large as we want, we can actually replace
5Akgﬂ’1§w with HhﬁAkgﬂf\w, up to a new R(t,z). As 6,(x) is supported for |x| < 1 — ch??, for a
small constant ¢ > 0,

~k On(x) ~k

On(x)Un,, UR,, = miAkg(\xl2 — Dug,,,

where |0, (2)(|z]> — 1)71| < k™29, so after proposition [1.2.36| and (B.2.70a)), together with
(B.3.10a),

(B.3.14a) Hﬂh(:v)’ﬁAkg (t, .)ﬂﬁw (t, ')Hm < Cth—%—Bth(x)(m? — 1)17@1‘} (t, ) oo,
(B.3.14b) Oy, (8, 1) < CAh n(@) (ol — DK, (1) oo

By symbolic calculus of proposition [1.2.21} 6, (x)(|z[* — 1)@ can be written in terms of hM.
In fact, for a fixed N € N and up to some negligible multiplicative constants, we have that

(B.3.15)
ol = )2 |2 (552 ) w1 ()| =2 (e OO o ~ 1)

+h {eh(x)(\ny - 1),7(iij2jU€>¢k(f)bl(§)}

N-1
z|¢]

+ 3 hlelag [ — 1)] o [v( hl/;f)@f(@bl(@] tra(md)

|a|=2

with

h 2i !
(B316) r(,) = (oo > /eh("'”'o/o 5 10n (@) (|2* = D]l sz (L= 1)V at

la|l=N

x ¢ [’Y (a;'f/’;f)ék(ﬁ)bl(é)] | (@+y.e4n) dydzdndC.
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On the one hand, as

@ 1=z 5 = (e~ ) :

13 |2 |€ | €[>
the first term in the right hand side of (| appears to be as linear combination of products

of the form ’y(ﬁf‘;i )or(&)a(z)bo(§) (z; |§] ) for some smooth compactly supported function

a(z), and by(€) such that [0%by(€)| < |€]7191, so from (T.2.48b) and lemma we deduce that

+ (zl¢] =€) -

@3t Jon (vl )OO @) el - 1)t )

Lo

An explicit computation shows that

h {Hh(m)(\x|2 - 1),7(2'15);5)@(5)61(5)}

_Zhwa (2)(|z]> — )]Z(aﬂ)(ilf/';f)( é" 6J)¢k(£) 1)

J
iy (2oL E)0. 104 0) 1ol — 1)]e(0x(€)01(€)),

with 5Zj = 1if ¢ = j, 0 otherwise. As the first contribution to the above right hand side is still
supported for |z| < 1—ch??, we can make appear a new factor |z|>—1 in front of it (up to a loss in

h=27), and rewrite it as a linear combination of terms hi=o " (;ﬁ% E)(l)k(ﬁ)a(x)bo(f)(wj\ﬂ - &),
for a new ;1 € C$°(R?), and some new a(z),bo(¢) with the same properties as the ones we
considered before. On the other hand, as 0¢(¢x(£)b1(§)) is uniformly bounded and supported for

frequencies |¢| ~ 2%, the second term in the above right hand side writes as linear combination

of products h'y(]ﬂ%ii)qb,lc(g)a(x)bo(f), for some new ¢} € C5°(R?\ {0}). Inequality (1.2.48H),
proposition [1.2.30} and lemma [B.2.1] give then that

B8 nop ({mn)oP - D (S5 om(© e

< OBehi =%
LOO

Using ([1.2.24)), we find that the |a|-order terms, with 2 < |a| < N — 1, are given by

h“'v(‘i’f/! 2 =) g 0n () (2 — 1)) (6x(&)br (6))
|B1]

b DA (T NG s (€0 k(M (€)),
|51|‘+6|16‘2>I1=\alj=1

for some ’yj,gj € C§°(R?). Since |a| > 2 and \8?(@({)1)1(5))] < 27k(=1) | for any p € N2,
by proposition [1.2.30] and lemma we obtain that the action of their quantization on w is

estimated in the uniform norm by

(B.3.19) plol—3—Bo—k(lal-1) Z plol=i(3—0)gk(i+1-lal) f,—5 -5
1<j<] |
_%

x| e, )lpe + Z 1(692)Opy (x1 (h7€)a(t, || 2 | < CBeh2 =P
H,lv|=0
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Finally, integrating in dyd¢ and using ([1.2.23)), together with the fact that |8g(q§k(§)b1(§))\ <
2-F(ul=1) " we find from (B.3.16)) that ry(z,&) can be written as

1
N—j(i-g) 1 / Zin'z/  \N-1
E h (wh)?2 eh ; On(x+tz)(1—1t) dt

JEN

* (:EM +;Z1‘/;E§ ) ) &1 (& +n)bj1-n(E +n)dzdn,

for some new smooth compactly supported 0y, 7;, i, and it follows from proposition that
the quantization of the above integral is a bounded operator from L? to L>, with norm controlled
by

Z hN—j(é—cr)zk(l—l—j—N)(h—%—i-chk)i(h—lzk) <h,

JEN

i<6

if N is sufficiently large (e.g. N > 10). Consequently,

(B.3.20) 10w (i (1, €))ii(t, | e S BT (E, )| 2 < CBeh! ™5,

which, summed up with formulas from (B.3.15) to (B.3.19)), gives that

6
164 () (121 = )i, (&, )1 S CBehs %,

Therefore, from (B.3.14), Hh(a:)'ﬁ,\kgﬁ’f\w is a remainder R(¢,x), and that finally concludes the
proof of the statement. O

We state next that a result similar to lemma, holds true if u is replaced with
(B.3.21) a’ (t,x) == t(Tu)_(t, tz)

with " € {Q, Z,,,, m = 1,2} being a Klainerman vector field.

Lemma B.3.4. Let h = t=1, ¥ be defined in (3.2.2), u’ as in (B.3.21), ao(¢) € Sopo(1), and
bi(€) = & or bi(€) = &l with j,k € {1,2}. There exists a constant C' > 0 such that,
under the same assumptions as in lemma for any x,x1 € C§° (R?), o > 0, we have that

(B3.22a)  [[[Op} (x(h*©)ao(€))3(t, NOPK (r (7 )br ()i (1, )]| > < C(A + B)Be®ha 7,

(B.3.22b) | [Op} (x(h*&)ao(€))T(t, )][Opiy (xa (W E)br(€)a (¢, )]|| . < C(A+ B)Bh™7,

with ' > 0 small, 3 — 0 as 0,0y — 0.

Proof. The proof of this result is analogous to that of lemma [B.3.3] except that, instead of

referring to (B.3.8)), we should use that
(B.3.23)
91

IIOpﬁ’(x(h”f))ﬂJ(t,-)HHZH,OO + > 10K (x(B7E)EIEI )T (t, ) rosre < CAch™377~ %,
lu|=1

which follows from (B.2.52)) in classical coordinates, and to lemma instead of lemma
U
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Lemma B.3.5. Let CL[)(S) € SO,O(]-); bl(g) € {§j7€]§k|€|_17 ’6‘7]719 = 172}: bO(g) € {17§J‘£|_17j =
1,2}. There exists a constant C' > 0 such that, under the same assumptions as in lemma
for any x € C°(R?), o > 0 small,

5+4;

(B-3:24) [ x(t™7Da)[lao(Da)o-] b1 (De)u-lbo(De)u-] (t, )| oo < C(A + B)ABS 3+,

for every t € [1,T], with B > 0 small, B — 0 as o — 0. Moreover,

5481
b

(B:3.25) [X(t72 D)y (8 )| oo < CA+ B)ABE® 3047
where r,]c\;F 1s given by (B.2.73)).

Proof. We warn the reader that we denote by C' and 3 two positive constants, that may change
line after line during this proof, with 5 — 0 as ¢ — 0.

From lemma with L = L, and a-priori estimates, we can reduce ourselves to estimate
the L° norm of product in the left hand side of when all its factors are supported for
frequencies less or equal than ¢?, up to remainders satisfying the inequality of the statement.
Moreover, since

(B.3.26a) x(t~7 Da)ag(D) ™ = v )(t,-)|| ;. < CA%2 27,
and
(B.3.26b) [X(t"7 Dby (D) W™ — u_](t, )| oo < CA%E* 2P,

as follows, respectively, by (B.2.72) and (3.1.15]), (A.20b|) with p = 2 (as consequence of lemma
A.8)), together with a-priori estimates, we can also suppose v_ (resp. u_) be replaced with oNF
(resp. uNF), up to some new O (E3t_g+’8), with 8 > 0 small, 8 — 0 as 0 — 0.

This reduces us to prove that

| (77 D) ao(Da)o™ ) [x(t7 Da)b1 (D) u™ ] [x(t7 Dy )bo (Da)u—]||
< C(A+ B)AB3 35150

or rather, using (1.1.11af), to show that
5461

11X (£~ Da)ag (D o™ | (877 Da)br (Do )u™ || o < C(A+ B) B2t 247457

But writing the above product in the semi-classical setting, and reminding definition (3.2.2)), one
can immediately check that this estimate is satisfied thanks to (B.3.7bf), and that concludes the

proof of (B.3.24).
Finally, (B.3.25)) follows from (3.1.11)), the fact that

D
qu-mm) [—wgm 0 ) NLy + D [(D2) s — v NLw] )  <casesiiee
€T Lo
for every t € [1,T], which is consequence of (B.1.3b)), and a-priori estimate (1.1.11b]), and from

the observation that the remaining contributions to r,]c\gF are products of the form

[a0(Dz)v-][b1(Dz)u-]Ryu—,

with ag(€) equal to 1 or to &(£)71, and by (€) equal to & or to &;&1[¢| 7L, for j =1, 2. O
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Lemma B.3.6. Under the same assumptions as in lemma[B.3.5,

(B3:27a) ||x(t77D2) [wnlao(De)v- (b1 (Da)uJbo(Da)u-] (¢ ) 2 < C(A+ B2 B3 14+3
(B.3.27b)
X(£77 D2) [mzalao(Da)o- ] by (Deu-Jbo(Da)u) (1, )| 2 < C(A+ BB

for every t € [1,T], m,n = 1,2, with B > 0 small, B — 0 as 0 — 0. Moreover,

(B.3.282) (D) [rar (8, )] [ o < CA+ B B35+,
(B.3.28D) I (t7 D) [t (8, )] || 2 < C(A + B)2B347+75"

Proof. We warn the reader that we will denote by C, 8 two positive constants, that may change
line after line, with 8 — 0 as 0 — 0. We also denote by R(t,x) any contribution verifying

5+51

(B.3.29a) |X(t~7Dz) [xnR(,-)]|| > < C(A+ B) Be3t—1+5+
< C(A+ B)’Be

(B.3.29b) Xt~ Dy) [wmanR(t, )] || 2

Let us first notice that, after (B.1.3b]), (B.1.10al), (B.1.27al) along with a-priori estimates, we
have that

Hx(t_"Dx) [—mn <g;> (v4 —v_) NLy + 2, D1 [(Dg) vy — v_) NLw] (t,-)

L2

<tgz”f”””i Mgz INLu(t, )= < CA? B},

and

H x(t7Dy,) [—xmxn v_) NLy + Zpzn D1 [(Dg) ™' (v — v_) NLw} (t,-)

L2

<7 3 et atton(t )| e | NLw(t, )|z < C(A + B)ABE}+5.
NLMZZO

Therefore, since from (3.1.11)) and (B.1.1b)) the remaining contributions to r,i\gF are of the form

[a0(Dz)v-][b1(Dz)u-]Ryu—,

with ag(€) equal to 1 or to &;(£)~1, and b1 (€) equal to & or to &&1]€]7L, for j = 1,2, estimates

(IB.3.28)) will follow from (B.3.27]).

After lemma with L = L2, wy = zna0(Dg)v_ (vesp. wi = xpxnao(Dy)v_), and s > 0
sufficiently large so that N(s) > 2, together with estimates (B.1.10a)), (resp. ) and
(1.1.11af), (1.1.11c]), we can suppose all above factors truncated for frequencies less or equal than
t7, up to remainders R(f,z) satisfying (B.3.29a)) (resp. (B.3.29b)). Let us also observe that,
from (B.1.10b)), (B.3.26b)) and (|1.1.11¢),

[x(t7D.) [m(t-oDm)[xnao(Dx)un[x(t-“Dnbl(Dz)(uNF — u )t Da)bo (D] (1) (1)

NZ zn( ) v(t,)

L2

. X (77 Da)br (D) (u™" = u)|[poe us () 2

5+52

< C(A+ B)A?Be*t=28+
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and from (B.1.27h))

(77 Do) [aa (7 Da)wmrncao (Da)o-Jx(t™7 D)o (D) (@™ = wo )t~ Db (D u-]| 8, ) 8, )|

< 21: tP xmxn<<lDD—i>)#vi(t,-)

|l s|v|=0

L2

o IX (77 Da)br (D) (u™F = us )| g2l RYu ()| o

5+52

< C(A + B)A?Bet 1168+
so, up to a new remainder R(t,z), we actually replace u_ by uV*".

Furthermore, we can substitute x1(t~7D.)[zhmznao(Dyg)v—_], for p = 0,1, respectively with
Xt~ 7Dy [whmanao(Dy)vNF], again up to some R(t, ) satisfying (B.3.29), in consequence of
a-priori estimate ((1.1.11a]), the fact that

(B.3.30) [uNF (t,)|| 2 < CBet3,
(see (B.2.1a) in semi-classical coordinates), and the following inequalities
(B.3.31a) Hxl(t_”Dx) [l‘nao(Dx)(UNF —v )] (¢

1 . Dx v '
PR () vt >]

’.)HLW

IRfus(t, )| < C(A+ B)Ae*t™ sto+

LOO

and
(B.3.31b) HXl(t_UDw) [xmxnaO(Dw)(UNF - U*)] (t, ')”LOO
1
1 .42 Dz \v
5 Z .%'%,L QZZ (@) U:I:(ta )

M17M27V7H:0
derived from (3.1.10), (B.1.10b)), (B.1.27bf), (1.1.11a) and (1.1.11b)).
This reduces us to prove that, for p = 0,1,

[RTut(t, )]s < C(A+ B)Ag2t2+ 5
Lo

1 (77 D) o (D2 )oY ] et~ D)1 (Da)u™ ] [x(t=7 D)o (D] | 1
<C(A+ B)QBg?’flJru+,6’+%17

or rather, after (1.1.11al), that

| [x1 (677 Da) [t znao (Do) o™ )] [x (877 Da)br (Do) uNF)|| 12 < C(A + B)Be* 2

5+§1

Passing to the semi-classical setting, with u, v given by (3.2.2)), this corresponds to prove that
(B.3.32)
1

- w - _ 1
> | [om Ca et en0ni (a0 €)T] 10p1 (ko €br(©))il| , < C(A+ B) B3~
k=0

We remind that, in this setting, we have (B.3.8)), (B.3.9).
Let us notice that, from the commutation of x,, with Op}’(ao(¢)), and definition (1.2.60) of £,

we have

§+51
T2

(B-3.33)  2,0p} (a0(€)) = hOpj; (a0(€)) £nT + Opj; (a0 (§)€n(6)™1)T — ﬁOPh (0e,a0(€)) 7,
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while from the commutation of z,, with Op}’(x(h?§)b1(€)), definition (|1.2.45)) of M, and symbolic
calculus,

(B.3.34)
2mOpj, (x(h7€)b1(€))u = hOpj, (x(h7€)b1(€) €] )My — 2%0192” (0e, (X(R7EBL(E) €M) I¢])u
+ Opy (x(h7E)b1(§)EmlE| ™M u — 2%019}‘5 (0, (X (R7E)D1(€)) ) .

Therefore, when k = 0 in the left hand side of (B.3.32)), from (B.3.33)), lemma [B.2.14} together
with (B.3.8]), we deduce that

(B:335) || [0p} (i (h7€) 2O} (a0 €)T](t, )] (OpE (< (W7E)a (€t ]|,
< ||[Opk Ca (b7 €)ap(€))(t, Ok (€)1 €)i(t, | 2 + CAB23 =02

with af(€) = ag(€)&,(€) 7!

When k = 1, we rewrite the left hand side of (B.3.32) by making use of both (B.3.33), (B.3.34)
(having previously commutated x,, to Op}’(x1(h?€))). First, we observe that from the semi-
classical Sobolev injection and estimates (B.2.70b)), (B.2.1c),

(B.3.36)  ||h*[Op} (x1(h7€)an(€))£nt] [Opy (Xx(h€)b1(€)&mE| M ~]HLz
< h|0p}; (x1.(h7€)ao(€)) Lnd(t, )l 2 [ Opy (X (A7 €)b1()&m ||~ )Mum(t, )| .-
<C(A+ B)Bs2h1 02=0,

Therefore, as for any 6 €]0, 1] we have that

(B.3.37) || Opy (01(£)&mlél™M)a(t, )| oo =t [|b1(Da) Drn| Dy~ N (2,)]] oo

(+49)
St () [ [T & e < CAYOBletat 500,

which follows similarly to (2.2.75)), along with (3.1.20a]), (3.1.20b)) and a-priori estimates, we find
from (B.3.34)), (B.2.70D)), (B.3.8), (B.3.37) (with § < 1 small) and (B.3.36) that

5y (148)0
2

(B.3.38) h||Opy (x1(h7€)ao(€))£nT [xmODY (X (h7E)b1(€))t] | ;2 < C(A+ B)Be*h~ 3~

Moreover, using (B.3.9) together with (B.3.34), (B.2.1a)), (B.2.1c), we also find that

h HOPh (Xl(h f)agnao(ﬁ)) [a:mOph( (h"ﬁ)bl(ﬁ))ﬁ] HLz <C(A+ B)B€2h1757%2

Summing up these two above estimates, together with (B.3.33)), (B.3.34]) and (B.3.35) (the con-
tribution in the left hand side basically appears with x1(h?¢) replaced with h?(9p,x1)(h7E),
because of the commutation between x,, and Opy’(x1(h?§))), we deduce that

(B.3.39)
| 109} (1 (B €)) rmzn O (a0 (€))7 [OpR ({7 €)01 (€))7
< [[[0pk (x1(§)ap(©))[Opi; (x ()b (&)l .
+ 17 [ [OR (Omx1) (07 ) ()52, N OpE (Wbt )] 1 + C(A + B)Bnd =5,

L2

with the same af), by as before, and b} (€) := by (€)&,[¢]7L.
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Finally, from (B.3.7a) we derive that

(B.3.40)
[[OPY (x(€)a(€))T)[Opy (x(hE)b1 (€))al || 12 + [|[OPY (x(€)at(€))TI[OpY (x (hT €)Y, (€))a] | .-

5451

+ || [Opy ((Omx1) (h7€)ag(€))u(t, )HOPh( (h7€)br(€))(t, ]| 2 < C(A+ B)Be*h2=9="3",
which injected in (B.3.35)), (B.3.39)) gives (B.3.32)), and concludes the proof of the statement. [J

Lemma B.3.7. There exists a constant C' > 0 such that, under the same hypothesis as in lemma
B.2.14}, for any x € C°(R?) and o > 0 small,

(B.3.41) > 0Py (x (7€) £t Y2 < CBet?+5",
=2

for every t € [1,T], with § > 0 small, 8 — 0 as 0 — 0.

Proof. From relation (3.2.10b) and the commutation between £,, and Opy’((£)), we deduce that

1
107 (7€) e (M S 3 |09 (7€) 88 120" 1 )] .
(B.3.42) §=0

+ Jontecrenenon ()1 +losameenes )i @),

so the result of the statement follows from lemmas [B.2.14], [B.3.2] and [B.3.6| combined with the
fact that

(B.3.43)  [|Opy (x(h7&)) Lmtw(t, tx)]l[ 2 S X7 D) [zmw(t, )]l 2 + tIx (7 Da)w(t, ) 12

O

The aim of lemma below is to obtain the sharp decay estimate O(t~!) of the uniform
norm of the Klein-Gordon component when some Klainerman vector fields is acting on it, and
when restricted to frequencies with moderate growth ¢7, with o > 0. It makes use, and improves,
the previous result of lemma [B.2.8 Before proving it, we introduce some preliminary results.

Lemma B.3.8. There exists a positive constant C > 0 such that, under the same hypothesis as
in lemma for any x € C°(R?), o > 0 small, n = 1,2,

5496
(B.3.44) 3 Hx(t_”Dx)[ano (v, Du’2)] HL < C(A + B)Be2P+732
11|+ 12| <2
[I1]<2
with D = Dy whenever |I1| + |I2| = 2, D € {Dj,Dy,j = 1,2} otherwise, and where § > 0 is
small, B — 0 as o — 0.
Proof. We estimate the L? norms in the left hand side of (B.3.44)) separately.
e When |[;| =0, |I2] = 2, we derive from (B.1.10b) and (1.1.11d) that

1
|u|=0

< C(A+B)

I
[l (&, )l

(77 D0) [ QB (v, 1]
e
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e When |[;| = |I2] = 1, we make use of corollary with Iz, w = u, and s > 0 sufficiently
large so that N(s) > 2, together with remark and derive that

(77 Da) [zaQi# . D]

1
S
(B.345) =

30 VO (ol (g + el ()l ) (st o + [ Drewst, ) )

|1]=0,1,2
|v|=0,1

< CB?%t

L2

1
[[uz (¢, )l
oo

X1(t77Dy) {a:n (é;)uvil] (t,-)

1+52

last estimated deduced using (B.1.5a), (B.1.17)), (B.1.28)), (B.2.57) and (1.1.11d)).
e When |[;| + |I2| < 1, derivative D can be equal to D, or to D;. Then
-If || =0,

[t D) [0 QU (02, D]

! D, \»
S Z 3771( . ) ’Uj:(t,')
— (Dy)
|u|=0
after (B.1.7)), (B.1.10b|) and a-priori estimates;
-If || =1, | 2] = 0, after lemma with L = L2, (B.1.54), (B.1.17)), (B.2.57) and a-priori

estimates, we derive that

L2

(N2t )l + D2 (2 )2 ) < C(A+ B)BE*,
Loo

|t D) [ @ (0}, Dus)]|
1

<2

L2

(lus @, )l + [[Drus(t, )l £2)

(D) o (755) vk )]

(B.3.46) e
N (s Dy \#
# 30  lan (25) )| Ol + 100 1)
=0 < ac> L2

having chosen s > 0 sufficiently large to have N(s) > 1. O

Lemma B.3.9. There exists a positive constant C > 0 such that, under the same hypothesis as

in lemma|B.2.14}, for any x € C(R?), o > 0 small,

(B.3.47) > Ixt D)V (3,
|7|=2

Migpow < CBet 1548,

with 8 >0 small, B — 0 as o — 0.

Proof. Estimate (B.3.47) is evidently satisfied when I = (i1, i2) is such I';; is a spatial derivative,
for at least one index 4;, thanks to lemma We then focus on the case when I'; ,I';, €
{Q, Z,,,m = 1,2} are both Klainerman vector fields, and as vfr = —o!, we reduce to prove the
statement for x (=7 D, )vl. Moreover, from the L> — H”> continuity of x(¢t~°D,) with norm
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O(t??), for any p € N, we can assume the H”> norm in (B.3.47) replaced with the L one, up
to a loss t77”.

As done in lemma instead of proving the statement directly on x(¢=°D,)v! we do it for
x(t77 D) vl N with vT-MF introduced in (B.2.24) and considered here with |[I| = 2. This is
justified by inequality m, which is consequence of (| m

An explicit computation shows that, from (B.2.24)), (L.1.17), and (L.1.5), (L.1.10), v/ is solu-
tion to (B.2.39)), with NL N iven here by
I,NF I,NF kg
(B.3.48) NLp ™ =r (¢ o) + Z cn, QWY , Duk),
(I1,12)€3(1)
[T1]<2

with ¢, 1, € {—1, O 1} cr,1, = 1 when [I1]| + |[2| = 2 (in which case derivative D corresponds
to Dy), and with rk equal to (B.2.41)) and having the explicit expression (B.2.42)).

After inequality m, estimates
(7 D) (" =0l (8, )| o S MR (8 )2 (s (8 )| zoe + [[Rauae (8, )| <)
< CABeZtﬁ*?*",

|x(t=7 Dy )o M (2, )

e < X TDe)ol (&) o + ([T De) ("N — vl )(2, )

(B.3.49) Sz

é
< CBetz,
deduced from (B.2.27)) and a-priori estimates, together with (B.2.26|) and ((1.1.11d)) with & = 0,

the only thing we need to show in order to prove the statement is that

51+39
2 .

(B.3.50) HX (t=°Dy) [x]NLI NF} (t ,-)HL2 < O(A+ B)Be2P+

But from (B.3.48)), (B.2.42) with |I| = 2, we have that

Hx@—mx) [z ] )], S s NEE (8 )l (e (8 ) looe + [ Ruus (2,2 2)

t7 | Nl v (t, )llLee + “ve(t,-) ) [ (8, )l 2 v (8 )| 2o
(B.3.51) Z ( " D,) ) MR f
+ Y e [nef el D) )]
(I1,12)€3(1)
[T1]<2
so (B.3.50) follows from a-priori estimates, (B.1.10b)), (B.2.69) and (B.3.44). As ds < 61 < do,
that concludes the proof of the statement. O

Lemma B.3.10. There exists a positive constant C' > 0 such that, under the same hypothesis as

n lemma for any multi-index I of length 2, any x € C*(R?), o > 0 small, and j = 1,2,
6,

(B.3.52) |x(t™7Dy) [z;(Tv)4] (¢ < CBetPt7,

with >0 small, B — 0 as o — 0, for every t € [1,T].

")HLOO

Proof. From equality (B.1.9b) with w = (I'v)_, which is solution to equation (B.1.18a)), the
L? — L continuity of operator x(t~°D,){D,)~! with norm O(¢°), and the continuity on L* of
x(t79D;)D.(D,)~! with norm O(t7), we derive that

(B353) [|x(t"Dy) [2;(I0)_] (1, 71250 0) (6, ) g2 + ¢ |t~ Da)(PTo) (¢

+17 |x(t™°Dy) [T Ny (¢, )

HL°° ~ 7’)”[/00
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Reminding (B.1.23) and applying lemma with L = L*°, we have that there is some x; €
C§°(R?) such that

(B.3.54)

X7 D) [T NEg) (1) e S 3 o Da) [y 4] IRV us () 2
p,v=0

SRR FONE
n=0
" Z HX(t_an) [ij (Uiv 12)] (t, .)HLoo'

(I1,12)€9(1)
[T1]<2

[[ue(t, )| e

Therefore, picking s > 0 large so that N(s) > 1, and using the L? — L continuity of X (¢~ D)
with norm O(t7) if X is a smooth cut-off function, together with the a-priori estimates, (B.1.17))
with £ = 2, and (B.3.44)), we find at first that

IX(E7D2) [0 NLgg] (8 9)|| e < CAB2EE+*

) HLOO

and, from (B.3.53)) and (B.3.47)),

(B.3.55) [X (77 Dg) [ (T v) -] (¢ < OBetsto+ ¥,

7')HLoo

The above inequality holds for any x € C§°(R?), so injecting it into (B.3.54), and using again

a-priori estimates, (B.1.17), hte L? — L™ continuity of x(t~D,), (B.3.44), together with the
fact that 84 (0 + d2)/2 < §1/2 as 8 is as small as we want as long as o is small and J, §y < d1,
we now find that

e < CA+ BB

Consequently, summing up this estimate with (1.1.11d)) and (B.3.47)), we find (B.3.52). O

Lemma B.3.11. Let T € {Q, Z,,,,m = 1,2} be a Klainerman vector field. There exists a positive
constant C such that, under the same hypothesis as in lemma [B.31], for any multi-index I of
length 2, any x € C°(R?), o > 0 small, and i,j = 1,2,

| X(¢t™7Dy) [2; T NLg] (¢

(B.3.56) x(t77 Dy) [wsa; (To)< (¢, )] oo < CBet' 943,

[P

for every t € [1,T].

Proof. We prove the estimate of the statement for (I'v)_, using the fact that (I'v)y = —(T'v).

Multiplying z; to relation (B.1.9b)) with w = (I'v)_, and making some commutations, we derive
the following inequality

[X(t7Dy) [ziz;(Tv)+(t, )| o

MH

B350 3 [P 2] 0 g 47 D) W T} )]

I
)

+ Y Hx(t*"DI) (#4122 NLg | )H

Loo
p1,p2=0
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where we remind the expression of I'NLy, in (B.1.20a}). At first, we estimate the last contribution

in the above right hand side by using the L? — L* continuity of operator x(t~?D,) with norm
O(t?), and write

1 1
Z Ix(t7 D) [ at* T NLgg ) (£, )], S Z t7 ||x(t° Da) [ &k*T NLg] (¢, )],
p1,p2=0 p1,p2=0

1

< D e Co)a(t )| IR us(t, ) | e
(B.3.58) H1,p2,v=0

1

+ Y

D v
z#lxlm( z ) ’Uj:(t )
i i ’
11 ;v |=0 (Da)

< C(A+ B)Beti+o+#,

LM(H(M)( e+ llux ()l + (| Deus(t, )| 22)

where the latter estimate is obtained by (B.1.5a)) with s = 0, (B.1.10b)), (B.1.17), (B.1.27b)),
(B.1.28)), together with a-priori estimates. Injecting this estimate, along with (B.2.57)) and
B.3.52|), we derive that, for any smooth cut-off function ¥,

(B.3.59) x(t7° Dy [aiz; (Tv)= (¢ < CBeti+o+%,

M

Now, if we change the approach of bounding the L* norm of x”lxé‘Z ng((I‘v)_, Dyuy), which is
one of the contributions to z/" z# '*T'NLyg, and make use of lemma with L = L™, instead

of { we can write

1
Hx(t_”Dx) [mflx?FNLkg} (t, )H
p1,p2=0
1

S Y |papn [ara L] )| IRY st e
M17M27V*0

+ Z N a2 (To) 2 (8, ) || p2l|uas (8, )| e
p1,p2=0

1
Do

p1,2,|v|=0

LOO

LN(H(F“)( M + lluse @ )l + [ Deus(, )l 2) -

$§“ajy2 ((Di))yvi(t’ )

Then, choosing s > 0 sufficiently large so that N(s) > 3, and using again (B.1.10b)), (B.1.27b)),

(IB.1.17) with k£ = 1, (B.1.28)), (B.2.57)) and a-priori estimates, together with (B.3.59), we find
that

1
Hx(t—opx) {x;‘lx;@I‘NLkg} (t, )H < C(A+ BB+ %

H1,p2=0 L=
which enhances (B-3.58) of a factor ¢t'/2 and implies, when combined with (B.2.57) and (B.3.52),
estimate (B.3.56]) and concludes the proof of the statement. O

Lemma B.3.12. LetT' € {Q, Z,,,m = 1,2} be a Klainerman vector field, oIV be the function
defined in (B.2.24) with |I| =1 and I'! =T, and for any k = 1,2 (resp. k =3), any j; € {+, -}
fori=1,2,3, let Bé“jl i js)(f,n) be the multiplier introduced in (2.2.45|) (resp. in (2.2.47))). Let

272



us consider

(B.3.60) |
VFNF(t’x) = ULNF(t,gj) — 4(21/? Z / ix- gB (togant) 5 77),[]]1 (é— 77) ( )d&d?’/
Jj1.je€{+,—}
thaggs D / B, oy (Em)P51 (€ = )ity (m)dSel

]17]26{—"_7
i -
+521m Z / 633 1,d2,+) (&m0, (§ — )iy, (n)dEdn,

Jji.jee{+,—}

where dq (resp. 0z, ) is equal to 1 if ' = Q (resp. if I' = Z1), 0 otherwise. Therefore, there exists
a constant C' > 0 such that, under the same hypothesis as in lemma for any x € CSO(R2),
o >0,

(B.3.61) (7 D) (V& = (T0)-) (¢, )| oo < C(A + B) A1,
for every t € [1,T]. Moreover,

(B.3.62) [IX(t7 Da) Za (VYF = (Tw) ) (8, )| 2 < C(A+ B)Be*t3+02,
for everym =1,2, t € [1,T].

Proof. First of all, we observe that similarly to (B.2.27)),
VVE — (Tw)_ = o N — (Tw)_

— 2 [(Dw)(DiTw) — (D10)(DiTw) + Di[o(DiTw)] — (Do) [o(DyTw)]
(B.3.63) ;
+ 595 [(Dyw)(Dau) — (D2v)(Dyu) + Da[vDyu) — (Dy)[vDaul]
+ 07,2 (D) (Daw) + (1D ) — (Do (Dew)].

Applying lemma with L = L, , (1.1.10) in order to estimate the products in the
second line in the above right hand side, we find that for some new x;1 € CSO(RQ),

(B.3.64)

HX (t™°D )(VNF— (Tw)_) (¢ < Hx(t_”Dz)(vI’NF— (Tw)-) (¢

a')HLooN ")HLOO

+ Z £ [ (8, oo [Pxa (877 Do) RY (T (8| oo + 8V o (8, ) s | (D) (2, ) | 2
Iul 0

+Zt"\lvi Moo R u (£, )| 2o

| 4|=0
Analogously, from , lemma with L = L™,
(B.3.65)
D) — (o) )6 e 30 [ (D6 R

©=0
+ V(o) (8 )2 s (8 ) e,
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so estimate (B.3.61]) is deduced by picking s > 0 large so that N(s) > 2, and using (B.2.37)
together with (B.2.52) and a-priori estimates.

In order to derive (B.3.62)), we apply Z,, to (B.3.63) and use the Leibniz rule, reminding (B.2.34)).

We estimate the L? norm of products (truncated by operator x(¢~°D,)) in which Z,, is acting
on v and I' on u (i.e. those coming from the action of Z,, on the second line in ), using
corollary together with remark with L = L? w = u, and s > 0 such that N(s) > 1
All the other remaining products are estimated by considering the L° norm on the factor that
does not contain any vector fields times the L? norm of the second one. We derive that

(B.3.66)
(D20 (7 = () 0 5 D21 o — 00 ),
+ 17 HXl t °D )(Z ) : HL‘X’ H )i( a')HLQ

N (S e 6 e + 1) o) 52 Qs+ 1D )

|4|=0
+t"llvi( Mo (I(ZmPu)£(E, )22 + [[(Cu)£ (@, )l 2 + ([ De(Tu)+ (L, )l 22)

+ Z t7[[(Tv) £ (¢, ) 2[R us () || .o
|u|=0

+ 7ot ) mree ([(Zmw)£(E )+ use(t )l + ([ Deus(t; )] 22)

and hence estimate (B.3.62)) by (B.1.5a), (B.1.17), (B.2.37)), (B.1.7), (B.2.26) with j = 1 and
a-priori estimates. O

Lemma B.3.13. Let I' € {Q,Z,,,m = 1,2} be a Klainerman vector field, VFNF defined in
(B.3.60) and

(B.3.67) VIt @) = tViN (¢, ta).

There exists a positive constant C > 0 such that, if we assume that a-priori estimates (1.1.11))
are satisfied in some interval [1,T), for a fivred T > 1, then we have, for any x € C§(R?) and
o > 0 small,

~ o

(B.3.68) HVF(t, -)HL2 < OBet?,

w o e o
(B.3.68b) 3 HOph (x(h 5))L“VF(t,-)HL2 < CBet?,

=1

for every t € [1,T].
Proof. Using expressions (B.3.63)) and (B.2.27) with |I| = 1, and bounding the L? norm of each
of those products with the L norm of the (one of the) factor(s) that does not contain vector

field I times the L? norms of the remaining one, we immediately derive, from a-priori estimates,
that

[VYF ~ (To) ]t )l 2 < CABer 3+,

and consequently that
5
(B.3.69) VN (¢, )| 2 < CBet =,

for every t € [1,T)]. Since |VT(¢t,-)||2 = |IVYE (2, ) || 12, this implies estimate (B.3.68a)).
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On the other hand, in order to derive ([B.3.68b)) we first observe that, from definition (B.3.60)) of

VFNF , one can check that this function is solution to

(B.3.70) [Dy + (D )V (t, x) = NLIlig’C(t,fU) — 0z, Qgg (vi, Qy (v, Dlvi)),
with

(B.3.71)

NLllig’c(t, x) = r,ﬁ NE (¢, x)

—4(27) [ B o€ [Ragl€ = i, ) — 5,6~ m)NLL ()] ded

by [ B, () (Va6 = )i n) = (6 = )N ()] da
5z | B €10 [Ny (€ = )i, () = € = )W) e,

,ﬁNF given by (B.2.41)) (or, explicitly, by (B.2.42))) with |I| = 1, and NL! = I'NL,. Superscript

¢ in NLllfg’c stands for cubic, and wants to stress out the fact that, passing from function (I'v)_ to
VFNF , we have replaced all the quadratic terms in the right hand side of (B.1.18al) (when |/| =1
and I'Y =T) with cubic ones.

From relation with w = VM and equation (B.3.70), we find that

(B.3.72)
|oPk N EnV (1)) | S INE7 D) Zn BT (1 )22 + OB ()& ()T (1)

X(t77Dy) [megg(Uﬂ:aQ(v)V(Uilevﬂ:))} (t, ')‘

L2
_ kg.c
+ Hx (t77D,) [:cmNLrg } t,) HL2 + 67,

I

LQ

where after (B.3.62)), (1.1.11d)) with £ = 1, and the fact that o can be chosen sufficiently small
so that 30 + d2 < §1/2, as Jy < Iy,

5
(B.3.73) Ix(t 7 Dy) Zm V¥ (¢, )| 12 < CBet 2 .

We also observe that

(B.3.74)

[xt77D2) [ (02, @0 (s, Drvs)) | 1,9) INLu(t,)llz2

oo

1
S 2

|11|=0

< C(A+ B)ABe

)t

as follows from (B.1.3al), (B.1.10b)) and a-priori estimates.
Similarly to (B.2.42)), we have an explicit expression for NLkg’

i
NLEE(t, x) = M (8 2) — - [NLkg(Dlru) — (D) NLL + Dy [uNLL]]

(B.3.75) + 805 [NLig(Dyu) = (Do) NLy + DafoNLy ]
+ 521 [NLyy(Dyu) + (D) NLy — (D2)[0NL]) -

Therefore, from (B.2.67)), (B.1.3a), (B.1.10b)), inequality

(B.3.76)  [INLy,(t, Mz S llos(t, e (IR (e + o)l + [1Dev(t, ) 22) |
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(B.1.5a)) with s = 0 and a-priori estimates, we derive that
|x(t77D2) [2ineee] )|, S Do) [l (2] &)
1
+§:
o3 e

|ul=0

< C(A+ B)AB*t 2F+5

L2

(B e

‘L IR ux (t, )| 2o (I(Cw) (8 )l g2 + us(t, )l r2)
(B.3.77)

(55) st (NER Gl + I )2

6+61

By injecting the above estimate, together with (B.3.68al), (B.3.73), (B.3.74]), into (B.3.72)) we
finally deduce (B.3.68b|) and conclude the proof of the statement. O

Lemma B.3.14. Let T € {Q, Z,,,, m = 1,2} be a Klainerman vector field, I be of length 1 such
that T' =T, and I of length 2 such that T2 = Z,,T", for some m = 1,2. Let us consider

vIUNE defined in (B.2.24) with I = I;. There exists a constant C > 0 such that, under the same
hypothesis as in lemma for any x € C°(R?), o > 0 small, m,n = 1,2,

(B.3.78a)
X (t77D2) [Zim (V"N = (Tw) )] (¢, )| 12 + (X (77 Da) (02N = (ZTw) ) (84| 12
< C(A+ B)Be21H+8+752
(B.3.78b)
[X(t™7Dy) [wnZm (07N = (To)-)] (8, )| 2 + [T Dy) [z (0" = (ZnTv)-)] (2] 2

+61 449

< C(A + B)Be*P+

for every t € [1,T], with |Is| = 2 such that T = Z,,T'", and 8 > 0 small such that f — 0 as
o — 0. Moreover, if VFNF 18 the function defined in (B.3.60)), then

6+01+09

(B.3.79) (7 D2) [Zm (VY = (T0) ) (&) 2 < C(A + B) B2,
(B379)  [[X(t77Da) [onZin (V¥ = (T0)-)] (6,92 < C(A+ B) B2 4

for every t € [1,T1.

Proof. We warn the reader that throughout the proof we denote by C, 5 two positive constants,
that may change line after line, with 5 — 0 as ¢ — 0.

The first thing we observe is that, with the indices considered in the statement, the difference
vl N (7, Tw)_ (explicitly written in (B.2.27) for I = I5) appears to be equal to the first line
in the right hand side of (B.2.35)) for I = I;. Therefore, inequalities (B.3.78a)) will follow from
the analysis of the terms appearing in the right hand side of (B.2.35)).

Both estimates (B.3.78)) follow using lemma with L = L? to estimate the contributions
coming from the first, third and fourth line in (B.2.35)), and applying lemma and remark
with L = L? and w; = u, in order to estimate products in the second line of (B.2.35)).
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Therefore, we find that there is some y; € C§°(R?) such that

(7 D2) [Zm (0" = (C0) )] ()| 2 S 7 MX2 (7 Do) (ZinT0) (8 noe [ (8 2
+17|xa (77 D) (To) £ (2, )HLoo(HUi( e + [1Drux(t, )l 2)

+ VN ZnT0) s (8, ) 2 fuse (b as + ¢ NN C0)(t ) gz (st s + (| Deus(t, ) 1)
+ 17t D) (Co) £, )l oo [[(Zmu) £ (E, )| 2

+ ) Z\I%(Fv)i(tw)Hm+t|!(1“v)i(t,')HL2 (luse (8 ) zrs + [ Deuse(ts )| ms) -

Choosing s > 0 large so that N(s) > 1, and using (B.1.5al), (B.1.17)), lemmas and
a-priori estimates, we obtain (B.3.78al).

Analogously,

[X(t™7Dy) (w0 Zm (0" = (Tv) )] (£ 12 S 71X (77 D) [wn(ZinT0)£] (8, )l zoe s (¢, )| 2
+7xa (877 Da) [wn (To)£] (8 )l zoe (lus(t, L2 + [[Drus(t, )] 22)

N2 (Zin Do) £ (8 ) 2l (8 ) aze + N (Do) (8 ) g2 (lus (8, ) lze + 1 Deus(t, ) )
+17Mx1(t77 Da) [2n (T0) 2] (&, )l Loe [ (Zmw) (¢, ) || 2

+ 7N (Z [52n (T0) £ (¢, -)| 22 +tllxn(Fv)i(tw)llL2> (lus (@, s + | Drus(t, )| 1) 5

pn=0

so from (B.1.5a)), (B.1.17)), (B.1.28), (B.2.57), (B.3.52)) and a-priori estimates we derive that

5+51+52

HX(t_UDx) [anm (UILNF - (Fv)*)] (t, ')HLQ <C(A+ B)B€2tﬁ+

and estimate ([B.3.78b|) follows just by the observation that the first line in (B.2.35)) corresponds
to v!2NF — (7, T'w)_ for I such that T''2 = Z,,T.

The last two estimates (B.3.79)) are derived applying Z,, to equality (B.3.63)), using (B.3.78|)

and proceeding as follows: we estimate products in which Z,, acts on v and I" on u (i.e. those
coming out from the second line of ) by means of corollary with L = L?, w = u,
and remark [B:2.5} products in which Z,, is acting on v and there are no Klainerman vector fields
acting on u are estimated applying lemma with L = L?; the remaining ones are controlled
by making appear the L norm on v and the L? norm on the wave factor. In this way we have,
on the one hand,

(™7 D2) [Zon (B = (C0)-)] ()] 2 S (X7 D) [Zin (0" = (T0)) (1)) 2
+17 [t “Dm><zmv>i £ e (It )22 + e (8] 2)

+¢ N Z!Iw"“ mv)+ ()22 + e (Zmv)+ (@ )l 2 | (lus @ )llas + [ Deus(t, )| ms)
|u|=0

+ v e ([(ZmTw)x ()l z2 + [1(Tw)= ()l L2 + [ De(Tu) £, )l 2
Hllus @, g2 + ([ Deus(t; )] 22)

and hence estimate (B.3.79a)) by choosing s > 0 large so that N(s) > 2 and using (B.1.5a)),

(B.1.7), (B.1.17) with & = 1, (B.2.37), (B.3.78a]) and a-priori estimates. On the other hand, we
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have

(™7 Do) [arnZun (G = (o)) ] () 2 S X7 D2) [wnZin (0" = (T0)-)] (2
+17 ||xa (877 D2) [ (Zm)£] ()| oo (1P (8 ) 122 + e (8 )] 2)

1
VO et an (Zno) £ (8 )22 + e (Zmo)(t ) 2z | (lux(t, )l + 1 Dot ) 1a0)
|ul=0

() s

>

|u]=0

- (ZmTw)£(E, )l 2 + [[(Cw)=(t; )l 2 + 1De(Tw) £ (E, ) 2

Fllux s )l + [ Deus(t, )l 22)

and estimate (B.3.79b)) follows then choosing s > 0 large so that N(s) > 1 and using (B.1.5a)),
(B.1.7), (B.1.10b), (B.1.17) with k = 1, (B.1.28)), (B.2.57)), (B.3.78b) and a-priori estimates. [

Lemma B.3.15. Let I' € {Q,Z,,,m = 1,2} be a Klainerman vector field and VFNF be the
function defined in (B.3.60). There exists a constant C > 0 such that, under the same hypothesis
as in lemma for any x € C°(R?), o > 0 small, m,n = 1,2,

(B.3.80) 10D (X (h7E)) L [t 2 VNE (8, t)] < CBet?,

HLQ(da:)
for every t € [1,T].

Proof. We warn the reader that, throughout the proof, we denote by C, 8 two positive constants,
that may change line after line, with 5 — 0 as ¢ — 0.

Let v1VF be the function defined in (B.2.24), and I, I» two multi-indices of length, respectively,
1 and 2, such that I''" =T, T2 = Z,T". We rewrite ZnVFNF as follows

D, D,
ZnVFNF =7, (VFNF . (FU)f)—F [(an’U)f _ UIQ,NF] _|_UI2,NF+ <D >,UI1,NF+ <D > [(Fv), _ ’UIl’NF]

so that

(B.3.81)
|09k (X (h7€) £ [tZn VN (8, 42)] || 114y

S Opk (W) o [tZn (VP — (Tw)-) (¢ t2)] || 24,
+[|Opk (x(h7€)) L [t [(ZnTv)— _”IZJVF] t,tz)] HLQ(da:
[

Dy,
+ ||Opy (x(h7€)) £mtvbWFttr”ham)+HOﬁﬂxﬁf§»Lm[t thm@Jxﬂ

n Ho;)m(h%))zm s [(To) = o) 1,10

(Dz) L2(da)

After relation with w = vf2VF,
|08 (X (h7€) £ [t M (1, 42)] || 12 4y S [[X(E7 D) Zin(T20) (2
+ |X(t77D2) Zn [0 = (D20) ] (¢, )| 12 + [|x (7 D)oV (8
4—Hx(t_”l)x)[anVLQ;NF](@.w

v')HL2

) HL2

L2
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with NL2 ™" given by (B:3.48) with I = I, and we deduce from (B:2.26) with j = 2, (B:3.49),
(IB.3.50)), a-priori estimate (|1.1.11d]) with k£ = 0, and the fact that § is as small as we want as

long as ¢ is small, § < §y < §; <K dp, that

S
10Dk (x (B ) Lom [t0" N (8, 0)] || 2y gy < CBet >

Analogously, commutating £, with Op¥(&,(¢)™!), applying (3.2.8) with w = v NF and using
inequalities (B.2.45)), (B.2.46)), (B.2.48)), we derive that

6+01+09

The remaining norms in the right hand side of are estimated by C'(A+ B )BEQtB T
as follows using and lemma Since ( is as small as we want as long as ¢ is small,
and § <€ 0y € 61 K &g, summing up with the above two estimates, we then find the result of the
statement. ]

s
< CBet? .
L2(dz)

Op%}(x(hag))[/m t <gz> UI1,NF(t’ tl’):|

Lemmas [B.2.8] [B.3.13| and [B.3.15] allow us to state the analogous result of lemma with v
replaced with VT, introduced in (B.3.67)).
Lemma B.3.16. Let h = t=1, VT be defined in (B.3.67), @ as in (3.2.2), ao(€) € So,0(1), and

b1(€) = & or bi(€) = &l with j,k € {1,2}. There exists a constant C' > 0 such that,
under the same assumptions as in lemma|B.2.14), for any x, x1 € C’go(R2), o > 0, we have that

(B.3.82a) [|[Opf (x(h7€)an (€)' (1, )] [Opk (a (Wb (€))lt, ]| 2 < C(A + B)BE R,

(B.3.82b)  ||[OpF (x(h7€)ao(€))V (£, N[O} (x1(A7E)b1(£))u(t, ))|| o < C(A+ B)Be*h™,

with B/ > 0 small, B — 0 as o,y — 0.

Proof. The proof of this result is similar to that of lemma [B.3.3] except for few estimates, linked
to the fact that we are replacing v with VI. We limit here to indicate these few differences.

Instead of referring to (B.3.9), we use the fact that, after (B.2.37)) in classical coordinates,
~ 5
(B.3.83) |ovt et envre |, < cBen
p,00

for some C' > 0, 8 > 0 small such that 5 — 0 as 0 — 0. Also, decomposing VT into ‘7/5@ + ‘7{2 ,
g
with

78, (t.0) = 00 (5 () 0 €)aal6)) 7 1.0,
p'(§)

VA, (1:2) = Omf (1= ) (2 )X €)ao(©)) V' (1.2,

and using the fact that above operators are supported for frequencies || < h?, together with
proposition [1.2.38| with p = 400 and (B.3.83)), we have that
=~ g%
|V, .0 < coBen-%,

while ) 5
VE (0] < oBeniY
HVAkQ(t, )HLOO < CBeh3 %,

as follows using the analogous of (B.3.11]), but combined with lemma [B.3.13| (instead of |B.2.14)),
estimates (B.3.73)), (B.3.80) (instead of lemma [B.3.2)) and (B.3.77) (instead of (B.2.74)).
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Lemma B.3.17. Let I' € {Q,Z,,,m = 1,2} be a Klainerman vector field and VFNF be the
function defined in (B.3.60). There exists a constant C' > 0 such that, under the same hypothesis
as in lemma for any x € C°(R?), o > 0 small, m,n = 1,2,

51+52

(B.3.84a) Xt Dy) [2m (VF — (Tw) )] (¢, M e S CA+ B)2e2t~ 14p4otoz
(B384b) Hx(t_gDz) [-Tnxm (VFNF* (I‘v),)] (t, ‘)HLOO < C(AJr B)262t§+5+5142—62

for every t € [1,T], with 8 > 0 small such that 3 — 0 as o — 0.

Proof. First of all, we remind the explicit expression (B.3.63|) of the difference VFNF — (Tw)-. We
also remind (B.2.27) when |I| = 1 such that I/ =T.

The idea to derive estimates ([B.3.84)) is to apply lemma with L = L in order to control the
contribution coming from v!*¥'—(I'v)_; to apply corollary and remark with L = L*°

in order to control the L* norm of the products appearing in the second line of (B.3.63)); to
simply multiply z,, (together with z,, in the case of (B.3.84b))) against v in order to get a control
on products in the third and fourth line of (B.3.63]). More precisely, we write the following:

(™7 Do) [ (W = (T0)-)] (&) | e
<Zt"||><1 7 Da) [ () (b | oo IR (8l + 7N (P0) (g (8 )

+—§:t“

\u\ 0

bl DT )

(i)

b3 VO, st + Do)
|ul=0

+ }: to

|ulslv|=0

so estimate (B.3.84a)) follows choosing s > 0 large enough to have N(s) > 2, and using (B.1.5al),
(B.1.10a), (B.1.10b)), (B.1.17) with £ = 1, (B.2.57), (B.2.52) and a-priori estimates.

Analogously,

IRF (¢, )| 2.0

}
”’“’”<< >> =,

X7 Dy) [wnam (VA = (T0) )] (8, )]]
1

<N a7 D) [watm (To) £ (¢, )] | oo IR us(t, ) Lo
n=0

_|_tN [Zn@m (o) (¢, )| g2 lus (¢, )| s

Py

||0

HXl (t_ng)(l_‘u)_ (t’ ) HL"O
LOO

Inl -— v
ndm Da:> +

b VO s, (st Mo + Dt i)
|u|=0

+ }: o

|pel,|v[=0

IR v (¢, ) | 2.0

LDO

x”xm(é >>#”i
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hence picking the same s as before, and using (B.1.5a)), (B.1.10a)), (B.1.27a), (B.1.27b)), (B.1.28)),
(B.1.33), (B.2.52) and (B.3.56|), together with a-priori estimates, we derive (B.3.84bf). That
concludes the proof of the statement. O

Lemma B.3.18. Let T € {Q, Z,,,m = 1,2} be a Klainerman vector field and NLIk;q’C be given
by (B.3.75). There exists a constant C' > 0 such that, under the same hypothesis as in lemma
for any x € C§°(R?), o > 0 small, m,n = 1,2,

(B.3.85a) HX(t_UDm) {anLllgg,C} (t7_)HL2 <C(A+ B)2B€3t_1+ﬁ/,
(B.3.85b) HX(t_UDx) [xmanLIﬁg,C} (t, .)HL2 <C(A+ B)2B€3tﬂ/,

for every t € [1,T], with 8’ > 0 small such that 8’ — 0 as 0,59 — 0. Moreover,

(B.3.86) |xt= Do) vEfEece, ')HLDO < C(A+ B)2Be3t—3+7

for every t € [1,T].

Proof. We warn the reader that we will denote by C, 3,3 some positive constants that may

change line after line, with 3 — 0 (resp. 8’ — 0) as ¢ — 0 (resp. as 0,09 — 0). For a seek of
compactness, we also denote by R(t,x) any contribution verifying

(B.3.87) [X(77 D2) [en R(t, )| 2 < C(A+ B’ BeS
[X(t7 D) [zmzn R(E, )] ;2 < C(A+ B)2Be*t”,
together with

(B-3.88) X7 DR(, )| o < C(A+ BY B
We can introduce the following notation

NI = — L [~(DyTu)NLy + Dy [(To)NE |

(B.3.89) - % [—(Dyv)NLL + Dy[oNIL]] + %59 [—(Dov)NLy + Da[vNLy)]

+ 67, [(Dw)NLL, — (D,)[vNL,]]
with NL! = T'NL,, so that from (B.3.71))
(B.3.90) NL< = % [NLL,(Dyu) + NLyy(DiTw)] + 5Q%NLkg(D2u) + 67, NLg(Dyu) + NLE,
with g (resp. dz,) equal to 1 when I' = Q (resp. T' = Z), 0 otherwise, and NLig = I'NLy,.

Cubic contribution NLS satisfies, after (T.1.5), (B.1.3a)), (B.1.10D), (B.3.76)), (B.1.6a) with s = 0
and a-priori estimates, the following inequality

(B.3.91)
|x(t=7D2) [zans) (t,)

L2

xﬁ(%)y%(t’ ')HLW [INL (8, Y2 + IVL 8l + s (6 )l | (O70) (8 2

< C(A+ B)ABe3t—1+o+o2,
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and also, from the mentioned inequalities together with (B.1.27Db)),
IX(t™7 Dz) [wmzn NLG™] (¢

M17/"27‘V|:O

")HLQ

D, \v
el (o) a6 TINEL(E e + I NLu(t, )l

LOO

(B.3.92)
Hlow (s e [|(TT0) £ (E, ) 2]
< C(A+ B)ABe3t7+%2,

Moreover, applying twice lemma with L = L and s > 0 large enough to have N(s) > 2
the first time to estimate products involving I'v and NL{U in (B.3.89)), the second one to estimate
the first two quadratic contributions to NLL (see (B.1.20B))), we see that

Xt Da) NLE™ (t, ) || oo S 27 X1 (E7 D) (T0) (£, ) || oo | VL (t, )| £oe
+172(To)£(t, ')”L2”NL (s + 7 xa (™ "D:c)NL{U( Mol (t, ) 100
+ 2| NLL (& ) g2 o (& s + 7 o, | e | VLo (2, )| oo
with
X1 (t™7 Do) NL (t, 2o S Ix2(t7 Da) (T0) £ (E, | rz.ce [0+ (£, ) | .00
+ 20 (o s + ot ) e (ot ) 2ee + 1Drve ()| ree) -

From (B.1.3b), (B.1.3c]), (B.1.6b) with s = 1 and § < 1 small, (B.2.37)), (B.3.76|), together with
(B.1.5a)) with s = 0 and a-priori estimates, we then obtain that

| x(t7 D) NLE™ (¢ < CA?Be’t3+7

) HLOO

which, together with (B.3.91] and B.3.92), implies that NLC“b is a contribution of the form
R(t,z). Consequently, from (B.3.90) we are left to prove that also NL (Dlu) NLyg(D1Tu),
NLyy(Dou) and NLg,(Dyu) verify (B.3.87), (B.3.88), and hence are of the form R(t, ).

We immediately observe that, from (B.1.1b]) and (1.1.5), products appearing in NLyg4(Dou) and
in NLpy(Dyu) are of the form

(B.3.93) [ao(Dg)v—][b1(Dz)u—]bo(Dz)u—

with ag(€) € {1,&(€) 71,7 = 1,2}, bi(§) € {&,&& €175 = 1,2}, and bo(§) € {1,&[¢7}
Therefore, lemmas (B.3.5) - m B.3.6| imply that NLjg(Dou) and NLyg(Dyu) are remainders R(t,x).
Furthermore if we write explicitly NL = I'NL;, using (|1.1.15)) and the equation satisfied by

U+ in with |I| =0,
NLig = 1Sg((Fv)i, Diyus) + QK (ve, Dy (Tw))
~ 804 (v, Datiz) = 82, @ (v, D) + QFF (v, QF (0, Drv)

with g (resp. dz,) equal to 1 if I' = Q (resp. I' = Z;), 0 otherwise, we realize that from (B.3.74)

and a-priori estimates,

6+62

Hx(t“’Dm) [anSg (v, QY (v, Dwi))(Dlu)} (t, -)HL < O(A+ B)A2Beb—3+73>

while from (B.1.27b)), (B.1.3a)) and the a-priori estimates,

Hx(t“’Dm) (e anQEF (2, Q8 (vs, D1vs)) (Drw)| (2|

3>

ul=0

L2

5+52

I NLu(t, M 2l Rawas (¢ )| e < C(A+ B)A?Bet ™2+
LOO

azmxn< >>#Ui(t» )
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Also, for any 6 €]0, 1],
D) [ @48 (v, @ (v, Drvs)) (Drw)] (2.9)|
S o (8 ) oo |V Lot e [Rae (2, [ 1oe < CAYO BOH=37004D),

after (B.1.3d)) with s = 1 and a-priori estimates. Therefore Qgg (vi, QY (v, Dlvi)) (Dju) is also
a remainder R(t,x).

From (2.1.1)) and (|1.1.5), products coming from

[—%Qlég(vi, Daus) — 62, Q (v, !Dzlt&)] (D1u)

are of the form
[ao(Dz)v—] [b1(Dg)u—] Ryu-,

with the same ag(£) as before, and b (€) € {&,&¢&;|€)71, (€], = 1,2}, so from lemmas [B.3.5
they give rise to remainders R(¢,x).
Summing up, the very contributions for which we have to prove estimates (B.3.87)) and (B.3.88)|)
are the following:
(B.3.94a) [ap(Dz)(Tv)_] [b1(Dz)u—] Ryu—
(B.3.94b) [ap(Dg)v_] [b1(Ds)(Tu)-] Riu_,

which are the remaining types of products in NLig (Diu), and
(B.3.94c¢) [ao(Dz)v—] [b1(Dg)u—] Ry (Tu)—,

which are the products appearing in NLy,(D1T'u), where ag is the same as above, and b;(§) is
equal to & or to §j§1|£|_1, with 7 = 1,2. We proceed to analyse the above products separately.
The strategy to treat these terms is the same, but the lemmas and inequalities to which we refer
could be different depending on the product we are considering. We explain it in details for

(B.3.94a)), and go faster on (B.3.94b)), (B.3.94c).
e Analysis of (B.3.94al):

First of all, we can assume that all factors in are supported for moderate frequencies
less or equal than ¢7, up to remainders R(¢,z). In fact, by means of lemma with L = L?,
w1 = xnpap(Dy)(Tv)—, and s > 0 large enough to have N(s) > 2, together with with
k =1 and a-priori estimates, there is some x1 € C§°(R?) such that

[X(t77 D) [[wn]ao(Dy) (Tv) -] [br(Da)u—] Ryu-] || .2
S H [Xl(t_UDx)[$na0(D:v)(Fv)fu [X(t_ODm)bl(Dz)uf] [X(t_UDl")Rlu*] HL2

1
+t72 ) (lah(T0) = (8 ) 2 R u— (8, )| e lJu (8, ) | s
m,lv|=0

S H [Xl(t_UDx)[anO(Dwxrv)fH [X(t_aDz)bl(Dz)Uf] [X(t_UDI)Rlu*} HL2
+ CAB23 34757,
while from and a-priori estimates
Xt~ Da) [[2miralao(De) (Tv) -] [b1 (Dy)u—] Rau-] |
< N D (t77 Do) [Emanao(De) (D) )] [x(t™7Dy)b1(Dy)u—] [x(t~7Da)Rau-] || 2

546
+ CAB?&3%t 2 .
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Also, using lemma [B:2.2] but with L = L,
[x(t™7 Da)[lao (D) (Tv) ] by (Da)u—] Riu-] || o
S| a7 De)ao(D2) (Tv)-]] [x(t77De)br(Da)u-] [x(t77 D) Rau-] || o

1
+172 ) [To)= ()2 IR u(t, ) | rzoe lu—(E, )| e

|2|=0
5459

< N (877 Da)ao(D2) (Tw)-]] [x (7 Da)by (Dy)u] [x(¢~°Dy)Riu_] || + CAB2} 37737,

Secondly, we can assume by (D, )u_ replaced with by (D, )u™NF, with vV introduced in (3.1.15)),
again up to some terms satisfying (B.3.87)) (resp. (B.3.88)), as follows using (B.1.17)), (B.1.28)

(resp. (B.2.37)), (B.3.26b)) and (1.1.11al).
Thirdly, ag(D,)(I'v)— can be substituted with ag(D,)VM, V¥ being defined in (B:3.60)), up to

remainders verifying (B.3.87)) (resp. (B.3.88))) thanks to lemma [B.3.17| (resp. estimate (B.3.61)),
(B.3.30) (resp.

(B.3.95) [N E (t, Y || goee + |RUNF (2, )| o < CBet™z,
which is the classical version of the semi-classical (B.3.8)) and (1.1.11a)).
With the above manipulations, we basically reduced to prove that, for £ = 0,1,
s (77 D) o rnain (D) VY] [ (77 D Yoa (D™ (7 Dy Ry |
< C(A+ B)?Be3t— 1t
and
11 (77 Do) ao( D) V] [x (77 Da )b (Do) u F|x (677 Dy)Ryu]| 5 < C(A + B)2Bet~ 3+,

We notice that, using (1.1.11a)) and passing to the semi-classical framework and unknowns, with
VT defined in (B.3.67) and u in (3.2.2), above inequalities will follow respectively from
(B.3.96)

5~ | (00t s 7€) Or an(€) V1] (O 7€) 1), < Cl+ BB
k=0

and
| (081 Ca (7€) ao(€) VT [Opr (xhe b ()] (1), < C(A+ B)BE W,
The above L has already been proved in lemma [B.3.16| (see (B.3.82b))).

Using the same argument that led us to (B.3.35) and (B.3.39) in the proof of lemma up
to replacing © with V' in (B.3.33)), referring to lemma [B.3.13[instead of [B.2.14] and to estimate
(B.3.83)) instead of (B.3.9)), we can write that

| [Opk 0ca(h€) 2w Opf (a0 () V1] [Omr (x(hebrE)) .|
< |01 Ca (1) a(€) VT (1, NlOpk (e br )it ]|, + CABR7,
with af(€) = ag(€)&,(€) !, together with
| [0k Ca (1 €) [wmeaOp (@0(€) V] [0k (xR €)1 (©))a) ¢, )|
< 10w (e ab ()T, Nlopr (e ppi ©)utt, ]|
+ h?

L2

L2

(OB (Omx1) (7€) (€))VT (&, ] OpE (Wb (€))iu(t. || , + C(A+ B)B2ha ™,
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with b (&) = b1(£)&n]€| L. Consequently, estimate (B.3.96) is derived from (B.3.82al), which
concludes that (B.3.94al)) is a remainder R(t, z).

e Analysis of (B.3.94b)):

By means of corollary with L = L2, w = u, and s > 0 sufficiently large so that N(s) > 3,
together with remark we can assume all factors in @ truncated for frequencies less
or equal than t7, up to remainder contributions R(t, z) verifying (B.3.87), (B.3.88)). In fact, from
(B.1.10a)), (B.1.27a)) and a-priori estimates, we find that

[x(t™7 Dy) [zn[ao(De)v-] [br(Dz) (Tu) -] Ryu_]||

< [t Da)[znao(Da)v-]] [x(t77 Da)bi(De)(Tu) -] x(t™"Da)Ryu—||
1

+t7 Y (e akro (¢, )l g2 + tlako (¢, )| p2) [lus (8, )l s [ Rau ()| 2o
1 ],12=0

< 1t Do) enao(Da)o-]] [x(tDa)bi(Da)(Tw)-] X(£7 Do) Ruu|| + CAB2 155

and using also (B.1.33)),

(7 Da) [zmzalao(Da)o-] by (Da) (Tr) -] Ry .
S | Dt D) wmanao(Da)v-]] [X(t7 Da)bi(Da)(Tu) -] x (7 D) Rau|| s

Moreover, using corollary with L = L*°, w = u, and s > 0 such that N(s) > 4, together
with (B.1.10a)) and a-priori estimates, one can also check that

[x(t™7 Da) [[a0(D)v-] [b1 (D) (T) -] Rau-] | oo

S| bt Da)ao(Dae)v—] [x(t77 Da)br(Dg)(Tu) -] x(t77 De)Ryu_|| .. + CABe?

5+52

Successively, we can assume ag(D;)v_ replaced with ag(D,)vVE, vV given by (3.1.3), up to
remainders verifying (B.3.87)) (resp. (B.3.88))), as follows by using (B.3.31)) (resp. (B.3.26a)),
(1.1.11d) with k£ =2 and (L.1.11a)).

Then, using (1.1.11al) and passing to the semi-classical framework and unknowns, with v defined
in (3.2.2) and ! in (B.3.21]), we should prove that the following estimates are satisfied:

1

S [[[ork e b znOpitante)i] Op (x(hem (€] 1.0)| , < C(A+ BB

k=0

along with

[ [Op (x1 (B €)an ()] [Opy (x(h7€)b1(€))i”] (¢, ) || ;oo < C(A+ B)B*hF".

The latter one holds true after lemma [B.3.4] (see (B.3.22b))). The former one is also consequence
of this lemma (see precisely (B.3.22a))), after having observed that a similar argument to to the
one that led to (B.3.35) and (B.3.39) can be applied, up to replacing @ with @/ in (B.3.34)), using

lemma instead of (B.2.1al), (B.2.1d), estimate (B.3.23)) instead of (B.3.8), and the fact that

0P (x(R7E)b1(E)&mlél ™) (t,)]| oo = t |X (7 D2)b1(Da) D | Do ™ (Tu)— (2, )| 1o

(1467 +02) 0

51, (1481+59)
< (7 D) (C)— (¢ [l | (C)— (8, ) [ < C(A + BY O Blers A3+ 5200
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which is the analogous of (last estimate is deduced using and with
k = 1). Therefore, we deduce that

1 [Opk (x1.(h7€) [2nOp a0(€))8]] [Opk (x(h7€)bu(€))a] (2, )] 12

< [[[0pk (e (h7€)ab ()i (t, )[OpK (x(hTE)br ()i (+, )] 2 + CABe*h="

along with

1[0k (1 (h7€)) [#menOp} a0 (€))7]] [Opl (x(h7€)br(€))a” ] (¢, )] 12

< (10w} (x(€)ag ()R [Op}y (x(h7€)D, (€))a"]| 1

+ 7 || O (Omxa) ()b (€)VT (1, )][Opf (x(h7€)b1(€))a H +C(A+ BB,
with the same af), b} as in the previous case. That concludes that (B.3.94Db) also satisfies (B ,
(1B.3.8§)).
e Analysis of (B.3.94d):

After lemma with L = L? (resp. L = L*), w; = Ry(T'u)_, and s > 0 large such that
N(s) > 2, together with (B.1.10a]), (B.1.27a) (resp. (1.1.11b])) and a-priori estimates, we can
assume all factors in (B.3.94c)) localised for frequencies less or equal than t7, up to remainders
R(t,z).

Also, from (B.1.10a), (B.1.27a) (resp. (1.1.11b})), together with (B.3.26b) and (B.2.52)), we

can replace by(Dy)u_ with by(D,)uNF, while from (B.3.31)) (resp. (B.3. 26a) (B.3.30) (resp.
(B.3.95)) and (B.2.52)), we can assume ag(D5)v_ be replaced with ag(D,)vNF, up to additional

contributions satisfying (B.3.87) (resp. (B.3.88)).
That reduces us to prove that, for £ = 0,1,

|07 Do)l znao( D)oV 1) (e Da)or (Da)u | xa (677 Do) Ry (T)-|
<C(A+ B)QBes?’t_HHﬁ/,
and
| x(t77 Dy )ao(Dz)v™ ] Ix(t7Dy)b1 (D) u™ ] x1 (77 D) Ra (Tw) -

)= || ;o < C(A+ B)?Be¥t=5+,

or equivalently, from estimate (B.2.37) and passing to the semi-classical coordinates and un-
knowns v, u, that

1
>~ || [ow Cahme) [ahaOpiian(e))5]| [Op (b1 @) (1 1)]| , < C(A+ B)Be2Rs,
k=0

together with

1[0} (x1(h7€)ao(€))7] [Opi (x(h7E)b1())u] (¢, )| ;o < C(A+ B)B*h™"
The former estimate has already been proved at the end of the proof of lemma m (see from
(B.3.32) to (B.3.40)), while the latter one in lemma [B.3.3| (see (B.3.7b))). That concludes that

also (B.3.94¢) is a remainder R(t,x), and gives the result of the statement. O
Corollary B.3.19. Let NLllig’c be given by (B.3.75)). There exists a constant C > 0 such that,
under the same assumptions as in lemma for any x € CgO(RZ), o >0 small, myn=1,2,

Oy (7€) Lon [t(twa) NPt 12)] | | < C(A + BY2BY,

O OB ) £ [#(22) Q6 (04, Q5 (v Dyvs) (1) | < A+ B)ABe

for every t € [1,T], with 8’ > 0 such that ' — 0 as 0,09 — 0.
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Proof. Straightforward after (B.3.43]), lemma B.3.18) (B.3.74)) and the fact that

[xttp) [xmanlag(vi,Q&V(vi,Dlvg)} (t.)]

3>

L2

§+46
INLu(t, )12 < C(A+ B)AB* " 7°,

(o

ul=0 b=
after (B.1.3a)), (B.1.27b]) and a-priori estimates. O
Lemma B.3.20. Let VT be defined in (B.3.67). There exists some positive constant C' such
that, under the same assumptions as in lemma for any x € C°(R?), o > 0 small,
(B.3.97) 3 H()p;f(x(hag)wvr(t, -)HL2 < CBet?,
|p|=2

with B/ > 0 small, 3/ — 0 as 0,09 — 0.
Proof. Similarly to (B.3.42)), and reminding that VFNF is solution to (B.3.70]), we have that, for
any m,n =1, 2,

1

OpY (X(W ) LV (8, )|| < ST | OpF (e (7€) £, [tZa Vi ()] ||
H

=0
&n

<£>)Vr( )
+ 0wt Ot [#2) @8 (v, QB (v, D)) 10|, |

. Hozaz%x(h”f)wm()ph (

ontseres s,
L2

so the result of the statement follows from (B.3.73)), (B.3.74)), (B.3.80), lemma [B.3.13| estimate

(IB.3.77) and corollary [B.3.19 O

Lemma B.3.21. There exists a constant C > 0 such that, under the same hypothesis as in
lemma |B.2.14), for any x € C(R?), equal to 1 in a neighbourhood of the origin, and o > 0
small,

(B.3.98) > Xt T D)V ()| g < CBet ™,
1]=1

for every t € [1,T], with § > 0 small, 8 — 0 as 0 — 0.

Proof. As this estimate is evidently satisfied when I is such that I'! is a spatial derivative, after
a-priori estimate (T.1.11D]), we focus on proving the statement for I'' € {Q, Z,,,m = 1,2} being
a Klainerman vector field. For simplicity, we refer to I'! simply by T.

Instead of proving the result of the statement directly on (I'v)1, we show that

(B.3.99) ViV < CBet™!,

t ‘)HL‘X’

with VFNF defined in . After , the above inequality evidently implies the state-
ment. The main idea to derive the sharp decay estimate in (B.3.99) is to use the same argument
that, in subsection , led us to the propagation of a-priori estimate (1.1.11b)). Thus we are
going to move to the semi-classical setting and to deduce an ODE from equation satis-
fied by VFNF . The most important feature that will provide us with is that the uniform
norm of all involved non-linear terms is integrable in time.
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Before going into the details, we remind the reader our choice to denote by C, 3 and 3’ some
positive constants, that may change line after line, with 8 — 0 (resp. 8 — 0) as o — 0 (resp.
as 0,99 — 0).

So let us consider VI (t,z) := tViVE (¢, tz), operator T'*9 as follows
/
rt = opy (Lp(ﬁ)
ph vy \/E
with 7, x1 € C§°(R?) such that v = 1 close to the origin, x1 = 1 on the support of x, p(§) := (£),
and

Jame)).

Vi, (t.2) == TMOp (x (W) VT (¢, z),
h, (ta) = 0pt (=) (= 09 opi (x(ne) 7 1.0),

so that B B B
Opy (X (W) (t,-) = Vi, + Vi -

It immediately follows from inequality (3.2.19b)) and lemmas [B.3.13| |B.3.20} that

2
NF . 1713 w o ﬂNF ) 7l+ﬁl
(B.3.100) HVAzg(t, )HLOO < Z_:Om Hoph(x(h ENLAVE (2, )Hp < CBet—3+7,

On the other hand, an explicit computation shows that, from (B.3.70|) satisfied by VFNF , VT s
solution to the following semi-classical pseudo-differential equation:

(D — Op¥(x - € — ()] VI (t,2) = A INLEC(t, ta) — 62, h L Qe® (v, QY (v, D1va)) (L, t),

with NLllig’C given explicitly by (B.3.75), (B.2.42). Applying successively operators Op}’(x(h7¢))
and I'* to the above equation we find, from first part of lemma |3.2.5 that kag satisfies

(B3.101) [Dy — Opji(w - € — (€D Vi, (t.2) = h™'TH90p (x(h7€)) [ NL“(t, ta)|
— 02, W' TR0p (x (7)) [QFF (v, QF (v, Dyv)) (t, )] — Opft (b(x, €)) Oy (x (h7€))VE (¢, )
+ioh TR Op (9x)(h7€) - (7€) VT,
with symbol b given by (3:2.28). Since the derivatives of v vanish in a neighbourhood of the

origin, and dx; = 0 on the support of y, from inequalities (3.2.18b)), (3.2.19b)), together with
symbolic calculus of lemma and remark [1.2.22] we observe that

|ovi v eV e s WS OB T (s + 1 770, 0)
| u]=0
< CBet— 37,

LQ

where last estimate is obtained using lemmas and picking N > 2.
Moreover, reminding (B.3.13)), we have that

(B.3.102) A" ||ITROpY (9x(h7€) - (h7€))VT (¢,

< h1+a

.
T80, (@) Opk ((Ox(h7€) - (WENVT (2 )|+ BN IVt )2,
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where 6 (z) is a smooth cut-off function supported in closed ball B;_2-(0), for some small
¢>0,and N € N is as large as we want. Denoting (0x)(§) - £ concisely by x(&), we observe that
from proposition [I.2.38] with p = +oo, together with the uniform continuity on L of operator
X(t77D,) , the definition of VT in terms of VAN and (B.3.61),

hl-i—o‘

rM0,(@)0p (RTENVT (¢, < 1 [[on(x)0pk REh) V71|

<tﬁHeh( )X DI)(FU)_(t,~)HLw +C(A+ B)B2 8.

Using the fact that, for H{L(z) = 0h(2) 25,

eh( )(Qv) [eh( )azu,—eh( )aw}

0y, (%) (Zmv)— = t[@;’f(%)@tv_ + 0h<§>8mv_} + 9h<§> 5)31)_, m=1,2,

we derive, after some commutations and up to a loss in ¢, that (I'v)_ can be expressed in terms
of v_ and its derivatives, so from the classical Sobolev injection combined inequality (B.1.2) we
obtain that

e D (e £ APt e et )

< C’Bet‘ﬁ,

and

last estimate following by taking s > 0 large enough to have N(s) > 3, and using (B.1.6a)) with
s = 0, together with a-priori estimates. From (B.3.102)) we hence derive that

h1+0'

O (Ox(h7€) - (WEHVT (1, )| < eBeat7S,

so the last two terms in the right hand side of equation (B.3.101)) are remainders R(t,z) such
that

(B.3.103) IR(t,")||p < CBet™1,

for every t € [1,T].
After proposition |1.2.38| with p = 400, estimate (B.3.86)), and the fact that for any 0 €]0, 1],

5
HQgg (U:I:, QBV(TH:, Dlvj:))HLoo < CA37930€3t73+9(1+§)’

as follows by (B.1.3c) with s = 1 and a-priori estimates, we deduce (up to taking # < 1 small in
the above inequality) that also the first two non-linear terms in the right hand side of (B.3.101)
satisfy (B.3.103) and can be included into R(t,z).

Therefore, 1~/Arkg satisfies
[D: = Op}y (z - € = (€))] V4, (t, ) = R(t, ),

and using (3.2:22)) along with inequality (3.2.24b)), but with o} A, replaced with VA together
with lemmas[B.3.13] [B.3.20} we deduce that, for the same family of cut-off functions Gh mtroduced

above, VAkg is solution to the following ODE:

(B.3.104) DV (t,2) = =Oh(x)d(x)VE, (£, ) + R(t, ),
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with ¢(z) = y/1 — |z|?, and where the inhomogeneous term R(t, z) decays, in the uniform norm,
at a rate which is integrable in time. As a consequence,

IVA,, (8 Mz S VA, (1)l < CBe,

which summed up with (B.3.100) implies (B.3.99), and hence the conclusion of the proof. O
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Index

Admissible cut-off function, [82]

b (§), function,

Cyw, cubic term in the wave equation after a nor-
mal form, (168

EO (ta U, U:I:)) CNergy,

EX¥(t;ux,vy), generalized energy,
E¥(t; W), generalized energy, [118
E,(t;us,vy), generalized energy,
En(t; W), generalized energy, [L18

ng ( W), first modified energy, |134
E’:I.f 1(t; W), second modified energy, m
En( ; W), first modified energy, |134
ETTZ( t; W), second modified energy, [146

I, product of admissible vector fields,
I'*9_ operator, m
Yn, function

ion, [90]
rwk, operator,

h, semi-classical parameter,
Hp,oo(Rd)’ space,
H{>(RY), space, |86
H*(R?), space,
H; (R%), space,

I(I), set of multi-indices, [80
J% . set of multi-indices, [119
Jn, set of multi-indices, [119

K, set of integers,
X, set of multi-indices, [123
Klainerman vector fields, [7§|

Ajg, manifold associated to the Klein-Gordon

equation, [I73]

A, manifold associated to the wave equation,

IRY!
Littlewood Paley decomposition, [83]

L, operator, [T12]

Mj, operator, [102]

M{*(a;n), seminorm,

NLjg, quadratic non-linearity in the Klein-Gordon
equation satisfied by v, [225]

NL,,, quadratic non-linearity in the wave equa-
tion satisfied by u., [225]

Q, Euclidean rotation,

Qp,, semi-classical Euclidean rotation, [96]
Op®B, para-differential operator,

Opg, remainder para-differential operator,
Opp, standard semi-classical quantization, [S6]
Op}), semi-classical Weyl quantization,
Order function,

p(€), function, m

Qo(v,w), null form,

Qlég(ij Dguy), null form, 116

qw, quadratic term in the wave equation after
a normal form, [168

QY (v+, Dyv+), null form, [116

,]gv P cubic term in the Klein-Gordon equation

after a normal form, [160]
, cubic term in the wave equation after a
normal form, [I6§|

NF
w

Ss.o (M), class of symbols,

é"“(]Rd), class of symbols,
Y™ (RY), class of symbols,
St (RY), class of symbols,

Sm(RY), class of symbols,
Sobolev injection, semi-classical,

0}, family of smooth cut-off function in the unit

ball,

U, wave vector,
U!, wave vector with admissible vector fields,

INES

uli, wave components with admissible vector
fields,

uNF | wave component after a normal form, [168

294



U+, wave components, [78]
u>*, wave component in semi-classical setting,
localised for frequencies ~ 2%, 183
u, wave component in semi-classical setting, [L71
N/%f, wave component in semi-classical setting,
localised around A,

~%.k . . . .
uy. , wave component in semi-classical setting,
w

localised away from A,

V', Klein-Gordon vector,

V!, Klein-Gordon vector with admissible vector
fields,

’Ui, Klein-Gordon components with admissible
vector fields, [7§]

V¥ set of multi-indices, [123

vNF | Klein-Gordon component after a normal
form, [166

VAV normal form function defined from (I'v)_,

203

, normal form function defined from (I'v)_,

v+ Klein-Gordon components,

v, Klein-Gordon component in semi-classical set-

N ting, [I71]

VT, function VFNF in semi-classical setting, 274

E/E\kg, Klein-Gordon component in semi-classical
setting, localised around Ayg, @

512\25,’ Klein-Gordon component in semi-classical

o NF

setting, localised away from Ay, [174]

W, wave-Klein-Gordon vector, [T17]

W, wave-Klein-Gordon vector with admissible
vector fields, [T1§]

W/, wave-Klein-Gordon vector after symmetriza-
tion, [I29]

WP (RY), space,

WSI , wave-Klein-Gordon vector after symmetriza-
tion and normal form, [I33]

Z, family of admissible vector fields,
Zj, Lorentzian boost, [7§]

295



Résumé

Cette these est consacrée a I'étude de 1’éxistence globale de solutions pour des équations de Klein-
Gordon - ou des systemes ondes-Klein-Gordon — quasi-linéaires critiques, a données petites, régulieres,
décroissantes a l'infini, en dimension un ou deux d’éspace. On étudie d’abord ce probléme pour des
équations de Klein-Gordon cubiques en dimension un, pour lesquelles il y a existence globale des so-
lutions lorsque la non-linéarité vérifie une condition de structure et les données initiales sont petites et
a support compact. Nous prouvons que ce résultat est vrai aussi lorsque les données initiales ne sont
pas localisées en espace mais décroissent faiblement a l'infini, en combinant la méthode des champs
de vecteurs de Klainerman avec une analyse micro-locale semi-classique de la solution. La deuxiéme
et principale contribution a la thése s’attache a 1’étude de 1’existence globale de solutions pour un sys-
teme modéle ondes-Klein-Gordon quadratique, quasi-linéaire, en dimension deux, toujours pour des
données initiales petites régulieres a décroissance modérée a l'infini, les non-linéarités étant données
en termes de «formes nulles ». Nous obtenons des estimations d’énergie sur la solution sur laquelle
agissent des champs de Klainerman, et des estimations de décroissance uniforme optimales, dans une
version para-différentielle. Nous prouvons les secondes par une réduction du systéme d’équations aux
dérivées partielles du départ a un systeme d’équations ordinaires, stratégie qui pourrait nous emmener,
dans le futur, a traiter le cas de non-linéarités plus générales.

Mots Clefs
1. Existence globale de petites solutions 5. Champs de vecteurs de Klainerman
2. Equations dispersives 6. Formes normales
3. Equations de Klein-Gordon 7. Analyse micro-locale semi-classique
4. Systemes ondes-Klein-Gordon 8. Structure nulle
Summary

In this thesis we study the problem of global existence of solutions to critical quasi-linear Klein-Gordon
equations — or to critical quasi-linear coupled wave-Klien-Gordon systems — when initial data are small,
smooth, decaying at infinity, in space dimension one or two. We first study this problem for cubic Klein-
Gordon equations in space dimension one. It is known that, under a suitable structure condition on the
non-linearity, the global well-posedness of the solution is ensured when initial data are small and com-
pactly supported. We prove that this result holds true even when initial data are not localized in space
but only mildly decaying at infinity, by combining the Klainerman vector fields’ method with a semi-
classical micro-local analysis of the solution. The second and main contribution to the thesis concerns
the study of the global existence of solutions to a quadratic quasi-linear wave-Klein-Gordon system in
space dimension two, again when initial data are small smooth and mildly decaying at infinity. We
consider the case of a model non-linearity, expressed in terms of "null forms". Our aim is to obtain some
energy estimates on the solution when some Klainerman vector fields are acting on it, and sharp uni-
form estimates. The former ones are recovered making systematically use of normal forms” arguments
for quasi-linear equations, in their para-differential version. We derive the latter ones by deducing
a system of ordinary differential equations from the starting partial differential system, this strategy
maying leading us in the future to treat the case of the most general non-linearities.

Keywords
1. Global existence of small solutions 5. Klainerman vector fields
2. Dispersive equations 6. Normal forms
3. Klein-Gordon equations 7. Semi-classical micro-local analysis

4. Wave-Klein-Gordon systems 8. Null structures
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