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Introduction

“Don’t knock the weather. If it didn’t change once in a while, nine out of ten people
couldn’t start a conversation”. - Kin Hubbard

While a seemingly arbitrary way to open a thesis, this quote resembles in some
way the modern state of particle physics. All the components of the Standard Model
(SM) have, to this day, been experimentally observed, yet unanswered questions mean
that the domain of particle theory goes far beyond experimental capabilities: the
conversation in the Beyond the Standard Model (BSM) community is thriving because
the Standard Model does not completely conform to expectations. While the SM
has successfully been predicting experimental outcomes since the 1970’s, it is clearly
lacking an integrated description of gravity, and among many other issues, runs into
the problem of unobserved Planck-scale sized quantum corrections to the Higgs mass
(assuming the miraculous cancellation of which does not occur) if the SM is not capped
at some lower energy scale and absorbed into some higher energy theory.

The theoretical predictions of the Standard Model were finally satisfied in 2012
with the discovery of the Brout-Englert-Higgs boson – short-named Higgs – at the
Large Hadron Collider (LHC) in CERN, when not only was the particle content pol-
ished off, but the part played by electroweak symmetry breaking (EWSB) in the
establishment of gauge boson and fermion masses substantiated. The 125 GeV Higgs
boson mass is now known to a precision of ∼ 0.1% and, as the only scalar in the SM,
is sensitive to new physics which would have an impact on its mass, couplings and
behaviour. In turn, the parameter space of any SM-extended model can be explored
and constrained and, as such, the Higgs can be seen as a gateway to new discoveries.

Many models propose effective solutions to the dilemmas of the SM, from extra
dimensional and string theories to composite Higgs and technicolour, but supersymme-
try has long been established as a theoretical ring-leader with proposed explanations
for almost all of these. Supersymmetry (SUSY) is an elegant theory, that essentially
doubles the Standard Model particle content by levelling off the bosonic-fermionic
antisymmetry. Integer and half-integer spin particles are paired together in super-
multiplets, thus eliminating each other’s radiative loop divergent diagrams. However,
nature clearly has other ideas, and SUSY must be broken at some energy level above
what we can currently probe, resulting in superpartners heavier than their Standard
Model counterparts. It is therefore timely to consider non-minimal supersymmetry,
with additional particle content added to the minimal supersymmetric standard model
(MSSM). Such models can help alleviate the tension between the electroweak and in-
creasing supersymmetry scales, by physically justifying why some particle content can
be heavier (e.g. gluinos - the supersymmetric partners to the gluons), and simul-
taneously allowing some particle content to be lighter than in the minimal version
(e.g. squarks - the supersymmetric partners to the quarks). One such model is the
Dirac gaugino supersymmetric standard model (MDGSSM), which will be the focus

xi



xii Introduction

of chapters 2 and 3. Simplified minimal models will also be considered in chapters 3
and 4.

This thesis will begin with an introductory chapter 1 on the Standard Model and
a glance at the Higgs mechanism, which is responsible for generating the masses of
the Standard Model particle spectrum. This section will segway, via a short summary
of motivations for beyond the standard model physics, into a discussion of the basic
supersymmetry formalism and the models that will be discussed in this text - namely
the MSSM, the MDGSSM and the minimal R-symmetric supersymmetric standard
model (MRSSM) - with particular attention paid to the Higgs sectors. The central 3
chapters are based on 3 articles:

• Karim Benakli, Mark Dayvon Goodsell and Sophie Louise Williamson, Higgs
alignment from extended supersymmetry, Eur. Phys. J. C 78 (2018) no.8, 658,
arXiv:1801.08849 [hep-ph].

which corresponds to the content of chapter 2;

• Guillaume Chalons, Mark Dayvon Goodsell, Sabine Kraml, Humberto Reyes-
González and Sophie Louise Williamson, LHC limits on gluinos and squarks in
the minimal Dirac gaugino model, JHEP 1904 (2019) 113, arXiv:1812.09293
[hep-ph],

which correlates to chapter 3; and

• Benjamin Fuks, Karl Nordström, Richard Ruiz and Sophie Louise Williamson,
Sleptons without Hadrons, arXiv:1901.09937 [hep-ph], To appear in PRD.

which constitutes the work of chapter 4.
The first of these investigates the Higgs sector of a two-Higgs doublet model exten-
sion immersed within a higher energy SUSY theory. Owing to the additional content
in the MDGSSM, it is possible to group together the particles in N = 2 multiplets.
The resulting N = 2 symmetry between the gauge and new Yukawa couplings means
that, as long as the symmetry is unbroken, the Higgs sector is always in alignment
and fully agrees with that of the Standard Model. This chapter looks at the effect
on the Higgs mass and properties of running down from a higher energy N = 2 scale
to electroweak energies, including the inclusion of radiative corrections to the scalar
effective potential. A simplistic comparison is also performed in the MRSSM, where
alignment in the Higgs sector is not predicted.
As one of an abundance of SM-extensions, BSM model-specific limits are understand-
ably not all provided by the experimental collaborations. Following this thread, chap-
ter 3 aims to derive and compare the limits on the squarks and gluinos in the MDGSSM
with those in the MSSM, in the context of Run 2 of the LHC. This study is motivated
from the basis that, by virtue of the extended Higgs sector in the MDGSSM, the neu-
tralino and chargino spectrum is enlarged creating a more elaborate decay spectrum.
Additionally, the production mechanisms across the two models differ, as gluino pair-
production is enhanced and squark production is suppressed in the MDGSSM relative
to the MSSM.

Chapter 4 explores the impact of introducing dynamic jet vetoes in searches for
colourless superpartners in weak-scale supersymmetry models. Despite the traditional
application of central static jet vetoes, searches at hadron colliders are impeded by
large top quark pair and diboson backgrounds. However, it can be shown that by
employing a jet veto which is adjusted dynamically based on relative measures of lep-
tonic and hadronic activities present in an event, the signal-to-background efficiency



xiii

increases and the sensitivity of searches for colourless superpartners can be improved.
A representative scenario considering the Drell-Yan production of a pair of right-
handed smuons decaying into a dimuon system accompanied by missing transverse
energy is discussed; however the results should be applicable to all searches for new,
heavy, uncoloured physics that is searched for using jet vetoes at the LHC.
This thesis will then be wrapped up with a short conclusion (chapter 4.6), with addi-
tional calculations and details available in the appendix.
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1 – The SM and beyond

1.1 The Standard Model

The core of the work presented in the following chapters will establish itself on the
foundation of supersymmetry, and supersymmetric models. But before justifying why
we want to go beyond the standard model (BSM), we should motivate why this may
be necessary to start with. This section will very briefly cover the electroweak sector
of the standard model (SM) and, in particular, the Higgs sector and its electroweak
symmetry breaking (EWSB) mechanism. There are numerous good references on the
SM out there, with examples being [1–6].

1.1.1 Its fields and content

The standard model is, to date, undoubtedly the most convincing theory we have that
describes the fundamental interactions between matter and the forces of nature. It is
neatly summarised as an SU(3)c×SU(2)L×U(1)Y gauge theory, which describes the
interactions of elementary particles charged under the strong (coloured), weak (left)
and electromagnetic (hypercharge) forces respectively. Matter fields can be separated
into those that are charged under the strong force (the quarks) and those that are
not (the leptons). Together, they make up the fermionic fields of the SM (fermions,
named after the Fermi-Dirac statistics they obey), and possess 1/2 integer spin. The
bosons (that follow Bose-Einstein statistics) get instead an integer spin, and can be
subdivided into four vector (gauge) bosons of spin-1; a scalar boson (the Higgs) of
spin-0; and the hypothetical force carrier for gravity, the graviton, of spin-2.

Each of the gauge boson fields is associated with a gauge symmetry, where there
is one gauge field for each of the gauge group generators: Bµ corresponds to the
hypercharge generator, Y , of the U(1)Y group; W a

µ correspond to the three weak
generators σa/2 (a = 1, 2, 3) - given by the Pauli matrices - of the SU(2)L group, and
Gaµ correspond to the eight strong generators λa (a = 1...8) - given by the Gell-mann
matrices - of the SU(3)c group. The number of gauge fields is a consequence of the
fact that they live in the adjoint representation - hence 3 for SU(2) (each members of
a weak isospin triplet) and 8 for SU(3). A gauge symmetry is a symmetry that allows
states that cannot be physically distinguished from each other to be connected, with
a gauge transformation linking each location in the parameter space with a change of
co-ordinates. As such, the transformation parameter in gauge theories is space-time
dependent and gauge symmetries are described as local symmetries. This is compared
to global symmetries where the transformation parameter is constant across all space-
time. Taking a function φ(x) = ρ(x)eiλ(x), consider a global and local U(1) symmetry:

• If the action is invariant under a local U(1) symmetry, under a translation

φ(x)→ eiα(x)φ(x)

1
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= eiα(x)ρ(x)eiλ(x) = φ′(x) , (1.1.1)

the parameter α(x) can be chosen such that for each value of λ(x), φ′(x) = λ(x).
In other words, it is always possible to choose a transformation such that the
theory’s dependency on the parameter λ(x) is redundant.

• If the action is invariant under a global U(1) symmetry, the parameter α is
constant and, under the translation

φ(x)→ eiαφ(x)

= eiαρ(x)eiλ(x) = φ′(x) , (1.1.2)

α cannot be chosen to eliminate the theory’s dependency on λ(x) for all values
of x. The theory then has a true dependency on λ(x) - a dependency which
cannot be gauged away.

In the theories that will be considered in this text, the standard model gauge group
is a local symmetry, whereas supersymmetry is a global one. Local invariance under
a gauge symmetry is required as a feature of the theory so as to get rid of redundant
degrees of freedom. For example, the 4 d.o.f that accompany a four-vector are more
d.o.f than is necessary to describe massive (3 d.o.f) or massless (2 d.o.f) bosons. In
the case of massless bosons, it is possible to remove one degree of freedom by the
imposition that they be physical (e.g. a photon spinning in line with its direction of
motion would theoretically be travelling faster than the speed of light!), but there is
still one redundant d.o.f. This is where gauge invariance is implemented, so that the
physical quantity being measured is identical regardless of the field being transformed.
Unless the gauge symmetry is spontaneously broken, then the associated gauge bosons
will be massless. This follows from gauge invariance: if one takes a gauge field Aµ(x)
which transforms under a gauge transformation like

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µφ(x) (1.1.3)

then it follows that the mass term m2
AAµA

µ would transform like

m2
AAµA

µ → m2
AAµA

µ + 2m2
AAµ∂

µφ+m2
A∂µφ∂

µφ , (1.1.4)

which only holds for arbitrary φ if mA vanishes. This is exactly what happens in the
cases of quantum electrodynamics (mediated by the photon) and quantum chromody-
namics (mediated by the gluons) which are massless fields with helicity, or (transverse)
polarisations, ±1. However, the story continues for the electroweak gauge groups:
experimental measurements of the W− and Z− boson masses reveal they are not
equal, and hence SU(2)L cannot be the group the governs the observed weak in-
teractions. Indeed, after EWSB, the SM gauge group is further broken down from
SU(2)L ×U(1)Y → U(1)EM . The Goldstone theorem states that a theory with spon-
taneous symmetry breaking has a massless particle in its spectrum [7, 8]: these are
known as Goldstone bosons (G±, G0), and they constitute the extra degrees of free-
dom (d.o.f) that go into making up the longitudinal polarisations of the then massive
W±, Z bosons. The electroweak bosons can then possess helicities 0,±1. Technically
speaking, these 3 longitudinal polarisations are Higgs bosons - just not the Higgs bo-
son, h, that acquires a vacuum expectation value (VEV), v, that we spent such a long
time searching for at the LHC.

The Higgs doublet, denoted by

Φ =

(
φ+

φ0

)
, (1.1.5)
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where

φ0 =
1√
2

(φ1 + iφ2) , φ+ =
1√
2

(φ3 + iφ4) , (1.1.6)

is the only scalar field of the SM, where T3 = σ3/2 is the 3rd component of the weak
isospin generators T a = σa/2, with σa the Pauli matrices given by

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, (1.1.7)

σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.1.8)

Its upper component, φ+ has weak isospin T3 = 1/2 and electric charge Q = 1,
whilst its lower component φ0 has T3 = −1/2 and is neutral. From

Y = Q− T3 , (1.1.9)

one can then deduce that the Higgs doublet has weak hypercharge YΦ = 1/2 (breaking
U(1)Y symmetry), and is therefore charged under the SU(2)L × U(1)Y gauge group
having the quantum numbers (2, 1/2). This mechanism through which the gauge
bosons obtain mass is referred to as the Higgs mechanism. The next question we want
to answer is: how is the electroweak symmetry broken, and what does the Higgs have
to do with it? Fermionic particles have spin and thus necessarily 2 d.o.f, and therefore
could not constitute the one missing d.o.f needed by the electroweak bosons to make
them massive. In fact, only a scalar particle with 1 d.o.f can be eaten by the to-be-
massive electroweak bosons. Moreover, for the electroweak bosons to annex an extra
degree of freedom, these scalars must be charged under the electroweak force: the
Higgs boson is obviously the ideal candidate. There is then one scalar d.o.f remaining
from the complex Higgs doublet, and this Higgs gets a VEV, triggering EWSB.

This occurs when the minimum of the Higgs potential,

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 (1.1.10)

= −µ
2

2

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
+
λ

4

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)2
(1.1.11)

gets a non-zero field value, with µ2 being the Higgs mass term and λ the Higgs quartic
coupling representing an interaction of strength λ. It should be noted that λ > 0 to
ensure a stable vacuum (ground state), and that no higher order terms in Φ are
permitted if the Standard Model is to be a renormalisable theory. When the potential
is minimised one finds that

∂V (Φ)

∂Φ
= Φ

(
−µ2 + 2λΦ†Φ

)
= 0 , (1.1.12)

which can be satisfied by two solutions:

• µ2 < 0 and the minimisation condition is given by Φ = 0, corresponding to a
theory of quantum electrodynamics with a supplementary charged scalar with
mass µ where electroweak symmetry is preserved both by the Lagrangian and
the vacuum.
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• µ2 > 0, and the minimisation condition is given by the non-zero value

Φ†Φ =
µ2

2λ
. (1.1.13)

The Higgs potential then takes the form of a “mexican hat”, and the origin of
Φ is no longer at the minimum of the potential. Instead, the Higgs particle will
“roll” off the origin to a lower energy configuration: this then means that the
shape of the potential is no longer symmetric under the electroweak symmetry.
In other words, the electroweak symmetry preserved by the Lagrangian is not
preserved by the vacuum.

The latter is what occurs in the Standard Model when the direction of the vacuum is
chosen to be

Φgroundstate = 〈0|Φ|0〉 =

(
0
v√
2

)
(1.1.14)

−→ Φ(x) =
1√
2

(
0

v + h(x)

)
, (1.1.15)

and is what is meant by “the Higgs gets a VEV”. In fact, it is possible to choose a
basis of φ in whichever orientation compared to the local vacuum, but conservation
of electric charge means that only a neutral scalar should acquire a VEV. Typically,
as in (1.1.14), the vacuum is chosen to lie along the real part of φ0, but this selection
is arbitrary. Then, φ1 = φ2 = φ4 = 0 and φ3 = v where the VEV satisfies

v =

√
µ2

λ
> 0 ; µ2 > 0 , λ > 0. (1.1.16)

The value of v is not predicted in the SM, but is measured by experiment as v = 246
GeV. In fact, only one of the four Higgs gets a VEV meaning that the four scalars are
no longer on the same footing: this is why the SU(2) symmetry is broken. However,
since the vacuum is invariant under the electric charge,(σ3

2
+ Y

)
Φgroundstate =

1

2

((
1 0

0 −1

)
+

(
1 0

0 1

))
v√
2

= 0 , (1.1.17)

U(1)EM remains a symmetry of the theory and the photon remains massless.
The matter fields are coupled to the gauge fields via the covariant derivative, Dµ,

Dµ = ∂µ + igW a
µ

σa

2
+ igY YΦBµ . (1.1.18)

The second term in (1.1.18) is suppressed when Dµ is acting on right-handed fields:
the weak isospin group is so-called “SU(2) − left” as only the left- (and anti-right-)
handed fermions couple to the SU(2)L gauge bosons - the left-handed fermions being
arranged in doublets, while the right-handed fields are singlets: this is what is meant
by the weak interaction being chiral. On the other hand, both left- and right- handed
species need to interact with the photon, and thus both chiralities are charged under
the weak hypercharge group.

Electroweak symmetry breaking ensures that the electroweak bosons mix among
themselves, meaning that Bµ and W a

µ are not physically measurable states. The scalar
contributions to the SM Lagrangian arise through the terms,

Lscalars = (DµΦ)†(DµΦ)− V (Φ) , (1.1.19)
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where, substituting Φ for the Higgs doublet field, the first piece generates the masses
for the gauge bosons:

(DµΦ)†(DµΦ) =

∣∣∣∣∣
(
∂µ + igW a

µ

σa

2
+ i

gY
2
Bµ

)
1√
2

(
0

v + h

)∣∣∣∣∣
2

=

∣∣∣∣∣
(
∂µ + ig2W

3
µ + igY2 Bµ ig2W

1
µ + g

2W
2
µ

ig2W
1
µ − g

2W
2
µ ∂µ − ig2W 3

µ + igY2 Bµ

)
1√
2

(
0

v + h

)∣∣∣∣∣
2

=

∣∣∣∣∣
(

ig2W
+
µ (v + h)

1√
2

[
∂µh− i

2(v + h)
(
gW 3

µ − gYBµ
)])∣∣∣∣∣

2

=
1

2
∂µh∂

µh+
g2

4
W+
µ W

µ−(v+h)2+
1

8
(v+h)2(gW 3

µ−gYBµ)(gWµ3−gYBµ)

=
1

2
∂µh∂

µh+
g2

4
(v + h)2W+

µ W
−µ +

1

8
(v + h)2(g2 + g2

Y )ZµZ
µ ,

(1.1.20)

where

W±µ ≡
1√
2

[
W 1
µ ∓W 2

µ

]
, Zµ ≡

gW 3
µ − gYBµ√
g2 + g2

Y

, (1.1.21)

and

B†µ = Bµ , W 3†
µ = W 3

µ , W+†
µ = W−µ . (1.1.22)

The remaining vector boson state not written above is Aµ,

Aµ ≡
gW 3

µ + gYBµ√
g2 + g2

Y

, (1.1.23)

which is a state orthogonal to Zµ and also comes from the mixing of W 3
µ and Bµ. The

transformation between the bases
{
W 3
µ , Bµ

}
to
{
Zµ, Aµ

}
is given by the weak mixing

angle, θW ,

tan θW =
gY
g
. (1.1.24)

The masses1 for the gauge bosons can then be read off from the Lagrangian,

Lscalars ⊃ m2
WW

+
µ W

µ− +
1

2
m2
ZZµZ

µ +
1

2
m2
AAµA

µ , (1.1.25)

such that

mW = g
v

2
, mZ =

v

2

√
g2
Y + g2 , mA = 0 . (1.1.26)

Finally, the Higgs boson mass can be found by plugging (1.1.15) into the scalar po-
tential and taking the second derivative with respect to the Higgs field, h, yielding

m2
h = 2µ2 = 2v2λ . (1.1.27)

1Note that the factor 1/2 in the definition of the Z-boson and photon fields comes from the fact
that those fields are real, whereas the W -bosons are complex.
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Particle Field (SU(3), SU(2), U(1)Y ) T3 Y

Quarks Qi,L = (ui,L, di,L) (3, 2, 1/6) (1/2, -1/2) (2/3, -1/3)

uci,R (3, 1, -2/3) 0 -2/3

dci,R (3, 1, 1/3) 0 1/3

Leptons Li,L = (νi,L, ei,L) (1, 2, -1/2) (1/2, -1/2) (0, -1)

eci,R (1, 1, 1) 0 1

Table 1.1: Matter content of the Standard Model.

The Higgs mass value is not predetermined, as λ is a free parameter and only v is
phenomenologically fixed (from the W - and Z− boson masses).

The coupling of the Higgs field to the covariant derivative cannot be the cause of
fermionic masses for the simple reason that fermionic fields do not appear in Dµ: but
these couplings can be added manually to the Lagrangian:

−Lmatter = yije L̄
α
L,iΦαe

c
R,j + yijd Q̄

α
L,iΦαd

c
R,j + yiju ε

αβQ̄L,i,αΦ†βu
c
R,j + h.c. (1.1.28)

where (i, j) = 1, 2, 3 are family indices, (α, β) are SU(2) indices, εij is the totally
antisymmetric tensor and where the SM matter fields are displayed in table 1.1. As
is the case with gauge boson mass terms, fermionic mass terms are also absent from
the SU(3)c × SU(2)L × U(1)Y invariant Lagrangian. This is because the fermions
adhere to a chiral symmetry, under which the left and right handed components have
opposite charge: ψL → e−iαψL, ψR → eiαψR. Generally this can be written

ψ → eiαγ5ψ , (1.1.29)

where γ5 is a hermitean matrix that anticommutes with the four gamma matrices,

γ5 =

(
1 0

0 −1

)
, (1.1.30)

and is used to project the Dirac field into its left- and right-handed components

ψL =
1− γ5

2
ψ , ψR =

1 + γ5

2
ψ . (1.1.31)

As such, a fermionic mass term would break the chiral symmetry:

mψψ̄ψ → mψψ̄e
2iαγ5ψ 6= mψψ̄ψ. (1.1.32)

The symmetry is referred to as a custodial chiral symmetry because it is owing to the
fact that the left and right handed components act differently under the gauge sym-
metry that means they cannot receive gauge-invariant mass terms in the Lagrangian.
It also means that, even when the symmetry is not exact and mψ 6= 0, the mass shift
to the fermion will always be proportional to the mass of the fermion itself, and hence
the fermion masses are protected from large corrections. It is through the Yukawa in-
teractions between the fermions and the Higgs field the fermion fields acquire masses.
After EWSB one finds that

−Lfermion masses = mij
u ūL iu

c
R j +mij

d d̄L id
c
R j +mij

e ēL ,ie
c
R j , (1.1.33)



1.1 The Standard Model 7

where the masses are proportional to the Higgs VEV,

mij
u = yiju

v√
2
, mij

d = yijd
v√
2
, mij

e = yije
v√
2
. (1.1.34)

The above discussion is an entirely classical picture of the Standard Model. When one
considers a quantum description of the theory, then the freedom afforded in choosing
co-ordinates must be fixed so that one representative state is picked from all possi-
ble physically identical states. Quantisation of the gauge fields, Aµ(x), removes any
redundant degrees of freedom by imposing a local constraint at each point in space-
time: this process is called gauge fixing. The procedure of gauge fixing leads to the
inclusion of additional terms in the Lagrangian parametrised by the ζ which vanish in
the limit of classical physics. This choice of value for this parameter is arbitrary, and
it should not appear in any physically measurable quantities such as for the scatter-
ing amplitudes. Without gauge fixing, it is not possible to write down an expression
for the gauge boson propagators. For example, take the Lagrangian for a classical
electromagnetic field plus some gauge fixing term which vanishes in the classical limit
ζ →∞,

S0 =

∫
d4x

[
−1

4
FµνF

µν − 1

2ζ
(∂µA

µ)2

]
,

where Fµν is the gauge field strength of the abelian U(1) field,

Fµν = ∂µAν − ∂νAµ . (1.1.35)

Expanding the field strength tensor and transforming to Fourier space one finds that

S0 =

∫
d4x

[
−1

2
∂µAν (∂µAν − ∂νAµ)− 1

2ζ
(∂µA

µ)(∂νA
ν)

]
=

1

2

∫
d4x
{
Aν

[
∂2gµν −

(
1− 1

ζ

)
∂µ∂ν

]
Aµ + total derivative terms

}
=

1

2

∫
d4p

(2π)4
Aν(p)

[
−p2gµν +

(
1− 1

ζ

)
pµpν

]
Aµ(p) , (1.1.36)

where one assumes that the photon field vanishes at infinity. The photon propagator,
Dµλ, for which one uses the ansatz Dµλ = Agµλ +Bpµpλ, is then found from

i

(
−p2gµν +

(
1− 1

ζ

)
pµpν

)
Dµλ(p) = δλµ . (1.1.37)

Matching up the coefficients on either side of the equation one finds that

A = − 1

p2
, B = − 1

p4
(ζ − 1) , (1.1.38)

so that the propagator is given by

iDµλ(p) = − i

p2

(
gµλ −

1

p2
(1− ζ)pµpλ

)
. (1.1.39)

As one can see, in the classical limit that ζ → ∞, the photon propagator becomes
undefined: this is why gauge fixing is necessary, even though the final results do not
depend on the gauge fixing choice. There are multiple gauge choices possible: for ζ = 1
this propagator corresponds to the ’t Hooft-Feynman gauge; for ζ = 0 to the Lorentz
gauge etc. Different choices of gauge are employed when calculating the gauge boson
propagators in the Standard Model, but this is not something that will be detailed
here.
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1.1.2 Motivation for BSM models

It is largely believed within the physics community that the Standard Model does not
paint the whole picture of our universe. While the SM is in excellent agreement with
experimental measurements, it is widely thought that the SM exists as the low energy
limit of some higher energy theory that would provide justification for the observed
shortcomings or unanswered questions of the SM. The origin of this is not down (just)
to weary and ambitious theorists, but also due to experimental indications. For one,
the discovery of neutrino masses [9] - predicted to be vanishing in the SM - won
Takaaki Kajita and Aurthur McDonald the 2015 Nobel prize in physics, while further
observational signs of dark matter and energy prompt raised eyebrows as the SM
provides no viable candidate. Theoretically, it is also concerning that the SM does
nothing to integrate the theory of gravity into its framework, or suggest reasonable
explanations for various sources of required fine-tuning. One example of the latter
is the hierarchy of masses between the Planck and electroweak scales that opens up
the Higgs mass to large corrections from heavy physics. Another is the “strong CP
problem” (see e.g. [10–13], where, unlike in the electroweak sector, CP symmetry
has been consistently measured as a feature of QCD despite the fact that the QCD
Lagrangian does admit such violating terms. This leads to the question of why this
CP-violating parameter θQCD should be so tiny when it is not required to be.

There are copious reviews on these “issues” in the SM, so only a brief overview
of SM shortcomings related to the rest of this text will be given in what follows. A
(considerably) more thorough discussion can be found in most quantum field theory
and Standard Model textbooks, as well as various review articles such as [14–17].

The Hierarchy Problem

The hierarchy problem originates in the Higgs sector and relates to the fact that the
accuracy of the SM is capped at some energy scale, Λ. The Higgs boson mass becomes
vulnerable to quantum corrections from this scale, which could be where new physics
takes over, or equivalently, the Planck scale. If no new physics were out there, it
would suggest that the Higgs mass should be of the order of the Planck mass, yet with
its measurement of 125 GeV, this would imply the occurrence of cancellations of an
incredulous manner. As previously discussed, gauge bosons and fermion masses are
protected by the gauge-chiral symmetry present in the SM and are forbidden from
having mass terms in the SU(3)c × SU(2)L ×U(1)Y invariant Lagrangian. When the
Higgs scalar provokes EWSB, they acquire masses proportional to the Higgs VEV and
not to the scale of new physics, Λ. On the contrary, there is no symmetry present
that protects scalar masses, and so even if a Higgs mass term were written in the
SM Lagrangian ∝ v, it would be sensitive to quantum corrections of the order of the
heaviest particle coupling to it, i.e. at the scale of new physics. Experimental results
suggest that new physics is at least of the O(TeV), and there is nothing that prevents
Λ � v: in this case the theory would require a large amount of fine-tuning to keep
the Higgs mass around a few hundred GeV. Notably, the defining scale of quantum
gravity, the Planck scale ∼ 1019 GeV/c2 is much greater than the electroweak scale,
and this caveat is often referred to as the hierarchy problem.

Vacuum Stability

One can also query whether there are other vacuums than the electroweak vacuum at
v = 246 GeV. At large values of the Higgs field, where h � v, the effective potential
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can be approximated by [18]

V tree
eff (h) =

λeff(h)

4
h4 , (1.1.40)

where the two-loop expression for λeff is given in (85) of [18] and can be approximated
by λ(µ) for large field values. If all the SM couplings are run to high energies, it is
possible to investigate the RG evolution of λ to see whether the vacuum at v is stable,
unstable (with a life-time shorter than the age of the universe) or meta-stable (a long-
lived vacuum greater than the age of the universe, but not the final vacuum state
configuration of the universe). If λ becomes negative at high energy scales, then it
indicates that the scalar potential is unbounded from below and that at some point the
Higgs scalar will tunnel from our EW vacuum to a (more) stable one. The top-quark
and Higgs masses are the most important parameters for determining the EW phases
of the SM, and studies performed in [18, 19], suggest that, for the current measured
values of mt and mh, the SM vacuum would sit in a metastable state, but that the
Higgs quartic becomes negative before the Planck scale (roughly between 109 − 1012

GeV - see figure 5 of [18]). The stability conditions phrased in terms of mh and mt are
given in equations (65) and (66) of [19] respectively. One possible explanation for this
is that new physics arises around the point that λ < 0 before the instability region,
stabilising the potential.

Unification of gauge couplings

An additional motivation for BSM physics is the idea that the Standard Model gauge
couplings unify at some Grand Unified Theory (GUT) scale. This is well-motivated
from the fact that the electromagnetic and weak interactions unify into the electroweak
force at low energies, in which the strong force plays no part. Embedding the SM as
a subgroup in a GUT theory is a concept that has been around since the 1970’s [20]
(with further considerations made on the embedding of the Higgs scalars in [21]),
when it was hypothesised that all the SM couplings originate from a from an SU(5)
interaction involving one coupling strength,√

5

3
g1(MGUT) = g2(MGUT) = g3(MGUT) ≡ gGUT . (1.1.41)

In the Standard Model, the U(1), SU(2) and SU(3) couplings do not unify at a GUT
scale, however such convergence is much improved in models such as supersymmetry
(SUSY) where the additional particle content changes the behaviour of the running
couplings. One of the beauties of SUSY is how unexpected yet natural this result is.

Dark Matter/Energy

Dark matter (DM) and energy (DE) constitute almost 95% of the matter in the
universe, but because it has not been observed directly, it must not interact with the
strong force; must minimally interact with observable electromagnetic radiation; must
not be electrically charged, and is thus difficult to detect. As such, dark matter and
energy makes its fingerprint on the universe through gravitational effects. There are
multiple sources of dark matter evidence, with a comprehensive review being given
in e.g. [22], with indications of DM dating as far back as the 1920’s [23]. One of the
big pieces of evidence in favour of the existence of DM comes from observations of
the rotation curves of galaxies, namely that the amount of observed matter present in
spiral galaxies fails to explain the rate of their rotation [24]. While these observations
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do not allow us to determine the amount of DM in the universe, such information can
be derived from measurements of the Cosmic Microwave Background (CMB). Dark
matter objects are theorised to span multiple orders of magnitude in size, from being
very large (e.g. black holes) to very small (e.g. weakly interacting particles (WIMPS)
and axions). Interestingly, it is widely believed that very large objects cannot con-
tribute to more than a small fraction of the DM out there [25], meaning that there
needs to be a dark matter candidate particle in the fundamental description of the
universe. The Standard Model does not propose such a particle, but BSM offers many.
In particular, supersymmetry presents the lightest supersymmetric particle (LSP) - a
neutral, stable particle called a neutralino.

One of the neat things about supersymmetry is that is proposes solutions to many
of the quandaries of the SM, instead of being designed in an ad-hoc way to target one
single issue. With this, the basics of supersymmetry will now be addressed.
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1.2 Supersymmetry

This chapter aims to give a brief overview of a small sample of supersymmetry models,
and the required background to understand how they come to life. There are many
aspects of supersymmetry that will not be covered, but fortunately there are many
good (and less good) supersymmetry reviews out there, of which the reader may wish
to refer to any of the following: [26–32].

The Standard Model picture of particle physics classifies particles into two groups:
those with half-integer spin (fermions) and those with integer spin (bosons). The
fundamental concept of supersymmetry is to establish a relationship between these two
fundamental classes of particles, which transforms one into the other. In other words,
supersymmetry dictates that for each boson their should be a fermionic corresponding
superpartner, and vice versa.

Thus far, supersymmetry continues to be a hypothetical symmetry, and evidence
for it has not (yet) been found by experiment, despite high expectations. But that
has not (yet) prevented experimentalists, phenomenologists and theorists around the
globe from conjuring up models based on its existence. As long as parameter space
exists in SUSY models which could have evaded the current constraints so far, these
communities will continue in their quest for supersymmetry.

1.2.1 SUSY basics

1.2.1.1 Two-component fermion notation

In the context of supersymmetric field theories, it is typical to choose notation in
terms of two-component Weyl spinors instead of four-component Dirac spinors. A
Dirac spinor, Ψ, can always be written in terms of a left- and a right-handed Weyl
spinor,

Ψ =

(
ψα

χ̄α̇

)
, (1.2.1)

with chiralities +1 and -1 respectively, where α, α̇ are spinor indices and can each take
the values 1, 2. The Weyl spinors ψα and χ̄α̇ are complex Grassmann numbers, and
are not in the same (SU(2)) representations, that is, it is not possible to turn ψα into
χ̄α̇ by contracting it with another tensor. On the other hand, within a single SU(2),
the fundamental (ψα) and anti-fundamental (χ̄α̇) representations are the same as they
can be transformed one to the other via

ψα = εαβψβ , ψ̄α̇ = εα̇β̇ψ̄β̇ , ψα = εαβψ
β , ψ̄α̇ = εα̇β̇ψ̄

β̇ , (1.2.2)

where εαβ = −εαβ, εα̇β̇ = −εα̇β̇ is the SU(2) antisymmetric tensor. Unlike bosonic
variables, fermionic variables anti-commute such that ψ1χ2 = −χ2ψ1. When spinors
are written without indices, it is because they are contracted like

ψχ ≡ ψαχα = εαβψβχα = εβαψαχβ = −ψαεαβχβ = −ψαχα = χαψα ≡ χψ
ψ̄χ̄ ≡ ψ̄α̇χ̄α̇ = εα̇β̇ψ̄

β̇χ̄α̇ = εβ̇α̇ψ̄
α̇χ̄β̇ = −ψ̄α̇εα̇β̇χ̄β̇ = −ψ̄α̇χ̄α̇ = χ̄α̇ψ̄

α̇ ≡ χ̄ψ̄ .
(1.2.3)

As will be seen later, the relationship between the two components of Ψ will determine
what type of mass terms one is able to write for the fermions.
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1.2.1.2 SUSY algebra and superspace

The fundamental symmetry group of particle physics, the Poincaré group, is the group
under which all relativistic quantum field theory actions must be invariant. The group
has ten generators: three associated to spatial rotations, Ji (i=1,2,3); three to boosts,
Ki (i=1,2,3); and four to translations in space and time, Pµ (µ = 0, 1, 2, 3). These
first two combine to make the Lorentz group SO(1, 3). Supersymmetry arises from
the question of whether it is possible to extend the Poincaré group with any more
symmetries of spacetime (global symmetries), and not just those that commute with
it such as internal (local) symmetries.

In the 1960’s, Coleman and Mandula showed in [33] that in a quantum field the-
ory, under a set of reasonable assumptions2, that the largest viable symmetry group
was that of the Poincaré group plus some internal symmetry groups. However, the
Coleman-Mandula theorem only considered symmetries whose form could be described
by commutation relations between their generators - bosonic symmetry generators.
It came later that Haag, Lopuszanski and Sonius [34] tried relaxing this constraint
and allowed for the possibility of fermionic symmetry generators which obeyed anti-
commutation relations instead. This paved the way for supersymmetry, which lead to
the possibility of the largest symmetry group of particle physics could instead be that
of superPoincaré plus some internal symmetry groups. These supersymmetry gener-
ators are denoted QAα , Q̄

A
α̇ , where A indicates the number of supersymmetries 1...N

– generally taken to be 1 in realistic theories. Two generators (Q and its complex
conjugate) are necessary owing to the fact that fermions are complex states. Along
with the commutation relations for the Poincaré group and internal symmetries, the
supersymmetry algebra includes the anti-commutation relations

{QAα , QBβ } = εαβZ
AB , (1.2.4)

{Q̄Aα̇ , QBβ̇ } = εα̇β̇
(
ZAB

)∗
, (1.2.5)

{QAα , Q̄Bβ̇ } = 2σµ
αβ̇
Pµδ

AB , (1.2.6)[
Pµ, Q

A
α

]
=
[
Pµ, Q̄

A
α̇

]
= 0 , (1.2.7)

where ZAB = −ZBA are Lorentz scalars, more commonly known as central charges,
which commute with the whole supersymmetry algebra and within themselves.

To describe our four-dimensional spacetime we use four bosonic coordinates xµ,
which are associated with the generator Pµ. To equal this number in fermionic co-
ordinates as is the fundamental principle of supersymmetry, a new variable must
be introduced and a set of rules to describe its behaviour established. Specifically,
these four fermionic coordiates are called Grassmann coordinates, and are a set of
two two-component anti-commuting spinors θα and θ̄α̇ (α = 1, 2) associated to the
supersymmetry generators Qα, Q̄α̇ that obey

{θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄α̇} = 0 , (1.2.8)

with θα left-handed, θ̄α̇ right-handed, and both having the mass dimension −1/2. Be-
ing Grassmann variables, θ and θ̄ are swapped between representations according to
the relations in eqs .(1.2.2), (1.2.3). Together, the four bosonic and four fermionic co-
ordinates live in an eight-dimensional manifold called superspace. There are numerous
identities involving Grassmann coordinates which can be found in any comprehensive
book or set of lecture notes on supersymmetry, but important to the following will be

2Locality; causality; positive particle energy; particle spectrum finiteness; among others
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the derivative,

∂

∂θβ
(θα) = δαβ ,

∂

∂θ̄β̇
(θ̄α̇) = δα̇

β̇
,

∂

∂θβ
(θα) = δβα ,

∂

∂θ̄β̇
(θ̄α̇) = δβ̇α̇ ,

∂

∂θβ
(θα) = εαβ ,

∂

∂θ̄β̇
(θ̄α̇) = εα̇β̇ ,

∂

∂θβ
(θα) = εαβ ,

∂

∂θ̄β̇
(θ̄α̇) = εα̇β̇ ,

(1.2.9)

having used that εαβε
βγ = δγα, where ε is the 2-dimensional anti-symmetric tensor

and δ is the Kronecker delta. It should be noted that any derivative of θ(θ̄) with
respect to θ̄(θ) is zero,. They are the basis of the chiral covariant derivative, i.e.
the superderivative, which will be a fundamental tool in constructing the types of
supersymmetric fields that will live in the manifold. They are given by

Dα =
∂

∂θα
− i
(
σµθ̄

)
α
∂µ , Dα = − ∂

∂θα
+ i
(
θ̄σ̄µ

)α
∂µ ,

D̄α̇ =
∂

∂θ̄α̇
− i (σ̄µθ)α̇ ∂µ , D̄α̇ = − ∂

∂θ̄α̇
+ i (θσµ)α̇ ∂µ ,

(1.2.10)

and obey the anti-commutation relations

{Dα, Qβ} = {Dα, Q̄β̇} = {D̄α̇, Qβ} = {D̄α̇, Q̄β̇} = 0 ,

{Dα, Dβ} = {D̄α̇, D̄β̇} = 0 ,

{Dα, Dβ̇} = 2iσµ
αβ̇
∂µ .

(1.2.11)

Indeed, the supersymmetry generators Q are themselves differential operators and are
written

Q̂α = i
∂

∂θα
− (σµθ̄)α∂µ , Q̂α = −i ∂

∂θα
+ (θ̄σ̄µ)α∂µ ,

ˆ̄Qα̇ = i
∂

∂θ̄α̇
− (σ̄µθ)α̇∂µ ,

ˆ̄Qα̇ = −i ∂
∂θ̄α̇

+ (θσµ)α̇∂µ .

(1.2.12)

A thorough derivation of (1.2.12) is given, for example, in sections 4.1 of [35] and 4.2
of [32]. As can be seen, the superderivatives and SUSY generators in eqs. (1.2.11)
and (1.2.12) mix the Grassmann and Lorentz algebras, which is expected - having
expanded 4-dimensional Minkowski space to 8-dimensional superspace.

Lastly, one needs to define integration in superspace so as to preserve translational
invariance. The type of integral used for integration over functions of Grassmann
coordinates is the Berezin integral, and is defined as

1 =

∫
dθ θ =

∫
d2θ θθ =

∫
dθ̄ θ̄ =

∫
d2θ̄ θ̄θ̄ ,

0 =

∫
dθ =

∫
dθ̄ .

(1.2.13)

This concludes the set of tools allowing us to contruct supersymmetric fields and their
interactions in superspace.
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1.2.1.3 Superfields and representations of SUSY algebra

Superfields are the means through which supersymmetric theories are represented:
they are simply fields in superspace, and are the names given to the groupings of par-
ticles and their supersymmetric friends along with the auxilliary fields that that exist
in the off-shell Lagrangian. There are two kinds of superfields in a four-dimensional
N = 1 supersymmetric field theory that does not describe gravitational interactions:
chiral superfields and vector superfields, which are the supersymmetric extensions of
spin-1/2 and spin-1 fields respectively. A chiral superfield contains the physical degrees
of freedom of a fermion and a complex scalar (a scalar and pseudoscalar), and describes
the lepton-slepton, quark-squark and Higgs-Higgsino multiplets. A vector superfield is
composed of a gaugino and gauge-boson and describes the gauge-boson-gaugino multi-
plets, i.e. of the U(1)Y gauge-boson-bino multiplet, the three W±, Z-wino multiplets
and the gluon-gluino multiplet.

The most general superfield possible, which can, if desired, be a complex function,
has a parameter for each possible combination in θ and θ̄. Each grassmann co-ordinate
has two components (α = 1, 2), and they anti-commute with each other. The fact that
θαθβ = −θβθα implies that θαθβ = 0 for α = β. Hence if one combined more than two
grassmann co-ordinates, there would necessarily be two or more of the same compo-
nent, and this combination would vanish. It follows that the possible combinations of
θ and θ̄ are restricted in the superfield to be

S(x, θ, θ̄) = a(x) + θξ(x) + θ̄χ̄(x) + θθb(x) + θ̄θ̄c(x)

+ θσµθ̄vµ(x) + θθθ̄λ̄(x) + θ̄θ̄θψ(x) + θθ θ̄θ̄d(x) ,
(1.2.14)

where a, b, c, d are scalar fields; ξ, ψ, (χ, λ) are left(right)-handed fermionic (or spinor)
fields and vµ is a vector field. These different fields are called component fields, and
are ordinary fields in Minkowski space. In this way, it is easy to see that a superfield
is just a finite assembly of fields in the usual space-time. This expression for a general
superfield contains many more degrees of freedom than are necessary to describe a
chiral or vector multiplet, and some of them are not physical. The expansion in eq.
(1.2.14) is a reducible representation of SUSY. Chiral and vector superfields are two
irreducible representations of SUSY.

Chiral superfields are superfields that obey the condition

D̄α̇Φ = 0 , (1.2.15)

whilst anti-chiral superfields are superfields that obey

DαΦ̄ = 0 , (1.2.16)

where the superderivatives were defined in eq. (1.2.10). The reason for requiring the
construction of the superderivative arises from the fact that the standard derivatives
∂α,α̇ are not supersymmetric covariant, which means that acting them on a superfield
would not return a superfield. By the very definition of chirality, chiral and anti-chiral
superfields are distinct, and Φ 6= Φ̄. As such, chiral and anti-chiral fields cannot be
real. Matter fields and their superpartners are described by a complex scalar and a
fermion, and so straight away it is obvious that there is no place for vµ in the definition
of the chiral superfield: but in fact, vµ can be defined in terms of bosonic fields. Using
eq. (1.2.15) and matching terms according to their parametrisation in θ and θ̄, the
excess degrees of freedom can be eliminated. Then, by performing the simple rescaling
a→ φ, ξ →

√
2ψ and b→ F , one finds the general expression for a chiral superfield:

Φ(x, θ, θ̄) = φ(x)+
√

2θψ(x)+θθF (x)−iθ̄σ̄µθ∂µφ−
i√
2
θθθ̄σ̄µ∂µψ(x)− 1

4
θθθ̄θ̄∂µ∂

µφ(x).

(1.2.17)
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This expression represents the expansion in superspace of the degrees of freedom in
a chiral superfield – two complex scalars, (φ, F ), each with 2 degrees of freedom, and
a complex spinor ψ with 4 degrees of freedom. As it can be seen from eq. (1.2.17),
the F -terms do not possess a kinetic term, and thus are not dynamical degrees of
freedom. Along with the D-terms that will manifest themselves in the vector su-
perfields, the F -terms are called auxilliary fields and their purpose is to allow the
supersymmetry algebra to close off-shell. They can be integrated out trivially us-
ing the Euler-Lagrange equations to bring the Lagrangian on-shell. The Lagrangian
density for the F -auxillaries is then

Laux ⊃ F ∗F , (1.2.18)

and thus they have the vanishing equations of motion F = 0 and F ∗ = 0.
The criteria for a vector superfield is illuminated by the fact that it is often referred

to as real superfield, i.e. that

V a = V a∗ . (1.2.19)

To determine the general form of the vector superfield this condition is applied to
eq.(1.2.14) to find relationships between the coefficients. The excess degrees of freedom
remaining appear as a result of supergauge invariance, but they can be “supergauged
away” under a supergauge transformation. One particular gauge choice, and the one
that will be employed for the rest of this section is the Wess-Zumino gauge,

V a(x, θ, θ̄) = θσµθ̄vaµ(x) + θ̄θ̄θλa(x) + θθθ̄λ̄a(x) +
1

2
θθθ̄θ̄Da(x) , (1.2.20)

which fixes the supergauge without affecting the ordinary gauge freedoms. Under
the Wess-Zumino gauge, there is one gauge boson (first term); one (massive) gaugino
(the second and third terms) and an auxilliary field D (the last term). Noteably,
the Wess-Zumino gauge fixing constraints are not conserved under supersymmetry
transformations, but a supergauge transformation can always restore them. The D-
auxilliary field, similarly to the F -term, has the Lagrangian density

Laux ⊃
1

2

∑
a

DaDa , (1.2.21)

with the D-term fields also satisfying the trivial equations of motion, Da = 0.
The dimension of the vector superfield is zero, which means that it is possible to

exponentiate the field to create supergauge invariant kinetic terms for the gauge (and
charged chiral) multiplets when considering non-abelian gauge groups - the result of
course still holds and simplifies for abelian gauge groups. From eq. (1.2.20) it can be
seen that the lowest component has a θ̄θ parametrisation, which contributes to the
beauty of the Wess-Zumino gauge, namely that

V 2 =
1

2
θθθ̄θ̄vµav

a
µ , (1.2.22)

and any terms with V n>2 vanish. From this it follows that the Taylor expansion of
the exponentiated vector field is restricted to

eV = 1 + V +
1

2
V 2, (1.2.23)

which greatly simplifies calculations.
A summary of the components of the chiral and vector supermultiplets can be seen

in table 1.2. While there will be no further talk about the gravity multiplet, it has been
included in the table for completeness. Now that all the basic types of superfields have
been seen, it is possible to move on and construct N = 1 supersymmetric Lagrangians.
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Supermultiplet Spin-0 Spin-1/2 Spin-1 Spin-3/2 Spin-2

Chiral Complex scalar Weyl fermion – – –

Vector/gauge – Weyl fermion/gaugino Gauge boson – –

Gravity – – – Gravitino Graviton

Table 1.2: Table showing the basic types of N = 1 multiplets.

1.2.1.4 Superpotentials and SUSY Lagrangians

Section 1.2.1.3 discussed the two types of fundamental superfields that can be used to
describe N = 1 supersymmetric theories in the absence of gravitational interactions,
the chiral and vector superfields. This section will start by discussing theories with
chiral (matter) superfields, and move onto vector superfields below.

In the most general renormalisable N = 1 actions, the two types of terms involving
chiral superfields are the kinetic terms, K, and the superpotential, W . However, K
and W cannot be just any combination of Φ and Φ̄. In order for the kinetic terms,
to be supersymmetrically invariant, the function K must be a superfield, and more
specifically, a real superfield. A real superfield can be composed of a chiral and anti-
chiral superfield, whilst the product of two (anti-) chiral superfields is a (anti-) chiral
superfield: hence, K = K(Φ, Φ̄) must be a function of both. The kinetic terms for
chiral superfields can be described by a Kähler potential,

Smatter, kinetic =

∫
d4x

∫
d2θ d2θ̄ K

(
Φ, Φ̄

)
, (1.2.24)

where K is a real function of chiral and anti-chiral superfields. Moreover, the La-
grangian density should transform as a scalar quantity under space-time symmetry,
and hence requires K - or, more accurately, its θ2θ̄2 component which remains af-
ter the superspace integral - to be a scalar function. Renormalisability determines
the mass dimension of K: as [L] = 4 and [θ] = [θ̄] = −1

2 , then it is required that
[K(Φ, Φ̄)] = 2. An obvious guess, and in fact the most general Kähler potential for a
renormalisable N = 1 theory, is

Smatter, kinetic =

∫
d4x

∫
d2θ d2θ̄ Φ̄Φ . (1.2.25)

However, the Standard Model is a gauged quantum field theory, and the action also
needs to describe the dynamics of vector (gauge) superfields, V a. Not only is it then
necessary to add kinetic terms for the gauge bosons and gauginos (see below), but the
kinetic terms for the chiral superfields in eq. (1.2.25) will no longer be supergauge
invariant if the chiral superfields are charged under some local gauge symmetry. This
is because the chiral superfields living in some representation R of the gauge group a,
will now transform under a gauge transformation,

Φ→ eiΛaT
a
RΦ , (1.2.26)

where Λa is also a chiral superfield and T aR are the generator matrices of the represen-
tation R. The action written in eq. (1.2.25) for non-gauged chiral-superfields will no
longer be supergauge invariant: denoting Λ = ΛaT

a
R, it is clear that

Φ̄Φ→ Φ̄e−iΛ̄eiΛΦ 6= Φ̄Φ , (1.2.27)
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and it follows that our description of non-gauged chiral interactions will need to be
modified. In fact, the correct supergauge invariant expression for the chiral kinetic
terms (for fields charged under either abelian or non-abelian groups) is

Lgauged−matter, kinetic =

∫
d2θ d2θ̄ Φ̄ e2gaTaV a Φ , (1.2.28)

where under a supergauge transformation, e2gaTaV a → e−iΛ̄e2gaTaV aeiΛ. It is known
from eq. (1.2.23) that the expansion of the vector field is constrained to the order V 2,
meaning that in components, the kinetic terms for the matter fields are

Lgauged−matter, kinetic =

∫
d2θ d2θ̄

[
Φ̄Φ + 2gaΦ̄T

aV aΦ + 2g2
aΦ̄T

2V 2Φ
]
θθθ̄θ̄

= F̄F + ∂µφ̄∂µφ+ iψ̄σ̄µ∂µψ

+ g(φ̄T aφ)Da −
√

2ga
{

(φ̄T aψ)λa + λ̄2(ψ̄T aφ)
}

+ iga(φ̄T
a∂µφ)vaµ + ga(ψ̄T

aσ̄µψ)vaµ + iga(∂µφ̄T
aφ)vµ,a

+ g2
aφ̄v

µ
av

a
µφ , (1.2.29)

where the first line shows the Φ̄Φ terms (up to an integration by parts); the second
and third lines show the 2gΦ̄TV Φ terms, and the last line shows the term quadratic
in V 2 (given by eq. (1.2.22) multiplied by 2g2).

The other piece of the Lagrangian describing the chiral interactions is the super-
potential, which deterimines all the non-gauge couplings and masses of the model.
Thus, the superpotential generates the SM Yukawa couplings; positive mass-squared
terms for the Higgs doublet fields; fermion mass terms; scalar self interaction terms,
and any other interactions between additional matter and the Higgs fields.

The kinetic terms described by eq. (1.2.25) contain the combinations of chiral
superfields that transform in field space. The components for which there has not
yet been written an interaction are the ones that do not propagate (i.e. they do
not contain any field-space derivatives): the auxilliary fields, namely the F-terms.
The F-terms are parameterised by θθ in a chiral superfield, or (θ̄θ̄) in an anti-chiral
superfield, but can be made up of other component combinations when dealing with
multiple chiral superfields. The simplest description of chiral superfield actions is
given by

Smatter, interactions =

∫
d4x

∫
d2θW (Φ) + h.c, (1.2.30)

where W is a holomorphic function. Given that a holomorphic function of a (anti)-
chiral superfield is still a (anti)-chiral superfield, then from eqs. (1.2.15,1.2.16) one
can see that

Dα̇W (Φ) = 0 , DαW (Φ̄) = 0 . (1.2.31)

Evidently, W (Φ) must therefore not contain any convariant derivatives, as Dα and
D̄α̇ do not commute, and eqs. (1.2.31) would no longer hold. As [d2θ] = 1, it is
also required that [W ] = 3. Assuming a renormalisable Lagrangian, as [Φ] = 1,
the superpotential should be at most cubic. This leaves the superpotential with the
general form

W (Φi) ≡ aiΦi +
1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk , (1.2.32)
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which means that in terms of component fields, the piece of the Lagrangian devoted
to chiral interactions is

Lmatter, interactions =

[
aiΦi +

1

2
M ijΦiΦj 1

6
yijkΦiΦjΦk

]
θθ

+ h.c. (1.2.33)

= aiFi +
1

2
M ij (φiFj − ψiψj) +

1

6
(φiφjFk − φiψjψk) + h.c.

(1.2.34)

= −1

2
M ijψiψj −

1

6
yijkφiψjψk + h.c. , (1.2.35)

where θψiθψj = −1
2θθψiψj and F has been set to 0 from its equations of motion.

Unlike for the matter kinetic terms, the matter interaction Lagrangian does not need
any modification to account for gauge covariance. Each term in the superpotential
should be individually gauge covariant (with any tadpole terms only existing for gauge
singlet chiral superfields). Hence, as the superpotential is holomorphic, it will always
be gauge invariant under a supergauge transformation. Take, for example, 3 chiral
superfields charged under a U(1) symmetry with charge e, such that under a trans-
lation Φ → eieΛΦ; then ΦiΦjΦk → e(ei+ej+ek)ΛΦiΦjΦk will be gauge invariant given
that ei + ej + ek = 0.

Next, it is time to consider the supersymmetric version of the gauge Lagrangian.
The kinetic terms for spin-1 fields are defined using the field strength tensor F aµν ,

L ⊃ −1

4
F aµνF

µν
a , (1.2.36)

where

F aµν = ∂µv
a
ν − ∂νvaµ + gfabcvbµv

c
ν , (1.2.37)

with fabc the structure constants defined in section A; a the index of the gauge group
for a given gauge field v, and g the appropriate gauge coupling. As the gauge boson
appears explicitly in the lowest component of the vector superfield, (see eq. (1.2.20)),
two spacetime derivatives acting on the vector field ∂µv

µ∂µvµ will give rise to the gauge
boson kinetic terms required. However, this method would never induce the kinetic
terms for the gauginos, λσ̄µ∂µλ̄. Instead it is necessary to define the supersymmetric
field strength tensor using superderivatives:

Wα ≡ −
1

8
D̄α̇D̄

α̇
(
e−2gV aTaDαe

2gV aTa
)
, W̄α̇ ≡

1

8
DαD

α
(
e2gV aTaD̄α̇e

−2gV aTa
)
.

(1.2.38)

Using eqs. (1.2.22, 1.2.23), the SUSY field strength (chiral) superfield in the adjoint
representation of the gauge group, Wa

α, can be derived:

Wa
α = λaα + θαD

a − (σµνθ)α F
a
µν + iθθ

(
σµ∇µλ̄a

)
α
. (1.2.39)

where the fundamental and adjoint representations are linked through

Wα = 2gaWa
αT

a , (1.2.40)

and the Wess-Zumino gauge (as discussed in section 1.2.1.3) has been used. Employing
(1.2.40), the kinetic and self-interaction terms are obtained from

Tr [Wa
αWaα] =

1

4g2
aTr[T aT a]

Tr[WαWα]
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=
1

4Sag2
a

Tr[WαWα] , (1.2.41)

where Sa is the normalisation for the generators (defined in appendix A) and is typi-
cally given by Sa = 1/2.

The SUSY field strength tensor is a chiral superfield, but instead of a scalar as its
bottom component, it has now a gaugino: this means that Wα can also be referred to
as the gaugino superfield. It is now possible to write the kinetic (and self-interaction)
terms for the gauge fields,

Sgauge =

∫
d4x

∫
d2θ Wa

αWα
a + h.c. (1.2.42)

=

∫
d4x

[
DaDa + 2iλaσµ∇µλ̄a −

1

2
F aµνFaµν +

i

4
εµντκFµνFτκ + h.c

]
.

(1.2.43)

The expressions describing the interactions and propagation of the gauge and (gauged)
matter fields in a renormalisable N = 1 SUSY theory have now been presented. The
only other allowable addition to these terms is the Fayet-Iliopulos term which can
occur for Abelian gauge groups,

LFI = −
∫
d2θd2θ̄

∑
A

κAV
A , (1.2.44)

where κA are the constants associated with the vector superfields, V A, corresponding
to the abelian factors A = 1, 2, 3...n. As will be discussed later, the presence of a
Fayet-Iliopulos terms can induce SUSY breaking. For one U(1) vector gauge field one
would get

LFI = −1

2
Da . (1.2.45)

Collecting all this together, the most general N = 1 SUSY lagrangian is given by

L =

∫
d2θ d2θ̄

[
Φ̄ e2gaTaV a Φ

]
θ2θ̄2 +

∫
d2θ [W (Φ)]θ2 +

∫
d2θ̄

[
W (Φ̄)

]
θ̄2

+

∫
d2θ [Wa

αWα
a ]θ2 +

∫
d2θ̄

[
W α̇

aW
a
α̇

]
θ̄2
−
∑
A

κAV
A .

(1.2.46)

Obviously, the terms in the Lagrangian will depend on the chosen SUSY model,
and importantly, on the symmetries the model is desired to possess. The next sections
will look at theories that allow for a global gauge symmetry, and how this can be
desirable in SUSY models.

1.2.1.5 R-symmetry

Some supersymmetric Lagrangians can, in addition, accommodate a global U(N)R
symmetry - an R-symmetry - where N is determined by the number of supersymmetry
generators in the theory. For a typical N = 1 supersymmetry, this symmetry group
is simply U(1)R, but as one moves to extended supersymmetries one gets the non-
abelian groups U(2)R = SU(2)R×U(1) for N = 2; U(4)R = SU(4)R×U(1) for N = 4
etc. In the case of N = 2 for example; SU(2)R rotates the supercharges, while U(1)
changes the phase. Needless to say, as the number of supersymmetries increases, so
do the constraints on the action.
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An R-symmetry is a group that commutes with the Lorentz group whilst leaving
the SUSY algebra invariant, and can be a symmetry of the theory - but it is neither
assured nor required. For any R-symmetry, the associated charges carried by the
superfields are called R-charges.

The R-charges of matter fields depend on the model (as will be seen in section
1.2.4.1), in contrast to the fields in a (real) vector multiplet which are uniquely fixed
- see eqs. (1.2.50, 1.2.51). Real fields have an R-charge of 0, which means that any
Lagrangian terms manifesting themselves from the Kahler potential (which, recall, is
real) are by default invariant under the R-symmetry. The Lagrangian as a whole is
only invariant under R-symmetry if the superpotential transforms with an R-charge
of 2, i.e. W → e2iαW . Sometimes, R-charge assignments for the chiral multiplets
allow this, but in other cases a consistent choice of R-charges for the superfields
does not exist, and R-symmetry will be explicitly broken in the Lagrangian. If a
supersymmetric Lagrangian does accommodate R-symmetry, then its superspace co-
ordinates θ, θ̄ transform as

θ
R−→ eiαθ , θ̄

R−→ e−iαθ̄ , (1.2.47)

with R-charges +1 and -1 respectively, where α parametrises the global R-transformation,
and the superspace derivatives inversely, with Rdθ = −1, Rdθ̄ = 1. From this one can
see that the covariant derivatives Dα and D̄α̇ will have R-charge assignments +1 and
−1 respectively. The spacetime coordinates must not be affected when an internal
rotation of the supercharges is made which means that, in order for the SUSY algebra
to remain invariant, the SUSY generators must also transform under the R-symmetry
simultaneously,

Q̂
R−→ e−iαQ̂ , ˆ̄Q

R−→ eiα ˆ̄Q , (1.2.48)

with R-charges -1 and +1 respectively. It follows that as the supersymmetry gener-
ators (often used interchangeably with supercharges) are charged under the U(N)R
symmetry, they will not commute with the R-symmetry generator, R:

[R,Q] = −Q , [R, Q̄] = Q̄ . (1.2.49)

Consequently, the R-symmetry acts differently on the different components of the
superfields, which will each have individual R-charges. As the vector field is real (while

R-symmetry is a chiral symmetry), V a R−→ V a, it must not carry any R-charge and it

is straightforward to see that its components must transform under the R-symmetry
like

vaµ
R−→ vaµ

λa
R−→ eiαλa

Da R−→ Da .

(1.2.50)

with R-charges 0, 1 and 0 respectively. The R-charge for the chiral superfields can,

on the other hand, be chosen, Φ
R−→ eirΦαΦ, which means that

φ
R−→ eirΦαφ

ψ
R−→ ei(rΦ−1)αψ

F
R−→ ei(rΦ−2)αF

(1.2.51)
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with R-charges rΦ, rΦ − 1 and rΦ − 2 respectively.

Quantum gravity arguments [36] tell us3 however, that no continuous global sym-
metries should be exact, and so the R-symmetry should be broken at some scale.
R-symmetry cannot be broken spontaneously in the visible sector as this would lead
to a massless R-axion which has not been observed by experiment, meaning that it
must be broken explicitly. It is possible to break R-symmetry in a specific sector, and
as R-symmetry is an extended chiral symmetry, it makes sense that it be broken in
the Higgs sector rather than the matter sector. It will be looked at how R-symmetry
plays a role in a variety of models later on, and how it can be explicitly broken as in
the MSSM; explicitly broken in the Higgs sector as in the MDGSSM, and conserved
in the MRSSM.

1.2.1.6 Extended N = 2 supersymmetry

It has already been motivated why supersymmetry is worth studying, but why super-
symmetry with N > 1 generators? For one, more supersymmetry results in simpler
theories with fewer degrees of freedom, as physical observables and parameters are
more highly constrained. For this reason, theories with extended supersymmetry are
often studied for their interesting mathematical properties (see i.e. works by Seiberg
and Witten [37, 38]), such as for the interplay between geometry and quantum me-
chanics, with many such examples being looked at in the context of string theory.
As the number of supersymmetries increases, particle content is grouped together in
representations that is not seen in the standard model e.g. with fermions in real
representations while the quarks and leptons of the standard model live in chiral
representations. It is for this reason that phenomenologically viable supersymmetric
models tend to possess only N = 1 supersymmetry. However, there are exceptions,
and this text will discuss N = 2 supersymmetry which will be explored in the context
of minimal Dirac gaugino models in section 1.2.4.

First and foremostly, an N = 2 supersymmetric theory is an N = 1 supersym-
metric theory: an N = 2 multiplet contains two sub-N = 1 supersymmetries. In
other words, an N = 2 hypermultiplet can be constructed out of two N = 1 chiral
multiplets, while an N = 2 vector multiplet can be formed from an N = 1 chiral and
vector multiplets:

N = 2 vector multiplet : Φ = (φ, ψα, F ) ⊕ V = (λα, Aµ, D)

N = 2 hypermultiplet : ΦH1 = (φH1 , ψ1α , F1) ⊕ ΦH2 = (φ̄H2 , ψ̄2α̇ , F̄1) .
(1.2.52)

Both N = 2 supermultiplets can be seen as the direct sum of two N = 1 multiplets
- both with the same internal quantum numbers. Hence, φ and ψα need to be in the
same representation as λα and Aµ - the adjoint representation - as they are now in
the same supermultiplet. For this reason, the chiral multiplet Φ will transform under
the adjoint representation of the gauge group, whereas (Φ̄H2) ΦH1 will transform in
the (anti-) fundamental representation of the gauge group.

The two supersymmetries can exist entirely independently, and indeed it is possible
to have an N = 1 SUSY theory with many independent N = 1 multiplets. It is when
there is an additional symmetry (or symmetries) linking the multiplets that one gets
N > 1 SUSY. This work will feature the case where two sets of supersymmetry gener-
ators are related by an R-symmetry - an SU(2)R symmetry (see section 1.2.1.5). The
two N = 1 supersymmetries become connected when the theory remains symmetric
under an SU(2)R rotation acting on the Weyl fermions (in a vector supermultiplet)

3Or rather, strongly suggest.
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(a)

(b)

Figure 1.1: Diagrams depicting the relationships between the N = 1 supermultiplets
to form an N = 2 symmetry in the case of (a) an N = 2 hypermultiplet and (b) an
N = 2 vector supermultiplet.

or the complex scalars (in the hypermultiplet). Pictorially, using the notation of eq.
(1.2.52), this can be visualised as in fig. 1.1, where Qiα (i = 1, 2) is as defined in
section 1.2.1.1.

This means that, in the hypermultiplet, the fermionic fields ψ1 and ψ̄2 transform
as singlets, while the complex scalars φH1 , φ̄H2 transform as doublets. In the N = 2
vector multiplet, the gaugino from the N = 1 gauge multiplet and the chiral fermion
from the new N = 1 chiral multiplet transform as a doublet (λα, ψα) under the
SU(2)R symmetry, while the bosonic fields, Aµ and φ, transform as singlets.

However, for these supermultiplets to be related in this way, additional restrictions
need to be placed on the N = 1 Lagrangian. As λα and ψα can be rotated into each
other under the SU(2)R symmetry, they need to be treated symmetrically by the
structure of the Lagrangian. For example, the Lagrangian should be invariant under
transformations of the chiral superfield Φ both proportional to λα and to ψα, and the
kinetic terms for both should have the same normalisation. As such, the presence
of a non-zero superpotential would give rise to mass and interaction terms for the
chiral fermion, that are absent for the gaugino: this is forbidden by R-symmetry,
and hence the superpotential in this case must vanish. In fact, for renormalisable
theories, the superpotential is entirely forbidden and all interactions are given by
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gauge interactions. While there is no superpotential, there will still be a potential
coming from the D-terms (recall that the auxilliary field F is proportional to the
derivative of the superpotential, which vanishes in N = 2).

As one goes from N = 2 SUSY to N = 4 SUSY the separation between matter
and vector multiplets disappears, and instead they are replaced by one multiplet
containing a vector, 4 fermions and 3 complex scalars, i.e. 3 N = 1 chiral multiplets
and an N = 1 vector multiplet, or an N = 2 hypermultiplet and an N = 2 vector
multiplet. There is just one gauge coupling for the theory, and in fact it does not
run at all. Mathematically speaking, it is possible to have any number of fermionic
generators: while N = 4 SUSY is the largest amount of supersymmetry possible in a
renormalisable theory, the physical limit (if renormalisability is not an issue) in reality
is N = 8. When N > 8, the multiplets contain massless particles (superpartners) of
helicity |λ| > 2, at which point it becomes very difficult to harmonise the theory
with restrictions from QFT. In a (hazelnut sized) nutshell: the generalised Coleman-
Mandula theorem forbids long-range interactions of particles with spin |λ| > 2, because
the higher spin particles would need to be coupled to a current with a rank higher
than is permitted in order to preserve Lorentz covariance [33,34,39,40].

For a more extensive description of extended supersymmetries, in particular in
N = 2 supersymmetries, the reader may wish to consult [31, 32, 41] among others.
Models possessing more than 2 supersymmetries are, however, beyond the scope of
this text.

1.2.2 SUSY breaking

With supersymmetry, as with all BSM theories, there’s a caveat: as the SUSY genera-
tors commute with the momentum operator, and by extension P 2 = PµP

µ, it implies
that all particles sitting in the same multiplet have the same mass, i.e. that the
SM particles enjoy the same mass as their superpartners. Only, we would have been
hard-pressed to avoid seeing much of this extra particle content, what with selectrons
hanging around at 511 keV. Obviously, if SUSY were to exist, it would need to be
broken at some low energy scale.

Mechanisms of SUSY breaking could provide an entire thesis and beyond just on
their own, so in this chapter only a very primitive overview of the two general methods
will be discussed: spontaneous and explicit SUSY breaking.

Whether supersymmetry in a model will be spontaneously broken or not is deter-
mined by the absolute value of the scalar potential at its minima. The energy in these
vacua is only zero if the associated vacuum preserves supersymmetry - as supersym-
metry is a global symmetry, any SUSY preserving vacua will be global minima of the
scalar potential. If the vacuum energy (of any global or local minima of the potential)
is non-zero,

Qα|vac〉 6= 0, Q̄α̇|vac〉 6= 0 .

then supersymmetry is spontaneously broken at that order in the perturbative theory4.
This means that SUSY is spontaneously broken if any of the scalar component fields
acquire VEVs. From eq.(1.2.6), it can be seen that the SUSY generators are related to
the momentum operator Pµ, whose lowest component is the energy, P0 (equivalently,

4Interestingly, non-renormalisation theorems [42, 43] tell us that if a theory preserves SUSY at
tree-level, then it will be supersymmetric at all orders in the perturbation theory.
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the Hamiltonian, P0 ≡ H), and thus∑
α=β̇=1,2

{
Qα, Q̄β̇

}
= 2(σµ11 + σµ22)Pµ

= 2 ((P0 + P3) + (P0 − P3)) = 4P0 ≡ H . (1.2.53)

The last line in (1.2.53) arises from the fact that the only components of σµ which have
a non-vanishing 11/22 entry are (σ0)11 = 1, (σ3)11 = 1, (σ0)22 = 1 and (σ3)22 = −1
as can be read off of the Pauli matrices given in (1.1.8). This means that

〈vac|H|vac〉 =
1

4

[
〈vac|Q1Q̄1|vac〉+〈vac|Q̄1Q1|vac〉+〈vac|Q2Q̄2|vac〉+〈vac|Q̄2Q2|vac〉

]
=

1

4

[
|Q̄1|vac〉|2 + |Q1|vac〉+ |2|Q̄2|vac〉|2 + |Q2|vac〉|2

]
≥ 0 , (1.2.54)

such that the vacuum energy in a SUSY breaking vacuum is definite positive. This
turns the question of whether the vacuum state is invariant under supersymmetry into
the question of whether the Hamiltonian is invariant under it. Assuming there are no
space-time dependent effects nor fermionic condensates (such as those that can and
do arise in QCD) then the Hamiltonian directly corresponds to the scalar potential.
Using eq. (1.2.61), one finds

H|vac〉 = V |vac〉 (1.2.55)

which implies that SUSY will be broken if any of the fields in the scalar potential
obtain VEVs that do not vanish in the ground state. The scalar potential is composed
of non-dynamical degrees of freedom in the theory i.e. the D-component from the
real (gauge) superfields, and the F-components of the chiral superfields (and their
conjugates) defined in eqs.(1.2.18, 1.2.21) respectively. The F-terms of the potential
are derived from the superpotential, and thus contain all the interaction terms,

VF = F ∗i (Φ∗i )F (Φi) (1.2.56)

where

Fi = −∂W
∗

∂Φ∗i
|Φ̄i=φ̄i , F ∗i = −∂W

∂Φi
|Φi=φi , (1.2.57)

with φ denoting the scalar field component of the chiral superfield Φ (i.e. H0
u, S

etc), and the subscript i implying an implicit sum over all fields contributing to the
superpotential. The D-terms are parametrised by the gauge couplings: for the U(1)Y
and SU(2)L gauge groups respectively these are

DY = −g′Y
∑
j

Yjφ
∗
jφj , (1.2.58)

Da
2 = −g2

∑
j

φ∗j
σa

2
φj , (1.2.59)

where Yj is the hypercharge of the field and σa are the usual Pauli matrices. Together
they give the D-term potential,

V EW
D =

1

2

3∑
a=1

(Da
2)2 +

1

2
D2
Y , (1.2.60)
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and in turn VF + VD make up the electroweak scalar potential,

V (φi, φ
∗
i ) = F ∗F +

1

2

∑
a

DaDa (1.2.61)

=

∣∣∣∣∂W∂Φi

∣∣∣∣2
|Φi→φi

+
1

2

∑
a

g2
a

(
φ∗iT

a
ijφj

)2
, (1.2.62)

where Tij are the group generators (= Yi, σ
a/2). It can now be seen, more specifically,

that if either of the F- or D-terms gets a VEV, then SUSY will be spontaneously
broken:

〈vac|H|vac〉 = 〈F ∗〉〈F 〉+
1

2

∑
a

〈Da〉〈Da〉 6= 0. (1.2.63)

These terms can break SUSY in any combination5:

〈Fi〉 6= 0 ,

〈Da〉 6= 0 ,

〈Fi〉 = 0 and 〈Da〉 6= 0 .

(1.2.64)

In order to preserve Lorentz invariance the field obtaining a VEV should be a scalar,
as only such VEVs are invariant under Lorentz transformations. Furthermore, so as
to respect gauge symmetry, it should also be a gauge singlet.

The first type of SUSY breaking above is more commonly known as called the
O’Raifeartaigh breaking, in which the auxilliary field F of a gauge singlet (a field with
all gauge quantum numbers equal to zero) chiral superfield obtains a VEV. SUSY
cannot be broken by a superpotential of the form of (1.2.32), as the only evident
minimum arises from Φ = 0. For a field in the superpotential to develop a non-trivial
VEV, then an additional term would need to be added such that no choices for the
superfields can lead them to simultaneously vanish. Specifically, this should be a linear
term that does not contain any dependence on the field.

The second type of spontaneous SUSY breaking is Fayet-Iliopoulos breaking, which
comes about if the auxulliary field Da of a gauge singlet vector field obtains a VEV.
D-terms like those in eqs.(1.2.58, 1.2.59) will not break SUSY, but as mentioned in
section 1.2.1.4, a Fayet-Iliopulous term can be added which will break SUSY in the
U(1) gauge case. This mechanism can not be used for non-Abelian groups as it is not
possible to have a term ∝ Da in the Lagrangian without it breaking gauge invariance.

It is, in fact, not straight-forward to generate SUSY breaking in the visible sector
without unwanted consequences, and many methods typically involve spontaneous
SUSY breaking being triggered by fields in a hidden sector and being propagated
through to the visible sector, such as through gravity and gauge mediation. For further
reading on mechanisms for spontaneous supersymmetry breaking, see for example
[47–50] and references therein.

Whatever the method effecting SUSY breaking, it is always possible to look at its
remnants in the low energy theory when the hidden sectors have been integrated out.
The Lagrangian, which will no longer be UV complete but an effective description,
will then contain soft terms that break SUSY explicitly. It is possible to derive the
soft terms from some higher scale constraint, by matching the effective theory with
the complete theory, and run them down to the low-energy scale, or one can simply

5In this text, spontaneous SUSY breaking by means of gauge, fermionic or gravitino condensates
will not be considered (see e.g. [44], [45] and [46] respectively).
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write them at the low energy scale without knowing anything about the method
of SUSY breaking. These new operators are of positive mass dimension, so that
the theory remains renormalisable, and do not add any quadratic divergences, for
example in quantum corrections to scalar masses [51]. After all, if terms were added
involving dimensionless couplings to the Lagrangian, then quadratic divergences would
be reintroduced at the UV scale - the elimination of which is one of the attractive
motivators for supersymmetry! - and one would forgo the stabilising of the mass
hierarchy between the electroweak and Planck scales. Phenomenologically, it is always
possible to study supersymmetry models in this way without knowing the method of
SUSY breaking, however the scale at which SUSY is broken will explicitly appear in
the Lagrangian. This scale then becomes the scale at which the cancellation of UV
divergences is no longer true.

The most general soft supersymmetry breaking terms that can be added to the
Lagrangian of a general theory are

Lsoft =−
(

1

6
aijkφiφjφk+

1

2
bijφiφj + tiφi

)
+ h.c. +

(
1

2
Maλ

aλa
)

+ h.c.−
(
m2
)i
j
φj∗φi ,

(1.2.65)

which are (from left to right) scalar trilinear coupling, scalar bilinear coupling, tad-
pole, Majorana gaugino mass, and scalar mass terms respectively. The first, second
and third in brackets would each be allowed in a soft SUSY breaking model on the con-
dition their counterparts in the superpotential ((1.2.32)) were also allowed by gauge
invariance. The last of these, the tadpole term, will not be present in any model
that is discussed in this text as it is required to be a gauge singlet (of which there
will be none). Majorana mass terms (the fourth term) and diagonal (i = j) scalar
masses (the last term) will always preserve gauge invariance and be allowed, but the
former will always break R-symmetry (as mentioned earlier, the R-charges of vector
field components are uniquely fixed, and R[λa] = 1): whether the latter preserves
or breaks R-symmetry will be determined by the choices of R-charge for the chiral
superfields.

Now that the fundamental description and principles of supersymmetry have been
covered it is possible to move on to study the most minimal supersymmetric extension
of the SM; the minimal supersymmetric standard model (MSSM).

1.2.3 The MSSM

The most minimal theoretically consistent supersymmetric extension of the SM is the
Minimal Supersymmetric Standard Model (MSSM), which is an N = 1 supersymmet-
ric theory. In essence, the particle content is (approximately) “doubled”, and each
SM particle then sits in a supersymmetric multiplet with its superpartner. All the
particle content of the MSSM is described in table 1.4. SUSY transformations do not
change the SM SU(3)c×SU(2)L×U(1)Y quantum numbers, and so each SM particle
and its superpartner carry the same ones. It is not possible to form these supermul-
tiplets out of already existing particle content as it simply wouldn’t be possible to
group together all the particle content by quantum number: for example, there is no
fermionic octet of SU(3) in the SM which could be grouped with the gluon to form
a supermultiplet, and similar arguments hold for the quarks and leptons. Instead,
the fermionic quarks and leptons are embedded in chiral multiplets with their scalar
superpartners - the squarks and sleptons - and the gauge bosons are put into vector
multiplets with their fermionic superpartners - the gauginos. As a spin zero particle,
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the Higgs boson should theoretically reside in a chiral multiplet with its superpartner,
the higgsino, however the Higgs bosons are a special exception to this pattern.

In the MSSM, it is necessary to have two separate Higgs doublets6. There are
two reasons for this: the first is that in the SM the Higgs field generates masses for
up-type fermions, whilst its complex conjugate generates the masses for the down-
types7. In SUSY, the superpotential must be a holomorphic function of the fields,
and therefore must be a function of Φi but not Φ̄i. The second argument is that
adding just one higgsino (the superpartner to the Higgs) would make SU(2) and U(1)
anomalous, which would destroy the consistency of the model. Gauge anomalies occur
when the gauge symmetry is preserved by the classical Lagrangian but is violated at
loop-level. They can be seen in triangle diagrams, specifically those (at 1-loop) in
which there are three gauge bosons on the vertices with fermions running inside the
loop. The condition for the cancellation of anomalies8 is that the trace over the
generator matrices associated with the gauge coupling at each vertex vanishes, i.e.
that trTαTβTγ = 0, where Tα,β,γ could be generators of the same group or different
ones. Real (vector-like) representations do not contribute to gauge anomalies: only
chiral representations do. For this reason, the cancellation of anomalies can seem more
apparent when the fermions are split into their left- and right-handed components:
for example, cancellation of the U(1) anomalies (at a vertex U(1) × U(1) × U(1))
is ensured by Tr[Y 3

R] − Tr[Y 3
L ] = 0, where Y is the hypercharge which is related to

the electric charge, Q, and spin, T3, of the particles through Q = T3 + Y . For each
generation of particles, one must then have that (using the values in table 1.4)

Tr[Y 3
R] = 3

(
2

3

)3

+ 3

(
−1

3

)3

+ (−1)3 = −2

9
, (1.2.66)

uR dR eR

Tr[Y 3
L ] = 3

(
1

6

)3

+ 3

(
1

6

)3

+

(
−1

2

)3

+

(
−1

2

)3

+

(
1

2

)3

+

(
−1

2

)3

= −2

9
,

(1.2.67)

uL dL eL νL Hu Hd

−→ Tr[Y 3
R]− Tr[Y 3

L ] = 0 ,

which would evidently not be true if the second higgsino had not been included in
the particle content (where the annotations in blue denote the hypercharge for the
individual fields contributing to the trace). Removing the last two contributions to
Tr[Y 3

L ] from the Higgs doublets, which as stated essentially cancel each other’s contri-
butions, one regains the loop contributions for the SM. The end result is that in the
MSSM, the Higgs must form one particle across two chiral multiplets with opposite
hypercharge, Hu and Hd, which couple differently to the up- and down-type quark
fields. Together these form a vector-like pair such that the MSSM is anomaly free
under U(1) and SU(2).

The possible gauge invariant terms that can be added to the MSSM superpotential,

6The vast majority of supersymmetric theories possess two Higgs doublets, although there are
exceptions, e.g. [52].

7Despite this, a number of efforts have been made to construct supersymmetric models with tree-
level couplings only to one Higgs doublet such as where down-type fermion masses are loop-induced
through couplings to the up-type Higgs doublet [53], [54], [55].

8For a complete discussion of anomalies, see [56].
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in all their indexed glory, are

WMSSM = µ(Hu)α(Hd)βε
αβ + (yu)ji ū

iaQjαa(Hu)βε
αβ

− (yd)
j
i d̄

iaQjαa(Hd)βε
αβ − (ye)

j
i ē
iaLjαa(Hd)βε

αβ

= µHu ·Hd + yuūQ ·Hu − ydd̄Q ·Hd − yeēL ·Hd , (1.2.68)

where yu,d,e are 3×3 matrices in family space with the family indexes i,j as in the SM;
a denotes colour indices, which are (raised) lowered in the (anti-) fundamental repre-
sentations of SU(3), (3̄)3; α, β = 1, 2 are SU(2)L indices which can be substituted in
notation by “·” to denote an SU(2) contraction of two doublets, and µ parametrises
the SU(2) invariant coupling between the two-Higgs doublets and is akin to a super-
symmetric mass term for the Higgs fields (more on this to follow). The superpotential
here is expressed in terms of superfields, but recall that only the θθ (θ̄θ̄) compo-
nents survive from W (W̄ ) in the Lagrangian. These couplings generate masses for
the fermions when the neutral Higgs fields of Hu and Hd acquire VEVs. It should be
noted that no mass terms for the quarks and leptons occur in the Lagrangian, as this
would explicitly break the electroweak gauge symmetry.

The MSSM is defined by the choice of terms that are allowed in the superpotential.
There are additional gauge invariant, renormalisable terms that violate baryon/lepton
number that could be added, but they can be forbidden in the MSSM (which is by
definition the most minimal SUSY model possible) by the implementation of a discrete
symmetry; R-parity [57, 58], which is defined by

RP = (−1)3B+L+2s , (1.2.69)

where s denotes particle spin. Without R-parity, it would mean that the B − L
violating couplings such as

W�Rp ⊃ µiLi ·Hu + λijke Li · Lj ēk + λijkB ūid̄jd̄k + λijkL Li ·Qjd̄k (1.2.70)

would allow the decay of SUSY particles to SM particles. From using the fact that
B[Qi] = 1/3, B[ūi, d̄] = −1/3, L[Li] = 1 and L[ēi] = −1, in the examples above one
can see that the couplings µ, λe and λL all violate lepton number, while λB violates
baryon number. These are examples of violations of baryon/lepton number by 1 unit,
but of course there are many more examples. There is good reason to suspect that R-
parity would be a symmetry of supersymmetric theories: foremostly, B and L violating
processes have not been observed experimentally. Notably, the most obvious source
of B − L violating processes would come from proton decay which would violate B
and L by one unit each. However, considering that the lifetime of the proton has been
measured to be > 1033 years [59], the couplings parametrizing B −L processes would
have to be tiny indeed. Consequently, the non-detection of B − L decays places very
strict limits on the types of terms in (1.2.70).

The imposition of R-parity results in some interesting consequences on the phe-
nomenology of the model. All SM matter must have an R-parity of +1 (even R-parity),
while each superpartner has R-parity −1 (odd R-parity). A particle with R-parity −1
cannot decay into one with R-parity +1, which means that the lightest superpartner in
the decay chain will not be able to decay: it must be stable. This type of supersym-
metric particle is termed a “lightest supersymmetric particle” (LSP). Furthermore,
R-parity assignments (recall that R-parity is multiplicative) mean that supersymmet-
ric particles produced in collider experiments must be pair-produced (an initial state
matter particle will have R-parity +1, as do squark-antisquark and slepton-antislepton
pairs which have parity (−1)2 = 1). The consquence of this latter point is that any
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R-parity conserving supersymmetric events occurring in colliders will have an associ-
ated missing energy of at least 2mχ̃0 , with χ̃0 being the LSP. If this LSP is neutral
under the gauge groups, it becomes an attractive dark matter candidate.

The MSSM can also contain soft-SUSY breaking terms in its Lagrangian, given
generally by

−Lsoft = (Q̃i)†(mQ
2)ji Q̃j + ũciR(mū

2)ji (ũ
c
Rj)
† + d̃ciR(md̄

2)ji (d̃
c
Rj)
†

+ (L̃i)†(mL
2)ji L̃j + ẽciR(mē

2)ji (ẽ
c
Rj)
†

+m2
Hu |Hu|2 +m2

Hd
|Hd|2 +Bµ(Hu ·Hd + h.c)

+
1

2

(
M3g̃

ag̃a +M2W̃
bW̃ b +M1B̃B̃ + h.c.

)
+
(
au

ij ũcRiQ̃j ·Hu + ad
ij d̃cRiQ̃j ·Hd + ae

ij d̃cRiL̃j ·Hd + c.c.
)
,

(1.2.71)

where (with all colour indices surpressed) lines 1-2 show the squark and slepton mass
squared terms where mQ

2,mL
2,mū

2,md̄
2,mē

2 are 3×3 hermitian matrices in family
space; line 3 shows the Higgs mass squared terms; line 4 shows the complex Majorana
gaugino mass terms for each gauge group (for the gluinos, winos and binos respec-
tively) where a = 1...8 and b = 1...3, and line 5 shows the trilinear scalar couplings
where au,d,e are 3 × 3 complex matrices in family space. These terms represent all
those that can be added to the MSSM Lagrangian to break SUSY softly without any
base assumptions about the mechanism of SUSY breaking. It is interesting to note
that the 105 [60] new parameters of the MSSM (compared to the SM) are almost en-
tirely due to the fact that SUSY is broken: mQ,ū,d̄,ē,L each have 9 independent entries;
au,d,e each have 18 independent entries; each gaugino mass consists of 2 d.o.f, and
both Bµ and µ are complex and contribute 2 d.o.f each. Of these 111 new parameters,
105 are physical and cannot be removed. If SUSY were unbroken, the only additional
parameter would be µ. If one has more knowledge about the breaking mechanism,
then these terms can be constrained further. Evidently, the terms in eq.(1.2.71) must
break SUSY as only the masses and couplings are given for the scalars and gauginos,
and not for their respective superpartners.

The Majorana gaugino masses above are the only type of gaugino mass generated
in the MSSM. Majorana mass terms are composed of just two Weyl fermions,

ΨM =

(
λα
λ̄α̇

)
, Ψ̄M = (λα, λ̄α̇) , (1.2.72)

and lead to the soft SUSY breaking mass terms,

Lsoft ⊃ −
1

2
MaΨ̄MΨM = −1

2
Ma

(
λαλα + λ̄α̇λ̄

α̇
)
, (1.2.73)

that can be seen in eq.(1.2.71) (with Ma a Majorana gaugino mass for each gauge
group). The reason that gauginos can acquire masses through the soft terms, whilst
the SM fermions cannot, is because they live in the same representation of the gauge
group as their respective gauge bosons and are hence real, and not chiral. In order
to conjure a type of mass that does not break SUSY - a Dirac mass - one would
need an extra set of fermions in the adjoint representation. As will be seen in later
chapters, the addition of such particles is part and parcel of a type of model called
Dirac gaugino models. In those chapters the focus will be on the Higgs sector of
extended supersymmetry models, and for that reason this section will delve further
into the electroweak sector (with particular attention paid to the Higgs sector) of the
MSSM.
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1.2.3.1 The Higgs sector (and EWSB) in the MSSM

As previously mentioned, there are two complex SU(2)L Higgs doublets in the MSSM,

Hu =

(
H+
u

H0
u

)
, Hd =

(
H0
d

H−d

)
. (1.2.74)

As in the Standard Model, if the Higgs obtain appropriate VEVs, then SU(2)L×U(1)Y
is broken, and the SM fermions acquire masses (recall the gauginos - the only new
fermions - get their masses through soft SUSY breaking terms). We are now interested
in the role of the Higgs in EWSB.

As the Higgs is no longer the only scalar in the model, the general MSSM scalar
potential contains not only Higgs-centric terms but also those with sfermions. Consid-
ering that the squarks and sleptons do not obtain VEVs and play a role in EWSB, they
shall be neglected here for our purposes. The Higgs scalar potential gets contributions
from three sources: the F-terms, the D-terms and the soft terms, such that

V Higgs
MSSM =VF + VD + Vsoft

=

∣∣∣∣ ∂W∂Hu

∣∣∣∣2
|Hu→Hu

+

∣∣∣∣ ∂W∂Hd

∣∣∣∣2
|Hd→Hd

+
1

2
g2
Y (Hu

∗YHuHu +Hd
∗YHdHd)

2 +
1

2
g2

2

(
Hu
∗
i

σaij
2
Huj +Hd

∗
i

σaij
2
Hdj

)2

+ Vsoft|Hu,Hd

= |µ|2
(
|Hd|2 + |Hu|2

)
+

1

8

(
g2
Y + g2

2

) (
|Hu|2 − |Hd|2

)
+

1

2
g2

2|H∗dHu|2

+m2
Hu |Hu|2 +m2

Hd
|Hd|2 +Bµ(Hu ·Hd + h.c.) ,

(1.2.75)

where VF corresponds to the first line, VD to the second and Vsoft to the third; YHu = 1
2 ,

YHd = −1
2 , and where it has been used that σaijσ

a
kl =

∑3
i=1 σ

i
ijσ

i
jk = 2δilδjk − δijδkl.

Here it should be noted that, while µ2 is defined as positive and is invariant under
supersymmetry, m2

Hu
and m2

Hd
arise from SUSY breaking and can be of either sign.

One of the interesting features of the MSSM is that, unlike in the Standard Model,
the Higgs quartic coupling - and by extension the Higgs masses - is predetermined at
tree-level by the gauge couplings and is no longer a free parameter. At the minimum
of the potential V Higgs

MSSM, it is always possible to rotate away the VEV of one component
of the two Higgs doublets because of SU(2) symmetry. If one chooses, e.g. 〈H+

u 〉 = 0
and take the derivative of the potential with respect to that component field, then
the resulting equation implies that indeed 〈H−d 〉 = 0 also. This means that at the
minimum of the potential, electroweak gauge symmetry can be broken while preserving
U(1)QED: i.e. an electrically neutral vacuum can be maintained. The Higgs scalar
potential can hence be written solely in terms of its neutral components:

V Higgs
MSSM =

(
|µ|2 +m2

Hu

)
|H0

u|2 +
(
|µ|2 +m2

Hd

)
|H0

d |2 −
(
BµH

0
uH

0
d + h.c.

)
+

1

8
(g2
Y + g2

2)
(
|H0

u|2 + |H0
d |2
)2
.

(1.2.76)

The minimum of the potential is required to be stable in all directions of field space,
which means that

2|µ|2 +m2
Hd

+m2
Hu > 2Bµ > 0 , (1.2.77)
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must be constrained so as to avoid a potential unbounded from below when H0
u = H0

d

- deemed the D-flat direction, i.e. the point in field space at which VD vanishes. From
this it follows that (|µ|2 +m2

Hu
) and (|µ|2 +m2

Hd
) cannot simultaneously be negative if

condition (1.2.77) is to hold true. Furthermore, for explicit EWSB to occur (and for
there to be a negative mass squared term in the Lagrangian), H0

u = H0
d = 0 cannot be

a stable (or unstable if (1.2.77) doesn’t hold) minimum of the potential. This equates
to saying that the mass of the Higgs at the minimum of the potential is negative - but
of course, as the Higgs mass is parameterised by three coefficients (m2

Hu
,m2

Hd
, |µ|2) it

is not obvious how to read off the condition. Using VH = V Higgs
MSSM for the rest of this

chapter, one can get a constraint on the Higgs mass by requiring that

det

 ∂2V
∂H0

d∂H
0∗
d

∂2V
∂H0

d∂H
0
u

∂2V
∂H0∗

u ∂H0
d

∂2V
∂H0∗

u ∂H0
u


|H0
u=H0

d=0

< 0 , (1.2.78)

which translates into the condition

(|µ|2 +m2
Hd

)(|µ|2 +m2
Hu) < B2

µ . (1.2.79)

This means that the point at which H0
u = H0

d is a saddle point, and that the minimum
of the potential can occur for non-zero H0

u, H
0
d .

Let us suppose for a moment that the Higgs doublet soft masses are the same,
m2
Hu

= m2
Hd

= m2
H . In this instance, condition (1.2.77) becomes

2|µ|2 + 2m2
H > 2Bµ −→ (|µ|2 +m2

H)2 > B2
µ .

However, this obviously conflicts with condition (1.2.79): (|µ|2 + m2
H)2 cannot be

both greater than and smaller than B2
µ. In other words, for the stability and EWSB

conditions to make any sense, it must be required that

m2
Hu 6= m2

Hd
. (1.2.80)

It is interesting that, in order to break electroweak symmetry, SUSY must also be
broken. Both of the Higgs doublet neutral components can obtain VEVs,

〈H0
u〉 =

vu√
2
≡ v sinβ√

2
, 〈H0

d〉 ≡
vd√

2
=
v cosβ√

2
,

→ tanβ ≡ vu
vd
,

(1.2.81)

where v is the SM Higgs VEV and, as vu and vd are real and positive, 0 ≤ tanβ ≤ π/2.
In fact, to be even more explicit, it is specifically only the real components in the
neutral Higgs doublets that obtain VEVs,

〈H0
uR
〉 = vu , 〈H0

uR
〉 = vd , (1.2.82)

while

〈H0
uI
〉 = 〈H0

dI
〉 = 〈H+

u 〉 = 〈H−d 〉 = 0 . (1.2.83)

The combination of the Higgs doublet VEVs are experimentally fixed owing to their
relation to the Z-boson mass via

v2 = v2
u + v2

d =
4m2

Z

g2 + g′2
, (1.2.84)
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and here recall that the relation between the SM Higgs VEV and the W-boson mass
is given by

m2
W =

1

4
v2g2

2 . (1.2.85)

As long as (1.2.77) and (1.2.79) are satisfied, then it is possible to write down the
minimum conditions of the potential:

∂VH
∂H0

u

∣∣∣∣
min

= m2
Hu + |µ|2 −Bµ cotβ − m2

Z

2
cos 2β = 0 ,

∂VH
∂H0

d

∣∣∣∣
min

= m2
Hd

+ |µ|2 −Bµ tanβ +
m2
Z

2
cos 2β = 0 .

(1.2.86)

1.2.3.2 The Higgs mass spectrum

So far the focus has been only on the gauge eigenstates H0
u, H

0
d , H

+
u , H

−
d in the Higgs

sector of the MSSM, but to see how SUSY would manifest itself in reality one needs
to transform the focus to the corresponding mass eigenstates. To obtain the physical
Higgs masses and fields from the Higgs doublets one needs to decompose the doublet
fields into their real and imaginary parts, which for the neutral components is

H0
u =

H0
uR

+ iH0
uI√

2
, H0

d =
H0
dR

+ iH0
dI√

2
, (1.2.87)

(1.2.88)

which means that each Higgs doublet, Hu and Hd, contains 4 real scalar degrees of
freedom. From these 8 d.of. one gets 2 CP-even Higgs, h,H; a CP-odd Higgs A0; two
charged Higgs H± and 3 would-be Goldstone bosons G0, G±. Although a SUSY theory
is now being considered, the number of Goldstones after EWSB is the same as in the
SM as it remains the same symmetry group, SU(2)L × U(1)Y → U(1)QED, is being
broken. There is only mixing between fields of the same charge, i.e. between h,H,A
and G0; H+ and G+; and H− and G−. In essence this means that the unphysical
degrees of freedom of the gauge eigenstates can be traded for physical ones: H+

u being
a combination of H+ and G+; H−d a combination of H− and G−, and both H0

u and H0
d

a combination of h,H,A and G0. All in all, the Higgs doublets can then be rewritten
as

Hu =

(
cβH

+ − sβG+

1√
2

[
sβv + cαh+ sαH + i(cβA− sβG0)

]) , (1.2.89)

Hd =

(
1√
2
[cβv − sαh+ cαH + i(sβA+ cβG

0)]

cβG
− + sβH

−

)
, (1.2.90)

where the shorthand cx = cosx, sx = sinx has been employed. The new mixing angle
α has also been introduced, which parametrises the mixing between the CP-even
neutral Higgs, (

H0
uR

H0
dR

)
=

(
cα sα

−sα cα

)(
h

H

)
. (1.2.91)

For the duration of the work that follows CP-conservation will be assumed, but it
should be noted that if CP is violated then the CP-odd Higgs will also mix with the
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other neutral scalars. After EWSB, the three Goldstone boson d.o.f get absorbed by
the vector bosons Z,W±, rendering them massive, leaving behind a 5-piece extended
Higgs sector. In this work, the CP-odd Higgs mass, mA, is often referred to as the
pseudoscalar mass, and throughout the assumption that mh < mH , with h resembling
the SM-like Higgs, will be used.

What is really useful when making concrete model predictions is to have real
expressions for the physical scalar particles that are being postulated: it is desirable
to derive the mass matrices,

Mij =
∂2VH
∂φi∂φj

∣∣∣∣
min

. (1.2.92)

Starting with the CP-odd Higgs mass matrix, one needs to take second derivatives of
the potential with respect to the imaginary components of the neutral Higgs doublet
fields and get rid of any contributions that will vanish at the minimum of the potential,

∂2VH
∂H0

uI
∂H0

uI

∣∣∣∣
min

=|µ|2 +m2
Hu +

1

8
(g2
Y + g2

2)(v2
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d) , (1.2.93)

∂2VH
∂H0

dI
∂H0

dI

∣∣∣∣∣
min

=|µ|2 +m2
Hd

+
1

8
(g2
Y + g2

2)(v2
d − v2

u) , (1.2.94)

∂2VH
∂H0

uI
∂H0

dI

∣∣∣∣∣
min

=Bµ . (1.2.95)

Using (1.2.84) and substituting in for the masses using the minimum conditions
(1.2.86), the pseudoscalar mass matrix reduces to

M2
A =

(
Bµ cotβ Bµ

Bµ Bµ tanβ

)
, (1.2.96)

where the usual convention that Bµ is real9 has been taken. The two physical masses
can be found by diagonalising the mass matrix and finding two eigenvalues, yielding

λ1 ≡ m2
G0 = 0 , (1.2.97)

λ2 ≡ m2
A = Bµ(tanβ + cotβ) = 2

Bµ
sin 2β

. (1.2.98)

The same process is followed for the charged Higgs masses. As the charged Higgs
transform among one another under charge, they are not CP-eigenstates. For this
reason, the masses of the positive and negative components will be equal, and the
fields H+

u and H−d are not decomposed into their real and imaginary parts when
finding the mass matrix. Instead, the eigenvalues are those of m2

H± ,m
2
G± . One gets

that

∂2VH

∂H+
u ∂H

+
u
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min
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(
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1

8
(g2
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2)(v2
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d) +
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4
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2
d , (1.2.99)
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−
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=(|µ|2 +m2
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1

4
g2
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2
u , (1.2.100)

∂2VH

∂H+
u ∂H

−
d
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min

=Bµ +
1

4
g2

2vuvd , (1.2.101)

9Generally, Bµ may be taken as real and positive as any possible associated phase can be absorbed
into those of Hu and Hd.
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so that, in the basis (H+
u , H

−
d ), the charged Higgs mass matrix is

MH± =

(
Bµ cotβ +m2

W cos2 β Bµ +m2
W sinβ cosβ

Bµ +m2
W sinβ cosβ Bµ tanβ +m2

W sin2 β

)

= (Bµ +m2
W sinβ cosβ)

(
cotβ 1

1 tanβ

)
, (1.2.102)

yielding

λ1 ≡ m2
G± = 0 (1.2.103)

λ2 ≡ m2
H± = Bµ(cotβ + tanβ) +m2

W = m2
A +m2

W . (1.2.104)

Finally one arrives at the mass matrix for the CP-even Higgs bosons,

∂2VH
∂H0

u∂H
0
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Hu + |µ|2 +
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d) (1.2.105)

∂2VH
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+ |µ|2 +
1

8
(g2
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2)(3v2
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u) (1.2.106)

∂2VH
∂H0

u∂H
0
d
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min

= −Bµ −m2
Z sinβ cosβ , (1.2.107)

which, in the basis (H0
uR
, H0

dR
), is given by

M2
H =

(
Bµ cotβ +m2

Z sin2 β −Bµ −m2
Z sinβ cosβ

−Bµ −m2
Z sinβ cosβ Bµ tanβ +m2

Z cos2 β

)

=

(
m2
A cos2 β +m2

Z sin2 β −(m2
A +m2

Z) sinβ cosβ

−(m2
A +m2

Z) sinβ cosβ m2
A sin2 β +m2

Z cos2 β

)
, (1.2.108)

where Bµ has been swapped for m2
A using eq.(1.2.98), and whose eigenvalues are

m2
h,H =

1

2

[
m2
A +m2

Z ∓
√

(m2
A +m2

Z)2 − 4m2
Am

2
Z cos2 2β

]
. (1.2.109)

Interestingly, while m2
H± and m2

H grow with increasing m2
A ↔ Bµ/ sin 2β and can thus

be arbitrarily large, m2
h is bounded by above [61,62]: if one takes the limit m2

A � m2
Z ,

then m2
h → m2

Z cos2 2β. This means that, at tree level,

m2
h ≤ m2

Z cos2 2β , (1.2.110)

and that therefore, in the MSSM, the loop corrections are sizeable. For an m2
h ∼ m2

Z ,
one requires ∼ (86 GeV)2 in contributions from loop corrections to m2

h to obtain
the SM-Higgs value. The loop corrections in the MSSM are by and large dictated
by the stop squarks via their top Yukawa coupling to the Higgs. These large stop
contributions at loop-level arise from the residue of uncancelled stop and top loops that
would have cancelled if SM masses and their superpartners truly had the same mass.
As previously mentioned, the Higgs mass is controlled by the Higgs quartic coupling
in the MSSM, but top-stop corrections to the Higgs quartic ∝ |yt|4 log

(
mt̃1

mt̃2
/m2

t

)
can have a powerful Higgs mass boosting effect. For that reason, many MSSM-like
models require large stop masses and/or large stop mixing.

When one of the CP-even Higgs mass eigenstates is aligned in field space with
the SM Higgs VEV, the lightest Higgs talks and walks like the SM-Higgs and it
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cos(β − α) sin(β − α)

HW+µW−ν hW+µW−ν

HZµZν hZµZν

ZµAh ZµAH

W±µH∓h W±µH∓H

ZµW±νH∓h ZµW±νH∓H

γµW±νH∓h γµW±νH∓H

Table 1.3: Proportionality of the Higgs couplings to the gauge bosons.

is said that there is alignment in the Higgs sector. This situation can occur when
(1.2.110) is satisfied, by taking m2

A,m
2
H and m2

H± as heavy: then there is alignment
with decoupling. If the situation arises that m2

h is SM Higgs-like without needing to
decouple the other Higgs states, then one says there is alignment without decoupling,
and later it will be seen how this can come to life in Dirac gaugino extended SUSY
models. The alignment scenario is equivalent to taking the mixing angle, α, defined
in (1.2.91) as

β =
π

2
− α . (1.2.111)

At tree-level, α is related to β by

sin 2α

sin 2β
= −

(
m2
H +m2

h

m2
H −m2

h

)
,

tan 2α

tan 2β
=

(
m2
A +m2

Z

m2
A −m2

Z

)
. (1.2.112)

In the limit

cos(β − α) ' 0 sin(β − α) ' 1 , (1.2.113)

h couples to the SM bosons, W±, Z, while H decouples from them (see table 1.3).
When alignment occurs, the Higgs sector of the SUSY model will appear synonymous
with the SM one.

1.2.3.3 Sfermions and stop mixing in the MSSM

The Yukawa interactions between the Higgs bosons and the (s)fermions are derived, as
was shown, from the second derivative of the superpotential. The Yukawa couplings
relate to the tree-level fermion masses via

mu,c,t =
yu,c,t√

2
v sinβ md,s,b =

yd,s,b√
2
v cosβ , me,µ,τ =

ye,µ,τ√
2
v cosβ . (1.2.114)

By requiring that the Yukawa couplings do not become non-perturbatively large, very
rough limits can be placed on tanβ: for a yt ≤ 1.4, one requires tanβ ≥ 1, and
for a yb ≤ 1.2, one requires tanβ ≤ 50. Contributions to the couplings between the
sfermions and the MSSM Higgs come from multiple sources. Theoretically, any of the
scalars in the model can mix with any other, providing that they both carry the same
R-parity, electric charge and colour. For the most part, the mixing between most
of the combinations is very small, but there can be substantial mixing, especially
between left-right pairs such as (t̃R, t̃L), (b̃R, b̃L), (τ̃R, τ̃L). The left and the right



36 Chapter 1. (B)SM

handed squark and slepton pairs mix via the µ- and a- terms. In what follows inter-
generational mixing is ignored. The purpose here is to derive the stop mass matrix,
so the focus will only be on the up-type quarks, although the process is identical for
the down-types. Obviously, to derive the mass matrix one starts with the potential.
The first contribution comes from the F-terms of the superpotential, for which the
relevant contributions are

W ⊃ µHu ·Hd + yuQ ·Huū

= µ(H+
u H

−
d −H0

dH
0
u) + yiju ũ

c
i,R

(
ũj,LH

0
u − d̃j,LH+

u

)
⊃ µ(H+

u H
−
d −H0

dH
0
u) + ytt̃

c
R

(
t̃LH

0
u − b̃LH+

u

)
, (1.2.115)

where the conventions written in table 1.4 have been employed, and the second and
third generation contributions in the 3rd line have been dropped: this is justified
seeing as the Yukawa couplings are proportional to the fermion masses which, for
the 1st and 2nd generations, are relatively negligible compared to those of the 3rd
generation. The F-term (mass) contributions to the potential for the stops are then

VF ⊃
[∣∣∣∣ ∂W∂H0

u

∣∣∣∣2 +

∣∣∣∣∂W∂t̃L
∣∣∣∣2 +

∣∣∣∣∂W∂t̃cR
∣∣∣∣2
]

min

=

[∣∣ytt̃cRt̃L − µH0
d

∣∣2 +
∣∣ytt̃cRH0

u

∣∣2 +
∣∣∣yt(H0

u t̃L − b̃LH+
u )
∣∣∣2]

min

=

∣∣∣∣ytt̃cRt̃L − 1√
2
µvcβ

∣∣∣∣2 +
1

2
v2s2

β

[
|ytt̃L|2 + |ytt̃cR|2

]
⊃ −mt cotβ

[
µt̃cRt̃L + µ∗(t̃cR)∗t̃∗L

]
+m2

t

[
t̃∗Lt̃L + (t̃cR)∗t̃cR

]
, (1.2.116)

where the first term will contribute an off-diagonal bilinear piece which mixes the left-
handed and right-handed components, and the second term is a mass squared piece
which will contribute to the diagonals.

The second set of contributions come from the D-term potential,

VD ⊃
1

2
g2
Y

(
YHu |Hu|2 + YHd |Hd|2 + YũL |ũL|2 + YũR |ũcR|2

)2
+

1

2
g2

2

(
H∗u
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2
Hu +H∗d

σa

2
Hd + ũ∗L
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2
ũL
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6
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3
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+
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8
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,

such that

[VD]min ⊃
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]
, (1.2.117)

having used that

s2
W =

g2
Y

g2
Y + g2

2

. (1.2.118)
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Finally, there is also a contribution from the soft terms one saw in eq. (1.2.71). These
are

Vsoft ⊃ (Q̃i)†(mQ
2)ji Q̃j + ũciR(mū

2)ji (ũ
c
Rj)
† +

(
au

ij ũcRiQ̃j ·Hu + c.c.
)

⊃ (Q̃3)†(mQ
2)3

3Q̃3 + (t̃cR)(mū
2)3

3(t̃cR)† +
(
ytAtt̃

c
R(t̃LH

0
u − b̃LH+

u ) + h.c.
)
,

such that

[Vsoft]min ⊃ (Q̃3)†(mQ
2)3

3Q̃3 + (t̃cR)(mū
2)3

3(t̃cR)† +mtAtt̃
c
Rt̃L +mtA

∗
t (t̃

c
R)∗t̃∗L ,

(1.2.119)

where it has been used that

mQ
2 ∼

m
2
Q1

0 0

0 m2
Q2

0

0 0 m2
Q3

 , mū
2

m
2
ū1

0 0

0 m2
ū2

0

0 0 m2
ū3

 , (1.2.120)

and that the trilinear couplings au,ad,ae are related to the Yukawa couplings via the
matrices A,u,d,e such that

(au)33 = ytAt, (ad)33 = ybAb, (ae)33 = yτAτ . (1.2.121)

Writing, for simplicity, tR ≡ (t̃cR)∗, tcR ≡ t∗R and collecting all the (t̃L, t̃R) contributions
from the Lagranigan together, one sees that

−Lstops = t̃∗Lm
2
t̃11
t̃L + t̃∗Rm

2
t̃22
t̃Lt̃
∗
Lm

2
t̃22
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2
t̃12
t̃R + t̃∗Rm

2
t̃21
t̃L

=
(
t̃∗Lt̃
∗
R

)
mt̃

2

(
t̃L

t̃R

)
, (1.2.122)

with

mt̃
2 =

(
m2
t̃11

m2
t̃12

m2
t̃21

m2
t̃22

)
. (1.2.123)

Then the stop mass matrix can be written:

mt̃
2 =

(
m2
t +m2

Q3
+m2

Zc2β

(
1
2 − 2

3s
2
W

)
mt(A

∗
t − µ∗ cotβ)

mt(At − µ cotβ) m2
t +m2

ū3
+ 2

3m
2
Zs

2
W c2β

)
. (1.2.124)

Evidently, the off-diagonal contributions determine the stop-mixing. For reasons that
will be discussed in section 1.2.3.5, the µ-term cannot completely vanish in the MSSM,
which means that even if the trilinear couplings are small, for a tanβ not too large,
there will always be some amount of stop-mixing in the MSSM. On the other hand,
in the limit of large tanβ, to have large stop-mixing one requires large A-terms.

1.2.3.4 The electroweakinos

A brief word should be mentioned on the electroweakinos in the MSSM, the charginos
and the neutralinos, which form from the higgsinos and electroweak gauginos after
EWSB. The neutralinos, χ̃1...4, are the 4 mass eigenstates that result from the mixing
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between the bino, B̃; neutral wino, W̃ 0; and two higgsinos (H̃0
u, H̃

0
d), and whose mass

matrix is given by

MN =


M1 0 −cβsWmZ sβsWmZ

0 M2 cβcWmZ −sβcWmZ

−cβsWmZ cβcWmZ 0 −µ
sβsWmZ −sβcWmZ −µ 0

 , (1.2.125)

where sW is the weak mixing angle defined in eq.(1.2.118). As can be seen, in the
MSSM neutralino mass matrix the Majorana masses, M1,M2, are on the diagonals:
this will not be the case in the R-symmetry preserving Dirac gaugino scenarios con-
sidered later where these terms can be chosen to vanish. After diagonalisation, one
ends up with 1 bino-like, 1 wino-like and 2 higgsino-like neutralinos in the MSSM
spectrum. The charginos, χ±1,2, are the result of mixing between the charged winos

(W̃+, W̃−) and charged higgsinos (H̃+
u , H̃

−
d ), and have the mass matrix

MC =

(
M2

√
2MW sβ√

2MW cβ µ

)
. (1.2.126)

After diagonalisation, one gets 1 higgsino-like and 1 wino-like chargino. By convention
it is chosen that the masses obey the hierarchical order mχ̃1 < mχ̃2 < mχ̃3 < mχ̃4

and mχ̃±1
< mχ̃±2

. This convention will also be employed when looking at the elec-

troweakino sector of the MDGSSM in chapter 3.

1.2.3.5 MSSM drawbacks

For all the problems that the MSSM holds solutions to, it is not without its mysteries.
One such puzzle arises in the form of the “µ-problem” [11,63]. The MSSM contains the
SUSY mass term µHu ·Hd in its superpotential, where µ is a dimensionful parameter:
the only new parameter that arises in the MSSM that is not a consequence of SUSY
being necessarily broken. As can be seen from the MSSM potential (1.2.75), the
mass terms for the scalar Higgs fields are typical bosonic (scalar) mass terms, with a
positive mass parametrization, |µ|2(m2

Hu
+m2

Hd
). This is already contrary to what is

desired: a negative mass term which induces EWSB. As the µ-term preserves SUSY,
there is no reason to believe that it is associated with the SUSY breaking scale, msoft,
and one would be well justified to think instead that it should either vanish, or be of
the order of the Plank or unification scales (i.e. the assumed cutoff scale). However,
as the complex Higgs scalars lie in chiral multiplets with their fermionic Higgsino
superpartners, not only is the µ-term involved in the Higgs scalar masses,

−LSUSY Higgs mass = |µ|2
(
|H0

u|2 + |H+
u |2 + |H0

d |2 + |H−d |2
)
, (1.2.127)

but also those of the Higgsinos,

−LHiggsino mass = µ
(
H̃+
u · H̃−d − H̃0

u · H̃0
d

)
. (1.2.128)

The charged Higgsinos mix with the charged winos to form the charginos χ̃±1,2 of
the electroweakino sector. The lack of chargino-like particle at LEP implies a lower
limit of ∼ 103 GeV [64] on the charginos, which in turn corresponds to a limit on
the dimensional |µ| parameter yielding |µ| ≥ 100 GeV [65]. So from experimental
constraints, µ cannot be a vanishing parameter. What about O(µ) ∼ O(Mplank)? If µ
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is very large, then it is not possible to verify the EWSB condition (1.2.79): recall that
one needs the potential to be a saddle point when Hu = Hd = 0. It turns out that
to satisfy the conditions for EWSB, one requires O(µ) ∼ O(msoft), which is exactly
the same energy scale as the other parameters in the Higgs potential which are all
SUSY breaking (Bµ,m

2
Hu
,m2

Hd
). This is the µ-problem: why should a parameter that

respects SUSY live at an energy scale the same as those that do not? Many models
have been proposed that “solve” the µ-problem, such as excluding it altogether, or
generating it as a consequence of SUSY breaking or from a common origin as the
SUSY breaking parameters e.g. [65–68].

Another pressing concern for the MSSM is that of naturalness. In essence, if
a theory’s prediction for electroweak scale physics is correct, then it is said to be
natural. So far, no sign of SUSY has been discovered by collider experiments to the
point that, in simplified MSSM scenarios, limits can already be set around 1-2 TeV
on the squarks and gluinos [69–71]. Of course, simplified model scenarios are not a
true representation of the complexity of a model such as the MSSM, but they are
indicative of the scales we will need to probe to find new supersymmetric physics.
As the sparticle masses get larger, so does the fine-tuning of the model. Fine-tuning
in the MSSM is dominated by the necessity to obtain the correct Higgs mass, and
how to generate large enough radiative corrections to get there - generically enabled
via large stop masses or stop mixing. But this does not necessarily mean the end
for the MSSM. The fine-tuning in the MSSM is of the order of a few percent [72],
and arises because of two conflicting requirements: that (1) the Higgs receives large
loop-corrections from heavy stops in order to pull up its tree-level mass from ∼ 91
GeV to 125 GeV, and (2) that the stops can’t be too heavy so as to avoid generating
large lograrithmic corrections to the Higgs soft mass parameter, which would then in
turn require that other parameters be fine-tuned in order to regain the correct EWSB
scale (i.e. to re-obtain a Higgs VEV generating the correct values fo mW ,mZ). This
latter point ties in with the issue that the sparticle masses are continually being driven
higher by experimental constraints. This is the little hierarchy problem [73]. However,
this amount of fine-tuning is minimal in comparison to what the SM suffers, i.e. from
the fact that the Higgs mass needs to be stabilised at the electroweak scale despite it
receiving large radiative corrections from UV physics: this is the hierarchy problem.
We recall that this is one of the reasons SUSY is so attractive in the first place - that it
can stabilise the electroweak scale! So this brings us back round to where we started:
is supersymmetry a satisfactory solution to the big hierarchy problem if it ends up
reintroducing a little hierarchy between the electroweak and SUSY scale?

But supersymmetry, like the platypus, should not be considered endangered but
merely vulnerable. Now will be discussed a branch of supersymmetric model, Dirac
gaugino models, that can alleviate some of the troubles the MSSM suffers. Specifically
in the case of the MDGSSM, one can generate a tree-level boost from new Higgs
couplings, and require no stop mixing to get a good Higgs mass at tree-level, hence
increasing naturalness in the model.

1.2.4 Minimal Dirac gaugino models

1.2.4.1 A brief overview

With the current bounds on colourful supersymmetric particles at the LHC, and
the consequent implications for naturalness of the Minimal Supersymmetric Stan-
dard Model (MSSM), it is timely to consider non-minimal scenarios. A particularly
well-motivated extension of the MSSM is to allow Dirac masses for the gauginos, ei-



40 Chapter 1. (B)SM

ther instead of, or in addition to, Majorana ones. Dirac gaugino models have been
well studied, for example in refs. [66, 67, 74–132]. Indeed the fermions of the stan-
dard model generated via the Higgs mechanism are of Dirac type10, and there is no
reason to believe that supplementary fermions could not be. Dirac gaugino models
hold many interesting properties, including an enhanced tree-level Higgs mass owing
to new quartic couplings; R-symmetry preservation leading to simpler SUSY break-
ing models, and the relaxing of LHC bounds due to the suppression of gluino direct
production (which will be discussed in detail in section 3).

While it is possible to write the masses through hard breaking operators [124],
in spontaneously broken SUSY, Dirac masses should only appear through the above
supersoft terms which have the remarkable property that they do not appear in the
renormalisation group (RG) equations for any other operators [77,133,134].

A Dirac term was in fact the original method proposed to allow the gluino to be
massive [74], because the simplest models of global supersymmetry breaking preserve
R-symmetry [135] and thus forbid Majorana (but not Dirac) masses; this remains an
important motivation today. As opposed to the Majorana masses described in eq.
(1.2.73), Dirac masses are four-component spinors and can be written in terms of two
Weyl spinors,

Ψ =

(
ψα
χ̄α̇

)
, Ψ̄ = (χα, ψ̄α̇) , (1.2.129)

giving rise to the supersoft SUSY breaking mass terms

Lsupersoft ⊃ −mDΨ̄Ψ = −mD

(
χαψα + ψ̄α̇χ̄

α̇
)
. (1.2.130)

As is known, the Lagrangian carries no R-charge, and the superpotential needs to
carry an R-charge of 2 in order to be invariant under R-symmetry. Therefore in order
to have R-symmetry conserving kinetic terms for the gauge fields, the supersymmetric
gauge field strength superfields Wa must carry an R-charge of 1. It follows that the
gaugino, the lowest component of Wa, also has an R-charge of 1, and therefore the
mass terms of eq. (1.2.73) are R-symmetry violating. On the contrary, Dirac gaugino
masses are R-symmetry conserving, as an R-charge of -1 can be given to the new
adjoint fermions. Each additional Weyl fermion contributes a further two fermionic
degrees of freedom. As SUSY requires an equal number of degrees of freedom in both
the scalar and fermionic sectors, this implies that, after EWSB, there will be four new
neutral scalar degrees of freedom as compared to the MSSM. The phenomenology of
the electroweakino spectrum will be discussed in detail in section sec. 3.1.2.

To endow gauginos with a Dirac mass, at a minimum, one needs to add chi-
ral fermions (χS , χ

a
T , χ

a
O) in the adjoint representation of each gauge group: these

are embedded in chiral superfields S,Ta,Oa which are respectively a U(1)Y singlet,
SU(2)L triplet and SU(3)c octet and which carry no R-charge. Of course, this means
that in addition to the chiral fermions necessary to form Dirac gauginos, one gets a set
of complex scalar fields (S, T a, Oa) thrown in for free. If just these fields are added,
then one has the simplest Dirac-gaugino extension of the MSSM whose Higgs sector
has been well studied [67,83,88,105,130]. These adjoint-superfields are defined by

S = S +
√

2θχS + θθFS

Ta = T a +
√

2θχaT + θθF aT ,

Oa = Oa +
√

2θχaO + θθF aO ,

(1.2.131)

10Potentially excepting the neutrino whose status - in the absence of detection of the expected
right-handed neutrino - is unconfirmed.
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Superfield Scalars Fermions Vectors (SU(3),SU(2),U(1)Y) R-charge

Matter Sector

MSSM chiral superfields

(S)quarks Qi Q̃i=(ũi,L, d̃i,L) (uL, dL) - (3, 2, 1/6) RQ

ūi ũci,R uci,R - (3, 1, -2/3) 2−RQ−RH
d̄i d̃ci,R dci,R - (3, 1, 1/3) RH −RQ

(S)leptons Li (̃νi,L,ẽi,L) (νi,L, ei,L) - (1, 2, -1/2) RL

ēi ẽci,R eci,R - (1, 1, 1) RH −RL
Higgs/ Hu (H+

u , H
0
u) (H̃+

u , H̃
0
u) - (1, 2, 1/2) RH

Higgsinos Hd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) - (1, 2, -1/2) 2−RH

MSSM chiral superfields

Gauge Sector

MSSM gauge superfields

Gluons/gluinos W3,α - λ3,α Gµ (8, 1, 0) 1

[≡ g̃α]

W/ Winos W2,α - λ2,α W±
µ ,W

0
µ (1, 3, 0) 1[

≡W̃ 0,W̃±
]

B/ Binos WY,α - λ1,α Bµ (1, 1, 0 ) 1[
≡ B̃

]
Dirac gaugino adjoint chiral superfields

Superfield Scalars (R = 0) Fermions (R=−1) (SU(3),SU(2),U(1)Y)

Adjoint octet Oa Oa = 1√
2
(Oa1 + iOa2) χaO (8,1,0)

Adjoint triplet Ta T 0 = 1√
2
(T 0
R + iT 0

I ), T± W̃ ′0, W̃ ′± [≡ χaT ] (1,3,0)

Adjoint singlet S S = 1√
2
(SR + iSI) B̃′0 [≡ χS ] (1,1,0)

Table 1.4: Field content in the minimal Dirac gaugino case. Top panel: chiral and
gauge multiplet fields of the MSSM; bottom panel: chiral and gauge multiplet fields
added to those of the MSSM to allow Dirac masses for the gauginos. Note that the
expansion T± is identical to that of T 0 but for the superscript 0↔ ±.

and the resulting field content is summarised in table 1.4.

It is from the extended gauge sector that additional supersymmetry breaking terms
can emerge, and consequently Dirac masses for gauginos. As previously mentioned,
these SUSY breaking terms are supersoft, and can be written as [77]

Lsupersoft =

∫
d2θ
√

2
W ′αWa

jαΣa
j

M
+ h.c , (1.2.132)

where Wa
j = λaj + θDa

j + ... are the supersymmetric gauge field strengths associated
to the U(1), SU(2) and SU(3) gauge groups for j = 1, 2, 3 respectively; Σa

j = Σa
j +√

2θDa
j + ... are the Dirac gaugino multiplets with scalar components Σa = S, T a, Oa

(for j = 1, 2, 3) with expansions as in (1.2.131);W ′ = λ
′
+θD

′
+ ... is the field strength

of some vector superfield in the hidden sector (such as a hidden sector U(1)
′
) and M

is the mass scale at which the Dirac gaugino masses are generated. The (hidden)
auxillary field D

′
then acquires a VEV, breaking SUSY spontaneously in the hidden
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sector, leading to supersoft mass terms that break SUSY explicitly in the visible sector:

Lsupersoft =

∫
d2θ
√

2
〈D′〉θαWa

αΣa

M
+ h.c

=

∫
d2θ
√

2mDθ
α (λa + θαD

a + ...)
(

Σa +
√

2θαχ
a
Σ + ...

)
⊃ −mDλ

aχaΣ +
√

2mDD
aΣa + h.c. , (1.2.133)

where mD = 〈D′〉/M has been substitued, and (θλ)(θχ) = −1
2θθλχ has been used.

As can be seen, the Dirac gaugino masses are suppressed by an order of the messenger
scale, M . The first term in eq. (1.2.133) takes the same form as that in eq. (1.2.130),
and is the Dirac mass term for the gaugino, λa, and the new adjoint fermion, χaΣ.
Once the auxilliary field Da is integrated out, the second term in (1.2.133) generates
a mass term for the adjoint scalars.

Supersoft terms for the gauginos means that Dirac gauginos can, in principle, be
taken much heavier than their Majorana counterparts since, instead of inducing a
logarithmically divergent corrections to the sfermion masses, they only induce a finite
shift: when this hierarchy is maximally large (i.e. one starts with zero soft masses
for sfermions) it is known as the supersoft scenario, which would be realised e.g. in
models of goldstone gauginos [121, 122]. Therefore, unlike the soft scenario which
still reintroduces logarithmic (but not quadratic) divergences in scalar masses, Dirac
gaugino masses and the subsequent supersoft scenario allows for increased naturalness
as the only corrections to scalar masses are given by finite contributions. This means
that a larger hierarchy between the gaugino (of particular interest, the gluino) and
squark masses can be accommodated in Dirac gaugino models than in more minimal
models such as the MSSM, without ruining the naturalness of the model.

The supersoft property when applied to the Higgs masses means that Dirac gaug-
ino (DG) models are much more natural than Majorana ones, although they do not
completely alleviate the little hierarchy problem by themselves [107]. On the other
hand, the singlet and triplet fields can have new superpotential couplings with the
Higgs,

W ⊃ λSS Hu ·Hd + 2λT Hd ·THu , (1.2.134)

which naturally enhance the Higgs mass at tree level — and can also be associated with
an N = 2 supersymmetry in the gauge-Higgs sector [78,136]. An N = 2 SUSY in turn
leads automatically to alignment [137] due to the SU(2) R-symmetry of the two Higgs
doublets (which form an N = 2 hypermultiplet) [138]. As will be shown in chapter
2, this alignment is surprisingly robust under quantum corrections, where there is
an accidental cancellation of N = 2 breaking effects [137]. Moreover, it has been
found that the R-symmetry also prevents chirality-flip diagrams, which significantly
relaxes flavour constraints [79,87,106] and suppresses squark production at the LHC,
rendering DG models “supersafe” [139–142].

The above motivations led to many studies, and realisations being developed [66,
67, 75–78, 80, 82, 84, 86, 88, 90–92, 95, 98–100, 102–105, 108–112, 114, 115, 117–124, 126,
127,131,143]. The models fall either into the class of those that preserve an exact R-
symmetry, or allow a small amount of R-breaking. On the former side, the principal
example is the Minimal R-Symmetric Supersymmetric Standard Model (MRSSM)
[79]: this requires the addition of supplementary R-Higgs fields (in the same gauge
representation as the MSSM Higgs doublets but with different R-charges) which do
not obtain expectation values after electroweak symmetry breaking. However, the
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couplings in eq. (1.2.134) are forbidden, and the equivalent couplings between the
Higgs and R-Higgs fields do not give any tree-level enhancement to the Higgs mass,
making the Higgs sector rather like the MSSM — except that stop mixing is forbidden
by the R-symmetry, so that in order to obtain the correct value of the Higgs mass
either the new superpotential couplings must be very large [126,127,131] or the stops
should be in the O(10–100) TeV range [137].

It will be seen momentarily how the triplet and singlet scalar fields contribute to
an extended Higgs sector in more detail, but a brief word should be mentioned of the
superpartners of the gluinos - the colour-octet scalar fields Oa often referred to as
the sgluon -which is a singlet under the electroweak gauge groups. Multiple studies
have been performed on the decays of the sgluons, for which the reader is referred
to [81, 117, 144, 145] for more details. If CP is conserved, then the sgluon can be
further distinguished by a real scalar (Oa1 in table 1.4) and a real pseudoscalar field
(Oa2 in table 1.4). Typically after supersymmetry breaking, the slguon gets 3 types of
mass term from Lstandardsoft and Lsupersoft above:

−LO ⊃ m2
OO

a∗Oa +
1

2
(BOO

aOa + h.c.) + (mD3O
a + h.c.)2 . (1.2.135)

A rotation of the adjoint-octet chiral superfield Oa dictates that it is always possible
to take the Dirac mass mD3 as real. However, without imposing CP invariance, it is
not possible to require that both mD3 and BO are real simultaneously. It follows that,
if BO is complex, then the real and imaginary parts of the scalar octet will mix. The
scalar octet mass matrix can be diagonalised by a rotation of angle φO,

φO = −1

2
Arg(BO + 2m2

3D) , (1.2.136)

such that

Oa =
eiφO√

2
(Oa1 + iOa2) . (1.2.137)

When CP is conserved, the rotation angle φO → 0, and

−LO CP−−−−−−→
Invariance

⊃ 1

2

(
m2
O +BO + 4mD3

)
Oa2

1 +
1

2
(m2

O −BO)Oa2
2 . (1.2.138)

In this scenario it can be seen that, as the octet pseudoscalar Oa2 is then unrelated
to the Dirac gluino mass, it can lie at a sub-TeV scale while escaping current LHC
constraints [129]. The octet scalar Oa1 is typically taken as one of the heaviest particles
in the theory; the pseudoscalar Oa2 can also be taken as heavy, however if BO is large
then it can be light. At tree-level, sgluons can decay either into gluino or squark pairs,
which further decay into quarks and missing energy in the form of electroweakinos χ̃,

Oa → g̃g̃ → qqq̃q̃ → qqqq + χ̃χ̃ , Oa → q̃q̃ → qq + χ̃χ̃ . (1.2.139)

The scalar octets possess tree-level trilinear couplings to the squarks via the D-term,

LO ⊃
√

2mD3(Oa +Oa∗)Da , (1.2.140)

which, after spontaneous SUSY breaking become

−LO ⊃ 2gsm3D(Oa1 cosφO −Oa2 sinφO)(q̃∗LiTij
aq̃Lj + q̃∗RiT

a
ij t̃Rj) , (1.2.141)

where colour indices have been suppressed and where T a are of the generators of the
fundamental representation of SU(3). As the pseudoscalar contribution is parametrised
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by sinφO, when CP conservation is enforced, only the scalar octet will decay via the
squark-antisquark channel as the pseudoscalar coupling vanishes. If kinematically
allowed, the scalar octets will decay into gluinos and squarks in roughly equal propor-
tion, although high LHC mass limits on the gluinos and squarks (& 1.5 TeV) [146]
indicate the need for very heavy scalar octets to observe these decay channels, and
hence they are unlikely to be seen at the LHC. The same applies for pseudoscalar
decays into gluinos, and generally for the sgluons in CP violating scenarios. How-
ever, if the parameter space were accessible, from tree-level processes the decay of a
sgluon could therefore produce signatures including 2-4 jets and missing energy (from
2 LSPs). Although, even more interestingly, as sgluons can be pair-produced, this
number could increase to 4-8 jets and missing energy (from 4 LSPs).

The pseudoscalars (scalar octets) can also decay into quark-antiquark pairs (and
gluons), however these are both suppressed at 1-loop level. The decay mode arising
from the coupling between the sgluons and quark-antiquark pairs is proportional to a
factor of the quark-mass squared, meaning that the biggest contribution comes from
sgluons to top-quarks [117]. As the pseudoscalar coupling to the gluons vanishes under
CP conservation this means that, certainly for the pseudoscalars, this leads to decays
predominantly into tops, lending the sgluon to 4-top decay channel as a promising
avenue at hadron colliders [145]. The sgluon decay rates for Oa1 and Oa2 for the different
decay channels can be found in [117]. It should be noted that, although these small
corrections will not be considered in what follows, as was shown in [130], the sgluons
make contributions to the Higgs mass via two-loop corrections to the effective potential
(although if CP is conserved, the pseudoscalar corrections will vanish).

The properties and particle content of two variations of Dirac gaugino model will
now be discussed.

1.2.4.2 The minimal model: MDGSSM

In this section, the minimal model, often referred to as the Minimal Dirac Gaugino
Supersymmetric Standard Model (MDGSSM), is considered, being described by just
the matter content of the MSSM and the adjoint chiral superfields. As it can be
seen in the table, there is a freedom in assigning R-charges to the chiral superfields,
and numerous choices have been used in literature (see e.g. [79,92,103,104,114,147]).
While R-symmetry is not fully conserved in the MDGSSM, in section 1.2.4.3 there
will be examples of Dirac gaugino models where further field content can be added to
preserve R-symmetry in the full Lagrangian. In these models, the R-charges will differ
in the chiral sector to the ones above in table 1.4. In fact, the MDGSSM requires R-
symmetry to be broken explicitly in the Higgs sector by a Bµ term, otherwise it would
be spontaneously broken at the same time as electroweak symmetry and generate
a massless R-axion in the Higgs sector. This is because the Bµ term essentially
controls the mass of the Higgs pseudoscalar, and so its absence would yield a massless
pseudoscalar, or R-axion, in the Higgs sector at the time of electroweak symmetry
breaking. If Bµ becomes very heavy, the heavy Higgs will become decoupled. If, on
the other hand, Bµ becomes very light (around the mass of the lightest squarks),
then the heavy Higgs will become involved in squark and gluino decays which makes
the low energy phenomenology more complicated. The phenomenology of squark and
gluino decays will be discussed further in chapter 3. Keeping Bµ ∈ (104, 107) GeV4

means that Bµ will not become involved in the decays of the electroweakinos, and
thus the Bµ term should be small but non-zero. As in [66, 83, 105, 116, 125], it shall
be assumed that this is the only source of R-symmetry breaking, and is motivated
by minimality, naturalness (allowing the couplings λS,T ) and the idea that the Higgs
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sector couples to a different source of SUSY breaking than the other fields (in order
e.g. to generate the µ/Bµ terms of similar order etc). This is perfectly consistent
at the level of the RG equations: the Bµ term does not generate other R-breaking
operators on RG evolution. This means that the superpotential is

WMDGSSM
Higgs =Y ij

u UiQj ·Hu − Y ij
d DiQj ·Hd − Y ij

e EiLj ·Hd

+ µHu ·Hd + λSS Hu ·Hd + 2λT Hd ·THu , (1.2.142)

where Qi,LjUi,Di,Ei, ,Hd,Hu are, respectively, the superfields for the left-handed
(LH) squarks; LH sleptons; right-handed (RH) up-type squarks; RH down-type squarks;
RH sleptons; down- and up-type Higgs fields as in the MSSM, and Y ij

u , Y
ij
d , Y

ij
e which

are the standard Yukawa couplings of the MSSM. It would also be possible to include
superpotential couplings,

WMDGSSM
RV = LS +

M1

2
S2 +

κ

3
S3 +M2tr(TT) +M3tr(OaOa) (1.2.143)

+ λSTStr(TT) + λSOStr(OaOa) +
κO
3

tr(OaOaOa) , (1.2.144)

but it is preferable not to include them here as they violate R-symmetry (RV). The
most general choice that can be made for the Higgs and adjoint scalar sector for the
standard soft terms is

Lstandard soft = Q
i
(m2

Q)jiQj + U
i
(m2

U )jiUj +D
i
(m2

D)jiDj + L
i
(m2

L)jiLj + E
i
(m2

E)jiEj

+m2
Hu |Hu|2 +m2

Hd
|Hd|2 +Bµ(Hu ·Hd + h.c) +

1

2
Miλiλi (1.2.145)

+m2
S |S|2 + 2m2

T tr(T †T ) +
1

2
BS
(
S2 + h.c

)
+BT (tr(TT ) + h.c.)

+m2
O|O|2 +BO (tr(OO) + h.c.) +AS (SHu ·Hd + h.c) + 2AT (Hd · THu + h.c)

+
Aκ
3

(
S3 + h.c.

)
+AST (Str(TT ) + h.c) +ASO (Str(OO) + h.c) ,

where λi = {λY , λ2, λ3} are the gauginos of hypercharge, SU(2) and SU(3) respec-
tively, with Majorana masses MY ,M2,M3. The first two lines show the MSSM soft-
SUSY breaking terms as described in (1.2.71); while the third, fourth and fifth lines
show soft-terms associated with the adjoint scalars. Importantly, the above con-
tains no SUSY-breaking squark trilinears; but there is still some small mixing in the
stop/sbottom sector due to the µ-term.

To these, the supersymmetry-breaking supersoft operators mDiθ
α for Dirac masses

(as described in section 1.2.4.1) are added,

Lsupersoft =

∫
d2θ
[√

2mDY θ
αW1αS + 2

√
2mD2θ

αtr (W2αT)

+ 2
√

2mD3θ
αtr (W3αO)

]
+ h.c. , (1.2.146)

where it is recalled that Wiα are the supersymmetric gauge field strengths defined in
(1.2.39).

The electroweak sector

This section considers the electroweak sector of the model, which will be the focus of
chapter 2 where Higgs alignment will be discussed. The condition for tree-level Higgs
alignment can be seen easily from the mass matrix of the CP-even neutral scalars,
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which will be derived here, starting with the (neutral) electroweak scalar potential,
VEW . A more detailed derivation can be found in [83], along with a discussion of the
potential in various limits. For the neutral fields, the electroweak scalar potential is
given by

VEW =(m2
Hu+ µ2)|H0

u|2+(m2
Hd

+ µ2)|H0
d |2−Bµ(H0

uH
0
d+h.c.)+

g2
2 + g2

Y

8

(
|H0

u|2−|H0
d |2
)2

+
(
λ2
S + λ2

T

)
|H0

uH
0
d |2 (1.2.147)

+
1

2

(
M2
S +m2

S + 4m2
DY +BS

)
S2
R +

1

2

(
M2
S +m2

S −BS
)
S2
I

+
1

2

(
M2
T +m2

T + 4m2
D2 +BT

)
T 2
R +

1

2

(
M2
T +m2

T −BT
)
T 2
I

+

[
λ2
S

2
(S2
R + S2

I )+
λ2
T

2
(T 2
I + T 2

R) + λSλT (SITI+SRTR)+
√

2µ (λSSR + λTTR)

]
×
(
|H0

u|2 + |H0
d |2
)

+ gYm1DSR
(
|H0

u|2 − |H0
d |2
)

+ g2m2DTR
(
|H0

d |2 − |H0
u|2
)

− λS√
2

(MS+AS)SR(H0
dRH

0
uR−H0

dIH
0
uI)−

λS√
2

(MS−AS)SI(H
0
dRH

0
uI+H0

dIH
0
uR)

− λT√
2

(MT +AT )TR(H0
dRH

0
uR−H0

dIH
0
uI)−

λT√
2

(MT−AT )TI(H
0
dRH

0
uI+H0

dIH
0
uR),

with the Higgs scalar potential for the neutral components on line 1; a quartic contri-
bution from the DG-adjoints on line 2; effective mass terms for the real and imaginary
singlet a neutral triplet fields on lines 3 and 4, with BS,T soft-SUSY breaking bilinear
terms; interaction terms from the superpotential on lines 5 and 6; D-term contribu-
tions on line 7 giving rise to masses for the adjoint scalars; and soft-SUSY breaking
terms on lines 8 and 9 (these are often set to zero). All the parameters are chosen
to be real, and thus CP-conserving. In this scenario, the imaginary components in
the potential can be elimintated. While the choice has been made to neglect terms
cubic in the singlet, an analysis involving a S3 term can be found in [67]. Compared
to the MSSM potential, it can be seen that the D-flat direction Hu = Hd is lifted
by a supplementary quartic term (line 2). Reference [83] also discusses the different
forms of the potential under various assumptions for the masses: in this work, it will
be assumed that mS and mT are large, that the Majorana masses vanish, and that
the Dirac masses are sub-TeV.

At the minimum of the scalar potential, the singlet and neutral triplet fields acquire
VEVs:

〈SR〉 = vS , 〈TR〉 = vT . (1.2.148)

Under the assumptions of a CP-neutral vacuum, and employing the abbreviations
and relations stated in section 1.2.3.1, then the minimisation of the electroweak scalar
potential yields the relations11

M2
Z

2
= −µ̃2 +

m2
Hd
−m2

Hu
t2β

t2β − 1
+

[
t2β + 1

t2β − 1

]
(g2m2DvT − gYm1DvS),(1.2.149)

m2
A ≡ 2B̃µ

s2β
= m2

Hu +m2
Hd

+ 2µ̃2 + v2

(
λ2
T + λ2

S

)
2

, (1.2.150)

11Equations (1.2.149, 1.2.150) can also be found in [67], where a mistype of −c2β is noted in the last
term of (3.10).
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and

vS =
v2

2m̃2
SR + λ2

Sv
2

[
gYmDY c2β−

√
2µλS+

λS√
2

(MS+AS)s2β−λSλT vT
]
(1.2.151)

vT =
−v2

2m̃2
TP + λ2

T v
2

[
g2mD2c2β+

√
2µλT−

λT√
2

(MT +AT )s2β+λSλT vS

]
(1.2.152)

where

µ̃ ≡ µ+
1√
2

(λSvS + λT vT ) , (1.2.153)

B̃µ ≡ Bµ +
λS√

2
(MS +AS)vS +

λT√
2

(MT +AT )vT , (1.2.154)

and

m̃2
SR = M2

S +m2
S + 4m2

DY +BS , (1.2.155)

m̃2
TP = M2

T +m2
T + 4m2

D2 +BT . (1.2.156)

Masses of the CP even neutral scalars

The mass matrix for the CP even scalars in the basis (h,H, SR, T
0
R) takes the form

M2
Z + ∆hs

2
2β ∆hs2βc2β ∆hs ∆ht

∆hs2βc2β M2
A −∆hs

2
2β ∆Hs ∆Ht

∆hs ∆Hs m̃2
SR + λ2

S
v2

2 λSλT
v2

2

∆ht ∆Ht λSλT
v2

2 m̃2
TP + λ2

T
v2

2

 , (1.2.157)

where the following have been defined:

∆h =
v2

2
(λ2
S + λ2

T )−M2
Z . (1.2.158)

It is interesting to observe is that, when λS and λT take their N = 2, ∆h vanishes (as
it was observed in [78]): in this scenario, as will be discussed in detail in section 2,
the off-diagonal contributions vanish and there is no mixing between the two CP-even
neutral Higgs bosons, leaving the lightest of the two to behave like an SM-like Higgs.
Off-diagonal elements describing the mixing of SR and T 0

R states with the light Higgs
h are denoted by

∆hs = −2
vS
v
m̃2
SR, ∆ht = −2

vT
v
m̃2
TP , (1.2.159)

while

∆Hs = g′m1Dvs2β − λS v(As+Ms)√
2

c2β , (1.2.160)

∆Ht = −gm2Dvs2β − λT v(AT+MT )√
2

c2β , (1.2.161)

stand for the corresponding mixing with the heavier Higgs, H. However, the picture
of the Higgs sector changes when an R-symmetry is implemented in the Lagrangian.
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Superfield Scalars Fermions (SU(3), SU(2), U(1)Y ) R-charge

Extra MRSSM + unification chiral superfields

R-Higgs/ Ru (R+
u , R

0
u) (R̃+

u , R̃
0
u) (1, 2, -1/2) 2

R-Higgsinos Rd (R0
d, R

−
d ) (R̃0

d, R̃
−
d ) (1, 2, 1/2) 2

Extra unification chiral superfields

Fake electrons Ê(×2) Ê ˆ̃E (1,1, 1) 0

Ê′(×2) Ê ˆ̃E (1,1,−1) 0

Table 1.5: Additional field content in the MRSSM (first box) and CMDGSSM (first
and second boxes) to prompt gauge-field unification in Dirac gaugino extended models.

1.2.4.3 R-symmetry preserving Dirac gaugino extensions

Another very popular realisation of Dirac gaugino models is the minimal R-symmetric
supersymmetric standard model (MRSSM) [79, 115, 126, 127, 131], where one can ex-
tend the field content even further than table 1.4 to enable a Lagrangian that is fully
invariant under R-symmetry. The R-charge assignments in the MRSSM differ slightly
from those in table 1.4: in this model, an exact continuous R-symmetry is preserved
by including some R-Higgs doublet superfields, Ru and Rd, which couple to the Higgs
bosons but do not obtain an expectation value. The Higgs-like leptons have the same
gauge quantum numbers as the Higgs doublet fields, and allow the Higgs doublets
Hu, Hd to have zero R-charge. The (s)quark and (s)lepton multiplets typically have
an R-charge of 1, the R-Higgs an R-charge of 2, while the R-charges in the gauge sec-
tor and for the DG-adjoint fields do not change. In table 1.5 the reader will also see
a set of unification fields: these can be added to the Dirac gaugino models to restore
the property of gauge-coupling unification which is lost with the addidion of the new
Dirac-adjoint fields to the MSSM field content. This additional content includes the
two R-Higgs fields present in the MRSSM, as well as vector-like lepton fields. This
MDGSSM-unified scenario was studied in [116,125,129], and is often referred to as the
constrained minimal Dirac gaugino supersymmetric standard model (CMDGSSM).

In addition to the Yukawa interactions of the MSSM, the MRSSM allows the
interactions12

WMRSSM
Higgs ⊃ µu Ru ·Hu + µd Rd ·Hd + λSuS Ru ·Hu + λSdS Rd ·Hd

+ 2λTu Ru ·THu + 2λTd Rd ·THd . (1.2.162)

One can see that, as required by R-symmetry, any couplings between two Higgs su-
perfields; two R-Higgs superfields; multiple adjoint superfields, or scalar adjoint-Higgs
superfields are forbidden. The most general MRSSM Lagrangian contains the stan-
dard soft terms of the MDGSSM in eq. 1.2.145 (except for the R-symmetry breaking
Majorana mass terms), but also holomorphic scalar adjoint - Higgs couplings and new
soft-mass terms for the Higgs-like leptons;

LMRSSM
standard soft = m2

Hu |Hu|2 +m2
Hd
|Hd|2 +Bµ(Hu ·Hd + h.c) +m2

Ru |Ru|2 +m2
Rd
|Rd|2

+m2
S |S|2 + 2m2

T tr(T †T )+
1

2
BS
(
S2 + h.c

)
+BT (tr(TT )+ h.c.) +BO(tr(OO)+ h.c.)

12We note the discrepancy in coefficient 2 for the triplet coupling terms compared to [114, 115],
which arises due to a difference in definition of T and the choice for the neutral components to take
the same pre-factor as the singlet neutral components.
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+m2
O|O|2 +AS (SHu ·Hd + h.c) + 2AT (Hd · THu + h.c) +

Aκ
3

(
S3 + h.c.

)
+AST (Str(TT ) + h.c) +ASO (Str(OO) + h.c) . (1.2.163)

The trillinear terms Ai are usually neglected, but there is no symmetry that forbids
them (even if they are expected to be small e.g. in gauge mediation models). A
detailed description of the MRSSM Higgs sector is given in [115,126,127].

The expanded Higgs sector has the obvious impact of increasing the number elec-
troweakinos in the MRSSM compared to the MDGSSM, giving rise to neutralinos
(charginos) composed of 8 neutral (charged) Weyl fermions. The mass matrices are
then subdivided according to R-charge, and the result is four physical 4-component
neutralinos and two sets of two physical 4-component charginos: owing to R-symmetry
conservation, these two sets of charginos do not mix with one another. As such, the
MRSSM possesses a distinct and interesting phenomenology from the MDGSSM, how-
ever a study of the electroweakino sector is out of the scope of this text, and the reader
is referred to [148,149].

In the next section a preliminary study will be made into the behaviour of the
Higgs sector in the MRSSM under the assumptions of high energy alignment, and the
results will be compared to the findings of those within the context of the MDGSSM.
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1.3 New physics and statistics

One important question, which branches across the paths of experimental and theo-
retical physics, concerns how it is possible to test for new theories. While hypotheses
cannot be proved right, when one considers enough statistical distributions of data,
it can become clear that some hypotheses are more correct than others. Colliders
are ultimately counting experiments where the number of events, n, passing a given
set of criteria will be predicted uniquely by different models. One example could
be the number of particles in a given transverse momentum bin as the result of a
proton-proton collision: probability theory quantifies and models the uncertainty in
data concerned with the incidence of random events such as these.

When searching for new physics processes, one wants to count the number of events
in a region where the new signal may be present. Given a number of predicted events
within a given interval, under the assumption of a particular hypothesis, the observed
number can be modelled as a probability distribution. Frequently in particle physics
one needs to handle small event counts and account for the Possionian nature of the
data. As such, for a discrete distribution of statistically independent events, i.e. in a
sample space where the rate of the measurement range is known, occurrences can be
modelled by a Poisson distribution,

P(n|s+ b) =
(s+ b)n

n!
e−(s+b) , (1.3.1)

for which the expectation value is

E(n) = s+ b , (1.3.2)

where n is the observed number of events, s is the expected number of signal events
(or the mean number) and b is the predicted number of background events.

For large values of s+b the Poisson distribution tends to a Gaussian distribution. It
is possible to introduce a parameter µ which multiplies the number of events predicted
for a given model i.e. such that s+ b→ µs+ b. This parameter is a rescaling of the
signal prediction, deemed the signal strength, and putting a limit on µ from the data
provides information about the exclusion of a model. If µ =0, it means that there
is no signal present in the sample space and the model is therefore excluded. When
µ = 1, then the model is excluded at the given confidence limit that the value of µ is
calculated at; the range 0 ≤ µ ≤ 1 indicates to what degree the model is excluded. If
µ > 1 then the amount of signal is greater than that predicted by the model and, in
this instance, the model point cannot be excluded. For example, if a model predicted
50 events in a certain momentum bin, determining a value of µ = 1.5 would mean
that the model was viable unless it predicted 75 or more events there. The use of the
signal strength as a measure of parameter space exclusion is explored in section 4.

Background predictions can also be modelled as Poisson distributions, with the
background hypothesis H0 corresponding to the case s = 0. Here, the events are
counted in a region where little or no signal is expected. The background hypothesis
implies that the observed data can be inferred from explanations of existing physics.
Ideally, background predictions in searches for new processes are based on actual con-
trol sets of measured data, but frequently the data is not available and it is necessary
to rely on Monte Carlo generated predictions.

Variables that can be ranked on a scale of more signal-like to more background-
like are called test statistics, and these permit the discrimination between proposed
hypotheses. Test statistics are a function of the chosen observables, and can be simple
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values like event count, or more complex quantities like likelihood functions. The
distribution of the test statistic is known under the individual hypotheses: these
should be predicted separately assuming (1) the background hypothesis (= H0) is
correct (typically taken as the Standard Model prediction), and (2) that the new
hypothesis of signal and background (= H1) is.

The plausibility of H can be identified by the likelihood ratio,

q = 2 log

[L(n|µs+ b)

L(n|b)

]
(1.3.3)

where

L(n|s+ b) =
∏
i

P(ni|µsi + bi) , (1.3.4)

is the likelihood function of µs + b (associated with the hypothesis H) given the
outcome n. The observed number of events are measured in bins i: the probability
for each bin is calculated, and the product of the probabilities for each bin gives the
likelihood of the model to be true. For example, if L(n|s + b) > L(n|s + b) then the
data observed is more likely to have happened if the hypothesis were H1 than if it
were H0. By nature of its definition, q increases as it becomes more signal-like, and
decreases as it becomes more background-like.

How credible it is that the data is associated to one hypothesis or another can also
be generated by a confidence level (CL). Specifically, the level of viability in a signal
hypothesis is described by the CLs procedure [150,151]. Such types of confidence level
are determined from the expression

CLH = PH(q ≤ qobs) =

∫ qobs

−∞

dP(n|H)

dq
dq , (1.3.5)

where dP/dq is the probability distribution function (PDF) of the test-statistic q for
H = (b, s+b) experiments, denoting background and signal + background experiments
respectively. When the value of CLH is very close to 1, it indicates that the data shows
poor agreement with the hypothesis, H, and favours the alternate theory.

It is not possible to write CLs in this same way, as signal is always accompanied by
background. Instead, the CLs limit is defined by the normalisation of the confidence
in the signal + background hypothesis to that in the background only,

CLs ≡
CLs+b
CLb

=
Ps+b(qs+b ≤ qobs)
Pb(qb ≤ qobs)

, (1.3.6)

where

1− CLs ≤ CL. (1.3.7)

Interpreting CLs statistics should be approached with caution: when 1−CLs ∼ 0.95,
one cannot affirm that there is a 95% confidence level in the result, but rather that
any point that lies in the excluded region where 1 − CLs ≥ 0.95 has a probability
less than 5% of having been falsely excluded. Exclusion limits in the squark v. gluino
mass plane for both the MSSM and MDGSSM will be derived using the CLs method
in chapter 3.

There are many in depth resources out there on the subject of statistics in particle
physics, to which the reader is referred to e.g. [152–155], among others, for more
information.
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2 – Higgs alignment from extended
supersymmetry

2.1 Introduction

In the absence of signals of strongly-coupled particles at the LHC, it has become im-
portant to study the possibility of new particles that couple to Standard Model (SM)
states only via couplings of electroweak strength. The bounds on such particles are
still relatively weak but with much luminosity to arrive there is still a substantial pa-
rameter space to explore, and such theories perhaps represent now the best chance for
discoveries. Among such theories, one that has received significant and now increasing
attention is the Two Higgs Doublet Model (THDM); see e.g. [156–159] and references
therein. It is important to ask the question: “does the Higgs sector just consist of
one doublet?” because the answer will give profound information about nature. If
there are indeed additional fundamental scalars that mix with the Higgs boson, then
this dramatically worsens the Hierarchy problem and would necessitate a rethinking
of our ideas of naturalness. On the other hand, such sectors naturally appear in the
context of supersymmetry (SUSY) and it is conceivable that a second Higgs doublet
could be the harbinger of a full SUSY theory.

However, the measurements of the Higgs boson’s couplings already place significant
constraints on the amount of mixing that it can suffer. It is for this reason that there
has been much interest in the idea of alignment in the Higgs sector, i.e. that the
mass eigenstates align with the vacuum expectation value, because in this case the
couplings would be exactly SM-like.

To quantify this, consider two Higgs doublets Φ1,Φ2 which mix, and then rotate
their neutral components as follows:(

Re(Φ0
1)

Re(Φ0
2)

)
=

1√
2

(
cβ −sβ
sβ cβ

)(
v + h̃

H̃

)
(2.1.1)

where the notation,

cβ ≡ cosβ, sβ ≡ sinβ, tβ ≡ tanβ,

shall be used throughout. In this basis, the mass matrix can be written as

M2
h =

(
Z1v

2 Z6v
2

Z6v
2 m2

A + Z5v
2

)
. (2.1.2)

Clearly the mass eigenstates are only h̃, H̃ if

Z6 = 0,

53
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and this is the condition for alignment, because the fields align with the electroweak
vacuum expectation value. On the other hand, if Z6 6= 0, one must make a further
rotation which is conventionally parameterised by an angle α as(

h̃

H̃

)
=

(
sβ−α cβ−α

cβ−α −sβ−α

)(
h

H

)
(2.1.3)

where now h,H are the two mass eigenstates. It shall be assumed throughout that
h is the lightest eigenstate. In terms of the masses of the physical bosons mh,H this
gives

Z6v
2 =sβ−αcβ−α(m2

h −m2
H). (2.1.4)

In both the type-I and type-II THDM, there is a Higgs eigenstate that couples to the
up-type quarks, and this eigenstate shall be defined to be Φ2. This means that the
ratio of the h coupling to all up-type quarks compared to the SM Higgs’ value is

κu =
cosα

sinβ
,

while the ratio of the coupling to vector bosons to the SM value is also determined
entirely by the mixing (neglecting loop effects from the rest of the extended Higgs
sector):

κV = sin(β − α). (2.1.5)

However, there is a combined ATLAS+CMS bound [160] on the ratio of these:

λV u ≡
κV
κu

= 1+0.13
−0.12 =

1

1 + 1
tβtβ−α

. (2.1.6)

This is enough to constrain

tβtβ−α & 7.3⇒ |Z6| .
∣∣∣∣− 7.3tβ

53 + t2β

m2
H −m2

h

v2

∣∣∣∣ . ∣∣∣∣− 0.5
m2
H −m2

h

v2

∣∣∣∣, (2.1.7)

where the latter bound comes from the value tβ = 7.3, and the bound is much more
stringent for large or small tβ. For mH somewhat above mh this is a rather weak con-
straint, only becoming relevant when the two states approach degeneracy. However,
in the type-II THDM, there is another constraint from the ratio of the ratio of the
neutral Higgs coupling to all down-type quarks compared to its SM value

κd = − sinα

cosβ

via

λdu ≡
κd
κu

= 0.92± 0.12 =
1− tβ

tβ−α

1 + 1
tβtβ−α

(2.1.8)

and, since from the previous constraint it is known that the denominator is nearly
equal to one, one has

−0.04 .
tβ
tβ−α

. 0.2 (2.1.9)
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which in turn implies tβ−α � tβ and so sβ−αcβ−α ' 1
tβ−α

and

−0.04
m2
H −m2

h

tβv2
. Z6 . 0.2

m2
H −m2

h

tβv2
. (2.1.10)

This leads to a sensible constraint; for example, for mH = 600 GeV and tβ = 5 it leads
to Z6 . 0.2. So one sees that either the mass mH should be taken to be large, in which
case one has decoupling, or it is kept light in order to possibly detect it at the LHC,
in which case one needs alignment without decoupling. However, this is non-trivial;
as the LHC measurements become more precise, the constraints will tighten further,
and it is in this spirit that it is important to consider models where the alignment is
natural rather than ad hoc.

The problem for the different types of THDM is that alignment without decou-
pling is not generic when the masses are chosen – or equivalently quartic couplings –
from the bottom up. Hence it is logical to derive the couplings of the THDM from
some higher-energy theory and look for cases where alignment arises naturally. For
example, [161, 162] proposed a model which leads to a natural alignment condition,
based on additional bosonic symmetries. Here, on the other hand, it shall be shown
how alignment arises automatically in a class of supersymmetric models, with the
additional benefits of (greatly) increasing the naturalness of the model and being able
to predict the scale of new superpartners. Moreover, it will be shown that quantum
corrections actually improve the alignment!

The class of models that will be considered have a gauge sector which is enhanced to
N = 2 supersymmetry at a (potentially high) scaleMN=2. This fits into the framework
of Dirac gaugino models that have been discussed in sec. 1.2.4.1. In particular, the
idea of N = 2 supersymmetry in the gauge sector only and the consequences for the
Higgs sector were first explored in [78] and recently studied in [136, 139]; in general,
though, this was either taken to be at the same scale as the other superpartners [136],
or only a rough estimate of the main contribution of the chiral sector was included [78],
while this work shall show that increasing MN=2 improves alignment and increases
naturalness!

Section 2.2 will describe the theory central to this work and how it leads to natural
alignment at tree level. In section 2.3 the effect of radiative corrections will be outlined.
In section 2.4 a precision study of the model will be performed using an EFT approach
to obtain the parameters at low energies, the scale of new physics will be predicted
from the value of the Higgs mass, and the consequences for alignment will be explored.
In section 2.5 all of the relevant constraints on the model space will be considered,
including the latest LHC search for decays to τ pairs, B → sγ searches and electroweak
precision constraints, and it will be shown how this affects the model. In the appendix
all of the one-loop threshold corrections will be given for the model at the scale
of supersymmetry. Finally, in section 2.6 the case of the MRSSM will be briefly
considered.

2.2 Alignment from extended supersymmety

2.2.1 The Higgs sector of Dirac gaugino models

2.2.1.1 The minimal model

As described in section 1.2.4.1, to endow gauginos with a Dirac mass one needs, at a
minimum, to add chiral fermions in the adjoint representation of each gauge group,
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which means adding adjoint chiral superfields: a singlet S, an SU(2) triplet T, and
an SU(3) octet O. However, one can then choose the superpotential according to the
symmetries that one wants to preserve. One motivation for the adjoint fields is as the
additional degrees of freedom from an N = 2 supersymmetric gauge multiplet, and
then the Hu, Hd fields become an N = 2 hypermultiplet; in this work it shall be as-
sumed that N = 2 supersymmetry in the gauge/Higgs sector only is valid above some
scale MN=2. In this case, it is immediately possible to write down the superpotential
(as in eq. (1.2.142))

WHiggs = µHu ·Hd + λSS Hu ·Hd + 2λT Hd ·THu (2.2.1)

which contains the only interactions compatible with N = 2 SUSY and includes
a central role for the R-symmetry. Indeed, under the R-symmetry of the N = 1
theory the adjoint scalars must have zero charge, and this prevents couplings of the
form S2, S3 etc which would otherwise be permitted by the gauge symmetry. It
was explained in section 1.2.1.6 that all interactions in an N = 2 theory are gauge
interactions. The condition of N = 2 supersymmetry then imposes

λS =
1√
2
gY , λT =

1√
2
g2 (2.2.2)

(where gY , g2 are the hypercharge and SU(2) gauge couplings) at the scale MN=2,
which shall in general be taken to be greater than the N = 1 SUSY scale. The
relevant soft and supersoft terms are given in eqs. (1.2.145), (1.2.146). For simplicity,
the choice Aκ = AST = ASO = 0 (eq. (1.2.145)) will also be implemented in the
following, which is well justified in gauge mediation models [129], but it is not expected
that these parameters would affect the bounds deduced in any significant way.

One must also add supersymmetry-breaking terms, and these do not necessarily
need to respect the same symmetries as supersymmetric terms. The most general
choice that one can make for the Higgs and adjoint scalar sector for the standard soft
terms is the same as in eq. 1.2.145.

Since the interest here is in Dirac gaugino masses and their attractive theoretical
and phenomenological properties, one should expect that the terms that violate R-
symmetry should be small: this includes the Majorana gaugino masses; AS , AT ; but
also Bµ. However, it is required that the R-symmetry is broken at some scale, since it
is believed that global symmetries cannot be exact; but also, in this model, the Higgs
must carry R-charge and so the absence of an R-axion requires it. Indeed, the R-
axion is essentially the Higgs pseudoscalar, whose mass is controlled by the Bµ term;
therefore, as in earlier works, it is taken to have a small but non-zero value. One
can also take motivation from models of gauge mediation of supersymmetry [82,129],
where the trilinears are all small, and these shall mostly be neglected in the following
(although they do not significantly affect the analysis).

On the other hand, in gauge-mediated models the adjoint scalars are typically the
heaviest states. Taking large mS ,mT ,mO then motivates integrating them out of the
light spectrum; but interestingly, since Bµ should remain small due to the approximate
R-symmetry, if the Higgs masses were to be tuned such that only one remains light,
then one would have very large tanβ, and would have trouble obtaining the correct
Yukawa couplings for the down-type quarks and leptons – this implies that a second
Higgs should be taken to be somewhat light, and motivates studying the two-Higgs
doublet limit of the model.

As mentioned in section 1.2.4.3, If one wishes to naturally restore gauge coupling
unification, additional vector-like lepton fields as shown in table 1.5 can be added.
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Since they are vector-like, they could also form hypermultiplets of N = 2 at MN=2,
but their inclusion will little change the discussion in this paper so for sake of generality
they shall be neglected.

2.2.1.2 The MRSSM

The other Dirac gaugino extension investigated in this work is the MRSSM, as detailed
in sec. 1.2.4.3. For convenience, the Higgs superpotential of eq. (1.2.162) is restated
here:

WMRSSM
Higgs = µu Ru ·Hu + µd Rd ·Hd + λSuS Ru ·Hu + λSdS Rd ·Hd

+2λTu Ru ·THu + 2λTd Rd ·THd . (2.2.3)

If N = 2 supersymmetry is then imposed at some scale, one can treat (Ru, Hu) and
(Rd, Hd) as hypermultiplets and then one would have

λSu =
gY√

2
, λSd = − gY√

2
, λTu = λTd =

g2√
2
, (2.2.4)

where the difference in sign is explained by the different charges of the hypermultiplets.
R-symmetry then limits the possible soft-supersymmetry breaking terms to consist of
only the supersoft operator, squark/slepton masses and the standard soft terms of eq.
1.2.163

2.2.2 Two-Higgs doublet model limit

The Higgs sectors of the models in the previous subsection have been comprehensively
studied. However, here it is desirable to map them onto the two Higgs doublet model
once the adjoint scalars have been integrated out. The standard parametrisation of
the Two-Higgs doublet model is

VEW = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − [m2
12Φ†1Φ2 + h.c] +

1

2
λ1(Φ†1Φ1)2 +

1

2
λ2(Φ†2Φ2)2

+λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+

[
1

2
λ5(Φ†1Φ2)2 + [λ6(Φ†1Φ1) + λ7(Φ†2Φ2)]Φ†1Φ2 + h.c

]
, (2.2.5)

To map our supersymmetric model onto this, the following identification can be made,

Φ2 = Hu, Φi
1 = −εij(Hj

d)∗ ↔
(

H0
d

H−d

)
=

(
Φ0

1

−(Φ+
1 )∗

)
, (2.2.6)

from which the potential can be written down:

VEW =
(
m2
Hd

+ µ2
)
|Hd|2 +

(
m2
Hu + µ2

)
|Hu|2 +Bµ[Hu ·Hd + h.c]

+
1

2
λ1

(
|Hd|2

)2
+

1

2
λ2

(
|Hu|2

)2
+ λ3|Hu|2|Hd|2 + λ4|Hu ·Hd|2

(2.2.7)

with

m2
11 = m2

Hd
+ µ2, m2

22 = m2
Hu + µ2, m2

12 = Bµ. (2.2.8)

The parameters λi were given at tree-level and with some loop corrections in [83,105]
in the limit of neglecting µ and mDY ,mD2. However, when the adjoint scalars are
integrated out and these terms are retained, there are corrections due to the presence
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of trilinear couplings; setting the parameters AS , AT to zero, one finds for the minimal
model:

λ1 =
1

4
(g2

2 + g2
Y )−

(
gYmDY −

√
2λSµ

)2
m2
SR

−
(
gmD2 +

√
2λTµ

)2
m2
TP

λ2 =
1

4
(g2

2 + g2
Y )−

(
gYmDY +

√
2λSµ

)2
m2
SR

−
(
gmD2 −

√
2λTµ

)2
m2
TP

λ3 =
1

4
(g2

2 − g2
Y ) + 2λ2

T +
g2
Ym

2
DY − 2λ2

Sµ
2

m2
SR

− g2m2
D2 − 2λ2

Tµ
2

m2
TP

λ4 =− 1

2
g2

2 + λ2
S − λ2

T +
2g2

2m
2
D2 − 4λ2

Tµ
2

m2
TP

,

λ5 =λ6 = λ7 = 0. (2.2.9)

Here the following definitions have been used:

m2
SR ≡m2

S +BS + 4m2
DY , m2

TP ≡ m2
T +BT + 4m2

D2. (2.2.10)

In fact, the terms suppressed by mSR,mTP all have the effect of suppressing the Higgs
quartic coupling: in the limit of large Dirac gaugino masses so that m2

S , BS ,m
2
T , BT

can be neglected, one finds

λ1, λ2 → 0, λ3 → 2λ2
T , λ4 → λ2

S − λ2
T . (2.2.11)

This simply corresponds to the well-known fact (see e.g. [77]) that the adjoint scalars
eliminate the D-term potential of the Higgs, because they couple via the D-term;
writing φi for (anti)fundamental scalars and Σ for adjoint scalars, one has

L ⊃
√

2mDΣΣaDa + gDaφ∗iT
aφi → VD =

1

2

(√
2mDΣΣa + gφ∗iT

aφi

)2
(2.2.12)

where T a are the generators of the gauge group with coupling g, and one sees that
the above will always be zero when Σ is integrated out.

For the MRSSM, for simplicity again neglecting AS , AT – for completeness the full
corrections are given in appendix B.4.1 – one finds

λMRSSM
1 =

1

4
(g2

2 + g2
Y )− (gYmDY −

√
2λSdµd)

2

m2
SR

− (g2mD2 +
√

2λTdµd)
2

m2
TP

λMRSSM
2 =

1

4
(g2

2 + g2
Y )− (gYmDY +

√
2λSuµu)2

m2
SR

− (g2mD2 +
√

2λTuµu)2

m2
TP

λMRSSM
3 =

1

4
(g2

2 − g2
Y )

+
(gYmDY −

√
2λSdµd)(gYmDY +

√
2λSuµu)

m2
SR

− (g2mD2+
√

2λTdµd)(g2mD2+
√

2λTuµu)

m2
TP

λMRSSM
4 =− 1

2
g2

2 + 2
(g2mD2 +

√
2λTdµd)(g2mD2 +

√
2λTuµu)

m2
TP

λMRSSM
5 =λMRSSM

6 = λMRSSM
7 = 0. (2.2.13)

In this case, the supersoft limit is even worse, because in that limit all of the λi vanish.
However, even with the additions of λS and λT in the minimal model, the potential
is not stable in this limit – for example if Hd or Hu are set to zero the quartic terms
vanish – and so one would require loop corrections to prevent runaway vacua. An
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investigation of whether this is even viable is beyond the scope of this paper: instead,
since one does not want to substantially reduce the Higgs quartic coupling at low
scales instead it shall be considered that |mDY | � mS , |mD2| � mT . As is also well
known (see e.g. [67, 105]) and shall later be discussed, this limit is also imposed by
electroweak precision tests. In this limit one has instead at tree-level

λ1, λ2 →
1

4
(g2

2 + g2
Y ), λ3 →

1

4
(g2

2 − g2
Y ) + 2λ2

T , λ4 → −
1

2
g2
Y + λ2

S − λ2
T ,

(2.2.14)

and λMRSSM
i → λMSSM

i :

λMSSM
i , λMSSM

2 → 1

4
(g2

2 + g2
Y ), λMSSM

3 → 1

4
(g2

2 − g2
Y ), λMSSM

4 → −1

2
g2
Y .

(2.2.15)

Hence for the rest of the paper the low-energy theory is considered to be a type-II
two Higgs doublet model with an additional (Dirac) bino and wino (the gluino must
remain heavy due to LHC constraints – currently of the order of 2 TeV). The boundary
conditions shall be fixed at high energies and some interesting conclusions.

2.2.3 Tree-level alignment

In [78,136] the Higgs sector of Dirac gaugino models was investigated in the limit that
the couplings λS , λT took their N = 2 supersymmetric values at the low energy scale.
However, they also pointed out that alignment in the Higgs sector would be broken
by quantum corrections to the (2, 2) element of the Higgs mass matrix. In this section
the potential will be considered just at tree-level, with section 2.4 considering loop
corrections, contrasting the results here with theirs.

To begin with, the mass-matrices for the CP-even neutral scalars in the two-Higgs
doublet model can be parametrised in the alignment basis where(

Re(Φ1)

Re(Φ2)

)
=

1√
2

(
cβ −sβ
sβ cβ

)(
v + h

H

)
(2.2.16)

is (see e.g. [156–158])

M2
h =

(
Z1v

2 Z6v
2

Z6v
2 m2

A + Z5v
2

)
, (2.2.17)

where, using λ345 ≡ λ3 + λ4 + λ5 one has

Z1 ≡λ1c
4
β + λ2s

4
β +

1

2
λ345s

2
2β, Z5 ≡

1

4
s2

2β [λ1 + λ2 − 2λ345] + λ5

Z6 ≡−
1

2
s2β

[
λ1c

2
β − λ2s

2
β − λ345c2β

]
. (2.2.18)

The parameter mA is the pseudoscalar mass, given by

m2
A =− m2

12

sβcβ
− λ5v

2, (2.2.19)

while the charged Higgs mass is

m2
H+ =

1

2
(λ5 − λ4)v2 +m2

A. (2.2.20)
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The neutral Higgs masses are

m2
H,h =

1

2

[
m2
A + (Z1 + Z5)v2 ±

√(
m2
A + (Z5 − Z1)v2

)2
+ 4Z2

6v
4

]
.(2.2.21)

For the minimal model one has

Z1 =
1

4
(g2

2 + g2
Y )(1− s2

2β) +
s2

2β

2
(λ2
S + λ2

T ) (2.2.22)

Z5 =
1

2
s2

2β

[
(g2

2 + g2
Y )

2
− (λ2

S + λ2
T )

]
(2.2.23)

Z6 = −1

2
s2βc2β

[
(g2

2 + g2
Y )

2
− (λ2

S + λ2
T )

]
(2.2.24)

and

m2
H,h =

1

2

[
m2
A +

v2

4
(g2

2 + g2
Y )± v2

[(
1

4
(g2

2 + g2
Y )(2s2

2β −1)−s2
2β(λ2

S + λ2
T ) +

m2
A

v2

)2

+s2
2βc

2
2β

(
(g2

2 + g2
Y )

2
− (λ2

S + λ2
T )

)2
]1/2

 . (2.2.25)

The Higgs mass matrix is diagonalised to find the physical Higgs masses and the mixing
angle α. From the identification of the 2HDM parameters in (2.2.8) one obtains

s2(β−α) =
v2

m2
H −m2

h

s2βc2β

[
(g2

2 + g2
Y )

2
− (λ2

S + λ2
T )

]
,

cβ−α =
s2βc2β v

2
(
g2
Y + g2

2 − 2(λ2
S + λ2

T )
)

4

√(
m2
H −m2

h

)(
m2
H − v2

2

{
(g2
Y + g2

2)
c22β
2 + (λ2

S + λ2
T )s2

2β

}) . (2.2.26)

The condition for alignment is the diagonalisation ofM2 i.e. Z6 → 0. From equation
(2.2.24) one sees this amounts at tree-level to having

λ2
S + λ2

T =
g2
Y + g2

2

2
. (2.2.27)

In other words, when the couplings respect their N = 2 values, the Higgs doublets are
automatically aligned ! From equations (2.2.26, 2.2.27) one finds that in this alignment
limit, cβ−α → 0 and sβ−α → 1, therefore the heavy CP-even neutral scalar doest not
take part in electroweak symmetry breaking while h is a Standard Model Higgs-like
boson. The tree-level masses of the two neutral CP-even Higgs bosons are

mN=2
h = mZ , mN=2

H = mA , (2.2.28)

while the charged Higgs boson mass is given by

m2,N=2
H± = m2

A + 3m2
W −m2

Z , (2.2.29)

correcting the expression given in [78, 136]. Hence, at tree-level, the model exhibits
alignment for any value of tanβ and the tree-level Higgs mass is independent of tanβ
(which was already noted in [78,136]).

On the other hand, for the MRSSM there is no automatic alignment, because the
Higgs sector at tree-level closely resembles that of the MSSM once the adjoint scalars
and R-Higgs fields are decoupled; this can be seen just by putting λS = λT = 0 in
the above equations. In the following the main focus will therefore be on the minimal
Dirac gaugino model (with some further comments about the MRSSM).
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2.3 Radiative corrections to alignment

2.3.1 Loop level alignment from N = 2.

To preserve N = 2 supersymmetry, one requires that the relations in eq. (2.2.2) hold
at all loop orders. How the Yukawa couplings vary at loop level will depend on the
expressions for the anomalous dimensions of the fields involved in the interaction (see
appendix A). In other words, if the anomalous dimensions vanish or cancel, then the
Yukawa coupling will not run and its tree level value will be unchanged (up to that
order). To understand how N = 2 plays a role at loop level, it is convenient to look
at the runnings of λS,T , defined through the beta functions βλS,T , at one-loop:

β
(1)
λS,T

=
λS,T
16π2

(
γ

(1)
S,T + γ

(1)
Hu

+ γ
(1)
Hd

)
. (2.3.1)

The anomalous dimensions for the Hu,d hypermultiplets can be shown to vanish alto-
gether (in a strictly vector-like theory): using (A.0.3) and looking at the anomalous
dimension for Hu,

γ
(1)Hu

Hu
=

1

2
YHuSH̄d

Y HuSH̄d +
1

2
YHuH̄dSY

HuH̄dS

+
1

2
YHuTH̄d

Y HuTH̄d +
1

2
YHuH̄dTY

HuH̄dT − 2g2
Y C1(Hu)− 2g2

2C2(Hu)

= |λS |2 + 3|λT |2 − 2g2
Y

(
1

4

)
− 2g2

2

(
3

4

)
=

1

2
g2
Y +

3

2
g2

2 −
1

2
g2
Y −

3

2
g2

2

= 0! (2.3.2)

Equivalently then, if γ
(1)Hu

Hu
= 0, owing to the R-symmetry relating the scalars in the

hypermultiplet, R[Hu] = R[H̄d], then γ
(1)H̄d

H̄d
= 0 also. In a purely N = 2 theory, the

chiral matter fields would also sit in hypermultiplets and their anomalous dimensions
would also vanish.

The classical definition of an anomalous dimension is given by

γ
(1)
Φ = −1

2

d logZΦ

d logµ
, (2.3.3)

where ZΦ is the wavefunction renormalisation of the field Φ and can be read off as the
coefficient of the kinetic term for the field. As the adjoint-fields, S,T, are related to
the gauge fields within the N = 2 vector multiplet, their anomalous dimensions are
the same as those of the corresponding gauge fields. The kinetic terms for the latter
are given by (1.2.41), which means that

γ
(1)
S,T = −1

2

d logZS,T
d logµ

= −1

2

d log 1
2g
−2
Y,2

d logµ
=

1

gY,2

dgY,2
d logµ

, (2.3.4)

up to a constant factor. Therefore at one-loop order, putting this all together,

dλS,T
λS,T

≡βλS,T d logµ=

[
1

16π2
γ

(1)S,T
S,T +

1

16π2
γ

(1)Hu

Hu
+

1

16π2
γ

(1)H̄d

H̄d

]
d logµ=

dgY,2
gY,2

,(2.3.5)

with

βΦ =
1

16π2
β

(1)
Φ , (2.3.6)
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which means that the N = 2 conditions hold for all energies and the Higgs sector is
always aligned: this is expected, as in an N = 2 theory, the interaction terms are
purely governed by the gauge couplings.

However, in reality, the presence of chiral fields breaks the N = 2 supersymmetry,
and there must be a mass splitting between the fermionic and bosonic partners in
the superfields, leading to the deviation of the Yukawa couplings from their N = 2
values and the consequent re-emergence of energy dependent couplings. This is not
to mention also that, while N = 2 can be preserved in the electroweak sector, there is
no similar symmetry between the strong gauge coupling and an octet Yukawa, which
means that the running couplings will always deviate from the N = 2 relations when
the fields involved are charged under SU(3).

As mentioned above, the perfect alignment obtained at tree-level is not preserved
when the radiative corrections to the scalar effective potential are taken into account.
In addition to the corrections already present in the MSSM, there are two new sources
for this misalignment. The first is due to the appearance of chiral fields, quarks and
leptons, at a scale MN=2. This scale can be identified with the fundamental scale
of the theory, or an intermediate scale where a partial breaking N = 2 → N = 1 is
achieved (while an explicit realisation of this partial supersymmetry breaking remains
unknown for a chiral theory, there is not a no-go theorem showing it to be impossible).
The second large contribution comes from the mass splitting between fermonic and
bosonic components of all of the superfields, i.e. coming from the N = 2→ N = 0 (or
N = 1→ N = 0) breaking. After a quick demonstration of how N = 2 SUSY works
to achieve alignment, both misalignment contributions will be discussed in turn.

2.3.2 Misalignment from N = 2→ N = 1 (chiral matter)

Owing to the presence of MSSM chiral matter at the scale N = 2 scale, when the
couplings are run from MN=2 to the scale of the N = 1 supersymmetric superparticles
(denoted MSUSY) there will be a splitting induced of λS and λT relative to the N = 2
SUSY relations. This in turn will lead to misalignment at MSUSY via a non-zero Z6:

Z6(MSUSY) =
1

4
s2βc2β

[
(2λ2

S − g2
Y ) + (2λ2

T − g2
2)

]
+ threshold corrections. (2.3.7)

To obtain an estimate of the magnitude of this splitting, one can integrate over
the difference in the beta functions for λS and λT ,

∂

∂ logµ

(
2λ2

S,T − g2
Y,2

)
= µ2

(
4λS,T

∂λS,T
∂µ2

− 2gY,2
∂gY,2
∂µ2

)
= 4λS,TβλS,T − 2gY,2βgY,2

giving ∫ MN=2

MSUSY

∂
(
2λ2

S,T − g2
Y,2

)
'
(
4λS,TβλS,T − 2gY,2βgY,2

)
log

(
MN=2

MSUSY

)
.

The one-loop beta functions for the trilinear and gauge couplings in the MDGSSM
are given in Appendix B.3.2. To leading order, one finds

[
2λ2

S − g2
Y

]
MSUSY

' − 2g2
Y

16π2

[
3|yt|2 + 3|yb|2 + |yτ |2 − 10g2

Y

]
log

(
MN=2

MSUSY

)
,(2.3.8)

[
2λ2

T − g2
2

]
MSUSY

' − 2g2
2

16π2

[
3|yt|2 + 3|yb|2 + |yτ |2 − 6g2

2

]
log

(
MN=2

MSUSY

)
. (2.3.9)
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These equations are only useful for small MN=2/MSUSY, because for large ratios the
top Yukawa coupling can change by a factor of two or more, but it gives an indication

of the amount of misalignment: even for log
(
MN=2
MSUSY

)
∼ O(10) one finds

Z6(MSUSY) ∼−O(0.1)
tβ

1 + t2β

(
t2β − 1

t2β + 1

)(
logMN=2/MSUSY

10

)
. (2.3.10)

This is a small deviation from alignment indeed, and very encouraging. This shall
be investigated quantitatively in section 2.4, and it will be shown that due to the
diminishing Yukawa couplings at high energies1, the actual splitting is smaller than
this naive estimate. As an aside, a similar conclusion is reached if the Dirac Gaug-
ino theory is extended by including additional fields to the Minimal Dirac Gaugino
Supersymmetric standard Model (MDGSSM) to restore gauge coupling unification.

2.3.3 Misalignment from N = 1→ N = 0 (mass splitting)

More significantly, there is the potential misalignment induced from the threshold
corrections at MSUSY and then the running between MSUSY and the scale of the
THDM. Taking the matching scale (as is commonly done) to be the electroweak vev
v, these can both be approximated at one loop by corrections to the δλi. Then, in the
approximation that the singlet and triplet scalars are degenerate with mass MΣ; the
stop squarks are degenerate with mass mt̃ and neglecting the splitting between the
couplings λS,T and their N = 2 values one finds, matching at a scale µ:

δλ1 =
1

16π2
log

M2
Σ

µ2

[
λ4
S + 3λ4

T + 2λ2
Sλ

2
T

]
δλ2 =δλ1 +

3y4
t

8π2
log

m2
t̃

µ2

δλ3 =
1

16π2
log

M2
Σ

µ2

[
λ4
S + 3λ4

T − 2λ2
Sλ

2
T

]
δλ4 =

1

16π2
4λ2

Sλ
2
T log

M2
Σ

µ2
, (2.3.11)

using yt, yb, yτ to denote the top, bottom and τ Yukawa couplings. Full (updated)
expressions are given in the limit mDY ,mD2 � mS ,mT in appendix B.2.

One then finds the remarkable result that the singlet/triplet scalar contributions
to Z6 exactly cancel out ! The dominant contribution to Z6 is then that coming from
the stops:

Z6(v) 'Z6(MSUSY) + s3
βcβ ×

3y4
t

8π2
log

m2
t̃

m2
t

, (2.3.12)

where mt is the top quark mass. Although the magnitude of this is the same as the
loop contribution to Z6 in the MSSM, the misalignment thus induced is much smaller,
because (a) there is no tree-level contribution, and (b) it is also proportional to the
stop correction to the Higgs mass, which is smaller than in the MSSM due to the tree-
level boost to the Higgs mass. To investigate the misalignment in this model further,
however, in the next section a precision study using numerical tools will be performed,
using the logic of the hMSSM [163]/h2MSSM [136] to show that the misalignment in
the model is even smaller than the above naive estimate.

1This is true for reasonable values of tanβ & 1.5. For values of tanβ near unity the Yukawa
couplings diverge at high energies so it is not possible to consistently place the N = 2 scale there.
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2.4 Precision study

To precisely study the quantum corrections to alignment in the minimal model, the
low-energy model consisting of the THDM supplemented by a Dirac bino and a Dirac
Wino was implemented into the package SARAH. The couplings of the model are de-
scribed in detail in appendix B.1. The code was then modified to implement the
boundary at a supersymmetry scale MSUSY and the two-loop supersymmetric RGEs
used for the minimal Dirac gaugino extension of the MSSM [107, 134] as generated
by SARAH [164–166]. While this theory does not fit into a GUT and has no gauge
coupling unification, an N = 2 supersymmetry scale was implemented where the cou-
plings λS , λT take their N = 2 supersymmetric values. By running all the way from
a low-scale Q (which has been taken to be the scale of the Dirac gauginos and Heavy
Higgses, but could equally be mtop) up to MSUSY and then MN=2 and back down,
iterating until the results converge, it was possible to find consistent values of the
parameters. At the scale Q, the threshold corrections are those that are included in
SARAH by default:

• One-loop matching of Yukawa couplings to the Standard Model values, plus
two-loop strong corrections to the top Yukawa.

• One-loop gauge threshold corrections.

• Two-loop corrections to the Higgs masses [167–169] (which implement the generic
expressions of [168,170,171] and the solution to the Goldstone Boson catastrophe
of [169,172]).

Two-loop RGEs for this model were employed up to MSUSY, and then at the scale
MSUSY, the following thresholds were implemented:

• Tree-level correction to the λi from Dirac gaugino masses given in (2.2.9), even
if Dirac gaugino masses are otherwise neglected.

• One-loop corrections to the λi given in B.2.3.

• Conversion of MS to DR gauge couplings given in B.2.1.

• Conversion of MS to DR Yukawa couplings proportional to the strong gauge
coupling, given in B.2.1.

MSUSY is taken to be a common mass of left- and right-handed stops, and it is assumed
that other MSSM particles have masses at this scale; the singlet at triplet scalars are
allowed to be heavier at a scale MΣ. All R-symmetry-violating terms (such as squark
trilinear couplings) are eliminated, and it is assumed that

mDY ,mD2, µ�MSUSY.

This means that squark mixing is neglected, and this greatly simplifies the thresh-
olds. The thresholds for supersymmetric particles that are included are then nearly
complete in this limit; the gauge and Yukawa threshold corrections vanish for the
MSSM couplings, and only the corrections to the gauge/Yukawas induced by the ad-
joint scalars are neglected – since their effect is in general very small; this work leaves
the calculation and implementation of these for future work. However, it is preferable
to include their contribution to the Higgs quartic couplings. Furthermore, in the limit
of zero squark mixing the two-loop corrections to the Higgs quartic couplings are also
small or even vanishing [173], and so this work is justified in neglecting them.
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Figure 2.1: Variation of the ratios
√

2λS/gY and
√

2λT /g2 at the scale MSUSY with
tanβ, for MN=2 = MSUSY, 1010 GeV and 1016 GeV.

To perform a more general scan over the parameter space including trilinear scalar
couplings, general masses and allowing µ,mDY ,mD2 to be of the order of MSUSY one
would need to compute the additional threshold corrections; while it is expected that
the effect of µ,mDY ,mD2 on the results will be very small, it would nonetheless be
interesting to compute these in the future.

Scans were performed over the values of tanβ and MSUSY was varied to obtain a
light Higgs mass of 125.15 GeV. The other values are taken as

MΣ = 5 TeV, (mDY ,mD2, µ) = (400, 600, 500) GeV, mtree
A = 600 GeV

(2.4.1)

by imposing

m2
12 =− (mtree

A )2sβcβ. (2.4.2)

As shall be seen later, these are compatible with all current experimental constraints.
Note, on the other hand, that collider limits on the electroweakinos shall not be
discussed because the effect of changing their masses is tiny.

In the scans one sees little deviation betweenmtree
A and the mass of the heavy/charged

Higgses because the mixing is small; indeed the results are not especially sensitive to
mtree
A as a result.

2.4.1 Running from the N = 2 scale

At the scale Q = 400 GeV, one finds gY = 0.37, g2 = 0.64 ± 0.01; these are barely
different at the SUSY scale and vary little with MN=2, but one does find some de-
pendence of the ratios

√
2λS/gY ,

√
2λT /g2 on this scale, which are given in figure 2.1.

The values in the plot were taken with a common supersymmetric scale of 3 TeV and
have essentially no dependence on mA.

An alternative way of visualising this information is in the quantity Z1 evaluated
at the SUSY scale; since our model is always very near alignment, this gives the “tree-
level” Higgs mass and so in figure 2.2 v

√
Z1(MSUSY) is plotted. One sees that for

MN=2 = MSUSY this is always essentially MZ , while as MN=2 is increased one obtains
a further enhancement to the Higgs mass at small tanβ & 1.5.

If no further corrections were to be included, then the value of Z6 at MSUSY would
be given by

Z6(MSUSY) =
1

4
s2βc2β

[
g2
Y (2λ2

S/g
2
Y − 1) + g2

2(2λ2
T /g

2
2 − 1)

]
. (2.4.3)
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Figure 2.2: v ×
√
Z1(MSUSY) against tanβ for MN=2 = MSUSY, 1010 GeV and 1016

GeV, which corresponds to the “tree-level” value of the Higgs mass before running
from MSUSY is taken (or equivalently the SUSY corrections at MZ) into account (we
take v = 246 GeV in the figure). One sees that increasing MN=2 increases the Higgs
mass, particularly for small tanβ > 1.5.

Crucially then it is seen that for MN=2 > MSUSY this is dominated by the relative
positive shift in λT , which in turn yields a negative contribution to Z6. The results
from our scans for the value of Z6 at the SUSY scale almost exactly correspond to the
above equation, which are plotted in figure 2.3. The differences (particularly the tiny
difference from zero for the N = 2 scale equal to MSUSY) come from the tree-level
and loop-level shifts.

2.4.2 Running below MSUSY

Once two-loop running below MSUSY is included, the picture changes substantially.
This is dominated by the effects of the stops via their absence from the RGEs; the
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Figure 2.3: Z6(MSUSY) against tanβ for MN=2 = MSUSY, 1010 GeV and 1016 GeV,
which corresponds to just the contributions to Z6 from the running of λS,T and the
threshold corrections. The solid lines show the full value of Z6, while the dashed lines
are just those given by equation (2.4.3), i.e. without threshold corrections.
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Figure 2.4: Z6(Q) against tanβ, where Q = 400 GeV is our low-energy matching
scale. One finds that the model shows good alignment for all values of tanβ > 1.5,
with the surprising conclusion that raising the N = 2 scale improves the alignment.

results of Z6 are plotted for the same scan as in figure 2.3 at the scale of our low-energy
theory in figure 2.4.

Interestingly, the results can be understood by following the reasoning of the
hMSSM [163]/h2MSSM [136] treatment. In that framework, the quantum correc-
tions to the Higgs mass are assumed to be dominated by the (2, 2) component – and
further that one can neglect the contributions to the other components compared to
the tree-level ones; first a quick review will be made of what happens in the hMSSM
and then the analysis will be applied to our case.

2.4.2.1 (Lack of) alignment in the hMSSM

In the hMSSM [163], one has λ2 =
M2
Z
v2 + ε and all other terms are assumed to have

their tree-level values as shown in eq.(2.2.15), giving the neutral Higgs mass matrix
in the alignment basis (2.2.17, 2.2.18) of

m2
h,H =

(
M2
Zc

2
2β + εs4

β −M2
Zs2βc2β + s3

βcβε

−M2
Zs2βc2β + s3

βcβε m2
A +M2

Zs
2
2β + s2

βc
2
βε

)
. (2.4.4)

Now supposing that the values are tuned to obtain alignment, one then has

−M2
Zs2βc2β + s3

βcβε =0 ,

M2
Zc

2
2β + εs4

β =m2
h , (2.4.5)

which leads to

c2β =
m2
h

M2
Z

> 1 or cβ = 0, (2.4.6)

i.e. it is impossible to achieve alignment without decoupling or going to the large
tanβ limit with these approximations. If one does not neglect the other contributions
to Z6, in the case of exact alignment one then has

0 = Z6 =
1

v2tβ
(m2

h −M2
Zc2β)− sβcβ(c2

βδλ1 − c2βδλ345)
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0 =(m2
h −M2

Zc2β)− v2s2
β(c2

βδλ1 − c2βδλ345) (2.4.7)

Since one expects λ1, λ345 � λ2, and for tβ > 1 one has s2
β > c2

β, s
2
β > |c2β|, this is

still impossible to satisfy. However, it will be found that for the scenario considered
here things are somewhat better.

2.4.2.2 Alignment in the Dirac-gaugino model

Using the expressions (2.2.14) for the quartic couplings, one can rewrite

λ1 ≡
M2
Z

v2
+ δλ1, λ2 ≡

M2
Z

v2
+

ε

v2
,

λ345 ≡
M2
Z

v2
+

1

2
(2λ2

S − g2
Y ) +

1

2
(2λ2

T − g2
2) + δλ345. (2.4.8)

This leads to

Z1v
2 =M2

Z + εs4
β + δλ1c

4
β +

1

2
δλ345s

2
2β + v2

[
(2λ2

S − g2
Y ) + (2λ2

T − g2
2)

]
s2
βc

2
β

Z6v
2 =s3

βcβε− v2sβcβ(c2
βδλ1 − c2βδλ345) +

1

2
c2βsβcβv

2

[
(2λ2

S − g2
Y ) + (2λ2

T − g2
2)

]
.

(2.4.9)

The corrections δλi can be interpreted as either coming from running the couplings
between the scale MSUSY and Q, or alternatively from integrating out the supersym-
metric particles at the scale Q; in the latter case one can obtain an estimate of their
values from the expressions (2.3.11) and see that they are typically suppressed rela-
tive to ε/v2 by a numerical factor and also the ratio of the electroweak gauge coupling
to the strong top Yukawa, and therefore is is possible to continue with the hMSSM
approximation and neglect them. However, the effect from the running of λS , λT is
non-negligible: eliminating ε in exchange for the Higgs mass and defining

δ̂λ345 ≡
1

2
(2λ2

S − g2
Y ) +

1

2
(2λ2

T − g2
2) (2.4.10)

one has

Z6 =
sβcβ

v2(m2
As

2
β +M2

Zc
2
β −m2

h)

[
(m2

A −m2
h)(m2

h −M2
Z)−v2δ̂λ345

(
m2
As

2
β−M2

Zc
2
β+m2

hc2β

)
+ v4c2

βs
2
β(δ̂λ345)2

]
≈0.12

tβ
− 1

2

tβ
1 + t2β

[
(2λ2

S − g2
Y ) + (2λ2

T − g2
2)

]
. (2.4.11)

Later, expressions shall be given for eliminating λ2 and calculating Z6 in any THDM
with general λi, i = 1...4 in equations (2.6.3) and (2.6.5).

A comparison of the above formula with the curves in figure 2.4 shows that this
gives a reasonable fit; in the case of MN=2 = MSUSY the expression is particu-
larly simple, but in the other cases one needs to take account of the varation of√

2λS(MSUSY),
√

2λT (MSUSY) with tanβ that can be seen in figure 2.1.
The main conclusion that can be drawn from the above formula is that the mis-

alignment coming from the squark corrections required to enhance the Higgs mass can
be compensated by the effect of running λS , λT . Indeed, one sees from figure 2.4 that
for MN=2 = 1016 GeV, Z6 is essentially vanishing for tanβ & 3. From the curves in
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the figure, one sees that increasing the N = 2 scale causes a partial or total cancella-
tion of the misalignment contributions, meaning that the Higgs boson is accidentally
very Standard-Model-like, independent of the mass of the heavy Higgs! This is the
main result of the paper.

2.4.3 Higgs mass bounds on the SUSY scale

Finally the effect of the loop corrections in the low-energy theory on the Higgs mass
(i.e. those coming from the Higgs sector itself, the top and the electroweakinos) will
be considered. Figure 2.5 shows the tree-level and one-loop values for the Higgs mass
as tanβ is varied (with MSUSY fixed to ensure mh = 125.15 GeV at two-loops). A
significant upward shift of about 7 GeV is found at one-loop, and then a downward
shift of about 1 or 2 GeV from one to two loops. Note that it is possible to interpret
the “tree-level” Higgs mass as the loop-level Higgs mass in the full Dirac gaugino
model including the effects of the stops and gluinos.

Figure 2.6 shows the final curve of tanβ against MSUSY, for different values of the
N = 2 scale between MSUSY and 1016 GeV.

The plot shows that there is a minimum for MSUSY around tanβ ' 2 or 3, partic-
ularly for larger values of MN=2, which can be understood in terms of the splitting of
λT from its N = 2 value and the consequent boost to the Higgs mass, which can be
clearly seen in figure 2.2.

The results in figure 2.6 contrast starkly with the MSSM case matched onto the
2HDM as shown in e.g. [174]; due to the enhancement to the Higgs mass from the
new couplings already seen in figure 2.2 one has a much lower SUSY scale. On the
other hand, there are significant differences from the values quoted in [136] which
are most closely related to the case MN=2 = MSUSY; here of course one has light
electroweakinos, although the largest difference is the significantly more accurate EFT
calculation employed here.
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Figure 2.5: Effect of loop corrections in the low-energy theory on the Higgs mass. The
tree-level and one-loop values for the Higgs mass are show against tanβ for N = 2
scales of the stop scale (MSUSY) and 1016 GeV; the two-loop value of the Higgs mass
is fixed to the black dotted line.
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Figure 2.6: SUSY scale that fits mh = 125.2 GeV against tanβ. The cases
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with {104, 106, 108}. Due to the large range of scales MSUSY values for small tanβ and
the little change for large tanβ the plot has been split into three quadrants to show
the values more clearly, but for comparison an inset graph is given showing the three
curves MN=2 = {MSUSY, 1010 GeV, 1016 GeV} with MSUSY (GeV) on a logarithmic
scale on the abscissa and tanβ on a linear scale on the ordinate.

2.5 Experimental constraints

Since our model realises excellent alignment, the light Higgs couplings are very nearly
Standard-Model-like across the whole parameter space, and so there is no significant
constraint from those – this is in contrast to e.g. the hMSSM scenario, where for low
tanβ the Higgs couplings provided until recently the most important lower bound on
the Heavy Higgs mass. However, there are still significant constraints on the parameter
space coming from electroweak precision tests, flavour and direct searches, as shall be
detailed below.

2.5.1 Electroweak precision corrections

There are two contributions to the electroweak precision parameters: those coming
from the high-energy theory, and those coming from the low-energy theory. In the
high-energy theory there will be contributions at tree-level from the triplet scalars:
they should obtain a vacuum expectation value, and in our EFT this manifests itself
as generating effective operators.

In the limit of zero CP violation, and neglecting the terms AS , AT the effective
operator arising from integrating out the triplet can be written quite simply as

L ⊃ 1

4m4
TP

tr

[
Dµ

(
σa
[
(
√

2λTµ+ g2mD2)H†dσ
aHd + (g2mD2 −

√
2λTµ)H†uσ

aHu

])]2

(2.5.1)

where summation is understood on the index a and

Dµσ
a = σa∂µ − ig2[Wµ, σ

a]. (2.5.2)
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experimental error, and the model value is always well within 3σ of the experimental
central value (which is anyway above the Standard Model value by 1.6σ).

When a vacuum expectation value is given to the Higgs, this translates into the
constraint from the expectation value of the triplet:

∆ρ =
∆m2

W

m2
W

=
v2

m4
TP

(√
2λTµ+ g2mD2c2β

)2

, (2.5.3)

while the experimental best-fit value is [175]

∆ρ = (3.7± 2.3)× 10−4. (2.5.4)

For µ = 500 GeV and an approximately N = 2 value for λT , with small tanβ insisting
that this contribution does not exceed the experimental bound by 3σ gives

mTP > 1500 GeV (2.5.5)

while simply saturating without exceeding the central best-fit value would limit instead
mTP > 2 TeV.

On the other hand, one also has a contribution from the electroweakinos at loop
level, which increases as the Dirac mass/µ-term become smaller. Hence they cannot be
arbitrarily light. In figure 2.7 the value of ∆ρ is plotted, calculated in the low-energy
theory for the scan values (2.4.1), and one finds that they are below the experimental
limit across the whole parameter space.

2.5.2 Bounds on tan β and mA

The most stringent constraints on the parameter space of our model come from the
searches for pp→ H/A→ ττ at the LHC; and the decay B → sγ determined in [176],
which bounds the charged Higgs mass to be heavier than 580 GeV independent of the
value of tanβ (which in turn bounds the mass of the pseudoscalar Higgs to be above
around 568 GeV).

The bounds from run 1 of the LHC were rather mild on the hMSSM: they restricted
tanβ < 8 for low mA. In [136] it was claimed that in the h2MSSM these bounds would
apply unaltered; while it is true that the couplings to the pseudoscalar are the same
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Figure 2.8: Bounds from pp → H/A → τ+τ− (blue region) and B → sγ (red region,
mA . 568 GeV) interpreted in the mA/ tanβ plane for the hMSSM (taken from [177])
and our model.

in the h2MSSM and hMSSM, the “heavy” Higgs does have altered couplings at small
mA and tanβ – since it is more aligned. Since the production of the Heavy Higgs
is dominated at small tanβ by gluon fusion, and at large tanβ by the bbH process,
then one would expect some differences at small tanβ. However, recently, ATLAS
produced a much enhanced bound [177] on gluon fusion and bbH production and then
decay to τ pairs; they also interpreted this in terms of the hMSSM. To compare to the
model here, Higgs production was computed using SusHi [178–184] and the production
cross-sections were rescaled according to b-quark and gluon couplings computed in
the SARAH/SPheno code, then multiplied by the tau decay branching fraction, and the
bound combined assuming that the signals from H/A production overlap for small
mass differences. The results are shown in figure 2.8, where the bound from [177] on
the hMSSM is also shown. One finds almost no difference, except that the bound
on the model here is very slightly weaker once decays to the electroweakinos are
permitted. However, the branching ratio to electroweakinos in that region is never
significant enough to reduce the τ decay fraction.

2.6 Alignment in the MRSSM

For completeness a brief discussion will be made of the MRSSM in the same limit as
for the DG-MSSM. Since the tree-level THDM parameters are the same as those of the
MSSM in the limit of large adjoint scalar and R-Higgs masses, there is no contribution
to Z6 from the running of the parameters λSu,d , λTu,d . One can first write the neutral
Higgs mass matrix as

m2
h,H =

(
M2
Zc

2
2β + v2∆Z1 −M2

Zs2βc2β + v2∆Z6

−M2
Zs2βc2β + v2∆Z6 m2

A +M2
Zs

2
2β + v2∆Z5

)
. (2.6.1)

If one considers the loop corrections due to λSu,d , λTu,d to be small, then the analysis
of alignment is identical to the MSSM case, and the hMSSM logic can be applied.
However, if instead they are taken to be non-negligible – such as in [114,115,126,127]
– then the contributions to λ2 no longer dominate, and the hMSSM reasoning may
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no longer apply. On the other hand, the largest contribution from the other particles
will still be to λ2, and so one can assume that

λ2 =
M2
Z + ε

v2
, λ1 =

M2
Z

v2
+ δλ1

λ5 =0, λ345 = λ34 = −M
2
Z

v2
+ δλ34. (2.6.2)

To eliminate ε, one writes λ2 in terms of the Higgs mass, which for general λi, i = 1...4
(and λ5 = λ6 = λ7 = 0):

λ2v
2s2
β +m2

Ac
2
β =m2

h +
s2
βc

2
β(m2

A − λ34v
2)2

λ1v2c2
β +m2

As
2
β −m2

h

; (2.6.3)

this can then be substituted into the expression for Z6:

Z6 =− sβcβ
λ1v4c2

β +m2
Av

2s2
β −m2

hv
2
× (2.6.4)[

(λ1v
2c2
β −m2

h)(λ1v
2c2
β −m2

h +m2
A − λ34v

2c2β) + λ34s
2
βv

2(m2
A − λ34c

2
βv

2)

]
.

The loop corrections to the λi from the adjoint scalars are given in appendix B.4,
but in the simplified case of mT+ = mT− = mSR = mSI = MΣ and gY = g2 = 0 one
has, for matching at a scale µ:

δλ1 =
1

16π2
log

M2
Σ

µ2

(
5λ4

Td
+ 2λ2

Sd
λ2
Td

+ λ4
Sd

)
δλ2 =

1

16π2
log

M2
Σ

µ2

(
5λ4

Tu + 2λ2
Suλ

2
Tu + λ4

Su

)
δλ3 =

1

16π2
log

M2
Σ

µ2

(
5λ2

Td
λ2
Tu + λSdλSuλTdλTu + λ2

Sd
λ2
Su

)
δλ4 =

1

16π2
log

M2
Σ

µ2

(
− 4λ2

Td
λ2
Tu − 4λTdλTuλSdλSu

)
. (2.6.5)

If one then takes (as in [115,126,127]) λSu = −λSd ≡ λ, λTu = λTd ≡ Λ, and allows an
additional contribution ε/v2 to λ2 from the stops, one then has

Z6 =− 1

2
s2βc2β

(
2M2

Z

v2
+

2Λ4

16π2
log

M2
Σ

µ2

)
+

ε

v2
s3
βcβ

∆Z1 =
1

16π2
log

M2
Σ

µ2

[
λ4 + 2λ2Λ2 + 3Λ4 + 2Λ4c2

2β

]
+

ε

v2
s4
β. (2.6.6)

When the couplings λ,Λ are large enough, the alignment will always be improved
compared to the MSSM, because the enhancement to Z1 is always greater than that
to Z6. Three cases of particular interest are noted:

1. If the contributions from the adjoint scalars are increased to the point that
those from the stops can be neglected, then for small tanβ one will easily have
alignment (in contrast to the MSSM case).

2. Alternatively, one could enhance the contributions from λ rather than Λ, since
the former coupling does not contribute to Z6.
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3. On the other hand, if one takes the N = 2 supersymmetric limit

λTu =λTd =
g2√

2
, λSu =

gY√
2
, λSd = − gY√

2
, (2.6.7)

one finds, using the expressions in appendix B.4 (and no longer neglecting the
gauge couplings):

δλ1 =
1

16π2
log

M2
Σ

µ2

1

4

(
3g4

2 + 2g2
2g

2
Y + g4

Y

)
δλ2 =δλ1

δλ3 =
1

16π2
log

M2
Σ

µ2

1

4

(
3g4

2 − 2g2
2g

2
Y + g4

Y

)
δλ4 =

1

16π2
log

M2
Σ

µ2

(
g2

2g
2
Y

)
(2.6.8)

giving

δλ345 =δλ1 ≡ δλ, (2.6.9)

so there is no shift to Z6 from the adjoint scalars, but one does have a shift to
Z1, i.e

∆Z1 =δλ, ∆Z6 = 0. (2.6.10)

If the mass of the adjoint scalars is comparable to the mass of the stops, then
this will however never be significant; on the other hand, if one takes the adjoint
scalars to be very heavy, then this indicates that an improved alignment relative
to the MSSM is possible. To quantify this, the above expression for Z6 (2.6.5)
can be used:

Z6 =− sβcβ
(M2

Zv
2 + δλv4)c2

β +m2
Av

2s2
β −m2

hv
2

[
∆0 + δλv2(m2

A −m2
h + 2c2

βM
2
Z)

]
(2.6.11)

where

∆0 =m2
h(m2

h −m2
A −M2

Z(4c2
β − 1)) +M2

Zc2β(m2
A + 2M2

Zc
2
β) (2.6.12)

which is the numerator for the MSSM case. In the case that m2
A � m2

h (which
corresponds to the case of interest – even though one would like mA small enough
to not entirely be in the decoupling limit), one therefore finds

Z6 '
1

tβ

[
m2
h −M2

Zc2β

v2
− δλ

]
. (2.6.13)

For MΣ = 100MSUSY (a rather extreme value) and matching at MSUSY one
finds

δλ '0.04
m2
h

v2
, (2.6.14)

and so the deviation of Z6 from the MSSM value due to the adjoint scalars
should be less than 4%. On the other hand, as shall be seen below, they can
still have a significant effect on the SUSY scale.

Therefore, from the analysis above, in all three cases of interest, the alignment will
never be as good as for the minimal Dirac gaugino model, because of the tree-level
contribution to misalignment: this shall be illustrated for the N = 2 case in the next
subsection.
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2.6.1 Numerical analysis of an N = 2 MRSSM

To compare with our previous analysis of the DG-MSSM, here shall be presented a
simplified numerical analysis for an N = 2 MRSSM, as defined in point 3 above and
equation (2.6.7). From our estimations above, the alignment should only differ from
the MSSM when relatively extreme values are taken for the adjoint scalar masses,
and so to perform a precise analysis one would need to have a tower of effective field
theories and the appropriate threshold corrections. Instead it is decided to neglect all
loop-level threshold corrections other than those from the adjoint scalars (although
2-loop RGEs are used throughout) and a simple analysis is performed where the low
energy model is approximated by the Standard Model and type-II two-Higgs doublet
model. In this way one should obtain an idea of how the adjoint scalar masses cause
the SUSY scale and alignment to vary from the predictions of the MSSM.

2.6.1.1 Procedure

Two-loop Standard Model matching values were implemented at mt for the standard
model gauge, Yukawa, and Higgs quartic couplings from [19] and a two-loop Standard
Model running was performed up to an intermediate scale Q = 600 GeV, where
the λi(Q) couplings were given approximate values to be determined through future
iterations between the scales Q and MN=2. The two-Higgs doublet model 2-loop
running was implemented up to the supersymmetry breaking scale defining the leading
squark masses, MSUSY , where guesses were made for the inputs of the parameters
λS,Tu,d . The MRSSM was then run to 2-loops to some high scale MN=2 where the
N = 2 boundary conditions (2.6.7) were implemented. All two-loop beta functions
were generated in SARAH, and the value of mtree

A = 600 GeV was taken as in the
minimal Dirac gaugino case. In this simplified model, as the electroweakinos are not
taken to be light, the intermediate scale Q is taken to match the choice of heavy
Higgs mass. Indeed, with these choices one should understand the Dirac gaugino
masses mDY ,mD2,mD3 and the higgsino mass to be at MSUSY, and also the masses
of the R-Higgs fields Ru,d should be at that scale, because no threshold corrections
are implemented from those fields (leaving these to future work).

On the run down, λi(MSUSY ) were matched to the 1-loop threshold corrections
coming from the heavy S, T scalars as given in appendix B.4, taking the adjoint
scalars to be degenerate with mass MΣ. This process was iterated, re-matching the
gauge and Yukawa couplings onto their 2-loop Standard Model running values at
the scale Q, while the λi and λS,Tu,d couplings were matched to the outputs from the
previous running until their values converged. Finally, the λi parameters were mapped
back onto the Higgs quartic coupling using λ(Q) = Z1(Q) and the Standard Model
couplings were run back down to mt. The correct Higgs mass was selected from the
criterion λ(mt) = 0.252±0.002, corresponding to a pole Higgs mass of mh = 125±0.5
GeV.

This process was executed for scans over the values tanβ ∈ [2, 20]; MSUSY ∈
[0.5, 10] TeV; MΣ = {5, 10, 100}MSUSY and MN=2 =

{
106, 1010, 1016

}
GeV.
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2.6.1.2 Running from the N=2 scale to MSUSY

Figure 2.9: Variations in the ratio
√

2λSu,d/gY against tanβ at the MSUSY scale for
N = 2 scales 106, 1010 and 1016 GeV.

Figure 2.10: Variations in the ratio
√

2λTu,d/g against tanβ at the MSUSY scale for
N = 2 scales 106, 1010 and 1016 GeV.

The ratios in figures (2.9, 2.10) are taken with a common MSUSY scale of 10 TeV,
while the associated value of mh is unconstrained. MΣ is kept fixed - in figures (2.9,
2.10) chosen as MΣ = 10MSUSY . Here the modulus of the ratio is plotted, since the
λSd ratio is negative to respect the N = 2 supersymmetry relations. As expected,
the model is closest to the alignment limit when the N = 2 scale is closer to the
MSUSY scale. It can be seen that the Higgs mass is boosted to a greater extent by
the down-type couplings than the up-type, where the ratio

√
2λTd/g has the largest

effect, especially for higher values of N = 2 scale.
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Figure 2.11: v
√
Z1(MSUSY ) against tanβ for N = 2 scales 106 and 1016 GeV, corre-

sponding to the “tree-level” value of mh before running down in low-energy effective
theory.

Figure 2.11 shows the “tree-level” Higgs mass against tanβ before running down
from MSUSY (where the value of the Higgs mass calculated at mt matches the ex-
perimental value). For the lowest values of MN=2 and MΣ plotted, v

√
Z1(MSUSY )

is approximately MZ , and where the former increase, so does the boost to the Higgs
mass. This boost grows substantially for the simultaneously highest values of MN=2

and MΣ, owing to the large (almost non-perturbative) λT couplings. While not shown
here, it should be noted that even for MN=2 = 1010 GeV and MΣ = 100MSUSY ,
v
√
Z1(MSUSY ) replicates almost identical behaviour to the red curve for MN=2 = 1016

GeV and MΣ = 5MSUSY shown here.

2.6.1.3 Running from MSUSY → Q→ mt

Figure 2.12: Z6(Q) against tanβ for a Higgs mass of 125 GeV at mt, for values of MΣ

= 5, 100 MSUSY and MN=2 = 106 and 1016 GeV.
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Figure 2.12 shows little deviation in the results for Z6(Q), regardless of MΣ and
MN=2. Indeed, as anticipated above, the results are almost indistinguishable from
the MSSM case, since the adjoint scalars in the MRSSM never give a large boost to
the quartic couplings even for the extreme cases that have been taken. Exceptionally,
the couplings in the case of very heavy scalars and very high MN=2 are considerably
enhanced and deviate from the N = 2 relations, making the alignment in this case just
marginally worse. While the adjoint scalars give only a very small boost to the Higgs
mass, on the other hand it is enough to cause noticeable effects in the predicted MSUSY

scale, shown in figure 2.13, because of the logarithmic nature of the contributions from
other SUSY states.

Figure 2.13: MSUSY against tanβ for a Higgs mass of 125 GeV at mt and where
Q = 600 GeV, plotted for values of MΣ = 5, 100 MSUSY and MN=2 = 106 and 1016

GeV.

Figure 2.13 shows the values of MSUSY against tanβ over the parameter scan
producing a Higgs mass corresponding to mh = 125±0.5 GeV: this margin is reflected
in the enclosed transparent area2. For tanβ < 4, MSUSY is required to be, at the
very least, 20 TeV for the highest values of MN=2 and very heavy MΣ, and is closer
to ∼ 100 TeV for lower values. MSUSY stabilises around tanβ = 10 for all values
of MΣ and MN=2, where at this point MSUSY can be as low as several hundred
GeV for MN=2 = 1016 and very heavy scalars. In this final extreme case (which
is of course excluded experimentally, but gives an indication of the possible effects)
the logarithms being resummed in the RGEs become smaller, it is possible that any
neglected threshold effects could make a significant difference and the results become
unreliable, but this is left as an additional analysis for future work.

2.7 Conclusions

This work has considered the consequences for the simplest realisation of Dirac gaug-
ino models when N = 2 supersymmetric boundary conditions are imposed for the

2The variation of 0.5 GeV is, however, not to imply the total error (which is hard to estimate, but
should be comparable to this value although it may be smaller for large values of MSUSY ) but to give
an indication of the sensitivity of the results on the final Higgs mass value.
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Higgs/gauge sector at some energy scale. It was found that the model naturally re-
alises alignment in the Higgs mass matrix, and that surprisingly this is preserved even
by quantum corrections. Even more interestingly, the departure from N = 2 relations
due to running of the couplings actually leads to both an enhanced Higgs mass (and
thus lower SUSY scale/more natural model) and also improved alignment when the
effects of the squarks were taken into account.

The most accurate calculation to date has been provided for the SUSY scale in a
Dirac gaugino model by employing the effective field theory approach, with one-loop
boundary conditions at the high scale and two loops at the THDM scale. This leads to
the prediction that the scale of coloured superpartners should be above 3 TeV (when
one allows a very high scale for the breaking of the approximate N = 2 SUSY) but
across most of the parameter space it is below 10 TeV. While this is not encouraging
for the detection of stops/gluinos at the LHC, this is well within the reach of a future
100 TeV collider. On the other hand, the LHC or a future e+e− collider should be
able to explore the electroweak sector of the model, including the Higgs sector and
the electroweakinos (if they are light).

There are many possible avenues for future work: improving the accuracy of the
matching at MSUSY (as noted recently, matching at two-loop order is often necessary
for accuracy of the loop expansion to include all non-logarithmic corrections [185],
although in this class of models as has been discussed all of the missing corrections are
believed to be small) and including the effects of the electroweakinos in the matching
at one loop, so that one can consider the model with mDY ∼ mD2 ∼MSUSY; also with
the full set of thresholds an estimate of the error in the calculation could be performed
(which, again, should already be small – see e.g. the estimates for the MSSM case
in [186]); or including the effects of possible R-symmetry violating terms. On the
other hand, it would also be interesting to more fully explore the consequences for
different Dirac gaugino models, such as the MRSSM, where we have only performed
a preliminary analysis.
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3 – LHC constraints on the
minimal Dirac gaugino model

The Higgs sector of the MDGSSM has now been well discussed, and the purpose of
this section to derive recent limits on the gluinos and squarks in the same model. At
the LHC, gluino-pair production is enhanced while squark production is suppressed
as compared to the MSSM, and the decay signatures are altered by a more complex
chargino and neutralino spectrum. The aim here is to investigate how this impacts cur-
rent gluino and squark mass limits from Run 2 of the LHC. Concretely, four benchmark
scenarios have been chosen to highlight different features of electroweakino spectrum,
paying particular attention to the effect of the trilinear λS coupling, which induces a
mass splitting between the mostly bino/U(1) adjoint states. Among other results, it
will be shown that for large λS the additional χ̃0

2 → ff̄ χ̃0
1 decays somewhat weaken

the limits on gluinos (squarks) in case of heavy squarks (gluinos). Finally, the limits
set in the gluino vs. squark mass plane in the MDGSSM will be compared to those
obtained in equivalent MSSM scenarios.

In this chapter work will be presented re-examining the LHC bounds on squarks
and gluinos in the MDGSSM, which have so far been studied only for Run 1 data [139–
141]. For the MRSSM there was a study of collider bounds on sleptons and elec-
troweakinos in the MRSSM using Run 1 data [187], and a recent examination of
bounds on charginos in a gauge-mediation scenario [148]. The scalar octet partners
of the gluons, or “sgluons”, have received more attention in the literature: Dirac
gaugino models predict two real sgluons, a scalar and pseudoscalar, since they come
from a (complex) chiral superfield. These have very interesting collider phenomenol-
ogy [81, 85, 89, 117, 128, 144, 188–191]; in particular, if CP is preserved then the pseu-
doscalar is likely to be relatively light and decay predominantly to tops, so they can
be searched for in four-top events [129,145].

As previously mentioned, the MDGSSM can be embedded in a GUT by adding ad-
ditional electroweak-charged fields [116], the constrained scenario being the CMDGSSM.
For simplicity and generality, these extra fields will not be included which, in any case,
should not significantly affect the bounds on squarks and gluinos. Instead this work
takes a phenomenological approach, choosing masses and couplings at the scale of the
colourful superpartners. While the parameter space of such models is large, it shall
be argued that the constraints found should be quite general for this class of models.
In section 3.1 an overview is given of the phenomenological considerations that shall
determine the benchmark scenarios, which are presented in section 3.2. Then, limits
on gluino and squark masses will be derived, first using a simplified models approach
in section 3.3, before undertaking a full recasting of the fully-hadronic gluino and
squark search from ATLAS in section 3.4. A summary and conclusions are given in
section 4.6.

81
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Figure 3.1: Squark production cross-sections at leading order (LO) for the 13 TeV
LHC as a function of the gluino mass in the MSSM (in red) and in the DG case (in
blue), for mq̃ = 1.5 TeV, assuming an 8-fold squark degeneracy (q̃ = ũ, d̃, c̃, s̃). The
dashed, dotted and full lines show the squark-squark, squark-antisquark and total
squark production cross-sections, respectively.

3.1 Phenomenological considerations

3.1.1 Squark and gluino production at the LHC

As mentioned above, previous studies of Dirac vs. Majorana gauginos highlighted
a weakening of collider limits on squarks due to the absence of a chirality flip in
the DG case [139–142]. In the MSSM, squark–anti-squark production at the LHC
(pp → q̃Lq̃

∗
L, qRq̃

∗
R) proceeds via s-channel gluon and t-channel gluino exchange;

squark–squark production (pp → q̃q̃, q∗q̃∗) of same (LL, RR) and mixed (LR) chi-
rality via t-channel gluino exchange is another important contribution to the total
squark production. Squark–squark production of same chirality however requires a
chirality flip, so it is absent in the DG case. Moreover, the other t-channel gluino
exchange processes are suppressed by |p|/m2

g̃ in the amplitude, where |p| is the mo-
mentum in the propagator. This has a huge impact on the total squark production
in the presence of a heavy Dirac gluino as illustrated in Fig. 3.1. This suppression of
light-flavour squark production at the LHC is the perhaps best known consequence of
Dirac gauginos.

There are also other interesting consequences, which may impact collider phe-
nomenology. For one, the cross-section of gluino-pair production is enhanced in the DG
case because of the larger number of degrees of freedom than in the MSSM (see [192]
for a detailed discussion). Another important aspect is the more complex electroweak-
ino spectrum. Concretely, while in the MSSM the neutralinos are a linear combination
of the four neutral fermions, the bino B̃, wino W̃ 0 and higgsinos H̃0

u and H̃0
d , in the

DG model this is supplemented by two adjoint fermions: a bino B̃′ and wino W̃ ′0. In
the chargino sector, the charged winos W̃± and higgsinos H̃+

u , H̃−d are supplemented

by the triplet W̃ ′±. Thus there are six neutralino and three chargino mass eigenstates,
which may appear in gluino and squark cascade decays.

One may therefore expect that LHC phenomenology, and constraints from current
searches, are different in DG models as compared to the MSSM. The purpose of this
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paper is to investigate what are the concrete LHC limits on gluinos and squarks in
the DG case.

3.1.2 Electroweak-ino spectrum

The neutralino mass matrix MN in the basis (B̃′, B̃, W̃ ′0, W̃ 0, H̃0
d , H̃

0
u) is given by

MN = (3.1.1)
0 mDY 0 0 −

√
2λS
gY

mZsW sβ −
√

2λS
gY

mZsW cβ

mDY 0 0 0 −mZsW cβ mZsW sβ

0 0 0 mD2 −
√

2λT
g2

mZcW sβ −
√

2λT
g2

mZcW cβ

0 0 mD2 0 mZcW cβ −mZcW sβ

−
√

2λS
gY

mZsW sβ −mZsW cβ −
√

2λT
g2

mZcW sβ mZcW cβ 0 −µ

−
√

2λS
gY

mZsW cβ mZsW sβ −
√

2λT
g2

mZcW cβ −mZcW sβ −µ 0

 ,

where it has been used that sW = sin θW , sβ = sinβ, cβ = cosβ and tanβ = vu/vd
the ratio of the Higgs vevs; mDY and mD2 the bino and wino Dirac masses; µ the
conventional higgsino mass term, and λS and λT the couplings between the singlet
and triplet fermions with the Higgs and higgsino fields. The various origins of these
mass terms as well as the rotation matrices and eigenvalues are explained in detail
in [83].

Diagonalising the neutralino mass matrix above, one ends up with pairs of bino-
like, wino-like and higgsino-like neutralinos, with small mass splittings within the bino
or wino pairs induced by λS or λT .1 Taking, for instance, mDY sufficiently smaller
than mD2 and µ, one finds a mostly bino/U(1) adjoint lightest SUSY particle (LSP)
with a mass splitting of

∆mLSP ≡ mχ̃0
2
−mχ̃0

1
=

∣∣∣∣ 2M2
Zs

2
W

µ

(2λ2
S − g2

Y )

g2
Y

cβsβ

∣∣∣∣ . (3.1.2)

For the models that shall be considered here, this can go up to tens of GeV.
Turning to the charged fermions, there are three charginos χ̃±1...3 from a linear

combination of the charged higgsinos, H̃+
u , H̃−d , charged gauginos W̃± and adjoint

W̃ ′±. In the basis v+ = (W̃ ′+, W̃+, H̃+
u ), v− = (W̃ ′−, W̃−, H̃−d ), the chargino mass

matrix is

MC =

 0 m2D
2λT
g mW cβ

m2D 0
√

2mW sβ

−2λT
g mW sβ

√
2mW cβ µ

 , (3.1.3)

where again it is assumed that Majorana mass terms are absent. This gives one
higgsino-like χ̃± and two wino-like χ̃± – the latter ones again with a small splitting
driven by λT .

The possible impact on collider phenomenology becomes apparent when consid-
ering that gluino and squark decays will be shared out over the different neutralino
and chargino states with small mass splittings. For instance, for a mostly bino/U(1)
adjoint LSP, q̃R → qχ̃0

1 or qχ̃0
2 with roughly equal branching ratios. If ∆mLSP < mZ ,

the χ̃0
2 then decays to ff̄ χ̃0

1 via an off-shell Z-boson. Therefore, while in the MSSM
with a bino-like LSP pp→ q̃Rq̃R leads to events with 2 jets + Emiss

T , in the DG model
with somewhat split binos, one may get a mix of events with 2, 4 or 6 jets + Emiss

T ,
and with a small rate also jets + `+`− + Emiss

T . It should also be noted that, due to

1At least assuming a somewhat hierarchical pattern in mDY , mD2 and µ; if two or all three mass
parameters are close to each other there will be additional effects from sizeable bino, wino and/or
higgsino mixing like in the MSSM.
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Z∗ → νν̄, some of the χ̃0
2 decays will be invisible. Similar considerations apply to all

SUSY cascade decays.
Finally, the mass splitting between the two lightest neutralinos determines the χ̃0

2

lifetime. If the splitting is very small, the χ̃0
2 can live long enough to effectively be a

co-LSP on collider scales and appear only as Emiss
T . For larger mass splittings, the χ̃0

2

can decay promptly, leading to the complex signatures discussed in the paragraphs
above. In between, the χ̃0

2 is a long-lived neutral particle, whose decays can give
signatures with displaced vertices.

3.1.3 Effect of R-symmetry breaking

The mass-splittings in the neutralinos are due to the R-symmetry breaking effect of
both theHu andHd fields obtaining an expectation value – hence they are proportional
to cβsβ which vanishes for large and small tanβ. In addition, when λS = gY /

√
2, λT =

g2/
√

2, there is an effective global symmetry among the gauginos and higgsinos which
allows the neutralinos and charginos to remain of Dirac type at tree-level – this is not
actually the SU(2) R-symmetry, of which the higgsinos are actually singlets.

This means that any Majorana masses for the neutralinos and charginos (which
are neglected here) should be smaller than the above splittings in order for the analysis
in this paper to be valid: this makes a difference to the softness of the decays from χ̃0

2

to χ̃0
1, for example.

Turning to the gluinos, at tree level g̃1,2 are exactly Dirac in our model; the
two states are only split by a tiny difference at one loop from the small amount of
mixing between the left- and right-handed squarks proportional to µ. Here, however,
a modest Majorana mass could be tolerated, since the only effect would be to split
the eigenstates and so be distinguishable in a detector as separate particles: in our
benchmarks they shall be indistinguishable. Interestingly, in our model the octet
fermion χO only couples to the scalar octets, gluino and gluons. Hence the two gluino
mass eigenstates, g̃1, g̃2 = 1√

2
(λ3 + χO), i√

2
(λ3 − χO), couple only to the squarks and

quarks through the component λ3, and their couplings are the same up to a factor
of i. This means that over the parameter space, their decays are almost identical,
meaning that together they behave like a purely Dirac gluino—except for when the
decay is highly non-relativistic.

In the model presented, the only relevant non-relativistic two-body decays of a
gluino are when a squark becomes nearly degenerate with it; and so to obtain dif-
ferences between g̃1 and g̃2 decays one would furthermore need a sizeable source of
R-symmetry breaking, which means squark mixing. One can therefore expect a size-
able difference between the two gluino decays into stops or sbottoms only near the
kinematic limit. This can be seen as follows: for a two-body decay g̃i → qq̃ for i = 1, 2
the couplings can be written (suppressing the gauge and Lorentz indices) as

L ⊃−
√

2g3q̃
∗
LqLλ3 +

√
2g3qRq̃Rλ3 (3.1.4)

and so if q̃L = cos θq q̃1 + sin θq q̃2, q̃∗R = − sin θq q̃1 + cos θq q̃2, then the coupling to say
q̃1 is

L ⊃− q̃∗1
[
ciL(qg̃i) + ciR(qg̃i)

]
, c1

L =
√

2g3 cos θq, c1
R = −

√
2g3 sin θq, (3.1.5)

while c2
L = −ic1

L, (c
2
R)∗ = −ic1

R. The width for the gluino decays is then

Γ(g̃i → qq̃i) =
K

32πm3
g̃i

[
(m2

g̃i +m2
q −m2

q̃i)(|cL|2 + |cR|2) + 2mqmq̃i(c
∗
LcR + c∗RcL)

]
,
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K ≡
√

(m2
g̃ −m2

q −m2
q̃i

)2 − 4m2
qm

2
q̃i
. (3.1.6)

So then when mg̃i ∼ mq +mq̃i ,mq̃i � mq, one has (m2
g̃i

+m2
q −m2

q̃i
) ' 2mqmq̃i and

Γ(g̃i → qq̃i) '
Kmqg

2
3

16πm2
g̃i

[
1± 2 cos θq sin θq

]
. (3.1.7)

Hence for maximal squark (stop or sbottom) mixing there is a complete suppression
of one of the decays in this limit.

For three-body decays of a gluino to neutralinos and quarks, it shall be argued
below that in this model the neutralinos should be light, and so even though the
neutralinos themselves significantly break the R-symmetry through their mixings, the
quarks/neutralinos should be relativistic and one should not see a significant difference
between the two gluino components.

3.1.4 Model constraints

The model constraints in the MDGSSM have largely been covered in previous sections,
but the most important will be summarised below. As mentioned above, the limits on
gluino and (first/second generation) squark masses depend on the other parameters in
the model, in particular the mass of the lightest supersymmetric partner, but also on
the details of the decay chains. In the (phenomenological) MSSM, it is reasonable to
consider the bino/wino/higgsino masses as free parameters. However, in the MDGSSM
(and in DG models generally) these have a large effect on the Higgs mass at tree level.
Indeed, it is well known that in the supersoft limit the Higgs D-term potential is
erased [77]; and a large µ-term has a similar effect. Moreover, the singlet and triplet
scalars obtain tree-level masses mSR,mTP proportional to the Dirac mass terms:

m2
SR = m2

S + 4|mDY |2 +BS , m2
TP = m2

T + 4|mD2|2 +BT ,

and so if mDY or mD2 are large then the scalar singlet/triplet should be heavy. If
then they are integrated out, then the correction to the Higgs quartic coupling is

δλ ∼ O
(
gYmDY

mSR

)2

+O
(√

2λSmDY

mSR

)2

+O
(
g2mD2

mTP

)2

+O
(√

2λTmD2

mTP

)2

,

(3.1.8)

with the exact expressions for the Two-Higgs Doublet model parameters are given
in (2.3.11) and appendix B. This means that the singlet and triplet scalars need to
be made heavy relative to the gauginos and higgsinos in order to not suppress the
Higgs mass or even render the potential unstable. Without removing the scalars
from the spectrum entirely and losing all trace of naturalness, this means keeping the
gauginos/higgsinos well below a TeV.

The scalar triplet fields are well-known to generate a shift to the electroweak
ρ-parameter at tree-level, with the electroweak precision constraints on the model
stipulated in section 2.5. The experimental best fit value for ρ (2.5.4) is satisfied by
taking mTP & 2 TeV for typical values of µ,mD2 ∼ 500 GeV. Numerically it is found
hard to find satisfactory parameter points for gaugino/higgsino masses of O(TeV) and
so in the benchmark points here they shall be taken to be only a few hundred GeV.

On the other hand, in the decoupling limit, the light Higgs mass is given by

m2
h1
'M2

Zc
2
2β +

(λ2
S + λ2

T )

2
v2s2

2β + ... , (3.1.9)
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Figure 3.2: Influence of λS on the mass splitting between the two bino-like mass
eigenstates χ̃0

1,2 (left) and on the lifetime of the χ̃0
2 (right) for the parameters of

eq. (3.2.1) and tanβ = 2.

with the full expression for the tree-level Higgs mass given in (2.2.25), and so taking
small tanβ and moderate values of λS , λT the Higgs mass can be enhanced at tree-
level without having exceptionally heavy stops (given that the stop mixing will be
small in the absence of SUSY-breaking trilinear couplings).

3.2 Benchmark scenarios

It has been argued that a typical MDGSSM scenario should have electroweakinos
of O(500) GeV, a triplet scalar heavier than 2 TeV, and if one wants to enhance
naturalness of the model (avoiding stop masses larger than O(10) TeV), small tanβ
and 2(λ2

S + λ2
T ) > g2

Y + g2
2. For the sake of simplicity, and since there is no reason

to suspect a large splitting of left- and right-chiral squarks, the equivalencies m2
Qi

=

m2
Ui

= m2
Di

are taken, as well as a common value for the first two generations, while
allowing the third generation squark masses to vary so as to obtain the correct Higgs
mass (some stop contribution is necessary unless large values of λS , λT are chosen).

To quantitatively investigate how this influences the LHC limits, four benchmark
scenarios are chosen with different values of λS , λT . Concretely the limit mDY < µ <
m2D is taken with, for the first three benchmarks,

mDY = 200 GeV, µ = 400 GeV, mD2 = 500 GeV. (3.2.1)

Moreover, to favour a large tree-level boost to mh1 , tanβ = 2 is taken. This gives
a hierarchical spectrum of bino-, higgsino- and wino-like states with masses of about
200, 400 and 500 GeV, respectively. Finally, λT = 0.2 is set and two values of λS ,
λS = −0.27 and −0.74 are chosen, to have cases with small and sizeable χ̃0

1,2 mass

splittings. The dependence of the χ̃0
1,2 mass splitting and the χ̃0

2 lifetime on λS is
shown in Fig. 3.2.

With this setup, the masses of gluinos and squarks are treated as free parameters
(m3D and a scalar soft mass-squared parameter), while the masses of the 3rd genera-
tion squarks are adjusted such that mh1 ∈ [123, 127] GeV. The calculation of the mass
spectrum and decay branching ratios is done with SARAH [165, 165, 166, 193–195] and
SPheno [196], including Higgs mass calculation at the 2-loop level [167–169]. Three
distinct cases are considered:2

DG1 : λS = −0.27; mt̃ ∼ mb̃ ∼ 3.6 TeV, (3.2.2)

2It should be noted that no dark matter constraints are considered here. This is justified as this
work is interested in unequivocal collider constraints on the coloured sector without assumptions
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Parameters

DG1 DG2 DG3 DG4

m1D 200 200 200 200

m2D 500 500 500 1175

µ 400 400 400 400

tanβ 2 2 2 2

−λS 0.27 0.74 0.74 0.79√
2λT 0.14 0.14 0.14 −0.26

m2
Q̃3

1.25e7 6.5e6 2.26e6 8.26e6

m2
Q̃1

6.25e6 6.25e6 6.25e6 6.25e6

m3D 1750 1750 1750 1750

Masses

DG1 DG2 DG3 DG4

χ̃0
1 201.35 182.1 181.8 182.4

χ̃0
2 201.72 218.0 216.6 213.2

χ̃0
3 403 400 396 408

χ̃0
4 419 445 441 437

χ̃0
5 537 536 535 1226

χ̃0
6 548 548 546 1227

χ̃±1 400 395 391 398

χ̃±2 536 536 534 1224

χ̃±3 549 548 547 1229

t̃1 3604 2607 1590 2894

t̃2 3613 2637 1613 2927

h1 124.0 125.0 125.3 125.2

Table 3.1: Parameters and masses (in GeV) of the four benchmark scenarios; m1D,
m2D, µ, tanβ, λS , λT and the soft masses of the third generation (m2

Q̃3
= m2

Ũ3
= m2

D̃3
)

are fixed for each benchmark, while m3D and m2
Q̃1

= m2
Ũ1

= m2
Q̃1

will be varied to scan

over gluino and squark masses. The sgluons have masses of about 1.6 and 3.9 TeV
and play no role for the phenomenology discussed here.

DG2 : λS = −0.74; mt̃ ∼ mb̃ ∼ 2.6 TeV, (3.2.3)

DG3 : λS = −0.74; mt̃ ∼ mb̃ ∼ 1.6 TeV. (3.2.4)

For DG1 with λS = −0.27, the two bino-like mass eigenstates χ̃0
1,2 are quasi-degenerate

with sub-GeV mass splitting, and the χ̃0
2 has a mean decay length of nearly 3 km, so

that it will appear as a co-LSP. For λS = −0.74 (DG2 and DG3), the two bino-like
mass eigenstates χ̃0

1,2 have masses of about 182 GeV and 216–218 GeV, respectively,

and the χ̃0
2 decays promptly into χ̃0

1 ff̄ via an off-shell Z.
Since the main interest is in gluino and squark cascade decays, a fourth benchmark

is also considered with heavy winos by moving m2D above 1 TeV, thus on the one hand
somewhat suppressing decays into wino-like states, and on the other hand changing
the kinematic distributions of such cascades. Concretely,

DG4 : m1D = 200 GeV, µ = 400 GeV, m2D = 1175 GeV,

λS = −0.79, λT = −0.37, mt̃ ∼ mb̃ ∼ 3 TeV. (3.2.5)

The main parameters and resulting masses for the four benchmark scenarios are sum-
marised in Table 3.1. Examples of gluino and squark decay branching ratios are given
in Table 3.2 and compared to the branching ratios in the MSSM with an equivalent
bino/wino/higgsino spectrum.

The complete SLHA spectrum files produced with SARAH/SPheno are available at
[197].3 Note here, that these conventions differ (as usual) from the SARAH DiracGauginos

on the cosmological history of the universe. For a discussion of DG dark matter within standard
cosmology, see [83].

3For the sake of reproducibility of these results, the SPheno model and input files are provided, as
well as the UFO model and two helpful scripts for modifying the SPheno .spc files so they can be used
for event generation with MadGraph/Pythia.
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DG1 DG2 DG3 DG4 MSSM1 MSSM4

Gluino decays, mg̃ ≈ 2 TeV, mq̃ ≈ 2.6 TeV

g̃ → qq̄ + binos 12% 6% – 18% 10% 15%

g̃ → bb̄ + binos – 1% – 6% – 1%

g̃ → tt̄ + binos 1% 4% – 6% 1% 3%

g̃ → (qq̄(′), bb̄) + heavy EW-inos 66% 36% – 13% 66% 19%

g̃ → (tt̄, tb̄, bt̄) + heavy EW-inos 20% 53% – 61% 23% 62%

g̃ → t+ t̃1,2 – – 48% – – –

g̃ → b+ b̃1,2 – – 52% – – –

Squark decays, mq̃ ≈ 2 TeV, mg̃ ≈ 2.6 TeV

q̃R → q + binos 99% 99% 98% 99% 92% 92%

q̃L → q + heavy EW-inos 99% 99% 99% 97% 98% 97%

Table 3.2: Branching ratios of gluino and squark decays for DG1–DG4. For gluino
decays the mass hierarchy mq̃ < mg̃1,2 is considered, and for squark decays the mass
hierarchy m̃̃g1,2

> mq̃. The columns MSSM1 and MSSM4 give the comparison to
the equivalent MSSM case with M1 = 200 GeV, µ = 400 GeV and M2 = 500 GeV
(MSSM1) or 1200 GeV (MSSM4); third generation squark masses are about 3.6 TeV
for MSSM1 and 3 TeV for MSSM4, while tanβ = 10 and At = −4 TeV to achieve
mh1 ≈ 125 GeV.

implementation. Used here are

Parameter SARAH convention

λS −lam
λT LT/

√
2

. (3.2.6)

Scenarios DG1, DG2 and DG3 have heavy stops and sbottoms, so the gluino
branching ratios in Table 3.2 will not change significantly with the gluino mass in
the region accessible with current LHC data, as long as mg̃ < mq̃ (if mg̃ > mq̃,
then of course g̃ → qq̃ decays dominate). This is different for DG3 which has stops
and sbottoms at about 1.6 TeV. Here the gluino branching ratios vary a lot with
mg̃ up to 2 TeV, as shown in Fig. 3.3. Note that in this figure the BR(g̃1) and
BR(g̃2) are averaged over because R-symmetry breaking effects lead to differences in
g̃1 and g̃2 decays near the threshold where 2-body decays into sbottoms/stops become
kinematically allowed. These differences are however experimentally not observable.

3.3 Simplified model limits

Within the MSSM, ATLAS and CMS have excluded gluino (light-flavor squark) masses
up to about 1800–2025 (1550) GeV assuming decoupled squarks (gluinos) and a single
decay channel into the neutralino LSP with 100% branching ratio [69,70]. In the DG
case, the twice as large gluino production cross-section should increase the gluino mass
limit by about 150–200 GeV; the bound on squark masses remains the same, since the
quoted MSSM limit is already for decoupled gluinos.

The constraints which can be derived in the context of such “simplified models”
considerably weaken in realistic scenarios where the gluinos (squarks) share out their



3.3 Simplified model limits 89

Figure 3.3: Branching ratios of gluino decays (averaged over g̃1 and g̃2) for DG3 as
function of the gluino mass, for mq̃ ≈ 2.6 TeV.

branching ratios over several decay channels [198].4 For instance, if BR(g̃ → qq̄χ̃0
1) =

0.1, only 1% of the total gluino-pair production is constrained by the pp → g̃g̃, g̃ →
qq̄χ̃0

1 simplified model upper limits. Likewise, if q̃L decay via heavy EW-inos, only
q̃∗Rq̃R production is effectively constrained by the pp → ¯̃qq̃, q̃ → qχ̃0

1 simplified model
limits. On the other hand, the production cross-sections themselves can be [much]
larger than in the simplified model picture, if gluino (squark) contributions to squark
(gluino) production are not decoupled in the parameter space one is interested in.

To illustrate explicitly the consequences for our benchmark scenarios, gluino and
squark masses are scanned over for two cases, DG1 and DG3, and evaluate the simpli-
fied model constraints with SModelS [199, 200]. Here the v1.1.2 database of SModelS
is used, which includes the Run 2 SUSY search results for 36 fb−1 from CMS as de-
tailed in [201]. The decay branching ratios are again computed with SARAH/SPheno.
Cross-sections are computed at leading order with MadGraph5 aMC@NLO [202] using
the Dirac gaugino UFO model of [165]. (The effect of higher-order corrections will be
commented on in the next section.)

The result is shown in Fig. 3.4. For DG1, when mg̃ < mq̃ the strongest constraint
comes from the pp → g̃g̃, g̃ → qq̄χ̃0

1 simplified model (denoted as T1) and excludes
gluino masses up to about 1250 GeV for LO cross-sections. When mq̃ < mg̃, the
strongest constraint mostly comes from the pp → q̃q̃(∗), q̃ → qχ̃0

1 simplified model
(denoted as T2), excluding squark masses up to roughly 1300 GeV as long as the
gluino is not too heavy. In the equivalent MSSM case (MSSM1 scenario in Table 3.2),
the gluino mass limit would be only 1 TeV due to the smaller gluino pair-production
cross-section while, conversely, the squark mass limit would be about 2 TeV for 2.6
TeV gluinos.

For DG3, which has stops around 1600 GeV and a χ̃0
2–χ̃0

1 mass splitting of about
35 GeV, the picture changes. On the one hand, over a large part of the region with
mg̃ < mq̃, the strongest constraint now comes from the pp→ g̃g̃, g̃ → tt̄χ̃0

1 simplified
model (denoted as T1tttt). Moreover, and more importantly, gluino and squark decays
via the bino-like χ̃0

2 are followed by χ̃0
2 → χ̃0

1 ff̄ via an off-shell Z, which is a different

4This is in particular the case if only cross-section upper limits are available for simplified model
spectra. Efficiency maps for all signal regions for a large enough set of simplified models would allow
us to combine the contributions from different signal topologies in the simplified model approach [199].
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Figure 3.4: SModelS constraints in the gluino versus squark mass plane, on the left
for DG1, on the right DG3. The colour code denotes the simplified model which
gives the strongest constraint (T1: pp → g̃g̃, g̃ → qq̄χ̃0

1; T1tttt: pp → g̃g̃, g̃ → tt̄χ̃0
1;

T2: pp → q̃q̃(∗), q̃ → qχ̃0
1; TChiWW: pp → χ̃±i χ̃

±
i , χ̃±i → W±χ̃0

1). Full-colour (non-
transparent) points are excluded by SModelS, while light-shaded points escape the
simplified model limits.

topology in the simplified model picture.5 This drastically reduces the effective cross-
section (σ × BRs) that goes into the T1, T1tttt or T2 topologies. Consequently, the
excluded region is noticeably smaller for DG3 than for DG1, with a gluino mass limit
of only 1 TeV (corresponding to the factor 2 reduction of the T1 cross-section which
is also seen in the comparison between DG1 and MSSM1 above), and a squark mass
limit below 1 TeV.

It is also worth pointing out that for heavy gluinos and squarks, the effective
T1(tttt) or T2 cross-sections become too small and electroweak production of charginos
followed by χ̃±i → W±χ̃0

1 decays (denoted as TChiWW) takes over as the most con-
straining simplified model signature. Note however that TChiWW upper limit maps
are available for 8 TeV only—neither ATLAS nor CMS have provided them for the
13 TeV data—and do not exclude any of the scan points.

3.4 Recast of the ATLAS multi-jet plus Emiss
T analysis

From the above discussion it is clear that the simplified model limits are not sufficient
for constraining complex scenarios as the ones considered here. Instead, a full recasting
of the experimental search(es) is necessary to derive the true exclusion limit. To this
end, the ATLAS multijet search [69] was implemented in MadAnalysis 5 [203–205].
This is a generic search for squarks and gluinos in final states with jets and large
missing transverse momentum, Emiss

T , using 36 fb−1 of
√
s = 13 TeV pp collision

data. It employs two approaches: one referred to as Meff-based search and a second,
complementary search using the recursive jigsaw reconstruction technique.

Here only the Meff-based analysis is used, which comprises 24 inclusive signal
regions characterised by a minimum required jet multiplicity of two, four, five or six
jets with transverse momenta pT > 50 GeV. The missing energy of the event must be
larger than 250 GeV, and events with a baseline electron or muon with pT > 7 GeV
are vetoed. Signal regions requiring the same jet multiplicity are distinguished by

5In SModelS txname notation, these would be constrained by, e.g., T5ZZoff or T6ZZoff results,
which are however not available.
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Figure 3.5: 95% CL exclusion limits in the gluino vs. squark mass plane for DG1
(green), DG2 (blue) and DG3 (red) contrasted with MSSM1 (black dashed line),
derived from the recasting of the ATLAS 2–6 jets + Emiss

T analysis for 36 fb−1 at√
s = 13 TeV. Only the most sensitive (=best expected) signal region is used for the

limit setting.

increasing background rejection through cuts in variables like the pT of the leading
jets, ∆Φ between jets and Emiss

T , and the effective mass variable Meff [206] (defined as
the scalar sum of the pT of the leading jets and the Emiss

T ), among others. Of these 24
signal regions, 22 are implemented in the MadAnalysis 5 recast code, which is publicly
available as [207] and part of the MadAnalysis 5 Public Analysis Database [205]. Two
additional signal regions using larger-radius jets (dubbed 2jB-1600 and 2jB-2400 in
the ATLAS paper) are not included as a good enough agreement with the validation
material provided by ATLAS could not be reached.

To evaluate the sensitivity of this search to gluinos and squarks in the Dirac gaug-
ino model, a scan is performed over gluino and light-flavor squark masses for the four
benchmark scenarios of section 3.2. For each scan point, 30K events are simulated
with MadGraph5 aMC@NLO [202], including all 2 → 2 SUSY production processes in
pp collisions at 13 TeV using nn23lo1 PDFs. Decays, parton shower and hadroniza-
tion are done in Pythia 8.2 [208] and the simulation of the ATLAS detector with
Delphes 3 [209]. Finally the events are analysed with MadAnalysis 5 and an exclu-
sion confidence level (CL) is computed with the CLs technique [150]. See [210] for
a comprehensive introduction to recasting with MadAnalysis 5, explaining the full
procedure. Note that in each scan point only the “best” (i.e. the statistically most
sensitive) signal region is used for limit setting.6

Let us start with the light wino scenarios. Figure 3.5 shows the resulting 95% CL
exclusion lines in the gluino vs. squark mass plane for DG1, DG2, DG3 and MSSM1.
As can be seen, for mg̃ ≈ mq̃, the limit is about 2.1 TeV for both gluino and squark
masses in all DG benchmark scenarios. For 4 TeV gluinos, the squark mass limit
is about 1.4 TeV in the least favourable DG case (DG1), decreasing to about 1.1–
1.15 TeV for DG2 and DG3, where χ̃0

2 → Z∗χ̃0
1 decays appear in the squark decay

chains. (The comparison with the MSSM will be done at the end of this section.)

The gluino mass limit in the region mq̃ > mg̃ depends more sensitively on the

6Since the signal regions are inclusive (= overlapping) they actually cannot be combined.
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assumed DG scenario. While a robust limit of mg̃ & 1.65 TeV is found for very heavy
squarks in all cases, one also observes different “dips” in the exclusion contours for
the different benchmark scenarios. To understand the shape of the exclusion contour,
it is instructive to consider which signal regions are used for the limit setting and how
the various production modes contribute to the final CLs value. To this end, Fig. 3.6
shows the CLs values in the best signal region from various proton-proton processes
as a function of gluino mass, for medium heavy squarks of mq̃ ∼ 2.6 TeV.

One sees that the best signal region switches from 6j-Meff-1800 (6 jets, Meff >
1800 GeV) to 6j-Meff-2600 (6 jets, Meff > 2600 GeV) at different values of gluino
mass for the three benchmark scenarios. In particular for DG3 this leads to the
exclusion CL dropping below 0.95 for mg̃ ∼ 1.7 TeV, where gluino decays into 3rd
generation squarks become dominant, and getting back above 0.95 for mg̃ ∼ 1.8–
2 TeV. Moreover, one observes that taking into account gluino-pair production would
only give a bound of mg̃ & 1.65–1.7 TeV, as is also found in the limit of heavy squarks
in Fig. 3.5. The inclusion of both gluino-pair and gluino-squark production is essential
for a correct limit setting.7

Next, a comparison in Fig. 3.7 shows the CLs values in different signal regions for
DG1 and DG3. In order to cut across the dip-peak features in the exclusion contours,
chosen here are mq̃ ∼ 3.6 TeV for DG1 and mq̃ ∼ 2.6 TeV for DG3. One sees again
that for relatively light gluinos the best signal region is 6j-Meff-1800 and the observed
CL value drops below 0.95 for gluino masses around 1.65 TeV. The 6j-Meff-2600 signal
region, on the other hand, excludes higher gluino masses, up to about 1.8 TeV in DG1
with mq̃ ∼ 3.5 TeV, and up to about 2 TeV in DG3 with mq̃ ∼ 2.6 TeV. However, 6j-
Meff-2600 becomes the “best” signal region (used for the limit setting in Fig. 3.5) only
for gluino masses of 1.8 TeV onwards. This is responsible for the dip-peak structure
in the exclusion curve in Fig. 3.5; using only the 6j-Meff-2600 signal region, the gluino
mass limit would be stronger.

Turning to the squark exclusion limits, Fig. 3.8 shows the CLs values in the best
signal regions as a function of squark mass, for fixed gluino mass. Again only DG1
and DG3 are compared, as DG2 is very similar to the latter. For mg̃ ∼ 2.4 TeV, signal
regions with 4 jets (first 4j-Meff-2600 and then 4j-Meff-3000) exclude squark masses
up to 1.9 (1.8) TeV for DG1 (DG3). This is partly due to a substantial contribution
from gluino-squark production. As the gluino mass is increased to ∼ 4 TeV, both
squark-pair and gluino-squark production cross-sections are suppressed, and the best
signal region is typically one with only 2 jets. The exception is DG3 with squark
masses around 1 TeV, where a 5-jet signal region with rather low Meff cut (5j-Meff-
1600) becomes the best one. This is again a consequence of the χ̃0

2 → Z∗χ̃0
1 decays,

which are present in DG3 (and DG2) but not in DG1.

7This was also pointed out in [198] in the context of simplified model limits.
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(a) DG1

(b) DG2

(c) DG3

Figure 3.6: 1-CLs values in the best signal regions from all proton-proton processes as a
function of gluino mass for (a) DG1, (b) DG2, (c) DG3; mq̃ ∼ 2.6 TeV in all three cases.
Individual contributions to the total CLs (denoted by the solid black line labelled pp→
all) are given by the faint dashed lines, namely gluino-pair production (diamonds);
squark-pair production (triangles) and gluino-squark production (squares). The best
signal region at each gluino mass value is identified by the colour code as indicated in
the plot legends.
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(a) DG1

(b) DG3

Figure 3.7: Comparison of 1-CLs values in the 6j-Meff-1800 and 6j-Meff-2600 signal
regions as a function of gluino mass, for (a) DG1 with mq̃ ∼ 3.6 TeV and (b) DG3
with mq̃ ∼ 2.6 TeV. The best signal region is identified by full red circles.
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(a) DG1

(b) DG3

Figure 3.8: 1-CLs values in the best signal regions from all proton-proton processes as
a function of squark mass for (a) DG1 and (b) DG3. The solid lines are for mg̃ ∼ 2.4
TeV, while the dashed lines are for mg̃ ∼ 4 TeV. (Since the input parameters are the
soft masses, mt̃ and mb̃ vary slightly in the two cases.)
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Figure 3.9: 95% CL exclusion limits in the gluino vs. squark mass plane for DG4, and
comparison to MSSM4.

Comparing all this to the equivalent MSSM1 scenario, one sees the expected
∼ 200 GeV lower gluino mass limit; the squark mass limit is however considerably
stronger when gluinos are heavy, still reaching mq̃ & 2 TeV for 4 TeV gluinos, as
Majorana gluinos decouple very slowly.

Last but not least let us explore the role of light or heavy winos appearing in the
decay chains. To this end, Fig. 3.9 shows the 95% CL exclusion limits in the gluino
vs. squark mass plane for the DG4 and MSSM4 scenarios, to be compared with the
exclusion lines for DG2 and MSSM1 in Fig. 3.5. Interestingly, the results are very
similar for heavy and light winos; the main difference is an increase in the squark
mass limit by about 100–200 GeV (for fixed gluino mass) when winos are heavy. In
particular, mq̃ & 1.3 TeV at mg̃ & 4 TeV for DG4, which lies in between the values
for DG1 and DG2,3.

Before concluding, a comment is in order on the effect of higher-order corrections.
It is well known from the MSSM [211, 212] that K-factors for gluino-pair and gluino-
squark production can be very large, of the order of a factor 2–3, depending on the
PDF set used; K-factors for squark production are somewhat smaller but still sizeable.
For the DG case, the next-to-leading order (NLO) corrections to squark production
in the R-symmetric model were computed in [131], with the conclusion that NLO
K-factors are generally larger than in the MSSM by the order of 10–20%. Since the
cross-section of squark production falls off very steeply with increasing squark mass,
K ≈ 2 has only little impact, pushing the gluino mass limit about 100 GeV higher.
The higher-order corrections for Dirac gluino final states have not been computed
explicitly, but one may assume they are not vastly different from the MSSM. Taking
a K-factor of 2–3 as the reference, the gluino mass limit increases by roughly 200 GeV
to mg̃ & 2 TeV for heavy squarks, while for mg̃ ≈ mq̃ the limit is pushed to roughly
2.3–2.4 TeV. This is illustrated explicitly for the scenario DG4 in Fig. 3.10.

3.5 Conclusions

Most SUSY searches at the LHC are optimised for the MSSM, where gauginos are
Majorana particles. Dirac gauginos are, however, an interesting and theoretically
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Figure 3.10: 95% CL exclusion limits in the gluino vs. squark mass plane for bench-
mark DG4 with K-factors 1 (LO), 2 and 3.

well-motivated alternative. Their phenomenological consequences at the LHC include
that gluino-pair production is enhanced by a factor 2 as compared to the MSSM, while
squark production is strongly suppressed due to a much faster decoupling of the gluino
t-channel exchange. Moreover, the extended chargino and neutralino sector present
in DG models can have important effects on the collider signatures.

In this paper, bounds from LHC searches on squarks and gluinos have been in-
vestigated in the Minimal Dirac Gaugino Supersymmetric Standard Model for several
representative benchmark scenarios. Since a typical MDGSSM scenario should have
electroweakinos not too far above the electroweak scale, as a primary test case, sce-
narios with a bino-like LSP around 200 GeV, higgsinos around 400 GeV and winos
around 500 GeV were chosen. Thus all charginos and neutralinos may appear in
gluino and squark cascade decays. Also considered was a scenario with heavier winos
of about 1200 GeV, and these were all compared to the nearest equivalent models in
the MSSM.

In the context of simplified model constraints, derived with SModelS, the large
variety of possible decay modes in our benchmark scenarios led to very weak limits.
The reason is, that in complex scenarios like the ones considered here, only a small
fraction of the total SUSY production leads to simple signal topologies which are
constrained by the available simplified model results.

The benchmark scenarios were then confronted with a full recasting of the ATLAS
multi-jet Emiss

T search [69] with MadAnalysis 5. By comparing the bounds in the DG
benchmark scenarios to those in the MSSM, it was confirmed and quantified by how
much supersoft models are supersafe: for large gluino masses, the bounds on squarks
are very significantly (by several hundred GeV) suppressed compared to the MSSM,
and this should have consequences for the naturalness of allowed models. It was shown
that this statement is robust even including loop corrections to the production. On
the other hand, for smaller gluino masses, the extra degrees of freedom lead to larger
production cross-sections, and so the lower limit on the gluino mass in these models
is somewhat higher than in the MSSM.

An important feature of the DG case, which was discussed in some detail in this
paper, is that the trilinear λS and λT couplings, which give a tree-level boost to the
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light Higgs mass, lead to small mass splittings within the bino and wino states. This
is important for LHC phenomenology because, if the mass splitting between the two
lightest states (in our benchmark scenarios the two binos) is very small, then the χ̃0

2

can live long enough to effectively be a co-LSP on collider scales and appear only as
Emiss
T . For larger mass splittings, however, the χ̃0

2 may decay promptly into ff̄ χ̃0
1 via

an off-shell Z-boson, leading to an additional step in part of the gluino and squark
cascade decays. For mg̃ ≈ mq̃ this has no noticeable influence on the mass limits. For
heavy gluinos or squarks, however, it was shown that the mass limits slightly weaken
when λS is large. Last but not least, there exists a range of λS where the χ̃0

2 is a
long-lived neutral particle, whose decays can give signatures with displaced vertices.
A detailed study of this case is left for future work.

For the sake of reproducibility of our study, ample material is provided on Zenodo [197,
213].



4 – Sleptons without hadrons

4.1 Introduction

Weak-scale supersymmetry, if realised in nature, presents an attractive solution to
several longstanding theoretical and observational shortcomings of the Standard Model
of particle physics (SM). For example, supersymmetry can protect the Higgs boson
mass from large quantum corrections, ensure gauge coupling unification at high scales,
and provide a viable weakly interacting dark matter candidate [214,215]. While light,
sub-TeV superpartners of quarks and gluons have largely been excluded by direct
searches at the CERN Large Hadron Collider (LHC) [69–71, 216], the situation is
far less conclusive for electroweak (EW) boson and lepton superpartners due to their
smaller production cross sections [217,218]. Current constraints only exclude slepton
masses up to a few hundreds of GeV [219,220]. For electroweak boson partners [221–
223], the case is slightly more interesting due to several small excesses, which reveal
a local significance of 3.5σ and favor 100 − 300 GeV neutralino and chargino masses
in the Minimal Supersymmetric Standard Model (MSSM) [224]. Hence, studies into
new analysis strategies that can improve searches for electroweakinos and sleptons are
highly motivated.

Among the several promising lines of such investigations are those that consider
the impact of jet vetoes (i.e., the rejection of events featuring jets with a transverse
momentum greater than some threshold pVeto

T [225–229]) in measurements of and
searches for heavy, colorless SM [230–244] and beyond the SM [245–252] states. In-
terestingly, recent studies of multilepton searches for heavy, colourless exotic particles
have demonstrated that dynamic jet vetoes can significantly improve discovery po-
tential [251, 252]. More specifically, a proposed analysis premised on setting pVeto

T on
an event-by-event basis to the hardness (pT ) of the event’s leading lepton was found
to improve sensitivity by roughly an order of magnitude. The improvement followed
from an increase (relative to a static jet veto) in signal rate passing the jet veto, an
ability to veto top quark events without heavy quark flavour-tagging, and a sensitivity
to jets misidentified as charged leptons [251].

While serving a similar goal, such a veto functions in a qualitatively different
manner than rapidity-dependent vetoes [237, 239, 240] by associating pVeto

T with a
measure of the hard process scale Q. A key point is that the improvement, which was
demonstrated for both the Drell-Yan (DY) and electroweak boson fusion processes,
followed from the veto effectively discriminating local leptonic activity against local
hadronic activity [252].

In light of this, this report explores the impact of dynamic jet vetoes on the
discovery potential of dimuon plus missing energy searches for right-handed smuon
pairs (µ̃+

Rµ̃
−
R) decaying to neutralinos (χ̃1) via the DY mode,

qq → γ∗/Z(∗) → µ̃+
Rµ̃
−
R → µ+µ−χ̃1χ̃1 , (4.1.1)

99
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γ∗/Z(∗)
µ̃−
R

µ̃+
R

µ−

µ+

χ̃1

χ̃1

Figure 4.1: Drell-Yan production of a pair of right-handed smuons (µ̃+
Rµ̃
−
R) decay-

ing into a pair of muons (µ±) and lightest neutralinos (χ̃1). Generated with Jaxo-
Draw [253].

as illustrated in fig. 4.1. Going beyond refs. [251, 252], which determined only the
improved sensitivity of setting pVeto

T to the leading lepton pT , several complementary
measures of local and global leptonic and hadronic activity will be considered, includ-
ing the scalar sum of the lepton transverse momenta (ST ) as well as the (inclusive)
scalar sum of the transverse momenta of hadronic objects (HT ). As a benchmark,
a CMS-inspired analysis [219] that features a standard (flavour-independent), static,
central jet veto of pVeto

T = 25GeV will be used. As will be shown below, a dynamic
veto can improve the discovery potential of the analysis in most cases.

The remainder of this report continues in the following manner: in sec. 4.2, a sim-
plified model describing right-handed smuon production and decay in hadron collisions
will be introduced, and the present constraints on the model discussed. Section 4.3
will summarise the computational setup, which includes state-of-the-art event genera-
tion up to NLO in QCD matched to parton showers (PS). Slepton pair production at
the LHC and the qualitative impact of different dynamic jet vetoes for the signal and
background processes will then be discussed in sec. 4.4. There the proposed dynamic
veto and benchmark collider analyses will also be defined. The results and outlook
will be presented in sec. 4.5, before summarising and concluding in sec. 4.6.

4.2 Model

In order to investigate smuon production in a model-independent way, a benchmark
simplified model inspired by the MSSM is chosen. An MSSM limit is considered in
which all superpartners are decoupled, with the exception of the right-handed smuon
µ̃R (of mass mµ̃R) and the lightest neutralino χ̃1 (of mass mχ̃1) that is taken as bino-
like. The Lagrangian describing the new physics dynamics of our model is given, using
four-component fermion notations, by

L =
[
∂µµ̃

†
R

][
∂µµ̃R

]
+
i

2
χ̃1/∂χ̃1−m2

µ̃R
µ̃†Rµ̃R−

1

2
mχ̃1χ̃1χ̃1

+

[
∂µµ̃†Rµ̃R − µ̃

†
R∂

µµ̃R

][
ieAµ −

iesW
cW

Zµ

]
−
√

2e

cW

[(
χ̃1PRµ

)
µ̃†R + H.c.

] (4.2.1)

Here, the smuon gauge interactions with the photon Aµ and Z boson field Zµ (second
line) have been explicitly indicated, as well as the supersymmetric gauge interactions
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of the muon µ, the smuon µ̃R, and the bino χ̃1 (last line). As irrelevant for the
purposes of this paper, D-term contributions are neglected. It should also be noted
that sW and cW are the sine and cosine of the electroweak mixing angle, e is the
electromagnetic coupling constant, and PR the right-handed chirality projector.

Despite its simplicity, the model is only weakly constrained by LHC searches for
smuon pair production in the dimuon plus missing transverse energy channel [219].
This is due to large backgrounds, consisting mainly of W boson and top quark pair
production, as well as being an electroweak signal production mode, as illustrated
by eq. (4.1.1). For a massless neutralino, the smuon mass is constrained with L =
39.5 fb−1 of

√
s = 13TeV data to satisfy, at the 95% confidence level (CL), mµ̃R >

220GeV. There is almost no constraint when the neutralino is heavier than 100GeV.

As the neutralino is stable, it is a viable candidate for a dark matter particle.
Bino dark matter with light sleptons can be accommodated provided that the slepton-
neutralino mass splitting is of at most 10% of the neutralino mass. Under this condi-
tion, there are sufficient co-annihilations so that the universe is not overclosed [254].
However, in the aim of using simplified models as tools for characterising given phe-
nomena, this latter constraint is ignored.

4.3 Computational Setup

To conduct the study, signal and background events in pp collisions at a center-of-mass
energy

√
s = 14TeV are simulated and analysed. The simplified model Lagrangian

of eq. (4.2.1) is implemented into FeynRules [255], that is jointly used with the
NLOCT [256] and FeynArts [257] packages to generate a UFO library [258] that in-
cludes tree-level vertices as well as ultraviolet and R2 counterterms. This enables nu-
merical computations up to one-loop in the strong coupling constant αs. Event genera-
tion for signal and background processes is performed with MadGraph5 aMC@NLO
v2.6.3.2 [202], allowing the matching of NLO QCD fixed-order calculations with parton
showers with the MC@NLO prescription [259].

For background samples, the totally inclusive process at NLO in QCD is matched
to its first jet multiplicity at NLO according to the FxFx method [260]. This has
the effect of promoting the first and second QCD emissions in the inclusive sample,
which, respectively, are only described at LO+LL and LL precision, to NLO+LL and
LO+LL quantities. In these instances, the generator-level cuts pjT > 30GeV and
|ηj | < 5 are applied with a merging scale Qcut = 60GeV. Background processes are
dressed with multiple particle interactions (MPI) using Pythia 8’s underlying event
model [208,261,262].

The programs MadSpin [263] and MadWidth [264] are used to handle the smuon
decays into a muon–neutralino system. The use of Pythia v8.230 [208], steered by the
CUETP8M1 “Monash*” tune [265], is employed to handle parton showering (including
QED radiation), the hadronization of all final-state partons, as well as the decays of
hadrons and tau leptons.

Particle-level reconstruction is handled with MadAnalysis5 v1.7.10 [203,210], in
which jet clustering is enforced using the anti-kT algorithm [266], as implemented in
FastJet v3.3.0 [267]. A jet radius of R = 1 is chosen, following the jet veto analysis
of ref. [250]. During the clustering procedure, ideal b-jet, light-jet, and hadronic tau
(τh) tagging is assumed; potential misidentification of one particle species as another is
implemented at the analysis level as done in ref. [252]. Computations use the NNPDF
3.1 NLO+LUXqed parton distribution function (PDF) set [268], while both PDF
and αs(µ) evolutions are managed by using LHAPDF 6 v1.7 [269].
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In addition to event generation, totally inclusive cross section normalisations at
NLO and with next-to-leading logarithmic (NLL) threshold corrections are obtained
with Resummino v2.0.1 [270]. Again the NNPDF 3.1 NLO+LUXqed PDF set
is used, despite the availability of PDFs extracted using threshold-corrected matrix
elements [271]. This choice is motivated by the much larger statistical uncertainty
associated with the resummed PDF, which obfuscates their improved perturbative
precision / systematic uncertainty. The reader is referred to ref. [272] for a study of
their impact on the hadroproduction of slepton pairs.

For total signal rates up to NLO+NLL, the collinear factorisation (µf ) and QCD
renormalisation (µr) scales are set to the smuon mass. For signal and background
event generation, an event-by-event scale set to half the scalar sum of the transverse
energy of all final-state particles is used,

µf,r = ξ × µ0 with µ0 =
1

2

∑
k∈{final state}

√
|pkT |2 +m2

k, (4.3.1)

where by default, ξ = 1. The residual perturbative scale dependency is then quantified
by varying µr and µf independently over the discrete range ξ ∈ {0.5, 1.0, 2.0}.

4.4 Smuon Pairs at the LHC

4.4.1 Smuon Pair Production

Like electroweakinos, sleptons can be produced through a variety of mechanisms in
proton-proton collisions. For simplicity, this study is restricted to the production of
right-handed smuon pairs through the inclusive, Drell-Yan process,

pp→ γ∗/Z∗ +X → µ̃+
Rµ̃
−
R +X, (4.4.1)

as illustrated in fig. 4.1. At the hadronic level X above denotes an arbitrary number
of (predominantly forward) QCD jets. If vector boson fusion becomes a relevant
production mode of TeV-scale smuons [273–275], as for example at higher collider
energies and integrated luminosities beyond the LHC, then one can expect much of
the same dynamic jet veto behavior as presented below [252].

In the upper panel of fig. 4.2, the totally inclusive NLO+NLL cross section for
neutral-current DY smuon production at a center-of-mass energy

√
s = 14TeV is

shown. The results are given as a function of the smuon mass, and the uncertainties
stemming from perturbative scale variation (black band) and PDF fitting (light band)
are indicated. In the lower panel of the figure, QCD K-factors are presented, with
their uncertainties, defined relative to the Born process,

KNLO+NkLL =
σNLO+NkLL(pp→ µ̃+

Rµ̃
−
R +X)

σLO(pp→ µ̃+
Rµ̃
−
R +X)

. (4.4.2)

The cases k < 0 and k = 1, respectively, correspond to computations at NLO and
NLO+NLL.

For smuon masses mµ̃R ∈ [200, 900]GeV (i.e., the range of interest for the LHC),
the NLO+NLL production cross section varies from approximately 10 fb to 10 ab,
with the corresponding scale uncertainties reaching the ±2 − 3% level. In this mass
regime, NLO+NLL predictions sit well within the NLO perturbative uncertainty band
that has a width of about ±4%. Furthermore, the QCD K-factors for both the NLO
and NLO+NLL computations are of about K ≈ 1.15 and largely independently of the
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Figure 4.2: Upper: totally inclusive neutral-current DY production cross section of
µ̃+
Rµ̃
−
R pairs at NLO+NLL, and at a center-of-mass energy

√
s = 14TeV with scale

uncertainty (black band) and PDF uncertainty (lightest band). Lower: NLO+NLL
(black band) and NLO (lighter band) QCD K-factor, with PDF uncertainty (lightest
band).

smuon mass. On different grounds and still in this mass range, PDF uncertainties are
only marginally larger than the NLO scale uncertainties, before growing significantly
for mµ̃R & 800GeV (due to the absence of data in the PDF fits). As the same PDF set
is used for both the NLO and NLO+NLL computations, the size of their uncertainties
is essentially identical.

For the parameter space consistent with the simplified model assumptions, the
gluon fusion contribution to inclusive µ̃+

Rµ̃
−
R production, which formally arises at

O(α2
s), is small compared with the neutral-current DY component [276, 277]. More-

over, for DY-like processes that give rise to high-pT charged leptons, QCD scale uncer-
tainties in cross sections featuring a dynamic jet veto at NLO+PS (which are formally
at the leading-logarithmic accuracy) are comparable with the total inclusive cross sec-
tion uncertainty at NLO due to the absence of large jet veto logarithms [251,252]. This
holds independently of the jet radius for a dynamic veto [252]. For a static veto, choos-
ing a jet radius of R = 1 significantly helps to minimise the perturbative uncertain-
ties [250,278–280], though worsens the universal, non-perturbative ones [238,250,281].
Thus, it may be concluded that cross sections for µ̃+

Rµ̃
−
R production obtained from

event generation at NLO+PS, either with or without a dynamic jet veto, are reliable
estimates of the true rate. The reliability of NLO+PS predictions with static jet ve-
toes applied to SM diboson and weak boson scattering processes have similarly been
reported elsewhere [235,244]. Hence, for the purposes here and for discovery purposes,
NNLO and NNLL (threshold) terms in fixed order and resummed signal predictions
can be ignored.
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4.4.2 Dynamic Jet Vetoes Beyond pT

Jet vetoes have long been established as powerful tools to improve the discovery
potential of sleptons and electroweakinos in multilepton searches at hadron collid-
ers [245–248, 282]. In practice, LHC experiments rely on fixed/static veto thresholds
of pVeto

T = 20−50GeV for central jets within a pseudorapidity |ηj | . 2.5 [220,283–288].
Recently [251, 252], though, it was demonstrated that dynamic jet veto schemes,
namely ones wherein pVeto

T is set on an event-by-event basis to the pT of an event’s
leading lepton, can improve the sensitivity of multilepton searches for exotic, colour-
less particles. In conjunction with selection cuts on leptonic observables, this type of
jet veto ultimately discriminates against the relative amounts of hadronic and leptonic
activity in each event.

In this sense, dynamic jet vetoes can be generalised by considering observables
that measure an event’s global hadronic and leptonic activities instead of just the pT
of an event’s leading objects. For example: the inclusive scalar sum of pT of all hadron
clusters in an event (HIncl.

T ),

HIncl.
T ≡

∑
k∈{clusters}

|~p k
T |, |ηk| . 4.5, (4.4.3)

or the exclusive scalar sum of pT of the two leading charged leptons (`1, `2) in an event
(SExcl.
T ),

SExcl.
T ≡

2∑
k=1

|~p `k
T |, (4.4.4)

are natural candidates. Here the usual particle ordering is adopted, where pkiT > p
ki+1

T

for particles ki and ki+1 of species k. Henceforth the “Incl./Excl.” labels will also be
suppressed for brevity, but it is stressed that the results here should not be expected
to uniformly carry over to exclusive HT and inclusive ST .

Explicitly, the summation over “hadron clusters” in Eq. (4.4.3) means the sum-
mation over the set of momentum vectors that are the output of a jet clustering
algorithm applied to hadrons within a pseudorapidity of |ηHad.| < ηmax = 4.5. Clus-
ters that satisfy additional kinematic requirements, e.g., a minimal pT threshold, are
further classified as jets.

Qualitatively, HT differs from the pT of the leading (or subleading) central jet pj1T
(or pj2T ) in that HT is much more sensitive to complicated colour topologies in a hard
scattering processes. The simplest colour topologies, e.g., eq. 4.4.1, have at most one
or two colour dipoles / antennas, and hence less QCD radiation, resulting in HT that is
comparable to pj1T . On the other hand, complex QCD processes, e.g., pp→WW +nj,
have many color antennas, and hence more sources of QCD radiation, resulting in HT

significantly larger than pj1T .

Due to its exclusive nature, ST acts to exaggerate and accentuate the characteristic
behavior of the leading charged leptons `1 and `2. If they stem from a resonant (con-
tinuum) process, then ST will characteristically have a narrow (shallow) distribution.
If the two are pair-produced, then one expects the scaling ST ∼ 2p`1T . Likewise, any

relative (in)dependence of p`kT on the hadronic activity is inherited by ST . By virtue of
the Collinear Factorisation Theorem, central, high-pT charged leptons in hadron colli-
sions stem from a hard underlying process. Hence, the ST of leading leptons probes an
event’s hard-scattering core, and, up to possible kinematic decay factors, must scale
like the hard scattering scale Q. This helps to protect against the emergence of large
veto logarithms. It should briefly be remarked that exclusive ST differs from inclusive
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Figure 4.3: Ratios of measures of hadronic and leptonic activity for representative
signal (solid) and background (dashed) samples used in the dynamic veto analysis,
showing (a) pl1T /p

j1
T , (b) pl1T /HT , (c) ST /p

j1
T , (d) ST /HT , (e) p`2T /p

j1
T , (f) p`2T /HT .

ST in that the latter sums over the trailing charged leptons and additionally probes
universal, low-Q2 physics, such as hadron decays and QED parton showering.

In application, a dynamic, HT -based jet veto would work, for example, by rejecting
events in which HT exceeds p`1T . Analogously, an ST -based veto functions by requiring,

for example, an event to satisfy pj1T < ST for |ηj1 | < ηmax.

To explore these alternative dynamic veto schemes, presented in fig. 4.3 are the
normalised distributions for the following ratios of leptonic and hadronic activities:

(a) p`1T /p
j1
T , (b) p`1T /HT , (c) ST /p

j1
T ,

(d) ST /HT , (e) p`2T /p
j1
T , (f) p`2T /HT .

These are considered for the signal process given in eq. 4.4.1, assuming three bench-
mark parameter space points,

Signal Category : (mµ̃R ,mχ̃1),

High-mass, Large mass splitting : (750GeV, 100GeV),

High-mass, Small mass splitting : (750GeV, 700GeV),

Low-mass, Small mass splitting : (100GeV, 50GeV),

with smuons decaying into an SM muon and a neutralino. The following representative
backgrounds are also considered,

pp→ tt̄→ `+`− +X, pp→ `+`−νν, (4.4.5)
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with ` ∈ {e, µ, τh}. All signal and background processes are considered at NLO+PS,
after jet clustering. At least two oppositely charged muons are required, with any
number of clusters satisfying the truth-level kinematical requirements,

|ηclust.| < 4.5, |η`| < 2.4, and p`T > 10GeV. (4.4.6)

For reference, a brief discussion should be made of the first the kinematic ratio
r`1j1 = p`1T /p

j1
T , as studied by refs. [251,252] and shown in fig. 4.3(a). For the signal pro-

cesses, one sees a difference in behaviour according to whether or not the smuon and
neutralino are close in mass. Whereas the high-mass, large mass splitting configuration
possesses a very broad distribution, with most of the phase space exceeding r`1j1 > 1,
the more compressed configurations possess relatively narrower distributions, with
significantly more phase space below the r`1j1 = 1 threshold. For the large mass split-

ting case, final-state muons carry p`T ∼ mµ̃R(1 −m2
χ̃1
/m2

µ̃R
)/2 ∼ mµ̃R/2 ∼ 375GeV.

This is significantly larger than the leading jet pT , which is generally of the order of
the Sudakov peak. For on-shell slepton pair production, the Sudakov peak is much
lower than 2mµ̃R , indicating that characteristically pj1T � p`1T ∼ mµ̃R/2. For the
compressed cases, the muons carry only p`T . 40− 50GeV and drive the relationship

r`1j1 (high-mass, small-splitting.) . r`1j1 (low-mass, small-splitting.) . 1.
Considering the background processes, one observes that most events populate the

region around r`1j1 ∼ 0.25 − 0.75. In both cases, the behavior follows from kinematic
arguments [251]. For an at-rest top quark decaying into leptons, the characteristic
momenta of the charged lepton and associated b-quark give rise to the scaling

r`1j1 ∼
p`T
pbT
∼ mt

(
1 +M2

W /m
2
t

)
/4

mt

(
1−M2

W /m
2
t

)
/2
∼ 0.75. (4.4.7)

In a full simulation at NLO+PS with large-R jets, this is pushed significantly to
smaller values due to a large tt + 1j sub-channel, boosts from large (tt)-invariant
masses, and into-cone radiation. Each enhances pjT or pbT relatively to p`T . Despite
being a color-singlet process, the inclusive pp → ``νν + X channel has a relatively
large pp → ``νν + 1j fraction. This is due to the Born-like pp → Wγ∗/WZ + 0j
processes being suppressed by radiation zeroes [289–296]. In turn, r`1j1 is inherently
less than unity.

Figure 4.3(b) considers the impact of including secondary QCD radiation and
shows the distribution for r`1HT = p`1T /HT . For the signal processes, some difference

from r`1j1 is observed in the normalization and position of the distributions’ maxima.

Here, the maxima are marginally taller and pushed to slightly lower values of r`1HT .
This is indicative of the low hadronic activity in DY-like processes, which is in fact
why a jet veto is considered at all. On the other hand, for both background processes,
values of r`1HT much smaller than r`1j1 are observed. For tt specifically, the shift (and

narrowing) from r`1j1 . 0.5 to r`1HT . 0.25 is consistent with HT , which sums over

both bottom jets, being roughly 1/HT ∼ 1/(2 × pj1T ) ∼ 1/(2 × pb1T ). The low-mass,
compressed signal distribution is in particular hardly distinguishable from the ``νν
distribution.

Considering now a more global measure of leptonic activity, presented in figs. 4.3(c)
and (d) are the distributions for the ratios rSTj1 = ST /p

j1
T and rSTHT = ST /HT , respec-

tively. For all cases one sees that the rSTj1 and rSTHT curves are broader than their r`1j1 and

rSTj1 counterparts, and that the distributions’ maxima are shifted slightly rightward.
As in the (a) and (b) panels, the compressed signal and both background processes
have a significant fraction of their respective phase spaces below unity.
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As an alternative measure of local leptonic activity, figs. 4.3(e) and (f) show the
distributions for the ratios r`2j1 = p`2T /p

j1
T and r`2HT = p`2T /HT , respectively. Immediately,

one sees a larger separation than in (a) and (c) of the high-mass, compressed signal
process from all other processes. Notably, the tt distributions are much narrower, with
almost all events falling below r`2j1 . 0.5 and r`2HT . 0.25.

Taken together, a picture emerges for generalised definitions of dynamic jet ve-
toes. One finds that all of the proposed veto schemes exhibit uniform behaviour.
For the signal process with the highest charged lepton momenta, i.e., the high-mass,
large mass splitting signal category, there is a clear signal-to-background separation
against representative background processes. For signal processes with charged lepton
momenta comparable to SM processes, one finds significantly less but nonetheless in-
teresting discriminating power. In particular, for the low-mass, compressed category,
one sees reasonable separation from tt but poor separation from ``νν, whereas for
the high-mass, compressed category the opposite is observed. This suggests that it
may be possible to salvage additional signal space with complementary selection cuts.
Quantitatively, a larger signal-to-background separation is observed for dynamic veto
schemes with more inclusive/global hadronic observables, e.g., HT , and more exclu-
sive/local charged lepton observables, e.g., p`2T . The worst separation is given by rSTj1 ,
which makes use of the multilepton activity of background processes but not the rel-
atively low hadronic activity of the signal processes. The ratio r`2HT appears to be
exceptionally powerful in rejecting top quark background.

4.4.3 Jet Veto Collider Analyses

The static and dynamic jet veto analyses are now defined, to quantify how generalised
dynamic jet vetoes may improve the discovery potential of smuon pairs at the LHC
- if at all. For all analyses, analysis-quality charged leptons and jets are defined as
those that satisfy the following kinematical, fiducial, and isolation requirements,

p
e (µ) [τh] {j}
T > 10 (10) [20] {25}GeV,

|ηe (µ) [τh] {j}| < 2.4, ∆R`m,`n > 0.4, ∆R`j > 0.4.

Electron and muon efficiencies as reported1 in ref. [219] are used for leptons with pT ≥
20 GeV, and those reported in ref. [297] for leptons with pT ∈ [10, 20[ GeV. Hadronic
decays of τ leptons (τh) with pT ≥ 20 GeV are tagged using the efficiencies reported
in ref. [298]. All objects are smeared with a Gaussian profile as done in ref. [252],
using publicly available resolution parameterizations as reported by the ATLAS and
CMS collaborations [299–302]. The magnitude of the transverse momentum imbalance
vector (/ET ) is defined with respect to all visible momenta within |η| < 4.5,

/ET = | 6~pT |, 6~pT = −
∑

k∈{visible}

~p k
T . (4.4.8)

The following background processes

pp→ ```ν, pp→ ``νν,

pp→ tt̄→ 2`X, pp→WWW → 3`X,

are simulated at NLO+PS with FxFx-merging for the first jet multiplicity. The addi-
tional background processes

pp→ ````, pp→ `+`−,

1https://twiki.cern.ch/twiki/bin/view/CMSPublic/SUSMoriond2017ObjectsEfficiency

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SUSMoriond2017ObjectsEfficiency
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Analysis Object Criteria at
√
s = 14 TeV:

p
e (µ) [τh] {j}
T > 10 (10) [20] {25}GeV,

|ηe (µ) [τh] {j}| < 2.4, anti-kT w./ R = 1

∆R`m,`n > 0.4, ∆R`j > 0.4

Common Analysis Requirements:

N(µ+) = 1, N(µ−) = 1, N(`) = 2,

mµµ > 20 GeV, |mµµ −MZ | > 15GeV,

MT2 > 90GeV, /ET > 100GeV,

Binned signal region: /ET ∈ (a)[100, 150[,

(b)[150, 225[, (c)[225, 300[, (d)[300,∞[GeV

Benchmark (Static) Jet Veto Analysis Requirements:

p
µ1 (µ2)
T > 50 (20)GeV, pVeto

T = 25GeV

Dynamic Jet Veto Analysis Requirements:

Overlapping Signal Categories:

(a) pVeto
T = p`1T (b) HVeto

T = p`1T
(c) pVeto

T = ST (d) HVeto
T = ST

(e) pVeto
T = p`2T (f) HVeto

T = p`2T

Table 4.1: (Top) Analysis object / particle identification requirements at
√
s = 14TeV;

(upper) common analysis requirements; (lower) benchmark static veto analysis re-
quirements; and (bottom) dynamic jet veto analysis requirements.

pp→ tt̄`ν → 3`X, pp→WW``→ 2`X,

simulated in contrast at the NLO+PS accuracy, were found to give a negligible back-
ground contribution after all selection cuts in all analyses, and therefore are ignored
for the remainder of the report.

Shared Analysis Baseline

As a baseline for all analyses, the CMS search for slepton pair production in dilepton
final states at

√
s = 13 TeV with L = 35.9 fb−1 of data [219] is closely followed.

Events featuring one pair of analysis quality, opposite-sign muons are pre-selected,
and events with additional analysis-quality charged leptons are vetoed. The analysis
is thus inclusive with respect to additional leptons outside these criteria. Low-mass
hadronic resonances and Z-pole contributions are removed with the invariant mass
cuts: mµµ > 20GeV and |mµµ −MZ | > 15GeV. The SM DY continuum is further
suppressed by requiring /ET > 100GeV, and diboson and top pair processes are reduced
by requiring a “stransverse mass” cut of MT2 > 90GeV [303,304]. Section 4.5 describes
the impact of relaxing this cut. Events are then binned according to /ET . Analysis
object definitions and shared analysis requirements are summarised in the top two
sections of table 4.1.

Benchmark, Static Jet Veto Analysis

At this point, our jet veto collider analyses diverge. Our benchmark, static jet veto
analysis continues as prescribed in the baseline CMS analysis [219] and further requires
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Figure 4.4: Exclusion contours on the signal strength µSS for smuon pair production in
the (mχ̃1 ,mµ̃R) plane with L = 35.9 fb−1, for (a) the static jet veto analysis based on

ref. [219], with pVeto
T = 25GeV, and (b) the dynamic jet veto analysis with pVeto

T = p`1T .

that the pT of the leading and subleading muons satisfy

p
`1 (`2)
T > 50 (20)GeV. (4.4.9)

Lastly, a static jet veto of pVeto
T = 25GeV is imposed on analysis-quality jets. As

such objects must sit within |η| < 2.4, the veto is more specifically a static, central jet
veto. Relaxing this pseudorapidity restriction will be briefly explored in the following
section. Analysis requirements are summarised in the third section of table 4.1.

For background processes, comparable cross sections after selection cuts are found
to those reported by CMS for all signal regions except the lowest /ET bin.

There, the background rate is found to be about 50% lower and is driven by
a difference in the normalisation of the “Flavour Symmetric” background, which is
largely populated by the tt and diboson processes.

The difference in this bin is attributed to the background normalisations used here
being accurate only up to NLO+PS, meaning that they are therefore missing numeri-
cally large O(α2

s) contributions. There are also potentially missing contributions from
mismeasurements which are not captured by our detector fast simulation.

These effects can both introduce significant differences to CMS’ data-driven pre-
dictions. The cutflows for the dominant backgrounds are summarised in table 4.2.

Dynamic Jet Veto Analysis

The goal of this study is to see to what extent, if at all, generalisations of dynamic jet
vetoes can improve searches for multilepton final states over traditional, static, central
jet vetoes. To do this, a class of analyses that simplifies the static veto analysis of the
preceding subsection is proposed. This is executed by removing the stringent high-pT
selection cuts on charged leptons given in eq. (4.4.9) and by setting the central jet
veto threshold on an event-by-event basis. More precisely, events are vetoed either
(i) if there exists an analysis-quality jet with pjT > pVeto

T or (ii) if the event possess

HT > HVeto
T . In no case are vetoes considered simultaneously on pjT and on HT . The

veto threshold are set dynamically according to the following permutations:

(a) pVeto
T = p`1T , (b) HVeto

T = p`1T , (c) pVeto
T = ST ,

(d) HVeto
T = ST , (e) pVeto

T = p`2T , (f) HVeto
T = p`2T .
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In principle, one can introduce a scaling factor r, e.g., HVeto
T = r×ST , with r = 0.75,

and improve the signal-to-background ratio S/B according to fig. 4.3. However, this
is beyond the proof-of-concept scope of our study. Needless to say, investigations into
optimising a “smart jet veto” are encouraged.

4.5 Results and Outlook

To quantify the impact of dynamic jet vetoes on searches for smuon pairs, the CLS
technique [150] is used to first determine the 95% CL reach in terms of the event rate
N95 = σ95 × L, for a luminosity L. Monte Carlo uncertainties are taken into account
for both the signal and the background, and use a flat systematic uncertainty of 20%
on the background prediction derived from the FxFx + MPI samples. The combined
likelihood ratio of the four signal regions is used as the test statistic. Sensitivity is
then expressed in terms of the signal strength (µSS),

µSS = σ95/σp, (4.5.1)

where σp is the predicted cross section in our simplified model. A signal strength of
µSS < 1 means that the signal hypothesis is excluded with at least 95% confidence.

As a check, shown in fig. 4.4 is µSS for (a) the static jet veto analysis based on
ref. [219], where pVeto

T = 25GeV, and (b) the dynamic jet veto pVeto
T = p`1T , assuming

L = 35.9 fb−1 at
√
s = 14TeV.

The derivation of these figures considers only the Monte Carlo uncertainty and
a flat 20% additional systematic uncertainty (which is intended to approximate all
additional theory and experimental systematic uncertainties) in the limit setting, to
keep the comparison as clear as possible. One finds that the constraints derived using
the reference analysis are stronger than those reported in ref. [219]. This is attributed
to three reasons. First, in comparison with the 13 TeV results explored with data,√
s = 14TeV is taken here. Second, this study uses a highly simplified treatment

of systematic uncertainties, and finally, a slightly smaller background prediction for
the lowest /ET signal region is recovered compared with the data-driven prediction of
ref. [219] (see sec. 4.4.3).

With the dynamic jet veto analysis, an improvement in sensitivity is observed over
the static veto analysis, with mµ̃R . 425GeV being accessible for mµ̃R � mχ̃1 , to be
confronted to mµ̃R . 360GeV in the static case. A comparable improvement is found
at larger luminosities. However, as part of the improvement comes from higher signal
acceptance rather than large improvements in S/B, the relative improvement dimin-
ishes somewhat. It should be stressed that while this improvement appears limited,
it has been obtained by relaxing several selection cuts of the somewhat sophisticated
analysis of ref. [219], and näıvely applying a dynamic jet veto that has not been op-
timised according to fig. 4.3. This “out-of-the-box” improvement even for relatively
light smuon masses is encouraging.

To present the main results of this report, for a given jet veto scheme and lumi-
nosity, the ratio of signal strengths are considered:

RDy. Veto =
µCMS
SS

µDy. Veto
SS

=
σCMS

95 /σCMS
p

σDy. Veto
95 /σDy. Veto

p

, (4.5.2)

where µCMS
SS is the signal strength as determined using the reference static jet veto

analysis and µDy. Veto
SS is the signal strength as determined with the dynamic jet veto

analysis. The double ratio has the simple interpretation that a value of R > 1 implies
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Figure 4.5: The ratio of signal strengths (µSS) for (a) pVeto
T = p`1T , (b) HVeto

T = p`1T ,

(c) pVeto
T = ST , (d) HVeto

T = ST , (e) pVeto
T = p`2T , and (f) HVeto

T = p`2T , compared with
the CMS reference analysis using L = 500 fb−1. The solid red line shows the 95%
exclusion for µSS = 1 for the benchmark CMS analysis, and the dashed red line the
same exclusion for the dynamic analysis.

that the dynamic veto analysis is more sensitive than the static veto analysis for a
given input.

In fig. 4.5, assuming L = 500 fb−1, R is presented for

(a)pVeto
T = p`1T , (b)HVeto

T = p`1T , (c)pVeto
T = ST ,

(d)HVeto
T = ST , (e)pVeto

T = p`2T , (f)HVeto
T = p`2T .

In the large mass splitting regime where mµ̃R � mχ̃1 , one finds that the veto scheme

(f) HVeto
T = p`2T outperforms the static veto analysis for mµ̃R & 200GeV; this finding

extends to (b) HVeto
T = p`1T , (d) HVeto

T = ST and (e) pVeto
T = p`2T for mµ̃R & 250GeV;
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Figure 4.6: The ratio of constraints at L = 500 fb−1 for (a) the default CMS analysis,
and (b) the dynamic pj1T < pl2T , both with a jet pseudorapidity cut of |η| < 4.5,
compared with their respective default analyses employing |η| < 2.4. The solid red
line shows the 95% exclusion for µSS = 1 for the standard |η| < 2.4 analysis, and the
dashed red line the same exclusion for |η| < 4.5 analysis.

and reportedly, all dynamic jet veto schemes show improvement for mµ̃R & 300GeV.

Of the schemes considered, the choice (c)pVeto
T = p`2T arguably performs worst, with

limited improvement over the static analysis for much of the phenomenologically rele-
vant parameter space. For the compressed regime where mµ̃R ∼ mχ̃1 , the ST schemes

demonstrate some improvement, while (f) HVeto
T = p`2T is considerably weaker than

the static analysis.

For much of the parameter space of interest, one sees that the improvement is in
excess of 25 to 50%. The relative improvement grows with increasing mµ̃R which allows
for improvement in excess of 100% since the static veto reduces the signal efficiency
for heavier mass scales (due to harder initial-state radiation) while the dynamic veto
schemes generally remain efficient or become more efficient (due to harder, final-state
charged leptons). At lower mµ̃R and close to the degenerate limit, final-state leptons
are relatively soft. This leads to pVeto

T and HVeto
T thresholds that are as tight as, if

not more stringent than, the static veto, thereby eliminating any improvement from
relaxing other selection cuts.

Qualitatively, it is observed that HT -based vetoes tend to perform better at high
masses while pj1T -based vetoes are better at low masses, indicating the utility of veto
schemes that employ more inclusive measures of the hadronic activity, e.g., HT . ST -
based schemes are competitive. However pVeto

T = ST is too inclusive for small mµ̃R

where the static analysis gives better results. The inclusive nature of ST is particularly
useful in the compressed region, where individual lepton momenta are the smallest.
In short, a whole class of dynamic jet vetoes can improve discovery potential of smuon
pairs, but the difference in performance across the various limits of parameter space
suggests that no single combination of hadronic and leptonic activity measures will
be ideal in all cases. The appropriate leptonic measure should be investigated on an
analysis-by-analysis basis in order to target specific kinematic regions.

Impact of Jet Veto Rapidity Window

Experimentally, jets can be reconstructed up to the maximal range of the detector,
i.e. with a pseudorapidity of η ≤ 4.5 for ATLAS and CMS. In practice though, jet
vetoes are often only applied within the coverage of the tracker, typically for jets with
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|η| . 2.4, to avoid the significant contribution of pile-up to the low-pT jet rate by jets
that would normally never exceed the veto threshold. This avoidance, however, is at
the cost of an increased dependence on higher order QCD splittings, and hence an
increased theoretical uncertainty [240]. It was, however, shown that these uncertainties
can be alleviated if, instead, cuts are made on both η and pjT in a step-like fashion, in
particular wherein pVeto

T is relaxed for increasing jet pseudorapidity [240]. Indeed it
has been shown that such jet vetoes are lready experimentally viable [305]. Moreover,
extending dynamic jet vetoes to the forward region was found to be necessary to
ensure a sufficient suppression of SM backgrounds in studies at higher

√
s [252].

In this context, the impact of a dynamic jet veto when expanding the η range of
the jet veto-window from |η| < 2.4 to |η| < 4.5 is briefly investigated. For a widened
η range, fig. 4.6 shows the signal strength ratio,

RX = µX
SS(|ηVeto| < 2.4)/µXSS(|ηVeto| < 4.5), (4.5.3)

for (a) the benchmark static jet veto analysis, where pVeto
T = 25GeV, and (b) the

dynamic analysis, with pVeto
T = p`2T . As before, a ratio of RX > 1 indicates improved

sensitivity. When a static veto is used and the pseudorapidity range increased, the
vetoing of jets outside the central region reduces background rates while simultane-
ously reducing the signal rates, thereby maintaining a similar signal-to-background
efficiency as in the reference analysis. For the dynamic veto, however, there is a uni-
form O(5− 20)% improvement for most of the parameter space due to slightly higher
background rejection coupled with a smaller decrease in signal efficiency. It is antic-
ipated that this behaviour to hold for all other dynamic veto schemes considered in
this analysis.

Impact of Jet Vetoes When Lifting The MT2 Cut

As shown in Table 4.2, requiring the selection cut MT2 > 90 GeV greatly suppresses
electroweak diboson and top quark pair production independently of a jet veto. How-
ever, the cut also reduces considerably the signal acceptance when sparticles are mass-
degenerate. Notably, it is reported that choosing a more aggressive dynamic jet veto
can control the top pair background sufficiently in the absence of the MT2 cut, leading
to a significant improvement in sensitivity.

It has been checked that using HT < pl2T as a dynamic veto is stringent enough
to control the top pair background when lifting the MT2 cut, independently of the
signal region. When relaxing MT2, total background rates grow by a factor of 5 for
the lowest /ET signal region up to a factor of 1.5 for the highest /ET signal region,
while there is a large, overall increase in signal efficiency. For the benchmark point
(mµ̃R ,mχ̃1) = (750GeV, 700GeV), this results in negligible changes in the signal (S)
over background (B) ratio S/B for the two lower /ET signal regions but significant
increases in S/B for the two higher /ET signal regions. Lifting the MT2 cut when using
a stringent dynamic veto based on HT therefore allows for improvements in sensitivity
in the compressed region, independently of the integrated luminosity, due to the top
pair background being sufficiently controlled by the dynamic veto itself.

One finds though that the improvement does not hold for all veto schemes con-
sidered. When requiring pj1T < pl2T and no MT2 restriction, the top pair background
comes to dominate the background rate in the two lower /ET signal regions and in-
creases the rates by factors of 20 − 30, thereby reducing S/B, despite the increased
signal efficiency. The two higher /ET signal regions are less affected due to a much
smaller the top pair contribution, with only a factor of 2 increase in the total back-
ground rate for the highest /ET one. For (mµ̃R ,mχ̃1) = (750GeV, 700GeV), one sees a
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reduction in S/B in all signal regions, except for the highest /ET one, suggesting that
the simplest incarnations of dynamic jet vetoes are not sufficient in their own right.
This was noted previously in refs. [251,252].

4.6 Summary and Conclusion

In summary, this study has undergone an investigation into several measures of lep-
tonic and hadronic activities in the process

pp→ γ∗/Z∗ +X → µ̃+
Rµ̃
−
R +X → µ+µ− + /ET +X, (4.6.1)

and the associated SM background processes, to explore possible generalisations of
dynamic jet vetoes. Using this information, it has been demonstrated that a gen-
eral class of dynamic jet vetoes can be used to improve the sensitivity of searches for
right-handed smuon pair production at the LHC. The improvement becomes more
significant as mass scales further above the EW scales are probed, and in some in-
stances hold even when the final-state particles are soft. Most choices of measures
for hadronic and leptonic activities perform better than the CMS-inspired benchmark
analysis, which features a static jet veto threshold of pVeto

T = 25GeV (see fig. 4.5).
Differences suggest that no single dynamic veto scheme will always be ideal for all
parameter space regions and rather should be investigated on an analysis-by-analysis
basis. Qualitatively, one finds that dynamic jet vetoes using more inclusive measures
of the hadronic activity, e.g., HT , perform best, while the ideal choice of leptonic activ-
ity depends on the signal kinematics (see sec. 4.5). This study reports that the impact
of including MPI/UE and NLO-accurate jet merging, e.g., via the FxFx method, does
not appreciably alter this picture; see table 4.2. The impact of enlarging the jet veto
rapidity window and complementarity to other selection cuts were also addressed.

Due to the dynamic nature of these cuts, sensitivity can likely be considerably
improved with machine learning techniques and such future investigations are en-
couraged. Our results should generalise to other searches for new, heavy, uncoloured
physics that employ jet vetoes at the LHC.
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Cut/Channel σ(``νν) [fb] σ(```ν) [fb] σ(tt̄) [fb]

Common Analysis Requirements

Generator 10 300+4.5%
−5.1% 1680+5.5%

−6.2% 91 000+11.9%
−11.7%

Dimuon
Selection

840+4.9%
−5.3%

(8.4%)

140+6.1%
−6.5%

(8.6%)

6800+12%
−13%

(7.5%)

+m``

Requirements

580+5.3%
−5.5%

(69%)

40+6.3%
−6.8%

(29%)

5300+12%
−13%

(78%)

+Minimum
MT2

2.4+9.0%
−6.2%

(0.42%)

0.56+7.0%
−8.2%

(1.4%)

8.6+12%
−25%

(0.16%)

Benchmark Static Jet Veto Analysis Requirements

+p`1T > 50GeV,

p`2T > 20GeV

2.3+12%
−7.2%

(96%)

0.53+7.8%
−10%

(95%)

7.8+12%
−33%

(91%)

+Static Jet
Veto

1.6+13%
−7.8%

(70%)

0.31+7.8%
−13%

(60%)

0.15+68%
−58%

(1.9%)

Dynamic Jet Veto Analysis Requirements

pVeto
T = p`1T

2.4+10%
−7.4%

(> 99%)

0.55+7.3%
−8.6%

(99%)

4.5+32%
−32%

(57%)

pVeto
T = p`2T

2.2+11%
−8.6%

(91%)

0.50+7.1%
−7.5%

(87%)

0.98+57%
−17%

(12%)

pVeto
T = ST

2.4+8.9%
−6.7%

(> 99%)

0.56+6.9%
−9.0%

(> 99%)

6.6+23%
−26%

(89%)

HVeto
T = p`1T

2.2+9.2%
−5.8%

(87%)

0.46+7.3%
−13%

(84%)

0.54+22%
−25%

(7.1%)

HVeto
T = p`2T

1.5+7.7%
−7.3%

(60%)

0.33+8.6%
−8.9%

(58%)

0.12+62%
−81%

(1.5%)

HVeto
T = ST

2.3+9.6%
−9.7%

(97%)

0.54+7.0%
−8.5%

(95%)

1.9+31%
−20%

(23%)

Table 4.2: The cross section [fb] with uncertainties [+%
−%] and cut efficiency [(%)] of the

selection cuts in table 4.1 for the dominant SM backgrounds, when modeled for FxFx-
merging with MPI (FxFx+MPI). Uncertainties are obtained by adding the renormal-
isation and factorisation scale envelope with the shower scale envelope and statistical
uncertainty in quadrature. At the generator-level, statistical confidence corresponds
to 5-10 M events for each sample and shower variation.
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Conclusion

The discovery of the Higgs boson in 2012 closed one chapter of modern particle physics
and consequently shifted the limelight onto the half-open can of worms in the corner.
The completed Standard Model on its own leaves too many questions unanswered
for particle theorists to lock their office doors and head off for early retirement; the
community as a whole is rather confident that this is not the end of the story. It may
be that new physics has not yet been found at the LHC, but instead of throwing in the
towel, the community creates more theories, refines their search analyses and recasts
the ones already performed for their favourite models. The domain is as active as
ever and for good reason; whoever went to study physics without seeking a challenge
clearly enrolled in the wrong class.

The Higgs boson itself, or the “god” particle (said no particle physicist ever), is
at the centre of the Venn diagram, and not only enables physicists to understand
the origin of mass and massive particles, but also to discover new ones. The Higgs
boson is uniquely placed to feel the effects of higher energy physics, and enables the
particle physics community to entertain and constrain various SM extensions. This
quality is central to chapter 2, which explored the idea of the Higgs boson as part of
a type-II Higgs doublet model originating from a higher energy Dirac gaugino model
which is automatically aligned in the minimal model. Indeed, it was shown that this
attribute held robustly under quantum corrections and the alteration of the scale at
which the extended supersymmetry is manifest. An effective field theory approach
was employed, implementing the running of two-loop RGEs and including extensive
threshold corrections at the THDM and SUSY energy scales, and the effects of the
Higgs mass bounds and experimental constraints from run 2 of the LHC on the SUSY
scale subsequently studied. This section was concluded by a quick comparison to the
MRSSM case - a model in which alignment is not predicted.

With the numerous SM-extensions existing, it would be a tough feat indeed for
experimental collaborations to produce exclusion limits for all theoretical proposals.
As such, a large majority of supersymmetry searches are based on the MSSM and
simplified variations. However not all SUSY models are created equal, and as discussed
in chapter 3, SUSY extensions can open up new production mechanisms and decay
channels, and the associated exclusion limits can considerably vary in comparison to
the simplified models. Using resources provided by the experimental collaborations,
it is possible instead for phenomenologists to determine indicative limits on their own
BSM models. Chapter 3 sought to further this goal, by primarily using simplified
model constraints to do a fast limit setting on 4 representative scenarios with the
MDGSSM – introduced first in the introduction section 1.2.4 and which was the focus
of chapter 2. This was followed up by a full recasting of the ATLAS-SUSY-2016-07
analysis to set constraints on the squarks and gluinos in the MDGSSM in the context
of LHC run 2, and a comparison was performed for equivalent corresponding MSSM
scenarios.

117



118 Chapter 4. Sleptons without hadrons

The final chapter complements the antecedent one, in looking to further ameliorate
searches for weak-scale supersymmetry by modifying the way that hadronic activity
is processed through the currently used search analyses. Large background sources,
which are typically hadronic in proton-proton colliders such as the LHC, will always
be a hurdle to overcome when trying to pick out a search signal. Traditionally, static
central jet-vetoes are applied to cut out large hadronic background sources, but it has
recently been proposed [251, 252] that dynamic jet vetoes can be applied in searches
for colourless physics and the sensitivity of the search can be improved. Chapter 4
considered the Drell-Yann production of a pair of right-handed smuons with missing
energy in a simplified MSSM model. Several global and local measures of hadronic
and leptonic activity were scrutinised in order to increase the signal-to-background
efficiency, and it was shown that, independent of the integrated luminosity, the search
sensitivity was enhanced.

If and when new physics is detected it is without a doubt that the particle physics
community will be waiting, escorting numerous tools with which to fully analyse and
optimise the search results. Until then, it will simply continue to express mild concern
towards where its next bit of funding might appear from.



A – Basic representation theory

The anomalous dimension of a general field can be defined by

γφ ≡ −
1

2

∂ logZφ
∂ logµ

, (A.0.1)

where Zφ is the wavefunction renormalisation coefficient responsible for the renormal-
isation of the kinetic term for the field φ. By definition, the dimension of φ changes
when a dimensionful function is put in front of it, and thus the dimension of the field
itself acquires an anomalous dimension. The energy-dependence of this dimensionful
function is exactly what defines an anomalous dimension. At tree-level, the couplings
are implicitly devoid of any energy dependence. In reality, as the energy scale at which
the theory is defined changes, so do the values of the couplings. For this one needs to
consider the renormalisation group equations.

Consider an arbitrary Yukawa coupling YijkΦ
iΦjΦk between three superfields in

a general supersymmetric superpotential. In a supersymmetric theory, to derive the
beta-function for a Yukawa coupling,

βYijk ≡
d

dt
Y ijk = Y ijp

[
1

16π2
γ(1)k
p + · · ·

]
+ permutations , (A.0.2)

it suffices to know the expressions for the anomalous dimensions, γji , of the coupling.

At one loop γji is defined by

γ
(1)j
i =

1

2
YipqY

jpq − 2δji g
2
aCa(Φi) , (A.0.3)

where ga are the gauge couplings and Ca(Φi) are the quadratic Casimir group theory
invariants of the representation of a given chiral superfield Φi, with a denoting the
appropriate gauge group.

Together, the quadratic Casimir and the Dynkin index, Sa(i) (a normalisation
coefficient for the generators), charactertise the group representation via

Tr
(
T a(R)T

b
(R)

)
= Sa(i)δ

ab (A.0.4)(
T a(R)T

a
(R)

)j
i

= Ca(Φi)δ
j
i , (A.0.5)

where T a(R) are the generator matrices: a set of finite-dimensional traceless hermitian

matrices defining the representation. More specifically, there are D(R)×D(R) gener-
ator matrices for each group, with D(R) denoting the dimension of the representation.
Generally speaking in literature, when the R subscript is dropped, T a indicates the
set of matrices defining the fundamental, or defining, representation. The generator
matrices obey commutation relations of the form

[T a(R), T
b
(R)] = ifabcT c(R) , (A.0.6)
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where fabc are real numbers called the structure constants which, if non-vanishing,
imply the group is non-abelian. The other important representation in this work is
the adjoint representation, whose dimension is equal to the dimension of the group,
and is defined by (

T a(A)

)ce
= −iface . (A.0.7)

Using the Jacobi identify,

fabdf cde + f bcdfade + f cadf bde = 0 , (A.0.8)

it is possible to show that the adjoint generators also satisfy the commutation relation
(A.0.6): [

T a, T b
]ce

= [T a]cd[T b]de − [T b]cd[T a]de

= −facdf bde + f bcdfade

= f cadf bde + f bcdfade

= −fabdf cde

= fabdfdce

= ifabd[T d]ce . (A.0.9)

Setting i = j and taking the trace of eq. (A.0.5) and using (A.0.4) one sees that

(T aT a) = Ca(i)1→ Tr(T aT a) = Ca(Φi)N

= Sa(i)δ
aa ,

with δaa = D(A) the dimensionality of the adjoint representation (equal to the number
of group generators) and N = D(R) the dimensionality of the representation of the
generators. Therefore one has that

Ca(Φi)D(R) = Sa(i)D(A) . (A.0.10)

The value that each of the above elements takes varies depending on the group, be
it SU(N), SO(N), U(N) etc. Noteably, for an N = 2 gauge multiplet, the gauge
bosons and fermions are in the same representation, and in this instance one finds
that Ca(Φi) = Sa(i). The total Dynkin index, Sa(i) refers to the Dynkin index sum
over all the chiral superfields Φi. For the groups relevant in the calculations presented
here, the Dynkin index takes the values

Sa(Φi) =


1/2 for Φi in a (anti)fundamental representation of SU(N)

N for Φi in the adjoint representation of SU(N)

Q2
Y for Φi charged under U(1) .

(A.0.11)

From this one can derive the quadratic Casimir, e.g., for a field in the fundamental
irreducible representation of SU(3), such as ū, d̄,Q etc. In this instance the generators
are given by

Ta(3) =
λa
2
, (A.0.12)
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where λa are the eight (N2 − 1 = 9 − 1) Gell-Mann traceless Hermitian matrices for
the SU(3) group. Then from (A.0.10) one gets that C(3) · 3 = 1

2 · 8 so that C(3) = 4
3 .

Following the same procedure, for the supermultiplets discussed in this text:

C3(Φi) =


3 for Φi = O; SU(3) octets

4/3 for Φi = Q, ū, d̄; SU(3) triplets

0 for Φi = L, ē,Hu, Hd; SU(3) singlets

(A.0.13)

C2(Φi) =


2 for Φi = T ; SU(2) triplets

3/4 for Φi = Q,L,Hu, Hd; SU(2) doublets

0 for Φi = ū, d̄, ē; SU(2) singlets

C1(Φi) = Q2
Y for each Φi charged under U(1) with hypercharge QY .(A.0.14)

Gauge coupling renormalisation is instead given by

d

dt
ga ≡

1

16π2
β(1)
ga +

1

(16π2)2
β(2)
ga + ... , (A.0.15)

where, at one loop,

β(1)
ga = g3

a

[∑
R

Sa(i)− 3Ca(G)

]
, (A.0.16)

with Ca(G) - not to be confused with Ca(Φi) - denoting the quadratic Casimir of the
gauge group (rather than the representation),

Ca(G) =

{
0 for U(1)

N for SU(N) .
(A.0.17)
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B – Alignment in DG models: more
on corrections and matching scales

B.1 THDM with light electroweakinos

In the interesting limit, the electroweakinos are much lighter than the singlet and
triplet scalars; in order to avoid washing out the tree-level Higgs quartic coupling
and generating a large contribution to ρ they should be light. At energies below the
stop/sbottom masses, then, there is an effective theory of the two-Higgs doublet model
augmented by light electroweakinos. This looks a little like Split supersymmetry or
the scenario of [306] (which considered a split scenario with both Higgs doublets light),
except that our electroweakinos have Dirac masses and our gluino is heavy; here are
therefore new Yukawa couplings between the Higgs doublets Φi, the left and right bino
B̃i and wino W̃ a

i for i = 1, 2, and the higgsinos h̃u,d:

L ⊃ − 1√
2

[
g̃ij1uΦ∗i B̃j h̃u + g̃ij2uΦ∗i W̃

a
j σ

ah̃u + g̃ij1dΦiB̃j h̃d + g̃ij2dΦiW̃
a
j σ

ah̃d + h.c.

]
.

(B.1.1)

This gives neutral and charged fermion mass matrices

Mχ0 =


MB 0 −1

2vkg
ki
1d

1
2vkg

ki
1u

0 MW −1
2vkg

ki
2d −1

2vkg
ki
2u

−1
2vkg

ki
1d −1

2vkg
ki
2d 0 −µ

1
2vkg

ki
1u −1

2vkg
ki
2u −µ 0

 , (B.1.2)

Mχ± =

(
MW

1√
2
vkg

ki
2u

− 1√
2
vkg

ki
2d µ

)
, (B.1.3)

where the bases are χ0 = (B̃1, B̃2, W̃
0
1 , W̃

0
2 , h̃

0
d, h̃

0
u) and the charged mass terms are

L ⊃ −(W̃−i , h
−
d )Mχ±

(
W̃+
i

h+
u

)
. Note that MB,MW are 2× 2 matrices.

At the SUSY scale, one matches the above to the corresponding couplings in the
Dirac gaugino theory:

LDG ⊃− gY√
2
H∗uB̃1h̃u −

g2√
2
H∗uW̃

a
1 σ

ah̃u +
gY√

2
H∗d B̃1h̃d −

g2√
2
H∗dW̃

a
1 σ

ah̃d (B.1.4)

− λSHu · B̃2h̃d − λS h̃u · B̃2Hd − λTHd · W̃ a
2 σ

ah̃u − λT h̃d · W̃ a
2 σ

aHu + h.c.

The following definition is chosen:

Φ2 = Hu, Φi
1 = −εij(Hj

d)∗ ↔
(

H0
d

H−d

)
=

(
Φ0

1

−(Φ+
1 )∗

)
(B.1.5)
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meaning Hu ·Hd ↔ −Φ†1Φ2, which leads to the identifications

g11
1d = 0, g21

1d =
√

2λS , g11
1u = −

√
2λS , g21

1u = 0 (B.1.6)

g12
1d = gY , g22

1d = 0, g12
1u = 0, g22

1u = gY (B.1.7)

g11
2d = 0, g21

2d =
√

2λT , g11
2u =

√
2λT , g21

2u = 0 (B.1.8)

g12
2d = −g2, g22

2d = 0, g12
2u = 0, g22

2u = g2. (B.1.9)

These are, however, given in terms of the DR parameters: making the conversion to
MS one finds

(g̃ij1u,d)MS =(g̃ij1u,d)DR

[
1− 1

4

g2
Y

32π2
− 3

4

g2
2

32π2

]
(g̃ij2u,d)MS =(g̃ij2u,d)DR

[
1− 1

4

g2
Y

32π2
+

5

4

g2
2

32π2

]
. (B.1.10)

B.2 Threshold corrections

In this section, the one-loop threshold corrections to the couplings in the theory will
be given . Throughout the definitions

κ ≡ 1

16π2

log x ≡ log
x

µ2

PSS(x, y) ≡xlogx− ylogy

x− y − 1, (B.2.1)

are used, where µ is the renormalisation scale at which the quantities are evaluated.

B.2.1 Conversion from MS to DR

The conversion of the gauge couplings from the MS to DR renormalisation scheme is
given by

(gY )MS =(gY )DR

(g2)MS =(g2)DR

[
1− κg2

2

3

]
(g3)MS =(g3)DR

[
1− κg2

3

2

]
. (B.2.2)

For the Yukawa couplings, only the strong gauge coupling dependence is retained:

yt,b
MS
'yt,b

DR

(
1 +

4

3
κg2

3

)
. (B.2.3)

For the Higgs quartic couplings, defining

λMS
i =λDR

i + δλi , (B.2.4)

then

δλ1 = δλ2 =− κ

4

(
g4
Y + 3g4

2 + g2
Y g

2
2

)
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δλ3 =− κ

4

(
g4
Y + 3g4

2 − 2g2
Y g

2
2

)
δλ4 =− κg2

Y g
2
2. (B.2.5)

If the quartic couplings are expressed in terms of the MS gauge couplings at tree level,
then there is a further shift from the shift to g2 of +κ

6g
4
2 for λ1,2 and −κ

6g
4
2 for λ3.

B.2.2 Squark contributions

B.2.2.1 Matching at the SUSY scale

In the limit that taken in the body of the paper, all of the threshold corrections coming
from squarks vanish at the matching scale. However, to extend the results of [174,307]
to our model, the corrections were computed coming from stops, sbottoms and staus
to the quartic couplings allowing non-zero squark trilinears and µ. They are given by

δλi ≡δ(1)
th λi + δ

(1)
Φ λi, (B.2.6)

where the δ
(1)
th λi contributions are those from bubble, triangle and box diagrams and

are unchanged from the MSSM case given in [174,307], while the δ
(1)
Φ λi are the wave-

function corrections that are modified for our model:

κ−1δ
(1)
Φ λ1 =− g2

2 + g2
Y

12M2
S

(3A2
b + 3y2

t µ
2 +A2

τ )

κ−1δ
(1)
Φ λ2 =− g2

2 + g2
Y

12M2
S

(3A2
t + 3y2

bµ
2 + µ2y2

τ )

κ−1δ
(1)
Φ λ3 =− g2

2 − g2
Y + 8λ2

T

24M2
S

(3A2
t + 3A2

b + 3(y2
b + y2

t )µ
2 +A2

τ + y2
τµ

2)

κ−1δ
(1)
Φ λ4 =

g2
2 − 2λ2

S + 2λ2
T

12M2
S

(3A2
t + 3A2

b + 3(y2
b + y2

t )µ
2 +A2

τ + y2
τµ

2)

κ−1δ
(1)
Φ λ5 =0

κ−1δ
(1)
Φ λ6 =

λ2
S + λ2

T

12M2
S

µ(3Atyt + 3Abyb +Aτyτ )

κ−1δ
(1)
Φ λ7 =κ−1δ

(1)
Φ λ6. (B.2.7)

B.2.2.2 Matching at a general scale

If the squarks are not degenerate or are integrated out at a scale other than a common
SUSY scale, then in our limit,

κ−1δλ1 =
1

24

[
(9g4

2 +g4
Y−36g2

2y
2
b−12g2

Y y
2
b+72y4

b )logm2
Q+8g4

Y logm2
U+2(g2

Y−6y2
b )

2logm2
D

]
+

1

8

[
2(g2

Y − 2y2
τ )2logm2

E + (g4
2 + g4

Y − 4g2
2y

2
τ + 4g2

Y y
2
τ + 8y4

τ )logm2
L

]
κ−1δλ2 =

1

24

[
(9g4

2 +g4
Y−36g2

2y
2
t−12g2

Y y
2
t +72y4

t )logm2
Q+2g4

Y logm2
D+8(g2

Y−3y2
t )

2logm2
U

]
+

1

8

[
2g4
Y logm2

E + (g4
2 + g4

Y )logm2
L

]
κ−1δλ3 =3y2

by
2
tPSS(m2

D,m
2
U )
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+
1

24

[
(9g4

2 − g4
Y + 72y2

t y
2
b + 6g2

Y (y2
b − y2

t )− 18g2
2(y2

b + y2
t ))logm2

Q

− 2g2
Y (g2

Y − 6y2
b )logm2

D − 8g2
Y (g2

Y − 3y2
t )logm2

U

]
+

1

8

[
− 2g2

Y (g2
Y − 2y2

τ )logm2
E + (g2

2 + g2
Y )(g2

2 − g2
Y − 2y2

τ )logm2
L

]
κ−1δλ4 =− 3y2

by
2
tPSS(m2

D,m
2
U )− 3

4

[
(g2

2 − 2y2
b )(g

2
2 − 2y2

t )

]
logm2

Q

− 1

4
g2

2(g2
2 − 2y2

τ )logm2
L. (B.2.8)

If all squarks are considered to be at a common SUSY scale MS , then these simplify
to

κ−1δλ1 =
1

6
logM2

S

[
3g4

2 + 5g4
Y − 3(g2

2 + g2
Y )(3y2

b + y2
τ ) + 12(3y4

b + y4
τ )

]
κ−1δλ2 =

1

6
logM2

S

[
3g4

2 + 5g4
Y − 9g2

2y
2
t − 15g2

Y y
2
t + 36y2

t

]
κ−1δλ3 =

1

12
logM2

S

[
6g4

2 − 10g4
Y + 72y2

by
2
t − 3(g2

2 + g2
Y )(3y2

b + 3y2
t + y2

τ ))

]
κ−1δλ4 =

1

2
logM2

S

[
− 2g4

2 − 12y2
by

2
t + g2

2(3y2
b + 3y2

t + y2
τ ))

]
κ−1(δλ3 + δλ4) =

1

12
logM2

S

[
− 6g4

2 − 10g4
Y + 3(g2

2 − g2
Y )(3y2

b + 3y2
t + y2

τ ))

]
. (B.2.9)

B.2.3 Contributions from the S, T scalars

The mass splitting between superpartners leads to important radiative corrections
at one-loop that modify the scalar potential. At this order, the main contribution
comes from the top quark Yukawa coupling, already present in the MSSM, and from
the contribution of the splitting between scalar and fermonic modes in the S and T
superfields. These lead to new contributions to the two-Higgs doublet model effective
potential and consequently modify the alignment condition. The purpose of this
section is to elaborate on the equations given in (2.3.11) on the contributions to the
quartic couplings coming from the adjoint scalars S, T , in the limit mDY ,mD2 �
mS ,mT , BS , BT and assuming no CP-violation. The scalars have (effective) masses

m2
SR =m2

S +BS + 4m2
DY ' m2

S +BS , m2
SI = m2

S −BS (B.2.10)

m2
TP =m2

T +BT + 4m2
D2 ' m2

T +BT , m2
TM = m2

T −BT . (B.2.11)

When full one loop corrections to the quartic couplings are:

δλ1 =δλ2 =
1

16π2

1

2

[
λ4
S log

m2
SRm

2
SI

µ4
+ 3λ4

T log
m2
TPm

2
TM

µ4
+(g2

2 − 2λ2
T )2PSS(m2

TM ,m
2
TP)

+ 2λ2
Sλ

2
T

(
PSS(m2

SR,m
2
TP ) + PSS(m2

SI ,m
2
TM )

)]
δλ3 =

1

16π2

1

2

[
λ4
S log

m2
SRm

2
SI

µ4
+ 3λ4

T log
m2
TPm

2
TM

µ4
+(g2

2 − 2λ2
T )2PSS(m2

TM ,m
2
TP)

− 2λ2
Sλ

2
T

(
PSS(m2

SR,m
2
TP ) + PSS(m2

SI ,m
2
TM )

)]
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δλ4 =
1

16π2

[
− (g2

2 − 2λ2
T )2PSS(m2

TM ,m
2
TP )

+ 2λ2
Sλ

2
T

(
PSS(m2

SR,m
2
TP ) + PSS(m2

SI ,m
2
TM )

)]
. (B.2.12)

These results update those previously given in the literature by including the elec-
troweak contributions.

A simple derivation of the leading contributions that come from quartic vertices
will be presented in the case that there is no splitting between the imaginary and
real components of the scalar masses, and additionally that there is no splitting of
the Yukawa couplings and their N = 2 relations. These can be found using the
Coleman-Weinberg potential,

VCW =
1

64π2
tr

[
M4

(
log

(M2

Λ2

)
− 3

2

)]
, (B.2.13)

from which one can find the mass matrix M2 of the S, T fields. Its eigenvalues can
be written as the perturbative expansion,

m
(D)2
i = m2

i + aiε+ biε
2 + ... , (B.2.14)

giving

VCW =
1

64π2

∑
i

(m2
i + aiε+ biε

2 + ...)2

[
log

(
m2
i + aiε+ biε

2 + ...

Λ2

)
− 3

2

]
=

1

64π2

∑
i

[
m4
i + ε(2m2

i ai) + ε2(a2
i + 2m2

i bi) + ...
]

×
[
log

(
m2
i

Λ2

)
− 3

2
+ ε

ai
m2
i

+ ε2
(
bi
m2
i

− a2
i

2m2
i

)
+ ...

]
. (B.2.15)

The terms quartic in the couplings are parametrised by ε2,

VCW ⊃ ε2
1

64π2

∑
i=S,T

[
a2
i log

m2
i

Λ2
+ 2bim

2
i

(
log

m2
i

Λ2
− 1

)]
. (B.2.16)

The pure couplings are mass diagonal, and so the contribution of the first order eigen-
values to the potential can be read off straight away:

VCW ⊃ λ4
T

64π2
log

m2
T

Λ2

[
10|Hd|2 + 10|Hu|2 + 20|Hd|2|Hu|2 − 16|Hu ·Hd|2

]
+

λ4
S

64π2
log

m2
S

Λ2

[
2|Hd|2 + 2|Hu|2 + 4|Hu|2|Hd|2

]
, (B.2.17)

giving the radiative corrections to the two-Higgs model parameters,

1

2
δ

(diag)
λ1

=
1

64π2

[
2λ4

S log

(
m2
S

Λ2

)
+ 10λ4

T log

(
m2
T

Λ2

)]
=

1

2
δ

(diag)
λ2

(B.2.18)

δ
(diag)
λ3

=
1

64π2

[
4λ4

S log

(
m2
S

Λ2

)
+ 20λ4

T log

(
m2
T

Λ2

)]
(B.2.19)

δ
(diag)
λ4

=
1

64π2

[
−16λ4

T log

(
m2
T

Λ2

)]
. (B.2.20)

To find the contributions to the second order eigenvalues, bi, it is convenient to set
the first order eigenvalues to zero. One can then diagonalise the mass matrix to have
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the contributions from the mixed terms λSλT restricted to one independent entry of
the matrix. Given the superpotential,

WDG ⊃ λSSεijHu
iHd

j + λTTaHu
iHd

jεjkσ
a
ki . (B.2.21)

the mixed terms read

V ⊃ λSλT

[
ST̄ a

{
H†dσ

aHd −H†uσaHu

}
+ h.c.

]
, (B.2.22)

where it is used that εij = iσ2
ij , σ

2σ̄iσ2 = −(σ̄i)T = −(σi)† = −σi. Writing the mass
matrix in the basis S, T a, the two eigenvalues of the charged scalars will be given by
m2
T , while the remaining two eigenvalues can be embedded in a 2× 2 complex matrix,

with off-diagonals mixed terms,(
m2
T λSλT |H†dσaHd −H†uσaHu|

λSλT |H†dσaHd −H†uσaHu| m2
S

)
. (B.2.23)

The eigenvalues are found by the characteristic equation,

(m2
T −m(D)2

i )(m2
S −m(D)2

i )− λ2
Sλ

2
T

∑
a

|H†dσaHd −H†uσaHu|2 = 0 , (B.2.24)

such that

m
(D)4
i −m(D)2

i (m2
T +m2

S)−
(
λ2
Sλ

2
T

∑
a

|H†dσaHd−H†uσaHu|2−m2
Tm

2
S

)
=0,(B.2.25)

yielding

m
(D)2
S ' m2

S + λ2
Sλ

2
T

∑
a

|H†dσaHd −H†uσaHu|2
m2
S −m2

T

, (B.2.26)

m
(D)2
T ' m2

T − λ2
Sλ

2
T

∑
a

|H†dσaHd −H†uσaHu|2
m2
S −m2

T

. (B.2.27)

Comparing these eigenvalue expressions to the expansion, and remembering that ze-
roth order eigenvalues have been ignored here, one sees that

bS = λ2
Sλ

2
T

∑
a

|H†dσaHd −H†uσaHu|2
m2
S −m2

T

= −bT , (B.2.28)

and therefore

VCW ⊃
∑
i,a

2λ2
Sλ

2
T

64π2

|H†dσaHd −H†uσaHu|2
m2
S −m2

T
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S

(
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S
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− 1

)
−m2

T

(
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S

Λ2
− 1

)}

=
1

64π2

[
4λ2

Sλ
2
T

m2
S −m2

T

(
|Hu|4 + |Hd|4 − 2|Hu|2|Hd|2 + 4|Hu ·Hd|2

)
×
{
m2
S

(
log

m2
S

Λ2
− 1

)
−m2

T

(
log

m2
S

Λ2
− 1

)}]
, (B.2.29)

where a factor of 2 comes from the complex nature of the fields S, T as. From this
the radiative corrections to the two-Higgs doublet model parameters coming from the
mixed terms are given by

1

2
δ

(off)
λ1

=
1

16π2

λ2
Sλ

2
T

m2
S −m2

T

{
m2
S

(
log

m2
S

Λ2
− 1

)
−m2
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(
log

m2
S

Λ2
− 1

)}
=

1

2
δ

(off)
λ2
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δ
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λ3

= − 1

8π2

λ2
Sλ

2
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S −m2
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(
log
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S
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− 1
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δ
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=
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S

(
log
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S
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− 1

)
−m2

T

(
log

m2
S

Λ2
− 1

)}
. (B.2.30)

The total leading order contribution from radiative corrections to the two-Higgs
doublet model parameters is given by the sum

δ
(1)
λi

= δ
(top)
λi

+ δ
(bot)
λi

+ δ
(diag)
λi

+ δ
(off)
λi

(B.2.31)

of the contribution δ
(top)
λi

of the top quark, δ
(bot)
λi

of the bottom quark, δ
(diag)
λi

from

diagonal λ4
i terms and δ

(off)
λi

from mixed λ2
Sλ

2
T terms. This gives

δ
(1)
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=
3

8π2
y4
b log

(
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+
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+

1
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+

1
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(B.2.32)
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+
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+
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+
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(B.2.33)

δ
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=
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+

1

16π2
λ4
S log

(
m2
S

v2

)
− 1
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− 1]−m2

S [log

(
m2
S

v2

)
− 1]

}
,

(B.2.34)

δ
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+
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− 1]−m2
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(B.2.35)

with no corrections to the other effective two-Higgs doublet model parameters.

The alignment limit in the effective two-Higgs model is governed by the relative
value of the off-diagonal element Z6 relative to the diagonal ones. The tree-level value
is then modified at one-loop order (in the relevant limits stated above) to

Z
(1)
6 = −1

2
s2β

[(
λ1 + δ

(1)
λ1

)
c2
β −

(
λ2 + δ

(1)
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)
s2
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{(
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(1)
λ3

)
+
(
λ4 + δ

(1)
λ4

)
+
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(1)
λ5

)}
c2β

]
= −1

2
s2βc2β

[
1

2
(g2 + g′2)− (λ2
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T ) +

λ4
T

4π2
log

(
m2
T

v2
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− 3

16π2
s2β

[
y4
b log

(
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v2

)
c2
β − y4

t log

(
mt̃1

mt̃2

m2
t

)
s2
β

]
.

(B.2.36)

Note that there is no explicit dependence on λS as the latter appears in the scalar
potential as a coefficient of terms that are invariant under rotations towards the align-
ment limit in the plane of {Hu, Hd}.
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B.3 One-loop RGEs

B.3.1 THDM with electroweakinos

For our numerical study two-loop RGEs are used throughout, as generated by SARAH.
They are too long to put into print; however, for illustration provide here are the
one-loop expressions for the low-energy theory of the THDM with electroweakinos,
after making the simplification that:

• Only third generation Yukawa couplings are included.

• No CP-violation, hence all couplings real.

• Respecting the matching conditions (B.1.6-B.1.9), the beta functions for the
couplings that are zero at the supersmmetry scale are zero along the flow, and
hence the couplings g11

1d, g
21
1u, g22

1d, g
12
1u, g11

2d, g
21
2u, g22

2d, g
12
2u are set to zero.

Then defining

dx

d logµ
≡ κβ(1)

x + κ2β(2)
x + ... (B.3.1)

the RGEs for the dimensionless quantities in the theory are given below.

B.3.1.1 Gauge couplings

β(1)
gY

=
23

3
g3
Y

β(1)
g2

=
1

3
g3

2

β(1)
g3

= −7g3
3

(B.3.2)

B.3.1.2 Yukawa couplings

β(1)
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τ
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τ
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(B.3.3)

B.3.1.3 Quartic scalar couplings
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(B.3.4)

B.3.2 MDGSSM

Once again including only third generation Yukawa couplings, the beta functions for
the dimensionless quantities of the MDGSSM are given by:

B.3.2.1 Yukawa couplings
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B.3.2.2 Gauge couplings

βgY = 11
g3
Y

16π2
,

βg2 = 3
g3

2

16π2
,

βg3 = 0 .

(B.3.6)

B.4 MRSSM corrections

Collected here are the tree-level and leading one-loop threshold corrections to the
THDM parameters in the MRSSM.

B.4.1 Tree-level

The tree-level λi are given by

λ1 = λ2 =
1

4
(g2

2 + g2
Y ), λ3 =

1

4
(g2

2 − g2
Y ), λ4 = −1

2
g2

2. (B.4.1)

The shifts from integrating out the adjoint scalars give

δλ1 =− (gYmDY −
√
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√
2λSuµu)

m2
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B.4.2 One-loop

The one-loop corrections from the adjoint scalars in the limit that the Dirac gaugino
masses can be neglected are given by:
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M. Rüfenacht, M. Schønherr & G. Watt; �LHAPDF6: parton density
access in the LHC precision era�; Eur. Phys. J. C75, p. 132 (2015). 1412.7420.
101

[270] B. Fuks, M. Klasen, D. R. Lamprea & M. Rothering; �Precision pre-
dictions for electroweak superpartner production at hadron colliders with
Resummino�; Eur. Phys. J. C73, p. 2480 (2013). 1304.0790. 102

[271] M. Bonvini, S. Marzani, J. Rojo, L. Rottoli, M. Ubiali, R. D. Ball,
V. Bertone, S. Carrazza & N. P. Hartland; �Parton distributions with
threshold resummation�; JHEP 09, p. 191 (2015). 1507.01006. 102

[272] J. Fiaschi & M. Klasen; �Slepton pair production at the LHC in NLO+NLL
with resummation-improved parton densities�; JHEP 03, p. 094 (2018). 1801.
10357. 102

[273] J. F. Gunion, M. Herrero & A. Mendez; �The Role of Longitudinally Polar-
ized W ′999particlesmalls in Slepton Production and Decay�; Phys. Rev. D37,
p. 2533 (1988). 102

[274] G. C. Cho, K. Hagiwara, J. Kanzaki, T. Plehn, D. Rainwater &
T. Stelzer; �Weak boson fusion production of supersymmetric particles at
the CERN LHC�; Phys. Rev. D73, p. 054 002 (2006). hep-ph/0601063. 102

[275] P. Konar & D. Zeppenfeld; �Next-to-leading order QCD corrections to slep-
ton pair production via vector-boson fusion�; Phys. Lett. B647, p. 460–465
(2007). hep-ph/0612119. 102

http://dx.doi.org/10.1103/PhysRevD.36.2019
http://dx.doi.org/10.1088/1126-6708/2004/03/053
hep-ph/0402078
http://dx.doi.org/10.1007/JHEP03(2013)015
http://dx.doi.org/10.1007/JHEP03(2013)015
1212.3460
http://dx.doi.org/10.1016/j.cpc.2015.08.031
1402.1178
http://dx.doi.org/10.1140/epjc/s10052-014-3024-y
1404.5630
http://dx.doi.org/10.1088/1126-6708/2008/04/063
0802.1189
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
1111.6097
http://dx.doi.org/10.21468/SciPostPhys.5.1.008
http://dx.doi.org/10.21468/SciPostPhys.5.1.008
1712.07053
http://dx.doi.org/10.1140/epjc/s10052-015-3318-8
1412.7420
http://dx.doi.org/10.1140/epjc/s10052-013-2480-0
1304.0790
http://dx.doi.org/10.1007/JHEP09(2015)191
1507.01006
http://dx.doi.org/10.1007/JHEP03(2018)094
1801.10357
1801.10357
http://dx.doi.org/10.1103/PhysRevD.37.2533
http://dx.doi.org/10.1103/PhysRevD.37.2533
http://dx.doi.org/10.1103/PhysRevD.73.054002
hep-ph/0601063
http://dx.doi.org/10.1016/j.physletb.2007.02.037
http://dx.doi.org/10.1016/j.physletb.2007.02.037
hep-ph/0612119


BIBLIOGRAPHY 157

[276] F. Borzumati & K. Hagiwara; �Testing supersymmetry at the LHC through
gluon-fusion production of a slepton pair�; JHEP 03, p. 103 (2011). 0912.0454.
103

[277] J. M. Lindert, F. D. Steffen & M. K. Trenkel; �Direct stau production
at hadron colliders in cosmologically motivated scenarios�; JHEP 08, p. 151
(2011). 1106.4005. 103

[278] M. Dasgupta, F. Dreyer, G. P. Salam & G. Soyez; �Small-radius jets to
all orders in QCD�; JHEP 04, p. 039 (2015). 1411.5182. 103

[279] A. Banfi, F. Caola, F. A. Dreyer, P. F. Monni, G. P. Salam, G. Zan-
derighi & F. Dulat; �Jet-vetoed Higgs cross section in gluon fusion at
N3LO+NNLL with small-R resummation�; JHEP 04, p. 049 (2016). 1511.

02886. 103

[280] M. Dasgupta, F. A. Dreyer, G. P. Salam & G. Soyez; �Inclusive jet spec-
trum for small-radius jets�; JHEP 06, p. 057 (2016). 1602.01110. 103

[281] M. Dasgupta, L. Magnea & G. P. Salam; �Non-perturbative QCD effects in
jets at hadron colliders�; JHEP 02, p. 055 (2008). 0712.3014. 103

[282] T. Aaltonen et al.; �Search for Supersymmetry in pp̄ Collisions at
√
s = 1.96-

TeV Using the Trilepton Signature of Chargino-Neutralino Production�; Phys.
Rev. Lett. 101, p. 251 801 (2008). 0808.2446. 104

[283] G. Aad et al.; �Search for direct slepton and gaugino production in final states
with two leptons and missing transverse momentum with the ATLAS detector in
pp collisions at

√
s = 7 TeV�; Phys. Lett. B718, p. 879–901 (2013). 1208.2884.

104

[284] G. Aad et al.; �Search for direct production of charginos, neutralinos and slep-
tons in final states with two leptons and missing transverse momentum in pp
collisions at

√
s = 8 TeV with the ATLAS detector�; JHEP 05, p. 071 (2014).

1403.5294. 104

[285] V. Khachatryan et al.; �Searches for electroweak production of charginos,
neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp
collisions at 8 TeV�; Eur. Phys. J. C74, p. 3036 (2014). 1405.7570. 104

[286] G. Aad et al.; �Search for the direct production of charginos, neutralinos and
staus in final states with at least two hadronically decaying taus and missing
transverse momentum in pp collisions at

√
s = 8 TeV with the ATLAS detector�;

JHEP 10, p. 096 (2014). 1407.0350. 104

[287] G. Aad et al.; �Search for the electroweak production of supersymmetric par-
ticles in

√
s=8 TeV pp collisions with the ATLAS detector�; Phys. Rev. D93,

p. 052 002 (2016). 1509.07152. 104

[288] A. M. Sirunyan et al.; �Search for electroweak production of charginos and
neutralinos in multilepton final states in proton-proton collisions at

√
s = 13

TeV�; JHEP 03, p. 166 (2018). 1709.05406. 104

[289] K. O. Mikaelian; �Photoproduction of Charged Intermediate Vector Bosons�;
Phys. Rev. D17, p. 750 (1978). 106

http://dx.doi.org/10.1007/JHEP03(2011)103
0912.0454
http://dx.doi.org/10.1007/JHEP08(2011)151
http://dx.doi.org/10.1007/JHEP08(2011)151
1106.4005
http://dx.doi.org/10.1007/JHEP04(2015)039
1411.5182
http://dx.doi.org/10.1007/JHEP04(2016)049
1511.02886
1511.02886
http://dx.doi.org/10.1007/JHEP06(2016)057
1602.01110
http://dx.doi.org/10.1088/1126-6708/2008/02/055
0712.3014
http://dx.doi.org/10.1103/PhysRevLett.101.251801
http://dx.doi.org/10.1103/PhysRevLett.101.251801
0808.2446
http://dx.doi.org/10.1016/j.physletb.2012.11.058
1208.2884
http://dx.doi.org/10.1007/JHEP05(2014)071
1403.5294
http://dx.doi.org/10.1140/epjc/s10052-014-3036-7
1405.7570
http://dx.doi.org/10.1007/JHEP10(2014)096
1407.0350
http://dx.doi.org/10.1103/PhysRevD.93.052002
http://dx.doi.org/10.1103/PhysRevD.93.052002
1509.07152
http://dx.doi.org/10.1007/JHEP03(2018)166
1709.05406
http://dx.doi.org/10.1103/PhysRevD.17.750


158 BIBLIOGRAPHY

[290] R. W. Brown, D. Sahdev & K. O. Mikaelian; �W+- Z0 and W+- gamma
Pair Production in Neutrino e, p p, and anti-p p Collisions�; Phys. Rev. D20,
p. 1164 (1979). 106

[291] K. O. Mikaelian, M. A. Samuel & D. Sahdev; �The Magnetic Moment of
Weak Bosons Produced in p p and p anti-p Collisions�; Phys. Rev. Lett. 43, p.
746 (1979). 106

[292] D.-p. Zhu; �Zeros in Scattering Amplitudes and the Structure of Nonabelian
Gauge Theories�; Phys. Rev. D22, p. 2266 (1980). 106

[293] S. J. Brodsky & R. W. Brown; �Zeros in Amplitudes: Gauge Theory and
Radiation Interference�; Phys. Rev. Lett. 49, p. 966 (1982). 106

[294] R. W. Brown, K. L. Kowalski & S. J. Brodsky; �Classical Radiation Zeros
in Gauge Theory Amplitudes�; Phys. Rev. D28, p. 624 (1983). [Addendum:
Phys. Rev.D29,2100(1984)]. 106

[295] U. Baur, T. Han & J. Ohnemus; �QCD corrections and nonstandard three
vector boson couplings in W+W− production at hadron colliders�; Phys. Rev.
D53, p. 1098–1123 (1996). hep-ph/9507336. 106

[296] T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Man-
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Sujet : Phénoménologie et contraintes de collisionneur des modéles
supersymétriques à l’ére Run 2 du LHC

Résumé : Il a longtemps été pensé que le modèle standard (MS) est une description incomplète
de notre univers, mais les résultats expérimentaux obtenus jusqu’à présent ne confirment rien
de plus. La supersymétrie minimale, concrétisée par le modéle standard supersymmétrique min-
imal (MSSM), est une extension compétitive du MS et a été bien étudiée, en particulier dans
le contexte de modéles simplifiés, au niveau des collisionneurs. Cependant, les techniques de
recherche actuelles n’utilisent peut-être pas de manière optimale la capacité du collisionneur à
tester l’espace de paramètre accessible. Au lieu d’utiliser un veto statique sur le momentum
du jet pour minimiser les processus d’arrière-plan indésirables dans les recherches de signaux, il
peut être démontré que l’utilisation d’un veto au jet dynamique construit à partir de plusieurs
mesures d’activité hadronique et leptonique peut augmenter le potentiel de découverte des bal-
ayages MSSM simplifiés. Dans le même temps, il est indéniable que les limites imposées aux
modèles simplifiés ne représentent pas fidèlement des scénarios plus complexes - en particulier
les modèles de supersymétrie non minimaux dans lesquels les signatures de désintégration sont
modifiées par un spectre plus complexe de chargino et de neutralino. Les gauginos de Dirac (DG)
constituent une extension non minimale bien motivée qui semble plus plausible que le MSSM, qui
est de plus en plus constraint par les observations. Ce travail peut être divisé en deux parties:
(1) il étudie comment le contenu en particules élargi des modèles DG peut modifier les limites
actuelles de la masse de gluino et de squark du Run 2 du LHC, et (2) effectue une étude appro-
fondie du secteur de Higgs dans de tels modèles, qui est automatiquement aligné en raison de la
supersymétrie étendue qui relie les couplages de Yukawa aux couplages de jauge dans le secteur
électrofaible.

Subject : Phenomenology and collider constraints of
Supersymmetric models in the Run 2 era of the LHC

Abstract: It has long been thought that the Standard Model (SM) is an incomplete description
of our universe, yet experimental results thus far do not confirm anything beyond it. Minimal
supersymmetry, embodied by the minimal supersymmetric standard model (MSSM), is a com-
petitive extension of the SM and has been well investigated, especially in the context of simplified
models, at colliders. However, current search techniques may not be making optimal use of the
collider’s ability to test the accessible parameter space. Instead of using a static veto on jet
momentum to minimise undesirable background processes in signal searches, it can be shown
that employing a dynamic jet veto constructed out of several measures of hadronic and leptonic
activity can heighten the discovery potential of simplified MSSM scans. At the same time, it
cannot be denied that the limits placed on simplified models are not a true representation of
more complex scenarios - especially non-minimal supersymmetry models where decay signatures
are altered by a more complex chargino and neutralino spectrum. Dirac gauginos (DG) are a
well-motivated non-minimal extension that restore the naturalness being lost by the ever more
stringent constraints on the MSSM. Here this work looks down two avenues: it (1) investigates
how the enlarged particle content of DG models can lead to altered bounds on current gluino and
squark mass limits from Run 2 of the LHC, and (2) makes an in depth study of the Higgs sector
in such models, which is automatically aligned owing to extended supersymmetry that links the
Yukawa couplings to the gauge couplings in the electroweak sector.
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