
HAL Id: tel-03010491
https://theses.hal.science/tel-03010491

Submitted on 17 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconciling cloud storage functionalities with security :
proofs of storage with data reliability and secure

deduplication
Dimitrios Vasilopoulos

To cite this version:
Dimitrios Vasilopoulos. Reconciling cloud storage functionalities with security : proofs of storage with
data reliability and secure deduplication. Cryptography and Security [cs.CR]. Sorbonne Université,
2019. English. �NNT : 2019SORUS399�. �tel-03010491�

https://theses.hal.science/tel-03010491
https://hal.archives-ouvertes.fr

Sorbonne University

Doctoral School of

Informatics, Telecommunications and Electronics (Paris)

EURECOM

Reconciling Cloud Storage Functionalities with Security:

Proofs of Storage with Data Reliability and Secure Deduplication

Presented by Dimitrios VASILOPOULOS

Dissertation for Doctor of Philosophy in

Information and Communication Engineering

Directed by Melek ÖNEN

Publicly presented and defended on 23 July 2019

before a committee composed of:

Prof. Bruno Martin University of Nice Sophia-Antipolis President of the jury

Prof. Pascal Lafourcade University of Clermont Auvergne Reporters

Prof. Yves Roudier University of Nice Sophia-Antipolis

Prof. Loukas Lazos University of Arizona Examiners

Prof. Aurélien Francillon EURECOM

Prof. Melek Önen EURECOM Thesis Supervisor

Sorbonne Université

École Doctorale

Informatique, Télécommunications et Électronique de Paris

EURECOM

Réconcilier les fonctionnalités de stockage cloud

avec les besoins de sécurité:

Preuves de stockage avec la fiabilité des données

et la déduplication sécurisée

Par Dimitrios VASILOPOULOS

Thèse de doctorat en

Sciences de l’Information et de la Communication

Dirigée par Melek ÖNEN

Présentée et soutenue publiquement 23 juillet 2019

devant un jury composé de:

Prof. Bruno Martin Université de Nice Sophia-Antipolis Président du jury

Prof. Pascal Lafourcade Université de Clermont Auvergne Rapporteurs

Prof. Yves Roudier Université de Nice Sophia-Antipolis

Prof. Loukas Lazos Université de l’Arizona Examinateurs

Prof. Aurélien Francillon EURECOM

Prof. Melek Önen EURECOM Directeur de thèse

Abstract

Cloud storage is one of the most attractive services offered by cloud computing. Indeed,

cloud storage systems offer users the opportunity to outsource their data without the need

to invest in expensive and complex storage infrastructure. However, in this new paradigm

users lose control over their data and lend it to cloud storage providers. Hence, users lose

the ability to safeguard their data using traditional IT and security mechanisms. As a

result, technical solutions aiming at establishing users confidence on the services provided

by a cloud storage system would be highly beneficial both to users and cloud storage

providers.

In this manuscript we study in depth the problem of verifiability in cloud storage systems.

We study Proofs of Storage – a family of cryptographic protocols that enable a cloud

storage provider to prove to a user that the integrity of her data has not been compro-

mised – and we identify what their limitations with respect to two key characteristics of

cloud storage systems, namely, reliable data storage with automatic maintenance, and data

deduplication.

To cope with the first limitation, we introduce the notion of Proofs of Data Reliability, a

comprehensive verification scheme that aims to resolve the conflict between reliable data

storage verification and automatic maintenance. We further propose two Proofs of Data

Reliability schemes, namely POROS and PORTOS, that succeed in verifying reliable data

storage mechanism and a the same time enable the cloud storage provider to autonomously

perform automatic maintenance operations.

As regards to the second limitation, we address the conflict between Proofs of Storage

and deduplication. More precisely, inspired by previous attempts in solving the problem

of duplicating encrypted data, we propose message-locked PoR a solution in combining

Proofs of Storage with deduplication. In addition we propose a novel message-locked key

generation protocol which is more resilient against off-line dictionary attacks compared to

existing solutions.

i

Abstract

ii

Acknowledgements

The work presented in this thesis would have not been accomplished without the support,

encouragement and assistance of a great number of individuals.

First and foremost, I would like to express my deep and sincere gratitude to both my

academic supervisors Professor Refik Molva and Professor Melek Önen for providing an

excellent guidance and a constant source of inspiration and motivation. Refik opened

the door to my research path and taught me how to think out-of-the-box with discipline,

creativity and meaningful criticism. Melek worked at my side on all my publications

and gave a great contribution to the ideas I developed during my Ph.D. Moreover, she

showed an extreme amount of patience on my stubbornness in various aspects during our

collaboration. It was a rare privilege and honor to work and study under her guidance.

I am also indebted to Dr. Kaoutar Elkhyaoui whose help and comments have been crucial

to the establishment of many of the results presented in this thesis. Furthermore, I want

to thank the people of my group: Iraklis, Monir, Cedric, Beyza, Orhan and Clementine

that were always willing to discuss about research problems and offer me valuable advice.

I would like to thank my jury committee of Pascal Lafourcade, Yves Roudier, Loukas

Lazos, Bruno Martin and Aurélien Francillon who kindly agreed to review and evaluate

my work.

Pursuing Ph.D. studies is truly a challenging endeavour whose success also depends on the

encouragement of family and friends. I am therefore grateful to all the people who gave

me their emotional support. In particular, special thanks goes to Panos, Akis, Pantelis,

Thodoris, Lefteris, Thanasis and Konstantinos for their support during the compilation of

this thesis.

Last but not least, I would like to thank as well as dedicate this thesis to my fiancée Ntora.

Her constant support, love and boundless encouragement, significantly helped me towards

completing this work. I am also appreciative to my parents who sacrificed a lot of their

personal time and financial budget (unfortunately) for my education.

iii

Acknowledgements

iv

Contents

Abstract . i

Acknowledgements . iii

Contents . v

List of Figures . ix

List of Tables . xi

Papers Published during Ph.D . xiii

1 Introduction 1

1.1 Requirements of Cloud Storage Systems . 3

1.2 Verifiability in Cloud Storage Systems . 5

1.3 Contributions . 7

1.4 Organization . 7

2 Verifiable Storage 9

2.1 Proofs of Storage . 9

2.1.1 Environment . 10

2.1.2 Definition of a PoS scheme . 11

2.1.2.1 Correctness . 12

2.1.2.2 Soundness . 12

2.1.2.3 Additional features of PoS scheme 12

2.2 Proofs of Retrievability . 13

2.2.1 Overview of the PoR Encode algorithm 14

2.2.2 Security Requirements of PoR . 14

2.2.2.1 Correctness . 15

2.2.2.2 Soundness . 15

2.2.3 Classification of PoR schemes . 16

2.3 State of the Art on Proofs of Storage . 17

2.3.1 Watchdog-based solutions . 17

v

CONTENTS

2.3.2 Tag-based solutions . 18

2.3.3 PoS with Public Verifiability . 18

2.4 Two Proofs of Retrievability Schemes . 19

2.4.1 Private Compact PoR . 19

2.4.1.1 Building Blocks . 19

2.4.1.2 Protocol Specification . 20

2.4.2 StealthGuard . 22

2.4.2.1 Building Blocks . 22

2.4.2.2 Protocol Specification . 23

2.5 Cloud Storage Systems Requirements and PoS 24

2.5.1 Verification of Reliable Data Storage with Automatic Maintenance. . 25

2.5.2 Conflict between PoS and deduplication 26

2.6 Summary . 27

I Proofs of Data Reliability 29

3 Proofs of Data Reliability 31

3.1 Problem Statement . 31

3.2 Definition of a Proof of Data Reliability Protocol 32

3.2.1 Environment . 32

3.2.2 Formal Definition . 33

3.2.3 Correctness . 35

3.2.4 Soundness . 35

3.2.5 Rational Adversary . 37

3.3 State of the Art on Proofs of Data Reliability 38

3.3.1 Conclusions on the State of the Art 42

4 POROS: Proof of Data Reliability for Outsourced Storage 43

4.1 Introduction of POROS . 43

4.2 POROS . 47

4.2.1 Building Blocks . 47

4.2.2 POROS Description . 49

4.3 Security Evaluation . 54

4.3.1 Correctness . 54

4.3.2 Soundness . 55

4.3.3 Evaluation . 57

4.4 Multiple-challenge POROS . 60

vi

CONTENTS

4.4.1 Description . 60

4.5 Conclusion . 65

5 PORTOS: Proof of Data Reliability for Real-World Distributed Out-

sourced Storage 67

5.1 Introduction of PORTOS . 67

5.2 PORTOS . 69

5.2.1 Building Blocks . 69

5.2.2 Overview of PORTOS’s Masking Mechanism 70

5.2.3 Protocol specification . 71

5.3 Security Analysis . 76

5.3.1 Correctness . 76

5.3.2 Soundness . 77

5.4 Performance Analysis . 81

5.5 Performance Improvements . 82

5.5.1 Description . 83

5.5.2 Performance Analysis . 87

5.6 Summary . 88

II Verifiable Storage with Data Reduction 89

6 Verifiable Storage with Secure Deduplication 91

6.1 Introduction . 91

6.2 Background . 93

6.2.1 Secure Deduplication . 93

6.2.2 State of the Art . 94

6.3 Message-Locked Proofs of Retrievability . 96

6.4 ML.KeyGen: Server-aided message-locked key generation 97

6.4.1 Building Blocks . 97

6.4.2 Description of ML.KeyGen . 98

6.4.3 Security analysis of ML.KeyGen . 100

6.5 ML.PoR: Protocol Description . 100

6.5.1 ML.Private-Compact-PoR: A message-locked PoR scheme based on

linearly-homomorphic tags . 101

6.5.2 ML.StealthGuard: A message-locked PoR scheme based on watchdogs104

6.6 Security analysis . 108

6.7 Performance analysis . 109

vii

CONTENTS

6.8 Summary . 112

7 Concluding Remarks and Future Research 113

7.1 Summary . 113

7.2 Future Work . 116

Appendix A Résumé Français 127

A.1 Preuves de stockage . 127

A.2 Problématique . 129

A.2.1 Vérification du stockage fiable des données. 129

A.2.2 Conflit entre PoR et déduplication. 130

A.3 Contributions . 131

A.4 Preuves de fiabilité des données . 131

A.4.1 POROS: Preuve de la fiabilité des données pour le stockage externalisé.133

A.4.2 PORTOS: Preuve de la fiabilité des données pour un stockage ex-

ternalisé distribué dans le monde réel. 136

A.5 Stockage vérifiable avec déduplication sécurisée 137

viii

List of Figures

2.1 Steps of the Encode algorithm of Private Compact PoR 21

2.2 Steps of the Encode algorithm of StealthGuard 24

2.3 Conflict between deduplication and watchdog-based PoR scheme 26

2.4 Conflict between deduplication and tag-based PoS scheme 27

4.1 Overview of POROS outsourcing process. 44

4.2 Response times of adversaries A1 and A2 for different challenge sizes l; data

object size of 4GB (left) vs. 16GB (right). 58

5.1 Overview of PORTOS outsourcing process. 68

6.1 Conflict between PoR and Deduplication . 92

6.2 ML.KeyGen- Protocol Description . 99

6.3 Steps of the ML.Encode algorithm of ML.Private-Compact-PoR. 102

6.4 Steps of the ML.Encode algorithm of ML.StealthGuard. 105

ix

LIST OF FIGURES

x

List of Tables

4.1 Notation used in the description of POROS. 50

4.2 Response times of an honest CSP for deferent challenge sizes l. 58

4.3 Disadvantage of adversaries A1 and A2 relative to an honest CSP. 59

5.1 Notation used in the description of PORTOS. 72

5.2 Evaluation of the response time and the effort required by a storage node

S to generate its response. 80

5.3 Performance analysis of PORTOS. 81

5.4 Performance analysis of PORTOS with storage efficient tags. 88

6.1 ML.Private-Compact-PoR’s Public Parameters. 103

6.2 ML.StealthGuard’s Public Parameters . 106

6.3 Overhead imposed by ML.PoR on the outsourcing process. 110

6.4 Overhead imposed by ML.PoR on the challenge-response process. 110

xi

LIST OF TABLES

xii

Papers Published during Ph.D

Dimitrios Vasilopoulos, Melek Önen and Refik Molva. 2019. PORTOS: Proof of Data

Reliability for Real-World Distributed Outsourced Storage. Accepted in 16th International

Conference on Security and Cryptography (SECRYPT ’19). Prague, Czech Republic, July

26–28, 2019.

Dimitrios Vasilopoulos, Kaoutar Elkhiyaoui, Refik Molva, and Melek Önen. 2018.

POROS: Proof of Data Reliability for Outsourced Storage. In Proceedings of the 6th

International Workshop on Security in Cloud Computing (ASIACCS–SCC ’18). Songdo,

Incheon, Korea, June 4–8, 2018.

Dimitrios Vasilopoulos, Melek Önen, Kaoutar Elkhiyaoui, and Refik Molva. 2016.

Message-Locked Proofs of Retrievability with Secure Deduplication. In Proceedings of the

2016 ACM on Cloud Computing Security Workshop (CCS–CCSW ’16). Vienna, Austria,

October 24–28, 2016.

xiii

Publications

xiv

Chapter 1

Introduction

In recent years, advances in the areas of networking, hardware virtualization and dis-

tributed algorithms enabled the rise of a novel computing paradigm, namely, cloud com-

puting. What makes this new paradigm appealing is its pay-as-you-go economic model,

that offers users and organizations access to a certain amount of computing power, band-

width, and data storage capabilities without the need to invest in on-premise infrastruc-

ture, hence minimizing the startup and setup cost and time. Put differently, in cloud

computing the supply of computing infrastructure becomes the service. The success of

cloud computing can be attributed to several key characteristics such as:

Flexibility that enables the rapid provision of resources.

Multi-tenancy that allows multiple users to share the same instance of a service.

Elasticity that facilitates the dynamic mitigation of the variability in demand for a service

by scaling up and down allocated resources.

Scalability that is the ability of a service to remain stable as demand increases by adding

auxiliary resources to the service.

Yet, this massive outsourcing of data and computation to a third party, namely, the

cloud provider, raises significant issues of trust and security: because users lose control

over their data, they have to rely on the cloud provider for the implementation of the

appropriate security measures. Indeed, public cloud providers constitute prime targets

for attackers due to the amount of valuable data they concentrate. Furthermore, in the

cloud setting, the cloud provider itself can be considered as the adversary: a potentially

malicious cloud provider can hide data losses to preserve its reputation, delete some rarely

accessed data to save storage space, or access the data it is storing without the consent of

1

CHAPTER 1. INTRODUCTION

the data owners. As a result, these privacy and security concerns appear to be the main

obstacle to the widespread adoption of cloud computing.

Traditional security mechanisms such as encryption to ensure data confidentiality and

cryptographic-based techniques to guarantee data integrity neutralize the advantages of

cloud computing. This has led to the research of new techniques to increase security in

this paradigm. Among these techniques, there are a number of cryptographic protocols

that aim to provide guarantees to users with respect to the behavior of an untrusted

cloud provider. Some examples include security primitives for: privacy preserving data

processing such as searchable encryption that make it possible to search a database stored

on a cloud provider, while limiting the amount of information that the cloud provider

can obtain regarding the stored data and the queries that are made. Verifiable data

processing that enable a user to verify that a computation carried out by the cloud provider

is executed correctly without the need to repeat them locally. And verifiable storage

such as proofs of storage that provide users with cryptographic guarantees that their

data are stored correctly by a cloud storage provider. Ideally, these solutions should be

designed in a manner that outsourcing to the cloud remains an attractive option for both

users and cloud provider: the deployment of security primitives should not not hinder the

principal functionalities of cloud provides and as a result cancel out the advantages of

cloud computing.

Focus of this work. This thesis addresses the problem of reconciling cloud storage

functionalities with security primitives. The goal is to devise cryptographic mechanisms

used that enable users to verify that a cloud storage system correctly delivers the promised

services of data storage. Indeed, by outsourcing their data, users lose control over their

data and lend it to cloud storage providers. Hence, users lose the ability to safeguard their

data using traditional IT and security mechanisms. As a result, technical solutions aiming

at establishing users confidence on the services provided by a cloud storage system would

be highly beneficial both to users and cloud storage providers.

Furthermore, the proposed mechanism should be compatible with the functionalities

and responsibilities of the different parties as they are defined by the current cloud system

model. In other words, these mechanisms should not transfer responsibilities from the

cloud storage system to users, or require cloud-user communication in order to carry out

functionalities that are typically performed by the cloud storage system.

2

CHAPTER 1. INTRODUCTION

1.1 Requirements of Cloud Storage Systems

Cloud storage is definitively one of the most attractive services offered by cloud computing.

With the proliferation of “big data” as well as with the extensive adoption of IoT devices

that increase exponentially the amount of new data generated every day, users need a way

to safely and reliably store them. Cloud storage systems bring what is needed to satisfy

the above-mentioned needs. In particular, cloud storage systems provide users with the

option to outsource the storage of their data without the need to invest in expensive and

complex storage infrastructure.

A cloud storage system should encompass basic functionalities that enable it to meet

the following functional requirements [1]:

Reliable data storage. Storage systems should be built in such a manner that when

they suffer form hardware failures, software bugs, or outages, users’ data can be

recovered. This property is achieved by adding redundancy to the storage system to

tolerate failures.

Redundancy mechanisms. There are two mechanisms that add redundancy to a

storage system:

• The first one is replication, that is the process of storing multiple copies of

the entire data on different storage nodes. If one of the copies is deleted or

corrupted due to some failure, the storage system uses other copies to recover

the data and produce a new copy.

• The second one involves the use of erasure codes to encode the data before

writing it across multiple storage devices. In the face of failure in one or more

storage devices, the storage system uses the erasure code and the portion of the

data on the remaining healthy storage devices to reconstruct the data.

In the cloud setting, the cloud provider is responsible to integrate these mechanisms

into its infrastructure. Generally, cloud storage systems [2, 3] use replication due

to its simple implementation, however with the explosion of digital content cloud

storage provides [4–6] are starting to turn to erasure coding in order to reduce the

volume of stored data: indeed, erasure codes provide the advantage of less storage

overhead for the same amount of redundant information at the cost of the initial

encoding processing.

Data repair. Complementary to the added redundancy, reliable data storage also

3

CHAPTER 1. INTRODUCTION

rely on mechanisms that allow for the detection of data corruption such as cyclic

redundancy checks (CRC) or checksums. The storage system periodically access

the stored data in order to detect storage errors and upon identifying such errors

leverage the redundant information to repair the damaged files.

Data reduction. Data reduction techniques such as data deduplication and data com-

pression afford cloud storage providers a better utilization of their storage capacity

and the ability to serve more customers with the same infrastructure.

Data deduplication. Data deduplication is the process whereby a storage system

inspects the data it stores, identifies large sections of repeated data, such as entire

files or parts of files, and replaces them with a single shared copy. Data deduplication

methods can be classified according their granularity in two types:

• File-level deduplication, where the storage system detects multiple copies of the

same file uploaded by different users and ensures that only a unique copy is

stored; and

• Block-level deduplication, where the storage system first splits files in smaller

segments called data blocks and thereafter identifies common data blocks among

all uploaded files keeping a single copy of each data block.

Another way to classify data deduplication methods is according to where dedupli-

cation occurs:

• In server-side deduplication, users upload their files in their entirety and the

storage system analyses them and performs the deduplication operation trans-

parently to the users.

• In client-side deduplication, users first compute a unique identifier for the files or

each of the blocks of the files they wish to upload and sends them to the storage

system. The latter uses these identifiers to determine whether a particular file

or block has previously been uploaded in the past and request the users to

upload only files or blocks that it does not already store.

Data compression. Data compression is the process whereby a storage system iden-

tifies redundant data inside individual files and encodes this redundant data more

efficiently storing in this way a smaller version of the file.

4

CHAPTER 1. INTRODUCTION

Automatic maintenance. Automatic maintenance is a core property of cloud storage

systems. It entails that all data management operations such as storage allocation,

data reduction, redundancy generation, and data repair are performed by the cloud

storage system in transparent manner to the user.

Multi-tenancy. A cloud storage system should accommodate a multi-tenant environ-

ment: namely, an environment in which multiple users share the ownership of out-

sourced data, or are permitted to operate on data owned by other users. Moreover,

the owner of outsourced data should be given the possibility to control who accesses

her data, how, and for what amount of time.

Dynamic Data. A cloud storage system should support dynamic data, i.e., data that is

prone to updates. Such updates include appending new data, modifying segments

of existing data, or deleting parts of the outsourced data.

Additionally, a cloud storage system should also fulfill three key security requirements,

namely, data confidentiality, data integrity, and data availability – known as “The CIA

triad” [7]. These requirements deal with the set of security functionalities that a cloud

storage system should implement to assure users of the correct storage and the privacy of

their data.

Data confidentiality. Confidentiality is a fundamental concept security that postulated

that data data is not made available or disclosed to unauthorized parties. The two

main mechanisms to ensure confidentiality are encryption and access control.

Data integrity. Integrity is a fundamental concept of security that postulates that data

maintain its consistency, accuracy, and trustworthiness over its entire life cycle. Put

differently, integrity ensures that data is not deleted or in any other way modified

by unauthorized parties.

Data availability. Availability is a fundamental security property that ensures that data

is accessible to all authorized parties at all times. Put differently, availability assures

a user that she can download her data when needed.

1.2 Verifiability in Cloud Storage Systems

This thesis focuses on the aspect of verifiability in the context of cloud storage systems.

Verifying the behavior of a cloud storage system provides transparency regarding the con-

trols and functionalities it implements in order to safely handle users’ data. In particular,

5

CHAPTER 1. INTRODUCTION

our goal is to design cryptographic protocols that (i) enable users to verify the integrity,

availability and reliable storage of their outsourced data, and (ii) do not impede the mech-

anisms that realize the functional requirements presented in Section 1.1.

As regards to the verification of the integrity of outsourced data, literature features a

large body of work called Proofs of Storage (PoS) [8–10]. The proposed solutions mainly

consist of cryptographic protocols that enable a cloud storage provider to prove to a user

that the integrity of her data has not been compromised. The user can ask the cloud

storage provider to provide such proofs for an outsourced data object without the need

to download the entire object in order to verify that the latter is stored correctly – only

a small fraction of the data object has to be accessed in order to generate and verify

the proof. Nevertheless, Proof of Storage schemes provide guarantees regarding only the

integrity of outsourced data and do not take into account the rest of the functional and

security requirements a cloud storage system oughts to fulfill.

In what follows we describe the challenges that arise when we try to extend Proofs of

Storage such that they enable (i) the verification of reliable data storage by the user, and

(ii) the deduplication of outsourced data by the cloud storage system.

Verification of reliable data storage with automatic maintenance. Reliable data

storage can be seen as the underpinning mechanism that realizes data integrity and data

availability. It relies on redundancy and data repair mechanisms to detect and restore

corrupted data. Since data repair mechanisms are part of reliable data storage, the assur-

ance of both data integrity and data availability by a PoS scheme must verify not only the

integrity of the data outsourced by the users but also the effectiveness of the data repair

mechanisms. Hence, in addition to the integrity of the data outsourced to a cloud storage

system, a PoS scheme should assure the users that the cloud storage provider stores suffi-

cient amount of redundancy information along with original data segments to be able to

guarantee the maintenance of the data in the face of corruption or loss.

However, redundancy is a function of the original data itself. A malicious storage

provider can exploit this property in order to save storage space by keeping only the out-

sourced data, without the required redundancy, and leverage the data repair mechanism

when needed in order to positively meet the verification of reliable data storage criteria.

Besides, the straightforward approach where the user locally generates the required re-

dundancy and further encrypts both the data and the redundancy in order to hide the

relationship between the two, is at odds with the current cloud system model as (i) it

transfers the redundancy generation and data repair responsibilities to the user, and (ii) it

obstructs the automatic maintenance mechanisms.

6

CHAPTER 1. INTRODUCTION

Conflict between PoS schemes and data deduplication. Proof of Storage schemes

implement an encoding algorithm that incorporates some integrity values within the data

before outsourcing it to a cloud storage provider. These values are further used by the user

to verify the proofs provided by the cloud storage provider. Unfortunately, current PoS

solutions are incompatible with data deduplication because the integrity values resulting

from the encoding algorithm are generated using a secret key that is only known to the

owner of the file, and thus unique. Therefore, the encoding of a given file by two different

users results in two different outputs which cannot be deduplicated.

1.3 Contributions

In this thesis we answer the above challenges and we propose the following contributions.

Verification of reliable data storage with automatic maintenance. We introduce

the notion of Proofs of Data Reliability, a comprehensive verification scheme that aims to

resolve the conflict between reliable data storage verification and automatic maintenance.

In particular, we provide the definition of a cryptographic proof of storage protocol and

a new security model against a rational adversary. We propose two Proofs of Data Reli-

ability schemes that succeed in verifying reliable data storage mechanism and a the same

time enable the cloud storage provider to autonomously perform automatic maintenance

operations.

Conflict between PoS schemes and data deduplication. We address the conflict

between Proofs of Storage and deduplication. More precisely, inspired by previous at-

tempts in solving the problem of duplicating encrypted data, we propose a straightforward

solution in combining PoS and deduplication. In addition we propose a novel message-

locked key generation protocol which is more resilient against off-line dictionary attacks

compared to existing solutions.

1.4 Organization

The remaining of this thesis is organized as follows:

• In Chapter 2, we present the concept of Proofs of Storage and a particular flavor of

Proofs of Storage schemes named Proofs of Retrievability. We further summarize the

state of the art on Proofs of Storage and we identify what we believe to be the limi-

tations of current Proof of Storage protocols with respect to two key characteristics

7

CHAPTER 1. INTRODUCTION

of cloud storage systems, namely, reliable data storage with automatic maintenance,

and data deduplication.

The reader then can either move on to Part I of this thesis which introduces a

comprehensive verification scheme that aims to resolve the conflict between reliable

data storage verification and automatic maintenance, or Part II which addresses the

conflict between Proof of Retrievability schemes and deduplication.

• In Chapter 3, we introduce the concept of Proofs of Data Reliability, a new family of

Proofs of Storage that resolves the conflict between reliable data storage verification

and automatic maintenance. We provide the formal definition and security require-

ments of a Proof of Data Reliability scheme and we summarize the state of the art

in this field.

• In Chapter 4, we propose POROS, a Proof of Data Reliability scheme, that on the

one hand, enables a user to efficiently verify the correct storage of her outsourced

data and its reliable data storage; and on the other hand, allows the cloud to per-

form automatic maintenance operations. POROS guarantees that a rationale cloud

storage provider would not compute redundancy information on demand upon proof

of data reliability requests but instead would store it at rest. As a result of be-

stowing the cloud storage provider with the repair function, POROS allows for the

automatic maintenance of data by the storage provider without any interaction with

the customers.

• In Chapter 5, we propose PORTOS, a Proof of Data Reliability scheme, that enables

the verification of reliable data storage without disrupting the automatic mainte-

nance operations performed by cloud storage provider. PORTOS’s design allows for

the fulfillment of the same Proof of Data Reliability requirements as POROS, while

overcoming the shortcoming of POROS. PORTOS design does not make any as-

sumptions regarding the underlying storage medium technology nor it deviates from

the current distributed storage architecture.

• In Chapter 6 we address the conflict between PoR and deduplication. More pre-

cisely, inspired by previous attempts in solving the problem of duplicating encrypted

data, we propose a straightforward solution in combining PoR and deduplication. In

addition we propose a novel message-locked key generation protocol which is more

resilient against off-line dictionary attacks compared to existing solutions.

• Finally in Chapter 7, we conclude with the results of this dissertation and we discuss

future research avenues.

8

Chapter 2

Verifiable Storage

In this chapter, we first introduce the concept of Proofs of Storage (PoS) and a particular

flavor of Proofs of Storage schemes named Proofs of Retrievability (PoR). We then review

the state of the art on Proofs of Storage and present two Proofs of Retrievability schemes

that are mentioned throughout this manuscript and are the basis of the work conducted

during this thesis. Finally, we discuss the limitations of Proof of Storage protocols with

respect to two key characteristics of cloud storage systems, namely, data reliability and

storage efficiency, which becomes the main research topic of this Ph.D study.

2.1 Proofs of Storage

With the almost unlimited storage capacity offered by cloud storage providers, users tend

to outsource their data and thereby offload to the cloud the burden that comes with locally

storing these data: namely, the acquisition and maintenance cost of storage infrastructure.

Nonetheless, through this process users lose their physical control over their data. As

a result, potentially untrusted cloud storage providers assume the full responsibility of

storing these data. Yet, cloud storage providers currently do not assume any liability for

data loss [11]. Data loss occurs whenever there is deletion or unrecoverable modification

of the outsourced data from any unauthorized party. More specifically, data losses may

be the outcome of

(i) actions of malicious attackers that delete or tamper with the data; or

(ii) accidental data corruption due to failures of the hardware of the underlying storage

infrastructure or bugs in the software stack.

Hence, users might be reluctant to adopt cloud storage services because they lack means

to verify the integrity of their outsourced data.

9

CHAPTER 2. VERIFIABLE STORAGE

In the context of cloud storage the traditional integrity checking technique that relies

on the use of digital signatures does not scale because it incurs high communication cost:

every time a user wants to verify the integrity of her potentially large data, she has to

download it and verify it with the locally stored signature. Proofs of Storage (PoS) are

cryptographic solutions that enable users to verify the correct storage of their outsourced

data without canceling out the advantages of the cloud. In particular, a user can ask the

cloud storage provider to furnish such proofs for her outsourced data without the need to

download the data. The notion of PoS was first formalized by Ateniese et al. [8] and Juels

and Kaliski [9], then updated by Shacham and Waters [10].

2.1.1 Environment

A Proof of Storage (PoS) scheme comprises the three following entities:

User U. User U wishes to outsource her file D to a cloud storage provider C.

Cloud storage provider C. Cloud storage provider C commits to store file D in its

entirety. Cloud storage provider C is considered as a potentially malicious party.

Verifier V. Verifier V interacts with cloud storage provider C in the context of a challenge-

response protocol and validates whether C is storing file D in its entirety. Depending

on the specification of the PoS scheme, user U can be the verifier V.

We consider a setting where a user U uploads a file D to a cloud storage provider C and

thereafter a verifier V periodically queries C for some proofs on the correct storage of D.

In practice, user U processes file D and derives a enlarged verifiable data object D which

subsequently uploads to cloud storage provider C. D contains some additional information

that will further help for the verification of its integrity. At this point, the cloud storage

provider C is expected to store data object D, while the user U deletes both file D and

data object D retaining in local storage the key material she used during the generation

of D. We define a Proof of Storage scheme as a protocol executed between a user U and a

verifier V on the one hand, and the cloud storage provider C on the other hand. In order

to check the integrity of data object D, the verifier V issues one or more PoS challenges

and sends them to the cloud storage provider C. The PoS challenge may refer to either the

whole data object D or a subset of D’s symbols. In turn, C generates a PoS proof of each

query it receives and sends it to the verifier V. Finally, V checks whether the PoS is well

formed and accepts it or rejects it accordingly. In order not to cancel out the storage and

performance advantages of the cloud, all this verification should be performed without the

verifier V downloading the entire content associated to D.

10

CHAPTER 2. VERIFIABLE STORAGE

2.1.2 Definition of a PoS scheme

We now give the formal definition and security requirements of a Proof of Storage scheme.

The definition we propose here follows the challenge-response approach proposed in [9]

while defining a stateless protocol as suggested by Shacham and Waters [10]. The term

stateless implies that the verifier V does not maintain any additional information (i.e., a

state) between subsequent invocations of the protocol.

Definition 1. (PoS Scheme). A Proof of Storage scheme is defined by five polynomial

time algorithms:

• KeyGen (1λ) → (Ku,Kv): This randomized key generation algorithm is executed by

U as a first step. It takes as input a security parameter λ, and outputs the user key

Ku for user U and the verifier key Kv for verifier V.

• Encode (Ku, D)→ (fid,D): User U calls this algorithm before the actual outsourcing

of her file. It takes as inputs the user key Ku and the file D composed of n segments,

namely, D = {D1, D2, . . . , Dn} and returns a unique identifier fid for D and an

encoded version D = {D̂1, D̂2, . . . , D̂n} which includes some additional information

that will further help for the verification of its integrity.

Algorithm Encode is invertible: namely, there exists an interactive algorithm

Decode (Ku, fid,D)→ (D) that, when called successfully by the user U, recovers and

outputs the original file D.

• Chall (Kv, fid)→ (chal): Once the encoded file D with identifier fid is outsourced to C,

verifier V invokes this probabilistic algorithm with verifier key Kv and file identifier

fid to compute a PoS challenge chal and sends this challenge to cloud storage provider

C.

• Prove (fid, chal)→ (proof): This algorithm is executed by the cloud storage provider

C and returns a proof of storage proof given file identifier fid and the PoS challenge

chal.

• Verify (Kv, fid, chal, proof) → (dec ∈ {accept, reject}): Upon reception of proof, veri-

fier V calls this algorithm which takes as input the verifier key Kv, the file identifier

fid, the challenge chal and the proof proof and outputs dec = accept if proof is a valid

proof and dec = reject otherwise.

A Proof of Storage scheme should be correct and sound.

11

CHAPTER 2. VERIFIABLE STORAGE

2.1.2.1 Correctness

A Proof of Storage scheme should be correct: if both the cloud storage provider C and

the verifier V are honest, then on input chal and fid sent by the verifier V, using algorithm

Chall, algorithm Prove (invoked by C) generates a PoS proof such that algorithm Verify

yields accept with probability 1.

2.1.2.2 Soundness

A Proof of Storage scheme is sound if any cheating cloud storage provider C that convinces

the verifier V that it is storing the verifiable data object D is actually storing D. In other

words, a cheating cloud storage provider C cannot output valid PoS proof for a file D

without storing the verifiable data object D in its entirety.

The soundness requirement as defined above, enables a verifier V to check the integrity

of data object D. However, due the probabilistic nature of many Proof of Storage types,

namely, Proofs of Data Possession (PDP) [8] (c.f. Section 2.3), a successful PoS verification

does not guarantee that the outsourced file D can be recovered in its entirety by the user

U. More specifically, each PoS challenge verifies the integrity of a rather small random

subset of D’s symbols. Hence, there is the possibility that the protocol will fail to detect

the presence of some minor corruption of D.

2.1.2.3 Additional features of PoS scheme

In addition to fulfilling the security requirements of correctness and soundness, a Proof of

Storage Protocol may also have the following features.

Efficiency. In order not to cancel out the storage and performance advantages of the

cloud, the PoS verification should be performed without the verifier V downloading

the whole data object D from the cloud storage provider C. The performance of a

PoS scheme is evaluated in terms of five types of metrics: (i) the storage overhead of

data object D induced by algorithm Encode, (ii) the bandwidth required to transmit

the challenge chal and proof proof, (iii) the computational cost of algorithm Encode,

(iv) the computational cost of algorithm Prove, and (v) the computational cost of

algorithm Verify.

Stateless verification. A Proof of Storage protocol should be stateless in the sense that

the verification of a PoS proof generated by the cloud storage provider C should not

require that the verifier V keeps any historical information regarding prior executions

of the protocol.

12

CHAPTER 2. VERIFIABLE STORAGE

Unbounded number of PoS executions. A Proof of storage protocol should allow the

verifier V to enter in an unbounded number of PoS executions. In other words, the

user U should not have to retrieve end re-encode file D after a finite number of PoS

executions.

Public verifiability. We consider two settings for a proof of storage scheme: a privately

verifiable setting and a publicly verifiable one. In a privately verifiable PoS scheme

the verifier V is the user U. In a publicly verifiable PoS scheme the role of the verifier

V can be played by any third party except C.

2.2 Proofs of Retrievability

Proofs of Retrievability (PoR) are a family of Proofs of Storage that have a stronger

soundness definition which ensures user U that not only her outsourced data are correctly

stored by a malicious cloud storage provider C but also verifier V can recover her data

at any time. This security guarantee is captured using the notion of extractability : this

requirement suggests that there exists an extractor algorithm Extract that can interact

with cloud storage provider C and recover user U’s data. Proofs of Retrievability are prob-

abilistic solutions, hence a successful PoR verification provides user U with the assurance

that she can retrieve her data with some overwhelming probability.

As a type of Proofs of Storage, PoR schemes operate in the same environment and

inherit the same algorithm and characteristics of a PoS protocol. To fulfill the extractabil-

ity requirement, the PoR Encode algorithm makes use of erasure codes, a pseudo-random

permutation and a semantically secure encryption. In the following, we introduce these

three primitives.

Erasure codes. Erasure codes [12] are a family of error-correction codes that assume bit

erasures instead of bit errors. An [n, k, d]–erasure code denotes a code which trans-

forms a word which consists of k symbols into a codeword comprising n symbols. d

denotes the minimum Hamming distance between codewords: the code can detect

and repair up to d − 1 errors in a code word. Input data symbols and the corre-

sponding codeword symbols belong to Zp, where p is a large prime and k ≤ n ≤ p.

Once some failure (erasure) is detected, the remaining codeword symbols are used

to reconstruct that lost symbols. The reconstructed codeword symbols can either

be identical to the lost ones – in which case we have exact repair – or can be func-

tionally equivalent – in which case we have functional repair where the original code

properties are preserved. Any erasure code is suitable for a Proof of Retrievability

protocol.

13

CHAPTER 2. VERIFIABLE STORAGE

Pseudo-random permutation (PRP). A pseudo-random permutation [13] is a function

PRP : K×X → X , where K denotes the set of keys and X denotes the set of possible

inputs and outputs, that has the following properties:

• For any key K ∈ K and any input X ∈ X , there exists an efficient algorithm

to evaluate PRP(K,X).

• For any key K ∈ K, PRP(K, .) is one-to-one function from X to X . That means

that there exists an inverse function PRP−1 : K×X → X such that for any key

K ∈ K and any input X ∈ X , there exists an efficient algorithm to evaluate

PRP−1(K,X)

• PRP cannot be distinguished from a random permutation π, chosen from the

uniform distribution of all permutations π : X → X .

Semantically secure encryption. A semantically secure encryption scheme [14] is a

probabilistic encryption scheme that guarantees that given the encryption C of a

message M chosen from a set of messages M and the size of M , a Probabilistic

Polynomial-Time (PPT) adversary can neither distinguish which of the messages in

M corresponds to the ciphertext C nor determine any partial information on the

original message M .

2.2.1 Overview of the PoR Encode algorithm

Before creating the verifiable data object D, the PoR Encode algorithm first encodes the file

D by applying the erasure code. The additional redundancy symbols assure the protection

of file D against small corruptions. However, erasure coding alone does not guarantee

that the file D can be successfully recovered when the verifier V interacts with a malicious

cloud storage provider C. Indeed, erasure codes provide resiliency only against random

symbol erasures. For this reason, algorithm Encode permutes and encrypts the encoded

file in order to hide the dependencies among the symbols of D as well as eliminating any

segment structure arising from the application of the erasure code. These two operations

effectively reduce C’s adversarial symbol erasures to random ones. Thereafter, the PoR

Encode algorithm proceeds with the creation of the verifiable data object D in the same

way as the corresponding PoS Encode algorithm.

2.2.2 Security Requirements of PoR

In this section we formalize our definition for the two security requirements a Proof of

Retrievability scheme must fulfill, namely correctness and soundness.

14

CHAPTER 2. VERIFIABLE STORAGE

2.2.2.1 Correctness

As mentioned in the previous section, the correctness security requirement postulates the

fact that an honest cloud storage provider C, who stores the whole data object D, should

always be able to pass the verification of proof of storage protocol.

Definition 2. (PoR Correctness). A PoR scheme (KeyGen, Encode, Chall, Prove,

Verify) is correct if for all honest cloud storage providers C and verifiers V, and for all

keys K ← KeyGen (1λ), all files D with file identifiers fid and for all challenges chal← Chall

(K, fid):

Pr[Verify(K, fid, chal, proof)→ accept | proof ← Prove(fid, chal)] = 1

2.2.2.2 Soundness

It is essential for any Proof of Retrievability protocol that the verifier V can always detect

(except with negligible probability) that the cloud storage provider C deviates from the

correct protocol execution. We capture this requirement using the notion of extractability

as introduced in [9, 10]. Extractability guarantees that if a cloud storage provider C can

convince an honest verifier V that it stores data object D, then there exists an extractor

algorithm Extract that can interact with C and recover, with high probability, the file D.

To define this requirement, we consider a hypothetical game between an adversary A
and an environment where the latter simulates all honest users and an honest verifier.

Furthermore, the environment provides A with oracles for the algorithms Encode, Chall

and Verify:

• OEncode: On input of a file D and a user key Ku, this oracle returns a file identifier

fid and a verifiable data object D that will be outsourced by A.

• OChall: On input of verifier key Kv and a file identifier fid, this oracle returns a query

chal to adversary A.

• OVerify: On input of verifier key Kv, file identifier fid, challenge chal and proof proof,

this oracle returns dec = accept if proof is a valid proof and dec = reject otherwise.

We consider the following retrievability game between the adversary and the environment:

1. A interact with the environment and queries OEncode providing, for each query, some

file D. The oracle returns to A the tuple (fid,D)← OEncode (K, D), for a given user

key Kv.

15

CHAPTER 2. VERIFIABLE STORAGE

2. For any file identifier fid of a file D it has previously sent to OEncode, A queries OChall

to generate a random challenge (chal)← OChall (K, fid), for a given verifier key Kv.

3. Upon receiving challenge chal, A generates a proof proof either by invoking algorithm

Prove or at random.

4. A queries OVerify to check the proof proof and gets the decision (dec) ← OVerify

(Kv, fid, chal, proof), for a given user key K.

Steps 1− 4 can be arbitrarily interleaved for a polynomial number of times.

5. Finally, A picks a file identifier fid∗ corresponding to a file D∗ that was sent to

OEncode and outputs a simulation of a cheating cloud storage provide C′.

We say that the cheating cloud storage provide C′ is ε-admissible if the probability that

the algorithm Verify yields dec := accept is at least ε:

Pr[OVerify(Kv, fid∗, chal∗, proof∗)→ accept | proof∗ ← C′, chal∗ ← OChall(Kv, fid∗)] > ε,

for a given verifier key Kv.

Hereafter, we define the extractor algorithm Extract which uses the simulation of a

cheating cloud storage provide C′ to retrieve file D∗:

• Extract (Kv, fid∗,C′) → D∗: On input of verifier key Kv, file identifier fid and the

description of a cheating cloud storage provide C′, the extractor algorithm Extract

initiates a polynomial number of protocol executions with C′ and outputs the file

D∗. Algorithm Extract is allowed to rewind C′.

Definition 3. (PoR Soundness). We say that a PoR scheme (KeyGen, Encode, Chall,

Prove, Verify) is ε-sound if there exists an extraction algorithm Extract such that, for every

Probabilistic Polynomial-Time adversary A who plays the retrievability game and outputs

an ε-admissible cloud storage provider C′ for a file D∗, the extraction algorithm Extract

recovers D∗ from C′ with overwhelming probability.

Pr[Extract(Kv, fid∗,C′)→ D∗] ≤ 1− ε

where ε is a negligible function in security parameter λ.

2.2.3 Classification of PoR schemes

Proof of Retrievability schemes can be classified into two categories which mainly differ

with respect to their initial encoding phase where the user U invokes the algorithm Encode

16

CHAPTER 2. VERIFIABLE STORAGE

in order to derive the to-be-outsourced data object D from the file D.

• In the first category of PoR schemes, algorithm Encode computes an authentication

tag for each data symbol. The verifier V samples a subset of data object symbols

together with their respective tags and verifies the integrity of the symbols. Most

of the recent tag-based solutions [8, 10] employ homomorphic tags which during the

verification phase, reduce the communication bandwidth: the verifier V queries the

cloud storage provider C to receive a linear combination of a selected subset of data

object symbols together with the same linear combination of the corresponding tags.

• In the second category of PoR schemes, named as watchdog-based PoRs, algorithm

Encode embeds pseudo-randomly generated“watchdogs” [15] or“sentinels” [9] in data

object D at random positions, and further encrypts the data to make the watchdogs

indistinguishable from original data symbols. During the verification phase, the

verifier V retrieves a subset of these watchdogs.

2.3 State of the Art on Proofs of Storage

In this section, we summarize Proof of Storage solutions that provide mechanisms to enable

the integrity verification of outsourced data. These solutions include the pioneering work

by Juels and Kaliski [9] on Proofs of Retrievability (POR) and Ateniese et al. [8] on

Provable Data Possession (PDP). PoR and PDP aim at reducing the communication and

computational complexity of the challenge-response protocol at the price of not offering

an unconditional data integrity guarantee. The core idea of these proposals is to check

the integrity of a subset of symbols of the data object D instead of checking the integrity

of the entire data object D, while still providing assurance for the integrity of the entire

data object with high probability.

2.3.1 Watchdog-based solutions

Juels and Kaliski [9] proposed the Proofs of Retrievability (PoR) model that ensures

that users at any point of time can retrieve outsourced data. This property is achieved

by means of erasure codes, pseudo-random permutation, semantically secure encryption,

and randomly generated blocks. The scheme in [9] embeds pseudo-randomly generated

symbol, called sentinels, into encrypted stored data, hence data blocks and sentinels are

indistinguishable. To check the retrievability of the data, the verifier selects a random

subset of sentinels and queries the server for them. This proposal only supports a bounded

number of POR queries after which the server may discover all the embedded sentinels.

17

CHAPTER 2. VERIFIABLE STORAGE

Azraoui et al. [15] pursue this approach in [9] with StealthGuard. In this scheme the data

owner inserts pseudo-random blocks, called watchdogs, before outsourcing the data to the

cloud. To achieve unbounded number of verification queries StealthGuard uses a privacy-

preserving word search scheme to verify the existence of watchdogs without disclosing their

position to the remote server –hence, reusing them in the future.

2.3.2 Tag-based solutions

Ateniese et al. [8] define the Provable Data Possession (PDP) model, which ensures that

a large portion of the outsourced data is stored in storage servers. The authors propose

a PDP scheme that uses homomorphic verification tags as check values for each data

block. Thanks to the homomorphic property of the tags, the server can combine tags

of multiple data blocks into a single value, reducing thus the communication overhead

of the verification. This proposal was later extended in [16] where the notion of robust

auditing was defined. Their new scheme integrates error-correcting codes to mitigate

arbitrarily small file corruptions. Following another direction, Ateniese et al. [17] proposed

a symmetric PDP construction to support dynamic writes/updates on stored data. The

idea is to precompute challenges and answers as metadata in advance, however, this limits

the number of verifications the data owner can conduct. Erway et al. [18] proposed a

dynamic PDP scheme that relies on authenticated dictionaries based on rank information

to support dynamic data operations. Later on, Chen and Curtmola [19] extended the work

in [16] in order to support data updates.

Most proposals for PoR employ homomorphic tags like in [8], in conjunction with era-

sure codes. Shacham and Waters [10] propose symmetric as well as publicly verifiable

PoR schemes that use homomorphic tags to yield compact proofs. This work has been

extended by Xu and Chang in [20] where a polynomial commitment protocol combined

with homomorphic tags leads to lower communication complexity. Dodis et al [21] gener-

alize the scheme of [9, 10] and introduce the notion of PoR codes, which couples concepts

in PoR and hardness amplification. Cash et al. [22] proposed a dynamic PoR scheme that

relies on oblivious RAM (ORAM) to perform random access reads and writes in a private

manner. Subsequently, Shi et al. [23] proposed a dynamic PoR scheme that considerably

improves the performance of [22] by taking advantage of a Merkle tree [24].

2.3.3 PoS with Public Verifiability

Other contributions propose the notion of delegatable verifiability of PoR. For instance,

in [25,26] the authors describe schemes that enable the user to delegate the verification of

PoR and to prevent their further re-delegation. Furthermore, Wang et al. [27,28] proposed

18

CHAPTER 2. VERIFIABLE STORAGE

a PoR scheme that supports dynamic operations and public verification on stored data.

Their construction uses Merkle trees to support data dynamics. Wang et al. [29] proposed

privacy-preserving public auditing for data storage security in cloud computing. Their

scheme uses a blinding technique to enable an external auditor to verify the integrity

of a file D stored in a server without learning any information about the file contents.

Armknecht et al. [30] introduce the notion of outsourced proofs of retrievability, an exten-

sion of the PoR model, in which users can task an external auditor to perform and verify

PoR on behalf of the data owner. Bowers et al. [31] proposed a theoretical framework of

designing PoR protocols. This framework employs two layers of error-correcting codes in

order to recover user data from a series of responses.

2.4 Two Proofs of Retrievability Schemes

In this section, we present an overview of two Proofs of Retrievability schemes, namely,

Private Compact PoR proposed by Shacham and Waters [10] and StealthGuard proposed

by Azraoui et al, [15]. Both schemes serve as building blocks of the protocols presented

later in this thesis.

2.4.1 Private Compact PoR

Shacham and Waters [10] proposed two tag-based PoR schemes that rely on linearly-

homomorphic tags to minimize the bandwidth required for the transmission of the PoR

proof. Thanks to the homomorphic properties of the tags, the cloud storage provider C

can aggregate the requested data object symbols and their respective tags into a single

symbol-tag pair. The first scheme which is symmetric (privately verifiable), whereas the

second scheme is publicly verifiable. In what follows, we briefly describe Private Compact

PoR, i.e., the symmetric PoR scheme proposed by Shacham and Waters.

2.4.1.1 Building Blocks

In addition to the erasure code, pseudo-random permutation, and semantically secure

encryption (see Section 2.2), Private Compact PoR relies on the following building blocks:

Linearly-homomorphic tags. Linearly-homomorphic tags [8, 10] are additional verifi-

cation information computed by the user U and outsourced together with file D to

the cloud storage provider C. We denote by σi the linearly-homomorphic tag cor-

responding to the data symbol di. Linearly-homomorphic tags have the following

properties:

19

CHAPTER 2. VERIFIABLE STORAGE

• Unforgeability: Apart from the user U who owns the signing key, no other

party can produce a valid tag σi for a data symbol di, for which it has not been

provided with a tag yet.

• Verification without the data: The cloud storage provider C can construct a

PoS proof that allows the verifier V to verify the integrity of certain file symbols

without having access to the actual data symbols.

• Linear homomorphism: Given two linearly-homomorphic tags σi and σj corre-

sponding to data symbols di and dj , respectively, anyone can compute a linear

combination ασi + βσj that corresponds to the linear combination of the data

symbols αdi + βdj , where α, β ∈ Zp.

Pseudo-random function (PRF). A pseudo-random function [32] is a function PRF :

K×X → Y, where K denotes the set of keys, X denotes the set of possible inputs, and

Y denotes the set of possible outputs. A pseudo-random function has the following

properties:

• For any key K ∈ K and any input X ∈ X , there exists an efficient algorithm

to evaluate PRF(K,X) ∈ Y.

• PRF cannot be distinguished from a random function f , chosen from the uniform

distribution of all functions f : X → Y.

2.4.1.2 Protocol Specification

Private Compact PoR is a symmetric PoR scheme, i.e., user U is the verifier V. Thereby,

only the user key Ku is required for the creation of the data object D, the generation

of the PoR challenge, and the verification of C’s proof. Moreover, in order to reduce

the storage overhead inflicted to the cloud storage provider C, this scheme splits the

data object D into n segments each comprising m symbols, and thereafter generates one

linearly-homomorphic tag for each segment instead of one tag per symbol.

We now describe the algorithms of Private Compact PoR.

• SW.KeyGen (1λ)→ (Ku, paramsystem): User U calls this algorithm in order to generate

a secret key Ku and a set of system parameters paramsystem (size of segment, erasure

code, etc.) that will be used to prepare D for upload and to verify its retrievability

later.

• SW.Encode (Ku, D)→ (fid,D): User U calls this algorithm to prepare her file D for

outsourcing to cloud storage provider C. It applies the erasure code to D and then

uses the secret key K to permute and encrypt the encoded file, and further outputs

20

CHAPTER 2. VERIFIABLE STORAGE

Figure 2.1: Steps of the Encode algorithm of Private Compact PoR

the result D̂. Subsequently, SW.Encode divides D̂ in n equally-sized segments each

comprising m symbols. We denote d̂ij the jth symbol of the ith segment where

1 ≤ i ≤ n and 1 ≤ j ≤ m. Algorithm SW.Encode then generates a PRF key kprf ,

chooses m random numbers αj ∈ Zp where 1 ≤ j ≤ m and computes for each

segment the following homomorphic MAC σi:

σi := PRF(kprf , i) +
m∑
j=1

αj d̂ij

Algorithm SW.Encode then picks a unique identifier fid, and terminates its execution

by outsourcing to the cloud storage provider C the authenticated data object:

D :=
{

fid; {d̂ij} 1≤j≤m
1≤i≤n

; {σi}1≤i≤n
}
.

• SW.Chall (Ku, fid) → (chal): This algorithm invoked by user U picks l random ele-

ments νc ∈ Zp and l random symbol indices ic, and sends to cloud storage provider

C the challenge

chal :=
{

(ic, νc)
}
1≤c≤l.

• SW.Prove (fid, chal)→ (proof): Upon receiving the challenge chal :=
{

(ic, νc)
}
1≤c≤l,

C invokes this algorithm which computes the proof proof := (µj , τ) as follows:

µj :=
∑

(ic,νc)∈chal

νc d̂icj , τ :=
∑

(ic,νc)∈chal

νc σic .

21

CHAPTER 2. VERIFIABLE STORAGE

• SW.Verify (Ku, proof, chal) → (dec): Given user key Ku, proof proof := (µj , τ), and

challenge chal :=
{

(ic, νc)
}
1≤c≤l, this algorithm invoked by user U, verifies that the

following equation holds:

τ
?
=

m∑
j=1

αjµj +
∑

(ic,νc)∈chal

νc PRF(kprf , ic).

If proof is correctly computed, algorithm SW.Verify outputs dec := accept; otherwise

it returns dec := reject.

2.4.2 StealthGuard

Azraoui et al, [15] proposed StealthGuard: a symmetric watchdog-based PoR scheme.

The protocol first splits the file D into equally-sized segments and encodes each segment

using an erasure code. After permuting and encrypting D using a semantically secure

encryption scheme, a number of pseudo-randomly generated symbols (called watchdogs)

are inserted in random positions in each segment. Thanks to the use of semantically

secure encryption cloud storage provider C cannot distinguish the watchdogs from the rest

of the data object symbols. The PoR challenge chal consists of specifying a subset of the

watchdogs and querying them from cloud storage provider C. The watchdogs queries are

processed in privacy-preserving manner such that cloud storage provider C does not derive

any information regarding the positions and values of the watchdogs. V then checks if all

the queried watchdogs remain intact. The idea is that if a part of the file is corrupted

then, with high probability, some of the queried watchdogs will be corrupted as well.

2.4.2.1 Building Blocks

In order to prepare the verifiable data object D, StealthGuard uses erasure codes, pseudo-

random permutation and semantically secure encryption as described in Section 2.2. Fur-

thermore StealthGuard relies on a pseudo-random function (see Section 2.4.1.1) to generate

the watchdogs.

Privacy-preserving word search. The Chall and Prove algorithms of StealthGuard

leverage a privacy-preserving word search algorithm in order to ensure that the cloud

storage provider C cannot determine both the positions of the queried watchdogs and

whether these watchdogs are found or not. More specifically, StealthGuard adapts a

privacy-preserving word search called PRISM [33] which transforms the search prob-

lem into several parallel efficient Private Information Retrieval (PIR) [34] instances.

PRISM is defined by three algorithms:

22

CHAPTER 2. VERIFIABLE STORAGE

• Algorithm PRISM.Query (invoked by the verifier V) issues a search query for

particular watchdog (word) w in a segment.

• Algorithm PRISM.Process (invoked by the cloud storage provider C) processes

all the symbols in the segment and constructs C’s response. Instead of the

watchdog itself, algorithm PRISM.Process retrieves some very short informa-

tion, called witness, that enables the verifier V to decide about the presence or

absence of the queried watchdog in the segment.

• Algorithm PRISM.Analysis (invoked by the verifier V) analyzes C’s response and

determines whether the queried watchdog w is present in the segment or not.

2.4.2.2 Protocol Specification

StealthGuard is a symmetric PoR scheme. Hence similarly to Private Compact PoR user

U and verifier V are the same entity. Thereby, the same user key Ku is required for the

creation of the data object D, the generation of the PoR challenge, and the verification of

C’s proof.

We now describe the algorithms of StealthGuard.

• SG.KeyGen (1λ)→ (Ku, paramsystem): User U calls this algorithm in order to generate

a secret key Ku and a set of parameters paramsystem (such as size of segment, number

of watchdogs in a segment, erasure code, etc.) that will be used to prepare D for

upload and to verify its retrievability later.

• SG.Encode (Ku, D) → (fid,D): User U calls this algorithm to prepare her file D

for outsourcing to cloud storage provider C. It first divides the encoded file into

equally-sized segments {D1, D2, . . . , Dn} and applies the erasure code to each seg-

ment. Subsequently, algorithm SG.Encode applies a pseudo-random permutation to

permute all the symbols in D. Thereafter, SG.Encode encrypts the file D and further

uses the secret key Ku to determine the value and position of the watchdogs, insert-

ing them within the segments accordingly. Without loss of generality, we denote D
the data object which arises after the insertion of watchdogs.

Algorithm SG.Encode then picks a unique identifier fid, and terminates its execution

and further outsources to cloud storage provider C the verifiable data object D.

• SG.Chall (Ku, fid) → (chal): User U calls this algorithm which chooses γ segments

and a watchdog within each of these segments. Thereafter, algorithm SG.Chall uses

the underlying PRISM.Query algorithm to issue a privacy preserving search query

for each of the selected watchdogs. Algorithm SG.Chall terminates its execution by

23

CHAPTER 2. VERIFIABLE STORAGE

Figure 2.2: Steps of the Encode algorithm of StealthGuard

sending to the cloud storage provider C the challenge chal comprising the γ search

queries.

• SG.Prove (fid, chal) → (proof): Upon receiving the challenge chal the cloud storage

provider C invokes this algorithm which uses the underlying PRISM.Process algorithm

to construct the response for each of the γ search queries. Thanks to PRISM.Process,

cloud storage provider C cannot learn either the content of the search query or the

corresponding response. Algorithm SG.Prove terminates its execution by sending to

user U the proof proof comprising the responses to γ search queries.

• SG.Verify (Ku, fid, chal, proof) → (dec): User U calls this algorithm which uses the

underlying PRISM.Analysis algorithm to process all responses included to the proof

proof. Algorithm SG.Verify outputs dec := accept if all queried watchdogs are present

or dec := reject otherwise.

2.5 Cloud Storage Systems Requirements and PoS

In this section we identify what we believe to be the limitations of current Proof of Storage

protocols with respect to two key characteristics of cloud storage systems, namely, reliable

data storage with automatic maintenance, and data deduplication.

24

CHAPTER 2. VERIFIABLE STORAGE

2.5.1 Verification of Reliable Data Storage with Automatic Mainte-

nance.

Cloud storage providers currently do not assume any liability for data loss. As a result,

users are reluctant to adopt cloud storage services as they lend full control of their data

to the cloud provider without the means to verify the correctness of reliable data storage

mechanisms deployed by the cloud provider. Hence, technical solutions aiming at estab-

lishing users’ confidence on the integrity and availability of their data would be highly

beneficial both to users’ and providers of cloud storage services. As far as the integrity

of the outsourced data is concerned, Proof of Storage schemes are fully compatible with

reliable data storage mechanisms. The cloud storage system applies its data redundancy

and corruption detection mechanisms independently and on top of any PoS processing

performed by the user.

Yet, PoS schemes are of limited value when it comes to the audit of reliable data

storage mechanisms: indeed, a successful PoS verification does not indicate whether a cloud

provider has in place reliable data storage mechanisms, whereas an unsuccessful one attests

the irreversible damage of the outsourced data. Even in the case of Proof of Retrievability

schemes that provide a stronger soundness definition, an unsuccessful verification indicates

that the data are not recoverable any more. Detecting that an outsourced file is corrupted

is of little help for a client because the latter is no longer retrievable. Despite the fact that

PoR schemes rely on erasure codes, the relevant redundancy information is not intended for

typical data repair operations: erasure codes assist in realizing the PoR security properties

by enabling the recovery of original data from accidental errors that can go undetected

from the PoR protocol. However, neither the cloud storage provider C nor the user U can

use this redundancy in order to repair corrupted data outsourced to C since, according to

the PoR model, C cannot distinguish original data from redundancy information and, U

lacks the means to detect any data corruption and repair it.

Furthermore, in the adversarial setting of outsourced storage, there seems to be an

inherent conflict between the customers’ requirement for verifying reliable data storage

mechanisms and a key feature of modern storage systems, namely, automatic maintenance.

On the one hand, automatic maintenance based on either replication or erasure codes

requires the storage of redundant information along with the data object D and, on the

other hand, to guarantee the storage of redundancy the cloud storage provider C should

not have access to the content of the data since the redundancy information is a function

of the original data itself. Hence, the root cause of the conflict between verification of

reliable data storage and automatic maintenance stems from the fact that the redundancy

is a function of the original data object itself. This property which is the underpinning of

25

CHAPTER 2. VERIFIABLE STORAGE

automatic maintenance can be exploited by a malicious storage provider in order to save

storage space while positively meeting the verification of reliable data storage criteria.

A malicious storage provider can indeed prove the possession of redundancy by simply

computing the latter using its automatic maintenance capability without ever storing any

redundancy information. Even though such a storage provider would be able to successfully

respond to data reliability verification queries, akin to a PoS scheme, the actual reliability

of the data would not necessarily be assured since the storage provider would fail to

retrieve lost or corrupted data segments without the redundant information. Automatic

maintenance that is a very efficient feature of data reliability can thus become the main

enabler towards fooling data reliability verification in an adversarial setting.

2.5.2 Conflict between PoS and deduplication

It seems that the simple composition of Proofs of Retrievability with deduplication is

doomed to fail due to some inherent conflict between current PoR and deduplication

schemes. The root cause of the conflict is that PoR and deduplication call for diverging

objectives: PoR aims at imprinting the data with retrievability guarantees that are unique

for each user whereas deduplication tries, whenever feasible, to factor several data segments

submitted by different users into a unique copy kept in storage. Indeed, in both watchdog-

based and tag-based PoR schemes that insert pseudo-randomly generated watchdogs and

append a tag to each data segment (c.f. Section 2.4) respectively, simple composition with

deduplication would fail because algorithm Encode of these schemes includes semantically

secure encryption by each user, in order to conceal the relation between information and

redundancy symbols, that prevents the detection of duplicate data objects. Figure 2.3

depicts the conflict between deduplication and watchdog-based PoR scheme.

Figure 2.3: Conflict between deduplication and watchdog-based PoR scheme

26

CHAPTER 2. VERIFIABLE STORAGE

Figure 2.4: Conflict between deduplication and tag-based PoS scheme

Moreover, even other types of tag-based Proof of Storage schemes such as Proofs of

Data Possession, where users append a tag to each data symbol are not fully compatible

with deduplication (see Figure 2.4). Since the tags are computed under a private key

generated by each user, the tags stored with the duplicate copies of identical data objects

submitted by different users will still be different; and in case of deduplication, even if

storing a single copy for all duplicate data objects would be consistent with respect to

basic data management, the PoS scheme would still require that the tags generated by

each user for the deduplicated data segment be kept separately in storage. The additional

storage resulting from these tags increases very rapidly with the number of users sharing

the same data. In the RSA-based PDP scheme described in [8] with segment size 4KB,

the storage overhead resulting from PDP tags of 2048 bits each, is 6,25% per user. For

example, a 4GB data object uploaded by 50 users would require 312,5% additional storage,

that is 12.5GB whereas if tags are to be deduplicated this overhead would remain constant

and equal to 256MB only.

2.6 Summary

In this chapter, we presented the concept of Proofs of Storage and a particular flavor of

Proofs of Storage schemes named Proofs of Retrievability together with two PoR schemes,

namely, Private Compact PoR and StealthGuard, that are uses as building blocks for the

protocols we propose later in this thesis. Moreover, we identified what we believe to be the

limitations of Proofs of Storage in their current form with respect to two key characteristics

of cloud storage systems, namely, reliable data storage with automatic maintenance, and

data deduplication.

Now, the reader can either move to Part I where we introduce a comprehensive verifi-

27

CHAPTER 2. VERIFIABLE STORAGE

cation scheme that aims to resolve the conflict between reliable data storage verification

and automatic maintenance, or Part II where we present as solution that addresses the

conflict between Proof of Retrievability schemes and deduplication.

28

Part I

Proofs of Data Reliability

29

Chapter 3

Proofs of Data Reliability

In this chapter, we introduce the concept of Proofs of Data Reliability, a new family of

Proofs of Storage that resolves the conflict between reliable data storage verification and

automatic maintenance. We provide the formal definition of Proofs of Data Reliability

and we summarize the state of the art in this field.

3.1 Problem Statement

Data outsourcing raises some unprecedented security issues in the face of potentially mis-

behaving or malicious cloud service providers. In the case of cloud storage systems, if the

misbehavior of a cloud storage provider C goes undetected, nothing prevents a malicious

C from “cutting corners” when it comes to reliable data storage mechanisms in order to

maximize its returns in terms of storage utilization and thus jeopardizing the integrity

and availability of user data. As already discussed in Section 2.5.1, existing verifiable

storage solutions like Proofs of Storage suffer from a major shortcoming: they do not take

into account a basic feature of storage systems that is reliable data storage mechanism

implemented by the cloud storage providers. Since data repair functions are part of the

basic reliable data storage mechanisms, the assurance of data availability with such ser-

vices must verify not only the integrity of the data outsourced by the users but also the

effectiveness of the data repair functions.

A comprehensive verification scheme called “Proof of Data Reliability” should thus

verify both the availability of the users’ data and the provision by the storage provider for

sufficient means to recover from minor failure of storage system components. In addition

to the integrity of her outsourced data, a Proof of Data Reliability provides the user with

the assurance that the cloud storage provider has provisioned sufficient redundancy to be

able to guarantee reliable storage service. In a straightforward approach, the user locally

31

CHAPTER 3. PROOFS OF DATA RELIABILITY

generates the necessary redundancy and subsequently stores the data together with the

redundancy on multiple storage nodes. In Section 2.5.1 we established that, in the case

of erasure code-based storage systems, the relation between the data and redundancy

symbols should stay hidden from the cloud storage provider; otherwise, the latter could

store a portion of the encoded data only and compute any missing symbols upon request

on-the-fly. Similarly, in the case of replication based storage systems, each storage node

should store a different replica; otherwise, the cloud storage provider could simply store

a single replica. As a result, the naive approach of designing a Proof of Data Reliability

scheme requires some interaction with the user, in order to repair damaged data. Hence

these designs are at odds with automatic maintenance that is a key feature of cloud storage

systems. Thus, in the adversarial setting of cloud storage systems, in addition to verifying

the availability of the original data segments, a Proof of Data Reliability scheme must also

assure that redundancy information is kept at storage instead of being computed on the

fly.

3.2 Definition of a Proof of Data Reliability Protocol

In this section, we give a formal definition of a Proof of Data Reliability protocol, inspired

by the definition proposed respectively by Chen et al. [35, 36] and Armknecht et. al [37].

3.2.1 Environment

A Proof of Data Reliability scheme is a PoS scheme and hence defines the three following

parties:

User U. User U wishes to outsource her file D to a cloud storage provider C.

Cloud storage provider C. Cloud storage provider C commits to store file D in its

entirety together with sufficient redundancy generated by its reliable data storage

mechanisms. Cloud storage provider C is considered as a potentially malicious party.

Verifier V. Verifier V interacts with cloud storage provider C in the context of a challenge-

response protocol and validates whether C is storing file D in its entirety.

Similarly to Proofs of Storage, we consider a setting where user U uploads a file D to

cloud storage provider C and thereafter, verifier V periodically queries C for some proofs

on the integrity and reliable data storage of D. In reality, user U produces a verifiable

data object D from file D that contains some additional information that will further help

for the verification of its reliable storage. If the data reliability scheme is not compatible

32

CHAPTER 3. PROOFS OF DATA RELIABILITY

with automatic maintenance, D also incorporates the required redundancy for the reliable

storage of file D. At this point, user U uploads the data object D to cloud storage provider

C and deletes both file D and data object D retaining in local storage only the key material

she used during the generation of D. In turn, cloud storage provider stores D across a set

of n storage nodes {S(j)}1≤j≤n with reliability guarantee t: some storage service guarantee

against t storage node failures.

We define a Proof of Data Reliability scheme as a protocol executed between user U and

verifier V on the one hand and cloud storage provider C with its storage nodes {S(j)}1≤j≤n
on the other hand. The aim of such a protocol is to enable the verifier V to check (i) the

integrity of D and, (ii) whether the reliability guarantee t is satisfied. Verifier V issues a

Proof of Data Reliability challenge, which refers to a subset of the data and redundancy

symbols, and send it to the cloud storage provider C. Henceforth, C generates a proof

and V checks whether this proof is well formed and accepts it or rejects it accordingly.

In order not to cancel out the storage and performance advantages of the cloud, all this

verification should be performed without V downloading the entire content associated to

D from {S(j)}1≤j≤n. We consider two different settings for a Proof of Data Reliability

scheme: a private one where U is the verifier V and a public one where V can be any third

party except C.

3.2.2 Formal Definition

Compared to PoS, a Proof of Data Reliability scheme introduces three new algorithms,

namely, Setup, GenR, and Repair. These algorithms allow for the verification of the reli-

able data storage mechanisms. In particular, algorithm Setup determines the redundancy

mechanism as well as some key parameters of the cloud storage system such that the reli-

ability guarantee t is satisfied. Algorithm GenR generates the required redundancy for the

data object D in a manner that the former can be efficiently verified. Lastly, algorithm

Repair facilitates the necessary data repair operations upon the detection of data loss or

corruption. Additionally, a Proof of Data Reliability scheme consolidates the PoS algo-

rithms KeyGen and Encode into algorithm Store which outputs the verifiable data object

D together with all the necessary keying material.

Definition 4. (Proof of Data Reliability scheme). A Proof of Data Reliability

scheme is defined by seven polynomial time algorithms:

• Setup (1λ, t) → ({S(j)}1≤j≤n, paramsystem): This algorithm takes as input the secu-

rity parameter λ and the reliability parameter t, and returns the set of storage nodes

{S(j)}1≤j≤n, the system parameters paramsystem, and the specification of the redun-

33

CHAPTER 3. PROOFS OF DATA RELIABILITY

dancy mechanism: the number of replicas or the erasure code scheme that will be

used to generate the redundancy.

• Store (1λ, D) → (Ku,Kv,D, paramD): This randomized algorithm invoked by user U

takes as input the security parameter λ and the to-be-outsourced file D, and outputs

the user key Ku, the verifier key Kv, and the verifiable data object D, which also

includes a unique identifier fid, and a set of data object parameters paramD.

• GenR (D, paramsystem, paramD) → (D̃): This algorithm takes as input the verifiable

data object D, the system parameters paramsystem, and optionally, the data object

parameters paramD, and outputs the data object D̃. Algorithm GenR may be invoked

either by user U, when the user generates the redundancy on her own; or by C,

when the redundancy computation is entirely outsourced to the cloud storage provider.

Depending on the redundancy mechanism, D̃ may comprise multiple copies of D or an

encoded version of it. Additionally, algorithm GenR generates the necessary integrity

values that will further help for the integrity verification of D̃’s redundancy.

• Chall (Kv, paramsystem)→ (chal): This stateful and probabilistic algorithm invoked by

verifier V takes as input the verifier key Kv and the system parameters paramsystem,

and outputs a challenge chal.

• Prove (chal, D̃)→ (proof): This algorithm invoked by C takes as input the challenge

chal and the data object D̃, and returns C’s proof.

• Verify (Kv, chal, proof, paramD) → (dec): This deterministic algorithm invoked by

V takes as input C’s proof corresponding to a challenge chal, the verifier key Kv,

and optionally, the data object parameters paramD, and outputs a decision dec ∈
{accept, reject} indicating a successful or failed verification of the proof, respectively.

• Repair (∗D̃, paramsystem, paramD) → (D̃,⊥): This algorithm takes as input a cor-

rupted data object ∗D̃ together with its parameters paramD and the system parame-

ters paramsystem, and either reconstructs D̃ or outputs a failure symbol ⊥. Algorithm

Repair may be invoked either by U or C depending on the Proof of Data Reliability

scheme.

Similarly to a Proof of Storage scheme, a Proof of Data Reliability scheme should be

correct and sound.

34

CHAPTER 3. PROOFS OF DATA RELIABILITY

3.2.3 Correctness

A Proof of Data Reliability scheme should be correct: if both cloud storage provider C

and verifier V are honest, then on input chal sent by the verifier V, using algorithm Chall,

algorithm Prove (invoked by C) generates a Proof of Data Reliability proof such that

algorithm Verify yields accept with probability 1.

Definition 5. (Req 0 : Correctness). A Proof of Data Reliability scheme (Setup, Store,

GenR, Chall, Prove, Verify, Repair) is correct if for all honest cloud storage providers C

and verifier V, and for all verifier keys Kv ← Store (1λ, D), all files D with file identifiers

fid and for all challenges chal← Chall (K, paramsystem):

Pr[Verify(Kv, chal, proof, paramD)→ accept | proof ← Prove(chal,D)] = 1

3.2.4 Soundness

A Proof of Data Reliability scheme is sound if it fulfills three security requirements, namely,

extractability, soundness of redundancy generation, and storage allocation commitment.

Similarly to a PoR scheme, the extractability requirement protects user U against cloud

storage provider C that does not store that data object D in its entirety. The soundness of

redundancy generation requirement ensures user U that reliable data storage mechanisms

correctly generate D’s redundancy. Finally, the storage allocation commitment require-

ment protects a user U against a cloud storage provider C that does not allocate sufficient

storage space to store the whole redundancy. We now give the formal definition for each

of the requirements.

Extractability. It is essential for any Proof of Data Reliability scheme to ensure that

an honest user U can recover her file D with high probability. This guarantee is formalized

using the notion of extractability introduced in Section 2.2.2. If cloud storage provider C

can convince an honest verifier V with high probability that it is storing the data object D
together with its respective redundancy, then there exists an extractor algorithm Extract

that given sufficient interaction with C, can extract the file D. We adapt the retrievability

game between an adversary A and an environment (c.f. Section 2.2.2) to the Proof of Data

Reliability definition. The environment simulates all honest users and an honest verifier,

and it further provides A with access to oracles OStore, OChall, and OVerify: Thereafter, we

consider the following game between the adversary and the environment:

1. A interacts with the environment and asks for an honest user U.

35

CHAPTER 3. PROOFS OF DATA RELIABILITY

2. A queries OStore providing, for each query, some file D. The oracle returns to A the

tuple (Ku,D, paramD)← OStore (1λ, D), for a given user key Ku.

3. For any data object D with file identifier fid of a file D it has previously sent to OStore,

A queries OChall to generate a random challenge (chal) ← OChall (Kv, paramsystem),

for a given verifier key Kv.

4. Upon receiving challenge chal, A generates a proof proof either by invoking algorithm

Prove or at random.

5. A queries OVerify to check the proof proof and gets the decision (dec) ← OVerify

(Kv, chal, proof, paramD), for a given verifier key Kv.

Steps 1− 5 can be arbitrarily interleaved for a polynomial number of times.

6. Finally, A picks a file D∗ that was sent to OStore together with the corresponding

user U, and outputs a simulation of a cheating cloud storage provide C′.

We say that the cheating cloud storage provider C′ is ε-admissible if the probability that

the algorithm Verify yields dec := accept is at least ε:

Pr[OVerify(Kv, chal∗, proof∗, param∗D)→ accept | proof∗ ← C′, chal∗ ← OChall(Kv, paramsystem)] > ε,

for a given verifier key Kv.

We say that the Proof of Data Reliability scheme meets the extractability guarantee,

if there exists an extractor algorithm Extract (Kv, fid∗, param∗D,C
′) → D∗ such that given

sufficient interactions with C′, it recovers D.

Definition 6. (Req 1 : Extractability). We say that a Proof of Data Reliability scheme

(Setup, Store, GenR, Chall, Prove, Verify, Repair) is ε-sound if there exists an extraction

algorithm Extract such that, for every adversary A who plays the aforementioned game and

outputs an ε-admissible cloud storage provider C′ for a file D∗, the extraction algorithm

Extract recovers D∗ from C′ with overwhelming probability.

Pr[Extract(Kv, fid∗, param∗D,C
′)→ D∗] ≤ 1− ε

where ε is a negligible function in security parameter λ.

Soundness of redundancy generation. In addition to the extractability guarantee, a

Proof of Data Reliability scheme should ensure the soundness of the redundancy generation

mechanism. This entails that, in the face of data corruption, the original file D can

36

CHAPTER 3. PROOFS OF DATA RELIABILITY

be effectively reconstructed using the generated redundancy. Hence, in Proof of Data

Reliability schemes wherein algorithm GenR is implemented by cloud storage provider C,

it is crucial to ensure that the latter performs this operation in a correct manner. Namely,

an encoded data object should either consist of actual codeword symbols or all replicas

should be genuine copies of the data object. In other words, the only way C can produce

a valid Proof of Data Reliability is by correctly generating the redundancy.

Definition 7. (Req 2 : Soundness of redundancy generation). For any adversary A,

a Proof of Data Reliability scheme guarantees the soundness of redundancy computation

if the only way A can generate a valid proof is by correctly computing the redundancy

information.

Storage allocation commitment. A crucial aspect of a Proof of Data Reliability

scheme, is forcing cloud storage provider C to store at rest the outsourced data object

D together with the relevant redundancy. This requirement is formalized similarly to the

storage allocation guarantee introduced in [37]. A cheating cloud storage provider C′ that

participates in the above mentioned extractability game (see Req 1), and dedicates only

a fraction of the storage space required for storing both D and its redundancy in their

entirety, cannot convince verifier V to accept its proof with overwhelming probability.

Definition 8. (Req 3 : Storage allocation commitment). A Proof of Data Reliability

scheme guarantees the storage allocation commitment if for any adversary A who does not

store both the data object D and its redundancy in their entirety and outputs a Proof

of Data Reliability proof, the probability that an honest verifier V accepts this proof is

negligible (in the security parameter).

3.2.5 Rational Adversary

We consider an adversary model whereby the cloud storage provider C is rational, in

the sense that C decides to cheat only if it achieves some cost savings. For a Proof

of Data Reliability scheme that deals with the storage of data and its redundancy, a

rational adversary would try to save some storage space without increasing its overall

operational cost. The overall operational cost is restricted to the maximum number n of

storage nodes {S(j)}1≤j≤n whereby each of them has a bounded capacity of storage and

computational resources. More specifically, assume that for some Proof of Data Reliability

scheme there exists an attack which allows C to produce a valid Proof of Data Reliability

while not fulfilling the reliability guarantee t. If in order to mount this attack, C has

to provision either more storage resources or excessive computational resources compared

37

CHAPTER 3. PROOFS OF DATA RELIABILITY

to the resources required when it implements the protocol in a correct manner, then a

rational C will choose not to launch this attack.

Why we do not consider a malicious adversary. A malicious adversary is one

that may dedicate arbitrary large resources in order to deviate from the correct protocol

execution. Its goal is to store the outsourced data object D only, without the required

redundancy, and invoke algorithm GenR when needed in order to convince verifier V with

high probability that the o produce a valid Proof of Data Reliability while not fulfilling the

reliability guarantee t is fulfilled. Besides, if we require that user U generates the required

redundancy and further encrypts D in order to hide the relationship between data and

redundancy symbols – akin to a PoR scheme – a Proof of Data Reliability scheme can be

secure against a malicious adversary however, it is no longer compatible with automatic

maintenance.

3.3 State of the Art on Proofs of Data Reliability

In this section, we summarize Proof of Data Reliability solutions that provide mechanisms

to enable the verification of reliable data storage.

Replication-based Proofs of Data Reliability. Curtmola et al. proposed a multi-

replica Proof of Data Possession protocol (MR-PDP) [38], a Proof of Data Reliability

scheme where a client outsources to an untrusted cloud storage provider t distinct replicas

of a file, each of which can be used for the recovery of the original file. To force the cloud

storage provider to store all t replicas in their entirety, each replica is masked with some

randomness generated by a pseudo-random function (PRF). Hence each replica is unique

and differentiable from the others. The scheme makes use of a modified version of the

RSA-based homomorphic verification tags proposed by Ateniese et al. [8] so that a single

set of tags –generated for the original file– can be used to verify any of the t replicas of

that file. This solution suffers from the weakness that the verifier cannot discern whether

a proof generated by the cloud storage provider was computed using the actual replica the

challenge was issued for or not.

Barsoum et al. [39] proposed a multi-replica PDP scheme for static files. The user

generates t replicas of a file by encrypting it using t different encryption keys and then

generates one aggregated homomorphic verification tag for all the replica symbols that

share the same index. The verifier issues to a PDP challenge for a random subset of the

replicas’ symbols and the cloud storage provider generates a proof which shows that all t

replicas a correctly stored. This solution suffers from the weakness that multi-replica is not

38

CHAPTER 3. PROOFS OF DATA RELIABILITY

necessarily equivalent to multi-storage node: indeed a single storage node may keep all the

replicas, and thus not fulfilling the reliability guarantee t. Later on, Barsoum et al. [40,41]

propose a multi-replica dynamic PDP scheme that enables clients to update/insert/delete

selected data blocks and to verify the integrity of multiple replicas of their outsourced

files. In addition to the creation of the replicas and the generation of the homomorphic

verification tag as in [39], the user constructs a Merkle hash tree for each replica and

subsequently the roots of the t Merkle hash trees are used to construct another Merkle

hash tree called the directory. The user uploads to the cloud storage provider the t replicas

together with the homomorphic verification tags and the Merkle hash trees and keeps in

local storage the root of the directory tree and the keying material. The verification of

storage is similar to the one in [39] with the addition of the use of the Merkle hash trees

to verify that the proof is computes over the updated data.

Etemad et al. [42] proposed a dynamic Proof of Data Possession (DR-DPDP) scheme

that supports transparent distribution and replication in cloud storage systems. This

scheme extends the dynamic PDP scheme proposed by Erway et al. [18] which makes use

of rank-based authenticated skip list: a data structure that enables efficient insertions and

deletions of data segments by the user, while being able to verify updates. The scheme

introduces a new entity, namely, the organizer: a gateway of the cloud storage provider

that is responsible for all communication with the client and the storage nodes. The user

processes the file she wishes to outsource as in [18] and sends it to the organizer. In turn,

the organizer divides the file and its corresponding skip list into partitions each one with

its own rank-based authenticated skip list and distributes each the partitions to an agreed-

upon number of storage nodes. Each server stores the blocks, builds the corresponding part

of the rank-based authenticated skip list, and sends the root value back to the organizer

who constructs its own part of the rank-based authenticated skip list and sends the root

to the client. This solution also suffers from the weakness that the verifier has no way of

distinguishing whether the file is stored on a single node or multiple storage nodes due to

the presence of the organizer. The verifier is only ensured that at least one working copy

of the file is present.

Chen et al. [35, 36], elaborate on the idea of MR-PDP and propose two Proof of data

reliability schemes that enable server-side repair operations. The user prepares t replicas

each one comprising a masked version of the outsourced file and its own set of RSA-based

homomorphic verification tags. Both schemes make use of a tunable masking mechanism

in order to produce distinct replicas. In the first scheme, each symbol of the file is masked

with a random value generated by η evaluation of a pseudo-random function (PRF), where

η depends on the computational capacity of the cloud storage provider. The second scheme

39

CHAPTER 3. PROOFS OF DATA RELIABILITY

constructs each replica by putting the outsourced file through a butterfly network [43]: a

cryptographic transformation that results in each symbol of the replica depending on a

large set of symbols of the original file. In order to verify that the cloud storage provider

correctly stores all replicas, the verifier sends a challenge for all t of them. When the

verifier detects a corrupted replica, it acts as a repair coordinator and instructs the cloud

storage provider to recover the original file by removing the masking from one of the

healthy replicas and thereafter constructing a new one. Leontiadis et al. [44] extend the

scheme in [36] in order to propose a Proof of Data Reliability scheme that is compatible

with file-level deduplication. The scheme enable the cloud storage provider to keep a

single copy of a file’s replicas uploaded by different users however it does not allow the

deduplication of the homomorphic verification tags.

Armknecht et. al [37] propose a multi-replica Proof of Retrievability scheme that

delegates the replica construction to the cloud storage provider. Similarly to [35], the

replicas are masked: the scheme uses tunable multiplicative homomorphic puzzles and

linear feedback shift registers to build a replication mechanism that requires the cloud

storage provider to dedicate significant computational resources in order to produce a

replica. This way the verifier is able to detect a cheating cloud storage provider who does

not store all replicas at rest and attempts to reconstruct the missing replicas on-the-fly.

Erasure-code-based Proofs of Data Reliability. Bowers et al. [45] propose HAIL:

a availability and integrity layer for distributed cloud storage. HAIL uses pseudo-random

functions, error-correcting codes, and universal hash functions to construct an integrity-

protected error-correcting code that produces parity symbols which are at the same time

verification tags of the underlying data segment. HAIL disperses the n symbols of a

codeword across n storage nodes and it further applies a second layer of error-correcting

code over the symbols of each storage node. This code protects against the low-level

corruption of file blocks that may occur when integrity checks fail. Before uploading a file

the user divides it into equally-sized segments and apply the two layers of error-correcting

codes. In HAIL time is divided to epochs during which the adversary can corrupt some

storage nodes (less than the maximum number of symbols the code can repair). At the

end of each epoch, the verifier issues a challenge involving a random subset of the encoded

segments. Upon the detection of data corruption in a storage node the verifier retrieves

the necessary data and parity symbols from the remaining healthy storage nodes and

reconstructs the content of the failed storage node. Later on, Chen et al. [46] redesign parts

of HAIL in order to achieve a more efficient repair phase that shifts the bulk computations

to the cloud side. The new scheme uses an erasure code with generator matrix G which

remains secret from the cloud storage provider. At the end of each epoch, if data corruption

40

CHAPTER 3. PROOFS OF DATA RELIABILITY

is detected one healthy storage node is assigned with the task to reconstruct the lost

symbols. More precisely, the verifier derives a set of intermediate coefficients from the

generator matrix G which subsequently masks using an algebraic function and sends them

to the storage node that will perform the repair operation. Thanks to the algebraic

properties of both the erasure code and the masking function, the storage node is able to

reconstruct the corrupted symbols without the knowledge of the generator matrix G.

In [47], Chen et al. present a Proof of Data Reliability scheme that relies on network

coding. Compared to erasure codes, network codes offer optimally minimum communi-

cation cost during the reconstruction of lost symbols at the cost of not exact repair: the

new symbols are functionally equivalent but not the same as the lost ones. The user di-

vides the to-be-outsourced file into equally-sized segments and encodes it. Thereafter the

user computes two types of verification tags: one linearly-homomorphic “challenge” tag

for each symbol in a segment that is used for the integrity verification of the file; and on

“repair” tag for each segment that indicates the symbols of the original file the segment

depends on. The scheme adopts the adversary model of [45] where the adversary corrupts

a number of storage nodes within an epoch, at the end of which the verifier computes

new symbols in the place of the corrupted ones. The work in [48] extends the scheme

in [47] by leveraging a more efficient homomorphic tag scheme called SpaceMac [49] and a

customized encryption scheme that exploits random linear combinations. These changes

reduce the computation cost of the repair mechanism for the client and make possible the

verification of the data integrity by a third party auditor. Based on the introduction of

this new entity, the authors in [50] design a network-coding-based PoR scheme in which

the repair mechanism is executed between the cloud provider and the third party auditor

without any interaction with the user.

Bowers et al. [51] propose RAFT, an erasure-code-based protocol that can be seen as a

proof of fault tolerance. RAFT relies on technical characteristics of rotational hard drives

in order to construct a time-based challenge: specifically, RAFT relies on the fact that

the time required for n parallel reeds from n rotational hard drives is significantly less

from the time required for the same number of reads – some of which become sequential

in this case – from less than n drives. The scheme defines a mapping between encoded

symbols and the storage devices that is used by the verifier to issue a challenge comprising

l ≥ n − t parallel symbol access from l distinct storage devices. This way, the verifier

can detect whether users’ encoded data are stored at multiple hard drives within the

same data center in such a manner that they can be recovered in the face of t hard drive

failures. The symbols composing the proof are not aggregated likewise in a typical PoS

scheme hence, RAFT incurs high bandwidth consumption for the reliable data storage

41

CHAPTER 3. PROOFS OF DATA RELIABILITY

verification. Moreover, the basic RAFT protocol presented [51] requires that the verifier

keeps a local copy of the outsourced file in order to determine whether a proof is valid or

not. Besides, one can devise a more sophisticated RAFT scheme that relies on verification

tags and therefore does not require a local copy of the data at the verifier.

3.3.1 Conclusions on the State of the Art

From the review of existing work, we are able to draw some conclusions that guide our

own research in the field of Proofs of Data Reliability.

• Most of the proof of data reliability schemes presented above share a common system

model where the user generates locally the required redundancy, before uploading it

together with the data to the cloud storage provider. Furthermore, when corruption

is detected, the cloud cannot repair it autonomously, because either it expects some

input from another entity or all computations are performed by the user.

• Proof of Data Reliability schemes that allow for automatic [37,51] or“semi-automatic”

maintenance by the cloud storage provider [36,44] set a time threshold Tthr in order

to decide whether to accept or reject a proof produced by cloud storage provider C.

This time threshold is defined as a function of C’s computational capacity.

• There exists no solution for an erasure-code-based Proof of Data Reliability scheme

that allows for automatic maintenance by cloud storage provider. Even though the

scheme in [51] enables the cloud storage provider to autonomously repair corrupted

codeword symbols, its adversarial model does not guarantee the extractability of an

outsourced file.

In Chapters 4 and 5 we propose two Proof of Data Reliability schemes that succeed in

verifying reliable data storage mechanisms and at the same time enable the cloud storage

provider to autonomously perform automatic maintenance operations.

42

Chapter 4

POROS: Proof of Data Reliability

for Outsourced Storage

In this chapter, we propose POROS, a Proof of Data Reliability scheme, that on the one

hand, enables a client to efficiently verify the correct storage of her outsourced data and its

reliable data storage, and on the other hand, allows the cloud to perform automatic main-

tenance operations. We analyze the security of POROS both theoretically and through

experiments measuring the time difference between an honest cloud and some malicious

adversaries. Finally, we propose an extended version of POROS where clients can run

multiple instances of the challenge-response protocol in order to increase their trust in the

storage service.

4.1 Introduction of POROS

Our goal is to enable a cloud storage system to provide data reliability guarantees without

disrupting its automatic maintenance operations, in spite of the conflict between the latter

and Proof of Storage schemes that were described in Section 2.5.1. The root cause of this

conflict is the simple fact that the redundancy information is a function of the original

data itself: automatic maintenance mechanisms require that the cloud storage system

has unobstructed access to redundancy in order to repair corrupted data; unfortunately,

as already discussed in Section 2.5.1, this presents a malicious cloud storage provider C

the opportunity to gain storage savings by actually not storing the redundancy whilst

it positively meets the Proof of Data Reliability criteria (c.f. Section 3.2). Hence, a

new approach that treats redundancy separately from the original data, and aims at

ensuring users that the redundancy is actually kept in storage, seems to be the right way

to resolve this conflict. Such assurance renders harmless the disclosure of the relationship

43

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

Figure 4.1: Overview of POROS outsourcing process: (a) The user U computes the linearly-
homomorphic tags for the original data symbols; (b) U outsources the data object D to cloud
storage provider C; (c) Using G, C applies the systematic erasure code on both data symbols and
their tags yielding the redundancy symbols and their corresponding tags; thereafter, C permute all
redundancy symbols and derives the redundancy object R̃.

between original data and redundancy to the cloud storage provider C, thus, allowing

for effective automatic maintenance operations without user interaction. Furthermore,

the use of reliable data storage mechanisms by C also facilitates the outsourcing of the

computation of redundancy information: C is the party that invokes algorithm GenR. As

a result, the outsourcing phase of our Proof of Data Reliability scheme becomes lighter

for users since they no longer have to perform this operation. However, a new security

concern arises as users now require some means to verify the correct computation of the

redundancy information (c.f. Req 2 in Section 3.2.4) by this untrusted C.

With respect to the integrity verification of the original data (c.f. Req 1 in Sec-

tion 3.2.4), our scheme leverages the linearly-homomorphic tags used in the Private Com-

pact PoR scheme proposed by Shacham and Waters (c.f. Section 2.4.1) in order to con-

struct a Proof of Data Possession (PDP) scheme which ensures the eventual detection of

any attempt by a malicious cloud storage provider C to tamper with the outsourced data.

As depicted in Figure 4.1(a), prior to uploading their data to the cloud storage system,

users compute a set of linearly-homomorphic tags that afterwards are used by C to prove

the storage of original data.

After receiving the data object D comprising users’ original data and its associated tags

(see Figure 4.1(b)), the cloud storage provider C invokes algorithm GenR which generates

44

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

D’s redundancy based on the reliable data storage mechanism. In order to facilitate the

separate handling of original data and redundancy information we opt for a systematic

linear code that allows for a clear delimitation between the two: thereby, redundancy

symbols are a linear combination of D’s symbols and the latter remain unaltered by the

application of the erasure code hence D’s integrity verification –through the use of the PDP

scheme– is not affected. Concerning the integrity verification of redundancy symbols, our

scheme also leverages the PDP protocol used for data object D and hence provides users

with both guarantees. More precisely, as with the symbols of data object D, algorithm

GenR applies the same systematic linear code to the associated tags, yielding a new set

of tags that are linear combinations of D’s tags. Assuming that the tags of our PDP

scheme are homomorphic with respect to the systematic linear code used by the reliable

data storage mechanism, the tags resulting from this computation turn out to be PDP

tags associated with redundancy symbols. In other words, the linear combination of the

tags associated with original data can be used to verify both the correct computation and

the integrity of redundancy symbols that are themselves the same linear combination of

original data symbols. Figure 4.1(c) depicts the application of the systematic erasure code

on both the data object D and its redundancy.

Thanks to the homomorphism of the underlying tag scheme at the core of our PDP

protocol and to the systematic linear code, the cloud storage provider C does not need

any keying material owned by the users in order to compute the tags for the redundancy

information. Furthermore, users are able to perform PDP verification on redundancy

information using these new tags. Any misconduct by C regarding either the integrity of

redundancy symbols or their proper generation will be eventually detected by the PDP

verification since the malicious C cannot forge the computed tags.

The scheme described so far suffers from a limitation in that, the malicious cloud

storage provider C can take advantage of its capability to independently compute both

redundancy information and the corresponding tags, paving the way for C to fool the Proof

of Data Reliability verification by computing in real time the responses to PDP checks on

redundancy symbols (c.f. Req 3 in Section 3.2.4). The last feature of our scheme thus is

a countermeasure to this kind of attacks. This countermeasure relies on timing features

of rotational hard drives that are a common component of cloud storage infrastructures.

Due to their technical characteristics, such drives achieve much higher throughput during

execution of sequential disk access compared to random disk access. The latter results in

the execution of multiple expensive seek operations in order for the disk head to reach the

different locations on the drive. In order to leverage this performance variation between

the two disk access operations, we require that redundancy information is stored in a

45

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

tailored format with the property of augmenting the random disk access operations of a

misbehaving cloud storage provider C. Hence, we are able to introduce a time-threshold

Tthr, such that whenever C receives a Proof of Data Reliability challenge, it is compelled

to generate and deliver the proof before the time-threshold Tthr is exceeded; otherwise the

proof is rejected.

More precisely, our storage model assumes that all redundancy symbols of a given

data object D is handled as a separate object R (see Figure 4.1(c)). Similarly to the

permutation-based hourglass scheme in [43], the cloud storage provider C uses a pseudo-

random permutation PRP to permute the symbols that compose R and, stores the result

on a single storage node without fragmentation. Disk access operations are done at the

granularity of file system blocks1. Hence, the resulting redundancy object R̃ is going to

be stored in n contiguous file system blocks, each comprising m symbols. Notice that

the newly obtained R̃ does not prevent the cloud storage provider C from performing

automatic maintenance operations since the redundancy object R can be extracted from

R̃ given the inverse permutation PRP−1.

A user U can challenge C to prove that it stores R̃ at rest by requesting l consecutive

redundancy symbols starting from a randomly chosen position in R̃. Assuming a random

permutation PRP that uniformly distributes the symbols of the redundancy object R over

the file system blocks occupied by R̃, a compliant cloud storage provider C has to perform

one seek operation and then access dl/me file system blocks sequentially. On the contrary,

a malicious C that does not store R̃ will have difficulty to respond to the challenge in a

timely manner, as it has to perform up to l seek operations on the storage nodes that

store the original data object D in order to access the file system blocks that contain the

data symbols corresponding to each of the l requested redundancy symbol, transmit these

symbols over its internal network and, apply the erasure code up to l times in order to

generate all the requested redundancy symbols.

The time-threshold Tthr is thus defined as a function of time Th that an honest cloud

storage provider C takes to generate the Proof of Reliability and, time Tm being the

response time of a malicious C who does not store R̃ and thus generates the proof by

first recomputing the redundancy the requested redundancy symbols. Preferably, time

threshold Tthr should satisfy the inequality Th < Tthr � Tm, implying that the time required

for the proof generation is much shorter than the time needed to compute the redundancy.

Organization. The rest of this chapter is organized as follows. In Section 4.2, we

provide the specification of POROS. We analyze its security in section Section 4.3, and in

1Typically the block size in current file systems is 4 KB.

46

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

Section 4.4 we describe an extended version of our protocol that allows users to challenge

the cloud storage provider multiple times while preventing the latter to parallelize its

responses.

4.2 POROS

In this section, we introduce a new Proof of Data Reliability solution named POROS. We

first present its main building blocks and further provide a complete description of the

scheme.

4.2.1 Building Blocks

POROS relies on the following building blocks.

MDS codes. Maximum distance separable (MDS) codes [12, 52] are a class of linear

block erasure codes used in reliable storage systems that achieve the highest error-

correcting capabilities for the amount of storage space dedicated to redundancy. A

[n, k]–MDS code encodes a data segment of size k symbols into a codeword compris-

ing n code symbols. The input data symbols and the corresponding code symbols

are elements of Zp, where p is a large prime and k ≤ n ≤ p. In the event of data

corruption, the original data segment can be reconstructed from any set of k code

symbols. Furthermore, up to n− k+ 1 corrupted symbols can be repaired. The new

code symbols can either be identical to the lost ones, in which case we have exact

repair, or can be functionally equivalent, in which case we have functional repair

where the original code properties are preserved.

A systematic linear MDS-code has a generator matrix of the form G = [Ik | P] and

a parity check matrix of the form H = [−P> | In−k], where I denoted the identity

matrix. Hence, in a systematic code, the code symbols of a codeword include the

data symbols of the original segment. Reed-Solomon codes [12] are a typical example

of MDS codes, their generator matrix G can be easily defined for any given values

of (k, n), and are used by a number of storage systems [53].

Linearly–homomorphic tags. POROS’s integrity guarantee (c.f. Req 1 in Section 3.2.4)

derives from the use of the linearly-homomorphic tags proposed by Shacham and Wa-

ters, for the design of the Private Compact PoR scheme (c.f. Section 2.4.1). This

scheme makes use of a pseudo-random function PRF : {0, 1}λ × {0, 1}∗ → Zp, where

λ is the security parameter.

47

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

Here, we present the Proof of Data Possession verification for the codeword symbols

of an [n, k]–MDS code with generator matrix G = [Ik | P]. The codeword has the

form
(
d(1), . . . , d(k) | r(k+1), . . . , r(n)

)
, where d(j) (for 1 ≤ j ≤ k), denote the original

data symbols and r(j) (for k + 1 ≤ j ≤ n), denote the corresponding redundancy

symbols. The user U first chooses a random α ∈ Zp and a key kprf for function PRF.

The tuple (α, kprf) serves as the user’s secret key. She then calculates a tag for each

data symbol of the segment as follows:

σ(j) := αd(j) + PRF(kprf , j) ∈ Zq, for 1 ≤ j ≤ k.

Thereafter, the symbols {d(j)}1≤j≤k together with their tags {σ(j)}1≤j≤k are up-

loaded to the cloud storage provider C. The verifier V picks l random elements

νc ∈ Zq and l random symbol indices jc, and sends to C the challenge chal :={
(jc, νc)

}
1≤c≤l. The cloud storage provider C then calculates its proof proof = (µ, τ)

as follows:

µ :=
∑

(jc,νc)∈chal

νc d
(jc) , τ :=

∑
(jc,νc)∈chal

νc σ
(jc).

The verifier V checks that the following equation holds:

τ
?
= αµ+

∑
(jc,νc)∈chal

νc PRF(kprf , jc).

As regards to the verification of the redundancy symbols, we observe that r(j) :=

d ·G(j), where vector d :=
(
d(1), . . . , d(k)

)
denotes the vector of data symbols and

G(j) denotes the jth column of generator matrix G, for k + 1 ≤ j ≤ n. Hence,

algorithm GenR computes the corresponding redundancy tags as: ψ(j) := σ ·G(j).

The cloud storage provider C calculates its response proof = (µ̃, τ̃), the challenge

chal :=
{

(jc, νc)
}
1≤c≤l as follows:

µ̃ :=
∑

(jc,νc)∈chal

νc r
(jc) , τ̃ :=

∑
(jc,νc)∈chal

νc ψ
(jc).

Finally, the verifier V checks that the following equation holds:

τ̃
?
= αµ̃+

∑
(jc,νc)∈chal

νc prf
i
(j)
c
·G(j).

48

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

where prf
i
(j)
c

:=
(
PRF(kprf , 1), . . . ,PRF(kprf , k)

)
is the vector of PRFs for the code-

word data symbols
(
d(1), . . . , d(k)

)
.

Pseudo-random permutation PRP. POROS uses a pseudo-random permutation (c.f.

Section 2.2) in order to permute the redundancy symbols and construct the redun-

dancy object R̃.

Rotational hard drives. POROS leverages the technical characteristics of rotational

hard derives to force the rational cloud storage provider C to store the redundancy

object R̃. More specifically, it takes advantage of the difference in throughput such

drives achieve during the execution of sequential disk access compared to random

disk access in order to devise a time-constrained challenge and detect a cheating

cloud storage provider that does not store the redundancy object R̃ (c.f. Req 3 in

Section 3.2.4).

4.2.2 POROS Description

POROS is a symmetric Proof of Data Reliability scheme: user U is the verifier V. Thereby,

only the user key Ku is required for the creation of the data object D, the generation of

the Proof of Data Reliability challenge, and the verification of C’s proof.

We now describe in detail the algorithms on POROS.

• Setup (1λ, t) → (
{
{S(j)}1≤j≤k,SR

}
, paramsystem): Algorithm Setup first picks a

prime number p, whose size is chosen according to the security parameter λ. After-

wards, given the reliability parameter t, algorithm Setup yields the generator matrix

G = [Ik | P] of a systematic linear [n, k]–MDS code in Zp, for t < k < n < p and

t ≤ n−k+1. In addition, algorithm Setup chooses k storage nodes {S(j)}1≤j≤k that

are going to store the data object D and one storage node SR that is going to store

the redundancy object R.

Algorithm Setup then terminates its execution by returning the system parameters

paramsystem := (k, n,G, p) and the storage nodes
{
{S(j)}1≤j≤k,SR

}
.

• U.Store (1λ, D, paramsystem)→ (Ku,D, paramD): On input security parameter λ, file

D ∈ {0, 1}∗ and, system parameters paramsystem, this randomized algorithm first

splits D into s segments, each composed of k data symbols. Hence D comprises

s · k symbols in total. A data symbol is an element of Zp and is denoted by d
(j)
i for

1 ≤ i ≤ s and 1 ≤ j ≤ k.

Algorithm U.Store also picks a pseudo-random function PRF : {0, 1}λ × {0, 1}∗ →
Zp, together with its pseudo-randomly generated key kprf ∈ {0, 1}λ, and a non-

49

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

Notation Description

D File to-be-outsourced

D Outsourced data object (D consists of data symbols and PDP tags)

R Redundancy object (R consists of redundancy symbols and their PDP tags)

R̃ Permuted redundancy object

S Storage node

SR Storage node that stores R̃
G Generator matrix of the [n, k]–MDS code

α, kprf Secret key used by the linearly homomorphic tags

j Codeword symbol index, 1 ≤ j ≤ n
i Data segment index, 1 ≤ i ≤ s, (D consist of s segments)

d
(j)
i Data symbol, 1 ≤ j ≤ k and 1 ≤ i ≤ s
σ

(j)
i Data symbol tag, 1 ≤ j ≤ k and 1 ≤ i ≤ s
r

(j)
i Redundancy symbol, k + 1 ≤ j ≤ n and 1 ≤ i ≤ s
ψ

(j)
i Redundancy symbol tag, k + 1 ≤ j ≤ n and 1 ≤ i ≤ s
r̃

(j)
i Permuted redundancy symbol, k + 1 ≤ j ≤ n and 1 ≤ i ≤ s
ψ̃

(j)
i Permuted redundancy symbol tag, k + 1 ≤ j ≤ n and 1 ≤ i ≤ s
l Size of the challenge

Tthr Time threshold for the proof generation

i
(j)
c Indices of challenged symbols, 1 ≤ j ≤ n and 1 ≤ c ≤ l
νc Challenge coefficients, 1 ≤ c ≤ l
µ(j) Aggregated data symbols, 1 ≤ j ≤ n
τ (j) Aggregated data tags, 1 ≤ j ≤ n
µ̃(j) Aggregated redundancy symbols, 1 ≤ j ≤ n
τ̃ (j) Aggregated redundancy tags, 1 ≤ j ≤ n
Jf Set of failed storage nodes

Jr Set of surviving storage nodes

Table 4.1: Notation used in the description of POROS.

zero element α
R← Zp. Hereafter, U.Store computes for each data symbol a linearly

homomorphic MAC as follows:

σ
(j)
i = αd

(j)
i + PRF(kprf , (i− 1)k + j) ∈ Zp.

In addition, algorithm U.Store produces a pseudo-random permutation PRP : {0, 1}λ×
[(n − k)s] → [(n − k)s], together with its pseudo-randomly generated key kprp ∈
{0, 1}λ, and a unique identifier fid.

Algorithm U.Store then terminates its execution by returning the user key

Ku :=
(
fid, (α, kprf)

)
,

50

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

the to-be-outsourced data object together with the integrity tags

D :=

{
fid; {d(j)i } 1≤j≤k

1≤i≤s
; {σ(j)i } 1≤j≤k

1≤i≤s

}
,

and the data object parameters

paramD := (PRP, kprp) .

• C.GenR (D, paramsystem, paramD)→ (R̃): Upon reception of data object D, algorithm

C.GenR starts computing the redundancy symbols {r(j)i } k+1≤j≤n
1≤i≤s

by multiplying each

segment di :=
(
d
(1)
i , . . . , d

(k)
i

)
with the generator matrix G = [Ik | P]:

di · [Ik | P] =
(
d
(1)
i , . . . , d

(k)
i | r(k+1)

i , . . . , r
(n)
i

)
.

Similarly, algorithm C.GenR multiplies the vector of linearly-homomorphic tags σi :=(
σ
(1)
i , . . . , σ

(k)
i

)
with G:

σi · [Ik | P] =
(
σ
(1)
i , . . . , σ

(k)
i | ψ(k+1)

i , . . . , ψ
(n)
i

)
.

One can easily show that {ψ(j)
i } k+1≤j≤n

1≤i≤s
are the linearly-homomorphic authenticators

of {r(j)i } k+1≤j≤n
1≤i≤s

.

Thereafter, algorithm C.GenR uses the pseudo-random permutation PRP : {0, 1}λ ×
[(n−k)s]→ [(n−k)s] and key kprp in order to permute both the redundancy symbols

{r(j)i } k+1≤j≤n
1≤i≤s

and the corresponding homomorphic-tags {ψ(j)
i } k+1≤j≤n

1≤i≤s
yielding the

redundancy object

R̃ :=

{
fid; {r̃(j)i } k+1≤j≤n

1≤i≤s
; {ψ̃(j)

i } k+1≤j≤n
1≤i≤s

}
.

More precisely, if we denote (r̃1, r̃2, . . . , r̃(n−k)s) the vector of the permuted redun-

dancy symbols {r̃(j)i } k+1≤j≤n
1≤i≤s

, then the redundancy symbol r
(j)
i is mapped to the po-

sition PRP(kprp, (i− 1)(n− k) + j) in the permuted redundancy object R. Similarly,

if we denote (ψ̃1, ψ̃2, . . . , ψ̃(n−k)s) the homomorphic tags’ vector after permutation,

then tag ψ
(j)
i is mapped to to the position PRP(kprp, (i− 1)(n− k) + j).

At this point, algorithm C.GenR terminates its execution by storing the data object D
and the redundancy object R on the storage nodes {S(j)}1≤j≤k and SR, respectively.

51

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

• U.Chall (fid,Ku, paramsystem) → (chal): Provided with the object identifier fid, the

secret key Ku, and the system parameters paramsystem, algorithm U.Chall generates

a vector ν := (νc)
l
c=1 of l random elements in Zp, generates a vector cd := (ic, jc)

l
c=1

of l random indice tuples corresponding to data symbols {d(j)i } 1≤j≤k
1≤i≤s

, and picks one

random index 1 ≤ cr ≤ (n− k)s− l. Then, algorithm U.Chall terminates by sending

C the challenge

chal :=
(
fid,
(
cd, cr, ν

))
.

• C.Prove (chal, D̃, paramD)→ (proof): On receiving challenge chal = (fid, (cd, cr, ν)),

algorithm C.Prove first retrieves the authenticated data object D and the correspond-

ing authenticated redundancy R̃ that match identifier fid.

Thereupon, algorithm C.Prove processes data object D as follows:

1. It reads the l requested blocks defined by cd. Without loss of generality, we

denote these blocks d̂ := (d̂1, d̂2, . . . , d̂l).

2. It reads the l tags associated with blocks d̂. We denote these MACs σ̂ :=

(σ̂1, σ̂2, . . . , σ̂l).

3. It computes the inner products

µ = d̂ · ν =
l∑

c=1

d̂cνc (4.1)

τ = σ̂ · ν =

l∑
c=1

σ̂cνc (4.2)

In the same manner, algorithm C.Prove processes the redundancy object R:

1. It reads l consecutive redundancy blocks starting from block r̃cr . Let r̃ denote

the l consecutive redundancy blocks (r̃cr , ..., r̃(cr+l−1)).

2. It reads the l consecutive homomorphic MACs associated with redundancy

blocks r̃. Let ψ̃ := (ψ̃cr , ..., ψ̃(cr+l−1)) denote these MACs.

3. It computes the inner products

µ̃ = r̃ · ν =
l∑

c=1

r̃(cr+c−1)νc (4.3)

τ̃ = ψ̃ · ν =
l∑

c=1

ψ̃(cr+c−1)νc (4.4)

52

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

Finally, algorithm C.Prove terminates its execution by returning the proof

proof := {(µ, τ), (µ̃, τ̃)} .

• U.Verify (Ku, chal, proof, paramD) → (dec): On input of user key Ku = (α, kprf),

challenge chal = (fid, (id, ir, ν)), proof proof := {(µ, τ), (µ̃, τ̃)}, and data object

parameters paramD algorithm U.Verify performs the following checks:

◦ Response time verification: It first checks whether the response time of the server

was under time threshold Tthr. If not algorithm U.Verify outputs reject; otherwise

it executes the next step.

◦ Data possession verification: Given vector ν = (ν1, ..., νl) and vector cd :=

(ic, jc)
l
c=1 algorithm U.Verify verifies whether

τ = αµ+

l∑
c=1

νcPRF(kprf , (ic − 1)k + jc) (4.5)

If it is not the case, algorithm U.Verify returns reject; otherwise it moves onto

verifying the integrity of the redundancy.

◦ Redundancy possession verification: Algorithm U.Verify uses the pseudo-random

permutation PRP and key kprp, and then for all 1 ≤ c ≤ l it computes the shuffling

function preimage (xc, yc) = PRP−1(kprp, cr + c− 1). Finally, having matrix P =

[P1 | P2 | . . . | P(n−k)], algorithm U.Verify checks whether the following equation

holds:

τ̃ = αµ̃+
l∑

c=1

νcP
yc · prf(xc) (4.6)

wherein for all 1 ≤ c ≤ l:

prf(xc) = (PRF(kprf , (xc − 1)k + 1), . . . ,PRF(kprf , xck))

If so, algorithm U.Verify outputs accept; otherwise it returns reject.

• C.Repair (∗D, Jf , paramsystem, paramD,maskGen) → (D,⊥): On input of a corrupted

data object ∗D and a set of failed storage node indices Jf ⊆ [1, k], algorithm C.Repair

first checks if |J | > n−k+1, i.e., the lost symbols cannot be reconstructed due to an

insufficient number of remaining storage nodes {S(j)}1≤j≤k.In this case, algorithm

C.Repair terminates outputting ⊥; otherwise, it uses the surviving storage nodes

53

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

{S(j)}j∈Jr , where Jr ⊆ [1, k] \ Jf , the redundancy object R̃, the pseudo-random

permutation PRP−1 and the parity check matrix H = [−P> | In−k] to reconstruct

the original data object D.

4.3 Security Evaluation

In this section, we show that POROS is correct and sound.

4.3.1 Correctness

We now show that verification Equations 4.5 and 4.6 always hold when algorithm C.Prove

is executed correctly. Subsequently we argue that if time threshold Tthr is correctly tuned

then the probability of wrongly accusing C of misbehavior is close to none.

Upon invocation, algorithm C.Prove first reads l data symbols d̂ = (d̂1, d̂2, . . . , d̂l) and

their corresponding tags σ̂ = (σ̂1, σ̂2, . . . , σ̂l), whereby d̂1 is the data symbol d
(j1)
i1

specified

by the index tuple cd1 = (i1, j1). By the definition of linearly-homomorphic tags σ̂c, the

following equality ensues:

σ̂c = αd̂c + PRF(kprf , (ic − 1)k + jc), ∀ 1 ≤ c ≤ l (4.7)

Moreover, algorithm C.Prove reads l consecutive redundancy symbols r̃ = (r̃cr , . . . ,

r̃(cr+l−1)) together with their corresponding MACs ψ̃ = (ψ̃cr , . . . , ψ̃(cr+l−1)). Note that for

all 1 ≤ c ≤ l redundancy symbol r̃cr+c−1 corresponds to redundancy symbol ryc(xc) =

Pyc · d(xc) and MAC ψ̃cr+c−1 corresponds to ψ
(xc)
yc = Pyc · σ(xc) whereby (xc, yc) =

PRP−1(kprf , cr + c− 1) and Pyc is the yc
th column of the linear code matrix P. Therefore,

the following equality always holds.

ψ̃cr+c−1 = Pyc · (αd(xc) + prf(xc)) = αr̃cr+c−1 + Pyc · prf(xc) (4.8)

Where prf(xc) = (PRF(kprf , (xc − 1)k + 1), . . . ,PRF(kprf , xck)).

Finally, algorithm C.Prove finishes its execution by computing four inner products.

These inner products are computed as follows:

µ = d̂ · ν ; τ = σ̂ · ν

µ̃ = r̃ · ν ; τ̃ = ψ̃ · ν

Where ν = (ν1, ν2, . . . , νl) is the random vector generated by the client and transmitted

in the challenge message chal.

54

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

By plugging Equations 4.7 and 4.8 in the inner products, we derive the following

equalities:

τ = αd̂+

l∑
c=1

νcPRF(kprf , (ic − 1)k + jc))

τ̃ = αr̃ +
l∑

c=1

νcP
yc · prf(xc)

We can easily see that the above equations are the same as Equations 4.5 and 4.6.

This means that if the cloud server executes algorithm C.Prove correctly, then it will pass

the verification so long as its response time is smaller than time threshold Tthr.

4.3.2 Soundness

Req 1 : Extractability. We now show that POROS ensures, with high probability, the

recovery of an outsourced file D. To begin with, we observe that algorithms C.Prove and

U.Verify can be seen as a parallelized version of the algorithms SW.Prove and SW.Verify of

the Private Compact PoR (c.f. Section 2.4.1) executed over both the data object D and

and the redundancy object R. More precisely, we assume that the MDS–code parameters

[n, k] outputted by algorithm Setup fulfills the requirements of the Proof of Retrievability

model (c.f. Section 2.2), in addition to the reliability guarantee t.

We argue that given a sufficient number of interactions with an ε-admissible cheating

cloud storage provider C′, algorithm Extract eventually gathers linear combinations of at

least ρ code symbols for each segment of data object D, where k ≤ ρ ≤ n. These linear

combinations are of the form

µ = d̂ · ν =

l∑
c=1

d̂cνc

r̃ = r̃ · ν =
l∑

c=1

r̃(cr+c−1)νc

for known coefficients (νc)
l
c=1 and known indices cr and c.

Hereby, the extractability arguments given in [10] can be applied to the aggregated

output of algorithms C.Prove and U.Verify. In particular, given that C′ succeeds in making

algorithm U.Verify yield dec := accept in an ε fraction of the interactions, the pseudo-

random permutation PRP uniformly distributes the redundancy symbols in object R̃, and

the indices cd and cr of the challenge chosen at random, then algorithm Extract has at

its disposal at least ρ − ε > k correct code symbols for each segment of data object D.

55

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

Therefore, algorithm Extract is able to reconstruct the data object D using the parity

check matrix H = [−P> | In−k].

Req 2 : Soundness of redundancy computation. From the definition of linearly-

homomorphic tags (c.f. Section 2.4.1.1), if the underlying pseudo-random function PRF is

secure, then no other party –except for user U who owns the signing key– can can produce

a valid tag σi for a data symbol di, for which it has not been provided with a tag yet.

Therefore, no cheating cloud storage provider C′ will cause a verifier V to accept in a Proof

of Data Reliability instance, except by responding with values

µ̃ = r̃ · ν =

l∑
c=1

r̃(cr+c−1)νc (4.9)

τ̃ = ψ̃ · ν =
l∑

c=1

ψ̃(cr+c−1)νc (4.10)

that are computed correctly: i.e., by computing the pair (µ̃, τ̃) using values r̃(cr+c−1) and

ψ̃(cr+c−1) which are the output of algorithm C.GenR.

Req 3 : Storage allocation commitment. Similarly to [43], storage allocation com-

mitment is met as long as Tthr � Tm, where Tm = min(Tm1 , Tm2) is the response time of a

malicious C where Tm is defined as the minimum of the following values:

• Tm1 : the response time of a malicious C who stores the redundancy information in

its original order (i.e. without permutation).

Tm1 = lTSeek + lTSeqRead(1)

• Tm2 : the response time of a malicious C who stores the data object D, only.

Tm2 = lTSeek + lTSeqRead(k) + lTEncode

In the above equations, l is the number of sequential redundancy blocks r̃ requested

in a POROS challenge, TSeek is the time required for a seek operation on the hard drive,

TSeqRead(n) is the required time to read n data blocks sequentially from the hard disk,

TEncode is the time required to apply the erasure code defined by the generator matrix G

over a data chunk and, k the number of blocks that comprise a data chunk. Intuitively,

Tm1 should be less than Tm2 .

56

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

Moreover, in order to take into account the variations in RTT, the time threshold Tthr

should also satisfy the following condition: Tthr > RTTmax + Th, wherein RTTmax is the

worst-case RTT and Th = TSeek + TSeqRead(l) is the response time of an honest C.

Fortunately, by carefully tuning parameter l, we can make sure that time-threshold Tthr

satisfies both conditions: This is achieved actually by picking a value for l that guarantees

that RTTmax � Tm − Th. This makes the scheme robust against false positives.

To conclude Req 3 is met as long as the time threshold Tthr (and therewith l) is tuned

such that it fulfills

TSeek + TSeqRead(l) ≤ Tthr < lTSeek + lTSeqRead(1)

Section 4.3.3 provides some hints on the order of Tthr through an experimental study.

4.3.3 Evaluation

We have performed an experimental evaluation of POROS’ C.Prove algorithm in order to

assess the time-constrained proof generation at C. We would like to measure the time

that an honest C would take to generate a legitimate proof and compare it with the time

a malicious C take to compute its proof. We implemented our prototype in Python and

we modified the zfec library2 in order to compute the generation matrix G and apply the

erasure code to some test files. All measurements were performed on a local machine with

the following characteristics: i5-3470 64 bit processor with 4 cores running at 3.20 GHz,

32GB of RAM at 1600 MHz and, two 320GB HDD at 7200 rpm with a SATA-III 6 Gbps

interface. The operating system was Ubuntu Server 14.04.5 LTS with Ext4 as file system

and a file system block size of 4 KB. We also measured the sequential throughput of our

machine at 131.1 MB per second3.

We consider two types of adversaries that deviate from the protocol in different ways.

The cloud is required to read l consecutive redundancy symbols from the redundancy

object R̃ in the order defined by the permutation PRP and return them to the verifier.

Adversary A1, stores the original redundancy object R in its original order.

• A1 attempts to elude detection by seeking on the hard disk the requested redundancy

symbols in order to produce the response.

• A2, does not store any redundancy information at rest: A2 seeks and retrieves the

required data chunks di in order to compute the corresponding redundancy chunks

2https://pypi.python.org/pypi/zfec
3We used bonnie++ to benchmark the performance of the hard drive and file system of our machine.

https://www.coker.com.au/bonnie++/

57

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

Figure 4.2: Response times of adversaries A1 and A2 for different challenge sizes l; data object
size of 4GB (left) vs. 16GB (right).

Challenge size l 32 64 128 256 512

D (4GB) 21.315 ms 21.159 ms 21.363 ms 20.962 ms 21.825 ms

D (16GB) 26.752 ms 26.479 ms 28.117 ms 27.566 ms 29.234 ms

Table 4.2: Response times of an honest CSP for deferent challenge sizes l.

ri and then composes the response according to permutation PRP.

For each type of adversary, we also consider another strategy whereby the new adver-

sary A′i can take advantage of the available RAM. Hence:

• A′1 will load the original redundancy object R̃ within the RAM and subsequently

compose her response according to PRP.

• A′2 will load the whole data object D to the RAM to further compute the R̃ and

respond with the required symbols.

Finally, we assume that both adversaries choose the strategy that results in the shortest

response time for each challenge they receive.

The results presented in Figure 4.2 and Tables 4.2 and 4.3 are the median of 20 inde-

pendent measurements of the cloud response time; before each measurement we flushed

all file system caches.

Figure 4.2 depicts the response time for A1, A′1, A2 and A′1 who are expected to store

a 4GB data object (left) and a 16GB data object (right) with 12.5% redundancy (512MB

and 2GB respectively). Table 4.2 presents the response time of an honest C which stores

the same data objects. The redundancy is computed using a systematic linear [288, 256]–

MDS code that operates over 64-bit symbols yielding 32 redundancy symbols. In order to

apply the code, the 4GB data object D is divided into data chunks di of size 2KB each.

The redundancy object R is composed of the corresponding redundancy chunks ri of 256

58

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

File size Challenge size l TA1/Th TA2/Th

32 167.51 232.19

D (4GB), R̃ (512MB) 64 180.39 546.88

128 178.66 1035.93

256 182.39 1459.14

512 174.38 1399.05

32 140.65 282.93

D (16GB), R̃ (2GB) 64 272.77 626.21

128 461.76 1218.56

256 553.84 2359.08

512 552.24 4145.43

Table 4.3: Disadvantage of adversaries A1 and A2 relative to an honest CSP.

Bytes each. All disk access operations are done at the granularity of file system block,

whose size is 4KB, therefore each block contains 512 symbols. At this point, the honest C

computes R̃ using the random permutation PRP, A1 stores R without permuting it and,

A2 discards the redundancy object.

We observe that the response time of an honest C is on the order of milliseconds

whereas the ones of all four adversaries are on the order of seconds. Due to the size of the

challenge, an honest C responds by performing one seek operation and by reading from the

hard disk one or two consecutive file system blocks. On the contrary, A1 has to perform

up to l seek operations in order to read the required redundancy chunks ri or load the

whole redundancy object R to RAM which can take significant more time. In the same

way, A2 has to perform up to l seek operations to retrieve the required data chunks di or

read the whole data object D and further apply the erasure code in order to produce the

response. Similarly to the analysis in [43], in the case of the 4GB data object, when the

size of the challenge l is larger than 32 redundancy symbols, it is faster for A1 to load the

whole R in RAM and subsequently compose the response. As regards to adversary A2,

she reaches at this point for a value of l larger than 256 symbols.

In Table 4.3 we show the ratio between the response time of a malicious adversary and

the one of a legitimate C. For example, for a 4GB file and a challenge of size 128, A1 is

178 times slower than an honest C.

To conclude, our experimental study confirms that by storing redundancy information

as a single permuted object, separately from original data, a rational C would chose to

conform to the actual POROS protocol and thus it would be forced to store redundancy

information at rest. Furthermore, our study also reveals that given the significant gap

between the response time of a malicious cloud and that of an honest one, Tthr can set to

be quite close to the lower bound defined by the time an honest C would take to compute

59

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

the POROS response for a given file.

4.4 Multiple-challenge POROS

In order to increase clients confidence in C’s good behavior, it is desirable to make C

execute multiple instances of POROS. A straightforward approach to achieve this, would

be to have the user U send multiple challenges to C. The main caveat of such a solution is

that C can run several instances of algorithm C.Prove in parallel, which renders less effective

the function that throttles the encoding throughput. To counter this issue, we could turn

to a sequential protocol whereby U would wait for C’s response to the current challenge

before transmitting the next one. While this approach forces the server to generate the

proofs iteratively, it increases the number of interactions between U and C, which in turn

comes at the expense of bandwidth and throughput.

To address these shortcomings, we propose that U initiates the protocol by sending a

single challenge termed hereafter initialization challenge. This challenge will be generated

exactly in the same way as the challenge in the basic version of POROS (cf. Section 4.2).

Subsequent challenges however will be produced as a function of the proofs to preceding

challenges. More specifically, the challenge in iteration t + 1, for instance, is computed as

a function of the proof that the cloud server generated as a response to the challenge in

iteration t. In this manner, we devise a multiple-challenge version of POROS that

(i) keeps the communication between U and C minimal (i.e. there are only two rounds

of communication);

(ii) and induces C to generate the proofs iteratively.

4.4.1 Description

Multiple-challenge POROS runs as following:

• Setup (1λ, t) → (
{
{S(j)}1≤j≤k,SR

}
, paramsystem): Algorithm Setup first picks a

prime number p, whose size is chosen according to the security parameter λ. After-

wards, given the reliability parameter t, algorithm Setup yields the generator matrix

G = [Ik | P] of a systematic linear [n, k]–MDS code in Zp, for t < k < n < p and

t ≤ n−k+1. In addition, algorithm Setup chooses k storage nodes {S(j)}1≤j≤k that

are going to store the data object D and one storage node SR that is going to store

the redundancy object R.

Algorithm Setup then terminates its execution by returning the system parameters

paramsystem := (k, n,G, p) and the storage nodes
{
{S(j)}1≤j≤k,SR

}
.

60

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

• U.Store (1λ, D, paramsystem)→ (Ku,D, paramD): On input security parameter λ, file

D ∈ {0, 1}∗ and, system parameters paramsystem, this randomized algorithm first

splits D into s segments, each composed of k data symbols. Hence D comprises

s · k symbols in total. A data symbol is an element of Zp and is denoted by d
(j)
i for

1 ≤ i ≤ s and 1 ≤ j ≤ k.

Algorithm U.Store also picks a pseudo-random function PRF : {0, 1}λ × {0, 1}∗ →
Zp, together with its pseudo-randomly generated key kprf ∈ {0, 1}λ, and a non-

zero element α
R← Zp. Hereafter, U.Store computes for each data symbol a linearly

homomorphic MAC as follows:

σ
(j)
i = αd

(j)
i + PRF(kprf , (i− 1)k + j) ∈ Zp.

In addition, algorithm U.Store produces a pseudo-random permutation PRP : {0, 1}λ×
[(n − k)s] → [(n − k)s], together with its pseudo-randomly generated key kprp ∈
{0, 1}λ. Algorithm U.Store, also picks a pseudo-random function PRFchal : Zp ×
Zp → {0, 1}λ and a pair of pseudo-random generators (PRGi : {0, 1}λ → [s]l,

PRGj : {0, 1}λ → [k]l). Finally, algorithm U.Store picks a unique identifier fid.

Algorithm U.Store then terminates its execution by returning the user key

Ku :=
(
fid, (α, kprf)

)
,

the to-be-outsourced data object together with the integrity tags

D :=

{
fid; {d(j)i } 1≤j≤k

1≤i≤s
; {σ(j)i } 1≤j≤k

1≤i≤s

}
,

and the data object parameters

paramD := ((PRP, kprp),PRFchal, (PRGi,PRGj)) .

• C.GenR (D, paramsystem, paramD)→ (R̃): Upon reception of data object D, algorithm

C.GenR starts computing the redundancy symbols {r(j)i } k+1≤j≤n
1≤i≤s

by multiplying each

segment di :=
(
d
(1)
i , . . . , d

(k)
i

)
with the generator matrix G = [Ik | P]:

di · [Ik | P] =
(
d
(1)
i , . . . , d

(k)
i | r(k+1)

i , . . . , r
(n)
i

)
.

Similarly, algorithm C.GenR multiplies the vector of linearly-homomorphic tags σi :=

61

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

(
σ
(1)
i , . . . , σ

(k)
i

)
with G:

σi · [Ik | P] =
(
σ
(1)
i , . . . , σ

(k)
i | ψ(k+1)

i , . . . , ψ
(n)
i

)
.

One can easily show that {ψ(j)
i } k+1≤j≤n

1≤i≤s
are the linearly-homomorphic authenticators

of {r(j)i } k+1≤j≤n
1≤i≤s

.

Thereafter, algorithm C.GenR uses the pseudo-random permutation PRP : {0, 1}λ ×
[(n−k)s]→ [(n−k)s] and key kprp in order to permute both the redundancy symbols

{r(j)i } k+1≤j≤n
1≤i≤s

and the corresponding homomorphic-tags {ψ(j)
i } k+1≤j≤n

1≤i≤s
yielding the

redundancy object

R̃ :=

{
fid; {r̃(j)i } k+1≤j≤n

1≤i≤s
; {ψ̃(j)

i } k+1≤j≤n
1≤i≤s

}
.

More precisely, if we denote (r̃1, r̃2, . . . , r̃(n−k)s) the vector of the permuted redun-

dancy symbols {r̃(j)i } k+1≤j≤n
1≤i≤s

, then the redundancy symbol r
(j)
i is mapped to the po-

sition PRP(kprp, (i− 1)(n− k) + j) in the permuted redundancy object R. Similarly,

if we denote (ψ̃1, ψ̃2, . . . , ψ̃(n−k)s) the homomorphic tags’ vector after permutation,

then tag ψ
(j)
i is mapped to to the position PRP(kprp, (i− 1)(n− k) + j).

At this point, algorithm C.GenR terminates its execution by storing the data object D
and the redundancy object R on the storage nodes {S(j)}1≤j≤k and SR, respectively.

• U.Chall (fid,Ku, paramsystem) → (chal): Provided with the object identifier fid, the

secret key Ku, and the system parameters paramsystem, algorithm U.Chall generates

a vector ν := (νc)
l
c=1 of l random elements in Zp, selects an integer v which specifies

the number of iterations that C is required to go through,generates a random seed

η(1) ∈ {0, 1}λ, and picks one random index 1 ≤ c(1)r ≤ (n− k)s− l. Then, algorithm

U.Chall terminates by sending C the challenge

chal :=
(
fid,
(
v, η(1), c(1)r , ν

))
.

• C.Prove (chal, D̃, paramD)→ (proof): On receiving challenge chal =
(
fid, (v, η(1), c

(1)
r ,

ν)
)
, algorithm C.Prove first retrieves the authenticated data object D and the cor-

responding authenticated redundancy R̃ that match identifier fid.

Thereupon, algorithm C.Prove processes D and R̃ by executing the following opera-

tions v times. For ease of exposition, we assume that algorithm C.Prove is at the tth

iteration:

62

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

1. Algorithm C.Prove first derives the indices of the requested data symbols and

their respective tags cd
(t) := (PRGi(η

(t)),PRGj(η
(t)).

2. It reads the l requested blocks defined by cd
(t). Without loss of generality, we

denote these blocks d̂(t) := (d̂
(t)
1 , d̂

(t)
2 , . . . , d̂

(t)
l).

3. It reads the l tags associated with blocks d̂. We denote these tags σ̂(t) :=

(σ̂
(t)
1 , σ̂

(t)
2 , . . . , σ̂l)

(t).

4. It computes the inner products

µ(t) = d̂(t) · ν =
l∑

c=1

d̂(t)c νc (4.11)

τ (t) = σ̂(t) · ν =

l∑
c=1

σ̂(t)c νc (4.12)

5. It reads l consecutive redundancy blocks starting from block r̃
c
(t)
r

. Let r̃(t)

denote the l consecutive redundancy blocks (r̃
c
(t)
r
, ..., r̃

(c
(t)
r +l−1)).

6. It reads the l consecutive homomorphic MACs associated with redundancy

blocks r̃(t). Let ψ̃
(t)

:= (ψ̃
c
(t)
r
, ..., ψ̃

(c
(t)
r +l−1)) denote these MACs.

7. It computes the inner products

µ̃(t) = r̃(t) · ν =
l∑

c=1

r̃
(c

(t)
r +c−1)νc (4.13)

τ̃ (t) = ψ̃
(t) · ν =

l∑
c=1

ψ̃
(c

(t)
r +c−1)νc (4.14)

8. It computes the seed for the next iteration η(t+1) := PRFchal(µ
(t), τ (t)). It also

computes the random value I
c
(t+1)
r

:= PRFchal(µ̃
(t), τ̃ (t)) and sets the new index

c
(t+1)
r for the next challenge to the first log((n− k)s− l) bits of I

c
(t+1)
r

.

9. It goes back to step 1.

Finally, algorithm C.Prove terminates its execution by returning the proof

proof := {(µ, τ), (µ̃, τ̃)} ,

63

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

such that:

µ = (µ(1), µ(2), . . . , µ(v)) ; τ = (τ (1), τ (2), . . . , τ (v))

µ̃ = (µ̃(1), µ̃(2), . . . , µ̃(v)) ; τ̃ = (τ̃ (1), τ̃ (2), . . . , τ̃ (v))

• U.Verify (Ku, chal, proof, paramD) → (dec): On input of user key Ku = (α, kprf),

challenge chal =
(

fid, (v, η(1), c
(1)
r , ν)

)
, proof proof := {(µ, τ), (µ̃, τ̃)}, and data

object parameters paramD algorithm U.Verify performs the following checks:

◦ Response time verification: It first checks whether the response time of the server

was under time threshold Tthr. If not algorithm U.Verify outputs reject; otherwise

it executes the next step.

◦ Data possession verification. Given vectors µ = (µ(1), µ(2), . . . , µ(v)), and τ =

(τ (1), τ (2), . . . , τ (v)), algorithm U.Verify executes the subsequent steps v times. We

assume here that algorithm U.Verify is at the tth iteration:

1. Given vector ν = (ν1, ..., νl) and vector cd
(t) := (i

(t)
c , j

(t)
c)lc=1 algorithm U.Verify

verifies whether

τ (t) = αµ(t) +
l∑

c=1

νcPRF(kprf , (i
(t)
c − 1)k + j(t)c) (4.15)

If it is not the case, algorithm U.Verify returns reject; otherwise it moves onto

verifying the integrity of the redundancy.

2. Otherwise, algorithm U.Verify generates the seed η(t+1) := PRFchal(µ
(t), τ (t)),

sets the indices for the next iteration to cd
(t+1) := (PRGi(η

(t+1)),PRGj(η
(t+1)),

and goes to step 1.

If algorithm U.Verify does not return reject, it proceeds with verifying the integrity

of the redundancy.

◦ Redundancy possession verification. Given the vectors µ̃ = (µ̃(1), µ̃(2), . . . , µ̃(v))

and τ̃ = (τ̃ (1), τ̃ (2), . . . , τ̃ (v)) it performs the following operations v times.

1. Given index c
(t)
r , algorithm U.Verify finds the shuffling function preimage

(x
(t)
c , y

(t)
c) = PRP−1(c

(t)
r + c− 1) for all 1 ≤ c ≤ l.

2. Given matrix P = [P1 | P2 | . . . | P(n−k)], algorithm U.Verify checks whether

the following equality holds:

τ̃ (t) = αµ̃(t) +
l∑

c=1

νcP
y

(t)
c · prf

(x
(t)
c)

64

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

whereby for all 1 ≤ c ≤ l:

prf
(x

(t)
c)

=
(

PRF(kprf , (x
(t)
c − 1)k + 1), . . . ,PRF(kprf , x

(t)
c k)

)
If the equality is not satisfied, then algorithm U.Verify returns reject.

3. Otherwise, it computes I
c
(t+1)
r

:= PRFchal(µ̃
(t), τ̃ (t)), defines the new index

c
(t+1)
r for the next iteration by truncating the first log((n − k)s − l) bits of

I
c
(t+1)
r

, and goes to step 1.

If algorithm U.Verify does not return reject, then it concludes its execution by

outputting accept.

• C.Repair (∗D, Jf , paramsystem, paramD,maskGen) → (D,⊥): On input of a corrupted

data object ∗D and a set of failed storage node indices Jf ⊆ [1, k], algorithm C.Repair

first checks if |J | > n−k+1, i.e., the lost symbols cannot be reconstructed due to an

insufficient number of remaining storage nodes {S(j)}1≤j≤k.In this case, algorithm

C.Repair terminates outputting ⊥; otherwise, it uses the surviving storage nodes

{S(j)}j∈Jr , where Jr ⊆ [1, k] \ Jf , the redundancy object R̃, the pseudo-random

permutation PRP−1 and the parity check matrix H = [−P> | In−k] to reconstruct

the original data object D.

4.5 Conclusion

In this section, we have introduced a new Proof of Data Reliability solution named POROS

that enables a user to efficiently verify that the cloud server stores her outsourced data

correctly and additionally that it complies with the claimed reliable data storage guar-

antees. Running the POROS protocol, a client is assured that the cloud server actually

stores both the original data and the corresponding redundancy information. Contrary to

existing solutions, POROS does not prevent the cloud from performing functional opera-

tions such as automatic repair and does not induce any interaction with the client during

such maintenance operation.

Besides all these advantages, POROS unfortunately comes with its own limitations:

• To begin with, POROS security relies on the underlying technology of cloud storage

systems, namely, the use of rotational hard drives as the storage medium. Even

though, rotational hard drives are expected to maintain their price per gigabyte

advantage compared to other storage technologies (e.g. SSD, NVMe) and thereby

remain the preferred storage medium in object storage applications, the eventual

65

CHAPTER 4. POROS: PROOF OF DATA RELIABILITY FOR OUTSOURCED
STORAGE

introduction of such technologies either as the primary storage medium or as some

short of cache in the storage system stack is going to break POROS security.

• Moreover, POROS assumes a back-end storage architecture that deviates from the

traditional architecture of erasure-code-based distributed storage systems, wherein

each codeword symbol is stored on a distinct storage unit (hard drive, storage node,

etc.). POROS’s requirement that the redundancy object R̃ is stored on a single

storage node SR raises concerns regarding the reliable data storage of R̃ itself.

In order to cope with these challenges, in the next section we introduce a new Proof of Data

Reliability scheme which neither makes any assumptions regarding the underlying storage

medium technology nor deviates from the current distributed storage architecture.

66

Chapter 5

PORTOS: Proof of Data

Reliability for Real-World

Distributed Outsourced Storage

In this chapter, we propose PORTOS, a Proof of Data Reliability scheme, that enables

the verification of reliable data storage without disrupting the automatic maintenance op-

erations performed by cloud storage provider. PORTOS’s design allows for the fulfillment

of the same Proof of Data Reliability requirements as POROS (c.f. Chapter 4), without

the shortcomings of the latter. We analyze the security of the protocol and we show that

PORTOS is secure against a rational adversary. Moreover, we evaluate the performance

of PORTOS in terms of storage, communication, and verification cost. Finally, we propose

a more efficient version of the protocol which improves the performance of both the cloud

storage provider and the verifier at the cost of reduced in granularity with respect to the

detection of corrupted storage nodes.

5.1 Introduction of PORTOS

PORTOS is a Proof of Data Reliability scheme designed for distributed cloud storage

systems. Similarly to POROS, PORTOS uses a systematic linear [n, k]–MDS erasure code

to add redundancy to the outsourced data. Nevertheless, unlike POROS, PORTOS stores

the encoded data across multiple storage nodes: each codeword symbol – both data and

redundancy – is stored on a distinct storage node. Hence, the system can tolerate the

failure of up to t storage nodes, and successfully reconstructs the original data using the

contents of the surviving ones.

67

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

Figure 5.1: Overview of PORTOS outsourcing process: (a) The user U computes the linearly-
homomorphic tags for the original data symbols; (b) U outsources the data object D to cloud
storage provider C; (c) Using G, C applies the systematic erasure code on both data symbols and
their tags yielding the redundancy symbols and their corresponding tags; thereafter, C derives the
masking coefficients and masks all data and redundancy symbols.

Concerning the integrity verification of the outsourced data and its redundancy, POR-

TOS uses the same Proof of Data Possession (PDP) tags as POROS (c.f. Section 4.2.1).

More specifically, this PDP scheme relies on linearly-homomorphic tags of Private Com-

pact PoR (c.f. Section 2.4.1) to verify the integrity of the data symbols and it further takes

advantage of the homomorphic properties of these tags, in order to verify the integrity of

the redundancy symbols. Moreover, thanks to the combination of the PDP tags with the

systematic linear [n, k]–MDS erasure code, PORTOS ensures a user that she can recover

her data in their entirety.

In PORTOS the cloud storage provider has the means to generate the required redun-

dancy, detect failures –either hardware or software– and repair corrupted data entirely on

its own, without any interaction with the user. Likewise in POROS, however, this setting

allows a malicious cloud storage provider to delete a portion of the encoded data and

compute any missing symbols upon request. To defend against such an attack, PORTOS

relies on time-lock puzzles in order to augment the resources (storage and computational)

a cheating cloud storage provider has to provision in order to produce a valid Proof of

Data Reliability. Nonetheless, this mechanism does not induce any additional storage or

computational cost to an honest cloud storage provider that generates the same proof.

In this way, a rational adversary is provided with a strong incentive to conform to the

68

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

Proof of Data Reliability protocol. As a result, PORTOS conforms to the current model

of erasure-code-based distributed storage systems. Furthermore, PORTOS does not make

any assumption regarding the cloud storage system’s underlying technology as opposed to

POROS. Figure 5.1 depicts the outsourcing process of PORTOS.

Organization. The remaining of this chapter is organized as follows: In Section 5.2,

we provide the specification of PORTOS. We analyze its security in Section 5.3 and we

evaluate its performance in Section 5.4. Finally, in Section 5.5 we describe a more efficient

version of our protocol.

5.2 PORTOS

In this section, we introduce a new Proof of Data Reliability solution named PORTOS.

We first present its main building blocks and further provide a complete description of the

scheme.

5.2.1 Building Blocks

PORTOS relies on the following building blocks.

MDS code and back-end storage architecture. To generate the necessary redundancy

for the reliable storage of users’ data, PORTOS uses a systematic linear [n, k]–MDS

code (c.f. Section 4.2.1). The code encodes a data segment of size k symbols into a

codeword comprising n code symbols. Moreover, in accordance with the current dis-

tributed storage architecture, each codeword symbol is stored on a distinct storage

node {S(j)}1≤j≤n.

Linearly–homomorphic tags. Similarly to POROS (c.f. Section 4.2.1), PORTOS re-

lies on the same Proof of Data Possession scheme, based on the linearly-homomorphic

tags proposed by Shacham and Waters. Due to the properties of linearly–homomorphic

tags, the verifier is able to check the integrity of all codeword symbols as well as the

correct generation of redundancy by the cloud storage provider.

Time-lock puzzles. A time-lock puzzle is a cryptographic function that requires the

execution of a predetermined number of sequential exponentiation computations

before yielding its output. The RSA-based puzzle of Rivest et al. [54] requires the

repeated squaring of a given value β modulo N , where N := p′q′ is a publicly

known RSA modulus, p′ and q′ are two safe primes1 that remain secret, and T is

1such that 2 is guaranteed to have a large order modulo φ(N) where φ(N) = (p′ − 1)(q′ − 1)

69

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

the number of squarings required to solve the puzzle, which can be adapted to the

solver’s capacity of squarings modulo N per second. Thereby, T defines the puzzle’s

difficulty. Without the knowledge of the secret factors p′ and q′, there is no faster

way of solving the puzzle than to begin with the value β and perform T squarings

sequentially. On the contrary, an entity that knows p′ and q′, can efficiently solve the

puzzle by first computing the value e := 2T (mod φ(N)) and subsequently computing

βe (mod N).

5.2.2 Overview of PORTOS’s Masking Mechanism

PORTOS leverages the cryptographic puzzle of Rivest et al. [54] to build a mechanism

that enables a user U to increase the computational load of a misbehaving cloud storage

provider C. To this end, C is required to generate a set of pseudo-random values, called

masking coefficients, which are combined with the symbols of the encoded data object

D. C is expected to store at rest the masked data. More specifically, in the context of

algorithm Store, U outputs two functions: the function maskGen which is sent to C together

with D and is used by algorithms GenR and Repair; and the function maskGenFast which

is used by U within the scope of algorithm Verify.

• maskGen((i, j), paramm)→ m
(j)
i : This function takes as input the indices (i, j), and

the tuple paramm := (N, T ,PRFmask, ηm) comprising the RSA modulus N := p′q′,

the squaring coefficient T , a pseudo-random function PRFmask : ZN × {0, 1}∗ → ZN
(such that its output is guaranteed to have a large order modulo N) and a seed

ηm ∈ ZN .

Function maskGen computes the masking coefficient m
(j)
i as follows:

m
(j)
i :=

(
PRFmask(ηm, i ‖ j)

)2T
(mod N).

• maskGenFast((i, j), (p′, q′), paramm) → m
(j)
i : In addition to (i, j) and paramm :=

(N, T ,PRFmask, ηm), this function takes as input the secret factors (p′, q′). Knowing

p′ and q′, function maskGenFast efficiently computes the masking coefficient m
(j)
i by

first computing the value e:

φ(N) := (p′ − 1)(q′ − 1), e := 2T (mod φ(N)),

m
(j)
i :=

(
PRFmask(ηm, i ‖ j)

)e
(mod N).

The puzzle’s difficulty can be adapted to the computational capacity of C as it evolves

over time such that the evaluation of the function maskGen requires a noticeable amount

70

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

of time to yield m
(j)
i . Furthermore, the masking coefficients are at least as large as the

respective symbols of D, hence storing the coefficients, as a method to deviate from our

data reliability protocol, would demand additional storage resources which is at odds with

C’s primary objective.

5.2.3 Protocol specification

PORTOS is a symmetric Proof of Data Reliability scheme: user U is the verifier V.

Thereby, only the user key Ku is required for the creation of the data object D, the

generation of the Proof of Data Reliability challenge, and the verification of C’s proof.

We now describe in detail the algorithms of PORTOS.

• Setup (1λ, t)→ ({S(j)}1≤j≤n, paramsystem): Algorithm Setup first picks a prime num-

ber q, whose size is chosen according to the security parameter λ. Afterwards, given

the reliability parameter t, algorithm Setup yields the generator matrix G = [Ik | P]

of a systematic linear [n, k]–MDS code in Zq, for k < n < q and t ≤ n − k + 1.

In addition, algorithm Setup chooses n storage nodes {S(j)}1≤j≤n that are going to

store the encoded data: the first k of them are data nodes that will hold the actual

data symbols, whereas the rest n− k are considered as redundancy nodes.

Algorithm Setup terminates its execution by returning the storage nodes {S(j)}1≤j≤n
and the system parameters paramsystem := (k, n,G, q).

• U.Store (1λ, D, paramsystem)→ (Ku,D, paramD,maskGenFast): On input security pa-

rameter λ, file D ∈ {0, 1}∗ and, system parameters paramsystem, this randomized

algorithm first splits D into s segments, each composed of k data symbols. Hence D

comprises s · k symbols in total. A data symbol is an element of Zq and is denoted

by d
(j)
i for 1 ≤ i ≤ s and 1 ≤ j ≤ k.

Algorithm U.Store also picks a pseudo-random function PRF : {0, 1}λ × {0, 1}∗ →
Zq, together with its pseudo-randomly generated key kprf ∈ {0, 1}λ, and a non-

zero element α
R← Zq. Hereafter, U.Store computes for each data symbol a linearly

homomorphic MAC as follows:

σ
(j)
i = αd

(j)
i + PRF(kprf , i ‖ j) ∈ Zq.

In addition, algorithm U.Store produces a time-lock puzzle by generating an RSA

modulus N := p′q′, where p′ and, q′ are two randomly-chosen safe primes of size

λ bits each, and specifies the puzzle difficulty coefficient T , and the time threshold

Tthr. Thereafter, algorithm U.Store picks a pseudo-random function PRFmask : ZN ×

71

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

Notation Description

D File to-be-outsourced

D Outsourced data object (D consists of data and PDP tags)

D̃ Encoded and masked data object

S Storage node

G Generator matrix of the [n, k]–MDS code

α, kprf Secret key used by the linearly homomorphic tags

j Storage node index, 1 ≤ j ≤ n, (there are n Ss in total)

i Data segment index, 1 ≤ i ≤ s, (D consist of s segments)

d
(j)
i Data symbol, 1 ≤ j ≤ k and 1 ≤ i ≤ s
d̃

(j)
i Masked data symbol, 1 ≤ j ≤ k and 1 ≤ i ≤ s
σ

(j)
i Data symbol tag, 1 ≤ j ≤ k and 1 ≤ i ≤ s
r

(j)
i Redundancy symbol, k + 1 ≤ j ≤ n and 1 ≤ i ≤ s
r̃

(j)
i Masked redundancy symbol, k + 1 ≤ j ≤ n and 1 ≤ i ≤ s
ψ

(j)
i Redundancy symbol tag, k + 1 ≤ j ≤ n and 1 ≤ i ≤ s

m
(j)
i Masking coefficient, 1 ≤ j ≤ n and 1 ≤ i ≤ s
ηm Random seed used to generate m

(j)
i

p′, q′ Primes for RSA modulus N := p′q′ of the time-lock puzzle

T Time-lock puzzle’s difficulty coefficient

l Size of the challenge

Tthr Time threshold for the proof generation

i
(j)
c Indices of challenged symbols, 1 ≤ j ≤ n and 1 ≤ c ≤ l
η(j) Random seed used to generate i

(j)
c , 1 ≤ j ≤ n

νc Challenge coefficients, 1 ≤ c ≤ l
µ̃(j) Aggregated data/redundancy symbols, 1 ≤ j ≤ n
τ (j) Aggregated data/redundancy tags, 1 ≤ j ≤ n
Jf Set of failed storage nodes

Jr Set of surviving storage nodes

Table 5.1: Notation used in the description of PORTOS.

{0, 1}∗ → ZN (such that its output is guaranteed to have a large order modulo N)

together with a random seed ηm
R← ZN , and constructs the functions maskGen and

maskGenFast as described in Section 5.2.1

maskGen
(
(i, j), paramD

)
→ m

(j)
i ,

maskGenFast
(
(i, j), (p′, q′), paramD

)
→ m

(j)
i .

Finally, algorithm U.Store picks a pseudo-random generator PRGchal : {0, 1}λ →
[1, s]l [13] and a unique identifier fid.

Algorithm U.Store then terminates its execution by returning the user key:

Ku :=
(
fid, (α, kprf), (p′, q′,maskGenFast)

)
,

72

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

the to-be-outsourced data object together with the integrity tags:

D :=

{
fid; {d(j)i } 1≤j≤k

1≤i≤s
; {σ(j)i } 1≤j≤k

1≤i≤s

}
,

and the data object parameters:

paramD := (PRGchal,maskGen, paramm := (N, T , ηm,PRFmask)) .

• C.GenR (D, paramsystem, paramD)→ (D̃): Upon reception of data object D, algorithm

C.GenR starts computing the redundancy symbols {r(j)i } k+1≤j≤n
1≤i≤s

by multiplying each

segment di :=
(
d
(1)
i , . . . , d

(k)
i

)
with the generator matrix G = [Ik | P]:

di · [Ik | P] =
(
d
(1)
i , . . . , d

(k)
i | r(k+1)

i , . . . , r
(n)
i

)
.

Similarly, algorithm C.GenR multiplies the vector of linearly-homomorphic tags σi :=(
σ
(1)
i , . . . , σ

(k)
i

)
with G:

σi · [Ik | P] =
(
σ
(1)
i , . . . , σ

(k)
i | ψ(k+1)

i , . . . , ψ
(n)
i

)
.

One can easily show that {ψ(j)
i } k+1≤j≤n

1≤i≤s
are the linearly-homomorphic authenticators

of {r(j)i } k+1≤j≤n
1≤i≤s

.

Thereafter, algorithm C.GenR generates the masking coefficients using the function

maskGen:

{m(j)
i } 1≤j≤n

1≤i≤s
:= maskGen

(
(i, j), paramm

)
(mod q),

and then, masks all data and redundancy symbols as follows:

{d̃(j)i } 1≤j≤k
1≤i≤s

← {d(j)i +m
(j)
i } 1≤j≤k

1≤i≤s
, (5.1)

{r̃(j)i } k+1≤j≤n
1≤i≤s

← {r(j)i +m
(j)
i } k+1≤j≤n

1≤i≤s
. (5.2)

At this point, algorithm C.GenR deletes all masking coefficients {m(j)
i } 1≤j≤n

1≤i≤s
and

terminates its execution by returning the encoded data object

D̃ :=

{
fid ;

(
{d̃(j)i } 1≤j≤k

1≤i≤s

∣∣ {r̃(j)i } k+1≤j≤n
1≤i≤s

)
;

(
{σ(j)i } 1≤j≤k

1≤i≤s

∣∣ {ψ(j)
i } k+1≤j≤n

1≤i≤s

)}
,

73

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

and by storing the data symbols {d̃(j)i } 1≤j≤k
1≤i≤s

together with {σ(j)i } 1≤j≤k
1≤i≤s

and the

redundancy symbols {r̃(j)i } k+1≤j≤n
1≤i≤s

together with {ψ(j)
i } k+1≤j≤n

1≤i≤s
at the corresponding

storage nodes.

• U.Chall (fid,Ku, paramsystem) → (chal): Provided with the object identifier fid, the

secret key Ku, and the system parameters paramsystem, algorithm U.Chall generates a

vector (νc)
l
c=1 of l random elements in Zq together with a vector of n random seeds

(η(j))nj=1 ∈ {0, 1}λ, and then, terminates by sending to all storage nodes {S(j)}1≤j≤n
the challenge

chal :=
(
fid,
(
(η(j))nj=1, (νc)

l
c=1

))
.

• C.Prove (chal, D̃, paramD)→ (proof): On input of challenge chal :=
(
fid,

(
(η(j))nj=1,

(νc)
l
c=1

))
, object parameters paramD := (PRGchal,maskGen, paramm), and data ob-

ject D each storage node {S(j)}1≤j≤n invokes an instance of this algorithm and

computes the response tuple (µ̃(j), τ (j)) as follows:

It first derives the indices of the requested symbols and their respective tags

(i(j)c)lc=1 := PRGchal(η
(j)), for 1 ≤ j ≤ n,

and subsequently, it computes the following linear combination

µ̃(j) ←


∑l

c=1 νc d̃
(j)

i
(j)
c

, if 1 ≤ j ≤ k∑l
c=1 νc r̃

(j)

i
(j)
c

, if k + 1 ≤ j ≤ n,
(5.3)

τ (j) ←


∑l

c=1 νc σ
(j)

i
(j)
c

, if 1 ≤ j ≤ k∑l
c=1 νc ψ

(j)

i
(j)
c

, if k + 1 ≤ j ≤ n.
(5.4)

Algorithm C.Prove terminates its execution by returning the set of tuples:

proof :=
{

(µ̃(j), τ (j))
}
1≤j≤n.

• U.Verify (Ku, chal, proof,maskGenFast, paramD)→ (dec): On input of user key Ku :=

(α, kprf , p
′, q′), challenge chal :=

(
fid,

(
(η(j))nj=1, (νc)

l
c=1

))
, proof proof :=

{
(µ̃(j),

τ (j))
}
1≤j≤n, function maskGenFast, and data object parameters paramD := (PRGchal,

74

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

maskGen, paramm), this algorithm first checks if the response time of all storage

nodes {S(j)}1≤j≤n is shorter than the time threshold Tthr. If not algorithm U.Verify

terminates by outputting dec := reject; otherwise it continues its execution and

checks that all tuples (µ̃(j), τ (j)) in proof are well formed as follows:

It first derives the indices of the requested symbols and their respective tags

(i(j)c)lc=1 := PRGchal(η
(j)), for 1 ≤ j ≤ n,

and it generates the corresponding masking coefficients

{m(j)

i
(j)
c

} 1≤j≤n
1≤c≤l

:= maskGenFast
(
(i(j)c , j), (p′, q′), paramD

)
Subsequently, it computes

τ̃ (j) := τ (j) + α ·
l∑

c=1

νc m
(j)

i
(j)
c

, (5.5)

and then it verifies that the following equations hold

τ̃ (j)
?
=

αµ̃(j) +
∑l

c=1 νc PRF(kprf , i
(j)
c ‖ j) if 1 ≤ j ≤ k,

αµ̃(j) +
∑l

c=1 νc prf
i
(j)
c
·G(j) if k + 1 ≤ j ≤ n,

(5.6)

where G(j) denotes the jth column of generator matrix G, and prf
i
(j)
c

:=
(
PRF(kprf , i

(j)
c ‖ 1),

. . . ,PRF(kprf , i
(j)
c ‖ k)

)
is the vector of PRFs for segment i

(j)
c .

If the responses from all storage nodes {S(j)}1≤j≤n are correctly computed, algorithm

U.Verify outputs dec := accept; otherwise it returns dec := reject.

• C.Repair (∗D̃, Jf , paramsystem, paramD,maskGen)→ (D̃): On input of a corrupted data

object ∗D̃ and a set of failed storage node indices Jf ⊆ [1, n], algorithm C.Repair

first checks if |J | > n − k + 1, i.e., the lost symbols cannot be reconstructed due

to an insufficient number of remaining storage nodes {S(j)}1≤j≤n. In this case,

algorithm C.Repair terminates outputting ⊥; otherwise, it picks a set of k surviving

storage nodes {S(j)}j∈Jr , where Jr ⊆ [1, n]\Jf and, computes the masking coefficients

{m(j)
i } j∈Jr

1≤i≤s
and {m(j)

i } j∈Jf
1≤i≤s

, using the function maskGen, together with the parity

check matrix H = [−P> | In−k].

Thereafter, algorithm C.Repair unmasks the symbols held in {S(j)}j∈Jr and recon-

75

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

structs the original data object D using H. Finally, algorithm C.Repair uses the

generation matrix G and the coefficients {m(j)
i } j∈Jf

1≤i≤s
to compute and subsequently

mask the content of storage nodes {S(j)}j∈Jf .

Algorithm C.Repair then terminates by outputting the repaired data object D̃.

5.3 Security Analysis

In this section, we show that PORTOS is correct and sound.

5.3.1 Correctness

We now show that the verification Equation 5.6 must hold if algorithm C.Prove is executed

correctly. In particular, Equation 5.6 consists of two parts: the first one defines the verifi-

cation of the proofs
{

(µ̃(j), τ (j))
}
1≤j≤k generated by the data storage nodes {S(j)}1≤j≤k;

and the second part corresponds to the proofs
{

(µ̃(j), τ (j))
}
k+1≤j≤n generated by the re-

dundancy storage nodes {S(j)}k+1≤j≤n. By definition the following equality holds:

σ
(j)
i = αd

(j)
i + PRF(kprf , i ‖ j), ∀1 ≤ i ≤ s, 1 ≤ j ≤ k (5.7)

We begin with the first part of Equation 5.6. By plugging Equations 5.5 and 5.4 to

τ̃ (j) we get

τ̃ (j) = τ (j) + α ·
l∑

c=1

νc m
(j)

i
(j)
c

=
l∑

c=1

νc σ
(j)

i
(j)
c

+ α ·
l∑

c=1

νc m
(j)

i
(j)
c

.

Thereafter, by Equation 5.7 we get

τ̃ (j) =
l∑

c=1

νc
(
αd

(j)

i
(j)
c

+ PRF(kprf , i
(j)
c ‖ j)

)
+ α ·

l∑
c=1

νc m
(j)

i
(j)
c

= α ·
l∑

c=1

νc
(
d
(j)

i
(j)
c

+m
(j)

i
(j)
c

)
+

l∑
c=1

νc PRF(kprf , i
(j)
c ‖ j).

76

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

Finally, by plugging Equations 5.1 and 5.3 to Equation 5.7 we get

τ̃ (j) = αµ̃(j) +

l∑
c=1

νc PRF(kprf , i
(j)
c ‖ j).

As regards to the second part of Equation 5.6 that defines the verification of the

proofs
{

(µ̃(j), τ (j))
}
k+1≤j≤n generated by the redundancy storage nodes {S(j)}k+1≤j≤n,

we observe that for all c ∈ [1, l] it holds that redundancy symbols r
(j)

i
(j)
c

= d
i
(j)
c
·G(j) and

tags ψ
(j)

i
(j)
c

= σ
i
(j)
c
·G(j), whereby G(j) is the jth column of generator matrix G, d

i
(j)
c

:=

(d
(1)

i
(j)
c

, . . . , d
(k)

i
(j)
c

) is the vector of data symbols for segment ic, and σ
i
(j)
c

:= (σ
(1)

i
(j)
c

, . . . , σ
(k)

i
(j)
c

)

is the corresponding vector of linearly homomorphic tags. Hence, by Equation 5.7 the

following equality always holds:

ψ
(j)

i
(j)
c

= (αd
i
(j)
c

+ prf
i
(j)
c

) ·G(j)

= αr
(j)

i
(j)
c

+ prf
i
(j)
c
·G(j),

where prf
i
(j)
c

:=
(
PRF(kprf , i

(j)
c ‖ 1), . . . ,PRF(kprf , i

(j)
c ‖ k)

)
is the vector of PRFs for segment

i
(j)
c . Thereby, given the same straightforward calculations as in the case of data storage

nodes {S(j)}1≤j≤k, we derive the following equality:

τ̃ (j) = αµ̃(j) +
l∑

c=1

νc prf
i
(j)
c
·G(j).

and this proves correctness.

5.3.2 Soundness

Req 1 : Extractability. We now show that PORTOS ensures, with high probability, the

recovery of an outsourced file D. To begin with, we observe that algorithms C.Prove and

U.Verify can be seen as a distributed version of the algorithms SW.Prove and SW.Verify

of the private PoR scheme in Section 2.4.1 executed across all storage nodes {S(j)}1≤j≤n.

More precisely, we assume that the MDS–code parameters [n, k] outputted by algorithm

Setup, satisfy the requirements of the Proof of Retrievability model (c.f. Section 2.2), in

addition to the reliability guarantee t.

We argue that given a sufficient number of interactions with an ε-admissible cheating

cloud storage provider C′, algorithm Extract eventually gathers linear combinations of at

least ρ code symbols for each segment of data object D, where k ≤ ρ ≤ n. These linear

77

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

combinations are of the form

µ̃(j) ←


∑l

c=1 νc d̃
(j)

i
(j)
c

, for 1 ≤ j ≤ k∑l
c=1 νc r̃

(j)

i
(j)
c

, for k + 1 ≤ j ≤ n,

for known coefficients (νc)
l
c=1 and known indices i

(j)
c and j. Furthermore, U can efficiently

derive the unmasked expressions

µ(j) ←


∑l

c=1 νc d
(j)

i
(j)
c

, for 1 ≤ j ≤ k∑l
c=1 νc r

(j)

i
(j)
c

, for k + 1 ≤ j ≤ n

by computing the masking coefficients {m(j)

i
(j)
c

} 1≤j≤n
1≤c≤l

using the function maskGenFast, and

subtracting from µ̃(j) the corresponding linear combination
∑l

c=1 νc m
(j)

i
(j)
c

.

Hereby, the extractability arguments given in [10] can be applied to the aggregated

output of algorithms C.Prove and U.Verify. More precisely, given that C′ succeeds in

making algorithm U.Verify yield dec := accept in an ε fraction of the interactions, and the

indices i
(j)
c of the challenge chosen at random, then algorithm Extract has at its disposal

at least ρ − ε > k correct code symbols for each segment of data object D. Therefore,

algorithm Extract is able to reconstruct the data object D using the parity check matrix

H = [−P> | In−k].

Req 2 : Soundness of redundancy generation. From the definition of linearly-homo-

morphic tags (c.f. Section 2.4.1.1), if the underlying pseudo-random function PRF is secure,

then no other party – except user U who owns the signing key – can produce a valid tag

σi for a data symbol di, for which it has not been provided with a tag yet. Therefore,

no cheating cloud storage provider C′ will cause a verifier V to accept in a Proof of Data

Reliability instance, except by responding with values

µ̃(j) ←
l∑

c=1

νc r̃
(j)

i
(j)
c

, for k + 1 ≤ j ≤ n, (5.8)

τ (j) ←
l∑

c=1

νc ψ
(j)

i
(j)
c

, for k + 1 ≤ j ≤ n. (5.9)

that are computed correctly: i.e., by computing the pair (µ̃, τ) using values r̃
(j)

i
(j)
c

and ψ
(j)

i
(j)
c

which are the output of algorithm C.GenR.

78

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

Req 3 : Storage allocation commitment. We now show that a rational cheating cloud

storage provider C′ cannot produce a valid proof of data reliability as long as the time

threshold Tthr is tuned properly.

In essence, PORTOS consists of parallel proof of data possession challenges over all

storage nodes {S(j)}1≤j≤n: a challenge for each symbol of the codeword. It follows that

when a proof of data reliability challenge contains symbols which are not stored at rest, the

relevant storage nodes cannot generate their part of the proof unless C′ is able to generate

the missing symbols. Hereafter, we analyze the effort that C′ has to put in order to

output a valid proof of data reliability in comparison to the effort an honest cloud storage

provider C has to put in order to output the same proof. Given that the computational

effort required by C and C′ can be translated into their response time Tresp and T′resp, we

can determine the lower and upper bounds for the time threshold Tthr.

A fundamental design feature of PORTOS is that C′ has to compute one masking

coefficient for each symbol of the encoded data object D. We observe that the masking

coefficients have the same size as D’s symbols. Hence, assuming that D cannot be com-

pressed more (e.g because it has been encrypted by the user), a strategy whereby C′ is

storing the masking coefficients would effectively double the required storage space. More-

over, a strategy whereby C′ does not store the content of up to n − k + 1 storage nodes

and yet it stores the corresponding masking coefficients, would increase C′’s operational

cost without yielding any storage savings. Given that strategies that rely on storing the

masking coefficients do not yield any gains in terms of either storage savings or overall

operational cost, C′ is left with two reasonable ways to deviate from the correct protocol

execution:

(i) The first one is to store the data object D encoded but unmasked. Although this

approach does not offer any storage savings, it significantly reduces the complexity

of storing and maintaining D at the cost of a more expensive proof generation. More

specifically, in order to compute a PORTOS proof, C′ has to generate 2l masking

coefficients {m(j)

i
(j)
c

} 1≤j≤n
1≤c≤l

.

(ii) The second way C′ may misbehave, is by not storing the data object D̃ in its entirety

and hence generating the missing symbols involved in a PORTOS challenge on-the-fly.

In particular, C′ can drop up to s(n−k+1) symbols of D̃ either by not provisioning up

to n−k+1 storage nodes; or by uniformly dropping symbols from all n storage nodes

{S(j)}1≤j≤n, ensuring that it preserves at least k symbols for each data segment.

In order to determine the lower bound for the time threshold Tthr we evaluate the

response time Tresp of an honest cloud storage provider C. Additionally, for each type of

79

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

Scenario Proof generation complexity for one S S’s Response Time

Tresp =
⌈

2l
Π

⌉
Tmult

Honest C: 2l mult + 2(l + 1) add +
⌈

2(l−1)
Π

⌉
Tadd + RTT

C′ stores D T′resp1 =
⌈
l
Π

⌉
Tpuzzle +

⌈
2l
Π

⌉
Tmult

unmasked: lT exp +2l mult + (3l − 2) add +
⌈

3l−2
Π

⌉
Tadd + RTT

S with missing symbol:
C′ deletes up to T exp +2l mult + (2l + k − 1) add

s(n− k + 1) k Ss participating in symbol generation: T′resp2 = Tpuzzle +
⌈

2l+1
Π

⌉
Tmult

symbols of D̃: T exp + (2l + 1) mult + (2l − 1) add +
⌈

2l−1
Π

⌉
Tadd + RTT

Remaining Ss:
2l mult + 2(l − 1) add

Table 5.2: Evaluation of the response time and the effort required by a storage node S to generate
its response. The cheating cloud storage provider C′ tries to deviate from the correct protocol
execution in two ways: (i) by storing the data object D encoded but unmasked; and (ii) by not
storing the data object D̃ in its entirety. RTT is the round trip time between the user U and C; Π is
the number of computations S can perform in parallel; and Tpuzzle := T · Texp is the time required
by S to generate one masking coefficient.

C′’s malicious behavior we evaluate its response time, and determine the upper bound for

the time threshold Tthr as T′resp = min(T′resp1 , T
′
resp2), where T′resp1 and T′resp2 respectively

denote C′’s response time when it opts to keep D unmasked and delete symbols of D̃,

respectively. Concerning the evaluation of T′resp2 , we consider the most favorable scenario

for C′ where it has to generate only one missing symbol for a PORTOS challenge. Table

5.2 presents the effort required by a storage node S in order to output its response, for

each of the scenarios described above, together with the corresponding response time. For

the purposes of our analysis, we assume that all storage nodes {S(j)}1≤j≤n have a bounded

capacity of Π concurrent threads of execution, that computations – exponentiations, mul-

tiplications, additions, etc. – require a minimum execution time, and that Tadd � Texp

and Tadd � Tmult. Furthermore, we assume that {S(j)}1≤j≤n are connected with premium

network connections (low latency and high bandwidth), and hence the communication

among them has negligible impact on C′ response time. As given in Table 5.2, Req 3 is

met as long as the time threshold Tthr is tuned such that it fulfills the following relations:

Tthr > RTTmax +

⌈
2l

Π

⌉
Tmult (Lower bound),

Tthr < RTTmax + Tpuzzle +

⌈
2l + 1

Π

⌉
Tmult (Upper bound),

where RTTmax is the worst-case RTT, Tpuzzle := T ·Texp is the time required by S to evaluate

the function maskGen ans Π is the number of computations S can perform in parallel. By

80

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

Metric Cost

Storage: 2 · s · n symbols

Challenge: n · λ bits and l symbols

Bandwidth: Proof: 2 · n symbols

U.Store complexity: s · k PRF + s · k mult + s · k add

C.Prove complexity: n PRGchal + 2 · n · l mult + 2 · n · (l + 1) add

n PRGchal + 2 · n · l exp + k · l · (n− k + 1) PRF
U.Verify complexity: +2 · n · (l + 1) + k · l · (n− k) mult + (n− k) · (kl + k + 2) add

Table 5.3: Performance analysis of PORTOS.

carefully setting the puzzle difficulty coefficient T , we can guarantee that Tresp � T′resp and

RTTmax � T′resp−Tresp, and hence make our proof of data reliability scheme robust against

network jitter. Finally, notice that PORTOS can adapt to C′’s computational capacity as

it evolves over time by tuning T accordingly.

5.4 Performance Analysis

Table 5.3 summarizes the computational, storage, communication costs of PORTOS.

Storage. After outsourcing the verifiable data object D, user U is only required to store

her secret key Ku. On the other hand, cloud storage provider C stores the encoded data

object D̃ which amounts to 2 · s · n symbols, where s is the number of segments in D̃,

n is the number of symbols in each segment, and a symbol is an element of Zq. This

value includes the storage overhead induced by the application of the [n, k]–MDS code

– s · (n− k) symbols – and the PDP-tags – s · n symbols.

Bandwidth. The transmission of a PORTOS challenge chal :=
(
fid,
(
(η(j))nj=1, (νc)

l
c=1

))
requires bandwidth of n · λ bits and l symbols, where n the number of random seeds

η(j) – one for each storage node {S(j)}1≤j≤n) – and l is the size of the challenge – the

number of requested symbols on each storage node. Furthermore, the bandwidth required

to transmit the proof proof :=
{

(µ̃(j), τ (j))
}
1≤j≤n generated by cloud storage provider C

is 2 ·n symbols: a pair of aggregated symbols and tags for each storage node {S(j)}1≤j≤n.

Computation. Algorithm U.Store computes one linearly-homomorphic tag for each

symbol of file D. This operation translates to s · k PRF computation, s · k multiplica-

tions, and s · k additions, where s is the number of segments in D and k is the number of

symbols in each segment.

81

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

Algorithm C.Prove is executed in parallel on all storage nodes {S(j)}1≤j≤n. Each

storage node eluates one pseudo-random generator PRGchal to derive the indices of the

requested symbols and thereafter performs 2 · l multiplications and 2 · (l+ 1) additions to

compute its response.

As regards to algorithm U.Verify, we observe that the computational effort required

to verify the response of a redundancy node {S(j)}k+1≤j≤n is much higher than the effort

required to verify the response of a data node {S(j)}1≤j≤k. Namely, in addition to the

2nl exponentiations required by the function maskGenFast to generate the masking coef-

ficients of the nl involved symbols, algorithm U.Verify evaluates kl PRFs and k + 2(l + 1)

multiplications in order to verify the response of each redundancy node, compared to the

l PRFs and 2(l + 1) multiplications it has to compute for the response of each data node.

5.5 Performance Improvements

In order to improve the performance of our scheme with respect to all three storage, com-

munication, and verification costs, we adopt the storage efficient variant of the linearly-

homomorphic tags of Private Compact PoR presented in Section 2.4.1. More specifically,

algorithm U.Store computes a linearly homomorphic tag for each data segment, comprising

k symbols, instead of a tag per symbol. As regards to the verification of C’s proof, upon the

timely reception of all storage node responses, algorithm U.Verify first uses the aggregated

tags in order to validate the integrity of the data node responses. Thereafter, algorithm

U.Verify multiplies the data node responses with the generator matrix G, and compares

the output to the redundancy node responses. Unfortunately, the new scheme does not

meet the extractability requirement (c.f. Req 1 in Section 3.2.4): the proof of reliability

verification is done at the segment level and there is no redundancy among the segments

of D̃, thus there cannot exist an extractor algorithm that can recover the original file D

against a cheating cloud storage provider C′, who succeeds in making algorithm Verify yield

dec := accept in an non-negligible ε fraction of proof of data reliability executions. In order

to fulfill the extractability requirement, the new algorithm U.Store first encodes the file D

using an error-correcting code, that meets the retrievability requirements stated in Sec-

tion 2.2, and subsequently permutes and encrypts D, before computing the homomorphic

tags and outputting the data object D.

The proofs of data reliability generated by the two schemes have different granularity

with respect to the detection of corrupted storage nodes {S(j)}1≤j≤n. On the one hand,

the basic PORTOS scheme individually verifies the response of each storage node. Hence,

the misbehaving storage nodes are identified with great precision. On the other hand, in

82

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

the storage efficient variant of PORTOS, a failed verification of the data node responses,

positively detects that there is corruption on one or more data nodes {S(j)}1≤j≤k without

further specifying neither the number nor the identity of the misbehaving nodes. Moreover,

if the the verification of the data node responses fail, algorithm U.Verify cannot proceed

to the verification of the responses of the redundancy nodes {S(j)}k+1≤j≤n.

5.5.1 Description

We now describe in detail the algorithms of PORTOS with segment tags.

• Setup (1λ, t)→ ({S(j)}1≤j≤n, paramsystem): Algorithm Setup first picks a prime num-

ber q, whose size is chosen according to the security parameter λ. Afterwards, given

the reliability parameter t, algorithm Setup yields the generator matrix G = [Ik | P]

of a systematic linear [n, k]–MDS code in Zq, for k < n < q and t ≤ n − k + 1.

In addition, algorithm Setup chooses n storage nodes {S(j)}1≤j≤n that are going to

store the encoded data: the first k of them are data nodes that will hold the actual

data symbols, whereas the rest n− k are considered as redundancy nodes.

Algorithm Setup terminates its execution by returning the storage nodes {S(j)}1≤j≤n,

and the system parameters paramsystem := (k, n,G, q).

• U.Store (1λ, D, paramsystem)→ (Ku,D, paramD,maskGenFast):

On input security parameter λ, file D ∈ {0, 1}∗, and system parameters paramsystem,

this randomized algorithm first applies the ECC code, and subsequently permutes

and encrypts D obtaining D′. Thereafter it splits D′ into s segments, each composed

of k data symbols. Hence D′ comprises s · k symbols in total. A data symbol is an

element of Zq and is denoted by d
(j)
i for 1 ≤ i ≤ s and 1 ≤ j ≤ k.

Algorithm U.Store also picks a pseudo-random function PRF : {0, 1}λ×{0, 1}∗ → Zq,
together with its pseudo-randomly generated key kprf ∈ {0, 1}λ, and k non-zero

elements {α(j)}1≤j≤k
R← Zq. Hereafter, U.Store computes for each data symbol a

linearly homomorphic MAC as follows:

σi =

k∑
j=1

α(j)d
(j)
i + PRF(kprf , i) ∈ Zq.

In addition, algorithm U.Store produces a time-lock puzzle by generating an RSA

modulus N := p′q′, where p′ and q′ are two randomly-chosen safe primes of size

λ bits each, and specifies the puzzle difficulty coefficient T , and the time threshold

83

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

Tthr. Thereafter, algorithm U.Store picks a pseudo-random generator PRFmask : ZN×
{0, 1}∗ → ZN 2 together with a random seed ηm

R← ZN , and constructs the functions

maskGen and maskGenFast as described in Section 5.2.1

maskGen
(
(i, j), paramD

)
→ m

(j)
i ,

maskGenFast
(
(i, j), (p′, q′), paramD

)
→ m

(j)
i .

Finally, algorithm U.Store picks a pseudo-random generator PRGchal : {0, 1}λ →
[1, s]l and a unique identifier fid.

Algorithm U.Store then terminates its execution by returning the user key

Ku :=
(
fid, {α(j)}1≤j≤k, kprf), (p′, q′,maskGenFast)

)
,

the to-be-outsourced data object together with the integrity tags

D :=

{
fid; {d(j)i } 1≤j≤k

1≤i≤s
; {σi}1≤i≤s

}
,

and the data object parameters

paramD :=
(
PRGchal,maskGen, paramm := (N, T , ηm,PRFmask)

)
.

• C.GenR (D, paramsystem, paramD)→ (D̃): Upon reception of data object D, algorithm

C.GenR starts computing the redundancy symbols {r(j)i } k+1≤j≤n
1≤i≤s

by multiplying each

segment di :=
(
d
(1)
i , d

(2)
i , . . . , d

(k)
i

)
with the generator matrix G = [Ik | P]:

di · [Ik | P] =
(
d
(1)
i , d

(2)
i , . . . , d

(k)
i | r(k+1)

i , r
(k+2)
i , . . . , r

(n)
i

)
.

Thereafter, algorithm C.GenR generates the masking coefficients using the function

maskGen:

{m(j)
i } 1≤j≤n

1≤i≤s
:= maskGen

(
(i, j), paramm

)
(mod q),

2such that its output is guaranteed to have a large order modulo N .

84

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

and then, masks all data and redundancy symbols as follows:

{d̃(j)i } 1≤j≤k
1≤i≤s

← {d(j)i +m
(j)
i } 1≤j≤k

1≤i≤s
,

{r̃(j)i } k+1≤j≤n
1≤i≤s

← {r(j)i +m
(j)
i } k+1≤j≤n

1≤i≤s
.

At this point, algorithm C.GenR deletes all masking coefficients {m(j)
i } 1≤j≤n

1≤i≤s
and

terminates its execution by returning the encoded data object

D̃ :=

{
fid ;

(
{d̃(j)i } 1≤j≤k

1≤i≤s

∣∣ {r̃(j)i } k+1≤j≤n
1≤i≤s

)
; {σi}1≤i≤s

}
,

and by storing the data symbols {d̃(j)i } 1≤j≤k
1≤i≤s

and the redundancy symbols {r̃(j)i } k+1≤j≤n
1≤i≤s

at the corresponding storage nodes together with {σi}1≤i≤s.

• U.Chall (fid,Ku, paramsystem) → (chal): Provided with the object identifier fid, the

secret key Ku, and the system parameters paramsystem, algorithm U.Chall generates a

vector (νc)
l
c=1 of l random elements in Zq together with a random seed η ∈ {0, 1}λ,

and then, terminates by sending to all storage nodes {S(j)}1≤j≤n the challenge

chal :=
(
fid,
(
(η, (νc)

l
c=1

))
.

• C.Prove (chal, D̃, paramD)→ (proof): On input of challenge chal :=
(
fid,
(
(η, (νc)

l
c=1

))
,

object parameters paramD := (PRGchal,maskGen, paramm), and data object D, each

storage node {S(j)}1≤j≤n invokes an instance of this algorithm and computes its

response µ̃(j) as follows:

It first derives the indices of the requested segments

(ic)
l
c=1 := PRGchal(η),

and subsequently, it computes the following linear combination

µ̃(j) ←


∑l

c=1 νc d̃
(j)
ic
, if 1 ≤ j ≤ k∑l

c=1 νc r̃
(j)
ic
, if k + 1 ≤ j ≤ n.

85

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

In addition, algorithm C.Prove the linear combination of tags

τ ←
l∑

c=1

νc σic , (5.10)

and terminates its execution by returning the proof:

proof :=
{
{µ̃(j)}1≤j≤n, τ

}
.

• U.Verify (Ku, chal, proof,maskGenFast, paramD)→ (dec): On input of user key Ku :=

({α(j)}1≤j≤k, kprf , p
′, q′), challenge chal :=

(
fid,

(
(η, (νc)

l
c=1

))
, proof proof :={

{µ̃(j)}1≤j≤n, τ
}

, function maskGenFast, and data object parameters paramD :=

(PRGchal,maskGen, paramm), this algorithm first checks if the response time of all

storage nodes {S(j)}1≤j≤n is shorter than the time threshold Tthr. If not algorithm

U.Verify terminates by outputting dec := reject; otherwise it continues its execution

and checks that the proof :=
{
{µ̃(j)}1≤j≤n, τ

}
is well formed as follows:

It first derives the indices of the requested symbols and their respective tags

(ic)
l
c=1 := PRGchal(η),

and subsequently, it generates the corresponding masking coefficients and unmasks

the storage node responses as follows:

{m(j)
ic
} 1≤j≤n

1≤c≤l
:= maskGenFast

(
(ic, j), (p′, q′), paramD

)
(mod q),

µ(j) := µ̃(j) −
l∑

c=1

νc m
(j)
ic
, for 1 ≤ j ≤ n.

Algorithm U.Verify then checks that the data node responses {µ(j)}1≤j≤k are well

formed by verifying that the following equation holds:

τ
?
=

k∑
j=1

α(j)µ(j) +

l∑
c=1

νc PRF(kprf , ic),

and subsequently, it multiplies µ := (µ(1), µ(2), . . . , µ(k)) with the generator matrix

86

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

G = [Ik | P]:

µ · [Ik | P] = (µ(1), µ(2), . . . , µ(k) | µ∗(k+1), µ∗(k+2), . . . , µ∗(n)).

Thereafter algorithm U.Verify verify the redundancy node responses are well formed

as follows:

{µ(j)}k+1≤j≤n
?
= {µ∗(j)}k+1≤j≤n.

If the responses from all storage nodes {S(j)}1≤j≤n are well formed, algorithm

U.Verify outputs dec := accept; otherwise it returns dec := reject.

• C.Repair (∗D̃, Jf , paramsystem, paramD,maskGen)→ (D̃): On input of a corrupted data

object ∗D̃ and a set of failed storage node indices Jf ⊆ [1, n], algorithm C.Repair

first checks if |J | > n − k + 1, i.e., the lost symbols cannot be reconstructed due

to an insufficient number of remaining storage nodes {S(j)}1≤j≤n. In this case,

algorithm C.Repair terminates outputting ⊥; otherwise, it picks a set of k surviving

storage nodes {S(j)}j∈Jr , where Jr ⊆ [1, n]\Jf and, computes the masking coefficients

{m(j)
i } j∈Jr

1≤i≤s
and {m(j)

i } j∈Jf
1≤i≤s

, using the function maskGen, together with the parity

check matrix H = [−P> | In−k].

Thereafter algorithm C.Repair unmasks the symbols held in {S(j)}j∈Jr and recon-

structs the original data object D using H. Finally, algorithm C.Repair uses the

generation matrix G and the coefficients {m(j)
i } j∈Jf

1≤i≤s
to compute and subsequently

mask the content of storage nodes {S(j)}j∈Jf .

Algorithm C.Repair then terminates by outputting the repaired data object D̃.

5.5.2 Performance Analysis

Table 5.4 summarizes the performance impact of the storage efficient variant of the linearly-

homomorphic tags has on PORTOS. The new scheme with segment tags significantly

improves the communication, proof generation, and verification complexity at the cost of

a significant drop in the performance of algorithm U.Store. Furthermore, the new scheme

is more space-efficient, provided that the following inequality holds: 1 + 1/k < 2ρ. Lastly,

the new scheme meets the Req 3 (c.f. Section 3.2.4) as long as the time threshold Tthr is

tuned such that it fulfills the following relation:

RTTmax +

⌈
l

Π

⌉
Tmult < Tthr < RTTmax + Tpuzzle +

⌈
l + 1

Π

⌉
Tmult,

87

CHAPTER 5. PORTOS: PROOF OF DATA RELIABILITY FOR REAL-WORLD
DISTRIBUTED OUTSOURCED STORAGE

Metric Cost

Storage: s
ρ
· (n+ 1) symbols

Challenge: λ bits and l symbols

Bandwidth: Proof: n+ 1 symbols

U.Store complexity: 1 ECC + s·k
ρ

PRP + 1 Enc + s
ρ
PRF + s·k

ρ
mult + s·k

ρ
add

C.Prove complexity: 1 PRGchal + l · (n+ 1) mult + (l − 1) · (n+ 1) add

1 PRGchal + 2 · n · l exp + l PRF
U.Verify complexity: +(2 · k + l · (n+ 1)) mult + (2 · (k − 1) + l · (n+ 1)) add

Table 5.4: Performance analysis of PORTOS with storage efficient tags.

where RTTmax is the worst-case RTT, Tpuzzle := T ·Texp is the time required by S to evaluate

the function maskGen and Π is the number of computations S can perform in parallel.

5.6 Summary

In this chapter, we presented PORTOS, a novel Proof of Data Reliability solution for

erasure-code-based distributed cloud storage systems. PORTOS enables users to verify the

retrievability of their data, as well as the integrity of its respective redundancy. Moreover,

in PORTOS the cloud storage provider generates the required redundancy and performs

data repair operations without any interaction with the user, thus conforming to the

current cloud model. Thanks to the combination of linearly-homomorphic tags with time-

lock puzzles, PORTOS provides a rational cloud storage provider with a strong incentive

to provision sufficient redundancy, which is stored at rest, guaranteeing this way a reliable

storage service.

88

Part II

Verifiable Storage with Data

Reduction

89

Chapter 6

Verifiable Storage with Secure

Deduplication

In this chapter, we address the conflict between Proofs of Retrievability and deduplica-

tion. More precisely, inspired by previous attempts in solving the problem of duplicating

encrypted data, we propose a straightforward solution in combining PoR and deduplica-

tion. In addition we propose a novel massage-locked key generation protocol which is more

resilient against off-line dictionary attacks compared to existing solutions.

6.1 Introduction

While existing Proof of Retrievability (PoR) schemes mainly look for means to optimize

the performance at the user side, they usually assume that cloud storage providers have

potentially infinite resources to store data and compute proofs of retrievability. Such an

assumption unfortunately becomes too strong with the explosion of digital content. Cloud

storage providers, nowadays, look for different data reduction techniques including data

deduplication [55] to optimize their storage capacity: by eliminating duplicate copies of

data, cloud servers achieve high storage space savings [56]. Unfortunately, current PoR

solutions are incompatible with data deduplication as the integrity values resulting from

the encoding algorithm are generated using a secret key that is only known to the owner

of the file, and thus unique. Therefore, the encoding of a given file by two different users

results in two different outputs.

In this chapter, we present a generic approach that solves the conflict between PoR

and deduplication (c.f. Section 2.5.2) paving the way for a simple integration of PoR and

deduplication within the same cloud storage system. The root cause of the conflict is the

difference in the way duplicate data segments submitted by different users are handled

91

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

Figure 6.1: Conflict between PoR and Deduplication

by PoR and deduplication, namely, the fact that deduplication summarizes all duplicates

into a single copy whereas PoR requires that every duplicate segment be kept separately

in order to preserve the user-specific effect of PoR on each duplicate. Consequently, a new

approach aiming at achieving identical PoR effects on duplicates submitted by different

users seems to be the right solution for a simple composition of PoR with deduplication.

Further along the same direction, the new approach should assure that PoR’s effect on

each data segment depends on the value of the data segment regardless of the difference

in the identity of the users submitting the data segments, in other words, these PoR

operations should be a function of the data segment’s value independently of the user’s

identity. We thus define such PoR schemes that would be compatible with deduplication

as message-locked proofs of retrievability.

A straightforward technique to implement message-locked PoR (ML.PoR) consists of

defining the PoR operation on the data segment as a one-way function of the data seg-

ment. Without loss of generality existing PoR schemes can be represented by P(d,K) as a

function P of the data segment d and a key K that is determined by each user performing

the PoR processing on d. In the case of tag-based PoR schemes K is the secret key used to

produce the tags, whereas in PoR schemes relying on watchdogs K is the secret key used to

generate the watchdogs and encrypt the data. Given a one-way hash function f , existing

PoR schemes can be transformed to become message-locked by simply substituting K with

f(d) in the existing PoR function P(d,K). Based on this technique any existing symmet-

ric PoR scheme can be transformed into a message-locked PoR and as such be smoothly

integrated with a deduplication function. Yet a new concern arises about the substitu-

tion of the secret key K with the result of a one-way hash function of the data segment.

A similar question has been tackled when dealing with the problem of deduplication of

92

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

encrypted data and several solutions ranging from convergent encryption [55] to schemes

exploiting the popularity of data segments [57, 58] through server-based protocols [59, 60]

have been suggested. Like message-locked PoR, these solutions also rely on a key derived

from the data segment using some one-way function often called a message-locked key.

Unfortunately, most message-locked key generation techniques suffer from various security

exposures and the design of a secure message-locked key generation technique is subject

to several additional constraints. The message-locked PoR transformation we suggest can

be based on any secure message-locked key generation technique.

Organization. The rest of this chapter is organized as follows. Section 6.2 provides

some background on secure deduplication and reviews related work on message-locked key

generation protocols, and Proofs of Storage with deduplication. The idea of the underlying

solution is presented in Section 6.3. Section 6.4 describes the newly proposed server-aided

message-locked key generation technique. Section 6.5 presents the entire solution and

specifies two instantiations building upon two different PoR schemes. The security and

performance of the solution are analyzed in Sections 6.6 and 6.7, respectively.

6.2 Background

In this section, we present the problem of secure deduplication that is the source of in-

spiration for our message-locked PoR solution. Thereafter, we review previous work on

message-locked key generation protocols that were tailored for secure deduplication and

the state of the art on Proofs of Storage with deduplication.

6.2.1 Secure Deduplication

The term secure deduplication describes the techniques that enable a cloud storage system

to meet the inherently conflicting requirements of data confidentiality and data deduplica-

tion, i.e., securely and efficiently combining encryption with storage deduplication. The

root cause of the conflict is that encryption of a same data segment performed by different

users ensues completely different results for the same original copies.

Single-user vs cross-user deduplication. In addition to the differentiation according

to the granularity level of deduplication (file-level or block-level deduplication) as well as,

where deduplication occurs (server-side or client-side deduplication) that we presented in

Section 1.1, secure deduplication methods can also be classified according to their scope:

93

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

• Single-user deduplication, where the cloud storage system performs deduplication

only on the data of a single user. In this case, encryption can be safely added

without impeding deduplication, as long as the same key is used to encrypt all data

segments.

• Cross-user deduplication, where the cloud storage system performs deduplication

across the data of multiple users. This type of deduplication raises the issue of

implementing a secure message-locked key generation mechanism that enables users

to derive the same encryption key for a given data segment without compromising

confidentiality.

Regarding the performance of the two methods, cross-user deduplication is clearly

the most effective method: enabling deduplication across the data of all users in a cloud

storage system significantly increases the probability of finding redundant data and as a

result achieve grater gains in terms of storage space.

Client-side deduplication and data confidentiality. Client-side deduplication brings

the benefit of reducing bandwidth consumption as only data that have not previously up-

loaded to the cloud storage system are transfered over the network. Unfortunately, this

setting enables a malicious adversary to discover whether a particular piece of data is al-

ready stored in the cloud storage system [61,62]. In some contexts, this weakness may pose

a serious confidentiality threat as the adversary can exploit that deduplication function-

ality in order to obtain confidential information. To circumvent such attacks, solutions

in the literature [63, 64] propose to combine client-side deduplication mechanisms with

proofs of ownership (PoW) [65] which help the cloud storage provider to verify that a user

actually owns a file without the need to upload it.

6.2.2 State of the Art

Message-locked key generation. To show that deduplication and encryption can co-

exist, authors in [55] introduce the concept of convergent encryption whereby all existing

copies of a file is encrypted with the same encryption key: the encryption key simply is

the hash of the file. While this initial approach where the encryption key is derived from

the file itself seems ideal to achieve storage efficiency and data confidentiality at the same

time, it unfortunately suffers from several weaknesses including dictionary attacks during

which a cloud storage provider C can try to guess the file. A curious C can compute the

hash of potential candidates of a given file, derive an encryption key, and check whether

the encryption of the file with this key is actually stored at its premises.

94

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

To thwart this type of attacks, [59] introduces a key server KS. The idea is that every

time a user wants to upload a file it will engage in an instance of an oblivious pseudo-

random function (OPRF) protocol [66] with KS to generate a secret key with which the

file to be uploaded is going to be encrypted. In order to ensure that users owning the

same file agree on the same key, the user’s input to the OPRF will depend on the file. As

a result, the proposed scheme puts an end to offline attacks and forces the cloud storage

provider C (or a user) to contact KS whenever it makes a guess for an uploaded file. This

allows KS to implement rate-limiting measures to restrict the number of queries C can

issue, and as a by product limit the number of dictionary attacks C can conduct in a given

period of time.

Building on the same idea, the authors of [64] propose ClearBox which is a transparent

storage service that provides privacy-preserving deduplication while making sure that users

are charged only for the storage they actually use. The main contributions of ClearBox

are twofold: Replace OPRF with a BLS blind signature [67] to reduce the communication

and the computation cost of the key generation protocol; and combine Merkle trees and

time-dependent randomness (obtained by leveraging some bitcoin functionalities) to ensure

that the amount of money users pay is proportional to the rate of deduplication of their

uploaded files.

While the work of [59, 64] succeeds in circumventing offline dictionary attacks by C,

they are both prone to offline dictionary attacks by KS. To address this issue, Liu et al. [68]

devised a solution that allows users to agree on a secret key without connecting to a key

server. The proposed solution relies on additively homomorphic encryption, password-

authenticated key exchange (PAKE) and low-entropy hash to empower users uploading

the same file to derive the same encryption key. Furthermore by using low-entropy hash,

the scheme in [68] is able to have a rate-limiting strategy per file, which offers better

security guarantees than [59,64] that deploy rather a rate-limiting strategy per user.

Any of these solutions can be used as a building block to achieve message-locked PoR,

nevertheless, we propose a different approach that does not rely on a single key server, but

without the complexity of peer-to-peer systems. The idea is to have the user U interact

with both cloud server C and key server KS to generate the message-locked secret key that

will later be used as input to the message-locked PoR. The new solution will be described

in Section 6.4.

Proofs of storage with deduplication. Chen et al. [69] present BL-MLE, a message-

locked encryption scheme that supports both file-level and block-level secure data dedu-

plication. The main contributions of this scheme are the small-size metadata that allow

for fine-grained dual-level deduplication with minimal overhead and the use of a Proof of

95

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

Ownership (PoW) scheme in order to support for client-side deduplication. Additionally,

the authors claim that BL-MLE can be extended to use the PoR scheme in [28] in order

to support support secure deduplication with data integrity without providing integration

details.

Shin et a;. [70] proposed a proof of storage with deduplication (POSD) whereby thanks

to a publicly verifiable proof of data possession scheme, users can verify the correct storage

of deduplicated data using the public key of the first user actually storing the data. This

solution has been proved insecure in [71] as it does not prevent the cloud storage provider

from cheating.

Armknecht et al. [72] introduce a multi-tenant PoR framework that marries well with

deduplication. The proposed solution relies on shared aggregated tags based on BLS

signatures [10] that incorporate the secret keys of all users. The scheme considers a

security model in which users can be corrupted by a malicious cloud storage provider:

obtaining the secret key from a user does not help the malicious cloud storage provider to

reconstruct a deleted symbol tag. This however comes at a high cost at the user side in

terms of bandwidth and computation: the verification complexity of the storage of a file

grows linearly with the number of users outsourcing that file.

Leontiadis et al. [44] extend the Proof of Data Reliability scheme in [36] in order to

propose a scheme that is compatible with file-level deduplication. The scheme enable the

cloud storage provider to keep a single copy of a file’s replicas uploaded by different users

however it does not allow the deduplication of the homomorphic verification tags.

6.3 Message-Locked Proofs of Retrievability

We consider a cloud storage model that comprises a number of affiliated users who are

interested in securely outsourcing their files to a cloud storage provider C. Moreover,

these users wish to take advantage of the benefits of cross-user file-level deduplication

performed by C (e.g., reduced storage costs) whilst still being assured of the integrity of

their outsourced data. The latter goal is achieved through Proofs of Retrievability (PoR)

which, as discussed earlier, offer a user U cryptographic guarantees on the correct storage of

her outsourced data at the cost of a pre-processing (setup) phase during which algorithms

KeyGen and Encode are executed to prepare U’s files for upload. As we have discussed in

Section 2.2, the Encode algorithm consists of combining erasure codes with cryptographic

primitives such as encryption and tags or watchdogs to build a verifiable data object that

is uploaded to C.

This entails that in order to allow cloud storage provider C to deduplicate the out-

96

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

sourced files, users outsourcing the same file D should provide algorithm Encode with the

same input. Notably, the users should agree on the secret keys of the cryptographic func-

tions. To that effect, we propose a new ML.KeyGen algorithm that allows a user U with

some file D to generate a key KD by communicating with a key server KS and cloud storage

provider C such that KD is generated using a one-way function of file D, and the secret

keys of KS and C (c.f. Section 6.4). Thanks to ML.KeyGen, we can transform any PoR

scheme into a message-locked PoR by applying minor changes to the Encode algorithm.

This provides users with secure means to verify the integrity of their outsourced files while

at the same time saving storage (via deduplication) at the cloud storage provider. As to

what type of deduplication to use, ML-PoR goes with server-side deduplication. We recall

that in server-side deduplication (c.f. Section 2.5), the users upload their files to cloud

storage provider C, which in turn performs the deduplication.

Threat model. Since the solution uses a server aided key generation solution for dedu-

plication, similarly to all previously proposed server-aided encryption solutions, it assumes

that the cloud storage provider C does not collude with the key server KS. Furthermore,

cloud users are assumed not to collude either with the cloud server or with the key server.

Therefore, the only information the cloud storage provider C can have access to is users’

verifiable data objects and the messages exchanged during the message-locked key gener-

ation protocol.

6.4 ML.KeyGen: Server-aided message-locked key generation

In this section, we describe a new server-aided message-locked key generation protocol,

ML.KeyGen, that will be used by ML.PoR to generate the keying material for PoR. Com-

pared to related work (c.f. Section 6.2), this new solution offers better security guarantees,

as it protects against dictionary attacks that could be launched by the key server as well.

ML.KeyGen extends the solution in [64] by generating the message-locked key using two

secret keys, each of them generated by the key server KS and cloud storage provider C

respectively. Thanks to this solution, neither KS nor C can solely mount dictionary attacks.

6.4.1 Building Blocks

ML.KeyGen relies on the following building blocks.

Bilinear pairings. Let G1, G2, and GT be three cyclic groups of prime order p. A

bilinear pairing [73,74] is a map e : G1 ×G2 → GT with the following properties:

97

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

• e is bilinear : e(gα1 , g
β
2) = e(g1, g2)

αβ, for all g1 ∈ G1, g1 ∈ G2, and α, β ∈ Zp.

• e is computable: there exists an efficient algorithm that computes e(g1, g2) for

any (g1, g2) ∈ G1 ×G2.

• e is non-degenerate: if g1, g2 are generators of G1 ans G2 respectively, then

e(g1, g2) is a generator of GT .

Bilinear pairings are classified in three types with respect to the characteristics of

the underlying groups.

• If G1 = G2, then the pairing is symmetric or of Type 1.

• If G1 6= G2 and there exists an efficiently computable map φ : G2 → G1, then

the pairing is of Type 2.

• If G1 6= G2 and there is no efficiently computable map between G1 and G1,

then the pairing is of Type 3.

BLS signatures. Let e : G1 × G2 → GT be a type 2 bilinear pairing and g1, g2 be gen-

erators of G1 and G2 respectively. Moreover, let H∗ : {0, 1}∗ → G1 a cryptographic

hash function. The the BLS signature scheme [67] is defined as follows:

• KeyGen (1λ) → (sk, pk): Algorithm KeyGen picks a random number α ∈ Zp,
and sets sk := α and pk := gα2 ∈ G2.

• Sign (sk,m)→ (σ): Algorithm Sign outputs the signature σ := H∗(m)α ∈ G1.

• Verify (pk,m, σ) → (dec ∈ {accept, reject}): If e(g2, σ) = e(pk,H∗(m)) algo-

rithm Verify outputs dec := accept, otherwise it outputs dec := reject.

6.4.2 Description of ML.KeyGen

The proposed protocol is executed among a user U, the key server KS and the cloud

storage provider C. Let G1 and G2 be two groups of prime order p with g1 and g2 as their

respective generators, and e : G1 × G2 → GT be a bilinear pairing. We also define two

cryptographic hash functions H∗ : {0, 1}∗ → G1 and H : G1 → {0, 1}λ with λ being a

security parameter. During a setup phase, KS and C, respectively choose a private key

κ ∈ Z∗p and γ ∈ Z∗p and publish their corresponding public keys (yKS,1 = gκ1 , yKS,2 = gκ2)

and (yCS,1 = gγ1 , yCS,2 = gγ2). As depicted in Figure 6.2:

◦ User U computes an initial message-locked key h for file D by simply computing the

hash of D: h← H∗(D).

98

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

User Key Server Cloud Storage Provider

h← H∗(F)

α, β
R← Z∗p

ĥ← h · gα1
ĥ−−−−−−−−→

ŝ← (ĥ)
κ

ŝ←−−−−−−−−
s← ŝ · y−αKS,1

s̃← s · gβ1
s̃−−−−−−−−−−−−−−−−−−−−−−−−−→

c̃← (s̃)γ

c̃←−−−−−−−−−−−−−−−−−−−−−−−−−
c← c̃ · y−βCS,1

ret: KF ← H(c)

Figure 6.2: ML.KeyGen- Protocol Description

◦ This key is further blinded using a pseudo randomly generated value α ∈ Z∗p and the

result denoted by ĥ is sent to key server KS: ĥ← h · gα1

◦ Thanks to the underlying blinded signature, key server KS computes the signature of ĥ

using its private key κ: ŝ← (ĥ)
κ
.

◦ Upon reception of this blinded signature, user U unblinds this value to derive the

signature of h. Hence: s = hκgακ1 g−ακ1 . Subsequently, s is verified by checking if

e(s, g2) = e(h, yKS,2).

◦ User U blinds s using a second random value β ∈ Z∗p and sends the result s̃, this time,

to cloud storage provider C: s̃← s · gβ1 .

◦ Similarly to key serverKS, cloud storage provider C signs s̃ and returns this signature

to user U: c̃← (s̃)γ .

◦ User U in turn, unblinds c̃ to derive the signature c = hκγgβγ1 g−βγ1 and verifies the

signature using yCS,2.

◦ If the verification succeeds, the message-locked key KD equals H(c) = H(hκγ).

Thanks to this new key generation solution neither party can perform offline dictionary

attacks.

99

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

6.4.3 Security analysis of ML.KeyGen

The work of [59, 64] on secure deduplication relies on the assumption that the key server

KS is not interested in learning the content of the files kept at the cloud storage provider

C; and thus the key generation protocol only involves the user – having as input the file to

be uploaded – and KS – having as input its secret key. Yet, it is easy to see that there is

no real countermeasure to deter key server KS from running offline dictionary attacks to

compromise the confidentiality of the uploaded files. Our solution addresses this problem

by having cloud storage provider C take part in ML.KeyGen forcing as a result KS to go

online and connect to C whenever it makes a guess for an outsourced file. Luckily, such

online attacks can be obstructed using rate-limiting measures that bound the number of

ML.KeyGen runs (and therewith the number of online attacks) that a given user can initiate

within a given time period. Hence, as long as cloud storage provider C and key server KS

do not collude, none of them can perform offline dictionary attacks.

6.5 ML.PoR: Protocol Description

ML.Encode: Message-Locked PoR Encoding. Generally speaking, the preprocessing

step of a Proof of Retrievability scheme consists of the following operations (c.f. Sec-

tion 2.2):

(i) applying an erasure code to the file to be uploaded so as to allow user U to recover

her file in the face of accidental errors;

(ii) encrypting and permuting the file to hide the dependencies between data blocks and

redundancy symbols;

(iii) incorporating some integrity values (tags or watchdogs) which are later used to verify

the integrity of the outsourced file.

It follows that for message-locked PoR to work, users should not only generate the same

secret for the same file, but also agree on the the erasure code parameters, the encryption

and the permutation algorithms and the integrity mechanisms. Accordingly in our scheme,

we let the key server KS choose and advertise these parameters and algorithms before any

user U joins the system. In this manner, we ensure that the encoding operation yields the

same output for a fixed input file regardless of the user carrying it out.

To summarize, ML.Encode runs in the same way as a regular Encode, except for the

following:

(i) The secret key KD is generated using algorithm ML.KeyGen; and

100

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

(ii) all the parameters related to PoR (i.e. erasure code algorithm and cryptographic

functions) are provided by key server KS.

To illustrate the feasibility of message-locked PoRs, we describe in what follows two in-

stantiations that build upon the Privet Compact PoR and StealthGuard (c.f. Section 2.4).

Before the detailed description of our instantiations, we note that like a regular PoR a mes-

sage locked PoR comprises five algorithms: ML.KeyGen, ML.Encode, ML.Chall, ML.Prove

and ML.Verify. We note that algorithms ML.Chall, ML.Prove and ML.Verify are executed

in the same way as their counterparts in the original protocols.

6.5.1 ML.Private-Compact-PoR: A message-locked PoR scheme based

on linearly-homomorphic tags

This section describes a message-locked PoR that extends an existing tag-based solution

named Private Compact PoR (c.f Section 2.4.1). Tag-based PoR schemes need to be

adapted in order to be compatible with secure deduplication.

Overview of Private Compact PoR. A user U wishing to outsource a file D proceeds

as follows:

• U calls algorithm KeyGen in order to generate a secret key K that will be used to

prepare the verifiable data object D for upload and to verify its retrievability later.

• U then calls algorithm Encode, which is in charge of preparing data object D. Ac-

cordingly, algorithm Encode applies an erasure code to D and then uses the secret key

K to encrypt, shuffle and authenticate D. The authentication consists of generating

a linearly-homomorphic tag for each segment within the D.

At any time user U wishes to check the retrievability of file D, she calls algorithm Chall

to generate a query chal that includes the indices of randomly-chosen segments together

with some randomly-generated coefficients. On receiving the challenge chal, cloud storage

provider C calls algorithm Prove to generate a proof of retrievability proof. Such a proof

consists of a linear combination of the randomly-chosen segments using the randomly-

generated coefficients and the corresponding tags. The latter is computed by applying the

same linear combination over each segment’s linearly-homomorphic tag.

User U decides that D is retrievable if the proof produced by cloud storage provider C

is correctly formed: She uses her secret key K to check if the tag in the proof successfully

authenticates the linear combination of the file splits.

101

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

Figure 6.3: Steps of the ML.Encode algorithm of ML.Private-Compact-PoR.

ML.Private-Compact-PoR. In order for Private Compact PoR to become compatible

with deduplication, it needs to be slightly modified such that all users who outsource

the same file D to cloud storage provider C compute the same verifiable data object D.

In particular, we make Private Compact PoR message-locked by leveraging the newly

proposed algorithm ML.KeyGen. Additionally, key server KS publishes some parameters

which should be common for all users in the system in order for algorithm ML.Encode to

be deterministic and return the same output for each of its execution over the same file

D.

Assume that user U intends to outsource a file D. Accordingly, U prepares data object

D for upload as follows:

• ML.KeyGen (1λ, D) → (KD, paramsystem): User U calls this algorithm in order to

generate a secret key KD and a set of public parameters paramsystem that will be

used to prepare D for upload and to verify its retrievability later. These public

parameters are listed in Table 6.1.

• ML.Encode (KD, D, paramsystem) → (fid,D): Given secret key KD and the public

parameters paramsystem advertised by key sever KS, User U calls algorithm ML.Encode

that performs the following operations:

1. Erasure coding : Algorithm ML.Encode applies the erasure code published by

key server KS to file D. This yields file Ḋ.

102

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

Public Parameter Description

λ security parameter of Compact PoR
b size of a symbol in bits
m number of symbols in a segment Di
ρ code rate of erasure code, ρ = m

m+d

[m, k, d]–Erasure code Erasure code correcting up to d
2

errors per segment

Enc : {0, 1}λ × {0, 1}∗ → {0, 1}∗ encryption algorithm

PRPD : {0, 1}λ × [[1, n ·D]]→ [[1, n ·D]] pseudo-random file-level permutation

PRF : {0, 1}λ × {0, 1}∗ → Zp pseudo-random function

Hperm : {0, 1}∗ → {0, 1}λ file-level permutation key generator

Henc : {0, 1}∗ → {0, 1}λ encryption key generator

Hprf : {0, 1}∗ → {0, 1}λ PRF key generator
Hα : {0, 1}∗ × [[1,m]]→ Zp tag coefficient generator

Table 6.1: ML.Private-Compact-PoR’s Public Parameters.

2. File block permutation: At this step, ML.Encode computes a permutation key

Kperm = Hperm(KD) which together with the published pseudo-random per-

mutation PRPD is used to permute all the blocks in file Ḋ. Without loss of

generality, we denote the resulting permuted file D̈.

3. File encryption: Having KD, ML.Encode derives an encryption key Kenc =

Henc(KD), and uses this encryption key and the semantically secure encryption

algorithm Enc published by KS to encrypt the symbols in file D̈. Let D̂ denote

the encrypted file.

4. Tag generation: D̂ is further divided into n equally-sized segments each com-

prising m symbol. We denote d̂ij the jth symbol of the ith segment where 1 ≤
i ≤ n and 1 ≤ j ≤ m. ML.Encode then generates a PRF key Kprf = Hprf(KD)

and generates m random numbers αj = Hα(KD, j) where 1 ≤ j ≤ m. Then,

for each split D̂i, ML.Encode computes the following linearly-homomorphic tag

σi:

σi = PRF(Kprf , i) +
m∑
j=1

αj d̂ij

Algorithm ML.Encode then picks a unique identifier fid, and terminates its execution

by outsourcing to the cloud storage provider C the authenticated data object:

D :=
{

fid; {d̂ij} 1≤j≤m
1≤i≤n

; {σi}1≤i≤n
}
.

• ML.Chall (KD, fid) → (chal): This algorithm invoked by the user U picks l random

elements νc ∈ Zq and l random symbol indices ic, and sends to the cloud storage

103

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

provider C the challenge

chal :=
{

(ic, νc)
}
1≤c≤l.

• ML.Prove (fid, chal) → (proof): Upon receiving the challenge chal, C invokes this

algorithm which computes the proof proof := (µj , τ) as follows:

µj :=
∑

(ic,νc)∈chal

νc dij , τ :=
∑

(ic,νc)∈chal

νc σic .

• ML.Verify (KD, proof, chal) → (dec): This algorithm invoked by the user U, verifies

that the following equation holds:

τ
?
=

m∑
j=1

αjµj +
∑

(ic,νc)∈chal

νc PRF(kprf , ic).

If proof is well formed, algorithm SW.Verify outputs dec := accept; otherwise it

returns dec := reject.

Notice that if there is another user U′ wishing to outsource the same file D, cloud

storage provider C will easily detect the duplicate copy if she executes the proposed

ML.Private-Compact-PoR and consequently remove it to save storage space. Thanks

to the deterministic nature of the underlying algorithms, U′ will still be able to check the

retrievability of D.

6.5.2 ML.StealthGuard: A message-locked PoR scheme based on watch-

dogs

This section describes a message-locked PoR that extends an existing watchdog-based

solution named StealthGuard (c.f Section 2.4.2). In StealthGuard, data retrievability is

achieved thanks to the oblivious insertion of pseudo-randomly generated symbols named

watchdogs. Furthermore, StealthGuard leverages a privacy-preserving word search scheme

in order to query the watchdogs without leaking any information about their value or their

position within the data.

Overview of StealthGuard. A user U wishing to outsource her file D proceeds as

follows:

• U calls the algorithm KeyGen to derive a secret key K that is used to process D before

104

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

Figure 6.4: Steps of the ML.Encode algorithm of ML.StealthGuard.

outsourcing that data object D to cloud storage provider C as well as to verify its

retrievability later.

• U then calls algorithm Encode, which is the algorithm that produces data object D.

Hence, algorithm Encode applies an erasure code to D, and then using secret key

K determines the value and location of the watchdogs within the encoded file and

permutes and encrypts the file.

Once D is uploaded, user U can indefinitely query randomly chosen watchdogs thanks

to the underlying privacy preserving search mechanism without leaking any information

about the actual watchdog and its position.

ML.StealthGuard. Similarly to Private Compact PoR, the original StealthGuerd be-

comes compatible with deduplication whenever it uses a message-locked key together

with some other parameters that are common for all users in the system. Therefore

ML.StealthGuard builds upon the newly proposed ML.KeyGen and assumes that all users

fetch the public parameters from a key server KS.

Assume that user U intends to outsource a file D. Accordingly, U prepares data object

D for upload as follows:

• ML.KeyGen (1λ, D) → (KD, paramsystem): User U calls this algorithm in order to

generate a secret key KD and a set of public parameters paramsystem that will be

105

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

Public Parameter Description

λ security parameter of StealthGuard
b size of a symbol in bits
m number of symbols in a segment Di
v number of watchdogs in one segment
ρ code rate of erasure code, ρ = m

m+d

[m, k, d]–Erasure code Erasure code correcting up to d
2

errors per segment

Enc : {0, 1}λ × {0, 1}∗ → {0, 1}∗ encryption algorithm

PRF : {0, 1}λ × {0, 1}∗ × {0, 1}∗ → {0, 1}l watchdog generator

PRPD : {0, 1}λ × [[1, n ·D]]→ [[1, n ·D]] pseudo-random file-level permutation

PRPDi : {0, 1}λ × [[1, D + v]]→ [[1, D + v]] pseudo-random segment-level permutation

HpermD : {0, 1}∗ → {0, 1}λ file-level permutation key generator

Henc : {0, 1}∗ → {0, 1}λ encryption key generator

Hwdog : {0, 1}∗ → {0, 1}λ watchdog key generator
HpermDi : {0, 1}∗ × [[1, n]]→ {0, 1}τ segment-level permutation key generator

Table 6.2: ML.StealthGuard’s Public Parameters

used to prepare D for upload and to verify its retrievability later. These public

parameters are listed in Table 6.2.

• ML.Encode (KD, D, paramsystem) → (fid,D): Given secret key KD and the public

parameters paramsystem advertised by key sever KS, User U calls algorithm ML.Encode

that performs the following operations:

1. Erasure coding : As a first step, ML.Encode divides file D into n segments

{D1, D2, ..., Dn} where each segment Di with 1 ≤ i ≤ n, regroups m blocks

of size l. ML.Encode further applies the erasure code published by KS to each

file segment Di. This yields a new encoded file Ḋ.

2. File symbol permutation: At this step, ML.Encode first generates a permuta-

tion key KpermF such that KpermD = HpermF(KD). This key and the published

pseudo-random permutation PRPD are used to shuffle all the blocks in file Ḋ.

Let D̈ denote the resulting file.

3. File encryption: Given secret key KD, ML.Encode derives an encryption key

Kenc = Henc(KD), and with this encryption key ML.Encode further encrypts

the symbols in file D̈ using the semantically secure encryption algorithm Enc

published by KS. We denote by D̃ file D̈ after encryption.

4. Watchdog insertion: ML.Encode computes a watchdog generation key Kwdog =

Hwdog(KD) and uses this key and the published pseudo-random function PRF

to generate n × v watchdogs wij = PRF(Kwdog, i, j) for 1 ≤ i ≤ n and 1 ≤
j ≤ v. Since the watchdogs are pseudo-randomly generated and the symbols in

106

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

the splits are encrypted using a semantically secure encryption, cloud storage

provider C cannot differentiate between watchdogs and data symbols. Once

all watchdogs are generated, ML.Encode appends v watchdogs {wi1, ..., wiv} to

each D̃iin D̃. Each split is permuted using their corresponding newly generated

permutation key KpermS,i = HpermDi
(KD, i) and the published pseudo-random

permutation PRPDi . Without loss of generality, we denote D file D̃ after the

insertion of watchdogs.

Algorithm ML.Encode then picks a unique identifier fid, and terminates its execution

and further outsources to the cloud storage provider C the verifiable data object D.

• ML.Chall (KD, fid)→ (chal): User U calls this algorithm which chooses a γ segments

and a watchdog within each of these segments. Thereafter algorithm ML.Chall uses

the underlying PRISM.Query algorithm to issue a privacy preserving search queries

for each of the selected watchdogs. Algorithm ML.Chall terminates its execution by

sending to the cloud storage provider C the challenge chal comprising the γ search

queries.

• ML.Prove (fid, chal) → (proof): Upon receiving the challenge chal the cloud storage

provider C invokes this algorithm which uses the underlying PRISM.Process algorithm

to construct the response for each of the γ search queries. Thanks PRISM.Process,

cloud storage provider C cannot not learn either the content of the search query or

the corresponding response. Algorithm ML.Prove terminates its execution by sending

to the user U the proof proof comprising the responses to γ search queries.

• ML.Verify (KD, fid, chal, proof) → (dec): User U calls this algorithm which uses the

underlying PRISM.Analysis algorithm to processes all responses included to the proof

proof. Algorithm ML.Verify outputs dec := accept if the all queried watchdogs are

present or dec := reject otherwise.

Furthermore, another user U′ wishing to outsource an already uploaded file D, will

compute the same message-locked key thanks to the newly proposed ML.KeyGen protocol;

KD together with the public parameters will be subsequently used by ML.Encode to output

the same verifiable fileD. Thanks to their deterministic nature, ML.KeyGen and ML.Encode

enable C to perform cross-user deduplication while still providing cryptographic assurances

on the retrievability of the outsourced files.

107

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

6.6 Security analysis

Security guarantees of PoR. Proofs of retrievability ensure that if the cloud storage

provider C succeeds in providing a valid PoR (i.e. proof that passes the verification at the

user) for some outsourced data object D, then one can have the assurance that D is stored

in its entirety and can be correctly retrieved from C. This security guarantee derives from

a combination of erasure codes that allow file recovery from accidental errors, and integrity

mechanisms that detect deliberate file corruption. More specifically, the security of PoR

mechanisms relies on two measures:

• hiding the dependencies between data and redundancy symbols through semantically-

secure encryption and secure permutations;

• authenticating the outsourced files either by inserting (unforgeable) watchdogs (c.f.

[9, 15]) or by computing (unforgeable) tags (cf. [10,19]).

Security of message-locked PoR and file unpredictability. Note that the security

of our message-locked PoR is assured so long as the key KD derived in the key generation

phase is not compromised. By having access to the secret key used during upload, cloud

storage provider C not only can compromise the confidentiality of the file, but can also

corrupt the uploaded file without being detected. Notably, C can mount the following

types of attacks:

• Use the secret key KD to find the dependencies between data and redundancy sym-

bols by decrypting the file and inverting the permutations used to shuffle the symbols.

In this fashion, C can corrupt the file in such a way that the file becomes irretrievable

while ensuring that the probability of detecting the tampering is negligible.

• In the case of tag-based PoR schemes, given the secret key KD cloud storage provider

C can modify the data symbols and compute the corresponding tags correctly.

• In the case of watchdog-based PoR scheme, the secret key KD enables C to discover

which symbols are data symbols and which are watchdogs, and accordingly, it can

keep only the watchdogs and get rid of the data symbols.

Taking these attacks into account, we conclude that similarly to previous work on

secure deduplication, the security of our scheme is closely tied to how well C guesses

the content of the data object file: namely, the unpredictability of the uploaded file.

Nevertheless thanks to our ML.KeyGen protocol, cloud storage provider C cannot run offline

dictionary attacks, as it must go online and connect to the key server KS to generate the

secret key KD and test the correctness of its guesses.

108

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

Rate limiting. The confidentiality and the integrity guarantees of our scheme depend

on the unpredictability of the file and the number of message-locked key generation queries

a user is allowed to issue. Intuitively, the more predictable the file is, the less the number

of key generation queries an adversary (e.g. cloud storage provider C) has to make to

divulge its content; inversely, the more key generation queries an adversary makes, the

more predictable the file becomes (by ruling out the files that do not match). It follows

that in order to contain the threat of online attacks, it is important to limit the number

of such queries a given user makes. This in reality will be implemented through authen-

tication mechanisms: both cloud storage provider C and key server KS will authenticate

and identify (and therewith keep track of) users submitting upload queries. Still as rightly

pointed out by [68], C or KS for instance can masquerade as any number of users voiding

thus the benefits of any rate limiting countermeasure. This illustrates that in order for

rate limiting to work, we need to put in place mechanisms to verify the identity of users

engaging in the key derivation protocol. One approach to achieve this is to link the user’s

identity to the user’s IP address; however, this approach can be insufficient if users mount

spoofing attacks. A more secure alternative, albeit more costly is to have an identity

manager –as in [57]– that verifies the identity of the users and provides these with the

credentials necessary to operate the functionalities of the storage service.

6.7 Performance analysis

Performance of ML.PoR. Thanks to the newly proposed message-locked PoR scheme,

cloud storage provider C succeeds in saving storage space using deduplication techniques

and users are provided with some guarantees with respect to the integrity of their data.

The generation of a message-locked key and the use of deterministic operations for the

pre-processing (encoding) of the outsourced files enable C to discover redundant data

and further perform deduplication while still being able to produce cryptographic proofs

for data retrievability. The only additional cost added by the newly designed ML-PoR

schemes, compared with their original versions is the one originating from the server-

aided message-locked key generation protocol which is mandatory to ensure the security

of ML.PoR.

Tables 6.3 and 6.4 illustrates this overhead for the instantiation of two massage-locked

PoR schemes, namely, ML.Private-Compact-PoR and ML.StealthGuard. We analyze the

cost of each algorithm –Encode, Prove, and Verify– of these two schemes with respect

to a file D of size 4 GB and on the basis of a PoR assurance equivalent to a security

parameter λ := 45 as defined in [15]. Computation costs are represented with exp for

109

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

Scheme Parameters U KS C Storage
(20 copies)

Private Compact PoR [10]

1 EC D:
Symbol size: 80 bits 1 Enc 80 GB

Symbols/segment: 160 5.4× 106 PRF ⊥ ⊥ Tags:
Tag size: 80 bits 1.1× 109 mult 420 MB

4.3× 108 PRP

ML.Private-Compact-PoR

1 EC
1 Enc D:

Symbol size: 80 bits 5.4× 106 PRF 4 GB
Symbols/segment: 160 1.1× 109 mult 1 exp 1 exp Tags:

Tag size: 80 bits 4.3× 108 PRP 21 MB
4 exp

StealthGuard [15]

1 EC D:
Symbol size: 256 bits 1 Enc 80 GB

Symbols/segment: 4096 2.6× 105 PRF ⊥ ⊥ Watchdogs:
1.3× 108 PRP 160 MB

ML.StealthGuard

1 EC D:
1 Enc 4 GB

Symbol size: 256 bits 2.6× 106 PRF 1 exp 1 exp Watchdogs:
Symbols/segment: 4096 1.3× 108 PRP 8 MB

4 exp

Table 6.3: Computation ans storage overhead imposed by ML.PoR to the underlying PoR schemes
during the outsource processing (algorithms KeyGen and Encode) of a 4 GB file D.

Scheme Prove Verify Bandwidth
Out In

Private Compact PoR [10] 7245 mult
45 PRF

1.9 KB 1.6 KB
365 mult

ML.Private-Compact-PoR 7245 mult
45 PRF

1.9 KB 1.6 KB
365 mult

StealthGuard [15] 6.3× 108 mult
1.4× 105 mult

23.4 MB 26.2 MB
1719 PRF

ML.StealthGuard 6.3× 108 mult
1.4× 105 mult

23.4 MB 26.2 MB
1719 PRF

Table 6.4: Computation and communication overhead imposed by ML.PoR to algorithms Prove
and Verify of the underlying PoR schemes for a 4 GB file D.

exponentiation, mult for multiplication, PRF for pseudo-random function and PRP for

pseudo-random permutation. Table 6.3 shows the overhead imposed on the outsourcing

process (algorithms KeyGen and Encode) from the message-locked key generation protocol

is 4 exponentiations at user U and one at cloud storage provider C and key server KS

respectively. Since algorithms KeyGen and Encode are executed only once for every file

D user U outsources to C, this overhead can be considered as minimal compared to the

computational cost of the remaining algorithms. Moreover, the last column of Table 6.3

110

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

shows a scenario where 20 users outsource to cloud storage provider C the same 4 GB

file. The advantages of our message-locked PoR solution are clear as the only storage

overhead in this case is the one of the integrity values of the underlying PoR schemes

whereas in the non message-locked case the storage overhead is linear to the number of

users. Table 6.4 illustrates that ML.PoR does not induce any additional computational or

communication cost to algorithms Chall, Prove, and Verify of the underlying PoR scheme.

Concerning performance of our server-aided message-locked key generation protocol, the

proposed ML.KeyGen protocol, compared to existing solutions [59, 64], relaxes the trust

towards KS at the cost of one more communication round.

ML.PoR with client-side deduplication. The currently proposed message-locked

PoR schemes can achieve even more savings by implementing a client-side deduplication

strategy whereby a user U uploads a file object D only if not already stored. Consequently,

both users and the cloud storage provider C benefit from bandwidth savings. To enable

client-side deduplication, a user U only needs to execute ML.KeyGen and ML.Encode and

to check whether the resulting verifiable data object D is already stored at C (e.g. by

hashing this file and comparing it with a hash table stored at C). However, as noted

in [61], client-side deduplication is exposed to some attacks launched by potentially mali-

cious users: an adversary that discovers the identifier of a file can claim possession of it. To

circumvent such attacks, solutions in the literature [63,64] propose to combine client-side

deduplication mechanisms with Proofs of Ownership (PoW) [65] which help cloud storage

provider C to verify that a user U owns a file without the need to upload it.

A solution that implements client-side deduplication using PoW, would require user U

to first execute the most costly algorithm of message-locked PoR – namely, ML.Encode –

and thereafter to prove to cloud storage provider C the ownership of the verifiable data

object D. Given that the computational cost of current PoW schemes is linear to the

size of the file (see Table 2 in [75]), users have to consider the trade-off between the

bandwidth savings and the computational overhead of PoW before deciding to use client-

side deduplication.

When using client-side deduplication, one might argue that if user U does not upload

the data object D, then she should not be burdened with the execution of the algorithm

ML.Encode. Instead she could compute the proof of ownership using the original file D.

Unfortunately, this approach would break the security of PoR since to be able to verify a

PoW proof cloud storage provider C needs to process the original file D. Hence, C would

immediately derive the secret message-locked key KD. Thus, the Proof of Ownership

should be computed using the verifiable data object D.

111

CHAPTER 6. VERIFIABLE STORAGE WITH SECURE DEDUPLICATION

6.8 Summary

In this chapter, we proposed the message-locked PoR approach which makes sure that all

algorithms in a PoR scheme are deterministic and therefore enables file-based deduplica-

tion. The two described instantiations of existing PoR solutions (ML.Private-Compact-

PoR and ML.StealthGuard) mainly implement a new algorithm ML.Encode, that basically

differs from the original algorithm Encode in one aspect: instead of pseudo-randomly

generated, the required keying material is derived from the file itself. Thus, for a given

file, ML.Encode will always output the same verifiable data object D irrespective of the

identity of the user executing it. As such message-locked keys are exposed to dictionary

attacks that could be launched by potentially malicious cloud storage providers, the pro-

posed ML.PoR solutions initially call for a server-aided key generation technique, namely,

ML.KeyGen which helps in protecting the secrecy of such keys. Thanks to the newly pro-

posed ML.KeyGen solution that involves both the key server and the cloud provider, none

of these parties can discover the message-locked key alone.

112

Chapter 7

Concluding Remarks and Future

Research

7.1 Summary

Cloud storage is certainly one of the most attractive services offered by cloud computing.

Indeed, cloud storage systems offer users the opportunity to outsource their data without

the need to invest in expensive and complex storage infrastructure. However, in this

new paradigm users lose control over their data and lend it to cloud storage providers.

Hence, users lose the ability to safeguard their data using traditional IT and security

mechanisms. As a result, technical solutions aiming at establishing users confidence on

the services provided by a cloud storage system would be highly beneficial both to users

and cloud storage providers.

In this thesis, we focused on the aspect of verifiability in the context of cloud stor-

age systems. We started our analysis with Proofs of Storage: a family of cryptographic

protocols that enable a cloud storage provider to prove to a user that the integrity of her

data has not been compromised. The user can ask the cloud storage provider to provide

such proofs for an outsourced data object without the need to download the entire object

in order to verify that the latter is stored correctly – only a small fraction of the data

object has to be accessed in order to generate and verify the proof. Our study revealed

the limitations of current Proof of Storage protocols with respect to two key characteristics

of cloud storage systems, namely, reliable data storage with automatic maintenance, and

data deduplication.

Verification of reliable data storage with automatic maintenance. Reliable data

storage relies on redundancy and data repair mechanisms to detect and restore corrupted

113

CHAPTER 7. CONCLUDING REMARKS AND FUTURE RESEARCH

data. Hence, in addition to the integrity of the data outsourced by users, a Proof of

Storage scheme must also verify that a cloud storage provider stores sufficient amount of

redundancy information to be able to guarantee the maintenance of the data in the face

of corruption. However, redundancy is a function of the original data itself. As a result,

a malicious storage provider can exploit this property in order to save storage space by

keeping only the outsourced data, without the required redundancy, and leverage the data

repair mechanism when needed in order to positively meet the verification of reliable data

storage criteria.

In Chapter 3, we introduced the notion of Proofs of Data Reliability, a comprehen-

sive verification scheme that aims to resolve the conflict between reliable data storage

verification and automatic maintenance.

In Chapter 4, we proposed POROS, our first attempt to provide a secure yet practi-

cal solution that enables a user to efficiently verify that the cloud storage provider stores

her outsourced data correctly and additionally that it complies with the claimed reliable

data storage guarantees. Running the POROS protocol, a client is assured that the cloud

storage provider actually stores at rest both the original data and the corresponding re-

dundancy and it does not compute the latter on-the-fly upon a Proof of Data Reliability

challenge. Moreover, POROS does not prevent the cloud from performing functional oper-

ations such as automatic repair and does not induce any interaction with the client during

such maintenance operation. We analyzed the security of POROS both theoretically and

through experiments measuring the time difference in computing a proof between an hon-

est cloud and some rational adversaries. Finally, we finally proposed an extended version

of POROS where users can run multiple instances of the challenge-response protocol in

order to increase their trust in the cloud storage system.

Based on the expertise we earned during the design of POROS, we decided to work

on a new Proof of Data Reliability scheme that copes with the shortcomings of POROS.

More precisely:

• POROS security relies on the underlying technology of cloud storage systems, namely,

the use of rotational hard drives as the storage medium. Unfortunately, the intro-

duction of novel storage technologies – such as SSD or NVMe drives – is going to

break POROS security.

• Moreover, POROS assumes a back-end storage architecture that deviates from the

traditional architecture of erasure-code based distributed storage systems, wherein

each codeword symbol is stored on a distinct storage node. POROS’s requirement

that the redundancy object is stored on a single storage node raises concerns regard-

ing the reliable data storage of the redundancy object itself.

114

CHAPTER 7. CONCLUDING REMARKS AND FUTURE RESEARCH

In Chapter 5, we proposed PORTOS, new scheme that satisfies the same Proof of Data

Reliability requirements as POROS, while overcoming the shortcoming of POROS. In par-

ticular, PORTOS design does not make any assumptions regarding the underlying storage

medium technology nor it deviates from the current distributed storage architecture. To

defend against an adversary who computes the redundancy on-the-fly upon a Proof of

Data Reliability challenge, PORTOS relies on time-lock puzzles in order to augment the

resources (storage and computational) a cheating cloud storage provider has to provision

in order to produce a valid Proof of Data Reliability. Nonetheless, this mechanism does not

induce any additional storage or computational cost to an honest cloud storage provider

that generates the same proof. We analyzed both the security of the protocol and we show

that PORTOS is secure against a rational adversary. Moreover, we analyzed the perfor-

mance of PORTOS in terms of storage, communication, and verification cost. Finally,

we proposed a more efficient version of the protocol which improves the performance of

both the cloud storage provider and the verifier at the cost of reduced in granularity with

respect to the detection of corrupted storage nodes.

Conflict between PoS schemes and data deduplication. The integration of Proofs

of Storage with deduplication presents several challenges due to the diverging objectives of

the two: PoR aims at imprinting the data with retrievability guarantees that are unique for

each user whereas deduplication tries, whenever feasible, to factor several data segments

submitted by different users into a unique copy kept in storage. The integrity values

– tags or watchdogs – resulting from the PoR Encode algorithm are generated using a

secret key that is only known to the owner of the file, and thus unique. Therefore, the

encoding of a given file by two different users results in two different outputs which cannot

be deduplicated.

Inspired by previous attempts in solving the problem of duplicating encrypted data,

in Chapter 6 we devised a solutions that addresses the conflict between Proofs of Re-

trievability and deduplication. More specifically, we proposed the message-locked PoR

approach which makes sure that all operations of algorithm Encode are deterministic and

therefore enables file-based deduplication. The key idea behind message-locked PoR is

that the required he required keying material is derived from the file itself. Thus, for a

given file, different users will always output the same verifiable data object irrespective

of their identity. In addition we proposed a novel message-locked key generation protocol

which is more resilient against off-line dictionary attacks compared to existing solutions.

Proofs of Data Reliability with deduplication. It is worth to mention that the

solutions we propose in this thesis – namely, POROS and PORTOS on the one hand, and

115

CHAPTER 7. CONCLUDING REMARKS AND FUTURE RESEARCH

ML.PoR on the other hand – are fully compatible. Indeed, both POROS and PORTOS are

symmetric schemes. Hence, by replacing the key generation mechanism that is included

in algorithm Store with ML.KeyGen, we obtain a message-locked Proof of Data Reliability

scheme that allows the cloud storage provider to perform cross-user file-level deduplication.

7.2 Future Work

Here, we present possible research directions that stem from the results presented in this

thesis.

Proofs of Data Reliability with efficient repair. Both of our Proof of Data Relia-

bility schemes, namely POROS and PORTOS, rely on [n, k]–MDS codes to generate

the required redundancy in order to meet the reliability guarantee t (c.f. Section 3.2).

While, MDS codes achieve the optimal performance in terms of the trade-off between

failure recovery and storage overhead, in the event of data loss they require the re-

construction of the original file before computing the lost symbols. Hence, other

erasure code types that reduce the cost of repair for lost symbols, would greatly

benefit honest cloud storage providers. Local Reconstruction Codes (LRC) [76, 77]

are a family of erasure codes that fulfill the above requirement. More specifically,

LRC codes split the symbols of a data segment in groups and compute two types of

redundancy symbols: global redundancy symbols that are computed from all sym-

bols of a data segment, and local redundancy symbols that are computed for each

group. On the one hand, local redundancy symbols reduce the minimum number of

symbols needed to regenerate a corrupted symbol and therefore reduce the network

overhead and computation cost of the repair. On the other hand, global redundancy

allow for a slightly worse trade-off between failure recovery and storage overhead

compared to MDS codes.

Assessment of cloud storage provider capabilities. POROS, PORTOS as well as

other Proof of Data Reliability schemes that allow for automatic or“semi-automatic”

maintenance by the cloud storage provider [36, 37, 44, 51] set a time threshold Tthr

in order to decide whether to accept or reject a proof produced by cloud storage

provider C. This time threshold is defined as a function of C’s computational capac-

ity. Hence, there is a need to estimate C’s computational capacity in a reliable and

accurate manner.

Moreover, all of the above Proof of Data Reliability schemes make the assumption

that computation is more expensive than storage, which may not always be true.

116

CHAPTER 7. CONCLUDING REMARKS AND FUTURE RESEARCH

Therefore, there is a need for a security model that encompass all operational re-

sources – computation, network, and storage – of a cloud storage system.

Verification/secure deduplication of dynamic data. In this thesis, we focused our

efforts on designing verification schemes compatible with the functional requirements

of automatic maintenance, reliable data storage, and data deduplication (c.f. Sec-

tion 1.1). However, there exists an additional functional requirement, namely, sup-

port for dynamic data, that greatly increases the complexity of integrating security

primitives to a cloud storage system. Literature features a number of PoS proto-

cols [18, 19, 22, 23] and Proof of Data Reliability schemes [40–42] that allow for dy-

namic writes/updates of the verifiable data object. Nonetheless, all of these solutions

are applicable only to the object storage setting. Another option for future research

is integrate PoS and Proof of Data Reliability protocols with more volatile settings

such as block storage or relational data bases. In such a context, the high volume

of write/update/delete operations which are performed on data segments of smaller

size presents new challenges to the verification of data integrity and data availability.

Similar challenges arise in the case of secure deduplication in this context.

Ideally, we would like to have a cloud computing platform that incorporate security primi-

tives a variety of security concerns. Such primitives include solutions for privacy preserving

data processing, verifiable data processing, and verifiable storage. Unfortunately, in most

cases the security primitives have conflicting requirements and therefore it is not trivial to

deploy them side-by-side on the same system. It our belief that this thesis contributes to

the realization of such a cloud computing platform.

117

CHAPTER 7. CONCLUDING REMARKS AND FUTURE RESEARCH

118

Bibliography

[1] K. Elkhiyaoui, M. Önen, D. Vasilopoulos, D. V. Garćıa, B. G. N. Crespo, R. M. V.

Alvarez, H. Ritzdorf, P. Louridas, A. de Caro, A. Kurmus, A. Sorniotti, R. Les-

cuyer, G. Karame, W. Li, A. Fischer, B. Fuhry, and M. Kohler, “TREDISEC

Project, D2.2 Requirements Analysis and Consolidation,” http://tredisec.eu/content/

d22-requirements-analysis-and-consolidation, December 2015, accessed: 2019-05-21.

[2] “Using Amazon Web Services for Disaster Recovery,” October 2014.

[3] “HDFS Architecture Guide,” https://hadoop.apache.org/docs/r1.2.1/hdfs design.

html, accessed: 2017-08-11.

[4] M. Xia, M. Saxena, M. Blaum, and D. A. Pease, “A tale of two erasure codes in hdfs,”

in Proceedings of the 13th USENIX Conference on File and Storage Technologies, ser.

FAST’15, 2015, pp. 213–226.

[5] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu, S. Sri-

vastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri, A. Edwards, V. Be-

dekar, S. Mainali, R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj,

S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Manivannan, and L. Rigas,

“Windows azure storage: A highly available cloud storage service with strong consis-

tency,” in Proceedings of the Twenty-Third ACM Symposium on Operating Systems

Principles, ser. SOSP ’11, 2011.

[6] “HDFS RAID,” https://wiki.apache.org/hadoop/HDFS-RAID, accessed: 2017-08-11.

[7] R. Ross, M. McEvilley, and J. Oren, “Systems Security Engineering: Considerations

for a Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems,”

https://csrc.nist.gov/publications/detail/sp/800-160/vol-1/final, November 2016, ac-

cessed: 2019-05-21.

119

http://tredisec.eu/content/d22-requirements-analysis-and-consolidation
http://tredisec.eu/content/d22-requirements-analysis-and-consolidation
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://wiki.apache.org/hadoop/HDFS-RAID
https://csrc.nist.gov/publications/detail/sp/800-160/vol-1/final

BIBLIOGRAPHY

[8] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song,

“Provable data possession at untrusted stores,” in Proceedings of the 14th ACM Con-

ference on Computer and Communications Security, ser. CCS ’07, 2007.

[9] A. Juels and B. S. Kaliski, Jr., “Pors: Proofs of retrievability for large files,” in

Proceedings of the 14th ACM Conference on Computer and Communications Security,

ser. CCS ’07, 2007.

[10] Shacham, H. and Waters, B., “Compact proofs of retrievability,” in Proceedings of

the 14th International Conference on the Theory and Application of Cryptology and

Information Security: Advances in Cryptology, ser. ASIACRYPT ’08, 2008.

[11] G. Hogben and A. Pannetrat, “Mutant apples: A critical examination of cloud sla

availability definitions,” in IEEE 5th International Conference on Cloud Computing

Technology and Science, CloudCom 2013, Bristol, United Kingdom, December 2-5,

2013, Volume 1, 2013.

[12] C. Xing and S. Ling, Coding Theory: A First Course. Cambridge University Press,

2003.

[13] J. Katz and Y. Lindell, Introduction to Modern Cryptography. CRC Press, 2014.

[14] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play mental poker

keeping secret all partial information,” in Proceedings of the Fourteenth Annual ACM

Symposium on Theory of Computing, ser. STOC ’82, 1982.

[15] M. Azraoui, K. Elkhiyaoui, R. Molva, and M. Önen, “Stealthguard: Proofs of retriev-

ability with hidden watchdogs,” in Proceedings of the 19th European Symposium on

Research in Computer Security, ser. ESORICS ’14, 2014.

[16] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. Peterson,

and D. Song, “Remote data checking using provable data possession,” ACM Trans.

Inf. Syst. Secur., vol. 14, no. 1, Jun. 2011.

[17] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable and efficient prov-

able data possession,” in Proceedings of the 4th International Conference on Security

and Privacy in Communication Netowrks, ser. SecureComm ’08, 2008.

[18] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic provable data

possession,” in Proceedings of the 16th ACM Conference on Computer and Commu-

nications Security, ser. CCS ’09, 2009.

120

BIBLIOGRAPHY

[19] B. Chen and R. Curtmola, “Robust dynamic remote data checking for public clouds,”

in Proceedings of the 2012 ACM Conference on Computer and Communications Se-

curity, ser. CCS ’12, 2012.

[20] J. Xu and E.-C. Chang, “Towards efficient proofs of retrievability,” in Proceedings of

the 7th ACM Symposium on Information, Computer and Communications Security,

ser. ASIACCS ’12, 2012.

[21] Y. Dodis, S. Vadhan, and D. Wichs,“Proofs of retrievability via hardness amplification

theory of cryptography,” vol. 2009, 2009.

[22] D. Cash, A. Küpçü, and D. Wichs, “Dynamic proofs of retrievability via oblivious

ram,” J. Cryptol., vol. 30, no. 1, Jan. 2017.

[23] E. Shi, E. Stefanov, and C. Papamanthou, “Practical dynamic proofs of retrievability,”

in Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communica-

tions Security, ser. CCS ’13, 2013.

[24] R. C. Merkle, “A digital signature based on a conventional encryption function,” in A

Conference on the Theory and Applications of Cryptographic Techniques on Advances

in Cryptology, ser. CRYPTO ’87, 1988.

[25] Y. Ren, J. Xu, J. Wang, and J.-U. Kim, “Designated-verifier provable data possession

in public cloud storage,” International Journal of Security and Its Applications, vol. 7,

11 2013.

[26] S.-T. Shen and W.-G. Tzeng, “Delegable provable data possession for remote data in

the clouds,” in Proceedings of the 13th International Conference on Information and

Communications Security, ser. ICICS’11, 2011.

[27] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public verifiability and

data dynamics for storage security in cloud computing,” in Proceedings of the 14th

European Conference on Research in Computer Security, ser. ESORICS’09, 2009.

[28] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public auditability and

data dynamics for storage security in cloud computing,” IEEE Trans. Parallel Distrib.

Syst., vol. 22, no. 5, May 2011.

[29] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public auditing for

data storage security in cloud computing,” in Proceedings of the 29th Conference on

Information Communications, ser. INFOCOM’10, 2010.

121

BIBLIOGRAPHY

[30] F. Armknecht, J.-M. Bohli, G. O. Karame, Z. Liu, and C. A. Reuter, “Outsourced

proofs of retrievability,” in Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, ser. CCS ’14, 2014.

[31] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability: Theory and imple-

mentation,” in Proceedings of the 2009 ACM Workshop on Cloud Computing Security,

ser. CCSW ’09, 2009.

[32] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random functions,” J.

ACM, vol. 33, no. 4, Aug. 1986.

[33] E.-O. Blass, R. Di Pietro, R. Molva, and M. Önen, “Prism: Privacy-preserving search

in mapreduce,” in Proceedings of the 12th International Conference on Privacy En-

hancing Technologies, ser. PETS’12, 2012.

[34] J. Trostle and A. Parrish,“Efficient computationally private information retrieval from

anonymity or trapdoor groups,” in Proceedings of the 13th International Conference

on Information Security, ser. ISC’10, 2011.

[35] B. Chen and R. Curtmola, “Towards self-repairing replication-based storage systems

using untrusted clouds,” in Proceedings of the Third ACM Conference on Data and

Application Security and Privacy, ser. CODASPY ’13, 2013.

[36] ——, “Remote data integrity checking with server-side repair,” Journal of Computer

Security, vol. 25, 2017.

[37] F. Armknecht, L. Barman, J.-M. Bohli, and G. O. Karame, “Mirror: Enabling proofs

of data replication and retrievability in the cloud,” in Proceedings of the 25th USENIX

Conference on Security Symposium, ser. SEC’16, 2016.

[38] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “Mr-pdp: Multiple-replica prov-

able data possession,” in Proceedings of the 28th International Conference on Dis-

tributed Computing Systems, ser. ICDCS ’08, 2008.

[39] A. F. Barsoum and M. A. Hasan, “Enabling dynamic data and indirect mutual trust

for cloud computing storage systems,” IEEE Transactions on Parallel and Distributed

Systems, vol. 24, no. 12, Dec. 2013.

[40] ——, “Integrity verification of multiple data copies over untrusted cloud servers,” in

Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing, ser. CCGRID ’12, 2012.

122

BIBLIOGRAPHY

[41] ——, “Provable multicopy dynamic data possession in cloud computing systems,”

IEEE Transactions on Information Forensics and Security, vol. 10, 2015.

[42] M. Etemad and A. Küpçü, “Transparent, distributed, and replicated dynamic prov-

able data possession,” in Proceedings of the 11th International Conference on Applied

Cryptography and Network Security, ser. ACNS’13, 2013.

[43] M. van Dijk, A. Juels, A. Oprea, R. L. Rivest, E. Stefanov, and N. Triandopoulos,

“Hourglass schemes: How to prove that cloud files are encrypted,” in Proceedings of

the 2012 ACM Conference on Computer and Communications Security, ser. CCS ’12,

2012.

[44] I. Leontiadis and R. Curtmola, “Secure storage with replication and transparent dedu-

plication,” in Proceedings of the Eighth ACM Conference on Data and Application

Security and Privacy, ser. CODASPY ’18, 2018.

[45] K. D. Bowers, A. Juels, and A. Oprea, “Hail: A high-availability and integrity layer

for cloud storage,” in Proceedings of the 16th ACM Conference on Computer and

Communications Security, ser. CCS ’09, 2009.

[46] B. Chen, A. K. Ammula, and R. Curtmola, “Towards server-side repair for erasure

coding-based distributed storage systems,” in Proceedings of the 5th ACM Conference

on Data and Application Security and Privacy, ser. CODASPY ’15, 2015.

[47] B. Chen, R. Curtmola, G. Ateniese, and R. Burns, “Remote data checking for network

coding-based distributed storage systems,” in Proceedings of the 2010 ACM Workshop

on Cloud Computing Security Workshop, ser. CCSW ’10, 2010.

[48] A. Le and A. Markopoulou, “Nc-audit: Auditing for network coding storage,” in

Proceedings of International Symposium on Network Coding, ser. NetCod ’12, 2012.

[49] ——, “Locating byzantine attackers in intra-session network coding using spacemac,”

in Proceedings of International Symposium on Network Coding, ser. NetCod ’10, 2010.

[50] T. P. Thao and K. Omote, “Elar: Extremely lightweight auditing and repairing for

cloud security,” in Proceedings of the 32Nd Annual Conference on Computer Security

Applications, ser. ACSAC ’16, 2016.

[51] K. D. Bowers, M. van Dijk, A. Juels, A. Oprea, and R. L. Rivest, “How to tell if your

cloud files are vulnerable to drive crashes,” in Proceedings of the 18th ACM Conference

on Computer and Communications Security, ser. CCS ’11, 2011.

123

BIBLIOGRAPHY

[52] C. Suh and K. Ramchandran, “Exact-repair mds code construction using interference

alignment,” IEEE Trans. Inf. Theor., vol. 57, no. 3, Mar. 2011.

[53] M. Blaum, J. Brady, J. Bruck, and J. Menon, “Evenodd: An optimal scheme for

tolerating double disk failures in raid architectures,” in Proceedings of the 21st Annual

International Symposium on Computer Architecture, ser. ISCA ’94, 1994.

[54] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and timed-release

crypto,” Cambridge, MA, USA, Tech. Rep., 1996.

[55] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer, “Reclaiming

space from duplicate files in a serverless distributed file system,” in Proceedings of the

22 Nd International Conference on Distributed Computing Systems, ser. ICDCS ’02,

2002.

[56] D. T. Meyer and W. J. Bolosky, “A study of practical deduplication,” Trans. Storage,

vol. 7, no. 4, Feb. 2012.

[57] J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl, “A Secure Data Deduplication

Scheme for Cloud Storage,” in 18th International Conference on Financial Cryptog-

raphy and Data Security , ser. FC ’14, 2014.

[58] P. Puzio, R. Molva, M. Önen, and S. Loureiro, “PerfectDedup: Secure data dedu-

plication,” in 10th International Workshop on Data Privacy Management, ser. DPM

’15, 2015.

[59] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Dupless: Server-aided encryption for

deduplicated storage,” in Proceedings of the 22Nd USENIX Conference on Security,

ser. SEC’13, 2013.

[60] P. Puzio, R. Molva, M. Önen, and S. Loureiro, “ClouDedup: Secure Deduplication

with Encrypted Data for Cloud Storage,” in Proceeings of the , 5th IEEE International

Conference on Cloud Computing Technology and Science , ser. CLOUDCOM ’13,

2013.

[61] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in cloud services: Dedu-

plication in cloud storage,” vol. 8, 01 2010.

[62] F. Armknecht, C. Boyd, G. T. Davies, K. Gjøsteen, and M. Toorani, “Side channels in

deduplication: Trade-offs between leakage and efficiency,” in Proceedings of the 2017

ACM on Asia Conference on Computer and Communications Security, ser. ASIACCS

’17, 2017.

124

BIBLIOGRAPHY

[63] R. di Pietro and A. Sorniotti, “Boosting efficiency and security in proof of owner-

ship for deduplication,” in Proceedings of the 7th ACM Symposium on Information,

Computer and Communications Security , ser. ASIACCS ’12.

[64] F. Armknecht, J.-M. Bohli, G. O. Karame, and F. Youssef, “Transparent Data Dedu-

plication in the Cloud,” in Proceedings of the 22nd ACM Conference on Computer

and Communications Security , ser. CCS ’15, 2015.

[65] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of ownership in

remote storage systems,” in Proceedings of the 18nd ACM Conference on Computer

and Communications Security , ser. CCS ’11, 2011.

[66] J. Camenish, G. Neven, and A. Shelat, “Simulatable adaptive oblivious transfer,” in

Proceedings of EUROCRYPT, 2007.

[67] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing,” Cryp-

tology, 2002.

[68] J. Liu, N. Asokan, and B. Pinkas, “Secure Deduplication of Encrypted Data Without

Additional Independent Servers,” in Proceedings of the 22nd ACM Conference on

Computer and Communications Security , ser. CCS ’15, 2015.

[69] R. Chen, Y. Mu, G. Yang, and F. Guo, “Bl-mle: Block-level message-locked encryp-

tion for secure large file deduplication,” IEEE Transactions on Information Forensics

and Security, vol. 10, no. 12, 2015.

[70] Q. Zheng and S. Xu, “Secure and efficient proof of storage with deduplication,” in

Proceedings of the 2nd ACM conference on Data and Application Security and Privacy

, ser. CODASPY ’12, 2012.

[71] Y. Shin, J. Hur, and K. Kim, “Security weakness in the proof of storage with dedupli-

cation,” Cryptology ePrint Archive, Report 2012/554, 2012, http://eprint.iacr.org/

2012/554.

[72] F. Armknecht, J.-M. Bohli, D. Froelicher, and G. Karame, “Sharing proofs of re-

trievability across tenants,” in Proceedings of the 2017 ACM on Asia Conference on

Computer and Communications Security, ser. ASIACCS ’17, 2017.

[73] N. Koblitz and A. Menezes, “Pairing-based cryptography at high security levels,” in

Proceedings of the 10th International Conference on Cryptography and Coding, ser.

IMA’05, 2005.

125

http://eprint.iacr.org/2012/554
http://eprint.iacr.org/2012/554

BIBLIOGRAPHY

[74] S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pairings for cryptographers,”

Discrete Appl. Math., vol. 156, no. 16, Sep. 2008.

[75] L. Gonzales-Manzano and A. Orfila, “An efficient confidentiality-preserving Proof

of Ownership for deduplication,” Journal on Network and Computer Applications,

vol. 50, 2015.

[76] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and S. Yekhanin,

“Erasure coding in windows azure storage,” in Proceedings of the 2012 USENIX Con-

ference on Annual Technical Conference, ser. USENIX ATC’12, 2012.

[77] G. M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar, “Codes with local re-

generation and erasure correction,” IEEE Trans. Information Theory, vol. 60, no. 8,

2014.

126

Appendix A

Résumé Français

Réconcilier les fonctionnalités de stockage cloud

avec les besoins de sécurité:

Preuves de stockage avec la fiabilité des données et la dédu-

plication sécurisée

A.1 Preuves de stockage

Grâce aux divers avantages tels que des infrastructures de stockage hautement efficaces

et fiables et des gains en termes de coûts pour les entrerprises, l’adoption de la technolo-

gie cloud progresse considérablement. Amazon S3 et Google Drive, parmi les principaux

fournisseurs de cloud, offrent de nos jours un espace de stockage illimité presque gratu-

itement. Alors que le nombre d’utilisateurs et le volume de données stockées ne cessent

d’augmenter, les préoccupations se multiplient: d’une part, en externalisant le stockage de

leurs données, les clients confient le contrôle total de leurs données à des fournisseurs de

cloud et ne disposent d’aucun moyen de vérifier l’intégrité de leurs services; d’autre part,

les fournisseurs de services cloud font face à une augmentation de la capacit’e de stockage

exponentielle qui devient extrêmement difficile à contrôler.

Un système de stockage cloud doit avoir les propriétés suivantes:

• Intégrité des données. L’intégrité des données est un concept fondamental de sécurité

qui consiste à s’assurer de leur crédibilité et fiabilité tout au long de leur cycle de

vie. En d’autres termes, l’intégrité garantit que les données ne sont ni supprimées

ni modifiées de quelque manière que ce soit par des parties non autorisées.

127

• Disponibilité des données. La disponibilité est une propriété de sécurité fondamen-

tale qui garantit que les données sont accessibles à toutes les parties autorisées à

tout moment. En d’autres termes, la disponibilité assure à l’utilisateur qu’il peut

télécharger ses données en cas de besoin.

• Stockage de données fiable. Un stockage de données fiable peut être considéré comme

le mécanisme sous-jacent qui garantit l’intégrité des données et la disponibilité des

données. Les systèmes de stockage doivent être conçus de manière à ce que les

données des utilisateurs puissent être récupérées en cas de panne matérielle ou de

logiciel défectueux. Cette propriété est obtenue en ajoutant de la redondance au

système de stockage afin de tolérer les pannes. Deux groupes de solutions de fiabilité

existent dans l’état de l’art:

◦ La réplication des données, qui consiste à stocker des copies de la totalité des

données sur plusieurs différents serveurs de stockage.

◦ Les codes correcteurs (erasure coding) qui consiste à encoder les données avant

de stocker certains fragments chez différents serveurs de stockage. En cas de

défaillance d’un ou de plusieurs périphériques de stockage, le système de stockage

utilise ces correcteurs et la partie des données sur les périphériques de stockage

sains restants pour reconstruire les données.

Le fournisseur de cloud est responsable de l’intégration de ces mécanismes dans son

infrastructure.

• Déduplication des données La déduplication est le processus par lequel un système

de stockage inspecte les données qu’il stocke, identifie de grandes parties de données

répétées, telles que des fichiers entiers ou des parties de fichiers, et n’en garde qu’une

seule copie.

• Maintenance automatique. La maintenance automatique est une propriété essentielle

des systèmes de stockage cloud. Cela implique que toutes les opérations de gestion

de données telles que l’allocation de stockage, la réduction de données, la génération

de redondance et la réparation de données sont effectuées par le système de stockage

cloud de manière transparente pour l’utilisateur.

La perte de données est une des plus grandes menaces pour le cloud. Le terme de perte

de données se réfère à non seulement la suppression non autorisée de données, mais aussi

à la modification irréversible de toute ou partie des données. En d’autres termes, la perte

de données compromet l’intégrité et la disponibilité de ces données.

128

Les propriétaires des données confiées au cloud devraient pouvoir vérifier que le four-

nisseur de cloud les stocke correctement, c’est-à-dire, vérifier que les données sont intactes

et disponibles tout au long de la période de stockage. Cette problématique est abordée

dans le domaine de la recherche en preuves de stockage. Ces preuves permettent au pro-

priétaire de données de les confier au cloud tout en ayant la capacité de vérifier que le cloud

les stocke correctement. Les preuves de stockage (PoS) sont des preuves cryptographiques

qui sont générées et vérifiées dans le contexte d’un protocole entre le propriétaire de la

donnée (l’utilisateur) et le cloud.

A.2 Problématique

Cette thèse tente de répondre aux deux problématiques suivantes :

A.2.1 Vérification du stockage fiable des données.

Les fournisseurs de stockage cloud n’assument actuellement aucune responsabilité pour la

perte de données. Par conséquent, les utilisateurs sont réticents à adopter des services de

stockage cloud, car ils délèguent un contrôle total de leurs données au fournisseur cloud

sans aucun moyen pour vérifier l’exactitude des mécanismes de stockage de données fiables

déployés par le fournisseur de cloud. Par conséquent, des solutions techniques visant à

établir la confiance des utilisateurs en ce qui concerne l’intégrité et la disponibilité de

leurs données seraient très bénéfiques à la fois pour les utilisateurs et les fournisseurs de

services de stockage cloud. En ce qui concerne l’intégrité des données reçues, les solutions

de preuve de stockage sont de nos jours compatibles avec des mécanismes de fiabilité de

données.

Cependant, les solution de PoS (preuves de stockage) ont une valeur limitée en ce

qui concerne l’audit de mécanismes de stockage de données fiables: en effet, lorsqu’une

preuve PoS est vérifée étant valide, ceci n’indique pas si un fournisseur cloud a mis en

place des mécanismes de fiabilité de données. Même dans le cas des schémas de preuve de

récupérabilité (PoR) qui fournissent une définition plus solide, une vérification infructueuse

indique que les données ne sont plus récupérables. Détecter qu’un fichier externalisé est

corrompu n’aidera pas beaucoup un client/utilisateur car ce dernier n’est plus récupérable.

Malgré le fait que les schémas PoR reposent sur des codes correcteurs, les informations

de redondance pertinentes ne sont pas destinées aux opérations de réparation de données

types: Les codes correcteurs aident à la réalisation des propriétés de sécurité PoR en

permettant la récupération des données d’origine à partir d’erreurs accidentelles pouvant

passer inaperçues du protocole PoR. Toutefois, ni le fournisseur de stockage cloud C ni

129

l’utilisateur U ne peut utiliser cette redondance afin de réparer les données corrompues

externalisées vers C car, selon le modèle PoR, C ne peut pas distinguer les données d’origine

des informations de redondance et, les moyens de détecter toute corruption de données

avant qu’elle ne soit irréparable.

En outre, dans le contexte conflictuel du stockage externalisé, il semble exister un

conflit inhérent entre les exigences des clients en matière de vérification de mécanismes de

stockage de données fiables et une caractéristique essentielle des systèmes de stockage mod-

ernes, à savoir la maintenance automatique. D’une part, la maintenance automatique basée

sur des codes de réplication ou les codes correcteurs nécessite le stockage d’informations

redondantes avec les données et, d’autre part, pour garantir le stockage de la redondance,

le fournisseur de stockage cloud C ne doit pas avoir accès au contenu des données, car

les informations de redondance sont fonction des données d’origine elles-mêmes. Par con-

séquent, la cause fondamentale du conflit entre la vérification d’un stockage de données

fiable et la maintenance automatique provient du fait que la redondance est une fonction

des données d’origine lui-même. Cette propriété, qui est à la base de la maintenance au-

tomatique, peut être exploitée par un fournisseur de stockage malveillant afin d’économiser

de l’espace de stockage tout en répondant de manière positive à la vérification des critères

de stockage fiable des données. Un fournisseur de stockage malveillant peut en effet prou-

ver sa possession de la redondance en calculant simplement et sur demande cette dernière

à l’aide de sa capacité de maintenance automatique sans jamais stocker d’informations de

redondance. Même si un tel fournisseur de stockage serait en mesure de répondre avec

succès aux requêtes de vérification de la fiabilité des données, à la manière d’un système

de point de vente, la fiabilité réelle des données ne serait pas nécessairement assurée, car

le fournisseur de stockage ne pourrait pas récupérer les segments de données perdus ou

corrompus sans l’information redondante. La maintenance automatique, qui est une car-

actéristique très efficace de la fiabilité des données, peut ainsi devenir le principal moyen

de tromper la vérification de la fiabilité des données dans un contexte conflictuel.

A.2.2 Conflit entre PoR et déduplication.

Il semble que la combinaison simple d’une solution PoR avec la déduplication soit vouée

à l’échec en raison d’un conflit inhérent entre les schémas de PoR actuels et les schémas

de déduplication. La cause fondamentale du conflit est que les schémas PoR et la dédu-

plication appellent des objectifs divergents: PoR a pour but d’ajouter aux données des

informations de garantie de récupérabilité qui sont uniques pour chaque utilisateur, tandis

que la déduplication tente, dans la mesure du possible, de ne garder qu’une seule copie de

segments de données similaires soumis par différents utilisateurs. En effet, à la fois dans

130

les schémas PoR basés sur des watchdogs qui sont générés de manière pseudo-aléatoire

et inséré à des positions aléatoires des données et les schémas PoR basés sur des balises

(tag) qui ajoutent une balise non modifiable à chaque segment de données, la combinai-

son simple avec les techniques de déduplication échouerait. En effet, l’algorithme Encode

de ces schémas inclut un cryptage sémantiquement sécurisé par chaque utilisateur ce qui

empêche la détection des données dupliquées.

A.3 Contributions

Cette thèse propose les contributions suivantes en rapport avec les deux problèmes énoncés

plus haut.

Vérification de la fiabilité des données stockées Nous introduisons la notion de

Preuves de fiabilité des données, un schéma de vérification complet visant à résoudre le

conflit entre la vérification fiable du stockage des données et la maintenance automatique.

En particulier, nous fournissons la définition d’un protocole de preuve de stockage cryp-

tographique et d’un nouveau modèle de sécurité contre un adversaire rationnel. Nous

passons également en revue les solutions antérieures visant à concevoir une solution pra-

tique de preuve de fiabilité des données. Enfin, nous proposons deux schémas de preuve de

fiabilité des données qui permettent de vérifier le mécanisme de stockage de données fiable

et permettent en même temps au fournisseur de stockage cloud d’effectuer de manière

autonome des opérations de maintenance automatiques.

Conflit entre PoR et déduplication. Inspirés des solutions précédentes pour résoudre

le problème de la déduplication de données cryptées, nous proposons une solution simple

en combinant PoR et déduplication. De plus, nous proposons un nouveau protocole de

génération de clés cryptographique pour les chiffrement dépendantes des données qui ré-

siste mieux aux attaques de dictionnaire hors ligne par rapport aux solutions existantes.

A.4 Preuves de fiabilité des données

Par définition, trois entités sont impliqués dans un schéma de preuve de fiabilité des

données. Celles -ci sont:

l’utilisateur U qui souhaite stocker son fichier D chez un fournisseur de stockage cloud

C.

131

le fournisseur de stockage cloud C qui s’engage à stocker le fichier D dans son inté-

gralité avec une redondance suffisante générée par des mécanismes de stockage de

données fiables. Le fournisseur de stockage cloud C est considéré comme malveillant.

le vérificateur V qui interagit avec le fournisseur de stockage cloud C dans le contexte

d’un protocole challenge-response et qui valide si C stocke le fichier D dans son

intégralité.

Nous considérons un scénario dans lequel un utilisateur U enovie un fichier D vers un

fournisseur de stockage cloud C et, dorénavant, un vérificateur V interroge périodiquement

C pour obtenir des preuves d’intégrité et de stockage fiable des données de D. En réalité,

l’utilisateur U génère un objet de données vérifiable D à partir du fichier D, qui contient

des informations supplémentaires qui aideront davantage à la vérification de son stockage

fiable. Si le schéma de fiabilité des données n’est pas compatible avec la maintenance

automatique, D incorpore également la redondance requise pour le stockage fiable du

fichier D. À ce stade, l’utilisateur U télécharge l’objet de données D vers le fournisseur de

stockage cloud C et supprime le fichier D et l’objet de données D en ne conservant dans

le stockage local que les éléments de clé utilisés D. À son tour, le fournisseur de stockage

cloud stocke D dans un ensemble de n nœuds de stockage avec garantie de fiabilité t:

certaines garanties de service de stockage contre les défaillances de nœud de stockage t.

Nous définissons un schéma preuve de fiabilité des données comme un protocole exécuté

entre le fournisseur de stockage cloud C avec ses noeuds de stockage {S(j)}1≤j≤n, d’une

part, et un vérificateur V, de l’autre. Le but d’un tel protocole est de permettre au vérifi-

cateur V de vérifier (i) la intégrité de D et (ii) si la garantie de fiabilité t est satisfaite. Le

vérificateur V lance un défi de preuve de fiabilité des données, qui fait référence à un sous-

ensemble de données et de symboles de redondance, et l’envoie au fournisseur de stockage

cloud C. Désormais, C génère une preuve et V vérifie si cette preuve est bien formée et

l’accepte ou la rejette en conséquence. Afin de ne pas annuler les avantages en termes de

stockage et de performances du cloud, vous devez effectuer toute cette vérification sans

que V télécharge tout le contenu associé à D à partir de {S(j)}1≤j≤n.

Definition 9. (Schéma de preuve de fiabilité des données). Un schéma de preuve

de fiabilité des données est défini par sept algorithmes temporels polynomiaux:

• Setup (1λ, t)→ ({S(j)}1≤j≤n, paramsystem): Cet algorithme prend en entrée le paramètre

de sécurité λ et le paramètre de fiabilité t et renvoie l’ensemble des nœuds de stockage

{S(j)}1≤j≤n, les paramètres système paramsystem et la spécification de la redondance.

mécanisme: le nombre de répliques ou le schéma de code d’effacement qui sera utilisé

pour générer la redondance.

132

• Store (1λ, D)→ (Ku,Kv,D, paramD): Cet algorithme randomisé appelé par l’utilisateur

U prend en entrée le paramètre de sécurité λ et le fichier à externaliser D et génère

la clé d’utilisateur Ku, la clé de vérificateur Kv et l’objet de données vérifiable D,

qui inclut également un identificateur unique fid et éventuellement un ensemble de

paramètres d’objet de données paramD.

• GenR (D, paramsystem, paramD) → (D̃): Cet algorithme prend en entrée l’objet de

données vérifiable D, les paramètres système paramsystem et, éventuellement, les

paramètres de l’objet de données paramD, et génère l’objet de données D̃. L’algorithme

GenR peut être appelé par l’utilisateur U lorsque l’utilisateur crée lui-même la redon-

dance, ou par C, lorsque le calcul de la redondance est entièrement sous-traité au

fournisseur de stockage cloud. Selon le mécanisme de redondance, D̃ peut compren-

dre plusieurs copies de D ou une version codée de celui-ci. De plus, algorithm GenR

génère les valeurs d’intégrité nécessaires qui faciliteront la vérification de l’intégrité

de la redondance de D̃.

• Chall (Kv, paramsystem) → (chal): Cet algorithme stateful et probabiliste appelé par

le vérificateur V prend en entrée la clé du vérificateur Kv et les paramètres système

paramsystem et génère un défi chal.

• Prove (chal, D̃) → (proof): Cet algorithme appelé par C prend en entrée le défi chal

et l’objet de données D̃, et renvoie la réponse C de la preuve de fiabilité des données.

• Verify (Kv, chal, proof, paramD) → (dec): Cet algorithme déterministe appelé par V

prend en entrée la preuve de C correspondant à un défi chal, à la clé de vérificateur

Kv et, éventuellement, aux paramètres d’objet de données paramD, et génère une

décision dec ∈ {accept, reject} indiquant une vérification réussie ou échouée de la

preuve, respectivement.

• Repair (∗D̃, paramsystem, paramD) → (D̃): Cet algorithme prend en entrée un ob-

jet de données corrompu ∗D̃ avec ses paramètres paramD et les paramètres système

paramsystem, puis reconstruit D̃. ou génère un symbole d’échec ⊥. L’algorithme Repair

peut être invoqué par U ou C selon le schéma Preuve de fiabilité des données.

A.4.1 POROS: Preuve de la fiabilité des données pour le stockage ex-

ternalisé.

Nous décrivons maintenant notre approche pour permettre à un système de stockage cloud

de fournir des garanties de fiabilité des données sans perturber ses opérations de main-

tenance automatique, malgré le conflit entre ces dernières et les systèmes de preuve de

133

stockage. La cause fondamentale de ce conflit est le simple fait que les informations de

redondance sont fonction des données d’origine elles-mêmes: Les mécanismes de mainte-

nance automatique exigent que le système de stockage cloud ait un accès sans obstruction

à la redondance afin de réparer les données corrompues; malheureusement, cela offre à

un fournisseur de stockage cloud malveillant C la possibilité de réaliser des économies de

stockage en ne stockant pas la redondance alors qu’elle répond effectivement aux critères

de preuve de fiabilité des données. Par conséquent, une nouvelle approche, qui traite

la redondance séparément des données d’origine, visant à garantir aux utilisateurs que

celle-ci est réellement stockée, semble être le bon moyen de résoudre ce conflit. Une telle

assurance rend inoffensive la divulgation de la relation entre les données d’origine et la

redondance au fournisseur de stockage cloud C, permettant ainsi des opérations de main-

tenance automatiques efficaces sans interaction avec l’utilisateur. De plus, l’utilisation

de mécanismes de stockage de données fiables par C facilite également la sous-traitance

du calcul des informations de redondance: C est la partie qui invoque l’algorithme GenR.

En conséquence, la phase de sous-traitance de notre système Preuve de fiabilité des don-

nées devient considérablement plus légère pour les utilisateurs, car ils ne sont plus obligés

d’effectuer cette opération très lourde en calculs. Toutefois, un nouveau problème de sécu-

rité se pose, car les utilisateurs ont maintenant besoin de moyens pour vérifier le calcul

correct des informations de redondance par ce C non approuvé.

En ce qui concerne la vérification de l’intégrité des données d’origine, notre schéma

utilise les balises linéairement homomorphes utilisées dans le schéma de Private Compact

PoR proposé par Shacham et Waters afin de construire un schéma de preuve de posses-

sion de données (PDP) garantissant: la détection éventuelle de toute tentative par un

fournisseur de stockage cloud malveillant C de falsifier les données externalisées. Avant

de télécharger leurs données sur le système de stockage cloud, les utilisateurs calculent

un ensemble de balises linéairement homomorphes qui sont ensuite utilisées par C pour

prouver le stockage des données d’origine.

Après avoir reçu l’objet de données D comprenant les données d’origine de l’utilisateur

et ses balises associées, le fournisseur de stockage cloud C appelle l’algorithme GenR qui

génère la redondance de D en fonction du mécanisme de stockage fiable des données. Afin

de faciliter le traitement séparé des données d’origine et des informations de redondance,

nous optons pour un code linéaire systématique permettant une délimitation claire entre les

deux: ainsi, les symboles de redondance sont une combinaison linéaire des symboles de D et

ces derniers ne sont pas modifiés par l’application du code d’effacement, d’où la vérification

de l’intégrité de D - par le biais du schéma PDP - n’est pas affecté. En ce qui concerne

la vérification de l’intégrité des symboles de redondance, notre système utilise également

134

le protocole PDP utilisé pour l’objet de données D et offre donc aux utilisateurs les deux

garanties. Plus précisément, comme pour les symboles de l’objet de données D, algorithm

GenR applique le même code linéaire systématique aux balises associées, générant ainsi

un nouvel ensemble de balises constituant des combinaisons linéaires des balises de D.

En supposant que les balises de notre schéma PDP soient homomorphes par rapport au

code linéaire systématique utilisé par le mécanisme de stockage de données fiable, les

balises résultant de ce calcul s’avèrent être des balises PDP associées à des symboles

de redondance. En d’autres termes, la combinaison linéaire des étiquettes associées aux

données d’origine peut être utilisée pour vérifier à la fois le calcul correct et l’intégrité des

symboles de redondance, qui sont eux-mêmes la même combinaison linéaire de symboles

de données d’origine.

Grâce à l’homomorphisme du système de balises sous-jacent au cœur de notre protocole

PDP et au code linéaire systématique, le fournisseur de stockage cloud C n’a pas besoin

de clés cryptographiques appartenant aux utilisateurs pour calculer les balises pour les

informations de redondance. En outre, les utilisateurs peuvent effectuer une vérification

PDP sur les informations de redondance à l’aide de ces nouvelles balises. Toute inconduite

de C concernant l’intégrité des symboles de redondance ou leur génération appropriée sera

finalement détectée par la vérification PDP, car le C malveillant ne peut pas falsifier les

balises calculées.

Le schéma décrit jusqu’ici souffre d’une limitation en ce qu’un fournisseur de stockage

cloud malveillant C peut tirer parti de sa capacité à calculer de manière indépendante

les informations de redondance et les balises correspondantes, ouvrant la voie pour que C

trompe la vérification de la preuve de fiabilité des données. en calculant en temps réel les

réponses aux contrôles PDP sur les symboles de redondance. La dernière caractéristique de

notre plan est donc une contre-mesure à ce type d’attaques. Cette contre-mesure repose sur

les fonctionnalités de synchronisation des disques durs en rotation, composant commun

des infrastructures de stockage dans le cloud. En raison de leurs caractéristiques tech-

niques, ces lecteurs atteignent un débit beaucoup plus élevé lors de l’exécution de l’accès

disque séquentiel par rapport à l’accès disque aléatoire. Ce dernier entrâıne l’exécution de

plusieurs opérations de recherche coûteuses afin que la tête de disque atteigne les différents

emplacements du lecteur. Afin de tirer parti de cette variation de performances entre les

deux opérations d’accès au disque, nous exigeons que les informations de redondance soient

stockées dans un format personnalisé avec la propriété d’augmenter les opérations d’accès

au disque aléatoires d’un fournisseur de stockage en cloud défectueux C. Par conséquent,

nous pouvons introduire un seuil de temps Tthr, de sorte que chaque fois que C reçoit un

défi de preuve de fiabilité des données, il est obligé de générer et de fournir la preuve avant

135

que le seuil de temps Tthr ne soit dépassé; sinon la preuve est rejetée.

A.4.2 PORTOS: Preuve de la fiabilité des données pour un stockage

externalisé distribué dans le monde réel.

PORTOS est un schéma de preuve de fiabilité des données conçu pour les systèmes de

stockage cloud distribués. Comme pour POROS, PORTOS utilise un code correcteur

linéaire systématique pour ajouter de la redondance aux données sous-traitées. Néanmoins,

contrairement à POROS, PORTOS stocke les données codées sur plusieurs nœuds de

stockage: chaque symbole de mot de code, les données et la redondance, est stocké sur

un nœud de stockage distinct. Par conséquent, le système peut tolérer la défaillance de

nœuds de stockage jusqu’à t et reconstruire avec succès les données d’origine à l’aide du

contenu des nœuds restants.

En ce qui concerne la vérification de l’intégrité des données sous-traitées et leur re-

dondance, PORTOS utilise les mêmes balises PDP (preuve de possession de données) que

POROS. Plus spécifiquement, ce schéma PDP s’appuie sur des balises de linéairement

homomorphes pour vérifier l’intégrité des symboles de données et tire parti des propriétés

homomorphes de ces balises, vérifier l’intégrité des symboles de redondance. De plus,

grâce à la combinaison des balises PDP avec le code d’effacement linéaire systématique,

PORTOS garantit à l’utilisateur qu’il peut récupérer ses données dans leur intégralité.

Dans PORTOS, le fournisseur de stockage cloud dispose des moyens nécessaires pour

générer la redondance requise, détecter les défaillances (matérielles ou logicielles) et réparer

les données corrompues de manière autonome, sans aucune interaction avec l’utilisateur.

Dans POROS, ce paramètre permet toutefois à un fournisseur de stockage cloud illicite

de supprimer une partie des données codées et de calculer les symboles manquants à la

demande. Pour se défendre contre une telle attaque, PORTOS s’appuie sur des casses-tête

cryptographiques (cryptographic puzzle) pour augmenter les ressources (stockage et calcul)

qu’un fournisseur de stockage cloud infidèle doit mettre à sa disposition afin de fournir une

preuve valable de la fiabilité des données. Néanmoins, ce mécanisme n’entrâıne aucun coût

de stockage ou de calcul supplémentaire pour un fournisseur de stockage en cloud honnête

qui génère la même preuve. De cette manière, un adversaire rationnel est fortement

incité à se conformer au protocole de preuve de fiabilité des données. En conséquence,

PORTOS est conforme au modèle actuel de systèmes de stockage distribués basés sur un

code d’effacement. De plus, PORTOS ne fait aucune hypothèse concernant la technologie

sous-jacente du système de stockage cloud, par opposition à POROS.

136

APPENDIX A. RÉSUMÉ FRANÇAIS

A.5 Stockage vérifiable avec déduplication sécurisée

Nous présentons une approche générique qui résout le conflit entre PoR et la déduplication,

ouvrant ainsi la voie à une intégration simple de PoR et de la déduplication dans le même

système de stockage en nuage. La raison fondamentale du conflit réside dans la différence

de traitement des doublons entre segments de données soumis par différents clients: le fait

que la déduplication récapitule tous les doublons en une seule copie, tandis que la PoR

exige que chaque segment en double soit conservé séparément. afin de préserver l’effet de

PoR spécifique à l’utilisateur sur chaque duplicata. Par conséquent, une nouvelle approche

visant à obtenir des effets de PoR identiques sur les doublons soumis par différents clients

semble être la bonne solution pour une composition simple de PoR avec déduplication.

Dans la même direction, la nouvelle approche devrait garantir que l’effet de la PoR sur

chaque segment de données dépend de la valeur du segment de données, quelle que soit la

différence d’identité des clients soumettant les segments de données. En d’autres termes,

ces opérations doivent être: fonction de la valeur du segment de données indépendam-

ment de l’identité du client. Nous définissons donc les schémas PoR compatibles avec la

déduplication comme preuves de récupérabilité verrouillées par message.

Une approche similaire a été proposée pour résoudre le problème de la déduplication

par rapport aux données cryptées: les solutions de déduplication sécurisée utilisent le

moyen par lequel la clé de cryptage est dérivée des données. Dans la mesure où un schéma

PoR symétrique utilise des clés secrètes lors du processus de codage et de vérification

de l’extractibilité des données, nous proposons également que ML-PoR extrait ces clés

du fichier. Afin de protéger le secret de ces clés verrouillées par message qui peuvent

facilement être découvertes si les fichiers sont prévisibles, le PoR proposé verrouillé par

message utilise une technique de génération de clé dédiée telle que le serveur récemment

proposé. techniques de génération de clé assistée qui empêchent les serveurs cloud de

découvrir des clés verrouillées par message par le biais d’attaques par dictionnaire. De

telles techniques génèrent une clé cryptographique qui dépend non seulement du fichier,

mais également d’une clé secrète générée par un serveur de clés. Outre la conception

d’un PoR verrouillé par message, nous proposons une nouvelle technique génération de clé

dépendante du message et avec un serveur de clés qui, comparée aux solutions existantes,

assouplit le modèle de confiance et garantit que ni le serveur cloud ni le serveur de clés ne

peut deviner les clés ou messages.

137

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Papers Published during Ph.D
	Introduction
	Requirements of Cloud Storage Systems
	Verifiability in Cloud Storage Systems
	Contributions
	Organization

	Verifiable Storage
	Proofs of Storage
	Environment
	Definition of a PoS scheme
	Correctness
	Soundness
	Additional features of PoS scheme

	Proofs of Retrievability
	Overview of the PoR Encode algorithm
	Security Requirements of PoR
	Correctness
	Soundness

	Classification of PoR schemes

	State of the Art on Proofs of Storage
	Watchdog-based solutions
	Tag-based solutions
	PoS with Public Verifiability

	Two Proofs of Retrievability Schemes
	Private Compact PoR
	Building Blocks
	Protocol Specification

	StealthGuard
	Building Blocks
	Protocol Specification

	Cloud Storage Systems Requirements and PoS
	Verification of Reliable Data Storage with Automatic Maintenance.
	Conflict between PoS and deduplication

	Summary

	I Proofs of Data Reliability
	Proofs of Data Reliability
	Problem Statement
	Definition of a Proof of Data Reliability Protocol
	Environment
	Formal Definition
	Correctness
	Soundness
	Rational Adversary

	State of the Art on Proofs of Data Reliability
	Conclusions on the State of the Art

	POROS: Proof of Data Reliability for Outsourced Storage
	Introduction of POROS
	POROS
	Building Blocks
	POROS Description

	Security Evaluation
	Correctness
	Soundness
	Evaluation

	Multiple-challenge POROS
	Description

	Conclusion

	PORTOS: Proof of Data Reliability for Real-World Distributed Outsourced Storage
	Introduction of PORTOS
	PORTOS
	Building Blocks
	Overview of PORTOS's Masking Mechanism
	Protocol specification

	Security Analysis
	Correctness
	Soundness

	Performance Analysis
	Performance Improvements
	Description
	Performance Analysis

	Summary

	II Verifiable Storage with Data Reduction
	Verifiable Storage with Secure Deduplication
	Introduction
	Background
	Secure Deduplication
	State of the Art

	Message-Locked Proofs of Retrievability
	ML.KeyGen: Server-aided message-locked key generation
	Building Blocks
	Description of ML.KeyGen
	Security analysis of ML.KeyGen

	ML.PoR: Protocol Description
	ML.Private-Compact-PoR: A message-locked PoR scheme based on linearly-homomorphic tags
	ML.StealthGuard: A message-locked PoR scheme based on watchdogs

	Security analysis
	Performance analysis
	Summary

	Concluding Remarks and Future Research
	Summary
	Future Work

	Appendix Résumé Français
	Preuves de stockage
	Problématique
	Vérification du stockage fiable des données.
	Conflit entre PoR et déduplication.

	Contributions
	Preuves de fiabilité des données
	POROS: Preuve de la fiabilité des données pour le stockage externalisé.
	PORTOS: Preuve de la fiabilité des données pour un stockage externalisé distribué dans le monde réel.

	Stockage vérifiable avec déduplication sécurisée

