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Cosmologie Non-Gaussienne : défis théoriques et statistiques pour les relevés de
galaxies modernes

RESUME

Nous détaillons dans cette these les différentes étapes nécessaires a I implémentation numérique optimale du cal-
cul de la vraisemblance des paramétres cosmologiques appliqué aux relevés modernes de lentillage gravitationnel
faible des grand structures. En particulier, nous nous concentrons sur la détection conjointe du spectre de puis-
sance et du bispectre du lentillage gravitationnel faible. Pour ce faire, nous avons relevé les défis numériques requis
par une analyse compléte. Dans un premier temps, nous dressons l'état de l'art nécessaire a la compréhension du
formalisme de la sonde cosmologique susmentionnée et nous décrivons comment obtenir une estimation non
biaisée de la matrice de covariance pour les observables considérées. En supposant une vraisemblance gaussienne
multivariée, nous avons développé un algorithme de haute performance permettant de prédire les observables
tomographiques rééchantillonnées avec leur matrice de covariance conjointe en tenant compte des fonctions de
corrélations de 2 a 6 points et des corrélations avec les modes hors du relevé. La performance de notre code nous
permet de répondre aux exigences scientifiques des relevés de galaxies des dix prochaines années. Nous montrons
que le bispectre du lentillage gravitationnel faible améliore le signal sur bruit (S/N) de notre analyse conjointe
du spectre et du bispectre d’environ 10% en comparaison avec une analyse du spectre seulement. Par conséquent,
le bispectre est une source non négligeable d’information cosmologique pour les relevés futurs. En outre, nous
sommes capables de quantifier I'impact des incertitudes théoriques liées a la description de la matiere noire dans
le “modele des halos” qui est utilisé pour construire nos observables; cet impact se trouve étre négligeable pour
l'analyse du S/N. Finalement, nous étudions la possibilité de réduire les données pour optimiser les analyses fu-
tures du bispectre dulentillage. Nous trouvons qu'en ignorant les erreurs systématiques une analyse ne concernant
que s échantillons en décalage vers le rouge permet d’'obtenir la méme quantité d’'information que dans le cas d'un
relevé semblable a celui d’Euclid, qui utilise 10 échantillons sans améliorer le S/N. Nous explorons également
I'analyse en composantes principales et la dépendance de I'information cosmologique en fonction de la forme des

triangles comme méthodes permettant de réduire la complexité du probleme.
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Non-Gaussian Cosmology: theoretical and statistical challenges for modern
galaxy surveys

ABSTRACT

In this thesis, we address key points for an efficient implementation of likelihood codes for modern weak lensing
large-scale structure surveys. Specifically, we will focus on the joint weak lensing convergence power spectrum-
bispectrum probe and we will tackle the numerical challenges required by realistic analyses. In order to clearly
convey the importance of our research, we first provide an in-depth review of the background material required
for a comprehensive understanding of the final results. The cosmological context of the study is provided, fol-
lowed by a description of the technical elements inherent to unbiased covariance matrix estimation for the probe
considered. Under the assumption of multivariate Gaussian likelihood, we developed a high performance code
that allows highly parallelised prediction of the binned tomographic observables and of their joint non-Gaussian
covariance matrix accounting for terms up to the 6-point correlation function and super-sample effects. This per-
formance allows us to qualitatively address several interesting scientific questions. We find that the bispectrum
provides an improvement in terms of signal-to-noise ratio (S/N) of about 10% on top of the power spectrum
alone, making it a non-negligible source of information for future surveys. Furthermore, we are capable to address
the impact of theoretical uncertainties in the halo model used to build our observables; with presently allowed vari-
ations we conclude that the impact is negligible on the S/N. Finally, we consider data compression possibilities
to optimise future analyses of the weak lensing bispectrum. We find that, ignoring systematics, 5 equipopulated
redshift bins are enough to recover the information content of a Euclid-like survey, with negligible improvement
when increasing to 10 bins. We also explore principal component analysis and dependence on the triangle shapes

as ways to reduce the numerical complexity of the problem.
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Introduction

Understanding the present accelerated expansion of the Universe is one of the most important challenges in mod-
ern Cosmology. In order to provide a theoretical explanation for this incredible observation, a plethora of the-
oretical model have been designed over the last few years, some of which introduce corrections to the standard
cosmological scenario ACDM. This diversity of theoretical ideas shows our current ignorance and defines the
need for new observations. Based on our present-day knowledge, existing plausible models will impact obser-
vational signatures by tiny amounts that can only be decisively distinguished using high-precision astronomical
surveys covering a major fraction of the sky and great cosmological distances. In preparation for future missions
like Euclid, Dark Energy Survey (DES, Flaugher [2005]), Large Synoptic Survey Telescope (LSST, Ivezi¢ et al.
[2019]) or the Wide Field Infrared Survey Telescope (WFIRST, Green et al. [2011]), we need to understand the
performance of the survey observations in terms of cosmological parameter error forecasts for deviations from the
ACDM model.

Among the different ways that we can look at the light coming from the Universe, weak lensing is an extremely
powerful cosmological probe. We exploit the detection of light from distant sources to quantify the emergent
cross-correlations between the observed shapes of distant galaxies induced by the underlying total matter distri-
bution. More importantly, weak lensing does not require any knowledge of the relation between the observed
distribution of galaxies and the underlying dark matter one. For this reason, this cosmological probe is not just
important by itself, but it can actually be combined with the inferred galaxy distribution in redshift and at different
scales (galaxy clustering) to improve the scientific performance of our analyses. This is indeed the strategy of the
Euclid and WFIRST missions. However, in order to exploit the information encoded in this probe, we have to
deal with the non-Gaussian statistics induced by the non-linear clustering of the matter field being investigated.
Therefore, it is necessary to go beyond the 2-point statistics (which is sufficient to fully characterise a Gaussian
field) to recover the cosmological information left behind. One possible solution is via the estimation of the 3-
point correlation function. In configuration space, these statistical tools are respectively named power spectrum
and bispectrum. On top of that, when we perform a combined measurement of the two (even if complementary)
we are actually probing the same underlying physics. Therefore, these observables are correlated and we need to

account for this crucial aspect in order not to double count the information contained.

In terms of exploitation of the observed weak lensing bispectrum, modern cosmological surveys, such as those



listed above, represent a challenge for various reasons. Their capacity to detect the binned redshift position of
galaxies and to observe the sky under a wide angular range are key ingredients to have access to a precious time-
and scale-dependent information on the matter clustering. On the other hand, its exploitation comes at a cost: an
overwhelming number of observables must be measured and along with them their errors and cross-correlations
must be taken into account. Covariance matrices encapsulate this information. For this reason, data analyses and

forecasts for future galaxy surveys are expected to be extremely complex and computationally costly.

A second problematic aspect of future analyses is related to the underlying statistical approach employed in
some circumstances. An exact cosmological forecast requires the exploration of the parameter posterior via sam-
pling techniques like Markov Chains Monte Carlo or nested sampling methods. This allows us to identify best
fit values, to visualise confidence regions and correlations, and eventually to compute marginal and conditional
probabilities. Over the past decades, analytical approaches have been introduced in order to avoid the full poste-
rior exploration. This can be very useful whenever we have limited computational resources or when forecasting
parameter constraints of a future experiment and we want to test different configurations of it. The Fisher approxi-
mation is a famous example. With this approach, the posterior is approximated around the peak via a multivariate
Gaussian and it allows an analytical determination of the uncertainties on the parameters. However, the level of
non-linearity present in the physical process we are interested in may spoil the quality of this assumption. Another
weakness of the Fisher approximation is the need for computing the derivatives of the observables with respect
to the cosmological parameters of interest. While we are currently capable of reproducing the amplitude of a
given signal up to certain scales, we still lack a way to reproduce their derivatives at high enough precision so as
not to bias our cosmological analyses. Therefore, we would like to find a trade-off between the rapidity typical of

Gaussian-based techniques and the correctness of the sampling techniques in terms of posterior exploration.

In my doctoral work, I tackled these key points which will hinder, unless deeply understood and solved, the sci-
entific success of upcoming galaxy surveys. The aim of this research is to provide definite answers to the following

two questions:

« How can we optimise the computation of the covariance matrices (errors and correlations in the data sets) for

future weak lensing measurements beyond the 2-point statistics?

« How can we go beyond the standard data analysis approaches in Cosmology?

The content in this manuscript has been previously presented in the main paper produced during my research

at Institut Astrophysique de Paris (IAP)

Rizzato M., Benabed K., Bernardeau F,, Lacasa F,,

Information content of the weak lensing bispectrum for the next generation of galaxy surveys,
2018, arXiv: 1812.07437

Submitted to MNRAS.



The first two chapters provide a thorough review of the background material required for understanding the re-
sults, which are presented in Chapter 3. Part of the introductory sections on the topic of covariance matrix esti-

mation within Chapter 2 has been inspired by the discussions engendered from the following collaborative work

Sellentin E., Joachimi B., Barreira A., Giocoli c., Heavens A., Kilbinger M.,
Kitching T., Rizzato M., Schmidt F., Taylor A.

Euclid Weak Lensing Covariance Task Force Report,

Internal Euclid paper.

In the above manuscript, I wrote as main author an important section regarding the performance of the halo model

for the analytical derivation of the power spectrum covariance matrix for the weak lensing convergence.

Conclusions and perspectives derived from my doctoral activity are presented in the back-matter of this thesis.
They are drawn from the work related to the paper above and from other projects which were the focus of my last

months at IAP

Reimberg P., Bernardeau F., Nischimichi T., Rizzato M.,
Failures of Halofit model for computation of Fisher Matrices,
2018, arXiv: 1811.02976.

Submitted to MNRAS.

Rizzato M., Sellentin E.,
Analytic reconstruction of non-Gaussian posteriors for precision cosmology

Upcoming publication.

While the content of these papers will not be included in the present manuscript, they were an occasion of enrich-
ment for my scientific awareness regarding the problematic points outlined in this introduction. Also, they will be
a major source of inspiration for my future activity as a researcher.

I wish you a pleasant journey.

Matteo Rizzato
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The goal of this chapter is to provide the reader with some useful concepts in order to understand and contex-

tualise the study presented in the following parts of this manuscript.

We would like to underline that the theoretical background employed in this work will not account for Modified
Gravity corrections [ Clifton et al,, 2012; Ishak, 2019]. Therefore, the results and the conclusions derived, both at
the level of background material and at the level of original research, are meant to be valid within the context of a
standard general relativistic scenario. However, we leave room for future research aiming at the extension of the

efforts here presented to more complex and less standard scenarios.

Inline with the cosmological principle we will assume that the Universe is statistically homogeneous and isotropic
at every time on sufficiently large scales. Specifically, 1) different positions in the Universe are physically indis-
tinguishable and 2) observations performed in different directions, from no matter which point in the Universe
(point 1), leads to the same physical observations. These are strong conceptual assumptions: however, we have
sound evidences for their validity [Hogg et al., 2005; Ntelis et al., 2017] and they strongly bind (help) the mathe-

matical description of the observable Universe around us. This description will be indeed the focus of Sec. 1.1.

Clearly, a perfectly homogeneous Universe is a model too simplistic for the description of the cosmological
observations at smaller scales. The simple existence of this higher dense paper page and of a the lower dense air
layer in front of it tells us that indeed it is possible to distinguish two points in space P,, P, (and time) via, for
example, a simple measurement of the matter density field, p, , p;, . These tiny space-dependent fluctuations are
indeed present and of paramount importance for cosmological observations. Usual practice in Cosmology is to
separate a given field defined on the space-time f (x, t) in its background-homogeneous component f (t) and in a
“perturbation part” §f (x, t) which is defined to be vanishing, at a given time, if an ensable average is performed
onit, ie. (§f(x,t)) = o. At the level of notation we will distinguish between the total field and the background
component of it via the dependence on the coordinates, being solely on the time for the latter. More often, the

dimensionless contrast density field is used

5 (1) = L&D =) (1.1)

While the observable Universe has been extensively exploited at the level of background expansion [e.g. Kowalski
et al, 2008; Amanullah et al., 2010, and references therein], perturbations at smallest scales are actually precious
sources of cosmological information for the present and next generations of galaxy surveys (e.g. Collaboration
[2005]; LSST Science Collaboration et al. [2009]; Laureijs et al. [2011]; DESI Collaboration [2016]). While the
actual matter perturbations §,,, can not be directly accessed, other fields can be employed as proxies for the actual
underlying matter distribution, such as the number density of galaxies 8, or the shape distortion of far sources due
to intermediate matter distribution (weak lensing convergence field « or the weak lensing shear field y). However,
a single measurement of the properties of these tracers have a very low signal-to-noise ratio and several detections

of the same phenomena have to be performed. In addition, the same initial perturbations imprinted in the cosmic



microwave background (CMB) [ Kamionkowski & Kosowsky, 1999; Hu & Dodelson, 2002; Samtleben et al., 2007]
and seeding the evolution of the observed large-scale structure (LSS) [Peebles, 1980; Dodelson, 2003 ], have an
intrinsic stochasticity originating from quantum fluctuations of a scalar field. All these facts motivate a statistical
approach to the description of the cosmological fields and we will review the main aspects of the related formalism

in Sec. 1.2.

As for the matter field, its anisotropies are originally imprinted in the temperature map of the cosmic microwave
background where §T/T ~ 10~* [Planck Collaboration, 2014, 2016, 2018] . Due to a strong coupling between
photons and matter particles, they also seed the fluctuations of the matter field 8, (x, tcmp) < 1 at the time at
which the CMB is produced. Starting from this moment, the matter perturbations &, (x,t > tcus) evolve in
time, the value of which will be determined by the gravitational collapse across the different cosmological epochs.
In general, the associated dynamical equations are highly non-linear. However, at early time or if smoothed on
large scales the matter perturbations are small enough to allow a linearization of the dynamical equations around
the background homogeneous solution. At small scales and at late time, the non-linear nature of the equations of
motion can not be hidden and theoretical efforts are requested to produces a description as much precise as pos-
sible of the late time matter distribution. In Sec. 1.3 we will review the model for non-linear clustering employed

throughout the work presented in this manuscript.

We would like to comment on one last point before letting the reader start his journey. As the title of this
chapter does underline, our results and review material are meant to apply only to that part of the (light-cone) of
the Universe which can be observed by us, the Observable Universe. In particular (and we will give a more formal
definition later) it is the region around us within which events have had the time to be in causal contact with us by

today, starting from the origin of the Universe.

1.1 THE HOMOGENEOUS UNIVERSE

1.1.1 THE EINSTEIN EQUATIONS

The definition of the cosmological observables relies on a robust formalism that has deep roots in the theory of
General Relativity, first formalised in 1916 by Albert Einstein. While several attempts have been recently explored
aiming at relaxing some of its assumptions to accommodate for more complex scenarios, we will focus on its orig-
inal formulation which is anyway well tested and compatible with most of the present observations within the

achievable instrumental precision [Bull et al,, 2016].
Our starting points are the well known Einstein equations

87G

c4

Rw(x) - igyV(x)R(x) -

Z T (x), «={xt} (1.2)



All the tensors involved are local, evaluated at a point of coordinates x = {x, t} of the space-time, and have Greek
indices taking values o, 1, 2, 3, the o component referring to the time component. In the present section and
throughout this manuscript, we will refer to spatial vectors (either three- or two-dimensional) by writing them in
bold italic. The modules of these vectors will instead be written in regular italic, i.e. x = [x|. On the left hand
side (Lh.s.) we can identify the Ricci tensor Ry, (x) and the Ricci scalar R(x), obtained by contracting the former
with the metric g, (x). On the right hand side (r.h.s.) we have the Newton’s gravitational constant G, the speed of
light ¢ and the sum over the energy-momentum tensors of the different species populating the Universe. For sake of

completeness, we remind that the Ricci tensor is defined in the terms of the Riemann tensor as

RHV (x) = RZav(‘x) - Riyv<x)7 (13)
which is in turns defined as
R, (x) = 0,4, (x) + The ()T, (x) — O,T%, (%) + Thy(2)Th, (), (1.4)

where I' (x) is the so called affine connection.

0

zp (x) = igal (x) (aﬁgAP(x) + é\pglﬁ (x) - algﬁp (x)) ) aa = Oxt (1-5)

We implied, and we will always do, a sum over repeated indices. The request for isotropy and homogeneity, along
with the assumption of describing the different components of the Universe via a perfect fluid model, bounds the

shape of the energy-momentum tensor to be

10 () = (P () + p,(6) e, — g (2) P 1) (16)

P; (t) and p, (t) are respectively the pressure and the energy density of the given fluid ith as function of time and u,,

is the four-dimensional velocity of the particles relative to the fluid at rest.

1.1.2 LOCATING OBJECTS AROUND US: FRIEDMAN-LEMAITRE-ROBERTSON-WALKER METRIC

Cosmological observations require the capacity to measure distances { Ax, At} in the Universe between different
events, and between us, observing, and some event of interest. The symmetries highlighted in the introduction of
the present chapter impose a specific formal shape to the metric g,, (x). The most general one compatible with
a four-dimensional space embedding a three-dimensional sub-space invariant under translations and rotations
was independently found by Alexander Friedman and Georges Lemaitre, and rigorously derived by Howard P.
Robertson and Arthur Geoffrey Walker [Lemaitre, 1931, 1933; Robertson, 1935, 1936a,b]. Given a reference

frame of axes &,, &,, X, and a set of polar coordinates (r, 6, ¢)' the Friedman-Lemaitre-Robertson-Walker metric

"Throughout the manuscript we will always define 6 and ¢ to be respectively the polar angle and azimuth angle. Therefore
(%, = rsinBcosg,x, = rsinsing,x, = rcosh).



(FLRW) is defined via the following line element

ar*

LRW () dxt da’ = ¢ df — a*(t) [T
1— r*

wv

+ 7 (40 + sin® ew@] = cde — a()de. (17

From now, our conclusions will always be derived (unless differently stated) under the assumption of a FLRW
metric: for simplicity we will omit this specification. In Eq. (1.7), we introduced the scale factor a(t), the K®®
space curvature and the three-dimensional, time independent comoving line element d{. Depending on the sign of
K, this three-dimensional sub-space is locally isometric to a sphere (K®) > 0),toa pseudo-sphere (K®) < o)
or to a flat Euclidean space (K*)=0). The scale factor a(t) describes the contribution from the expansion of the
Universe to the dynamics of the physical separation between 2 points. If this contribution is not considered, we
are specifically talking about the comoving distance between the aforementioned objects and it is related to the
physical one simply as

dohy. = a (t) deom. - (1.8)

In the following, we will assume that the scale factor and the radial coordinates are normalised in such a way that

the values of K®®) can be either —1, 0 or 1, i.e.

alt) — % [a(£)] ~ length, (1)

r— r|K(3) |, ris dimensionless. (1.10)
In these specific cases the comoving three-dimensional line element will be: 1)
di* = &r + r* (d6* + sin* 0d°¢) = d*x, + d*x, + d’x,, for K® = o, (1.11)

which is metric for a flat Euclidean space, 2)

d 2
T —" -+ 7 (d6” + sin” 0d’p) = d*w + sin® w (d6” + sin” 0d’p) for K& = +1, (1.12)

1—7r

where in the second part of the equation we defined r = sin w, 3)

d 2
T —" -+ r* (d6” + sin” 0d’p) = d*w + sinh® w (d6” + sin® 0d’¢)  for KY = —, (1.13)

1+7r

where in the second part of the equation we defined r = sinh w. Respectively, Eq. (1.12) and Eq. (1.13) define

the metric for a three-dimensional space with constant positive and negative curvature. In a synthetic way, we can



summarise the previous cases via a redefinition of the radial coordinate

gu(x)dxtds’ = ¢ dt* — a*(t) [dw* + Fg (w) Q]

sinw  ifK®) = 41,

d
do=—o ' Fe(w) =40 ifK®) =0, , (1.14)

V1—KOp’

sinhw ifK® = —1.

where Q) = (d6” + sin® 0d*p). This last notation will be useful for defying cosmological distance in a geometry-
independent way. Given that the scale factor a(t) is commonly used as a time variable itself, we will often omit its

time dependence. This will also help in simplifying the required equations in the following.

THE FRIEDMANN EQUATIONS  The Einstein Equations can be written in terms of the FLRW metric. More im-

portantly, Eq. (1.2) can be written as a system of 2 independent equations, known as Friedman equations

E O o0+ 3R00) =~ T 0 1+ 300). (115
7 ©)
H(f) = 83;2;)1.(0 _ I; | (1.16)

where H (t) = ¢ is the so called Hubble parameter, which usually written as
H(t) = H,E (t) (1.17)

and w; = P;/t; is the equation of state for a specific component of the Universe. As commonly indicated in the
literature, physical quantities with sub-script o refers to the present value of the corresponding quantity. In the
specific case of the Hubble parameter, its present value is usually given in terms of the dimensionless parameter 1
as

H, =100 hKms ' Mpc . (1.18)

Along with Eq. (1.15) and Eq. (1.16), we can introduce the energy conservation equations for the different
components in an expansing Universe
dp,(t)

B - (p,(£) + Pi(t))

ISIIRSE

: (1.19)

For a constant equation of state w;, it can be easily solved leading to the dynamical evolution for the component

of interest )
d, 3(1+w;
pi(t) = Pio < ) (1.20)

Just to give a couple of examples, pressure-less matter has Q,, = o while radiation has w, = 1/3. Throughout this

a

10



manuscript, we will mainly interested in the former.

DENSITY PARAMETERS  For later convenience, we can define a dimensionless density parameter for each com-

ponent in the Universe quantifying its fractional density in time

87
3H2(t)

Qi (t) = p, (t). (1.21)

Given this last definition, the spatial curvature of the Universe is in general quantified by the following dimension-

less density parameter

K(3)
=1-— Z Qi ( . (1.22)

(1.23)

o8]
Q
D=
e
)

We would like to conclude this section with a last remark on our conventions. For a spatially-flat Universe, we
will use a dimensionless scale factor normalised to its present value, therefore a, = 1. In particular, the FLRW
metric expression introduced in Eq. (1.7) is preserved only if  — ra, and K& — K®) /a, the latter not being

equal anymore to only +1, o.

1.1.3 COSMOLOGICAL DISTANCES

Defining and measuring astronomical observables, more importantly the weak lensing ones described in Chapter
2, requires the localisation of an object in the observed sky. While we can easily define a polar coordinate system
to locate them on the sphere centred in the observer, the definition for a suitable third coordinate to describe its
distance from the same point or from other objects is more ambiguous. In the present section, we will review the
main definitions we will need for a deep understanding of this work [Weinberg, 1972; Weedman, 1986; Peebles,

1980].

RepsHIFT Commonly labelled as z, the redshift has a simple operational definition as the shift of spectral lines
due to expansion of the Universe. If a specific photon of a given a physical (non-comoving) wavelength 2. is a

emitted at a time t,, then the observed physical wavelength A, at time ¢, will be

(1.24)



leading to the following definition of redshift

z, (t.) +1

(1.25)

In particular, the redshift is a quantity we can measure from observations. From now on we will drop the subscript

t, assuming that the observation always occur at present time.

ANGULAR DIAMETER DISTANCE  Given an object at redshift z, of physical linear size A and subtended by an angle

8 if observed from a point at redshift z = o, the angular diameter distance is defined as

<| >

Dy (Z) (1.26)

where clearly both A and 6 have a dependence on the redshift of the object. In a FLRW metric, we can express the

angular diameter distance as

[ — Z d7 . ()
Ho(1+z)\/m]:K (\/m So E(z’)) 5 if K3 #£ o,
Dale) = (1.27)

4 Z _dZ . B
H,(1+z) So E(')? if K(3) = 0.

where the functions Fx and E were respectively defined in Eq. (1.14) and in Eq. (1.17).

LONGITUDINAL COMOVING DISTANCE  The longitudinal comoving distance, also known as line-of-sight distance,
between two events assumed aligned on the three-dimensional sphere and occurring at times z, and z,, is defined
as the distance covered by the light while travelling between them. Given the metric in Eq. (1.14), it can be easily

derived via the integration of the radial comoving coordinate w along null-geodesics (i.e. d*s = o)
c (* dZ
X(ZUZ,_) = I—TOLl M (1.28)

For later convenience, it is worth to notice that in a spatially-flat Universe the angular distance to the point at
redshift z, in the comoving coordinates of the point at redshift z, coincides with the longitudinal comoving distance

between the 2 points

Dy (anz) ’I<(3):O, o X (anz) (1-29)

and Eq. (1.29) is symmetric in the two redshifts.

We can also define a physical distance associated to the recently introduced comoving one. The proper distance

to an event at z, measured from an event at z,, will be given by the comoving distance between the two multiplied

12



by the scale factor a(z,), i.e.
d;‘ (zz) = a(Zl)X (ZU Zz) (1.30)

Therefore, we are now capable to define our Observable Universe, term which inspired the title of this chapter: it
will be simply given by our proper distance up to the Big Bang, at time z — 00. In particular, the size of our

observable Universe is of about 14.4 Gpc.

1.1.4 ACDM AND EINSTEIN-DE-SITTER COSMOLOGICAL MODELS

Given the formalism developed so far, by solving the Friedman equations (1.15) and (1.16) for a given evolution
of the density parameter ;, we can derive a specific solution for the scale factor a(t). Two FLRW models of

Universe are of particular interest.

ACDM mopeL  The ACDM (A Cold Dark Matter) model is a 6-parameter FLRW-model defining an Universe
populated by collision-less, pressure-less, non-relativistic (cold) particles of matter which can either have only
gravitational interactions (dark matter Q4) or all the known ones. In the latter cases, they are usually dubbed
as baryons (Q);,). Both these types of matter have the same equation of state, namely w,, = o (pressure-less).
However, they are present with different density fractions, respectively i’Q4 = o0.120 £ o0.001 and h*Qy,, =
0.0224 1+ 0.0001, according to the latest observations® [Planck Collaboration, 2018]. The Greek letter A stands for
an exotic component with a constant negative equation of state wy, = —1and density of Q, , = 0.6889 £ 0.0056

[Planck Collaboration, 2018].

The model is also defined by further requests on the primordial Universe such as the the primordial fluctua-
tions seeding the CMB anisotropies being Gaussian distributed, adiabatic and with an almost scale-invariant power
spectrum. While referring to major reviews for all the details concerning the definition of the ACDM model, its
parameters and extensions [Planck Collaboration, 2014, 2016, 2018, and references therein], we reserve the right
to come back to these concepts later, when more tools, specifically the concept of correlation functions, will be

introduced.

EINSTEIN-DE-SITTER  The Einstein-De-Sitter model (EdS) isa FLRW-model defining an Universe entirely dom-
inated by matter, i.e. (Q,, = 1), with no curvature (K®) = o). Even though this model does not give the right de-
scription of our observable Universe, however its simplicity allows to derive several analytical results with regards
to the growth of the large-scale structure and which are proved to be a good approximation to th actual dynamics

occurring in the ACDM scenario.

*The errors reported correspond to the 10 confidence region.
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1.2 THE DESCRIPTION OF COSMOLOGICAL FIELDS

Given the motivations outlined in the introduction, in this section we will provide the tools to describe the statis-
tical properties of a generic random field §; (x) (in this section we will omit the time dependence of the generic

random field). We will then move to the more specific case of the cosmological fields.

1.2.1 ENSEMBLE AVERAGE

We are dealing with a random field whenever the values of the field & (x) at a given set of points are random

variables.

The n—points joint probability Ps, ([a,] , [x,]) is defined as the probability that the field §; takes values 8¢ (x;) €

[a;, a; + 8a;] at the point set {x;},—, _,. A formal definition can be given

P (la Bx]) = < [0 (8 (x) — ) (131)

where the operator (x5, stands for the ensemble average associated to the specific field of interest. In analogy with
the probability density distribution for random variables, we can define the probability density functional P over
the space of the possible realisations 8¢ of the field . Similarly, it allows to formally define the ensemble average

of a functional operator O 5] of the field as

<mmm=fmmﬁﬁwmd (1.32)

A more operational definition can be given thanks to the concept of n—points joint probability introduced in
Eq. (1.31). Given one realisation 8¢ of the field 8, the value of the probability density functional for the specific
realisation can be built as the limit for N — o0 of the N—points joint probability for the value of that realisation
once discretized over a grid of N points [Mcclelland & Silk, 1978]. Therefore, the formal definition (1.31) can

actually be rephrased in a more operative way as

+N +00
. ~lmn ~lmn ~lmn
Ol = im [ | a1+ 157) (133)

Imn=—N

The quantities {S;mn Hmne—n.... +n are simply the values of the realisation gf over the nodes of the grid labelled by

Almn
the set of indices I, m, n. Therefore, the quantity P [Sf ] has to be understood as the n—points joint probability

~lmn

for the field to takes values in the range [S;mn, Sf + 88; |imn=—n,.. +n over the nodes of the grid.
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1.2.2 CORRELATION FUNCTIONS

FORMAL DEFINITION In order to fully characterise the statistical properties of the matter density field (later
simply noted as §,,), we choose to follow the traditional approach of using the n-point correlation functions [ Pee-
bles, 1980; Bertschinger, 1992; Matsubara, 1995 ], which are defined as the joint ensemble average of the field in

an arbitrarily number of locations {x;},—, __,, formally

s (Xuy oy X)) = (8¢ (%)) . 85 (x0) s, (1.34)

In analogy with the moments for real variables, we define the characteristic functional of a random field ¢ as

g [K] = f D5 exp [i f Frk(r) § (r)]ng (8] = Cexp li f Frk(r) s‘f(r)}&. (135)

It can be easily proved that the two concepts introduce here are actually deeply connected, as the following relation

holds .
8" 05, [k]

Sk(x,)... 8k (x,) . (1.36)

e (X, .., x,) = (—i)"

In analogy with the concept of cumulants for real variables, we can define the connected n-point correlation function

for the field ¢

R R f) ‘ 'E.f[skg = 05K = log@slk]  (137)

Similarly to the the real variable case, a cumulant expansion for a generic n-point correlation function is given in

terms of the lower order connected correlation functions

e (X000 X,) = €5, (X, ...y X,) + 2 1_[ €5, (x,(l), .. ,x(,(n)) (1.38)

SeP({x,,....x,}) 0€S

where the sum is made over the proper partitions (any partition except the set itself) of {x,, ..., x,} and ¢ is thus
asubset of {x,, . ..,X,} contained in the partition S. A very useful diagrammatic representation of this decompo-
sition is given in the literature [ Bernardeau et al., 2002 ] and some practical examples will be given in the following

chapters.

1.2.3 (NON-)GAUSSIAN RANDOM FIELDS

In this section, we will introduce some of the main features of Gaussian random fields and we will highlight their
importance in Cosmology in Sec. 1.2.4. By contrasts, we will define as non-Gaussian random fields those who do

not belong to this particular group of random fields.
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DEFINITION A Gaussian random field is defined by a probability density functional, introduced in Sec. 1.2.1,
whose logarithm is quadratic in the field itself
1
Po 5 ~ exp [—; | sy ) i (y)] (1.39)

for some kernel KC (x,y). By applying Eq. (1.31), we can actually have a more physical intuition of the definition

of a Gaussian field. Specifically, the n-points joint probability is simply given by a multivariate Gaussian

n

Pa, 5 ([an] ) [Xn]) = (Zﬂ)llrldet [C] exp [_i Z aici;laj] (1.40)

ij=1

where C; = K (xl-, xj) is the covariance matrix of the field.

PROPERTIES OF THE CORRELATION FUNCTIONS  Via the relations in Eq. (1.36), the 2-point correlation function

of a Gaussian field is related to the kernel KC (x,y) as

§* s, []

—W = K(x,x,) = C, (1.41)

Es¢ (Xn Xz) =

Thanks to the same formalism, via recursive functional derivations it is straightforward to prove an important
theorem for Gaussian random fields, the Wick theorem. Specifically it allows to directly relate all the even-point

correlation functions to the 2-point correlation function in Eq. (1.41) as

e (Xuy ooy Xay) = Z H £s; (xi,xj) (1.42)

pair ass. pairs (i,)

where the sum runs over all the possible pair associations of the points considered in the correlation, and the
product multiplies all the 2-point correlation functions evaluated at the points of each pair for a given possible

association. Further, all the odd-point correlation functions are vanishing

Es¢ (XU s >X2n+1) = 0. (143)

Therefore, by measuring the 2-point correlation function of a Gaussian field, we have fully described all the sta-
tistical properties of the field itself, e.g. the probability density functional and its connected and non-connected

correlation functions at any desired order.

1.2.4 RANDOM FIELDS IN COSMOLOGY

In this section we will see how the concepts introduced so far apply to real fields in Cosmology.
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ENSEMBLE AVERAGE  In general, observables in Cosmology are functional of the matter field § (from now on
we will drop the subscript m) and we would like to address the statistical properties of the former (moments,
correlations at different pointsin the sky ... ) to infer those of the latter. Clearly, Eq. (1.33) cannot be implemented
asitis given that we have just one Universe at our disposal. Usually in Cosmology we employ the ergodic hypothesis:
the ensemble average of any quantity coincides with the sample average of the same quantity. Most of the time
the sample average is actually a volume average, otherwise it has to be properly defined. Therefore, a common

realisation of Eq. (1.33) is

O ~ & fvdw[sf ()] (1.44)

The ergodic hypothesis has been proved to hold for one-dimensional stationary random functions [M IAglom &
A Silverman, 1964]. For cosmological applications, the ergodic hypothesis is exact in the limit of infinite volume

and within standard inflationary scenarios.

STATISTICAL HOMOGENEITY AND ISOTROPY ~ We anticipated that cosmological observables can be formally seen
as functionals O[§¢] of a given cosmological field §; (matter field, or tracer of it such as density of halos, galaxies, etc
...). Given one particular observable O[], its expectation value can be predicted by taking an ensamble average
via the previously defined operator (O[8¢])s,, and, from the observational side, we compare this value with the
volume average of the given observable once measured on different points of the sky. Clearly the volume average
will be just time dependent and naturally forces the final result to be homogeneous and isotropic. However, we
want this valuable property to apply also for the expected theoretical value of the observable itself. This translatesin
assuming that all the fields we will deal with in Cosmology are statistically isotropic and homogeneous: the n—points

joint probability Ps, ([a,] , [x,]) is in invariant under rotation or translation, respectively, of the points x,,.

A crucial consequence of such a request can be seen at the level of correlation functions

sg) (Xyy -y Xy) = ¢ (X, — Xp, -, X, — X,) i;sé:) (Rx,,...,Rx,), x,€R? (1.45)

where R simply rotate the system of coordinates. In particular, thanks to homogeneity, the correlation function

will depend just on the relative distances between the points

c hom. (c hom. (c
sgf) (X .0y X,) — sgf) (x,...,x, +(x, — %)) — sgf) (X, ...,X +1,) (1.46)
where here and in the following r;, = x; — x,. In particular, Eq. (1.46) just forces homogeneity on sg) , while

isotropy would further request no dependence on the orientation of the configuration of the points {x;},—, .
Furthermore, the dependence on the base point x, is just fictitious and the generic homogeneous n-point correla-

tion function will actually depend on (n — 1) vectors.

The request for isotropy is much more complicated. Let us show a couple of simple cases where intuition can

help, even though more rigorous proofs are available in the literature [ Marcori & Pereira, 2017]. If we consider
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the specific case of the 2-point correlation function, isotropy will further bind the correlations to depend just on

the module of the relative distance between the 2 points

-

c c hom. (¢ so. (¢
sgf) (xl,xz) = sgf) (xl,x1 + rz) = sgf) (rz) = sgf) (rl) (1.47)

b sg«f) (r,,r,), isotropy is implemented by forcing it to

As for the 3-point correlation function sg) (x,,x,,X,)
depend only on the three combinations of r,, r; that are rotationally invariant: their modules r,, r, and their scalar
productr, - r,. In summary

hom.
&) (X%, %) = el (r, 1)

0.

£§§) (rz, 298 A 1'3) (1.48)

At every steps, we are actually reducing the number of degrees of freedom, from 9, to 6 (homogeneity), to 3

(isotropy).

CUMULANTS AND MOMENTS  In Cosmology we will define moments and cumulants as the correlation functions
in Eq. (1.34) (non-connected) and in Eq. (1.37) (connected) respectively when evaluated at the same location in

space. Therefore, the n** order cumulant and the n™ order moment for a random field §;, will be defined as

m, = <8? (X)>8f = (_i)n%s(fgc] ‘k=o’
. 8" O [K]

K = 8 05 = ()" ‘kzo‘

(1.49)
(1.50)

Thanks to the request of statistical homogeneity and isotropy they will not actually depend on the point of the space

considered.

We would like to underline that the moment and the cumulant of order 1 are identically o, by definition, i.e.
(8¢) = o. Therefore, in the expansion defined in Eq. (1.38), all the terms involving a singlet will be vanishing. The
moment of order two m, will be therefore identical to the cumulant of order 2 «x, and it is called the variance of
the field, usually noted ad o*. As for higher order cumulants, they will be in general different from the same-order

moments and identically o for Gaussian random fields. In line with the tradition, they are usually normalised to

the standard deviation of the field ¢ = /0*

(1.51)

PoLYSPECTRA In Sec. 1.2.2 we defined the correlation functions for a field in real space. Often in cosmology we
will employ their counterpart in Fourier space, the polyspectra. Given a scalar field in a real d-dimensional space

8¢ (x, t) (where we made explicit once again the time dependence), we can consider, at every time (dependence
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that we locally restore in this paragraph), its Fourier decomposition 5 (x, t) in configuration space

5 (k. ) — f xS (x ) e S (xt) — J L (1.52)

(2m)*
which is a field itself on the configuration space. In Eq. (1.52) we show both the direct and inverse Fourier trans-
form for a general dimension to fix our convention on the pre-factors. In this chapter, we will consider d = 3. At
the level of notation, we will eventually switch to the following much simpler notation for the cosmological field
8¢ (k, t): 8. This will be the case when deriving the covariance matrix expressions for the observable of interest

in Chapter 2.

The decomposition of a scalar cosmological field f (x,t) = f(t) + §f (x, t) in its Fourier components]‘(k7 t)
has a deeper meaning. As a matter of fact, the assumption of}(k, t) being statistically homogeneous at every
time, implies that the background component (f (x,t)) = f(t) does not have any space-dependence. Therefore,
all the operators that will appear in the equation of motions for the perturbation §f (x, t) (Vlasov-Poisson sys-
tem in Sec. 1.3.1), at linear order, will commute with the Fourier operator on the left of Eq. (1.52), leading to a

system of equations for each mode k of the field. Further, being the plane waves e***

eigenfunctions of all the
space-derivative operators, there will be no couplings between the modes and each of them will simply evolve
independently in time. All these features are present as long as the equations for the gravitational dynamics are
linear and the statistical homogeneity is assumed, leading to a very simple analysis, in Fourier space, of the linear

gravitational collapse.

The polyspectrum Ps, (k,, . .., k,) of a given order n is related to the n-point correlation function of the field
8¢ (k, t) as

< ( ) ( )>5f ( ) (kl +kn)P5f (k?-’"'vkn)v (1'53)
(8 (k) .. ( n))sie = (27)8p (ki + -+ + k) Py, (ks .. Ky) (1.54)

where the constraint imposed by the Dirac deltas §p, as we will see, comes from the request for homogeneity and

bounds the momenta to form closed polygons in configuration space. The relations (1.53) and (1.54) can be

(c)

proved to be actually consistent with the operational definition of Py’ as the Fourier transform of the same order

()

correlation function ¢ 5 1 ie.

P (k,, ..

H Ud%, ik ] e (r,...,1) (1.55)

where we expressed the correlation function in real space in terms of the distances between the points. As a matter
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<&(k)“'sdkﬁ>%k)::Illjnf&e+m*]<&(g)“.gﬂxﬁﬁﬁ@) (1.56)

i=1
n

= Jd3xl ik H [J dPr, et (ritx, ] (8 (x,) ... 8¢ (x, + 1,))s,. © (1.57)

i=2
n

— Jd3xle+i(2?—l k) x H [f &r; e+ik"'r’] Se(x) ... 86 (% 4 10))s, (o) (1.58)

i=2

= (27)*8p (k, + - - - + k,) H {J &r; e+iki"i] (8¢ (ry) ... 8¢ (10))s:, (o) (1.59)
In the first line we simply inverse-Fourier-transformed every single mode. In the second line we performed a
change of variable r; = x, — x, for i > 1. In the fourth line we performed an integration over x, to get the Dirac
delta, given the fact that (. . . §¢ (x,))s,, (c) does not actually depends on the base point x,, thanks to homogeneity.

Finally, we can recognise the relation (1. 55), once removed the fictitious dependence on x,.

Focusing on the 2-point correlation function and on the 3-point correlation function, their polypsectra are
respectively dubbed power spectrum P and bispectrum B. Given the considerations above, we can further simplify
their dependencies on the configurations involved. Specifically, for the power spectrum isotropy leads to a depen-
dence on just the module of the only momentum k. As for the bispectrum instead, isotropy leads to a dependence
on the modules of the two momenta and on their angle. More often, the dependence of the bispectrum in an ho-
mogeneous and isotropic Universe is expressed in terms of the modules of the edges of the triangular configuration

involved. Clearly the two definitions have the same physical meaning. In summary

hom. c iso.
P (k1) "E P (k) = P (k) (1.60)
hom BYY (k,, k., k,) . (1.61)

1SO

BY (k, k., k) = BY (ki k) 2

CONNECTED VS. NON-CONNECTED CORRELATION FUNCTIONS In Eq. (1.34) and in Eq. (1.37) we introduced,
in a general manner, the concepts of non-connected and of connected correlation functions. However, in cosmology,
we will always employ the latter and from this moment on we will always refer to them in this manuscript, dropping
the superscript c. A practical reason for thisis that, if the field of interest has deviations from the Gaussian statistics,
then different modes of the field § (k) will be independent and the connected correlation functions beyond the
2-point one, will be vanishing. If any higher order correlation function is detected to be non-varnishing, then this

measurement will directly tell us about the level of non-Gaussianity present in the field.

OPERATIVE DEFINITION  For later convenience, let us introduce a more operative definition of the n-point cor-
relation function and which is actually closer to the way it is built from catalogues. In Cosmology, may it be in

simulations or within actual data sets, the general field ; is not continuous: we will always detect the position
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and the concentration of particles/pixels (dark matter particles, point sources, galaxies, ... ) in the sky. Therefore,
given N volumes {AV,},_, _y centred in positions {x;};—, . x, let us consider the density of the particles in each
ofthem {nf = Nf/AV;},_, _n, Nibeingthe number of particles in the i volume. Of course we can define a mean
background density i = N /V. Therefore, an operational definition of the density contrast 8¢ (x;) within the i

volume is given by
A8 (x) +1] = nf (1.62)

The product <Nf .. le\,> will then be the average number of N-tuple in the set of volumes {AV;},_, v located
at positions {x;},—, __; rephrased, the product of the number of particles in the first volume times the number in

the second volume ...times the number of particles in the N volume

(N,...Nyy = V([ [AV; [ (x) +1]) =

i=1

AN [(8e(x,) ... 8c(xn)) + - + 1] (AV)Y =
N [.sg:) (X, XN) + o0+ 1] (AN (1.63)
where in the last term we are omitting all the (< N)-point correlation functions deriving from the product in the

second term. We also assumed all the volume elements to be of the same size to simplify our notation, along with

removing the superscript f. We can invert Eq. (1.63) to get

N, ...N, c
<(71A—V)1\;\T>:1+£§f) (xl,...,xN)+.... (1.64)

Given a single volume element AV, the expected number of particles in it is
(N) = nAV. (1.65)

If the number of particles {N;},_, y in the volumes {AV;},_, _yis not correlated, then the average number of

pairs is the product of the average number of particles in the volumes

(N,...Ny) = (rAV)~. (1.66)

Therefore, we can see how the hierarchy of correlation function sg) (X,,...,Xy) + ... represents the fractional

excess of N-tuple at the different positions {x;}—, . n, over what would be expected if the distribution were com-
pletely random. We refer to the literature for an in depth discussion discussion up to the 4-point correlation func-

tion (e.g. Peebles [1980]).
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1.3 'THE LARGE-SCALE STRUCTURE OF THE UNIVERSE (LSS)

In this section we will review the main features of the model we will use to describe the growth of structures in
the non-linear regime, when |§,,,| & 1: the well known halo-model (Cooray & Sheth [2002] for a thorough review).
We will start from a brief description of the Perturbation Theory (PT) approach to the understanding of the LSS
evolution ([Bernardeau et al,, 2002] for a thorough review). This will allow us to define several quantities which

will be employed in the halo model itself and later in the next chapter.

1.3.1 PERTURBATION THEORY, A SUMMARY

GRAVITATIONAL DYNAMICS  First of all, let us fix the main variables describing the dynamical evolution of the
matter perturbation in an expanding Universe. In this section and in the following ones we will explicit the depen-
dence of the cosmological fields on the time to allow a clearer separation between background and perturbative
components. In line with the common practice, we will split the local matter density p (x, t) in a background

time-dependent component p () and in a perturbation term § (x, t)

plxt) = p(t) 1+ (x,1)). (1.67)

When referring to the matter contrast density field § we will omit the subscript m, being indeed the main cosmo-
logical field of interest. While the background evolution is fully determined by the system of Eq. (1.15), Eq. (1.16)
and Eq. (1.19), in the following we will focus on the perturbation § (x, £). We start by considering the phase space
density function f (x, p, t). It describes the distribution of the matter particles of mass m, per unit of volume in real
(comoving) and in momenta space in terms of its coordinates

ohy.

X=—, p=mau,. (1.68)
a

For simplicity, we will not explicit the time dependence of the scale factor a. We introduced the peculiar velocity

u,, of a particle and it is defined as difference between the physical total velocity and the Hubble flow

g o da s
YT T Ya

(1.69)

We can then introduce the mean velocity flow u (which is not to be confused with the peculiar velocity u,) as the

first-order momentum of the distribution f (x, p, t)

u (x,t) = NL Jd3 pﬁf(x,p, t), (1.70)

P ma
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N, = {&p f(x, p, t) being the mean number density of particles, and the velocity dispersion tensor o;; (x, t) as its

second-order momentum

oy (x,8) = szp POB o) wx ) (). (171)

p ma ma

In the following, along with the local density contrast §, the quantity we will solve our equations for will be the

velocity divergence, defined as

0 (x,t) = a%vx.u(x, ). (1.72)

THE VLASOV EQUATIONS  According to the ACDM model, dark matter is described as a fluid of collision-less
particles. In this case, the Liouville theorem applies and the phase space density function f (x, p, t) is conserved in

time

+ =Vt
Dt

Dfpt) [0 dxg dp
ot dt dt

VP] f(x,p,t) = o. (1.73)

In terms of the coordinates defined above, the Liouville equation is known as Vlasov equation

{(3 +-B Vy—mV,0 (x,t) - Vp] f(x,p,t) = o, (1.74)

5t m a*

and it is coupled with the scalar Newtonian potential ® (x, t)

V2O (x,t) = 4715111 (Jd3p (x,p,t) — ﬁ(t)) (1.75)

with7n = { @x&pf(x, p,t) /V. Atypical approach is to solve Eq. (1.74) via a decomposition of it in moments of
the phase space function. Therefore, by applying the operators

f & pﬁ *,  1st moment; J &p b B *,  2nd moment (1.76)
ma ma ma
on the Lh.s. and on the rh.s. of the Viasov equation, we can derive a system of equations for the first-order moment

u and of the second-order moment o;; of f (x, p, t)

B 41y [+ 8(x ) u(x )] =o o
, ) (x0)a(x)| 1.77
Qulst) 4 by (xf) + Lug (x, 8wy (x,F) = —20, (x, 1) — e,

ot a p(x,t)

Finally, we close our system by assuming that the dark matter field can be described by a perfect fluid with an

isotropic velocity dispersion which is proportional to the pressure, i.e.

ojj (x,t) = 8 (1.78)



In the following, we will place ourselves in the commonly used single flow approximation:

0| « [ul|. This approximation is valid at large enough scales where we assume that the flow of the particles
induced by gravitational collapse is dominant with respect to the thermal motion of the particles within the dif-
ferent fluids and the pressure is negligible in the dynamics. Within this approximation, the phase space density

function can be written as

fapt) = CPED ) (179)

m

and Eq. (1.75) simplifies to the well known generalised Poisson equation

V2O (x,t) = 47 Gp(t)5(x,t) (1.80)

THE VLASOV-POISSON SYSTEM: LINEAR SOLUTIONS At first place, we will show the solution to the system

(1.77) in the linear regime, i.e. when

[ (x,t)m (x, )], < &(x,1), (1.81)
[uj (x, t) u; (x, t)] L8 (x,t). (1.82)

[Z +2H(H) L — 2H(1)Qn (1)] 8 (x,1) = o,
(1.83)
0 (x.t) = — 55 58 (x,1)

where we used in first equation the generalised Poisson equation in Eq. (1.80) along with the definition of matter

density parameter (1.21). In terms of the growth factor D (t) = g((j:))

a convenient choice of the initial time t;, the solution to the system in Eq. (1.83) is

that we introduce here for the first time for

D () + 2H(E)D (£) — sz(t)D (t) = o. (1.84)

If we assume that our observable Universe can be approximated by the EdS model described in Sec. 1.1.4, then we
can find analytical solutions. Specifically, the most general one will be the linear combination of 2 independent

modes

8. (x,t) =D, (t) 8 (x, 1), (1.85)
§_(x,t) =D_ (t) 6 (x, 15) (1.86)
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respectively named as growing and decaying mode. Thanks to the second relation in Eq. (1.83), we can express the

linear solution for the field 0

 dlogD. (1)

0, (x,t) = Zloga Dy (t) 8 (x, ) (1.87)
0_ (x,t) = _%;Tl)g;(t)])_ (£) 8m (x, ;) (1.88)

For an EdS Universe, we will have D, (¢) octs and D (t) oct™*. Evenif the above solution is a good approximation
also for a ACDM Universe, in all our applications we will compute the numerical solution to the exact differential

equation (1.84). We will comment in Sec. 1.3.2 about a suitable choice for the initial perturbation § (x, ;).

THE VLASOV-POISSON SYSTEM: NON-LINEAR SOLUTIONS We now shift to a regime of the matter clustering
where the linear approximation defined by Eq. (1.81) and Eq. (1.82) does not hold. We will preserve the single-

flow assumption and we will focus on the solution for an Eds model. The system to solve reads

R0+ s ) wx ], =o,

Ou;(x,t)

d 1 1 (1.89)
ot + L (X7 t) + Pl (Xv t) ;; <X7 t) = —;(‘DJ (X’ t) ’

Following the standard approach outlined in great details within the review by Bernardeau et al. [2002], let us

introduce the following doublet which will allow for a more elegant solution
Y (x,t) = (8 (x,t),—0(x,t)). (1.90)

In Fourier space, we can write the system to solve as

— Q| Y, (k) = ‘(k, Kk, k,) ¥, (k,,n) Y. (k .
a0t Tl - [ 5T k) Fa ) ¥ (19)

where we introduced the time variable § = log D, (t). For an EdS Universe, the matrix Q! is independent of time

o -1
QI;:< , 1); (1.92)

and the components of the vertex y*° (k, k,, k, ) are

a(k, k, k +k)-k
() = 8 (k—, — ) S g - TR (15)
) a (k,. k, k +kk -k,
P ek k) = 8o (k— k — k) 2R g gy - Tkl ks (1.99)
2 2k k?
k17k2
72 (k, k., k,) = &p (k — k, — k,) w, (1.95)
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The idea lying behind the philosophy of the PT approach to the emergence of LSS is that we can expand the

doublet in Eq. (1.90) at different orders for which we can solve perturbatively

¥ =D ¥ (x1), (1.96)

each term being proportional to the p™ power of the linearly evolved over-density D | (17)§ (x, ’71) withD, () =1

i

[Goroff et al., 1986; Makino et al., 1992; Jain & Bertschinger, 1996]

¥ (x,1) = (¥ (x, 1), 0¥ (x, 1)) . (1.97)

At this point, it is possible to iteratively solve the formal equation Eq. (1.91) at the different order ‘I"(f’), starting
from lower ones. The final result will be the fields §) (x,1), 6w (x, 1) being function of p-powers of the linear so-
lution of the growing mode 5, (k, n), convoluted with a kernel. This can eventually be translate in a diagrammatic
representation of the modes as well explained in the literature [ Bernardeau et al., 2002; Crocce & Scoccimarro,
2006b]. We will not talk about it in this manuscript. In general, we will be capable to write the p-order solution

for the vector ¥*) defined in Eq. (1.97) as

= () &k &k < ~
¥ (k) = f Gy (M;SD (k—k_,) F¥ (k,...,k;2) 81 (kyn)...84 (k1) (1.98)

In the literature, respectively for the local matter field § (i.e. a = 1) and the velocity divergence field 6 (i.e. a = 2),

the kernel F#) is defined as F*) and G). We will employ this notation later in the chapter.

1.3.2 THE LINEAR SOLUTION AND ITS POWER SPECTRUM

Given the formalism introduced in the previous section, we would like to briefly describe the linear matter power
spectrum P (k) in cosmology, given that it will play an important role in future definitions. Undoubtedly, the

linear matter power spectrum is the power spectrum for linearly-evolved initial matter perturbations
P (k) 8P (K + k) oc (8 (k, £) 8 (K, £)Dyin, D’ (t) (8 (k,t,) 8 (K, 1)) (1.99)

In the last definition we have assumed equal-time correlations, the initial time ¢ will define a primordial power
spectrum we will evolve forward in time. The missing term in Eq. (1.99) will eventually account for a geometrical

factor (not a random field) describing the change in amplitude for a given mode k in time.

The primordial power spectrum is defined to be the one at the end of the inflation. The scalar potential ® (x), as

set at the end of the inflation, is characterised by a nearly scale-invariant (dimensionless) power spectrum
KPg (k) = A K", [Py] ~ length®, [k] ~ length™. (1.100)
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In Eq. (1.100), n; is the scalar spectral index, which is surprisingly measured to be n; = 0.9649 + 0.0042 (Planck
Collaboration [2018] for the latest measurement). If n, were exactly equal to 1, we would have a perfectly scale in-
variant primordial power spectrum, case which is well known as Harrison-Zel dovich power spectrum. The potential

0 (k) is related to the density perturbation § (k) by the Poisson equation
—® (k) = 47Gp (£) 5 (k). (1.101)

Therefore, Eq. (1.101) can be used to relate the primordial matter power spectrum after the inflation to the one of

the scalar potential O as

< < ‘ ka(t) | Aa(t) |
B0t 5 0.t P (k) | 2T oo | 220 e o)
3 m,o o 3 m,0 ~ "o

The geometrical factor missing in front of Eq. (1.99) is called transfer function T (k) (up to a normalisation
factor we will discuss later). It encapsulates the evolution of perturbations through different cosmic epochs up
toa ~ 0.1 (z ~ 9), time domain after which the parametrization in Eq. (1.99) is allowed [Dodelson, 2003].
T (k) is in general evaluated numerically within well known Einstein-Boltzmann solvers like CAMB?, or CLASS*.
However, efficient analytical approximations do exist and we will employ for our analysis the one of Eisenstein &

Hu [1998]. For completeness, we also refer to Bond & Efstathiou [1984] for a different possible fitting function.

Summarising our considerations, the final expression for the linear matter power spectrum will be

P g - oy 2T () S o T 0F e G
305, He ko

where we included the previously missing prefactor. In Eq. (1.103) we provide two possible definitions for it. In

the first case, A" is the amplitude of the primordial power spectrum of the scalar perturbations as produced by

the Inflation according to the Planck papers’ convention [Planck Collaboration, 2014, 2016, 2018] (where also

the definition of the pivot scale k, is provided). It can be predicted theoretically and measured from CMB data to

constrain inflationary scenarios. In the second case, the normalisation prefactor A™ is measured from the varjance

og of the linear matter field at present time (f,) once smoothed over spheres of (comoving) radius of 8 Mpc/h

400

oy = 0*(R)|r=s Mpc/h = f [Ahn' (k, to)]ZVV; (k) d (logk) (1.104)

o R=8 Mpc/h

where [A"™ (k, t)]* is the dimensionless power spectrum defined, according to the literature, as

[Alin. (k, t)]z — Zk_;zplin. (k, t) (1’105)

*https://camb.info
*http://class-code.net
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and W, (k) is the Fourier transform of a top hat function with characteristic length R

Wr (X) =1, ifx <R, 7 WR (q) _3 (Sin(qR> —qR COS(qR))‘

(1.106)
Wk (x) = o, ifx > R, (qR)’

The specific scale of 8 Mpc/h is interestingly used since it is the scale at which the matter field, once smoothed, hasa
perturbation 8=*MP/" ~ 1: at present time this scale can be considered as the transition from the linear to the non-
linear regime (see Reimberg et al. [2018] for an interesting discussion). For our applications, we will normalise
the matter power spectrum via the o3 convention. We recall that we can smooth the matter field according to the

top hat function (1.106) via a convolution in real space

Rx) = J(PyWR (x—1y) 8(y). (1.107)

Eq. (1.107) also defines our notation for smoothed cosmological fields. In Sec. 1.3.4 we will use this definition

extensively.

1.3.3 THE MATTER FIELD BISPECTRUM

Aswell explained in Sec. 1.2.3, a non-vanishing connected odd-point correlation function would be the signal of a
deviation from the Gaussian statistics for the related field. Then, the lowest order correlation function which can
be used to address this property is the 3-point one, whose associated polyspectrum is usually dubbed bispectrum
and denoted with the letter B

Bs, (k,, k;, k) = Ps. (k,, Kk, k) . (1.108)

In this section the time dependence of the fields is implied, not being relevant.

BISPECTRUM AT LEADING ORDER: (§8§) TERM We want to derive its expression at the leading non-vanishing
leading order in PT, in terms of doublet expansion (1.96). We start in this paragraph with the matter density
perturbation §. Of course, the bispectrum will not emerge at the linear level (in the following considered as or-
der p = (1)): non-Gaussianities are strictly related to non-linearities in the dynamical equations and coupling
between different modes are required to have a non-vanishing bispectrum. The leading order at which the bis-
pectrum in PT will appear is when at least one mode in the connected correlation function is in the non-linear

regime, then at second orderp = (2)

G (k)3 (1) 8 (k)5 = 187 (1) D157 (1) D157

f

<8 (kl) v (k,) S(l) (k;)). + cycles over {k,, k,, k,} (1.109)
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From Eq. (1.98), we have

<(2) ) dq OPIR0)
00 =40 09— | SLrOa k- 5" @ k- q) (1.110)
For an EdS Universe, the kernel F* takes the form
k., k,
FO (k, k) = > + “pk, k) [ =+ 2 ) + 2k, k) (1.111)
7 2 k; kl 7

with
k -k ki — ki —k}

kk, — 2kk,

H(kl, k?-) =

(1.112)
We then plug Eq. (1.110) into Eq. (1.109). For example, the first term reads

d’q

o ek 06 ()3 () 8 @30 — e ()

G ()5 (1) 53 (1)), = f

Since all the linearly evolved modes 5 are drawn from a Gaussian distribution, we can apply the Wick theorem

on the 4-point correlation function appearing in Eq. (1.113), which leads to the following 3 terms

o

" (@) 8" (i, — @B () 8 (1)) = 8o (a + k, — @) 80 (k, + k) P (q) P (k)
B k= @) 87 (k)8 (@8 (k) = 8 (ky — 4+ k) 8o (g + k) P (k, — @) P (g)
6"k~ @) 8" (k)28 (@) 8 (1)) = 85 (k, —a + k) 8o (0 + k) P (k= @) P (g) . (n.114)

If we perform the integration over q in Eq. (1.113) and we apply the bispectrum definition as a particular case of
Eq. (1.54)
(8 (k)8 (k) 8 (k). = (27)* 8p (k, + k, + k,) Bios(ky, ks, ky) (1.115)

we are left with the following expression for the leading order contribution to the bispectrum in PT

Bo(ky, sy, ky) = 2F®) (K, k, )P (k,) P™ (k) + cycles over {k,, k;, k,} (1.116)

BISPECTRUM AT LEADING ORDER: (§86) TERM For later convenience, we would like to give one example of

bispectrum including the velocity divergence field 6, specifically

leading

(k)8 (k) 0 (k) = 8% (1) 316 (1) Y60 (k) =

G (1) 8" (1) 89 (1)) + (8" (1) 5 (1) 09 (1)) + B (1) 3 (1) 89 (k). (1.117)
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Shortly, by following the same steps as in the previous paragraph and introducing the divergence velocity kernel
(for an EdS Universe)

k, Kk,

GO (k, k) = > + ~u(k, k) [ =+ = ) + (K, k), (1.118)
7 2 kz k1 7

we can derive the expression for the bispectrum (§86)

ng;a(kl? k2> k3) =
2G®) (k,, k,)P"™ (k) P*™ (k,) + 2F®) (k,, k,)P™ (k,) P™ (k,) + 2F) (k,, k,)P™ (k,) P (k). (1.119)

In the previous derivation, we are assuming that the initial condition for the velocity field 6 are actually propor-

tional to those for the matter field density contrast § (adiabatic initial condition request).

COMPARISON WITH SIMULATIONS ~N-body simulations are our most precise tool to reproduce cosmological
structure formation. We therefore look at them as the best way to inspect the predictive power and the precision of
analytical estimations of cosmological observables. In this paragraph we focus on the matter bispectrum as derived
from Perturbation Theory. A thorough and recent comparison between perturbation theory predictions and sim-
ulations can be found in Lazanu et al. [2016]. It is important to remind that the theoretical framework presented
in this section is usually known as Eulerian standard perturbation theory (SPT). While further improvements are
available in the literature, the material presented so far is enough for a thorough understanding of the contents of
this manuscript. However, Lazanu etal. [2016] do also compare some of these alternative approaches with simula-
tions and they eventually perform better than the tree-level SPT we use here. For simplicity and as not to break the
flow of the section, we prefer here to stick with SPT results, even though we introduce a natural improvement to
the tree-level results. In fact, we can enrich our estimation by moving to the next non-vanishing order which turns
out to be of order 6 in terms of the linearly-evolved field § @), This is usually known as 1-loop correction [Scoc-
cimarro et al,, 1998]. Assuming a ACDM cosmology, at z = o the tree-level bispectrum® B(k,, k,, k, )is in good
agreement with the simulations for k < 0.1 h Mpc ™ on equilateral configurations [B(k, k, k)], and on squeezed
configurations [ B(1.4k, 1.4k, 0.14k)]. The performance improves, at the same redshift, when considering flattened
configuration [B(k, 0.5k, 0.sk)] where the results from the simulations are well reproduced uptok < 0.3hMpc ™.
As expected, SPT performs better at higher redshifts where the level of non-linearities is lower. Atz = 2, the
tree-level bispectrum on equilateral, squeezed and flattened configurations is well predicted respectively up to
k < o16hMpc ' k < o2hMpc'andk < 0.4 h Mpc . The 1-loop correction helps in converging towards
the simulations. Over the scales analysed (0.07 h Mpc™ < k < 0.4 h Mpc ™) the greatest benefit, with respect
to the tree-level bispectrum, is achieved at z = o where the analytical predictions are well within the error bars of
the simulated signalup tok < o.11hMpc™', k < o.17 hMpc™ ' and k < 0.2 h Mpc™* for equilateral, squeezed

and flattened configurations respectively. In a subsequent paper, Lazanu & Liguori [2018] computed and tested

SWe will always consider in this paragraph B(k,, k,, k;) = Biss (ki, ks, k; ).
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against simulations the 2-loop SPT correction to the matter bispectrum. Atz = o the analytical results match
the simulated signal within the error bars up to k < 0.2 h Mpc™ for equilateral configurations. Unfortunately,
for flattened and squeezed bispectra, the 2-loop correction does not improve the agreement with the simulations.
Overall, the best performance is achieved by the renormalised MPTbreeze technique [ Scoccimarro, 2001; Crocce
& Scoccimarro, 2006a,c, 2008; Bernardeau et al., 2008; Crocce et al., 2012; Bernardeau et al., 2012 ] which falls
outside the SPT formalism we considered. Atz = o and for equilateral configurations, MPTbreeze is competitive
with the 2-loop SPT while remarkably improves the estimation for squeezed [B(k, k, Ak = 0.012 h Mpc™*)] and
flattened [B(k, 0.5k, 0.5k)] configurations. In these last cases, the agreement between simulations and analytical

1

predictions is guaranteed up to scales k < 0.25 h Mpc ™.

1.3.4 THE HALO MODEL: PROPERTIES OF THE HALOS

The halo model (Cooray & Sheth [2002] for a thorough review) provides an effective and physically motivated
ansatz to compute the different polyspectra we will need for our study at much smaller scales than PT allows. This
approach relies on the fact, supported by numerical simulations, that we can model the statistical properties of the
matter field via halos of dark matter of different masses, redshifts and positions. The reason for going beyond the
PT approach described in the previous section will be clearer in the next chapter when we will analyse the weak
lensing formalism. Briefly, due to the projection effect, the weak lensing signal is sensitive to very small scales.
For a Euclid-like survey, Kitching & Taylor [2011] proved that the power spectrum has to be accurately known
to 1% down to k ~ 5o h Mpc ™" to saturate the dark energy figure of merit. This study is in agreement with the
previous one from Doré etal. [2009]. Similarly, Huterer & Takada [2005 ] argued that we typically need the power
spectrum within a few percent accuracy up to k ~ 10 h Mpc™" in order to take advantage of the statistical power of
DES- and LSST-like survey. In Eifler [2011]; Hearin et al. [2012] a similar conclusion is obtained. At these scales
linear theory for the evolution of the matter perturbations can not be trusted to build our observables. On the
other hand, perturbative approaches (2-loop perturbations theory) starts deviating by more than 1% at scales k >
0.1h Mpc™ atz = o [Taruya et al,, 2012], although they perform slightly better at higher redshift. In the above
regime cosmological N-body simulations are usually employed to study the nonlinear gravitational evolution and
eventually used to tune phenomenological models or fitting formulae for the power spectrum. In Sec.2.2.1 we will
extensively describe the inadequacy of N-body simulations for the purpose of our analyses. Therefore, we will shift
our attention to the (semi-)analytical models mentioned above. To cite few examples, Peacock & Dodds [1996]
provided a fitting formula for the power spectrum based on a scaling ansatz presented in Hamilton et al. [1991].
Later, Smith et al. [2003 ] proposed a new model of the power spectrum, the so-called halofit model, which is
based on a the well known halo model of structure formation (e.g. Ma & Fry [2000] ; Seljak [2000]; Cooray &
Hu [2001]). Recently Mead et al. [2015] presented an optimised variant of the halo model, designed to produce
accurate matter power spectra well into the non-linear regime for a wide range of cosmological models, including
baryonic feedback. However, all these approaches are meant to provide a good fit for the power spectrum alone

while providing a poor description of the true underlying physics [Reimberg et al., 2018]. In particular, they can
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not be used for building higher order statistics, which are key ingredients of our analyses. We rather build our
observables in the standard halo model framework. Recently, Kayo et al. [2013] proved the halo model to have a
precision of 20% up to scales k ~ 10 h Mpc ™" atz = o in terms of weak lensing convergence power spectrum and

bisepctrum and of the joint covariance.

SINGLE HALO PROPERTIES: THE SPHERICAL COLLAPSE Interestingly, the spherical collapse is one of the few
cases where the dynamics of perturbations can be solved exactly. At some initial time ;, we smooth the matter
field § (x, t,) Smogth i (t;) via a spherical top-hat function W,, (x) (see Egs. (1.106)-(1.107) for useful definitions).
In §" () we omitted the spatial coordinate since we will now focus on the dynamics of a single halo. The mass

enclosed in a shell of radius r;, can be related to the background matter density of the Universe p (£) as
me, = %@p () (1 + 87 (1)) = ?rr ©p (O [1+ 80 (8)] = meys (1.120)

where the second relation comes from the mass conservation p,(t,)r; = p(t)r(t)® along the different cosmological
epochs. Once we will have solved the system for the time dependence of the radius r(t), we will know the dynamics
of the matter over-density enclosed in the sphere via

it \
I O () _ L < (1.121)

p(0)  p(0) 4nr (1)

where we introduce the smoothed mean matter density within the sphere p”(t). Asa consequence of the Birkhoff’s
theorem, a spherically symmetric matter distribution outside a sphere exerts no force on the sphere itself leading

to the following equation of motion

d>r(t) mM<y(r) M,
= -G - ‘ .
&t (1) (1)’ (1.122)
the energy being defined as
1 [dr(t) | me,
- -G—=¢£ .
2 l dt ] r(t) (1.125)
For a bounded halo, £ < o and a parametric solution is known
Gme,
r(0) = A(1— cos0), A= m<,7 (1.124)
—&
Gm_,
t(0) = B(6 —sin0), B=—"- (1.125)
(6) = B(6— sine) e

where we used the fact that the mass is conserved. The spherical collapse solution r, (t), goes through 3 different

phases

shells expand from *? (0) = oatf = o
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shells reach a maximum expansion at r;2: at 0 = 7, being t,,,x = 7B at this point

shells collapses back to r*P* = o at 6 = 27, being t = 2t at this point.

In particular, this dynamics is typical of every halo, no matter its mass. By using Eq. (1.121), it can be shown that
can write the time evolution of the smoothed over-density within the spheres as
"(0)  9(6—sinb)*

5O = P — 126
P p(0) 2(1—cosb) ' (1.126)

with p (6) = (67 G (0)) " in EdS models. We specified with the subscript sp. that the solution in Eq. (1.126)

is the solution for the over-density of halos undergoing a spherical collapse.

The model considered presents a singularity at 8 = 27. However, halos tend not to collapse any further atr, =
7max/2¢ in line with the virial theorem for a gravitationally bound system of particles, this equilibrium corresponds
to the equi-partition between kinetic and potential energy. We define the over-density within a virialised halo §,
as that at the theoretical collapse time

1 3mo,

S, = )
p (teol) 47 (2Fmax)’ (1:127)

Assuming and EdS cosmology, the classical solution is 1 + §, = 187*. However, more sophisticated solution can
be found for more general cosmologies [Henry, 2000]. For a spatially flat model, with negligible radiation (as it

for the redshifts of interest) the following fitting formula holds

8, (z) = 187" (1 + 0.4093 &>77*) | Xx=———-" (1.128)

In particular, we will use this latest advanced analytical expression in our implementation.

HALO DISTRIBUTION ON LARGE SCALES: THE MASS FUNCTION  The mass function for a given tracer h is defined
as the number of objects tracers per comoving unit of volume and unit mass interval
th (Z, m)

“Vdm (1129)

fn (2,m)

The computation of the mass function of dark matter halos is a central problem in modern Cosmology. The
formation and evolution of dark matter halos is a highly complex dynamical process, and a detailed understand-
ing of it can only come through large-scale N-body simulations. Some analytical understanding is however very
desirable, both for obtaining a better physical intuition, and for the flexibility under changes of models or param-
eters (such as cosmological model, shape of the non-Gaussianities, etc.) which is of paramount importance in the
approach we will employ in our work where covariance matrices for the weak lensing observables (see chapter

3) will be computed analytically. In the following part of the section we will review the main efforts towards an
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analytical modelling of the mass function for dark matter halos. In the end, we will focus on the model included

in our implementation.

THE MASS FUNCTION: PRESS & SCHECHTER APPROACH  First, let us define the following quantity

D.(t) 3 £\
_ _ [y o] P+ 8 2/3
Sin (t) = Ll)lm Sep. ] —D+ @ I (67) (—max> EdS model, (1.130)

—0

This quantity is the value of the smoothed over-density within a halo as if the corresponding initial over-density
limg_,, 8" were linearly evolved up to a time . In this case, the time ¢ is a reference time we assume to be in
regime of linear clustering. In particular, it is the time at which we assume the density field is smoothed in halos
which will then collapse. Therefore, we defined it to be #(6 = o) = t. Specifically, at the time of the evolution

corresponding to the collapse time of a halo we will have, and define,

8ep. = Otin (e = 2tmax) = 3 (17.77:)2/3 EdS model. (1.131)

20

This quantity is usually defined as the barrier for the spherical collapse. In Eq. (1.127) we computed the over-density
within a formed halo ;. Once again, this quantity does not depend on the mass, nor the related scale. However, if
we perform an observation at a given redshift z, what is the condition for an object to be formed by that observation
time? Itisimportant to ask ourselves this question given that we want to account in our model for virialised objects.
Eq. (1.130) and Eq. (1.131) are telling us that, if we linearly evolve a smoothed region of the Universe in the initial
condition space up to a given time t, if its observed overdensity 8 () is larger than 8p then we know that the
associated halo, undergoing a spherical collapse instead, will have had the time to collapse by ¢, the observation
time. The Press & Schechter [1974] (PS) formalism is based on this concept. Before starting, let us simply change
the notation to be in line with the one in the literature. Specifically, instead of having a smoothed density field

linearly evolved from a reference time £ to be compared with the constant barrier 85, , we will consider as static the

former (we will omit the time dependence) while we will consider a dynamical barrier as

8.
D,(z)’

3§p. - Sgp. (z) = Di(t) =1 (1.132)

At a given reference time £, we identify the seeds for halo of different initial radius R via a top-hat smoothing of

the (linear) matter field
&t = Jd3X/S(X/>WR (x—x) (1.133)

The shape of the filter is given in Eq. (1.106) and we can define an associated mass M(R) = 47/3p (t) R® which
will be easily related (will actually be) to the mass of the associated halo. From now on, we will freely use either
M or R to define the size of the filter. The shape of the filter as a sharp top-hat in real space allows for a physically

motivated association between the two masses. However, for different filters this will not be the case anymore,
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as we will see later. By changing the filter scale, we will be considering halos of different mass. However, as we
saw in the previous paragraph, the dynamical evolution of the associated overdensity 8" will not depend on these

quantities. This is an extremely valuable feature of the spherical collapse model. The variance of the field §" is then

1

o (R) =" (M) = g

f P (k) Wy (k) k*dk (1.134)

If the original field & is Gaussian, so will be the smoothed field s}

R
P(s%) dst = ————¢ Fmds .
( ) \/EU'Z (R)e (1 135)
with the variance given by Eq. (1.134). Following the procedure outlined by PS, we state that the fraction of mass

contained within virialised halos of mass m, > M, F*S(> M), at a certain observation time t, is equal to the probability
M .
that 8 > &, (t),ie.

P (8> 8. (1) = JOO P (8r) dér = ~ercf [—8;' (¥

.0 2 o (R)] =F*(> M) (1.136)

We recall that the mass function (1.129) is defined as as the number of objects per comoving unit of volume and
unit mass interval. To derive its expression, we start by differentiating dF**(> M) /dm, to find the contribution
to the total mass fraction F*S(> M) from halos of a given mass m,. By multiplying this results for the comoving
background density p_  we obtain the total mass (not the fraction) as given by halos of mass m,. If we finally

divide for the mass itself m, we finally obtain the density we are aiming at. The final expression will then be

PS 8¢ (4) _ (W)
jPS. (z,m) = Peom AF (> M) _ 1 Peom, sp.()e <25(R>> ‘dlog 0’(R)‘

m m dm 2z m* o (R) (1.137)

d logm
where we dropped the subscript v for the mass of fully formed halos.

At this point, we can also introduce another very common definition related to the halo concentration: the

multiplicity function f, (v) [Jenkins et al., 2001]

p dlogv

fo (z.m) dis =

;‘:‘fv (v) dm (1.138)

dlogm

where v (z,m) = 8. (t) /o (m). In particular, the multiplicity function (1.138) has the advantage that to a good

accuracy it does not explicitly depend on redshift. For the PS mass function (1.137), the multiplicity function will

be
1 _ P (em)

Even though the PS result represents one of the first attempts to provide analytical insights on the issue of the
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A trajectories

which pierced
the barrier
fy é

\\ . trajectories
o g which never
pierced the

barrier

Figure 1.3.1: [Bond et al., 1991]: This figure shows schematically examples of random walks of F(r, A) with
A. In the limit of infinitesimally fine steps in A, the distribution of trajectories at fixed A is Gaussian as
indicated by the curve on the right of the figure. The heavily shaded fraction of this Gaussian above the barrier
at F = f,, represents the fraction of trajectories above the barrier at A. For such a trajectory, if one reflects in
the barrier the portion that lies to the right of where it first pierces the barrier one obtains, for example the
dotted trajectory. This new trajectory is just as likely as the one it was formed from. Consequently the heavily
shaded region below the barrier, which is simply the reflection of the region above the barrier, represents the
probability of a trajectory being below the barrier at A but having pierced the barrier at some lower value of
A. Thus the lightly shaded fraction of the area under the Gaussian represents the fraction of trajectories which
have not pierced the barrier at any lower value of A.

cosmological mass function for dark matter halos, however it has a pathology. As a matter of fact, given that

lim F*S(> M) — o, lim F*S(> M) — 1/2. (1.140)

m—o m—00

never more than the 50% of all the matter in the Universe can collapse forming virialised halos. This comes from
the assumption that only over-dense regions characterised by §" > 8. (t) at the level of initial conditions can
collapse in halos by the time z. However, under-dense regions, which statistically enclose the 50% of the total mass
of the Universe, can be included within the latter. This is called cloud-in-cloud problem (e.g. see Sec.2.2 of Peacock
& Heavens [1990]). PS corrected for this effect by adding a fudge factor 2 to the derived mass and multiplicity

function

5 (z,m) — 2f (z,m) (1.141)
flV’S. (V)PS' N szs. (V) 7 (1.142)

THE MASS FUNCTION : EXCURSION SET THEORY APPROACH Bond et al. [1991] found a formal solution to the
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problem described in the previous section. The new approach is called Extended Press-Schechter (EPS) approach.
They start their famous paper by focusing on all the possible trajectories of the overdensity of a given point iden-
tified in the real space at time £, as function of the of the filter radius R. They define a 4-dimensional field (once

again we will omit the time dependence t)
F¥(x,R) = f FX Wy (x— %) 8 (x) (1.143)

where Wi (x — x’) isa smoothing function at some resolution Rwhose shape has to be decided. A one-dimensional
example of the topology induced by Eq. (1.143) for a Gaussian field § (x) is given in their paper at Fig.1 [Bond
etal, 1991] for different choices of smoothing functions. Of great interest is a filter function Wk as a top-hat in

Fourier space

3 (sinx —xcosx) o
4R X3 ™
Wk (k) = 6 (1 — kR) (1.145)

Wy (r) (1.144)

where 0 here is the Heaviside function. In particular Eq. (1.144) allows an analytical derivation of the mass func-
tion within the EPS formalism. Specifically, for a fixed point in the initial condition space X, the trajectories iden-
tified by (0*(R), F" (X, R)) are Brownian random walks

FV(x,R) = Jd3kWR (k) § (k) e** = f kS (k) e** (1.146)
k<x

In particular, Eq. (1.146) is telling us that our trajectories are characterised by a series of points which are obtained
by increasing the resolution, i.e. the maximum mode k™ = 1/R for the convolution in Eq. (1.146). Therefore,
a new step differs from the previous one via the inclusion of independent modes of the smoothed matter fields,
which is Gaussian. Therefore, any new step is indeed Markovian by definition. This feature is not present with
other type of filters. In Fig. 1.3.1, taken from the original paper [Bond et al., 1991] and where we add few graphics
to help the explanation, we show the description of the matter collapse in terms of Markovian random walks and
how the approach developed by Bond, J.R. et al. can solve the problem of the fudge factor 2. The link between the
original terms in the caption with those introduced so far are: A = ¢* (R) while f, = &, (t), our usual dynamic
barrier for the spherical collapse. More in details, each trajectory corresponds to a mass element identified at the
reference time £. According to the PS ansatz, the fraction of trajectories for which 7" (x,R,) > f,, at a certain
time f, will contribute to the fraction of mass elements in collapsed objects with mass m > m(A,). Specifically,
trajectory A will contribute while B will not. However, given that the trajectory B is obtained from the trajectory A
just by mirroring it around f = f,, then it will be equally likely as A. Therefore, the actual fraction of mass in halos
of m > m(A,) will be twice the fraction of trajectories for which f > f, at A,. This is just a qualitative explanation
of the power of the EPS approach and we refer to Bond et al. [ 1991 ] for a more rigorous derivation which will also

allow to appreciate more the choice for k-sharp filter. In particular the EPS formalism solve the problem of the 2
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factor places ad hoc by PS.

THE SHETH & TORMEN MASS FUNCTION  In this paragraph we will consider one last attempt in improving the
analytical expression for the mass function of dark matter halos (1.129). Furthermore, it will be the one actually
implemented in our pipeline. Sheth et al. [2001] (ST) were capable to include the dynamics of the ellipsoidal

collapse into the PS formalism via a dependence on the mass of the halo in the first-crossing barrier &, (t) —

85, (t,m) of shape .,
5 (z.m) = 55, (2) [ v ( S‘Z(”(Z)) ] (1147

While leaving a detailed description of the ellipsoidal collapse in the Zel'dovich approximation to dedicated papers

[Bond & Myers, 1996; Zel'dovich, 1970; Monaco, 1995 ], we want to underline that the great virtue of the their
approach is that, once the barrier shape in Eq. (1.147) is known, then the entire EPS formalism developed on
the basis of the spherical collapse dynamics with a constant barrier, can be extended very easily. The final general

result is the following expression for the multiplicity function (1.138)

2\ >
T, 1 LA N
VAT (v) = 24 <1 + v’2q> (;) e - (1.148)
with A ~ 0.322,q = 0.3and v/ = av. In the original paper from Sheth et al. [2001] a = 1. We chose report here
the expression with a generic factor a to accommodate for different fitted formulas which proved the analytical
expression from ST accurate, up to a tiny dependence on how halos are identified in the simulation (see Sec. 4.1
in ST). For example, a well known parametrization of the mass function comes from Sheth & Tormen [1999],

where a = 0.707. We will use this last fitted formula in our work.

1.3.5 THE HALO MODEL: MATTER CORRELATION FUNCTIONS

We conclude this chapter with a final section dedicated to the statistical description of the matter field in the Uni-

verse, within the halo model approach.

Havro Bias  First of all, the statistical properties of the dark matter halos we introduced so far are not direct
proxy of those of the underlying matter field we are interested in. In general, matter halos are biased tracers of the

underlying matter field. If we define the halo density contrast as [Mo & White, 1996; Mo et al., 1997]

8h<X7t)E _h(t) -1 (1-149)



where 71y, (¢) is the mean comoving halo number density and ny, (x; t) is the actual one at position x, then &y, (x, t)

is not equal to § (¢) and a more complex relation exists [ Desjacques et al., 2018]

S (x,8) = > [bo (£) + €0 (%, )] O (x,1) + £ (x,1) (1.150)

(@)

InEq. (1.149) and in Eq. (1.150) a dependence on the mass of the halos can eventually be added, then §}, (m, x, t)
and the biases will refer to halos of a specific mass. In the following we will omit such dependence. In Eq. (1.150),
O are operators, or statistical fields, which describe properties of the halos’ environment on which their density
can depend. Each operator is multiplied by a corresponding deterministic bias parameter b, which, at fixed time,
is merely a number, and by a stochastic bias £ (x, t) which is relevant for very small scales, along with ¢ (x, t). In
our work, we will only account for the deterministic bias expansion and, more specifically, for operators expressed
in term of power of the matter density contrast
by

O == 8N7 bO:SN = —

NI (1.151)

The by bias parameters are known as local-in-matter-density (LIMD) biases (oc(V>®)V).

In order to calculate the value for the different terms in the deterministic LIMD expansion, the peak-background
split (PBS) [Kaiser, 1984; Bardeen et al., 1986; Cole & Kaiser, 1989; Mo & White, 1996] approach is commonly
used. According to this approach, the biases bl(\? ) for halos included in a given region A (either the observable

Universe itself or the volume accessible by our survey) of the Universe are determined via

@) (t) = L N [t, 8y (1)]
N sa=0 O8N | 5()=o

i (£,5(0)) (152)

where §}, represents the mean matter fractional over-density within the above mentioned region, i.e.

1

Sp(t) = —J dx §(x, t) (1.153)
VA VA

and ny,(m, z) = a® fu(m, z) is the physical mean number density of halos, per unit of mass. In particular we will
see in Sec. 2.3.2 that also the scale factor a can indeed be shifted by the presence of a local over-density. Precisely,
the biases defined in Eq. (1.152) are Eulerian biases, noted in the following as b%(t), and they refer to the time-
evolved perturbations. However, they can also be defined at the level of initial conditions for the spherical collapse
of halos. In this case they are called Lagrangian biases by (t). The two are related, in the case of a spherical collapse
in a EdS Cosmology, as

b (1)

1

by (t) + 1, (1.154)

BE(E) = 2(1 + a)b(f) + b(F),  a=—- (1.155)

2
21

where we focused on the first 2 orders. The local biases defined in Eq. (1.152), can actually be measured in simula-
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tion via the separate Universe-ansatz [ Dai et al., 2015; Wagner etal., 2015a] given that a specific large-scale mode &,
can actually be implemented via a change in the cosmological parameters of the simulation [Bertacca et al,, 2015 ].
For our purpose, i.e. an analytical evaluation of the covariance matrix for weak lensing observables, of much more
interest is the possibility to analytically derive the LIMD biases from an analytical multiplicity function, as defined
in Eq. (1.138). In this case, the biases are usually obtained in Lagrangian space and then mapped in the Eulerian
ones via the relations in Eq. (1.154). For the mass function considered in our implementation, i.e. the ST mass
function in Eq. (1.148), the first 2 order, mass dependent, Lagrangian biases are [Mo et al., 1997; Scoccimarro

etal, 2001]

v/z —1 + 2q/S:p (Z)
8. (z) 1+ (v*)!
/2 / 12

P — + 2q v —1
br(m,z) = Cv vc > 4 lc +2 .
8. (2) 8. () 85 (z) 85, (2)

b(m,z) =

(1.156)

(1.157)

where the dependence of v over m and z is implied.

STATISTICAL DESCRIPTION OF HALOS At this point, we have all the tools to first relate the matter clustering
to the halo clustering and, second, to describe the statistical properties of the former via those of the latter. Be-
fore tackling this point, let us introduce few more definitions. Given a distribution of N matter halos, their posi-
tions {x;}i = 1,..., Nand masses {m;}i = 1,..., N are random variables and one realisation is characterised by
a set of couples {x;, m;},, . In general we can determine the value of an observable for one specific realisation
0 (x; {x;, m;}i—,...n) and then get the expectation value by ensemble averaging over the joint halo position-mass
distribution. While the joint theoretical distribution is not known, positions and masses should at least satisfy at
every redshift, for the derivations in the present chapter, the following relations involving the halo mass function

and the halo-halo correlation function €5, (x' — x”; m,, m,) (Cooray & Hu [2001])
Q8 (m—m) 8 (x = x)n = fu (m,2), (1.158)
(D080 =)0, — ) P0G~ x)Som, — ) ) = fo () fo ) 1+ 5, (8 st i 2)]
| (1.159)

where < I Z}. o > is the average number of pairs of halos of mass m, and m, at mutual distance X' —x”. An
H

interesting example of how we can apply the halo model formalism is the evaluation of the mean background matter

density p(z). Its value from a specific realisation is the sum over all the contributions from the different halos of

the realisation

p(x,2) = th (x —x;m;z) = Z mu (X — X, m;; z) (1.160)
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where p (x — x;; m;; z) is the density profile for a single halo of mass m; as function of the distance from the centre
of the halo x;. In line with the tradition we also defined u (x — x;; m;; z) = p, (x — x;; m;; z) /m;. The final mean

matter density can then be estimated via the halo ensemble average
p(z) = {p(x,2))u = <2 m; u (X — X3 M 2) )u =
fdm m Jd3x' u(x—x';m;z) <2 §(X —x) 8 (m—m))p = Jdm Mfm (m,z) (1.161)

where we used the request for a normalised halo density profile { #*x" u (x — x';m; z) m = m.

HALO DENSITY PROFILE  In the previous paragraph we introduced the halo density profile p, (r = x — x;; m;; z).

For our applications we will use the well known Navarro-Frank-White (NFW) profile [ Navarro et al., 1996]

B p,(2)
PxEw (”7 ”") = 2
L <1 + rs(r )>

rs(m,z) m,z

(1.162)

In Eq. (1.162), p,(z) is actually function of the mass once normalized over the volume of the halo up to the viri-
alization radius r,(m, z) (the one including the overdensity §,(z) defined in Eq. (1.128)), r is the module of the
distance from the center of the halo and ,(m, z) is chosen in order to provide the best fit to simulations. A more
convenient way to describe the distribution of halos and fit the 2 left d.o.f. in the model, is the so called concen-

tration parameter c(m, z) = % proved to be drawn from a log-normal distribution

ple,mz) = C;QXP (_(lnc — I (m,z)y) (1.163)

2T 01nc 207, .

where ¢ (m, z) is the median concentration parameter for every redshift and mass. For our implementation, we

will refer to the expressions in Bullock et al. [2001].

MATTER CORRELATION FUNCTIONS ~ We build the n—point correlation function for the matter field via the usual

halo ensemble average over all the possible realisations of the halo distribution

£ (X0, %,) = (&5 (X4, - -+, X ) H- (1.164)

In these last calculations we will imply the time dependencies, being clarified in the previous paragraph. In partic-
ular p will simply refer to the matter background density p(z). Specifically, we can build the product of n instances

of the contrast density field for the single realisation

& (x,,. Us x) = H (PT — > (1.165)

i=1
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p(x;) being from one realisation. Let us start from the simple case of the 2-point correlation function

e (x,%) = 8(x)8(x) = — [p(x)p(x))] —1=

X

p
iz m,-u(x1 —xi;m,-)z m; u (x2 —xj;m]-) —1 (1.166)
p2 l ]

where we used Eq. (1.160) to relate the value of p to the halo masses and positions within a particular realisa-
tion of the statistical process. Eq. (1.166) can now be split into the sum of two main components. The first one,
dubbed 1-halo term, describes the situation where the two points in the correlator are within the same halo and it
is dominant at small scales (within the halo virialisation radius). The second instead, the 2-halo term, comes from

contributions where the two points are located in two different halos and it is important at larger scales.

6 () = [30x)806) 1 = - [p (x) p () =1 =

1
— > mu(x, —x,-;mi)z m; u (x2 ],m]) x 8 —1, (1.167)

%Z m; u (x, —xi;m,-)Z mju( X, ],m]) 1 (1.168)
P

j#i

where in Eq. (1.167), we force the points x, and x, to be in the same halo by imposing i = j. In Eq. (1.168), on the
contrary, we required them to be in 2 separate halos. By taking the the ensamble average of the 2 terms, we will
end up with the expressions for the 1-halo and 2-halo term for the 2 point matter correlation function. In details,

the 1-halo term is simply

G s = [am (%) fomaz) [ @xuts s us, - xim). (1.169)

while the 2-halo term is more complicated, and interesting, to derive

& = [am () [am (P—) j [t —xmue —xsm)

<Z$ X —x;)8(m, —m;) ZS(X”—xj)S(mz—m}-)> &Ix #x" —1. (1.170)
, H
j
Given the relation (1.159), we can rephrase the ensemble average appearing in Eq. (1.170) in terms of the halo-
halo correlation function &5, (X' — x”; m,, m,). At large enough scales (linear), as it is the case where the 2-halo
term is dominant, the halo over-density 8, (m) is related to the matter over-density via the order 1 LIMD bias

b,(m), i.e. 8,(m) = b,(m)8. Therefore, we can express the halo-halo correlation function via the linear 2-point
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matter one

g5, (X — X"y m1, m2) = b,(m,)b,(m,)e™(x' —x"). (1.171)
Then, the mass integration in Eq. (1.170) can eventually be factorised.

Generalising the formalism to the n-point correlation function, it will always be possible to express it as a sum
of terms accounting for all the possible distributions of the points within the halos: from the 1-halo term, where
all the points lie within a single halo and which is dominant at the smallest scales, up to the n-halo term where
every point lies in a different halo, dominant at the largest scales. Therefore, we will write the correlation function

&s (x,, ..., x,) as a sum of its different multi-halo components

n

e (x,..x) = > el (... x,) (1.172)

i=1
However, the number of convolutions appearing within the required n-halo terms increases and the complexity of
their numerical computation can easily diverge while moving to higher order correlation function. Since for our
analyses we will need the correlations up to the six order, it will be more convenient to move to the Fourier space
where the matter polyspectra in the halo model framework take a much simpler expression. We will postpone this

discussion to Chapter 3 where we will report the expressions for the polyspectra required for the computation.
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In the previous chapter we reviewed the basic formalism underlying the description of statistical random fields
in Cosmology and we saw how the cosmological model we employ to describe our Universe enters in the game,

affecting the different quantities introduced. Now, we want to understand how we can improve our knowledge
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about the underlying model. In broad strokes, once a set of dedicated observables has been identified, we mea-
sure them from the data, we compare these values against the expected ones for a given theoretical model, and
eventually we confirm it or rule it out. While it may sounds very easy, in reality all these steps are far from being

immediate.

First, we need to theoretically define a set of observables O [§], as functional of the matter density contrast
field §, sensitive to changes in the underlying model (via its parameters). This is not an easy task. Let us focus on
the case of observables employed in late-time Universe observations, as it will be the case for the study carried
out in this manuscript. If we could have access to the real matter distribution § at late time, we would observe
a non-linear evolution of its primordial Gaussian distribution. Of course, a desirable property for an observable
is to be unmistakably predictable given the values of the parameters under consideration. However, since we do
not have an exact model for the matter clustering at all the scales of interest, a level of theoretical uncertainty is
introduced in the prediction of the observables. Further, we do not have direct access to the matter field either:
we always learn about its distribution via the analysis of tracers of it. As a matter of fact, we can study the Universe
via the collection of electromagnetic signals emitted by the small fraction of baryonic matter. Therefore, we need
to understand the complex relations between those tracers and the underlying matter field. Usually, approximated
models are introduced along with nuisance parameters in which we are not directly interested in, but which can
still spoil our cosmological forecast. In Sec. 2.1, we will build the observables used in our study, i.e. the binned
tomographic weak lensing convergence power spectrum and bispectrum [Bartelmann & Schneider, 2001; Kilbinger,
2015; Bartelmann & Maturi, 2017]. In particular, since the first detection in Bacon et al. [2000]; Kaiser et al.
[2000]; Wittman et al. [2000]; Schneider et al. [ 2002 ], weak lensing signal has been widely exploited over the last
decade to deliver competitive cosmological parameter constraints: the Deep Lens Survey (DLS, Jee et al. [2013,
2016]), the Canada-France-Hawaii Telescope Lensing Survey (CFHTLens, Joudaki et al. [2017]), the Science
Verification data from DES (DES-SV, Jarvis et al. [2016]) and the 450 deg” release of the Kilo-Degree Survey
(KidS-450, Hildebrandt et al. [2017]) are the main examples. Further, weak lensing detection is part of the main
scientific program of modern and up-coming surveys such as DES [Flaugher, 2005], the Hyper SuprimeCam
Survey (HSC, Aihara et al. [2018]), the Large Synoptic Survey Telescope (LSST, Ivezi¢ et al. [2019]) and Euclid
[Laureijs et al., 2011; Amendola et al.,, 2013 ]. This trend clearly underlines the importance of studies dedicated
to the optimisation of weak lensing detection as main source of cosmological information. The work presented in

the following chapter perfectly sits in this line of research.

Secondly, from the data side, we need to identify the quantities which correspond to the observables designed
at the previous step. For a given observable O [§] we will measure estimators O of it. The statistical properties of
the estimators may however differ form those of the target observables and our goal is to build unbiased estimators.
Survey specificities like the finite number of tracers (shot noise) or the finite volume of our survey (finite resolution
on the measured modes) may affect the statistical properties of the observed quantities and if neglected . Unbiased

estimators will be function of the data and capable to account for all these effects and correct for them.

Third, given that we usually measure an entire set of observables {O,},_, ,, along with the design of unbiased
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estimators we need to know the errors and eventually the correlations among them. In jargon the set is called
data vector. In particular, we can correctly infer parameters from a collection of data, or forecast the precision of
future survey inference, only if we properly weight our observations (interests in errors) and if we do not double
count the information they carry (interest in correlations). All these information are well summarised by the n x n

covariance matrix of the data vector, which is formally defined as

Cov [0,[8], O [8]] = (O:[8] O; [8])s — <O; [8])5(O; [8])s- (2.1)

If we were capable to perform the ensemble average in the above definition, then we would know exactly the
covariance matrix for the set. However, this is not the case for late-time Universe observations as we are not capable
to analytically map the Gaussian probability density functional for the initial matter field into its final observed one.
Then, most of the time, we build approximations for the covariance which are functions of the data themselves,
if available, or of the simulated catalogues as expected to be observed by a specific survey. In this sense, several
techniques are available in the literature, like subsampling, Jackknife [Efron, 1982; Bothun et al., 1983 ] or bootstrap
[Barrow et al., 1984; Loh, 2008]. However in Sec.2.2 we will argue that these estimators may not be suitable for
modern galaxy surveys[ Hoffmann et al,, 2015; Friedrich et al,, 2016; Shirasaki et al., 2017; Lacasa & Kunz, 2017].
Therefore, we will have to reconsider the exact analytical definition given in Eq. (2.1), where the ensemble average
will derive from a suitable model for the matter clustering. This approach is also known as forward modelling of the
covariance. In our case, the model which will provide the tool for the prediction of the covariance matrix will be
the halo model, described in Sec. 1.3.4 and in Sec. 1.3.5. Within the present chapter, we will split our discussion
about the covariance matrix for the aforementioned weak lensing observables between Sec. 2.2 and Sec. 2.3.In
the former we will describe in details the covariance induced by correlations of modes in the matter field which
are fully observed by the survey. In the latter instead, we will focus on a less known component which comes
from correlations between observed modes and super-survey modes. This last component is usually known as
super-sample covariance [Hu & Kravtsov, 2003; Rimes & Hamilton, 2006; Takada & Bridle, 2007; Sato et al., 2009;

Takada & Jain, 2009; de Putter et al., 2012; Kayo et al,, 2013].

2.1  WEAK LENSING OBSERVABLES, FORMAL DEFINITION

In this section we will theoretically define the weak lensing observables employed in our analysis. We will assume
a spatially-flat FLRW Universe and we will put ourselves in units defined by ¢ = 1 (c being the speed of light).
The first assumption is in particular closely verified by the most recent cosmological observations [ Hinshaw et al,,

2013; Bennett et al., 2013; Planck Collaboration et al., 2016].
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2.1.1 PROPAGATION OF LIGHT BUNDLES IN A PERTURBED UNIVERSE

PERTURBED FLRW METRIC While moving to small scales, the FLRW metric defined in Eq. (1.7) along with the
general shapes of the energy-momentum tensor in Eq. (1.6) are not precise anymore due to the break down of the
homogeneity assumption. Specifically, we will assume that the presence of LSS induces small perturbations to the

background FLRW metric g and to the tensors T as

8uv (x) = 8w (x) + hyv (x) ) ’hyv (x) ‘ L1, (2-2)
TyV<x) = T[W(x) + O (x) ) ’6141/ (x) |/P(t) <1 (2.3)

The most general form for the perturbed FLRW metric is defined by the following line element (implying the sum

over repeated indices) [Bardeen, 1980; Bertschinger, 2000]
ds = a* () [(1 + 20 (x)) &y — 2w; (x) dypdo; — ((1 — 2 (x)) 8 + 25 (x) ) doxda ] (2.4)

where ® = —h,,/2, w; = hy;, ¥ = —Tr[h]/6, sij = (h,-j — Sklhsz,-j/3) /2 and §;j is the Kronecker delta defined

as §; = 1ifi = j, §; = o otherwise. In particular, these last definitions allow to decompose the metric into

;
irreducible components under rotation [Lifshitz, 1946]. We also introduced the conformal time

dy = — (25)

which allows to write the metric as proportional to a static one, up to a conformal transformation. This feature
will be extremely valuable later when deriving the weak lensing observables. The invariance of the metric under
diffeomorfisms, also known as Gauge freedom, allows us to remove 4 d.o.f. by binding the tensors in Eq. (2.4) to

obey specific constraints. We will work in the Transverse Gauge, which is defined by the following relations

Ossi (x) = o, (2.6)
Omw; (x) = o. (2.7)

The Einstein Equations can be written in terms of the perturbed quantities defined in this section. In the chosen

Gauge, we have [ Carroll, 2004]

VY (x) = 87GToo (x),  (2.8)
—ivzw,. (x) + 20,0F (x) = 87GTy (x),  (2.9)
(Gw; (x) + Ojw; (x))

2

(8;V* = 0:0) (@ (x) — ¥ (x)) — 0 +28,;0°Y (x) — s (x) = 87GT; (x), (2.10)

where the component 00, oi and ij of the Einstein Equations are respectively given.
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NEWTONIAN LIMIT  We will work out the weak lensing formalism in the Newtonian limit which defines a situ-
ation where the sources of the metric perturbations are static. At the notation level, we will express the metric
perturbations as functions of the three-dimensional vector position x. This correspond to a pressure-less fluid and
the matter-dominated LSS perfectly fit in this assumption (we can neglect baryonic effects). In the rest frame for

such a fluid, the perturbed Einstein equations turn out to be very simple

VY (x) = 47Gp (x), (2.11)
Viw; (x) = o, (2.12)
(8;V* = 0,0, (@ (x) — ¥ (x)) — V’s; (x)) = o. (2.13)
The trace of Eq. (2.13) implies that
V(O (x) - Y (x)) =0 — O(x)=Y(x) (2.14)

given that the tensor s; is trace-less, by definition. In general, whenever relativist species are present, the two scalar
potential ® and ¥ will differ. However we assume that we are entirely dominated by non-relativistic dark matter.

Therefore, the final solution will be given by

V*® (x) = 47Gp (x), (Poisson equation) (2.15)
w(x) = o, (2.16)
si (x) = o, (2.17)

leading to the following expression for the perturbed metric

d’s=a*(n) [(1+ 20 (x)) &’ — (1 — 2@ (x)) dxdx;] . (2.18)

FERMAT PRINCIPLE  Tackling the weak lensing problem as an optical one, we can derive the equations for the de-
viation of light rays via the Fermat principle [Schneider, 1985; Blandford & Narayan, 1992; Bartelmann & Schnei-
der, 2001]. In particular, it states that in a stationary metric a light ray moves along a path for which the variation
of the travel time vanishes. The metric given in Eq. (2.18), thanks to the change of variable given in Eq. (2.5), is
indeed stationary up to a conformal factor. However, the latter will not affect the formal solution since the null-
geodesic condition ds> = o will be always verified. We highlight that it is possible to derive the very same equation
of motions for a photon propagating in a perturbed metric via the geodesic equations, assuming a perturbative ex-

pansion of the background geodesic. We refer to the literature for this alternative approach [Pyne & Birkinshaw,
1996].
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The null-geodesic condition applied to a metric as the one in Eq. (2.18) leads to

(1+20(x)dn| =(1—20(x))dl* (x) (2.19)

7 7

where we can see that the conformal pre-factor a(1) disappears and we plugged in the three-dimensional comoving
line element d¢>. In addition, we are formally evaluating Eq. (2.19) on the desired solution. We can map our
problem into an optical problem by defining an effective refractive index as the ratio between the speed of the

light over the path and ¢ (¢ = 1in our units)

n(x)|; = EX) ‘ = <d€df1x))_ ‘ ~1—20(x) 3 (2.20)

where in the last relation we applied the Newtonian limit @ (x) < 1. In terms of the refractive index, the travel

time for a photon is given by

, = f: n (x) dl — ﬂn(x) v (2.21)

oy oy

and according to the Fermat principle described above the solution ¥ (17) will be given by 87|; = o.

SINGLE RAY DEFLECTION In order to find the path that minimises Eq. (2.21), i.e.

=29 [ﬁin (x) ]v|] =o, (2.22)

°r

we parametrise the general geodesic of the photon via an affine parameter A

SJ "y xA)|v@)|dr =0 (2.23)

where v = dx/d). The integrand in Eq. (2.23) takes the role of the Lagrangian and we can solve Eq 2.23 via the

Euler equations

dd 0 :
[aa_v — a_x] L (x,v) = o, L (x,x) =n(x)|v]. (2.24)
In details,
0 0 v .
—L (x,v) = Vn(x), —L(x,v) =n(x) — =n(x)v, (2.25)
ox ov |v|
then the Euler equations read
n(x)v=Vn(x)—v[Vn(x)- v]. (2.26)

We can see that the second term on the r.h.s. of Eq. (2.26) is the projection of the gradient on the direction v, tan-

gential to the path. Therefore, the entire r.h.s. will be the projection of the gradient onto the direction orthogonal
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to the path. We will write

v = ﬁvln (x). (2.27)

Eq. (2.27) tells us how the direction of the photon, given by the versor v tangential to the path, changes on the fly.

Given an initial direction v, = v(2,) and a final one v = ¥(1,), we integrate Eq. (2.27) to find the total deflection

of the path while the photon travelled for a time  — 7,

Y Vin(x (1))

Alen) =) @)

l’7

iV~ — f V.0 (x()) dV (228)
do¥

where we used the relation in Eq. (2.20) and approximated at first order in ®. Eq. (2.28) defines the total “de-

flection” A (11, 170) induced by a Newtonian perturbation @ to the metric for a single photon travelling from time

1, to time 7. Please note that the integrals entering the definition are meant to be evaluated on the actual path ¥

followed by the photon and that the quantity A is not an angle in general but a coordinate difference.

2.1.2 DEFLECTION OF LIGHT BUNDLES

In the previous section we derived the equations which describe the deflection of a photon within a weakly per-
turbed metric. However, we do not measure single photons in our surveys. What we observe are distorted shapes
of far extended sources, which are continuous objects and which are better described by the distortion of bundles
of neighbour geodesics. In this section we will promote the formalism explored in the previous part of this chapter

to this more realistic scenario.

JacoBiaN MATRIX  In a bundle of light rays we consider a reference geodesic y,. We can study the evolution of
the comoving separation £(1) of a general geodesic 7, in the bundle away from the reference one with the help of
Eq. (2.27),

€M) dx, (d)  d'x ()

=g =R M) = 2 [Vi0(xA) - Vi (m())]. (2.29)

>

where x,(1) and x,(2) are points on the support of y, and 7, respectively at a given value of the affine parameter
A. The affine parameter for the second geodesic y is the same as for the reference geodesic and in particular we

assume the 2 photons to have the same initial conditions

%) = x%(2), va(do) = w(2,) (2.30)

For later convenience, we recall that the comoving angular diameter distance (1.27) allows to relate the comoving

transverse distance r | with the corresponding two-dimensional angular size ©

O = m. (2.31)
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OBSERVER

Figure 2.1.1: Graphic depicting the geometrical setup for the mathematical description of the light bundles.
The total comoving separation £(w) (we are implying the dependence in the figure) is defined as the comoving
distance between the points x, and x;, on the support of the geodesic y, and 7, at the same comoving distance
w from the observer. The transverse comoving separation £ (w) (red dashed line) is the projection of the
total separation £(w) onto the red plane defined as orthogonal to the incoming direction of the photon y, at
comoving distance w. Angular separations as seen by the observer are measured with respect to the incoming
direction of y,. Respectively, ®, = {6,4,0,.} and ©, = {6,;,6,;} are the angular separations between the the
reference axe just defined and the extrema of £ (w) (as seen by the observer).

In the following, we will simplify our notation by confusing the functional dependence on z (w) with w for func-
tions previously defined (in Chapter 1) as dependent on redshift. For example, we will simply write f (@) implying
f(z(w)) fora general function . Also, being in a spatially-flat Universe, D4 (z(w)) = w. We will study the deviation
of light bundles with the help of the geometrical setup shown in Fig. 2.1.2 and described here below:

- we parametrize geodesics in the bundle via the comoving distance w of the points on their support from the

observer,

- we will solve Eq. (2.29) in terms of the transverse comoving separation £, (w) between the two geodesic y, and
7, for the same value of the comoving distance. The separation £ (w) is built as the projection of the three-
dimensional separation £ (w) (between the points x, and x; on the support of the geodesic y, and y, at the

same comoving distance @ from the observer) onto the plane orthogonal to the incoming direction of the
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reference geodesic 7,, at angular comoving distance w from the observer'. Then we will consider just two

of the three components of the gradient in Eq. (2.29),

- angular deviations ® = {6,, 0,}, associated to a specific transverse displacement via Eq. (1.27), are given as

relative to the incoming angular direction of the geodesic y,, taken as reference.

Given these points, the differential system to solve in terms of £| (w) for an incoming angular direction (6,, 6,) =

© of y, is
dZ
i;z(w) = —2[V.10 (00,,0) = V.0 (0O, w)],
w
E(0) =0 L) _Brllg_ g ()
dw dw

where the initial conditions do actually implement 1) the fact that the 2 incoming photons will reach the observer
at the same position (the origin of the reference frame) and the w-derivative of the transverse displacement at
the origin gives the direction of the incoming photon. Respectively, ®, = {6,,,6,,} and ®, = {6,,,6,,} are
the angular separations between the the reference axe defined above and the the projection of the points x,(w)
and x;(w) on the transverse plane. We highlight that Eq. (2.32) can also be derived within a general relativistic
framework as the Sachs-Jacobi equation for a perturbed FLRW metric [e.g. Bartelmann & Schneider, 2001, and
references therein]. In such scenario, the source of deviation for the light bundle is the sum of two term: one related
to the curvature of the Universe K®®) and another one related to the local matter perturbation. For a spatially-flat
Universe the former is vanishing and the system (2.32) is indeed the Sachs-Jacobi equation itself. While the

solution of the associated homogeneous system can be easily derived

Er (w) = w O, (2.33)

we will get a particular one via the convolution with the well known Green function G(w, ’) for the operator
d>/dw*. Under the assumption of a spatially-flat Universe we can compute the difference between 2 comoving
distances via Eq. (1.29),
G(w,0") =Dy (0, 0") = y(w,0). (2-34)
in terms of the corresponding redshifts. Therefore, the formal solution to the system (2.32) is given by
w

£ (O,0) =00 — 2f do'y (w,0") [V1P (0O,,0) — V O ('O, )] (2.35)

[}

and we made explicit the dependence on the angular direction ® of the incoming photon 7,. In analogy with

standard lens theory we define the Jacobian matrix as the derivative of the unperturbed, original angular separation,

'A more rigorous definition of the transverse quantities can be derived [Bernardeau et al., 2010]. However, at leading order in the
metric perturbations, the differences are negligible.
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Opp (0, 0) = @, (2.36)

with respect to the perturbed one between the incoming photons, i.e.

0, (v)=— =0, (2.37)

which is

00 (©,0)  10E°(0,w)

A4(0,0) 00,(w) w 00

(2.38)

In the future, we will omit the dependence on w in ®,, being constant. It is worth underlying that the angle associ-
ated to the homogeneous solution @ is actually the direction of the perturbed incoming geodesic 7, as specified
by the initial conditions in the second line of Eq. (2.32). Instead, the full solution £ (), which is function of the
comoving distance from the observer, is the original reconstructed comoving separation between the 2 geodesics
before their fly through the potential @, from w to @ = o (the observer). In particular, the Jacobian defined in

Eq. (2.38) defines the linearization of the inverse lensing map ©, — Oy, (w), i.e.

Onp (Op, @) [1in. = [1, + A (Op, w)]| Op. (2.39)

where 1, is the identity matrix of dimension 2. The more natural mapping from an original geodesic bundle to the

lensed one is instead realised by the inverse of the Jacobian (at linear level), the magnification tensor M = A™*
O (O (6)) i = [12 + M (O, )] Op () (2.40)

In the weak lensing regime we will see around Eq. (2.64) that the matrix A is always invertible.

BORN APPROXIMATION The perpendicular gradients of the Newtonian potential in Eq. (2.35) are to be evalu-
ated along the true paths of the photons. The Born approximation will help us simplifying the actual computation
of the transverse separation £ . In particular it states that the change of the actual transverse comoving separation
& between the two real geodesics is small compared to the comoving separation between the unperturbed path.

Formally
€1 (@) —w @

<L 1. .
w0 1 (2.41)

From the computational perspective, the Born approximation entitles us to compute the gradients within Eq. (2.35)

over straight paths (the geodesics 7" and 7} in Fig. 2.1.2) separated by the angle ©, then

V.0 (00,,w)~ V0 (00, w), (2.42)
V.0 (00, w) ~ V0 (0,0,w). (2.43)
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OBSERVER

Figure 2.1.2: Graphic depicting the geometrical setup for the mathematical description of the light bundles,
under the Born approximation. Different from the analysis in Fig. 2.1.1, the transverse comoving separation
&Y (w) (we are implying the dependence in the figure) is now built via the projection of the total separation
&P (w) between the unperturbed geodesics y" and 7} at points x(w) and x}(w). The red plane is the transverse
plane defined in Fig. 2.1.1. The angular separations as seen by the observer are still measured with respect to
the incoming direction of y,, which now defines the direction of the straight unperturbed geodesic y;. Also
© = {6,,0,}, which used to be final angular displacement of the photon y,, now coincides with the angular
separation between the unperturbed geodesics ¥} and 7}.

where in the second approximation (2.43) we made use of the incoming direction of the geodesic y, being defined
as the reference axe (0, 0). Fig. 2.1.2 shows the new geometrical setup to further simplify Eq. (2.35). Under this

approximation, the comoving separation we will be actually solving for is £% (w), defined as connecting two points

u

x!(w) and x}}(w) respectively on the support of the unperturbd geodesics 7" and 7} at comoving distance w from

the observer. In terms of Eq. (2.35), and focusing on the transverse component, we will write
EY(@,0) =wO — zf do'y (0, 0" ) V[ (0’0, 0") — @ (0,0,w)] (2.44)
while the Jacobian matrix in Eq. (2.38) will simply be

1(9551- , W
[4(0,0)], = +E:00)

I w 00;

=8 — 2f do' W (w, 0") 0:0,0 (0, 0") 0= —. (2.45)
] 0
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In Eq. (2.45) we introduced the well known lensing kernel

/
X(w—’“,’), ifw > o

Ww,o')=<{ “ (2.46)

o, ifw < o

which will be of great help for introducing survey specificities in the above definitions.

DEFLECTION ANGLE  Starting from Eq. (2.44), we can define the (absolute) deflection angle as the net displace-

ment of a geodesic bundle away from the initial, reconstructed, angular direction £} (@) /w

w®,; — 531. (w)

a; (@, CU) = @pﬂ' - ®np,i (®7 w) =
w

(2.47)

Absolute deflection angles cannot be measured. All measurable effects of light deflection only depend on the
derivatives of the deflection angle a and the choice of the fiducial geodesic 7, is then irrelevant for practical pur-
poses. Regarding this point, it is interesting to notice that the Jacobian in Eq. (2.45) gives exactly this information,
being

[A(©,w)]; =8 — Ga; (0, w). (2.48)

2.1.3 WEAK LENSING OBSERVABLES

In the present section we will formally introduce the 2 main fields used to exploit weak lensing signal for cosmo-

logical purposes, namely the weak lensing shear and weak lensing convergence fields.

LENSING POTENTIAL To make our future notation lighter and to get closer to the weak lensing literature [ Bartel-

mann & Schneider, 2001; Kilbinger, 2015; Bartelmann & Maturi, 2017], let us introduce the lensing potential as

v, (0,0) = ZJM do' W (w0, 0") © ('O, w) . (2.49)

o

In terms of it, the Jacobian can be expressed as

[A(0,0)]; = & — G0y, (O, w) (2.50)

CONVERGENCE AND SHEAR ~ We define for the first time the scalar field convergence x (©, w) and the spin-2 field
shear 7 (@, w) = {7,(®,©),7,(0,0)}as

[(1=x(0,0) —7,(0,0) ~7.(8,0) 251
Al@e) = ( —7, (0, w) 1—«(0,0) +7, (97“’)) )
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Inversely they are related to the lensing potential as

k(0,w) = [0 + ]y, (0,w0), (2.52)
7,(0.0) =~ [0, %:2.] ¥, (€.0). (253)
7. (67 w) = axaz\kL (®7 w) ) (2'54)

while we can directly relate them, in real space, via

0k (©,w) = 07, (0, w) + 0,7, (0, w), (2.55)
0.k (0,0) = —0,7,(0,0) + 0,7, (0,w), (2.56)
Vi (0,w) = (7 — 32) 7, (0, 0) +20,0,7, (0, w) . (2.57)

We postpone to Sec. 2.1.4 a comment on the relations among the introduced fields in Fourier space. We remind
that the above field expressions have been derived under the assumption of observed light bundles having a small

angular size. A full-sky derivation is proposed in Bernardeau et al. [2010]

K(6’¢7w) = ié&‘l/L (0,@,0)) ) (2.58)
Y (9, ?, w) = i@@‘/@ (07 ?, w) ) (2-59)

where the operators @, ¢ are the spin operators on the sphere

7 [X] = — sin‘0 <é’9+i 2L ) — ], (2.60)

sinf / sin® 0

= e(ae_i,a—?’e) sin® 0 [,X], (2.61)

sin® 0 sin

given in Cartesian representation with s the spin of the field ;X. Also, the angles 8, ¢ have been locally introduced
to describes the field on the sphere, respectively being the polar and azimuth angle. For the shear field, a complex

representation is usually given
7(0,0) =7,(0,0) +i7,(0,0) = [r(0,w) ‘en%(@’w) (2.62)

and we can write the Jacobian matrix in another interesting form

A(0,0) = (1 - x(©,0)) (1 o) (0, 0) <cos [ch7 (©,w)] sin [upy (0,w)] ) . (2.63)

o 1 sin [2<p7 (©,w)] —cos [zgoy (0,w)]
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We can express the determinant of the Jacobian matrix in terms of the fields defined above

det [A (O, w)] - ~ 1+ 2k (0, w). (2.64)

(1= (0,0))" = 7 (©,w) [ WL

The weak lensing regime, i.e. x, 7 < 1, ensures det [A] # o which makes it always invertible. The representation

of the Jacobian in Eq. (2.63) allows for a more physical interpretation of the fields introduced.

PHYSICAL INTUITION Let’s assume to have a source (a galaxy for example) defined by an isotropic profile of
radius R,, at a given comoving distance w. We parametrise the angular coordinates of a general point P of the
profileas P — (0,¢) = (R, cost,R,sint), t € [o,27x). The point P will be mapped into a point P’ of angular
coordinates (8', ¢’), at the observer position, due to the distortions of light bundles. In terms of the formalism
studied in the previous section, (6',¢') = ©, and (6, ¢) = O, (). In this paragraph we desire to inquire about
the physical impact of the shear and converge fields. To do that, we will work with the more natural linearised

direct lensing map, which is implemented via the magnification tensor M = A™".

If we assume to have just a convergence component « (6, w), then the linear modification of the angular coor-

dinates will be, according to Eq. (2.40),

e 0 R, cost —I_KR" — cost
[GP — Oyp (w)]lin. =M(O,w) O (w) = (1 (©,0) . > . < ) = ( ES’ ) ) (2.65)

o m Ro sint m sint

and we dropped the subscript np on the angular dependencies within the matrix M since differences between
the angle ®, and the angle ®,, would induce corrections beyond the linear level. Therefore, the original galaxy

is mapped into a new circular shape with radius R = with a dependence on the distance from the ob-

L
1—«(0,w)
server. We can then see that the convergence field has the main effect of inducing a magnification, i.e. an isotropic

deviation, of the light bundles.

If we also consider a non-vanishing shear component y (©, w), then the original shape will be distorted into an

ellipse with major and minor axe respectively given by

a= Ko , (2.66)
1—x(0,0) = [7(0,0)]
R,
b= . .6
Tk (®,0) + 7(0,0)] (67)
The ratio between the original circular area of the light bundle and the final is
_abm s ® (2.68)
b= e O W~_L1+21c( L) 2.

and we can see thay in the weak lensing regime, i.e. ® « 1 — x « 1, the convergence field is directly related to
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Figure 2.1.3: Starting from the same circular isotropic profile parametrized as @,,(t) = (R, cost, R, sint), we
propose different observed lensed shapes obtained via the direct linear transformation @, (t) = [1+A7"]- Oyp(t).
We implement different values of the convergence field and of the shear field. Specifically, on the top-left panel
we focus on the magnification effect induced by the convergence field alone. On the top-right panel, we look
at the distortions induced by the shear component alone. On the bottom row we allow for more complex
modifications including both the fields. In general, we keep ¢, =0 then no rotations of the final ellipses are
induced.
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the magnification.

We conclude this paragraph by proposing in Fig. 2.1.3 several lensed profiles of the same original isotropic
source for different values of the shear and convergence field. We refer to the caption for more details about the

implementation.

2.1.4 MORE ON THE CONVERGENCE FIELD

In this section we will focus on the convergence field being the main observable used in our study. We will see
how the convergence can provide a direct way to inspect the clustering properties of matter and we will introduce

its polyspectra along with the approximations involved.

CONVERGENCE FIELD AND MATTER DENSITY FIELD Via the Poisson equation in polar coordinates, we can in-

terestingly express the convergence field  in Eq. (2.52) in terms of the matter density contrast

3(Ho)" Qmo (¢ do’

2 , a(w)

k(0,w0) = W(w,0')§(0,0"). (2.69)
This relation will be of crucial importance later in this manuscript where we will actually relate the statistical prop-

erties of the convergence field to those of the matter field. Indeed, the former are just a “projection” of the latter.

TOMOGRAPHIC CONVERGENCE FIELD Modern galaxy surveys will have the capacity to detect the binned posi-
tions of the sources in redshift. Of course, the comoving number density of galaxies within each redshift bin, along
with the number and the width of the bins, is fixed by the specificities of a given survey. While we will apply our

analysis to a Euclid-like one, here we will consider a general comoving density distribution n (2).

The expression reported in Eq. (2.69) gives the actual level of convergence for a single source at comoving
distance w from the observer. If we allow, as it is the case in this section, for a distribution of sources in redshift,
then the above expression will have to be convoluted with the function n (z), properly normalised. Therefore, the
total convergence relative to the redshift bin b; = [z;, z;1, | will be given by the following more complex expression

that will define the tomographic convergence field

HZQmo i d * i\%s
K@i (@) = 3% me dz ac)l(z) (1+2) f dz; . (f) W (z:,2)8(0©,2), (2.70)

2 0 V4 n;

where we employed the redshift as integration variable. We can rephrase Eq. (2.70) in a more compact form

ki) (©) = fzm dz dac)l(zz) Qu (2)8(0,2). (2.71)

[

The function Q) is the convolution of a cosmology (only) dependent function S (z, z) and a function F (z, i)
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FLAT-SKY

SPHERE |

OBSERVER

=

Figure 2.1.4: Graphic representation of how points in the three-dimensional space are identified when the
flat-sky approximation is assumed. Specifically, the point Psp_ is mapped on the point P to which an Cartesian
system of coordinates is assigned.

which is dependent on the properties of the survey
e¢]
Q@) = [ daF (2 S 22). ()

The function S (z;, z), also known as lensing efficiency, is

S (z,2) = (2.73)
while F (z,, i) will simply be, in absence of any photometric error, the expected (normalised) projected number

density of the sources in the i*" bin,

Fla=") o] ") fromch (274)

1 o, for =z ¢b..
b S 1

The quantity 7; is the total expected number of sources within the i bin.
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FLAT-SKY APPROXIMATION  Following the discussion around Eq. (1.52), we would like to compute the polyspec-
tra for the cosmological field introduced. The important difference is that the tomographic weak lensing conver-
gence field in Eq. (2.71) is defined over a sphere centred on the observer. Therefore, spherical harmonic functions
are the suitable basis onto which expand our field. However, it may not be useful for us to explore the largest scales
at which the spherical formalism actually applies. As a matter of fact, in Chapter 3 we will see that the weak lensing
observables we will use for our cosmological analyses do have a very low signal-to-noise ratio at these scales while
being extremely informative at the small ones. When this limit is considered, the modes can be treated as flat
leading to an almost negligible impact on the polyspectra. Conventionally, such approximation is called flat-sky
approximation. In a nutshell, at small enough scales it assumes that the description of our field can be properly
done on a flat surface orthogonal to a specific line-of-sight. Aslong as this approximation holds we will be allowed
to move to the configuration space via a much simpler two-dimensional Fourier transform. We will single out the

details in the following and we refer to Fig. 2.1.4 for a graphic help.

In general, the value of the matter field in a given point Py, of the (real, spherical) sky at comoving distance w
from the observer is described by a set of coordinates defined on the sphere as §(Py, ) = § (r = fw), n being the
unity vector giving the angular position of the point. For sake of completenessn = {sin 6 cos ¢, sin 6 cos ¢, cos 6}.
We also introduce a second set of coordinates by fixing a preferential axe, in Fig. 2.1.4 the z one. At each value of
the comoving distance w on it, we can define an orthogonal plane to it. In this new system, a general point Py,
will be described by 1) the comoving distance w of the plane on which it lies, and 2) by a two-dimensional vector
r; = {r%, 7} definingits position on the plane. For small angular deviation ® = {6*, 0’} of the point Py we can
approximater; ~ ®D,(w). We are then ready to define the flat-sky approximation. Specifically, for small enough
angular deviations © we can assume that §(P, ) ~ §(Pg,) and in terms of coordinates §(fw) ~ §(w, ©D4(w)).

We will call the chosen axe, here 2, as line-of-sight. Since we are considering spatially-flat Universe, Da(w) = w.

The main consequence of the flat-sky approximation is the capacity to employ a two-dimensional Fourier trans-

form for each of the planes identified on the line-of-sight

K = f 0 k() (©) ", (2.75)
K(i) (@) = J:’*‘ dz [dac)l—f)} Q) (2) 8 [w(2), Bw(2)] (2.76)

In the light of the up-coming calculations, we employ the simpler notation xy = & (£). Even if the work presented
in this manuscript is mainly focused on the convergence field, realistic survey analyses are performed at the level
of the shear field y = y, +iy, defined in Eq. (2.51). However, we can univocally relate them at the level of Fourier
modes by inverting Eq. (2.57) (neglecting the tomography)

e = 0 [(6 — €)7,(0) +26L7,(0)]. (277)

It is worth highlighting that the explanation given in the previous paragraph holds in real space. We should also
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prove the flat-sky approximation in configuration space to build our polyspectra. Luckily, the small scale limit of
an harmonic expansion is approximated by a Fourier expansion [White et al., 1999; Hu, 2000; Bernardeau et al,,

2011 ). We will review in the following the main steps of this peculiar proof.
A general scalar field ¥ (r, 6, ¢) defined on a sphere can be decomposed in terms of spherical harmonics as
y(r6.9) =2, Z Vi (1) Y7 (6,9) (2.78)
£ m=—¢

for which a commonly used representation is

Y2 (9, 9) — \/2€ +1(0 - m):PZn (cos 8) ™. (2.79)

g4 (L +m)!

P} is the associated Legendre polynomial. The angle 0 € [o, 7] and ¢ € [o, 2) are respectively the polar and
azimuth angle on the sphere, as already introduced in the first chapter and identified in Fig. 2.1.4. In configuration
space, the flat-sky limit corresponds to small azimuth angular deviation 6 « 1. Angles are given in radian. We de-

fine the two-dimensional Fourier transform of the field ¥ (r, 6, ¢) as the following function of the the components

‘}E,m(r)
v (r, ) =,/ 2541 - ; i_mxhvm(r) ¢ e (2.80)

") = [20 + 1imfi%e—im¢[17/(r7£) (2.81)
47 27

with ¢ = |€| and ¢, = tan™" ({,/(,). It is then possible to prove that in the small scale limit Eq. (2.80) does

and the inverse is clearly

actually provide the coeflicient of a Fourier expansion of the field. In details,

(r,0,9) zz: géll/em 0,v) ~
+0
ZMJJ o (r.€) Z Jm (€6) e (970e) ~

m=—/{

where we used the approximation for small angles § « 1 for the spherical harmonic

Y7 (0,9) ~ o = (—1)"Tu(v0)e ™, v =+, (2.83)

47 2
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and the Jacobi-Anger expansion for two-dimensional plane waves

+00
eizcosG _ Z ]n (Z) einO’ (284)

n=—a0

with J, being the n™ order Bessel function of the first kind.

CONVERGENCE POLYSPECTRA  Given the tomographic convergence field in configuration space in Eq. (2.75),

we can define the general polyspectra in the flat-sky approximation as
<’C21) e Kg:)> = (Zﬂ)zpil...in ('ezv o ;'en) SD (’el + -+ ’en) . (285)

and in particular it is proved to be consistent with the small scale limit of the definition for the polyspectra on the
sphere [Hu, 2000]. We saw in Eq. (2.69) that it is possible to relate the convergence field to the density matter
field. Naturally, we can find a relation between their polyspectra. Indeed we will evaluate those for the former as

a projection of those for the latter. In a general fashion,

— <HJ i dw; |:Q(i) (w;) sze)i s [le = O, w,-] e+i£i-®i—| >
= o (T e e [ et [ s = o ] )

o 1

“ Qi) (wi . —itle;
dwi%] [Hfdkl“e ki ] (P(kE, .. ) 8p (ki + - + k) [ 0)

~ (20r)"F3 [HJ i dw; Q(izugwi)] P, w,, ..., L w,) ‘k,.”mSD (kll 4+ kj) X

ﬁ J il Klarg(n) ( TR kﬁ) (2.86)

where, in the third line, we performed the change of variable ©; — xl.L = w;0; to allow, in the fourth line, a

standard three-dimensional Fourier transformation. We also defined the upper integration limit o' = w(zi, ).
At this point the ensemble average applies on the product of the instances of the matter field § leading to the
three-dimensional matter polyspectrum according to its definition in Eq. (1.53). We also assumed that the latter
does not depend, in general, on k. This approximation is called Limber approximation [Loverde & Afshordi,
2008] and it is valid on small scales, i.e. as long as the flat-sky approximation holds (see for example Sec. 9.1 in
Dodelson [2003] for an in depth discussion). Shortly, if we are interested in measuring the level of correlation
for a configuration involving one multipole £, then we will have to project over matter polyspectra depending on

the three-dimensional mode k = (£/w, k), up to a given redshift. However, polyspectra involving k| 2 1/w
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are suppressed by the oscillating factor e~ o 1f 0 is enough large to ensure £/w > kj over the typical length of
the projection, then we will simply approximate the full vector ask ~ (£/w, 0). Under this assumption, we can

re-phrase the last term of the integral as

Hfdkz“e—ikilw,-SD (k4 k) =
ﬁjdk” *lk”w, +i wlz;‘ llc]H .
I e 1
HJ kHelk ) = (27f)+ HSD (0, — w;). (2.87)
Therefore

(el =

(2) J doo 2= ”] P/, .. £)0) |y o (k5 + o+ k) =

(21)° f dw [H?":fl 0 <‘”)]p(e2/w,...,en/w) el (£ 4+ £, (288)

2n—2
w

where in the second line we changed variable in the Dirac delta for each of the two components of k;. The powers
of (27) cancel out according to our conventions (1.52). Finally we recognise the structure of Eq. (2.85), leading

to the following relation

P, . (Ez,...,en)—foodww o HQ (k(Ly,0),.. . k(£y,0)) =

JOO doT (i, ... i;0)P(k(£,0),....k(£,,0)). (2.89)

o

the three-dimensional mode given by the Limber dependence k(£, w) ~ (£/w, o). Before moving to the next
section, we would like to underline that the fact the three-dimensional polyspectrum is evaluated on contributions
coming from the same comoving distance w is deeply connected to the assumption we made of weak dependence

on transverse modes k!l (Limber approximation).

2.2 COVARIANCE MATRIX, A COMPLEX EVALUATION

We now turn to the evaluation of the covariance. In this section we will discuss about this topic in the context of

the weak lensing convergence field. Specifically, our observables will be the tomographic power spectrum and the
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tomographic bispectrum of it

P; (£) = P; (£), (2.90)
Bijk (EU 627 63) = Pijk (£27 ’63) ) (2'91)

where, again, the dependence on just the modules of the momenta involved comes from the request of isotropy

and homogeneity. We recall that, according to the notation introduced in Chapter 1, ¢ = |£|.

2.2.1 WHY ANALYTICAL COVARIANCES?

COVARIANCE MATRIX, AN INTRODUCTION  Given a data vector {O;};—, .. n, the measured values are stochastic
events and their expectation values can be derived theoretically if the probability density functional of the field

their are drawn from is known. The variance of each observable {¢?},_, .y and the covariances among them {ofj =

0;}i7j=17._,,N are in turn stochastic variables, being function of them
;= (0: ;) =00, (2.92)
ol =o0; (2.93)

Variance and correlations for the data vector are given as element of the Covariance matrix. The covariance matrix
is a square, symmetric and positive defined matrix which has dimension N, N begin the number of observables we
want to measure, where the diagonal elements are the variances and the off-diagonal elements are the covariances
among them

_ 2
Cov|O;, Oj] = a3 (2.94)
The correlations are simply the covariances once normalised over the variances

2

corr [(/),-, Oj] = corr [(’)j, Oi] _ T i,j=1,...,N. (2.95)

Whenever the above definition cannot be applied due to our ignorance on the probability density functional
(PDF) of the underlying field, we have to find a way around to evaluate the elements in the covariance via the
single realisation we have at our disposal. Let us briefly clarify some important points of our discussion before

moving one with our presentation.

First of all, we will be interested in forecast for cosmological parameters. Specifically, we want to address the
scientific performance of future missions. In this case, real data are not yet available but still we want to under-
stand how well cosmological parameters will be measured and and how we can optimise future data analyses and
computational resources. All the considerations given above still apply. However, when referring to data we will
be thinking about mock data from simulations which mimic the sky observed by a specific survey accounting for

all the systematics real data will be affected by.
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Secondly, the observables we will consider are polyspectra measuring the amount of correlations in the weak
lensing convergence field at different scales and among different binned source positions (tomography). The cor-
relations in the data set will be directly related to the underlying matter clustering . As we saw in Sec. 1.3 couplings
among modes arise while evolving the matter field in time and they will be directly mapped into couplings among
angular scales at the level of the weak lensing signal. Therefore, the value of the correlations at a given scale (config-
uration) will be correlated to that one at an another scale (configuration) and so on leading to a significant impact
at the level of cosmological parameter error bars [Sato et al., 2009] . Then, the problem of estimating a covariance
matrix for modern galaxy survey is actually indeed an interesting physics problem: covariance matrix estimation
is difficult because the physics of non-linear gravitational collapse is not sufficiently well described by up-to-date

models of clustering.

ESTIMATING THE COVARIANCE MATRIX In an ideal scenario, the optimal way to compute a covariance matrix
would be to run Ny — o0 large and accurate hydro-simulations of cosmological structure formation. The optimal-
ity in this approach arises from the fact that numerical simulations are to date our best tool to describe non-linear
structure formation and the properties of the visible structures within. These faithful mock realisations of the Uni-
verse would then be used to estimate the true covariance via the sample covariance of the observables O; and O,

built as
Ng

— 2 (O —<(Op) (Oj,l — (O ) , (2.96)

s I=:1

COV,‘]‘ =

where O; is the I measurement of the observable O, and the expectation value of it can be estimated via the
arithmetic mean (O) = > O;/N,. However, we do have tight minimum requirements on N; for a given set of
observables. Taylor et al. [2013] derived the minimum number of samples N that are used to compute the co-
variance to obtain a fractional precision better than € on parameter constraints, assuming a Gaussian weak lensing
field
2
n> — +N+ 4, (2.97)

Nbeing the dimension of the data vector. As we will see, we will be dealing with vectors of dimension ~ 10*, which
makes a precise evaluation of the covariance matrices from simulations extremely challenging. Furthermore, pure

1

dark-matter simulations produce power spectra to about 1% accuracy up to k < 1 h Mpc™, or 3% up to k <
10 h Mpc™" [Schneider et al,, 2016]. For a Euclid-like survey for example, Kitching & Taylor [2011] proved that
the power spectrum has to be accurately known to 1% down to k ~ so h Mpc™ to saturate the dark energy figure
of merit and reach Euclid design goals. This study is in agreement with the previous one from Doré et al. [2009].
As this vastly exceeds the computational power available to the community (and will continue to do so in the next
decade), and is out of proportion compared to other central processing tasks in cosmological analysis, such as
modelling the cosmological signal or data reduction, compromises have to be sought that find a balance between

accuracy, statistical precision, and computational (or human) cost.

Another class of estimators do exist requiring a lower numerical complexity. Within the so called class of re-

67



sampling methods, or internal covariance methods, different estimators allow the computation of the covariance
matrix from the data themselves or a single realisation in a simulation. The underlying idea is to create a number
of Ny, spatial sub-volumes from the available data and to estimate the statistical properties of their underlying
distribution from the variation of the samples. One example is the Jackknife (J) method. In this case, the I'" sample

is built as the full data set minus the I sub-sample. The covariance matrix estimator for this method is

Niub.

vl = N, Y (Qﬁ? _ <Oiu>>> (O]{JIJ - <(9],<f>>> , (2.98)

sub. — 1 =1

where 0(1] ) is the value of an observable as estimated from the I*" Jackknife sample via arithmetic mean and (O9))
is the mean of all the all the (’)7(1]).

While these methods are correct with respect to the estimation of the covariance between modes which we can
measure from within the data set, Lacasa & Kunz [2017] showed, as it can be expected, that they are unable to
catch correlations with modes larger or equal to the size of the survey footprint. As we will see in Sec. 2.3 these
type of correlations are indeed present and play a non-negligible role in our study: they increase the correlations
between the observed scales and they correlate different sub-samples as extracted from the same data set. Specif-

ically internal covariance methods fail because they intrinsically assume that the sub-samples are independent.

At this point, it should be pretty clear the answer to the question addressed in the title of this section. From one
side, the present performance of N-body simulations does not allow a precise estimation of the covariance given
the number of observables modern galaxy surveys will give the chance to measure. On the other hand, internal
estimators miss super-survey correlations overestimating the available cosmological information. Therefore, even
ifitis an extremely challenging path to follow, the exact implementation of Eq. (2.92) for a given theoretical model
is the most reliable way to produce unbiased covariance matrices. This will be indeed the approach we will consider.
In the following section, we will provide a detailed explanation of how to derive the covariance matrix for the two
observables of interest from an analytical perspective. For the observed scales of interest, i.e. much smaller the
typical length of the survey view field, we will schematically split the covariance (and we will prove to be allowed

to do so in this limit) as

Cov [Pij (f) 7Pi’j' (El)] = Cov [ e ]Gauss
Cov I:B,']'k (61, Ez, £3) 7.B,'/]'/]c/ (gl 6/ él)] = Cov [ .. ]Gauss + Cov [

b by NGins T Cov [ . ']NGssc7 (2.100)

Cov [P (0) ,Byjw (41,05, 05)] = Cov ... |ngins + COV[- - - Ingese - (2.101)

+ Cov ... Ixgins T CoV |- - Incese » (2.99)

]
]

In Eq (2.99) and (2.101), we label as Gauss the covariance terms containing only 2-point statistics and which
would be the only contribution if the matter density field were Gaussian. The other covariance terms arise due to
the non-Gaussian statistics induced by the gravitational collapse and correlate different modes and the different
probes, i.e. power spectrum and bispectrum. We distinguish two classes of non-Gaussian covariance, respectively

labelled as NGins and NGssc. The former is sourced by correlations between observed intra-survey modes (see later
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in the section), while the latter is sourced by correlations between observed modes and background super-survey
modes and is known in the literature as super-sample covariance (see Sec. 2.3 ). Within the present Chapter, when-
ever needed, we will label the total non-Gaussian component of a specific covariance matrix with the subscript
NG.

For completeness, we highlight that analytical covariance matrices were used for cosmological analyses in Krause
& Eifler [2017] where cosmic shear, galaxy-galaxy lensing, galaxy clustering, cluster number counts and cluster
weak lensing were combined to access the information content for a LSST-like survey. Subsequently, the COS-
MOLIKE likelihood code developed as result of the above work was officially used within the DES community
[Krause et al,, 2017] as part of the scientific validation of the the DES-Year1 release [ Dark Energy Survey Collab-

oration et al., 2016]. However, all the works here mentioned were done at the level of 2-point statistics.

2.2.2  OBSERVABLE ESTIMATORS

While we have discussed alot about the covariance estimators, it is necessary to start with a preliminary but crucial
step. So far we have discussed about the theoretical values of the polyspectra: we started from the matter field 5,
we defined its three-dimensional polyspectra via Eq. (1.53) and then we built those for the convergence field via
the line-of-sight integration in Eq. (2.89). However, in real data analysis, we will never measure these quantities, nor

arealisation of them.

FINITE sKY EFFECTS In real world application we will always measure the values of the polyspectra for a pix-
elized and domain-limited version of the underlying true field. This may induce differences between the observed
properties and the expected ones. The super-sample covariance (we will see) is a nice example of this feature and
it is related to the finite sky coverage of our survey. The finite real-space domain has an impact already at the level
of observables. Neglecting for the moment the resolution of the instrument, in realistic situations the actual field

whose polyspectra we are measuring is a filtered version of the real one
) (©) =Ww(O) k) (©) (2.102)

where the window function W (©) describes the footprint of the survey. In our analyses we will assume a simple
binary function with W = o or W = 1 for points outside and inside the survey field respectively. The Fourier
transform of the masked field will then be the convolution between the Fourier transform of the window function

W and of the true underlying convergence field

K‘g’(i) = szqW(q) Kglq. (2.103)
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We introduce now very useful survey related quantities: @qq, (angular coverage of the survey), Qqq (solid angle
covered by the survey) and f, (fraction of the sky covered by the survey). These quantities are related as follows
Qg

Quy = 27 (1 — c0s Ogy) ,  fay = —, (2.104)
4T

all the angles being expressed in radian or steradian. If the survey footprint has an angular size of @ steradian,
the convolution in Eq. (2.103) will induce correlations at the level of true field at scales { < {;where (; = 27/ Oy
is the typical domain length of W. The frequency / is also known as fundamental frequency of the survey. At the
level of collected data, the finite real-space domain implies that we cannot measure, in the observed field, angular

modes ¢ < /;and also /¢ provides a minimum resolution for the module of the multipoles we can access
EZ{C = gf{nx,ny}, Ny, Vly € NX. (2.105)

Therefore, a good approximation to describe the observed field within the survey in configuration space is

Kj;g = J F0 k) (@) 4, (2.106)
x Quy
where the Discrete Fourier Transform has to be used [Jasche et al., 2009]. We can see from Eq. (2.106) that all the
modes smaller than the fundamental frequency are excluded while still present in the real field. The question is:
will the statistical properties (expectation value, polyspectra, covariances, ... ) of the measured Ki:)y in Eq. (2.106) be the
same of the true sz’(i) in Eq. (2.103) ? The answer is not obvious and indeed we will see that while it is true for
the observables (under certain assumptions), the covariance will be deeply affected. From a more general per-
spective, whenever we want to measure an observable O whose true value is linked to underlying cosmology (our
final target), we build an estimator O of it as function of the data. If the expectation value of the estimator is equal
to the desired observable, then the estimator is said to be unbiased. With the help of this terminology, we can
anticipate one of the most important results in this section by saying that the covariance matrix of the discretized
(observed) field in Eq. (2.106) does provide a biased estimator of the true covariance of the actual masked field
at Eq. (2.103), the difference being the super-sample covariance. Indeed, the curse of this bias lies in neglecting
modes ¢ < /¢in the observed field, which are indeed present, while not observable. We will see this more quan-
titatively in Sec. 2.3. In the following part of the present section we will focus instead on the correlations between
modes entirely observed for which the approximation in Eq. (2.106) applies. Interestingly, we can test this com-
ponent of the covariance in simulations: unless run as sub-boxes of much larger simulations, the periodicity of
the boundary conditions makes Eq. (2.106) exact for the simulated field, dissolving the super-sample correlations
(which are indeed entirely absent) (see de Putter et al. [2012] for a thorough discussion). For our study we will
consider a specific class of polyspectra estimators which are the binned estimators: for optimising of the analysis,
to avoid numerical inaccuracy and to increase the signal-to-noise ratio, we will bin the Fourier space according to
the module of the momenta considered. These bins can be much larger than the fundamental length ¢ and the

value of the estimator associated to them will be constructed via an average over the fundamental modes included
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in each.

BINNED ESTIMATORS ~ We define the following estimator for the binned tomographic convergence power spectrum
(BTP) in the bin ¢* and for the binned tomographic convergence bispectrum (BTB) on the bins {?, ¢* (*}

1) 727 ™3

A 1 N (i
P, (") = ———— K(t,)lc(]) A2 (2 (2.107)
/) ( ) sty Np (gb) ; PR
~ B 1 i) () (k) 'l pl
By (60,00 0%) = kWi D) A3 £.,0,.¢). (2.108)
j ( 3) Qqy N, (&, o, gé,) e:%eg g A N N ( 3)

In the following, we will refer to two-dimensional multipoles by writing them in bold, e.g. £, while the correspond-
ing module will simply be £. The bins are defined at the level of modules: £' € (*if ¢ — Al®/2 < (' < { + Al* />,
{ being the central value of the bin ¢* of width A¢’. The selection function A2, (€') = 1if and only if the length
of the mode £’ falls into the required bin ¢°. The selection function Dby o g (€, 2,,¢,) = 1applies this constraint
separately on the 3 modes, i.e. ; — Al’/2 < (! < (; + Al?/2and furlthlersrequires that £, + £, + £, = 0. N, ({)
and Ny;, (Ef, e, E;’) respectively normalise the sums over the total number of independent elements in the bin.
We will derive them in the approximation /; (center of the bin) » /. Specifically, given a bin ¢* of width A¢’, the
number of independent modes discriminated by the fundamental length /; is [Joachimi et al., 2009; Kayo et al,,

2013 ]

(AL
N, (¢) = Z Ay (£) ~ 2(7:—71) = 20 Al fyy. (2.109)
A Ou

Osky
The number of independent triplets we can combine given a set of bins and related widths {¢?, A¢*},_, , . can
be derived by simple geometrical considerations based on the discretisation of the momenta according to the

fundamental frequency /¢ [Joachimi et al., 2009; Kayo et al., 2013 ]:

b b
Nuw (0, 8,6) = 3 Ay (£,£,£) ~ 2% (zﬂmél> y (%) (2.110)

2 2
€00 & b

where the term within the first parenthesis gives the number of possible momenta within the annuls of target
length ¢, and width A¢’. The term within the second ones is instead the number of allowed momenta within the
bin ¢%. The information on the constraint to form a close configuration with the multiple L e 52’ is given by
the angle Ag _ which is the maximum allowed angular variation of the angle ¢ € [o, 7| between the multipoles
£ € (*and £, € (°. The total number of allowed triplets will simply be the product of these terms. The factor 2

accounts for the parity symmetry around £,. We can find the allowed angular variation Ag , by considering a fixed
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multipole £; € (7 and verify the value of its variation while varying £, € ¢*

dcosp, d I A A B 4
e,  de 200 A
d(Plz El : —1
~ del = el 2/ (Sln (Pu) Y
3 1772

(N
~ Ap ~ 263(singou)_1 (2.111)

where we approximated the derivatives at the central bin values. The angle sin ¢ may be expressed in terms of
the edges via the Law of sines.

1 20, 0,

= . (2.112)

WnP. (2 (GG aE) -l

The final desired expression will then be

2040, 0,0 MbM’;Mg’
NO A== (2.113)
2 3

17273

Ni, (¢0, 88,8 ~

17273

Going back to the estimators (2.107) and (2.108), if the true power spectrum and bispectrum do not changed

significantly with the bins, then the two estimators are unbiased

Py (")) = m Z<K(_i)gﬂ<g)>A2b (£)

:WZQS@P’/ f’) Aﬁb e’ e/ _ l] gb) (2.114)
Ei' Zbagbu eb ’ r Kpr Ky el,el,EI
< lk( e 3)> Sk}’l\]trl ( 17&;6? £,;£/<K£ Kg K£ gbghgb( v 3)
1
QS B‘ 'ei’ ‘627 'el A ’617 E;a f’
kYNt“ (fl’fi”ég’) 21;3/ ok ( 3) 0,00 ( 3)
(0, 0,,0,)
~ t]k 15 Y2y PR
N, (@7627@ e/;gl Aeb & ék 61’3“63) = By (6, 6, 5) (2.115)

and we are in particular free to associate the estimated quantities to the spectra evaluated at the central values
of the bins. In Eq. (2.114) and in Eq. (2.115) we employed the definition of polyspectra for a discrete Fourier
decomposition of the convergence field [ Takada & Bridle, 2007]

<1<2‘) . Kg:)> = Qquy P, £,,....2L,) 82+._,+£n. (2.116)
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In Eq. (2.116), 82 tote, 18 the Kronecker delta function enforcing £, + ---+ £, = o for each (discretized)

component.

2.2.3 BINNED TOMOGRAPHIC POWER SPECTRUM COVARIANCE MATRIX

Once defined suitable estimators for the polyspectra of interest, we need to build the covariance for them. In this
section we will derive the covariance for the binned tomographic convergence power spectrum estimator (BTP)

by replacing its expression (2.107) in the covariance definition (2.92)

Cov | By (1), Buy (€)| = By () By (€)) = By () )iy (€)) =
. 1 . S D002, (8) 82,2 — Py (O Piy(€). (2.117)

The 4-point correlation function function appearing in Eq. (2.117) can be further split in its non-vanishing *connected

components as

<7€ K(})ZKE (’)>_
GO GE )y + ke ke + (e )P e+
(iey )K(])ZKE/)K De (2.118)

then, by applying Eq. (2.116),

<K K 1< (J)>_
smmﬁ@snwwﬁﬂ@s i (0) + 85, P (1) 85, 5By (1) ] +
ST (8, —£, € — € (2.119)

SkYSe e+8 —¢ i’y

We introduced the trispectrum T as the fourth-order polypsectrum. By replacing this last result in Eq. (2.117)

o[t (@) 20 ()] = R
{523 0By () + 55 oy (05521 (2) + 55, (085, ()] 3 () 25008+

A

&S|

Ql Z [Tiji/;"(z, —£,£.¢ )] 85 Y (Z) Ay, (2,)} — P (0) Pyy () (2.120)

We start from the first line of the covariance (2.120) which will lead to the Gaussian component of the power

spectrum error, i.e. the first term introduced in Eq. (2.99). Let us focus for example on the first (non trivial, then

(k) = o.
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second) term within the sum. We can remove one of the sum (e.g. > ) via the constraint given by the Kronecker
Delta. In general the constraint will be of the kind £ = +2. Given that the power spectrum will depend on the
module of the vector, we will simply write P (¢') = P (¢). Further, always under the assumption of P not varying
too much within the width of the bin, we will factorise the spectra out of the sum and calculate them on the central
value of the bin. This implies that the second term in Eq. (2.117) will exactly cancel out the first product within the
sum. As for the selection function, the request for £ = +£ will lead to terms like > Az, (£) Ay, (+£) which are
not vanishing only if / lies within the same ¢? bin. Therefore, this part of the covariance matrix is not vanishing only
if the correlations are between modes both included in the bins ¢'* and %, i.e. diagonal in the binned momenta
space (¢ = ¢’ in terms of the central values of the bins). Finally, the Gaussian part of the covariance matrix will be
given by
Syt

Cov [13,7 ("), Py (g’b)]Gauss =5 © [Py (€) Py; (€) + Py () Py (0)] . (2.121)

where we introduced the synthetic notation 8 4., = 1if¢* = (" or 8,1, = 0if £* # £"*. As for the component of
the covariance associated to the trispectrum, there are no further steps to take and the exact calculation requires

to average the trispectrum over the bins £* and /'

Cov [Py (0)Poy ()] = 7 w’)N: 5 > | Ty (-2.2.2) | 43 (8) 830 (0). (122)

The term (2.122) correspond to the second one identified in Eq. (2.99): being sourced by the connected trispec-
trum, it would disappear in case of a purely Gaussian field. Plus, it simply involves correlations between modes
which are entirely observed. In Chapter 3, Sec. 3.1, we will assume that the trispectrum can be we approximated by
its 1-halo component at the scales of interest of weak lensing. This will allow to simplify Eq. (2.122) thanks to its
dependence just on the modules of the multipoles involved. Further, the assumption of slowly varying polyspec-
tra within the bins will allow to simplify the calculation and compute the trispectrum on the central value of the

considered bins.

2.2.4 BINNED TOMOGRAPHIC BISPECTRUM COVARIANCE MATRIX

Similarly to Eq. (2.117), the covariance for the BTB estimator defined in Eq. (2.108) is

Cov[l%,-,—k(gb /b gb)y-’%i';'kf(f/b /b glb)] =

1772973 19 %20

By (€0, €0, €%) Buyo (€2, 62, 00)y — (B (€0, €0, €°) Y By (€2, €2, 07)) (2.123)

1772773 1072073 1) 72973 1% 073
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and from the definitions of the estimator (2.108)

C0V|: Uk(£f7€f7€§) A //k,(gl 762 763 )]

S GO0, 0 Vs B £) 8 ,(E“,K“f@)
R Y A szyNtri (gb /b gb) N, (gb f'b gb)

? 7 17729 1%
e 3 3

b gb b b gb b
— By (fl 4 Q)B e (00,05, 67). (2.124)
Once again, we can split the 6-point correlation function appearing in Eq. (2.124) in its non-vanishing connected
components. For the bispectrum the computation can become easily challenging. As a matter of fact, the 6-
point correlation function can be split into the sum of products like (2-x2-x2-), (3-X3-), (2-X4-)connected
correlation functions plus the related 6-point connected component. We will inspect these terms one by one, the

first leading to the Gaussian component of the covariance.

Connected 2-point correlation function x Connected 2-point correlations function x Connected 2-point correlation func-
tion (Gauss). Within this computation, we will neglect terms involving correlations between scales of the
field belonging to the same external binned triangular configuration. As a matter of fact, given Eq. (2.116),

these terms would lead to a degenerate triangular configurations. For example if we were to calculate
<1cg_) K%}_ "%

<’Ce Ke > che +e (Z') - 4= —¥; (2.125)

eb eb gb (en‘e'?ek) - ei + ‘e) + ‘ek =0 (2.126)

implying that £, = o. Therefore we expect 3! terms, namely

)> [<1¢— ;')>C<K£k),€§’f’)>c + <K9)KEI/(,)>C<KSIC)KQ:)>C:| +
(% >[<x- D0+ DR +
e >[<xf D)) °>>+<x R DRC L DN CREY

@\A

(i)

In a similar fashion as for Eq. (2.119), we can derive the PPP component of the covariance. Specifically,
we can apply the definition (2.116) for the power spectrum to the terms above. As an exemplification, the

second term will lead to
i) (i i (K k) ('
(k) Kg: Dl Kfzg >>C<K<zj1<§; De = Q485 P (€)% P (£)85 Py (£}). (2.128)

The sum (e.g.) over {E } in Eq. (2.124) can be removed thanks to the constraints imposed by Kro-

1?7 27

necker delta functions. Furthermore, under the assumption of slowing varying polyspectra within the mul-
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tipole bins, we factorise the power spectra out from the remaining sum over {/,,¢,, (,} and we evaluate

them on the central value of the bins. Finally, we are left with terms like
Cov| Byt £0,8), By (0, 07,0)] =
Gauss

~ [ Z AZ?,Z?,Z? (Zl, 22, 23) Azh7£:b,€;h (—2,,(1), —Zg(z), —20(3)) e (2.129)

£, 7£za£3

o begin one possible permutation of the multipole indices. The terms as the one highlighted in Eq. (2.129)
will result in symmetry factors being equal to 1 or o according to the configuration request for the specific
element of the covariance. Via a similar reasoning as in the power spectrum case, we can easily find that the

factor corresponding to the generic case displayed in Eq. (2.129) is

Cov|Bye (88, €1, €0), B (02, 2,01 =
Gauss
-~ Nu. (€2,02,0) Spro Sppo Sppn o (2.130)

M )
SRR CASTARS (AR LA

By iterating the same procedure to all the elements in Eq. (2.127), the final expression for this part of the

covariance matrix reads

COV[ zjk(ff,ff,&) i (ﬁ;b,ﬁ;b,ﬁ;b> ]G = (2.131)
Qq
IWM{P (El) 8@,6; [ij/ (éz) Py (63) 852@8&(; + ij/ (62) ij, (53) 8&@8&&]

+ 2 terms obtained from (z <—>] f’ > €/)

+ 2 terms obtained from (i' K 0~ 62) } (2.132)

Connected 3-point correlation function x Connected 3-point correlations function (NGins,BB term). In this case,
the expected number of terms will be given by the un-ordered partitions of 6 elements into 2 classes of 3

elements each?, specifically 10.

/

bet
k/ i) (k

el ey ey 1 et

(1

K ><1< %) >+
)

<K k)> <K (i) (J E’f’)>c+<K§i)KQ)KEl;')>C<KEk) Z
<r< RO 0 .
(kD <’<><K K',’K"/> + (el
<1c£ K(k/) (k><1<, Ky 1c > +<1<(lf/)1c(’)1c k)> <1c Ky

<’<z; Ky, >c<’<z; %, k)> + (x} /K Kk)><1€— ) e (2133)

>+

3A set of n elements can be partitioned into k un-ordered subsets of r elements each (kr = n)in N = n!/(k!(r!)¥) ways.
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To inspect the calculation in details, we plug Eq. (2.133) into Eq. (2.124) and consider the second (first

non trivial) element of the sum
i () (7 K G (K
,Z, Z <K%1)K%Z)K%f)>‘<K%3)K%;)Ké; )>‘ - (2.134)
INNN T

Oy D, D Bin(l & 8)Byw (6.8, £)5, ;5 55, 51,77

3 - 3 -l ! -~
A@f’,éi,@i’ (£17£27£3> Ag’b’g:h’g;h <£17’627e3> ~

(2.135)

Oy D BB B 8) 8y (8,2 2) | ) By (8, 2. 8) 8 0 (8, 2,2) | =
0.0 2.2

(2.136)

Oy B (s s ) Byt (L, 0, 0) D 8 (BB B) Y 88 (808 ) =
.22, A
(2.137)
N PN
B0 OB (,£,6) 33 B (B2 [WI - Y
N ’ ’ ’ 27

stysg:’gsNtri. (ﬁf, gf? fé’) Ntri.<£1b7 €2b7 €3b>Bijk (817 627 63)Bijk (617 627 g;) W (2-139)

In the second line we removed the sum over ZI, the several geometrical constrains imposing Zi = £,. Fur-
ther, given that £, appears both in AZ% o Kgb(&, Zi, 2;) and in Azf’: o (21, L, 23) , the only non-vanishing
contribution to the sum comes from the configuration with £,* = Eé’. As usual, we also assumed that the
bispectra do not very that much within the width of the bin and we factorised them out. In the third and
in the fourth line we counted the number of triangular configurations allowed within the bins’ width. Sim-
ilarly to the derivation of Eq. (2.113), it is now just matter of combining the allowed number of multipoles
within the bins. However, the first multipole £, is fixed to the value £, then we do not have to account for the

associated term (the first parenthesis in Eq. (2.113)) in the calculation. By applying the outlined strategy

to all the terms in Eq. (2.133), we find the BB component of the non-Gaussian covariance

COV[Bijk (6%, gs, gf) 5 Ei/j/k/ <£1b, g;b, g;’) ] =
NGins,BB

27 1 ,
o g B (6 ) By (6, ) Su+

Byji (¢, 0,,0,) By (Ei, l 8') So.00 + Bujk (8;, l,, 53) By (€, 00, 0,) SMQ]

1 Y3 i\t Yo

+ 3 terms obtained from perm. of (i —jl, < fz)

+ 3 terms obtained from perm. of (i okl - 53) } (2.140)
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Connected 2-point correlation function x Connected 4-point correlations function (NGins,PT term). Similarly to the
(2-%2-) case, the conditions given in Eq. (2.125) and in Eq. (2.126) imply that the only non-vanishing
contributions to the covariance are given by terms where the connected 2-point correlation function is
computed for scales of the field not belonging to the same binned triangle. Therefore we expect 3> = 9

terms, namely

k’ i’ K i) (K N k) (@) (G
(x % ><1c 1< 1c )> —|—< > K ><1<— ; KE/ " + <K%l)1€ég)>C<K%Z)K%3)Ké:)1€%;)>c+
<K K ><K KKy K<k’> +<K<” 8 ><K K’OK; E’f’)>c+<K9‘>K£5’>>c<,<@K£k>,<§’)x9;’>>c+

g ¥ ><”°x-,xk’>>+<"> D)y Vg et g g e kg g e (am)

As done for the BB component, we will detail the calculation for one the above terms (e.g. the first one):

Z Z <1c()1< )> <1< Kk)Kg,/ Kk/)> = Qg Z Z Py (0,) Tygwe (f eaaezye3>
NANTY i) L

K oK 7 r;
5, +£'Se +E,+2,+2, zb NN (é £ 743) AZ(b,zib,e'b (Eu 427 53)
(2.142)
)
'szYgéfhvff’ 2 Z (6 ) ji'K! (e esv ﬁzv 63)
Z1722-723 Z;,Zg
- o
8 £,+8,+L, +£’A€b o e (£1>£2’£3) Az&,zibx;b( En £z>£3) (2.143)
szygéfh,éf’Pii' (g ) jki'k! (g 637 E;a g;)
2=
Z Z Agb N gb ‘617 ezy ‘63) Az:bj;b’e’b( 617 £27 £3) (2.144)
£.6..8, 2.1,
N T / 2T
Q8 s Nuss. (67,02, 07) Nigi, (gl Vi g3b> Py (6) Tygw (6,0, 0, 0) QO IALT (2.145)
where: in the second line, the relation Zi = —£, implies * = (; in the third line 1) we removed
ZIS +2.+7 + 7 since its effect is already assured by the left geometrical factors and 2) we assumed the trispec-

trum to depend only on the modules of the multipole (1-halo term, see Chapter 3 for more details), besides

the usual assumption of slow variation within the bins. The final line of the calculation is exactly the same
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asin Eq. (2.134). Finally, the PT part of the covariance is

Cov[Bu(€0, 4, 68), B (€2, 02,08) | -
ov ]k( 19 %2 3) i’k A NGins,PT

27 1
Pii’ 61 T 11 827576/76/ 8 ’
sty{elMl[ (0) Tigie (L b, 0, €) S0+

Py (0) Ty (Lo, 3, 0, 0) 81 + Pao () Ty (£, s, €, f’)smg]

EERSTAE! jki'j 39 %1 Yo
+ 3 terms obtained from perm. of (i —j il < fz)

+ 3 terms obtained from perm. of (i okl <~ 53)} (2.146)

Connected 6-point correlation function (6P term) The derivation of this final component of the covariance follows
the same idea as for the trispectrum term in Eq. (2.122). This component is in particular irreducible, being
already itself a connected correlation function, and the covariance will just be equal to the average of the

correlations over the bins involved in the configuration, i.e.

17272973 17272073

Cov| Bye (£, £, 60) By (€1, €0 6)| =

Ay o (B B, B) A, (6,2, L))
> 7 7 7 7 Z{’,Zf,@f ’ ? 3 f#’,fﬁ’,f;’ 17720773
2 2 Pijiirjri (&,&,&,;&;&,Q) Oy New (gb T gb) N (g'b Iz g'b) . (2.147)

2 92 9 7 7 7 3 9 J J
‘elv‘ezve} f:,f;,l; 1 2773 1 2 3

Also in this case, we will later assume that the 6-point correlation function can be we approximated by its 1-
halo component at the scales of interest for weak lensing, allowing a further simplification of this expression

along with its evaluation on the central values of the involved bins.

COVARIANCE BETWEEN THE BTP AND THE BTB  The two observables are not independent since they probe
the same underlying physics. It is then important to calculate the cross-covariance terms between the two and
specifically among all the possible configurations available. The definition of their covariance naturally follows

from the defintion in Eq. (2.92)
Cov| By (%) Bugwr (18,68, 20) | = (B () Bugwr (18,68, 22)) = By () )XBpe (8,65,42)) (2148)

In the same exact way as we proved all the previous contributions, the 5-point correlation function which derives
from Eq. (2.148) can be split in the sum of terms involving the product of (2 — x3—) point connected correlation

functions and the 5-point connected one. Without repeating all the calculations (which follows exactly the same
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ideas outline in the previous derivations), the final result is

Cov[ﬁ’ij (fb) i (EI,EZZ’, 55) ] (2.149)
27 1

= sty { flAfl [Pi/j (ﬁ) Bl‘]‘/kl (67 gza €3) 83& + Pi,'/ (ﬁl) Bjj/k/ (é, 62, 63) 8@@1] +

+ 2 terms obtained from perm. of (i' —jl o 62) +

+ 2 terms obtained from perm. of (i' >kl - 53) }+

+Q5kYN (Eb)Ntrl gb Eb eb Z Z Pl]tl]/k/ <£ B EUEZ’E) ('e/) Kbﬂhﬁb ('e:we,z)'e;)a

17 72 3 el l/e/e/

(2.150)

where the usual bin-average appears for the highest order correlation function in the expression. Again, the sym-
metries of the 1-halo term will allow for further simplifications. We underline that the covariance (2.149) is en-
tirely source by non-Gaussianities in the matter field and there is no Gaussian component. In particular, describing

correlation between observed modes, it will simply be the NGins term introduced in Eq. (2.101).

2.3 SUPER-SAMPLE COVARIANCE MATRIX

In the previous section we gave a detailed derivation of the covariance terms between the convergence BTP and
the convergence BTB based on the binned estimators (2.107) and (2.108). In this final part of the chapter we
will focus on a component of the covariance we have been mentioning since few pages back: the super-sample
covariance (SSC). This effect can be intuitively understood as an uncertainty on the value of our observables related
to the fact that we are observing just a fraction of the sky within our survey view field. For example, if we happen
to be in an under-dense or in an over-dense region of the Universe, then our estimators would be biased and the
value of the background matter density, as an example, will be respectively under-estimated or over-estimated. The
issue is, of course, much more complicated and more complex correlations do indeed play a role. The analytical
derivation of the SSC is a very recent subject of research and the level of awareness of the scientific community on
it has grown intensively over the last decade. To best of our knowledge, no up-to-date reviews are available on the
subject. We would like to invite the reader to see the next section as the seed of an up-coming written production

aiming at a comprehensive summary of all the aspects related to it.

2.3.1 ESTIMATORS FOR A MASKED FIELD

The root of the physical understanding of the SSC dates back to the paper of Hamilton et al. [2006] where it
was studied for the three-dimensional matter power spectrum. More recent analyses have been carried out at the
level of matter bisperctum by Chan et al. [2018] and Barreira [2019]. As discussed around Eq. (2.106) a finite

domain of angular size @, radian implies a minimum resolution in module /¢ ~ a7/ Oy for our momenta to be
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measured. However, we also underlined that this is just an approximation while the true field is a convolution with
the window function W of the survey. Also, the expansion (2.106) assumed the periodicity of the observed signal.
In particular, couplings with modes ¢ < (are allowed. In the previous section, we derived our covariance matrices
via the binned estimators defined in Eq. (2.107) and in Eq. (2.108) and the finite-sky condition mainly translated
into an overall re-scaling of our covariance. However, no extra-correlations were produced. This is actually the

crucial point: a weighted (masked) field induces correlations between small scales and large super-survey modes.

OBSERVABLE ESTIMATORS FOR MASKED CONVERGENCE FIELD To start with, we define more sophisticated es-

timators for the binned convergence polyspectra which account for finite volume effects

A 1 i i
PY(l) = ——Fr KW/(’)KVX’({)A}, 2, (2.151)
)= a N, 2t e
pw (pb b b\ _ ! w, (i) w(j) w, (k) waL
ijk (61’62763) = QkyNt (éb /b Eb) Z KZ: Kei KE; Azf’vfi’y@’ (£1,£2,£3) . (2.152)
S Tl. 1772973 e{x;ﬂz;

where the selection function A>(®) are the same as in Egs.(2.107)-(2.108) and K‘z’(i) is the Fourier transform of the
masked field k() (©) (2.102). In particular, K?’(i) will be the convergence field k) convoluted with the window

function of the survey, in Fourier space,

K‘g’(i) = JquW(q) Kglq. (2.153)

We can simplify the bispectrum estimator (2.152) via a change of variables

L —q — 2, (2.154)

£ —q L, (2.155)
E;—ql—q2 —>£g, (2.156)
(2.157)

leading to, including Eq. (2.153),

3
sw (b b pb\ 1 d’q. -~
ijk (gugwgs) o Qg N, (gb /b gb) 2 J[H (27:)2 W(‘la)] X

SR A4

) 0 6 s

Ko Kpr Ky b pb gb
‘el Zz e; i3 El 7é2 763

(Ei, 8 K;) . (2.158)
While the formal dependence of the integrand is preserved, the variable change (2.154)-(2.156) slighlty modifies
the bin limits for the the varialbes {£,},_, , , to be summed over. We notice that the typical domain size of W is

q ~ ! (¢ being fundamental frequency of the survey. Therefore, the above mentioned changes are of order ~ /¢
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and will be neglected
|6 —q|* =0+ q —20iqi cos 0, ~ ;, q; ~ (k. (2.159)

We remind that in our notation g = |q|. The above estimators are in general biased. As a matter of fact,

<PW (fb)> = m Z J" H (Ciz;l)a2 W(qa) <Kéi)_q‘7€(i)g/_q2>cAzb (E/) (2.160)
SR e =1 |

" G @) 2. J 1y <qu> W(a,) | (27)" 8 (a + @) Py (1€~ al) 3 (€)  (2160)

oo 2| o W@ R (€~ a) 85 () # s 1) (2262

3 dz ~
b pb pb _ 2
B0 = g O | e Wi |

17 72 3 l'e'l’ a=1

) () (k
<Ké,)1<1(3’,)1c2,)_qm> 00,00 (Ei,ﬁ;,ﬂg) (2.163)

2 dza" 2
:stme T gb Z J H 9 > W(q,) | (27m)" x

17 V20 3 elelzl |

By (0,01, 185 — Quas]) 80 (€ — Qiss) A o o (€1, 42, €5) (2.164)
# By (0,0,,0,), (2.165)

where we used the polyspectra definition for a continuous Fourier transformation and the reality condition for
the mask function in the third line of Eq. (2.160). Also, we introduced the useful notation £, , = £, + -+ + £,,.
Therefore, if we measure the power spectrum (bispectrum) of the observed convergence field we would end up
with a biased estimation of the true one, i.e. in a wrong cosmological analysis. In the general case, one would
deconvolve the window function in constructing unbiased estimators (see Tegmark [2004]; Hikage et al. [2011]
for a discussion at the level of matter power spectrum). Luckily, for small enough observed scales, i.e. £ >, the
above estimators are unbiased. We remind that the window function W has a typical length scale of /;. Then, the

following approximation holds on the entire integration domain

P; (€ —q) ~ P; (€' —q])

n ., 4P () :
~ Py (0) + AR Py (1), (2.166)
zjk (£i7£;>‘e;) zjk (£i7 627 ’eg - q‘)
rogr i Ei, Ziv ¢ 1o
~ By (fl, Z,, 53) % a3 By (ﬁl, v, £3) (2.167)
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In particular, thanks to the assumed homogeneity of the Universe, we were capable to write both the power spec-
trum and the bispectrum in terms of the modules of the multipoles involved, then expanding around the mag-
nitude g ~ {; < {'. Not depending anymore on the long mode q, the polyspectra can be taken out from the

integrations

F ) = g 2h O )| S @ ra &) = 5 P )85 (8) ~ B (0,

(2.168)
b pb pb >
<Bl]k (El’gl’ g3)> sty Ntn 61 7 ES’ Eé, zl;elf [ W(qa)]
<Ke' -q g; —q g/ >Agb N (51,%5;) (2-169)
. 1 't dq‘l 9
B Qg N, (ﬁl,gi’,ﬁé’) e;%;e; i wl%z%g[[ﬂ (27)* W(qa)]

( ) Eb fb Eb ( i’ !;7 Eg) éD (ql qz q3> (2.1 70)
l]k 617 gzag

== (é o ) Z Azb o (€,2.,2)) ~ By (£,,0,,2,) (2.171)
tri.

17 729 3 le/el

where in both Eq. (2.168) and Eq. (2.169) we assumed slowly varying spectra within the bins and employed the

following property for a binary window function

o - [eow- [eowi- |

forn = 2and n = 3 respectively.

(2.172)
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COVARIANCE ESTIMATORS FOR MASKED CONVERGENCE FIELD ~ We can compute the covariance of the masked
estimators (2.151)-(2.152) with the same techniques employed in Sec. 2.2.3 and in Sec. 2.2.4. Also in this case,
the covariance estimation will require to split (non-connected) higher order correlation functions in the corre-
sponding irreducible components. Without repeating all the calculations, we will simply focus on few terms with
the simple goal of conveying the most important ideas necessary for the understanding of the super-sample terms

of the covariance matrices. At the level of power spectrum, the total covariance is given by

W Hw ! dzqa
Cov [Pl] (Ef]) i <£2):|Gauss - styN (é skYN gh Z f[ (qa)] ’

E/ L

(g k0 k) kD O (E) A3 (E) = Py () Py (L) (2173)
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where the last term is assured by the estimator being unbiased. In the same manner as for the covariance of the
estimator (2.117), we will first focus on the Gaussian component of the correlator appearing in Eq. (2.17 3). For
example, referring to one possible term (e.g. the second one) of the Wick decomposition (2.118), the calculations

follows as

Cov [le (Ef’) 13?7' (65)]

Gauss
Azb ‘fl)Az €@ v da o0 o @ )
R Z QY N, (£2) J H (2m)” W) <Kf{—qxK—fi—qz>c<xfi—qsx—£f—q4>c te
2. 2 | a=1 .
(2.174)
A, (£)A5,(L]) J [+ dq, - ]
= 4 ~ 1 2 aZW a 27I4Pi' ei_ 1) Py Bi— X
E:ZKQQ:IWNP (éf’)Np (glz,) L (27[) (q )_ ( ) J(‘ q|) ] (‘ q3|)
5 (6 —q,— £ —q.)8h (¥l —q—€—q)+... (2175)
gb (El) Azb (El) , , dz(Ia
A Py 4+
f o N, ) P 6 | L] e
W(q)W( —£ —q)W(q) W —£ —q)+... (2176)
A; (el) AZ (£/> / / / /\ Ta / /
= ..+ ~ Z (éb) (gb) 1](6) P//(E) (E EZ)W*(EI—EZ)'F (2.177)
z;,z’

2 e/ Az e’
-+ ~ Py ({,) Py (L) Z Q2 ( ()fb) | ()gb)
e

&

W —e)+... (2.178)

Se.,
o~ NP (ff)Pl] (61) Pi’j' (€2> + ... (2.179)
where in the third line we approximated P;; (|€' — q|) ~ P;; (') in the usual limit of observed multipoles £ » q ~

/. Atline four, we employed twice the binary window function relation

(2m)* L (27)’

wie) - [ Loweyiie-o) - [H i ~<qa>] (5l —qa). (280

In the fifth line, we assumed that the power spectra do slowly vary within the bin width, taking them out of the
bin-average. In the sixth line, since the typical domain size of Wis of the order of ~ £, W (£ (£, — £.)) will be
non-vanishing only if £/ and £, differ by a vector of magnitude smaller (or comparable to) than the fundamental
frequency. Differently said, the two momenta £, and £, has to belong to the same bin, being under the assumption

AL® > ;. We approximated the impact of the window function in the last line via W (£(€, — £.)) ~ Qqy80.0..

As main consequence of the above calculation, this component of the covariance matrix is not affected by cou-
plings with the super-survey modes of the order of /; and indeed it is the same as the Gaussian covariance (2.120)

obtained from the estimator (2.107).
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Moving to the non-Gaussian component as derived from the connected part of the correlator in Eq. (2.173),

one has

N EAGEAGIEE o, (Zh) N @ ST A% (£) 83(€) ”H g;l)azmqa)] x

£’ e’ a=1

(277)2 8p (q1234) Tl/l; (e q:, _el Q. ; — 9, _e; - (14> . (2'181)

Similarly to the steps performed at the level of bispectrum estimator, we can rephrase Eq.(2.181) by exploiting the
usual limit £ » q ~ ¢¢such that

Cov | By (&) By, (eg)]NG (2.182)
= Z Ap )J li[ 4q x
Q4 Ny » (00 e/ i i (27
(271’)2 p <q1234) ijij! (El el Qi £,, El ) (2.183)
1 [ 3 aq, -~ -
- N, (") N, (%) eze' Aj (£) A (L, )J g (o)’ W (qa) | W(—qus) X
Tiiy (£, €, — qua, £, —£, — q3,) , (2.184)
ey 2 (¢ )J ]_[dz—q“zW(qa) Jd;qu(q—ql)W(—q—%)x
sty g Z/ l/ a=1,3 (2’77:) (2’7[)
Ijl] (2/ el ¢ P29 27 El ) (2'185)

where in the first line we performed the change of variables £, — q, — £, £, — q, — £, and we integrated over
q, in the second one. Finally in the last line we defined the new integration variable q = q,,. We can simplify the

non-Gaussian term (2.185) with the help of the binary window function relation (2.180)

Cov B () B3 (&), = G Gy ) 2 (€) 238D

Z/ £,

d> ~ , / /
f(z—;y (@ Ty (€.~ +q. €, —q). (2186)

At this point, Eq. (2.186) cannot be simplified any further: the window function W (q) does not have a trivial
approximation over the integration range and the truncation of the expansion in Eq. (2.166) and in Eq. (2.167)
are not allowed in the present case. As a matter of fact, we could indeed write the trispectrum as function of the

modules involved

Ty (€, —€, — q,£,, =, —q) ~ Tyy (0| — €, +q|,0,,| — €, —q|,|€, — €, +q|,q) - (2.187)
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The allowed approximation from the usual limit £ » ¢; would be

Ty (€| — £, +qa|, 0, | — €, —q|, €, — £, +q|.q) ~ Tyy (€, 0, 0., 0, |£, — €], q) (2.188)

17 V17 Y2 Va2

and in particular we cannot get rid of the coupling with the super-survey mode q < ¢

Since we are working in the framework provided by the Limber approximation, we can evaluate the trispecturm

in (2.186) as the projected matter trispectrum along the line-of-sight defined in Eq. (2.89)

o] el _el e/ _el o
Tijij/ (47 _Ei -9 ;7 _ei - q) = J dwT(iji/j/; w) T (_17 1+ qa =, . q)

w w w w

~Tlk(l, w),k(—£ + q,0),k(£,w),k(—£ —q,w)]. (2.189)

In Eq. (2.189) we implied the explicit redshift dependence of the matter trispectrum and we expressed the three-
dimensional modes via the Limber dependence k(£, w) ~ (£/w,0). The three dimensional matter trispectrum
can be evaluated at this point with the preferred model of non-linear clustering. The crucial point is that the
trispectrum is now coupling the 2 observed modes, k, = k(£/,w) and k, = k(£,, w), with the “soft” mode
¢ = k(q,w) < 27/v/V. In our case, V is the volume slice at comoving distance w of the projection light cone.
This can be rephrased as: the mode ¢ induces an extra correlation between the observed modes k, and k,. This
mode is an un-observed mode, much larger than, or close to the size of the survey. For this reason, we dub the

induced extra covariance as super-survey covariance.

Over the past decade, several attempts have been done in order to understand in details the role of these cor-
relations. Hamilton et al. [2006]; Takada & Jain [2009]; Barreira et al. [2018] used Perturbation Theory (PT)
to calculate the trispectrum corresponding to these peculiar configurations resulting in an additional term which
sums to the standard intra-survey non-Gaussian covariance. Since PT is valid up to scales in the mildly non-linear
regime, they were not capable to describe entirely the effect of super-sample modes and their calculation lead to
the usually dubbed beat-coupling effect. For didactic reason, we would like to derive the beat-coupling covariance

at leading order (l.0.) in the PT framework.

T(kn _kl - P7k27 _kz - P) 1% T(kn _kl7 k27 _kz) +

16 Plin. (k1) Plin. (kz) Plin- @) F(l) (kn _p) F(Z) (kz, p) . (2.190)

By replacing it within Eq. (2.189) and Eq. (2.186), we find indeed a distinct separation between the standard

intra-survey component Cov [ . ']NGins of the covariance (2.122) (from the first term in Eq. (2.190)) and the

86



super-survey term Cov [. . . | gec
Cov [PZ" () ij, (Ef)]NGSSC (2.191)
16 dq - N
= N, (VN (@) f do T (iji'f; w Z Aeb Agb(e )J (M)Z‘W(q) |*x

2.2

P (2) e () 7 () 0 (e -2 (e 2)

(2.192)
16 [© ot e (&L,
“g, | T |52 [5G

p( >p1m <_) pe 1) ) (k(€), ~a) F? (k(€),)  (219)

w w

_ i lin. é_i J del in. f’
- ( )J dw T (iji'f’; w)JZAﬂ’P (w> EZAE‘Z’PI ,

T

ot J dwT(iji’j';w)JP““' <€—> pin <£—> o (). (2.195)
sty o w w

Let us give few details about the intermediate calculations, the PT second-order kernels F®) (see Eq. (1.111))

should depend on three-dimensional momenta: we employed the notation introduced around Eq. (2.89) to refer
the the three-dimensional momenta under the Limber approximation. In the second line, given the shape of the
kernel F*) we removed the overall scalar factor 1/w. Also, to have a simpler notation, we moved to the integral
form of the bin-average. In the third line, we averaged the F*) kernel of the polar angle of £/ and £., leading to
the factor 36/49 = (6/7)*. In the fourth line 1) we assumed that the linear matter power spectra do not vary that
much within the multiple bins, 2) we replaced the expression for the annulus area related to the bins ¢ and ¢! and
we identified the last term as the variance of the linear matter field over the survey footprint at comoving distance

w

2 dz 2 plin

o (@) _J W (q) [* P (1) (2.196)
(2m)® w

At the level of bispectrum and cross power spectrum-bisepctrum covariance for the masked estimators defined

in Eq. (2.151) and (2.152), similar results can be derived. It is possible to analytically prove (under the usual

limit of observed modes much larger than the fundamental frequency) that all the terms identified in Sec. 2.2 are

indeed not biased except for the 6- and 5-point correlation function related ones (see Barreira [2019] for a detailed
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calculation at the level of matter bispectrum)

cov[fs,-,k(zf,zf,z‘;),B,-,,k,(fib,e’f,z;")} ~ Cov| By (0,80, ), By (00,0 )| (2ae7)
Gauss ¢>¢¢ - : Gauss

Cov [fsijk (€0, 60 %) By (€2, 07, e’j’)] R [ A GG B M AT AT IR CRED)

Cov [fs,,.k (€7, 60 %) By (00, 0, z;b)} e 3 Cov B (0, 08,00, B (€0, 02, e;b): gy (2199)

Cov| By () By (18,65, £7) ]N 3, Cov B () B (£, 2,2) ]N (2.200)

while

Zeae 2 g Sy (80 o 6) By ey (6,6, 6)
= Qu Nus, (ﬁ, VA gb) Ny (E/b /b é/b)

1) 72973 1972073

1) 72073 1772973

Cov| By (68, €0, ), By (1, £ glbﬂwp

_dz 7 " " i
J (2732 (W (q) [*Pijerjee (£:,£’27£; +q,¢,,¢,, L, — q) , (2.201)

/ /gl /AZ 'ei A3 £i7£i’el
Cov[f’}“-’ (éb) : Ap’"k’ (Ef’gi;?gb) ] _ Zz Zeﬂzl,e} o ( ) 0,00 eb ( 3)
j j 3/ ING,sp Qg N, (@v o, g?) Np (£%)

J (i:;z |W(q) |2Piji’j’k’ (eiv e;eg +q. ¢, - ‘l) . (2.202)
In Egs. (2.197)-(2.197) we use ¢ below the relational signs to refer to the general observed mode. Also in this
case PT allows to split the components of the non-Gaussian covariance matrices in two terms: one involving
only correlations between modes within the survey footprint (leading to the NGins-type terms in Egs. (2.99)-
(2.101)), and one involving correlation between the 6, 5 (respectively) observed modes and a background mode

q (the NGssc-type terms in Egs. (2.99)-(2.101)). Schematically then,

Cov [PP]yg = Cov[PPlygin + Cov[PPlyce » (2.203)
Cov [BB];TG = Cov [PP|ycins. + CoV[PPlygecc » (2.204)

PT

Cov [PB]y¢ = Cov [PB|ygins + Cov [PB]ygecc - (2.205)

We have justified the expressions anticipated in Eq. (2.99)- 2.101 within the PT framework. Actually, we will see

in the following that this structure is granted independently of the model for non-linear clustering employed.

2.3.2  SSC VIA THE RESPONSE APPROACH

Starting from the studies summarised in the previous section, a very interesting formalism was recently intro-

duced capable to include the leading-order PT results (beat coupling) and also provide a better fit to simulations,
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including missing terms in the non-linear regime of matter clustering.

MATTER POLYSPECTRUM CONSISTENCY RELATIONS The response approach (in this context) was first introduced
by Takada & Hu [2013]. In analogy with similar effects for primordial non-Gaussianity [Maldacena, 2003 ], the
polyspectra on the squeezed configurations required in Egs. (2.189), (2.202) and (2.201) should be determined

by the reposnse of the power spectrum and bispectrum to the long mode &y, defined as

8, = inVchS (x), 8, (q) = (27)* 8p (q) 8b. (2.206)

where, we recall, §p, is the Dirac delta. Takada & Hu [2013] defined the following trispectrum consistency relation.

dP(k,) 0P(k,)
T (k, -k, + p,k,, —k, —p) ~ T (k, —k,, k,, —k,) + LL P (p). (2.207)
ds, 08,
with p = |p| and P'" is the linear matter power spectrum. This results generalises the leading-order PT-based re-
sults of the previous section: it is always possible to split the covariance for windowed estimators in 1) correlations

between observed modes, and in 2) a super-sample component involving correlations between the observed and

the un-observed modes, the latter entering via the variance of the linear matter field over the survey volume

Con [B5 (1) 2y ()], = Cov [Py () By ()] g+
. dp

Jm do T (iji'f; w) (;—d; (k(¢, w)) &, (k(¢',w)) 0% (0). (2.208)

Qg

Via the same argument, Chan et al. [2018] found an analogous relation for the bispectrum covariance and the

power spectrum-bispectrum Cross-covariance

Cov[A,V.‘.’k (ﬁf, fi’, Eb),fip’qk, (E;b, K;b, E/h)] = Cov[ . ] + Cov[. . ] (2.209)
J 3 J 37 INng,6p NGins NGssc
Cov[lsij (ﬁb) ,Ei/j/k/ (ff’, éi’,ﬁi’) ] = Cov[. : ] + Cov[. ) ] (2.210)
NG,sP NGins NGssc

with
Cov[Ayk(éb I f”),ﬁffj/k/(f/b e g/b)]NGins = COV[Bijk(£f>gb gb)aéﬂj’k’(g/b 0! glb)]NGm; (2.211)

19 Y20 Y3 197203 2773 1772973

Cov| By (¢) By (0.8, 8) | = Cov|By () Buge (¢2,02.88) | (2.212)
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and

Cov| B (14, £4.0) By (01, 1,000 ] =

1

f do T (ijki'j'k'; w) 4B (k(4,, w),k((,, ), k({;, w)) 4B (k(€), ), k(£ 0),k(£}, 0))o2 (w), (2.213)
sty o Sb dSb

cov[ﬁ;; (60, B (€1, 00, 0°) ]NGSSC _
1
.sty

dB

J do T (ijij¥ )jsi (K(£.0) 35 ({6 ). K(LL @) K(£ )03 (@) (2210

The quantities d » /d§;, are called in the literature responses : their derivation will be the subject of the next para-

graph.

POLYSPECTRA RESPONSES  For the evaluation of the responses one usually considers three main components
according to the separate Universe picture [Sirko, 2005; Baldauf et al,, 2011; Sherwin & Zaldarriaga, 2012; Li
etal, 2014; Wagner et al,, 2015a; Baldaufet al,, 2016] and as interestingly outlined in Lazeyras et al. [2016] at the
level the power spectrum and in Chan et al. [2018] for the bispectrum: the observables built in a local over-dense
region of the Universe (P") as altered in presence of a long mode 8}, are related to the quantities in the global one
(P%). We can easily extend their considerations to a general matter polyspectrum. The responses can be seen as
the coeflicients of an expansion of the true globally derived polyspectrum around the background mode 6}, which

is assumed to be in the linear regime

R, (k,,....k,
PO (K, .. k,|8y) = PO (k... ko) + > ¥8§,
n.
n>o
d"P (k,, ... k,|8)

R, (k... k,) = ¥R S
b b=o

(2.215)

In this work we will consider linear responses R, (k,, . . . , k,).

Local average effect this effect was already identified within the calculation of the non-linear power spectrum
covariance matrix by de Putter et al. [2012]. The background mode §, can induce a local average effect on

small scales via a shift on the mean background matter density
Pt = (1+8)p, (2.216)

and at the level of locally observed contrast density field

S(X)—Sb
1+ 8y

§" (k) = (k) 1__1_8;5]3 (k) (2.217)

8t (x) =
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At the level of polyspectra, the local P~ ones relate to the global ones P(from now on we will omit the

superscript G), in Fourier space, via
P(k,...,k|8) = (1+8)" P'(Kk,...,k,) (2.218)

We can see that an intuitive behaviour is recovered: given a fixed local polyspectrum, the corresponding
one related to the true underlying matter density is enhanced. Clearly, for a fixed background mode, the

lower is the local power, the lower will be the global one.

Dilation effect A positive background over-density implies a slower expansion, which can be quantified by the
relative difference in the scale factor between the local and global cosmology, a = a/y/1 + §y. Therefore,
for the same physical scale 7y, the corresponding comoving one 7o, differs as reoma = rV ar,and the

momenta k & 1/7com, are therefore differently evaluated between the local and global Universe as

k
K= . 2.21
e (2219)
The impact of such a coordinate scaling at the level of polyspectra can be derived via a generalisation of the
calculation performed in Pajer et al. [2013] and in Chan etal. [2018]. Under a change of coordinated alone

(excluding local-average effect and the growth-only response (see later in the section)), a general n-point

correlation function transform as a scalar field, specifically in this case (withx — x" = x/1 + §},)

e (r];, e ,r]n“) = (r]; 148y, .. N1+ Sb) . (2.220)

We can relate them to the corresponding n-order polyspectra

27)

z dski —i ki'r’L
£ <rl; m,...,rﬁ/m> = H [J(—3€ m] P(k,...,k,), (2.221)

i=2

L (L L - dskiL —iklrt L L
€ (rz,...,rn) 21—[ f(mrfe i PL(kZ,...,kn), (2.222)

i=2

We then translate the equivalence in Eq. (2.220) into a relation between locally and globally evaluated

polyspectra

PE(KE, . KY) = (14 8,)" P <k];\3/1 SRR LA sb> -
Pk,....k) = (1+8) "D (kl/g/l IR AV 3b> . (2.223)

Combining the local average effect (2.218) and the dilation effect (2.223), we have

Pk, ... k|8) = (14 &) P (kz/«a/l FRC RN My Ao sb) . (2224)
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Growth-only response We are then left with the growth-only response which stands for a modification of the
intrinsic growth of structures, at fixed scales. If the background perturbation is positive, then gravity is
stronger in the local Universe and the intrinsic growth is enhanced. Unfortunately this last quantity cannot
be predicted via the above shifts but it has to be either tuned in simulations or predicted according to a given
theoretical prescription. In general we will refer to it as the response to the locally observed polyspectrum

to the long mode
_ d'PU (k... K[5,) 1

Gk, ...k, S —
( ) dsy s—oP (k... k)

(2.225)

and we added a dependence on the background mode due to the alteration of the growth of structures

Given all the above effects, the true globally evaluated polyspectrum will depend on the long background mode

&y, as

P(k,...,k,|8)=(1+8) Kl - Z S Gk K sg) P(K,... ,k};)] (2.226)

' m
m! .
m>o KL = 5k
*T 3148,
where P* (k,, ..., k,|o) = P (k,, ...,k,) since we are not considering the effect of the long mode on the growth

of structure and we are evaluating them at the same configurations. Finally, the linear response will be

1 dP(k,. .. k,)
R, (k,,...,k,) =1+ G/(k,....k,)) — - ) ———
( ) =1+Gi( ) 32 dlogk,

(2.227)
In the next chapter, we will review all the polyspectra included in our analysis. Along with them, we will describe

the expressions used for their responses in the light of Eq. (2.227)

WEAK LENSING SSC, FEW COMMENTS In the present chapter, given the scales of interest for our analyses and
the simplicity in the computation, we built our observables in the flat-sky and Limber approximations. We will see
in the next chapter that these assumptions are indeed well justified for our work. These approximations were also
employed for deriving the super-sample covariance terms in the present section, the soft mode, generally identified
with q being defined on a plane. In the most general case modes should be treated as curved and even if the small
scales limit may apply for the observed ones, the background long modes do lie on a sphere and can potentially
correlate different small “flat” patches of the observed sky. In the interesting paper from Barreira et al. [2018], the
authors do actually provide a rigorous proof for different expressions of the SSC for the weak lensing convergence
field relaxing different approximations on the geometry of the modes: in Sec. 4.2 they derive the SSC with curved
super-survey modes only, while in Appendix D they derive the SSC with no flat-sky approximation, nor Limber,
for both the background and observed modes. While these expressions can actually be derived analytically, they
can be computationally costly. As a matter of fact, in the second case (the most realistic), the non-Gaussian lens-
ing covariance is given by a high-dimensional integral of rapidly oscillating functions with unequal-time matter

trispectrum in general configurations. Furthermore, this full expression does not even permit a clean separation
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at the level of trispectrum between super-sample contributions and the rest of the connected non-Gaussian co-
variance (as it was the case for the flat-sky analyses performed so far). For the bispectrum covariance, all these
considerations lead to an even more complex analysis. In the less complex case with flat-sky for the observed
modes, the analysis still involves 2 integrations over the redshift for the evaluation of the projected variance o7, for
every configuration of interest. This complexity was also found and successfully tackled by Lacasa et al. [2016].
For all these reasons, we will employ the flat-sky approximation for both the modes observed and beyond the sur-
vey. By generalising to higher order the consistency relations (2.207) the following expression is given by simply

projecting the three-dimensional polyspectra responses

Cov [131“’, (O,....0,),P5 . (£, ... ,E;,)] (2.228)
o R NGssc
o0
:J doT (i, i) T, ... i w) x (2.229)
Pkl ). k(60 0)[83) dP(K(E, ), k(€ 0)[50)
ds, ds, 7. (@)
(2.230)

where we employ the Limber approximation for the three-dimensional modes within the responses. The super-
sample covariance expression (2.228) is also consistent with the work of Lacasa & Rosenfeld [2016] (see also
Lacasa et al. [2016] for an application with partial-sky coverage). They derived a general expression for the super-

sample covariance between two observables O, and O, for a projected cosmological field

do, (w,) 0, (w,)

Cov [0, O,]yaee = del dw, v’ w? B, do, o (w,, w,) . (2.231)

where 10 -
o(w) = — (@) o (w0, 0,) = J X Wk, w0) W (k, w,) P™ (k; 0, w,). (2.232)

w* dw (27)

In particular we recover our expression under the limit 02 (w,, w, ) being peaked around w, = w, (Limber approx-

imation regime).

We leave for Chapter 3 more details regarding the shape of the window function used for the evaluation of the
variance o7. We just underline here that weak lensing surveys dealing with projected fields are characterised by an
angular window function W (w, 6, ¢). In the most general case, the depth of the survey (related to the distance
w) is coupled with the direction in the sky, (related to the angular coordinates). This increases the numerical
complexity highlighted in the paragraph above. In our analysis, we will allow for a factorisation in a radial and in

an angular component
W(r,0,9) = Wr(r) x W, (6,0). (2.233)

While the radial component will be absorbed as extrema in the line-of-sight integration in Eq. (2.228) (and in
particular will be equal to the size of the tomographic bins employed), the angular component will contribute

to three-dimensional variance in Eq. (2.196) once projected onto plane waves. We will show this calculation in
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details for the chosen window function in the next chapter.
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The purpose of this third chapter is to finally apply the formalism introduced so far to the optimisation of future
data analyses for modern galaxy surveys. While the concepts we will introduce are absolutely general, we will

derive our conclusions for a Euclid-like survey whose detection specificities are given in Sec. 3.1.2.

All the ingredients introduced in the first two chapters do play an important role both at the level of forecast and
at the level of actual data analysis, where the parameter inference process takes place. The purpose of the forecast
analysis is to predict how well cosmological parameters will be constrained by a set of observables as measured
with a specific survey. Always at this level, we want to identify non informative observables to discard and build
summary statistics which maximise the cosmological content in the observables while minimising the compu-
tational burden in the future data pipelines. Finally, we want to test the robustness of the upcoming parameter
inference against the uncertainties on nuisance parameters. These type of parameters are necessary to model the
expected signal but the uncertainty on their values, or correlations, may spoil the precision of the future inference.
Itis important to underline that the forecast process has major consequences for the actual data analysis: the latter
is optimised based on the outcome of the former. For example, summary statistics identified during the forecast
can be estimated at the level of data along with removing non-informative combinations of observables, leading
to faster parameter posterior exploration and probe combination. Moreover, given the importance of an analyt-
ical approach as described in Sec. 2.2.1, the covariances and the observables computed for a fiducial cosmology
will enter directly the likelihood codes used for inferring the cosmological parameters as part of the heritage of a

mission as whole.

In this final chapter we will address key points for an efficient implementation of likelihood codes for modern
weak lensing large-scale structure surveys. Specifically, we will focus on the joint weak lensing convergence power
spectrum-bispectrum probe and we will tackle the numerical challenges required by a thorough analysis. Under
the assumption of a multivariate Gaussian likelihood, we developed a high performance code that allows highly
parallelised prediction of the binned tomographic observables and of their joint non-Gaussian covariance matrix

accounting for terms up to the 6-point correlation function and super-sample effects.

So far, we have been mentioning the cosmological information content as the quantity to maximise, providing
a guiding criterion for our research. Qualitatively, we can associate it with the overall precision expected for the
cosmological parameters to be estimated from the available data, given their uncertainties. In big-data context, the
constraining power of a probe can be addressed either via Fisher forecast [ Tegmark, 1997], DALI forecast [ Sell-
entin et al., 2014; Sellentin, 2015 ] or Markov Chain Monte Carlo (MCMC) analyses (just to give few examples).
However, given the novelty and the complexity of the study here carried out, all the above techniques are not
computationally feasible. This difficulty is exacerbated by the fact that we aim at exploring different configura-
tions of the target experiment. Instead, we propose a signal-to-noise ratio (S/N) analysis as suggested by Tegmark
et al. [1997] and already exploited in previous literature within the cosmological context [Rimes & Hamilton,
2005; Sato et al,, 2009; Takada & Jain, 2009; Kayo et al,, 2013]. Following Kayo & Takada [2013], we define

the information content of an observable as the expected inverse variance of its amplitude A as estimated from a
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set of measured values x, assuming a fixed shape. In other terms, the second power of the signal-to-noise ratio is
the inverse of the unique element of the Fisher information matrix [ Tegmark, 1997] in such a single parameter
experiment. Specifically, we can write

S\’ _ 0(x—AD) 0 (x— AD

= Eg.c—l.¥zpf.c—l.l)7 (3.1)

N 0A 0A

where AD = (x)and C; = Cov]x;, x;|. We will use this tool extensively in what follows. Even if we are aware that
the S/N is not suitable for a precise forecast, however its simplicity allows a fast analysis of the level of correlations
within our data vector. Nonetheless, the computation of the covariance matrix is a key step towards the forecasting

techniques listed above and this work already finalises this calculation.

In this chapter we will present in Sec. 3.2 a thorough analysis of the most important forecast related aspects
for a Euclid-like survey considering as observables the binned tomographic convergence power spectrum and

bispectrum. The matter presented here below has been previously proposed in Rizzato et al. [2018].

3.1 IMPLEMENTATION SPECIFICITIES

The general goal of the present section is to specialise the theoretical discussions performed in Chapter 1 and in
Chapter 2 to the actual implementation for our analysis. In Sec. 3.1.1, we will start by giving the structure of the
chosen data vector. In Sec. 3.1.2, we will list the survey specificities of a Euclid-like mission. Finally, in Sec. 3.1.3,
we will provide in-depth information regarding the construction of the halo model polyspectra required for the

forward modelling of the data vector and of the covariance, responses included.

3.1.1 VECTOR OF OBSERVABLES

We will be dealing with the tomographic convergence power spectrum and bispectrum, i.e.
Pii (@) ) Bi}'k (61; gza £3) : (3-2)

To be precise, the quantities entering the data vector D in Eq. (3.1) are the binned estimators (2.151) and (2.152).
We already proved them unbiased and, under the assumption of negligible variations within a given ¢-bin, they
are approximately equal to respectively the power spectrum and to the bispectrum as evaluated at the central
value of the bin, or of the bins, involved in a given configuration. Then, we will populate our data vector with the

observables (3.2) computed on the central value of the bins in £. We build the vector with the overall structure

D= {Pa B}' (3-3)
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In each of the two sub-vectors P and B, the observables (power spectrum and bisepctrum respectively) are stored
for decreasing (increasing) value of the correlation scales (multipole) used for the configurations. The triangular
configurations for the bispectrum, labelled via the triangle edges {/;, ¢, (i}, are ordered within the vector Bsuch as
{; < {; < lwhere the indexjis the fastest and the index k is the slowest varying one while moving along the vector
towards higher indices. The angular multipole range we will investigate is ¢ € [10, 5000]", binned in 14 regularly
spaced intervals in log £. The choice for such a binning is arbitrary and it is mainly motivated by computational
resource optimisation. In future analyses, the binning will be instead optimised to increase the signal-to-noise
ratio of the observables. As for the different tomographic contributions, they are contiguous within the vector
for the same spatial configuration. For the power spectrum, the tomographic indexes (i, j) are ordered such that
i < j, j being the faster varying index through the vector. For the bispectrum, the observables associated to the
tomographic bins (i, j, k) are ordered such that k is the fastest index and i is the slowest one. Symmetries in the
spatial triangles help in removing redundant tomographic redshift contributions from the bispectrum vector B:
bispectra on isosceles or equilateral configurations lead to the following symmetries within the corresponding row

(column) in the covariance (e.g.)

Cov [Byi (¢, £.0') ,+] = Cov [Bu (£, £.0) , %],
Cov [By (€,£.6) , %] = Cov [Bla(eqo) (¢ £.0) ,+]  (3.4)

o being a generic permutation of the tomographic indices and * being another observable. In the example (3.4)
the tomographic indices will respectively obey the relation i < j,i < k,j < kforl; = (;, {; = (i, {; = {;

respectively (isosceles configurations) and i < j < kfor {; = {; = {;(equilateral configurations).

3.1.2 SURVEY SPECIFICITIES

EucLID-LIKE TOMOGRAPHY While all the analytical results in this manuscript do apply to any weak lensing
survey, we now switch to the specificties of the Euclid mission. To this end, we make use of the requirements
presented in Laureijs et al. [2011]. For the sky coverage, we use @g, = 1.29 rad, Qg = 15.000 deg® ~
4.57 sterad, fg, = 0.36. For the photometric properties of the survey, we use a total comoving number of ob-

served sources fyor = 30 gal arcmin™> from Zyi, = 0.001UpP tO Zmaxy = 2.5. The expected distribution of the

n(z)oc (i)z ef(

z

sources is

SN

)" (3.5)

withZ = 0.9/4/2 and it will be normalised over the observed range. The sources will be split up to a maximum of
10 equipopulated redshift bins with extrema: {0.001, 0.418, 0.560, 0.678, 0.789, 0.900, 1.019, 1.155, 1.324, 1.576, 2.500}.
It is worth mentioning at this stage that the power spectrum measurements for an actual survey are also affected by

intrinsic shape noise due to the finite number of sources and the intrinsic variability of galaxy shapes. Assuming

"This range is in line with present Euclid forecasts [Laureijs et al., 2011] and in particular it has been chosen such that the effects of
baryonic feedback on the lensing power spectrum are minimised [Semboloni et al., 201 1; Kitching & Taylor, 2011]
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that the orientation of intrinsic galaxy shapes is random and the shapes of different galaxies are uncorrelated, this

component is Gaussian® and we account for this effect in the following way

P, () — Py (0) + % %, (5.6)
In particular, we will account for this contribution only at the level of covariance since it is possible to remove
it from the data. We will use the value o, = 0.3 which is representative of the expected Euclid sample [Amen-
dola et al,, 2013 ] and we will ignore weak lensing systematics like intrinsic alignments [Schneider & Bridle, 2010;
Joachimi et al., 2013; Troxel & Ishak, 2015; Kiessling et al,, 2015; Blazek et al,, 2017; Schmitz et al,, 2018], photo-
metric redshift errors [Ma et al,, 2006], blending [Hartlap et al., 2011] and point spread function (PSF) [Jarvis &
Jain, 2008; Hamana et al,, 2013; Chang et al., 2013 ]. In Eq. (3.6), n(;) is the expected projected number of sources

per unit of solid angle within the i redshift bin.

WINDOW FUNCTION In order to compute the super-sample covariance (2.228) we also need to specify the
shape of the mask function W (r, 0, ¢). This function binds the total volume of the Universe accessible for the
data collection, thus defining the variance of the long mode §;,. We will assume that it can be factorised into an
angular component W, (0, ¢) and into a radial component W; (7). Both components can take values either 1 or
o respectively within and outside the detected volume (binary window function). The Fourier transform of such
a cylindrical mask, which is a top-hat in both redshift and angular coordinates, is given in flat sky by [Lima & Hu,
2007; Hu & Kravtsov, 2003; Aguena & Lima, 2018]

J, (k10 Ogy) .
k1 & Ogy

We (k, 8, ) = 2exp (iky) jo Gk”Sw) (3.7)
where the vector k is split in {k, , k }. These components are respectively associated to the coordinates on the
plane orthogonal to the line of sight (k) and to the comoving distance to it (k). More precisely, Eq. (3.7) is
the Fourier transform of the selection function for a comoving cylindrical volume of depth §,, centred in @ and
derived under the assumption of a slowly varying w and Hubble factor H (w) within §,,. The angle O, (in radian)
stands for the linear angular coverage of the survey. For sake of completeness, we underline that in Eq. (3.7) we
are omitting the component related to the photometric error. The special function j, and J, are respectively the
o'? order spherical Bessel function and the 1** order Bessel function of the first kind. The super-sample covariance
requires to compute the variance 0 (w) of the linear matter field at a specific redshift. Then, we will compute 02 (w)

over a disk-like volume, obtained under the limit §, — o, @ — w of Eq. (3.7)

2 (w) _ J dzsl Jl(glw ®SkY) Plin. (£L7 w) ] (3.8)

(27)" | 1w Ogy

%A more realistic case would have a binomial shot noise, leading to a non vanishing bispectrum component. We leave this consider-
ation to future works.
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3.1.3 HALO MODEL MATTER POLYSPECTRA

In Secs. 1.3.4-1.3.5 we described the general features of the chosen matter clustering model: the halo model. We
gave a thorough review about the precision requirements as not to degrade the information content in modern
galaxy surveys. We concluded Sec. 1.3.5 introducing the general framework for building the matter correlation
functions at a desired order and we postponed the derivation of the detailed expressions for our specific case. We

want now to tackle this point along with the approximations considered to reduce the computational burden.

The evaluation of the data vector D (3.1) and of the associated covariance (2.99)-(2.101) requires the com-
putation of the correlation functions (2.85) up to the 6-point one, plus the responses of the observables to the
background modes for the super-sample terms. In the next three paragraphs we will briefly derive the halo model
expressions necessary for this evaluation. We anticipate that for the observables in the vector D , we will use all
the required n-halo terms, both for the power spectrum (1- and 2-halo) and the bispectrum (1-, 2- and 3-halo).
Instead, for the covariance, we will approximate the polyspectra of order larger than 2 with the 1-halo component.

We will give motivations for this choice in the related paragraph.

THE DATA VECTOR In Sec. 1.3.5 we saw that within the halo model framework we can compute the matter
polyspectra as sum of different terms corresponding to different point allocations within one or more halos. While
the value of the matter density at a specific point in space is related to the halo properties via the halo density profile
(1.162), its statistical properties do not reflect directly those of the halo number density. We formally expressed
this concept with the bias expansion (1.150) and we will use it to relate the correlations between halos to those
of the underlying matter field. We will describe the power spectrum and the bispectrum at leading order in the
linearly-evolved matter density field. In terms of the aforementioned bias expansion, this requires terms up to the
second power in §. In this scenario, two local biases b, (m, t), b,(m, t) [Fry & Gaztanaga, 1993 ] and a non-local

bias term b, (m, t) [Chan et al., 2012; Baldauf et al,, 2012 ] are required

5 tm) = b m 3 )+ 2= [ 5 g5k g1+
by, (m, 1) d’q
J

2 27)

3S(q7 t)8<k_q>t) S, (qak_q)a (3-9)

with [Baldaufet al., 2012 ]

k-k) 1 2
S, (k,, k,) = % — ;, b, (m,t) = —; (b, (m,t) —1). (3.10)

The local biases b, (m, t) and b, (m, t) can be predicted via the peak-background split (1.152) from the mass func-
tion f,, (m) (1.129). [Kaiser, 1984; Bardeen et al., 1986; Cole & Kaiser, 1989; Mo & White, 1996]. In the follow-

ing, we will imply the time dependence.

Let us start from the power spectrum. We saw in Chapter 1 that it is well approximated at every redshift (a de-
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pendence that we will omit in the following) as the sum of the 1-halo term (1.169) and of the 2-halo term (1.170)
which respectively captures the contribution given by the two points being in the same halo and in two separate
ones. If we focus on the 1-halo term in Fourier space, the convolution between the two halo profiles (1.169) (more
precisely of the two normalised profiles u (x — x;; m)) will simply transform into a product of the two Fourier-

transformed profiles u (m, k). Then, the 1-halo term can be derived with no particular effort

ph (k) = J dm (l> fon (m) Jv de, p (¢, m) u* (m, ¢y, k) . (3.11)
Min Pcom. Cijn

In Eq. (3.11) we also accounted for the uncertainty on the halo concentration parameter via the convolution with
the probability density distribution p (c,, m) given in Eq. (1.163 ). Also, the dependence on solely the magnitude
k of k derives from the symmetries of the chosen NFW profile (1.162). The 2-halo term describes the correlation
between 2 points hosted in two different halos of mass (e.g.) m, and m,. Then it will depend on the halo-halo

correlation function. Qualitatively we write

(8 (ky, m,) 8y (ky, my)) ~ by (my) by (m,) (8 (k) § (k,)) ~ b, (m,) b, (m,) pim (k)8 (k, + k). (3.12)

In Eq. (3.12) we stopped the bias expansion (1.150) at the linear level, i.e. ~ (b, (m,) §), since it is a common
assumption to consider the scales here involved (beyond the varialization halo radius) in the linear regime. For
this reason, we will neglect quadratic corrections and the power spectra are the linear ones. A more quantitative

evaluation leads to

Max Max
CV

PR K) - [ || dmb ) ™ ) ( |, deplenmatme. k))] P ()

com. v

and the total matter power spectrum will simply be the sum of the two terms derived above
P™ (k) = P™ (k) + P (k) . (3.14)

We refer to the dedicated section in Chapter 1 for the meaning of the different quantities appearing in the above

relations. To simplify the expression for the general matter polyspectrum, we can introduce the following quantity
mMax m u Ce/Iax u

B (k.o k) = J ~ dmbg (m) (P_> fin (m) (Lﬁn dey p (cv,m) [H i(m, ey, ki)] ) (3.15)

Min .
m i=1

where b, = 1. The, the matter power spectrum (3.14) can be written in a more synthetic way as

P (k) =17 (k. k) + [L; (k)] P*™ (k) . (3.16)

Thanks to this lighter notation, we can introduce the three-dimensional matter bispectrum as the sum of 3

multi-halos terms [ Cooray & Hu, 2001]: 1) all the points are within the same halo (1-halo term, B*), 2) 2 out of
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3 points are in the same halo while the third is not (2-halo term, B**) and 3 each point is hosted in a different halo
(3-halo term, B*). In analogy to the calculations performed at the level of power spectrum, the 1-halo term for

the bispectrum will simply be the convolution of the halo mass function with the third power of the halo profile

B (kb k) = | " an (i)3fm (m) ( | e () [f[um,cv,ki)]) 1 (K k)

mMin P com. Min i=1

(3.17)
The 2-halo term will qualitatively depend on the matter density field as in Eq. (3.12) where a quantitative deriva-

tion leads to
B (ki ko, k) = I (k) L (ko k) P (k) + T (k) L (ks ko) P () + T (k) T, (K, k) P (k) - (5.18)
Finally, the 3-halo term will have the following dependence

<Sh (ku ml)Sh <k27 mz) Sh (k37 mS)
b,

< (bl (m) § (k) +

I
1

)
(m.)

S(a) 8 (k) +

(0500 + =500 50 - )+ 5 () 500 - )
(0 s+ =5 0q) 500 -0+ 5@ s - 0)) ) oo

where we wrote in a synthetic way the convolutions (3.9) via the operators - and -, and m, , , are the masses of the
three halos hosting the points used for computing the correlation. According to the Perturbation Theory (PT)

paradigm (see Bernardeau et al. [2002] for a thorough review), we can expand the field § (k) at different orders

5 (k) = 3,87 (k). (3:20)
p

each term of the expansion being proportional to the p™ power of the linearly-evolved initial over-density [ Goroff
etal., 1986; Makino etal., 1992; Jain & Bertschinger, 1996]. The leading non-vanishing term in Eq. (3.19) includes
at least one mode at second order in PT §). Overall, the 3-halo term at leading order will be proportional to the

4™ power of the initial linearly-evolved contrast density field, i.e.

<8h (ku mx) Sh (kza mz) Sh (k3> m3>>|4‘h ~
b, (m,) b, (m,) b, (m,) <8(1) (k,) s (k,) 5 (k,)) + cycles over {k,, k,, k;}. (3.21)

The correlation (qualitatively) (§ WsWs (2)> can be related to the tree-level PT matter bispectrum as computed in
Sec. 1.3.3. By looking at Eq. (3.19), we can see that at the same order more components are present, specifically

thoseincluding b, and b, §* with § in the linear regime, i.e. § = § ), Similarly to the computation of the tree-level
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PT bispectrum in Sec. 1.3.3, these correlations of linear modes can be reduced via the Wick theorem in products

of 2-point correlation functions as

(8 (K m,) 8, (Ko, m,) 8 (g, 1)) g &
b, (m,) b, (m,) b, (s, (my) (89 (k,) 8% (k,) 8 (q) 8 (k, — q)) + cycles over {k,, k,, k,} =

b o) b, () 21 50 (1) 50 ()80 (1) 89 (1, — )+
(89 (k) 8% (l, — )% (1) 8¢ (@)) | + cycles over {l, k. K} ~
b, (m,) b, (m,) b, () (my) P™ (k,) P™ (k,) + cycles over {k,, k,, k,} (3.22)

where we did not consider the contributions forcingk; = k;, (i,j = 1,2, 3) since they are associated to degenerate
triangular configurations in the original bispectrum. A detailed evaluation of the mass-integration over the halo

profiles leads to

B" (k.. ks, k;) HI‘ k;) B®T (k.. k,, k,) +

+ I (k) I (k,) T (k,) P"™ (k,) P™ (k,) + 2 terms from cycles over {k,, k,, k;}+

2 I (k) L (k,) S, (k,, k,) P™ (k,) P"™ (k,) (1 — L (k;)) + 2 terms from cycles over {k,, k,,k, }] .
7

(3.23)

and we can recognise the tree-level PT power spectra and bispectrum induced by the correlations obtained in

Eq. (3.22) and in Eq. (3.21) respectively. The total bispectrum will then be the sum of the terms derived above

B™ (k,, k,, k,) = B™ (k,, k,, k,) + B® (k,, k,, k,) + B® (k,, k,, k,) . (3.24)

COMPARISON WITH SIMULATIONS In line with the presentation of Sec. 1.3.3, we propose a brief summary of
the most up-to-date comparisons between the bispectrum halo model predictions and simulations. In particular,
we refer to two thorough works, Fosalba et al. [2005] and Lazanu et al. [2016], where two different halo model
implementations are considered. We remind that several attempts to improve the performance of the model are
present in the literature [ Takahashi et al,, 2012; Valageas et al., 2013; Valageas & Nishimichi, 2011a,b; Mead et al,,
2015; Mohammed & Seljak, 2014; Seljak & Vlah, 2015]. However, they do rely either on relaxing one or more
assumptions of the halo model itself or on sets of parameters which are to be fitted against simulations. We will
not focus on them here, being interested on the halo model standard formulation. In Fosalba et al. [2005] the

Max vvithin the mass integration (3.15) is analysed along with the impact of a dif-

dependence on the upper limit m
ferently chosen halo boundary 7). These variations are considered on top of a classical setup with an NFW profile
[Navarro et al.,, 1996], the mass function from Sheth et al. [2001] and the concentration parameter from Bullock

etal. [2001]. Their best fiducial model is given by m™®™* = 105 M /h and ¥, = 1.3r, and it matches the simulated
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signal within the error bars for all the scales analysed (0.05 h Mpc™ < k < 10 h Mpc™*). Lazanu et al. [2016]
tested their halo model implementation on a similar range of scales as in Fosalba et al. [2005 ] therefore a compar-
ison between the two works is meaningful. The halo model setup from Lazanu et al. [2016] is slightly different
from the previous one. More specifically, the mass function is the one from Tinker et al. [2010] and the concen-
tration parameter is obtained from the Boloshi simulation [Klypin et al,, 2011]. The results from Lazanu et al.
[2016] show an overall good performance of the halo model in predicting the bispectrum from the simulations
for all the scales considered (0.04hMpc™ < k < 8hMpc™*) atz = o, regardless of the triangular configurations.
A deviation of 2 20% can be seen at the transition scales, i.e. (0.3 h Mpc™ < k < 1h Mpc ™). In particular this
is a well known shortcoming of the halo model formalism [ Cooray & Hu, 2001; Smith et al., 2008; Figueroa et al,,
2012]. This lack of performance is exacerbated for higher redshifts where the halo model predictions underesti-
mate the signal from the simulations by a factor of ~ 2 and ~ 2.5atz = 1and z = 2 respectively, around the same
scales. We think that these discrepancies are of minor importance for the results of our work. As a matter of fact,

the convergence observables required for our analyses are mainly projections of matter polyspectraatz < 1.

THE COVARIANCEMATRIX Intheintroduction to this section we anticipated that we will approximate the polyspec-
tra of order higher than 2 within the covariance with the respective 1-halo term. Here we describe the reasons
behind this choice and we will also provide the general expression for the 1-halo term. At the level of 4-,5- and 6-
order polyspectra this is mainly motivated by the effort in reducing the computational cost of the implementation.
As for the bispectra instead, which appear in the NGins,BB term (2.140), the impact of the 2- and of the 3-halo
term in the covariance is complex. We will dig into this issue by considering the joint covariance matrix for a 1 bin
tomography, i.e. assuming that all the sources are placed within a unique broad bin between redshift 0.001 and
2.5. The other photometric parameters and the angular binning given in Sec. 3.1.2 are kept unchanged. The bot-
tom panels in Fig. 3.1.1 show the fractional impact on the correlations when the 2-halo term (central panel) and
the 2-+3-halo term (right panel) are added on top of the 1-halo term alone. We conclude that these multi-halo
terms mainly enhance the correlations 1) between power spectra and bispectra at linear scales and 2) between
bispectra on squeezed configuration (i.e. B({;, ;, ;) with {x ~ {; » {;) and bispectra evaluated on large scales.
In Fig. 3.1.1 we report few binned configurations to help following the discussion. The single number, i.e. (14),
refers to the respective power spectrum configuration, i.e. the power spectrum evaluated on the largest (the 14™)
{-bin. We now move to the top panels in Fig. 3.1.1. Here we show the correlation matrices when including in the
NGins,BB term of the joint covariance the 1-halo term only (left panel), the 1-+2-halo term (central panel) and
the 1-+2-+3-halo term (right panel). We can see that, when adding the 2-halo term and the 2-+3-halo term on
top of the 1-halo term alone, some correlations are dramatically pushed towards 1. Specifically the problematic
correlations are between bispectra on squeezed configurations (see definition above) and power spectra at linear
scales. At numerical level this translates into extremely ill-conditioned matrices with determinant close to o along
with the possibility of numerically evaluated negative eigenvalues. This is indeed the situation when the joint
power spectrum-bispectrum covariance matrix is analysed. It is worth underlying that, even if we were capable to

invert exactly the matrix, the presence of highly correlated observables would lead to a poor improvement of the
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Figure 3.1.1: Top-row: joint correlation matrix for the weak lensing convergence power spectrum and bis-
pectrum when approximating the bispectra required for the their computation via the 1- (left panel), 1-4-2-
(central panel) and 1-+2-+3-halo term (right panel). Bottom-row: log-fractional impact one the joint cor-
relation matrix when adding respectively the 2- (central panel) and the 2-4-3-halo (right panel) terms on top
of the 1-halo alone. In both cases we employ the usual binning in log ¢ (14 regularly spaced bins from ¢ = 10
to ¢ = so000) and all the survey related parameter as chosen in Sec. 3.1.2. One tomographic bin is assumed,
between (0.001,2.500). On the axes, we label few binned configurations to facilitate the analysis. The single
number, i.e. (14), refers to the respective power spectrum configuration, i.e. the power spectrum evaluated on
the largest (the 14™) /-bin. The left panel in the bottom row represents the overall structure of the covariances
used in this work.

information content. In the simpler case of the bispectrum-only covariance, we were capable to perform a reliable
analysis proving that the 2- and the 3-halo terms only affect the overall signal-to-noise ratio by a few percent. The
physical intuition for such a tiny impact can be found in the poor signal-to-noise ratio for the configurations which
are mainly empowered by these new terms. Specifically, these are all configurations where one multipole of the
triangle is in the linear regime where the statistics of the matter field is mainly Gaussian. This is expected since
the 2- and 3-halo term quantifies the correlations at scales larger than the virialization radius of halos. Then the
bispectrum is either dominated by its own variance or highly correlated with the power spectra at those scales.
Given this discussion, we will safely assume that the 1-halo approximation is sufficient for our purpose. High cor-
relations and the subsequent numerical inaccuracies may eventually be healed via a different binning in ¢ or via
the inclusion of higher-halo terms into the higher-order polyspectra involved. We leave these analyses for future

works.
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Figure 3.1.2: Left: auto-tomographic polyspectra of different orders (from 2 to 6) evaluated on equilateral
configurations. We are considering auto-correlations for the 1t and the 10" tomographic bin, in a Euclid-
like photometry (Sec. 3.1.2). Left: polyspectra employed in the computation of the covariance, i.e. power
spectrum including the 1-+2-halo term and higher order polyspectra approximated to the 1-halo component.
In the legend we are employing the notation Pi(”)(f) =P, ....;0) withi, = --- =i, and {; = ... 0y,
the second member of the equivalence being introduced in Eq. (2.85). Right: polyspectra employed in the
computation of the data vector: power spectrum including the 1-+2-halo term (we also depict the separate
behaviour) and bispectrum including 1-+2-+3-halo term (we also depict the separate behaviour). In this panel
we swtiched to the standard notation for the bispectrum, i.e. B = PG).

Concluding, we give the expression for the 1-halo term of the general n-order polyspectrum. While in real space
this type of correlation would require an n-dimensional convolution of halo profiles, the Fourier analysis makes it
much simpler turning it into a one-dimensional (mass) integration of the product of n Fourier transformed halo

profiles, i.e.

PPk, ... k) =(k,... k), (3.25)

where we employed the synthetic notation introduced in Eq. (3.15). Also, the dependence on the modules of
the vectors derives from the fact that chosen single halo profile uygw (r, m) (1.162) is spherical in real space. As
a summary, in Fig. 3.1.2 we show the behaviour of the polyspectra required for our analysis, both at the level of

covariance (right panel) and at the level of data vector (left panel).
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THERESPONSES  The halo modelalso provides a powerful recipe for the computation of the responsesin Egs.(2.208)-
(2.214) required for the forward modelling of the super-sample covariance. We can obtain them by taking the
derivative of the power spectrum (3.14) and of the bispectrum (3.24) with respect to the long mode §, (2.206).
We will assume that the single halo profile is not affected by the long mode while it will impact the distribution
of halos on larger scales via the bias and the mass function. Following Chan et al. [2018], we will consider the
responses up to the linear bias (the second order ones were proved to be sub-leading in Chan et al. [2018] and we
will neglect for consistency the tidal component of the response being also quadratic in the perturbation §). We

can formally express the impact of the long mode with the help of Eq. (3.15)

dif (k... k,|8)
ds,

[ () s s ( | CM derg (0, m) [ﬁf‘ e k”D

1=1

= I£+l (kl, e ,ky) (3.26)

szo

where the derivative appearing within the expression above can be computed in the peak-background split ap-

proach as
_ 1 dfm (m)
fo(m) &y,

Therefore, the halo model power spectrum response will be related to the linear matter power spectrum one as

bg (m) (3.27)

d PP (k]5,) . AP (k|S,)

~ |L (k L (k). 28
Fr P L) e Tl IR (3.28)

In Eq. (3.28) we neglected the term proportional to I* begin smaller than those already included [Chiang et al.,
2014; Wagner et al,, 2015b; Chan et al,, 2018]. Under the same approximations, the bispectrum response can be

expressed as

dB™™ (k,, k,, k,| 8y)

dB®T (k,, k,, k,| §
ST ()T (k) T (k) B LD
dés,

Sb =0 dSb 81,=O

) dPlin. k1 S
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b

+ I (k,, k,, k) . (3.29)
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szo

Eq. (3.28) and Eq. (3.29) require the evaluation at tree-level in perturbation theory (PT) of the linear response for
the power spectrum and for the bispectrum. The derivation is quite technical and we refer to Chan et al. [2018]
for a detailed step-by-step explanation: it involves non-linear interactions between short (s) observed modes § (k)
and the long (1) mode 5, (q) (2.206). In the following we would like instead to qualitatively convey the main ideas
behind this derivation, as not to break the flow of this chapter. To start with, we recall that in PT we describe these

non-linear couplings between modes via the convolution kernels F*) defined in Eq. (1.98).
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The tree-level power spectrum is simply given by the linear matter power spectrum, the two modes involved be-
ingin the linear regime. Therefore, to compute the tree-level linear response for the power spectrum, we will need

to take its derivative with respect to the long mode §, when correlating modes described as follows (qualitatively)

sV =59 4 (g(l) -~ 31;) - (3.30)

Eq. (3.30) describes an observed short mode §); obtained as a coupling between one long (1) un-observed mode
(we are interested in the linear response) and the linear solution for the short (s) mode within the survey (we
are interested in the tree-level solution). In particular the superscript in Sl(: ) refers to the order of the perturbative
expansion in terms of short mode while the subscript refer to the type of coupling involved (long-short). By
computing the power spectrum of the modes in Eq. (3.30) and by subsequently taking the derivative of it with
respect to 8y, it is possible to prove the following expression for the desired response
AP ) | 47y 18P0

~ —P™ (k) — - )
ds, Sb=0 21 ) 3 dlnk ’

(3.31)

Moving to the bispectrum, in Sec. 1.3.3 we derived the PT tree-level expression for it and we noticed that the
non-vanishing leading order is given when the modes are, at least, at second order. Then, the tree-level solution

for the linear response can be derived from the bispectrum of modes coupled as follows
ROBERO) RO 3 RO RO R
&y, =8+ <5 “FC) 5b> + (3 OO 3;;) : (3.32)

In Eq. (3.32) we ordered the terms according to the power of the short (s) mode and once again the superscript
and the subscript in Sl(lz) respectively refers to the order of the expansion in terms of the observed short mode
and to the type of couplings involved (short-short-long). In the last term of Eq. (3.32) we introduced a symbolic

notation defining the matter density contrast at third order, in perturbation theory,

~(3) @ &p’ , RO O ) ,
83<k>=3f(—PJ—PF<3><p,p,k—p—p>s 5" )5k — p — p)

2m)? ) (27)?

(1) ()

= S EG) ) ‘FG) Sb- (333)

The third order kernel F®) is given in the literature [ Goroff et al., 1986]. We will not report its expression here so
as not to break the flow of this qualitative explanation. A detailed calculation based on the derivative with respect

to &), of the bispectrum for modes with couplings as those depicted in Eq. (3.32), leads to [Chan et al., 2018]

dBPT (kn kz; k3‘8b) 433

=BT (k,, k,, k —B (k,, k,, k)
déy Sp=o0 T 126 (ki ko k) G A

(3-34)

By replacing the responses (3.31)-(3.34) into Egs. (3.28)- (3.29), we obtain the desired expressions.
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HALO MODEL NUMERICAL IMPLEMENTATION ~ We would like to conclude this section by discussing more on a
particular point: the numerical integration within Eq. (3.15). The main consequence of having a numerical in-
tegration over a finite domain is the exclusion of halos whose masses fall outside the range (m>™, m*). This
cut-oftis intrinsically present in all known halo model implementations given that they are calibrated against sim-
ulations over a finite mass range. However, we do not expect this feature to have any impacts: very light halos,
extending over extremely small scales, should not contribute to our cosmological observables while heavy halos
are exponentially suppressed due to the shape of the mass function (1.129). The sensitivity to the mass cut-off is
in particular problematic for the lower bound. We can easily see this point by looking at the integrand Z3(m) in
the following consistency relations [ Cooray & Sheth, 2002; Takada & Jain, 2003 ]

Max Max

m m m 1 lf X1,
f —dmb[;(m)fm(m)zf Ty(m) dm — P < (335)

pMin P mMin o iff =2,

where the case for f = ois actually the consistency relation for the mass function. In physical terms, the relations
Eq. (3.35) requires that the mass of the Universe is entirely enclosed in halos (f = o) of mass m € (mM=® mMx)
and that the overall distribution of halos is not biased compared to the total matter distribution (f > o), at each
order in the bias expansion (1.151). In the top-left panel of Fig. 3.1.3, we plot the integrand Zg(m) defined in

Eq. (3.35) for B = 0,1, 2 as function of the variable

v(m,z) = (8, (2) /o (m))" (3.36)

85p. and o (m) being respectively introduced in Eq. (1.13 1) and in Eq. (1.134). We see that the integrals we are
trying to evaluate are slowly convergent for v — o (m — o implies o (m) — o). Therefore we would expect
every halo model implementation to be very sensitive to extremely light halos, which contradicts the physical
intuition described above and consequently undermines halo models themselves, not being testable at these small
masses. The problem comes from the extrapolation of the model beyond its regime of validity assuming that
arbitrarily small mass halos are present in our simulation accounting for the whole matter content and biases.
Clearly Eq. (3.35) would not be satisfied since we are excluding these halos from the integration. However, once a
minimum mass is set, lighter halos are excluded while the total matter budget may be filled by non-virialized dust.
This contribution cannot be caught by the mass function f;, (m), by definition. In order to fulfil the normalisation
constraints (3.35) we will simply assume that the non-virialised matter content provides an effective contribution

via the following regularisation of the mass function and of the biases [ Schmidt, 2016]

Jou (m) = fon (m) + a, 8p (m — m™™) | (3-37)
bg (m) ifm > m™™,

bg (m) — | (3.38)
ag if m = mMn,
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Figure 3.1.3: Top-left: integrand Z; in Eq. (3.15) as function of v (see main text for definition) for g = o,1,2.
Bottom-left: inverse halo comoving radius as function of the virialised mass at different redshift. Right: impact
on the polyspectra, from the order 2 to 6, from excluding light halos from the mass integrations required in
their computation. The minimum mass considered in the different cases is given in the legend (and included
as further dependence on the spectra) and we are not differentiating polyspectra of different orders since
interested in the overall behaviour. We are considering auto-tomographic polyspectra for the first tomographic
bin evaluated on equilateral configuration P, _,(¢,...,¢) (on the y-axis label we are omitting the dependence
on the multipoles). We investigate the sensitivness of the polyspectra to the low-mass cut-off by computing
the percentage fractional difference with a conservative case P, ,(, ..., (), derived by integrating over halos
of mass m > 10°Mg)/h.

The parameters ag (a,) then are fixed in order to satisfy the consistency relations (3.35). We do not consider any
corrections related to the upper bound m™® because heavy halos are strongly suppressed by the mass function it-
self, as we can see from the top-left panel in Fig. 3.1.3. Our numerical integrals converge for m™** ~ 10°°Mg /h. In
the computation of the weak lensing observables, we pushed our line-of-sight integration up to kyax = 50h Mpc™
[Kitching & Taylor, 2011]. Therefore, we do not expect halos whose comoving radius is smaller than this scale to
be significant for our analyses. In the bottom-left panel in Fig. 3.1.3 we show the (inverse) comoving halo virializa-
tion radius as function of their virialised mass. The radius corresponding to the above scale of kyjax = s0h Mpc™
(indicated by the horizontal blue dotted line) encloses a mass m*» ~ 10" M, /h (with a small dependence on the
redshift). Therefore, if our set-up (once applied the regularisation (3.37)) is consistent, our polyspectra should
not be sensitive to halos lighter than m*¥ex_ This is indeed what we prove with the right panelin Fig. 3.1.3. Here, we
look at the impact on the polyspectra, from the order 2 to 6, from excluding light halos from the mass integrations
required in their computation. The minimum mass considered in the different cases is given in the legend and
we are not differentiating polyspectra of different orders since interested in the overall behaviour. Also, we are

presenting this analysis with single points in order to have a cleaner figure. We are considering auto-tomographic



polyspectra for the first tomographic bin (being the ones more sensitive to light halos) evaluated on equilateral
configuration (for simplicity), i.e. P, (¢, ..., {) (we are omitting the dependence on the multipoles on the y-
axis label) according to the notation given in Eq. (2.85). We investigate the sensitivness of the polyspectra to the
low-mass cut-off by comparing them with a conservative case P, (¢, . .., ¢) which is derived by integrating over
halos of mass m > 10°Mg/h. Our implementation is solid: we observe a first deviation by more than 1% when
integrating over halos of mass m 2 10 = m*=_ We chose for the mass integrals m™® = 10°M,/h to avoid
numerical inaccuracies with a negligible extra computational price. This is extremely interesting also because this
resolution in mass can be easily achieved by present smoothed-particle hydrodynamics simulations [ Hopkins et al,,
2014; Genel et al,, 2014; Khandai et al., 2015 ] allowing precise tests of the statistical properties of the halo model
at an accuracy which is sufficient for the joint power spectrum-bispectrum analysis. In our specific case, we em-
ployed a halo model implementation based on the work of Bullock et al. [2001]. In their work, the distribution
of halos was tested at the level of mass function with a simulation covering a mass range 10"Mg/h — 10“Mg/h,

from redshift z = 40 to the present.

3.1.4 COMPUTATIONAL EFFORT

Given the specificities outlined at the beginning of this section, we will compute covariance matrices with, at worst,
2 10* X 10* elements. Such computational effort can be unsustainable for a single core computer, especially for
a binning in ¢ finer than the one actually considered. Moreover, given the equations defining the covariances in
Sec.s 2.2.3- 2.2.4, the number of required polyspectra for the intermediate calculations has to be multiplied by
factors of order 1-10 if a naive approach is employed. Another important point to keep in mind is the numerical
accuracy of our final products. We leave a more complex propagation of the error for future works and we arbi-
trary assume 1% numerical accuracy to be satisfactory for all our observables (vectors and covariances). However,
this level of precision might not be enough to guarantee the numerical stability of our analysis for some extreme
configurations. As a matter of fact, the covariance matrices we are dealing with tend to be extremely ill condi-
tioned having eigenvalues that span over the same range in orders of magnitude as the observables in Fig. 3.1.2.
On top of that, they are far from being diagonal dominated. For example, especially when the super-sample terms
are included, we can reach cross-correlations > 0.9. The numerical inversion of these matrices is challenging and
sometimes even impossible given that numerical round off errors might turn our covariances from positive de-
fined to negative defined. For example, we found that 1% accuracy in the evaluation of the covariance matrix for
the power spectrum is not enough for a reliable inversion and a target of 0.1% must be set when not including the
shot noise. Luckily, if one is interested in analysing the information content in the most realistic cases where the
shot noise term is accounted for, the inversion of the matrix becomes less an issue given that this component acts
as an additional source of Gaussian noise (under our approximations) leading to more diagonal dominated covari-
ances. This will be the regime in which we will work when dealing with the bispectrum analysis. Accuracy, high
number of evaluations and fast production of the observables are achieved via a original and parallelised numerical

implementation of the problem. In the following we will briefly go through the strategy used in our code divid-



ing it in different steps. Please note that the best performance of the algorithm is obtained on medium-large size
clusters: for this reason we will assume a parallelised use in the following description. However, even if strongly

discouraged, a serial run on a single core is allowed.

COVARIANCE MATRIX EVALUATION

1. In a first serial part, each processor builds own tables carrying the information related to 1) the points in red-
shift {z;};—, . for the evaluation of the matter polyspectra to be used within the line-of-sight integra-
tion (2.89) and to 2) the multipole binning {ff’ }iz1..._n, to construct the configurations in the data vector.
Since the computation time required for this part is negligible compared to the whole run, we prefer hav-
ing each processor computing its own tables. We also build in each core two vectors of structures Jp and
Jp which respectively represents the data vector P and B. The ith structure within these vectors stores the
tomographic positions of the sources and the central values of the bins for the computation of the corre-
sponding observable. On top of that, we store at every redshift {z;},—, . the required information on the
distribution of halos: this is needed for building matter polyspectra. The tables are global and every core
can have access to them. For this task, we rely on the routines written by Mead et al. [2015]. We want
to underline that we are not exploiting the improved halo model implementation suggested in their work
since it does not provide a recipe for higher order correlation functions. On the other hand, their fitting

formulas are extremely advised for power spectrum analyses.

2. Given the number of cores 1.5 available, the elements in the upper diagonal part of the covariance matrix
(which is symmetric) are equally split among the processors: if the number of entries is not a multiple of

Ncores then the remaining is equally redistributed starting from the o core.

3. At this point, we enter the parallelised part of our pipeline. Each core analyses the assigned part of the covari-
ance (from step [2.]) performing the following operations on the different polyspectra required according
to the expressions given in Secs. 2.2.3-2.2.4. More precisely, we have the cores working on the polyspectra

order n by order n, from the power spectrum (n = 2) up to the 6-order polyspectrum (n = 6).

3.1. For every order n, the minimum number of non-equivalent spectra required for the computation of
the covariance elements is identified. By looking at Eq. (2.89), our spectra are invariant under per-
mutations of the tomographic indices. Also, the assumed homogeneity of the Universe ensures that
the value of a given polyspectrum does not depend on the order of the momenta it depends on. Then,
by non-equivalent polyspectra we do mean polyspectra up-to permutations of the indices referring to
both the position of the sources and the bins in £ used to build the configurations. Also, the minimum
number of non-equivalent spectra is identified considering that a specific polyspectrum is needed
only if the associated configuration in Fourier space meets symmetry requirements: if these are not

met, the core skips that spectrum.



3.2. Inasecond moment, the polyspectra to be computed are equally shared among the cores: they eval-
uate the matter polyspectra from the halo model ingredients computed in step [1.] and then they
perform the line-of-sight integration (2.89). The resulting projected observables are stored in global

tables, available to all the cores.

3.3. Every core goes again through the elements assigned at step [ 2.], computing them from the polyspec-
tra available in the global tables from step [3.2.]. The value of every element of the covariance com-
puted at this order is finally summed to the previous one, which had gone through the same pro-
cedure. If spectra of different orders need to be multiplied between each other (namely the power
spectrum and the trisepctrum in the NGins,PT terms in Eq. (2.146)), we store them in global arrays

whose life-time covers the computation of the polyspectra of order 2 and 4.

Given that our code analyses the covariance matrix order of correlation by order of correlation, it is very easy or
us to analyse the impact of the different orders of correlations. Once the parallelised computation explained so far

is finished, the vector D, produced as byproduct, and the covariance matrix are ready to be used for our studies.

COVARIANCE ANALYSIS  Once the covariance matrix has been computed via the steps outlined in the above para-
graph, we desire to perform some operations on it. To start with, we will need to invert it in order to compute the
signal-to-noise ratio defined in Eq. (3.1). Further, bearing in mind the idea of identifying possible summary statis-
tics, we are also interested in a principal component analysis (PCA) of the covariance. Given the ill-conditioned
nature of the joint covariance and its remarkable dimension, we will use the high performance library Math Ker-
nel Library (MKL)? from Intel which does also allow for an automatic parallelization whenever several threads
are available. While the first task is achieved with satisfactory precision via the function dpotrs* based on a
Cholesky decomposition of the matrix, the PCA is more sensitive to round-off errors occurring in the computa-
tion of the smallest eigenvalues. We will see in the next section that these are actually the most important ones
for the definition of summary statistics. At this second level we made use of Intel MKL Extended Eigensolver
dfeast_syev® which guarantees a higher computational precision with the price of searching for eigenvalues in
a specific range. Then, we will simply solve the eigen-problem over ranges of 1 order of magnitude iteratively. We
found this technique being extremely efficient: all the eigenvalues identified are positive as theoretically expected

and as numerically proved by the function dpotrs.

3.2 ANALYSIS OF THE INFORMATION CONTENT IN THE WEAK LENSING OBSERVABLES

The greatest achievement of the work presented in this manuscript is the forward modelling of remarkably big co-

variance matrices for the cosmological exploitation of the tomographic weak lensing convergence power spectrum-

*https://software.intel.com/en-us/mkl.
*https://software.intel.com/en-us/mkl-developer-reference-fortran-potrs.
Shttps://software.intel.com/en-us/mkl-developer-reference-fortran-extended-eigensolver-routines.
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bispectrum joint probe. We accomplished this goal via design of an algorithm which will be a key element for fu-
ture galaxy survey heritage. In order to deeply understand the actual benefit in terms of cosmological parameters,
Fisher forecast [ Tegmark, 1997], DALI forecast [Sellentin et al., 2014; Sellentin, 2015] or Markov Chain Monte
Carlo (MCMC) analyses are advised: we leave these ambitious steps for future works. We underline that the co-
variance matrix computation is anyway a key step for all the techniques listed above. However, we would like to
have an idea of the information content achievable by analysing the bispectrum on top of the power spectrum and
have insights on the level of correlations between them. For a joint analysis we modify the signal-to-noise (S/N)
ratio expression (3.1) to account for correlations up to a maximum binned measured angular multipole ;. The

S/N as cumulative function of the maximum multipole included can be written as

S\’ £(i) £(j) <lmax
<N> = ), DD, (3.39)

D i,j

where we need 1) the vector of observables (3.3) and 2) the associated covariance matrix. Schematically

D — (P, B}, (3.40)
CPP CPB
D _
¢ = cPB BB’ (3.41)

The matrices C**, CB® and C®, are respectively the covariance of the power spectrum (2.99), bispectrum (2.100)
and the cross-covariance between the two (2.101). When interested in accessing the cosmological information
in the single probe, we will simply assume D = P (resp. B) and C® = C** (resp. C*®). We will exploit the S/N
1) to understand how well the overall parameter space is constrained by our observations up to a given angular
scale (pnay, 2) to test how much the uncertainties of our theoretical model can degrade the information content 3)
to understand the impact of different approximations to the covariance matrices. On top of that we will use this

quantifier 4) to verify the robustness of summary statistics when compared with the most complete analysis.

3.2.1 POWER SPECTRUM SIGNAL-TO-NOISE RATIO

In Fig. 3.2.1 we start our analysis from the simplest case: the power spectrum. We can see that, starting from
a Gaussian covariance not contaminated by shot noise (dashed violet line), the main impact on the maximum
information content is produced by accounting for the shot noise which degrades the S/N on all the scales. This
is expected being a scale-independent contributions to the errors. We then compare the S/N as reconstructed
from different approximations to the covariance, with and without the shot noise. We will follow the notation
introduced in Eq. (2.99) labelling as G, NGins and NGssc respectively the Gaussian, the intra-survey and the
super-survey component of the covariance. In both cases, and with respect to the Gaussian approximation, the

biggest loss of information is induced by the super-sample covariance NGssc. Focusing on the analysis including
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Figure 3.2.1: Left: S/N analysis for the power spectrum of the weak lensing convergence field when considering
different contributions to the covariance matrix. To label them, we follow the notation given in Eq. (2.99).
For every case, we plot 1) the signal assuming our observations not being contaminated by shot noise (dashed
lines) and 2) the signal when the shot noise is considered (solid lines). Top-right: S/N analysis when the shot
noise is considered, for different approximations to the covariance matrix. Bottom-right: fractional differences
between the S/N (shot noise included) for a purely Gaussian covariance and the S/N as computed from different
approximations to the covariance.

the shot noise (the more realistic case), the NGssc induces a 40% reduction on the maximum S/N. The in-survey
component NGins (alone) leads to a degradation of about 30%. Finally, the combined effect of the two leads
to a loss of about 45 %. In Fig. 3.2.2 we investigate at the level of power spectrum a first way to compress our
data by looking at the behaviour of the maximum information content depending on the redshift binning of the
sources. From the original 10 Euclid-like redshift bins®, we test a first possible compression by binning the sources
into respectively 5, 2 and 1 broader equipopulated intervals. In the case of the power spectrum analysis our data
vector will have dimension 770, 210, 42 and 14 when considering 10, 5, 2 or 1 tomographic bins respectively. For
all the possible approximations to the covariance, we see that the maximum information content decreases (as
expected) while moving to smaller numbers of bins. Also, the way the cumulative S/N is affected by the binning is
independent on which covariance approximation is considered. The maximum S/N in the 3 situations proposed
in Fig. 3.2.1 (from left to the right), is reduced by roughly 1%, 5% and 20% when compared to the 10 bin case,
whose maximum value is represented by red lines within the 3 panels on the right. Therefore, this analysis shows
that a forecast based on a 5 bin tomography will not spoil our knowledge on the cosmological parameters for more

than 1 % while simplifying a lot our computation. Indeed, the vector of power spectra in the 5 and 10 bins cases is

®In terms of the redshift extrema: {0.001, 0.418, 0.560, 0.678, 0.789, 0.900, 1.019, 1.155, 1.324, 1.576, 2.500}.
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Figure 3.2.2: S/N analysis for the power spectrum of weak lensing convergence when considering different
approximation to the covariance matrix. For them, we will follow the notation introduced in Eq. (2.99). Also,
we allow for different binning in redshift of the expected sources. The number of bins indicated on the title
to each panel are constructed as equipopulated, starting from the survey specificities listed in Sec. 3.1.2. As
for the angular multipole, we keep our usual binning in log! (14 regularly spaced bins from I = 10 to | = 5000)
and all the survey related parameters as chosen in Sec. 3.1.2. Specifically, going from the second panel on the
left to the last panel on the right, the choice of tomographic bins is (in terms of their upper and lower limits)
. (0.001,0.560, 0.789,1.019, 1.324, 2.500) [5 bins case|, (0.001,0.900,2.500) [2 bins case] and (o0.001,2.500) [1 bin
case].

made of 210 and 770 elements respectively, so that the 5 bins case gives a ~ 3.7 reduction of the data vector size

and a ~ 13.4 reduction of the covariance matrix size.

3.2.2 BISPECTRUM SIGNAL-TO-NOISE RATIO

In Fig. 3.2.3 we show for the bispectrum alone a similar analysis as the one proposed in Fig. 3.2.2 for the power
spectrum. On top of that, we are also considering different approximations to the bisepctra in the data vector B,
namely excluding different multi-halo contributions to its description. By comparing the solid lines (no approxi-
mations made on the data vector), we can inspect instead the impact of different approximations to the covariance

matrix. Also, we investigate the possibility to compress the data vector via re-binning of the sources.

Starting from the possibility of data compression, we can see that a forecast based on 5 equipopulated redshift
bins still allows to recover the full information content for a Euclid-like survey. In the case of the bispectrum, the
data vector B has dimension 72280, 9790, 776 and 130 when considering 10, s, 2 or 1 tomographic bins respec-

tively. The 5 bin tomography then allows for a reduction of the size of the data vector and of the covariance matrix
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Figure 3.2.3: S/N analysis for the bispectrum alone of weak lensing convergence when considering different
approximations to the covariance matrix. We are here inspecting different effects. As in Fig. 3.2.2, we are
looking 1) at the impact of different approximations to the covariance matrix and 2) at the behaviour of the
information content as function of the binning of the sources in redshift. For the first point, we label the
different components of the covariance matrix according to the notation introduced in Eq. (2.100). On top of
that, we study the impact of approximating the data vector B by neglecting different multi-halo configurations.
In this analysis, we employ the same binning in ¢ and in redshift as for the respective panels in Fig. 3.2.2. The
shot noise is included in all the forecasts.

by a factor ~ 7.4 and ~ 54.8 respectively.

Secondly, we analyse the impact on the maximum S/N of different approximations both at the level of covari-
ance (while not having any approximations on the data vector B - solid lines) and at the level of data vector B
(while keeping the whole covariance - lines of the same colour). Independently of the tomographic analysis, ne-
glecting the 3-halo term leads to a very small effect on the information content at all scales (~ 1%). The analysis
is instead more sensitive to the 2-halo term. The super-sample covariance clearly leads to a major degradation
of the information content in the bispectrum. By comparing the analyses when all the multi-halo configurations
are included in the bispectra (solid lines), we can see that the super-sample covariance reduces the information
content by ~ 20% for the case of 1 bin tomography, ~ 15% for the 2 and 5 bins cases and of ~ 13% for the 10 bins

tomography.

3.2.3 JOINT SIGNAL-TO-NOISE RATIO

In Fig. 3.2.4, we finally move to the joint study of the probes. A joint analysis allows to improve the forecast by

accessing the cosmological information that was lost in mode couplings. Motivated by our previous findings, we
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Figure 3.2.4: S/N analysis for the weak lensing convergence power spectrum-bispectrum joint probe. We
compare the analyses when including (black solid line) and excluding (yellow solid line) the NGssc component.
The G and NGins components are kept in both cases. We are including all the required multi-halo configurations
in the bispectrum data vector B. As in Fig. 3.2.2, we are also focusing on the behaviour of the information
content as function of the binning of the sources in redshift. We employ the same bins in ¢ and the same
survey properties as in the three respective panels in Fig. 3.2.2 and in Fig. 3.2.3. In all the three panels we also
depict the cumulative S/N for the power spectrum probe, when including all the components to the associated
covariance. The green solid line represent the hypothetical case of a pure Gaussian weak lensing convergence
field contaminated with shot noise.

restrict the joint analysis to 5 tomographic bins. In the case of the joint power spectrum-bispectrum S/N our data
vector has dimension 10000, 818 and 144 when considering s, 2 or 1 tomographic bins respectively. Compar-
ing the joint S/N with the power spectrum alone case (blue solid line), we find that the maximum information
content increases by ~10% for all the considered tomographic analysis. This confirms the need for the inclusion
of the bispectrum analysis for future weak lensing analyses. Similarly to the previous paragraph, we address the
effect of the super-sample covariance: when included, the maximum achievable information content is reduced
by about 30% in the 1 bin tomographic case and by about 25% in the 2 and 5 bin analyses. As a final remark on
this joint analysis, we compare the information content in all the 3 tomographic cases with the hypothetical case
of a Gaussian field contaminated with shot noise (dark green solid lines in Fig. 3.2.4). If the convergence field
were Gaussian, this line would represent a perfect reconstruction of the cosmological information in the field. It
can be observed that, in the most informative case with § tomographic bins, we recover about 60% of this ideal

cosmological information.
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Figure 3.2.5: Fractional differences between observables (data vector and covariance) as derived from the
model A and B (defined in the main text). From the top to the bottom: 1) vector of power spectra P, 2)
vector of bispectra B, 3 (left)) power spectrum covariance matrix , 3 (right)) bispectrum covariance matrix,
4) power spectrum and joint power spectrum-bispectrum cumulative S/N. For this analysis we keep our usual
binning in log? (14 regularly spaced bins from ¢ = 10 to I{ = s000) and all the survey related parameter as
chosen in Sec. 3.1.2. Specifically, we use a 5 bin tomography for the sources.

3.2.4 UNCERTAINTY OF THE THEORETICAL MODEL: CONCENTRATION PARAMETER AS A RANDOM VARIABLE

We investigate the robustness of our S/N-based forecasts against the uncertainties of the halo profile properties.
In particular, we want to test the impact of the convolution of the halos with the probability density function
p (c,m, z) for the concentration parameter ¢ introduced in Eq. (1.163). In this section we will make the redshift
dependence explicit again. We will compare the observables as built from two models. In the first model (model
A), we will evaluate Ii (3.15) from the full integration over the range (cM™, cM*). In the second model (model

B) we will simply assume p (¢, m, z) = 8p (¢, — ¢, (m, z)). This last approximation is the one mostly used in the
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literature. The mean value ¢, (m, z) is given by the following fitting formula [Bullock et al., 2001 ]

C, (m,z) =K a( , (3.42)

m, (a.) =Fm, v(m.,a)=1 (3.43)

where g, is the epoch at which the typical collapsing mass m, (defined by v = 1) equals a fixed fraction of the
halo mass at the same epoch. The best-fit values for the free parameters F, K are respectively o0.01 and 4.0 for a
ACDM Cosmology. In Fig. 3.2.5 (starting from the top), we can see that the vector of power spectra P differs
at maximum by 1% between the two models (first panel). The data vector B is more affected with a peak at 5%
(second panel) for the smallest scale. We recall from Sec. 3.1.1 that the observables in our data vector are ordered
for increasing value of the multipoles used within the configurations. The jagged profile instead corresponds to
different tomographic dispositions of the sources per fixed spatial configuration. In the third row we compare the
power spectrum (left panel) and the bispectrum (right panel) covariance matrix as derived from the two models.
They differ at maximum by 4% and 2. 5%, respectively. However, there is no impact at all at the level of reconstructed
S/N: we can see in the bottom panel in Fig. 3.2.5 that the fractional differences between the two models is well

within the numerical precision of our pipeline (~1%).

For completeness, we refer to Cooray & Hu [2001] for a similar analysis. In this work, the impact of marginal-
ising over the concentration parameter was performed at the level of three-dimensional, 1-halo power spectrum
and trispectrum. Specifically they found an impact of ~ 5% and ~ 20% respectively for a distribution p (c,, m, z)

of variance oy, = 0.2.

3.2.5 PRINCIPAL COMPONENT ANALYSIS

The bispectrum only brings a relatively small improvement of information, mainly due to the effect of the super-
sample covariance. Thus, it seems desirable to simplify our problem and restrict our data vector to the most infor-
mative modes. The principal component analysis (PCA) is a simple way to exhibit which observables, or linear
combination of them, are the most informative. It can be achieved via an eigenvalue decomposition of the n x n

covariance C onto an orthonormal basis of vectors v;_, .,

Cij = Z Sai Saj Aa' (344)

a
In the above equation, S;; = v, and 4, is the ath eigenvalue associated to the mode v,. Also, we are omitting
the supescrit D: from now on we will apply this method only to the joint covariance implying C = CP. The

decomposition (3.44) allows to find linear combinations of the original observables in the data vector {D;},—, _,

120



which defines a new set of uncorrelated observables {15,4},-:17._7,,
bi = Z Sij Dj~ (3~45)
j
At this point, the signal-to-noise ratio for each of them will simply be the ratio of the signal and its own error
S\* D
2 Y 46
(3) -2 (5.46)

In the PCA formalism, the eigenvalue A, is indeed the variance associated to D,. From a much more interesting

perspective, we can analyse the information content in the different modes v, of the covariance as cumulative

S 2 Amax S 2
<N) = Z (N) g (3.47)

up to a mode v, . In the following, we will analyse the cosmological information both as quantified from a sin-

function of the new observables

gle mode (Eq. (3.46)) and as cumulative function of a set of eigenmodes (Eq. (3.47)). In this kind of analyses,
the smallest eigenvalues (associated to the most important eigenmodes in terms of information reconstruction)
are potentially affected by numerical errors. Due to the wide dynamics of the observables used for this work, the
covariance matrices have large condition numbers: the eigenvalues span over a range of about 30 orders of magni-
tude and the smallest ones can be affected by numerical errors if a too naive eigenmode decomposition algorithm
is used. For this reason we relied on a specific high performance routine able to search for the eigenvalues (and

associated eigenmodes) in a large dynamical range as described in Sec. 3.1.4.

We present the main results of the PCA analyses we did in Fig. 3.2.6 and in Fig. 3.2.7 where the eigenmodes
v, are ordered respectively by increasing value of their variance A, and decreasing information content S/N,,. The
analyses have been applied on the full joint covariance, including super-sample contributions and all the multi-
halo configurations for the bispectrum vector. In the first row of both figures, we display the reconstruction of
the signal-to-noise ratio as cumulative function of the eigenmodes included in the covariance. In the second row
of both figures instead, we show the information content per eigenmode S/N,. We refer to the corresponding
captions for more details. From a parallel study of Fig. 3.2.6 and Fig. 3.2.7 we can investigate the possibility of
further reducing the dimensionality of our analysis while preserving the maximum information content. These
figures ought to be analysed in the light of Fig.3.2.8 where we show the ratio between the (original) observables
and their standard deviations (for a 2 bin tomography, for simplicity). In particular, Fig.3.2.8 would represent the
information content of our observables if they were not correlated. Even though it does not provide a reliable
insight on the strength of our measurements in the regime we are exploring, it can still help in understanding what
are the configurations expected to be more (less) informative. Also, it helps in giving a physical understanding to

the results of the PCA analyses.
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Figure 3.2.6: PCA analysis for the joint 5 tomographic bin covariance matrix with no approximations on the
covariance nor on the bispectrum data vector. Top: S/N., (3.47) as cumulative function of the eigenmodes v,.
The eigenmodes v, are ordered for increasing value of the associated variance A,. The different colours on the
background label modes which corresponds to observables D, which are mostly combinations of power spectra
(blue), bispectra in the linear/mildly non-linear regime [¢ < 400] (red) and bispectra in the non-linear regime
[¢ > 400] (green). We perform this classification for a given observable D, by looking at which are the most
representative observables D; contributing via the matrix S,;. Considering only observables D; for which the
corresponding matrix element |S,;| > 0.2, the mode a is then classified according to which of the above classes
represents more than the 90% of them. If there is not a specific preference, we assign a grey colour. Bottom:
S/N ratio per eigenmode. The eigenmodes v, are ordered for increasing value of the associated variance 2,.

First of all, by looking at the bottom row in Fig. 3.2.6, we can identify a fraction of the eigenmodes which have
a very poor information content S/N,. On the top row, they correspond to a red plateau, i.e. eigenmodes mainly
associated to bispectra in the linear/mildly non-linear regime via the linear combination (3.45) (see caption for
more details). This feature is present for all the tomographic redistributions of the sources. This result can be
easily explained by looking at Fig.3.2.8. As a matter of fact, the bispectra sourcing these modes have a very a low

signal-to-noise ratio since at these scales the matter field has a very weak deviation from the Gaussian statistics.

Going back to the top-row panels of Fig. 3.2.6, the eigenmodes located in blue regions are characterised by a
large variance, being on the right end of all the panels. However, they are also the most important in terms of
recovering the total information content, carrying the largest signal-to-noise ratio per mode (bottom row). In
particular, they are at the left end of the panels in Fig. 3.2.7. Following the procedure described in detail within
the caption of Fig. 3.2.6, we find that these modes are mainly linear combinations of power spectra. Then, we can
easily understand the location of these modes within both Fig. 3.2.6 and Fig. 3.2.7. Power spectra have an absolute

12

standard deviation much larger than the bispectra (~ 107° — 107" and ~ 107" — 10~ >° respectively), which

motivates their location on the right end of Fig. 3.2.6 (we recall that, approximately, C"* ~ P*). On the other
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Figure 3.2.7: The analysis here proposed is the same as in Fig. 3.2.6. However, the eigenmodes are now
ordered for decreasing value of the associated S/N, and and we are reporting our results in terms of the
fraction of the total number of eigenmodes used. This is just motivated by graphical reasons. Top: S/N as
cumulative function of the eigenmodes (3.47). The colour code is the same as in Fig. 3.2.6. Bottom: S/N,
per eigenmode (3.45). The vertical lines in the different panels indicate the fraction of eigenmodes required
for recovering the 99% of the maximum achievable S/N.

hand, power spectra have a much larger signal-to-noise ratio when compared to all the other observables in the
vector D. By comparing the first and the second row in Fig.3.2.8 we clearly see that power spectra can be measured

with a much smaller statistical uncertainty when compared to the bispectra.

Finally, the modes located in the green bands are mainly sourced by bispectra evaluated on modes deep into
the non-linear regime (see caption to Fig. 3.2.6). Compared to the modes associated to the bispectra in the lin-
ear/mildly non-linear regime (red), they have a lower variance, as they are located at the left end of the plots in
Fig. 3.2.6 while carrying more information: they represents a transition between the blue and the red modes in top
panels in Fig. 3.2.7 and they are crucial for improving the information carried by the first modes associated to the
power spectra (blue). Once again, we can understand these dynamics with the help of Fig.3.2.8, where the bispec-
trum at non-linear scales has a higher signal-to-noise ratio compared to the one atlarger scales. On the other hand,
the smaller variance of these configurations is due to the fact that the bispectrum signal is much weaker the more

we measure it in the non-linear regime, as we can see in Fig. 3.1.2 (we recall that, approximately, C*® ~ P3 + B*).

The vertical lines in Fig. 3.2.7 indicate the fraction of eigenmodes required to recover 99% of the full information
content, once the PCA-modes have been reordered by decreasing value of the associated signal-to-noise ratio.

The result is remarkable: the higher is the number of tomographic bins, the higher is the compression efficiency.

123



102 <
o 3
o
~
101 E
5 10 15 20 25 30 35 40
7
102 _
Q..
S
> 0
A 10
100 200 300 400 500 600 700

Figure 3.2.8: Classical signal-to-noise ratio analysis for the original data vector D. We diplay the ratio between
the value of an observable, distinguishing between power spectra and bispectra, and the associated standard

deviation crf(B) = \/CﬁP(BB). We assumed a 2 bin tomography. For every configuration in Fourier space, the
different tomographic distributions of the sources are indicated by the same background colour. Top: binned
tomographic power spectrum. Bottom: binned tomographic bispectrum. In the latter case, different colours
on the background correspond to triangular configurations sharing the largest edge. Therefore, according to
the ordering of the data vector defined in Sec. 3.1.1, within each of these bends we move from squeezed to
equilateral configurations.

Specifically, just < 40%, < 20% and < 10% of the modes are required respectively for the 1, 2 and 5 bin analyses.

In Fig. 3.2.9 and in Fig. 3.2.12 we visualise the absolute value of the elements within the projection matrix
Sai (3.44) for different choices of a (left and central panel) and the total matrix itself (right panel). The index a
indicate a specfic mode v, of the original covariance matrix. The modes are ordered for decreasing value of the
information content S/N,. The index i runs instead over the different elements of the data vector D. Therefore,
we want here to visualise how much each of the original observables contributes to the newly defined ones D. The
colours on the background of the left and central panels have to be read as follows. Different tiny bends refer to
the same configurations in Fourier space, then spanning over the different tomographic contributions to it. We
recall that in our data vector D these contributions are contiguous. In the region of the x-axis corresponding to the
sub-vector B (on the right of the vertical violet line), different colours of the bends indicate Fourier configurations
sharing the same larger multipole. In particular, while moving from left to the right within each of these macro-

bends, we are actually spanning bispectrum configurations from squeezed triangles to equilateral ones.
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Figure 3.2.9: Left: values of the projection matrix |S,;| for different choices of a. For this plot, we picked the
most informative modes v, which allow to recover the 90% of the total information content. We depict our
results for the 1 tomographic bin joint covariance matrix. The vertical blue lines separates the vectors P (on
the left) and B (on the right) within the vector of observables, labelled by i. Center: same analysis as in the
left panel. Here we picked the most informative modes v, that allows us to recover an extra 5% of the total
information on top of the modes displayed in the left panel. Right: representation of the full projection matrix
|S.i|, a being ordered for decreasing value of the information content per mode S/N,. The red horizontal line
separate power spectra and bispectra in the data vector.
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Figure 3.2.10: Left-Center: same analysis as in the left-central panels in Fig. 3.2.9 but for the 5 tomographic
bin covariance matrix. The tiny different bends on the background include different tomographic contributions
for the same Fourier configuration. Different colours on the background correspond to triangular configuration
sharing the largest multipole. Therefore, according to the ordering of the data vector D 3.1.1, within each of
these bends we move from squeezed to equilateral configurations (more detailes within the main text). Right:
sparsity pattern for the full projection matrix |S,| with a being ordered for decreasing value of the information
content per mode S/N,. The points have been selected whenever |S;| = o.0s.

In Fig.3.2.9, we first focus on the 1 tomographic bin joint covariance matrix. In the left panel we depict the
values |S,;| as function of the index i for the most informative modes v, recovering the 90% of the total information
content. We can see that they are mainly sourced by the power spectrum in the non-linear regime. In the central
panel we show the values |S,;| as function of the index i for the modes v, required to add an extra 5% on top of
the previous ones. They are mainly linear combinations of bispectra in the non-linear regime. Furthermore, the

projection matrix shown in the rightmost panel is extremely sparse, peaking on just few configurations: overall,
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Figure 3.2.11: Same analysis as in the left and central panel in Fig. 3.2.10. In particular we are considering a
5 tomographic bin joint covariance matrix. We are now zooming on just one triangular configuration per panel.
The colour map used in these plots is the same as in the left and central panels in Fig. 3.2.10, to facilitate the
comparison.

just 53 observables (36%) are involved in recovering 95% of the information content’. This open a possibility for

a second level of data compression beyond the one identified at the previous step at the level of modes.

In Fig.3.2.10 we perform the same analysis for the § bin tomography, reaching similar conclusions. In particular
the tomography does not affect the possibility of dimensional reduction: we can discard 2093 configurations (i.e.
80% of the total) and still recover 95% of the information’. In Fig. 3.2.11, we show the profiles |S,;| zooming onto
smaller fraction of the data vector D (top row) and onto single triangular configurations (bottom row). The first
panel on the left in the top row focus on the region of x-axis associated to the vector O. These panels are useful
in order to understand the distribution of the cosmological information among different tomographic bins, per
fixed spatial configuration. While it is not possible to identify dominant tomographic configurations at the level
of the power spectra (top-leftmost panel), at the bispectrum level the tomographic configurations that are most
informative are, in general, those involving high redshift sources. We can clearly see this feature in the bottom
row of Fig. 3.2.11 where we focus on single spatial configurations. The jagged profile mirrors the ordering of the
tomographic dsitributions of the sources within the data vector. We recall that for the bispectrum, the observables
associated to the tomographic bins (i, j, k) are ordered such that k is the fastest index and i the slowest index. Then
we can see a peak in the profile whenever, for a fixed value of k > i, j, i and j move closer to k. The maximum
information for a given spatial configuration happens to be when all the tomographic indices have reached the

maximum value corresponding to the furthest sources.

Finally, in Fig. 3.2.12, we show the profile of the projection matrix |S,]| for a single mode a, picked among the

"We consider configurations D; with an associated weight |S,;| < 0.05 as negligible. The same threshold has been applied to repro-
duce the sparsity pattern for the 5 tomographic bin covariance matrix in Fig. 3.2.10.
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Figure 3.2.12: Profile of the projection matrix |S,| for a specific choice of mode v, picked from the most
informative ones accounting for the 95% of the total information content. The colour code is the same as in
Fig. 3.2.10 in order to facilitate the comparison.

most informative ones recovering the 95% of the total information content in a § bin tomography. In particular
we picked a mode mainly dominated by bispectra to inspect the possibility of reducing the computational burden
for this part of the data vector. Unfortunately, we can see that there are no dominant configurations and bispectra
evaluated on several different spatial configurations are required to access the information content of the mode
analysed. Also, for a specific triangular configuration (single background bend), it is not possible to identify a

dominant contribution from a specific distribution of the sources.

3.3 DISCUSSIONS AND CONCLUSIONS

3.3.1 SUMMARY OF THE APPROXIMATIONS

As part of our conclusions, we summarise here the approximations adopted throughout the project along with the
level of urgency for their validation. As we will explain, the precision of the halo model in describing the matter
clustering will pretty often represent a bottleneck for the accuracy of the whole forecast. Therefore, while lacking
a better semi-analytical model for the gravitational collapse in the non-linear regime, it is important not to forget
that the halo model itself is an approximation. To start with, in deriving the statistical properties of the projected
fields we assumed the Limber and the flat-sky approximations. Kilbinger et al. [2017] thoroughly explored these
approximations at the level of 2-point statistics and compared their predictions against a full-sky approach for the
cosmic shear field with a CFHTLenS-like galaxy distribution [Kilbinger et al., 2013 ]. For the joint approximation
under exam, they found it to be accurate to better than 10% for / > 3, converging slowly to the true projection with
percent level precision at £ > 100. Given that the accuracy of the halo model predicted polyspectra is in general
much lower, we consider the above performance satisfactory for our work. Secondly, while computing the covari-
ance matrix for the power spectrum and bispectrum we assumed that the trispectra, 5- and 6-order polyspectra in

Egs. (2.122), (2.147) and (2.149) (resp.) are slowly varying within the considered /-bins. To our knowledge, no
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tests in the literature were performed on this matter for the observables and the scales of interests. However, given
the dynamics of the spectra in Fig. 3.1.2 (left panel) we advise further tests of this assumption, especially for high
¢. On the other hand, the high number of configurations required for our analyses makes the full integrations over
the bins width unfeasible given the computational resources at our disposal. Still at the level of covariance matrix
we approximated all the polyspectra with their 1-halo component (starting from the 3-point one). Once again,
we are not aware of any studies on the impact of neglecting these higher halo terms. Given our discussion at the
beginning of Sec. 3.1.3, we do not expect them to be important for cosmological analyses even though they may
have a role on regularising the covariance matrix reducing errors at the inversion. Finally, in the computation of
the super-sample covariance (2.228), we are again assuming the joint flat-sky Limber approximation for both the
intra- and super-survey modes. At the power spectrum level, Barreira et al. [2018] analysed the impact of these ap-
proximations against a full spherical analysis of the super-survey modes. For Euclid- and LSST-like tomographies
and at the power spectrum covariance level, they report that for surveys covering less than ~ 5% of the sky the
two results agree to better than 1%. However, when moving to the expected realistic coverage of f4y, ~ 0.3-0.4
the use of the flat-sky expressions results in an underestimation of the SSC contribution of about 10%. Again, this
performance has to be considered satisfactory for the present work given that the precision bottleneck is mainly

given by the accuracy of the matter clustering model.

3.3.2 COMPARISON WITH SIMILAR WORKS IN THE LITERATURE

We compare the analysis performed in this chapter with similar works in the literature. The impact of the correla-
tions between observed and super-sample modes has already been addressed in the literature. Specifically, Kayo &
Takada [2013] performed a preliminary study on the information content of the weak lensing bispectrum, which
was further developed in Kayo et al. [2013 ] where 3 tomographic bins where considered for cosmological param-
eter forecast. However, they included the super-sample correlations at very small scales. These terms are known in
the literature as halo sample variance and they contribute to the correlations when all the points in a given config-
uration are inside the same halo. Formally, the halo sample variance is just a part of the components we obtained
via the response approach described in Sec. 2.3.2. In particular they corresponds to the last terms in Eq. (3.28) and
Eq. (3.29) which are the responses of the 1-halo term to the long mode §,. In a different study, Barreira [2019]
accounts for the super-sample covariance in the PT response formalism by making different approximations. In
particular, he considers only correlations between bispectra on squeezed configurations. This approximation re-
sultsin a negligible impact on the signal-to-noise ratio when adding the super-sample covariance. Our study shows

that this is not the case when all the triangular configurations are included in the analysis.

3.3.3 NOT ONLY THE BISPECTRUM

Besides the bispectrum, different techniques have been advocated in order to recover the cosmological informa-

tion not accessible via the 2-point statistics of the weak lensing field. In the following paragraph, we would like to
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propose a summary of the most current alternatives approaches in the literature.

MINKOWSKI FUNCTIONALS  This approach proposes to study the morphological properties of a thresholded n-
dimensional scalar field (e.g. for the convergence field n = 2). The Minkowski functionals are n + 1 functions of
the threshold v which provide full description of the morphological properties of the field [Mecke et al., 1994].
For the weak lensing convergence field, the full characterisation is then given by 3 Minkowski functionals. They
are respectively related to 1) the total area of the domain supporting the field above the threshold, to 2) the total
circumference of these regions and to 3) the Euler characteristic of the field. Minkowski functionals have been
shown to be sensitive to the underlying Cosmology and can be exploited to constrain cosmological parameters
(Matsubara [2000]; Matsubara & Jain [2001]; Sato et al. [2001]; Guimaraes [2002]; Kratochvil et al. [2012];
Munshi et al. [2012]; Petri et al. [2015]; Liu & Madhavacheril [2019]). For the weak lensing convergence, they
have been study first by Sato et al. [2001] using the signal as measured from ray-tracing simulations in the weakly
non-linear regime. Sato et al. [2001] showed that the accuracy of the Q,, inference can be improved by ~20%
when using the Minkowski functionals with respect to other conventional methods, like direct measurements of
the convergence skewness. Kratochvil et al. [2012] analysed the information content of the 3 Minkowski func-
tionals (both jointly and separatly) in comparison with the power spectrum. Tomographic binning of the sources
and different smoothing scales were considered. Interestingly, Minkowsky functionals already recover all of the
information carried by the power spectrum which does not improve the constraints any further when added on
top of the formers. In particular the results were reported in terms of the 10 contours of the marginal posteriors
for the parameters (Qy,, w, 05). We finally point the reader to the recent paper from Petri et al. [2015] where
MCMC analyses were performed on the publicly available data from the 154 deg” CFHTLenS survey [Van Waer-
beke et al,, 2013]. The data vector considered in this analysis were formed by moments of the convergence field
(up to fourth order: two quadratic, three cubic and four quartic), Minkowski functionals and power spectrum.
As results from the cited work, the Minkowski functionals’ constraints on the doublet (Q,,, 05) are incompati-
ble with cosmic microwave background anisotropies measurements [ Hinshaw et al., 2013; Planck Collaboration,
2014 ] while the moments’ constraints do not show such tension. We may therefore think that systematics are
sill present in the modelling of Minkowski functional descriptors. As far as the dark energy equation of state is

concerned, the considered data set is insufficient to constrain w to a reasonable precision with any of the probes.

PEAK STATISTICS  This probe aims at constraining cosmological parameters via the analysis of the statistical dis-
tribution of peaks in the two-dimensional convergence field. Potentially, such peaks are motivated by the projec-
tion of single, discrete, massive collapsed object in the foreground and altogether these objects are tracers of the
underlying matter field. In turn, their statistical distribution is determined by the corresponding mass function
which can be either calibrated in simulations or derived from first principles. In both cases, the mass function has
a strong dependence on the underlying Cosmology which can then be probed via the detection of the aforemen-
tioned peaks. Clearly, the possibility of one-to-one relation between peaks and underlying objects is idealistic:

high peaks in the convergence can be induced by aligned structures while low peaks maybe due to the lensing from
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a given object being compensated by an under-dense region in the foreground. The possibility to probe cosmol-
ogy at non-linear scales via peak counts is therefore a complex subject and its potential as complementary probe to
the power spectrum led to several studies over the past years (e.g. Marian et al. [2009]; Maturi et al. [2010]; Diet-
rich & Hartlap [2010]; Kratochvil et al. [2010]; Yang et al. [2011]; Marian et al. [2013]; Lin & Kilbinger [2015];
Liu et al. [2015]; Lin & Kilbinger [2018]). We only discuss in the following a few interesting works. Dietrich
& Hartlap [2010] inspected the constraining power of peak statistics by looking at the S/N of the tomographic
aperture mass field [Schneider, 1996] as measured from ray-tracing simulations. Interestingly, this novel probe
is shown to provide tighter constraints on the doublet ({),,,, 03) than standard tomographic shear measurements
(2-point correlation function). Respectively the two approaches lead to FoM for (Q,,, o) of 123 and 71. The
joint analysis allows to increase the FoM by ~40% when compared to the cosmic-shear tomography alone. Sub-
sequently, Yang et al. [2011] used N-body simulations to also analyse the relation between the height of the peaks
in the convergence field and the number of background halos. High peaks, with amplitude > 3.5 k/0, (0, being
the r.m.s. of the convergence field «), turn out to be dominated by a single massive halo while medium-height
peaks (~ 0.5 — 1.5 k/0, ) cannot be attributed to a single collapsed one. Cosmological analyses are mainly driven
by the statistical distribution of the formers. In terms of forecast of cosmological parameters considered (Q,, 05,
w), the joint analysis peak statistics-power spectrum (where 2 possible redshift are considered for the sources, i.e.
z, = 1and z, = 2) allows to reduce the 10 constraints by, overall, a factor of ~3 compared to the power spec-
trum alone (we are in particular comparing here the 4th and the 7th rows - from the top - in Table XIV form the
original paper [Yang et al,, 2011]). Finally, Liu et al. [2015] explored the constraining power of peak statistics on
the publicly available data from the 154 deg” CFHTLenS survey [Van Waerbeke et al., 2013 ] performing MCMC
analyses on the usual three-dimensional parameters space (Q,,, 0, w) and using as data vector the histogram of
the peaks as function of the height of the convergence field and the convergence power spectrum (jointly and
separately). Liu et al. [2015] found that constraints from peak counts are comparable to those from the power
spectrum and somewhat tighter when different smoothing scales are combined. When the power spectrum and
peak counts are combined, the parameter constraints are improved by an overall factor of ~2 when compared to

the power spectrum alone.

MACHINE LEARNING TECHNIQUES Machine Learning saw a dramatic growth in terms of exploitation within
cosmological and astronomical applications over the last years, especially under the forms of its specific declina-
tion into Neural Networks (NNs) (e.g. Lochner et al. [2016]; Méller et al. [2016]; Charnock & Moss [2017];
Ravanbakhsh et al. [2017]; Fluri et al. [2018]; Lanusse et al. [2018]; Charnock et al. [2018]; Gupta et al. [2018];
Perraudin et al. [2019]; Mustafa et al. [2019]; Ribli et al. [2019]; Kodi Ramanah et al. [2019]; He et al. [2019]).
This was mainly motivated by the perfect match between supply and demand. From one side, we are entering the
big data era for Cosmology with the up-coming launches of modern galaxy surveys such as DES [Flaugher, 2005,
the Hyper SuprimeCam Survey (HSC, Aihara et al. [2018]), the Large Synoptic Survey Telescope (LSST, Ivezi¢
etal. [2019]) and Euclid [Laureijsetal, 2011; Amendola et al,, 2013 ]. On the other hand, the recent technological

developments have been making GPUs affordable for the scientific community and NNs can provide short-cuts
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to the complex non-linear physics involved in LSS formation. We list here few recent works concerning the ap-
plication of these novel techniques to weak lensing data sets. Gupta et al. [2018] inspected the performance of
Convolutional Neural Networks (CNN) (the employed architecture is described in Sec. 2 of the original paper)
in constraining the cosmological parameters (Q,,, 03) from noiseless ray-tracing simulations. Their final claim is
that CNNs outperform the power spectrum by a factor of ~ 5 and peak counts by a factor of ~ 4 in terms of FoM for
the 2 parameters above. The (Gaussian) posterior analyses from the CNN were performed using as observables
within the data vector the cosmological parameters (Q,,[Q ], 05[05]) as estimated from the CNN from maps
sharing the same underlying Cosmology (Q.,,, 75). Ribli et al. [2019], similarly to Fluri et al. [2018] however
without the Limber approximation, applied CNNs on noisy simulated maps. An error analysis similar to the one
described above (but with a varying covariance in the MCMC sampler) allowed them to show that the CNN they
employed (claimed to be more accurate than the one in Gupta et al. [2018]) produces constraints one the cos-
mological parameters (Q,,, o3) which are ~8 and ~ 13 times smaller than those obtained from peak counts and
power spectrum analyses, in terms of 10 area. When the shape noise is included, the improvements is respectively
of a factor of ~ 1.05 — 1.42 and ~ 2.4 — 2.8 for a Euclid-like survey (1, & 30 gal arcmin™). Interestingly, in
Appendix C of Fluri et al. [2018] the authors tested the architecture on a model excluded from the training set re-
sulting in a negligible impact at the level of confidence regions. Finally, and for completeness, we would like to cite
the work of Mustafa et al. [2019] where, while not focusing on cosmological parameter estimation, an application
of Generative Adversarial Networks is proposed for a fast production of weak lensing convergence maps which
result being characterised by the same summary statistics as the fully simulated maps. This is of major interest
given our discussion in Sec. 2.2.1 where we underlined the computational challenge required by standard N-body

simulations whenever used for the computation of highly dimensional covariance matrices.

Given the high performance of the novel probes described in the previous paragraphs, we wonder if the bispec-
trum can still represent a worthy tool for cosmological analyses. We remind that one of our most important results
is that the bispectrum allows us to enhance the maximum achievable S/N by 10% when compared to the power
spectrum alone. We can clearly see that, in terms of cosmological parameter forecasts, especially peak counts and
machine learning-related techniques have the potential to outperform the bispectrum. However we are strongly
convinced that the present status of the art does not rule out the bispectrum as meaningful cosmological probe.
First of all, the analyses performed in this thesis are substantially related to the S/N. It is not possible to predict
yet how different cosmological parameters will be constrained once a full MCMC will be run. The work from
Petri et al. [2015] also showed the potential presence of systematics in the modelling of the Minkowski functional
descriptors. Secondly, thanks to the tomographic analysis we are capable to access a time-dependent information
which is paramount in order to constraint dark energy equation of state parametrizations. With this regards, anal-
yses performed on the publicly available data from the 154 deg> CFHTLenS survey led to poor constraints on w
both when exploiting peak counts and Minkowski functionals. Also, we are not aware of any published work tack-
ling the forecast of time-dependent dark energy equation of state with NNs. Finally, all the probes listed in this

last section are strongly dependent on cosmological simulations being our theoretical understanding of them still
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not sufficient for the required forecast precision. Therefore, all the issues highlighted in Sec. 2.2.1 contaminate the
present applicability of these techniques for unbiased cosmological parameter forecasts. Moreover, peak counts
strongly depend on pixel-size measurements making this probe extremely dependent on the specific characteris-

tics of a given simulation or on the detection properties of a realistic survey.

The bispectrum, in particular if estimated via analytical forward modelling, is still a competitive probe. As a
matter of fact it allows us to model and have a full physical understanding of its covariance and signal without rely-
ing on simulations. In particular, they eventually miss important super-sample correlations and can be extremely

costly whenever we want to meet the precision requirements from the upcoming generation of galaxy surveys.

3.3.4 CONCLUSIONS

In this chapter, we have presented the first full joint analysis of the information content for the convergence weak
lensing power spectrum and bispectrum for a Euclid-like survey. We modelled the observables with the halo model
and developed a high performance code capable to output fast and precise covariance matrices for the binned
tomographic spectra. The covariance matrices calculated for the present work have been used for the signal-to-
noise ratio analysis, but can benefit any forecast based on a Gaussian likelihood. We remind that the content of
this chapter has been previously presented in Rizzato et al. [2018] (submitted to the Monthly Notices of the Royal

Astronomical Society).

At the power spectrum level and including shot noise, we were capable to show that the super-sample covari-
ance is the main source of error, leading to a reduction of 40% of the maximum achievable signal-to-noise ratio
compared to the Gaussian case. The non-Gaussian cross-correlations between in-survey modes account for a loss
of information of about 30% instead when compared to the Gaussian case. The combined effect of these two
sources of error leads to a loss of about 45% on the signal-to-noise ratio. An important result of our analysis is
the possibility to recover the cosmological information content of a Euclid-like survey by using 5 equipopulated
tomographic redshift bins, instead of 10. This results is in particular insensitive to the angular scale and to the com-
ponents included in the error budget of the observables and does not account for systematics like PSF, photo-z,
blending or intrinsic alignments. The same phenomenology was found at the bispectrum level. On the bispectrum
signal-to-noise ratio the super-sample covariance has an impact of about ~13% (10 bin tomography) when the
observables have been estimated via all the multi-halo configurations. We tested the impact of these configurations
in the modelling of the vector of bispectra and we found that neglecting the 3-halo terms is a good approximation

for our analysis, both when including or excluding the super-sample covariance.

Motivated by our previous findings, we performed a joint power spectrum-bispectrum analysis on § equipop-
ulated tomographic redshift bins. We proved that this combined approach can improve the information content
by ~10% with respect to the power spectrum alone. The super-sample covariance of the bispectrum cannot be
ignored and reduces the maximum information achievable of about ~25%. In these analysis the 2- and 3-halo

terms have been taken into account for the bispectra in the vector, but we restricted the computation of the co-
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variance to the 1-halo terms which dominates the covariance for the most relevant configurations. These are the

most important results of this work.

We found that the halo modelling uncertainty due to the scatter of the concentration parameter in the simu-
lations does not affect the signal-to-noise ratio of the power spectrum by more than 1%. This makes our future

forecasts robust to errors on this parameter.

In this work, a preliminary study on the possibility of further compressing our covariance matrices while pre-
serving the cosmological information is considered. In particular, by performing a principal component analysis
on our covariance matrices, we found that a very small fraction of the eigenmodes (< 10% for s bin tomogra-
phy) carries most of the information, and that not all the configurations equally contribute to the full information
content. Indeed, only 20% of the data vector is included in the linear combinations that forms this 10% of eigen-
modes, and thus a large fraction of the vector of the observables (~ 80% for 5 bin tomography) is not significant

to reconstruct the signal-to-noise ratio at the different scales considered in this work.
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Conclusions and perspectives

The main subject of this thesis was the development of precise and fast numerical tools ready to be employed in
the analysis of key aspects involved in cosmological parameter forecasts from future weak lensing surveys. The
computation of remarkably big covariance matrices is a key step in all Gaussian-based forecast techniques. This
is in particular true both when performing analytical approximations (Fisher approximation) and when sampling
the parameter space (Monte Carlo Markov Chain methods). In this thesis and in the associated paper [Rizzato
etal, 2018], we tackled this challenging numerical task in the case of the weak lensing convergence field whose
formalism has been described in Sec. 2.1. In Sec. 2.2.1, we argued that data-driven approximations to the covari-
ances may not be suitable for future surveys being unable to describe the super-survey correlations. Therefore,
we opted for the forward modelling of them. While providing an analytical approximation to the covariance, this
approach can be extremely costly, especially when combining 2- and 3-point statistics. In weak lensing studies,
like the one here proposed, this complexity is exacerbated when accounting for the tomographic distribution of
the sources. We developed a high performance code that allows a highly parallelised computation of the covari-
ance matrices for the weak lensing convergence power spectrum-bispectrum joint probe, assuming a Euclid-like
photometry. While we deferred a precise parameter forecast for up-coming works, still we used the covariance
matrices produced with our algorithm to have insights one the level of correlations within our data vector. We em-
ployed and studied the signal-to-noise ratio as definition of the information content in the probes and we made
use of the principal component analysis to explore possibilities for data compression. The results of our work have

been summarised in Sec. 3.3.

Starting form the results presented in this manuscript, several possible research paths are open. We collect them
in four possible groups whose overall focus is the refinement and advanced cosmological applications of different
key aspects of the tools here developed. Altogether, they have to be considered while getting ready for the devel-
opment of likelihood codes for modern galaxy surveys. From a more general perspective, this last achievement

has to be considered as the long term goal at which this work is aiming at.

IMPLEMENTATION OF GALAXY CLUSTERING. So far, the main object of our study has been the cosmological
weak lensing signal. However, parameter forecasts can improve a lot if weak lensing is properly combined with

galaxy clustering, as it is actually the scientific program of missions like Euclid and WFIRST. While the for-
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malism required is quite different, still the cosmological exploitation of the galaxy clustering probe (up to the
3-point statistics) implies numerical challenges very similar to those tackled within this manuscript. The statisti-
cal isotropy being broken in redshift space, galaxy clustering bispectra will not depend solely on the length of the
edges for a desired triangular configuration, but they will also depend on its orientation with respect to a chosen
line-of-sight. The main consequence is an easily diverging complexity of the data vector and of the related corre-
lations [Yankelevich & Porciani, 2019]. The core part of the code developed being a fast and precise evaluation
of remarkably big covariance matrices, we will be in the position to implement galaxy clustering observables and
related errors without increasing the complexity of the computation. Therefore, we consider the analysis of the

joint weak lensing-galaxy clustering probe as a milestone for the scientific program started with the present work.

COVARIANCE MATRICES COMPRESSION  The matter non-linear clustering induces correlations between differ-
ent cosmological scales and probes. We used the principal component analysis (PCA) to determine which subsets
of the observables, or linear combinations of them, are the most informative. While an overwhelming amount of
data will be produced over the next decade, PCA allowed us to prove that we can reduce the computational burden
involving the weak lensing bispectrum via the compression of the covariance matrix. In this thesis we have quali-
tatively identified three possible levels of dimensionality reduction: re-binning of the sources, PCA of the whole
covariance matrix, exclusion of the least informative observables. Starting from here, we advise to exactly test their
performance by looking at the actual amount of recovered information from the progressively reduced data vector.
Beside the possibilities here explored, it will be extremely interesting to push the study of summary statistics for
future galaxy surveys even further via the implementation of some existing approaches which so far have not been
applied in this specific context (cosmic shear full nulling [Bernardeau et al., 2014], Komatsu-Spergel-Wandelt
(KSW) estimator [Komatsu et al., 2005 ], skew-C; approach [ Munshi & Heavens, 2010], modal bispectrum [Fer-

gusson et al., 2012], binned bispectrum [Bucher et al,, 2010]) and the design of new ones.

TEST OF THE APPROXIMATIONS In this exploratory work we considered different approximations and they are
summarised in the conclusions to Chapter 3. Not expecting major impacts on the final signal-to-noise ratio anal-
yses, we employed them to reduce the computational burden associated to the forward modelling of covariance
matrices, extremely challenging task by itself. However, bearing in mind the more valuable task of realistic likeli-
hood implementations, the errors on the observables have to be refined exploring the validity range of the results
we obtained. At the level of systematics, we expect photometric errors to enhance the cross-correlations between
different tomographic redshift bins, potentially reducing the information content. Secondly, we will also need
to account for intrinsic alignments, sources of correlations between galaxy shapes which are not caused by lens-
ing from matter large-scale structures. One has to model all these effect not to bias the cosmological analyses
for modern galaxy surveys. Also, they can potentially alter the efficiency of the compression techniques listed in
the previous paragraph. At the level of covariance matrix, while the Limber and the flat-sky approximations are
well motivated at the scales of interest, the assumption of slowly varying polyspectra within the multipole bins

appears to be quite conservative. On the other hand, the level of complexity entailed by eventually relaxing this
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assumption would be unsuitable for forecast analyses like those we presented. In this sense, the data compression
techniques mentioned above will play a key role in reducing as much as possible the complexity of the data vector
allowing a much easier test of these assumptions. Finally, we advise to study and account for the effect of sources
of secondary non-Gaussianities which are not related to the matter clustering itself, namely the Born approxi-
mation, neglecting lens-lens coupling or using the reduced shear instead of the shear itself can lead to secondary

contributions to higher order correlations.

COSMOLOGICAL PARAMETER FORECAST ~ Summary statistics and tests of approximations are important steps to-
wards the major goal of a precise cosmological parameter forecast. The signal-to-noise ratio analysis just provides
an overall idea of the strength of our signal compared to the level of correlations. Further, to exactly understand
the improvement in terms of error bars for the single parameters, a full posterior exploration is required. Fisher
forecast and Markov Chain Monte Carlo (MCMC) methods are the most popular methods employed by the
community. The former is computationally less expensive compared to the latter and it can eventually be used to
get a fast feedback on the performance of the different actions we can take on the data vector and on the covari-
ance (relaxation of approximations and data compression). However it relies on the assumption of a multivariate
Gaussian posterior for the cosmological parameters and on the possibility to precisely compute the numerical
derivatives of the observables with respect to the cosmological parameters themselves. Both these assumptions
are rarely verified in real world applications. For example, the first is poorly realised whenever we want to measure
parameters for the first time and the data are not expected to be extremely constraining. In this case posteriors will
not be sharply peaked around the best fit value, around which a Guassian approximation could eventually work.
The validity of the second approximation is hindered by our ignorance on the exact physical description of the
matter non-linear clustering: polyspectra are well fitted by models available on the market but their derivatives
are poorly reproduced [Reimberg et al,, 2018]. MCMC methods instead allow deviations from this ideal situ-
ation but with the price of generating the vector of observables (and eventually the covariance matrix) at every
point in parameter space. In this sense, we consider dimensionality reduction crucial for a precise forecast within
up-coming galaxy surveys communities. While we will employ Fisher based analyses to access the performance of
approximations and dimensionality reduction, a full posterior exploration is required to obtain quantitative results

on the constraining power of our probes.

A possible alternative to be considered in parallel to MCMC analyses is represented by the recently introduced
forecasting technique Derivative Approximation for Llkelihoods (DALI) [Sellentin etal,, 2014]. It allows to approx-
imate non-Gaussian posteriors with a positive definite and normalizable analytical expression. More specifically,
the complex non-Gaussian features of the posterior are captured by a derivative expansion around its peak, sum-
marising this information via tensors of given symmetries. Being an analytical approach, it inherits all the valuable
aspects of a Fisher-like analysis. The formalism has been proved extremely flexible in reproducing strong corre-
lations in parameter space. We are presently testing its actual capacity at approximating realistic posteriors. In
case of great performance, we will capable to extend analytical studies like the one described in this manuscript to

the tensors required by the DALI expansion. Indeed, the have to be thought as a new kind of summary statistics
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beyond the simple covariance matrix or the theory vector (expectation value of the observables). At a more ma-
ture level of development for the DALI formalism, we will compare its forecasts with those coming from an actual
MCMC for the joint power spectrum-bispectrum probe. We will apply this study to both weak lensing and galaxy
clustering. In case of successful test, we may think to include the analytically-derived DALI tensors mentioned
above as part of future likelihood codes for up-coming galaxy surveys, marking a turning point for cosmological

data pipelines.
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