
HAL Id: tel-03010500
https://theses.hal.science/tel-03010500v1

Submitted on 17 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-Gaussian cosmology : theoretical and statistical
challenges for modern galaxy surveys

Matteo Rizzato

To cite this version:
Matteo Rizzato. Non-Gaussian cosmology : theoretical and statistical challenges for modern
galaxy surveys. Galactic Astrophysics [astro-ph.GA]. Sorbonne Université, 2019. English. �NNT :
2019SORUS334�. �tel-03010500�

https://theses.hal.science/tel-03010500v1
https://hal.archives-ouvertes.fr




ii



Acknowledgments

The journey that started three years ago has finally come to its end. This experience led me through both thrilling
and difficult moments, which eventually worked for the best, prompting a personal growth towards a full profes-
sional and personal maturity. I was not alone in this period of my life and I would like to thank all the people who
have been by my side during these intense three years.

First and foremost, my intellectual debt is to my supervisors, Francis Bernardeau and Karim Benabed, whose
professional experience and leadership were a guiding light for me throughout the whole PhD experience. In ad-
dition, I would like to render my warmest thanks to my thesis jury, Micheal Joyce as president, Buvanesh Jain and
Martin Crocce as reviewers, Elisabeth Krause, Eric Jullo and Vincent Desjacques as examiners. Special thanks to
Martin Kilbinger. I am grateful and fortunate to have a recommendation letter from him. I have greatly bene-
fited from the professional and personal exchanges with Sandrine Codis, Guilhem Lavaux, Silvia Galli and Tom
Charnock, whom I want to thank for their constant interest in my work, wisdom and golden pieces of advice. I
am in particular grateful to Elena Sellentin, who was an endless source of support and encouragement especially
during the last year of my PhD and with whom I will pursue further fruitful collaborations. Thank you Elena for
giving me the chance to pursue the goal of becoming a researcher. Fabien Lacasa and Paulo Reimberg have been
greatly tolerant and supportive during the preparation of our papers together. I am looking forward to more col-
laborations in the near future. I also would like to expressmy very great appreciation to Alexandre Barreira, whose
crucial suggestions were of great help in identifying an important weakness in my very first scientific manuscript.
My sincere thanks also go to Patrick Peter, my thesis Godfather, who was always ready to sacrifice part of his pre-
cious time whenever a young researcher like me needed a small piece of advice. Thank you for your impeccable
balance between professionalism and deep human understanding. This PhD study would not have been possible
without the technical support of Stephane Rouberol, who smoothly runs the cluster Horizon for us all, and the
meticulous work of all the people who alleviated the administrative burden entailed bymy activity as a researcher.
In this sense, I would like to conveymy gratitude to Alexandre Dieng, Amandine Guillemois, Chantal Le Vaillant,
Jason Payet,  Nitaya Singsengsouvanhm, Olivia Leroy and Roselys Rakotomandimby. Furthermore, I acknowl-
edge financial support from the ILPLABEX (under referenceANR-10-LABX-63), financed by French state funds
managed by the ANR within the Investissements d’Avenir programme under reference ANR-11-IDEX-0004-02,
and from the Centre National d’Etudes Spatiales (CNES) fellowship program

iii



The PhD is not just an academic experience. The three years I spent in IAP, in Paris, gave me the chance to
discover and strengthen deep friendship bounds which will be everlasting. Doogesh, thank you for all the support
you have been providing me with since the first day of our PhD, a support which is at the same time human and
professional. I found a fantastic person in you. A voice echoing from the back of office 035 makes me remind (of
course this is a joke!) of theother great friend Imadehere: theuntouchableBigA(rno). Thankyou for your lessons
on coding performance and on the healthy properties of oranges in the morning! It was a pleasure to share the
office also with Martin Pernot-Borras: your peculiar humour will always be remembered along with your never
ending-Friday morning loquacity on politics and french social welfare. Thank you Pierre Boldrini and Shweta
Dalal for all the light-hearted moments we spent together. I hope one day we will finally have a pasta at Shweta’s
place! I will also never forget Alexandre Barthélémy (my Euclid colleague and half-brother), Lukas Furtak and all
our coffee breaks together: a daily guaranteed moment of joy.

I am grateful to my mother Francesca and my father Stefano, who have provided me moral and emotional sup-
port not only during this difficult experience, but also in every single choice I made in my life. Special thoughts
for my grandmother Ofelia who has always been caring even in the distance, even in the sickness. My deepest
appreciation goes to Veronica who became one of the most important persons in my life. Finally, I will always be
indebted to all my friends from Italy, so far and yet so close, for their unconditional affection and for always being
ready to warmly welcome me back home. Our friendships will always be unbreakable. Of course, thank you too,
small Matisse, for keeping me awake even in the most peaceful nights.

iv



Cosmologie Non-Gaussienne : défis théoriques et statistiques pour les relevés de
galaxies modernes

Résumé

Nous détaillons dans cette thèse les différentes étapes nécessaires à l’ implémentation numérique optimale du cal-
cul de la vraisemblance des paramètres cosmologiques appliqué aux relevés modernes de lentillage gravitationnel
faible des grand structures. En particulier, nous nous concentrons sur la détection conjointe du spectre de puis-
sance et du bispectre du lentillage gravitationnel faible. Pour ce faire, nous avons relevé les défis numériques requis
par une analyse complète. Dans un premier temps, nous dressons l’état de l’art nécessaire à la compréhension du
formalisme de la sonde cosmologique susmentionnée et nous décrivons comment obtenir une estimation non
biaisée de lamatrice de covariance pour les observables considérées. En supposant une vraisemblance gaussienne
multivariée, nous avons développé un algorithme de haute performance permettant de prédire les observables
tomographiques rééchantillonnées avec leur matrice de covariance conjointe en tenant compte des fonctions de
corrélations de 2 à 6 points et des corrélations avec les modes hors du relevé. La performance de notre code nous
permet de répondre aux exigences scientifiques des relevés de galaxies des dix prochaines années. Nousmontrons
que le bispectre du lentillage gravitationnel faible améliore le signal sur bruit (S/N) de notre analyse conjointe
du spectre et du bispectre d’environ 10% en comparaison avec une analyse du spectre seulement. Par conséquent,
le bispectre est une source non négligeable d’information cosmologique pour les relevés futurs. En outre, nous
sommes capables de quantifier l’impact des incertitudes théoriques liées à la description de la matière noire dans
le “modele des halos” qui est utilisé pour construire nos observables; cet impact se trouve être négligeable pour
l’analyse du S/N. Finalement, nous étudions la possibilité de réduire les données pour optimiser les analyses fu-
tures dubispectre du lentillage. Nous trouvons qu’en ignorant les erreurs systématiques une analyse ne concernant
que 5 échantillons en décalage vers le rouge permet d’obtenir lamême quantité d’information que dans le cas d’un
relevé semblable à celui d’Euclid, qui utilise 10 échantillons sans améliorer le S/N. Nous explorons également
l’analyse en composantes principales et la dépendance de l’information cosmologique en fonction de la forme des
triangles comme méthodes permettant de réduire la complexité du problème.
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Non-Gaussian Cosmology: theoretical and statistical challenges for modern
galaxy surveys

Abstract

In this thesis, we address key points for an efficient implementation of likelihood codes for modern weak lensing
large-scale structure surveys. Specifically, we will focus on the joint weak lensing convergence power spectrum-
bispectrum probe and we will tackle the numerical challenges required by realistic analyses. In order to clearly
convey the importance of our research, we first provide an in-depth review of the background material required
for a comprehensive understanding of the final results. The cosmological context of the study is provided, fol-
lowed by a description of the technical elements inherent to unbiased covariance matrix estimation for the probe
considered. Under the assumption of multivariate Gaussian likelihood, we developed a high performance code
that allows highly parallelised prediction of the binned tomographic observables and of their joint non-Gaussian
covariance matrix accounting for terms up to the 6-point correlation function and super-sample effects. This per-
formance allows us to qualitatively address several interesting scientific questions. We find that the bispectrum
provides an improvement in terms of signal-to-noise ratio (S/N) of about 10% on top of the power spectrum
alone, making it a non-negligible source of information for future surveys. Furthermore, we are capable to address
the impact of theoretical uncertainties in thehalomodel used tobuildourobservables; withpresently allowedvari-
ations we conclude that the impact is negligible on the S/N. Finally, we consider data compression possibilities
to optimise future analyses of the weak lensing bispectrum. We find that, ignoring systematics, 5 equipopulated
redshift bins are enough to recover the information content of a Euclid-like survey, with negligible improvement
when increasing to 10 bins. We also explore principal component analysis and dependence on the triangle shapes
as ways to reduce the numerical complexity of the problem.
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Introduction

Understanding the present accelerated expansion of theUniverse is one of themost important challenges inmod-
ern Cosmology. In order to provide a theoretical explanation for this incredible observation, a plethora of the-
oretical model have been designed over the last few years, some of which introduce corrections to the standard
cosmological scenario ΛCDM. This diversity of theoretical ideas shows our current ignorance and defines the
need for new observations. Based on our present-day knowledge, existing plausible models will impact obser-
vational signatures by tiny amounts that can only be decisively distinguished using high-precision astronomical
surveys covering a major fraction of the sky and great cosmological distances. In preparation for future missions
like Euclid, Dark Energy Survey (DES, Flaugher [2005]), Large Synoptic Survey Telescope (LSST, Ivezić et al.
[2019]) or the Wide Field Infrared Survey Telescope (WFIRST, Green et al. [2011]), we need to understand the
performance of the survey observations in terms of cosmological parameter error forecasts for deviations from the
ΛCDM model.

Among the different ways that we can look at the light coming from the Universe, weak lensing is an extremely
powerful cosmological probe. We exploit the detection of light from distant sources to quantify the emergent
cross-correlations between the observed shapes of distant galaxies induced by the underlying total matter distri-
bution. More importantly, weak lensing does not require any knowledge of the relation between the observed
distribution of galaxies and the underlying dark matter one. For this reason, this cosmological probe is not just
important by itself, but it can actually be combinedwith the inferred galaxy distribution in redshift and at different
scales (galaxy clustering) to improve the scientific performance of our analyses. This is indeed the strategy of the
Euclid and WFIRST missions. However, in order to exploit the information encoded in this probe, we have to
deal with the non-Gaussian statistics induced by the non-linear clustering of the matter field being investigated.
Therefore, it is necessary to go beyond the 2-point statistics (which is sufficient to fully characterise a Gaussian
field) to recover the cosmological information left behind. One possible solution is via the estimation of the 3-
point correlation function. In configuration space, these statistical tools are respectively named power spectrum
and bispectrum. On top of that, when we perform a combinedmeasurement of the two (even if complementary)
we are actually probing the same underlying physics. Therefore, these observables are correlated and we need to
account for this crucial aspect in order not to double count the information contained.

In terms of exploitation of the observed weak lensing bispectrum, modern cosmological surveys, such as those
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listed above, represent a challenge for various reasons. Their capacity to detect the binned redshift position of
galaxies and to observe the sky under a wide angular range are key ingredients to have access to a precious time-
and scale-dependent information on thematter clustering. On the other hand, its exploitation comes at a cost: an
overwhelming number of observables must be measured and along with them their errors and cross-correlations
must be taken into account. Covariance matrices encapsulate this information. For this reason, data analyses and
forecasts for future galaxy surveys are expected to be extremely complex and computationally costly.

A second problematic aspect of future analyses is related to the underlying statistical approach employed in
some circumstances. An exact cosmological forecast requires the exploration of the parameter posterior via sam-
pling techniques like Markov Chains Monte Carlo or nested sampling methods. This allows us to identify best
fit values, to visualise confidence regions and correlations, and eventually to compute marginal and conditional
probabilities. Over the past decades, analytical approaches have been introduced in order to avoid the full poste-
rior exploration. This can be very useful whenever we have limited computational resources or when forecasting
parameter constraints of a future experiment andwewant to test different configurations of it. TheFisher approxi-
mation is a famous example. With this approach, the posterior is approximated around the peak via a multivariate
Gaussian and it allows an analytical determination of the uncertainties on the parameters. However, the level of
non-linearity present in the physical process we are interested inmay spoil the quality of this assumption. Another
weakness of the Fisher approximation is the need for computing the derivatives of the observables with respect
to the cosmological parameters of interest. While we are currently capable of reproducing the amplitude of a
given signal up to certain scales, we still lack a way to reproduce their derivatives at high enough precision so as
not to bias our cosmological analyses. Therefore, we would like to find a trade-off between the rapidity typical of
Gaussian-based techniques and the correctness of the sampling techniques in terms of posterior exploration.

Inmy doctoral work, I tackled these key points which will hinder, unless deeply understood and solved, the sci-
entific success of upcoming galaxy surveys. The aim of this research is to provide definite answers to the following
two questions:

• How can we optimise the computation of the covariance matrices (errors and correlations in the data sets) for
future weak lensing measurements beyond the 2-point statistics?

• How can we go beyond the standard data analysis approaches in Cosmology?

The content in this manuscript has been previously presented in the main paper produced during my research
at Institut Astrophysique de Paris (IAP)

Rizzato M., Benabed K., Bernardeau F., Lacasa F.,
Information content of the weak lensing bispectrum for the next generation of galaxy surveys,
2018, arXiv: 1812.07437
Submitted toMNRAS.
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The first two chapters provide a thorough review of the background material required for understanding the re-
sults, which are presented in Chapter 3. Part of the introductory sections on the topic of covariance matrix esti-
mation within Chapter 2 has been inspired by the discussions engendered from the following collaborative work

Sellentin E., Joachimi B., Barreira A., Giocoli c., Heavens A., Kilbinger M.,
Kitching T., Rizzato M., Schmidt F., Taylor A.
Euclid Weak Lensing Covariance Task Force Report,
Internal Euclid paper.

In the abovemanuscript, Iwrote asmain author an important section regarding the performance of the halomodel
for the analytical derivation of the power spectrum covariance matrix for the weak lensing convergence.

Conclusions and perspectives derived frommy doctoral activity are presented in the back-matter of this thesis.
They are drawn from the work related to the paper above and from other projects which were the focus of my last
months at IAP

Reimberg P., Bernardeau F., Nischimichi T., Rizzato M.,
Failures of Halofit model for computation of Fisher Matrices,
2018, arXiv: 1811.02976.
Submitted toMNRAS.

Rizzato M., Sellentin E.,
Analytic reconstruction of non-Gaussian posteriors for precision cosmology
Upcoming publication.

While the content of these papers will not be included in the presentmanuscript, they were an occasion of enrich-
ment for my scientific awareness regarding the problematic points outlined in this introduction. Also, they will be
a major source of inspiration for my future activity as a researcher.

I wish you a pleasant journey.

Matteo Rizzato
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The goal of this chapter is to provide the reader with some useful concepts in order to understand and contex-
tualise the study presented in the following parts of this manuscript.

Wewould like to underline that the theoretical background employed in thisworkwill not account forModified
Gravity corrections [Clifton et al., 2012; Ishak, 2019]. Therefore, the results and the conclusions derived, both at
the level of background material and at the level of original research, are meant to be valid within the context of a
standard general relativistic scenario. However, we leave room for future research aiming at the extension of the
efforts here presented to more complex and less standard scenarios.

In linewith the cosmological principlewewill assume that theUniverse is statistically homogeneous and isotropic
at every time on sufficiently large scales. Specifically, 1) different positions in the Universe are physically indis-
tinguishable and 2) observations performed in different directions, from no matter which point in the Universe
(point 1), leads to the same physical observations. These are strong conceptual assumptions: however, we have
sound evidences for their validity [Hogg et al., 2005; Ntelis et al., 2017] and they strongly bind (help) the mathe-
matical description of the observable Universe around us. This description will be indeed the focus of Sec. 1.1.

Clearly, a perfectly homogeneous Universe is a model too simplistic for the description of the cosmological
observations at smaller scales. The simple existence of this higher dense paper page and of a the lower dense air
layer in front of it tells us that indeed it is possible to distinguish two points in space P1, P2 (and time) via, for
example, a simple measurement of the matter density field, ρP1 , ρP2 . These tiny space-dependent fluctuations are
indeed present and of paramount importance for cosmological observations. Usual practice in Cosmology is to
separate a given field defined on the space-time f px, tq in its background-homogeneous component f ptq and in a
“perturbation part” δf px, tq which is defined to be vanishing, at a given time, if an ensable average is performed
on it, i.e. xδf px, tqy ” 0. At the level of notation we will distinguish between the total field and the background
component of it via the dependence on the coordinates, being solely on the time for the latter. More often, the
dimensionless contrast density field is used

δf px, tq “ f px, tq ´ f ptq
f px, tq . (1.1)

While the observable Universe has been extensively exploited at the level of background expansion [e.g. Kowalski
et al., 2008; Amanullah et al., 2010, and references therein], perturbations at smallest scales are actually precious
sources of cosmological information for the present and next generations of galaxy surveys (e.g. Collaboration
[2005]; LSST ScienceCollaboration et al. [2009]; Laureijs et al. [2011]; DESI Collaboration [2016]). While the
actual matter perturbations δm can not be directly accessed, other fields can be employed as proxies for the actual
underlyingmatter distribution, such as the number density of galaxies δg or the shape distortion of far sources due
to intermediatematter distribution (weak lensing convergence field κ or the weak lensing shear field γ). However,
a single measurement of the properties of these tracers have a very low signal-to-noise ratio and several detections
of the same phenomena have to be performed. In addition, the same initial perturbations imprinted in the cosmic
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microwave background (CMB) [Kamionkowski&Kosowsky, 1999;Hu&Dodelson, 2002; Samtleben et al., 2007]
and seeding the evolution of the observed large-scale structure (LSS) [Peebles, 1980; Dodelson, 2003], have an
intrinsic stochasticity originating from quantum fluctuations of a scalar field. All these facts motivate a statistical
approach to the description of the cosmological fields andwewill review themain aspects of the related formalism
in Sec. 1.2.

As for the matter field, its anisotropies are originally imprinted in the temperature map of the cosmic microwave
background where δT{T „ 10´5 [Planck Collaboration, 2014, 2016, 2018] . Due to a strong coupling between
photons and matter particles, they also seed the fluctuations of the matter field δm px, tCMBq ! 1 at the time at
which the CMB is produced. Starting from this moment, the matter perturbations δm px, t ą tCMBq evolve in
time, the value of which will be determined by the gravitational collapse across the different cosmological epochs.
In general, the associated dynamical equations are highly non-linear. However, at early time or if smoothed on
large scales the matter perturbations are small enough to allow a linearization of the dynamical equations around
the background homogeneous solution. At small scales and at late time, the non-linear nature of the equations of
motion can not be hidden and theoretical efforts are requested to produces a description as much precise as pos-
sible of the late time matter distribution. In Sec. 1.3 we will review the model for non-linear clustering employed
throughout the work presented in this manuscript.

We would like to comment on one last point before letting the reader start his journey. As the title of this
chapter does underline, our results and review material are meant to apply only to that part of the (light-cone) of
the Universe which can be observed by us, the Observable Universe. In particular (and we will give a more formal
definition later) it is the region around us within which events have had the time to be in causal contact with us by
today, starting from the origin of the Universe.

1.1 The homogeneous Universe

1.1.1 The Einstein equations

The definition of the cosmological observables relies on a robust formalism that has deep roots in the theory of
General Relativity, first formalised in 1916 byAlbert Einstein. While several attempts have been recently explored
aiming at relaxing some of its assumptions to accommodate for more complex scenarios, we will focus on its orig-
inal formulation which is anyway well tested and compatible with most of the present observations within the
achievable instrumental precision [Bull et al., 2016].

Our starting points are the well known Einstein equations

Rμνpxq ´ 1
2
gμνpxqRpxq “ 8πG

c4
ÿ

i

Tpiq
μν pxq, x “ tx, tu (1.2)
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All the tensors involved are local, evaluated at a point of coordinates x “ tx, tu of the space-time, and have Greek
indices taking values 0, 1, 2, 3, the 0th component referring to the time component. In the present section and
throughout this manuscript, we will refer to spatial vectors (either three- or two-dimensional) by writing them in
bold italic. The modules of these vectors will instead be written in regular italic, i.e. x “ |x|. On the left hand
side (l.h.s.) we can identify the Ricci tensor Rμνpxq and the Ricci scalar Rpxq, obtained by contracting the former
with themetric gμνpxq. On the right hand side (r.h.s.) we have the Newton’s gravitational constantG, the speed of
light c and the sum over the energy-momentum tensors of the different species populating the Universe. For sake of
completeness, we remind that the Ricci tensor is defined in the terms of the Riemann tensor as

Rμνpxq “ Rα
μανpxq “ Rα

αμν
pxq, (1.3)

which is in turns defined as

Rμ
νρσpxq “ BρΓμ

σνpxq ` Γμ
ρβpxqΓβ

σνpxq ´ BσΓμ
ρνpxq ` Γμ

σβpxqΓβ
ρνpxq, (1.4)

where Γα
βρpxq is the so called affine connection.

Γα
βρpxq “ 1

2
gαλpxq `Bβgλρpxq ` Bρgλβpxq ´ Bλgβρpxq˘

, Bα “ B
Bxα (1.5)

We implied, and we will always do, a sum over repeated indices. The request for isotropy and homogeneity, along
with the assumption of describing the different components of the Universe via a perfect fluid model, bounds the
shape of the energy-momentum tensor to be

Tpiq
μν pxq “ `

Pi ptq ` ρi ptq
˘

uμuν ´ gμν pxq Pi ptq . (1.6)

Pi ptq and ρi ptq are respectively the pressure and the energy density of the given fluid ith as function of time and uμ

is the four-dimensional velocity of the particles relative to the fluid at rest.

1.1.2 Locating objects around us: Friedman-Lemaître-Robertson-Walker metric

Cosmological observations require the capacity to measure distances tΔx, Δtu in the Universe between different
events, and between us, observing, and some event of interest. The symmetries highlighted in the introduction of
the present chapter impose a specific formal shape to the metric gμν pxq. The most general one compatible with
a four-dimensional space embedding a three-dimensional sub-space invariant under translations and rotations
was independently found by Alexander Friedman and Georges Lemaître, and rigorously derived by Howard P.
Robertson and Arthur Geoffrey Walker [Lemaître, 1931, 1933; Robertson, 1935, 1936a,b]. Given a reference
frame of axes x̂1, x̂2, x̂3 and a set of polar coordinates pr, θ, φq¹ the Friedman-Lemaître-Robertson-Walker metric

¹Throughout the manuscript we will always define θ and φ to be respectively the polar angle and azimuth angle. Therefore
px1 “ r sin θ cos φ, x2 “ r sin θ sin φ, x3 “ r cos θq.
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(FLRW) is defined via the following line element

gFLRWμν pxqdxμdxν ” c2 dt2 ´ a2ptq
„

dr2

1 ´ Kp3qr2
` r2 pdθ2 ` sin2 θd2φq

ȷ

” c2 dt2 ´ a2ptqdℓ2. (1.7)

From now, our conclusions will always be derived (unless differently stated) under the assumption of a FLRW
metric: for simplicity we will omit this specification. In Eq. (1.7), we introduced the scale factor aptq, the Kp3q

space curvature and the three-dimensional, time independent comoving line element dℓ. Depending on the sign of
Kp3q, this three-dimensional sub-space is locally isometric to a sphere (Kp3q ą 0), to a pseudo-sphere (Kp3q ă 0)
or to a flat Euclidean space (Kp3q=0). The scale factor aptq describes the contribution from the expansion of the
Universe to the dynamics of the physical separation between 2 points. If this contribution is not considered, we
are specifically talking about the comoving distance between the aforementioned objects and it is related to the
physical one simply as

dphy. “ a ptq dcom.. (1.8)

In the following, we will assume that the scale factor and the radial coordinates are normalised in such a way that
the values of Kp3q can be either ´1, 0 or 1, i.e.

a ptq Ñ a ptq
|Kp3q| , ra ptqs „ length, (1.9)

r Ñ r|Kp3q|, r is dimensionless. (1.10)

In these specific cases the comoving three-dimensional line element will be: 1)

dℓ2 “ d2r ` r2 pdθ2 ` sin2 θd2φq “ d2x1 ` d2x2 ` d2x3, for Kp3q “ 0, (1.11)

which is metric for a flat Euclidean space, 2)

dℓ2 “ dr2

1 ´ r2
` r2 pdθ2 ` sin2 θd2φq “ d3ω ` sin2 ω pdθ2 ` sin2 θd2φq for Kp3q “ `1, (1.12)

where in the second part of the equation we defined r “ sin ω, 3)

dℓ2 “ dr2

1 ` r2
` r2 pdθ2 ` sin2 θd2φq “ d2ω ` sinh2 ω pdθ2 ` sin2 θd2φq for Kp3q “ ´1, (1.13)

where in the second part of the equation we defined r “ sinh ω. Respectively, Eq. (1.12) and Eq. (1.13) define
themetric for a three-dimensional space with constant positive and negative curvature. In a synthetic way, we can
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summarise the previous cases via a redefinition of the radial coordinate

gμνpxqdxμdxν “ c2 dt2 ´ a2ptq rdω2 ` F 2
K pωq d2Ωs ,

dω “ dr?
1 ´ Kp3qr3

, FK pωq “

$

’

’

’

&

’

’

’

%

sin ω if Kp3q “ `1,

ω if Kp3q “ 0,

sinh ω if Kp3q “ ´1.

, (1.14)

where d2Ω “ pdθ2 ` sin2 θd2φq. This last notationwill be useful for defying cosmological distance in a geometry-
independent way. Given that the scale factor aptq is commonly used as a time variable itself, we will often omit its
time dependence. This will also help in simplifying the required equations in the following.

The Friedmann equations The Einstein Equations can be written in terms of the FLRW metric. More im-
portantly, Eq. (1.2) can be written as a system of 2 independent equations, known as Friedman equations

:a
a

“ ´4πG
3

ÿ

i

`

ρiptq ` 3Piptq
˘ “ ´4πG

3

ÿ

i

ρiptq p1 ` 3ωiptqq , (1.15)

H2ptq “ 8πG
3c4

ÿ

i

ρiptq ´ Kp3q

a2
, (1.16)

where H ptq “ 9a
a is the so called Hubble parameter, which usually written as

H ptq “ HoE ptq (1.17)

and ωi “ Pi{ti is the equation of state for a specific component of the Universe. As commonly indicated in the
literature, physical quantities with sub-script 0 refers to the present value of the corresponding quantity. In the
specific case of the Hubble parameter, its present value is usually given in terms of the dimensionless parameter h
as

Ho ” 100 hKm s´1 Mpc´1. (1.18)

Along with Eq. (1.15) and Eq. (1.16), we can introduce the energy conservation equations for the different
components in an expansing Universe

dρiptq
dt

“ ´3
`

ρiptq ` Piptq
˘ 9a

a
. (1.19)

For a constant equation of state ωi, it can be easily solved leading to the dynamical evolution for the component
of interest

ρiptq “ ρi,0

´a0
a

¯3p1`ωiq
(1.20)

Just to give a couple of examples, pressure-less matter hasΩm “ 0while radiation has ωr “ 1{3. Throughout this
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manuscript, we will mainly interested in the former.

Density parameters For later convenience, we can define a dimensionless density parameter for each com-
ponent in the Universe quantifying its fractional density in time

Ωi ptq ” 8πG
3H2ptq ρi ptq . (1.21)

Given this last definition, the spatial curvature of theUniverse is in general quantified by the following dimension-
less density parameter

Ωk ptq ” 1 ´
ÿ

i

Ωi ptq “ ´ Kp3q

a2H2 ptq . (1.22)

Finally, another important concept worth to introduce is the one of critical density ρc as

ρc ptq ” 3H2 ptq
8πG

, Ωi ptq ” ρi ptq
ρc ptq . (1.23)

We would like to conclude this section with a last remark on our conventions. For a spatially-flat Universe, we
will use a dimensionless scale factor normalised to its present value, therefore a0 “ 1. In particular, the FLRW
metric expression introduced in Eq. (1.7) is preserved only if r Ñ ra0 and Kp3q Ñ Kp3q{a20, the latter not being
equal anymore to only ˘1, 0.

1.1.3 Cosmological distances

Defining andmeasuring astronomical observables, more importantly the weak lensing ones described in Chapter
2, requires the localisation of an object in the observed sky. While we can easily define a polar coordinate system
to locate them on the sphere centred in the observer, the definition for a suitable third coordinate to describe its
distance from the same point or from other objects is more ambiguous. In the present section, we will review the
main definitions we will need for a deep understanding of this work [Weinberg, 1972; Weedman, 1986; Peebles,
1980].

Redshift Commonly labelled as z, the redshift has a simple operational definition as the shift of spectral lines
due to expansion of the Universe. If a specific photon of a given a physical (non-comoving) wavelength λe is a
emitted at a time te, then the observed physical wavelength λ0 at time t0 will be

λ0 “ λe
a pt0q
a pteq , (1.24)
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leading to the following definition of redshift

zt0 pteq ` 1 ” a pt0q
a pteq . (1.25)

In particular, the redshift is a quantity we canmeasure fromobservations. Fromnowonwewill drop the subscript
t0 assuming that the observation always occur at present time.

Angulardiameterdistance Given anobject at redshift z, of physical linear sizeΔ and subtendedby an angle
θ if observed from a point at redshift z “ 0, the angular diameter distance is defined as

DA pzq ” Δ
θ

(1.26)

where clearly bothΔ and θ have a dependence on the redshift of the object. In a FLRWmetric, we can express the
angular diameter distance as

DA pzq “

$

’

’

’

&

’

’

’

%

c
H0p1`zq

?
|ΩK,0|

FK

´

a|Ωk,0|
şz
0

dz1

Epz1q

¯

, if Kp3q ‰ 0,

c
H0p1`zq

şz
0

dz1

Epz1q , if Kp3q “ 0.

(1.27)

where the functionsFK and E were respectively defined in Eq. (1.14) and in Eq. (1.17).

Longitudinal comoving distance The longitudinal comoving distance, also known as line-of-sight distance,
between two events assumed aligned on the three-dimensional sphere and occurring at times z1 and z2, is defined
as the distance covered by the light while travelling between them. Given the metric in Eq. (1.14), it can be easily
derived via the integration of the radial comoving coordinate ω along null-geodesics (i.e. d2s “ 0)

χ pz1, z2q “ c
H0

ż z2

z1

dz1

E pz1q . (1.28)

For later convenience, it is worth to notice that in a spatially-flat Universe the angular distance to the point at
redshift z2 in the comoving coordinates of the point at redshift z1 coincides with the longitudinal comoving distance
between the 2 points

DA pz1, z2q |Kp3q“0, z1 “ χ pz1, z2q (1.29)

and Eq. (1.29) is symmetric in the two redshifts.

We can also define a physical distance associated to the recently introduced comoving one. The proper distance
to an event at z2 measured from an event at z1, will be given by the comoving distance between the twomultiplied
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by the scale factor apz1q, i.e.
dz1
p pz2q “ apz1qχ pz1, z2q (1.30)

Therefore, we are now capable to define our Observable Universe, term which inspired the title of this chapter: it
will be simply given by our proper distance up to the Big Bang, at time z Ñ 8. In particular, the size of our
observable Universe is of about 14.4 Gpc.

1.1.4 ΛCDM and Einstein-De-Sitter cosmological models

Given the formalism developed so far, by solving the Friedman equations (1.15) and (1.16) for a given evolution
of the density parameter Ωi, we can derive a specific solution for the scale factor aptq. Two FLRW models of
Universe are of particular interest.

ΛCDM model The ΛCDM (Λ Cold Dark Matter) model is a 6-parameter FLRW-model defining an Universe
populated by collision-less, pressure-less, non-relativistic (cold) particles of matter which can either have only
gravitational interactions (dark matter Ωd) or all the known ones. In the latter cases, they are usually dubbed
as baryons (Ωb). Both these types of matter have the same equation of state, namely ωm “ 0 (pressure-less).
However, they are present with different density fractions, respectively h2Ωd “ 0.120 ˘ 0.001 and h2Ωb,0 “
0.0224˘0.0001, according to the latest observations² [PlanckCollaboration, 2018]. TheGreek letter Λ stands for
an exotic component with a constant negative equation of state ωΛ “ ´1 and density ofΩΛ,0 “ 0.6889˘ 0.0056
[Planck Collaboration, 2018].

The model is also defined by further requests on the primordial Universe such as the the primordial fluctua-
tions seeding theCMB anisotropies beingGaussian distributed, adiabatic andwith an almost scale-invariant power
spectrum. While referring to major reviews for all the details concerning the definition of the ΛCDM model, its
parameters and extensions [Planck Collaboration, 2014, 2016, 2018, and references therein], we reserve the right
to come back to these concepts later, when more tools, specifically the concept of correlation functions, will be
introduced.

Einstein-De-Sitter TheEinstein-De-Sittermodel (EdS) is aFLRW-model defining anUniverse entirely dom-
inated bymatter, i.e. (Ωm “ 1), with no curvature (Kp3q “ 0). Even though this model does not give the right de-
scription of our observable Universe, however its simplicity allows to derive several analytical results with regards
to the growth of the large-scale structure and which are proved to be a good approximation to th actual dynamics
occurring in the ΛCDM scenario.

²The errors reported correspond to the 1σ confidence region.
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1.2 The description of cosmological fields

Given themotivations outlined in the introduction, in this section we will provide the tools to describe the statis-
tical properties of a generic random field δf pxq (in this section we will omit the time dependence of the generic
random field). We will then move to the more specific case of the cosmological fields.

1.2.1 Ensemble average

We are dealing with a random field whenever the values of the field δf pxq at a given set of points are random
variables.

The n´points joint probability Pδf prαns , rxnsq is defined as the probability that the field δf takes values δf pxiq P
rαi, αi ` δαis at the point set txiui“1,...,n. A formal definition can be given

Pδf prαns , rxnsq “ x
n

ź

i“1

δD pδf pxiq ´ αiqyδf (1.31)

where the operator x‹yδf stands for the ensemble average associated to the specific field of interest. In analogy with
the probability density distribution for random variables, we can define the probability density functional P over
the space of the possible realisations δ̂f of the field δf. Similarly, it allows to formally define the ensemble average
of a functional operatorOrδfs of the field as

xOrδfsyδf “
ż

Drδ̂fs Pδfrδ̂fs Orδ̂fs. (1.32)

A more operational definition can be given thanks to the concept of n´points joint probability introduced in
Eq. (1.31). Given one realisation δ̂f of the field δf, the value of the probability density functional for the specific
realisation can be built as the limit for N Ñ 8 of the N´points joint probability for the value of that realisation
once discretized over a grid of N points [Mcclelland & Silk, 1978]. Therefore, the formal definition (1.31) can
actually be rephrased in a more operative way as

xOrδfsyδf “ lim
NÑ8

`N
ź

l,m,n“´N

ż `8

´8
d δ̂

lmn
f Prδ̂lmn

f s ‹ rδ̂lmn
f s. (1.33)

The quantities tδ̂lmn
f ul,m,n“´N,...,`N are simply the values of the realisation δ̂f over the nodes of the grid labelled by

the set of indices l,m, n. Therefore, the quantity P
”

δ̂
lmn
f

ı

has to be understood as the n´points joint probability

for the field to takes values in the range rδ̂lmn
f , δ̂f ` δδ̂

lmn
f sl,m,n“´N,...,`N over the nodes of the grid.

14



1.2.2 Correlation functions

Formal definition In order to fully characterise the statistical properties of the matter density field (later
simply noted as δm), we choose to follow the traditional approach of using the n-point correlation functions [Pee-
bles, 1980; Bertschinger, 1992; Matsubara, 1995], which are defined as the joint ensemble average of the field in
an arbitrarily number of locations txiui“1,...,n, formally

εδf px1, . . . , xnq ” xδf px1q . . . δf pxnqyδf . (1.34)

In analogy with the moments for real variables, we define the characteristic functional of a random field δf as

Φδfrks ”
ż

D
”

δ̂f
ı

exp
„

i
ż

d3r k prq δ̂f prq
ȷ

Pδf

”

δ̂f
ı

“ xexp
„

i
ż

d3r k prq δ̂f prq
ȷ

yδf . (1.35)

It canbe easily proved that the two concepts introducehere are actually deeply connected, as the following relation
holds

εδf px1, . . . , xnq “ p´iqn δn Φδfrks
δk px1q . . . δk pxnq







k“0
. (1.36)

In analogy with the concept of cumulants for real variables, we can define the connected n-point correlation function
for the field δf

εcδf px1, . . . , xnq ” xδf px1q . . . δf pxnqyδf, c “ p´iqn δn Φc
δfrks

δk px1q . . . δk pxnq






k“0
, Φc

δfrks “ logΦδfrks (1.37)

Similarly to the the real variable case, a cumulant expansion for a generic n-point correlation function is given in
terms of the lower order connected correlation functions

εδf px1, . . . , xnq “ εcδf px1, . . . , xnq `
ÿ

SPPptx1,...,xnuq

ź

σPS
εcδf

`

xσp1q, . . . , xσpnq
˘

(1.38)

where the sum is made over the proper partitions (any partition except the set itself) of tx1, . . . , xnu and σ is thus
a subset of tx1, . . . , xnu contained in the partitionS . A very useful diagrammatic representation of this decompo-
sition is given in the literature [Bernardeau et al., 2002] and some practical examples will be given in the following
chapters.

1.2.3 (Non-)Gaussian random fields

In this section, we will introduce some of the main features of Gaussian random fields and we will highlight their
importance in Cosmology in Sec. 1.2.4. By contrasts, we will define as non-Gaussian random fields those who do
not belong to this particular group of random fields.
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Definition A Gaussian random field is defined by a probability density functional, introduced in Sec. 1.2.1,
whose logarithm is quadratic in the field itself

PG rδfs « exp
„

´ 1
2

ż

d3xd3yδf pxqK px, yq δf pyq
ȷ

(1.39)

for some kernelK px, yq. By applying Eq. (1.31), we can actually have a more physical intuition of the definition
of a Gaussian field. Specifically, the n-points joint probability is simply given by a multivariate Gaussian

PG, δf prαns , rxnsq “ 1
ap2πq2ndet rCsexp

«

´ 1
2

n
ÿ

i,j“1

αiC´1
ij αj

ff

(1.40)

where Cij ” K
`

xi, xj
˘

is the covariance matrix of the field.

Properties of thecorrelation functions Via the relations in Eq. (1.36), the 2-point correlation function
of a Gaussian field is related to the kernelK px, yq as

εδf px1, x2q “ ´ δ2 Φδfrks
δk px1q δk px2q







k“0
“ K px1, x2q “ C12 (1.41)

Thanks to the same formalism, via recursive functional derivations it is straightforward to prove an important
theorem for Gaussian random fields, the Wick theorem. Specifically it allows to directly relate all the even-point
correlation functions to the 2-point correlation function in Eq. (1.41) as

εδf px1, . . . , x2nq “
ÿ

pair ass.

ź

pairs pi,jq
εδf

`

xi, xj
˘

(1.42)

where the sum runs over all the possible pair associations of the points considered in the correlation, and the
product multiplies all the 2-point correlation functions evaluated at the points of each pair for a given possible
association. Further, all the odd-point correlation functions are vanishing

εδf px1, . . . , x2n`1q “ 0. (1.43)

Therefore, by measuring the 2-point correlation function of a Gaussian field, we have fully described all the sta-
tistical properties of the field itself, e.g. the probability density functional and its connected and non-connected
correlation functions at any desired order.

1.2.4 Random fields in Cosmology

In this section we will see how the concepts introduced so far apply to real fields in Cosmology.

16



Ensemble average In general, observables in Cosmology are functional of the matter field δ (from now on
we will drop the subscript m) and we would like to address the statistical properties of the former (moments,
correlations at different points in the sky…) to infer those of the latter. Clearly, Eq. (1.33) cannot be implemented
as it is given thatwehave just oneUniverse at our disposal. Usually inCosmologywe employ the ergodic hypothesis:
the ensemble average of any quantity coincides with the sample average of the same quantity. Most of the time
the sample average is actually a volume average, otherwise it has to be properly defined. Therefore, a common
realisation of Eq. (1.33) is

xOrδfsyδf « 1
V

ż

V
d3rOrδf prqs. (1.44)

The ergodic hypothesis has been proved to hold for one-dimensional stationary random functions [M IAglom &
A Silverman, 1964]. For cosmological applications, the ergodic hypothesis is exact in the limit of infinite volume
and within standard inflationary scenarios.

Statisticalhomogeneityandisotropy Weanticipated that cosmological observables canbe formally seen
as functionalsOrδfsof a given cosmological field δf (matter field, or tracer of it such as density of halos, galaxies, etc
…). Given one particular observableOrδfs, its expectation value can be predicted by taking an ensamble average
via the previously defined operator xOrδfsyδf , and, from the observational side, we compare this value with the
volume average of the given observable once measured on different points of the sky. Clearly the volume average
will be just time dependent and naturally forces the final result to be homogeneous and isotropic. However, we
want this valuableproperty to apply also for the expected theoretical valueof theobservable itself. This translates in
assuming that all the fields wewill deal with inCosmology are statistically isotropic and homogeneous: the n´points
joint probabilityPδf prαns , rxnsq is in invariant under rotation or translation, respectively, of the points xn.

A crucial consequence of such a request can be seen at the level of correlation functions

εpcq
δf px1, . . . , xnq hom.” εpcq

δf px1 ´ xo, . . . , xn ´ xoq iso.” εpcq
δf pRx1, . . . ,Rxnq , xo P R

3 (1.45)

where R simply rotate the system of coordinates. In particular, thanks to homogeneity, the correlation function
will depend just on the relative distances between the points

εpcq
δf px1, . . . , xnq hom.Ñ εpcq

δf px1, . . . , x1 ` pxn ´ x1qq hom.Ñ εpcq
δf px1, . . . , x1 ` rnq (1.46)

where here and in the following ri “ xi ´ x1. In particular, Eq. (1.46) just forces homogeneity on εpcq
δf , while

isotropy would further request no dependence on the orientation of the configuration of the points txiui“1,...,n.
Furthermore, the dependence on the base point x1 is just fictitious and the generic homogeneous n-point correla-
tion function will actually depend on (n ´ 1) vectors.

The request for isotropy is much more complicated. Let us show a couple of simple cases where intuition can
help, even though more rigorous proofs are available in the literature [Marcori & Pereira, 2017]. If we consider
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the specific case of the 2-point correlation function, isotropy will further bind the correlations to depend just on
the module of the relative distance between the 2 points

εpcq
δf px1, x2q “ εpcq

δf px1, x1 ` r2q hom.” εpcq
δf pr2q iso.” εpcq

δf pr2q (1.47)

As for the 3-point correlation function εpcq
δf px1, x2, x3q hom.” εpcq

δf pr2, r3q, isotropy is implemented by forcing it to
depend only on the three combinations of r2, r3 that are rotationally invariant: their modules r2, r3 and their scalar
product r2 ¨ r3. In summary

εpcq
δf px1, x2, x3q hom.” εpcq

δf pr2, r3q iso.” εpcq
δf pr2, r3, r2 ¨ r3q (1.48)

At every steps, we are actually reducing the number of degrees of freedom, from 9, to 6 (homogeneity), to 3
(isotropy).

Cumulants and moments In Cosmology we will define moments and cumulants as the correlation functions
in Eq. (1.34) (non-connected) and in Eq. (1.37) (connected) respectively when evaluated at the same location in
space. Therefore, the nth order cumulant and the nth order moment for a random field δf, will be defined as

mn ” xδn
f pxqyδf “ p´iqn δ

n Φδfrks
δnk pxq







k“0
, (1.49)

κn ” xδn
f pxqyc

δf “ p´iqn δ
n Φc

δfrks
δnk pxq







k“0
. (1.50)

Thanks to the request of statistical homogeneity and isotropy they will not actually depend on the point of the space
considered.

We would like to underline that the moment and the cumulant of order 1 are identically 0, by definition, i.e.
xδfy “ 0. Therefore, in the expansion defined in Eq. (1.38), all the terms involving a singlet will be vanishing. The
moment of order two m2 will be therefore identical to the cumulant of order 2 κ2 and it is called the variance of
the field, usually noted ad σ2. As for higher order cumulants, they will be in general different from the same-order
moments and identically 0 for Gaussian random fields. In line with the tradition, they are usually normalised to
the standard deviation of the field σ “ ?

σ2

Sn ” κn

σ2n´2 . (1.51)

Polyspectra In Sec. 1.2.2 we defined the correlation functions for a field in real space. Often in cosmology we
will employ their counterpart in Fourier space, the polyspectra. Given a scalar field in a real d-dimensional space
δf px, tq (where we made explicit once again the time dependence), we can consider, at every time (dependence
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that we locally restore in this paragraph), its Fourier decomposition δ̃f px, tq in configuration space

δ̃f pk, tq “
ż

ddx δf px, tq e`ik¨x, δf px, tq “
ż

ddk
p2πqd δ̃f pk, tq e´ik¨x, (1.52)

which is a field itself on the configuration space. In Eq. (1.52) we show both the direct and inverse Fourier trans-
form for a general dimension to fix our convention on the pre-factors. In this chapter, we will consider d “ 3. At
the level of notation, we will eventually switch to the following much simpler notation for the cosmological field
δ̃f pk, tq: δk. This will be the case when deriving the covariance matrix expressions for the observable of interest
in Chapter 2.

The decomposition of a scalar cosmological field f px, tq “ fptq ` δf px, tq in its Fourier components f̃ pk, tq
has a deeper meaning. As a matter of fact, the assumption of f̃ pk, tq being statistically homogeneous at every
time, implies that the background component xf px, tqy “ fptq does not have any space-dependence. Therefore,
all the operators that will appear in the equation of motions for the perturbation δf px, tq (Vlasov-Poisson sys-
tem in Sec. 1.3.1), at linear order, will commute with the Fourier operator on the left of Eq. (1.52), leading to a
system of equations for each mode k of the field. Further, being the plane waves e˘ik¨x eigenfunctions of all the
space-derivative operators, there will be no couplings between the modes and each of them will simply evolve
independently in time. All these features are present as long as the equations for the gravitational dynamics are
linear and the statistical homogeneity is assumed, leading to a very simple analysis, in Fourier space, of the linear
gravitational collapse.

The polyspectrum Pδf pk2, . . . , knq of a given order n is related to the n-point correlation function of the field
δ̃f pk, tq as

xδ̃f pk1q . . . δ̃f pknqyδf “ p2πq3 δD pk1 ` ¨ ¨ ¨ ` knq Pδf pk2, . . . , knq , (1.53)

xδ̃f pk1q . . . δ̃f pknqyδf,c “ p2πq3 δD pk1 ` ¨ ¨ ¨ ` knq Pc
δf pk2, . . . , knq (1.54)

where the constraint imposed by the Dirac deltas δD, as we will see, comes from the request for homogeneity and
bounds the momenta to form closed polygons in configuration space. The relations (1.53) and (1.54) can be
proved to be actually consistent with the operational definition of Ppcq

δf as the Fourier transform of the same order
correlation function εpcq

δf , i.e.

Ppcq
δf pk2, . . . , knq ”

n
ź

i“2

„
ż

d3ri e`iki¨ri
ȷ

εpcq
δf pr2, . . . , rnq (1.55)

wherewe expressed the correlation function in real space in terms of the distances between the points. As amatter
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of fact,

xδ̃f pk1q . . . δ̃f pknqyδf, pcq “
n

ź

i“1

„
ż

d3xi e`iki¨xi
ȷ

xδf px1q . . . δf pxnqyδf, pcq (1.56)

“
ż

d3x1 e`ik1¨x1
n

ź

i“2

„
ż

d3ri e`iki¨pri`x1q
ȷ

xδf px1q . . . δf px1 ` rnqyδf, pcq (1.57)

“
ż

d3x1e`ipřn
i“1 kiq¨x1

n
ź

i“2

„
ż

d3ri e`iki¨ri
ȷ

xδf px1q . . . δf px1 ` rnqyδf, pcq (1.58)

“ p2πq3 δD pk1 ` ¨ ¨ ¨ ` knq
n

ź

i“2

„
ż

d3ri e`iki¨ri
ȷ

xδf pr2q . . . δf prnqyδf, pcq. (1.59)

In the first line we simply inverse-Fourier-transformed every single mode. In the second line we performed a
change of variable ri “ xn ´ x1 for i ą 1. In the fourth line we performed an integration over x1 to get the Dirac
delta, given the fact that x. . . δf px1qyδf, pcq does not actually depends on the base point x1, thanks to homogeneity.
Finally, we can recognise the relation (1.55), once removed the fictitious dependence on x1.

Focusing on the 2-point correlation function and on the 3-point correlation function, their polypsectra are
respectively dubbed power spectrum P and bispectrum B. Given the considerations above, we can further simplify
their dependencies on the configurations involved. Specifically, for the power spectrum isotropy leads to a depen-
dence on just themodule of the onlymomentum k. As for the bispectrum instead, isotropy leads to a dependence
on the modules of the two momenta and on their angle. More often, the dependence of the bispectrum in an ho-
mogeneous and isotropicUniverse is expressed in termsof themodules of the edges of the triangular configuration
involved. Clearly the two definitions have the same physical meaning. In summary

Ppcq
δf pk, k1q hom.” Ppcq

δf pkq iso.” Ppcq
δf pkq , (1.60)

Bpcq
δf pk1, k2, k3q hom.” Bpcq

δf pk2, k3q iso.” Bpcq
δf pk1, k2, k3q . (1.61)

Connected vs. non-connected correlation functions In Eq. (1.34) and in Eq. (1.37) we introduced,
in a general manner, the concepts of non-connected and of connected correlation functions. However, in cosmology,
wewill always employ the latter and from thismoment onwewill always refer to them in thismanuscript, dropping
the superscript c. A practical reason for this is that, if the field of interest has deviations from theGaussian statistics,
then different modes of the field δ̂ pkq will be independent and the connected correlation functions beyond the
2-point one, will be vanishing. If any higher order correlation function is detected to be non-varnishing, then this
measurement will directly tell us about the level of non-Gaussianity present in the field.

Operative definition For later convenience, let us introduce a more operative definition of the n-point cor-
relation function and which is actually closer to the way it is built from catalogues. In Cosmology, may it be in
simulations or within actual data sets, the general field δf is not continuous: we will always detect the position
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and the concentration of particles/pixels (dark matter particles, point sources, galaxies, …) in the sky. Therefore,
given N volumes tΔViui“1,...,N centred in positions txiui“1,...,N, let us consider the density of the particles in each
of them tnfi “ Nf

i{ΔViui“1,...,N, Nf
i being the number of particles in the ith volume. Of course we can define amean

background density n̄f “ Nf
tot.{V. Therefore, an operational definition of the density contrast δf pxiq within the ith

volume is given by
n̄f rδf pxiq ` 1s “ nfi (1.62)

The product xNf
1 . . .Nf

Ny will then be the average number of N-tuple in the set of volumes tΔViui“1,...,N located
at positions txiui“1,...,N; rephrased, the product of the number of particles in the first volume times the number in
the second volume …times the number of particles in the Nth volume

xN1 . . .NNy “ n̄N x
N

ź

i“1

ΔVi rδf pxiq ` 1sy “

n̄N rxδf px1q . . . δf pxNqy ` ¨ ¨ ¨ ` 1s pΔVqN “
n̄N

”

εpcq
δf px1, . . . , xNq ` ¨ ¨ ¨ ` 1

ı

pΔVqN (1.63)

where in the last term we are omitting all the pă Nq-point correlation functions deriving from the product in the
second term. We also assumed all the volume elements to be of the same size to simplify our notation, along with
removing the superscript f. We can invert Eq. (1.63) to get

xN1 . . .NNy
pn̄ΔVqN “ 1 ` εpcq

δf px1, . . . , xNq ` . . . . (1.64)

Given a single volume element ΔV, the expected number of particles in it is

xNy “ n̄ΔV. (1.65)

If the number of particles tNiui“1,...,N in the volumes tΔViui“1,...,N is not correlated, then the average number of
pairs is the product of the average number of particles in the volumes

xN1 . . .NNy “ pn̄ΔVqN
. (1.66)

Therefore, we can see how the hierarchy of correlation function εpcq
δf px1, . . . , xNq ` . . . represents the fractional

excess of N-tuple at the different positions txiui“1,...,N, over what would be expected if the distribution were com-
pletely random. We refer to the literature for an in depth discussion discussion up to the 4-point correlation func-
tion (e.g. Peebles [1980]).
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1.3 The large-scale structure of theUniverse (LSS)

In this section we will review the main features of the model we will use to describe the growth of structures in
the non-linear regime, when |δm| « 1: the well known halo-model (Cooray& Sheth [2002] for a thorough review).
We will start from a brief description of the Perturbation Theory (PT) approach to the understanding of the LSS
evolution ([Bernardeau et al., 2002] for a thorough review). This will allow us to define several quantities which
will be employed in the halo model itself and later in the next chapter.

1.3.1 Perturbation theory, a summary

Gravitational dynamics First of all, let us fix the main variables describing the dynamical evolution of the
matter perturbation in an expandingUniverse. In this section and in the following ones wewill explicit the depen-
dence of the cosmological fields on the time to allow a clearer separation between background and perturbative
components. In line with the common practice, we will split the local matter density ρ px, tq in a background
time-dependent component ρ ptq and in a perturbation term δ px, tq

ρ px, tq “ ρ ptq p1 ` δ px, tqq . (1.67)

When referring to the matter contrast density field δ we will omit the subscript m, being indeed the main cosmo-
logical field of interest. While the background evolution is fully determined by the systemof Eq. (1.15), Eq. (1.16)
and Eq. (1.19), in the following we will focus on the perturbation δ px, tq. We start by considering the phase space
density function f px, p, tq. It describes the distribution of the matter particles of mass m, per unit of volume in real
(comoving) and in momenta space in terms of its coordinates

x “ rphy.

a
, p “ m a up. (1.68)

For simplicity, we will not explicit the time dependence of the scale factor a. We introduced the peculiar velocity
up of a particle and it is defined as difference between the physical total velocity and the Hubble flow

up px, tq ” drphy.

dt
´ da

dt
x “ a

dx
dt
. (1.69)

We can then introduce the mean velocity flow u (which is not to be confused with the peculiar velocity up) as the
first-order momentum of the distribution f px, p, tq

ui px, tq ” 1
Np

ż

d3 p
pi

ma
f px, p, tq , (1.70)
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Np “ ş

d3p f px, p, tq being the mean number density of particles, and the velocity dispersion tensor σ ij px, tq as its
second-order momentum

σ ij px, tq ” 1
Np

ż

d3p
pi

ma
pj

ma
f px, p, tq ´ ui px, tq uj px, tq . (1.71)

In the following, along with the local density contrast δ, the quantity we will solve our equations for will be the
velocity divergence, defined as

θ px, tq ” 1
aH

∇x ¨ u px, tq . (1.72)

The Vlasov equations According to the ΛCDM model, dark matter is described as a fluid of collision-less
particles. In this case, the Liouville theorem applies and the phase space density function f px, p, tq is conserved in
time

D f px, p, tq
D t

“
„ B

Bt
` dx

dt
∇x ` dp

dt
∇p

ȷ

f px, p, tq “ 0. (1.73)

In terms of the coordinates defined above, the Liouville equation is known as Vlasov equation

„ B
Bt

` p
m a2

∇x ´ m∇xΦ px, tq ¨ ∇p

ȷ

f px, p, tq “ 0, (1.74)

and it is coupled with the scalar Newtonian potentialΦ px, tq

∇2Φ px, tq “ 4πG m
a

ˆ
ż

d3p px, p, tq ´ n̄ptq
˙

(1.75)

with n̄ “ ş

d3x d3p f px, p, tq {V. A typical approach is to solve Eq. (1.74) via a decomposition of it in moments of
the phase space function. Therefore, by applying the operators

ż

d3 p
pi

ma
‹, 1st moment;

ż

d3p
pi

ma
pj

ma
‹, 2nd moment (1.76)

on the l.h.s. and on the r.h.s. of theVlasov equation, we can derive a system of equations for the first-ordermoment
u and of the second-order moment σ ij of f px, p, tq

$

&

%

Bδpx,tq
Bt ` 1

a∇x ¨ rp1 ` δ px, tqq u px, tqs “ 0
Buipx,tq

Bt ` 9a
aui px, tq ` 1

auj px, tq ui,j px, tq “ ´ 1
aΦ,i px, tq ´ rρpx,tqσ ijpx,tqs

,j
a ρpx,tq .

(1.77)

Finally, we close our system by assuming that the dark matter field can be described by a perfect fluid with an
isotropic velocity dispersion which is proportional to the pressure, i.e.

σ ij px, tq “ δij
Pptq

ρ px, tq . (1.78)
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In the following, we will place ourselves in the commonly used single flow approximation:
|σ ij| ! |u|. This approximation is valid at large enough scales where we assume that the flow of the particles

induced by gravitational collapse is dominant with respect to the thermal motion of the particles within the dif-
ferent fluids and the pressure is negligible in the dynamics. Within this approximation, the phase space density
function can be written as

f px, p, tq “ a3 ρpx, tq
m

pp ´ m a upx, tqq (1.79)

and Eq. (1.75) simplifies to the well known generalised Poisson equation

∇2Φ px, tq “ 4 π G ρptqδpx, tq (1.80)

The Vlasov-Poisson system: linear solutions At first place, we will show the solution to the system
(1.77) in the linear regime, i.e. when

rδ px, tq ui px, tqs,i ! δ px, tq , (1.81)
“

uj px, tq ui px, tq
‰

,j ! δ px, tq . (1.82)

In this regime of the matter perturbation evolution, the system of equations simplifies to

$

&

%

“ B2

Bt2 ` 2Hptq B
Bt ´ 3

2H
2ptqΩm ptq‰

δ px, tq “ 0,

θ px, tq “ ´ 1
Hptq

B
Btδ px, tq

(1.83)

where we used in first equation the generalised Poisson equation in Eq. (1.80) along with the definition of matter
density parameter (1.21). In terms of the growth factor D ptq ” δpx,tq

δpx,tiq that we introduce here for the first time for
a convenient choice of the initial time ti, the solution to the system in Eq. (1.83) is

:D ptq ` 2Hptq 9D ptq ´ 3
2
H2ptqD ptq “ 0. (1.84)

If we assume that our observableUniverse can be approximated by the EdSmodel described in Sec. 1.1.4, thenwe
can find analytical solutions. Specifically, the most general one will be the linear combination of 2 independent
modes

δ` px, tq “ D` ptq δm px, tiq , (1.85)

δ´ px, tq “ D´ ptq δm px, tiq , (1.86)
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respectively named as growing and decaying mode. Thanks to the second relation in Eq. (1.83), we can express the
linear solution for the field θ

θ` px, tq “ ´B logD` ptq
B log a

D` ptq δm px, tiq (1.87)

θ´ px, tq “ ´B logD` ptq
B log a

D´ ptq δm px, tiq (1.88)

For anEdSUniverse, wewill haveD` ptq 9t
2
3 andD´ ptq 9t´1. Even if the above solution is a good approximation

also for a ΛCDMUniverse, in all our applications we will compute the numerical solution to the exact differential
equation (1.84). We will comment in Sec. 1.3.2 about a suitable choice for the initial perturbation δ px, tiq.

The Vlasov-Poisson system: non-linear solutions We now shift to a regime of the matter clustering
where the linear approximation defined by Eq. (1.81) and Eq. (1.82) does not hold. We will preserve the single-
flow assumption and we will focus on the solution for an Eds model. The system to solve reads

$

&

%

Bδpx,tq
Bt ` 1

a rp1 ` δ px, tqq ui px, tqs,i “ 0,
Buipx,tq

Bt ` 9a
aui px, tq ` 1

auj px, tq ui,j px, tq “ ´ 1
aΦ,i px, tq .

(1.89)

Following the standard approach outlined in great details within the review by Bernardeau et al. [2002], let us
introduce the following doublet which will allow for a more elegant solution

Ψ px, tq ” pδ px, tq ,´θ px, tqq . (1.90)

In Fourier space, we can write the system to solve as

„ B
Bη

δb
a ` Ωb

a

ȷ

Ψ̃b pk, ηq “
ż

d3k1
p2πq2

d3k2
p2πq2 γbc

a pk, k1, k2q Ψ̃b pk1, ηq Ψ̃c pk2, ηq (1.91)

where we introduced the time variable η “ logD`ptq. For an EdSUniverse, thematrixΩb
a is independent of time

Ωb
a “

˜

0 ´1
´ 3

2
1
2

¸

, (1.92)

and the components of the vertex γbc
a pk, k1, k2q are

γ121 pk, k1, k2q “ δD pk ´ k1 ´ k2q α pk1, k2q
2

, α pk1, k2q “ pk1 ` k2q ¨ k1
k11

(1.93)

γ211 pk, k1, k2q “ δD pk ´ k1 ´ k2q α pk2, k1q
2

, β pk1, k2q “ |k1 ` k2|k1 ¨ k2
2k11k22

(1.94)

γ222 pk, k1, k2q “ δD pk ´ k1 ´ k2q β pk1, k2q
2

, (1.95)
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The idea lying behind the philosophy of the PT approach to the emergence of LSS is that we can expand the
doublet in Eq. (1.90) at different orders for which we can solve perturbatively

Ψ̃ px, ηq “
ÿ

p

Ψ̃ppq px, ηq , (1.96)

each termbeing proportional to the pth power of the linearly evolvedover-densityD`pηqδ `

x, ηi
˘

withD`pηiq “ 1
[Goroff et al., 1986; Makino et al., 1992; Jain & Bertschinger, 1996]

Ψ̃ppq px, ηq ” `

δppq px, ηq ,´θppq px, ηq˘

. (1.97)

At this point, it is possible to iteratively solve the formal equation Eq. (1.91) at the different order Ψppq
a , starting

from lower ones. Thefinal resultwill be the fields δppq px, ηq , θppq px, ηqbeing function of p-powers of the linear so-
lution of the growingmode δ̃` pk, ηq, convolutedwith a kernel. This can eventually be translate in a diagrammatic
representation of the modes as well explained in the literature [Bernardeau et al., 2002; Crocce & Scoccimarro,
2006b]. We will not talk about it in this manuscript. In general, we will be capable to write the p-order solution
for the vectorΨppq

a defined in Eq. (1.97) as

Ψ̃ppq
a pk, ηq “

ż

d3k
p2πq3 . . .

d3kp

p2πq3 δD
`

k ´ k1...p
˘

F ppq
a

`

k1, . . . , kp; z
˘

δ̃` pk1, ηq . . . δ̃`
`

kp, η
˘

(1.98)

In the literature, respectively for the local matter field δ (i.e. a “ 1) and the velocity divergence field θ (i.e. a “ 2),
the kernelF ppq

a is defined as Fppq and Gppq. We will employ this notation later in the chapter.

1.3.2 The linear solution and its power spectrum

Given the formalism introduced in the previous section, we would like to briefly describe the linear matter power
spectrum Plin.pkq in cosmology, given that it will play an important role in future definitions. Undoubtedly, the
linear matter power spectrum is the power spectrum for linearly-evolved initial matter perturbations

Plin.pkqδD pk1 ` kq 9 xδ̃ pk, tq δ̃ pk1, tqylin. 9 D2
` ptq xδ̃ pk, tiq δ̃ pk1, tiqy (1.99)

In the last definition we have assumed equal-time correlations, the initial time ti will define a primordial power
spectrum we will evolve forward in time. The missing term in Eq. (1.99) will eventually account for a geometrical
factor (not a random field) describing the change in amplitude for a given mode k in time.

The primordial power spectrum is defined to be the one at the end of the inflation. The scalar potentialΦ pxq, as
set at the end of the inflation, is characterised by a nearly scale-invariant (dimensionless) power spectrum

k3PΦ pkq “ A2 kns´1., rPΦs „ length3, rks „ length´1. (1.100)
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In Eq. (1.100), ns is the scalar spectral index, which is surprisingly measured to be ns “ 0.9649 ˘ 0.0042 (Planck
Collaboration [2018] for the latest measurement). If ns were exactly equal to 1, wewould have a perfectly scale in-
variant primordial power spectrum, case which is well known asHarrison-Zel’dovich power spectrum. The potential
Φ̂ pkq is related to the density perturbation δ̂ pkq by the Poisson equation

k2

a
Φ̃ pkq “ 4πGρ ptq δ̃ pkq . (1.101)

Therefore, Eq. (1.101) can be used to relate the primordial matter power spectrum after the inflation to the one of
the scalar potentialΦ as

xδ̃ pk, tiq δ̃ pk1, tiqylin. 9 Plin. pk, tiq 9
„

2 k2 aptiq
3 Ω2

m,0 pH0q2
ȷ2

PΦ pkq 9
„

2 A aptiq
3 Ω2

m,0 H2
0

ȷ2

kns (1.102)

The geometrical factor missing in front of Eq. (1.99) is called transfer function T pkq (up to a normalisation
factor we will discuss later). It encapsulates the evolution of perturbations through different cosmic epochs up
to a « 0.1 (z « 9), time domain after which the parametrization in Eq. (1.99) is allowed [Dodelson, 2003].
T pkq is in general evaluated numerically within well known Einstein-Boltzmann solvers like CAMB³, or CLASS⁴.
However, efficient analytical approximations do exist and we will employ for our analysis the one of Eisenstein &
Hu [1998]. For completeness, we also refer to Bond & Efstathiou [1984] for a different possible fitting function.

Summarising our considerations, the final expression for the linear matter power spectrum will be

Plin. pk, tq “ pAPl.q2
„

2D` ptq T pkq ai

3 Ω2
m,0 H2

0

ȷ2 ˆ

k
k0

˙ns

” pAσ8q2 rT pkq D` ptqs2 kns . (1.103)

where we included the previously missing prefactor. In Eq. (1.103) we provide two possible definitions for it. In
the first case, APl. is the amplitude of the primordial power spectrum of the scalar perturbations as produced by
the Inflation according to the Planck papers’ convention [Planck Collaboration, 2014, 2016, 2018] (where also
the definition of the pivot scale k0 is provided). It can be predicted theoretically andmeasured fromCMB data to
constrain inflationary scenarios. In the second case, the normalisation prefactorAσ8 ismeasured from the variance
σ8 of the linear matter field at present time (t0) once smoothed over spheres of (comoving) radius of 8Mpc{h

σ8 “ σ2pRq|R“8 Mpc{h ”
ż `8

0
rΔlin. pk, t0qs2W̃2

R pkq d plog kq






R“8 Mpc{h
(1.104)

where rΔlin. pk, tqs2 is the dimensionless power spectrum defined, according to the literature, as

rΔlin. pk, tqs2 “ k3

2π2P
lin. pk, tq (1.105)

³https://camb.info
⁴http://class-code.net
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and ŴR pkq is the Fourier transform of a top hat function with characteristic length R

$

&

%

WR pxq “ 1, if x ď R,

WR pxq “ 0, if x ą R,
, W̃R pqq “ 3 psinpqRq ´ qR cospqRqq

pqRq3 . (1.106)

Thespecific scale of 8Mpc{h is interestingly used since it is the scale atwhich thematter field, once smoothed, has a
perturbation δR“8Mpc{h « 1: at present time this scale canbe considered as the transition from the linear to the non-
linear regime (see Reimberg et al. [2018] for an interesting discussion). For our applications, we will normalise
the matter power spectrum via the σ8 convention. We recall that we can smooth the matter field according to the
top hat function (1.106) via a convolution in real space

δRpxq ”
ż

d3yWR px ´ yq δpyq. (1.107)

Eq. (1.107) also defines our notation for smoothed cosmological fields. In Sec. 1.3.4 we will use this definition
extensively.

1.3.3 The matter field bispectrum

As well explained in Sec. 1.2.3, a non-vanishing connected odd-point correlation function would be the signal of a
deviation from the Gaussian statistics for the related field. Then, the lowest order correlation function which can
be used to address this property is the 3-point one, whose associated polyspectrum is usually dubbed bispectrum
and denoted with the letter B

Bδf pk1, k3, k1q ” Pδf pk1, k3, k1q . (1.108)

In this section the time dependence of the fields is implied, not being relevant.

Bispectrum at leading order: xδδδy term We want to derive its expression at the leading non-vanishing
leading order in PT, in terms of doublet expansion (1.96). We start in this paragraph with the matter density
perturbation δ. Of course, the bispectrum will not emerge at the linear level (in the following considered as or-
der p “ p1q): non-Gaussianities are strictly related to non-linearities in the dynamical equations and coupling
between different modes are required to have a non-vanishing bispectrum. The leading order at which the bis-
pectrum in PT will appear is when at least one mode in the connected correlation function is in the non-linear
regime, then at second order p “ p2q

xδ̃ pk1q δ̃ pk2q δ̃ pk3qyc “ x
ÿ

p

δ̃
ppq pk1q

ÿ

e

δ̃
peq pk1q

ÿ

f

δ̃
pfq pk1qy

“
leading

xδ̃p1q pk1q δ̃
p1q pk2q δ̃

p2q pk3qyc ` cycles over tk1, k2, k3u (1.109)
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From Eq. (1.98), we have

δ̃
p2qpkq “ Ψp2q

a pkq “
ż

d3q
p2πq3F

p2qpq, k ´ qqδ̃p1qpqqδ̃p1qpk ´ qq. (1.110)

For an EdS Universe, the kernel F2 takes the form

Fp2q pk1, k2q “ 5
7

` 1
2
μpk1, k2q

ˆ

k1
k2

` k2
k1

˙

` 2
7
μ2pk1, k2q (1.111)

with
μpk1, k2q “ k1 ¨ k1

k1k2
“ k23 ´ k21 ´ k22

2k1k2
. (1.112)

We then plug Eq. (1.110) into Eq. (1.109). For example, the first term reads

xδ̃p1q pk1q δ̃
p1q pk2q δ̃

p2q pk3qyc “
ż

d3q
p2πq3F

p2qpq, k3 ´ qqxδ̃p1q pk1q δ̃
p1q pk2q δ̃

p1qpqqδ̃p1qpk3 ´ qqyc. (1.113)

Since all the linearly evolved modes δ̃
p1q

are drawn from a Gaussian distribution, we can apply the Wick theorem
on the 4-point correlation function appearing in Eq. (1.113), which leads to the following 3 terms

xδ̃p1q pqq δ̃
p1q pk3 ´ qqycxδ̃p1q pk1q δp1q pk2qyc “ δD pq ` k3 ´ qq δD pk1 ` k2q Plin pqq Plin. pk1q

xδ̃p1q pk3 ´ qq δ̃
p1q pk2qycxδ̃p1q pqq δ̃

p1q pk1qyc “ δD pk3 ´ q ` k2q δD pq ` k1q Plin pk3 ´ qq Plin. pqq
xδ̃p1q pk3 ´ qq δ̃

p1q pk1qycxδ̃p1q pqq δ̃
p1q pk2qyc “ δD pk3 ´ q ` k1q δD pq ` k2q Plin pk3 ´ qq Plin. pqq . (1.114)

If we perform the integration over q in Eq. (1.113) and we apply the bispectrum definition as a particular case of
Eq. (1.54)

xδ̃ pk1q δ̃ pk2q δ̃ pk3qyc “ p2πq3 δD pk1 ` k2 ` k3q BPT
δδδpk1, k2, k3q (1.115)

we are left with the following expression for the leading order contribution to the bispectrum in PT

BPT
δδδpk1, k2, k3q “ 2Fp2qpk1, k2qPlin pk1q Plin pk2q ` cycles over tk1, k2, k3u (1.116)

Bispectrum at leading order: xδδθy term For later convenience, we would like to give one example of
bispectrum including the velocity divergence field θ, specifically

xδ̃ pk1q δ̃ pk2q θ pk3qyc “ x
ÿ

p

δ̃
ppq pk1q

ÿ

e

δ̃
peq pk1q

ÿ

f

θpfq pk1qy “
leading

xδ̃p2q pk1q δ̃
p1q pk2q θp1q pk3qyc ` xδ̃p1q pk1q δ̃

p2q pk2q θp1q pk3qyc ` xδ̃p1q pk1q δ̃
p1q pk2q θp2q pk3qyc (1.117)
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Shortly, by following the same steps as in the previous paragraph and introducing the divergence velocity kernel
(for an EdS Universe)

Gp2q pk1, k2q “ 3
7

` 1
2
μpk1, k2q

ˆ

k1
k2

` k2
k1

˙

` 4
7
μ2pk1, k2q, (1.118)

we can derive the expression for the bispectrum xδδθy

BPT
δδθpk1, k2, k3q “

2Gp2qpk1, k2qPlin pk1q Plin pk2q ` 2Fp2qpk1, k3qPlin pk1q Plin pk3q ` 2Fp2qpk2, k3qPlin pk2q Plin pk3q . (1.119)

In the previous derivation, we are assuming that the initial condition for the velocity field θ are actually propor-
tional to those for the matter field density contrast δ (adiabatic initial condition request).

Comparison with simulations N-body simulations are our most precise tool to reproduce cosmological
structure formation. We therefore look at themas the best way to inspect the predictive power and the precision of
analytical estimations of cosmological observables. In this paragraphwe focus on thematter bispectrumasderived
from PerturbationTheory. A thorough and recent comparison between perturbation theory predictions and sim-
ulations can be found in Lazanu et al. [2016]. It is important to remind that the theoretical framework presented
in this section is usually known as Eulerian standard perturbation theory (SPT).While further improvements are
available in the literature, the material presented so far is enough for a thorough understanding of the contents of
thismanuscript. However, Lazanu et al. [2016] do also compare someof these alternative approacheswith simula-
tions and they eventually performbetter than the tree-level SPTweuse here. For simplicity and as not to break the
flow of the section, we prefer here to stick with SPT results, even though we introduce a natural improvement to
the tree-level results. In fact, we can enrich our estimation bymoving to the next non-vanishing order which turns
out to be of order 6 in terms of the linearly-evolved field δp1q. This is usually known as 1-loop correction [Scoc-
cimarro et al., 1998]. Assuming a ΛCDM cosmology, at z “ 0 the tree-level bispectrum⁵ Bpk1, k2, k3qis in good
agreement with the simulations for k À 0.1 hMpc´1 on equilateral configurations [Bpk, k, kq], and on squeezed
configurations [Bp1.4k, 1.4k, 0.14kq]. Theperformance improves, at the same redshift, when considering flattened
configuration [Bpk, 0.5k, 0.5kq]where the results from the simulations arewell reproducedup to k À 0.3hMpc´1.
As expected, SPT performs better at higher redshifts where the level of non-linearities is lower. At z “ 2, the
tree-level bispectrum on equilateral, squeezed and flattened configurations is well predicted respectively up to
k À 0.16 h Mpc´1, k À 0.2 h Mpc´1 and k À 0.4 h Mpc´1. The 1-loop correction helps in converging towards
the simulations. Over the scales analysed (0.07 hMpc´1 ď k ď 0.4 hMpc´1) the greatest benefit, with respect
to the tree-level bispectrum, is achieved at z “ 0where the analytical predictions are well within the error bars of
the simulated signal up to k À 0.11 h Mpc´1, k À 0.17 h Mpc´1 and k À 0.2 h Mpc´1 for equilateral, squeezed
and flattened configurations respectively. In a subsequent paper, Lazanu & Liguori [2018] computed and tested

⁵We will always consider in this paragraph Bpk1, k2, k3q ” BPT
δδδpk1, k2, k3q.
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against simulations the 2-loop SPT correction to the matter bispectrum. At z “ 0 the analytical results match
the simulated signal within the error bars up to k À 0.2 h Mpc´1 for equilateral configurations. Unfortunately,
for flattened and squeezed bispectra, the 2-loop correction does not improve the agreement with the simulations.
Overall, the best performance is achieved by the renormalisedMPTbreeze technique [Scoccimarro, 2001;Crocce
& Scoccimarro, 2006a,c, 2008; Bernardeau et al., 2008; Crocce et al., 2012; Bernardeau et al., 2012] which falls
outside the SPT formalismwe considered. At z “ 0 and for equilateral configurations,MPTbreeze is competitive
with the 2-loop SPT while remarkably improves the estimation for squeezed [Bpk, k,Δk “ 0.012 hMpc´1q] and
flattened [Bpk, 0.5k, 0.5kq] configurations. In these last cases, the agreement between simulations and analytical
predictions is guaranteed up to scales k À 0.25 hMpc´1.

1.3.4 The Halo Model: properties of the halos

The halo model (Cooray & Sheth [2002] for a thorough review) provides an effective and physically motivated
ansatz to compute the different polyspectra wewill need for our study atmuch smaller scales than PT allows. This
approach relies on the fact, supported by numerical simulations, that we canmodel the statistical properties of the
matter field via halos of dark matter of different masses, redshifts and positions. The reason for going beyond the
PT approach described in the previous section will be clearer in the next chapter when we will analyse the weak
lensing formalism. Briefly, due to the projection effect, the weak lensing signal is sensitive to very small scales.
For a Euclid-like survey, Kitching & Taylor [2011] proved that the power spectrum has to be accurately known
to 1% down to k « 50 h Mpc´1 to saturate the dark energy figure of merit. This study is in agreement with the
previous one fromDoré et al. [2009]. Similarly, Huterer&Takada [2005] argued thatwe typically need the power
spectrumwithin a few percent accuracy up to k « 10 hMpc´1 in order to take advantage of the statistical power of
DES- and LSST-like survey. In Eifler [2011]; Hearin et al. [2012] a similar conclusion is obtained. At these scales
linear theory for the evolution of the matter perturbations can not be trusted to build our observables. On the
other hand, perturbative approaches (2-loop perturbations theory) starts deviating bymore than 1% at scales k ě
0.1 hMpc´1 at z “ 0 [Taruya et al., 2012], although they perform slightly better at higher redshift. In the above
regime cosmologicalN-body simulations are usually employed to study the nonlinear gravitational evolution and
eventually used to tune phenomenologicalmodels or fitting formulae for the power spectrum. In Sec.2.2.1 wewill
extensively describe the inadequacy ofN-body simulations for the purpose of our analyses. Therefore, wewill shift
our attention to the (semi-)analytical models mentioned above. To cite few examples, Peacock & Dodds [1996]
provided a fitting formula for the power spectrum based on a scaling ansatz presented in Hamilton et al. [1991].
Later, Smith et al. [2003] proposed a new model of the power spectrum, the so-called halofit model, which is
based on a the well known halo model of structure formation (e.g. Ma & Fry [2000] ; Seljak [2000]; Cooray &
Hu [2001]). Recently Mead et al. [2015] presented an optimised variant of the halo model, designed to produce
accurate matter power spectra well into the non-linear regime for a wide range of cosmological models, including
baryonic feedback. However, all these approaches are meant to provide a good fit for the power spectrum alone
while providing a poor description of the true underlying physics [Reimberg et al., 2018]. In particular, they can
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not be used for building higher order statistics, which are key ingredients of our analyses. We rather build our
observables in the standard halo model framework. Recently, Kayo et al. [2013] proved the halo model to have a
precision of 20% up to scales k « 10 hMpc´1 at z “ 0 in terms of weak lensing convergence power spectrum and
bisepctrum and of the joint covariance.

Single Halo properties: the spherical collapse Interestingly, the spherical collapse is one of the few
cases where the dynamics of perturbations can be solved exactly. At some initial time ti, we smooth the matter
field δ px, tiq smoothÑ δri ptiq via a spherical top-hat functionWri pxq (see Eqs. (1.106)-(1.107) for useful definitions).
In δri ptiq we omitted the spatial coordinate since we will now focus on the dynamics of a single halo. The mass
enclosed in a shell of radius ri, can be related to the background matter density of the Universe ρ ptiq as

mări “ 4
3
πr3i ρ ptiq p1 ` δri ptiqq “ 4

3
πr ptq3 ρ ptq “

1 ` δrptq ptq‰ “ mărptq (1.120)

where the second relation comes from themass conservation ρiptiqr3i “ ρptqrptq3 along the different cosmological
epochs. Oncewewill have solved the system for the timedependenceof the radius rptq, wewill know thedynamics
of the matter over-density enclosed in the sphere via

1 ` δrptq “ ρriptq
ρ ptq “ 1

ρ ptq
3mări

4πr3 ptq (1.121)

wherewe introduce the smoothedmeanmatter densitywithin the sphere ρriptq. As a consequenceof theBirkhoff ’s
theorem, a spherically symmetric matter distribution outside a sphere exerts no force on the sphere itself leading
to the following equation of motion

d2rptq
d2t

“ ´G
mărptq
r2ptq « ´G

mări

r2ptq , (1.122)

the energy being defined as
1
2

„

drptq
dt

ȷ2

´ G
mări

rptq “ E (1.123)

For a bounded halo, E ă 0 and a parametric solution is known

rpθq “ A p1 ´ cos θq , A “ G mări

´2E
, (1.124)

tpθq “ B pθ ´ sin θq , B “ G mări

p´2Eq2{3 (1.125)

where we used the fact that themass is conserved. The spherical collapse solution rsp. ptq, goes through 3 different
phases

shells expand from rsp. p0q “ 0 at θ “ 0
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shells reach a maximum expansion at rsp.max at θ “ π, being tmax “ πB at this point

shells collapses back to rsp. “ 0 at θ “ 2π, being t “ 2tmax at this point.

In particular, this dynamics is typical of every halo, no matter its mass. By using Eq. (1.121), it can be shown that
can write the time evolution of the smoothed over-density within the spheres as

δrpθq
sp. “ ρripθq

ρ pθq “ 9 pθ ´ sin θq2
2 p1 ´ cos θq3 ´ 1 (1.126)

with ρ pθq “ p6π G t2 pθqq´1 in EdS models. We specified with the subscript sp. that the solution in Eq. (1.126)
is the solution for the over-density of halos undergoing a spherical collapse.

Themodel considered presents a singularity at θ “ 2π. However, halos tend not to collapse any further at rv “
rmax{2: in line with the virial theorem for a gravitationally bound systemof particles, this equilibrium corresponds
to the equi-partition between kinetic and potential energy. We define the over-density within a virialised halo δv
as that at the theoretical collapse time

δv “ 1
ρ ptcol.q

3mări

4π p2rmaxq3 (1.127)

Assuming and EdS cosmology, the classical solution is 1 ` δv “ 18π2. However, more sophisticated solution can
be found for more general cosmologies [Henry, 2000]. For a spatially flat model, with negligible radiation (as it
for the redshifts of interest) the following fitting formula holds

δv pzq “ 18π2 p1 ` 0.4093 x2.71572q , x “
´

1
Ωm,o

´ 1
¯ 1

3

1 ` z
(1.128)

In particular, we will use this latest advanced analytical expression in our implementation.

Halodistributionon large scales: themass function Themass function for a given tracer h is defined
as the number of objects tracers per comoving unit of volume and unit mass interval

fm pz,mq ” dNh pz,mq
dV dm

(1.129)

The computation of the mass function of dark matter halos is a central problem in modern Cosmology. The
formation and evolution of dark matter halos is a highly complex dynamical process, and a detailed understand-
ing of it can only come through large-scale N-body simulations. Some analytical understanding is however very
desirable, both for obtaining a better physical intuition, and for the flexibility under changes of models or param-
eters (such as cosmological model, shape of the non-Gaussianities, etc.) which is of paramount importance in the
approach we will employ in our work where covariance matrices for the weak lensing observables (see chapter
3) will be computed analytically. In the following part of the section we will review the main efforts towards an
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analytical modelling of the mass function for dark matter halos. In the end, we will focus on the model included
in our implementation.

The mass function: Press & Schechter approach First, let us define the following quantity

δlin ptq ”
”

lim
θÑ0

δrpθq
sp.

ı D` ptq
D` p̄tq “ 3

20
p6πq2{3

ˆ

t
tmax

˙ 2
3

EdS model, (1.130)

This quantity is the value of the smoothed over-density within a halo as if the corresponding initial over-density
limθÑ0 δrpθq were linearly evolved up to a time t. In this case, the time t̄ is a reference time we assume to be in
regime of linear clustering. In particular, it is the time at which we assume the density field is smoothed in halos
which will then collapse. Therefore, we defined it to be tpθ “ 0q “ t̄. Specifically, at the time of the evolution
corresponding to the collapse time of a halo we will have, and define,

δc
sp. ” δlin ptc “ 2tmax.q “ 3

20
p12πq2{3 EdS model. (1.131)

This quantity is usually defined as the barrier for the spherical collapse. In Eq. (1.127)we computed the over-density
within a formed halo δv. Once again, this quantity does not depend on themass, nor the related scale. However, if
weperformanobservation at a given redshift z, what is the condition for anobject tobe formedby that observation
time? It is important to askourselves this questiongiven thatwewant to account inourmodel for virialisedobjects.
Eq. (1.130) and Eq. (1.131) are telling us that, if we linearly evolve a smoothed region of theUniverse in the initial
condition space up to a given time t, if its observed overdensity δRptq is larger than δc

sp., then we know that the
associated halo, undergoing a spherical collapse instead, will have had the time to collapse by t, the observation
time. ThePress& Schechter [1974] (PS) formalism is based on this concept. Before starting, let us simply change
the notation to be in line with the one in the literature. Specifically, instead of having a smoothed density field
linearly evolved from a reference time t̄ to be compared with the constant barrier δc

sp., we will consider as static the
former (we will omit the time dependence) while we will consider a dynamical barrier as

δc
sp. Ñ δc

sp. pzq ” δc
sp.

D`pzq , D`p̄tq “ 1 (1.132)

At a given reference time t̄, we identify the seeds for halo of different initial radius R via a top-hat smoothing of
the (linear) matter field

δR “
ż

d3x1δpx1qWR px ´ x1q (1.133)

The shape of the filter is given in Eq. (1.106) and we can define an associated mass MpRq ” 4π{3ρ ptq R3 which
will be easily related (will actually be) to the mass of the associated halo. From now on, we will freely use either
M or R to define the size of the filter. The shape of the filter as a sharp top-hat in real space allows for a physically
motivated association between the two masses. However, for different filters this will not be the case anymore,
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as we will see later. By changing the filter scale, we will be considering halos of different mass. However, as we
saw in the previous paragraph, the dynamical evolution of the associated overdensity δR will not depend on these
quantities. This is an extremely valuable feature of the spherical collapsemodel. The variance of the field δR is then

σ2 pRq “ σ2 pMq “ 1
2π2

ż

Plin. pkq ŴR pkq k2dk (1.134)

If the original field δ is Gaussian, so will be the smoothed field δR

P
`

δR
˘

dδR “ 1?
2πσ2 pRqe

´ δR
2σ2pRqdδR (1.135)

with the variance given by Eq. (1.134). Following the procedure outlined by PS, we state that the fraction of mass
contained within virialised halos of mass mv ą M, FPSpą Mq, at a certain observation time t, is equal to the probability
that δM ą δcsp. ptq, i.e.

P
`

δM ą δcsp. ptq˘ “
ż 8

δcsp.ptq
P pδRq dδR “ 1

2
ercf

„δcsp. ptq
2σ pRq

ȷ

” FPS.pą Mq (1.136)

We recall that the mass function (1.129) is defined as as the number of objects per comoving unit of volume and
unit mass interval. To derive its expression, we start by differentiating dFPSpą Mq{dmv to find the contribution
to the total mass fraction FPSpą Mq from halos of a given mass mv. By multiplying this results for the comoving
background density ρcom.

we obtain the total mass (not the fraction) as given by halos of mass mv. If we finally
divide for the mass itself mv we finally obtain the density we are aiming at. The final expression will then be

fPS.m pz,mq “ ρcom.

m
dFPSpą Mq

dm
“ 1?

2π
ρcom.

m2

δcsp. ptq
σ pRq e

´
ˆ

δcsp.ptq
2σpRq

˙2






d log σ pRq
d logm







(1.137)

where we dropped the subscript v for the mass of fully formed halos.

At this point, we can also introduce another very common definition related to the halo concentration: the
multiplicity function fν pνq [Jenkins et al., 2001]

fm pz,mq dm ” ρcom.

m2 fν pνq






d log ν
d logm







dm (1.138)

where ν pz,mq “ δcsp. ptq {σ pmq. In particular, the multiplicity function (1.138) has the advantage that to a good
accuracy it does not explicitly depend on redshift. For the PSmass function (1.137), themultiplicity functionwill
be

fPS.ν pνq “ 1?
2π

ν pz,mq e´ ν2pz,mq
2 . (1.139)

Even though the PS result represents one of the first attempts to provide analytical insights on the issue of the
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problem described in the previous section. The new approach is called Extended Press-Schechter (EPS) approach.
They start their famous paper by focusing on all the possible trajectories of the overdensity of a given point iden-
tified in the real space at time t̄, as function of the of the filter radius R. They define a 4-dimensional field (once
again we will omit the time dependence t̄)

FW px,Rq “
ż

d3x1WR px ´ x1q δ px1q (1.143)

whereWR px ´ x1q is a smoothing functionat some resolutionRwhose shapehas tobedecided. Aone-dimensional
example of the topology induced by Eq. (1.143) for a Gaussian field δ pxq is given in their paper at Fig.1 [Bond
et al., 1991] for different choices of smoothing functions. Of great interest is a filter function WR as a top-hat in
Fourier space

WR prq “ 3
4πR3

psin x ´ x cos xq
x3

, x “ r
R

(1.144)

ŴR pkq “ θ p1 ´ kRq (1.145)

where θ here is the Heaviside function. In particular Eq. (1.144) allows an analytical derivation of the mass func-
tion within the EPS formalism. Specifically, for a fixed point in the initial condition space x̄, the trajectories iden-
tified by pσ2pRq,FW px̄,Rqq are Brownian random walks

FW px̄,Rq “
ż

d3kWR pkq δ̃ pkq eik¨̄x “
ż

kă 1
R

d3kδ̃ pkq eik¨̄x (1.146)

In particular, Eq. (1.146) is telling us that our trajectories are characterised by a series of points which are obtained
by increasing the resolution, i.e. the maximum mode kmax “ 1{R for the convolution in Eq. (1.146). Therefore,
a new step differs from the previous one via the inclusion of independent modes of the smoothed matter fields,
which is Gaussian. Therefore, any new step is indeed Markovian by definition. This feature is not present with
other type of filters. In Fig. 1.3.1, taken from the original paper [Bond et al., 1991] and where we add few graphics
to help the explanation, we show the description of the matter collapse in terms of Markovian random walks and
how the approach developed by Bond, J.R. et al. can solve the problem of the fudge factor 2. The link between the
original terms in the caption with those introduced so far are: Λ “ σ2 pRq while fv “ δcsp. ptq, our usual dynamic
barrier for the spherical collapse. More in details, each trajectory corresponds to a mass element identified at the
reference time t̄. According to the PS ansatz, the fraction of trajectories for which FW px̄,R1q ą fv, at a certain
time t, will contribute to the fraction of mass elements in collapsed objects with mass m ą mpΛ1q. Specifically,
trajectory Awill contributewhile Bwill not. However, given that the trajectory B is obtained from the trajectory A
just by mirroring it around f “ fv, then it will be equally likely as A. Therefore, the actual fraction of mass in halos
of m ą mpΛ1q will be twice the fraction of trajectories for which f ą fv at Λ1. This is just a qualitative explanation
of the power of the EPS approach andwe refer to Bond et al. [1991] for amore rigorous derivation which will also
allow to appreciate more the choice for k-sharp filter. In particular the EPS formalism solve the problem of the 2
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factor places ad hoc by PS.

The Sheth & Tormen mass function In this paragraph we will consider one last attempt in improving the
analytical expression for the mass function of dark matter halos (1.129). Furthermore, it will be the one actually
implemented in our pipeline. Sheth et al. [2001] (ST) were capable to include the dynamics of the ellipsoidal
collapse into the PS formalism via a dependence on the mass of the halo in the first-crossing barrier δcsp. ptq Ñ
δcel pt,mq of shape

δcel pz,mq “ δcsp. pzq
«

1 ` β

˜

σpmq
δcsp. pzq

¸2γff

(1.147)

While leaving adetaileddescriptionof the ellipsoidal collapse in theZel’dovich approximation todedicatedpapers
[Bond & Myers, 1996; Zel’dovich, 1970; Monaco, 1995], we want to underline that the great virtue of the their
approach is that, once the barrier shape in Eq. (1.147) is known, then the entire EPS formalism developed on
the basis of the spherical collapse dynamics with a constant barrier, can be extended very easily. The final general
result is the following expression for the multiplicity function (1.138)

ν fST.ν pνq “ 2A
´

1 ` 1
ν12q

¯

ˆ

ν12

2π

˙ 1
2

e´ ν12

2 (1.148)

with A „ 0.322, q “ 0.3 and ν1 “ aν. In the original paper from Sheth et al. [2001] a “ 1. We chose report here
the expression with a generic factor a to accommodate for different fitted formulas which proved the analytical
expression from ST accurate, up to a tiny dependence on how halos are identified in the simulation (see Sec. 4.1
in ST). For example, a well known parametrization of the mass function comes from Sheth & Tormen [1999],
where a “ 0.707. We will use this last fitted formula in our work.

1.3.5 The Halo Model: matter correlation functions

We conclude this chapter with a final section dedicated to the statistical description of the matter field in the Uni-
verse, within the halo model approach.

Halo bias First of all, the statistical properties of the dark matter halos we introduced so far are not direct
proxy of those of the underlying matter field we are interested in. In general, matter halos are biased tracers of the
underlying matter field. If we define the halo density contrast as [Mo & White, 1996; Mo et al., 1997]

δh px, tq ” nh px, tq
n̄h ptq ´ 1 (1.149)
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where n̄h ptq is the mean comoving halo number density and nh px, tq is the actual one at position x, then δh px, tq
is not equal to δ ptq and a more complex relation exists [Desjacques et al., 2018]

δh px, tq “
ÿ

O

rbO ptq ` εO px, tqsO px, tq ` ε px, tq (1.150)

In Eq. (1.149) and in Eq. (1.150) a dependence on themass of the halos can eventually be added, then δh pm, x, tq
and the biases will refer to halos of a specificmass. In the following wewill omit such dependence. In Eq. (1.150),
O are operators, or statistical fields, which describe properties of the halos’ environment on which their density
can depend. Each operator is multiplied by a corresponding deterministic bias parameter bO, which, at fixed time,
is merely a number, and by a stochastic bias εO px, tq which is relevant for very small scales, along with ε px, tq. In
our work, wewill only account for the deterministic bias expansion and, more specifically, for operators expressed
in term of power of the matter density contrast

O “ δN, bO“δN ” bN

N!
. (1.151)

The bN bias parameters are known as local-in-matter-density (LIMD) biases (9p∇2ΦqN).

In order to calculate the value for the different terms in the deterministic LIMDexpansion, the peak-background
split (PBS) [Kaiser, 1984; Bardeen et al., 1986; Cole & Kaiser, 1989; Mo & White, 1996] approach is commonly
used. According to this approach, the biases bpAq

N for halos included in a given region A (either the observable
Universe itself or the volume accessible by our survey) of the Universe are determined via

bpAq
N ptq “ 1

n̄h pt, δbptqq






δbptq“0

BNn̄h rt, δbptqs
BδbptqN







δbptq“0
(1.152)

where δb represents the mean matter fractional over-density within the above mentioned region, i.e.

δbptq “ 1
VA

ż

VA

d3x δpx, tq (1.153)

and n̄hpm, zq “ a3 fmpm, zq is the physical mean number density of halos, per unit of mass. In particular we will
see in Sec. 2.3.2 that also the scale factor a can indeed be shifted by the presence of a local over-density. Precisely,
the biases defined in Eq. (1.152) are Eulerian biases, noted in the following as bE

Nptq, and they refer to the time-
evolved perturbations. However, they can also be defined at the level of initial conditions for the spherical collapse
of halos. In this case they are called Lagrangian biases bL

Nptq. The two are related, in the case of a spherical collapse
in a EdS Cosmology, as

bE1 ptq “ bL1 ptq ` 1, (1.154)

bE2 ptq “ 2p1 ` aqbL1 ptq ` bL2 ptq, a “ ´ 17
21

(1.155)

where we focused on the first 2 orders. The local biases defined in Eq. (1.152), can actually bemeasured in simula-
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tion via the separateUniverse-ansatz [Dai et al., 2015;Wagner et al., 2015a] given that a specific large-scalemode δb
can actually be implemented via a change in the cosmological parameters of the simulation [Bertacca et al., 2015].
For our purpose, i.e. an analytical evaluation of the covariancematrix for weak lensing observables, of muchmore
interest is the possibility to analytically derive the LIMDbiases from an analyticalmultiplicity function, as defined
in Eq. (1.138). In this case, the biases are usually obtained in Lagrangian space and then mapped in the Eulerian
ones via the relations in Eq. (1.154). For the mass function considered in our implementation, i.e. the ST mass
function in Eq. (1.148), the first 2 order, mass dependent, Lagrangian biases are [Mo et al., 1997; Scoccimarro
et al., 2001]

bL1 pm, zq “ ν12 ´ 1
δcsp. pzq ` 2q{δcsp. pzq

1 ` pν12qq (1.156)

bL2 pm, zq “ ν12

δcsp. pzq
ν12 ´ 3
δcsp. pzq ` 1 ` 2q

δcsp. pzq ` 2
ν12 ´ 1
δcsp. pzq . (1.157)

where the dependence of ν1 over m and z is implied.

Statistical description of halos At this point, we have all the tools to first relate the matter clustering
to the halo clustering and, second, to describe the statistical properties of the former via those of the latter. Be-
fore tackling this point, let us introduce few more definitions. Given a distribution of N matter halos, their posi-
tions txiui “ 1, . . . ,N and masses tmiui “ 1, . . . ,N are random variables and one realisation is characterised by
a set of couples txi,miui“1,...,N. In general we can determine the value of an observable for one specific realisation
Ô px; txi,miui“1,...,Nq and then get the expectation value by ensemble averaging over the joint halo position-mass
distribution. While the joint theoretical distribution is not known, positions and masses should at least satisfy at
every redshift, for the derivations in the present chapter, the following relations involving the halo mass function
and the halo-halo correlation function εδh px1 ´ x2;m1,m2q (Cooray & Hu [2001])

x
ÿ

i

δ pm ´ miq δ px ´ xiqyH ” fm pm, zq , (1.158)

A

ÿ

i

δpx1 ´ xiqδpm1 ´ miq
ÿ

j

δpx2 ´ xjqδpm2 ´ mjq
E

H
” fm pm1q fm pm2q r1 ` εδh px1 ´ x2;m1,m2; zqs

(1.159)

where
A

ř

i . . .
ř

j . . .
E

H
is the average number of pairs of halos ofmassm1 andm2 atmutual distance x1 ´x2. An

interesting example of howwe can apply the halomodel formalism is the evaluation of themean backgroundmatter
density ρpzq. Its value from a specific realisation is the sum over all the contributions from the different halos of
the realisation

ρ̂ px, zq “
ÿ

i

ρh px ´ xi;mi; zq “
ÿ

i

miu px ´ xi;mi; zq (1.160)
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where ρ px ´ xi;mi; zq is the density profile for a single halo of massmi as function of the distance from the centre
of the halo xi. In line with the tradition we also defined u px ´ xi;mi; zq ” ρh px ´ xi;mi; zq {mi. The final mean
matter density can then be estimated via the halo ensemble average

ρpzq “ xρ̂ px, zqyH “ x
ÿ

i

mi u px ´ xi;mi; zqyH “
ż

dm m
ż

d3x1 u px ´ x1;m; zq x
ÿ

i

δ px1 ´ xiq δ pm ´ miqyH “
ż

dm m fm pm, zq (1.161)

where we used the request for a normalised halo density profile
ş

d3x1 u px ´ x1;m; zq m “ m.

Halo density profile In the previous paragraph we introduced the halo density profile ρh pr “ x ´ xi;mi; zq.
For our applications we will use the well known Navarro-Frank-White (NFW) profile [Navarro et al., 1996]

ρNFW pr,mq “ ρspzq
r

rspm,zq

´

1 ` r
rspm,zq

¯2 (1.162)

In Eq. (1.162), ρspzq is actually function of the mass once normalized over the volume of the halo up to the viri-
alization radius rvpm, zq (the one including the overdensity δvpzq defined in Eq. (1.128)), r is the module of the
distance from the center of the halo and rspm, zq is chosen in order to provide the best fit to simulations. A more
convenient way to describe the distribution of halos and fit the 2 left d.o.f. in the model, is the so called concen-
tration parameter cpm, zq “ rvpm,zq

rspm,zq , proved to be drawn from a log-normal distribution

p pc,m, zq “ 1
c
?
2πσ lnc

exp
ˆ

´plnc ´ ln̄c pm, zqq2
2σ2ln c

˙

(1.163)

where c̄ pm, zq is the median concentration parameter for every redshift and mass. For our implementation, we
will refer to the expressions in Bullock et al. [2001].

Mattercorrelation functions Webuild the n´point correlation function for thematter field via the usual
halo ensemble average over all the possible realisations of the halo distribution

εδ px1, . . . , xnq “ xε̂δ px1, . . . , xnqyH. (1.164)

In these last calculations we will imply the time dependencies, being clarified in the previous paragraph. In partic-
ular ρwill simply refer to thematter background density ρpzq. Specifically, we can build the product of n instances
of the contrast density field for the single realisation

ε̂δ px1, . . . , xnq “
n

ź

i“1

δ pxiq “
n

ź

i“1

ˆ

ρ̂pxiq
ρ

´ 1
˙

, (1.165)
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ρ̂pxiq being from one realisation. Let us start from the simple case of the 2-point correlation function

ε̂δ px1, x2q “ δpx1qδpx2q “ 1
ρ2

rρ̂ px1q ρ̂ px2qqs ´ 1 “
1
ρ2

ÿ

i

mi u px1 ´ xi;miq
ÿ

j

mj u
`

x2 ´ xj;mj
˘ ´ 1 (1.166)

where we used Eq. (1.160) to relate the value of ρ̂ to the halo masses and positions within a particular realisa-
tion of the statistical process. Eq. (1.166) can now be split into the sum of two main components. The first one,
dubbed 1-halo term, describes the situation where the two points in the correlator are within the same halo and it
is dominant at small scales (within the halo virialisation radius). The second instead, the 2-halo term, comes from
contributions where the two points are located in two different halos and it is important at larger scales.

ε̂p1q
δ px1, x2q “ rδpx1qδpx2qs1-halo “ 1

ρ2
rρ px1q ρ px2qqs1-halo ´ 1 “

1
ρ2

ÿ

i

mi u px1 ´ xi;miq
ÿ

j

mj u
`

x2 ´ xj;mj
˘ ˆ δij ´ 1, (1.167)

ε̂p2q
δ px1, x2q “ rδpx1qδpx2qs2-halo “ 1

ρ2
rρ̂ px1q ρ̂ px2qqs2-halo ´ 1 “

1
ρ2

ÿ

i

mi u px1 ´ xi;miq
ÿ

j‰i

mj u
`

x2 ´ xj;mj
˘ ´ 1 (1.168)

where in Eq. (1.167), we force the points x1 and x2 to be in the same halo by imposing i “ j. In Eq. (1.168), on the
contrary, we required them to be in 2 separate halos. By taking the the ensamble average of the 2 terms, we will
end up with the expressions for the 1-halo and 2-halo term for the 2 point matter correlation function. In details,
the 1-halo term is simply

xε̂p1q
δ px1, x2qyH “

ż

dm
ˆ

m
ρ

˙2

fm pm, zq
ż

d3x u px1 ´ x;mq u px2 ´ x;mq , (1.169)

while the 2-halo term is more complicated, and interesting, to derive

xε̂p2q
δ px1, x2qyH “

ż

dm1

ˆ

m1

ρ

˙
ż

dm2

ˆ

m2

ρm

˙

ˆ
ż ż

u px1 ´ x1;m1q u px2 ´ x2;m2q ˆ
A

ÿ

i

δpx1 ´ xiqδpm1 ´ miq
ÿ

j

δpx2 ´ xjqδpm2 ´ mjq
E

H
d3x1 d3x2 ´ 1. (1.170)

Given the relation (1.159), we can rephrase the ensemble average appearing in Eq. (1.170) in terms of the halo-
halo correlation function εδh px1 ´ x2;m1,m2q. At large enough scales (linear), as it is the case where the 2-halo
term is dominant, the halo over-density δhpmq is related to the matter over-density via the order 1 LIMD bias
b1pmq, i.e. δhpmq “ b1pmqδ. Therefore, we can express the halo-halo correlation function via the linear 2-point
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matter one
εδh px1 ´ x2;m1,m2q “ b1pm1qb1pm2qεlin.px1 ´ x2q. (1.171)

Then, the mass integration in Eq. (1.170) can eventually be factorised.

Generalising the formalism to the n-point correlation function, it will always be possible to express it as a sum
of terms accounting for all the possible distributions of the points within the halos: from the 1-halo term, where
all the points lie within a single halo and which is dominant at the smallest scales, up to the n-halo term where
every point lies in a different halo, dominant at the largest scales. Therefore, we will write the correlation function
εδ px1, . . . , xnq as a sum of its different multi-halo components

εδ px1, . . . , xnq “
n

ÿ

i“1

εpiq
δ px1, . . . , xnq . (1.172)

However, the number of convolutions appearing within the required n-halo terms increases and the complexity of
their numerical computation can easily diverge while moving to higher order correlation function. Since for our
analyses we will need the correlations up to the six order, it will be more convenient to move to the Fourier space
where thematter polyspectra in the halomodel framework take amuch simpler expression. Wewill postpone this
discussion to Chapter 3 where we will report the expressions for the polyspectra required for the computation.
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2
Weak Lensing

Contents
2.1 Weak lensing observables, formal definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.1.1 Propagation of light bundles in a perturbed Universe . . . . . . . . . . . . . . . . . 48

2.1.2 Deflection of light bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1.3 Weak lensing observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.1.4 More on the convergence field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2 Covariance Matrix, a complex evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.2.1 Why analytical covariances? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.2.2 Observable estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.2.3 Binned tomographic power spectrum covariance matrix . . . . . . . . . . . . . . . 73

2.2.4 Binned tomographic bispectrum covariance matrix . . . . . . . . . . . . . . . . . . 74

2.3 Super-sample covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.3.1 Estimators for a masked field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.3.2 SSC via the response approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

In the previous chapter we reviewed the basic formalism underlying the description of statistical random fields
in Cosmology and we saw how the cosmological model we employ to describe our Universe enters in the game,
affecting the different quantities introduced. Now, we want to understand how we can improve our knowledge
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about the underlying model. In broad strokes, once a set of dedicated observables has been identified, we mea-
sure them from the data, we compare these values against the expected ones for a given theoretical model, and
eventually we confirm it or rule it out. While it may sounds very easy, in reality all these steps are far from being
immediate.

First, we need to theoretically define a set of observables O rδs, as functional of the matter density contrast
field δ, sensitive to changes in the underlying model (via its parameters). This is not an easy task. Let us focus on
the case of observables employed in late-time Universe observations, as it will be the case for the study carried
out in this manuscript. If we could have access to the real matter distribution δ at late time, we would observe
a non-linear evolution of its primordial Gaussian distribution. Of course, a desirable property for an observable
is to be unmistakably predictable given the values of the parameters under consideration. However, since we do
not have an exact model for the matter clustering at all the scales of interest, a level of theoretical uncertainty is
introduced in the prediction of the observables. Further, we do not have direct access to the matter field either:
we always learn about its distribution via the analysis of tracers of it. As a matter of fact, we can study the Universe
via the collection of electromagnetic signals emitted by the small fraction of baryonic matter. Therefore, we need
to understand the complex relations between those tracers and the underlyingmatter field. Usually, approximated
models are introduced along with nuisance parameters in which we are not directly interested in, but which can
still spoil our cosmological forecast. In Sec. 2.1, we will build the observables used in our study, i.e. the binned
tomographic weak lensing convergence power spectrum and bispectrum [Bartelmann & Schneider, 2001; Kilbinger,
2015; Bartelmann & Maturi, 2017]. In particular, since the first detection in Bacon et al. [2000]; Kaiser et al.
[2000];Wittman et al. [2000]; Schneider et al. [2002], weak lensing signal has been widely exploited over the last
decade to deliver competitive cosmological parameter constraints: the Deep Lens Survey (DLS, Jee et al. [2013,
2016]), the Canada-France-Hawaii Telescope Lensing Survey (CFHTLens, Joudaki et al. [2017]), the Science
Verification data from DES (DES-SV, Jarvis et al. [2016]) and the 450 deg2 release of the Kilo-Degree Survey
(KidS-450, Hildebrandt et al. [2017]) are the main examples. Further, weak lensing detection is part of the main
scientific program of modern and up-coming surveys such as DES [Flaugher, 2005], the Hyper SuprimeCam
Survey (HSC, Aihara et al. [2018]), the Large Synoptic Survey Telescope (LSST, Ivezić et al. [2019]) and Euclid
[Laureijs et al., 2011; Amendola et al., 2013]. This trend clearly underlines the importance of studies dedicated
to the optimisation of weak lensing detection as main source of cosmological information. Thework presented in
the following chapter perfectly sits in this line of research.

Secondly, from the data side, we need to identify the quantities which correspond to the observables designed
at the previous step. For a given observableO rδs we will measure estimators Ô of it. The statistical properties of
the estimatorsmay however differ form those of the target observables and our goal is to build unbiased estimators.
Survey specificities like thefinite numberof tracers (shot noise)or thefinite volumeof our survey (finite resolution
on themeasuredmodes)may affect the statistical properties of the observed quantities and if neglected . Unbiased
estimators will be function of the data and capable to account for all these effects and correct for them.

Third, given that we usually measure an entire set of observables tOiui“1...n, along with the design of unbiased
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estimators we need to know the errors and eventually the correlations among them. In jargon the set is called
data vector. In particular, we can correctly infer parameters from a collection of data, or forecast the precision of
future survey inference, only if we properly weight our observations (interests in errors) and if we do not double
count the information they carry (interest in correlations). All these information arewell summarised by the nˆn
covariance matrix of the data vector, which is formally defined as

Cov
“

Oi rδs ,Oj rδs‰ “ xOi rδsOj rδsyδ ´ xOi rδsyδxOj rδsyδ. (2.1)

If we were capable to perform the ensemble average in the above definition, then we would know exactly the
covariancematrix for the set. However, this is not the case for late-timeUniverseobservations aswearenot capable
to analyticallymap theGaussianprobability density functional for the initialmatterfield into its final observedone.
Then, most of the time, we build approximations for the covariance which are functions of the data themselves,
if available, or of the simulated catalogues as expected to be observed by a specific survey. In this sense, several
techniques are available in the literature, like subsampling, Jackknife [Efron, 1982; Bothun et al., 1983] or bootstrap
[Barrow et al., 1984; Loh, 2008]. However in Sec.2.2 we will argue that these estimators may not be suitable for
modern galaxy surveys[Hoffmann et al., 2015; Friedrich et al., 2016; Shirasaki et al., 2017; Lacasa &Kunz, 2017].
Therefore, wewill have to reconsider the exact analytical definition given in Eq. (2.1), where the ensemble average
will derive from a suitablemodel for thematter clustering. This approach is also known as forwardmodelling of the
covariance. In our case, the model which will provide the tool for the prediction of the covariance matrix will be
the halo model, described in Sec. 1.3.4 and in Sec. 1.3.5. Within the present chapter, we will split our discussion
about the covariance matrix for the aforementioned weak lensing observables between Sec. 2.2 and Sec. 2.3.In
the former we will describe in details the covariance induced by correlations of modes in the matter field which
are fully observed by the survey. In the latter instead, we will focus on a less known component which comes
from correlations between observed modes and super-survey modes. This last component is usually known as
super-sample covariance [Hu&Kravtsov, 2003; Rimes&Hamilton, 2006; Takada&Bridle, 2007; Sato et al., 2009;
Takada & Jain, 2009; de Putter et al., 2012; Kayo et al., 2013].

2.1 Weak lensing observables, formal definition

In this section we will theoretically define the weak lensing observables employed in our analysis. We will assume
a spatially-flat FLRW Universe and we will put ourselves in units defined by c “ 1 (c being the speed of light).
The first assumption is in particular closely verified by themost recent cosmological observations [Hinshaw et al.,
2013; Bennett et al., 2013; Planck Collaboration et al., 2016].
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2.1.1 Propagation of light bundles in a perturbed Universe

PerturbedFLRWmetric Whilemoving to small scales, the FLRWmetric defined in Eq. (1.7) alongwith the
general shapes of the energy-momentum tensor in Eq. (1.6) are not precise anymore due to the break down of the
homogeneity assumption. Specifically, wewill assume that the presence of LSS induces small perturbations to the
background FLRW metric ḡ and to the tensors T̄ as

gμν pxq “ ḡμν pxq ` hμν pxq , |hμν pxq | ! 1, (2.2)

Tμνpxq “ T̄μνpxq ` Θμν pxq , |Θμν pxq |{ρptq ! 1. (2.3)

Themost general form for the perturbed FLRWmetric is defined by the following line element (implying the sum
over repeated indices) [Bardeen, 1980; Bertschinger, 2000]

d2s “ a2 pηq “p1 ` 2Φ pxqq d2η ´ 2wi pxq dη dxi ´ `p1 ´ 2Ψ pxqq δij ` 2sij pxq˘

dxidxj
‰

(2.4)

where Φ “ ´h00{2, wi “ h0i, Ψ “ ´Trrhs{6, sij “ `

hij ´ δklhklδij{3
˘ {2 and δij is the Kronecker delta defined

as δij “ 1 if i “ j, δij “ 0 otherwise. In particular, these last definitions allow to decompose the metric into
irreducible components under rotation [Lifshitz, 1946]. We also introduced the conformal time

dη “ dt
aptq , (2.5)

which allows to write the metric as proportional to a static one, up to a conformal transformation. This feature
will be extremely valuable later when deriving the weak lensing observables. The invariance of the metric under
diffeomorfisms, also known as Gauge freedom, allows us to remove 4 d.o.f. by binding the tensors in Eq. (2.4) to
obey specific constraints. We will work in the Transverse Gauge, which is defined by the following relations

Bisij pxq “ 0, (2.6)

Biwi pxq “ 0. (2.7)

The Einstein Equations can be written in terms of the perturbed quantities defined in this section. In the chosen
Gauge, we have [Carroll, 2004]

2∇2Ψ pxq “ 8πGT00 pxq , (2.8)

´ 1
2
∇2wi pxq ` 2B0BiΨ pxq “ 8πGT0i pxq , (2.9)

`

δij∇
2 ´ BiBj

˘ pΦ pxq ´ Ψ pxqq ´ B0

`Biωj pxq ` Bjωi pxq˘

2
` 2δijB2

0Ψ pxq ´ lsij pxq “ 8πGTij pxq , (2.10)

where the component 00, 0i and ij of the Einstein Equations are respectively given.
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Newtonian limit We will work out the weak lensing formalism in the Newtonian limit which defines a situ-
ation where the sources of the metric perturbations are static. At the notation level, we will express the metric
perturbations as functions of the three-dimensional vector position x. This correspond to a pressure-less fluid and
the matter-dominated LSS perfectly fit in this assumption (we can neglect baryonic effects). In the rest frame for
such a fluid, the perturbed Einstein equations turn out to be very simple

∇2Ψ pxq “ 4πGρ pxq , (2.11)

∇2wi pxq “ 0, (2.12)
`

δij∇
2 ´ BiBj

˘ pΦ pxq ´ Ψ pxqq ´ ∇2sij pxqq “ 0. (2.13)

The trace of Eq. (2.13) implies that

2∇2 pΦ pxq ´ Ψ pxqq “ 0 Ñ Φ pxq “ Ψ pxq (2.14)

given that the tensor sij is trace-less, by definition. In general, whenever relativist species are present, the two scalar
potentialΦ and Ψ will differ. However we assume that we are entirely dominated by non-relativistic dark matter.
Therefore, the final solution will be given by

∇2Φ pxq “ 4πGρ pxq , (Poisson equation) (2.15)

w pxq “ 0, (2.16)

sij pxq “ 0, (2.17)

leading to the following expression for the perturbed metric

d2s “ a2 pηq rp1 ` 2Φ pxqq d2η ´ p1 ´ 2Φ pxqq dxidxis . (2.18)

Fermat principle Tackling theweak lensing problem as an optical one, we can derive the equations for the de-
viation of light rays via the Fermat principle [Schneider, 1985; Blandford&Narayan, 1992; Bartelmann&Schnei-
der, 2001]. In particular, it states that in a stationary metric a light ray moves along a path for which the variation
of the travel time vanishes. The metric given in Eq. (2.18), thanks to the change of variable given in Eq. (2.5), is
indeed stationary up to a conformal factor. However, the latter will not affect the formal solution since the null-
geodesic condition ds2 “ 0will be always verified. Wehighlight that it is possible to derive the very same equation
ofmotions for a photon propagating in a perturbedmetric via the geodesic equations, assuming a perturbative ex-
pansion of the background geodesic. We refer to the literature for this alternative approach [Pyne & Birkinshaw,
1996].
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The null-geodesic condition applied to a metric as the one in Eq. (2.18) leads to

p1 ` 2Φ pxqq d2η






γ̃
“ p1 ´ 2Φ pxqq dℓ2 pxq







γ̃
(2.19)

wherewecan see that the conformal pre-factorapηqdisappears andweplugged in the three-dimensional comoving
line element dℓ2. In addition, we are formally evaluating Eq. (2.19) on the desired solution. We can map our
problem into an optical problem by defining an effective refractive index as the ratio between the speed of the
light over the path and c (c “ 1 in our units)

n pxq |γ̃ ” 1
vc pxq







γ̃
“

ˆ

dℓ pxq
dη

˙´1






γ̃
« 1 ´ 2Φ pxq |γ̃ (2.20)

where in the last relation we applied the Newtonian limit Φ pxq ! 1. In terms of the refractive index, the travel
time for a photon is given by

η “
ż η

ηo γ̃

n pxq dℓ “
ż η

ηo γ̃

n pxq |v| (2.21)

and according to the Fermat principle described above the solution γ̃ pηq will be given by δη|γ̃ “ 0.

Single ray deflection In order to find the path that minimises Eq. (2.21), i.e.

δη “ δ

«

ż η

ηo γ̃

n pxq |v|
ff

“ 0, (2.22)

we parametrise the general geodesic of the photon via an affine parameter λ

δ
ż λη

λo

n px pλ1qq |v pλ1q |dλ1 “ 0 (2.23)

where v “ dx{dλ. The integrand in Eq. (2.23) takes the role of the Lagrangian and we can solve Eq 2.23 via the
Euler equations

„

d
dλ

B
Bv ´ B

Bx
ȷ

L px, vq “ 0, L px, 9xq “ n pxq |v|. (2.24)

In details,
B
BxL px, vq “ ∇n pxq , B

BvL px, vq “ n pxq v
|v| “ n pxq v̂, (2.25)

then the Euler equations read
n pxq 9̂v “ ∇n pxq ´ 9v r∇n pxq ¨ vs . (2.26)

We can see that the second term on the r.h.s. of Eq. (2.26) is the projection of the gradient on the direction v̂, tan-
gential to the path. Therefore, the entire r.h.s. will be the projection of the gradient onto the direction orthogonal
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to the path. We will write
9̂v “ 1

n pxq∇Kn pxq . (2.27)

Eq. (2.27) tells us how the direction of the photon, given by the versor v̂ tangential to the path, changes on the fly.
Given an initial direction v̂o “ v̂pλoq and a final one v̂ “ v̂pληq, we integrate Eq. (2.27) to find the total deflection
of the path while the photon travelled for a time η ´ ηo

Δ
`

η, ηo

˘ “
ż λη

λo,γ̃

∇Kn px pλ1qq
n px pλ1qq dλ1 « ´2

ż λη

λo,γ̃
∇KΦ pxpλ1qq dλ1 (2.28)

where we used the relation in Eq. (2.20) and approximated at first order in Φ. Eq. (2.28) defines the total “de-
flection” Δ

`

η, ηo

˘

induced by a Newtonian perturbationΦ to the metric for a single photon travelling from time
ηo to time η. Please note that the integrals entering the definition are meant to be evaluated on the actual path γ̃
followed by the photon and that the quantity Δ is not an angle in general but a coordinate difference.

2.1.2 Deflection of light bundles

In the previous section we derived the equations which describe the deflection of a photon within a weakly per-
turbedmetric. However, we do not measure single photons in our surveys. What we observe are distorted shapes
of far extended sources, which are continuous objects and which are better described by the distortion of bundles
of neighbour geodesics. In this sectionwewill promote the formalism explored in the previous part of this chapter
to this more realistic scenario.

Jacobian matrix In a bundle of light rays we consider a reference geodesic γb. We can study the evolution of
the comoving separation Epλq of a general geodesic γa in the bundle away from the reference one with the help of
Eq. (2.27),

d2E pλq
dλ2

“ d2xa pλq
dλ2

´ d2xb pλq
dλ2

“ v̂a pλq ´ v̂b pλq “ ´2 r∇KΦ pxapλqq ´ ∇KΦ pxbpλqqs . (2.29)

where xapλq and xbpλq are points on the support of γa and γb respectively at a given value of the affine parameter
λ. The affine parameter for the second geodesic γa is the same as for the reference geodesic and in particular we
assume the 2 photons to have the same initial conditions

xapλoq “ xbpλoq, vapλoq “ vbpλoq (2.30)

For later convenience, we recall that the comoving angular diameter distance (1.27) allows to relate the comoving
transverse distance rK with the corresponding two-dimensional angular sizeΘ

Θ “ rK
DA pzpωqq . (2.31)
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reference geodesic γb, at angular comoving distance ω from the observer¹. Then we will consider just two
of the three components of the gradient in Eq. (2.29),

- angular deviations Θ “ tθ1, θ2u, associated to a specific transverse displacement via Eq. (1.27), are given as
relative to the incoming angular direction of the geodesic γb, taken as reference.

Given these points, the differential system to solve in terms of EK pωq for an incoming angular direction pθ1, θ2q “
Θ of γa is

d2EK pωq
dω2 “ ´2 r∇KΦ pωΘa, ωq ´ ∇KΦ pωΘb, ωqs ,

EK p0q “ 0,
dEK p0q
dω

“ dDA pωq
dω

Θ “ Θ (2.32)

where the initial conditions do actually implement 1) the fact that the 2 incoming photons will reach the observer
at the same position (the origin of the reference frame) and the ω-derivative of the transverse displacement at
the origin gives the direction of the incoming photon. Respectively, Θa “ tθ1,a, θ2,au and Θb “ tθ1,b, θ2,bu are
the angular separations between the the reference axe defined above and the the projection of the points xapωq
and xbpωq on the transverse plane. We highlight that Eq. (2.32) can also be derived within a general relativistic
framework as the Sachs-Jacobi equation for a perturbed FLRW metric [e.g. Bartelmann & Schneider, 2001, and
references therein]. In such scenario, the sourceof deviation for the light bundle is the sumof two term: one related
to the curvature of the Universe Kp3q and another one related to the local matter perturbation. For a spatially-flat
Universe the former is vanishing and the system (2.32) is indeed the Sachs-Jacobi equation itself. While the
solution of the associated homogeneous system can be easily derived

Eho.
K pωq “ ωΘ, (2.33)

we will get a particular one via the convolution with the well known Green function Gpω, ω1q for the operator
d2{dω2. Under the assumption of a spatially-flat Universe we can compute the difference between 2 comoving
distances via Eq. (1.29),

Gpω, ω1q “ DA pω, ω1q “ χ pω, ω1q . (2.34)

in terms of the corresponding redshifts. Therefore, the formal solution to the system (2.32) is given by

EK pΘ, ωq “ ωΘ ´ 2
ż ω

0
dω1χ pω, ω1q r∇KΦ pωΘa, ω1q ´ ∇KΦ pω1Θb, ω1qs (2.35)

and we made explicit the dependence on the angular direction Θ of the incoming photon γa. In analogy with
standard lens theorywedefine the Jacobianmatrix as thederivativeof theunperturbed, original angular separation,

¹A more rigorous definition of the transverse quantities can be derived [Bernardeau et al., 2010]. However, at leading order in the
metric perturbations, the differences are negligible.
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i.e.
Θnp pΘ, ωq “ E pΘ, ωq

ω
, (2.36)

with respect to the perturbed one between the incoming photons, i.e.

Θp pωq “ ωΘ
ω

“ Θ, (2.37)

which is

A pΘ, ωq ” BΘnp pΘ, ωq
BΘp pωq “ 1

ω
BE θ pΘ, ωq

BΘ . (2.38)

In the future, we will omit the dependence on ω inΘp being constant. It is worth underlying that the angle associ-
ated to the homogeneous solutionΘ is actually the direction of the perturbed incoming geodesic γa, as specified
by the initial conditions in the second line of Eq. (2.32). Instead, the full solution E pωq, which is function of the
comoving distance from the observer, is the original reconstructed comoving separation between the 2 geodesics
before their fly through the potential Φ, from ω to ω “ 0 (the observer). In particular, the Jacobian defined in
Eq. (2.38) defines the linearization of the inverse lensing mapΘp Ñ Θnp pωq, i.e.

Θnp pΘp, ωq |lin. “ r12 ` A pΘp, ωqsΘp. (2.39)

where 12 is the identity matrix of dimension 2. Themore natural mapping from an original geodesic bundle to the
lensed one is instead realised by the inverse of the Jacobian (at linear level), the magnification tensor M “ A´1

Θp pΘnp pωqq |lin. “ r12 ` M pΘnp, ωqsΘnp pωq . (2.40)

In the weak lensing regime we will see around Eq. (2.64) that the matrix A is always invertible.

Born approximation The perpendicular gradients of the Newtonian potential in Eq. (2.35) are to be evalu-
ated along the true paths of the photons. The Born approximation will help us simplifying the actual computation
of the transverse separation EK. In particular it states that the change of the actual transverse comoving separation
EK between the two real geodesics is small compared to the comoving separation between the unperturbed path.
Formally

|EK pωq ´ ωΘ|
|ωΘ| ! 1. (2.41)

Fromthecomputational perspective, theBornapproximationentitles us to compute thegradientswithinEq. (2.35)
over straight paths (the geodesics γua and γub in Fig. 2.1.2) separated by the angleΘ, then

∇KΦ pωΘa, ωq « ∇KΦ pωΘ, ωq , (2.42)

∇KΦ pωΘb, ωq « ∇KΦ p0, 0, ωq . (2.43)
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In Eq. (2.45) we introduced the well known lensing kernel

W pω, ω1q “
$

&

%

χpω,ω1q
ωω1 , if ω ą ω1

0, if ω ď ω1
(2.46)

which will be of great help for introducing survey specificities in the above definitions.

Deflection angle Starting from Eq. (2.44), we can define the (absolute) deflection angle as the net displace-
ment of a geodesic bundle away from the initial, reconstructed, angular direction EB

K pωq {ω

αi pΘ, ωq ” Θp,i ´ Θnp,i pΘ, ωq “ ωΘi ´ EB
K,i pωq

ω
. (2.47)

Absolute deflection angles cannot be measured. All measurable effects of light deflection only depend on the
derivatives of the deflection angle α and the choice of the fiducial geodesic γ̃b is then irrelevant for practical pur-
poses. Regarding this point, it is interesting to notice that the Jacobian in Eq. (2.45) gives exactly this information,
being

rA pΘ, ωqsij “ δij ´ Bjαi pΘ, ωq . (2.48)

2.1.3 Weak lensing observables

In the present section we will formally introduce the 2 main fields used to exploit weak lensing signal for cosmo-
logical purposes, namely the weak lensing shear and weak lensing convergence fields.

Lensingpotential Tomake our future notation lighter and to get closer to theweak lensing literature [Bartel-
mann & Schneider, 2001; Kilbinger, 2015; Bartelmann & Maturi, 2017], let us introduce the lensing potential as

ψL pΘ, ωq “ 2
ż ω

0
dω1 W pω, ω1q Φ pω1Θ, ωq . (2.49)

In terms of it, the Jacobian can be expressed as

rA pΘ, ωqsij “ δij ´ BjBiψL pΘ, ωq (2.50)

Convergence and shear We define for the first time the scalar field convergence κ pΘ, ωq and the spin-2 field
shear γ pΘ, ωq “ tγ1 pΘ, ωq , γ2 pΘ, ωqu as

A pΘ, ωq “
˜

1 ´ κ pΘ, ωq ´ γ1 pΘ, ωq ´γ2 pΘ, ωq
´γ2 pΘ, ωq 1 ´ κ pΘ, ωq ` γ1 pΘ, ωq

¸

. (2.51)
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Inversely they are related to the lensing potential as

κ pΘ, ωq “ rB2
1 ` B2

2s ψL pΘ, ωq , (2.52)

γ1 pΘ, ωq “ 1
2

rB1B1 ´ B2B2s ψL pΘ, ωq , (2.53)

γ2 pΘ, ωq “ B1B2ψL pΘ, ωq , (2.54)

while we can directly relate them, in real space, via

B1κ pΘ, ωq “ B1γ1 pΘ, ωq ` B2γ2 pΘ, ωq , (2.55)

B2κ pΘ, ωq “ ´B2γ1 pΘ, ωq ` B1γ2 pΘ, ωq , (2.56)

∇2κ pΘ, ωq “ pB2
1 ´ B2

2q γ1 pΘ, ωq ` 2B1B2γ2 pΘ, ωq . (2.57)

We postpone to Sec. 2.1.4 a comment on the relations among the introduced fields in Fourier space. We remind
that the above field expressions have been derived under the assumption of observed light bundles having a small
angular size. A full-sky derivation is proposed in Bernardeau et al. [2010]

κ pθ, φ, ωq “ 1
2

C̄CψL pθ, φ, ωq , (2.58)

γ pθ, φ, ωq “ 1
2

CCψL pθ, φ, ωq , (2.59)

where the operators C̄, C are the spin operators on the sphere

C̄ rsΧs “ ´ sins θ
ˆ

Bθ ` i
Bφ

sin θ

˙

1
sins θ

rsΧs , (2.60)

C “ ´ 1
sins θ

θ
ˆ

Bθ ´ i
Bφ

sin θ

˙

sins θ rsΧs , (2.61)

given in Cartesian representation with s the spin of the field sΧ. Also, the angles θ, φ have been locally introduced
to describes the field on the sphere, respectively being the polar and azimuth angle. For the shear field, a complex
representation is usually given

γ pΘ, ωq ” γ1 pΘ, ωq ` iγ2 pΘ, ωq ” |γ pΘ, ωq |e2iφγpΘ,ωq (2.62)

and we can write the Jacobian matrix in another interesting form

A pΘ, ωq “ p1 ´ κ pΘ, ωqq
˜

1 0
0 1

¸

´ γ pΘ, ωq
˜

cos r2φγ pΘ, ωqs sin r2φγ pΘ, ωqs
sin r2φγ pΘ, ωqs ´ cos r2φγ pΘ, ωqs

¸

. (2.63)
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We can express the determinant of the Jacobian matrix in terms of the fields defined above

det rA pΘ, ωqs 1
p1 ´ κ2 pΘ, ωqq2 ´ |γ pΘ, ωq |2 «

W-L
1 ` 2κ pΘ, ωq . (2.64)

The weak lensing regime, i.e. κ, γ ! 1, ensures det rAs ‰ 0 which makes it always invertible. The representation
of the Jacobian in Eq. (2.63) allows for a more physical interpretation of the fields introduced.

Physical intuition Let’s assume to have a source (a galaxy for example) defined by an isotropic profile of
radius Ro, at a given comoving distance ω. We parametrise the angular coordinates of a general point P of the
profile as P Ñ pθ, φq “ pRo cos t,Ro sin tq, t P r0, 2πq. The point P will be mapped into a point P1 of angular
coordinates pθ1, φ1q, at the observer position, due to the distortions of light bundles. In terms of the formalism
studied in the previous section, pθ1, φ1q “ Θp and pθ, φq “ Θnp pωq. In this paragraph we desire to inquire about
the physical impact of the shear and converge fields. To do that, we will work with the more natural linearised
direct lensing map, which is implemented via the magnification tensor M “ A´1.

If we assume to have just a convergence component κ pθ, ωq, then the linear modification of the angular coor-
dinates will be, according to Eq. (2.40),

“

Θp ´ Θnp pωq‰

lin. “ M pΘ, ωq ¨ Θnp pωq “
˜

1
1´κpΘ,ωq 0

0 1
1´κpΘ,ωq

¸

¨
˜

Ro cos t
R0 sin t

¸

“
˜

Ro
1´κpΘ,ωq cos t

Ro
1´κpΘ,ωq sin t

¸

(2.65)

and we dropped the subscript np on the angular dependencies within the matrix M since differences between
the angle Θp and the angle Θnp would induce corrections beyond the linear level. Therefore, the original galaxy
is mapped into a new circular shape with radius R “ Ro

1´κpΘ,ωq with a dependence on the distance from the ob-
server. We can then see that the convergence field has themain effect of inducing amagnification, i.e. an isotropic
deviation, of the light bundles.

If we also consider a non-vanishing shear component γ pΘ, ωq, then the original shape will be distorted into an
ellipse with major and minor axe respectively given by

a “ Ro

1 ´ κ pΘ, ωq ´ |γ pΘ, ωq | , (2.66)

b “ Ro

1 ´ κ pΘ, ωq ` |γ pΘ, ωq | . (2.67)

The ratio between the original circular area of the light bundle and the final is

μ “ a ¨ b ¨ π
Roπ2 “ a ¨ b «

W-L
1 ` 2κ pΘ, ωq (2.68)

and we can see thay in the weak lensing regime, i.e. Φ ! 1 Ñ κ ! 1, the convergence field is directly related to
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the magnification.

We conclude this paragraph by proposing in Fig. 2.1.3 several lensed profiles of the same original isotropic
source for different values of the shear and convergence field. We refer to the caption for more details about the
implementation.

2.1.4 More on the convergence field

In this section we will focus on the convergence field being the main observable used in our study. We will see
how the convergence can provide a direct way to inspect the clustering properties of matter and we will introduce
its polyspectra along with the approximations involved.

Convergence field and matter density field Via the Poisson equation in polar coordinates, we can in-
terestingly express the convergence field κ in Eq. (2.52) in terms of the matter density contrast

κ pΘ, ωq “ 3 pH0q2 Ωm,0

2

ż ω

o

dω1

a pω1qW pω, ω1q δ pΘ, ω1q . (2.69)

This relationwill be of crucial importance later in thismanuscript where wewill actually relate the statistical prop-
erties of the convergence field to those of the matter field. Indeed, the former are just a “projection” of the latter.

Tomographic convergence field Modern galaxy surveys will have the capacity to detect the binned posi-
tions of the sources in redshift. Of course, the comoving number density of galaxies within each redshift bin, along
with the number and the width of the bins, is fixed by the specificities of a given survey. While we will apply our
analysis to a Euclid-like one, here we will consider a general comoving density distribution n pzq.

The expression reported in Eq. (2.69) gives the actual level of convergence for a single source at comoving
distance ω from the observer. If we allow, as it is the case in this section, for a distribution of sources in redshift,
then the above expression will have to be convoluted with the function n pzq, properly normalised. Therefore, the
total convergence relative to the redshift bin bi “ rzi, zi`1swill be given by the followingmore complex expression
that will define the tomographic convergence field

κpiq pΘq “ 3H2
0Ωm,0

2

ż zi`1

o
dz
dωpzq
dz

p1 ` zq
ż 8

z
dzs

nipzsq
n̄i

W pzs, zq δ pΘ, zq , (2.70)

where we employed the redshift as integration variable. We can rephrase Eq. (2.70) in a more compact form

κpiq pΘq “
ż zi`1

o
dz

dωpzq
dz

Qpiq pzq δ pΘ, zq . (2.71)

The functionQpiq is the convolution of a cosmology (only) dependent function S pzs, zq and a functionF pzs, iq
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Flat-skyapproximation Following thediscussionaroundEq. (1.52),wewould like to compute thepolyspec-
tra for the cosmological field introduced. The important difference is that the tomographic weak lensing conver-
gence field in Eq. (2.71) is defined over a sphere centred on the observer. Therefore, spherical harmonic functions
are the suitable basis ontowhich expand our field. However, it may not be useful for us to explore the largest scales
at which the spherical formalism actually applies. As amatter of fact, in Chapter 3wewill see that theweak lensing
observables we will use for our cosmological analyses do have a very low signal-to-noise ratio at these scales while
being extremely informative at the small ones. When this limit is considered, the modes can be treated as flat
leading to an almost negligible impact on the polyspectra. Conventionally, such approximation is called flat-sky
approximation. In a nutshell, at small enough scales it assumes that the description of our field can be properly
done on a flat surface orthogonal to a specific line-of-sight. As long as this approximation holds wewill be allowed
tomove to the configuration space via a much simpler two-dimensional Fourier transform. We will single out the
details in the following and we refer to Fig. 2.1.4 for a graphic help.

In general, the value of the matter field in a given point Psp. of the (real, spherical) sky at comoving distance ω
from the observer is described by a set of coordinates defined on the sphere as δpPsp.q “ δ pr “ n̂ωq, n̂ being the
unity vector giving the angularpositionof thepoint. For sakeof completeness n̂ “ tsin θ cos φ, sin θ cos φ, cos θu.
We also introduce a second set of coordinates by fixing a preferential axe, in Fig. 2.1.4 the ẑ one. At each value of
the comoving distance ω on it, we can define an orthogonal plane to it. In this new system, a general point Pfl.

will be described by 1) the comoving distance ω of the plane on which it lies, and 2) by a two-dimensional vector
rK “ trxK, ryKu defining its position on the plane. For small angular deviationΘ “ tθx, θyu of the point Pfl. we can
approximate rK « ΘDApωq. We are then ready to define the flat-sky approximation. Specifically, for small enough
angular deviationsΘ we can assume that δpPsp.q « δpPfl.q and in terms of coordinates δpn̂ωq « δpω,ΘDApωqq.
We will call the chosen axe, here ẑ, as line-of-sight. Since we are considering spatially-flat Universe, DApωq “ ω.

Themain consequence of the flat-sky approximation is the capacity to employ a two-dimensional Fourier trans-
form for each of the planes identified on the line-of-sight

κpiq
ℓ

“
ż

d2Θ κpiq pΘq e`iℓ¨Θ, (2.75)

κpiq pΘq “
ż zi`1

o
dz

„

dωpzq
dz

ȷ

Qpiq pzq δ rωpzq,Θωpzqs (2.76)

In the light of the up-coming calculations, we employ the simpler notation κℓ ” κ̃ pℓq. Even if the work presented
in this manuscript is mainly focused on the convergence field, realistic survey analyses are performed at the level
of the shear field γ “ γ1 ` iγ2 defined in Eq. (2.51). However, we can univocally relate them at the level of Fourier
modes by inverting Eq. (2.57) (neglecting the tomography)

κℓ “ ℓ´2 rpℓ21 ´ ℓ22q γ̃1pℓq ` 2ℓ1ℓ2γ̃1pℓqs . (2.77)

It is worth highlighting that the explanation given in the previous paragraph holds in real space. We should also
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prove the flat-sky approximation in configuration space to build our polyspectra. Luckily, the small scale limit of
an harmonic expansion is approximated by a Fourier expansion [White et al., 1999; Hu, 2000; Bernardeau et al.,
2011]. We will review in the following the main steps of this peculiar proof.

A general scalar field ψ pr, θ, φq defined on a sphere can be decomposed in terms of spherical harmonics as

ψ pr, θ, φq “
ÿ

ℓ

`ℓ
ÿ

m“´ℓ

ψ̂
ℓ,m prq Ym

ℓ pθ, φq (2.78)

for which a commonly used representation is

Ym
ℓ pθ, φq “

d

2ℓ ` 1
4π

pℓ ´ mq!
pℓ ` mq!P

m
ℓ pcos θq eimφ. (2.79)

Pm
ℓ is the associated Legendre polynomial. The angle θ P r0, πs and φ P r0, 2πq are respectively the polar and

azimuth angle on the sphere, as already introduced in the first chapter and identified in Fig. 2.1.4. In configuration
space, the flat-sky limit corresponds to small azimuth angular deviation θ ! 1. Angles are given in radian. We de-
fine the two-dimensional Fourier transformof the field ψ pr, θ, φq as the following function of the the components
ψ̂
ℓ,mprq

ψ̂ pr, ℓq ”
c

4π
2ℓ ` 1

ÿ

m

i´mψ̂
ℓ,mprq ei mφℓ , (2.80)

and the inverse is clearly

ψ̃
ℓ,mprq “

c

2ℓ ` 1
4π

im
ż

2φ
ℓ

2π
e´imφℓ ψ̃ pr, ℓq (2.81)

with ℓ ” |ℓ| and φ
ℓ

” tan´1 pℓ1{ℓ2q. It is then possible to prove that in the small scale limit Eq. (2.80) does
actually provide the coefficient of a Fourier expansion of the field. In details,

ψ pr, θ, φq “
ÿ

ℓ

`ℓ
ÿ

m“´ℓ

ψ̂
ℓ,mprq Ym

ℓ pθ, ψq «

ÿ

ℓ

ℓ

2π

ż ż

2φ
ℓ

2π
ψ̂ pr, ℓq

`ℓ
ÿ

m“´ℓ

Jm pℓ θq imei m pφ´φℓq «
ż

d2ℓ
p2πq2 ψ̃ pr, ℓq ei ℓ¨Θ (2.82)

where we used the approximation for small angles θ ! 1 for the spherical harmonic

Ym
ℓ pθ, φq «

c

2ν
4π

p´1qmJmpνθqei m φ, ν “ ℓ ` 1
2
, (2.83)

63



and the Jacobi-Anger expansion for two-dimensional plane waves

ei z cos θ “
`8
ÿ

n“´8
Jn pzq ei n θ, (2.84)

with Jn being the nth order Bessel function of the first kind.

Convergence polyspectra Given the tomographic convergence field in configuration space in Eq. (2.75),
we can define the general polyspectra in the flat-sky approximation as

xκpi1q
ℓ1

. . . κpinq
ℓn

y ” p2πq2 Pi1...in pℓ2, . . . , ℓnq δD pℓ1 ` ¨ ¨ ¨ ` ℓnq . (2.85)

and in particular it is proved to be consistent with the small scale limit of the definition for the polyspectra on the
sphere [Hu, 2000]. We saw in Eq. (2.69) that it is possible to relate the convergence field to the density matter
field. Naturally, we can find a relation between their polyspectra. Indeed we will evaluate those for the former as
a projection of those for the latter. In a general fashion,

xκpi1q
ℓ1

. . . κpinq
ℓn

yc

“
A

n
ź

i“1

ż ωu
i

0
dωi

„

Qpiq pωiq
ż

d2Θi δ
“

xK
i “ Θiωi, ωi

‰

e`iℓi¨Θi

ȷ

E

c

“ p2πq´n
A

n
ź

i“1

ż ωu
i

0
dωi

„

Qpiq pωiq
ż

dk∥i e´i k∥i ωi

ż

d2xK
i

ω2
i

δ
”

xK
i “ Θiωi, k∥i

ı

e`i ℓiωi
¨xK

i

ȷ

E

c

“ p2πq´n`3

«

n
ź

i“1

ż ωu
i

0
dωi

Qpiq pωiq
ω2

i

ff «

n
ź

i“1

ż

dk∥i e´i k∥i ωi

ff

`

P
`

kK
2 , . . . k

K
n

˘

δD pk1 ` ¨ ¨ ¨ ` knq |kK
i “ℓi{ωi

˘

«
Lim.

p2πq´n`3

«

n
ź

i“1

ż ωu
i

0
dωi

Qpiq pωiq
ω2

i

ff

P pℓ2{ω2, . . . , ℓn{ωnq |k∥i «0δD
`

kK
1 ` ¨ ¨ ¨ ` kK

n

˘ ˆ
n

ź

i“1

ż

dk∥i e´i k∥i ωiδpnq
´

k1∥ ` ¨ ¨ ¨ ` kn
∥

¯

(2.86)

where, in the third line, we performed the change of variable Θi Ñ xK
i “ ωiΘi to allow, in the fourth line, a

standard three-dimensional Fourier transformation. We also defined the upper integration limit ωu
i ” ωpzi`1q.

At this point the ensemble average applies on the product of the instances of the matter field δ leading to the
three-dimensional matter polyspectrum according to its definition in Eq. (1.53). We also assumed that the latter
does not depend, in general, on k∥. This approximation is called Limber approximation [Loverde & Afshordi,
2008] and it is valid on small scales, i.e. as long as the flat-sky approximation holds (see for example Sec. 9.1 in
Dodelson [2003] for an in depth discussion). Shortly, if we are interested in measuring the level of correlation
for a configuration involving one multipole ℓ, then we will have to project over matter polyspectra depending on
the three-dimensional mode k “ pℓ{ω, k∥q, up to a given redshift. However, polyspectra involving k∥ Á 1{ω
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are suppressed by the oscillating factor e´i k∥ω. If ℓ is enough large to ensure ℓ{ω " k∥ over the typical length of
the projection, then we will simply approximate the full vector as k « pℓ{ω, 0q. Under this assumption, we can
re-phrase the last term of the integral as

n
ź

i“1

ż

dki
∥e

´i k∥i ωiδD
`

k∥1 ` ¨ ¨ ¨ ` k∥n
˘ “

n
ź

i“2

ż

dk∥i e´i k∥i ωie`i ω1
řn

j“2 k∥j “
n

ź

i“2

ż

dk∥i ei k
∥
i pω1´ωiq “ p2πq`n´1

n
ź

i“2

δD pω1 ´ ωiq . (2.87)

Therefore

xκpi1q
ℓ1

. . . κpinq
ℓn

yc “

p2πq2
ż 8

0
dω

“
śin

î“i1 Qp̂iq pωq‰

ω2n P pℓ2{ω, . . . , ℓn{ωq |k∥i «0δD
`

kK
1 ` ¨ ¨ ¨ ` kK

n

˘ “

p2πq2
ż 8

0
dω

“
śin

î“i1 Qp̂iq pωq‰

ω2n´2 P pℓ2{ω, . . . , ℓn{ωq |k∥i «0δD pℓ1 ` ¨ ¨ ¨ ` ℓ
nq , (2.88)

where in the second line we changed variable in theDirac delta for each of the two components of kK
i . The powers

of p2πq cancel out according to our conventions (1.52). Finally we recognise the structure of Eq. (2.85), leading
to the following relation

Pi1...in pℓ2, . . . , ℓnq “
ż 8

0
dω ω2´2n

»

–

in
ź

î“i1

Qp̂iq pωq
fi

fl P pk pℓ2, ωq , . . . , k pℓn, ωqq ”
ż 8

0
dω T pi1, . . . , in; ωq P pk pℓ2, ωq , . . . , k pℓn, ωqq . (2.89)

the three-dimensional mode given by the Limber dependence kpℓ, ωq « pℓ{ω, 0q. Before moving to the next
section, wewould like to underline that the fact the three-dimensional polyspectrum is evaluated on contributions
coming from the same comoving distance ω is deeply connected to the assumption wemade of weak dependence
on transverse modes k∥ (Limber approximation).

2.2 CovarianceMatrix, a complex evaluation

We now turn to the evaluation of the covariance. In this section we will discuss about this topic in the context of
the weak lensing convergence field. Specifically, our observables will be the tomographic power spectrum and the
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tomographic bispectrum of it

Pij pℓq “ Pij pℓq , (2.90)

Bijk pℓ1, ℓ2, ℓ3q “ Pijk pℓ2, ℓ3q , (2.91)

where, again, the dependence on just the modules of the momenta involved comes from the request of isotropy
and homogeneity. We recall that, according to the notation introduced in Chapter 1, ℓ ” |ℓ|.

2.2.1 Why analytical covariances?

Covariance matrix, an introduction Given a data vector tOiui“1,...,N, the measured values are stochastic
events and their expectation values can be derived theoretically if the probability density functional of the field
their are drawn from is known. The variance of each observable tσ2i ui“1,...,N and the covariances among them tσ2ij “
σ2jiui,j“1,...,N are in turn stochastic variables, being function of them

σ2ij ” xOi Ojy ´ xOiyxOjy, (2.92)

σ2i ” σ2ii (2.93)

Variance and correlations for the data vector are given as element of theCovariance matrix. The covariancematrix
is a square, symmetric and positive definedmatrix which has dimensionN,N begin the number of observables we
want to measure, where the diagonal elements are the variances and the off-diagonal elements are the covariances
among them

CovrOi,Ojs “ σ2ij. (2.94)

The correlations are simply the covariances once normalised over the variances

corr
“

Oi,Oj
‰ “ corr

“

Oj,Oi
‰ “ σ2ij

σ2i σ2j
, i, j “ 1, . . . ,N. (2.95)

Whenever the above definition cannot be applied due to our ignorance on the probability density functional
(PDF) of the underlying field, we have to find a way around to evaluate the elements in the covariance via the
single realisation we have at our disposal. Let us briefly clarify some important points of our discussion before
moving one with our presentation.

First of all, we will be interested in forecast for cosmological parameters. Specifically, we want to address the
scientific performance of future missions. In this case, real data are not yet available but still we want to under-
stand how well cosmological parameters will be measured and and how we can optimise future data analyses and
computational resources. All the considerations given above still apply. However, when referring to data we will
be thinking about mock data from simulations which mimic the sky observed by a specific survey accounting for
all the systematics real data will be affected by.
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Secondly, the observables we will consider are polyspectra measuring the amount of correlations in the weak
lensing convergence field at different scales and among different binned source positions (tomography). The cor-
relations in the data set will be directly related to the underlyingmatter clustering . As we saw in Sec. 1.3 couplings
amongmodes arise while evolving thematter field in time and they will be directly mapped into couplings among
angular scales at the level of theweak lensing signal. Therefore, the value of the correlations at a given scale (config-
uration) will be correlated to that one at an another scale (configuration) and so on leading to a significant impact
at the level of cosmological parameter error bars [Sato et al., 2009] . Then, the problem of estimating a covariance
matrix for modern galaxy survey is actually indeed an interesting physics problem: covariance matrix estimation
is difficult because the physics of non-linear gravitational collapse is not sufficiently well described by up-to-date
models of clustering.

Estimating the Covariance matrix In an ideal scenario, the optimal way to compute a covariance matrix
would be to runNs Ñ 8 large and accurate hydro-simulations of cosmological structure formation. Theoptimal-
ity in this approach arises from the fact that numerical simulations are to date our best tool to describe non-linear
structure formation and the properties of the visible structures within. These faithfulmock realisations of theUni-
verse would then be used to estimate the true covariance via the sample covariance of the observablesOi andOj,
built as

Ĉovij “ 1
Ns ´ 1

Ns
ÿ

I“1

pOi,I ´ xOiyq `

Oj,I ´ xOjy
˘

, (2.96)

where OI is the Ith measurement of the observable O, and the expectation value of it can be estimated via the
arithmetic mean xOy ” ř

I OI{Ns. However, we do have tight minimum requirements on Ns for a given set of
observables. Taylor et al. [2013] derived the minimum number of samples Ns that are used to compute the co-
variance to obtain a fractional precision better than ε on parameter constraints, assuming a Gaussian weak lensing
field

ns ą 2
ε2

` N ` 4, (2.97)

Nbeing the dimensionof the data vector. Aswewill see, wewill be dealingwith vectors of dimension„ 104, which
makes a precise evaluation of the covariancematrices from simulations extremely challenging. Furthermore, pure
dark-matter simulations produce power spectra to about 1% accuracy up to k ă 1 h Mpc´1, or 3% up to k ă
10 hMpc´1 [Schneider et al., 2016]. For a Euclid-like survey for example, Kitching & Taylor [2011] proved that
the power spectrum has to be accurately known to 1% down to k « 50 hMpc´1 to saturate the dark energy figure
of merit and reach Euclid design goals. This study is in agreement with the previous one from Doré et al. [2009].
As this vastly exceeds the computational power available to the community (andwill continue to do so in the next
decade), and is out of proportion compared to other central processing tasks in cosmological analysis, such as
modelling the cosmological signal or data reduction, compromises have to be sought that find a balance between
accuracy, statistical precision, and computational (or human) cost.

Another class of estimators do exist requiring a lower numerical complexity. Within the so called class of re-
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sampling methods, or internal covariance methods, different estimators allow the computation of the covariance
matrix from the data themselves or a single realisation in a simulation. The underlying idea is to create a number
of Nsub. spatial sub-volumes from the available data and to estimate the statistical properties of their underlying
distribution from the variation of the samples. One example is the Jackknife (J)method. In this case, the Ith sample
is built as the full data set minus the Ith sub-sample. The covariance matrix estimator for this method is

Ĉov
pJq
ij “ Nsub.

Nsub. ´ 1

Nsub.
ÿ

I“1

´

O
pJq
i,I ´ xOpJq

i y
¯ ´

O
pJq
j,I ´ xOpJq

j y
¯

, (2.98)

whereOpJq
,I is the value of an observable as estimated from the Ith Jackknife sample via arithmeticmean and xOpJqy

is the mean of all the all theOpJq
,I .

While thesemethods are correct with respect to the estimation of the covariance betweenmodes whichwe can
measure from within the data set, Lacasa & Kunz [2017] showed, as it can be expected, that they are unable to
catch correlations with modes larger or equal to the size of the survey footprint. As we will see in Sec. 2.3 these
type of correlations are indeed present and play a non-negligible role in our study: they increase the correlations
between the observed scales and they correlate different sub-samples as extracted from the same data set. Specif-
ically internal covariance methods fail because they intrinsically assume that the sub-samples are independent.

At this point, it should be pretty clear the answer to the question addressed in the title of this section. Fromone
side, the present performance of N-body simulations does not allow a precise estimation of the covariance given
the number of observables modern galaxy surveys will give the chance to measure. On the other hand, internal
estimators miss super-survey correlations overestimating the available cosmological information. Therefore, even
if it is an extremely challenging path to follow, the exact implementation of Eq. (2.92) for a given theoreticalmodel
is the most reliable way to produce unbiased covariance matrices. This will be indeed the approach we will consider.
In the following section, we will provide a detailed explanation of how to derive the covariancematrix for the two
observables of interest from an analytical perspective. For the observed scales of interest, i.e. much smaller the
typical length of the survey view field, we will schematically split the covariance (and we will prove to be allowed
to do so in this limit) as

Cov
“

Pij pℓq , Pi1j1 pℓ1q‰ “ Cov r. . . sGauss ` Cov r. . . sNGins ` Cov r. . . sNGssc , (2.99)

Cov
“

Bijk pℓ1, ℓ2, ℓ3q ,Bi1j1k1

`

ℓ1
1, ℓ

1
2, ℓ

1
3

˘‰ “ Cov r. . . sGauss ` Cov r. . . sNGins ` Cov r. . . sNGssc , (2.100)

Cov
“

Pij pℓq , Bi1j1k1 pℓ1, ℓ2, ℓ3q
‰ “ Cov r. . . sNGins ` Cov r. . . sNGssc . (2.101)

In Eq (2.99) and (2.101), we label as Gauss the covariance terms containing only 2-point statistics and which
would be the only contribution if the matter density field were Gaussian. The other covariance terms arise due to
the non-Gaussian statistics induced by the gravitational collapse and correlate different modes and the different
probes, i.e. power spectrum and bispectrum. We distinguish two classes of non-Gaussian covariance, respectively
labelled asNGins andNGssc. The former is sourcedby correlations betweenobserved intra-surveymodes (see later
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in the section), while the latter is sourced by correlations between observed modes and background super-survey
modes and is known in the literature as super-sample covariance (see Sec. 2.3). Within the present Chapter, when-
ever needed, we will label the total non-Gaussian component of a specific covariance matrix with the subscript
NG.

For completeness, wehighlight that analytical covariancematriceswereused for cosmological analyses inKrause
& Eifler [2017] where cosmic shear, galaxy-galaxy lensing, galaxy clustering, cluster number counts and cluster
weak lensing were combined to access the information content for a LSST-like survey. Subsequently, the COS-
MOLIKE likelihood code developed as result of the above work was officially used within the DES community
[Krause et al., 2017] as part of the scientific validation of the the DES-Year1 release [Dark Energy Survey Collab-
oration et al., 2016]. However, all the works here mentioned were done at the level of 2-point statistics.

2.2.2 Observable estimators

Whilewe have discussed a lot about the covariance estimators, it is necessary to start with a preliminary but crucial
step. So far we have discussed about the theoretical values of the polyspectra: we started from the matter field δ,
we defined its three-dimensional polyspectra via Eq. (1.53) and then we built those for the convergence field via
the line-of-sight integration in Eq. (2.89). However, in real data analysis, wewill nevermeasure these quantities, nor
a realisation of them.

Finite sky effects In real world application we will always measure the values of the polyspectra for a pix-
elized and domain-limited version of the underlying true field. Thismay induce differences between the observed
properties and the expected ones. The super-sample covariance (we will see) is a nice example of this feature and
it is related to the finite sky coverage of our survey. The finite real-space domain has an impact already at the level
of observables. Neglecting for the moment the resolution of the instrument, in realistic situations the actual field
whose polyspectra we are measuring is a filtered version of the real one

κw,piq pΘq “ W pΘq κpiq pΘq (2.102)

where the window function W pΘq describes the footprint of the survey. In our analyses we will assume a simple
binary function with W “ 0 or W “ 1 for points outside and inside the survey field respectively. The Fourier
transform of themasked field will then be the convolution between the Fourier transform of the window function
Ŵ and of the true underlying convergence field

κw,piq
ℓ

“
ż

d2qW̃ pqq κpiq
ℓ´q. (2.103)
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We introduce now very useful survey related quantities: Θsky (angular coverage of the survey), Ωsky (solid angle
covered by the survey) and fsky (fraction of the sky covered by the survey). These quantities are related as follows

Ωsky “ 2π p1 ´ cosΘskyq , fsky “ Ωsky

4π
, (2.104)

all the angles being expressed in radian or steradian. If the survey footprint has an angular size ofΘsky steradian,
the convolution in Eq. (2.103) will induce correlations at the level of true field at scales ℓ ď ℓf where ℓf “ 2π{Θsky

is the typical domain length of Ŵ. The frequency ℓf is also known as fundamental frequency of the survey. At the
level of collected data, the finite real-space domain implies that we cannot measure, in the observed field, angular
modes ℓ ď ℓf and also ℓf provides a minimum resolution for the module of the multipoles we can access

ℓ
ny
nx

“ ℓf tnx, nyu, nx, ny P N
ˆ. (2.105)

Therefore, a good approximation to describe the observed field within the survey in configuration space is

κpiq
ℓ
ny
nx

“
ż

Ωsky

d2Θ κpiq pΘq e´ i ℓ
ny
nx ¨Θ, (2.106)

where the Discrete Fourier Transform has to be used [Jasche et al., 2009]. We can see from Eq. (2.106) that all the
modes smaller than the fundamental frequency are excluded while still present in the real field. The question is:
will the statistical properties (expectation value, polyspectra, covariances, …) of the measured κpiq

ℓ
ny
nx

in Eq. (2.106) be the

same of the true κw,piq
ℓ

in Eq. (2.103) ? The answer is not obvious and indeed we will see that while it is true for
the observables (under certain assumptions), the covariance will be deeply affected. From a more general per-
spective, whenever we want tomeasure an observableO whose true value is linked to underlying cosmology (our
final target), we build an estimator Ô of it as function of the data. If the expectation value of the estimator is equal
to the desired observable, then the estimator is said to be unbiased. With the help of this terminology, we can
anticipate one of the most important results in this section by saying that the covariance matrix of the discretized
(observed) field in Eq. (2.106) does provide a biased estimator of the true covariance of the actual masked field
at Eq. (2.103), the difference being the super-sample covariance. Indeed, the curse of this bias lies in neglecting
modes ℓ ď ℓf in the observed field, which are indeed present, while not observable. We will see this more quan-
titatively in Sec. 2.3. In the following part of the present section we will focus instead on the correlations between
modes entirely observed for which the approximation in Eq. (2.106) applies. Interestingly, we can test this com-
ponent of the covariance in simulations: unless run as sub-boxes of much larger simulations, the periodicity of
the boundary conditionsmakes Eq. (2.106) exact for the simulated field, dissolving the super-sample correlations
(which are indeed entirely absent) (see de Putter et al. [2012] for a thorough discussion). For our study we will
consider a specific class of polyspectra estimators which are the binned estimators: for optimising of the analysis,
to avoid numerical inaccuracy and to increase the signal-to-noise ratio, we will bin the Fourier space according to
the module of the momenta considered. These bins can be much larger than the fundamental length ℓf and the
value of the estimator associated to themwill be constructed via an average over the fundamental modes included
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in each.

Binned estimators We define the following estimator for the binned tomographic convergence power spectrum
(BTP) in the bin ℓb and for the binned tomographic convergence bispectrum (BTB) on the bins tℓb1 , ℓb2, ℓb3u

P̂ij
`

ℓb
˘ ” 1

Ωsky Np pℓbq
ÿ

ℓ
1

κpiq
ℓ

1 κpjq
´ℓ

1Δ2
ℓb pℓ1q , (2.107)

B̂ijk
`

ℓb1 , ℓ
b
2, ℓ

b
3

˘ ” 1
Ωsky Ntri.

`

ℓb1 , ℓ
b
2, ℓ

b
3

˘

ÿ

ℓ
1
1,ℓ

1
2,ℓ

1
3

κpiq
ℓ

1
1
κpjq
ℓ

1
2
κpkq
ℓ

1
3
Δ3
ℓb1 ,ℓ

b
2 ,ℓ

b
3

`

ℓ
1
1, ℓ

1
2, ℓ

1
3

˘

. (2.108)

In the following, wewill refer to two-dimensionalmultipoles bywriting them in bold, e.g. ℓ, while the correspond-
ing module will simply be ℓ. The bins are defined at the level of modules: ℓ1 P ℓb if ℓ ´ Δℓb{2 ď ℓ1 ď ℓ ` Δℓb{2,
ℓ being the central value of the bin ℓb of width Δℓb. The selection function Δ2

ℓb
pℓ1q “ 1 if and only if the length

of the mode ℓ1 falls into the required bin ℓb. The selection functionΔ3
ℓb1 ,ℓ

b
2 ,ℓ

b
3

`

ℓ
1
1, ℓ

1
2, ℓ

1
3

˘ “ 1 applies this constraint
separately on the 3 modes, i.e. ℓi ´ Δℓbi {2 ď ℓ1

i ď ℓi ` Δℓbi {2 and further requires that ℓ1
1 ` ℓ

1
2 ` ℓ

1
3 “ 0. Np pℓq

and Ntri.
`

ℓb1 , ℓ
b
2, ℓ

b
3

˘

respectively normalise the sums over the total number of independent elements in the bin.
We will derive them in the approximation ℓi (center of the bin) " ℓf. Specifically, given a bin ℓb of width Δℓb, the
number of independent modes discriminated by the fundamental length ℓf is [Joachimi et al., 2009; Kayo et al.,
2013]

Np
`

ℓb
˘ ”

ÿ

ℓ
1

Δ2
ℓb pℓ1q « 2πℓΔℓb

´

2π
Θsky

¯ “ 2 ℓ Δℓ fsky. (2.109)

The number of independent triplets we can combine given a set of bins and related widths tℓbi ,Δℓbi ui“1,2,3 can
be derived by simple geometrical considerations based on the discretisation of the momenta according to the
fundamental frequency ℓf [Joachimi et al., 2009; Kayo et al., 2013]:

Ntri.
`

ℓb1 , ℓ
b
2, ℓ

b
3

˘ “
ÿ

ℓ
1
1,ℓ

1
2,ℓ

1
3

Δ3
ℓb1 ,ℓ

b
2 ,ℓ

b
3

`

ℓ
1
1, ℓ

1
2, ℓ

1
3

˘ « 2 ˆ
ˆ

2πℓ1Δℓb1
ℓ2f

˙

ˆ
ˆ

ℓ2Δℓb2Δφ12

ℓ2f

˙

(2.110)

where the term within the first parenthesis gives the number of possible momenta within the annuls of target
length ℓ1 and width Δℓb1 . The term within the second ones is instead the number of allowed momenta within the
bin ℓb2 . The information on the constraint to form a close configuration with the multiple ℓ1

3 P ℓb3 is given by
the angle Δφ12 which is the maximum allowed angular variation of the angle φ12 P r0, πs between the multipoles
ℓ

1
1 P ℓb1 and ℓ1

2 P ℓb2 . The total number of allowed triplets will simply be the product of these terms. The factor 2
accounts for the parity symmetry around ℓ1

1. We can find the allowed angular variationΔφ12 by considering a fixed
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multipole ℓ1
1 P ℓb1 and verify the value of its variation while varying ℓ1

3 P ℓb3

d cos φ12

d ℓ1
3

“ d
d ℓ1

3

„

ℓ
12
1 ` ℓ

12
2 ´ ℓ

12
3

2 ℓ1
1 ℓ

1
1

ȷ

“ ℓ
1
3

ℓ
1
2 ℓ

1
1
,

„ dφ12

dℓ1
3

“ ℓ
1
3

ℓ
1
1 ℓ

1
2
psin φ12q´1,

„ Δφ12 « ℓ3Δℓb3
ℓ1 ℓ2

psin φ12q´1 (2.111)

where we approximated the derivatives at the central bin values. The angle sin φ12 may be expressed in terms of
the edges via the Law of sines.

1
sin φ12

“ 2ℓ1 ℓ2
b

2
`

ℓ21 ℓ
2
2 ` ℓ21 ℓ

2
3 ` ℓ22 ℓ

2
3

˘ ´ ℓ41 ℓ
4
2 ℓ

4
3

. (2.112)

The final desired expression will then be

Ntri.
`

ℓb1 , ℓ
b
2, ℓ

b
3

˘ « 2Ωskyℓ1ℓ2ℓ3Δℓb1Δℓb2Δℓb3
a

2ℓ21ℓ32ℓ23 ´ ℓ41 ´ ℓ42 ´ ℓ43
. (2.113)

Going back to the estimators (2.107) and (2.108), if the true power spectrum and bispectrum do not changed
significantly with the bins, then the two estimators are unbiased

xP̂ij
`

ℓb
˘y “ 1

Ωsky Np pℓbq
ÿ

ℓ
1

xκpiq
´ℓ

1κpjq
ℓ

1 yΔ2
ℓb pℓ1q

“ 1
Ωsky Np pℓbq

ÿ

ℓ
1

ΩskyPij pℓ1qΔ2
ℓb pℓ1q « Pij pℓq

Np pℓbq
ÿ

ℓ
1

Δ2
ℓb pℓ1q “ Pij pℓbq , (2.114)
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« Bijk pℓ1, ℓ2, ℓ3q
Ntri.
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˘
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1
1,ℓ

1
2,ℓ

1
3

Δ3
ℓb1 ,ℓ
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2 ,ℓ
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`
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1
1, ℓ

1
2, ℓ

1
3

˘ “ Bijk pℓ1, ℓ2, ℓ3q (2.115)

and we are in particular free to associate the estimated quantities to the spectra evaluated at the central values
of the bins. In Eq. (2.114) and in Eq. (2.115) we employed the definition of polyspectra for a discrete Fourier
decomposition of the convergence field [Takada & Bridle, 2007]

xκpi1q
ℓ1

. . . κpinq
ℓn

y ” Ωsky Pi1...in pℓ2, . . . , ℓnq δK
ℓ1`¨¨¨`ℓn

. (2.116)
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In Eq. (2.116), δK
ℓ1`¨¨¨`ℓn

is the Kronecker delta function enforcing ℓ1 ` ¨ ¨ ¨ ` ℓn “ 0 for each (discretized)
component.

2.2.3 Binned tomographic power spectrum covariance matrix

Once defined suitable estimators for the polyspectra of interest, we need to build the covariance for them. In this
section we will derive the covariance for the binned tomographic convergence power spectrum estimator (BTP)
by replacing its expression (2.107) in the covariance definition (2.92)

Cov
”

P̂ij
`

ℓb
˘

, P̂i1j1pℓ1bq
ı

” xP̂ij
`

ℓb
˘
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1
Ωsky Np pℓq

1
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ÿ
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1
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1 κpj1q
´ℓ̄

1yΔ2
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˘

Δ2
ℓ

1bpℓ̄1q ´ Pij pℓq Pi1j1pℓ1q. (2.117)

The4-point correlation function functionappearing inEq. (2.117) canbe further split in its non-vanishing ²connected
components as

xκpiq
ℓ̄

κpjq
´ℓ̄

κpi1q
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1 κpj1q
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´ℓ̄
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´ℓ̄
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´ℓ̄
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´ℓ̄
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´ℓ̄

1yc (2.118)

then, by applying Eq. (2.116),
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1q (2.119)

We introduced the trispectrum T as the fourth-order polypsectrum. By replacing this last result in Eq. (2.117)
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1Δ2
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)

´ Pij pℓq Pi1j1pℓq (2.120)

We start from the first line of the covariance (2.120) which will lead to the Gaussian component of the power
spectrum error, i.e. the first term introduced in Eq. (2.99). Let us focus for example on the first (non trivial, then

²xκy “ 0.
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second) termwithin the sum. We can remove one of the sum (e.g.
ř

ℓ̄
1) via the constraint given by the Kronecker

Delta. In general the constraint will be of the kind ℓ̄1 “ ˘ℓ̄. Given that the power spectrum will depend on the
module of the vector, we will simply write P pℓ1q “ P pℓq. Further, always under the assumption of P not varying
toomuchwithin thewidth of the bin, wewill factorise the spectra out of the sum and calculate themon the central
value of the bin. This implies that the second term inEq. (2.117)will exactly cancel out the first productwithin the
sum. As for the selection function, the request for ℓ̄1 “ ˘ℓ̄will lead to terms like

ř

ℓ̄
Δ2
ℓb

`

ℓ̄
˘

Δ2
ℓ

1bp˘ℓ̄q which are
not vanishing only if ℓ̄ lieswithin the same ℓb bin. Therefore, this part of the covariancematrix is not vanishing only
if the correlations are between modes both included in the bins ℓ1b and ℓb, i.e. diagonal in the binned momenta
space (ℓ “ ℓ1 in terms of the central values of the bins). Finally, the Gaussian part of the covariance matrix will be
given by

Cov
”

P̂ij
`

ℓb
˘

, P̂i1j1pℓ1bq
ı

Gauss
“ δℓbℓ1b

Np pℓbq
“

Pij1 pℓq Pi1j pℓq ` Pii1 pℓq Pjj1 pℓq‰

. (2.121)

where we introduced the synthetic notation δℓbℓ1b “ 1 if ℓb “ ℓ
1b or δℓbℓ1b “ 0 if ℓb ‰ ℓ

1b. As for the component of
the covariance associated to the trispectrum, there are no further steps to take and the exact calculation requires
to average the trispectrum over the bins ℓb and ℓ1b
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“
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ÿ
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1
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¯ı
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ℓ

1bpℓ̄1q. (2.122)

The term (2.122) correspond to the second one identified in Eq. (2.99): being sourced by the connected trispec-
trum, it would disappear in case of a purely Gaussian field. Plus, it simply involves correlations between modes
which are entirely observed. InChapter 3, Sec. 3.1, wewill assume that the trispectrumcanbewe approximated by
its 1-halo component at the scales of interest of weak lensing. This will allow to simplify Eq. (2.122) thanks to its
dependence just on the modules of the multipoles involved. Further, the assumption of slowly varying polyspec-
tra within the bins will allow to simplify the calculation and compute the trispectrum on the central value of the
considered bins.

2.2.4 Binned tomographic bispectrum covariance matrix

Similarly to Eq. (2.117), the covariance for the BTB estimator defined in Eq. (2.108) is
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74



and from the definitions of the estimator (2.108)
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Bi1j1k1pℓb1 , ℓb2, ℓb3q. (2.124)

Once again, we can split the 6-point correlation function appearing in Eq. (2.124) in its non-vanishing connected
components. For the bispectrum the computation can become easily challenging. As a matter of fact, the 6-
point correlation function can be split into the sum of products like (2-ˆ2-ˆ2-), (3-ˆ3-), (2-ˆ4-)connected
correlation functions plus the related 6-point connected component. We will inspect these terms one by one, the
first leading to the Gaussian component of the covariance.

Connected 2-point correlation functionˆConnected 2-point correlations functionˆConnected 2-point correlation func-
tion (Gauss). Within this computation, we will neglect terms involving correlations between scales of the
field belonging to the same external binned triangular configuration. As a matter of fact, given Eq. (2.116),
these terms would lead to a degenerate triangular configurations. For example if we were to calculate
xκpiq

ℓ̄i
κpjq
ℓ̄j

yc:

xκpiq
ℓ̄i

κpjq
ℓ̄j

yc 9 δK
ℓ̄i`ℓ̄j

Pij1
`

ℓ̄i
˘ Ñ ℓ̄i “ ´ℓ̄j (2.125)

Δ3
ℓbi ,ℓ

b
j ,ℓ

b
k

`

ℓ̄i, ℓ̄j, ℓ̄k
˘ Ñ ℓ̄i ` ℓ̄j ` ℓ̄k “ 0 (2.126)

implying that ℓ̄k “ 0.Therefore we expect 3! terms, namely
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(2.127)

In a similar fashion as for Eq. (2.119), we can derive the PPP component of the covariance. Specifically,
we can apply the definition (2.116) for the power spectrum to the terms above. As an exemplification, the
second term will lead to
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3q. (2.128)

The sum (e.g.) over tℓ1

1, ℓ
1

2, ℓ
1

3u in Eq. (2.124) can be removed thanks to the constraints imposed by Kro-
necker delta functions. Furthermore, under the assumption of slowing varying polyspectra within themul-
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tipole bins, we factorise the power spectra out from the remaining sum over tℓ1, ℓ2, ℓ3u and we evaluate
them on the central value of the bins. Finally, we are left with terms like
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. . . (2.129)

σ begin one possible permutation of themultipole indices. The terms as the one highlighted in Eq. (2.129)
will result in symmetry factors being equal to 1 or 0 according to the configuration request for the specific
element of the covariance. Via a similar reasoning as in the power spectrum case, we can easily find that the
factor corresponding to the generic case displayed in Eq. (2.129) is
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By iterating the same procedure to all the elements in Eq. (2.127), the final expression for this part of the
covariance matrix reads
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Connected 3-point correlation function ˆ Connected 3-point correlations function (NGins,BB term). In this case,
the expected number of terms will be given by the un-ordered partitions of 6 elements into 2 classes of 3
elements each³, specifically 10.
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³A set of n elements can be partitioned into k un-ordered subsets of r elements each pkr “ nq in N “ n!{pk!pr!qkq ways.
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To inspect the calculation in details, we plug Eq. (2.133) into Eq. (2.124) and consider the second (first
non trivial) element of the sum
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In the second line we removed the sum over ℓ̄1
1, the several geometrical constrains imposing ℓ̄1

1 “ ℓ̄3. Fur-
ther, given that ℓ̄3 appears both in Δ3
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, the only non-vanishing

contribution to the sum comes from the configuration with ℓ
1b
1 “ ℓb3 . As usual, we also assumed that the

bispectra do not very that much within the width of the bin and we factorised them out. In the third and
in the fourth line we counted the number of triangular configurations allowed within the bins’ width. Sim-
ilarly to the derivation of Eq. (2.113), it is now just matter of combining the allowed number of multipoles
within the bins. However, the firstmultipole ℓ1

1 is fixed to the value ℓ3 thenwedonot have to account for the
associated term (the first parenthesis in Eq. (2.113)) in the calculation. By applying the outlined strategy
to all the terms in Eq. (2.133), we find the BB component of the non-Gaussian covariance
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Connected 2-point correlation function ˆ Connected 4-point correlations function (NGins,PT term). Similarly to the
(2-ˆ2-) case, the conditions given in Eq. (2.125) and in Eq. (2.126) imply that the only non-vanishing
contributions to the covariance are given by terms where the connected 2-point correlation function is
computed for scales of the field not belonging to the same binned triangle. Therefore we expect 32 “ 9
terms, namely
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As done for the BB component, we will detail the calculation for one the above terms (e.g. the first one):
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where: in the second line, the relation ℓ̄
1
1 “ ´ℓ̄1 implies ℓ1b

1 “ ℓb1 ; in the third line 1) we removed
δK
ℓ̄2`ℓ̄3`ℓ̄

1
2`ℓ̄

1
3
, since its effect is already assured by the left geometrical factors and 2) we assumed the trispec-

trum to depend only on themodules of themultipole (1-halo term, seeChapter 3 formore details), besides
the usual assumption of slow variation within the bins. The final line of the calculation is exactly the same
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as in Eq. (2.134). Finally, the PT part of the covariance is
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Connected 6-point correlation function (6P term)The derivation of this final component of the covariance follows
the same idea as for the trispectrum term in Eq. (2.122). This component is in particular irreducible, being
already itself a connected correlation function, and the covariance will just be equal to the average of the
correlations over the bins involved in the configuration, i.e.
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Also in this case, wewill later assume that the 6-point correlation function can bewe approximated by its 1-
halo component at the scales of interest forweak lensing, allowing a further simplification of this expression
along with its evaluation on the central values of the involved bins.

Covariance between the BTP and the BTB The two observables are not independent since they probe
the same underlying physics. It is then important to calculate the cross-covariance terms between the two and
specifically among all the possible configurations available. The definition of their covariance naturally follows
from the defintion in Eq. (2.92)
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In the same exact way as we proved all the previous contributions, the 5-point correlation function which derives
fromEq. (2.148) can be split in the sumof terms involving the product of p2 ´ ˆ3´q point connected correlation
functions and the 5-point connected one. Without repeating all the calculations (which follows exactly the same
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ideas outline in the previous derivations), the final result is
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where the usual bin-average appears for the highest order correlation function in the expression. Again, the sym-
metries of the 1-halo term will allow for further simplifications. We underline that the covariance (2.149) is en-
tirely source bynon-Gaussianities in thematter field and there is noGaussian component. In particular, describing
correlation between observed modes, it will simply be the NGins term introduced in Eq. (2.101).

2.3 Super-sample covariance matrix

In the previous section we gave a detailed derivation of the covariance terms between the convergence BTP and
the convergence BTB based on the binned estimators (2.107) and (2.108). In this final part of the chapter we
will focus on a component of the covariance we have been mentioning since few pages back: the super-sample
covariance (SSC).This effect canbe intuitively understood as anuncertainty on the valueof our observables related
to the fact that we are observing just a fraction of the sky within our survey view field. For example, if we happen
to be in an under-dense or in an over-dense region of the Universe, then our estimators would be biased and the
value of the backgroundmatter density, as an example, will be respectively under-estimatedor over-estimated. The
issue is, of course, much more complicated and more complex correlations do indeed play a role. The analytical
derivation of the SSC is a very recent subject of research and the level of awareness of the scientific community on
it has grown intensively over the last decade. To best of our knowledge, no up-to-date reviews are available on the
subject. We would like to invite the reader to see the next section as the seed of an up-coming written production
aiming at a comprehensive summary of all the aspects related to it.

2.3.1 Estimators for a masked field

The root of the physical understanding of the SSC dates back to the paper of Hamilton et al. [2006] where it
was studied for the three-dimensional matter power spectrum. More recent analyses have been carried out at the
level of matter bisperctum by Chan et al. [2018] and Barreira [2019]. As discussed around Eq. (2.106) a finite
domain of angular sizeΘsky radian implies a minimum resolution in module ℓf « 2π{Θsky for our momenta to be
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measured. However, we also underlined that this is just an approximationwhile the true field is a convolutionwith
the window function W̃ of the survey. Also, the expansion (2.106) assumed the periodicity of the observed signal.
In particular, couplingswithmodes ℓ ď ℓf are allowed. In theprevious section, wederivedour covariancematrices
via the binned estimators defined in Eq. (2.107) and in Eq. (2.108) and the finite-sky condition mainly translated
into an overall re-scaling of our covariance. However, no extra-correlations were produced. This is actually the
crucial point: a weighted (masked) field induces correlations between small scales and large super-survey modes.

Observable estimators for masked convergence field To start with, we define more sophisticated es-
timators for the binned convergence polyspectra which account for finite volume effects
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where the selection functionΔ2,p3q are the same as in Eqs.(2.107)-(2.108) and κw,piq
ℓ

is the Fourier transformof the
masked field κw,piq pΘq (2.102). In particular, κw,piq

ℓ
will be the convergence field κpiq convoluted with the window

function of the survey, in Fourier space,
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“
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We can simplify the bispectrum estimator (2.152) via a change of variables
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(2.157)

leading to, including Eq. (2.153),
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While the formal dependence of the integrand is preserved, the variable change (2.154)-(2.156) slighlty modifies
the bin limits for the the varialbes tℓ1

iui“1,2,3 to be summed over. We notice that the typical domain size of W̃ is
q „ ℓf, ℓf being fundamental frequency of the survey. Therefore, the above mentioned changes are of order „ ℓf
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and will be neglected
|ℓi ´ qi|2 “ ℓ2i ` q2i ´ 2ℓi qi cos θi « ℓ2i , qi „ ℓf. (2.159)

We remind that in our notation q “ |q|. The above estimators are in general biased. As a matter of fact,
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‰ Bijk pℓ1, ℓ2, ℓ3q , (2.165)

where we used the polyspectra definition for a continuous Fourier transformation and the reality condition for
the mask function in the third line of Eq. (2.160). Also, we introduced the useful notation ℓ1...n ” ℓ1 ` ¨ ¨ ¨ ` ℓn.
Therefore, if we measure the power spectrum (bispectrum) of the observed convergence field we would end up
with a biased estimation of the true one, i.e. in a wrong cosmological analysis. In the general case, one would
deconvolve the window function in constructing unbiased estimators (see Tegmark [2004]; Hikage et al. [2011]
for a discussion at the level of matter power spectrum). Luckily, for small enough observed scales, i.e. ℓ " ℓf, the
above estimators are unbiased. We remind that the window function W̃ has a typical length scale of ℓf. Then, the
following approximation holds on the entire integration domain
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In particular, thanks to the assumed homogeneity of the Universe, we were capable to write both the power spec-
trum and the bispectrum in terms of the modules of the multipoles involved, then expanding around the mag-
nitude q „ ℓf ! ℓ1. Not depending anymore on the long mode q, the polyspectra can be taken out from the
integrations

xP̂w
ij

`

ℓb
˘y “ 1

Ωsky Np pℓbq
ÿ

ℓ
1

Pij pℓ1q
ż

d2q
p2πq2 |W̃ pqq |2Δ2

ℓb pℓ1q “ 1
Np pℓbq

ÿ

ℓ
1

Pij pℓ1qΔ2
ℓb pℓ1q « Pij pℓq ,

(2.168)

xB̂w
ijk

`

ℓb1 , ℓ
b
2, ℓ

b
3

˘y “ 1
Ωsky Ntri.

`

ℓb1 , ℓ
b
2, ℓ

b
3

˘

ÿ

ℓ
1
1,ℓ

1
2,ℓ

1
3

ż

«

3
ź

a“1

d2qa

p2πq2 W̃ pqaq
ff

ˆ

xκpiq
ℓ

1
1´q1

κpjq
ℓ

1
2´q2

κpkq
ℓ

1
3´q3

ycΔ3
ℓb1 ,ℓ

b
2 ,ℓ

b
3

`

ℓ
1
1, ℓ

1
2, ℓ

1
3

˘

(2.169)

“ 1
Ωsky Ntri.

`

ℓb1 , ℓ
b
2, ℓ

b
3

˘

ÿ

ℓ
1
1,ℓ

1
2,ℓ

1
3

Bijk
`

ℓ1
1, ℓ

1
2, ℓ

1
3

˘

ż

«

3
ź

a“1

d2qa

p2πq2 W̃ pqaq
ff

ˆ

p2πq2 Δ3
ℓb1 ,ℓ

b
2 ,ℓ

b
3

`

ℓ
1
1, ℓ

1
2, ℓ

1
3

˘

δD pq1 ` q2 ` q3q (2.170)

“ Bijk pℓ1, ℓ2, ℓ3q
Ntri.

`

ℓb1 , ℓ
b
2, ℓ

b
3

˘

ÿ

ℓ
1
1,ℓ

1
2,ℓ

1
3

Δ3
ℓb1 ,ℓ

b
2 ,ℓ

b
3

`

ℓ
1
1, ℓ

1
2, ℓ

1
3

˘ « Bijk pℓ1, ℓ2, ℓ3q (2.171)

where in both Eq. (2.168) and Eq. (2.169) we assumed slowly varying spectra within the bins and employed the
following property for a binary window function

Ωsky “
ż

d2θ W pθq “
ż

d2θ Wn pθq “
ż

«

n
ź

a“1

d2ℓa

p2πq2 W̃ pℓaq
ff

p2πq2 δD pℓ1 ` ¨ ¨ ¨ ` ℓnq (2.172)

for n “ 2 and n “ 3 respectively.

Covariance estimators for masked convergence field We can compute the covariance of the masked
estimators (2.151)-(2.152) with the same techniques employed in Sec. 2.2.3 and in Sec. 2.2.4. Also in this case,
the covariance estimation will require to split (non-connected) higher order correlation functions in the corre-
sponding irreducible components. Without repeating all the calculations, we will simply focus on few terms with
the simple goal of conveying themost important ideas necessary for the understanding of the super-sample terms
of the covariance matrices. At the level of power spectrum, the total covariance is given by

Cov
”

P̂w
ij

`

ℓb1
˘

P̂w
i1j1

`

ℓb2
˘

ı

Gauss
“ 1

Ωsky Np pℓb1 q
1

Ωsky Np pℓb2q
ÿ

ℓ
1
1,ℓ

1
2

ż

«

4
ź

a“1

d2qa

p2πq2 W̃ pqaq
ff

ˆ

xκpiq
ℓ

1
1´q1

κpjq
´ℓ

1
1´q2

κpiq
ℓ

1
2´q3

κpjq
´ℓ

1
2´q4

yΔ2
ℓb1

pℓ1
1qΔ2

ℓb2
pℓ1

2q ´ Pij pℓ1q Pi1j1 pℓ2q (2.173)
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where the last term is assured by the estimator being unbiased. In the same manner as for the covariance of the
estimator (2.117), we will first focus on the Gaussian component of the correlator appearing in Eq. (2.173). For
example, referring to one possible term (e.g. the second one) of theWick decomposition (2.118), the calculations
follows as

Cov
”

P̂w
ij

`

ℓb1
˘

P̂w
i1j1

`

ℓb2
˘

ı

Gauss

“ ¨ ¨ ¨ ` „
ÿ

ℓ
1
1,ℓ

1
2

Δ2
ℓb1

pℓ1
1qΔ2

ℓb2
pℓ1

2q
Ω2

sky Np pℓb1 q Np pℓb2q
ż

«

4
ź

a“1

d2qa

p2πq2 W̃ pqaq
ff

xκpiq
ℓ

1
1´q1

κpjq
´ℓ

1
2´q2

ycxκpi1q
ℓ

1
2´q3

κpj1q
´ℓ

1
1´q4

yc ` . . .

(2.174)

“ ¨ ¨ ¨ ` „
ÿ

ℓ
1
1,ℓ

1
2

Δ2
ℓb1

pℓ1
1qΔ2

ℓb2
pℓ1

2q
Ω2

sky Np pℓb1 q Np pℓb2q
ż

«

4
ź

a“1

d2qa

p2πq2 W̃ pqaq
ff

p2πq4 Pij p|ℓ1
1 ´ q1|q Pi1j1 p|ℓ1

2 ´ q3|q ˆ

δD pℓ1
1 ´ q1 ´ ℓ

1
2 ´ q2q δD pℓ1

2 ´ q3 ´ ℓ
1
1 ´ q4q ` . . . (2.175)

« ¨ ¨ ¨ ` „
ÿ

ℓ
1
1,ℓ

1
2

Δ2
ℓb1

pℓ1
1qΔ2

ℓb2
pℓ1

2q
Ω2

sky Np pℓb1 q Np pℓb2q
Pij pℓ1

1q Pi1j1 pℓ1
2q

ż

«

ź

a“1,3

d2qa

p2πq2
ff

p2πq4ˆ

W̃ pq1q W̃ pℓ1
1 ´ ℓ

1
2 ´ q1q W̃ pq3q W̃ pℓ1

2 ´ ℓ
1
1 ´ q3q ` . . . (2.176)

“ ¨ ¨ ¨ ` „
ÿ

ℓ
1
1,ℓ

1
2

Δ2
ℓb1

pℓ1
1qΔ2

ℓb2
pℓ1

2q
Ω2

sky Np pℓb1 q Np pℓb2q
Pij pℓ1

1q Pi1j1 pℓ1
2q W̃ pℓ1

1 ´ ℓ
1
2q W̃˚ pℓ1

1 ´ ℓ
1
2q ` . . . (2.177)

« ¨ ¨ ¨ ` „ Pij pℓ1q Pi1j1 pℓ2q
ÿ

ℓ
1
1,ℓ

1
2

Δ2
ℓb1

pℓ1
1qΔ2

ℓb2
pℓ1

2q
Ω2

sky Np pℓb1 q Np pℓb2q
|W̃ pℓ1

1 ´ ℓ
1
2q |2 ` . . . (2.178)

« ¨ ¨ ¨ ` „ δℓ1ℓ2
Np pℓb1 q

Pij pℓ1q Pi1j1 pℓ2q ` . . . (2.179)

where in the third line we approximated Pij p|ℓ1 ´ q|q « Pij pℓ1q in the usual limit of observedmultipoles ℓ " q „
ℓf. At line four, we employed twice the binary window function relation

W̃ pℓq “
ż

d2ℓ1

p2πq2 W̃ pℓ1q W̃ pℓ ´ ℓ
1q “

ż

«

n
ź

a“1

d2qa

p2πq2 W̃ pqaq
ff

p2πq2 δD pℓ ´ q1...nq . (2.180)

In the fifth line, we assumed that the power spectra do slowly vary within the bin width, taking them out of the
bin-average. In the sixth line, since the typical domain size of W̃ is of the order of „ ℓf, W̃ p˘pℓ1

1 ´ ℓ
1
2qq will be

non-vanishing only if ℓ1
1 and ℓ

1
2 differ by a vector of magnitude smaller (or comparable to) than the fundamental

frequency. Differently said, the twomomenta ℓ1
1 and ℓ

1
1 has to belong to the same bin, being under the assumption

Δℓb " ℓf. We approximated the impact of the window function in the last line via W̃ p˘pℓ1
1 ´ ℓ

1
2qq « Ωskyδℓ1ℓ2 .

As main consequence of the above calculation, this component of the covariance matrix is not affected by cou-
plings with the super-surveymodes of the order of ℓf and indeed it is the same as the Gaussian covariance (2.120)
obtained from the estimator (2.107).

84



Moving to the non-Gaussian component as derived from the connected part of the correlator in Eq. (2.173),
one has

Cov
”

P̂w
ij

`

ℓb1
˘

P̂w
i1j1

`

ℓb2
˘

ı

NG
“ 1

Ω2
sky Np pℓb1 q Np pℓb2q

ÿ

ℓ
1
1,ℓ

1
2

Δ2
ℓb1

pℓ1
1qΔ2

ℓb2
pℓ1

2q
ż

«

4
ź

a“1

d2qa

p2πq2 W̃ pqaq
ff

ˆ

p2πq2 δD pq1234q Tijij1 pℓ1
1 ´ q1,´ℓ

1
1 ´ q2, ℓ1

2 ´ q3,´ℓ
1
2 ´ q4q . (2.181)

Similarly to the steps performed at the level of bispectrum estimator, we can rephrase Eq.(2.181) by exploiting the
usual limit ℓ " q „ ℓf such that

Cov
”

P̂w
ij

`

ℓb1
˘

P̂w
i1j1

`

ℓb2
˘

ı

NG
(2.182)

“ 1
Ω2

sky Np pℓb1 q Np pℓb2q
ÿ

ℓ
1
1,ℓ

1
2

Δ2
ℓb1

pℓ1
1qΔ2

ℓb2
pℓ1

2q
ż

«

4
ź

a“1

d2qa

p2πq2 W̃ pqaq
ff

ˆ

p2πq2 δD pq1234q Tijij1 pℓ1
1,´ℓ

1
1 ´ q12, ℓ1

2,´ℓ
1
2 ´ q34q , (2.183)

“ 1
Ω2

sky Np pℓb1 q Np pℓb2q
ÿ

ℓ
1
1,ℓ

1
2

Δ2
ℓb1

pℓ1
1qΔ2

ℓb2
pℓ1

2q
ż

«

3
ź

a“1

d2qa

p2πq2 W̃ pqaq
ff

W̃ p´q123q ˆ

Tijij1 pℓ1
1,´ℓ

1
1 ´ q12, ℓ1

2,´ℓ
1
2 ´ q34q , (2.184)

“ 1
Ω2

sky Np pℓb1 q Np pℓb2q
ÿ

ℓ
1
1,ℓ

1
2

Δ2
ℓb1

pℓ1
1qΔ2

ℓb2
pℓ1

2q
ż

«

ź

a“1,3

d2qa

p2πq2 W̃ pqaq
ff

ż

d2q
p2πq2 W̃ pq ´ q1q W̃ p´q ´ q3q ˆ

Tijij1 pℓ1
1,´ℓ

1
1 ´ q12, ℓ1

2,´ℓ
1
2 ´ q34q , (2.185)

where in the first line we performed the change of variables ℓ1
1 ´ q1 Ñ ℓ

1
1, ℓ

1
2 ´ q3 Ñ ℓ

1
2 and we integrated over

q4 in the second one. Finally in the last line we defined the new integration variable q ” q12. We can simplify the
non-Gaussian term (2.185) with the help of the binary window function relation (2.180)

Cov
”

P̂w
ij

`

ℓb1
˘

P̂w
i1j1

`

ℓb2
˘

ı

NG
“ 1

Ω2
sky Np pℓb1 q Np pℓb2q

ÿ

ℓ
1
1,ℓ

1
2

Δ2
ℓb1

pℓ1
1qΔ2

ℓb2
pℓ1

2q
ż

d2q
p2πq2 |W̃ pqq |2 Tijij1 pℓ1

1,´ℓ
1
1 ` q, ℓ1

2,´ℓ
1
2 ´ qq . (2.186)

At this point, Eq. (2.186) cannot be simplified any further: the window function W̃ pqq does not have a trivial
approximation over the integration range and the truncation of the expansion in Eq. (2.166) and in Eq. (2.167)
are not allowed in the present case. As a matter of fact, we could indeed write the trispectrum as function of the
modules involved

Tijij1 pℓ1
1,´ℓ

1
1 ´ q, ℓ1

2,´ℓ
1
2 ´ qq „ Tijij1 pℓ1

1, | ´ ℓ
1
1 ` q|, ℓ1

2, | ´ ℓ
1
2 ´ q|, |ℓ1

1 ´ ℓ
1
2 ` q|, qq . (2.187)
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The allowed approximation from the usual limit ℓ " ℓf would be

Tijij1 pℓ1
1, | ´ ℓ

1
1 ` q|, ℓ1

2, | ´ ℓ
1
2 ´ q|, |ℓ1

1 ´ ℓ
1
2 ` q|, qq « Tijij1 pℓ1

1, ℓ
1
1, ℓ

1
2, ℓ

1
2, |ℓ1

1 ´ ℓ
1
2|, qq (2.188)

and in particular we cannot get rid of the coupling with the super-survey mode q ď ℓf.

Sincewe areworking in the framework provided by the Limber approximation, we can evaluate the trispecturm
in (2.186) as the projected matter trispectrum along the line-of-sight defined in Eq. (2.89)

Tijij1 pℓ1
1,´ℓ

1
1 ´ q, ℓ1

2,´ℓ
1
2 ´ qq “

ż 8

0
dω T piji1j1; ωq T

ˆ

ℓ
1
1

ω
,

´ℓ
1
1 ` q
ω

,
ℓ

1
2

ω
,

´ℓ
1
2 ´ q
ω

˙

„ T rk pℓ1
1, ωq , k p´ℓ

1
1 ` q, ωq , k pℓ1

2, ωq , k p´ℓ
1
2 ´ q, ωqs . (2.189)

In Eq. (2.189) we implied the explicit redshift dependence of the matter trispectrum and we expressed the three-
dimensional modes via the Limber dependence kpℓ, ωq « pℓ{ω, 0q. The three dimensional matter trispectrum
can be evaluated at this point with the preferred model of non-linear clustering. The crucial point is that the
trispectrum is now coupling the 2 observed modes, k1 “ k pℓ1

1, ωq and k2 “ k pℓ1
2, ωq, with the “soft” mode

ε “ k pq, ωq À 2π{ 3
?

V. In our case, V is the volume slice at comoving distance ω of the projection light cone.
This can be rephrased as: the mode ε induces an extra correlation between the observed modes k1 and k2. This
mode is an un-observed mode, much larger than, or close to the size of the survey. For this reason, we dub the
induced extra covariance as super-survey covariance.

Over the past decade, several attempts have been done in order to understand in details the role of these cor-
relations. Hamilton et al. [2006]; Takada & Jain [2009]; Barreira et al. [2018] used Perturbation Theory (PT)
to calculate the trispectrum corresponding to these peculiar configurations resulting in an additional term which
sums to the standard intra-survey non-Gaussian covariance. Since PT is valid up to scales in themildly non-linear
regime, they were not capable to describe entirely the effect of super-sample modes and their calculation lead to
the usually dubbed beat-coupling effect. For didactic reason, we would like to derive the beat-coupling covariance
at leading order (l.o.) in the PT framework.

T pk1,´k1 ´ p, k2,´k2 ´ pq «
l.o.

T pk1,´k1, k2,´k2q `
16 Plin. pk1q Plin. pk2q Plin. ppq Fp2q pk1,´pq Fp2q pk2, pq . (2.190)

By replacing it within Eq. (2.189) and Eq. (2.186), we find indeed a distinct separation between the standard
intra-survey component Cov r. . . sNGins of the covariance (2.122) (from the first term in Eq. (2.190)) and the
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super-survey term Cov r. . . sNGssc

Cov
”

P̂w
ij

`

ℓb1
˘

P̂w
i1j1

`

ℓb2
˘

ı

NGssc
(2.191)

“ 16
ΩskyNp pℓb1 q Np pℓb2q

ż 8

0
dω T piji1j1; ωq

ÿ

ℓ̄
1
1,ℓ̄

1
2

Δ2
ℓb1

`

ℓ̄1
˘

Δ2
ℓb2

pℓ̄1
2q

ż

d2q
p2πq2 |W̃ pqq |2ˆ

Plin.
ˆ

ℓ
1
1

ω

˙

Plin.
ˆ

ℓ
1
2

ω

˙

Plin.
´ q
ω

¯

Fp2q
´

k pℓ1
1, ωq ,´q

ω

¯

Fp2q
´

k pℓ1
2, ωq , q

ω

¯

(2.192)

“ 16
Ω2

sky

ż 8

0
dω T piji1j1; ωq

ż

d2ℓ1
1

Aℓb1

ż

d2ℓ1
2

Aℓb2

ż

d2q
p2πq2 |W̃ pqq |2ˆ

Plin.
ˆ

ℓ1
1

ω

˙

Plin.
ˆ

ℓ1
2

ω

˙

Plin.
´ q
ω

¯

Fp2q pkpℓ1
1q,´qq Fp2q pkpℓ1

2q, qq (2.193)

“ 16
Ω2

sky

ˆ

36
49

˙
ż 8

0
dω T piji1j1; ωq

ż

dℓ1
1

ℓ1Δℓb1
Plin.

ˆ

ℓ1
1

ω

˙
ż

dℓ1
2

ℓ2Δℓb2
Plin.

ˆ

ℓ1
2

ω

˙

ˆ
ż

d2q
p2πq2 |W̃ pqq |2 Plin.

´ q
ω

¯

(2.194)

9 1
Ωsky

ż 8

0
dω T piji1j1; ωq

ż

Plin.
ˆ

ℓ1
1

ω

˙

Plin.
ˆ

ℓ1
2

ω

˙

σ2v pωq . (2.195)

Let us give few details about the intermediate calculations, the PT second-order kernels Fp2q (see Eq. (1.111))
should depend on three-dimensional momenta: we employed the notation introduced around Eq. (2.89) to refer
the the three-dimensional momenta under the Limber approximation. In the second line, given the shape of the
kernel Fp2q we removed the overall scalar factor 1{ω. Also, to have a simpler notation, we moved to the integral
form of the bin-average. In the third line, we averaged the Fp2q kernel of the polar angle of ℓ1

1 and ℓ
1
2, leading to

the factor 36{49 “ p6{7q2. In the fourth line 1) we assumed that the linear matter power spectra do not vary that
much within themultiple bins, 2) we replaced the expression for the annulus area related to the bins ℓb1 and ℓb2 and
we identified the last term as the variance of the linear matter field over the survey footprint at comoving distance
ω

σ2v pωq “
ż

d2q
p2πq2 |W̃ pqq |2 Plin.

´ q
ω

¯

. (2.196)

At the level of bispectrum and cross power spectrum-bisepctrum covariance for themasked estimators defined
in Eq. (2.151) and (2.152), similar results can be derived. It is possible to analytically prove (under the usual
limit of observed modes much larger than the fundamental frequency) that all the terms identified in Sec. 2.2 are
indeednot biased except for the 6- and 5-point correlation function related ones (seeBarreira [2019] for a detailed
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calculation at the level of matter bispectrum)

Cov
”

B̂ijk
`

ℓb1 , ℓ
b
2, ℓ

b
3

˘

, B̂i1j1k1pℓ1b
1 , ℓ

1b
2 , ℓ

1b
3 q

ı
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«
ℓ"ℓf
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B̂w
ijk
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b
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1 , ℓ
1b
2 , ℓ

1b
3 q

ı

Gauss
, (2.197)

Cov
”

B̂ijk
`

ℓb1 , ℓ
b
2, ℓ

b
3

˘

, B̂i1j1k1pℓ1b
1 , ℓ

1b
2 , ℓ
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3 q
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«
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˘
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1 , ℓ
1b
2 , ℓ
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3 q

ı

NGins,BB
, (2.198)
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b
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b
3

˘
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1 , ℓ
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2 , ℓ
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3 q
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B̂w
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1 , ℓ
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2 , ℓ
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3 q

ı

NGins,PT
, (2.199)
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˘
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`
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˘
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, (2.200)

while
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Np pℓbq
ż

d2q
p2πq2 |W̃ pqq |2Piji1j1k1

`

ℓ
1
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˘

. (2.202)

In Eqs. (2.197)-(2.197) we use ℓ below the relational signs to refer to the general observed mode. Also in this
case PT allows to split the components of the non-Gaussian covariance matrices in two terms: one involving
only correlations between modes within the survey footprint (leading to the NGins-type terms in Eqs. (2.99)-
(2.101)), and one involving correlation between the 6, 5 (respectively) observed modes and a background mode
q (the NGssc-type terms in Eqs. (2.99)-(2.101)). Schematically then,

Cov rPPsPTNG “ Cov rPPsNGins ` Cov rPPsNGssc , (2.203)

Cov rBBsPTNG “ Cov rPPsNGins. ` Cov rPPsNGssc , (2.204)

Cov rPBsPTNG “ Cov rPBsNGins ` Cov rPBsNGssc . (2.205)

We have justified the expressions anticipated in Eq. (2.99)- 2.101 within the PT framework. Actually, we will see
in the following that this structure is granted independently of the model for non-linear clustering employed.

2.3.2 SSC via the response approach

Starting from the studies summarised in the previous section, a very interesting formalism was recently intro-
duced capable to include the leading-order PT results (beat coupling) and also provide a better fit to simulations,
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including missing terms in the non-linear regime of matter clustering.

Matter polyspectrumconsistency relations The response approach (in this context)was first introduced
by Takada & Hu [2013]. In analogy with similar effects for primordial non-Gaussianity [Maldacena, 2003], the
polyspectra on the squeezed configurations required in Eqs. (2.189), (2.202) and (2.201) should be determined
by the reposnse of the power spectrum and bispectrum to the long mode δb defined as

δb ” 1
V

ż

V
d3x δ pxq , δ̃b pqq “ p2πq3 δD pqq δb. (2.206)

where, we recall, δD is the Dirac delta. Takada & Hu [2013] defined the following trispectrum consistency relation.

T pk1,´k1 ` p, k2,´k2 ´ pq « T pk1,´k1, k2,´k2q ` dPpk1q
dδb

BPpk2q
Bδb

Plin ppq . (2.207)

with p “ |p| and Plin is the linear matter power spectrum. This results generalises the leading-order PT-based re-
sults of the previous section: it is always possible to split the covariance forwindowed estimators in 1) correlations
between observed modes, and in 2) a super-sample component involving correlations between the observed and
the un-observed modes, the latter entering via the variance of the linear matter field over the survey volume
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”

P̂w
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ℓb2
˘

ı

NG
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“
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˘
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ż 8

0
dω T piji1j1; ωq dP

dδb

`

kpℓ, ωq˘ dP
dδb

`

kpℓ1, ωq˘

σ2v pωq . (2.208)

Via the same argument, Chan et al. [2018] found an analogous relation for the bispectrum covariance and the
power spectrum-bispectrum cross-covariance
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with
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NGins
, (2.211)
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and
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σ2v pωq . (2.214)

The quantities d ‹ {dδb are called in the literature responses : their derivation will be the subject of the next para-
graph.

Polyspectra responses For the evaluation of the responses one usually considers three main components
according to the separate Universe picture [Sirko, 2005; Baldauf et al., 2011; Sherwin & Zaldarriaga, 2012; Li
et al., 2014;Wagner et al., 2015a; Baldauf et al., 2016] and as interestingly outlined in Lazeyras et al. [2016] at the
level the power spectrum and in Chan et al. [2018] for the bispectrum: the observables built in a local over-dense
region of the Universe (PL) as altered in presence of a long mode δb are related to the quantities in the global one
(PG). We can easily extend their considerations to a general matter polyspectrum. The responses can be seen as
the coefficients of an expansion of the true globally derived polyspectrum around the backgroundmode δb, which
is assumed to be in the linear regime

PG pk1, . . . , kn|δbq “ PG pk1, . . . , kn; 0q `
ÿ

ną0

Rn pk1, . . . , knq
n!

δn
b,

Rm pk1, . . . , knq “ dmP pk1, . . . , kn|δbq
dδm

b







δb“0
(2.215)

In this work we will consider linear responses R1 pk1, . . . , knq.

Local average effect this effect was already identified within the calculation of the non-linear power spectrum
covariance matrix by de Putter et al. [2012]. The background mode δb can induce a local average effect on
small scales via a shift on the mean background matter density

ρL “ p1 ` δbq ρ, (2.216)

and at the level of locally observed contrast density field

δL pxq “ δ pxq ´ δb
1 ` δb

Ñ δL pkq “ δ pkq ´ δbδD pkq
1 ` δb

. (2.217)
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At the level of polyspectra, the local PL ones relate to the global ones P(from now on we will omit the
superscript G), in Fourier space, via

P pk1, . . . , kn|δbq “ p1 ` δbqn PL pk1, . . . , knq (2.218)

We can see that an intuitive behaviour is recovered: given a fixed local polyspectrum, the corresponding
one related to the true underlying matter density is enhanced. Clearly, for a fixed background mode, the
lower is the local power, the lower will be the global one.

Dilation effect A positive background over-density implies a slower expansion, which can be quantified by the
relative difference in the scale factor between the local and global cosmology, aL “ a{ 3

?
1 ` δb. Therefore,

for the same physical scale rphy. the corresponding comoving one rcom. differs as rcom.a “ rVcom.aL, and the
momenta k « 1{rcom. are therefore differently evaluated between the local and global Universe as

kL “ k
3

?
1 ` δb

. (2.219)

The impact of such a coordinate scaling at the level of polyspectra can be derived via a generalisation of the
calculation performed in Pajer et al. [2013] and inChan et al. [2018]. Under a change of coordinated alone
(excluding local-average effect and the growth-only response (see later in the section)), a general n-point
correlation function transform as a scalar field, specifically in this case (with x Ñ xL “ x 3

?
1 ` δb)

εL
`

rL2 , . . . , r
L
n

˘ “ ε
´

rL2 { 3
a

1 ` δb, . . . , rLn{ 3
a

1 ` δb
¯

. (2.220)

We can relate them to the corresponding n-order polyspectra

ε
´

rL2 { 3
a

1 ` δb, . . . , rLn{ 3
a

1 ` δb
¯

“
n

ź

i“2

«

ż

d3ki

p2πq3 e
´i ki¨r

L
i

3?1`δb

ff

P pk2, . . . , knq , (2.221)

εL
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rL2 , . . . , r
L
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˘ “
n
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i“2

„
ż

d3kLi
p2πq3 e´ikLi ¨rLi

ȷ

PL `

kL2 , . . . , k
L
n

˘

, (2.222)

We then translate the equivalence in Eq. (2.220) into a relation between locally and globally evaluated
polyspectra

PL `

kL2 , . . . , k
L
n

˘ “ p1 ` δbqn´1 P
´

kL2
3

a

1 ` δb, . . . , kLn
3

a

1 ` δb
¯

„
P pk2, . . . , knq “ p1 ` δbq´n`1 PL

´

k2{ 3
a

1 ` δb, . . . , kn{ 3
a

1 ` δb
¯

. (2.223)

Combining the local average effect (2.218) and the dilation effect (2.223), we have

P pk2, . . . , kn|δbq “ p1 ` δbq PL
´

k2{ 3
a

1 ` δb, . . . , kn{ 3
a

1 ` δb
¯

. (2.224)
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Growth-only response We are then left with the growth-only response which stands for a modification of the
intrinsic growth of structures, at fixed scales. If the background perturbation is positive, then gravity is
stronger in the local Universe and the intrinsic growth is enhanced. Unfortunately this last quantity cannot
be predicted via the above shifts but it has to be either tuned in simulations or predicted according to a given
theoretical prescription. In general we will refer to it as the response to the locally observed polyspectrum
to the long mode

Gnpk2, . . . , knq “ dnPL pk, . . . , k|δbq
dδn

b







δb“0

1
P pk, . . . , kq . (2.225)

and we added a dependence on the background mode due to the alteration of the growth of structures

Given all the above effects, the true globally evaluated polyspectrum will depend on the long background mode
δb as

P pk1, . . . , kn|δbq “ p1 ` δbq
«˜

1 `
ÿ

mą0

1
m!

GmpkL1 , . . . , kLnq δm
b

¸

P
`

kL1 , . . . , k
L
n

˘

ff

kL˚“ k˚
3?1`δb

(2.226)

where PL pk2, . . . , kn|0q “ P pk2, . . . , knq since we are not considering the effect of the longmode on the growth
of structure and we are evaluating them at the same configurations. Finally, the linear response will be

R1 pk1, . . . , knq “ 1 ` G1pk1, . . . , knq ´ 1
3

n
ÿ

i“1

dP pk1, . . . , knq
d log ki

(2.227)

In the next chapter, we will review all the polyspectra included in our analysis. Along with them, we will describe
the expressions used for their responses in the light of Eq. (2.227)

Weak lensing SSC, few comments In the present chapter, given the scales of interest for our analyses and
the simplicity in the computation, we built our observables in the flat-sky andLimber approximations. Wewill see
in the next chapter that these assumptions are indeed well justified for our work. These approximations were also
employed for deriving the super-sample covariance terms in thepresent section, the softmode, generally identified
with q being defined on a plane. In the most general case modes should be treated as curved and even if the small
scales limit may apply for the observed ones, the background long modes do lie on a sphere and can potentially
correlate different small “flat” patches of the observed sky. In the interesting paper from Barreira et al. [2018], the
authors do actually provide a rigorous proof for different expressions of the SSC for the weak lensing convergence
field relaxing different approximations on the geometry of themodes: in Sec. 4.2 they derive the SSCwith curved
super-survey modes only, while in Appendix D they derive the SSC with no flat-sky approximation, nor Limber,
for both the background and observed modes. While these expressions can actually be derived analytically, they
can be computationally costly. As a matter of fact, in the second case (the most realistic), the non-Gaussian lens-
ing covariance is given by a high-dimensional integral of rapidly oscillating functions with unequal-time matter
trispectrum in general configurations. Furthermore, this full expression does not even permit a clean separation
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at the level of trispectrum between super-sample contributions and the rest of the connected non-Gaussian co-
variance (as it was the case for the flat-sky analyses performed so far). For the bispectrum covariance, all these
considerations lead to an even more complex analysis. In the less complex case with flat-sky for the observed
modes, the analysis still involves 2 integrations over the redshift for the evaluation of the projected variance σ2v, for
every configuration of interest. This complexity was also found and successfully tackled by Lacasa et al. [2016].
For all these reasons, we will employ the flat-sky approximation for both themodes observed and beyond the sur-
vey. By generalising to higher order the consistency relations (2.207) the following expression is given by simply
projecting the three-dimensional polyspectra responses

Cov
”
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(2.230)

where we employ the Limber approximation for the three-dimensional modes within the responses. The super-
sample covariance expression (2.228) is also consistent with the work of Lacasa & Rosenfeld [2016] (see also
Lacasa et al. [2016] for an application with partial-sky coverage). They derived a general expression for the super-
sample covariance between two observablesO1 andO2 for a projected cosmological field

Cov rO1,O2sNGssc “
ż

dω1 dω2 ω2
1 ω

2
2
do1 pω1q
dδb

o2 pω2q
dδb

σ2v pω1, ω2q . (2.231)

where
opωq “ 1

ω2

dOpωq
dω

, σ2v pω1, ω2q “
ż

d3k
p2πq3 W̃pk, ω1qW̃˚pk, ω2q Plin.pk; ω1, ω2q. (2.232)

In particular we recover our expression under the limit σ2v pω1, ω2q being peaked around ω1 “ ω2 (Limber approx-
imation regime).

We leave for Chapter 3 more details regarding the shape of the window function used for the evaluation of the
variance σ2v. We just underline here that weak lensing surveys dealing with projected fields are characterised by an
angular window function W pω, θ, φq. In the most general case, the depth of the survey (related to the distance
ω) is coupled with the direction in the sky, (related to the angular coordinates). This increases the numerical
complexity highlighted in the paragraph above. In our analysis, we will allow for a factorisation in a radial and in
an angular component

W pr, θ, φq “ WR prq ˆ Wan pθ, φq . (2.233)

While the radial component will be absorbed as extrema in the line-of-sight integration in Eq. (2.228) (and in
particular will be equal to the size of the tomographic bins employed), the angular component will contribute
to three-dimensional variance in Eq. (2.196) once projected onto plane waves. We will show this calculation in
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details for the chosen window function in the next chapter.
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Thepurpose of this third chapter is to finally apply the formalism introduced so far to the optimisation of future
data analyses for modern galaxy surveys. While the concepts we will introduce are absolutely general, we will
derive our conclusions for a Euclid-like survey whose detection specificities are given in Sec. 3.1.2.

All the ingredients introduced in the first two chapters do play an important role both at the level of forecast and
at the level of actual data analysis, where the parameter inference process takes place. The purpose of the forecast
analysis is to predict how well cosmological parameters will be constrained by a set of observables as measured
with a specific survey. Always at this level, we want to identify non informative observables to discard and build
summary statistics which maximise the cosmological content in the observables while minimising the compu-
tational burden in the future data pipelines. Finally, we want to test the robustness of the upcoming parameter
inference against the uncertainties on nuisance parameters. These type of parameters are necessary to model the
expected signal but the uncertainty on their values, or correlations, may spoil the precision of the future inference.
It is important to underline that the forecast process hasmajor consequences for the actual data analysis: the latter
is optimised based on the outcome of the former. For example, summary statistics identified during the forecast
can be estimated at the level of data along with removing non-informative combinations of observables, leading
to faster parameter posterior exploration and probe combination. Moreover, given the importance of an analyt-
ical approach as described in Sec. 2.2.1, the covariances and the observables computed for a fiducial cosmology
will enter directly the likelihood codes used for inferring the cosmological parameters as part of the heritage of a
mission as whole.

In this final chapter we will address key points for an efficient implementation of likelihood codes for modern
weak lensing large-scale structure surveys. Specifically, we will focus on the joint weak lensing convergence power
spectrum-bispectrum probe and we will tackle the numerical challenges required by a thorough analysis. Under
the assumption of a multivariate Gaussian likelihood, we developed a high performance code that allows highly
parallelised prediction of the binned tomographic observables and of their joint non-Gaussian covariance matrix
accounting for terms up to the 6-point correlation function and super-sample effects.

So far, we have been mentioning the cosmological information content as the quantity to maximise, providing
a guiding criterion for our research. Qualitatively, we can associate it with the overall precision expected for the
cosmological parameters to be estimated from the available data, given their uncertainties. In big-data context, the
constraining power of a probe can be addressed either via Fisher forecast [Tegmark, 1997], DALI forecast [Sell-
entin et al., 2014; Sellentin, 2015] or Markov ChainMonte Carlo (MCMC) analyses (just to give few examples).
However, given the novelty and the complexity of the study here carried out, all the above techniques are not
computationally feasible. This difficulty is exacerbated by the fact that we aim at exploring different configura-
tions of the target experiment. Instead, we propose a signal-to-noise ratio (S/N) analysis as suggested byTegmark
et al. [1997] and already exploited in previous literature within the cosmological context [Rimes & Hamilton,
2005; Sato et al., 2009; Takada & Jain, 2009; Kayo et al., 2013]. Following Kayo & Takada [2013], we define
the information content of an observable as the expected inverse variance of its amplitude A as estimated from a
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set of measured values x, assuming a fixed shape. In other terms, the second power of the signal-to-noise ratio is
the inverse of the unique element of the Fisher information matrix [Tegmark, 1997] in such a single parameter
experiment. Specifically, we can write

ˆ

S
N

˙2

” B px ´ ADqt

BA
¨ C´1 ¨ B px ´ ADq

BA
“ Dt ¨ C´1 ¨ D, (3.1)

whereAD “ xxy andCij “ Covrxi, xjs. Wewill use this tool extensively in what follows. Even if we are aware that
the S/N is not suitable for a precise forecast, however its simplicity allows a fast analysis of the level of correlations
within our data vector. Nonetheless, the computation of the covariancematrix is a key step towards the forecasting
techniques listed above and this work already finalises this calculation.

In this chapter we will present in Sec. 3.2 a thorough analysis of the most important forecast related aspects
for a Euclid-like survey considering as observables the binned tomographic convergence power spectrum and
bispectrum. The matter presented here below has been previously proposed in Rizzato et al. [2018].

3.1 Implementation specificities

The general goal of the present section is to specialise the theoretical discussions performed in Chapter 1 and in
Chapter 2 to the actual implementation for our analysis. In Sec. 3.1.1, we will start by giving the structure of the
chosen data vector. In Sec. 3.1.2, we will list the survey specificities of a Euclid-like mission. Finally, in Sec. 3.1.3,
we will provide in-depth information regarding the construction of the halo model polyspectra required for the
forward modelling of the data vector and of the covariance, responses included.

3.1.1 Vector of observables

We will be dealing with the tomographic convergence power spectrum and bispectrum, i.e.

Pij pℓq , Bijk pℓ1, ℓ2, ℓ3q . (3.2)

To be precise, the quantities entering the data vectorD in Eq. (3.1) are the binned estimators (2.151) and (2.152).
We already proved them unbiased and, under the assumption of negligible variations within a given ℓ-bin, they
are approximately equal to respectively the power spectrum and to the bispectrum as evaluated at the central
value of the bin, or of the bins, involved in a given configuration. Then, we will populate our data vector with the
observables (3.2) computed on the central value of the bins in ℓ. We build the vector with the overall structure

D “ tP, Bu. (3.3)
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In each of the two sub-vectorsP andB, the observables (power spectrum and bisepctrum respectively) are stored
for decreasing (increasing) value of the correlation scales (multipole) used for the configurations. The triangular
configurations for the bispectrum, labelled via the triangle edges tℓi, ℓj, ℓku, are orderedwithin the vectorB such as
ℓi ď ℓj ď ℓk where the index j is the fastest and the index k is the slowest varyingonewhilemoving along the vector
towards higher indices. The angular multipole range we will investigate is ℓ P r10, 5000s¹, binned in 14 regularly
spaced intervals in log ℓ. The choice for such a binning is arbitrary and it is mainly motivated by computational
resource optimisation. In future analyses, the binning will be instead optimised to increase the signal-to-noise
ratio of the observables. As for the different tomographic contributions, they are contiguous within the vector
for the same spatial configuration. For the power spectrum, the tomographic indexes pi, jq are ordered such that
i ď j, j being the faster varying index through the vector. For the bispectrum, the observables associated to the
tomographic bins pi, j, kq are ordered such that k is the fastest index and i is the slowest one. Symmetries in the
spatial triangles help in removing redundant tomographic redshift contributions from the bispectrum vector B:
bispectra on isosceles or equilateral configurations lead to the following symmetrieswithin the corresponding row
(column) in the covariance (e.g.)

Cov
“

Bijk pℓ, ℓ,ℓ1q , ‹‰ “ Cov
“

Bjik pℓ, ℓ,ℓ1q , ‹‰

,

Cov
“

Bijk pℓ, ℓ,ℓq , ‹‰ “ Cov
“

Brσpiqσpjqσpkqqs pℓ, ℓ,ℓq , ‹‰

(3.4)

σ being a generic permutation of the tomographic indices and ‹ being another observable. In the example (3.4)
the tomographic indices will respectively obey the relation i ď j, i ď k, j ď k for ℓi “ ℓj, ℓi “ ℓk, ℓj “ ℓk

respectively (isosceles configurations) and i ď j ď k for ℓi “ ℓj “ ℓk(equilateral configurations).

3.1.2 Survey specificities

Euclid-like tomography While all the analytical results in this manuscript do apply to any weak lensing
survey, we now switch to the specificties of the Euclid mission. To this end, we make use of the requirements
presented in Laureijs et al. [2011]. For the sky coverage, we use Θsky “ 1.29 rad, Ωsky “ 15.000 deg2 «
4.57 sterad, fsky “ 0.36. For the photometric properties of the survey, we use a total comoving number of ob-
served sources ntot “ 30 gal arcmin´2 from zmin “ 0.001 up to zmax “ 2.5. The expected distribution of the
sources is

n pzq 9
´z
z̄

¯2
e´p z

z̄q1.5

(3.5)

with z̄ “ 0.9{?
2 and it will be normalised over the observed range. The sources will be split up to a maximum of

10equipopulated redshiftbinswith extrema: t0.001, 0.418, 0.560, 0.678, 0.789, 0.900, 1.019, 1.155, 1.324, 1.576, 2.500u.
It is worthmentioning at this stage that the power spectrummeasurements for an actual survey are also affected by
intrinsic shape noise due to the finite number of sources and the intrinsic variability of galaxy shapes. Assuming

¹This range is in line with present Euclid forecasts [Laureijs et al., 2011] and in particular it has been chosen such that the effects of
baryonic feedback on the lensing power spectrum are minimised [Semboloni et al., 2011; Kitching & Taylor, 2011]
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that the orientation of intrinsic galaxy shapes is random and the shapes of different galaxies are uncorrelated, this
component is Gaussian² and we account for this effect in the following way

Pij pℓq Ñ Pij pℓq ` σ2ε
n̄piq

δK
ij . (3.6)

In particular, we will account for this contribution only at the level of covariance since it is possible to remove
it from the data. We will use the value σ ε “ 0.3 which is representative of the expected Euclid sample [Amen-
dola et al., 2013] and we will ignore weak lensing systematics like intrinsic alignments [Schneider & Bridle, 2010;
Joachimi et al., 2013; Troxel & Ishak, 2015; Kiessling et al., 2015; Blazek et al., 2017; Schmitz et al., 2018], photo-
metric redshift errors [Ma et al., 2006], blending [Hartlap et al., 2011] and point spread function (PSF) [Jarvis &
Jain, 2008; Hamana et al., 2013; Chang et al., 2013]. In Eq. (3.6), n̄piq is the expected projected number of sources
per unit of solid angle within the ith redshift bin.

Window function In order to compute the super-sample covariance (2.228) we also need to specify the
shape of the mask function W pr, θ, φq. This function binds the total volume of the Universe accessible for the
data collection, thus defining the variance of the long mode δb. We will assume that it can be factorised into an
angular component Wan. pθ, φq and into a radial component Wr prq. Both components can take values either 1 or
0 respectively within and outside the detected volume (binary window function). The Fourier transform of such
a cylindrical mask, which is a top-hat in both redshift and angular coordinates, is given in flat sky by [Lima & Hu,
2007; Hu & Kravtsov, 2003; Aguena & Lima, 2018]

Wth pk, δω, ω̂q “ 2 exp
`

i k∥ω̂
˘

j0
´ 1
2
k∥δω

¯ J1
`

kKω̂Θsky
˘

kKω̂Θsky
V (3.7)

where the vector k is split in tkK, k∥u. These components are respectively associated to the coordinates on the
plane orthogonal to the line of sight (kK) and to the comoving distance to it (k∥). More precisely, Eq. (3.7) is
the Fourier transform of the selection function for a comoving cylindrical volume of depth δω, centred in ω̂ and
derived under the assumption of a slowly varying ω andHubble factorH pωq within δω. The angleΘsky (in radian)
stands for the linear angular coverage of the survey. For sake of completeness, we underline that in Eq. (3.7) we
are omitting the component related to the photometric error. The special function j0 and J1 are respectively the
0th order spherical Bessel function and the 1st order Bessel function of the first kind. The super-sample covariance
requires to compute the variance σ2vpωq of the linearmatter field at a specific redshift. Then, wewill compute σ2vpωq
over a disk-like volume, obtained under the limit δω Ñ 0, ω̂ Ñ ω of Eq. (3.7)

σ2v pωq “ 4
ż

d2εK
p2πq2

«

J1
`

εKωΘsky
˘

εKωΘsky

ff2

Plin. pεK, ωq . (3.8)

²A more realistic case would have a binomial shot noise, leading to a non vanishing bispectrum component. We leave this consider-
ation to future works.
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3.1.3 Halo model matter polyspectra

In Secs. 1.3.4-1.3.5 we described the general features of the chosen matter clustering model: the halo model. We
gave a thorough review about the precision requirements as not to degrade the information content in modern
galaxy surveys. We concluded Sec. 1.3.5 introducing the general framework for building the matter correlation
functions at a desired order and we postponed the derivation of the detailed expressions for our specific case. We
want now to tackle this point along with the approximations considered to reduce the computational burden.

The evaluation of the data vector D (3.1) and of the associated covariance (2.99)-(2.101) requires the com-
putation of the correlation functions (2.85) up to the 6-point one, plus the responses of the observables to the
backgroundmodes for the super-sample terms. In the next three paragraphs we will briefly derive the halo model
expressions necessary for this evaluation. We anticipate that for the observables in the vector D , we will use all
the required n-halo terms, both for the power spectrum (1- and 2-halo) and the bispectrum (1-, 2- and 3-halo).
Instead, for the covariance, we will approximate the polyspectra of order larger than 2 with the 1-halo component.
We will give motivations for this choice in the related paragraph.

The data vector In Sec. 1.3.5 we saw that within the halo model framework we can compute the matter
polyspectra as sumof different terms corresponding to different point allocationswithin one ormore halos. While
the value of thematter density at a specific point in space is related to the halo properties via the halo density profile
(1.162), its statistical properties do not reflect directly those of the halo number density. We formally expressed
this concept with the bias expansion (1.150) and we will use it to relate the correlations between halos to those
of the underlying matter field. We will describe the power spectrum and the bispectrum at leading order in the
linearly-evolvedmatter density field. In terms of the aforementioned bias expansion, this requires terms up to the
second power in δ. In this scenario, two local biases b1pm, tq, b2pm, tq [Fry & Gaztanaga, 1993] and a non-local
bias term bs2pm, tq [Chan et al., 2012; Baldauf et al., 2012] are required

δh pk, t,mq “ b1 pm, tq δ pk, tq ` b2 pm, tq
2

ż

d3q
p2πq3 δ pq, tq δ pk ´ q, tq `

bs2 pm, tq
2

ż

d3q
p2πq3 δ pq, tq δ pk ´ q, tq S2 pq, k ´ qq , (3.9)

with [Baldauf et al., 2012]

S2 pk1, k2q “ pk1 ¨ k2q2
k21k22

´ 1
3
, bs2 pm, tq “ ´2

7
pb1 pm, tq ´ 1q . (3.10)

The local biases b1pm, tq and b2pm, tq can be predicted via the peak-background split (1.152) from the mass func-
tion fm pmq (1.129). [Kaiser, 1984; Bardeen et al., 1986; Cole & Kaiser, 1989; Mo& White, 1996]. In the follow-
ing, we will imply the time dependence.

Let us start from the power spectrum. We saw in Chapter 1 that it is well approximated at every redshift (a de-
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pendence that we will omit in the following) as the sum of the 1-halo term (1.169) and of the 2-halo term (1.170)
which respectively captures the contribution given by the two points being in the same halo and in two separate
ones. If we focus on the 1-halo term inFourier space, the convolution between the twohalo profiles (1.169) (more
precisely of the two normalised profiles u px ´ xi;mq) will simply transform into a product of the two Fourier-
transformed profiles ũ pm, kq. Then, the 1-halo term can be derived with no particular effort

P1h pkq “
ż mMax

mMin
dm

ˆ

m
ρcom.

˙2

fm pmq
ż cMax

v

cMin
v

dcv p pcv,mq ũ2 pm, cv, kq . (3.11)

In Eq. (3.11) we also accounted for the uncertainty on the halo concentration parameter via the convolution with
the probability density distribution p pcv,mq given in Eq. (1.163). Also, the dependence on solely the magnitude
k of k derives from the symmetries of the chosenNFWprofile (1.162). The 2-halo term describes the correlation
between 2 points hosted in two different halos of mass (e.g.) m1 and m2. Then it will depend on the halo-halo
correlation function. Qualitatively we write

xδh pk1,m1q δh pk2,m2qy « b1 pm1q b1 pm2q xδ pk1q δ pk2qy « b1 pm1q b1 pm2q Plin. pk1q δ pk1 ` k2q . (3.12)

In Eq. (3.12) we stopped the bias expansion (1.150) at the linear level, i.e. „ pb1 pm2q δq, since it is a common
assumption to consider the scales here involved (beyond the varialization halo radius) in the linear regime. For
this reason, we will neglect quadratic corrections and the power spectra are the linear ones. A more quantitative
evaluation leads to

P2h pkq “
«

ż mMax

mMin
dm b1 pmq m

ρcom.
fm pmq

˜

ż cMax
v

cMin
v

dcv p pcv,mq ũ pm, cv, kq
¸ff2

Plin. pkq (3.13)

and the total matter power spectrum will simply be the sum of the two terms derived above

PHM pkq “ P1h pkq ` P2h pkq . (3.14)

We refer to the dedicated section in Chapter 1 for the meaning of the different quantities appearing in the above
relations. To simplify the expression for the generalmatter polyspectrum, we can introduce the following quantity

Iβμ
`

k1, . . . , kμ
˘ “

ż mMax

mMin
dm bβ pmq

ˆ

m
ρcom.

˙μ

fm pmq
˜

ż cMax
v

cMin
v

dcv p pcv,mq
«

μ
ź

i“1

ũ pm, cv, kiq
ff¸

(3.15)

where b0 ” 1. The, the matter power spectrum (3.14) can be written in a more synthetic way as

P pkq “ I02 pk, kq ` rI11 pkqs2 Plin. pkq . (3.16)

Thanks to this lighter notation, we can introduce the three-dimensional matter bispectrum as the sum of 3
multi-halos terms [Cooray & Hu, 2001]: 1) all the points are within the same halo (1-halo term, B1h), 2) 2 out of
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3 points are in the same halo while the third is not (2-halo term,B2h) and 3) each point is hosted in a different halo
(3-halo term, B3h). In analogy to the calculations performed at the level of power spectrum, the 1-halo term for
the bispectrum will simply be the convolution of the halo mass function with the third power of the halo profile

B1h pk1, k2, k3q “
ż mMax

mMin
dm

ˆ

m
ρcom.

˙3

fm pmq
˜

ż cMax
v

cMin
v

dcv p pcv,mq
«

3
ź

i“1

ũ pm, cv, kiq
ff¸

“ I03 pk1, k2, k3q .
(3.17)

The 2-halo term will qualitatively depend on the matter density field as in Eq. (3.12) where a quantitative deriva-
tion leads to

B2h pk1, k2, k3q “ I11 pk1q I12 pk2, k3q Plin. pk1q ` I11 pk3q I12 pk1, k2q Plin. pk3q ` I11 pk2q I12 pk3, k1q Plin. pk2q . (3.18)

Finally, the 3-halo term will have the following dependence

xδh pk1,m1qδh pk2,m2q δh pk3,m3qy «
A

ˆ

b1 pm1q δ pk1q ` b2 pm1q
2

δ pqq ¨ δ pk1 ´ qq ` bs2 pm1q
2

δ pqq ¨s δ pk1 ´ qq
˙

ˆ

b1 pm2q δ pk1q ` b2 pm2q
2

δ pqq ¨ δ pk2 ´ qq ` bs2 pm2q
2

δ pqq ¨s δ pk2 ´ qq
˙

ˆ

b1 pm3q δ pk1q ` b2 pm3q
2

δ pqq ¨ δ pk3 ´ qq ` bs2 pm3q
2

δ pqq ¨s δ pk3 ´ qq
˙

E

(3.19)

where we wrote in a synthetic way the convolutions (3.9) via the operators ¨ and ¨s andm1,2,3 are the masses of the
three halos hosting the points used for computing the correlation. According to the Perturbation Theory (PT)
paradigm (see Bernardeau et al. [2002] for a thorough review), we can expand the field δ pkq at different orders

δ pkq “
ÿ

p

δppq pkq , (3.20)

each term of the expansion being proportional to the pth power of the linearly-evolved initial over-density [Goroff
et al., 1986;Makino et al., 1992; Jain&Bertschinger, 1996]. The leading non-vanishing term inEq. (3.19) includes
at least one mode at second order in PT δp2q. Overall, the 3-halo term at leading order will be proportional to the
4th power of the initial linearly-evolved contrast density field, i.e.

xδh pk1,m1q δh pk2,m2q δh pk3,m3qy|4th «
b1 pm1q b1 pm2q b1 pm3q xδp1q pk1q δp1q pk2q δp2q pk3qy ` cycles over tk1, k2, k3u. (3.21)

The correlation (qualitatively) xδp1qδp1qδp2qy can be related to the tree-level PT matter bispectrum as computed in
Sec. 1.3.3. By looking at Eq. (3.19), we can see that at the same order more components are present, specifically
those includingb2δ2 andbs2δ

2with δ in the linear regime, i.e. δ “ δp1q. Similarly to the computationof the tree-level
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PT bispectrum in Sec. 1.3.3, these correlations of linear modes can be reduced via the Wick theorem in products
of 2-point correlation functions as

xδh pk1,m1qδh pk2,m2q δh pk3,m3qy|4th «
b1 pm1q b1 pm2q b2,ps2q pm3q xδp1q pk1q δp1q pk2q δp1q pqq δp1q pk3 ´ qqy ` cycles over tk1, k2, k3u “

b1 pm1q b1 pm2q b2,ps2q pm3q
2

”

xδp1q pk1q δp1q pqqyxδp1q pk2q δp1q pk3 ´ qqy`
xδp1q pk1q δp1q pk3 ´ qqyxδp1q pk2q δp1q pqqy

ı

` cycles over tk1, k2, k3u «
b1 pm1q b1 pm2q b2,ps2q pm3q Plin. pk1q Plin. pk2q ` cycles over tk1, k2, k3u (3.22)

wherewe did not consider the contributions forcingki “ kj, pi, j “ 1, 2, 3q since they are associated to degenerate
triangular configurations in the original bispectrum. A detailed evaluation of the mass-integration over the halo
profiles leads to

B3h pk1, k2, k3q “
3

ź

i“1

I11 pkiq BPT pk1, k2, k3q `

` I11 pk1q I11 pk2q I21 pk3q Plin. pk1q Plin. pk2q ` 2 terms from cycles over tk1, k2, k3u`
` 4

7
“

I11 pk1q I11 pk2q S2 pk1, k2q Plin. pk1q Plin. pk2q p1 ´ I11 pk3qq ` 2 terms from cycles over tk1, k2, k3u
‰

.

(3.23)

and we can recognise the tree-level PT power spectra and bispectrum induced by the correlations obtained in
Eq. (3.22) and in Eq. (3.21) respectively. The total bispectrum will then be the sum of the terms derived above

BHM pk1, k2, k3q “ B1h pk1, k2, k3q ` B2h pk1, k2, k3q ` B3h pk1, k2, k3q . (3.24)

Comparison with simulations In line with the presentation of Sec. 1.3.3, we propose a brief summary of
the most up-to-date comparisons between the bispectrum halo model predictions and simulations. In particular,
we refer to two thorough works, Fosalba et al. [2005] and Lazanu et al. [2016], where two different halo model
implementations are considered. We remind that several attempts to improve the performance of the model are
present in the literature [Takahashi et al., 2012; Valageas et al., 2013; Valageas &Nishimichi, 2011a,b;Mead et al.,
2015; Mohammed & Seljak, 2014; Seljak & Vlah, 2015]. However, they do rely either on relaxing one or more
assumptions of the halo model itself or on sets of parameters which are to be fitted against simulations. We will
not focus on them here, being interested on the halo model standard formulation. In Fosalba et al. [2005] the
dependence on the upper limitmMax within themass integration (3.15) is analysed along with the impact of a dif-
ferently chosen halo boundary r1

v. These variations are considered on top of a classical setup with an NFWprofile
[Navarro et al., 1996], the mass function from Sheth et al. [2001] and the concentration parameter from Bullock
et al. [2001]. Their best fiducial model is given by mMax “ 105 Md{h and r1

v “ 1.3rv and it matches the simulated
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signal within the error bars for all the scales analysed (0.05 h Mpc´1 ď k ď 10 h Mpc´1). Lazanu et al. [2016]
tested their halomodel implementation on a similar range of scales as in Fosalba et al. [2005] therefore a compar-
ison between the two works is meaningful. The halo model setup from Lazanu et al. [2016] is slightly different
from the previous one. More specifically, the mass function is the one from Tinker et al. [2010] and the concen-
tration parameter is obtained from the Boloshi simulation [Klypin et al., 2011]. The results from Lazanu et al.
[2016] show an overall good performance of the halo model in predicting the bispectrum from the simulations
for all the scales considered (0.04hMpc´1 ď k ď 8hMpc´1) at z “ 0, regardless of the triangular configurations.
A deviation of Á 20% can be seen at the transition scales, i.e. (0.3 hMpc´1 ď k ď 1 hMpc´1). In particular this
is a well known shortcoming of the halomodel formalism [Cooray &Hu, 2001; Smith et al., 2008; Figueroa et al.,
2012]. This lack of performance is exacerbated for higher redshifts where the halo model predictions underesti-
mate the signal from the simulations by a factor of „ 2 and „ 2.5 at z “ 1 and z “ 2 respectively, around the same
scales. We think that these discrepancies are of minor importance for the results of our work. As a matter of fact,
the convergence observables required for our analyses are mainly projections of matter polyspectra at z À 1.

Thecovariancematrix In the introduction to this sectionweanticipated thatwewill approximate thepolyspec-
tra of order higher than 2 within the covariance with the respective 1-halo term. Here we describe the reasons
behind this choice and we will also provide the general expression for the 1-halo term. At the level of 4-,5- and 6-
order polyspectra this ismainlymotivated by the effort in reducing the computational cost of the implementation.
As for the bispectra instead, which appear in the NGins,BB term (2.140), the impact of the 2- and of the 3-halo
term in the covariance is complex. Wewill dig into this issue by considering the joint covariancematrix for a 1 bin
tomography, i.e. assuming that all the sources are placed within a unique broad bin between redshift 0.001 and
2.5. The other photometric parameters and the angular binning given in Sec. 3.1.2 are kept unchanged. The bot-
tom panels in Fig. 3.1.1 show the fractional impact on the correlations when the 2-halo term (central panel) and
the 2-+3-halo term (right panel) are added on top of the 1-halo term alone. We conclude that these multi-halo
terms mainly enhance the correlations 1) between power spectra and bispectra at linear scales and 2) between
bispectra on squeezed configuration (i.e. Bpℓi, ℓj, ℓkq with ℓk „ ℓj " ℓi) and bispectra evaluated on large scales.
In Fig. 3.1.1 we report few binned configurations to help following the discussion. The single number, i.e. p14q,
refers to the respective power spectrum configuration, i.e. the power spectrum evaluated on the largest (the 14th)
ℓ-bin. We now move to the top panels in Fig. 3.1.1. Here we show the correlation matrices when including in the
NGins,BB term of the joint covariance the 1-halo term only (left panel), the 1-`2-halo term (central panel) and
the 1-`2-`3-halo term (right panel). We can see that, when adding the 2-halo term and the 2-+3-halo term on
top of the 1-halo term alone, some correlations are dramatically pushed towards 1. Specifically the problematic
correlations are between bispectra on squeezed configurations (see definition above) and power spectra at linear
scales. At numerical level this translates into extremely ill-conditionedmatrices with determinant close to 0 along
with the possibility of numerically evaluated negative eigenvalues. This is indeed the situation when the joint
power spectrum-bispectrum covariance matrix is analysed. It is worth underlying that, even if we were capable to
invert exactly the matrix, the presence of highly correlated observables would lead to a poor improvement of the
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Theresponses Thehalomodel alsoprovides apowerful recipe for the computationof the responses inEqs.(2.208)-
(2.214) required for the forward modelling of the super-sample covariance. We can obtain them by taking the
derivative of the power spectrum (3.14) and of the bispectrum (3.24) with respect to the long mode δb (2.206).
We will assume that the single halo profile is not affected by the long mode while it will impact the distribution
of halos on larger scales via the bias and the mass function. Following Chan et al. [2018], we will consider the
responses up to the linear bias (the second order ones were proved to be sub-leading in Chan et al. [2018] and we
will neglect for consistency the tidal component of the response being also quadratic in the perturbation δ). We
can formally express the impact of the long mode with the help of Eq. (3.15)

dIβμ
`

k1, . . . , kμ|δb
˘

dδb







δb“0

“
ż mMax

mMin
dm

ˆ

m
ρcom.

˙μ d
dδb

“

bβ pmq fm pmq‰

˜

ż cMax
v

cMin
v

dcv p pcv,mq
«

μ
ź

i“1

ũ pm, cv, kiq
ff¸

“ Iβμ`1
`

k1, . . . , kμ
˘

(3.26)

where the derivative appearing within the expression above can be computed in the peak-background split ap-
proach as

bβ pmq “ 1
fm pmq

dfm pmq
dδb

. (3.27)

Therefore, the halo model power spectrum response will be related to the linear matter power spectrum one as

d PHM pk|δbq
dδb







δb“0
« rI11 pkqs2 dP

lin. pk|δbq
dδb







δb“0
` I12 pkq . (3.28)

In Eq. (3.28) we neglected the term proportional to I22 begin smaller than those already included [Chiang et al.,
2014; Wagner et al., 2015b; Chan et al., 2018]. Under the same approximations, the bispectrum response can be
expressed as

dBHM pk1, k2, k3| δbq
dδb







δb“0
« I11 pk1q I11 pk2q I11 pk3q dB

PT pk1, k2, k3| δbq
dδb







δb“0
`

`
„

I11 pk1q I22 pk2, k3q Plin. pkq ` I11 pk1q I12 pk2, k3q dP
lin. pk1|δbq
dδb







δb“0

ȷ

` 2 cycles `

` I13 pk1, k2, k3q . (3.29)

Eq. (3.28) andEq. (3.29) require the evaluation at tree-level in perturbation theory (PT) of the linear response for
the power spectrum and for the bispectrum. The derivation is quite technical and we refer to Chan et al. [2018]
for a detailed step-by-step explanation: it involves non-linear interactions between short (s) observedmodes δpkq
and the long (l)mode δ̃b pqq (2.206). In the followingwewould like instead to qualitatively convey themain ideas
behind this derivation, as not to break the flow of this chapter. To start with, we recall that in PTwe describe these
non-linear couplings between modes via the convolution kernelsF ppq

a defined in Eq. (1.98).
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The tree-level power spectrum is simply given by the linearmatter power spectrum, the twomodes involved be-
ing in the linear regime. Therefore, to compute the tree-level linear response for the power spectrum, wewill need
to take its derivative with respect to the longmode δb when correlatingmodes described as follows (qualitatively)

δ̃
p1q
ls “ δ̃

p1q `
´

δ̃
p1q ¨Fp2q δ̃b

¯

. (3.30)

Eq. (3.30) describes an observed short mode δls obtained as a coupling between one long (l) un-observed mode
(we are interested in the linear response) and the linear solution for the short (s) mode within the survey (we
are interested in the tree-level solution). In particular the superscript in δ̃

p1q
ls refers to the order of the perturbative

expansion in terms of short mode while the subscript refer to the type of coupling involved (long-short). By
computing the power spectrum of the modes in Eq. (3.30) and by subsequently taking the derivative of it with
respect to δb, it is possible to prove the following expression for the desired response

dPlin. pk|δbq
dδb







δb“0
« 47

21
Plin. pkq ´ 1

3
dPlin. pkq
d ln k

, . (3.31)

Moving to the bispectrum, in Sec. 1.3.3 we derived the PT tree-level expression for it and we noticed that the
non-vanishing leading order is given when the modes are, at least, at second order. Then, the tree-level solution
for the linear response can be derived from the bispectrum of modes coupled as follows

δ̃
p2q
lls “ δ̃

p1q `
´

δ̃
p1q ¨Fp2q δ̃b

¯

`
´

δ̃
p1q ¨Fp3q δ̃

p1q ¨Fp3q δ̃b

¯

. (3.32)

In Eq. (3.32) we ordered the terms according to the power of the short (s) mode and once again the superscript
and the subscript in δ̃

p2q
lls respectively refers to the order of the expansion in terms of the observed short mode

and to the type of couplings involved (short-short-long). In the last term of Eq. (3.32) we introduced a symbolic
notation defining the matter density contrast at third order, in perturbation theory,

δ̃
p3qpkq “ 3

ż

d3p
p2πq3

ż

d3p1

p2πq3F
p3qpp, p1, k ´ p ´ p1qδ̃p1qppqδ̃p1qpp1qδ̃p1qpk ´ p ´ p1q

” δ̃
p1q ¨Fp3q δ̃

p1q ¨Fp3q δ̃b. (3.33)

The third order kernel Fp3q is given in the literature [Goroff et al., 1986]. We will not report its expression here so
as not to break the flow of this qualitative explanation. A detailed calculation based on the derivative with respect
to δb of the bispectrum for modes with couplings as those depicted in Eq. (3.32), leads to [Chan et al., 2018]

dBPT pk1, k2, k3|δbq
dδb







δb“0
« 433

126
BPT pk1, k2, k3q ` 5

126
BG2 pk1, k2, k3q ´ 1

3

3
ÿ

i“1

dBPT pk1, k2, k3q
d ln ki

. (3.34)

By replacing the responses (3.31)-(3.34) into Eqs. (3.28)- (3.29), we obtain the desired expressions.
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Halo model numerical implementation We would like to conclude this section by discussing more on a
particular point: the numerical integration within Eq. (3.15). The main consequence of having a numerical in-
tegration over a finite domain is the exclusion of halos whose masses fall outside the range pmMin

v ,mMax
v q. This

cut-off is intrinsically present in all known halomodel implementations given that they are calibrated against sim-
ulations over a finite mass range. However, we do not expect this feature to have any impacts: very light halos,
extending over extremely small scales, should not contribute to our cosmological observables while heavy halos
are exponentially suppressed due to the shape of the mass function (1.129). The sensitivity to the mass cut-off is
in particular problematic for the lower bound. We can easily see this point by looking at the integrand Iβpmq in
the following consistency relations [Cooray & Sheth, 2002; Takada & Jain, 2003]

ż mMax

mMin

m
ρcom.

dm bβ pmq fm pmq ”
ż mMax

mMin
Iβpmq dm “

$

&

%

1 if β ď 1,

0 if β ě 2,
(3.35)

where the case for β “ 0 is actually the consistency relation for themass function. In physical terms, the relations
Eq. (3.35) requires that the mass of the Universe is entirely enclosed in halos (β “ 0) of mass m P pmMin

v ,mMax
v q

and that the overall distribution of halos is not biased compared to the total matter distribution (β ą 0), at each
order in the bias expansion (1.151). In the top-left panel of Fig. 3.1.3, we plot the integrand Iβpmq defined in
Eq. (3.35) for β “ 0, 1, 2 as function of the variable

ν pm, zq ” `

δc
sp. pzq {σ pmq˘2 (3.36)

δc
sp. and σ2 pmq being respectively introduced in Eq. (1.131) and in Eq. (1.134). We see that the integrals we are

trying to evaluate are slowly convergent for ν Ñ 0 (m Ñ 0 implies σ pmq Ñ 8). Therefore we would expect
every halo model implementation to be very sensitive to extremely light halos, which contradicts the physical
intuition described above and consequently undermines halomodels themselves, not being testable at these small
masses. The problem comes from the extrapolation of the model beyond its regime of validity assuming that
arbitrarily small mass halos are present in our simulation accounting for the whole matter content and biases.
Clearly Eq. (3.35) would not be satisfied since we are excluding these halos from the integration. However, once a
minimummass is set, lighter halos are excluded while the total matter budget may be filled by non-virialized dust.
This contribution cannot be caught by themass function fm pmq, by definition. In order to fulfil the normalisation
constraints (3.35) we will simply assume that the non-virialisedmatter content provides an effective contribution
via the following regularisation of the mass function and of the biases [Schmidt, 2016]

fm pmq Ñ fm pmq ` α0 δD
`

m ´ mMin˘ , (3.37)

bβ pmq Ñ
$

&

%

bβ pmq ifm ą mMin,

αβ ifm “ mMin,
. (3.38)
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polyspectra for the first tomographic bin (being the ones more sensitive to light halos) evaluated on equilateral
configuration (for simplicity), i.e. P1,...,1pℓ, . . . , ℓq (we are omitting the dependence on the multipoles on the y-
axis label) according to the notation given in Eq. (2.85). We investigate the sensitivness of the polyspectra to the
low-mass cut-off by comparing themwith a conservative case P̄1,...,1pℓ, . . . , ℓq which is derived by integrating over
halos of mass m ě 102Md{h. Our implementation is solid: we observe a first deviation by more than 1% when
integrating over halos of mass m Á 1010 “ mkMax . We chose for the mass integrals mMin “ 109Md{h to avoid
numerical inaccuracies with a negligible extra computational price. This is extremely interesting also because this
resolution in mass can be easily achieved by present smoothed-particle hydrodynamics simulations [Hopkins et al.,
2014; Genel et al., 2014; Khandai et al., 2015] allowing precise tests of the statistical properties of the halo model
at an accuracy which is sufficient for the joint power spectrum-bispectrum analysis. In our specific case, we em-
ployed a halo model implementation based on the work of Bullock et al. [2001]. In their work, the distribution
of halos was tested at the level of mass function with a simulation covering a mass range 1011Md{h ´ 1014Md{h,
from redshift z “ 40 to the present.

3.1.4 Computational effort

Given the specificities outlined at thebeginningof this section,wewill compute covariancematriceswith, atworst,
Á 104 ˆ 104 elements. Such computational effort can be unsustainable for a single core computer, especially for
a binning in ℓ finer than the one actually considered. Moreover, given the equations defining the covariances in
Sec.s 2.2.3- 2.2.4, the number of required polyspectra for the intermediate calculations has to be multiplied by
factors of order 1-10 if a naive approach is employed. Another important point to keep in mind is the numerical
accuracy of our final products. We leave a more complex propagation of the error for future works and we arbi-
trary assume 1% numerical accuracy to be satisfactory for all our observables (vectors and covariances). However,
this level of precision might not be enough to guarantee the numerical stability of our analysis for some extreme
configurations. As a matter of fact, the covariance matrices we are dealing with tend to be extremely ill condi-
tioned having eigenvalues that span over the same range in orders of magnitude as the observables in Fig. 3.1.2.
On top of that, they are far from being diagonal dominated. For example, especially when the super-sample terms
are included, we can reach cross-correlations ą 0.9. The numerical inversion of these matrices is challenging and
sometimes even impossible given that numerical round off errors might turn our covariances from positive de-
fined to negative defined. For example, we found that 1% accuracy in the evaluation of the covariance matrix for
the power spectrum is not enough for a reliable inversion and a target of 0.1%must be set when not including the
shot noise. Luckily, if one is interested in analysing the information content in the most realistic cases where the
shot noise term is accounted for, the inversion of the matrix becomes less an issue given that this component acts
as an additional source ofGaussian noise (under our approximations) leading tomore diagonal dominated covari-
ances. This will be the regime in which we will work when dealing with the bispectrum analysis. Accuracy, high
number of evaluations and fast production of the observables are achieved via a original and parallelised numerical
implementation of the problem. In the following we will briefly go through the strategy used in our code divid-
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ing it in different steps. Please note that the best performance of the algorithm is obtained on medium-large size
clusters: for this reason we will assume a parallelised use in the following description. However, even if strongly
discouraged, a serial run on a single core is allowed.

Covariance matrix evaluation

1. In a first serial part, each processor builds own tables carrying the information related to 1) the points in red-
shift tziui“1,...,nz for the evaluation of the matter polyspectra to be used within the line-of-sight integra-
tion (2.89) and to 2) the multipole binning tℓbi ui“1,...,nℓ to construct the configurations in the data vector.
Since the computation time required for this part is negligible compared to the whole run, we prefer hav-
ing each processor computing its own tables. We also build in each core two vectors of structures JP and
JB which respectively represents the data vector P and B. The ith structure within these vectors stores the
tomographic positions of the sources and the central values of the bins for the computation of the corre-
sponding observable. On top of that, we store at every redshift tziui“1,...,nz the required information on the
distribution of halos: this is needed for building matter polyspectra. The tables are global and every core
can have access to them. For this task, we rely on the routines written by Mead et al. [2015]. We want
to underline that we are not exploiting the improved halo model implementation suggested in their work
since it does not provide a recipe for higher order correlation functions. On the other hand, their fitting
formulas are extremely advised for power spectrum analyses.

2. Given the number of cores ncores available, the elements in the upper diagonal part of the covariance matrix
(which is symmetric) are equally split among the processors: if the number of entries is not a multiple of
ncores, then the remaining is equally redistributed starting from the 0th core.

3. At this point, we enter the parallelised part of our pipeline. Each core analyses the assigned part of the covari-
ance (from step [2.]) performing the following operations on the different polyspectra required according
to the expressions given in Secs. 2.2.3-2.2.4. More precisely, we have the cores working on the polyspectra
order n by order n, from the power spectrum (n “ 2) up to the 6-order polyspectrum pn “ 6q.

3.1. For every order n, the minimum number of non-equivalent spectra required for the computation of
the covariance elements is identified. By looking at Eq. (2.89), our spectra are invariant under per-
mutations of the tomographic indices. Also, the assumed homogeneity of the Universe ensures that
the value of a given polyspectrumdoes not depend on the order of themomenta it depends on. Then,
by non-equivalent polyspectra we domean polyspectra up-to permutations of the indices referring to
both the position of the sources and the bins in ℓ used to build the configurations. Also, theminimum
number of non-equivalent spectra is identified considering that a specific polyspectrum is needed
only if the associated configuration in Fourier space meets symmetry requirements: if these are not
met, the core skips that spectrum.
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3.2. In a second moment, the polyspectra to be computed are equally shared among the cores: they eval-
uate the matter polyspectra from the halo model ingredients computed in step [1.] and then they
perform the line-of-sight integration (2.89). The resulting projected observables are stored in global
tables, available to all the cores.

3.3. Every core goes again through the elements assigned at step [2.], computing them from the polyspec-
tra available in the global tables from step [3.2.]. The value of every element of the covariance com-
puted at this order is finally summed to the previous one, which had gone through the same pro-
cedure. If spectra of different orders need to be multiplied between each other (namely the power
spectrum and the trisepctrum in the NGins,PT terms in Eq. (2.146)), we store them in global arrays
whose life-time covers the computation of the polyspectra of order 2 and 4.

Given that our code analyses the covariance matrix order of correlation by order of correlation, it is very easy or
us to analyse the impact of the different orders of correlations. Once the parallelised computation explained so far
is finished, the vectorD, produced as byproduct, and the covariance matrix are ready to be used for our studies.

Covarianceanalysis Once the covariancematrix has been computed via the steps outlined in the abovepara-
graph, we desire to perform some operations on it. To start with, we will need to invert it in order to compute the
signal-to-noise ratio defined in Eq. (3.1). Further, bearing inmind the idea of identifying possible summary statis-
tics, we are also interested in a principal component analysis (PCA) of the covariance. Given the ill-conditioned
nature of the joint covariance and its remarkable dimension, we will use the high performance library Math Ker-
nel Library (MKL)³ from Intel which does also allow for an automatic parallelization whenever several threads
are available. While the first task is achieved with satisfactory precision via the function dpotrs⁴ based on a
Cholesky decomposition of the matrix, the PCA is more sensitive to round-off errors occurring in the computa-
tion of the smallest eigenvalues. We will see in the next section that these are actually the most important ones
for the definition of summary statistics. At this second level we made use of Intel MKL Extended Eigensolver
dfeast_syev⁵ which guarantees a higher computational precision with the price of searching for eigenvalues in
a specific range. Then, we will simply solve the eigen-problem over ranges of 1 order of magnitude iteratively. We
found this technique being extremely efficient: all the eigenvalues identified are positive as theoretically expected
and as numerically proved by the function dpotrs.

3.2 Analysis of the Information content in theweak lensing observables

Thegreatest achievement of the work presented in this manuscript is the forwardmodelling of remarkably big co-
variancematrices for the cosmological exploitationof the tomographicweak lensing convergencepower spectrum-

³https://software.intel.com/en-us/mkl.
⁴https://software.intel.com/en-us/mkl-developer-reference-fortran-potrs.
⁵https://software.intel.com/en-us/mkl-developer-reference-fortran-extended-eigensolver-routines.

113



bispectrum joint probe. We accomplished this goal via design of an algorithm which will be a key element for fu-
ture galaxy survey heritage. In order to deeply understand the actual benefit in terms of cosmological parameters,
Fisher forecast [Tegmark, 1997], DALI forecast [Sellentin et al., 2014; Sellentin, 2015] or Markov Chain Monte
Carlo (MCMC) analyses are advised: we leave these ambitious steps for future works. We underline that the co-
variance matrix computation is anyway a key step for all the techniques listed above. However, we would like to
have an idea of the information content achievable by analysing the bispectrum on top of the power spectrum and
have insights on the level of correlations between them. For a joint analysis we modify the signal-to-noise (S/N)
ratio expression (3.1) to account for correlations up to a maximum binnedmeasured angular multipole ℓmax. The
S/N as cumulative function of the maximum multipole included can be written as

ˆ

S
N

˙2

D
“

ℓpiq,ℓpjqăℓmax
ÿ

i,j

Di
“

CD‰´1
ij Dj, (3.39)

where we need 1) the vector of observables (3.3) and 2) the associated covariance matrix. Schematically

D “ tP, Bu, (3.40)

CD “
˜

CPP CPB

CPB CBB

¸

. (3.41)

ThematricesCPP,CBB andCPB, are respectively the covariance of the power spectrum (2.99), bispectrum (2.100)
and the cross-covariance between the two (2.101). When interested in accessing the cosmological information
in the single probe, we will simply assumeD “ P (resp. B) and CD “ CPP (resp. CBB). We will exploit the S/N
1) to understand how well the overall parameter space is constrained by our observations up to a given angular
scale ℓmax, 2) to test howmuch the uncertainties of our theoretical model can degrade the information content 3)
to understand the impact of different approximations to the covariance matrices. On top of that we will use this
quantifier 4) to verify the robustness of summary statistics when compared with the most complete analysis.

3.2.1 Power spectrum signal-to-noise ratio

In Fig. 3.2.1 we start our analysis from the simplest case: the power spectrum. We can see that, starting from
a Gaussian covariance not contaminated by shot noise (dashed violet line), the main impact on the maximum
information content is produced by accounting for the shot noise which degrades the S/N on all the scales. This
is expected being a scale-independent contributions to the errors. We then compare the S/N as reconstructed
from different approximations to the covariance, with and without the shot noise. We will follow the notation
introduced in Eq. (2.99) labelling as G, NGins and NGssc respectively the Gaussian, the intra-survey and the
super-survey component of the covariance. In both cases, and with respect to the Gaussian approximation, the
biggest loss of information is induced by the super-sample covariance NGssc. Focusing on the analysis including
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literature. The mean value c̄v pm, zq is given by the following fitting formula [Bullock et al., 2001]

c̄v pm, zq “ K
apzq
ac

, (3.42)

m‹ pacq “ F m, ν pm‹, acq “ 1 (3.43)

where ac is the epoch at which the typical collapsing mass m‹ (defined by ν “ 1) equals a fixed fraction of the
halo mass at the same epoch. The best-fit values for the free parameters F, K are respectively 0.01 and 4.0 for a
ΛCDM Cosmology. In Fig. 3.2.5 (starting from the top), we can see that the vector of power spectra P differs
at maximum by 1% between the two models (first panel). The data vector B is more affected with a peak at 5%
(second panel) for the smallest scale. We recall from Sec. 3.1.1 that the observables in our data vector are ordered
for increasing value of the multipoles used within the configurations. The jagged profile instead corresponds to
different tomographic dispositions of the sources per fixed spatial configuration. In the third row we compare the
power spectrum (left panel) and the bispectrum (right panel) covariance matrix as derived from the two models.
Theydiffer atmaximumby4%and25%, respectively. However, there is no impact at all at the level of reconstructed
S/N: we can see in the bottom panel in Fig. 3.2.5 that the fractional differences between the two models is well
within the numerical precision of our pipeline („1%).

For completeness, we refer to Cooray & Hu [2001] for a similar analysis. In this work, the impact of marginal-
ising over the concentration parameter was performed at the level of three-dimensional, 1-halo power spectrum
and trispectrum. Specifically they found an impact of „ 5% and „ 20% respectively for a distribution p pcv,m, zq
of variance σ ln c “ 0.2.

3.2.5 Principal component analysis

The bispectrum only brings a relatively small improvement of information, mainly due to the effect of the super-
sample covariance. Thus, it seems desirable to simplify our problem and restrict our data vector to themost infor-
mative modes. The principal component analysis (PCA) is a simple way to exhibit which observables, or linear
combination of them, are the most informative. It can be achieved via an eigenvalue decomposition of the n ˆ n
covariance C onto an orthonormal basis of vectors vi“1,...,n

Cij “
ÿ

a

Sai Saj λa. (3.44)

In the above equation, Saj ” va,j and λa is the ath eigenvalue associated to the mode va. Also, we are omitting
the supescrit D: from now on we will apply this method only to the joint covariance implying C “ CD. The
decomposition (3.44) allows to find linear combinations of the original observables in the data vector tDiui“1,...,n
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which defines a new set of uncorrelated observables tD̂iui“1,...,n

D̂i “
ÿ

j

Sij Dj. (3.45)

At this point, the signal-to-noise ratio for each of them will simply be the ratio of the signal and its own error

ˆ

S
N

˙2

a
“ D̂2

a

λa
. (3.46)

In the PCA formalism, the eigenvalue λa is indeed the variance associated to D̂a. From a much more interesting
perspective, we can analyse the information content in the different modes va of the covariance as cumulative
function of the new observables

ˆ

S
N

˙2

c,amax

”
amax
ÿ

a“1

ˆ

S
N

˙2

a
, (3.47)

up to a mode vamax . In the following, we will analyse the cosmological information both as quantified from a sin-
gle mode (Eq. (3.46)) and as cumulative function of a set of eigenmodes (Eq. (3.47)). In this kind of analyses,
the smallest eigenvalues (associated to the most important eigenmodes in terms of information reconstruction)
are potentially affected by numerical errors. Due to the wide dynamics of the observables used for this work, the
covariancematrices have large condition numbers: the eigenvalues span over a range of about 30 orders of magni-
tude and the smallest ones can be affected by numerical errors if a too naive eigenmode decomposition algorithm
is used. For this reason we relied on a specific high performance routine able to search for the eigenvalues (and
associated eigenmodes) in a large dynamical range as described in Sec. 3.1.4.

We present the main results of the PCA analyses we did in Fig. 3.2.6 and in Fig. 3.2.7 where the eigenmodes
va are ordered respectively by increasing value of their variance λa and decreasing information content S{Na. The
analyses have been applied on the full joint covariance, including super-sample contributions and all the multi-
halo configurations for the bispectrum vector. In the first row of both figures, we display the reconstruction of
the signal-to-noise ratio as cumulative function of the eigenmodes included in the covariance. In the second row
of both figures instead, we show the information content per eigenmode S{Na. We refer to the corresponding
captions for more details. From a parallel study of Fig. 3.2.6 and Fig. 3.2.7 we can investigate the possibility of
further reducing the dimensionality of our analysis while preserving the maximum information content. These
figures ought to be analysed in the light of Fig.3.2.8 where we show the ratio between the (original) observables
and their standard deviations (for a 2 bin tomography, for simplicity). In particular, Fig.3.2.8 would represent the
information content of our observables if they were not correlated. Even though it does not provide a reliable
insight on the strength of ourmeasurements in the regimewe are exploring, it can still help in understanding what
are the configurations expected to be more (less) informative. Also, it helps in giving a physical understanding to
the results of the PCA analyses.
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tests in the literature were performed on thismatter for the observables and the scales of interests. However, given
the dynamics of the spectra in Fig. 3.1.2 (left panel) we advise further tests of this assumption, especially for high
ℓ. On the other hand, the high number of configurations required for our analysesmakes the full integrations over
the bins width unfeasible given the computational resources at our disposal. Still at the level of covariance matrix
we approximated all the polyspectra with their 1-halo component (starting from the 3-point one). Once again,
we are not aware of any studies on the impact of neglecting these higher halo terms. Given our discussion at the
beginning of Sec. 3.1.3, we do not expect them to be important for cosmological analyses even though they may
have a role on regularising the covariance matrix reducing errors at the inversion. Finally, in the computation of
the super-sample covariance (2.228), we are again assuming the joint flat-sky Limber approximation for both the
intra- and super-surveymodes. At the power spectrum level, Barreira et al. [2018] analysed the impact of these ap-
proximations against a full spherical analysis of the super-survey modes. For Euclid- and LSST-like tomographies
and at the power spectrum covariance level, they report that for surveys covering less than „ 5% of the sky the
two results agree to better than 1%. However, when moving to the expected realistic coverage of fsky « 0.3−0.4
the use of the flat-sky expressions results in an underestimation of the SSC contribution of about 10%. Again, this
performance has to be considered satisfactory for the present work given that the precision bottleneck is mainly
given by the accuracy of the matter clustering model.

3.3.2 Comparison with similar works in the literature

We compare the analysis performed in this chapter with similar works in the literature. The impact of the correla-
tions between observed and super-samplemodes has already been addressed in the literature. Specifically, Kayo&
Takada [2013] performed a preliminary study on the information content of the weak lensing bispectrum, which
was further developed in Kayo et al. [2013] where 3 tomographic bins where considered for cosmological param-
eter forecast. However, they included the super-sample correlations at very small scales. These terms are known in
the literature as halo sample variance and they contribute to the correlations when all the points in a given config-
uration are inside the same halo. Formally, the halo sample variance is just a part of the components we obtained
via the response approach described in Sec. 2.3.2. In particular they corresponds to the last terms in Eq. (3.28) and
Eq. (3.29) which are the responses of the 1-halo term to the long mode δb. In a different study, Barreira [2019]
accounts for the super-sample covariance in the PT response formalism by making different approximations. In
particular, he considers only correlations between bispectra on squeezed configurations. This approximation re-
sults in a negligible impact on the signal-to-noise ratiowhen adding the super-sample covariance. Our study shows
that this is not the case when all the triangular configurations are included in the analysis.

3.3.3 Not only the bispectrum

Besides the bispectrum, different techniques have been advocated in order to recover the cosmological informa-
tion not accessible via the 2-point statistics of the weak lensing field. In the following paragraph, we would like to
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propose a summary of the most current alternatives approaches in the literature.

Minkowski functionals This approach proposes to study the morphological properties of a thresholded n-
dimensional scalar field (e.g. for the convergence field n “ 2). The Minkowski functionals are n ` 1 functions of
the threshold ν which provide full description of the morphological properties of the field [Mecke et al., 1994].
For the weak lensing convergence field, the full characterisation is then given by 3 Minkowski functionals. They
are respectively related to 1) the total area of the domain supporting the field above the threshold, to 2) the total
circumference of these regions and to 3) the Euler characteristic of the field. Minkowski functionals have been
shown to be sensitive to the underlying Cosmology and can be exploited to constrain cosmological parameters
(Matsubara [2000]; Matsubara & Jain [2001]; Sato et al. [2001]; Guimarães [2002]; Kratochvil et al. [2012];
Munshi et al. [2012]; Petri et al. [2015]; Liu & Madhavacheril [2019]). For the weak lensing convergence, they
have been study first by Sato et al. [2001] using the signal as measured from ray-tracing simulations in the weakly
non-linear regime. Sato et al. [2001] showed that the accuracy of the Ωm inference can be improved by „20%
when using the Minkowski functionals with respect to other conventional methods, like direct measurements of
the convergence skewness. Kratochvil et al. [2012] analysed the information content of the 3 Minkowski func-
tionals (both jointly and separatly) in comparison with the power spectrum. Tomographic binning of the sources
and different smoothing scales were considered. Interestingly, Minkowsky functionals already recover all of the
information carried by the power spectrum which does not improve the constraints any further when added on
top of the formers. In particular the results were reported in terms of the 1σ contours of the marginal posteriors
for the parameters (Ωm, w, σ8). We finally point the reader to the recent paper from Petri et al. [2015] where
MCMCanalyses were performed on the publicly available data from the 154 deg2 CFHTLenS survey [VanWaer-
beke et al., 2013]. The data vector considered in this analysis were formed by moments of the convergence field
(up to fourth order: two quadratic, three cubic and four quartic), Minkowski functionals and power spectrum.
As results from the cited work, the Minkowski functionals’ constraints on the doublet (Ωm, σ8) are incompati-
ble with cosmic microwave background anisotropies measurements [Hinshaw et al., 2013; Planck Collaboration,
2014] while the moments’ constraints do not show such tension. We may therefore think that systematics are
sill present in the modelling of Minkowski functional descriptors. As far as the dark energy equation of state is
concerned, the considered data set is insufficient to constrain w to a reasonable precision with any of the probes.

Peak statistics This probe aims at constraining cosmological parameters via the analysis of the statistical dis-
tribution of peaks in the two-dimensional convergence field. Potentially, such peaks are motivated by the projec-
tion of single, discrete, massive collapsed object in the foreground and altogether these objects are tracers of the
underlying matter field. In turn, their statistical distribution is determined by the corresponding mass function
which can be either calibrated in simulations or derived from first principles. In both cases, the mass function has
a strong dependence on the underlying Cosmology which can then be probed via the detection of the aforemen-
tioned peaks. Clearly, the possibility of one-to-one relation between peaks and underlying objects is idealistic:
high peaks in the convergence can be induced by aligned structureswhile lowpeaksmaybe due to the lensing from
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a given object being compensated by an under-dense region in the foreground. The possibility to probe cosmol-
ogy at non-linear scales via peak counts is therefore a complex subject and its potential as complementary probe to
the power spectrum led to several studies over the past years (e.g. Marian et al. [2009];Maturi et al. [2010]; Diet-
rich &Hartlap [2010]; Kratochvil et al. [2010]; Yang et al. [2011]; Marian et al. [2013]; Lin & Kilbinger [2015];
Liu et al. [2015]; Lin & Kilbinger [2018]). We only discuss in the following a few interesting works. Dietrich
& Hartlap [2010] inspected the constraining power of peak statistics by looking at the S/N of the tomographic
aperture mass field [Schneider, 1996] as measured from ray-tracing simulations. Interestingly, this novel probe
is shown to provide tighter constraints on the doublet (Ωm, σ8) than standard tomographic shear measurements
(2-point correlation function). Respectively the two approaches lead to FoM for (Ωm, σ8) of 123 and 71. The
joint analysis allows to increase the FoM by „40% when compared to the cosmic-shear tomography alone. Sub-
sequently, Yang et al. [2011] usedN-body simulations to also analyse the relation between the height of the peaks
in the convergence field and the number of background halos. High peaks, with amplitude Á 3.5 κ{σκ (σκ being
the r.m.s. of the convergence field κ), turn out to be dominated by a single massive halo while medium-height
peaks („ 0.5 ´ 1.5 κ{σκ) cannot be attributed to a single collapsed one. Cosmological analyses are mainly driven
by the statistical distribution of the formers. In terms of forecast of cosmological parameters considered (Ωm, σ8,
w), the joint analysis peak statistics-power spectrum (where 2 possible redshift are considered for the sources, i.e.
zs “ 1 and zs “ 2) allows to reduce the 1σ constraints by, overall, a factor of „3 compared to the power spec-
trum alone (we are in particular comparing here the 4th and the 7th rows - from the top - in Table XIV form the
original paper [Yang et al., 2011]). Finally, Liu et al. [2015] explored the constraining power of peak statistics on
the publicly available data from the 154 deg2 CFHTLenS survey [VanWaerbeke et al., 2013] performingMCMC
analyses on the usual three-dimensional parameters space pΩm, σ8,wq and using as data vector the histogram of
the peaks as function of the height of the convergence field and the convergence power spectrum (jointly and
separately). Liu et al. [2015] found that constraints from peak counts are comparable to those from the power
spectrum and somewhat tighter when different smoothing scales are combined. When the power spectrum and
peak counts are combined, the parameter constraints are improved by an overall factor of „2 when compared to
the power spectrum alone.

Machine Learning techniques Machine Learning saw a dramatic growth in terms of exploitation within
cosmological and astronomical applications over the last years, especially under the forms of its specific declina-
tion into Neural Networks (NNs) (e.g. Lochner et al. [2016]; Möller et al. [2016]; Charnock & Moss [2017];
Ravanbakhsh et al. [2017]; Fluri et al. [2018]; Lanusse et al. [2018]; Charnock et al. [2018]; Gupta et al. [2018];
Perraudin et al. [2019]; Mustafa et al. [2019]; Ribli et al. [2019]; Kodi Ramanah et al. [2019]; He et al. [2019]).
This was mainly motivated by the perfect match between supply and demand. From one side, we are entering the
big data era for Cosmologywith the up-coming launches ofmodern galaxy surveys such asDES [Flaugher, 2005],
the Hyper SuprimeCam Survey (HSC, Aihara et al. [2018]), the Large Synoptic Survey Telescope (LSST, Ivezić
et al. [2019]) andEuclid [Laureijs et al., 2011;Amendola et al., 2013]. On the other hand, the recent technological
developments have been making GPUs affordable for the scientific community and NNs can provide short-cuts
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to the complex non-linear physics involved in LSS formation. We list here few recent works concerning the ap-
plication of these novel techniques to weak lensing data sets. Gupta et al. [2018] inspected the performance of
Convolutional Neural Networks (CNN) (the employed architecture is described in Sec. 2 of the original paper)
in constraining the cosmological parameters (Ωm, σ8) from noiseless ray-tracing simulations. Their final claim is
thatCNNsoutperform the power spectrumby a factor of„5 andpeak counts by a factor of„4 in termsof FoM for
the 2 parameters above. The (Gaussian) posterior analyses from the CNN were performed using as observables
within the data vector the cosmological parameters (ΩmrΩ̄ms, σ8rσ̄8s) as estimated from the CNN from maps
sharing the same underlying Cosmology pΩ̄m, σ̄8q. Ribli et al. [2019], similarly to Fluri et al. [2018] however
without the Limber approximation, applied CNNs on noisy simulated maps. An error analysis similar to the one
described above (but with a varying covariance in theMCMC sampler) allowed them to show that theCNN they
employed (claimed to be more accurate than the one in Gupta et al. [2018]) produces constraints one the cos-
mological parameters pΩm, σ8q which are „8 and „13 times smaller than those obtained from peak counts and
power spectrum analyses, in terms of 1σ area. When the shape noise is included, the improvements is respectively
of a factor of „ 1.05 ´ 1.42 and „ 2.4 ´ 2.8 for a Euclid-like survey (ntot « 30 gal arcmin´2). Interestingly, in
Appendix C of Fluri et al. [2018] the authors tested the architecture on amodel excluded from the training set re-
sulting in a negligible impact at the level of confidence regions. Finally, and for completeness, wewould like to cite
the work ofMustafa et al. [2019] where, while not focusing on cosmological parameter estimation, an application
of Generative Adversarial Networks is proposed for a fast production of weak lensing convergence maps which
result being characterised by the same summary statistics as the fully simulated maps. This is of major interest
given our discussion in Sec. 2.2.1 where we underlined the computational challenge required by standardN-body
simulations whenever used for the computation of highly dimensional covariance matrices.

Given the high performance of the novel probes described in the previous paragraphs, we wonder if the bispec-
trum can still represent aworthy tool for cosmological analyses. We remind that one of ourmost important results
is that the bispectrum allows us to enhance the maximum achievable S/N by 10% when compared to the power
spectrum alone. We can clearly see that, in terms of cosmological parameter forecasts, especially peak counts and
machine learning-related techniques have the potential to outperform the bispectrum. However we are strongly
convinced that the present status of the art does not rule out the bispectrum as meaningful cosmological probe.
First of all, the analyses performed in this thesis are substantially related to the S/N. It is not possible to predict
yet how different cosmological parameters will be constrained once a full MCMC will be run. The work from
Petri et al. [2015] also showed the potential presence of systematics in themodelling of theMinkowski functional
descriptors. Secondly, thanks to the tomographic analysis we are capable to access a time-dependent information
which is paramount in order to constraint dark energy equation of state parametrizations. With this regards, anal-
yses performed on the publicly available data from the 154 deg2 CFHTLenS survey led to poor constraints on w
both when exploiting peak counts andMinkowski functionals. Also, we are not aware of any published work tack-
ling the forecast of time-dependent dark energy equation of state with NNs. Finally, all the probes listed in this
last section are strongly dependent on cosmological simulations being our theoretical understanding of them still
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not sufficient for the required forecast precision. Therefore, all the issues highlighted in Sec. 2.2.1 contaminate the
present applicability of these techniques for unbiased cosmological parameter forecasts. Moreover, peak counts
strongly depend on pixel-size measurements making this probe extremely dependent on the specific characteris-
tics of a given simulation or on the detection properties of a realistic survey.

The bispectrum, in particular if estimated via analytical forward modelling, is still a competitive probe. As a
matter of fact it allows us tomodel and have a full physical understanding of its covariance and signal without rely-
ing on simulations. In particular, they eventually miss important super-sample correlations and can be extremely
costly whenever we want to meet the precision requirements from the upcoming generation of galaxy surveys.

3.3.4 Conclusions

In this chapter, we have presented the first full joint analysis of the information content for the convergence weak
lensingpower spectrumandbispectrum for aEuclid-like survey. Wemodelled theobservableswith thehalomodel
and developed a high performance code capable to output fast and precise covariance matrices for the binned
tomographic spectra. The covariance matrices calculated for the present work have been used for the signal-to-
noise ratio analysis, but can benefit any forecast based on a Gaussian likelihood. We remind that the content of
this chapter has been previously presented in Rizzato et al. [2018] (submitted to the Monthly Notices of the Royal
Astronomical Society).

At the power spectrum level and including shot noise, we were capable to show that the super-sample covari-
ance is the main source of error, leading to a reduction of 40% of the maximum achievable signal-to-noise ratio
compared to the Gaussian case. The non-Gaussian cross-correlations between in-survey modes account for a loss
of information of about 30% instead when compared to the Gaussian case. The combined effect of these two
sources of error leads to a loss of about 45% on the signal-to-noise ratio. An important result of our analysis is
the possibility to recover the cosmological information content of a Euclid-like survey by using 5 equipopulated
tomographic redshift bins, instead of 10. This results is in particular insensitive to the angular scale and to the com-
ponents included in the error budget of the observables and does not account for systematics like PSF, photo-z,
blendingor intrinsic alignments. The samephenomenologywas found at the bispectrum level. On thebispectrum
signal-to-noise ratio the super-sample covariance has an impact of about „13% (10 bin tomography) when the
observables have been estimated via all themulti-halo configurations. We tested the impact of these configurations
in the modelling of the vector of bispectra and we found that neglecting the 3-halo terms is a good approximation
for our analysis, both when including or excluding the super-sample covariance.

Motivated by our previous findings, we performed a joint power spectrum-bispectrum analysis on 5 equipop-
ulated tomographic redshift bins. We proved that this combined approach can improve the information content
by „10% with respect to the power spectrum alone. The super-sample covariance of the bispectrum cannot be
ignored and reduces the maximum information achievable of about „25%. In these analysis the 2- and 3-halo
terms have been taken into account for the bispectra in the vector, but we restricted the computation of the co-
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variance to the 1-halo terms which dominates the covariance for the most relevant configurations. These are the
most important results of this work.

We found that the halo modelling uncertainty due to the scatter of the concentration parameter in the simu-
lations does not affect the signal-to-noise ratio of the power spectrum by more than 1%. This makes our future
forecasts robust to errors on this parameter.

In this work, a preliminary study on the possibility of further compressing our covariance matrices while pre-
serving the cosmological information is considered. In particular, by performing a principal component analysis
on our covariance matrices, we found that a very small fraction of the eigenmodes (À 10% for 5 bin tomogra-
phy) carries most of the information, and that not all the configurations equally contribute to the full information
content. Indeed, only 20% of the data vector is included in the linear combinations that forms this 10% of eigen-
modes, and thus a large fraction of the vector of the observables („ 80% for 5 bin tomography) is not significant
to reconstruct the signal-to-noise ratio at the different scales considered in this work.
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Conclusions and perspectives

The main subject of this thesis was the development of precise and fast numerical tools ready to be employed in
the analysis of key aspects involved in cosmological parameter forecasts from future weak lensing surveys. The
computation of remarkably big covariance matrices is a key step in all Gaussian-based forecast techniques. This
is in particular true both when performing analytical approximations (Fisher approximation) and when sampling
the parameter space (Monte Carlo Markov Chain methods). In this thesis and in the associated paper [Rizzato
et al., 2018], we tackled this challenging numerical task in the case of the weak lensing convergence field whose
formalism has been described in Sec. 2.1. In Sec. 2.2.1, we argued that data-driven approximations to the covari-
ances may not be suitable for future surveys being unable to describe the super-survey correlations. Therefore,
we opted for the forward modelling of them. While providing an analytical approximation to the covariance, this
approach can be extremely costly, especially when combining 2- and 3-point statistics. In weak lensing studies,
like the one here proposed, this complexity is exacerbated when accounting for the tomographic distribution of
the sources. We developed a high performance code that allows a highly parallelised computation of the covari-
ance matrices for the weak lensing convergence power spectrum-bispectrum joint probe, assuming a Euclid-like
photometry. While we deferred a precise parameter forecast for up-coming works, still we used the covariance
matrices producedwith our algorithm to have insights one the level of correlations within our data vector. We em-
ployed and studied the signal-to-noise ratio as definition of the information content in the probes and we made
use of the principal component analysis to explore possibilities for data compression. The results of our work have
been summarised in Sec. 3.3.

Starting form the results presented in thismanuscript, several possible research paths are open. We collect them
in four possible groups whose overall focus is the refinement and advanced cosmological applications of different
key aspects of the tools here developed. Altogether, they have to be considered while getting ready for the devel-
opment of likelihood codes for modern galaxy surveys. From a more general perspective, this last achievement
has to be considered as the long term goal at which this work is aiming at.

Implementation of galaxy clustering. So far, the main object of our study has been the cosmological
weak lensing signal. However, parameter forecasts can improve a lot if weak lensing is properly combined with
galaxy clustering, as it is actually the scientific program of missions like Euclid and WFIRST. While the for-
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malism required is quite different, still the cosmological exploitation of the galaxy clustering probe (up to the
3-point statistics) implies numerical challenges very similar to those tackled within this manuscript. The statisti-
cal isotropy being broken in redshift space, galaxy clustering bispectra will not depend solely on the length of the
edges for a desired triangular configuration, but they will also depend on its orientation with respect to a chosen
line-of-sight. The main consequence is an easily diverging complexity of the data vector and of the related corre-
lations [Yankelevich & Porciani, 2019]. The core part of the code developed being a fast and precise evaluation
of remarkably big covariance matrices, we will be in the position to implement galaxy clustering observables and
related errors without increasing the complexity of the computation. Therefore, we consider the analysis of the
joint weak lensing-galaxy clustering probe as a milestone for the scientific program started with the present work.

Covariance matrices compression The matter non-linear clustering induces correlations between differ-
ent cosmological scales and probes. Weused the principal component analysis (PCA) to determinewhich subsets
of the observables, or linear combinations of them, are the most informative. While an overwhelming amount of
datawill be producedover the next decade, PCAallowedus to prove thatwe can reduce the computational burden
involving the weak lensing bispectrum via the compression of the covariance matrix. In this thesis we have quali-
tatively identified three possible levels of dimensionality reduction: re-binning of the sources, PCA of the whole
covariancematrix, exclusion of the least informative observables. Starting fromhere, we advise to exactly test their
performance by looking at the actual amount of recovered information from the progressively reduced data vector.
Beside the possibilities here explored, it will be extremely interesting to push the study of summary statistics for
future galaxy surveys even further via the implementation of some existing approaches which so far have not been
applied in this specific context (cosmic shear full nulling [Bernardeau et al., 2014], Komatsu-Spergel-Wandelt
(KSW) estimator [Komatsu et al., 2005], skew-Cl approach [Munshi & Heavens, 2010], modal bispectrum [Fer-
gusson et al., 2012], binned bispectrum [Bucher et al., 2010]) and the design of new ones.

Test of the approximations In this exploratory work we considered different approximations and they are
summarised in the conclusions to Chapter 3. Not expecting major impacts on the final signal-to-noise ratio anal-
yses, we employed them to reduce the computational burden associated to the forward modelling of covariance
matrices, extremely challenging task by itself. However, bearing in mind the more valuable task of realistic likeli-
hood implementations, the errors on the observables have to be refined exploring the validity range of the results
we obtained. At the level of systematics, we expect photometric errors to enhance the cross-correlations between
different tomographic redshift bins, potentially reducing the information content. Secondly, we will also need
to account for intrinsic alignments, sources of correlations between galaxy shapes which are not caused by lens-
ing from matter large-scale structures. One has to model all these effect not to bias the cosmological analyses
for modern galaxy surveys. Also, they can potentially alter the efficiency of the compression techniques listed in
the previous paragraph. At the level of covariance matrix, while the Limber and the flat-sky approximations are
well motivated at the scales of interest, the assumption of slowly varying polyspectra within the multipole bins
appears to be quite conservative. On the other hand, the level of complexity entailed by eventually relaxing this
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assumption would be unsuitable for forecast analyses like those we presented. In this sense, the data compression
techniques mentioned above will play a key role in reducing as much as possible the complexity of the data vector
allowing a much easier test of these assumptions. Finally, we advise to study and account for the effect of sources
of secondary non-Gaussianities which are not related to the matter clustering itself, namely the Born approxi-
mation, neglecting lens-lens coupling or using the reduced shear instead of the shear itself can lead to secondary
contributions to higher order correlations.

Cosmological parameter forecast Summary statistics and tests of approximations are important steps to-
wards the major goal of a precise cosmological parameter forecast. The signal-to-noise ratio analysis just provides
an overall idea of the strength of our signal compared to the level of correlations. Further, to exactly understand
the improvement in terms of error bars for the single parameters, a full posterior exploration is required. Fisher
forecast and Markov Chain Monte Carlo (MCMC) methods are the most popular methods employed by the
community. The former is computationally less expensive compared to the latter and it can eventually be used to
get a fast feedback on the performance of the different actions we can take on the data vector and on the covari-
ance (relaxation of approximations and data compression). However it relies on the assumption of a multivariate
Gaussian posterior for the cosmological parameters and on the possibility to precisely compute the numerical
derivatives of the observables with respect to the cosmological parameters themselves. Both these assumptions
are rarely verified in real world applications. For example, the first is poorly realised whenever wewant tomeasure
parameters for the first time and the data are not expected to be extremely constraining. In this case posteriors will
not be sharply peaked around the best fit value, around which a Guassian approximation could eventually work.
The validity of the second approximation is hindered by our ignorance on the exact physical description of the
matter non-linear clustering: polyspectra are well fitted by models available on the market but their derivatives
are poorly reproduced [Reimberg et al., 2018]. MCMC methods instead allow deviations from this ideal situ-
ation but with the price of generating the vector of observables (and eventually the covariance matrix) at every
point in parameter space. In this sense, we consider dimensionality reduction crucial for a precise forecast within
up-coming galaxy surveys communities. While wewill employ Fisher based analyses to access the performance of
approximations anddimensionality reduction, a full posterior exploration is required to obtain quantitative results
on the constraining power of our probes.

A possible alternative to be considered in parallel toMCMC analyses is represented by the recently introduced
forecasting techniqueDerivative Approximation for LIkelihoods (DALI) [Sellentin et al., 2014]. It allows to approx-
imate non-Gaussian posteriors with a positive definite and normalizable analytical expression. More specifically,
the complex non-Gaussian features of the posterior are captured by a derivative expansion around its peak, sum-
marising this information via tensors of given symmetries. Being an analytical approach, it inherits all the valuable
aspects of a Fisher-like analysis. The formalism has been proved extremely flexible in reproducing strong corre-
lations in parameter space. We are presently testing its actual capacity at approximating realistic posteriors. In
case of great performance, we will capable to extend analytical studies like the one described in this manuscript to
the tensors required by the DALI expansion. Indeed, the have to be thought as a new kind of summary statistics
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beyond the simple covariance matrix or the theory vector (expectation value of the observables). At a more ma-
ture level of development for theDALI formalism, we will compare its forecasts with those coming from an actual
MCMC for the joint power spectrum-bispectrum probe. Wewill apply this study to both weak lensing and galaxy
clustering. In case of successful test, we may think to include the analytically-derived DALI tensors mentioned
above as part of future likelihood codes for up-coming galaxy surveys, marking a turning point for cosmological
data pipelines.
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