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Les ondes de choc relativistes et sans collisions jouent un rôle majeur dans la physique des objets astrophysiques extrêmes, tels que les sursauts gamma, les blazars ou les nébuleuses de vent de pulsar, au sein desquels elles contribuent à la production de distributions non thermiques de particules et rayonnement. Ces ondes de choc résultent de l'interaction, par l'entremise d'une turbulence électromagnétique engendrée par des micro-instabilités, entre un faisceau de particules accélérées par processus de Fermi et le plasma ambiant. La modélisation de leur dynamique constitue un problème complexe, dont le traitement requiert de combiner analyse théorique et simulations numériques de type particle-in-cell (PIC).

Après un résumé des concepts et des outils numériques nécessaires à la modélisation du problème, nous étudions l'évolution non-linéaire de l'instabilité de lamentation de courant qui domine la physique du précurseur de tels chocs. Dans un second temps, nous développons un modèle complet de la micro-physique de ces chocs, basé sur la dénition d'un référentiel privilégié dans lequel la turbulence est quasi magnétostatique.

Ce référentiel nous permet de caractériser le chauage et le ralentissement du plasma de fond ainsi que la dynamique du faisceau. Pour terminer, nous explorons l'eet d'un éjecta neutronique sur l'évolution du choc avant dans un sursaut gamma. Pour chaque étude, nos prédictions théoriques sont étayées par des simulations PIC de haute résolution.
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Introduction

On shock waves in astrophysics From a uid viewpoint, a shock wave stems from the nonlinear response of the ambient medium to a disturbance of supersonic nature i.e. that propagates faster than the local speed of sound v s . As the medium is unable to respond linearly to the compressive disturbance, the shock wave appears as a surface, or front, separating two media with vastly dierent physical conditions. Across this surface, pressures, densities and temperatures change abruptly, but of course, still satisfy mass, energy and momentum ux conservation.

The interpenetration of counterpropagative plasmas moving with opposite supersonic velocities may thus generate two shocks propagating in the unshocked plasmas. Such a uid picture of a two-shock system is presented in Fig. 1, as seen in the reference frame in which the downstream (shocked) plasma lies at rest (hereafter downstream frame). Assuming a denser ejecta propagating into a more dilute external medium, a contact discontinuity segregates the shocked ejecta (2) from the shocked external medium [START_REF] Abbott | Multi-messenger observations of a binary neutron star merger[END_REF]. At the contact discontinuity, the system is at pressure equilibrium. On both sides of this discontinuity, the reverse (resp. forward) shock propagates in the unshocked ejecta (resp. external medium) at speeds that are specied by the shock jump conditions.

If the medium is initially magnetized, meaning that the ambient plasma is embedded in an external magnetic eld B, the hydrodynamic description should be replaced by magnetohydrodynamic theory. The maximum speed for the linear propagation of a compressive disturbance is then determined by the phase velocities of the three types of modes supported by the system, i.e., fast magnetosonic (β fast ), Alfvén (β A ) and slow magnetosonic (β slow ) modes, which follow the hierarchy β fast ≥ β A ≥ β slow . Depending on the velocity of the compressive perturbation with respect to the fast or slow modes, the nonlinear response of the system propagates fast or slow-mode shocks that are respectively associated with an increase or a decrease in the magnetic eld strength across the shock front. For ducial values of the interstellar density (n ∼ 1 cm -3 ) and magnetic eld (B ∼ 1 µG), the Alfvén speed is of the order of v A ∼ 2 km/s, while for Figure 1: Schematic hydrodynamic view of the two-shock structure in the contact discontinuity rest frame. The central engine is supposed to be on the left and to eject some unshocked material [START_REF] Chen | Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock[END_REF], which gets shocked (2) at the reverse shock. The external medium ( 4) is heated by the forward shock leading to [START_REF] Abbott | Multi-messenger observations of a binary neutron star merger[END_REF], in pressure equilibrium at the contact discontinuity with [START_REF] Abbott | Observation of gravitational waves from a binary neutron star inspiral[END_REF]. a neutral HI region at 100 K, the isothermal sound speed is v s ∼ 1 km/s. By contrast, molecular clouds have typical relative velocities of a few km/s, the solar wind propagates at hundreds of km/s, and supernova remnants expand at velocities of the order of a few thousands of km/s. It is thus manifest that shock waves are inherent to most of the astrophysical environments.

On macroscopic scales, the shock dynamics is described by these relatively simple hydrodynamic or magnetohydrodynamic models. These scales are comparable with the typical size of the astrophysical object considered. On microscopic scales that resolve the discontinuity as a smooth transition, however, the physics and the structure of the shock wave are much more intricate. As an example, Fig. 2 displays the time dynamics of the microscopic shock structure measured at the Earth's bow shock by MMS4 [START_REF] Chen | Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock[END_REF].

Shock formation is seen to occur at a time of ight of the instrument corresponding to t ∼ 46 s but it is preceded by changes in the measured quantities, which correspond the mean free path of the ions between successive Coulomb collisions is of the order of ∼ 10 10 cm, which is one order of magnitude larger than the length scale of the shock precursor. Consequently, the shock transition is not mediated by Coulomb collisions, but, rather, by an electromagnetic microturbulence which is seen to grow in the shock precursor along with the plasma uid quantities, and to cause the particle scattering needed to generate the shock. Such electromagnetic uctuations generally develop at scales close to the plasma skin depth. The shock is then called collisionless, in contrast with the collisional (hydrodynamic) shock waves commonly encountered in terrestrial (dense) environments, so as to emphasize that it results from wave-particle interactions instead of binary Coulomb collisions.

The general picture of such structures can be summarized as follows: the interaction of particles reected or accelerated at the shock front with the unshocked plasma excites electromagnetic instabilities that generate the microturbulence; the particles of the plasma then scatter in this turbulence, causing the plasma to progressively heat up and slow down; part of these particles are energized and sent back into the precursor, thus exerting a positive feedback on the microturbulence generation.

In high-energy astrophysics, such collisionless shock waves are known to be ecient particle accelerators, converting thermal distributions into nonthermal ones. Their associated radiative, leptonic and baryonic spectra are commonly considered as black boxes in global models of high-energy astrophysical objects such as supernova remnants, γ-ray bursts, blazars, pulsar wind nebulae, etc., and so there is a critical need to shed light on the microphysics underpinning these models. This need appears all the more pressing in the context of the emerging multimessenger approach, which makes it mandatory to develop a comprehensive theoretical description of the above events.

A major recent example is the radiative counterpart of the gravitational wave source GW170817 [START_REF] Abbott | Observation of gravitational waves from a binary neutron star inspiral[END_REF][START_REF] Abbott | Multi-messenger observations of a binary neutron star merger[END_REF]. Another one is the detection of neutrinos by the IceCube experiment in coincidence with a blazar gamma-ray are measured by the NASA's Fermi Gammaray Space Telescope [START_REF] Aartsen | Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert[END_REF].

Astrophysical collisionless shocks cover a large variety of physical conditions, as illustrated by Fig. 3 in the (u sh , u 2 A /u 2 sh ) plane. Here, u sh = β sh / 1 -β 2 sh is the relativistic 4-speed of the shock (as measured relatively to the unshocked plasma) and u 2 A /v 2 sh mea- sures the magnitude of the ambient B-eld, with β A = v A /c = B 2 /4π(w + B 2 /4π) being the Alfvén speed, where w is the proper enthalpy density of the unshocked plasma.

In this general landscape, an interesting example is the supernova remnant located at (u sh , u 2 A /v 2 sh ) (10 -2 , 10 -5 ), represented by a composite (in X-ray, infrared and optical domains) image of SN1572. The high-energy emission of this object, detected in the 0.4-100 GeV [START_REF] Acciari | Discovery of TeV 221 Gamma-ray Emission from Tycho's Supernova Remnant[END_REF] and 1-10 TeV [START_REF] Giordano | Fermi Large Area Telescope Detection of the Young Supernova Remnant Tycho[END_REF] ranges has been ascribed to charged particles accelerated at the shock front.

When the relative speed between the shock and the ambient medium is close to the speed of light, the shock is named relativistic, meaning that the Lorentz factor of the precursor at dierent times and electronic temperatures shown in (c). Adapted from [START_REF] Chen | Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock[END_REF].

far upstream plasma in the shock frame

γ sh = 1 1 -β 2 sh 1 . (1) 
In this manuscript, we make use of the following conventions and denitions. Indexes u , d , s refer, respectively, to the upstream, downstream medium and shock front, and 

where w is the proper enthalpy density of the unshocked plasma. In the presence of an external magnetic eld B, it is customary to dene the magnetization level of the shock as

σ = B 2 |s 4πγ 2 u|s w , (3) 
which allows for a comparison with the microturbulence level.

On the laboratory side, progress in high-power laser systems now makes it possible to probe some aspects of the physics of collisionless shocks [START_REF] Drake | Design considerations for unmagnetized collisionlessshock measurements in homologous ows[END_REF]. Most notably, recent advances in this rapidly developing laboratory astrophysics eld have resulted in the triggering and characterization of the current lamentation instability hold responsible for mediating shock formation in unmagnetized plasmas through the interpenetration of relatively fast (∼ 1000 km/s), counterpropagative ows. Figure 4 shows the setup of probed with proton radiography. Taken from [START_REF] Huntington | Observation of magnetic eld generation via the Weibel instability in interpenetrating plasma ows[END_REF].

such an experiment, conducted at the OMEGA facility [START_REF] Huntington | Observation of magnetic eld generation via the Weibel instability in interpenetrating plasma ows[END_REF]. The counterstreaming ows were generated by ablating a pair plastic foils using 4 kJ energy, ∼ 1 ns duration laser pulses. The overlap region was probed by a proton beam produced by laser implosion of a thin-walled capsule containing a deuterium and helium-3 mixture. A representative proton radiograph visualizing the buildup of the magnetic laments is shown on the right of Fig. 4.

elds. The nonlinear evolution of these current laments is a topic of prime interest in space and laboratory plasma physics. We thus investigate the stability of a stationary periodic chain of current laments formed in counterstreaming plasmas, which provides a reasonable description of a CFI-unstable plasma in its nonlinear stage. We make use of a relativistic four-uid model and apply the mathematical Floquet theory of periodic systems to compute the two-dimensional unstable eigenmodes of the spatially periodic system. We examine three dierent cases, characterized by various levels of nonlinearity and asymmetry between the plasma streams. Our theoretical predictions are found in good agreement with particle-in-cell simulations.

Chapter 5 We develop a comprehensive theoretical model of relativistic collisionless pair shocks mediated by the current lamentation instability. We concentrate on the interplay between the self-generated electromagnetic turbulence and the unshocked plasma in the precursor of the shock. We place particular emphasis on the novel notion of a Weibel reference frame in which the turbulent elds are of a mostly magnetic nature. We derive an analytical model describing the diusion of the background plasma particles in this frame and, using a Monte Carlo solver, we model its heating and slowing down along the shock precursor. We also provide a description of the physics of the scattering of the accelerated particles in the microturbulence. Finally, we show that our theoretical predictions are corroborated by state-of-the-art particle-in-cell simulations run over unprecedentedly large spatiotemporal scales.

Chapter 6 We present the preliminary results of an ongoing study of the microphysics of so-called neutron-loaded γ-ray burst afterglows. In such events, the forward shock launched by the relativistic jet, which accounts for the afterglow phenomenon, is preceded by a neutron shell that injects energy in the shock precursor as the neutrons decay. By means of particle-in-cell simulations and of a hydrodynamical model, we

show how the injection of protons resulting from the decay of the neutron shell aects the shock dynamics up to a critical regime, and we characterize its inuence on particle acceleration.

Chapter1

Relativistic shocks in astrophysics Relativistic shock waves were still regarded as somewhat exotic 40 years ago [START_REF] Kennel | Magnetohydrodynamic model of Crab nebula radiation[END_REF], but the advent of high-energy observations (in the X-ray and γ-ray ranges) has demonstrated that the production of relativistic outows is inherent to a large class of astrophysical sources. The existence of relativistic outows is accredited by observational evidence such as the fast time variability of the gamma-ray emission in AGNs, and the apparent superluminal motion in radio galaxies and blazars. These outows are believed to generate shock waves propagating at relativistic velocities in which particle acceleration processes may account for the observed production of nonthermal photon spectra through, e.g., synchrotron and inverse Compton processes. Understanding the processes that underpin the dynamics of such outows therefore stands as a critical issue in high-energy astrophysics.

The dynamics of the non-relativistic outows occurring in the solar system can be characterized by in situ measurements, against which theoretical and numerical models can be benchmarked. However, the extreme astrophysical environments that the present work deals with remain far outside the reach of these probes, and so require dierent approaches. The only direct measurements are provided by astronomical observations that probe length and time scales order of magnitude beyond those relevant to the microphysics of those systems. To bridge this gap in scales, the problem is addressed by a combination of semi-analytical models, kinetic or not, and large-scale ab initio kinetic simulations. (red) γ-ray burst events detected by BATSE. Taken from [START_REF] Shahmoradi | Short versus long gamma-ray bursts: a comprehensive study of energetics and prompt gamma-ray correlations[END_REF].

Relativistic sources

In this thesis, we concentrate on a specic type of outows in which the density is so low that the mean free path of charged particles associated with Coulomb collisions is far larger than their scattering o the electromagnetic microturbulence. Moreover, we consider outows in which the shock propagates at relativistic four-speeds, u sh = γ sh β sh 1. Such relativistic shocks are expected to arise in γ-ray bursts, active galactic nucleus jets and pulsar wind nebulae. In the following, we focus on systems with ultrarelativistic speed outows and low magnetization, mainly relevant to γ-ray bursts.

Gamma ray bursts

Gamma ray bursts are some of the most violent events in the universe. By releasing a tremendous amount of energy (∼ 10 53-54 erg) over short time scales (a few seconds to hours), they are believed to be associated with the production of very-high-energy cosmic rays ( 10 16 eV and above), very high-energy neutrinos (10 5-7 GeV) [START_REF] Waxman | TeV Neutrinos and GeV Photons from Shock Breakout in Supernovae[END_REF] and, for some of them, gravitational waves. One usually makes the distinction between short and long γ-ray bursts according to the time (T 90 ) required for the burst to release 90% of the detected γ-photons. A histogram of γ-ray burst events detected by the BATSE instrument is displayed in Fig. 1.1 (right), showing two distinct classes of events. Those pertaining to the rst class last for a few seconds only (T 90 < 2 -3 sec), and are thought to originate from the merging of a binary system of compact bodies (neutron star or black hole). The observational proof that such an event can generate relativistic outows goes back to the detection of the radiative counterpart of the GW170817 event [START_REF] Abbott | Observation of gravitational waves from a binary neutron star inspiral[END_REF][START_REF] Abbott | Multi-messenger observations of a binary neutron star merger[END_REF]. In August 2017, the LIGO/VIRGO collaborations detected the GW170817 gravitational wave, produced by a neutron star merger. The concomitant detection of the radiative counterpart GRB170817A ∼ 1.7 s after the event proved that binary neutron star mergers are progenitors of short γ-ray bursts. By contrast, γ-ray bursts from the second class (T 90 > 2 -3s) can last for hundreds of seconds, and are believed to arise from the collapse of a massive star into a black hole, with the launching of a relativistic jet. The early-phase prompt emission lasts from a few milliseconds up to 100 seconds. A still unknown dissipation process of magnetic or kinetic energy then generates a high luminosity burst in the X-ray and γ-ray ranges. Sometimes, only the X-ray emission is detectable. In general, the spectrum is tted using two ad hoc joined powerlaws with dierent spectral indexes. Another important feature is the pulsed nature of the emission (with time variability δt T 90 ), translating into spectral pulses, as observed in 80% of the events. For short bursts (T 90 < 2 -3s), the time variability is more dicult to characterize because it is closer to the time resolution of the instruments. Still, a majority of them show highly variating substructures.

For most of γ-ray bursts, the prompt emission ux suddenly drops after ∼ 100 s. This decay is followed by a ∼ 10 4 s long plateau followed by a time-decreasing powerlaw. This slowly decaying plateau is indicative of a continuous energy injection, most probably from the central engine. The subsequent afterglow emission shows a transition from high (X-ray) to low (optical-IR, radio) radiation energies. In the so-called reball model [START_REF] Piran | The physics of gamma-ray bursts[END_REF], this feature is interpreted as the propagation of the jet in the shocked ISM, leading to emission through synchrotron-self Compton emission. In the case of long bursts, the afterglow emission can take place during the burst itself.

A relativistic blast wave is described as a thin shell of width of the order of R/γ 2 jet (in the source rest frame), where R is the radial distance to the central engine. This forward shock is propagating at ultrarelativistic speed and is a good candidate for particle acceleration. As the blast wave picks up interstellar matter, its bulk Lorentz factor decreases [START_REF] Sari | Jets in Gamma-Ray Bursts[END_REF]. This slowdown eventually leads to an achromatic break in the spectrum once the jet start expanding sideways. Combined with measurements of the redshift and total isotropic energy, the achromatic break allows one to estimate the opening angle of the jet. Even for o-axis jets, relativistic beaming becomes less and less ecient, so that the late afterglow emission could become visible, thus leading to the detection of so-called orphan afterglows. In Fig. 1.2, the ux density light-curve of the long GRB 061121 is presented in the X-ray, optical and radio domains. Here, the prompt emission lasts up to ∼ 300 s while the X-ray plateau takes place up to ∼ 2300 s at which time a transition to a powerlaw decay is observed. For a more complete review of the physics of γ-ray bursts, the reader is referred to [START_REF] Piran | The physics of gamma-ray bursts[END_REF][START_REF] Willingale | Gamma-Ray Bursts and Fast Transients. Multiwavelength Observations and Multi-messenger Signals[END_REF].

Active galactic nuclei

In its synecdochical use, active galactic nuclei (AGN) form a class of galaxies containing an active galactic nucleus composed of a supermassive black hole surrounded by an accretion disk that leads to the formation of jets propagating over many kpc scales perpendicular to the galactic plane and, sometimes, terminating in radio-loud hot spots. This feature contrasts with the radio-quiet active galactic nuclei without jet structure, which represent about 90% of the detected AGNs. Those highly collimated jets can reach relativistic speeds (with bulk Lorentz factors γ ∼ 10 -100) in the most extreme cases, and are also good candidates for particle acceleration. The most famous Figure 1.2: Measurement of the density ux of GRB 061121 over 10 7 s in the X-ray, optical and radio domains. The prompt and plateau-type emissions last up to ∼ 300 s and ∼ 2300 s, respectively. Taken from [START_REF] Page | GRB 061121: Broadband Spectral Evolution through the Prompt and Afterglow Phases of a Bright Burst[END_REF]. galaxies respectively feature sub-relativistic and relativistic jets. Radio-galaxies, such as M87 or Cen A, are misaligned blazars (meaning, blazars not seen head-on). Blazars are divided in two subgroups: at spectrum radio quasars and BL Lacertae, according to whether their spectrum show strong emission lines (former case) or not (latter case). This property is generally attributed to a low accretion regime around the supermassive blackhole. In general, due to their cosmological evolution, BL Lacertae are assumed to correspond to the late stage evolution of at spectrum radio quasars where all the surrounding gas has been accreted by the central engine. Relativistic beaming of a jet then nicely accounts for the existence of superluminal motion, short variability in time, γ-ray emission, radio-spectrum shape and high brightness temperature. The high-energy emission of such objects is commonly attributed to synchrotron self-Compton scattering: the ambient photons are energized via inverse Compton scattering by the electrons that emitted them through synchrotron radiation. Another scenario (the so-called external Compton model) assumes that the low-energy photon eld radiated by the accretion disk is energized in the jet through inverse Compton scattering. However, leptonic processes are not the only mechanisms that can account for the spectral energy distribution observed in such environments. Hadronic interactions such as proton synchrotron and photon-proton pion production could also lead to the production of high-energy photons if protons were accelerated to suciently high energies ( 10 16 eV).

The production of the high-energy particles responsible for the detected synchrotron emission is usually ascribed to Fermi-type acceleration [START_REF] Fermi | On the Origin of the Cosmic Radiation[END_REF] taking place in internal shocks inside the jet. The relative motion of such structures is indeed observed at the pc scale. This interpretation is, however, subject to debate. The observed timevariability of the γ-ray emission suggests that the emission regions are far smaller than the typical size of these structures. Also, their outows are then expected to be Poynting ux dominated such that shock acceleration should be inecient (as discussed further on). Reconnection and/or turbulent emission then emerge as alternative candidates for particle acceleration, although the spectral energy distribution of most BL Lacertae objects suggests that their radiating regions are weakly magnetized. We refer to [START_REF] Romero | Relativistic Jets in Active Galactic Nuclei and Microquasars[END_REF] and references therein for a more detailed description.

Pulsar wind nebulae

Pulsar wind nebulae oer one of the most interesting environments to study high-energy particle acceleration [START_REF] Kirk | The Theory of Pulsar Winds and Nebulae[END_REF]. These sources are composed of a fast-spinning neutron star endowed with a strong magnetic eld. This generates an ultra-relativistic electronpositron wind that is conned by the surrounding supernova remnant of the progenitor star.

These objects radiate over a wide range of frequencies, from radio to TeV energies, their best known representative being certainly the Crab Nebula, shown in Fig. 1.4 in dierent spectral bands. They are believed to be powered by the interaction of their accompanying pair wind with the ambient medium, e.g., the surrounding progenitor supernova remnant. The lepton pairs that are extracted from the neutron star breed in cascades through radiative interactions in the pulsar magnetosphere. They are then carried by the wind into the shocked-wind zone which forms the nebula, where they radiate the enormous energy that they have acquired by then.

If the pulsar rotational axis is tilted relative to its magnetic dipole, the wind comprises a succession of pair plasma current sheets of alternating sign, and propagating along the equatorial plane. Initially, most of the wind energy is carried in the form of electromagnetic ux, yet observations suggest that, at or behind the termination shock of the wind, this Poynting ux has been eciently converted into lepton kinetic energy.

How this energy transfer occurs remains an open issue, known as the σ-problem. How this kinetic energy is converted into powerlaw spectra of particles with energies as high as a PeV is another issue of crucial importance. In this striped-wind conguration and at low latitudes, current sheets are subject to magnetic reconnection, which therefore underpins most of the proposed scenarios. Yet, as a result of time dilation eects, the striped wind is expected to dissipate over too long time scales, thus rendering reconnection a priori ineective in such environments [START_REF] Lyubarsky | Reconnection in a striped pulsar wind[END_REF]. Alternative scenarios suggest that the striped structure of the wind is preserved up to the termination shock [START_REF] Lyubarsky | Fast magnetosonic waves in pulsar winds[END_REF][START_REF] Pétri | Magnetic Reconnection at the Termination Shock of a Striped Pulsar Wind[END_REF][START_REF] Sironi | Acceleration of Particles at the Termination Shock of a Relativistic Striped Wind[END_REF] where the magnetic eld dissipates through reconnection due to shock compression.

Dierent regions can be distinguished in such systems. The pulsar magnetosphere or near zone corresponds to the region where the eld can be considered as being in rigid corotation with the neutron star. This region is delimited by a light cylinder of radius cP/2π where P is the neutron star rotational period, i.e. 10 8 cm for the Crab pulsar.

The second zone corresponds to the wind zone, which extends up to the termination shock, i.e. 10 17 cm for the Crab pulsar.

Cosmic rays

It is tempting to associate the observed high-energy astrophysical events with the origin of the cosmic rays detected on Earth in the form of an isotropic non-thermal distribution of ions and leptons. The cosmic-ray energy spectrum (see Fig. 1.6) is usually divided in three regions. The rst one extends from the GeV to ∼ 1 PeV (the knee), and shows an isotropic powerlaw spectrum E -2.7 , which breaks to E -3.1 beyond the knee and attens to E -2.7 again at 3 EeV (the ankle).

Up to the knee, cosmic rays are well described by Fermi-type acceleration on the shock front of expanding supernovae in the Milky Way, each releasing about 10 51 erg of mechanical energy into the ISM. A conclusive proof that hadronic acceleration occurs in supernovae remnants was claimed in [START_REF] Ackermann | Detection of the Characteristic Pion-Decay Signature in Supernova Remnants[END_REF], where the characteristic bump attributed to pion decay was detected for two candidates (IC 443 and W44). The cuto at the knee can be understood in terms of the energy E of a particle and its charge eZ, which determine its resistance to magnetic deections. The maximum energy of particles ac- Taken from [START_REF] Hillas | The Origin of Ultra-High-Energy Cosmic Rays[END_REF].

celerated in a given source of ambient magnetic eld B can be estimated by equating their Larmor radius r L ∼ 1 pc (E/PeV)(B/µG) -1 Z -1 with the source size L, which corresponds to the Hillas criterion [START_REF] Hillas | The Origin of Ultra-High-Energy Cosmic Rays[END_REF]. For supernovae of typical L ∼ 1 pc and B ∼ 1 µG, this gives a maximum E ∼ PeV, consistent with the knee. While this interpretation is by far the most popular nowadays, one is still searching for a conclusive proof that supernovae can accelerate particles up to these energies.

Above the knee, many dierent sources have been proposed, but no consensus emerges. At least, the concomitant detection of a neutrino at 290 TeV by Icecube implying an energetic proton at 5 -10 PeV with an electromagnetic counterpart from a blazar gamma-ray are detected by Fermi [START_REF] Aartsen | Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert[END_REF] provides a conclusive evidence for hadronic acceleration in such events.

Beyond the ankle, the ultrahigh-energy cosmic ray isotropic spectrum is denitely of extra-galactic origin. Favorite candidates are shocks produced in GRBs, pulsars and radio galaxies. Beyond 3 -4 × 10 19 eV, owing to the Greisen, Zatseptin and Kuzmin eect, the particles are expected to interact with the cosmic microwave background at a temperature of 2.725K, thus decaying into p + γ → p/n + π 0/+ until their energy decreases under the threshold. Therefore, no particles are expected to be detected above this energy if they come out of a sphere of 100 Mpc radius centered on Earth. Also, as shown in Fig. 1.7, the energy density of the cosmic rays, γ-rays and neutrinos are comparable at high energies, suggesting that they are all produced in the same environment, and that they then provide complementary observables of the same objects.

Finally, we note that the abundances in cosmic rays are accurately measured up to a few hundreds of TeV. At higher energies, however, these measurements depend on the high-energy hadronic interaction model that is phenomenologically determined from low-energy cross section data obtained at conventional particle accelerators.

Fermi acceleration

The development of an extended suprathermal tail of particles in relativistic shocks is generally attributed to the Fermi process. Following Fermi's original idea [START_REF] Fermi | On the Origin of the Cosmic Radiation[END_REF], the high conductivity of astrophysical plasmas results in a vanishing electric eld in the local bulk frame. The acceleration of a particle then necessarily arises from its interaction with non-uniform electromagnetic elds. It turns out that a shock transition provides an ideal realization of a such non-uniformity. Green data: ultra-high energy cosmic rays. The red line represents the 8-year upgoing track analysis of Ice Cube with the associated 1σ-standard deviation in the shaded area, while the high-energy starting event analysis is represented by the magenta data.

(A) The production of pions in cosmic ray interactions leads to the production of γ-rays (solid blue line) and neutrinos (dashed blue line). (B) Maximal ux of neutrinos predicted from the ultra-high-energy cosmic ray spectrum and assuming the same source (calorimetric limit). (C) Spectral ux of cosmogenic neutrinos from the interaction between the cosmic rays and the cosmic microwave background. Taken from [START_REF] Ahlers | Opening a new window onto the universe with IceCube[END_REF].

To see this, let us consider a particle of initial energy p 0 i|u in the upstream frame interacting with a magnetic wall propagating at velocity β w|u in the upstream frame.

The energy gained by the particle during a single bounce o the discontinuity (propagating at the wall speed β w|u ) can be simply computed by moving from the upstream frame to the discontinuity frame and going back in the initial frame. For a specular and energy-conserving reection on the wall (in the wall rest frame), the nal energy p 0 f|u can be expressed as

p 0 f|u p 0 i|u = γ 2 w|u 1 + β 2 w|u -2β |u β w|u µ |u , (1.1) 
where β w|u and β |u are respectively the wall and particle speeds in the upstream frame, and µ |u the cosine of the angle of the particle momentum with respect to the wall normal in the upstream frame. We identify two dierent contributions. The rst-order term in β w|u corresponds to the Fermi I process which acts at a shock front (see below).

It vanishes when the acceleration takes place on randomly distributed velocities of the magnetic walls since the mean pitch-angle is zero. In this case, there only remains (in the subrelativistic limit γ w|u → 1) a second-order term ∝ β 2 w corresponding to the Fermi II process. In the relativistic regime, this specular reection turns into a ∼ γ 2 w|u energy gain. It is worth noting that the denition of the frame in which the electric eld vanishes is of primary importance to describe the stochastic acceleration of particles.

Subrelativistic regime

The rst-order Fermi mechanism beautifully accounts for the acceleration of non-solar cosmic rays, as observed on Earth up to 10 15 eV proton energies. This idea was introduced at the end of the 1970s by Krimskii [START_REF] Krymskii | A regular mechanism for the acceleration of charged particles on the front of a shock wave[END_REF], Axford, Leer & Skadron [START_REF] Axford | The acceleration of cosmic rays by shock waves[END_REF], Bell [START_REF] Bell | The acceleration of cosmic rays in shock fronts -I[END_REF][START_REF] Bell | The acceleration of cosmic rays in shock fronts -II[END_REF] and Blandford & Ostriker [START_REF] Blandford | Particle acceleration by astrophysical shocks[END_REF], and reviewed in [START_REF] Blandford | Particle acceleration at astrophysical shocks: A theory of cosmic ray origin[END_REF]. Following [START_REF] Blandford | Particle acceleration by astrophysical shocks[END_REF][START_REF] Pelletier | Fermi Acceleration of Astroparticles[END_REF], we present the tenets of this theory for a better comprehension of the relativistic treatment. Assuming there exists a source of turbulence capable of isotropizing the magnetized medium in the vicinity of the shock, the transport equation in the shock front frame of the isotropic part f of a quasi-isotropic distribution of cosmic rays is written

∂ ct f + ∂ x (vf ) = - 1 p 2 ∂ p p 2 Af + 1 p 2 ∂ p p 2 G∂ p f + ∂ x (D∂ x f ) , (1.2) 
where ∂ ct ≡ c -1 ∂ t . We recognize the usual advective term on the left-hand side and the diusive terms on the right where the contributions are split in three parts: The rst term represents the rst order Fermi process through compression (∇ • v < 0) and radiative losses through synchrotron and inverse Compton processes, as indeed A corresponds to

A = A acc + A rad (1.3) = - p 3 ∂ x v - ∆p ∆t rad .
(1.4)

The second term describes the second-order Fermi processes associated with multiple interactions with the Alfvén waves (moving at the Alfvén speed β A = v A /c) responsible for isotropizing the particle distribution:

G ∼ β A ν s p 2 , (1.5) 
where ν s = 1/t s is the scattering frequency of these particle in the micro-turbulence and t s the correlation time of the pitch angle. Finally, D is the spatial diusion coecient which reads

D = 1 3ν 2 s p mγ 2 (1.6)
for a stationary random process.

Neglecting the contributions of A rad and G, and searching for stationary solutions in the shock frame, Eq. (1.2) reduces to

v∂ x f - 1 3 (∂ x v) p∂ p f = ∂ x (D∂ x f ) .
(1.7)

It is then customary to assume a thin shock such that the scattering length is much larger than the shock thickness, and that the plasma speed and its spatial derivative

respectively read v(x) = v d + (v u -v d ) θ(x) and ∂ x v = (v u -v d ) δ(x)
, where v d and v u describe respectively the bulk velocity of the downstream and upstream ows. This equation can then be solved on both sides of the shock (where the distribution is denoted by f u and f d ) and joining the solutions by continuity. In the downstream, the distribution is assumed to be independent of the space coordinates on scales much larger than the turbulence scale. By integrating (1.7) from x = -∞ to x = ∞ , and supposing lim +∞ f u = 0, one can express the downstream distribution in terms of the upstream one

f d = qp -q p p min pq-1 f u (p)dp , (1.8) 
where q = 3r/(r -1) and r = v u /v d is the compression ratio. The particle distribution then takes the form of a powerlaw of index q. This leads to a spectrum p 2 f ∝ p -s , where s ≡ q -2 = (r + 2) / (r -1) is the spectral index. For a strong shock characterized by r = 4, one obtains s = 2, in good agreement with cosmic-ray spectra from supernovae environments.

The above theory has been generalized to the relativistic regime in [START_REF] Kirk | Particle Acceleration at Ultrarelativistic Shocks: An Eigenfunction Method[END_REF][START_REF] Vietri | On Particle Acceleration around Shocks[END_REF][START_REF] Keshet | Energy Spectrum of Particles Accelerated in Relativistic Collisionless Shocks[END_REF]. In light of this model, γ-ray bursts appear as favorite candidates due to the tremendous amount of energy redistributed (about 10 52-54 erg), although a conversion of about 100% of the observed radiated energy is needed to reproduce the higher-energy cosmicray spectra observed on Earth. Unfortunately, relativistic acceleration processes greatly complicate the above analytical treatment.

Relativistic regime

Let us assume again that the particle experiences energy-conserving scatterings in both the upstream and the downstream media before crossing the shock front. This time, the pitch angle cosine from upstream to upstream is dierent from the one from downstream to upstream (µ u→d = µ d→u ). The nal energy of a particle experiencing one Fermi cycle (u → d → u) is obtained following the same series of frame boosts as in (1.1), p 0 (end)|u p 0 (init)|u = γ 2 sh 1 -β sh µ u→d|u 1 + β sh µ d→u|s .

(1.9) For a relativistic shock drifting at relativistic speed β sh in the upstream frame, the (d → u)-pitch angle cosine in the upstream frame reads

|µ d→u|u | = µ d→u|s + β sh 1 + µ d→u|s β sh 1 -O(1/γ 2 sh|u ) . (1.10) 
During the Fermi cycle, the only constraint stems from the kinematics that imposes µ d→u|d > β sh|d where β sh|d is the shock velocity in the downstream frame given by Eq. (2.62). Also, the pristine distribution that did not experience any Fermi cycle is isotropic. Therefore, the two last terms in the right-hand side of Eq. (1.9) are of the order of unity, and hence the energy gain is of the order of γ 2 sh . A succession of similar processes would then lead to a tremendous gain in energy so that the ultra-high energy counterpart of the cosmic ray spectrum would be reached in a few cycles up to the GZKcuto [START_REF] Vietri | The Acceleration of UltraHigh-Energy Cosmic Rays in Gamma-Ray Bursts[END_REF]. However, as shown in [START_REF] Gallant | Ultra-high-energy cosmic ray acceleration by relativistic blast waves[END_REF][START_REF] Achterberg | Particle acceleration by ultrarelativistic shocks: theory and simulations[END_REF], an accelerated particle only experiences a γ 2 sh energy boost during the rst cycle (u → d → u). Due to relativistic beaming, the pitch-angle kinematics constraint reads θ d→u|u < 1/γ sh in the upstream frame. Hence, during the (d → u)-phase, the particle momentum lies in a cone centered around the normal to the shock front with an opening angle ∆θ 1/γ sh [see Eq. (1.10)], meaning that the distribution is highly anisotropic. This anisotropy cannot be weakened by multiple scattering in the upstream medium, since for reasonable scattering times in the upstream turbulence, the particle momentum cannot escape from the cone before the shock overtakes it. Therefore, the energy gain is close to 2, which is far smaller than the rst estimate of [START_REF] Achterberg | Particle acceleration by ultrarelativistic shocks: theory and simulations[END_REF][START_REF] Gallant | Ultra-high-energy cosmic ray acceleration by relativistic blast waves[END_REF]. Hence, this makes the GZK-energy limit dicult to reach through Fermi acceleration starting from the pristine thermal distribution since the dynamical time scale would be reached before accessing such extreme energies.

The strong anisotropy of the particle distribution in the shock front frame contradicts one of the main hypotheses of the subrelativistic analysis when writing the transport equation of an isotropic distribution (1.2), and thus involves a much more Figure 1.9: Trajectories of particles across the shock front for the same initial energy.

The shock is subrelativistic (β u = 0.1) for (a) and relativistic (β u = 0.87) for (b), (c) and (d). In the relativistic case, the shock crossing is done at dierent phases of the trajectory for the same initial energy. The upstream medium is on the left and the magnetic eld is out of plane. In the relativistic case and if the particle Larmor radius is much bigger than the coherence length, particles experience at most one and a half cycle u → d → u → d. Taken from [START_REF] Begelman | Shock-drift particle acceleration in superluminal shocks -A model for hot spots in extragalactic radio sources[END_REF]. complex transport equation across the shock (see [START_REF] Kirk | Particle acceleration and relativistic shocks[END_REF] for a pedagogical derivation).

Therefore, the space-scattering operator used in (1.2) is no longer valid, and must be replaced by a scattering operator in pitch-angle.

The strength of the magnetic eld is another limiting factor for particle acceleration in relativistic shocks. Fig. 1.9 illustrates that, in the relativistic case and in the presence of a strong external magnetic eld compared to the local microturbulence, the particle cannot cross more than three times the shock discontinuity, corresponding to one and a half Fermi cycle u → d → u → d [START_REF] Lemoine | On the Eciency of Fermi Acceleration at Relativistic Shocks[END_REF].

The estimate of the spectral index of the high-energy particle spectrum from relativistic collisionless shocks has been extensively studied since the pioneering work of Peacock [START_REF] Peacock | Fermi acceleration by relativistic shock waves[END_REF] by making use of analytical and semi-analytical methods [START_REF] Peacock | Fermi acceleration by relativistic shock waves[END_REF][START_REF] Gallant | Ultra-high-energy cosmic ray acceleration by relativistic blast waves[END_REF][START_REF] Kirk | Particle Acceleration at Ultrarelativistic Shocks: An Eigenfunction Method[END_REF][START_REF] Achterberg | Particle acceleration by ultrarelativistic shocks: theory and simulations[END_REF][START_REF] Vietri | On Particle Acceleration around Shocks[END_REF][START_REF] Keshet | Energy Spectrum of Particles Accelerated in Relativistic Collisionless Shocks[END_REF], or Monte Carlo simulations involving test particles with or without feedback on the microturbulence [START_REF] Ostrowski | Monte Carlo simulations of energetic particle transport in weakly inhomogeneous magnetic elds. I -Particle acceleration in relativistic shock waves with oblique magnetic elds[END_REF][START_REF] Ballard | Shock acceleration and steep-spectrum synchrotron sources[END_REF][START_REF] Ostrowski | Cosmic-Ray Acceleration at Relativistic Shock Waves in the Presence of Oblique Magnetic Fields with Finite-Amplitude Perturbations[END_REF][START_REF] Bednarz | The acceleration time-scale for rst-order fermi acceleration in relativistic shock waves[END_REF][START_REF] Bednarz | Energy Spectra of Cosmic Rays Accelerated at Ultrarelativistic Shock Waves[END_REF][START_REF] Lemoine | Particle Transport in Tangled Magnetic Fields and Fermi Acceleration at Relativistic Shocks[END_REF][START_REF] Niemiec | Cosmic-Ray Acceleration at Relativistic Shock Waves with a Realistic Magnetic Field Structure[END_REF][START_REF] Lemoine | On the Eciency of Fermi Acceleration at Relativistic Shocks[END_REF][START_REF] Ellison | Monte Carlo Simulations of Nonlinear Particle Acceleration in Parallel Trans-relativistic Shocks[END_REF][START_REF] Ellison | Particle spectra and eciency in nonlinear relativistic shock acceleration -survey of scattering models[END_REF]. Over the past decades, great progress has been achieved by means of ab initio kinetic simulations, which self-consistently describe the nonlinear coupling between particles and turbulence [START_REF] Nishikawa | Particle Acceleration in Relativistic Jets Due to Weibel Instability[END_REF][START_REF] Frederiksen | Magnetic eld generation in collisionless shocks: Pattern growth and transport[END_REF][START_REF] Spitkovsky | Simulations of relativistic collisionless shocks: shock structure and particle acceleration[END_REF][START_REF] Spitkovsky | On the Structure of Relativistic Collisionless Shocks in Electron-Ion Plasmas[END_REF][START_REF] Spitkovsky | Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last?[END_REF][START_REF] Martins | Ion dynamics and acceleration in relativistic shocks[END_REF][START_REF] Sironi | Synthetic Spectra from Particle-In-Cell Simulations of Relativistic Collisionless Shocks[END_REF][START_REF] Sironi | Particle Acceleration in Relativistic Magnetized Collisionless Pair Shocks: Dependence of Shock Acceleration on Magnetic Obliquity[END_REF][START_REF] Sironi | Particle Acceleration in Relativistic Magnetized Collisionless Electron-Ion Shocks[END_REF][START_REF] Sironi | The Maximum Energy of Accelerated Particles in Relativistic Collisionless Shocks[END_REF]. Despite their dierences, all these methods predict powerlaw-shaped energy spectra with a universal spectral index s 2.2 -2.3, close to the non-relativistic one (s = 2). However, a self-consistent analytical depiction of the Fermi acceleration that properly takes into account the coupling between the particles and the microturbulence is still missing. Moreover, although they provide unambiguous evidence for Fermi acceleration, kinetic simulations, due to their computational cost, are still unable to describe the long-term evolution of the shock and its associated microturbulence, as well as its impact on the Fermi process.

Numerical simulations of Fermi acceleration

In this subsection, we review the results of simulation studies on rst-order Fermi acceleration, as performed using Monte Carlo and particle-in-cell techniques.

Monte Carlo simulations

Solving the one-dimensional transport equation can be done semi-analytically through decomposition of the distribution function over eigenfunctions [START_REF] Kirk | Particle Acceleration at Ultrarelativistic Shocks: An Eigenfunction Method[END_REF], or by using Monte Carlo solvers. In order to probe Fermi acceleration over large scales, the test particle approximation in Monte Carlo integration of the transport equation stands as a powerful tool. In this approximation, the non-thermal part of the distribution is assumed to represent a negligible fraction of the total energy of the system. In the case of relativistic collisionless shocks, observational results indicate that about 10% of the incoming energy ux is injected in the nonthermal tail. The test particle approximation is thus questionable, but still appears as a necessary step to study Fermi acceleration over many cycles. The energetic particles are then injected by the hand of God at the shock front, meaning that there is no strict criterion to promote them from the thermal bath.

From this seed distribution naturally emerges the powerlaw suprathermal tail due to particle scattering in the micro-turbulence.

The Monte Carlo approach was introduced to the study of this problem in the 1990s [START_REF] Ballard | Shock acceleration and steep-spectrum synchrotron sources[END_REF][START_REF] Ostrowski | Cosmic-Ray Acceleration at Relativistic Shock Waves in the Presence of Oblique Magnetic Fields with Finite-Amplitude Perturbations[END_REF][START_REF] Bednarz | The acceleration time-scale for rst-order fermi acceleration in relativistic shock waves[END_REF][START_REF] Bednarz | Energy Spectra of Cosmic Rays Accelerated at Ultrarelativistic Shock Waves[END_REF]. At each time step, the particle trajectory is rst integrated numerically in the mean magnetic eld dened on scales larger than the coherence length. Then, using a Monte Carlo method, the particle is subjected to stochastic pitch angle scattering in the microturbulence. In general, the energy gain is only considered at the shock front crossing, meaning that only pitch angle scattering is considered and that momentum diusion is neglected. Another approach, introduced in [START_REF] Lemoine | Particle Transport in Tangled Magnetic Fields and Fermi Acceleration at Relativistic Shocks[END_REF], consists in integrating exactly the trajectories of the particles in an inhomogeneous magnetic eld on both sides of the shock. The energy spectrum of the Fermi accelerated particles is then computed using a Monte Carlo technique knowing the probability of shock recrossing in terms of the ingress and egress angles.

The nature of the turbulence has strong implications on the stochasticity of the scattering, and is encoded in the diusion coecient. As previously mentioned, the testparticle approximation neglects the interplay between the non-thermal distribution and the dynamics of the turbulence and background plasma. Since the turbulence originates from the intrinsic instability of the non-thermal beam-plasma system, one directly sees the limitation of such a description. Two types of nonlinearities may emerge in shocks.

The rst one comes from the nonlinear evolution of the turbulence itself. The dominant linear instability excited in the precursor is relatively well-known in the unmagnetized case, but the subsequent instabilities growing in the inhomogeneous plasma interacting with the highest-energy particles remain the subject of debates. The second type of nonlinearity appears if the pressure exerted by the suprathermal particles on the ow is strong enough to slow down the latter. We then enter a regime known as nonlinear shock acceleration (see [START_REF] Ellison | Nonlinear particle acceleration in relativistic shocks[END_REF][START_REF] Ellison | Particle spectra and eciency in nonlinear relativistic shock acceleration -survey of scattering models[END_REF] in the relativistic regime and [START_REF] Vladimirov | Modeling magnetic eld amplication in nonlinear diusive shock acceleration[END_REF] and references therein for a complete review). Due to their limited spatiotemporal extent, PIC simulations are still not adequate to study this physics. This problem can nowadays only be described by Monte Carlo methods, provided the feedback of the suprathermal beam on the ow and the magnetic eld amplication are properly modeled. This technique has yet been mainly developed for non-relativistic shocks [START_REF] Vladimirov | Nonlinear Diusive Shock Acceleration with Magnetic Field Amplication[END_REF], where nonlinear shock acceleration appears to play a critical role.

In this regime, and due to the smoother deceleration of the plasma in the precursor of the shock, low-energy particles can only probe weak velocity gradients while higherenergy particles can travel across the whole precursor and experience the large velocity gradients responsible for Fermi acceleration. This nonlinear coupling results in the formation of a subshock and a softening of the suprathermal energy spectrum [START_REF] Vladimirov | Nonlinear Diusive Shock Acceleration with Magnetic Field Amplication[END_REF][START_REF] Amato | Non-linear particle acceleration at non-relativistic shock waves in the presence of self-generated turbulence[END_REF]. This behavior, however, is strongly dependent on the injection model. In the case of relativistic shocks, by contrast, while the initial shaping of the background prole is a nonlinear process, no spectrum softening is expected at high energies since the typical size of the subshock is short compared to the particle mean free path. Yet, additional nonlinear eects may arise due to the momentum dependence of the mean free path of accelerated particles that can impact signicantly the spectral shape [START_REF] Ellison | Particle spectra and eciency in nonlinear relativistic shock acceleration -survey of scattering models[END_REF]. Determining this dependence is thus critical to characterize the high-energy spectrum, and is one of the objectives of this thesis.

Particle-In-Cell simulations

A second approach is to solve self-consistently the evolution of the particle distribution coupled to Maxwell's equations. This can be done by making use of the particle-in-cell (PIC) simulation technique, which consists of advancing a collection of particles through a grid on which the electromagnetic elds are discretized. This simulation framework, widely employed in the plasma physics community, was only introduced to the problem of collisionless shocks and Fermi acceleration in the mid-2000s. Here, we present a few PIC results relevant to Fermi acceleration before addressing in much greater detail the associated numerical aspects in Chapter 3. At this stage, it is worth pointing out that the ip side of an accurate treatment of the electromagnetic eld coupling to the beamplasma system is a very high computational cost, which, despite progress in parallelized codes, still prevents PIC simulations from accessing long-term, quasi-stationary shock congurations and the growth of magnetohydrodynamics-scale electromagnetic modes.

The rst observations of Fermi acceleration in PIC simulations of relativistic shocks go back to 2008 [START_REF] Spitkovsky | On the Structure of Relativistic Collisionless Shocks in Electron-Ion Plasmas[END_REF][START_REF] Spitkovsky | Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last?[END_REF][START_REF] Martins | Ion dynamics and acceleration in relativistic shocks[END_REF] where nonthermal tails were found to develop following the self-consistent formation of an unmagnetized relativistic shock. An integration time of 10 3 -10 4 ω -1 p was required, posing strong computational constraints. As an illustra- tion, Fig. 1.11 shows the total downstream spectrum measured in a PIC simulation, performed with the code calder, of a relativistic unmagnetized pair shock at time t |d = 10 4 ω -1 p . In the downstream frame, the background plasma is relativistically drift- ing (γ p|d = 10). The nonthermal high-energy tail emerges at energies γ |d /γ ∞|d 5, and shows an expected 1 powerlaw shape of index s = -2.2.

The particle acceleration in relativistic pair or electron-ion shocks has been investigated through PIC simulations under various external magnetization conditions [START_REF] Gallant | Relativistic, perpendicular shocks in electron-positron plasmas[END_REF][START_REF] Sironi | Particle Acceleration in Relativistic Magnetized Collisionless Pair Shocks: Dependence of Shock Acceleration on Magnetic Obliquity[END_REF][START_REF] Keshet | Magnetic Field Evolution in Relativistic Unmagnetized Collisionless Shocks[END_REF][START_REF] Haugbølle | Three-Dimensional Modeling Of Relativistic Collisionless Ion-Electron Shocks[END_REF][START_REF] Sironi | Particle Acceleration in Relativistic Magnetized Collisionless Electron-Ion Shocks[END_REF][START_REF] Sironi | The Maximum Energy of Accelerated Particles in Relativistic Collisionless Shocks[END_REF]. In the upstream frame, one can dene a critical angle θ crit|u ∼ 1/γ sh between the external magnetic eld and the shock normal beyond which the nonthermal tail is killed as particles are then advected away downstream by the magnetic eld.

More precisely, the contact point of the magnetic eld lines and the shock front is then moving faster than the speed of light [START_REF] De Homann | Magneto-Hydrodynamic Shocks[END_REF], so these shocks are said to be superluminal.

In the presence of a magnetic eld, acceleration can occur only if the microturbulence is strong enough to scatter a particle in an advection time (∼ 3c/r g,0 where r g,0 is the Larmor radius in the mean background eld), and if the Larmor radius in the turbulent eld is much larger than the coherence length [START_REF] Lemoine | On the Eciency of Fermi Acceleration at Relativistic Shocks[END_REF]. The transition to the superluminal regime abruptly stops the acceleration processes [START_REF] Sironi | Particle Acceleration in Relativistic Magnetized Collisionless Electron-Ion Shocks[END_REF]. For subluminal shocks (θ < θ crit ) and dierent values of the far upstream Lorentz factor in the shock front frame and 1 One should be cautious when comparing the spectral index observed in these particle-in-cell simulations and the one predicted in the relativistic regime. The analytical prediction [START_REF] Keshet | Energy Spectrum of Particles Accelerated in Relativistic Collisionless Shocks[END_REF] is indeed given in a 3D conguration that diers from the 2D one in these simulations. p . The emerging powerlaw spectrum is characterized by an index s = -2.2.

magnetization, the spectral index varies between -2 and -3 [START_REF] Sironi | Particle Acceleration in Relativistic Magnetized Collisionless Electron-Ion Shocks[END_REF]. If B < 10 -3 , the shock is said to be weakly magnetized or unmagnetized. The mechanisms that underpin the generation of the microturbulence in the shock precursor are discussed in the forthcoming section.

An important quantity to be extracted from PIC simulations is the acceleration time t acc , which can be measured from the temporal evolution of the maximum energy of accelerated particles, γ max . If the particles scatter in a large-scale turbulence, where they experience Bohm-type large-angle deections, one expect t acc ∝ γ [START_REF] Drury | An introduction to the theory of diusive shock acceleration of energetic particles in tenuous plasmas[END_REF][START_REF] Gargaté | Ion Acceleration in Non-relativistic Astrophysical Shocks[END_REF]. On the contrary, in the case of small-angle deections as one would expect in a Weibeltype turbulence, t acc ∝ γ 2 implies γ max ∝ t 1/2 acc [39, 73, 74]. PIC simulations tracking the evolution of these non-thermal particles have claried the nature of the scattering regime [START_REF] Stockem | Acceleration in perpendicular relativistic shocks for plasmas consisting of leptons and hadrons[END_REF][START_REF] Sironi | The Maximum Energy of Accelerated Particles in Relativistic Collisionless Shocks[END_REF][START_REF] Plotnikov | Perpendicular relativistic shocks in magnetized pair plasma[END_REF]. As shown in Fig. 1.12, the small-angle scattering regime proposed in [START_REF] Kirk | Radiative Signatures of Relativistic Shocks[END_REF] is well reproduced in simulations as long as the shock is weakly magnetized, B < 10 -3 . Therefore, the particle maximum energy should rise as t 1/2 up to a saturation energy, γ sat , which scales as [START_REF] Pelletier | On Fermi acceleration and magnetohydrodynamic instabilities at ultra-relativistic magnetized shock waves[END_REF][START_REF] Plotnikov | Perpendicular relativistic shocks in magnetized pair plasma[END_REF]. In unmagnetized shocks, the energy cuto is likely determined by the radiation timescale from nonthermal electrons and by the dynamical time of the accelerator for ions (ct dyn = R/γβ where R is the source size).

γ sat ∝ -1/2 B [
Figure 1.12: Time evolution of the maximal energy γ max in pair shocks for dierent external magnetizations. The diusion process is consistent with a small angle scattering as proposed by [START_REF] Achterberg | Particle acceleration by ultrarelativistic shocks: theory and simulations[END_REF][START_REF] Milosavljevic | Weibel lament decay and thermalization in collisionless shocks and gamma-ray burst afterglows[END_REF][START_REF] Pelletier | On Fermi acceleration and magnetohydrodynamic instabilities at ultra-relativistic magnetized shock waves[END_REF]. Taken from [START_REF] Plotnikov | Perpendicular relativistic shocks in magnetized pair plasma[END_REF].

Chapter2 Fundamentals of relativistic shocks

To illustrate the physical scenarios addressed in this thesis, we present in Fig. 2.1 particle-density and magnetic-eld maps extracted from a large-scale 2D PIC simulation of a relativistic unmagnetized pair shock. This simulation considers a pair background plasma injected with γ u|d = 100. The top view displays the whole simulation box, while the bottom view zooms in on the shock front and the electromagnetic microturbulence that mediates the shock transition. This microturbulence results from streaming instabilities excited in the precursor region, due to the interaction of the relativistically drifting background plasma and a beam of nonthermal particles accelerated at the shock front. A remarkable feature is the change in pattern of the microturbulence when crossing the shock front: there, it transitions from a distribution of laments aligned along the upstream plasma ow to larger, essentially isotropic and slowly decaying magnetic clumps [START_REF] Spitkovsky | Simulations of relativistic collisionless shocks: shock structure and particle acceleration[END_REF].

In this chapter, we recall some important theoretical aspects of the plasma systems studied throughout this thesis. After a brief review of the kinetics of relativistic collisionless plasmas, we derive the hydrodynamic equations that can serve to describe, in a simplied manner, the beam-plasma interactions. We make the link between the moments of Jüttner-Synge distribution and the hydrodynamic description. Finally, we derive the general kinetic dispersion relation of a multi-stream system, and review the main types of instabilities expected to arise under conditions relevant to relativistic collisionless shocks. 
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Collisionless kinetic plasmas

Let us consider a fully ionized plasma containing s charged particle species, each comprising N α particles. Using the notations of [START_REF] Schekochihin | Lecture notes on kinetic theory and magnetohydrodynamics of plasmas[END_REF], at the classical level, all the information associated with the α th -species is contained in the relativistic six-dimensional microscopic Klimontovich distribution function:

F α (x, p, t) = Nα j=1 m α δ 3 x -x α j (t) δ 3 p -p α j (t) (2.1)
where x α j and p α j are, respectively, the position and momentum of the j th -particle of species α, which satises the equations of motion:

d dt x α j = p α j γ α j m α (2.2) d dt p α j = q α E m + p α j γ α j m α × B m (2.3)
γ α j is the Lorentz factor of the particle and {E m (x, t), B m (x, t)} the microscopic electromagnetic elds at position x and time t. Here, microscopic refers to the fact that the electromagnetic interactions between particles are exact at all classical scales. By taking the time derivative of (2.1) and injecting relations (2.2) and (2.3), one obtains 

∂ ct F α + p γm α • ∇ x F α + q α E m + p γm α × B m • ∇ p F α = 0 (2.4) 
In such a description, electromagnetic interactions are taken into account at all ranges.

However, this kind of expression is not analytically tractable as the number of particle increases. It is then customary to dene an intermediate length that allows us to discriminate between local few-body interactions (microscopic) and global ensembleaveraged behaviors (macroscopic).

In order to dene this scale, we need to compute the distance at which the eld of a single charged particle is fully screened. Let us assume that this particle is surrounded by particles that are in thermodynamic equilibrium. The Coulomb potential of this particle in a thermal bath is screened on a range dened as the Debye length,

λ D = s α=1 ω 2 p,α c 2 k B T α -1/2 . (2.5)
In other terms, this shielding length denes the distance over which the random eects due to local charge uctuations in a thermal plasma composed of species of temperature T α and plasma frequency ω p,α vanishes. Having a large number of particles in the Debye sphere guarantees that the single-particle elds are eciently screened out, nλ

(2.6)

The average distance between particles is ∼ n -1/3 , so that the typical electrostatic energy between particles is ∝ e 2 n 1/3 . If this interaction is negligible with respect to the thermal energy, i.e., e 2 n 1/3

T , particles interact mainly through long-range interactions, which corresponds to the ideal collisionless plasma state. Otherwise, as can be seen in Fig. 2.2, the plasma is said to be nonideal and its theoretical treatment is much more complicated. Also, when the typical distance between neighboring particles is of the order of the de Broglie length, Klimontovich's classical description breaks down.

Then, the relevant scale of the interaction energy is the Fermi energy (E F ), and the plasma obeys the Thomas-Fermi model (degenerate quantum plasmas). The density in the ISM being so low (∼ 1 cm -3 ), both quantum and collisional eects can be neglected in the plasma systems considered in this thesis.

Thus, the Debye length denes the boundary between short-range interactions between particles (collisions) and long-range interactions mediated by collective eects (waves). Using this separation of scales, one can decompose the Klimontovich distribution (2.1) in its macroscopic and microscopic contributions,

F α = f α + δF α , (2.7) 
where f α ≡ F α is the ensemble average of the microscopic Klimontovich distribution, and we assume that the microscopic, highly uctuating term, is a rst order correction to the distribution δF α f α . This expansion extends to the electromagnetic elds through Maxwell's equations:

E m = E + δE m (2.8) B m = B + δB m .
(2.9)

By averaging the Klimontovich equation, one obtains the Boltzmann equation

∂ ct f α + p γm α • ∇ x f α + q α E + p γm α × B • ∇ p f α = -q α δE m + p γm α × δB m • ∇ p δF α (2.10) ≡ C[f α ] , (2.11) 
where C[f α ] is the collision operator. In the case of a vanishing collision operator, or if collisions are negligible compared to the diusion in the collective electromagnetic eld, then the above equation reduces to the Vlasov equation. Since f α is the ensemble average of F α which, by denition, fullls the Liouville transport equation, so does f α , while δF α does not necessarily. This translates in a time reversibility for the Vlasov equation that the collisional operator breaks.

The concept of collisionless shock waves (C[f α ] = 0) might appear strange at rst sight. However, one can also dene a larger-scale hierarchy for the (non-Coulombian) diusion in the electromagnetic turbulence such that microscopic and macroscopic scales would now compare to the scale length of the turbulence. This would lead to a Boltzmann-type equation where the collisional operator is replaced by a diusion operator depending on the turbulence's properties. Therefore, in the same vein, microscopic scales in collisionless plasmas commonly refer to the turbulence scale, and we will stick to this denomination for the rest of the thesis.

Relativistic hydrodynamics conservation equations

In the previous kinetic approach, each plasma species can be viewed as a uid living in a six-dimensional phase space. This rst-principles description is computationally expensive to solve, and of great analytical complexity as soon as the physics becomes nonlinear. In order to reduce the dimensionality of the problem, it is convenient to deal with the rst two or three moments of the distribution function f (x, p, t), which are written in a covariant form as

j α = dp p 0 p α f , (2.12 
)

T αβ = dp p 0 p α p β f , (2.13) 
M αβγ = dp p 0 p α p β p γ f .

(

Here, j α , T αβ and M αβγ are respectively the four-current density, the energy-momentum (or stress-energy) tensor and the stress-ow tensor, and dp/p 0 the Lorentz-invariant dierential element. In general, the moment of order k is dened as

M α 1 ...α k = dp p 0 p α 1 . . . p α k f . (2.15)
This expression readily shows that the moments are fully symmetric over their indices.

Also, if all the moments of a distribution function are well dened, then the information that they contain is equivalent to that provided by the distribution function. From the covariant formulation of the Vlasov equation,

p α m ∂ ∂x α f + qF αβ p β ∂ ∂p α f = 0 , (2.16) 
we derive the three conservation equations fullled by the above three moments:

∂ β j β = 0 , (2.17) ∂ β T αβ -qF αβ j β = 0 , (2.18) ∂ γ M αβγ -q F αγ T β γ + F βγ T α γ = 0 , (2.19) 
where F βγ is the electromagnetic tensor, which in its covariant form, has the following dependence on the four-potential A µ ,

F αβ = ∂ α A β -∂ β A α , (2.20) 
and satises the Maxwell equations in at space time with signature (-+ ++): pressure components are equal such that only 2 independent variables (pressure and energy density) remain. Therefore, the (j α , T αβ ) system now contains 6 independent variables for 5 equations, and so the system requires one supplementary constraint within the perfect uid approximation, i.e. a closure condition. Even though uid plasma models were introduced more than a century ago [START_REF] Chapman | The mathematical theory of non-uniform gases[END_REF][START_REF] Grad | On the kinetic theory of rareed gases[END_REF], the derivation of uid equations providing a correct description of kinetic plasma properties is still a topical active research [START_REF] Mahajan | Fluid description of a magnetized plasma[END_REF][START_REF] Shadwick | Hamiltonian Description of Low-Temperature Relativistic Plasmas[END_REF][START_REF] Tassi | Hamiltonian closures in uid models for plasmas[END_REF]. One can mention, for instance, the development of uid equations preserving the Hamiltonian structure inherited from the kinetic formulation (see [START_REF] Tassi | Hamiltonian closures in uid models for plasmas[END_REF] for a complete review), which in some formulations, correctly approximate kinetic dispersion relations and thus Landau damping. The derivation of more general energy-momentum tensors is also important in order to capture the properties of collisionless astrophysical plasmas [START_REF] Newcomb | Warm relativistic electron uid[END_REF][START_REF] Pegoraro | Equation of state for relativistic plasma waves[END_REF][START_REF] Hazeltine | Fluid Description of Relativistic, Magnetized Plasma[END_REF][START_REF] Mahajan | Fluid description of a magnetized plasma[END_REF]. For obvious reasons of simplicity, the most common closure condition in astrophysical uid plasma models is that of a perfect uid, the evolution of which is assumed either isothermal (P = nT ) or adiabatic (P ∝ n Γ ad ).

∂ α F βγ + ∂ β F γα + ∂ γ F αβ = 0 , (2.21) 
∂ α F αβ = - 4π c j β . ( 2 

Perfect uid conservation equations

We now derive the perfect uid formulation of the relativistic conservation equations of a plasma coupled to electromagnetic elds [START_REF] Sakai | Waves in an ultra-relativistic electron-positron plasma[END_REF]. In Minkowski space with metric signature sign (η αβ ) = (-, +, +, +), the energy momentum tensor of a perfect uid writes

T αβ (fluid) = wu α u β + p η αβ , (2.23) 
where w = p + is the enthalpy density related to the plasma pressure p and the mass energy density , and u = (γ, γβ x , γβ y , γβ z ) is the plasma four-velocity. It is also convenient to express Eq. (2.18) in a conservative form by introducing the electromagnetic stress-energy tensor

T αβ (EM) = 1 4π F αλ F β λ - 1 4 F σρ F σρ η αβ . (2.24)
This stress energy tensor is symmetric, its components being

T 00 (EM) = 1 8π E 2 + B 2 , (2.25) T 0i (EM) = S i = E × B 4π i , (2.26) 
T ij (EM) = 1 4π E i E j + B i B j - 1 8π E 2 + B 2 δ ij , (2.27) 
where S is the Poynting vector. The equation satised by the electromagnetic stressenergy momentum tensor readily follows from (2.22):

∂ β T αβ (EM) = - 1 c F αβ j β . (2.28) 
Combining this relation with Eq. (2.18) leads to the conservative form of the second moment of the hydrodynamic equations,

∂ β T αβ (fluid) + T αβ (EM) = 0 .
(2.29)

One can then express the conservation equations in terms of the electromagnetic eld and uid quantities:

∂ ct (nγ) + ∇ • (nγβ) = 0 , (2.30) 
∂ ct p -∂ ct γ 2 (p + ) -∇ • γ 2 (p + ) β + E • j = 0 , (2.31) 
γ 2 (p + ) (∂ ct + β • ∇) β = -∇p + qγnE + qγnβ × B -β (∂ ct p + qγnβ • E) , (2.32)
where ∂ ct ≡ c -1 ∂ t . The electromagnetic elds are coupled to the plasma quantities through Maxwell's equations:

∇ × B = 4π s α=1 q α γ α n α β α + ∂ ct E , (2.33) ∇ × E = -∂ ct B , (2.34) 
∇

• E = 4π s α=1 q α γ α n α , (2.35) 
As already mentioned, the above mathematical system is undetermined, so that an additional closure equation should be introduced.

Moments of the Jüttner-Synge distribution

The most commonly used momentum distribution function in relativistic plasma studies is the drifting Jüttner-Synge (or Maxwell-Jüttner) distribution [START_REF] Jüttner | Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie[END_REF]:

f (p α ) = C e -µp α Λ 0 α (2.36) = C e -γµ(p 0 -βp ) , (2.37) 
where Λ β α represents the Lorentz transform from the observer frame to the proper frame of the plasma drifting at speed β in the observer frame (γ = 1/ 1 -β 2 ). Also, p 0 and p are, respectively, the energy and momentum along the boost direction, µ = 1/T is the inverse proper temperature of the background plasma, and C is a normalization constant that will be determined later on.

The drifting Jüttner-Synge distribution corresponds to thermodynamic equilibrium in the plasma frame. Its moments therefore satisfy the perfect uid conservation equations. It is convenient to rst compute them in the plasma rest frame before applying a Lorentz transform to the observer's frame. The n th -order moment reads

M α 1 ...α k = C dp p 0 p α 1 . . . p α k e -µp γ Λ 0 γ . (2.38) 

Since

dp/p 0 is a Lorentz invariant, we can contract the moments of contravariant index α n with the associated Lorentz tensor Λ βn αn , so that in the plasma frame,

Mβ 1 ...β k = C d p p0 pβ 1 . . . pβ k e -µp 0 , (2.39) 
where tilded variables are expressed in the plasma frame and C is a normalization constant. For a perfect uid model, only the two rst moments are needed. We directly see that the space components of the 4-current and o-diagonal components of the energy-momentum tensor vanish and that the diagonal terms of T ij are equal. As it is not always possible to perform 3D simulations, we express the moments in a momentum space of dimension d that will be xed afterward. Since the distribution is isotropic, we use spherical coordinates. In an Euclidean space of dimension d, the solid angle of the unit sphere S is given by S dΩ d = 2π d/2 /Γ(d/2). Therefore, the non-vanishing moments are:

j 0 = C 2π d/2 Γ(d/2) ∞ 0 dp p0 p d-1 p0 e -µp 0 , (2.40) 
T 00 = C 2π d/2 Γ(d/2) ∞ 0 dp p0 pd-1 p0 2 e -µp 0 , (2.41) 
T ii = C d 2π d/2 Γ(d/2) ∞ 0 dp p0 pd+1 e -µp 0 .
(2.42)

The change of variables p → sinh(u) yields an integrable form for these expressions given the integral denition of the n th -order modied Bessel function of the second kind:

K n (x) = √ π (x/2) n Γ(n + 1/2) ∞ 0 du sinh 2n (u) e -x cosh(u) .
(

2.43)

There result the following analytical expressions:

j 0 = C Γ(d/2 + 1) 2 (d+1)/2 √ π µ (d-1)/2 V d K d+1 2 (µ) ≡ n 0 , (2.44) 
T 00 = n 0 K d+3 2 (µ) K d+1 2 (µ) - 1 µ , (2.45) 
T ii = n 0 µ , (2.46) 
where

V d ≡ 2π d/2 dΓ(d/2)
is the volume of the unit sphere in dimension d and n 0 the proper density of the plasma. The normalization constant of the Jüttner-Synge distribution thus reads

C = n 0 V d √ π µ (d-1)/2 Γ(d/2 + 1) 2 (d+1)/2 Kd+1 2 (µ) =        n 0 2K 1 (µ) , d = 1 n 0 e µ µ 2 2π (µ+1) , d = 2 n 0 µ 4π K 2 (µ) , d = 3 (2.47)
Therefore, due to relativistic space contraction, the normalization constants of the 

w = n 0 K d+3 2 (µ) K d+1 2 (µ) .
(2.48)

The polytropic index Γ ad is obtained from the equation of state, w = n 0 +Γ ad /(Γ ad -1)P .

It reads

Γ ad = K d+3 2 (µ) -K d+1 2 (µ) Kd+3 2 (µ) -(1 + 1/µ)Kd+1 2 (µ) =                        2, (d = 1) ∧ (µ → 0) 3, (d = 1) ∧ (µ → ∞) 3/2, (d = 2) ∧ (µ → 0) 2, (d = 2) ∧ (µ → ∞) 4/3, (d = 3) ∧ (µ → 0) 5/3, (d = 3) ∧ (µ → ∞) (2.49)
where, for each dimension d, we have evaluated the cold (µ → ∞) and relativistically hot (µ → 0) limits. The above perfect uid moments can be readily inserted in the conservation equations (2.30), (2.31) and (2.32).

Shock jump conditions

As discussed in Sec. 1.3.1, a major parameter for particle acceleration is the compression ratio [START_REF] Krymskii | A regular mechanism for the acceleration of charged particles on the front of a shock wave[END_REF][START_REF] Bell | The acceleration of cosmic rays in shock fronts -I[END_REF][START_REF] Bell | The acceleration of cosmic rays in shock fronts -II[END_REF][START_REF] Blandford | Particle acceleration by astrophysical shocks[END_REF], which is obtained from the jump conditions across the shock discontinuity. While the relativistic hydrodynamic jump conditions therefore valid for unmagnetized plasmas were derived in 1948 [START_REF] Taub | Relativistic Rankine-Hugoniot Equations[END_REF], their extension to magnetized conditions was addressed a decade later only [START_REF] Akhiezer | Theory of Relativistic Magnetohydrodynamic Waves[END_REF][START_REF] Lichnerowicz | Shock waves in relativistic magnetohydrodynamics[END_REF] (see also [START_REF] Kirk | Particle acceleration and relativistic shocks[END_REF] for a more complete review).

In the following, we derive the jump conditions of a strong shock (to be dened later on) in the presence of an external magnetic eld within the framework of [START_REF] Lemoine | Corrugation Of Relativistic Magnetized Shock Waves[END_REF]. These conditions are meant to describe the transition over uid scales. The plasma can then be considered as a perfect conductor described by the ideal magnetohydrodynamics.

The electromagnetic stress tensor therefore takes the form

T αβ (EM) = b ν b ν 4π u α u β + b ν b ν 8π η αβ - b α b β 4π , (2.50) 
where we have introduced the magnetic four-vector b α = (u i B i , (B +u i B i u)/u 0 ). Equation (2.21) can also be recast as the conservation of the Hodge dual of the Faraday tensor

∂ β * F αβ = 0 , (2.51) 
where

* F αβ ≡ 1 2 αβγδ F γδ = u α b β -u β b α in the ideal MHD description. Integration
across the shock discontinuity propagating at β sh in the downstream frame leads to the following set of conservation equations:

[J α ] n α = 0 (2.52) T αβ n α = 0 (2.53) * F αβ n α = 0 (2.54)
where we have introduced the shock front normal, n α = (-γ s|d β s|d , γ s|d , 0, 0). Assuming a transverse magnetic eld of magnitude B u in the upstream medium, we rewrite the above equations as

γ u|d n u (β u|d -β s|d ) = -n d β s|d , (2.55) 
γ u|d B u (β u|d -β s|d ) = -B d β s|d , (2.56) 
γ 2 u|d w u + B 2 u 4π (β u|d -β s|d ) + β s|d p u + B 2 u 8π = -β s|d w d -p d + B 2 d 8π , (2.57) γ 2 u|d β u|d w u + B 2 u 4π (β u|d -β s|d ) + p u + B 2 u 8π = p d + B 2 d 8π , (2.58) 
where the indices u and d refer to the upstream and downstream quantities.

The present work is focused on collisionless shock waves propagating in cold (T u m), unmagnetized (B u|d = B d|d = 0) media. Taking the strong shock limit (w u = n u ) leads to the following jump conditions across the shock front:

p d n u = γ 2 u|d β u|d -β s|d , (2.59 
)

n d n u = γ u|d 1 - β u|d β s|d , (2.60) 
T d mc 2 = -γ u|d β s|d β u|d , (2.61) 
where the shock speed is given by

β s|d = - γ u|d -1 (Γ ad -1)
γ u|d β u|d .

(2.62)

Since the shock waves addressed in the following move at velocities close to the speed of light in the upstream plasma frame, the polytropic index involved in (2.62) is given by the relativistically hot formula (2.49).

Instabilities in unmagnetized shock precursors

The generation of an electromagnetic turbulence is necessary to account for the observed GRB spectra and light curves that predict a magnetic eld energy fraction of the order B ∼ 10 -2 -10 -3 . Even if the turbulence in which electrons radiate does not result from the instabilities excited in the shock precursor, the late-time X-ray observation of γ-ray burst afterglows implies a substantial amplication of the upstream magnetic eld in the shock precursor such that B > 0.2 (n u /cm -3 ) 5/8 mG [START_REF] Li | The Upstream Magnetic Field of Collisionless GRB Shocks[END_REF]. These estimates are in good agreement with ab initio simulations that predict a magnetization growing to B ∼ 10 -2 -10 -3 . Now, adiabatic amplication of the ambient magnetic eld through plasma compression across the shock front would only result in B ∼ 10 -9 [START_REF] Gruzinov | GRB phenomenology, shock dynamo, and the rst magnetic elds[END_REF],

much lower than the value inferred from observations, so that alternative generation mechanisms should be involved in initially unmagnetized plasmas. The most likely mechanisms are: (i) the Biermann battery eect induced by non-parallel temperature and density gradients; (ii) the Weibel-type current lamentation instability [START_REF] Weibel | Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution[END_REF][START_REF] Fried | Mechanism for Instability of Transverse Plasma Waves[END_REF] induced by temperature anisotropies or counterstreaming particle populations; (iii) some instability at the contact discontinuity mixing matter from the shocked unmagnetized interstellar medium with magnetized shocked ejecta. Mechanism (i) is discarded in the precursor since no misaligned gradients are expected there. Mechanism (ii), by contrast, readily arises from the relative drift between the incoming cold plasma and the hot beam of particles accelerated at the shock front. This counterstreaming conguration is illustrated in Fig. 2.3 which shows the (p x , p y ) phase space density in the precursor of a shock (as seen in the downstream frame), in which the far upstream medium drifts with a Lorentz factor γ ∞|d = 100. One clearly identies the cold plasma with overall negative velocity and the counterpropagative beam of particles with a high thermal spread.

One usually distinguishes the current lamentation instability from the Weibel instability: the former arises from temperature anisotropies while the latter is excited by relative drifts between the plasma components. These conditions for instability can be reconciled since relative drifts can be regarded as an eective temperature anisotropy in phase space, where the plasma is hotter in the direction of opposite ows. As illustrated in Fig. 2.4, a small locally periodic perturbation of the magnetic eld transverse to the ow generates current laments of opposite signs (illustrated by the color of the laments) which amplify the magnetic eld. In the following, we refer to the current lamentation instability (CFI) as a generic denomination for instabilities generating current laments with a dominant wave number oriented in the eective cold (transverse) direction. The dominance of the CFI in the near-shock precursor region will be conrmed through the 2D simulations of relativistic shocks presented in Sec. 3.2.

Varying the incident momentum ux and/or the magnetization of the medium leads to a plethora of dierent instabilities. The CFI is expected to prevail in relativistically drifting plasmas with low magnetization ( B < 10 -7 ), and to compete with currentdriven instabilities at B ≤ 10 -3 [START_REF] Pelletier | Towards Understanding the Physics of Collisionless Relativistic Shocks[END_REF]. For large values of the drifting γ-Lorentz factor (γ 10 4 ), the CFI may not have the time to develop along the precursor [START_REF] Pelletier | Towards Understanding the Physics of Collisionless Relativistic Shocks[END_REF].

Kinetic dispersion relation of a relativistic plasma

We now examine the linear stability of a relativistic, unmagnetized and uniform plasma system within a kinetic framework. To this goal, we derive the linear dispersion of electromagnetic uctuations characterized by wavevectors k of arbitrary direction relative to the average drift velocity of the plasma species.

We expand the distribution function of species α as

f α (p, x ν ) = f (0) α (p) + f (1) α (p, x ν ) , (2.63) 
where f (0) is the unperturbed distribution, and f (1) is a rst order perturbation. In- 

p α m ∂ ∂x α f (1) + q s F αβ p β ∂ ∂p α f (0) = 0 . (2.64)
Moving to the Fourier space, we obtain an expression for f (1) in term of the momentum distribution. Dening k γ = (-ω/c, k) as the 4-wavenumber, from (2.12) follows the total 4-current density perturbation: 

j (1)α = s q s dp p 0 p α f (1) s (2.65)
= i s q 2 s dp p 0 p α F αβ p β p γ m k γ ∂ ∂p α f (0) .
(2.66)

Inserting this expression into the Fourier transformed Maxwell equations yields

ik α F αβ = - 4π c j (1)β (2.67) = - 4iπ c s q 2 s dp p 0 p β F αδ p δ p γ m k γ ∂ ∂p α f (0) . (2.68)
Playing with the Bianchi identity (2.21) (which gives Maxwell-Faraday's equation), and after some algebra, we obtain the following relations:

k α F αβ = k ν k ν k 0 η βµ - k µ k β k ν k ν F 0µ , (2.69) 
F αδ p δ ∂ ∂p α f (0) = 1 k 0 p µ k α ∂ ∂p α f (0) -k ν p ν ∂ ∂p µ f (0) F 0µ .
( 

Λ βµ F 0µ = 0 , (2.71) 
where the tensor Λ αβ is dened by

Λ αβ = 4π c s e 2 s dp p 0 p α k 2 0 p β k µ -k ν p ν η βµ p γ m k γ ∂ ∂p µ f (0) - k ν k ν k 2 0 η αβ - k α k β k ν k ν . (2.72)
Since the time components of the electromagnetic tensor are F 0µ = (0, E), Eq. (2.71) can be recast as a linear system satised by the electric eld:

Λ • E = Λ ij E j = 0 .
(2.73)

The non-trivial solutions to this equation fulll det (Λ) = 0 .

(

This equation corresponds to the electromagnetic dispersion relation of a uniform unmagnetized plasma initially characterized by the distribution function f (0) . In fact, the complete linear response of the medium is enclosed in the dielectric tensor expressed in terms of the susceptibility tensor χ for each species. The response tensor can indeed be rewritten as:

Λ ij = k 2 k 2 0 k i k j k 2 -δ ij + δ ij + s χ ij s (2.75) = k 2 k 2 0 k i k j k 2 -δ ij + ij , (2.76) 
where δ ij = η ij is the Kronecker delta.

Using the above notations and assuming a gyrotropic distribution f (0) (p x , p 2 y + p 2 z ), which allows us to set k = (k x , k y , 0) without loss of generality, the linear dispersion relation is given by [START_REF] Bret | Collective electromagnetic modes for beam-plasma interaction in the whole k space[END_REF]:

k 2 0 xx -k 2 y 0 k 2 0 xy -k x k y 0 k 2 0 zz -k 2 0 k 2 0 xy + k x k y 0 k 2 0 yy -k 2 x = 0 . (2.77)
This leads to the following system of equations:

k 2 0 zz -k 2 = 0 , (2.78) k 2 0 xx -k 2 y k 2 0 yy -k 2 x -k 2 0 xy + k x k y 2 = 0 . (2.79)
To examine the stability of the plasma, we will seek temporally growing solutions to this system, i.e. characterized by k ∈ R 3 and ω ∈ C with ω > 0.

Fluid dispersion relation

Another approach to study the stability of relativistic plasmas consists of linearizing the uid equations (2.30)-(2.32), complemented by Maxwell's equations (2.33)-(2.34).

As before, each quantity is expanded as

b = b (0) + b (1) , (2.80) 
such that b (0) satises the unperturbed uid equations. Taking the adiabatic closure condition, p α ∝ n Γ ad,α α , one obtains the following set of linearized equations:

-

iωd (1) α + ik • β (0) α d (1) α + d (0) α ik • β (1) α = 0 , (2.81) 
γ (0)2 α w (0) α iω + iβ (0) α • k β (1) α + ikp (1) α -q α d (0) α E (1) -q α d (0) α β (0) α × B (1) + β (0) α q α d (0) α β (0) α • E (1) -iωp (1) α = 0 , (2.82) ik × B (1) -4π α q α d (0) α β (1) α + β (0) α d (1) α + iωE (1) = 0 , (2.83) 
ik × E (1) -iωB (1) = 0 ,

p (1) 

α + p (0) α Γ ad,α γ (0)2 α β (0) α • β (1) α - p (0) α d (0) α Γ ad,α d (1) α = 0 , (2.85) 
where

d α = d (0) α + d (1) 
α is the apparent density of species α. The dispersion relation is then given by the determinant of the linear system.

In the following, we do not intend to solve the fully kinetic dispersion relation, but rather review some general properties of the dominant instabilities arising in two-stream plasma systems. To this purpose, we will make use of a simplied dispersion relation derived from relativistic uid theory. We will show some typical uid dispersion relations that are obtained by solving, in a 2D geometry (k z = 0), a system of two counterstreaming electron-positron pair plasma. In the following part of this section, and for the sake of consistency with Fig. 2.5, the growth rates and wavenumbers appearing in the gures are normalized by the total electron plasma frequency.

Main instability classes

In beam-plasma interactions, one usually dierentiates three main classes of unstable modes, characterized by dierent orientations of the wave-vector with respect to the ow axis: lamentation (k ⊥ k ), two-stream (k ⊥ k ) and oblique (k ⊥ ∼ k ) modes. The predominance of one mode over another depends on the beam and plasma parameters such as temperatures, relative drift velocity and density ratio. In Fig. 2.5 is presented a hierarchy map delimiting the domains governed by these dierent instabilities. From this map, the lamentation and oblique modes are expected to prevail in the precursor of relativistic shocks where the beam-to-plasma density ratio is low (n b /n p 1) and the beam moves at relativistic drift velocities (γ b|p 1). In the far precursor, where the density of the beam is low, one expects to see the emergence of oblique modes whereas, as the beam density increases, the lamentation instability is predicted to dominate the dynamics.

Let us consider two pair ows drifting along the x-axis. The current lamentation instability (CFI) corresponds to purely transverse wave vectors (k x = 0). Its dispersion relation reads

xy xx -1/ζ 2 = ( xy ) 2 , (2.86)
where ζ = ω/k is the complex phase velocity. When k x = 0, the CFI modes are purely growing ( ω = 0). A weak yet nite longitudinal wavenumber (0 < k x k y ) gives rise to k x = 0, and hence a nonvanishing real phase velocity (see [START_REF] Plotnikov | Particle transport and heating in the microturbulent precursor of relativistic shocks[END_REF]). An important feature of the CFI is its dominant magnetic character (its transverse magnetic component is larger than its electric components).

As already mentioned (see Fig. 2.5), the CFI is dominant at relativistic speeds and in symmetric congurations in terms of density and temperature (n p = n b and T p = T b ). In Fig. 2.6, we show the growth rate map as a function of (k x , k y ) for two symmetric counter-propagative plasmas characterized by n b /n p = 1, k B T p = k B T b = mc 2 and γ b = γ p = 10. The polytropic index is chosen in the relativistic limit 1 , Γ ad = 4/3. As expected, the dominant instability is found to be purely transverse, leading to the formation of current laments aligned with the ows. In the cold limit, the maximum growth rate of the CFI is Γ max βω p / √ γ, where γ = 1/ 1 -β 2 is the Lorentz factor associated with the drift velocity. This growth rate is attained at a transverse wavenumber k sat ω p /c √ γ [START_REF] Bret | Collisionless shock formation, spontaneous electromagnetic uctuations, and streaming instabilities[END_REF]. Another well-known feature of the CFI is its stabilization at high temperatures, as illustrated in Fig. 2.7. The linear properties of the CFI are examined in great detail within a kinetic framework in App. A.2.

The nonlinear saturation of the CFI occurs when the distribution is driven away from its CFI-unstable conguration. Three main saturation mechanisms have been proposed

(see [START_REF] Mart'yanov | Saturation of relativistic Weibel instability and the formation of stationary current sheets in collisionless plasma[END_REF] and references therein). A rst estimate of the saturated magnetic eld strength, B sat , is given by equating the cyclotron frequency in the saturated magnetic eld with the CFI growth rate:

eB sat γmc ∼ Γ max .
(2.87)

If this condition is fullled, the particles perform a Larmor gyration during one e-fold of the instability.

A second estimate of B sat follows from assuming that the transverse bounce fre- 1 Taking the exact value of the polytropic index computed from (2.49) does not aect signicantly the result. The other surface delimits the region where lamentation prevails in the high-n b /n p limit, so that oblique modes dominate in most of parameter space. The beam is drifting in a plasma of 5 keV temperature. The color represents the value of the growth rate normalized by the total electron plasma frequency. Taken from [START_REF] Bret | Multidimensional electron beamplasma instabilities in the relativistic regime[END_REF]. quency of the particles inside a magnetic lament is comparable with Γ, leading to Increasing the temperature leads to a quenching of the CFI modes at high wavenumbers.

eB sat γmc ∼ Γ 2 max kv .
The polytropic index is computed from (2.49).

A third estimate can be obtained by assuming that the inductive electric eld is strong enough to signicantly impact the particle momentum:

eE sat Γ max ∼ eB sat kc ∼ γmv .
(2.89)

The saturated magnetic eld is then estimated to be the minimum value of these three estimates. Assuming a monochromatic k-spectrum (a rough approximation), the saturated system can be modeled as a periodic comb of current laments, characterized by a quasi-equilibrium between magnetic and thermal pressure. Such a picture will be further developed in Chap. 4 where it will serve as a basis for the investigation of the nonlinear stage of the CFI.

When the density ratio between the counterstreaming plasmas signicantly departs from unity, oblique modes (with both k x and k y = 0) prevail over the CFI. While the CFI is mainly magnetic in nature, the oblique modes are essentially electrostatic (i.e., with an electric eld approximately parallel to their wavenumber), with fastest-growing wavenumbers k x ∼ k y . The dominant mode has a typical maximum growth rate scaling as Γ max ∼ (n b /γ b n p ) 1/3 [101]. This class of unstable modes is exemplied in Fig. As a result of this scaling, these modes quickly become subdominant once the Lorentz factor becomes larger than unity. An example of a system ruled by two-stream modes is displayed in Fig. 2.9. Here, the density ratio is set to n b /n p = 0.5, the Lorentz factor of the beam to γ b = 2 and the background plasma is at rest. The dominant modes are found around (k x , k y ) = (1.4, 0) ω p /c. These modes are not expected to be of much inuence in the precursor of relativistic shocks, which, by denition, involve plasmas counterstreaming at velocities close to c. 

Chapter3

Numerical simulations of relativistic shocks

Finite Dierence Time Domain PIC method

The rst attempts at a self-consistent numerical treatment of plasmas date back to the pioneering works of Buneman in 1959 [START_REF] Buneman | Dissipation of Currents in Ionized Media[END_REF] and Dawson in 1962 [START_REF] Dawson | One-Dimensional Plasma Model[END_REF], using a molecular dynamics approach on a 1D space containing ∼ 10 2 particles followed over ∼ 10 2 time steps. This method was quickly replaced by schemes based on a discretized electromagnetic eld on cells allowing for O(αN part + βN cells ) scaling. Such particlein-cell (PIC) codes were initially able to solve systems containing around 10 3 -10 4 particles. A decade later, the fundamentals of the PIC technique were settled and major text books were published in the 1980s [START_REF] Birdsall | Plasma Physics via Computer Simulation[END_REF].

The access to high-performance-computing facilities together with the development of highly-parallelized, robust numerical methods for PIC simulations, allowed for a tremendous step forward in the comprehension of relativistic collisionless shocks. Fundamentally, the PIC method consists in a Lagrangian description of a collection of charged particles subject to an electromagnetic eld solved in an Eulerian framework.

The coupling between these two frameworks is represented in Fig. 3.1. At each time iteration, the particles' current density is deposited on a grid where the discretized Maxwell's equations are resolved. The elds are then interpolated at the particles' positions, which are then pushed by solving the equations of motion. Here, we present the fundamentals of the PIC method. In order to solve numerically the Klimontovich equation (2.4) without having to deal with a unmanageable number of computational agents, the PIC method emerged as the best compromise between numerical cost and precision. In PIC codes, sets of particles clustered in (x, p)-space are represented as quasi-particles with nite extension and compact support. Then, the Klimontovich distribution function (2.1) becomes

F α = Nα j=1 w α S x -x α j (t) δ 3 p -p α j (t) , (3.1) 
where S is the form factor verifying dxS(x) = 1, and w α is the weight attributed to the cluster of particles. The form factor S is a spline of order n (typically n ≤ 4). As its support tends to zero, the shape function converges to the Dirac delta distribution δ 3 xx α j (t) , and one recovers (2.1). By taking the time derivative of (3.1) and using the symmetries of the form factor, we nd that (3.1) satises the Klimontovich equation (2.4). In this scheme, the quasi-particles follow the equation of motion (2.3) where the Lorentz force results from the elds interpolated at their positions through the form factor:

E(x α j ) = dxS(x -x α j )E(x) , (3.2) 
B(x α j ) = dxS(x -x α j )B(x) .

(3.3)
It is worth noting that dierent form factors could be used to interpolate the discretized eld components to particles [START_REF] Godfrey | Numerical stability of relativistic beam multidimensional PIC simulations employing the Esirkepov algorithm[END_REF], and that the chosen method can strongly aect the numerical heating inherent to the PIC method [START_REF] Sokolov | Alternating-order interpolation in a charge-conserving scheme for particle-in-cell simulations[END_REF].

The equations of motion of the quasi-particle are usually solved using a simple second-order leap-frog algorithm. The most common one is the Boris pusher [START_REF] Boris | Relativistic plasma simulation-optimization of a hybrid code[END_REF]:

x n+1 -x n ∆t = p n+1/2 m α γ n+1/2 (3.4) p n+1/2 -p n-1/2 ∆t = Q α E n + p n+1/2 + p n-1/2 2m α γ n × B n+1.2 + B n-1/2 2 . (3.5)
In some peculiar congurations, for instance when the electromagnetic components of the Lorentz force cancel out, the Boris pusher becomes inaccurate. This shortcoming has been corrected in the pusher method proposed by J. L. Vay [START_REF] Vay | Simulation of beams or plasmas crossing at relativistic velocity[END_REF].

While the particles are treated in a Lagrangian framework, an Eulerian description is employed for the electromagnetic elds, which are resolved on a Cartesian mesh through nite dierence time domain integration (FDTD). The most common electromagnetic solver is the Yee scheme [START_REF] Yee | Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media[END_REF]. To introduce it in full generality, it is convenient to dene the following three-dimensional, nite-dierence operator D acting on a vector-valued quantity G:

D t G| n i,j,k = G| n+1/2 i,j,k -G| n-1/2 i,j,k ∆t , (3.6) 
D x G| n i,j,k = G| n i+1/2,j,k -G| n i-1/2,j,k ∆x , (3.7) 
D y G| n i,j,k = G| n i,j+1/2,k -G| n i,j-1/2,k ∆y , (3.8) 
D z G| n i,j,k = G| n i,j,k+1/2 -G| n i,j,k-1/2
∆z .

(3.9)

The Maxwell-Ampère and Maxwell-Faraday equations therefore read

D t B = -∇ × E , (3.10) 
D t E = c 2 ∇ × B -4πj .

(3.11)

Using this scheme, the Courant-Friedrichs-Levy (CFL) condition for numerical stability is simply

1 c 2 ∆t 2 > j 1 ∆x 2 j , (3.12)
where the sum runs over the space coordinates of the system.

For a simple description of the Yee scheme, let us consider a two-dimensional plasma living in the (x, y)-plane. The transverse electric (k • E = 0) and magnetic (k • B = 0) modes which, respectively, consist of the (E z , B x , B y ) and (E x , E y , B z ) elds, can be solved independently. For the transverse magnetic modes, the system (3.10) and (3.11) writes:

B z | n+1/2 i,j -B z | n-1/2 i,j ∆t = - E y | n i+1/2,j -E y | n i-1/2,j ∆x + E x | n i,j+1/2 -E x | n i,j-1/2 ∆y , (3.13) 
E x | n+1 i,j+1/2 -E x | n i,j+1/2 ∆t = B z | n+1/2 i,j+1 -B z | n+1/2 i,j ∆y -J x | i,j+1/2 , (3.14) 
E y | n+1 i+1/2,j -E y | n i+1/2,j ∆t = B z | n+1/2 i+1,j -B z | n+1/2 i,j ∆x -J y | i+1/2,j . (3.15) 
Due to the adopted centered space-time dierencing and the interplay between spatial and temporal numerical derivatives, the electric and magnetic elds are discretized at integer (n) and half-integer (n + 1/2) time-steps.

PIC codes are subject to the electromagnetic CFL condition (3.12) that imposes a threshold on the integration time over mesh size ratio ∆t/∆x typically of the order of unity. Another stability constraint originates from the need of resolving the plasma frequency of the system, i.e. ∆t 1.5 ω -1 p [108]. PIC codes also exhibit numerical artifacts intrinsic to their mixed Lagrangian/Eulerian character. That is to say, the coupling between the particles and the discretized elds generates discrepancies in the Fourier space domain that is, by construction, unbounded for the particles and bounded for the elds. The dierence in representation of the same physical quantities for the elds and the particles induces numerical poles in the numerical dispersion relation, which may resonate with physical modes [START_REF] Godfrey | Numerical Cherenkov instabilities in electromagnetic particle codes[END_REF][START_REF] Godfrey | Canonical momenta and numerical instabilities in particle codes[END_REF]. There result spurious growing modes, all the more pronounced in the case of plasmas drifting at relativistic speeds across the grid.

Ecient ltering methods of this numerical instability have been proposed in the framework of simulation studies of intense laser-plasma interactions, notably those based on the boosted frame technique. When a short laser pulse or beam propagates inside a plasma the computational time can be considerably reduced by making use of Lorentz transform to the rest frame of the laser/beam where the spatiotemporal distances are reduced [START_REF] Vay | Noninvariance of Space-and Time-Scale Ranges under a Lorentz Transformation and the Implications for the Study of Relativistic Interactions[END_REF]. In this frame, the relativistically drifting background plasma excites a spurious short wavelength instability known as the numerical Cerenkov (or beam-grid) instability. Since a similar conguration arises in relativistic shock simulations, one can make use of the same set of mitigating techniques. In the following, we present such techniques allowing shock simulations to be performed over large space-time scales.

PIC simulation of relativistic astrophysical shocks

The rst PIC simulations addressing the generation of the Weibel instability in (mildly)relativistic plasma collisions of astrophysical relevance date from 1998 [START_REF] Kazimura | Generation of a Small-Scale Quasi-Static Magnetic Field and Fast Particles during the Collision of Electron-Positron Plasma Clouds[END_REF], in the lineage of the many related studies performed in the laser-plasma interaction community. Yet, given their too compact dimensions (6.6c/ω p in the transverse direction and 106.6c/ω p in the longitudinal one), these simulations were unable to describe properly the nonlinear saturation of the instability, and therefore its evolution into a collisionless shock. In 2003, PIC simulations probed for the rst time the nonlinear stage of the Weibel instability in a 3D periodic geometry [START_REF] Fonseca | Threedimensional Weibel instability in astrophysical scenarios[END_REF], showing the magnetic eld decay predicted in [START_REF] Gruzinov | GRB phenomenology, shock dynamo, and the rst magnetic elds[END_REF], and recovering the estimated magnetization level B ∼ 10 -2 , but still under mildly relativistic conditions (γ 1.17). At the same time were performed the rst 2D simulations of interpenetrating plasmas with open boundaries [START_REF] Nishikawa | Particle Acceleration in Relativistic Jets Due to Weibel Instability[END_REF][START_REF] Frederiksen | Magnetic eld generation in collisionless shocks: Pattern growth and transport[END_REF][START_REF] Spitkovsky | Simulations of relativistic collisionless shocks: shock structure and particle acceleration[END_REF]], yet on too short integration times to form a shock. Numerical evidence for self-consistent shock formation was provided shortly after in [START_REF] Kato | Relativistic collisionless shocks in unmagnetized electron-positron plasmas[END_REF][START_REF] Kato | Nonrelativistic Collisionless Shocks in Unmagnetized Electron-Ion Plasmas[END_REF][START_REF] Spitkovsky | On the Structure of Relativistic Collisionless Shocks in Electron-Ion Plasmas[END_REF][START_REF] Spitkovsky | Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last?[END_REF], the latter work demonstrating, in addition, the occurrence of Fermi acceleration. These studies, which made use of a mirror technique to alleviate the computational cost, showed that observing the formation of a nonthermal particle spectrum requires integration times of 10 3 -10 4 ω -1 i (ω i is the plasma frequency of the heavier species), while the numerical resolution is xed by the lighter species, ∆x ∼ c/ω e . Besides these constraints, relativistic shock simulations turn out to be hampered by the aforementioned grid-beam instability. In the following subsection, we identify the algorithms used in our simulations to quench this instability over 10 4 time steps.

Numerical techniques in the relativistic regime

The Cole-Karkkainen Maxwell solver

A lot of work has been invested in previous years in developing new electromagnetic schemes that aim to relax the drastic CFL condition of the Yee solver (3.12) and minimize numerical dispersion [START_REF] Greenwood | On the elimination of numerical Cerenkov radiation in PIC simulations[END_REF][START_REF] Cowan | Generalized algorithm for control of numerical dispersion in explicit timedomain electromagnetic simulations[END_REF][START_REF] Lehe | Numerical growth of emittance in simulations of laser-wakeeld acceleration[END_REF][START_REF] Sokolov | Alternating-order interpolation in a charge-conserving scheme for particle-in-cell simulations[END_REF]. Among those is the Cole-Karkkainen scheme [START_REF] Kärkkäinen | Low-dispersion wake eld calculation tools[END_REF], which we have extensively employed in our simulations. Previous tests were made with the Lehe solver [START_REF] Lehe | Numerical growth of emittance in simulations of laser-wakeeld acceleration[END_REF] combined with Friedman's ltering technique [START_REF] Greenwood | On the elimination of numerical Cerenkov radiation in PIC simulations[END_REF].

Yet, the Lehe scheme is, by construction, superluminal, and therefore led to the development of a nonphysical electromagnetic precursor upstream of the shock, while its combination with the Friedman ltering method was harmful at long times because it caused progressive cooling and compression of the downstream (shocked) plasma.

Following [START_REF] Kärkkäinen | Low-dispersion wake eld calculation tools[END_REF][START_REF] Vay | Numerical methods for instability mitigation in the modeling of laser wakeeld accelerators in a Lorentz-boosted frame[END_REF], we consider the general electromagnetic explicit solver:

D t B = -∇ * × E , (3.16) D t E = c 2 ∇ × B -4πj , (3.17) ∇ • E = 4πρ , (3.18) ∇ * • B = 0 , (3.19)
where D t and D x,y,z are dened as in Eqs. (3.6)-(3.9), and we have introduced

D t G| n i,j,k = G| n+1/2 i,j,k -G| n-1/2 i,j,k ∆t , (3.20) 
D x G| n i,j,k = G| n i+1/2,j,k -G| n i-1/2,j,k ∆x , (3.21) 
D * x = (α + βS 1 x + γS 2 x )D x , (3.22) 
with

S 1 x G| n i,j,k = G| n i,j+1/2,k + G| n i,j-1/2,k + G| n i,j,k+1/2 + G| n i,j,k-1/2 (3.23) S 2 x G| n i,j,k = G| n i,j+1/2,k+1/2 + G| n i,j-1/2,k+1/2 + G| n i,j+1/2,k+1/2 + G| n i,j-1/2,k-1/2 . (3.24) 
In the y and z directions, the operators are obtained by cyclic permutation of the index. In this general picture, the scheme coecients are constrained by α+4β +4γ = 1. When α = 1 and β = γ = 0, we retrieve the Yee solver.

The numerical stability of the solver is ensured provided [START_REF] Vay | Numerical methods for instability mitigation in the modeling of laser wakeeld accelerators in a Lorentz-boosted frame[END_REF] c∆t c = min ∆x, ∆y, ∆z, 1/ (α -4γ) max 1 ∆x 2 + 1 ∆y 2 ,

1 ∆x 2 + 1 ∆z 2 , 1 ∆y 2 + 1 ∆z 2 , 1/ (α -4β + 4γ) 1 ∆x 2 + 1 ∆y 2 + 1 ∆z 2 , (3.25) 
where ∆t c is the critical time-step above which the numerical scheme is unstable. The Cole-Karkkainen (CK) solver [START_REF] Kärkkäinen | Low-dispersion wake eld calculation tools[END_REF] corresponds to the coecients α = 7/12, β = 1/12 and γ = 1/48 with cubic cells (∆x = ∆y = ∆z). Injecting these into (3.25) gives the very convenient CFL condition c∆t ≤ ∆x. Figure (3.2) plots the numerical error on the phase velocity of an electromagnetic plane wave of wavelength λ for dierent resolutions N λ = λ/∆x, as obtained using the Yee and CK schemes. The enlarged stencil of the CK scheme allows it to be dispersionless along the main axis. Fig. 3.3 displays the nodes required to compute the nite dierence derivative in the z-direction with the enlarged stencil of the CK scheme. Taken from [START_REF] Kärkkäinen | Low-dispersion wake eld calculation tools[END_REF]. 

The Esirkepov current deposition algorithm

In the original PIC method [START_REF] Birdsall | Plasma Physics via Computer Simulation[END_REF], the charge (ρ) and current (j) densities were projected onto the grid using the instantaneous particles' positions and momenta, and, consequently, did not verify the charge conservation equation. In turn, the electric eld advanced through the Maxwell-Ampère equation 3.11 (involving j) did not satisfy the Maxwell-Gauss equation (involving ρ), and so a correction was necessary, requiring a Poisson-type equation to be solved at each time step. This problem was solved bt T.

Esirkepov who developed a charge-conserving current deposition scheme, suited to arbitrary form factor [START_REF] Esirkepov | Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor[END_REF]. Its principle is as follows. The continuity equation expressed in terms of the nite dierence operators

D t ρ + ∇ • j = 0 (3.26)
couples the charge and current densities. The charge density ρ is deposited on a cell labeled (i, j, k) of coordinates X i,j,k by adding the weighted contribution of the surrounding particles at positions x α :

ρ i,j,k = α Q α S(X i,j,k -x α ) . (3.27)
The continuity equation applied to the macroparticle α can be expressed as

D x J x|α i,j,k = -q W x|α i,j,k ∆t , (3.28) 
D y J y|α i,j,k = -q W y|α i,j,k ∆t , (3.29) 
D z J z|α i,j,k = -q W z|α i,j,k ∆t , (3.30) 
where the vector W α is related to the charge density at two successive time steps:

W 1 i,j,k + W 2 i,j,k + W 3 i,j,k = 1 Q ρ n+1 i,j,k -ρ n i,j,k
= S i,j,k (x + dx, y + dy, z + dz) -S i,j,k (x, y, z) .

(3.31)

Here, (x + dx, y + dy, z + dz) denotes the particle position at time n + 1. It has been demonstrated [START_REF] Esirkepov | Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor[END_REF] that W can be uniquely expanded as

W = 8 j=1 c j S j , (3.32) 
where the S j functions are dened as S 1 (x, y, z) where the grid indices have been dropped. The coecients c j take the values:

(3.
C =      -1/3 -1/3 -1/3     1/3 -1/6 -1/6     -1/6 1/3 -1/6     -1/6 -1/6 1/3     -1/3 1/6 1/6     1/6 -1/3 1/6     1/6 1/6 -1/3     1/3 1/3 1/3      . (3.37)
Knowing W α , one can readily solve Eqs. (3.28)-(3.30) to obtain j α . Adding the contributions of all particles on each node yields the total current density needed to advance the electric eld from Maxwell-Ampère's equation.

The Godfrey-Vay lter

This subsection is devoted to the specic ltering method developed by B. B. Godfrey and J.-L. Vay in [START_REF] Godfrey | Suppressing the Numerical Cherenkov Instability in FDTD PIC Codes[END_REF] to quench the grid-beam instability. This lter originates from the analysis of the numerical dispersion relation of a cold plasma moving relativistically along the grid axis, its current density being deposited using Esirkepov's algorithm [START_REF] Esirkepov | Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor[END_REF].

The Fourier representation of Eqs. Quantities in brackets correspond to their nite dierence representation in Fourier space. For instance,

[k] = k sinc k ∆t 2 .

(3.39)

We then rewrite (3.32) in Fourier space by making use of the shift theorem

F {S j (x + β j c∆t)}(k) = e -ik•β j c∆t S 1 , (3.40) 
where β j = dx j /c∆t is the plasma drift speed along the direction determined by the corresponding form factor S j and S 1 the Fourier transform of S 1 . Equation (3.32) then becomes in Fourier space

W = S 1 8 j=1
c j e -ik•β j c∆t .

(3.41)

A less compact, but more practical, expression of this relation is given in [START_REF] Godfrey | Numerical stability of relativistic beam multidimensional PIC simulations employing the Esirkepov algorithm[END_REF]. Inserting (3.38) in (3.41) gives the contribution of a single macro-particle to the current density:

J = i ∆t [k] S 1 8 j=1
c j e -ik•β j c∆t .

(3.42)

Following the same procedure as in [START_REF] Godfrey | Canonical momenta and numerical instabilities in particle codes[END_REF], the total current is then obtained by inserting (3.42) in the linearized Vlasov equation:

j = mx,my,mz F • ∂ p J csc ω -k • β ∆t 2 ∆t 2 f d 3 β , (3.43) 
where k x,y,z = k x,y,z +m x,y,z 2π/∆x, y, z and F is the interpolated Lorentz force. The following analysis is constrained to 2D congurations for tractability. Substituting (3.43) into Maxwell-Ampère's equation gives the dispersion relation

A 0 + n mx A 1 csc ω -k x β x ∆t 2 + n mx A 2 csc 2 ω -k x β x ∆t 2 = 0 , (3.44)
where n is the proper density of the beam. The corresponding beam-grid resonances for m = -3, ..., 3 are represented in Fig. 3.4, where k x is the longitudinal wavenumber and k y the transverse one. The coecient A 0 , A 1 and A 2 depend on (k x ,k y ,ω) as detailed in [START_REF] Godfrey | Numerical stability of relativistic beam multidimensional PIC simulations employing the Esirkepov algorithm[END_REF]. The rst coecient A 0 is the vacuum dispersion function,

A 0 = [ω] 2 -D * x [k y ] 2 -D * y [k x ] 2 .
(3.45)

Using the CK scheme with ∆x = ∆y, the dierential operators D * j read

D * j = 1 - 1 2 sin 2 k j ∆x j 2 .
(3.46)

The A 1 coecient has been shown to be of little interest for the beam-grid instability, in contrast to A 2 , which reads

A 2 = D y ∆t 2 my k y S 1 S Ey [ω] - S Bz [k x ] cos ω -k x ∆t 2 sin k x ∆t 2 , (3.47) 
where S Bz and S Ey are the Fourier-transformed electric and magnetic-eld interpolation functions. The limit of innite resolution yields A 0 + n = 0, as expected. For a nite mesh size, the m x = 0 terms constitute numerical artifacts. The coupling between these unphysical modes and the physical light modes given by Eq (3.45) generates resonances generally referred to as the resonant Cerenkov instability. These modes arise at large wave numbers, so that a simple binomial lter (see below) can be used to quench them.

Another class of unphysical growing modes appear at lower wavenumbers because of Figure 3.4: Mapping in (k z ,k x )-space of some beam-grid resonance branches computed from (3.44) for the Cole-Karkainnen solver with ∆t = 0.7∆z. In this case, the plasma is drifting in the z-directions. Taken from [START_REF] Godfrey | Numerical stability of relativistic beam multidimensional PIC simulations employing the Esirkepov algorithm[END_REF].

the mismatch between the interpolated transverse electric and magnetic elds, 

S Ey [ω] ω=k x - S Bz [k x ] = 0 . ( 3 

The binomial ltering

This ltering method considerably reduces the impact of the resonant numerical gridbeam instability that the Godfrey-Vay ltering method misses. The idea is to apply a wideband lowpass ltering on the charge or current densities [START_REF] Birdsall | Plasma Physics via Computer Simulation[END_REF][START_REF] Vay | Numerical methods for instability mitigation in the modeling of laser wakeeld accelerators in a Lorentz-boosted frame[END_REF]. We make use of a 3-point digital ltering on the current

φ J j = αφ J j + β(φ J j-1 + φ J j+1 ) , (3.49) 
which corresponds to binomial ltering if α = 0.5 and β = (1-α)/2. In order to quantify the eciency of this lter, it is common to evaluate the gain g αβ (k), which describes how the harmonic mode φ = exp(ikx) transforms under ltering in φ J = g αβ (k) exp(ikx).

One nds [START_REF] Vay | Numerical methods for instability mitigation in the modeling of laser wakeeld accelerators in a Lorentz-boosted frame[END_REF] g αβ (k) = α + 2β cos(k∆x)

(3.50) 1 -β (k∆x) 2 + O(k 4 ) . (3.51)
For n successive applications of the lter, the gain at wavenumber k is g α 1 ,...,αn,β 1 ,...,βn = n j=1 g α j β j (k)

(3.52) 1 - n j=1 β j (k∆x) 2 + O(k 4 ) . (3.53)
The cuto in k can be sharpened through an additional ltering step whereby the (α n+1 , β n+1 ) coecients are taken to be

α n+1 = α c = n 2 + 1 , (3.54) 
β n+1 = β c = - n 4 . (3.55) 
The gain of this compensated binomial lter is

g α 1 ,...,αn,β 1 ,...,βn = g n αβ (k) • g αcβc (k) (3.56) 1 + O(k 4 ) (3.57)
Fig (3.5) shows the eects of multiple repeated applications of the binomial ltering and the benet of the compensator (c αc ≡ g αcβc ).

. and c its associated compensator g αcβc . From [START_REF] Vay | Numerical methods for instability mitigation in the modeling of laser wakeeld accelerators in a Lorentz-boosted frame[END_REF] Chapter4 Nonlinear evolution of the current lamentation instability

The current lamentation instability (CFI) emerges as an essential process in various elds of plasma physics. It develops in anisotropic plasmas (where it is usually referred to as the Weibel instability) [START_REF] Weibel | Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution[END_REF][START_REF] Davidson | Nonlinear Development of Electromagnetic Instabilities in Anisotropic Plasmas[END_REF] or multi-stream plasmas [START_REF] Fried | Mechanism for Instability of Transverse Plasma Waves[END_REF][START_REF] Califano | Spatial structure and time evolution of the Weibel instability in collisionless inhomogeneous plasmas[END_REF], giving rise to kinetic-scale current laments of alternating sign, aligned along the direction of larger temperature or drift. The associated electromagnetic uctuations can cause ecient particle scattering and deceleration [START_REF] Lee | Electromagnetic instabilities, lamentation, and focusing of relativistic electron beams[END_REF][START_REF] Honda | Collective stopping and ion heating in relativistic-electron-beam transport for fast ignition[END_REF][START_REF] Gedalin | Ecient electron heating in relativistic shocks and gamma-ray-burst afterglow[END_REF], which makes the CFI a likely key player in the formation of astrophysical collisionless shocks [START_REF] Moiseev | Collisionless shock waves in a plasma in a weak magnetic eld[END_REF][START_REF] Medvedev | Generation of Magnetic Fields in the Relativistic Shock of Gamma-Ray Burst Sources[END_REF][START_REF] Lemoine | Dispersion and thermal eects on electromagnetic instabilities in the precursor of relativistic shocks[END_REF][START_REF] Pelletier | Towards Understanding the Physics of Collisionless Relativistic Shocks[END_REF]. There, the CFI arises from the interaction of a beam of energized particles issued from a central engine (or reected o the shock front) with the ambient (or upstream) plasma.

First-principles kinetic simulations [START_REF] Frederiksen | Magnetic eld generation in collisionless shocks: Pattern growth and transport[END_REF][START_REF] Kato | Relativistic collisionless shocks in unmagnetized electron-positron plasmas[END_REF][START_REF] Spitkovsky | Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last?[END_REF][START_REF] Keshet | Magnetic eld evolution in relativistic unmagnetized collisionless shocks[END_REF][START_REF] Martins | Ion dynamics and acceleration in relativistic shocks[END_REF][START_REF] Nishikawa | Weibel instability and associated strong elds in a fully three-dimensional simulation of a relativistic shock[END_REF][START_REF] Sironi | The Maximum Energy of Accelerated Particles in Relativistic Collisionless Shocks[END_REF][START_REF] Ardaneh | Collisionless Weibel Shocks and Electron Acceleration in Gamma-Ray Bursts[END_REF] show that an electromagnetic barrier then develops, which dissipates the upstream kinetic energy and promotes Fermi acceleration of the suprathermal particles needed to sustain the CFI upstream of the shock. Moreover, the synchrotron emission of the energized particles in the downstream magnetic turbulence is believed to account for the broadband photon spectra of various powerful astrophysical sources [START_REF] Sironi | Synthetic Spectra from Particle-In-Cell Simulations of Relativistic Collisionless Shocks[END_REF][START_REF] Frederiksen | Radiation spectral synthesis of relativistic lamentation[END_REF][START_REF] Keenan | Particle transport and radiation production in sub-larmor-scale electromagnetic turbulence[END_REF]. The Weibel instability also appears to be inuential in magnetic reconnection physics, by controling the current layer dynamics in magnetized electron-positron (e -e + ) pair plasmas [START_REF] Swisdak | Development of a turbulent outow during electron-positron magnetic reconnection[END_REF].

On the laboratory side, the CFI plays a major role in particle beam [START_REF] Molvig | Filamentary instability of a relativistic electron beam[END_REF][START_REF] Lee | Electromagnetic two-stream and lamentation instabilities for a relativistic beam-plasma system[END_REF][START_REF] Allen | Experimental Study of Current Filamentation Instability[END_REF] and laser-plasma experiments, be it in the context of inertial connement fusion [START_REF] Ramani | Heat ux reduction by electromagnetic instabilities[END_REF][START_REF] True | Weibel instability in the spherical corona of a laser fusion target[END_REF][START_REF] Epperlein | The collisional Weibel Instability of a laser heated plasma slab[END_REF][START_REF] Masson-Laborde | Evolution of the stimulated Raman scattering instability in two-dimensional particle-in-cell simulations[END_REF] or relativistic laser-plasma interactions [START_REF] Ruhl | 3D kinetic simulation of super-intense laser-induced anomalous transport[END_REF][START_REF] Sentoku | Anomalous Resistivity Resulting from MeV-Electron Transport in Overdense Plasma[END_REF][START_REF] Tatarakis | Propagation Instabilities of High-Intensity Laser-Produced Electron Beams[END_REF][START_REF] Wei | Observations of the lamentation of high-intensity laser-produced electron beams[END_REF][START_REF] Adam | Dispersion and transport of energetic particles due to the interaction of intense laser pulses with overdense plasmas[END_REF][START_REF] Debayle | Divergence of laser-driven relativistic electron beams[END_REF][START_REF] Mondal | Direct observation of turbulent magnetic elds in hot, dense laser produced plasmas[END_REF][START_REF] Quinn | Weibel-induced lamentation during an ultrafast laser-driven plasma expansion[END_REF]. In the latter case, copious numbers of fast electrons are driven by the laser pulse into the bulk plasma, where they fragment into small-scale magnetic laments.

The scatterings undergone by the fast electrons can lead to large angular divergence, and hence hamper applications involving high electron ux densities, such as the fast ignition scheme [START_REF] Tabak | Ignition and high gain with ultrapowerful lasers[END_REF][START_REF] Robinson | Theory of fast electron transport for fast ignition[END_REF] or ion acceleration [START_REF] Göde | Relativistic Electron Streaming Instabilities Modulate Proton Beams Accelerated in Laser-Plasma Interactions[END_REF][START_REF] Scott | Diagnosis of Weibel instability evolution in the rear surface density scale lengths of laser solid interactions via proton acceleration[END_REF]. On the other hand, the CFI can be purposefully triggered in high-energy laser-driven plasma collisions [START_REF] Drake | Design considerations for unmagnetized collisionlessshock measurements in homologous ows[END_REF][START_REF] Fox | Filamentation instability of counterstreaming laser-driven plasmas[END_REF][START_REF] Huntington | Observation of magnetic eld generation via the Weibel instability in interpenetrating plasma ows[END_REF][START_REF] Ruyer | Analytical Predictions of Field and Plasma Dynamics during Nonlinear Weibel-Mediated Flow Collisions[END_REF] or relativistic-intensity laser-plasma interactions [START_REF] Fiuza | Weibel-Instability-Mediated Collisionless Shocks in the Laboratory with Ultraintense Lasers[END_REF][START_REF] Ruyer | Weibel-mediated collisionless shocks in laser-irradiated dense plasmas: Prevailing role of the electrons in generating the eld uctuations[END_REF][START_REF] Sarri | Generation of neutral and high-density electron-positron pair plasmas in the laboratory[END_REF][START_REF] Lobet | Ultrafast Synchrotron-Enhanced Thermalization of Laser-Driven Colliding Pair Plasmas[END_REF][START_REF] Warwick | Experimental observation of a current-driven instability in a neutral electron-positron beam[END_REF], designed as testbeds for astrophysical shock models.

In past decades, the linear theory of the CFI has been extensively studied in various parameter ranges, using uid or kinetic approaches, whether relativistic or not [START_REF] Davidson | Nonlinear Development of Electromagnetic Instabilities in Anisotropic Plasmas[END_REF][START_REF] Yang | Weibel instability in relativistically hot magnetized electron-positron plasmas[END_REF][START_REF] Califano | Spatial structure and time evolution of the Weibel instability in collisionless inhomogeneous plasmas[END_REF][START_REF] Silva | On the role of the purely transverse Weibel instability in fast ignitor scenarios[END_REF][START_REF] Schaefer-Rols | The relativistic kinetic Weibel instability: General arguments and specic illustrations[END_REF][START_REF] Yoon | Relativistic Weibel instability[END_REF][START_REF] Bret | How really transverse is the lamentation instability?[END_REF][START_REF] Achterberg | The Weibel instability in relativistic plasmas. I. Linear theory[END_REF][START_REF] Cottrill | Kinetic and collisional eects on the linear evolution of fast ignition relevant beam instabilities[END_REF][START_REF] Hao | Plasma thermal eect on the relativistic current-lamentation and two-stream instabilities in a hot-beam warm-plasma system[END_REF][START_REF] Bret | Multidimensional electron beamplasma instabilities in the relativistic regime[END_REF]. Its nonlinear evolution has been mostly investigated using particle-in-cell (PIC) kinetic simulations, showing that the earlytime instability growth is generally arrested by magnetic trapping inside the laments [START_REF] Davidson | Nonlinear Development of Electromagnetic Instabilities in Anisotropic Plasmas[END_REF][START_REF] Wallace | Collisional eects on the Weibel instability[END_REF][START_REF] Yang | Evolution of the Weibel instability in relativistically hot electron-positron plasmas[END_REF][START_REF] Califano | Kinetic saturation of the Weibel instability in a collisionless plasma[END_REF][START_REF] Kato | Saturation mechanism of the Weibel instability in weakly magnetized plasmas[END_REF][START_REF] Okada | Saturated magnetic elds of Weibel instabilities in ultraintense laser-plasma interactions[END_REF][START_REF] Kaang | Nonlinear saturation of relativistic Weibel instability driven by thermal anisotropy[END_REF][START_REF] Bret | Collisionless shock formation, spontaneous electromagnetic uctuations, and streaming instabilities[END_REF], or quasilinear heating in the weak-growth limit [START_REF] Park | Energy transfer and magnetic eld generation via ion-beam driven instabilities in an electron-ion plasma[END_REF][START_REF] Pokhotelov | Quasi-linear dynamics of Weibel instability[END_REF]. The evolution of the ensemble of magnetic laments that are formed following this primary saturation is, however, still an open problem. PIC simulations performed in the plane normal to the plasma ow indicate that the instability dynamics becomes governed by successive coalescences between imperfectly screened laments [START_REF] Lee | Electromagnetic instabilities, lamentation, and focusing of relativistic electron beams[END_REF][START_REF] Honda | Collective stopping and ion heating in relativistic-electron-beam transport for fast ignition[END_REF][START_REF] Sakai | Ion acceleration, magnetic eld line reconnection, and multiple current lament coalescence of a relativistic electron beam in a plasma[END_REF][START_REF] Silva | Interpenetrating Plasma Shells: Near-Equipartition Magnetic Field Generation and Nonthermal Particle Acceleration[END_REF][START_REF] Jaroschek | Ultrarelativistic Plasma Shell Collisions in γ-Ray Burst Sources: Dimensional Eects on the Final Steady State Magnetic Field[END_REF]. A number of analytic models, often heuristic, have been proposed to describe this essentially transverse, lament-merging instability (FMI) [START_REF] Honda | Collective stopping and ion heating in relativistic-electron-beam transport for fast ignition[END_REF][START_REF] Medvedev | Long-time evolution of magnetic elds in relativistic GRB shocks[END_REF][START_REF] Achterberg | The Weibel instability in relativistic plasmas. II. Nonlinear theory and stabilization mechanism[END_REF][START_REF] Polomarov | Merging of Super-Alfvénic Current Filaments during Collisionless Weibel Instability of Relativistic Electron Beams[END_REF][START_REF] Stockem Novo | Shock Formation in Electron-Ion Plasmas: Mechanism and Timing[END_REF][START_REF] Ruyer | Nonlinear dynamics of the ion Weibel-lamentation instability: An analytical model for the evolution of the plasma and spectral properties[END_REF]. By contrast, 3D or 2D simulations that resolve the plasma ow axis show that modes with nonzero longitudinal wavenumber can alter the lament dynamics and mergers. Such modes have been interpreted either as variants of the oblique waves [START_REF] Bret | Multidimensional electron beamplasma instabilities in the relativistic regime[END_REF] that develop in homogeneous two-stream systems [START_REF] Silva | Interpenetrating Plasma Shells: Near-Equipartition Magnetic Field Generation and Nonthermal Particle Acceleration[END_REF][START_REF] Jaroschek | Ultrarelativistic Plasma Shell Collisions in γ-Ray Burst Sources: Dimensional Eects on the Final Steady State Magnetic Field[END_REF], or as drift kink instabilities (DKI) [START_REF] Daughton | Kinetic theory of the drift kink instability in a current sheet[END_REF][START_REF] Karimabadi | Ion-ion kink instability in the magnetotail: 1. Linear theory[END_REF][START_REF] Zenitani | Particle Acceleration and Magnetic Dissipation in Relativistic Current Sheet of Pair Plasmas[END_REF][START_REF] Ruyer | Kink deformation of Weibel-mediated current laments and onset of shock formation[END_REF][START_REF] Barkov | Relativistic tearing and drift-kink instabilities in two-uid simulations[END_REF] arising in isolated current laments (analogous to current sheets in 2D) [START_REF] Milosavljevic | Weibel lament decay and thermalization in collisionless shocks and gamma-ray burst afterglows[END_REF][START_REF] Ruyer | Disruption of current laments and isotropization of the magnetic eld in counterstreaming plasmas[END_REF]. Kelvin-Helmholtz-type modes have also been predicted to grow in the velocity shear layer between neighboring laments [START_REF] Das | Nonlocal sausage-like instability of current channels in electron magnetohydrodynamics[END_REF][START_REF] Jain | Nonlinear electron magnetohydrodynamic simulations of sausage-like instability of current channels[END_REF].

Further understanding of the nonlinear evolution of the CFI therefore involves a comprehensive modeling of the unstable dynamics of an ensemble of self-pinched laments. Clearly, all previous works failed to provide such a unied picture, since they neglected either the nonlinearity (inhomogeneity) of the laments or the collective couplings between them. Here, by contrast, we present an exact two-dimensional (2D) stability analysis of a periodic chain of relativistic current laments, which treats on an equal footing all FMI and DKI-type modes. The unperturbed equilibrium system consists of a transverse stationary electromagnetic wave embedded in two counterstreaming, neutral e -e + pair ows. For the sake of simplicity, we make use of a warm-uid model for the four plasma components at play. The equilibrium system is then described by two coupled sinh-Gordon-type equations for the electromagnetic eld potentials. We then exploit the periodicity of the system in the transverse direction to extract its eigenmodes using the Floquet theory. A standard technique is to decompose the solution in a Fourier series, and to solve the resultant innite Hill's determinant [START_REF] Bertrand | Electrostatic waves in periodic inhomogeneous plasma[END_REF][START_REF] Quesnel | Electron parametric instabilities of ultraintense laser pulses propagating in plasmas of arbitrary density[END_REF][START_REF] Kuo | Interaction of an electromagnetic wave with a rapidly created spatially periodic plasma[END_REF][START_REF] Faith | Frequency downshifting and trapping of an electromagnetic wave by a rapidly created spatially periodic plasma[END_REF].

Here, instead, we employ another method, based on a fundamental theorem in the Floquet theory, which gives the full set of eigenmodes without having to derive Hill's determinant [START_REF] Romeiras | A comparative study of the instabilities of two classes of nonlinear waves in cold plasmas[END_REF][START_REF] Hada | On stability of strongly nonlinear plasma oscillations[END_REF][START_REF] Zhang | Analysis on the exclusiveness of turbulence suppression between static and time-varying shear ow[END_REF]. Our analysis only addresses the eigenmodes developing in the in-ow plane, which have been found to mainly control the long-term CFI evolution [START_REF] Sironi | Particle Acceleration in Relativistic Magnetized Collisionless Pair Shocks: Dependence of Shock Acceleration on Magnetic Obliquity[END_REF].

The structure of the chapter is as follows. In Sec. 4.1, after presenting the theoretical framework, we derive the equilibrium equations, and analytically solve them for two symmetric counterstreaming pair ows. In passing, we show that the well-known Harris solution [START_REF] Harris | On a plasma sheet separating segions of oppositely directed magnetic eld[END_REF] is locally recovered in the limit of strongly pinched laments.

We then derive the set of linearized perturbation equations, and in Sec. 4.1.3, we detail the numerical method used to compute the unstable eigenmodes. The numerical solver is validated in the homogeneous limit through comparison with the solutions of the standard relation dispersion. In section (4.2), we study three dierent electronpositron plasmas congurations depending on the level of nonlinearity and asymmetry of the four-uid system. In Sec. 4.2.2, we consider the case of a weakly nonlinear, symmetric system: its purely transverse, FMI-type eigenmodes are solved, and found in good agreement with the results of a PIC simulation. Section 4.2.3 deals with the 2D eigenmodes developing in a symmetric system of varying nonlinearity. We demonstrate that merging modes are superseded by DKI-type modes above a threshold nonlinearity level, which we evaluate analytically. The dominant DKI modes, of same transverse periodicity as the equilibrium system, turn out to be very similar to those developing in an isolated current sheet. Again, the theoretical results are successfully confronted to PIC simulations. Finally, we briey examine the case of a moderately nonlinear asymmetric system in Sec. 4.2.6. Our illustrative calculation, supported by PIC simulations, predicts a dominant mode which consists of coherent kink and bunching-type perturbations, nonlinearly evolving into an obliquely striped pattern.

This study was published in [START_REF] Vanthieghem | Stability analysis of a periodic system of relativistic current laments[END_REF].

Warm uid perturbative model

We consider a 2D (x, y) plasma comprising two counterstreaming, neutral pair beams, drifting along the x-axis. There is no external magnetic eld, so that the electric and magnetic elds, E = (E x , E y , 0) and B = (0, 0, B z ), are self-consistently generated by the plasma current and charge modulations. In the equilibrium unperturbed state, the pair beams are periodically modulated along the transverse y-axis, thus forming a chain of current laments of alternating sign. The equilibrium results from a balance between the Lorentz and thermal pressure forces inside the laments.

The fundamental equations used to describe the unstable evolution of the initially modulated four-uid pair plasma are the continuity (2.30) and warm-uid momentum (2.32) equations. Unless otherwise noted, we use cgs Gaussian units. Each species α is characterized by its charge (q α ≡ Z α e, where e is the elementary charge and Z α = ±1), drift velocity (v α = β α c, where c is the velocity of light), Lorentz factor (γ α ≡ 1/ 1 -β 2 α ), pressure (p α ), rest-frame density (n α ), lab-frame density (d α ≡ γ α n α ), and polytropic index (Γ ad,α ). The rest-frame energy density α = n α mc 2 + p α /(Γ ad,α -1), m is the electron mass, and ∂ ct ≡ c -1 ∂/∂t. The above mentioned equations should be solved along with the Maxwell equations (2.33), (2.34) and (2.35). Note that Eq. (2.35), which is redundant with Eq. (2.30), is exploited to ease the derivation of the stationary state in the following subsection.

Stationary state

The stationary state is obtained by setting ∂ ct = 0 and ∂ x = 0 in the above mentioned equations. The unperturbed quantities are here denoted by the index `0'. From Eq. (2.32), the equilibrium pressure of each uid satises

∂ y p α0 = q α d α0 (E 0y -β α0 B 0z ) , (4.1)
while the Ampère-Maxwell and Gauss-Maxwell equations become

∂ y B 0z = 4π α q α d α0 β α0 , (4.2) ∂ y E 0y = 4π α q α d α0 . (4.3)
where β α0 ≡ β α0x is introduced to simplify notations.

The set of uid equations is closed using the isothermal condition p α0 = n α0 Tα , where Tα = T α m α c 2 is the rest-frame temperature normalized to the electron rest mass energy.

To make analytical progress, it is convenient to use the potential equations:

B 0 = ∇ × A 0 , (4.5) E 0 = -∇φ 0 . (4.6)
Combining these equations with Eqs. (4.4) and (4.1) readily gives, after integration, the lab-frame density as

d α0 = N α γ α0 exp - γ α0 q α Tα (φ 0 -β α0 A 0x ) , (4.7) 
where the factor N α corresponds to the proper density in the (homogeneous) limit of vanishing elds (A 0x → 0, φ 0 → 0). The same relation would have been obtained in a kinetic framework using a Jüttner-Synge distribution [START_REF] Kocharovsky | Self-Consistent Current Sheets and Filaments in Relativistic Collisionless Plasma with Arbitrary Energy Distribution of Particles[END_REF].

In the following, the equilibrium electron and positron streams that make up a pair beam are assumed to share the same characteristics (except for their opposite charge). Therefore, the unperturbed system will be dened by two sets of quantities (n p0 , γ p0 , T p0 , Γ ad,p ) and (n b0 , γ b0 , T b0 , Γ ad,b ), where the labels b and p respectively stand for `beam' and `plasma'. In Eqs. (4.2) and (4.3), the source terms can then be grouped pair-wise, leading to the following dening equations for the stationary uid-Maxwell system:

∂ 2 y A 0x = 4πe α N α γ α0 β α0 sinh γ α0 e Tα (φ 0 -β α0 A 0x ) , (4.8) 
∂ 2 y φ 0 = 4πe α N α γ α0 sinh γ α0 e Tα (φ 0 -β α0 A 0x ) .

(4.9)

We seek a periodic solution for A 0x (y) and φ 0 (y) with a single maximum per (unknown) period λ 0 . Introducing a 0 ≡ (e/mc 2 )max y A 0x , the boundary conditions are chosen to be A 0x (0) = A 0x (λ 0 ) = (mc 2 /e)a 0 , φ 0 (0) = φ 0 (λ 0 ), and ∂ y A 0x (0) = ∂ y φ 0 (0) = 0.

In the general case, the eigenvalue problem (4.8),(4.9) must be solved numerically.

An example is given in Fig. 4.1 where the proles of B z , E y and d b,p are plotted over one period in the case of a hot beam (T b0 = 1, β b0 = -0.995) streaming against a cold beam (T p0 = 0. Let us rst consider the weak-eld limit, in which case we readily obtain

λ 0 = π √ T 0 β 0 γ 0 c ω p , (4.11) 
where ω p = 4πe 2 N/m is the relativistic plasma frequency of a single (electron or positron) species, expressed in terms of the density parameter N appearing in Eq. (4.7).

In the more general, nonlinear symmetric case, the periodicity λ 0 depends on a 0 through the following exact analytic expression

λ 0 = 2 √ T 0 β 0 γ 0 K -sinh 2 ξ 2 c ω p , (4.12) 
with the nonlinearity parameter

ξ = γ 0 β 0 a 0 T 0 , (4.13) 
and K(k), the complete elliptic integral of the rst kind. Moreover, the magnetic eld and density proles can be expressed as

B 0z (y) = 2uT 0 γ 0 β 0 dn [u (y -λ 0 /4) , κ 2 ] cn [u (y -λ 0 /4) , κ 2 ] mc 2 e , (4.14) 
n α0 (y) = N cn [u (y -λ 0 /4) , κ 2 ] 1 ± sn [u (y -λ 0 /4) , κ 2 ] 2 , (4.15)
where sn(u, k), cn(u, k) and dn(u, k) are the Jacobi elliptic functions. The ± sign in Eq. (4.15) denotes the sign of the current of species α. The parameters u and κ are dened as

u = 2 γ 0 β 0 √ T 0 sinh (ξ/2) ω p c , (4.16) 
κ = coth (ξ/2) .

(4.17)

A given species is considered to be in a strongly nonlinear (pinched) regime if ξ α ≡ γ α β α a 0 /T α 1 (i.e., κ → 1 + ), in which case its peak density greatly exceeds N α . If this condition is fullled by all species, the system then consists of a periodic chain of well-separated neutral current sheets 1 , which tend to the Harris solution [START_REF] Harris | On a plasma sheet separating segions of oppositely directed magnetic eld[END_REF][START_REF] Zelenyi | Relativistic Modes of Tearing Instability in a Background Plasma[END_REF][START_REF] Balikhin | Generalization of the Harris current sheet model for non-relativistic, relativistic and pair plasmas[END_REF],

widely used in magnetic reconnection studies. This result readily follows from taking the κ → 1 + limit of the Jacobian elliptic functions [START_REF] Byrd | Handbook of Elliptic Integrals for Engineers and Physicists[END_REF] N e ξ cosh -2 (uy) ,

which corresponds to a Harris-type relativistic current sheet [START_REF] Zelenyi | Relativistic Modes of Tearing Instability in a Background Plasma[END_REF][START_REF] Balikhin | Generalization of the Harris current sheet model for non-relativistic, relativistic and pair plasmas[END_REF] with maximum density max

y n 0 = N e ξ , (4.20) 
and characteristic width

l = u -1 (4.21) √ T 0 e -ξ/2 γ 0 β 0 c ω p = √ T 0 γ 0 β 0 c Ω p . (4.22)
In the same limit, Eq. (4.14) becomes (for l y λ 0 )

B 2 0z (y) 8π 2 T0 N e ξ (4.23) 2 T0 max y n 0 , (4.24) 
which expresses the expected balance between magnetic and thermal pressures in a current lament.

First-order perturbative system

We now linearize the uid-Maxwell Eqs.(2.30)-(2.35) around the initial state described by Eqs. (4.1)-(4.3). Since the steady state is invariant along x, the rst-order quantities are taken in the form δb(y)e ikxx-iωt , where k x is the longitudinal wavenumber, ω = ω r + iΓ is the complex frequency and δb(y) is the eigenfunction. The uid equations are closed assuming an adiabatic equation of state

p α ∝ n Γ ad,α α . (4.25)
In the following, we will take Γ ad,α = 4/3 in a relativistically hot beam (T α 1) and Γ ad,α = 5/3 otherwise.

The linearized system consists of 10 independent coupled homogenous dierential equations with y-periodic coecients that depend on the equilibrium quantities. In the linearized version of Eqs. (2.30)-(2.35), one can therefore use the simplications ∂ t → -iω and ∂ x → ik x . The perturbed quantities are dened such that

p α = p α0 [f α (y) + δP α ] , (4.26) d α = d α0 [f α (y) + δD α ] , (4.27) v α = β α0 c [ α 1 x + δV α ] , (4.28) E = E 0y f E (y)1 y + B 0z δe , (4.29) B z = B 0z [f B (y) + δb z ] . (4.30)
For each species α, we have introduced β α0 the absolute value of its unperturbed normalized velocity, α ∈ {1, -1, -1, 1} its drifting direction. The equilibrium density (f α ), magnetic (f B ) and electric (f E ) proles are computed numerically from Eqs. (4.7)-(4.9).

The linearized equations read

∂ y δe x = - iω c δb z + ik x δe y , (4.31) 
∂ y δb z = - iω c δe x + 4π B 0z α q α β α0 d α0 [f α (y)δV αx + α δD α ] , (4.32) 
∂ y δP α = q α d α0 B 0z p α0 -α f B (y)β α0 δD α + f α (y)δe y + E 0y B 0z f E (y)δD α + f α (y)β α0 [-α δb z -f B (y)δV αx ] - γ 2 α c 2 1 p α0 p α0 Γ ad,α Γ ad,α -1 + d α0 γ α mc 2 × f α (y)β α c(-iωδV αy + α β α c ik x δV αy ) , (4.33) 
∂ y δV αy = iω cβ α f α (y) δD α -ik x δV αx - ∂ y f α (y) f α (y) δV αy - ik x α f α (y) δD α , (4.34) 
where the perturbed quantities δe y , δV αx and δD α are given by

δe y = - i ω 4πc B 0z α q α β α0 d α0 f α (y)δV αy + ik x cδb z , (4.35) 
δV αx = 1

γ 2 α c 2 (p α0 Γ ad,α Γ ad,α -1 + d α0 γα mc 2 )f α (y)β α0 c (-iω + i α β α0 ck x ) -ik x p α0 δP α + q α d α0 B 0z f α (y)δe x + β α0 f α (y)f B (y)δV y,α -q α β 2 α0 d α0 B 0z f α (y)δe x + α q α β 2 α0 d α0 E 0y f α (y)f E (y)δV αy -i α ωc -1 p α0 β α0 δP α , (4.36 
)

δD α = 1 Γ ad,α δP α + α Γ ad,α f α (y) β 2 α0 1 -β 2 α0 δV αx . (4.37)
We can avoid the numerical estimation of ∂ y f α in Eq. (4.34) through the momentum equation in stationary state:

∂ y f α (y) f α (y) = q α d α0 p α0 [E 0y f E (y) -β α0x B 0z f B (y)] . (4.38)
The system is solved using the Floquet theory for dierent points (ω, k x ) ∈ C × R + , giving the corresponding characteristic Floquet exponent k y . We are interested in temporally unstable solutions, and hence we only retain the solutions with k y ∈ R.

This system can be written in the compact form

∂ y x(y) = Ξ(y, ω, k x )x(y) , (4.39) 
where x(y) = (δe x , δb z , δp 1 , ..., δp 4 , δv y1 , ..., δv y4 ) is a 10-component vector containing the rst-order variables, and Ξ(y, ω, k x ) is a 10 × 10 y-periodic matrix. This equation can be solved using the Floquet theory [START_REF] Grimshaw | Nonlinear ordinary dierential equations[END_REF] as explained in the next section.

The Floquet theory

We now recall the basics of the Floquet theory [START_REF] Grimshaw | Nonlinear ordinary dierential equations[END_REF] used to solve Eq. (4.39). For the sake of clarity, the vectors and matrices are written in lowercase and uppercase, respectively. Equation (4.39) has the general form

∂ y x(y) = Ξ(y)x(y) , (4.40) 
where x is a n-dimensional vector and Ξ(y) is a n × n periodic matrix, i.e.,

Ξ(y) = Ξ(y + λ), ∀y ∈ R. (4.41)
Here, λ is the minimal periodicity of the system satisfying the relation (4.41). We now introduce the fundamental matrix

M (y) = [x 1 (y)] ... [x n (y)] , (4.42) 
where x j (y), ..., x n (y) are n linearly independent solutions to Eq. with µ j , ..., µ n the so-called characteristic Floquet exponents. The matrix P (y) is composed of n vector-valued periodic functions:

P (y) = [p 1 (y)] ... [p n (y)] (4.46)
such that p j (y) = p j (y + λ), ∀y ∈ R.

(4.47)

The real parts of the Floquet exponents are well dened, yet their imaginary parts are not unique since a phase shift of 2π/λ 0 can be applied indierently to the Floquet exponents or P (y).

The diagonal elements of Σ(λ) = diag[σ 1 , ..., σ n ] are called the characteristic multipliers, which can be obtained as the eigenvalues of the non-singular constant matrix B dened by An important result is that the eigenvectors and eigenvalues of B do not depend on the choice of initial conditions. For a given set of x j (y), ..., x n (y), numerically computed over a period, we evaluate B = M -1 (0)M (λ) and solve for its eigenvalues and eigenmodes. In practice, for a given value of k x ∈ R, we scan a region of the complex ω-space, and retain only the temporally unstable eigenmodes, i.e., those with purely real transverse wavenumbers, k y ≡ -iµ i ∈ R. Inverting the results readily gives the dispersion relation ω(k x , k y ). This technique, previously used in Ref. [START_REF] Romeiras | A comparative study of the instabilities of two classes of nonlinear waves in cold plasmas[END_REF], has the advantage of not requiring the innite Hill's determinant to be derived, as is commonly done when applying the Floquet theory to systems periodic in time (see, e.g., [START_REF] Quesnel | Electron parametric instabilities of ultraintense laser pulses propagating in plasmas of arbitrary density[END_REF]).

B = M -1 (y)M (y + λ) .
In order to gauge the accuracy of our results, we check that the exact relation

det B = exp λ 0 Tr [Ξ(y)] dy (4.52)
is well satised. Also, due to the possible presence of spatially fast-growing modes ( k y = 0), we use initial conditions such that x i j (λ/2) = δ i j (i, j = 1, ..., n).

The numerical Floquet integration

The computation of the characteristic multipliers and their associated proles suer from several numerical constraints. One of the diculty is posed by the stiness of the dierential equation. The system admits 10 characteristic multipliers, and amongst them the solutions associated with a positive denite characteristic Floquet exponents are exponentially growing. A second problem is the size of parameter space. The ( ω, ω, k x )-Fourier space discretization requires the system to be solved at each point and, thus, a fast accurate integration is needed.

In this section, we describe the numerical algorithm used to solve the Floquet integration of the 10 × 10 rst-order linear dierential equation with periodic coecients described in Sec. 4.1.2. Initially, the algorithm was implemented using Matlab, yet it appeared that a 3D discrete resolution of the complete Fourier space was not tractable with this simple code. The optimized algorithm that we now describe has been written

in Fortran 90 and, if run on a single core, shows an improvement by a factor ∼ 50

compared to the previous sequential version. The pseudo-code version of the main algorithm is presented in Alg. 1. The domain is discretized along Γ = ω and k x and the workload is shared using openMP parallelization.

If the system admits a nonvanishing real frequency ω r = ω, the physical solution turns out to be highly sensitive to the value of the input frequency. Therefore, a Newton root-nding algorithm is applied in Fourier space. To this eect, one needs to dene a functional (µ 1 , . . . , µ N ) → f (µ 1 , . . . , µ N ) that vanishes for physical transverse modes.

The functional

(µ 1 , . . . , µ N ) → f (µ 1 , . . . , µ N ) = N i || [µ i ]|| (4.53)
appears to be in general monotonic on each side of the roots on a domain of the order of the fraction of the longitudinal wave number. As a rst guess for Newton's method, the initial position of the root is estimated as ω r 0.9k x β, where β is the maximum velocity among the four species.

At each point in parameter space, we employ the Shampine and Gordon ODE solver [START_REF] Shampine | Computer Solution of Ordinary Dierential Equations: The Initial Value Problem[END_REF], which integrates a system of rst order ordinary dierential equations of the form

∂ y x i = F i (y, x 1 , . . . , x N ) , i = 1, N , (4.54) 
with adaptive step-size. In order to reduce the numerical errors introduced by the nonphysical diverging modes, the integration proceeds in two steps. A rst integration is performed from y = λ/2 to y = 0 and a second one from y = λ/2 to y = λ. Each use a unit matrix for M (λ/2) as initial data at y = λ/2. The rst step then leads to the initial condition for the fundamental matrix, M (0), and the second to the matrix value at y = λ. As input, the system is fed with the zeroth-order prole for the densities and electromagnetic elds. Each prole is linearly interpolated during the integration of the M (0) and M (λ) matrices. Using (4.48), we compute the constant matrix B that has the characteristic exponents as eigenvalues, and whose eigenmodes allow the 4.2 Electron-positron plasma

Homogeneous system

We rst address the problem of a homogeneous plasma system (or, equivalently, vanishing elds), in which case we expect to recover the standard linear dispersion relation [START_REF] Bret | Multidimensional electron beamplasma instabilities in the relativistic regime[END_REF]. Specically, we consider two symmetric counterstreaming pair beams with T 0 = 1 and γ 0 = 10. Owing to the symmetry of the system, the complex frequency is purely imaginary (ω = iΓ), and hence the search for the ω values yielding k y ∈ R is restricted to a 1D parameter space (at xed k x ). The results of the Floquet solver are compared with those obtained from the homogeneous linear dispersion relation. This dispersion relation, derived from linearizing Eqs. (2.30)-(2.35) in the homogeneous limit, takes on the form of a 10th-order polynomial. This relation is too lengthy to be written here, but a more compact expression of it can be obtained using the covariant formalism developed in Ref. [START_REF] Achterberg | The Weibel instability in relativistic plasmas. I. Linear theory[END_REF]. For each point in the (k x , k y ) Fourier space, we compute the roots ω(k x , k y ) of this polynomial and retain the solution with maximum (and positive) ω. For the Floquet solver, we sample the parameter space (Γ, k x ) ∈ R + × R + , and look for eigenmodes with k y ∈ R. 1: procedure Floquet(X 0 , λ)

Zeroth order system and periodicity 2:

L µ ← {∅} 3: L Γ ← {Γ min + Γmax-Γ min N Γ -1 (i -1)|i = 1, ..., N Γ } 4: L kx ← {k x,min + kx,max-k x,min N kx -1 (i -1)|i = 1, ..., N kx } 5: parfor Γ ∈ L Γ do Phase space sampling 6: for k x ∈ L kx do 7: it ← 0; r ← f alse 8: ω r ← 0.9k x β
Initial guess of the frequency 9:

x 1 ← ω r ; x 2 ← x 1 + x 10: while r → f alse & it ≤ it max do 11: it ← it + 1 12: if V x 1 → true & V x 2 → true then
Newton's method 13:

x 1 ← x 1 -sign f x 1 x 1 -x 2 fx 1 -fx 2 min |f x 1 x 1 -x 2 fx 1 -fx 2 |, | x k x |
Bounded from above convergence 14:

x 2 ← x 1 + x 15: V x 1 ← f alse; V x 2 ← f alse 16: ω r ← x 1 17: else if V x 1 → true then 18: ω r ← x 2 19: else 20: ω r ← x 1 21: end if 22:
M 1/2 ← I 10 Unit 10 × 10 matrix initial condition at y = 1/2 23:

M 0 , X 0→λ/2 ← ODE M 1/2 , {y, λ/2, 0} 24: M λ , X λ/2→λ ← ODE M 1/2 , {y, λ/2, λ} 25: X ← X 0→λ/2 || X λ/2→λ
Concatenate the integration result over the full domain [START_REF] Ahlers | Opening a new window onto the universe with IceCube[END_REF]:

B ← M -1 0 M λ 27: S ← EigV [B]
Eigenvectors of the constant matrix 28:

Σ ← S -1 BS 29: µ ← log {Diag [Σ]} Floquet exponents 30: P ← X(y)BΣ -1 (y)
Vector valued periodic functions 31: return L µ List of characteristic Floquet exponents 39: end procedure olution in Γ. As expected [START_REF] Bret | Multidimensional electron beamplasma instabilities in the relativistic regime[END_REF], the system gives rise to a broad unstable spectrum, characterized by dominant, purely transverse CFI modes (with k x = 0) and a continuum of sub-dominant oblique modes extending up to innite k. A more physical kinetic description would evidently lead to a bounded unstable spectrum due to Landau damping of high-k modes [START_REF] Bret | Multidimensional electron beamplasma instabilities in the relativistic regime[END_REF].

if ∃µ j ∈ C, j = 1, ..., 10 : | [µ j ] / [µ j ] | < then 32: L µ ← L µ || {µ, k x , Γ, ω

Weakly nonlinear case

The purely transverse CFI is the dominant instability arising in a symmetric relativistic two-beam plasma in the homogeneous limit [START_REF] Bret | Multidimensional electron beamplasma instabilities in the relativistic regime[END_REF]. As will be shown in 4.2.3, the dominant unstable mode in a periodic system of weakly pinched laments remains purely transverse (k x = 0), and can be viewed as a lament merging instability (FMI). In this section, we examine the properties of this instability in a purely 1D geometry.

Floquet analysis

We study the stability of a stationary symmetric two-beam system characterized by T 0 = 1, γ 0 = 10 and a 0 = 0.04 (ξ = 0.4), associated with a fundamental wavelength λ 0 0.38 c/Ω p . We solve the perturbative eigenvalue problem using the method previously explained with k x = 0 and ω = iΓ purely imaginary. For each sampled value of Γ, we nd two solutions with real positive k y , and their symmetric negative counterparts (corresponding to the same physical modes). Figure 4.3 plots the growth rate Γ as a function of k y ∈ [0, 2π/λ 0 ]. Since Γ(k y ) is even, it should remain unchanged under the operation k y → k y + 2nπ/λ 0 (n ∈ N). For clarity, we have chosen to unfold Γ(k y ) over the range [0, 2π/λ 0 ], but one could have alternatively chosen the range [0, π/λ 0 ], yielding a double-valued curve. Unstable modes are found up to k y 12.2 Ω p /c, to be compared with the fundamental wavenumber k 0 ≡ 2π/λ 0 16.5 Ω p /c. The maximum growth rate, Γ max = 0.69 Ω p , occurs at k y,max 2.85 Ω p /c. We also plot the CFI growth rates associated with the same values of T 0 and γ 0 . The two curves present similar shapes, but the plasma inhomogeneity tends to reduce both the maximum growth rate and wavenumber range of the instability.

The spatial proles of the components (δE x , δE y , δB z , δv 1y , δd 1 ) of the fastest-growing FMI eigenmode are displayed in Fig. Γ max /k y,max 0.26. By contrast, δv 1y , δd 1 show a richer harmonic content, with modulations at the scale of λ 0 . Yet the charge density modulations cancel out to yield a zero electrostatic eld δE y .

The space-time evolution of the dominant FMI mode is depicted in Fig. 4.5 by plotting the total apparent density of species 1, d 1 (y, t) = d 10 (y)+ δd 1 (y)e Γt (where 1). For the sake of being illustrative, d 1 (y, t) is evolved up to the point where it vanishes, i.e, strictly speaking beyond the linear regime. One clearly sees that the instability For comparison, the dashed curve plots the growth rate of the CFI in the homogeneous limit with the same (T 0 , γ 0 ) parameters.

has the eect of creating bunches of three or four laments, whose density rises as they coalesce. The laments surrounding the merging ones also experience magnetic attraction, albeit weaker. In the nonlinear saturated stage, the system will then be reorganized into a quasiperiodic lamentary pattern with a characteristic wavelength about 6 times longer than in its unperturbed state.

PIC analysis

To support the results of the Floquet analysis, we have performed a 1D3V PIC simulation (1D in space and 3D in momentum) using the code calder [START_REF] Lefebvre | Electron and photon production from relativistic laser plasma interactions[END_REF]. In accordance with the theoretical calculation, the plasma comprises two counterstreaming pair beams, made up of a total of four species. Each species α is initialized with a drifting Jüttner-Synge momentum distribution: The perturbed quantities are, from left to right, the inductive electric eld (δE x , black), the electrostatic electric eld (δE y , red), the magnetic eld (δB z ), the transverse velocity (δv 1y ), and the lab-frame density of plasma species 1 (δd 1 ). δE x , δE y and δB z are normalized to max y |δB z |, while δv 1y and δd 1 are normalized to max y |δd 1 |.

f α0 (y, p) = N α exp - γ α0 T α0 γ(p) + q α φ 0 (y) mc 2 - β α mc p x + q α c β α0 A 0x (y) ,
The blue dashed lines plot the corresponding unperturbed quantities normalized to their maximum value.

where the equilibrium potentials (φ 0 , A 0x ) are numerical solutions to Eqs. (4.8) and (4.9). In the present symmetric case, we have φ 0 (y) = 0, and hence the initial electromagnetic elds are B 0z (y) = -∂ y A 0x and E 0x (y) = E 0y (y) = 0. The physical parameters are those considered in the previous section: T 0 = 1, γ 0 = 10 and a 0 = 0.04, giving λ 0 = 0.38c/Ω p . The simulation domain is 50 λ 0 long, allowing the unstable modes to be accurately resolved. The mesh size is ∆y = λ 0 /100 = 0.0038c/Ω p and the time step is ∆t = 0.99 ∆x/c. Each cell initially contains 1000 macroparticles per species. Periodic boundary conditions are used for both elds and particles. The instability is seeded by thermal noise alone. p , at which time the inductive electric eld (E x ) energy starts to rise exponentially. Since the magnetic eld energy is initialized at a nite level (contrary to the initially vanishing electric eld), the eect of the instability on it is only discernible after t 7 Ω -1 p . Both E x and B z energies then grow as ∝ e 2Γ PIC t where Γ PIC 0.80 Ω p is the best-tting growth rate over 4 ≤ t ≤ 8 Ω -1 p . This value is comparable with the theoretical prediction Γ max 0.69 Ω p , the small dierence being ascribed to kinetic eects. In particular, one may question the accuracy of the adiabatic closure relation: our choice of Γ ad = 4/3 is somewhat dubious as the temperature T 0 = 1

is not highly relativistic, and, more importantly, as it implies three degrees of freedom (whereas our PIC simulation is only 1D). We have checked that using Γ ad = 2, the value expected in a relativistically hot 1D plasma, gives a growth rate Γ max 0.80 Ω p (for k y,max 2.3 Ω p /c), closer to the simulation results. The eigenfunctions of the dominant mode are hardly modied by the choice of Γ ad,α . They predict an order of magnitude dierence in the B z and E x energies, which is well reproduced in the simulation during the period 7 t 10 Ω -1 p (Fig. 4.7). Also, the non-increasing E y energy is consistent with the theoretical prediction.

Figure 4.8 shows that the FMI mainly develops in the wavenumber range 1 k y 6 Ω p /c, as expected from theory (Fig. 4.3). Note that, in principle, the wavenumbers k y in this Fourier spectrum should not be directly compared to the characteristic Floquet exponents (see Fig. 4.3) since the eigenfunctions are of the form δb(y) = n∈N δb n e i(ky+nk 0 )y , with k 0 being the fundamental wavenumber of the stationary state and δb 0 being not necessarily dominant. Yet, for the weakly nonlinear laments considered, the magnetic-eld eigenfunction is well approximated by a single harmonic term δB z ∼ δb 0 e ikyy (see Fig. 4.4), so that the Fourier wavenumbers can be assimilated to good accuracy to the Floquet exponents. The growing modes appear to saturate at t 10 Ω -1 p , causing depletion of the fundamental magnetic mode (located at k 0 = 16.5 Ω p /c). From this time onwards, the magnetic energy in the system is essen- A rough estimate of the gain in magnetic eld energy at saturation can be derived from Ampère's equation expressed at the initial and saturation times: B 0 ∝ 2 exp(-ξ) sinh(ξ)d 0 λ 0 and B sat ∝ d sat λ sat , with d sat and λ sat being, respectively, the apparent density of a given species and the typical wavelength at saturation. The factor 2 exp(-ξ) sinh(ξ) accounts for the signicant overlap of the weakly inhomogeneous, counterstreaming ows in the initial state (such overlap is neglected at saturation) and the mean ow velocity is assumed to remain close to c. Making use of mass conservation, 

d sat λ sat = d 0 λ 0 (k 0 /k max ), one then predicts (B sat /B 0 ) 2 (exp(ξ)/2 sinh(ξ)) 2 (k 0 /k max ) 2 . Given ξ = 0.

Strongly nonlinear case

In this section, we push the stationary system far into the nonlinear regime, so that the equilibrium laments get strongly pinched and the magnetic eld can no longer be approximated by a single harmonic. We will demonstrate that the increasing nonlinearity of the system causes its dominant eigenmode to evolve from a purely transverse FMI to a drift kink-type instability (DKI). To show this, we consider the same symmetric two-beam system as before (with T 0 = 1 and γ 0 = 10), but increase the vector potential amplitude from a 0 = 0.04 to a 0 = 0.5 (i.e., the nonlinearity parameter rises from ξ = 0.4 to ξ = 5). discontinuity is a typical feature of unstable waves in periodic media (e.g., see [START_REF] Romeiras | Stability of relativistic transverse cold plasma waves. II -Linearly polarized waves[END_REF][START_REF] Romeiras | A comparative study of the instabilities of two classes of nonlinear waves in cold plasmas[END_REF]). Actually, this gap becomes discernible for ξ 3.5, and results in a progressive quelling of the modes in the range k 0 /2 ≤ k y ≤ k 0 . Stabilization of the low-k y modes is also specic to the strongly inhomogeneous regime; this mechanism underlines a recently proposed scheme, which exploits density ripples to mitigate the CFI in the laser-plasma context [START_REF] Mishra | Stabilization of beam-Weibel instability by equilibrium density ripples[END_REF].

Floquet analysis

We now perform a full 2D stability analysis of the equilibrium lamentary state by considering nonzero values of the longitudinal wavenumber k x . Since the two-beam system remains symmetric, the ω sampling space is still restricted to the imaginary axis. In Fig. 4.9, we plot the k y -maximized growth rate as a function of k x for various degrees of nonlinearity. As previously discussed, the dominant mode at ξ = 0.4 is the purely transverse (k x = 0) FMI. As we increase ξ, the growth rates globally decrease, yet the FMI modes near k x = 0 are the most severely weakened. At ξ = 2.5, the growth rate curve exhibits a plateau at Γ 0.22 Ω p in the interval 0 ≤ k x ≤ 0.6 Ω p /c. On further raising ξ, the low-k x FMI modes are increasingly stabilized, while modes around k x 0.4 Ω p /c are only weakly diminished. At ξ = 5, this trend leads to the growth rate curve peaking at k x,max 0.42 Ω p . and the dominant mode remains located at a relatively low k y 0.8 Ω p /c. Further increasing k x strengthens all modes, but especially those with k y > k 0 /2, so that the gap at k y = k 0 /2 is progressively bridged. The Γ curves then tend to form a quasiplateau in the 0 ≤ k y < k 0 /2 range, and drop to a nite value for k y → k 0 .

For k x = 0.42 Ω p /c, the growth rates are bounded between Γ = 0.22 Ω p (k y → 0) and Γ = 0.13 Ω p (k y → k 0 ), while the discontinuity at k y = k 0 /2 is no longer visible. The eigenmodes associated with k y = 0 and k y = k 0 have a minimal periodicity that is equal to, or is a divisor of the fundamental period of the equilibrium system. Their transverse spatial structure is displayed in Figs. 4.11 and 4.12, respectively. We expect the intermediate eigenfunctions (with 0 < k y < k 0 ) to evolve smoothly between these two limits. Each gure plots the (δE x , δE y , δB z ) and (δv 1y , δv 1x , d 1 ) components of the eigenmode, respectively normalized to max y |B z | and max y |d 1 |. The thick and thin solid lines represent, respectively, the real and imaginary parts of each quantity. The perturbed magnetic (resp. density) prole of both eigenmodes is even (resp. odd) with respect to the lament center, which is indicative of DKI [START_REF] Zenitani | Particle Acceleration and Magnetic Dissipation in Relativistic Current Sheet of Pair Plasmas[END_REF]. The two modes mainly dier in the oscillation phase between opposite-current laments. For the dominant mode, the magnetic perturbations at the center of two neighboring current laments (e.g., at y = 0 and y = 0.64 c/Ω p ) are of opposite sign, so that all laments oscillate in phase. For the sub-dominant mode, adjacent laments of opposite current see magnetic perturbations of the same sign, and hence they oscillate out of phase. As a consequence, the electromagnetic proles of the two modes have dierent periodicities: the dominant mode has the same minimal periodicity (λ 0 ) as the equilibrium system, whereas the sub-dominant mode has a minimal periodicity of λ 0 /2.

For completeness, we construct in Figs. 4.13 and 4.14 synthetic 2D images of the two eigenmodes by adding, for both the total apparent density ( α d α ) and the magnetic eld (B z ), the zeroth and rst order terms. The rst order term is multiplied by a factor large enough to clearly illustrate the instability pattern. As expected, the dominant mode gives rise to in-phase oscillations of all laments, and therefore to similar kinked deformations of α d α and B z (Fig. 4.13). For the sub-dominant mode (Fig. 4.14), the out-of-phase oscillations of adjacent current laments translate into sausage-type magnetic uctuations.

PIC analysis

We now present the results of a 2D3V calder simulation using the parameters considered in the Floquet analysis (T 0 = 1, γ 0 = 10, a 0 = 0.5). and 4.17 display, respectively, the maps of the magnetic eld (B z ) and of the cold- beam-positron density (d 1 ) at times t = 7, 34, 39 and 50 Ω -1 p . According to Fig. 4.15, the linear phase of the primary instability lasts until t 40 Ω -1 p . During this period, the current laments develop kink oscillations (Fig. 4.16). However, due to the broad unstable spectrum revealed in Fig. 4.9, they oscillate with a range of wavelengths and phases. While coherent motion between adjacent laments can be seen locally, no single-mode pattern clearly emerges at the end of the linear phase. In like manner, the B z eld distribution (Fig. 4.17) exhibits a mix of kink-and sausage-type perturbations instead of the globally coherent pattern displayed in Fig. 4.13.

As for the 1D FMI (Fig. 4.8), the 2D instability is rst evidenced by exponentially growing electric-eld energies (Fig. 4.15). An eective growth rate Γ PIC 0.18 Ω p is measured in the linear instability phase (25 ≤ t ≤ 35 Ω -1 p ), comparable with the maximum theoretical value, Γ max 0.22 Ω p . In agreement with the predicted structure of the dominant mode (Fig. 4.11), the E y energy is about an order of magnitude larger which the E y energy hardly grows (Fig. 4.8). Another major dierence with the FMI is that the saturation of the DKI (35
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t 40 Ω -1
p ) goes along with a sudden drop in the total magnetic energy (to ∼ 43% of its initial value). This magnetic-eld dissipation is an expected eect of the DKI, which causes ecient particle heating [START_REF] Zenitani | Particle Acceleration and Magnetic Dissipation in Relativistic Current Sheet of Pair Plasmas[END_REF].

Once the initially strongly pinched laments have been signicantly distorted and smoothed out (see Figs. 4.16 and 4.17 at t = 39 Ω -1 p ), a secondary instability of the CFI type is triggered by the residual momentum anisotropy of the plasma: this causes the magnetic energy to rebound again at t 40 Ω -1 p , and rise until t 50 Ω -1 p , at which time it seems to saturate. The bottom panel of Fig. 4.16 (t = 50 Ω -1 p ) indicates that the plasma homogenization is then almost complete. 

Analytical model for the FMI-DKI transition

We now derive an analytic formula for the transition between dominant lamentmerging and drift-kink instabilities in a symmetric relativistic lamentary system. To this goal, we seek an approximate expression for the relativistic DKI assuming negligible coupling eects between neighboring laments. Our calculation draws upon the approaches used in Refs. [START_REF] Pritchett | Three-dimensional stability of thin quasi-neutral current sheets[END_REF][START_REF] Daughton | Two-uid theory of the drift kink instability[END_REF][START_REF] Zenitani | Particle Acceleration and Magnetic Dissipation in Relativistic Current Sheet of Pair Plasmas[END_REF] in the non-or weakly relativistic regimes. In the strongly nonlinear (pinched) regime, each current lament can be described by an isolated system of two counterstreaming electron and positron uids. The approximate analytic solution to the relativistic drift-kink instability (DKI) we obtain, is valid in the vicinity of the lament center. Our calculation is restricted to the case of two symmetric uids. The positrons (resp. electrons) are taken to have a positive (resp. negative) velocity.

The set of equations is composed of the energy/momentum and Maxwell's equations, closed by an adiabatic equation of state: ∇ × B = 4πeβ (d

γ 2 α (p α + α ) (∂ ct + β α • ∇) β α = -∇p α + q α d α (E + β α × B) -β α (q α d α E • β α + ∂ ct p α ) , (4.56) 
+ + d -) + ∂ ct E , (4.57) 
∇

• E = 4πe (d + -d -) , (4.58) 
∇

× E = -∂ ct B , (4.59) 
δ p α γ Γ ad d Γ ad α = 0 , (4.60) 
where e is the elementary charge, β is the drifting velocity vector of the positron, β = |β|, Γ ad is the polytropic index and α = (+, -) refers to positrons and electrons. We expand all uid quantities to rst order (for a generic variable b = b 0 + δb), and we introduce the following quantities:

δb + = δb + + δb -, (4.61) 
δb -= δb + -δb -.

(4.62)

For the sake of tractability, we make use of two assumptions. Firstly, we assume a purely transverse velocity perturbation, The results of the Floquet analysis are shown as blue points, while the solid black curve plots the analytic formula (4.82) for an isolated current lament.

β 0 • δβ = 0 .
Secondly, we assume that the pressure balance condition in the lament is fullled:

B 0 • δB 4π + δp + = 0 . (4.64)
Using these two relations, the sum and dierence of the linearized momentum equations take the following form

M 0 -iωδβ + + β 0 ik x δβ -= -∇ δp + -ed 0 B 0 × δβ - + 2ed 0 β 0 × δB -eB 0 × β 0 δd + + iωβ 0 δp -, (4.65) 
M 0 -iωδβ -+ β 0 ik x δβ + = -∇ δp -+ 2ed 0 δE -ed 0 B 0 × δβ + -eB 0 × β 0 δd --2eβ 0 d 0 β 0 • δE + iωβ 0 δp + , (4.66) 
where Moreover, the linearized continuity equation can be written

M 0 = γ 2 0 Γ ad Γ ad -1 p 0 + n 0 mc 2 .
-iω δd ± + ik x δd ∓ + ∂ y d 0 δβ ± y + d 0 ∂ y δβ ± y = 0 . (4.69)
The adiabatic closure condition relates the perturbed pressure and density as

δp ± = Γ ad p 0 d 0 δd ± . (4.70)
Combining the previous equations leads to the dierential equation fullled by δβ ± y :

(Γ ad ∂ y log d 0 + ed 0 B 0 ) δβ ± y + Γ ad p 0 ∂ y δβ ± y = 0 . (4.71)
We assume that the current lament initially obeys the Harris solution,

d 0 = γ 0 n 0 cosh -2 (y/l) , (4.72) 
B 0 = 16πn 0 T 0 tanh (y/l) , 

l = √ T 0 γ 0 c Ω p . (4.74) 
In the Harris equilibrium, the solution to Eq. (4.71) is

δβ ± y = δβ ± y (0) cosh (y/l) 2-2/Γ ad . (4.75)
This solution is even in y, consistent with the DKI. The validity of this expression is limited to the inner region of the current lament.

Linearizing the cross product of B with Eq. (4.57), one obtains

-eB 0 × β 0 δd + + 2ed 0 β 0 × δB + ed 0 δβ -× B 0 = -∇ B 0 • δB 4π - iω 4π B 0 × δE . (4.76)
The drift term iω 4π B 0 × δE is found to be negligible. Substituting Eq. (4.76) into

Eq. (4.65) gives

M 0 -iωδβ + + β 0 ik x δβ -= iωβ 0 δp -. (4.77)
Therefore, δp -is of the same order as the δβ ±

x terms, and hence can be neglected (in agreement with the numerical Floquet solutions). The projection of the two latter equations along the y-axis leads to the following system 

M 0 -iωδβ + y + β 0 ik x δβ - y = 0 , (4.78) M 0 -iωδβ - y + β 0 ik x δβ + y = 2ed 0 δE y . ( 4 
ω 2 k 2 x 2 + k 2 x Ω 2 p - ω 2 Ω 2 p -Γ ad 2 + k 2 x Ω 2 p - ω 2 Ω 2 p (1 + T ) + 2 - k 2 x Ω 2 p - ω 2 Ω 2 p -Γ ad 2 - k 2 x Ω 2 p - ω 2 Ω 2 p (1 + T ) = 0 . (4.81)
The dispersion relation of the DKI can thus be written as

h 0 Γ 2 Ω 2 p = 1 + 4h 0 k 2 x Ω 2 p -1 -h 0 k 2 x Ω 2 p , (4.82) 
where

h 0 = 1 + Γ ad Γ ad -1 T 0 . (4.83) 
The growth rate reaches a maximum value of

Γ DKI,max = 1 2 Ω p √ h 0 (4.84) for k x = ( √ 3/2)Ω p / √ h 0 .
In Fig. 4.18, we compare Eq. (4.82) with the DKI growth rates computed numerically using the Floquet method for a strongly nonlinear periodic system dened by T 0 = 1, γ 0 = 10, a 0 = 0.5 (ξ = 5) and Γ ad = 4/3. For a given value of k x , each blue point represents a solution to the Floquet problem. We observe that the analytic formula closely reproduces the upper envelope of the numerical growth rates, thus proving that inter-lament eects are indeed negligible in the (symmetric) strong-pinching regime.

In order to determine which instability (FMI or DKI) dominates a given symmetric system, one must compare the maximum growth rate of the DKI [Eq. (4.84)] with that of the FMI. An accurate formula for the latter should, in principle, account for the inhomogeneity of the unperturbed system, which is usually done via a truncated

Floquet expansion [START_REF] Mishra | Stabilization of beam-Weibel instability by equilibrium density ripples[END_REF]. Here we opt for a much simpler approach, based on the observation that the FMI behaves similarly to the CFI in the very weakly nonlinear (or quasi homogeneous) limit (see Fig. 4.3).

The dispersion relation of the CFI in a system composed of two symmetric, relativistic pair plasma ows is obtained by linearizing Eqs. (2.30)-(2.35) in the limit of vanishing elds. This yields the following linear system

            -i ky Γ 0 0 0 0 Γ + 2 h 0 Γ -i ky β 0 γ 0 (h 0 -Γ ad T 0 ) Γ ad h 0 -β 0 γ 0 (h 0 -Γ ad T 0 ) Γ ad h 0 0 0 0 -β 0 γ 0 T 0 -i ky 0 - β 0 γ 2 0 (h0 Γ2 +1) T Γ - β 0 γ 2 0 T 0 Γ 0 β 0 γ 0 T 0 0 -i ky - β 0 γ 2 0 T 0 Γ - β 0 γ 2 0 (h0 Γ2 +1) T 0 Γ -1 γ 0 h 0 0 β 0 T 0 Γ h 0 -Γ β 0 Γ ad 0 -i ky 0 1 Γh 0 0 0 β 0 T 0 Γ h 0 -Γ β 0 Γ ad 0 -i ky             ×         δe x δb z δp + δp - δv y+ δv y-         = 0 , (4.85) 
where we have introduced

ω p = Ω p e -γ 0 a 0 /2T 0 , (4.86) 
Γ = Γ/ω p , (4.87) 
ky = k y c/ω p , (4.88) 
and h 0 is given by Eq. (4.83). To leading order in 1/γ 2 0 , the dispersion relation writes

h 0 Γ2 = 1 2 1 + 16/K 2 y -1 K 2 y - 1 2γ 2 0 (h 0 -Γ ad T 0 )   4h 0 + Γ ad T 0 K 2 y + 4h 0 + 8 + K 2 y Γ ad T 0 1 + 16/K 2 y   , (4.89)
with K y = √ h 0 ky . In the ultrarelativistic case (γ 0 → ∞), the maximum growth rate is This analytic criterion for the FMI-DKI transition is in close agreement with our nu-merical results, which show a transition at ξ 2.5.

Γ CFI,max = 2 √ h ω p = 2 √ h e -γ 0 a 0 /2T 0 Ω p .

Asymmetric conguration

Finally, we address the interaction of a cold background plasma (indexed by `p') with a counterstreaming hot beam (indexed by `b'), both composed of electrons and positrons.

In asymmetric congurations, ω acquires a real part, which, as noted in Sec. 4.1.4, renders the Fourier space sampling complex. Moreover, not all frames are well dened for searching a purely real longitudinal wave number k x . Here, this frame is chosen to be the so-called Weibel frame ( see Sec. 5.3 for a formal denition), in which the electrostatic eld of the stationary state vanishes. In the linear limit, this frame can be determined by setting φ 0 = 0 in Eq. (4.9), which gives the following relation between the plasma species ). The stationary system has a wavelength λ 0 1.45 c/Ω p .

α N α β α0 γ 2 α0 T α = 0 .

Floquet analysis

The Floquet analysis is carried out by setting, for each real value of k x , an imaginary value (Γ) for ω, and varying its real value (ω r ) in order to nd a vanishing value of k y (see Sec. 4.1.4 for a description of the root-nding method). the laments are subject to a mix of kink and bunching instabilities, with adjacent laments of same species oscillating in opposite phase.

Figure 4.20 shows that the modes of the upper unstable branch in the range 1 k y k 0 share similar growth rates (Γ ∼ 0.13 -0.16 Ω p ). In comparison, the lower branch presents a more localized maximum at k y = 0. The spatial structure of this sub-dominant mode corresponds to a bunching instability, as is the case for all lowerbranch modes.

PIC analysis

We have performed a 2D3V PIC simulation with the same initial parameters as the asymmetric Floquet problem. The numerical setup is that used in Sec. 4.2.5, except that we now set ∆x = ∆y = 0.0292 c/Ω p . The time history of the electromagnetic energies is plotted in Fig. 4.23. From the evolution of the E x energy, the primary instability is estimated to grow at a rate Γ PIC 0.14 Ω p , close to the theoretical prediction (Γ max 0.16 Ω p ). During this early phase, the total B z energy remains essentially constant. The exponential rise in the E x energy comes to an end at t 40 Ω -1 p , at which time a apparent density of the cold-beam positrons (d 1 ). Bottom panel: transverse magnetic eld (B z ). For each quantity, the zeroth and rst order terms are added up.

new, slower-growing instability kicks in, giving rise to concomitant increases in the E y and B z energies. t = 32 Ω -1 p (i.e., in the linear phase of the primary instability) consists of an ensemble of kink and bunching-type perturbations, as expected from the growth rate plateau of Fig. 4.20. At saturation (t = 41 Ω -1 p ), the original 1D lamentary structure has evolved into a quasiperiodic pattern of compressed positron bunches, aligned along two preferential directions, tilted at angles ±25 • relative to the ow axis. These angles are close to those characterizing the dominant Floquet eigenmode (tan

-1 (k x /k y ) ±25.4 • ).
As time increases, these density islands tend to coalesce, giving rise to oblique modulations with increasing wavelength and tilted at larger angles ( ±35 • , see panels at t = 58 Ω -1 p ). Such unstable skew modes are reminiscent of the oblique instability arising in homogeneous asymmetric two-stream systems [START_REF] Bret | Multidimensional electron beamplasma instabilities in the relativistic regime[END_REF].

Conclusion

In this Chapter, the stability of a periodic system of relativistic e -e + current laments, such as resulting from the current lamentation instability (CFI), has been thoroughly examined in a warm-uid framework. As the nonlinearity of the equilibrium laments (quantied by the dimensionless parameter ξ α = γ α |β α | a 0 /T α ) is increased, our numerical Floquet-type calculations predict a smooth transition from a dominant, purely transverse, lament merging instability (FMI) to a relatively long-wavelength drift-kink instability (DKI). In a weakly nonlinear, symmetric conguration (ξ α = ξ), the FMI is found to obey a dispersion relation close to that of the homogeneous CFI. As ξ is raised, the FMI is progressively mitigated, and is eventually overtaken by DKI modes when ξ 2.5. In the strongly nonlinear limit, the laments are well described by the relativistic Harris solution and behave essentially independently from one another. As a result, the dominant DKI modes share the periodicity of the unperturbed system, and their properties are similar to those analytically derived for a single isolated lament.

We have briey studied the stability of an asymmetric conguration composed of a hot beam streaming against a cold background plasma. The dominant primary mode consists of a combination of kink and bunching-type perturbations. A PIC simulation shows that this mode nonlinearly evolves into two oblique strings of high-density islands. Their subsequent decay is followed by the development of a larger-scale oblique instability, similar to that arising in homogeneous multi-stream plasmas. This scenario may be relevant to the precursor region of Weibel-mediated relativistic shocks [START_REF] Keshet | Magnetic eld evolution in relativistic unmagnetized collisionless shocks[END_REF] where similarly asymmetric two-beam interactions are expected to arise.

For all the studied cases, the theoretical predictions are consistent with the results of PIC simulations. Our study, however, was limited to 1D and 2D systems. Extending it to a 3D geometry is not straightforward, both as regards the construction of the initial, 2D periodic array of nonlinear laments and the numerical resolution of the 3D eigenmodes, to which the technique developed in the present work is ill-suited.

Chapter5

Physics of Weibel-mediated relativistic shocks

Introduction and notations

As we have seen in Chap. 2, the transition of relativistic collisionless shocks in unmagnetized plasmas is mediated by an electromagnetic microturbulence that itself results from the growth of a Weibel-type current lamentation instability (CFI) in the shock precursor [START_REF] Moiseev | Collisionless shock waves in a plasma in a weak magnetic eld[END_REF][START_REF] Medvedev | Generation of Magnetic Fields in the Relativistic Shock of Gamma-Ray Burst Sources[END_REF]221,[START_REF] Wiersma | Magnetic eld generation in relativistic shocks. An early end of the exponential Weibel instability in electron-proton plasmas[END_REF][START_REF] Lyubarsky | Are Gamma-Ray Burst Shocks Mediated by the Weibel Instability?[END_REF][START_REF] Achterberg | The Weibel instability in relativistic plasmas. I. Linear theory[END_REF][START_REF] Achterberg | The Weibel instability in relativistic plasmas. II. Nonlinear theory and stabilization mechanism[END_REF][START_REF] Kato | Relativistic collisionless shocks in unmagnetized electron-positron plasmas[END_REF][START_REF] Spitkovsky | Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last?[END_REF], due to the interaction between the background plasma and a counterstreaming beam of Fermi-accelerated particles.

That turbulence entails the conversion of the ordered kinetic energy of the background plasma into thermal energy downstream of the shock.

This general picture was obtained thanks to numerical PIC simulations of relativistic plasmas [START_REF] Nishikawa | Particle Acceleration in Relativistic Jets Due to Weibel Instability[END_REF][START_REF] Frederiksen | Magnetic eld generation in collisionless shocks: Pattern growth and transport[END_REF][START_REF] Spitkovsky | On the Structure of Relativistic Collisionless Shocks in Electron-Ion Plasmas[END_REF][START_REF] Spitkovsky | Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last?[END_REF][START_REF] Sironi | Synthetic Spectra from Particle-In-Cell Simulations of Relativistic Collisionless Shocks[END_REF][START_REF] Martins | Ion dynamics and acceleration in relativistic shocks[END_REF][START_REF] Chang | Long-Term Evolution of Magnetic Turbulence in Relativistic Collisionless Shocks: Electron-Positron Plasmas[END_REF][START_REF] Haugbølle | Three-Dimensional Modeling Of Relativistic Collisionless Ion-Electron Shocks[END_REF][START_REF] Sironi | The Maximum Energy of Accelerated Particles in Relativistic Collisionless Shocks[END_REF]. These studies have shed light on, and conrmed, a number of theoretically predicted properties, which sometimes suered from strong assumptions. They conrmed that the dominant instability in the shock precursor is the Weibel/CFI instability, and that it saturates at a magnetization level B ∼ 10 -2 . They observed particle acceleration through a Fermi process, and suggested that the non-thermal spectrum energy dictates the nature of the microturbulence, thus pinpointing the strong interplay between the turbulence and the beam [START_REF] Keshet | Magnetic Field Evolution in Relativistic Unmagnetized Collisionless Shocks[END_REF]. However, some important questions remain open in the eld. One could mention, for instance, the processes responsible for particle injection in the Fermi cycles, for the background plasma deceleration and heating, the nature of the late-time microturbulence, which is 113 Chapter 5. Physics of Weibel-mediated relativistic shocks presumably inuenced by high-energy particles, etc.

Few theoretical models have, as yet, tried to describe the relativistic shock dynamics in the upstream [START_REF] Medvedev | MAGNETIC FIELDS AND COSMIC RAYS IN GRBs: A SELF-SIMILAR COLLISIONLESS FORESHOCK[END_REF] or downstream [START_REF] Katz | Self-Similar Collisionless Shocks[END_REF] regions. Generally, such studies relied on strong hypotheses and lacked ab initio numerical validation. On the other hand, the numerous numerical studies published since the beginning of the century, although providing deep insight into the shock dynamics, were not accompanied by a clear theoretical analysis of their results. In this chapter, our goal is precisely to develop a comprehensive description of the dynamics of relativistic unmagnetized collisionless shock waves, such as those expected at the boundary of relativistic astrophysical jets.

In the present work, we perform a systematic and rigorous comparison between our analytical developments and state-of-the-art PIC simulations performed with the fully relativistic electromagnetic PIC code calder [START_REF] Lefebvre | Electron and photon production from relativistic laser plasma interactions[END_REF] in a 2D3V (2D in conguration space, 3D in momentum space).

For our PIC simulations, we will adopt the standard numerical method introduced in [START_REF] Spitkovsky | On the Structure of Relativistic Collisionless Shocks in Electron-Ion Plasmas[END_REF], where a cold relativistic plasma is injected on the right-hand side of the box and is made to reect specularly o the left-hand side boundary. By construction, the simulation frame coincides with the downstream frame R d and the reecting wall corresponds to the contact discontinuity. This is equivalent to a two-shock system generated by symmetric counterpropagative plasmas and, assuming a stable contact discontinuity, is tantamount to simulating the forward shock in an asymmetric system seen in the contact discontinuity frame.

In relativistic systems, the choice of the reference frame is usually critical due to the Lorentz transform of the components of the 4-current and energy momentum tensor from one frame of interest to another. In an unmagnetized relativistic collisionless shock, besides R d , one can distinguish between two other important frames: R p , in which the background plasma is locally at rest, and R s in which the shock front is assumed stationary. Without going into much detail at this stage, another frame of prime interest in our model is the microturbulence frame R w (where the subscript w refers to the Weibel-type nature of the turbulence), in which the turbulence becomes quasi-magnetostatic. In the following, quantities indexed with a subscript ( |s, |w, |p, |d ) are understood to be measured in the respective frame; frame-dependent quantities without a subscript are understood to be measured in the shock rest frame R s .

The shock precursor is dened as the region in which the background plasma coexists with a population of suprathermal particles, and which expands to the right-hand side of the shock front. Because the turbulence is excited by the interplay between the beam of non-thermal particles and the background plasma, it is critical to dene a reliable selection criterion to discriminate particles between these two distributions.

The description and motivations of our criterion are explained in the following section.

The dierent uid quantities characterizing the plasma are its Lorentz factor γ p , proper temperature T p and proper density n p , and are indexed with p . Equivalently, quantities indexed with b refer to the nonthermal beam of accelerated particles. In our model, the key parameter controlling the dynamics of the precursor is

ξ b ≡ p b F ∞ , (5.1) 
which expresses the beam pressure p b in terms of the momentum ux of the incoming plasma at innity

F ∞ ≡ u 2 ∞ w ∞ . Here, w ∞ ≡ n ∞ m (resp. n ∞ ) corresponds to the
proper enthalpy (resp. particle) density of the background plasma, which is assumed cold outside of the precursor. We assume that ξ b depends on the distance to the shock front, with of course ξ b → 0 as x → prec at the tip of the precursor. As usual, the electromagnetic microturbulence is characterized by its magnetic energy density B (in units of F ∞ as well).

Note that the two-stream system composed of the non-thermal beam and the unshocked plasma is strongly asymmetric. In the shock frame, the beam is weakly relativistic (γ b|s ∼ 1), relativistically hot (T mc 2 ) and dilute (n b n p ) compared to the background plasma. The latter, by contrast, is characterized by an ultrarelativistic Lorentz factor γ p|d and a low apparent temperature T p /γ p|d mc 2 .

This chapter is divided into ve sections developing the tenets of our model. The rst section is dedicated to a thorough presentation of the PIC simulations performed to corroborate the analytical results that follow.

The second section introduces the reader to the Weibel frame. We assume the shock to be unmagnetized, i.e. the far-upstream background plasma does not carry any background magnetic eld. Consequently, the leading microinstability in driving the shock transition is the transverse CFI, which fragments the background plasma into current laments along the shock normal, surrounded by transverse electromagnetic elds δE ⊥ (radial) and δB ⊥ (toroidal). This instability thus dene a preferential frame drifting at speed β w = δE ⊥ × δB ⊥ /δB 2 ⊥ in which the instability is essentially magnetic (because δB 2

⊥ δE 2 
⊥ ). This frame proves most convenient to describe the scattering of particles. We here provide a theoretical characterization of this frame along the shock precursor in terms of the main beam and plasma uid parameters, and validate this model using PIC simulations.

The third section deals with the deceleration of the background plasma. The pressure of the beam of non-thermal particles exerted on the background plasma implies that the velocity of the Weibel frame lies in between that of the beam and that of the background plasma. This pressure, however, is small and translates in a small dierence between R w and the background plasma frame. As both frames never coincide exactly, the background plasma keeps relaxing in R w through scattering. Hence, the nite and increasing pressure of the beam leads to the progressive deceleration of R w , and, in turn, of the background plasma. Here, we provide a uid model of the deceleration law and corroborate it using PIC simulations.

In the fourth section, we provide a kinetic picture of the plasma deceleration and heating by a constant relaxation of the background in a decelerating Weibel-type turbulence. As seen in R w , its non-inertial nature generates an eective gravity aligned with the normal to the shock front while particles are subject to pitch-angle scattering on the magnetostatic turbulence. The combination of these two eects can be assimilated to a Joule-like process leading to a progressive heating of the background plasma as it crosses the precursor. It thus appears convenient to describe momentum scattering in R w while the space coordinate is conveniently chosen in R s where the system is stationary. The physical description is then formulated through a general relativistic Vlasov-Fokker-Planck equation written in mixed frame coordinates, with space variable in the shock front frame R s and momenta in R w . Then, by making use of the equivalence between a diusion equation and stochastic dierential equations, we fully solve the system with a Monte Carlo method in mixed frames. We show that the resulting plasma description is in satisfactory agreement with PIC simulations.

In the fth section, we investigate the dynamics of the suprathermal particles. In particular, we show how the relativistic motion of R w relative to R s impacts the scattering length scale l scatt (p) of beam particles, which controls the acceleration physics and the size of the shock transition. The results of a quasilinear calculation, which takes proper account of these relativistic eects and of the anisotropy of the turbulence spectrum, are then compared to our PIC simulations.

In the last section, we extend the above model to the case of electron-ion shocks and provide comparison to dedicated large-scale electron-ion PIC simulations for various mass ratios. We examine, in particular, the role of the longitudinal electric eld E x that is expected to develop as a consequence of the dierence of inertia between electrons and ions and the friction exerted by the turbulence. This work has been published in a series of 4 papers [START_REF] Lemoine | The physics of Weibel-mediated relativistic collisionless shocks[END_REF][START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF][START_REF] Lemoine | On the physics of relativistic collisionless shocks: II Heating and dynamics of the background plasma[END_REF][START_REF] Lemoine | On the physics of relativistic collisionless shocks: III The supra-thermal particle beam[END_REF].

PIC simulations

Numerical lters

It is well-known that drifting relativistic beams are subject to the numerical grid-beam instability that gives rise to articial heating of the plasmas. The large space-time-scale PIC simulations which are needed to probe the physics of acceleration thus require dedicated mitigating techniques as presented in Sec. 3.2.

Our 2D3V numerical simulations are performed using the nite-dierence timedomain PIC code calder. The setup of the simulation box is the same as in [START_REF] Spitkovsky | Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last?[END_REF]. The pair plasma is injected from the right-hand side of the box with a negative relativistic velocity without external magnetic eld. On the left-hand side, we impose perfect conductor conditions for the elds and specularly reecting conditions for the particles.

The plasma is injected with proper temperature T ∞ /m = 10 -2 and Lorentz factor γ ∞|d = 10 (or γ ∞|d = 100) in the simulation frame. Let us recall that this frame coincides with the downstream rest frame of the shock. In this frame, the shock speed is obtained through the shock jump conditions for a strong shock β s|d = -(γ u|d -1)(Γ ad -1)/γ u|d β u|d (see Sec. 2.2.3). The adiabatic index of the 2D, relativistically hot shocked (downstream) plasma is Γ ad = 3/2 (see Sec. 2.2.2), so that the shock wave propagates at β s|d 0.5 across the domain. Hence, the Lorentz factor of the background plasma relative to the shock front is γ ∞ = 17 (or γ ∞ = 173). All simulations use 10 macro-particles per cell and per species, with a cell size ∆x = ∆y = 0.1 c/ω p (or ∆x = ∆y = 0.08 c/ω p ). We make use of a 4 th interpolation order for the elds and particles.

Dierent strategies were tried to ensure numerical stability of the plasma over long time scales. A rst attempt was made using the electromagnetic Lehe solver [START_REF] Lehe | Numerical growth of emittance in simulations of laser-wakeeld acceleration[END_REF] combined with Friedman's ltering technique [START_REF] Greenwood | On the elimination of numerical Cerenkov radiation in PIC simulations[END_REF]. However, by construction of the Lehe solver, it led to the development of a troublesome superluminal electromagnetic precursor. On the other side, Friedman's lter induced a continuous compression of the shocked plasma.

As we have seen in Sec. 3.3.3, the Cherenkov instability arises from the interplay between the Lagrangian and Eulerian descriptions applied, respectively, to the particles and the elds. A thorough analysis of the numerical dispersion relation (derived to leading order in γ) revealed two classes of nonphysical modes, respectively resonant and non-resonant. The former modes appear at higher wavelengths, and so can be quenched through compensated binomial ltering. The non-resonant modes, arising from a nontrivial numerical mismatch between the interpolated magnetic and transverse electric elds, are suppressed by the Godfrey-Vay ltering method. We also employ the Cole-Karkkainen nite dierence eld solver (see Sec 3.3.1) that is free of numerical dispersion along the main axis and allows for large timesteps ∆t = 0.99∆x/c

As an illustration of the spurious modes developing in relativistic plasma simulations, Fig. 5.1 shows the Fourier power spectra of the magnetic eld component B z as extracted from two periodic 2D PIC simulations of a drifting plasma with γ = 10 and T ∞ = 10 -2 m e . The rst simulation (left column) makes use of 3 repeated applications of compensated binomial ltering at each time step, with a spatial discretization ∆x = 0.1 cω p . The growth of nonphysical high-k modes is clearly seen, and turns out to be strongly quenched when increasing to 30 the number of passes for binomial ltering, and decreasing the spatial mesh size to ∆x = 0.06 c/ω p (right column). In order to maintain a good compromise between numerical cost and stability, we chose a resolution ω p ∆x/c = 0.08 with 30 successive applications of binomial ltering. Thus, the scheme is found to be stable over 4 × 10 4 time steps, which allows the relativistic plasma to drift over a distance ω p x/c 3000, comparable with precursor length for our largest relativistic simulation. Despite massive ltering in Fourier space, the simulation still describes a broad range of physical modes with |k|/ω p ∈ [0, 10].

In our relativistic shock simulations, spurious heating of the freely drifting plasma outside the precursor is further diminished by imposing a high level of Coulomb collisionality. Also, in order to reduce the simulation time, the simulation box is progressively elongated. The lengthening of the domain is done after each restart of the simulation, by sending to each processor the backup les associated with the fraction of the new domain that it covers. A good compromise between numerical cost and stability is found with ω p ∆x/c = 0.08. It is stable over ω p t ∼ 4×10 3 which is larger than the typical size of the shock precursor in the corresponding simulation.

A rst large-scale simulation with γ ∞|d = 10 was run over 11300 ω -1 p in a box of nal dimensions 13740 × 360 (c/ω p ) 2 . This simulation is the largest performed in this thesis, and also, to our knowledge, the largest ever reported in the context of Weibel-mediated relativistic shocks. As explained below, this simulation revealed the necessity to dene some specic diagnostics to probe the precursor dynamics. This simulation was thus not used to corroborate our model, but it demonstrated the stability of our scheme over large spatio-temporal scales. Figure 5.3 presents a set of proles extracted from this simulation at time ω p t = 10706. The top panel displays the 2D spatial prole of the magnetic eld, the shock front being centered at ω p x s|d /c = 0. The second panel shows the transversally averaged proles of the temperature (red), apparent electronic density (black), Lorentz factor of the ow (blue) and magnetization in logarithmic scale (green). The bottom panel shows the full particle spectrum in (x, p x ) space.

Numerical diagnostics in PIC simulations

Our theoretical model relies on a precise distinction between the beam and the background plasma. In the simulation, it thus appears important to carefully distinguish particles belonging to the background plasma from those that were injected in the non-thermal tail, and happen to drift in the same direction as the background plasma after being turned around through scattering o the microturbulence. In our numeri- and temperature (red) of the whole plasma, and mean magnetization (green). Bottom panel: (x, p x ) phase space of all plasma particles. All gures are recorded at time ω p t = 10706.

cal simulations, we thus dene the background plasma particles as those particles that propagate with negative x-velocity continuously since their injection into the precursor, i.e., their x-velocity has never changed sign. This implies that past the shock transition, by denition, particles are isotropized and the background plasma population is rapidly depleted. Oppositely, the suprathermal (or shock-reected) particles are those moving with positive x-velocity, independently of the number of turn-arounds.

This, in turn, implies that particles with negative longitudinal velocity and non-zero number of turn-arounds are not included in either category. However, these particles account for at most half of the suprathermal particles at the shock and much less far upstream, so that their contribution to the physics of the precursor can be neglected in a rst approximation. particles across the shock. The two bottom panels represent, for positive velocities, the distribution of the beam particles (i.e. all particles with positive velocity, independently of the number of turnarounds in the microturbulence), and for negative velocities, the distribution of the background plasma particles (i.e. particles that did not turnaround in the microturbulence).

We performed two large scale simulations with dierent Lorentz factors. The maximum space-time domain size was L x × L y × T = 6000 × 340 × 3600c 2 /ω 3 p for γ ∞|d = 10 and 8000 × 200 × 6900c 2 /ω 3 p for γ ∞|d = 100. The spatial proles of the various hydrodynamic quantities measured in these two simulations, at respective times t 3600 ω -1 p and t 6900 ω -1 p , are presented in Fig. 5. [START_REF] Aartsen | Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert[END_REF]. One can see that n p and γ p|d vary weakly across the precursor region, except near the shock front where the incoming plasma slows down signicantly and experiences compression. By contrast, the plasma temperature steadily increases from its far-upstream value (T p = 0.01 m) to unity and beyond when approaching the shock front. This heating results from the interaction with the beam particles, whose density rises by ∼ 4 -5 orders of magnitude across the precursor.

The asymmetry of the beam-plasma interaction in the precursor is clearly illustrated in Fig. 5.6, which displays the density variations of both populations as a result of the growth of Weibel instability in the γ ∞|d = 100 case. The background plasma (middle) is seen to develop mildly nonlinear current laments in response to the magnetic modulations (top), while the suprathermal particles (bottom) show very weak uctuations only. These features will be explained thereafter. For reference, we plot in Fig. 5.7 the all-particle spectra dN/dγ |d for our two reference PIC simulations, as integrated over the transverse dimension and over a box of length 300 c/ω p along x, centered at various positions x |d as indicated. This gure shows how the spectrum evolves in the precursor. In particular, the expected (in 3D momentum space) power-

law dN/dγ |d ∝ γ -2.2
|d [START_REF] Bednarz | Energy Spectra of Cosmic Rays Accelerated at Ultrarelativistic Shock Waves[END_REF][START_REF] Kirk | Particle Acceleration at Ultrarelativistic Shocks: An Eigenfunction Method[END_REF][START_REF] Achterberg | Particle acceleration by ultrarelativistic shocks: theory and simulations[END_REF][START_REF] Lemoine | Particle Transport in Tangled Magnetic Fields and Fermi Acceleration at Relativistic Shocks[END_REF][START_REF] Keshet | Energy Spectrum of Particles Accelerated in Relativistic Collisionless Shocks[END_REF][START_REF] Lemoine | On the Eciency of Fermi Acceleration at Relativistic Shocks[END_REF][START_REF] Niemiec | Cosmic-Ray Acceleration at Ultrarelativistic Shock Waves: Eects of Downstream Short-Wave Turbulence[END_REF][START_REF] Sironi | Relativistic Shocks: Particle Acceleration and Magnetization[END_REF] is recovered in the steady state regime, both in the near precursor and downstream regions. of the CFI over most of the precursor. However, only few theoretical works addressed this problem in such a highly asymmetric two-stream conguration [START_REF] Lemoine | On electromagnetic instabilities at ultra-relativistic shock waves[END_REF][START_REF] Rabinak | Long-wavelength Unstable Modes in the Far Upstream of Relativistic Collisionless Shocks[END_REF][START_REF] Lemoine | Dispersion and thermal eects on electromagnetic instabilities in the precursor of relativistic shocks[END_REF][START_REF] Shaisultanov | Stream Instabilities in Relativistically Hot Plasma[END_REF].

The Weibel frame

In this section, we develop the notion of the Weibel frame in which the microturbulence is essentially of magnetic nature. This concept has previously been used by [START_REF] Ruyer | Analytical Predictions of Field and Plasma Dynamics during Nonlinear Weibel-Mediated Flow Collisions[END_REF] to simplify the calculation of the CFI in the precursor of a nonrelativistic electron-ion shock. However, this frame deserves more interest, and we will see that it plays an fundamental role in determining the dynamics of the precursor in relativistic collisionless shock waves. For consistency, we support our present theoretical ndings with detailed comparisons to dedicated large-scale 2D3V PIC simulations.

In principle, the Weibel instability is dened in all momentum space (k , k ⊥ ); the purely transverse modes correspond to k k ⊥ , while the so-called oblique modes correspond to the limit k k ⊥ ω p , with ω p = (4πn ∞ e 2 /m) 1/2 the plasma frequency of the unperturbed far-upstream background plasma. Oblique modes are likely relevant far in the precursor, but most likely Landau damped once the background plasma suers heating in the precursor, e.g. [START_REF] Bret | Multidimensional electron beamplasma instabilities in the relativistic regime[END_REF][START_REF] Lemoine | Dispersion and thermal eects on electromagnetic instabilities in the precursor of relativistic shocks[END_REF][START_REF] Shaisultanov | Stream Instabilities in Relativistically Hot Plasma[END_REF]. We thus assume that the transverse modes dominate in most of the precursor and restrict ourself to the limit k → 0 for simplicity. This is in reasonable agreement with what we observe in the PIC simulations. |d , expected in 3D momentum space [START_REF] Bednarz | Energy Spectra of Cosmic Rays Accelerated at Ultrarelativistic Shock Waves[END_REF][START_REF] Kirk | Particle Acceleration at Ultrarelativistic Shocks: An Eigenfunction Method[END_REF][START_REF] Achterberg | Particle acceleration by ultrarelativistic shocks: theory and simulations[END_REF][START_REF] Lemoine | Particle Transport in Tangled Magnetic Fields and Fermi Acceleration at Relativistic Shocks[END_REF][START_REF] Keshet | Energy Spectrum of Particles Accelerated in Relativistic Collisionless Shocks[END_REF]. either through induction or due to modes with nonvanishing longitudinal wave number.

Figure 5.8 reveals that the energy density in the transverse components dominates that in the longitudinal electric eld everywhere in the precursor in the R d frame, and that the electric eld is smaller than the magnetic eld in the near precursor where the ratio can be measured accurately, up to x of the order of a few hundred to a thousand c/ω p . The analytical characterization of R w is done in three dierent ways:

• A linear, relativistic uid description assuming homogeneous plasmas, which provides general insights on the parameters controlling the dynamics of the frame in terms of the pressure and drift speed of the beam and background plasmas.

• A linear, relativistic kinetic description assuming a homogeneous plasma, which supplements the uid treatment, and characterizes the dominant kinetic or uid regimes in the shock precursor.

• A weakly nonlinear relativistic description of the current laments, assumed to be locally at thermal and magnetic pressure equilibrium in the Weibel frame.

In the course of this study, the present author's contribution has been mainly twofold:

rst, set up and conduct the PIC simulations; second, develop the nonlinear model.

Therefore, emphasis is placed here on these two aspects. For the sake of completeness, Apps. A.1 and A.2 respectively provide a complete description of the two rst analytical models and a detailed comparison of these models to PIC simulations.

The Weibel frame in the nonlinear regime

We consider the nonlinear evolution of the CFI, once the current laments have formed, borrowing on the work presented in Chap 4. We assume that, at each point in the shock precursor, the CFI has developed a quasistatic, transversally periodic system of current laments. By quasistatic, it is meant that an equilibrium approximately holds between magnetic and thermal pressures in the laments, according to the physical conditions at the point considered, and that these conditions evolve slowly enough that this equilibrium has time to adapt from one point to another along the precursor.

We also consider a 2D conguration, without loss of generality, so that the plasma is periodic along the y-axis and its species drift along the x-axis; the magnetic eld is then transverse to the (x, y)-plane. The dominant components of the four-potential now explicitly depend on y, and are given by A µ = [φ(y), A x (y), 0, 0]. Relying on the uid model presented in Sec. 4.1, we express the equilibrium, periodically modulated, density prole of each plasma species as [see Eq. (4.7)] a periodic system of current laments in stationary state in terms of the electromagnetic potential components:

n α = n α0 exp - γ α q α T α (φ -β α A x ) , (5.2) 
where q α and β α denote the charge and mean velocity of the species, and n α0 represents a normalization prefactor. Injecting the above expression in the potential formulation of the Ampère-Maxwell and Gauss-Maxwell equations, leading [see Eqs. (4.8) and (4.9)],

∂ 2 y A x = α ω 2 α c 2 γ α β α sinh γ α e T α (φ -β α A x ) mc 2 e , (5.3) 
∂ 2 y φ = α ω 2 α c 2 γ α sinh γ α e T α (φ -β α A x ) mc 2 e , (5.4) 
where ω α = 4πn α0 e 2 /m scales to the plasma frequency of species α. Following Sec. 4.1, we introduce the nonlinearity parameter Ξ α (previously noted ξ α ) of species α:

Ξ α = γ α β α e T α max y A x (y)
(5.5)

In the weakly nonlinear limit, Ξ α 1, we can approximate sinh ∼ x in the above equations, so that the vanishing of the electrostatic component entails

n b γ 2 b|w β b|w T b + n p γ 2 p|w β p|w T p = 0 .
(

The subscript w has been introduced because the above quantities are now dened in the Weibel frame in which φ |w = 0.

In the weakly nonlinear limit, the velocity of the Weibel frame can be computed exactly using relation (5.6). Writing

β b|w = (β b -β w )/(1-β b β w ), γ b|w = γ b γ w (1-β b β w ) etc.
, in any given frame, one nds that β w is solution to the equation

β 2 w -Q w β w + 1 = 0 , (5.7) 
with

Q w = n b T b γ 2 b (1 + β 2 b ) + np Tp γ 2 p 1 + β 2 p n b T b γ 2 b β b + np Tp γ 2 p β p . (5.8) 
Writing n b in terms of ξ b as before, we expand the above solution to rst order in ξ b to obtain the relative velocity

β w|p +γ 2 b|p ξ b T p m n ∞ n p β 2 ∞ β b|p κ 2 T b (5.9)
where γ b|p ∼ γ p represents the relative Lorentz factor between the beam and the background plasma. Interestingly, Eq. (5.9) corresponds to Eq. (A.79) obtained from the linear dispersion relation of the CFI in the kinetic plasma kinetic beam limit.

In Section 5.4, it is argued that γ 2 p ξ b is much smaller than unity in the far precursor, where the incoming background plasma maintains its initial velocity (i.e., γ p γ ∞ ), and of the order of unity in the near precursor, where γ p < γ ∞ due to deceleration. The above thus implies that the Weibel frame, in this nonlinear description, moves at subrelativistic velocities relative to the background plasma. That β w|p is positive means that the Weibel frame R w moves at slightly smaller absolute velocity towards the shock front than the background plasma. In the near precursor, where the background plasma is heated to relativistic temperatures, β w|p increases in magnitude; this implies that the background plasma decouples from the Weibel frame, hence increasing the heating rate and leading to the shock transition as seen further in Secs. 5.4 and 5.5

One can also compute the rst nonlinear correction in Ξ p to the above velocity. To this eect, we recast Eq. (5.4) in terms of the nonlinearity parameters of the beam (Ξ b )

and the plasma (Ξ p ):

n b γ 2 b|w β b|w T b sinh Ξ b|w Ξ b|w + n p γ 2 p|w β p|w T p sinh Ξ p|w Ξ p|w = 0 .
(5.10)

As can be seen in Fig. 5.6, the beam particles carry such inertia that they hardly participate in the lamentation, meaning Ξ b|w 1. In the Weibel frame, Ξ b|w indeed represents the ratio of the electromagnetic component eA x|w to the typical momentum T b|w = T b /γ b|w of the particles, and for suprathermal particles, this ratio is much smaller than unity. Assuming Ξ p|w 1, we then obtain to lowest order:

n b γ 2 b|w β b|w T b + n p γ 2 p|w β p|w T p 1 + Ξ 2 p|w 6 0. 
(

In this conguration, the nonlinearity appears as a second-order correction to the Weibel frame speed. In detail, one obtains β (n-lin) w|p

β w|p 1 - Ξ 2 p 6 .
(5.12)

Note that the Weibel frame is not always well-dened in the strongly nonlinear limit: if Ξ p,b 1, Eq. (5.4) decouples into a set of two relations between the temperatures and densities

γ b|w n b = γ p|w n p , (5.13) 
γ b|w β b|w T b = - γ p|w β p|w T p , (5.14) 
which overdetermine the system for a given set of parameters. From Eq. (5.4), we see that the error on the electrostatic elds at leading order in Ξ p|w if we evaluate the Weibel frame from relation (5.6) evolves as δφ ∝ Ξ 3 p|w . In the case of interest, however, PIC simulations indicate that the weakly nonlinear limit represents a good approximation in the precursor of relativistic shocks (see following Sec. 5. come, in some regions of the precursor, from the development of oblique modes that generate a conguration in which δE ⊥ ≥ δB ⊥ . However, previous theoretical studies of the precursor instabilities showed that the transverse CFI should dominate over most of the precursor, and most particularly close to the shock front, where most of the heating and deceleration of the background plasma take place, e.g. [START_REF] Lemoine | Gamma-ray bursts afterglows in magnetized stellar winds[END_REF][START_REF] Shaisultanov | Stream Instabilities in Relativistically Hot Plasma[END_REF][START_REF] Plotnikov | Particle transport and heating in the microturbulent precursor of relativistic shocks[END_REF].

Comparison to PIC simulations

Here, we confront the results of Sec. 5.3.1 with the PIC simulations introduced in Section 5.2. A strong hypothesis underlying the above formulae is that of a marginally nonlinear plasma response, Ξ p|w < 1. We wish to motivate this hypothesis by measuring this nonlinearity parameter. Assuming Eq. (5.2) holds, one expects

n p (y) = n p0 exp - γ p|s T p φ -β p|s A x = n p0 exp γ p|w β p|w T p A x .
(5.15)

We can then estimate the nonlinearity parameter in the simulation through the following relation

Ξ p|w √ 2 log n p n p -log n p n p 2 1/2 , (5.16) 
where • denotes the mean value along the direction transverse to the drift. Using relation (5.16), we present in Fig. 5.9 our estimate of Ξ p|w for the dierent simulations. The nonlinearity of the system tends to increase from values well below unity in the far precursor, up to near unity within a few hundred skin depths to the shock front. This result supports the above evaluation of β w|p through a weakly nonlinear equilibrium between the magnetic eld and the plasma, as in Eq. (5.9).
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An estimate of the Weibel frame speed can be directly extracted from the PIC simulations based on the denition

|β w | = |δE ⊥ × δB ⊥ /δB 2 ⊥ | = |δE ⊥ |/|δB ⊥ |.
Formally, we compute the ratio of the transversely averaged electric and magnetic energy densities, yielding

|β PIC w | = E 2
x y B 2 z y .

(5.17)

The sign of β PIC w in Eq. (5.17 where it cannot be measured accurately). Our nonlinear theory appears in reasonable agreement with the simulation results, especially in the near precursor x 10 3 c/ω p , where one may indeed expect stronger eects from the nonlinear phase of the CFI.

The deceleration of the background plasma

We have seen that there exists a frame in which the turbulence can be considered as essentially magnetic. We have shown that the turbulence speed varies along the precursor and, thus, denes a non-inertial frame. The non-inertial nature of this frame has strong implications on the dynamics of the background plasma, as will now be shown.

In Fig. 5.10, our 2D3V PIC simulations indicate that β w is well dened within 300 -1000 c/ω p of the precursor. Yet, the boost to R w cannot erase any longitudinal electric eld component δE x that would originate from the growth of the CFI, or from a contribution of oblique modes, and, as we have seen in Fig. 5.8, the longitudinal electric eld, even if weaker than the transverse one, does not vanish on the whole precursor. An important assumption that we make here is to neglect the inuence of this longitudinal electric eld. We will justify this assumption in more detail in Sec. 5.7.1. By contrast, the longitudinal electric eld component is expected to play an important role in electron-ion shocks, because of the dierence in inertia between negatively and positively charged species, regarding the deceleration as well as heating, e.g. [START_REF] Spitkovsky | On the Structure of Relativistic Collisionless Shocks in Electron-Ion Plasmas[END_REF][START_REF] Kumar | Electron Heating in a Relativistic, Weibelunstable Plasma[END_REF].

Regarding this aspect of the problem, the contribution of the present author concerned, as before, the conducting and analysis of the PIC simulations, and the numerical modeling of the background plasma plasma heating. The latter was carried our through a reduced transport equation, solved by a Monte Carlo method, as presented in Sec. 5.5.2. To give preliminary, insight into this issue, we develop in the next section an analytical description of the background plasma slowdown based on the uid conservation equations.

A cosmic-ray modied shock picture

Here, we discuss the physics of deceleration of the background plasma inside the precursor in the framework of a uid model, relying on the kinetic picture described in Sec. 5.3. In this picture, the Weibel frame R w has an everywhere non-vanishing relative velocity with respect to the background plasma as a consequence of the inuence of suprathermal particles. At the same time, the background plasma keeps relaxing in R w through pitch-angle scattering in the magnetic turbulence. This permanent adjustment of the velocity of R w to the physical conditions at x implies that R w keeps decelerating from large to small x, along the background plasma advection history in the shock frame.

In principle, to obtain a self-consistent fully kinetic model of this deceleration process, one would need to extend the calculations of Sec. 5.3 to a non-stationary state, and to include in this time-dependent framework the physics of relaxation of the background plasma; this formidable task lies well beyond the scope of any current study.

To overcome this diculty, we construct here a uid analogue of the above microscopic picture. The inuence of suprathermal particles is, in particular, characterized by their kinetic pressure. We then solve the equations of conservation of energy-momentum to obtain the deceleration law as a function of the prole ξ b (x). We also evaluate the inuence of the microturbulence on the background plasma and conclude that it can be safely neglected here: at the uid level, this means that the turbulence is eectively tied to the background plasma, in good accord with |β w|p | 1. In order to derive an estimate for the deceleration law of the R w frame, we use a uid description of the conservation of energy and momentum in the plasma + electromagnetic turbulence + beam system. We model the background plasma as a perfect uid, with velocity β p , enthalpy w p , pressure p p and equation of state w p = n p m+α p p p , with the short-hand notation α p ≡ Γp / Γp -1 (and similarly for the beam). Current conservation implies γ p β

p n p = γ ∞ β ∞ n ∞ .
Since energy and momentum densities of both the beam and turbulence vanish outside the precursor, one can write the integrated version of the equations of energymomentum conservation between as +∞ and a point x as

γ 2 ∞ β ∞ w ∞ = γ p γ ∞ β ∞ w ∞ + γ 2 p β p α p p p + T b tx + T B tx , γ 2 ∞ β 2 ∞ w ∞ = γ p β p γ ∞ β ∞ w ∞ + γ 2 p β 2 p α p + 1 p p + T b xx + T B xx .
(5.18)

We simplify the notations by dening

T b tx ≡ Ψ b F ∞ /β ∞ , T b xx ≡ Φ b F ∞ , T B tx ≡ Ψ B F ∞ /β ∞ and T B xx ≡ Φ B F ∞ . Finally, we also dene Ψ = Ψ b + Ψ B , Φ = Φ b + Φ B
so that the above system can be rewritten as

γ p γ ∞ F ∞ + γ 2 p β p β ∞ α p p p = F ∞ (1 -Ψ) , γ p β p γ ∞ β ∞ F ∞ + γ 2 p β 2 p α p + 1 p p = F ∞ (1 -Φ) .
(5. [START_REF] Lyubarsky | Reconnection in a striped pulsar wind[END_REF] In this form, -Ψ represents the net fraction of initial energy density picked up by the background plasma on its way, relative to the incoming momentum ux at innity, while -Φ similarly represents the relative fraction of picked up momentum density. It proves instructive to explicit these terms, notably to show that |Ψ| 1 and |Φ| 1:

Ψ b = γ 2 b β b β ∞ α b ξ b , Φ b = γ 2 b β 2 b α b + 1 ξ b , Ψ B = γ 2 w β w β ∞ γ 2 ∞ β 2 ∞ 2 B , Φ B = γ 2 w β 2 w γ 2 ∞ β 2 ∞ 2 + 1 γ 2 w β 2 w B , (5.20) 
with ξ b 1 and B 1. Above, we have assumed a perfect uid form for the beam energy-momentum (and neglected rest-mass energy in front of the pressure of suprathermal particles). Moreover, the energy-momentum tensor of the microturbulence takes on a relativistic MHD form, since the electric eld vanishes in the R w frame by denition (and the above assumes a magnetic eld transverse to the ow). Finally, β w β p in the relativistic regime, since

β w β p 1 + β p|w γ 2 p , (5.21) 
to rst order in 1/γ 2 p if |β p|w | 1.

The above equations imply

p p = F ∞ β p β ∞ Ψ -Φ + 1 - β p β ∞ . (5.22) Since β p /β ∞ 1-1/(2γ 2 p )+1/(2γ 2 
∞ ) as long as γ p 1, Eq. (5.22) implies that p p /w ∞ becomes of order unity or larger as soon as |Φ -Ψ| 1/γ 2 ∞ . Once this inequality is satised, the background plasma eectively slows down in the precursor. This relationship is by itself not surprising: when Φ → 0, meaning that the plasma picks up matter at rest in the laboratory frame, it is well-known that it suces to add in a fraction ∼ 1/γ 2 ∞ of the incoming energy to slow down the plasma, because once picked up by the ow, the supplementary mass-energy is increased by a factor γ 2 ∞ [238] (see also [START_REF] Derishev | Particle acceleration, magnetization and radiation in relativistic shocks[END_REF] for a recent discussion on similar issues). However, if |Ψ-Φ| 1/γ 2 ∞ , the loading amounts to adding matter moving at about the same velocity as the background plasma, in which case there is no increase by γ 2 ∞ . This result does conrm that the microturbulence exerts a negligible inuence on the background plasma, as indeed 1, which implies that the turbulence is essentially carried by the background plasma. In the following, we thus neglect the contribution of the microturbulence and retain only that of the beam. In this limit, the uid model becomes the relativistic generalization of cosmic-ray modied shocks [START_REF] Drury | Hydromagnetic shock structure in the presence of cosmic rays[END_REF][START_REF] Blandford | Particle acceleration at astrophysical shocks: A theory of cosmic ray origin[END_REF], which have been observed in numerical nonlinear Monte Carlo simulations of shock acceleration in the relativistic limit [START_REF] Ellison | Nonlinear particle acceleration in relativistic shocks[END_REF][START_REF] Ellison | Diusive shock acceleration in unmodied relativistic, oblique shocks[END_REF][START_REF] Ellison | Monte Carlo Simulations of Nonlinear Particle Acceleration in Parallel Trans-relativistic Shocks[END_REF][START_REF] Warren | Electron and ion acceleration in relativistic shocks with applications to GRB afterglows[END_REF][START_REF] Ellison | Particle spectra and eciency in nonlinear relativistic shock acceleration -survey of scattering models[END_REF].

Φ B -Ψ B B γ 2 p , (5.23 
Since |Φ b -Ψ b | = O(ξ b ), and 1 -β p /β ∞ = O γ -2 p , Eq. (5.22) implies γ p γ ∞ if γ 2 ∞ ξ b 1.
In the opposite limit, signicant deceleration takes place; in particular, in the limit 1 γ p γ ∞ , using Eq. (5.22) in Eq. (5.19) and neglecting terms of order γ p /γ ∞ , 1/γ 2 p or Ψ in front of unity, one obtains

α p γ 2 p 1 2γ 2 p + Ψ b -Φ b 1 γ 2 ∞ ξ b 1 , (5.24) 
which provides the deceleration law

γ p α p -2 2α p (Φ b -Ψ b ) 1/2 γ 2 ∞ ξ b 1 , (5.25) 
or, in terms of ξ b ,

γ p γ ∞ γ 2 ∞ ξ b 1 , γ p α p -2 2α p [1 + γ 2 b β b (1 + β b )α b ] 1/2 ξ -1/2 b γ 2 ∞ ξ b 1 .
(5.26)

In terms of β p , this law can be rewritten

β p β ∞ γ 2 ∞ ξ b 1 , β p β ∞ 1 - α p [1 + γ 2 b β b (1 + β b )α b ] α p -2 ξ b γ 2 ∞ ξ b 1 .
(5.27)

In Fig. 5.11, we compare the law γ p|d ∼ ξ has been multiplied by an ad hoc factor of the order of unity (1.5) to match the prole of γ p in the corresponding region. Equation (5.26) indeed suggests a prefactor of the order of unity, but which is dicult to estimate in our model because of an uncertainty related to the value of β b . In Sec. 5.6, we discuss this latter quantity and show that β b is small in magnitude, possibly negative, in the shock front frame, but it is not accurately dened, because the theoretical solution for ξ b in that study neglects the deceleration of the background plasma as well as a possible evolution of the scattering length with x.

We note that the numerical prefactor takes on a similar value in both simulations, despite dierent γ ∞ values. Furthermore, the proles of γ p|d and ξ -1/2 b from both simulations appear to be closely similar over the same deceleration zones. This suggests that, in the deceleration region, the precursor obeys a universal law γ p /γ ∞ vs x, or ξ b (x) vs x.

Using Eq. (5.26) in the solution obtained for the pressure, Eq. (5.22), we derive the additional scaling law

p p 2F ∞ Φ -Ψ α p -2 ∝ F ∞ ξ b γ 2 ∞ ξ b 1 .
(5.28)

In Fig. 5.12, we compare this law to the numerical data obtained in our PIC simulations, and nd that p p 0.15F ∞ ξ b provides a satisfactory agreement. We note that this prefactor depends on the one involved in the relationship between γ p and ξ b . Specically, writing p p = a p F ∞ ξ b and γ p = a γ ξ . Hence, for a γ 1.5 and α p 3 (hot gas in 2D), there results a p 0.15. 

γ p γ ∞ ).
As before, data is light colored in regions where it cannot be measured accurately.

The shock transition

The above model nicely explains the value ξ b ∼ 0.1 of the fraction of energy injected into the suprathermal particle power-law tail, as repeatedly observed in PIC simulations, regardless of the Lorentz factor γ ∞ , e.g. [START_REF] Sironi | The Maximum Energy of Accelerated Particles in Relativistic Collisionless Shocks[END_REF]. |w in the shock frame, as discussed in the forthcoming Sec. 5.5. Therefore, it drops to ν -1 |w once ξ b 0.1. For the typical value ν |w ∼ 0.01ω p inferred in Sec. 5.5, the relaxation scale is found to be of ∼ 100 c/ω p in the shock transition. Similarly, as we will see in Sec. 5.6, the scattering length of beam particles of Lorentz factor γ is of the order of γ w -1

B (γ/γ ∞ ) 2 ω -1
p , which becomes shorter by a factor γ w once the Weibel frame has slowed down to subrelativistic velocities.

The above model neglects the dierence between β w and β p . This is well justied in the relativistic regime γ p 1, see Eq. (5.21), but this approximation fails in the subrelativistic regime β p 1. In these last hundreds of skin depths, as discussed in Sec. 5.5 and in Sec. 5.3, the plasma decouples from the microturbulence, before eventually relaxing once the R w has decelerated to a constant velocity β w ∼ -1/2 (in 2D).

The resulting isotropization of the background plasma injects into the upstream a fraction of particles, which then populate the suprathermal population. From their point of view, the deceleration of the background plasma builds up a scattering barrier over a few tens of c/ω p : this scattering barrier results from the reduction of the scattering length scale due to the reduction in γ w and the increase in B , relatively to values seen further in the precursor. Hence, those particles that are energetic enough to cross the barrier are free to stream into the precursor over long distances, and to populate the suprathermal particle tail.

Another prediction of the above model is that the strength of the microturbulence should increase as a result of the compression of magnetic eld lines, modulo the growth factor imposed by the CFI, once the velocity of the R w frame becomes subrelativistic. This eect is best seen using Faraday's law in R s , in steady state: ∇ × δE = 0, which implies ∂ x δE ⊥ = 0 in the absence of a longitudinal δE x component. Note that, Specically, we overplot on the B of both PIC simulations an ad hoc prefactor times 1/β 2 w , where β w is inferred through the ratio E 2 y 1/2 / B 2 z 1/2 from these simulations (see Sec. 5.3.2). In the γ ∞|d = 10 case, the prole of B in the upstream suggests that the CFI is still growing close to the shock, albeit weakly so. Notwithstanding this growth, the predicted prole due to magnetic compression provides a reasonable match to the observed peak of B .

In the standard picture in which the CFI excites the growth of a magnetic barrier that peaks at the shock, one nagging question is: given that the growth takes place from the tip of the precursor (at x = prec ) until the shock front (at x = 0), why would the CFI yield the right value of B at the location predicted by a uid description of the shock front, to induce there the shock transition? This question has a simple and self-consistent answer in the present model: the peak in B is not associated with an explosion of the instability but, rather, with the compression of the ow, which occurs where β w turns subrelativistic, equivalently where the prole ξ b (x) nds its maximum, i.e., at the shock transition.

Downstream of this peak, one does not expect the compression law to hold anymore, since it is known that the magnetic eld relaxes through dissipation on short length scales in the downstream. Comparison of the β -2

w and B proles suggests that dissipation washes out the magnetic energy by a factor of 3 -4.

The heating of the background plasma

In the previous section, we have seen, in a uid model, that the background plasma slows down due to the exchange of momentum between the beam of accelerated particles and the background thermal plasma through their pitch-angle scattering in the non-inertial

Weibel-type microturbulence. In the present section, we describe the heating physics of the background plasma through its interaction with a microturbulence that can be described as magnetostatic in the frame R w , but which moves with a non-uniform bulk velocity β w (x) in the lab-frame R s .

Transport equation in a non-inertial frame

The full relativistic transport equation in the diusion approximation can be found in detailed form in Refs. [START_REF] Webb | Relativistic transport theory for cosmic rays[END_REF][START_REF] Webb | The diusion approximation and transport theory for cosmic rays in relativistic ows[END_REF][START_REF] Achterberg | Relativistic theory of particles in a scattering ow -I. Basic equations, diusion, and drift[END_REF][START_REF] Achterberg | Relativistic theory of particles in a scattering ow -II. Viscosity, electrical conductivity, and heating[END_REF]. For self-consistency, we draw upon these works to derive here a simplied one-dimensional transport equation in the microturbulence. The rst step is to write the Vlasov equation in its full relativistic formulation, as

dx µ dτ ∂ ∂x µ f + dp µ dτ ∂ ∂p µ f = 0 , (5.29) 
where τ denotes proper time. The distribution function f is normalized as usual, with the four-current density dened as j µ = d 3 p p 0 p µ f .

(5.30)

This distribution function thus integrates the on-shell condition and it depends only on the spatial components of the momenta. The above Vlasov equation remains valid, because the Liouville operator preserves the mass-shell.

We now assume that the turbulence is purely magnetic in a frame moving at β w with Lorentz factor γ w and we rewrite the above Vlasov system in a mixed coordinate system, with the spatial coordinates in the shock frame R s , and the momenta in the (wave) Weibel frame R w . The instantaneous or local Lorentz transform from the shock frame to the Weibel frame is characterized by the tetrad e a α :

p |w
a ≡ e a α p α , p α ≡ e α a p |w a .

(5.31)

Latin letters a, b, c are associated to the locally (but not globally) inertial frame R w , while unprimed symbols and greek indices are associated to the (globally inertial) lab frame R s .

In the mixed coordinate system, the Vlasov equation reads

p |w a e µ a ∂ ∂x µ f + m dp |w i dτ ∂ ∂p |w i f = 0 , (5.32) with m dp |w i dτ = q F i a p |w a -Γ i ab p |w a p |w b , (5.33) 
where m denotes the mass of the particles, F ab represents the total (coherent + turbulent) electromagnetic eld strength tensor in the R w frame, indices i, j, ... run over spatial values 1 -3, while a, b, c... run over all four indices. The connection Γ i ab accounts for the inertial terms in the comoving wave frame; it is expressed as Γ a bc ≡ -e α b e γ c e a α,γ .

(5.34)

It is not symmetric in its two lower indices, because the tetrad frame is an orthonormal but not a coordinate basis of general relativity. For our particular problem, the non-zero components of the tetrad and its inverse are so that the only non-zero components of the connection are

Γ t tx = Γ x tt = 1 β w ∂ t γ w + ∂ x γ w Γ t xx = Γ x xt = ∂ t γ w + 1 β w ∂ x γ w .
(5.36)

Monte Carlo-Poisson solver in noninertial mixed-frame coordinates

In the following, we describe the numerical tool developed by the author to follow the dynamics of background plasma particles over the crossing of the precursor, as described by the above model of pure pitch-angle scattering in a decelerating magnetostatic turbulence. This tool combines a Monte Carlo particle pusher and an electrostatic PIC-like solver aimed to describe electron-ion shocks where the longitudinal electric eld are expected to contribute greatly to the plasma heating.

Our MPI-parallelized solver stochastically propagates a large amount of particles in a one-dimensional box of size close to that of the shock precursor. As above, the deceleration law of the Weibel frame is characterized by u w (x). In the R w frame, the equation of motion of each particle is written

m dp |w i dτ = q F i a p |w a -Γ i ab p |w a p |w b , (5.37) 
where the rst term on the right-hand side is the Lorentz force with F i α|w the Faraday tensor in R w . The second term expresses the non-inertial force experienced by the particle in the R w frame with Γ γ αβ the associated Ricci rotation coecient that accounts for non-inertial eects in the Weibel frame. We describe the diusion in the turbulence as a stochastic process through the magnetic component of F i α|w (i.e. δE |w = 0) in R w . Therefore, each particle is subject, in the R w frame, to an Itô-type stochastic equation

dµ |w = 2ν |w dt |w X , dp x |w = p |w dµ |w + qδE x dt |w -β w p t |w + p x |w du w dx dt |w , (5.38) 
where X ∼ N (0, 1) is a normally distributed random number representing white noise, and at all times, the transverse momentum is set according to p ⊥|w = 1 -µ |w 2 p |w where µ |w is the pitch-angle cosine. The rst term on the right-hand side of Eq. (5.38) represents the stochastic pitch-angle diusion resulting from the magnetic component of the rst term on the right-hand side of Eq. (5.37). The second term in the right hand side of (5.38) represents the longitudinal electric force, of particular relevance to electron-ion systems (see Sec. 5.7). The last term in the right hand side of (5.38) derives from the last term in (5.37) for a non-inertial frame moving at non-uniform speed u w (x). A schematic view of the algorithm is presented in Fig. 5.14. At each To ensure the stability of the electrostatic code, the time step dt in R s has to be constant [START_REF] Birdsall | Plasma Physics via Computer Simulation[END_REF]. Due to relativistic eects, the time-step dt |w in R w must be carefully chosen to ensure that condition. The relation between dt and dt |w is obtained through • Deposition of the charge density onto the grid cells.

• Computation of the longitudinal electric eld through the Poisson solver:

φ j-1 -2φ j + φ j+1 = -ρ j (∆x) 2 ,
(5.43)

E j = φ j-1 + φ j+1 2∆x .
(5.44)

• Pushing of the particles using a variant of the Boris scheme [START_REF] Boris | Relativistic plasma simulation-optimization of a hybrid code[END_REF], split into ve steps:

Half electric boost:

p x n+1 = p x n + 1 2 qE x dt |w . (5.45) 
Half non-inertial boost: 

p x n+1 = p x n+1 - 1 
p x n+1 p y n+1 = R(dµ |w ) p x n+1 p y n+1 , (5.47) 
with R(dµ |w ) the rotation matrix.

Half non-inertial boost:

p x n+1 = p x n+1 - 1 2 β w p t |w + p x |w du w dx dt |w .
(5.48)

Half electric boost:

p x n+1 = p x n+1 + 1 2 qE x dt |w .
(5.49)

This Monte Carlo-Poisson solver is parametrized by ν |w and u w (x). We retain ν |w as a free parameter, but x the deceleration law u w (x) according to the theoretical model for As discussed in Sec. 5.2, our simulations distinguish the background plasma particles from the suprathermal particles according to the sign of their x-momentum and the number of reversals they have experienced. This distinction becomes irrelevant within the last skin depths from the shock front because the background plasma particles then suer strong deections. Hence, the quantities u p|d and T p extracted from the simulation become inaccurate there, and so does β w|p by implication. Therefore, we complement the prole of u w (x) with a plateau once u w (x) reaches the shock crossing value -1/ √ 3 (for a 2D3V simulation). This plateau extends over to negative x values and is not visible in the following gures because of the choice of a logarithmic scale in
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Because our Monte Carlo model is dened in the shock frame, its results must be Lorentz transformed to the downstream frame in which the PIC simulations are run.

We should also point out that the present model assumes a steady-state situation, while PIC simulations are by denition time-dependent; therefore the comparison between the two turns out to be slightly delicate. For one, we provide this comparison at a xed (simulation frame) time t |d , not at a xed R s -frame time. Moreover, in our PIC simulations, the precursor enlarges in proportion to t |d the time of the simulation while the maximal energy of accelerated particles inside this precursor increases roughly with t |d , so that their diusion length increases as t |d . As discussed in Section (5.6), one may thus consider that, at all times, a portion of the precursor is in steady-state, because the scattering time of the particles is smaller than t |d , while the rest of the precursor is populated by particles with an energy so large that they have not yet scattered signicantly. Since the typical energy of particles increases with distance to the shock, as a result of the smaller scattering length of lower energy particles, the near precursor, close to the shock front, is expected to be in steady state, while the far precursor should be described with a time-dependent model. In the γ ∞ = 17 (resp. γ ∞ = 173) simulation that we use as a testbed here, the steady-state approximation seems to be valid for x 10 3 ω -1 p (resp. x 2 × 10 3 ω -1 p ), while the precursor extends up to 2 × 10 3 ω -1 p (resp. 3.5 × 10 3 ω -1 p ).

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          10 0 10 1 10 2 10 3 10 -3 10 -2 10 -1 10 0 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               10 -2 10 -1 10 0 10 1 10 -1 10 0 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    10 -2 10 -1 10 
We thus run our Monte Carlo code with the above u (th) w (x) (rather, an interpolation of it) as input for the deceleration law to obtain theoretical predictions for u p|d (x) and T p (x), which we compare with the values measured in PIC simulations in Figs. 5.15, 5.16 and 5.17. We consider three representative values for our scattering frequency parameter: ν |w = 1, 0.1, 0.01 ω p represented respectively in light, medium and dark red in those gures. In each of these gures, the left (resp. right) panel provides the comparison for γ ∞ = 17 (resp. γ ∞ = 173). We emphasize that our parameter ν |w is a scalar, understood as an average quantity over the precursor, whereas one should rather expect the exact ν |w to depend on x, just like other quantities. At x 1 c/ω p (not visible in these gures), the prole u w|d relaxes further to subrelativistic values, and so does the background plasma on length scales of tens of c/ω p , until it eventually matches the asymptotic u w|d , with a temperature a factor of ∼ 2 or so larger than the Monte Carlo curves shown in Fig. 5.16. The Monte Carlo calculations indicate that larger scattering frequencies lead to smaller post-shock temperatures. This can be understood as follows: as ν |w prec → +∞, the background plasma behaves as an ideal uid, therefore it obeys the adiabatic compression law, see Eqs. (A.96) and (A.98). This cannot suce of course, as the large entropy jump at the shock requires a signicant amount of dissipation, which scales in inverse proportion to ν w , see Eqs. (A.96), (A.98) in the small |κ| limit. A value ν |w ∼ 0.01ω p seems to account reasonably well for the shock jump condition for both values of γ ∞ , see Fig. 5.17, which combines the above proles in a trajectory of the background plasma in the plane |u p|d | vs T p . The black curves plot the trajectories extracted from the PIC simulations, while the red curves correspond to the Monte Carlo simulations with dierent values of ν |w . The dotted line shows the trajectory that would be expected for pure adiabatic compression of a subrelativistic 2D gas, T p ∝ |u p | -2/3 . As observed above, the trajec-tories corresponding to larger values of ν |w remain closer to these adiabatic trajectories, and would provide an exact match in the limit ν |w prec → +∞. These plots show a rather nice agreement of the overall trajectories for our best-t scattering frequency ν |w = 0.01ω p . The left panel of Fig. 5.16 for γ ∞ = 17, however, reveals a mismatch between the measured temperature and that modeled at distances 10 2 c/ω p x 10 3 c/ω p . We interpret this as a transient eect, which appears in this simulation of duration 3600ω -1 p , but that fades on longer timescales; this eect, in particular, becomes substantially milder in the simulation γ ∞ = 173 of duration 6900 ω -1 p and it is absent of our longest simulation 1 of duration 10700 ω -1 p for γ ∞ = 17. This sudden heating of the background plasma from T p 10 -2 m to T p 10 -1 m over a few hundreds of c/ω p can be related to the oscillatory slow-down feature in the plasma 4-velocity at x 600 -1000 c/ω p (see Fig. 5.15), and more particularly to the change in the momentum distribution of suprathermal particles: at x 10 3 c/ω p , the suprathermal plasma is dominated by the particles that were specularly reected o the mirror at early times, while at x 10 3 c/ω p , the large inertia particles that result from acceleration on the shock front form the bulk of this population. We expect that on longer timescales, this preheating eect would fade away, as for other simulations, and that the theoretical T p (x) curve would better match the PIC simulations.

Perturbative transport equation

Starting from the Vlasov equation expressed in mixed frame coordinates, another approach is to further approximate f f + δf with δf the uctuating part of f . The general Vlasov equation then has a formal solution [START_REF] Dupree | A Perturbation Theory for Strong Plasma Turbulence[END_REF][START_REF] Weinstock | Formulation of a Statistical Theory of Strong Plasma Turbulence[END_REF]:

p |w a e µ a ∂ ∂x µ f + dp |w i dτ ∂ ∂p |w i f = q 2 dτ δF i a p |w a ∂ ∂p |w i G(t; τ ) δF j b p |w b ∂ ∂p |w j f , (5.50) 
where G(t; τ ) formally represents the propagator connecting phase space values at time τ to phase space values at time t. In standard quasilinear theory, one approximates the r.h.s. of the above equation to lowest order in the powers of the stochastic force, which amounts to use the unperturbed trajectory in the propagator.

Here we do not make this approximation, which would fail badly in the case of the background plasma. We rst note that our assumption of a magneto-static turbulence in the R w frame implies that the scattering operator on the r.h.s. of Eq. (5.50) must be purely transverse to p |w . In spherical coordinates, writing µ |w the cosine of the angle of p |w with x and averaging over the azimuthal angle φ, this scattering operator and 1 We do not use this simulation to benchmark our model because its diagnostics cannot disentangle the suprathermal and background plasma particles nely enough for our present purposes. the resulting equation take the general form:

γ w p t |w + β w p x |w ∂ t f + γ w β w p t |w + p x |w ∂ x f - ∂ t γ w β w + ∂ x γ w p t |w 2 ∂ p x |w f -∂ t γ w + ∂ x γ w β w p t |w p x |w ∂ p x |w f + qE x p t |w ∂ p x |w f = p t |w 2 ∂ µ |w ν |w 1 -µ |w 2 ∂ µ |w f , (5.51) 
where ν |w is a scattering frequency, which a priori depends both on µ |w and p |w . We do not aim to calculate ν |w from quasi-linear theory; we rather treat this scattering frequency as a parameter of the model.

We now assume a steady state regime in the shock rest frame, so that Eq. (5.51)

above further simplies down to our main equation:

γ w β w p t |w + p x |w ∂ x f - 1 β w dγ w dx β w p t |w + p x |w p t |w ∂ p x |w f + qE x p t |w ∂ p x |w f = p t |w 2 ∂ µ |w ν |w 1 -µ |w 2 ∂ µ |w f , (5.52) 
and, of course:

∂ p x |w ≡ µ |w ∂ p |w + 1 -µ |w 2 p |w ∂ µ |w .
(

The term proportional to dγ w /dx characterizes the eective gravity felt by the background plasma particles in the non-inertial frame Rw. In the main part of the text, we omit the brackets , and simply write f for the average part of the distribution function. Here, as we are interested in the dynamics of a pair plasma, we set E x = 0 because of uniform charge neutrality. This electric eld is bound to play a key role for heating the electrons in an electron-ion shock; we defer this discussion to a future study.

Starting from Eq. 5.52, one can derive the complete eective Fokker-Planck dynamics in a noninertial frame. While the complete description of the main results is relegated in App. A.3, we point out some interesting result obtained in this formalism.

The main assumption of this model is |κ| 1 where κ is a dimensionless parameter characterizing the deceleration of the Weibel frame

κ ≡ ν -1 |w du w dx , (5.54) 
This limit is certainly valid in the far precursor but becomes inconsistent close to the shock front. From this approximation, one can derive the momentum space diusion coecient derived and described in Sec. A.3.1

D p |w p |w = ν |w β 2 w 3γ w κ 2 1 - p |w 2 3β 2 w p t |w 2 2 p t |w 2 .
(5.55) of a nite scattering frequency, because once the momentum of a particle has changed sign, this particle is no longer characterized in this post-processing as a background plasma particle. This gure shows that about half of the particles are scattered at least once over the crossing of the precursor.

Another powerful result obtained in this paradigm is the non-adiabatic heating of the background plasma in the presence of non-vanishing scattering frequency of the background plasma in the microturbulence

d dx |u w | 2/3 T p m = 2 3 κ 2 β 2 w ν |w |u w | 1/3 (|κ| 1, T p m) (5.56) 
d dx |u w | 1/3 T p m = 4 3 1 - 1 3β 2 w 2 κ 2 β 2 w ν |w |u w | 2/3 T p m (|κ| 1, T p m) . (5.57) 
From those equations, one directly sees that, without scattering in the turbulence, the only way to heat the background plasma is through adiabatic heating. However, those results are obtained in the limit of weak deceleration, |κ| 1. They oer useful insight into the nature and the eciency of the heating process, but they cannot cover the whole length of the precursor, in particular the near-shock region.

The scattering frequency of the background plasma

Our model indicates a best-t value of ν |w = 0.01ω p for the eective scattering frequency of the background plasma in the R w frame.

As discussed in Sec. 5.3.1, the degree of nonlinearity of the lamentation of the back-ground plasma in R w can be quantied using the parameter Ξ p|w e|β p|w |δA x /T p , with δA x the x-component of the electromagnetic potential four-vector. In our PIC simulations, this nonlinearity parameter is smaller than unity far in the precursor, but close to unity in the near-precursor, indicating that a signicant fraction of background plasma particles are trapped in the laments, all the more so within hundreds of skin depths of the shock front. Individual particles are trapped in a lament if their gyroradius r g|w < r ⊥ , with r ⊥ ∼ 10 ω -1 p the lament transverse radius. Dening γ p|w the typical Lorentz factor of a background plasma particle in R w , i.e., γ p|w max [1, T p /m] (neglecting the bulk drift velocity in front of the thermal velocity in R w ), we nd that most particles are trapped if

T p /m < (r ⊥ ω p ) 2 B (for T p < m), or T p /m < (r ⊥ ω p ) 1/2 B (T p > m).
For those trapped particles, one can form an estimate of the scattering frequency as follows. Assume that trapped particles execute oscillating orbits inside the laments, bouncing on the magnetic eld barrier that reaches a peak at r ⊥ . The betatron frequency characterizing those oscillations is

ω β|w = π/2 r ⊥ r g|w /β x|w -1/2
, with β x|w the x-velocity of the particle. In the following, we assume β x|w ∼ 1, corresponding to T p m, as observed in the near precursor. At each rebound, the particle is deected by an angle ∆α |w ∼ ±r ⊥ ω β|w . However, the force remains coherent over the trajectory of the particle inside the lament, to decohere only once the particle has exited the lament over a parallel coherence length , on a timescale ∆t |w ∼ |w . Therefore, the angular diusion frequency can be written

ν |w (trapped) = ∆α 2 |w ∆t |w ∼ r ⊥ |w 1/2 B γ p|w -1 ω p , (5.58) 
where γ p|w represents the typical Lorentz factor of background plasma particles in R w .

For typical values of r ⊥ / |w ∼ 0.1, B ∼ 0.01 and γ p|w ∼ 1, one obtains the same order of magnitude as the best-t value, ν |w ∼ 0.01 ω p . Consider now the untrapped population, with gyroradius r g|w r ⊥ . In this case, the standard estimate of the scattering frequency leads to ν |w ∼ r ⊥ /r 2 g|w , i.e.,

ν |w (untrapped) ∼ (r ⊥ ω p ) B γ p|w -2 ω p , (5.59) 
which also provides a reasonable order of magnitude for r ⊥ ω p ∼ 1 -10, B ∼ 0.01 and γ p|w ∼ 1.

The average scattering frequency of the background plasma can also be directly estimated from our PIC simulations by the following counting argument. In the PIC simulations, the background plasma particles are dened as those particles that propagate towards the -x direction and that have not undergone any turn-around. If the scattering frequency were exactly zero, then the current density u 

The dynamics of the suprathermal particles

In this section, we focus on the physics of the suprathermal particles. In particular, we present the computation of their scattering length in the microturbulence and of their distribution function in the precursor. The main contribution of the author in the present section has been to confront these theoretical predictions with dedicated PIC simulations.

We thus detail below how the scattering length can be inferred from PIC simulations.

The scattering length l scatt is a crucial quantity because it determines the time it takes to complete a Fermi cycle around the shock, hence the acceleration timescale, and hence the maximum energy of accelerated particles. Estimates of this acceleration timescale have been provided through test-particle simulations in a theoretical model of the microturbulence [START_REF] Plotnikov | Particle transport and heating in the microturbulent precursor of relativistic shocks[END_REF], or through a direct measurement in long-timescales PIC simulations [START_REF] Sironi | The Maximum Energy of Accelerated Particles in Relativistic Collisionless Shocks[END_REF], yet a clear determination of l scatt is still missing. This calculation is not straightforward, in particular because of non-trivial dependencies on the anisotropy of the turbulence spectrum [START_REF] Achterberg | The Weibel instability in relativistic plasmas. II. Nonlinear theory and stabilization mechanism[END_REF]. This length scale, dened in the shock rest frame, reveals a non-trivial scaling on γ ∞ , which plays an important phenomenological role as we argue in Sec. 5.6.3.

The present section is organized as follows. In the rst subsection, we develop the main results of the quasilinear estimate of the scattering length, and refer the reader to Apps. A.4 and A.5. The second part deals with the analytical estimate of the scattering length in a time-dependent precursor, allowing for a comparison between the quasi-linear estimate and the PIC simulations.

The scattering length scale

The scattering of suprathermal particles in the downstream ow of an unmagnetized, relativistic collisionless shock is relatively easy to model. As PIC simulations have demonstrated [START_REF] Spitkovsky | Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last?[END_REF][START_REF] Spitkovsky | On the Structure of Relativistic Collisionless Shocks in Electron-Ion Plasmas[END_REF][START_REF] Chang | Long-Term Evolution of Magnetic Turbulence in Relativistic Collisionless Shocks: Electron-Positron Plasmas[END_REF][START_REF] Martins | Ion dynamics and acceleration in relativistic shocks[END_REF][START_REF] Keshet | Magnetic Field Evolution in Relativistic Unmagnetized Collisionless Shocks[END_REF][START_REF] Sironi | Particle Acceleration in Relativistic Magnetized Collisionless Electron-Ion Shocks[END_REF][START_REF] Sironi | The Maximum Energy of Accelerated Particles in Relativistic Collisionless Shocks[END_REF], the downstream turbulence is essentially magnetostatic in R d and distributed on short length scales λ δB ∼ O 10 ω -1 p . A particle thus suers a typical deection by an angle δθ ±λ δB /r g upon crossing a coherence length scale λ δB , r g denoting the gyration radius in the average magnetic eld. There follows the pitch-angle scattering frequency ν scatt δθ 2 /λ δB λ δB /r 2 g .

Hence, the scattering length, i.e. the length beyond which the acquired deection becomes of the order of unity, is l scatt r 2 g /λ δB . In the shock precursor, by contrast, this scattering issue needs a careful analysis because: (i) the beam of suprathermal particles is strongly anisotropic in the R w frame in which the turbulence is of a mostly magnetic nature; (ii) this frame is in relativistic motion with respect to the R s shock rest frame; (iii) the turbulence itself is strongly anisotropic.

The strong relativistic beaming of the suprathermal particles implies that their scattering frequency transforms nontrivially from R w to R s , namely, ν scatt 4γ 3 w ν scatt|w (see App. A.6). The anisotropy of the turbulence also plays an important role. For instance, describing the Weibel turbulence as a collection of innitely long laments oriented along the x-axis leads to the conservation of the conjugate canonical momentum associated to ẋ, thus precluding pitch-angle diusion of the suprathermal particles [START_REF] Achterberg | The Weibel instability in relativistic plasmas. II. Nonlinear theory and stabilization mechanism[END_REF].

A careful calculation of the scattering length scale in a microturbulence in relativistic motion with respect to the shock front can be done by successively computing the correlation time of the random force experienced by a suprathermal particle (see App. A.4). Then, the diusion coecient can be computed in the framework of an extended quasilinear theory, taking into account the anisotropy of the turbulence, its growth in the precursor and the relative motion between the R w frame and the shock front (see App. A.5). As a result, one obtains the following estimate (up to a prefactor of the order of unity) of the scattering length

l scatt (p) ∼ γ p -1 B p γ ∞ m 2 ω -1
p .

(5.60)

Nonstationary precursor

To make comparison to PIC simulations, one must characterize the distribution function of suprathermal particles in a time-dependent regime. Such a comparison notably allows one to obtain a direct estimate of the scattering length of particles as a function of their energy, which can then be compared to our quasilinear estimate Eq. (5.60), derived in a time-independent regime in App. A.5. To approximate this distribution function in the time-dependent regime, t l scatt , we assume that particles move along straight lines but can at any time interact to suer a deection into the opposite half-space of pitch angle cosine i.e., those with µ > 0 are deected in the half-space µ < 0 and vice versa with a mean waiting time of l scatt . We suppose that the shock front injects d Ṅ /dpdµ particles (per unit transverse area of the shock front) per unit time, momentum interval and pitch angle cosine interval. We also distinguish between forward-and backwardmoving beam particles: the backward-moving particles result from the deection of forward-moving particles. Since about half or more of the particles come back to the shock front after experiencing only one interaction, we neglect the possibility of multiple interactions in this time-dependent regime.

The forward-moving beam particles, with distribution function f b> (x), thus correspond to the injected population that has not experienced any deection up to distance 

dn b> dpdx = d Ṅ dp Γ 0, x l scatt , (5.62) 
keeping in mind that l scatt also depends on p. The logarithmic divergence at x → 0 is an artifact that results from our assumption of an innitely thin shock front; in the following, we will regularize it as dn b> /dpdx ≈ d Ṅ /dp as x l scatt .

The backward-moving particles, although fewer in number, play a special role, as will be shown in the following. Their distribution can also be obtained assuming straight line trajectories. Consider such a particle at x at t, with momentum p and pitch angle cosine µ. In our approximation, this particle results from the deection of a forwardmoving particle at some point x 1 ≥ x, and some time t 1 ≤ t, which itself was emitted by the shock front at some time t 0 ≤ t 1 , with pitch angle cosine µ 0 and momentum p 0 . For simplicity, we neglect the order of unity energy gain experienced by the particle during its deection and set p 0 = p. If G(x, t, µ; x 1 , t 1 , µ 1 ) denotes the propagator representing rectilinear propagation without interaction, from coordinates (x 1 , t 1 , µ 1 ) to (x, t, µ), then the density of backward-moving particles can be written

dn b< dpdxdµ = 1 µ t 0 dt 0 1 0 dµ 0 t t 0 dt 1 ∞ 0 dx 1 1 0 dµ 1> G (x, t, µ; x 1 , t 1 , µ 1< ) × P (µ 1< ; µ 1> ) l scatt G (x 1 , t 1 , µ 1> ; 0, t 0 , µ 0 ) d Ṅ dpdµ 0 .
(5.63)

Here, P (µ 1< ; µ 1> ) denotes the probability of deecting particle with incoming µ 1> into µ 1< upon interaction; we use P (µ

1< ; µ 1> ) = Θ [-µ 1< µ 1> ]. For ballistic transport, G (x, t, µ; x 1 , t 1 , µ 1 ) = e -|t-t 1 |/lscatt δ (µ -µ 1 ) δ t 1 -t 0 - x -x 1 µ .
(5.64)

Assuming isotropic injection at the shock front, we then obtain

dn b< dpdxdµ = 1 - x t 1 -exp - t l scatt d Ṅ dp t -x l scatt d Ṅ dp , (5.65) 
since t l scatt by assumption. Note that the coordinates are expressed in the shock frame; in terms of downstream frame coordinates, which are more appropriate for a direct comparison with the PIC simulation, the above becomes

dn b< dpdxdµ 1 γ d (1 + β d ) (1 + β d ) t |d -x |d + β d t |d l scatt d Ṅ dp , (5.66) 
with β d the velocity of the downstream relative to the shock front; in a 2D PIC simulation, β d -1/2. The quantity in the numerator represents the dierence between the total precursor length and the distance between the shock and the particle, in the simulation rest frame. It thus indicates that the backward-moving particle density vanishes at the tip of the precursor, then increases linearly as one nears the shock front.

Quite interestingly, the above dependence of the backward-moving suprathermal particles distribution on distance oers a direct means to infer the scattering length scale of these particles from a PIC simulation. By contrast, this scattering length scale does not aect the distribution of forward-moving suprathermal particles in the time-dependent regime, since they propagate on near straight lines. It does control the distribution of the suprathermal particle population in the stationary state, but, this stationary state is limited to the lowest momenta range for a PIC simulation of reasonable duration, and is thus sensitive to the details of the turbulence in the vicinity of the shock transition.

The two panels of Fig. 5.19 plot the quantity (p/p m ) -2 ∆xdN > /dN < , as measured in our PIC simulations, with p the momentum of a particle, ∆x = x max -x the distance between the tip of the accelerated particle population and x, and dN > , dN < the ratio between the populations of forward-to backward-moving particles at p and x. According to Eq. (5.66), this provides a direct estimate of the scattering length divided by (p/p m ) 2 . In these two panels, the color code indicates the position x where the estimate is taken. At large distances from the shock (corresponding to yellow/red colors), and at large momenta, where the assumed time-dependent regime should hold, all curves nearly lie on top of each other, indicating a coherent value of the scattering length. Furthermore, these curves do not depend on p, indicating that the scattering length does indeed scale as p 2 . The gray band shows the value corresponding to the theoretical estimate given in Eq. (5.60), with a width corresponding to an uncertainty of a factor 3 on either side. The satisfactory agreement obtained for all (large) values of p, (large) values of x and the dierent values of γ suggests that the simple formula (5.60) captures the leading dependencies of the scattering length in the shock precursor.

Implications on the shock dynamics

A comment is worthwhile on the γ w γ p prefactor in l scatt (p). This prefactor, which derives from the relativistic motion between the Weibel frame and the shock frame (in which the suprathermal particle beam is roughly isotropic), bears important consequences for the phenomenology of such shock waves. This is so because l scatt (p) sets the typical value of the residence time in the R s frame, hence the typical value of the acceleration timescale. The residence time in the downstream plasma is expected to be γ ∞ times shorter, because the downstream ow is not relativistic with respect to the shock front. The acceleration timescale has been directly measured in long-timescale PIC simulations [START_REF] Sironi | The Maximum Energy of Accelerated Particles in Relativistic Collisionless Shocks[END_REF]. At present times, however, such simulations can only probe the early development of the power-law of accelerated particles, because t acc (p) ∝ p 2 implies that the maximum energy p max ∝ t 1/2 . Furthermore, most of the accelerated particles in such simulations have gained energy in the shock vicinity. This is clearly seen in Fig. 5.5: the largest extent of the spectrum in p x of the accelerated particles is reached in the near precursor. In our model, this result can be understood as a result from the scattering length increasing with γ w , and hence with the penetration depth into the precursor (since γ w drops from γ ∞ at the tip of the precursor down to ∼ 1 at x ∼ 0), which renders grazing Fermi orbits more likely in a given simulation time.

This also implies that current PIC simulations fail to access the acceleration timescale in the far precursor, which presumably controls the generation of the highest energy particles in a realistic setting.

Most likely, the transport of these highest-energy particles in the far upstream would then become dominated by an external magnetic eld, even if as weak as that of the interstellar medium, because the microturbulence implies an acceleration timescale t acc ∝ p 2 , while a regular magnetic eld guarantees t acc ∝ p, see [START_REF] Plotnikov | Particle transport and heating in the microturbulent precursor of relativistic shocks[END_REF]. Hence, in spite of the inecient scattering implied by the relativistically moving Weibel turbulence, the acceleration timescale in the interstellar magnetic eld remains short enough to ensure that synchrotron GeV photons can be produced in the early phases of a highly energetic gamma-ray burst afterglow.

Relativistic electron-ion shocks

In this section, we present an ongoing work started in the last six months of the doctoral thesis. We extend the previous model developed for relativistic collisionless pair shocks to electron-ion plasmas. The associated PIC simulations are again performed with the code calder, and are then compared to Monte Carlo-Poisson calculations, as presented in Sec. 5.5.

The expected role of the longitudinal electric eld

Electron-positron and electron-ion shocks are expected to exhibit distinct dynamics due to charge separation eects. In the pair case, electrons and positrons carry the same inertia and account for the totality of the background plasma. In particular, in the shock frame, the shock transition can be described in terms of momentum transfer between the longitudinal and the transverse directions through angular relaxation, instead of heating, even though in the non-inertial R w frame, particle energization does occur.

Accordingly, the hydrodynamic shock jump conditions indicate that the energy per particle is conserved between far upstream and far downstream [START_REF] Blandford | Fluid dynamics of relativistic blast waves[END_REF].

In the previous study, in order to asses the contribution of the longitudinal and transverse electric elds to the dynamics of the background plasma, we have recorded the trajectories of a large set of particles, and measured the various contributions of the electromagnetic forces in several regions of the precursor. These simulations indicated that the longitudinal electric forces are dominated by the transverse electromagnetic forces in the near precursor, where most of the heating takes place, but prevail in the far precursor. This may be expected on the grounds that the Weibel frame is itself well dened in the near precursor, but not necessarily so in the far precursor because of the stronger contribution of oblique modes. On the other hand, while we do not expect any coherent electrostatic component δE x to arise in the previous case, one does foresee an inductive δE x associated with the growth of the CFI in the precursor and an electrostatic δE x associated with its broadband (in wavenumber) nature. Neither of these would be coherent, since the inductive component should be modulated along the y-direction as δB z , while the electrostatic component should be modulated at least along x with reversal scale ∼ k -1

x . One may tentatively extrapolate the above model to the case of electron-ion shocks as follows. In these shocks, the inertia-carrier are ions and therefore, in a rst approximation, their dynamics is likely similar to that of the pairs in a pair shock. Yet the disparity in inertia between ions and electrons should translate into dierent scattering frequencies, which would break the equivalence between their trajectories in the eective gravity eld associated with the slowdown of R w . Hence, one may expect in this case a coherent longitudinal δE x eld to arise from charge separation and to contribute strongly to electron heating, at the expense of the ions. We note that such a eld could not have been seen in the simulations of Ref. [START_REF] Kumar | Electron Heating in a Relativistic, Weibelunstable Plasma[END_REF], because these adopted a symmetric counterstreaming conguration, in which there is no net β w , hence not net deceleration.

The purpose of the present section is to exhibit the formation of this eld in ab initio simulations.

In the rst section, we present the PIC simulation results and provide some phenomenological analysis of the observed dynamics of the electrons and ions making up the background and thermal beam plasmas. In the second section, we examine the eect of the longitudinal electric eld on the physics of the shock, and its importance in causing equipartition between electrons and ions in the downstream medium.

PIC simulations

In order to show the appearance of the aforementioned longitudinal electric eld, we We used 10 particles per cell for each species (for a total of about 10 10 particles in the largest simulation). In both cases, the plasma was injected with a temperature T i = T e = 0.01 m e c 2 . The ltering methods are the same as those used in pair simulations (right). For each quantity and plasma species (electron or ion), we distinguish between the background plasma and beam components (indexed by p and b , respectively). The electronic and ionic Lorentz factors of the background plasma starkly dier in the far 2 Data in the downstream (x |d < 0) are shaded if the quantity is not well dened in this region. 4 m e ). For the ions, the saturated temperature is T i,p 10 m e = 0.4 m i (for the m i /m e = 100 simulation, the saturated temperature is more dicult to identify since no clear plateau emerge but its level is of the order of T i,p ∼ 10 2 m e ∼ m i ).

In the shock precursor, the electrons slowly heat up to equipartition at the shock front.

In the downstream, the temperature of the ions is T i 1.1 × 10 3 m e 44 m i (T i 4.3 × 10 3 × 10 2 m e 43 m i ) in accordance with the uid jump condition (T i = 50 m i ), while the downstream electrons reach a temperature T e T i /2. We observe that, in each simulation, the same downstream temperature, normalized to the ion rest mass, is reached. The nature of the electron heating in the precursor is investigated in the next section, where we show that pure magnetic scattering is not sucient to bring the plasma to equipartition and that the role of the longitudinal electric eld is thus essential.

The inuence of the longitudinal electric eld is not obvious since, as indicated in 

Comparison with Monte Carlo-Poisson calculations

The Monte Carlo (MC) solver described in Sec 5.5.2 includes a particle-in-cell electrostatic solver. The electric eld is discretized using a centered scheme and the resolution is imposed by the electronic plasma length. Without giving an explicit analytical estimate of the Weibel frame, we extract its prole from the PIC simulation as

β w|d = (δE ⊥ × δB ⊥ )/δB 2 ⊥ .
Due to the strong contamination of the high-mass-ratio simulation (m i /m e = 100) by the non-neutral beam, the deceleration law is extracted from the simulation with mass ratio m i /m e = 25 and tted to avoid a strong decelerating gradient due to high-frequency modes (see dashed red line in Fig. 5.24). Figure 5.24 shows the Lorentz factor of the background plasma electrons and ions, and the Lorentz factor of the Weibel frame measured in the downstream/simulation frame. From this gure, we observe that the electrons are strongly decelerated when entering the precursor, rapidly relaxing in the Weibel frame. In the following, we examine the dierent contributions to the deceleration of the background electrons and ions. In order to reproduce the conditions of the simulations, we inject a cold plasma at ω i x |d /c = 540 with relativistic Lorentz factor γ ∞|s = 173. As we have seen at the end of the previous section, the electron-ion beam is nonneutral and, thus, may aect the dynamics of the background plasma through the development of an electrostatic eld. In order to gauge the inuence of this nonneutral beam, we have extracted it from the PIC simulation with an ad hoc t and we have used it as an input in the Monte Carlo solver. The bottom panels (c) of Fig. 5.25 display the proles obtained from this calculation. The Lorentz factor now captures reasonably well the behavior observed in the PIC simulations, notably the sharp deceleration of the electrons around ω i x |d /c 500. Moreover, the evolution of the electron temperature is quantitatively reproduced, regarding both its sudden increase, its order of magnitude and its subsequent rise through the precursor.

These results therefore indicate that the contribution of the electron-ion beam is two-sided: rst, it generates the Weibel-type microturbulence in which the particles of the background plasma relax; second, the nonneutrality of the beam due to the dierent scattering lengths of the accelerated ions and electrons generates longitudinal electrostatic elds that strongly decelerate the electrons. This work is preliminary, and in order to improve our description of the electron heating in the shock precursor, one may further work on the eective scattering frequency of the two species. Some scaling laws extracted from PIC simulations may help in this respect.

Conclusion

In this Chapter, we have developed an analytical microphysical model of the precursor of unmagnetized, relativistic collisionless shocks, which sheds new light into the phenomenology of such systems in high-energy and laboratory astrophysics. Our theory, based on the properties of the noninertial Weibel frame and benchmarked against large-scale PIC simulations, lends itself to extrapolation to other shock regimes and to the large spatiotemporal scales of astrophysical interest. We have shown that there exists a frame the Weibel frame in which the turbulence is quasi-magnetostatic.

We have provided a formal denition of this turbulence frame in a uid and kinetic framework, and in the nonlinear regime. Notably, we have pointed that the background plasma frame is close to the Weibel frame in which it tends to relax through pitch-angle scattering. The plasma slowdown can be understood as an exchange of momentum between the beam of nonthermal particles and the background plasma. By making use of the uid conservation equations, we have seen that the microturbulence does not contribute to the energy/momentum balance, but is the mediator of this transfer. The heating and slowdown of the background plasma was also described in a kinetic framework using mixed frame coordinates, space coordinates being expressed in the shock frame and momentum coordinates in the Weibel frame. The intrinsic noninertial nature of the Weibel (turbulence) frame in which the background plasma relaxes allows one to describe self-consistently its dynamics. Using the equivalence between the pitchangle diusion equation obtained in the kinetic framework and a stochastic dierential equation, we have solved the dynamics of the background plasma using a Monte-Carlo solver coupled to an electrostatic solver in mixed frame coordinates. Furthermore, since PIC simulations are generally far from reaching a stationary state, we have provided a nonstationary model in which the accelerated particles, which shape the dynamics of the background plasma, are assumed to propagate ballistically. This hypothesis is particularly true for the nonthermal particles that experienced at most one Fermi-cycle.

From this model, we have derived a procedure for extracting from the PIC simulations an eective scattering frequency for the beam particles, which supports our quasilinear estimate. Finally, we have extended this model to electron-ion plasmas by: rstly, running and analyzing PIC simulations with two relativistic drifting plasmas of dierent mass ratios; secondly, comparing these simulations with the Monte Carlo-Poisson solver describing the plasma deceleration and heating. We have demonstrated that longitudinal electric elds play an essential role in ensuring downstream equipartition between electrons and ions. We have also showed that the nonneutrality of the accelerated beam accounts for the dierential deceleration of the electrons relative to the ions.

Chapter6

Neutron-loaded γ-ray burst afterglows

In this Chapter, we study the eect of a neutron shell propagating in the upstream medium of the ion blast wave that originates from the central engine of a γ-ray burst. In general, neutrons and protons are emitted by the central engine together with photons and neutrinos in various proportions. Before the kinematical decoupling of neutrons and protons through nuclear collisions, this ratio is aected by nucleosynthesis up to 4 He and weak interactions, depending on the collimation half-angle of the outow (θ 1/2 ), dynamical time (τ dyn ) and photon to baryon number density ratio [250]. In this phase, protons are accelerated by the radiation pressure exerted on the electrons, but, as the collisionality decreases, neutrons eventually decouple. Once the system has become transparent to neutron-proton collisions, the neutron bulk Lorentz factor Γ n freezes, and that of protons, Γ p , (possibly) continues to rise until it saturates as well at some later stage. At the deceleration radius, Γ p starts to decrease as the blast wave picks up matter from the interstellar medium. The neutron shell progressively catches up with the proton ow: at a distance R β ∼ 10 15 Γn 100 cm, neutron decay leads to the medium being loaded with protons, thus altering the dynamics of the blast wave. The composition of the ejecta and its signature have been studied by several authors [START_REF] Derishev | Lightcurves of cosmological gamma-ray bursts[END_REF][START_REF] Derishev | The Neutron Component in Fireballs of Gamma-Ray Bursts: Dynamics and Observable Imprints[END_REF][START_REF] Bahcall | 5-10 GeV Neutrinos from Gamma-Ray Burst Fireballs[END_REF][START_REF] Mészáros | Multi-GEV Neutrinos from Internal Dissipation in Gamma-Ray Burst Fireballs[END_REF][START_REF] Pruet | Implications of Neutron Decoupling in Short Gamma-Ray Bursts[END_REF][START_REF] Beloborodov | Neutron-fed Afterglows of Gamma-Ray Bursts[END_REF][START_REF] Beloborodov | Nuclear Composition of Gamma-Ray Burst Fireballs. Astroph[END_REF][START_REF] Rossi | Neutron-loaded outows in gamma-ray bursts[END_REF][START_REF] Razzaque | A beta decay radiation signature from neutron-rich gamma-ray bursts[END_REF][START_REF] Koers | Neutron-rich gamma-ray burst ows: dynamics and particle creation in neutron-proton collisions[END_REF][START_REF] Metzger | On the Conditions for Neutronrich Gamma-Ray Burst Outows[END_REF].

Here, we are interested in the eect of the neutrons on the dynamics of the afterglow, as studied in [START_REF] Beloborodov | Neutron-fed Afterglows of Gamma-Ray Bursts[END_REF]. As schematized in Fig. 6.1, when the ion blast wave has decelerated suciently, the neutron shell can overcome it and interact with the surrounding unshocked interstellar medium. The impact of neutrons on γ-ray bursts has been classied in 4 types of lightcurves depending on how the deceleration time of the proton shell 167 compares with the apparent decaying time of the neutrons and if there is a decoupling between the shells [START_REF] Derishev | Lightcurves of cosmological gamma-ray bursts[END_REF]. Our setup is the same as the one addressed in [START_REF] Beloborodov | Neutron-fed Afterglows of Gamma-Ray Bursts[END_REF]. However, a microphysical ab initio kinetic study of this problem, showing properly the expected spectra emerging from such congurations is still lacking. The purpose of this study is to provide a clearer view on the acceleration processes that can arise in such events, and compute their associated radiative spectra. This is an ongoing project and, at this stage, we focus on changes in the dynamics caused by neutrons decaying upstream of a relativistic shock.

In the following, the trail refers to the medium loaded by the neutron shell, downstream corresponds to the zone shocked by the ion blast wave, and upstream refers to the zone that precedes the neutron shell. We rst develop a uid model describing the inuence of the proton injection on the dynamics of the ow upstream of the ion blast wave and on the ion shock wave. This model is then compared to PIC simulations run using the calder code in various regimes of injection.

Fluid model of a shell-loaded plasma

Here, we study the dynamics of a plasma loaded with protons through β-decay of a neutron ejecta. We rst develop a uid model describing the dynamics of a plasma loaded by a nite-width shell of decaying neutrons using the relativistic uid conservation equations with source term. We assume that the tip of the neutron shell propagates upstream of the ion reball shock if not already decoupled. The neutron shell propagates with a positive velocity in the ambient medium with a γ-Lorentz factor γ n| = 1/ 1 -β 2 n| , where subscript | refers to the central engine frame. In the second part of this section, we provide an estimate of the distance at which the shell decouples.

Conservation equations

The uid description of a relativistic hydrodynamical system with source term is well posed in the case of a Heaviside-type injections and we can use a description similar to [START_REF] Beloborodov | Radiation front sweeping the ambient medium of gamma-ray bursts[END_REF]. The conservation equations across a planar discontinuity moving at β n are easily expressed in Lagrangian coordinates = β n t -x assuming stationarity in the shell reference frame. In any frame, if particle injection occurs at a constant rate in the domain 0 ≤ ≤ ∆γ n where ∆ is the size of the neutron shell in the upstream frame, the current, momentum and energy conservation equations reduce to

∂ β n J t -J x -ṅp Θ( ) min( , ∆) = 0 , (6.1) 
∂ β n T tν -T xν -ṅp p ν Θ( ) min( , ∆) = 0 , (6.2) 
where J µ and T µν denote respectively the 4-current and energy momentum tensor, Θ( ) is the Heaviside step function, ṅn is the (Lorentz-invariant) β-decayed proton injection rate, and p ν = (p 0 , p 1 , p 2 , p 3 ) is the four-momentum of the injected beam of protons. We assume that the protons couple instantaneously, i.e. on a scale of the order of the plasma skin depth, with the background plasma and that the plasma shell size ∆ c/ω p .

Integrating the system across the shell leads to

n t γ t (β n -β t ) = n u γ u (β n -β u ) + ṅp Θ( ) min( , ∆) , (6.3) 
w t γ 2 t (β n -β t )(1 + β t ) -P t (1 + β n ) = w u γ 2 u (β n -β u )(1 + β u ) -P u (1 + β n ) + ṅp (p 0 + p 1 )Θ( ) min( , ∆) , (6.4) w t γ 2 t (β n -β t )(1 -β t ) + P t (1 -β n ) = w u γ 2 u (β n -β u )(1 -β u ) + P u (1 -β n ) +
ṅp (p 0 -p 1 )Θ( ) min( , ∆) , (6.5) where w = n + αP is the enthalpy, α = Γ ad /(Γ ad -1) with Γ ad as the polytropic index, and the indices u and t respectively refer to the upstream and trail regions. In the following, we assume that the neutron ejecta decays in a cold plasma (P u 0, w u n u ). For convenience, we also move to the neutron ejecta frame (β n = 0) where the system reads -n t γ t|n β t|n = -n u γ u|n β u|n + ṅp Θ( ) min( , ∆γ u|n ) , (6.9)

In the following, for convenience, we normalize the trail proper density, pressure, enthalpy and proton injection rate (resp. n t , P t , w t and ṅp ) to the upstream density (n u ). In the ultrarelativistic case, where β u|n = -1 + 1/2γ 2 u|n , the proles of the trail velocity and density read There is no simple exact expression for the roots of the associated polynomial. However, by making use of Sturm's theorem in the case of a cold beam of neutrons 1 , p 0 = m p , and for η 1, we can obtain an estimate from the leading term of the third element of the Sturm's sequence:

β t|n = -1 + 1 1 + η 1 2γ
η ns ∼ 1 2 α 2 t α t -1 2 -2(α t -1) -(α t -1) α t -1 2 . (6.13)
At η ns , all the roots of (6.12) become complex, meaning that the trail dynamics is no longer stationary. This threshold can be understood as in the context of the cosmic ray modied shock uid model presented in Sec. 5.4.1, where a shock forms after collecting a fraction of the incoming energy/momentum ux of the order of a fraction of unity. For α t = 4 (α t = 3), which corresponds to the relativistic adiabatic index Γ ad,t = 4/3 (resp. Γ ad,t = 3/2), the nonstationary structure develops around η ns ∼ 0.15 (resp. η ns ∼ 0.06).

In the regime η 1/γ 2 u|n and η < η ns , the system reduces to the simple relation:

P t γ 2 u|n = 2 α t -2 η . (6.14)
This relation is a good approximation of the exact solution in the aforementioned regime. We recover the results obtained in Sec. 5.4.1) that it suces to add in a 1 The assumption is motivated by the fact that, at these distances from the central engine, only neutrons with higher Lorentz factor survive and dene a cold collimated beam of neutrons. fraction of the incoming energy of the order of 1/γ 2 u|n to slow down the plasma because the ow increases its mass-energy by a factor of γ 2 u|n [238, 239]. In Fig. 6.2, we plot the numerically computed proles of the trail pressure (green), proper density (blue), proper temperature (red) and mean kinetic energy (black) for ducial Lorentz factor γ u|n = 100 and p 0 |n = m p . The incoming plasma starts to decelerate when it collects a fraction of energy η of the order of 1/γ 2 u|n = 10 -4 . When η 0.1, the plasma is dramatically decelerated, and one expects this to be associated to with eects such as the formation of a shock wave.

Dynamics of the shock-shell system

The proton loading upstream of the ion blast aects the dynamics of the latter as it is less decelerated than expected if propagating in the ambient medium [START_REF] Beloborodov | Neutron-fed Afterglows of Gamma-Ray Bursts[END_REF]. Here, we investigate the dierent regimes of inuence of the neutron trail as the injection rate increases. At this stage, we do not consider its deceleration eect on dynamical time scales but rather its inuence on the ion shock wave. The maximum value of η that the background plasma can reach is bounded by the thickness of the shell and the distance from its tip to the shock front. At the end of the shell, the fraction of collected energy reads η ∆ = ṅp p 0 |n ∆ m p cγ u|n .

( where λ p = c/ω p is the plasma skin depth, which is, for the protons, of the order of 10 7 cm in the ISM for a ducial density n u ∼ 1 cm -3 . This quantity is representative of the typical length scale over which the incoming unshocked particles couple to the microturbulence that is generated in the interaction with the decay product of the neutron shell. This quantity appears to be important for discriminating congurations prone to neutron-shell acceleration or not.

The mean decay time of the neutron beam is τ β 900s (cτ β 2.7 × 10 13 cm). 

n n (t | * ) = N 0 n n u β 2 u| * c 2 t 2 | * ∆ exp - t | * γ u| * τ β /γ u| * , (6.19) 
where N 0 n is the initial number of neutron per unit of solid angle and t | * is the time in the source frame. From this, we can compute the injection rate of protons in the background plasma:

ṅp = n n (t | * ) τ β . ( 6 

.20)

We now consider the typical parameters: γ u|n = 40, n u = 1 cm -3 , ∆ 10 11 cm, p 0 |n = m p , N 0 n = 1.2 × 10 53 (assuming an isotropic energy of 10 53 erg). We impose a perfectly collimated beam of neutrons such that p t 1 for which the ion blast wave and neutron shell do not overlap right after the ion ejecta starts to decelerate. We inject these values in Eq. (6.15). In Fig. 6.3, the fraction of the collected energy across the shell by the background plasma is shown in blue. The red curve represents the fraction of energy collected over an ion skin depth (η Λ ). It appears that, for the parameters considered, the proton loading is strong enough to aect the background plasma dynamics up to R | * ∼ 10 17 cm.

If the ion blast wave is initially faster than the neutron shell, we can evaluate the distance at which the latter catches up with the former. The Lorentz factor of the blast wave evolves in time as [START_REF] Panaitescu | Analytic Light Curves of Gamma-Ray Burst Afterglows: Homogeneous versus Wind External Media[END_REF] Γ

p| * (x) = Γ 0p| * 2 √ 4x 3-s + 1 -1 x s-3 = Γ 0p| * α(x) , (6.21) 
where x = r/r 0 is the scaled radius and Γ 0p| * is the initial Lorentz factor of the blast The scaling radius is dened by

r 0 = 3 -s Γ 0p| * N 0 p A 1/(3-s) , (6.22) 
with A being a normalization of the density prole n(r) = Ar -s = n 0 (r/r 0 ) -s , (

where s = 0 for an external homogeneous medium and s = 2 for a wind ejected by the central engine at constant speed. In the latter case [START_REF] Panaitescu | Analytic Light Curves of Gamma-Ray Burst Afterglows: Homogeneous versus Wind External Media[END_REF] n 0 = 1.9

× 10 4 E -2 53 Γ 4 0p| * ,2 A 3 * cm -3 , (6.24) 
where we use the notation X n = 10 -n X. For a wind ejected at constant speed v by a massive star of mass-loss rate Ṁ , A * reads

A * = Ṁ-5 M yr -1 v -3 km s -1 . (6.25)
The scaling radius is given by

(s = 0) r 0 = 1.3 × 10 17 E 1/3 53 Γ -2/3 0p| * ,2 n -1/3 * ,0 cm , (6.26) (s = 2) r 0 = 4.0 × 10 15 E 53 Γ -2 0p| * ,2 A -1 * cm . (6.27)
The neutron shell propagates with a constant Lorentz factor Γ n| * < Γ 0p| * . Assuming that the neutron shell overtakes the blast wave at 1 < x < Γ 

(s = 2) r c = 8 × 10 17 E 53 Γ -2 n| * ,1 A -1 * cm . (6.31)
Depending on the proton injection rate at crossing time, the shell aects more or less the blast wave dynamics, thus leading to dierent types of lightcurves [START_REF] Derishev | Lightcurves of cosmological gamma-ray bursts[END_REF].

Comparison to PIC simulations

To obtain further insight into particle loading eects in the shock precursor, we have run a series of PIC simulations with dierent η ∆ values to probe various injection regimes. To alleviate the computational cost, we have considered electron-positron pair plasmas instead of electron-proton plasmas. The general simulation setup is similar to that employed in the previous chapter. A pair plasma is injected with a relativistic drifting Lorentz factor γ u|d = 10 from the right-hand side of the box and reects on a conducting wall on the left-hand side. Here, γ u|d = 10 means that the blast is moving at Lorentz factor γ p = γ u|d = 10 in the source frame. Up to t |d = 1880 ω -1 p , we do not inject any particle from the decaying shell so that the shock has the time to form properly. Afterwards, a neutral pair beam with Lorentz factor Γ n|d 2.13 (β n|d = 0.8826) is progressively injected inside a shell of size ∆ |d = 632 c/ω p as measure in the downstream frame. In the upstream frame, one has γ sh = 17 and Γ n = 40.

We have investigated two main regimes. The rst regime (sub-critical) corresponds to a low injection rate (η ∆ = 0.04 < η ns 0.1) but sucient to aect the background plasma dynamics (η ∆ 1/γ 2 u|n ). By low, we mean that a stationary regime is reached in the whole shell. In the second regime (critical), the β-decayed proton injection rate is high (η ∆ > η ns ), and we nd that the shock generated by the ion blast wave disappears. In this regime, we ran two dierent simulations with injection rates given by η ∆ = 0.2 and η ∆ = 2. The nal dimensions of these simulations are respectively Here, we probe the regime in which the fraction of injected energy is sucient to aect the dynamics of the trail and the ion shock wave, yet low enough to provide a stationary solution in the shell frame. At lower values (η ∆ < 1/γ 2 u|n ), the fraction of injected energy in the trail no longer aects its dynamics. The left panel of Fig. 6.4 presents the trail Lorentz factor (black), proper density (blue) and proper temperature (red) as theoretically predicted for dierent values of the injected energy along the shell (η ∆ ), up to the energy considered in the following PIC simulation. The proles are computed from the uid model presented in Sec. 6.1.1. We observe that a higher injection rate translates into an increase in the density while Lorentz factor continuously decreases, and the temperature shows a maximum at η ∆ 0.027 and then slightly decreases. The right panel of Fig. 6.4 represents the jump conditions computed for the trail plasma using the nonlinear system of conservation equations across the shock with non-vanishing pressure (2.55)-(2.58). The polytropic indices are computed using a Jüttner-Synge distribution

L ct × L x × L y = 4000 × 4500 × 80 (c/ω p ) 3 , L ct × L x × L y = 6000 × 6500 × 80 (c/ω p ) 3 and L ct × L x × L y = 4000 × 4500 × 160 (c/ω p )
α = 1 T K (d+3)/2 (1/T ) K (d+1)/2 (1/T ) -1 , (6.32) 
where d is the dimensionality of the system. We use d = 2 since our PIC simulations are done in a 2D3V conguration. Figure 6.4 shows that, as the fraction of energy collected across the shell increases, the ion shock weakens. This translates in a decreasing compression ratio (thus quenching particle acceleration [START_REF] Krymskii | A regular mechanism for the acceleration of charged particles on the front of a shock wave[END_REF][START_REF] Bell | The acceleration of cosmic rays in shock fronts -I[END_REF][START_REF] Bell | The acceleration of cosmic rays in shock fronts -II[END_REF][START_REF] Blandford | Particle acceleration by astrophysical shocks[END_REF]) associated with an acceleration of the shock front relative to the downstream frame. We note that the proper downstream temperature reaches a maximum at η ∆ ∼ 0.005.

In order to test this regime, we have performed a simulation with injection parameter η ∆ = 0.04 < η ns ∼ 0.1 such that the shell should be fully described by the stationary uid model. Figure 6.5 presents some results of the simulation. The left panel shows the evolution of the temperature (red), proper density (blue) and Lorentz factor (black)

for the total plasma as extracted from the simulation (solid lines) and predicted by the uid model (dashed lines). The tip of the shell is centered on ω p x/c = 0 and extends up to ω p x/c = -632. Very good agreement is found within the shell between the simulation and theoretical curves. The density proles slightly depart from one another outside the shell, in between its rear boundary and the residual shock front visible at ω p x/c -1650. This discrepency suggests that a stationary state is not reached in the whole trail plasma, although we do observe a convergence with time to the expected uid proles.

The jump conditions plotted in Fig. 6.4 are also in good agreement with the PIC simulation in which we measure a compression ratio n d /γ u|d n u 1.2 for the low drift speed of the trail β u|d -0.1. The shock propagates at β s|d 0.67, slower than the neutron shell. On the right panel of Fig. 6.5, the phase space distribution of the full particle distribution reveals the strong heating experienced by the plasma across the shell. As a consequence, the shock weakens and the associated particle acceleration is greatly reduced. Note that the particles moving with p x > 0 at x > 0 pertain to the initial shock precursor, formed at time t |d ≤ 1880ω -1 p .

Critical regime (η ns < η ∆ )

We now consider a situation where the stationary uid model is not valid anymore in at least part of the shell. Figure 6.6 shows the simulation result obtained with η ∆ = 0.2.

The dotted curves correspond to the stationary model in its domain of existence (such that η( ) ≤ η ns ), delineated by a vertical dotted line. The system then transitions to a new regime outside this domain. We have veried that this is not a transient behavior by extending the simulation from ω p t = 4000 up to ω p t = 6000. When applicable, the predictions of the uid model closely overlap with the PIC proles. Here, the shock front has disappeared and, as in the previous case, we no longer do observe nonthermal particle acceleration.

Further, increasing the injection rate brings the system to a point where the critical value η ns is reached close to the tip of the precursor, i.e η ∼ η λ . This is the case for the simulation run with η ∆ = 2. As shown in the left panel of Fig. 6.7, the system then does not admit any stationary solution along the shell, and shows a strong nonlinear behavior. The phase space displayed in the right panel of Fig. 6.7 reveals the generation of two nonthermal distributions of dierent natures. At the tip of the precursor, a shock front has developed, accompanied by a nonthermal tail that propagates upstream of the precursor, exciting CFI modes and forming a precursor. In such a conguration, the shell acts as a piston on the background plasma. Inside the shell, two dierent for the simulation with η ∆ = 2. The shell is delimited by vertical dotted black lines.

The system then does not admit any stationary uid solution in the shell frame.

regions can be distinguished from the electromagnetic energy proles (not shown). For

x < -140c/ω p , the dominant modes are of electric nature (δB 2 -δE 2 < 0). By contrast, for x > -140c/ω p , we recover the usual magnetic modes (δB 2 -δE 2 > 0).

Figure 6.8 shows the total density (rst panel) and, from top to bottom, the electromagnetic eld components (B z , E y , E x ). At the tip of the precursor, where the plasma is seen to lament (not visible in Fig. 6.8), the instability is of magnetic nature as expected in an unmagnetized relativistic collisionless shock. The transition to dominant electric modes occurs at ω p x/c = -150, beyond which we observe the excitation of oblique density waves. To test the sensitivity of these modes to the periodic boundaries of the simulation domain, we ran two simulations with transverse sizes L y = 80c/ω p and L y = 160c/ω p , which did not reveal any substantial dierence. Yet, there remains the possibility that those modulations result from spurious numerical eects caused by improper space-time resolution of the highly compressed plasma in the shell. Additional simulations with higher resolution (and so of higher computational cost) are needed to rule out this nonphysical scenario.

Conclusion

In this Chapter, the inuence of a decaying neutron shell propagating upstream of a relativistic shock has been examined through relativistic uid theory and PIC simulations. Using the uid model, we derive a criterion to discriminate dierent regimes of inuence of the shell. The main parameter η ∆ is the collected energy along the shell normalized to the incoming momentum ux of the background plasma in the shell frame.

When this parameter is smaller than a fraction of unity, the decay of the neutrons heats up the trail plasma and compresses it, thus modifying the jump conditions and altering particle acceleration. In particular, as η ∆ grows, the ion shock weakens, and consequently particle acceleration becomes increasingly inhibited. When η ∆ exceeds a certain threshold, the uid solution no longer applies to the trail in its entirety, and The next step of this ongoing study will be to provide the associated emission spectra relevant for comparison with astrophysical observations. system. More specically, we have examined three congurations: a weakly nonlinear system where the dynamics is dominated by the lament merging instability, a strongly nonlinear system where the collective behavior of the laments is negligible and in which they are prone to kink-type instability, and an asymmetric conguration in which the system is prone to a mix of bunching and kink modes. For each of these regimes, we have performed high-resolution particle-in-cell (PIC) simulations initialized in the stationary state, letting thermal noise excite a broad-band spectrum of eigenmodes.

The growth rates and proles of the dominant modes have been found consistent with our theoretical predictions. Our study sheds new light on the nonlinear evolution of the current lamentation instability, and hence is directly relevant to a broad class of systems in astrophysics and laboratory astrophysics.

Understanding the long-term evolution of relativistic collisionless shock waves is essential in order to bridge the gap in scales between PIC simulations and the astrophysical phenomenology. This requires one to clarify the coupling between the triptych composed of the beam of accelerated particles, the background plasma and the microturbulence. When this thesis started, very few theoretical attempts had been made to describe this problem, and all of them lacked numerical substantiation. Conversely, a large number of numerical simulation studies had already been published, yet they did not provide, by themselves, a clear physical picture of the various processes at play. In Chap. 5, we have provided a comprehensive model of the dynamics of the precursor of an unmagnetized relativistic collisionless (pair) shock.

This model can be summarized as follows:

1. We have shown that there exists a specic frame, the Weibel frame R w in which the microturbulence is quasi-magnetostatic. Care has been taken to dene properly this frame by making use of uid, kinetic and nonlinear estimates.

Our analysis indicates that the background plasma drift at sub-relativistic, but nonvanishing, speed relative to R w . Therefore, this frame turns out to drift at relativistic velocities toward the shock front.

2. The background plasma thus keeps relaxing in this frame, although the velocity of the R w frame never exactly coincides with the the background plasma. By making use of a uid model, which generalizes to the relativistic regime the wellestablished cosmic-ray modied shock picture, we have derived the deceleration law of the background plasma due to momentum exchange with the nonthermal beam. Here, the turbulence plays a negligible role in the energy and momentum conservation but acts as a conduit between the beam and the plasma.

3. As a consequence of this deceleration, we understand that R w is not a globally inertial frame, but a decelerating reference frame. We have thus studied the dynamics of a plasma that scatters in a noninertial frame using the Vlasov equation in mixed frame coordinates. The space coordinates are expressed in the shock front frame in which the shock is assumed stationary, while the evolution of momentum is described through pitch-angle scattering in R w . The noninertial nature of this R w frame generates an eective gravity that, combined with the friction induced by pitch-angle scattering, leads to heating in a Joule-like process.

4. The Vlasov formalism being not fully tractable analytically, we have proceeded in two ways. We have rst derived a perturbative transport equation from the noninertial Vlasov equation, which revealed the nonadiabatic nature of the background plasma heating through the turbulence. While providing a valuable description of the microphysics of the system, this approach failed to address the region near the shock front, where the plasma decouples from the Weibel turbulence on a deceleration length scale. In order to overcome this diculty, we have developed a Monte Carlo code that describes pitch-angle scattering eects in the noninertial Weibel frame, and we have shown the ability of this numerical model to capture the deceleration and heating of the background plasma due to its relaxation in R w .

5. Since the deceleration of the R w frame results from the kinetic pressure exerted by the beam scattering o this microturbulence, it is important to characterize the scattering length of these particles in the microturbulence. Because the beam appears strongly anisotropic in R w , we have provided a quasilinear estimate of the scattering frequency that takes this strong anisotropy into account. This scattering length involves an additional factor, the Lorentz factor of the background plasma (or more precisely, the Lorentz factor of the Weibel frame). This has strong implications for the shock dynamics as well as for the particle acceleration to high energies, the eciency of which being determined by the residence time of particles in the upstream and downstream regions. As a result of this relativistic prefactor, the upstream residence time turns out to dominate.

6. Extracting an estimate of the scattering length from a PIC simulation is not straightforward because of the nonstationary nature of the latter. However, detailed modeling of the time-dependent distribution of accelerated particles has allowed us to derive a procedure to extract such an estimate, which was found to corroborate our analytical predictions from quasilinear theory.

7. Finally, we have extended the above results, obtained in pair plasmas, to electronion plasmas. We have performed large-scale simulations with ion-to-electron mass ratios m i /m e = 25 and 100, and examined the background plasma dynamics through the precursor in light of our Monte Carlo model coupled to a Poisson solver. This enabled us to describe the eect of the longitudinal electric eld that arises from the dierence in inertia between the electrons and ions. Satisfactory agreement between the PIC simulations and the reduced model was found, provided the latter properly accounted for the nonneutrality of the accelerated beam.

In the last part of this thesis, we have addressed the microphysics of the so-called neutron-fed afterglows, in which the neutron component of a relativistic jet, kinematically decoupled from the charged component, injects charged particles through β-decay at large distances, thus modifying the dynamics of the primary shock precursor. By making use of conservation equations with source terms, we have derived the proles associated with the injection of particles from a neutron shell. We have distinguished two main regimes. The rst regime corresponds to a weak injection rate in which, in the neutron shell frame, the energy collected across the shell is smaller than some well-specied fraction of the momentum ux of the incident background plasma. In this case, the loaded plasma in the wake of the neutron shell obeys a stationary prole, which slightly alters the shock jump conditions. As the collected energy across the shell increases, the shock weakens and progressively disappears, and so does particle acceleration at the shock front and in the overall system. However, when the collected energy becomes comparable with the momentum ux of the background plasma, the uid model no longer admits a stationary solution. There results the formation of a shock wave carried by the decaying neutron piston, at the tip of the neutron shell.

This gives rise to two distinct sources of nonthermal acceleration: the rst arises at the neutron-driven shock front, through Fermi-type acceleration; the second occurs in the shell, due to the interaction with electric modes.

An important part of the thesis was dedicated to the development of numerical tools and methods used to support our analytical predictions. Our simulations were performed using the massively parallelized, fully relativistic particle-in-cell code calder, and run on the supercomputers belonging to the French high-performance computing centers TGCC for CURIE and IRENE, and CINES for OCCIGEN. From 2016 to 2019, our project beneted from a total of around 18Mh-CPU of computational time on these facilities, which allowed us to optimize the code or develop new functionalities.

These developments comprise a state-of-the-art ltering method quenching the strong numerical beam-grid instabilities, a moving particle injector that reduces by a about a factor two the computational time of ab initio shock simulations, the initialization of nonuniform density and magnetic eld proles corresponding to equilibrium periodic lamentary distributions, a particle tracking diagnostic in terms of the number of turnarounds with the electromagnetic turbulence, and a stochastic particle injector following specic spatiotemporal distributions. Besides these developments, we have solved portability problems when running calder on the OCCIGEN supercomputer.

In parallel, we have developed a MPI-parallelized Monte Carlo-Poisson transport code, as well as an OPENMPI-parallelized numerical integration method based on the Floquet theory to study the stability of a periodic system of current laments.

Prospective remarks

Our investigation of the nonlinear evolution of the CFI was based on the assumption that the primary saturation of the instability gives rise to a periodic comb of relativistic current laments in magnetic and thermal pressure equilibrium. We have described this system using uid theory in a 2D geometry, and it would be interesting to extend it to a kinetic framework. This would allow us to assess the validity regime of our uid results, and identify with greater accuracy the regions of dominance of the merging and drift-kink modes.

A second natural improvement would be to investigate the changes brought about by the third spatial dimension, by addressing the evolution of an array of current sheets. The additional spatial direction would allow us to capture tearing-type modes associated with magnetic reconnection. Both studies would lead to linear integrodierential equations, which could be solved by expanding the unknown eigenmodes on a set of suitable basis functions, as done in [START_REF] Daughton | The unstable eigenmodes of a neutral sheet[END_REF] and [START_REF] Pétri | Growth rates of the Weibel and tearing mode instabilities in a relativistic pair plasma[END_REF], where tearing modes were computed, respectively, in the nonrelativistic and relativistic regimes.

Another extension of the present work concerns the dynamics of striped pulsar winds. The dissipation mechanism of such Poynting-ux-dominated ows remaining largely unknown, it would be worthwhile to perform a 3D Floquet-type stability analysis of this system, even limited to a uid framework (not capturing tearing modes). One could then assess whether the current sheets are able to reach the termination shock weakly aected by magnetic dissipation (thus supporting a dissipation at the termination shock [START_REF] Lyubarsky | Fast magnetosonic waves in pulsar winds[END_REF][START_REF] Pétri | Magnetic Reconnection at the Termination Shock of a Striped Pulsar Wind[END_REF][START_REF] Sironi | Acceleration of Particles at the Termination Shock of a Relativistic Striped Wind[END_REF]) or whether the rate of energy transfer from Poynting ux to kinetic energy ux arising from the current sheet instability is sucient to demagnetize the wind before the termination shock.

Concerning Weibel-mediated shocks, we would like to point out some questions that remain open. Our work has not addressed the growth and saturation of the microturbulence in the shock precursor. This is however an important question to answer if we want to describe self-consistently the precursor. Furthermore, our model provides the tools needed to make contact between the microphysical scales of PIC simulations with nonlinear Monte Carlo methods on large scales [START_REF] Ellison | Nonlinear particle acceleration in relativistic shocks[END_REF][START_REF] Ellison | Monte Carlo Simulations of Nonlinear Particle Acceleration in Parallel Trans-relativistic Shocks[END_REF][START_REF] Ellison | Particle spectra and eciency in nonlinear relativistic shock acceleration -survey of scattering models[END_REF]]. Yet, this task involves a self-consistent description of the magnetization at each point in the precursor, which we have left aside.

Finally, we have demonstrated the importance of the neutron component in shaping the emission spectrum of gamma-ray bursts afterglows. This signal therefore provides an observable for the composition of these enigmatic outows. Thus, a natural extension of our work would be to compute the spectra expected to emerge from these systems, and compare them with astrophysical observations. In the course of this work, we have implemented into calder a module describing ad hoc particle injection in PIC shock simulations. This functionality could be exploited to investigate the impact of electron-positron pairs created in the shock precursor through the annihilation of photons produced either in a preliminary stage (e.g. prompt emission), or through the radiation of shock-accelerated particles.

δN α , which can be inserted in Eq. (A.5) to yield

γ 2 α w α ∂ t δβ α⊥ +c 2 eff α γ α w α n α ∇ ⊥ δN α = -q α γ α n α (∇ ⊥ δΦ -β α ∇ ⊥ δA x ) . (A.11)
Finally, combining this equation with Eq (A.6), one obtains

∂ 2 t δN α -c 2 eff α δN α = q α n 2 α w α δΦ -β α 1 -c 2 eff α δA x , (A.12)
which determines the response of the apparent charge density to the electromagnetic perturbation: in Fourier space, with δρ α = q α δN α , one nds

δρ α = Ω 2 pα 4π k 2 ω 2 -c 2 eff α k 2 δΦ -β α 1 -c 2 eff α δA x , (A.13)
where the relativistic (proper-frame) plasma frequency, Ω pα , is dened by

Ω 2 pα ≡ 4πn α q 2 α w α /n α . (A.14)
Note that the far-upstream plasma frequency Ω pp coincides with ω p dened earlier.

The above also allows us to determine the response of the current density, δj α x , which comprises both a perturbed conduction current density as well as a perturbed advection current density:

δj α x = ρ α δβ α x + β α δρ α . (A.15)
Equations (A.4), (A.9) and (A.13) can then be combined to derive the response in Fourier space:

δj α x = Ω 2 pα 4π β α 1 -c 2 eff α k 2 ω 2 -c 2 eff α k 2 δΦ -1 -β 2 α 1 -c 2 eff α ω 2 -k 2 ω 2 -c 2 eff α k 2 δA x . (A.16)
We dene the Weibel frame as that in which the linear instability becomes purely magnetic, i.e., the electrostatic potential and the total electric charge density vanish.

From the response of the charge density, one nds that in this frame the following relation must be fullled:

α Ω 2 pα β α|w 1 -c 2 eff α ζ 2 -c 2 eff α = 0 , (A.17)
where ζ = ω/k is the (complex) phase velocity .

In the shock precursor, the background plasma, with proper density n p and nonrelativistic temperature T p 1, ows at a velocity β p|s -1 against the suprathermal beam, with proper density n b and relativistic temperature T b 1. To leading thermal corrections, the above equation can be recast in the form

n p β p|w 1 + Γp T p γ 2 p|w ζ 2 + n b β b|w T b 1 - 1 Γb 0 , (A.18)
where we have assumed |ζ| 2 c 2 eff α for both populations, as is consistent within a hydrodynamic model (see Appendix A.2). This relation indicates that the velocity of R w is, in principle, mode-dependent. Yet the response of the beam proves to be more sensitive to thermal eects than that of the plasma since the inequality

ζ 2 c 2 eff α implies T p /γ 2 p|w ζ 2 1. As a consequence, β w|p ≡ -β p|w n b β b|w n p T b 1 - 1 Γb (A.19)
is a good (mode-independent) approximation of the velocity of R w relative to the background plasma frame.

The beam is more conveniently characterized by its normalized pressure ξ b and temperature T

b = κ T b γ ∞ m, so that n b = κ -1 T b γ ∞ ξ b n ∞ . Current conservation further implies n ∞ /n p = γ p β p /(γ ∞ β ∞ ), with β p β ∞ -1, so that β w|p β b|w ξ b γ p γ ∞ Γb -1 κ 2 T b Γb . (A.20)
The beam moves relativistically with respect to the background plasma, therefore either β b|w ∼ 1 or β p|w ∼ -1. As ξ b < 1, however, the former must hold, which provides the nal result:

β w|p ξ b γ p γ ∞ Γb -1 κ 2 T b Γb . (A.21)
In the case of negligible deceleration of the incoming plasma (γ p γ ∞ ) and for a 3D

adiabatic index Γb = 4/3, β w|p 1 4κ 2 T b ξ b . (A.22)
One can also directly calculate β w :

β w = β w|p + β p 1 + β w|p β p β p 1 - 1 4κ 2 T b ξ b γ 2 p . (A.23)
The above indicates that: (1) the Weibel frame R w moves at sub-relativistic veloc-ities β w|p 1 relative to the background plasma, and therefore at a relativistic velocity β p relative to the shock front; (2) β w|p is of opposite sign to β p , which implies that, in magnitude, the Weibel frame moves slightly less fast than the background plasma relative to the shock front; (3) the relative velocity β w|p scales with ξ b . In Appendix A.2, we extend the above calculations to a kinetic description. Although the expression for β w|p will be found to take somewhat dierent values, the above three features will remain valid. to rst order in ξ b , since the term that has been neglected here with respect to Eq. (A. [START_REF] Fermi | On the Origin of the Cosmic Radiation[END_REF]) is of the order of β 2 p|w ∼ ξ 2 b . Note also that we have assumed that the background plasma temperature remains sub-relativistic over most of the precursor, as discussed in Section (5.4), so that Ω pp ω p . From the Maxwell equations written in the Lorentz gauge (k µ δA µ = 0), i.e., δA µ = -4π α δj α µ , one derives the dispersion relation in the Weibel frame (subscript w omitted for clarity): 1, can be approximated by

ω 2 -k 2 -ω 2 p = Ω 2 pb 1 -β 2 b|w 1 -c 2 eff b ω 2 -k 2 ω 2 -k 2
ω 2 -k 2 c 2 eff b ω 2 -k 2 -ω 2 p Ω 2 pb β 2 b|w k 2 , (A.26) with solution ω 2 k 2 c 2 eff b -Ω 2 pb β 2 b|w k 2 k 2 + ω 2 p . (A.27)
The stabilizing eect of the beam dispersion is manifest in this equation; this eect has been noted before in [START_REF] Rabinak | Long-wavelength Unstable Modes in the Far Upstream of Relativistic Collisionless Shocks[END_REF][START_REF] Lemoine | Dispersion and thermal eects on electromagnetic instabilities in the precursor of relativistic shocks[END_REF].

A.2 The Weibel frame in a kinetic model

Here, we evaluate the Weibel frame velocity and the local instability growth rate within a rigorous kinetic formalism borrowed from [START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF]. As discussed further below, kinetic eects must indeed be taken into account when considering the development of the CFI in the shock precursor. The derivation of the kinetic dielectric tensor involves rather heavy calculations. For its complete derivation, we invite the reader to refer to [START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF]. Below, we describe the general method, summarize the approximate expres-sions of the relevant dielectric tensor elements and provide the estimates of the growth rate of the CFI and the associated estimate of β w in various limits. The latter results, in particular, are given in Appendix. A.2.3.

For the time being, the reference frame in which we work is left unspecied. We rst recall the linear dispersion relation fullled by the CFI modes [START_REF] Silva | On the role of the purely transverse Weibel instability in fast ignitor scenarios[END_REF]:

ε yy (ε xx -1/ζ 2 ) = ε 2 xy , (A.28)
with ζ = ω/k as the complex phase velocity. In a fully relativistic framework, the dielectric tensor elements read (i, j = 1, 2, 3) [START_REF] Ichimaru | Basic Principles of Plasma Physics: A Statistical Approach[END_REF] ε

ij (ω, k) =δ ij + α γ α ω 2 pα ζ 2 k 2 p i γ ∂f (0) α ∂p j d 3 p + α γ α ω 2 pα ζ 2 k 3 p i p j γ 2 m k∂f (0) α /∂p y ζ -v y d 3 p , (A.29)
where v y = p y /(γm), ω 2 pα = 4πn α e 2 /m represents the nonrelativistic plasma frequency squared of species α (n α represents as before the proper density) and f This expression is generally non zero, and hence the CFI excites mixed electromagnetic/electrostatic uctuations. This feature has been often overlooked in the past, δE y = 0 being assumed from the outset in a number of calculations [START_REF] Molvig | Filamentary instability of a relativistic electron beam[END_REF][START_REF] Cary | Ponderomotive eects in collisionless plasma -A Lie transform approach[END_REF][START_REF] Okada | Electromagnetic instability and stopping power of plasma for relativistic electron beams[END_REF][START_REF] Hill | Beam-Weibel lamentation instability in near-term and fast-ignition experiments[END_REF].

The electromagnetic (δE x ) and electrostatic (δE y ) components of the solutions to Eq. (A.28) verify [START_REF] Bret | Collective electromagnetic modes for beam-plasma interaction in the whole k space[END_REF][START_REF] Bret | How really transverse is the lamentation instability?[END_REF]:

δE y δE x = - ε xy ε yy . (A.31)
In Appendix A.1, β p|w was determined by solving ε xy = 0 in the uid limit, exploiting the fact that, to leading order, this equation is independent of the complex frequency ζ. In the general kinetic case, however, ε xy depends on ζ, whose knowledge involves solving Eq. (A.28). In practice, we are interested in the fastest-growing mode (ζ max ), which should be calculated in the (unknown) Weibel frame. Instead of solv- ing simultaneously Eq. (A.28) and ε xy|w = 0 for ζ max|w and β p|w , we follow a dierent approach, noting that the (δE y , δB z ) uctuations pertaining to a given mode in the • the `hydrodynamic' limit: |χ α | ∆s α ;

× γ 2 α β 2 α (s 2 + 1) 3/2 + 1 µ α 1 s 2 + 1 + 3β 2 α γ 2 α (s 2 + 1) 2 + 1 µ 2 α 1 (s 2 + 1) 3/2 + 3β 2 α γ 2 α (s 2 + 1)
• the `kinetic' limit: |χ α | ∆s α .

The dimensionless variable s is introduced immediately before Eq. (A.30) in [START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF]; it corresponds to γ α β γ , with β the component of the particle velocity along the wavevector. Since the wavevector is transverse to the streaming direction, the typical extent of s in the above integral is, up to the resonant factor, controlled by the proper temperature 1/µ α ; the parameter χ α itself corresponds to the apparent phase fourvelocity of the mode. Therefore, the meaning of the hydrodynamic limit is that the apparent typical transverse momentum (normalized to m) exceeds the apparent phase four-velocity, while the kinetic limit corresponds to the opposite case. In the following, approximate formulas of the dielectric tensor will be derived in these two limits.

A.2.1 Evaluation of the dielectric tensor for the background plasma A.2.1.1 Hydrodynamic limit

In the outermost part of the precursor, the background plasma is characterized by a nonrelativistic proper temperature, µ p 1 [START_REF] Lemoine | On the physics of relativistic collisionless shocks: II Heating and dynamics of the background plasma[END_REF]. In this limit, ∆s p 2/µ p , and hence the hydrodynamic response of the background plasma implies

µ p /2|χ p | 1.
This condition coincides with the large-argument limit ( χp |χ p | µ p /2 1) of the Z and Z functions involved in the low-temperature expressions derived in App. B of [START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF]. These formulas can be further expanded to rst order in 1/µ p by making use of the asymptotic series Z(η) -1/η -1/2η 3 -3/4η 

ε p xx 1 - ω 2 p k 2 ζ 2 1 + β 2 p + 1 µ p 1 - 5 2 β 2 p 1 ζ 2 -1 , (A.39) ε p yy 1 - ω 2 p k 2 ζ 2 1 + 3γ p µ p 1 ζ 2 -1 , (A.40) ε p xy - ω 2 p β p k 2 ζ 3 1 - 3 2µ p 1 - 2 γ 2 p 1 -ζ 2 . (A.41) -ζ γ 2 b K 3 (µ b ) - 1 µ b K 2 (µ b ) . (A.55)
Combining these approximate expressions with Eqs. (A.30)-(A.32) of [START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF] and expanding the Bessel functions in the small-argument limit gives

ε b xx 1 + ω 2 pb µ b γ 2 b β 2 b k 2 ζ 2 + ω 2 pb µ b γ 3 b 4k 2 ζ [3iπ -16γ b ζ] , (A.56) ε b yy 1 + ω 2 pb µ b γ 2 b k 2 1 + 3iπ 4 γ b ζ , (A.57) ε b xy ω 2 pb µ b β b γ 2 b k 2 ζ 1 + 3iπ 4 γ b ζ -4γ 2 b ζ 2 . (A.58)
where we have further assumed γ b 1.

A.2.3 CFI growth rates and frame velocities in various plasma response regimes

The previous formulas may now be applied to the case of the precursor of a relativistic shock to derive the growth rate of the purely transverse CFI and the velocity of the Weibel frame R w . We consider the various limits in which the plasma and/or the beam can be described in a uid-like or kinetic approximation, keeping in mind that the most relevant limit for the precursor is that of both kinetic beam and background plasma.

For reference, let us recall that in the limit |ζ| = |ω/k| 1, which is applicable here, the plasma can be described in the hydrodynamic regime i γ p |ζ| 2/µ p (with µ p = m/T p assumed greater than unity). As for the beam, it can be described in the hydrodynamic regime i γ b |ζ| 1.

In the following, we solve for the dispersion relation in the background plasma rest frame, in order to derive β w|p according to Eq. (A.35). We also assume that the plasma frame is close to the Weibel frame, so that the o-diagonal term 2 xy can be neglected in the dispersion relation as written in the background plasma frame. The dispersion relation may then be approximated as . This notably implies ω 2 pb µ b /ω 2 p 1. We also have γ b|p γ p|s and β b|p 1.

A.2.4 Comparison to PIC simulations

Here, we compare the relative velocity β w|p estimated using our kinetic model of the CFI developed in App. A.2.3 with that extracted from our PIC simulations. This part is borrowed from [START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF] These simulations have been performed using the massively parallel, relativistic PIC code calder [START_REF] Lefebvre | Electron and photon production from relativistic laser plasma interactions[END_REF]. The shock is generated by means of the standard mirror technique [START_REF] Spitkovsky | Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last?[END_REF]. The background pair plasma is continuously injected into the domain from As the simulation proceeds, the right-hand boundary (injector) is progressively displaced towards the right so as to keep the reected ballistic particles inside the (increasingly large) domain, while speeding up the calculation at early times [START_REF] Spitkovsky | Particle Acceleration in Relativistic Collisionless Shocks: Fermi Process at Last?[END_REF]. In order to quench the numerical Cherenkov instability, which notoriously hampers simulations of relativistically drifting plasmas, we make use of the Godfrey-Vay ltering scheme, combined with the Cole-Karkkainnen nite dierence eld solver [START_REF] Godfrey | Suppressing the Numerical Cherenkov Instability in FDTD PIC Codes[END_REF]. In order to test our model of the CFI developing in the precursor through the interpenetration of suprathermal and background plasma populations, we need to carefully distinguish these two in the simulations. In order to do so, we track the particles according to the sign of their x-momentum and how many times this sign has changed, due only to interactions with the electromagnetic turbulence. We then dene the background plasma as those particles that move toward negative values of x and that do not have undergone turn-arounds, i.e., any change of sign of p x . We dene the beam particles as those that move towards positive values of x, independently of their number of turn-arounds. This denition leaves a minority of particles: those that move with p x < 0 and that have undergone at least one turn-around. However, in this population of particles, it becomes dicult to distinguish particles that originate from the right boundary of the simulation box from those that originate from the left boundary;

these populations have dierent temperatures, so that a single-uid description of this compound population would introduce errors. respectively. This gure thus indicates that the plasma should be described in the kinetic regime, and that the beam regime is intermediate.

are identical, because the plasma has isotropized in this simulation frame. There, our denition of suprathermal particles only counts half of the particles, therefore our ξ b 1/4 in this region: in 2D3V simulations, the downstream pressure represents 1/2 of the energy density, which itself amounts to the incoming energy ux into the shock rest frame F ∞ . We extract hydrodynamic moments n α , T α , u α for each of the beam and background plasma population, assuming that they obey Maxwell-Jüttner momentum distributions.

The spatial proles of these various hydrodynamic quantities have already been presented in Fig. 5.4, as extracted from the simulations with γ ∞|d = 10 and γ ∞|d = 100 at respective times t 3600 ω -1 p and t 6900 ω -1 p . One can see that n p and γ p|d vary weakly across the precursor region, except near the shock front where the incoming plasma slows down signicantly and experiences compression. By contrast, the plasma temperature steadily increases from its far-upstream value (T p = 0.01 m) to unity and beyond when approaching the shock front. This heating results from the interaction with the beam particles, whose density rises by ∼ 4 -5 orders of magnitude across the precursor [START_REF] Lemoine | On the physics of relativistic collisionless shocks: II Heating and dynamics of the background plasma[END_REF]. The beam Lorentz factor in the simulation frame is close to unity, conrming that the beam drifts at a weakly relativistic velocity in the shock frame.

The general dispersion relation (A.28) is numerically solved using the reduced forms (A.16), (A.22) and (A.29) in Ref. [START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF] of the dielectric tensor elements, as detailed in Ref. [START_REF] Bret | Exact relativistic kinetic theory of the full unstable spectrum of an electron-beam plasma system with Maxwell-Jüttner distribution functions[END_REF]. At each sampled location, we look for the growth rate (Γ max ), wave number (k max ) and wave phase velocity (ξ max ) of the fastest-growing mode, and then use Eq. (A.35) to evaluate the corresponding value of the Weibel frame velocity (β w|p ). Eqs. (A.36) and (B.5) in Ref. [START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF], respectively. Interestingly, both the background plasma and beam populations appear to lie in the kinetic CFI regime ( χp < 1 and χ b < 1) throughout the precursor region. However, whereas χp shows weak variations around relatively low values ( χp ∼ 0.05), so that taking the kinetic plasma limit is well justied, the χ b values are larger by about an order of magnitude and present stronger variations. Where ξ b becomes of the order of unity, the beam response is then only marginally kinetic, consequently analyical approximations present an error of about a factor 2 with respect to the full numerical calculation of β w|p . we can derive the dynamics of the background plasma through the shock precursor. This section describes the derivation of the eective Fokker-Planck diusion coecients, the heating and slowdown of the background plasma in the linear regime. This appendix is borrowed from Ref. [START_REF] Lemoine | On the physics of relativistic collisionless shocks: II Heating and dynamics of the background plasma[END_REF].
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A.3.1 Main equations

Given that pitch-angle scattering takes place in the R w frame, while we seek to construct a stationary model in the R s frame, it proves convenient to write down the equation for the distribution function of the background plasma in a mixed coordinate system, with space variables dened in the R s frame, and momentum variables in the R w frame, as is common in cosmic ray physics [START_REF] Hall | Diusion, Scattering, and Acceleration of Particles by Stochastic Electromagnetic Fields[END_REF][START_REF] Dolginov | Cosmic rays in the interplanetary magnetic elds[END_REF][START_REF] Jokipii | Fokker-Planck Equations for Charged-Particle Transport in Random Fields[END_REF][START_REF] Skilling | Cosmic ray streaming -I. Eect of Alfvén waves on particles[END_REF][START_REF] Schlickeiser | Cosmic-Ray Transport and Acceleration. I. Derivation of the Kinetic Equation and Application to Cosmic Rays in Static Cold Media[END_REF][START_REF] Bykov | Reviews of topical problems: Particle kinetics in highly turbulent plasmas (renormalization and self-consistent eld methods)[END_REF][START_REF] Williams | A Unied Transport Equation for Both Cosmic Rays and Thermal Particles[END_REF], see in particular [START_REF] Webb | Relativistic transport theory for cosmic rays[END_REF][START_REF] Webb | The diusion approximation and transport theory for cosmic rays in relativistic ows[END_REF][START_REF] Achterberg | Relativistic theory of particles in a scattering ow -I. Basic equations, diusion, and drift[END_REF][START_REF] Achterberg | Relativistic theory of particles in a scattering ow -II. Viscosity, electrical conductivity, and heating[END_REF] for the relativistic regime. Sec. (5.5.1) provides a detailed derivation of the following relativistic transport equation, that is based on the pioneering work of Webb [START_REF] Webb | Relativistic transport theory for cosmic rays[END_REF][START_REF] Webb | The diusion approximation and transport theory for cosmic rays in relativistic ows[END_REF] and which properly incorporates the non-inertial eects: The second term on the l.h.s. describes the eective gravity associated to the deceleration of R w . The above equation has been implicitly averaged over the gyrophase φ |w of particles, so that the distribution function of the background plasma f p depends solely on x, p |w and µ |w ≡ p x |w /p |w . As explained in Sec. 5.5.1, the scattering frequency ν |w depends a priori on both µ |w and p |w . In quasi-linear theory, the collision term on the right hand side, hence ν |w , would be evaluated to second order δF 2 in the random (Lorentz) force δF . However, quasilinear theory cannot be applied to describe the evolution of the background plasma, whose particles are mostly trapped in the Weibel laments due to their relatively low momenta in R w . Nevertheless, the above transport equation is expected to remain valid well beyond quasilinear theory because the collision operator is here dictated by symmetry considerations, which force it to be transverse to p |w in the R w frame. Here, we thus treat ν |w as a parameter and, to simplify the analysis, we neglect its dependence on µ |w and p |w . As will be discussed in 5.5.3.1, the standard scattering frequency for a marginally unbound particle, meaning with gyroradius r g|w r ⊥ , where r ⊥ is the transverse size of the lament, provides a useful order of magnitude ν |w ∼ B ω p .

γ
For a given 4-velocity prole u w (x) characterizing the deceleration of R w in R s , the following dimensionless parameter κ emerges from Eq. (A.80):

κ ≡ ν -1 |w du w dx .

(A.81)

Where |κ| 1, the background plasma is eectively tied to the microturbulence, because it relaxes on a (shock frame) timescale γ w ν |w eration time scale of the turbulence, |u -1 w du w /dx| -1 . Close to the shock front, however, it will be seen that |κ| becomes of the order of unity and larger, so that the background plasma decouples (temporarily) from this Weibel turbulence; coupling is eventually restored through relaxation on length scales ν -1 |w once the R w frame has reached its post-shock constant velocity. In this sense, |κ| provides a useful order parameter to describe the shock transition. (A. [START_REF] Grad | On the kinetic theory of rareed gases[END_REF] In the limit |κ| 1, the background plasma distribution function is approximately isotropic in the R w frame. We thus limit the Legendre expansion to its rst two terms, with |f p1 | f p0 if |κ| 1, both functions being isotropic. In the above description, the magnitude of f p1 relative to f p0 characterizes the anisotropy/drift velocity of the background plasma in the R w frame. Hence, once f p1 becomes comparable to f p0 , the decomposition in Eq. (A.83) becomes insucient and should be extended to higher orders. We retain this description for the time being, for simplicity.

Taking the average of Eq. (A.80), respectively weighted by the rst two Legendre polynomials, P 0 (µ |w ) = 1 and P 1 (µ |w ) = µ |w , we derive the system: (A.89)

γ w β w p t |w ∂ x f p0 - 1 
The momentum diusion term in Eq. (A.88), which characterizes the stochastic heating due to the friction of particles on the microturbulence, scales with the square of the deceleration rate. The second term in this equation represents the heating induced by adiabatic plasma compression. This Fokker-Planck equation, which neglects spatial diusion, can be seen as a simplied one-dimensional version of the more general transport equation derived in [START_REF] Webb | Relativistic transport theory for cosmic rays[END_REF][START_REF] Webb | The diusion approximation and transport theory for cosmic rays in relativistic ows[END_REF][START_REF] Achterberg | Relativistic theory of particles in a scattering ow -I. Basic equations, diusion, and drift[END_REF][START_REF] Achterberg | Relativistic theory of particles in a scattering ow -II. Viscosity, electrical conductivity, and heating[END_REF]. We also note that Ref. [START_REF] Blandford | Particle acceleration at astrophysical shocks: A theory of cosmic ray origin[END_REF] quotes in its equation (3.46) a diusion coecient analogous to Eq. (A.89) derived by G. F.

Krimsky in the subrelativistic limit (the corresponding paper is not available).

At the microscopic level, dissipation results from stochastic acceleration of the background plasma particles in the sheared velocity ow that carries the turbulence at velocity β w (x) [START_REF] Lemoine | Generalized Fermi acceleration[END_REF]. Alternatively, this heating mechanism can be seen as some form of non-inertial or dierential rst order Fermi acceleration: even though the turbulence is magnetostatic in the R w frame, acceleration occurs because of the existence of an external force which keeps forcing the particles to interact with the turbulence, and because the velocity of this turbulence changes at every time step. The overall dissipative process can thus be pictured as a form of collisionless Joule heating, in which the eective gravity associated with the deceleration of the plasma plays the role of the driving electric eld, while pitch angle scattering on the magnetostatic turbulence ensures momentum transfer. Finally, at the uid level, the dissipative term becomes a form of viscosity.

A.3.2 Moments

As a result of the mixed coordinate system, the macroscopic quantities must be dened with care. In the lab frame R s , the mean current density and energy-momentum tensors (A.90)

The tetrad e α a , which relates the R w to the R s frame, is dened in Sec. 5. (A.91)

The average drift velocity in the lab frame is j p x /j p t , which takes the form (β w + β p|w )/(1 + β w β p|w ), with drift velocity β p|w in the R w frame To obtain these equations, one must multiply Eq. (5.51) respectively by 1 and p |w a e t a , then integrate over momentum space, paying attention to the spatial dependence of γ w .

In the absence of scattering, the energy-momentum tensor of the background plasma is exactly conserved in the lab frame, since it is an inertial frame; a nite value of κ, however, implies a nite f p1 [see Eq. (A.87)) or Eq. (A.92)], hence a source term for the energy ux evolution.

To leading order in |κ|, one can make explicit the heating process by replacing f p1 with its expression given in terms of f p0 Eq. (A.87) in Eq. (A.93) above. The algebra is cumbersome but it simplies considerably in either the nonrelativistic T p m or ultrarelativistic T p m limits, as now detailed. In the nonrelativistic limit, T p m, we split the energy-momentum tensor in its rest-mass and internal energy components, p p0 denoting the pressure associated with f p0 . To lowest order in p p0 /(n p0 m), one has T p0 tx γ w mj p0

x + 5 2 γ 2 w β w p p0 , (T p m) . A. [START_REF] Aartsen | Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert[END_REF] The correlation time of the random force

In this Appendix, borrowed from Ref. [START_REF] Lemoine | On the physics of relativistic collisionless shocks: III The supra-thermal particle beam[END_REF], we compute the correlation time of the random force experienced by a suprathermal particle. From a statistical mechanics perspective, the correlation time of the random force that a particle suers along its trajectory is a crucial quantity. It is dened as with δF(t) = q (δE + β × δB) the random Lorentz force exerted at time t, at position x(t) of the particle. Formally, t and τ in Eq. (A.99) above represent the time in the lab frame along the particle trajectory; however, for suprathermal particles, it is a good approximation to use for x(t) a straight line trajectory, because the scattering length scale is expected to be much larger than the correlation length, as a result of the small-scale nature of the turbulence.

t corr ≡ 1 δF(t) • δF(t)
In the R s frame, δE = -β w × δB, hence δF(t + τ ) • δF(t) ∝ δB(t + τ ) • δB(t) (A.100)

The prefactor depends on quantities that vary slowly on t corr timescales, which therefore drop out when taking the ratio in Eq. (A.99). Using δB = γ w δB |w , with δB |w dened in the R w frame, we decompose the latter in R w plane waves, to obtain with N ≡ dk S |w (k ), and ∆x α |w the displacement of the particle along its world line during the time interval ∆t. We also dened the power spectrum through

δB |w k 1 • δB |w k 2 = δ (k 1 -k 2 ) S |w (k 1 ) . (A.102)
The turbulence is assumed stationary in R s , and we have extracted from δB its spatial prole, taken in the form ∝ exp(-2gx). This choice means that the uctuation spectrum S |w is normalized to a value of B 2 w close to the shock front. Note that the spatial growth rate g, which is assumed independent of k , is expressed in R s while the plane-wave expansion is performed in R w .

The above decomposition of the magnetic eld into a slowly evolving envelope exp(-g x) times a plane wave decomposition should be understood as a simplied description of the turbulence in the precursor; it assumes, in particular, that the power spectrum is preserved throughout the precursor while the turbulence magnetic energy grows. Note also that the quantity k α ∆x |w α is a Lorentz scalar, hence it can be expressed in any frame.

The quantity ∆x |w α represents the spacetime dierence in R w between the trajectory at t + τ and that at t. If the particle is initially emitted with a pitch angle cosine µ along the shock normal, in the R s frame, then Note that, because it is expressed in R s , µ is in principle determined at random between 0 and 1. In the following, we approximate β w → -1 when possible. We also note that the combination -ω ∆x |w t +k x ∆x |w x can be rewritten γ w (1+µ) (1 -v ω ) τ , introducing the quantity v ω = ω /k x ; ω is real by denition, since the growing part of the magnetic turbulence has been extracted previously.

For the purely transverse mode of the CFI, ω = 0. However, at nite k x (yet k x k ⊥ ), the cold uid dispersion relation of the CFI yields ω = β b|w k x [1 + O(ξ b )] [START_REF] Plotnikov | Particle transport and heating in the microturbulent precursor of relativistic shocks[END_REF], with β b|w the velocity of the beam in the R w frame. Then v ω ≈ 1, because β b|w 1 to an accuracy of order 1/γ 2 b|w ∼ 1/γ 4 ∞ . In a realistic shock precursor, where the lamen- tation instability reaches a non-linear stage, and where oblique modes may contribute to shaping the turbulence, ω may not obey the above relation, yet we retain the scaling ω ∝ k x and discuss the inuence of v ω on the result.

We now dene the resonance function To keep the integrals analytically tractable, we approximate the spectrum with a constant patch in k -space, centered on (0, k ⊥ ) with extension (±∆k x , ±∆k ⊥ ), describing a mostly transverse instability as it should:

S |w (k ) ≡ δB |w 2 4 ∆k ⊥ ∆k x Θ k ⊥ -k ⊥ -∆k ⊥ Θ ∆k ⊥ -k ⊥ -k ⊥ × Θ [k x + ∆k x ] Θ [∆k x -k x ] (A.105)
We note that g = g |w /γ w , since the growth time of the instability g -1 in R s is γ w times that experienced by the background plasma in R w [START_REF] Vanthieghem | On the physics of relativistic collisionless shocks: IV The magnetized micro-turbulence[END_REF]. Furthermore, g |w k ⊥ for the lamentation instability, hence the real part gµ is a small quantity relative to k α ∆x |w α /τ . Consider rst the limit g → 0. Then the integral in Eq. (A.101) depends on the quantities ∆k x , k ⊥ and ∆k ⊥ characterizing the spectrum as well as on (1 -v ω ). More specically,

t corr =              0 if ∆k x < ν k ⊥ -∆k ⊥ γ w (1 -v ω ) π 2 1 (1 -v ω ) 1 γ w ∆k x if ∆k x > ν k ⊥ -∆k ⊥ γ w (1 -v ω ) , (A.106)
with ν = (1 -µ) 1/2 /(1 + µ) 1/2 ≈ 1. The importance of v ω is thus clear. If v ω is small compared to unity, then the condition specied on the rhs of the above equations amounts to whether ∆k x < ∆k ⊥ /γ w or not, assuming k ⊥ ∼ ∆k ⊥ . In the limit γ w 1, the latter condition ∆k x > ∆k ⊥ /γ w appears likely, hence one should expect t corr ∝ (γ w ∆k x ) -1 . There follows the expected result that (in the limit of small-angle deections) a nonvanishing ∆k x is required to ensure a nite t corr , and therefore pitchangle diusion.

However, if v ω 1 -, as for the linear growth of the CFI, the former condition may hold. The spectrum is then such that it forbids the resonance of a particle with waves, preventing pitch-angle diusion in this linearized limit. Obviously, any nite width to the dispersion relation, as characterized by the contribution in g for instance, will lead to resonance broadening and permit pitch-angle diusion. To rst order in g, one obtains the correlation time We are particularly interested in the dependence of t corr on γ w and, interestingly, both limits leads to t corr ∝ (γ w k ⊥ ) -1 . The prefactor can be smaller or larger than unity, depending on which limit applies. Assuming for instance ∆k ⊥ ≈ k ⊥ , the rst limit implies γ w k ⊥ t corr ∼ O g |w / k ⊥ , which is typically an order of magnitude smaller than unity in the linear growth phase of the CFI in the precursor of a relativistic shock.

t corr =              α 1 g |w γ w ∆k ⊥ k ⊥ if ∆k x < ν k ⊥ -∆k ⊥ γ w (1 -v ω ) , α 2 1 (1 -v ω ) 1 γ w ∆k x if ∆k x > ν k ⊥ -∆k ⊥ γ w (1 -v ω ) ,
The second limit yields γ w k ⊥ t corr ∼ O k ⊥ /∆k x , which is typically expected to be somewhat larger than unity. We will compare this prediction to measurements made in PIC simulations in the following.

Once the correlation time of the random force is known, one can estimate the scattering length (in R s ) by noting that, over t corr , the particle suers a deection of the order of ±ct corr /r g , so that l scatt ≈ r 2 g /(ct corr ).

A.5 Quasilinear estimate of l scatt

In this appendix, borrowed from Ref. [START_REF] Lemoine | On the physics of relativistic collisionless shocks: III The supra-thermal particle beam[END_REF], we carry out a quasilinear calculation of the pitch angle diusion coecient of suprathermal particles (with γ |p 1) in the shock rest frame. In order to keep track of conserved quantities in the possible limit of time-independent or x-independent turbulence (describing innitely long laments), we rely on a Hamiltonian formalism for the equations of motion. We rst note that, for suprathermal particles, the canonical conjugate momentum π α ≡ p α + q δA α coincides with the momentum p α to a small error of order λ/r g 1, because the four-vector potential |δA| ∼ λδB in order of magnitude. We thus use the approximation In the above two equations, the conservation of µ along the particle trajectory indexed by the ane coordinate s is manifest if the turbulence is both time and x-independent.

Under standard assumptions, if neither of these conditions holds, the pitch angle may start to diuse; then, the error associated to Eq. (A.110) is bound to decrease in time, so that our approximation will become more and more accurate. In eect, this error is bounded by the range of variation of the four-vector potential: ∆µ ∼ |∆δA|/π t ; it thus remains xed in time while the r.m.s. of the pitch angle cosine distribution increases through diusion.

To simplify the notations, all unprimed variables are understood to be dened in R s in this section, while primed variables are dened in R w . Substituting Eq. (A. where it is understood that ω is real, since the growing part has been extracted previously.

The statistical properties of the micro-turbulence in the R w can be approximated The case of S (k ) > S ⊥ (k ) corresponds to laments elongated along x, as considered here. The power spectrum S of δA is related to the power spectrum S |w ) of δB , dened in Eq. (A.102), through S |w (k ) = k 2 ⊥ S , since

δB 2 = d 3 k 1 (2π) 3 d 3 k 2 (2π) 3 k 1 × e k 1 • k 2 × e k 2 d 2 k ⊥ dk x (2π) 3 k 2 ⊥ S (A.118)
We now approximate the trajectory as rectilinear, as in Eq. (A.103) and evaluate the evolution of pitch angle cosine over a time interval ∆t assumed much larger than the coherence time of the electromagnetic force t corr : correlation time of the force thus reads ∼ k -1 , and the angular scattering frequency ν s ∼ k /(k r g ) 2 ∼ ω p (k /ω p ) -1 B γ -2 γ 2 ∞ /γ 2 w . This scattering frequency is dened in R w , and to convert it to R s , one needs to multiply it by γ 3 w see Eq. (A.130) further below while expressing γ γ w γ. This gives ν scatt ∼ ω p (k /ω p ) -1 B γ -1 w (γ ∞ m/p) 2 , as obtained above. The origin of the γ w factor in the scattering length thus results from the motion of R w relative to R s , not from the anisotropy. The latter rather introduces the various possible values of k .

A.6 Stationary state

To derive the distribution function of accelerated particles in the steady state, one can use the kinetic equation given in Sec. 5.5.1, which describes the evolution of the distribution function in a mixed coordinate system, with space variables given in the shock rest frame, and momentum variables expressed in the Weibel frame, in which the turbulence is mostly magnetostatic. Following Ref. [START_REF] Lemoine | On the physics of relativistic collisionless shocks: III The supra-thermal particle beam[END_REF], we simplify further this equation by neglecting the inertial force terms, corresponding to the limit in which the scattering length of the accelerated particles is much larger than the transition scale of the shock, over which signicant slowdown of the Weibel frame occurs. This simplication allows us to express analytically the approximate suprathermal particle distribution function, but it prevents a detailed comparison with PIC simulations in regions in which the background plasma eectively slows down. Unfortunately, a closed form solution which takes this deceleration into account does not seem at hand. Note that the deceleration enters both through the inertial correction, through the presence of γ w in the equation, as well as through the dependence of the scattering frequency over γ w . In a 3D momentum space, the equation takes the form

γ w β w + µ |w ∂ ∂x f b = 1 2 ∂ ∂µ |w 1 -µ 2 |w ν scatt|w ∂ ∂µ |w f b (A.125)
This equation has been previously solved in full generality in Ref. [START_REF] Kirk | Particle Acceleration at Ultrarelativistic Shocks: An Eigenfunction Method[END_REF] through an expansion in eigenfunctions, in the limit γ w → γ ∞ and ν scatt|w independent of p. Here we obtain an approximate solution including the dependence of ν scatt|w on p. The overlaid law ξ b (x) ∝ x -0.4 (dashed line) conrms that ξ b (x) indeed follows a powerlaw scaling over the rst ∼ 300 c/ω p , before turning over into an exponentially suppressed behavior. This length scale depends directly on the integration time of the simulation, equal to 3600 ω -1 p for γ ∞|d = 10 and to 6900 ω -1 p for γ ∞|d = 100. The slight dierence between the observed spatial powerlaw and that predicted above, ξ b ∝ x -0.1 for s = 2.2, may be attributed to the dierence between the spectrum of accelerated particles in the simulation and a pure powerlaw, and/or possibly to the fact that γ p is evolving in this region in the numerical simulation. Repeating the above calculation of ξ b for such a powerlaw with exponential suppression an order of magnitude above the injection threshold, one indeed nds a steeper powerlaw for ξ b , which transits into an exponentially suppressed dependence further away. Note that the theoretical proles that we have derived ignore the evolution of B , which, although slow, may impact further the powerlaw behavior. m . The suprathermal particles are not fully isotropic in the downstream or shock front frame, but their average velocity in the shock frame remains well subrelativistic.

Résumé: Les ondes de choc relativistes et sans collisions jouent un rôle majeur dans la physique des objets astrophysiques extrêmes, tels que les sursauts gamma, les blazars ou les nébuleuses de vent de pulsar, au sein desquels elles contribuent à la production de distributions non thermiques de particules et rayonnement. Ces ondes de choc résultent de l'interaction, par l'entremise d'une turbulence électromagnétique engendrée par des micro-instabilités, entre un faisceau de particules accélérées par processus de Fermi et le plasma ambiant. La modélisation de leur dynamique constitue un problème complexe, dont le traitement requiert de combiner analyse théorique et simulations numériques de type particle-in-cell (PIC).

Après un résumé des concepts et des outils numériques nécessaires à la modélisation du problème, nous étudions l'évolution non-linéaire de l'instabilité de lamentation de courant qui domine la physique du précurseur de tels chocs. Dans un second temps, nous développons un modèle complet de la micro-physique de ces chocs, basé sur la dénition d'un référentiel privilégié dans lequel la turbulence est quasi magnétostatique.

Ce référentiel nous permet de caractériser le chauage et le ralentissement du plasma de fond ainsi que la dynamique du faisceau. Pour terminer, nous explorons l'eet d'un éjecta neutronique sur l'évolution du choc avant dans un sursaut gamma. Pour chaque étude, nos prédictions théoriques sont étayées par des simulations PIC de haute résolution.

Abstract: Collisionless relativistic shock waves play a major role in extreme astrophysical objects such as γ-ray bursts, blazars and pulsars wind nebulae, in which they are held responsible for producing nonthermal particle and radiation distributions.

Without an external magnetic eld, these shocks stem from the interaction, mediated by microinstabilities, of a beam of Fermi-accelerated particles with the ambient plasma.

There results an electromagnetic turbulence that scatters both the beam and plasma particles. While the background plasma is mainly slowed down and heated, a fraction of its particles are accelerated to suprathermal energies, thus sustaining the shock wave. Understanding the highly nonlinear physics of such structures requires combining analytical models and large-scale particle-in-cell (PIC) numerical simulations.

After a short review of the concepts and numerical techniques used to address the topic, we rst examine the evolution of the current lamentation instability, which prevails in the precursor region of initially unmagnetized shocks. We then develop a comprehensive microphysical model of such shocks. To this purpose, we introduce the notion of a preferential frame, in which the microturbulence is quasi-magnetostatic, thus allowing the description of the particle scattering to be greatly simplied. Finally, we analyze the inuence of a neutron ejecta propagating upstream of a γ-ray burst shock. For each study, our model predictions are substantiated by state-of-the-art PIC simulations.
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Figure 2 :

 2 Figure 2: Structure of Earth's bow shock as measured by MMS4 spacecraft. (a) The panel respectively show the density, the magnetic eld (black line) and the angle between the instantaneous magnetic eld and the shock normal (red line), the ion bulk velocity and the electron temperature perpendicular (blue line) and parallel to the shock (red line). (b) Phase space electron distribution for dierent points in the shock

Figure 3 :

 3 Figure 3: Landscape of astrophysical collisionless shock waves, in terms of the magnetization and 4-velocity of the shock (u sh = γ sh β sh ), with some associated astrophysical phenomena.

Figure 4 :

 4 Figure 4: Experimental setup of the OMEGA laser facility to drive and probe the formation of a collisionless shock by irradiation of plastic foils with kJ-ns pulse and

Figure 1 . 1 :

 11 Figure 1.1: Left panel: schematic view of the reball model for γ-ray bursts. The jet points toward the observer. Right panel: classication of the short (blue) and long

  example is the elliptical galaxy Messier 87 (see bottom panel in Fig. 1.3) which, in the central region of the jet, exhibits Lorentz factors γ jet ≥ 6. As other examples the Centaurus A [top-left panel in Fig. (1.3)] and Cygnus A [top-right panel in Fig. (1.3)]

Figure 1 . 3 : ( 1 )

 131 Figure 1.3: (1) Composite image of the Centaurus A galaxy and its spectral decomposition in the bottom. (2) Composite X-ray (blue) and radio (red) emissions of Cygnus A galaxy. (3) Messier 87 galaxy jet as seen in optical by HST. Credits:(1) X-ray: NASA/CXC/M. Karovska et al.; Radio 21-cm image: NRAO/VLA/J.Van Gorkom/Schminovich et al., Radio: NRAO/VLA/J. Condon et al.; Optical: Digitized Sky Survey U.K. Schmidt Image/STScI (2) X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Radio: NSF/NRAO/AUI/VLA (3) NASA, ESA, and Z. Levay (STScI/AURA).

Figure 1 . 4 :

 14 Figure 1.4: Combination of the data coming from ve telescopes in dierent bands for the Crab nebula. Credits: NASA, ESA, G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; and Hubble/STScI.

Figure 1 . 5 :

 15 Figure 1.5: Original Hillas diagram (outdated): distribution of the astrophysical objects with respect of their typical size and magnetic eld strength. The gray zone extending from β = 1 → 1/300 corresponds to the typical value of the scattering center speed. Objects bellow diagonal lines cannot accelerate corresponding particles up to 10 20 eV.
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 16 Figure 1.6: Cosmic ray spectrum. Taken from [25].

Figure 1 . 7 :

 17 Figure 1.7: Comparison of the cosmic-ray energy densities of the high-energy multimessengers. Blue data: extra-galactic γ-ray sources observed with the Fermi satellite;

Figure 1 . 8 :

 18 Figure 1.8: Schematic view of a Fermi cycle (upstream → downstream → upstream) in an unmagnetized relativistic shock in the downstream frame. The blue blobs represent electromagnetic scattering agents of the particle. The microturbulence is dierent on both sides of the shock front and leads to dierent diusive regimes.

Figure 1 . 10 :

 110 Figure 1.10: Downstream spectrum of particles computed 20 Fermi cycles for a shock propagating at relativistic speed (γ sh = 100). The thin lines represent the dierent spectrum after consecutive cycles and the thick line shows the total spectrum. Taken from [49].

Figure 1 . 11 :

 111 Figure 1.11: Spectrum of particles in the downstream of a relativistic unmagnetized pair shock propagating at γ sh|u 17 at time t |d = 10 4 ω -1

Figure 2 . 1 :

 21 Figure 2.1: Close up on an unmagnetized relativistic shock prole at ω p t = 7000. In the downstream frame, the background plasma is injected with a Lorentz factor γ p|d = 100 at temperature T = 10 -4 m e c 2 . The shock transition is at ω p x/c = 0. The precursor extends from ω p x/c = 0 up to ω p x/c = 3600.

Figure 2 . 2 :

 22 Figure 2.2: Characterization of the dierent plasma types. MCF stands for magnetic connement fusion. Reproduced from [80].

Figure 2 . 3 :

 23 Figure 2.3: Total phase space distribution in the shock precursor of a relativistic collisionless pair shock of Lorentz factor γ ∞|d = 100 at a distance x |d = 115 c/ω p from the shock front and at time t |d = 7000 ω -1 p .

Figure 2 . 4 :

 24 Figure 2.4: Schematic view of the Weibel instability. Two counterpropagative pair plasmas drifting along the x-axis interpenetrate. A small magnetic eld modulation δB induces current laments of alternating sign, which further amplies the magnetic eld (curvy green arrows). c Julien Rosi.

Figure 2 . 5 :

 25 Figure 2.5: Delimitation of the dierent zones in parameter space (n b /n p , γ b , T b ) where beam-plasma instabilities show dierent dominant modes. The two-stream modes, characterized by wavelength parallel to the beam drift axis, are delimited from oblique modes by the surface approximately parallel to the plane γ b = 1 (two-stream dominates in the low-γ b domain). The other surface delimits the region where lamentation prevails in

Figure 2 . 6 :

 26 Figure 2.6: Growth rate as a function of (k x , k y ) for symmetric, relativistic counterpropagative pair plasmas (drifting along x) with n b /n p = 1, T p = T b = m e c 2 , γ b = γ p = 10. In this conguration, the purely transverse modes (k x = 0) are clearly dominant.

Figure 2 . 7 :

 27 Figure 2.7: Growth rate versus transverse wavenumber for symmetric relativistic counterpropagative plasmas. The parameters are n b /n p = 1, T p = T b = T , γ b = γ p = 10.

1 b

 1 2.8 for γ b = 10, γ p = 1.05, n b /n p = 0.1, T b = T p = m. The dominant modes are located at (k x , k y ) = (0.5, 0.7)ω p /c, and extend as a thin oblique strip at high wavenumbers.When the counterpropagative plasmas are drifting to sub-or mildly-relativistic speeds, the system gets governed by the so-called two-stream modes associated with wave vectors parallel to the ow. The dispersion relation for these purely longitudinal, electrostatic modes is given by xx = 0. For n b /n p 1, the maximum two-stream growth rate evolves as Γ ∝ (n b /n p ) 1/3 γ -with the dominant mode around k x ω p[START_REF] Bludman | Statistical Mechanics of Relativistic Streams[END_REF][START_REF] Bret | Multidimensional electron beamplasma instabilities in the relativistic regime[END_REF].
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 2829 Figure 2.8: Dispersion relation for an asymmetric beam-plasma interaction. Left panel: growth rate of the instability. Right panel: real frequency of the associated mode. Same parameters as in Fig. 2.6 except for n b /n p = 0.1 and γ p = 1.05. As a result, oblique modes (k x ∼ k y ) now prevail.
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Figure 3 . 1 :

 31 Figure 3.1: Schematic of the PIC method. At each time step, the current density is deposited from the particles' positions on the grid where the Maxwell equations are solved. The elds are then interpolated at particles' locations. The resulting Lorentz force allows the particles' moments and positions to be advanced.

Figure 3 . 2 :

 32 Figure 3.2: Error on the phase velocity along the propagation angle in the xz-plane normalized by the speed of light for dierent resolutions N λ = λ/∆x of a plane electromagnetic wave of wavelength λ and comparison between the Yee and the CK schemes.

Figure 3 . 3 :

 33 Figure 3.3: Schematic representation of the nodes required to compute the z-derivative of the magnetic eld component located at the center of the grid. Each node is weighted by its corresponding CK coecient. From [124].

( 3 .

 3 28)-(3.30) reads [109] W = -i∆t[k]J .

Figure 3 . 5 :

 35 Figure 3.5: Gain of dierent digital ltering methods versus the wavelength λ = 2π/k. The function g n is the bilinear ltering gain of g n 1 2 1 4

(4. 10 )

 10 Analytic expressions for the wavelength λ 0 can be derived for two symmetric pair beams (|β b0 | = |β p0 | = β 0 , γ b0 = γ p0 = γ 0 , T b0 = T p0 = T 0 , N b = N p = N ), which canthen serve as initial guesses for the boundary value solver. Due to the symmetry, the electrostatic eld vanishes. Setting φ 0 = 0, the problem reduces to solving Eq. (4.8).

Figure 4 . 1 :

 41 Figure 4.1: Stationary solution to the uid-Maxwell equations in an e -e + system composed of a hot beam (T b0 = 1, β b0 = -0.995) and a background cold plasma (N p /N b = 1, T p0 = 0.1, β p0 = 0.995). The vector potential maximum is a 0 = 0.25, resulting in a wavelength λ 0 = 1.26 c/Ω p . Left panel: B 0z (y) (solid line) and E 0y (y) (dashed line), normalized to mcΩ p /e, where Ω p is the relativistic frequency associated with the peak electron (or positron) frequency. Right panel: Density proles of the electrons (solid lines) and positrons (dashed lines) in the hot (blue) and cold (black) beams, normalized to the maximum cold-beam electron (or positron) density.

( 4 .

 4 40). M (y) satises the dierential equation ∂ y M (y) = Ξ(y)M (y) .

(4. 43 )

 43 According to the Floquet theory, M has the form M (y) = P (y)Σ(y) , (4.44) where Σ(y) = diag e µ 1 y , ..., e µny , (4.45)

( 4 . 48 )

 448 Introducing b 1 , ..., b n the eigenvectors of B, and dening the matrix S = [b 1 ] ... [b n ] ,

P

  (y) = M (y) S Σ -1 (y) .

Figure 4 . 2 :

 42 Figure 4.2: Instability growth rates (Γ) in the (k x , k y ) plane for two symmetric counterstreaming pair beams with T 0 = 1 and γ 0 = 10, as obtained from the linear dispersion relation (left) and the Floquet method (right).

Figure 4 .

 4 Figure 4.2 conrms that the two methods give identical growth-rate maps. In the Floquet case (bottom panel), the cruder resolution in k y follows from the chosen res-

4

 4 

. 4 .

 4 Due to the symmetric conguration, only the perturbations of the positron uid with positive velocity are shown. Both the real and imaginary parts of the eigenfunctions are plotted, showing that they only dier by a constant phase of ∼ π/2. The electromagnetic eld perturbations (δE x , δB z ) are well described by a single harmonic function with wavenumber k y,max , so that |δE x /δB z |

Figure 4 . 3 :

 43 Figure 4.3: Growth rate (Γ, solid curve) of the FMI as a function of the characteristicFloquet exponent (k y ). The unperturbed periodic system consists of two symmetric counterstreaming pair beams with T 0 = 1, γ 0 = 10. Three dierent eld strengths, a 0 = 0.04, 0.25, 0.5 (i.e., ξ = 0.4, 2.5, 5), are considered, which are associated with fundamental wavenumbers k 0 = 16.5, 8.03, 4.88 Ω p /c (i.e., λ 0 = 0.38, 0.78, 1.28 c/Ω p ).

Figure 4 . 4 :Fig. 4 . 3 .

 4443 Figure 4.4: Spatial structure of the dominant FMI eigenmode for the parameters of Fig. 4.3. The thick (resp. thin) solid lines plot the real (resp. imaginary) parts of the eigenfunctions. The perturbed quantities are, from left to right, the inductive electric

Figure 4 . 1 p

 41 Figure 4.6 displays the space-time evolution of the density of species 1 (positrons moving along x > 0). A rst instability stage is observed to last until t 10 Ω -1 p : it is characterized by mergers between clusters of 3-4 neighboring laments, consistent with the theoretical prediction of Fig. 4.5. The larger and denser laments resulting from this primary instability undergo successive merging stages, leading to increasingly wide and spaced laments.

Figure 4 . 5 :

 45 Figure 4.5: Space-time evolution of the density component, d 1 = d 10 (y) + δd 1 (y)e Γt (normalized to max y d 10 ), of the fastest-growing FMI eigenmode. The parameters are those of Fig. 4.3. The evolution is stopped slightly before d 1 becomes negative.

Figure 4 . 6 :

 46 Figure 4.6: 1D PIC simulation with the parameters T 0 = 1, γ 0 = 10 and a 0 = 0.04 (as in Fig. 4.3): space-time evolution of the density of plasma species 1 (normalized to its initial peak value).

Figure 4 . 7 :

 47 Figure 4.7: Time evolution of the electromagnetic energies (spatially integrated and normalized to the initial magnetic energy). The initial simulation parameters are those of Fig. 4.6. The magnetic (B z ) energy is plotted as a dotted line, the inductive (E x ) energy as a thick solid line and the electrostatic (E y ) energy as a dashed line. The thin dotted-dashed line represents the best-tting exponential curve over 5 ≤ t ≤ 10 Ω -1 p ,

4

 4 and the theoretical prediction k 0 /k max 16.5/2.85, one then obtains (B sat /B 0 ) 2 120, in fair agreement with the simulated value measured at t 10 Ω -1 p [Fig. (4.7)].

Figure 4 . 8 :

 48 Figure 4.8: Time evolution of the Fourier transformed magnetic eld, |B z (k y , t)| 2 (in log 10 scale). The initial simulation parameters are those of Fig. 4.6. The bright spectral line at k y 16.5 Ω p /c corresponds to the fundamental wavenumber of the equilibrium state.

Figure 4 .Figure 4 . 9 :

 449 Figure 4.3 shows that for ξ = 2.5 the FMI growth rate exhibits a signicantly reduced maximum value (Γ max 0.22 Ω p at k y,max 1.29 Ω p /c) and upper cuto `wavenumber' k y 5.1 Ω p /c. Also, it presents a nonzero lower cuto k y 0.06 Ω p /c (hardly visible in Fig. 4.3). When the nonlinearity is further strengthened (ξ = 5), the lower cuto increases to k y 0.27 Ω p /c and the Γ curve abruptly stops at k y = k 0 /2 = 2.45 Ω p /c (where k 0 4.88 Ω p /c is the corresponding fundamental wavenumber). The latter

Figure 4 .Figure 4 . 10 :

 4410 Figure 4.10: Instability growth rate (Γ) as a function of the characteristic Floquet exponent (k y ) for dierent values of k x . The stationary symmetric system is characterized by T 0 = 1, γ 0 = 10 and ξ = 5, yielding λ 0 = 1.28 c/Ω p .

  The domain size is 25000 ∆x × 1000 ∆y with a discretization ∆x = ∆y = λ 0 /200 = 0.0064 c/Ω p . Each pinched lament extends over about 15 cells. These parameters allow us to resolve the (k x , k y ) Fourier space in the range [0.04, 976] × [0.976, 976] (Ω p /c) 2 . Each cell initially contains 10 macro-particles per species. The Maxwell equations are solved using the Cole-Karkkainen scheme (see Sec. 3.3.1), which enables us to use a large time step, ∆t = 0.99 ∆x/c. As usual, we apply periodic boundary conditions to both elds and particles.

Figure 4 .

 4 Figure 4.15 plots the time history of the electromagnetic energies, while Figs. 4.16

Figure 4 . 11 :Figure 4 . 12 :

 411412 Figure 4.11: Transverse spatial structure of the eigenmode characterized by Γ = 0.22 Ω p , k y = 0 and k x = 0.42 Ω p /c (same parameters as in Fig. 4.9). This eigenmode is the dominant one in Figs. 4.9 and 4.10. The thick (resp. thin) solid lines plot the real (resp. imaginary) part of the eigenfunctions. The perturbed quantities are, from left to right and top to bottom, δE x , δE y , δB z , normalized to max y |δB z | and δv 1x , δv 1y and δd 1 , normalized to max y |δd 1 |. The thin dot-dashed lines plot the unperturbed quantities (normalized to their peak values).

Figure 4 . 13 :

 413 Figure 4.13: 2D spatial structure of the eigenmode characterized by Γ = 0.22 Ω p , k y = 0 and k x = 0.42 Ω p /c. The unperturbed symmetric system is dened by T 0 = 1, γ 0 = 10 and ξ = 5. Top panel: total particle density ( α d α ). Bottom panel: transverse magnetic eld (B z ).

Figure 4 . 14 :

 414 Figure 4.14: 2D spatial structure of the eigenmode characterized by Γ = 0.13 Ω p , k y = k 0 and k x = 0.42 Ω p /c (same parameters as in Fig. 4.13). Top panel: total particle density ( α d α ). Bottom panel: transverse magnetic eld (B z ).

Figure 4 .Figure 4 . 15 :

 4415 Figure 4.15: 2D PIC simulation with the parameters T 0 = 1, γ 0 = 10 and a 0 = 0.5: time evolution of the electromagnetic energies (spatially integrated and normalized to the initial magnetic energy). The B z energy is plotted as a dotted line, the E x energy as a dashed line and the E y energy as a thick solid line. The growth rate, Γ PIC 0.18 Ω p (thin dashed-dotted line), is measured from the E y curve over the time interval 25 ≤ t ≤ 35 Ω -1 p .

Figure 4 . 16 :

 416 Figure 4.16: Simulated proles of the total particle density (normalized to the initial peak density of the positrons) for the parameters of Fig. 4.15 at dierent times. From top to bottom: t = 7, 34, 39, 50 Ω -1 p .

Figure 4 . 17 :

 417 Figure 4.17: Simulated magnetic-eld (B z , normalized to mΩ p /e) prole for the parameters of Fig. 4.15 at dierent times. From top to bottom: t = 7, 34, 39, 50 Ω -1 p .

Figure 4 . 18 :

 418 Figure 4.18: Growth rate of the relativistic drift kink instability as a function of k x for a two-beam lamentary system with T 0 = 1, γ 0 = 10, a 0 = 1 (ξ = 5) and Γ ad = 4/3.

(4. 67 )

 67 Projecting Eqs. (4.65) and (4.66) along the x axis gives -ik x δp ± + iω δp ∓ + ed 0 B 0 δβ ∓ y = 0 .

( 4

 4 .73) with the characteristic width [Eq. (4.21)]

(4. 90 )

 90 Since the nonlinearity of the laments tends to quell the FMI, this expression represents an upper bound value of the FMI growth rate.According to Eqs. (4.84) and (4.90), the DKI is predicted to prevail over the FMI when the nonlinearity parameter exceeds the approximate threshold value ξ th 4 log 2 2.7 .

(4. 92 )

 92 When N p /N b 1, the Weibel frame tends to the rest frame of the cold background plasma[START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering centre frame[END_REF]. In the following, we focus on a particular conguration dened by T p0 = 0.01,T b0 = 1, β b0 = -0.9971 (γ b0 = 13), β p0 = 0.1672, Γ ad,p = 5/3, Γ ad,b = 4/3 and N p /N b = 10. The vector potential maximum is set to a 0 = 0.05, yielding ξ p 0.85 and ξ b 0.66, and hence moderately pinched current laments, as conrmed by the equilibrium spatial proles plotted in Fig. 4.19. The lab-frame is chosen such that the plasma parameters fulll Eq. (4.92), leading to |E 0y | |B 0z | (see Fig. 4.19

Figure 4 .

 4 20 plots the k y dependence of Γ for the longitudinal wavenumber (k x 0.95 Ω p /c) associated with the fastest-growing mode. In contrast to the symmetric conguration, two unstable branches are found: the upper one extends over the full fundamental zone (0 ≤ k y ≤ k 0 4.3 Ω p /c), while the lower one is restricted to the range 0 ≤ k y ≤ 1.7 Ω p /c. The dominant mode pertains to the upper branch, and is characterized by a Floquet exponent k y 2.0 Ω p /c, a growth rate Γ 0.16 Ω p and a real frequency ω r -0.75 Ω p (Fig. 4.20). This mode diers signicantly from the one governing the system in the homogeneous limit, which is characterized by k x 1.3 Ω p /c, k y 3.2 Ω p /c, Γ 0.25 Ω p and ω r -1.1 Ω p .

Figure 4 .Figure 4 . 19 :

 4419 Figure 4.21 displays the 2D structure of the dominant instability, as reected by the apparent density of the cold-beam positrons (d 1 ) and the transverse magnetic eld (B z ).For both quantities, the zeroth and rst order terms are added up. The rst order term is taken to be the sum of the eigenfunctions with k y = ±2.0 Ω p /c and k x = 0.95 Ω p /c , which grow at the same rate and are initialized with the same amplitude. The structure

Figure 4 . 20 :

 420 Figure 4.20: Instability growth rate (Γ) as a function of the Floquet exponent (k y ) at k x = 0.95 Ω p /c (corresponding to the fastest-growing mode). The unperturbed system is asymmetric with the parameters of Fig. 4.19. The fundamental wavenumber is k 0 ≡ 2π/λ 0 = 4.33 Ω p /c.

Figure 4 .

 4 Figure 4.21: 2D spatial structure of the dominant eigenmodes (k y = ±2.0 Ω p /c) of the upper unstable branch shown in Fig. 4.20 normalized to the same amplitude. Top panel:

Figures 4 . 2 Figure 4 .

 424 Figures 4.23and 4.24 display the spatial structures of the cold-beam-positron density (d 1 ) and transverse magnetic eld (B z ) at dierent times. The patterns observed at

Figure 4 .

 4 Figure 4.23: 2D PIC simulation with the parameters of Fig. 4.19: cold-beam positron density (d 1 , normalized to its initial peak value) at dierent times. From top to bottom: t = 3, 32, 41, 58 Ω -1 p .

Figure 4 .

 4 Figure 4.24: 2D PIC simulation with the parameters of Fig. 4.21: transverse magnetic eld (B z , normalized to mΩ p /e) at dierent times. From top to bottom: t = 3, 32, 41, 58 Ω -1 p .

Figure 5 .

 5 Figure 5.2 illustrates the numerical (in)stability of the same drifting plasma by plotting the time evolution of its apparent (transverse) temperature (normalized to m e ), as obtained for dierent resolutions and number of applications of binomial lters.

Figure 5 . 1 :

 51 Figure 5.1: Fourier power spectra at two successive times of the magnetic eld component B z as computed in a 2D periodic PIC simulation of a relativistic pair plasma drifting with a Lorentz factor γ = 100 and initial proper temperature T ∞ = 10 -2 m. The left (resp. right) column show results from a simulation with a resolution ∆x = 0.1 c/ω p (resp. ∆x = 0.06 c/ω p ) and 3 (resp. 30) repeated applications of compensated binomial ltering. Both simulations employ the Godfrey-Vay ltering.

Figure 5 . 2 :

 52 Figure 5.2: Evolution of the apparent temperature of a cold plasma initialized with T = 10 -2 m and γ = 100 in a box with periodic boundary conditions. The dierent curve correspond to dierent discretization of the grid and number of binomial ltering.

Figure 5 . 3 :

 53 Figure 5.3: Large-scale 2D3V simulation of a relativistic pair shock with initial Lorentz factor γ ∞|d = 10 and proper temperature T = 10 -2 m e . The shock front is located at ω p x/c = 0, the precursor extends up to ω p x/c = 5800 and the reecting wall is at ω p x/c = -5000. Top panel: 2D prole of the out-of-plane magnetic eld B z . Middle panel: Transversely averaged proles of the total density (black), Lorentz factor (blue)

Figure 5 .

 5 Figure 5.5 shows the (x, p x ) phase space of the dierent populations in one such simulation (with γ ∞|d = 100). The top panel represents the complete distribution of

Figure 5 . 4 :

 54 Figure 5.4: Transversely averaged spatial proles of the main hydrodynamic quantities characterizing the background plasma and the beam of suprathermal particles in the shock precursor, as a function of distance to the shock front x d . Left column: proles extracted from a PIC simulation of shock Lorentz factor γ ∞ = 17 (corresponding to a relative upstream-downstream Lorentz factor γ ∞|d = 10) at time t = 3600 ω -1 p ; right column: from a PIC simulation of shock Lorentz factor γ ∞ = 173 (γ ∞|d = 100) at time t = 6900 ω -1 p . (a) Proper temperature of the background plasma (red) and of the beam (blue), and proper density of the background plasma (black) and of the beam (green). (b) Apparent temperature and densities of the background plasma (resp. red and black) and of the beam (resp. blue and green) in the shock front frame. (c) Same as (b) but in the background plasma frame. (d) Lorentz factor of the beam in the shock front frame (blue) and in the background plasma frame (black), and Lorentz factor of the background plasma in the shock front frame.

Figure 5 .Figure 5 . 5 :

 555 Figure 5.5 shows that phase space in the shock precursor is highly asymmetric. This is manifest in Fig.5.4, which shows the proles of the uid parameters in dierent frames relevant for the shock dynamics. In the reference frame in which the shock front lies at rest (the shock rest frame R s ), the background plasma appears cold, and streams at relativistic velocities through a quasi-isotropic, ultrarelativistic hot gas of suprathermal particles [see row (b) in Fig.5.4]. Conversely, in the background plasma rest frame R p , the suprathermal particles form a dense beam of angular dispersion

Figure 5 . 6 :

 56 Figure 5.6: Top panel: density plot of B z , in units of γ ∞|d 1/2 B , from a PIC simulation with γ ∞|d = 100, illustrating the lamentary structure of the turbulence over the precursor. Middle panel: density plot of n p (x, y)-n p y (average taken over the transverse dimension), which reveals the lamentation pattern of the background plasma. Bottom panel: same for the suprathermal particles, on a scale enlarged by 50 to enhance their weak modulations.

Figure 5 .Figure 5 . 7 :

 557 Figure 5.7: All-particle spectrum extracted from PIC simulations with γ ∞|d = 10 (top panel) and γ ∞|d = 100 (bottom panel) at various positions x |d (relative to the shock front) in the simulation box, as indicated by the color bar, over a window of length 300c/ω p . The black line plots the spectrum integrated over the full domain, while the dashed line plots the expected power-law, dN/dγ |d ∝ γ -2.2

1 Figure 5 . 8 : 2 y 1 / 2 / δB 2 z 1 / 2 ,

 158212212 Figure 5.8: Spatial proles of normalized electromagnetic eld energy densities in transverse magnetic eld δB z (black), transverse electric eld δE y (blue) and longitudinal electric eld δE x (red), as a function of distance to the shock. Left panel: extracted from simulation γ ∞ = 17 (simulation frame γ ∞|d = 10); right panel: simulation γ ∞ = 173 (simulation frame γ ∞|d = 100). In each, the top panel shows the energy densities measured in the simulation frame; the bottom panel shows the corresponding energy densities deboosted to the Weibel R w frame (where δE y|w vanishes by denition). The velocity of the Weibel frame has been estimated from the simulation as β w|d = δE 2 y 1/2 / δB 2 z 1/2 , where the average has been taken over the transverse dimension of the simulation box.
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 59 Figure 5.9: Evolution of the nonlinearity parameter of the background plasma Ξ p|w . Left panel: γ ∞|d = 10 at time t = 3600 ω -1 p ; right panel: γ ∞|d = 100 at time t = 6900 ω -1 p .

Figure 5 . 10 :

 510 Figure 5.10: Theoretical estimate of β w|p obtained through a nonlinear quasistationary equilibrium of current laments, as developed in Sec. 5.3.1. The purple diamond symbols/dashed curve uses (5.9) to compute the Weibel frame velocity. Left panel: γ ∞ = 17 (γ ∞|d = 10); right panel: γ ∞ = 173 (γ ∞|d = 100).

  ) is undetermined but is the same as β p|d since these two closely coincide all along the shock precursor. The comparison of this theoretical estimate with that measured in our reference PIC simulations is shown in Fig.5.10, with as before γ ∞ = 17 in the left panel and γ ∞ = 173 in the right panel. The green curves represent as before the value extracted from the PIC simulation (in light green

  ) according to Eqs. (5.20) and (5.21). Let us stress that this result rests on the observation that |β p|w |

-1/2 b in the deceleration regime (ξ b 1 /γ 2 ∞

 12 or γ p γ ∞ ) with the prole of γ p|d measured in two PIC simulations with Lorentz factors γ ∞ = 17 and γ ∞ = 173, which correspond, respectively, to Lorentz factors γ ∞|d = 10 and 100 in the simulation frame R d . In Fig. 5.11, the prole of ξ -1/2 b

-1/ 2 b

 2 , one nds from Eqs. (5.26) and (5.22): a p = α p a 2 γ -1
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 511512 Figure 5.11: In black, the Lorentz factor of the background plasma, γ p|d , vs distance to the shock, extracted from PIC simulations of a pair shock of Lorentz factor γ ∞|d = 10 (top panel) and γ ∞|d = 100 (bottom panel). The law γ p|d = 1.2 ξ -1/2 b is overplotted in blue, using as input the prole ξ b (x) extracted from the same PIC simulations and the same ad hoc numerical prefactor 1.2 in both panels. The law γ p|d ∼ ξ -1/2 b is that

Where ξ b 0. 1 ,

 1 indeed, the law of deceleration implies that γ p becomes of the order of unity, i.e. the ow becomes subrelativistic and the shock transition forms over a length scale of ∼ 100 ω -1 p . Hence, that ξ b ∼ 0.1 in the immediate precursor is a natural prediction of our model. This deceleration law plotted in Fig.5.11 also reveals the existence of a sub-shock, which is a generic prediction of cosmic-ray modied shocks: the Lorentz factor of the background plasma is seen to slowly decrease in the precursor over some ∼ 10 3 ω -1 p down to a value γ sub ∼ 5, at which point the shock transition occurs abruptly. This sub-shock arises here as a result of the transition from ultrarelativistic to mildly relativistic ow velocities. Far in the shock precursor, the characteristic length scales of the background plasma dynamics are typically dilated by a factor γ p when expressed into the shock frame, so that the transition from ultrarelativistic to subrelativistic velocities implies a rapid evolution of the various physical quantities. For instance, dening ν |w as the scattering frequency of the background plasma in the microturbulence and measured in the Weibel frame, the typical relaxation length scale of background plasma particles in the microturbulence is of the order of γ w /ν |w ν -1

Figure 5 . 13 :

 513 Figure 5.13: Evolution of the microturbulence strength parameter B in the near pre- cursor, as a function of distance to the shock, extracted from PIC simulations of a pair shock of Lorentz factor γ ∞|d = 10 (top panel) and γ ∞|d = 100 (bottom panel), in black. The MHD-like compression law B ∝ 1/β 2 w , with β w extracted from the same PIC simulations, is overplotted in dashed green, for comparison. The proportionality factor is chosen to match the B (x |d ) curve in the precursor at distances x |d 100 c/ω p in order to remove its possible spatial dependence. This choice corresponds to B = 1.2 × 10 -2 -1.6 × 10 -5 x |d β -2 w in the top panel and B = 0.026 β -2 w in the bottom panel.

Figure 5 . 14 :

 514 Figure 5.14: Schematic representation of the Monte-Carlo integration of the stochastic dierential equation (5.38). The equation of motion of the particles is solved in the noninertial turbulence frame R w while the longitudinal electric eld is evolved in the shock frame R s . We recall that this eld is invariant under longitudinal boosts.

1 γ w p t |w + β w p x |w ( 5 . 41 )

 1541 The equations of motion are thus solved in the non-inertial R w frame, using the time stepdt |w = p t |w dt γ w β w p x |w + p t |w ,(5.42)with, in practice, dt = 0.01ω -1 p . Particles are injected far from the shock, isotropically in R w with a temperature T ∞ = 0.01 m, in accordance with our PIC simulations.More technically, the combination of the PIC and Monte Carlo methods proceeds through the following stages (sketched in Fig.5.14):
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 515 Figure 5.15: Proles of the background plasma 4-velocity |u p|d | in the simulation frame R d as a function of distance to shock x. In red, the results of the Monte Carlo computation, for dierent values of the scattering frequency (light red: ν |w = ω p , medium red: ν |w = 0.1ω p and dark red: ν |w = 0.01ω p ); in black, the value measured in the PIC simulation. We stress that the values extracted from the PIC simulation at x 10c/ω p are inaccurate because the distinction between background plasma particles and shock-heated particles becomes dicult. The dotted gray line shows the 4-velocity |u w |, inferred from the PIC simulation, and used as input in the Monte Carlo computation. Left panel: γ ∞|d = 10 corresponding to γ ∞ = 17; right panel: γ ∞|d = 100 corresponding to γ ∞ = 173.

Figure 5 . 16 :

 516 Figure 5.16: Same as Fig. 5.15 for the proles of the temperature T p as a function of distance to shock x, in the simulation frame. We stress that the values extracted from the PIC simulation at x 10c/ω p are inaccurate because the distinction between background plasma particles and shock-heated particles becomes dicult. The dashed gray line indicates the expected nal values of T p corresponding to the uid shock crossing conditions for a relativistic unmagnetized shock in 2D.

Figure 5 . 17 :

 517 Figure 5.17: Same as Fig. 5.15, but now representing the trajectory of the background plasma in the plane (T p , |u p |). We stress that the values extracted from the PIC simulation at large T p are inaccurate because the distinction between background plasma particles and shock-heated particles becomes dicult. The dashed gray line indicates the expected nal values of T p corresponding to the uid shock crossing conditions for a relativistic unmagnetized shock in 2D (the corresponding value of u x p is zero in the simulation frame). The dotted line shows the adiabatic law of compression for a non-relativistic gas, T p ∝ |u x p | -2/3 .

Figure 5 .

 5 Figure 5.15 presents the 4-velocity prole of the background plasma as a function of distance to the shock. As the scattering frequency increases, u p|d lies closer and closer to the input theoretical prole of u w|d , as one would expect, because a large scattering frequency implies a stronger coupling of the plasma to the turbulence. Although the Monte Carlo curves do not account for the detailed evolution of the measured background plasma 4-velocity, they provide a reasonable match to the overall PIC prole.
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 518 Figure 5.18: Spatial prole of γ p|d β p|d n p /(γ ∞|d β ∞|d n ∞ ) extracted from our two reference PIC simulations, as indicated. This quantity decreases towards the shock as a result

  ) referring to how these particles are dened in the PIC simulation would be exactly conserved. At nite scattering frequency, however, this current density must decrease at a spatial rate ν |w /γ w|d along the plasma trajectory in the simulation frame.

Figure 5 . 1 p

 51 Figure 5.18 shows the spatial prole of this current density for our two reference PIC simulations, indicating that indeed, over the crossing of the precursor, about half of the background plasma particles have experienced at least one turn-around. One can then provide an estimate of the scattering frequency as ν |w ∼ γ w|d / prec|d . For γ ∞|d = 10, we estimate an average γ w|d ∼ 10 over the precursor length scale prec|d ∼ 10 3 ω -1 p , see Figs.5.4 and 5.8 (left), giving ν |w ∼ 0.01ω p . For γ ∞|d = 100, we estimate an average γ w|d ∼ 30 over the precursor length scale prec|d ∼ 2 × 10 3 ω -1 p , see Figs.5.4 and 5.8 (right), giving ν |w ∼ 0.015ω p , both in good agreement with the theoretically inferred value.

  µ indicates the time spent since injection at the shock front. Integrating over pitch angle cosine, and assuming isotropic injection at the shock front, we derive the position dependent density
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 5191 Figure 5.19: Comparison between our theoretical estimate of the scattering length l scatt (p) = γ w -1 B (p/p m ) 2 c/ω p [see Eq. (5.60)] and its measurement in PIC simulations with γ ∞|d = 10 (top panel) and γ ∞|d = 100 (bottom panel). The theoretical prediction includes an uncertainty error bar of a factor of 3 in each direction (gray band). The numerical value is obtained through Eq. (5.66) at various positions in the precursor: the values x |d of interest are those corresponding to the far precursor (red colors), where the time-dependent regime applies, see text for details. The atness of (p/mc) -2 l scatt vs p/mc conrms the scaling l scatt ∝ p 2 .

1 i

 1 performed two 2D3V electron-ion shock simulations in an ultra-relativistic conguration with two dierent mass ratios, m i /m e = 25 and m i /m e = 100. In each case the Lorentz factor is set to γ ∞|d = 100 (γ ∞|s = 173). The resolution of the simulation is xed by the electron skin depth (∆x = 0.08 c/ω e ), thus corresponding to ∆x = 0.016 c/ω i for m i /m e = 25 and ∆x = 0.016 c/ω i for m i /m e = 100. The rst simulation was run over L t = 960 ω -in a box of nal dimensions L x × L y = 1040 × 96.5 (c/ω i ) 2 (corresponding to N x × N y = 65000 × 6030 cells). The second one, larger, ran over L t = 928 ω -1 i in a nal domain of dimensions L x × L y = 1000 × 96.5 (c/ω i ) 2 (N x × N y = 125000 × 12060).

Figure 5 . 20 :

 520 Figure 5.20: Closeup of the shock precursor of an electron-ion unmagnetized collisionless relativistic shock injected from the right with a Lorentz factor γ ∞|d = 100 and proper temperatures T e = T i = 0.01m e . The shock transition occurs at ω i x/c = 0. The precursor extends from ω i x/c = 0 up to ω i x/c 500. The top panel corresponds to a mass ratio m i /m e = 25, and shows the magnetic eld prole at time ω i t = 950.4. The bottom panel correspond to m i /m e = 100 and shows the magnetic eld (top half ) and the total ion density (bottom half ) at ω i t = 871.2.

Figure 5 .

 5 Figure 5.20 shows the magnetic eld and density proles, as recorded at time ω i t = 950.4 for m i /m e = 25 (top panel), and at ω i t = 871.2 for m i /m e = 100 (bottom panels). In both simulations, one can see the emergence of localized structures in the shock precursor. They can be seen throughout the whole precursor of the m i /m e = 25 simulation (see top panel of Fig. 5.20), but only at the tip of the precursor of the m i /m e = 100 simulation (see bottom panel of Fig. 5.20). These solitary structures, formed in the far precursor, have been studied in more detail in[START_REF] Naseri | Growth and propagation of self-generated magnetic dipole vortices in collisionless shocks produced by interpenetrating plasmas[END_REF] for a lower Lorentz factor (γ ∞|d = 15), and are interpreted as self-generated magnetic dipoles vortices.

Figure 5 .21 plots 2 ,

 52 Figure 5.21 plots 2 , from top to bottom, the drift Lorentz factor, proper temperature (normalized to the electron rest mass) and proper density proles of each plasma species, as extracted from the simulations with mass ratio m i /m e = 25 (left) and m i /m e = 100

Figure 5 . 21 :

 521 Figure 5.21: Transversely averaged 1D proles of the background ( p ) and beam ( b ) plasma Lorentz factor (respectively proper temperature and density) of the ion γ i (resp. T i and n i ) and electrons γ e (resp. T e and n e ) as seen in the downstream/simulation frame. The proper temperature is normalized by the electronic rest mass. These quantities are shown for two simulations with mass ratio m i /m e = 25 (left panels) and m i /m e = 100 (right panels) at respective times ω i t = 950.4 and ω i t = 871.2.

Figure 5 . 22 :

 522 Figure 5.22: Top panels: electromagnetic eld energy decomposition amongst B z (blue), E x (black) and E y (red) for the shocks with mass ratio m i /m e = 25 (left) and m i /m e = 100 (right). Bottom panels: electric eld y-averaged spatial prole.

Fig. 5 .Figure 5 . 23 :

 5523 Fig. 5.22, its energy density remains much smaller than that of the other electromagnetic eld components everywhere in the precursor. Also, its amplitude prole mainly exhibits high-frequency uctuations, the eect of which on the background plasma population is unclear. It is then more instructive to consider the longitudinal electric potential, assuming that the inductive counterpart of the electric eld is negligible. As shown in Fig. 5.23, for m i /m e = 25, the potential, integrated from the tip of the precursor (right-hand side) to the wall (left-hand side), mainly increases, meaning that the

Figure 5 . 24 :

 524 Figure 5.24: Lorentz factor of the background plasma ions (solid black line), and electrons (solid blue line) and of the Weibel frame (solid red line) for the simulations with mass ratio m i /m e = 25 (left panel) and m i /m e = 100 (right panel). The dashed red line in the left panel correspond to the smooth t used in the Monte Carlo integration.

Figure 5 .

 5 Figure 5.25 presents the evolution of the Lorentz factor (left panel) and proper temperature normalized by the electron mass (right panel) across the shock precursor of three dierent congurations label (a), (b) and (c). These dierent MC-PIC simulations (explicited below) use the deceleration law presented as the dashed red curve in the left panels.For all these plots, the scattering frequency of the ions ν i,scatt (respectively electrons ν e,scatt ) is set to ν i,scatt = 10 -2 ω i (resp. ν e,scatt = 5 × 10 -2 ω i ). All these simulations use the same resolution, ω i ∆x/c = 0.02, c∆t/∆x = 0.8, and 4 particles per cell, for a total number of 9.4 × 10 4 cells integrated over 9 × 10 4 time steps. Panels (a) of Fig.5.25 correspond to a simulation without coupling to the electrostatic Poisson solver (i.e., particles are only pushed by the MC solver). We observe a dierential deceleration of the two background plasma components due to their dierent scattering lengths. Because of their large scattering frequency, the electrons tend to relax faster in the Weibel frame. Also, the proper temperatures of the two species saturate a dierent values (T e ∼ m e and T i ∼ 10 m e ) owing to their dierent inertia, consistent with what is observed in the simulation (T e ∼ 2 m e and T i ∼ 10 m e ). The near precursor, however, is badly described by a pure stochastic heating in the Weibeltype turbulence. The downstream temperatures are, respectively, for the electrons and ions T e 20m e and T i 1400m e . Furthermore, while the predicted downstream ion temperature (T i ∼ 50 m i ) matches the expected shock-jump condition, the MC down-

Figure 5 . 25 :

 525 Figure 5.25: Lorentz factors (left) and temperatures (right) of the ions (black lines) and electrons (blue lines) for three dierent congurations of the Monte Carlo-Poisson solver. In each case, a cold plasma is injected with relativistic Lorentz factor γ p|d = 100 (i.e. γ p|s = 173), and the electron and ion scattering frequencies are set to (ν i,scatt = 0.01 ω i and ν e,scatt = 0.05 ω i ). The shaded red line plots to the Weibel frame as extracted from the PIC simulation with m i /m e = 25, and the dashed curve plots its t used in the PIC-MC solver. (a) Monte Carlo integration without coupling to the electrostatic solver. (b) Monte Carlo-Poisson integration. (c) Monte Carlo-Poisson integration with a nonneutral beam extracted from the simulation.
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 61 Figure 6.1: General picture of a γ-ray burst with decoupled neutron shell (red) propagating upstream of the ion blast wave (blue). R dec correspond to the distance at which protons and neutrons are collisionally decoupled and R trans correspond to the radius at which protons and radiation decouple. Note that the central engine is here represented as a binary system just for convenience.

(6. 6 )

 6 -w t γ 2 t|n β t|n (1 + β t|n ) -P t = -n u γ 2 u|n β u|n (1 + β u|n ) + ṅp p 0 |n Θ( ) min( , ∆γ u|n ) , (6.7) -w t γ 2 t|n β t|n (1 -β t|n ) + P t = -n u γ 2 u|n β u|n (1 -β u|n ) + ṅp p 0 |n Θ( ) min( , ∆γ u|n ) . (6.8) It is convenient to dene the dimensionless quantity η, which represents the fraction of energy injected by the shell in the background plasma on a distance normalized by the incident energy ux: η = ṅp n u p 0 |n m p γ 2 u|n c Θ( ) min( , ∆γ u|n ) .

Figure 6 . 2 :

 62 Figure 6.2: Pressure (green), proper density (blue) and temperature (red), and mean kinetic energy (black) of the total trailing medium in terms of the fraction of collected energy η for γ u|n = 100.

Figure 6 . 3 :

 63 Figure 6.3: Spatial prole of collected energy fraction η ∆ for an isotropic expansion with γ u|n = 40, isotropic energy of 10 53 erg and decay of the neutrons into protons.

Figure 6 . 4 :

 64 Figure 6.4: Left: Fluid properties of the trail plasma exiting the neutron shell as a function of η ∆ . Right: Corresponding post-shock properties from a full numerical integration of the conservation laws. The parameters are β n|d = 0.883 and γ u|d = 10.
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 65 Figure 6.5: Closeup of a PIC simulation of the interaction of a decaying shell of neutrons and an incoming unshocked plasma, in the downstream rest frame of the (initial) ion shock front. The background plasma is injected from the right boundary with a negative velocity β ∞|d = -0.995 and a proper temperature T ∞ = 10 -2 m. The particles injected in the neutron shell have an initial positive velocity β n|d = 0.8826 with an injection rate such that η ∆ = 0.04 and a cold temperature T n = 2 × 10 -3 m. Left panel: comparison between the uid proles of the total plasma from PIC simulations (solid lines) and uid model (dashed lines): proper density (blue), proper temperature (red) and Lorentz factor in the downstream frame (black). Right panel: phase space distribution in the closeup region. The vertical dotted lines represent the boundaries of the shell.

Figure 6 . 6 :

 66 Figure 6.6: Fluid proles (left panel) and particle longitudinal phase space (right panel) for the simulation with η ∆ = 0.2. The shell is delimited by vertical dotted black lines. The vertical dotted green line represents the boundary of the stationary uid model.
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 67 Figure 6.7: Fluid proles (left panel) and particle longitudinal phase space (right panel)

Figure 6 . 8 :

 68 Figure 6.8: 2D maps of the particle and eld distribution from the simulation with (η ∆ = 2). The panels display, from top to bottom, the density prole of electron (or positrons equivalently), the transverse magnetic eld B z , the transverse electric eld E y and the longitudinal electric eld E x .

  Using the above equations, it becomes straightforward to derive the dispersion relation of the CFI in this warm uid description. Consider the CFI in R w , where δΦ |w = 0. The response δj p x |w of the background plasma can be written

αγ α ω 2 pα ω 2 p x p y mγ 2 ∂f

 22 (p) the corresponding unperturbed distribution function, normalized such that d 3 p f (0) α = 1. If the non-diagonal tensor element ε xy happens to vanish, Eq. (A.28) implies either ε yy = 0 or ζ 2 ε xx -1 = 0. These two dispersion relations describe, respectively, purely electrostatic modes (with δE ŷ) and purely electromagnetic (or inductive) modes (with δE x). Assuming that f (0) α (p) is even in p y , ε xy reduces to ε xy (ω, k) = α

ζ 2 ε

 2 xx -1 0 .

(A. 59 )

 59 Finally, in order to make contact with our previous notations, we will repeatedly use the substitution:ω 2 pb µ b /ω 2 p = ξ b (n ∞ /n p )/κ 2 T b

  the right-hand boundary, and is made to reect specularly o the left-hand boundary (x |d = 0). Electrons and positrons are injected with a Maxwell-Jüttner momentum distribution [Eq. (A.36)] of proper temperature T ∞ = 0.01m and mean drift velocityβ ∞|d = -1 -1/γ 2∞|d in the simulation frame. As mentioned earlier, this simulation reference frame coincides with the downstream plasma rest frame (as a consequence of the use of the mirror technique). Our two reference PIC simulations use γ ∞|d = 10 and γ ∞|d = 100, which respectively correspond to shock Lorentz factors (with respect to the upstream) of γ ∞ = 17 and γ ∞ = 173.

  The mesh sizes are ∆x = ∆y = 0.1 c/ω p , the time step ∆t = 0.99 ∆x/c. Periodic boundary conditions are employed in the tranverse direction for both particles and elds. The initial domain size is L x × L y = 2700 × 340 (c/ω p ) 2 for γ ∞|d = 10 and L x × L y = 2000 × 200 (c/ω p ) 2 for γ ∞|d = 100. Each cell is initially lled with 10 macro-particles per species (electrons or positrons). The simulation is run until t max = 3600 ω -1 p (resp. t max = 6900 ω -1 p ) for our simulation with γ ∞|d = 10 (resp. γ ∞|d = 100).

Figure A. 1 :

 1 Figure A.1: Parameters χ b and χp of the beam and the background plasma as a function of distance to the shock front, extracted from PIC simulations with γ ∞ = 17 (left panel) and γ ∞ = 173 (right panel). We recall that the hydrodynamic (kinetic) regime for the beam and/or the plasma corresponds to χ b 1 (χ b 1) and/or χp 1 ( χp 1),

Figures A. 1

 1 Figures A.1 display the spatial proles of the χ b and χp parameters dened by

Figure A. 2 :

 2 Figure A.2: Theoretical estimates of the relative velocity between the Weibel frame R w and the background plasma, β w|p , as a function of distance to the shock front, compared with the velocity extracted from our reference PIC simulations through the ratio δE y /δB z (solid green); where this value cannot be measured accurately from the simulation, the data are colored in light green. The red circle symbols/dashed curve uses the numerical solution to the general dispersion relation (A.28) to derive ζ max , while the purple square/dashed curve plots the analytic approximations derived in App. A.2.3. Left panel: γ ∞ = 17 (γ ∞|d = 10); right panel: γ ∞ = 173 (γ ∞|d = 100);

Figures A. 2

 2 Figures A.2 display the spatial proles of the theoretically reconstructed value of the Weibel 3-velocity (in the background plasma frame) β w|p , using both the numerical calculation (red circle/dashed line) and the analytical approximation (purple square/dashed). These gures conrm that β w|p remains subrelativistic throughout the precursor, increasing from β w|p ∼ 10 -3 at the far end of the precursor up to β w|p 0.1 near the shock front. The numerical values estimated through the kinetic model of the linear growth phase of the CFI provide reasonable match to the data in the region where β w|p can be measured accurately.

  Equation (A.80) above can be rewritten as an innite hierarchy of equations through a decomposition of f p into Legendre polynomials:f p (x, p |w , µ |w ) = n f n (x, p |w )P n (µ |w ) .

  f p f p0 (x, p |w ) + µ |w f p1 (x, p |w ) , (A.83)

are dened as j p α = 2π dp |w dµ |w p |w 2 p t |w p |w a e α a f p T p αβ = 2π dp |w dµ |w p |w 2 p t |w p |w a p |w b e α a e β b f p .

 22 

β p|w = 1 3 dp |w p |w 3 f 3 ν

 333 p1 /p t |w dp |w p |w 2 f p0 . (A.92) For a Maxwellian distribution characterized by a (proper) temperature T p m, inserting Eq. (A.87) gives β p|w -κβ w . For a relativistically hot plasma, with T p m, one obtains β p|w-κβ w [1 -1/(3β 2 w )].Taking the moments of Eq. (5.52), we obtain the macroscopic equations of conservation of the current density and energy ux in the lab frame: |w 4π dp |w p |w 3 f p1 .(A.[START_REF] Lichnerowicz | Shock waves in relativistic magnetohydrodynamics[END_REF] 

(A. 94 ) 3 β w u w du w dx p p0 - 2 3 κ 2 β w ν |w γ 2 = 2 3 κ 2 β 2 w ν |w |u w | 1

 9433231 Then, the moment of the Fokker-Planck equation yieldsβ w ∂ x p p0 + 5 p m) . (A.95)This equation describes both adiabatic heating through plasma compression (second term) and stochastic heating through turbulence-induced friction (third term). Assuming current conservation for j x p0 , which holds to lowest order in |κ|, the above can be rewritten for the temperature as d dx |u w | 2/3 T p m

(A. 96 )

 96 This compact form makes it clear that, in the absence of scattering the background plasma can only be adiabatically heated according to the law |u w | 2/3 T p /m = const.. This law properly describes the adiabatic compression of a 3D nonrelativistic gas along one spatial dimension. Dimensional analysis of Eq. (A.96) further suggests that on a length scale of variation of the 4-velocity, i.e. ∆x |u w /κ|, the ratio of T p /m varies by an amount of order |κ|; hence, the background plasma becomes relativistically hot once deceleration takes place and |κ| approaches unity. Most of the heating is thus expected to occur in the shock transition.Consider now the ultrarelativistic limit, T p m, in which case the plasma pressure

(A. 97 )

 97 One thus derives the equation for the temperature, assuming again current conservation to lowest order in |κ|, heating should become exponentially fast inside the shock transition, once |κ| takes values of order unity and larger.

  +∞ 0 dτ δF(t + τ ) • δF(t) (A.99)

  2g[x(t+τ )-x(t)] e +ik α ∆x |w α S |w (k ) (A.101)

∆x |w t = γ w ( 1 -

 1 µβ w )τ, ∆x |w x = γ w (µ -β w )τ, ∆x |w ⊥ = (1 -µ 2 ) 1/2 τ (A.103)

4g 2 µ 2 + k α ∆x |w α /τ 2 (

 22 e -2gµτ e +ik α ∆x |w α = α ∆x |w α /τ (g → 0) 4gµ

(A. 107 ) with α 1 = 1 (A. 108 )α 2 = π 1 +

 1071110821 µ ln ( k ⊥ + ∆k ⊥ )/( k ⊥ -∆k ⊥ ) /(1 -µ 2 ) ≈ O g / k ⊥ ∆k x /∆k ⊥ /2 ≈ 1 .

  evolution of the pitch angle cosine µ ≡ p x /p in the shock frame, as dµ ds1 π t 2 π t dπ x ds -π x dπ t ds (A.111)with the Hamilton equationdπ α ds = q (π β -q δA β ) ∂A β ∂x α (A.112) 

through the correlators e k 1 α e k 2 β= (2π) 3 δ (k 1 -k 2 ) S k 1 αβ (A. 116 )

 23121116 In particular, for an anisotropic axisymmetric conguration with k ⊥ > k x , we can setS k αβ = S δ α x δ β x + S ⊥ δ α y δ β y + δ α z δ β z (A.117) 

∆µ 2 ∆t e 2 p 2 x p 4 γ 2 w d 3 k

 223 (2π) 3 [(1 -β w µ)k x -(µ -β w )ω ] 2 R k S (A.119)
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 2311 Figure A.3: Behavior of ξ b as a function of distance x |d , in PIC simulations with γ ∞|d = 10 (red), and γ ∞|d = 100 (blue). The dashed gray line shows the best-tting powerlaw, ξ b ∝ x -0.4 |d .

Figure A. 3

 3 plots the dependence ξ b (x) observed in our two PIC simulations for shock Lorentz factors γ ∞|d = 10 and 100.

  The 2D distribution function, which is needed for a proper comparison to PIC simulations, can be obtained by replacing the scattering operator according to:∂ µ |w (1µ 2 |w )∂ µ |w → ∂ θ |w ∂ θ |w . One then nds a similar distribution function, up to the substitution (1 -µ)/(1 + µ) → (1/2)(1 -µ)/(1 + µ) inthe exponential, and of course -s -2 → -s -1. The powerlaw behavior for ξ b (x), however, remains unchanged. Returning to 3D, the number density of suprathermal particles, n b = 2π dpdµ p 2 f b (A.138) follows a powerlaw n b ∝ (ν m x) (1-s)/2 at large distances compared to ν -1 m . Finally, the beam bulk velocity, β b = 2π n b dpdµ p 2 µ f b (A.139) evolves from β b -0.27 at the shock front x → 0, to β b → 0 at large distances x ν -1

  

  

  

  .22) From Eqs. (2.17),(2.18) and (2.19), we observe that specifying the form of the energymomentum tensor T αβ is sucient to determine the lower moments, without the need to assume negligible higher moments. Let us count the number of degrees of freedom of the problem. The current density j

α = qnγ(1, β) has 4 independent variables, while the symmetric 4 × 4 energy-momentum tensor T αβ has 10 independent variables, composed of 6 pressures and shear stresses, 3 momentum densities and 1 energy density. The most common (and simplest) relativistic energy-momentum tensor is obtained in the perfect uid framework, for which, in the local rest frame of the uid, the momentum densities and shear components vanish. Moreover, the perfect uid being isotropic, all

  Bz and S Ey , respectively, by S Ey /[ω]| ω=k x and S Bz /[k x ]. Practically, in order to apply the k-dependent multipliers without computing the Fourier transforms, they are estimated as fourth order polynomials in sin 2 (k x ∆x/2)[START_REF] Godfrey | Suppressing the Numerical Cherenkov Instability in FDTD PIC Codes[END_REF].

	.48)
	This non-resonant instability can be suppressed by multiplying the interpolation func-
	tions S

  1, β p0 = 0.995) with N p /N b = 1. The vector potential maximum is set to a 0 = 0.25, yielding λ 0 1.26 c/Ω p , max y B 0z 0.98 mcΩ p /e and max y E y0 0.72 mcΩ p /e, where Ω p is the rest-frame plasma frequency of the cold-beam electrons (or positrons),

	Ω p =	4πe 2 max y (n p0 ) m	.

  involved in Eqs.(4.14) and(4.15) around the density maximum. Applying the latter limit to (4.15) leads to

	n 0 (y)	N 4	exp(uλ 0 /2) cosh -2 (uy)	(4.18)

  .[START_REF] Yu | The Statistical Theory of Non-Equilibrium Processes in a Plasma[END_REF] The perturbed transverse electric eld, δE y , is related to δβ ±

			y through	
	δE y =	4π iωB 0	eB 0 δβ -	(4.80)
	Combining (4.78)-(4.80) and evaluating the resulting system at the lament center
	nally gives			

y -ik x δp + .

  B is the distance from the tip of the shell to the shock front in the central engine frame. Neutron loading will strongly aect the shock dynamics if min (η B , η ∆ ) > η ns .

					(6.17)
	Another important quantity is			
	η λ =	ṅp p 0 |n λ p u|n mcγ 2	,	(6.18)
					.15)
	During the early phase of decoupling, the shock still resides in the neutron shell. The
	collected energy fractionat the shock front is
		η B =	ṅp p 0 |n ∆ B m p cγ u|n	,	(6.16)

where ∆

  The distance from the central engine is given by R | * = |β n| * |ct. At time t | * , the proper density of neutrons in the shell is aected by the neutron decay and the radial expansion of the shell:

  Lorentz factor of the blast wave at this radius is Γ p| * (x c ) Γ n| * /2 for s = 0 and Γ p| * (x c ) Γ n| * / √ 2 for s = 2. The shock propagates with a Lorentz factor γ s| * = √ 2Γ p| * . Therefore, assuming the shell width is much smaller than x c , the radius at which the shell catches up with the shock front is x c,s| * 2 1/(3-s) x c . Using Eqs. (6.26) and (6.27) with Γ 0p| * = 100, and Γ n| * = 10 , gives the crossing radius

	crossing radius x c is given, in the relativistic regime, by
	xc x init 1	dx	α 2 (x) 2Γ 2 0p| *	-	1 n| * 2Γ 2	0 ,	(6.28)
	which, to leading order, gives						
	x c (4 -s) 1/(3-s) Γ 0p| * Γ n| *	2/(3-s)	,	(6.29)
	and the corresponding (s = 0)	r c = 9 × 10 17 E	1/3 53 Γ -2/3 n| * ,1 n -1/3 * ,0 cm ,	(6.30)
								2/(3-s) 0p| *	, the normalized

  3 . The latter was initially run with a lower transverse size L x × L y = 4000 × 80 (c/ω p ) 2 , but was eventually doubled in the transverse dimension for reasons explicited in Sec. 6.2.2.

6.2.1 Sub-critical regime (1/γ 2 u|n < η ∆ < η ns )

  = γ α ζ/ 1 -ζ 2 .The integrals involved in ε yy and ε xy can be put in a similar form, see (A.34) and (A.35) in[START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF]. Introducing ∆s α the characteristic width of the integrand in Eq. (A.38) [except for the denominator (χ α -s)-1 ], two limiting cases can be considered for each plasma species:

	5/2 e -µα	√	s 2 +1 ,	(A.38)
	and χ α			
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  • • • [271]:

  w β w p t |w + p x |w ∂ x f p -du w dx β w p t |w + p x |w p t |w µ |w ∂ p |w +

		1 -µ |w p |w	2	∂ µ |w f p
	=	p t	

|w 2 ∂ µ |w ν |w 1 -µ |w 2 ∂ µ |w f p . (A.80)

  One can obtain a useful approximation to the solution to leading order in |κ|, by neglecting the second and third terms on the r.h.s of Eq. (A.85), which determines f p1The smallness of |κ| then validates our approximations. Again, to leading order in |κ|, one can replace the ∂ x f p0 in the above Eq. (A.86) equation by its value derived from Eq. (A.84), neglecting all terms of order κ 2 or higher. We thus end up with Inserting this relation in Eq. (A.84), one obtains to leading order in |κ| the Fokker-Planck equation for f p0 :β w ∂ x f p0 -β w 3u w du w dx p |w ∂ p |w f p0 -1 p |w 2 ∂ p |w D p |w p |w p |w 2 ∂ p |w f p0 = 0 (|κ| 1). Some terms linear in ∂ p |w have been neglected because they renormalize the inertial term by small corrections of the order of |κ| or higher. The momentum space diusion coecient reads D p |w p |w = ν |w β 2

		f p1	κβ w 1 -	2 |w w p t p |w 3β 2	2	p t |w ∂ p |w f p0	(|κ|	1) .	(A.87)
											(A.88)
								w 3γ w	κ 2 1 -	p |w 3β 2 w p t 2 |w	2	2	p t |w	2 .
				3	du w dx	p t |w p |w ∂ p |w f p0 = -	1 3	γ w p |w ∂ x f p1
											+	β w 3	du w dx	p t |w	2 ∂ p |w f p1 +	2 p |w	f p1	(A.84)
	1 3	γ w p |w ∂ x f p0 -	β w 3	du w dx	p t |w	2 ∂ p |w f p0 = 6 -	1 3	ν |w p t |w f p1 -	1 3	γ w β w p t |w ∂ x f p1
											+	1 5	du w dx	p t |w p |w ∂ p |w f p1 +	2 3p |w	f p1 .
	as		f p1			κβ w p t |w ∂ p |w f p0 -	γ w ν |w	p |w |w p t	∂ x f p0	(|κ|	1) .	(A.86)

(A.85) 

  [START_REF] Acciari | Discovery of TeV 221 Gamma-ray Emission from Tycho's Supernova Remnant[END_REF].1, see Eq.(5.35).The above formulae are general and valid to all orders in the expansion of f p into Legendre polynomials. Restricting this development to its rst two terms as above, we

	obtain							
	j p	t	= γ w 4π dp |w p |w	2 f p0 +	1 3	β w	3 |w p |w p t	f p1
	j p	x	= γ w 4π dp |w β w p |w	2 f p0 +	1 3	3 |w p |w p t	f p1
	T p	tx	= γ 2 w β w 4π dp |w p |w	2 p t |w	1 +	2 |w p |w 3p t 2	f p0
					+	1 3	γ 2 w 1 + β 2 w 4π dp |w p |w	3 f p1 .

  (∂ x + µ∂ t ) δA α p α (A.113)Here, an extra factor of 1/p has appeared because ds ≡ dτ /p, with dτ a time interval dened in R s ; furthermore, δA α , p α are now primed variables. The partial derivatives are more conveniently expressed in terms of primed partial derivatives, and A α can be decomposed in plane waves with polarization four-vectors e k α :δA α = e -g x d 3 k (2π) 3 e k α e ik µ x µ (A.114)where, as in App. A.4, the spatial x-prole of δA α has been extracted from the plane wave decomposition. Let us stress again that g represents the growth length scale in the shock rest frame, and that it does not depend on k . (2π) 3 γ w [i(1 -β w µ)k x -i(µ -β w )ω ] p α e k α e -g x e ik µ x µ

	in (A.111), and using (A.110) gives
	∆µ(t) π t ∆µ(t) t dτ 1 q 0 p e 0 p 2 t dτ d 3 k
	112)

(A.115) 

Chapter 3. Numerical simulations of relativistic shocks

This description holds, of course, for the present case of a

2D geometry (which is also that of the shock simulations performed in this work). In a realistic 3D system, the laments would exhibit a crystal-like structure in the transverse (y, z) plane.

Acknowledgements

Conclusions and perspectives

Summary

From a broad perspective, the present thesis dealt with the fundamental physics at play in particle acceleration processes in astrophysical relativistic outows. This work was motivated by the lack of in-depth understanding of the microphysics at play in powerful relativistic astrophysical objects such as gamma-ray bursts, blazars and pulsar winds.

Such physics indeed governs the generation of nonthermal spectra of charged particles and their secondary products (photons, neutrinos) that in turn, provide the seeds of multimessenger astrophysics.

The problem considered, however, is intricate, multiscale and strongly nonlinear.

Its understanding thus involves a combination of sophisticated numerical methods and advanced analytical modeling. The versatile nature of this approach naturally encourages collaborations between the astrophysical and laser-plasma physics communities, due to the expertise of the latter in PIC simulations and the emerging capability of laser systems to probe physical scenarios of astrophysical relevance. This thesis takes place at the crossroads of such a collaboration.

The general approach followed throughout this work has thus relied on the development of analytical or semi-analytical models in parallel with the conducting and analysis of high-performance, rst-principles numerical simulations. In the rst three chapters of the thesis, we have introduced the toolbox for the numerics and the physics that have been used during these (too short) three years. We have then presented the three main projects of this thesis, as summarized below.

In the rst study, presented in Chap. [START_REF] Aartsen | Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert[END_REF], we have investigated the nonlinear evolution of current laments generated by Weibel-type instabilities. A periodic steady-state pattern of nonlinear current laments in a pair of counterstreaming pair plasmas has been rst obtained by solving a Grad-Shafranov-type equation derived from relativistic uid equations. The linear stability of this system was then examined in detail using the Floquet theory. Solving for the full set of eigenmodes, we have showed that the system is susceptible to coalescence-and kink-type instabilities, and identied the regimes of dominance for each as a function of the level of nonlinearity and asymmetry of the

AppendixA

Appendix

In this Appendix, we gather all the analytical developments emanating from the collaboration with Guy Pelletier, Laurent Gremillet and Martin Lemoine, and borrowed from the series of papers [START_REF] Lemoine | The physics of Weibel-mediated relativistic collisionless shocks[END_REF][START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF][START_REF] Lemoine | On the physics of relativistic collisionless shocks: II Heating and dynamics of the background plasma[END_REF][START_REF] Lemoine | On the physics of relativistic collisionless shocks: III The supra-thermal particle beam[END_REF]. The author's contribution to these calculations was minor. However, since they underpin the theoretical interpretation of the numerical simulations performed by the author in Chap. 5, their detailed presentation will be of interest for the curious readers, besides ensuring the self-containedness of this manuscript.

A.1 The Weibel frame in a uid model

Here we present a uid derivation of the CFI and of its associated Weibel frame, in the context of the precursor of an unmagnetized, relativistic electron-positron shock [START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF].

Although it will be demonstrated in App. A.2.4 that, in actual relativistic shock precursors, kinetic corrections are mandatory to describe the physics of the CFI, the following uid model retains the advantage of simplicity as well as a pedagogical virtue. A fully kinetic description of the CFI and its Weibel frame in the case of Maxwell-Jüttner plasma distribution functions is provided in Appendix A.2.

To preserve covariance, we use a relativistic uid formalism. The conservation of the total energy-momentum tensor can be written in the compact way [START_REF] Achterberg | The Weibel instability in relativistic plasmas. I. Linear theory[END_REF]:

introducing h ⊥α µν = η µν + u α µ u α ν , which projects orthogonally to u α µ (since u α µ u αµ = -1). The dynamical equation thus becomes, to rst order in the perturbations,

In the following, the four-velocity perturbation is decomposed as

with δγ α = γ 3 α β α δβ α x . Using the short-hand notation δβ α⊥ = (δβ α y , δβ α z ) and ∇ ⊥ = (∂ y , ∂ z ), the system can be rewritten explicitly as

Current conservation written to rst order also yields

The pressure perturbation can be related to the density perturbation through the adiabatic index Γα : δp α = Γα p α n α δn α .

(A.7)

In the following, we use the isentropic sound speed squared

so that δp α = c 2 α (w α /n α )δn α . Given the relation between δγ α and δβ α x , Eq. (A.4) can then be used to express the pressure perturbation in terms of the perturbed apparent density δN α ≡ δ(γ α n α ):

This equation involves the eective sound speed squared of the streaming plasma species,

.

(A.10)

We have c 2 eff α 5T α /(3γ 2 α ) and c 2 eff α 1/(2γ 2 α ) in the nonrelativistic (T α m, Γα 5/3) and ultrarelativistic (T α m, Γα 4/3) thermal limits of a 3D gas, respectively. After integration, Eq. (A.9) provides a direct relationship between δp α and δA x and 

This formula has the advantage of involving only quantities measured in the plasma frame.

We apply the above formalism to the case of Maxwell-Jüttner momentum distribution functions [START_REF] Jüttner | Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie[END_REF]:

where β α ≡ p x /γm is the normalized mean drift velocity of species α (corresponding Lorentz factor γ α ), µ α ≡ m/T α and K 2 denotes a modied Bessel function of the second kind.

Compact expressions of the tensor elements ε lm can be obtained in terms of onedimensional integrals over the velocity parallel to the wave vector (v ) [START_REF] Wright | Relativistic distribution functions and applications to electron beams[END_REF][START_REF] Bret | How really transverse is the lamentation instability?[END_REF]. These calculations are detailed in App. A of [START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF]. In App. A.2.4, such expressions will be used for the numerical resolution of Eq. (A.35) along with Eq. (A.28). The parameters of the background plasma and suprathermal beam will be then extracted from PIC simulations of relativistic collisionless shocks. In the remainder of this section, we will derive analytic approximations of ζ max|p and β w|p , valid in distinct instability regimes for the plasma and beam particles.

The starting points of these calculations are the alternative expressions (A.30)-(A.32) in [START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF] of the dielectric tensor. For instance, ε xx can be rewritten as

where

In the rest frame of the background plasma, β p|p = 0; further assuming the weak-growth limit, |ζ 2 | 1, the above relations simplify to [START_REF] Vietri | On Particle Acceleration around Shocks[END_REF], and evaluating the various resulting integrals. For ε xx,b , this gives

where the functions I(t, λ, b) and J(t, λ, b) are dened by Eqs. (C.11) and (C.4) from [START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF],

respectively. Working out the derivatives, we nd

Inserting this expression into Eq. (A.37) yields, to leading order, Applying the same procedure to Eqs. (A.34) and (A.35) of [START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF] leads to the hydrodynamic expressions

(A.52)

A.2.2.2 Kinetic limit

The kinetic response of the beam particles can be readily obtained, to leading order in |χ b |, from the expansion (χ b -s) -1 -iπδ(s) -P (1/s) in Eq. (A.30) of [START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF], where δ(s) is the Dirac delta function and P denotes the Cauchy principal value, which here vanishes. In general, however, the beam particles appear to be only marginally kinetic in PIC shock simulations, so it could be useful to go to the next order. The series expansions derived in App. C of [START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF] are well suited to this purpose. In the limit

), (C.14) and (C.17) of [START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF] reduce to

Hydrodynamic plasma and beam

In the hydrodynamic regime (and in the background plasma rest frame), |ζ| µ -1/2 p and |ζ| 1/γ b|p . Hence, the dispersion relation gives to leading order:

and so the growth rate saturates at Γ max ω 2 pb µ b for k

Adding up the hydrodynamic plasma and beam contributions into Eq. (A.35) and retaining only leading order terms yields the Weibel frame velocity

As |ζ| ω p /k according to Eq. (A.60), the expression for β w|p boils down to

As β b|p β b|w 1, we recover the formula derived within a uid approach, Eq. (A.20), provided one sets in the latter the adiabatic index Γb = 2. This is the value expected for a gas with one degree of freedom in the relativistic limit; the reduced eective dimensionality for the beam response results from the assumption of a purely 1D transverse uctuation spectrum.

Finally, the fully hydrodynamic regime holds as long as min( µ p /2, γ b|p )|ζ max | 1. Now, expressing Eq. (A.60) at k max ≡ √ 2ω p gives

so that another way of expressing the validity of the hydrodynamic regime is: 

Inserting the above expressions of Γ max and ζ max , there follows

(A.72)

In the opposite limit, in which ω 

To leading order, we thus derive

Kinetic plasma and beam

Finally, we consider the case of a fully kinetic beam-plasma system. This regime is of particular importance since it is found to hold in most of the precursor region in long-time shock simulations (see App. A.2.4). Using the expressions (A.45) and (A.56), the dispersion relation writes

The dominant CFI mode is then dened by

The corresponding expression for the Weibel frame velocity is obtained by combining Eqs. (A.46), (A.47), (A.57), and (A.58). After some algebra, one nds

or, to leading order and in terms of our usual parameters

where the response function R k dened in Eq. (A.104) appears through the time integration. We have approximated p

Everywhere in the integral, we can take the simplifying limit β w -1. We also note that δB 2 = δB 2 /γ 2 w , δB 2 denoting the rms measured in the shock frame R s . To compute the above integral, we use the same power spectrum as in App. A.4 and we pay attention to the lowest order term in g / k ⊥ . From the denition ν scatt = ∆µ 2 /2∆t, we eventually obtain

In both limits, one can verify that, to within a factor of the order of unity, ν scatt t corr /r 2 g , with r g = p/(e δB 2 1/2 ), as expected.

To encompass both limits, we write:

where k is a wavenumber of approximate value k 2 ⊥ /g if the g → 0 resonance with waves cannot be satised (corresponding to the rst limit) or ∆k x in the opposite case.

Up to a numerical prefactor, which can be as large as an order of magnitude or so, we will assume in the following that k ∼ ω p , so that the above leads to our estimate for the scattering length l scatt = ν -1 scatt :

Here, we have used the background plasma Lorentz factor γ p as a proxy for γ w , which represents a good approximation, see (5.3).

The above estimate of the scattering length can be understood in a simpler way if one omits the anisotropy of the turbulence. Consider a magnetostatic turbulence with typical wavenumber k (in R w ). For beam particles of Lorentz factor γ in R w , we have k r g (k /ω p )

Therefore the particles suer small-angle interactions each time they cross a coherence length ∼ k -1 of the micro-turbulence; the which matches the previous estimate. In the following, we re-absorb for convenience the prefactor times the factor 4 appearing in front of ν scatt|w into our expression for ν scatt ≡ l scatt (determined up to a prefactor) so that ν scatt and f b ∝ exp (-ν scatt x).

In terms of shock frame pitch angle cosine, one also derives

The above introduces a pivot momentum p m and its corresponding scattering frequency in the shock frame ν m ≡ ν(p m ); p m characterizes here the minimum momentum of the beam distribution function at a distance ν -1 m away from the shock front.

One is usually interested in powerlaw solutions C(p) ∝ p -s-2 ; however, in making comparison to PIC simulations, one must keep in mind that the extent of the powerlaw is rather small, of the order of one decade, which modies the scalings of β b and ξ b below. Hence we will also consider exponentially suppressed powerlaw-like solutions. To be complete,note that one can also derive the above solution directly in the shock frame, by writing the pitch-angle scattering operator in terms of shock frame coordinates p and µ, and taking the asymptotic limit β w → -1. One then nds that f b obeys the following equation:

One can verify that the dierential operator commutes with p(1 + µ) = p |w /γ, as expected since this operator is nothing but the pitch angle scattering operator in µ |w at constant p |w , and that f b as given in Eq. (A.133) is a solution to the above equation. The beam distribution function can be normalized through the parameter ξ b , which we recall is dened as the ratio of the pressure of suprathermal particles to the incoming asymptotic momentum ux at innity [START_REF] Lemoine | The physics of Weibel-mediated relativistic collisionless shocks[END_REF][START_REF] Pelletier | On the physics of relativistic collisionless shocks: I The scattering center frame[END_REF][START_REF] Lemoine | On the physics of relativistic collisionless shocks: II Heating and dynamics of the background plasma[END_REF],