
Th
ès

e
de

 d
oc

to
ra

t
N
N
T:
2
0
2
0
U
PA

S
G
0
2
9

Deployment of Loop-intensive
applications on Heterogeneous

Multiprocessor Architectures

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 580, Sciences et Technologies de
l’Information et de la Communication (STIC)

Spécialité de doctorat: Programmation, Modèles, Algorithmes,
Architecture, Réseaux

Unité de recherche: CEA-LIST, 8 Avenue de la vauve, 91120 Palaiseau
Référent: Faculté des Sciences d’Orsay

Thèse présentée et soutenue au CEA LIST en Amphi 33/34, le
16 Octobre 2020 à 10h00, par

Philippe GLANON

Composition du jury:

Christine Eisenbeis Présidente & examinatrice
Directrice de recherche, INRIA Paris-Saclay
Laurent Pautet Rapporteur
Professeur, Télécom Paris
Maxime Pelcat Rapporteur
Associate Professor, INSA Rennes
Alix Munier-Kordon Examinatrice
Professeure, Sorbonne Université

Chokri Mraidha Directeur de thèse
Ingénieur-Chercheur, HDR, CEA LIST
Selma Azaiez Co-encadrante
Ingénieur-Chercheur, PhD, CEA LIST

Remerciements
Avant tout, je tiens à remercier mon directeur de thèse, monsieur Chokri Mraidha et mon

encadrante, madame Selma Azaiez. Je me suis senti chanceux d’avoir mené pendant trois
ans, mes travaux de thèse sous leur direction au CEA LIST. Ils ont cru en moi dès le début
de ma thèse et m’ont constamment motivé et encouragé pendant ces trois années. Je les
remercie plus particulièrement pour leurs encadrements de qualité, leurs disponibilités, leur
spontanéité et pour leur professionnalisme remarquable qui m’ont permis de bien mener
mes travaux de thèse dans le temps imparti.

J’adresse ma profonde gratitude à messieurs Christian Gamrat, Etienne Hamelin, Olivier
Heron et madame Marie-Isabelle Giudici pour m’avoir accueilli au CEA LIST au sein du
laboratoire LCYL (ex L3S) et mis à ma disposition des moyens financiers, logistiques et
techniques pour bien mener mes travaux de thèse.

Je voudrais ensuite remercier messieurs Laurent Pautet et Maxime Pelcat pour avoir
accepté d’examiner ce manuscrit de thèse et d’en être les rapporteurs. Leurs différents
rapports ont été d’une grande utilité pour l’amélioration du contenu de ce manuscrit.
J’étends mes remerciements à mesdames Christine Einsenbeis et Alix Munier-Kordon pour
l’attention qu’elles ont portée à mes travaux en acceptant d’être membres du jury.

J’aimerais également remercier toutes les personnes que j’ai rencontrées pendant mes
trois années de thèse dans le département DSCIN (ex DACLE) du CEA LIST. En parti-
culier, les ingénieurs-chercheurs P. Dubrulle, M. Asavoe, P. Aubry, S. Carpov, F. Galéa,
R. Sirdey, K. Trabelsi, D. Irofti, M. Jan, B. Ben Hedia, Y. Mouafo et P. Ruf avec qui j’ai
eu des échanges scientifiques et techniques édifiants. J’adresse aussi mes remerciements à
tous mes anciens collègues docteurs et doctorants du DSCIN. En particulier, B. Le Nabec,
M. Ait Aba, F. Hebbache, E. Laarouchi, D. Vert, M. Zuber, B. Binder, G. Bettonte, E.
Lenormand et A. Madi pour toutes les discussions intéressantes que nous avions eu aux
pauses cafés.

J’adresse un grand merci à tous mes proches et amis pour leur soutien inconditionnel. Je
voudrais spécialement remercier Joannes, José, Ingrid, Jeannot, Fawaz, Auriol, Catherine,
Valentin, Juliette et Christo qui n’ont jamais cessé de me soutenir et d’égayer mes journées.

Enfin, je voudrais remercier ma grand-mère Simone, mes parents Marlène et Innocent,
ma soeur Mitzrael et ma dulcinée Sandrine pour tout l’amour, le soutien et les soins qu’ils
me portent au quotidien.

iii

Résumé

Les systèmes cyber-physiques sont des systèmes distribués qui intègrent un large panel
d’applications logicielles et de ressources de calcul hétérogènes connectées par divers moyens
de communication (filaire ou non-filaire). Ces systèmes ont pour caractéristique de traiter
en temps-réel, un volume important de données provenant de processus physiques, chimi-
ques ou biologiques. Une des problématiques rencontrée dans la phase de conception des
systèmes cyber-physiques est de prédire le comportement temporel des applications logi-
cielles. Afin de répondre à cette problématique, des stratégies d’ordonnancement statique
sont nécessaires. Ces stratégies doivent tenir compte de plusieurs contraintes, notamment
les contraintes de dépendances cycliques induites par l’exécution des boucles de calculs
spécifiées dans les programmes logiciels ainsi que les contraintes de ressource et de commu-
nication inhérentes aux architectures matérielles de calcul. En effet, les boucles étant l’une
des parties les plus critiques en temps d’exécution pour plusieurs applications de calcul in-
tensif, le comportement temporel et les performances optimales des applications logicielles
dépendent de l’ordonnancement optimal des structures de boucles spécifiées dans les pro-
grammes de calcul. Pour prédire le comportement temporel des applications logicielles et
fournir des garanties de performances dans la phase de conception au plus tôt, les straté-
gies d’ordonnancement statiques doivent explorer et exploiter efficacement le parallélisme
embarqué dans les patterns d’exécution des programmes à boucles intensives tout en garan-
tissant le respect des contraintes de ressources et de communication des architectures de
calcul.

L’ordonnancement d’un programme à boucles intensives sous contraintes ressources et
communication est un problème complexe et difficile. Afin de résoudre efficacement ce
problème, il est indispensable de concevoir des heuristiques. Cependant, pour concevoir
des heuristiques efficaces, il est important de caractériser l’ensemble des solutions op-
timales pour le problème d’ordonnancement. Une solution optimale pour un problème
d’ordonnancement est un ordonnancement qui réalise un objectif optimal de performance.

iv

Dans cette thèse, nous adressons le problème d’ordonnancement des programmes à boucles
intensives sur des architectures de calcul multiprocesseurs hétérogènes sous des contraintes
de ressource et de communication, avec l’objectif d’optimiser le débit de fonctionnement
des applications logicielles. Pour ce faire, nous nous sommes focalisés sur l’utilisation des
graphes de flots de données synchrones. Ces graphes sont des modèles de calculs permet-
tant de décrire les structures de boucles spécifiées dans les programmes logiciels de calcul
et d’explorer le parallélisme embarqué dans ces structures de boucles à travers des straté-
gies d’ordonnancement cyclique. Un graphe de flot de donnée synchrone est un graphe
orienté constitué d’un nombre fini de noeuds appelés ”acteurs” et d’un nombre fini d’arcs
appelés ”canaux”. Un noeud représente une tâche de calcul dans un programme logiciel et
un arc est une file d’attente ”premier arrivé, premier servi” qui modélise le flux de données
échangées entre deux acteurs. Chaque arc est constitué d’un taux de production, d’un taux
de consommation et d’un marquage initial potentiellement nul. Les taux de production
et de consommation d’un arc représentent respectivement la quantité de données produite
par l’acteur en aval de l’arc et la quantité de données consommée par l’acteur en amont
de l’arc. Le marquage initial quant à lui décrit la quantité de donnée initialement présente
sur un arc. Lorsqu’un arc contient un marquage initial non-nul, il induit des relations de
dépendances inter-itération entre les diverses instances d’exécution des acteurs connectés.

Dans la première partie de cette thèse, nous montrons en quoi l’utilisation des graphes
de flots de données synchrones est bénéfique pour la modélisation des structures de boucles
spécifiées dans les programmes logiciels des systèmes cyber-physiques. Dans la deuxième
partie, nous proposons des stratégies d’ordonnancement cycliques basés sur la propriété
mathématiques des graphes de flots de données synchrones pour générer des solutions
optimales et approximatives d’ordonnancement sous les contraintes de ressources et de
communication des architectures de calcul multiprocesseurs hétérogènes.

Mots-clés
système cyber-physiques, ordonnancement multiprocesseur, graphes de flots de données
statiques, architectures hétérogènes, pipeline logiciel, débit maximal.

©2020 Philippe Glanon v

abstract

Cyber-physical systems (CPSs) are distributed computing-intensive systems, that inte-
grate a wide range of software applications and heterogeneous processing resources, each
interacting with the other ones through different communication resources to process a
large volume of data sensed from physical, chemical or biological processes. An essential
issue in the design stage of these systems is to predict the timing behaviour of software
applications and to provide performance guarantee to these applications. In order tackle
this issue, efficient static scheduling strategies are required to deploy the computations of
software applications on the processing architectures. These scheduling strategies should
deal with several constraints, which include the loop-carried dependency constraints be-
tween the computational programs as well as the resource and communication constraints
of the processing architectures intended to execute these programs. Actually, loops being
one of the most time-critical parts of many computing-intensive applications, the optimal
timing behaviour and performance of the applications depends on the optimal schedule
of loops structures enclosed in the computational programs executed by the applications.
Therefore, to provide performance guarantee for the applications, the scheduling strategies
should efficiently explore and exploit the parallelism embedded in the repetitive execution
patterns of loops while ensuring the respect of resource and communications constraints of
the processing architectures of CPSs. Scheduling a loop under resource and communication
constraints is a complex problem. To solve it efficiently, heuristics are obviously necessary.
However, to design efficient heuristics, it is important to characterize the set of optimal
solutions for the scheduling problem. An optimal solution for a scheduling problem is a
schedule that achieve an optimal performance goal. In this thesis, we tackle the study of
resource-constrained and communication-constrained scheduling of loop-intensive applica-
tions on heterogeneous multiprocessor architectures with the goal of optimizing throughput
performance for the applications. In order to characterize the set of optimal scheduling
solutions and to design efficient scheduling heuristics, we use synchronous dataflow (SDF)

vi

model of computation to describe the loop structures specified in the computational pro-
grams of software applications and we design software pipelined scheduling strategies based
on the structural and mathematical properties of the SDF model.

Keywords
cyber-physical systems; multiprocessor scheduling; static dataflow graphs; heterogeneous
architectures; software pipelining; maximum throughput

©2020 Philippe Glanon vii

Table of Contents

1 Introduction 1

Introduction 1
1.1 General Context and Problem Statement 2
1.2 Contributions . 4
1.3 Thesis Organization . 5

I Motivations, State-of-the-Art and Problem Formulation 7

2 Background and Motivations 8
2.1 Introduction . 9
2.2 Architecture of Cyber-Physical Systems 9
2.3 Parallel Programming Paradigm . 12

2.3.1 Multithreading Programming Models 12
2.3.2 Dataflow Programming Models . 15

2.4 Deployment of Loop-Intensive Applications 17
2.4.1 Modeling and Exploitation of Parallelism 18
2.4.2 Scheduling under resource and communication constraints 19

2.5 Conclusion . 21

3 State-of-the-Art and Problem Formulation 22
3.1 Introduction . 23
3.2 Synchronous Dataflow Graphs . 23

3.2.1 Definition . 23
3.2.2 Consistency Analysis . 24
3.2.3 Liveness Analysis . 25

viii

TABLE OF CONTENTS

3.3 Static Scheduling of Synchronous Dataflow Graphs 29
3.3.1 Basic Definitions and Theorems . 29
3.3.2 Self-timed Schedules Versus Periodic Schedules 30
3.3.3 Throughput Evaluation . 32
3.3.4 Latency Evaluation . 33

3.4 Problem Formulation and Related Works 34
3.4.1 ILP-based Scheduling Approaches 36
3.4.2 Scheduling Heuristics . 37
3.4.3 This Work . 38

3.5 Conclusion . 38

II Contributions 39

4 Software Pipelined Scheduling of Timed Synchronous Dataflow Models 40
4.1 Introduction . 41
4.2 Characterization of Admissible SWP Schedules 41

4.2.1 Dependency relations induced by channels 41
4.2.2 A necessary and sufficient condition for admissibility 45

4.3 Maximum Throughput for Timed SDF graphs 46
4.4 Minimum Latency for Timed SDF graphs 48
4.5 Conclusion . 51

5 Software Pipelined Scheduling under Resources and Communication Con-
straints 52
5.1 Introduction . 53
5.2 An Integer Linear Programming Model . 53

5.2.1 Cyclicity Constraints . 53
5.2.2 Resource Constraints . 53
5.2.3 Communication and Precedence Constraints 55

5.3 Decomposed Software Pipelined Scheduling 58
5.3.1 GS Heuristic . 58
5.3.2 HCS Heuristic . 62

5.4 Conclusion . 69

6 Validation 70
6.1 Introduction . 71

©2020 Philippe Glanon ix

TABLE OF CONTENTS

6.2 Evaluation Metrics . 71
6.3 Experiments with Synthetic Benchmarks 72

6.3.1 Benchmarks Generation . 72
6.3.2 Performance Results . 73

6.4 Experiments with StreamIt Benchmarks 75
6.4.1 StreamIt Benchmarks . 75
6.4.2 Performance Results . 75

6.5 Conclusion . 77

7 Conclusion & Open Challenges 78
7.1 Conclusion . 79
7.2 Open Challenges . 80

7.2.1 List scheduling heuristics for throughput improvement 80
7.2.2 Scheduling under storage capacity 80
7.2.3 Real-time scheduling . 80

Personal Bibliography 82

Bibliography 82

x ©2020 Philippe Glanon

List of Figures

2.1 Example Structure of a CPS (Lee & Seshia [8]) 9
2.2 Illustration of different types of multiprocessor architectures 10
2.3 Speedup of homogeneous and heterogeneous multiprocessor/multicore sys-

tems. 11
2.4 Multiprocessor architectures according to the memory access criteria . . . 12
2.5 Examples of the most popular dataflow model. 15
2.6 A loop-intensive program and its SDF representation 18
2.7 Types of parallelism exploitable in the SDF graph shown in figure 2.6b. . . 20

3.1 An example of timed SDF graph . 23
3.2 Equivalent HSDF graph for the SDF graph shown in figure 2.6b. The no-

tation 𝑥𝑦 in the nodes denotes the 𝑦𝑡ℎ firing of a actor 𝑥 , where 𝑦 ∈ [1, 𝑞𝑥],
𝑞𝑥 being the granularity of the actor 𝑥 . 27

3.3 Symbolic execution trace of the SDF graph of Fig. 2.6b. Solid arcs are
intra-iteration dependencies, dashed arcs are inter-iteration dependencies
and the notation ⟨𝑛, 𝑘𝑖, 𝑖⟩ stands for the completion of the 𝑘𝑡ℎ𝑖 firing of an
actor 𝑖 in the 𝑛𝑡ℎ iteration of the SDF graph, where 𝑛 ∈ ℕ, 𝑘𝑖 ∈ [0, 𝑞𝑖), 𝑞𝑖
being the granularity of the actor 𝑖. 28

3.4 Normalized representation of the SDF graph depicted in figure 2.6b 28
3.5 Counter example showing that theorem 3.2 is not a necessary condition for

liveness. 29
3.6 A self-timed schedule of the timed SDF graph depicted in figure 3.1. . . . 30
3.7 A SWP Schedule for the timed SDF graph depicted in figure 3.1. 32
3.8 An example of architecture . 34

4.1 A SWP Schedule of period 𝜆 = 10 and latency T ∗ = 14 for the timed SDF
graph depicted in figure 3.1. 50

xi

LIST OF FIGURES

5.1 An optimal scheduling solution obtained for the non-timed SDF graph and
the architecture of our running example. 57

5.2 An illustration example for the Heuristic GS (algorithm 2). 61
5.3 Illustration of the Heuristic HCS. 68

6.1 Results of BG for synthetic Benchmarks 73
6.2 Results of average Speedup for synthetic Benchmarks 73
6.3 Results of BG for StreamIt Benchmarks 76
6.4 Results of average speedup for StreamIt Benchmarks 76

xii ©2020 Philippe Glanon

List of Tables

2.1 Comparison of dataflow models. Notations: excellent (++++), very good
(+++), good (++), less good (+) . 17

3.1 Related works on SWP scheduling of loops modeled by dataflow graphs . . 36

5.1 Scheduling list for the acyclic dependency graph of Fig. 5.3b 69

6.1 Results of Average Solving Times (sec) for different synthetic benchmarks . 72
6.2 Benchmarks Characteristics . 74
6.3 Results of Average Solving Times (sec) of HCS versus ILP solver 75

xiii

List of Symbols

• ℤ: the set of integers.

• ℕ the set of positive integers.

• ℚ+: the set of positive rationals.

• ℚ+∗: the set of strictly positive rationals.

xiv

CHAPTER 1

Introduction

Contents
1.1 General Context and Problem Statement 2

1.2 Contributions . 4

1.3 Thesis Organization . 5

1

1.1. General Context and Problem Statement

1.1 General Context and Problem Statement

During the past decades, advances in hardware and software technologies have led to the
development of modern computing systems called cyber-physical systems (CPSs). These
systems are attracting a lot of attention in recent years and are being considered as innova-
tive technologies that can improve human life and address many technical, socio-economical
and environmental challenges.

What are CPSs? There is a plethora of definitions in the literature [2, 4, 6, 7, 8, 9] that
may agree with our vision. We believe that CPSs are integrations of distributed comput-
ing components which interact with each other through wired or wireless communication
resources to sense and control physical processes. Unlike traditional embedded systems
(smartphones, digital watches, etc.), which are designed as standalone devices, the focus in
a CPS is on networking several devices or sub-systems and commanding them remotely in
order to interact with physical processes. CPSs find applications in a wide range of domains
including manufacturing, healthcare, environment, transportation. In the manufacturing
industry, they are being introduced to characterize the upcoming of the fourth industrial
revolution, frequently noted as Industry 4.0 [2, 4, 5, 6]. A manufacturing CPS (also called
cyber-physical production system) is a production system where equipment such as robots,
automated guided vehicles (AGVs), sensors and controllers interact with each other to
control and monitor manufacturing operations at all levels of the production, from physi-
cal transformation processes through machines up to logistics network. In the healthcare
sector, CPSs are being used to remotely monitor the health conditions of in-hospital and
in-home patients and to provide healthcare services [7]. A healthcare CPS is a system that
collects the health data of patients through various medical sensors, transmits these data
to a gateway via a wired or a wireless communication medium, stores the data in a cloud
server and makes these data accessible to caregivers. In environment and transportation
areas, large scale CPSs named smart cities [3] are being deployed to improve the service
efficiency and quality of life in the cities. A smart city is one including digitally connected
service systems such as transportation, power distribution and public safety systems, which
are integrated using various information and communication technologies. In such a city,
we will travel in driverless cars that communicate with each other on smart roads and in
planes that coordinate to reduce delays. Homes and offices will be powered by a smart
grid that use sensors to analyze the environment and optimize energy in real time.

Design Requirements. Each of the CPSs previously presented consists of multiple soft-
ware applications and embedded computing platforms. The software applications are es-

2 ©2020 Philippe Glanon

1.1. General Context and Problem Statement

sentially loop-intensive applications —i.e. applications that perform repetitive computa-
tions —that generate a huge volume of data processed by the computing platforms. These
platforms are usually multiprocessor systems that include a finite number of heterogeneous
processing resources, each communicating with the other ones through different communi-
cation means. Thus, the computations of software applications can be easily parallelized by
distributing data across different processing resources. An important design requirement of
CPSs is that the processing resources of a computing platform may be shared between the
computations of one or more applications. This requirement can lead to resource conflicts
and/or communication bottlenecks when different computations need to access the same
resources at the same time, and thus, it can cause a loss of parallelism and a noticeable
deterioration of performance achievable by the software applications. To prevent such a
situation, CPS designers often need to explore the parallelization choices of computations
to different types of multiprocessor architectures. For this purpose, the design approaches
for CPSs should be based as much as possible on formal models of computation that deal
both with time, concurrency and parallelism. These models should be implementable and
analyzable so that the designers may use them to predict the timing behaviour of CPS
applications and to provide performance guarantees for these applications at design stage.
Among the popular models of computation, dataflow models are of high interest.

Dataflow models. Dataflow modeling paradigm is characterized by a data-driven style of
control where data are processed while flowing through a networks of computation nodes.
A dataflow model is a directed graph where nodes (called actors) describe the computations
performed by a loop-intensive application and edges are FIFO channels that describe the
dependency relations between the computations. When an actor fires, it consumes a finite
number of data tokens and produces a finite number of data tokens. A set of firing rules
indicates when the actor is enabled to fire. Dataflow models are often classified into
dynamic and static models. Dynamic dataflow models are known to be more expressive
than static dataflow models. However, the Turing-completeness and non-decidability of
these models has motivated the research community to adopt static dataflow models when
it comes to implement and analyze the behaviour of an application. Various types of static
dataflow models exists. One of the most known is synchronous dataflow (SDF) model. In
a SDF graph, the number of tokens consumed and produced by each actor at each firing is
predefined at design stage. SDF graphs has been traditionally used to design streaming and
multimedia applications. There interests are increasingly growing nowadays in the CPS
design because of their semantics that enables to describe different levels of parallelism in
loop-intensive applications and to analyze the timing behaviour and performance of these

©2020 Philippe Glanon 3

1.2. Contributions

applications through the construction of static-order schedules (i.e. infinite repetitions of
firing sequences of actors) with bounded FIFO channels.

Scheduling. Scheduling a static dataflow graph consists in finding “when” the firings of
each actor must be executed. An optimal schedule of a static graph is a schedule that
achieves an optimal performance goal. Interesting performance indicators often analyzed
to evaluate the optimality of schedules for static dataflow graphs are usually throughput
and latency. From a CPS perspective, the study of these metrics is important to predict
the timing behaviour of CPS applications and to provide performance guarantees for these
applications. Scheduling strategies for static dataflow graphs can be classified into self-
timed schedules (also called as soon as possible schedules) and periodic schedules. In a self-
timed schedule, the instances of actors are executed as soon as possible the required data
are available while in a periodic schedule, the instances of actors are executed according
to a fix time period. Self-timed schedules are known as scheduling strategies that achieve
optimal throughput for static dataflow graphs. However, these schedules are more difficult
to implement than periodic schedules. A common way to get around the implementation
complexity of self-timed schedules is to implement software pipelined (SWP) schedules [33,
60]. SWP schedules are a subclass of periodic schedules widely used to analyze the timing
behaviour of loop-intensive applications. These schedules provide the same guarantees
than self-timed schedules in terms of throughput achievement.

Problem statement. In this thesis, we address the following problem: given a CPS
application modeled by a SDF graph and a CPS platform described by a heterogeneous
multiprocessor architecture with a fixed number of communicating processing resources,
how can one construct an optimal SWP schedule that achieves the highest performance of
the SDF graph under the resource and communication constraints of the given architecture?
Scheduling an application graph under resource and/or communication constraints is a NP-
hard problem [29, 59]. Therefore, the problem tackled by this thesis is NP-hard. The main
objective of the thesis is to propose efficient strategies to solve this scheduling problem.

1.2 Contributions

In order to solve the problem stated above, we have made several contributions to the
scheduling of SDF graphs. Our main contributions are the following ones:

• First, we characterize the set of admissible SWP schedules that achieve optimal
throughput/latency for timed SDF graphs and we propose linear programming mod-

4 ©2020 Philippe Glanon

1.3. Thesis Organization

els to compute these schedules.

• Secondly, we show that the problem can be model as an integer linear programming
(ILP) model with precise optimization constraints and objective. The ILP model
accommodates pipeline, task and data parallelism in SDF graphs and it characterizes
the set of SWP scheduling solutions that achieves optimal throughput.

• Thirdly, we propose a guaranteed decomposed SWP scheduling heuristic, that genera-
tes approximated SWP scheduling solutions for the problem.

1.3 Thesis Organization

This thesis is organized into two parts:

• Part 1. This part presents the motivations, state-of-the-art and a detailed formu-
lation of the problem tackled by this thesis. The part consists of two chapters. The
first chapter (chapter 2) gives a quick overview of design requirements and tools for
cyber-physical systems. In this chapter, we show why heterogeneous multiproces-
sor architectures and synchronous dataflow (SDF) model are suited to the design of
cyber-physical systems and we present the motivations that pushed us to be inter-
ested in the scheduling of SDF graphs on multiprocessor architectures under resources
and communication constraints. In the second chapter (chapter 3), we review the
basics of the SDF model, we formulate the main problem tackled by this thesis and
we present some related works.

• Part 2. In this part we present our contributions. The part is organized into four
chapters. In the first chapter (chapter 4), we propose a theorem that characterizes
the set of admissible SWP schedules for timed SDF graphs. In this chapter, we also
present two linear programming models, one enabling to compute SWP schedules
that achieve maximum throughput for timed SDF graphs and the other to compute
SWP schedules that achieve minimum latency. In the second chapter (chapter 5),
we extend the characterizations made in chapter 4 to formulate an ILP model used
to generate SWP scheduling solutions that achieve maximum throughput for SDF
graphs on heterogeneous multiprocessor architectures under resource and communi-
cation constraints. In this chapter, we also present our decomposed SWP scheduling
heuristic that generates approximated scheduling solutions for the resource- con-
strained and communication-constrained scheduling problem. In the third chapter

©2020 Philippe Glanon 5

1.3. Thesis Organization

(chapter 6), we validate of our contributions thanks to experimental results made
with synthetic benchmarks and real-world application benchmarks. In the fourth
chapter (chapter 7), we summarize our contributions and present some open research
challenges.

6 ©2020 Philippe Glanon

Part I

Motivations, State-of-the-Art and
Problem Formulation

7

CHAPTER 2

Background and Motivations

Contents
2.1 Introduction . 9

2.2 Architecture of Cyber-Physical Systems 9

2.3 Parallel Programming Paradigm 12

2.3.1 Multithreading Programming Models 12

2.3.2 Dataflow Programming Models 15

2.4 Deployment of Loop-Intensive Applications 17

2.4.1 Modeling and Exploitation of Parallelism 18

2.4.2 Scheduling under resource and communication constraints 19

2.5 Conclusion . 21

8

2.1. Introduction

2.1 Introduction
This chapter presents the background and motivations of this thesis. In the chapter, we give
a quick overview of cyber-physical systems, the multiprocessor architectures, the parallel
programming models and we present the motivations that pushed us to be interested in the
scheduling of SDF graphs on heterogeneous multiprocessor architectures under resources
and communication constraints.

2.2 Architecture of Cyber-Physical Systems
Cyber-physical systems (CPSs) can generally be represented as a control-loop structure
like that depicted in figure 2.1. There are three parts in this structure. Firstly, there is
a physical plant, which represents the “physical part” of a CPS. This part can include
human operators, mechanical parts, biological or chemical processes. Secondly, there are
computing platforms, each with its own sensors, computing features and/or actuators.
Thirdly, there is a network fabric, which provides the mechanisms for the platforms to
communicate. Together, the platforms and the network fabric constitute the “cyber part”
of a CPS. Figure 2.1 illustrates a CPS structure composed with two computing platforms.

Figure 2.1: Example Structure of a CPS (Lee & Seshia [8])

Platform 2 measures the processes in the physical plant using sensor 2 and it controls
the physical plant via actuator 1. The box labelled “Computation 2” represents a control
application which uses the data collected by sensor 2 data to generate the command laws
that trigger the behaviour of the actuator.“Computation 3” realizes an additional control

©2020 Philippe Glanon 9

2.2. Architecture of Cyber-Physical Systems

PU1 PU2

PU3 PU4

(a) Homogeneous architecture

PU2

PU3

PU1

PU4

(b) Heterogeneous architecture

Figure 2.2: Illustration of different types of multiprocessor architectures

law, which is merged with that of “Computation 2” and Platform 1 makes additional
measurements via sensor 1, and sends messages to Platform 2 via the network fabric.

A common requirement of a CPS is the need of processing a large volume of data
collected by various sensors in order to control the physical plant at real-time. For this
purpose, multiprocessor computing architectures are often implemented to parallelize the
computations of CPS. Over the past decades, different types of multiprocessor architec-
tures have been proposed to parallelize computations in many computer systems. These
architectures can be classified into homogeneous and heterogeneous architectures. Figure
2.2 gives a graphical illustration of these different types of architectures. A homogeneous
multiprocessor architecture includes multiple processing units (PUs) which have the same
micro-architecture and/or provide the same computing performance while a heterogeneous
architecture combines different types of PUs each having a specific micro-architecture
and/or a providing specific computing performance. A systematic question that arises
when designing the “cyber” part of a CPS, is whether a homogeneous or heterogeneous
architectures should be used. In order to provide an answer to this question, Amdahl’s
law [13] can be used to compute the performance provided by both types of systems. This
law finds the maximum expected improvement of an overall computer system when only a
part of the system is improved. Let speedup be the original execution time of a software
program divided by an enhanced execution time. The modern version of Amdahl’s law
states that if a fraction 𝑓 of a software program is enhanced by a speedup 𝑆, then the
overall speedup of this program is given by:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 (𝑓 , 𝑆) =
1

(1 − 𝑓) + 𝑓

𝑆

(2.1)

In the context of multicore and multiprocessor systems, the authors in [14] have provided
a corollary of Amdahl’s law. Let us consider a multiprocessor system (or a multicore

10 ©2020 Philippe Glanon

2.2. Architecture of Cyber-Physical Systems

0

2

4

6

8

10

12

14

16

1 2 4 8 1 6

f=0,5
f=0,9
f=0,975
f=0,99
f=0,999

Values of r

S
p

e
e

d
u

p

(a) Homogeneous with n=16

0

10

20

30

40

50

60

1 2 4 8 1 6 3 2 6 4

f=0,5
f=0,9
f=0,975
f=0,99
f=0,999

Values of r

S
p

e
e

d
u

p

(b) Homogeneous with n=64

0

50

100

150

200

250

1 2 4 8 1 6 3 2 6 4 1 2 8 2 5 6

f=0,5
f=0,9
f=0,975
f=0,99
f=0,999

Values of r

S
p

e
e

d
u

p

(c) Homogeneous with n=256

0

2

4

6

8

10

12

14

16

1 2 4 8 1 6

f=0,5
f=0,9
f=0,975
f=0,99
f=0,999

Values of r

S
p

e
e

d
u

p

(d) Heterogeneous with n=16

0

10

20

30

40

50

60

1 2 4 8 1 6 3 2 6 4

f=0,5
f=0,9
f=0,975
f=0,99
f=0,999

Values of r

S
p

e
e

d
u

p

(e) Heterogeneous with n=64

0

50

100

150

200

250

1 2 4 8 1 6 3 2 6 4 1 2 8 2 5 6

f=0,5
f=0,9
f=0,975
f=0,99
f=0,999

Values of r

S
p

e
e

d
u

p

(f) Heterogeneous with n=256

Figure 2.3: Speedup of homogeneous and heterogeneous multiprocessor/multicore systems.

machine) with 𝑛 processors (or cores). Under Amdahl’s law, the overall speedup of such a
system depends on the fraction 𝑓 of software program that can be parallelized, the number
𝑛 of processors in the system and the number 𝑟 of base processors that can be combined to
build one bigger processor (or core). In the case of a homogeneous multiprocessor system,
one processor is used to execute sequentially the software program at performance 𝑝𝑒𝑟 𝑓 (𝑟)
and 𝑛/𝑟 processors are used to execute in parallel the program at performance perf (r)×𝑛/𝑟 .
Thus, the overall speedup obtained with this system is given by:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 (𝑓 , 𝑛, 𝑟) =
1

1 − 𝑓

perf(r) +
𝑓 · 𝑟

perf(r) · 𝑛

(2.2)

In the case of a heterogeneous multiprocessor system, only the processor with more com-
putation resources is used to execute sequentially at performance perf(r). In the parallel
fraction, however, it gets performance perf(r) from the large processor and performance 1

from each of the 𝑛−𝑟 base processors. Thus, the overall speedup obtained with this system
is given by:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 (𝑓 , 𝑛, 𝑟) =
1

1 − 𝑓

perf(r) +
𝑓

perf(r) + 𝑛 − 𝑟

(2.3)

©2020 Philippe Glanon 11

2.3. Parallel Programming Paradigm

PU

Memory

PU

(a) Shared memory architecture

PU

Memory

PU

Memory

Network

(b) Distributed memory architecture

Figure 2.4: Multiprocessor architectures according to the memory access criteria

Figure 2.3 plots the speedup obtained for both homogeneous and heterogeneous multipro-
cessors/multicore systems with respect to different values of the parameters 𝑓 , 𝑛 and 𝑟 . In
these plots, we assume that perf(f) =

√
𝑟 as done in [14]. As it can be seen, for a same

number of processing units, the speedups obtained with a heterogeneous system is much
better than those obtained with a homogeneous system. This observation is an important
reason for using heterogeneous multiprocessor architectures for CPSs design.

2.3 Parallel Programming Paradigm
Previously shown, heterogeneous multiprocessor architectures have an attractive advantage
to carry out efficiently parallel computations in CPSs. In order to efficiently exploit the
potential of these architectures, different hardware programming mechanisms have been
proposed. However, their utilization is extremely complex for designers and programmers.
To overcome this complexity, many programming approaches focus on the specification of
software applications intended to run on these computer architectures. Thus, a plethora of
application programming models have been proposed to allow users to write their software
programs and to specify parallelism in these programs. These models can be classified into
multithreading and dataflow models.

2.3.1 Multithreading Programming Models

Multithreading is a programming paradigm based on the utilization of threads to specify
concurrency and parallelism in software programs. A thread is a way of making a program
to execute two or more computational tasks at the same time. A thread consists of its own
program counter, its own stack and a copy of registers of central processing unit (CPUs),
but it shares other things like the code that is executing, heap and some data structures.
Several multithreading programming models exist. PThread, OpenMP, MPI and OpenCL

12 ©2020 Philippe Glanon

2.3. Parallel Programming Paradigm

are four of the well-known multithreading programming models.

Pthread. Pthread also known as POSIX thread [20] is a low-level application program-
ming model for writing concurrent software programs for shared-memory computer archi-
tectures (refer to figure 2.4a). It consists of a library of functions used to define threads
accessing to a shared-memory space. The programming model is built on the top of imper-
ative programming language like C and it supports different variants of operating systems
including Unix, Windows and Mac OS. Although Pthread has its place in specialized sit-
uations, the mechanisms for synchronizing threads is not explicitly defined, which makes
the utilization of this programming model difficult for programmers to develop correct and
maintainable computer programs [16, 15].

OpenMP. OpenMP [17] is a high-level programming model to write parallel software
programs for shared-memory computer systems ranging from desktops to supercomputers.
The implementation of OpenMP exists for three different programming languages including
Fortran, C and C++. Contrary to POSIX Thread, the utilization of threads OpenMP is
highly structured and threads are implicitly synchronized. In an OpenMP program, when
an executing thread encounters a “parallel” directive, it will create a group of threads
and become the master thread of this group. Then the group of threads executes the
program code assigned to it. When the group has terminated its execution, the master
thread collects the results from the group of threads and serially executes from that point
on. For example if a “for” loop that will iterate over an array containing 100 elements
would be parallelized on a processor with 4 cores, OpenMP will be used to create four
threads and execute one thread on each core. The “for” loop will be wrapped in a parallel
directive where the limit of threads is four. Then, when the initial thread encounters this
directive a fork would occur, four tasks would be created and the goal for each task is
to iterate over a subset of the array. This will increase the performance by four times,
sometimes more if it benefits from super-linear speedup [17]. Recently, OpenMP has been
extended for heterogeneous multiprocessor architectures, which makes it one of the two
predominant models for programming many parallel computing systems, the other being
Message Passing Interface (MPI) [18].

MPI. As opposed to Pthread and OpenMP, MPI [18] is a programming model that was
developed for writing portable software programs for distributed-memory computer archi-
tectures (refer to figure 2.4b). Similar to OpenMP, the implementations of MPI is also
available for C, C++, and Fortran programming languages. Programming with MPI have
an attractive advantage that it provides point-to-point and collective communication mod-

©2020 Philippe Glanon 13

2.3. Parallel Programming Paradigm

els to specify the communicating threads, without having to manage their synchronization.
In an MPI program, a computation comprises one or more threads that communicate by
calling library routines to send and receive messages to other threads. In most MPI imple-
mentations, a fixed set of threads is created at the program initialization, and one thread
is created per processor. However, these threads may execute different programs. Hence,
the MPI programming model is sometimes referred to as a multiple program multiple data
model to distinguish it from the single program multiple data model in which every process-
ing element executes the same program. MPI programming model remains the dominant
model used for designing parallel computing application today[19].

OpenCL. OpenCL [21] is a low-level standardized programming model designed to sup-
port the development of portable software programs intended to run on heterogeneous
computing systems with shared memory architectures. OpenCL views a computing sys-
tem as a set of devices which might be central processing units (CPUs), graphics processing
units (GPUs), digital signal processors (DSPs) or field-programmable gate arrays (FPGAs)
attached to a host processor (a CPU). OpenCL programs are divided into host and kernel
code. In the host program, kernels and memory movements are queued into command
queues associated with a device. The kernel language provides features like vector types
and additional memory qualifiers. A computation must be mapped to work-groups of
work-items that can be executed in parallel on the processing cores of a device. OpenCL
programming model is a good option for mapping threads on different processing units.
However, it might be a too low-level programming model for many application-level pro-
grammers who would be better served using MPI and OpenMP programming models.

In summary, all of the above mentioned programming models won for general purpose
parallel computer systems which involve either shared memory or distributed memory
communication mechanisms. However, their utilization is inappropriate in the context
of CPSs because of the non-determinism of thread-based programs which can lead to
communication overheads, high latencies and/or low throughput and thus decrease the
performance of many CPS applications.

14 ©2020 Philippe Glanon

2.3. Parallel Programming Paradigm

A B
2

(a) KPN

1
A B

12

(b) HSDF

3
A B

22

(c) SDF
A

[1,2]
B

[1] 2

(d) CSDF

Figure 2.5: Examples of the most popular dataflow model.

2.3.2 Dataflow Programming Models

Dataflow programming is a visual programming paradigm that appeared with Karp and
Miller [66] in the middle of 1960s to specify parallelism in computer programs and to analyze
the behaviour of these programs. A dataflow program is described as a directed graph
where nodes (called actors) represent computations and arcs (called channels) represent
the streams of data flowing between the computations. Actors can communicate with
each other by exchanging data onto the channels. Such data are seen as discrete streams of
tokens usually represented by dots. A channel may be initialized with a fix number of tokens
to describe loop-carried dependency between the execution instances of computations. The
quantity of tokens over a channel is called marking and an actor can fire whether there is a
sufficient quantity of tokens on its input channels. Dataflow programming models provide
high-level abstractions for specifying, analyzing and implementing the behaviour of a wide
range of software applications. Nowadays, they are attracting a lot of interests in the
design of CPS applications [8]. Various types of dataflow models exist. The most popular
are Kahn process networks (KPN), homogeneous static dataflow (HSDF), synchronous
dataflow (SDF) and cyclo-static Dataflow (CSDF). Figure 2.5 gives an illustration of each
of these models.

KPN. KPN is dynamic dataflow model proposed in 1974 by Gilles Kahn [63]. A KPN
model (figure 2.5a) is composed of actors linked by unbounded FIFO channels, each con-
necting a unique pair of actors. Each actor has a sequential behaviour and cannot produce
tokens of data on more than one channel at a given time. The firing rules of actors is
based on blocking reads and non-blocking writes semantics. This means that an actor
can produce a token of data on a channel whenever it wants and must wait when it tries
to consume a data token from an empty channel until this data arrives on this channel.
The non-blocking write semantics ensures that actor can produce tokens continuously on
the channels while the blocking read semantics ensures that any execution order of actors

©2020 Philippe Glanon 15

2.3. Parallel Programming Paradigm

will yield the same histories of tokens on the channels. KPN is a Turing-complete model
[56] that has a high expressiveness to provide a fine-grained description of many computer
programs which are inherently partitioned into separate tasks communicating via streams
of data. However, like many Turing complete models, KPN is not decidable, i.e. it does
not allow deadlocks and performance analysis of computer programs at design time.

HSDF. This model is introduced in 1968 by Reiter [65]. HSDF (figure 2.5a) is a static
dataflow model also known as single-rate dataflow model in the signal processing commu-
nity or marked graph in the Petri Net community. This model imposes limitations on the
KPN model in order to make deadlocks and performance analysis possible for the com-
puter systems at design time. An HSDF model consists of actors connected with bounded
First In First Out (FIFO) channels. The execution instances of actors specifies how many
tokens are produced and consumed on each channel. The number of tokens consumed
and produced by actors is predetermined and specified on the input and output ports of
the channels. When an actor fires, it a consumes a constant number of data tokens from
input channels and produces the same number of tokens on output channels. HSDF is less
expressive than KPN, however, the bounded capacity of FIFO channels and the constant
number of consumption and production rates makes this model more analyzable and easier
to implement than the KPN model.

SDF. This model is presented in 1987 by Lee and Messerschmitt [61]. SDF (figure 2.5c) is
a static dataflow model also known as multi-rate dataflow model in the signal processing
community or weighted event graph in the Petri Net community. Similar to the HSDF
model, it consists of actors connected by bounded FIFO channels. However, it extends
the HSDF model by allowing the specification of different production and consumption
rates on the channels. Thus, actors can produce and consume tokens at different rates.
In a SDF model, when an actor fires, it consumes a fixed number of tokens —which is
predetermined in design time —from each of its incoming channels, and it produces a fixed
number of tokens on each of its outgoing channels. Figure 2.5c shows an example of SDF
graph composed of two actors (𝐴 and 𝐵) linked by a single channel. The production and
consumption rates are indicated respectively at the source and the end of the channel. It
should be noted SDF models are more expressive and compact than HSDF models.

CSDF. This model is a static dataflow graph introduced in 1995 by Bilsen [46]. It can be
seen as an extension of the SDF model. In a CSDF model (figure 2.5d), the production and
consumption rates associated to the FIFO channels are decomposed into finite sequences
(also called phases) which may change periodically between the execution instances of

16 ©2020 Philippe Glanon

2.4. Deployment of Loop-Intensive Applications

Table 2.1: Comparison of dataflow models. Notations: excellent (++++), very good
(+++), good (++), less good (+)

Properties
Models KPN HSDF SDF CSDF

Expressiveness + + ++ + ++ ++
Succintness + ++ + + + + + ++

Implementation efficiency + + + ++ + + + ++
Analysis potential + + + ++ + + + ++

actors. Each actor has a finite number of phases and each phase characterize the number
of tokens produced or consumed by this actor. For instance, figure 2.5d illustrates a CSDF
with two actors (𝐴 and 𝐵) connected by a single channel. Actor A has an unique production
phase where it produces a single token onto the channel while Actor 𝐵 has two consumption
phases where it consumes one token in the first phase and two tokens in the second phase.
CSDF is not more expressive than SDF but it is more succinct for describing the computer
programs of very large parallel computer systems. However, the complexity to analyze
CSDF programs is larger than the analysis complexity of a SDF programs with an equal
number of actors [38].

To summarize, SDF, HSDF, and CSDF are static dataflow models that impose a re-
striction on the KPN model to allow static analysis of computer systems at design time.
A detailed comparison of all of these dataflow models have been provided by Stuijk in
2007 [38] according to four criteria including expressiveness, succinctness, implementation
efficiency and analysis potential. Table 2.1 presents a summarized comparison of these
dataflow models. From this table, we can clearly see that, SDF model is the one that
provides a good compromise. In this thesis, we will focus on the utilization of SDF graphs
to specify parallelism in CPS applications and to analyze the performance achievable by
these applications on heterogeneous multiprocessor architectures.

2.4 Deployment of Loop-Intensive Applications

A key aspect in the design of a CPS is the software deployment through which the com-
putations of CPS applications are scheduled and mapped on the PUs of heterogeneous
multiprocessor architectures. Scheduling a computation consists to find “when” this com-
putation must start its execution while mapping a computation consists in finding “where”
the computation should be executed. The scheduling and mapping of computations for

©2020 Philippe Glanon 17

2.4. Deployment of Loop-Intensive Applications

A[k] ← A[k-1] ⊙ D[k-3]

B[k] ← B[k-1] ⊙ A[2k] ⊙A[2k+1]

C[k] ← A[floor(k/2)]

D[k] ← D[k-1] ⊙ B[floor(k/2)] ⊙ C[2k] ⊙ C [2k+1]

(a) Loop-intensive program

2

1

22

1
1

2

1 1

1

A

B

C

D

3

1

1

1
1 1

1

1

11

(b) SDF graph

Figure 2.6: A loop-intensive program and its SDF representation

CPS applications depend on many parameters which include for instance, the number of
PUs available on the multiprocessor architectures, the worst-case execution times of com-
putations onto the PUs and the inter-PUs communication latencies. In addition to these
parameters, loop-carried dependencies should be considered. Actually, loops usually be-
ing the most time-critical parts of many software applications, the performance achievable
by the applications depends on the optimal execution of loops embedded in the software
programs. Therefore, to predict the timing behaviour of CPS applications and to provide
performance guarantee at design stage, there is a need of exploring and exploiting the
parallelism embedded in the execution pattern of loops. For this purpose, we will show
that SDF graphs can be very helpful.

2.4.1 Modeling and Exploitation of Parallelism

SDF graphs provide various mechanisms to model and exploit different levels of parallelism
such as data, task and pipeline parallelisms in loop-intensive programs. Actually, the actors
of a SDF graph that describes a loop-intensive program can be specified either as stateful
or as stateless. A stateful actor is an actor whose execution instances are scheduled in a
sequential order while a stateless actor is an actor whose execution instances are scheduled
out of order, or in parallel across different PUs. These types of actors respectively enable to
specify pipeline and data parallelisms in loop-intensive programs. A stateful actor is often
described as a node with a self-loop channel, where the channel consists of a fixed number
of tokens that represents the distance separating the successive execution instances of the
stateful actor. Figure 2.6 depicts a loop-intensive program and its equivalent SDF graph.

18 ©2020 Philippe Glanon

2.4. Deployment of Loop-Intensive Applications

The loop-intensive program of four instructions and four computing functions (𝐴, 𝐵, 𝐶 and
𝐷). Each instruction is a logical and/or arithmetic operation that describes one or several
dependency relations between the different invocations of the functions. For instance, the
instruction 𝐴[𝑘] ← 𝐴[𝑘−1] ⊙𝐷 [𝑘−3] is an arithmetic (or logical) operation that describes
two dependency relations: a dependency from the (𝑘 − 1)𝑡ℎ invocation of actor A to the 𝑘𝑡ℎ

invocation of this actor and a dependency from the (𝑘 − 3)𝑡ℎ invocation of actor 𝐷 to the
𝑘𝑡ℎ invocation of actor A. This loop-intensive program is graphically described by the SDF
graph shown in Fig. 2.6b. This graph consists of four actors (𝐴, 𝐵,𝐶, 𝐷), each describing a
computing funtion of the program. Actors 𝐴, 𝐵 and 𝐷 are stateful actors while actor 𝐶 is a
stateless actor. All of these actors are connected by a set of channels, each describing the
flows of data exchanged between the computations, and some containing an initial number
of tokens describing the distance separating the successive execution instances of connected
actors. When deploying this graph on a multiprocessor architecture, data parallelism can
be exploited by scheduling and mapping the execution instances of the actor 𝐶 on a data-
parallel processor or on different PUs. At the same time, pipeline parallelism can be
exploited by scheduling and mapping the execution instances of a stateful actor on different
PUs in such a way that the successive executions of these execution instances can overlap
over time. Alongside with data and pipeline parallelisms, task parallelism can also be
exploited by scheduling and mapping the execution instances of actors 𝐵 and 𝐶 on different
PUs. Figure 2.7 illustrates the exploitation of these three types of parallelisms. The joint
exploitation of task, data and pipeline parallelisms is known to improve the performance
achievable by loop-intensive applications [40]. Therefore, to ensure performance guarantee
for CPS applications, it is important that the scheduling and mapping strategies for these
applications exploit efficiently these three kinds of parallelisms.

The two most prominent performance measurements for applications modeled by SDF
graphs are latency, which reflects the delay induced by a channel to transfer a token of data
between dependent execution instances, and throughput, which indicates for each actor,
the execution rate per unit time. From a CPS perspective, the study of these properties
are of a high interest to characterize the timing behaviour of loop-intensive programs and
to provide performance guarantee for CPS applications. Consequently, in this thesis, we
focus on the characterization and analysis of these two performance metrics.

2.4.2 Scheduling under resource and communication constraints

An important design requirement for CPS applications is that, the heterogeneous multipro-
cessor architectures on which the computations are intended to be deployed, must contain

©2020 Philippe Glanon 19

2.4. Deployment of Loop-Intensive Applications

2

1

22

1
1

2

1 1

1

A

B

C

D

3

1

1

1
1 1

1

1

11

Task 1

Task 2

(a) Task Parallelism

C

A

Data-parallel

processingInput data tokens

A

A

A

C

C

C

C

Output data tokens

(b) Data Parallelism

2

1

22

1
1

2

1 1

1

A

B

C

D

3

1

1

1
1 1

1

1

11

Stage 1 Stage 2 Stage 3

(c) Pipeline Parallelism

Figure 2.7: Types of parallelism exploitable in the SDF graph shown in figure 2.6b.

a finite number of processing and communication resources, and these resources have to be
shared between the computations of one or more applications. This requirement can often
lead to resource conflicts and/or communication bottlenecks when different computations
need to access the same resources at the same time, and thus can cause a loss of parallelism
and an deterioration of performance achievable by CPS applications. In order to prevent
such a situation, there is a need of developing static scheduling and mapping strategies
that can accommodate the resource and communication constraints of multiprocessor ar-
chitectures to reduce in the early design stage of the applications, the over-allocation of
resources needed for computations to meet their timing constraints. Since most of CPS
applications are essentially loop-intensive applications, it is important that the schedul-
ing strategies respect the loop-carried dependencies constraints of these application, and
ensure that the performance achievable by a computation is not influenced by the other
computations assigned to the same resources.

Scheduling computations with dependency relations on multiprocessor architectures un-
der resource and/or communication constraints is a NP-complete problem well-known in
the literature [29, 59]. Many authors have proposed several static scheduling approaches
to tackle this problem with the goal of optimizing different performance metrics. A de-
tailed survey of these approaches can be found in [29]. Among the existing works, there
are a number [26, 24, 30, 38, 33, 48] that uses SDF graphs to tackle the problem. How-
ever, most of these works are limited to the scheduling of SDF graphs on homogeneous
multiprocessor architectures. Among the works [25, 32, 58] tackling the scheduling and
mapping of static dataflow graphs on heterogeneous multiprocessor architectures, an im-
portant number is limited to the scheduling of acyclic SDF graphs. Although these types
of graphs can model many types of applications, they fail to model applications with cyclic
dependencies. Since most of loop-intensive programs for CPS may contain cyclic depen-

20 ©2020 Philippe Glanon

2.5. Conclusion

dencies, the SDF graphs that describe these programs may consist of cycles like the SDF
graph depicted in figure 2.6b. Consequently, a scheduling strategy for these graphs must
deal with cyclic dependency constraints while satisfying both resource and communication
constraints. Scheduling a cyclic SDF graphs on heterogeneous multiprocessor architectures
under resource and communication constraints is a difficult problem rarely addressed in the
literature. The main goal of this thesis is to propose efficient static scheduling strategies to
tackle this difficult problem while ensuring performance guarantees in terms of throughput
and latency.

2.5 Conclusion
In this chapter, we have presented the background and motivations that pushed us to be
interested in the scheduling of SDF graphs on heterogeneous multiprocessor architectures
under resource and communication constraints. In the next chapter we will review the
basics of the SDF model and will present a succinct formulation of the main problem
tackled by this thesis.

©2020 Philippe Glanon 21

CHAPTER 3

State-of-the-Art and Problem Formulation

Contents
3.1 Introduction . 23

3.2 Synchronous Dataflow Graphs . 23

3.2.1 Definition . 23

3.2.2 Consistency Analysis . 24

3.2.3 Liveness Analysis . 25

3.3 Static Scheduling of Synchronous Dataflow Graphs 29

3.3.1 Basic Definitions and Theorems 29

3.3.2 Self-timed Schedules Versus Periodic Schedules 30

3.3.3 Throughput Evaluation . 32

3.3.4 Latency Evaluation . 33

3.4 Problem Formulation and Related Works 34

3.4.1 ILP-based Scheduling Approaches 36

3.4.2 Scheduling Heuristics . 37

3.4.3 This Work . 38

3.5 Conclusion . 38

22

3.1. Introduction

3.1 Introduction
In this chapter we review the basics of the synchronous dataflow (SDF) model, which was
introduced informally in the previous chapter, then we formulate the problem tackled by
this thesis and we succinctly describe our main contributions. The chapter is organized
as follows. Section 3.2 presents basic definitions and structural properties of SDF graphs.
Section 3.3 reviews the static scheduling strategies for SDF models. Section 3.4 presents a
succinct description of the main problem tackled by this thesis as well as the related works.

3.2 Synchronous Dataflow Graphs

3.2.1 Definition

A SDF graph is a multi-rate dependency graph 𝐺𝑠𝑑 𝑓 = (𝑉 , 𝐸, 𝑃,𝐶,𝑀0) where:

• 𝑉 is a finite set of nodes called actors.

• 𝐸 ⊆ 𝑉 2 is a finite set of arcs representing First-in First-out (FIFO) channels.

• 𝑃 = {𝑝𝑒 ∈ ℕ∗ | 𝑒 = (𝑖, 𝑗) ∈ 𝐸} is the set of production rates given by the function
𝑝 : 𝐸 → ℕ∗ that associates a production rate 𝑝𝑒 with each channel 𝑒 = (𝑖, 𝑗) ∈ 𝐸.

• 𝐶 = {𝑐𝑒 ∈ ℕ∗ | 𝑒 = (𝑖, 𝑗) ∈ 𝐸} is the set of consumption rates given by the function
𝑐 : 𝐸 → ℕ∗ that associates a consumption rate 𝑐𝑒 with each channel 𝑒 = (𝑖, 𝑗) ∈ 𝐸.

• 𝑀0 = {𝑚0(𝑒) ∈ ℕ| 𝑒 = (𝑖, 𝑗) ∈ 𝐸} is the set of initial markings given by the function
𝑚0 : 𝐸 → ℕ that associates a fixed number 𝑚0(𝑒) of tokens with each channel 𝑒 ∈ 𝐸.

2

1

22

1
1

2

1 1

1

3

1

1

1
1 1

1

1

11

A, 3

B, 4

C, 2

D, 2

Figure 3.1: An example of timed SDF graph

©2020 Philippe Glanon 23

3.2. Synchronous Dataflow Graphs

Timed Synchronous Dataflow Graph. A SDF graph 𝐺𝑠𝑑 𝑓 is said timed if there exists
a function 𝛿 : 𝑉 → ℕ∗ that associates a duration 𝛿𝑖 with every actor 𝑖 ∈ 𝑉 , where 𝛿𝑖 is
the worst-case time to process a single execution instance of actor 𝑖. Figure 3.1 shows a
graphical representation of a timed SDF graph, where each node models an actor and the
worst-case processing time associated with the execution of each instance of this actor.
For the rest of the manuscript, let us denote the execution instances of actors in terms of
firings and let us denote the timed SDF graphs as 𝐺𝑡

𝑠𝑑 𝑓
= (𝑉 , 𝐸, 𝑃,𝐶,𝑀0, 𝛿).

3.2.2 Consistency Analysis

Consistency is a property that has been introduced initially by Lee and Messerschmitt [61]
to ensure that actors of a SDF graph can be statically scheduled with a bounded number
of tokens. Let us consider a SDF graph 𝐺𝑠𝑑 𝑓 = (𝑉 , 𝐸, 𝑃,𝐶,𝑀0) and let Θ be the topology
matrix of this graph, where Θ is a matrix of size |𝐸 | × |𝑉 | defined by:

Θ𝑒𝑖 =

𝑝𝑒 if 𝑒 = (𝑖, 𝑗), 𝑗 ∈ 𝑉
−𝑐𝑒 if 𝑒 = (𝑗, 𝑖), 𝑗 ∈ 𝑉
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐺𝑠𝑑 𝑓 is said consistent if the rank of the matrix Θ is equal to |𝑉 | − 1. To illustrate this
property, let us consider the SDF graph shown in figure 2.6b. The topology matrix of this
graph is given by:

Θ =

1 −2 0 0

2 0 −1 0

0 2 0 −1
0 0 1 −2
−1 0 0 1

A B C D
e=(A, B)
e=(A, C)
e=(B, D)
e=(C, D)
e=(D, A)

Considering this topology matrix, it is possible to check that 𝑟𝑎𝑛𝑘 (Θ) = |𝑉 | −1 = 3. This
means that the SDF model described by this matrix is consistent. Actually, the consistency
property ensures the existence of a minimum vector 𝑞 ∈ ℕ∗|𝑉 | with coprime components
such that Θ.𝑞𝑇 = 0. This vector is called the repetition vector and its components are
called granularities or repetition factors. The granularity 𝑞𝑖 of an actor 𝑖 ∈ 𝑉 corresponds
to the minimum number of firings required for this actor to achieve a single iteration1.
Thus, checking the consistency of a SDF model is equivalent to checking the existence of

1An iteration of a SDF graph is an execution sequence that brings back the graph to its initial state.

24 ©2020 Philippe Glanon

3.2. Synchronous Dataflow Graphs

a repetition vector. For any SDF graph, the existence condition of a repetition vector is
defined by:

𝑝𝑒 × 𝑞𝑖 = 𝑐𝑒 × 𝑞 𝑗 ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸. (3.1)

Let us going back to the SDF graph depicted in figure 2.6b, if we want to check the existence
of a repetition vector for this graph, we must try to solve the following system of equations:

1 × 𝑞𝐴 = 1 × 𝑞𝐴
1 × 𝑞𝐴 = 2 × 𝑞𝐵
2 × 𝑞𝐴 = 1 × 𝑞𝐶
1 × 𝑞𝐵 = 1 × 𝑞𝐵
2 × 𝑞𝐵 = 1 × 𝑞𝐷
1 × 𝑞𝐶 = 2 × 𝑞𝐷
1 × 𝑞𝐷 = 1 × 𝑞𝐴
1 × 𝑞𝐷 = 1 × 𝑞𝐷

The solution of this system of equations gives a repetition vector 𝑞 = [𝑞𝐴, 𝑞𝐵, 𝑞𝐶, 𝑞𝐷] =
[2, 1, 4, 2] which proves that the SDF graph is consistent.

3.2.3 Liveness Analysis

Liveness is a property which ensures that every actor of a static dataflow model can be
fired infinitely often without encountering deadlocks during the execution of the model.
Liveness checking is a well-known problem extensively studied in the dataflow community.
In 1971, Commoner et al. [64] have proposed the following theorem that serves as nec-
essary and sufficient condition to ensure the liveness of marked graphs, which are named
homogeneous synchronous dataflow (HSDF) graphs in the dataflow community.

Theorem 3.1 (Commoner et al. [64]). A HSDF graph is live if and only if the token count
of every directed circuit is positive.

Based on this theorem, Commoner et al. have proposed a polynomial-time algorithm
—using depth-first search —to check the liveness of HSDF graph. The algorithm proceeds
in two steps. In the first step, it removes every channel with non-zero marking from the
HSDF graph and in the second step, it checks if resulting HSDF graph contains cycles. If
the resulting graph is acyclic then the initial HSDF graph is live otherwise, it is not live.

©2020 Philippe Glanon 25

3.2. Synchronous Dataflow Graphs

Algorithm 1: Transform a consistent SDF graph into a HSDF graph
Input: a consistent SDF graph 𝐺𝑠𝑑 𝑓 = (𝑉 , 𝐸, 𝑃,𝐶,𝑀0) with a repetition vector 𝑞.
Output: an equivalent HSDF graph for 𝐺𝑠𝑑 𝑓

1 Let 𝐺ℎ𝑠𝑑 𝑓 = (𝑉 ′, 𝐸 ′, 𝑀 ′0) be an empty HSDF graph ;
2 foreach actor 𝑖 ∈ 𝑉 do
3 for 𝑘 = 1 . . . 𝑞𝑖 do
4 Add node 𝑎𝑘 to 𝑉 ′;
5 end
6 end
7 foreach channel 𝑒 = (𝑖, 𝑗) ∈ 𝐸 do
8 for 𝑘 ′ = 1 . . . 𝑞 𝑗 do

9 𝜋𝑖 𝑗 (𝑘 ′) ←
⌈𝑘 ′ · 𝑐𝑒 −𝑚0(𝑒)

𝑝𝑒

⌉
;

10 𝑘 ← (𝜋𝑖 𝑗 (𝑘 ′) − 1) mod 𝑞𝑖 + 1;

11 Add arc 𝑒 ′ = (𝑖
𝑘
, 𝑗

𝑘′) to 𝐸 ′ and set 𝑚0(𝑒 ′) to −
⌊𝜋𝑖 𝑗 (𝑘 ′) − 1

𝑞𝑖

⌋
;

12 end
13 end
14 return 𝐺ℎ𝑠𝑑 𝑓 ;

Contrary to HSDF graphs, liveness checking for SDF graphs is a problem whose time
complexity is not polynomial. Two techniques exist to check liveness for a consistent SDF
graph. The first technique consists in transforming the SDF graph into an equivalent HSDF
graph and applying the algorithm of Commoner et al. [64] to check liveness for the HSDF
graph. Many polynomial-time algorithms exist in literature to transform a SDF graph
into an equivalent HSDF graph [28, 34, 58]. Figure 3.2 shows an equivalent HSDF graph
for the SDF graph depicted in figure 2.6b. This HSDF representation also called linear
constraint graph, is obtained with the algorithm of de Groote et al. [28], which enables
to generate for any consistent SDF graph, an equivalent HSDF graph with fewer channels.
The different steps of this algorithm are explicitly detailed by Algorithm 1. Considering
the equivalent HSDF graph, the algorithm of Commoner et al. [64] can easily be applied
to check liveness. For this liveness checking technique, it is important to mention that the
transformation of a SDF graph to an equivalent HSDF graph may lead sometimes to a
graph of exponential size, and thus can make exponential the time and space complexity of
this technique. The second technique for liveness checking [39] consists in performing the
symbolic execution of the SDF graph —i.e. to execute all the actors of the model exactly
as many times as indicated by the repetition vector —until the graph reaches a repetitive

26 ©2020 Philippe Glanon

3.2. Synchronous Dataflow Graphs

1

2 1

1

1

B1

C1

C2A1

A2
C3

C4

D1

D2

Figure 3.2: Equivalent HSDF graph for the SDF graph shown in figure 2.6b. The notation
𝑥𝑦 in the nodes denotes the 𝑦𝑡ℎ firing of a actor 𝑥 , where 𝑦 ∈ [1, 𝑞𝑥], 𝑞𝑥 being the granularity
of the actor 𝑥 .

execution pattern. Whether the symbolic execution of a SDF graph enables to perform
a least one iteration without encountering deadlocks, then the SDF graph is said to be
live. Figure 3.3 shows the symbolic execution trace of the SDF graph depicted in figure
2.6b. As it can be noted, the SDF graph can iterate several times without encountering
deadlocks. This means that the graph is live. Symbolic execution of a SDF graph has a
low space complexity compared to the first technique, however, checking the liveness of a
SDF graph with symbolic execution could imply an exponential number of computations
which makes the time-complexity of this technique also exponential.

In order to get around the complexity issue of liveness checking techniques presented
above, Marchetti and Munier [35] have established the following theorem, which serves as
sufficient condition to identify live SDF graphs.

Theorem 3.2 (Marchetti and Munier [35]). Let 𝐺𝑠𝑑 𝑓 = (𝑉 , 𝐸, 𝑃,𝐶,𝑀0) be a normalized
SDF graph. 𝐺𝑠𝑑 𝑓 is said live if for every directed circuit 𝜇, the following condition holds:

∑
∀𝑒=(𝑖, 𝑗)∈𝜇

𝑚0(𝑒) >
∑

∀𝑒=(𝑖, 𝑗)∈𝜇
𝑐𝑒 − 𝑔𝑐𝑑 (𝑝𝑒, 𝑐𝑒)

©2020 Philippe Glanon 27

3.2. Synchronous Dataflow Graphs

Iteration 0 Iteration 1 Iteration 2

〈0, 0, A〉

〈0, 0, C〉

〈0, 1, C〉

〈0, 3, C〉

〈0, 2, C〉〈0, 1, A〉

〈0, 0, D〉

〈0, 1, D〉

〈0, 0, B〉

〈1, 0, A〉

〈1, 0, C〉

〈1, 1, C〉

〈1, 3, C〉

〈1, 2, C〉〈1, 1, A〉

〈1, 0, D〉

〈1, 1, D〉

〈1, 0, B〉

〈2, 0, A〉

〈2, 0, C〉

〈2, 1, C〉

〈2, 3, C〉

〈2, 2, C〉〈2, 1, A〉

〈2, 0, D〉

〈2, 1, D〉

〈2, 0, B〉

Figure 3.3: Symbolic execution trace of the SDF graph of Fig. 2.6b. Solid arcs are
intra-iteration dependencies, dashed arcs are inter-iteration dependencies and the notation
⟨𝑛, 𝑘𝑖, 𝑖⟩ stands for the completion of the 𝑘𝑡ℎ𝑖 firing of an actor 𝑖 in the 𝑛𝑡ℎ iteration of the
SDF graph, where 𝑛 ∈ ℕ, 𝑘𝑖 ∈ [0, 𝑞𝑖), 𝑞𝑖 being the granularity of the actor 𝑖.

4

2

22

1
2

4

2 2

1

A

B

C

D

6

2

2

2
2 2

2

4

44

Figure 3.4: Normalized representation of the SDF graph depicted in figure 2.6b

where 𝑔𝑐𝑑 (𝑝𝑒, 𝑐𝑒) is the greatest common divisor of 𝑝𝑒 and 𝑐𝑒 . As it can be noted, Theorem
3.2 is based on the normalized SDF graphs. A SDF graph is said normalized if for every
actor the consumption and production rates are identical. Normalization is a concept
introduced by Marchetti and al. [35] to simplify the liveness analysis of SDF graphs. Let
𝐺𝑠𝑑 𝑓 = (𝑉 , 𝐸, 𝑃,𝐶,𝑀0) be a consistent SDF graph with a repetition vector 𝑞 ∈ ℕ∗(|𝑉 |) and let
𝑙𝑐𝑚𝑞 be the least common multiple of the components of 𝑞. For every channel 𝑒 = (𝑖, 𝑗) ∈ 𝐸,
let us denote by 𝑛𝑒 =

𝑙𝑐𝑚𝑞

𝑞𝑖 ·𝑝𝑒 (or 𝑛𝑒 =
𝑙𝑐𝑚𝑞

𝑞 𝑗 ·𝑐𝑒) the normalization factor of the channel 𝑒 where
𝑙𝑐𝑚𝑞 is the least common multiple of the vector 𝑞. The normalized representation of 𝐺𝑠𝑑 𝑓

is obtained by multiplying the weights (i.e. production rate, marking and consumption) of
every channel by its corresponding normalization factor. Figure 3.4 shows the normalized
representation of the SDF graph shown in figure 2.6b.

28 ©2020 Philippe Glanon

3.3. Static Scheduling of Synchronous Dataflow Graphs

3

3

9

39

9

9

3

A B

C D
9

Figure 3.5: Counter example showing that theorem 3.2 is not a necessary condition for
liveness.

Using this normalized SDF graph, Theorem 3.2 can easily be applied with a polynomial-
time algorithm [35] based on depth first search to ensure the existence of a live marking.
It is important to remind that Theorem 3.2 is actually a sufficient condition that ensures
the liveness property for SDF graphs but it is not a necessary condition. As counter
example, figure 3.5 shows a normalized SDF graph for which Theorem 3.2 does not hold
since ∑

∀𝑒=(𝑖, 𝑗) ∈𝜇
𝑚0(𝑒) = 9 , and ∑

∀𝑒=(𝑖, 𝑗) ∈𝜇
𝑐𝑒 − 𝑔𝑐𝑑 (𝑝𝑒 , 𝑐𝑒) = 12; However, a live marking can be

obtained by the execution sequence DDDBAAAC that achieves an iteration of the graph.

3.3 Static Scheduling of Synchronous Dataflow Graphs

Static scheduling of SDF graphs have been the object of many studies in the dataflow
community. Scheduling a SDF graph consists in associating a starting time to the firings
of each actor according to a given strategy that does not violate the precedence constraints
imposed by the channels. A SDF graph can be statically scheduled if and only if it is
consistent and live. Consistency and liveness are the fundamental properties ensuring
that a SDF graph can be executed repetitively with a bounded number of tokens without
encountering deadlocks. This section reviews the basics of static scheduling techniques for
SDF graphs.

3.3.1 Basic Definitions and Theorems

Definition 3.1 (Schedule). Let 𝐺𝑡
𝑠𝑑 𝑓

= (𝑉 , 𝐸, 𝑃,𝐶,𝑀0, 𝛿) be a consistent and live SDF graph.
A schedule of 𝐺𝑡

𝑠𝑑 𝑓
is a function 𝜎 : ℕ×𝑉 → ℚ+ that associates a starting time 𝜎 (𝑘𝑖, 𝑖) with

every firing ⟨𝑘𝑖, 𝑖⟩ of every actor 𝑖 ∈ 𝑉 .

©2020 Philippe Glanon 29

3.3. Static Scheduling of Synchronous Dataflow Graphs

A

C

C

A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

B

24 25 26 27 28 29 30 31 32

A

C

D

A

B

C

C

A

B

C

C

C

C

D DD

C

A

B

C

C

Iteration 1

Iteration 0

Iteration 2

D

Figure 3.6: A self-timed schedule of the timed SDF graph depicted in figure 3.1.

Definition 3.2 (Admissible Schedules). Let 𝐺𝑡
𝑠𝑑 𝑓

= (𝑉 , 𝐸, 𝑃,𝐶,𝑀0, 𝛿) be a consistent and
live SDF graph. A schedule 𝜎 is said admissible for 𝐺𝑡

𝑠𝑑 𝑓
if and only if it fulfils the

precedence constraints imposed by every channel of 𝐺𝑡
𝑠𝑑 𝑓

. More precisely, for every channel
𝑒 = (𝑖, 𝑗) ∈ 𝐸 and every couple (𝑘𝑖, 𝑘 𝑗) ∈ ℕ2, if the channel 𝑒 induces a dependency relation
from a firing ⟨𝑘𝑖, 𝑖⟩ to a firing ⟨𝑘 𝑗 , 𝑗⟩ then, the following constraint must be fulfilled by any
admissible schedule 𝜎.

𝜎 (𝑘 𝑗 , 𝑗) ≥ 𝜎 (𝑘𝑖, 𝑖) + 𝛿𝑖 (3.2)

3.3.2 Self-timed Schedules Versus Periodic Schedules

Admissible schedules for SDF graphs can be classified into self-timed and periodic sched-
ules. In a self-timed schedule, the firing of an actor is executed as soon as the necessary
tokens of data are available while in a periodic schedule, the firing of an actor is executed
according to a specific time period often called initiation interval.

Definition 3.3 (self-timed schedule). Let 𝐺𝑡
𝑠𝑑 𝑓

= (𝑉 , 𝐸, 𝑃,𝐶,𝑀0, 𝛿) be a consistent and live
SDF graph, let 𝜎 be an admissible schedule for 𝐺𝑡

𝑠𝑑 𝑓
and let P(𝐸) ⊆ ℕ2, be a set of tuples

(𝑘𝑖, 𝑘 𝑗) such that ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸, there exists a dependency relation from ⟨𝑘𝑖, 𝑖⟩ to ⟨𝑘 𝑗 , 𝑗⟩.
The schedule 𝜎 is said self-timed if and only if the following conditions holds.

• Condition 1: 𝜎 (𝑘𝑖, 𝑖) ≥ 0, ∀𝑖 ∈ 𝑉 , ∀𝑘𝑖 ∈ ℕ.

• Condition 2: 𝜎 (𝑘 𝑗 , 𝑗) ≥ 𝜎 (𝑘𝑖, 𝑖) + 𝛿𝑖, ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸, ∀(𝑘𝑖, 𝑘 𝑗) ∈ P(𝐸).

The self-timed schedule of any SDF graph consists of a finite sequence of firings, called
the transient phase followed by a sequence of firings which is repeated infinitely often
and is called the periodic phase. Figure 3.6 depicts a self-timed schedule of the timed

30 ©2020 Philippe Glanon

3.3. Static Scheduling of Synchronous Dataflow Graphs

SDF graph presented in figure 3.1. This schedule shows three iterations of the graph,
each described with a specific colour. We recall that the iteration of a SDF graph is the
sequence of firings that brings back the graph to its initial state. The sequence of firings
in the first iteration describes the transient phase while the sequences of firings in the
other iterations describe the periodic phase. In this schedule, the number of processing
resources that execute the firings of actors is assumed to be unbounded and the firings of
stateless actors can be executed in parallel on different processing resources. Self-timed
schedule is a scheduling strategy that achieves optimal throughput and provide performance
guarantee for applications modeled by SDF graphs [34, 38]. However, the time complexity
to compute the sequences of firings describing the transient phase is commonly admitted to
be exponential and difficult to evaluate. This makes the computation of self-time schedules
exponential and difficult to implement.

In order to surround the implementability complexity of self-timed schedules, r-periodic
schedules [37] have been introduced.

Definition 3.4 (Periodic Schedules). Let 𝐺𝑡
𝑠𝑑 𝑓

= (𝑉 , 𝐸, 𝑃,𝐶,𝑀0, 𝛿) be a consistent and live
timed SDF graph and let 𝜎 be an admissible a schedule for 𝐺𝑡

𝑠𝑑 𝑓
. The schedule 𝜎 is said

periodic with period 𝜆 ∈ ℚ+∗, if for any actor 𝑖 ∈ 𝑉 there exists 𝑠𝑖 ∈ ℚ+ such that the
following set of equations hold:

𝜎 (𝑘𝑖, 𝑖) = 𝑠𝑖 + 𝑘𝑖 · 𝜆, ∀𝑘𝑖 ∈ ℕ (3.3)

where 𝑠𝑖 is the time at which an actor 𝑖 must be scheduled to fire and 𝜆 is the time
period between two successive iterations of 𝐺𝑡

𝑠𝑑 𝑓
in the schedule 𝜎. In the class of periodic

schedules, software pipelined (SWP) schedules [49, 50, 51, 60] are of a hight interest.

Definition 3.5 (SWP Schedules). Let 𝐺𝑡
𝑠𝑑 𝑓

= (𝑉 , 𝐸, 𝑃,𝐶,𝑀0, 𝛿) be a consistent and live SDF
graph and 𝜎 be a schedule of 𝐺𝑡

𝑠𝑑 𝑓
. The schedule 𝜎 is said software pipelined with period 𝜆

if the following set of constraints hold:

𝜎 (𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖) = 𝜎 (𝑘𝑖, 𝑖) + 𝑛 × 𝜆, ∀𝑖 ∈ 𝑉 , ∀𝑘𝑖 ∈ [0, 𝑞𝑖), ∀𝑛 ∈ ℕ (3.4)

Actually, equation (3.4) defines a set of cyclicity constraints where 𝜎 (𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖) is the

©2020 Philippe Glanon 31

3.3. Static Scheduling of Synchronous Dataflow Graphs

C

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C

D

B

C

C

B

C

C

C

C

D DD

C

B

C

C

Iteration 1

Iteration 0

Iteration 2

D

A AA AA A

D

Figure 3.7: A SWP Schedule for the timed SDF graph depicted in figure 3.1.

time at which the firing ⟨𝑘𝑖, 𝑖⟩ is scheduled in the 𝑛𝑡ℎ iteration of 𝐺𝑠𝑑 𝑓 and 𝜎 (𝑘𝑖, 𝑖) ∈ ℚ+

the time at which the firing ⟨𝑘𝑖, 𝑖⟩ must be scheduled to start. Figure 3.7 depicts a SWP
schedule of the timed SDF graph shown in figure 3.1. In this schedule, the number of
processing resources that execute the firings of actors is assumed to be unlimited and the
firings of stateless actors can be executed in parallel on different processing resources. As it
can be noted, the firings of each actor are executed according to a time period (𝜆 = 9) that
enables to overlap the successive iterations of the SDF graph. Like self-timed schedules,
SWP schedules achieve maximum throughput for applications modeled by SDF graphs;
however, they are easier to implement than self-time schedules. In this thesis, we will focus
on the SWP scheduling strategy to deploy the loop-intensive programs modeled by SDF
graphs on heterogeneous multiprocessor architectures.

3.3.3 Throughput Evaluation

Let 𝐺𝑡
𝑠𝑑 𝑓

= (𝑉 , 𝐸, 𝑃,𝐶,𝑀0, 𝛿) be a live and consistent SDF graph and let 𝜎 be an SWP
schedule of period 𝜆 for 𝐺𝑡

𝑠𝑑 𝑓
. The throughput of an actor 𝑖 ∈ 𝑉 is the average number

of firings occurred within a time interval in the schedule 𝜎 and the throughput of 𝐺𝑡
𝑠𝑑 𝑓

is
defined as the average number of stable iterations initiated per time unit in the schedule
𝜎. More formally, if we denote by 𝛽𝑖 the throughput of actor 𝑖 ∈ 𝑉 , then 𝛽𝑖 is given by:

𝛽𝑖 = lim
𝑘𝑖→∞

𝑘𝑖
𝜎 (𝑘𝑖, 𝑖)

(3.5)

Now, if we denote by 𝛽 the throughput achievable by 𝐺𝑠𝑑 𝑓 in the schedule 𝜎 then 𝛽 =

min
∀𝑖∈𝑉
{𝛽𝑖}. Since, the period 𝜆 is the average time elapsed between two successive iterations

of 𝐺𝑡
𝑠𝑑 𝑓

, the throughput of 𝐺𝑡
𝑠𝑑 𝑓

can be defined as the inverse of the period 𝜆. For instance,
in the SWP schedule shown in figure 3.7, one can note that new iteration of 𝐺𝑡

𝑠𝑑 𝑓
occurs

32 ©2020 Philippe Glanon

3.3. Static Scheduling of Synchronous Dataflow Graphs

every 9 time units. Thus 𝜆 = 9 and 𝛽 = 1/9. As 𝜆 is proportional to 𝛽, we will note that the
schedules that minimize the period 𝜆 for a SDF graph maximize implicitly the throughput
𝛽.

It is well known that the period 𝜆 achievable by a SDF graph in a given schedule, is
governed by the loop-carried dependencies induced by the channels of this graph. In order
to handle these dependencies, the SDF graph is often transformed into an equivalent HSDF
graph which exhibits all the dependency relations between the different firings of actors.
Using the equivalent HSDF graph, the period 𝜆 is given by:

𝜆 = max
∀𝐶∈𝑐𝑦𝑐𝑙𝑒𝑠

𝑑 (𝐶)
𝑚(𝐶) (3.6)

where 𝑑 (𝐶) is the sum of delays (i.e the sum of WCETs) of nodes in a cycle 𝐶 of the
HSDF graph, and 𝑚(𝐶) is the sum of tokens around 𝐶 [34, 44, 49]. The minimum period
achievable by the HSDF graph is then given by the cycles with the minimum value of 𝜆.

3.3.4 Latency Evaluation

The latency T of a SDF graph is the maximum time required to complete a single iteration
of this graph. In other words, this time corresponds to the response time of the SDF graph
in a given schedule. Going back to the timed SDF graph of our running example (refer to
figure 3.1) and the SWP schedule of this SDF graph (refer to figure 3.7), one can note that
the length of the maximum time interval required to achieve a single iteration of the graph
is T = 14, which corresponds to the latency (or the response time) of this graph. The
minimum latency achievable by a SDF graph depends on the minimum latency induced
by the channels of this graph. The latency induced by a channel is generally defined in
terms of firings. Let 𝐺𝑡

𝑠𝑑 𝑓
= (𝑉 , 𝐸, 𝑃,𝐶,𝑀0, 𝛿) be a consistent and live SDF graph and let 𝜎

be a SWP schedule of 𝐺𝑠𝑑 𝑓 . Let (𝑘𝑖, 𝑘 𝑗) be a couple of positive integers. If the channel 𝑒
induces a dependency relation from ⟨𝑘𝑖, 𝑖⟩ to ⟨𝑘 𝑗 , 𝑗⟩ then, the latency induced by the channel
between these firings is the time elapsed between the end of ⟨𝑘𝑖, 𝑖⟩ and the beginning of
⟨𝑘 𝑗 , 𝑗⟩. More formally, this latency is given by:

T𝑘𝑖𝑘 𝑗 = 𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) − 𝛿𝑖 (3.7)

Using equation 3.7, one can characterize the set of admissible schedules that achieve mini-
mum latency for 𝐺𝑡

𝑠𝑑 𝑓
. We will note that the schedules that minimize latency for a SDF

graph do not necessarily maximize throughput for this graph. In the next chapter, we will

©2020 Philippe Glanon 33

3.4. Problem Formulation and Related Works

P1 P2 P3

Heterogeneous Computing Systems

Sensors

Physical

Plant

Actuators

Communication link

Platform

(a) A CPS structure

Computation costs matrix

A B C D

P1 1 3 2 3

P2 5 2 1 2

P3 3 1 6 1

P1 P2 P3

P1 0 1 1

P2 1 0 2

P3 1 2 0

Communication costs matrix

(b) Cost Matrices for executing the
SDF graph shown in figure 2.6b on
the heterogeneous computing system

Figure 3.8: An example of architecture

show how to characterize the SWP schedules that achieve minimum latency for a timed
SDF graph as well as the SWP schedules that achieve maximum throughput.

3.4 Problem Formulation and Related Works
In this section, we formulate and illustrate the main problem tackled by this thesis and we
present related works.

Let 𝐺𝑠𝑑 𝑓 = (𝑉 , 𝐸, 𝑃,𝐶,𝑀0) be a cyclic, consistent, live and non-timed SDF graph, that
describes a loop-intensive application and let 𝐺ℎ𝑚𝑎 = (𝑅,Δ, Γ) be an heterogeneous multi-
processor architecture (HMA) on which 𝐺𝑠𝑑 𝑓 is intended to be deployed, where:

• 𝑅 is a finite set of heterogeneous processing units (PUs), each connecting with the
other ones through logic communication links.

• Δ is a matrix of size |𝑅 | × |𝑉 | that specifies the computation costs Δ𝑥𝑖 , where Δ𝑥𝑖 is
the worst-case execution time of a single firing of an actor 𝑖 ∈ 𝑉 on a PU 𝑥 ∈ 𝑅.

• Γ is a matrix of size |𝑅 |×|𝑅 | that specifies the communication costs Γ𝑥𝑦, where Γ𝑥𝑦 = Γ𝑦𝑥

is the worst-case delay to transmit a single token of data from 𝑥 to 𝑦. Note that if
𝑥 = 𝑦 then Γ𝑥𝑦 = Γ𝑦𝑥 = 0 otherwise Γ𝑥𝑦 ≠ 0 and thus Γ𝑦𝑥 ≠ 0.

Problem. Assuming the SDF graph 𝐺𝑠𝑑 𝑓 and the architecture model 𝐺ℎ𝑚𝑎, the problem
tackled here is to find an optimal SWP schedule 𝜎 of period 𝜆 for 𝐺𝑠𝑑 𝑓 —i.e. a SWP
schedule that achieves maximum throughput —under the following constraints:

34 ©2020 Philippe Glanon

3.4. Problem Formulation and Related Works

• 𝑐𝑦𝑐𝑙𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: each firing of each actor 𝑖 ∈ 𝑉 is executed cyclically on the PUs
of 𝐺ℎ𝑚𝑎 according to a period 𝜆 such that:

𝜎 (𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖) = 𝜎 (𝑘𝑖, 𝑖) + 𝑛 × 𝜆, ∀𝑖 ∈ 𝑉 , ∀𝑘𝑖 ∈ [0, 𝑞𝑖), ∀𝑛 ∈ ℕ

where 𝑞𝑖 is the granularity of actor 𝑖 ∈ 𝑉 .

• 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: each firing of each actor 𝑖 ∈ 𝑉 can only be assigned to a single
PU 𝑥 ∈ 𝑅 and the execution of two firings assigned to this PU cannot overlap.

• 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 𝑎𝑛𝑑 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: for any (𝑘𝑖, 𝑘 𝑗) ∈ ℕ2 and any channel
𝑒 = (𝑖, 𝑗) ∈ 𝑉 , if the channel 𝑒 induces a dependency relation from a firing ⟨𝑘𝑖, 𝑖⟩
to a firing ⟨𝑘 𝑗 , 𝑗⟩ and if these firings are respectively assigned to the PUs 𝑥,𝑦 ∈ 𝑅,
such that 𝑥 ≠ 𝑦, then, there exists a non-zero communication costs Γ𝑥𝑦 between these
firings and the following inequality is satisfied:

𝜎 (𝑘 𝑗 , 𝑗) ≥ 𝜎 (𝑘𝑖, 𝑖) + Δ𝑥𝑖 + Γ𝑥𝑦 .

In order to illustrate this problem, let us consider the system architecture depicted in figure
3.8. This architecture describes a cyber-physical system (CPS), which is a feedback control
system. This system consists of sensors, actuators and a heterogeneous computing system.
The heterogeneous computing system is a multiprocessor computing system composed of
three heterogeneous PUs, each connected with the other ones through communication links
that enable data parallel transmission, and each offering a specific performance to execute
the computations of the CPS applications. Each pair of PUs is connected with a single
communication link, which has a specific cost for data transmission. Let us assume that
this computing system is intended to execute the loop-intensive program described by the
non-timed SDF graph of our running example (refer to figure 2.6b). The computation
and communication costs matrices for executing the actors of these graphs are given by
figure 3.8b. Considering these matrices, we are looking for an optimal SWP that achieves
maximum throughput for SDF graph under the resource and communication constraints
of the architecture considered.

Readers who are familiar with the literature of software pipelining of loop-intensive
programs [71, 70, 68, 33, 47, 48, 49, 52, 55, 57, 60] will find the optimality objective of
this problem very ambitious because of the consideration of resource constraints, which
make NP-hard, the complexity to solve this problem. Whether communication constraints
are considered further, the space of solutions for the problem is reduced and thus, the

©2020 Philippe Glanon 35

3.4. Problem Formulation and Related Works

Table 3.1: Related works on SWP scheduling of loops modeled by dataflow graphs

Litterature Multi-rate graphs Cyclic dependencies Hetero. architectures Resource constraints Com. constraints
Feautrier et al. [47] 7 3 3 3 7

Govindarajan et al. [49] 7 3 3 3 7

Hanen and Munier, [52] 7 7 7 3 7

Wang et Eisenbeis, [53] 7 3 7 3 7

Robert et al. [45] 7 3 7 3 7

Gasperoni et al., [48] 7 3 7 3 7

Udupa et al, [33] 3 3 7 3 7

Hatanaka et al., [70] 3 7 7 3 7

[Wei et al., 2012][68] 3 7 7 3 3

Jiang et al., [71] 3 7 3 3 7

This thesis 3 3 3 3 3

complexity to find an optimal solution is NP-hard in the strong sense. Consequently, to
solve efficiently the problem, heuristics are necessary. However, before designing efficient
heuristics, we need to characterize the set of optimal solutions. For this purpose, the
problem can be formulated as an integer linear program (ILP), which can be solved by
means of ILP solvers to generate optimal solutions even in non-polynomial time. Based
on the performance achievable by the ILP solver, we could thus, characterize efficient
scheduling heuristics for the problem.

3.4.1 ILP-based Scheduling Approaches

During the past decades, a variety of ILP formulations have been proposed to tackle the
resource-constrained SWP scheduling problems of loop-intensive programs.

Feautrier et al. [47] and Govindarajan et al. [49] have proposed discrete-time ILP for-
mulations for solving the resource-constrained SWP scheduling of loop-intensive programs.
These ILP formulations hold both for architectures with homogeneous resources and those
with heterogeneous resources. However, none of the proposed ILP models consider com-
munication constraints, which are inherent to the SWP scheduling problem tackled by
this thesis. Moreover, in their ILP formulations, Feautrier [47] and Govindarajan et al.
[49] assumed that the loop-intensive programs are described with single-rate dependency
graphs —i.e HSDF graphs —, which are particular cases of SDF graphs (refer to the pre-
vious chapter). Although SDF graphs can be converted into HSDF graphs, it could be
interesting to avoid the conversion costs of SDF graphs by formulating an ILP model that
operates directly on the SDF graphs.

Recently, Udupa et al. [33] have proposed an ILP formulation to tackle the resource-
constrained SWP scheduling problem of SDF graphs on multiprocessor architectures with

36 ©2020 Philippe Glanon

3.4. Problem Formulation and Related Works

graphical processing units (GPUs). Although this ILP formulation operates directly on
SDF graphs and hold both the architectures with homogeneous or heterogeneous GPUs,
it does not consider communication constraints. In this thesis, we aim at proposing a new
ILP that operates directly on SDF graphs to optimize throughput while considering both
resource, cyclicity and communication constraints. To the best of our knowledge, there is
no work in the current literature that proposes such an ILP formulation.

3.4.2 Scheduling Heuristics

Aside the ILP-based scheduling techniques, we have investigated the existing heuristics for
tackling the resource-constrained SWP scheduling of static dataflow graphs. Indeed, there
exists a number of heuristics in the literature, that deal with the resource-constrained SWP
scheduling of loop-intensive programs modeled by single-rate dependency graphs.

Hanen and Munier [52] have proposed heuristics for acyclic dependency graphs, to
derive resource-constrained SWP schedules on architectures with homogeneous resources.
Basically, the idea of these heuristics consists of two steps. The first step is to add some
arcs to the acyclic dependency graphs. These new arcs link nodes to be executed on the
same group of processing resources. The second step is to partition the processing resources
into groups and to pipeline nodes on these resources. The proposed heuristics look quite
powerful, although not guaranteed.

Wang and Eisenbeis [53], Robert et al. [45], Gasperoni and Schwielgelshohn [48] have
introduced decomposed SWP scheduling heuristics, to derive resource-constrained SWP
schedules for cyclic dependency graphs. Given a loop modeled by a single-rate cyclic
dependency graph, the general idea of decomposed SWP scheduling heuristics consists of
four steps. In the first step, the cyclic dependency graph is scheduled under unlimited
resources i.e. without resource constraints. In the second step, some information from the
schedule obtained in the first step is available to delete some arcs in the cyclic dependency
graph so as to obtain an acyclic dependency graph. This acyclic dependency graph is
scheduled under resource constraints in the third step using a list scheduler. Finally, in
the fourth step, a resource-constrained SWP schedule is deduced using the information
obtained in the schedules performed in the first and third steps. Although these heuristics
are guaranteed, none of them consider neither architectures with heterogeneous resources,
nor with communication constraints.

©2020 Philippe Glanon 37

3.5. Conclusion

3.4.3 This Work

Table 3.1 summarizes the related works previously presented and it highlights the crite-
ria considered by these works to schedule loop-intensive applications modeled by static
dataflow graphs. In this work we consider both cyclicity, resource, precedence and com-
munication constraints to schedule loop-intensive applications modeled by SDF graphs on
heterogeneous multiprocessor architectures. To the best of our knowledge, there is no work
in the current literature that tackles such a scheduling problem. In order to solve this
problem, we propose:

• An ILP model to characterize the set of optimal SWP schedules that maximizes
throughput for SDF graphs on heterogeneous multiprocessor architectures. Our
ILP model accommodates both cyclicity, resource, precedence, communication con-
straints and it exploits efficiently task, data and pipeline parallelisms specified in the
application graphs.

• A SWP scheduling heuristic based upon the heuristic of Gasperoni and Schwiel-
gelshohn, that generates approximated SWP scheduling solutions for the problem.

3.5 Conclusion
In this chapter, we have reviewed the basics of SDF models and the static scheduling
strategies to execute these models. We have also presented a detailed description of the
main problem tackled by this thesis, as well as the related works. In the next part of the
manuscript, we will detail explicitly our contributions.

38 ©2020 Philippe Glanon

Part II

Contributions

39

CHAPTER 4

Software Pipelined Scheduling of Timed
Synchronous Dataflow Models

Contents
4.1 Introduction . 41

4.2 Characterization of Admissible SWP Schedules 41

4.2.1 Dependency relations induced by channels 41

4.2.2 A necessary and sufficient condition for admissibility 45

4.3 Maximum Throughput for Timed SDF graphs 46

4.4 Minimum Latency for Timed SDF graphs 48

4.5 Conclusion . 51

40

4.1. Introduction

4.1 Introduction
In this chapter, we characterize the software pipelined (SWP) schedules that achieve op-
timal throughput/latency for timed SDF graphs. Characterizations made in this chapter
will be extended in the next chapter to provide an integer linear programming formulation
for the SWP scheduling problem of SDF graphs under resource and communication con-
straints. The current chapter is organized as follows. In section 4.2, we characterize the
set of admissible SWP schedules for timed SDF graphs. In section 4.3, we characterize and
compute the SWP schedules that achieve maximum throughput for timed SDF graphs. In
section 4.4 we characterize the SWP schedules that achieve minimum latency for timed
SDF graphs and we conclude in section 4.5.

4.2 Characterization of Admissible SWP Schedules
Let us consider a timed SDF graph 𝐺𝑡

𝑠𝑑 𝑓
= (𝑉 , 𝐸, 𝑃,𝐶,𝑀0, 𝛿) with a repetition vector 𝑞

and let us assume that 𝐺𝑡
𝑠𝑑 𝑓

is live and consistent. According to definition 3.2, a schedule
is said admissible for 𝐺𝑡

𝑠𝑑 𝑓
if and only if it fulfils the precedence constraints imposed by

every channel of 𝐺𝑡
𝑠𝑑 𝑓

. In order to characterize the set of precedence constraints that must
be fulfilled by the set of admissible SWP schedules for 𝐺𝑡

𝑠𝑑 𝑓
, we first need to define and

formalize the dependency relations induced by every channel in 𝐺𝑡
𝑠𝑑 𝑓

. For this purpose, let
us consider the following notations. For each actor 𝑖 ∈ 𝑉 , 𝑘𝑖 , 𝑞𝑖 and 𝛿𝑖 represent respectively
the firing index, the granularity and the worst-case execution time to process a single firing
of this actor. For any channel 𝑒 = (𝑖, 𝑗) ∈ 𝐸, 𝑝𝑒 , 𝑚0(𝑒) and 𝑐𝑒 are respectively the production
rate, the initial marking and the consumption rate of the channel 𝑒.

4.2.1 Dependency relations induced by channels

Definition 4.1 (Dependency Relation). Let us consider a channel 𝑒 = (𝑖, 𝑗) ∈ 𝐸 and let
(𝑘𝑖, 𝑘 𝑗) ∈ ℕ2. The channel 𝑒 induces a strict dependency relation from a firing ⟨𝑘𝑖, 𝑖⟩ to a
firing ⟨𝑘 𝑗 , 𝑗⟩ if and only if each of the following conditions hold:

• Condition 1: ⟨𝑘 𝑗 , 𝑗⟩ cannot be executed before the end of ⟨𝑘𝑖, 𝑖⟩.

• Condition 2: ⟨𝑘 𝑗 , 𝑗⟩ can be executed before the end of ⟨𝑘𝑖 + 1, 𝑖⟩.

• Condition 3: ⟨𝑘 𝑗 − 1, 𝑗⟩ can be executed before the end of ⟨𝑘𝑖, 𝑖⟩.

In order to formalize definition 4.1, we have established the following lemma.

©2020 Philippe Glanon 41

4.2. Characterization of Admissible SWP Schedules

Lemma 4.1. Let us consider a channel 𝑒 = (𝑖, 𝑗) ∈ 𝐸 and let (𝑘𝑖, 𝑘 𝑗) ∈ ℕ2. The channel 𝑒
induces a strict dependency relation from a firing ⟨𝑘𝑖, 𝑖⟩ to a firing ⟨𝑘 𝑗 , 𝑗⟩ if and only if the
following inequalities hold:

𝑐𝑒 > 𝑚0(𝑒) + 𝑘𝑖 · 𝑝𝑒 − 𝑘 𝑗 · 𝑐𝑒 ≥ 𝑚𝑎𝑥{0, 𝑐𝑒 − 𝑝𝑒}.

Proof. Let 𝑒 = (𝑖, 𝑗) ∈ 𝐸 be a channel and let (𝑘𝑖, 𝑘 𝑗) ∈ ℕ2. After the execution of firings
⟨𝑘𝑖, 𝑖⟩ and ⟨𝑘 𝑗 , 𝑗⟩, the number of tokens remaining on the channel 𝑒 is equal to 𝑚0(𝑒) + (𝑘𝑖 +
1) · 𝑝𝑒 − (𝑘 𝑗 + 1) · 𝑐𝑒 . Using this characterization, we can formalize the conditions stated in
definition 4.1.

• Condition 1 can be reformulated as follows: After the execution of the firing ⟨𝑘𝑖−1, 𝑖⟩,
there are not enough tokens on the channel 𝑒 so that the firing ⟨𝑘 𝑗 , 𝑗⟩ may be executed.
By formalizing this assumption, we get the following inequality which ensures that if
⟨𝑘 𝑗 , 𝑗⟩ is executed just after ⟨𝑘𝑖 − 1, 𝑖⟩ and before the end of ⟨𝑘𝑖, 𝑖⟩, then, the number
of tokens remaining on the channel 𝑒 is strictly lower to 0.

𝑚0(𝑒) + 𝑘𝑖 · 𝑝𝑒 − (𝑘 𝑗 + 1) · 𝑐𝑒 < 0 (4.1)

• Condition 2 can be reformulated as follows: After the execution of ⟨𝑘 𝑗 , 𝑗⟩ and ⟨𝑘𝑖 +
1, 𝑖⟩, the number of tokens remaining on the channel 𝑒 is greater or equal to 0. By
formalizing this assumption, we get the following inequality:

𝑚0(𝑒) + (𝑘𝑖 + 1) · 𝑝𝑒 − (𝑘 𝑗 + 1) · 𝑐𝑒 ≥ 0 (4.2)

• Condition 3 can be reformulated as follows: After the execution of ⟨𝑘 𝑗 − 1, 𝑗⟩ and
⟨𝑘𝑖, 𝑖⟩, the number of tokens remaining on the channel 𝑒 is greater of equal to 0. By
formalizing this assumption we get the following inequality:

𝑚0(𝑒) + 𝑘𝑖 · 𝑝𝑒 − 𝑘 𝑗 · 𝑐𝑒 ≥ 0 (4.3)

Combining equations (4.1), (4.2) and (4.3), we get:

𝑐𝑒 > 𝑚0(𝑒) + 𝑘𝑖 · 𝑝𝑒 − 𝑘 𝑗 · 𝑐𝑒 ≥ 𝑚𝑎𝑥{0, 𝑐𝑒 − 𝑝𝑒}. �

Actually, lemma 4.1 is a necessary and sufficient condition that ensures the existence of
a dependency relation between any couple of firings. A similar lemma has been established

42 ©2020 Philippe Glanon

4.2. Characterization of Admissible SWP Schedules

by Marchetti and Munier[36] for 𝑘𝑖, 𝑘 𝑗 ∈ ℕ∗. Let us consider for instance, the SDF graph
shown in figure 2.6b and let us check if the channel 𝑒 = (𝐶, 𝐷) induces a dependency relation
from ⟨1,𝐶⟩ to ⟨0, 𝐷⟩. Applying lemma 4.1, we get 2 > 0 + 1 − 0 ≥ 𝑚𝑎𝑥{2 − 1, 0}, which
implies the existence of a dependency relation from ⟨1,𝐶⟩ to ⟨0, 𝐷⟩.

Now, to identify the dependency relations induced by every channel of 𝐺𝑡
𝑠𝑑 𝑓

in a SWP
schedule, we have established lemma 4.2. Before presenting this lemma, let us denote by
𝑔𝑐𝑑𝑒 the greatest common divisor of the production rate 𝑝𝑒 and the consumption rate 𝑐𝑒 of
a channel 𝑒 = (𝑖, 𝑗) ∈ 𝐸 and let 𝑋𝑚𝑖𝑛

𝑘𝑖𝑘 𝑗
, 𝑋𝑚𝑎𝑥

𝑘𝑖𝑘 𝑗
∈ ℤ be two variables given by:

𝑋𝑚𝑖𝑛
𝑘𝑖𝑘 𝑗

=
⌈𝑚𝑎𝑥{0, 𝑐𝑒 − 𝑝𝑒 } −𝑚0(𝑒) − 𝑘𝑖 · 𝑝𝑒 + 𝑘 𝑗 · 𝑐𝑒

𝑞𝑖 · 𝑝𝑒

⌉
𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗

=
⌊𝑐𝑒 − 𝑔𝑐𝑑𝑒 −𝑚0(𝑒) − 𝑘𝑖 · 𝑝𝑒 + 𝑘 𝑗 · 𝑐𝑒

𝑞𝑖 · 𝑝𝑒

⌋

such that 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
≥ 𝑋𝑚𝑖𝑛

𝑘𝑖𝑘 𝑗
, where 𝑘𝑖 , 𝑘 𝑗 ∈ ℕ.

Lemma 4.2. Let 𝑒 = (𝑖, 𝑗) ∈ 𝐸 be a channel of 𝐺𝑡
𝑠𝑑 𝑓

and let ⟨𝑘𝑖 +𝑛 · 𝑞𝑖, 𝑖⟩ and ⟨𝑘 𝑗 +𝑛′ · 𝑞 𝑗 , 𝑗⟩
be two firings, where 𝑘𝑖 ∈ [0, 𝑞𝑖), 𝑘 𝑗 ∈ [0, 𝑞 𝑗) and 𝑛, 𝑛′ ∈ ℕ.

1. If the channel 𝑒 induces a dependency relation from ⟨𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖⟩ to ⟨𝑘 𝑗 + 𝑛′ · 𝑞 𝑗 , 𝑗⟩
then, there exists 𝑋 ∈ {𝑋𝑚𝑖𝑛

𝑘𝑖𝑘 𝑗
, . . . , 𝑋𝑚𝑎𝑥

𝑘𝑖𝑘 𝑗
} such that 𝑋 = 𝑛 − 𝑛′, and the absolute value

of 𝑋 gives the number of iterations of 𝐺𝑡
𝑠𝑑 𝑓

separating the execution of ⟨𝑘 𝑗 + 𝑛′ · 𝑞 𝑗 , 𝑗⟩
from the execution of ⟨𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖⟩.

2. Conversely, for any 𝑋 ∈ {𝑋𝑚𝑖𝑛
𝑘𝑖𝑘 𝑗

, . . . , 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
} there exists an infinite number of tuples

(𝑛, 𝑛′) ∈ ℕ2 such that 𝑛 − 𝑛′ = 𝑋 and the channel 𝑒 induces a dependency relation
from ⟨𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖⟩ to ⟨𝑘 𝑗 + 𝑛′ · 𝑞 𝑗 , 𝑗⟩.

Proof.

1. Let 𝑋 ∈ ℤ such that 𝑛 −𝑛′ = 𝑋 . If the channel 𝑒 induces a dependency relation from
⟨𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖⟩ to ⟨𝑘 𝑗 + 𝑛′ · 𝑞 𝑗 , 𝑗⟩, then by lemma 4.1 we get:

𝑐𝑒 > 𝑚0(𝑒) + (𝑘𝑖 + 𝑛 · 𝑞𝑖) · 𝑝𝑒 − (𝑘 𝑗 + 𝑛′ · 𝑞 𝑗) · 𝑐𝑒 ≥ 𝑚𝑎𝑥{0, 𝑐𝑒 − 𝑝𝑒}

which leads to: 𝑐𝑒 > 𝑚0(𝑒) + 𝑘𝑖 · 𝑝𝑒 − 𝑘 𝑗 · 𝑐𝑒 + 𝑛 · 𝑞𝑖 · 𝑝𝑒 − 𝑛′ · 𝑞 𝑗 · 𝑐𝑒 ≥ 𝑚𝑎𝑥{0, 𝑐𝑒 − 𝑝𝑒}.

©2020 Philippe Glanon 43

4.2. Characterization of Admissible SWP Schedules

Since 𝐺𝑡
𝑠𝑑 𝑓

is consistent, according to equation (3.1) we can write 𝑞𝑖 · 𝑝𝑒 = 𝑞 𝑗 · 𝑐𝑒 and
thus, the inequality above becomes:

𝑐𝑒 > 𝑚0(𝑒) + 𝑘𝑖 · 𝑝𝑒 − 𝑘 𝑗 · 𝑐𝑒 + (𝑛 − 𝑛′) · 𝑞𝑖 · 𝑝𝑒 ≥ 𝑚𝑎𝑥{0, 𝑐𝑒 − 𝑝𝑒}

Now, as we assume that 𝑛 − 𝑛′ = 𝑋 , we get the following inequality:

𝑐𝑒 > 𝑚0(𝑒) + 𝑘𝑖 · 𝑝𝑒 − 𝑘 𝑗 · 𝑐𝑒 + 𝑋 · 𝑞𝑖 · 𝑝𝑒 ≥ 𝑚𝑎𝑥{0, 𝑐𝑒 − 𝑝𝑒}

Since 𝑐𝑒 can be divided by 𝑔𝑐𝑑𝑒 , the inequality above can be rewritten as:

𝑐𝑒 − 𝑔𝑐𝑑𝑒 ≥ 𝑚0(𝑒) + 𝑘𝑖 · 𝑝𝑒 − 𝑘 𝑗 · 𝑐𝑒 + 𝑋 · 𝑞𝑖 · 𝑝𝑒 ≥ 𝑚𝑎𝑥{0, 𝑐𝑒 − 𝑝𝑒}

which is equivalent to:

𝑐𝑒 − 𝑔𝑐𝑑𝑒 −𝑚0(𝑒) − 𝑘𝑖 · 𝑝𝑒 + 𝑘 𝑗 · 𝑐𝑒
𝑞𝑖 · 𝑝𝑒

≥ 𝑋 ≥
𝑚𝑎𝑥{0, 𝑐𝑒 − 𝑝𝑒} −𝑚0(𝑒) − 𝑘𝑖 · 𝑝𝑒 + 𝑘 𝑗 · 𝑐𝑒

𝑞𝑖 · 𝑝𝑒

Since 𝑋 is an integer value, we can write:⌊𝑐𝑒 − 𝑔𝑐𝑑𝑒 −𝑚0(𝑒) − 𝑘𝑖 · 𝑝𝑒 + 𝑘 𝑗 · 𝑐𝑒
𝑞𝑖 · 𝑝𝑒

⌋
≥ 𝑋 ≥

⌈𝑚𝑎𝑥{0, 𝑐𝑒 − 𝑝𝑒} −𝑚0(𝑒) − 𝑘𝑖 · 𝑝𝑒 + 𝑘 𝑗 · 𝑐𝑒
𝑞𝑖 · 𝑝𝑒

⌉
which leads to: 𝑋𝑚𝑎𝑥

𝑘𝑖𝑘 𝑗
≥ 𝑋 ≥ 𝑋𝑚𝑖𝑛

𝑘𝑖𝑘 𝑗
.

2. Conversely, let us consider a couple (𝑥,𝑦) ∈ ℤ2 such that:

𝑥 + 𝑦 = 1 (4.4)

and let 𝑛 = 𝑋 · 𝑥 +𝑧 ·𝑞 𝑗 · 𝑐𝑒 and 𝑛′ = −𝑋 ·𝑦 +𝑧 ·𝑞𝑖 · 𝑝𝑒 . For any 𝑋 ∈ {𝑋𝑚𝑖𝑛
𝑘𝑖𝑘 𝑗

. . . 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
} and

any large positive integer 𝑧, there exists an infinite number of couples (𝑛, 𝑛′) ∈ ℕ2

such that:
𝑛 − 𝑛′ = 𝑋 · 𝑥 + 𝑧 · 𝑞 𝑗 · 𝑐𝑒 + 𝑋 · 𝑦 − 𝑧 · 𝑞𝑖 · 𝑝𝑒

Since 𝐺𝑡
𝑠𝑑 𝑓

is consistent, according to equation (3.1) we can write 𝑞𝑖 · 𝑝𝑒 = 𝑞 𝑗 · 𝑐𝑒 and
thus, the equality above can be simplified and rewritten as:

𝑛 − 𝑛′ = (𝑥 + 𝑦) · 𝑋

44 ©2020 Philippe Glanon

4.2. Characterization of Admissible SWP Schedules

this latter equality can further be simplified using equation (4.4) and written as:

𝑛 − 𝑛′ = 𝑋

which implies the existence of a dependency relation from the firings ⟨𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖⟩ to
⟨𝑘 𝑗 + 𝑛′ · 𝑞 𝑗 , 𝑗⟩ and thus achieves the proof �

4.2.2 A necessary and sufficient condition for admissibility

Previously, we have shown that lemma 4.2 can be used to identify the dependency rela-
tions induced by every channel of 𝐺𝑡

𝑠𝑑 𝑓
in a SWP schedule. Using this lemma, we can now

characterize the set of admissible SWP schedules for 𝐺𝑡
𝑠𝑑 𝑓

. For this purpose, we have estab-
lished the following theorem, which stands as necessary condition and sufficient condition
for admissible SWP schedules of 𝐺𝑡

𝑠𝑑 𝑓
.

Theorem 4.1. A SWP schedule 𝜎 with period 𝜆 is said admissible for 𝐺𝑡
𝑠𝑑 𝑓

if and only if
for any channel 𝑒 = (𝑖, 𝑗) ∈ 𝐸 the following set of precedence constraints is fulfilled by the
schedule 𝜎:

𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) ≥ 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
· 𝜆 + 𝛿𝑖 ∀𝑘𝑖 ∈ [0, 𝑞𝑖),∀𝑘 𝑗 ∈ [0, 𝑞 𝑗), ∀𝑋𝑚𝑎𝑥

𝑘𝑖𝑘 𝑗
≥ 𝑋𝑚𝑖𝑛

𝑘𝑖𝑘 𝑗

Proof. Let us assume that a channel 𝑒 = (𝑖, 𝑗) ∈ 𝐸 induces a dependency relation from
⟨𝑘𝑖 +𝑛 ·𝑞𝑖, 𝑖⟩ to ⟨𝑘 𝑗 +𝑛′ ·𝑞 𝑗 , 𝑗⟩ where 𝑘𝑖 ∈ [0, 𝑞𝑖), 𝑘 𝑗 ∈ [0, 𝑞 𝑗) and 𝑛, 𝑛′ ∈ ℕ. If we assume that
𝜎 is an admissible SWP schedule of 𝐺𝑡

𝑠𝑑 𝑓
then by definition. 3.2 and definition. 3.5, we get

the following precedence constraint between ⟨𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖⟩ to ⟨𝑘 𝑗 + 𝑛′ · 𝑞 𝑗 , 𝑗⟩:

𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) ≥ (𝑛 − 𝑛′) · 𝜆 + 𝛿𝑖 (4.5)

By lemma 4.2, there exists 𝑋 ∈ {𝑋𝑚𝑖𝑛
𝑘𝑖𝑘 𝑗

, . . . , 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
} such that 𝑛′ = 𝑛 − 𝑋 . Using this equality

in equation (4.5), we get:

𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) ≥ 𝑋 · 𝜆 + 𝛿𝑖 (4.6)

Now, the right part of this inequality increases with 𝑋 and according to lemma 4.2, there
exists (𝑛, 𝑛′) ∈ ℕ2 such that for any 𝑋 ∈ {𝑋𝑚𝑖𝑛

𝑘𝑖𝑘 𝑗
, . . . , 𝑋𝑚𝑎𝑥

𝑘𝑖𝑘 𝑗
}, the channel 𝑒 induces a depen-

dency relation from ⟨𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖⟩ to ⟨𝑘 𝑗 + 𝑛′ · 𝑞 𝑗 , 𝑗⟩. Thus, for 𝑋 = 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗

the dependency
relation from ⟨𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖⟩ to ⟨𝑘 𝑗 + 𝑛′ · 𝑞 𝑗 , 𝑗⟩ holds if and only if:

©2020 Philippe Glanon 45

4.3. Maximum Throughput for Timed SDF graphs

𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) ≥ 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
· 𝜆 + 𝛿𝑖, ∀𝑘𝑖 ∈ [0, 𝑞𝑖),∀𝑘 𝑗 ∈ [0, 𝑞 𝑗)

Conversely, if we assume this latter inequality, then by lemma 4.2, for any tuples (𝑘𝑖 + 𝑛 ·
𝑞𝑖, 𝑘 𝑗 + 𝑛′ · 𝑞 𝑗) with 𝑘𝑖 ∈ [0, 𝑞𝑖), 𝑘 𝑗 ∈ [0, 𝑞 𝑗), 𝑛, 𝑛′ ∈ ℕ and any 𝑋𝑚𝑎𝑥

𝑘𝑖𝑘 𝑗
≥ 𝑋𝑚𝑖𝑛

𝑘𝑖𝑘 𝑗
, we can write

𝑛 − 𝑛′ = 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗

. Using this equality, the inequality above becomes:

𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) ≥ (𝑛 − 𝑛′) · 𝜆 + 𝛿𝑖 (4.7)

which is equivalent to:
𝜎 (𝑘 𝑗 , 𝑗) + 𝑛′ · 𝜆 ≥ 𝜎 (𝑘𝑖, 𝑖) + 𝑛 · 𝜆 + 𝛿𝑖 (4.8)

Now, using definition. 3.5, equation (4.8) can be simplified and rewritten as:

𝜎 (𝑘 𝑗 + 𝑛′ · 𝑞 𝑗 , 𝑗) ≥ 𝜎 (𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖) + 𝛿𝑖 (4.9)

which implies that the schedule 𝜎 checks the dependency relation induced by the channel
𝑒 from ⟨𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖⟩ to ⟨𝑘 𝑗 + 𝑛′ · 𝑞 𝑗 , 𝑗⟩ and thus achieves the proof. �

4.3 Maximum Throughput for Timed SDF graphs
In this section, we characterize the SWP schedules that achieve maximum throughput for
timed SDF graphs. For this purpose, let us consider a consistent and live timed SDF graph
𝐺𝑠𝑑 𝑓 = (𝑉 , 𝐸, 𝑃,𝐶,𝑀0, 𝛿). Since the schedules that maximize throughput for 𝐺𝑡

𝑠𝑑 𝑓
minimize

implicitly the iteration period (refer to section 3.3), we can compute the SWP schedules 𝜎
that achieve maximum throughput for 𝐺𝑡

𝑠𝑑 𝑓
with the following linear programming model.

(𝑃1)

𝑚𝑖𝑛 𝜆

𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) ≥ 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
· 𝜆 + 𝛿𝑖 ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸,

∀𝑘𝑖 ∈ [0, 𝑞𝑖),∀𝑘 𝑗 ∈ [0, 𝑞 𝑗),∀𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
≥ 𝑋𝑚𝑖𝑛

𝑘𝑖𝑘 𝑗
(1)

𝜎 (𝑘𝑖, 𝑖) ∈ ℚ+ ∀𝑖 ∈ 𝑉 , ∀𝑘𝑖 ∈ [0, 𝑞𝑖) (2)
𝜆 ∈ ℚ+∗ (3)

Constraint (1) is actually a set of precedence constraints that must be fulfilled by any
admissible SWP schedule 𝜎 with period 𝜆 for 𝐺𝑡

𝑠𝑑 𝑓
. These constraints are derived from

theorem 4.1 which characterizes the set of admissible SWP schedules for timed SDF graphs.
Constraints (2) and (3) are integrity constraints on the decisions variables of the model
(𝑃1). The number of variables in the model (𝑃1) is given by𝑉𝑘 = 1+ ∑

∀𝑖∈𝑉
𝑞𝑖 and the number of

46 ©2020 Philippe Glanon

4.3. Maximum Throughput for Timed SDF graphs

constraints 𝐶𝑘 is bounded on the upper side by ∑
∀𝑒=(𝑖, 𝑗)∈𝐸 𝑞𝑖 · 𝑞 𝑗 , where 𝑞𝑖 is the granularity

of an actor 𝑖. Since the computation of 𝑉𝑘 and 𝐶𝑘 depends on the granularity of actors
of 𝐺𝑡

𝑠𝑑 𝑓
, the time and space complexity to solve the model (𝑃1) depends on the size of the

repetition vector 𝑞 of 𝐺𝑡
𝑠𝑑 𝑓

and the size of each component of this vector.

For any timed SDF graph, the model (𝑃1) can be instantiated and solved with a linear
programming solver such as CPLEX 1. Considering the timed SDF graph depicted in figure
3.1, the instantiation of (𝑃1) gives the following system of equations:

𝑚𝑖𝑛 𝜆

e=(A,A): 𝜎 (1, 𝐴) − 𝜎 (0, 𝐴) ≥ 3

𝜎 (0, 𝐴) − 𝜎 (1, 𝐴) ≥ −𝜆 + 3
e=(A,B): 𝜎 (0, 𝐵) − 𝜎 (0, 𝐴) ≥ 3

𝜎 (0, 𝐵) − 𝜎 (1, 𝐴) ≥ 3

e=(A,C): 𝜎 (0,𝐶) − 𝜎 (0, 𝐴) ≥ 3

𝜎 (1,𝐶) − 𝜎 (0, 𝐴) ≥ 3

𝜎 (2,𝐶) − 𝜎 (1, 𝐴) ≥ 3

𝜎 (3,𝐶) − 𝜎 (1, 𝐴) ≥ 𝜆 + 3
e=(B,D): 𝜎 (0, 𝐷) − 𝜎 (0, 𝐵) ≥ 4

𝜎 (1, 𝐷) − 𝜎 (0, 𝐵) ≥ 4

e=(C,D): 𝜎 (0, 𝐷) − 𝜎 (0,𝐶) ≥ 2

𝜎 (0, 𝐷) − 𝜎 (1,𝐶) ≥ 2

𝜎 (1, 𝐷) − 𝜎 (2,𝐶) ≥ 2

𝜎 (1, 𝐷) − 𝜎 (3,𝐶) ≥ 2

e=(D,D): 𝜎 (1, 𝐷) − 𝜎 (0, 𝐷) ≥ 2

𝜎 (0, 𝐷) − 𝜎 (1, 𝐷) ≥ −𝜆 + 2
e=(D,A): 𝜎 (1, 𝐴) − 𝜎 (0, 𝐷) ≥ −𝜆 + 2

𝜎 (0, 𝐴) − 𝜎 (1, 𝐷) ≥ −2𝜆 + 2
𝜎 (𝑘𝑖, 𝑖) ∈ ℚ+ ∀𝑖 ∈ 𝑉 , ∀𝑘𝑖 ∈ [0, 𝑞𝑖)
𝜆 ∈ ℚ+∗

The solution obtained with CPLEX for this system of equations is given by 𝜆∗ = 9 and thus,
the maximum throughput achievable by the SDF graph is given by 𝛽∗ =

1
9
. Now, using

the values of 𝜆∗ and 𝜎 (𝑘𝑖, 𝑖)∗, we can describe the SWP schedules that achieve maximum
throughput for the SDF graph. Figure 3.5 depicts a SWP schedule that achieves maximum

1https://www.ibm.com/analytics/cplex-optimizer

©2020 Philippe Glanon 47

4.4. Minimum Latency for Timed SDF graphs

throughput for the SDF graph with:

𝜎 (0, 𝐴)∗ = 0 𝜎 (0,𝐶)∗ = 3 𝜎 (3,𝐶)∗ = 6

𝜎 (1, 𝐴)∗ = 3 𝜎 (1,𝐶)∗ = 3 𝜎 (0, 𝐷)∗ = 10

𝜎 (0, 𝐵)∗ = 6 𝜎 (2,𝐶)∗ = 6 𝜎 (1, 𝐷)∗ = 12

4.4 Minimum Latency for Timed SDF graphs
In this section, we propose a linear programming model to compute the admissible SWP
schedules that achieve minimum latency for timed SDF graph. Let 𝐺𝑡

𝑠𝑑 𝑓
= (𝑉 , 𝐸, 𝑃,𝐶,𝑀0, 𝛿)

be a consistent and live timed SDF graph and let T be the latency of 𝐺𝑡
𝑠𝑑 𝑓

. Since the
minimum latency achievable by 𝐺𝑡

𝑠𝑑 𝑓
depends on the minimum latency achievable by ev-

ery channel in 𝐺𝑡
𝑠𝑑 𝑓

, we first need to characterize the latency induced by a SDF channel
before formulating our linear programming model. For this purpose, we have established
the following theorem.

Theorem 4.2. Let 𝜎 be an admissible SWP schedule of 𝐺𝑡
𝑠𝑑 𝑓

, let 𝑒 = (𝑖, 𝑗) ∈ 𝐸 be a channel
of 𝐺𝑡

𝑠𝑑 𝑓
and let (𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑘 𝑗 + 𝑛′ · 𝑞 𝑗) be a tuple of positive integers, where 𝑘𝑖 ∈ [0, 𝑞𝑖),

𝑘 𝑗 ∈ [0, 𝑞 𝑗) and 𝑛, 𝑛′ ∈ ℕ. If the channel 𝑒 induces a dependency relation from the firings
⟨𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖⟩ to ⟨𝑘 𝑗 + 𝑛′ · 𝑞 𝑗 , 𝑗⟩, then the latency between these firings is given by:

T𝑘𝑛𝑖 𝑘𝑛′𝑗 = 𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) − 𝑋 · 𝜆 − 𝛿𝑖, where 𝑋 ∈ {𝑋𝑚𝑖𝑛
𝑘𝑖𝑘 𝑗

, . . . , 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
}

Proof. Let 𝑒 = (𝑖, 𝑗) ∈ 𝐸 be a channel that induces a dependency relation from ⟨𝑘𝑖 +𝑛 ·𝑞𝑖, 𝑖⟩
to ⟨𝑘 𝑗 +𝑛′ ·𝑞 𝑗 , 𝑗⟩ in the schedule 𝜎. By equation (3.7) and definition 3.5, the latency induced
by the channel 𝑒 is given by:

T𝑘𝑛𝑖 𝑘𝑛′𝑗 = 𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) + (𝑛′ − 𝑛) · 𝜆 − 𝛿𝑖 (4.10)

By lemma 4.2, there exists 𝑋 ∈ {𝑋𝑚𝑖𝑛
𝑘𝑖𝑘 𝑗

, . . . , 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
} such that 𝑛′ = 𝑛 − 𝑋 . Using this equality

in equation (4.10), we get:

T𝑘𝑛𝑖 𝑘𝑛′𝑗 = 𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) − 𝑋 · 𝜆 − 𝛿𝑖

and the proof is thus achieved. �

Using theorem 4.2, we have derived the following corollary that characterizes the mini-

48 ©2020 Philippe Glanon

4.4. Minimum Latency for Timed SDF graphs

mum latency achievable by a SDF channel.

Corollary 4.1. Let 𝑒 = (𝑖, 𝑗) ∈ 𝐸 be a channel of 𝐺𝑡
𝑠𝑑 𝑓

, let 𝜎 be an admissible SWP schedule
of 𝐺𝑡

𝑠𝑑 𝑓
and let (𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑘 𝑗 + 𝑛′ · 𝑞 𝑗) be a tuple of positive integers, where 𝑘𝑖 ∈ [0, 𝑞𝑖),

𝑘 𝑗 ∈ [0, 𝑞 𝑗) and 𝑛, 𝑛′ ∈ ℕ. If the channel 𝑒 induces a dependency relation from a firing
⟨𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖⟩ to a firing ⟨𝑘 𝑗 + 𝑛′ · 𝑞 𝑗 , 𝑗⟩, then the minimum latency between these firings is
given by:

T𝑚𝑖𝑛
𝑘𝑖𝑘 𝑗

= 𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) − 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
· 𝜆 − 𝛿𝑖

Proof. Let 𝑒 = (𝑖, 𝑗) ∈ 𝐸 be a channel that induces a dependency relation from ⟨𝑘𝑖 +𝑛 ·𝑞𝑖, 𝑖⟩
to ⟨𝑘 𝑗 + 𝑛′ · 𝑞 𝑗 , 𝑗⟩. By theorem 4.2, the latency induced by the channel 𝑒 between these
firings is given by:

T𝑘𝑛𝑖 𝑘𝑛′𝑗 = 𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) − 𝑋 · 𝜆 − 𝛿𝑖

Now, according to lemma 4.2, if the channel 𝑒 induces a dependency relation from ⟨𝑘𝑖+𝑛·𝑞𝑖, 𝑖⟩
to ⟨𝑘 𝑗 + 𝑛′ · 𝑞 𝑗 , 𝑗⟩, there exists 𝑋 ∈ {𝑋𝑚𝑖𝑛

𝑘𝑖𝑘 𝑗
, . . . , 𝑋𝑚𝑎𝑥

𝑘𝑖𝑘 𝑗
} such that 𝑛 − 𝑛′ = 𝑋 . Thus, 𝑋 = 𝑋𝑚𝑎𝑥

𝑘𝑖𝑘 𝑗
,

gives the minimum latency T𝑚𝑖𝑛
𝑘𝑖𝑘 𝑗

induced by the channel 𝑒 between the firings ⟨𝑘𝑖 +𝑛 ·𝑞𝑖, 𝑖⟩
and ⟨𝑘 𝑗 + 𝑛′ · 𝑞 𝑗 , 𝑗⟩ and we can write:

T𝑚𝑖𝑛
𝑘𝑖𝑘 𝑗

= 𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) − 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
· 𝜆 − 𝛿𝑖 �

Using theorem 4.1 and corollary 4.1, we have derived the following linear programming
model to compute the admissible SWP schedules that achieve minimum latency for 𝐺𝑡

𝑠𝑑 𝑓
.

(𝑃2)

𝑚𝑖𝑛 T
𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) ≥ 𝑋𝑚𝑎𝑥

𝑘𝑖𝑘 𝑗
· 𝜆 + 𝛿𝑖, ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸,

∀𝑘𝑖 ∈ [0, 𝑞𝑖),∀𝑘 𝑗 ∈ [0, 𝑞 𝑗),∀𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
≥ 𝑋𝑚𝑖𝑛

𝑘𝑖𝑘 𝑗
(1)

T ≥ 𝜎 (𝑘𝑖, 𝑖) + 𝛿𝑖, ∀𝑖 ∈ 𝑉 , ∀𝑘𝑖 ∈ [0, 𝑞𝑖) (2)
𝜎 (𝑘𝑖, 𝑖) ∈ ℚ+ ∀𝑖 ∈ 𝑉 ∀𝑘𝑖 ∈ [0, 𝑞𝑖), (3)
𝜆 ∈ ℚ+∗ (4)

Constraint (1) characterizes the set of precedence constraints that must be fulfilled by
any admissible schedule of 𝐺𝑡

𝑠𝑑 𝑓
. This constraint also ensures that the minimum latency

induced by every channel of 𝐺𝑡
𝑠𝑑 𝑓

between two firings is greater or equal to 0. Indeed,
according to corollary 4.1, if a channel 𝑒 = (𝑖, 𝑗) ∈ 𝐸 induces a dependency relation from a

©2020 Philippe Glanon 49

4.4. Minimum Latency for Timed SDF graphs

C

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C

D

B

C

C

B

C

C

C

C

D DD

C

B

C

C

Iteration 1

Iteration 0

Iteration 2

D

A AA AA A

D

33 34

Figure 4.1: A SWP Schedule of period 𝜆 = 10 and latency T ∗ = 14 for the timed SDF
graph depicted in figure 3.1.

firing ⟨𝑘𝑖 +𝑛 ·𝑞𝑖, 𝑖⟩ to a firing ⟨𝑘 𝑗 +𝑛′ ·𝑞 𝑗 , 𝑗⟩ then the minimum latency between these firings
is given by T𝑚𝑖𝑛

𝑘𝑖𝑘 𝑗
= 𝜎 (𝑘 𝑗 , 𝑗) −𝜎 (𝑘𝑖, 𝑖) −𝑋𝑚𝑎𝑥

𝑘𝑖𝑘 𝑗
·𝜆−𝛿𝑖 . Since latency is a positive value, for every

channel that induces a dependency relation from ⟨𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖⟩ to a firing ⟨𝑘 𝑗 + 𝑛′ · 𝑞 𝑗 , 𝑗⟩ we
can write T𝑚𝑖𝑛

𝑘𝑖𝑘 𝑗
≥ 0, which leads to constraint (1). Constraint (2) ensures that the latency

of 𝐺𝑡
𝑠𝑑 𝑓

is greater or equal to the finishing time of every firing of any actor within a single
iteration of 𝐺𝑡

𝑠𝑑 𝑓
. Constraints (3) and (4) are integrity constraints on the decisions variables

of the model (𝑃2). The number of variables in an instance of (𝑃2) is given by 𝑉𝑘 = 2+ ∑
∀𝑖∈𝑉

𝑞𝑖

and the number of constraints 𝐶𝑘 is bounded on the upper side by ∑
∀𝑒=(𝑖, 𝑗)∈𝐸

𝑞𝑖 · 𝑞 𝑗 +
∑
∀𝑖∈𝑉

𝑞𝑖 ,

where 𝑞𝑖 is the granularity of an actor 𝑖.

For any timed SDF graph, the model (𝑃2) can be instantiated and solved with CPLEX.
Like the linear programming model (𝑃1), it is important to mention that the time and space
complexity to solve (𝑃2) for a timed SDF graph depends both on the size of the repetition
vector of this graph and the size of the components of this vector.

Figure 4.1 depicts a SWP schedule that gives minimum latency for the timed SDF
graph of our running example (refer to figure 3.1). In this schedule, the minimum latency
achievable by the SDF graph is equal to T ∗ = 14. Although this schedule achieves minimum
latency for the graph, one can note that it does not achieve maximum throughput since
throughput 𝛽 =

1
10

achievable by this schedule is suboptimal compared to the throughput

𝛽∗ =
1
9

achievable by the schedule depicted in figure 3.7. This shows that the schedules
that achieve minimum latency for a timed SDF graph do not necessarily achieve maximum
throughput.

50 ©2020 Philippe Glanon

4.5. Conclusion

4.5 Conclusion
In this chapter, we have characterized admissible SWP schedules for timed SDF graphs
and we have proposed two linear programming models (𝑃1) and (𝑃2) which enable respec-
tively to compute the SWP schedules that achieve maximum throughput and minimum
latency for timed SDF graphs. We will note that these models consider only the precedence
constraints of timed SDF graphs and they do accommodate neither resource nor commu-
nication constraints. In the next chapter, we will consider both precedence, resource, and
communication constraints to compute SWP schedule of SDF graphs on heterogeneous
multiprocessor architectures.

©2020 Philippe Glanon 51

CHAPTER 5

Software Pipelined Scheduling under
Resources and Communication Constraints

Contents
5.1 Introduction . 53

5.2 An Integer Linear Programming Model 53

5.2.1 Cyclicity Constraints . 53

5.2.2 Resource Constraints . 53

5.2.3 Communication and Precedence Constraints 55

5.3 Decomposed Software Pipelined Scheduling 58

5.3.1 GS Heuristic . 58

5.3.2 HCS Heuristic . 62

5.4 Conclusion . 69

52

5.1. Introduction

5.1 Introduction

In this chapter, we study the software pipelined (SWP) scheduling problem of SDF graphs
on heterogeneous multiprocessor architectures (HMAs) under resource and communication
constraints with the goal of optimizing throughput. The chapter is structured into two
parts. In the first part, we present our integer linear programming (ILP) model for an
exact resolution of the scheduling problem. In the second part, we present a decomposed
SWP scheduling heuristic build upon the heuristic of Gasperoni and Schwielgelshohn, which
provides approximated solutions for the scheduling problem.

5.2 An Integer Linear Programming Model

In this section, we present an ILP formulation for the problem described in section 3.4. Our
ILP formulation consists of different constraints separated into resource, communication,
cyclicity and precedence constraints. The inputs of the ILP model are a SDF graph 𝐺𝑠𝑑 𝑓 =

(𝑉 , 𝐸, 𝑃,𝐶,𝑀0) and a HMA 𝐺ℎ𝑚𝑎 = (𝑅,Δ, Γ), and the scheduling entities are the firings of
actors belonging to 𝐺𝑠𝑑 𝑓 . It is important to recall that the SDF graphs considered in this
thesis consist of stateful and/or stateless actors. The objective of this ILP formulation is
to minimize the period 𝜆 (or conversely to maximize the throughput 𝛽) achievable by 𝐺𝑠𝑑 𝑓

in a SWP schedule 𝜎. Let 𝑘𝑖 ∈ ℕ and 𝑞𝑖 ∈ ℕ∗ respectively denotes the firing index and the
granularity of an actor 𝑖 ∈ 𝑉 .

5.2.1 Cyclicity Constraints

In order to ensure that each firing of each actor is executed cyclically according to a period
𝜆, our ILP model incorporates the set of cyclicity constraints that must be fulfilled by any
SWP schedule 𝜎. These constraints are expressed by equation (3.4).

5.2.2 Resource Constraints

When scheduling 𝐺𝑠𝑑 𝑓 on 𝐺ℎ𝑚𝑎, we need to ensure that each firing of each actor is assigned
exactly to one PU. In order to formulate these constraints, we define a 0−1 integer variable
𝑤𝑥,𝑘𝑖 ,𝑖 such that:

𝑤𝑥,𝑘𝑖 ,𝑖 =

{
1 if the firing ⟨𝑘𝑖, 𝑖⟩ has been assigned to the PU 𝑥 .
0 otherwise.

©2020 Philippe Glanon 53

5.2. An Integer Linear Programming Model

Using this variable, we formulate the following set of resource constraints which ensure
that each firing of each actor is assigned to a single PU:∑

∀𝑥∈𝑅
𝑤𝑥,𝑘𝑖 ,𝑖 = 1, ∀𝑖 ∈ 𝑉 , ∀𝑘𝑖 ∈ [0, 𝑞𝑖) (5.1)

Since 𝐺𝑠𝑑 𝑓 consists of stateless actors whose firings may be executed in parallel and/or
stateful actors whose firings may be pipelined, we need to ensure that the execution of
independent firings of actors cannot overlap on a same PU. For this purpose, we formulate
the following set of inequalities:

𝜎 (𝑘𝑖, 𝑖) + Δ𝑥𝑖 − 𝜎 (𝑘 𝑗 , 𝑗) ≤ 𝑀 (1 −𝑤𝑥,𝑘𝑖 ,𝑖 ·𝑤𝑥,𝑘 𝑗 , 𝑗)
𝑜𝑟

𝜎 (𝑘 𝑗 , 𝑗) + Δ𝑥 𝑗 − 𝜎 (𝑘𝑖, 𝑖) ≤ 𝑀 (1 −𝑤𝑥,𝑘𝑖 ,𝑖 ·𝑤𝑥,𝑘 𝑗 , 𝑗)
∀𝑥 ∈ 𝑅,∀𝑖, 𝑗 ∈ 𝑉 ,∀𝑘𝑖 ∈ [0, 𝑞𝑖),∀𝑘 𝑗 ∈ [0, 𝑞 𝑗)

(5.2)

Actually, equation (5.2) is a set of non-linear disjunctive constraints which assert that
two firings assigned to the same PU cannot be executed at the same time on this PU.
In these constraints we use M, a big integer value such that the constraints hold only for
the firings assigned to the same computing unit, i.e 𝑤𝑥,𝑘𝑖 ,𝑖 = 𝑤𝑥,𝑘 𝑗 , 𝑗 = 1. The disjunctive
constraints described by equation (5.2) could be linearized in two steps. First, we replace
𝑀 (1 −𝑤𝑥,𝑘𝑖 ,𝑖 ·𝑤𝑥,𝑘 𝑗 , 𝑗) by 𝑀 (2 −𝑤𝑥,𝑘𝑖 ,𝑖 −𝑤𝑥,𝑘 𝑗 , 𝑗) and then equation (5.2) becomes:

𝜎 (𝑘𝑖, 𝑖) + Δ𝑥𝑖 − 𝜎 (𝑘 𝑗 , 𝑗) ≤ 𝑀 (2 −𝑤𝑥,𝑘𝑖 ,𝑖 −𝑤𝑥,𝑘 𝑗 , 𝑗)

𝑜𝑟

𝜎 (𝑘 𝑗 , 𝑗) + Δ𝑥 𝑗 − 𝜎 (𝑘𝑖, 𝑖) ≤ 𝑀 (2 −𝑤𝑥,𝑘𝑖 ,𝑖 −𝑤𝑥,𝑘 𝑗 , 𝑗)
∀𝑥 ∈ 𝑅,∀𝑖, 𝑗 ∈ 𝑉 ,∀𝑘𝑖 ∈ [0, 𝑞𝑖),∀𝑘 𝑗 ∈ [0, 𝑞 𝑗)

(5.3)

Second, we introduce another 0 − 1 integer variable 𝑑𝑘𝑖 ,𝑖,𝑘 𝑗 , 𝑗 such that:

𝑑𝑘𝑖 ,𝑖,𝑘 𝑗 , 𝑗 =

{
1 if the firing ⟨𝑘𝑖, 𝑖⟩ is scheduled before the firing ⟨𝑘 𝑗 , 𝑗⟩.
0 otherwise.

Now, using the variable 𝑑𝑘𝑖 ,𝑖,𝑘 𝑗 , 𝑗 the set of disjunctive constraints described by equation
(5.3) could be linearized and rewritten as:

54 ©2020 Philippe Glanon

5.2. An Integer Linear Programming Model

𝜎 (𝑘𝑖, 𝑖) + Δ𝑥𝑖 − 𝜎 (𝑘 𝑗 , 𝑗) ≤ 𝑀 (2 −𝑤𝑥,𝑘𝑖 ,𝑖 −𝑤𝑥,𝑘 𝑗 , 𝑗) +𝑀 (1 − 𝑑𝑘𝑖 ,𝑖,𝑘 𝑗 , 𝑗)
𝜎 (𝑘 𝑗 , 𝑗) + Δ𝑥 𝑗 − 𝜎 (𝑘𝑖, 𝑖) ≤ 𝑀 (2 −𝑤𝑥,𝑘𝑖 ,𝑖 −𝑤𝑥,𝑘 𝑗 , 𝑗) +𝑀𝑑𝑘𝑖 ,𝑖,𝑘 𝑗 , 𝑗

∀𝑥 ∈ 𝑅,∀𝑖, 𝑗 ∈ 𝑉 ,∀𝑘𝑖 ∈ [0, 𝑞𝑖),∀𝑘 𝑗 ∈ [0, 𝑞 𝑗)
(5.4)

Simplifying further, equation (5.4) becomes:

𝜎 (𝑘𝑖, 𝑖) + Δ𝑥𝑖 − 𝜎 (𝑘 𝑗 , 𝑗) ≤ 𝑀 (3 −𝑤𝑥,𝑘𝑖 ,𝑖 −𝑤𝑥,𝑘 𝑗 , 𝑗 − 𝑑𝑘𝑖 ,𝑖,𝑘 𝑗 , 𝑗)
𝜎 (𝑘 𝑗 , 𝑗) + Δ𝑥 𝑗 − 𝜎 (𝑘𝑖, 𝑖) ≤ 𝑀 (2 −𝑤𝑥,𝑘𝑖 ,𝑖 −𝑤𝑥,𝑘 𝑗 , 𝑗 + 𝑑𝑘𝑖 ,𝑖,𝑘 𝑗 , 𝑗)
∀𝑥 ∈ 𝑅,∀𝑖, 𝑗 ∈ 𝑉 ,∀𝑘𝑖 ∈ [0, 𝑞𝑖),∀𝑘 𝑗 ∈ [0, 𝑞 𝑗)

(5.5)

Equation (5.5) is actually a set of linear constraints that enforces a ILP solver to schedule
the firings ⟨𝑘𝑖, 𝑖⟩ before ⟨𝑘 𝑗 , 𝑗⟩ when the both firings are assigned to the same PU. Otherwise,
it enforces the firings ⟨𝑘 𝑗 , 𝑗⟩ to be scheduled before ⟨𝑘𝑖, 𝑖⟩ on the PU.

5.2.3 Communication and Precedence Constraints

In order to ensure that our ILP formulation can generate admissible SWP schedules, we
should incorporate the precedence constraints induced by every channel of 𝐺𝑠𝑑 𝑓 . By Theo-
rem 4.1, a SWP pipelined schedule 𝜎 is said admissible for a timed SDF graph 𝐺𝑡

𝑠𝑑 𝑓
, if and

only if for every channel 𝑒 = (𝑖, 𝑗) of 𝐺𝑡
𝑠𝑑 𝑓

, the following precedence constraints are fulfilled:

𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) ≥ 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
· 𝜆 + 𝛿𝑖 ∀𝑘𝑖 ∈ [0, 𝑞𝑖),∀𝑘 𝑗 ∈ [0, 𝑞 𝑗), ∀𝑋𝑚𝑎𝑥

𝑘𝑖𝑘 𝑗
≥ 𝑋𝑚𝑖𝑛

𝑘𝑖𝑘 𝑗
(5.6)

Actually, the constraints expressed by equation (5.6) were constructed for timed SDF
graphs regardless of communication constraints of a HMA and by assuming that the worst
case cost to execute a single firing of any actor is equal to 𝛿𝑖 . However, regarding the
description of 𝐺ℎ𝑚𝑎 (refer to section 3.4), the execution cost of a single firing of every actor
depends on the PU on which this firing is assigned. Moreover, whether a channel 𝑒 = (𝑖, 𝑗)
of 𝐺𝑠𝑑 𝑓 induces a dependency relation between two firings ⟨𝑘𝑖, 𝑖⟩ and ⟨𝑘 𝑗 , 𝑗⟩, which are
assigned respectively to a PU 𝑥 ∈ 𝑅 and a PU 𝑦 ∈ 𝑅 (with 𝑥 ≠ 𝑦), there exists a non-zero
communication cost between these firings. In order to consider these different costs in our
ILP formulation, we reformulate the precedence constraints described by equation (5.6)
and we get the following set of precedence and communication constraints:

𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) ≥ 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
· 𝜆 + ∑

∀𝑥∈𝑅
Δ𝑥𝑖 ·𝑤𝑥,𝑘𝑖 ,𝑖 +

∑
∀𝑥∈𝑅

∑
∀𝑦∈𝑅

Γ𝑥𝑦 ·𝑤𝑥,𝑘𝑖 ,𝑖 ·𝑤𝑦,𝑘 𝑗 , 𝑗 ,

∀𝑒 = (𝑖, 𝑗) ∈ 𝐸,∀𝑘𝑖 ∈ [0, 𝑞𝑖),∀𝑘 𝑗 ∈ [0, 𝑞 𝑗),∀𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
≥ 𝑋𝑚𝑖𝑛

𝑘𝑖𝑘 𝑗

(5.7)

©2020 Philippe Glanon 55

5.2. An Integer Linear Programming Model

Actually, equation (5.7) is a set of non-linear constraints, each associated with a pair of
dependent firings. These constraints could be linearized and rewritten as follows:

𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) ≥ 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
· 𝜆 + Δ𝑥𝑖 ·𝑤𝑥,𝑘𝑖 ,𝑖 + Γ𝑥𝑦 · (𝑤𝑥,𝑘𝑖 ,𝑖 +𝑤𝑦,𝑘 𝑗 , 𝑗 − 1),

∀𝑥,𝑦 ∈ 𝑅,∀𝑒 = (𝑖, 𝑗) ∈ 𝐸,∀𝑘𝑖 ∈ [0, 𝑞𝑖),∀𝑘 𝑗 ∈ [0, 𝑞 𝑗),∀𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
≥ 𝑋𝑚𝑖𝑛

𝑘𝑖𝑘 𝑗

(5.8)

In order to justify the equivalence between the constraints described by equations (5.7) and
(5.8), let us consider a channel 𝑒 = (𝑖, 𝑗) ∈ 𝐸 and let ⟨𝑘𝑖, 𝑖⟩ and ⟨𝑘 𝑗 , 𝑗⟩ be two firings such
that the execution of ⟨𝑘𝑖, 𝑖⟩ precedes the execution of ⟨𝑘 𝑗 , 𝑗⟩. Since each firing is assigned
exactly to a single PU (i.e. ∑

∀𝑥∈𝑅
𝑤𝑥,𝑘𝑖 ,𝑖 =

∑
∀𝑥∈𝑅

𝑤𝑥,𝑘 𝑗 , 𝑗 = 1), the two sums 𝑢 =
∑
∀𝑥∈𝑅

Δ𝑥𝑖 ·𝑤𝑥,𝑘𝑖 ,𝑖 and
𝑣 =

∑
∀𝑥∈𝑅

∑
∀𝑦∈𝑅

Γ𝑥𝑦 · 𝑤𝑥,𝑘𝑖 ,𝑖 · 𝑤𝑥,𝑘𝑖 ,𝑖 contain only one term different from zero. In fact, if ⟨𝑘𝑖, 𝑖⟩

is assigned to 𝑥∗ ∈ 𝑅 and ⟨𝑘 𝑗 , 𝑗⟩ is assigned to 𝑦∗ ∈ 𝑅, we can write 𝑤𝑥∗,𝑘𝑖 ,𝑖 = 𝑤𝑦∗,𝑘 𝑗 , 𝑗 = 1,
𝑢 = Δ𝑥∗𝑖 , 𝑣 = Γ𝑥∗𝑦∗ = Γ𝑥∗𝑦∗ (𝑤𝑥∗,𝑘𝑖 ,𝑖 + 𝑤𝑥∗,𝑘 𝑗 , 𝑗 − 1) and thus, the constraints described by
equations (5.7) and (5.8) can be rewritten as follows:

𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) ≥ 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
· 𝜆 + 𝑢 + 𝑣 (5.9)

which proves the equivalence between equations (5.7) and (5.8).

56 ©2020 Philippe Glanon

5.2. An Integer Linear Programming Model

P1

P2

P3

A

D

Iteration 1

Iteration 2

A

B

C

D

C

C

C

A A

B

C

D

C

C

C

D

A A

B

C

D

C

C

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration 0

D

Figure 5.1: An optimal scheduling solution obtained for the non-timed SDF graph and the
architecture of our running example.

To summarize, our ILP model incorporates equations (3.4), (5.1), (5.5) and (5.8) as
constraints and 𝜆 as objective function. A compact description of the model is given by:

(𝑃3)

𝑚𝑖𝑛 𝜆

𝜎 (𝑘𝑖 + 𝑛 · 𝑞𝑖, 𝑖) = 𝜎 (𝑘𝑖, 𝑖) + 𝑛 × 𝜆, ∀𝑖 ∈ 𝑉 , ∀𝑘𝑖 ∈ [0, 𝑞𝑖), ∀𝑛 ∈ ℕ. (3.4)∑
∀𝑥∈𝑅

𝑤𝑥,𝑘𝑖 ,𝑖 = 1, ∀𝑖 ∈ 𝑉 , ∀𝑘𝑖 ∈ [0, 𝑞𝑖). (5.1)

𝜎 (𝑘𝑖, 𝑖) + Δ𝑥𝑖 − 𝜎 (𝑘 𝑗 , 𝑗) ≤ 𝑀 (3 −𝑤𝑥,𝑘𝑖 ,𝑖 −𝑤𝑥,𝑘 𝑗 , 𝑗 − 𝑑𝑘𝑖 ,𝑖,𝑘 𝑗 , 𝑗), ∀𝑥 ∈ 𝑅,
∀𝑖, 𝑗 ∈ 𝑉 ,∀𝑘𝑖 ∈ [0, 𝑞𝑖),∀𝑘 𝑗 ∈ [0, 𝑞 𝑗). (5.5.1)

𝜎 (𝑘 𝑗 , 𝑗) + Δ𝑥 𝑗 − 𝜎 (𝑘𝑖, 𝑖) ≤ 𝑀 (2 −𝑤𝑥,𝑘𝑖 ,𝑖 −𝑤𝑥,𝑘 𝑗 , 𝑗 + 𝑑𝑘𝑖 ,𝑖,𝑘 𝑗 , 𝑗), ∀𝑥 ∈ 𝑅,
∀𝑖, 𝑗 ∈ 𝑉 ,∀𝑘𝑖 ∈ [0, 𝑞𝑖),∀𝑘 𝑗 ∈ [0, 𝑞 𝑗). (5.5.2)

𝜎 (𝑘 𝑗 , 𝑗) − 𝜎 (𝑘𝑖, 𝑖) ≥ 𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
· 𝜆 + Δ𝑥𝑖 ·𝑤𝑥,𝑘𝑖 ,𝑖 + Γ𝑥𝑦 · (𝑤𝑥,𝑘𝑖 ,𝑖 +𝑤𝑦,𝑘 𝑗 , 𝑗 − 1),

∀𝑥,𝑦 ∈ 𝑅,∀𝑒 = (𝑖, 𝑗) ∈ 𝐸,∀𝑘𝑖 ∈ [0, 𝑞𝑖),∀𝑘 𝑗 ∈ [0, 𝑞 𝑗),∀𝑋𝑚𝑎𝑥
𝑘𝑖𝑘 𝑗
≥ 𝑋𝑚𝑖𝑛

𝑘𝑖𝑘 𝑗
. (5.8)

𝑤𝑥,𝑘𝑖 ,𝑖 ∈ {0, 1}, ∀𝑥 ∈ 𝑅,∀𝑖 ∈ 𝑉 ,∀𝑘𝑖 ∈ [0, 𝑞𝑖). (𝐼1)
𝜎 (𝑘𝑖, 𝑖) ∈ ℚ+ ∀𝑖 ∈ 𝑉 , ∀𝑘𝑖 ∈ [0, 𝑞𝑖). (𝐼2)
𝜆 ∈ ℚ+∗. (𝐼3)

where constraints (𝐼1), (𝐼2) and (𝐼3) are integrity constraints on the decision variables of
the model (𝑃3). For any SDF graph 𝐺𝑠𝑑 𝑓 and any architecture 𝐺ℎ𝑚𝑎, the ILP model (𝑃3) can
be instantiated and solved with the ILP solver of CPLEX. Let us consider the non-timed
SDF graph shown in figure 2.6b and the architecture on which this graph is intended to be
deployed (figure 3.8). An optimal scheduling solution obtained with our ILP formulation
for this graph is depicted in figure 5.1, where 𝜆∗ = 6 and:

𝜎 (0, 𝐴)∗ = 0 𝜎 (0,𝐶)∗ = 2 𝜎 (3,𝐶)∗ = 4

𝜎 (1, 𝐴)∗ = 1 𝜎 (1,𝐶)∗ = 2 𝜎 (0, 𝐷)∗ = 5

𝜎 (0, 𝐵)∗ = 3 𝜎 (2,𝐶)∗ = 3 𝜎 (1, 𝐷)∗ = 7

©2020 Philippe Glanon 57

5.3. Decomposed Software Pipelined Scheduling

In this schedule, one can note that each firing of each actor is executed cyclically according
to the period 𝜆∗ and data parallelism is exploited since some firings of the stateless actor
𝐶 can execute out of order on different PUs. Although the ILP solver of CPLEX can find
a schedule that optimizes the value of 𝜆, the time to find this schedule can be exponential
for some instances of SDF graphs and architecture models. Therefore, we should design
approximated techniques to solve efficiently the problem. For this purpose we focus on
decomposed SWP scheduling approaches. Decomposed SWP scheduling is a technique
which consists in separating the SWP scheduling problem of a dataflow graph into two
sub-problems, the first being to satisfy the precedence and cyclicity constraints of (𝑃3) the
graph and the second being to satisfy the resource constraints.

5.3 Decomposed Software Pipelined Scheduling

In this section, we present a heuristic denoted by heterogeneous cyclic scheduling (HCS)
that is designed to solve the scheduling problem described by the ILP model (𝑃3). HCS
is a decomposed SWP scheduling heuristic based upon the heuristic of Gasperoni and
Schwielgelshohn [48], one of the first decomposed SWP scheduling heuristic for executing
cyclic dataflow graphs under resource constraints. In the first subsection, we briefly describe
the heuristic of Gasperoni and Schwielgelshohn that we denote by GS, and in the second
subsection, we present in detail our heuristic.

5.3.1 GS Heuristic

Description. Let 𝐺𝑡
ℎ𝑠𝑑 𝑓

= (𝑉 , 𝐸,𝑀0, 𝛿) be a timed HSDF graph —i.e. a timed SDF graph,
where the production and consumption rates of actors are all equal to 1 —and let us
consider a multiprocessor architecture with 𝑝 identical PUs for 𝐺𝑡

ℎ𝑠𝑑 𝑓
, where 𝑝 is a finite

number (𝑝 ≠ ∞) and the inter-PU communication costs are negligible. The main idea of GS
is the following. Assume that we have an optimal SWP schedule 𝜎∞ of period 𝜆∞ of 𝐺𝑡

ℎ𝑠𝑑 𝑓

for unlimited resources —i.e. a SWP schedule with 𝑝 = ∞ —and that we want to deduce
a SWP schedule 𝜎 of period 𝜆 of 𝐺𝑡

ℎ𝑠𝑑 𝑓
under resource constraints —i.e. a SWP schedule

with 𝑝 ≠ ∞ —. A way of building 𝜎 is to keep the structure of 𝜎∞ and to reorganize the
execution of actors within this latter schedule in such a way as to find the period 𝜆 that
meets both resource and precedence constraints. In order to achieve this, GS proceeds in
four steps. Each of these steps is described by Algorithm 2:

58 ©2020 Philippe Glanon

5.3. Decomposed Software Pipelined Scheduling

Algorithm 2: GS Heuristic
Input: 𝐺𝑡

ℎ𝑠𝑑 𝑓
= (𝑉 , 𝐸,𝑀0, 𝛿), an architecture with 𝑝 identical PUs.

Output: A valid SWP schedule 𝜎 of 𝐺𝑡
ℎ𝑠𝑑 𝑓

over T iterations.
// Step 1: Scheduling of 𝐺𝑡

ℎ𝑠𝑑 𝑓
without resource constraints.

1 Compute an optimal SWP schedule 𝜎∞ of period 𝜆∞ for 𝐺𝑡
ℎ𝑠𝑑 𝑓

under
unlimited number of PUs and let 𝜎∞(𝑛, 𝑖) be the starting time of the 𝑛𝑡ℎ

firing of actor 𝑖 ∈ 𝑉 in 𝜎∞;
// Step 2: Construction of an acyclic dependency graph 𝐺𝑎𝑑𝑔

2 𝐸𝑎𝑑𝑔 ← 𝐸;
3 foreach channel 𝑒 = (𝑖, 𝑗) ∈ 𝐸𝑎𝑑𝑔 do
4 if (𝜎∞(𝑛, 𝑗) mod 𝜆∞ < 𝜎∞(𝑛, 𝑖) mod 𝜆∞ + 𝛿𝑖) then
5 delete 𝑒 from 𝐸𝑎𝑑𝑔;
6 end
7 end
8 Set 𝐺𝑎𝑑𝑔 = (𝑉 , 𝐸𝑎𝑑𝑔, 𝛿);

// Step 3: Scheduling of 𝐺𝑎𝑑𝑔 under resource constraints.
9 Find a list schedule 𝜎𝑎 of 𝐺𝑎𝑑𝑔 under 𝑝 identical PUs and let 𝜆 be the length

of this schedule 𝜎𝑎 and 𝜎𝑎 (𝑖) be the starting time of any node 𝑖 ∈ 𝑉𝑎𝑑𝑔 in the
schedule 𝜎𝑎;

// Step 4: Computation of a SWP schedule 𝜎 of 𝐺𝑡
ℎ𝑠𝑑 𝑓

under resource
constraints.

10 foreach 𝑖 ∈ 𝑉 do
11 for 𝑛 ≤ 𝑇 do

12 𝜎 (𝑛, 𝑖) = 𝜎𝑎 (𝑖) +
(
𝑛 +

⌊𝜎∞(𝑛, 𝑖)
𝜆∞

⌋)
· 𝜆

13 end
14 end
15 return 𝜎;

• Step 1. A SWP schedule 𝜎∞ of period 𝜆∞ is built for 𝐺𝑡
ℎ𝑠𝑑 𝑓

with an infinite number
of resources. Since this schedule is not constrained by the number of resources,
it can be constructed in polynomial-time using an algorithmic approach [48] or by
instantiating and solving the linear programming model (𝑃1).

• Step 2. The dependency information described by the repetitive patterns of the
schedule 𝜎∞ are used to construct an acyclic dependency graph 𝐺𝑎𝑑𝑔 = (𝑉 , 𝐸𝑎𝑑𝑔, 𝛿),

©2020 Philippe Glanon 59

5.3. Decomposed Software Pipelined Scheduling

where 𝐸𝑎𝑑𝑔 is a set that contains every channel 𝑒 = (𝑖, 𝑗) ∈ 𝐸, except the channels for
which the following inequality is checked:

𝜎∞(𝑛, 𝑖) mod 𝜆∞ + 𝛿𝑖 > 𝜎∞(𝑛, 𝑗) mod 𝜆∞, ∀𝑛 ∈ ℕ (5.10)

where 𝜎∞(𝑛, 𝑗) mod 𝜆∞ and 𝜎∞(𝑛, 𝑗) mod 𝜆∞ respectively are the times at which nodes
𝑖 and node 𝑗 start for the first time in the schedule 𝜎∞. Actually, the inequality above
holds only for loop-carried dependency channels (i.e a channel with tokens) between
the firings of any pair of actors. Consequently, every channel 𝑒 = (𝑖, 𝑗) ∈ 𝐸𝑎𝑑𝑔 is a
direct dependency channel (i.e a channel without tokens).

• Step 3. A list-scheduling of 𝐺𝑎𝑑𝑔 is performed under resource constraints to deter-
mine a schedule 𝜎𝑎 of length 𝜆.

• Step 4. A valid SWP schedule 𝜎 of period 𝜆 is calculated with the following approx-
imation equation, which ensures the respect of cyclicity constraints for every actor
of 𝐺𝑡

ℎ𝑠𝑑 𝑓
while satisfying both resource and precedence constraints.

𝜎 (𝑛, 𝑖) = 𝜎𝑎 (𝑖) +
(
𝑛 +

⌊𝜎∞(𝑛, 𝑖)
𝜆∞

⌋)
· 𝜆, ∀𝑖 ∈ 𝑉 ,∀𝑛 ∈ ℕ (5.11)

The correctness of the heuristic 𝐺𝑆 can be found in [48]. To better explain the heuristic
𝐺𝑆, we illustrate the different steps described above, through the following example.

Example. Let 𝐺𝑡
ℎ𝑠𝑑 𝑓

be the timed HSDF graph depicted in figure 5.2a and let us assume
that we want to schedule this graph on a multiprocessor architecture with two identical PUs
(i.e. 𝑝 = 2). Applying the first step of algorithm 2, an optimal SWP schedule 𝜎∞ of period
𝜆∞ can be calculated for 𝐺𝑡

ℎ𝑠𝑑 𝑓
by instantiating and solving the linear programming model

(𝑃1) with CPLEX. Figure 5.2b shows a schedule 𝜎∞ for 𝐺𝑡
ℎ𝑠𝑑 𝑓

, where 𝜆∞ = 5. Based on this
schedule 𝜎∞, one can derive in step 2, an acyclic dependency graph𝐺𝑎𝑑𝑔, which contains only
the direct dependency channels of 𝐺𝑡

ℎ𝑠𝑑 𝑓
. Actually, the graph 𝐺𝑎𝑑𝑔 is obtained by deleting

all the dependency channels of 𝐺𝑡
ℎ𝑠𝑑 𝑓

for which the condition stated in equation 5.10 holds.
For instance, let us consider the channel (𝑐, 𝑎) within the graph 𝐺𝑡

ℎ𝑠𝑑 𝑓
. In each iteration of

the schedule 𝜎∞, one can note that the execution of 𝑛𝑡ℎ firing of actor 𝑎 starts before the
execution of the 𝑛𝑡ℎ firing of actor 𝑐 finishes, i.e 𝜎∞(𝑛, 𝑐) mod 𝜆∞ + 𝛿𝑐 > 𝜎∞(𝑛, 𝑎) mod 𝜆∞.
This means that the dependency relation from 𝑎 to 𝑐 is not a direct dependency but rather a
loop-carried dependency; thus, the channel (c,a) can be removed from the set of channels of

60 ©2020 Philippe Glanon

5.3. Decomposed Software Pipelined Scheduling

1

1 1

1

a,2 b,3

g,3d,2c,2

e,1 f,1

(a) A timed HSDF graph 𝐺𝑡
ℎ𝑠𝑑 𝑓

f

a

c

Iteration 0

e

d

f

a

c

b

g

e

f

d

f

a

c

g

Iteration 1

Iteration 2

b

e

d𝒑 = ∞

P1

P2

P3

.

.

.

P∞

b

g

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(b) An optimal SWP schedule 𝜎∞ of 𝐺𝑡
ℎ𝑠𝑑 𝑓

for 𝑝 = ∞

a,2 b,3

g,3d,2c,2

e,1 f,1

(c) Acyclic precedence graph 𝐺𝑎𝑑𝑔

ca

f

b

g e d

0 1 2 3 4 5 6

𝒑 = 𝟐
P1

P2

7

(d) list schedule 𝜎𝑎 of 𝐺𝑎𝑑𝑔 for 𝑝 = 2

ca

f

Iteration 0

b

g e

Iteration 1

Iteration 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝒑 = 𝟐
P1

P2

ca

f

b

g e d

a

f g

17 18 19 20 21

e

db

e

(e) A SWP schedule 𝜎 of period 𝜆 for 𝐺𝑡
ℎ𝑠𝑑 𝑓

under resource constraints

Figure 5.2: An illustration example for the Heuristic GS (algorithm 2).

𝐺𝑎𝑑𝑔. Figure 5.2c depicts the acyclic graph 𝐺𝑎𝑑𝑔 derived from 𝐺𝑡
ℎ𝑠𝑑 𝑓

. Now, in the third step,
the graph 𝐺𝑎𝑑𝑔 is scheduled under resource constraints (p=2) by means of a list scheduler
𝜎𝑎 that executes as soon as possible the actors of 𝐺𝑎𝑑𝑔 on the 𝑝 identical resources. Figure
5.2d depicts this schedule whose length is 𝜆 = 6 for our example. Finally, in the fourth
step, a SWP schedule 𝜎 is calculated under resource constraints using the approximation
stated by equation . For our example, this schedule is depicted in figure 5.2e. As it can
be noted, the period of the schedule 𝜎 is given by length of the schedule 𝜎𝑎. Hence, the
performance of GS depends on that of the schedule 𝜎𝑎.

Theoretical performance. Gasperoni and Schwielgelshohn have given a theoretical up-
per bound to the iteration period 𝜆 of the schedule returned by algorithm 2. Let 𝜆∗ be the
period of an optimal SWP schedule 𝜎 of 𝐺𝑠𝑑 𝑓 for 𝑝 identical PUs. The upper bound of 𝜆

©2020 Philippe Glanon 61

5.3. Decomposed Software Pipelined Scheduling

is characterized by the following inequality:

𝑝 · 𝜆 ≤ 𝑝 · 𝜆∗ + (𝑝 − 1) · Φ

where Φ is the length of the longest path in 𝐺𝑎𝑑𝑔. Owing to channel deletion strategy,
Φ ≤ 𝜆∞ + 𝛿𝑚𝑎𝑥 − 1 (see lemma 1 in [48]). Thus, the inequality above can be rewritten as:

𝑝 · 𝜆 ≤ 𝑝 · 𝜆∗ + (𝑝 − 1) (𝜆∞ + 𝛿𝑚𝑎𝑥 − 1)

which leads to:
𝜆

𝜆∗
≤ 2 − 1

𝑝
+
(𝑝 − 1

𝑝

) (𝜆∞ + 𝛿𝑚𝑎𝑥 − 1
𝜆∗

)
5.3.2 HCS Heuristic

Let 𝐺𝑠𝑑 𝑓 = (𝑉 , 𝐸,𝑀0, 𝑃,𝐶) be a consistent, live and non-timed SDF graph and let 𝐺ℎ𝑚𝑎 =

(𝑅,Δ, Γ) be the architecture on which 𝐺𝑠𝑑 𝑓 is intended to be deployed. The heuristic HCS
shares the same idea with the heuristic GS. However, the main difference between these
heuristics is that HCS accommodates both the resource and communication constraints
of heterogeneous multiprocessor architectures to schedule SDF graphs. Before presenting
HCS, we first convert 𝐺𝑠𝑑 𝑓 into an equivalent homogeneous SDF graph 𝐺ℎ𝑠𝑑 𝑓 = (𝑉 ′, 𝐸′, 𝑀′0).
The construction of 𝐺ℎ𝑠𝑑 𝑓 = (𝑉 ′, 𝐸′, 𝑀′0) is performed using Algorithm 1, which generates
for any consistent SDF graph, an equivalent homogeneous representation with a minimal
number of channels. Actually, 𝑉 ′ is a set of nodes 𝑖

𝑘
where 𝑖 ∈ 𝑉 and 𝑘 ∈ [1, 𝑞𝑖], 𝑞𝑖 being

the granularity of actor 𝑖. 𝐸′ is the set of arcs between these firings and 𝑀′0 is a function,
that associates with each arc 𝑒′ = (𝑖

𝑘
, 𝑗
𝑘 ′) ∈ 𝐸′, an initial number of tokens. Previously

presented, figure 3.2 depicts the equivalent homogeneous graph obtained with Algorithm
1 for the non-timed SDF graph of our running example (refer to figure 2.6b).

HCS takes as inputs 𝐺𝑠𝑑 𝑓 , 𝐺ℎ𝑠𝑑 𝑓 and 𝐺ℎ𝑚𝑎, and it outputs a SWP schedule of 𝐺ℎ𝑠𝑑 𝑓 on
𝐺ℎ𝑚𝑎. The heuristic is illustrated by Algorithm 3. Actually, HCS consists of four steps.
Each of these steps are described below.

62 ©2020 Philippe Glanon

5.3. Decomposed Software Pipelined Scheduling

Algorithm 3: HCS-Heterogeneous Cyclic Scheduling
Input: 𝐺𝑠𝑑 𝑓 = (𝑉 , 𝐸,𝑀0, 𝑃,𝐶), 𝐺ℎ𝑠𝑑 𝑓 = (𝑉 ′, 𝐸 ′, 𝑀 ′0), 𝐺ℎ𝑚𝑎 = (𝑅,Δ, Γ).
Output: A SWP schedule 𝜎 for 𝐺𝑠𝑑 𝑓 on 𝐺ℎ𝑚𝑎 over T iterations.
// Step 1: Scheduling without resource and communication constraints.

1 Set 𝐺ℎ𝑠𝑑 𝑓 into a timed homogeneous SDF graph 𝐺𝑡
ℎ𝑠𝑑 𝑓

= (𝑉 ′, 𝐸 ′, 𝑀 ′0, 𝛿) and find an optimal
SWP schedule 𝜎∞ of period 𝜆∞ for 𝐺𝑡

ℎ𝑠𝑑 𝑓
under unlimited number of resources, and let

𝜎∞(𝑛, 𝑖𝑘) be the starting time of the 𝑛𝑡ℎ firing of actor 𝑖
𝑘
∈ 𝑉 ′ in the schedule 𝜎∞;

// Step 2: Construction of an acyclic dependency graph.
2 𝐸𝑎𝑑𝑔 ← 𝐸 ′;
3 foreach channel 𝑒 ′ = (𝑖

𝑘
, 𝑗

𝑘′) ∈ 𝐸𝑎𝑑𝑔 do
4 if (𝜎∞(𝑛, 𝑗𝑘′) mod 𝜆∞ < 𝜎∞(𝑛, 𝑖𝑘) mod 𝜆∞ + 𝛿𝑖) then
5 delete the channel 𝑒 ′ from 𝐸𝑎𝑑𝑔;
6 end
7 end
8 Set 𝐺𝑎𝑑𝑔 = (𝑉 ′, 𝐸𝑎𝑑𝑔, 𝛿);

// Step 3: List scheduling under resource and communication constraints.
9 Use Algorithm 4 to find a list schedule 𝜎𝑎 of 𝐺𝑎𝑑𝑔 on 𝐺ℎ𝑚𝑎 ;

// Step 4: Derive a SWP schedule 𝜎 of period 𝜆 for 𝐺ℎ𝑠𝑑 𝑓 under the resource and
communication constraints of 𝐺ℎ𝑚𝑎.

10 𝜆 ← 0;
11 foreach actor 𝑖

𝑘
∈ 𝑉 ′ do

12 Let 𝑠𝑢𝑐𝑐 (𝑖
𝑘
) be the set of successors of 𝑖

𝑘
in the graph 𝐺ℎ𝑠𝑑 𝑓 , 𝐴𝐹𝑇 (𝑖

𝑘
) be the actual

finishing time of 𝑖
𝑘

in the schedule 𝜎𝑎 and 𝑝𝑟𝑜𝑐 (𝑖
𝑘
) be the processing unit on which 𝑖

𝑘
is

mapped to in the schedule 𝜎𝑎;
13 foreach 𝑗

𝑘′ ∈ 𝑠𝑢𝑐𝑐 (𝑖𝑘) do
14 if (𝜆 < 𝐴𝐹𝑇 (𝑖𝑘) + Γ𝑝𝑟𝑜𝑐 (𝑖

𝑘
)𝑝𝑟𝑜𝑐 (𝑗

𝑘′)) then
15 𝜆 ← 𝐴𝐹𝑇 (𝑖𝑘) + Γ𝑝𝑟𝑜𝑐 (𝑖

𝑘
)𝑝𝑟𝑜𝑐 (𝑗

𝑘′) ;
16 end
17 end
18 end
19 foreach actor 𝑖

𝑘
∈ 𝑉 ′ do

20 for 𝑛 ≤ 𝑇 do
21 𝜎 (𝑛, 𝑖

𝑘
) = 𝜎𝑎 (𝑖𝑘) + 𝑛 · 𝜆

22 end
23 end
24 return 𝜎;

©2020 Philippe Glanon 63

5.3. Decomposed Software Pipelined Scheduling

Algorithm 4: HAS-Heterogeneous Acyclic Scheduling
Input: 𝐺𝑎𝑑𝑔 = (𝑉 ′, 𝐸𝑎𝑑𝑔, 𝛿), 𝐺ℎ𝑚𝑎 = (𝑅,Δ, Γ)
Output: A list schedule 𝜎𝑎

// Phase 1: prioritizing
1 Compute the scheduling rank of each node 𝑖

𝑘
∈ 𝑉 ′ and generate a scheduling list, where

nodes are sorted by increasing order of scheduling ranks;
// Phase 2: mapping

2 while the scheduling list is not empty do
3 Select the first node 𝑖

𝑘
from the scheduling list;

4 foreach resource 𝑥 ∈ 𝑅 do
5 Compute 𝐸𝐹𝑇 (𝑥, 𝑖

𝑘
) using an insertion-based scheduling policy;

6 end
7 Get the resource 𝑥 that minimizes the value of EFT and map the node 𝑖

𝑘
on 𝑥 ;

8 end
9 return the schedule 𝜎𝑎 ;

Description of HCS

• Step 1. Firstly, the graph 𝐺ℎ𝑠𝑑 𝑓 is set into a timed homogeneous SDF graph 𝐺𝑡
ℎ𝑠𝑑 𝑓

=

(𝑉 ′, 𝐸′, 𝑀′0, 𝛿), where 𝛿 : 𝑉 ′→ ℕ∗ is a function that associates a time budget 𝛿𝑖
𝑘

with
every node 𝑖𝑘 ∈ 𝑉 ′, such that:

𝛿𝑖𝑘 = Δ(𝑚𝑎𝑥)
𝑖 + Γ𝑚𝑎𝑥 (5.12)

where Δ𝑚𝑎𝑥
𝑖 is the worst delay to process a firing actor 𝑖 on the architecture 𝐺ℎ𝑚𝑎

and Γ𝑚𝑎𝑥 is the maximum inter-PU communication delay. Figure 5.3a illustrates the
graph 𝐺𝑡

ℎ𝑠𝑑 𝑓
for our running example, where for any value of 𝑘 the time costs of nodes

are given by 𝛿𝐴𝑘=7, 𝛿𝐵𝑘=5, 𝛿𝐶𝑘=8, and 𝛿𝐷𝑘=5. Secondly, an initial SWP schedule 𝜎∞

is calculated. Actually, this schedule does not satisfy neither the resource constraints
nor the communication of 𝐺ℎ𝑚𝑎, however it gives some interesting information about
the dependency relations between the nodes of 𝐺ℎ𝑠𝑑 𝑓 .

• Step 2. According to the dependency information given by the schedule 𝜎∞, HCS
constructs an acyclic dependency graph 𝐺𝑎𝑑𝑔 = (𝑉 ′, 𝐸𝑎𝑑𝑔, 𝛿), where 𝐸𝑎𝑑𝑔 is the set of
direct dependency channels of 𝐺𝑡

ℎ𝑠𝑑 𝑓
. Actually, the graph 𝐺𝑎𝑑𝑔 is obtained by deleting

every loop-carried dependency channel in 𝐺𝑡
ℎ𝑠𝑑 𝑓

. The channel deletion strategy used
is the same than that previously described for the heuristic GS.

• Step 3. HCS performs the list-scheduling of the acyclic graph 𝐺𝑎𝑑𝑔 under resource

64 ©2020 Philippe Glanon

5.3. Decomposed Software Pipelined Scheduling

and communication constraints. For this purpose, we have designed a list-scheduling
algorithm denoted by HAS (algorithm 4), where HAS stands for heterogeneous acyclic
scheduling. HAS takes as inputs the graph 𝐺𝑎𝑑𝑔, the architecture model 𝐺ℎ𝑚𝑎 and
it outputs a list schedule 𝜎𝑎 for 𝐺𝑎𝑑𝑔 under resource and communication constraints.
The list-scheduling algorithm consists of two phases:

– Prioritizing Phase. This phase requires the scheduling rank (i.e. the priority)
of each node of 𝐺𝑎𝑑𝑔 to be calculated firstly. The scheduling rank of a node
𝑖
𝑘
∈ 𝑉 ′ is calculated by a recursive function rank given by:

𝑟𝑎𝑛𝑘 (𝑖𝑘) = max
𝑗
𝑘 ′∈ 𝑝𝑟𝑒𝑑 (𝑖

𝑘
)

{
𝑟𝑎𝑛𝑘 (𝑗𝑘 ′) + 𝛿 𝑗𝑘 ′

}
(5.13)

where 𝑝𝑟𝑒𝑑 (𝑖
𝑘
) is the set of immediate predecessors of 𝑖

𝑘
. For every node without

predecessors, 𝑟𝑎𝑛𝑘 (𝑖
𝑘
) is set to zero. Secondly, a scheduling list is generated by

sorting the nodes of𝐺𝑎𝑑𝑔 by increasing order of scheduling ranks. Tie-breaking is
randomly performed to sort the nodes with equal ranks. It can easily be shown
that the increasing order of scheduling ranks provides a topological order of the
nodes, which is a linear order that preserves the dependency relations.

– Mapping Phase. Nodes are selected from the scheduling list by increasing
order of the ranks, and each node is allocated to the available processing resource
𝑥 ∈ 𝑅 that minimizes its earliest finishing time (EFT). To map a selected node
on a selected processing resource, we use an insertion-based scheduling policy
that tries to insert if possible the node in an earliest idle time slot of the resource
(i.e an idle time interval between two already scheduled nodes on this resource)
while ensuring the preservation of precedence constraints. Let 𝐸𝐹𝑇 (𝑥, 𝑖𝑘) be the
earliest finishing time of the node 𝑖𝑘 ∈ 𝑉 ′ on the resource 𝑥 ∈ 𝑅. This function
is defined as follows:

𝐸𝐹𝑇 (𝑥, 𝑖𝑘) = max
{
𝑎𝑣𝑎𝑖𝑙 (𝑥), ready(𝑥, 𝑖𝑘)

}
+ Δ𝑥𝑖 (5.14)

where 𝑎𝑣𝑎𝑖𝑙 (𝑥) is the earliest time at which the PU 𝑥 is available to execute
a new node and 𝑟𝑒𝑎𝑑𝑦 (𝑥, 𝑖𝑘) is the time instant at which the node 𝑖𝑘 can be
processed on the resource 𝑥 . In order to fulfill precedence and communication
constraints, we define 𝑟𝑒𝑎𝑑𝑦 (𝑥, 𝑖𝑘) by the following equation:

ready(𝑥, 𝑖𝑘) = max
𝑗
𝑘 ′ ∈ 𝑝𝑟𝑒𝑑 (𝑖

𝑘
)

{
𝐴𝐹𝑇 (𝑗𝑘 ′) + Γ𝑝𝑟𝑜𝑐 (𝑗𝑘 ′)𝑥

}
(5.15)

©2020 Philippe Glanon 65

5.3. Decomposed Software Pipelined Scheduling

where 𝑝𝑟𝑒𝑑 (𝑖
𝑘
) is the set of direct predecessors of 𝑖

𝑘
in the graph𝐺𝑎𝑑𝑔, 𝐴𝐹𝑇 (𝑗𝑘 ′) is

the actual finishing time of the node 𝑗
𝑘 ′ and 𝑝𝑟𝑜𝑐 (𝑗

𝑘 ′) is the processing resource
on which the node 𝑗

𝑘 ′ is mapped to. For nodes without predecessors, 𝑟𝑒𝑎𝑑𝑦 (𝑥, 𝑖
𝑘
)

is set to zero.

• Step 4. A valid SWP schedule 𝜎 of period 𝜆 for 𝐺ℎ𝑠𝑑 𝑓 is derived under the resource
and communication constraints of 𝐺ℎ𝑚𝑎. In order to derive this schedule, we first
calculate the period 𝜆 with the information provided by the schedule 𝜎𝑎 and the
communication matrix Γ, where 𝜆 is the minimum time required to process both the
computations and communications of every actor in a single iteration of 𝐺ℎ𝑠𝑑 𝑓 . Using
this period we derive the schedule 𝜎 with the following cyclicity equation:

𝜎 (𝑛, 𝑖𝑘) = 𝜎𝑎 (𝑖𝑘) + 𝑛 · 𝜆. (5.16)

Correctness of HCS

Theorem 5.1 (correctness of HCS). The schedule 𝜎 of period 𝜆 obtained with Algorithm
3 satisfies both resources, cyclicity, precedence and communication constraints.

Proof. Resource constraints are obviously met because of the list scheduling algorithm (i.e.
Algorithm 4), which ensures that any node in 𝐺𝑎𝑑𝑔 is assigned to a single resource and the
execution of firings allocated to the same resource are not overlapped. The respect of
cyclicity constraints is ensured by equation 5.16, which guarantees that the computations
and communications of every node 𝑖𝑘 ∈ 𝑉 ′ are processed cyclically according to the period
𝜆. Now to ensure that precedence and communication constraints are fulfilled, let us
consider a channel 𝑒′ = (𝑖𝑘 , 𝑗𝑘 ′) ∈ 𝐸′ and let us assume that the firings of nodes 𝑖

𝑘
and 𝑗

𝑘 ′

are respectively assigned to resources 𝑥∗ and 𝑦∗.

On one hand, if 𝑒′ is a direct dependency channel (i.e. 𝑒′ ∈ 𝐸𝑎𝑑𝑔), then:

𝜎 (𝑛, 𝑗𝑘 ′) ≥ 𝜎 (𝑛, 𝑖𝑘) + Δ𝑥∗𝑖 + Γ𝑥∗𝑦∗ .

By equation (5.16), the inequality above can be rewritten and simplified as:

𝜎𝑎 (𝑗𝑘 ′) ≥ 𝜎𝑎 (𝑖𝑘) + Δ𝑥∗𝑖 + Γ𝑥∗𝑦∗ .

Since 𝜎𝑎 is the schedule of the acyclic dependency graph 𝐺𝑎𝑑𝑔, this inequality always hold
and thus, precedence and communication constraints are satisfied.

66 ©2020 Philippe Glanon

5.3. Decomposed Software Pipelined Scheduling

On the other hand, if 𝑒′ is a loop-carried dependency channel (i.e. 𝑒′ ∉ 𝐸𝑎𝑑𝑔), then:

𝜎 (𝑛 +𝑚0(𝑒′), 𝑗𝑘 ′) − 𝜎 (𝑛, 𝑖𝑘) ≥ Δ𝑥∗𝑖 + Γ𝑥∗𝑦∗

By equation (5.16), this inequality can be rewritten as:

𝜎𝑎 (𝑗𝑘 ′) + (𝑛 +𝑚0(𝑒′)) · 𝜆 − 𝜎𝑎 (𝑖𝑘) − 𝑛 · 𝜆 ≥ Δ𝑥∗𝑖 + Γ𝑥∗𝑦∗ .

Simplifying further and reordering, we get:

𝜎𝑎 (𝑗𝑘 ′) ≥ 𝜎𝑎 (𝑖𝑘) + Δ𝑥∗𝑖 + Γ𝑥∗𝑦∗ −𝑚0(𝑒′) · 𝜆.

This implies that, the schedule 𝜎 fulfils the precedence and communication constraints
induced by loop-carried dependency channels of 𝐺ℎ𝑠𝑑 𝑓 and the proof is achieved. �

Illustration of HCS

In order to illustrate the different steps of the heuristic HCS, let 𝐺𝑠𝑑 𝑓 , 𝐺ℎ𝑠𝑑 𝑓 and 𝐺ℎ𝑚𝑎

respectively be the non-timed SDF graph shown in figure 2.6b, the equivalent HSDF graph
of this graph (refer to figure 3.2) and the multiprocessor architecture of our running example
(refer to figure 3.8).

• Step 1: 𝐺ℎ𝑠𝑑 𝑓 is set into a timed HSDF graph 𝐺𝑡
ℎ𝑠𝑑 𝑓

. Figure 5.3a depicts the graph
𝐺𝑡
ℎ𝑠𝑑 𝑓

, where for any value of 𝑘, the time budgets of nodes are given by 𝛿𝐴𝑘=7, 𝛿𝐵𝑘=5,
𝛿𝐶𝑘=8, and 𝛿𝐷𝑘=5. Considering these time budgets, an optimal SWP schedule 𝜎∞

of period 𝜆∞ is calculated for 𝐺𝑡
ℎ𝑠𝑑 𝑓

without considering resource and communica-
tion constraints. Figure 5.3c presents the schedule 𝜎∞ of period 𝜆∞ = 17 for our
running example. This schedule is obtained by instantiating and solving the linear
programming model (𝑃2).

• Step 2: an acyclic dependency graph 𝐺𝑎𝑑𝑔 is generated by deleting all the loop-
carried dependency channels in 𝐺𝑡

ℎ𝑠𝑑 𝑓
. Figure 5.3b illustrates this acyclic dependency

graph for our running example.

©2020 Philippe Glanon 67

5.3. Decomposed Software Pipelined Scheduling

1

2 1

1

1

B1, 5

C1, 8

C2, 8A1, 7

A2, 7 C3, 8

C4, 8

D1, 5

D2, 5

(a) Timed homogeneous graph 𝐺𝑡
ℎ𝑠𝑑𝑔

B1, 5

C1, 8

C2, 8A1, 7

A2, 7 C3, 8

C4, 8

D1, 5

D2, 5

(b) Acyclic dependency graph 𝐺𝑎𝑑𝑔

48

Iteration 0

Iteration 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A1

C1

B1

C2

A2

D2D1

A1

C3

C4

25 26 27 28 29 30 31 32 33 34 35 36

A2

C2

C1

B1

D1

37 38 39 40 41 42 43 44 45 46

C4

C3

D2

A1

Iteration 2

47

A2

C2

C1

49

(c) An optimal SWP schedule 𝜎∞ of 𝐺𝑡
ℎ𝑠𝑑 𝑓

C4

P1

P2

P3

A1

C3C1
B1

0 1 2 3 4 5 6 7 8

C2

D2D1

A2

(d) List schedule of 𝐺𝑎𝑑𝑔 un-
der resource and communica-
tion constraints

P1

P2

P3

A1

D2

Iteration 1

C2

B1

C1 C3

A2

C4

C2A1

B1

C1
D1

A2

C4
D2

A1 C2

B1

C1

A2

C3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Iteration 0

22 23 24

C3
D1

C4

D2D1

Iteration 2

25 26

(e) A SWP 𝜎 of 𝐺ℎ𝑠𝑑 𝑓 under resource and communication constraints

Figure 5.3: Illustration of the Heuristic HCS.

• Step 3: Algorithm 4 is used to perform the list schedule of 𝐺𝑎𝑑𝑔 under the resource
and communication constraints of 𝐺ℎ𝑚𝑎. The first phase (i.e. the prioritizing phase)
of this algorithm consists in generating a scheduling list where the nodes of 𝐺𝑎𝑑𝑔 are
sorted by increasing order of rank. Table 5.1 shows an example of scheduling list for
our running example. The second phase of Algorithm 4 (i.e. the mapping phase)
consists to schedule and to map each node of the scheduling list on the processing
unit 𝐺ℎ𝑚𝑎 that minimizes the earliest finishing time. Figure 5.3d depicts the schedule
𝜎𝑎 obtained with Algorithm 4 for the graph 𝐺𝑎𝑑𝑔 of our running example.

68 ©2020 Philippe Glanon

5.4. Conclusion

Table 5.1: Scheduling list for the acyclic dependency graph of Fig. 5.3b

𝑖𝑘 𝐴1 𝐴2 𝐶1 𝐶2 𝐵1 𝐶3 𝐶4 𝐷1 𝐷2

𝑟𝑎𝑛𝑘 (𝑖𝑘) 0 7 7 7 14 14 14 19 24

• Step 4: Using the information provided by the list schedule 𝜎𝑎, the communication
matrix Γ, and the SWP schedule 𝜎∞, we derive a valid SWP schedule 𝜎 of period
𝜆 for 𝐺ℎ𝑠𝑑 𝑓 under resource and communication constraints. Figure 5.3e depicts the
schedule 𝜎 of period 𝜆 = 9 returned by the heuristic HCS for the application graph and
the architecture of our running example. It can easily be proved that this schedule
satisfies both cyclicity, resource, precedence and communication constraints and a
new iteration of 𝐺ℎ𝑠𝑑 𝑓 occurs according to the period 𝜆 = 9.

In order to validate the heuristic HCS, we need to study and to characterize the performance
achievable by the heuristic HCS according to the performance achievable by an ILP solver
for different instances of SDF graphs and multiprocessor architectures. In the next chapter,
we will present and discuss in detail the performance results obtained.

5.4 Conclusion
In this chapter, we have presented an ILP model and a heuristic denoted by HCS for
the scheduling and throughput optimization problem of SDF graphs on heterogeneous
multiprocessor architectures under resource and communication constraints. The next
chapter will be dedicated to the performance evaluation and discussion.

©2020 Philippe Glanon 69

CHAPTER 6

Validation

Contents
6.1 Introduction . 71

6.2 Evaluation Metrics . 71

6.3 Experiments with Synthetic Benchmarks 72

6.3.1 Benchmarks Generation . 72

6.3.2 Performance Results . 73

6.4 Experiments with StreamIt Benchmarks 75

6.4.1 StreamIt Benchmarks . 75

6.4.2 Performance Results . 75

6.5 Conclusion . 77

70

6.1. Introduction

6.1 Introduction
In this chapter, we present the performance results for the heuristic HCS. Performance eval-
uation have been achieved using synthetic benchmarks and real-world application bench-
marks. All experiments were performed on a PC Intel(R) core TM i7-7600U running at
2.80GHz with 16GB of RAM. In order to calculate an exact scheduling solution for a given
benchmark, we use the ILP solver of CPLEX 12.5.0 and OPL script language to instantiate
and solve our ILP formulation for the benchmark.

6.2 Evaluation Metrics
Our experiments are based on the following performance metrics:

• Solving Time: the time to find a scheduling solution.

• Bound Gap (BG): this metric is the average ratio between the scheduling solutions
obtained with HCS and the ILP solver of CPLEX. It enables to evaluate how far the
throughput of schedules returned by the heuristic HCS is from the throughput of
schedules generated with the ILP solver. The value of BG is given by:

𝐵𝐺 =
𝜆ℎ𝑐𝑠 − 𝜆𝑐𝑝𝑙𝑒𝑥

𝜆𝑐𝑝𝑙𝑒𝑥
× 100 (6.1)

where 𝜆ℎ𝑐𝑠 and 𝜆𝑐𝑝𝑙𝑒𝑥 are respectively the periods of scheduling solutions obtained
with HCS and CPLEX. A low percentage of BG means that the scheduling solu-
tion obtained with HCS is very close to the solution obtained with the ILP solver.
Conversely, a high percentage of BG implies that the solution obtained with HCS is
suboptimal compared to that obtained with the ILP solver.

• Speedup. Speedup is defined as the sequential execution time of a SDFG divided
by the latency (T) of this graph, where T is the amount of time required to execute
all the firings of every actor in each stable iteration of the graph. To calculate the
sequential execution time of a SDFG, we assign the firings of every actor to the
single PU that minimizes the cumulative computation costs and we characterize the
speedup by the following equation:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =

min
𝑥 ∈𝑅

[∑
𝑖∈𝑉

𝑞𝑖 × Δ𝑥𝑖

]
T (6.2)

©2020 Philippe Glanon 71

6.3. Experiments with Synthetic Benchmarks

Table 6.1: Results of Average Solving Times (sec) for different synthetic benchmarks

Benchmarks NP=2 NP=4 NP=8 NP=16
– HCS ILP HCS ILP HCS ILP HCS ILP

NA=10 2.44 176.45 7.29 302.36 18.77 4287.25 119.58 12480.02
NA=20 4.17 208.11 9.03 543.08 22.68 6745.97 172.71 ∞
NA=30 5.92 324.21 11.82 675.57 27.11 8123.66 189.6 ∞
NA=40 6.98 395.64 14.09 793.41 35.79 9745.71 201.2 ∞
NA=50 8.71 417.08 16.78 906.5 43.16 12456.73 224.38 ∞
NA=100 10.16 745.67 22.27 1203.66 53.19 16289.92 378.45 ∞

6.3 Experiments with Synthetic Benchmarks

6.3.1 Benchmarks Generation

In order to achieve a broad range of experiments, we have generated synthetic SDF graphs
using Turbine1, a multi-functional tool presented in [27], that randomly generates consis-
tent, live, cyclic and acyclic dataflow graphs. General settings for a SDFG shape are the
number of actors (NA) and the outgoing degree (outDeg) of an actor. In order to gener-
ate heterogeneous computing architecture for each SDF graph, we have adapted Turbine
with a function that takes as inputs five parameters (NP, HFS, HFC, MCC, MIPCC) and
outputs asymmetric computation and communication cost matrices as described in Fig-
ure 3.8b. The parameter NP stands for the number of processing units (PUs) on a given
architecture. HFS and HFC stand respectively for the heterogeneity factor for PUs speed
and the heterogeneity factor for inter-PUs communication. A high percentage of HFS
implies high difference in computation costs for the PUs and a high percentage of HFC
implies high difference in communication costs. MCC and MIPCC stand respectively for
the mean computation cost of the input SDFG instance and the mean inter-PUs commu-
nication cost. In order to generate the computation cost matrix, the generation function
selects randomly a mean computation cost Δ̄𝑖 of every actor 𝑖 from an uniform distribution
in the range of 0 to 0.2×𝑀𝐶𝐶 and then, the computation cost of every actor on every PU is
randomly selected from an uniform distribution of range Δ̄𝑖×

(
1− 𝐻𝐹𝑆

2

)
≤ Δ𝑥𝑖 ≤ Δ̄𝑖×

(
1+ 𝐻𝐹𝑆

2

)
.

Replacing 𝑀𝐶𝐶, 𝐻𝐹𝑆, Δ𝑥𝑖 , Δ̄𝑖 respectively by MIPC, HFC, Γ𝑥𝑦, Γ̄𝑥𝑦 in this distribution, we
generate the communication cost matrix. By definition, we set Γ𝑥𝑦 = Γ𝑦𝑥 for each pair (𝑥,𝑦)
of PUs and whether 𝑥 is equal to 𝑦, we set the value of Γ𝑥𝑦 to 0.

The following sets were considered for the experiments: NA={10, 20, 30, 40, 50,

1https://github.com/bbodin/turbine

72 ©2020 Philippe Glanon

6.3. Experiments with Synthetic Benchmarks

0

5

10

15

20

25

30

35

40

NA=10 NA=20 NA=30 NA=40 NA=50 NA=100

M
in

im
u

m
 B

G
 (

%
)

NP=2 NP=4 NP=8

(a) Minimum values of BG

0

5

10

15

20

25

30

35

40

45

NA=10 NA=20 NA=30 NA=40 NA=50 NA=100

A
v
e

ra
g

e
 B

G
 (

%
)

NP=2 NP=4 NP=8

(b) Average values of BG

0

5

10

15

20

25

30

35

40

45

50

NA=10 NA=20 NA=30 NA=40 NA=50 NA=100

M
a

x
im

u
m

 (
%

)

NP=2 NP=4 NP=8

(c) Maximum values of BG

Figure 6.1: Results of BG for synthetic Benchmarks

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

NA=10 NA=20 NA=30 NA=40 NA=50 NA=100

A
v
e

ra
g

e
 S

p
e

e
d

u
p

NP=2 NP=4 NP=8 NP=16

(a) Speedup for different val-
ues of NP

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

NA=10 NA=20 NA=30 NA=40 NA=50 NA=100

A
v
e

ra
g

e
 S

p
e

e
d

u
p

HFS=0,5 HFS=1 HFS=1,5 HFS=2

(b) Speedup for different val-
ues of HFS

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

2,2

NA=10 NA=20 NA=30 NA=40 NA=50 NA=100

A
v
e

ra
g

e
 S

p
e

e
d

u
p

HFC=0,1 HFC=0.75 HFC=1,25 HFC=2

(c) Speedup for different val-
ues of HFC

Figure 6.2: Results of average Speedup for synthetic Benchmarks

100}, outDeg={1,2}, NP={2, 4, 8, 16}, HFS={0.5, 1, 1.5, 2}, HFC={0.1, 0.75, 1.25,
2}, MCC={15, 30, 60} and MIPCC={10, 25, 40}. The combination of these sets gives
6912 different benchmarks. The SDF graph of each benchmark is transformed into an
equivalent HSDF graph using Algorithm 1.

6.3.2 Performance Results

Time complexity. In order to characterize the time complexity of the heuristic HCS, we
compared the solving times of the ILP solver with the solving times of the heuristic. We
have limited the running time of CPLEX to 8 hours. Table. 6.1 plots the results of the
average solving times for our benchmarks. The ILP solver was able to find a scheduling
solution for all multiprocessor architectures except for the 16-PUs architectures, where
∞ means that the solver fails to find a scheduling solution within 8 hours. Conversely,
the scalability of HCS is easily visible and in some cases the heuristic is approximately
300 × faster than the ILP solver.

Throughput achievement. In order to evaluate how far the throughput measured with
the heuristic HCS is from the throughput measured with the ILP, we studied the variations

©2020 Philippe Glanon 73

6.3. Experiments with Synthetic Benchmarks

Table 6.2: Benchmarks Characteristics

Benchmarks Description Number of Actors Stateful actors
bitonicSort Recursive implementation of the bitonic sorting network 61 7

fft Fast Fourier Transform kernel 17 2
filterBank A filter bank to perform multi-rate signal processing 53 6

radar Radar Array Front-End 54 6
tde Time delay equalization 42 5

of BG for the synthetic benchmarks according to different values of NA and NP. Figure 6.1
plots the results of minimum, average and maximum values of BG. For all the benchmarks,
it can be observed that the average values of BG decrease as the values of NP increase.
The interpretation of this result is that the throughput measured with heuristic HCS are
getting closer to the throughput measured with the ILP solver as the number of PUs is
getting greater. Moreover, it can globally be observed that the minimum and maximum
values of BG respectively vary approximately in the ranges of 28 —36% and 40—48% as
the value of NP increases. This means that the throughput of scheduling solutions returned
by HCS are getting closer to the throughput of scheduling solutions obtained with the ILP
solver in the ranges of 64 —72% in the best case and 52—60% in the worst case.

Speedup and parallelism exploitation. Now, if we want to characterize the relative
performance of HCS with respect to hardware features, we should study the variations of
speedup for different types of heterogeneous multiprocessor architectures. For this pur-
pose, we first set the parameters HFS and HFC respectively to 1.5 and 1.25 to evaluate
the average speedup of HCS for different values of NP and then, we set the parameter NP
to 4 to evaluate the speedup of HCS with respect to different values of HFS and HFC.
Figure 6.2 shows the results obtained. In figure 6.2a, it can be observed that the aver-
age speedup of all the benchmarks increases as when as the values of NP get increased.
Conversely, in figure 6.2b and figure 6.2c we respectively observed that, the speedup of
the heuristic gradually decreases when the values of HFS and HFC are increased but it
is still greater to 1. This means that the speedup of the heuristic get improved when the
number of processing resources get greater. However, whether these resources have a high
variability in computation and communication costs of actors, the speedup of the heuristic
may decrease but will still be greater to 1. The interpretation of these results is that, if
we take a higher risk to increase the value of HFS and HFC, we will certainly loose task,
data or pipeline parallelism but, there is still a guarantee that the latency of scheduling
solutions returned by the heuristic could not be worse than the sequential execution time
of the application graphs.

74 ©2020 Philippe Glanon

6.4. Experiments with StreamIt Benchmarks

Table 6.3: Results of Average Solving Times (sec) of HCS versus ILP solver

Benchmarks NP=2 NP=4 NP=8 NP=16
– HCS ILP HCS ILP HCS ILP HCS ILP

bitonicSort 5.81 776.72 15.97 3391.98 34.13 9017.86 114.05 ∞
fft 3.44 323.29 10.98 1798.13 21.13 6123.16 64.61 18765.57

filterBank 5.62 747.08 15.18 3065.29 32.66 8656.55 99.08 ∞
radar 5.76 756.65 15.11 3168.76 33.25 8659.23 102.23 ∞
tde 5.12 685.64 14.01 2891.86 28.75 7745.71 82.24 ∞

6.4 Experiments with StreamIt Benchmarks
In addition to experiments performed with the synthetic benchmarks, we have also per-
formed experiments with real-world applications to validate the performance of HCS.

6.4.1 StreamIt Benchmarks

Experiments were performed with the application benchmarks of StreamIt [43]. These
benchmarks are streaming applications that embed the common properties (data, task
and pipeline parallelisms) of loop-intensive applications. Table 6.2 gives a brief description
of the chosen benchmarks. A detailed description of each of these benchmarks is given in
[43]. We set the number of stateful actors for each application benchmark to approximately
10% of the total number of actors. In order to generate asymmetric computation and
communication costs for the actors of each benchmark, we have adapted the StreamIt
compiler with our architecture generation function previously described in section 5.3.1
and we consider the same values for the parameters of this function. For each benchmark
and each architecture configuration, we ran both the heuristic and the ILP solver. In this
experiment, we have also limited the running time of the ILP solver to 8 hours.

6.4.2 Performance Results

Time complexity. Table. 6.3 plots the results of average solving times of the heuristic
HCS and the ILP solver of CPLEX. On one hand, when the number of processing resources
(i.e. NP) is lower or equal to 8 the ILP solver is able to find a scheduling solution for all
the streamIt benchmarks. However, on the other hand, when the number of processor is
equal to 16, the ILP fails to find a scheduling solution for all the benchmark except for
“fft ”. Conversely, the scalability of the heuristic HCS find a solution for any number of
processor and in some cases the heuristic is approximately 355× faster than the ILP solver.

©2020 Philippe Glanon 75

6.4. Experiments with StreamIt Benchmarks

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

bitonicSort fft filterBank radar tde

M
in

im
u

m
 B

G
 (

%
)

NP=2 NP=4 NP=8

(a) Minimum values of BG

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36

bitonicSort fft filterBank radar tde

A
ve

ra
g

e
 B

G
 (

%
)

NP=2 NP=4 NP=8

(b) Average values of BG

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

bitonicSort fft filterBank radar tde

M
a

xi
m

u
m

 B
G

 (
%

)

NP=2 NP=4 NP=8

(c) Maximum values of BG

Figure 6.3: Results of BG for StreamIt Benchmarks

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

bitonicSort fft filterBank radar tde

A
v
e

ra
g

e
 S

p
e

e
d

u
p

NP=2 NP=4 NP=8 NP=16

(a) Speedup for different val-
ues of NP

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

bitonicSort fft filterBank radar tde

A
v
e

ra
g

e
 S

p
e

e
d

u
p

HFS=0,5 HFS=1 HFS=1,5 HFS=2

(b) Speedup for different val-
ues of HFS

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

bitonicSort fft filterBank radar tde

A
v
e

ra
g

e
 S

p
e

e
d

u
p

HFC=0,1 HFC=0.75 HFC=1,25 HFC=2

(c) Speedup for different val-
ues of HFC

Figure 6.4: Results of average speedup for StreamIt Benchmarks

Throughput achievement. In order to evaluate the throughput gap between the schedul-
ing solutions returned by the ILP solver and the heuristic HCS, we plot the results of BG
for the StreamIt benchmarks according to differents values of NP. Figure 6.3 depicts these
results. We have observed similar results like those observed for the synthetic benchmarks.
Actually, for all the streamIt benchmarks, the values of BG decrease as the number of
processing resources increases and the minimum and maximum values of BG respectively
range approximately in 22—28% and 31—36%. The worst gap has been observed with
“bitonicSort” where the average value of BG decreases slowly from approximately 33% to
27% as when as the number of resource get increased.

Speedup and parallelism exploitation. In order to measure the performance of the
heuristic HCS with respect to hardware features, we measured the speedup of HCS for the
streamIt benchmarks according to different types of multiprocessor architectures. In these
experiments, we first considered architectures generated with HFS=1.5 and HFC=1.25 to
plot the speedup of the heuristic ans then, we considered the 4-processors architectures
—i.e. architectures where NP=4 —to plot the speedup of the heuristic for different values
of HFS and HCS. Figure 6.4a, figure 6.4c and figure 6.4b respectively show the results of
average speedup for the heuristic according to different values of NP, HFS and HFC. On

76 ©2020 Philippe Glanon

6.5. Conclusion

the one hand, the speedup increases in the range of 1.1 —1.9 as the number of processing
resources (i.e. NP) increases. On the other hand, the speedup decreases in the range of
1.1 —1.65 and respectively 1.1 —1.9 respectively as the values of HFS and HFC increases.
These results are similar to the those observed with the synthetic application graphs and
they validate the performance of the heuristic.

6.5 Conclusion
In this chapter, we presented the performance of the ILP formulation and the heuristic
HCS for the software pipelined schedule of SDF graphs on heterogeneous multiprocessor
architectures under resource and communication constraints. Experiments were performed
both with synthetic application graphs and application benchmarks of StreamIt. Exper-
imental results show that the heuristic performs better for multiprocessor architectures
with large number of processing resources and more is the number of processing resources
on a given architecture, better is the performance of the heuristic. In terms of throughput
achievement, the heuristic was able to generate scheduling solutions with an average gap
ranging from 25% to 42%, which means that in the average case, the scheduling solutions
obtained with the ILP solver of CPLEX is close to the optimal solutions in the range of 68%
to 75%. For all the benchmarks and multiprocessor architectures considered, the speedup
of heuristic vary in the range of 1 to 1.9. Although the heterogeneity degree of processing
resources may have an effect of decreasing the speedup of the heuristic, there is a guarantee
that the latency of scheduling solutions returned by the heuristic could not be worse than
the sequential execution time of application graphs.

©2020 Philippe Glanon 77

CHAPTER 7

Conclusion & Open Challenges

Contents
7.1 Conclusion . 79

7.2 Open Challenges . 80

7.2.1 List scheduling heuristics for throughput improvement 80

7.2.2 Scheduling under storage capacity 80

7.2.3 Real-time scheduling . 80

78

7.1. Conclusion

7.1 Conclusion

Cyber-physical systems (CPSs) are increasingly implemented in several application fields
to address many technical challenges. These systems are composed by a set of loop-
intensive applications and heterogeneous multiprocessor architectures with a fixed number
of processing resources, which are connected through different networks media.

A key activity in the design stage of CPSs is the deployment of loop-intensive applica-
tions on the heterogeneous multiprocessor architectures. The goal of this design activity is
to predict the timing behaviour of applications and to provide performance guarantees at
design stage. For this purpose, formal models of computation that deal with time, concur-
rency and parallelism are required to generate static order schedules for the applications
while ensuring highest performance under the resource and communication constraints of
architectures. In order to achieve this need, we have used synchronous dataflow (SDF)
model of computation in this thesis and we have design exact and approximated software
pipelined (SWP) scheduling techniques to execute these models under the resources and
communication constraints of heterogeneous multiprocessor architectures. Our scheduling
techniques are based on a set of provable mathematical theories and they exploit efficiently
the parallelism embedded in the SDF models while providing performance guarantees in
terms of throughput and latency.

In chapter 4, we have established a set of lemmas and theorems to characterize the
admissible SWP schedules for timed SDF graphs. Using the established theorems, we have
proposed linear programming models to find the admissible SWP schedules that achieve
optimal throughput/latency for timed SDF graphs. In chapter 5, we have shown that the
SWP schedules that achieve optimal throughput for a SDF graph under the resource and
communication constraints of a heterogeneous multiprocessor architecture can be charac-
terized and calculated with an integer linear programming (ILP) model. The proposed
ILP model explore different levels of parallelism (task, data and pipeline) in SDF graphs
while scheduling these graphs. In this chapter, we have also proposed a decomposed soft-
ware pipelining heuristic that generates approximated SWP scheduling solutions for SDF
graphs under resource and communication constraints. Thanks to experiments performed
with synthetic and application benchmarks, our ILP model and heuristic are validated in
chapter 6. To the best of our knowledge this thesis is the first that tackles the SWP schedul-
ing of SDF graphs under the resources and communication constraints of heterogeneous
multiprocessor architectures.

©2020 Philippe Glanon 79

7.2. Open Challenges

7.2 Open Challenges
The theoretical foundations put forward in this thesis provides a basis for future research
directions. In this section, we present three interesting challenges that could be investigated
to improve and extend the works achieved in this thesis.

7.2.1 List scheduling heuristics for throughput improvement

Thanks to the experimental results presented in chapter 6, we have shown that the schedu-
ling solutions obtained with the heuristic HCS achieve a throughput gap bounded at 50%
to the throughput achievable by the scheduling solutions obtained with our ILP formula-
tion. In order to reduce this throughput gap, we need to investigate new list-scheduling
algorithms that can improve the length of the schedule generated by algorithm 4. Since the
period (implicitly the throughput) of SWP scheduling solutions obtained with the heuris-
tic HCS depends on the length of schedules returned by algorithm 4, an improvement of
scheduling solutions obtained with this algorithm will obviously improve the throughput
of SWP scheduling solutions obtained with the heuristic HCS.

7.2.2 Scheduling under storage capacity

Apart from resource and communication constraints, the storage capacity of communica-
tion links in CPS architectures can be bounded. Therefore, the scheduling strategy devel-
oped in this thesis has to assign not only actors to processing units but also FIFO channels
to the communication links while ensuring that the storage capacity is not overflowed.
This new constraint can reduce the searching-space for scheduling solutions that achieve
optimal throughput/latency and increase the time complexity to find a solution. In order
to overcome this problem, future research works should investigate time-efficient heuristics
that deal both with storage, resource and communication constraints while providing good
performance guarantees.

7.2.3 Real-time scheduling

The major drawback of static schedules (and SWP schedules in particular) is their inflex-
ibility and difficult maintainability. Hence, to execute a SDF graph on a heterogeneous
architecture, real-time scheduling policies should be investigated. Unlike in SWP sched-
ules, each actor in a real-time schedule is mapped to a periodic real-time task; therefore,
the firing of a given actor is strictly periodic (as opposite to SWP schedule). One advan-

80 ©2020 Philippe Glanon

7.2. Open Challenges

tage of this scheduling approach is that there exist a set of provable mathematical theories
(such as rate-monotonic, fixed-priority scheduling, earliest-deadline first, etc) that can be
used to decide whether or not a dataflow specification can be scheduled on a given architec-
ture. Using real-time scheduling policies to implement dataflow graphs under resource and
communication constraints has been subject of only few works. Investigating this research
direction can be very helpful to improve the works achieved in this thesis.

©2020 Philippe Glanon 81

Personal Bibliography

• P. Glanon, S. Azaiez, C. Mraidha, “HCS: A Cyclic Scheduling Heuristic for Deploy-
ing Loop-Intensive Applications on Heterogeneous Multiprocessor Architectures”, In-
ternational Journal of Systems Architectures (JSA), [under revision process]

• P. Glanon, S. Azaiez, C. Mraidha, “Cyclic Scheduling of Loop-Intensive Appli-
cations on Heterogeneous Multiprocessor Architectures,” RTCSA’ 2020: the 26th
IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications. [Accepted]

• P. Glanon, S. Azaiez and C. Mraidha, “Estimating Latency for Synchronous Dataflow
Graphs Using Periodic Schedules,” in proceedings of VECoS 2019: the 13th Interna-
tional Conference on Verification and Evaluation of Computer and Communication
Systems, pp 79-94.

• P. Glanon, S. Azaiez and C. Mraidha , “Analyzing throughput for Cyber-Physical
Production System modeled with synchronous Dataflow ,” Proceedings of the Cyber-
Physical Systems PhD Workshop 2019, an event held within the CPS Summer School
”Designing Cyber-Physical Systems - From concepts to implementation”, Alghero,
Italy, September 23, 2019. CEUR Workshop Proceedings 2457, CEUR-WS.org 2019.

• P. Glanon, S. Azaiez and C. Mraidha, ”A modular interoperability layer for con-
necting the business and manufacturing systems,” 2018 14th IEEE International
Workshop on Factory Communication Systems (WFCS), Imperia, 2018, pp. 1-4.

82

Bibliography

[1] J. A. Stankovic, Misconceptions about Real-Time Computing: A Serious Problem for
Next Generation Systems, IEEE Computer, 21(10), pp. 10-19, October 1988.

[2] J. Herwan, S. Kano, R. Oleg, H. Sawada and N. Kasashima, ”Cyber-physical system
architecture for machining production line,” 2018 IEEE Industrial Cyber-Physical Sys-
tems(ICPS), St. Petersburg, 2018, pp. 387-391.

[3] C. Shih, J. Chou, N. Reijers and T. Kuo, ”Designing CPS/IoT applications for smart
buildings and cities,” in IET Cyber-Physical Systems: Theory & Applications, vol. 1,
no. 1, pp. 3-12.

[4] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems architecture for industry
4.0-based manufacturing systems,” Manufacturing Letters, vol. 3, pp. 18–23, 2015.

[5] N. Jazdi, ”Cyber physical systems in the context of Industry 4.0,” 2014 IEEE Interna-
tional Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, 2014,
pp. 1-4.

[6] L. Monostori, “Cyber-physical production systems: Roots, expectations and R&D
challenges,” Procedia CIRP 17, pp. 9-13, 2014

[7] Haque, S. A., Aziz, S. M., & Rahman, M. (2014). Review of Cyber-Physical System
in Healthcare. International Journal of Distributed Sensor Networks.

[8] Edward A. Lee and Sanjit A. Seshia, Introduction to Embedded Systems, A Cyber-
Physical Systems Approach, Second Edition, MIT Press, ISBN 978-0-262-53381-2,
2017.

[9] Lee, Edward, “Cyber Physical Systems: Design Challenges”, University of California,
Berkeley Technical Report No. UCB/EECS-2008-8.

83

BIBLIOGRAPHY

[10] Sanjay Raina. Virtual Shared Memory: A Survey of Techniques and Systems. Dec.
1992.

[11] Michael J Flynn. Some Computer Organizations and Their Effectiveness. IEEE Trans-
actions on Computers, C-21 :948–960, 1972.

[12] John Von Neumann. First Draft of a Report on the EDVAC. Technical Report 1, 1945.

[13] G.M. Amdahl. Validity of the single processor approach to achieve large scale com-
puting capabilities. In American Federation of Information Processing Societies Con-
ference, AFIPS 67, Proceedings, pages 483–485. Thomson Book Company, 1967.

[14] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, Jul. 2008. [Online]. Available:
http://dx.doi.org/10.1109/MC.2008.209

[15] J. Diaz, C. Munoz-Caro, and A. Nino, “A survey of parallel programming models
and tools in the multi and many-core era,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 23, no. 8, pp. 1369–1386, Aug 2012.

[16] Edward A. Lee. The Problem with Threads. Computer, 39(5) :33–42, May 2006.

[17] OpenMP Application Program Interface Version 3.0. Technical report, 2008.

[18] Message Passing Interface Forum. MPI : A Message-Passing Interface Standard. In-
ternational Journal of Supercomputer Applications, 8 :623, 1994.

[19] Sur, Sayantan; Koop, Matthew J.; Panda, Dhabaleswar K. (4 August 2017). ”MPI and
communication-High-performance and scalable MPI over Infini Band with reduced
memory usage”. High-performance and Scalable MPI over InfiniBand with Reduced
Memory Usage: An In-depth Performance Analysis. ACM. p. 105.

[20] David R. Butenhof. Programming With Posix Threads. 1997.

[21] K. Group. (2013) Opencl-the open standard for parallel programming of heterogeneous
systems. [Online]. Available: http://www.khronos.org/opencl/

[22] Ait El Cadi, A. Souissi, O. Ben Atitallah, R. et al. Mathematical programming mod-
els for scheduling in a CPU/FPGA architecture with heterogeneous communication
delays. Journal of Intelligent Manufacturing (2018) 29: 629.

[23] Jad Khatib, Alix Munier-Kordon, Enagnon Cedric Klikpo, and Kods Trabelsi-Colibet.
2016. Computing latency of a real-time system modeled by Synchronous Dataflow

84 ©2020 Philippe Glanon

BIBLIOGRAPHY

Graph. In Proceedings of the 24th International Conference on Real-Time Networks
and Systems (RTNS ’16). ACM, New York, NY, USA, 87-96.

[24] Youen Lesparre. Efficient evaluation of mappings of dataflow applications onto dis-
tributed memory architectures. Mobile Computing. Université Pierre et Marie Curie -
Paris VI, 2017. English. NNT: 2017PA066086. tel-01624553

[25] M. Avinash and D. Gregg. ”Heuristics on Reachability Trees for Bicriteria Scheduling
of Stream Graphs on Heterogeneous Multiprocessor Architectures.” ACM Transac-
tions on Embedded Computing Systems, Vol. 14, No. 2, Article 23, Publication date:
February 2015.

[26] T. Schwarzer, J. Falk, M. Glass , J. Teich, C. Zebelein, and C. Haubelt. Throughput-
optimizing Compilation of Dataflow Applications for MultiCores using Quasi-Static
Scheduling. In S. Stuijk, editor, Proc. of the 18th International Workshop on Software
and Compilers for Embedded Systems, SCOPES’15, pages 68-75, Berlin, Germany,
June 2015. ACM.

[27] Bodin, B., Lesparre, Y., Delosme, J.-M., and Munier-Kordon, A. (2014). Fast and
efficient dataflow graph generation. In Proceedings of the 17th International Workshop
on Software and Compilers for Embedded Systems, pages 40-49. ACM.

[28] R. de Groote, J. Kuper, H. Broersma and G. J. M. Smit, ”Max-Plus Algebraic
Throughput Analysis of Synchronous Dataflow Graphs,” 2012 38th Euromicro Con-
ference on Software Engineering and Advanced Applications, Cesme, Izmir, 2012, pp.
29-38.

[29] A. Singh, M. Shafique, A. Kumar, and J. Henkel. 2013. Mapping on multi/many-
core systems: Survey of current and emerging trends. In Proceedings of the 50th
ACM/EDAC/IEEE Design Automation Conference (DAC), 2013. 1-10.

[30] Bruno Bodin, Alix Munier-Kordon, et Benoît Dupont de Dinechin. K-Periodic Sched-
ules for Evaluating the Maximum Throughput of a Synchronous Dataflow Graph. In
International Conference on Embedded Computer Systems : Architectures, Modeling,
and Simulation, SAMOS XII, pages 152–159, 2012.

[31] Benabid-Najjar, A., Hanen, C., Marchetti, O., and Munier-Kordon, A. (2012). Peri-
odic schedules for bounded timed weighted event graphs. IEEE Transactions on Au-
tomatic Control, 57(5):1222–1232.

©2020 Philippe Glanon 85

BIBLIOGRAPHY

[32] Paul M. Carpenter, Alex Ramirez, and Eduard Ayguade. 2009. Mapping stream pro-
grams onto heterogeneous multiprocessor systems. In Proceedings of the 2009 inter-
national conference on Compilers, architecture, and synthesis for embedded systems
(CASES ’09). ACM, New York, NY, USA, 57-66.

[33] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. Software Pipelined Execution
of Stream Programs on GPUs. In CGO, pages 200-209, 2009

[34] Sriram S, Bhattacharyya SS (2009) Embedded multiprocessors: scheduling and syn-
chronization, 2nd edn. CRC Press, Boca Raton. doi:10.1201/9781420048025

[35] O. Marchetti et A. Munier Kordon A sufficient condition for the liveness of weighted
event graphs European Journal of Operational Research,197(2), pp. 532-540, Sept
2009.

[36] O. Marchetti. and A. Munier-Kordon. Cyclic scheduling for the synthesis of embedded
systems. In Y. Vivien and R. Frederic, editors, Introduction to scheduling, chapter 6.
Chapman and Hall/CRC Press, 2009, pages 135–164.

[37] Claire Hanen. Cyclic scheduling. In Y. Vivien and R. Frederic, editors, Introduction
to scheduling, chapter 5. Chapman and Hall/CRC Press, 2009, pages 109–131.

[38] Stuijk, S.: Predictable mapping of streaming applications on multiprocessors. Ph.D.
thesis, Eindhoven University of Technology (2007).

[39] A. H. Ghamarian, M. C. W. Geilen, T. Basten, B. D. Theelen, M. R. Mousavi and
S. Stuijk. Liveness and Boundedness of Synchronous Data Flow Graphs, 2006 Formal
Methods in Computer Aided Design, San Jose, CA, 2006, pp. 68-75.

[40] M. I. Gordon, W. Thies, and S. Amarasinghe. 2006. Exploiting coarse-grained task,
data, and pipeline parallelism in stream programs. SIGOPS Oper. Syst. Rev. 40, 151-
162.

[41] E. H. M. Sha, ”Parallel embedded systems: optimizations and challenges,” Con-
ference, Emerging Information Technology 2005., Taipei, 2005, pp. 4 pp.-, doi:
10.1109/EITC.2005.1544328.

[42] Sandnes, Frode & Sinnen, Oliver. (2005). A new strategy for multiprocessor scheduling
of cyclic task graphs. IJHPCN. 3. 62-71.10.1504/IJHPCN.2005.007868.

86 ©2020 Philippe Glanon

BIBLIOGRAPHY

[43] W. Thies, M. Karczmarek, and S. P. Amarasinghe. 2002. StreamIt: A language for
streaming applications. In Proceedings of the 11th International Conference on Com-
piler Construction (CC’02). Springer, London, UK, 179-196.

[44] A. Dasdan, S. Irani, and R. K. Gupta. Efficient algorithms for optimum cycle mean
and optimum cost to time ratio problems. In Design Automation Conference, pages
37–42, 1999.

[45] Y. Robert, A. Darte and P. Calland, ”Circuit Retiming Applied to Decomposed Soft-
ware Pipelining” in IEEE Transactions on Parallel & Distributed Systems, vol. 9, no.
01, pp. 24-35, 1998. doi: 10.1109/71.655240

[46] Bilsen, G., Engels, M., Lauwereins, R., and Peperstraete, J. A. (1995). Cyclo-static
data flow. In 1995 International Conference on Acoustics, Speech, and Signal Process-
ing. ICASSP-95., volume 5, pages 3255–3258. IEEE, 1995.

[47] Paul Feautrier. Fine-grain scheduling under resource constraints. In Languages and
Compilers or Parallel Computing , number 892 in Lectures Notes in Computer Science,
pages 1-15.Springer Verlag, 1994.

[48] F. Gasperoni and U. Schwielgelshohn, Generating Close to Optimum Loop-Schedules
on Parallel Processors, Parallel Processing Letters, 4(4), 1994, pp. 391-403.

[49] R. Govindarajan, E. R. Altman, and G. R. Gao, “Minimizing Register Requirements
Under Resource-constrained Rate-optimal Software Pipelining,” in MICRO 27: Proc.
of the 27th annual Intl. Symp. on Microarchitecture, 1994, pp. 85–94

[50] R. Govindarajan and G.R. Gao, “A Novel Framework for MultiRate Scheduling in
DSP Applications”,in Proceedings of the 1993 International Conference on Application
Specific Array Processors, Venice, Italy, Oct. 25–27, 1993, pp. 77–88.

[51] R. Govindarajan and G.R. Gao. Rate Optimal Schedule for multi-rate DSP compu-
tation. ACAPS Technical Memo 61, School of Computer Science, McGill University,
Montreal, Quebec, 1993.

[52] C.Hanen and A.Munier. Cyclic scheduling on parallel processors: an overview. Tech-
nical Report 822, Laboratoire de Recherche en Informatique, Universite de Paris Sud,
Centre d’Orsay, 1993.

[53] J. Wang, Christine Eisenbeis. Decomposed software pipelining. [Research Report] RR-
1838, INRIA.1993. ffinria-00074834f.

©2020 Philippe Glanon 87

BIBLIOGRAPHY

[54] Christine Eisenbeis, D. Windheiser. A New class of algorithms for software pipelining
with resource constraints. [Research Report] RR-2033, INRIA. 1993. �inria-00074638�

[55] Qi Ning et Guang R. Gao. A novel framework of register allocation for software pipelin-
ing. Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages - POPL ’93, pages 29–42, 1993.

[56] Joseph T. Buck et Edward A. Lee. Scheduling dynamic dataflow graphs with bounded
memory using the token flow model. In IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP-93), number September, pages 429–432,1993.

[57] Tsing-Fa Lee, Allen C-H. Wu, Daniel D. Gajski, and Youn-Long Lin. An effective
methodology for functional pipelining. In Proceedings of the International Conference
on Computer-Aided Design , pages 230-233, December 1992.

[58] Gilbert C. Sih et Edward A. Lee. A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures. IEEE Transactions
on Parallel and Distributed Systems, 4(2) :175–187, 1993.

[59] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory
of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990

[60] Monica Lam. Software pipelining: An effective scheduling technique for VLIW ma-
chines. In Proc. of the SIGPLAN’88 Conf. on Programming Language Design and
Implementation pages 318-328. Also in SIGPLAN Notices, 23(7), Jul. 1988.

[61] E. A. Lee and D. G. Messerschmitt, Synchronous data flow, Proceedings IEEE vol.
75, no. 9, pp. 1235-1245, Sept. 1987.

[62] E. A. Lee and D. G. Messerschmitt, ”Static Scheduling of Synchronous Data Flow
Programs for Digital Signal Processing,” in IEEE Transactions on Computers, vol.
C-36, no. 1, pp. 24-35, Jan. 1987.

[63] G. Kahn. The semantics of a simple language for parallel programming. In J.L. Rosen-
feld, editor, Information Processing, pages 471-475. North Holland, Amsterdam, Aug
1974.

[64] F. Commoner, A.W. Holt, S. Even, and A. Pneuli. Marked directed graphs. Journal
of Computer and System Sciences, 5(5):511–523, October 1971.

[65] R. Reiter. Scheduling parallel computations. Journal of the ACM, 15(4):590–599, Oct.
1968.

88 ©2020 Philippe Glanon

BIBLIOGRAPHY

[66] Karp, R. M. and Miller, R. E. (1966). Properties of a model for parallel computa-
tions: Determinacy, termination, queueing. SIAM Journal on Applied Mathematics,
14(6):1390–1411.

[67] Bézout, Édition (1779). Théorie générale des équations algébriques. Paris, France:
Ph.-D. Pierres.

[68] H. Wei, J. Yu, H. Yu, M. Qin and G. R. Gao, ”Software Pipelining for Stream
Programs on Resource Constrained Multicore Architectures,” in IEEE Transactions
on Parallel and Distributed Systems, vol. 23, no. 12, pp. 2338-2350, Dec. 2012, doi:
10.1109/TPDS.2012.41.

[69] S. Raskar, T. Applencourt, K. Kumaran and G. Gao, ”Position Paper: Extending
Codelet Model for Dataflow Software Pipelining using Software-Hardware Co-Design,”
2019 IEEE 43rd Annual Computer Software and Applications Conference (COMP-
SAC), Milwaukee, WI, USA, 2019, pp. 640-645, doi: 10.1109/COMPSAC.2019.10280.

[70] A. Hatanaka, N. Bagherzadeh,A software pipelining algorithm of streaming appli-
cations with low buffer requirements,Scientia Iranica,Volume 19, Issue 3,2012,Pages
627-634,ISSN 1026-3098, https://doi.org/10.1016/j.scient.2011.08.034.

[71] Weiwen Jiang, Edwin H.-M. Sha, Xianzhang Chen, Lin Wu, Qingfeng Zhuge,
Synthesizing distributed pipelining systems with timing constraints via op-
timal functional unit assignment and communication selection, Journal of
Computational Science, Volume 26, 2018, Pages 332-343, ISSN 1877-7503,
https://doi.org/10.1016/j.jocs.2017.03.020.

[72] Weiwen Jiang, Edwin H.-M. Sha, Xianzhang Chen, Lin Wu, Qingfeng Zhuge,
Synthesizing distributed pipelining systems with timing constraints via op-
timal functional unit assignment and communication selection, Journal of
Computational Science, Volume 26, 2018, Pages 332-343, ISSN 1877-7503,
https://doi.org/10.1016/j.jocs.2017.03.020.

©2020 Philippe Glanon 89

Title: Deployment of loop-intensive applications on heterogeneous multiprocessor archi-
tectures

Keywords: cyber-physical systems, multiprocessor scheduling, cyclic scheduling, static data�ow

graphs, heterogeneous architectures, software pipelining, maximum throughput,

Abstract: Cyber-physical systems (CPSs)

are distributed computing-intensive systems,

that integrate a wide range of software appli-

cations and heterogeneous processing resources,

each interacting with the other ones through

di�erent communication resources to process a

large volume of data sensed from physical, chem-

ical or biological processes. An essential issue in

the design stage of these systems is to predict

the timing behaviour of software applications

and to provide performance guarantee to these

applications. In order tackle this issue, e�cient

static scheduling strategies are required to de-

ploy the computations of software applications

on the processing architectures. These schedul-

ing strategies should deal with several con-

straints, which include the loop-carried depen-

dency constraints between the computational

programs as well as the resource and commu-

nication constraints of processing architectures

intended to execute these programs. Actu-

ally, loops being one of the most time-critical

parts of many computing-intensive applications,

the optimal timing behavior and performance

of applications depends on the optimal sched-

ule of loops structures enclosed in the compu-

tational programs. Therefore, to provide per-

formance guarantee for the applications, the

scheduling strategies should e�ciently explore

and exploit the parallelism embedded in the

repetitive execution patterns of loops while en-

suring the respect of resource and communi-

cations constraints of the processing architec-

tures of CPSs. Scheduling a loop under re-

source and communication constraints is a com-

plex problem. To solve it e�ciently, heuris-

tics are obviously necessary. However, to de-

sign e�cient heuristics, it is important to char-

acterize the set of optimal solutions for the

scheduling problem. An optimal solution for a

scheduling problem is a schedule that achieve

an optimal performance goal. In this thesis,

we tackle the study of resource-constrained and

communication-constrained scheduling of loop-

intensive applications on heterogeneous multi-

processor architectures with the goal of opti-

mizing throughput performance for the applica-

tions. In order to characterize the set of op-

timal scheduling solutions and to design e�-

cient scheduling heuristics, we use synchronous

data�ow (SDF) model of computation to de-

scribe the loop structures speci�ed in the com-

putational programs of software applications

and we design software pipelined scheduling

strategies based on the structural and mathe-

matical properties of the SDF model.

Titre: Déploiement d'applications à boucles intensives sur des architectures multipro-

cesseur hétérogènes

Mots clés: Système cyber-physiques, ordonnancement multiprocesseur, ordonnancement cy-

clique, graphes de �ots de données statiques, architectures hétérogènes, pipeline logiciel, débit

maximal.

Résumé: Les systèmes cyber-physiques sont

des systèmes distribués qui intègrent un large

panel d'applications logicielles et de ressources

de calcul hétérogènes connectées par divers

moyens de communication (�laire ou non-

�laire). Ces systèmes ont pour caractéristique

de traiter en temps-réel, un volume important

de données provenant de processus physiques,

chimiques ou biologiques. Une des probléma-

tiques rencontrée dans la phase de conception

des systèmes cyber-physiques est de prédire le

comportement temporel des applications logi-

cielles. A�n de répondre à cette probléma-

tique, des stratégies d'ordonnancement statique

sont nécessaires. Ces stratégies doivent tenir

compte de plusieurs contraintes, notamment les

contraintes de dépendances cycliques induites

par l'exécution des boucles de calculs spéci-

�ées dans les programmes logiciels ainsi que

les contraintes de ressource et de communica-

tion inhérentes aux architectures matérielles de

calcul. En e�et, les boucles étant l'une des

parties les plus critiques en temps d'exécution

pour plusieurs applications de calcul inten-

sif, le comportement temporel et les perfor-

mances optimales des applications logicielles

dépendent de l'ordonnancement optimal des

structures de boucles spéci�ées dans les pro-

grammes de calcul. Pour prédire le comporte-

ment temporel des applications logicielles et

fournir des garanties de performances dans la

phase de conception au plus tôt, les straté-

gies d'ordonnancement statiques doivent ex-

plorer et exploiter e�cacement le parallélisme

embarqué dans les patterns d'exécution des pro-

grammes à boucles intensives tout en garantis-

sant le respect des contraintes de ressources et

de communication des architectures de calcul.

L'ordonnancement d'un programme à boucles

intensives sous contraintes ressources et com-

munication est un problème complexe et di�-

cile. A�n de résoudre e�cacement ce problème,

il est indispensable de concevoir des heuris-

tiques. Cependant, pour concevoir des heuris-

tiques e�caces, il est important de caractériser

l'ensemble des solutions optimales pour le prob-

lème d'ordonnancement. Une solution optimale

pour un problème d'ordonnancement est un or-

donnancement qui réalise un objectif optimal

de performance. Dans cette thèse, nous nous

intéressons au problème d'ordonnancement des

programmes à boucles intensives sur des archi-

tectures de calcul multiprocesseurs hétérogènes

sous des contraintes de ressource et de com-

munication, avec l'objectif d'optimiser le débit

de fonctionnement des applications logicielles.

Pour ce faire, nous utilisons les modèles de

�ots de données statiques pour décrire les

structures de boucles spéci�ées dans les pro-

grammes de calcul et nous concevons des straté-

gies d'ordonnancement périodiques sur la base

des propriétés structurelles et mathématiques de

ces modèles a�n de générer des solutions opti-

males et approximatives d'ordonnancement.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

3

	Introduction
	Introduction
	General Context and Problem Statement
	Contributions
	Thesis Organization

	I Motivations, State-of-the-Art and Problem Formulation
	Background and Motivations
	Introduction
	Architecture of Cyber-Physical Systems
	Parallel Programming Paradigm
	Multithreading Programming Models
	Dataflow Programming Models

	Deployment of Loop-Intensive Applications
	Modeling and Exploitation of Parallelism
	Scheduling under resource and communication constraints

	Conclusion

	State-of-the-Art and Problem Formulation
	Introduction
	Synchronous Dataflow Graphs
	Definition
	Consistency Analysis
	Liveness Analysis

	Static Scheduling of Synchronous Dataflow Graphs
	Basic Definitions and Theorems
	Self-timed Schedules Versus Periodic Schedules
	Throughput Evaluation
	Latency Evaluation

	Problem Formulation and Related Works
	ILP-based Scheduling Approaches
	Scheduling Heuristics
	This Work

	Conclusion

	II Contributions
	Software Pipelined Scheduling of Timed Synchronous Dataflow Models
	Introduction
	Characterization of Admissible SWP Schedules
	Dependency relations induced by channels
	A necessary and sufficient condition for admissibility

	Maximum Throughput for Timed SDF graphs
	Minimum Latency for Timed SDF graphs
	Conclusion

	Software Pipelined Scheduling under Resources and Communication Constraints
	Introduction
	An Integer Linear Programming Model
	Cyclicity Constraints
	Resource Constraints
	Communication and Precedence Constraints

	Decomposed Software Pipelined Scheduling
	GS Heuristic
	HCS Heuristic

	Conclusion

	Validation
	Introduction
	Evaluation Metrics
	Experiments with Synthetic Benchmarks
	Benchmarks Generation
	Performance Results

	Experiments with StreamIt Benchmarks
	StreamIt Benchmarks
	Performance Results

	Conclusion

	Conclusion & Open Challenges
	Conclusion
	Open Challenges
	List scheduling heuristics for throughput improvement
	Scheduling under storage capacity
	Real-time scheduling

	Personal Bibliography
	Bibliography

