
HAL Id: tel-03011794
https://theses.hal.science/tel-03011794v1

Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On matchings and related problems in graphs,
hypergraphs, and doubly stochastic matrices

Ioannis Panagiotas

To cite this version:
Ioannis Panagiotas. On matchings and related problems in graphs, hypergraphs, and doubly stochas-
tic matrices. Data Structures and Algorithms [cs.DS]. Université de Lyon, 2020. English. �NNT :
2020LYSEN068�. �tel-03011794�

https://theses.hal.science/tel-03011794v1
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2020LYSEN068

THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée par

l’École Normale Supérieure de Lyon

École Doctorale N◦512

École Doctorale en Informatique et Mathématiques de Lyon

Spécialité : Informatique

présentée et soutenue publiquement le 09/10/2020, par :

Ioannis PANAGIOTAS

On matchings and related problems in graphs,
hypergraphs, and doubly stochastic matrices

Sur les couplages et les problèmes liés dans les graphes, les
hypergraphes et les matrices doublement stochastiques

Devant le jury composé de :

Clémence MAGNIEN Directrice de recherche, CNRS Rapporteure
Alex POTHEN Professeur, Purdue Univ., Etats-Unis Rapporteur
Marthe BONAMY Chargée de recherche, CNRS Examinatrice
Dimitrios THILIKOS Directeur de recherche, CNRS Examinateur
Bora UÇAR Chargé de recherche, CNRS Directeur de thèse
Fanny DUFOSSE Chargée de recherche, INRIA Co-Encadrante de thèse

Contents

Acknowledgements . v
Résumé français . vi

1 Introduction 1
1.1 Undirected graphs . 1
1.2 Hypergraphs . 3
1.3 Sparse matrices . 4

1.3.1 The permanent function . 4
1.3.2 Doubly stochastic matrices . 5

1.4 Sparse tensors . 6
1.5 Structure of the thesis . 7

2 Matchings in bipartite graphs 9
2.1 A survey on matching heuristics . 10
2.2 An examination of the Karp–Sipser algorithm 11

2.2.1 An expected O(m log n)-time algorithm 12
2.2.2 An implementation with list caching . 13
2.2.3 An alternating component approach . 14
2.2.4 Fast recovery of the matching . 16
2.2.5 Experiments . 17
2.2.6 Related work . 25

2.3 Scaling based near-optimal randomized algorithms 25
2.3.1 2outMC: Monte Carlo on 2-out graphs 26
2.3.2 TruncRW: Truncated random walk with nonuniform sampling 31
2.3.3 Experiments . 34

2.4 A scaling based derandomized algorithm . 43
2.4.1 The derandomization . 45
2.4.2 Some preliminary experiments . 48

2.5 Concluding remarks . 49

3 Matchings in undirected graphs 51
3.1 One-Out: The main heuristic . 51

3.1.1 One-Out: Analysis . 53
3.1.2 Two variants of One-Out . 58

3.2 Experiments . 59
3.2.1 On real-life graphs . 59
3.2.2 On a hard synthetic instance for KSR1 . 62
3.2.3 On large-scale graphs . 63

ii

CONTENTS iii

3.3 Concluding remarks . 63

4 Matchings in hypergraphs 65
4.1 Heuristics for maximum d-dimensional matching 66

4.1.1 A Greedy heuristic for Max-d-DM . 66
4.1.2 KarpSipserH for Max-d-DM . 66
4.1.3 KarpSipserHScaling for Max-d-DM . 67
4.1.4 Hypergraph matching via pseudo scaling 69
4.1.5 Reduction to bipartite graph matching . 69
4.1.6 Performing local search . 71

4.2 Experiments . 71
4.2.1 On random hypergraphs . 71
4.2.2 On synthetic hypergraphs . 74
4.2.3 On real-life hypergraphs . 76
4.2.4 Comparison with an independent set solver 76

4.3 Concluding remarks . 77

5 Counting the number of perfect matchings in graphs 79
5.1 Theoretical background . 80
5.2 Related work . 80
5.3 The proposed algorithm and its analysis . 81

5.3.1 The algorithm . 82
5.3.2 The analysis . 83

5.4 An estimator for undirected graphs . 87
5.4.1 The algorithm and its analysis . 87
5.4.2 Filtering out redundant edges . 90

5.5 Experiments . 91
5.5.1 On bipartite graphs . 91
5.5.2 On general, undirected graphs . 96

5.6 Concluding remarks . 98

6 Results on the Birkhoff–von Neumann decomposition 101
6.1 The two heuristics . 102
6.2 Analysis of the two heuristics for computing BvN decompositions 102
6.3 Heuristics for GreedyBVN . 106
6.4 Experiments on real-life matrices . 107
6.5 Concluding remarks . 109

7 Conclusion 111
7.1 Summary of the chapters . 111
7.2 Future work . 112

List of publications 121

List of Algorithms

2.1 2outMC: Monte Carlo on 2-out graphs . 27
2.2 Sample: Algorithm to sample a random neighbor of a column vertex c with dc

neighbors . 33
2.3 OneSided: Matching heuristic . 44
2.4 OneSidedDerand: The derandomized variant of OneSided 47

3.1 One-Out: Heuristic for matching in undirected graphs 52
3.2 KarpSipserOne-Out: Specialized Karp–Sipser for 1-out graphs 54

4.1 KarpSipserHScaling: The scaling-based extension of Karp–Sipser in hyper-
graphs . 68

5.1 estScalingPerm: Permanent estimation . 83
5.2 estScalingMtc: Estimation of the number of perfect matchings in graphs . . . 88

6.1 Generalized-Birkhoff: Template to find a BvN decomposition 102

iv

Acknowledgments

I would like first and foremost to thank my supervisor Bora Uçar for our collaboration during
the last three and a half years. He was always very positive, approachable and supportive to me.
He was always more than keen to discuss with me when I was facing some issues. His comments
were always helpful and I learned a lot through our conversations about research and writing
papers. His enthusiasm for the matching problem is probably unparalleled!

I am also thankful for having Fanny Dufossé as my second supervisor. Our frequent visits
to each other during the first year, where Bora was away in the USA, really helped me stay
focused. I was also very lucky to work with Kamer Kaya from Sabanci University in Turkey
who essentially became my unofficial third supervisor. I was really amazed by Kamer’s ability
to tidy up a paper quickly and efficiently. I would also like to thank Johannes Langguth as well
as all the people from the Simula Laboratory for hosting me in Oslo for a week. It was a very
rewarding experience for me to work in a different environment. I really hope to have the chance
to collaborate with Bora, Fanny, Kamer, and Johannes in the future.

I am proud to have been part of ROMA. The climate in the team is very welcoming and
friendly. I very much enjoyed the lighthearted conversations we were having with the other PhD
students in the team. They were always a nice break from the troubles of work. Hopefully we
can all meet again in the future (and perhaps finally do a hike together). I am also thankful to
Marie Bozo, Evelyne Blesle, Laetitia Lecot, Solene Audoux and Virginie Bouyer for helping me
with the various administration tasks.

I would like to thank Clémence Magnien and Alex Pothen for agreeing to review the manuscript
of my thesis in detail and act as reporters in my defense. I am also grateful to Marthe Bonamy
and Dimitrios Thilikos for agreeing to act as examinators in my defense.

I have nothing but the biggest gratitude for my family and my sister, Katerina, in particular.
I will never forget their support and how much they stood up for me. Knowing that I have so
many people caring for me gave me all the strength I needed. To that end, I would like to
dedicate this thesis in the memory of my parents and especially of my father. He supported me
emotionally and financialy throughout all my studies and unfortunately he passed away before
he could see me graduate.

I would also like to thank all my friends both here in Lyon as well as those in Greece or other
places. For those I met in Lyon, I am thankful for all the drinks, parties, board games and the
hikes we enjoyed together. To the rest, thank you for keeping in touch with me during this time.
In fact, I would like to give an extra thanks to a couple of friends with whom I communicated
daily.

Finally, I feel I have to thank God for surrounding me with good and caring people as well
as for all things -good or bad- that have happened to me.

v

Résumé français

Cette thèse examine quatre problèmes différents et connexes qui se posent dans le domaine du
calcul scientifique combinatoire (CSC). Le lien de connexion entre les quatre problèmes exam-
inés est le problème fondamental des couplages, qui cherche le plus grand ensemble d’arêtes
disjointes dans un graphe ou un hypergraphe. Ces problèmes sont ceux du couplage de cardi-
nalité maximale dans les graphes et dans les hypergraphes, l’estimation du nombre de couplages
parfaits, et la décomposition de Birkhoff–von Neumann des matrices bistochastiques. L’étude
de ces problèmes est motivée par leur utilité dans plusieurs domaines d’application.

La recherche en CSC s’articule autour de la formulation d’un problème de calcul scientifique à
l’aide d’un modèle combinatoire et de l’étude des problèmes algorithmiques sous-jacents associés
à ce modèle. La recherche en CSC est donc un mélange de travail théorique et pratique.

Nous examinons les quatre problèmes à la fois théoriquement et expérimentalement. L’accent
mis sur la théorie nous permet de discuter, d’analyser et de prouver les propriétés des algorithmes
examinés, tandis que le côté expérimental de la thèse démontre les améliorations et les avantages
possibles de l’utilisation des algorithmes et des solutions proposés.

Le chapitre 2 examine le problème de couplage dans les graphes bipartis et se compose de
trois parties. Dans la première partie, nous considérons, une heuristique de couplage bien connue.
Nous décrivons une mise en œuvre efficace et examinons sa complexité dans le pire cas. Nous
comparons expérimentalement sa variante plus simple largement utilisée et montrons des cas
pour lesquels l’algorithme complet donne de meilleures performances. Dans la deuxième partie
du chapitre, nous examinons deux algorithmes de couplage probabilistes exacts pour deux classes
spéciales de graphes bipartis qui sont les graphes aléatoires de type 2-out et les graphes réguliers
de degré d. Nous généralisons ces deux algorithmes et les transformons en heuristiques pratiques
pour des graphes bipartis arbitraires. L’élément clé de ces généralisations est la mise à l’échelle
de la matrice, que nous appliquons sur la matrice d’adjacence d’un graphe donné. Les résultats
expérimentaux montrent que les heuristiques sont rapides et permettent d’obtenir des couplages
quasi optimales. Elles sont également plus robustes que les heuristiques de pointe, et sont
généralement plus utiles comme routines d’initialisation. La troisième partie du chapitre consiste
en un bref résultat théorique sur la dérandomisation d’une heuristique randomisée connue. Nous
proposons un moyen de remplacer les décisions aléatoires de l’algorithme randomisé par des
décisions déterministes sans réduire la garantie d’approximation.

Le chapitre 3 examine le problème de couplage maximal dans les graphes non dirigés en
général. Comme dans le chapitre précédent, nous discutons des algorithmes efficaces qui peu-
vent trouver de bonnes approximations des couplages assez rapidement pour l’initialisation. Ce
chapitre s’appuie sur les deux dernières parties du chapitre 2 en considérant les algorithmes
basés sur la mise à l’échelle de la matrice. Plus précisément, les algorithmes examinés sont basés
sur la théorie connue des graphes bipartis de type 1-out. Nous étendons la théorie pour qu’elle
s’applique aux graphes généraux non orientés. Nous montrons que notre heuristique principale

vi

vii

a une garantie d’approximation d’environ 0, 866 − log(n)/n pour un graphe avec n sommets.
Nous fournissons plusieurs expériences qui vérifient les résultats théoriques.

Le chapitre 4 examine le problème de la recherche d’un couplage de cardinalité maximale dans
un hypergraphe d-partie, d-uniforme. Comme le problème est NP-dur, nous concevons plusieurs
heuristiques. Certaines de nos heuristiques sont des généralisations d’heuristiques connues pour
le problème de couplages de cardinalité maximale dans les graphes. Nous proposons également
une nouvelle heuristique basée sur la mise à l’échelle du tenseur. Cette heuristique s’inspire
des propriétés de la mise à l’échelle matricielle pour les graphes bipartis du chapitre 2. Les
expériences sur les hypergraphes aléatoires, synthétiques et réels montrent que cette nouvelle
heuristique est mieux que les autres.

Le chapitre 5 étudie des méthodes randomisées efficaces pour compter approximativement
le nombre de couplages parfaits dans les graphes bipartites et les graphes généraux non dirigés.
L’approche examinée utilise la mise à l’échelle de la matrice pour échantillonner un couplage par-
fait du graphe et utilise la probabilité de sélection pour retourner une approximation du nombre
de couplages parfaites dans le graphe. Cette approche présente des similitudes avec l’approche
basée sur la mise à l’échelle du chapitre 4 dans le sens où la mise à l’échelle est appliquée à
chaque étape pour modéliser l’état actuel du graphe aussi précisément que possible. L’analyse
expérimentale sur des graphes aléatoires et réels montre des améliorations dans l’approximation
par rapport aux méthodes connues et similaires de la littérature.

Le chapitre 6 examine le problème Min-BvN-Decomp défini pour les matrices bistochas-
tiques. Nous considérons deux heuristiques connues appelées GreedyBVN et Birkhoff pour ce
problème. Nous montrons les limites de performance pour ces deux heuristiques. Nos observa-
tions ainsi que les travaux précédents nous permettent de mieux expliquer pourquoi GreedyBVN

a une performance supérieure à Birkhoff. Nous considérons ensuite deux modifications de
GreedyBVN et démontrons expérimentalement que ces modifications peuvent conduire à une
décomposition de BvN avec moins de matrices.

Le chapitre 7 conclut la thèse. Nous fournissons un résumé avec les points les plus importants
couverts dans chaque chapitre et nous discutons également des travaux futurs potentiels.

Chapter 1

Introduction

This thesis investigates four different and related problems that arise in the area of Combinatorial
Scientific Computing (CSC). The connecting link between the four examined problems is the
fundamental problem of matching [86], which asks for the largest set of disjoint edges in a
graph or hypergraph. These problems are that of maximum cardinality matching in graphs and
hypergraphs, the estimation of the number of perfect matchings in graphs, and the Birkhoff–
von Neumann decomposition of doubly stochastic matrices. The study of these problems is
motivated by their usefulness in several domains and applications. We will mention some of
these applications in this chapter.

Research in CSC revolves around the formulation of a scientific computing problem using
a combinatorial model and the examination of the underlying algorithmic problems associated
with this model. Research in CSC is thus a mixture of theoretical and practical work.

We examine the four problems both theoretically as well as experimentally. The focus in
theory allows us to discuss, analyze, and prove properties of the examined algorithms, while the
experimental side of the thesis demonstrates the possible improvements and benefits of using
the proposed algorithms and solutions.

The rest of the chapter is organized as follows. In Sections 1.1–1.4 we provide a general
overview of the research area and introduce all the necessary background and material which
are needed to comprehend the results of the thesis. Section 1.5 then summarizes the remaining
chapters and gives a brief overview of the obtained results.

1.1 Undirected graphs

An undirected graph G = (V,E) consists of a set of vertices V and a set of edges E of the form
e = (u, v), where u, v ∈ V . The vertices u and v are called the endpoints of e and are considered
as neighbors of each other. The term degree of a vertex refers to the number of its neighbors. A
degree-k vertex is a vertex with degree exactly k. Degree-1 and degree-2 vertices are especially
important in the context of this thesis as it will be discussed in Chapter 2. A graph is complete
when there exists an edge between any two vertices of V and is represented with Kn, where
n = |V |. An independent set is a set of vertices such that there does not exist an edge between
any two vertices from this set.

A path in a graph is a sequence of vertices such that each consecutive vertex pair share
an edge. A vertex is reachable from another, if there is a path between them. The connected
components of a graph are the equivalence classes of vertices under the “is reachable from”
relation. A cycle in a graph is a path whose start and end vertices are the same. A cycle is

1

2 CHAPTER 1. INTRODUCTION

simple if there are no other vertex repetitions. A tree is a connected graph with no cycles. The
number of edges in a path, represented with `, is referred to as the length of the path. A path
is even or odd depending on the parity of `.

Graphs and graph-based models have found uses in many areas both in the industrial and
the academic world. Among others, they can be used to naturally model road networks, so-
cial networks, and molecules. In the field of Combinatorial Scientific Computing graphs are
commonly used in sparse linear solvers and sparse matrix computations in general [30, 34]. Ad-
ditional uses of graphs in CSC, for example on automatic differentiation are discussed in related
textbooks [94].

Definition 1.1. A matching M in a graph G = (V,E) is a subset of disjoint edges of E such
that no two edges in M share a common vertex.

Given a matching M, we call a vertex u matched, if there exists an edge of the form (u, v) in
M. In which case v is called u’s mate and vice versa. Note that by the definition of matching,
a vertex can have at most one mate. If vertex u does not have a mate in M, then u is called
unmatched or free. The cardinality of M, represented with |M|, corresponds to the number of
edges in M. A matching M is maximal if it cannot be extended with new edges. In this case,
all edges of E which are not included in M have at least one endpoint in the vertices of M. A
matching M with the largest cardinality is called a maximum cardinality matching. We will use
M∗ to refer the maximum cardinality matching of a given graph G. If M∗ matches all vertices
of V , then it is additionally called perfect. An augmenting path with respect to a matching M

is a path which starts with a free vertex and ends at another free vertex such that every second
edge is in M. A matching is maximum if and only if there are no augmenting paths [10].

Finding a maximum cardinality matching has been one of the fundamental problems in
computer science. Its applications include assignment [18] and scheduling [89] problems among
others. The lowest worst-case time complexity of the known algorithms is O(m

√
n) for a graph

with n vertices and m edges [14, 51, 91]. This complexity can be prohibiting for large instances.
For this reason there is significant interest in algorithms which can find large matchings in linear
or near linear time [98]. These large matchings can then be given as initialization to an exact
algorithm in order to speed-up the process of finding a maximum cardinality matching. The
practical uses of such initialization techniques [85] are well known and demonstrated. Addition-
ally there exist applications [89] where large approximate matchings suffice by themselves, i.e.,
we do not strictly need a maximum one.

An undirected graph G = (V,E) is bipartite if and only if V can be partitioned into two
disjoint sets VR and VC such that VR ∪ VC = V , and no vertices from the same partition are
neighbors. Bipartite graphs do not contain odd cycles. We use Knr,nc to represent the complete
bipartite graph with |VR| = nr and |VC | = nc. The lack of odd cycles makes finding the problem
of maximum cardinality matching simpler on bipartite graphs. The best known algorithms [62]
run in O(m

√
n) time for a graph with n vertices per side and m edges. While as seen, the best

known complexity is asymptotically the same for both general undirected graphs and bipartite
graphs, algorithms for the bipartite case are less complex, and consequently have better practical
performance.

A k-out subgraph Gk of a host graph G is defined by allowing each vertex in G to randomly
select uniformly k of its neighbors, and the union of all selections forms the edge set of Gk.
Walkup [107] showed that a random 1-out graph in the pure random bipartite k-out setting
(where the host graph is the complete bipartite graph) almost surely does not have a perfect
matching. He further showed that when k ≥ 2 the resulting Gk has a perfect matching with high

1.2. HYPERGRAPHS 3

probability, again focusing exclusively on complete bipartite graphs. Karoński and Pittel [69],
later with Overman [68], continued to examine complete bipartite graphs, and focused on two
models in between 1-out and 2-out bipartite graphs. Both models start by generating a random
1-out bipartite subgraph. The two models differ in their treatment of subsequent steps. In the
first model, the vertices that were not selected at all choose one more neighbor. In the second
model, the vertices that were selected at most once choose one more neighbor. It was initially
claimed [69] that subgraphs generated by the first model had a perfect matching with high
probability. This claim was shown to be false in the same paper that proved the existence of a
perfect matching for the subgraphs of the second model [68].

Frieze [46] generalized the result of Walkup and showed that k-out graphs of complete undi-
rected graphs also have a perfect matching with high probability for k ≥ 2. The problem of
Hamiltonian paths [15] and k-connectivity [43] have also been studied in the context of subgraphs
of complete graphs generated with the k-out model.

On the other hand, as far as we are aware, there is a scarcity of results about k-out graphs
sampled from an arbitrary host graph. Frieze and Johansson [45] investigated some other prop-
erties of Gks on host graphs where the minimum degree of a vertex is at least n/2. Ghaffari
et al. [52] and Holm et al. [61] examined applications of k-out graphs in connectivity problems.
Dufossé et al. [38] proposed to base the random decisions on matrix scaling and showed that
1-out subgraphs of graphs generated using the aforementioned method have a maximum cardi-
nality matching of around 0.866 of the maximum one in the host graph under some conditions.
We will investigate the k-out model and its applications for matchings in arbitrary host graphs
in Chapters 2 and 3.

1.2 Hypergraphs

A hypergraph H = (V,E) consists of a finite set V and a collection E of subsets of V . The set V
is called the set of vertices, and the collection E is called the set of hyperedges. A hypergraph is
called d-partite and d-uniform, if V =

⋃d
i=1 Vi with disjoint Vis and every hyperedge contains a

single vertex from each Vi. When d = 2 the corresponding hypergraph is a bipartite graph. For
a higher d, a d-partite, d-uniform hypergraph is an extension of bipartite graphs to d dimensions.

A lot of problems that appear in graphs can be generalized to hypergraphs. A matching in
a hypergraph is defined as a set of hyperedges such that no two hyperedges share a common
vertex. Definitions such as maximal matching or perfect matching are defined in accordance with
their equivalents on graphs.

We refer to Max-d-DM as the problem of finding a maximum cardinality matching on a
d-partite, d-uniform hypergraph. Max-d-DM for d ≥ 3 is NP-Complete; the 3-partite case in
particular was part of Karp’s 21 NP-Complete problems [70]. Max-d-DM has been studied
mostly in the context of local search algorithms [64], and the best known algorithm is due to
Cygan [27] who proposed an ((d+ 1 + ε)/3)-approximation, building on previous work [29, 58].
It is NP-Hard to approximate Max-3-DM within 98/97 [11]. Similar bounds exist for higher
dimensions: the hardness of approximation for d = 4, 5 and 6 are shown to be 54/53−ε, 30/29−ε,
and 23/22− ε, respectively [59]. Note that Max-d-DM is a special case of the d-Set-Packing
problem [60]. Hence, results such as d-Set-Packing being hard to approximate within a factor
of O(d/ log d) [60] are also relevant for Max-d-DM.

The maximum/perfect set packing problem has many applications, including combinatorial
auctions [56] and personnel scheduling [47]. Matchings in hypergraphs can also be used in the

4 CHAPTER 1. INTRODUCTION

coarsening phase of multilevel hypergraph partitioning tools [20], when the input is d-uniform
and d-partite, such as those used in modeling and partitioning tensors [77].

The k-out random hypergraph model generalizes the random k-out graph model that was
introduced earlier in the chapter. Given a hypergraph H = (V,E), each vertex u ∈ V selects k
hyperedges from the set Eu = {e : e ∈ E, u ∈ e} in a uniformly random fashion and the union
of these edges forms the hyperedge set of the subhypergraph. For the d-partite, d-uniform case
in particular we have Eu = {e : |e ∩ Vi| = 1 for 1 ≤ i ≤ d, u ∈ e, e ∈ E}. Hence (ignoring the
duplicate ones), such hypergraphs have around d × k × n hyperedges. Devlin and Kahn [32]
investigate fractional matchings in these hypergraphs, and mention in passing that k should be
exponential in d to ensure that a perfect matching exists when the host hypergraph is complete,
i.e., contains all possible hyperedges.

1.3 Sparse matrices

We use bold upper case letters to represent matrices, as in A. The entries in the matrix are
shown with lower-case letters and subscripts, e.g., ai,j denotes the entry of the matrix A at the
ith row and jth column. The column ids of the nonzeros in the ith row of A are represented as
A(i, :). With Aij we denote the submatrix of matrix A obtained by deleting the ith row and
the jth column. A permutation matrix is a square matrix such that each row and each column
contain exactly one nonzero value equal to 1. If an n×n permutation matrix has all its nonzeros
along the main diagonal (i.e., aij = 1 iff i = j), it is called the identity matrix and symbolized
with In.

In the chapters to follow, we will make extensive use of matrices, which we store in the
following memory efficient way. Under the Compressed Sparse Column (CSC) representation,
only the nonzero entries of A are kept in memory. The CSC format stores information about
the nonzero pattern of A in two one-dimensional arrays IDS and XIDS. All neighbors of column
c are stored in consecutive positions XIDS[c],. . ., XIDS[c + 1]-1 of the array IDS. An optional
one-dimensional array VALUE can be used to store the values of A, such that VALUE[i] stores
the value of the element stored in IDS[i]. The Compressed Sparse Row (CSR) format keeps
similar information for the rows and is defined accordingly.

Any graph G = (V,E) with |V | = n can be represented by symmetric n × n matrix AG,
which is called the adjacency matrix of G. We will use A instead of AG when the context is
clear. In this matrix, we have aij = aji = 1 if and only if the edge (ui, uj) exists. Here, we
associate a distinct index in the matrix for each of the vertices in V . If the graph G = (V,E) is
bipartite, with |VR| = nr and |VC | = nc, we can instead store G in an nr × nc matrix AG with
less memory overhead. We associate for each vertex of VR a distinct row, and for each vertex of
VC a distinct column. Then, the entry aij = 1 if and only if the edge (ri, cj) exists. Note that
unlike the above representation, AG in here is not necessarily symmetric and edges in the main
diagonal are allowed.

A matrix can be represented as a bipartite graph in a similar way. The edge (ri, cj) exists
in E if and only if the value of aij is nonzero. A perfect matching in a bipartite graph is thus
equivalent to a permutation of its equivalent adjacency matrix and vice versa.

1.3.1 The permanent function

The permanent of an n × n square matrix A is defined as Per(A) is equal to
∑

σ

∏
i ai,σ(i),

where the summation runs over all permutations σ of 1, . . . , n. The value of the permanent of

1.3. SPARSE MATRICES 5

the matrix representation AG of a bipartite graph G is equal to the number of perfect matchings
inG. We can similarly use the adjacency matrix representation to calculate the number of perfect
matchings in undirected graphs. Note that however this quantity can be different than the value
of the permanent in the corresponding adjacency matrix.

Approximating the permanent is a well-studied problem. Valiant [106] showed the problem
to be #P-Complete. Jerrum et al. [66] discussed an approach using Markov Chains which
can provide an (1 + ε)-approximation for the permanent in fully polynomial time, with Õ(n10)
complexity. Their Markov Chain Monte Carlo (MCMC) approach makes use of the underlying
graph being bipartite, and their techniques cannot be generalized easily to the general graph
case. Rasmussen [99] proposed a different approach based on employing the mean of several
unbiased estimators. We will examine this approach in detail in Chapter 5.

Aside from the theoretical importance of the permanent, there exist also practical applica-
tions in the field of statistical mechanics, namely in the monomer-dimer model [63]. Under this
model, a set of points in a lattice is covered by a non-overlapping arrangement of monomers
(molecules which occupy a single point) and dimers (molecules which occupy two neighboring
points). All possible monomer-dimer coverings (i.e., placings of monomers and dimers to fully
cover all points) for a given lattice define the configuration space. Given a lattice, we are in-
terested in calculating the cardinality of the configuration space. A lattice can be represented
as a bipartite graph G where each vertex represents a point and two vertices are neighbors if
their corresponding points are adjacent in the lattice. Now the problem of calculating the car-
dinality of the configuration space is equivalent to calculating the number of matchings in the
graph G. To see why, let M be matching in G. One can then visualize the matched edges of
M as dimers, and all free vertices as monomers, which will then fully cover the lattice. The
number of all matchings in G can be calculated from the permanent of the following matrix

B =

(
AG In×n
1n×n 1n×n

)
, where 1n×n the n× n matrix with all values equal to 1, as

Per(B)

n!
[63].

1.3.2 Doubly stochastic matrices

Here, we introduce one of the most essential concepts of the thesis, which is the class of doubly
stochastic matrices, as well as the notion of matrix scaling.

Definition 1.2. An n × n matrix A 6= 0 is called doubly stochastic if every entry aij ≥ 0 for
all i, j ≤ n, and in addition the sum of entries in each row and in each column is equal to 1.

Our results make extensive use of the fact that a row or a column of a doubly stochastic matrix
can be considered as a probability distribution.

A well-known theorem due to Birkhoff [13] states that for a given doubly stochastic matrix
A there exist α1, α2, . . . , αk ∈ (0, 1] with

∑k
i=1 αi = 1 and k different permutation matrices

P1,P2, . . . ,Pk such that
A = α1P1 + α2P2 + · · ·+ αkPk . (1.1)

This representation is also called the Birkhoff–von Neumann (BvN) decomposition. Such de-
compositions are not unique and in general a doubly stochastic matrix can have several valid
BvN decompositions. The problem Min-BvN-Decomp, which asks for the decomposition with
the smallest k, is strongly NP-Complete [39].

Marcus and Ree [88] showed that a dense matrix can be decomposed with k ≤ n2 − 2n+ 2
permutation matrices. A tighter upper bound of k ≤ τ − 2n + 2 can be guaranteed for sparse,

6 CHAPTER 1. INTRODUCTION

A =

1 1 0
0 1 1
1 1 1

 S =

0.618 0.382 0
0 0.382 0.618

0.382 0.236 0.382

Figure 1.1 – A nonnegative matrix A with total support and its corresponding scaled matrix
S = RAC.

fully indecomposable matrices with τ nonzeros [16, 17]. Brualdi [16] gave lower bounds on the
number of permutation matrices in any BvN decomposition of a given matrix.

Doubly stochastic matrices and their associated BvN decompositions have been used in
several operations research problems and applications. Classical examples are concerned with
allocating communication resources, where an input traffic is routed to an output traffic in
stages [22]. Each routing stage is a (sub-)permutation matrix and is used for handling a disjoint
set of communications. The number of stages correspond to the number of (sub-)permutation
matrices. A recent variation of this problem appears in routing in data centers [83]. BvN
decompositions are also used to build preconditioners for solving sparse linear systems [9]. Here,
the number k of the permutation matrices is related to the cost of applying the preconditioner.

A matrix is said to have support if there is a perfect matching in the associated bipartite
graph. Furthermore, if each nonzero can be put in at least one perfect matching, then the matrix
is said to have total support. By Birkhoff’s theorem, a doubly stochastic matrix necessary has
total support.

Any nonnegative matrixA with total support can be scaled with two unique positive diagonal
matrices R and C such that the matrix S = RAC is doubly stochastic. If A has support but
not total support, then A can be scaled to a doubly stochastic matrix but not with two positive
diagonal matrices [101]. Figure 1.1 shows the S matrix of a given 3×3 matrix A. The Sinkhorn–
Knopp algorithm [101] is a well-known method for scaling matrices to doubly stochastic form.
This algorithm generates a sequence of matrices (whose limit is doubly stochastic) by normalizing
the columns and the rows of the sequence of matrices alternately. If A is symmetric and
scalable, then S = RAR is doubly stochastic. While the Sinkhorn–Knopp algorithm obtains
this symmetric, doubly stochastic matrix in the limit, there are other iterative algorithms that
maintain symmetry all along the way [79, 80]. Idel [65] gives a comprehensive survey of known
results for computing doubly stochastic scalings. Recently, a tighter analysis of the Sinkhorn–
Knopp algorithm [21] has been carried out, and other efficient algorithms based on convex
optimization have been proposed [3, 25].

1.4 Sparse tensors

Tensors are multidimensional arrays, generalizing matrices to higher orders. We will use similar
notation with matrices to refer and describe tensors. Let T be a d-dimensional tensor whose size
is n1× · · · × nd. The elements of T are shown with Ti1,...,id , where ij ∈ {1, . . . , nj}. A marginal
is a (d− 1)-dimensional section of a d-dimensional tensor, obtained by fixing one of its indices.

Similar to how matrices can be used to represent graphs, one can use a tensor to represent a
given d-partite, d-uniform hypergraph. This is done by associating each tensor dimension with
a vertex class. Let |Vi| = ni, and the tensor T ∈ {0, 1}n1×···×nd have a nonzero element Tv1,...,vd

iff (v1, . . . , vd) is a hyperedge of H. Then, T is called the adjacency tensor of H. A tensor where

1.5. STRUCTURE OF THE THESIS 7

each marginal contains exactly one nonzero entry (equal to one) is called a permutation tensor.
As in the bipartite case, there is a correspondence between perfect matchings in a hypergraph
and permutation tensors in the adjacency tensor representation of the hypergraph.

A d-dimensional tensor where the entries in each of its marginals sum to one is called d-
stochastic. In a d-stochastic tensor, all dimensions necessarily have the same size. A d-stochastic
tensor where each marginal contains exactly one nonzero entry (equal to one) is called a per-
mutation tensor. Franklin and Lorenz [44] showed that if a nonnegative tensor T has the same
zero-pattern as a d-stochastic tensor B, then one can find a set of d vectors x(1), x(2), . . . , x(d)

such that Ti1,...,id · x
(1)
i1
· · · · · x(d)id = Bi1,...,id for all i1, . . . , id ∈ {1, . . . , n}. In fact, a multidimen-

sional version of the Sinkhorn–Knopp algorithm for scaling a matrix discussed previously can
be used to obtain these d vectors.

1.5 Structure of the thesis

Chapter 2 examines the matching problem in bipartite graphs and consists of three parts. In
the first part, we consider Karp–Sipser [72], a well-known matching heuristic. We describe an
efficient implementation and investigate its worst-case complexity. We compare experimentally
against its widely used simpler variant and show cases for which the full algorithm yields better
performance. In the second part of the chapter, we examine two exact probabilistic matching
algorithms for two special classes of bipartite graphs which are random 2-out graphs, and d-
regular bipartite graphs. We generalize these two algorithms and turn them into practical
heuristics for arbitrary bipartite graphs. The key element in these generalizations is matrix
scaling, which we apply on the adjacency matrix of a given graph. Experimental results show
that the heuristics are fast and obtain near optimal matchings. They are also more robust than
the state of the art heuristics used in the cardinality matching algorithms, and are generally
more useful as initialization routines. The third part of the chapter consists of a brief theoretical
result about the derandomization of a known randomized heuristic for the bipartite matching
problem [38]. We propose a way to replace the random decisions of the randomized algorithm
with deterministic ones without reducing the approximation guarantee.

Chapter 3 examines the maximum matching problem in general undirected graphs. Similar to
the previous chapter, we discuss efficient algorithms that can find large approximate matchings
fast enough for the purpose of initialization. This chapter builds on the last two parts of
Chapter 2 by considering algorithms based on matrix scaling. More specifically, the examined
algorithms are based on the theory of 1-out bipartite graphs discussed by Dufossé et al. [38] and
mentioned in Section 1.1. We extend the theory to hold for general undirected graphs. We show
that our main heuristic has an approximation guarantee of around 0.866− log(n)/n for a graph
with n vertices. We provide several experiments that verify the theoretical results.

Chapter 4 examines the problem of finding a maximum cardinality matching in a d-partite,
d-uniform hypergraph. Because the problem is NP-Hard, we design several heuristics. Some
of our heuristics are generalizations of known heuristics for the maximum cardinality matching
problem in graphs. We also propose a novel heuristic based on tensor scaling to extend the
matching via judicious hyperedge selections. This heuristic is inspired by the properties of
matrix scaling for bipartite graphs, which we will see in Chapter 2. Experiments on random,
synthetic and real-life hypergraphs show that this new heuristic has superior performance to the
rest of the heuristics.

Chapter 5 investigates efficient randomized methods for approximating the number of perfect

8 CHAPTER 1. INTRODUCTION

matchings in bipartite graphs and general undirected graphs. The examined approach uses
matrix scaling to sample a perfect matching from the graph and uses the probability of selection
to return an approximation for the number of perfect matchings in the graph. This approach
shares similarities with the scaling-based approach from Chapter 4 in the sense that scaling is
applied at each step to model the current state of the graph as accurately as possible. The
experimental analysis on random and real-life graphs shows improvements in the approximation
over previous and similar methods from the literature.

Chapter 6 examines the Min-BvN-Decomp problem defined for doubly stochastic matrices
in Section 1.3.2. We consider two known heuristics called GreedyBVN and Birkhoff for this
problem. We show performance bounds for both of these heuristics. Our observations along
with previous work [39] allow us to explain better why GreedyBVN has superior performance to
Birkhoff. We then consider two modifications of GreedyBVN and demonstrate experimentally
that these modifications can lead to a BvN decomposition with fewer matrices.

Chapter 7 concludes the thesis. We provide a summary with the most important points
covered in each chapter and also discuss potential future work.

Chapter 2

Matchings in bipartite graphs

This chapter investigates the problem of matchings in bipartite graphs. We examine the problem
from the perspective of matching heuristics. Our motivations were defined in Chapter 1 where we
highlighted their importance in speeding up exact algorithms. We remind the overall approach
in here. To find a matching of maximum cardinality efficiently for practical applications one
can use a two-step process. In the first step, a cheap initialization heuristic or an approximation
algorithm is used in order to quickly find a matching of large cardinality. This matching is
then given as an input to the second step and improved via a relatively more expensive exact
algorithm. It has been empirically shown that this strategy is much faster than running an exact
algorithm from the beginning—see for example Langguth et al. [85].

Our work in this chapter can be separated into three parts. The first part examines a well-
known matching heuristic due to Karp and Sipser [72]. The results of this part were published in
the proceedings of the ALENEX 2020 conference [C2]. The heuristic applies whenever possible
two deterministic rules. The standard implementation of the heuristic can have quadratic worst-
case performance. Our theoretical contribution in this part is a subquadratic algorithm to apply
the Karp–Sipser heuristic. In the experiments we show the potential gains of Karp–Sipser when
tested against a simpler variant which applies only one of the two rules. In the second part
we examine randomized matching heuristics which are based on matrix scaling. In this part
our motivation is to produce robust and reliable heuristics that have near-optimal performance
even in instances where other well-known heuristics might behave poorly. The results of this
part were published in the proceedings of the ESA 2020 conference [C3]. Our motivation to
use scaling follows from previous work [38] where scaling was applied to guarantee the existence
of large matchings in random 1-out subgraphs. Initially, we consider two existing probabilistic
algorithms for matching, which are optimal for two different classes of graphs. The first class is
random 2-out graphs sampled from the complete bipartite graph. The second class is d-regular
graphs where all vertices have degree equal to d. We adapt these two algorithms such that
they base their random decisions on the values in the scaled adjacency matrix of the given
graph. Experimentally, we demonstrate the efficiency and effectiveness of the two heuristics,
while also demonstrating their usefulness as initialization methods in comparison with other
heuristics. In the third part we discuss a deterministic approximation algorithm for matching.
Here, we want to examine whether we can avoid augmenting path searches—usually employed
by other deterministic algorithms—in order to surpass the 1/2 bound in approximation. This
approximation algorithm is obtained through the derandomization of an earlier approximation
algorithm [38] and again relies on matrix scaling.

The rest of the chapter is organized as follows. Section 2.1 provides a survey of known

9

10 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

heuristics and approximation algorithms for maximum cardinality matching. In Section 2.2 we
investigate the Karp–Sipser heuristic. In more detail, Subsections 2.2.1– 2.2.4 are concerned
with implementation issues, while Subsection 2.2.5 presents related some experiments. The
second part of the chapter constitutes of Sections 2.3 and 2.4. In Subsections 2.3.1 and 2.3.2 we
review the two existing randomized algorithms for the special classes of bipartite graphs and then
adapt them for general bipartite graphs. In Subsection 2.3.3 we present the experimental results
with them. The deterministic approximation from the third part is discussed in Section 2.4.
The derandomization process is presented in Subsection 2.4.1, while some experiments with the
method are given in Subsection 2.4.2. Section 2.5 summarizes the chapter and discusses some
potential future work.

2.1 A survey on matching heuristics

The problem of finding a maximum cardinality matching can be solved in O(m
√
n) and there

exist efficient algorithms [62, 76, 97] for this purpose. In this section, we will present an overview
of heuristics that can be used in the cheap initialization step.

Hopcroft and Karp’s original algorithm [62] to find a maximum matching in a bipartite graph
proceeds in phases. At each phase, it finds shortest augmenting paths, and augments the current
matching along a maximal set of disjoint such paths. Each such phase runs in O(n + m) time.
Stopping when the shortest augmenting paths are of length 2k + 1 at a phase no larger than k
results in an (1− 1/(k + 1))-approximate matching and requires O(k(m+ n)) time in the worst
case.

The Greedy [104] heuristic at each step chooses a random edge and matches the two end-
points and discards both vertices and the edges incident on them. ModifiedGreedy [104]
chooses a free vertex and then randomly matches it to one of its available neighbors. Another
variant MinGreedy [104] (see also Magun [87] and Langguth et al. [85] for related algorithms)
improves upon the ModifiedGreedy algorithm by selecting a random vertex of minimum
degree. These Greedy-like algorithms obtain maximal matchings and are therefore 1/2 ap-
proximate. Slight improvements in the form of 1/2 + ε were shown for these algorithms [5, 96],
but there are theoretical bounds in the same vicinity [12].

The well-known Karp–Sipser heuristic [72] uses two deterministic rules to handle degree-1
and degree-2 vertices in an optimal way. If such vertices do not exist in the graph, a random
decision is done akin to Greedy. While Karp–Sipser can be thought of as an improved version of
Greedy-like algorithms, its approximation guarantee is similarly not greater than 1/2 + ε [12].
Duff et al. [35] and Langguth et al. [76, 85] compared these algorithms for initialization in
maximum cardinality matching algorithms and suggested using Karp–Sipser as initialization
for general problems especially with the push-relabel based algorithms [76]. In addition, several
theoretical papers [6, 23] analyzed the expected matching quality of the Karp–Sipser and derived
variants for sparse random graphs.

In order to break the 1/2 barrier in approximation, one must consider a different form of
randomization. The Ranking [73] algorithm achieves an approximation ratio of 1−1/e, where e
is the base of the natural logarithm. At the first step, it assigns a random priority to all columns.
Then, it traverses over the rows and tries to match each row with its unmatched neighbor of
largest priority.

The same approximation ratio is also achieved by a very simple parallel algorithm called
OneSided [38]. The most involved step in the OneSided algorithm is the application of a

2.2. AN EXAMINATION OF THE KARP–SIPSER ALGORITHM 11

matrix scaling algorithm in the adjacency matrix A of the given bipartite graph. Once the
doubly stochastic matrix S = RAC has been obtained, each column selects randomly one of
its neighboring rows and gets matched with it. More specifically, row ri selects column cj with
probability sij . We will briefly discuss how to derandomize OneSided towards the end of this
chapter. The same paper [38] proposed another randomized algorithm called TwoSided which
extends OneSided and achieves a better theoretical guarantee. TwoSided allows both rows
and columns to select randomly one of their neighbors, again basing the decisions on the values
in the scaled matrix S. The selections from both columns and rows give rise to a 1-out subgraph
G1 of the original host graph G. In the paper it was shown that G1 has a maximum matching
with expected cardinality at least 0.866 of the maximum in G. This bound is in fact tight for
complete bipartite graphs. Finally, we note that additional information about these heuristics
may be found in a recent survey [98].

2.2 An examination of the Karp–Sipser algorithm

As was discussed above, the Karp–Sipser heuristic (KS in short) empirically performs better than
many, if not all heuristics, on average [35, 85]. In this section, we will focus on this heuristic and
its implementation. The Karp–Sipser heuristic is based on performing reductions on a graph
with no degree-0 vertices (they are discarded throughout); when a degree-1 or degree-2 vertex
appears, Karp–Sipser reduces the problem to a smaller one via the following rules:

• Rule-1: At any time, if a degree-1 vertex u with neighbor v appears the edge {u, v} is
added to the matching and both vertices are removed from the graph. This decision is
optimal in the sense that there exists at least one maximum cardinality matching in the
current graph containing {u, v}.

• Rule-2: At any time, if there are no degree-1 vertices, and a degree-2 vertex u with
neighbors v and w appears, u and its edges are removed from the current graph, and v
and w are merged to create a new vertex vw whose set of neighbors is the union of those
of v and w (excluding u). Karp and Sipser showed that a maximum cardinality matching
for the reduced graph can be extended to obtain maximum cardinality matching for the
original graph by matching u with either v or w depending on vw’s match.

• When none of these rules can be applied, a random edge from the current graph is added
to the matching. The two matched vertices as well as their adjacent edges are removed
from the graph. This decision may not be optimal.

Both Rule-1 and Rule-2 have the property that they preserve M∗(G). We will use the
notation G(0) = G to denote the initial graph, and G(t) to denote the graph after t random or
rule-based decisions. Let G(k) be the first graph where neither Rule-1 nor Rule-2 is applicable.
We callG(k) a kernel ofG for the maximum cardinality matching problem, i.e., a reduced, smaller
graph where one can obtain a maximum cardinality matching for G given a maximum cardinality
matching for G(k) by following the reductions in reverse order. Thus, in addition to the already
discussed initialization strategy, another use of the Karp–Sipser algorithm is to obtain G(k)

initially, and then apply an exact algorithm on the smaller subgraph G(k), rather than G, which
can significantly improve the performance. This technique is called kernelization [28] and is used
in several problems [42, 84]. Note that obtaining G(k) can be computationally expensive.

While Rule-1 is simple to implement, Rule-2 is more complicated and requires more effort
to be used in a matching heuristic. That is why in practice [85, 93], the Karp–Sipser heuristic

12 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

Figure 2.1 – A toy bipartite graph G = (VA ∪ VB, E) with vertex sets VA and VB. Except for
the leftmost vertices from each vertex set, each vertex has two neighbors and will be removed
by Rule-2 of Karp–Sipser. For every G(t), the merged vertices will have degrees (n+ 1− t) and
2. Hence, the total time for the default Karp–Sipser implementation on this instance is Θ(n2).

has usually been associated with its simpler variant KSR1, which only applies Rule-1, and when
necessary, random choices. Although it does not exploit the second rule, KSR1 has been shown
to obtain large cardinality maximal matchings on real-life graphs, see e.g. [35, 76].

KSR1 can be implemented in O(n + m) time by keeping an up-to-date list of all degree-1
vertices. When the edge {u, v} is added to the matching, if u is a degree-1 vertex, one needs
to visit only v’s neighbors to reduce their degrees. Otherwise, u’s and v’s neighbors must be
visited and their degrees are updated. Hence, with only Rule-1, each adjacency list is accessed
at most once and KSR1 runs in linear time. This essentially implies that the complexity of KS
depends on the the cost of applying Rule-2.

For any graph G(t) that appears during the execution of the heuristic, let u be a degree-2
vertex with neighbors v and w. According to Rule-2, v and w must be merged to vw ∈ G(t+1).
With a naive approach, this operation takes Θ(dv+dw) time. Since there can be at most n merge
operations, the time complexity of this strategy is O(n2). This bound is tight as one can create
highly sparse graphs for which Karp–Sipser requires quadratic time as shown in Figure 2.1.

2.2.1 An expected O(m log n)-time algorithm

Let u be a degree-2 vertex with neighbors v and w. A Rule-2 application due to u operates in
three steps:

1. Merging v’s adjacency list with that of w,

2. Performing degree reductions for the vertices that are both v’s and w’s neighbors,

3. Updating the adjacency lists of the vertices which are neighbors of v and w.

Assume there exists an implementation of Karp–Sipser, hereafter referred to as KSmin, where
it is possible to perform the 3-step merge operation in O(min(dv, dw)) time. In the following
theorem we show that the worst-case time complexity of KSmin is O(m log n) which is better
than O(n2) for sparse graphs where m� n2.

Theorem 2.1. KSmin runs in O(m log n) time.

Proof. Rather than attempting to analyze KSmin directly, we will instead analyse a related
hypothetical algorithm KS*min which operates on a multi-graph where multiple/parallel edges
are allowed. In essence, KS*min never removes an edge from the graph and performs merges
at any time step by simply concatenating the adjacency lists of the two vertices to be merged.
KS*min will perform the same merges as KSmin. Note that in the multigraph of KS*min the
corresponding vertices to be merged might not necessarily be neighbors of a degree-2 vertex (its

2.2. AN EXAMINATION OF THE KARP–SIPSER ALGORITHM 13

actual degree can be higher since no edges are deleted). Similar to KSmin, we assume that the
cost of each merge in KS*min is equal to the size of the smaller adjacency list. Hence, for a
single merge, the amortized cost per edge in the smaller list becomes O(1).

Let v and w be the vertices in multigraph G(t) and dv, dw with dv ≤ dw be the number of
edges (parallel edges are allowed) incident on v and w. Let vw be the merged vertex in G(t+1).
Note that dvw is at most m, the total number of edges. We also have 2dv ≤ dvw, since we allow
parallel edges. Therefore, a single edge can be in the smaller adjacency list in at most logm
merge operations as otherwise dvw would end up exceeding the number of edges m which is not
possible as dvw is bounded by m.

Having O(1) amortized complexity for each examined edge during a merge, the total time
complexity of KS*min becomes O(m logm). Since m is O(n2), the complexity is O(m log n).

To analyze the complexity of KSmin, we assume as we said the same merge operations
between KSmin and KS*min. Since the sizes of the merged adjacency lists in KSmin are always
smaller than or equal to the corresponding lists in KS*min, the time complexity of KSmin is
also O(m log n).

It remains to discuss how to implement a merge operation on v and w in KSmin. Assume
dv ≤ dw. First, the larger list, i.e., w’s list is kept intact and w becomes the merged vertex vw in
the reduced graph. Then each neighbor x of v is processed one after another. To keep the graph
simple and to correctly update the degree reductions for the common neighbors of v and w, x
is first searched in the adjacency list of w. If x is already in w’s list its degree is decremented
and v is removed from x’s adjacency list. Otherwise, x is inserted to w’s list. Furthermore, v is
also replaced by w in x’s list.

To perform these operations in expected constant time per edge, we can use a hash table to
store all the edges in the graph. This hash table is used to query the existence of x in w’s list
by looking whether {x,w} exists or not in the hash table. With this data structure, we have
O(m log n) expected time complexity for KSmin and linear space. Instead of a hash table, one
can use a data structure to store the edges with O(logm) insertion, update and lookup time such
as a binary search tree. Such a data structure yields an O(m log2 n) worst-case time complexity
for KSmin in linear space.

2.2.2 An implementation with list caching

In order to merge the adjacency lists of two vertices v and w, one can use a dense, 0-1 array L
of size n. This array represents v’s adjacency list with L[x] = 1 iff {v, x} exists in the current
graph. Once such a list is created for one of the merging vertices, the edges of the other vertex
can be looked up in L. Note that this array needs to be created every time there is a merge
involving v and each time, one needs to re-iterate over v’s adjacency list.

A natural optimization to this approach would be to allocate such arrays for some vertices
and persistently keep them in memory, i.e., cache them. With caching, we do not have to re-
iterate over these vertices’ adjacency lists each time they participate in a merge. Indeed, if we
cache two arrays for the two leftmost vertices in Figure 2.1, the complexity drops from Θ(n2)
to Θ(n). We refer to this variant as KScache.

There are many different strategies to decide on which vertices to keep in the cache. For
example, one can cache the lists for the k most recently merged vertices, or k highest degree
vertices. In Theorem 2.2, we show a negative result holding for any arbitrary caching strategy.

14 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

Theorem 2.2. KScache using k arrays and applying Rule 1, Rule 2 and random decisions has
an instance requiring Ω

(
n2/k

)
time for all possible caching policies.

Proof. Assume that we have enough memory to cache the adjacency lists of k vertices in dense
form. Let G be the n × n bipartite graph shown in Figure 2.2 in which the vertices in VA and
VB are shown in black and red, respectively. The graph contains 2k identical subgraphs, each

having (n
2k
−1)
2 two-by-two complete bipartite structures and an additional VA (VB) vertex that

is connected to every other VB (VA) vertex in its subgraph. These extra vertices are labeled as
ai and bi for the ith subgraph (in fact, they correspond to the left most vertices in Figure 2.1).

Figure 2.2 – A toy bipartite graph G = (VA ∪ VB, E) where |VA| = |VB| = n and the vertices in
VA and VB are colored with black and red, respectively.

As the figure shows, the minimum degree in the initial graph is three and a random decision
is required. When a random decision hits into a two-by-two part in the ith subgraph, the
corresponding matching and the removal of the matched vertices yield two possible merges
involving either ai or bi. These potential merges eliminate each other, i.e., only one of them is
possible. Furthermore, after the merge operation, the minimum degree in the graph will go back
to three. Hence, assuming all the random edges are from the two-by-two bipartite subgraphs,
each random choice is followed by a merge which is then followed by another random decision.
Since the decisions are random, we cannot build a caching strategy based on them.

Hence, regardless of caching policy, it is always possible that the neighbors of neither ai nor
bi are in the cache until at least k components are reduced completely. Doing so for only one
component without considering the amount of work for the others takes

(n
2k
−1)/2∑
j=0

(n
2k
− 2j

)
= Θ

(
n2

k2

)

time since the degrees of ai (as well as bi) vertices are reduced by two after each step. Since at
least k components must be consumed, the complexity until this point is Ω

(
n2/k

)
which implies

a lower bound on the execution time of KScache for the instance in Figure 2.2 assuming that the
random choices always hit two-by-two subgraphs.

2.2.3 An alternating component approach

Here, we consider and extend an idea that was first introduced by Langguth et al. [85]. There,
the authors used the term alternating component to refer to a connected subgraph consisting of
a set of boundary vertices connected by paths. The boundary vertices are vertices of arbitrary
degree greater than one. The paths are required to contain an even number of edges, have a
boundary vertex as beginning and endpoint, and all other vertices in each path are required to

2.2. AN EXAMINATION OF THE KARP–SIPSER ALGORITHM 15

be of degree 2. An example can be seen in Figure 2.3. In addition, we only consider components
whose paths are maximal, i.e., they cannot be extended without violating the above definition.

If an alternating component contains a cycle, then there is no need to explicitly merge vertices
in the component. Since every edge has at least one incident vertex of degree 2, at least half of
the vertices in such a cycle have degree 2. Thus, for any edge of the cycle, there is a maximum
cardinality matching containing that edge. Thus, we can pick an arbitrary edge and match it.
The remaining component will be matched via the application of Rule-1.

If a component is acyclic, it can be immediately merged into a single vertex via Rule-2. To
see this, consider two vertices that are both connected to a degree-2 vertex in a simple alternating
component. Thus, each application of Rule-2 will reduce the length of a path between boundary
vertices in an alternating component by two, and because the length is even, they will be merged
when it reaches zero. The same applies to any such path in an alternating component. The
advantage of doing so is that we do not have to perform merges immediately. Instead, we
maintain components whose merges can then be performed together more efficiently.

Langguth et al. [85] applied only the first operation. Acyclic components were maintained,
but not explicitly merged. This resulted in a useful heuristic, but it is not equivalent to a full
implementation of Rule-2. Here, we show how to use alternating components to implement the
Karp–Sipser algorithm in its entirety. We will call this version as KScomp.

Figure 2.3 – An example of a component: diamond shaped vertices correspond to the degree-2
vertices and cycle shaped vertices correspond to boundary vertices. The dashed lines correspond
to additional edges, unrelated to the displayed component.

Similar to the basic implementation, the algorithm keeps stacks of degree-1 and degree-2
vertices. If a degree-1 vertex exists at any time in the remaining graph, we add its edge to the
matching. For a degree-2 vertex u, we create P (u), a maximal even-length path containing u
and only degree-2 vertices except for the first and last vertex in P (u). Let l, r be these boundary
vertices in P (u). We use a union-find data structure to keep track of membership in components.
At the start of the algorithm, every vertex is its own component. Now, if l and r already belong
to the same component C, then adding the additional path must close a cycle in C. In that case
we arbitrarily add one of the edges of u to the matching and the component is then cleared out
by Rule-1 reductions. If no cycle exists, then we simply update the labels of l, r to signal that
their components have been joined together. No merge is performed at this point.

When there are no degree-2 vertices left, we merge the remaining acyclic components one
by one. We refer to this as a component shrink. Let C be component with boundary vertices
b1, . . . , bk. To perform the shrink we require O(

∑
bi∈C dbi) time since we only need to access

the adjacency list of each bi once. If during these merges, a new degree-2 vertex becomes
available (this can happen for example if bi and bj are both adjacent to some vertex w with
d(w) = 3 before the shrink) the merging stops and the degree-2 operation is applied, which can

16 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

unify two components. If all components have been shrunk, and no degree-1 or degree-2 vertices
exists, KScomp selects a random edge to be matched as in the standard case.

Using alternating components can prove useful in the sense that they provide a structured
way to perform reductions such that they avoid re-reading adjacency lists of vertices (which
was also the motivation of KScache) . For example, it takes only linear time for the worst case
instance of Figure 2.1. However, it can degrade to the worst case performance of the basic
implementation if there are no nontrivial alternating components in the graph.

Theorem 2.3. The KScomp variant requires O(n2) in the worst case.

Proof. The proof is similar to that of Theorem 2.2 hence we skip the details. In short, if the
algorithm is given an input instance as in Figure 2.2, there will be no non-trivial components.
Assuming all random choices hit into the two-by-two complete bipartite subgraphs, there will
always be a random choice following a single merge. Hence, on this instance, the component
approach behaves just like the basic implementation.

We note that the approach of using alternating components bears some similarity with the
approach used in [7], which performs all currently existing Rule-2 operations in linear time.
However, the authors consider Rule-2 exclusively and their approach cannot handle Rule-1 or
random decisions. They propose a complicated static linear-time algorithm which operates on
the DFS-tree of a given graph and avoids to do merges explicitly by doing implied reductions.
Let us refer to a phase, as a series of consecutive Rule-1 or random operations done by KS.
Phases are thus separated from each other by one or more Rule-2 applications. Their O(n+m)
time algorithm would need to be re-run between the different phases and thus can potentially
yield a complexity of O(n2).

2.2.4 Fast recovery of the matching

As described above, a merge operation creates a new vertex that may be involved in upcoming
merges. Hence, the matched vertices returned as the final output by the heuristic do not nec-
essarily appear in G(0). The standard way to recover the actual matching is by keeping a stack
S containing all the information related to each merge [87]. After the heuristic has finished,
the stored merges are popped one after another from S in order to be create a matching for
G(0). Assume that during the heuristic a degree-2 vertex u appears with neighbors v and w;
hence, a new vertex vw is created. While recovering the actual matching, if vw is unmatched
we can match either v or w with u and continue. Otherwise, we need to check whether vw
is matched with one of v’s or w’s neighbors stored in S. Using similar reasoning as in Theo-
rem 2.1, this approach takes O(m log n) time and space in the worst case, assuming the smaller
neighborhood (among v’s and w’s) is stored in the stack.

Here, we propose an algorithm with O(n) time complexity. To recover the matching effi-
ciently, we use a graph F ⊆ G. Initially, F has no edges but contains all vertices of G. During
the heuristic, assume a merge is being performed due to a vertex having two edges e and e′. Let
{u, v} and {u′, w} be the original endpoints of e and e′ in G, respectively. We add the edges
e1 = {u, v} and e2 = {u′, w} to F and set twin(e1) = e2 and twin(e2) = e1. The association of
e1 and e2 as twins exploits the implicit Rule-2 property that either e1 or e2 can be in a maximum
cardinality matching, but not both.

Proposition 2.1. F is a forest.

2.2. AN EXAMINATION OF THE KARP–SIPSER ALGORITHM 17

Proof. Assume that F contains a cycle. Let C ⊆ F ⊆ G be a simple cycle with length `. Let
C be first initiated with a merge in G(t), and let u be the degree-2 vertex for that merge with
neighbors v and w. Both {u, v} and its twin {u,w} must be in C, since u will not exist in G(t+1).
Let C ′ be the reduced cycle obtained by removing u from C and merging v and w. The above
steps can be repeated by using the edge that initiates C ′. At each step, the cycle will be further
reduced and after l− 1 steps, only two vertices and a single edge will remain. As parallel edges
are not allowed in the graph G(·), such a merge cannot exist to complete the cycle.

Let M ′ be the set of matched edges found by the heuristic and let M be the the matching
constructed with the original versions of M ′’s edges from G(0). Let e = {u,w} be an edge in M .
Then for all edges e′ 6= e of u and e′′ 6= e of w in F , we add e∗ = twin(e′) and e∗∗ = twin(e′′)
to M . We then remove u and w from F (i.e., F = F \ {u,w}) and consider the next matched
edge in M . If no more nodes in the current tree are matched, we select a vertex of degree-1 in
F , add its unique edge to M and repeat.

Lemma 2.1. The algorithm described above to recover the matching is correct.

Proof. Let e and e′ be two twin edges which have not been included in the matching M . If one
of the endpoints of e is matched inM , then it is no longer possible to include e inM . By Rule-2,
one of the twins must necessarily participate in a maximum cardinality matching. Hence, we
can extend M by using e’s twin edge. This means that as long as there exist matched vertices
in F , the algorithm correctly extends the matching.

If there are no matched vertices in F , for any twins e and e′, we know that either can be in
a maximum cardinality matching. Hence, we can arbitrarily add either to M . For simplicity,
we chose the edge of a degree-1 node, which always exists since F is always a forest.

2.2.5 Experiments

We implemented the algorithms discussed in the last section. For convenience, we use the
shortened form KS to refer to Karp–Sipser throughout the experiments. Except where noted,
the KS algorithm variant being used is the default one.

When KS is used as a heuristic, we first generate a random permutation of the edges with
uniform probability, which we store in a list. Then, in the event of a random decision, the first
available edge (that is without any matched endpoints) is returned from this list.

All the codes are written in C++ and compiled with gcc 8.3.0 with -03 optimization flag.
They are tested on two different machines. The first machine had 2 x AMD EPYC 7551 CPUs
and 256 GB RAM (Arch 1). The other had 4 x Intel Xeon E7-8890 CPUs and 1.5 TB RAM (Arch
2).

We used a vector-based implementation for both KS and KSR1, because we wanted to
measure exactly the additional costs incurred due to the addition of Rule-2. When comparing
between KS and KSR1 we thus do not include costs such as initialization or randomization
which are identical for both.

2.2.5.1 On real-life graphs

Our real-life dataset consisted of 93 bipartite graphs with n = |VR| = |VC | and 106 ≤ n ≤ 107

taken from the SuiteSparse Matrix Collection [31]. The number of edges in these graphs varied
from 3 · 106 to 3.1 · 108. For each of these matrices, we performed a total of sixteen runs. More
specifically, we randomly permuted each matrix four times, and then measured the timings for

18 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

both KSR1 and the default KS algorithm four times in the permuted matrix. Permuting the
matrix between runs can potentially affect the run-time for both KS heuristics as well as the
exact algorithm used afterwards. To analyze the impact of adding Rule-2 for data reduction,
two exact matching algorithms push-relabel (PR) [55] and Pothen-Fan+ (PF+) [35, 97] are used.
In previous studies [76], these two algorithms are shown to be the best performing algorithms
from a set of alternatives, including the asymptotically fastest one [62].

Using KSR1 for kernelization. We first consider the use of KS as a kernelization tool and run
experiments on Arch 1: we first run KS and KSR1, with no random decisions, to find their
kernels G(k) and G(k′) where k ≥ k′. After that, an exact algorithm, PR or PF+, is executed to
find a maximum cardinality matching in the kernel. As KS requires a minimum degree at most
2 in order to return a non-trivial kernel, for this experiment, we only use the graphs having min
degree one or two. There are 59 such graphs. The results are summarized in Figure 2.4.

To measure the impact of the second rule, we measured the kernel quality for each heuristic.
The quality is computed as the number of times a rule is applied during KS and KSR1. nor-
malized with respect to size of the maximum cardinality matching. Figure 2.4(a) shows that in
terms of quality, for around 30 matrices, the second rule has an impact and for one matrix, it
increased the quality from almost 0 to 0.65. Hence, KS obtains a kernel of smaller size compared
to KSR1. Furthermore, as Figure 2.4(b) shows, KS is slightly slower compared to KSR1 differing
in most graphs by less than a second.

To evaluate the impact of additional size reduction obtained via Rule 2 on the exact matching
process, we measured the execution times of PR and PF+ given the kernels G(k) and G(k′)

obtained by KS and KSR1. Figures 2.4(c) and 2.4(d) shows the speedup obtained, i.e., the
execution time of PF+ or PR on G(k′) divided by the execution time of the same algorithm on
G(k). In these two figures, if the speedup is higher than one, then it is in favor of KS. The
first observation is that the speedups are mostly in the positive side and a good kernel can
significantly improve the execution time of the matching phase. The second observation is that
the impact of kernelization heavily depends on the algorithm used since PR and PF+ can behave
in a different way. For instance, in one matrix, although G(k) is smaller than G(k′), PF+ runs
slower on G(k). Yet, even with such fluctuations, for both algorithms, smaller kernels usually
yield better performance.

Using KS as a heuristic. To check if KS is also useful as an initial, cheap matching heuristic,
we let KS and KSR1 run in their entirety and input the returned matchings to the exact algo-
rithms. The experiments are performed on Arch 2. Figure 2.5 summarizes the results of these
experiments. Both KSR1 and KS obtain excellent results with matching quality almost always
larger than 0.97 of M∗(G). KS is able to match 1% more vertices than KSR1, which corresponds
to more than ten thousand vertices due to the size of our instances.

As in the previous experiments, the exact algorithms tend to be faster when initialized with
KS. However, since the impact, i.e., the difference in the quality, is higher for kernelization
compared to matching, the speedups are not as large as the previous set of experiments. If
we look at the total run time to find a maximum cardinality matching, we see that on average
using KS rather than KSR1 can yield a 20% slow-down using PF+ and 40% with PF+. This
is understandable since KS itself does significantly more work than its simpler variant. On the
other hand there exist instances where using KS rather than KSR1 can be crucial. For example,
consider the graph com-LiveJournal for which PF+, initialized with KSR1 matching, results in
a run time of about 1060 seconds on average, whereas PF+ requires 65 seconds on average, if

2.2. AN EXAMINATION OF THE KARP–SIPSER ALGORITHM 19

10 20 30 40 50
Matrices (sorted wrt. KS kernel quality)

0

0.2

0.4

0.6

0.8

1

Ke
rn

el
iz

at
io

n
qu

al
ity

KSR1
KS

(a) Kernel quality: #rules/M∗(G).

10 20 30 40 50
Matrices (sorted wrt. KS kernel quality)

0

5

10

15

Ex
ec

ut
io

n
tim

es
 (i

n
se

co
nd

s)

KSR1
KS

(b) Execution times of KSR1 and KS in seconds.

10 20 30 40 50
Matrices (sorted wrt. KS matching quality)

0.25

1

4

16

64

256

1024

Sp
ee

du
p

fo
r P

F+
 a

lg
or

ith
m

PF+

(c) Speedups for PF+ when the KS kernel is used in-
stead of KSR1 kernel.

10 20 30 40 50
Matrices (sorted wrt. KS matching quality)

0.25

1

4

16

64

256

1024

Sp
ee

du
p

fo
r P

R
 a

lg
or

ith
m

PR

(d) Speedups for PR when the KS kernel is used in-
stead of KSR1 kernel.

Figure 2.4 – (a) The kernel quality of KS and KSR1 for the 59/93 graphs having at least a
single vertex with degree strictly less than three. The quality is measured as the number of
rules applied during a heuristic normalized with respect to size of the maximum cardinality
matching. (b) The execution times (in sec.) of KSR1 and KS. The speedups for the exact
matching algorithms PF+ in (c) and PR in (d) when the KS kernel is used instead of KSR1. In
all figures, the matrices in the x-axis are listed with respect to non-decreasing kernel quality for
KS.

20 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

20 40 60 80
Matrices (sorted wrt. KS matching quality)

0.96

0.97

0.98

0.99

1

M
at

ch
in

g
qu

al
ity

KSR1
KS

(a) Matching quality: #decisions/M∗(G).

20 40 60 80
Matrices (sorted wrt. KS matching quality)

0

10

20

30

40

50

60

Ex
ec

ut
io

n
tim

es
 (i

n
se

co
nd

s)

KSR1
KS

(b) Execution times of KS and KSR1 in seconds.

20 40 60 80
 Matrices (sorted wrt. KS matching quality)
0.5

1

2

4

8

16

32

Sp
ee

du
p

fo
r P

F+
 a

lg
or

ith
m PF+

(c) Speedups for PF+ when KS is used as the initial
heuristic instead of KSR1.

20 40 60 80
 Matrices (sorted wrt. KS matching quality)

0.25

0.5

1

2

4

8

16

Sp
ee

du
p

fo
r P

R
 a

lg
or

ith
m PR

(d) Speedups for PR when KS is used as the initial
heuristic instead of KSR1.

Figure 2.5 – (a) The matching quality of KS and KSR1 for all 93 graphs. The quality is measured
as the number of decisions, including random ones, applied during a heuristic normalized with
respect to size of the maximum cardinality matching. (b) The execution times (in sec.) of these
two heuristics are also shown. The speedups for the exact matching algorithms PF+ in (c) and
PR in (d) when KS is used instead of KSR1. In all figures, the matrices in the x-axis are listed
with respect to non-decreasing matching quality for KS.

2.2. AN EXAMINATION OF THE KARP–SIPSER ALGORITHM 21

KSR1 KS
n quality time PF+ (in seconds) PR (in seconds) quality time (in seconds)

7500 0.75 1.01 1.29 1.30 1 0.73
10000 0.75 1.95 2.86 2.57 1 1.46
15000 0.74 5.61 7.48 6.37 1 4.48
20000 0.74 10.34 17.08 12.37 1 8.82

Table 2.1 – The average quality and timings of the heuristics on the family of graphs I referenced
in Section 2.2.5 for n ∈ {7500, 10000, 15000, 20000} as well as the timings of PF+ and PR when
initialized with KSR1’s input. For these graphs, KS finds a perfect matching. The PF+ and PR
timings do not include the time needed for KSR1.

initialized with KS. That is why we are also interested in parallel implementations of Rule-1
and Rule-2 which will potentially bring the performance of KS closer to that of KSR1 and hence
reap more benefits from the speedups seen in Figures 2.5(c) and 2.5(d). In both figures a value
higher than one is in favor of KS.

2.2.5.2 On synthetic datasets

Here we focus on special, synthetic instances, for which Rule-2 increases the probability of finding
a maximum cardinality matching. Anastos and Frieze [4] have described additional classes of
graphs where Rule-2 also helps to find a perfect matching.

Optimal instances for KSR1. The first dataset is a family of synthetic graphs where Rule-2
is sufficient to find a maximum cardinality matching. We will use I to refer to graphs of this
family. Let G = (VR∪VC , E) be a bipartite graph with |VR| = |VC | = n. For any 1 ≤ i ≤ j ≤ n,
there is the edge {ri, cj} in G where ri ∈ VR and cj ∈ VC . The edges {r2, c1} and {rn, cn−1}
also exist.

In the graph, the vertices rn−1, rn ∈ VR and c1, c2 ∈ VC have degree equal to two. Assume
without loss of generality that we apply Rule-2 on c1, to merge r1 and r2. Then in the reduced
graph, r2r1 will be a degree-1 vertex hence Rule-1 can now be applied. We continue with Rule-1
until four vertices remain; applying Rule-2 followed by Rule-1 yields a perfect matching. Hence
KS with Rule-2 always find a perfect matching for these synthetic graphs. Furthermore, since
Rule-2 is applied only twice, KS requires linear time. If however, only Rule-1 reductions are
allowed, no reduction is possible at first and KSR1 will immediately resort to random decisions,
which understandably affect negatively its performance. In Table 2.1, we provide the average
quality returned by KSR1 for different values of n as well as run times on the synthetic graphs
of family I. As can be seen, there is 25% quality difference in favor of KS. Interestingly, KSR1

requires slightly more time than KS. This can be explained by the fact that due to the random
decisions, during most steps KSR1 needs to iterate over two adjacency lists, while KS needs to
iterate over only one, due to it applying Rule-1 almost always. Furthermore, the cost of both
exact algorithms increases with n.

Results with random 2-out bipartite graphs. We examine the behavior of KS on random
2-out graphs sampled from the complete bipartite graph. Note that in the following section we
will discuss an exact algorithm for such graphs.

By construction, each vertex in a 2-out graph has degree at least two and therefore KSR1 will
resort to random decisions immediately. This is not the case however for KS. In expectation,

22 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

n KSR1 KS
10000 0 0.68
25000 0 0.64
50000 0 0.56

Table 2.2 – The ratio of tests for which KSR1 and KS find a perfect matching in random 2-out
graphs.

n KSR1 KS KScomp
40000 0.00 3.44 0.04
80000 0.01 15.32 0.11
160000 0.03 64.53 0.22
320000 0.10 265.89 0.48

Table 2.3 – The run time in seconds for KSR1, KS and KScomp in the worst-case instance shown
in Figure 2.1 for n ∈ {40000, 80000, 160000, 320000}.

a random 2-out graph will initially have about
2n

e2
degree-2 vertices. Hence Rule-2 can poten-

tially be applied a significant number of times before the graph runs out of degree-2 vertices.
Consequently, because it has a smaller kernel and can apply its rules easier, KS will have to
make random decisions less frequently than KSR1 and therefore has less of a chance to make an
erroneous decision.

In Table 2.2, we compare KSR1 and KS on 2-out graphs of varying size n and show
the percentage of tests where the two algorithms found a perfect matching. For each n ∈
{10000, 25000, 50000}, we generate 20 different random 2-out graphs. Each distinct random 2-
out graph is also used four times to allow alternative random decisions on different runs. As the
table shows, KSR1 is never able to find a perfect matching on such graphs. On the other hand,
KS is able to find one in a significant percentage of the trials. Nonetheless, both algorithms
output matchings of high quality i.e., greater than 0.99. In addition, both KS and KSR1 require
less than a second in all of the instances.

Experiments with worst-case run time inputs. In the results with the real graphs for Sec-
tion 2.2.5.1, we observed that KS behaves in practice very similar to a linear time algorithm.
No instance led to quadratic behavior. For this reason, the various modifications discussed in
Section 2.2 in most cases did not have a noticeable positive impact on the performance.

However, we do note that our modifications can indeed be useful and we demonstrate in
Table 2.3 the performance for various values of n for the instance in Figure 2.1. For simplicity,
we provide only results with KScache but an implementation of KSmin using a hash table, and
KScomp both had equivalent performance. As can be seen, while KSR1 and KScomp require in
all instances less than a second, KS struggles as n increases. For example, it requires over four
minutes in the last case. This shows that in certain situations the sub-quadratic algorithms
of Subsection 2.2.1 might be crucial due to their reduced worst-case behavior. Similarly the
other algorithms in Section 2.2 might prove useful as they can avoid some pitfalls that harm the
performance of KS.

2.2. AN EXAMINATION OF THE KARP–SIPSER ALGORITHM 23

2.2.5.3 Comparison with another implementation

Korenwein et al. [82] provide an implementation in C++ which finds the kernel G(k) of a given
undirected graph G. We use KSTUB to denote this code. The code KSTUB works along the same
lines as our kernelization code. Initially, Rule-1 or Rule-2 are applied for as long as it is possible,
and the kernel G(k) is created. Then, the vertices in G(k) are renumbered to be from 1 until
|VG(k) |. This smaller representation of the kernel is then given as input for the exact matching
algorithm. The code KSTUB was compiled according to the instructions.

We now list some of the differences between our implementation and KSTUB before giving
experimental results. One important difference between our implementation and KSTUB is that
we prioritize Rule-1 over Rule-2. In KSTUB, vertices of degree one and two are stored together in
a container, and the appropriate reduction rule is executed when a vertex is accessed from this
container, depending on its degree. As a consequence, KSTUB might apply Rule-2 more frequently,
which can harm the performance. Indeed, consider an extension of the graph shown in Figure 2.1,
in which the two leftmost vertices are connected with an additional degree-1 vertex each. Then,
by applying Rule-1 on one of the new vertices, it becomes possible to find the kernel in linear
time. If, however, the application of Rule-1 is postponed in favor of Rule-2, then the worst
case run time becomes quadratic. The code KSTUB also uses linked lists which are not as cache-
friendly as our vector-based implementation. Furthermore, our implementation also returns a
matching for G, whereas KSTUB returns only the kernel and does not return any information
about which edges or vertices of G have been involved in the Rule-2 reductions. Hence, it is not
possible to extend the matching found in the kernel G(k) to a maximum cardinality matching
for G using KSTUB as is.

We now give the run time comparison of the two codes. The experiments were conducted
on Arch 1. For the sake of controlled experimentation, we made the two codes have the same
permutation of the input graphs. KSTUB normally prints output; we removed this part for fair-
ness. In Figure 2.6, we compare the two codes on the real-life bipartite graphs used in the
kernelization experiments from Section 2.2.5. For each implementation, we report the minimum
time observed over four runs. In both implementations, we measured the time to apply Rule-1
and Rule-2 and the time needed to renumber the vertices in G(k). In addition, for our imple-
mentation, we included additional costs such as the initial cost required to create the adjacency
list representation of G and as well as the time needed by the algorithm of Section 2.2.4 to find
a maximum cardinality matching of the original graph (by using and expanding the one on the
kernel to comply with the Rule-2 applications). As can be seen, our implementation is almost in
all cases faster than KSTUB and in some situations significantly so. In regards to the time required
solely for the purpose of kernelization, shown in Figure 2.6(a), we see that our implementation is
about 3.19 times faster on average than KSTUB. The maximum time our code requires is 5.8 sec-
onds, whereas KSTUB exceeds 10 seconds on six instances. The difference in speed becomes more
noticeable in instances such as kron_g500-logn21, where our implementation takes 3 seconds,
while KSTUB takes 34 seconds.

The difference needed to renumber the vertices in the kernel can similarly be as striking as
can be observed in Figure 2.6(b). For example, on the bipartite graph Com-Orkut, our code to
renumber vertices takes 5.6 seconds, whereas KSTUB requires 41 seconds. We estimate that this
significant difference derives from the fact that KSTUB creates an entirely new class object, for
which it then has to initialize a number of linked lists (one per vertex). In contrast, our code
needs to initialize only four arrays as G(k) is recreated in the standard CSR/CSC formats of
sparse matrices to be given as input to the exact algorithms.

24 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

10 20 30 40 50
Matrices (sorted wrt. kernelization time)

10

20

30

40

50
E

xe
cu

tio
n

tim
es

 (
in

 s
ec

on
ds

)

KS
tub

KS

(a) Comparison only for kernelization between our im-
plementation of KS and KSTUB.

10 20 30 40 50
Matrices (sorted wrt. kernelization time)

10

20

30

40

50

E
xe

cu
tio

n
tim

es
 (

in
 s

ec
on

ds
)

KS
tub

KS

(b) Overall time comparison between our implementa-
tion of KS and KSTUB.

Figure 2.6 – Comparison of our implementation with KSTUB [82] on the graphs of Section 2.2.5.1.
Figure 2.6(a) gives only the time needed to find the kernel by applying Rule-1 and Rule-2.
Figure 2.6(b) gives the overall time by adding the time needed to renumber the vertices of the
kernel G(k). In addition, for our implementation Figure 2.6(b) also includes the time required
to recover the maximum matching using the algorithm of Section 2.2.4, and the time to create
the adjacency list representation for G.

2.3. SCALING BASED NEAR-OPTIMAL RANDOMIZED ALGORITHMS 25

Finally, looking on the overall time, again in Figure 2.6(b), our implementation is about 2.17
times faster than KSTUB even with recovery of a maximum cardinality matching for the initial
graph. Our implementation never exceeds 15 seconds in overall time, whereas there exist six
graphs where KSTUB exceeds this time bound.

2.2.6 Related work

To the best of our knowledge, there are only a few studies focusing on implementing Karp–Sipser
as in its original, proposed form. Magun [87] claims an implementation with linear run time
for Karp–Sipser but from the pseudocode and description in the paper, it is not clear whether
the reductions are implemented in a way that is equivalent to ours. Analysis of the source code
however does suggest that the implementation is equivalent and hence can similarly require
quadratic time. The paper also does not study practical running time. Mertzios et al. [90] apply
the first reduction rule and a restricted version of the second rule described before in linear
time to obtain a linear-size kernel with respect to a graph parameter (known as feedback edge
number) for computing maximum cardinality matchings in undirected graphs. A cubic kernel
on bipartite graphs with the same reduction rules is also shown. Korenwein et al. [82] discuss
extensions of two rules due to Karp and Sipser for the maximum weighted matching problem.
Their results indicate that kernelization is less successful in the weighted case in comparison to
the unweighted case. Bartha and Krezs [7] discuss a linear time algorithm where only Rule-2 is
considered.

2.3 Scaling based near-optimal randomized algorithms

On the second part of the chapter, we will examine two randomized matching heuristics which
make use of matrix scaling. These heuristics generalize two existing randomized algorithms [54,
71], based on two classes of randomized algorithms called Las Vegas and Monte Carlo algo-
rithms [92, p. 70]. For convenience, we remind here the definition of these two classes. Las
Vegas algorithms always return a correct answer, but their run time can depend on random
choices, whereas Monte Carlo algorithms can fail with small probability, but their complexity is
independent of the random choices made.

The Monte Carlo algorithm due to Karp et al. [71] finds almost surely, maximum cardinality
matchings on random graphs formed by allowing each vertex to select any two vertices from the
other side uniformly at random. The Las Vegas algorithm due to Goel et al. [54] finds maximum
cardinality matchings in regular bipartite graphs, where all vertices have equal degree. In both
of these classes of graphs, the bipartite graphs have equal number of vertices in each part, and
the maximum cardinality matchings cover all vertices (i.e., they are perfect). Both algorithms
work in O(m+ n log n) time.

We generalize these two exact algorithms taking inspiration from the ideas explored by the
TwoSided and OneSided algorithms discussed in Section 2.1. We scale the adjacency matrix
of the input bipartite graph and use the nonzero values of the scaled matrix for sampling, i.e.,
for choosing randomly a neighbor for a given row or column. Both produced heuristics run in
near linear time and obtain matchings whose cardinality is more than 0.99 of the maximum,
even in cases where the current state of the art approaches have difficulties. We also identify
and fix an oversight in the Monte Carlo algorithm.

26 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

2.3.1 2outMC: Monte Carlo on 2-out graphs

2.3.1.1 Description of the algorithm

The Monte Carlo algorithm by Karp et al. [71] finds a perfect matching, with high probability,
in a random 2-out bipartite graph, sampled from the complete bipartite graph. A random 2-out
bipartite graph B2o is constructed by selecting uniformly at random two row vertices for each
column, and two column vertices for each row. These selections form the edges of B2o. Given
the edges of B2o, Karp et al. define two multigraphs. The multigraph Column-Graph (CG) is
the multigraph whose vertices are the rows, and whose edges are the choices of the columns.
That is, there is an edge in CG for a column vertex cu in B2o and this edge will connect the two
row vertices r1, r2 that cu chose during the 2-out selection process. Parallel edges are allowed
and can occur if for example two columns select the same two rows. The Row-Graph (RG) is
defined similarly with rows as vertices and columns as edges.

The main idea to show that B2o has a perfect matching is the following. In a component
of CG that contains a cycle, it is possible to match all rows (vertices in CG) with one of the
columns that have selected them (edges in CG). On the other hand in a tree component of
CG, in any matching (pairing of edges with vertices) there will always be a free row vertex.
As a consequence, when one or more trees appear in CG, the choices of the columns alone do
not suffice to find a perfect matching, and those of the rows must be used. The algorithm
thus keeps track of the tree components of CG and tries to identify one row vertex per tree
component whose selections should be taken into account. The columns selected by such a row
could be used for a set of rows belonging in tree components. Thus one should go back and
forth identifying trees in CG and analyzing components in RG. Karp et al.’s algorithm, which
is described in Algorithm 2.1, formalizes this approach.

The algorithm operates on H1, a copy of CG, and H2, a copy of RG initially devoid of edges.
In each step, it picks a tree from H1 and marks one of its vertices x. This signifies that x can
only be matched with one of its choices. Then, the edge of x is inserted in H2. The algorithm
then finds the component Qx in H2 containing the edge x, and selects an unchecked column
y from Qx. Column y is checked, which means that it can only be matched with a marked
vertex. As y’s choices are rendered useless now, the corresponding edge is removed from H1

upon which new trees can arise. For each tree vertex x identified in H1, one should be able to
find a vertex in the associated component Qx, so that x can be matched in that component.
Otherwise, Qx has more edges than vertices, and any matching will leave some edges unpaired.
The algorithm returns failure upon detecting this case (Line 10). The algorithm terminates
successfully if all trees have a marked vertex. If this happens, each component in H1 will have
as many edges as unmarked vertices. Likewise, each component in H2 will have as many edges
as checked vertices. It is therefore possible to orient the edges in either H1 or H2 such that each
vertex (excluding marked rows or unchecked columns) is matched with a unique adjacent edge.
This gives a perfect matching in B2o, which can be found by the Karp–Sipser heuristic in linear
time. Algorithm 2.1 finds a perfect matching with probability 1−O(n−α), where α is a positive
constant. The authors then describe how to efficiently implement the algorithm such that it
runs in O(n log n) worst case time. They identify two main tasks:

• Task A: Keep track of the tree components during edge deletions in H1.

• Task B: Keep track of the connected components during edge insertions in H2, and the
single unchecked vertex in each component.

2.3. SCALING BASED NEAR-OPTIMAL RANDOMIZED ALGORITHMS 27

Algorithm 2.1: 2outMC: Monte Carlo on 2-out graphs
Input: The multigraphs CG and RG.
Output: A perfect matching M .
1: H1 ← CG, H2 ← empty graph with columns as vertices
2: All vertices in H1 are unmarked, all vertices in H2 are unchecked
3: CORE ← edges in cycles of CG
4: while there exists a tree T in H1 with no marked vertex do
5: Let x be a random vertex of T{x is a column vertex in the original graph}
6: marked[x] ← true {x must be matched with one of its choices}
7: Add the edge of x in H2

8: Let Qx be the component in H2 containing the edge of x
9: if Qx has no unchecked vertices then

10: Return Fail {Qx has more edges than vertices (no 1-1 pairing possible)}
11: else
12: Select an unchecked vertex y of Qx. In case of ties, prefer one from CORE
13: checked[y] ← true {y will be matched with a row that selected it}
14: delete y in H1 {The algorithm forgets y’s choices}
15: Create B′2o from B2o by keeping only edges between marked rows and checked columns (edges in

H2) or unmarked rows and unchecked columns (edges in H1)
16: Apply KSR1 on B′2o to find the perfect matching M

Task B can be efficiently done in amortized near linear time (over the course of the algorithm)
by using a union-find data-structure and keeping the identity of the single unchecked vertex in a
component of H2 at the root of the component. For Task A, Karp et al. propose the following.
In the beginning, the edges of CG are labeled as F, if their deletion creates a tree; T, if they
belong to a tree component; and C otherwise. Let c-degree of a vertex v be the number of C
edges incident on v. During deleting the edge (u, v) from H1, one of the following is performed
depending on the label of (u, v).

• Case 1: (u, v) is C: The c-degrees of u and v are decreased by one. Then, while there is
a vertex with a single C edge; its C edge is relabeled as F.

• Case 2: (u, v) is F: Using a dove-tailed depth-first search, where depth-first searches from
u and v are interleaved, the tree component created can be found in time proportional to
its size. One then changes the labels of all edges in this tree from F to T.

• Case 3: (u, v) is T: Deleting (u, v) creates two trees. As in the previous case, a dove-tailed
DFS is used to find these two trees in time proportional to the size of the smaller one. The
new trees are to be examined by the algorithm.

We identify an oversight in this procedure, where the algorithm fails to keep track of some trees
in H1. We demonstrate this by an example. In Figure 2.7, if the edge between vertices u and
v gets deleted, then the connected component is split into two triangles. The c-degree of both
u and v decreases to two, and as both are greater to one, the deletion procedure stops without
any action. However, both triangles are unicylic. If an edge is deleted from either triangle, then
Case 1 will not recognize that the remaining edges should be relabeled as T instead of F. We
propose a fix for this oversight in Lemma 2.2.

Lemma 2.2. Let u be an endpoint of a deleted edge (u, v) with label C. Apply the procedure of
Case-1 until we arrive at a vertex p with c-degree[p] 6= 1. If c-degree[p] = 0, then u’s component
has become a tree.

28 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

Figure 2.7 – Algorithm 2.1 does not recognize the creation of a tree if any edge is deleted after
(u, v).

Proof. We claim that if c-degree[p] = 0, then p and v are the same vertex. Each vertex on the
path from u to p had its c-degree affected twice (from 2 to 0), except p. Hence for p to become
0, its c-degree must have been equal to 1. If p 6= v, then p should had its C edge relabeled
during another deletion process. Therefore, prior to the deletion of (u, v), there was a cycle on
H1 with all vertices having c-degree equal to 2, and both their C edges participated in the cycle.
Any outgoing edges from vertices of the cycle therefore were labeled F and by definition, their
deletion led to a tree being formed. The component was hence unicyclic before.

Case 1-continuation is therefore as follows:

• Once there are no vertices with c-degree equal to 1, take the last vertex v whose c-degree
was reduced. If c-degree[v] = 0, then relabel all edges in vs component from F to T.

This addition has overall O(n) cost, because each edge can change label at most twice.

2.3.1.2 Conversion to an efficient general heuristic
Algorithm 2.1 works well when the random 2-out graph is sampled from Kn,n. However, in the
case of an arbitrary host graph, the underlying theory is not shown to hold, and the algorithm
can make erroneous decisions. Here we discuss how to turn Algorithm 2.1 into a general heuristic.
Apart from the aim of obtaining a practical heuristic for bipartite matching, there is another
reason to investigate the matching problem in 2-out bipartite graphs. We will show subsequently
that an O(f(n,m)) time algorithm to find a maximum cardinality matching in a 2-out bipartite
graph can be used to find a maximum cardinality matching in any bipartite graph with m
edges in O(f(m,m)) time, where f is a function on the number of vertices n per side and edges
m. Such a reduction is important because it shows that an algorithm for finding maximum
cardinality matchings in 2-out graphs with similar complexity to 2outMC can be used to
obtain an O(m logm) algorithm for matchings in general bipartite graphs.

If Algorithm 2.1 reaches Line 10 during execution, it quits immediately before examining all
trees in H1. We instead propose to continue with the execution of the algorithm to make the
returned matching as large as possible. To achieve this efficiently, we keep for each tree T a list
LT of unmarked vertices. At Line 5 we randomly sample x from LT and discard it from LT .
Contrary to Algorithm 2.1, we neither mark x nor insert it in H2 yet. Instead, we examine first
whether the component in H2 of either of the two choices of x has an unchecked column y. If y
exists, we mark x, insert it to H2 and continue by deleting y from H1. Otherwise, we perform
the same set of actions with another randomly sampled vertex from LT . If LT becomes empty,
and no vertex was marked, we abandon T and proceed to another tree. Each such tree in the
final state of H1 decreases the cardinality of the returned matching by one, as a row is left free.
If T is split into two trees, the lists of unmarked vertices for the new trees contain only those
vertices still inside LT at the moment of splitting. This is necessary to avoid sampling vertices
more than once.

2.3. SCALING BASED NEAR-OPTIMAL RANDOMIZED ALGORITHMS 29

The overall algorithm 2outMC is as follows. It takes the matrix representation A of the
given bipartite graph in the CSC/CSR format and scales it with a few steps of the Sinkhorn–
Knopp algorithm to obtain the scaled matrix S = RAC. It then chooses two random neighbors
for each column and row using their respective probability distributions in the corresponding
rows and columns of S, which are given as input to Algorithm 2.1. Then, the auxiliary graph
B2o is constructed and KSR1 is run on this graph to retrieve a maximum cardinality matching
in B2o. If one allows vertices to choose neighbors uniformly, then there are no guarantees on
the maximum cardinality of a matching in B2o. As an example, consider the graph where the
ith row and ith column are connected for i = 1, . . . , n, and additionally the first ` rows and
columns are connected with every vertex on the opposite side. Then, in expectation O(`−1`+1 · n)
rows (resp. columns) make both choices from the first ` columns (resp. rows), such that in the
generated B2o the maximum cardinality matching is of size O(n` +`). Using S’s values to perform
the random choices spreads the choices so that the maximum cardinality of the matching in the
subgraph increases (see Theorem 2 and Lemmas 6–8 in [38] that examines the 1-out subgraph
model).

2.3.1.3 Additional heuristics for 2outMC

We can improve the matching quality of 2outMC by considering the following two heuristics.

Heuristic 1: Delayed tree vertex selection during Line 5. The ideal case at Line 5 of Al-
gorithm 2.1 is to select an x such that x’s insertion as an edge to H2 does not lead to a new
tree in H1 after the deletion of the edge corresponding to the unchecked vertex of the connected
component Qx. This is only possible if Qx contains an unchecked column labeled as C in H1.
Otherwise, a new tree will be created in H1, and the algorithm will have to process it in a future
step.

For the first heuristic, we greedily select an x such that, if possible, the creation of a tree in
H1 is avoided. We replace LT is with two lists L1

T and L2
T . The lists L

1
T contains those unmarked

vertices of T whose insertion in H2 leads to a new tree; L2
T contains all other LT vertices that

have not been tried yet. At first, we sample x from L2
T and see whether the components of x’s

choices in H2 have an unchecked vertex of type C in H1. If they have, x is marked and inserted
to H2. Otherwise, x is inserted in L1

T , and we consider another random vertex of L2
T . If L2

T

becomes empty, we start sampling from L1
T . With the union-find data structure, this heuristic

requires constant amortized time per sample and each vertex can be sampled at most twice.
Therefore the overhead associated with this heuristic is almost linear in n.

Heuristic 2: Online creation of the RG multigraph. In this heuristic, the decisions of the
rows are not given as input, but are instead defined during the course of the algorithm. Similar
to the previous idea, this heuristic aims to reduce the possibility that a tree in H1 gets created
following an edge insertion into H2.

More specifically, consider a vertex x randomly chosen at Line 5. In this heuristic, x has not
picked its two choices yet, and we let x choose them at this point, in the way that benefits the
algorithm the most. This is done as follows. Initially, we iterate over all of x’s neighbors in the
host graph G. Let c be one of x’s neighbors and c∗ be the sole unchecked vertex in c’s connected
component in H2, or c∗ = −1 if no unchecked vertices exist. We assign values to x’s neighbors
to classify them. If c∗ is equal to −1, c’s value is 0. If c∗ has label F or T in H1, c’s value is 1.
Otherwise, c’s value is 2. Based on these assigned values, we partition the neighbors of x in G

30 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

into three disjoint sets C0, C1 and C2 such that Ci contains all neighbors of x with value equal
to i. Selecting columns from C2 is preferred, as they can avoid creating a tree in H1. Vertex x
will attempt to sample first from C2, and if needed from C1 or C0, with a preference for C1 over
C0. The sets C0, C1 and C2 are kept implicitly, and each vertex x requires amortized O(dx) to
make its choices, where dx is its degree. Hence, the overhead associated with this heuristic is
almost linear in m.

2.3.1.4 Reducing bipartite graph matching to matching on 2-out graphs

Here, we will show that an O(f(n,m)) time algorithm to find a maximum cardinality matching
in a 2-out bipartite graph can be used to find a maximum cardinality matching in any bipartite
graph with m edges in O(f(m,m)) time, where f is a function on the number of vertices n and
edges m. We have already discussed the complications of this result in the previous section.

LetG = (VG, EG), with be a graph with minimum degree at least two. IfG’s minimum degree
is one, we can apply Rule-1 of Karp–Sipser to match degree-1 vertices with their neighbors and
consider as G the resulting graph.

We produce a new graph G′ from G in the following way. For any edge e = (a, b) ∈ E we add
edges e′ = (a, ae), e′′ = (ae, be), and e′′′ = (be, b) to G′. We hence introduce two new vertices
ae, be s.t dG′(ae) = dG′ = 2 for each edge e ∈ EG. The degree of nodes in VG remains unchanged
in G′.

Lemma 2.3. Let H be a random 2-out subgraph G′. Then H = G′.

Proof. The added vertices ae, be have degree two and will select both neighbors, hence no edge
will remain unpicked.

In what follows, we refer to the second reduction rule of Karp–Sipser which merges the neighbors
of a degree-2 vertex, which is then discarded, as a degree-2 reduction.

Lemma 2.4. It is possible to obtain G by doing only degree-2 reductions on G′.

Proof. Let ae be a vertex of G′, introduced due to the edge e = (a, b). Since dG′(ae) = 2 we
can apply a degree-2 reduction which will merge a with be to create a single node abe. As a
consequence of this merge, the edge (abe, b) will be created and edges (a, ae), (ae, be), (be, b) will
be erased. We simply relabel abe to a again. The proof then follows similarly by applying
degree-2 reduction for all ae corresponding to e ∈ E until we obtain G.

Now we show that maximum matchings in G′ are related to those on G and vice versa.

Lemma 2.5. Any maximum cardinality matching M ′ on G′ corresponds to a maximum cardi-
nality matching M on G.

Proof. LetM ′ be a maximum cardinality matching on G′. A matchingM for G can be generated
in the following way: If both (a, ae) and (be, b) appear in M ′, e is added to M . Hence it suffices
to show that any maximum cardinality matching M ′ in G′ necessarily contains |M | pair of
matched edges (a, ae) and (b, be).

First, we have that |M ′| = |EG| + |M |. To see this, note that per Lemma 2.4 we perform
|EG| degree-2 reductions, and result in G. Each of this reductions corresponds with a matched
edge in M ′. Then, we only need to find the maximum cardinality on G which is |M |.

Let Sa contain all indices e such that (a, ae) is in M ′ and (be, b) is not in M ′. Set Sb is
defined similarly. Set S∅ contains all indices e such that (ae, be) appears in M ′. Finally, Sab

2.3. SCALING BASED NEAR-OPTIMAL RANDOMIZED ALGORITHMS 31

contains all indices e such that (a, ae) and (b, be) are matched together in M ′. Then, since M ′

is a maximum cardinality matching we have

|Sa|+ |Sb|+ |S∅|+ 2 · |Sab| = |EG|+ |M | .

This is true because of the fact that for each edge e exactly one matched edge appears in M ′ in
case e ∈ Sa ∪ Sb ∪ S∅ and two edges are added if e ∈ Sab.

However, |Sa|+ |Sb|+ |S∅|+ |Sab| = |EG|, since each edge e must appear in one of those sets
and there exist exactly |EG| of them.

Hence, |Sab| = |M | necessarily. As they define a matching in G and their cardinality is |M |,
the matching is maximum.

Using the above lemma, we can prove Theorem 2.4 below.

Theorem 2.4. Assume there is an algorithm ALG working in O(f(n,m)) time for finding a
maximum cardinality matching in a 2-out graph. Then we can find a maximum cardinality
matching in O(f(m,m)) time for any given graph.

Proof. Let G be any bipartite graph without degree-1 vertices and m = |EG|. In O(m) time
we generate G′. By Lemma 2.3, the 2-out subgraph of G′ corresponds to G′ itself. In addition
|EG′ |, |VG′ | ∈ O(m). Using ALG, we can find a maximum cardinality M ′ for G′ in O(f(m,m))
time. By Lemma 2.5 then, we can convert M ′ to a maximum cardinality matching M for G in
O(m) time.

As a byproduct of Lemma 2.5, we observe that the transformation of G to G′ also eliminates
the need to apply SK as a preprocessing step.

2.3.2 TruncRW: Truncated random walk with nonuniform sampling
2.3.2.1 Description of the algorithm for regular bipartite graphs
Goel et al. [54] propose a randomized algorithm (of the Las Vegas type) that finds a perfect
matching in a d-regular bipartite graph with n vertices in each side in O(n log n) time in expec-
tation. This algorithm starts a random walk from a randomly chosen free column-vertex. At
a column vertex c, the algorithm selects uniformly at random one of the row-vertices that are
not matched to c, and goes to the chosen row vertex r. If r is free, then an augmenting path
is obtained by removing possible loops from the walk. If r is matched, then the random walk
goes to the mate of r. Goel et al. show that the total length of the random walks is O(n log n)
in expectation, and thus the algorithm obtains a perfect matching in the stated time [54, The-
orem 4]. They also show that one can obtain a Monte Carlo-type algorithm by truncating the
random walks. The expected length of an augmenting path with respect to a given matching of
cardinality j is 2(4 + 2n/(n − j)), and the random walks could be truncated at this length to
obtain near optimal matchings in O(n log n) time.

A random walk is easy to implement for d-regular bipartite graphs. At a column vertex
c, one can create a random number between 1 and d in O(1) time and choose the neighbor at
that position, and repeat the experiment if the mate of c is chosen. This will take O(1) time in
expectation for each step of the walk, and the run time bound of O(n log n) is maintained.

Goel et al. show that the random-walk based algorithm will work for finding perfect match-
ings in the bipartite graph representation of a doubly stochastic matrix. When a given matrix
has constant row and column sums and each entry is integral (in which case the matrix is doubly

32 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

√
2

1√
2

1√
8

1√
8

1 1 0 0
1 1 1 0
1 1 1 1
1 1 1 1

1√
8

1√
8

1√
2 √

2

 =

1/2 1/2 0 0
1/4 1/4 1/2 0
1/8 1/8 1/4 1/2
1/8 1/8 1/4 1/2

Figure 2.8 – The matrix A associated with a 4 × 4 Hessenberg matrix, the scaling matrices R
and C, and the resulting doubly stochastic matrix S = RAC. In general, S(n, 1) = 1/2n−1.

stochastic), by using an existing data structure [57] one can attain the same O(n log n) run time
bound. For general doubly stochastic matrices without any bound on the entries, Goel et al.
propose an augmented binary search tree with which each selection step of the random walk can
be implemented in O(log n) time, and obtain a run time of O(m+n log2 n) in expectation, with
a total of O(m) preprocessing time.

2.3.2.2 Conversion to an efficient general heuristic
Let c be a free column vertex with respect to a given matching of cardinality j. Assuming there
is a perfect matching, one can find an augmenting path to match c, and a random walk can find
it. The O(n

n−j) bound on the expected length of such a path will not hold if the bipartite graph
is not regular. One may perform more than m steps, which is the worst case time complexity
of deterministically finding an augmenting path starting from a free vertex. We propose two
methods to make the random walks more useful and to sample efficiently in a random walk. We
also discuss an efficient implementation of the whole approach.

The first proposed method is to scale the matrix representation A of a given bipartite graph
to obtain a doubly stochastic matrix S = RAC for random selections. The expected length
of a random walk to find an augmenting path holds when S has bounded nonzero entries. In
general, ones does not have any bound on the entries of S. Consider the matrix A associated
with an upper Hessenberg matrix of size n. A has a full lower triangular part, and additional
n − 1 entries A(i − 1, i) = 1 for i = 2, . . . , n, and fully indecomposable. The 4 × 4 example
along with its unique scaling matrices are shown in Figure 2.8. In the resulting scaled matrix
S(n, 1) = 1/2n−1 whose inverse is not bounded polynomially in n.

As highlighted in the above paragraph, one needs an O(log n) time algorithm to select a
row vertex randomly from a given column vertex. The second proposed method is a simple
yet efficient algorithm for this purpose, rather than a sophisticated augmented tree. The main
components of the proposed sampling method are as follows. For each column vertex c, with dc
neighbors, we have:

• adjc[1, . . . , dc]: an array keeping the neighbors of c.

• wghtsc[1, . . . , dc]: the weight of the edges incident on c. This array is parallel to the first
one so that the weight of the edge (c, adjc[i]) is wghtsc[i].

• medge[c]: the position of the mate of c in the array adjc, or −1 if c is not matched.

At the beginning, we compute the prefix sum of wghtsc[1, . . . , dc]. After this operation, the
total weight of the edges incident on c is wghtsc[dc], and the weight of the edge (c,mate[c]) is
wghtsc[medge[c]]− wghtsc[medge[c]− 1], assuming that wghtsc[0] signifies zero.

Given the prefix sums in wghtsc[1, . . . , dc], the position of the mate of c at medge[c], we can
choose a random neighbor (which is not equal to mate[c]) as shown in Algorithm 2.2. We use a
binary search function, binSearch, which takes an array, the array’s start and end positions, a

2.3. SCALING BASED NEAR-OPTIMAL RANDOMIZED ALGORITHMS 33

target value, and returns the smallest index of an array element which is larger than the given
value with binary search (we skip the details of this search function). At Line 5, since c does not
have a mate, we search in the whole list. At Line 8, since the prefix sum just before medge[c] is
larger than the target value, we search in the first part of wghtsc until the current mate located
at medge[c]. At Line 10, we search on the right of medge[c], by a modified target value. This
last part is the gist of the algorithm’s efficiency as it avoids updating the prefix sums when the
mate changes.

Algorithm 2.2: Sample: Algorithm to sample a random neighbor of a column vertex
c with dc neighbors

Input: adjc[1, . . . , dc], wghtsc[1, . . . , dc], and medge[c].
Output: A random neighbor of column c.
1: mwght ← wghtsc[medge[c]]− wghtsc[medge[c]− 1] if medge[c] 6= −1, otherwise 0
2: totalW ← wghtsc[dc]−mwght{The total weight of the edges that can be sampled}
3: create a random value rv between 0 and totalW
4: if medgec = −1 then
5: return binarySearch(wghtsc[1, . . . , dc], rv)
6: else
7: if wghtsc[medgec]−mwght ≥ rv then
8: return binSearch(wghtsc[1, . . . ,medge[c]− 1], rv)
9: else

10: return binSearch(wghtsc[medge[c] + 1, . . . , dc], rv + mwght) + medgec

The sampling algorithm returns the index of the neighbor in adjc different from the current
mate in time O(log dc), independent of the values of the edges. It thus respects the required
run time bound. If we were to apply the rejection sampling (as discussed before for the regular
bipartite graphs), the run time would depend on the value of the matching edge that we want
to avoid. This could of course lead to an expected run time of more than O(n).

There are two key components of Algorithm 2.2. The first one is the prefix sum, which is
computed once before the random walks start and does not change. The second one is medge[c],
the position of mate[c] in adjc. The value medge[c] changes and needs to be updated when we
perform an augmentation. We handle this update as follows. We keep the random walk in a
stack by storing only the column vertices, as the row vertices direct the walk to their mate, or
terminate the walk if not matched. We discard the cycles from the random walk as soon as they
arise—this way we only store a path on the stack, and its length can be at most n. Storing
a path also enables keeping the medge[·] up-to-date. Every time we sample an outgoing edge
from a column vertex c, we assign the location of the sampled row vertex in adjc to a variable
nmedge[c]. When we find a free row, the stack contains the column vertices of the corresponding
augmenting path, whose new mates’ locations are in nmedge[·] and thus can be used to update
medge[·].

The described procedure will work gracefully in expected O(m + n log n) time for regular
bipartite graphs and for doubly stochastic matrices where the nonzero values do not differ by
large. On the other hand, when there are large differences in edge weights, a random walk can
get stuck in a cycle. That is why truncating the long walks is necessary to make the algorithm
work for any given doubly stochastic matrix. Furthermore, such a truncation is necessary with
the proposed matrix scaling approach for defining random choices. For the overall approach to
be practical, we should not apply the scaling algorithms until convergence. As in the previous
approaches [38], we allot a linear time of O(m + n) for scaling. Applying Sinkhorn–Knopp

34 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

algorithm for a few iterations will thus be allowable. The known convergence bounds for the
Sinkhorn–Knopp algorithm [78, Theorem. 4.5] apply asymptotically, therefore we do not have
any bounds on the error after a few iterations; it can be large. That is why truncation makes
the random walk based augmenting path search practical.

The overall algorithm TruncRW is thus as follows. It takes the matrix representation of
the given bipartite graph and scales it with a few steps of the Sinkhorn–Knopp algorithm. Then
for j = 0 to n− 1, it uniformly at random picks a free column vertex, and starts a random walk
starting from that column, for at most 2(4+2n/(n−j)) steps, after which the walk is truncated.

2.3.2.3 Further comments on TruncRW

We incorporated a known heuristic called look-ahead [33, 35] for speeding up the augmenting
path search in practice. In this heuristic, before sampling an arbitrary row-vertex from a column-
vertex c, we check if there is a free row vertex in the adjacency list of c. If so, such a row is
returned, and the random walk terminates. The implementation of this heuristic has a total
overhead of O(m) for the whole course of the algorithm [33, 35]. We note that the look-ahead
technique trades the quality of TruncRW with run time. In our experiments, the look-ahead
heuristic reduced the run time significantly; it interferes with the randomization though.

We can easily apply TruncRW to bipartite graphs with different number of vertices in each
side. This is based on the fact that we can scale a rectangular nr × nc matrix (say nr ≥ nc)
so that all columns have sum of 1, and all rows have equal sum of nc/nr, if there is matching
covering all columns, and all entries can be put in such a matching. Then, all components of
TruncRW work without any change.

If there is no total support, then Sinkhorn–Knopp works in such a way that the entries that
cannot put into a perfect matching tend to zero. This is helpful in TruncRW’s context, as the
corresponding edges will not likely be selected in a random walk. If there is no perfect matching,
then little is known about scaling. It is our experience that the Sinkhorn–Knopp iterations tend
to zero out entries that cannot be put into a maximum cardinality matching. Therefore, in this
case again, scaling, random selection, and truncation should help. We present some experiments
later to support this observation and leave the question of showing this theoretically as an open
problem.

2.3.3 Experiments
We implemented 2outMC and TruncRW in C/C++. The codes, all are sequential, were
compiled with "-O3" and run on a machine with 2 x Intel Xeon CPU Gold 6136 CPUs and 187
GB RAM. Throughout this Section we use a set of 39 large sparse square matrices from the
SuiteSparse Matrix Collection [31]. These matrices are automatically selected from all square
matrices available at the collection with 106 ≤ n ≤ 28× 106, and with at least two nonzeros per
row or column. All of the bipartite graphs have perfect matchings. Apart from these real-life
graphs, we also evaluate 2outMC and TruncRW on some synthetic bipartite graphs with equal
number of vertices in each side. We compared our two heuristics against KS, and KSR1. We use
our implementation of KS from the previous part, but opted for an array-based implementation
for KSR1. In addition, we investigated if random 2-out and 3-out bipartite graphs of a general
host graph have perfect matchings if rows and columns select neighbors with the probabilities
in the scaled matrix representation. The practical version of Sinkhorn–Knopp which only scales
a matrix for a few iterations is referred to as SK-t, where t is the number of allowed iterations.
All run times are reported in seconds.

2.3. SCALING BASED NEAR-OPTIMAL RANDOMIZED ALGORITHMS 35

m
n [0,10) [10,20) [20,30) [30,40) [40,50)

#Instances 27 5 5 1 1
#PM deficiency #PM deficiency #PM deficiency #PM deficiency #PM deficiency

2-out Model M1 0 223 0 8 1 20 0 2 1 0
2-out Model M2 27 0 3 3 1 10 0 1 0 1
3-out Model M1 27 0 5 0 5 0 1 0 1 0
3-out Model M2 27 0 5 0 5 0 1 0 1 0

Table 2.4 – We divide the real-life graphs into five groups. The ith group consists of graphs
whose m

n ratio is between 10(i− 1) and 10i. For each group, we give the number of instances in
which 2-out and 3-out graphs built using the models M1 and M2 have a perfect matching and
the largest difference from the maximum cardinality of a matching.

2.3.3.1 Investigation of perfect matchings in k-out graphs
Here, we investigate the claim that 2-out and 3-out random graphs will likely have a perfect
matching, if created with the probabilities in the scaled matrix. For this test, we used the 39
real-life graphs mentioned at the beginning of the section.

We consider two different models to create a random 2-out graph. In the model M1, row
choices are independent of the column choices. Under this model, a row and a column can select
each other resulting in parallel edges—only one of them is kept. The model M2 tries to avoid
parallel edges. In this model, all columns perform their selections. Then, each row r attempts
to randomly choose two columns, only from those that did not select r. These selections again
are based on the scaled matrix. In this model, parallel edges can arise (and be discarded) only
when a vertex v is connected in the 2-out graph with all of its neighbors in G, because it is
impossible for v to select otherwise. These models naturally extend themselves to 3-out graphs
as well.

We experimented three times with each real-life graph. Mi’s result is the maximum of those
three experiments. In each test, we first created the choices of all columns. Then we allowed
the two models to generate the choices of the rows accordingly.

The results are shown in Table 2.4 for the 39 real-life graphs and are with SK-5. As seen
in this table, the random 2-graphs generated with the model M1 have near perfect matchings,
but they do not contain perfect matchings in most cases. In contrast, the random 2-graphs
generated by M2 in many cases contain a perfect matching. In only a few graphs this does not
hold true, and in these cases the deficiency is no more than 10.

Interestingly, when we pass from k = 2 to k = 3 we see that both models M1 and M2 were
able to find a perfect matching in all 39 graphs. Including O(n) extra edges in the 2-out graphs
sufficed to make them have a perfect matching.

2.3.3.2 On synthetic graphs

In Table 2.5, we give results with a synthetic family J of graphs from literature [38], whose
matrix representations do not have total support. To create a member of J, we separate the
vertex set R into R1 = {r1, . . . , rn/2} and R2 = {rn/2+1, . . . , rn} and likewise for C. All vertices
of R1 are connected to all vertices of C1. Edges (ri, cn/2+i) and (rn/2+i, ci) for i = 1, . . . , n/2
are added to introduce a perfect matching. A parameter t is used to connect t vertices from R1,
and t vertices from C1 to every vertex on the opposite side.

As seen in Table 2.5, both KS and KSR1 have more and more difficulty with increasing t. The
matching quality drops over 30% between t = 2 and t = 512 for KS and almost 40% for KSR1.

36 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

R1

R2

C1 C2

t

t

Figure 2.9 – AJ: Adjacency matrix representation for the synthetic family J.

2outMC TruncRW
t KSR1 KS Uniform SK-5 Uniform SK-5
2 0.93 1.00 0.78 0.99 0.88 0.99
8 0.80 0.85 0.59 0.99 0.91 0.99
32 0.69 0.72 0.52 0.99 0.83 0.99
128 0.64 0.65 0.51 0.99 0.78 0.99
512 0.61 0.63 0.52 0.99 0.76 0.99

Table 2.5 – Average quality of the matchings found by the algorithms on graphs from the
synthetic family J for n = 30000 and various values of t.

On the contrary, 2outMC and TruncRW both obtain a near perfect matching, with SK-5.
Even though the matrices associated with the graphs of I lack total support, SK-5 sufficed
to obtain near optimal matchings. We notice the effect of scaling: if vertices select without
scaling (Uniform), the matching quality reduces. This is particularly true for 2outMC, which
exhibits the worst overall performance with uniform selection. Family J shows the importance of
scaling, and more importantly highlights the robustness of the proposed methods. An adversary
can create graphs which make degree-based randomized approaches lose quality—some of those
heuristics were described in Section 2.1, and the full details including negative results on KSR1

can be found elsewhere [12]. On the other hand, the use of scaling helps to avoid such cases for
2outMC and TruncRW.

We now discuss how to slightly modify the synthetic family I seen in the experiments of
Section 2.2.5 to obtain a new synthetic family I′ for which both KS, and KSR1 have reduced
performance. Recall that the adjacency matrix of the graphs in the I family consisted of an
upper triangular matrix enhanced by two extra nonzero entries (2, 1) and (n, n-1). There was
thus a set of four degree-2 vertices {rn, rn−1, c1, c2}, where executing Rule-2 on any of them
lead to a perfect matching. To create I′, we extend I with the following edges (r3, c1), (r3, c2),
(rn, cn−2) and (rn−1, cn−2). One can then see that the lowest degree is 3 and thus both both
KS, and KSR1 will resort to random suboptimal decisions. Likewise, due to the large number of
entries without support in the matrix representation, Sinkhorn–Knopp will take many iterations
to properly scale the matrix. In Table 2.6, we give results of the algorithms for a few graphs
from the family I′. In the table, we also show the effects of scaling on 2outMC and TruncRW
by showing results without scaling (under column “uniform”, in which a column vertex chooses a
neighbor uniformly at random), with SK-5, and with SK-20. As can be seen, despite the lack of
total support, both 2outMC and TruncRW obtain matchings whose cardinality is more than
0.92 of the maximum, when SK-5 or SK-20 is used. TruncRW in particular is nearly optimal.
These results are always better than that of KSR1 and KS, with the difference in matching

2.3. SCALING BASED NEAR-OPTIMAL RANDOMIZED ALGORITHMS 37

KSR1 KS 2outMC TruncRW
n quality quality uniform SK-5 SK-20 uniform SK-5 SK-20

10000 0.76 0.84 0.81 0.92 0.95 0.97 0.97 0.97
20000 0.73 0.83 0.81 0.92 0.95 0.97 0.97 0.97
30000 0.73 0.83 0.81 0.92 0.95 0.97 0.97 0.97

Table 2.6 – Average quality of the matchings found by the algorithms on graphs from the
synthetic family I′ for n ∈ {10000, 20000, 30000}.

quality being about 20–25% for the former, and 10–15% for the latter. With increased iterations
of Sinkhorn–Knopp, 2outMC increases the cardinality of its matchings by 3%. If we do not
use scaling (“uniform”), while there’s no noticeable effect on TruncRW’s matchings, 2outMC
matchings decrease by roughly 10%. Even so, its results remain better than KSR1’s and on par
with those of KS.

2.3.3.3 On real-life graphs
We compared TruncRW and 2outMC with KSR1 and KS on the 39 real-life graphs mentioned
at the beginning of Section 2.3.3. Figure 2.10(a) and Figure 2.10(b) present the high level picture.
For the experiments, we did not permute the matrices randomly, which generally increases the
experimentation time.

The results for matching quality can be seen in Figure 2.10(a), where we plot the ratio of the
cardinality of the matchings found by different algorithms to the maximum cardinality of the
matching. The graphs are indexed in nondecreasing number of edges. 2outMC and TruncRW
use SK-3 for scaling. As can be observed, both 2outMC and TruncRW obtain near perfect
matchings. The average matching quality obtained by 2outMC is 0.9979 and that obtained by
TruncRW is 0.9984. Both algorithms never drop below 0.9900 in any of the 39 cases.

Figure 2.10(a) also shows the matching quality of KS and KSR1. The good behavior of
both KS and KSR1 on real-life instances was already discussed in the previous experiments in
Section 2.2.6 and holds for these graphs as well. KSR1 obtains matchings of quality 0.9862 on
average, with always smaller cardinality than TruncRW and 2outMC. KS fares better and
its average quality is 0.9968. Even so, in the majority of cases, it obtains matchings that are
inferior quality-wise to both TruncRW and 2outMC.

While all algorithms obtain matchings of high quality, the absolute different is remarkable
in some cases. For example, the largest difference observed between the matching cardinalities
obtained by 2outMC and KS was 346577, in favor of 2outMC.

Figure 2.10(b) shows the run time of all examined heuristics, where the graphs are again
indexed in nondecreasing number of edges. KSR1 is in general the fastest of these four algorithms
when there are not too many edges. TruncRW and 2outMC are close run-time wise to KSR1

and in some instances faster than it. This is especially true in instances with many edges because
KSR1 depends more on the number of edges, m, especially at the initial randomization step.
KS has the slowest performance overall. Nonetheless, for the most part the difference between
KS and KSR1 is comparable with the results in Section 2.2.5.

For a detailed study, we show results on the five largest graphs from the mentioned dataset
and Circuit5M, which was identified as a challenging instance in earlier work [76]. Degree-1
vertices from Circuit5M are removed by applying Rule-1 of KS as a preprocessing step—this is
without loss of generality of the heuristics. For each graph we relabeled its row-vertices randomly
and executed five tests with each algorithm.

38 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

5 10 15 20 25 30 35

Graphs (sorted wrt. number of edges)

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

M
a
tc

h
in

g
 Q

u
a
lit

y KSR1

KS
TRUNCRW
2OUTMC

(a) The matching quality of 2outMC and TruncRW in com-
parison with KS and KSR1.

5 10 15 20 25 30 35

Graphs (sorted wrt. number of edges)

0

20

40

60

80

100

120

140

160

R
u
n
 t

im
e

KSR1
KS
TRUNCRW
2OUTMC

(b) The run time of 2outMC and TruncRW in comparison
with KS and KSR1.

Figure 2.10 – Run time and quality results of all algorithms on the full set of the 39 real-life
graphs from Section 2.3.3. The results are with SK-3. Graphs are indexed in nondecreasing
number of edges.

2.3. SCALING BASED NEAR-OPTIMAL RANDOMIZED ALGORITHMS 39

Table 2.7 shows the matching quality and the run time of the four heuristics. 2outMC
and TruncRW used SK-3 for this set of experiments. For each graph, we give the minimum,
maximum, and averages over five runs. As already discussed, all heuristics obtain high quality
matchings. On a closer look, we see that TruncRW, on average, matched 158410 more edges
than KSR1, and 50847 more edges than KS. Similarly 2outMC matched 139220 more edges
than KSR1 on average, and 31652 more edges than KS. Interestingly, on graph Channel-500
TruncRW was able to find the maximum matching.

Concerning run time, as KSR1 is a linear time heuristic it is expected to be the fastest.
Surprisingly, TruncRW even with the scaling time added is faster than KSR1 in three instances.
This is due to the fact that each iteration of the scaling algorithm takes linear time with small
constants. As an algorithm on its own (without scaling time), TruncRW becomes the fastest
one, thanks to its run time not depending on m after the initialization. 2outMC, though
slower, also exhibits good behavior, except in nlpkkt240. KS has the worst run time overall.
Its initialization takes more time, and its implementation is more involved. SK-3 is fast except
for nlpkkt240 where it requires about 30 seconds. The reason that SK-3 requires 30 seconds for
this particular graph is due to the random permutation of its rows, which is not cache-friendly (if
SK-3 is run on nlpkkt240 using the initial ordering of rows, it finishes in less than 10 seconds).
In the other cases and despite the large size of the graphs, scaling finishes in less than seven
seconds. Table 2.7 additionally shows that TruncRW and 2outMC’s run time performance
does not seem to be affected by their random decisions. The largest difference between the
result of the minimum, and the maximum run is no more than two seconds for both of these
algorithms.

Combined with the results in the previous section, we conclude thus that (i) 2outMC and
TruncRW always obtain near perfect matchings, while KSR1 and KS are not as robust; (ii)
2outMC and TruncRW are nearly as fast as the linear time algorithm KSR1, and are much
faster than KS.

Next, we consider the impact of our heuristics as initialization to an exact algorithm for find-
ing a maximum cardinality matching. We first run the heuristics to obtain an initial matching,
then call an exact algorithm to augment the initial matchings for maximum cardinality. Apart
from the two exact algorithms PR and PF+ used earlier, here we also consider MC21 [33] from
mmaker [35, 76] for the augmentation steps. This algorithm visits free vertices one by one and
tries to match the visited vertex with a depth-first search, and hence is closely related to Trun-
cRW. In this setting, differences among the qualities of initial matchings should be observable
while computing an exact matching.

The statistics of five runs with MC21 are given in Table 2.8. In this table, the time spent
in augmentations is given in column “augment.”. The overall time to compute a maximum
cardinality matching is given in column “overall’, which includes the time spent in heuristics—in
case of 2outMC and TruncRW it includes the scaling time as well. The runs on nlpkkt240
did not finish within an hour and are not presented. As seen in the table, the overall time to
obtain a maximum cardinality matching is always the smallest with TruncRW initialization.
2outMC is usually competitive with the faster of KS and KSR1, without a clear winner. It is
also interesting to note that in all graphs the worst behavior of TruncRW is better than the best
behavior of KS and KSR1 and in some cases (see cage15 or channel-500) significantly so. The
same is almost true for 2outMC as well except for graphs Delaunay_24 and Hugebbuble-0020
where 2outMC’s worst result is only a few seconds slower than KSR1’s best result, or cage15
versus KS.

In Table 2.9, we observe the behavior of the heuristics when used for initializing the PF+

40 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

KSR1 KS SK-3 2outMC TruncRW
name n statistics quality time quality time time quality time quality time

cage15 5.15
min. 0.99 12.67 0.99 26.89 4.59 0.99 8.82 0.99 8.27
avg. 0.99 12.81 0.99 27.08 4.68 0.99 8.88 0.99 9.32
max. 0.99 13.17 0.99 27.27 4.83 0.99 8.96 0.99 10.23

Channel-500 4.80
min. 0.99 10.12 0.99 20.63 2.74 0.99 7.63 1.00 3.86
avg. 0.99 10.16 0.99 20.94 2.75 0.99 7.66 1.00 4.48
max. 0.99 10.18 0.99 21.87 2.75 0.99 7.70 1.00 5.11

Circuit5M 5.55
min. 0.99 6.57 0.99 24.74 2.45 0.99 4.40 0.99 2.07
avg. 0.99 6.76 0.99 24.93 2.84 0.99 4.56 0.99 2.19
max. 0.99 7.03 0.99 25.33 4.16 0.99 4.81 0.99 2.35

Delaunay_24 16.00
min. 0.99 11.58 0.99 65.97 4.32 0.99 23.34 0.99 11.21
avg. 0.99 11.61 0.99 68.30 4.44 0.99 23.58 0.99 11.31
max. 0.99 11.66 0.99 72.47 4.48 0.99 24.38 0.99 11.37

Hugebubbles-0020 21.19
min. 0.99 14.97 0.99 91.42 6.26 0.99 30.96 0.99 14.25
avg. 0.99 15.04 0.99 97.77 6.29 0.99 31.28 0.99 14.38
max. 0.99 15.15 0.99 106.78 6.31 0.99 31.59 0.99 14.57

nlpkkt240 27.99
min. 0.98 98.58 0.99 182.08 29.77 0.99 52.34 0.99 34.34
avg. 0.98 98.66 0.99 183.10 29.92 0.99 52.53 0.99 34.50
max. 0.98 98.76 0.99 186.08 30.27 0.99 52.76 0.99 34.70

Table 2.7 – Full run time comparisons with heuristics on the 39 real-life graphs from Section 2.3.3.
The run time of SK-3 should be added to TruncRW and 2outMC. For each instance we give
the minimum, the average, and the maximum of five runs for all columns regarding the quality
and the run time. The number of vertices n per side is in the order of millions.

algorithm. The table shows the minimum, average, and maximum time over the five runs. As
can be observed, TruncRW overall exhibits the best behavior. TruncRW has the fastest
performance in four out of six instances, and in the remaining two instances it is very close
to KSR1. The largest difference between the two can be observed in graph nlpkkt240 where
KSR1 is overall almost 50 seconds slower. The total run time with KS is never better than that
with TruncRW. It roughly takes the same amount of time for PF+ to augment 2outMC’s
initial matching, as it takes for it to augment the matching of TruncRW. Therefore, when
2outMC has a run time similar to TruncRW their overall run times are similar. In the largest
of instances 2outMC’s and TruncRW’s performance diverge, but 2outMC’s overall behavior
is superior to KS and competitive with that of KSR1.

In Table 2.10, we observe the behavior of the heuristics when used for initializing the PR
algorithm. The behavior of KSR1 in graph Circuit5M demonstrates the robustness of our
approaches. The average behavior of PR initialized with KSR1 is 339 seconds with the maximum
run time exceeding 500 seconds. In stark contrast, PR with TruncRW’s input never needs more
than 25 seconds, whereas with 2outMC it never surpasses 150 seconds. In the remaining graphs,
the algorithms are competitive with KSR1 or even faster in some instances.

In summary, the effects of the proposed methods as an initialization routine are more ob-
servable with MC21 on all instances. With PF+, we see that the augmentations take less time
on average with 2outMC and TruncRW, but the overall time with KSR1 can be sometimes
better than that of TruncRW slightly thanks to KSR1 being faster. When PR is used, the
augmentations take less time with KSR1 in three instances compared to TruncRW; and in four
instances compared to 2outMC. When 2outMC and TruncRW serve better than KSR1 as
an initialization to PR, the difference is more significant. The above results with three differ-
ent algorithms demonstrate the merits of the two proposed algorithms for use as initialization

2.3. SCALING BASED NEAR-OPTIMAL RANDOMIZED ALGORITHMS 41

KSR1 KS 2outMC TruncRW
name statistics augment overall. augment overall. augment overall. augment overall

cage15
min. 133.85 146.52 7.42 34.47 27.29 40.75 0.22 14.07
avg. 140.13 152.94 8.81 35.90 31.44 45.00 1.85 15.84
max. 144.42 157.28 10.70 37.59 37.84 51.47 2.46 16.84

Channel-500
min. 64.29 74.46 9.15 29.81 12.18 22.62 0.04 6.65
avg. 71.61 81.76 10.93 31.86 15.28 25.68 0.14 7.36
max. 78.81 88.98 11.71 33.58 18.84 29.25 0.25 8.11

Circuit5M
min. 14.33 20.94 10.51 35.32 4.38 12.21 0.50 5.02
avg. 15.26 22.01 13.11 38.04 5.70 13.09 0.77 5.80
max. 16.00 22.72 14.42 39.43 6.81 13.68 1.31 7.79

Delaunay_24
min. 49.95 61.54 26.93 94.02 35.10 63.71 26.77 42.49
avg. 54.79 66.40 29.99 98.29 36.68 64.70 31.06 46.81
max. 61.23 72.81 32.70 104.13 40.30 68.11 34.09 49.77

Hugebubbles-0020
min. 68.17 83.14 55.79 148.64 44.83 82.31 42.02 62.56
avg. 73.15 88.20 58.95 156.72 50.65 88.21 44.54 65.21
max. 75.99 91.10 61.18 166.98 54.35 91.60 47.11 67.68

Table 2.8 – Detailed run times when MC21 is used for augmentations on the 39 real-life graphs
from Section 2.3.3. The quality of heuristics are in Table 2.7. We have omitted graph nlpkkt240
for which MC21 did not finish within a reasonable amount of time. For each instance we give
the minimum, the average, and the maximum run time of five runs.

KSR1 KS 2outMC TruncRW
name statistics augment. overall augment. overall augment. overall augment. overall

cage15
min. 2.19 14.89 2.11 29.18 1.90 15.46 0.73 14.22
avg. 2.51 15.33 2.59 29.67 1.97 15.53 1.16 15.15
max. 2.98 16.15 3.16 30.43 2.01 15.69 1.55 15.63

Channel-500
min. 1.70 11.84 1.82 22.50 1.19 11.60 0.04 6.66
avg. 1.91 12.06 2.07 23.01 1.30 11.71 0.04 7.27
max. 2.60 12.77 2.89 23.69 1.40 11.84 0.05 7.90

Circuit5M
min. 0.63 7.20 0.45 25.28 0.45 7.34 0.48 5.01
avg. 0.77 7.53 0.62 25.55 0.53 7.93 0.58 5.61
max. 0.97 7.97 0.90 25.92 0.67 9.55 0.64 7.04

Delaunay_24
min. 18.47 30.06 13.88 80.75 14.24 42.05 14.20 29.92
avg. 20.83 32.44 14.89 83.19 15.47 43.49 17.67 33.41
max. 22.33 33.91 16.17 86.35 17.12 44.98 20.40 36.09

Hugebubbles-0020
min. 23.09 38.09 14.99 106.41 23.27 60.75 21.97 42.54
avg. 28.13 43.17 19.63 117.40 26.97 64.53 24.49 45.16
max. 34.11 49.26 23.00 127.49 30.38 68.17 29.65 50.53

nlpkkt240
min. 27.01 125.69 28.19 210.27 14.91 97.26 13.76 77.87
avg. 27.09 125.76 29.63 212.73 17.56 100.01 13.96 78.38
max. 27.24 125.83 30.27 216.15 20.99 103.47 14.09 79.06

Table 2.9 – Detailed run times when PF+ is used for augmentations on the 39 real-life graphs
from Section 2.3.3. The quality of heuristics are in Table 2.7. For each instance we give the
minimum, the average, and the maximum run time of five runs.

42 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

KSR1 KS 2outMC TruncRW
name statistics augment. overall augment. overall augment overall augment overall

cage15
min. 2.15 14.85 3.63 30.52 1.19 14.67 1.10 14.03
avg. 2.41 15.22 3.80 30.88 1.39 14.95 1.28 15.28
max. 2.68 15.85 4.01 31.08 1.69 15.32 1.69 16.59

Channel-500
min. 1.57 11.75 2.83 23.47 1.63 12.03 0.04 6.68
avg. 1.66 11.81 2.92 23.86 1.75 12.16 0.06 7.28
max. 1.70 11.85 3.01 24.88 2.02 12.44 0.08 7.92

Circuit5M
min. 116.67 123.24 107.51 132.34 2.02 8.89 0.74 5.26
avg. 332.29 339.05 235.54 260.47 37.11 44.51 5.37 10.40
max. 559.09 566.09 378.31 403.12 139.61 148.58 18.30 24.78

Delaunay_24
min. 40.52 52.15 32.09 98.89 41.66 69.52 48.63 64.32
avg. 45.48 57.09 36.90 105.20 46.94 74.96 52.48 68.23
max. 52.47 64.06 43.74 110.18 53.19 81.04 58.07 73.91

Hugebubbles-0020
min. 41.01 56.16 55.22 146.78 44.71 81.96 49.46 70.34
avg. 47.53 62.58 58.56 156.33 51.59 89.15 53.16 73.84
max. 52.59 67.56 61.17 166.57 58.54 96.15 54.82 75.36

nlpkkt240
min. 13.98 112.59 22.87 205.18 15.49 97.63 19.74 84.26
avg. 14.13 112.80 24.17 207.27 17.34 99.79 28.70 93.13
max. 14.51 113.27 25.77 211.10 19.01 101.46 47.31 112.28

Table 2.10 – Detailed run times when PR is used for augmentations on the 39 real-life graphs
from Section 2.3.3. The quality of heuristics are in Table 2.7. For each instance we give the
minimum, the average, and the maximum run time of five runs.

10000× 10000 12000× 10000
d M∗ TruncRW M∗ TruncRW
2 7787 0.9888 8724 0.9919
3 9266 0.9697 9667 0.9958
4 9761 0.9828 9899 0.9995
5 9918 0.9922 9973 1.0000

Table 2.11 – The quality of TruncRW on bipartite graphs without perfect matchings.

routines in exact matching algorithms.

2.3.3.4 With TruncRW

Here we perform a set of experiments focusing exclusively on TruncRW.

Experiments on matrices without total support. We experimented with bipartite graphs
without total support which correspond to square (10000 × 10000) and rectangular matrices
(12000×10000) with a uniform nonzero distribution. These matrices are generated with sprand
command of Matlab and have about d× 10000 nonzeros for d = 2, 3, 4, 5. The matrix represen-
tation of the bipartite graphs were scaled with 10 iterations of SK. For each d, we created five
random matrices and ran TruncRW on the corresponding five instances. We report the worst
quality of the five instances in Table 2.11. As seen in this table, TruncRW works just fine for
this case. We did not report in the table but with increased SK iterations, the results improve,
which is in accordance with earlier work [38].

2.4. A SCALING BASED DERANDOMIZED ALGORITHM 43

Engineering TruncRW. Recall that TruncRW tries to find an augmenting path starting
from a column vertex a certain number of times before giving up and moving to the next column
vertex. We tested the behavior of TruncRW with different number of attempts at finding an
augmenting path. Our test-set consisted of the 39 real-life instances from Section 2.3.3 and we
tested with SK-5. When we allowed TruncRW just a single attempt, it was unable to find
a perfect matching in any of the cases, and its average matching quality was 0.9984. When
we allowed five attempts, TruncRW found a perfect matching for 13 graphs, and its average
matching quality was 0.9999. With 10 attempts, it managed to find a perfect matching in 5
additional graphs. This verifies that allowing more attempts indeed improves the performance
of the algorithm. The drawback, however, was the increased run time, which we did not think
worth. That is why our implementation of TruncRW starts a random walk from a vertex only
once.

We also test the effects of the look-ahead mechanism. Let us define the walk efficiency of
TruncRW as the ratio of the cardinality of the matching found to the total length of the
random walks. The higher this ratio, the more useful the random walks are. We evaluate the
walk efficiency on a set of seven instances (real-life instances having at most 10000000 edges).
We test both with and without scaling and report the results of the 14 tests. In 13 cases, the
look-ahead mechanism improved the walk efficiency. The geometric mean (of 14 cases) of the
ratios of walk efficiencies with look-ahead to that of without was 1.37. In the case where the
look-ahead did not help (ratio was 0.71 in an instance named Hamrle3), the maximum deviation
of a row or column sum from one after SK-5 was 0.28, which is high. We conclude that the
look-ahead mechanism is very helpful.

Finally we test the effects that the length of the augmenting walk has on TruncRW. We
doubled the allowed length of a random walk to 4(4 + 2n/(n − j)). On average, the matching
quality rose from 0.9984 to 0.9998. This modification was not able to find a perfect matching
in any of the 39 instances. This led to an increase in the run time, which we deemed too large.
We therefore keep 2(4 + 2n/(n− j)) as the truncation length.

2.3.3.5 With 2outMC

Here, we briefly discuss the effects that the above two heuristics have on the performance of the
2outMC algorithm. Since 2outMC obtains high quality results, the two heuristics can only
yield a relatively small improvement. When they are enabled and used with SK-5 2outMC
finds matchings with average quality of 0.9997 for the real-life graphs from Section 2.3.3 for
which 2outMC obtained matchings of quality 0.9983. This difference corresponds to about
13113 additionally matched edges, and hence signals that 13113 augmentations are avoided.

It is also interesting to consider the effects that these heuristics can have on cases where
2outMC did not deliver near-optimal matchings. As an example, we consider the synthetic
family I′ from Section 2.3.3. When scaling was not enabled, 2outMC found matchings of average
cardinality 0.80−0.81% of the maximum. If however one uses the two heuristics proposed in this
section, then there is a significant improvement in performance, and 2outMC finds matchings
of cardinality 0.89 of the maximum.

2.4 A scaling based derandomized algorithm

In the third part of this chapter, we discuss a derandomization of the OneSided heuristic.
Our aim is to obtain a worst-case linear time, deterministic approximation algorithm with an

44 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

approximation guarantee strictly greater than 1/2 and without augmenting path searches. The
common point between this part and the previous one is the use of matrix scaling in order to
produce reliable and efficient algorithms. The parts differ however in that while previously the
scaled values were used to perform random decisions, here they will only be used to assist in
deterministic decisions.

We first begin with some details about OneSided. Recall from Section 2.1 that OneSided
is a linear time approximation algorithm for finding a matching in a bipartite graph with an
approximation guarantee of 1− 1/e. We provide its details in Algorithm 2.3.

Algorithm 2.3: OneSided: Matching heuristic
Input: A bipartite graph G = (V,E) and its matrix representation A.
Output: A matching of G.
1: [R,C]← Scale(A)
2: for i = 1 to n do
3: Select a column j with probability sij , where sij is the corresponding entry from the

scaled matrix S = RAC
4: match row i with column j

As in the heuristics discussed in the previous part of this chapter, OneSided first scales the
adjacency matrix of the given graph in a preprocessing step in Line 1. The scaling procedure is
only run for a few iterations such that the complexity of this step is linear for practical usage.
Then it proceeds to select randomly for each row a neighbor column according to the values in
that row. A column j can be selected by many rows in Line 3. In this case, we assume that j
is matched with the row that selected it last. The use of scaling makes possible to attain the
theoretical guarantee given in Theorem 2.5.

Theorem 2.5. Algorithm 2.3 finds a matching of expected cardinality at least (1− 1/e) · n.

We repeat the original proof for convenience and for its ties with the current work.

Proof. LetM be a random variable that represents the cardinality of the returned matching. Let
random variable Xj be 1 if column j is matched or not. By the linearity of expectation, E[M] =∑n

j=1 E[Xj]. The probability that Xj is equal to 1 is given by Pr(Xj = 1) = 1−
∏n
i=1(1− sij).

That is, we consider the complement of the event that no row selects column j.
Now, we apply the arithmetic-geometry equality to derive the following upper bound on∏n

i=1(1− sij) (and consequently a bound for Pr(Xj = 1))

n∏
i=1

(1− sij) ≤
(∑n

i=1(1− sij)
n

)n
≤
(
n− 1

n

)n
≤
(

1− 1

n

)n
≈ 1/e . (2.1)

We apply Equation (2.1) on the formula of expectation to conclude the proof

E[M] =
n∑
j=1

E[Xj] =
n∑
j=1

Pr(Xj = 1) ≥ (1− 1/e) · n .

2.4. A SCALING BASED DERANDOMIZED ALGORITHM 45

2.4.1 The derandomization

We now present the derandomized algorithm for OneSided. Our result follows the technique
of derandomizing based on conditional expectations. It bases its deterministic decisions in the
idea of maximizing the expected outcome.

Let E[M |c1, . . . , ci−1] represent the expected cardinality of a matching when the first i − 1
rows have selected their columns. The choice cz in particular denotes the column chosen by the
zth row. When i = 1, we have to abuse slightly the notation such that E[M |c1, . . . , ci−1] = E[M].
Our aim will be to select a column ci for the ith row deterministically by considering the values
of all possible E[M |c1, . . . , ci−1, ci].

Proposition 2.2. For any i ≥ 1, there exists a column j such that

E[M |c1, . . . , ci−1] ≤ E[M |c1, . . . , ci−1, j]

Proof. Let us assume the contrary. Then for any j, E[M |c1, . . . , ci−1, j] < E[M |c1, . . . , ci−1]. We
now develop E[M |c1, . . . , ci−1] as

E[M |c1, . . . , ci−1] =

n∑
j=1

E[M |c1, . . . , ci−1, j] · si,j

< E[M |c1, . . . , ci−1] ·
n∑
j=1

sij

< E[M |c1, . . . , ci−1] .

We arrive thus at a contradiction.

Our derandomized algorithm will hence pick at each step the column j that maximizes the value
E[M |c1, . . . ci−1, j]. Proposition 2.2 allows us to show that the derandomized algorithm following
this principle preserves the theoretical guarantee shown in Theorem 2.5 and hence will return a
matching with expected cardinality at least (1− 1/e) · n.

It remains to see how to define and calculate the different E[M |c1, . . . ci, j] values so as to
make the decision ci. Let Mi−1 be the set containing all matched columns and Ui−1 contain all
the unmatched ones after i− 1 steps of the algorithm. The expectation of the cardinality of the
returned matching, based on Mi−1 and the decision j of the ith row, can be written as

E[M |c1, . . . , ci−1, j] =

{
|Mi−1|+

∑
z∈Ui−1

(1−
∏n
q=i+1(1− sqz)) j ∈Mi−1

|Mi−1|+ 1 +
∑

z∈Ui−1,z 6=j(1−
∏n
q=i+1(1− sqz)) j ∈ Ui−1

. (2.2)

If row i selects a matched column from the set Mi−1, then Mi = Mi−1 and likewise Ui = Ui−1.
Otherwise, assuming row i selects column j ∈ Ui−1, we haveMi = Mi∪{j} and Ui = Ui−1 \{j}.
We can now derive the formula for expected cardinality of the returned matching (2.2) by noting
that the columns in Mi have been matched already hence their contribution to the expected
cardinality of the returned matching is 1. The probability for a column u ∈ Ui to be matched
(i.e., Xu = 1) can be calculated in an equivalent way as in Theorem 2.5. We consider the
remaining rows i + 1, . . . , n and take the complement of the event that none of these rows will
select u randomly.

A straightforward implementation of the above idea gives an O(mn2) algorithm for a bipartite
graph with n vertices per side, and m edges. For each nonzero of the matrix, we need to perform

46 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

O(n) calculations, each of which requires O(n) time. We now show how to reduce the complexity
to linear time using Propositions 2.3 and 2.4. At first, we show that row i has to choose a neighbor
from the Ui−1 set to maximize the expected cardinality of the returned matching.

Proposition 2.3. Let j ∈Mi−1, j
′ ∈ Ui−1. Then E[M |c1, . . . ci, j] ≤ E[M |c1, . . . ci, j′].

Proof. It follows by noting that 1 ≥ 1−
∏n
q=i+1(1− sqj′).

As a corollary, Proposition 2.3 shows that the matching returned by the derandomized algorithm
is in fact maximal. Row i will select always an unmatched column if possible. This is in con-
trast to the original OneSided algorithm, which did not return necessarily maximal matchings.
Proposition 2.4 discusses a method to compare between the vertices in the Ui−1 set without
having to calculate the expectation directly.

Proposition 2.4. Let j, j′ ∈ Ui−1 where column j leads to a higher expectation than j′. Then

n∏
q=i+1

(1− sqj′) ≤
n∏

q=i+1

(1− sqj) .

Proof.

E[M |c1, . . . ci, j′] ≤ E[M |c1, . . . , ci, j]

|Mi−1|+ 1 +
∑

z∈Ui−1,z 6=j′

(1−
n∏

q=i+1

(1− sqz)) ≤ |Mi−1|+ 1 +
∑

z∈Ui−1,z 6=j

(1−
n∏

q=i+1

(1− sqz)) by Eq. (2.2)

∑
z∈Ui−1,z 6=j′

(1−
n∏

q=i+1

(1− sqz)) ≤
∑

z∈Ui−1,z 6=j

(1−
n∏

q=i+1

(1− sqz))

1−
n∏

q=i+1

(1− sqj) ≤ 1−
n∏

q=i+1

(1− sqj′) j, j′ appear on different sides

n∏
q=i+1

(1− sqj′) ≤
n∏

q=i+1

(1− sqj) .

Proposition 2.4 allows us to see that whenever E[M |c1, . . . , ci, j] ≥ E[M |c1, . . . , ci, j′] holds, then∏n
q=i+1(1 − sqj) ≥

∏n
q=i+1(1 − sqj′) holds as well. This already reduces the complexity from

O(m ·n2) to O(m ·n), but it is still too high. To further bring down the complexity to O(m) in a
preprocessing step we calculate all possible

∏n
z=i+1(1− sz,j) values in a suffix-product fashion.

We summarize the OneSidedDerand algorithm in Algorithm 2.4. Similar to Algorithm 2.3,
it begins by scaling the adjacency matrix of the given bipartite graph for a few steps. It then
calculates in P[:, j] for each column j the suffix product array of

∏n
i=1(1 − sij) using an inter-

mediate array L. Then, starting with the first row, each row picks the unmatched neighboring
column that maximizes the corresponding value in the P array. If a row has no free columns, it
is skipped. For further efficiency, we can remove the P array and base the decision at Line 13
exclusively on the L array. To do so, once we are finished with the selection of the ith row, we

update L[j] =
L[j]

1− sij
for each nonzero neighbor j of the ith row. One can then easily verify

2.4. A SCALING BASED DERANDOMIZED ALGORITHM 47

Algorithm 2.4: OneSidedDerand: The derandomized variant of OneSided
Input: A bipartite graph G = (V,E) and its matrix representation A.
Output: A matching of G.
1: [R,C]← Scale(A)
2: for i = 1 to n do
3: L = [1, . . . , 1]
4: for i = n down to 1 do
5: for j ∈ adj(i) do
6: P[i, j]← L[j]
7: L[j]← L[j] · (1− sij) , where sij is the corresponding entry from

the scaled matrix S = RAC
8: U0 ← {1, . . . , n}
9: M0 ← ∅

10: for i = 1 to n do
11: U ← adj(i) ∩ Ui−1
12: if U 6= ∅ then
13: ci ← arg maxj∈U P[i, j]
14: match row i with column j
15: Ui ← Ui−1 \ ci
16: Mi ←MI−1 ∪ {ci}
17: else
18: Ui ← Ui−1
19: Mi ←Mi−1

48 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

that at the beginning of the ith step the values of the L array will be identical to P[i, :], i.e., L[j]
= P[i, j] for all unselected columns j.

While Algorithm 2.4 exhibits good behavior (see Section 2.4.2), improvements on its perfor-
mance are still possible. At Line 13 of the algorithm, the ith row picks the column which is the
least likely to be selected by the rest of the remaining rows. The sampling probabilities for each
row were defined only once, during Line 1 and do not accurately represent the current state of
the graph. As we discussed, the ith row will avoid vertices from Mi−1. It would instead be more
appropriate to use nonzero probabilities only for the values corresponding in unmatched columns
in (2.2). In this case, each row would zero-out any matched columns and normalize the rest
of the entries such that the row continues to define a probability distribution. Unfortunately,
updating the probabilities every time a new vertex is matched yields an O(mn) algorithm which
can highly inefficient. We are not aware of a more efficient method to update the values of the
matrix in the described way.

We opted to handle degree-1 vertices in a way similar to Rule-1 in Karp–Sipser. In this
approach, we remove vertices from the graph along with their edges when they are matched.
Rows select columns as in Algorithm 2.4 by comparing between expectations implicitly, except
when degree-1 vertices appear. In this case, we include the degree-1 vertex and its neighbor
to the matching. We call the resulting algorithm OneSidedDerandR1. As we discussed in
Section 2.2, these decisions do not harm the matching cardinality. Note that this variant does
not work in conjunction with the P array. The P array assumes that the rows always choose in
the order 1, . . . , n, which might not be necessarily true in this case. The version relying solely
on the L array should be preferred instead. Rule-2 of Karp–Sipser can be adapted in a similar
manner.

2.4.2 Some preliminary experiments

We give the results of some experiments showcasing the promising performance of the OneSided-
Derand heuristic. We selected 171 medium-sized matrices with 104 ≤ n ≤ 3 · 105 from the
SuiteSparse Matrix Collection [31]. We chose to compare OneSidedDerand against the KSR1

heuristic that only applies Rule-1 of Karp–Sipser as both of these algorithms run in linear time.
Other than OneSidedDerand, we additionally considered its variation OneSidedDerandR1

that applies Rule-1 of Karp–Sipser whenever it is possible. The results can be seen in Figure 2.11,
where we show the approximation ratio of the cardinality returned by the different algorithms
versus the maximum cardinality.

As can be seen, OneSidedDerandR1 has overall the best performance. While in most cases
KSR1 fares better than OneSidedDerand, we note that on average the quality of the latter is
in fact higher. OneSidedDerand never drops below in approximation 0.94 whereas the worst
approximation of KSR1 is about 0.85, which is significantly worse.

The original OneSided heuristic is known to obtain results around its theoretical bound [38].
In contrast, the performance of OneSidedDerand and its variant is nearly 30% better than
its theoretical guarantee. OneSided in particular achieves the (1− 1/e)-approximation bound
on complete bipartite graphs, where OneSidedDerand however is optimal. Due to the these,
we suspect that the actual theoretical guarantee of the derandomized heuristics can potentially
be higher. Note that one can similarly make the matching of OneSided maximal in a follow-up
step thereby improving its approximation. Including Rule-1 consistently improves the behavior
of OneSidedDerand. The difference can be as high as 4%. This can be explained by the
discussion in the previous section about how Algorithm 2.4 works with outdated probabilities.

2.5. CONCLUDING REMARKS 49

20 40 60 80 100 120 140 160
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ONESIDEDDERAND
ONESIDEDDERANDR1
KSR1

Figure 2.11 – Comparisons between the different versions of OneSidedDerand. The y axis
corresponds to the approximation ratios of the three algorithms. The results are sorted with
respect to the approximation ratio of the derandomized version using Rule-1.

2.5 Concluding remarks

This chapter focused on heuristics for bipartite graph matching and comprised of three parts.
While in all parts we dealt with efficient heuristics, our motivation in each part was different.
The first part dealt with the efficient implementation of the Karp–Sipser heuristic. We were
motivated in here to examine the second rule of Karp–Sipser as it has not been as extensively
studied as the first rule. We investigated it both complexity-wise as well as from an experimental
point of view to study its effectiveness in practice. The second part considered randomized
heuristics based on matrix scaling. As we discussed, heuristics such as Karp–Sipser have been
known to behave poorly for some instances. Our motivation hence in this part was to produce
fast, robust, and reliable heuristics that could overcome such limitations. We achieved this goal
by utilizing matrix scaling to assist with the random decisions. In the third part, we proposed
a deterministic approximation algorithm again based on matrix scaling. We were motivated by
the fact that the deterministic approaches known to surpass the 1/2 bound in approximation are
based on augmenting paths. We therefore became interested to see whether our matrix scaling
framework would translate well into an effective non probabilistic algorithm that can obtain
higher than 1/2 approximation without resorting to augmenting path searches.

For our results in the first part, we investigated two data reduction rules for the maximum
cardinality matching problem proposed by Karp and Sipser [72]. While the first rule has a
simple, worst case linear time implementation, the second rule can take quadratic time. We
focused on the second rule which merges the two neighbors of a degree-2 vertex. We considered
and analyzed three different algorithms with different levels of sophistication, and proposed an
efficient algorithm to recover the matching in the original graph. For two of the these algorithms,
we showed that their worst-case performance can still be quadratic in terms of n, whereas the
third approach has sub-quadratic complexity in sparse graphs. On a set of experiments with real-
life, random, and constructed problem instances we showed that the second rule indeed increases
the cardinality of the matching found by Karp–Sipser and can lead to a drop in the run time
of the exact algorithm afterwards. One open question is whether a linear time implementation
for the second rule is actually possible. As discussed in the text, it seems that the approach of

50 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

Bartha and Krezs [7] does not achieve a linear time complexity when degree-2 reductions are
interleaved with degree-1 reductions or random choices, made in the matching context. With
these, we conjecture that the answer to our question is negative. We are also interested in a
parallel version of the Karp–Sipser algorithm. To that end, we believe that the component-based
approach discussed in Section 2.2.3 should adapt very well to parallel settings.

In the second part of the chapter, we examined two randomized algorithms for the maximum
cardinality matching problem in bipartite graphs. These algorithms work with two special classes
of bipartite graphs and we discussed how to generalize them through the use of matrix scaling.
Our first algorithm 2outMC is based on a Monte-Carlo algorithm for matching in 2-out random
subgraphs [71]. The second algorithm TruncRW is based on a Las Vegas algorithm for matching
in d-regular bipartite graphs [54]. Our experimental results showed that these approaches obtain
near perfect matchings in real-life and synthetic instances and have a near linear time run time.
The two approaches were also shown to be more robust than the state of the art heuristics used
in the cardinality matching algorithms, and are generally more useful as initialization routines.
Our adaptation of 2outMC is based on the premise that 2-out graphs sampled from a host
graph have perfect matchings, assuming that the matrix representation of the host graph have
total support. We showed empirical evidence that k-out graphs, for k ≥ 3, sampled from a host
graph with total support always contain perfect matchings. For k = 2, we noticed the existence
of perfect matchings in many graphs. A proof or the disproof of such k-out graphs having perfect
matchings is certainly welcome. Furthermore, this was the first attempt to implement 2outMC,
and there is room for improved performance.

In the third part, we discussed a deterministic matrix scaling based heuristic OneSided-
Derand and its variant OneSidedDerandR1 which derandomize the OneSided heuristic [38].
These two deterministic algorithms have the same complexity and theoretical guarantees as
OneSided. On a large set of medium-sized bipartite graphs, we noticed that their quality
greatly surpasses their theoretical guarantee. For this reason, we would like to analyze the
behavior of the OneSidedDerand algorithm in more detail. Furthermore, we would like to
derandomize other randomized heuristics for matching such as the ones discussed in Section 2.1.

Chapter 3

Matchings in undirected graphs

In this chapter we investigate the problem of matching in undirected graphs. This chapter can
thus be thought of as a continuation of the previous chapter. We again examine algorithms
that can find large matchings reasonably fast for the purpose of speeding up exact matching
algorithms or for use in applications which require large matchings [89]. The results of this
chapter were published in the proceedings of the CSC 18 workshop [W1].

Our main contribution in the chapter is adapting the TwoSided herustic [38] to general
undirected graphs. Recall from Section 2.1, that the TwoSided heuristic is a fast practically
linear time algorithm that achieves a 0.866-approximation on bipartite graphs with total support.
This approximation ratio is achieved through the use of matrix scaling by generating an 1-out
random subgraph of the given bipartite graph. While the proposed heuristic is a straightforward
adaptation of its counterpart for bipartite graphs, its analysis is more complicated due to the
existence of odd cycles in the generated subgraph. Our analysis shows that a random 1-out
subgraph of a given graph has maximum cardinality of a matching around 0.866− log(n)/n of
the best possible—the observed performance is higher. We also discuss two variants of the main
heuristic without proofs. Both of these variants enrich a 1-out subgraph with more edges, and
hence deliver better results than the main heuristic both in theory and in practice.

The rest of the chapter is organized as follows. In Section 3.1 we present the main heuristic,
its analysis as well as its two variants. In Section 3.2 we provide the experimental results.
Section 3.3 summarizes the chapter and discusses some potential future work.

3.1 One-Out: The main heuristic

The One-Out heuristic shown in Algorithm 3.1 first scales the adjacency matrix of a given
undirected graph to be doubly stochastic. The heuristic then selects a random vertex randomly
for each of the vertices based on the values in the scaled matrix. Then, the subgraph of the
original graph containing only the selected edges is formed, yielding an undirected graph with at
most n edges, each vertex having at least one edge incident on it. The KSR1 heuristic discussed
in the previous chapter that only applies Rule-1 of Karp–Sipser and random decisions is then run
on this subgraph. Due to the fact that the 1-out graph consists only of unicyclic components,
KSR1 is capable of finding a maximum matching using only degree-1 reductions and random
selections [38, Lemma 3]. The approximation guarantee of the proposed heuristic is analyzed
until this step.

The original TwoSided heuristic performed only the equivalent of Lines 1 until 6 from
Algorithm 3.1. At Line 7, we have included an additional step to improve its performance by

51

52 CHAPTER 3. MATCHINGS IN UNDIRECTED GRAPHS

ensuring that the returned matching is maximal. Notice that the maximum matching in the
1-out subgraph is not necessarily maximal for the entire graph. To achieve maximality, we
run KSR1 or another Greedy-like heuristic on the subgraph of all unmatched vertices, which
naturally contains only edges that were not selected in the previous steps. As we will see, this
addition brings in a large improvement to the cardinality of the matching in practice.

Algorithm 3.1: One-Out: Heuristic for matching in undirected graphs
Input: G = (V,E) and its adjacency matrix A.
Output: match[·]: the matching.
1: R← SymScale(A)
2: for i = 1 to n do
3: Pick a random j ∈ Ai∗ by using the probability density function

sik
Σt∈Ai∗sit

, for all k ∈ Ai∗

where sik = R[i]×R[k] is the corresponding entry in the scaled matrix S = RAR.
4: Mark that i chooses j
5: Construct a graph G1

out = (V,E), where

V ={1, . . . , n}
E ={(i, j) : i chose j or j chose i}

6: match←KarpSipserOne-Out(G1
out)

7: Make match a maximal matching

Let us consider that the edges incident on a vertex vi consist of in-edges (from those neighbors
that have chosen i at Line 4) and an out-edge (to a neighbor chosen by i at Line 4).

The analysis traces an execution of KSR1 on the subgraph G1
out and we identify two possible

phases. KSR1 starts with Phase-1 which continues for as long as there exist degree-1 vertices in
the graph. Phase-2 thus starts at the first moment that KSR1 has to rely on a random decision.
We now introduce some notation which will prove helpful in the analysis of the algorithm during
Phase-1. Let A1 be the set of vertices not chosen by any other vertex at Line 4 of Algorithm 3.1.
These vertices have in-degree zero and out-degree one, and hence can be processed by KSR1.
Let B1 be the set of vertices chosen by the vertices in A1. The vertices in B1 can be perfectly
matched with vertices in A1; leaving some A1 vertices not matched and creating some new
in-degree-0 vertices. We can proceed to define A2 to be the vertices that have in-degree 0 in
V \ (A1 ∪B1), and define B2 as those chosen by A2, and so on so forth. Formally, let B0 be an
empty set, and define Ai to be the set of vertices with in-degree 0 in V \ Bi−1, and Bi be the
vertices chosen by those in Ai, for i ≥ 1. Notice that Ai ⊆ Ai+1 and Bi ⊆ Bi+1. The KSR1

heuristic can process A1, then A2 \A1, and so on, until the remaining graph has cycles only. The
sets Ai and Bi and their cardinality are at the core of our analysis. We first present some facts
about these sets and their cardinality, and describe an implementation of KSR1 instrumented
to highlight them.

Lemma 3.1. With the definitions above, Ai ∩Bi = ∅.

Proof. We prove this by induction. For i = 1 it clearly holds. Assume that it holds for all i < `.
Suppose there exists a vertex u ∈ A` ∩B`. Because A`−1 ∩B`−1 = ∅, u must necessarily belong

3.1. ONE-OUT: THE MAIN HEURISTIC 53

to both A` \A`−1 and B` \B`−1. For u to be in B` \B`−1, there must exist at least one vertex
v ∈ A` \ A`−1 such that v chooses u. However the condition for u ∈ A` is that no vertex in
V ∩ (A`−1 ∪ B`−1) has selected it. This is a contradiction and the intersection A` ∩ B` should
be empty.

Corollary 3.1. Ai ∩Bj = ∅ for i ≤ j.

Proof. Assume Ai ∩ Bj 6= ∅. Since Ai ⊆ Aj we have a contradiction as Aj ∩ Bj = ∅ by
Lemma 3.1.

Thanks to Lemma 3.1 and Corollary 3.1, we have that the sets Ai and Bi are disjoint, and
they form a bipartite subgraph of G1

out, for all i = 1, . . . , `.
The version of the KSR1 heuristic for 1-out graphs is shown in Algorithm 3.2. In practice,

Algorithm 3.2 is a straightforward adaptation of KSR1, extending it only by keeping some
information related to the analysis of One-Out to ease understanding. For simplicity, we will
use the term KSR1 to refer to Algorithm 3.2 in the text below. The degree-1 vertices are kept
in a first-in first-out priority queue Q. The queue is first initialized with A1, and a # is used to
mark the end of A1. Then, all vertices in A1 are matched to some other vertices, defining B1.
When we remove two matched vertices from the graph G1

out at Lines 29 and 40, we update the
degrees of their remaining neighbors, and append the vertices which have degrees of 1 to the
queue. During Phase-1 of KSR1, we also maintain the set of Ai and Bi vertices, while storing
only the last one. A` and B` are returned along with the number ` of levels, which is computed
thanks to the use of the marker #.

Apart from the scaling step, the proposed heuristic in Algorithm 3.1 has linear worst-case
time complexity of O(n+m) and linear space requirements, using the CSC format. In regards
to the cost of the scaling step in Line 1, we follow the same methodology as in our heuristics
for bipartite graph matching in the previous chapter. We hence run the scaling algorithm
only for a constant number of steps. The only requirement is a scaling method which can
preserve symmetry. In practice, 5 or 10 iterations of the basic method [80] or even less of the
Newton iterations [79] seem sufficient (see experiments). Therefore, the practical run time of
the algorithm is linear.

3.1.1 One-Out: Analysis

Let ai and bi be two random variables representing the cardinalities of Ai and Bi, respectively,
in an execution of KSR1 on a random 1-out graph. Then, the KSR1 algorithm matches b` edges
in Phase-1, and leaves a`− b` vertices unmatched. What remains after Phase-1 is a set of cycles.
In the bipartite graph case [38], each of these cycles has even length. Therefore all vertices in
those cycles are matchable and hence the cardinality of the matching is measured by n−a`+ b`.
Since we can possibly have odd cycles after Phase-1, we cannot match all remaining vertices in
the general case of undirected graphs. Let c be a random variable representing the number of
odd cycles after Phase-1 of KSR1. Then we have the following lemma which we give without
proof about the approximation guarantee of Algorithm 3.1 after the completion of Line 6.

Lemma 3.2. At the end of execution, the number of unmatched vertices is a` − b` + c. Hence,
Algorithm 3.1 matches at least n− (a` − b` + c) vertices.

We need to quantify a`− b` and c in Lemma 3.2. Initially, we obtain an upper bound on a`− b`.
Afterwards, we at first obtain a pessimistic upper bound on c, which we then improve with a

54 CHAPTER 3. MATCHINGS IN UNDIRECTED GRAPHS

Algorithm 3.2: KarpSipserOne-Out: Specialized Karp–Sipser for 1-out graphs
Input: G1

out = (V,E): a 1-out graph.
Output: match[·]: the mates of vertices.
Output: `: the number of levels in Phase-1.
Output: A: the set of degree-1 vertices in Phase-1.
Output: B: the set of vertices matched to A vertices.
1: match[u]← NIL for all u
2: Q← {v : deg(v) = 1}{degree-1 or in-degree 0}
3: if Q = ∅ then
4: `← 0{no vertex in level 1}
5: else
6: `← 1
7: Enqueue(Q,#){marks the end of the first level}
8: Phase-1← ongoing
9: A← B ← ∅

10: while true do
11: while Q 6= ∅ do
12: u← Dequeue(Q)
13: if u = # and Q = ∅ then
14: break the while-Q-loop
15: else if u = # then
16: `← `+ 1
17: Enqueue(Q,#){new level formed}
18: skip to the next while-Q-iteration
19: if match[u] 6= NIL then
20: skip to the next while-Q-iteration
21: for v ∈ adj(u) do
22: if match[v] = NIL then
23: match[u]← v
24: match[v]← u
25: if Phase-1 = ongoing then
26: A← A ∪ {u}
27: B ← B ∪ {v}
28: N ← adj(v)
29: G1

out ← G1
out \ {u, v}

30: Enqueue(Q,w) for w ∈ N , deg(w) = 1
31: break the for-v-loop
32: if Phase-1 = ongoing and match[u] = NIL then
33: A← A ∪ {u}{u cannot be matched}
34: Phase-1 ← done
35: if E 6= ∅ then
36: pick a random edge (u, v)
37: match[u]← v
38: match[v]← u
39: N ← adj({u, v})
40: G1

out ← G1
out \ {u, v}

41: Enqueue(Q,w) for w ∈ N , deg(w) = 1
42: else
43: break the while-true loop

3.1. ONE-OUT: THE MAIN HEURISTIC 55

more detailed analysis. While the bound for a` − b` holds for any graph with total support
presented to Algorithm 3.1, the bounds for c are shown for random 1-out graphs of complete
graphs. By plugging the bounds for these quantities, we obtain the following theorem on the
approximation guarantee of Algorithm 3.1.

Theorem 3.1. Algorithm 3.1 obtains a matching with cardinality at least 0.866− d1.04 log(0.336n)en
in expectation, when the input is a complete graph.

The theorem implies that a random 1-out graph has a maximum cardinality of a matching at
least 0.866− d1.04 log(0.336n)en , in expectation. The bound is in close vicinity of 0.866, which was
the proved bound for the bipartite case [38]. We note that in deriving this bound we assumed
a random 1-out graph (as opposed to a random 1-out subgraph of a given graph) only at a
single step. We leave the extension to this latter case as future work and present experiments
suggesting that the bound is also achieved for this case. In Section 3.2.1, we empirically show
that the same bound also holds for graphs whose corresponding matrices do not have total
support.

3.1.1.1 An upper bound on a` − b`

In order to measure a`− b`, we adapt a proof from earlier work [38], which was inspired by Karp
and Sipser’s analysis of the first phase of their heuristic [72]. Let α(k)

j = Pr(vj ∈ Ak) be the

probability for a vertex vj to belong to Ak, and similarly β(k)j = Pr(vj ∈ Bk) be the probability
for a vertex vj to belong to Bk.

Lemma 3.3. It holds that

β
(k)
j ≥ 1− e−

∑
i sija

(k)
i (3.1)

α
(k)
j ≤ e1−

∑
i sijβ

(k−1)
i . (3.2)

The proof of the lemma can be derived by following the bipartite case [38, Lemmas 6 and 7].
That is why, we give a high level sketch.

Proof. (Sketch) By Lemma 3.1 and its corollary, A` and B` define a bipartition. Therefore, the
equations remain the same. The only technicality in the proof is to make sure that the vertices
in Ak and those in Bk are from the same set V and to take the bipartition into account.

Thanks to Lemma 3.3, we can now bound a` − b`.

Lemma 3.4. a` − b` ≤ (2Ω− 1)n, where Ω ≈ 0.567 equals to W (1) of Lambert’s W function.

Proof. In expectation, a` =
∑n

i=1 α
(`)
i and b` =

∑n
i=1 β

(`)
i . The expected difference is

a` − b` =
n∑
i=1

α
(`)
i − β

(`)
i .

From Lemma 3.3 and another result of Dufossé et al. [38, Lemma 8], we have α(`)
i −β

(`)
i ≤ (2Ω−1)

and hence a` − b` ≤
∑n

i=1(2 · 0.567− 1) ≤ 0.134 · n .

56 CHAPTER 3. MATCHINGS IN UNDIRECTED GRAPHS

3.1.1.2 An upper bound on c

We now investigate c, the number of odd cycles that remain on a G1
out graph after Phase-1 of

KSR1.

Lemma 3.5. We have c ≤ n−a`−b`
3 .

Proof. After Phase-1, we have removed A` and B` from V . Therefore, the number of vertices
remaining for the second phase is n − a` − b`. The shortest odd cycle is of length 3 and so we
can derive the lemma by assuming that all vertices belong to such cycles.

We need a lower bound on a` + b` to bound c in Lemma 3.5. We start by bounding a` first.

Lemma 3.6. For random 1-out graphs with n ≥ 30 vertices, a` ≥ 0.361n.

Proof. As Ai ⊆ Ai+1, we have α
(`)
i ≥ α

(1)
i , hence a` ≥ a1. The probability of a vertex ui to be in

A1 is α(1)
i =

(
1− 1

n−1

)n−1
, since ui should not be chosen by any other vertex. For n ≥ 30, we

have 1
e ≥

(
1− 1

n−1

)n−1
≥ 0.361. This concludes the proof by the linearity of expectation.

We can use the result of the above lemma to bound b`.

Lemma 3.7. For random 1-out graphs with n ≥ 30 vertices, b` ≥ 0.303n.

Proof. We start again with b` ≥ b1, as Bi ⊆ Bi+1. By Equation (3.1),

b` ≥
∑
j

1− e−
∑
i sijα

(1)
i ,

and by using Lemma 3.6,

b` ≥
∑
j

1− e−0.361 ,

for n ≥ 30. This simplifies to the stated result.

The proofs used in obtaining the bounds in Corollary 3.2 needed to assume a random 1-out
graph only for lower bounding α(1)

i . We sum the two lower bounds from Lemmas 3.6 and 3.7 in
a corollary.

Corollary 3.2. a` + b` ≥ 0.664n for random 1-out graphs with n ≥ 30 vertices.

At this point, we have a bound on the number of matched vertices using Lemmas 3.2, 3.4, 3.5,
and Corollary 3.2 as n− a` + b` − n−a`−b`

3 ≥ 0.754n.

3.1.1.3 An improved bound on c

We now discuss how a different analysis and show a tighter bound for c. The notion of derange-
ments will prove useful in the analysis, and we remind the definition in here for convenience. A
permutation of 1, . . . , n in which no element stays in its original position is called derangement.
The total number of derangements of 1, . . . , n is denoted by !n.

We now consider the family of graphs in which all vertices have degree two. These graphs
consist of disjoint cycles, and we will refer to them as cyclic graphs. Let CM denote a random

3.1. ONE-OUT: THE MAIN HEURISTIC 57

graph from this family withM vertices. There are !M cyclic graphs withM vertices, as derange-
ments create cycles. The n− a` − b` vertices remaining after Phase-1 of KSR1 form a Cn−a`−b`
graph by the principle of deferred decisions [92, p. 9]. This is so, as the edge chosen by a vertex
u is incident on a remaining vertex, and u is chosen by exactly one of the remaining vertices.
We will find an upper bound on the expected number of odd cycles in a random Cn−a`−b` graph
and improve Lemma 3.5.

For a vertex ui ∈ CM , let hi be the length of the cycle containing it, and define a variable
Yi = 1

hi
if hi is odd and Yi = 0 otherwise. Then,

∑
ui∈CM Yi is the number of odd cycles in CM .

To see why, consider an odd cycle of length k and observe that each of its vertices contributes
with 1

k for counting the cycle. We now measure the expected value of Yi for a vertex ui.

Lemma 3.8. In a random cyclic graph with M vertices, Pr(hi = k) ≤ 1.04
M for any vertex ui

when k < M − 2, and Pr(hi = k) ≤ 1.365
M for k = M − 2.

Proof. We have the formula whose explanation follows:

Pr(hi = k) =

(
M−1
k−1

)
· (k − 1)!·!(M − k)

!M
.

We select a set of k − 1 vertices which will form a cycle of length k with ui. There are
(
M−1
k−1

)
different sets, and there are (k− 1)! possible cycles with the selected set. The remaining M − k
vertices must also lie in cycles; there are !(M − k) ways to achieve this. Furthermore, with M
vertices there are !M ways to create a union of disjoint cycles. Let us manipulate the formula
as

Pr(hi = k) =

(
M−1
k−1

)
· (k − 1)!·!(M − k)

!M

=
(M − 1)!·!(M − k)

!M · (M − k)!

=
1

M
· M !·!(M − k)

!M · (M − k)!
.

For M ≥ 5, we have
M !

!M
≤ 2.73. We now distinguish between three cases depending on the

value of M − k. If M − k ≥ 4,
(M − k)!

!(M − k)
≥ 2.64, and we see that

M !

!M

(M − k)!

!(M − k)
≤ 2.73

2.64 ≤ 1.04.

When M − k = 3, we have
3!

!3
= 3, and

M !

!M

(M − k)!

!(M − k)
≤ 2.73

3 ≤ 1 ≤ 1.04. When M − k = 2, we

have
2!

!2
= 2, and the upper bound is 2.73/2 = 1.365.

Lemma 3.9. In a random cyclic graph with M vertices, E[Yi] ≤
1.04

M
· log(M) +

0.1625

M
for a

vertex ui.

58 CHAPTER 3. MATCHINGS IN UNDIRECTED GRAPHS

Proof.

E[Yi] =
M∑

k=3,odd

Pr(hi = k) · 1

k

≤
M∑
k=1

Pr(hi = k) · 1

k

(by splitting 1.365/M for k = M − 2)

≤

(
M∑
k=1

1.04

M
· 1

k

)
+

(1.365− 1.04)

M
· 1

M − 2

≤ 1.04

M
·
M∑
k=1

1

k
+

0.1625

M

≤ 1.04

M
· log(M) +

0.1625

M
.

Lemma 3.10. The number of odd cycles in CM is less than or equal to d1.04 log(M)e.
Proof. By the linearity of expectation, we show the result by summing E[Yi] over all ui in
CM .

We plug in the number of vertices remaining after Phase-1 of KSR1 into the formula and obtain
the following corollary.

Corollary 3.3. The expected number of cycles remaining after the Phase-1 of KSR1 in random
1-out graphs is less than or equal to d1.04 log(n − a` − b`)e, which is also less than or equal to
d1.04 log(0.336n)e.

3.1.2 Two variants of One-Out

Here we summarize two related theoretical random bipartite graph models that we adapt to the
undirected case using similar algorithms. The presentation will be brief and without proofs; we
will present experiments in Section 3.2.1.

The random (1 + e−1)-out undirected graph model extends the 1-out model in the following
way. Initially it lets each vertex choose a random neighbor. Then, vertices which were not
selected by other vertices are allowed to select one more neighbor. The maximum cardinality of
a matching in the subgraph consisting of the identified edges can be computed as an approximate
matching in the original graph. This model is based on the original idea of M. Karoński and
Pittel [69] which we discused in Section 1.1. Recall that the initial claim about such subgraphs
having perfect matchings was recently disproved [68].

A model richer in edges is the random 2-out graph model [46], whose analogous for bipartite
graphs [71, 107] we examined in detail during the previous chapter. In this model, each vertex
chooses two of its neighbors. Contrary to the bipartite graph case, a specialized algorithm such
as 2outMC for finding a perfect matching in random 2-out undirected graphs is not known
even for the case where the host graph is complete. Note that 2outMC makes excessive use of
the bipartiteness of a graph as it alternates through the vertex disjoint RG and CG multigraphs.
Extending 2outMC for undirected graphs is thus not straightforward.

3.2. EXPERIMENTS 59

3.2 Experiments

To understand the effectiveness and efficiency of the proposed heuristics in practice, we report
the matching quality and various statistics that appeared in our analysis of the algorithms in
Section 3.1. Our focus in this chapter was on fast linear algorithms, hence we compared One-
Out only against KSR1.

For the experiments, we used three graph datasets: (1) the first set is generated with matrices
from SuiteSparse Matrix Collection [31]. We investigated all n× n matrices from the collection
with 50000 ≤ n ≤ 100000. For a matrix from this set, we removed the diagonal entries,
symmetrized the pattern of the resulting matrix, and discarded a matrix if it ended with empty
rows and columns. There were 115 matrices at the end which we used as the adjacency matrices
of the graphs. (2) The graphs in the second dataset belong to J, the family of synthetic graphs
discussed in Section 2.3.3 of the previous chapter. For this test, we have five graphs from J with
different hardness levels for KSR1. (3) The third set contains five large, real-life matrices from
the SuiteSparse collection for measuring the run time efficiency of the proposed heuristics.

3.2.1 On real-life graphs

We use MATLAB to measure the matching qualities based on the first two datasets. For each
matrix, five runs are performed with each randomized matching heuristic and the average is
reported. One, five and ten iterations are performed to evaluate the impact of the scaling
method.

Table 3.1 summarizes the quality of the matchings for all the experiments on the first dataset.
The matching quality is measured as the ratio of the matching cardinality to the maximum
cardinality matching in the original graph. The table presents statistics for matching qualities
of KSR1 performed on the original graphs (first row), 1-out graphs (the second set of rows),
Karoński-Pittel-like (1 + e−1)-out graphs (the third set of rows), and 2-out graphs (the last set
of rows).

For the U-Max rows, we construct k-out graphs by using uniform probabilities while selecting
the neighbors as proposed in the literature [46, 69]. We compute the cardinality of the maximum
matchings in these k-out graphs to the maximum matching cardinality on the original graphs
and report the statistics. The rows St-Max report the same statistics for the k-out graphs
constructed by using probabilities with t ∈ {1, 5, 10} scaling iterations. These statistics serve
as upper bounds on the matching qualities of the proposed St-KSR1 heuristics which execute
KSR1 on the k-out graphs obtained with t scaling iterations. As we discussed, the matchings
obtained by St-KSR1 heuristics are not maximal with respect to the original edgeset of the
graph. The proposed St-KSR1+ heuristics exploit this fact and apply another KSR1 phase on
the subgraph containing only the unmatched vertices to improve the quality of the matchings.
The table does not contain St-Max rows for 1-out graphs since KSR1 is an optimal algorithm
for these subgraphs.

As Table 3.1 shows, more scaling iterations increase the maximum matching cardinalities on
k-out graphs. Although this is much more clear when the worst-case graphs are considered, it
can also be observed for arithmetic and geometric means. Since U-Max is the no scaling case,
the impact of the first scaling iteration (S1-KSR1 vs U-Max) is significant. On the other hand,
the difference on the matching quality for S5-KSR1 and S10-KSR1 is minor. Hence, five scaling
iterations are deemed sufficient for the proposed heuristics in practice.

The heuristics St-KSR1 perform well for (1 + e−1)-out and 2-out graphs. With t ∈ {5, 10},

60 CHAPTER 3. MATCHINGS IN UNDIRECTED GRAPHS

Alg. Min Max Avg. GMean Med. StDev
KSR1 0.880 1.000 0.980 0.980 0.988 0.022

1-
ou

t

U-Max 0.168 1.000 0.846 0.837 0.858 0.091
S1-KSR1 0.479 1.000 0.869 0.866 0.863 0.059
S5-KSR1 0.839 1.000 0.885 0.884 0.865 0.044
S10-KSR1 0.858 1.000 0.889 0.888 0.866 0.045
S1-KSR1+ 0.836 1.000 0.951 0.950 0.953 0.043
S5-KSR1+ 0.865 1.000 0.958 0.957 0.968 0.036
S10-KSR1+ 0.888 1.000 0.961 0.961 0.971 0.033

(1
+
e−

1
)-
ou

t

U-Max 0.251 1.000 0.952 0.945 0.967 0.081
S1-Max 0.642 1.000 0.967 0.966 0.980 0.042
S5-Max 0.918 1.000 0.977 0.977 0.985 0.020
S10-Max 0.934 1.000 0.980 0.979 0.985 0.018
S1-KSR1 0.642 1.000 0.963 0.962 0.972 0.041
S5-KSR1 0.918 1.000 0.972 0.972 0.976 0.020
S10-KSR1 0.934 1.000 0.975 0.975 0.977 0.018
S1-KSR1+ 0.857 1.000 0.972 0.972 0.979 0.025
S5-KSR1+ 0.925 1.000 0.978 0.978 0.984 0.018
S10-KSR1+ 0.939 1.000 0.980 0.980 0.985 0.016

2-
ou

t

U-Max 0.254 1.000 0.972 0.966 0.996 0.079
S1-Max 0.652 1.000 0.987 0.986 0.999 0.036
S5-Max 0.952 1.000 0.995 0.995 0.999 0.009
S10-Max 0.968 1.000 0.996 0.996 1.000 0.007
S1-KSR1 0.651 1.000 0.974 0.974 0.981 0.035
S5-KSR1 0.945 1.000 0.982 0.982 0.984 0.013
S10-KSR1 0.947 1.000 0.984 0.983 0.984 0.012
S1-KSR1+ 0.860 1.000 0.980 0.979 0.984 0.020
S5-KSR1+ 0.950 1.000 0.984 0.984 0.987 0.012
S10-KSR1+ 0.952 1.000 0.986 0.986 0.987 0.011

Table 3.1 – For each matrix in the first dataset and each proposed heuristic, five runs are performed
the statistics are performed over the mean of these results; the minimum, maximum, arithmetic and
geometric averages, median and standard deviation are reported.

3.2. EXPERIMENTS 61

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 10 20 30 40 50 60 70 80 90 100 110

M
at

ch
in

g
Q

u
al

it
y

Experiments

KS
R1

ONEOUT: 5 iters (Max/KS
R1

)
ONEOUT: 5 iters (KS

R1
+)

(a) 1-out graphs

0.9
0.92

0.94

0.96

0.98

1

10 20 30 40 50 60 70 80 90 100 110

M
at

ch
in

g
Q

u
al

it
y

Experiments

KS
R1

TWOOUT: 5 iters (Max)
TWOOUT: 5 iters (KS

R1
)

TWOOUT: 5 iters (KS
R1

+)

0

(b) 2-out graphs

Figure 3.1 – The matching qualities of KSR1 on the original graph, S5-KSR1 and S5-KSR1+
on 1-out and 2-out graphs for all 115 real-life graphs of Section 3.2.1. We have sorted these
instances in increasing order of the quality of KSR1. The figures also contain the quality of the
maximum cardinality matchings in the generated 1-out and 2-out subgraphs.

62 CHAPTER 3. MATCHINGS IN UNDIRECTED GRAPHS

0	
0.2	
0.4	
0.6	
0.8	
1	

0%	 2%	 4%	 6%	 8%	 10%	

CDF	of	#oddCycles/n	

Figure 3.2 – The cumulative distribution of the ratio of number of odd cycles remaining after
Phase-1 of KSR1 in One-Out to the number of vertices in the graph for the real-life graphs of
Section 3.2.1.

their quality is almost on par with KSR1 on the original graph, and even better for 2-out graphs.
In addition, applying KSR1 on the subgraph of unmatched vertices to obtain a maximal matching
does not increase the matching quality much. Since this subgraph is small, the overhead of this
extra work is not significant. On the other hand, this extra step significantly improves the
matching quality for 1-out graphs as on average they obtain the lowest matching quality.

To better understand the practical performance of the proposed heuristics and the impact of
the additional KSR1 execution, we profile their performance by sorting their matching qualities
in increasing order for all 115 matrices. Figure 3.1(a) plots these profiles on 1-out and 2-out
graphs for the heuristics with five scaling iterations. As the first figure shows, five iterations are
sufficient to obtain 0.86 matching quality except for 1.7% of the 1-out experiments. The figure
also shows that the maximum matching cardinality in a random 1-out graph is worse than what
KSR1 can obtain on the original graph. The additional KSR1 in S5-KSR1+ closes almost all of
this gap and makes the matching qualities close to those of KSR1. On the contrary, for 2-out
graphs generated with five scaling iterations, finding a maximum matching cardinality in the
subgraph returns a larger cardinality than the matchings found by KSR1. There is however still
a gap between the best possible (red line) and what KSR1 can find (blue line) on 2-out graphs.
We believe that this gap can be targeted by specialized, efficient exact matching algorithms for
2-out graphs similar to how 2outMC operates on bipartite graphs.

There are 30 rank-deficient matrices without total support among the 115 matrices in the
first dataset. We observed that even for 1-out graphs, the worst-case quality for S5-KSR1 is
0.86 and the average is 0.93. Hence, the proposed approach also works well for rank-deficient
matrices/graphs in practice.

Since the number c of odd cycles at the end of Phase-1 of KSR1 on One-Out is a performance
measure, we investigate it. For each matrix, we compute the ratio c/n. We then plot the
cumulative distribution of these values in Figure 3.2. The ratio remains below 1% for all the
graphs in our dataset except one. For this graph the ratio increases to 8%. After examination,
we found that the returned matching in the 1-out subgraph is maximum for the host graph as
well (i.e., the number of odd components is also large in the original graph and unavoidable).

3.2.2 On a hard synthetic instance for KSR1

We compare KSR1 and One-Out on a family of synthetic graphs. This family extends the
synthetic family J from Section 2.3.3 of the previous chapter and whose adjacency matrix was
depicted in Figure 2.9. Recall from that section that the adjacency matrix of a graph in J

had a full block in the upper left part which impacted negatively the performance of KS-like
heuristics. In addition, the number of edges in the graphs of J were affected by a parameter t

3.3. CONCLUDING REMARKS 63

One-Out
KSR1 5 iters. 10 iters. 20 iters.

t quality error quality error quality error quality
2 0.96 7.54 0.99 0.68 0.99 0.22 1.00
8 0.78 8.52 0.97 0.78 0.99 0.23 0.99
32 0.68 6.65 0.81 1.09 0.99 0.26 0.99
128 0.63 3.32 0.53 1.89 0.90 0.33 0.98
512 0.63 1.24 0.55 1.17 0.59 0.61 0.86

Table 3.2 – Results for graphs corresponding to J family for which KS-like algorithms struggle.
The results are with n = 5000 and different t values. One-Out is executed with 5, 10, and 20
scaling iterations and scaling errors are also reported. Averages of five are reported for each cell.

which impacted negatively the performance of KSR1 as it increased.
The extension to undirected graphs is rather straightforward. We create a new adjacency

matrix B by using the one in Figure 2.9 and zeroing out any diagonal entries since they are
not allowed in undirected graphs. Then, by similar reasoning as in the bipartite case one can
see that as long as t increases the quality of KS-like heuristics drops as it becomes harder and
harder to apply the deterministic rules.

Table 3.2 shows that the quality of KSR1 drops to 0.63 as t increases. In comparison, One-
Out heuristic with five scaling iterations maintains a good quality for small t values. However,
a better scaling with more iterations (10 and 20 for t = 128 and t = 512, respectively) is required
to guarantee the desired matching quality—see the scaling error in the table.

3.2.3 On large-scale graphs

These experiments are performed on a machine running 64-bit CentOS 6.5, has 30 cores each of
which is an Intel Xeon CPU E7D4870 v2 core operating at 2.30 GHz. To choose five large-scale
matrices from the SuiteSparse Matrix collection, we first sorted the pattern-symmetric matrices
in the collection in decreasing order of their nonzero count. We then chose the five largest
matrices from different families to increase the variety of experiments. The details of these
matrices are given in Table 3.3. This table also contains the run times and matching qualities
of the original KSR1, and the proposed One-Out and Two-Out heuristics. The proposed
heuristics have five scaling iterations and also apply KSR1 at the end for ensuring maximality.

The run time of the proposed heuristics are analyzed in four stages in Table 3.3. The Scale
stage scales the matrix with five iterations, the k-out stage chooses the neighbors and constructs
the k-out subgraph, the KSR1 stage applies KSR1 on the k-out subgraph, and KSR1+ is the
stage for the additional KSR1 application at the end. The total time with these four stages
are also shown. The quality results are consistent with the experimental results obtained on
the first dataset. As the table shows, the proposed heuristics are faster than the original KSR1

on the input graph. For 1-out graphs, the proposed approach is 2.5–3.9 faster than KSR1 on
the original graph. The speedups are in between 1.5–2.6 for 2-out graphs with five iterations.
We also note that we did not include cost of randomization of the edges for KSR1 which would
further slow down its performance.

3.3 Concluding remarks

We proposed heuristics for approximating the maximum cardinality matchings on general undi-
rected graphs. The heuristics scale the adjacency matrix of a given graph, and then select a

64 CHAPTER 3. MATCHINGS IN UNDIRECTED GRAPHS

One-Out-S5-KSR1+ Two-Out-S5-KSR1+
KSR1 Execution time (seconds) Execution time (seconds)

Matrix |V | |E| Quality time Quality Scale 1-out KSR1 KSR1+ Total Quality 2-out KSR1 KSR1+ Total
cage15 5.2 94.0 1.00 5.82 0.93 0.67 0.85 0.65 0.05 2.21 0.99 1.48 1.78 0.01 3.94
dielFilterV3real 1.1 88.2 0.99 3.36 0.98 0.52 0.36 0.07 0.01 0.95 0.99 0.62 0.16 0.00 1.30
hollywood-2009 1.1 112.8 0.93 4.18 0.91 1.12 0.45 0.06 0.02 1.65 0.95 0.76 0.13 0.01 2.01
nlpkkt240 28.0 746.5 0.98 52.95 0.93 4.44 4.99 3.96 0.27 13.66 0.98 9.43 10.56 0.11 24.54
rgg_n_2_24_s0 16.8 265.1 0.98 19.49 0.93 2.33 2.33 2.08 0.17 6.91 0.98 4.01 6.70 0.11 13.15

Table 3.3 – Summary of the results with five large-scale matrices for original KSR1 and the proposed
One-Out and Two-Out heuristics which generate maximal matchings with extra KSR1 and five scaling
iterations. The scaling time for Two-Out is identical to the one for One-Out.

subgraph on which a maximum cardinality matching is obtained. The main algorithm One-
Out works by selecting a random 1-out subgraph, while two other variants enrich this 1-out
subgraph with additional edges. We showed that One-Out should yield an approximation of
the maximum cardinality matching that is very close to 0.866− log n/n. This bound was verified
through numerous experiments. Our theoretical analysis can be perceived as an analysis of the
well-known KSR1 heuristic on the random 1-out graph model. Our experiments suggest that
one of the heuristics has performance on par with KSR1 whilst being faster and more reliable.

A more rigorous treatment and elaboration of the variants described in Section 3.1.2 seems
worthwhile. Although KSR1 works well for the generated subgraphs of these two variants, we
would like to investigate further and consider whether it is possible to extend 2outMC for
undirected graphs. We are also interested in adapting TruncRW for undirected graphs. While
the underlying theory for TruncRW has not been shown to hold for d-regular undirected graphs,
we expect that its behavior should remain good. On a more practical note, we also plan to work
on the parallel implementations of the One-Out algorithm and its variants.

Chapter 4

Matchings in hypergraphs

In this chapter we investigate heuristics for the maximum cardinality matching problem in d-
partite, d-uniform hypergraphs, or Max-d-DM, which was defined in Chapter 1. The results
of this chapter were published in the proceedings of the SEA2 2019 conference [C1]. For con-
venience, we briefly recall some of the necessary definitions. A hypergraph H = (V,E) consists
of a finite set V and a collection E of subsets of V . The set V is called vertices, while the col-
lection E is called hyperedges. A hypergraph is called d-partite and d-uniform, if V =

⋃d
i=1 Vi

with disjoint Vis and every hyperedge contains a single vertex from each Vi. A matching in a
hypergraph is a set of disjoint hyperedges. Max-d-DM then asks for the matching with largest
cardinality.

Since Max-d-DM is NP-Complete [70], we propose five heuristics. The first two heuristics
are adaptations of the Greedy [41] and Karp–Sipser [72] heuristics which were discussed in
Chapter 2. We will use GreedyH and KarpSipserH for the proposed generalizations to
distinguish them from their bipartite counterparts. GreedyH traverses the hyperedge list
in random order and adds a hyperedge to the matching whenever possible. KarpSipserH
introduces certain rules to GreedyH to improve the cardinality of the returned matching. The
third heuristic KarpSipserHScaling is inspired by the scaling-based approaches that were
examined in Chapters 2–3. The fourth heuristic KarpSipserHMindegree can be seen as a
modification of the third one to simplify scaling and leads to reduced computation time. The last
heuristic BipartiteReduction recursively finds a matching for a reduced, (d− 1)-dimensional
problem and adapts it for d-dimensions using a weighted bipartite matching algorithm. We
perform experiments to evaluate the performance of these heuristics on special classes of random
hypergraphs as well as real-life data.

Another plausible way to tackle the problem is to create the line graph G for a given hyper-
graph H. The line graph is created by identifying each hyperedge of H with a vertex in G, and
by connecting two vertices of G with an edge, iff the corresponding hyperedges share a common
vertex in H. Then, successful heuristics for computing large independent sets in graphs, e.g.,
KaMIS [84], can be used to compute large matchings in hypergraphs. This is possible because
each matching in the hypergraph corresponds to an independent set in the line graph and vice
versa. This approach, although promising quality-wise, can be highly impractical. This is so,
since building G from H requires quadratic run time (in terms of the number of hyperedges)
and more importantly quadratic storage (again in terms of the number of hyperedges) in the
worst case. While this can be acceptable in some instances, in many cases it is not. We have
such instances in the experiments. Furthermore, due to the quadratic size of line graphs, even
heuristics with linear complexity for the independent set problem can be inefficient.

65

66 CHAPTER 4. MATCHINGS IN HYPERGRAPHS

The rest of the chapter is organized as follows. In Section 4.1 we disuss our heuristics for the
Max-d-DM problem and Section 4.2 presents the experimental results. Section 4.3 summarizes
the chapter and discusses some potential future work.

4.1 Heuristics for maximum d-dimensional matching

Recall from Chapter 1 that a matching which cannot be extended with additional hyperedges
is called maximal. We will propose heuristics for finding maximal matchings on d-partite, d-
uniform hypergraphs. In such hypergraphs any maximal matching is a d-approximate matching.
The bound is tight and can be verified for d = 3 as follows. Let H be a 3-partite 3 × 3 × 3
hypergraph with the following hyperedges e1 = (1, 1, 1), e2 = (2, 2, 2), e3 = (3, 3, 3) and e4 =
(1, 2, 3). The maximum matching is {e1, e2, e3} but the hyperedge {e4} alone forms a maximal
matching. The hypergraphs to show approximation tightness for higher values of d are defined
in a similar manner.

4.1.1 A Greedy heuristic for Max-d-DM

As discussed in Chapter 2 there exist two main variants of the Greedy algorithm for the graph
case. The first one iterates over the edges [41], while the other iterates over the vertices [104].
We adapt the first variant to our problem and call it GreedyH. It traverses the hyperedges
in random order and adds the current hyperedge to the matching whenever possible. Since
any maximal matching is possible as its output, GreedyH is a d-approximation heuristic. It
provides matchings of varying quality, depending upon the order in which the hyperedges are
processed.

4.1.2 KarpSipserH for Max-d-DM

A detailed description of the matching heuristic due to Karp and Sipser [72] can be found in
Chapter 2. We now propose its adaptation for d-partite, d-uniform hypergraphs. Similar to the
original version for graphs, the adaptation for hypergraphs iteratively adds a random hyperedge
to the matching, removes its d endpoints, as well as their hyperedges. However, the random
selection is not applied whenever hyperedges defined by the following lemmas appear.

Lemma 4.1. During the heuristic, if a hyperedge e with at least d−1 degree-1 endpoints appears,
there exists a maximum cardinality matching in the current hypergraph containing e.

Proof. Let H ′ be the current hypergraph at hand and e = (u1, . . . , ud) be a hyperedge in H ′

whose first d−1 endpoints are degree-1 vertices. Let M ′ be a maximum cardinality matching in
H ′. If e ∈M ′, we are done. Otherwise, assume that ud is the endpoint matched by a hyperedge
e′ ∈M ′ (note that if ud is not matched, then M ′ can be extended with e). Since ui, 1 ≤ i < d,
are not matched inM ′,M ′\{e′}∪{e} defines a valid maximum cardinality matching for H ′.

We note that it is not possible to relax the condition by using a hyperedge e with less than
d − 1 endpoints of degree-1; in M ′, two of e’s higher degree endpoints could be matched with
two different hyperedges, in which case the substitution as done in the proof of the lemma is not
valid.

Lemma 4.2. During the heuristic, let e = (u1, . . . , ud) and e′ = (u′1, . . . , u
′
d) be two hyperedges

sharing at least one endpoint where for an index set I ⊂ {1, . . . , d} of cardinality d − 1, the

4.1. HEURISTICS FOR MAXIMUM D-DIMENSIONAL MATCHING 67

vertices ui, u′i for all i ∈ I only touch e and/or e′. That is for each i ∈ I, either ui = u′i is a
degree-2 vertex or ui 6= u′i and they are both degree-1 vertices. For j /∈ I, uj and u′j are arbitrary
vertices. Then, in the current hypergraph, there exists a maximum cardinality matching having
either e or e′.

Proof. Let H ′ be the current hypergraph at hand and j /∈ I be the remaining part id. Let M ′

be a maximum cardinality matching in H ′. If either e ∈M ′ or e′ ∈M ′, we are done. Otherwise,
ui and u′i for all i ∈ I are unmatched by M ′. Furthermore, since M ′ is maximum, uj must be
matched byM ′ (otherwise,M ′ could be extended by e). Let e′′ ∈M ′ be the hyperedge matching
uj . Then M ′ \ {e′′} ∪ {e} defines a valid maximum cardinality matching for H ′.

Whenever such hyperedges appear, the rules below are applied in the same order:

• Rule-1: At any time during the heuristic, if a hyperedge e with at least d − 1 degree-1
endpoints appears, instead of a random edge, e is added to the matching and removed
from the hypergraph.

• Rule-2: Otherwise, if two hyperedges e and e′ as defined in Lemma 4.2 appear, they are
removed from the current hypergraph with the endpoints ui, u′i for all i ∈ I. Then, we
consider uj and u′j . If uj and u

′
j are distinct, they are merged to create a new vertex uju′j ,

whose hyperedge list is defined as the union of uj ’s and u′j ’s hyperedge lists. If uj and u′j
are identical, we rename uj as uju′j . After obtaining a maximal matching on the reduced
hypergraph, depending on the hyperedge matching uju

′
j , either e or e′ can be used to

obtain a larger matching in the current hypergraph.

When Rule-2 is applied, the two hyperedges identified in Lemma 4.2 are removed from the
hypergraph, and only the hyperedges containing uj and/or u′j have an update in their vertex
list. Since the original hypergraph is d-partite and d-uniform, that update is just a renaming
of a vertex in the concerned hyperedges (hence the resulting hypergraph remains d-partite and
d-uniform).

Although the extended rules usually lead to improved results in comparison to GreedyH,
KarpSipserH still adheres to the d-approximation bound of maximal matchings. To see this,
we can use the 3-dimensional toy example given as a worst-case for GreedyH at the beginning
of Section 4.1. There, KarpSipserH generates a maximum cardinality matching by applying
the first rule. However, when e5 = (2, 1, 3) and e6 = (3, 1, 3) are added to the example, neither
of the two rules can be applied. As before, in case e4 is randomly selected, it alone forms a
maximal matching.

4.1.3 KarpSipserHScaling for Max-d-DM

KarpSipserH can be modified for better decisions in case neither of the two rules hold. In our
variant, instead of a random selection, we first scale the adjacency tensor of the given hypergraph
H and obtain an approximate d-stochastic tensor T. We then augment the matching by adding
the hyperedge which corresponds to the largest value in T. The modified heuristic is summarized
in Algorithm 4.1.

Our inspiration comes from the d = 2 case and more specifically from the relation between
scaling and matching which was discussed in the preceding chapters. By using the scaling
method as a preprocessing step and choosing edges with a probability corresponding to the
scaled entry, the edges which are not included in a perfect matching become less likely to be

68 CHAPTER 4. MATCHINGS IN HYPERGRAPHS

Algorithm 4.1: KarpSipserHScaling: The scaling-based extension of Karp–Sipser
in hypergraphs

Input: A d-partite d-uniform n1 × · · · × nd hypergraph H = (V,E).
Output: A maximal matching M of H.
1: M ← ∅ {Initially M is empty}
2: S ← ∅ {Stack for the merges for Rule-2}
3: while H is not empty do
4: Remove the isolated vertices from H
5: if ∃e = (u1, . . . , ud) as in Rule-1 then
6: M ←M ∪ {e} {Add e to the matching}
7: Apply the reduction for Rule-1 on H
8: else if ∃e = (u1, . . . , ud), e′ = (u′1, . . . , u

′
d) and I as in Rule-2 then

9: Let j be the part index where j /∈ I

10: Apply the reduction for Rule-2 on H by introducing the vertex uju′j
11: E′ ← {(v1, . . . , uju′j , . . . , vd) : for all (v1, . . . , uj , . . . , vd) ∈ E}

{memorize the hyperedges of uj}
12: S.push(e, e′, uju′j , E′) {Store the current merge}
13: else
14: T← Scale(adj(H)) {Scale the adjacency tensor of H}
15: e← arg max(u1,...,ud) (Tu1,...,ud

) {Find the maximum entry in T}
16: M ←M ∪ {e} {Add e to the matching}
17: Remove all hyperedges of u1, . . . , ud from E
18: V ← V \ {u1, . . . , ud}
19: while S 6= ∅ do
20: (e, e′, uju

′
j , E

′)← S.pop() {Get the most recent merge}
21: if uju′j is not matched by M then
22: M ←M ∪ {e}
23: else
24: Let e′′ ∈M be the hyperedge matching uju′j
25: if e′′ ∈ E′ then
26: Replace uju′j in e′′ with u′j
27: M ←M ∪ {e′}
28: else
29: Replace uju′j in e′′ with uj
30: M ←M ∪ {e}

chosen. Unfortunately however for d ≥ 3, there is no equivalent of Birkhoff’s decomposition
theorem (see Section 1.3.2) as demonstrated by the following lemma.

Lemma 4.3. For d ≥ 3, there exist extreme points in the set of d-stochastic tensors which are
not permutation tensors.

Proof. We provide a 3-stochastic 2× 2× 2 tensor T3 with an inspiration from [26]. For conve-
nience, we depict T3 by two 2× 2 matrices which are the marginals of the 3rd dimension:

T3
:,:,1 =

(
1
2 0
0 1

2

)
and T3

:,:,2 =

(
0 1

2
1
2 0

)
.

The maximum matching cardinality in the hypergraph defined by the tensor is 1. Furthermore,
T3 cannot be written as a linear combination of permutation tensors. This particular extreme
point can be extended for higher d by setting Td

u1,u2,u3,...,u3 = T3
u1,u2,u3 for each nonzero element

4.1. HEURISTICS FOR MAXIMUM D-DIMENSIONAL MATCHING 69

T3
u1,u2,u3 and for higher n by setting Td

3,...,3 = · · · = Td
n,...,n = 1.

These extreme points can be used to generate other d-stochastic tensors as linear combinations.
Due to the lemma above, we do not have the theoretical foundation to imply that hyperedges
corresponding to the large entries in the scaled tensor must necessarily participate in a per-
fect matching. Nonetheless, the entries not in any perfect matching tend to become zero (not
guaranteed for all though). For the worst case example of KarpSipserH described above, the
scaling indeed helps the entries corresponding to e4, e5 and e6 to become zero.

Let S3 be the tensor obtained by swapping the 2nd and 3rd dimensions of T3. We can see

that the tensor
1

2
T3 +

1

2
S3 has a perfect matching, however, obtained by a linear combination of

two extreme points that are not permutation tensors. This shows that even if we select an entry
from an extreme point without a perfect matching, we do not necessarily reduce our chances of
obtaining a good matching as entries outside that extreme point also exist.

On a d-partite, d-uniform hypergraph H = (V,E), the Sinkhorn–Knopp algorithm used for
scaling operates in iterations, each of which requires O(|E| × d) time. In practice, we perform
only a few iterations (e.g., 10–20) like in the graph case. Since, we can match at most |V |/d
hyperedges, the overall run time cost associated with scaling is O(|V | × |E|). A straightforward
implementation of the second rule can take quadratic time in the worst case of a large number
of repetitive merges with a given vertex. In practice, more of a linear time behavior should be
observed for the second rule as was the case with graphs.

4.1.4 Hypergraph matching via pseudo scaling

In Algorithm 4.1, applying scaling at every step can be very costly. Here we propose an alterna-
tive idea inspired by the specifics of the Sinkhorn–Knopp algorithm to reduce the overall cost.
In particular, we mimic the first iteration of the Sinkhorn–Knopp algorithm and use the inverse
of the degree of a vertex as its scaling vector. This avoids 10–20 iterations of Sinkhorn–Knopp
and the O(|E|) cost for each. However, as can be understood, the scaling is not exact. With

this approach each hyperedge {i1, . . . , id} is associated with a value
1∏d

j=1 degij
. The selection

procedure then is the same as that of Algorithm 4.1, i.e., the edge with the maximum value
is added to the matching set. We refer to this algorithm as KarpSipserHMindegree, as it
selects a hyperedge based on a function of the degrees of the vertices.

4.1.5 Reduction to bipartite graph matching

A perfect matching in a d-partite, d-uniform hypergraph H remains perfect when projected on a
(d−1)-partite, (d−1)-uniform hypergraph obtained by removing one ofH’s dimensions. Aharoni
and Haxell [2] investigated matchability in (d − 1)-dimensional subhypergraphs to provide an
equivalent of Hall’s Theorem for d-partite hypergraphs. These observations lead us to propose a
heuristic called BipartiteReduction. This heuristic tackles the d-partite, d-uniform case by
recursively asking for matchings in (d− 1)-partite, (d− 1)-uniform hypergraphs and so on, until
d=2.

Let us start with the case where d = 3. Let G = (VG, EG) be the bipartite graph with
the vertex set VG = V1 ∪ V2 obtained by deleting V3 from a 3-partite, 3-regular hypergraph
H = (V,E) where V = V1 ∪ V2 ∪ V3. The edge (u, v) ∈ EG iff there exists a hyperedge

70 CHAPTER 4. MATCHINGS IN HYPERGRAPHS

(u, v, z) ∈ E. One can also assign a weight function w(·) to the edges during this step such as

w(u, v) = |{z : (u, v, z) ∈ E}| . (4.1)

In this case, a maximum weighted (product, sum, etc.) matching algorithm can be used to
obtain a matching MG on G. Otherwise if the edges are not weighted, one can simply use a
maximum cardinality matching algorithm. A second bipartite graph G′ = (VG′ , EG′) is then
created with VG′ = (V1 × V2) ∪ V3 and EG′ = {(uv, z) : (u, v) ∈ MG, (u, v, z) ∈ H}. Under this
construction, any matching in G′ corresponds to a valid matching in H. Furthermore, if the
weight function (4.1) is used, then the following proposition holds.

Proposition 4.1. Let w(MG) =
∑

(u,v)∈MG
w(u, v) be the size of the matching MG found in G.

Then G′ has w(MG) edges.

Proof. Consider a node u ∈ V1 and let it be matched with v ∈ V2 in MG. The number of edges
involving uv in G′ is |{z : (u, v, z) ∈ E}|. We see that this number is equivalent to w(u, v), and
the result follows by treating each matched pair in MG in this way.

Proposition 4.1 shows that by finding maximum weighted matching MG, we guarantee that the
largest possible number of edges will survive in G′.

The process is similar for d-dimensional matching. First, an ordering i1, i2, . . . , id of the
dimensions is defined. At the jth bipartite reduction step, the matching is found between the
dimension cluster i1i2 · · · ij and dimension ij+1 by similarly solving a bipartite matching instance
where the edge (u1 · · ·uj , v) exists iff vertices u1, . . . , uj were matched in previous steps and there
exists an edge (u1, . . . , uj , v, zj+2, . . . , zd) in H.

Unlike the previous heuristics, BipartiteReduction does not have any approximation
guarantee. We depict this with the following lemma.

Lemma 4.4. If algorithms for the maximum cardinality or the maximum weighted matching
(with the suggested edge weights (4.1)) problems are used, then BipartiteReduction has a
worst-case approximation ratio of Ω(n).

Proof. We discuss initially the case for d = 3 and assume n ≥ 5. Consider an n × n × n
hypergraph H with edges ei = (ui, vi, zi), e

′
i = (ui, v1+i mod n, z2) and e′′i = (ui, v1+i mod n, z3)

for i ∈ {1, . . . , n}. There is a perfect matching containing all edges e1, . . . , en.
Suppose we create G by projecting the 3rd dimension. Then, the edges in G are either of

the form hi = (ui, vi) with w(hi) = 1 or h′i = (ui, v1+i mod n) with w(h′i) = 2. Both {h1, . . . , hn}
and {h′1, . . . , h′n} form perfect matchings in G. If the weight function (4.1) is used, the algorithm
will necessarily find the perfect matching {h′1, . . . , h′n}. Otherwise, any matching algorithm can
arbitrarily return {h′1, . . . , h′n}.

Assuming that {h′1, . . . , h′n} is returned, the graph G′ will have 2n edges. The edges will
be either in the form hei = (uiv1+i mod n, z2) or he′i = (uiv1+i mod n, z3) for i ∈ {1, . . . , n}. As
seen, z2 and z3 are the only two vertices of the 3rd dimension which can be matched.

The algorithm will return a perfect matching, if we project a dimension other than the 3rd
one. To extend H such that the approximation ratio is Ω(n) whichever dimension is projected,
we need to introduce the following four additional set of edges: e(3)i = (u2, vi, z1+i mod n), e

(4)
i =

(u3, vi, z1+i mod n), e
(5)
i = (u1+i mod n, v2, zi) and e

(6)
i = (u1+i mod n, v3, zi) for i ∈ {1, . . . , n}

that mirror {e′1, . . . e′n} and {e′′1, . . . , e′′n}. In this case, the maximum matching in G′ will always
be 5, as again the edges in {e1, . . . , en} will be ignored.

4.2. EXPERIMENTS 71

The result holds for higher d by noting that H alongside its extension are valid 3-partite
hypergraphs that can occur after a matching for vertices in dimensions i1, . . . , id−2 has been
found.

4.1.6 Performing local search

A local search heuristic was proposed by Hurkens and Schrijver [64]. It starts from a feasible
maximal matching M and performs a series of swaps until it is no longer possible. In a swap, k
edges of M are replaced with at least k+ 1 new edges from E \M so that the cardinality of M
increases by at least one. These k edges from M can be replaced with at most d× k new edges.
Hence, these edges can be found by a polynomial algorithm enumerating all the possibilities.
The approximation guarantee improves with higher k values.

Local search algorithms are limited in practice due to their high time complexity. The
algorithm might have to examine all

(|M |
k

)
subsets ofM to find a feasible swap at each step. The

algorithm by Cygan [27] which achieves a
(
d+1+ε

3

)
-approximation is based on a different swap

scheme but is also not suited for large hypergraphs.

4.2 Experiments

To understand the relative performance of the proposed heuristics, we conducted a wide vari-
ety of experiments with both synthetic and real-life data. The experiments were performed on
a computer equipped with intel Core i7-7600 CPU and 16GB RAM. We compare the adapted
GreedyH and KarpSipserH heuristics with the proposed KarpSipserHScaling and Karp-
SipserHMindegree heuristics. For d = 3, we also consider LocalSearch [64], which replaces
one hyperedge from a maximal matchingM with at least two hyperedges from E \M to increase
the cardinality of M . We did not consider local search schemes for higher dimensions or with
better approximation ratios as they are computationally too expensive.

For each hypergraph, we perform ten runs of GreedyH and KarpSipserH with different
random decisions and take the maximum cardinality obtained. Since KarpSipserHScaling
or KarpSipserHMindegree do not pick hyperedges randomly, we run them only once. We
perform 20 steps of the scaling procedure in KarpSipserHScaling. We refer to quality of a
matching M in a hypergraph H as the ratio of M ’s cardinality to the size of the smallest vertex
partition of H.

4.2.1 On random hypergraphs

We perform experiments on two classes of d-partite, d-uniform random hypergraphs where each
part has n vertices. The first class contains random k-out hypergraphs, and the second one
contains sparse random hypergraphs.

4.2.1.1 Random k-out, d-partite, d-uniform hypergraphs

Here, we consider and experiment with the model of random k-out, d-partite, d-uniform hyper-
graphs described in Section 1.2.

We first investigate the existence of perfect matchings in random k-out, d-partite, d-uniform
hypergraphs. For this purpose, we implemented the linear program of d-dimensional matching
in the CPLEX solver [1]. We experimented in k-out hypergraphs with k ∈ {dd−3, dd−2, dd−1}
for d ∈ {2, . . . , 5} and n ∈ {10, 20, 30, 50}. For each (k, d, n) triple, we created five random

72 CHAPTER 4. MATCHINGS IN HYPERGRAPHS

k k
d dd−3 dd−2 dd−1 d dd−3 dd−2 dd−1

2 - 0.87 1.00 2 - 0.84 1.00
3 0.80 1.00 1.00 3 0.88 1.00 1.00

n = 10 4 1.00 1.00 1.00 n = 30 4 0.99 1.00 1.00
5 1.00 1.00 1.00 5 * 1.00 1.00
2 - 0.88 1.00 2 - 0.87 1.00
3 0.85 1.00 1.00 3 0.84 1.00 1.00

n = 20 4 1.00 1.00 1.00 n = 50 4 ∗ 1.00 1.00
5 1.00 1.00 1.00 5 * * *

Table 4.1 – The average maximum matching cardinalities of five random instances over n on
random k-out, d-partite, d-uniform hypergraphs for different k, d, and n. No runs for k = dd−3

for d = 2, and the problems marked with ∗ were not solved within 24 hours.

hypergraphs and computed their maximum cardinality matchings using CPLEX. For k = dd−3,
we encountered several hypergraphs with no perfect matching, especially for d = 3. The hyper-
graphs with k = dd−2 were also lacking a perfect matching for d = 2. However, all the hyper-
graphs we created with k = dd−1 had at least one. Based on these results, we experimentally
confirm Devlin and Kahn’s statement. We also conjecture that dd−1-out random hypergraphs
have perfect matchings almost surely. The average maximum matching cardinalities we obtained
in this experiment are given in Table 4.1. In this table, we do not have results for k = dd−3 for
d = 2, and the cases marked with ∗ were not solved within 24 hours.

We now compare the performance of the proposed heuristics on random k-out, d-partite,
d-uniform hypergraphs d ∈ {3, 6, 9} and n ∈ {1000, 10000}. We tested with k being equal to
powers of 2 for as long as k ≤ d log d. The results are summarized in Figure 4.1. For each
(k, d, n) triplet, we create ten random instances and present the average performance of the
heuristics on them. The x-axis in each figure denotes k, and the y-axis reports the matching
cardinality over n.

As seen, KarpSipserHScaling and KarpSipserHMindegree have the best performance,
comfortably beating the other alternatives. For d = 3, KarpSipserHScaling has better per-
formance than KarpSipserHMindegree, but when d > 3 we see that KarpSipserHMin-
degree has the best performance. KarpSipserH performs better than GreedyH. However,
their performances get closer as d increases. This is due to the fact that the conditions in
Lemmas 4.1 and 4.2 have more restrictions and are applied less frequently as d increases. As a
consequence, KarpSipserH mimics partly the behavior of GreedyH. BipartiteReduction
has worse performance than the others, and the gap in the performance grows as d increases.
This happens, since at each step, we impose more and more conditions on the edges involved
and there is no chance to recover from bad decisions.

4.2.1.2 Sparse random d-partite, d-uniform hypergraphs

Here, we consider a random d-partite, d-uniform hypergraph Hi is created with i×n hyperedges.
The parameters used for this experiment are i ∈ {1, 3, 5, 7}, n ∈ {4000, 8000}, and d ∈ {3, 6, 9}.
Each Hi is created by choosing the vertices of a hyperedge uniformly at random for each di-
mension. We do not allow duplicate hyperedges. Another random hypergraph Hi+M is then
obtained by planting a perfect matching to Hi. We again generate ten random instances for
each parameter setting. We do not present results for BipartiteReduction as it was always

4.2. EXPERIMENTS 73

2 4 8
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
n=1000

GREEDYH
KARPSIPSERH
KARPSIPSERHSCALING
KARPSIPSERHMINDEGREE
LOCALSEARCH
BIPARTITEREDUCTION

2 4 8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
n=10000

GREEDYH
KARPSIPSERH
KARPSIPSERHSCALING
KARPSIPSERHMINDEGREE
LOCALSEARCH
BIPARTITEREDUCTION

(a) d = 3, n = 1000 (left) and n = 10000 (right).

2 4 16
0.3

0.4

0.5

0.6

0.7

0.8

0.9
n=1000

GREEDYH
KARPSIPSERH
KARPSIPSERHSCALING
KARPSIPSERHMINDEGREE
BIPARTITEREDUCTION

2 4 16
0.3

0.4

0.5

0.6

0.7

0.8

0.9
n=10000

GREEDYH
KARPSIPSERH
KARPSIPSERHSCALING
KARPSIPSERHMINDEGREE
BIPARTITEREDUCTION

(b) d = 6, n = 1000 (left) and n = 10000 (right).

2 4 8 16 32
0.2

0.3

0.4

0.5

0.6

0.7

0.8
n=1000

GREEDYH
KARPSIPSERH
KARPSIPSERHSCALING
KARPSIPSERHMINDEGREE
BIPARTITEREDUCTION

2 4 8 16 32
0.2

0.3

0.4

0.5

0.6

0.7

0.8
n=10000

GREEDYH
KARPSIPSERH
KARPSIPSERHSCALING
KARPSIPSERHMINDEGREE
BIPARTITEREDUCTION

(c) d = 9, n = 1000 (left) and n = 10000 (right).

Figure 4.1 – The performance (i.e., cardinality over n) of the heuristics on k-out, d-partite, d-
uniform hypergraphs with n vertices at each part. The y-axis is the ratio of matching cardinality
to n whereas the x-axis is k. No LocalSearch for d = 6 and d = 9.

74 CHAPTER 4. MATCHINGS IN HYPERGRAPHS

Hi: Hypergraph Hi+M : Hypergraph + perfect matching
Local KarpSipserH Local KarpSipserH

GreedyH Search Default Scaling MinDegree GreedyH Search Default Scaling MinDegree
i 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000
1 0.43 0.42 0.47 0.47 0.49 0.48 0.49 0.48 0.49 0.48 0.75 0.75 0.93 0.93 1.00 1.00 1.00 1.00 1.00 1.00
3 0.63 0.63 0.71 0.71 0.73 0.72 0.76 0.76 0.78 0.77 0.72 0.71 0.82 0.81 0.81 0.81 0.99 0.99 0.92 0.92
5 0.70 0.70 0.80 0.80 0.78 0.78 0.86 0.86 0.88 0.88 0.75 0.74 0.84 0.84 0.82 0.82 0.94 0.94 0.92 0.92
7 0.75 0.75 0.84 0.84 0.81 0.81 0.94 0.94 0.93 0.93 0.77 0.77 0.87 0.87 0.83 0.83 0.96 0.96 0.94 0.94

(a) d = 3, without (left) and with (right) the planted matching.

Hi: Hypergraph Hi+M : Hypergraph + perfect matching
KarpSipserH KarpSipserH

GreedyH Default Scaling MinDegree GreedyH Default Scaling MinDegree
i 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000
1 0.31 0.31 0.35 0.35 0.35 0.35 0.36 0.37 0.62 0.61 0.90 0.89 1.00 1.00 1.00 1.00
3 0.43 0.43 0.47 0.47 0.48 0.48 0.54 0.54 0.51 0.50 0.56 0.55 1.00 1.00 0.99 0.99
5 0.48 0.48 0.52 0.52 0.54 0.54 0.61 0.61 0.52 0.52 0.56 0.55 1.00 1.00 0.97 0.97
7 0.52 0.52 0.55 0.55 0.59 0.59 0.66 0.66 0.54 0.54 0.57 0.57 0.84 0.80 0.71 0.70

(b) d = 6, without (left) and with (right) the planted matching.

Hi: Hypergraph Hi+M : Hypergraph + perfect matching
KarpSipserH KarpSipserH

GreedyH Default Scaling MinDegree GreedyH Default Scaling MinDegree
i 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000 4000 8000
1 0.25 0.24 0.27 0.27 0.27 0.27 0.30 0.30 0.56 0.55 0.80 0.79 1.00 1.00 1.00 1.00
3 0.34 0.33 0.36 0.36 0.36 0.36 0.43 0.43 0.40 0.40 0.44 0.44 1.00 1.00 0.99 1.00
5 0.38 0.37 0.40 0.40 0.41 0.41 0.48 0.48 0.41 0.40 0.43 0.43 1.00 1.00 0.99 0.99
7 0.40 0.40 0.42 0.42 0.44 0.44 0.51 0.51 0.42 0.42 0.44 0.44 1.00 1.00 0.97 0.96

(c) d = 9, without (left) and with (right) the planted matching.

Figure 4.2 – Performance (i.e., cardinality over n) comparisons on d-partite, d-uniform hyper-
graphs with n = {4000, 8000}. Hi contains i × n random hyperedges, and Hi+M contains an
additional perfect matching. . Default refers to KarpSipserH from Section 4.1.2.

worse than the others, as before.
The average quality of different heuristics on these instances is shown in Figure 4.2. These

experiments confirm that KarpSipserH performs consistently better than GreedyH. Fur-
thermore, KarpSipserHScaling performs significantly better than KarpSipserH. Karp-
SipserHScaling works even better than the local search heuristic, and it is the only heuristic
that is capable of finding planted perfect matchings for a significant number of the runs. In par-
ticular when d > 3, it finds a perfect matching on Hi+M ’s in all cases except for when d = 6 and
i = 7. For d = 3, it finds a perfect matching only when i = 1 and attains a near perfect matching
when i = 3. Interestingly KarpSipserHMindegree outperforms KarpSipserHScaling on
His but is dominated on Hi+M s, where it is the second best performing heuristic.

4.2.2 On synthetic hypergraphs

Here, we evaluate the use of scaling and the importance of Rule-1 and Rule-2 in two different
families of hypergraphs. These hypergraphs generalize the two synthetic families of graphs I

and J seen in Chapter 2.

4.2. EXPERIMENTS 75

R1

R2

C1 C2

t

t

Figure 4.3 – AJ: Adjacency matrix representation for the synthetic family J.

Local KarpSipserH
t GreedyH Search Default Scaling Mindegree
2 0.53 0.99 0.53 1.00 1.00
4 0.53 0.99 0.53 1.00 1.00
8 0.54 0.99 0.55 1.00 1.00
16 0.55 0.99 0.56 1.00 1.00
32 0.59 0.99 0.59 1.00 1.00

Table 4.2 – Matching quality of the proposed heuristics on 3-partite, 3-uniform hypergraphs
corresponding to TJ with n = 300 vertices in each part. Default refers to KarpSipserH from
Section 4.1.2.

4.2.2.1 Scaling vs no scaling

To evaluate and emphasize the contribution of scaling better, we compare the performance of
the heuristics on a particular family of d-partite, d-uniform hypergraphs where their bipartite
counterpart J was used in Chapter 2. Let AJ be an n × n matrix described in accordance
with the synthetic family J of Section 2.3.3 and Figure 2.9 and shown again in Figure 4.3 for
convenience. Recall that as the parameter t grew larger, Karp–Sipser had trouble applying
deterministic rules and its quality dropped. To adapt this family to hypergraphs/tensors, we
generate a 3-dimensional tensor TJ such that the nonzero pattern of each marginal of the 3rd
dimension is identical to that of AJ, i.e., TJ(:, :, i) = AJ for i ≤ n.

Table 4.2 shows the performance of the heuristics (i.e., matching cardinality normalized with
n) for 3-dimensional tensors with n = 300 and t ∈ {2, 4, 8, 16, 32}. The use of scaling indeed
reduces the influence of the misleading hyperedges in the dense block R1×C1, and the proposed
KarpSipserHScaling heuristic always finds the perfect matching as does KarpSipserHMin-
degree. However, both GreedyH and KarpSipserH perform significantly worse. Further-
more, LocalSearch returns a 0.99-approximation in every case because it ends up in a local
optima.

4.2.2.2 Rule-1 vs Rule-2

We finish the discussion on the synthetic data by focusing on KarpSipserH.
We present a family of hypergraphs to demonstrate that, similar to the graph case, Rule-2

can lead to better performance than using Rule-1 only. This family extends the family I from
Section 2.3.3. We use KarpSipserHR1 to refer to KarpSipserH without Rule-2.

As before, we start from the bipartite case. Let AI be a n × n matrix described according
to the description of family I. Recall that the adjacency matrix of graphs from the I family
had an upper triangular matrix and two additional nonzero entries (2, 1) and (n, n-1). To
extend the graph of AI to a hypergraph HI, we proceed as follows. Let TI be a d-dimensional
n × · · · × n tensor which will represent the adjacency tensor representation of HI. We set

76 CHAPTER 4. MATCHINGS IN HYPERGRAPHS

d
3 6

n quality r/n quality r/n

1000 0.85 0.47 0.80 0.31
2000 0.87 0.56 0.80 0.30
4000 0.75 0.17 0.84 0.45

Table 4.3 – Quality of matching and the number r of the applications of Rule-1 over n in
KarpSipserHR1, for hypergraphs corresponding to TI. KarpSipserH obtains perfect match-
ings.

(TI)i,j,...,j = 1 for 1 ≤ i ≤ j ≤ n and (TI)1,2,...,2 = (TI)n,n−1,...,n−1 = 1. By similar reasoning
as in the bipartite case, we see that KarpSipserH with both reduction rules will obtain a
perfect matching by applying Rule-2 and merging vertices 1, 2 of the 3rd dimension as a first
step whereas KarpSipserHR1 will struggle. We give some results in Table 4.3 that show the
difference between the two. We test for n ∈ {1000, 2000, 4000} and d ∈ {3, 6}, and show the
quality of KarpSipserHR1 and the number of times that Rule-1 is applied over n. We present
the best result over 10 runs. As seen in Table 4.3, KarpSipserHR1 obtains matchings that
are about 13–25% worse than KarpSipserH. Furthermore, the larger the number of Rule-1
applications is, the higher the quality is.

4.2.3 On real-life hypergraphs

We also evaluate the performance of the proposed heuristics on some real-life tensors selected
from the FROSTT library [102]. The descriptions of the tensors are given in Table 4.4. For
nips and uber, a dimension of size 17 and 24 is dropped respectively since they restrict the
size of maximum cardinality matching. As described before, a d-partite, d-uniform hypergraph
is obtained from a d-dimensional tensor by keeping a vertex for each dimension index, and a
hyperedge for each nonzero. Unlike the previous experiments, the parts of the hypergraphs
obtained from real-life tensors in Table 4.4 do not have an equal number of vertices. In this
case, the scaling algorithm works among the same lines as it does on rectangular matrices. Let
ni = |Vi| be the cardinality at ith dimension and nmax = max1≤i≤d ni be the maximum one. By
slightly modifying Sinkhorn–Knopp, for each iteration of KarpSipserHScaling, we scale the
tensor such that the marginals in dimension i sum up to nmax/ni instead of one.

The results in Table 4.4 resemble those from previous sections; KarpSipserHScaling
has the best performance and is slightly superior to KarpSipserHMindegree. GreedyH
and KarpSipserH are close to each other and when it is feasible, LocalSearch is better
than them. In addition we see that in these instances BipartiteReduction exhibits a good
performance: its performance is at least as good as KarpSipserHScaling for the first three
instances, but about 10% worse for the last one.

4.2.4 Comparison with an independent set solver

We compare KarpSipserHScaling and KarpSipserHMindegree with the idea of reducing
Max-d-DM to the problem of finding an independent set in the line graph of the given hyper-
graph. We show that this transformation can lead to good results, but is restricted because line
graphs can require too much space.

4.3. CONCLUDING REMARKS 77

Local KarpSipserH Bipartite
Tensor d Dimensions Hyperedges GreedyH Search Default Mindegree Scaling Reduction
Uber [102] 3 183× 1140× 1717 1.11 183 183 183 183 183 183
nips [53] 3 2482× 2862× 14036 3.10 1847 1991 1839 2005 2007 2007
Nell-2 [19] 3 12092×9184×28818 76.88 3913 4987 3935 5100 5154 5175
Enron [100] 4 6, 066 × 5699 ×

244268× 1176
54.20 875 - 875 988 1001 898

Table 4.4 – Four real-life tensors and the matching cardinality found by the proposed heuristics
on the corresponding hypergraphs. The number of hyperedges is in the order of millions. No
result for LocalSearch for Enron, as it is four dimensional. Default refers to KarpSipserH
from Section 4.1.2.

KaMIS KarpSipserH
Line graph Round 1 Output GreedyH Scaling Mindegree

Hypergraph gen. time quality time quality time quality quality time quality time
8-out, n = 1000, d = 3 10 0.98 80 0.99 600 0.86 0.98 1 0.98 1
8-out, n = 10000, d = 3 112 0.98 507 0.99 600 0.86 0.98 197 0.98 1
8-out, n = 1000, d = 9 298 0.67 798 0.69 802 0.55 0.62 2 0.67 1
H3, n = 8000, d = 3 1 0.77 16 0.81 602 0.63 0.76 5 0.77 1
H3+M , n = 8000, d = 3 2 0.89 25 1.00 430 0.70 1.00 11 0.91 1

Table 4.5 – Run time (in seconds) and performance (i.e., cardinality over n) comparisons be-
tween KaMIS, GreedyH,KarpSipserHScaling, and KarpSipserHMindegree. The time
required to create the line graphs should be added to KaMIS’s overall time.

We use KaMIS [84] to find independent sets in graphs. KaMIS uses a plethora of reductions
and a genetic algorithm in order to return high cardinality independent sets. We use the de-
fault settings of KaMIS (where execution time is limited to 600 seconds) and generate the line
graphs with efficient sparse matrix–matrix multiplication routines. We run KaMIS, GreedyH,
KarpSipserHScaling, and KarpSipserHMindegree on a few hypergraphs from previous
tests. The results are summarized in Table 4.5. The run time of GreedyH was less than one
second in all instances. KaMIS operates in rounds, and we give the quality and the run time of
the first round and the final output. We note that KaMIS considers the time-limit only after
the first round has been completed. As can be seen, while the quality of KaMIS is always good
and in most cases superior to KarpSipserHScaling and KarpSipserHMindegree, it is also
significantly slower (its principle is to deliver high quality results). We also observe that the
pseudo scaling of KarpSipserHMindegree indeed helps to reduce the run time compared to
KarpSipserHScaling.

The line graphs of the real-life instances from Table 4.4 are too large to be handled. We
estimate using known techniques [24] the number of edges in these graphs to range from 1.5×1010

to 4.7 × 1013. The memory needed ranges from 126GB to 380TB if edges are stored twice
(assuming 4 bytes per edge).

4.3 Concluding remarks

We proposed heuristics for the Max-d-DM problem by generalizing existing heuristics for the
maximum cardinality matching in bipartite graphs. The experimental analysis on various hy-

78 CHAPTER 4. MATCHINGS IN HYPERGRAPHS

pergraphs/tensors showed the effectiveness and efficiency of the proposed heuristics. As future
work, we plan to investigate the stated conjecture that dd−1-out random hypergraphs have per-
fect matchings almost always, and further analyze the theoretical guarantees of the proposed
algorithms. Another interesting direction for future work is examining the weighted version of
the Max-d-DM problem. In this version, the hyperedges have weights, and one looks for a
matching whose hyperedges have the maximum sum of weights.

Chapter 5

Counting the number of perfect matchings in
graphs

In this chapter, we investigate efficient randomized methods for approximating the number
of perfect matchings in bipartite graphs and general undirected graphs. The results of this
chapter are published in the Discrete Applied Mathematics journal [J2]. For convenience, we
recall some basic definitions from Chapter 1. The permanent of an n × n square matrix A
is defined as Per(A) =

∑
σ

∏
i ai,σ(i), where the summation runs over all permutations σ of

1, . . . , n. The value of the permanent in the adjacency matrix AG of a bipartite graph G is
equal to the number of perfect matchings in G. A similar function to count the number of
perfect matchings in general undirected graphs from their adjacency matrix representation can
also be defined. Calculating the value of the permanent exactly is #P-Complete [106], where #P
is the complexity class containing the counting problems that are associated with the decision
problems from the complexity class NP.

Rasmussen [99] proposed a practically efficient way of estimating the permanent of a 0-1
matrix, or the number of perfect matchings in bipartite graphs. This initial work was followed
by a series of others [8, 48, 49]. Rasmussen’s iterative algorithm chooses uniformly and at random
a nonzero from the first row in the matrix at hand and discards the first row and the column
of the chosen nonzero. This step is repeated until the whole matrix is consumed or there is an
empty row remaining. In the former case, an estimate of a nonzero value is returned which is
based on the number of nonzeros of the first rows at each step; in the latter case, zero is returned
as an estimate.

Similar to the previous chapters, our main tool will be a sparse matrix scaling algorithm. We
apply matrix scaling on the adjacency matrix of the given graph (bipartite or general) to assign
probabilities on the edges and base random choices on these probabilities. More specifically,
we investigate an improvement of Rasmussen’s original approach in which edges are selected
non-uniformly based on a matrix scaling method, which scales a matrix to be doubly stochastic.
We provide an analysis of the stated approach by meticulously tracking the steps taken. The
analysis upper bounds the number of repetitions we must run to have quality guarantees on the
estimated permanent. To the best of our knowledge, for scaling-based permanent estimation,
this work presents the most thorough analysis in the literature with computable bounds. These
ideas are also extended to counting the number of perfect matchings in graphs.

On the practical side, we present an extensive set of experiments on a variety of random,
constructed, and real-life instances, some with known and others with unknown number of
perfect matchings. Our experiments show that the scaling-based selection mechanism exhibits a

79

80 CHAPTER 5. COUNTING THE NUMBER OF PERFECT MATCHINGS IN GRAPHS

significantly better performance on all instances compared to the known methods. Furthermore,
the practical performance of our algorithm seems to be even superior to the expected performance
derived from our theoretical analysis, which implies that there exist further avenues to explore.

The rest of the chapter is organized as follows. Section 5.1 provides some theoretical back-
ground, and Section 5.2 discusses the related work in detail. Section 5.3 introduces the proposed
approach and presents the pseudocode of the main algorithm for bipartite graphs. The exten-
sion to the general, undirected graphs case is presented in Section 5.4. Section 5.5 presents the
experimental results and a comparison with existing algorithms. Section 5.6 summarizes the
chapter and discusses some potential future work.

5.1 Theoretical background

Consider a certain quantity P that we want to measure. In our case, P is the permanent or
the number of perfect matchings. Assume that we access to an unbiased estimator X such that
E[X] = P . A technique to measure P based on X is achieved by combining the output of N
copies of X. More specifically, assuming Xi denotes the outcome of the ith estimator, X ′ =∑N

i=1
Xi
N is the combined estimate for P . X ′ then achieves an (ε, δ)-approximation whenever

Pr(|X ′ − P | ≤ εP) ≥ 1 − δ. In general, an (ε, δ)-approximation can be achieved by simulating

O

(
E[X2]

E[X]2
· 1

ε2
· log(1δ)

)
copies of X. For this reason, the fraction

E[X2]

E[X]2
is called the critical

ratio, as it is the key factor in determining whether the approximation scheme runs in polynomial
time or not.

If an n× n nonnegative matrix A is scalable to a doubly stochastic matrix S = RAC with
positive diagonal matrices R and C then the function

gA(x,y) = xTAy −
n∑
i=1

lnxi −
n∑
j=1

ln yj (5.1)

attains its minimum value for positive xi and yi at x = diag(R) and y = diag(C) [67, Proposition
2]. In particular, for an n×n 0-1 matrix A, we have n ≤ gA(x,y) ≤ n+n lnn, where the lower
bound is met by a permutation matrix, and the upper bound is met by the matrix of ones; in
both cases xTAy = n.

5.2 Related work

Rasmussen [99] proposed a practically efficient randomized approach for estimating the perma-
nent of a 0-1 matrix, or for counting perfect matchings in bipartite graphs, by randomly sampling
one of the permutations in the matrix. Rasmussen’s algorithm works along the following lines.
It visits the first row of a matrix and among the nonzeros, chooses one with uniform probability.
The first row and the column of the selected nonzero are then removed from the matrix and a
smaller matrix is obtained. This process is repeated until either there exists an empty row, in
which case zero is returned; or all rows of the original matrix were able to choose a column, in
which case a nonzero estimator of the permanent XRa is returned. This estimator is the product
of the number of nonzeros of the first rows for which the random selections are done. While in
practice Rasmussen’s estimator returns zero in most of the cases, it is an unbiased estimator,
and its expected value is equal to the permanent. This is true because for each permutation in

5.3. THE PROPOSED ALGORITHM AND ITS ANALYSIS 81

the matrix the returned value of XRa is equal to the inverse of the probability of its selection.
Rasmussen additionally showed that E[X2

Ra] ≤ Per(A)2n!, for an n × n matrix A, although
one can reduce Per(A)2 to Per(A). As stated in Section 5.1, the value of E[X2

Ra] is important,
since it expresses the number of samples required to ensure approximation guarantees. Our
estimator XA works along the same lines. It also generates a perfect matching step-by-step, but
the uniform selection of columns is replaced with a more effective weighted sampling mechanism.
The weights used in sampling are obtained with a numerical algorithm used for scaling matrices
to a doubly stochastic form.

Beichl and Sullivan [8] also investigated the same mechanism as us and performed some
preliminary analysis. Their bound for E[X2

A] uses a notation which denotes the average value
of the selection probabilities of all perfect matchings. Their analysis is valuable in that it shows
that the scaling helps, but it does not yield computable bounds. We follow up on their work by
providing some new theoretical insights as well as a more detailed experimental analysis. More
specifically, we provide an analysis (with the main result in Theorem 5.2) which yields efficiently
computable bounds on E[X2

A] depending on the scaling factors R and C for A.
Fürer and Kasiviswanathan [49] discussed three randomized algorithms, called Simple,

REP, and GreedyMtc for estimating the number of perfect matchings in general undirected
graphs. Simple is a direct adaptation of Rasmussen’s algorithm for graphs, and selects neigh-
bors with uniform probability. REP extends Simple such that at certain points during the
execution, it creates a number of copies where each copy selects its own neighbor, and the pro-
cedure continues in a similar way in each copy. The results of each copy are later combined to
yield a single result. They have also discussed a similar algorithm for the bipartite case [48].
GreedyMtc attempts to assign probabilities in a better way by selecting each node with proba-
bility inversely proportional to its degree minus one. Similarly, GreedyMtc’s returned estimate
for the number of matchings is equal to the inverse of the product of the probabilities of the
selected vertices at each step. Fürer and Kasiviswanathan concluded that Simple is easy to
analyze but has high worst case bound; GreedyMtc looks good on many graphs but is difficult
to analyze; and REP has the best theoretical guarantees for its performance on random (Erdös-
Renyi) graphs, although its worst-case bounds on other graphs can be high. Our scaling-based
can be seen as a more sophisticated variant of GreedyMtc. If GreedyMtc were to choose a
random neighbor with probability equal to the degree of the neighbor, then it would have been
equivalent to applying a single step of Sinkhorn–Knopp. However, the analysis of our variant
is simpler and reveals more insights thanks to the global minimization properties of the doubly
stochastic scaling, see the function (5.1) associated with doubly stochastic scaling.

5.3 The proposed algorithm and its analysis

Before discussing the estScalingPerm algorithm, we first motivate the use of scaling in esti-
mating the value of the permanent. We remind from Section 1.3 that Aij denotes the submatrix
of matrix A that is obtained by deleting the ith row and the jth column. The following lemma
highlights the close connection of the scaling factors and the permanents of a matrix and its
submatrices.

Lemma 5.1. Let A be an n × n 0-1 matrix with total support. Let R and C be the diagonal

82 CHAPTER 5. COUNTING THE NUMBER OF PERFECT MATCHINGS IN GRAPHS

scaling matrices such that S = RAC is a double stochastic matrix Then,

Per(S) = Per(A) ·
n∏
i=1

ri · ci.

In addition,

ri · cj =
Per(Aij)

Per(A)
· Per(S)

Per(Sij)
.

Proof. Since R and C are diagonal matrices, we have Per(S) = Per(A)
∏
ri
∏
cj . The equality

Per(Sij) = Per(Aij)
∏
k 6=i rk

∏
6̀=j c` holds, as all diagonal products in Sij have the same value∏

k 6=i rk
∏
6̀=j c`. Dividing the two equalities side by side yields the second result.

5.3.1 The algorithm

The proposed algorithm to estimate the permanent is shown in Algorithm 5.1. The algorithm
takes an n×n, 0-1 matrix A with a nonzero permanent and produces a random variable denoted
as XA as well as a perfect matching (this is for the analysis). Initially XA is equal to one. The
algorithm proceeds in n steps. At every step, the algorithm adds a nonzero entry to a matching,
thereby obtaining a perfect matching at the end. At step i, a nonzero entry in the ith row of A is
chosen among those columns A which have not been matched yet. The nonzero entry chosen at
row i defines the matched column. Since the ith row is the first row at step i, we use σ(i)1 to denote
the column chosen for i, and A(i) to denote the remaining matrix. The nonzeros are selected
according to the values of the entries in a doubly stochastically scaled version of the remaining
matrix. The random variable XA is multiplied by the reciprocal of the value of the chosen
nonzero. For the algorithm to work, we discard the nonzeros in A(i) that cannot be put into a
perfect matching. This is achieved by applying the Dulmage–Mendelsohn [40, 97] decomposition,
and filtering out the entries that fall into the off-diagonal blocks in a fine decomposition [97].

We first comment on the run time complexity of the algorithm. There are n steps, and
each step requires computing a Dulmage–Mendelsohn decomposition of a matrix, and scaling a
matrix. This can be achieved by O(m

√
n) time on an n×n matrix with m nonzeros [97]. There

are different algorithms for scaling; see the survey by Idel [65], and more recent papers [3, 21, 25].
The most recent methods based on convex optimization techniques [3, 25] have the smallest run
time complexity Õ(mn+n7/3) and Õ(m3/2)—where the terms involving the deviation from the
required row/column sums and log n are discarded. The Sinkhorn–Knopp algorithm, which is
the easiest to implement, has been shown to have O(n

2 lnn
ε2

) iterations, each iteration costing
O(m) time where ε is the allowable deviation from one. Other easy to implement variants are
given elsewhere [79, 80]. To the best of our knowledge, these algorithms are not yet shown to
operate in fully polynomial time–there are results using the second singular value of the final
matrix; and there is no run time analysis with respect to ε. As verified by our experiments in
the previous chapters, Sinkhorn–Knopp kind of algorithms work well for scaling 0-1 matrices for
practical purposes; usually, a few iterations suffice to obtain practically well behaving algorithms.
In summary, the worst case time complexity of Algorithm 5.1 is Õ(n(

√
nm + mn2 lnn)) when

the Sinkhorn–Knopp algorithm is used for scaling.
The algorithm identifies a perfect matching at the end. Since the scaling factors depend on

the identified perfect matching, we use R(σ,i) and C(σ,i) to denote the scaling matrices at the
ith step of the algorithm, where the random perfect matching σ is returned. Recall that σ(i)1

denotes the column chosen at the ith step. Note that the size of the scaling matrices reduces by

5.3. THE PROPOSED ALGORITHM AND ITS ANALYSIS 83

Algorithm 5.1: estScalingPerm: Permanent estimation
Input: an n× n, 0-1 matrix A.
Output: Permanent estimate XA; σ a perfect matching, where the ith entry shows the

column chosen for the ith row.
1: XA ← 1
2: A(1) ← A
3: for i = 1 to n do
4: Filter out those entries of A(i) that cannot be put into a perfect matching
5: [R(σ,i),C(σ,i)]← Scale(A(i))
6: Pick a random nonzero column j ∈ A(i)(1, :) by using the probability density function

pj =
s1,j

Σk∈A(i)(1,:)s1,k
for all nonzeros a(i)1,j

where st,k = r
(σ,i)
t · c(σ,i)k is the corresponding entry in the scaled matrix

S = R(σ,i)A(i)C(σ,i)

7: XA ← XA/pj

8: A(i+1) ← A
(i)
1j {delete the first row and the jth column of A(i)}

9: σ(i)← j{assuming the original numbering}

one at each step, and that the first entry r(σ,i)1 of R(σ,i) is the scaling factor associated with the
first row of A(i). With this notation, we can write

XA =
1∏n

i=1 r
(σ,i)
1 · c(σ,i)

σ
(i)
1

. (5.2)

5.3.2 The analysis

Here we give theoretical properties of the proposed algorithm. We start by showing that it
obtains an unbiased estimator.

Theorem 5.1. Let XA be a random variable returned by Algorithm 5.1 for the estimate of the
permanent of an n× n, 0–1 matrix A. Then E[XA] = Per(A).

Proof. We prove the theorem using induction. For the base case where n = 1, the argument
trivially holds. As the inductive hypothesis, assume that the argument holds for (n−1)×(n−1)
matrices. Now let us consider an n× n matrix A.

E[XA] =
∑

j:a1,j 6=0

pj ·
1

pj
· E[XA1j]

=
∑

j:a1,j 6=0

E[XA1j]

=
∑

j:a1,j 6=0

Per(XA1j) by the inductive hypothesis

= Per(A) .

84 CHAPTER 5. COUNTING THE NUMBER OF PERFECT MATCHINGS IN GRAPHS

Next, we focus our attention on the analysis of the E[X2
A] value. For this purpose, we first state

and prove the following lemma.

Lemma 5.2. Let A be n× n matrix such that a1,j = 1, A1j be the (n− 1)× (n− 1) principal
submatrix, and B be the (n− 1)× (n− 1) submatrix obtained from A1j after discarding entries
that cannot be put in a perfect matching. Let R, C, D, and F be the positive diagonal matrices
such that RAC and DBF are doubly stochastic. Then,

n∏
i=2

ri

n∏
i=1,i 6=j

ci ≤ er1·cj−1
n−1∏
i=1

di · fi .

Proof. Let r′ and c′ be the vectors r′ = [r2, . . . , rn]T and c′ = [c1, . . . , cj−1, cj+1, . . . , cn]T .
Observe that for Function (5.1),

gB(d, f) ≤ gB(r′, c′)

should hold, since D and F scale B to a doubly stochastic form. Therefore,

dTBf −
n−1∑
i=1

ln di −
n−1∑
i=1

ln fi ≤ r′
T
Bc′ −

n−1∑
i=1

ln r′i −
n−1∑
i=1

ln c′i ,

which we arrange as

dTBf − r′
T
Bc′ ≤

n−1∑
i=1

ln di +

n−1∑
i=1

ln fi −
n−1∑
i=1

ln r′i −
n−1∑
i=1

ln c′i. (5.3)

The left hand side can be bounded below. Since D and F scale B to a doubly stochastic form,

dTBf = n− 1 . (5.4)

Since B is obtained by discarding some (positive) entries in A1j we have

r′
T
Bc′ ≤ r′

T
A1jc

′ = n− 2 + r1 · cj . (5.5)

Hence, dTBf − r′TBc′ ≥ 1− r1 · cj . Note that this last inequality will be tight, if we do not get
rid of any entries from A1j , in which case B = A1j . Furthermore, since 0 < r1 · cj ≤ 1, we see
that

0 ≤ 1− r1 · cj ≤ dTBf − r′
T
Bc′.

By combining this with (5.3) and exponentiation of all parts, we obtain

1 ≤ e1−r1·cj ≤ edTBf−r′TBc′ ≤
∏n−1
i=1 di · fi∏n−1
i=1 r

′
i · c′i

, (5.6)

and this concludes the proof.

Lemma 5.2 is important as it relates the scaling coefficients of the matrices between successive
steps of Algorithm 5.1. The selection at the ith step can lead to many possible different matrices,
all of which must be taken into consideration for the analysis of E[X2

A]. The lemma provides

5.3. THE PROPOSED ALGORITHM AND ITS ANALYSIS 85

a common bound for all of them, which is used to simplify the analysis. We can now proceed
with the proof of our main theorem.

Theorem 5.2. Let A be n × n matrix with total support, and RAC be its doubly stochastic

scaling. Then E[X2
A] ≤ 1∏

i ri · ci
· Per(A).

Proof. We prove the theorem by induction. The base case n = 1 holds trivially. Assume that
the theorem holds for (n− 1)× (n− 1) matrices. We then have

E[X2
A] =

∑
a1,j 6=0

r1 · cj ·

(
1

r21 · c2j
· E[X2

A1j
]

)

E[X2
A] =

∑
a1,j 6=0

1

r1 · cj
· E[X2

A1j
]

E[X2
A] ≤

∑
a1,j 6=0

1

r1 · cj
· 1∏

z dz · fz
· Per(A1j)

by the inductive hypothesis, where D and F scale A1j

E[X2
A] ≤

∑
a1,j 6=0

1

r1 · cj
· 1∏n

z=2 rz ·
∏n
z=1,z 6=j cz

· Per(A1j) by Lemma 5.2,

E[X2
A] ≤ 1∏

i ri · ci
·
∑
a1,j 6=0

Per(A1j)

E[X2
A] ≤ 1∏

i ri · ci
· Per(A) .

In the above proof, we made use of a weakened version for Lemma 5.2. In the original lemma,∏
i di · fi∏

i 6=1 ri
∏
i 6=j ci

≤ er1·cj−1 ≤ 1 for the submatrix B = A1j with scaling coefficients d, f . Because

each possible j has a different exponent term associated with it, we had to replace all exponent
terms by the common upper bound of one, so as to obtain a bound over all perfect matchings.
These exponential terms can often be significantly less than one, and this replacement can lead
to a loose upper bound for E[X2

A]. We proceed to state two theorems in which the exponent
term is handled differently in order to obtain more accurate bounds.

Theorem 5.3. E[X2
A] ≤ Per(A) ·mean

(∑
σ e

∑
j r1

(σ,j)c
(σ,j)

σ
(j)
1

)
· e−n∏

i ri · ci
where the sum is over

all perfect matchings σ.

Proof. Consider any perfect matching σ of A. Let XAσ = 1∏n
i=1 r

(σ,i)
1 c

(σ,i)

σ
(i)
1

, which is equivalent to

the value of the random variable XA should the matching σ be returned, as shown in (5.2).
We use a bottom-up induction to prove the following: Let 1 ≤ i ≤ n. Then

n∏
j=i

1

r
(σ,j)
1 c

(σ,j)

σ
(j)
1

≤ e

(∑n
j=i r1

(σ,j)c
(σ,j)

σ
(j)
1

)
−n−1+i

∏n
j=i r

(σ,i)
j−i+1c

(σ,i)

σ
(j)
1

. (5.7)

86 CHAPTER 5. COUNTING THE NUMBER OF PERFECT MATCHINGS IN GRAPHS

That is we provide a relation for the scaling matrices R(σ,i) and C(σ,i) of the ith step and the
multiplication of all r(σ,j)1 c

(σ,j)

σ
(j)
1

where j ≥ i. We use the index j − i + 1 to refer to rows with

index greater than i ≥ 1 because in the reshaped matrix of the ith step, row i occupies the first
position. The idea resembles the proof of Theorem 5.2 except that here a tighter upper bound
is provided by having the numerator less than one.

In the base case i = n, and the relation holds with equality. Assume it holds until i where
i > 1. Then, for i− 1

n∏
j=i−1

1

r
(σ,j)
1 c

(σ,j)

σ
(j)
1

≤ e

(∑n
j=i r1

(σ,j)c
(σ,j)

σ
(j)
1

)
−n−1+i

∏n
j=i r

(σ,i)
j−i+1c

(σ,i)

σ
(j)
1

· 1

r
(σ,i−1)
1 c

(σ,i−1)
σ
(i−1)
1

by the induction hypothesis holding for value i.

Note that
∏n
j=i r

(σ,i)
j−i+1c

(σ,i)

σ
(j)
1

is the product of the scaling factors at the ith step, and that∏n
j=i r

(σ,i−1)
j−(i−1)+1c

(σ,i−1)
σ
(j)
1

is the product of the scaling factors at the (i − 1)st step excluding the

row scaling entry r(σ,i−1)1 and the associated column scaling entry. Therefore, we can replace

1∏n
j=i r

(σ,i)
j−i+1c

(σ,i)

σ
(j)
1

with
e

(
r1(σ,i−1)c

(σ,i−1)

σ
(i−1)
1

)
−1

∏n
j=i r

(σ,i−1)
j−(i−1)+1c

(σ,i−1)
σ
(j)
1

using Lemma 5.2 to obtain an upper bound. That is

n∏
j=i−1

1

r
(σ,j)
1 c

(σ,j)

σ
(j)
1

≤ e

∑n
j=i r1

(σ,j)c
(σ,j)

σ
(j)
1

−n−1+i
· e
r1(σ,i−1)c

(σ,i−1)

σ
(i−1)
1

−1

∏n
j=i r

(σ,i−1)
j−i+2 c

(σ,i−1)
σ
(j)
1

· 1

r
(σ,i−1)
1 c

(σ,i−1)
σ
(i−1)
1

.

We see that in both terms of the fraction we can include r(σ,i−1)1 c
(σ,i−1)
σ
(i−1)
1

to its respective aggregator

n∏
j=i−1

1

r
(σ,j)
1 c

(σ,j)

σ
(j)
1

≤ e

∑n
j=i−1 r1

(σ,j)c
(σ,j)

σ
(j)
1

−n−1+(i−1)

∏n
j=i−1 r

(σ,i−1)
j−i+2 c

(σ,i−1)
σ
(j)
1

which concludes the proof of (5.7), as for j = i−1, we have j− i+ 2 = 1. Thus for i = 1 we get:

X2
Aσ
≤ e

∑
j r1

(σ,j)c
(σ,j)

σ
(j)
1∏

i ri · ci
· e−n.

5.4. AN ESTIMATOR FOR UNDIRECTED GRAPHS 87

Since

E[X2
A] =

∑
σ

X2
Aσ
·
n∏
i=1

r
(σ,i)
1 c

(σ,i)

σ
(i)
1

, we get that

E[X2
A] =

∑
σ

XAσ

E[X2
A] ≤

∑
σ

e

∑
j r1

(σ,j)c
(σ,j)

σ
(j)
1∏

i ri · ci
· e−n ,

as we have Per(A) permutations each with each own value. Replacing with the mean multiplied
by Per(A) concludes the theorem.

Theorem 5.4. Let A be n×n 0-1 matrix with total support, and RAC be its doubly stochastic

scaling. There exists a positive vector k such that E[X2
A] ≤ ev−n∏

i ri · ci
· Per(A), where v =∑

i ki = ‖k‖1 ≤ n.

Proof. The proof follows that of Theorem 5.2 to build k by considering the maximum exponent
value at each step and can be found in the corresponding paper [J2].

Note that Theorem 5.4 implies Theorem 5.2 if we set ki = 1. The theorem is constructive but
does not yield a polynomial algorithm. Algorithm 5.1 can be made to construct a k associated
with a perfect matching σ obtained at the end, to show how much 1∏n

i=1 r
(σ,i)
1 ·c(σ,i)

σ
(i)
1

deviates from a

potential bound that can be obtained bymean

(∑
σ e

∑
j r1

(σ,j)c
(σ,j)

σ
(j)
1

)
· e−n∏

i ri · ci
from the previous

theorem. Note also that
∑

j r1
(σ,j)c

(σ,j)

σ
(j)
1

is less than n, unless all terms are one, in which case A

is the n × n identity matrix (and the permanent of value one is obtained exactly). Therefore,
the obtained bound shows that the upper bound stated in Theorem 5.2 is loose by exponents of
e.

5.4 An estimator for undirected graphs

In this section, we investigate how to extend the proposed scaling-based approach for undirected
graphs.

5.4.1 The algorithm and its analysis

The variant for undirected graphs shares similar properties with the algorithm for the bipartite
case. In particular with XG being the estimate by the algorithm and M(G) being the number
of perfect matchings in G, it can be shown that

E[XG] = M(G)

88 CHAPTER 5. COUNTING THE NUMBER OF PERFECT MATCHINGS IN GRAPHS

and
E[X2

G] ≤M(G)
1∏
i ri

,

where ri is the ith diagonal entry of the scaling factor R of the adjacency matrix of G. Note
that since the adjacency matrix A is symmetric, its scaling is in the form S = RAR, i.e., we do
not need separate scaling values for rows and columns. Algorithm 5.2 shows the pseudocode of
the proposed approach.

Algorithm 5.2: estScalingMtc: Estimation of the number of perfect matchings in
graphs
Input: G = (V,E) an undirected graph with n = |V | vertices having a perfect matching.
Output: An estimate XG of the number of perfect matchings in G.
1: XG ← 1
2: G(1) ← G
3: for i = 1 to n by increments of two do
4: Let A(i) be the adjacency matrix of G(i).
5: Filter out those entries of A(i) that cannot be put into a perfect matching in the

bipartite graph corresponding to A(i), and let G(i) correspond to the graph of A(i)

6: [R(i)]← SymScale(A(i))

7: Let T ← {j : a
(i)
1,j 6= 0 and G(i) − {v1, vj} has a perfect matching}

8: Pick a random nonzero column j from T by using the probability density function

pk =
s1,k

Σt∈Ts1,t
, for all nonzero a(i)1,k with k ∈ T

where st,k = r
(i)
t · r

(i)
k is the corresponding entry in the scaled matrix S = R(i)A(i)R(i)

9: XG ← XG/pj
10: G(i+1) ← G(i) − {v1, vj}{delete the vertices v1 and vj from G(i) to obtain G(i+1)}

At the beginning of the iteration i, we have a graph G(i) having at least one perfect matching.
We then get the adjacency matrix A(i) of this graph, which is symmetric. We then check if all
entries in A(i) can put into a nonzero diagonal; that is we look at the Dulmage–Mendelsohn
decomposition of the bipartite graph associated with A(i), and discard edges that cannot be in a
perfect matching. We discard those entries (symmetrically) and obtain a sparser matrix A(i) and
scale the resulting matrix. This also translates to an updated G(i). Then, for each edge incident
on the first vertex of G(i), at first we test if there is a perfect matching in G(i) containing that
edge. We discard the edges not inside any perfect matching to avoid returning a zero estimate.
Among all the edges which are left (i.e., that are inside at least one perfect matching), we choose
an edge from a probability distribution where the probabilities are proportional to the scaling
entries of the allowed edges. Notice that

pk =
s1,k

Σt∈Ts1,t

where T = {j : a
(i)
1,j 6= 0 and G(i) − {v1, vj} has a perfect matching}, s1,t = r

(i)
1 · r

(i)
t , and

0 < Σt∈Ts1,t ≤ 1. Therefore, pk ≥ r
(i)
1 · r

(i)
k at Line 8 of Algorithm 5.2.

As in the case of the estimator for bipartite graphs, we begin the analysis of Algorithm 5.2 by

5.4. AN ESTIMATOR FOR UNDIRECTED GRAPHS 89

showing that it is an unbiased estimator. In order to do so, we adapt the proof of Theorem 5.1
appropriately for undirected graphs.

Theorem 5.5. Let XG be a random variable returned by Algorithm 5.2. Then E[XG] = M(G),
where M(G) represents the number of perfect matchings in the graph G.

Proof. We prove the claim via induction. As the base-case, we consider n = 2 and the argument

holds where the adjacency matrix is A =

(
0 1
1 0

)
. Assume that the inductive hypothesis holds

for n − 2. Let Gij be obtained by removing vertices vi and vj from G, which corresponds to
deleting the rows and the columns i, j of the adjacency matrix of G to form the (n−2)× (n−2)
adjacency matrix Aij of Gij . We have the following

E[XG] =
∑

j:a1,j 6=0

pj ·
1

pj
· E[XGij]

=
∑

j:a1,j 6=0

E[XGij]

=
∑

j:a1,j 6=0

M(Gij) by the inductive hypothesis

= M(G) .

Having shown that XG is an unbiased estimator, we now proceed to bound E[X2
G] and obtain a

bound on the number of samples required for an (ε, δ)-approximation. For this, we again make
use of a lemma that associates the scaling coefficients at different steps of Algorithm 5.2 with
each other.

Lemma 5.3. Let A be a symmetric n×n doubly stochastically scalable matrix with α1j = αj1 = 1
with all diagonal values zero. Let R be its scaling matrix. Assume we remove the rows and
columns with indices 1 and j from A. We then discard the entries that are not in support to
obtain B, which is a symmetric scalable matrix of size n− 2. Let D be B’s scaling matrix, i.e.,
DBD is doubly stochastic. Then

n∏
k=1,k 6=1,j

rk ≤ er1rj−1
n−2∏
z=1

dz .

Proof. The proof is similar to the proof of Lemma 5.2 and can be found in the corresponding
paper [J2].

Theorem 5.6 now shows the equivalent of Theorem 5.2 for undirected graphs and completes the
analysis of Algorithm 5.2.

Theorem 5.6. Let G be an undirected graph, A be the n × n adjacency matrix of G with all
supported nonzeros, and R be the diagonal matrix which scales A into the doubly stochastic form,
e.g., RAR is doubly stochastic. Then

E[X2
G] ≤M(G) · 1∏

i ri
.

90 CHAPTER 5. COUNTING THE NUMBER OF PERFECT MATCHINGS IN GRAPHS

Proof. We prove the theorem by induction. The base case n = 2 holds trivially. Let the inductive
hypothesis be that the argument holds for graphs with n− 2 vertices.

E[X2
G] =

∑
ai,j 6=0

pj ·

(
1

p2j
· E[X2

Gij]

)

E[X2
G] =

∑
ai,j 6=0

1

pj
· E[X2

Gij]

E[X2
G] ≤

∑
ai,j 6=0

1

ri · rj
· E[X2

Gij]

because pj ≥ ri · rj by the definition pj at Line 8 of Algorithm 5.2,

E[X2
G] ≤

∑
ai,j 6=0

1

ri · rj
· 1∏

z dz
·M(Gij)

by the inductive hypothesis, where DA(ij)D is doubly stochastic,

where A(ij) is the filtered adjacency matrix of Gij . Hence,

E[X2
G] ≤

∑
ai,j 6=0

1

ri · rj
· 1∏n

z 6=i,z 6=j rz
·M(Gij) by Lemma 5.3,

E[X2
G] ≤ 1∏

z rz
·
∑
ai,j 6=0

M(Gij)

E[X2
G] ≤ 1∏

z rz
·M(G) .

5.4.2 Filtering out redundant edges

A complication in the undirected case is that to eliminate edges that do not belong to any
perfect matching it is not sufficient to only use the Dulmage–Mendelsohn decomposition of A.
We demonstrate this with the following fact.

Fact 5.1. Let G be an undirected graph, and A be the n × n adjacency matrix of G. Then
Per(A) is larger than or equal to M(G).

Proof. The fact holds trivially in the case that M(G) = 0. We hence assume in the following
that M(G) > 0. Let G′ be the bipartite graph with 2n vertices obtained from A. Then for each
perfect matching in G = (V,E), there is a corresponding perfect matching in G′ = (V ′, E′). Let
{(u1, u2), . . . , (un−1, un)} be a perfect matching in G where ui ∈ V for i ∈ {1, . . . , n}. Let the
vertices in the first and the second part of the bipartite graph G′ be denoted as vis and wis,
respectively, where vi ∈ V ′ and wi ∈ V ′ for i ∈ {1, . . . , n}.

Since the edge (ui, ui+1) is in the matching for i ∈ {1, . . . , n}, it is in G. Therefore ai,i+1 =
ai+1,i = 1 are nonzeros in A. Hence, in the bipartite graph G′, we have the edges (vi, wi+1) ∈ E′
and (vi+1, wi) ∈ E′. From these edges, a perfect matching can be constructed in G′.

Thus for each matching in G, one can construct a perfect matching in G′ and the number of
the perfect matchings in G′ is equal to Per(A). Hence, Per(A) is at least as large asM(G).

5.5. EXPERIMENTS 91

The above fact shows that any off-diagonal edge in the Dulmage–Mendelsohn decomposition
of A cannot belong to a perfect matching in G, but it does not help us to eliminate possible
edges that do not belong to such symmetrical matchings (vi, wj) and (wj , vi). These edges may
be cleared by using an exact algorithm for computing maximum matchings to detect whether
selecting one of them leads to a perfect matching for the remaining vertices or not. One may
ask if it is possible to use the Gallai–Edmonds [86] decomposition, which partially extends the
Dulmage–Mendelsohn decomposition to undirected graphs. This decomposition can be used to
find perfectly matchable sub-graphs and odd components if there is no perfect matching in the
graph. It does not give any useful information for our purposes in graphs with perfect matchings,
while the Dulmage–Mendelsohn decomposition for bipartite graphs states which edges cannot
be put into a perfect matching.

5.5 Experiments

The experiments are performed on a machine equipped with an Intel Core i7-7600 CPU and
with 16 GB of available ram. For the implementation, we used MATLAB 2017. In the next
two subsections, we present the experimental results on bipartite graphs and general, undirected
graphs, respectively.

5.5.1 On bipartite graphs

To see how the proposed algorithm estScalingPerm fares in practice on bipartite graphs, we
compare it against the original estimator of Rasmussen as well as the approach due to Fürer and
Kasiviswanathan [49]. We shall refer to latter’s variant for bipartite graphs as GreedyPerm.
We used an improved version of Rasmussen’s randomized algorithm in which edges that do
not participate in perfect matchings are discarded. We shall refer to it as RasmussenPerm.
Additionally, all three algorithms process the rows in increasing order of nonzeros, adjusted at
each step, to select a random entry. For each test, we take 1000 samples and report their mean.

5.5.1.1 Random and synthetic datasets

For the first set of bipartite graph experiments, we consider random matrices of size 40 and
sparsity 4

n , in other words there are about 160 nonzeros. We used an exact (exponential time)
algorithm [95] to compute the permanents. These matrices can have large permanents (e.g.,
around 107) and are among the largest an exact non-parallel algorithm, which simply enumer-
ates all the perfect matchings, can handle. The results are summarized in Figure 5.1(a). In
this figure, we display the ratio of the estimate to the exact value. As seen in the figure, our
approach almost always has good performance. In contrast, the RasmussenPerm estimator
often obtains results that are worse than the other two approaches (even if modified to avoid
returning zeros). The GreedyPerm estimator exhibits a better performance than Rasmussen-
Perm, while estScalingPerm is better than GreedyPerm (it has a smaller and less frequent
deviation from the value of the permanent).

To provide results with larger n, we focus on the class of matrices which correspond to grids
as the second set experiments on bipartite graphs. For these matrices, an exact formula for
the permanent is given independently by Kasteleyn [74] and Temperley and Fisher [103]. The

92 CHAPTER 5. COUNTING THE NUMBER OF PERFECT MATCHINGS IN GRAPHS

0 10 20 30 40 50
0.6

0.8

1

1.2

1.4

1.6

1.8

2
ESTSCALINGPERM
GREEDYPERM
RASMUSSENPERM

(a) Sparse 40× 40 matrices.
4 6 10 14 18 22 24

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ESTSCALINGPERM
GREEDYPERM
RASMUSSENPERM

(b) Grid graphs.

Figure 5.1 – Comparison of the approximation ratios of estScalingPerm, RasmussenPerm
and GreedyPerm (a) on 54 random sparse graphs with n = 40 and sparsity factor 4/n in
increasing order of the approximation ratio of the proposed estimator; and (b) on square grids
of even length in increasing order of side length.

number of perfect matchings in an m× n grid is given by the formula

m∏
j=1

n∏
k=1

(
4 cos2

(
πj

m+ 1

)
+ 4 cos2

(
πk

n+ 1

))1/4

.

The results presented in Figure 5.1(b) concur with the previous test. We observe that estScal-
ingPerm seems to provide better performance than the two other alternatives. This is partic-
ularly notable in the last case of the 24 × 24 grid where only estScalingPerm manages to
obtain an estimate in close range of the actual answer. This suggests that the assignment of
probabilities via a doubly stochastic scaling method makes the overall procedure more reliable.

As the third set of experiments bipartite graphs, we give the results for 1000 simulations of
the three approaches on the matrix of the 36× 36 grid to examine in detail how the algorithms
behave for larger graphs. The results are presented in Figure 5.2. To draw this figure, we used
MATLAB’s histfit command on the 1000 estimates of each algorithm, to plot a histogram and
fit a bell curve so as to understand the distribution. As the values are very large, we present the
results on a log-scale. In this figure, we observe less variation between the independent runs of
the proposed method. Furthermore, the approximation factor of the mean estimate of estScal-
ingPerm, 1.11, is significantly better than those of the other two approaches; GreedyPerm’s
approximation ratio is 0.42 while RasmussenPerm’s is worse than both obtaining a 0.0028
approximation (the approximation ratios are obtained using the exact formula given above).

5.5.1.2 Real-life bipartite graphs

To further evaluate the practical performance of the proposed approximation scheme, we used a
set of matrices from the SuiteSparse Matrix Collection [31]. The properties of the matrices can
be seen in Table 5.1.

5.5. EXPERIMENTS 93

140 145 150 155 160 165
0

10

20

30

40

50

60

70

80

90
ESTSCALINGPERM
GREEDYPERM
RASMUSSENPERM

Figure 5.2 – The performance of the estimators on the 36× 36 grid. The logarithms of the 1000
estimator values are presented on the x-axes and the y-axes demonstrate the distribution of the
samples for the values in each approach. We note that the logarithm of the actual permanent is
159.49.

Name n nnz permanent RasmussenPerm GreedyPerm estScalingPerm
Grund/dss 53 144 2.93 · 105 1.080 0.949 1.033
DIMACS10/chesapeake 39 340 1.32 · 1013 0.302 0.918 0.993
HB/bcsstk01 48 400 2.01 · 1025 0.973 0.966 0.993
HB/impcolb 59 271 1.11 · 1008 1.027 0.824 0.985
HB/will57 57 281 1.07 · 1018 1.578 0.944 1.022
HB/dwt59 59 267 4.64 · 1018 1.367 0.877 0.952

AG-Monien/netz4504dual 615 2342
Bai/dw256A 512 2480
Bai/dw256B 512 2500
HB/662bus 662 2474 Permanent is too
HB/685bus 685 3249 expensive
JGDHomology/ch5-5-b3 600 2400 to compute
VDOL/dynamicSoaringProblem1 647 5367

Table 5.1 – Names, dimensions, and numbers of nonzeros of the real-life square matrices corre-
sponding to bipartite graphs used to evaluate the performance of the estimators. For the first
set of six smaller matrices with n < 60, the exact permanent value and the approximation of
the estimators with 1000 samples are also given.

94 CHAPTER 5. COUNTING THE NUMBER OF PERFECT MATCHINGS IN GRAPHS

With known permanents. For the first set of experiments, we used six small real-life square
matrices with n < 60. For these matrices, it is possible to calculate the permanent exactly using
a recent parallel algorithm [75]. Table 5.1 additionally exhibits the approximation found by each
of the three algorithms after performing 1000 runs and taking the mean. The results are similar
to those with synthetic and random matrices. estScalingPerm obtains the best performance,
followed by GreedyPerm, and RasmussenPerm, which has the worst behavior overall. In
more detail, estScalingPerm obtained a mean deviation of 2% from the permanent, whereas
GreedyPerm had an average deviation of 9%. For impcolb, estScalingPerm was 16.1%
closer to the permanent than GreedyPerm, which amounted to a difference of 1.7×107 between
the two approximations. For dwt59, the difference between the answers of estScalingPerm
and GreedyPerm was 3.48 · 1017 in favor of estScalingPerm. RasmussenPerm’s average
deviation from the permanent at 39% was much worse than the other methods.

To demonstrate the effectiveness of estScalingPerm in more detail, Figure 5.3 presents
a histogram of the estimators and fits a bell curve. We additionally show the value of the
permanent with a vertical line to display how the estimators are spread around it. As it can be
observed from all six subfigures, estScalingPerm’s estimations are more closely concentrated
around the value of the permanent, and they additionally span the smallest interval.

With unknown permanents. As the last set of bipartite graph experiments, we present the
performance of the three approaches with 1000 estimations on seven larger matrices with n > 500
from Table 5.1. For these matrices, we do not know the exact permanent values, and we plot
only the estimates in Figure 5.4. As before, the figures were generated with MATLAB’s histfit
command, and the results are given in log-scale. In all cases, we see that the values obtained
by RasmussenPerm’s approach span a larger interval than the other two, and GreedyPerm
has a larger span than estScalingPerm. We also note that the distributions are similar to
those in Figure 5.3, which is another indication that estScalingPerm most probably obtains
better estimates than both GreedyPerm and RasmussenPerm on these graphs as well. We
also present the mean, standard deviation (std), and the std/mean ratio (i.e., coefficient of
variation) of the estimators in Table 5.2. We calculated the standard deviation using the formula

σ2 =

∑N
i=1(Xi −X)2

N − 1
where N represents the number of samples and Xi corresponds to the ith

sample with X being their mean value.
A trend we notice in all matrices is that the RasmussenPerm algorithm always obtains

the smallest mean value, whereas the proposed algorithm returns the largest. Furthermore,
the std/mean ratio of estScalingPerm is almost always the smallest of the three (except for
the matrix dw256B). By combining these observations with the previous ones, we conclude that
estScalingPerm’s estimations are more concentrated around the returned mean compared to
the other two algorithms. In other words, the proposed approach has lesser variation than the
other two.

The run times of estScalingPerm on these seven matrices are very close to those of the
other two approaches. The average run time to execute an estimator using estScalingPerm
is 0.92 seconds, whereas RasmussenPerm and GreedyPerm require 0.13 and 0.14 seconds,
respectively.

We do note however that because of the matrix scaling, for larger matrices the time dif-
ferences between estScalingPerm and the other two heuristics should grow larger. That is
understandable, as the run time of algorithms for matrix scaling is proportional to the number
of nonzeros, whereas the other two heuristics require very little preprocessing work at each step

5.5. EXPERIMENTS 95

Grund/dss

3 3.5 4 4.5 5 5.5 6 6.5 7
0

10

20

30

40

50

60

70

80

90
ESTSCALINGPERM
GREEDYPERM
RASMUSSENPERM

DIMACS10/chesapeake

5 10 15
0

10

20

30

40

50

60

70

80

ESTSCALINGPERM
GREEDYPERM
RASMUSSENPERM

HB/bcsstk01

20 21 22 23 24 25 26 27 28
0

10

20

30

40

50

60

70

80

90
ESTSCALINGPERM
GREEDYPERM
RASMUSSENPERM

HB/impcolb

3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90
ESTSCALINGPERM
GREEDYPERM
RASMUSSENPERM

HB/will57

13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

80

90
ESTSCALINGPERM
GREEDYPERM
RASMUSSENPERM

HB/dwt59

12 14 16 18 20 22
0

10

20

30

40

50

60

70

80

90
ESTSCALINGPERM
GREEDYPERM
RASMUSSENPERM

Figure 5.3 – The performance of the estimators on the six matrices with n < 60 given in
Table 5.1. The logarithms of the 1000 estimator values are presented on the x-axes and the
y-axes demonstrate the distribution of the samples for the values in each approach. The vertical
line corresponds to the actual value of the permanent.

96 CHAPTER 5. COUNTING THE NUMBER OF PERFECT MATCHINGS IN GRAPHS

RasmussenPerm GreedyPerm estScalingPerm
Matrix mean std std

mean mean std std
mean mean std std

mean

netz4504dual 5.12 · 10140 1.60 · 10142 31.36 7.68 · 10142 1.68 · 10144 21.86 3.54 · 10143 3.01 · 10144 8.52
dw256A 3.59 · 10158 1.13 · 10160 31.54 2.77 · 10162 3.75 · 10163 13.56 2.11 · 10164 2.64 · 10165 12.53
dw256B 7.14 · 10158 2.05 · 10160 28.76 3.86 · 10162 4.49 · 10163 11.63 4.02 · 10164 5.29 · 10165 13.15
662bus 1.51 · 10142 4.69 · 10143 31.07 6.48 · 10150 1.45 · 10152 22.32 1.41 · 10151 2.83 · 10152 20.09
685bus 2.75 · 10187 7.56 · 10188 27.49 1.04 · 10203 2.86 · 10204 27.55 1.49 · 10202 2.59 · 10203 17.37
ch5-5-b3 1.80 · 10136 3.23 · 10137 17.99 3.92 · 10137 7.31 · 10138 18.62 5.19 · 10138 6.00 · 10139 11.57
dynamicSoar1 8.27 · 10254 2.46 · 10256 29.80 1.09 · 10259 2.91 · 10260 26.70 3.29 · 10267 4.38 · 10268 13.32

Table 5.2 – Statistics for the seven larger bipartite graphs. The original name of the matrix
corresponding to the last one is dynamicSoaringProblem1 and is shortened to fit into the column.
The preceding family names of the matrices are not shown.

aside from removing entries without support from the matrix. Consequently, for the estScal-
ingPerm approach there is a trade-off between accuracy and run time. For graphs of similar
size to those seen in Table 5.1, this trade-off does not lead to significant differences. In order to
deal with larger graphs, we can reduce the number of scaling iterations at the expense of some
loss in accuracy or resort to parallelism to speed-up the scaling procedure.

5.5.2 On general, undirected graphs

We examine the performance of the estimators on five undirected graphs obtained from matrices
available in the SuiteSparse Matrix Collection. After downloading the matrices, we made them
pattern-wise symmetric by adding all missing symmetric entries. Furthermore, we discarded
the values in the diagonal and set all remaining nonzero values to one so that the resulting
matrix is the adjacency matrix of an undirected graph. The properties of the resulting graphs
are presented in Table 5.3.

As discussed in Section 5.4.2, getting rid of the entries that do not belong to any perfect
matching is a more time consuming procedure than its equivalent for bipartite graphs. As
Fürer and Kasiviswanathan [49] discard all edges that cannot be put into a perfect matching
from the graph in the original description of GreedyMtc, we implemented this cleaning for
GreedyMtc. For uniformity with the previous section, we shall use RasmussenMtc instead
of Simple to refer to the extension of Rasmussen’s algorithm for undirected graphs. Here,
we select a row and then we remove any of its entries that do not participate in any perfect
matching, so that we always end up with a valid perfect matching. As for estScalingMtc,
we opted to test the following two alternatives:

1. The results labeled estScalingMtc in the figures correspond to Algorithm 5.2. In this
version, the Dulmage–Mendelsohn decomposition is used to ensure that the matrix has
total support. Then we cleaned only the entries from the selected row.

2. The results labeled with estClearScalingMtc are obtained by discarding all edges that
are not part of some perfect matching, using first the Dulmage–Mendelsohn decomposition,
and then by exhaustively testing the remaining edges (due to Fact 5.1, the resulting matrix
has total support). Then we proceed to scale the matrix to obtain the scaling matrixR and
do the appropriate selections. This corresponds to the cleaning performed in GreedyMtc.

We do not know the actual number of perfect matchings on these graphs. As in the previous
subsection, we plot the distribution (in logarithmic scale) of the results for 1000 trials. The

5.5. EXPERIMENTS 97
AG-Monien/netz4504dual

115 120 125 130 135 140 145 150
0

20

40

60

80

100

120
ESTSCALINGPERM
GREEDYPERM
RASMUSSENPERM

Bai/dw256A

130 135 140 145 150 155 160 165 170
0

20

40

60

80

100

120
ESTSCALINGPERM
GREEDYPERM
RASMUSSENPERM

Bai/dw256B

130 135 140 145 150 155 160 165 170
0

20

40

60

80

100

120
ESTSCALINGPERM
GREEDYPERM
RASMUSSENPERM

HB/662bus

110 120 130 140 150 160
0

10

20

30

40

50

60

70

80

90
ESTSCALINGPERM
GREEDYPERM
RASMUSSENPERM

HB/685bus

150 160 170 180 190 200 210
0

10

20

30

40

50

60

70

80

90
ESTSCALINGPERM
GREEDYPERM
RASMUSSENPERM

VDOL/dynamicSoaringProblem1

220 230 240 250 260 270 280
0

10

20

30

40

50

60

70

80

90
ESTSCALINGPERM
GREEDYPERM
RASMUSSENPERM

JGDHomology/ch5-5-b3

120 125 130 135 140 145
0

10

20

30

40

50

60

70

80

90
ESTSCALINGPERM
GREEDYPERM
RASMUSSENPERM

Figure 5.4 – The performance of the estimators on the seven matrices with n > 500 given in
Table 5.1. The logarithms of the 1000 estimator values are presented on the x-axes and the
y-axes demonstrate the distribution of the samples for the values in each approach. For these
matrices, the permanent values are unknown.

98 CHAPTER 5. COUNTING THE NUMBER OF PERFECT MATCHINGS IN GRAPHS

Name |V | |E|
Bai/bwm200 100 298
Bai/dw256A 256 1004
HB/ash292 146 958
JGDTrefethen/Trefethen200 100 1345
Pothen/mesh2em1 153 856

Table 5.3 – The properties of undirected graphs corresponding to real-life matrices and the
names of those matrices.

results are presented in Figure 5.5. We observe that the two scaling-based alternatives have
similar curves, and there does not seem to be an advantage in applying the more expensive
method of extensive cleaning. In addition, we observe that our approach seems to minimize the
variance in respect to the other alternatives by providing a closer range of reported values.

Finally, for this set of experiments, we provide the means as well as the standard deviations
in Table 5.4 using the same definitions as in the previous subsection. The table shows that once
again the proposed algorithm obtains usually the smallest standard deviation to mean ratio. In
addition, we can observe that the extensive cleaning of entries can help in reducing this ratio,
though only slightly.

Focusing on the run time of the estimators, we have that again estScalingMtc is fast.
In these graphs, RasmussenMtc algorithm requires on average 0.05 seconds to calculate an
estimate for M(G), whereas an estimator based on estScalingMtc requires 0.32 seconds on
average. The other two methods GreedyMtc and estClearScalingMtc are both signifi-
cantly slower. The increase in the run time is due to their excessive cleaning procedure which
at east step eliminates all edges which do not participate in a perfect matching. GreedyMtc
requires on average 8.68 seconds while estClearScalingMtc requires 8.92 seconds. Since
estScalingMtc and estClearScalingMtc obtain similar results, we suggest avoiding the
costly cleaning step of estClearScalingMtc.

We again note that the run time of estScalingMtc is greatly affected by the number of
nonzeros as in the bipartite case. To improve its run time on larger instances we can similarly
reduce the number of scaling iterations or use parallelism. Interestingly, unlike the bipartite
case, the preprocessing step of GreedyMtc is costlier than that of estScalingMtc and thus
GreedyMtc should remain slower than estScalingMtc in larger graphs as well.

5.6 Concluding remarks

In this chapter, we proposed an algorithm for approximating the number of perfect matchings in
bipartite and general undirected graphs. The proposed algorithm uses matrix scaling in order to
sample randomly a perfect matching of the graph. The proposed algorithm at each step selects
a vertex and matches it randomly with one of its neighbors. The random decision is based on
the values of the vertex’s neighbors in the scaled adjacency matrix of the graph. At the end of
the algorithm an estimate X is returned based on the values of the chosen probabilities. This
process is repeated a sufficient number of times and a mean estimate X is returned by taking the
mean of all returned X values. We proved loose yet computable upper bounds for the expected
value of the square of X which affects the number of samples required. The experimental
analysis demonstrated improvements over previous similar methodologies. Future work involves

5.6. CONCLUDING REMARKS 99

Bai/bwm200

17 18 19 20 21 22 23
0

10

20

30

40

50

60

70

80

90
ESTSCALINGMTC
ESTCLEARSCALINGMTC
GREEDYMTC
RASMUSSENMTC

Bai/dw256A

40 45 50 55 60 65 70
0

10

20

30

40

50

60

70

80

90
ESTSCALINGMTC
ESTCLEARSCALINGMTC
GREEDYMTC
RASMUSSENMTC

HB/ash292

48 50 52 54 56 58 60
0

20

40

60

80

100

ESTSCALINGMTC
ESTCLEARSCALINGMTC
GREEDYMTC
RASMUSSENMTC

JGDTrefethen/Trefethen200

67 68 69 70 71 72 73
0

10

20

30

40

50

60

70

80

90
ESTSCALINGMTC
ESTCLEARSCALINGMTC
GREEDYMTC
RASMUSSENMTC

Pothen/mesh2e1

42 44 46 48 50 52
0

10

20

30

40

50

60

70

80

90
ESTSCALINGMTC
ESTCLEARSCALINGMTC
GREEDYMTC
RASMUSSENMTC

Figure 5.5 – The performance of the estimators on the five undirected graphs with n < 260 in
Table 5.3. The logarithms of the 1000 estimator values are presented on the x-axes and the
y-axes demonstrate the distribution of the samples for the values in each approach. For these
graphs, the number of perfect matchings is unknown.

100 CHAPTER 5. COUNTING THE NUMBER OF PERFECT MATCHINGS IN GRAPHS

RasmussenMtc GreedyMtc
Matrix mean std std

mean mean std std
mean

Bai/bwm200 5.44 · 1020 2.71 · 1021 4.98 5.74 · 1020 5.84 · 1020 1.02
Bai/dw256A 1.71 · 1061 3.26 · 1062 19.10 2.58 · 1062 2.47 · 1063 9.59
HB/ash292 7.23 · 1055 8.73 · 1056 12.07 1.22 · 1056 2.26 · 1056 1.86
JGDTrefethen/Trefethen200 8.33 · 1070 4.14 · 1071 4.98 8.63 · 1070 7.81 · 1070 0.90
Pothen/mesh2e1 7.21 · 1049 1.03 · 1051 14.35 1.45 · 1050 3.80 · 1050 2.63

estScalingMtc estClearScalingMtc
mean std std

mean mean std std
mean

Bai/bwm200 5.81 · 1020 2.81 · 1020 0.48 5.65 · 1020 2.62 · 1020 0.46
Bai/dw256A 6.88 · 1062 4.87 · 1063 7.08 3.16 · 1062 2.05 · 1063 6.49
HB/ash292 1.43 · 1056 3.66 · 1056 2.56 1.32 · 1056 2.77 · 1056 2.10
JGDTrefethen//Trefethen200 8.63 · 1070 4.44 · 1070 0.51 8.32 · 1070 4.11 · 1070 0.49
Pothen/mesh2e1 1.38 · 1050 3.14 · 1050 2.27 1.85 · 1050 5.20 · 1050 2.81

Table 5.4 – Statistics for the five undirected graphs obtained from the matrices in Table 5.3.

bounding the estimates for special graph classes.

Chapter 6

Results on the Birkhoff–von Neumann decom-
position

In this chapter we examine the Min-BvN-Decomp [39] problem which was defined in Sec-
tion 1.3 of Chapter 1. The results of this chapter were published in Linear algebra and its
applications [J1]. Recall from Section 1.3 that a permutation matrix is a square matrix such
that each row and each column contain exactly one nonzero value equal to 1. Then, a doubly
stochastic matrix can be written as a linear combination of permutation matrices P1, . . . ,Pk

with positive coefficients α1, . . . , αk as

A = α1P1 + α2P2 + · · ·+ αkPk, where
k∑
i=1

αi = 1 . (6.1)

Such a representation is called the Birkhoff–von Neumann (BvN) [13] decomposition and is gen-
erally not unique. The NP-Hard Min-BvN-Decomp problem [39] then asks for a decomposition
with the least number of permutations used.

We consider two heuristics called Birkhoff and GreedyBVN which can be used to obtain
a BvN decomposition. The former is based on a constructive proof of Equation 6.1, while the
latter greedily tries to maximize the values of the α coefficients. At first, we show that the
theoretical guarantee of the Birkhoff heuristic can be arbitrarily bad. To achieve this we
describe a family of matrices such that for an n×n matrix Birkhoff can return n permutation
matrices, while the optimal answer is only 3. Kulkarni et al. [83, Theorem 7] present a family
of matrices where Birkhoff obtains 2` permutation matrices while the optimal decomposition
requires `. Compared to their method, our construction is simpler, more explicit, and yields
a stronger result. Our second contribution is an a posteriori approximation guarantee of the
GreedyBVN heuristic. We present theoretical and experimental results to showcase how the
performance of GreedyBVN is affected by the nonzero entries of a doubly stochastic matrix.
Our third contribution finally modifies the GreedyBVN heuristic with an additional step. The
conducted experimental analysis shows that the proposed modification is promising and can lead
to decompositions with a smaller number of permutation matrices on several matrices.

The rest of the chapter is organized as follows. Section 6.1 introduces the two examined
heuristics Birkhoff and GreedyBVN and in Section 6.2 we present our analysis of these two
heuristics. Our modifications of the GreedyBVN heuristic are described in Section 6.3 and
some experiments with them are given in Section 6.4. Section 6.5 summarizes the chapter and
discusses some potential future work.

101

102 CHAPTER 6. RESULTS ON THE BIRKHOFF–VON NEUMANN DECOMPOSITION

6.1 The two heuristics

There exist heuristics to compute a BvN decomposition for a given matrix A. In particular,
the following family of heuristics is based on the constructive process in Birkhoff’s proof. Let
A(0) = A. At every step j ≥ 1, find a permutation matrix Pj having its ones at the positions of
the nonzero elements of A(j−1), denote the minimum nonzero element of A(j−1) at the positions
identified by Pj as αj , set A(j) = A(j−1) − αjPj , and repeat the computation for the next step
with j = j + 1 until A(j) becomes the void matrix 0 where all the entries are equal to zero.
Note that each A(j) matrix has the same row and column sum, because at every step the same
value is subtracted from each row and column. Any heuristic of this type is a member of the
generalized Birkhoff family of heuristics. The overall procedure is summarized in Algorithm 6.1.
To find a permutation at Line 5 one can employ a matching algorithm on the bipartite graph
defined by A(j−1). The two heuristics that we will examine and analyse belong to this family of
heuristics.

Birkhoff: It is the original heuristic used to prove that a doubly stochastic matrix has
a BvN decomposition. Let α be the position of the minimum entry in A(j−1). Then the
permutation Pj selected at the jth step contains α, i.e., αj = a.

GreedyBVN [39]: This heuristic selects the permutation that maximizes the value of the
minimum element. To find a permutation with this property, one can consider the maximum bot-
tleneck matching problem [50] in the bipartite graph defined by the matrix A(j−1). GreedyBVN

maximizes αj and therefore αj is the largest amount which can be subtracted from a row and
column of A(j−1). This heuristic hence aspires to make A(j) void as soon as possible by always
performing the largest possible reductions.

Algorithm 6.1: Generalized-Birkhoff: Template to find a BvN decomposition
Input: A doubly stochastic matrix A.
Output: A valid BvN decomposition of A.
1: A(0) ← A
2: j ← 0
3: while A(j) 6= 0 do
4: j ← j + 1
5: P(j) ← a permutation matrix in the pattern of A(j−1)

6: αj ← the minimum value in A(j−1) at the nonzero positions of P(j−1)

7: A(j) ← A(j−1) − α(j) ·P(j)

6.2 Analysis of the two heuristics for computing BvN decompo-
sitions

An empirical study from the literature [39] demonstrated that the GreedyBVN heuristic obtains
a much smaller number of permutation matrices compared to the Birkhoff heuristic in practice.
Here, we compare these two heuristics theoretically in an attempt to explain this behavior. First
we show that the original Birkhoff heuristic does not have any constant ratio approximation
guarantee. For an n× n matrix, its worst-case approximation ratio is Ω(n).

We begin with a small example shown in Figure 6.1. We decompose a 6 × 6 matrix A(0)

which has an optimal BvN decomposition with three permutation matrices: the main diagonal,

6.2. ANALYSIS OF THE TWO HEURISTICS FOR COMPUTING BVN
DECOMPOSITIONS 103

A(0) =

1 4 1 0 0 0
0 1 4 1 0 0
0 0 1 4 1 0
0 0 0 1 4 1
1 0 0 0 1 4
4 1 0 0 0 1

 A(1) =

0 4 1 0 0 0
0 1 3 1 0 0
0 0 1 3 1 0
0 0 0 1 3 1
1 0 0 0 1 3
4 0 0 0 0 1

A(2) =

0 4 0 0 0 0
0 0 3 1 0 0
0 0 1 2 1 0
0 0 0 1 2 1
1 0 0 0 1 2
3 0 0 0 0 1

 A(3) =

0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 2 1 0
0 0 0 1 1 1
1 0 0 0 1 1
2 0 0 0 0 1

A(4) =

0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 1 1
1 0 0 0 1 0
1 0 0 0 0 1

 A(5) =

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1

Figure 6.1 – A sample matrix to show that the original Birkhoff heuristic can obtain a BvN
decomposition with n permutation matrices while the optimal one has 3.

the one containing the entries equal to 4, and the one containing the remaining entries. For
simplicity, we used integer values in our example. However, since the row and column sums of
A(0) are equal to 6, it can be converted to a doubly stochastic matrix by dividing all the entries
with 6. The figure shows how one can obtain a suboptimal decomposition with 6 matrices using
the Birkhoff heuristic. In all steps, the red-colored entry set corresponds to a permutation
and contains the minimum possible value in the matrix, which is 1. In the following, we show
how to generalize the idea behind Figure 6.1 to matrices of arbitrary size.

Lemma 6.1. The worst-case approximation ratio of the Birkhoff heuristic is Ω(n).

Proof. For any given integer n ≥ 3, we show that there is a matrix of size n× n whose optimal
BvN decomposition has 3 permutations, whereas the Birkhoff heuristic can obtain a BvN
decomposition with exactly n permutation matrices. The example in Figure 6.1 is a special case
for n = 6 for the following construction process.

Let f : {1, 2, . . . , n} → {1, 2, . . . , n} be the function f(x) = (x mod n)+1. Given a matrixM,
let M′ = F(M) be another matrix containing the same set of entries where the function is f(·) is
used on the coordinate indices to redistribute the entries of M on M′. That is mi,j = m′f(i),f(j).
Since f(·) is one-to-one and onto, if M is a permutation matrix then F(M) is also a permutation
matrix. We will start with a permutation matrix, and run it through F for n−1 times to obtain
n permutation matrices, which are all different. By adding these permutation matrices, we will
obtain a matrix A whose optimal BvN decomposition has three permutation matrices, while the
n permutation matrices used to create A correspond to a decomposition that can be obtained
by the Birkhoff heuristic.

Let P1 be the permutation matrix whose ones, which are partitioned into three sets, are at

104 CHAPTER 6. RESULTS ON THE BIRKHOFF–VON NEUMANN DECOMPOSITION

the positions

1st set︷ ︸︸ ︷
(1, 1),

2nd set︷ ︸︸ ︷
(n, 2),

3rd set︷ ︸︸ ︷
(2, 3), (3, 4), . . . , (n− 1, n) . (6.2)

Let us use F(·) to generate a matrix sequence Pi = F(Pi−1) for 2 ≤ i ≤ n. For example, P2’s
nonzeros are at the positions

1st set︷ ︸︸ ︷
(2, 2),

2nd set︷ ︸︸ ︷
(1, 3) ,

3rd set︷ ︸︸ ︷
(3, 4), (4, 5), . . . , (n, 1) .

We then add the Pis to build the matrix

A = P1 + P2 + · · ·+ Pn .

We have the following observations about the nonzero elements of A:

1. ai,i = 1 for all i = 1, . . . , n, and only Pi has a one at the position (i, i). These elements
are from the first set of positions of the permutation matrices, as identified in (6.2). When
put together, these n entries form a permutation matrix P(1).

2. ai,j = 1 for all i = 1, . . . , n and j = ((i + 1) mod n) + 1, and only Ph, where h =
(i mod n) + 1, has a one at the position (i, j). These elements are from the second set of
positions of the permutation matrices, as identified in (6.2). When put together, these n
entries form a permutation matrix P(2).

3. ai,j = n−2 for all i = 1, . . . , n and j = (i mod n)+1, where all P` for ` ∈ {1, . . . , n}\{i, j}
have a one at the position ai,j . These elements are from the third set of positions of the
permutation matrices, as identified in (6.2). When put together, these n entries form a
permutation matrix P(3) multiplied by the scalar (n− 2).

In other words, we can write

A = P(1) + P(2) + (n− 2) ·P(3) ,

and see that A has a BvN decomposition with three permutation matrices. We note that
each row and column of A contains three nonzeros; and hence three is the smallest number of
permutation matrices in a BvN decomposition of A.

Since the minimum element in A is 1, and each Pi contains one such element, the Birkhoff
heuristic can obtain a decomposition using Pi for i = 1, . . . , n. Therefore, the the approximation
for Birkhoff is no better than n

3 , which can be made arbitrarily large.

Note that GreedyBVN will optimally decompose the matrix A used in the above proof. We now
analyze the performance of the GreedyBVN heuristic. Initially, we present some experiments
showcasing that there is a strong connection between the performance of GreedyBVN and the
values in the matrix.

We create a set of n × n matrices. To do that, we first fix a set of z permutation matrices
{C1, . . . ,Cz} of size n × n. These permutation matrices with varying values of α will be used
to generate the matrices. The matrices are parameterized by the subscript i and each Ai is
created as follows: Ai = α1 · C1 + α2 · C2 + · · · + αz · Cz where each αj for j = 1, . . . , z is a
randomly chosen integer in the range [1, 2i], and we also set a randomly chosen αj equivalent to

6.2. ANALYSIS OF THE TWO HEURISTICS FOR COMPUTING BVN
DECOMPOSITIONS 105

n = 30 and z = 20

average worst case
i ki ki/z ki ki/z

10 59 2.99 63 3.15
20 105 5.29 110 5.50
30 149 7.46 158 7.90
40 184 9.23 191 9.55
50 212 10.62 227 11.35

n = 200 and z = 100

average worst case
i ki ki/z ki ki/z

10 268 2.69 280 2.80
20 487 4.88 499 4.99
30 716 7.16 726 7.26
40 932 9.33 947 9.47
50 1124 11.25 1162 11.62

Table 6.1 – Experiments showing the dependence of the performance of GreedyBVN on the
values of the matrix elements. n is the matrix size; i ∈ {10, 20, 30, 40, 50} is the parameter for
creating matrices using αj ∈ [1, 2i]; z is the number of permutation matrices used in creating Ai.
We did five experiments for a given pair of n and i. GreedyBVN obtains ki permutation matrices.
The average and the maximum number of permutation matrices obtained by GreedyBVN for
five random instances are given. ki

z is a lower bound to the performance of GreedyBVN, as
z ≥ Opt.

2i to guarantee the existence of at least one large value even in the unlikely case that all other
values are not large enough. As in Figure 6.1, each Ai is not doubly stochastic but it has equal
row and columns sums and can be easily turned into one. Each Ai has the same structure and
differs from the rest only in the values of αj ’s that are chosen. As a consequence, they all can
be decomposed by the same set of permutation matrices.

We present some results in Table 6.1 for two different values of n and z. We chose n = 30
and z = 20 for the first set, and n = 200 and z = 100 for the second. We created five different
set of permutations {C1, . . . ,Cz} and tested for i ∈ {10, 20, 30, 40, 50}. Let ki be the number of
permutation matrices that GreedyBVN obtains for a given Ai. The table gives the average and
the maximum ki of the five different Ai matrices, for a given pair of n and i. By construction,
each Ai has a BvN decomposition with z permutation matrices. Since z is no smaller than the
optimal value, the ratio ki

z gives a lower bound on the performance of GreedyBVN. As seen
from the experiments, as i increases, the performance of GreedyBVN gets increasingly worse.
This shows that a constant ratio worst case approximation of GreedyBVN is unlikely. While
the performance depends on z (for example, for small z, GreedyBVN is likely to obtain near
optimal decompositions), it seems that the size of the matrix does not largely affect the relative
performance of GreedyBVN. Now we attempt to explain the above results theoretically.

Lemma 6.2. Let α?1P
?
1 + · · · + α?kP

?
k? be an optimal BvN decomposition of a given doubly

stochastic matrix A. Then, for any BvN decomposition of A with ` ≥ k? permutation matrices,
we have ` ≤ k? · maxi α

?
i

mini αi
. If the coefficients are integers (e.g., when A is a matrix with constant

row and column sums of integral values), we have ` ≤ k? ·maxi α
?
i .

Proof. Consider a BvN decomposition α1P1 + · · ·+ α`P` with ` ≥ k?. Assume without loss of
generality that α?1 ≥ · · · ≥ α?k? and α1 ≥ · · · ≥ α`.

We know that the coefficients of these two decompositions sum up to the same value. That
is ∑̀

i=1

αi =

k?∑
i=1

α?i .

106 CHAPTER 6. RESULTS ON THE BIRKHOFF–VON NEUMANN DECOMPOSITION

Since α` is the smallest of α, and α?1 is the largest of α?, we have

` · α` ≤ k? · α?1 ,

and hence
`

k?
≤ α?1
α`

.

By assuming integer values, we see that α` ≥ 1 and thus

` ≤ k? ·max
i
α?i .

This lemma evaluates the approximation guarantee of a given BvN decomposition. It does not
seem very useful, because of the fact that even if we have mini αi, we do not have maxi α

?
i .

Luckily, we can say more in the case of GreedyBVN.

Corollary 6.1. Let k? be the smallest number of permutation matrices in a BvN decomposition
of a given doubly stochastic matrix A. Let α1 and α` be the first and last coefficients obtained
by the GreedyBVN heuristic for decomposing A. Then, ` ≤ k? · α1

α`
.

Proof. This is easy to see as GreedyBVN obtains the coefficients in a non-increasing order [39,
Lemma 3], and α1 ≥ α?j for all 1 ≤ j ≤ k? for any BvN decomposition containing α?j .

Lemma 6.2 and Corollary 6.1 give a posteriori estimates of the performance of the GreedyBVN

heuristic, in that one looks at the decomposition and tells how good it is. This potentially can
reveal a good performance. For example, when GreedyBVN obtains a BvN decomposition with
all coefficients equivalent, then we know that it is an optimal BvN. The same cannot be told
for the Birkhoff heuristic though (consider the example of Figure 6.1). We also note that the
ratio given in Corollary 6.1 should usually be much larger than the practical performance.

6.3 Heuristics for GreedyBVN

As was discussed above, the GreedyBVN algorithm operates by trying to maximize the sub-
tracted value and consequently minimize the column/row sum in the resulting matrix. This is
done in the belief that by reducing maximally, the resulting matrix will require less steps in
order to be fully decomposed. However, a matrix can contain several distinct permutations with
the same maximum bottleneck value. Each one of those equivalent (in terms of the bottleneck
value) permutations leads to a different matrix in the following steps and hence a different num-
ber of permutation matrices. Consider for example two possible executions of the GreedyBVN

heuristic for the following 4× 4 matrix
1 5 0 4
2 4 0 4
3 1 6 0
4 0 4 2

 .

6.4. EXPERIMENTS ON REAL-LIFE MATRICES 107

The first execution returns an optimal solution with k = 4 using the following decomposition

4

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

+ 3

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

+ 2

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

+ 1

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 .

However, for the second execution we can obtain k = 5 by choosing different permutation
matrices in the first and the second steps (with the equivalent bottleneck values as in the
previous execution)

4

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

+ 3

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

+ 1

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

+ 1

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

+ 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

This led us to investigate whether or not some of the permutations have better properties
than others and what other secondary criteria we could take into account while choosing a
permutation for GreedyBVN. At the end, we considered a variation of GreedyBVN called
Greedy+

BVN. Greedy+
BVN returns a maximum bottleneck matching that maximizes the sum

of its entries. As the experiments of Table 6.1 showed, GreedyBVN behaves better when the
values in the matrix are relatively small. In finding the maximum sum, we are optimistic that
such a permutation will contain a lot of large elements which will then be reduced maximally
by the maximum bottleneck value for A.

The algorithm implementing Greedy+
BVN requires two steps. In the first step, as in the

GreedyBVN heuristic, we apply a maximum bottleneck matching algorithm on A to find the
bottleneck value b. We then create a new matrix Ab keeping only those values from A such
that αij ≥ b. In the second step, a permutation of Ab with maximum weight is returned.
Since Ab comprises only of values from A, the returned permutation is also a permutation for
A and because any value is at least as large as b it is also a maximum bottleneck matching.
Understandably, Greedy+

BVN requires more computational time than GreedyBVN as an addi-
tional maximum weighted perfect matching algorithm needs to be run on top of the maximum
bottleneck matching algorithm at each step.

We additionally consider a relaxation of Greedy+
BVN which we refer to as GreedyRBVN. This

relaxation decides whether to apply the secondary maximum weight sum algorithm or not based
on the outcome of a biased coin. More specifically, at each step, with probability p, GreedyBVN

is chosen and with the complement probability 1−p we opt instead for the Greedy+
BVN variant.

In doing so, we hope to combine the best elements of both GreedyBVN and Greedy+
BVN and

construct a heuristic that would provide satisfactory answers for a larger set of matrices.

6.4 Experiments on real-life matrices

To see the effects of the two new proposed heuristics we conducted experiments with 55 real-life
sparse matrices taken from the SuiteSparse Matrix Collection [31]. We used MATLAB interfaces
for the software MC64 [36, 37] which provides codes written in FORTRAN for the maximum
bottleneck matching and maximum weighted sum matching problems.

We preprocessed these matrices with matrix scaling algorithms [79, 80] to make them (nearly)

108 CHAPTER 6. RESULTS ON THE BIRKHOFF–VON NEUMANN DECOMPOSITION

name n GreedyBVN Greedy+
BVN GreedyRBVN

3elt_dual 9000 310 281 298
aft01 8205 120 122 119
aft02 8184 228 216 231
airfoil1_dual 8034 332 279 309
barth 6691 71 71 66
bcsstk33 8738 468 494 459
bcsstk38 8032 589 539 572
benzene 8219 112 119 114
c-29 5033 864 851 830
c-36 7479 1718 1361 1594
c-37 8204 889 761 818
EX5 6545 228 221 225
EX6 6545 228 220 236
ex40 7740 394 311 313
fxm3_6 5026 370 368 360
igbt3 10938 2001 1155 1732
Kuu 7102 327 306 304
nemeth01 9506 207 219 205
pf2177 9728 993 1069 946
pkustk02 10800 615 645 591
s2rmq4m1 5489 207 206 215
SiH4 5041 567 451 534
ted_AB 10605 380 361 374

Table 6.2 – The number of permutation matrices in a BvN decomposition obtained by the
three heuristics for a subset of 23 matrices from all 55 matrices. Matrix igbt3 could not be
decomposed with GreedyBVN within 2000 iterations that is why its k exceeds this limit.

doubly stochastic. Prior to scaling, we converted any negative values in these matrices to
positive, since nonnegative entries are a prerequisite for doubly stochastic matrices.

We included some stopping conditions to the decomposition process. As a first condition, we
set a limit of 2000 iterations for each heuristic. Once this limit has been reached, we stop the
procedure at that point even if the matrix has not been decomposed fully yet. This condition
very rarely occurred in the tests.

The other conditions take care of the issues that are created by working with floating point
numbers. Due to the fact that FP-arithmetic is not exact, it might be impossible to make A(i)

consist only of exact zeros. Instead a threshold θ is defined and if some value αij ends up being
below θ, it is considered equal to zero and set as such. Finally, we stop if the accumulated sum of
the coefficients (that is,

∑
αi) is nearly equivalent to 1, i.e., over 0.9999. We tested GreedyRBVN

with p = 0.6, i.e., 60% of the time it applied the simple GreedyBVN heuristic.
We present some of the results in Tables 6.2 to 6.4. Focusing solely on the performance

of Greedy+
BVN in Table 6.2 we can make a few observations. First of all, our augmentation

seems indeed to influence positively the quality of the returned solution. Greedy+
BVN manages

to outperform GreedyBVN in many instances. It is particularly of note to examine the instance
igbt3. As we can see the original GreedyBVN finished without being able to fully decompose
this matrix whereas Greedy+

BVN decomposed the matrix after the 1155th step. This signals
an improvement of at least 43% which could be higher since we did not run GreedyBVN to
completion. There also exist some matrices where Greedy+

BVN either returned an inferior re-

6.5. CONCLUDING REMARKS 109

GreedyBVN

Heuristic < ≤
Greedy+

BVN 26 45
GreedyRBVN 37 47

Table 6.3 – We present the number of experiments for which the two heuristics obtained a
smaller number of permutations than GreedyBVN (first column) or the same number of permu-
tations (second column). We performed in total 55 tests.

Heuristic k

GreedyBVN 418
Greedy+

BVN 388
GreedyRBVN 403

Table 6.4 – Average number of decompositions used over all experiments

sult to GreedyBVN or failed to improve GreedyBVN’s output. This is perhaps unavoidable as
GreedyBVN has less restrictions on which permutation to pick and thus potentially can pick a
good one more frequently in some instances. It is in such cases, that the proposed relaxation
GreedyRBVN becomes useful. As can be seen in Table 6.3, GreedyRBVN manages to decompose
matrices with less permutations than GreedyBVN more frequently than Greedy+

BVN (first col-
umn), while in overall it is at least as good as GreedyBVN in more instances (second column).
Quality-wise, the variant GreedyRBVN is not always as good as Greedy+

BVN (see the average
numbers in Table 6.4 and the reported numbers in Table 6.2). It instead seems to offer a more
balanced approach and succeeded at beating GreedyBVN in more cases.

6.5 Concluding remarks

In this chapter, we investigated heuristics for obtaining Birkhoff–von Neumann (BvN) decom-
position of doubly stochastic matrices and presented three results. First, we showed that the
worst-case approximation ratio of the original Birkhoff heuristic is Ω(n). Second, we showed
how the performance of the GreedyBVN heuristic depends on the values of matrix elements,
and obtained an a posteriori bound for GreedyBVN using the first and the last coefficients in
its obtained decomposition. The shown bound for the performance of GreedyBVN is expected
to be much larger than what one observes in practice, as the bound can even be larger than
the upper bound on the number of permutation matrices. A tighter analysis should be possi-
ble to explain the practical performance of the GreedyBVN heuristic (which was demonstrated
earlier [39]). Third, we discussed two modifications of the GreedyBVN heuristic to reduce the
number of permutations in the produced BvN decomposition of a doubly stochastic matrix. On
this theme, we are interested in additional modifications to the GreedyBVN algorithm. It would
also be interesting to apply the degree-1 and degree-2 reduction rules for the maximum weighted
matching [82] as a means to improve the run time of both Greedy+

BVN and GreedyRBVN.
Another possible avenue for research comes from the constructive proof of the Birkhoff–von

Neumann theorem due to Koopmans and Beckmann [81]. In this approach, A is recursively

110 CHAPTER 6. RESULTS ON THE BIRKHOFF–VON NEUMANN DECOMPOSITION

split into two matrices B and C such that A = βB + (1 − β)C, and 0 < β < 1. A BvN
decomposition of A can be obtained by combining the BvN decompositions of B and C. In
short, their proposed method starts by finding a cycle. Then, the matrices B and C are created
by deleting from this cycle the even numbered edge of lowest weight (for B) or the odd numbered
edge of lowest weight (for C). The remaining edges in the cycles are updated appropriately (and
in a different manner) in both B and C. The β parameter is defined based on the two values in
the two deleted edges. We refer the reader to the original paper for a more detailed overview.

A direct application of the above yields an exponential time algorithm. The matrices B
and C overlap significantly and as a consequence share many permutations, which leads to
combinatorially large space requirements and/or very high run time. Unlike heuristics from
the generalized Birkhoff heuristic family, an approach based on the algorithm by Koopmans
and Beckmann can potentially find BvN decompositions which require a much higher number of
permutation matrices than the aforementioned upper bounds, i.e., τ−2n+2. On the other hand,
Uçar [105] shows that such an approach can be guided to find optimal decompositions in instances
where any possible heuristic following the template of Algorithm 6.1 cannot. Attempting to make
the algorithm by Koopmans and Beckmann useful in practice can be therefore important.

Chapter 7

Conclusion

In this thesis we examined four important problems in the field of combinatorial scientific com-
puting. These problems were that of finding matchings in graphs and hypergraphs, the estima-
tion of the number of perfect matchings in graphs, and the Birkhoff–von Neumann decomposition
of doubly stochastic matrices. Our main contribution in the works which constitute this thesis
was to examine the relation between matching and matrix scaling. The proposed algorithms
in Chapters 2–5, which make use of scaling, exhibited the best performance in practice versus
the standard approaches from the literature. Chapter 6 worked on doubly stochastic matrices,
where those matrices could potentially be coming from the scaling of general matrices [9]. Before
discussing potential future directions for research we give a brief summary of each individual
chapter.

7.1 Summary of the chapters

In Chapter 2 we examined the matching problem in bipartite graphs, where the problem is
simpler due to the absence of odd cycles. This chapter consisted of three parts. In the first part,
we studied in detail the well-known matching heuristic by Karp and Sipser [72]. We proposed a
subquadratic implementation of the heuristic with an expected O(m log n) complexity, which is
currently the best known. In the second part of the chapter, we considered two exact probabilistic
matching algorithms for two special classes of bipartite graphs [54, 71]. Using matrix scaling,
we converted these two specialized algorithms into two practical heuristics called 2outMC
and TruncRW that are applicable to arbitrary bipartite graphs. The conducted experiments
showed that these two heuristics are fast and obtain near-optimal matchings in several real-
life or synthetic graphs. They are also robust and very effective as initialization methods. In
addition, we empirically showed that k-out subgraphs from general bipartite host graphs for
k = 2, 3 either had a perfect matching or only left a few vertices unmatched. For k = 3,
in particular, a perfect matching was found in all cases. Considering that k-out subgraphs
have O(n) edges, this observation seems to suggest that an O(n

√
n) algorithm should return

either a maximum matching or a matching that requires only minimal work to be made perfect.
Finally, in the last part of the chapter we proposed a deterministic heuristic for matching. This
heuristic was obtained through the derandomization of an existing matching heuristic [38] based
on matrix scaling. We presented some experiments showing that the deterministic heuristic
performs consistently better than its current 1− 1/e approximation guarantee.

Chapter 3 examined the maximum matching problem in general undirected graphs. We
adapted an earlier algorithm [38] for bipartite graphs and discussed some variations of the main

111

112 CHAPTER 7. CONCLUSION

algorithm. The adapted algorithm works by creating a random 1-out subgraph of the host graph.
We showed that the algorithm has an approximation guarantee of around 0.866− log(n)/n for
complete graphs. We focused on complete graphs as their equivalents on bipartite graphs lead
to the worst behavior for the original algorithm [38] that we adapted. The experiments verified
the good performance of the heuristic.

In Chapter 4 we proposed heuristics for the NP-Hard problem of finding a maximum cardi-
nality matching in a d-partite, d-uniform hypergraph. These heuristics started as generalizations
of existing matching heuristics for graphs. We then proceeded to propose tensor scaling-based
heuristics inspired by the works in the previous two chapters. Our experiments showcased that
the heuristics based on scaling had the best performance in a large set of tests.

In Chapter 5 we investigated randomized methods for approximating the number of perfect
matchings in bipartite graphs and general undirected graphs. The proposed algorithms and their
analysis rely on matrix scaling. We provided a sufficient upper bound to guarantee an (ε, δ)-
approximation for given choice of ε and δ using the scaling coefficients of the initial adjacency
matrix of the graph. We then showed in practice that the scaling-based methods return the
most accurate approximations versus two other alternatives based on similar methodology.

In Chapter 6 we examined two heuristics for obtaining a BvN decomposition with a small
number of permutation matrices. We showed performance bounds for both of these heuristics.
We then discussed an extension of one of these heuristics for improved performance.

7.2 Future work

We recall and collect some of the future work discussed at the end of each chapter to give further
insights.

In the first part of Chapter 2, we left open the question of whether a lower complexity
implementation of Karp–Sipser is possible or not. Rules similar to Rule-2 of Karp–Sipser are
often used as reduction techniques in NP-Complete problems such as Maximum-Independent-
Set [84] or Vertex-Cover [42]. A linear or pseudo-linear algorithm to apply Rule-2 and
efficiently merge the neighbors of degree-2 vertices should therefore be of interest to several
problems.

Our findings in Chapter 2 also necessitate the further examination of k-out bipartite graphs
sampled from a host graph based on matrix scaling. In particular, our aim in this regard
would be derive a theorem similar to the one by Walkup [107] about k-out graphs having a
perfect matching. On this note, we also wonder whether 2outMC can be made exact for 2-out
subgraphs of arbitrary host graphs. As we discussed in Section 2.3.1, a fast exact algorithm
for matching in 2-out subgraphs can be used to yield an exact algorithm for arbitrary bipartite
graphs with potentially reduced run time than the best known approaches [62].

We are also interested in derandomizing other randomized algorithms with higher approx-
imation guarantees. It seems fitting to start this attempt with the TwoSided [38] heuristic
which generates an 1-out subgraph having an 0.866-approximation of the maximum matching
for a given bipartite graph. On this note, we plan to re-evaluate our analysis of the derandomized
heuristic in an attempt to explain better the performance seen in the experiments.

A more involved research direction along the lines of Chapter 2 is to develop heuristics for
the maximum weighted sum matching problem based on matrix scaling. Basing the probabilistic
decisions solely on the values of the doubly stochastic matrix in a straightforward adaptation
of our heuristics will not work. In addition to the original weighted bipartite graph, another
weighted bipartite graph is created corresponding to the scaled adjacency matrix. The ordering

7.2. FUTURE WORK 113

of the entries in a matrix A is not necessarily kept in the scaled matrix S, i.e., aij ≥ aij′ does not
imply that sij ≥ sij′ . Thus while the two graphs have the same set of edges, the matchings which
obtain the maximum weighted sum can be different. An approximation guarantee is therefore
not necessarily maintained while passing from one graph to the other. This should thus be taken
into consideration when trying to define an algorithm utilizing matrix scaling. As a first step,
one could try to consider a related problem about maximizing the product of the weights in
the obtained matching instead of the sum. There, the permutations which yield the maximum
product are the same in both graphs, and it is potentially easier to adapt some of the results.

In Chapter 3 our analysis of the main algorithm was complicated by the existence of odd
cycles in the generated subgraph. Empirically we showed that the obtained bound on complete
graphs should be valid for general undirected graphs. We plan to re-examine our analysis and
attempt to show that the Θ (log n/n) bound on the number of odd cycles also holds theoret-
ically for graphs whose adjacency matrices have total support. We also plan to extend both
2outMC and TruncRW to undirected graphs and study their behavior. As we discussed in
the corresponding chapter, the adaptation of 2outMC has some challenges because 2outMC
takes advantage of the bipartiteness of the given graph.

The future work concerning Chapter 4 bares similarities with the future work mentioned
in the previous paragraphs, as our work in this chapter was inspired by our results for graphs.
We are likewise interested in examining k-out hypergraphs and prove theoretically that a dd−1-
out hypergraph has a perfect matching. Furthermore, we would like to examine the weighted
sum variant of the matching problem in d-partite, d-uniform hypergraphs. The same issues that
complicate the extension of our results for bipartite graphs in the weighted case should also apply
in here. We also intent to adapt our findings from the first part of Chapter 2 to improve our
implementation of KarpSipserH. Avoiding the use of a stack to perform merges, in particular,
should lead to a boost in performance.

An interesting long term perspective would be to design heuristics for the general prob-
lem of matching in hypergraphs, where the given hypergraphs are not necessarily d-partite and
d-uniform. As a first step in this direction, we note that the two rules we proposed for Karp-
SipserH should be easily extendable for arbitrary hypergraphs.

Future work for Chapter 5 concerns mostly the re-examination of the conducted theoretical
analysis. Tightening the obtained bounds should allow us to explain the good behavior that we
observed in practice. In addition, we are interested in examining the behavior of the algorithm
in certain graph classes such as grids and Erdös-Renyi graphs.

For the Min-BvN-Decomp problem discussed in Chapter 6, we are interested mostly in
obtaining better performing heuristics. To that end, we intent to study the hardness of the
problem and attempt to show if it is possible to obtain an algorithm with a constant factor
approximation. Beyond that, we are going to examine the GreedyBVN heuristic further in
order to improve its performance, and potentially the performance of other related heuristics
from the generalized Birkhoff family. We would also like to experiment with the method due to
Koopmans and Beckmann [81] to see whether we could produce a practical algorithm out of it.

Bibliography

[1] IBM ILOG CPLEX Optimizer. https://www.ibm.com/analytics/cplex-optimizer. Last
accessed: 07-06-2020.

[2] R. Aharoni and P. Haxell. Hall’s theorem for hypergraphs. Journal of Graph Theory,
35(2):83–88, 2000.

[3] Z. Allen-Zhu, Y. Li, R. Oliveira, and A. Wigderson. Much faster algorithms for matrix
scaling. arXiv preprint arXiv:1704.02315, 2017.

[4] M. Anastos and A. Frieze. Finding perfect matchings in random cubic graphs in linear time.
arXiv preprint arXiv:1808.00825, 2018.

[5] J. Aronson, M. Dyer, A. Frieze, and S. Suen. Randomized greedy matching II. Random
Struct. Algor., 6(1):55–73, 1995.

[6] J. Aronson, A. M. Frieze, and B. G. Pittel. Maximum matchings in sparse random graphs:
Karp-sipser revisited. Random Struct. Algorithms, 12(2):111–177, 1998.

[7] M. Bartha and M. Kresz. A depth-first algorithm to reduce graphs in linear time. In 11th
International Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
pages 273–281, Sep. 2009.

[8] I. Beichl and F. Sullivan. Approximating the permanent via importance sampling with
application to the dimer covering problem. J. Comput. Phys., 149(1):128–147, 1999.

[9] M. Benzi and B. Uçar. Preconditioning techniques based on the Birkhoff–von Neumann
decomposition. Computational Methods in Applied Mathematics, 17:201–215, 2017.

[10] C. Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences
of the USA, 43:842–844, 1957.

[11] P. Berman and M. Karpinski. Improved approximation lower bounds on small occurence
optimization. ECCC Report, 2003.

[12] B. Besser and M. Poloczek. Greedy matching: Guarantees and limitations. Algorithmica,
77(1):201–234, 2017.

[13] G. Birkhoff. Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán Rev. Ser. A,
(5):147–150, 1946.

[14] N. Blum. A new approach to maximum matching in general graphs. In ICALP ’90, pages
586–597, London, UK, UK, 1990. Springer-Verlag.

114

https://www.ibm.com/analytics/cplex-optimizer

BIBLIOGRAPHY 115

[15] T. Bohmand and A. Frieze. Hamilton cycles in 3-out. Random Structures & Algorithms,
35(4):393–417, 2009.

[16] R. A. Brualdi. Notes on the Birkhoff algorithm for doubly stochastic matrices. Canadian
Mathematical Bulletin, 25(2):191–199, 1982.

[17] R. A. Brualdi and P. M. Gibson. Convex polyhedra of doubly stochastic matrices: I. Appli-
cations of the permanent function. Journal of Combinatorial Theory, Series A, 22(2):194–
230, 1977.

[18] R. Burkard, M. Dell’Amico, and S. Martello. Assignment problems, revised reprint, volume
106. Siam, 2012.

[19] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr., and T. M. Mitchell.
Toward an architecture for never-ending language learning. In AAAI, volume 5, page 3, 2010.

[20] Ü. V. Çatalyürek and C. Aykanat. PaToH: A Multilevel Hypergraph Partitioning Tool, Ver-
sion 3.0. Bilkent University, Department of Computer Engineering, Ankara, 06533 Turkey.
Available at https://www.cc.gatech.edu/~umit/software.html, 1999.

[21] D. Chakrabarty and S. Khanna. Better and simpler error analysis of the Sinkhorn-Knopp
algorithm for matrix scaling. arXiv preprint arXiv:1801.02790, 2018.

[22] C. Chang, W. Chen, and H. Huang. On service guarantees for input-buffered crossbar
switches: A capacity decomposition approach by Birkhoff and von Neumann. In Quality of
Service, 1999. IWQoS ’99. 1999 Seventh International Workshop on, pages 79–86, 1999.

[23] P. Chebolu, A. M. Frieze, and P. Melsted. Finding a maximum matching in a sparse random
graph in O(n) expected time. J. ACM, 57(4):24:1–24:27, 2010.

[24] E. Cohen. Structure prediction and computation of sparse matrix products. Journal of
Combinatorial Optimization, 2(4):307–332, Dec 1998.

[25] M. B. Cohen, A. Madry, D. Tsipras, and A. Vladu. Matrix scaling and balancing via box
constrained Newton’s method and interior point methods. arXiv preprint arXiv:1704.02310,
2017.

[26] L. Cui, W. Li, and M. K. Ng. Birkhoff–von Neumann Theorem for multistochastic tensors.
SIAM Journal on Matrix Analysis and Applications, 35(3):956–973, 2014.

[27] M. Cygan. Improved approximation for 3-dimensional matching via bounded pathwidth
local search. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Sympo-
sium on, pages 509–518. IEEE, 2013.

[28] M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized algorithms. Springer, 2015.

[29] M. Cygan, F. Grandoni, and M. Mastrolilli. How to sell hyperedges: The hypermatch-
ing assignment problem. In Proc. of the twenty-fourth annual ACM-SIAM symposium on
Discrete algorithms, pages 342–351. SIAM, 2013.

[30] T. A. Davis. Direct methods for sparse linear systems. Siam, 2006.

https://www.cc.gatech.edu/~umit/software.html

116 BIBLIOGRAPHY

[31] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Trans.
Math. Softw., 38(1):1:1–1:25, 2011.

[32] P. Devlin and J. Kahn. Perfect fractional matchings in k-out hypergraphs. arXiv preprint
arXiv:1703.03513, 2017.

[33] I. S. Duff. On algorithms for obtaining a maximum transversal. ACM Transactions on
Mathematical Software, 7(3):315–330, 1981.

[34] I. S. Duff, A. M. Erisman, and J. Reid. Direct methods for sparse matrices. Oxford Uni-
versity Press, 2017.

[35] I. S. Duff, K. Kaya, and B. Uçar. Design, implementation, and analysis of maximum
transversal algorithms. ACM Transactions on Mathematical Software, 38(2):13, 2011.

[36] I. S. Duff and J. Koster. The design and use of algorithms for permuting large entries
to the diagonal of sparse matrices. SIAM Journal on Matrix Analysis and Applications,
20(4):889–901, 1999.

[37] I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a
sparse matrix. SIAM Journal on Matrix Analysis and Applications, 22:973–996, 2001.

[38] F. Dufossé, K. Kaya, and B. Uçar. Two approximation algorithms for bipartite matching
on multicore architectures. J. Parallel Distr. Com., 85:62–78, 2015.

[39] F. Dufossé and B. Uçar. Notes on Birkhoff–von Neumann decomposition of doubly stochas-
tic matrices. Linear Algebra and its Applications, 497:108–115, 2016.

[40] A. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs. Canad. J. Math.,
10:517–534, 1958.

[41] M. Dyer and A. Frieze. Randomized greedy matching. Random Structures & Algorithms,
2(1):29–45, 1991.

[42] M. R. Fellows, L. Jaffke, A. I. Király, F. A. Rosamond, and M. Weller. What is known about
vertex cover kernelization? In Adventures Between Lower Bounds and Higher Altitudes, pages
330–356. Springer, 2018.

[43] T. I. Fenner and A. M. Frieze. On the connectivity of random m-orientable graphs and
digraphs. Combinatorica, 2(4):347–359, 1982.

[44] J. Franklin and J. Lorenz. On the scaling of multidimensional matrices. Linear Algebra and
its applications, 114:717–735, 1989.

[45] A. Frieze and T. Johansson. On random k-out subgraphs of large graphs. Random Structures
& Algorithms, 50(2):143–157, 2017.

[46] A. M. Frieze. Maximum matchings in a class of random graphs. Journal of Combinatorial
Theory, Series B, 40(2):196–212, 1986.

[47] A. Froger, O. Guyon, and E. Pinson. A set packing approach for scheduling passenger train
drivers: the French experience. In RailTokyo2015, Tokyo, Japan, March 2015.

BIBLIOGRAPHY 117

[48] M. Fürer and S. P. Kasiviswanathan. An almost linear time approximation algorithm for
the permanent of a random (0-1) matrix. In International Conference on Foundations of
Software Technology and Theoretical Computer Science, pages 263–274. Springer, 2004.

[49] M. Fürer and S. P. Kasiviswanathan. Approximately counting perfect matchings in general
graphs. In ALENEX/ANALCO, pages 263–272, 2005.

[50] H. N. Gabow and R. E. Tarjan. Algorithms for two bottleneck optimization problems.
Journal of Algorithms, 9(3):411–417, 1988.

[51] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for network problems. SIAM J.
Comput., 18(5):1013–1036, 1989.

[52] M. Ghaffari, K. Nowicki, and M. Thorup. Faster algorithms for edge connectivity via
random 2-out contractions. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1260–1279. SIAM, 2020.

[53] A. Globerson, G. Chechik, F. Pereira, and N. Tishby. Euclidean Embedding of Co-
occurrence Data. The Journal of Machine Learning Research, 8:2265–2295, 2007.

[54] A. Goel, M. Kapralov, and S. Khanna. Perfect matchings in O(n log n) time in regular
bipartite graphs. SIAM Journal on Computing, 42(3):1392–1404, 2013.

[55] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. J. ACM,
35(4):921–940, 1988.

[56] G. Gottlob and G. Greco. Decomposing combinatorial auctions and set packing problems.
J. ACM, 60(4):24:1–24:39, September 2013.

[57] T. Hagerup, K. Mehlhorn, and J. I. Munro. Maintaining discrete probability distributions
optimally. In A. Lingas, R. Karlsson, and S. Carlsson, editors, 20th International Colloquium
on Automata, Languages, and Programming (ICALP), pages 253–264, Berlin, Heidelberg,
1993. Springer Berlin Heidelberg.

[58] M. Halldórsson. Approximating discrete collections via local improvements. In Proceedings
of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’95, pages 160–
169, USA, 1995. Society for Industrial and Applied Mathematics.

[59] E. Hazan, S. Safra, and O. Schwartz. On the complexity of approximating k-dimensional
matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 83–97. Springer, 2003.

[60] E. Hazan, S. Safra, and O. Schwartz. On the complexity of approximating k-set packing.
Computational Complexity, 15(1):20–39, 2006.

[61] J. Holm, V. King, M. Thorup, O. Zamir, and U. Zwick. Random k-out subgraph leaves
only o (n/k) inter-component edges. In 2019 IEEE 60th Annual Symposium on Foundations
of Computer Science (FOCS), pages 896–909. IEEE, 2019.

[62] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

118 BIBLIOGRAPHY

[63] Y. Huo, H. Liang, S. Liu, and F. Bai. Computing monomer-dimer systems through matrix
permanent. Physical Review E, 77(1):016706, 2008.

[64] C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which have an
sdr, with an application to the worst-case ratio of heuristics for packing problems. SIAM
Journal on Discrete Mathematics, 2(1):68–72, 1989.

[65] M. Idel. A review of matrix scaling and Sinkhorn’s normal form for matrices and positive
maps. arXiv preprint arXiv:1609.06349, 2016.

[66] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for
the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697, 2004.

[67] B. Kalantari and L. Khachiyan. On the complexity of nonnegative-matrix scaling. Linear
Algebra Appl., 240:87–103, 1996.

[68] M. Karoński, E. Overman, and B. Pittel. On a perfect matching in a random bipartite
digraph with average out-degree below two. arXiv preprint arXiv:1903.05764, 2019.

[69] M. Karoński and B. Pittel. Existence of a perfect matching in a random (1 + e−1)–out
bipartite graph. J. Comb. Theory B, 88(1):1–16, 2003.

[70] R. M. Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

[71] R. M. Karp, A. H. G. Rinnooy Kan, and R. V. Vohra. Average case analysis of a heuristic
for the assignment problem. Mathematics of Operations Research, 19(3):513–522, 1994.

[72] R. M. Karp and M. Sipser. Maximum matching in sparse random graphs. In FOCS’81,
pages 364–375, Nashville, TN, USA, 1981.

[73] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipar-
tite matching. In Proceedings of the twenty-second annual ACM symposium on Theory of
computing, STOC ’90, pages 352–358, New York, NY, USA, 1990. ACM.

[74] P. W. Kasteleyn. The statistics of dimers on a lattice. Physica, 27:1209–1225, 1961.

[75] K. Kaya. Parallel algorithms for computing sparse matrix permanents. Turkish Journal of
Electrical Engineering & Computer Sciences, 27(6):4284–4297, 2019.

[76] K. Kaya, J. Langguth, F. Manne, and B. Uçar. Push-relabel based algorithms for the
maximum transversal problem. Computers & Operations Research, 40(5):1266–1275, 2013.

[77] O. Kaya and B. Uçar. Scalable sparse tensor decompositions in distributed memory sys-
tems. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’15, pages 77:1–77:11, Austin, Texas, 2015. ACM.

[78] P. A. Knight. The Sinkhorn–Knopp algorithm: Convergence and applications. SIAM J.
Matrix Anal. A., 30(1):261–275, 2008.

[79] P. A. Knight and D. Ruiz. A fast algorithm for matrix balancing. IMA Journal of Numerical
Analysis, 33(3):1029–1047, 2013.

BIBLIOGRAPHY 119

[80] P. A. Knight, D. Ruiz, and B. Uçar. A symmetry preserving algorithm for matrix scaling.
SIAM Journal on Matrix Analysis and Applications, 35(3):931–955, 2014.

[81] T. C. Koopmans and M. Beckmann. Assignment problems and the location of economic
activities. Econometrica: journal of the Econometric Society, pages 53–76, 1957.

[82] V. Korenwein, A. Nichterlein, P. Zschoche, and R. Niedermeier. Data reduction for
maximum matching on real-world graphs: theory and experiments. arXiv preprint
arXiv:1806.09683, 2018.

[83] J. Kulkarni, E. Lee, and M. Singh. Minimum Birkhoff-von Neumann decomposition. Pre-
liminary version http://www.cs.cmu.edu/~euiwoonl/sparsebvn.pdf of the paper which
appeared in Proc. 19th International Conference Integer Programming and Combinatorial
Optimization (IPCO 2017), Waterloo, ON, Canada, pp. 343–354, June 2017.

[84] S. Lamm, P. Sanders, C. Schulz, D. Strash, and R. F. Werneck. Finding Near-Optimal
Independent Sets at Scale. In Proceedings of the 16th Meeting on Algorithm Engineering and
Exerpimentation (ALENEX’16), 2016.

[85] J. Langguth, F. Manne, and P. Sanders. Heuristic initialization for bipartite matching
problems. J. Exp. Algorithmics, 15:1.3:1.1–1.3:1.22, 2010.

[86] L. Lovász and M. D. Plummer. Matching Theory, volume 367. American Mathematical
Soc., 2009.

[87] J. Magun. Greedy matching algorithms, an experimental study. Journal of Experimental
Algorithmics, 3:6, 1998.

[88] M. Marcus and R. Ree. Diagonals of doubly stochastic matrices. The Quarterly Journal of
Mathematics, 10(1):296–302, 1959.

[89] N. McKeown. The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM
Transactions on Networking, 7:188–201, 1999.

[90] G. B. Mertzios, A. Nichterlein, and R. Niedermeier. The power of linear-time data reduction
for maximum matching. In 42nd International Symposium on Mathematical Foundations of
Computer Science (MFCS 2017), volume 83 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 46:1–46:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[91] S. Micali and V. V. Vazirani. An O(
√
|V ||E|) algorithm for finding maximum matching in

general graphs. In FOCS’80, pages 17–27, 1980.

[92] M. Mitzenmacher and E. Upfal. Probability and computing: Randomized algorithms and
probabilistic analysis. Cambridge University Press, 2005.

[93] R. H. Möhring and M. Müller-Hannemann. Cardinality matching: Heuristic search for
augmenting paths. Technical report, Technische Universität Berlin, 1995.

[94] U. Naumann and O. Schenk. Combinatorial scientific computing. CRC Press, 2012.

[95] A. Nijenhuis and H. S. Wilf. Combinatorial algorithms: for computers and calculators.
Academic Press, 1978.

http://www.cs.cmu.edu/~euiwoonl/sparsebvn.pdf

120 BIBLIOGRAPHY

[96] M. Poloczek and M. Szegedy. Randomized greedy algorithms for the maximum matching
problem with new analysis. In IEEE 53rd Annual Sym. on Foundations of Computer Science
(FOCS), pages 708–717, New Brunswick, NJ, USA, 2012.

[97] A. Pothen and C.-J. Fan. Computing the block triangular form of a sparse matrix. ACM
T. Math. Software, 16:303–324, 1990.

[98] A. Pothen, S. M. Ferdous, and F. Manne. Approximation algorithms in combinatorial
scientific computing. Acta Numerica, 28:541–633, 2019.

[99] L. E. Rasmussen. Approximating the permanent: A simple approach. Random Struct.
Algor., 5(2):349–361, 1994.

[100] J. Shetty and J. Adibi. The enron email dataset database schema and brief statistical
report. Information sciences institute technical report, University of Southern California, 4,
2004.

[101] R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and doubly stochastic ma-
trices. Pacific J. Math., 21:343–348, 1967.

[102] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis. FROSTT: The
formidable repository of open sparse tensors and tools. http://frostt.io/, 2017.

[103] H. N. V. Temperley and M. E. Fisher. Dimer problem in statistical mechanics-an exact
result. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied
Physics, 6(68):1061–1063, 1961.

[104] G. Tinhofer. A probabilistic analysis of some greedy cardinality matching algorithms.
Annals of Operations Research, 1(3):239–254, 1984.

[105] B. Uçar. Partitioning, matching, and ordering: Combinatorial scientific computing with
matrices and tensors. 2019.

[106] L. G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8(2):189–
201, 1979.

[107] D. Walkup. Matchings in random regular bipartite digraphs. Discrete Mathematics,
31(1):59–64, 1980.

http://frostt.io/

List of publications

Articles in international refereed journals

[J1] F. Dufossé, K. Kaya, I. Panagiotas, and B. Uçar. Further notes on Birkhoff–von Neumann
decomposition of doubly stochastic matrices. Linear Algebra and its Applications, 554:68–
78, 2018.

[J2] F. Dufossé, K. Kaya, I. Panagiotas, and B. Uçar. Scaling matrices and counting perfect
matchings in graphs. Discrete Applied Mathematics, to appear.

Articles in international refereed conferences

[C1] F. Dufossé, K. Kaya, I. Panagiotas, and B. Uçar. Effective heuristics for matchings in
hypergraphs. In SEA2, International Symposium on Experimental Algorithms, pages 248–
264, Kalamata, Greece, June 2019. Springer.

[C2] K. Kaya, J. Langguth, I. Panagiotas, and B. Uçar. Karp–Sipser based kernels for bipartite
graph matching. In 20th SIAM Symposium on Algorithm Engineering and Experiments
(ALENEX), pages 134–145, Salt Lake City, Utah, US, January 2020.

[C3] I. Panagiotas and B. Uçar. In F. Grandoni, G. Herman, and P. Sanders, editors, 28th An-
nual European Symposium on Algorithms (ESA 2020), volume 173 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 76:1–76:23, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

Articles in international refereed workshops

[W1] F. Dufossé, K. Kaya, I. Panagiotas, and B. Uçar. Approximation algorithms for maximum
matchings in undirected graphs. In 2018 Proceedings of the Seventh SIAM Workshop on
Combinatorial Scientific Computing, pages 56–65, 2018.

121

	Acknowledgements
	Résumé français
	Introduction
	Undirected graphs
	Hypergraphs
	Sparse matrices
	The permanent function
	Doubly stochastic matrices

	Sparse tensors
	Structure of the thesis

	Matchings in bipartite graphs
	A survey on matching heuristics
	An examination of the Karp–Sipser algorithm
	An expected O(mlogn)-time algorithm
	An implementation with list caching
	An alternating component approach
	Fast recovery of the matching
	Experiments
	Related work

	Scaling based near-optimal randomized algorithms
	2outMC: Monte Carlo on 2-out graphs
	TruncRW: Truncated random walk with nonuniform sampling
	Experiments

	A scaling based derandomized algorithm
	The derandomization
	Some preliminary experiments

	Concluding remarks

	Matchings in undirected graphs
	One-Out: The main heuristic
	One-Out: Analysis
	Two variants of One-Out

	Experiments
	On real-life graphs
	On a hard synthetic instance for KSr1
	On large-scale graphs

	Concluding remarks

	Matchings in hypergraphs
	Heuristics for maximum d-dimensional matching
	A Greedy heuristic for Max-d-DM
	KarpSipserH for Max-d-DM
	KarpSipserHScaling for Max-d-DM
	Hypergraph matching via pseudo scaling
	Reduction to bipartite graph matching
	Performing local search

	Experiments
	On random hypergraphs
	On synthetic hypergraphs
	On real-life hypergraphs
	Comparison with an independent set solver

	Concluding remarks

	Counting the number of perfect matchings in graphs
	Theoretical background
	Related work
	The proposed algorithm and its analysis
	The algorithm
	The analysis

	An estimator for undirected graphs
	The algorithm and its analysis
	Filtering out redundant edges

	Experiments
	On bipartite graphs
	On general, undirected graphs

	Concluding remarks

	Results on the Birkhoff–von Neumann decomposition
	The two heuristics
	Analysis of the two heuristics for computing BvN decompositions
	Heuristics for GreedyBVN
	Experiments on real-life matrices
	Concluding remarks

	Conclusion
	Summary of the chapters
	Future work

	List of publications

