
HAL Id: tel-03012285
https://theses.hal.science/tel-03012285v1

Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed control of multi-agent systems under
communication constraints : application to robotics

Syed Ali Ajwad

To cite this version:
Syed Ali Ajwad. Distributed control of multi-agent systems under communication constraints : ap-
plication to robotics. Automatic. Université de Poitiers, 2020. English. �NNT : 2020POIT2264�.
�tel-03012285�

https://theses.hal.science/tel-03012285v1
https://hal.archives-ouvertes.fr

i
i

“main” — 2020/10/1 — 10:35 — page i — #1 i
i

i
i

i
i

Thèse
Pour obtenir le grade de

Docteur de l’université de Poitiers
École Nationale Supérieure d’ingénieurs de Poitiers

Diplôme National - Arrêté du 25 mai 2016

École Doctorale :
Sciences et Ingénierie des Systèmes, Mathématiques, Informatique

de la ComUE de l’Université Confédérale Léonard de Vinci

Spécialité :
Automatique, Productique et Robotique

Présentée par
Syed Ali Ajwad

Distributed control of multi-agent systems under
communication constraints: application to robotics

Directeur de thèse : Emmanuel MOULAY Chargé de recherche CNRS à XLIM
Co-directeur : Patrick COIRAULT Professeur à l’Université de Poitiers
Co-encadrant : Michael DEFOORT Maître de conférences à l’Université

Polytechnique Hauts-de-France

Soutenue le 4 Septembre 2020

Thèse préparée au sein du
Laboratoire d’Informatique et d’Automatique pour les Systèmes

Composition du Jury

Rapporteurs : Elena PANTELEY Directrice de recherche CNRS au L2S
Franck PLESTAN Professeur à l’École Centrale de Nantes

Examinateurs : Mohamed DJEMAI Professeur à l’Université Polytechnique Hauts-de-France
Tomas MÉNARD Maître de conférences à l’Université de Caen
Emmanuel MOULAY Chargé de recherche CNRS à XLIM
Patrick COIRAULT Professeur à l’Université de Poitiers
Michael DEFOORT Maître de conférences à l’Université

Polytechnique Hauts-de-France

i
i

“main” — 2020/10/1 — 10:35 — page ii — #2 i
i

i
i

i
i

Dedicated to

my dearest father Saghir Hussain

my loving mother Tahira Hussain

&

my beautiful wife Sanna Tauseef

i
i

“main” — 2020/10/1 — 10:35 — page iii — #3 i
i

i
i

i
i

Contents

I General introduction 1

II Cooperative control of multi-agent systems 5

1 Introduction 7
1.1 Background and motivation . 8
1.2 Communication network in cooperative control . 9
1.3 Algebraic graph theory . 10

1.3.1 Basics of graph theory . 10
1.3.2 Adjacency matrix . 11
1.3.3 Laplacian matrix . 12

1.4 Consensus control problem . 13
1.4.1 Leaderless consensus . 14
1.4.2 Leader-following consensus . 16

1.5 Formation control problem . 18
1.6 Issues and challenges in distributed cooperative control design 21
1.7 State observers . 22
1.8 Contribution of thesis . 25
1.9 Thesis Layout . 26
1.10 Scientific publications . 26

2 Leader-following consensus 29
2.1 Introduction . 30
2.2 Preliminaries . 30
2.3 Problem formulation . 34

2.3.1 Communication constraints . 34
2.4 Observer based leader-following consensus . 36

2.4.1 Discussion on Theorem 24 . 37
2.4.2 Simulation results . 38

2.5 Leader-following consensus with switching topology . 44
2.5.1 Controller design . 45
2.5.2 Simulations . 46

2.6 Conclusion . 47

3 Formation tracking and collision avoidance 49
3.1 Introduction . 50
3.2 Formation Tracking . 50

3.2.1 Formation vector . 51
3.2.2 Output-feedback formation tracking controller 52
3.2.3 Simulation results . 53

3.3 Collision avoidance . 60

i
i

“main” — 2020/10/1 — 10:35 — page iv — #4 i
i

i
i

i
i

iv CONTENTS

3.3.1 Artificial potential function . 61
3.3.2 Collision free formation tracking of MAS . 61
3.3.3 Simulation results . 63

3.4 Conclusion . 68

4 Application to multi-robot network 69
4.1 Introduction . 70
4.2 Robotic Platform . 70
4.3 Robot operating system (ROS) . 72

4.3.1 Package . 73
4.3.2 Node . 73
4.3.3 Master . 73
4.3.4 Topics and messages . 73
4.3.5 Services . 75
4.3.6 Bags . 75
4.3.7 Launch file . 75

4.4 Gazebo Simulator . 75
4.5 Multi-robot ROS Network . 76
4.6 Experimental setup . 77
4.7 Consensus tracking . 79
4.8 Nonholonomic robot model . 81
4.9 Control scheme for nonholonomic robot . 82
4.10 Formation tracking control . 83

4.10.1 Fixed-formation . 85
4.10.2 Time-varying formation . 85

4.11 Formation tracking control with collision avoidance . 86
4.11.1 Velocity cone concept . 88
4.11.2 Numerical results . 88

4.12 Conclusion . 93

III General conclusion and future prospects 95

A Proof of Theorem 24 99

B Proof of Theorem 29 109

C Proof of Theorem 36 111

D Proof of Theorem 42 113

i
i

“main” — 2020/10/1 — 10:35 — page v — #5 i
i

i
i

i
i

List of Figures

1.1 Cooperative behaviour of biological species . 8
1.2 Centralized control scheme . 9
1.3 Distributed control scheme . 10
1.4 Visual representation of graph . 11
1.5 A directed graph with multiple directed spanning trees 12
1.6 Communication topology for leaderless consensus . 14
1.7 Leaderless consensus . 15
1.8 Communication topology among 4 followers and a leader 17
1.9 Leader-following consensus . 18
1.10 Applications of formation control of MAS (a) mobile robots encircling the leader (b)

fighter jets formation for defence and surveillance (c) drones making Olympic rings (d)
satellites formation to cover maximum earth coverage 19

1.11 Formation control (a) formation producing (b) formation tracking 20
1.12 Sampled data observer using output predictor . 24

2.1 Example of sampling instants for data transmission under a directed graph. 35
2.2 Block diagram of proposed observer based leader-following controller for agent i 37
2.3 Communication topology for collision-free formation tracking. 38
2.4 Estimation of leader’s states by follower 2 (a) position r̂1,0 (b) velocity v̂1,0. 39
2.5 Estimation of follower 2 states by follower 1 (a) position r̂2,1 (b) velocity v̂2,1. 40
2.6 Estimation of follower 3 states by follower 9 (a) position r̂3,9 (b) velocity v̂3,9. 40
2.7 Example of sampling time for communication between agents. 40
2.8 Consensus tracking with a stationary leader (a) position (b) velocity. 41
2.9 Tracking error with a stationary leader (a) position error ∥ri − r0∥ (b) velocity error

∥vi − v0∥. 41
2.10 Consensus tracking with constant leader velocity (a) position (b) velocity. 42
2.11 Tracking error with constant leader velocity (a) position error ∥ri − r0∥ (b) velocity

error ∥vi − v0∥. 42
2.12 Consensus tracking with sinusoidal leader velocity (a) position (b) velocity. 43
2.13 Tracking error with sinusoidal leader input (a) position error ∥ri−r0∥ (b) velocity error

∥vi − v0∥. 43
2.14 Consensus tracking with sinusoidal leader velocity with θ = 8.0 and λ = 0.8 (a) position

(b) velocity. 43
2.15 Tracking error with sinusoidal leader input with θ = 8.0 and λ = 0.8 (a) position error

∥ri − r0∥ (b) velocity error ∥vi − v0∥. 44
2.16 Communication topologies . 46
2.17 Switching signal . 46
2.18 Leader-following consensus of MAS under switching topology with the static leader (a)

position (b) velocity . 47

i
i

“main” — 2020/10/1 — 10:35 — page vi — #6 i
i

i
i

i
i

vi LIST OF FIGURES

2.19 Leader-following consensus of MAS under switching topology with ramp leader trajec-
tory (a) position (b) velocity . 47

3.1 Example of square geometric shape. 52
3.2 Communication topology. 53
3.3 Sampling periods for data transmission among the agents 54
3.4 Fixed formation tracking with static leader . 55
3.5 Tracking error of fixed formation with static leader (a) x-position error (b) y-position

error. 56
3.6 Fixed formation tracking with constant leader velocity 56
3.8 Fixed formation tracking with leader input . 56
3.7 Tracking error of fixed formation with constant leader velocity (a) x-position error (b)

y-position error. 57
3.9 Tracking error of fixed formation with leader input (a) x-position error (b) y-position

error. 57
3.10 Time-varying formation tracking with static leader where � = initial state and o =

final state . 58
3.11 Tracking error of time-varying formation with static leader (a) x-position error (b)

y-position error. 58
3.12 Time-varying formation tracking with constant leader velocity 59
3.13 Tracking error of time-varying formation with constant leader velocity (a) x-position

error (b) y-position error. 59
3.14 Time-varying formation tracking with leader input . 59
3.15 Tracking error of time-varying formation with leader input (a) x-position error (b) y-

position error. 60
3.16 Inter-agent distance without collision avoidance mechanism 60
3.17 Collision avoidance potential function with r = 0.25 and R = 2 62
3.18 Communication topology . 63
3.19 Sampling time for data transmission between agents. 64
3.20 Square formation with static leader where ⋄ = initial state and o = final state. 65
3.22 Inter-agent distance during formation tracking with static leader 65
3.21 Follower 1 (a) distance with other agents (b) control input. 65
3.23 Tracking error for square formation with static leader 66
3.24 Square formation with leader input (a) formation tracking (b) inter-agent distances. . 66
3.25 Tracking error for square formation with constant leader acceleration 67
3.26 Circular formation with static leader (a) formation tracking ⋄ = initial state and o =

final state (b) inter-agent distance . 67
3.28 Square formation with leader input (a) formation tracking (b) inter-agent distances. . 67
3.27 Tracking error for circular formation with static leader 68
3.29 Tracking error for circular formation with constant leader acceleration 68

4.1 Mini-Lab robot. 70
4.2 Mini-Lab physical dimensions. 71
4.3 Basic ROS communication architecture. 74
4.4 rqt_graph of turtle robot simulation. 75
4.5 Gazebo simulation screen-shot. 76
4.6 Single robot ROS network . 76
4.7 Multi-master ROS network with Mini-Lab robots. 78
4.8 Communication topology. 78
4.9 Distributed communication configuration. 78
4.10 Experimental setup. 79
4.11 Robot motion is restricted to x-axis . 79
4.12 Leader-following consensus with step leader trajectory (a) position (b) velocity. 80
4.13 Leader-following consensus with ramp leader trajectory (a) position (b) velocity. . . . 81

i
i

“main” — 2020/10/1 — 10:35 — page vii — #7 i
i

i
i

i
i

LIST OF FIGURES vii

4.14 Sampling period for data transmission from follower 1 to follower 2. 81
4.15 Unicycle type robot model. 82
4.16 Control scheme for one robot in the nonholonomic multi-robot network. 83
4.17 Communication topology for formation tracking. 83
4.18 Sampling time between the agents. 84
4.19 Fixed formation tracking with a stationary leader. 85
4.20 Tracking error of fixed formation with a stationary leader. 86
4.21 Fixed formation tracking with a moving leader. 86
4.22 Tracking error for fixed formation with a moving leader. 86
4.23 Time-varying formation tracking with a static leader. 87
4.24 Tracking error for time-varying formation tracking with a static leader. 87
4.25 Time-varying formation tracking with a moving leader. 87
4.26 Tracking error of time-varying formation tracking with a moving leader. 88
4.27 Velocity cone . 89
4.28 Communication topology for collision-free formation tracking. 90
4.29 Collision-free fixed formation with a stationary leader (a) formation tracking (b) inter-

agent distance. 91
4.30 Tracking error of square formation tracking with a stationary leader. 91
4.31 Fixed formation with a moving leader (a) formation tracking (b) inter-agent distance. 91
4.32 Tracking error of time-varying circular formation tracking with a moving leader. . . . 92
4.33 Time-varying collision-free formation tracking with a static leader. 92
4.34 Tracking error of time-varying circular formation tracking with a stationary leader. . . 93
4.35 Time-varying collision-free formation with a moving leader (a) formation tracking (b)

inter-agent distance. 93
4.36 Tracking error of time-varying circular formation tracking with a moving leader. . . . 93

i
i

“main” — 2020/10/1 — 10:35 — page viii — #8 i
i

i
i

i
i

viii LIST OF FIGURES

i
i

“main” — 2020/10/1 — 10:35 — page ix — #9 i
i

i
i

i
i

List of Tables

4.1 Specifications of Mini-Lab robot. 72
4.2 Assigned IP addresses. 77

i
i

“main” — 2020/10/1 — 10:35 — page x — #10 i
i

i
i

i
i

x

Notations
Following are the notations used in throughout the manuscript:

• N: Set of all natural numbers.

• R: Set of all real numbers.

• △
=: equal by definition.

• 1n = (1, . . . , 1)T ∈ Rn.

• In: n dimensional identity matrix.

• G: Communication graph.

• A: Adjacency matrix.

• L: Laplacian matrix.

• λmin(A): Minimum eigenvalue of symmetric matrix A.

• λmax(A): Maximum eigenvalue of symmetric matrix A.

• Dn
i : An n× n matrix with all entries equal to zero except the ith diagonal entry which is 1.

• ∥.∥2: Euclidean norm.

• ∥.∥F : Frobenius norm.

• A⊗B: Kronecker product of A and B.

Acronyms
The list of acronyms is as below:

• APF: Artificial Potential Function

• LIAS: Laboratoire d’Informatique et d’Automatique pour les Systèmes

• LMI: Linear Matrix Inequality

• MAS: Multi-Agent System

• MIMO: Multi-Input-Multi-Output

• ROS: Robot Operating System

• UAV: Unmanned Air Vehicle

i
i

“main” — 2020/10/1 — 10:35 — page xi — #11 i
i

i
i

i
i

Acknowledgements

First of all, I am thankful to One who says "Can they who know and they who do not know be deemed
equal? Only those endowed with pure understanding do take heed".

I have so many people to thank for their help throughout my PhD thesis. Firstly, my sincere grati-
tude to my supervisor Dr. Emmanuel Moulay for believing in me and providing me the opportunity
to start with. I am thankful for his invaluable help and patience during the course of this research
project. I am grateful to Prof. Patrick Coirault for sharing his experience, valuable suggestions
and providing me the a conducive environment. My heartfelt thanks to Dr. Michael Defoort for
his greatest help and guidance throughout this research journey. He provided me the opportunity of
working in his lab on robotic platforms which was an extremely knowledgeable experience. Special
thanks to Dr. Tomas Ménard for his great help in complex mathematical analysis of the theorems.

I am also very thankful to Dr. Elena Panteley, Prof. Franck Plestan and Prof. Mohamed
Djemai for agreeing to be part of the jury and evaluating my thesis. I really appreciate their valuable
discussion and feedback.

During my PhD, I have been very fortunate to have brilliant colleagues and friends at the labora-
tory. Thanks Achraf, Bilal, Fayrouz, Florence and all others for your cooperation, friendship and all
the fun we had together in the last 3 years. My special gratitude to Pipit from LAMIH lab.

Finally but most importantly, my very special thanks to my wife Sanna for her love and persistent
support. She made countless sacrifices to help me get to this point. I would also like to express my
deepest gratitude to my parents and siblings for their unconditional love and prayers.

i
i

“main” — 2020/10/1 — 10:35 — page xii — #12 i
i

i
i

i
i

xii

i
i

“main” — 2020/10/1 — 10:35 — page 1 — #13 i
i

i
i

i
i

Part I

General introduction

i
i

“main” — 2020/10/1 — 10:35 — page 2 — #14 i
i

i
i

i
i

2

General introduction

A Multi-Agent System (MAS) consists of multiple autonomous subsystems which can interact
with each other and the environment to complete tasks in a cooperative manner. MAS has been an
important subject of research since the last decade. The study of MAS is mostly inspired by the
natural phenomena exhibited by various animal species. Fish schooling, bird flocking or flying in V
shape, bacteria swarming and mammal herds are few examples of cooperative behaviour in nature.
Researchers have developed various control methods for cooperative operation and applied them in
different applications like distributed computing, sensor networks, satellite constellation, power grids
and robotics. In robotics, cooperative control techniques are applied to achieve different objectives in
vast areas including but not limited to military, automated industry, heavy payload transportation,
exploration, rescue operations and entertainment.

Cooperative control of MAS heavily depends on communication and information exchange among
the agents. This gives rise to two natural choices of communication network which are centralised
and distributed control network. In centralized communication, as apparent from the name, there
is a central unit to which all the agents are connected to and send their information. The central
station handles all the information exchange and sends control commands to the agents. This kind
of scheme has some major drawbacks. For example, if the central unit fails, the whole network
will collapse. Moreover, a centralized control scheme cannot handle large number of agents due to
network saturation and/or limited computing and processing capability etc. On the other hand, a
distributed control scheme does not require a central control unit. Agents communicate directly to
their neighboring agents and exchange information. The information received from neighbors is also
called local information. Each agent in the distributed network uses this local information to compute
its own control input. Distributed control schemes offer many advantages over the centralized control
scheme in terms of efficiency, adaptability, robustness and scalability.

Communication topology among the agents can be represented by a graph which describes the
links between the agents. Therefore, graph theory plays an important role in analysis of MAS. In
fact, adjacency and Laplacian matrices associated with the graph provides useful information about
the network topology which dictates the behaviour of the MAS. A communication topology in a
distributed MAS network could be directed or undirected. If the communication among the neighbors
is one way then it is called directed and undirected if the communication is bidirectional. Moreover,
communication links between the agents could remain either fixed (fixed topology) or they can evolve
with time (switching topology).

In distributed cooperative control of MAS, consensus and formation control are considered the
most fundamental problems. In consensus control, the states of all agents of a MAS are required to
converge to a common value, for example, same altitude and speed of all drones in the network or same
power levels of batteries in an energy storage facility etc. The common state which is achieved in result
of consensus is known as consensus state. In some cases, the agents not only have to reach to the same
states but are also required to follow a reference trajectory produced by a real or a virtual leader. This
is known as leader-following consensus or consensus tracking. The reference trajectory generated by
the leader is independent of other agents in the network and it is usually designed separately according
to the application requirement. Various distributed control algorithms are proposed by researchers to
deal with the problem of both leaderless and leader-following consensus.

Formation control is another important topic in distributed control of MAS. In formation control,
the states of agents like position, velocity and orientation are controlled in a way that they produce
a geometric shape. This geometric pattern could either be fixed or time-varying depending on the
application. The required formation shape can be defined by a formation vector. In some cases agents
are required to make a formation and track the trajectory of the leader while maintaining the shape.
This is known as formation tracking. Various formation control and formation tracking algorithms are
proposed by the research community using different techniques. It is also shown that the consensus-
based algorithm can be used to achieve formation in MAS by choosing an appropriate deviation from
the consensus state.

Information exchange among the neighboring agents is vital for distributed consensus and forma-

i
i

“main” — 2020/10/1 — 10:35 — page 3 — #15 i
i

i
i

i
i

3

tion control algorithms since the computation of control law usually depends on the state information
of the neighbors. Mostly, it is considered that the neighbors’ information is available continuously.
However, in reality, this is not possible because continuous transmission of data requires infinite
bandwidth of the communication channel. Moreover, the available communication and processing
equipment is digital in nature. Therefore, sampled-data transmission is inevitable.

In practical applications, sampled-data MAS also suffered from irregular and nonuniform sam-
pling periods which are normally ignored in most of the existing literature on distributed cooperative
control of MAS. Similarly, another important issue related to real MAS is asynchronous transmission
between the agents. Though generally it is assumed that the agents transmit their data at the same
instant. However, to achieve synchronized data transmission, clocks of the agents must be precisely
synchronized and processing delays must be the same. However this is not possible in real world
scenarios.

Distributed control algorithm design usually requires information of all states of the neighbors.
However, in some cases, measuring every state is not feasible. This may be due to various reasons like
compact size of the agent, cost reduction or unavailability of appropriate sensors. Therefore, these
limited on-board resources result in partially available states. In addition, even if all states can be
measured, more communication resources will be required to transmit them. Therefore, it is more
economical if we communicate only some of the states and estimate the unavailable states from the
available data.

Motivated by the above discussion, this thesis is focused on the study of leader-following consen-
sus and formation tracking problems of second-order MAS with communication constraints. These
constraints include:

• Each agent can only measure its position state.

• Agents are not equipped with sensors to measure their velocity.

• Agents do not have access to the input (acceleration) of their neighbors.

• The measured state is transmitted to the neighbors at irregular and non-uniform time intervals.

• The transmission among the agents is asynchronous and totally independent of other agents in
the network.

• The communication topology among the agents is directed.

In Chapter2, first, we investigate the case of leader-following consensus of MAS with fixed topology.
The main idea is to use a continuous-discrete time observer to reconstruct both position and velocity
states in continuous time from the available discrete position data. An agent not only estimates its
own states but also estimates the states of its neighbors. The observer must take into account irregular
and asynchronous sampling. These estimated states then can be used to design the distributed leader-
following control law.

Secondly, the results of the fixed-time leader-following control algorithm are extended for the case
of switching topology. The main issue in switching topology is that if the switching is occurring too
fast, the MAS can suffer with chattering and zeno effects. Therefore, it is important to calculate the
conditions for the minimum required dwell time in which the topology remains constant.

In Chapter 3, we investigate the problem of formation tracking. we again considered the MAS with
the above mention communication constraints. The designed leader-following consensus algorithm can
be modified to achieve formation tracking by including some offsets in the position and the velocity
consensus states. The value of offset depends on the desired geometric shape and can be represented
through formation vector. Both cases of fixed and time-varying formation shapes are considered.

In the next step, we study another important issue of collision avoidance among the agents. which
is related to MAS with moving agents like ground vehicles and drones etc. If the formation vector
in formation tracking scheme is chosen appropriately, i.e keeping in mind the inter-agent distance,
the agents will not collide once they achieve the desired shape. However, the agents may collide
while converging to the required positions. Therefore, we need some collision avoidance mechanism

i
i

“main” — 2020/10/1 — 10:35 — page 4 — #16 i
i

i
i

i
i

4

which restrains agents from coming too close to each other. We introduce a repulsive force between
the agents through Artificial Potential Function (APF). The force acts on the agents when distance
between them becomes less than some threshold and causing them to move away from each other.

Finally in Chapter 4, we apply the designed algorithms of leader-following consensus, formation
tracking and collision avoidance on a multi-robot network to verify their efficacy in real applications.
The robotic network consists of wheeled mobile robots called Mini-Lab from Enova robotics. The
algorithms are implemented through Robot Operating System (ROS).

ROS is an open-source meta-operating robotic framework. Since robotics is a multi-disciplinary
domain that requires skills of mechanical engineering, electronics embedded systems and computer
programming, therefore, a decade ago, robotic engineers had to spend a lot of time in designing
the basic software and hardware architecture of the robot before testing their designed algorithm.
Due to the lack of any platform which provides the essential software architecture with re-usable
programs, robot designing was a cumbersome job and mostly involved reinvention of the wheel before
implementing the advanced algorithm. ROS was developed to fill this gap. It provides software tools
and libraries specifically designed for robotic applications. Since it is an open-source platform, one
can modify and upgrade the software to apply and test any algorithm on the robot. Moreover, ROS-
gazebo is a robotic simulator which provides realistic simulations by incorporating real-world factors
like friction, sensor feedback and collision detection etc.

A distributed network is established for the implementation purpose of the proposed control law.
Since wheeled mobile robots are usually subject to motion constraints known as nonholonomic con-
straints, in order to apply the designed distributed algorithms of second-order MAS on the multi-
robotic network, a new control strategy is required that can deal with the nonholonomic constraints.
We use the robot flatness property based technique for this purpose. ROS-Gazebo simulation and
hardware results are obtained to examine the efficiency and effectiveness of the proposed algorithms
for real applications.

i
i

“main” — 2020/10/1 — 10:35 — page 5 — #17 i
i

i
i

i
i

Part II

Cooperative control of multi-agent
systems

i
i

“main” — 2020/10/1 — 10:35 — page 6 — #18 i
i

i
i

i
i

6

i
i

“main” — 2020/10/1 — 10:35 — page 7 — #19 i
i

i
i

i
i

Chapter 1

Introduction

Contents
1.1 Background and motivation . 8
1.2 Communication network in cooperative control 9
1.3 Algebraic graph theory . 10

1.3.1 Basics of graph theory . 10
1.3.2 Adjacency matrix . 11
1.3.3 Laplacian matrix . 12

1.4 Consensus control problem . 13
1.4.1 Leaderless consensus . 14
1.4.2 Leader-following consensus . 16

1.5 Formation control problem . 18
1.6 Issues and challenges in distributed cooperative control design 21
1.7 State observers . 22
1.8 Contribution of thesis . 25
1.9 Thesis Layout . 26
1.10 Scientific publications . 26

i
i

“main” — 2020/10/1 — 10:35 — page 8 — #20 i
i

i
i

i
i

8 Introduction

1.1 Background and motivation
A Multi-Agent System (MAS) is defined as a group of autonomous sub-systems, called agents, which
can interact with each other and with their environment. The study of MAS is essentially inspired
and motivated by the collective behavior of various biological species. In nature, some animals make
use of social grouping, acting in a cooperative manner to achieve a desired common goal. Widely
observed examples of such natural behaviors are fish schooling, bird flocking, bacteria swarming and
mammal herds (Figure 1.1).

(a) Fish schooling
(b) Mammal Herd

(c) Birds flocking (d) Bacteria swarming

Figure 1.1: Cooperative behaviour of biological species

Inspiration from these natural phenomenon has served as the basis for the study and development
of cooperative control of MAS by researchers and scientists of various fields. As such, cooperative
control of MAS has seen a vast range of applications including but not limited to sensor networks
[1], satellite constellation [2], electric power systems [3], distributed computing [4], synchronization [5]
and intoferometers [6].

Robotics is one of the most important area of application of networked systems [7]. While ad-
vancement in technology has enabled advanced operations for autonomous robots, the performance
and effectiveness of robots has seen further improvement by deploying them in a group to work in
a cooperative manner. In fact, a multi-robot system can accomplish complex tasks which would
not be possible with a single robot operation. Classical examples of cooperative control in robotics
can be found in heavy payload transportation, search and rescue operations, automated industries,
exploration, and defence [8].

Though each of these applications has its own complexity and challenges, they do share some
underlying common characteristics. Some important MAS related problems include synchronization,
rendezvous, flocking, consensus and formation tracking etc. One of the most crucial and vital aspect
of cooperative control is communication and information sharing between the agents. Unlike a single
agent system, in MAS, we have sub-systems which are required to share their information to achieve

i
i

“main” — 2020/10/1 — 10:35 — page 9 — #21 i
i

i
i

i
i

1.2 Communication network in cooperative control 9

a global task effectively. Due to the limited resources like bandwidth, sensors and processing power,
information availability and its communication are not straightforward. Hence, it is quite difficult
to control the behaviour of the agents to complete a global objective. In this thesis, we study two
fundamental problems of cooperative control, namely consensus and formation tracking, for the MAS
under communication constraints.

1.2 Communication network in cooperative control

Communication and information exchange are keys to achieve a global task in MAS and lend itself
to the classification of cooperative control of MAS into two classes, namely centralized control and
distributed control. In the case of centralized control, it is considered that all the agents are fully
connected to a central location and that they transmit their state information to the central controlling
unit. This central unit evaluates the states and computes the control inputs for all the individual agents
and in turn, transmits the computed control inputs to the respected agents through the same connected
network. In such a centralized network topology, agents are not required to communicate with each
other but only with the central control unit. However, there are many serious drawbacks associated
with the centralized control strategies. For instance, if the communication system of centralized control
unit fails due to any reason (e.g. hardware failure or distortion in communication signals), the whole
MAS will break down. Such a failure could be catastrophic especially when the agents are moving
vehicles. Furthermore, as the number of agents increases the amount of data exchange between the
agents and the central controller is expected to increase significantly. This in itself presents further
issues given real-life constraints such as the limited capacity of installed communication equipment,
or budget, thereby making it difficult to accommodate a huge number of agents. As a result, the
centrally controlled network scheme faces serious scalability issues. Moreover, as all the computations
are carried out in the central unit, the induction of a large number of agents significantly impacts
the calculation time of control inputs. Therefore, in the presence of real-world problems, cooperative
control with a centralized scheme becomes more challenging.

Figure 1.2: Centralized control scheme

The issues attached with the centralized control schemes favor the need for a distributed control
technique. Unlike centralized control schemes, a distributed scheme does not have any common control
unit. Instead, agents are required to exchange their information with their neighbors only (Figure 1.3)
and use the received information of the neighbor, also known as local information, to compute their
control input. Study of distributed control of MAS has gained much popularity in the research
community during the last decade because of its advantages over centralized control such as efficiency,
scalability, flexibility, robustness and adaptability [9].

The distributed communication topology can further be divided in two types based on whether
the network remains the same or changes with time.

i
i

“main” — 2020/10/1 — 10:35 — page 10 — #22 i
i

i
i

i
i

10 Introduction

Figure 1.3: Distributed control scheme

• Fixed topology: If the communication network among the agents is not changing and remains
fixed then it is called a fixed topology.

• Switching topology: In some practical cases, it is not possible for the agents to keep a fixed
network and they may need to change their neighbors due to different physical limitations of the
communication hardware. The topology where the communication network is switching with
time is called switching topology.

The distributed communication network has also been classified into undirected and directed types as
defined below:

• Undirected topology: If all the agents in the network are able to send and receive information
to and from neighbors then the communication topology is undirected.

• Directed topology: If an agent can send its information to the another agent but cannot
necessarily receive information from that other agent then the communication topology is called
a directed topology.

1.3 Algebraic graph theory

A communication topology that defines connections and information flow paths between the agents
in a MAS, is usually modelled by algebraic graphs. Algebraic graphs and graph theory have been
intensively investigated in literature [10–12]. In the following sections, some important definitions and
properties of algebraic graphs have been discussed which will be used throughout the thesis.

1.3.1 Basics of graph theory

Mathematically, a graph is a pair of a nonempty finite set of nodes also called vertices and a finite
set of edges or links. In MAS, each agent is represented as a node, whereas the communication link
between two agents is shown as an edge. For a MAS consisting of N agents, the corresponding graph
can be defined as G , (V, E) where V = {v1, v2, . . . , vN} is a set of N nodes and E ⊆ V × V is the set
of edges. Let vi and vj be two nodes of the graph. If information is being shared between vi and vj
and the information flows from vi to vj , there exists a pair (vi, vj) and this pair is an element of E . If
(vi, vj) ∈ E , then node vi is a neighbor of vj and vi is called the parent node while vj is known as a
child node. The set of neighbors of node vi is described as Ni = {i ̸= j : (vi, vj) ∈ E)}.

A graph is called an undirected graph if for a pair of nodes with an edge (vi, vj), there also exists
the edge (vj , vi) otherwise the graph is known as a directed graph. In the case of undirected graphs,
sometimes, arrows are not shown in the visual representation. In a weighted graph, a weight wij is
assigned to each edge (vi, vj). For an undirected weighted graph, wij is equal to wji.

i
i

“main” — 2020/10/1 — 10:35 — page 11 — #23 i
i

i
i

i
i

1.3 Algebraic graph theory 11

For visualization, nodes in a graphs are represented as dots and circles while if the edge (vi, vj)
exists, it is shown by an arrow directed from vi to vj (for undirected graphs, arrows are not required).
A visual representation of both undirected and directed graphs is shown in Figure 1.4.

1

2

3

5

4

1

2

3

4

(a) Undirected graph (b) Directed graph

Figure 1.4: Visual representation of graph

Definition 1. A directed path between nodes va and vb is a sequence of edges in a directed graph such
that there exists an edge between all consecutive nodes i.e. (va, va+1), (va+1, va+2), . . . (vb−1, vb).

Definition 2. A cycle is a directed path in a directed graph that starts and ends at the same node.

Definition 3. A directed graph is strongly connected if all the nodes of the graph are connected with
each other through a directed path. Similarly, an undirected graph is connected if there is an undirected
path between each pair of distinct nodes.

Definition 4. A directed graph in which all nodes have exactly one parent node except one node is
called a directed tree. The node which does not have any parent node is known as the root.

It is to note that a directed tree does not have any cycle because all the edges are oriented away
for/from the node.

A subgraph of G, represented as Gs , (Vs, Es) is a graph with the set of node Vs ⊆ V and set of
edges Es ⊆ E ∩ Vs × Vs.

Definition 5. A directed spanning tree is a subgraph (Vs, Es) of the directed graph (V, E) such that
the subgraph (Vs, Es

N) has a directed tree and the subgraph (Vs, Es) must contain all the nodes of graph
(V, E) i .e. Vs = V.

It is to note that a directed graph G has a directed spanning tree if and only if there exists at least
one node which has a directed path to all other nodes. In the case of an undirected graph, having an
undirected spanning tree is equivalent to a connected graph. The directed graph shown in Figure 1.5
has more than one directed spanning tree. Nodes 1 and 2 are two separate roots since both have at
least one directed path to all other nodes.

1.3.2 Adjacency matrix

The structure of a graph can be represented by a matrix called adjacency matrix or connectivity
matrix. Adjacency matrix A = [aij] ∈ RN×N of a directed graph G is defined such that aij > 0 if

i
i

“main” — 2020/10/1 — 10:35 — page 12 — #24 i
i

i
i

i
i

12 Introduction

1

2

3

4

5

6

7

8

Figure 1.5: A directed graph with multiple directed spanning trees

(vj , vi) ∈ E and aij = 0 if (vj , vi) /∈ E . In other words, if agent vj can receive information from agent
vi then aij > 0 and zero otherwise. Self edges are not allowed i.e aii = 0 unless specified. The case
of undirected graph is similar except that aij = aji ∀i ̸= j since (vi, vj) ∈ E implies that (vj , vi) ∈ E .
Through out this thesis we choose unweighted graphs which means aij = 1 if (vj , vi) ∈ E and aij = 0
otherwise.

The adjacency matrix of the undirected graph in Figure 1.4a is given as

A =

0 1 0 0 1
1 0 1 0 1
0 1 0 1 0
0 0 1 0 1
1 1 0 1 0

while the adjacency matrix of the directed graph in Figure 1.4b is given as

A =

0 0 0 0
1 0 0 0
1 0 0 0
0 0 1 0

Adjacency matrix of an undirected graph is always symmetric.

Definition 6. A graph is balanced if
∑N

j=1 aij =
∑N

j=1 aji for all i.

Therefore, every undirected graph is balanced.

1.3.3 Laplacian matrix

Another important matrix that one may assign to a graph is the Laplacian matrix. It is a very useful
matrix in the study of MAS and defined as

L = [lij] ∈ RN×N (1.1)

i
i

“main” — 2020/10/1 — 10:35 — page 13 — #25 i
i

i
i

i
i

1.4 Consensus control problem 13

where

lij = −aij , ∀i, j = 1, 2, . . . , N, i ̸= j

lii =
N∑
j=1

aij , j ̸= i

It is to note that if for any edge (vj , vi) /∈ E then lij = −aij = 0. Matrix L satisfies the followings:

lij < 0, ∀i, j = 1, 2, . . . , N, i ̸= j

N∑
j=1

lij = 0, i = 1, 2, . . . , N

Similarly to adjacency matrix, Laplacian matrix of an undirected graph is always symmetric. Laplacian
matrix of a directed graph is not symmetric and often known as directed Laplacian matrix [13] or non-
symmetric Laplacian matrix [14]. In the current thesis, Laplacian matrix of a direct graph is simply
refereed as Laplacian matrix without any prefix. The Laplacian matrix of the undirected graph in
Figure 1.4a is given below

L =

2 −1 0 0 −1
−1 3 −1 0 −1
0 −1 2 −1 0
0 0 −1 2 −1
−1 −1 0 −1 3

while the Laplacian matrix of directed graph in Figure 1.4b is given as

L =

0 0 0 0
−1 1 0 0
−1 0 1 0
0 0 −1 1

Laplacian matrix can also be defined as L = A−D, where D = [dij] is the in-degree matrix of size

N ×N given as dii =
∑N

j=1 aij , i = 1, 2, . . . , N and dij = 0 for i ̸= j.

Remark 7. Laplacian matrix L always has zero row sum and 0 is an eigenvalue of L with associate
eigenvector 1N where 1N is N×1 vector with all entries equal to 1. Moreover, all non-zero eigenvalues
of L are positive.

Remark 8. For an undirected graph, 0 is simple eigenvalue of L if and only if the undirected graph
is connected. For a directed graph, 0 is a simple eigenvalue of L if and only if the graph is strongly
connected. In other words, if directed graph has at least one spanning tree, then 0 is a simple eigenvalue
of L.

1.4 Consensus control problem
Consensus seeking is considered as one of the fundamental problems of cooperative control of MAS
and that is why it has attracted great attention from researchers in the recent years. In consensus,
agents are required to reach an agreement for some common feature. These common features may
vary in accordance with applications and requirements. For instance, the feature of interest in the
case of mobile robots could be positions and velocities or for UAVs, altitude could also be a feature of
interest where all the UAVs may require to maintain a common height.

The consensus problem can be divided into two categories: leaderless consensus and leader-
following consensus. To understand these two cases, we first introduce a leader.

Definition 9. A leader is an agent which produces a reference state that represents a control objective
or a feature of common interest for the other agents in the MAS. A leader could either be real or virtual.

i
i

“main” — 2020/10/1 — 10:35 — page 14 — #26 i
i

i
i

i
i

14 Introduction

1.4.1 Leaderless consensus

A leaderless consensus is also known as consensus producing. If agents are not required to track any
reference trajectory then the consensus problem is called leaderless consensus. The final consensus state
in this case is inherent and generally depends on the initial states of the agents and the communication
topology. Let us consider a MAS consisting of N agents whose dynamics evolves with the following
differential equation:

ẋi(t) = Fi (xi(t), ui(t)) , i = 1, 2, . . . N (1.2)

where xi(t) ∈ Rn and ui(t) ∈ Rp represents the state and the input of agent i respectively. The
leaderless consensus control then can be defined as follows.

Definition 10. The leaderless consensus or consensus producing is achieved by the MAS if for all
xi(0) and for all i, j = 1, 2, . . . N , ∥xi(t)− xj(t)∥ → 0 as t → ∞.

In the consensus control problem, the goal is to design a distributed control protocol that drives
all or a few states of the agents such that they reach some common value as described in Definition
10. The final value at which the states of the agents reach is called a consensus value. Let the agents
in the MAS have simple single-integrator dynamics as described below

ṙi(t) = ui(t), i = 1, 2, . . . N (1.3)

where ri(t), ui(t) ∈ Rm with m ∈ N are the agent position and control input respectively, then a trivial
distributed control input for the ith agent can be designed as below [15–17].

ui(t) = −
N∑
j=1

aijK[ri(t)− rj(t)], ∀i, j = 1, . . . , N, j ̸= i (1.4)

where aij is the ijth entry of the corresponding adjacency matrix A ∈ RN×N and K is a positive gain.
Example: Let us consider a MAS consisting of 4 agents. The initial conditions of the agents are

x1(0) = −4, x2(0) = −2.5, x3(0) = 1 and x4(0) = 3. Two possible communication networks are shown
in Figure 1.6. The corresponding consensus results are shown in Figure 1.7. From these results, it
can been seen that the final consensus value depends on the initial condition of the agents and the
communication topology. However, the final consensus value is constant in any case.

1

2

3

4

1

2

3

4

(a) (b)

Figure 1.6: Communication topology for leaderless consensus

Problem of leaderless consensus for single integrator MAS has remained a focus of interest for
the research community and has been investigated from various aspects. One of the most important
conclusion from these studies for directed fixed topology is that the MAS achieves consensus if the
corresponding communication graph has a directed spanning tree [18]. Olfati-Saber and Murray
studied the average consensus problem of MAS with both fixed and switching topologies [15]. They also

i
i

“main” — 2020/10/1 — 10:35 — page 15 — #27 i
i

i
i

i
i

1.4 Consensus control problem 15

time
0 2 4 6 8

st
at

es

-5

-4

-3

-2

-1

0

1

2

3

4

5
Agent 1
Agent 2
Agent 3
Agent 4

(a)
time

0 2 4 6 8

st
at

es

-5

-4

-3

-2

-1

0

1

2

3

4

5
Agent 1
Agent 2
Agent 3
Agent 4

(b)

Figure 1.7: Leaderless consensus

investigated the problem of time delays in the communication network. Authors in [19] also proposed
an algorithm to deal with switching topology and time delays. The issue of constant and time-varying
delays in the communication of state information has been discussed in [20]. Sufficient conditions for
the consensus of heading angles of the agents with undirected switching topology are shown in [16].
Ren and Beard presented consensus algorithms with more relaxed conditions as compared to [16] and
[15] for both continuous and discrete-time first order MAS [18]. Fixed-time consensus protocols for
single integrator MAS can be found in [21,22].

A broad class of MAS consists of mechanical mobile agents. The basic equation of motion for
such agents normally requires double integrator dynamics [23,24]. For example, physical systems like
robotic vehicles can be represented as linearized double integrator dynamic systems where position
and velocity are the information states [15, 16]. Double integrator dynamics of i are presented as{

ṙi(t) = vi(t),

v̇i(t) = ui(t)
(1.5)

where ri, vi, ui ∈ Rm represent respectively the position, velocity and control input of the i-th agent
(m ∈ N). Unlikely leaderless consensus of MAS with single integrator dynamics, double integrator
dynamics might have a time-varying (dynamic) consensus value. Therefore, the dynamics of the
system also plays an important role in leaderless consensus. A simple distributed leaderless consensus
controller for double integrator MAS can be designed as follows [25,26]

ui(t) = −
N∑
j=1

aij [K1(ri(t)− rj(t)) +K2(vi(t)− vj(t))] (1.6)

for all i, j = 1, . . . N and i ̸= j, where K1 and K2 are the positive gains. The consensus is said to be
reached if ri(t) → rj(t) and vi(t) → vj(t) as t → ∞.

Due to the vast applications of second-order MAS, it has been widely studied in the literature for
different perspectives. For instance, Xie and Wang, in [27], extended the single-integrator consensus
protocol of [15] for double-integrator MAS with undirected communication graph. Sufficient and
necessary conditions associated with the communication topology and Laplacian matrix for a general
consensus protocol for MAS with double integrator dynamics are obtained in [28, 29]. It has been
shown that how the real and the imaginary parts of eigenvalues of Laplacian matrix plays a vital role
in achieving consensus. Ren and Atkins discussed MAS consensus protocols in [25] and showed that
condition of spanning tree is necessary rather than sufficient in case of double integrator dynamics.

i
i

“main” — 2020/10/1 — 10:35 — page 16 — #28 i
i

i
i

i
i

16 Introduction

Consensus algorithms for double integral agents with heterogeneous inertias are proposed in [30, 31]
and it was further improved by introducing heterogeneous controller gains by Mei et al. in [23].
Authors in [24] proposed a distributed consensus algorithm for double-integrator MAS that relies on
relative position and absolute velocity of the agent. The final consensus is achieved with zero final
velocity of all the agents.

The case of switching topology with arbitrary communication delays has been investigated in [32].
Conditions for reaching consensus are derived in the form of matrix inequalities through Lyapunov
functions with delay partitioning. Leaderless consensus for switching topology is also studied by Ren
and Beard in their article [18]. Consensus with switching topologies for nonlinear double-integral
dynamical system has been investigated in [33] where a transformation is applied to convert the
consensus problem into a stabilization problem of a switched system. Sliding-mode-control based
consensus algorithm for second-order MAS is presented by Yu et al. in [34]. Results of fixed and finite
time leaderless consensus of second-order MAS can be found in [35–38], to name a few. Similarly, the
leaderless consensus problem for higher-order integrator MAS is also well investigated e.g [39–42].

1.4.2 Leader-following consensus

Contrary to consensus producing, in various practical applications, it is required that the agents follow
a constant or time-varying reference trajectory, where the reference trajectory is produced by a leader
(real or virtual). Therefore, it is known as leader-following consensus or consensus tracking. The
leader is generally labeled as 0. Let us assume that the leader dynamics are

ẋ0(t) = Fi (x0(t), u0(t)) (1.7)

where the leader input u0(t) can be designed to achieve any desired time-varying reference trajectory
depending upon the application. In the leader-following consensus, the objective is not only to ensure
that each agent of MAS reaches consensus on a common state but that common state must also
converge to the reference trajectory produced by the leader.

Mathematically, the leader-following consensus can be defined as follows.

Definition 11. The leader-following consensus is said to be achieved by the MAS if for all xi(0),
∥xi(t)− x0(t)∥ → 0 as t → ∞ for all i = 1, 2, . . . , N .

In distributed leader-following consensus control, the leader’s state information is only available to
a small group of the agents. It is a proven fact that to achieve leader-following consensus for a directed
communication network, the corresponding graph must have a directed spanning tree with the leader
as a root. A trivial continuous-time distributed leader-following control law for a single-integrator
dynamic MAS can be be designed as follows:

ui(t) = −
N∑
j=1

aij [ri(t)− rj(t)]− bi[ri(t)− r0(t)], j ̸= i (1.8)

where bi is the ith diagonal entry of pinning matrix B = diag{b1, . . . , bN} and bi = 1 if agent i can
receive information from the leader and zero otherwise.

Definition 12. A communication topology which contains the leader and the followers and one or
more followers are pinned to the leader (receive the leader’s data) is called pinning joint communication
topology.

Consider a MAS with 4 followers and one leader. Figure 1.8 shows four different cases of com-
munication network between the leader and the followers. In case (a), b1 = 1 and bj = 0, ∀j ̸= 1
since the leader can only transmit its state information to follower 1. In case (b), the leader can send
information to follower 4 hence b4 = 1 while bj = 0, j ̸= 4. The leader can communicate to more than
one followers as shown in case (c) where the leader is connected to follower 1 and 2. Therefore, bj = 1
for j = 1, 2 and bj = 0 for j = 3, 4. Case (d) is a special case where bj = 1, for all j corresponding to

i
i

“main” — 2020/10/1 — 10:35 — page 17 — #29 i
i

i
i

i
i

1.4 Consensus control problem 17

the topology where leader can send its information to all the followers. Case (d) does not fulfill the
core objective of distributed control as leader is acting like a central unit communicating to all the
other agents and if the followers do not communicate among them, they can reach the the leader’s
trajectory.

0 1

2

3

4

0 1

2

3

4

(a) (b)

0 1

2

3

4

0 1

2

3

4

(c) (d)

Figure 1.8: Communication topology among 4 followers and a leader

In [43], a leader-following algorithm for second-order system with time-varying leader velocity is
given as below:

ui(t) =
1

κi

N∑
j=1

aij [v̇j(t)−K1(ri(t)− rj(t)) +K2(vi(t)− vj(t))]

1

κi
bi [v̇0(t)−K1(ri(t)− r0(t)) +K2(vi(t)− v0(t))] (1.9)

for ∀i, j = 1, . . . , N , i ̸= j, aij is the ijth entry of the corresponding adjacency matrix, κi ,
∑N

j=1 aij+
bi ̸= 0 and K1,K2 > 0. It is to note that in the above control law, each agent not only requires the
position and velocity of its neighbors but also the derivative of the velocity which, in fact, is the input
of the neighbor (i.e. v̇j = uj). Therefore, the above algorithm can only be used for leader-following
consensus if full states and input of the agent is available to the neighbors. Figure 11 illustrates
leader-following results for all four cases of communication topology shown in Figure 1.8 using the
above control law (1.9). It can be seen that in all cases, the followers track the leaders trajectory. The
only condition for a communication topology is to have a directed spanning tree with the leader as a
root.

The leader-following consensus problem for MASs with general single, double, and higher order
integrator has been extensively studied in last few years. In [44], a first-order consensus seeking
algorithm was modified to track a time-varying trajectory of the leader. Hong et al. proposed a leader-
following algorithm for MAS where the followers dynamics are governed by a first-order integrator

i
i

“main” — 2020/10/1 — 10:35 — page 18 — #30 i
i

i
i

i
i

18 Introduction

(a) (b)

(c) (d)

Figure 1.9: Leader-following consensus

while the leader is active with second order dynamics [45]. The results of [45] were further extended
for second-order followers’ dynamics in [46]. However, it is considered that the input (acceleration)
of the virtual leader is available to all the agents. This condition is relaxed in [47] where the authors
proposed virtual structure based approach. The problem of switching topology with time-varying
delays has been studied in [48] for a second-order MAS. Leader-following with higher-order dynamics
agents has been investigated in [49] for both fixed and switching topologies. In [50], the authors
proposed a leader-following control algorithm for general time-varying linear MASs with both fixed
and switching topologies. Fixed-time leader-following consensus has been discussed in [51–53] while the
leader-following problem for nonlinear MAS is investigated in [54–57] and references within. Similarly,
researchers have also proposed leader-following consensus schemes for nonholonomic robots and UAVs
[58–62].

1.5 Formation control problem

Formation control is another important area of interest in the domain of MAS. It refers to the problem
of controlling positions, velocities and/or orientation such that they produce a desired geometric shape.
Formation control has various applications in exploration and mapping, environment monitoring,
satellite communication, secure surveillance, military, heavy payload transportation and entertainment
etc.

The first step in formation control problem is to select a desired geometric pattern while keeping in
mind the physical constraints of the agents. The formation shape can either be fixed or time-varying
depending on the application. Like consensus control, formation control can be separated into two

i
i

“main” — 2020/10/1 — 10:35 — page 19 — #31 i
i

i
i

i
i

1.5 Formation control problem 19

(a) (b)

(c) (d)

Figure 1.10: Applications of formation control of MAS (a) mobile robots encircling the leader (b)
fighter jets formation for defence and surveillance (c) drones making Olympic rings (d) satellites
formation to cover maximum earth coverage

classes based on whether the formation has any reference trajectory or not, called formation producing
and formation tracking [63].

• In formation producing, the agents are only required to produce the desired geometric shape
and maintain it for all future time.

• On the other hand, in formation tracking, the agents are not only required to make the
desired shape but also track a reference trajectory produced by a leader while maintaining the
formation.

A simple example of formation producing and formation tracking is shown in Figure 1.11.
In the literature, formation control strategies are also characterized based on agent sensing capa-

bility and interaction topology as mentioned in a survey by Oh et al. [64]. Note that these approaches
are not characterized based on centralized of distributed but rather the characterization is based on
the variables which are sensed and controlled by the agents to achieve the formation. Three very
common approaches are:

• Position-based approach: [65–68] Agent measures it own position through the sensor in a
global frame and controls the position actively to converge to the desired position which is also
defined in the global frame. The desired formation is described by specifying the desired position
of each agent. Hence, for a general position-based approach, interaction among the agents is
not be an obligation since the formation can be achieved through individual position control of
an agent [69]. However, neighbors’ position information can be used to enhance performance of
the control scheme and to achieve additional goals. The main drawback of this approach is that
the agents require advance sensors to measure their position accurately in the global frame and
sometime require a prior trajectory to be evaluated for each agent.

• Displacement-based approach: [70–72] The formation is defined by the desired displacement
of the agents in a global frame. The displacement of the agent is controlled under the assumption

i
i

“main” — 2020/10/1 — 10:35 — page 20 — #32 i
i

i
i

i
i

20 Introduction

(a)

(b)

Figure 1.11: Formation control (a) formation producing (b) formation tracking

that the agent can sense the relative distance of the neighbors in the global frame. No absolute
position is required but the orientation of the global frame is needed to be known. This approach
is moderate in term of interaction topology and sensing capability.

• Distance-based approach: [66, 70, 73–75] In this approach the formation pattern is specified
by inter-agent distance. The inter-agent distance is actively controlled to achieve a desired
formation. The agents need to sense the neighbors’ relative distance in their local frames which
is not necessarily aligned with the local frames of other agents. Therefore, the disadvantage of
distance-based approach is that the orientation and translation of the formation are not unique
anymore.

Researchers have also distinguished formation control techniques based on leader-follower architecture
[76–82], virtual structure [64, 83–88], and behavioral control [89–92]. In leader-follower architecture,
one agent acts like a leader and the other agents follow the leader’s position with some predefined
offset. The formation is considered as a single virtual structure object in virtual structure based
approaches. The required motion of the whole virtual structure is provided and then the movement of
the agents is decided based on the virtual structure. Distance-based control and displacement-based
control are examples of virtual structure. Sometimes a leader-follower approach and virtual structure
approach are combined to drive the formation to a desired target. In behavioral-based formation
control, various behaviors of the agents are defined. Such behaviors might incorporate collision and
obstacle avoidance or cohesion. Formation is not explicitly defined in the behavioral-based approach
rather the prescribed behavior describes the formation.

Consensus-based formation control design is another interesting approach especially when
distributed control is the main objective. According to the definition of consensus, agents converge
to a common desired value. By choosing appropriate deviation from the consensus state, a consensus
algorithm can be applied to achieve a desired formation. Moreover, all the above mentioned formation
control techniques can be unified and incorporated in consensus-based formation control [93, 94] by
choosing appropriate consensus state and they usually provide a more reliable and robust solution
even if some of the agents are subject to a failure [95]. Various consensus-based formation control
strategies have been proposed in the literature. For instance, Ren proposed a consensus based forma-
tion controller for a second-order MAS [93]. [96] presents a distributed algorithm for formation flight
of UAVs. The algorithm is based on feedback linearization and consensus protocol along with the
failure detection logic. The proposed algorithm only deals with formation producing. The consensus-
based formation producing problem for UAVs has also been studied in [97]. A time-varying formation

i
i

“main” — 2020/10/1 — 10:35 — page 21 — #33 i
i

i
i

i
i

1.6 Issues and challenges in distributed cooperative control design 21

tracking algorithm for second-order MAS with switching topology is proposed by Dong et al. in [94].
The proposed algorithm has been applied on a team of quadrotors to enclose a target in xy-plane. Liu
et al. have proposed a formation control technique which deals with the problem of input saturation
[98]. They use low gain feedback and Lyapunov function theory to prove that with their proposed
algorithm, semi-global formation tracking can be achieved even in the presence of switching topology
and input saturation. Consensus-based formation tracking laws for various communication topologies
which include spanning tree shaped, complete and ring shaped are presented in [99] for the systems
whose kinematics evolve on Lie group. Mondal et al. combined collision avoidance and consensus
approach to propose a distance-based formation controller [72]. Consensus-based formation tracking
control for a team of mobile robots has been presented in [100]. The authors provided a transforma-
tion to convert the formation control problem into a trivial consensus problem. A consensus-based,
leader-follower structured controller has been proposed by Manoharan and Chiu in [101] for formation
tracking of automatic vehicles. [102] discusses a nonlinear formation controller for a team of mobile
robots. A distributed observer has been used to estimate the reference trajectory as it is considered
that the reference state is not continuously available.

1.6 Issues and challenges in distributed cooperative control design

Despite the fact that a lot of research has been done in the field of cooperative control, there are still
many open problems that need to be addressed, especially when it comes to practical applications.
Designing a distributed control law for real world scenarios requires various factors to be taken into
account which pose serious challenges. Most of these challenges are related to restricted communication
capabilities as well as hardware and physical limitations of the agent.

Communication constraints: In most of the previously mentioned literature on consensus and
formation control problems, it is considered that each agent in the MAS receives its neighbors’ in-
formation in continuous time. However, it requires infinite bandwidth to transmit continuous data.
Additionally, due to digital nature of the of communication equipment, the data is always communi-
cated in discrete-time [103].

Several control techniques to deal with sampled data issues in cooperative control have been pro-
posed by the research community. For instance, Pan and Qiao proposed a discrete-time consensus
algorithm for double integrator MAS in [104] where communication delay was considered and condi-
tions for consensus under such delays were derived using linear matrix inequalities. Several sufficient
and necessary conditions on controller gain, communication topology and sampling time were pro-
posed in [105,106] for the convergence of sampled-data coordination protocols for agents with double
integrator dynamics. In [107], average consensus was achieved asymptotically for a dynamic network
provided that there always exists a directed spanning tree. Integral sliding mode control based consen-
sus algorithm was proposed in [108] for both leaderless and leader tracking of second-order MAS with
disturbance. The authors in [109] investigated a discrete-time consensus algorithm for second-order
MAS. It was shown that agents achieve consensus in the presence of switching communication topol-
ogy with non-uniform time delays and sampled data. Eichler and Werner discussed the optimization
of convergence speed for only fixed communication topology [110]. A leader-following protocol for
second-order MAS in a sampling setting with Markovian switching topology has been presented in
[111]. Wu et al. derived mean square consensus tracking with a virtual leader in [112]. In this paper,
the tracking error not only depends on the sampling period and delay but also on the velocity and
acceleration of the virtual leader. The problem of intermittent communication was addressed by Liu
et al. in [113]. The authors proposed a consensus algorithm based on persistent-hold techniques for
first order systems.

While the above mentioned sampled data techniques consider that the system has a constant
sampling rate T i.e. the data is transmitted at regular time intervals, in real world applications,
irregular and nonuniform sampling rates are inevitable due to various factors like time delays, packet
loss etc. Moreover, exact clock synchronization of the agents is also impossible. Therefore, in practice,
the agents transmit their data asynchronously and the transmission is totally independent of other
agents. Asynchronous transmission can prove to be useful as well. For example, less frequency

i
i

“main” — 2020/10/1 — 10:35 — page 22 — #34 i
i

i
i

i
i

22 Introduction

bandwidth is required when agents send data at different instants from the other agents. Inspired by
this, researchers have suggested event-triggering based control algorithms in which the information is
transmitted by an agent only when it is required. This is achieved by defining some conditions that
will trigger the communication hence the name, event-triggering based control. A huge amount of
literature is available on this type of distributed cooperative control schemes. In [114], Dimarogonas
et al. proposed an event-triggering based distributed control for MAS. The next triggering time is
calculated when a particular event takes place. An event-triggering based algorithm with a state-
dependant triggering function was proposed in [115]. An observer based event-triggering consensus
protocol was proposed in [116–118] where the control law is updated using the estimated states. Other
examples can be found in [119–122] and the references inside them. One of the main difficulties in
such control techniques is to determine the triggering function which can ensure the quality of task
completion by MAS.

Another problem which is not considered in most of the existing literature on cooperative control
of sampled-data MAS is related to the nature of the control input. Generally, the control input of the
agent is kept constant between two sampling instants. However, time-varying control input is more
advantageous and can be taken into consideration since the transmitted data has to be sampled not
the control input.

Agent sensing constraints: Another common assumption in MAS distributed control design
is that the full states of the agents are available. Whereas, in practice, it is not always easy to
measure every state of an agent due to limited on-board resources. Therefore, some states are not
accessible for the agents. For instance, to reduce the cost and size of a robot, it is usually equipped
with only position sensors like the odometer. Hence the velocity state cannot be measured directly.
Moreover, even if both position and velocity states are available, transmitting them will also require
more communication resources as compared to sharing only position states. However, in order to
design an effective state feedback control law to steer the robot to the desired path, both position
and velocity states are required. Such scenarios give rise to the need for state estimators for the
dynamic systems to achieve desired goals in safe and economical manners. Unavailable states can be
reconstructed through state observers which use available output data. State observers are discussed
in detail in the next section.

Switching topology: Usually it is considered that the communication topology among the agents
of a MAS remains fixed during the cooperative process. However, in many real applications, it is
sometime not practically feasible for the agents to throughout maintain a fixed topology. This could
be due to various reasons like transmission link failure, communication rage limitation or collision
avoidance etc. Therefore, switching topology is more suitable option in these scenarios. Various co-
operative control techniques for MAS with switching topology are studied in literature for instance in
[94, 98, 123, 124]. However, these research work mostly do not consider the above mentioned commu-
nication and sensing constraints.

Collision among agents: Inter-agent collision is another important issue in MAS cooperative
operation. Agents can be damaged due to collision and this could be catastrophic as well. Therefore,
it is highly essential to ensure collision avoidance when agents are performing some cooperative task.
For mobile physical agents, position consensus may not be suitable as agents will collide with each
other when they reach the final consensus state. In formation producing and formation tracking it
is clear that an agent will not collide if the formation shape is chosen with appropriate inter-agent
distances. However, agents may still collide while converging to the final shape from their initial
positions. Collision avoidance during transient can be managed by incorporating some intelligent
mechanism along with the formation controller to keep a minimum distance between the agents.

1.7 State observers

A state observer estimates the state variables from the available information. Observers were first
developed by Luenberger more than half a century ago [125]. To understand the basic design of the
Luenberger observer, let us consider a continuous time linear time-invariant system with single agent

i
i

“main” — 2020/10/1 — 10:35 — page 23 — #35 i
i

i
i

i
i

1.7 State observers 23

(also known as a plant). The dynamics of the plant is given as{
ẋ = Ax+Bu

y = Cx
(1.10)

where x ∈ Rm and u ∈ Rn are state and input vectors while y ∈ Rp is the output vector and m,
n and p ∈ N. A, B and C are state, input and output matrices of appropriate size respectively. A
typical linear observer uses the input and the output of the system to estimate the system states. An
observer can only be developed if the system is observable. For a linear system with n states, the
system is observable if the observability matrix O = [C,CA,CA2, . . . , CAn−1]T has row rank equal to
n. A simple linear observer for state estimation can be given as

x̂ = Ax̂+Bu+ L(y − ŷ)

= Ax̂+Bu+ LC(x− x̂)

where L ∈ Rn is the observer gain matrix and estimated output ŷ is

ŷ = Cx̂

The estimation error dynamics can be be written as follows

˙̃x = x− x̂

˙̃x = (A− LC)x̃

If L is selected such that the real part of the eigenvalues of A− LC are negative then the estimation
error will converge to zero as t → ∞ which implies that x̂ = x.

These kinds of observers work very well only if the exact system model is available as it can be
seen from the observer design. However, in practice, exact system modelling is not possible. In the
case of modelling uncertainty, choosing observer gain L such that A − LC becomes Hurwitz may
not lead to estimation error convergence. To cope with this problem, researchers have proposed
high gain observers [126, 127]. High gain observers became more famous to reconstruct the states of
nonlinear systems [128,129] since the non-linearity can be considered as uncertainty [130]. The gains
of the observer are chosen to be high enough (therefore named high gain observer) to ensure that the
uncertain terms vanish with time. High gains not only attenuate the uncertainty but also make the
observer dynamics fast.

In practical applications, the output measurements are usually discrete rather than continuous
i.e one gets output y only at sampling instants tk with k = 1, 2, Therefore, continuous time
observers are not quite useful for real applications especially when the sampling time of the output
is comparatively high. Moreover, irregular and asynchronous sampling rate is also inevitable in real
world scenarios. To deal with these issues appropriately, continuous time observers are required to be
redesigned for discrete output measurement. This leads to the development of continuous-discrete time
observers. Earlier works on continuous-discrete time estimation can be found in [131] where observer
of [128] is extended to drive continuous-discrete time Kalman filtering. A constant gain continuous-
discrete time observer for uniformly observable systems is presented in [132]. The constant gain
is calculated through stationary discrete Lyapunov equations. A continuous-discrete time observer
based on a simple model for a complex system is proposed by Astorga et al. in [133]. The designed
observer is applied on chemical reactors. In the aforementioned continuous-discrete time observer,
state prediction is provided between two consecutive intervals through a dynamical system which
is similar to the underlying system. The state prediction is updated when output measurement is
available at the sampling instant. Raff et al. proposed an impulsive observer design for a specific class
of nonlinear systems with nonuniform sampled output data [134]. In this approach, the correcting
term is expressed in the form of the difference between the estimation and the last output sample.
The correcting term is multiplied with a constant gain and only updates when an output sample
is available. The conditions for gain and observer convergence analysis are obtained through Linear

i
i

“main” — 2020/10/1 — 10:35 — page 24 — #36 i
i

i
i

i
i

24 Introduction

Matrix Inequalities (LMI) method. [135] presents another interesting approach for continuous-discrete
time observers where an output predictor is used to predict the system output when it is not available
between two samples. Then this output predictor is coupled with a continuous time observer as shown
in Figure 1.12. Ordinary differential equations have been used to predict the output between samples
with the last measured output as the initial condition.

Figure 1.12: Sampled data observer using output predictor

Combining the concepts of [134] and [135], authors of [136] proposed a continuous-discrete time
controller for a Multi-input-Multi-Output (MIMO) system with Lipschitz non-linearities and variable
sampling period. The considered system can take the following form

ẋ(t) = Ax(t) + ϕ(u(t), x(t))

y(tk) = Cx(tk)

with x = [x1, x2 . . . xq]
T ∈ Rn with xi ∈ Rp for i = 1, . . . q and C = [Ip, 0p . . . 0p] of compatible size. ϕ

is a triangular shaped function and output y(tk) = x1(tk) ∈ Rp. Instead of using a fixed observer gain
like in [134], a time-varying and sampling time dependant gain is introduced. The proposed observer
dynamics are given as follows

˙̂x(t) = Ax̂(t) + ϕ(u(t), x̂(t))−∆−1
θ Ke−θK1(t−tk) (Cx̂(tk)− y(tk))

where K = [K1, . . . ,Kq]
T is selected such that matrix A−KC is Hurwitz. ∆θ = diag{Ip, 1θ Ip . . .

1
θq−1 Ip}

with design parameter θ ≥ 1. It has been shown through Lyapunov analysis that if sampling periods
remain below a certain bound, the observer error will converge exponentially. The use of exponential
time-varying gains for the estimation and stabilization of a variable sampling time output system can
also be found in [137–139].

Using a state observer to reconstruct the unknown states of the agent and its neighbor in MAS
is naturally a promising choice. Distributed observers for MAS have been well investigated in the
literature. Mostly, the motivation behind such approaches is to modify and expand the conventional
observer design methods to obtain distributed observers. For instance, a traditional linear observer
is used to reconstruct an agent’s own unknown state in [140] and the estimated states are then
transmitted to the neighbors. In [46] an observer based leader-following protocol is proposed for a
continuous time MAS with second order agent dynamics. It is considered that the leader only has
a position sensor and its velocity cannot be measured. Furthermore, it is considered that the leader
input is some common policy known by each agent. A reduced order (first-order) continuous time
observer is designed for an agent to estimate the unknown leader velocity. A high gain sliding mode
based observer has been proposed in [141] to estimate the unknown velocity of the leader in finite time.
The estimated velocity is then used to design finite-time cooperative control law for leader tracking.
Authors in [142] studied consensus problem of double-integrator MAS when the velocity information is
unavailable. Observers have been used to reconstruct the velocity to be used for a feedback consensus
controller. Hu et al. studied an observer-based consensus protocol for nonlinear MAS [143]. Two
observers are designed, a local observer from local output information of the agent and a distributed
observer through the received output information of the neighbors. A few other examples of observer-
based distributed cooperative controls can be found in [144–146]. Observer-based cooperative control
protocols for MAS with switching topology are discussed in [147–150]. A position estimation-based

i
i

“main” — 2020/10/1 — 10:35 — page 25 — #37 i
i

i
i

i
i

1.8 Contribution of thesis 25

formation controller with collision avoidance capability is presented in [151]. The proposed algorithm
is tested on a group of small mobile robots.

The above mentioned papers consider that the information is available in continuous time. How-
ever, for the cases where only partial states are accessible in discrete-time, only a few results are
available in literature. A distributed observer is proposed in [152] to address the consensus problem
of high order nonlinear MAS in which the only available data are sampled and delayed outputs. Du et
al. studied consensus problem for MAS with stochastic sampling output [153]. It is assumed that the
sampling period switches strictly between only two values. Observer-based event-triggering protocols
for sampled data MAS have been discussed in [154, 155]. The first attempt to solve the problem
of leaderless consensus for double-integrator MAS with nonuniform sampling was made in [156]. A
continuous-discrete time observer has been used to estimate the agent’s and neighbors’ state in con-
tinuous time from available data. However, the leader-following consensus and formation tracking of
MAS with nonuniform and asynchronous sampling are still open problems.

1.8 Contribution of thesis
The aim of this thesis is to study distributed consensus and formation of MAS. It is clear from the
discussion and literature presented in the previous sections that the available cooperative control
schemes do not take various limitations into account. Motivated by this, the current thesis focused on
the design and implementation of distributed cooperative control laws for a double-integrator MAS
with communication and sensor constraints. These considered constraints are given below:

• Each agent can only measure its position state.

• Agents are not equipped with sensors to measure their velocity.

• Agents do not have access to the input (acceleration) of their neighbors.

• The measured state is transmitted to the neighbors at irregular and non-uniform time intervals.

• The transmission among the agents is asynchronous and totally independent of other agents in
the network.

• The communication topology among the agents is directed.

The following control algorithms have been proposed for the MAS with above mentioned constraints:

• Firstly, a continuous-time distributed leader-following consensus algorithm is proposed for fixed
communication topology. It is assumed that only a small portion of the agents have access to the
leader position. A continuous-discrete time observer with time varying exponential gain has been
used to estimate neighbors’ and the agent’s own position and velocity in continuous-time from
the available sampled-data. These estimated states are then used to design the leader-following
consensus protocol. A Lyapunov-based convergence analysis is carried out to achieve conditions
for observer and controller parameters.

• The results of the designed leader-following controller for fixed topology is then extended for
switching communication topology. A convergence analysis of the proposed controller is carried
out which provides conditions for the switching rate between different communication graphs.

• In this thesis, we also study formation tracking algorithm for the MAS with above mentioned
constraints. Both time-varying and fixed formation shape cases are investigated. The observer
dynamics are also modified to deal with time-varying formation problems.

• Since inter-agent collision is another important issue in formation tracking control, a potential
function based collision avoidance algorithm is incorporated with the proposed formation track-
ing controller. The collision avoidance algorithm ensures that the agents converge to produce
the desired geometric shape without colliding with each other. Convergence analysis is based

i
i

“main” — 2020/10/1 — 10:35 — page 26 — #38 i
i

i
i

i
i

26 Introduction

on Lyapunov theory and it provides various conditions for the stability of the system with a
proposed hybrid controller.

• Finally, all the proposed distributed control schemes are tested on a fleet of differential-drive
mobile robots. Robot Operating System (ROS) has been used to implement algorithms on the
robots. ROS is a complete operating system for robots which comes with very useful built-in
libraries with high-level functionalities to operate a robot. Therefore, it eliminates the require-
ment of building robot software architecture from scratch.

If the consensus algorithm is applied on all the states of the multi-robot network, it will cause
a collision among the robots since they will converge to the same position. In order to avoid
the collision in the consensus tracking experiment, we applied the proposed algorithm to obtain
consensus only in the x-positions of the robots. This is achieved by restricting the motion of the
robot in a a straight line in x-direction (i.e. 1-D) with some constant offset in their y-positions.
By limiting the motion of the robot to 1-D, the nonholonomic constraints the nonholonomic
constraints can be ignored and robots can be modelled as double integrator systems with position
and velocity as states.

A new control scheme, based on robot-flatness properties, is proposed to implement the designed
second-order formation tracking algorithm with collision avoidance. Through the new proposed
scheme, any double-integral control law can be applied on robots moving in a 2-D plane. Gazebo
simulator is used for robot simulations as it provides a very realistic environment while taking
into account various factors like collision and friction etc.

1.9 Thesis Layout

The remaining of this manuscript is organized as follows:

• Chapter 2: In this chapter, we investigate the problem of leader-following consensus for a
double-integrator MAS with communication constraints. First an observer based distributed
consensus protocol is proposed for fixed communication topology. Then the results are expanded
for the case of switching topology.

• Chapter 3: This chapter comprises of two parts. In the first part, distributed formation tracking
problem is discussed. A distributed consensus based formation tracking algorithm is presented
to deal with both fixed and time-varying formation patterns. In the second part of the chapter,
problem of collision avoidance is studied to achieve collision-free formation tracking of the MAS.

• Chapter 4: Application of proposed cooperative control algorithms on a multi-robot network is
studied in this chapter. Experimental platform along with ROS based distributed robot network
is presented. Moreover, control scheme for robots is also discussed. The efficiency of the proposed
algorithm on real applications is investigated through simulations and hardware implantation
results.

• General conclusion and future work: In this chapter, the obtained results are summarized
and various possible future research directions are identified.

1.10 Scientific publications

International refereed Journals

• Syed Ali Ajwad, Tomas Ménard, Emmanuel Moulay, Michael Defoort and Patrick Coirault,
"Observer based leader-following consensus of second-order multi-agent systems with nonuniform
sampled position data", Journal of the Franklin Institute, Vol. 356 (16), pp. 10031-10057, 2019.

i
i

“main” — 2020/10/1 — 10:35 — page 27 — #39 i
i

i
i

i
i

1.10 Scientific publications 27

• Tomas Ménard, Syed Ali Ajwad, Emmanuel Moulay, Patrick Coirault and Michael Defoort,
"Leader-following consensus for multi-agent systems with nonlinear dynamics subject to additive
bounded disturbances and asynchronously sampled outputs", Automatica, Vol. 121, November
2020.

• Syed Ali Ajwad, Emmanuel Moulay, Michael Defoort, Tomas Ménard and Patrick Coirault,
"Collision-free formation tracking of multi-agent systems under communication constraints: ap-
plication to robotics", IEEE Control Systems Letters, 2020, (under review).

• Syed Ali Ajwad, Emmanuel Moulay, Michael Defoort, Tomas Ménard and Patrick Coirault,
"Leader-following consensus of second-order multi-agent systems with switching topology and
partial aperiodic sampled data", IEEE Control Systems Letters, 2020, (under review).

International Conferences

• Syed Ali Ajwad, Emmanuel Moulay, Michael Defoort, Tomas Ménard and Patrick Coirault,
"Output-feedback formation tracking of second-order multi-agent systems with asynchronous
variable sampled data", IEEE 58th Conference on Decision and Control (CDC), pp. 4483-4488,
2019.

i
i

“main” — 2020/10/1 — 10:35 — page 28 — #40 i
i

i
i

i
i

28 Introduction

i
i

“main” — 2020/10/1 — 10:35 — page 29 — #41 i
i

i
i

i
i

Chapter 2

Leader-following consensus

This chapter is focused on consensus tracking of MAS under communication constraints. First, a
continuous-discrete time observer based algorithm is proposed to achieve leader-following consensus
in the presence of various communication constraints with fixed topology. These results are published
in Journal of Franklin Institute [157]. In the second part of the chapter, the obtained results are
extended to the case of switching communication topology. These results are submitted in IEEE
Control Systems Letters [158].

Contents
2.1 Introduction . 30
2.2 Preliminaries . 30
2.3 Problem formulation . 34

2.3.1 Communication constraints . 34
2.4 Observer based leader-following consensus 36

2.4.1 Discussion on Theorem 24 . 37
2.4.2 Simulation results . 38

2.5 Leader-following consensus with switching topology 43
2.5.1 Controller design . 44
2.5.2 Simulations . 45

2.6 Conclusion . 47

i
i

“main” — 2020/10/1 — 10:35 — page 30 — #42 i
i

i
i

i
i

30 Leader-following consensus

2.1 Introduction

In this chapter, the problem of leader-following consensus for double-integrator MAS with commu-
nication constraints is studied. The dynamics of the leader is not necessarily constant and can be
controlled with an external input. The leader sends its information to one or more followers while all
the followers in the network are required to follow the leader trajectory.

The problem of leader-following consensus has been widely studied in the literature, for example
in [123, 159–163] to name a few. However, there are still various issues that need to be addressed.
Communication constraints in MAS, raised due to the nature of available sensors and communication
equipment, are among those unsolved problems. Contrary to the existing literature, the focus of
this chapter is to design a distributed leader-following control algorithm for MAS with the following
communicating constraints:

• An agent only transmits its position state to its neighbors (nor its velocity nor its input).

• The agents transmit their data with irregular sampling times.

• The sampling instants for each agent are totally independent which means that no synchroniza-
tion is required for the transmission.

• The leader can communicate its position to only a small portion of the followers.

• The communication topology among agents is directed.

The objective of this chapter is to design a distributed leader-following control algorithm to deal with
all these constraints. For this purpose, an observer-based control scheme is proposed. A local high-
gain continuous-discrete time observer is used to reconstruct the position and velocity of an agent
and its neighbors in continuous time from discrete position data. Then these estimated states are
used to design the control input. Such an approach has been motivated by [156] for a leaderless
consensus problem. However, the results of [156] cannot be directly applied for the leader-following
case since the inclusion of an active leader influences the stability of the whole system. A Lyapunov-
based detailed stability analysis of the proposed algorithm is carried out and the theoretical results
are validated through MATLAB simulations. The obtained results are also extended to the case of
switching communication topology.

The chapter is organized as follows. Firstly, some preliminaries are given in Section 2.2 which
include some important definitions and results. The main problem is formulated in Section 2.3. The
observer-based controller design for leader-following consensus for fixed topology is presented in Section
2.4. It also gives the stability analysis of the proposed algorithm along with the numerical results.
An extension of the designed algorithm for switching topology is presented in Section 2.5. Finally,
Section 2.6 gives a brief conclusion.

2.2 Preliminaries

Before formulating the problem, we first introduce the notations used in this chapter, followed by
some important definitions and results.

The set of n × n real matrices is denoted Rn×n. In ∈ Rn×n is an n-dimensional identity matrix.
For any symmetric matrix A, λmin(A) and λmax(A) represent minimum and maximum eigenvalues of
A respectively. △

= means equal by definition. DN
i denotes an N ×N matrix with all entries equal to

zero except the ith diagonal entry which is 1. ∥.∥2 and ∥.∥F represent the Euclidean and Frobenius
norms respectively. If nothing is specific then ∥.∥ denotes the Euclidean norm. diag(b1, . . . , bq), with
bi ∈ Rm×m, i = 1, . . . , q, q,m ∈ N, is the diagonal by block matrix having b1, . . . , bq on its diagonal.
1N ∈ RN represents a vector with all entries equal to 1. The Kronecker product of two matrices A
and B is denoted as A⊗B.

i
i

“main” — 2020/10/1 — 10:35 — page 31 — #43 i
i

i
i

i
i

2.2 Preliminaries 31

Definition 13. [164, Def. 1.2 p. 133] If a non-singular real matrix W = (wij) ∈ Zn×n with 1 ≤ i, j ≤
n has all positive diagonal elements (wii > 0), non-positive off-diagonal entries (wij ≤ 0, ∀i ̸= j) and
all the eigenvalues have positive real part then such matrix is called M-matrix.

Lemma 14. [164, Th. 2.3-H24 p. 134] Let W ∈ Zn×n is an M-matrix then there exists a positive
vector ω = [ω1 . . . ωn]

T such that ΩW +W TΩ > 0 where Ω = diag(ω1 . . . ωn).

Lemma 15. We have the following results:

(a) ∥A∥2 ≤ ∥A∥F ≤
√
n∥A∥2 for all A ∈ Rn×n;

(b) ∥x∥2 ≤ ∥x∥1 ≤
√
n∥x∥2 for all x ∈ Rn;

(c)
∑n

i=1

√
xi ≤

√
n
√∑n

i=1 xi for all xi ∈ R+ with i = 1, . . . , n;

(d)
∑n

i=1(xi)
2 ≤ (

∑n
i=1 xi)

2 for all xi ∈ R+ with i = 1, . . . , n;

(e) let µi, i = 1, . . . ,m and νj , j = 1, . . . , n be respectively the eigenvalues of A ∈ Rm×m and
B ∈ Rn×n, then the eigenvalues of A⊗B are µiνj with i = 1, . . . ,m and j = 1, . . . , n;

(f) ∥A⊗B∥2 = ∥A∥2 ∥B∥2 for all A ∈ Rn×n and B ∈ Rm×m;

(g) let A,B ∈ Rn×n be positive definite symmetric matrices, then

λmax(A⊗B) ≤ λmax(A)λmax(B)

λmin(A⊗B) ≥ λmin(A)λmin(B)

(h) for any symmetric definite positive matrix M ∈ Rn×n and x, y ∈ Rn, xTMy ≤
√
xTMx

√
yTMy

(Cauchy-Schwarz inequality);

(i) for any symmetric matrix M ∈ Rn×n and x ∈ Rn, λmin(M)xTx ≤ xTMx ≤ λmax(M)xTx
(Rayleigh inequality);

(j) let (ui)1≤i≤n a basis of Rn and (vj)1≤j≤m a basis of Rm, then (ui ⊗ vj)1≤i≤n,1≤j≤m is a basis of
Rnm;

(k) let A ∈ Rn×n be a symmetric definite positive matrix and B ∈ R×m be a symmetric semi-definite
matrix, then the following inequality hold

λmin(A)In ⊗B ≤ A⊗B ≤ λmax(A)In ⊗B.

Proof. (a) See [165, p.304], section 5.6.23

(b) See [165, p.304], section 5.6.23

(c) Consider X =

√
x1
...√
xn

, then we have

∥X∥1 =
n∑

i=1

√
xi

∥X∥2 =

√√√√ n∑
i=1

(
√
xi)2) =

√√√√ n∑
i=1

xi

Applying Lemma 15-b) gives the result.

(d) The proof is straightforward and then not reported here.

i
i

“main” — 2020/10/1 — 10:35 — page 32 — #44 i
i

i
i

i
i

32 Leader-following consensus

(e) See [166, p.27], property IX.

(f) Denoting ρ(A) the spectral radius of matrix A, one has

∥A⊗B∥22 = ρ
(
(A⊗B)T (A⊗B)

)
= ρ((ATA)⊗ (BTB))

= ρ(ATA)ρ(BTB)) (by applying Lemma 15-e)
= ∥A∥22 ∥B∥22

(g) The two inequalities are obtained directly from Lemma 15-e).

(h) See [165, p.15], subsection 0.6.3.

(i) See [165, p.234], Theorem 4.2.2.

(j) From property X in [166, p. 27], one has det(A ⊗ B) = (det(A))m(det(B))n for any matrices
A ∈ Rn×n and B ∈ Rm×m. Then taking A = (u1, . . . , un) and B = (v1, . . . , vm), one has
det(A⊗ B) = det([u1 ⊗ v1, . . . , u1 ⊗ vm, u2 ⊗ v1, . . . , un ⊗ vm]) = (det(A))n(det(B))m ̸= 0 since
(ui) and (vj) are basis of Rn and Rm respectively.

(k) Let x be a non zero vector Rmn. Let (ui) (resp. (vj)) be a basis of orthogonal eigenvectors of A
(resp. B) of Rn (resp. Rm), that is Aui = µiui, with µi an eigenvalue of A (resp. Bvj = λjvj ,
with λj an eigenvalue of B). Since, according to point h), (ui ⊗ vj)1≤i,1≤j≤m is a basis of Rmn ,
there exist reals αij such that

x =
n∑

i=1

m∑
j=1

αiju
i ⊗ vj .

One has

xT (A⊗B)x =
n∑

i1,i2=1

m∑
j1,j2=1

αi1j1αi2j2(u
i1 ⊗ vj1)T (A⊗B)(ui2 ⊗ vj2)

=
n∑

i1,i2=1

m∑
j1,j2=1

αi1j1αi2j2((u
i1)TAui2)⊗ ((vj1)TBuj2)

=

n∑
i=1

m∑
j=1

α2
ij((u

i)TAui)⊗ ((vj)TBuj) since (ui) and (vj) are orthogonal basis,

=
n∑

i=1

m∑
j=1

α2
ijµ

iλj((ui)Tui)⊗ ((vj)Tuj)

Then, since B is semidefinite positive symmetric, one has λj ≥ 0, j = 1, . . . ,m. Furthermore
((ui)Tui)⊗ ((vj)T vj) = ((ui)Tui)((vj)T vj) ≥ 0, then

n∑
i=1

m∑
j=1

α2
ijµ

iλj((ui)Tui)⊗ ((vj)T vj) ≤ max
i

{µi}
n∑

i=1

m∑
j=1

α2
ijλ

j((ui)Tui)⊗ ((vj)T vj)

= max
i

{µi}
n∑

i=1

m∑
j=1

α2
ij((u

i)Tui)⊗ ((vj)TBvj)

= max
i

{µi}xT (In ⊗B)x

The same can be done for the other inequality.

Theorem 24.

i
i

“main” — 2020/10/1 — 10:35 — page 33 — #45 i
i

i
i

i
i

2.2 Preliminaries 33

Lemma 16. Let v1(t) and v2(t) be real valued functions verifying

d

dt

(
v21(t) + v22(t)

)
≤ −av21(t)− bv22(t) + c

∫ t

t−δ
v22(s)ds+ k, (2.1)

for all t ≥ 0, where a, b, c, δ > 0 and k ≥ 0. There exists ϱ > 0, independent of a, b, c, k, and ᾱ ≥ 0
such that if

δ < ϱmin

(
b

c
,
1

σ

)
then v1(t) and v2(t) verify the following inequality

v21(t) + v22(t) ≤ ᾱe−σt +
k

σ
, ∀t ≥ 0 (2.2)

where σ is given by

σ =
1

2
min (a, b) (2.3)

Proof. Let v = min
(

a√
2
, b√

2

)
, ξ = 2 cδ

b and κ = 1− ξ. Since δ ∈
(
0, ϱmin

(
b
c ,

1
σ

))
, one has

0 < 2
cδ

b
< 2

c

b
ϱmin

(
b

c
,
1

σ

)
≤ 2ϱ ⇒ 1− 2ϱ < 1− ξ︸ ︷︷ ︸

=κ

< 1 (2.4)

0 < vκδ < vδ < vϱmin

(
b

c
,
1

σ

)
≤

√
2ϱ (2.5)

Then ϱ > 0 can be chosen, independently of a, b, c, k such that for all δ ∈
(
0, ϱmin

(
b
c ,

1
σ

))
κ ∈

(
1√
2
, 1

)
(2.6)

evκδ ≤ 1 + 2vκδ (2.7)

Consider the following candidate Lyapunov function

W (vt) = v21(t) + v22(t) + c

∫ δ

0

∫ t

t−s
evκ(µ−t+s)v22(µ)dµds (2.8)

where vt(s) = [v1(t+ s), v2(t+ s)]T , s ∈ [−δ, 0]. One has

Ẇ (vt) =
d

dt

(
v21(t) + v22(t)

)
+ c

∫ δ

0

d

dt

∫ t

t−s
evκ(µ−t+s)v22(µ)dµds.

Applying Leibniz integration leads to

Ẇ (vt) =
d

dt

(
v21(t) + v22(t)

)
− vκc

∫ δ

0

∫ t

t−s
evκ(µ−t+s)v22(µ)dµds+ c

∫ δ

0
evκsv22(t)− v22(t− s)ds

By using (2.1), one has

Ẇ (vt) ≤ −av21(t)− bv22(t) + c

∫ t

t−δ
v22(s)ds+ k − vκc

∫ δ

0

∫ t

t−s
evκ(µ−t+s)v22(µ)dµds

+ c

∫ δ

0
evκsv22(t)ds− c

∫ δ

0
v22(t− s)ds

≤ −av21(t)− bv22(t) + k + c

(
evκδ − 1

vκ

)
v22(t)− vκ

(
W (vt)− v21(t)− v22(t)

)

i
i

“main” — 2020/10/1 — 10:35 — page 34 — #46 i
i

i
i

i
i

34 Leader-following consensus

Since evκδ−1
vκ ≤ 2δ and given the definition of v, the following inequalities are achieved

Ẇ (vt) + vκW (vt) ≤ (−a+ vκ) v21(t) + (−b+ 2cδ + vκ)v22(t) + k

Ẇ (vt) + vκW (vt) ≤ −a

(
1− 1√

2

)
v21(t)− b

(
1− (1− κ)− κ√

2

)
v22(t) + k

Ẇ (vt) + vκW (vt) ≤ −a

(√
2− 1√
2

)
v21(t)− bκ

(√
2− 1√
2

)
v22(t) + k

Ẇ (vt) ≤ −vκW (vt) + k

Ẇ (vt) ≤ −σW (vt) + k

In order to get an over-valuation of W , one uses the comparison Lemma 2.5 p85 [167]. The solution
of the following ODE

ż(t) = −σz(t) + k

is given by

z(t) =

(
z(0)− k

σ

)
e−σt +

k

σ

Taking ᾱ = (W (v0)− k
σ) ends the proof.

2.3 Problem formulation
Consider a group of N followers labeled from 1 to N and one leader labeled 0. The followers have the
following second-order dynamics: {

ṙi(t) = vi(t), i = 1, . . . , N

v̇i(t) = ui(t)
(2.9)

where ri ∈ Rm and vi ∈ Rm represent the position and the velocity of i-th agent respectively while
ui ∈ Rm is its control input with m ∈ N. The dynamics of the leader is as followers and is given by:{

ṙ0(t) = v0(t)

v̇0(t) = u0(t)
(2.10)

where p0, v0, u0 ∈ Rm represent respectively the position, velocity and control input of the leader. The
input of the leader u0 is independent and is not affected by the followers. It could be designed to
achieve any desired reference trajectory for the followers. Only the following assumption is considered.

Assumption 17. It is assumed that the control input u0 is bounded, that is, there exists δ0 ≥ 0 such
that

∥u0(t)∥ ≤ δ0, ∀t ≥ 0

2.3.1 Communication constraints

The communication connection between N followers is described by a graph G and the corresponding
adjacency and Laplacian matrices are A and L, respectively. It is considered that each agent transmits
only its position rj to its neighbor i at times ti,jk with k ∈ N, but neither its velocity vj nor its input
uj . The sampling instants ti,jk are supposed to verify

0 = ti,j0 < ti,j1 < · · · < ti,jk < . . . (2.11)

Furthermore, one assumes that there exist constants τm, τM > 0, called respectively the minimum
sampling period and the maximum sampling period, such that

τm < ti,jk+1 − ti,jk < τM (2.12)

for all k ∈ N and i = 1, . . . , N , j = 0, . . . , N .

i
i

“main” — 2020/10/1 — 10:35 — page 35 — #47 i
i

i
i

i
i

2.3 Problem formulation 35

Example. Consider a MAS with communication topology as shown in Figure 2.1. Agent 2 receives
position data of agent 1 at time instants t2,1k for k ∈ N. These samples are used by agent 2 to estimate
the position and velocity of agent 1 in continuous time. Agent 2 also measures its own position at
time instants t2,2k to reconstruct it own states in continuous time. Similarly, agent 3 receives position
information of agent 1 and agent 2 at time instants t3,1k and t3,2k respectively and its own position at
t3,3k . Agent 1 does not have any neighbor but it uses its own position information at time instants t1,1k .
It can be noted that the time instants ti,jk for i, j = 1, 2, 3 are independent and can be chosen freely as
far as they verify (2.11) and (2.12).

Figure 2.1: Example of sampling instants for data transmission under a directed graph.

The position of the leader is considered to be transmitted to a small portion of the followers. Let the
diagonal matrix B = diag(b1, b2, . . . , bN) be the interconnection relationship between the leader and
followers, where bi = 1 if the information of the leader is accessible by the ith follower, otherwise bi = 0.
The communication graph including the followers and the leader is denoted G̃. The corresponding
Laplacian matrix L̃ is given by:

L̃ =

(
0 01×N

−b̃ H

)
where

b̃ = (b1, . . . , bN)T

and
H = L+ B

Lemma 18. [168] Matrix H is a nonsingular M-matrix if and only if the pinning joint communication
topology G̃ has a directed spanning tree.

Assumption 19. The communication topology G̃ between the leaders and the followers has a directed
spanning tree with the leader as a root.

Note that if G̃ has a directed spanning tree, then according to Lemma 14, there exists a diagonal
matrix Ω = diag(ω1, . . . , ωN) such that HTΩ+ΩH > 0. Furthermore, the following notations will be
used hereafter.

i
i

“main” — 2020/10/1 — 10:35 — page 36 — #48 i
i

i
i

i
i

36 Leader-following consensus

ωmax = max{ω1, . . . , ωN}, (2.13)
ωmin = min{ω1, . . . , ωN}, (2.14)

ρ = λmin(HTΩ+ ΩH) (2.15)
hmax = max

i,j
|Hij | (2.16)

The objective here is to achieve the leader-following consensus in a MAS subject to the previously
mentioned communication constraints and with a dynamic leader according to the following definition.

Definition 20. The leader-following practical exponential consensus is achieved if
N∑
i=1

∥ei(t)∥ ≤ αe−βt + γ, ∀t ≥ 0

where ei = xi − x0 with xi =
[
rTi , v

T
i

]T , x0 =
[
rT0 , v

T
0

]T , α, β > 0 and γ is a positive constant.

2.4 Observer based leader-following consensus
In this work, the basic idea is to use the classical continuous linear consensus controller for double
integrator MAS [28,29,43] with discrete position measurements only. In a classical consensus protocol,
it is assumed that all states of the neighbors are available in continuous time (please see Section 1.4 of
Chapter 1 for details). However, in our case, only discrete position data is available to the neighbors
at irregular and asynchronous time instants. Therefore, first, it is needed to reconstruct the position
and velocity of the agents in continuous time from the available discrete position data. We use a
continuous-discrete time high gain observer [139] to estimate the states in continuous time from the
received discrete data. As mentioned in Chapter 1, continuous-discrete time observers have been
widely studied specially for single agent system [139, 169, 170] and have proven their effectiveness for
the estimation of both available and unavailable states in continuous time for a system with discrete
output. We use the same idea to reconstruct the position and velocity of an agent and its neighbors
and then the leader-following controller is designed using these estimated states.

The proposed observer-based consensus protocol is given for t ≥ 0 by

ui(t) = −c̄λ2
N∑
j=1

aij [r̂i,i(t)− r̂i,j(t)]− c̄2λ
N∑
j=1

aij [v̂i,i(t)− v̂i,j(t)]

−c̄λ2bi [r̂i,i(t)− r̂i,0(t)]− c̄2λbi [v̂i,i(t)− v̂i,0(t)] , i = 1, . . . , N (2.17)

where r̂i,j and v̂i,j are the estimated position and velocity of agent j by agent i. Their dynamics are
given by

˙̂ri,j(t) = v̂i,j(t)− 2θe−2θ(t−ti,jk)
(
r̂i,j(t

i,j
k)− rj(t

i,j
k)
)

(2.18)

˙̂vi,j(t) = −θ2e−2θ(t−ti,jk)
(
r̂i,j(t

i,j
k)− rj(t

i,j
k)
)

(2.19)

for i = 1, . . . , N , j = 0, 1, . . . , N and t ∈
[
ti,jk , ti,jk+1

)
, k ∈ N, where c̄ > 0 is the coupling strength, aij

is the (i, j)-th entry of the adjacency matrix A of the directed graph G while θ and λ > 0 are the
observer and controller tuning parameter respectively. The initial conditions r̂i,j(0), v̂i,j(0) ∈ Rm of
the observers can be chosen arbitrarily. Figure 2.2 shows the block diagram of the proposed observer
based leader-following control algorithm for agent i.

Remark 21. The term e−2θ(t−ti,jk)
(
r̂i,j(t

i,j
k)− rj(t

i,j
k)
)

, in the observer dynamics (2.18), (2.19), acts

as output error (ri,j(t) − rj(t)) predictor between two samples, i.e. over an interval t ∈
[
ti,jk , ti,jk+1

)
.

More details on such output predictor can be found in [169] Section III.B.

i
i

“main” — 2020/10/1 — 10:35 — page 37 — #49 i
i

i
i

i
i

2.4 Observer based leader-following consensus 37

Figure 2.2: Block diagram of proposed observer based leader-following controller for agent i

Remark 22. Each follower has a local observer which not only estimates the agent’s own states but
also the states of its neighbors.

Remark 23. The structure of the proposed observer-based leader-following algorithm also has some
advantages when it comes to communication delays and data packet dropouts. As each controller is
using the estimated states provided by the local observer, by time stamping the measured position data,
the estimation can be provided as soon as the data is received, even with a delay, by compensating
it through increasing the computation speed of the observer. Moreover, if the information packet is
lost during communication, the observer could still provide the estimation if the next data is available
within τM duration with respect to the last available data.

Theorem 24. Consider the MAS (2.9)-(2.10) with the consensus protocol (2.17)-(2.19) and assume
that the communication topology G̃ contains a directed spanning tree. If the control parameters θ, λ, c̄ >
0 satisfy the following

θ <
ϱ̄

τM
(2.20)

λ < ε∗θ (2.21)

c̄ ≥ ωmax

ρ
(2.22)

where ϱ̄ is a positive constant, ε∗ ∈ (0, 1), ωmax and ρ are given by (2.13) and (2.15), respectively,
then the leader-following practical consensus problem is solved in the sense of Definition 20. i.e

N∑
i=1

∥ei∥ ≤ αe−
λ
8
t +

βδ0
λ

(2.23)

with α and β > 0.

The proof of Theorem 24 is provided in Appendix A.

2.4.1 Discussion on Theorem 24

The conditions provided in Theorem 24 to achieve the leader-following consensus are sufficient and
obtained through a Lyapunov-based stability analysis. They provide some useful information about the
choice of the gains. For instance, it is clear from inequality (2.20) that the maximum sampling period
directly influences the choice of θ. If the maximum sampling time is high, then θ must be chosen small

i
i

“main” — 2020/10/1 — 10:35 — page 38 — #50 i
i

i
i

i
i

38 Leader-following consensus

enough and vice versa. It should be noted that θ and λ dictate the convergence speed of the observer
and controller, respectively. In order to guarantee closed-loop stability, the controller dynamics must
be slower than the observer dynamics which is represented by the fact ε∗ < 1. Therefore, for a large
maximum sampling period, the system convergence rate will be slow.

It is clear from inequality (2.23) that the error will gradually converge and will enter in a ball
centered at the origin. This verifies that practical consensus is achieved. The radius of the convergence
ball of the tracking error is directly proportional to the bound of the leader input/acceleration δ0. The
size of this ball can also be reduced by increasing the controller gain λ (while keeping in mind that the
controller dynamics must remain slower than the observer dynamics in order to guarantee stability of
the closed-loop system). Furthermore, if the leader is moving with constant velocity i.e. u0 = 0, then
the MAS achieves exponential consensus.

One can remark that the conditions on the control parameters given in Theorem 24 require some
global information like H and N . Hence, each agent must have some global knowledge about the
communication topology similarly to many existing works on consensus. Nevertheless, the tuning
parameters θ, λ and c̄ are chosen beforehand and then they remain constant for all t ≥ 0. Once the
gains are set, only local information is needed to achieve leader-following consensus.

2.4.2 Simulation results

Consider a MAS with a leader denoted as 0 and 10 followers labeled from 1 to 10. The communication
topology among the agents is shown in Figure 2.3. It can be seen that only follower 2 and follower 5
have access to the leader. Moreover, Follower 5, 6, and 9 have multiple neighbors. It is also to note
that follower 8 can receive information from follower 7 and 9 but it is not transmitting its own data
to any other agent in the network.

1

2 3 4 5

6

78910

0

Figure 2.3: Communication topology for collision-free formation tracking.

i
i

“main” — 2020/10/1 — 10:35 — page 39 — #51 i
i

i
i

i
i

2.4 Observer based leader-following consensus 39

The adjacency and pinning matrices, corresponding to the communication, topology are

A =

0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0

,B =

0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

while the Laplacian matrix can be written as

L =

1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0
0 0 0 −1 −1 2 0 0 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 2 −1 0
0 0 −1 0 0 0 0 0 2 −1
−1 0 0 0 0 0 0 0 0 1

The simulation of the leader-following consensus protocol (2.17)-(2.19) are carried out in MATLAB.
The minimum and the maximum sampling period bound is chosen as τm = 10ms and τM = 100ms.
Using the insight achieved by Theorem 1 and Remark 1, the gains for simulation purpose are chosen
through trial and error method as c̄ = 1, λ = 1.2 and θ = 13. The initial conditions of the agents and
their local observers are chosen randomly.

Figures 2.4 to 2.6 show state estimation by different agents for various trajectories. Figure 2.4
depicts the position and velocity estimation of the leader by follower 2 in the network. Similarly,
Figure 2.5 shows the state estimation of follower 2 by follower 1 while Figure 2.6 illustrates the
estimation of follower 3’s states by follower 9. An example of the sampling time is depicted in Figure 2.7
where it can be seen that each agent has an irregular sampling rate and also these sampling instants
are independent of the other agents in the network. It is clear from these results that the designed
observer effectively estimates the position and the velocity states in continuous time.

time
0 2 4 6 8 10

po
si

tio
n

-1

0

1

2

3

4

5
Actual
Estimated

(a)
time

0 2 4 6 8 10

ve
lo

ci
ty

-5

0

5

10
Actual
Estimated

(b)

Figure 2.4: Estimation of leader’s states by follower 2 (a) position r̂1,0 (b) velocity v̂1,0.

i
i

“main” — 2020/10/1 — 10:35 — page 40 — #52 i
i

i
i

i
i

40 Leader-following consensus

time
0 2 4 6 8 10

po
si

tio
n

-10

0

10

20

30

40

50

Actual
Estimated

(a)
time

0 2 4 6 8 10

ve
lo

ci
ty

-20

-10

0

10

20

Actual
Estimated

(b)

Figure 2.5: Estimation of follower 2 states by follower 1 (a) position r̂2,1 (b) velocity v̂2,1.

time
0 2 4 6 8 10

po
si

tio
n

-4

-2

0

2

4

6 Actual
Estimated

(a)
time

0 2 4 6 8 10

ve
lo

ci
ty

-20

-15

-10

-5

0

5

10

15
Actual
Estimated

(b)

Figure 2.6: Estimation of follower 3 states by follower 9 (a) position r̂3,9 (b) velocity v̂3,9.

sample
0 5 10 15 20 25 30 35 40 45 50

tim
e

0

0.02

0.04

0.06

0.08

0.1
t
k
2,0

(a)
sample

0 5 10 15 20 25 30 35 40 45 50

tim
e

0

0.02

0.04

0.06

0.08

0.1

0.12
t
k
1,2

(b)

sample
0 10 20 30 40 50

tim
e

0

0.02

0.04

0.06

0.08

0.1

0.12
t
k
9,3

(c)

Figure 2.7: Example of sampling time for communication between agents.

i
i

“main” — 2020/10/1 — 10:35 — page 41 — #53 i
i

i
i

i
i

2.4 Observer based leader-following consensus 41

The proposed distributed leader-following algorithm is validated for various cases of position tra-
jectories of the leader. The first case is considered for step leader trajectory. Figure 2.8 shows the
position and the velocity consensus results while Figure 2.9 shows the corresponding tracking error.
In the second case, ramp position trajectory of the leader is considered which means that the leader
moves with a constant velocity. We set this constant velocity at 5m/s. The leader-following consensus
results for this scenario are illustrated in Figure 2.10 for both position and velocity states. The related
tracking errors are shown in Figure 2.11.

time0 5 10 15

po
si

tio
n

-4

-2

0

2

4

6

8

10

12

14
Leader
Follower 1
Follower 2
Follower 3
Follower 4
Follower 5
Follower 6
Follower 7
Follower 8
Follower 9
Follower 10

(a)
time0 5 10 15

ve
lo

ci
ty

-40

-30

-20

-10

0

10

20

30

Leader
Follower 1
Follower 2
Follower 3
Follower 4
Follower 5
Follower 6
Follower 7
Follower 8
Follower 9
Follower 10

(b)

Figure 2.8: Consensus tracking with a stationary leader (a) position (b) velocity.

time
0 5 10 15

po
si

tio
n

er
ro

r

0

2

4

6

8

(a)
time

0 5 10 15

ve
lo

ci
ty

 e
rr

or

0

5

10

15

20

25

30

35

(b)

Figure 2.9: Tracking error with a stationary leader (a) position error ∥ri − r0∥ (b) velocity error
∥vi − v0∥.

i
i

“main” — 2020/10/1 — 10:35 — page 42 — #54 i
i

i
i

i
i

42 Leader-following consensus

time
0 5 10 15

po
si

tio
n

0

20

40

60

80

Leader
Follwer 1
Follwer 2
Follwer 3
Follwer 4
Follwer 5
Follwer 6
Follwer 7
Follwer 8
Follwer 9
Follwer 10

(a)
time0 5 10 15

ve
lo

ci
ty

-30

-20

-10
-5
0
5

10

20

30

Leader
Follwer 1
Follwer 2
Follwer 3
Follwer 4
Follwer 5
Follwer 6
Follwer 7
Follwer 8
Follwer 9
Follwer 10

(b)

Figure 2.10: Consensus tracking with constant leader velocity (a) position (b) velocity.

time0 5 10 15

po
si

tio
n

er
ro

r

0

2

4

6

8

10

12

(a)
time0 5 10 15

ve
lo

ci
ty

 e
rr

or

0

5

10

15

20

25

30

35

40

(b)

Figure 2.11: Tracking error with constant leader velocity (a) position error ∥ri− r0∥ (b) velocity error
∥vi − v0∥.

In the final scenario, the leader has a sinusoidal trajectory. To achieve this reference trajectory, the
leader’s input is selected as u0(t) = 0.0625sin(0.25t)m/s2. The consensus tracking results are shown
in Figure 2.12 for both position and velocity. Figure 2.13 shows the results of corresponding tracking
errors. It can be seen that only practical stability is achieved in the case of non-zero leader’s input
as expected and discussed in Section 2.4.1. Figures 2.14 and 2.15show the consensus results for the
sinusoidal leader input with tuning gains changed to θ = 8 and λ = 0.8. As mentioned earlier that
these gains not only dictate the convergence speed of the system but also, the final error depends on
λ (inequality 2.23). Therefore, one can note that the final error increases as λ decreases.

It is worth noting that in all the cases, only position information is transmitted through the
communication network, given in Figure 2.3, at nonuniform and asynchronous sampling instants.
Velocities and inputs are completely unknown to the neighbors. Despite these constraints, the system
achieved leader-following consensus.

i
i

“main” — 2020/10/1 — 10:35 — page 43 — #55 i
i

i
i

i
i

2.4 Observer based leader-following consensus 43

0 10 20 30 40

po
si

tio
n

-2

0

2

4

6
Leader
Follower 1
Follower 2
Follower 3
Follower 4
Follower 5
Follower 6
Follower 7
Follower 8
Follower 9
Follower 10

(a)
time

0 10 20 30 40

ve
lo

ci
ty

-15

-10

-5

0

5

10

15

20 Leader
Follower 1
Follower 2
Follower 3
Follower 4
Follower 5
Follower 6
Follower 7
Follower 8
Follower 9
Follower 10

(b)

Figure 2.12: Consensus tracking with sinusoidal leader velocity (a) position (b) velocity.

time
0 10 20 30 40

po
si

tio
n

er
ro

r

0

1

2

3

4

5

6

10 20 30 40
0

0.1

0.2

(a)
time

0 10 20 30 40

ve
lo

ci
ty

 e
rr

or

0

5

10

15

20

10 20 30 40
0

0.05

(b)

Figure 2.13: Tracking error with sinusoidal leader input (a) position error ∥ri − r0∥ (b) velocity error
∥vi − v0∥.

time
0 5 10 15 20 25 30 35 40

po
si

tio
n

-2

-1

0

1

2

3

4

5
Leader
Follower 1
Follower 2
Follower 3
Follower 4
Follower 5
Follower 6
Follower 7
Follower 8
Follower 9
Follower 10

(a)
time

0 5 10 15 20 25 30 35 40

ve
lo

ci
ty

-6

-4

-2

0

2

4

6

8
Leader
Follower 1
Follower 2
Follower 3
Follower 4
Follower 5
Follower 6
Follower 7
Follower 8
Follower 9
Follower 10

(b)

Figure 2.14: Consensus tracking with sinusoidal leader velocity with θ = 8.0 and λ = 0.8 (a) position
(b) velocity.

i
i

“main” — 2020/10/1 — 10:35 — page 44 — #56 i
i

i
i

i
i

44 Leader-following consensus

time
0 10 20 30 40

po
si

tio
n

er
ro

r

0

1

2

3

4

5

6

10 20 30 40
0

0.2

0.4

(a)
time

0 10 20 30 40

ve
lo

ci
ty

 e
rr

or

0

1

2

3

4

5

6

7

8

10 20 30 40
0

0.05

0.1

(b)

Figure 2.15: Tracking error with sinusoidal leader input with θ = 8.0 and λ = 0.8 (a) position error
∥ri − r0∥ (b) velocity error ∥vi − v0∥.

2.5 Leader-following consensus with switching topology
In this section, the obtained results of leader-following consensus with fixed topology are extended to
the case where the communication topology among the agents changes over time. In many practical
applications, it is sometime not feasible for the agents to maintain a fixed communication topology
due to various reasons like collision avoidance, communication link failure or communication range
limitations etc. Therefore, switching topology is a more suitable option in these scenarios.

Let us consider a MAS with N followers. Denote G= {G1,G2, . . . ,GM} the finite set of all possible
topology graphs and M = {1, 2, . . . ,M} represents the set of indices. Each graph in G has same
nodes (agents) but can have different edges. The switching between the graphs is time dependant
and is modelled by a switching function σ(t) : (0,∞] → M which is a piece-wise constant function.
Let 0 = t0 < t1 < t2 . . . be the switching instants of σ(t). Furthermore, the intervals (tl, tl+1],
l = 0, 1, . . . are bounded and contiguous. Denote the directed switching graph as Gσ(t) ∈ G with Aσ(t)

and Lσ(t) as corresponding adjacency and Laplacian matrices respectively. Let the diagonal matrix
Bσ(t) = diag(bσ1 (t), . . . , b

σ
N (t)) which represents the switching interconnection between the leader and

the followers. bσi (t), for i = 1, . . . , N is equal to 1 if agent i can receive information from the leader
and zero otherwise. It is to note that the leader does not change, however, its connection with the
followers can change. The switching communication graph including the followers and the leader is
denoted Ḡσ(t).

Assumption 25. Each switching graph Ḡσ(t) has a directed spanning tree with the leader as a root.

Let us define another matrix
Hσ(t) = Lσ(t) + Bσ(t) (2.24)

If graph Ḡσ(t) has directed spanning tree, then according to Lemma 14 there exists a diagonal matrix
Ωσ = diag(ωσ

1 , . . . , ω
σ
N) such that

HσTΩσ +ΩσHσ > 0 (2.25)

Define the following notations

ωσ
max = max{ωσ

1 , . . . , ω
σ
N}, (2.26)

ωσ
min = min{ωσ

1 , . . . , ω
σ
N}, (2.27)

ρσ = λmin(HσTΩσ +ΩσHσ). (2.28)

i
i

“main” — 2020/10/1 — 10:35 — page 45 — #57 i
i

i
i

i
i

2.5 Leader-following consensus with switching topology 45

To avoid chattering and zeno behaviour, let us consider dwell time τd > 0 such that for all t ≥ 0,
tl+1 − tl ≥ τd where l = 0, 1, 2,

Definition 26. [171] For any switching signal σ(t) and time instants t1 and t2 such that t2 > t1 ≥ t0,
let Nσ(t2,21) describes the number of switching of σ(t) over the time interval [t1, t2). For any τa > 0
and an integer N0 ≥ 0, if

Nσ(t2,t1) < N0 +
t2 − t1
τa

(2.29)

holds, then τa is called an Average Dwell Time (ADT).

2.5.1 Controller design

The proposed distributed control law is

ui(t) = −c̄λ2
N∑
j=1

a
σ(t)
ij [r̂i,i(t)− r̂i,j(t)]− c̄2λ

N∑
j=1

a
σ(t)
ij [v̂i,i(t)− v̂i,j(t)]

−c̄λ2b
σ(t)
i [r̂i,i(t)− r̂i,0(t)]− c̄2λb

σ(t)
i [v̂i,i(t)− v̂i,0(t)] , i = 1, . . . , N (2.30)

where a
σ(t)
ij is the ijth entry of adjacency matrix Aσ(t). One should note that as compared to the

control input (2.17), aσ(t)ij in (2.30) is not constant but changes with the topology. r̂i,j(t) and v̂i,j(t),
i = 1, . . . , N , j = 0, . . . , N are the position and velocity of agent j estimated by agent i and are
computed through same continuous-discrete time observer given by (2.18) and (2.19).

Assumption 27. At each switching instant tl, l = 0, 1, . . . , every agent of the MAS sends its own
estimated states, r̂i,i(tl), v̂i,i(tl), with i=0,. . . ,N, to its new neighbors. The observer updates its value at
t = tl based on the estimations it receives from the neighbors i.e r̂i,j(tl) = r̂j,j(tl) and v̂i,j(tl) = v̂j,j(tl).

Remark 28. Assumption 27 is important for the convergence of observer in the case of switching
graphs. It ensures that once the observer error reaches zero, it will not diverge due to switching
between the graphs. Also, other than switching instants i.e. when t ̸= tl, the observer dynamics are
governed by (2.18) and (2.19). Furthermore, same observer can be used by a real leader to estimate
its own states which it could transmit to the neighbor at the switching instant.

Theorem 29. Consider the MAS (2.9)-(2.10) with control input (2.30). Let Assumptions 25 and 27
hold and if the control parameters θ, λ, c̄ > 0 satisfy the following

θ <
ϱ̄

τM
(2.31)

λ < ε∗θ (2.32)

c̄ ≥
maxp∈M{ωp

max}
minp∈M(ρp)

(2.33)

where ϱ̄ is a positive constant, ε∗ ∈ (0, 1), ωp
max and ρp are given by (2.26) and (2.28), respectively

and if the leader velocity is constant i.e. u0 = 0 and ADT satisfies the following inequality

τa >
8 ln (βK)− 1

λ
(2.34)

where K ≥ 0 and β ≥ 1 are defined in the proof, then the leader-following exponential consensus is
achieved.

The proof of Theorem 29 is provided in Appendix B.

Remark 30. The case when the leader velocity is not constant, i.e. u0 ̸= 0 is not discussed here
and considered as future work. In fact, when the leader input is nonzero, the MAS will not achieve
exponential stability but only achieves practical consensus as shown for the case of fixed topology. The
stability proof for such a case is quite complicated due to the extra terms related to leader input u0.

i
i

“main” — 2020/10/1 — 10:35 — page 46 — #58 i
i

i
i

i
i

46 Leader-following consensus

2.5.2 Simulations

Let us consider a MAS consisting of one leader, labeled 0, and four followers, labeled 1, . . . , 4, and
there are 3 possible communication topologies as shown in Figure 2.16. The minimum dwell time
(τd) is chosen equal to 1 sec. The topologies are switching according to the switching signal shown in
Figure 2.17. The adjacency and pinning matrices corresponding to graphs G1, G2 and G3 respectively
are:

A1 =

0 0 0 0
1 0 0 0
0 1 0 0
1 0 1 0

 ,B1 =

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

A2 =

0 1 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 ,B2 =

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

A3 =

0 0 1 0
1 0 0 0
0 0 0 0
0 1 1 0

 ,B3 =

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0

1

2

3

4

0

2

1 4

3

0

3

1 4

2

G1 G2 G3

Figure 2.16: Communication topologies

Figure 2.17: Switching signal

The minimum and the maximum sampling times for simulations are τm = 0.01s and τM = 0.2s
respectively. The initial states of the agents are selected randomly. The tuning gains are chosen by

i
i

“main” — 2020/10/1 — 10:35 — page 47 — #59 i
i

i
i

i
i

2.6 Conclusion 47

trial and error method as c̄ = 1.6, λ = 0.7 and θ = 10. Leader-following consensus with the static
leader is shown in Figure 2.18. Figure 2.18a shows the position tracking while Figure 2.18b depicts
the velocity tracking. Similarly, consensus tracking results for ramp leader trajectory is shown in
Figure 2.19. In this case, the leader is moving with a constant velocity u0 = 2m/s. It is evident from
these results that the MAS achieves the leader-following consensus with switching communication
topology effectively.

time
0 5 10 15 20

po
si

tio
n

-2

-1

0

1

2

3

4

Leader
Follower 1
Follower 2
Follower 3
Follower 4

(a)
time

0 5 10 15 20

ve
lo

ci
ty

-5

0

5

10

Leader
Follower 1
Follower 2
Follower 3
Follower 4

(b)

Figure 2.18: Leader-following consensus of MAS under switching topology with the static leader (a)
position (b) velocity

time
0 5 10 15 20

po
si

tio
n

0

10

20

30

40

Leader
Follower 1
Follower 2
Follower 3
Follower 4

(a)
time

0 5 10 15 20

ve
lo

ci
ty

-6

-4

-2

0

2

4

6

Leader
Follower 1
Follower 2
Follower 3
Follower 4

(b)

Figure 2.19: Leader-following consensus of MAS under switching topology with ramp leader trajectory
(a) position (b) velocity

2.6 Conclusion

In this chapter, an observer-based leader following consensus protocol is developed for a MAS. The
designed algorithm provides a leader-following consensus in the presence of communication and sensor
constraints. These constraints include irregular and asynchronous sampling periods and unavailability
of agent’s velocity and input states. A high-gain continuous-discrete time observer is used for the

i
i

“main” — 2020/10/1 — 10:35 — page 48 — #60 i
i

i
i

i
i

48 Leader-following consensus

reconstruction of both position and velocity states from available discrete position information. These
estimated states are then used to design the control input.

It is shown through Lyapunov-based stability analysis that the system achieves exponential sta-
bility with the proposed algorithm if the input of the leader is zero. However, for non-zero leader
input, only practical stability can be achieved where the bound on final tracking errors depends on
the maximum bound of the input of the leader.

In the case of practical stability, the final error bound can also be reduced by increasing the
controller gain. However, the controller dynamics must remain slower than the observer dynamics.
On the other hand, it has been shown that the choice of the observer gain depends on the maximum
sampling time. If the system has high maximum sampling time then the observer gain must be low.
In other words, the system response will be slower for higher sampling periods.

The obtained results are also extended to the case of switching communication topology. It is
shown that if each communication graphs contains a spanning tree with the leader as a root and if
ADT respects a certain threshold, the MAS achieves the leader-following consensus with switching
topology.

The designed algorithms are verified through MATLAB simulations for different types of leader’s
trajectories. The obtained simulation results have validated the theoretical results and have shown
the efficacy of the proposed protocol.

i
i

“main” — 2020/10/1 — 10:35 — page 49 — #61 i
i

i
i

i
i

Chapter 3

Formation tracking and collision avoidance

This chapter deals with the problem of formation tracking and collision avoidance of a MAS with
communication constraints. The results of formation tracking are published in IEEE Control and
Decision Conference (CDC) 2019 [172], while the results of collision avoidance algorithm are
submitted in IEEE Control Systems Letters [173].

Contents
3.1 Introduction . 50
3.2 Formation Tracking . 50

3.2.1 Formation vector . 51
3.2.2 Output-feedback formation tracking controller 52
3.2.3 Simulation results . 53

3.3 Collision avoidance . 60
3.3.1 Artificial potential function . 61
3.3.2 Collision free formation tracking of MAS . 61
3.3.3 Simulation results . 63

3.4 Conclusion . 68

i
i

“main” — 2020/10/1 — 10:35 — page 50 — #62 i
i

i
i

i
i

50 Formation tracking and collision avoidance

3.1 Introduction

This chapter comprises of two parts. In the first part, the formation tracking problem of MAS under
communication constraints is investigated. Same communication constraints are considered here as
mentioned in the previous chapters which include availability of position state only and nonuniform
and irregular transmission between the agents.

In many practical scenarios, it is required that the agents of MAS create and maintain a desired
geometric shape. The required shape could either be fixed or time-varying. In some cases, it is further
required that the agents follow a trajectory while maintaining the shape. The trajectory is produced
by a virtual or a real leader. This is known as formation tracking. In this chapter, the results of the
leader-following algorithm, provided in chapter 2, have been expanded to solve the formation tracking
problem for both fixed and time-varying formations. The desired formation is achieved by introducing
an offset in the states of the agents and the leader. The offset between the states of the agents and
the leader depends on the required formation shape.

The second part of the chapter deals with another important issue in the formation tracking
problem that is to avoid collision between the agents while they converge to the desired geometric
shape. In this work, we use the Artificial Potential Field (APF) method for collision avoidance. APF
method has been used widely for MASs due to its efficiency and simplicity [47, 174, 175]. In APF, an
agent is considered as a point in a potential field. This point agent experiences a repulsion force from
the obstacles and therefore, instead of colliding with them, it steers around them. Typically, potential
functions are based on the relative distance between two agents hence do not require any global
information. APF based repulsion mechanism is adequately combined with the proposed formation
tracking algorithm to achieve collision-free formation tracking of second-order MAS.

The remaining of the chapter is organized as follows. Section 3.2 describes the formation tracking
problem and the proposed algorithm to achieve the fixed and time-varying formation. It also provides
the stability analysis of the designed algorithm followed by simulation results. Sections 3.3 discusses
the collision avoidance algorithm along with the stability analysis and simulation results.

3.2 Formation Tracking

Let us first consider a group of N followers labeled from 1 to N and one leader labeled 0. The leader
could either be real or virtual. The followers and the leader have same double-integrator dynamics
as given in Chapter 2 by (2.9) and (2.10) respectively with consideration that leader input u0 verifies
Assumption 17.

Let us consider that the communication graph between the followers is denoted as G = {V, E}
where V represents the set of nodes and E ⊆ V ×V is a set containing all the edges. An edge (i, j) for
i ̸= j exists if agent j can receive data from agent i. The adjacency matrix A = (aij) ∈ RN×N of G with
N nodes satisfies that aij = 1 if (j, i) ∈ E and aij = 0 otherwise. The Laplacian matrix L ∈ RN×N is
defined as lii =

∑
j ̸=i aij , lij = −aij for i ̸= j. Let the diagonal matrix B = diag(b1, b2, . . . , bN) be the

interconnection relationship between the leader and the followers. If follower i can receive information
from the leader then bi = 1 and 0 otherwise. The communication graph including the followers as well
as the leader is denoted by Ḡ. It is defined by

H = L+ B

It is considered that the pinning joint communication topology Ḡ has a directed spanning tree where
the leader is a root of the tree which means Assumption 19 holds.

Similar to the previous chapter, it is assumed that each agent only measures its position ri and
is unable to measure its velocity vi as well as its control input ui. Furthermore, in order to replicate
the real world scenario, it is also considered that the agent position is transmitted on irregular and
nonuniform time intervals. Moreover, the sampling intervals for transmission are asynchronous. If
there is an edge (j, i) between these two agents then the sampling instant at which the position
information is transmitted from agent j to agent i is denoted by ti,jk where k ∈ N, i = 1, . . . N and

i
i

“main” — 2020/10/1 — 10:35 — page 51 — #63 i
i

i
i

i
i

3.2 Formation Tracking 51

j = 0, . . . N . The sampling instants verify condition (2.11) while the minimum sampling period τm
and the maximum sampling period τM satisfy condition (2.12).

3.2.1 Formation vector

The desired time-varying geometric shape that the followers have to form is defined by:

f(t) = [f1(t)
T , . . . , fN (t)T]T (3.1)

where fi(t) is the formation vector of agent i and is given as:

fi(t) = [fi,r(t)
T , fi,v(t)

T]T (3.2)

for follower i ∈ {1, . . . , N} and satisfies

ḟi,r(t) = fi,v(t) (3.3)

fi,r(t) ∈ Rm and fi,v(t) ∈ Rm correspond to the position and velocity offset, respectively. It is worth
noting that fi(t) does not represent global formation coordinates but relative offset vectors with respect
to the leader. It means that the desired geometric shape is defined with reference to the leader.

To further explain the formation vector, let us consider the following example. Consider that there
are five vehicles in a 2D plane (xy plane) i.e m = 2. One of the vehicles is acting as a leader and it
is labeled 0. The remaining four vehicles labeled from 1 to 4 are required to make a square around
the leader. The distance between the two vehicles is predefined and should not change. Then the
corresponding formation vectors for vehicles 1 to 4 with respect to the leader 0 can be chosen as

f1 = [5, 5, 0, 0]T

f2 = [5,−5, 0, 0]T

f3 = [−5, 5, 0, 0]T

f4 = [−5,−5, 0, 0]T

It is to note that since it is a time invariant or fixed formation, the corresponding velocity offset
components in the formation vectors are zero. Figure 3.1 provides a graphical representation of the
desired formation in the leader frame (x0, y0).

Assumption 31. It is considered that each agent already has the knowledge of the formation geometry
f(t).

Remark 32. The information of formation geometry is provided beforehand to the followers and is
not shared during the tracking process.

Remark 33. Since, in this context of formation tracking, each follower has a distinct desired position
to achieve the required shape, hence, the followers are not interchangeable. It is contrary to the
consensus where all followers converge to a same position. in this context of formation tracking.

Definition 34. The formation tracking problem is said to be practically solved if there exists ε̄ > 0
such that

lim sup
t→+∞

∥(xi(t)− fi(t)− x0(t))∥ ≤ ε̄ (3.4)

where xi(t) = [ri(t)
T , vi(t)

T]T and x0(t) = [r0(t)
T , v0(t)

T]T .

The goal is to design the protocol ui(t), i ∈ {1, . . . , N} such that the MAS (2.9)-(2.10) achieves the
practical fixed and time-varying formation specified in Definition 34 using asynchronous and aperiodic
sampled position data.

i
i

“main” — 2020/10/1 — 10:35 — page 52 — #64 i
i

i
i

i
i

52 Formation tracking and collision avoidance

x

y

y0

x0
0

1

2

3

4

f1,r

f2,r

f3,r

f4,r

Figure 3.1: Example of square geometric shape.

3.2.2 Output-feedback formation tracking controller

In this section, a time-varying formation tracking controller is designed and analyzed. First, for each
follower, a continuous-discrete time observer is proposed to estimate its state and the state of its
neighbors from the available local asynchronous and aperiodic sampled position data. Using these
estimates, an output-feedback formation tracking protocol is developed.

For each follower i ∈ {1, . . . , N}, the following continuous-discrete time observer is used:

˙̂ri,j(t) = v̂i,j(t)− 2θe−2θ(t−ti,jk)
(
r̂i,j(t

i,j
k)− rj(t

i,j
k)
)

(3.5)

˙̂vi,j(t) = ḟj,v(t)− θ2e−2θ(t−ti,jk)
(
r̂i,j(t

i,j
k)− rj(t

i,j
k)
)

(3.6)

where j = 0, 1, . . . , N , t ∈
[
ti,jk , ti,jk+1

)
, k ∈ N and θ > 0 is the observer tuning parameter. Moreover,

ḟ0,v = 0 as leader does not have any offset. Using the available local asynchronous and aperiodic
sampled position data, this observer guarantees the estimation of the state of agent j by agent i. r̂i,j
and v̂i,j are the estimated position and speed of the agent j by the agent i. The initial conditions
r̂i,j(0), v̂i,j(0) ∈ Rm of the observers can be chosen arbitrarily.

Using these estimates, for each follower i ∈ {1, . . . , N}, the formation tracking algorithm is pro-
posed as

ui(t) = ufi (t) = ḟi,v(t)− c̄λ2
N∑
j=1

aij [r̂i,i(t)− fi,r(t)− r̂i,j(t) + fj,r(t)] (3.7)

−c̄2λ
N∑
j=1

aij [v̂i,i(t)− fi,v(t)− v̂i,j(t) + fj,v(t)]

−c̄λ2bi [r̂i,i(t)− fi,r(t)− r̂i,0(t)]− c̄2λbi [v̂i,i(t)− fi,v(t)− v̂i,0(t)]

where c̄ > 0 is the coupling strength and λ > 0 is the controller tuning parameter.

Remark 35. It should be noted that due to the presence of the offset fi, the controller (3.7) and the
observer (3.5) are different from the one given in Chapter 2.

i
i

“main” — 2020/10/1 — 10:35 — page 53 — #65 i
i

i
i

i
i

3.2 Formation Tracking 53

Theorem 36. Considering that Assumptions 17, 19 and 31 are satisfied. There exist constants ϱ̄ > 0
and ε ∈ (0, 1) such that if the observer and controller gains verify

θ ≤ ϱ̄

τM
(3.8)

c̄ ≥ ωmax

ρ
(3.9)

λ = εθ (3.10)

where ωmax and ρ are given by (2.13) and (2.15) respectively, then the time-varying formation tracking
problem is solved in the sense of Definition 34 using the output-feedback controller (3.5)-(3.7).

The proof of Theorem 36 is given in Appendix C.

Remark 37. It is clear from inequality (C.7) that the system achieves practical stability where the
tracking error is gradually reduced and enters in a ball centered at the origin. The radius of the ball
depends on δ which means that in case of a static leader and time-invariant formation, the tracking
errors converge exponentially to zero. Furthermore, the radius of the convergence ball of the tracking
errors can be reduced by increasing the controller gain λ. This will also increase the speed of the
controller dynamics.

3.2.3 Simulation results

Let us consider a MAS consisting of one leader, labeled 0, and six followers, labeled 1, . . . , 6, described
by (2.9)–(2.10). The communication topology between agents is directed and is shown in Figure 3.2.
The leader can send its position information only to agent 1. One can also note that agent 4 can
receive data from both agent 1 and agent 3.

0 1

2

3

4

56

Figure 3.2: Communication topology.

The corresponding adjacency and pinning matrices are given below.

A =

0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0

 , B =

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

i
i

“main” — 2020/10/1 — 10:35 — page 54 — #66 i
i

i
i

i
i

54 Formation tracking and collision avoidance

Hence the Laplacian matrix is computed as follows

L =

0 0 0 0 0 0
−1 1 0 0 0 0
−1 −1 2 0 0 0
0 0 −1 1 0 0
0 0 −1 −1 2 0
0 0 0 0 −1 1

The simulation results are divided into two parts depending on the desired geometric shape which is
either time-invariant or time-varying. Different cases for the leader trajectory are also considered. All
the simulations are carried out for a 2-dimensional space, i.e. m = 2. Therefore, position errors are
considered both in x−position, and in y−position and defined as follow.

ex = |(ri)x − (fi,r)x − (r0)x|
ey = |(ri)y − (fi,r)y − (r0)y|

Figure 3.3 shows the sampling instants at which the position information is transmitted between two
agents. One can note that the agent position is transmitted asynchronously with nonuniform sampling
periods. The maximum sampling period τM in these simulations is 130ms. The observer and controller
parameters are chosen by trial and error method and selected as c̄ = 1 θ = 11 and λ = 1.

0 10 20 30 40 50

sample

0

0.05

0.1

0.15

tim
e

tk
1,0

0 10 20 30 40 50

sample

0

0.05

0.1

0.15

tim
e

tk
2,1

0 10 20 30 40 50
sample

0

0.05

0.1

0.15

tim
e

tk
3,1

0 10 20 30 40 50

sample

0

0.05

0.1

0.15

tim
e

tk
3,2

0 10 20 30 40 50

sample

0

0.05

0.1

0.15

tim
e

tk
4,3

0 10 20 30 40 50

sample

0

0.05

0.1

0.15

tim
e

tk
5,4

Figure 3.3: Sampling periods for data transmission among the agents

3.2.3.1 Time-invariant formation

A regular hexagon geometric shape is considered for the time-invariant formation case where six
followers track the leader while maintaining a constant hexagonal shape around the leader. The

i
i

“main” — 2020/10/1 — 10:35 — page 55 — #67 i
i

i
i

i
i

3.2 Formation Tracking 55

length of each side of the desired hexagonal is 2m. The formation vector f = [fT
1 , . . . f

T
N]T is chosen

such as:

f1 = [2, 1, 0, 0]

f2 = [1,
√
3, 0, 0]

f3 = [−1,
√
3, 0, 0]

f4 = [−2, 0, 0, 0]

f5 = [−1,−
√
3, 0, 0]

f6 = [1,−
√
3, 0, 0]

Case 1: First, it is considered that the leader is stationary at (0, 0). The tracking result for this
case is shown in Figure 3.4a for different time instants. Both x and y position errors are depicted in
Figure 3.5a and Figure 3.5b respectively. It is clear from these results that the formation pattern is
successfully obtained and all the followers keep the formation for all future time.

-6 -4 -2 0 2 4 6
p

x

-6

-4

-2

0

2

4

p
y

t=0

-6 -4 -2 0 2 4 6
p

x

-6

-4

-2

0

2

4

p
y

t=2

-6 -4 -2 0 2 4 6
p

x

-6

-4

-2

0

2

4

p
y

t=5

-6 -4 -2 0 2 4 6
p

x

-6

-4

-2

0

2

4

p
y

t=10

Leader Follower 1 Follower 2 Follower 3 Follower 4 Follower 5 Follower 6

Figure 3.4: Fixed formation tracking with static leader

Case 2: Secondly, it is considered that the leader is moving with constant x and y velocities i.e.
uo = [0, 0]T . The velocities are selected as ux = 2m/s and uy = 1m/s respectively. The tracking result
for this scenario is shown in Figure 3.6 and tracking errors are depicted in Figure 3.7a and Figure 3.7b.
It is to note that in both Case 1 and Case 2, exponential stability is achieved.

Case 3: Finally, the case is considered where the leader is given some input. For these simulations, the
leader’s input is selected as ux = 0.03m/s2 and uy = 0.02m/s2. The tracking result for this scenario is
shown in Figure 3.8. Since u0 ̸= 0, the system achieves only practical stability. This is evident seeing
the tracking error results shown in Figure 3.9a and Figure 3.9b.

i
i

“main” — 2020/10/1 — 10:35 — page 56 — #68 i
i

i
i

i
i

56 Formation tracking and collision avoidance

time
0 2 4 6 8 10 12

e x

0

2

4

6 e
1

e
2

e
3

e
4

e
5

e
6

(a)

time
0 2 4 6 8 10 12

e y

0

2

4

6 e
1

e
2

e
3

e
4

e
5

e
6

(b)

Figure 3.5: Tracking error of fixed formation with static leader (a) x-position error (b) y-position
error.

r
x

-5 0 5 10 15 20 25

r y

-5

0

5

10

Leader
Follower 1
Follower 2
Follower 3
Follower 4
Follower 5
Follower 6

t=5

t=0

t=10

Figure 3.6: Fixed formation tracking with constant leader velocity

r
x

-5 0 5 10 15 20 25

r y

-5

0

5

10

15

Leader
Follower 1
Follower 2
Follower 3
Follower 4
Follower 5
Follower 6

t=0

t=10

t=5

Figure 3.8: Fixed formation tracking with leader input

i
i

“main” — 2020/10/1 — 10:35 — page 57 — #69 i
i

i
i

i
i

3.2 Formation Tracking 57

time
0 2 4 6 8 10 12

e x

0

1

2

3

4

5
e

1

e
2

e
3

e
4

e
5

e
6

(a)
time

0 2 4 6 8 10 12

e y

0

2

4

6

8
e

1

e
2

e
3

e
4

e
5

e
6

(b)

Figure 3.7: Tracking error of fixed formation with constant leader velocity (a) x-position error (b)
y-position error.

time0 5 10 15

e x

0

1

2

3

4

5

6 e
1

e
2

e
3

e
4

e
5

e
6

11 12 13 14
0

0.05
0.1

(a)
time

0 5 10 15

e y

0

1

2

3

4

5

6 e
1

e
2

e
3

e
4

e
5

e
6

11 12 13 14
0

0.05
0.1

(b)

Figure 3.9: Tracking error of fixed formation with leader input (a) x-position error (b) y-position
error.

3.2.3.2 Time-varying formation

The time-varying formation vector is selected

fi(t) =

10 cos(0.1t+ 2π(i− 1)/6)
10 sin(0.1t+ 2π(i− 1)/6)
− sin(0.1t+ 2π(i− 1)/6)
cos(0.1t+ 2π(i− 1)/6)

with i = 1, . . . , 6. If this formation is achieved, the followers will turn in a circle around the leader
keeping the distance of 10m from the leader. Again, three cases will be considered.
Case 1: In the first case, the leader is stationary and the followers are required to move from their
initial positions to form the desired circle and keep moving in that circle for all future time. Figure 3.10
shows the tracking result. The tracking errors for both x and y positions are shown in Figure 3.11.

i
i

“main” — 2020/10/1 — 10:35 — page 58 — #70 i
i

i
i

i
i

58 Formation tracking and collision avoidance

-10 -5 0 5 10
p

x

-10

-5

0

5

10

p y

Leader Follower 1 Follower 2 Follower 3 Follower 4 Follower 5 Follower 6

Figure 3.10: Time-varying formation tracking with static leader where � = initial state and o = final
state

time
5 10 15 20

e x

0

2

4

6

8

10

12
e

1

e
2

e
3

e
4

e
5

e
6

(a)
time

0 5 10 15 20

e y

0

2

4

6

8

10

12
e

1

e
2

e
3

e
4

e
5

e
6

(b)

Figure 3.11: Tracking error of time-varying formation with static leader (a) x-position error (b) y-
position error.

Case 2: The leader is then moved with constant x and y velocities which are vx = 1m/s and vy = 1m/s
respectively. Figure 3.12 depicts the formation tracking results for different time instants while the
corresponding tracking error results are illustrated in Figure 3.13.

Case 3: Finally, the leader is provided x and y inputs ux = 0.03m/s2 and uy = 0.02m/s2. The
tracking result for this case is illustrated in Figure 3.14 while the tracking error results are shown in
Figure 3.15a and Figure 3.15b. Again, it is clear from the results of time-varying formation tracking
that the system achieves exponential stability if u0 = 0 (Case 1 and Case 2) and the system is
practically stable only when uo ̸= 0 (Case 3).

i
i

“main” — 2020/10/1 — 10:35 — page 59 — #71 i
i

i
i

i
i

3.2 Formation Tracking 59

-10 0 10 20 30 40 50
r
x

-10

0

10

20

30

40

50

r y

Leader
Follower 1
Follower 2
Follower 3
Follower 4
Follower 5
Follower 6

t=0
t=20

t=40

Figure 3.12: Time-varying formation tracking with constant leader velocity

time
5 10 15 20

e x

0

2

4

6

8

10
e

1

e
2

e
3

e
4

e
5

e
6

(a)
time

5 10 15 20

e y

0

2

4

6

8

10
e

1

e
2

e
3

e
4

e
5

e
6

(b)

Figure 3.13: Tracking error of time-varying formation with constant leader velocity (a) x-position
error (b) y-position error.

0 20 40 60 80
r
x

-20

0

20

40

60

80

r y

Leader
Follower 1
Follower 2
Follower 3
Follower 4
Follower 5
Follower 6

t=40

t=0
t=20

Figure 3.14: Time-varying formation tracking with leader input

i
i

“main” — 2020/10/1 — 10:35 — page 60 — #72 i
i

i
i

i
i

60 Formation tracking and collision avoidance

time
5 10 15 20

e x

0

2

4

6

8

10 e
1

e
2

e
3

e
4

e
5

e
6

14 16 18
0

0.1

0.2

(a)

time
5 10 15 20

e y

0

2

4

6

8

10
e

1

e
2

e
3

e
4

e
5

e
6

14 16 18
0

0.05

0.1

(b)

Figure 3.15: Tracking error of time-varying formation with leader input (a) x-position error (b) y-
position error.

3.3 Collision avoidance

The distance between the agents is a very important aspect during the implementation of formation
tracking controller. A safety distance between agents should be considered while agents converge to the
desired position. Indeed, without this constraint, agents could collide and be damaged. For instance,
we have shown that one can achieve a desired formation pattern by using a formation tracking control
algorithm (3.7) and if the formation pattern is chosen appropriately, the agent will never collide once
they build the formation as shown in the simulation results presented in Section 3.2.3. However, the
agents can collide with each other during the transient. For example, the inter-agent distance for
the formation tracking case presented in Figure 3.4 is shown in Figure 3.16. It is clear from this
figure that the inter-agent distances become equal to zero several times during the transition phase
which means that the agents have collided at those instants. In practical scenarios, if the agents are
physical bodies, such collision could not only destroy the agents but it could be catastrophic in some
cases. Therefore, it is of utmost importance to include some collision avoidance mechanisms in order
to achieve collision-free formation tracking.

time
0 2 4 6 8 10 12

in
te

r-
ag

en
t d

is
ta

nc
e

0

1

2

3

4

5

6

Figure 3.16: Inter-agent distance without collision avoidance mechanism

i
i

“main” — 2020/10/1 — 10:35 — page 61 — #73 i
i

i
i

i
i

3.3 Collision avoidance 61

3.3.1 Artificial potential function

In this section, a repulsion force between agents to avoid collision is introduced using APF. It allows
agents to repel each other when the distance between them becomes below a certain threshold. All
the agents which are close and in the restricted vicinity of an agent are considered as obstacles. The
APF base algorithms are simple in term of implementation and do not required extra computation
resources. However, in such techniques the agent may get trapped in local minima and start oscillating
instead of reaching the desired position. Nevertheless, in case of MAS when the potential field depends
only on inter-agent distances, the chances of trapping in local minima are rare.

Based on the practical aspects, an ideal potential function must have the following properties:

• the range of the potential field must be bounded. Usually, it depends on the range of obstacle
sensors mounted on the agent;

• the value of the potential field and the corresponding repulsion must be infinity at the boundary
of the obstacle and must decrease with the increase in the distance;

• first and second derivatives of the potential function must exist in order to have a smooth
repulsion force.

Assumption 38. It is assumed that agents are equipped with proximity sensors and can detect any
relative position of both non-cooperative and cooperative entities within a sensing range R > 0.

Remark 39. Sensing capability is required to sense the presence of any other agent in its close vicinity
which may lead to a collision. These sensors only give the relative position of any agent within its
range in the local frame and do not provide position information in the global frame. It is to note that
this assumption is used for the purpose of collision avoidance only.

3.3.2 Collision free formation tracking of MAS

Let us introduce the following inter-agent distance based potential function [151,176]

qij =

(
min

{
0,

∥rij∥2 −R2

∥rij∥2 − 4r2

})2

(3.11)

where r > 0 is the radius of the safety disc around an agent and rij = ri − rj . From (3.11), one gets
qij > 0 if the distance between agents i and j is less than R. It is also clear that qij tends to infinity if
the inter-agent distance tends to r and qij = qji. Figure 3.17 shows evolution of the potential function
with respect to the inter-agent distance.

The partial derivative of the potential function is

∂qTij
∂ri

=

4(∥rij∥2−R2)(R2−4r2)

(∥rij∥2−4r2)3
rTij if 2r ≤ ∥rij∥ ≤ R

0 otherwise
(3.12)

and
∂qij
∂ri

= −∂qij
∂rj

=
∂qji
∂ri

= −∂qji
∂rj

(3.13)

The total repulsion force on one agent to avoid collision is

uri (t) = −
N∑
j=0

∂qTij
∂ri

(3.14)

The overall formation controller with collision avoidance is then designed as follows

ui(t) = ufi (t) + uri (t) (3.15)

where ufi (t) is the formation tracking controller given in (3.7).

i
i

“main” — 2020/10/1 — 10:35 — page 62 — #74 i
i

i
i

i
i

62 Formation tracking and collision avoidance

r
ij

0 0.5 1 1.5 2

q
ij

×104

0

2

4

6

8

10

12

14

Figure 3.17: Collision avoidance potential function with r = 0.25 and R = 2

Assumption 40. The initial configuration of the agents are outside of the detection radius of the
others. It means that ∥ri(0)− rj(0)∥ > R for all i, j, i ̸= j. Moreover, the formation shape is chosen
such that the inter-agent distance in the desired formation remains greater than R.

Lemma 41. For the potential function defined by (3.11), the following equality holds [177].

1

2

N∑
i=1

N∑
j=1

(
∂qij
∂ri

vi +
∂qij
∂rj

vj

)
=

N∑
i=1

N∑
j=1

∂qij
∂ri

vi (3.16)

Proof.

1

2

N∑
i=1

N∑
j=1

(
∂qij
∂ri

vi +
∂qij
∂rj

vj

)

=
1

2

N∑
i=1

N∑
j=1

∂qij
∂ri

vi +
1

2

N∑
i=1

N∑
j=1

∂qij
∂rj

vj

Since ∂qij
∂ri

= −∂qij
∂rj

, one can note that

1

2

N∑
i=1

N∑
j=1

∂qij
∂ri

vi +
1

2

N∑
i=1

N∑
j=1

∂qij
∂rj

vj

=
1

2

N∑
i=1

N∑
j=1

∂qij
∂ri

vi −
1

2

N∑
i=1

N∑
j=1

∂qij
∂ri

vj

=
1

2

N∑
i=1

N∑
j=1

∂qij
∂ri

vi +
1

2

N∑
j=1

N∑
i=1

∂qij
∂ri

vi

=

N∑
i=1

N∑
j=1

∂qij
∂ri

vi

Hence the lemma holds.

i
i

“main” — 2020/10/1 — 10:35 — page 63 — #75 i
i

i
i

i
i

3.3 Collision avoidance 63

Theorem 42. Consider the MAS (2.9)–(2.10) with formation tracking protocol (3.15) and suppose
that Assumptions 17, 19, 31 and 40 hold. Then, if conditions (3.8)-(3.10) are satisfied, fixed formation
tracking is practically achieved without any inter-agent collision.

The proof of Theorem 42 is provided in Appendix D.

Remark 43. The proof of Theorem 42 shows that the MAS achieves collision-free fixed formation in
practical sense with control law (3.15). In the case of a time-varying formation pattern, the velocity
offset fi,v does not equal to zero. The position error defined by (D.1) will remain the same. On the
other hand, the velocity error (D.2) for time-varying formation will become ζi = vi−fi,v−v0 . Due to
the extra terms appeared in the error dynamics related to the velocity offset of the formation, the proof
becomes more complex. In fact, the chosen Lyapunov functions are not useful for analysis of time-
varying formation case and finding a new suitable Lyapunov function is not straightforward. However,
in the next section, it is shown through simulation results that collision-free formation tracking for both
fixed and time-varying formations can be obtained through the proposed control law (3.15).

3.3.3 Simulation results

For simulation purposes, the considered network consists of four followers labelled from 1 to 4 and
a leader labelled as 0. The directed communication topology among the agents is shown in Figure
3.18. One can note that the leader only sends its position data at random intervals to follower 1 while

0 1

2

34

Figure 3.18: Communication topology

follower 4 can receive information from both followers 2 and 3 at irregular and asynchronous sampling
times. The corresponding adjacency and pinning matrices are given below

A =

0 0 0 0
1 0 0 0
0 1 0 0
0 1 1 0

 , B =

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

and the Laplacian matrix is computed as follows

L =

0 0 0 0
−1 1 0 0
0 −1 1 0
0 −1 −1 2

The minimum and maximum sampling time is τm = 0.01s and τM = 0.2s respectively. An example of
the sampling instants for data transmission between the agents is shown in Figure 3.19.

i
i

“main” — 2020/10/1 — 10:35 — page 64 — #76 i
i

i
i

i
i

64 Formation tracking and collision avoidance

sample
0 10 20 30 40 50

tim
e

0

0.1

0.2
t
k
2,1

sample
0 10 20 30 40 50

tim
e

0

0.1

0.2
t
k
3,2

sample
0 10 20 30 40 50

tim
e

0

0.1

0.2
t
k
4,3

sample
0 10 20 30 40 50

tim
e

0

0.1

0.2
t
k
1,0

Figure 3.19: Sampling time for data transmission between agents.

The observer and controller gains are chosen as θ = 10 and λ = 0.6 respectively while the coupling
strength c̄ = 1. The detection region is R = 2m while the safety region is r = 0.25m for each agent.
The simulations are performed for a 2-dimensional space which means m = 2. The initial conditions
xi(0) = [pix(0), piy(0), vix(0), viy(0)]

T of the followers are:

x1(0) = [−8,−5.5, 0.3, 0.1]T

x2(0) = [−6, 0,−0.2, 0.1]T

x3(0) = [−4.5, 5, 0.3,−0.1]T

x4(0) = [−6, 8, 0.2, 0]T

One can see that the initial distances between the agents are greater than R.

3.3.3.1 Collision-free fixed formation

The desired formation is chosen to produce a square geometric shape around the leader. The corre-
sponding position offsets for the followers are:

f1,r = [6, 6]T ,

f2,r = [6,−6]T ,

f3,r = [−6, 6]T ,

f4,r = [−6,−6]T

For the first scenario, the leader is kept stationary at position coordinates (0, 0) while the followers
reach and maintain the desired square shape around it. Figure 3.20 illustrates the formation producing
result. Fig 3.21 explains collision avoidance mechanism for follower 1. The distance between follower
1 and the other agents in the network is shown in Fig 3.21a while Fig 3.21b shows the control input.
It can be seen that the repulsion term in the controller activates when the distance between agents is
less than R = 2m otherwise it remains zero. Figure 3.22 depicts the distance between all the agents
during the whole process of formation tracking. The inter-agent distance clearly shows that the agents
do not collide during the formation producing. The x and y position errors for this case is shown in
Figure 3.23

i
i

“main” — 2020/10/1 — 10:35 — page 65 — #77 i
i

i
i

i
i

3.3 Collision avoidance 65

r
x

-10 -5 0 5

r y

-15

-10

-5

0

5

10

Leader
Follower 1
Follower 2
Follower 3
Follower 4

Figure 3.20: Square formation with static leader where ⋄ = initial state and o = final state.

Time
0 5 10 15 20 25

In
te

r-
ag

en
t d

is
ta

nc
e

0.5

2

5

10

15

Figure 3.22: Inter-agent distance during formation tracking with static leader

Time
0 2 4 6 8 10

In
te

r-
ag

en
t d

is
ta

nc
e

0.5
2

5

10

15

(a)
Time

0 2 4 6 8 10
-25

-20

-15

-10

-5

0

5

10

u
1
f

u
1
r

u
1

(b)

Figure 3.21: Follower 1 (a) distance with other agents (b) control input.

i
i

“main” — 2020/10/1 — 10:35 — page 66 — #78 i
i

i
i

i
i

66 Formation tracking and collision avoidance

Time
0 5 10 15 20 25

e
x

0

5

10

15
e

1

e
2

e
3

e
4

(a)
Time

0 5 10 15 20 25

e
y

0

5

10

15
e

1

e
2

e
3

e
4

(b)

Figure 3.23: Tracking error for square formation with static leader

For the second scenario, the leader is moving with constant acceleration i.e. ux0 = 0.03m/s2

and uy0(0) = 0.02m/s2. Since the leader moves with constant acceleration, only practical stability is
achieved as described in Remark 37. The formation tracking result is shown in Figure 3.24a while
the inter-agent distances are depicted in Figure 3.24b. Figure 3.25 shows the corresponding tracking
errors.

r
x

-20 0 20 40 60

r y

-10

0

10

20

30

40

50
Leader
Follower 1
Follower 2
Follower 3
Follower 4

t=0

t=20

t=40

(a)
Time

0 10 20 30 40

In
te

r-
ag

en
t d

is
ta

nc
e

0.5
2

5

10

15

(b)

Figure 3.24: Square formation with leader input (a) formation tracking (b) inter-agent distances.

3.3.3.2 Collision-free time-varying formation

The desired formation for the followers is to make a circular pattern with a radius of 5m around
the leader. Figure 3.26a and 3.26b show the formation tracking results and the inter-agent distances
respectively when the leader is static at position coordinates (3, 3). The corresponding position errors
are shown in Figure 3.27.

In the second scenario, the leader is moving with constant acceleration i.e. ux0 = 0.03m/s2 and
uy0(0) = 0.02m/s2. Only practical stability is achieved in this case. The formation tracking result
is shown in Figure 3.28a while the inter-agent distances are depicted in Figure 3.28b. Figure 3.29
illustrates the corresponding tracking errors. It can be seen from these results that the collision-free
formation tracking is achieved even for time-varying formation shapes with the proposed algorithm.

i
i

“main” — 2020/10/1 — 10:35 — page 67 — #79 i
i

i
i

i
i

3.3 Collision avoidance 67

Time
0 5 10 15 20 25

e
x

0

5

10

15
e

1

e
2

e
3

e
4

20 22 24
0

0.2
0.4

(a)
Time

0 5 10 15 20 25

e
y

0

2

4

6

8

10

12

14
e

1

e
2

e
3

e
4

20 22 24
0

0.1
0.2

(b)

Figure 3.25: Tracking error for square formation with constant leader acceleration

r
x

-10 -5 0 5 10

r y

-10

-5

0

5

10

Leader
Follower 1
Follower 2
Follower 3
Follower 4

(a)

time
0 5 10 15 20 25

in
te

r-
ag

en
t d

is
ta

nc
e

0.5

2

5

10

15

(b)

Figure 3.26: Circular formation with static leader (a) formation tracking ⋄ = initial state and o =
final state (b) inter-agent distance

r
x

0 20 40 60

r y

-10

0

10

20

30

40

50
Leader
Follower 1
Follower 2
Follower 3
Follower 4

t=0

t=20

t=40

(a)
time

0 10 20 30 40 50

in
te

r-
ag

en
t d

is
ta

nc
e

0.5

2

5

10

15

(b)

Figure 3.28: Square formation with leader input (a) formation tracking (b) inter-agent distances.

i
i

“main” — 2020/10/1 — 10:35 — page 68 — #80 i
i

i
i

i
i

68 Formation tracking and collision avoidance

time
0 10 20 30

e
x

0

5

10

15 e
1

e
2

e
3

e
4

(a)
time

0 10 20 30

e
y

0

2

4

6

8

10 e
1

e
2

e
3

e
4

(b)

Figure 3.27: Tracking error for circular formation with static leader

time
0 10 20 30

e
x

0

5

10

15 e
1

e
2

e
3

e
4

20 25 30
0

0.1
0.2

(a)
time

0 10 20 30

e
y

0

2

4

6

8

10 e
1

e
2

e
3

e
4

20 25 30
0

0.1

0.2

(b)

Figure 3.29: Tracking error for circular formation with constant leader acceleration

3.4 Conclusion
This chapter deals with the formation tracking problem of MAS under communication constraints.
A consensus based distributed formation tracking algorithm is proposed to achieve both fixed and
time-varying formation shapes. It is shown that the followers in a MAS achieve a desired geometric
shape whether fixed or not and track the trajectory of the leader effectively while maintaining the
desired pattern.

In the second part of this chapter, an APF based collision avoidance mechanism is combined
with the proposed formation tracking algorithm to avoid any collision among the agents during their
transition to the desired shape. Whenever the distance between the agents decreases below a certain
value, the repulsive potential acts on the agents and move them away from each other. The repulsive
force vanishes as soon as the inter-agent distance becomes sufficiently large. The effectiveness of the
proposed collision-free formation tracking algorithm is shown through simulation results.

i
i

“main” — 2020/10/1 — 10:35 — page 69 — #81 i
i

i
i

i
i

Chapter 4

Application to multi-robot network

Contents
4.1 Introduction . 70
4.2 Robotic Platform . 70
4.3 Robot operating system (ROS) . 72

4.3.1 Package . 73
4.3.2 Node . 73
4.3.3 Master . 73
4.3.4 Topics and messages . 73
4.3.5 Services . 75
4.3.6 Bags . 75
4.3.7 Launch file . 75

4.4 Gazebo Simulator . 75
4.5 Multi-robot ROS Network . 76
4.6 Experimental setup . 77
4.7 Consensus tracking . 79
4.8 Nonholonomic robot model . 81
4.9 Control scheme for nonholonomic robot . 82
4.10 Formation tracking control . 82

4.10.1 Fixed-formation . 84
4.10.2 Time-varying formation . 86

4.11 Formation tracking control with collision avoidance 86
4.11.1 Velocity cone concept . 88
4.11.2 Numerical results . 88

4.12 Conclusion . 93

i
i

“main” — 2020/10/1 — 10:35 — page 70 — #82 i
i

i
i

i
i

70 Application to multi-robot network

4.1 Introduction
In this chapter, we study the application of the proposed algorithms of leader-following consensus,
formation tracking and collision avoidance. The theoretical results are tested and validated on a fleet of
differential drive mobile robots. An open-source software architecture Robot Operating System (ROS)
is used for the implementation purpose. The simulations for the robotic fleet are carried out in Gazebo
simulator while the experiments are performed in Laboratory of Industrial and Human Automation
Control, Mechanical Engineering and Computer Science (LAMIH), Université Polytechnique Hauts-
de-France. One robot in the fleet is considered as a leader while other robots are designated as
followers. The robots communicate through a wireless network using the TCP/IP protocol. For the
implementation of distributed algorithms, the limited information exchange is achieved by simply
restricting the use of information received to a robot from only a certain member of the fleet. A
control scheme has been designed to deal with the motion constraints of the robot in the Cartesian
space. The proposed formation tracking and collision avoidance algorithms have been applied on a
multi-robot system using the designed control scheme.

The remaining of the chapter is organized as follows. First, we present the robotic platform used
for implementation purpose in Section 4.2 followed by a brief introduction of ROS and Gazebo in
Section 4.3 and 4.4 respectively. Section 4.5 elaborates the multi-robot ROS network while Section
4.6 explains the experimental setup. Then, in Section 4.7, experimental results of the developed
consensus algorithms are discussed. Robot nonholonomic model and its control scheme are presented
in Section 4.8 and 4.9 respectively. Formation tracking and collision avoidance results are illustrated
in Section 4.10 and 4.11. Finally Section 4.12 gives a brief conclusion.

4.2 Robotic Platform
The robotic platform used for the experiments is Mini-Lab by ENOVA ROBOTICS shown in Fig-
ure 4.1. It is a multi-functional differential drive robot particularly designed for educational and
research purposes. The software architecture of the robot is open-source and based on ROS which
makes it a good candidate to test the designed algorithms. The Mini-Lab is a compact-sized robot
with dimensions 409mm × 364mm × 231mm (width×length×height) and weighs 11.5kg. With such
body proportions, it is mostly useful for indoor operations. The schematic layout of the Mini-Lab
robot is illustrated in Figure 4.2.

The robot can handle a payload of up to 3kg. Separate drive motors are directly attached with
the axis of each wheel. The robot includes sensors which provide accurate odometry location and it
also has a camera mounted on it for real-time video streaming. Specifications of Mini-Lab robot are
provided in Table 4.1.

Figure 4.1: Mini-Lab robot.

The main hardware components of Mini-Lab are listed below.

• Central processor: The central processing unit for the control of Mini-Lab is based on the

i
i

“main” — 2020/10/1 — 10:35 — page 71 — #83 i
i

i
i

i
i

4.2 Robotic Platform 71

Figure 4.2: Mini-Lab physical dimensions.

DN2800MT Mini ITX Motherboard. The motherboard consists of an Intel Atom N2800 micro-
processor. It is a 1.86GHz dual core 64bit microprocessor which supports 4GB DDR3-SDRAM
Memory that is available on the motherboard. The board also has VGA, USB 2.0, USB 3.0 and
HDMI ports. The processing unit is quite compact in size with dimensions 17cm× 17cm.

• DC motors: The robot gets its mechanical driving force through two 12V DC driving motors,
attached on each wheel axis and can be controlled separately. Each motor provides a max torque
of 0.07N. The robot can move with the speed of 1.5m/s when motors are running at their peak
capacity. However, due to safety reasons, maximum allowable speed is limited to about 1m/s.
These motors allow robots to climb a slope with maximum angle of 10 degrees.

• Motor driver: Dual channel Roboteq SDC2130 controller is used to drive the motors of the
robot. It takes input command signals from the processor and generates a high current and high
voltage output to drive the motors.

• Ethernet router: Each robot can connect to the network through an on-board TL-WR802N
wireless router. The router provides wireless connection using TCP/IP protocol.

• Sensors: The robot is equipped with two types of proximity sensors. There are five Ultrasonic
MaxSonar-EZ0 sensors with a range of 0m to 6.45m and a resolution of 2.54cm. The other sensor
is Infrared SHARP 2Y0A21 F 46 with a range between 10 to 80cm. Each robot is also equipped
with 16bit encoders.

• Secondary processor: The proximity sensors interface is provided through a secondary pro-
cessor. An Arduino micro-controller board is used for this purpose.

• Camera: Each robot is also equipped with Orbbec Astra Pro Camera. The camera provides a
3D RGB image stream with depth measurements and ideal for image processing related appli-
cations. The range of the camera is from 0.6m to 8m.

• USB HUB: All the hardware devices communicate through a D-Link DUB-H7 USB HUB. It
has a transfer rate of up to 480 Mbps, hence provides an ideal solution for transferring data
between the central processor and other devices like motor driver and camera etc.

i
i

“main” — 2020/10/1 — 10:35 — page 72 — #84 i
i

i
i

i
i

72 Application to multi-robot network

• Battery: Each robot has a 12V rechargeable, maintenance-free led-acid battery. It provides
sufficient electric power to the robot for up to 4 hours.

Specifications
Dimensions (W × L × H) 409 × 364 × 231 mm
Weight 11.5kg
Load Capacity 3kg
Max Speed 1.5m/s

Mechanical

Max Slope Angle 10 degree
Processor Intel Atom N2800
Sensor Interface Ardino
Depth Camera Asus Xtion Live Pro

Ultrasonic (×5)
Electronics

Sensors Infrared (×5)
Wireless IEEE 802.11b/g/n-Communication Extension with USB, Ethernet
Battery 12V
Autonomy 4hPower
On-board Voltages 5V/12V

Table 4.1: Specifications of Mini-Lab robot.

4.3 Robot operating system (ROS)

ROS is an open-source meta-operating framework which provides software tools and libraries specifi-
cally developed for robotic applications. The main idea behind ROS is to provide a standard framework
which gives basic software architecture and tools that can allow robotic researchers to built their com-
plex algorithms on top of it instead of starting from the scratch. ROS was initially developed by
researchers at the Stanford Artificial Intelligence Laboratory in 2007 [178]. From 2008, the develop-
ment of ROS was continued over the next six years at the research institute Willow Garage along
with the collaboration of 20 other institutes. Currently, Open Source Robotics Foundation (OSRF),
now known as Open Robotics, is the primary maintainer and manager of ROS. ROS attracted the
interest of researchers from around the globe and robot manufacturers also opted their products to be
compatible with ROS.

ROS provides various services which includes hardware abstraction, low-level device control (de-
vice drivers), implementation of common functions, package organization and inter-process message
exchange. One of the main reasons that ROS has become popular among the robotic research com-
munity is its modular approach which has simplified the designing of complex robot behavior. ROS
offers a framework that gathers the robotic tools and allows code sharing and reuse by setting the
de facto standards of robot programming. In fact, ROS is a multi-lingual framework where modules
can be written in various languages like C++, Python and Lisp. The underlying ROS open-source
principle is that one can easily take a code from ROS repositories, use it, improve it and then share it
again. One of the important features of ROS is that it supports a distributed computation environ-
ment which means ROS processes can be run on different machines and they can share information
with each other. The main ROS client libraries are supported for Unix-based systems mainly due to
their open-source software dependencies.

The main components of ROS architecture are discussed below

i
i

“main” — 2020/10/1 — 10:35 — page 73 — #85 i
i

i
i

i
i

4.3 Robot operating system (ROS) 73

4.3.1 Package

Packages are the basic organization units of software in ROS. A package can consist of ROS processes
(Nodes), configuration files, a dependant library, a data-set or any other files that might be useful for
the package. The design and structure of packages provide a well-organized ease to use functionality
such that the software can be easily reused for other projects as well. This kind of configuration and
organization enables ROS modular approach with packages as building blocks of the module.

A typical package structure usually consists of the following files and folders.

• package.xml file: It is a manifest file of the package that includes information like package
name, licence details, authors, dependencies on other packages etc.

• CMakelist.txt file: It contains a list of cmake rules describing how to build and compile the
code.

• src folder: It is a source folder which contains all the source codes written in C or Python
languages.

• launch folder: It contains launch files. The launch files are used to launch multiple processes
simultaneously.

• msg folder: This folder contains message types that can be used to share information among
processes. The message types are defined data structures depending on the information they
carry.

Sometimes, it is more feasible to combine different packages in a meta-package. A meta-package is a
stack that provides an aggregate functionality to achieve an overall goal by a robot. Each meta-package
has its own manifest file.

4.3.2 Node

Every process in ROS is separately designed and programmed and is referred to as a node. Each node
is an executable that performs computations and is written using ROS client libraries like rospy and
roscpp. An overall robot control system could have multiple nodes for different tasks. For instance,
one node for wheel motor control, one node for path planning, one node for sensor data acquisition,
one node for localization and so on. ROS nodes communicate and exchange data with each other
through ROS communication methods. A node uses publisher or subscriber to broadcast or receive
data respectively. Since ‘Node’ has a different interpretation in graph theory, from here on-wards we
will use ROS-node to refer to a node in ROS context hereafter in order to avoid confusion.

4.3.3 Master

The ROS master is responsible for the registration of the ROS-nodes. Whenever a ROS-node is
activated, it looks for the ROS master and registers its name with it. Therefore, the ROS master
has the details of all running ROS-nodes on the ROS network. If a ROS-node changes its details, it
generates a callback and updates the latest details. If ROS-nodes are run on different machines, then
at least one ROS master should run on one of the machines and then all ROS-nodes can find each
other through it. ROS Master can be started by a command roscore. The command roscore not only
runs ROS Master but also some other ROS-nodes and programs which are a prerequisite for any ROS
based system.

4.3.4 Topics and messages

ROS-nodes in a ROS system communicate and share data in the form of messages. These messages
are transported on named channels called topics. Whenever a ROS-node wants to share data, it
will publish the data in messages on an appropriate topic and the ROS-node that requires this
information will subscribe to this topic. Each topic has a unique name with a specific message type.

i
i

“main” — 2020/10/1 — 10:35 — page 74 — #86 i
i

i
i

i
i

74 Application to multi-robot network

Any ROS-node can subscribe to this topic and also can publish messages with the right message type.
A publisher ROS-node keeps publishing on a topic with a specified data rate and does not require any
request from the subscriber. Similarly, a subscriber ROS-node can subscribe to any topic even if the
publisher is not publishing any message. Usually a topic has one publisher and multiple subscriber
ROS-nodes. The ROS master take cares of all the communication but messages are directly sent from
publishers to subscribers. Figure 4.3 illustrates a basic communication architecture of ROS.

Figure 4.3: Basic ROS communication architecture.

A ROS message in fact is a simple data structure describing data types. These data type descrip-
tions can be used to generate source codes. All standard data types are supported like int, float, double,
boolean etc as well as arrays of primitive types. A message can also include a nested structure and
arrays. Two other important builtin primitive types are time and duration. These types are pro-
vided by roslib (base dependency of client libraries and tools) as ros::Time and ros::Duration.
A time is a specific moment while a duration is a period between two instants.

A ROS message description is saved in .msg files in the msg folder in a ROS package. A ROS
message may include a special type called Header. The header contains some important message
information like time, frame ID and sequence number. A simple header example is given below
uint32 seq
time stamp
string frame_id

Since the proposed algorithms of consensus and formation tracking in this research require exact
time of position data, Header of the messages containing position information can be used to extract
the exact time when that position is measured.

4.3.4.1 Graphical visualization about publishers and subscribers

The communication in a ROS system can be visualized graphically using rqt_graph. rqt_graph
is a Graphic User Interface (GUI) plugin which provides a graphical visualization about publishers,
subscribers and topics relationship. This tool is quite useful for debugging especially when a large
number of ROS-nodes are running in the ROS application. Figure 4.4 shows an example of simple
rqt_graph for a well-known turtle robot.

i
i

“main” — 2020/10/1 — 10:35 — page 75 — #87 i
i

i
i

i
i

4.4 Gazebo Simulator 75

Figure 4.4: rqt_graph of turtle robot simulation.

4.3.5 Services

In some robot applications, the publish and subscribe method for sharing information is not enough,
particularly when a request-response interaction is required. This is achieved by ROS services. A
service definition consists of two components, one for request and other for response. One ROS-node
acts like a server which responds to the request of a client ROS-node.

4.3.6 Bags

ROS message data can be logged and saved in bag files. Bags are important to store sensor data or
any other information. Bags basically subscribe to one or more topics and store the data as received.
These files can be played back again and the store messages will be published in the same sequence
on the topics from which they are received.

4.3.7 Launch file

Launch files are used to launch multiple ROS-nodes simultaneously. Launch files are written in XLM
and are saved in launch directory of a package with the extension .launch. It is run through
roslaunch command. roslaunch automatically starts roscore if not activated already. The
Launch file not only runs a ROS-node but it can configure ROS-node parameters as well. Moreover, a
launch file can also run other launch files. Any package with more than one ROS-node likely to have
a launch file to specify and configure them.

4.4 Gazebo Simulator

Gazebo [179] is an open-source robot simulator which provides realistic 3D simulation environments
to test and verify robot algorithms. Gazebo allows to design a virtual dynamic environment which
includes robots, sensors and other objects. Gazebo simulator mimics real-world scenarios to a great
extent by providing a realistic sensor feedback and interaction between the robots and the objects. It
incorporates various natural world features like gravity, inertia, collision or contact forces and friction
by using ODE and physics engines. Gazebo also has a sophisticated GUI plugin which allows a user
to monitor the robot behavior in real-time. It also allows a dynamic environment with multiple robots
working simultaneously. Figure 4.5 shows a screen-shot of the Gazebo GUI with three Mini-Lab
robots.

Gazebo basically is a stand-alone simulation software. However, now Gazebo provides a convenient
interface with ROS. The integration between ROS and Gazebo is achieved through a specific ROS
packages set called gazebo_ros_pkgs. These packages provide the required interfaces between
Gazebo APIs and ROS messages and services. A Unified Robot Description Format (URDF) file can
be used for the description of the robotic platform model. URDF is an XLM format file generally used
in ROS to provide kinematics and dynamic description of a robot. The details of the URDF file can be
found in [180]. Gazebo, by default, uses another format for robot description known as a Simulation
Description Format (SDF). However, Gazebo can convert a URDF to a SDF automatically.

i
i

“main” — 2020/10/1 — 10:35 — page 76 — #88 i
i

i
i

i
i

76 Application to multi-robot network

Figure 4.5: Gazebo simulation screen-shot.

4.5 Multi-robot ROS Network
Typically, in ROS framework, each Mini-Lab robot has its own ROS network with a single ROS master
which handles all the communication between ROS-nodes in the network. Multiple ROS-nodes can
either run on the same computer or they can be on different computers depending on the application
requirements. The network could be wired, wireless or a combination of both. Figure 4.6 illustrates
an example of a single robot network.

Figure 4.6: Single robot ROS network

When multiple robots are used in a system, there are two possible ROS network schemes. One is to
establish a large network with a single ROS master handling all the ROS-nodes and topics. However,
in such a case, all robots are dependant on a single roscore node. The roscore not only manages
the communication between the ROS-nodes of different robots but also handles communication of
ROS-nodes within a single robot. The other possibility for a multi-robot system is to develop such a
mechanism where multiple ROS systems can exchange information with each other. In other words,
each robot has a local ROS network with its own ROS master and each local network can communicate
to the other ROS networks of other robots. This kind of setup is allowed under the ROS multi-master
scheme in which two or more ROS networks can be combined. Such a scheme is essential for distributed
communication topology.

A multi-master ROS network can be created through a special package called multimaster_fkie.

i
i

“main” — 2020/10/1 — 10:35 — page 77 — #89 i
i

i
i

i
i

4.6 Experimental setup 77

It consists of various ROS-nodes to establish and maintain the communication between ROS subsys-
tems. It can automatically detect and synchronize the changes in the network. multimaster_fkie
has two essential ROS-nodes called master_discovery and master_sync that must run simulta-
neously. master_discovery notifies its presence to local ROS networks by periodically sending the
multicast messages. It is also responsible to detect any changes in the local networks and inform all
ROS masters about these changes. On the other hand, master_sync allows the synchronization of
remote services and topics to the local ROS master. Each remote ROS network should have its own
master_sync ROS-node to achieve synchronization with other ROS networks. Following section
discusses the experimental setup which is based on ROS multi-master.

4.6 Experimental setup

A fleet of three Mini-Lab robots is used for the experimental verification of our proposed algorithms.
Since each robot has its own ROS master, a distributed ROS network is created for the robots to
communicate using a ROS multi-master setup. Each of the robots and the workstation requires a
unique and dedicated IP address such that information is received from the same address every time
they connect to the network. The address reservation is configured in the router against the MAC
addresses of the robots such that any robot gets same IP address when it becomes alive in the network.
Host names are bounded with the IP addresses in the /etc/hosts file. The network configuration can
be verified by pinging each robot and the workstation. Following IP addresses have been assigned to
to each machine in the network.

Minilab1robot 192.168.0.101
Minilab2robot 192.168.0.102
Minilab3robot 192.168.0.103
Workstation 192.168.0.111

Table 4.2: Assigned IP addresses.

Once the wireless network is established, multi-master ROS setup is configured using multimaster_fkie.
First of all, local roscore is run on each robot. After that, mutimaster_discovery node is
launched on each robot by the following command:

$ rosrun master_discovery_fkie master_discovery_mcast_group:=224.0.0.1

The parameter mcast_group is passed to specify the multicast address to be used. Afterwards,
topics and services of all robots and workstation are synchronized by launching master_sync ROS-
node. The list of all available ROS maters can be obtained using the following command:

$ rosservice call /master_discovery/list_masters

The time at which a robot measures its position is highly important in the proposed algorithms.
Therefore, it is necessary that the clocks of all the machines on the network are synchronized. This has
been achieved by incorporating Network Time Protocol (NTP) in the network. Figure 4.7 illustrates
the multi-master ROS network with three Mini-Lab robots and a workstation each having a local ROS
master.

i
i

“main” — 2020/10/1 — 10:35 — page 78 — #90 i
i

i
i

i
i

78 Application to multi-robot network

Figure 4.7: Multi-master ROS network with Mini-Lab robots.

Leader-following communication configuration

For the application of the leader-following control algorithms, the Minilab3 robot is considered as a
leader while Minilab1 and Minilab2 are considered as follower 1 and follower 2 respectively. Though,
in the designed multi-master ROS network, each robot can receive information of other robots, the
distributed communication topology is emulated by simply restricting the use of information from cer-
tain members of the network. For instance, consider the communication topology shown in Figure 4.8.
Node 0, representing the leader, does not have any subscriber ROS-node. It is only publishing its po-

0 1 2

Figure 4.8: Communication topology.

sition data on the minilab3/odom topic. Follower 1 has a subscriber ROS-node receiving data from
minilab3/odom topic and also has a publisher with topic minilab1/odom. Similarly, follower 2 is
subscribed to minilab1/odom only. The distributed communication topology achieved by designing
appropriate subscriber/publisher ROS-nodes is illustrated in Figure 4.9 while Figure 4.10 shows the
actual experimental setup.

Figure 4.9: Distributed communication configuration.

i
i

“main” — 2020/10/1 — 10:35 — page 79 — #91 i
i

i
i

i
i

4.7 Consensus tracking 79

Figure 4.10: Experimental setup.

4.7 Consensus tracking

The leader-following consensus algorithm is applied on the robotic fleet to achieve consensus in the
x-position state of the robots. For this purpose, the motion of robots is restricted in the x-axis only
with some fixed offset in their y-positions as shown in Figure 4.11. In fact, consensus schemes are
not applicable for robotic agents if both x and y positions are considered since to achieve consensus,
robots will converge to the same position in the plane and will eventually collide. By restraining the
robot motion to 1-D, one not only avoids collision but additionally the nonholonomic constrains can
be ignored since robot dynamics can be reduced to a double integrator given below:{

ṙi(t) = vi(t),

v̇i(t) = ui(t)
(4.1)

where ri, vi and ui represent respectively the position, velocity and control input of the i-th robot.
The consensus tracking is achieved if the followers track x-position of the leader.

Figure 4.11: Robot motion is restricted to x-axis

The implementation algorithm for consensus tracking is given in Algorithm 1. Position and velocity
of the robot and its neighbor is estimated using the most recent available data through the observer
(2.18)-(2.19). These estimated values are used to compute the input ui(t) through consensus control
law given in (2.17). Then the required robot linear velocity vi(t) is calculated and implemented. The
while loop will continue until either the desired final time is achieved or ROS_OK returns false. ROS_OK

i
i

“main” — 2020/10/1 — 10:35 — page 80 — #92 i
i

i
i

i
i

80 Application to multi-robot network

could return false if an interrupt signal SIGINT (Ctrl+C) is received, ROS-node handler is destroyed
or a ROS-node is kicked off from the network due to any reason.

Algorithm 1: Leader-following consensus algorithm.
For each agent i = 1, 2 . . . N Input: ri(t

i,i
k), r0(ti,0k) (if bi = 1) and rj(t

i,j
k) (if aij = 1)

Parameter: γ, θ and c̄
Output: vi(t)
initialize variables for agent i and its neighbor positions and respective sampling time;
while time<final_time and ROS_OK do

Measure and broadcast own position;
Receive position data of neighbors;
if new position sample available then

use new position and its sampling time;
else

use previously measured/received data;
end
compute the estimation of position and velocity of agent i and its neighbors using
observer (2.18)-(2.19);

compute ui(t) using controller (2.17);
implement vi(t)

end

Hardware limitations are kept in mind while choosing the controller and the observer gains such
that the maximum speed limit is not exceeded. The communication topology among the robots is the
same as shown in Figure 4.8. The related adjacency and pinning matrices are:

A =

[
0 0
1 0

]
, B =

[
1 0
0 0

]
The experiments are carried out for both step and ramp position trajectories of the leader. Fig-

ure 4.12 shows the position and velocity consensus results when the leader has step position trajectory
while the Figure 4.13 depicts the position and velocity consensus results with ramp position trajectory
of the leader. An example of sampling time for communication of data from follower 1 to follower 2 is
given in Figure 4.14. It is clear from the results that the proposed observer based distributed consensus
algorithm performs efficiently despite the presence of uncertainties and disturbances inherent for real
applications.

time (sec)
0 20 40 60 80 100

p
o

si
ti

o
n

 (
m

)

0

0.5

1

1.5

2

2.5
Leader
Follower 1
Follower 2

(a)
time (sec)

0 20 40 60 80 100

V
o

lo
ci

ty
 (

m
/s

)

-0.1

0

0.1

0.2

0.3

0.4
Leader
Follower 1
Follower 2

(b)

Figure 4.12: Leader-following consensus with step leader trajectory (a) position (b) velocity.

i
i

“main” — 2020/10/1 — 10:35 — page 81 — #93 i
i

i
i

i
i

4.8 Nonholonomic robot model 81

time (sec)
0 20 40 60 80 100

po
si

tio
n

(m
)

0

2

4

6

8

10

12

14
Leader
Follower 1
Follower 2

(a)

time (sec)
0 20 40 60 80 100

ve
lo

ci
ty

 (
m

/s
)

0

0.05

0.1

0.15

0.2
Leader
Follower 1
Follower 2

(b)

Figure 4.13: Leader-following consensus with ramp leader trajectory (a) position (b) velocity.

sample
5 10 15 20 25 30 35 40 45 50

tim
e

0

0.1

0.2

0.3

0.4

0.5

0.6
t
k
2,1

Figure 4.14: Sampling period for data transmission from follower 1 to follower 2.

4.8 Nonholonomic robot model
A differential drive mobile robot like Mini-Lab is kinematically equivalent to a unicyle vehicle. The
configuration of such robots can be described by a generalized coordinates vector q(t) of its centre of
mass. Let us consider that Mi is the ith robot in a multi-robot network. Its configuration vector can
be expressed as:

qi(t) = [rxi , ryi , ϕi]
T

where rxi and ryi are the x-position and y-position of the center of mass of the robot in the Cartesian
coordinates while ϕi is the heading angle or orientation of the robot as explained in Figure 4.15. These
kinds of robots are subject to kinematic constraints due to the pure rolling and nonslipping conditions
of the wheel. It means that a robot can move forward or backward in curved motion but cannot move
sideways. This can be defined as [181]:

ṙxi sinϕi − ṙyi cosϕi = 0 (4.2)

or in pfaffian form as:
[sinϕi,− cosϕi, 0]q̇i(t) = 0 (4.3)

This constraint is called a nonholonomic constraint since it only restricts the motion of a robot but
does not reduce the accessibility of the configuration space. With the above mentioned nonholonomic
constraint, the unicycle robot model can be described as:

q̇i(t) =

 ṙxi

ṙyi
ϕ̇i

 =

 cosϕi 0
sinϕi 0
0 1

[vi
ωi

]
(4.4)

where vi and ωi are the linear and angular velocities of the robot.

i
i

“main” — 2020/10/1 — 10:35 — page 82 — #94 i
i

i
i

i
i

82 Application to multi-robot network

Figure 4.15: Unicycle type robot model.

4.9 Control scheme for nonholonomic robot

In order to apply the proposed formation tracking and collision avoidance algorithms on a fleet of
nonholonomic mobile robots, the differential flatness properties [182, 183] have been used. Cartesian
coordinates of the center of mass of a differential drive robot are flat outputs. Therefore, in case of
trajectory tracking, the desired trajectory to be followed can be provided in the Cartesian coordinates
as [rxd

, ryd]. The associated configuration vector is qd(t) = [rxd
, ryd , ϕd] where ϕd can be computed as:

ϕd = atan2(ṙxd
, ṙyd) (4.5)

where atan2 not only computes arctangent but also determines the quadrant of the result. Similarly,
the required input linear velocity for the robot can also be calculated as:

vd = ±
√

ṙ2xd
+ ṙ2yd or vd = ṙxd

cosϕd + ṙyd sinϕd (4.6)

Flatness-based approach is valid for formation tracking goals since the required task is eventually
to track the desired position in the Cartesian coordinates. Figure 4.16 illustrates the control scheme to
apply the developed formation tracking and collision avoidance algorithms on a robot. The tracking
control scheme of the robot is divided into an inner-loop and an outer-loop. The outer-loop can be
modelled with double integrator dynamics since x and y coordinates are considered separately. Hence,
the control algorithm for double integrator agents can be applied in this loop.

The designed distribution formation tracking and collision avoidance algorithms are implemented
in the ‘Formation tracking law’ block which will compute the desired acceleration ux and uy
for each robot. The required heading angle ϕd and linear velocity v are computed using (4.5) and
(4.6). Moreover, the estimated angle ϕ̂ of the robot can also be calculated through the estimated
velocities v̂x and v̂y. This is done in the inner-loop block ‘robot angle’. The inner-loop contains
a PID controller which computes the required angular velocity ω using the error signal eϕ = ϕd − ϕ̂.
The error is wrapped between −π and π by using eϕ = atan2(sin(eϕ), cos(eϕ)). The computed angular
velocity ω steers the robot in the desired orientation as dictated by the formation tracking control
law.

Remark 44. The above mentioned control scheme is a practical solution to apply second-order algo-
rithms on nonholonomic robots. The proposed schemes is valid for all cases when the linear velocity
of the robot is non-zero. There exists a singularity when the velocity becomes zero. However, this sin-
gularity can be dealt easily in practical application since the objective is to achieve the require position
state to make formation and the final angle of the robot does not matter. Whenever the linear velocity
becomes zero, we can considered the current angle equal to the angle computed at the last instant.

i
i

“main” — 2020/10/1 — 10:35 — page 83 — #95 i
i

i
i

i
i

4.10 Formation tracking control 83

Figure 4.16: Control scheme for one robot in the nonholonomic multi-robot network.

4.10 Formation tracking control
The proposed distributed formation tracking algorithm has been applied to a multi-robot network
using the the control scheme described in the previous section. The numerical results have been
obtained through ROS gazebo simulator. The algorithm for the formation tracking of robots is given
in Algorithm 2. The position and velocity of the robot and its neighbors are estimated using the latest
available position data by implementing the observer described by (3.5)-(3.6). After calculating uxi

and uyi using the formation tracking controller (4.10), linear and angular velocities are computed and
implemented.

A fleet of four Mini-Lab robots is considered for testing and verification purposes. One robot is act-
ing as a leader while the other three are considered the followers. Figure 4.17 shows the communication
topology among the robots. The corresponding adjacency and pinning matrices are:

0 1 2

3

Figure 4.17: Communication topology for formation tracking.

A =

 0 0 1
1 0 0
0 1 0

 , B =

 1 0 0
0 0 0
0 0 0

The initial conditions of the agents are chosen carefully such that they do not collide with each

other while converging to the desired position. The initial state of the leader and three followers are
r0(0) = (0, 0), r1(0) = (−3, 3), r2(0) = (−5, 0) and r3(0) = (3,−3.5) with initial angles as ϕ0(0) = 0o,
ϕ1(0) = 45o, ϕ2(0) = −45o and ϕ3(0) = 0o respectively.

The sampling period of the robots in Gazebo is not regular or synchronous. However, to test
the designed algorithm with more random sampling, separate ROS-nodes are written which sets the

i
i

“main” — 2020/10/1 — 10:35 — page 84 — #96 i
i

i
i

i
i

84 Application to multi-robot network

Algorithm 2: Formation tracking algorithm.
For each agent i = 1, 2 . . . N Input: ri(t

i,i
k), r0(ti,0k) (if bi = 1) and rj(t

i,j
k) (if aij = 1),

Parameter: γ, θ and c̄
Output: vi(t)
initialize variables for agent i and its neighbor positions and respective sampling time;
initialize variable for formation vector;
while While time<final_time and ROS_OK do

Measure and broadcast own position;
Receive position data of neighbors;
if new position sample available then

update position and sampling time value;
else

keep previously measured/received data;
end
compute formation vector;
compute the estimation of position and velocity of agent i and its neighbors using
observer (3.5)-(3.6);

compute uxi(t) and uyi(t) using controller (4.10);
compute vxi(t) and vyi(t) from obtained uxi(t) and uyi(t);
compute the estimated angle;
compute linear velocity vi(t) and angular velocity ωi(t);
implement vi(t) and ωi(t)

end

sampling rate to be more random. These ROS-nodes receive odom messages from the robot \odom
topics and then publish only random position information with original sampling time on new topics,
we named it \data. The robots subscribe to this new topic of the corresponding robot to receive
position information. Since each odom message is time-stamped, the information of sampling time
can be extracted from the message header. Figure 4.18 illustrates an example of sampling of instants
of data communication between the robots.

sample
20 40 60 80 100

tim
e

0

0.2

0.4
t
k
1,0

sample
20 40 60 80 100

tim
e

0

0.2

0.4
t
k
2,1

sample
20 40 60 80 100

tim
e

0

0.2

0.4
t
k
3,2

sample
20 40 60 80 100

tim
e

0

0.2

0.4
t
k
1,3

Figure 4.18: Sampling time between the agents.

The observer and controller gains are chosen as c̄ = 1, θ = 5 and λ = 0.4 respectively while
the proportional, integral and derivative gains of PID controller in the inner-loop are 1.6, 0.3, 0.6
respectively. The simulations are carried out for both fixed and time-varying formations.

i
i

“main” — 2020/10/1 — 10:35 — page 85 — #97 i
i

i
i

i
i

4.10 Formation tracking control 85

4.10.1 Fixed-formation

In this formation, the followers are required to make a fixed triangular shape around the leader and
follow its trajectory while maintaining the shape. The formation vectors for the followers are selected
as:

f1 = [0, 3, 0, 0]T

f2 = [−3,−3, 0, 0]T

f3 = [3,−3, 0, 0]T

In the first scenario, the leader is kept static at position coordinates (0, 0) and follower robots reach and
maintain the desired formation around it. Figure 4.19 illustrates the formation tracking at different
time instants for this scenario while Figure 4.20 shows the corresponding tracking errors of both x
and y positions.

In the second scenario, the leader robot moves with a linear velocity v0 = 0.15m/s and heading
angle ϕ0 = 20o. Figure 4.21 and Figure 4.22 show the formation tracking results and tracking errors
respectively. It can be clearly seen that followers make the triangular shape and maintain it while
tracking the leader trajectory.

r
x

-10 -5 0 5 10

r y

-5

0

5
Leader
Follower 1
Follower 2
Follower 3

Figure 4.19: Fixed formation tracking with a stationary leader.

4.10.2 Time-varying formation

For the time-varying formation tracking, the formation vector is chosen as below:

fi(t) =

3 cos(0.1t+ 2π(i− 1)/3)
3 sin(0.1t+ 2π(i− 1)/3)

−0.3 sin(0.1t+ 2π(i− 1)/3)
0.3 cos(0.1t+ 2π(i− 1)/3)

with i = 1, 2, 3. If this formation is achieved, the followers will move in a circle around the leader. The
radius of the circle is 3m. Two cases are again considered. Firstly, the leader is stationary and three
followers develop the circular formation around it and keep on rotating in that circle. Figure 4.23
depicts the formation tracking at different time instants and Figure 4.24 shows the related tracking
error. Figure 4.25 and Figure 4.26 show formation tracking and its corresponding tracking error for
the second scenario where the leader is moving at an angle of 20o with linear velocity of 0.15m/s.

i
i

“main” — 2020/10/1 — 10:35 — page 86 — #98 i
i

i
i

i
i

86 Application to multi-robot network

time
0 20 40 60 80

e
x

0

2

4

6

8
e

1

e
2

e
3

(a)
time

0 20 40 60 80

e
y

0

1

2

3

4
e

1

e
2

e
3

(b)

Figure 4.20: Tracking error of fixed formation with a stationary leader.

r
x

-5 0 5 10 15 20 25

r y

-5

0

5

10

15
Leader
Follower 1
Follower 2
Follower 3

t=0

t=80

t=160

Figure 4.21: Fixed formation tracking with a moving leader.

time
0 20 40 60 80

e
x

0

2

4

6

8

10
e

1

e
2

e
3

(a)
time

0 20 40 60 80

e
y

0

1

2

3

4

5
e

1

e
2

e
3

(b)

Figure 4.22: Tracking error for fixed formation with a moving leader.

4.11 Formation tracking control with collision avoidance
Before discussing the results of collision-free formation tracking of the robotic network, let us first
discuss the concept of velocity cone.

i
i

“main” — 2020/10/1 — 10:35 — page 87 — #99 i
i

i
i

i
i

4.11 Formation tracking control with collision avoidance 87

r
x

-8 -6 -4 -2 0 2 4 6

r y

-6

-4

-2

0

2

4

Leader
Follower 1
Follower 2
Follower 3

Figure 4.23: Time-varying formation tracking with a static leader.

time
0 20 40 60 80

e
x

0

1

2

3

4

5

6
e

1

e
2

e
3

(a)
time

0 20 40 60 80

e
y

0

0.5

1

1.5

2

2.5
e

1

e
2

e
3

(b)

Figure 4.24: Tracking error for time-varying formation tracking with a static leader.

r
x

-5 0 5 10 15 20 25

r y

-5

0

5

10

15
Leader
Follower 1
Follower 2
follower 3

t=0
t=80

t=160

Figure 4.25: Time-varying formation tracking with a moving leader.

i
i

“main” — 2020/10/1 — 10:35 — page 88 — #100 i
i

i
i

i
i

88 Application to multi-robot network

time
0 20 40 60 80 100

e
x

0

1

2

3

4

5

6

7
e

1

e
2

e
3

(a)
time

0 20 40 60 80 100

e
y

0

0.5

1

1.5

2

2.5
e

1

e
2

e
3

(b)

Figure 4.26: Tracking error of time-varying formation tracking with a moving leader.

4.11.1 Velocity cone concept

The velocity cone concept provides a geometrical representation of velocities of dynamic objects which
will eventually result in a collision [184, 185]. In our proposed framework, the unnecessary deviation
of the robot from the actual path can be reduced by incorporating the velocity cone concept along
with the Artificial Potential Function (APF) based collision avoidance algorithm. The repulsion force
acts on the robot only when the velocity cone predicts a possible collision in the near future. The
repulsion force keeps pushing the robot away while the robot velocity and heading angle could lead
to a possible collision.

Let us consider that each robot has a protection region of radius r around it and vji = vj − vi
be the relative velocity of a pair of robots (Mi,Mj). This relative velocity is obtained by taking the
derivative of the relative position obtained by proximity sensor.

Let us define the following variables as shown in Fig. 4.27:

βij = arg(vj − vi)− arg(ri − rj) (4.7)

αij = arcsin

(
2r

∥rij∥

)
(4.8)

At a given time, a necessary and sufficient condition for no collision between robots Mi and Mj is

|βij | > αij (4.9)

4.11.2 Numerical results

The designed collision-free formation tracking algorithm has been applied to a multi-robot network
consisting of a leader and four followers. The velocity cone is incorporated with the algorithm to
avoid unnecessary deviation of the robots from there required path. The repulsion force only activates
when the velocity cone detects any possible collision. Control law (3.15) along with the velocity
cone is implemented ‘Formation tracking law’ block in the outer-loop of the control scheme
described in Section 4.9. The algorithm for the implementation is shown in Algorithm 3.

The communication topology among the robots is shown in Figure 4.28. The leader can send its
position information to follower 1 only while follower 4 receives data from both follower 2 and follower
3.

i
i

“main” — 2020/10/1 — 10:35 — page 89 — #101 i
i

i
i

i
i

4.11 Formation tracking control with collision avoidance 89

Figure 4.27: Velocity cone

Algorithm 3: Collision-free formation tracking algorithm.
For each agent i = 1, 2 . . . N Input: ri(t

i,i
k), r0(ti,0k) (if bi = 1) and rj(t

i,j
k) (if aij = 1),

Parameter: γ, θ and c̄
Output: vi(t)
initialize variables for agent i and its neighbor positions and respective sampling time;
initialize variables for formation vector and velocity cone;
while While time<final_time and ROS_OK do

Measure and broadcast own position;
Receive position data of neighbors;
if new position sample available then

update the value of position ans sampling time;
else

keep previously measured/received data;
end
compute formation vector;
compute the estimation of position and velocity of agent i and its neighbors using
observer (3.5)-(2.19);

compute ufxi(t) and ufyi(t) using controller (3.7);
if any other agent detected in side radius R then

compute relative velocity vji and angles βij and αij ;
if |βij | > αij then

compute urxi
(t) and uryi(t) using controller (3.14);

end
end
compute uxi(t) and uyi(t) using controller (3.15);
compute vxi(t) and vyi(t) from obtained uxi(t) and uyi(t) and compute the estimated
angle;

compute linear velocity vi(t);
compute angular velocity ωi(t);
implement vi(t) and ωi(t)

end

The matrices related to this communication graph are:

A =

0 0 0 0
1 0 0 0
0 1 0 0
0 1 1 0

 , B =

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

i
i

“main” — 2020/10/1 — 10:35 — page 90 — #102 i
i

i
i

i
i

90 Application to multi-robot network

0 1

2

34

Figure 4.28: Communication topology for collision-free formation tracking.

The simulations are carried out in Gazebo. The initial position of the robots are r0(0) = (0, 0),
r1(0) = (1,−5), r2(0) = (−5, 0), r3(0) = (3, 5) and r4(0) = (−5, 6) while the initial angles are
ϕ0(0) = 0, ϕ1(0) = 40o, ϕ2(0) = −45o, ϕ3(0) = 15o and ϕ4(0) = −25o. The observer and controller
gains are chosen as c̄ = 1, θ = 5 and λ = 0.35 while the PID controller gains are 1.6, 0.3 and 0.6
for proportional, integral and derivative terms respectively. The detection radius R = 3m and the
protection radius r = 0.5m. The results are obtained for both fixed and time-varying formations.

4.11.2.1 Fixed formation

The formation vector for fixed formation is chosen such that the followers make a square shape around
the leader. The formation vectors are given as:

f1 = [4, 4, 0, 0]T

f2 = [4,−4, 0, 0]T

f3 = [−4, 4, 0, 0]T

f4 = [−4,−4, 0, 0]T

Figure 4.29a shows the formation tacking result when the leader is stationary with position coordinates
(0, 0) while Figure 4.29b shows the distance between the robots during the formation process. It is
clear that the inter-agent distance remains great than 2r which means the robots do not collide. The
tracking error results are shown in Figure 4.30.

Collision-free fixed formation tracking result with moving leader is shown in Figure 4.31. In
this case, the leader is moving with linear velocity v0 = 0.15m/s with heading angle ϕ0 = 30o.
Figure 4.31 illustrates the formation tracking at different time instants and inter-agent distance is
shown in Figure 4.31. The corresponding tracking errors are shown in Figure 4.32.

i
i

“main” — 2020/10/1 — 10:35 — page 91 — #103 i
i

i
i

i
i

4.11 Formation tracking control with collision avoidance 91

r
x

-10 -5 0 5 10

r y

-10

-5

0

5

10
Leader
Follower 1
Follower 2
Follower 3
Follower 4

(a)
time

0 10 20 30 40 50 60

in
te

r-
ag

en
t d

is
ta

nc
e

0
1

3

5

10

15

(b)

Figure 4.29: Collision-free fixed formation with a stationary leader (a) formation tracking (b) inter-
agent distance.

time
0 20 40 60

e
x

0

2

4

6

8

10
e

1

e
2

e
3

e
4

(a)
time

0 20 40 60

e
y

0

2

4

6

8

10

12
e

1

e
2

e
3

e
4

(b)

Figure 4.30: Tracking error of square formation tracking with a stationary leader.

r
x

-10 0 10 20 30

r y

-5

0

5

10

15

20
Leader
Follower 1
Follower 2
Follower 3
Follower 4

t=0

t=75

t=150

(a)
time

0 10 20 30 40 50 60 70

in
te

r-
ag

en
t d

is
ta

nc
e

0
1

3

5

10

15

(b)

Figure 4.31: Fixed formation with a moving leader (a) formation tracking (b) inter-agent distance.

i
i

“main” — 2020/10/1 — 10:35 — page 92 — #104 i
i

i
i

i
i

92 Application to multi-robot network

time
0 10 20 30 40 50 60 70

e
x

0

2

4

6

8

10
e

1

e
2

e
3

e
4

(a)
time

0 10 20 30 40 50 60 70

e
y

0

2

4

6

8

10

12
e

1

e
2

e
3

e
4

(b)

Figure 4.32: Tracking error of time-varying circular formation tracking with a moving leader.

4.11.2.2 Time-varying formation

A circular shape is again chosen for time-varying collision-free formation tracking. The followers are
supposed to move in a circle around the leader. The formation vector is chosen as:

fi(t) =

4 cos(0.1t+ 2π(i− 1)/4)
4 sin(0.1t+ 2π(i− 1)/4)

−0.4 sin(0.1t+ 2π(i− 1)/4)
0.4 cos(0.1t+ 2π(i− 1)/4)

for i = 1, 2, 3, 4. The formation vector is selected such that the distance between the robots, while in
the formation, is greater than R.

Both the cases with stationary and moving leader are verified. In the first case, the leader is
stationary at position coordinates (0,0). Figure 4.33a shows collision-free formation tracking with a
stationary leader and Figure 4.33b illustrates distance between the robots. It can be seen that the
robots achieve the desired formation without any collision. Figure 4.34 depicts the tracking error of
both x and y positions.

In the second case, the leader is moving at an angle of 30o with a speed of 0.15m/s. The for-
mation tracking result is illustrated in Figure 4.35a and the distance between the robots is shown in
Figure 4.35b. The corresponding tracking errors is shown in Figure 4.36.

r
x

-8 -6 -4 -2 0 2 4 6 8

r y

-8

-6

-4

-2

0

2

4

6

8
Leader Follower 1 Follower 2 Follower 3 Follower 4

(a)
time

0 10 20 30 40 50 60

in
te

r-
ag

en
t d

is
ta

nc
e

0
1

3

5

10

15

(b)

Figure 4.33: Time-varying collision-free formation tracking with a static leader.

i
i

“main” — 2020/10/1 — 10:35 — page 93 — #105 i
i

i
i

i
i

4.12 Conclusion 93

time
0 10 20 30 40 50 60

e
x

0

1

2

3

4

5

6

7
e

1

e
2

e
3

e
4

(a)
time

0 10 20 30 40 50 60

e
y

0

2

4

6

8

10
e

1

e
2

e
3

e
4

(b)

Figure 4.34: Tracking error of time-varying circular formation tracking with a stationary leader.

r
x

-10 0 10 20 30

r y

-5

0

5

10

15

20
Leader
Follower 1
Follower 2
Follower 3
Follower 4

t=0

t=150

t=75

(a)
time

0 20 40 60 80

in
te

r-
ag

en
t d

is
ta

nc
e

0
1

3

5

10

15

(b)

Figure 4.35: Time-varying collision-free formation with a moving leader (a) formation tracking (b)
inter-agent distance.

time
0 20 40 60 80

e
x

0

2

4

6

8

10
e

1

e
2

e
3

e
4

(a)
time

0 20 40 60 80

e
y

0

2

4

6

8

10
e

1

e
2

e
3

e
4

(b)

Figure 4.36: Tracking error of time-varying circular formation tracking with a moving leader.

4.12 Conclusion

In this chapter, application of the developed distributed cooperative controllers has been investigated.
Leader-following consensus and formation tracking algorithms along with a collision avoidance scheme

i
i

“main” — 2020/10/1 — 10:35 — page 94 — #106 i
i

i
i

i
i

94 Application to multi-robot network

have been applied to a robotic network consisting of differential drive mobile robots. The software
architecture of the robots is based on an open-source platform ROS. The distributed multi-robot
network is created using multi-master ROS strategy.

The observer based leader-following algorithm is implemented on a network of real robots. The
experimental results showed that the consensus is achieved efficiently even in the existence of distur-
bances and uncertainties attached with real-world environment.

A new control scheme has been proposed to apply formation tracking and collision avoidance
algorithms for nonholonomic agents. The proposed control scheme deals with the nonholonomic
constraints of the robots and allows us to use the algorithms for double integrator on differential
drive wheeled robots. The numerical results have been achieved through ROS Gazebo simulator.
Gazebo provides a very realistic environment to test the algorithms on robots by incorporating real-
world scenarios like friction, gravity etc. The proposed formation tracking and collision avoidance
algorithms are tested for both fixed and time-varying formation patterns. The obtained results depict
the efficacy of the algorithms in real-world applications and prove the robustness of these algorithms
against the uncertainties and disturbances which are always present in actual applications such as
measurement noise, communication noise, friction etc.

i
i

“main” — 2020/10/1 — 10:35 — page 95 — #107 i
i

i
i

i
i

Part III

General conclusion and future
prospects

i
i

“main” — 2020/10/1 — 10:35 — page 96 — #108 i
i

i
i

i
i

96

General conclusion

This thesis has been focused on cooperative control of MAS. The considered MAS has been sub-
jected to various real-life communication constraints. Generally, the communication constraints appear
in the real systems due to the nature of the communication equipment and limited resources like com-
munication bandwidth and lack of relevant sensors etc. Since the communication among the agents
for cooperative control is of utmost importance, the constraints associated with it are required to be
handled in order to achieve the desired goals of MAS in an efficient manner.

We considered the following communication constraints. Firstly, it has been assumed that each
agent in the network can only measure and transmit its position information. It cannot measure
and transmit either its velocity and acceleration (input) states. Secondly, the sampling time for data
communication is irregular and nonuniform. In addition, these sampling periods are asynchronous
which means that sampling time of each agent is totally independent of others. Furthermore, it has
also been considered that the leader sends its position information to only a few agents and the
communication topology among the agents in the network is direct.

The main results of the thesis are summarized below:

• First chapter provided a brief introduction of multi-agent systems and their applications. Some
basic concepts related to MAS and communication network approaches to control it have also
been presented. We also discussed two fundamental problems in cooperative control of MAS
which include consensus and formation control. A detailed literature review has been provided
on these problems. Issues and challenges in distributed cooperative control have also been
discussed in detail.
The communication constraints present in practical MAS networks motivated this research work
to investigate and develop distributed control algorithms which must be able to deal with these
constraints effectively.

• In the second chapter, leader-following consensus problem has been considered. A continuous-
discrete time observer has been proposed to estimate the position and the velocity in continuous
time through available discrete position data. Each agent not only estimates its own states but
also the states of its neighbors. The proposed distributed control law uses these estimated states
to compute the required input of the agent. It has been shown through Lyapunov stability
analysis that the MAS achieves practical stability with the proposed algorithm if the leader
input (acceleration) is nonzero and exponential stability is achieved for the case when the leader
is static or moving with some constant velocity. The results have been further expanded for the
case when the communication topology among the agents does not remain fixed and changes
with time. It has been proved that the MAS under the communication constraints can achieve
consensus with switching topologies if the average dwell time remains greater than a certain
value. The developed control law has also been validated through MATLAB simulations.

• In chapter 3, firstly the problem of formation tracking has been studied. The results of the
designed leader-following consensus protocol has been extended to achieve formation tracking
of MAS with communication constraints. The formation tracking protocol is designed by in-
troducing position and velocity offsets in the consensus controller. These offsets depend on the
required formation shape. It has been shown that both fixed and time-varying formation shapes
can be achieved through the developed protocol.
In the second part of chapter 3, a collision avoidance mechanism has been incorporated with
the formation controller. An APF based approach has been used to introduce a repulsion force
between the agents if they are very close. A stability analysis has been provided along with
simulation results to illustrate the efficacy of the developed algorithm.

• The main focus of chapter 4 was the application of developed algorithms to a fleet of wheeled
mobile robots. To begin, the robotic platform and its specifications have been presented along
with an introduction of ROS. Then a setup of ROS based distributed communication network

i
i

“main” — 2020/10/1 — 10:35 — page 97 — #109 i
i

i
i

i
i

97

for multi-robot system has been presented which was developed for the implementation of the
designed consensus tracking algorithm. A new control scheme has been developed to deal with
the nonholonomic constraints of the robot. The proposed scheme allows us to use the algorithms
for double integrator on differential drive wheeled robots. The results obtained through ROS-
Gazebo simulations and hardware implementation have shown the effectiveness of the proposed
consensus and formation tracking algorithms in real world scenarios.

Future prospects

Based on the results obtained in this thesis, following are some problems which can be considered
in future work.

• The results in the current thesis are obtained for MAS with double-integrator agent dynamics. It
is possible to extend these results for a larger scale of systems including higher-order, nonlinear
and chained form dynamical models etc. Some preliminary results have already been obtained for
MAS having general N -order dynamics with Lipschitz nonlinearities and bounded uncertainties
[186].

• In chapter 2, the leader-following consensus algorithms have been developed for a MAS with
either a fixed communication topology or when the topology is switching between the graphs
having a spanning tree. It will be interesting to investigate the case where individual graphs
do not necessarily have a spanning tree but only a joint-graph contains a spanning tree in a
time period. Moreover, for switching topology, we considered the leader with constant velocity.
The case of leader with acceleration is anticipated as future work. Similarly, we studied the
formation tracking and collision avoidance for fixed graphs only. The extension of these results
for the switching topology case is considered as future work. Another interesting research di-
rection would be finding a mechanism to maintain a connected graph for a system time-varying
topologies.

• We considered that the dynamics of the leader and the followers are the same. However, in
practice, sometimes leader’s dynamics could be different from the follower dynamics. Similarly,
the followers could have different dynamics. Development of distributed consensus and formation
tracking algorithm with heterogeneous agents can be considered in future work.

• It will be worth studying the case of formation tracking problem with multiple leaders where
MAS can split in groups with different geometric shapes and then can merge to form a new
shape. Such operations are quite useful to divide or combine objectives and to avoid collision
with obstacles in the path of the desired trajectory.

i
i

“main” — 2020/10/1 — 10:35 — page 98 — #110 i
i

i
i

i
i

98

Abstract

Multi-agent systems (MAS) have gained much popularity due to their vast range of applications. MAS
is deployed to achieve more complex goals which could not be realized by a single agent alone. Com-
munication and information exchange among the agents in a MAS is crucial to control its cooperative
behavior. Agents share their information with their neighbors to reach a common objective, thus
do not require any central monitoring unit. However, the communication among the agents is sub-
ject to various practical constraints. These constraints include irregular and asynchronous sampling
periods and the availability of partial states only. Such constraints pose significant theoretical and
practical challenges. In this thesis, we investigate two fundamental problems related to distributed
cooperative control, namely consensus and formation control, of double-integrator MAS under these
constraints. It is considered that each agent in the network can measure and transmit its position
state only at nonuniform and asynchronous sampling instants. Moreover, the velocity and acceleration
are not available. First, we study the problem of distributed control of leader-following consensus.
A continuous-discrete time observer based leader-following algorithm is proposed. The observer esti-
mates the position and velocity of the agent and its neighbor in continuous time from the available
sampled position data. Then these estimated states are used for the computation of the control input.
Both fixed and switching topology scenarios are discussed. Secondly, a consensus based distributed
formation tracking protocol is designed to achieve both fixed and time-varying formation patterns.
Collision avoidance problem is also studied in this thesis. An Artificial Potential Function (APF)
based collision avoidance mechanism is incorporated with the formation tracking algorithm to prevent
collisions between the agents while converging to a desired position. Finally, the proposed algorithms
are applied on a multi-robot network, consisting of differential drive robots using Robot Operating
System (ROS). A new scheme is proposed to deal with nonholonomic constraints of the robot. Effi-
ciency of the designed algorithms and their effectiveness in real world applications are shown through
both simulation and hardware results.

Keywords: Multi-agent system, Leader-following consensus, formation tracking, multi-robot net-
work, sampled data, asynchronous sampling, nonuniform sampling

i
i

“main” — 2020/10/1 — 10:35 — page 99 — #111 i
i

i
i

i
i

Appendix A

Proof of Theorem 24

The proof of Theorem 24 is divided into several steps. In the first step, system (2.9) along with the
control law (2.17) and the observer (2.18)-(2.19) are re-written in a more compact form. Equations
for tracking and observer errors are also derived in this step. New coordinates for high-gain design
are introduced in the second step, while, in step 3, variables of the state of tracking and observer
errors are combined in new variables. Candidate Lyapunov functions are introduced in step 4 and
inequalities involving their derivatives are derived. Then in step 5, it is shown that Lemma 16 can
be applied if the conditions given in Theorem 24 are satisfied. Finally, in the last step, an inequality
involving the tracking error in original coordinates is obtained.

Step 1.

The dynamics of the agents can be written as{
ẋi = Axi +Bui i = 0, . . . , N

ri = Cxi
(A.1)

where A =

(
0m Im
0m 0m

)
, B =

(
0m
Im

)
and C =

(
Im 0m

)
.

Denoting x̂i,j = (r̂Ti,j , v̂
T
i,j)

T , system (2.18)-(2.19) can be written as

˙̂xi,j(t) = Ax̂i,j(t)− θ∆−1
θ Koe

−2θ(t−κi,j(t))(r̂i,j(κi,j(t))− rj(κi,j(t))), i = 1 . . . N, j = 0 . . . N

where
κi,j(t) = max

{
ti,jk | ti,jk ≤ t, k ∈ N

}
represents the last instant, among all the sampling times represented by ti,jk , when the measurements
of agent j have been received by agent i. While

∆θ =

(
Im 0m
0m

1
θ Im

)
Ko = P−1CT =

[
2Im Im

]T
with P the symmetric positive definite matrix solution of the following equation (see [187] for more
details).

P +ATP + PA = CTC (A.2)

i
i

“main” — 2020/10/1 — 10:35 — page 100 — #112 i
i

i
i

i
i

100 Proof of Theorem 24

The input ui can also be written as

ui = −c̄λ2
N∑
k=1

Likr̂
i
k − c̄λ2bi(r̂

i
i − r̂i0)− c̄2λ

N∑
k=1

Likv̂
i
k − c̄2λbi(v̂

i
i − v̂i0)

= −c̄λ2
N∑
k=1

Hik(r̂
i
k − r̂i0)− c̄2λ

N∑
k=1

Hik(v̂
i
k − v̂i0)

= −c̄

N∑
k=1

Hik

(
Im 2Im

)(λ2Im 0m
0m λIm

)(
x̂ik − x̂i0

)
= −c̄

N∑
k=1

HikKcΓλ

(
x̂ik − x̂i0

)
where

Γλ =

(
λ2Im 0m
0m λIm

)
Kc = BTQ =

(
Im 2Im

)
with Q is the symmetric positive definite matrix solution of the following matrix equality (see [188]
for more details).

Q+QA+ATQ = QBBTQ (A.3)

Defining the estimation error
x̃i,j = x̂i,j − xj

and the tracking error
ei = xi − x0

for j = 0, . . . , N and i = 1, . . . , N gives

˙̃xi,j(t) = Ax̃i,j(t)− θ∆−1
θ Koe

−2θ(t−κi,j(t)) (Cx̂i,j(κi,j(t))− Cxj(κi,j(t)))−Buj(t)

= (A− θ∆−1
θ KoC)x̃i,j(t)− θ∆−1

θ Kozi,j(t)−Buj(t)

where zi,j(t) =
[
e−2θ(t−κi,j(t))Cx̃i,j(κi,j(t))− Cx̃i,j(t)

]
and

ėi(t) = Aei(t) +Bui(t)−Bu0(t)

ui = −c̄KcΓλ

N∑
k=1

Hikek − c̄KcΓλ

N∑
k=1

Hikx̃i,k + bic̄KcΓλx̃i,0

for i = 1, . . . , N .

Step 2.

Consider the coordinates for high-gain design ēi = Γλei and x̄i,j = ∆θx̃i,j using the equalities,

∆θA∆−1
θ = θA

C∆−1
θ = C

ΓλAΓ−1
λ = λA

ΓλB = λB

∆θB =
1

θ
B

BT∆−1
θ = θBT

i
i

“main” — 2020/10/1 — 10:35 — page 101 — #113 i
i

i
i

i
i

101

yields

˙̄ei(t) = λAēi(t) + λBui(t)− λBu0(t)

˙̄xi,j(t) = θ(A−KoC)x̄i,j(t)− θKozi,j(t)−
1

θ
Buj(t)

and

ui = −c̄Kc

N∑
k=1

Hikēk − c̄KcΓλ∆
−1
θ

N∑
k=1

Hikx̄i,k + bic̄KcΓλ∆
−1
θ x̄i,0

= c̄Kc

(
biΓλ∆

−1
θ x̄i,0 −

N∑
k=1

Hik(ēk + Γλ∆
−1
θ x̄i,k)

)

Step 3.

Denoting ηc = [ēT1 . . . ēTN]T , ηoi = [(x̄i,1)
T . . . (x̄i,N)T]T , i = 1 . . . N and ηo0 = [(x̄1,0)

T . . . (x̄N,0)
T], the

tracking error can be written in compact form as

η̇c = λ[IN ⊗A]ηc − c̄λ[H⊗ (BKc)]η
c − c̄λ

N∑
i=1

[(DN
i H)⊗ (BKcΓλ∆

−1
θ)]ηoi

+c̄λ[IN ⊗ (BKcΓλ∆
−1
θ)][B ⊗ I2m]ηo0 − λ[1N ⊗B]u0

Step 4.

Let us consider the following Lyapunov functions

V̄c(η
c) = (ηc)T [Ω⊗Q]ηc (A.4)

Vo(x̄i,j) = (x̄i,j)
TP (x̄i,j) (A.5)

V̄o(η
o) =

N∑
i=1

N∑
j=0

sijVo(x̄i,j) (A.6)

where sij = 1 if agent i receives information from agent j and 0 otherwise for i = 1, . . . , N , j = 0, . . . , N
and ηo is the vector containing all the x̄i,j such that sij = 1.
Step 4.1.
The derivative of the Lyapunov function (A.4) can be written as

˙̄Vc(η
c) = λ(ηc)T [Ω⊗ATQ]ηc + λ(ηc)T [Ω⊗QA]ηc − c̄λ(ηc)T [(HTΩ)⊗ ((BKc)

TQ)]ηc

−c̄λ(ηc)T [(ΩH)⊗ (QBKc)]η
c + 2c̄λ(ηc)T [Ω⊗ (QBKcΓλ∆

−1
θ)][B ⊗ I2m]ηo0

−2c̄λ

N∑
i=1

(ηc)T [(ΩDN
i H)⊗ (QBKcΓλ∆

−1
θ)]ηoi − 2λ(ηc)T [(Ω1N)⊗ (QB)]u0

= λ(ηc)T [Ω⊗ (ATQ+QA)]ηc − c̄λ(ηc)T [(HTΩ)⊗ ((BKc)
TQ) + (ΩH)⊗ (QBKc)]η

c

+2c̄λ(ηc)T [Ω⊗ (QBKcΓλ∆
−1
θ)][B ⊗ I2m]ηo0 − 2c̄λ

N∑
i=1

(ηc)T [(ΩDN
i H)⊗ (QBKcΓλ∆

−1
θ)]ηoi

−2λ(ηc)T [(Ω1N)⊗ (QB)]u0 (A.7)

Since
(BKc)TQ = QBKc = QBBTQ

It can be shown by using point k) of Lemma 15 that

i
i

“main” — 2020/10/1 — 10:35 — page 102 — #114 i
i

i
i

i
i

102 Proof of Theorem 24

(HTΩ)⊗ ((BKc)
TQ) + (ΩH)⊗ (QBKc)

= [HTΩ+ ΩH]⊗ [QBBTQ]

≥ ρ(IN ⊗ [QBBTQ])

≥ ρ

ωmax
Ω⊗ [QBBTQ]

therefore

λ(ηc)T [Ω⊗ (ATQ+QA)]ηc − c̄λ(ηc)T [(HTΩ)⊗ ((BKc)
TQ) + (ΩH)⊗ (QBKc)]η

c)

= λ(ηc)T [Ω⊗ (QBBTQ−Q)]ηc − c̄λ(ηc)T [(HTΩ+ ΩH)⊗ (QBBTQ)]ηc

≤ −λV̄c(η
c) + λ(ηc)T [Ω⊗QBBTQ]ηc − ρ

ωmax
c̄λ(ηc)T [Ω⊗QBBTQ]ηc

If c̄ ≥ ωmax
ρ , then the above inequality can be reduced to

λ(ηc)T [Ω⊗ (AQT +QA)]ηc − c̄λ(ηc)T [(HTΩ)⊗ ((BKc)
TQ)]ηc

−c̄λ(ηc)T [(ΩH)⊗ (QBKc)]η
c ≤ −λV̄c(η

c) (A.8)

Moreover, one has the following inequality,

2c̄λ(ηc)T [Ω⊗ (QBKcΓλ∆
−1
θ)][B ⊗ I2m]ηo0

= 2c̄λ(ηc)T [(Ω⊗Q)(IN ⊗BKcΓλ∆
−1
θ)][B ⊗ I2m]ηo0

≤ 2c̄λ
√

(ηc)T [Ω⊗Q]ηc
√
((IN ⊗BKcΓλ∆

−1
θ)][Bηo0])T [Ω⊗Q](IN ⊗BKcΓλ∆

−1
θ)][Bηo0])

by using Lemma 15-h)

≤ 2c̄λ
√
Vc(ηc)

√
λmax(Ω⊗Q)((IN ⊗BKcΓλ∆

−1
θ)][Bηo0])T (IN ⊗BKcΓλ∆

−1
θ)][Bηo0])

by using Lemma 15-i)

≤ 2c̄λ
√
V̄c(ηc)

√
ωmax

√
λmax(Q)∥[IN ⊗BKcΓλ∆

−1
θ][B ⊗ I2m]ηo0∥2 (A.9)

by using Lemma 15-g)

Furthermore

∥[B ⊗ I2m]ηo0∥22 =
N∑
i=1

bi∥x̄i,0∥22

≤
N∑
i=1

bi
λmin(P)

(
(x̄i,0)

TPx̄i,0
)

by using Lemma 15-i)

≤ 1

λmin(P)

N∑
i=1

si0Vo(x̄i,0) (A.10)

By Lemma 15-f) and since ∥IN∥2 = 1, we obtain

2c̄λ(ηc)T [Ω⊗ (QBKcΓλ∆
−1
θ)][B ⊗ I2m]ηo0

≤ 2c̄λ∥Γλ∆
−1
θ ∥

√
ωmax

√
λmax(Q)√
λmin(P)

∥BKc∥
√
V̄c(ηc)

√√√√ N∑
i=0

si0Vo(x̄i0)

≤ 2c̄λ∥Γλ∆
−1
θ ∥

√
ωmax

√
λmax(Q)√
λmin(P)

∥Kc∥
√

V̄c(ηc)

√√√√ N∑
i=0

si0Vo(x̄i0) (A.11)

since ∥B∥ = 1

i
i

“main” — 2020/10/1 — 10:35 — page 103 — #115 i
i

i
i

i
i

103

For the second term, we have

−2c̄λ

N∑
i=1

(ηc)T [(ΩDN
i H)⊗ (QBKcΓλ∆

−1
θ)]ηoi

= −2c̄λ

N∑
i=1

(ηc)T (Ω⊗Q)[(DN
i H)⊗ (BKcΓλ∆

−1
θ)]ηoi

≤ −2c̄λ

N∑
i=1

√
(ηc)T (Ω⊗Q)ηc

√
([(DN

i H)⊗ (BKcΓλ∆
−1
θ)]ηoi)

T (Ω⊗Q)[(DN
i H)⊗ (BKcΓλ∆

−1
θ)]ηoi

by Lemma 15-h)

≤ 2c̄λ

N∑
i=1

√
V̄c(ηc)

√
λmax(Ω⊗Q)∥(DN

i H)⊗ (BKcΓλ∆
−1
θ)∥2

√√√√ N∑
j=1

sij∥x̄i,j∥ by Lemma 15-i)

≤ 2c̄λ
√

ωmaxλmax(Q)∥H∥ ∥Kc∥ ∥Γλ∆
−1
θ ∥
√
V̄c(ηc)

N∑
i=1

√√√√ N∑
j=1

sij∥x̄i,j∥

by using Lemma 15-f) and ∥DN
i ∥2 = 1, ∥B∥2 = 1

≤ 2c̄λ
√
ωmax

√
λmax(Q)√
λmin(P)

∥H∥ ∥Kc∥ ∥Γλ∆
−1
θ ∥
√

V̄c(ηc)
N∑
i=1

√√√√ N∑
j=1

sijV (x̄i,j) (A.12)

by using Lemma 15-i)

Finally, by using inequalities (A.11) and (A.12), one obtains

2c̄λ(ηc)T [Ω⊗ (QBKcΓλ∆
−1
θ)][b⊗ I2m]ηo0 − 2c̄λ

N∑
i=1

(ηc)T [(ΩDN
i H)⊗ (QBKcΓλ∆

−1
θ)]ηoi

≤ 2c̄λ
√
ωmax

√
λmax(Q)

λmin(P)
max{1, ∥H∥} ∥Kc∥ ∥Γλ∆

−1
θ ∥
√

V̄c(ηc)

N∑
i=0

√
Vo(ηoi)

≤ 2λk1∥Γλ∆
−1
θ ∥
√
V̄c(ηc)

√
V̄o(ηo)

by using Lemma 15-c)

where

k1 = c̄
√
N + 1

√
ωmax

√
λmax(Q)

λmin(P)
max{1, ∥H∥} ∥Kc∥ (A.13)

Similarly, for the last term of (A.7), following can be shown,

−2λ(ηc)T [(Ω1N)⊗ (QB)]u0

= −2λ(ηc)T (Ω⊗Q)(1N ⊗B)u0

≤ 2λ
√

(ηc)T (Ω⊗Q)ηc
√

[(1N ⊗B)u0]T (Ω⊗Q)(1N ⊗B)u0

by using Lemma 15-h)

≤ 2λ
√
V̄c(ηc)

√
λmax(Ω⊗Q)

√
Nδ0

by using Lemma 15-i) and the fact that ∥1N∥ =
√
N, ∥u0∥ ≤ δ0

≤ 2k2λδ0

√
V̄c(ηc) (A.14)

by using Lemma 15-g)

i
i

“main” — 2020/10/1 — 10:35 — page 104 — #116 i
i

i
i

i
i

104 Proof of Theorem 24

where

k̄2 =
√
N
√
ωmax

√
λmax(Q) (A.15)

Using inequalities (A.8), (A.13) and (A.14) lead to

˙̄Vc(η
c) ≤ −λV̄c(η

c) + 2k1λ∥Γλ∆
−1
θ ∥
√

V̄c(ηc)
√

V̄o(ηo) + 2k̄2λδ0

√
V̄c(ηc) (A.16)

Step 4.2.
For i, j such that sij = 1, the derivative of (A.5) is given by

V̇o(x̄i,j) = θ(x̄i,j)
T [(A−KoC)TP + P (A−KoC)](x̄i,j)

−2θ(x̄i,j)
TPKozi,j −

2

θ
(x̄i,j)

TPBuj (A.17)

One has

θ(x̄i,j)
T [(A−KoC)TP + P (A−KoC)](x̄i,j)

= θ(x̄i,j)
T [ATP − CTC + PA− CTC](x̄i,j)

= −θ(x̄i,j)
TP (x̄i,j)− θ(x̄i,j)

TCTC(x̄i,j), by using the definition of P
≤ −θVo(x̄i,j) (A.18)

−2θ(x̄i,j)
TPKozi,j(t) ≤ 2θ

√
λmax(P)∥Ko∥

√
Vo(x̄i,j)∥zi,j(t)∥ (A.19)

by using Lemma 15-i)

Since

żi,j(t) = −2θe−2θ(t−κi,j(t))Cx̃ij(κi,j(t))− C ˙̃xi,j(t)

= −BT x̃i,j(t)

and zi,j(κi,j(t)) = 0, ∀t ≥ 0, then we have

zi,j(t) = −
∫ t

κi,j(t)
BT x̃i,j(s)ds

= −θ

∫ t

κi,j(t)
BT x̄i,j(s)ds

or

∥zi,j∥ = θ

∥∥∥∥∥
∫ t

κi,j(t)
BT x̄i,j(s)ds

∥∥∥∥∥
≤ θ

∫ t

t−τM

∥x̄i,j(s)∥ds

The above inequality is achieved by using the definition of κi,j(t) and the fact that t − κi,j(t) ≤
ti,jk+1 − ti,jk ≤ τM , for all t ≥ 0, k ∈ N and

∥∥BT
∥∥ = 1. Furthermore, by using Lemma 15-i), we get

zi,j(t) ≤
θ√

λmin(P)

∫ t

t−τM

√
((x̄i,j(s))TP (x̄i,j(s)))ds

Therefore, (A.20) becomes

−2θ(x̄i,j)
TPKozi,j(t) ≤ 2θ2k̄3

√
Vo(x̄i,j(t))

∫ t

t−τM

√
Vo(x̄i,j(s))ds

i
i

“main” — 2020/10/1 — 10:35 — page 105 — #117 i
i

i
i

i
i

105

where

k̄3 =

√
λmax(P)√
λmin(P)

∥Ko∥ (A.20)

Furthermore,

∥uj∥ ≤ c̄∥Kc∥

(
∥biΓλ∆

−1
θ x̄j,0∥+

N∑
k=1

∥Hi,k(ēk + Γλ∆
−1
θ x̄i,k)∥

)
By using the definition of si,j and H, we get

∥uj∥ ≤ c̄∥Kc∥hmax

(
N∑
k=1

∥ēk∥+ ∥Γλ∆
−1
θ ∥

N∑
k=0

sjk∥x̄j,k∥

)

where hmax is defined by (2.16). Since
∥ēk∥ =

√
ēTk ek

so by using lemma 15-i), one has

∥ēk∥ ≤ 1√
λmin(Q)

√
ēTkQēk

N∑
k=1

∥ēk∥ ≤
√
N

λmin(Q)
√
ωmin

√
V̄c(ηc) by using Lemma 15-c)

Similarly,
∥x̄j,k∥ ≤ 1√

λmin(P)

√
Vo(x̄j,k) by using Lemma 15-i)

So it leads to

−2

θ
(x̄i,j)

TPBuj ≤ 2

θ

√
Vo(x̄i,j)

√
λmax(P)∥uj∥

≤ 2

θ
k̄4

√
Vo(x̄i,j)

√
V̄c(ηc)

+
2

θ
k̄5∥Γλ∆

−1
θ ∥
√
Vo(x̄i,j)

N∑
k=0

sjk

√
Vo(x̄j,k) (A.21)

where

k̄4 =
c̄∥Kc∥hmax

√
N
√

λmax(P)√
λmin(Q)

√
ωmin

(A.22)

k̄5 =
c̄∥Kc∥hmax

√
λmax(P)√

λmin(P)
(A.23)

Moreover, by using Lemma 15-h)

−2

θ
(x̄i,0)

TPBu0 ≤
2

θ

√
λmax(P)

√
(x̄i,0)TP (x̄i,0)

√
(Bu0)T (Bu0)

which can be further simplified as

−2

θ
(x̄i,0)

TPBu0 ≤
2

θ
δ0k̄6

√
V0(x̄i,0) (A.24)

The above is achieved by using Lemma 15-i) and the fact that ∥B∥ = 1 and ∥u0(t)∥ ≤ δ0 for all t ≥ 0
and

k̄6 =
√
λmax(P) (A.25)

i
i

“main” — 2020/10/1 — 10:35 — page 106 — #118 i
i

i
i

i
i

106 Proof of Theorem 24

Using inequalities (A.18), (A.21) and (A.24) leads to

V̇o(x̄i,j) ≤ −θVo(x̄i,j) + 2θ2k̄3

√
Vo(x̄i,j)

∫ t

t−τM

√
Vo(x̄i,j(s))ds+ 2

k̄4
θ

√
Vo(x̄i,j)

√
V̄c(ηc)

+2
k̄5
θ
∥Γλ∆

−1
θ ∥
√

Vo(x̄i,j)

N∑
k=0

sjk

√
Vo(x̄j,k)

≤ −θVo(x̄i,j) + 2θ2k̄3

√
Vo(x̄i,j)

∫ t

t−τM

√
V̄o(ηo(s))ds+ 2

k̄4
θ

√
Vo(x̄i,j)

√
V̄c(ηc)

+2
k̄5
θ
∥Γλ∆

−1
θ ∥
√

Vo(x̄i,j)
√
N + 1

√
V̄o(ηo) (A.26)

for j = 1, . . . , N , while

V̇o(x̄i,0) ≤ −θVo(x̄i,0) + 2θ2k̄3

√
Vo(x̄i,j)

∫ t

t−τM

√
V̄o(ηo(s))ds+ 2

k̄6
θ
δ0

√
Vo(x̄i,0) (A.27)

Step 4.3.
Letting

λ = εθ

with ε ∈ (0, 1), then
∥Γλ∆

−1
θ ∥ = λθ (A.28)

From the definition of ˙̄Vo(η
o)

˙̄Vo(η
o) =

N∑
i=1

N∑
j=1

sij
˙̄Vo(x̄i,j) +

N∑
i=1

sij
˙̄Vo(x̄i,0) (A.29)

then by using (A.26),(A.27), (A.28) and Lemma 15 e), one gets

˙̄Vo(η
o) ≤ −θV̄o(η

o) + 2θ2k3

√
V̄o(ηo)

∫ t

t−τM

√
V̄o(ηo(s))ds+ 2λk5V̄o(η

o) (A.30)

+2
k4
θ

√
V̄o(ηo)

√
V̄c(ηc) + 2

k6
θ
δ0

√
V̄o(ηo) (A.31)

where

k3 = k̄3
√
N
√
N + 1 (A.32)

k4 = k̄4N (A.33)
k5 = k̄5N

√
N + 1 (A.34)

k6 = k̄6
√
N (A.35)

Step 5.

From (A.16), we obtain

d

dt

(√
V̄c(ηc)

)
=

1

2
√
V̄c(ηc)

˙̄Vc(η
c) ≤ −λ

2

√
V̄c(ηc) + k1λ

2θ
√

V̄o(ηo) + k̄2λδ0

and similarly from (A.31)

d

dt

(√
V̄o(ηo)

)
≤ −θ

2

√
V̄o(ηo) + k3θ

2

∫ t

t−τM

√
V̄o(ηo(s))ds+

k4
θ

√
V̄c(ηc) + k5λ

√
V̄o(ηo) +

k6
θ
δ0

i
i

“main” — 2020/10/1 — 10:35 — page 107 — #119 i
i

i
i

i
i

107

We have

d

dt

(√
V̄c(ηc) + ε

3
2 θ2
√
V̄o(ηo)

)
≤ −εθ

4

(
1− 4k4ε

1
2

)√
V̄c(ηc)−

ε
3
2 θ3

4

(
1− 4k1ε

1
2 − 4k5ε

)√
V̄o(ηo)

−εθ

4

√
V̄c(ηc)−

ε
3
2 θ3

4

√
V̄o(ηo) + k3ε

3
2 θ4

∫ t

t−τM

√
V̄o(ηo(s))ds

+k̄2εθδ0 + k6ε
3
2 θδ0

By choosing ε < ε∗ where ε∗ = min
{
1, 1

(4k4)2
, 1
(8k1)2

, 1
8k5

}
, we obtain

d

dt

(√
V̄c(ηc) + ε

3
2 θ2
√

V̄o(ηo)

)
≤ −εθ

4

√
V̄c(ηc)−

ε
3
2 θ3

4

√
V̄o(ηo)+ k3ε

3
2 θ4

∫ t

t−τM

√
V̄o(ηo(s))ds+ k2εθδ0

where

k2 = max{k̄2, k6} (A.36)

Applying Lemma 16 with

a =
εθ

4
=

λ

4
(A.37)

b =
θ

4
(A.38)

c = k3ε
3
2 θ4 (A.39)

k = k2εθδ0 (A.40)

one obtains the existence of ϱ > 0 and ᾱ > 0 such that if

τM < ϱmin

(
b

c
,
1

σ

)
(A.41)

with σ = 1
2 min(a, b) = λ

8 since θ > λ > 0, then√
V̄c(ηc) + ε

3
2 θ2
√

V̄o(ηo) ≤ ᾱe−σt +
k2εθδ0

σ

Since
min

(
b

c
,
1

σ

)
= min

(
1

4θk3
,
8

λ

)
≥ min

(
1

4k3
, 8

)
min

(
1

θ
,
1

λ

)
≥ 1

4k3θ
(A.42)

then, if θ verifies
τM <

ϱ̄

θ
(A.43)

with ϱ̄ = ϱ
4k3

, the following inequality holds true√
V̄c(ηc) + ε

3
2 θ2
√

V̄o(ηo) ≤ ᾱe−
λ
8
t + 8k2δ0 (A.44)

Step 6.

One now comes back to the original coordinates of both observer and tracking errors. One has

λ
√

λmin(Q)∥ei∥ ≤
√
ēTi Qēi

since λ > 0

∥ei∥ ≤ 1

λ
√
λmin(Q)

√
ωi

√
ωiēTi Qēi

N∑
i=1

∥ei∥ ≤ 1

λ

√
N√

λmin(Q)
√
ωmin

√
V̄c(ηc)

i
i

“main” — 2020/10/1 — 10:35 — page 108 — #120 i
i

i
i

i
i

108 Proof of Theorem 24

The above inequality has been achieved using Lemma 15-c) and the fact that
∑N

i=1 ωi

(
ēTi Qēi

)
=

V̄c(η
c)). Rearranging the above inequality, one has

√
V̄c(ηc) ≥ λl1

N∑
i=1

∥ei∥ (A.45)

where

l1 =

√
λmin(Q)

√
ωmin√

N
(A.46)

Similarly, we have √
λmin(P)

θ
∥x̃i,j∥ ≤

√
(x̄i,j)

T Px̄i,j (A.47)

As θ > 0, we have

N∑
j=0

∥x̃i,j∥ ≤ θ√
λmin(P)

N∑
j=0

√
Vo(x̄i,j)

N∑
i=1

N∑
j=0

∥x̃i,j∥ ≤ θ

√
N
√
N + 1√

λmin(P)

√
V̄o(ηo) by using Lemma 15-c)

√
V̄o(ηo) ≥ l2

θ

N∑
i=1

N∑
j=0

∥x̃i,j∥ (A.48)

where

l2 =

√
λmin(P)√

N
√
N + 1

(A.49)

Using inequalities (A.45) and (A.48), one obtains

√
V̄c(ηc) + ε

3
2 θ2
√

V̄o(ηo) ≥ λl1

N∑
i=1

∥ei∥+ ε
3
2 θl2

N∑
i=1

N∑
j=0

∥x̃i,j∥

Over-valuation of the tracking error ei is given by

√
V̄c(ηc) + ε

3
2 θ2
√
V̄o(ηo) ≥ λl1

N∑
i=1

∥ei∥

by using inequality (A.44), it gives

N∑
i=1

∥ei∥ ≤ αe−
λ
8
t +

βδ0
λ

(A.50)

with

α =
ᾱ

λl1
(A.51)

β =
8k2
l1

(A.52)

This ends the proof.

i
i

“main” — 2020/10/1 — 10:35 — page 109 — #121 i
i

i
i

i
i

Appendix B

Proof of Theorem 29

The proof is divided into two steps. In the first step, the results of fixed topology case are further
expanded to obtain some useful inequalities and properties. In the second step, piece-wise candidate
Lyapunov function is introduced and it is shown that if the conditions given in Theorem 29 are satisfied
then the MAS with switching topology achieves stability.

Step 1:

First, suppose a fixed communication graph Gp (p ∈ M). Using the same Lyapunov functions (A.4)-
(A.6) with a small modification in the notation of V̄c(η

c) as V̄ p
c (ηc) = (ηc)T [Ωp ⊗Q]ηc to specify it for

communication graph Gp since Ω depends on the communication graph. Then by following the same
steps as given in proof of Theorem 24, one can show that if the conditions (2.31)-(2.33) are satisfied
and leader’s input is zero, i.e. u0 = 0 then√

V̄ p
c (ηc) + ε

3
2 θ2
√

V̄o(ηo) ≤ ᾱ(t0)e
−λ

8
(t−t0)

where ᾱ ≥ 0. In fact, from Lemma 16 one gets

ᾱ(t0) =
√

V̄ p
c (t0) + ε

3
2 θ2
√
V̄0(t0) + cε

3
2 θ2

∫ τM

0

∫ t0

t0−s
evκ(µ−t0+s)

√
V̄0(µ)dµds (B.1)

where v and κ are given in Lemma 16.
Now for t ∈ [t0, t1), one can show that√

V̄ p
c (t) + ε

3
2 θ2
√
V̄0(t) ≤

(√
V̄ p
c (t0) + ε

3
2 θ2K max

s∈[t0−τM ,t0]

√
V̄o(s)

)
e−

λ
8
(t−t0) (B.2)√

V̄ p
c (t1) + ε

3
2 θ2 max

s∈[t1−τM ,t1)

√
V̄0(s) ≤

(√
V̄ p
c (t0) + ε

3
2 θ2K max

s∈[t0−τM ,t0]

√
V̄o(s)

)
e−

λ
8
((t1−τM)−t0)

√
V̄ p
c (t1) + ε

3
2 θ2 max

s∈[t1−τM ,t1)

√
V̄0(s) ≤

(√
V̄ p
c (t0) + ε

3
2 θ2K max

s∈[t0−τM ,t0]

√
V̄o(s)

)(
e

λ
8
τM
)
e−

λ
8
(t1−t0)

(B.3)

where K = 2max{1, cτ2MevκτM } with c ≥ 0.
Each V̄ p

c (ηc) is continuous and decreases exponentially. V̄ p
c (ηc) satisfies the following properties

[147,189].

• There exists β̄ ≥ 1 such that

V̄ p
c (η

c) ≤ β̄V̄ q
c (η

c), ∀p, q ∈ M (B.4)

or √
V̄ p
c (ηc) ≤ β

√
V̄ q
c (ηc), ∀p, q ∈ M (B.5)

where β =
√

β̄

i
i

“main” — 2020/10/1 — 10:35 — page 110 — #122 i
i

i
i

i
i

110 Proof of Theorem 29

• Let α1 = minp∈M(λmin(Ω
p ⊗Q)) and α1 = maxp∈M(λmax(Ω

p ⊗Q)), then

α1∥ηc∥2 ≤ V̄ p
c ≤ α2∥ηc∥2 (B.6)

Step 2:

Let us now define a piece-wise Lyapunov function for a switching communication topology

V̄ σ(t)
c (ηc) = (ηc)T [Ωσ(t) ⊗Q]ηc (B.7)

then from (B.5), for any switching instant tl, l = 1, 2, . . .√
V̄

σ(tl)
c (tl) ≤ β

√
V̄

σ(t−l)
c (t−l) (B.8)

and since V̄0 does not switch, therefore

V̄0(tl) = V̄0(t
−
l) (B.9)

so (√
V̄

σ(tl)
c (tl) + ε

3
2 θ2 max

s∈[tl,tl−τM)

√
V̄o(s)

)
≤ β

(√
V̄

σ(t−l)
c (t−l) + ε

3
2 θ2 max

s∈[t−l ,t−l −τM)

√
V̄o(s)

)
(B.10)

For t ∈ [tk, tk+1), from (B.2) and (B.10), one have√
V̄

σ(t)
c (t) + ε

3
2 θ2 max

s∈[t−τM ,t)

√
V̄0(s)

≤ e
λ
8
τM

(√
V̄

σ(tk)
c (tk) + ε

3
2 θ2K max

s∈[tk−τM ,tk]

√
V̄o(s)

)
e−

λ
8
(t−tk) from (B.2) (B.11)

≤ βKe
λ
8
τM

(√
V̄

σ(t−k)
c (t−k) + ε

3
2 θ2 max

s∈[t−k −τM ,t−k]

√
V̄o(s)

)
e−

λ
8
(t−tk) from (B.10) (B.12)

≤ βK2e2
λ
8
τM

(√
V̄

σ(t0)
c (tk−1) + ε

3
2 θ2 max

s∈[tk−1−τM ,tk−1]

√
V̄o(s)

)
e−

λ
8
(t−tk−1)

≤ βNσ(Ke
λ
8
τM)Nσ+1

(√
V̄

σ(t0)
c (t0) + ε

3
2 θ2 max

s∈[t0−τM ,t0]

√
V̄o(s)

)
e−

λ
8
(t−t0)

≤ βN0(Ke
λ
8
τM)N0+1(βK)

t−t0
τa e

t−t0
τa

(√
V̄

σ(t0)
c (t0) + ε

3
2 θ2 max

s∈[t0−τM ,t0]

√
V̄o(s)

)
e−

λ
8
(t−t0)

where inequalities (B.11) and (B.12) are obtained using (B.2) and (B.10), respectively. Now by using
Definition 26, one has√

V̄
σ(t)
c (t) + ε

3
2 θ2 max

s∈[t−τM ,t)

√
V̄0(s)

≤ βN0(Ke
λ
8
τM)N0+1

(√
V̄

σ(t0)
c (t0) + ε

3
2 θ2 max

s∈[t0−τM ,t0]

√
V̄o(s)

)
e
−
(

λ
8
− ln (βK)−1

τa

)
(t−t0) (B.13)

so if ADT is chosen τa > 8 ln (βK)−1
λ , the system achieves exponential stability.

i
i

“main” — 2020/10/1 — 10:35 — page 111 — #123 i
i

i
i

i
i

Appendix C

Proof of Theorem 36

The agent dynamics can be re-written as{
ẋi = Axi +Bui i = 0, . . . , N

ri = Cxi

with A =

(
0m Im
0m 0m

)
, B =

(
0m
Im

)
and C =

(
Im 0m

)
. Similarly, the formation dynamics can be

written as

ḟi = Afi +Bḟi,v

Denoting x̂i,j = (r̂Ti,j , v̂
T
i,j)

T , the observer (3.5)-(3.6) can be written as

˙̂xi,j(t) = Ax̂i,j(t) +Bḟi,v − θ∆−1
θ Koe

−2θ(t−κi,j(t))(r̂i,j(κi,j(t))− rj(κi,j(t)))

for i = 1, . . . , N and j = 0, . . . , N and where κi,j(t) = max
{
ti,jk | ti,jk ≤ t, k ∈ N

}
is the last instant

when the position of agent j has been received by agent i, while

∆θ =

(
Im 0m
0m

1
θ Im

)
Ko =

[
2Im Im

]T
From Definition 34, the tracking error can be defined as:

ei(t) = xi(t)− fi(t)− x0(t)

and denoting the estimation error
x̃i,j(t) = x̂i,j(t)− xj(t)

for j = 0 . . . N and i = 1 . . . N . The input ui can be written as

ui = −c̄KcΓλ

N∑
k=1

Hikek − c̄KcΓλ

N∑
k=1

Hikx̃i,k + bic̄K
cΓλx̃i,0 + ḟi,v(t)

where Hik is the ikth element of matrix H and

Kc =
(
Im 2Im

)
Γλ =

(
λ2Im 0m
0m λIm

)

i
i

“main” — 2020/10/1 — 10:35 — page 112 — #124 i
i

i
i

i
i

112 Proof of Theorem 36

Hence, the formation tracking error dynamics is

ėi = Aei +Bui −Bu0 −Bḟi,v

while the estimation error dynamics is

˙̃xi,j(t) = (A− θ∆−1
θ KoC)x̃i,j(t)− θ∆−1

θ Kozi,j(t)−Buj(t) +Bḟj,v(t)

where
zi,j(t) =

[
e−2θ(t−κi,j(t))Cx̃i,j(κi,j(t))− Cx̃i,j(t)

]
Now using high-gain transformation ēi = Γλei and x̄i,j = ∆θx̃i,j . One gets

˙̄ei(t) = λAēi(t) + λBui(t)− λBu0(t)− λBḟi,v(t) (C.1)

˙̄xi,j(t) = θ(A−KoC)x̄i,j(t)− θKozi,j(t)−
1

θ
Buj(t)−

1

θ
Bḟi,v(t) (C.2)

and

ui = −c̄Kc

N∑
k=1

Hikēk − c̄KcΓλ∆
−1
θ

N∑
k=1

Hikx̄i,k + bic̄KcΓλ∆
−1
θ x̄i,0 + ḟi,v(t) (C.3)

By using (C.3) in (C.1) and (C.2), one can see that the new tracking and observer error dynamics i.e.
˙̄ei(t) and ˙̄xi,j(t) are same as those presented in Section 1.4.1 of Chapter 2. Using

ηc = [ēT1 . . . ēTN]T

ηoi = [(x̄i,1)
T . . . (x̄i,N)T]T , i = 1, . . . , N

ηo0 = [x̄1,0 . . . x̄N,0]

and the following Lyapunov functions:

Vc(η
c) = (ηc)T [Ω⊗Q]ηc (C.4)

Vo(X̃i,j) = (X̃i,j)
TP (X̃i,j) (C.5)

V̄o(X̃i,j) =

N∑
i=1

N∑
j=0

sijVo(X̃i,j) (C.6)

where sij = 1 if agent i receives information from agent j and 0 otherwise for i = 1, . . . , N , j =
0, . . . , N , P is the symmetric positive definite matrix solution of the equation

P +ATP + PA = CTC

and Q is the symmetric positive definite matrix solution of the equation

Q+QA+ATQ = QBBTQ

By following same steps given in Chapter 2, one can show that if conditions (3.8)–(3.10) are
satisfied, then

N∑
i=1

∥ei(t)∥ ≤ αe
−λ

γ
t
+

βδ0
λ

, ∀t ≥ 0 (C.7)

where α, β, γ > 0 and δ0 is the upper bound of the leader input. Furthermore, β does not depend on
θ, λ, c̄, τM and the initial conditions of the agents and observers. Details of these parameters are given
in Chapter 2.

i
i

“main” — 2020/10/1 — 10:35 — page 113 — #125 i
i

i
i

i
i

Appendix D

Proof of Theorem 42

The position and velocity errors of agent i for fixed formation can be defined respectively as:

ξi = ri − fi,r − r0 (D.1)
ζi = vi − v0 (D.2)

Step 1

Consider system (2.9)–(2.10) with only formation controller (3.7) and choose Lyapunov function as:

V1 =
1

2

N∑
i=1

[ξTi ξi + ζTi ζi] (D.3)

=
1

2

N∑
i=1

eTi ei (D.4)

=
1

2

N∑
i=1

∥ei(t)∥2

By using (C.7), one has √
2V1 ≤ αe

−λ
γ
t
+

βδ0
λ

, ∀t ≥ 0 (D.5)

V1 ≤ 1

2
(αe

−λ
γ
t
+

βδ0
λ

)2 (D.6)

Moreover, the time derivative of V1 is given as:

V̇1 =
N∑
i=1

[ξTi ξ̇i + ζTi ζ̇i]

=
N∑
i=1

[
ξTi ξ̇i + ζTi

(
ufi − u0

)]
(D.7)

Step 2

Let us now consider system (2.9), (2.10) with collision-free formation tracking controller (3.15) and
define the following Lyapunov function

V2 =
1

2

N∑
i=1

[ξTi ξi + ζTi ζi] +
1

2

N∑
i=1

N∑
j=1

qij(ri, rj) +
N∑
i=1

qi0(ri, r0)

i
i

“main” — 2020/10/1 — 10:35 — page 114 — #126 i
i

i
i

i
i

114 Proof of Theorem 42

The time derivative of V2 along the trajectories of system (2.9) is

V̇2 =

N∑
i=1

[
ξTi ξ̇i + ζTi ζ̇i

]
+

1

2

N∑
i=1

N∑
j=1

(
∂qij
∂ri

vi +
∂qij
∂rj

vj

)

+
N∑
i=1

(
∂qi0
∂ri

vi +
∂qi0
∂r0

v0

)

=

N∑
i=1

[
ξTi ξ̇i + ζTi

(
ufi + uri − u0

)]
+

1

2

N∑
i=1

N∑
j=1

(
∂qij
∂ri

vi +
∂qij
∂rj

vj

)
(D.8)

or

V̇2 =

N∑
i=1

[
ξTi ξ̇i + ζTi

(
ufi − u0

)]
+

N∑
i=1

ζTi u
r
i +

1

2

N∑
i=1

N∑
j=1

(
∂qij
∂ri

vi +
∂qij
∂rj

vj

)

+

N∑
i=1

(
∂qi0
∂ri

vi +
∂qi0
∂r0

v0

)

= V̇1 −
N∑
i=1

(vi − v0)
T

N∑
j=o

∂qTij
∂ri

+
N∑
i=1

N∑
j=1

∂qij
∂ri

vi +
N∑
i=1

∂qi0
∂ri

(vi − v0) (D.9)

By applying Lemma 41, one obtains

V̇2 = V̇1 −
N∑
i=1

N∑
j=1

vTi
∂qTij
∂ri

+ vT0

N∑
i=1

N∑
j=1

∂qTij
∂ri

−
N∑
i=1

(vi − v0)
T ∂q

T
i0

∂ri
(D.10)

+

N∑
i=1

N∑
j=1

∂qij
∂ri

vi +

N∑
i=1

∂qi0
∂ri

(vi − v0)

= V̇1 + vT0

N∑
i=1

N∑
j=1

∂qTij
∂ri

Furthermore, since
∑N

i=1

∑N
j=1

∂qij
∂ri

= 0, it leads to

V̇2 = V̇1 (D.11)

It implies that if the initial positions of the agents satisfy Assumption 40, i.e. ∂qij
∂ri

= 0 at t = 0 for
i = 1 . . . N , j = 0 . . . N , consequently V1(0) = V2(0) then

V2 = V1 ≤
1

2
(αe

−λ
γ
t
+

βδ0
λ

)2, ∀t ≥ 0

Hence, the MAS achieves the desired formation with controller (3.15) in practical sense. Also, from
the structure of (3.12) and (3.14), one has

lim
∥rij∥→r

qij = ∞

lim
∥rij∥→r

∂qij
∂ri

= ∞

for ∀i ̸= j. Therefore, it can be concluded that the collision is avoided.

i
i

“main” — 2020/10/1 — 10:35 — page 115 — #127 i
i

i
i

i
i

Bibliography

[1] Sabato Manfredi and Edmondo Di Tucci. Decentralized control algorithm for fast monitoring and
efficient energy consumption in energy harvesting wireless sensor networks. IEEE Transactions
on Industrial Informatics, 13(4):1513–1520, 2017.

[2] Chio-Zong Frank Cheng, Ying-Hwa Kuo, Richard A Anthes, and Lance Wu. Satellite con-
stellation monitors global and space weather. Eos, Transactions American Geophysical Union,
87(17):166–166, 2006.

[3] Pengcheng Yang, Yanghong Xia, Miao Yu, Wei Wei, and Yonggang Peng. A decentralized coor-
dination control method for parallel bidirectional power converters in a hybrid ac–dc microgrid.
IEEE Transactions on Industrial Electronics, 65(8):6217–6228, 2018.

[4] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian, Ming Wu,
and Lidong Zhou. Apollo: Scalable and coordinated scheduling for cloud-scale computing. In
OSDI, volume 14, pages 285–300, 2014.

[5] Anoop Jain and Debasish Ghose. Synchronization of multi-agent systems with heterogeneous
controllers. Nonlinear Dynamics, 89(2):1433–1451, 2017.

[6] Liangming Chen, Yanning Guo, Chuanjiang Li, and Jing Huang. Satellite formation-containment
flying control with collision avoidance. Journal of Aerospace Information Systems, pages 1–18,
2018.

[7] Francesco Bullo, Jorge Cortes, and Sonia Martinez. Distributed control of robotic networks:
a mathematical approach to motion coordination algorithms, volume 27. Princeton University
Press, 2009.

[8] Judith Ebegbulem and Martin Guay. Distributed control of multi-agent systems over unknown
communication networks using extremum seeking. Journal of Process Control, 59:37–48, 2017.

[9] Judith Ebegbulem and Martin Guay. Distributed control of multi-agent systems over unknown
communication networks using extremum seeking. Journal of Process Control, 59:37–48, 2017.

[10] Chris Godsil and Gordon F Royle. Algebraic graph theory, volume 207. Springer Science &
Business Media, 2013.

[11] Norman Biggs, Norman Linstead Biggs, and Biggs Norman. Algebraic graph theory, volume 67.
Cambridge university press, 1993.

[12] Reinhard Diestel. Graph theory {graduate texts in mathematics; 173}. Springer-Verlag Berlin
and Heidelberg GmbH & amp, 2000.

[13] Gerardo Lafferriere, Alan Williams, J Caughman, and JJP Veerman. Decentralized control of
vehicle formations. Systems & control letters, 54(9):899–910, 2005.

i
i

“main” — 2020/10/1 — 10:35 — page 116 — #128 i
i

i
i

i
i

116 BIBLIOGRAPHY

[14] Rafig Agaev and Pavel Chebotarev. On the spectra of nonsymmetric laplacian matrices. arXiv
preprint math/0508176, 399:157–178, 2005.

[15] Reza Olfati-Saber and Richard M Murray. Consensus problems in networks of agents with
switching topology and time-delays. IEEE Transactions on automatic control, 49(9):1520–1533,
2004.

[16] Ali Jadbabaie, Jie Lin, and A Stephen Morse. Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Transactions on automatic control, 48(6):988–1001,
2003.

[17] Zhiyun Lin, Mireille Broucke, and Bruce Francis. Local control strategies for groups of mobile
autonomous agents. IEEE Transactions on automatic control, 49(4):622–629, 2004.

[18] Wei Ren and Randal W Beard. Consensus seeking in multiagent systems under dynamically
changing interaction topologies. IEEE Transactions on automatic control, 50(5):655–661, 2005.

[19] Ulrich Munz, Antonis Papachristodoulou, and Frank Allgower. Consensus in multi-agent sys-
tems with coupling delays and switching topology. IEEE Transactions on Automatic Control,
56(12):2976–2982, 2011.

[20] Pierre-Alexandre Bliman and Giancarlo Ferrari-Trecate. Average consensus problems in networks
of agents with delayed communications. Automatica, 44(8):1985–1995, 2008.

[21] Sergey Parsegov, Andrey Polyakov, and Pavel Shcherbakov. Fixed-time consensus algorithm for
multi-agent systems with integrator dynamics. In 4th IFAC Workshop on Distributed Estimation
and Control in Networked Systems, pages 110–115, 2013.

[22] Zongyu Zuo and Lin Tie. A new class of finite-time nonlinear consensus protocols for multi-agent
systems. International Journal of Control, 87(2):363–370, 2014.

[23] Jie Mei, Wei Ren, and Jie Chen. Consensus of second-order heterogeneous multi-agent systems
under a directed graph. In 2014 American Control Conference, pages 802–807. IEEE, 2014.

[24] Zhenhong Guo, Chunjing Jiang, Jie Mei, and Guangfu Ma. Fully distributed consensus for
second-order uncertain multi-agent systems under a directed graph. In 2018 15th International
Conference on Control, Automation, Robotics and Vision (ICARCV), pages 492–496. IEEE,
2018.

[25] Wei Ren and Ella Atkins. Distributed multi-vehicle coordinated control via local information
exchange. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal,
17(10-11):1002–1033, 2007.

[26] Wei Ren. On consensus algorithms for double-integrator dynamics. IEEE Transactions on
Automatic Control, 53(6):1503–1509, 2008.

[27] Guangming Xie and Long Wang. Consensus control for a class of networks of dynamic agents.
International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, 17(10-11):941–
959, 2007.

[28] Jiandong Zhu, Yu-Ping Tian, and Jing Kuang. On the general consensus protocol of multi-agent
systems with double-integrator dynamics. Linear Algebra and its Applications, 431(5-7):701–715,
2009.

[29] Wenwu Yu, Guanrong Chen, and Ming Cao. Some necessary and sufficient conditions for second-
order consensus in multi-agent dynamical systems. Automatica, 46(6):1089–1095, 2010.

[30] Dongjun Lee and Mark W Spong. Stable flocking of multiple inertial agents on balanced graphs.
IEEE transactions on automatic control, 52(8):1469–1475, 2007.

i
i

“main” — 2020/10/1 — 10:35 — page 117 — #129 i
i

i
i

i
i

BIBLIOGRAPHY 117

[31] Wei Li and Mark W Spong. Stability of general coupled inertial agents. IEEE Transactions on
Automatic Control, 55(6):1411–1416, 2010.

[32] Jiahu Qin, Huijun Gao, and Wei Xing Zheng. Second-order consensus for multi-agent systems
with switching topology and communication delay. Systems & Control Letters, 60(6):390–397,
2011.

[33] Wei Liu, Shaolei Zhou, Yahui Qi, and Xiuzhen Wu. Leaderless consensus of multi-agent systems
with lipschitz nonlinear dynamics and switching topologies. Neurocomputing, 173:1322–1329,
2016.

[34] Wenwu Yu, He Wang, Fei Cheng, Xinghuo Yu, and Guanghui Wen. Second-order consensus
in multiagent systems via distributed sliding mode control. IEEE transactions on cybernetics,
47(8):1872–1881, 2016.

[35] Wencheng Zou, Peng Shi, Zhengrong Xiang, and Yan Shi. Finite-time consensus of second-order
switched nonlinear multi-agent systems. IEEE transactions on neural networks and learning
systems, 2019.

[36] Junjie Fu, Guanghui Wen, Wenwu Yu, and Zhengtao Ding. Finite-time consensus for second-
order multi-agent systems with input saturation. IEEE Transactions on Circuits and Systems
II: Express Briefs, 65(11):1758–1762, 2017.

[37] Zongyu Zuo. Nonsingular fixed-time consensus tracking for second-order multi-agent networks.
Automatica, 54:305–309, 2015.

[38] Xiaoyan He and Qingyun Wang. Distributed finite-time leaderless consensus control for double-
integrator multi-agent systems with external disturbances. Applied Mathematics and Computa-
tion, 295:65–76, 2017.

[39] Shize Su and Zongli Lin. Distributed consensus control of multi-agent systems with higher order
agent dynamics and dynamically changing directed interaction topologies. IEEE Transactions
on Automatic Control, 61(2):515–519, 2015.

[40] Zongyu Zuo, Bailing Tian, Michael Defoort, and Zhengtao Ding. Fixed-time consensus tracking
for multiagent systems with high-order integrator dynamics. IEEE Transactions on Automatic
Control, 63(2):563–570, 2017.

[41] Guipu Li, Xiangyu Wang, and Shihua Li. Distributed composite output consensus protocols of
higher-order multi-agent systems subject to mismatched disturbances. IET Control Theory &
Applications, 11(8):1162–1172, 2017.

[42] Guipu Li, Xiangyu Wang, and Shihua Li. Consensus control of higher-order lipschitz non-linear
multi-agent systems based on backstepping method. IET Control Theory & Applications, 2019.

[43] Wei Ren and Randal W Beard. Distributed consensus in multi-vehicle cooperative control.
Springer, 2008.

[44] Wei Ren. Multi-vehicle consensus with a time-varying reference state. Systems & Control Letters,
56(7-8):474–483, 2007.

[45] Yiguang Hong, Jiangping Hu, and Linxin Gao. Tracking control for multi-agent consensus with
an active leader and variable topology. Automatica, 42(7):1177–1182, 2006.

[46] Yiguang Hong, Guanrong Chen, and Linda Bushnell. Distributed observers design for leader-
following control of multi-agent networks. Automatica, 44(3):846–850, 2008.

[47] Yongcan Cao and Wei Ren. Distributed coordinated tracking with reduced interaction via a
variable structure approach. IEEE Transactions on Automatic Control, 57(1):33–48, 2011.

i
i

“main” — 2020/10/1 — 10:35 — page 118 — #130 i
i

i
i

i
i

118 BIBLIOGRAPHY

[48] Wei Zhu and Daizhan Cheng. Leader-following consensus of second-order agents with multiple
time-varying delays. Automatica, 46(12):1994–1999, 2010.

[49] Wei Ni and Daizhan Cheng. Leader-following consensus of multi-agent systems under fixed and
switching topologies. Systems & Control Letters, 59(3-4):209–217, 2010.

[50] Jiahe Jiang and Yangyang Jiang. Leader-following consensus of linear time-varying multi-agent
systems under fixed and switching topologies. Automatica, 113:108804, 2020.

[51] Bailing Tian, Zongyu Zuo, and Hong Wang. Leader–follower fixed-time consensus of multi-agent
systems with high-order integrator dynamics. International Journal of Control, 90(7):1420–1427,
2017.

[52] Yilun Shang and Yamei Ye. Leader-follower fixed-time group consensus control of multiagent
systems under directed topology. Complexity, 2017, 2017.

[53] Alireza Khanzadeh and Mahdi Pourgholi. Fixed-time leader–follower consensus tracking of
second-order multi-agent systems with bounded input uncertainties using non-singular terminal
sliding mode technique. IET Control Theory & Applications, 12(5):679–686, 2017.

[54] Guoxing Wen, CL Philip Chen, Yan-Jun Liu, and Zhi Liu. Neural network-based adaptive
leader-following consensus control for a class of nonlinear multiagent state-delay systems. IEEE
transactions on cybernetics, 47(8):2151–2160, 2016.

[55] Chang-Chun Hua, Xiu You, and Xin-Ping Guan. Leader-following consensus for a class of
high-order nonlinear multi-agent systems. Automatica, 73:138–144, 2016.

[56] Changchun Hua, Yafeng Li, and Xinping Guan. Leader-following consensus for high-order non-
linear stochastic multiagent systems. IEEE transactions on cybernetics, 47(8):1882–1891, 2017.

[57] Chang-Chun Hua, Kuo Li, and Xin-Ping Guan. Leader-following output consensus for high-order
nonlinear multiagent systems. IEEE Transactions on Automatic Control, 64(3):1156–1161, 2018.

[58] Suiyang Khoo, Lihua Xie, and Zhihong Man. Leader-follower consensus control of a class of
nonholonomic systems. In 2010 11th International Conference on Control Automation Robotics
& Vision, pages 1381–1386. IEEE, 2010.

[59] Michael Defoort, Guillaume Demesure, Zongyu Zuo, Andrey Polyakov, and Mohamed Djemai.
Fixed-time stabilisation and consensus of non-holonomic systems. IET Control Theory & Ap-
plications, 10(18):2497–2505, 2016.

[60] Boda Ning and Qing-Long Han. Prescribed finite-time consensus tracking for multiagent sys-
tems with nonholonomic chained-form dynamics. IEEE Transactions on Automatic Control,
64(4):1686–1693, 2018.

[61] Jiankui Wang, Teng Gao, and Guoshan Zhang. Finite-time leader-following consensus for mul-
tiple non-holonomic agents. In Proceedings of the 33rd Chinese Control Conference, pages 1580–
1585. IEEE, 2014.

[62] Zhicheng Hou and Isabelle Fantoni. Interactive leader–follower consensus of multiple quadro-
tors based on composite nonlinear feedback control. IEEE Transactions on Control Systems
Technology, 26(5):1732–1743, 2017.

[63] Wei Ren and Yongcan Cao. Distributed coordination of multi-agent networks: emergent problems,
models, and issues. Springer Science & Business Media, 2010.

[64] Kwang-Kyo Oh, Myoung-Chul Park, and Hyo-Sung Ahn. A survey of multi-agent formation
control. Automatica, 53:424–440, 2015.

i
i

“main” — 2020/10/1 — 10:35 — page 119 — #131 i
i

i
i

i
i

BIBLIOGRAPHY 119

[65] Wenjie Dong and Jay A Farrell. Cooperative control of multiple nonholonomic mobile agents.
IEEE Transactions on Automatic Control, 53(6):1434–1448, 2008.

[66] J Alexander Fax and Richard M Murray. Information flow and cooperative control of vehicle
formations. IEEE transactions on automatic control, 49(9):1465–1476, 2004.

[67] KD Do and Jie Pan. Nonlinear formation control of unicycle-type mobile robots. Robotics and
Autonomous Systems, 55(3):191–204, 2007.

[68] Sung-Mo Kang, Myoung-Chul Park, Byung-Hun Lee, and Hyo-Sung Ahn. Distance-based forma-
tion control with a single moving leader. In 2014 American Control Conference, pages 305–310.
IEEE, 2014.

[69] Jianhua Wu and Mingshun Qi. Research on formation handling of serial swarm robots. In 2012
Third Global Congress on Intelligent Systems, pages 338–341. IEEE, 2012.

[70] Xiaoyu Cai and Marcio De Queiroz. Adaptive rigidity-based formation control for multirobotic
vehicles with dynamics. IEEE Transactions on Control Systems Technology, 23(1):389–396,
2014.

[71] Teddy M Cheng and Andrey V Savkin. Decentralized control of multi-agent systems for swarming
with a given geometric pattern. Computers & Mathematics with Applications, 61(4):731–744,
2011.

[72] Arindam Mondal, Laxmidhar Behera, Soumya Ranjan Sahoo, and Anupam Shukla. A novel
multi-agent formation control law with collision avoidance. IEEE/CAA Journal of Automatica
Sinica, 4(3):558–568, 2017.

[73] Viet Hoang Pham, Minh Hoang Trinh, and Hyo-Sung Ahn. Distance-based directed formation
control in three-dimensional space. In 2017 56th Annual Conference of the Society of Instrument
and Control Engineers of Japan (SICE), pages 886–891. IEEE, 2017.

[74] Laura Krick, Mireille E Broucke, and Bruce A Francis. Stabilisation of infinitesimally rigid
formations of multi-robot networks. International Journal of Control, 82(3):423–439, 2009.

[75] Dimos V Dimarogonas and Karl H Johansson. On the stability of distance-based formation
control. In 2008 47th IEEE Conference on Decision and Control, pages 1200–1205. IEEE, 2008.

[76] PKC Wang and Fred Y Hadaegh. Coordination and control of multiple microspacecraft moving
in formation. Journal of Astronautical Science, 44(3):315–355, 1996.

[77] Ben Yun, Ben M Chen, Kai Yew Lum, and Tong H Lee. Design and implementation of a leader-
follower cooperative control system for unmanned helicopters. Journal of Control Theory and
Applications, 8(1):61–68, 2010.

[78] Zhou Chao, Shao-Lei Zhou, Lei Ming, and Wen-Guang Zhang. Uav formation flight based on
nonlinear model predictive control. Mathematical Problems in Engineering, 2012, 2012.

[79] Shude He, Min Wang, Shi-Lu Dai, and Fei Luo. Leader–follower formation control of usvs with
prescribed performance and collision avoidance. IEEE Transactions on Industrial Informatics,
15(1):572–581, 2018.

[80] Chengzhi Yuan, Haibo He, and Cong Wang. Cooperative deterministic learning-based formation
control for a group of nonlinear uncertain mechanical systems. IEEE Transactions on Industrial
Informatics, 15(1):319–333, 2018.

[81] Magnus B Egerstedt and Xiaoming Hu. Formation constrained multi-agent control. IEEE
Transactions on Robotics and Automation, 17(6):947–951, 2001.

i
i

“main” — 2020/10/1 — 10:35 — page 120 — #132 i
i

i
i

i
i

120 BIBLIOGRAPHY

[82] J Shao, G Xie, and L Wang. Leader-following formation control of multiple mobile vehicles. IET
Control Theory & Applications, 1(2):545–552, 2007.

[83] M Anthony Lewis and Kar-Han Tan. High precision formation control of mobile robots using
virtual structures. Autonomous robots, 4(4):387–403, 1997.

[84] Wei Ren and Randal W Beard. Decentralized scheme for spacecraft formation flying via the
virtual structure approach. Journal of Guidance, Control, and Dynamics, 27(1):73–82, 2004.

[85] Norman HM Li and Hugh HT Liu. Formation uav flight control using virtual structure and
motion synchronization. In 2008 American Control Conference, pages 1782–1787. IEEE, 2008.

[86] Yang Qingkai, Cao Ming, Fang Hao, Chen Jie, and Huang Jie. Distributed formation stabi-
lization for mobile agents using virtual tensegrity structures. In 2015 34th Chinese Control
Conference (CCC), pages 447–452. IEEE, 2015.

[87] Qi Qin, Tie-Shan Li, Cheng Liu, CL Philip Chen, and Min Han. Virtual structure formation
control via sliding mode control and neural networks. In International Symposium on Neural
Networks, pages 101–108. Springer, 2017.

[88] Khac Duc Do. Formation control of multiple elliptical agents with limited sensing ranges.
Automatica, 48(7):1330–1338, 2012.

[89] Tucker Balch and Ronald C Arkin. Behavior-based formation control for multirobot teams.
IEEE transactions on robotics and automation, 14(6):926–939, 1998.

[90] Sreeja Nag and Leopold Summerer. Behaviour based, autonomous and distributed scatter ma-
noeuvres for satellite swarms. Acta astronautica, 82(1):95–109, 2013.

[91] Giroung Lee and Dongkyoung Chwa. Decentralized behavior-based formation control of multiple
robots considering obstacle avoidance. Intelligent Service Robotics, 11(1):127–138, 2018.

[92] Ismail Bayezit and Barış Fidan. Distributed cohesive motion control of flight vehicle formations.
IEEE Transactions on Industrial Electronics, 60(12):5763–5772, 2012.

[93] Wei Ren. Consensus strategies for cooperative control of vehicle formations. IET Control Theory
& Applications, 1(2):505–512, 2007.

[94] Xiwang Dong, Yan Zhou, Zhang Ren, and Yisheng Zhong. Time-varying formation tracking for
second-order multi-agent systems subjected to switching topologies with application to quadrotor
formation flying. IEEE Transactions on Industrial Electronics, 64(6):5014–5024, 2016.

[95] Travis Alan Dierks and Jagannathan Sarangapani. Neural network control of mobile robot
formations using rise feedback. IEEE Transactions on System, Man and Cybernetics: Part B,
39(2):332–347, 2009.

[96] Joongbo Seo, Youdan Kim, Seungkeun Kim, and Antonios Tsourdos. Consensus-based recon-
figurable controller design for unmanned aerial vehicle formation flight. Proceedings of the In-
stitution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 226(7):817–829,
2012.

[97] Xiwang Dong, Bocheng Yu, Zongying Shi, and Yisheng Zhong. Time-varying formation control
for unmanned aerial vehicles: Theories and applications. IEEE Transactions on Control Systems
Technology, 23(1):340–348, 2014.

[98] Jing Liu, Jian-an Fang, Zhen Li, and Guang He. Time-varying formation tracking for second-
order multi-agent systems subjected to switching topology and input saturation. International
Journal of Control, Automation and Systems, pages 1–11, 2019.

i
i

“main” — 2020/10/1 — 10:35 — page 121 — #133 i
i

i
i

i
i

BIBLIOGRAPHY 121

[99] Runsha Dong and Zhiyong Geng. Consensus based formation control laws for systems on lie
groups. Systems & Control Letters, 62(2):104–111, 2013.

[100] Zhaoxia Peng, Guoguang Wen, Ahmed Rahmani, and Yongguang Yu. Distributed consensus-
based formation control for multiple nonholonomic mobile robots with a specified reference
trajectory. International Journal of Systems Science, 46(8):1447–1457, 2015.

[101] Shri Harish Manoharan and Wei-Yu Chiu. Consensus based formation control of automated
guided vehicles using dynamic destination approach. In 2019 58th Annual Conference of the
Society of Instrument and Control Engineers of Japan (SICE), pages 902–907. IEEE, 2019.

[102] Jing Wang, Morrison Obeng, Tianyu Yang, Gennady Staskevich, and Brian Abbe. Formation
control of multiple nonholonomic mobile robots with limited information of a desired trajectory.
In IEEE international conference on Electro/Information Technology, pages 550–555. IEEE,
2014.

[103] Xiaohua Ge and Qing-Long Han. A brief survey of recent advances in consensus of sampled-
data multi-agent systems. In IECON 2016-42nd Annual Conference of the IEEE Industrial
Electronics Society, pages 6758–6763. IEEE, 2016.

[104] Huan Pan and Wenjuan Qiao. Consensus of double-integrator discrete-time multi-agent sys-
tem based on second-order neighbors’ information. In Control and Decision Conference (2014
CCDC), The 26th Chinese, pages 1946–1951. IEEE, 2014.

[105] Yongcan Cao and Wei Ren. Multi-vehicle coordination for double-integrator dynamics under
fixed undirected/directed interaction in a sampled-data setting. International Journal of Robust
and Nonlinear Control, 20(9):987–1000, 2010.

[106] Yongcan Cao and Wei Ren. Sampled-data discrete-time coordination algorithms for double-
integrator dynamics under dynamic directed interaction. International Journal of Control,
83(3):506–515, 2010.

[107] David W Casbeer, Randy Beard, and A Lee Swindlehurst. Discrete double integrator consensus.
In Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, pages 2264–2269. IEEE,
2008.

[108] Guodong Wang, Xiangyu Wang, and Shihua Li. Sliding-mode consensus algorithms for disturbed
second-order multi-agent systems. Journal of the Franklin Institute, 355(15):7443–7465, 2018.

[109] Jiahu Qin and Huijun Gao. A sufficient condition for convergence of sampled-data consensus
for double-integrator dynamics with nonuniform and time-varying communication delays. IEEE
Transactions on Automatic Control, 57(9):2417–2422, 2012.

[110] Annika Eichler and Herbert Werner. Optimal convergence speed of consensus under constrained
damping for multi-agent systems with discrete-time double-integrator dynamics. Systems &
Control Letters, 108:48–55, 2017.

[111] Dongmei Xie and Yongli Cheng. Bounded consensus tracking for sampled-data second-order
multi-agent systems with fixed and markovian switching topology. International Journal of
Robust and Nonlinear Control, 25(2):252–268, 2015.

[112] Zhihai Wu, Li Peng, Linbo Xie, and Jiwei Wen. Stochastic bounded consensus tracking of
leader–follower multi-agent systems with measurement noises based on sampled-data with small
sampling delay. Physica A: Statistical Mechanics and its Applications, 392(4):918–928, 2013.

[113] Cheng-Lin Liu, Shuai Liu, Ya Zhang, and Yang-Yang Chen. Consensus seeking of multi-agent
systems with intermittent communication: a persistent-hold control strategy. International
Journal of Control, pages 1–7, 2018.

i
i

“main” — 2020/10/1 — 10:35 — page 122 — #134 i
i

i
i

i
i

122 BIBLIOGRAPHY

[114] Dimos V Dimarogonas, Emilio Frazzoli, and Karl H Johansson. Distributed event-triggered
control for multi-agent systems. IEEE Transactions on Automatic Control, 57(5):1291–1297,
2012.

[115] Lulu Li, Daniel WC Ho, and Shengyuan Xu. A distributed event-triggered scheme for discrete-
time multi-agent consensus with communication delays. IET Control Theory & Applications,
8(10):830–837, 2014.

[116] Hao Zhang, Gang Feng, Huaicheng Yan, and Qijun Chen. Observer-based output feedback
event-triggered control for consensus of multi-agent systems. IEEE Trans. Industrial Electronics,
61(9):4885–4894, 2014.

[117] Derui Ding, Zidong Wang, Daniel WC Ho, and Guoliang Wei. Observer-based event-triggering
consensus control for multiagent systems with lossy sensors and cyber-attacks. IEEE transactions
on cybernetics, 47(8):1936–1947, 2017.

[118] Jiangping Hu, Ji Geng, and Hong Zhu. An observer-based consensus tracking control and
application to event-triggered tracking. Communications in Nonlinear Science and Numerical
Simulation, 20(2):559–570, 2015.

[119] Wei Zhu, Zhong-Ping Jiang, and Gang Feng. Event-based consensus of multi-agent systems with
general linear models. Automatica, 50(2):552–558, 2014.

[120] Wei Zhu, Huizhu Pu, Dandan Wang, and Huaqing Li. Event-based consensus of second-order
multi-agent systems with discrete time. Automatica, 79:78–83, 2017.

[121] Rajiv Kumar Mishra and Abhinav Sinha. Event-triggered sliding mode based consensus tracking
in second order heterogeneous nonlinear multi-agent systems. European Journal of Control,
45:30–44, 2019.

[122] Bin Hu, Zhi-Hong Guan, and Minyue Fu. Distributed event-driven control for finite-time con-
sensus. Automatica, 103:88–95, 2019.

[123] Wei Ni and Daizhan Cheng. Leader-following consensus of multi-agent systems under fixed and
switching topologies. Systems & Control Letters, 59(3-4):209–217, 2010.

[124] Ping Gong, Qing-Long Han, and Weiyao Lan. Finite-time consensus tracking for incommen-
surate fractional-order nonlinear multiagent systems with directed switching topologies. IEEE
Transactions on Cybernetics, 2020.

[125] David Luenberger. Observers for multivariable systems. IEEE Transactions on Automatic
Control, 11(2):190–197, 1966.

[126] John Doyle and Guter Stein. Robustness with observers. IEEE transactions on automatic
control, 24(4):607–611, 1979.

[127] Farzad Esfandiari and Hassan K Khalil. Output feedback stabilization of fully linearizable
systems. International Journal of Control, 56(5):1007–1037, 1992.

[128] JP Gautheir, H Hammouri, and S Othman. A simple observer for nonlinear systems application
to bioreactors. IEEE Transactions on Automatic Control, 37(6):875–880, 1992.

[129] Hassan K Khalil and Laurent Praly. High-gain observers in nonlinear feedback control. Inter-
national Journal of Robust and Nonlinear Control, 24(6):993–1015, 2014.

[130] Hassan K Khalil and Jessy W Grizzle. Nonlinear systems, volume 3. Prentice hall Upper Saddle
River, NJ, 2002.

[131] F Deza, E Busvelle, JP Gauthier, and D Rakotopara. High gain estimation for nonlinear systems.
Systems & control letters, 18(4):295–299, 1992.

i
i

“main” — 2020/10/1 — 10:35 — page 123 — #135 i
i

i
i

i
i

BIBLIOGRAPHY 123

[132] Hassan Hammouri, Madiha Nadri, and Rafael Mota. Constant gain observer for continuous-
discrete time uniformly observable systems. In Proceedings of the 45th IEEE Conference on
Decision and Control, pages 5406–5411. IEEE, 2006.

[133] C-M Astorga, N Othman, Sami Othman, Hassan Hammouri, and T-F McKenna. Nonlinear
continuous–discrete observers: application to emulsion polymerization reactors. Control Engi-
neering Practice, 10(1):3–13, 2002.

[134] Tobias Raff, Markus Kogel, and Frank Allgower. Observer with sample-and-hold updating for
lipschitz nonlinear systems with nonuniformly sampled measurements. In 2008 American Control
Conference, pages 5254–5257. IEEE, 2008.

[135] Iasson Karafyllis and Costas Kravaris. From continuous-time design to sampled-data design of
observers. IEEE Transactions on Automatic Control, 54(9):2169–2174, 2009.

[136] Mondher Farza, Mohammed M’Saad, Mamadou Lamine Fall, Eric Pigeon, Olivier Gehan, and
Krishna Busawon. Continuous-discrete time observers for a class of mimo nonlinear systems.
IEEE Transactions on Automatic Control, 59(4):1060–1065, 2013.

[137] Tarek Ahmed-Ali, Emilia Fridman, Fouad Giri, Laurent Burlion, and Françoise Lamnabhi-
Lagarrigue. Using exponential time-varying gains for sampled-data stabilization and estimation.
Automatica, 67:244–251, 2016.

[138] Mondher Farza, Ibtissem Bouraoui, Tomas Menard, R Ben Abdennour, and Mohammed M’Saad.
Sampled output observer design for a class of nonlinear systems. In 2014 European Control
Conference (ECC), pages 312–317. IEEE, 2014.

[139] Ibtissem Bouraoui, Mondher Farza, Tomas Ménard, Ridha Ben Abdennour, Mohammed MSaad,
and Henda Mosrati. Observer design for a class of uncertain nonlinear systems with sampled
outputsapplication to the estimation of kinetic rates in bioreactors. Automatica, 55:78–87, 2015.

[140] Long Cheng, Zeng-Guang Hou, Yingzi Lin, Min Tan, and Wenjun Zhang. Solving a modified
consensus problem of linear multi-agent systems. Automatica, 47(10):2218–2223, 2011.

[141] Suiyang Khoo, Lihua Xie, Zhihong Man, and Shengkui Zhao. Observer-based robust finite-
time cooperative consensus control for multi-agent networks. In 2009 4th IEEE Conference on
Industrial Electronics and Applications, pages 1883–1888. IEEE, 2009.

[142] Abdelkader Abdessameud and Abdelhamid Tayebi. On consensus algorithms for double-
integrator dynamics without velocity measurements and with input constraints. Systems &
Control Letters, 59(12):812–821, 2010.

[143] Jianqiang Hu, Jinde Cao, Jie Yu, and Tasawar Hayat. Consensus of nonlinear multi-agent
systems with observer-based protocols. Systems & Control Letters, 72:71–79, 2014.

[144] Fuyi Qu, Shaocheng Tong, and Yongming Li. Observer-based adaptive fuzzy output constrained
control for uncertain nonlinear multi-agent systems. Information Sciences, 467:446–463, 2018.

[145] Junjie Fu and Jinzhi Wang. Observer-based finite-time coordinated tracking for general linear
multi-agent systems. Automatica, 66:231–237, 2016.

[146] Peng Shi and QK Shen. Observer-based leader-following consensus of uncertain nonlinear multi-
agent systems. International Journal of Robust and Nonlinear Control, 27(17):3794–3811, 2017.

[147] Lixin Gao, Bingbing Xu, Junwei Li, and Hui Zhang. Distributed reduced-order observer-based
approach to consensus problems for linear multi-agent systems. IET Control Theory & Appli-
cations, 9(5):784–792, 2015.

i
i

“main” — 2020/10/1 — 10:35 — page 124 — #136 i
i

i
i

i
i

124 BIBLIOGRAPHY

[148] Guanghui Wen, Wenwu Yu, Yuanqing Xia, Xinghuo Yu, and Jianqiang Hu. Distributed tracking
of nonlinear multiagent systems under directed switching topology: An observer-based protocol.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(5):869–881, 2016.

[149] Miaomiao Wu, Hao Zhang, Zhuping Wang, and Huaicheng Yan. Output regulation of asyn-
chronously switched multi-agent systems by adaptive observer-based control. In 2017 IEEE
56th Annual Conference on Decision and Control (CDC), pages 2825–2829. IEEE, 2017.

[150] Mengqi Xue, Yang Tang, Wei Ren, and Feng Qian. Practical output synchronization for asyn-
chronously switched multi-agent systems with adaption to fast-switching perturbations. Auto-
matica, 116:108917, 2020.

[151] Yuanqing Xia, Xitai Na, Zhongqi Sun, and Jing Chen. Formation control and collision avoidance
for multi-agent systems based on position estimation. ISA Transactions, 61:287–296, 2016.

[152] Fangting Chen, Hui Yu, and Xiaohua Xia. Output consensus of multi-agent systems with delayed
and sampled-data. IET Control Theory & Applications, 11(5):632–639, 2016.

[153] Sheng-Li Du, Weiguo Xia, Wei Ren, Xi-Ming Sun, and Wei Wang. Observer-based consensus
for multiagent systems under stochastic sampling mechanism. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 48(12):2328–2338, 2017.

[154] Hao Zhang, Gang Feng, Huaicheng Yan, and Qijun Chen. Observer-based output feedback
event-triggered control for consensus of multi-agent systems. IEEE Transactions on Industrial
Electronics, 61(9):4885–4894, 2013.

[155] Lian-Na Zhao, Hong-Jun Ma, Lin-Xing Xu, and Xin Wang. Observer-based adaptive sampled-
data event-triggered distributed control for multi-agent systems. IEEE Transactions on Circuits
and Systems II: Express Briefs, 67(1):97–101, 2019.

[156] Tomas Menard, Emmanuel Moulay, Patrick Coirault, and Michael Defoort. Observer-based con-
sensus for second-order multi-agent systems with arbitrary asynchronous and aperiodic sampling
periods. Automatica, 99:237–245, 2019.

[157] Syed Ali Ajwad, Tomas Menard, Emmanuel Moulay, Michael Defoort, and Patrick Coirault.
Observer based leader-following consensus of second-order multi-agent systems with nonuniform
sampled position data. Journal of the Franklin Institute, 356(16):10031–10057, 2019.

[158] Syed Ali Ajwad, Emmanuel Moulay, Michael Defoort, Tomas Ménard, and Patrick Coirault.
Leader-following consensus of second-order multi-agent systems with switching topology and
partial aperiodic sampled data. IEEE Control Systems Letters, [Submitted], 2020.

[159] Chuanrui Wang and Haibo Ji. Leader-following consensus of multi-agent systems under directed
communication topology via distributed adaptive nonlinear protocol. Systems & Control Letters,
70:23–29, 2014.

[160] Wangli He, Guanrong Chen, Qing-Long Han, and Feng Qian. Network-based leader-following
consensus of nonlinear multi-agent systems via distributed impulsive control. Information Sci-
ences, 380:145–158, 2017.

[161] B Madhevan and M Sreekumar. Tracking algorithm using leader follower approach for multi
robots. Procedia Engineering, 64:1426–1435, 2013.

[162] Wei Liu and Jie Huang. Leader-following consensus for uncertain second-order nonlinear multi-
agent systems. Control Theory and Technology, 14(4):279–286, 2016.

[163] Jia Wu, Huaqing Li, and Xin Chen. Leader-following consensus of nonlinear discrete-time multi-
agent systems with limited communication channel capacity. Journal of the Franklin Institute,
354(10):4179–4195, 2017.

i
i

“main” — 2020/10/1 — 10:35 — page 125 — #137 i
i

i
i

i
i

BIBLIOGRAPHY 125

[164] Abraham Berman and Robert J Plemmons. Nonnegative matrices in the mathematical sciences.
SIAM, 1994.

[165] R.A. Horn and C.R. Johnson. Matrix analysis. Cambridge university press, 1990.

[166] A. Graham. Kronecker Products and Matrix Calculus: With Applications (Mathematics and its
Applications) PDF. Courier Dover Publications, 1981.

[167] Hassan K Khalil. Noninear systems. Prentice-Hall, New Jersey, 2(5):5–1, 1996.

[168] Qiang Song, Fang Liu, Jinde Cao, and Wenwu Yu. Pinning-controllability analysis of complex
networks: an m-matrix approach. IEEE Trans. on Circuits and Systems, 59(11):2692–2701,
2012.

[169] Mondher Farza, Mohammed M’Saad, Mamadou Lamine Fall, Eric Pigeon, Olivier Gehan, and
Krishna Busawon. Continuous-discrete time observers for a class of mimo nonlinear systems.
IEEE Transactions on Automatic Control, 59(4):1060–1065, 2014.

[170] Omar Hernández-González, Mondher Farza, Tomas Menard, Boubekeur Targui, Mohammed
MSaad, and Carlos-M Astorga-Zaragoza. A cascade observer for a class of mimo non uniformly
observable systems with delayed sampled outputs. Systems & Control Letters, 98:86–96, 2016.

[171] Joao P Hespanha and A Stephen Morse. Stability of switched systems with average dwell-time.
In Proceedings of the 38th IEEE conference on decision and control (Cat. No. 99CH36304),
volume 3, pages 2655–2660. IEEE, 1999.

[172] Syed Ali Ajwad, Emmanuel Moulay, Michael Defoort, Tomas Ménard, and Patrick Coirault.
Output-feedback formation tracking of second-order multi-agent systems with asynchronous
variable sampled data. In 2019 IEEE 58th Conference on Decision and Control (CDC), pages
4483–4488. IEEE, 2019.

[173] Syed Ali Ajwad, Emmanuel Moulay, Michael Defoort, Tomas Ménard, and Patrick Coirault.
Collision-free formation tracking of multi-agent robotic networks under communication con-
straints. IEEE Control Systems Letters, [Submitted], 2020.

[174] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In Au-
tonomous robot vehicles, pages 396–404. Springer, 1986.

[175] Jen-Hui Chuang and Narendra Ahuja. An analytically tractable potential field model of free
space and its application in obstacle avoidance. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 28(5):729–736, 1998.

[176] Yeong-Hwa Chang, Chun-Lin Chen, Wei-Shou Chan, Hung-Wei Lin, and Chia-Wen Chang.
Fuzzy formation control and collision avoidance for multiagent systems. Mathematical Problems
in Engineering, 2013, 2013.

[177] Yongcan Cao and Wei Ren. Distributed coordinated tracking with reduced interaction via a
variable structure approach. IEEE Transactions on Automatic Control, 57(1):33–48, 2012.

[178] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. ROS: an open-source robot operating system. In ICRA work-
shop on open source software. Kobe, Japan, 2009.

[179] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source
multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), volume 3, pages 2149–2154. IEEE, 2004.

[180] Anis Koubâa. Robot Operating System (ROS). Springer, 2017.

i
i

“main” — 2020/10/1 — 10:35 — page 126 — #138 i
i

i
i

i
i

126 BIBLIOGRAPHY

[181] L Sciavicco, B Siciliano, L Villani, and G Oriolo. Robotics: Modelling, planning and Control,
ser. Advanced Textbooks in Control and Signal Processing. Berlin, Germany: Springer, 2011.

[182] Michel Fliess, Jean Lévine, Philippe Martin, and Pierre Rouchon. Flatness and defect of non-
linear systems: introductory theory and examples. International Journal of Control, 61(6):1327–
1361, 1995.

[183] Yingchong Ma, Gang Zheng, Wilfrid Perruquetti, and Zhaopeng Qiu. Control of nonholonomic
wheeled mobile robots via i-pid controller. In 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4413–4418. IEEE, 2013.

[184] Animesh Chakravarthy and Debasish Ghose. Obstacle avoidance in a dynamic environment: A
collision cone approach. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans, 28(5):562–574, 1998.

[185] Michael Defoort, Arnaud Doniec, and Noury Bouraqadi. Decentralized robust collision avoidance
based on receding horizon planning and potential field for multi-robots systems. In Informatics
in Control Automation and Robotics, pages 201–215. Springer, 2011.

[186] Tomas Ménard, Syed Ali Ajwad, Emmanuel Moulay, Patrick Coirault, and Michael Defoort.
Leader-following consensus for multi-agent systems with nonlinear dynamics subject to additive
bounded disturbances and asynchronously sampled outputs. Automatica, 121, November 2020.

[187] J.P. Gauthier, H. Hammouri, and S. Othman. A simple observer for nonlinear systems applica-
tions to bioreactors. IEEE Transactions on automatic control, 37(6):875–880, 1992.

[188] A. Bédoui, M. Farza, M. MSaad, and M. Ksouri. Robust nonlinear controllers for bioprocesses.
IFAC Proceedings Volumes, 41(2):15541–15546, 2008.

[189] Kairui Chen, Junwei Wang, Yun Zhang, and Zhi Liu. Second-order consensus of nonlinear
multi-agent systems with restricted switching topology and time delay. Nonlinear Dynamics,
78(2):881–887, 2014.

	General introduction
	Cooperative control of multi-agent systems
	Introduction
	Background and motivation
	Communication network in cooperative control
	Algebraic graph theory
	Basics of graph theory
	Adjacency matrix
	Laplacian matrix

	Consensus control problem
	Leaderless consensus
	Leader-following consensus

	Formation control problem
	Issues and challenges in distributed cooperative control design
	State observers
	Contribution of thesis
	Thesis Layout
	Scientific publications

	Leader-following consensus
	Introduction
	Preliminaries
	Problem formulation
	Communication constraints

	Observer based leader-following consensus
	Discussion on Theorem 24
	Simulation results

	Leader-following consensus with switching topology
	Controller design
	Simulations

	Conclusion

	Formation tracking and collision avoidance
	Introduction
	Formation Tracking
	Formation vector
	Output-feedback formation tracking controller
	Simulation results

	Collision avoidance
	Artificial potential function
	Collision free formation tracking of MAS
	Simulation results

	Conclusion

	Application to multi-robot network
	Introduction
	Robotic Platform
	Robot operating system (ROS)
	Package
	Node
	Master
	Topics and messages
	Services
	Bags
	Launch file

	Gazebo Simulator
	Multi-robot ROS Network
	Experimental setup
	Consensus tracking
	Nonholonomic robot model
	Control scheme for nonholonomic robot
	Formation tracking control
	Fixed-formation
	Time-varying formation

	Formation tracking control with collision avoidance
	Velocity cone concept
	Numerical results

	Conclusion

	General conclusion and future prospects
	Proof of Theorem 24
	Proof of Theorem 29
	Proof of Theorem 36
	Proof of Theorem 42

