
HAL Id: tel-03012358
https://theses.hal.science/tel-03012358v1

Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The stochastic shortest path problem and its variations :
foundations and applications to sport strategy

optimization
Matthieu Guillot

To cite this version:
Matthieu Guillot. The stochastic shortest path problem and its variations : foundations and applica-
tions to sport strategy optimization. Modeling and Simulation. Université Grenoble Alpes [2020-..],
2020. English. �NNT : 2020GRALM024�. �tel-03012358�

https://theses.hal.science/tel-03012358v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : Mathématiques et Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Matthieu GUILLOT

Thèse dirigée par Gautier STAUFFER, Professeur

préparée au sein du Laboratoire Laboratoire des Sciences pour
la Conception, l'Optimisation et la Production de Grenoble
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Le problème du plus court chemin
stochastique et ses variantes : fondements
et applications à l'optimisation de stratégie
dans le sport

The stochastic shortest path problem and its
variations: foundations and applications to
sport strategy optimization

Thèse soutenue publiquement le 3 juillet 2020,
devant le jury composé de :

Monsieur GAUTIER STAUFFER
PROFESSEUR DES UNIVERSITES, KEDGE BUSINESS SCHOOL -
BORDEAUX, Directeur de thèse
Monsieur JORG RAMBAU
PROFESSEUR DES UNIVERSITES, UNIVERSITE DE BAYREUTH -
ALLEMAGNE, Rapporteur
Monsieur LOUIS ESPERET
CHARGE DE RECHERCHE HDR, CNRS DELEGATION ALPES,
Examinateur
Monsieur BRUNO SCHERRER
CHARGE DE RECHERCHE HDR, INRIA CENTRE NANCY GRAND EST,
Examinateur
Monsieur FRANÇOIS CLAUTIAUX
PROFESSEUR DES UNIVERSITES, UNIVERSITE DE BORDEAUX,
Rapporteur
Madame NADIA BRAUNER
PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE ALPES,
Présidente

2|

Contents

Introduction 7

1 The Stochastic Shortest Path Problem:
A polyhedral combinatorics perspective 27
1.1 Introduction . 27

1.1.1 Literature review . 29
1.1.2 Notations and definitions . 32
1.1.3 Main contributions and roadmap 32

1.2 Our new framework . 34
1.3 Existence of an optimal, deterministic and stationary policy 37
1.4 Algorithms . 42

1.4.1 Value Iteration . 42
1.4.2 Policy Iteration . 45
1.4.3 The Primal-Dual algorithm: a generalization of Dijkstra’s algorithm 47

1.5 Conclusion and Perspectives . 49

2 Golf Strategy Optimization for professional golfers performances esti-
mation on the PGA Tour 51
2.1 Introduction . 51
2.2 Modeling the golfer’s problem as a SSP 55

2.2.1 The States . 55
2.2.2 The Actions . 56
2.2.3 The Cost Function . 58
2.2.4 The Transition Matrix . 61

2.3 Statistical Inference . 62
2.3.1 Shotlink Database . 62
2.3.2 Shots off the tee . 63
2.3.3 The Driving . 75

2.4 Results and Validation . 79
2.4.1 Stroke-Play . 81

3

4| CONTENTS

2.4.2 Match-Play . 85
2.4.3 Validation . 87

2.5 Conclusion and Perspectives . 94

3 On Stochastic Games and MAXPROB 97
3.1 Introduction . 97
3.2 Stochastic Games . 100
3.3 Special cases of SSPG with termination inevitable 107

3.3.1 Simple Stochastic Games (SSG) 107
3.3.2 Robust Shortest Path . 112
3.3.3 ILP-Formulations for RSP and SSPG 120

3.4 Instances of RSP ∩ SSG . 125
3.5 The MAXPROB Problem . 128
3.6 Conclusion and Perspectives . 130

Conclusion 131

The Shotlink Database 135

CONTENTS | 5

Remerciements
Je voudrais tout d’abord remercier mon directeur de thèse, Gautier, sans qui rien n’aurait
été possible, et à qui je dois beaucoup de ma formation scientifique actuelle.

J’aimerais également remercier tous les membres du jury qui ont accepté de lire et
juger mon travail. Merci en particulier à Nadia, qui m’a beaucoup aidé dans cette période
si particulière et qui m’a permis de soutenir dans les conditions que je souhaitais; et à
Louis sans qui je n’aurais pas pu soutenir tellement il a été d’une aide immense à la fin
de ma thèse.

Durant ces années de thèse, j’ai eu la chance de croiser beaucoup de monde au
laboratoire. Merci à l’ancienne génération : Nico, Clément, Lucas (qui m’a tellement
aidé), Lucile, Aurélie... Merci à Taume, Alex (meilleur co-bureau du monde), Dehia, et
bien sûr Gricha qui m’a aidé tant dans le travail que dans les loisirs. Merci à Lucie qui
a toujours été là dans les moments durs, et les bons aussi !

Et un immense merci à l’amour de ma vie, sans qui j’aurais craqué 1000 fois. On
a affronté cette thèse à deux, puis à trois. On affrontera les autres épreuves de la vie
ensemble, à trois ou à plus. Laura, voici notre manuscrit.

6| CONTENTS

Introduction

Ces dernières années, le développement de ‘super IAs’ telles que AlphaGo [29] pour le
jeu de Go et de AlphaStar [3] pour des jeux de stratégies en ligne comme Starcraft II a
grandement bouleversé les communautés de ces disciplines. Les stratégies préexistantes
suivaient des schémas (souvent appelés metagames) qui ont été largement dépassés par
les stratégies mises en place par le programme informatique, explorant des techniques
jusqu’ici inconnues ou crues obsolètes. Ceci a permis aux joueurs de considérer d’autres
aspects du jeu. Au Go, les joueurs, après avoir analysé les coups originaux de l’IA,
ont depuis adopté certains de ces coups dans des parties professionnelles. À Starcraft,
l’IA a surtout brillé par la gestion minutieuse de ses unités, même avec un nombre
d’action par minute limité. L’outil informatique peut donc avoir un impact fort sur
l’évolution du sport ou de l’e-sport de manière générale et sur l’optimisation de stratégies
en particulier. L’optimisation de stratégies dans le sport est un grand enjeu à la fois pour
l’amélioration des performances des sportifs, mais également pour l’analyse prédictive de
résultats. Dans le premier cas, il s’agit d’utiliser des données relatives aux sportifs, aux
terrains et à de potentiels adversaires afin de déterminer la manière optimale de jouer
en tenant compte de tous ces aspects. On peut ainsi déterminer quels aspects du jeu il
serait intéressant d’améliorer en priorité afin d’avoir le plus grand impact positif sur les
performances du ou des sportifs. Dans le deuxième cas, il s’agit de simuler le jeu des
sportifs afin d’obtenir des éléments statistiques sur les résultats possibles (distribution
de scores, probabilités de gain...).

Dans ce manuscrit, nous nous sommes concentrés sur le Golf, et ce pour deux princi-
paux aspects. D’abord un golfeur se confronte au ‘terrain’ plus qu’aux autres golfeurs :
les interactions directes entre les joueurs sont très limitées. Ainsi, la stratégie de chaque
joueur peut se déterminer indépendamment des actions des autres joueurs (sous certaines
hypothèses que nous détaillerons plus tard).

De plus, nous avons eu accès à une base de données, Shotlink [86], qui nous donne
une grande quantité d’informations sur les joueurs professionnels. Ces données sont
indispensables pour la création de profils de joueurs et leurs accès a été déterminant
dans le choix de notre application.

Il est cependant possible d’adapter les modèles que nous avons développé dans
d’autres disciplines sportives et ce même quand deux équipes sont impliquées. Les

7

8| Introduction

travaux de Hoffmeister et Rambau [55] [56] utilisent le même type de modèles et perme-
ttent l’optimisation de stratégies des équipes de Beach Volley ou de Football.

Le Golf est un sport dans lequel des joueurs s’affrontent sur un parcours composé
dix-huit trous. Chaque trou est composé de plusieurs éléments, dont une zone de départ,
ou tee, une zone d’arrivée, ou green, où la pelouse est très rase avec en son sein un
trou marqué par un drapeau (qu’on nommera dans la suite ‘drapeau’ pour éviter toute
ambiguïté). Une zone d’herbe rase (mais moins que le green) appelée fairway relie le
tee et le green. Entourant le fairway, on trouve une zone d’herbe plus haute, ou rough.
On peut trouver également plusieurs obstacles : de l’eau, des zones de sables appelées
bunkers et des arbres. Le golfeur doit acheminer la balle depuis le tee vers le drapeau
en utilisant un club, parmi les quatorze clubs qu’il possède et dont il a fait la sélection.
À chaque fois que le golfeur utilise un de ses clubs pour frapper la balle, son score
(initialement de zéro sur le tee) est incrémenté de un en situation normale, ou de deux
si il reçoit une pénalité. Une pénalité est par exemple octroyée à un joueur si la balle
tombe dans l’eau ou en dehors des limites du terrain. Si la balle tombe dans l’eau, elle
est alors replacée à la lisière de celle-ci ; et si elle sort des limites du terrain, elle est
replacée à l’endroit où elle a été tirée. Le but du jeu est que la balle arrive au drapeau
en un nombre minimum de coups.

D’un point de vue compétitif, il y a principalement deux types de compétitions
qui diffèrent selon la façon de déterminer le vainqueur sur les dix-huit trous (la taille
réglementaire des parcours de golf). Lors d’une compétition Stroke Play, chaque joueur
additionne les scores qu’il a fait sur les dix-huit trous et le vainqueur est celui qui a
obtenu le score minimum sur l’ensemble du parcours (ou sur plusieurs parcours : les
tournois professionnels se jouent sur quatre "tours"). Lors d’une compétition Match
Play, seulement deux joueurs s’affrontent. À la fin de chaque trou, les deux joueurs
comparent leur score. Celui qui a obtenu le plus petit score marque un point. En cas
d’égalité, chaque joueur marque un demi point. À la fin des dix-huit trous, le joueur
ayant le plus grand nombre de points est déclaré vainqueur. Les enjeux pour le golfeur
sont différents dans les deux modes : en Stroke Play, le score d’un joueur sur un trou a
un impact direct sur le score final, alors qu’en Match Play, l’enjeu (sur chaque trou) est
uniquement de faire un meilleur score que son adversaire.

On s’intéresse dans cette thèse à l’optimisation de stratégie au Golf. Sous certaines
hypothèses que nous développerons ultérieurement, il est possible de modéliser le Stroke
Play comme un problème de Plus Court Chemin Stochastique (PCCS) et le Match Play
comme un jeu de plus court chemin stochastique à deux joueurs.

Stroke Play
et Plus Court Chemin Stochastique
Le plus court chemin stochastique (PCCS) est un processus de Markov (MDP) particulier
dans lequel un agent évolue dynamiquement sur un ensemble fini d’états. À chaque

| 9

période de temps, l’agent choisit une action parmi un ensemble d’actions disponibles
qui le mènera aléatoirement dans un autre état suivant une distribution de probabilités
connue. Chaque action induit un coût et le but de l’agent est d’atteindre à coup sûr un
état puits particulier tout en minimisant le coût moyen des actions qui l’y mènent.

Formellement, une instance de plus court chemin stochastique est un tuple I =
(S,A, J, P, c), où S = {0, 1, .., n} est un ensemble fini de n+ 1 états, A = {0, 1, ..,m} est
un ensemble fini de m+ 1 actions, J est une matrice en 0/1 de m lignes et n colonnes.
L’élément Ja,s = 1 si l’action a ∈ {1, ..,m} est disponible en l’état s ∈ {1, .., n} et 0
sinon. On suppose sans perte de généralité qu’on peut partitionner A en A = ∪s∈SA(s),
où A(s) est l’ensemble des actions disponibles en s ∈ S, ce qui signifie qu’une action
n’est disponible qu’en un unique état 1. P est une matrice sous-stochastique (la somme
des éléments d’une colonne est au plus 1) de m lignes et n colonnes appelée matrice de
transition. Un élément Pa,s = p(s|a) est la probabilité d’atteindre l’état s ∈ {1, .., n}
sachant qu’on a effectué l’action a ∈ {1, ..,m}. c est un vecteur de m éléments et c(a)
définit le coût de l’action a ∈ {1, ..,m}. L’état 0 est un état puits particulier, dans lequel
la seule action disponible est l’action 0 : A(0) = {0} et l’action 0 mène en l’état 0 avec
probabilité de un.

Une politique stationnaire (on définira une notion de politique plus générale dans cette
thèse, notamment dans le chapitre 1) est une fonction Π qui associe une distribution de
probabilités sur les actions à chaque état. On peut représenter une politique stationnaire
par une matrice stochastique (la somme des éléments d’une colonne est exactement égale
à 1) de n lignes et m colonnes qui vérifie Π(s, a) > 0 ⇒ Ja,s = 1. Si Π est de plus une
matrice en 0/1, la politique est dite déterministe. Une politique stationnaire est dite
propre si 1T (P TΠT)n.ei < 1 (ei est un vecteur dont les n éléments valent 0, sauf le ieme
qui vaut 1). Cela signifie qu’à partir de n’importe quel état i, la probabilité d’atteindre
l’état puits 0 après n périodes de temps est strictement positive. Si pour une instance
de PCCS toutes les politiques sont propres, on dira qu’il s’agit d’un plus court chemin
stochastique avec terminaison inévitable. En effet dans ce cas, n’importe quelle stratégie
mène au puits avec une probabilité de un.

On peut constater que choisir une politique propre et stationnaire définit une chaîne
de Markov absorbante (voir [81] pour plus de détails sur les chaînes de Markov), dont
la matrice de transition est QT = P TΠT . En particulier, (I − Q) est inversible et
(I −Q)−1 = limK→+∞

∑K
k=0Q

k. On peut donc définir pour chaque i ∈ S \ {0},

JΠ = lim
K→+∞

K∑
k=0

cTΠT (I −Q)−1ei

et J∗(i) = min{JΠ(i) : Π propre et stationnaire}. Bertsekas et Tsitsiklis [19] donne la
définition suivante d’une politique optimale : une politique propre et stationnaire Π∗ est
dite optimale si pour tout état i ∈ S \ {0}, JΠ∗ = J∗(i). Le problème qui consiste à
trouver une telle politique s’appelle le problème du plus court chemin stochastique.

Le problème de PPCS apparaît naturellement lorsqu’on s’intéresse à l’optimisation
de la stratégie de jeu d’un golfeur. En effet, lorsqu’un golfeur joue en Stroke Play,

1On peut faire une telle hypothèse, quitte à dupliquer des actions.

10| Introduction

on peut raisonnablement supposer qu’il joue chaque trou indépendamment, sans tenir
compte des autres joueurs et qu’il essaye de minimiser son score moyen (puisqu’il réitère
le processus 18 fois). Cette hypothèse est discutable, surtout quand on arrive à la fin du
parcours (un joueur aura peut-être tendance à prendre plus de risques si il est en retard
par rapport aux autres joueurs sur les derniers trous). Cependant, si on considère des
joueurs professionnels, ce que nous allons faire dans la suite du document, le niveau des
golfeurs est assez uniforme pour qu’il ne soit pas rentable de prendre de tels risques (ou
vraiment uniquement dans des situations extrêmes). Si on fait de telles hypothèses, on
peut donc considérer qu’en Stroke Play, un joueur ne joue pas contre les autres joueurs,
mais contre "le parcours". Optimiser la stratégie d’un golfeur en Stroke Play peut dans
ce cadre se modéliser comme un plus court chemin stochastique. En effet, si on définit
des états comme étant les endroits possibles où la balle peut se trouver, des actions
comme les coups que peut effectuer le golfeur dont les coûts valent 1 (ou 2 si pénalité il
y a) et une matrice de transition qui décrit où la balle peut atterrir pour chaque action
du golfeur, en prenant en compte à la fois des éléments physiques (obstacles des trous,
conditions climatiques, physique de la balle de golf...) et le niveau du joueur en lui même
; alors résoudre l’instance de plus court chemin stochastique ainsi définie donnerait la
stratégie optimale que le joueur devrait adopter afin de minimiser son score moyen. De
plus, si on suppose qu’un joueur professionnel joue sa stratégie optimale, nous pouvons,
en simulant la stratégie optimale calculée, créer un jumeau numérique du joueur qui
aurait les mêmes caractéristiques que le joueur. Ce jumeau peut être utilisé pour de la
prévision de score, mais aussi pour détecter les points de jeu critiques à améliorer afin
d’avoir le meilleur impact sur le score final.

Le plus court chemin stochastique est un problème intéressant à étudier en soit
avec de nombreuses applications. Dans la robotique : dans [7], les auteurs décrivent
comment manœuvrer un véhicule dans eaux agitées mais également dans la recherche
opérationnelle en général [106], en finance de manière générale [8] et dans des modèles
d’établissement de prix [76] en particulier ou encore en apprentissage automatique [99]. Il
a été introduit pour la première fois par Eaton et Zadeh en 1962 [38], puis très largement
étudié par Bertsekas et Tsitsiklis [19]. On connait à ce jour trois principales manières
de résoudre exactement le problème (qui sont en fait des méthodes de résolution des
processus de Markov) : Value Iteration, Policy Iteration et la programmation linéaire.
Value Iteration est un algorithme itératif qui a pour principe d’approcher J∗ grâce à
la programmation dynamique [10, 58]. Policy Iteration est également un algorithme
itératif qui nécessite une stratégie propre initiale et qui itère de stratégie propre en
stratégie propre jusqu’à trouver une stratégie optimale [69, 33]. Le problème du plus
court chemin stochastique peut également être formulé comme un programme linéaire et
peut donc, comme la plupart des processus de Markov, être résolu en temps faiblement
polynomial [69, 34, 33, 57, 52]. On pourra noter que Policy Iteration peut être interprété
comme un algorithme du simplexe sur un tel programme linéaire.

L’existence d’algorithmes de résolution fortement polynomiaux pour résoudre le
PCCS (polynomial en le nombre d’états et d’actions), et plus généralement les pro-
cessus de Markov, est une question ouverte très importante dans le domaine. Dans le

| 11

cas ‘avec escompte’, c’est-à-dire le cas où il existe une probabilité non-nulle et constante
d’atteindre l’état puits 0 en effectuant n’importe quelle action, Ye a été prouvé qu’il ex-
istait un algorithme de résolution fortement polynomial à facteur d’escompte fixé[109].
Il a prouvé par la suite que Policy Iteration (la version proposée par Howard [58]) avait
une complexité fortement polynomiale [110]. Dans le cas ‘sans escompte’, cette question
est toujours ouverte et (Howard) Policy Iteration a une complexité temporelle exponen-
tielle [46]. Value Iteration a une complexité temporelle exponentielle et ce dans le cas
discounted comme dans le cas undiscounted [42]. Même si l’on connait des algorithmes
de résolution faiblement polynomiaux dans le cas undiscounted, la plupart des instances
de MDP en général et de PCCS en particulier sont résolues grâce à Value Iteration et
Policy Iteration quand elles sont de tailles moyennes. Pour de grandes instances, on
préfèrera en général approcher les solutions optimales afin d’obtenir des solutions sat-
isfaisantes en un temps raisonnable (en utilisant des méthodes de type programmation
dynamique approchée par exemple [87])a.

Match Play et JPCCS
Un jeu de plus court chemin stochastique à deux joueurs est un jeu où deux joueurs, que
nous appelonsMIN etMAX, ont un but antagoniste. Un agent évolue dynamiquement
dans un ensemble d’états partitionné en deux sous-ensembles : un ensemble d’états
contrôlés par MIN et les autres contrôlés par MAX. En chaque état, le joueur qui le
contrôle choisit une action disponible qui mènera l’agent dans un autre état selon une
distribution de probabilités connue. Chaque action induit un coût et le but de MIN
(resp. de MAX) est d’atteindre un état puits particulier tout en minimisant (resp. en
maximisant) le coût moyen des actions qui l’y mène.

Formellement, une instance de jeu de plus court chemin stochastique (JPCCS) est
un tuple (SMIN ,SMAX ,A, J, P, c), où (S = SMIN ∪ SMAX ,A, J, P, c) est une instance
de plus court chemin stochastique et SMIN ∩ SMAX = {0}. SMIN est un ensemble
d’états contrôlés par MIN et SMAX un ensemble d’états contrôlés par MAX. Comme
on suppose que chaque action ne peut être effectuée que dans un seul état, on peut
également partitionner A en A = AMIN ∪AMAX avec Ai = {a ∈ A|∃s ∈ Si, J(a, s) = 1}
pour i ∈ {MIN,MAX}. Une politique déterministe et stationnaire pour MIN (resp.
pour MAX) est une fonction ΠMIN : SMIN → AMIN (resp. ΠMAX : SMAX → AMAX),
telle que ΠMIN (s) = a ⇒ J(a, s) = 1. Un couple de stratégie Π = (ΠMIN ,ΠMAX)
définit une politique déterministe et stationnaire pour l’instance de PCCS (S = SMIN ∪
SMAX ,A, J, P, c). On définit le coût du couple de stratégie Π = (ΠMIN ,ΠMAX) comme
étant JΠ, le coût de la stratégie Π pour l’instance du PCCS. Soit ΣMIN (resp. ΣMAX)
l’ensemble des stratégies déterministes et stationnaires pour MIN (resp. pour MAX).

Considérons maintenant les instances de JPCCS (SMIN ,SMAX ,A, J, P, c) dont l’instance
de PCCS associée (S = SMIN ∪ SMAX ,A, J, P, c) est avec terminaison inévitable. Dans
ce cas, on verra qu’il existe un équilibre de Nash, c’est-à-dire un couple de stratégies
(ΠMIN ,ΠMAX) tel que pour tout i ∈ S \ {0}, pour tout Π′MIN ∈ ΣMIN et tout

12| Introduction

Π′MAX ∈ ΣMAX , J(ΠMIN ,Π′MAX) ≥ J(ΠMIN ,ΠMAX) ≥ J(Π′MIN ,ΠMAX). Il en résulte du
théorème minimax de Von Neumann que, pour tout i ∈ S \ {0}:

J(ΠMIN ,ΠMAX)(i) = minΠ′MIN∈ΣMIN
maxΠ′MAX∈ΣMAX

J(Π′MIN ,Π
′
MAX)(i)

= maxΠ′MAX∈ΣMAX
minΠ′MIN∈ΣMIN

J(Π′MIN ,Π
′
MAX)(i)

Un problème de jeux de plus court chemin stochastique consiste à trouver un tel
équilibre de Nash.

Lors d’une compétition en Match Play, deux joueurs s’affrontent sur chaque trou du
parcours afin de gagner le point lié à ce trou (ou de le partager en cas d’égalité). Le
joueur qui commence est celui qui a gagné le trou précédent (et pour le premier trou il
est tiré au hasard) et c’est toujours le joueur dont la balle est la plus loin du drapeau
qui joue. Quand un joueur joue, les informations dont il dispose sont la position de
sa balle, la position de la balle de son adversaire et la différence de score courante
entre son adversaire et lui. On nomme MIN le joueur qui commence et MAX son
adversaire. Pour un trou, on définit un ensemble d’états S, dont les états ont une forme
générique du type s = (pMIN , pMAX , δ) avec pMIN la position de la balle de MIN sur
le trou discrétisé, pMAX la position de la balle de MAX et δ ∈ Z la différence relative
de score courante entre MIN et MAX : si l’on appelle sMIN ∈ N le score de MIN
et sMAX ∈ N le score de MAX, on pose δ = sMIN − sMAX . L’état initial est donc
stee = (ptee, ptee, 0) avec ptee correspondant à la position du tee sur le trou. Même si la
différence de score ne peut pas être bornée a priori (une différence de score quelconque
engendrerait un ensemble d’états infini), on peut définir une différence de score D ∈ N
qui n’a jamais été dépassée dans l’histoire du Golf (pour des joueurs professionnels, D
ne dépasse généralement pas 2 ou 3 car en pratique, au delà d’une telle différence de
score, le joueur en retard ‘donne’ le point à son adversaire). Dans la suite, on considèrera
uniquement des joueurs professionnels, dont le niveau est assez proche pour que δ soit
suffisamment facile à borner. On supposera donc que δ ∈ {−D,−D + 1, ..., D − 1, D}.
Un état (pMIN , pMAX , δ) est contrôlé par MIN si la distance de pMIN au trou est
supérieure à la distance de pMAX au trou et est contrôlé par MAX sinon. Les actions
disponibles en un état correspondent aux coups que peut jouer le joueur qui contrôle cet
état. Quand MIN joue depuis s = (pMIN , pMAX , δ), la balle de MIN atterrit sur une
autre position p′MIN du trou et le nouvel état est s′ = (p′MIN , pMAX , δ

′) avec δ′ = δ + 1
ou δ′ = δ + 2 si MIN s’est vu octroyé une pénalité (une pénalité est octroyée dans
des cas bien particuliers, qui sont indiqués dans les règles officielles du golf [59]). Si
δ′ > D, alors le nouvel état est l’état puits (définit plus bas), et le coût engendré par
cette transition est de 1. De même, quand MAX joue depuis s = (pMIN , pMAX , δ), la
balle atterrit en p′MAX et le nouvel état après son coup est s′′ = (pMIN , p

′
MAX , δ

′′) avec
δ′′ = δ−1 ou δ−2 siMAX a obtenu une pénalité (de même, si δ′′ < −D, alors le nouvel
état est l’état puits et le coût engendré est de −1). Ces transitions n’occasionnent aucun
coût (à part quand l’état puits est atteint). On définit un état ‘drapeau’ comme un état
du type sflag = (pflag, pflag, δflag) où pflag correspond à la position du drapeau (il y a
donc 2D + 1 états drapeau). Le jeu s’arrête quand un état drapeau sflag est atteint.
MIN gagne le point si δflag < 0, MAX le gagne si δflag > 0 et MIN et MAX gagnent
chacun 0, 5 point si δflag = 0. Pour faire correspondre parfaitement le Match Play avec

| 13

une instance de JPCCS, on définit un état puits artificiel qui est atteint à partir des
états drapeaux de manière sûre et avec un coût de 1 si δflag > 0, de −1 si δflag < 0 et
de 0 si δflag = 0 (ainsi que si la différence de score est inférieure strictement à −D ou
supérieure strictement à D, comme on l’a vu plus haut). Le coût d’un couple de politique
Π = (ΠMIN ,ΠMAX) est l’espérance de gain dans [−1, 1] du joueur MAX quand MIN
suit la politique ΠMIN et MAX suit ΠMAX (c’est aussi l’opposé de l’espérance de gain
de MIN). Le but de MIN (resp. MAX) est de minimiser (resp. maximiser) ce coût.
La notion d’espérance a du sens dans la mesure où les joueurs jouent dix-huit trous.
Évidemment, plus on approche de la fin plus l’hypothèse est contestable. On notera
que les instances sont à terminaison inévitable car les deux joueurs peuvent terminer
indépendamment. Il est donc possible de modéliser une compétition en Match Play
comme un problème de JPCCS avec terminaison inévitable. Résoudre une telle instance
à l’optimal donne ainsi un couple de stratégies (Π∗MIN ,Π∗MAX) qui forme un équilibre
de Nash.

Les jeux stochastiques ont été introduits pour la première fois par Shapley en 1953.
Ce problème a de nombreuses applications, notamment en sécurité de réseaux [80], en
économie [82][60], et en robotique [93] entre autres choses. On ne connait actuelle-
ment aucun algorithme de complexité temporelle polynomiale qui résout exactement les
JPCCS. L’existence d’un tel algorithme est un problème non-résolu de longue date [30].
L’algorithme utilisé en pratique est Strategy Iteration. Cet algorithme itératif consiste
en l’application alternative de Policy Iteration pour un joueur, en fixant la stratégie
de l’adversaire jusqu’à obtenir un équilibre de Nash. Cet algorithme est de complexité
temporelle exponentielle dans le pire des cas (qui résulte de la complexité exponentielle
de Policy Iteration) [31].

Base de données Shotlink

Nous avons vu que le Stroke Play comme le Match Play peuvent se modéliser comme
un plus court chemin stochastique ou un jeu de plus court chemin stochastique. Tandis
que les états, les actions disponibles dans chaque état et les coûts de ces actions sont
relativement naturels à définir, la matrice de transition, elle, est plus dure à caractériser.
Elle décrit les probabilités d’atteindre les états quand on effectue une action. Elle ren-
ferme donc la complexité de la topologie du trou et surtout relate du niveau de précision
des coups du joueur. Afin de construire cette matrice de transition, nous avons donc
besoin de données relatives au joueur. Pour ce faire, nous avons utilisé une très grande
base de données Américaine qui recense des millions d’informations relatives aux coups
joués par des joueurs professionnels internationaux dans les compétitions Américaines,
telles que les coordonnées de départ et d’arrivée de la balle, le type de terrain sur lequel
le joueur a tiré, etc... [86].

14| Introduction

Organisation du document
Dans le premier chapitre, nous étudions le problème du plus court chemin stochastique
d’un point de vue théorique. Nous étendons le cadre d’étude de Bertsekas et Tsitsiklis
[19] puis de Bertsekas et Yu [20] en adoptant un point de vue polyédral sur le problème.
Nous prouvons que dans ce nouveau cadre, les algorithmes classiques de résolution (Value
Iteration, Policy Iteration) convergent même en présence de cycles de transition (général-
isation des cycles dans le cas stochastique) de coûts nuls. Nous introduisons également
un nouvel algorithme de résolution. Ce chapitre a fait l’objet d’une publication dans le
journal européen de recherche opérationnel (EJOR) [48].

Dans le deuxième chapitre, nous nous intéressons à la modélisation de l’optimisation
des stratégies de Golf en plus court chemin stochastique, ainsi qu’à des méthodes de
prédiction de score. Nous présentons notre modèle, ainsi que des résultats numériques
et leur validation statistique. Les travaux correspondants ont été présentés dans des
conférences internationales [71] [72], et un article de journal est en préparation.

Dans le troisième et dernier chapitre, nous nous intéressons aux jeux stochastiques
et plus particulièrement aux formulations programmation linéaire de ces jeux. Nous
présentons une formulation programmation linéaire en nombres entiers pour les JPCCS.
Nous étudions également deux cas particuliers des JPCCS : les Jeux Stochastiques Sim-
ples et le problème du Plus Court Chemin Robuste. Les travaux de ce chapitre n’ont
pas encore été présentés en conférence ou en journal, mais ont vocation à l’être.

Prérequis théoriques
Dans cette section, nous introduisons les prérequis théoriques nécessaires à la bonne
compréhension de cette thèse. Nous y faisons référence tout au long de celle-ci. Nous
introduisons également ici les notations que nous allons utiliser dans le document. La
plupart des notations sont tirées de [49]. Nous invitons les lecteurs à s’y référer pour
plus de détails et pour accéder aux preuves manquantes.

Programmation Linéaire

La programmation linéaire est un cas particulier de programmation mathématique.
Un programme mathématique est une modélisation d’un problème d’optimisation de
la forme :

Minimiser ou Maximiser f(x)

Sachant que gi(x)


≥
≤
=

 0 ∀i ∈ {1, ..,m}

x ∈ X

(ProgMath)

| 15

où m ∈ N, x ∈ R
n (n ∈ N) sont les variables, X est le domaine de définition de

x, f : Rn → R est la fonction objectif et pour tout i ∈ {1, ..,m}, gi : Rn → R est une
fonction de contrainte.

Dans le cas où f et (gi)i∈{1,..,m} sont des fonctions linéaires et X = R
n, on parle alors

de programmation linéaire. Il s’agit donc de programmes mathématiques du type :

Min/Max
∑n
j=1 cjxj

Sachant que
∑n
j=1 aijxj − bi


≥
≤
=

 0 ∀i ∈ {1, ..,m}

x ∈ Rn

(ProgLin)

où pour tout i ∈ {1, ..,m} et tout j ∈ {1, .., n}, cj , aij , bi ∈ R. De manière plus
condensée, on utilisera une notation matricielle en posant A = (aij)1≤i≤m,1≤j≤n, c =
(cj)j∈{1,..,n} et b = (bi)i∈{1,..,m}.

Min/Max cTx

Sachant que Ax− b


≥
≤
=

 0

x ∈ Rn

(ProgLin)

En notant que minimiser une fonction est équivalent à maximiser son opposé et en
transformant les inégalités Aix ≥ bi en −Aix ≤ −bi, où Ai est la ieme ligne de A, on peut
supposer sans perte de généralité que n’importe quel programme linéaire peut s’écrire
sous la forme suivante (appelée forme canonique) :

Max cTx
Sachant que Ax ≤ b

x ≥ 0
(PCan)

Definition 1
Un polyèdre convexe est l’ensemble des solutions d’un système fini d’inégalités linéaires.

Definition 2
Soit x̄ ∈ Rn et (P) un programme linéaire sous forme canonique. On dit que x̄ est une
solution réalisable de (P) si et seulement si Ax̄ ≤ b et x̄ ≥ 0. On nomme P = {x ∈
R
n|x ≥ 0, Ax ≤ b} l’ensemble des solutions réalisables de (P). Par définition, P est un

polyèdre convexe. On appellera valeur de x̄ la valeur de la fonction objectif appliquée à
x, i.e. cT x̄.

Definition 3
Soit x∗ ∈ Rn et (P) un programme linéaire sous forme canonique. On dit que x∗ est une
solution optimale de (P) si et seulement si x∗ est une solution réalisable et que pour tout
x̄ ∈ P , cTx∗ ≥ cT x̄. On nommera valeur optimale de (P) la valeur de x∗, i.e. cTx∗.

16| Introduction

Definition 4
Soit (P) un programme linéaire sous forme canonique.

• (P) est dit irréalisable si et seulement si P = ∅

• (P) est dit non-borné si seulement si ∀M ∈ R, ∃x̄ ∈ P , cT x̄ ≥M

Proposition 5
Soit (P) un programme linéaire. Soit (P) admet une solution optimale, soit il est irréal-
isable, soit il est non-borné.

Definition 6
Soit x̄ ∈ Rn et (P) un programme linéaire sous forme canonique. x̄ est un sommet de P
si x̄ ∈ P , et que pour tout x, x′ ∈ P , x̄ = x+x′

2 ⇒ x̄ = x = x′.

Definition 7
On dit qu’un programme linéaire est sous forme standard si il est de la forme

Max cTx
Sachant que Ax = b

x ≥ 0
(PStand)

avec c ∈ Rn, x ∈ Rn, et A = (aij)1≤i≤m,1≤j≤n et b ∈ Rm
Sans perte de généralité, on peut supposer que dans un problème sous forme standard,

les colonnes de A sont linéairement indépendantes (si ce n’est pas le cas, il y a des
contraintes redondantes ou l’ensemble des contraintes est vide). On supposera donc
dans la suite que pour un programme linéaire sous forme standard, A est de rang plein,
i.e. rang(A) = m.

On remarquera qu’à tout programme linéaire sous forme canonique, on peut associer
un programme linéaire sous forme standard. Soit (P) un programme linéaire sous forme
canonique:

Max cTx
Sachant que Ax ≤ b

x ≥ 0
(P)

avec c ∈ Rn′ , x ∈ Rn′ , et A = (aij)1≤i≤m,1≤j≤n′ et b ∈ Rm.
On pose n = n′ + m et on définit x̃ ∈ Rn, c̃ ∈ Rn, Ã = (ãij)1≤i≤n,1≤j≤m et b̃ ∈ Rm

tels que:

• x̃ = (x1, .., xn′ , , .., b1 −A1x, .., bm −Amx)

• c̃ = (c1, .., cn′ , 0, .., 0)

• Ã = (A|Im)

• b̃ = b

| 17

avec Im la matrice identité de taillem et (A|Im) =



a11 ... a1n′ 1 0 0 ... 0
a21 ... a2n′ 0 1 0 ... 0
. .
. .
. .
. .

am1 ... amn′ 0 0 ... 0 1


On considère le programme linéaire (sous forme standard) suivant :

Max c̃T x̃

Sachant que Ãx̃ = b̃
x̃ ≥ 0

(P̃)

On peut démontrer facilement que

• x est une solution réalisable de (P) si et seulement si x̃ est une solution réalisable
de (P̃)

• x est une solution optimale de (P) si et seulement si x̃ est une solution optimale
de (P̃)

On note que Ã ‘contient’ la matrice identité Im, donc Ã est de rang plein. Dans
toute la suite, on considèrera que les programmes linéaires en forme standard possèdent
n variables et m contraintes.

Definition 8
Soit (P) un programme linéaire sous forme standard. On supposera sans perte de général-
ité que A est de rang plein (comme expliqué plus haut). On dit que B ⊆ {1, .., n} est
une base de (P) si et seulement si |B| = m et AB = (aij)1≤i≤m,j∈B est inversible. Pour
une base B, on appelle N = {1, .., n} \B.

Les variables xi avec i ∈ B sont appelées les variables de base et les variables xi avec
i ∈ N sont appelées variables hors-base.

Definition 9
Soit (P) un programme linéaire sous forme standard et B une base de (P). On définit
AB = (aij)1≤i≤m,j∈B, AN = (aij)1≤i≤m,j∈N , cB = (cj)j∈B, cN = (cj)j∈N , xB = (xj)j∈B
et xN = (xj)j∈N .

Definition 10
Soit (P) un programme linéaire sous forme standard et B une base. (P) peut alors se
réécrire :

Max cTBxB + cTNxN
Sachant que xB = A−1

B b−A−1
B ANxN

xB, xN ≥ 0
(PBStand)

avec xB ∈ Rm et xN ∈ Rn−m (on peut toujours supposer que n > m, sinon l’ensemble
des solutions réalisables est réduit à un point, car le rang de A est plein). L’unique vecteur

18| Introduction

x̃ ∈ Rn solution de (PBStand) avec x̃N = 0 est appelé solution de base B. De plus, si x̃ est
réalisable, on parlera de solution de base réalisable et B sera appelée base réalisable.

Proposition 11
Soit (P) un programme linéaire sous forme standard et x ∈ Rn. x est un sommet de P
si et seulement si x est une solution de base de (P).

Méthodes de résolution et complexité

Il existe trois principaux types d’algorithmes permettant de résoudre de manière ex-
acte les programmes linéaires : les méthodes d’ellipsoïdes [65], les méthodes de points
intérieurs [62] et le simplexe que nous allons détailler car il est au cœur de certaines
méthodes de résolution des plus courts chemins stochastiques et de variantes de ceux-ci.

Les méthodes de points intérieurs et d’ellipsoïdes sont des méthodes polynomiales
[65, 62], mais ne sont pas fortement polynomiales (polynomial en le nombre de variables
et de contraintes). Pour plus de détails sur ces méthodes, nous invitons les lecteurs à
lire [94, 77, 108]. La résolution des programmes linéaires est donc un problème qui peut
être résolu en temps (faiblement) polynomial. Cependant, un des algorithmes les plus
utilisés en pratique n’est lui pas polynomial (comme nous allons le voir plus loin), il
s’agit de l’algorithme du simplexe.

L’algorithme du simplexe a été créé par Dantzig en 1947 (et publié en 1951 [32]).
L’idée générale de cet algorithme est de se déplacer de sommet en sommet du polyèdre
des solutions réalisables afin de trouver une solution optimale s’il en existe. Cependant,
il peut arriver que l’on reste sur le même sommet si plus de 3 contraintes concourent en
un même point. On dit alors que (P) est dégénéré. Cela peut engendrer des difficultés au
niveau de l’exécution de l’algorithme du simplexe et leur résolution est un pan important
de la recherche en programmation linéaire [27, 107].

Definition 12
Soit (P) un programme linéaire sous forme standard et B une base de (P). Le vecteur
de coûts réduits lié à la base B est définit par :

c̄B = c− cBA−1
B A

Pour une variable xi, i ∈ {1, .., n}, le coût réduit de xi est donc (c̄B)i. On notera
que pour toute variable de base xi, on a (c̄B)i = 0.

Proposition 13
Soit (P) un programme linéaire sous forme standard, B une base de (P) et x̃B la solution
de base associée à B. Soit x ∈ Rn une solution réalisable de (P). On a :

cTx = cTBx̃B + (c̄B)Tx

Ainsi, si on dispose d’une base réalisable, comme on a (c̄B)Tx = (c̄B)TBxB+(c̄B)TNxN =
(c̄B)TNxN , un programme linéaire (P) peut se réécrire :

| 19

Max cTBx̃B + (c̄B)TNxN
Sachant que xB = A−1

B b−A−1
B ANxN

xB, xN ≥ 0
(PBStand)

On sait par définition que x̃, la solution de base associée à B, est une solution
réalisable, car B est une base réalisable. On considère cette solution comme la solution
courante.

On constate ensuite que dans la fonction objectif, cTBx̃B est une constante. Il convient
donc de maximiser (c̄B)TNxN . On peut interpréter (c̄B)i comme le gain relatif pour la
fonction objectif si on augmente la valeur de la variable xi d’une unité.

Si pour tout i ∈ N , (c̄B)i ≤ 0, alors comme xN ≥ 0, x̃ est optimale car elle est
réalisable et que x̃N = 0. En effet, toute autre solution x ∈ R

n avec xi 6= 0 pour un
certain i ∈ N aura une valeur de fonction objectif plus faible.

Sinon, si il existe j ∈ N tel que (c̄B)j > 0, alors on aura tendance à vouloir augmenter
la valeur de xj afin d’obtenir une valeur plus grande que celle de la solution courante
(laissant les autres valeurs de xj′ égales à 0 pour tout j′ ∈ N \ {j}). Pour tout i ∈ B,
on a :

xi = (A−1
B b)i − (A−1

B Ajxj)i

Sachant qu’on veut assurer la réalisabilité du problème, on veut s’assurer que xi ≥ 0
pour tout i ∈ B. Si on a (A−1

B Ajxj) ≤ 0, alors le problème est non borné, car on pourra
augmenter indéfiniment la valeur de xj sans compromettre la réalisabilité de la solution.
Sinon, on définit :

i∗ ∈ argmini∈B,(A−1
B Ajxj)i>0

(A−1
B b)i

(A−1
B Ajxj)i

On nomme xj la variable entrante et x∗i la variable sortante. On définit une nouvelle
base B′ = B ∪ {j} \ {i∗} (on a donc N ′ = N ∪ {i∗} \ {j}). D’après la définition du coût
réduit, on a bien cT x̃B′ ≥ cT x̃B.

L’algorithme du simplexe est l’algorithme itératif qui consiste à répéter cette étape
jusqu’à ce que tous les coûts réduits des variables hors-base soient négatifs :

20| Introduction

Algorithm 1 L’algorithme du Simplexe
Input : A, b, c et une base réalisable B
while ∃j ∈ N , (c̄B)j > 0 do

Choisir un tel j
if ∀i ∈ B, (A−1

B Ajxj)i ≤ 0 then
return Problème non-borné

else
Choisir i∗ ∈ argmini∈B,(A−1

B Ajxj)i>0
(A−1

B b)i

(A−1
B Ajxj)i

B = B ∪ {j} \ {i∗}
end if

end while
return x̃B

Une itération du simplexe s’effectue en un temps de O(m2 +n) et il existe un nombre

fini de bases (maximum
(

m

n+m

)
). Si on s’assure de ne parcourir qu’une seule fois

chaque base on peut atteindre une solution optimale (ou on établit que le problème n’est

pas borné) en un temps d’au plus O((m2 + n)
(

m

n+m

)
). C’est le cas de la règle de

Bland.

• Règle de Bland : on définit au préalable un ordre sur les variables et quand il y
a plusieurs variables de coût réduit positif, la variable entrante choisie est celle
de plus petit rang dans cet ordre. Cette règle permet de ne pas ‘boucler’ sur un
sous-ensemble de bases [21], mais le nombre d’itération est exponentiel dans le pire
cas [5].

• Règle de Dantzig : on définit la variable entrante comme celle qui a le plus grand
coût réduit. Cette règle, bien que plus naturelle, peut ne pas faire terminer
l’algorithme du simplexe (on cycle sur un sous-ensemble de bases) [66].

À l’heure actuelle, on ne connait aucune règle de pivot qui garantit une complexité
temporelle polynomiale (toutes les règles de pivot connues nécessitent de parcourir un
nombre exponentiel de solutions de base).

Dualité

Considérons un programme linéaire sous forme canonique (P) :

Max cTx
Sachant que Ax ≤ b

x ≥ 0
(P)

Considérons que (P) est réalisable. Il est clair que pour toute solution réalisable
xr ∈ Rn, cTxr est une borne inférieure de la valeur optimale de (P). Il est légitime de

| 21

se poser la question de l’existence d’une borne supérieure sur la valeur d’un programme
linéaire. C’est la dualité qui va nous donner les outils permettant de trouver une telle
borne.

Supposons que pour tout y ∈ (R+)m on ait AT y ≥ c. Dans ce cas, pour tout x ∈ Rn
solution réalisable de (P), on a :

bT y ≥ (Ax)T y = xTAT y ≥ xT c = cTx

Ainsi, si AT y ≥ c, alors yT b est une borne supérieure sur la valeur de n’importe
quelle solution réalisable, donc également sur la valeur optimale de (P). On a ainsi
potentiellement une infinité de bornes supérieures disponibles. On voudrait connaître la
meilleure borne possible, c’est-à-dire la plus petite d’entre elles.

Min bT y
Sachant que AT y ≥ c

y ≥ 0
(D)

(D) est un programme linéaire appelé le programme linéaire dual de (P) ou plus
simplement le dual de (P). On appellera (P) le primal de (D). Une solution réalisable
de (P) est appelée une solution primal-réalisable et une solution réalisable de (D) est
appelée une solution dual-réalisable. On peut noter que le dual de (D) est (P).

On cite trois importants théorèmes : le théorème de la dualité faible, de la dualité
forte, et le théorème des écarts complémentaires (pour plus de détails voir par exemple
[84]).

Théorème 14 Dualité faible
Soit (P) un programme linéaire sous forme canonique et (D) son dual. Soit x ∈ Rn une
solution primal réalisable et y ∈ Rm une solution dual réalisable.

• on a cTx ≤ yT b

• si (P) est non borné, (D) est irréalisable

• si (D) est non borné, (P) est irréalisable

Théorème 15 Dualité forte
Soit (P) un programme linéaire sous forme canonique et (D) son dual. (P) admet une
solution optimale x∗ si et seulement si (D) admet une solution optimale y∗. De plus, si
x∗ est une solution optimale pour (P) et y∗ est une solution optimale pour (D), alors
cTx∗ = bT y∗.

Théorème 16 Écarts complémentaires
Soit (P) un programme linéaire sous forme canonique et (D) son dual. Soit x∗ ∈ R

n

et y∗ ∈ Rm. x∗ et y∗ sont des solutions optimales de (P) et (D), respectivement, si et
seulement si :

i x∗ est primal-réalisable et y∗ est dual-réalisable

22| Introduction

ii (AT y∗ − c)Tx∗ = 0

iii (Ax∗ − b)T y∗ = 0

Programmation Linéaire en Nombres Entiers

Soit (P) un programme linéaire sous forme canonique. On impose maintenant que les
variables ne soient plus dans R mais dans Z. Les méthodes de résolutions précédentes
ne fonctionnent plus. Les méthodes de points intérieurs, les méthodes d’ellipsoïdes
ainsi que l’algorithme du simplexe ne donnent pas des solutions entières dans le cas
général. Cependant, on peut s’intéresser à l’enveloppe convexe des solutions entières
PI = conv({x ∈ Zn|Ax ≤ b}) (voir figure 1).

Figure 1 – Exemple d’un polyèdre et du polyèdre des solutions entières associé

Ce polyèdre est difficile à caractériser en cas général. Si malgré tout on arrive à bien
caractériser ce polyèdre, des méthodes de type ellipsoïde peuvent donner des résultats
intéressants, comme dans le cas du polyèdre des couplages dans un graphe [47]. D’autre
part, il existe des cas particulier dans lequel on a P = PI . C’est notamment le cas si la
matrice A est totalement unimodulaire (TU).

Definition 17
Une matrice A est dite totalement unimodulaire si le déterminant de toute sous-matrice
carrée de A vaut −1, 0 ou 1 (en particulier tous les coefficient de A sont dans {−1, 0, 1}).

Dans les formulation programmation linéaire des plus courts chemins, ou plus générale-
ment pour les flots, la matrice définissant les contraintes est totalement unimodulaire
[45]. Lorsque P = PI , l’algorithme du simplexe donne une solution optimale entière,
puisque les sommets de P ont des coordonnées entières.

Cependant dans le cas général, la programmation linéaire en nombre entier est
un problème NP-complet [63]. Il existe cependant des algorithmes de résolution qui

| 23

s’exécutent en temps exponentiel dans le pire cas : on citera les algorithmes de type
Cutting plane [64], Branch & Bound [84], et Branch & Cut [83].

Le Problème du Plus Court Chemin Déterministe
Definition 18

Un graphe orienté est un couple G = (V,A) où V = {s1, s2, .., sn} est un ensemble fini
de n sommets et A ⊆ V × V est un ensemble d’arcs. De plus, on dit que G est pondéré
s’il existe une application c : A 7−→ R appelée fonction de coûts.

Definition 19
Soit G = (V,A) un graphe orienté. On définit pour tout v ∈ V , δ+(v) = {a ∈ A|∃v′ ∈
V, a = (v, v′)}. On définit également pour tout v ∈ V N(v) = {v′ ∈ V |∃a = (v, v′) ∈ A}
l’ensemble des voisins de v.

Definition 20
Soit G = (V,A) un graphe orienté, c une fonction de coûts et s, t ∈ V . Un chemin de s
à t ou (s, t)-chemin est une suite alternée de sommets et d’arcs p = (v0a1v1a2...ak, vk)
telle que v0 = s, vk = t et pour tout i ∈ {1, .., k}, ai = (vi−1, vi). Le coût d’un chemin
est la somme des coûts des arcs qui le composent : c(p) =

n∑
i=0

c(ai) (on notera par abus

de notation c(p) le coût d’un chemin). Un circuit est un chemin pc = (v′0a′1v′1a′2...a′k, v′k)
tel que v′0 = v′k.

Soit G = (V,A) un graphe orienté, c une fonction de coûts, ainsi que deux som-
mets particuliers s, t ∈ V qu’on appellera respectivement l’origine et la destination. Le
problème du plus court chemina (PCC) de s à t est le problème consistant à trouver un
(s−t)-chemin de coût minimum. On présente en figure 2 un exemple d’instance de PCC,
dans lequel les sommets sont représentés par des cercles comprenant leurs étiquettes en
leur centre, un arc a = (i, j) est représenté par une flèche allant de i à j et le coût d’un
arc est indiqué à proximité de l’arc correspondant.

Figure 2 – Représentation graphique d’une instance de PCC

24| Introduction

Il existe une solution au PCC si et seulement si (i) il existe un (s, t)-chemin dans G et
(ii) il n’existe pas de circuit de coût strictement négatif (appelé aussi circuit absorbant).

Il existe différents algorithmes de résolution du problème du plus court chemin. Dans
les cas où le graphe ne possède pas de circuit, l’algorithme de Bellman permet de trouver
un plus court chemin d’un graphe en un temps polynomial en le nombre de sommets
et d’arcs[11]. En effet, lorsque le graphe ne possède pas de circuit, il existe un ordre
topologique sur les sommets du graphe.

Definition 21
Soit G = (V,A) un graphe orienté. Un ordre topologique O sur V est un ordre (v1, v2, ..., vn)
sur les sommets tel que pour tout k, k′ ∈ {1, .., n}, (vk, vk′) ∈ A⇒ k < k′.

Proposition 22
Soit G = (V,A) un graphe orienté. Il existe un ordre topologique sur V si et seulement
si G est sans circuit.

Dans le cas où tous les coûts des arcs sont positifs, l’algorithme de Dijkstra résout le
problème en un temps polynomial également [35]. Dans le cas général, l’algorithme de
Bellman-Ford trouve une solution optimale s’il en existe et trouve un circuit absorbant
le cas échéant [45].

Dans le chapitre 1, nous détaillons une extension de l’algorithme de Dijkstra au cas
du plus court chemin stochastique. Nous rappelons donc l’algorithme pour les PCC.
Soit G = (V,A) un graphe orienté et c une fonction de coût telle que pour tout a ∈ A,
c(a) ≥ 0. Soit s ∈ V , l’algorithme de Dijkstra calcule itérativement une s-arborescence
de coût minimal.

Definition 23
Soit G = (V,A) un graphe orienté et c une fonction de coût sur A. Soit s ∈ V , une
s-arborescence est une union de chemins de s à v pour tout v ∈ V sans circuit.

Une s-anti-arborescence est une union de (v − s)-chemins pour tout v ∈ V sans
circuit.

Le coût d’une s-arborescence ou d’une s-anti-arborescence est la somme des coûts des
arcs qui la compose.

Au fur et à mesure des itérations, l’algorithme met à jour un ensemble Y de sommets
(initialement vide), et des ‘étiquettes’ y : V 7−→ R

+ sur les sommets de G. Y représente
l’ensemble des sommets pour lesquels la valeur de l’étiquette ne changera plus, et pour
tout v ∈ V , y(v) représente le coût du plus court (s, v)-chemin ne passant que par des
sommets de Y . L’algorithme itère tant que Y 6= V . A chaque itération, l’algorithme va
choisir un sommet z∗ dont l’étiquette courante est minimale et qui n’est pas dans Y . Par
minimalité des étiquettes et comme les coûts des arcs sont positifs ou nuls, on sait que
l’étiquette de z∗ représente le coût du plus court chemin de s à z∗. En effet, il ne serait
pas ‘rentable’ de passer par des sommets qui ne sont pas dans Y . Ensuite, on place z∗
dans Y et on met à jours les étiquettes de tous voisins v de z∗ s’il est plus intéressant
que le (s, v)-chemin passe par z∗. On détaille l’algorithme de Dijkstra.

| 25

Algorithm 2 Dijkstra Algorithm
Y = ∅
y(s) = 0, y(v) =∞ ∀v ∈ V \ {s}
while Y 6= V do

Choisir z∗ tel que y(z∗) = minz∈V y(z)
Y ← Y ∪ {z∗}
for all v ∈ N(z∗) do

if y(v) > y(z∗) + c((z∗, v)) then
y(v) = y(z∗) + c((z∗, v))

end if
end for

end while

Soit n = |V | et m = |A|, l’algorithme de Dijkstra est polynomial : il s’exécute en un
temps de O(n2+m) L’algorithme peut être implémenté plus efficacement et ne nécessiter
que O(m+ n log(n)) opérations [111].

Une manière de voir le problème du plus court chemin déterministe (d’ailleurs adop-
tée par Ford dans [45]) est de voir le problème comme un problème de flot particulier.
L’idée est de voir un plus court chemin de s à t comme un flot réalisable de s à t de coût
minimum. On peut donc formuler le problème grâce à un programme linéaire.

On définit un vecteur x ∈ Rm sur les arcs, ainsi que la matrice d’adjacence
(AGij)i,j∈{1..n}×{1,..,m} de G. Cette matrice possède n lignes et m colonnes et pour chaque
arc j = (i, i′), AGij = 1, AGi′j = −1 et AGi′′j = 0 pour tout autre i′′ 6= i, i′′ 6= i′. On définit
le programme linéaire suivant :

Min cTx

Sachant que AGi x =


1 si i = s
−1 si i = t
0 sinon

pour tout i ∈ {1, .., n}

x ≥ 0

(PGPCC)

Le dual de (PGPCC) est (DG
PCC) :

Max ys
Sachant que yj − yi ≤ ca pour tout a = (i, j) ∈ A

yt = 0
y ∈ R

n

(DG
PCC)

On peut prouver que dans ce cas particulier, on peut trouver une solution optimale
entière si elle existe [45], ce qui définit un plus court chemin de s à t. En effet, la matrice
AG est totalement unimodulaire.

26| Introduction

Chapter 1

The Stochastic Shortest Path Prob-
lem:
A polyhedral combinatorics perspec-
tive

The following chapter has been taken from an article that has been already published
in the European Journal of Operational Research (EJOR) in 2018 [48]. Consequently,
this chapter can be read independently from the other chapters. However, it contains
all the formal definition of Stochastic Shortest Path problem needed in the rest of this
manuscript.

1.1 Introduction
The Stochastic Shortest Path problem (SSP) is a Markov Decision Process (MDP) that
generalizes the classic deterministic shortest path problem. We want to control an agent,
who evolves dynamically in a system composed of different states, so as to converge to
a predefined target. The agent is controlled by taking actions in each time period1:
actions are associated with costs and transitions in the system are governed by proba-
bility distributions that depend exclusively on the previous action taken and are thus
independent of the past. We focus on finite state/action spaces: the goal is to choose an
action for each state, i.e., a deterministic and stationary policy, so as to minimize the
total expected cost incurred by the agent before reaching the (absorbing) target state,
when starting from a given initial state.

More formally, a stochastic shortest path instance is defined by a tuple (S,A, J, P, c)
where S = {0, 1, . . . , n} is a finite set of states, A = {0, 1, . . . ,m} is a finite set of

1We focus here on discrete time (infinite) horizon problems.

27

28| THE STOCHASTIC SHORTEST PATH PROBLEM:
A POLYHEDRAL COMBINATORICS PERSPECTIVE

1

2 4

3

0

a

b c

d

e

f

g

0

3

0.7

10

10.3−5

1

7
0.5

−1

0.9

2
0.2

41

0.5

0.8

0.1 0

1

a

s

action

state

a sp(s|a)

as c(a)

Figure 1.1 – A graphical representation of a SSP (with target state 0): circles are states,
squares are actions, dashed arrows indicate state transitions (probabilities) for a given
action, and black edges represent actions available in a given state with corresponding
cost.

actions, J is a 0/1 matrix with m rows and n columns and general term J(a, s), for all
a ∈ {1, ...,m} and s ∈ {1, ..., n}, with J(a, s) = 1 if and only if action a is available in
state s, P is a row substochastic matrix2 with m rows and n columns and general term
P (a, s) := p(s|a) (probability of ending in s when taking action a), for all a ∈ {1, ...,m},
s ∈ {1, ..., n}, and a cost vector c ∈ Rm. The state 0 is called the target state and the
action 0 is the unique action available in that state. Action 0 leads to state 0 with
probability 1. When confusion may arise, we denote state 0 by 0S and action 0 by 0A.
A row substochastic matrix is a matrix with nonnegative entries so that every row adds
up to at most 1. We denote byM≤(l, k) the set of all l × k row substochastic matrices
and by M=(l, k) the set of all row stochastic matrices (i.e. for which every row adds
up to exactly 1). In the following, we denote by A(s) the set of actions available from
s ∈ {1, ..., n} and we assume without loss of generality3 that for all a ∈ A, there exists
a unique s such that a ∈ A(s). We denote by A−1(s) the set of actions that lead to s
i.e. A−1(s) := {a : P (a, s) > 0}.

We can associate a directed bipartite graph G = (S,A, E) with (S,A, J, P) by defin-
ing E := {(s, a) : s ∈ S \ {0}, a ∈ A \ {0} with J(a, s) = 1} ∪ {(a, s) : s ∈ S \ {0}, a ∈
A−1(s)} ∪ {(0S , 0A), (0A, 0S)}. G is called the support graph. We sometimes call the
vertices/nodes of G in S the state nodes and the vertices/nodes of G in A the action
nodes. A S-walk in G is a sequence of vertices (s0, a0, s1, a1, ..., sk) for some k ∈ N with
si ∈ S for all 0 ≤ i ≤ k, ai ∈ A for all 0 ≤ i ≤ k−1, (si, ai) ∈ E for all 0 ≤ i ≤ k−1, and
(ai−1, si) ∈ E for all 1 ≤ i ≤ k. k is called the length of the walk. sk is called the head of
the walk. We denote byWk the set of all possible S-walk of length k andW := ∪k∈NWk.
A policy Π is a function Π : (k,wk) ∈ N×W 7→ Πk,wk

∈M=(n,m) satisfying wk ∈Wk,
and Πk,wk

(s, a) > 0 =⇒ J(s, a) = 1 for all s ∈ {1, ..., n} and a ∈ {1, ...,m}. We say
that a policy is deterministic if Πk,wk

is a 0/1 matrix for all k and wk, it is randomized
otherwise. If there exist k and wk, w

′
k ∈ Wk that share a same head and such that

2Observe that it is usually not a stochastic matrix as state 0 and action 0 are left out.
3If not we simply duplicate the actions.

1.1 INTRODUCTION | 29

Πk,wk
6= Πk,w′

k
, we say that the policy is history-dependent (otherwise it is usually said

to be memoryless or Markovian). If Π is a constant function, we say that the policy is
stationary. A policy Π induces a probability distribution over the (countable) set of all
possible S-walks. When Π is stationary, we often abuse notation and identify Π with a
n×m matrix.

We let yΠ
k ∈ Rn+ be the substochastic4 vector representing the state of the system in

period k when following policy Π (from an initial distribution yΠ
0). That is yΠ

k (s) is the
probability of being in state s, for all s = 1, ..., n at time k following policy Π. Similarly,
we denote by xΠ

k ∈ Rm+ the substochastic5 vector representing the probability to perform
action a, for all a = 1, ...,m, at time k following policy Π. Given a stationary policy Π
and an initial distribution yΠ

0 at time 0, by the law of total probability (and because each
action is available in exactly one state), we have xΠ

k = ΠT · yΠ
k for all k ≥ 0. Similarly,

we have: yΠ
k = P TxΠ

k−1 = P T · ΠT · yΠ
k−1 for all k ≥ 1. Hence the state of the system

at time k ≥ 0 follows yΠ
k = (P T · ΠT)k · yΠ

0 . The value cTxΠ
k represents the expected

cost paid at time k following policy Π. One can define for each s ∈ S \ {0}, JΠ(s) :=
lim supK→+∞

∑K
k=0 c

TxΠ
k with yΠ

0 := es, and J∗(s) := min{JΠ(s) : Π deterministic
and stationary policy}6 (es is the characteristic vector of {s} i.e. the 0/1 vector with
es(s′) = 1 iff s′ = s). Bertsekas and Tsitsiklis [19] introduced the notion of proper
stationary policies: a stationary policy Π is said to be proper if 1T (P T · ΠT)n · es < 1
for all s = 1, ..., n, that is, after n periods of time, the probability of reaching the target
state is positive, from any initial state s. We say that such policies are BT-proper (BT-
improper otherwise) as we will introduce a slight generalization later. Bertsekas and
Tsistiklis [19] defined a stationary policy Π∗ to be optimal7 if J∗(s) = JΠ∗(s) for all
s ∈ S \ {0}. They introduced the Stochastic Shortest Path Problem as the problem of
finding such an optimal stationary policy.

1.1.1 Literature review

The stochastic shortest path problem is a special case of Markov Decision Process and
it is also known as total reward undiscounted MDP [15, 16, 88]. It arises naturally
in robot motion planning, from maneuvering a vehicle over unfamiliar terrain, steering
a flexible needle through human tissue or guiding a swimming micro-robot through
turbulent water for instance [2]. It has also many applications in operations research,
artificial intelligence and economics: from inventory control, reinforcement learning to
asset pricing (see for instance [106, 76, 8, 99]). SSP forms an important class of MDPs as
it contains finite horizon MDPs, discounted MDPs (a euro tomorrow is worth less than a
euro today) and average cost problems (through the so-called vanishing discounted factor
approach) as special cases. It thus encapsulates most of the work on finite state/action
MDPs. The stochastic shortest path problem was introduced first by Eaton and Zadeh

4It is in general not a purely stochastic vector as state 0 is left out.
5It is in general not a purely stochastic vector as action 0 is left out.
6lim sup is used here as the limit need not be defined in general.
7Note that it is not clear, a priori, whether such a policy exists.

30| THE STOCHASTIC SHORTEST PATH PROBLEM:
A POLYHEDRAL COMBINATORICS PERSPECTIVE

in 1962 [38] in the context of pursuit-evasion games and it was later studied thoroughly
by Bertsekas and Tsitsiklis [19].

MDPs were first introduced in the 50’s by Bellman [10] and Shapley [95] and they
have a long, rich and successful history (see for instance [15, 16, 88]). For most MDPs, it
is known that there exists an optimal deterministic and stationary policy [88]. Building
upon this fact, there are essentially three ways of solving such problems exactly (and
some variants): value iteration (VI), policy iteration (PI) and linear programming (LP).
Value iteration and policy iteration are the original 50+ years old methods [10, 58].
The idea behind VI is to approximate the infinite horizon problem with a longer and
longer finite one. The solution to the k-period approximation is built inductively from
the optimal solution to the (k− 1)-period problem using standard dynamic programing.
The convergence of the method relies mainly on the theory of contraction mappings
and Banach fixed-point theorem [15] for most MDPs. PI is an alternative method that
starts from a feasible deterministic and stationary policy and iteratively improves the
action in each state so as to converge to an optimal solution. It can be interpreted as a
simplex algorithm where multiple pivots are performed in each step [69, 33]. As such it
builds implicitly upon the geometry of the problem to find optimal solutions. Building
explicitly upon this polyhedra, most MDPs can also be formulated as linear programs
and as such they can thus be solved in (weakly) polynomial time [69, 34, 33, 57, 52].

In the context of the SSP, some hypothesis are required for standard methods and
proof techniques to apply. Bertsekas and Tsitsiklis [19] proved that VI, PI and LP still
work when two assumptions hold, namely, when (i) there exists a BT-proper policy and
(ii) any BT-improper policy Π have at least one state s for which JΠ(s) = +∞. In
particular they show that one can restrict to deterministic policies. Their assumptions
naturally discriminate between BT-proper and BT-improper policies. Exploiting further
the discrepency between these policies, Bertsekas and Yu [20] showed that one can relax
asumptions (i) and (ii) when the goal is to find an optimal BT-proper stationary policy.
They could show that applying the standard VI and PI methods onto a perturbated
problem where c is modified to c + δ · 1 with δ > 0 and letting δ tends to zero over
the iterations, yields an optimal BT-proper solution if (j) there exists a BT-proper
policy and (jj) J∗ is real-valued. Moreover they could also show that the problem
can still be formulated (and thus solved) using linear programming, which settles the
(weak) polynomiality of this extension. Some authors from the AI community proposed
alternative extensions of the standard SSP introduced by Bertsekas and Tsitsiklis. It is
easy to see that the most general one, titled Stochastic and Safety Shortest Path problem
[101], is a special case of Bertsekas and Yu’s framework (it is a bi-objective problem that
can be easily modeled in this framework using artificial actions of prohibited cost).

The question of whether SSP, in its original form or the later generalization by
Bertsekas and Yu, can be solved in strongly polynomial time8 is a major open problem
for MDPs (see for instance [110]). It was proven in a series of breakthrough papers that
it is the case for fixed discount rate (basically the same problem as before but where the
transition matrix P is such that there is a fixed non-zero probability of ending up in 0

8a polynomial in the number of states and the number of actions

1.1 INTRODUCTION | 31

after taking any action). The result was first proved using interior point methods [109]
and then the same author showed that the original policy iteration method proposed
by Howard was actually strongly polynomial too [110] (the analysis was later improved
[50]). The problem is still open for the undiscounted case but Policy Iteration is known
to be exponential in that setting [46]. In contrast, value iteration was proved to be
exponential even for the discounted case [42]. Because SSPs can be formulated as linear
programs, the question relates very much to the existence of strongly polynomial time
algorithms for linear programming, a very long-lasting open problem that was listed
as one of the 18 mathematical problems of the 21st century by Smale in 1998 [97].
A possible line of attack is to study simplex-type of algorithms but existence of such
algorithms is also a long standing open problem and relates to the Hirsch conjecture
on the diameter of polyhedra. These questions are central in optimization, discrete
geometry and computational complexity. Despite the fact that SSP exhibits strong
additional properties over general LPs, these questions are still currently out of reach in
this setting, too.

In practice, value iteration and policy iteration are the methods of choice when
solving medium size MDPs. For large scale problems (i.e. most practical applications),
approximate solutions are needed to provide satisfying solutions in a reasonable amount
of time [87]. The field is known as Approximate Dynamic Programming and is a very
active area of research. Most approximation methods are based on approximate versions
of exact algorithms and developping new exact approaches is thus of great practical
interest.

In this chapter, we propose an extension of the frameworks of Bertsekas and Tsitsiklis
[19] and Bertsekas and Yu [20]. We prove in Section 1.3 that, in this setting, there is an
optimal deterministic and stationary policy. Then we show in Section 1.4 that the stan-
dard Value Iteration and Policy Iteration methods converge, and we give an alternative
approach that generalizes Dijkstra’s algorithm when the costs are nonnegative.

Remark

We became aware recently [89] that some related results were published in 1990 by
Bendali and Quilliot [13]. Similarly to Bertsekas and Tsitsiklis [19], they extended the
shortest path problem to stochastic environments. Their approach was different though:
they studied the natural extensions of directed graphs to the stochastic setting (they
named the corresponding extensions stochastic networks) and they studied the exten-
sions of arborescences and cycles and their role in an alternative notion of stochastic
shortest path. They could prove results similar to Bertsekas and Tsitsiklis [19] (namely
that linear programming could be used to solve the problem and they also described
a method similar to Value Iteration). They also proposed an extension of Dijkstra’s
algorithm. These results were totally unknown to the MDP community until now, prob-
ably due to the fact that they were published in French and in a different community
(Bendali and Quilliot were apparently equally unaware of the work of Bertsekas and
Tsitsiklis [19]). While there are non empty intersections with our work too (in particular
for Dijkstra’s algorithm), our results are more general: our framework (stricly) encap-

32| THE STOCHASTIC SHORTEST PATH PROBLEM:
A POLYHEDRAL COMBINATORICS PERSPECTIVE

sulates both the frameworks of Bertsekas and al. and of Bendali and Quilliot. Besides,
our results were proved independently with different techniques.

1.1.2 Notations and definitions

For a graph G, we denote by V (G) the vertex/node set of G and by E(G) its edge
set. Given a directed graph G(V,E), and a set S ⊂ V , we denote by δ+(S) the set
of arcs (u, v) with u ∈ S and v 6∈ S, and by N+(S) the set of vertices v ∈ V \ S
such that (u, v) ∈ E for some u ∈ S. For convenience when S is a singleton, we
denote δ+({u}) by δ+(u) and N+({u}) by N+(u). Then we define inductively N+

k (u) :=
N+(N+

k−1(u)) \ N+
k−1(u) ∪ . . . ∪ N+

0 (u)) for k ≥ 1 integer with N+
0 (u) = {u}. We

denote by R+(u) the set of vertices reachable from u i.e. R+(u) =
⋃
k≥0N

+
k (u). We can

define δ−(u), N−(u), N−k (u) and R−(u) analogously. Clearly v ∈ R−(u) if and only if
u ∈ R+(v). R−(u) are the vertices that can reach u. When confusion may arise, we
denote R+(u) by R+

G(u) (and similarly for the other notations). We say that a graph
G(V,E) is strongly connected if for all u, v ∈ V (G), we have u ∈ R+(v) and v ∈ R+(u).
We denote by 1A the indicator function associated with a set A i.e. 1A is a 0/1 function
with 1A(a) = 1 if and only if a ∈ A. For a vector x ∈ Rd and I ⊆ {1, ..., d} we denote
by x[I] the restriction of x to the indices in I and x(I) :=

∑
i∈I x(i). For s ∈ {1, ..., n},

we denote by es the 0/1 vector of Rn with es(i) = 1 if and only if i = s.

1.1.3 Main contributions and roadmap

In this chapter, we revisit the Stochastic Shortest Path problem, a well-known problem
in Markov Decision Processes. We shed some new light on this well-established problem,
both structurally and algorithmically. Our approach is to mimic the polyhedral analysis
of the deterministic shortest path problem.

On the structural side, we study the polyhedra associated with the natural linear
relaxation of the problem. We show that extreme points of the polyhedra are associ-
ated with deterministic and stationary policies by generalizing the flow decomposition
property (a fundamental result in network flow theory). This allows to: (i) formally
prove that we can restrict to such policies for this problem, a fact that was somewhat
taken for granted in earlier works ; (ii) relax the conditions under which the problem is
well-defined and (weakly) polynomial: this is the case now when there is a way to reach
the target from any initial state, and there is no ‘transition cycle’ of negative cost (the
extension of negative cost cycles to the stochastic setting) ; (iii) simplify the analysis of
the problem.

On the algorithmic side, building upon our polyhedral findings: (i) we prove that the
two standard methods for MDPs, i.e. Value Iteration and Policy Iteration, converge in
our more general setting ; (ii) we also give a new iterative algorithm based on the stan-
dard primal-dual algorithm for linear programming. When the costs are nonnegative,
this algorithm can be seen as a generalization of Dijkstra’s algorithm to the stochastic
setting.

1.1 INTRODUCTION | 33

We believe that our result closes some important algorithmic and structural gap
between the deterministic problem and the stochastic extension. All in all, our new
approach allows to generalize, unify and simplify most results on the SSP for finite
state/action spaces and we believe that we set the appropriate and natural framework
to study the problem in this case.

Besides, our approach has several strengths with respect to the literature: (i) Ap-
proaching the problem from a polyhedral combinatorics perspective is new. Polyhedral
combinatorics has been a powerful tool in harmonizing and simplifying many fundamen-
tal results in combinatorial optimization. We believe that this new perspective on the
problem might help address important remaining open questions such as the existence
of a strongly polynomial time algorithm ; (ii) Our framework properly encapsulates the
deterministic shortest path problem, in contrast with prior works ; (iii) Our proofs are
elementary for people familiar with network flow theory and it should thus provide a
new entry point to the problem for people in combinatorial optimization not familiar
with Markov Decision Processes. This should help grasping further interest from this
community ; (iv) Our generalization allows to capture many important subproblems that
were not fitting in the previous frameworks, such as the so-called MAXPROB problem,
where the goal is to reach a target with maximum probability: this is a core problem in
optimal control, artificial intelligence and game theory.

We now try to give an overview of the different propositions, lemmas and theorems
that follow. This should help the reader familiar with the deterministic shortest path
problem and its relation with network flow theory to navigate smoothly through the
next sections.

In Section 1.2, we introduce our new framework for the stochastic shortest path prob-
lem. We show in particular (Lemma 1.2) that our framework properly encapsulates the
one proposed by Bertsekas and Tsitsiklis [19]. In the deterministic setting the standard
assumptions for the shortest (s, t)-path problem are that (i) there exists a path from
any node to t and (ii) there is no negative cost cycle. Assumption 24 generalizes these
two assumptions to the stochastic setting in the most natural way and we prove that
the corresponding assumptions are easily checked (Lemma 1.3 , Lemma 1.4 and Lemma
1.5). We also introduce the natural linear programming relaxation of the problem, the
so-called network flux relaxation (see (Ps)). This is again the natural generalization of
the network flow formulation for the deterministic version.

In Section 1.3, we prove that the network flux relaxation is actually a formulation by
showing that the extreme points are associated with proper9, deterministic and stationary
policies (Corollary 28). This result builds upon an extension of a fundamental theorem
for network flows: the flow decomposition theorem. The idea in the deterministic case is
to decompose a flow in paths and cycles. In the stochastic setting this translates into
a decomposition in terms of proper, deterministic and stationary policies and transition
cycles. The proof of the corresponding theorem (Theorem 1.7) builds upon different basic
properties of flux vectors (that is, solutions to the network flux relaxation), namely, that
if a flux ‘goes through’ a node, then this node has to be connected to the sink (Proposition

9The new definition of proper is given in the beginning of the next section.

34| THE STOCHASTIC SHORTEST PATH PROBLEM:
A POLYHEDRAL COMBINATORICS PERSPECTIVE

25), and the fact that one can easily associate a flux vector to a proper, deterministic
and stationary policy (Proposition 26). These properties are trivial when instantiated
in the determininistic setting but a bit more technical in the stochastic case. As in the
deterministic case, the idea behind the flow decomposition theorem is to first identify
“paths” (Lemma 1.8) and then decompose “cycles” (Lemma 1.9). Lemma 1.6 shows
that each step in the decomposition can be performed efficiently. Finally Lemma 1.10
generalizes Bellman optimality conditions to the stochastic setting (that is, if the optimal
policy can visit a certain node, the policy should be optimal from this node too).

Bellman optimality conditions are then exploited in Section 1.4 to derive several
iterative algorithms. We first prove that Value Iteration (the generalization of Bellman-
Ford algorithm), converges in value to the optimal solution (Theorem 1.11) and we show
that we can in fact extract a series of proper, deterministic and stationary policies that
converge to the optimal policy (Theorem 1.12). We then prove that we can exploit
the linear programming formulation to derive simplex-type of algorithms: any standard
(single pivot) simplex method will find an optimal policy in a finite number of steps as the
linear program is non degenerate (Theorem 1.13), and Howard’s Policy Iteration method
(a multi-pivot simplex algorithm) also converges in a finite number of steps (Theorem
1.14). The latter result exploits the fact that the objective function is nonincreasing in
each iteration (Proposition 29). Finally Theorem 1.15 exploits the standard primal-dual
algorithm for linear programming to provide a natural extension of Dijkstra’s algorithm.

1.2 Our new framework
We start with a simple observation:

Lemma 1.1
Let Q be a matrix with limk→+∞Q

k = 0. Then I − Q is invertible,
∑
k≥0Q

k

is well defined and
∑
k≥0Q

k = (I −Q)−1.

Lemma 1.2

For BT-proper stationary policies, lim
K→+∞

K∑
k=0

xΠ
k is finite for any initial state

distribution yΠ
0 .

Proof. xΠ
k = ΠT · P T · xΠ

k−1 for all k ≥ 1 and xΠ
0 = ΠT yΠ

0 . Therefore xΠ
k = (ΠT · P T)k ·

ΠT yΠ
0 , where yΠ

0 is the original state distribution. It follows that
∑K
k=0 x

Π
k =

∑K
k=0((ΠT ·

P T)k · ΠT y0) = (
∑K
k=0(ΠT · P T)k) · ΠT y0 and because of the standard Lemma 1.1, it

implies that I−ΠT ·P T is invertible and that limK→+∞
∑K
k=0 x

Π
k = (I−ΠT ·P T)−1 ·ΠT y0.

(limk→+∞(ΠT · P T)k = 0 by definition of BT-properness since 1T (P T ·ΠT)n · ei < 1 for
all i = 1, ..., n).

1.2 OUR NEW FRAMEWORK | 35

We now extend the notion of proper policies introduced by Bertsekas and Tsitsiklis
using this alternative (relaxed) property and from now on we will only use this new
definition.

Given a state s ∈ {1, ..., n}, a policy Π is said to be s-proper if
∑
k≥0 x

Π
k is finite, when

yΠ
0 := es. Observe that

∑
k≥0 y

Π
k is also finite for s-proper policies (as yΠ

k = P TxΠ
k−1).

In particular limk→+∞ y
Π
k = 0 and thus the policy leads to the target state 0 with

probability 1 from state s. A s-proper policy is thus a policy that converges to the
target with probability one and whose expected number of visit in each action is finite.
The expected cost of such a policy is thus the well-defined value cT

∑
k≥0 x

Π
k . The s-

stochastic-shortest-path problem (s-SSP for short) is the problem of finding a s-proper
policy Π of minimal cost cT

∑
k≥0 x

Π
k . We say that a policy is proper if it is s-proper for

all s and it is called improper otherwise. The stochastic shortest path problem (SSP) is
the problem of finding a proper policy Π of minimal cost cT

∑
k≥0 x

Π
k where yΠ

0 := 1
n1. It

is easily seen that the stochastic shortest path problem, as defined here, is also a special
case of the s-SSP as one can add an artificial state with only one action that leads to
all states in {1, ..., n} with probability 1

n . In the following two sections, unless otherwise
stated, we restrict to the s-SSP. In this context, we often abuse notation and we simply
call proper a s-proper policy.

Since for any policy Π (possibly history-dependent and randomized), Πk,wk
are

stochastic matrices, we have at any period k ≥ 0,
∑
a∈A(s) x

Π
k (a) = yΠ

k (s) (remember that
each action is available in exactly one state). We also have yΠ

k+1(s) =
∑
a∈A p(s|a)xΠ

k (a)
for all s ∈ {1, ..., n}. In matrix form this is equivalent to yΠ

k = JTxΠ
k and yΠ

k+1 = P TxΠ
k .

This implies JTxΠ
k+1 = P TxΠ

k for all k ≥ 0. We also have JTxΠ
0 = es. Now xΠ :=∑∞

k=0 x
Π
k is well-defined for proper policies. Summing up the previous relations over all

periods k ≥ 0 we get (J−P)TxΠ = es. Hence the following linear program is a relaxation
of the s-SSP problem10.

min cTx
(J − P)Tx = es
x ≥ 0

(Ps)

Observe that for a deterministic problem (i.e. when P is a 0/1 matrix), (J − P)T
is the node-arc incidence matrix of a graph (up to a row as it does not containt the
row associated with the sink node) and the corresponding LP is the standard network
flow relaxation of the deterministic shortest path problem (again up to a row as we
remove the (redundant) flow conservation constraint for the sink node). The vector x is
sometimes called a network flux as it generalizes the notion of network flow.

10We would like to stress on the fact that the LP relaxation we consider here is almost (except for
the right hand side) the standard LP formulation of the problem of finding an optimal deterministic
and stationary policy and it was already known for quite some time for many special cases of SSP (see
[20] for instance). However while usually, the LP formulation comes as a corollary of other results, here
we reverse the approach and introduce this formulation as a natural relaxation of the problem and we
derive the standard results as (reasonably) simple corollaries. This is what allows to simplify, generalize
and unify many results from the litterature. This is a simple yet major contribution of this chapter. The
notation and terminology is taken from [49].

36| THE STOCHASTIC SHORTEST PATH PROBLEM:
A POLYHEDRAL COMBINATORICS PERSPECTIVE

We call a solution x to (J − P)Tx = 0, x ≥ 0 a transition cycle and the cost of such
a transition cycle x is cTx. Negative cost transition cycles are the natural extension
of negative cost cycles for deterministic problems. One can check the existence of such
objects by solving a linear program.

Lemma 1.3
One can check in (weakly) polynomial time whether a stochastic shortest path
instance admits a negative cost transition cycle through linear programming.

We will prove in the sequel that the extreme points of Ps := {x ≥ 0 : (J−P)Tx = es}
‘correspond’ to proper deterministic and stationary policies. Hence, when the relaxation
(Ps) has a finite optimum (i.e. when there is no transition cycle of negative cost and
when a proper policy exists), this will allow to prove that, the s-SSP admits an optimal
proper policy which is deterministic and stationary. This answers, for this problem, one
fundamental question in MDP theory “Under what conditions is it optimal to restrict
to deterministic and stationary policies ?” [88].

We can assume without loss of generality that there exists a path between all state
node s′ and 0 in the support graph G. Indeed, if there is a state node s′ with no path
to 0 in G, then no s-proper policy will pass through s′ at any point in time (because
then the probability of reaching the target state, starting from s′, is zero, contradicting
limk→+∞ y

Π
k = 0) ; we could thus remove s′ and the actions leading to s′ and iterate.

Under this assumption, there is always a s-proper policy. Indeed the randomized and
stationary policy Π that chooses an action uniformly at random among A(s′), in each
state s′ = 1, ..., n, will work: in this case, for each state s′, there is in fact a non zero
probability of choosing one of the paths from s′ to 0 after at most n periods of time.

Lemma 1.4
Consider a s-SSP instance where there exists a path between all state node
s′ and 0 in the support graph G. Then the policy that consists, for each state
s′ ∈ S \ {0}, in choosing uniformly at random an action in A(s′) is a proper
stationary policy.

The discussion above also gives a simple algorithm for testing the existence of a
proper policy for any instance of the SSP.

Lemma 1.5
One can check in time O(|S| · (|S|+ |A|+ |E|)) whether a s-SSP instance with
support graph G = (S,A, E) admits a proper policy or not.

We are now ready to introduce the new assumptions that we will use to study the
stochastic shortest path problem. They are the very natural extensions of the standard
assumptions for the deterministic shortest path problem.

1.3 EXISTENCE OF AN OPTIMAL, DETERMINISTIC AND STATIONARY POLICY |
37

Assumption 24
We consider s-SSP/SSP instances where:

• there exists a path between all state node s′ and 0 in the support graph G, and

• there is no negative cost transition cycle.

As already observed, these assumptions can be checked in (weakly) polynomial time.
Moreover, these assumptions implies that (Ps) has a finite optimum (from standard
LP arguments). Also Bertsekas and Yu’s framework is a special case of our setting
as in the presence of negative cost transition cycles, J∗(s′) is not real-valued for some
state s′ 11. The main extension, with respect to Bertsekas and Yu, is that we allow for
non-stationary proper policies in the first place.

1.3 Existence of an optimal, deterministic
and stationary policy
In this section, we will prove essential properties about Ps := {x ≥ 0 : (J −P)Tx = es}.
This will allow to prove that, under Assumption 24, we can restrict to optimal proper,
deterministic and stationary policies.

We start with a few definitions. Let G = (S,A, E) be the support graph of our s-SSP
instance and let x ∈ Rm. We define Gx to be the subgraph of G induced by the vertices
in Ax∪N+

G (Ax)∪N−G (Ax) where Ax := {a ∈ {1, ...,m} with x(a) > 0}. Gx is called the
support graph of x in G. Again we call state nodes the vertices/nodes of Gx that are in
S and action nodes the vertices/nodes of Gx that are in A. We denote by Ex the set
of edges of Gx. A transition cycle x is simple if for all state nodes s′ in V (Gx), there
exists exactly one edge of N+

G (s′) in Ex, i.e. |N+
Gx

(s′)| = 1, and Gx is strongly connected.

The main theorem of this section is an extension of the flow decomposition theorem,
which is a fundamental result in network flow theory (see [1]). It asserts that any
network flux is a convex combination of network flux ‘associated with’ proper policies
plus a conic combination of simple transition cycles (see Theorem 1.7). Before we can
prove this theorem , we need a couple of useful propositions. The proof of the first
proposition builds upon simple flow conservation arguments.

11One can prove using Lemma 1.9 and basic geometry that when there exists a negative cost transition
cycle, there exists also a simple transition cycle of negative cost (see the definition in the second paragraph
of Section 1.3): all state nodes s′ on this cycle will have JΠ(s′) = −∞, where Π is the deterministic and
stationary policy that consists in choosing the unique action a ∈ A(s′) with x(a) > 0 for each state node
s′ on the cycle and any action for the state nodes that are not on the cycle.

38| THE STOCHASTIC SHORTEST PATH PROBLEM:
A POLYHEDRAL COMBINATORICS PERSPECTIVE

Proposition 25
Let x ∈ Rm be a feasible solution of (Ps). There exists a path between all states reachable
from s in Gx and 0S . In other word, for all s′ ∈ R+

Gx
(s), we have s′ ∈ R−Gx

(0S).

Proof. Let us define x̄ ∈ R|Ex| as follows: x̄((s′′, a)) := x(a) for all a ∈ Ax and s′′ the
(unique) state with a ∈ A(s′′), and x̄((a, s′′)) := P (a, s′′) ·x(a) for all a ∈ Ax, and s′′ ∈ S
such that P (a, s′′) > 0. Observe that x̄ is only defined on Ex and that x̄ > 0. Because
x is a feasible solution to (Ps), x̄ satisfies x̄(δ+

Gx
(v)) − x̄(δ−Gx

(v)) = 1{s}(v) − 1{0S}(v)
for all v ∈ V (Gx) and x̄ ≥ 0. It is thus a unit (s, 0S)-flow in V (Gx). Now let us
assume that there exists s′ ∈ R+

Gx
(s) with s′ 6∈ R−Gx

(0). Summing up all flow constraints
over v ∈ R+

Gx
(s′), we get x̄(δ+

Gx
(R+

Gx
(s′))) − x̄(δ−Gx

(R+
Gx

(s′))) = 1R+
Gx

(i)(s). We have
x̄(δ+

Gx
(R+

Gx
(s′))) = 0 by definition of R+

Gx
(s′). But then x̄(δ−Gx

(R+
Gx

(s′))) + 1R+
Gx

(s′)(s) =
0. Since x̄(δ−Gx

(R+
Gx

(s′))) ≥ 0, this implies s 6∈ R+
Gx

(s′) and x̄(δ−Gx
(R+

Gx
(s′))) = 0. Now

because s 6∈ R+
Gx

(s′) and s ∈ R−Gx
(s′) (by hypothesis), there is at least one arc of Ex in

δ−Gx
(R+

Gx
(s′)) but this implies x̄(δ−Gx

(R+
Gx

(s′))) > 0 as x̄ > 0, a contradiction.

Given a proper, deterministic and stationary policy Π, we denote by GΠ the sub-
graph of G induced by the state vertices in S and the actions vertices in Π. Now let
GsΠ be the subgraph of GΠ induced by the vertices in R+

GΠ
(s). GsΠ is called the support

graph of Π (it is easily seen that it corresponds to the subgraph induced by the states
and actions that we might visit under policy Π when starting from s). Because Π is
proper, 0S is reachable from each state s′ in GsΠ. Let us denote by S ′ the state vertices
in GsΠ and Π(S ′) the actions associated with S ′ in Π. We also denote by PS′ the re-
striction of P to the columns in S ′ and the rows in Π(S ′) (since Π is determinisitic, PS′
is a |S ′| × |S ′| matrix). P TS′ can be interpreted as the transition matrix associated with
S ′ when following policy Π (we do not leave S ′): PS′(Π(s′), s′′) gives the probability of
ending in state s′′ (in one iteration) when starting in state s′ and using Π(s′). Hence,
if we assume that the rows of PS′ are ordered according to S′, then P TS′e

′
i defines the

state of the system after one iteration of policy Π if we start in state i ∈ S ′ (e′i is the
restriction of ei to to the indices in S ′). Now as already observed, 0S is reachable from
any node in S ′ and it thus follows that (P TS′)ke′i, the state of the system after k steps,
tends to zero as k tends to infinity (remember that 0S is left out). Because this is true
for any i ∈ S ′, we have limk→+∞(P TS′)k = 0 and thus (IS′ −PS′) is invertible by Lemma
1.1. Now observe that (IS′ − PS′)TxΠ[Π(S′)] = e′s for xΠ :=

∑+∞
k=0 x

Π
k , with yΠ

0 := es.
Indeed xΠ(a) = 0 for all a 6∈ Π(S′) and thus (IS′ − PS′)TxΠ[Π(S′)] = e′s corresponds to
the constraints of (Ps) associated with the rows in S ′. We thus have the following result.

Proposition 26
Given a proper, deterministic and stationary policy Π, the flux vector xΠ associated with
Π and defined by xΠ :=

∑+∞
k=0 x

Π
k , with yΠ

0 := es satisfies xΠ[Π(S′)] = (IS′ − PS′)−T e′s
and xΠ(a) = 0 for all a 6∈ Π(S ′), with S ′, Π(S ′), IS′, PS′ and e′s defined as above.

1.3 EXISTENCE OF AN OPTIMAL, DETERMINISTIC AND STATIONARY POLICY |
39

The following proposition is easy to prove using similar flow arguments as in the
proof of Proposition 25.

Proposition 27
Let Π be a proper, deterministic and stationary policy. We have GsΠ = GxΠ. Moreover
if x ∈ Ps and Π(S) ⊆ Ax, then GsΠ is a subgraph of Gx.

Before proving Theorem 1.7, we need a final lemma.

Lemma 1.6
Let G = (S,A, E) be the support graph of a s-SSP instance and assume that
there is a path from every state vertex s′ to 0S in G. Then in time O(|S| +
|A|+ |E|), one can find a proper, deterministic and stationary policy Π.

Proof. We know that, 0S ∈ R+(s′) for all s′, is enough to ensure that there is a proper
policy by Lemma 1.4. Now if there exists a state vertex s′ in G with |A(s′)| > 1, we can
delete from G an action in A(s′) that does not remove 0S from R+(s′). Such an action
exists as it is enough to keep an action a ∈ A(s′) with minimum distance to 0 (in terms
of arc) to ensure that 0S is still in R+(s′) after deletion (by minimality of the distance to
0, such an action has a directed path to 0S that does not go through s′). If |A(s′)| = 1
for all s′ then the only possible policy is proper (from Lemma 1.4), deterministic and
stationary. We can implement such a procedure in time O(|S|+ |A|+ |E|) by computing
N−k (0) for all k ≤ |S| + |A| and a 0S-anti-arborescence A using a breadth first search
algorithm: we then keep only the actions in A.

We are now ready to prove the main theorem of this section.

Theorem 1.7
Let x ∈ Rm be a feasible solution of (Ps). In strongly polynomial time, one
can find k, k′ ∈ N with 1 ≤ k, k + k′ ≤ m, x1, ..., xk ∈ Rm, x′1, ..., x′k′ ∈ Rm,
λ1, ..., λk ∈ [0, 1], and λ′1, ..., λ

′
k′ ≥ 0 such that x1, ..., xk are feasible so-

lutions of (Ps), x′1, ..., x′k′ are simple transition cycles,
∑k
j=1 λj = 1 and

x =
∑k
j=1 λjxj +

∑k′
j′=1 λ

′
j′x
′
j′. Moreover, the vectors xj are network flux

corresponding to proper, deterministic and stationary policies, i.e. for all
j ∈ 1, . . . , k, there exists a proper, deterministic and stationary policy Πj such
that xj = xΠj .

Proof. We will start with a slightly simpler version.

Lemma 1.8
Let x ∈ R

m be a feasible solution of (Ps). In strongly polynomial time, one
can find k ∈ N, x1, ..., xk, xc ∈ R

m ,and λ1, ..., λk ∈ [0, 1] such that 1 ≤ k ≤
m − |Axc |, x1, ..., xk are feasible solutions of (Ps), xc is a transition cycle,∑k
j=1 λj = 1 and x =

∑k
j=1 λjxj + xc. Moreover, the vectors xj are network

40| THE STOCHASTIC SHORTEST PATH PROBLEM:
A POLYHEDRAL COMBINATORICS PERSPECTIVE

flux corresponding to proper, deterministic and stationary policies, i.e. for all
j ∈ 1, . . . , k, there exists a proper, deterministic and stationary policy Πj such
that xj = xΠj .

Proof. We prove first that such a decomposition exists for any x ∈ Ps. Let x be a
smallest counter-example (in terms of |Ax|). Because x is a feasible solution of (Ps), we
know by Proposition 25 that there exists a path between all states reachable from s in
Gx and 0S . Now from Lemma 1.6, we know that there exists a proper, deterministic and
stationary policy Π to which we can associate and compute a flux xΠ using Proposition
26. Let 1 ≥ λ ≥ 0 be the maximum value such that x′ := x− λxΠ ≥ 0. By Proposition
27 we have that GxΠ is a subgraph of Gx and thus λ > 0 (as x > 0 on Ax). If λ = 1, x′
is a solution to (J −P)Tx = 0, x ≥ 0 and x := xΠ +x′ provides a decomposition for x, a
contradiction (note that |Ax′ | < |Ax| as Ax′ must miss at least one action of Π leading
to 0S with non zero probability). If λ < 1, by maximality of λ, there is an arc a ∈ Ax
such that x(a) > 0 and x′(a) = 0. Hence Ax′ ⊂ Ax and 1

1−λx
′ is a solution to (Ps) with

|Ax′ | < |Ax|. By minimality of the counter-example, we can assume that there exists a
decomposition for 1

1−λx
′. Now we can get a decomposition for x from the decomposition

for 1
1−λx

′ by scaling the multipliers by 1-λ and using xΠ with multiplier λ, this is a
contradiction. Clearly, we can make the proof algorithmic and because Ax′ ⊂ Ax at
each iteration, the algorithm will terminate with a set of k solutions x1,, xk to (Ps)
and a vector xc satisfying the theorem in at most |Ax| − |Axc | ≤ m− |Axc | steps.

The following lemma builds upon similar ideas.

Lemma 1.9
Let x′ 6= 0 ∈ Rm be a transition cycle. In strongly polynomial time, one can
find k′ ∈ N, x1, ..., xk′ ,∈ R

m ,and λ′1, ..., λ
′
k′ ≥ 0 such that 1 ≤ k′ ≤ |Ax′ |,

x′1, ..., x
′
k′ are simple transition cycles and x′ =

∑k
j=1 λ

′
j′x
′
j′.

Proof. We prove first that such a decomposition exists for any transition cycle x′ 6= 0.
Let x′ be a smallest counter-example (in terms of |Ax′ |). We focus on the support
graph Gx′ . By minimality of the counter-example, we can assume that Gx′ is connected.
Now Gx′ has to be strongly connected otherwise it would contradict flow conservation
constraints (using similar argument as in Proposition 25). Observe also that 0S is not
in V (Gx). Let us consider any action a in Ax′ and let us call e the edge between a and
the unique node s with a ∈ A(s). We can consider the graph Ga obtained by taking the
subgraph of Gx′ \ e induced by the vertices that are reachable from a (in Gx′ \ e), by
‘splitting’ action a. Let s be the unique state where a is available. We add two artificial
node states s0, t0 and an artificial action a0 that leads to t0 with probability 1, such that
a is removed from the set of actions available in s and a becomes the only action available
in s0. Let G′a be the corresponding graph. We can consider an instance of s0-SSP with
target state t0 in G′a. Now x′ can easily be converted into a feasible network flux x̄ for
the corresponding problem by simply setting x̄(a′) = x′(a′)

x′(a) for all a′ 6= a0 and x̄(a0) = 1.

1.3 EXISTENCE OF AN OPTIMAL, DETERMINISTIC AND STATIONARY POLICY |
41

We can then apply Lemma 1.8 to x̄ to generate x1, ..., xk, λ1, ..., λk and xc obeying the
corresponding lemma. Now we can convert x1, ..., xk into simple transition cycles of our
original instance by setting, for all i = 1, ..., k and for all a′ 6= a0, x′i(a′) = xi(a′). It
follows that x′ = x′(a) · (

∑k
i=1 λix

′
i + xc). Remember that k ≥ 1, so x′1 exists. Now for

µ = mina′{ x
′(a′)
x′1(a′)}, x

′′ = x′ − µx′1 is still a transition cycle, but |Ax′′ | < |Ax′ | by the
choice of µ, so by minimality of the counter-example, x′′ can be decomposed into simple
transition cycles and so x′ = x′′+µx′1 too, a contradiction. We can again make the proof
algorithmic and so k′ ≤ |Ax′ |.

Theorem 1.7 is a direct corollary of Lemma 1.8 and Lemma 1.9: we apply Lemma
1.9 to the transition cycle xc returned by Lemma 1.8 .

We can now exploit Theorem 1.7 to prove that under our assumptions, we can re-
strict to deterministic and stationary policies.

Corollary 28
Under Assumption 24, the s-SSP admits an optimal proper, deterministic and stationary
policy.

Proof. We know from linear programming that when a LP has a finite optimum, we can
find an optimal solution in an extreme point. For (Ps), existence of of finite optimum
is guaranteed by Assumption 24 : the first conditions implies the existence of a solution
by Lemma 1.4 and the second conditions ensure that the value is bounded. But an
extreme point x of Ps cannot be expressed as a convex combination of other points of
Ps by definition. As such, using Theorem 1.7, x must be equal to xΠ for some proper,
deterministic and stationary policy Π. Now cTxΠ is precisely the cost of policy Π.
Hence we have a feasible solution to our original problem which is optimal for the linear
relaxation (Ps). It is thus optimal for the original problem.

We can deduce from what preceeds a result which is standard for the deterministic
shortest path problem: Bellman optimality conditions.

Lemma 1.10
Let Π be an optimal proper, deterministic and stationary solution to the s-SSP
(under Assumption 24). Let GsΠ be the support graph of Π. For all state vertex
s′ in GsΠ, Π is optimal for s′-SSP.

Proof. Observe first that s′-SSP satisfies Assumption 24. Now suppose Π is not optimal
for s′-SSP. We know from Corollary 28 that s′-SSP admits an optimal proper, determin-
istic and stationary policy Πs′ . Now the (history-dependent and non stationary) policy
Π′ that consists in applying policy Π to problem s-SSP, up to when state s′ is reached
(if it ever is) and then applying policy Πs′ is a proper policy. The value of this policy

42| THE STOCHASTIC SHORTEST PATH PROBLEM:
A POLYHEDRAL COMBINATORICS PERSPECTIVE

is (strictly) better than the value of Π as there exist realizations where s′ is reached, a
contradiction.

1.4 Algorithms
We focused, up to now and without loss of generality, on the s-SSP problem. Bellman
optimality conditions (i.e. Lemma 1.10) also tells us that, under Assumption 24, we
can actually restrict attention to the SSP problem as well without loss of generality.
Indeed we already observed that SSP can be converted to a s-SSP problem by simply
adding an artificial state s and a unique action available from s that lead to all states
i = 1, ..., n with probability 1

n . Now there is a one-to-one correspondence between the
policies of SSP and the policies of the auxiliary s-SSP problem and hence any proper,
deterministic and stationary solution Π to SSP is optimal if and only if it is optimal for
the auxiliary problem. But by Lemma 1.10, an optimal policy Π∗ for SSP is optimal for
s′-SSP for all s′ = 1, ..., n (as all s′ are in GΠ∗). It is easy to see that all theorems from
the previous section extend naturally to the SSP setting. Of course, some definitions
and results have to be slightly adapted: for instance, the flux vector xΠ associated with
a proper deterministic and stationary policy is now xΠ :=

∑+∞
k=0 x

Π
k with yΠ

0 := 1
n1 and

it satisfies xΠ = (I − PΠ)−T 1
n1 (see Proposition 26 for the previous relation), where PΠ

is the n× n matrix obtained from P by keeping only the rows corresponding to actions
in Π. For algorithmic reasons, it is more convenient to deal with the SSP problem as
there is no problem of degeneracy: the feasible basic solution xΠ (it is indeed now the
basic solution associated with the basis (I − PΠ)T) has positive values on the actions
in Π. In this section, we will therefore focus on the SSP problem. The corresponding
linear programming formulation is (in principle, the right hand side should be 1

n1 but
we simply rescaled it):

min cTx
(J − P)Tx = 1
x ≥ 0

(P)

One possible way of solving the previous model is to use any polynomial time algo-
rithm for linear programming. This would lead to weakly polynomial time algorithms
for SSP. As pointed out in the introduction, there are two standard alternatives for solv-
ing a MDP: Value Iteration and Policy Iteration. We prove in the next two sections the
convergence of these methods under Assumption 24. Then we give another new iterative
method based on the standard primal-dual approach to linear programming: this can
be considered as a natural generalization of Dijkstra’s algorithm.

1.4.1 Value Iteration

We denote by P the set of all proper policies for SSP. For all s = 1, ..., n, we define V ∗(s)
to be the optimal value of (Ps) (again under Assumption 24), i.e. V ∗(s) := minΠ∈P c

TxΠ

1.4 ALGORITHMS | 43

with yΠ
0 = es. This is refered to as the value of state s. We have in particular

V ∗(s) = minΠ∈P limK→+∞
∑K
k=0 c

TxΠ
k by definition of xΠ

k . In the following, we show
that we can switch the min and lim operators with some care. We need first to introduce
an auxiliary SSP instance obtained from (S,A, J, P, c) by adding an action of cost M(s)
for each state s = 1, ..., n that lead to state 0 with probability one, with M(s) “big
enough”. We call aux-SSP this auxiliary problem (we slightly abuse notation and we
still denote by c the corresponding cost function). Observe that in aux-SSP, there are
proper policies that terminate in at most k time periods for all k ≥ 1, from any starting
state. Indeed one can always chose an auxiliary action in period k − 1. Let us denote
by Pk the proper policies in aux-SSP that terminate in at most k steps and by Paux the
proper policies for aux-SSP. Observe that VK(s) := minΠ∈PK

∑K
k=0 c

TxΠ
k is well-defined

for each K ≥ 1. In fact we can prove by induction that it follows the dynamic pro-
gramming formula: Vk(s) = min{Vk−1(s),mina∈A(s) c(a) +

∑
s′ p(s′|a)Vk−1(s′)} for all

k ≥ 2 and V1(s) = M(s) for all s = 1, ..., n (an optimal, deterministic non-stationary
policy Π∗K can be recovered easily too): Vk(s) is indeed the optimal value starting from s
among policies in Pk. The following result can be seen as an extension of Bellman-Ford
algorithm for the deterministic shortest path problem.

Theorem 1.11
For all s = 1, ..., n, if M(s) ≥ V ∗(s), then we have V ∗(s) = lim

K→+∞
VK(s).

Proof. We will prove that minΠ∈P limK→+∞
∑K
k=0 c

TxΠ
k = limK→+∞minΠ∈PK

∑K
k=0 c

TxΠ
k

with yΠ
0 := es, for all s = 1, ..., n, by proving both inequalities.
≤ Let Π∗K be an optimal solution to minΠ∈PK

∑K
k=0 c

TxΠ
k computed by dynamic

programming (as described above). Π∗K is a proper policy for aux-SSP for all K. By
feasibility of Π∗K , we thus have VK(s) = cT

∑K
k=0 x

Π∗K
k ≥ minΠ∈Paux limK→+∞

∑K
k=0 c

TxΠ
k

(observe that this minimum is well defined since we are still satisfying Assumptions 24 in
aux-SSP). By construction {VK(s),K ≥ 1} is nonincreasing, hence because it is bounded
from below, it converges and limK→+∞ VK(s) is well-defined. Taking the limit we get
limK→+∞ c

T ∑K
k=0 x

Π∗K
k ≥ minΠ∈Paux limK→+∞

∑K
k=0 c

TxΠ
k . But

min
Π∈Paux

lim
K→+∞

K∑
k=0

cTxΠ
k ≥ min

Π∈P
lim

K→+∞

K∑
k=0

cTxΠ
k

if M(s) is chosen so that auxiliary actions can be assumed not to be used in an optimal
policy Π∗ for Paux. This is the case for M(s) ≥ V ∗(s) as we could consider the (non
stationary) policy that applies policy Π∗ up to the first time we want to use an artificial
action and then apply an optimal policy Π∗∗ for P: the corresponding policy has a value
no greater than the former.
≥ Let Π∗ be an optimal proper deterministic and stationary solution to

min
Π∈P

lim
K→+∞

K∑
k=0

cTxΠ
k

44| THE STOCHASTIC SHORTEST PATH PROBLEM:
A POLYHEDRAL COMBINATORICS PERSPECTIVE

(Π∗ exists in our setting by Corollary 28). Let us denote by Π̄ the policy of Paux that
chooses the auxiliary action for each state. Consider the policy ΠK of PK obtained from
using Π∗ in periods 0, ...,K − 1 and policy Π̄ in period K. By feasibility of ΠK , we
have cTxΠK

K +
∑K−1
k=0 cTxΠK

k ≥ minΠ∈PK

∑K
k=0 c

TxΠ
k . Now taking the limit as K tends

to infinity, we have the result since limK→+∞ x
ΠK
K = limK→+∞ x

Π∗
K = 0 as ΠK differs

from Π∗ only in period K, and Π∗ is s-proper.

Notice that it is easy to find initial values for M(s) satisfying the previous theorem.
Indeed one can use V Π(s), the values for state s when using policy Π for any s-proper
policy Π. We can actually easily find a proper, deterministic and stationary policy for
SSP (i.e. for all s simultaneously) by extending Lemma 1.6 to SSP.

The algorithm that consists in computing Vk iteratively is called Value Iteration.
Value Iteration was already known to converge for SSP in the presence of transition
cycles of cost zero, when initialized appropriately, see Bertsekas and Yu [20].

We now explain how to recover an optimal proper, deterministic and stationary
policy, if we were lucky enough to get the optimal vector V ∗ after some iterations (if we
build a feasible policy Πk at each iteration, it may happen that we discover that Π is
optimal by computing V Π and observing that it satisfies the Bellman equations). Let
us consider the dual linear program (D) of (P) :

max y1
y(J − P)T ≤ c (D)

By definition of V ∗(s) and by Lemma 1.10, we know that V ∗ satisfies V ∗(s) =
mina∈A(s) c(a) +

∑
s′ p(s′|a)V ∗(s′) for all s = 1, ..., n. Also extending Corollary 28 to

SSP, we know that there exists an optimal proper deterministic and stationary policy
Π∗ with V ∗(s) = c(Π∗(s)) +

∑
s′ p(s′|Π∗(s))V ∗(s′) for all s = 1, .., n. In particular,

y∗ := V ∗ is feasible for (D) and because the pair (xΠ∗ , y∗) satisfies the complementary
slackness conditions, y∗ is optimal for (D).

Now let us reverse the complementary slackness conditions. An optimal solution x∗
to (P) can satisfy x∗(a) > 0 only if V ∗(s) = c(a) +

∑
s′ p(s′|a)V ∗(s′). Let A∗ be the set

of all such actions and let us restrict our instance of SSP to those actions in A∗. Because
there is an optimal proper, deterministic and stationary policy Π∗ for SSP and because
such a policy must use only actions in A∗, we know that there is a path from every state
to the target state 0 in the support graph G∗ = (S∗,A∗, E∗) of this instance. We know
from Lemma 1.6 that we can thus find a proper, deterministic and stationary policy Π
in time O(|S∗| + |A∗| + |E∗|). The pair (xΠ, y∗) satisfies the complementary slackness
conditions and thus Π is optimal.

Unfortunately, we might never reach the precise value of V ∗ when iterating VI.
However, we can build a proper deterministic and stationary policy Πk at each step k of
Value Iteration by considering an approximate version of the complementary slackness
theorem. For all k ≥ 0, we define yk := Vk, and, for each action a, εka := Vk(s−1(a)) −
(c(a) +

∑
s′ p(s′|a)Vk(s′)). For ε ≥ 0, we define Akε the set of actions a ∈ A such that

1.4 ALGORITHMS | 45

εka ≥ −ε and we denote by SSP kε the restriction of our SSP instance to the actions in
Akε . Let us denote by εk ≥ 0 the minimum value ε ≥ 0 such that SSP kε admits a proper,
deterministic and stationary policy Πk. Observe that εk ∈ {−εka, a ∈ A}. We can thus
compute εk and Πk in strongly polytime using Lemma 1.5 and Lemma 1.6. We will now
prove that V Πk converges to V ∗ as k tends to infinity (V Πk(s) is the value associated
with Πk when starting from s).

Let us first notice that εk ≤ maxs{Vk(s)−V ∗(s)} (remember Vk(s) ≥ V ∗(s)). Indeed
for ε = maxs{Vk(s)− V ∗(s)}, we have V ∗(s) ≤ Vk(s) ≤ V ∗(s) + ε for all s and it follows
that for any s and for any optimal policy Π∗, we have c(Π∗(s))+

∑
s′ p(s′|Π∗(s))Vk(s′) ≤

c(Π∗(s))+
∑
s′ p(s′|Π∗(s))(V ∗(s′)+ε) ≤ c(Π∗(s))+

∑
s′ p(s′|Π∗(s))V ∗(s′)+ε = V ∗(s)+ε.

It follows that Vk(s)− (c(Π∗(s)) +
∑
s′ p(s′|Π∗(s))Vk(s′)) ≥ Vk(s)− V ∗(s)− ε ≥ −ε and

thus Π∗(s) ∈ Akε . Hence Π∗ is a proper deterministic and stationary policy of SSP kε and
the result follows. It implies in particular that εk tends to zero as k tends to infinity by
Theorem 1.11.

Let us consider the pair (xΠk , yk). xΠk is a solution of (P) but yk might not be a
feasible solution to (D) so it is not a primal/dual pair of solutions. However it almost sat-
isfies the complementary slackness conditions. In particular we have

∑
a∈A c(a)xΠk(a) =∑

a∈Πk
c(a)xΠk(a) ≤

∑
a∈Πk

(yk(J−P)T1a+εk)xΠk(a) = yk(J−P)TxΠk+
∑
a∈Πk

εkx
Πk(a) =

yk1 + εk1TxΠk . It follows that, as k tends to infinity,
∑
a∈A c(a)xΠk(a) tends to the op-

timal value of (P). Indeed yk tends to V ∗ by Theorem 1.11 (and V ∗1 is the optimal
value of (D) and (P)), εk tends to zero by the discusion above, and 1Tx is bounded for
proper policies. Therefore xΠ

k tends to be an optimal solution of P , Πk tends to be an
optimal policy, and V Πk tends to V ∗. We sum up the result in the following theorem.

Theorem 1.12
In each iteration k of Value Iteration, one can compute in strongly polynomial
time a proper, deterministic and stationary policy Πk such that V Πk tends to
V ∗ as k tends to infinity.

1.4.2 Policy Iteration

An alternative to Value Iteration is to use a simplex algorithm to solve (P). In order to
do so we need an initial basis. We can use Lemma 1.6 to find a proper deterministic and
stationary policy Π. Then as we already observed, xΠ = (I−PΠ)−T1 is a non-degenerate
feasible basic solution of (P). Because the basic solutions are non-degenerate, we can
implement any pivot rule from this initial basic solution and the simplex algorithm will
converge in a finite number of steps. This type of algorithm is often referred to as sim-
ple policy iteration in the litterature. This proves that simple PI terminates in a finite
number of steps. Unfortunately, most pivot rules are known to be exponential in n and
m in the worst case [75].

Theorem 1.13

46| THE STOCHASTIC SHORTEST PATH PROBLEM:
A POLYHEDRAL COMBINATORICS PERSPECTIVE

Under Assumption 24, simple policy iteration converges in a finite number of
steps.

In contrast with simple policy iteration, Howard’s original policy iteration method
[58] changes the actions of a (basic) policy in each state s for which there is an action
in A(s) with negative reduced cost. We will prove now that this method converges un-
der Assumption 24, by proving that the method iterates over proper, deterministic and
stationary policies and that the cost is decreasing at each iteration. Given a proper,
deterministic and stationary policy Π, xΠ = (I − PΠ)−T1 is the basic feasible solution
of (P) associated with the basis (I −PΠ)T . We define the reduced cost vector associated
with c and Π as c̄Π := c − cΠ(I − PΠ)−T (J − P)T following linear programming (in
order not to overload the notations we consider c as a row vector in this section). Let
us denote by A<(Π) the set of actions a of A such that c̄Π(a) < 0. We know from linear
programming that if c̄Π(a) ≥ 0 for all a, then xΠ (and thus Π) is optimal. If A<(Π) 6= ∅,
then we can swap actions in Π with actions in A<(Π) for each state where such an action
exists. Let us denote by Π′ the resulting policy.

Proposition 29
Π′ is proper and c · xΠ′ < c · xΠ

Proof. We denote by yΠ the dual solution associated with Π i.e. yΠ = cΠ(I − PΠ)−T .
Assume for contradiction that Π′ is not proper. Let GΠ′ be the support graph of this
policy. Since Π′ is not proper, there exists a non empty set of states that are not in
R−GΠ′

(0). It implies that there is a set of vertices V in V (GΠ′) such that 0S , 0A 6∈ V

and δ+(V) = ∅. We can choose for instance V = V (GΠ′) \ R−GΠ′
(0). Now we choose V

minimal with this property. There exists an action a of A<(Π) in V , otherwise vertices
in V are not in R−GΠ

(0), a contradiction with Π being proper. Consider the graph Ga
obtained by taking the subgraph of GΠ′ induced by the vertices in V that are reachable
from a, by removing the edge between a and the unique state s with a ∈ A(s), and by
adding an artificial state s0 with a as its unique possible action. Let Aa be the set of
actions in Ga. Note that by minimality of V , every vertex in Ga is in R−Π′(s). Indeed if
not we can change the set V by considering instead the vertices in Ga that do not have
a path to s.

We can associate a s0-SSP instance to Ga by considering s as the target state. Π′
is a s0-proper policy for this problem. Now let xΠ′ be the corresponding flux vector (in
principle it is defined only on the actions in Ga but we extend the flux on the other
actions by setting it to zero). We can interpret xΠ′ as a (non zero) transition cycle of
the original problem (the flux is defined on the same set of actions and xΠ′(a) = 1).
The vector xΠ′ ≥ 0 thus satisfies (J − P)TxΠ′ = 0. Now the reduced cost c̄Π(a′) =
c(a′)− cΠ(I − PΠ)−T (J − P)T1a′ satisfies c̄Π(a′) ≤ 0 for all a′ ∈ Aa, by definition of Π
and Π′ (actions in Π have reduced cost 0 and actions in Π′ that are not action from Π have
a negative reduced cost). Also, as already observed, c̄Π(a) < 0. Let us analyze cxΠ′ . We
have cxΠ′ =

∑
a′∈Aa

c(a′) ·xΠ′(a′) = (
∑
a′∈Aa

c̄Π(a′) ·xΠ′(a′))+cΠ(I−PΠ)−T (J−P)TxΠ′ .

1.4 ALGORITHMS | 47

Because (J − P)TxΠ′ = 0, we have c xΠ′ =
∑
a′∈Aa

c̄Π(a′) xΠ′(a′) but this is negative as
xΠ′(a′) > 0, c̄Π(a′) ≤ 0 for all a′ ∈ Aa, and c̄Π(a) < 0 . Therefore xΠ′ is a negative cost
transition cycle for our original instance, but this contradicts Assumption 24.

Now that we know that Π′ is proper, we can define xΠ′ to be the network flux
associated with Π′. We have c xΠ′ − c xΠ = c (xΠ′ − xΠ) = (c̄Π + cΠ(I − PΠ)−T (J −
P)T)(xΠ′ −xΠ). But by feasibility of Π′ and Π, we have (J −P)TxΠ′ = (J −P)TxΠ = 1
and thus c xΠ′ − c xΠ = c̄Π (xΠ′ −xΠ) = c̄Π xΠ′ (as c̄Π(a) = 0 for all a ∈ Π by definition
of the current basis) . This latter term is negative as Π′ is using at least one action in
A<(Π) and the actions in Π have reduced cost zero.

Because we have a finite number of proper, deterministic and stationary policies, we
can conclude that Howard’s policy iteration algorithm converges in a finite number of
steps.

Theorem 1.14
Under Assumption 24, Howard’s PI method converges in a finite number of
steps.

Observe that it is important not to change actions which are not strictly improving.
Indeed, in this case it is easy to build deterministic examples where Proposition 29 fails
(see for instance Fig. 1.2). As for value iteration, prior to this work policy iteration was
not known to converge in this setting. And again, as for VI, unfortunately Howard’s
Policy Iteration can be exponential in n and m [41].

1

2 3 4

0−1

2

1 3

1

−2

3

−1

Figure 1.2 – A deterministic shortest path (with target state 0): the dark “actions”
represent the current policy, and the dashed “actions” have non positive reduced cost
; changing all actions with non positive reduced cost yield a new policy which is not
proper.

1.4.3 The Primal-Dual algorithm: a generalization of Dijkstra’s algo-
rithm

Primal-dual algorithms proved very powerful in the design of efficient (exact or approxi-
mation) algorithms in combinatorial optimization. Edmonds’ algorithm for the weighted
matching problem [39] is probably the most celebrated example. It is well-known that

48| THE STOCHASTIC SHORTEST PATH PROBLEM:
A POLYHEDRAL COMBINATORICS PERSPECTIVE

for the deterministic shortest path problem, when the costs are nonnegative, the primal-
dual approach corresponds to Dijkstra’s algorithm [84]. We extend this approach to the
SSP setting. Let us first recall the linear formulation of the problem and its dual :

min cTx
(J − P)Tx = 1
x ≥ 0

(P) max 1T y
(J − P) y ≤ c (D)

The primal-dual algorithm works as follows here. Consider a feasible solution ȳ to
(D) (initially ȳ = 0 is feasible if c ≥ 0). Now let Ā := {a ∈ A : 1Ta (J − P) y = ca}.
We know from complementary slackness that ȳ is optimal if and only if there exists
x ≥ 0 : (J −P)Tx = 1 and xa = 0,∀a 6∈ Ā ((P) admits a finite optimum by Assumption
24). The problem can be rephrased as a so-called restricted primal (RP), where JĀ, PĀ
and xĀ are the restrictions of J, P, x to the row in Ā. We also give its corresponding
dual problem (DRP).

min 1T z
(JĀ − PĀ)TxĀ + z = 1
xĀ, z ≥ 0

(RP)

max 1T y
(JĀ − PĀ) y ≤ 0
y ≤ 1

(DRP)
If there is a solution of cost 0 to (RP) then we have found an optimal solution to

our original problem. Else, we use an optimal, positive cost solution y to (DRP) and we
update the initial solution by setting ȳ := ȳ+ εy with ε ≥ 0 maximum with the property
that ȳ+ εy remains feasible for (D), and we iterate. The algorithm is known to converge
in a finite number of steps ((RP) being non degenerate, no anti-cycling rule is needed to
guarantee finiteness here [84]) and this provides an alternative approach to the problem
as long as we can also solve (RP) and (DRP).

Observe that (RP) can be interpreted as a SSP problem with action set Ā ∪ {m +
1, ...,m + n}, where actions m + k, for all k = 1, ..., n is an artificial action associated
with state k that lead to the target state 0 with probability one. The cost of actions in Ā
is zero while the cost of the artificial actions m+1, ...,m+n is one. The primal-dual ap-
proach thus reduces the initial problem to a sequence of simpler 0/1 cost SSP problems.
Note that (RP) is actually the problem of maximizing the probability of reaching state
0 using only actions in Ā. This problem is known in the AI community as MAXPROB
[73]. Little is known about the complexity of this problem. We know though that it
can be solved in weakly polynomial time because it fits into our framework and we can
thus solve it using linear programming. We could also use Value Iteration, the sim-
plex method or Policy Iteration as described in the previous subsections. Some simplex
rules are known to be exponential in this setting [75]: the question of the existence of a
strongly polynomial algorithm is thus wide open for this subproblem too and we believe
that MAXPROB deserves attention on its own. Using Howard’s policy iteration algo-
rithm to solve the auxiliary problem, the primal-dual approach provides an alternative
finite algorithm to solve SSP for nonnegative costs instances.

1.5 CONCLUSION AND PERSPECTIVES | 49

Theorem 1.15
When c ≥ 0, the primal-dual algorithm can be initialized with ȳ = 0 and if the
MAXPROB subproblems are solved using Howard’s Policy Iteration (or any
other simple Policy Iteration method), then it terminates in a finite number of
steps.

We are investigating the complexity of this extension of Dijkstra’s algorithm to the
SSP. Observe that we do not need to impose that c is nonnegative to apply the primal-
dual approach. In fact, one can use the standard trick of adding an artificial constraint∑
a xa ≤ M to the problem, with M “big” to find an initial dual solution and iterate

the algorithm [84]. The structure of the subproblem changes but it can still be solved
using the simplex method. This provides an alternative approach to Value Iteration and
Policy Iteration in the general case too.

One might consider variants of the primal-dual algorithm where the updates of the
dual solution do not follow the generic mechanism that guarantees finiteness for general
LPs, but instead the updates are ‘ad-hoc’ and exploit the structure of the problem. It
might still be possible to prove finiteness of the algorithm in such cases. For instance
the so-called auction algorithm [14] introduced by Bertsekas to solve the (deterministic)
shortest path problem can be seen as such an ad-hoc implementation of the primal-
dual algorithm. The original version is pseudo-polynomial but it could be turned into
a strongly polynomial time algorithm [18]. This might be an alternative route toward a
strongly polynomial time algorithm for the stochastic shortest path problem.

1.5 Conclusion and Perspectives
In this chapter, we have introduced a new unifying framework for the stochastic short-
est path problem. We have shown that the classic flow decomposition theorem extends
naturally from network flows to network flux and we have exploited this result to prove
that, in this setting, we can restrict to deterministic and stationary policies and that
the standard iterative algorithms for Markov Decision Process, i.e. Value Iteration and
Policy Iteration, converge. We have also introduced a new promising algorithm that can
be seen as a generalization of Dijkstra’s algorithm for the deterministic shortest path
problem. Our goal is now to implement fast versions of these algorithms and to compare
their practical performances on various real-world instances. While the implementation
of Value Iteration and Policy Iteration does not seem to provide major numerical chal-
lenges (we are still testing the corresponding implementations), our first implementation
of the generalization of Dijkstra’s algorithm suffers from numerical instability. We are
gaining expertise in this area by exchanging with experts of stabilization techniques. We
should soon have a stable version of this algorithm implemented. Nevertheless a careful
numerical evaluation of the different methods on significative instances is beyond the
scope of the current chapter. We leave the corresponding project for future research.

This chapter leaves several fundamental questions unsolved. In particular, we do not
provide new insight on the challenging question of whether the stochastic shortest path

50| THE STOCHASTIC SHORTEST PATH PROBLEM:
A POLYHEDRAL COMBINATORICS PERSPECTIVE

problem (or total reward undiscounted MDPs) can be solved in strongly polynomial
time. We conclude though with a few (possibly) simpler questions that, we believe,
deserve some attention on their own and that might help addressing the former : Is it
possible to solve MAXPROB in strongly polynomial time ? Can we bound the number
of iterations of our variant of Dijkstra’s algorithm by a polynomial ? by a polynomial in
n and m ? Can the stochastic shortest path problem be solved in strongly polynomial
time when the costs are nonnegative ?

Chapter 2

Golf Strategy Optimization for pro-
fessional golfers performances esti-
mation on the PGA Tour

2.1 Introduction
The PGA tour is a competitive Golf circuit which takes place mostly in North America.
Every year, between 132 and 156 male professional golfers compete on about fifty events,
including the U.S. Open, the PGA championship, the Masters Tournament and three
of the four majors. In this chapter, our goal is to develop new methods to predict the
scores of professional golfers during events of PGA. The methodology we develop can
be used for both predictive analysis (anticipate results) and prescriptive analysis (help
golfers to decide upon which skills to improve to maximize winning).

Golf is a sport where the player has to put a ball in a cup with the help of golf club
in a minimum number of shots (see [59] for the official rules of golf in 2019). The field
where the golfer plays is called a golf course (or course for short). A course consists of
eighteen holes. A hole is composed of different type of grounds:

• the tee where the ball is placed at the beginning of the game where the grass is
short. The golfer can use a tee 1 in order to raise the ball for his first shot;

• the green where the grass is the most closely mown and where the hole (cup) and
a flag-stick (pin) are placed;

• the fairway is a part of the hole between the tee and the green where the grass is
kept short;

1same name but it refers to a small piece of wood T-shaped

51

52| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

• different types of rough (depending of the height of the grass) which are the areas
around the fairway. Usually, the further you get from the fairway, the higher the
grass is;

• the bunkers, hollow areas filled with sand where it is difficult to hit from;

• different obstacles like water or trees.

The score of a golfer on a hole is the number of shots he made in order to put the
ball in the cup, plus possible penalties (e.g. when the ball fall into the water, or goes
out-of-bound of the course) [59].

There are two main types of competitions in Golf:

• The Stroke Play is a mode where all players compete again each other. There is
no limitation on the number of players. Each player plays on the 18 holes (or 72
for professional tournament) and the final score of a player is obtained by adding
up each score on the different holes. The winner is the player with the lower final
score.

• The Match Play is a 2-player mode where the player who has the lower score on
a hole wins 1 point. If there is a draw, each player wins 0.5 point. At the end of
the eighteen holes, the golfer with the most points wins (note that if the difference
of points is more than the number of remaining holes, the players do not play the
last holes).

At the beginning of a specific hole, the golfer places the ball on the tee. His score on
the hole is initialized to 0. The golfer shoots the ball from the tee ground to the cup.
Each time the golfer shoots, he chooses a direction and a distance of shooting and his
score is increased by 1, or by 2 if the ball falls into the water, or out-of-bound (when
the ball goes in the water or out-of-bound, a new ball in placed at a specific position:
typically the previous position for out-of-bound and the entry point for water obstacles).
The problem which consists in choosing the ‘right’ directions and distances for each shot
in order to minimize the final score on a specific hole is what we call the golfer’s strategy
optimization problem (or sometimes, for short, the golfer’s problem). In this chapter,
we assume that the golfer is not influenced by his previous shots or his position in the
leader-board. Even if a professional golfer might take more risks if he is far behind in
order to catch up with the leaders, or if a missed-shot streak could impact in a bad way
the play of the golfer (while a series of good shots could have the opposite effect), we do
not consider these aspects. This kind of impacts are not to be under-estimated, in golf
like in other sports[100][74]. However, professional golfers do not often take such risks
and they usually play regardless of their position in the leader-board.

With these assumptions, the golfer’s problem can be modeled as an Markov Decision
Process (MDP) and especially as a Stochastic Shortest Path Problem (SSP). We will
detail this later, but for formal definition of SSP, we encourage the reader to refer to
chapter 1.

2.1 INTRODUCTION | 53

Broadie was a precursor in assessing golfer’s performances through advanced quan-
titative analysis. In [24], he introduced a new statistical measure called ‘Strokes gained’
in order to rank professional golfers in different parts of the game of Golf (typically for
different distances, types of grounds...). In [6], Bansal and Broadie study the impact of
the size of the hole on the putting 2, for either professional and amateur golfers with
simulation techniques. Using the same techniques, Broadie and Ko in [26] study the
impact of distance and direction errors on Golf scores. In [25], Broadie explains how to
use Strokes gained in order to help golfers to improve their skills and performances.

Sugawara, Kawamura and Suzuki [98] used Q-Learning in order to optimize golfers’
strategies, taking into account the course layout, and the golfers’ skills using simulation
models. Drappi and Co Ting Keh [36] predict the discrete probability distribution of a
golfer’s score, shot after shot, taking into account the golfer’s personal skill, the difficulty
and the conditions of the course, using learning and Bayesian techniques.

Markov Decisions processes have already been used in Golf. Lowell Heiny [67] used
stochastic process and Markov chains in order to predict scores. He considered that golf
could be modeled as an absorbing Markov chain, where the transition probabilities are
given from Shotlink Database (see the introduction for details on Shotlink). As we try
to infer the will of the player from the data, Lowell Heiny used directly ‘gains’ (a mark
given for each shot) in order to build the transitions [67]. Prior to his work, Maher
applied Markov chain theory to several sports: tennis, soccer, darts, golf and snooker
[68].

Markov decision processes has been also used in many other sports. In 2013, Ter-
roba, Kosters and al [102] used Markov Decision Processes in order to compute optimal
strategies in tennis. They study video sequences in order to build the transition prob-
abilities. In 2012, Trumbelj and al. [105] modeled Basket-Ball as a Markov Decision
Process. There transition probabilities are built from a play-by-play NBA program, and
statistics of the teams themselves. With the same idea, Routley [92] applied Markov de-
cision processes algorithms in order to find the optimal strategy of a team in ice hockey.
Pfeiffer et al. [85] in 2010 decomposed the different time period in table tennis matches
in order to model this sport as a MDP. Hoffmeister and Rambau [55] [56] used a 2-
scale approach with two types of MDP in order to model different sports, and especially
beach volley-ball. The first one is the ‘strategic’ MDP, where the macro decisions of the
game are taken, and the second one is needed to build the transition probabilities of the
strategic MDP by simulation.

In this study we model the golfer’s strategy optimization problem as a stochastic
shortest path problem in the same spirit as [98] and [26] but with a different target as
we will detail later. We need to define the states, the actions available in each state,
the costs of these actions and the transition matrix of the SSP. In our model, the states
are the different positions where the ball can stand (we discretize the hole). The actions
are shots that the golfer can perform in a particular state: it is basically defined by a
targeted direction and a targeted distance. The cost of an action is 1, or 2 if there is
penalty (if the ball fall into the water or out-of-bound).

2shots on the green

54| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

The transition matrix contains the probabilities to end up in any state, given that we
perform a particular action. Ideally, in order to have this kind of information for a par-
ticular golfer, he would have to shoot hundreds of balls from different distances, different
directions and different grounds (fairway, rough and bunkers): both the intention of the
shot and its realizations are needed to compute an empirical transition matrix. Beside,
once the theoretical distribution of the players gathered (we define what it is later), we
need a simulator in order to evaluate the true final position of impact of the ball given
the weather conditions, the roll of the ball, the obstacle on the balla trajectory and so
on. We developed a simple simulator that take into account some of these aspects under
certain assumptions that we detail later in this chapter.

Shotlink is a huge database which collect millions of shots of professional golfers
during international competitions [86]. This database gives access to a large number
of information among which coordinates and distance to the pin before and after each
shot, type of ground (fairway, rough, bunkers) from where the golfer has shot and a
large number of other information. Unfortunately, we cannot access the intention of
the player through Shotlink. One way to infer the intention of the player uses video
sequences analysis in order to get the physical signs of potential targets. In 2006, Beetz
et al. used this method in football [9]. We did not have access to such information so,
instead we developed a new methodology to infer the intention of a golfer from general
knowledge of professional golfer’s strategies. We detail this methodology later in the
chapter.

Once the SSP model is set, we use algorithms from chapter 1 to solve the golfer’s
strategy optimization problem. Now the originality of our approach comes from the fact
that we do not compute the optimal strategy to help the professional golfers to improve
their game. Instead, we use it to predict their score. In order to be able to predict golfers
scores, we first compute the optimal strategy for a player. As the player is a professional
golfer, we assume that he is playing (close to) his optimal strategy according to his
personal skill, the course layout, etc... Thus, we are able to create a ‘numerical clone’ of
a player. This clone can play thousands of holes which allows to build statistical results
such as distribution of scores or probability of winning. The same type of techniques is
used in [28] in the game of Go in order to train AI. Monte Carlo simulation were also
used in [79] in order to compute the probability for a player to win a match in tennis.

Organization of the chapter

In the first part of this chapter we describe precisely how we model the golfer’s strategy
optimization problem as a SSP. Then we explain how we infer the intention of the golfer
from the Shotlink database. In order to evaluate the accuracy of our assumptions and the
quality of our model in general, we compared the prediction we make with our model to
what has happened in reality. For the two main types of golf competitions (Stroke Play
and Match Play), we developed ad-hoc methods [23] inspired by bootstrapping [4][40]
to assess the performances of our approach. The numerical results and the validations
methods are explained in the last part of this chapter.

We use the example of Phil Mickelson to illustrate the model. Then we present and

2.2 MODELING THE GOLFER’S PROBLEM AS A SSP | 55

analyze our results for two competitions: one in stroke-play at Augusta National Golf
2017 and one in match-play at the Ryder-Cup 2018, before concluding and giving some
perspectives.

2.2 Modeling the golfer’s problem as a SSP

In this section, we describe in more details how we create an instance of SSP for a
given player and a given hole. This requires to define states, actions, action costs and a
transition matrix.

2.2.1 The States

In our model, a hole is a bounded rectangle region encapsulating tee, fairway, green and
the main obstacles within an area where the golfer might end up while playing rationally.
The states are pairs (position, ground) of the hole. We assume that the hole is flat and
we discretize the hole into a grid of identical cells in order to restrict to a finite set of
states (see figures 2.1 2.2 for an illustration).

The choice of discretization is a trade-off between precision and computation time.
Indeed, the smaller the cells are, the better the precision is (we know more precisely
where the ball stands) but the higher the computation time is (the model size increases).
The discretization size is consequently a parameter of our model. For the numerical
experiments, we considered a square size of one meter which offers a good trade-off.

Note that in our case the state space has to be finite in order to define a SSP instance,
but alternative exist, such as non finite or continuous state spaces [37].

56| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Figure 2.1 – The 15th hole of
Augusta National Golf Club

Figure 2.2 – An illustration of
our discretization approach

The entries of our model for the holes are pictures of these holes (see example in
figure 2.1). Each pixel of the pictures has a color, which represent a type of ground. The
flag is represented in black. In the discretization, the ground type of a cell is basically
the ground type of the majority of the pixels it contains. We also add a sink state (the
pin).

2.2.2 The Actions

In each state, the actions correspond to the different possible shots. In our model, an
action consists (except for green states that we describe later) in a targeted (flying)
direction and distance. An action defines the target of the player.

Note that in real conditions, the golfer chooses a direction, a golf club and usually
an intensity for his shot. But each club is used for specific distance, so our approach
matches the decisions the golfer has to make in real conditions.

In the following, we actually treat differently the actions performed on non-green
states, and those performed on the green.

Actions performed in non-green states

An action performed in a non-green state consists, as already discussed, in a distance
and a direction. We discretize the distances and directions so as to define a finite set
of actions. For the distances, the discretization depends on the distance of the shot.

2.2 MODELING THE GOLFER’S PROBLEM AS A SSP | 57

Indeed, the discretization has to be greater if the golfer shoots far, and smaller if the
golfer shoots closer: the golfer cannot target two points that are close when the distance
of the shot is big, whereas it can be possible when the distance of shot is short. If
the distance of the shot is greater than 30 meters, we assume that the player is able
to target any multiple of 5 (meters). Under 30 meters, we assume that the golfer can
target any multiple of 2 (meters). This limit of 30 meters corresponds to the short game
which includes chipping and short pitching. In the short game, the golfer is usually more
precise, so the discretization has to be smaller.

For the directions, we assume that the golfer can aim at any even angle (in degree
from 0 to 360): this is also a parameter of our model which can be changed. This param-
eter has been chosen so as to have a targeted direction error lower than 3.5 meters for a
distance of 100 meters, which seems reasonable given the fact that golfers aim ‘visually’.
The choice of discretization for distances and direction is different in nature from the
choice of discretization for the states. For the states, the smaller the discretization is,
the more precise the model is: there is no disadvantage to lower this discretization if
we do not care about computational time complexity. Whereas for the actions, if the
discretization is ‘too small’, we artificially define actions that a golfer cannot perform in
real conditions: it would ‘allow’ the player to play more shots, even if the golfer is not
able to play them. The discretization we took is based on the knowledge of professional
golfer’s play.

Actions performed in the green

For the states on the green, the layout of the field is quite different from the rest of the
hole (assuming that the hole is flat is no longer reasonable). We would need another
specific simulator, so we manage the actions on the green differently. We assume that
the average number of shots the player has to shoot to put the ball in the cup from any
point on the green is a function of the distance to the pin only, which is a very natural
assumption, as studied by Tierney and Cook [103] (see figure 2.3).

58| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Figure 2.3 – Probabilities of 1 and more putts according to the distance to the pin on
the green (figure from [103])

Figure 2.3 shows the probability of 1 putt, the probability of more than 3 putts and
the expected number of putts to put the ball in the cup according to the distance to
the cup. We can read for example, that the expected number of shots when the ball is
around 10 feet far from the cup is around 1.54. We can also see that the probability to
put the ball in the cup in one shot when the ball is 20 feet far from the cup is around
17%.

Consequently, for each state on the green, we define only one action, that leads to
the cup with probability 1. The cost of this action is the average number of shots the
player makes to put the ball in the cup. The cost’s definition, which depends on the
distance to the pin and the golfer himself is described in the following section. Note that
we implicitly assume that it is impossible to enter the cup from outside the green, which
is also quite reasonable (even though it may happen).

2.2.3 The Cost Function

As we defined differently the actions performed from the green and the actions which
are not, we define differently their costs as well.

For each shot which is performed out of the green, the player score is increased by
1, or 2 if there is a penalty. A penalty arises when the ball falls into the water, or
when the ball goes out-of-bound. In this case the next state is the previous position
for out-of-bound and the entry point for water obstacles. Since we know the transition
matrix of the model (described in the following section), we can define the cost of an
action as the average of the costs of its realizations.

On the green, there is only one action per state. The cost of an action depends on
the golfer, and the distance between the (middle of the) state and the pin. This cost
represents the average number of shots the player makes to put the ball in the pin from
this distance. From the Shotlink database, we know how many shots the player made

2.2 MODELING THE GOLFER’S PROBLEM AS A SSP | 59

to reach the pin according to the distance on a certain period. Here is an example for
Phil Mickelson in 2018 (see figure 2.4)

Figure 2.4 – Number of putts according to the distance (in inches) for Phil Mickelson in
2018

From this, we average over the number of shots with ‘slices’ of

• 1 foot large when the distance to the pin is below 10 feet

• 5 feet large when the distance to the pin is between 10 and 25 feet

• We average over all the remaining shots after 25 feet

For Phil Mickelson in 2018, we obtain:

60| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Distance state/pin (in feet) cost
< 1 1
< 2 1
< 3 1.005
< 4 1.04762
< 5 1.14583
< 6 1.26984
< 7 1.4375
< 8 1.36585
< 9 1.45238
< 10 1.57576
< 15 1.67949
< 20 1.81651
< 25 1.7963
≥ 25 1.98655

We can plot the average number of putts according to the distance to the pin (see
figure 2.5).

Figure 2.5 – Average number of putts according to the distance to the pin

Note that the empirical values we get are consistent with the graphic from Tierney
and Cook (see figure 2.3).

2.2 MODELING THE GOLFER’S PROBLEM AS A SSP | 61

We can see some statistical aberration between 7 and 8 feet: the average number of
shots is greater when the player shots from 8 feet than from 7. We assume that these
errors are due to the data. Since a green state is one square-meter large, we smooth this
effect by picking 100 points at random in this state (which correspond to possible ‘true’
positions), compute the cost from each point and average over these 100 realizations.

Now that we defined the states, the actions from these states and the costs of these
actions, let us define the probabilities: the transition matrix.

2.2.4 The Transition Matrix

To define the transition matrix, we have to know the probabilities to end up in a partic-
ular state, given that we performed a particular action. We build the transition matrix
in two steps: we first define the player’s theoretical distribution (of the impact point)
around the target, and then simulate these results on the hole. The theoretical statistics
of a player represent the intrinsic shot’s deviations of the player, while the transition
matrix also depends on the obstacles, the roll of the ball, etc...

Theoretical distributions

One possible way to get access to theoretical distribution of a player is to ask him
perform all possible actions (distance and direction) hundreds of times in order to get
the empirical deviations of his shots. Obviously this approach is unfeasible in practice
for professional golfers of the PGA tour.

In our model we infer the theoretical distribution thanks to the Shotlink database.
We describe the method we use in the next sections.

Simulation on the Hole

From the theoretical distribution of a golfer (a set of realizations of the impact of shots
with the ground around the target point defined by the action) we simulate the shots on
the hole we consider: we plug impact of the ball on the hole and we change the point of
arrival if an obstacle is on the trajectory of the ball, or if the rules of golf say so.

We developed a simple simulator, assuming that:

• there is no rolling: the ball ends up exactly where it falls.

• the trees have infinite height: the golfer cannot shoot over a tree.

• the impact between the ball and the obstacles (trees) are very naive: when a ball
hit a tree, it ends up at the earlier point in the trajectory before the tree.

• when the ball falls into the water or goes out-of-bound, the ball is repositioned
where it was before shooting out-of-bound, and at the point of entrance for water
obstacles. Then, a penalty occurs.

62| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Our simulator is quite naive and can obviously be improved. However it is an inde-
pendent piece of our model: it ‘only’ affects the probabilities of the transition matrix.
We could easily plug in any more advanced simulator (e.g. game).

To sum up, from an action (a target point) if we have access to the distribution
of impacts around the target, we can simulate these results on an actual hole and see
in which cell of the hole (in which state) the ball would end up. Then we obtain an
empirical probability distribution to end up in a state for a given action, which is exactly
the transition matrix. Let us now describe how we can build the theoretical distribution.

2.3 Statistical Inference
In this section we will explain how we infer the theoretical distribution of a golfer from the
Shotlink database. The main issue is to infer the aim of the player only from realizations
of shots during professional competitions.

2.3.1 Shotlink Database

Shotlink is a huge database which collects shots of golfers during professional competi-
tions [86] since 1983. Among all the quantitative information gathered by Shotlink, we
can have access to:

• the name of the golfer who shoots;

• the name of the tournament, of the course, and the hole ;

• the type of ground before and after the shot;

• the coordinates of the ball before and after the shot;

• the distance to the pin before and after the shot;

• whether the shot is a recovery shot or not (i.e. if the players just wanted to reach
a place easier to shoot from);

• the type of game: Approach the green (middle and long game), Around the green
(short game), putting (on the green) or driving (from the tee).

We can get access to a lot of other informations (see Annex 3.6).
These information are our raw material to construct the theoretical distribution. In

order to be able to relate the level of the players at a precise instant, we restrict to
the data of one year. The main informations missing (but quite impossible to collect
without assumptions) is the intention of the golfer when he shoots (that is, his original
target). In order to do that, we distinguish two cases: the shots made from the tee and
the others (off the tee).

2.3 STATISTICAL INFERENCE | 63

2.3.2 Shots off the tee

The goal of the golfer is to put the ball in the cup. One natural way to infer the target
is to assume that the golfer is targeting the pin directly (when the distance permits) for
the shots off the tee.

In order to validate this assumption we need to gather all the shots played off the
tee (at a distance where the pin is reachable). Then, we draw ‘profiles’ like so: for a
shot, we have the coordinates of the point from which the shot has been made and the
point of arrival of the same shot. We also have access to the coordinates of the pin of
the hole on which the golfer shoots. We first draw at the origin all the starting points of
the shots, as if the golfer shoots from the same point. Then on a vertical line we draw
the points corresponding to the pins: ordinates the corresponding shots are the distance
between the starting point of the shot to the pin. Finally, we draw the arrival points
relatively to the corresponding pin position and we link with a line between the two. We
give an example with two shots in figure 2.6.

Figure 2.6 – Construction of a profile

We compute the profiles (the drawing described above) of the player for two types
of games: Approach the green and Around the green, and for four types of ground:
Fairway, Primary Rough, Intermediate Rough and Bunkers. The distances are in inches
(figure 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14)

64| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Figure 2.7 – Profile of Phil Mickel-
son for approach the Green on the
Fairway

Figure 2.8 – Profile of Phil Mickel-
son for approach the Green on Pri-
mary Rough

Figure 2.9 – Profile of Phil Mickel-
son for approach the Green on In-
termediate Rough

Figure 2.10 – Profile of Phil Mick-
elson for approach the Green on
Bunkers

2.3 STATISTICAL INFERENCE | 65

Figure 2.11 – Profile of Phil Mick-
elson for around the Green on the
Fairway

Figure 2.12 – Profile of Phil Mick-
elson for around the Green on Pri-
mary Rough

66| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Figure 2.13 – Profile of Phil Mick-
elson for around the Green on In-
termediate Rough

Figure 2.14 – Profile of Phil Mick-
elson for around the Green on
Bunkers

We consider that:

• long game cover shots over 100 meters long, excluding driving

• middle game cover shots between 30 and 100 meters long

• short game cover shots below 30 meters long, excluding putting

We can observe ‘visually’ that in most cases, the pair of points (hypothetical target
and arrival point) are close. For pairs that are remote, there are two possible explana-
tions: either the golfer has completely missed his shot (unlikely for professional golfers,
unlike he hit a tree), or the golfer was not targeting the flag. In both cases, we choose
to erase the corresponding data. We erase these data according to two criteria: a flat
distance and a percentage of the distance of the shot.a For the short game we deleted
the shots that end up more than 5 meters away from the hypothetical target and more
than 10% of the distance of the shot. For the middle game, we deleted the shots that
end up more than 30 meters away from the hypothetical target and more than 10% of
the distance of the shot. These parameters seem reasonable for professional golfers and
can be modified.

A first approach would be to use these profiles as theoretical distribution directly:
these profiles provide us pairs of (target, realization) which is enough to build the theo-
retical deviation of shots for a golfer. However, the problem of this approach is the lack
of data for some type of ground. Indeed, from bunkers or intermediate rough, or for the

2.3 STATISTICAL INFERENCE | 67

short games, there are some distances with almost no historical shot. The issue is that
if, for instance, there is only one shot played for a particular distance d on a particular
ground g. Then if we adopt this first approach, the model would consider that every
time the golfer is targeting a point from distance d on ground g, the ball will end up
in the only state for which we have a realization. This is a serious issue as we want to
assess the general behavior of a player and not consider that a particular shot relates
the average play. So we have to manage the lack of data for some distance/ground.

So the use of raw data alone is not satisfying. We have to ‘regenerate’ plausible
additional data in order to cover all the distances in all types of grounds.

Creation of ‘Stars’ on the Fairway

In order to generate new plausible data, we want to take as reference the ground on
which we have the greater number of data: the fairway. But already in the fairway, we
might have the issue discussed above for some distance. So we start by regenerating new
data for the fairway.

The main problem is to generate data for any distance. To be able to do so, we assume
that there is a very simple linear dependency on the fairway between the distance of
the shot and the deviation (depth and lateral deviation). That is, the deviation at
distance d is twice the deviation at distance d

2 (figure 2.7, 2.11).

A star is drawn considering that all the shots are targeting a same artificial point: the
aggregation point. From the shots of the profile, we align all the pins of the corresponding
shot to the aggregation point and we multiply the coordinates of the arrival point of the
corresponding point with a factor da

ds
where da is the distance of distance of aggregation

and ds the distance of the shot (see figure 2.15).

68| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Figure 2.15 – Construction of a star

Thus on the fairway, we create stars for the three different types of game: long,
middle and short game (see figures 2.16, 2.17, 2.18 for Phil Mickelson with the 2018’s
data). The distances of aggregation are defined as follow. We also remind the definition
of short, middle and long game. Note that the short game does not include putting and
that the long game does not include driving.

Range (in m) Distance of aggregation (in m)
Short Game [1, 30] 10
middle Game]30, 100] 55
Long Game > 100 130

At this point, we want to test if our linear dependency between distance and deviation
is reasonable enough. We consider that the linearity between the distance of the shot
and both depth and lateral deviations is proven if both abscissa and ordinates of the
points of the stars follow normal laws, as the number of realization is sufficiently big to
assume that the central limit theorem is true.

We tested with the Shapiro-Wilk test if the normal assumption is reasonable. Shapiro-
Wilk test is testing whether a set of real number is likely to be a realization of a normal
distribution or not. It returns a p-value: if the p-value is greater than a threshold
(usually 0.05), we can assume that the distribution follow normal law. The greater the
p-value is, the most certain of the normality of the distribution we are. Here are the
p-values of Shapiro-Wilk test for Phil Mickelson with the data from 2018:

2.3 STATISTICAL INFERENCE | 69

Figure 2.16 – Star of Phil Mickelson
for long game

Figure 2.17 – Star of Phil Mickelson
for middle game

Figure 2.18 – Star of Phil Mickelson for short game

70| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Abscissa Ordinates
Short Game 0.5838 0.2264
Middle Game 0.919 0.4791
Long Game 0.7074 0.06258

In the results above, if we take a threshold of 0.05, we consider that the distribution
follows a normal law if the p-value is above 0.05. For the abscissa, the p-value is great
enough to conclude about the normality of the distribution. This confirms that our
assumption that players play the same way in every direction. For the ordinates of the
short game, even if the p-value is smaller, we can reasonably conclude the same way.
For the ordinates of the long game, however, the results are more questionable. On the
one hand, the p-value is greater than 0.05. On the other hand, it is very close to the
threshold we (arbitrarily) defined. This could mean that for the long game, the golfers
may have different deviation before and after their target, which is empirically true if
they play ‘full shot’ (with full intensity). In order to simplify our assumptions, we will
still consider that the ordinates of the long game follow a normal law.

We obtain similar results with other players and different time periods. The linear
dependency between the distance of shots and deviations are reasonable enough. Now
we are able to regenerate data for all the distances, and for all grounds.

Regenerate data for all distances

With the previous results, we can reasonably assume that the abscissa and the ordi-
nates of the stars follow normal distribution. As the stars were built applying a to the
deviations of the shots a factor depending on the distance of the shot, we can reason-
ably assume that the dependency between the deviations (depth and lateral) is a linear
function of the distance of the shots.

We now generate new plausible data on the fairway like so:

• as we assume that the coordinates of the points of the stars follow normal law, we
compute the empiric parameters of the corresponding normal law (µd, σd), (µl, σl)
(for the deviations in depth, and lateral deviation);

• for every distance of shots that we want to generate new plausible data, we simulate
nshots points of coordinates (N (µd, σd),N (µl, σl)) following normal laws;

• we multiply the coordinates of these points by ds
da

as we assume there is a linear
dependency between the deviations and the distances.

As we assumed in section 2.2.2 that for the long game and the middle game a golfer
is able to play every 5 meters, and 2 meters for the short game, we simulate shots
accordingly. The number of shots we simulate for each distance is a parameter of our
model. For our numerical experiment, we took nshots = 20. This parameter has been
chosen so that the results are not sensitive to the random generation: the results that
we detail later on the optimal strategies are the same with different random generations
(figures 2.19 2.20 2.21 2.22).

2.3 STATISTICAL INFERENCE | 71

Figure 2.19 – Regeneration of plau-
sible data for Phil Mickelson for the
long game

Figure 2.20 – Regeneration of plau-
sible data for Phil Mickelson for the
middle game

Figure 2.21 – Regeneration of plau-
sible data for the short game

Figure 2.22 – Full generated profile
of Phil Mickelson on the Fairway

72| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

For the short game, we regenerate nshots = 20 shots from 1 to 30 meters every 2
meters. For the middle game, from 30 to 100 meters every 5 meters. For the long game,
in order to compute the maximal distance to which the golfer can play, we compute
a ratio between his maximum distance on the drive and the maximal distance in the
long game. Indeed, the maximal distance of each player for the long game depends on
his intrinsic power. These assumption are consistent with the ability for the players to
target different points described in section 2.2.2. The number of shots regenerated has
been chosen large enough for the model not to be sensitive to the data without increasing
too much the computational running time.

Regenerate data for all the grounds

In the previous section we succeed in regenerating data in order to get the theoretical
statistics on the fairway. We are now about to regenerate shots for all the types of
ground.

We will now assume that for a player, the ratio between the deviation on the fairway
and on the bunkers/rough is constant. This is a first natural assumption to consider.

All we have to do now is to compute this constant factor between the fairway and
the bunkers on the one hand, and between the fairway and the rough on the other hand,
and to apply this factor to regenerate data with modified parameters for the normal
laws. In order to be more realistic, we discriminated upon two cases: the case where the
ball ends up before the target and the case where it ends up after the target. Indeed, on
the rough and in the bunkers, it is more likely that the ball ends up before the target,
because of the difficulty to have a clean shot on these grounds. So we compute the
empirical probability for the ball to end up before the target (easy to do, as we have
the coordinates of the pin, and the ones of arrival points), and we generate the right
proportion of shots with the right constant coefficient. The coefficients of deviation are
computed as the mean of the deviations of shots. We obtain the following generated
profiles (figures 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30):

2.3 STATISTICAL INFERENCE | 73

Figure 2.23 – Regeneration of plau-
sible data for Phil Mickelson for the
long game on the rough

Figure 2.24 – Regeneration of plau-
sible data for Phil Mickelson for the
middle game on the rough

Figure 2.25 – Regeneration of plau-
sible data for Phil Mickelson for the
short game on the rough

Figure 2.26 – Full generated profile
of Phil Mickelson on the Rough

74| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Figure 2.27 – Regeneration of plau-
sible data for Phil Mickelson for the
long game on bunkers

Figure 2.28 – Regeneration of plau-
sible data for Phil Mickelson for the
middle game on bunkers

Figure 2.29 – Regeneration of plau-
sible data for Phil Mickelson for the
short game on bunkers

Figure 2.30 – Full generated profile
of Phil Mickelson on the Bunkers

2.3 STATISTICAL INFERENCE | 75

2.3.3 The Driving

For the driving, it is not reasonable to assume that the player is targeting the hole: in
many cases the golfer cannot reach the green in one shot because of the too big distance
between the teeing ground and the flag. However, we have access to the location of the
tee for each hole and to the coordinates of the arrival points for shots on the tee. We can
plot the scatter plot of the corresponding arrival points, considering that all the shots
have been played from the same point. Let us analyze this scatter plot of the shots on
the tee (figure 2.31).

Figure 2.31 – Driving of Phil Mickelson in 2018

If either the abscissa and the ordinates of this scatter plot follow normal law, this
would mean that the same point has been targeted (relatively to the starting point), so
we could apply the same techniques than before and generate new plausible data for all
distances. We test this assumption with a Shapiro-Wilk test:

Abscissa Ordinates
Driving 0.0007353 5.345.10−8

Even with a small threshold, it is not reasonable to assume that abscissa and ordi-
nates of the driving follow normal laws. This would mean that for each shot, the relative
targets are not the same. This result was predictable, as the layout of the holes in the
database are different.

76| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Assumptions on the target for driving

In stroke play mode, the golfers are playing the entire course four times (four rounds).
On every hole, we do have four realizations of their first shot on the tee. We assume that
the player are following the same strategy for the drive during the whole competition:
the golfers are targeting the same point in each round.

We begin by eliminating the shots on the holes that the player did not play four times
(the golfer can concede). The idea here is to define the target of the four realizations
as the centroid of all the shots that was not ‘missed’. We consider that among the four
distances of shots, the greater is the one wanted by the golfer. We assume that if a shot’s
arrival point is ‘too far’ from the longest shot (we defined a threshold of 50 meters) then
there was likely an obstacle, so this shot was not intended by the golfer. We assume
that the direction of the shots are never missed. Indeed, the distance of a shot can be
quite easily shorten because of an obstacle when the direction is very rarely missed, and
when it is missed, the distance of the shot is missed too (so the shot will not be taken
into account).

To sum up, we define the target of the four realizations of the four rounds of a
competition as the point where:

• direction is the mean of the four directions of the shots

• the distance is the mean of the shots that end up less than 50 meters from the
longest shot

Just as before, we can plot the profile of Phil Mickelson with 2018’s data for the
driving (see figure 2.32), just like we did before (see figure 2.6):

2.3 STATISTICAL INFERENCE | 77

Figure 2.32 – Driving of Phil Mickelson in 2018 after statistical inference

Now that we have a potential target for each shot, we can create a star by applying
the same techniques as before (see figure 2.15. We obtain figure 2.33:

Figure 2.33 – Star for the Drive (Phil Mickelson, 2018)

We test with a Shapiro-Wilk test if the abscissa and the ordinates follow normal law:

78| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Abscissa Ordinates
Driving 0.8769 0.7563

According to the results of the tests, we can reasonably assume that the two coordi-
nates follow normal distributions, so we can re-generate data for all the distances. We
generate data every 5 meters, accordingly to section 2.2.2: we consider that a profes-
sional golfer is able to discriminate two targets if they are at least 5 meters away one
from the other. The lower bound is the upper bound of the long game on the fairway
(which was defined with a ratio between the longest shot of the drive and the longest
shot on the fairway) so that the is a continuity between the different sections of dis-
tances. The upper bound is define as the distance for which 95% of the shots on the
drive are above. This maximum distance of shot for the driving has been chosen so that
the players are discriminated according to the maximum power of their shots but also
to erase the statistical aberrations (typically when the layout of the hole makes the ball
roll to a distance that could not been reached on another hole).

We obtain this generated profile of Phil Mickelson for the driving:

Figure 2.34 – Regenerated data for Phil Mickelson on the tee in 2018)

Now that we managed in creating theoretical distributions for a golfer, we can simu-
late these on a specific hole as described in section 2.2.4 to create the transition matrix.
The states, the actions, the costs of these actions and the transition matrix have been
defined, so the SSP model is complete.

2.4 RESULTS AND VALIDATION | 79

2.4 Results and Validation

Let us consider one specific player and one specific hole. We have seen that we can
create an instance of SSP for the golfer’s problem on this hole. We can solve the cor-
responding instance with standard algorithms: in practice we solved the instance with
Value Iteration, but Policy Iteration and our new Dijkstra like algorithm (see chapter
1 for more details) have been implemented too. The optimal solution of this instance
is a deterministic and stationary policy. It provides the optimal actions that the golfer
has to perform in order to minimize the expected number of shots to put the ball in the
pin. To represent a policy, we draw in the cells composing the state, the direction of the
shot, and the distance of the shot in the bottom left corner. We also write the expected
number of shots needed to reach the pin in the top left corner (see figures 2.35 2.36 2.37
2.38).

Figure 2.35 – Part of an optimal
policy of Phil Mickelson one the
15th hole of Augusta National Golf
Club. Each square represent a
state, the optimal action on the cor-
responding state is represented as
an arrow in the center with a dis-
tance in the bottom left corner

Figure 2.36 – Part of an optimal
policy of Phil Mickelson one the
15th hole of Augusta National Golf
Club with a larger scale

80| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Figure 2.37 – Part of an optimal
policy of Phil Mickelson one the
15th hole of Augusta National Golf
Club

Figure 2.38 – Part of an optimal
policy of Phil Mickelson one the
15th hole of Augusta National Golf
Club

Our goal is to predict the scores of professional golfers on the PGA Tour. We will
create a digital clone of the player. We assume that the professional golfers play there
optimal strategy, taking into account his personal skill and the hole’s layout. Then the
optimal strategy we find matches, with this assumption, the behavior of the player we
consider, and we can artificially make the clone play as many times as we want to with
Monte-Carlo simulations. A simulation consists on following the optimal policy from the
tee to the pin:

• we initialize the golfer’s score to 0;

• we start from the state whose location corresponds to the tee’s location;

• we perform the optimal action on this state;

• from the transition matrix, we know the states in which we can end up, with a
corresponding probability distribution;

• we add 1 on the score, or 2 if a penalty occurs;

• we pick randomly one realization (i.e. one state) according to the transition matrix;

• we iterate until a state on the green is reached;

• from figure 2.4 we know the distribution of number of shots the golfer makes to put
the ball in the pin from the corresponding state on the green. We pick randomly
one realization, i.e. one number of putt, and we add it to the score.

2.4 RESULTS AND VALIDATION | 81

Figure 2.39 – Histogram of expected number of shots for 10000 simulation of Phil Mick-
elson on the 1st hole of Augusta National Golf Club)

So we are able to have an estimation of the scores of a player on a specific hole. We
assume that all the holes of a course are independent, meaning that the player plays
identically on the first and the eighteenth hole: his strategy is not influenced by his
current score. As discussed in the introduction of this chapter, this assumption is ques-
tionable considering the risks that the golfers could take, but in practice this assumption
is reasonable for professional golfers. Depending on the mode of the competition, we
can either compute the expected score of the competition (Stroke-play) or the expected
probability of winning (Matcha-play). We take in the following sections two examples
of competition: the 2017’ Augusta competition for Stroke-play and the 42th Ryder Cup
in 2018 for Match-play.

2.4.1 Stroke-Play

During a stroke-play competition, each golfer plays the whole course four times. The
score of the player on a round is the sum of the scores over the 18 holes.

Simulation

In order to evaluate the distribution of the score of a golfer in a stroke-play competition,
we simulate his game thanks to his numerical clone on each hole and we add up his
score over the 18 holes. We repeat this a large number of time (10000 in our numerical
experiments). This provides us an approximation of the histogram of scores of the player.
Let us call this histogram HS . (see figure 2.41 2.40 for an example with Phil Mickelson
with his 2017 statistics on Augusta National Golf Club).

82| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Figure 2.40 – Outline of the creation of HS

Figure 2.41 – Histogram HS of the scores of the numerical clone of Phil Mickelson on
Augusta National Golf Club

Now that we have score distribution of a player on an entire course, we would like to
know if this score distribution is accurate. We know the score that the golfer has made
during the same competition in the same year:

2.4 RESULTS AND VALIDATION | 83

Round 1 Round 2 Round 3 Round 4
Hole 1 4 5 3 4
Hole 2 3 4 4 3
Hole 3 4 3 6 6
Hole 4 2 3 3 4
Hole 5 5 5 4 4
Hole 6 4 3 4 3
Hole 7 4 3 4 5
Hole 8 5 5 6 5
Hole 9 4 4 5 4
Hole 10 5 3 4 4
Hole 11 5 5 4 5
Hole 12 3 3 3 3
Hole 13 4 4 5 4
Hole 14 4 5 4 4
Hole 15 5 5 4 4
Hole 16 2 4 3 2
Hole 17 4 5 4 4
Hole 18 4 4 4 4

However, it seems difficult to compare a distribution of scores with only 4 realizations
(one per round). We would like to create new artificial ‘realization’ from the one we have
i.e. use bootstrapping techniques. As we consider that all the rounds are independent,
we can create another (artificial) realization by considering the score on the first round,
and switch the score of the first hole with the one of the first hole on 2nd round. We
can generalize this by considering that on each hole there is a discrete empirical dis-
tribution of scores which corresponds to the four realizations of his four rounds. Then
we can regenerate ‘realizations’ for an entire course by picking at random one of the
four realizations for each hole. Thus, instead of having only one realization for the four
rounds, we have 418 artificial realizations. As we assume that the strategy of the player
is not modified neither by the number of the hole nor by the number of the round, we
consider that the artificial realizations we get are plausible. Let us create 10000 artificial
realizations and create the corresponding histogram of scores that we call HE (see figure
2.42 for a outline of the creation of HE and see 2.43 for an example with Phil Mickelson)

84| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Figure 2.42 – Outline of the creation of HE

Figure 2.43 – Histogram HE of the artificial realizations of Phil Mickelson on Augusta
National Golf Club

Now the main question is to know how to compare the histogram of the artificial
realizations with the histogram of simulations from our model. The simple study of the
mean and the standard deviation of them is not enough even if it can be interesting to
look at them:

Mean Standard Deviation
Simulation 72.2162 2.2848
Empirical 72.4974 2.5465

2.4 RESULTS AND VALIDATION | 85

The means and the standard deviations are quite ‘similar’. The next sections describe
the method we created to compare the simulations from our model and what happened
in reality.

2.4.2 Match-Play

In Match Play, two golfers play against each others. Each hole is played once by the
two players. The winner of a hole (the player who put the ball in the cup in the least
number of shots) earns one point. If there is a tie, each golfer earns half a point. At
the end of the 18 holes, the winner is the player with the most number of points. Thus,
for each hole we can get an empirical probability of winning a point for each player by
comparing the scores of each player on every hole and see who gets the most points at
the end of the 18 holes (see figure 2.44 2.50).

Figure 2.44 – Probability of victory
of Phil Mickelson and Francesco
Molinari on the 3rd hole of Golf Na-
tional

Figure 2.45 – Probability of victory
of Phil Mickelson and Francesco
Molinari on the 15th hole of Golf
National

As we have this information on each hole, we can also, by simulating the play of each
player on the entire course, compute the probability of winning more than 9 points over
the 18 holes, i.e. the probability of victory of a golfer on the course (see figure 2.46):

86| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Figure 2.46 – Probability of victory of Phil Mickelson and Francesco Molinari on Golf
National

This match between Phil Mickelson and Francesco Molinari took place during the 42th
Ryder Cup near Paris. Unlike Augusta Golf National which is a Stroke-play competition,
the Ryder cup is a Match-play competition (this is why we take this competition as
reference for Match-Play). Here are the results:

Phil Mickelson Francesco Molinari
Hole 1 5 4
Hole 2 3 3
Hole 3 5 4
Hole 4 5 5
Hole 5 5 4
Hole 6 3 4
Hole 7 5 4
Hole 8 3 3
Hole 9 Win Conceded
Hole 10 4 4
Hole 11 2 3
Hole 12 5 4
Hole 13 4 4
Hole 14 5 4
Hole 15 4 4
Hole 16 Conceded Win
Hole 17 Not played Not played
Hole 18 Not played Not played

2.4 RESULTS AND VALIDATION | 87

When a player is sure to win the match before the end of the 18 holes, the players do
not play the remaining holes (it was the case for the two last holes here, where Francesco
Molinari was sure to win).

Unlike for the Stroke Play, we have only one realization (and not four). The validation
of the accuracy of our winning probabilities is a big issue. We will see in the next section
how we manage to give a way to evaluate our model.

2.4.3 Validation

In the previous sections, we managed in giving results for the two main modes in golf: the
Stroke Play and the Match Play. For Stroke Play, we give a discrete score distribution
for the players, and for Match we give probability of winning for both players. Now the
main issue is to evaluate the accuracy of our forecasts. The main difficulty is the few
number of realizations (4 per hole for Stroke Play, and only 1 for the Match Play).

Validation for Stroke-Play

For Stroke Play competitions, we have 4 realizations per hole (4 rounds on the 18 holes).
One first idea of our validation is to use bootstrapping methods in order to regenerate
‘artificial realizations’ based on the only 4 we get (figure 2.43). Let us call this histogram
HE . We can compare HE with the simulations from our model (figure 2.41), which we
call HS . Even if looking at the mean and the standard deviation of HS and HE is a
first approach, it is not enough to conclude (what is a reasonable difference between the
means ? and the standard deviations ?).

We would like to define a distance between two histograms. A well known distance is
the Kolmogorov distance. Let F1 and F2 be two distribution functions, and X the space
of there distribution function. The Kolmogorov distance between F1 and F2 is defined
as:

sup
x∈X
|F1(x)− F2(x)|

We want to know if the realizations we have could have been easily simulated with our
model. The idea is to take 4 simulations on each hole from our model and consider that
the corresponding simulations are the scores that the player could have done during 4
artificial rounds. We can bootstrap others realizations from them just like we did for
HE . We get an histogram of realizations based on simulations from our model. Let us
repeat this process n times. We get n histograms (HE1 , ..,HEn).

88| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Figure 2.47 – Outline of the creation of HEi

Let FS , FE , and (FE1 , .., FEn) be the empirical distribution functions of HS , HE ,
and (HE1 , ..,HEn). We can compute the Kolmogorov distances (dK1 , ..dKn) between FS
and the (FE1 , .., FEn). Let HK be the histogram of the (dKi) for i = 1..n (see figure
2.48). Let dE be the Kolmogorov distance between FE and FS . In the following we will
slightly abuse notation and talk about Kolmogorov distance between two histogram: it
is in fact Kolmogorov distance between the corresponding distribution functions. For
Phil Mickelson in 2017, here are the histogram HK and dE (figure 2.49).

Figure 2.48 – Outline of the creation of HK and dE

2.4 RESULTS AND VALIDATION | 89

Figure 2.49 – Histograma HK of Kolmogorov distances for Phil Mickelson in 2017

dE 0.2727

We assume that if dE is one likely realization of HK then the realization HE can be
easily simulated by picking at random 4 realizations from our model. Looking at the
quantiles of HK , we have:

Quantiles 77% 78%
Value 0.2686 0.2746

From the quantiles, and under our assumptions, we can conclude it is likely for
dE to be a realization of HK . Thus, the realization that Phil Mickelson score in 2017
in Augusta National Golf Club can likely be simulated with our model. Indeed, the
Kolmogorov distance between HE and HS is one plausible realization of HK . Here are
the results for other players for the same year (2017) on Augusta competition.

90| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Name dE Quantiles
Rory McIlroy 0.2423 [73%, 74%]
Francesco Molinari 0.1248 [37%, 38%]
Justin Thomas 0.1701 [52%, 53%]

Note that the reader can reproduce the results thanks to our program in C++ and
the R scripts given. For these players, we can also conclude that what happened in
reality can plausibly be simulated with our model.

Validation for Match-Play

For the validation of Match Play, we adopt the same kind of method. Contrary to Stroke
Play where each hole is played four times, in Match Play each hole is played only once
by the two players involved. Let us consider the match Phil Mickelson against Francesco
Molinari in the Ryder Cup 2018. We would like to know whether or not what happened
could have been ‘easily’ simulated with our model.

We begin with simulating each digital clone of the two players involved on the 18
holes of Golf National course. Each simulation gives a winner (or a draw). By repeating
this operation, we obtain a histogram HS which relates of the probability of victory for
both players on the entire golf course as seen before (figure 2.46).

We want to compare this histogram with the reality (what happened in the Ryder
Cup). The problem is that we have only one realization for it. The idea here is the
same as before: we have to use bootstrap techniques in order to create artificially new
‘realizations’. We can see that during the Ryder Cup 2018 between Phil Mickelson
and Francesco Molinari, only the first 16 holes have been played. We can create new
realizations by picking at random 18 holes among the 16 played holes during the Ryder
Cup. By comparing the scores of the two players on these 18 holes, we have a winner,
or a draw. By repeating this operation 10000 times, we obtain a histogram HE which
related of the probability of winning for both player, and a probability of draw (figure
2.50).

2.4 RESULTS AND VALIDATION | 91

Figure 2.50 – Bootstrapping for Mickelson-Molinari

Obviously, since Molinari has won 7 holes over 16 and Mickelson has won only 3 holes
over 16, it is predictable that picking at random 18 holes among these 16 holes makes
Molinari wins in most of the cases. Because of the particularity of the unique realization
we have, we cannot compare HE and HS (figure 2.46 and 2.50) directly.

However, we can pick at random 18 holes among the first 16 played and simulate
with our model clones of both players. By doing this n times, we get n histograms
(HEi)i∈{1,..,n}. These histograms represent possible realization from our model if we
consider only the 16 first holes. Just like for the Stroke Play, we can compute the
Kolmogorov distances di between HS and the (HEi) for all i ∈ {1, .., n}. For n = 1000
we get the following histogram, that we call HK of Kolmogorov distances (figure 2.51):

92| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Figure 2.51 – histogram HK of Kolmogorov distances between HS and the HEi

By computing the Kolmogorov distance dE between HE and HS we get dE = 0.4229.
So it is unlikely we could have predict the realization of the Ryder Cup with our model,
under our assumption. Indeed, dE cannot be a realization of HK .

However, we have seen that what happened between Mickelson and Molinari during
this Ryder Cup is very particular. Molinari won most of the holes and the two last holes
has not been played. Let us take another example where all the holes have been played:
Justin Thomas versus Rory McIlroy. By applying the exact same method, we obtain the
following histogram of Kolmogorov distance (figure 2.52), and dE :

2.4 RESULTS AND VALIDATION | 93

Figure 2.52 – histogram HK of Kolmogorov distances between HS and the Hi

dE 0.04211

Looking at the quantiles of the previous histogram, we get:

Quantiles 55% 56%
Value 0.04145 0.0.4224

In this case, we conclude that our model can predict what happened, as dE is a
plausible value of HK . Obviously the fact that our model cannot predict the very
particular cases is a big limit of our model.

Computational techniques and remarks

Our computational experiments were developed in C++ and in R. Data analysis and
treatment is done with R, while the optimization and the construction of the models
are done in C++. We give full access to our code so that the readers can replicate the
results.

The ‘statistics’ of a player are built using R from the Shotlink database. All the
assumptions we made can be changed as parameters of the scripts. Once the script is

94| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

ran, a file of general name "FirstName_LastName.stats" is created. This file is needed
for the construction of the model.

The construction of the model, and the optimization has been written in C++. This
program can build a SSP model from a ".stats" file (which can be created with our R
scripts), and a ".data" file. This latter file describes the topology of the hole we consider.
A ".data" file can be created thanks to our program from a picture of a hole. Once the
model is created, the program can find an optimal solution thanks to Value Iteration,
Policy Iteration or our new Dijkstra-like algorithm (see chapter 1). Our program can
also solve generic SSP instance, using standard input files describing the states, actions,
action costs, and transition matrix of the instance.

Even if Value Iteration, Policy Iteration and our Dijkstra-like algorithm can be used
to solve an instance thanks to our program, all the results in this chapter were found with
Value Iteration. Our program has been optimized in order to have good computational
performances with Value Iteration: the internal memory management (cache memory)
and the construction of our model’s data structure were designed to speed-up parallel
computing, which lower drastically the computational running time of Value Iteration
(from several minutes to a few seconds). We mainly used arrays in order to store our
data. As Value Iteration is iterating over all states, the way we store the state in the
memory is very important and has drastic impact regarding computational running time
(the change of our data divided by 20 the computational running time of Value Iteration).

Regarding the computational time, most of the time is used to load the model, and
to create the SSP instance from the data (the Shotlink database and a picture of the
hole). The solution time has been optimized as explained above, and take no more than
a few second, while loading the model is done in few minutes. Obviously, the value of
the parameters has an big impact on the computational running time (discretization of
the hole, discretization of directions...). For our choice of parameters, we can create
10000 simulation of a player on the 18 holes of a course in about 6 hours (with a coreI7
4 cores 2.2GHz processor and 16Go 1600MHz DDR3 memory). A tiny part of which is
dedicated to the optimization (about 1%).

Contrariwise, our model construction is not adapted to the execution of our Dijk-
stra algorithm, which explained (in part) the running time of this algorithm with our
program.

2.5 Conclusion and Perspectives
We created a model for the golfer’s problem using Markov Decision Processes, and
in particular the Stochastic Shortest Path problem. The states, the actions and the
cost of these actions were quite easy to define, while the transition probabilities were
harder to model. We used the Shotlink database, which gather thousands of shots
of professional golfers during international competitions in order to create theoretical
distribution of the players. The main difficulty was to infer the intention of the players.
Under certain assumptions, we succeeded in defining targets for the golfers for each

2.5 CONCLUSION AND PERSPECTIVES | 95

shot, and we checked the relevance of this assumptions with statistical tests. Once the
transition matrix defined, we were able to apply standard algorithms of the SSP to
solve the problem exactly and get the optimal strategy of the player, taking account his
personal skills, and the simplified physics of the hole he plays on. As we assume that
the professional golfers play their optimal strategy, we created ‘digital clones’ of players
and simulate the play of the golfers thousands times on several courses. Depending on
the mode (stroke-play or match-play), we were able to have a prediction of the scores,
or a winning probability.

The results and their validation is a big issue of this chapter. We had to find ad hoc
methods in order to compare our results and what happened in reality. The few number
of realizations prevent us to use standard statistical methods (chi 2 test, p-values). We
managed in creating artificially new realizations thanks to bootstrap techniques.

As we build our model, we had a lot of assumptions. Obviously these assumptions
are questionable.

In order to build the transition matrix, we simulated the behavior of the physics of
the ball. The assumptions we made are very simplistic: no rolling, infinite height for
the trees, simplified impacts between the ball and the obstacles... The simulator could
be improved to be more realistic. The improvement of this simulator would not have
major consequences on the model: this is an independent piece which would change the
transition matrix but would certainly impact the computational time for model creation.

The assumption we made regarding the intention of the players are also questionable.
We consider that the golfers always target the pin if they are not on the tee (and if they
are at reach). Although it is reasonable most of the cases, when the par is high (par 5
for example), or when the shape of the hole is elbowed (a so called dog-leg in golf), the
golfers would rather target the middle of the fairway to insure to reach the green faster.

When we create the theoretical statistics of the golfers, we had a lot of parameters
to tune: thresholds, percentage of shots we cut, statistical tests acceptance... These
parameters were chosen based on knowledge of golfers. We also test our model on
different year, and these parameters could have to be modified in order to pass the
statistical tests. This lack of robustness is also a quite big limit of our model.

The tests we chose are also assumptions: we assume that the distribution of shots
is realistic if it follows a normal law, which is questionable. The linearity between the
deviation and the distance, the constant factor between the deviations on the different
grounds are too.

96| GOLF STRATEGY OPTIMIZATION FOR PROFESSIONAL GOLFERS
PERFORMANCES ESTIMATION ON THE PGA TOUR

Chapter 3

On Stochastic Games and MAX-
PROB

3.1 Introduction
As explained in chapter 2, we came to the SSP problem by studying strategy optimization
in Golf: a golfer has to put a ball in a hole in a minimum number of shots taking into
account the topology of the field, the weather conditions and their personal skills among
other things. The ‘golfer’s problem’ can be modeled as a SSP under certain assumptions
(see chapter 2 for more details). Consequently, solving SSP can provide golfers a ‘best
strategy’ to reach the hole in an minimum expected number of shots.

Modeling the golfer’s problem as a SSP only considers ‘competing against the golf
course’ and does not include the other players into the equation. This is appropriate
when modeling ‘Stroke play’ competitions where players try to score as low as possible
on a large number of holes (72) to beat the field (that is, the rest of the players). But
there are other competitions where two players compete against each others in another
form of game called ‘Match play’ (like for the Ryder Cup, for example). In this mode,
both players play potentially every holes of the same golf course against each other. On
each hole, the player with the smaller score earns 1 point (1

2 if there is a draw). The
winner is the player with the most points at the end of the 18 holes (it might end earlier
if the difference of points is more than the number of remaining holes to play).

As Stroke Play competitions can be modeled as SSP, Match Play competitions can be
modeled as Stochastic Shortest Path Games (SSPG), which are natural game extensions
of SSP where two players control the states of the system.

A SSPG is basically a SSP where the states are partitioned into two sets that are
controlled respectively by a MIN and a MAX player with antagonist objectives. The
goal of the MIN player is to find a strategy (a choice of action for each state controlled
by this player and each period of time) to reach the target state with minimum expected
cost while the MAX player wants to find a strategy to maximize the expected cost. in

97

98| ON STOCHASTIC GAMES AND MAXPROB

general,MIN might be tempted to keep looping in the system if negative cost transition
cost cycle exist, and vice versa MAX might be tempted to keep looping in the system
if positive cost cycle exists. So technical conditions are required to define the problem
formally. in this chapter we focus mainly on the special case of SSPG with termination
inevitable (where all pairs of strategies lead to the target state with probability 1).

SSPG are a special case of (zero-sum) stochastic games introduced originally by
Shapley for discounted problems [96] but whose definition has been extended later to
undiscounted problems (for a comprehensive treatment of stochastic games, see for in-
stance [12] and [43]). SSPG with termination inevitable are special cases of BWR-
games (two-person zero-sum stochastic mean payoff games with perfect information)
with total effective payoff [22]. In particular, because stochastic shortest path games
with inevitable termination have mean payoff (average cost per time period) of value 0
from any starting state as the game ends with probability one, it follows from Theorem
27 in [22] and Von Neuman Minimax theorem for zero-sum games [78] that: (i) there
exists (at least) a pair of uniformly1 deterministic and stationary strategies for both
players which forms a Nash Equilibrium (i.e. no player can benefit from deviating from
his strategy) and (ii) that the corresponding strategy for MIN minimizes the maxi-
mum expected total cost over all possible strategy for MAX and the strategy for MAX
maximizes the minimum expected total cost under all possible strategy for MIN . The
stochastic shortest path game is the problem of finding such a pair of strategies. One
well known iterative algorithm to solve exactly the SSPG is known as Strategy Iteration
[51, 30, 31] which can be interpreted as a extended version of Policy Iteration for SSPG
(we detail this later).

During a Match-Play competition in Golf, the first player teeing on a hole is the
player who won a hole last (initially it is selected at random). Let us call him MIN ,
and MAX his opponent. This is then the player whose ball is the further from the flag
who plays first. When a golfer shoots, he knows the position of his ball, the position of
his opponent’s ball and the current difference of scores between him and his opponent.
This naturally defines a state space: for a specific hole, we consider the set S with
element s of the form s = (pMIN , pMAX , δ) where pMIN (resp. pMAX) is the position
of the ball of MIN (resp. of MAX) on the discretized hole (typically 2D-coordinates)
and δ ∈ Z is the current relative difference of scores between MIN and MAX. Let us
call σMIN ∈ Z+ the current score of MIN and σMAX ∈ Z+ the current score of MAX,
we have δ = σMIN − σMAX . The initial state is s0 = (Ptee, Ptee, 0) where Ptee is the
position of the tee. Even if the relative difference of scores cannot be bounded a priori,
in practice beyond a certain point difference, usually, the late runner "gives" the hole to
the opponent, so we can easily define a difference D ∈ Z+ and restrict to states with
δ ∈ {−D,−D + 1, .., D − 1, D} (for professional golfers, D is rarely more than 2 or 3).
A state s = (pMIN , pMAX , δ) is controlled by MIN if the distance from pMIN to the
flag is greater than the distance between pMAX and the flag, and is controlled by MAX
otherwise. The actions available in a state are the shots of the player who controls this
state. Each time MIN is playing from a state s = (pMIN , pMAX , δ), his ball ends up

1i.e. the policy is the same for any starting state

3.1 INTRODUCTION | 99

in another position of the hole p′MIN and the new state is s′ = (p′MIN , pMAX , δ
′) with

δ′ = δ + 1 (or δ′ = δ + 2 if a penalty occurs, see [59] for details of penalties in Golf,
unless δ′ > D and then it goes to the target node that we define later with a cost 1).
Similarly, when MAX plays from s, the ball ends up in another position p′MAX , and the
new state is s′′ = (pMIN , p

′
MAX , δ

′′) with δ′′ = δ−1 (or δ′′ = δ−2), unless δ′′ < −D and
then it goes to the sink node with a cost −1. These transitions induce no cost except
when reaching the sink node. Let us call flag states the states whose general form is
(Pflag, Pflag, δf) where Pflag is the position of the flag. The game stops when a flag
state (Pflag, Pflag, δf) is reached: MIN wins if δf < 0 , MAX wins if δf > 0 and there
is a draw if δf = 0. In order to match exactly a SSPG instance, we define a sink node
(called 0) which can be reached only from flag states (Pflag, Pflag, δf) (and the states
where δ < −D or δ > D as we have seen before) with a probability 1 and a cost 1 if
δf > 0, −1 if δf < 0 and 0 if δf = 0 . The cost of a pair of policies Π = (ΠMIN ,ΠMAX)
represents the points when MIN follows ΠMIN and MAX follows ΠMAX .

Despite the fact that Match Play competitions are well described by SSPG, the
size of the state space is too large for implementing strategy iteration. Indeed, the
state space size is n2 ∗ (2D + 1) where n is the number of possible locations on the
hole (depending on the discretization we choose), and D the bound on the difference of
scores between the players. With regards to the computational performances in chapter
2 where the state space size was only n, it is hopeless to run similar algorithms like
strategy iteration on such big instances: this is why we used other techniques in chapter
2 to model Match Play competitions which we believe provide a decent heuristic. In
[55] and [56], Hoffmeister and Rambau used MDPs for strategy optimization in beach
Volleyball. They also face too large instances that could not be solved exactly. They
succeed in solving heuristically the problem by simulating strategies of MDP instead
of solving it. Such an approach would certainly be of interest here too. However, it
is interesting to study Stochastic Shortest Path Games for themselves. In this chapter
though, we put the focus on the theory of SSPG and in particular on the question of
existence of polynomial time algorithms.

Finding an optimal solution of SSPG, i.e. a Nash Equilibrium, is a problem in NP ∩
coNP , and the question whether it is in P or not is open [30] (we refer to chapter 1
for definitions of P , NP and coNP). In particular, the question of the existence of a
LP-formulation with a polynomial number of variables and constraints (a polyhedron
whose extreme points are solutions for the SSPG), even in a extended space, is open.
Even if we know that some ‘naive’ formulations do not work for a special case of SSPG
called the Simple Stochastic Games (that we define later formally)[31], the question has
been neither answered positively nor negatively.

In this chapter we focus on this open question and we try to bring new insights and
some directions for further investigations. Our goal is to analyze first which subproblems
of SSPG are known to be polynomial, and in particular to identify polynomial size
extended formulations for those or to prove that none exist. The idea would then be to
extend the conclusion when possible to the general case.

There have been tremendous developments in the field of extended formulations

100| ON STOCHASTIC GAMES AND MAXPROB

lately. In his survey [61], Kaibel gathers the combinatorial problems for which there
exists compact extended formulation (meaning that the number of inequalities of the
extended formulation is a polynomial function of the data of the original problem).
Spanning trees, permutahedron, disjunctive programming are examples for which such
extended formulations exist. However, there are some theoretical limitation regarding
extended formulations. Rothvoss proves in [91] that extended formulations of some 0/1
polytopes need exponential number of inequalities [91]. Fiorini et al. in [44] prove
that for the Traveling Salesman Problem (TSP), a LP-formulation need an exponential
number of constraints. Even more striking is the fact that some polynomial problems
like matching do not have a polynomial extended formulation [91].

In this chapter, we first define formally the SSPG with termination inevitable, then
the special case of stopping Simple Stochastic Games (SSG). Later in the document
we study another special case, the Robust Shortest Path Problem with termination
inevitable (RSP), for which we present a ILP-formulation that can be extended to SSPG,
which is the main contribution of this chapter. Finally, after considering instances
which are both stopping SSG and RSP with termination inevitable for which we find a
condition for the existence of an optimal solution that, we believe, could be extended to
stopping SSG instances, we analyze the complexity of these different problems, and of
MAXPROB. This last problem has already been defined in chapter 1 and arise naturally
in this chapter too.

3.2 Stochastic Games
An instance of a SSPG is defined by a tuple (SMIN ,SMAX ,AMIN ,AMAX , J, P, c) where
(S := SMIN ∪ SMAX ,A = AMIN ∪ AMAX , J, P, c) is an instance of SSP and SMIN ∩
SMAX = {0}. We again assume w.l.o.g. that each action is available in exactly one state.
A Min player controls the actions in the states SMIN , while a Max player controls
the actions in the states SMAX . A (positional) strategy for player Min is a mapping
ΠMIN : SMIN 7→ AMIN , and a (positional) strategy for player Max is a mapping
ΠMAX : SMAX 7→ AMAX . The pair (ΠMIN ,ΠMAX) is called a (positional) strategy
profile. A strategy profile Π = (ΠMIN ,ΠMAX) induces a policy Π = (ΠMIN ,ΠMAX) for
the SSP instance defined by (S := SMIN ∪ SMAX ,A, J, P, c) and we define the value of
the game for the pair Π = (ΠMIN ,ΠMAX), from an initial state i, as the value of the
SSP solution associated with Π i.e. JΠ(i).

From now on, we assume that termination is inevitable, meaning that any strat-
egy profile (ΠMIN ,ΠMAX) induces a policy Π that is proper for the corresponding SSP
instance.

We denote by ΣMIN the set of all (positional) strategies for player MIN and by
ΣMAX the set of all (positional) strategies for player MAX. SSPG with termination
inevitable are a special case of BWR-Games with total effective payoff [22]. Because all
policies are proper, for all initial state i, the mean payoff version of the game starting
in state i has value zero. It then follows from Theorem 27 in [22] that there exists

3.2 STOCHASTIC GAMES | 101

Figure 3.1 – Example of an SSPG instance with I =
(SMIN ,SMAX ,AMIN ,AMAX , J, P, c) with SMIN = {s1, 0} (in red) , SMAX = {s2, s3, 0}

(in blue), AMIN = {a1, a2} , AMAX = {a3, a4, a5} , c = (1, 2, 3, 1, 4), J =

1 0 0
1 0 0
0 1 0
0 0 1
0 0 1

,
P =

 0 0.4 0.6
0 0.3 0.7
0 0 0.5
0 0.6 0

0.2 0 0



a (uniform) Nash Equilibrium in positional strategy i.e. there exists a strategy profile
(ΠMIN ,ΠMAX) such that J(ΠMIN ,Π′MAX)(i) ≤ J(ΠMIN ,ΠMAX)(i) ≤ J(Π′MIN ,ΠMAX)(i) for
all i ∈ S \ {0}, for all Π′MIN ∈ ΣMIN and all Π′MAX ∈ ΣMAX . We say that ΠMIN is the
best response to strategy ΠMAX and ΠMAX is the best response to strategy ΠMIN . Now
by Von Neumann’s minimax theorem for zero-sum games, we know that such a Nash
Equilibrium (ΠMIN ,ΠMAX) satisfies for all i ∈ S \ {0}

J(ΠMIN ,ΠMAX)(i) = minΠ′MIN∈ΣMIN
maxΠ′MAX∈ΣMAX

J(Π′MIN ,Π
′
MAX)(i)

= maxΠ′MAX∈ΣMAX
minΠ′MIN∈ΣMIN

J(Π′MIN ,Π
′
MAX)(i)

The stochastic shortest path game with inevitable termination is the problem of
finding such a Nash equilibrium.

We can represent an instance of SSPG with a graph G = (V = (VSMIN
∪ VSMAX

) ∪
(VAMIN

∪ VAMAX
), A). The representation is the same as the representation of SSP

instances in chapter 1, but now the state nodes are colored according to the partition
SMIN , SMAX of S, in particular the red nodes are controlled by player MIN , and the
blue nodes are controlled by player MAX. As node 0 is ‘controlled’ neither by MIN
nor MAX, it is colored in purple. An example is given in figure 3.1. The most famous
algorithm to solve SSPG is Strategy Iteration.

102| ON STOCHASTIC GAMES AND MAXPROB

Strategy Iteration

Even if no polynomial time algorithm is known for SSPGs, we can solve this problem
with the so called strategy iteration algorithm [54, 90]. This iterative algorithm is very
close to policy iteration for SSP: both players will improve their strategies step by step
until a Nash equilibrium is found. For the following definition, we remind that cΠ and
PΠ are the subvector and submatrix of c and P respectively, whose lines correspond to
the actions of Π. We first define the reduced cost of an action.

Definition 30 (reduced cost)
Let S = (SMIN ,SMAX ,AMIN ,AMAX , J, P, c) be an instance of SSPG with inevitable
termination.

For all action a ∈ A, and all deterministic and stationary policy Π, the reduced cost
of a is defined by:

c̄Π(a) = c(a)− cΠ(I − PΠ)−T (J − P)T1a

where 1a is a vector of m lines with 1 in the ath position, and 0 elsewhere.

The reduced cost c̄Π(a) represent the relative gain to choose a with regards to Π. If
c̄Π(a) < 0, including a in the current policy should be interesting for MIN whereas if
c̄Π(a) > 0 it should be interesting for MAX to do so. Then we can define improving
strategies for MIN and MAX like so.

Definition 31 (improving strategy)
Let S = (SMIN ,SMAX ,AMIN ,AMAX , J, P, c) be an instance of SSPG with inevitable
termination and Π = (ΠMIN ,ΠMAX) be a pair of deterministic and stationary policies
for MIN and MAX. Let j ∈ {MIN,MAX} and Bj ⊆ Aj such that:

• ∃a ∈ Bj, c̄Π(a) < 0 and ∀a ∈ Bj, c̄Π(a) ≤ 0 if j = MIN

• ∃a ∈ Bj, c̄Π(a) > 0 and ∀a ∈ Bj, c̄Π(a) ≥ 0 if j = MAX

• ∀s ∈ S, ,
∑
a∈Bj

J(a, s) ≤ 1

We denote by an improving set with regards to player j such a set.
We denote by Π[Bj] the strategy such that:

• ∀s ∈ S if ∃a ∈ Bj such that J(a, s) = 1 then Π[Bj](s) = a

• Π[Bj](s) = Π(s) otherwise

We call Π[Bj] an improving strategy with regards to player j

When a player does not have improving strategies anymore, we say that he has a
best response. In the next definition, we define formally a best response.

3.2 STOCHASTIC GAMES | 103

Definition 32 (best response)
Let I = (SMIN ,SMAX ,AMIN ,AMAX , J, P, C) be an instance of SSPG with inevitable
termination, ΠMIN ∈ ΣMIN and ΠMAX ∈ ΣMAX . Π∗MAX ∈ ΣMAX is a best response
to ΠMIN if and only if

J(ΠMIN ,Π∗MAX) = max
πMAX∈ΣMAX

J(ΠMIN ,πMAX)

Similarly, Π∗MIN ∈ ΣMIN is a best response to ΠMAX if and only if

J(Π∗MIN ,ΠMAX) = min
πMIN∈ΣMIN

J(πMIN ,ΠMAX)

Definition 33 (Nash equilibrium)
A pair of strategies (ΠMIN ,ΠMAX) ∈ ΣMIN ×ΣMAX is a Nash Equilibrium if and only
if ΠMIN is a best response to ΠMAX and ΠMAX is a best response to ΠMIN .

Lemma 3.1
A strategy ΠMIN ∈ ΣMIN is a best response to a strategy ΠMAX ∈ ΣMAX if
and only if there is no improving strategy with regard to playerMIN . Similarly,
a strategy ΠMAX ∈ ΣMAX is a best response to a strategy ΠMIN ∈ ΣMIN if
and only if there is no improving strategy with regard to player MAX.

Proof. We know from chapter 1 that a strategy is optimal for SSP if and only if there is no
action of negative reduced cost. Since fixing ΠMIN or ΠMAX leads to a (simplified) SSP
problem for MIN or MAX, we have symmetrically ΠMIN ∈ ΣMIN is a best response
to a strategy ΠMAX ∈ ΣMAX if and only if there is no action of negative reduced cost
(no improving strategy with regards to MIN), and ΠMAX ∈ ΣMAX is a best response
to a strategy ΠMIN ∈ ΣMIN if and only if there is no action of positive reduced cost (no
improving strategy with regards to MAX).

Lemma 3.2
Let I = (SMIN ,SMAX ,AMIN ,AMAX , J, P, C) be an instance of SSPG and let
Π = (ΠMIN ,ΠMAX) be a pair of deterministic and stationary strategies such
that ΠMIN is a best response to ΠMAX . Let Π′MAX be an improving strategy
with regards to MAX, and Π′MIN a best response to Π′MAX . Then

J(Π′MIN ,Π
′
MAX) ≥ J(ΠMIN ,ΠMAX)

and the inequality is strict for at least one state.

Proof. ΠMIN is a best response to ΠMAX so there is no improving set with regards to
MIN (lemma 3.1). Thus, for all a ∈ AMIN , c̄Π(a) ≥ 0 so in particular, c̄Π(a) ≥ 0 for
all a ∈ Π′MIN .

Π′MAX be an improving strategy with regards to playerMAX so there existsBMAX ⊆
AMAX which is an improving set with regards toMAX. It follows that c̄Π(a) ≥ 0 for all
a ∈ BMAX and there exists a ∈ BMAX such that c̄Π(a) > 0 (by definition of an improv-
ing strategy). Let us see Π′ = (Π′MIN ,Π′MAX) as a strategy of the SSP instance related

104| ON STOCHASTIC GAMES AND MAXPROB

with I. We have c̄Π(a) ≥ 0 for all a ∈ Π′, and there is at least one action a ∈ Π′ such that
c̄Π(a) > 0. It follows from chapter 1 that J(Π′MIN ,Π

′
MAX) = JΠ′ ≥ JΠ = J(ΠMIN ,ΠMAX),

and the inequality is strict for at least one state.

We now define strategy iteration algorithm:

Algorithm 3 Strategy Iteration
Input : a deterministic and stationary policy Π = (ΠMIN ,ΠMAX)
k = 1
Πk
MIN ← ΠMIN

Πk
MAX ← ΠMAX

Πk ← (Πk
MIN ,Πk

MAX)
loop

while ∃BMIN ⊆ AMIN such that Πk[BMIN] is an improving strategy with regards
to MIN do

Πk ← Πk[BMIN]
Define Πk

MIN ,Πk
MAX such that Πk = (Πk

MIN ,Πk
MAX)

end while
if ∃BMAX ⊆ AMAX such that Πk[BMAX] is an improving strategy with regards

to MAX then
Πk+1 ← Πk[BMAX]
Define Πk

MIN ,Πk
MAX such that Πk = (Πk

MIN ,Πk
MAX)

k ← k + 1
else return Πk

end if
end loop

Let us apply this algorithm on the previous example of SSPG instance I (figure
3.1) with an initial deterministic and stationary policy Π1 = (Π1

MIN ,Π1
MAX) with

Π1
MIN (s1) = a2, Π1

MAX(s2) = a3, and Π1
MAX(s3) = a4. We represent a determinis-

tic and stationary policy by coloring in red (resp. in blue) the arc leading to the chosen
action in the states of SMIN (resp. SMAX).

3.2 STOCHASTIC GAMES | 105

Figure 3.2 – Graphical representation of I with policy Π1

We begin with computing the reduced cost of the actions in AMIN . From Definition
30, we have ¯cΠ1(a1) = −0.9 and ¯cΠ1(a2) = 0. We define BMIN = {aMIN}, and Π1[BMIN]
is an improving strategy with regards to MIN by definition. According to the strategy
iteration algorithm, we define Π2 = Π1[BMIN]:

Figure 3.3 – Graphical representation of I with policy Π2

There is no more possible improvement for playerMIN , so we continue by computing
the reduced cost of the actions in BMAX with policy ΠMAX . We have ¯cΠ2(a3) = 0,
¯cΠ2(a4) = 0 and ¯cΠ2(a5) = 4. We define BMAX = {a5} and again, Π2[BMAX] is an
improving strategy with regards to MAX by definition of an improving strategy. We
define Π3 = Π2[BMAX]:

106| ON STOCHASTIC GAMES AND MAXPROB

a

Figure 3.4 – Graphical representation of I with policy Π3

By computing the reduced cost of the actions of A, we obtain

(¯cΠ3(a1), ¯cΠ3(a2), ¯cΠ3(a3), ¯cΠ3(a4), ¯cΠ3(a5)) = (0, 81
84 , 0,−4, 0)

so there is no improving strategy. The algorithm terminates with Π3 = (a1, a3, a5).

Theorem 3.3
Strategy iteration algorithm terminates after a finite number of iterations N
and ΠN = (ΠN

MIN ,ΠN
MAX) is a Nash equilibrium.

Proof. At each iteration k ∈ J1, nK, At the end of the ‘while’ loop, Πk
MIN is a best

response to Πk
MAX (there is no more improving set with regards to MIN . At the end of

the ‘if’, ΠMAX is an improving strategy with regards to MAX. Then from lemma 3.2:

J(Πk+1
MIN ,Π

k+1
MAX) ≥ J(Πk

MIN ,Π
k
MAX)

and the inequality is strict for at least one state.
It follows that a pair of strategies does not appear twice, and since there is a finite

number of pairs of strategies, the algorithm terminates in a finite number of iteration,
let us say N ∈ Z

+. At the end of the algorithm the pair of strategy (ΠN
MIN ,ΠN

MAX)
is returned, and there is no improving strategy with regards to MIN nor MAX. It
follows from lemma 3.1 that ΠN

MIN is a best response to ΠN
MAX and that ΠN

MAX is a
best response to ΠN

MIN . So by definition, (ΠN
MIN ,ΠN

MAX) is a Nash Equilibrium.

Note that each iteration of the strategy iteration algorithm can be interpreted as
a policy iteration algorithm fixing Πk

MAX and improving Πk
MIN (and hence finding the

best response to Πk
MAX); and one iteration of a policy iteration algorithm fixing Πk and

improving Πk
MAX . So the worst case complexity of strategy iteration is exponential in

3.3 SPECIAL CASES OF SSPG WITH TERMINATION INEVITABLE | 107

the number of states and actions as the worst case of policy iteration is exponential [75]
(even in the case of termination inevitable [104]).

3.3 Special cases of SSPG with termina-
tion inevitable
As mentioned before, the existence of a LP-formulation for SSPG is a long standing
open question. Our idea is to dig into special cases of SSPG with termination inevitable:
stopping Simple Stochastic Games (stopping SSG) and Robust Shortest Path with ter-
mination inevitable (RSP with termination inevitable), in order to find a LP-formulation
for these potential ‘simpler’ cases and hopefully generalize these formulations to SSPG
with termination inevitable.

Figure 3.5 – Inclusions of SSPG, SSG and RSP

Note that more general version of stopping SSG and RSP with termination inevitable
exists as we detail later, which are special case of SSPG (but without termination in-
evitable).

3.3.1 Simple Stochastic Games (SSG)

Condon introduced Simple Stochastic Games in 1992 [30]. We follow her definition: a
simple stochastic game is a game defined on a directed graph with three types of vertices,
called max, min and average vertices. There are two special sink vertices named 0MIN -
sink and 0MAX-sink and all but these two sink vertices have exactly two neighbors
(possibly identical). The game is played by two players, a MIN and a MAX player. A

108| ON STOCHASTIC GAMES AND MAXPROB

pebble is initially placed on a given node and the pebble is moved on the edges of the
graph as follows: in a max (resp. min) node, MAX (resp. MIN) chooses a neighbor
to which the pebble is moved, and in a average node, the pebble is moved to one of the
two neighbors with equal probability 1

2 . MAX wins if the pebble reaches the 0MAX -sink
and otherwise MIN wins (if the pebble reaches the 0MIN -sink or if no sink is reached).
Condon [31] proved that deciding if the probability that MAX wins is greater than 1

2 is
in NP ∩ coNP and she conjectured that the problem is in P . She also proved that one
can restrict attention to stopping simple stochastic games as far as polynomial solvability
is concerned, i.e. simple stochastic games that end in a sink node with probability one
for any possible choice of strategies of the players.

Figure 3.6 – Inclusions SSG and SSPG with termination inevitable

In our representation, we color the MIN vertices in red, the MAX vertices in blue
and the average vertices in green. We also distinguish the edges as follows: the regular
edges represent the choices for the two players and the dashed edges represent the two
possible stochastic transitions from an average vertex (with probability 1

2).

3.3 SPECIAL CASES OF SSPG WITH TERMINATION INEVITABLE | 109

Figure 3.7 – Example of a SSG instance

A SSG instance is a tuple (S = (SMIN ∪SMAX ∪Savg), E) where SMIN is a finite set
of states controlled byMIN , SMAX is a finite set of states controlled byMAX and Savg
is a finite set of states not controlled by any player. E ⊆ S × S is a set of ‘edges’. The
edges can be partitioned into E = ∪s∈SE(s) with E(s) = {e = (s1, s2) ∈ E|s1 = s}. We
have |E(s)| ≤ 2. There are two special target sink states 0MIN ∈ SMIN and 0MAX ∈
SMAX : E(0MIN) = E(0MAX) = ∅, and one starting state s0 ∈ S. A deterministic and
stationary policy for MIN (resp. for MAX) is a mapping ΠMIN : SMIN → E (resp.
ΠMAX : SMAX → E) such that ΠMIN (s) ∈ E(s) (resp. ΠMAX(s) ∈ E(s)). Once a
pair of policies Π = (ΠMIN ,ΠMAX) is set, the states form a Markov chain, with two
types of transitions: deterministic one from SMIN and SMAX that are given by Π ; and
stochastic transitions from the states of Savg whose transition probability to the two
neighbors are 1

2 . The SSG decision problem is deciding whether there exists a policy for
player MAX that guarantee that the probability to end up in sink 0MAX (given by the
stationary distribution of the absorbing Markov chain) is greater than 1

2 .
From now on, we will consider only stopping SSG: we can see a stopping SSG in-

stance as a special case of SSPG with termination inevitable. A stopping SSG in-
stance can be seen as a tuple (SMIN ,SMAX ,AMIN ,AMAX ,Aavg, J, P, c) where ((SMIN∪
Savg),SMAX , (AMIN ∪Aavg),AMAX , J, P, c) is an instance of SSPG with termination in-
evitable. Moreover, for all state s ∈ S,

∑
a∈A J(a, s) ≤ 2, meaning that there is at most

two actions available in each state. All actions AMIN ∪ AMAX are deterministic, the
restriction of P to the actions of AMIN ∪AMAX contains only 0 and 1. The restriction of
P to the actions of Aavg contains only 0, 1 and 1

2 . There is a special state 0MIN ∈ SMIN

(resp. 0MAX ∈ SMAX) in which there is one only action that lead to 0 with probability

110| ON STOCHASTIC GAMES AND MAXPROB

1 and cost 0 (resp. with probability 1 and cost 1). The cost of all the other actions
is 0, and cannot lead to state 0. Here the goal of MIN and MAX are pretty clear:
since the only action that has positive cost is the outgoing action from 0MAX , MIN
wants to reach state 0MIN and MAX want to reach state 0MAX . A deterministic and
stationary policy for MIN (resp. for MAX) is mapping ΠMIN : SMIN 7→ AMIN (resp.
ΠMAX : SMAX 7→ AMAX). Solving a stopping SSG instance is deciding whether or not
there exist a deterministic and stationary policy Π∗MAX such that for all deterministic
and stationary ΠMIN ofMIN , we have J(ΠMIN ,Π∗MAX) ≥ 1

2 . Note that as the only action
which has a non-zero cost is the (only) action available in 0MAX , the cost of a pair of
strategies J(ΠMIN ,ΠMAX) is exactly the probability to reach 0MAX following ΠMIN and
ΠMAX .

Note that we artificially put the nodes of Savg under control of player MIN . We
could have put them under control of player MAX without any consequences on the
model, while only one action is available in nodes of Savg.

A SSG is a special case of SSPG. The representation of the previous instance of SSG
as an SSPG is given by figure 3.8.

Figure 3.8 – Representation of the instance of SSG 3.7 as a SSPG

The existence of a (polynomial) LP formulation for stopping SSG (i.e. a linear pro-
gram whose optimal solution would solve the SSG decision problem) is open [30].

Condon [31] proves that some ‘naive’ formulations do not work. She considers for
instance the following linear program:

3.3 SPECIAL CASES OF SSPG WITH TERMINATION INEVITABLE | 111

min
∑

s∈SMAX
v(s)−

∑
s∈SMIN

v(s)
v(i) ≥ v(j) ∀i ∈ SMIN and (i, j) ∈ E
v(i) ≤ v(j) ∀i ∈ SMAX and (i, j) ∈ E
v(i) = 1

2 (v(j) + v(k)) ∀i ∈ SAvg and (i, j), (i, k) ∈ E
v(i) ≥ 0 ∀i ∈ S
v(0MIN) = 0
v(0MAX) = 1

(PCondon)

The idea behind this linear program is to mimic the dual of the standard network
flow formulation for the deterministic shortest path (for more details on network flow
formulation see) when there are only 0-cost edges. Indeed, if we consider only the min
vertices, the previous linear program becomes:

max
∑
s∈SMIN

v(s)
v(i) ≤ v(j) ∀i ∈ SMIN and (i, j) ∈ E
v(i) ≥ 0 ∀i ∈ SMIN

v(0MIN) = 0

(DSP)

and a feasible solution of (DSP) is a potential over the nodes in the special case of
0-cost edges. Thus, we would like v(i) to be the probability, starting from i ∈ S, to
reach the sink 0MIN : if v(i) = 0, the probability of reaching 0MIN is 0 so from i, we
would reach 0MAX surely (as termination is inevitable for stopping SSG).

However, this linear program is not a formulation for stopping SSG. Let us consider
the following instance of SSG (we keep Condon’s representation for convenience, erasing
all the actions).

Figure 3.9 – Counter-Example to DSP being a LP formulation of stopping SSGs (taken
from [30])

On this example, in each node, there is only one strategy for each player, and this
strategy leads to 0MAX with probability 1. Thus, we would like to have v(i) = 1 for
i = 1, 2, 3 (which is feasible for (PCondon)), and in this case, the cost function in (PCondon)
is 1. However, if we define v(i) = 0 for i = 1, 2, 3, then it is another feasible solution to
(PCondon), and the cost is 0, hence the solution to the SSG does not coincide with the
optimal solution to (PCondon). The previous linear program, and the counter example

112| ON STOCHASTIC GAMES AND MAXPROB

are from [31]. In this article, Condon presents algorithms to solve the SSG decision
problem, and a quadratic formulation. She also proves that some naive algorithms such
that a modified version of Hoffman-Karp algorithm, or Pollatschek Avi-Itzhak algorithm
do not work. She also proved that one can restrict attention to stopping SSG as far as
polynomial solvability is concerned. The main remaining question is the existence of a
polynomial time algorithm to solve the stopping SSG decision problem.

Strategy Iteration can be applied to solve stopping SSG (as it is a special case of
SSPG with termination inevitable), but we know that strategy iteration algorithm is
exponential in the worst case in the number of states and actions even in this case
as already discussed [104]. Our original idea was to start studying polynomial time
solvable special cases of SSPG with termination inevitable. This is the case of the Robust
Shortest Path with termination inevitable (RSP with termination inevitable)[17]. It is
the deterministic version of SSPG with termination inevitable. It can also be seen as a
natural variation of Stochastic Shortest Path, where ‘nature’ does not choose randomly
but as to ‘hurt’ as much as possible. For example in the golfer’s problem, solving the
RSP gives an upper bound for the number of shots the golfer has to shoot in order to
put the ball in the hole.

3.3.2 Robust Shortest Path

In [17], Bertsekas defines the RSP as a non-symmetrical game on a directed graph
G = (S ∪ {0}, A) (0 is a special sink node), where player MIN controls the decisions
on nodes S ∪ {0} while an antagonist player MAX controls the destination of these
decisions. From each node s ∈ S, MIN chooses an edge (or action) a from a finite set
A(s) ⊆ A of available actions in s. ThenMAX chooses the destination s′ ∈ S∪{0} from
a subset of nodes that we call S+(a, s). Then a cost c(s, a, s′) is incurred. Bertsekas
defines a policy for MIN to be proper if MAX cannot make MIN loop in the graph
without being able to reach 0. A policy which is not proper is said to be improper. The
RSP is the problem of finding a proper policy of minimum cost (the cost of a proper
policy is the sum of the incurred costs until reaching the destination 0). He proves that
such a policy exists if (i) there exists at least one proper policy and (ii) every improper
policy makes player MIN loop in a positive cost cycle. Bertsekas could also relax the
latter assumption and prove that an optimal policy exists even if every improper policy
makes player MIN loop in a non-negative cost cycle. Regarding the computational
methods, Bertsekas proves that three iterative algorithms converge to an optimal exact
solution: Value Iteration, Policy Iteration and a Dijkstra-like algorithm when the costs
are non negative. We explain a version of Value Iteration and the Dijkstra-like algorithm
in this framework later in the chapter. Bertsekas also proves that both Value Iteration
and Dijkstra converge in polynomial time, which proves that RSP is in P. We encourage
the reader to refer to [17] for more details.

3.3 SPECIAL CASES OF SSPG WITH TERMINATION INEVITABLE | 113

Figure 3.10 – Inclusion of RSP and SSPG with termination inevitable

If we assume that all policies are proper, we can focus on instances of RSP said to be
with termination inevitable. An instance of RSP with inevitable termination can be seen
as a SSPG instance with inevitable termination (SMIN ,SMAX ,AMIN ,AMAX , J, P, c)
where P is a 0/1 matrix. The states in SMIN are controlled by MIN and the states in
SMAX are controlled by MAX. A strategy for MIN (resp. for MAX) is a mapping
ΠMIN : SMIN 7→ AMIN (resp. ΠMAX : SMAX 7→ AMAX). Note that for the instances
of RSP with termination inevitable, the two assumptions of Bertsekas for the problem
to have an optimal solution are trivially true.

As RSP is a special case of SSPG, we could adopt the graphical representation of
SSPG, but for convenience we erase the deterministic actions to replace them with simple
edges. Hence, we can represent a RSP instance with a graph G = (V = VMIN∪VMAX , A)
such that each node in VMIN (resp. in VMAX) represent a state in SMIN (resp. SMAX).
Each action a ∈ A is represented by an arc a = (s, s′) such that s is the unique state
such that J(a, s) = 1 and s′ is the unique state such that P (a, s′) = 1 if it exists, and
s′ = 0 otherwise. We will call this representation the graphical representation of RSP
instance. We will slightly abuse notation and from now, a state s ∈ S will either denote
the state or the corresponding node in V , and an action a ∈ A will either denote the
action or the corresponding arc in A.

114| ON STOCHASTIC GAMES AND MAXPROB

Figure 3.11 – Graphi-
cal representation of a
RSP as a SSPG

Figure 3.12 – Simplified graphical repre-
sentation of a RSP

At this point, RSP with termination inevitable can be seen with two different points
of view. On the one hand, it can be seen as a special case of SSPG with termination
inevitable. A solution is thus a pair of strategies Π = (ΠMIN ,ΠMAX) for MIN and
MAX which forms a Nash Equilibrium, i.e. for which we have, in particular:

J(ΠMIN ,ΠMAX)(i) = min
Π′MIN∈ΣMIN

max
Π′MAX∈ΣMAX

J(Π′MIN ,Π
′
MAX)(i) for all i ∈ S \ {0}

On the other hand, from the formulation above, the RSP can be seen as an opti-
mization problem for MIN (just like Bertsekas does in [17]). In this vision, an optimal
solution is a policy for playerMIN of minimum cost (the cost of a policy ΠMIN ∈ ΣMIN

is maxΠ′MAX∈ΣMAX
J(ΠMIN ,Π′MAX)). We know that if Π = (ΠMIN ,ΠMAX) is a Nash equi-

librium, then ΠMIN is an optimal solution for the corresponding optimization problem.
If we consider only instances with termination inevitable, the solutions to the opti-

mization problem are Nash equilibrium. Indeed in this case maxΠ′MAX∈ΣMAX
J(Π′MIN ,Π

′
MAX)

is finite for all Π′MIN ∈ ΣMIN .

Definition 34
Let I be an instance of RSP seen as an optimization problem for MIN , and ΠMIN ∈
ΣMIN any solution of I (a strategy for MIN). Let s ∈ S, we define the potential of s
with respect to ΠMIN as:

yΠMIN (s) = max
Π′MAX∈ΣMAX

J(ΠMIN ,Π′MAX)(s)

yΠMIN represents the cost from s to 0 if we follow ΠMIN and that MAX plays one
of his best response to ΠMIN . If ΠMIN is optimal, yΠMIN are said to be the optimal
potentials.

Note that, if we consider only instance with termination inevitable, there is no pair
of policies for MIN and MAX such that the agent could ‘loop’ in the system. This
implies that the graph that represents instances of RSP with termination inevitable is
acyclic.

3.3 SPECIAL CASES OF SSPG WITH TERMINATION INEVITABLE | 115

In our representation, we color the chosen edges by MIN in red and by MAX in
blue. We focus on deterministic policies and hence there is only one edge chosen for
each state. Moreover, as the graph representing RSP with termination inevitable is
acyclic, the subgraph induced by the selected edges is a 0-anti-arborescence. We give
two examples of deterministic and stationary policies with the previous instance (figure
3.13).

Figure 3.13 – Two examples of deterministic and stationary policies

Computational methods

We know that the Robust Shortest Path Problem is in P [17]. We present two algorithms
from [17] a Bellman-like algorithm and Dijkstra-like one.

Bellman-like Algorithm

Let I = (SMIN ,SMAX ,AMIN ,AMAX , J, P, c) be an instance of RSP with termination
inevitable and GI = (V = VMIN ∪ VMAX , A) its graphical representation. As GI is
acyclic, there exists a topological order O over the states (see the preliminaries for more
details). We can apply a slightly modified version of Bellman algorithm for shortest path
problem. Just like for Bellman algorithm, we will set and update labels y for each state
v, that represent the potentials (here we see RSP as an optimization problem for MIN ,
so the optimal cost of a path is the cost incurred from v to 0 following the optimal policy
for MIN that we are looking for). As 0 is a sink node, we can always assume that 0 is
at the end of all topological order O and we set y(0) = 0. Then we update each node v
one by one, following the reverse order of O:

• if v ∈ VMIN , y(v) = mina=(v,v′)∈A c(a) + y(v′)

• if v ∈ VMAX , y(v) = maxa=(v,v′)∈A c(a) + y(v′)

To determine the strategy from the potentials, we only need to remember for which
arc the min (resp. the max) has been obtained for the nodes in VMIN (resp. in VMAX).
We can prove inductively that it returns an optimal solution (an optimal strategy for
MIN).

Let us illustrate the previous algorithm on the following instance of RSP with the
following topological order O = (s1, s2, s4, s3, s5, 0) (figure 3.14).

116| ON STOCHASTIC GAMES AND MAXPROB

Figure 3.14 – Example of a RSP instance

Here are the different steps that lead to the optimal strategy Π∗. We represent the
labels y as a vector y = (y(s1), y(s2), y(s3), y(s4), y(s5), y(0))

Iterations labels y
1 y = (∞,∞,∞,∞,∞, 0)
2 y = (∞,∞,∞,∞, 5, 0)
3 y = (∞,∞, 6,∞, 5, 0)
4 y = (∞,∞, 6, 1, 5, 0)
5 y = (∞, 7, 6, 1, 5, 0)
6 y = (7, 7, 6, 1, 5, 0)

We give an optimal strategy in the following figure (figure3.15).

Figure 3.15 – Optimal solution of a RSP

This algorithm runs in O(m) (where m the number of arcs): we explore each arc
exactly once.

3.3 SPECIAL CASES OF SSPG WITH TERMINATION INEVITABLE | 117

Dijkstra-like Algorithm

When the costs are non negative and even if termination is not inevitable, we can apply
a Dijkstra-like algorithm. This algorithm is taken from [17]. We slightly adjusted the
algorithm to make it fit our framework: we symmetrize the points of view, and compute
both strategies at the same time. Here again, we consider RSP as an optimization
problem for MIN , so our goal is to find a policy of minimum cost for MIN .

Just like for Bellman-Like algorithm, we define labels y over the states. At the end
of the algorithm, y(v) represents the optimal potential of v. We initialize y(0) = 0 and
y(v) = ∞ for all v ∈ S \ {0}. We define two sets Y and Z that we set to: Y = ∅ and
Z = {0} initially. At each step of the algorithm, Y represents the nodes for which the
labels are the optimal potentials, and Z represent the nodes for which the labels have a
finite value, but are maybe not the optimal potentials yet. The algorithm iterates until
Z is empty.

Each iteration runs as follows (it generalizes naturally the standard Dijkstra’s algo-
rithm):

• we take from Z the state z∗ in VMIN of minimal label. As z∗ ∈ Z, the label of z∗
has finite value.

• as z∗ has minimum label, we can insure that its potential is optimal 2. So we place
it in Y .

• we update all the labels of the states u ∈ Z ∩ VMAX : if all the potentials of the
neighbors of u are optimal. In this case the label of u is updated choosing the path
incurring a maximum cost (best choice for MAX).

• we update all the labels of the states v ∈ Z ∩VMIN if one choice induces a smaller
cost. If we update, we now know that the label of u is finite, but may be not
represent an optimal potential (so we place u in Z)

We give the outline of a Dijkstra-like algorithm. For all u ∈ V we denote by δ+(u)
the outgoing arcs from u in G. (and by δ−(u) the incoming arcs to u in G).

2as will be seen later

118| ON STOCHASTIC GAMES AND MAXPROB

Algorithm 4 Dijkstra-like Algorithm
while Z 6= ∅ do

Define z∗ such that y(z∗) = minz∈Z∩VMIN
y(z)

Z ← Z \ {z∗}
Y ← Y ∪ {z∗}
for all u /∈ Y and u ∈ VMAX do

if δ+(u) ⊆ Y then
y(u)← maxa∈δ+(u) y(v) + c(u, v)
Y ← Y ∪ {u}

end if
end for
for all u /∈ Y and u ∈ VMIN do

U(u) = {a = (u, v) ∈ δ+(u)|v ∈ Y, z∗ ∈ δ+(a)}
if U(u) 6= ∅ AND y(u) > mina=(u,v)∈U(u) y(v) + c(a) then

y(u)← mina=(u,v)∈U(u) y(v) + c(a)
Z ← Z ∪ {u}

end if
end for

end while

Let us illustrate this algorithm on the previous example. At each iteration, we give
the value of Y , Z, the value of z∗ and y at the end of the iteration (figure 3.16).

Figure 3.16 – Example of a RSP instance

Iterations labels y Y Z z∗

0 y = (∞,∞,∞,∞,∞, 0) ∅ {0}
1 y = (∞,∞,∞, 1, 5, 0) {0} {4, 5} 0
2 y = (∞,∞,∞, 1, 5, 0) {0, 4} {5} 4
3 y = (7, 7, 6, 1, 5, 0) {0, 4, 5, 2, 3} {1} 5
4 y = (7, 7, 6, 1, 5, 0) {0, 4, 5, 2, 3, 1} ∅ 1

Once again, by looking for which arc the min or the max has been reached for y, we

3.3 SPECIAL CASES OF SSPG WITH TERMINATION INEVITABLE | 119

can find the optimal strategy (figure 3.17).

Figure 3.17 – An optimal solution

This algorithm runs in O(n2m) in worst case, as it terminates with at most n + 1
iterations of nm operations in the worst case [17] (n is the total number of states, and
m the total number of actions/edges).

Proof. (sketch) We can note first that at each iteration (an iteration is the operations
inside the outer while loop), there is one node that leaves Z, and this node is never
coming back to Z. Thus, the number of iterations is bounded by n, where n is the
number of nodes. In fact, the algorithm terminates in exactly n1 + 1 iterations, where
n1 = |VMIN | and at the end, Y = V . We refer to [17] for the proof.

Then, let us prove that at the end of each iteration, for all v ∈ VMIN ∩ Y and for
all v′ ∈ VMIN ∩ (V \ Y), we have y(v) ≥ y(v′), meaning that the labels of the nodes in
VMIN ∩ Y are smaller (one by one) than the labels of the nodes in VMIN ∩ (V \ Y).

We use induction on the number of iterations. At the end of the first iteration, we
have VMIN ∩ Y = {0} and y(0) = 0. Since all the costs are non-negative and from the
updates of the labels in the algorithms, we have y(v) ≥ 0 for all v ∈ V . So the assertion
holds for the first iteration. Let us assume that the assertion holds for the iteration
k− 1. Let us call yk the labels at the start of iteration k and ỹk the labels at the end of
iteration k. By definition of z∗, we have, for all v ∈ VMIN ∩ (Y ∪ {z∗}) (whose labels do
not change during an iteration) and for all v′ ∈ VMIN ∩ (V \ (Y ∪ {z∗}),

ỹk(v) = yk(v) ≤ yk(z∗) ≤ yk(v)

Then, for all v′ ∈ VMIN ∩ (V \ (Y ∪ {z∗})), the labels are updated according to

ỹk(v′) = min [yk(v′), min
a=(v′,w)∈U(v′)

y(w) + c(a)]

Because c(a) ≥ 0 for all a ∈ A, and z∗ ∈ δ+(a) for all a ∈ U(v′), we have:

ỹk(v′) ≥ min [yk(v′), yk(z∗)]

120| ON STOCHASTIC GAMES AND MAXPROB

ỹk(v′) ≥ yk(v)
ỹk(v′) ≥ ỹk(v)

which proves the assertion. Now, as at the end of each iteration, the nodes in
VMIN ∩Y has smaller labels than the other nodes, and as the costs are non negative, we
can prove by induction that at the end of each iteration, y(v) represents the cost of an
optimal path from v to 0 using only nodes in Y . The main idea is that as the nodes in
VMIN ∩ Y have smaller potentials, and the costs non-negative, it would not be worth to
use a path that goes in and out Y . At the end of the algorithm, as Y = V , the returned
labels are optimal potentials. We let the reader refer to the complete proof in [17].

Note that this algorithm still works for instances of RSP that contains cycles [17].

3.3.3 ILP-Formulations for RSP and SSPG

RSP with termination inevitable is in P, but no LP-formulation is known for this problem.
The RSP is very close to the deterministic shortest path problem, so we tried to ‘mimic’
known LP-formulations for shortest path problems.

We know that for the (s − t)-deterministic shortest path problem, one linear pro-
gramming formulation consists in looking for a feasible flow from s to t of minimum
cost. Once an optimal solution is found, the optimal flow defines a path from s to t of
minimum cost. For the RSP with termination inevitable, we want a shortest path from
each v ∈ VMIN to 0, and a longest path from each v ∈ VMAX to 0. Thus, we define |V |
feasible flows from each s ∈ V to 0 (constraint (1)). Constraint (5) defines potentials
from the flows. Constraint (2) insure that all these paths are consistent: let s, s′ ∈ V be
two states, and p, p′ the optimal paths from s to 0 and from s′ to 0, respectively. Then
if p pass through s′, then the sub-path of p from s′ to 0 and p′ have to be the same.
In order to insure that the path from each s ∈ VMIN (resp. s ∈ VMAX) have minimum
cost (resp. maximum cost), we mimic the dual of the linear programming formulation
for deterministic shortest path. We have seen in the introduction of this thesis that
this dual uses potentials, and that the inequalities between potentials define the mini-
mization of the path. We slightly adapt these constraints in order to define shortest and
longest path from the states in VMIN and VMAX , respectively.

Let I = (SMIN ,SMAX ,A, J, P, c) be a instance of RSP, and G = (V = VMIN ∪
VMAX , A) be the graph representation of this instance. For all u ∈ V , we denote by
N(u) the neighborhood of v, i.e. N(u) = {v ∈ V |∃a ∈ A, a = (u, v)}. We define the
following polyhedron:

xs(δ+(v))− xs(δ−(v)) =
{

1 if v = s and v 6= 0
0 otherwise

∀s, v ∈ V (1)

xu
a − xs

a ≥ 0 ∀a ∈ δ+(u),∀u, s ∈ V (2)
yv − yu ≤ ca ∀a = (u, v) ∈ A, u ∈ VMIN (3)
yv − yu ≥ ca ∀a = (u, v) ∈ A, u ∈ VMAX (4)∑

a∈A x
s
aca = ys ∀s ∈ V (5)

(P I
RSP)

3.3 SPECIAL CASES OF SSPG WITH TERMINATION INEVITABLE | 121

Proposition 35
There is a one-to-one correspondence between the feasible solutions of (P IRSP) and the
optimal solutions of I (considering RSP as an optimization problem for MIN).

Proof. Let us define x′ ∈ {0, 1}m: ∀a ∈ A, x′a = maxs∈S xsa. As
∑
a∈δ+(v) x

s
a ≤ 1 for

all s, v ∈ S (constraint (1)) and xua ≥ xsa ∀a ∈ δ+(u) ∀u, s ∈ S (constraint (2)), since
xs ∈ {0, 1}m, we know that suppG(x′) = {a ∈ A|x′a > 0} is a 0-anti-arborescence.
Reciprocally, from a 0-anti-arborescence Ā we can generate x̄s for all s ∈ S. Indeed, let
us call ps the unique path in Ā from s to 0. Then for all a ∈ A, x̄sa = 1 if a ∈ ps and 0
otherwise. Then the constraints (1) and (2) are satisfied. Then constraints (1) and (2)
define a pair of policies for MIN and MAX, which is a solution of the RSP instance
with termination inevitable.

Finally, once the xs are defined, from constraint (5), ys is exactly the cost of the path
defined by xs from s to 0. Thus, if constraints (3) and (4) are verified, we can define
ΠMIN ,ΠMAX such that ΠMAX is a best response to ΠMIN , and ΠMAX have minimum
cost. Thus, ΠMIN is an optimal solution of I.

We also give another integer linear programming formulation for RSP, whose idea
comes from Jannick Matuschke. The idea is to define variables y ∈ Rn (n is still the total
number of states) that represent potentials. We also define variables z ∈ {0, 1}|AMAX |,
that represent the choice of actions for MAX: for all a ∈ AMAX , za = 1 if MAX
chooses a, and 0 otherwise. Once again, we ‘mimic’ the dual of the linear programming
formulation for the deterministic shortest path problem. Let us consider the following
linear programming formulation, where M is a constant to be defined:

max
∑
v∈VMIN

yv (1)
yv − yu ≤ ca ∀(u, v) = a ∈ AMIN (2)
yv − yu ≤ zaca + (1− za)M ∀(u, v) = a ∈ AMAX (3)∑
a=(u,v)

u∈VMAX

za = 1 (4)

yt = 0 (5)
y ∈ R

n (6)

(P IRSP_JM)

Proposition 36
Let (y∗, z∗) be an optimal solution of (P IRSP_JM). Then y∗ are optimal potentials: there
exists Π∗MIN ∈ ΣMIN an optimal policy for MIN such that yΠ∗MIN = y∗.

Proof. Once z∗ is fixed, the strategy for MAX is set. For all (u, v) = a ∈ AMAX chosen
by MAX, constraints (2) are in fact equalities, and are true for the action not chosen
by MAX (for which za = 0), if we take M sufficiently large (such a M is easy to find
by solving both a shortest path and a longest path on the RSP instance, and taking the

122| ON STOCHASTIC GAMES AND MAXPROB

difference between the two). The problem becomes then a ‘classic’ deterministic shortest
path problem for MIN , whose solution is a 0-anti-arborescence.

The same kind of approach can be generalize to find an integer linear programming
formulation for SSPG with termination inevitable. The main idea is the same: to insure
that we have a deterministic strategy profile and then thanks to the dual of the linear
programming formulation of SSP, insure the optimality of this pair of strategies.

Proposition 37
Let I = (SMIN ,SMAX ,AMIN ,AMAX , J, P, c) be an instance of SSPG, and GI = (V,A)
his graphic representation. Let us consider the following linear program with A−(v) =
{a ∈ A|P (a, v) > 0}.

(J − P)Txs = 1s ∀s ∈ S (1)
yv − yu ≤ ca ∀u ∈ SMIN ,∀v ∈ S, ∀a ∈ A(u) ∩ A−(v) (2)
yv − yu ≥ ca ∀u ∈ SMAX , ∀v ∈ S, ∀a ∈ A(u) ∩ A−(v) (3)
xsa ≤ Mza ∀s ∈ S, ∀a ∈ A (4)∑
a∈δ+(s)

za = 1 ∀s ∈ S (5)

cTxs = ys ∀s ∈ S (6)

(P ISSPG)

Then there is a one-to-one correspondence between the feasible solutions of P ISSPG
and the optimal solutions of I.

Proof. The proof is quite equivalent as the proof of proposition 35. The constraints
(1), (4) and (5) insure that ∪s∈Sxs induces a deterministic strategy profile. Indeed, the
variables z over the actions define the choices of MIN and MAX (an action a chosen
by one of the player is such that za = 1, and 0 otherwise. Then constraint (6) defines
exactly the variables y from the flux vectors (xs)s∈S , and the constraints (2) and (3)
insure the optimality of the solution.

We find a integer linear programming formulation for both RSP with termination
inevitable and SSPG with termination inevitable. However, these formulation are not
integral, even in the simpler case of RSP with termination inevitable.

Proposition 38
Linear relaxation of (P IRSP) is not integral.

Proof. Let us consider the following instance of RSP with termination inevitable (in fact,
a shortest path instance as there is no MAX player: in particular a Nash equilibrium is
a shortest path arborescence) (figure 3.18).

3.3 SPECIAL CASES OF SSPG WITH TERMINATION INEVITABLE | 123

Figure 3.18 – Example showing that the extreme points of the linear relaxation of (P IRSP)
are not integer

As we have only 0 cost edges, any 0-anti-arborescence is an optimal solution of the
RSP with termination inevitable (seen as an optimization problem for MIN).

In order to prove that the extreme points of the linear relaxation of (P IRSP) are not
integer, we show that there is a weight function over (P IRSP) and a fractional solution of
better weight that the weight of any feasible integer solution.

Let us define w1, w2, w3 ∈ Zm and the objective function
∑

s∈{1,2,3}
wsxs:

• w1 = (100, 0, 0, 0, 1, 100)

• w2 = (0, 1, 0, 100, 100, 0)

• w3 = (0, 100, 100, 0, 0, 1)

Figure 3.19 – Representation of w1 (in blue), w2 (in red) and w3 (in green)

124| ON STOCHASTIC GAMES AND MAXPROB

The solution x1 = (0, 1
2 ,

1
2 ,

1
2 ,

1
2 , 0), x2 = (1

2 ,
1
2 ,

1
2 , 0, 0,

1
2), x3 = (1

2 , 0, 0,
1
2 ,

1
2 ,

1
2), and

y = (0, 0, 0, 0) is a solution to the linear relaxation (figure 3.20).

Figure 3.20 – From left to right: representation of x1, x2 and x3

This solution has weight 1
2 + 1

2 + 1
2 = 3

2 . However, the optimal integer solution is the
following (figure 3.21):

Figure 3.21 – The (unique) optimal integer solution

This solution corresponds to x1 = (0, 0, 0, 0, 1, 0), x2 = (0, 1, 0, 0, 0, 0), x3 = (0, 0, 0, 0, 0, 1),
y = (0, 0, 0, 0). Indeed, as we are looking for an integral solution, the solution is an 0-
anti-arborescence, and it is easy to see that any other 0-anti-arborescence induces a cost
greater than 100. The value of this solution is 1+1+1 = 3. Thus, there exists a fractional
solution of better weight than any integer solution, which proves the proposition.

Now we know that the extreme points of the polyhedron of (P IRSP) are not integer.
However it could be interesting to study the convex hull of the integer solutions of this
polyhedron. We have started to study this integer hull with tools like Porta on examples

3.4 INSTANCES OF RSP ∩ SSG | 125

and the results are not encouraging to carry on in this direction. Indeed, we strongly
believe that, even thought we did not formalize proofs yet, that this linear program-
ming formulation encapsulates NP-hard problems. We also could dig into alternative
directions, like checking integer non emptiness only.

It is interesting to note that our counter-example does not involve nodes controlled
by MAX. This means that it is an instance of deterministic shortest path. We can
conclude that the following is not a linear programming formulation for the shortest
path

xs(δ+(v))− xs(δ−(v)) =
{

1 if v = s and v 6= 0
0 otherwise

∀s ∈ V

xua − xsa ≥ 0 ∀a = (u, v), u, s ∈ S, v ∈ N(u)
yu − yv ≤ ca ∀a = (u, v) ∈ A, u ∈ V∑
a∈A x

s
aca = ys ∀s ∈ V

(3.1)
The previous counter example show that (P IRSP) is not a LP-formulation of the

deterministic shortest path problem.

3.4 Instances of RSP ∩ SSG
We now restrict our attention to even simpler instances in our quest for LP formulation,
that is, instances of RSP with termination inevitable which are also instances of stopping
Simple Stochastic Games. We call the set of these instances stopping RSP∩SSG. An
instance of stopping RSP∩SSG can be seen as an instance of stopping SSG where there
is no average node.

Formally, an instance of stopping RSP∩SSG is a graph G = ((V = VMIN∪VMAX), A)
where VMIN is a finite set of nodes controlled by MIN and VMAX is finite set of nodes
controlled by MAX. A is a set of arcs such that for all v ∈ V , |δ+(v)| ≤ 2. Just
like for SSG, a (deterministic and stationary) policy for MIN (resp. for MAX) is a
mapping ΠMIN : VMIN → A (resp. ΠMAX : VMAX → A) such that ΠMIN (s) ∈ δ+(s)
for all s ∈ VMIN (resp. ΠMAX(s) ∈ δ+(s) for all s ∈ VMAX). There are two special
sink nodes: 0MIN and 0MAX . We focus on instances where G is acyclic, so a pair of
policies for MIN and MAX define an disjoint union of a 0MIN -anti-arborescence and
a 0MAX -anti-arborescence. Thus, each node v ∈ V is connected exclusively to 0MIN

or 0MAX . From a start node v0 ∈ V and a pair of policies Π = (ΠMIN ,ΠMAX), we
say that MIN wins if v0 is connected to 0MIN in the corresponding disjoint union of
anti-arborescences, and that MAX wins if s0 is connected to 0MAX in this union.

126| ON STOCHASTIC GAMES AND MAXPROB

Figure 3.22 – instances of Stopping RSP ∩ RSP with inevitable termination

We give a simple algorithm to solve such instances: let G be an instance of stopping
RSP∩SSG and let O be a topological order over the nodes of G (which exists since G is
acyclic). Solving such instances boils down to labeling the nodes with 0 or 1, depending
on if from it, MIN wins whatever the strategy of MAX is (then we label with 0 and
with 1 otherwise). At the beginning of the algorithm, we can mark 0MIN with 0 and
0MAX with 1. As 0MIN and 0MAX are sinks, they can be assumed to be at the end of
any topological order. Let us consider the nodes one by one, in opposite order of O. As
I is an instance of SSG, each nodes has at most 2 neighbors, and can be either min or
max. We label the current node according the following possible cases, according to the
labels of his neighbors:
• if the current node has only one neighbor, we label the current node with the label

of its neighbor

• if the current node has exactly two neighbors, then we distinguish two cases:

– the current node is min: if at least one of its neighbor’s label is 0, we label
the current node 0, and 1 otherwise

– the current node is max: if both its neighbor’s labels are 0, we label the
current node 0, and 1 otherwise

Proposition 39
Once all the nodes are labeled, we can conclude who wins according to the label of the
start node: if it is labeled 0, MIN wins and MAX wins otherwise (then the label is 1).

Proof. We prove this proposition by induction on the number of nodes. If there are only
two nodes 0MIN and 0MAX , as we label 0MIN with 0 and 0MAX with 1, if v0 = 0MIN

then min wins and max wins if v0 = 0MAX by definition.

3.4 INSTANCES OF RSP ∩ SSG | 127

Let us assume that the proposition is true for any graph composed of n − 1 nodes.
Let us consider a graph Gn composed of n nodes. As Gn is acyclic, we can define a
topological order O over the nodes of Gn. Let v be the first node in O, meaning that v
has no incoming arc (and at most 2 outgoing arc). By induction, we can label the nodes
of Gn \ {v} such that from the nodes labeled 0, MIN wins and MAX wins from the
nodes labeled 1. Then the proposition is true for all the nodes except v. Let us label v
according to the different cases described above.

Let us assume that v ∈ VMIN (the same kind of proof can be made if v ∈ VMAX).
If v has only one neighbor v′, then if v′ is labeled 0, v is labeled with 0 and from v,

MIN wins as v′ is connected to 0MIN . Similarly, if v′ is labeled 1, v is labeled with 1
and from v, MAX wins since v′ is connected to 0MAX .

If v has two neighbors then if at least of its neighbors v′ is labeled 0, we set ΠMIN (v) =
(v, v′) and from v,MIN wins. If all the neighbors of v are labeled 1, then we set ΠMIN (s)
to any of its outgoing arc and MAX wins from v.

Let us consider the following linear program, where v0 ∈ V is the start node. We
denote by N1 ⊆ V the subset of V of nodes which have only 1 neighbor, and N2 ⊆ V
the subset of V of nodes which have exactly 2 neighbors.

max yv0

yi ≤ yj + yk ∀i ∈ VMAX ∩N2, ∀(i, j), (i, k) ∈ A (1)
yi ≤ yj ∀i ∈ (VMAX ∩N1) ∪ VMIN , ∀(i, j) ∈ A (2)
y0MIN = 0 (3)
y0MAX = 1 (4)

(P IRSP∩SSG)

In this linear program, yi represent the label of node i. The inequalities (1) and (2)
force to label a node in VMAX to 0 if its neighbors are labeled 0 and to label a node in
VMIN to 0 if at least one of its neighbor is 0. The objective function force to label a
max node to 1 if at least one of its neighbor is 1, and a min node to be labeled to 1 if
both of its neighbors is 1. Thus, if the optimal value of PRSP∩SSG is 0, MIN wins from
v0.

Note that if the optimal solution to the linear relaxation of PRSP∩SSG is positive,
then there exists a 0 − 1 solution with ys = 1. Indeed, let y be an optimal solution
with ys = ε > 0. Let ȳ be a 0 − 1 vector over the nodes defined by ∀i ∈ V, ȳ(i) = dyie.
By definition of the constraints of PRSP∩SSG, ȳ is a feasible solution of PRSP∩SSG, of
value 1. Thus, if the optimal value of PRSP∩SSG is positive, we know that there exist a
solution of value 1, and MAX is winning from s.

We think that the same logic might be applied to solve SSG. Indeed, even if we do
not have a LP-formulation, we have defined a linear program, for which we can decide
which player wins according to the optimal value, and a threshold (here the threshold is
0: if we have a optimal solution of positive cost, then we know that MAX wins). Even
if we did not formalize it, we could define the same kind of linear program for SSG, and
decide who wins according to whether or not the optimal solution has a value greater
than 1

2 (in this case the threshold would be 1
2).

128| ON STOCHASTIC GAMES AND MAXPROB

Finally, the instance of RSP ∩ SSG are easy to solve. What happen if we introduce
stochasticity in this problem ? If we re-introduce the average nodes, we come back to
SSG. What if the transitions for player MAX were stochastic, with possibly different
probabilities than 1

2 ? This is MAXPROB, so let us go back to this problem.

3.5 The MAXPROB Problem
As seen in chapter 1, MAXPROB is a special case of SSP. There are only two actions
aMIN and aMAX that can lead to 0 with probability 1. These actions are available in
only two states: respectively 0MIN and 0MAX . The costs of all actions are 0, except
for aMAX which has cost 1. Thus, minimizing the expected cost of a proper policy is
equivalent to maximizing the probability to reach state 0MIN , as the only action that
has non zero cost is aMAX , and aMAX is taken at most once.

Figure 3.23 – Example of MAXPROB. All the actions have cost 0 except for aMAX

which has cost 1

We refer to the first chapter for a formal definition of MAXPROB. As MAXPROB
is a special case of SSP, there exists a LP formulation so MAXPROB can be solved in
weakly polynomial time.

Proposition 40
If there exists a strongly polynomial algorithm to solve an instance of MAXPROB with-
out transition cycle, then there exists a strongly polynomial algorithm to solve general
instances.

Proof. Let I = (S,A, J, P, c) be an instance of MAXPROB with one only transition
cycle x̃ ≥ 0 (we can assume that there is only one transition cycle without loss of gener-
ality), and GI his graphical representation (see chapter 1 for more details on graphical
representation of SSP). We remind the readers that a transition cycle is a solution x 6= 0
to (J − P)Tx = 0. We know that one can find a transition cycle in strongly polynomial
time (see chapter 1 for more details).

3.5 THE MAXPROB PROBLEM | 129

As all the costs are 0 (except for aMAX), the cost of a transition cycle x̃ is cT x̃ = 0,
as x̃(aMAX) = 0 for all transition cycle x̃.

Let S̃ = {s ∈ S|P T x̃ > 0} be the subset of reachable states if we perform actions a
such that x̃(a) > 0. Let G̃I be the graph in which all nodes corresponding to the states
of S̃ have been contracted in one node sx̃ and Ĩ the corresponding SSP instance. Then
G̃I has no transition cycle. Let us assume that we can find an optimal (deterministic
and stationary) policy Π̃ of Ĩ in strongly polynomial time. Let us call s′ ∈ S the unique
state such that J(Π̃(sx̃, s′) = 1, Let us now define Π∗, a policy for instance I, such that:

Π∗(s) =


Π̃(s) if s ∈ S \ S̃
a such that x̃(a) > 0 if s ∈ S̃ \ {s′}
Π̃(sx̃) if s = s′

As Π̃ is proper, and by definition of a transition cycle we know that Π∗ is proper.
Then, as the cost of the transition cycle is 0, we have JΠ∗(s) = J Π̃(sx̃) for all s ∈ S̃. We
conclude that Π∗ is an optimal policy for I, which proves the proposition.

We tried to answer the question of the existence of a strongly polynomial algorithm.
For this quest, we can assume w.l.o.g that each action can lead to at most two states.
We can easily generate an equivalent model with at most n2 states and nm actions by
repeating the following transformation:

In the LP-formulation of SSP, it results that we can assume there are at most three
variables per inequality. With the help of László A. Végh, who is a specialist of strongly
polynomial algorithms in combinatorial optimization, we tried to understand first to
extend the results of [53] on linear programs with two variables per inequality. Even
if we could not manage to extend the idea to find a strongly polynomial algorithm to
solve MAXPROB. Our investigations were productive: László A. Végh found an error in
the paper, and later corrected it. We understood from these first investigations that the
quest of strongly polynomial time algorithm for MAXPROB was way too challenging
and this is why we focused our research on games extensions of SSP where we though
we had a better grip (even though as describe above, the open problems are very hard,
but at least we could give some hopefully interesting directions).

130| ON STOCHASTIC GAMES AND MAXPROB

3.6 Conclusion and Perspectives
In this chapter we have studied variations of the Stochastic Shortest Path Problem,
and in particular, we have to studied the existence of LP-formulations for some game
extensions. The most natural 2-player stochastic game extension of the SSP is the
Stochastic Shortest Path Game and even though we could not find a LP formulation
for the problem, we could formulate what we believe is the first ILP formulation of the
problem, which opens new ways to look at the problem from a polyhedral perspective
and this is we believe a first contribution (it could provide an alternative to strategy
iteration for instance which could be interesting to evaluate computationally). Even
though we have started to investigate the integer hull exploiting tools like Porta, our
first experiments suggested that hard inequalities would be needed and even though we
did not formalize the proof yet, we strongly believe that the formulation encapsulate
NP-hard problems which refrained us from pursuing in this direction. Therefore we
restricted attention to simpler sub-problems for which existence of LP-formulation was
still open. Our main contribution is a simple LP model that has the property that if
the solution is positive, then it has an integer solution of value one (which provides a
simple and original LP approach to answer the problem). We believe that this offers
an interesting direction for further investigation for the SSG problem. Maybe no LP-
formulation exist but there might still be a LP model that has the property that zLP > 1

2
if and only if there exists a deterministic strategy that reaches 0 with probability more
that 1

2 .
By adding stochasticity to this last special case, we come back to a well known

problem we have encountered in the first chapter: MAXPROB. For this last problem,
we prove that we can focus only on instances without transition cycle. It is interesting
to see that even if MAXPROB is a special case of SSP, we do not know if solving
MAXPROB is easier than solving SSP.

Conclusion, Limites
et Perspectives de Recherche

Dans ce manuscrit de thèse, nous nous sommes intéressés au problème de l’optimisation
de stratégie dans le sport et plus particulièrement à l’optimisation de la stratégie des
joueurs de golf. Comme nous l’avons vu, les joueurs professionnels peuvent participer
à deux types de compétitions : les compétitions en Stroke Play et les compétitions en
Match Play. Durant une compétition en Stroke Play, tous les joueurs en lice jouent les
dix-huit trous du parcours, le gagnant est le joueur ayant obtenu le plus petit score à
l’issu de celui-ci. Concernant les compétitions en Match Play, deux joueurs s’affrontent
sur chaque trou se départageant un point par trou, le vainqueur étant le joueur ayant le
plus de points à la fin du parcours.

Dans le premier chapitre, nous avons redéfini et élargi le cadre d’étude du plus court
chemin stochastique. Ce problème avait été défini et largement étudié dans un cadre
assez éloigné de notre communauté scientifique. Nous avons considéré le PCCS d’un
point de vue polyédral, plus proche de nos domaines de compétences. Nous avons réussi
à alléger les hypothèses d’existence d’une solution optimale (les cycles de transition de
coût nul sont désormais autorisés) et prouvé que les algorithmes classiques de résolution
préexistants (Value Iteration, Policy Iteration) convergeaient bien dans notre nouveau
cadre d’étude. De plus, notre approche nous a permis d’appliquer des algorithmes, bien
connus de notre communauté, au problème du plus court chemin stochastique. Cela
nous a mené à définir et à prouver la convergence d’un nouvel algorithme de résolution
basé sur l’algorithme du primal-dual qui peut s’apparenter à la version stochastique
de l’algorithme de Dijkstra pour les plus courts chemins déterministes. Même si nous
n’avons pas obtenu de résultats importants concernant la complexité théorique ou pra-
tique de cet algorithme, cela nous a conduit à étudier un sous-problème connu de la
communauté Intelligence Artificielle : MAXPROB. Ce problème est en fait un cas parti-
culier de PCCS qui ne pouvait pas être résolu tel quel avec les algorithmes classiques de
résolution des PCCS, notamment à cause de la présence potentielle de cycles de transition
de coût nul. Avec l’allègement des conditions d’existence de solutions optimales, nous
avons pu faire entrer MAXPROB dans le cadre classique d’étude. Malheureusement la
complexité temporelle des algorithmes de résolution connus demeure exponentielle dans

131

132| Conclusion

le pire cas, même dans ce cas particulier. Finalement, nous n’avons pas pu déterminer
si MAXPROB était plus simple que le cas général des PCCS ou si il renfermait sa
complexité.

La compréhension profonde de ce dernier problème aurait été doublement intéres-
sante. D’abord d’un point de vue algorithmique : MAXPROB apparait naturellement
quand on applique l’algorithme primal-dual au cas particulier du programme linéaire
formulant les PCCS. La résolution efficace de ce problème pourrait potentiellement per-
mettre de résoudre efficacement les PCCS. Sachant que l’existence d’algorithmes forte-
ment polynomiaux pour résoudre les PCCS est une question ouverte très importante
dans le domaine, une des pistes de recherche serait donc de trouver d’abord un algo-
rithme fortement polynomial pour MAXPROB. D’autre part, ce problème étant un cas
particulier des PCCS (les coûts ne valent que 0 et 1, on peut supposer qu’il n’y a pas
de cycle de transition...), il est intéressant de l’étudier comme un problème ‘élémentaire’
afin de connaître l’essence de la difficulté des PCCS.

Dans le deuxième chapitre, nous avons détaillé la modélisation du "problème du
golfeur" en PCCS. Après avoir défini les états, les actions et le coût de ces actions de
manière assez naturelle, il nous a fallu définir la matrice de transition qui relate à la fois
de la topologie du terrain mais aussi du niveau intrinsèque du joueur. Grâce à la base
de données Américaine Shotlink [86], nous avons eu accès à des informations relatives
aux coups des joueurs professionnels durant des compétitions internationales, comme
par exemple la position de la balle avant et après le coup ou le type de terrain (fairway,
rough, bunkers, green...) sur lequel le joueur a tiré. Ces données nous ont permis de
créer des statistiques intrinsèques au joueur qui relatent de la déviation de ses coups.
Nous avons ensuite simulé ces statistiques sur le trou considéré afin de créer la matrice
de transition. Une fois l’instance de PCCS créée à partir des données du terrain et
du joueur, nous avons résolu à l’optimal cette instance afin de déterminer la stratégie
optimale du joueur. Les joueurs que nous avons considéré étant professionnels, nous
avons supposé qu’ils jouaient leur stratégie optimale, ce qui nous a permis de créer un
‘clone numérique’ du joueur. En simulant ce clone sur les différents trous d’un parcours,
nous pouvons établir une distribution du nombre de coups que le joueur jouera pour
mettre la balle dans les dix-huit trous du parcours s’il s’agit d’une compétition en Stroke
Play ou une probabilité de victoire face à son adversaire s’il s’agit d’une compétition en
Match Play.

Tout au long de cette modélisation, nous avons fait des hypothèses que l’on peut
classer en deux catégories : celles concernant la simulation du jeu de Golf et celles liées
aux statistiques du joueur. Pour les premières, nous avons du faire des simplifications :
on considère que le trou est plat, on ne prend pas en compte le roulement de la balle et la
gestion des interactions entre la balle et les obstacles est simpliste. Il est clair que pour
avoir un simulateur plus réaliste il serait intéressant d’intégrer (entre autres) tous ces
aspects. Cependant ces hypothèses ne remettent pas en cause notre démarche globale et
ces améliorations peuvent être apportées indépendamment de la partie optimisation du
programme. Concernant les hypothèses faites afin de construire le profil théorique des
joueurs, elles ont principalement été faites à l’aide de connaissances ‘métier’ des golfeurs.

| 133

L’intention des joueurs de viser le trou quand ils ne sont pas sur le tee et que le trou
est atteignable est une hypothèse qui est discutable, la linéarité de la dépendance entre
la déviation des coups et la distance de celui-ci, ainsi que le facteur constant reliant les
déviations sur le fairway et le rough ou les bunkers sont des hypothèses qui nous ont
parues naturelles à considérer dans un premier temps et peuvent sûrement être améliorées
afin d’être plus réalistes. Une autre limite de notre modèle concerne la définition des
paramètres nécessaires au traitement des données. Nous avons défini des paramètres afin
de supprimer des données quand elles étaient aberrantes. Au niveau de la validation des
résultats, notre principale difficulté a été de trouver une méthode satisfaisante sachant
que le nombre de réalisations effectives était très limité. Ainsi, il est difficile de savoir
à partir d’un faible échantillon si la viabilité du modèle est contestable ou si il s’agit
uniquement de variance statistique. Ce manque de réalisation nous a également empêché
d’utiliser des méthodes de validations statistiques plus classiques, comme le test du chi-2.
Nous avons dû créer une méthode de validation ad-hoc qui a permis de déterminer si
la réalisation que nous avons aurait pu être facilement simulée par notre modèle. Cette
validation est bien sûr perfectible et des modèles de validations plus fins pourraient
être développés afin d’avoir des critères plus objectifs relatant de la qualité du modèle.
Concernant les résultats, on peut constater qu’on peut facilement simuler des scénarios
probables, mais on ne pourra pas (ou presque pas) simuler des scénarios rares même
avec une faible probabilité. Ce dernier point est une limite importante du modèle :
dans un but de prédiction, il est dommage de ne pouvoir anticiper que les scénarios très
probables.

Dans le troisième et dernier chapitre, nous nous sommes intéressés à une autre mod-
élisation possible pour les compétitions en Match Play. Sachant que dans ce mode deux
joueurs s’affrontent sur chaque trou avec des buts antagonistes, il parait naturel de
vouloir modéliser ce problème comme un jeu de plus court chemin stochastique, qui est
l’extension naturelle du PCCS à deux joueurs. Même si, au vu des expériences computa-
tionnelles du chapitre 2, la construction et la résolution de telles instances ne pourraient
être faites en un temps raisonnable, nous nous sommes attelés à étudier théoriquement
les jeux stochastiques à deux joueurs. Nous avons étudié les jeux de plus court chemin
stochastique afin d’essayer de trouver des formulations programmation linéaire décrivant
le problème, comme il en existe pour le PCCS. Le problème initial étant complexe, notre
démarche a été de s’intéresser à des cas particuliers potentiellement plus simples. Nous
avons donc étudié les jeux stochastiques simples, ainsi que le problème de plus court
chemin robuste. Nous avons réussi à trouver une formulation linéaire en nombres entiers
pour le plus court chemin robuste, qui peut se généraliser aux JPCCS.

Ce dernier chapitre ne comporte pas de résultats théoriques amajeurs. Il présente
cependant un état de l’art sur ce que l’on connaît actuellement sur les JPCCS, ainsi
que quelques résultats préliminaires. Nous espérons que cela pourra donner des idées
de pistes de réflexion pour des recherches futures. Une des pistes qui nous apparait
intéressante concerne le programme linéaire que nous avons défini pour les instances
qui sont à la fois des instances de jeux stochastiques simples et de plus courts chemins
robustes. Pour ces instances, nous avons défini un programme linéaire qui ne caractérise

134| Conclusion

pas directement les solutions, mais telle que s’il existe une solution de coût strictement
positif, alors il existe une solution de coût 1. Dans ce cas, nous pouvons définir une
solution optimale à partir de la solution de coût 1. Nous pensons que le même type de
raisonnement pourrait se généraliser aux instances de jeux stochastiques simples.

En plus d’apports théoriques, cette thèse comporte un aspect applicatif important.
Le modèle décrit théoriquement dans le chapitre 2 pour formaliser le problème du golfeur
en un PPCS a été implémenté en C++ et en R ‘from scratch’. La partie de traitement
des données, ainsi que la validation statistique a été faite en R, alors que la construction
du modèle et l’optimisation a été faite en C++. L’intégralité du code est publique,
afin que les résultats que nous avons trouvé soient reproductibles. Nous nous sommes
également risqués à appliquer notre modèle de prédiction à la Ryder Cup 2018 qui a
eu lieu en France. Avant la compétition nous avons créé un site [70] qui rassemble nos
prévisions. Tout au long de la compétition, nous avons mis à jour le site afin de donner
des statistiques en temps réel. Le site est toujours disponible à l’adresse suivante :
http://www.golfoptimization.com/. Les prévisions ont pu légèrement évoluer au vu
des modifications que nous avons apporté au modèle depuis un an.

http://www.golfoptimization.com/

Annex: The Shotlink Database

135

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[2] R. Alterovitz, T. Simon, and K. Goldberg. The stochastic motion roadmap: A sam-
pling framework for planning with markov motion uncertainty. In M. P. W. Bur-
gard et al. (Eds.), editor, Robotics: Science and Systems III (Proc. RSS 2007),
pages 233–241, 2008.

[3] K. Arulkumaran, A. Cully, and J. Togelius. Alphastar: An evolutionary compu-
tation perspective. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, GECCO ’19, page 314–315, New York, NY, USA, 2019.
Association for Computing Machinery.

[4] K. B. Athreya. Bootstrap of the mean in the infinite variance case. Ann. Statist.,
15(2):724–731, 06 1987.

[5] D. Avis and V. Chvátal. Notes on Bland’s pivoting rule, pages 24–34. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1978.

[6] M. Bansal and M. Broadie. A simulation model to analyze the impact of hole size
on putting in golf. In Simulation Conference, 2008. WSC 2008. Winter, pages
2826–2834, Dec 2008.

[7] H. Bast, D. Delling, A. V. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders,
D. Wagner, and R. F. Werneck. Route planning in transportation networks. CoRR,
abs/1504.05140, 2015.

[8] N. Bäuerle and U. Rieder. Markov Decision Processes with Applications to Fi-
nance: Markov Decision Processes with Applications to Finance. Springer Science
& Business Media, 2011.

[9] M. Beetz, N. v. Hoyningen-Huene, J. Bandouch, B. Kirchlechner, S. Gedikli, and
A. Maldonado. Camera-based observation of football games for analyzing multi-
agent activities. In Proceedings of the Fifth International Joint Conference on

137

138| BIBLIOGRAPHY

Autonomous Agents and Multiagent Systems, AAMAS ’06, pages 42–49, New York,
NY, USA, 2006. ACM.

[10] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ,
USA, 1 edition, 1957.

[11] R. BELLMAN. On a routing problem. Quarterly of Applied Mathematics,
16(1):87–90, 1958.

[12] R. Bellman. In A. Neyman and S. Sorin, editors, Stochastic Games and Applica-
tions, volume 570 of NATO Science Series C: Mathematical and Physical Sciences.
Springer, 2003.

[13] F. Bendali and A. Quilliot. Réseaux stochastiques. Revue française d’automatique,
d’informatique et de recherche opérationnelle, 24(2):167–190, 1990.

[14] D. P. Bertsekas. An auction algorithm for shortest paths. SIAM Journal on
Optimization, 1(4):425–447, 1991.

[15] D. P. Bertsekas. Dynamic programming and optimal control. Volume I. Athena
Scientific optimization and computation series. Belmont, Mass. Athena Scientific,
2005.

[16] D. P. Bertsekas. Dynamic programming and optimal control. Volume II. Athena
Scientific optimization and computation series. Belmont, Mass. Athena Scientific,
2012.

[17] D. P. Bertsekas. Robust shortest path planning and semicontractive dynamic
programming. CoRR, abs/1608.01670, 2016.

[18] D. P. Bertsekas, S. Pallottino, and M. G. Scutellà. Polynomial auction algorithms
for shortest paths. Computational Optimization and Applications, 4(2):99–125,
Apr 1995.

[19] D. P. Bertsekas and J. N. Tsitsiklis. An analysis of stochastic shortest path prob-
lems. Math. Oper. Res., 16(3):580–595, Aug. 1991.

[20] D. P. Bertsekas and H. Yu. Stochastic shortest path problems under weak condi-
tions, 2016.

[21] R. G. Bland. New finite pivoting rules for the simplex method. Mathematics of
Operations Research, 2(2):103–107, 1977.

[22] E. Boros, K. M. Elbassioni, V. Gurvich, and K. Makino. Markov decision pro-
cesses and stochastic games with total effective payoff. In 32nd International
Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7,
2015, Garching, Germany, pages 103–115, 2015.

[23] V. Brault and J. Chevalier. Private Communication, 2018/12.

BIBLIOGRAPHY | 139

[24] M. Broadie. Assessing golfer performance on the pga tour. Interfaces, 42(2):146–
165, Mar. 2012.

[25] M. Broadie. Every Shot Counts: Using the Revolutionary Strokes Gained Approach
to Improve Your Golf Performance and Strategy. Gotham Books, Penguin Group,
New York, NY, USA, 2014.

[26] M. Broadie and S. Ko. A simulation model to analyze the impact of distance
and direction on golf scores. In Winter Simulation Conference, WSC ’09, pages
3109–3120. Winter Simulation Conference, 2009.

[27] A. Charnes. Optimality and degeneracy in linear programming. Econometrica,
20(2):160–170, 1952.

[28] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck. Monte-carlo tree search: A new
framework for game ai. 01 2008.

[29] J. X. Chen. The evolution of computing: Alphago. Computing in Science Engi-
neering, 18(4):4–7, July 2016.

[30] A. Condon. The complexity of stochastic games. Information and Computation,
96(2):203 – 224, 1992.

[31] A. Condon. On algorithms for simple stochastic games. In Advances in Computa-
tional Complexity Theory, volume 13 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 51–73. American Mathematical Society,
1993.

[32] G. B. Dantzig. Maximization of a linear function of variables subject to linear
inequalities. 1951.

[33] E. V. Denardo. On Linear Programming in a Markov Decision Problem. Manage-
ment Science, 16(5):281–288, 1970.

[34] F. d’Epenoux. A probabilistic production and inventory problem. Management
Science, 10(1):98–108, 1963.

[35] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, Dec 1959.

[36] C. Drappi and L. C. Ting Keh. Predicting golf scores at the shot level.
Journal of Sports Analytics, Preprint(Preprint):1–9, 2018. Exported from
https://app.dimensions.ai on 2019/03/07.

[37] F. Dufour and T. Prieto-Rumeau. Approximation of markov decision processes
with general state space. Journal of Mathematical Analysis and Applications,
388(2):1254 – 1267, 2012.

140| BIBLIOGRAPHY

[38] J. H. Eaton and L. A. Zadeh. Optimal pursuit strategies in discrete-state proba-
bilistic systems. J. Basic Eng., 84(1):23–29, Mar. 1962.

[39] J. Edmonds. Maximum matching and a polyhedron with (0,1) vertices. J. Res.
Nat. Bur. Standards, 69:125–130, 1965.

[40] B. Efron. The bootstrap and modern statistics. Journal of the American Statistical
Association, 95(452):1293–1296, 2000.

[41] J. Fearnley. Exponential lower bounds for policy iteration. In S. Abramsky,
C. Gavoille, C. Kirchner, F. Meyer auf der Heide, and P. Spirakis, editors, Au-
tomata, Languages and Programming, volume 6199 of Lecture Notes in Computer
Science, pages 551–562. Springer Berlin Heidelberg, 2010.

[42] E. A. Feinberg and J. Huang. The value iteration algorithm is not strongly polyno-
mial for discounted dynamic programming. Oper. Res. Lett., 42(2):130–131, Mar.
2014.

[43] J. Filar and K. Vrieze. Competitive Markov decision processes. Springer, 1996.

[44] S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. D. Wolf. Exponential
lower bounds for polytopes in combinatorial optimization. J. ACM, 62(2):17:1–
17:23, May 2015.

[45] L. R. Ford. Network flow theory. 1956.

[46] O. Friedmann. An exponential lower bound for the parity game strategy improve-
ment algorithm as we know it. In Proceedings of the 24th LICS, pages 145–156,
2009.

[47] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1(2):169–197, Jun 1981.

[48] M. Guillot and G. Stauffer. The stochastic shortest path problem: A polyhedral
combinatorics perspective. European Journal of Operational Research, 2018.

[49] T. D. Hansen. Worst-case Analysis of Strategy Iteration and the Simplex Method.
PhD thesis, Aarhus University, 2012.

[50] T. D. Hansen, P. B. Miltersen, and U. Zwick. Strategy iteration is strongly poly-
nomial for 2-player turn-based stochastic games with a constant discount factor.
J. ACM, 60(1):1:1–1:16, Feb. 2013.

[51] T. D. Hansen, P. B. Miltersen, and U. Zwick. Strategy iteration is strongly poly-
nomial for 2-player turn-based stochastic games with a constant discount factor.
J. ACM, 60(1):1:1–1:16, Feb. 2013.

BIBLIOGRAPHY | 141

[52] O. Hernández-Lerma and J.-B. Lasserre. The linear programming approach. In
E. Feinberg and A. Shwartz, editors, Handbook of Markov Decision Processes,
volume 40 of International Series in Operations Research & Management Science,
pages 377–407. Springer US, 2002.

[53] D. S. Hochbaum. Simple and fast algorithms for linear and integer programs with
two variables per inequality. SIAM J. Comput., 23(6):1179–1192, Dec. 1994.

[54] A. J. Hoffman and R. M. Karp. On nonterminating stochastic games. Management
Science, 12(5):359–370, 1966.

[55] S. Hoffmeister and J. Rambau. Strategy optimization in sports : A two-scale
approach via markov decision problems, October 2015.

[56] S. Hoffmeister and J. Rambau. Sport strategy optimization in beach volleyball?
how to bound direct point probabilities dependent on individual skills. In Math-
Sport International 2017 Conference, 2017.

[57] A. Hordijk and L. C. M. Kallenberg. Linear programming and markov decision
chains. Management Science, 25(4):352–362, 1979.

[58] R. A. Howard. Dynamic programming and Markov processes. The MIT press, New
York London, Cambridge, MA, 1960.

[59] IGF. Shotlink intelligence program, 2016.

[60] A. Jaśkiewicz and A. S. Nowak. Stochastic games with unbounded payoffs: Ap-
plications to robust control in economics. Dynamic Games and Applications,
1(2):253–279, Jun 2011.

[61] V. Kaibel. Extended formulations in combinatorial optimization. Optima, 85, 04
2011.

[62] N. Karmarkar. A new polynomial-time algorithm for linear programming. In
Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing,
STOC ’84, pages 302–311, New York, NY, USA, 1984. ACM.

[63] R. M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer
US, Boston, MA, 1972.

[64] J. E. Kelley, Jr. The cutting-plane method for solving convex programs. Journal
of the Society for Industrial and Applied Mathematics, 8(4):703–712, 1960.

[65] L. G. KHACHIYAN. A polynomial algorithm in linear programming. Doklady
Academii Nauk SSSR, 244:1093–1096, 1979.

[66] V. Klee and G. J. Minty. How good is the simplex algorithm. 1970.

142| BIBLIOGRAPHY

[67] H. E. L. and H. R. Lowell. Stochastic model of the 2012 pga tour season. Journal
of Quantitative Analysis in Sports, 10(4), 2014.

[68] M. Maher. Stochastic modelling of sport. In 2012 Ninth International Conference
on Quantitative Evaluation of Systems, pages 207–208, Sep. 2012.

[69] A. S. Manne. Linear programming and sequential decisions. Management Science,
6(3):259–267, 1960.

[70] L. Martin. Private Collaboration for a website creation, 2018/09.

[71] G. S. Matthieu Guillot. Golf strategy optimization for professional golfers’s perfor-
mances estimation on the pga tour. Math&Sport International Conference, 2017.

[72] G. S. Matthieu Guillot. Golf strategy optimization for professional golfers’s per-
formances estimation on the pga tour. EURO Conference, 2018.

[73] Mausam and A. Kolobov. Planning with Markov Decision Processes: An AI Per-
spective. Synthesis Lectures on Artificial Intelligence and Machine Learning. Mor-
gan & Claypool Publishers, 2012.

[74] E. McAuley and V. V. Tammen. The effects of subjective and objective competi-
tive outcomes on intrinsic motivation. Journal of Sport and Exercise Psychology,
11(1):84–93, 1989.

[75] M. Melekopoglou and A. Condon. On the complexity of the policy improvement
algorithm for markov decision processes. ORSA Journal on Computing, 6(2):188–
192, 1994.

[76] R. Merton. An intertemporal capital asset pricing model. Econometrica, 41(5):867–
887, 1973.

[77] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex
Programming. Society for Industrial and Applied Mathematics, 1994.

[78] J. v. Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen,
100:295–320, 1928.

[79] P. Newton and K. Aslam. Monte carlo tennis. SIAM Review, 48(4):722–742, 2006.

[80] K. C. Nguyen, T. Alpcan, and T. Basar. Stochastic games for security in networks
with interdependent nodes. In 2009 International Conference on Game Theory for
Networks, pages 697–703, May 2009.

[81] J. R. Norris. Markov chains. Cambridge series in statistical and probabilistic
mathematics. Cambridge University Press, 1998.

[82] A. S. Nowak. On stochastic games in economics. Mathematical Methods of Oper-
ations Research, 66(3):513–530, Dec 2007.

BIBLIOGRAPHY | 143

[83] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems. SIAM Review, 33(1):60–100,
1991.

[84] C. Papadimitriou and K. Steiglitz. Combinatorial optimization: Algorithms and
complexity. Prentice-Hall, 1982.

[85] M. Pfeiffer, H. Zhang, and A. Hohmann. A markov chain model of elite table tennis
competition. International Journal of Sports Science & Coaching, 5(2):205–222,
2010.

[86] PGA Tour. Shotlink intelligence program, 2016.

[87] W. B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality (Wiley Series in Probability and Statistics). Wiley-Interscience, 2007.

[88] M. L. Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

[89] A. Quilliot. personal communication, 2017.

[90] S. S. Rao, R. Chandrasekaran, and K. P. K. Nair. Algorithms for discounted
stochastic games. Journal of Optimization Theory and Applications, 11(6):627–
637, Jun 1973.

[91] T. Rothvoß. Some 0/1 polytopes need exponential size extended formulations.
Mathematical Programming, 142(1):255–268, Dec 2013.

[92] K. Routley and O. Schulte. A markov game model for valuing player actions
in ice hockey. In Proceedings of the Thirty-First Conference on Uncertainty in
Artificial Intelligence, UAI’15, pages 782–791, Arlington, Virginia, United States,
2015. AUAI Press.

[93] B. Schölkopf, J. Platt, and T. Hofmann. Multi-Robot Negotiation: Approximating
the Set of Subgame Perfect Equilibria in General-Sum Stochastic Games, pages
1001–1008. MITP, 2007.

[94] D. Seese. Groetschel, m., l. lovasz, a. schrijver: Geometric algorithms and com-
binatorial optimization. (algorithms and combinatorics. eds.: R. l. graham, b.
korte, l. lovasz. vol. 2), springer-verlag 1988, xii, 362 pp., 23 figs., dm 148,-. isbn
3–540–13624-x. Biometrical Journal, 32(8):930–930, 1990.

[95] L. S. Shapley. Stochastic games. Proceedings of National Academy of Science,
39(10):1095–1100, 1953.

[96] L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences,
39(10):1095–1100, 1953.

144| BIBLIOGRAPHY

[97] S. Smale. Mathematical problems for the next century. The Mathematical Intelli-
gencer, 20(2):7–15, 1998.

[98] S. Sugawara, H. Kawamura, and K. Suzuki. Skill-based simulation model for
optimizing strategy in golf. In Advanced Intelligent Mechatronics (AIM), 2013
IEEE/ASME International Conference on, pages 1591–1596, July 2013.

[99] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition, 1998.

[100] Y. Tanaka and H. Sekiya. The relationships between psychological/physiological
changes and behavioral/performance changes of a golf putting task under pressure.
International Journal of Sport and Health Science, 8:83–94, 2010.

[101] F. Teichteil-Königsbuch. Stochastic safest and shortest path problems. In Proceed-
ings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI’12,
pages 1825–1831. AAAI Press, 2012.

[102] A. TERROBA, W. KOSTERS, J. VARONA, and C. S. MANRESA-YEE. Finding
optimal strategies in tennis from video sequences. International Journal of Pattern
Recognition and Artificial Intelligence, 27(06):1355010, 2013.

[103] D. Tierney and R. Coop. A bivariate probability model for putting proficiency.
Science and Golf, 1998.

[104] R. Tripathi, E. Valkanova, and V. A. Kumar. On strategy improvement algo-
rithms for simple stochastic games. Journal of Discrete Algorithms, 9(3):263 –
278, 2011. Selected papers from the 7th International Conference on Algorithms
and Complexity (CIAC 2010).

[105] E. Trumbelj and P. Vraar. Simulating a basketball match with a homogeneous
markov model and forecasting the outcome. International Journal of Forecasting,
28(2):532 – 542, 2012.

[106] D. J. White. A survey of applications of markov decision processes. The Journal
of the Operational Research Society, 44(11):1073–1096, 1993.

[107] P. Wolfe. A technique for resolving degeneracy in linear programming. Journal of
the Society for Industrial and Applied Mathematics, 11(2):205–211, 1963.

[108] Y. Ye. Interior Point Algorithms: Theory and Analysis. John Wiley & Sons, Inc.,
New York, NY, USA, 1997.

[109] Y. Ye. A new complexity result on solving the markov decision problem. Mathe-
matics of Operations Research, 30(3):733–749, 2005.

[110] Y. Ye. The simplex and policy-iteration methods are strongly polynomial for the
markov decision problem with a fixed discount rate. Mathematics of Operations
Research, 36(4):593–603, 2011.

BIBLIOGRAPHY | 145

[111] G. J. Yue Yang. An efficient implementation of shortest path algorithm based on
dijkstra algorithm. GEOMATICS AND INFORMATION SCIENCE OF WUHAN
UNIVERSITY, 24(3):208, 1999.

146| BIBLIOGRAPHY

BIBLIOGRAPHY | 147

Un parcours de golf est composé de dix-huit trous. Sur chaque trou, le problème du
golfeur est de déplacer la balle d’un point de départ prédéfini jusqu’au drapeau en un
minimum de coups. Sous certaines hypothèses, ce problème peut se modéliser comme
un problème de plus court chemin stochastique (PCCS). Le problème du PCCS est un
processus de Markov particulier dans lequel un agent évolue dynamiquement dans un
ensemble fini d’états. En chaque état, l’agent choisit une action, induisant un coût, qui
le mène en un autre état en suivant une distribution de probabilité connue. Il existe
également un état ‘puits’ particulier dans lequel, une fois atteint, on reste avec une
probabilité un et un coût de zéro. Le but de l’agent est, depuis un état initial, d’atteindre
l’état puits en un coût moyen minimal. Dans un premier chapitre, nous étudions de
manière théorique le problème du PCCS. Après avoir redéfini un cadre d’étude dans
lequel nous avons affaibli les hypothèses d’existence d’une solution optimale, nous avons
prouvé que les algorithmes classiques de résolution convergent dans ce nouveau cadre.
Nous avons également défini un nouvel algorithme de résolution basé sur l’algorithme
primal-dual. Dans le deuxième chapitre, nous détaillons la modélisation du problème
d’optimisation de stratégies au golf en un problème de PCCS. Grâce à la base de données
Shotlink, nous définissons des ‘clones numériques’ de joueurs que nous pouvons faire jouer
artificiellement sur différents parcours de golf afin de prédire les scores des joueurs. Nous
avons appliqué ce modèle à deux compétitions : le master d’Augusta en 2017 et la Ryder
Cup en 2018. Dans un troisième et dernier chapitre, nous étudions l’extension naturelle
à deux joueurs du problème du PCCS : les jeux de plus courts chemins stochastiques.
Nous étudions particulièrement les formulations programmation linéaire de ces jeux et
de deux cas particuliers de ceux-ci.

A golf course consists of eighteen holes. On each hole, the golfer has to move the
ball from the tee to the flag in a minimum number of shots. Under some assumptions,
the golfer’s problem can be modeled as a stochastic shortest path problem (SSP). SSP
problem is a special case of Markov Decision Processes in which an agent evolves dy-
namically in a finite set of states. In each state, the agent chooses an action that leads
him to another state following a known probability distribution. This action induces a
cost. There exists a ‘sink node’ in which the agent, once in it, stays with probability
one and a cost zero. The goal of the agent is to reach the sink node with a minimum
expected cost. In the first chapter, we study the SSP problem theoretically. We define a
new framework in which the assumptions needed for the existence of an optimal policy
are weakened. We prove that the most famous algorithm still converge in this setting.
We also define a new algorithm to solve exactly the problem based on the primal-dual
algorithm. In the second chapter we detail the golfer’s problem model as a SSP. Thanks
to the Shotlink database, we create ‘numerical clones’ of players and simulate theses
clones on different golf course in order to predict professional golfer’s scores. We apply
our model on two competitions: the master of Augusta in 2017 and the Ryder Cup in
2018. In the third chapter, we study the 2-player natural extension of SSP problem:
the stochastic shortest path games. We study two special cases, and in particular linear
programming formulation of these games.

	Introduction
	The Stochastic Shortest Path Problem: A polyhedral combinatorics perspective
	Introduction
	Literature review
	Notations and definitions
	Main contributions and roadmap

	Our new framework
	Existence of an optimal, deterministic and stationary policy
	Algorithms
	Value Iteration
	Policy Iteration
	The Primal-Dual algorithm: a generalization of Dijkstra's algorithm

	Conclusion and Perspectives

	Golf Strategy Optimization for professional golfers performances estimation on the PGA Tour
	Introduction
	Modeling the golfer's problem as a SSP
	The States
	The Actions
	The Cost Function
	The Transition Matrix

	Statistical Inference
	Shotlink Database
	Shots off the tee
	The Driving

	Results and Validation
	Stroke-Play
	Match-Play
	Validation

	Conclusion and Perspectives

	On Stochastic Games and MAXPROB
	Introduction
	Stochastic Games
	Special cases of SSPG with termination inevitable
	Simple Stochastic Games (SSG)
	Robust Shortest Path
	ILP-Formulations for RSP and SSPG

	Instances of RSP SSG
	The MAXPROB Problem
	Conclusion and Perspectives

	Conclusion
	The Shotlink Database

