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de leur hiérarchie, d'enseigner. Je remercie aussi, puisque c'est l'occasion, Odon Vallet, qui, lors de mon passage en CPGE, a bien voulu me distinguer pour une des bourses qu'il accordait lui-même, sur sa fondation.

J'ai une pensée également pour ma famille, et pour mes parents, qui, si l'âge m'en a un peu éloignés, reste présents à mon coeur, et à qui je suis infiniment redevable de mon éducation, de m'avoir laissé libre de mes choix, et de les avoir toujours acceptés. Je pense aussi à tous mes grand-parents, et, je les remercie tous les cinq, à qui, encore présents ou non, proches ou lointains, je dois tant de souvenirs. Sans distinguer entre eux, c'est aussi l'occasion de remercier la grand-mère qui a tant contribué à mon éducation, et à mon goût pour la lecture, l'orthographe, et l'étude, et le grand-père dont les récits n'ont pas peu contribué à forger ma conscience morale.

Merci aux amis avec qui, malgré la distance, j'ai pu souvent garder le contact pendant ces trois années, et que je ne peux pas tous citer, même si je n'oublie jamais ceux que je ne vois plus aussi souvent que je le voudrais et qui, si je ne les nomme pas ici, ne sont pas moins présents à mon esprit. Merci à Youna, des repas et les conversations, toujours vivifiantes, lors des passages à Grenoble, à Emma, des discussions autour d'un thé, à Simon, des moments passés ensemble, à Lyon (pour ce Phèdre !), ou à Grenoble, à Dorian, et à Alexis, qui savent trop bien tout ce que je leur dois, encore plus après cet automne, à Alexandre, Alexis, et Paul, pour les vacances, passées et à venir. Enfin, merci surtout à Alexandre, pour bientôt dix ans d'amitié, de soutien, de discussions, et de débats ! Merci aussi, aux quelques amitiés qui, nouées dans le monde virtuel, n'en sont pas moins réelles.

Merci, enfin, au sort qui m'a fait faire ces quelques rencontres qu'aucune nécessité ne semblait diriger, et qui, bien souvent, me sont un antidote utile à l'entre-soi, ou à la misanthropie facile. a Enfin, l'ayant promis bien souvent, je sais que quelques personnes m'attendent sur le choix de l'épigraphe. Avant de les satisfaire, je prends l'occasion de donner aussi les citations auxquelles le manuscrit échappera.

Tout d'abord, malgré la forte pression populaire, les citations de L'homme sans qualités (R. Musil), si elles sont très amusantes, auraient été d'un goût incertain. On aurait pourtant pu tirer du chapitre 11 de nombreuses citations plus ou moins élogieuses sur les mathématiques, ou, du chapitre 13, le moins agréable « Ses collègues lui apparaissaient comme des procureurs implacables et maniaques, des policiers de la logique, et tout ensemble comme des opiomanes, dévots d'une drogue étrangement blafarde qui les aidait à peupler le monde de chiffres et de rapports abstraits : « Bon Dieu ! dit-il, je n'ai pourtant jamais eu l'intention d'être mathématicien toute ma vie ! » », qui aurait au moins servi d'auto-avertissement, ou, 4 en guise d'autodérision plus gentille, au chapitre 17 « Un mathématicien n'a l'air de rien du tout, c'est-à-dire qu'il a l'air si généralement intelligent que cela n'a plus aucun sens précis ! À l'exception des membres de l'Église catholique romaine, plus personne aujourd'hui n'a l'aspect qu'il devrait avoir, parce que nous faisons de notre tête un usage aussi impersonnel que de nos mains ; mais le mathématicien, c'est le comble de tout : un mathématicien sait presque aussi peu de choses sur lui-même que les gens n'en sauront sur les prairies, les poules, les jeunes veaux, quand les pilules vitaminées auront remplacé pain et viande ! ».

La thèse correspondant sans doute souvent à la période de la vie où, si celle-ci n'a pas cessé de nous sembler avancer trop lentement, elle a déjà commencé à nous paraître trop courte. La beauté du vers, et l'angoisse universellement intelligible auraient pu faire choisir cet extrait d'un monologue de Titus (Bérénice, J. Racine 1 ) :

« Sont-ce là ces projets de grandeur et de gloire Qui devaient dans les coeurs consacrer ma mémoire ?

Depuis huit jours je règne. Et jusques à ce jour Qu'ai-je fait pour l'honneur ? J'ai tout fait pour l'amour. D'un temps si précieux quel compte puis-je rendre ? Où sont ces heureux jours que je faisais attendre ? Quels pleurs ai-je séchés ? Dans quels yeux satisfaits Ai-je déjà goûté le fruit de mes bienfaits ? L'univers a-t-il vu changer ses destinées ? Sais-je combien le ciel m'a compté de journées ? Et de ce peu de jours si longtemps attendus, Ah malheureux ! Combien j'en ai déjà perdus ! » Le ton, cependant en aurait été peut-être un peu trop élevé, et le présage, un peu sinistre.

La beauté, toujours, m'a fait considérer un temps un très beau poème du XIIe siècle, de Dietmar Von Aist, que je ne cite ici que pour ceux qui, un peu germanophone, pourront au moins en apprécier l'euphonie.

« Slâfest du, friedel ziere? Man wecket uns leider schiere.
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Enfin, il y a quelques semaines, je me suis résolu, comme une évidence, au choix de l'extrait qui suit, et qui clot ces sans doute trop longues considérations. Et pour finir, merci aussi à Clément (D.), que j'ai attendu cette partie pour remercier, uniquement pour lui signaler : désolé, ce n'est pas le Hussard sur le toit ! « Aujourd'hui, comme un auteur s'effraie de voir ses propres rêveries qui lui paraissent sans grande valeur parce qu'il ne les sépare pas de lui-même, obliger un éditeur à choisir un papier, à employer des caractères peut-être trop beaux pour elles, je me demandais si mon désir d'écrire était quelque chose d'assez important pour que mon père dépensât à cause de cela tant de bonté. Mais surtout en parlant de mes goûts qui ne changeraient plus, de ce qui était destiné à rendre mon existence heureuse, il insinuait en moi deux terribles soupçons. Le premier c'était que (alors que chaque jour je me considérais comme sur le seuil de ma vie encore intacte et qui ne débuterait que le lendemain matin) mon existence était déjà commencée, bien plus, que ce qui en allait suivre ne serait pas très différent de ce qui avait précédé. Le second soupçon, qui n'était à vrai dire qu'une autre forme du premier, c'est que je n'étais pas situé en-dehors du Temps, mais soumis à ses lois, tout comme ces personnages de roman qui à cause de cela me jetaient dans une telle tristesse quand je lisais leur vie, à Combray, au fond de ma guérite d'osier. Théoriquement on sait que la terre tourne, mais en fait on ne s'en aperçoit pas, le sol sur lequel on marche semble ne pas bouger et on vit tranquille. Il en est ainsi du Temps dans la vie. Et pour rendre sa fuite sensible, les romanciers sont obligés en accélérant follement les battements de l'aiguille, de faire franchir au lecteur dix, vingts, trente ans, en deux minutes. Au haut d'une page on a quitté un amant plein d'espoir, au bas de la suivante on le retrouve octogénaire, accomplissant péniblement dans le préau d'un hospice sa promenade quotidienne, répondant à peine aux paroles qu'on lui adresse, ayant oublié le passé. En disant de moi : « Ce n'est plus un enfant, ces goûts ne changeront plus, etc. », mon père venait tout d'un coup de me faire apparaître à moi-même dans le Temps, et me causait le même genre de tristesse que si j'avais été non pas encore l'hospitalisé ramolli, mais ces héros dont l'auteur, sur un ton indifférent qui est particulièrement cruel, nous dit à la fin d'un livre : « Il quitte de moins en moins la campagne. Il a fini par s'y fixer définitivement, etc. ». » À l'ombre des jeunes filles en fleurs, M. Proust

Résumé

Les noeuds longs étudiés dans cette thèse sont des plongements standard à l'infini de R n dans un R n+2 asymptotique d'homologie entière, pour n impair. Pour ces noeuds, on définit des invariants (Z k ) k∈N\{0,1} à difféomorphismes ambiants triviaux hors d'une boule près. Ces invariants généralisent des invariants (Z k ) k∈N\{0,1} définis par Bott, Cattaneo, et Rossi pour les noeuds longs de R n+2 , et on donne une définition plus souple de ces invariants. L'invariant Z k est défini comme une combinaison linéaire d'intégrales de certaines formes différentielles sur des espaces de configurations associés à des graphes ayant 2k sommets, de deux types, et 2k arêtes, de deux types également. Ces formes sont définies en tirant en arrière et en faisant le produit extérieur de (n + 1)-formes (appelées formes propagatrices externes) sur l'espace de configurations de deux points de l'espace ambiant et de (n -1)-formes (appelées formes propagatrices internes) sur l'espace de configurations de deux points de R n . De manière équivalente, en utilisant des chaînes duales à ces formes, on donne une interprétation de Z k en termes d'intersections algébriques de préimages de chaînes propagatrices. On obtient une formule pour Z k en fonction de nombres d'enlacement de certains cycles d'une surface dont le bord est le noeud, pour les noeuds virtuellement rectifiables. La classe des noeuds virtuellement rectifiables contient au moins les noeuds rubans longs, et les noeuds longs avec n ≡ 1 mod 4. Notre formule exprime les invariants Z k comme les coefficients du développement en série formelle du logarithme de la torsion de Reidemeister.

Le chapitre introductif 1 vise à présenter les travaux antérieurs sur des invariants similaires, notamment en dimension 3, ainsi que les invariants les plus connus des noeuds de dimension supérieure. Le chapitre 2 présente les invariants étudiés dans la thèse dans la version qui en avait été donnée par Bott, Cattaneo, et Rossi pour les noeuds longs de R n+2 . Les chapitres 3 et 4 présentent les résultats principaux de la thèse, en dimension impaire n ≥ 1. Les résultats du chapitre 4 sont vérifiés pour les noeuds virtuellement rectifiables de la définition 4.3.2. Les chapitres 5 et 6 reproduisent respectivement les prépublications « Generalized Bott-Cattaneo-Rossi invariants of high-dimensional knots » [START_REF] Leturcq | Generalized Bott-Cattaneo-Rossi invariants of highdimensional knots[END_REF] et « The Reidemeister torsion of high-dimensional long knots from configuration space integrals » [START_REF] Leturcq | The Reidemeister torsion of high-dimensional long knots from configuration space integrals[END_REF], et démontrent les résultats annoncés respectivement dans les chapitres 3 et 4 pour n ≥ 3. Le chapitre 7 contient une étude du cas de la dimension 1. Dans le chapitre 8, on démontre l'existence de chaînes propagatrices lisses en dehors d'une boule, et on étudie des classes d'homotopie de parallélisations des R n+2 asymptotiques d'homologie entière, en utilisant des outils de théorie de l'obstruction.

Chapitre 1 Panorama

Dans ce chapitre, nous donnons un bref aperçu de résultats déjà connus concernant les deux domaines auxquels se rattache cette thèse : les invariants de type fini, et les invariants de noeuds en haute dimension.

Invariants de type fini 1.Premières définitions

La notion d'invariants de type fini a été d'abord introduite dans le cadre des invariants d'entrelacs dans S 3 , c'est-à-dire des invariants d'isotopie des plongements d'une union disjointe de cercles dans S 3 . À un entrelacs, on peut associer un diagramme en le projetant sur un plan générique, où les seules singularités sont des points doubles transverses, et en gardant une information sur quel arc passe audessus de l'autre. Un tel point double est appelé un croisement, et le croisement opposé est celui où l'information dessus-dessous est inverse.

Étant donné un entrelacs L, un diagramme D de L, et des croisements deux-àdeux distincts (c i ) 1≤i≤r de D, on note (L, (c i ) 1≤i≤r ) l'entrelacs dont un diagramme est obtenu en changeant le croisement c i dans D en le croisement opposé pour tout i ∈ {1, . . . , r}. La dérivée d'un invariant d'entrelacs Z à valeurs dans un Z-module par rapport à ces croisements est

∂ (c i ) 1≤i≤r Z(L) = I⊂{1,...,r} (-1) Card(I) Z((L, (c i ) i∈I )).
Dans ce cadre, un invariant de Vassiliev de type au plus k est un invariant d'entrelacs Z tel que pour tout entrelacs L et tous croisements deux-à-deux distincts (c i ) i∈{1,...,k+1} d'un diagramme de L, ∂ (c i ) i∈{1,...,k+1} Z(L) = 0. Un invariant de type fini (ou invariant de Vassiliev) est un invariant qui est de type au plus k pour un certain entier naturel k. CHAPITRE 1. PANORAMA Plus généralement, donnons-nous un ensemble O d'objets (en pratique les classes d'équivalence de certains objets topologiques pour une relation), et une fonction Z : O → R (en pratique un invariant des objets topologiques pour la relation étudiée). Supposons qu'il existe des opérations élémentaires (o i ) i transformant les éléments de O. Étant donné des opérations commutant deux-à-deux, notons (X, (o i ) i∈J ) l'objet obtenu en appliquant les opérations (o i ) i∈J à X. Dans ce cadre, Z est un invariant de type au plus k si pour tout objet X et toutes opérations (o i ) 1≤i≤k+1 commutant deux-à-deux, I⊂{1,...,k+1} (-1) Card(I) Z((X, (o i ) i∈I )) = 0.

De nouveau, Z est un invariant de type fini s'il existe un entier naturel k tel que Z soit un invariant de type au plus k.

L'exemple le plus trivial de cette théorie est de considérer O = Z d , avec les opérations d'incrémentation o i qui ajoutent +1 à une coordonnée d'un d-uplet. Dans ce cadre, les invariants de type au plus k sont exactement les polynômes de degré total au plus k.

Un second exemple est donné par les invariants de Vassiliev ci-dessus. Les invariants de type fini contiennent alors, par exemple, les coefficients de normalisations appropriées du polynôme d'Alexander, du polynôme de Jones colorié, et du polynôme HOMFLY-PT.

Un troisième exemple a d'abord été étudié par Ohtsuki [START_REF] Ohtsuki | Finite type invariants of integral homology 3spheres[END_REF] en regardant l'ensemble des sphères d'homologie entière (les variétés compactes de dimension 3 ayant l'homologie entière de S 3 ) avec certaines opérations de chirurgie. Dans [START_REF] Garoufalidis | Calculus of clovers and finite type invariants of 3-manifolds[END_REF], Garoufalidis, Goussarov et Polyak ont étudié et comparé d'autres théories d'invariants de type fini associées à différentes opérations de chirurgie sur les sphères d'homologie entière. Les travaux de Moussard dans [START_REF] Moussard | Finite type invariants of rational homology 3-spheres[END_REF] décrivent une théorie d'invariants de type fini pour les sphères d'homologie rationnelle (les variétés compactes de dimension 3 ayant l'homologie rationnelle de S 3 ).

Un dernier exemple est fourni par la théorie des noeuds rubans de haute dimension (n ≥ 2) développée par Habiro, Kanenobu, et Shima [START_REF] Habiro | Finite type invariants of ribbon 2-knots[END_REF] et présentée plus en détail en partie 4.2.2. Watanabe a démontré dans [START_REF] Watanabe | Configuration space integral for long n-knots and the Alexander polynomial[END_REF] que les invariants définis par Bott, Cattaneo, et Rossi dans [START_REF] Bott | Configuration spaces and imbedding invariants[END_REF], [START_REF] Cattaneo | Wilson surfaces and higher dimensional knot invariants[END_REF], puis [START_REF] Rossi | Invariants of Higher-Dimensional Knots and Topological Quantum Field Theories[END_REF] sont des invariants de type fini pour les noeuds rubans de R n+2 quand n est impair et supérieur à 3.

Invariants universels

Dans tous ces cadres, une des questions naturelles est celle de l'existence et de la construction d'invariants « universels » définis comme suit. Définition 1.1.1. Un invariant universel (pour une théorie d'invariants de type fini) est un invariant Z à valeurs dans un R-espace vectoriel A tel que pour tout invariant de type fini f à valeurs réelles, il existe une forme linéaire w : A → R telle que f = w • Z.

Dans le cadre des invariants de Vassiliev, le premier invariant universel est l'intégrale de Kontsevich Z Kon décrite par Bar-Natan dans [START_REF] Bar-Natan | On the Vassiliev knot invariants[END_REF]. Cette intégrale vit dans un espace vectoriel dont les éléments sont des combinaisons linéaires de diagrammes unitrivalents1 , modulo certaines relations sur les diagrammes. Un second invariant universel est le développement perturbatif de la théorie de Chern-Simons, et a été étudié, entre autres, par Altschüler et Friedel [START_REF] Altschuler | Vassiliev knot invariants and Chern-Simons perturbation theory to all orders[END_REF], Bar-Natan [START_REF] Bar-Natan | Perturbative Chern-Simons theory[END_REF], Guadagnini, Martellini et Mintchev [START_REF] Guadagnini | Wilson lines in Chern-Simons theory and link invariants[END_REF], Bott et Taubes [START_REF] Bott | On the Self-Linking of Knots[END_REF], Dylan Thurston [START_REF] Thurston | Integral expressions for the Vassiliev knot invariants[END_REF], et Poirier [START_REF] Poirier | The configuration space integral for links in R 3 . Algebraic & Geometric Topology[END_REF]. Ce second invariant est encore une combinaison linéaire de diagrammes unitrivalents. Les coefficients de cette combinaison peuvent être exprimés en fonction d'intégrales de formes différentielles sur des espaces de configurations dépendant du diagramme et de l'entrelacs. De manière équivalente, on peut les interpréter en termes d'intersections algébriques de certaines préimages dans ces espaces de configuration de sous-variétés de la forme {(x, x+λv) | λ ∈ R * } où v ∈ S 2 . Les adhérences de ces sous-variétés dans une compactification de l'espace de configurations C 0 2 (R 3 ) = {(x, y) ∈ R 3 ×R 3 | x = y} sont des exemples de chaînes propagatrices, une des notions centrales de cette thèse. Dans [START_REF] Lescop | About the uniqueness and the denominators of the Kontsevich integral[END_REF], Lescop a identifié cet invariant avec l'intégrale de Kontsevich, à une anomalie près.

Dans le cadre des invariants de 3-sphères d'homologie entière, le premier invariant universel est l'invariant LMO défini par Lê, Murakami, et Ohtsuki dans [START_REF] Thang | On a universal perturbative invariant of 3-manifolds[END_REF], en utilisant l'intégrale de Kontsevich et les présentations des 3-variétés par chirurgie de S 3 le long d'un entrelacs. Un second invariant universel, appelé invariant KKT, a été proposé par Kontsevich [START_REF] Kontsevich | Feynman Diagrams and Low-Dimensional Topology[END_REF], puis formalisé par Greg Kuperberg et Dylan Thurston [START_REF] Kuperberg | Perturbative 3-manifold invariants by cut-and-paste topology[END_REF] et Lescop [Les04a]. Moussard [Mou12a] a démontré que l'invariant KKT est également un invariant universel des sphères d'homologie rationnelle, en utilisant pour cela une formule de chirurgie obtenue par Lescop dans [START_REF] Lescop | Splitting formulae for the Kontsevich-Kuperberg-Thurston invariant of rational homology 3-spheres[END_REF]. Ces résultats ainsi qu'une formule de chirurgie pour l'invariant LMO obtenue par Massuyeau [START_REF] Massuyeau | Splitting formulas for the LMO invariant of rational homology three-spheres[END_REF] impliquent que les invariants LMO et KKT distinguent exactement les mêmes 3-sphères d'homologie rationnelle.

Enfin, pour les noeuds rubans de R n+2 , les résultats de Habiro et Shima dans [START_REF] Habiro | Finite type invariants of ribbon 2knots, ii[END_REF], rappelés ici en théorème 4.2.5, entraînent qu'un certain développement en série formelle du polynôme d'Alexander des noeuds rubans fournit un invariant universel.

Il existe très peu d'exemples de calculs directs des invariants définis au moyen d'intégrales de configurations spatiales. Bar-Natan [START_REF] Bar-Natan | Perturbative Chern-Simons theory[END_REF] et Guadagnini, Mar-tellini et Mintchev [START_REF] Guadagnini | Wilson lines in Chern-Simons theory and link invariants[END_REF] ont calculé explicitement la partie de degré 2 du développement perturbatif de la théorie de Chern-Simons pour le noeud trivial. Poirier [START_REF] Poirier | The configuration space integral for links in R 3 . Algebraic & Geometric Topology[END_REF] a démontré que l'anomalie évoquée plus haut s'annule en degré 3 et 5 (c'est-à-dire en se restreignant aux diagrammes ayant au plus 10 sommets). Enfin, un calcul direct de la partie de degré 2 de l'invariant des 3-sphères mentionné plus haut a été effectué par Lescop dans [START_REF] Lescop | A formula for the θ-invariant from Heegaard diagrams[END_REF].

Dans cette thèse, et notamment dans le chapitre 6, on utilise des chaînes propagatrices explicites pour calculer les invariants de Bott-Cattaneo-Rossi généralisés (Z k ) en fonction de certains nombres d'enlacement de cycles dans une surface bordée par le noeud. On obtient ainsi la formule du théorème 4.3.7.

Invariants de noeuds en haute dimension 1.2.1 Matrices de Seifert

Dans cette partie2 , on se place dans le cadre plus classique des plongements de S n dans S n+2 . Une surface de Seifert d'un noeud est alors une variété connexe compacte orientée dont le bord est l'image du noeud. À une telle surface Σ, on peut associer une forme bilinéaire d'enlacement (x k , y n+1-k ) → lk(x, y + ), où, pour tout cycle y de Σ, y + désigne le cycle obtenu en poussant légèrement y dans la direction normale positive à la surface. Ceci induit en particulier une forme bilinéaire sur la partie libre de H n+1 2 (Σ), dont une matrice dans une base est appelée matrice de Seifert d'ordre n+1 2 . Les résultats présentés dans les deux théorèmes suivants portent sur cette matrice. On dit que deux matrices A et A sont S-équivalentes si l'on peut passer de l'une à l'autre par un nombre fini d'utilisations des relations suivantes.

• Des congruences A i ( T R)A i+1 R avec R à coefficients entiers et de déterminant 1.

• Des expansions ou des réductions élémentaires de la forme

A i A i+1 =    A i 0 0 α 1 • • • α r 0 0 0 • • • 0 1 0    ,
où les α i sont des entiers.

• Des expansions ou des réductions élémentaires de la forme

A i A i+1 =          A i β 1 . . . β r 0 . . . 0 0 0 1 0 0 0         
, où les β i sont des entiers.

On dit que deux sous-variétés orientées K et K d'une variété M sont cobordantes s'il existe une sous-variété compacte orientée X telle que ∂X soit la réunion de K et de -K , où leindique un changement d'orientation.

Un théorème de Levine [Lev69,p. 233] permet de voir l'information contenue dans ces matrices. Théorème 1.2.2 (Levine). Soient ψ et ψ deux noeuds de S n+2 d'images disjointes. Si n est impair et supérieur ou égal à 3, les deux propriétés suivantes sont équivalentes.

• Les deux sous-variétés K = ψ(S n ) et K = ψ (S n ) de S n+2 sont cobordantes.

• Les deux noeuds ψ et ψ admettent des matrices de Seifert d'ordre n+1 2 cobordantes.

• Les deux noeuds ψ et ψ sont isotopes.

• Les deux noeuds ψ et ψ admettent des matrices de Seifert d'ordre n+1 2 Séquivalentes.

Dans [START_REF] Farber | Isotopy types of knots of codimension two[END_REF], Farber associe à un noeud et à une surface de Seifert Σ de ce noeud une application θ Σ : Σ∧Σ → S n+1 sur le smash-produit Σ∧Σ, et définit une relation d'équivalence sur ces objets, en utilisant des outils de théorie de l'homotopie stable et de dualité de Spanier-Whitehead. Pour cette relation, dite de R-équivalence, on a le théorème suivant. Théorème 1.2.4 (Farber,[START_REF] Farber | Isotopy types of knots of codimension two[END_REF], Classification Theorem, p. 125). Soit n un entier impair et supérieur ou égal à 5. Soient ψ et ψ deux noeuds de S n+2 , tels que pour tout r ∈ 1, . . . ,

1 + n 3 , π r (S n+2 \ ψ(S n )) ∼ = π r (S n+2 \ ψ (S n )) ∼ = π r (S 1 ).
Les deux propriétés suivantes sont équivalentes.

• Les deux noeuds ψ et ψ sont isotopes.

• Les deux noeuds ψ et ψ admettent des surfaces de Seifert Σ et Σ telles que (Σ, θ Σ ) et (Σ , θ Σ ) sont R-équivalentes.

En définition 4.1.8, on donne une définition plus large des matrices de Seifert qui décrivent la forme d'enlacement (x, y) ∈ H k (Σ)×H n+1-k (Σ) → lk(x, y + ) ∈ Z pour tout k ∈ n. En dimension n+1 2 , ce formalisme est différent de celui utilisé dans cette partie puisque celui de la définition 4.1.8 dépend du choix de deux bases duales pour l'intersection. En annexe A, on démontre que l'on peut construire des noeuds longs avec des matrices de Seifert données.

Polynômes d'Alexander et torsion de Reidemeister

Les polynômes d'Alexander (∆ i,ψ (t)) 1≤i≤n des noeuds de S n+2 sont définis, à partir de l'homologie rationnelle du revêtement cyclique infini du complémentaire du noeud. Par construction, ce sont des invariants d'isotopie du noeud. Ce sont des éléments de Q[t, t -1 ], définis à multiplication par un monôme αt d près (où α ∈ Q * , et d ∈ Z). Nous en donnons une présentation plus détaillée en partie 4.1.1, et nous expliquons comment les calculer à partir de matrices de Seifert.

La torsion de Reidemeister est un invariant que l'on peut définir à partir des polynômes d'Alexander comme le produit alterné n i=1 ∆ i,ψ (t) (-1) d+1 . Elle est triviale en dimension paire. Elle peut être normalisée en dimension n impaire par T ψ (1) = 1 et T ψ (t -1 ) = T ψ (t) et est alors un élément bien défini de Q(t).

Invariants de Bott-Cattaneo-Rossi

Dans cette partie, sauf mention du contraire, on suppose n impair et supérieur ou égal à 3.

En s'inspirant des invariants définis à partir du développement perturbatif de la théorie de Chern-Simons en dimension 3, Bott [START_REF] Bott | Configuration spaces and imbedding invariants[END_REF] a défini un invariant d'isotopie des noeuds de S n+2 . Cet invariant est défini comme une combinaison linéaire de trois intégrales sur des espaces de configurations associés aux diagrammes suivants.

Figure 1.1 À chaque diagramme Γ, on associe un espace de configurations C Γ (ψ) dont les éléments sont les quadruplets de points deux-à-deux distincts de S 3 correspondant aux sommets du graphe, avec la condition que les sommets noirs sont sur le noeud. Sur cet espace, on peut définir une forme différentielle qui « mesure » l'aire balayée par certaines directions, associées aux arêtes, entre les points d'une configuration. L'intégrale de cette forme converge, et en combinant les trois intégrales avec certains poids et orientations, on obtient un invariant d'isotopie Z 2 .

Cattaneo et Rossi ([CR05] et [START_REF] Rossi | Invariants of Higher-Dimensional Knots and Topological Quantum Field Theories[END_REF]) ont étendu ce procédé en comptant des diagrammes connexes avec plus de sommets pour obtenir toute une suite d'invariants (Z k ) k≥2 , définis par combinaison d'intégrales sur des espaces de configurations. Pour k impair, Z k est toujours nul.

Watanabe [START_REF] Watanabe | Configuration space integral for long n-knots and the Alexander polynomial[END_REF] a démontré que ces invariants (Z k ) étaient des invariants de type fini pour les noeuds rubans longs, avec les opérations introduites par Habiro, Kanenobu et Shima [START_REF] Habiro | Finite type invariants of ribbon 2-knots[END_REF] et décrites en partie 4.2.2. En particulier, ceci implique que les invariants (Z k ) s'expriment en fonction des coefficients β k du logarithme du polynôme d'Alexander des noeuds rubans longs. Watanabe a également obtenu que l'invariant 1 2 Z 2k + β 2k était de type au plus 2k -1. Nous précisons également en théorème 4.4.2 la relation obtenue par Watanabe pour les noeuds rubans longs sur Z k en démontrant la formule Z 2k (ψ)+ 1 2 β 2k (ψ) = 0 pour tout noeud ruban long. Pour ce faire, nous assouplissons les définitions des invariants (Z k ), et nous les étendons au cadre plus général des noeuds longs dans un R n+2 asymptotique d'homologie entière pour n ≥ 1 impair (chapitre 3), et nous obtenons des formules explicites de ces invariants en fonction de matrices de Seifert (théorème 4.3.7). Dans le cadre plus général des noeuds virtuellement rectifiables dans un R n+2 asymptotique d'homologie entière, on obtient la formule CHAPITRE 1. PANORAMA explicite suivante (théorème 4.3.8) reliant la torsion de Reidemeister aux invariants généralisés (Z k ) k≥2 du chapitre 3 :

T ψ (e h ) = exp   - k≥2 Z k (ψ)h k   .
Dans le cas n = 1, ceci nous fournit aussi l'expression suivante du polynôme d'Alexander usuel :

∆ ψ (e h ) = exp   - k≥2 Z k (ψ)h k   .

Chapitre 2

Les invariants de Bott-Cattaneo-Rossi dans R n+2

Dans ce premier chapitre, nous rappelons la définition des invariants de Bott-Cattaneo-Rossi pour les noeuds longs de R n+2 , avec n impair ≥ 3. Les travaux de Bott, Cattaneo et Rossi portent sur ces dimensions, mais nous démontrons dans cette thèse que leurs résultats sont également valides pour n = 1. Le rôle des chapitres suivants sera d'étendre ces invariants à d'autres variétés dans les mêmes dimensions, d'en établir certaines propriétés, puis de discuter de leurs liens avec des invariants de noeuds connus. On fixe donc dans ce qui suit un entier naturel n impair.

Noeuds longs dans R n+2

Définition 2.1.1. Un noeud long de R n+2 est un plongement lisse ψ : R n → R n+2 tel que, pour tout x ∈ R n ,

• si ||x|| ≤ 1, ||ψ(x)|| ≤ 1, • si ||x|| ≥ 1, ψ(x) = (0, 0, x). Deux noeuds longs ψ et ψ de R n+2 sont isotopes s'il existe une famille (ψ t ) t∈[0,1] de noeuds longs de R n+2 , telle que (t, x) ∈ [0, 1] × R n → ψ t (x) ∈ R n+2 soit lisse, et telle que ψ 0 = ψ et ψ 1 = ψ . Une telle famille est appelée une isotopie entre ψ et ψ .

La figure 2.1 donne un exemple de tel noeud, au moins dans le cas

n = 1. CHAPITRE 2. LES INVARIANTS DE BOTT-CATTANEO-ROSSI DANS R N +2 ψ(R n ) Figure 2.1 -Un noeud long dans l'espace R n+2 .

Diagrammes de Bott-Cattaneo-Rossi

Nous introduisons ici les graphes qui nous serviront à définir les invariants (Z k ) dans la suite, et qui sont appelés diagrammes de Jacobi dans [START_REF] Watanabe | Configuration space integral for long n-knots and the Alexander polynomial[END_REF].

Définition 2.2.1. Un diagramme de Bott-Cattaneo-Rossi (ou diagramme BCR) est un graphe connexe orienté Γ, donné par un ensemble V (Γ) de sommets, muni d'une partition 

V (Γ) = V i (Γ) V e (Γ), et un ensemble E(Γ) de couples de sommets distincts, muni d'une partition E(Γ) = E i (Γ) E e (Γ)

Espace de configurations associé à un diagramme et à un noeud long

Afin de « compter » les diagrammes BCR sur un noeud long ψ : R n → R n+2 , nous définissons l'espace de configurations

C 0 Γ (ψ) par C 0 Γ (ψ) = {c : V (Γ) → R n+2 | c(V i (Γ)) ⊂ ψ(R n )}. Pour toute configuration c ∈ C 0 Γ (ψ), il existe une unique application c i : V i (Γ) → R n telle que c |V i (Γ) = ψ • c i . Pour toute arête e de Γ, posons n(e) =    n + 1 si e est externe, n -1 si e est interne.
On définit pour toute arête e = (v, w) une application

G e : C 0 Γ (ψ) → S n(e) c → si e est interne.
Les espaces de configurations C 0 Γ (ψ) sont orientés comme suit. Notons (dX i v ) i∈n+2 les formes coordonnées du sommet externe c(v) dans une carte préservant l'orientation de

M • , et (dY i v ) i∈n celles du sommet interne c i (v) ∈ R n .
Coupons chaque demi-arête externe e en deux demi-arêtes e -(la queue) et e + (la tête), et associons à chacune de ces demi-arêtes la forme Ω e ± suivante, comme en Figure 2.5.

• si e ± est adjacente à un sommet interne v, 

Ω e ± = dY 1 v ∧ • • • ∧ dY n v , • si e ± =
Ω e + = dX 3 v ∧ • • • ∧ dX n+2 v .
On définit alors le signe ε (Γ) = (-1) N T (Γ)+Card(Ee(Γ)) du diagramme, où N T (Γ) désigne le nombre de sommets trivalents de Γ, et on oriente

C Γ (ψ) avec la forme 1 Ω (Γ) = ε (Γ) e∈Ee(Γ) Ω e -∧ Ω e + . CHAPITRE 2. LES INVARIANTS DE BOTT-CATTANEO-ROSSI DANS R N +2 v w dX 2 v e + e -Ω e - dX 3 v ∧ . . . ∧ dX n+2 v f + Ω f + f - dX 1 v dY 1 w ∧ . . . ∧ dY n w Figure 2
.5 -Les formes associées aux demi-arêtes externes.

Invariants de Bott-Cattaneo-Rossi (Z k ) k≥2

Pour tout diagramme BCR Γ, et tout noeud long ψ, on peut donc définir une forme différentielle sur C 0 Γ (ψ) comme suit. Soit ω n±1 la (n ± 1)-forme SO(n ± 1 + 1)-invariante sur S n±1 , de masse totale 1. Pour chaque arête e, on pose ω e (Γ, ψ) = G e * (ω n(e) ). Cette forme étant de degré pair, on pose

ω(Γ, ψ) = e∈E(Γ) ω e (Γ, ψ),
ce qui a un sens sans préciser l'ordre des termes du produit. On démontre dans le lemme 5.2.9 que deg(ω(Γ, ψ)) = dim(C Γ (ψ)), de sorte que l'intégrale C 0 Γ (ψ) ω(Γ, ψ) est un nombre réel2 . Dans ce cadre, pour tout entier k ≥ 2, l'invariant de Bott-Cattaneo-Rossi (abrégé BCR) de degré k est défini par

Z k (ψ) = Γ∈G k 1 Card(Aut(Γ)) C 0 Γ (ψ) ω(Γ, ψ),
où G k désigne l'ensemble des diagrammes BCR de degré k, et où Card(Aut(Γ)) désigne le nombre d'automorphismes d'un diagramme BCR Γ. On a alors les deux résultats suivants3 . Théorème 2.4.1 (Bott [Bot96], Cattaneo, Rossi [START_REF] Cattaneo | Wilson surfaces and higher dimensional knot invariants[END_REF][START_REF] Rossi | Invariants of Higher-Dimensional Knots and Topological Quantum Field Theories[END_REF]). Supposons n ≥ 3 (et toujours impair). Les invariants BCR (Z k ) k≥2 sont des invariants d'isotopie des noeuds longs. Théorème 2.4.2 (Watanabe [Wat07]). Supposons n ≥ 3 (et toujours impair). Si k est impair, l'invariant Z k est toujours nul. Pour tout k ≥ 2 pair, il existe des noeuds longs pour lesquels l'invariant Z k n'est pas nul.

Chapitre 3

Invariants BCR généralisés

Dans ce chapitre, on assouplit la définition des invariants Z k du chapitre précédent, en introduisant les propagateurs de la définition 3.7.2. Cet assouplissement nous permet de calculer exactement les Z k en fonction de la torsion de Reidemeister au chapitre 4. Cette définition plus souple nous permet aussi d'étendre ces invariants aux noeuds longs dans d'autres variétés que R n+2 . Les résultats de ce chapitre sont démontrés au chapitre 5 pour n ≥ 3 impair. La plupart des arguments de ce chapitre s'appliquent au cas de la dimension 1. Les arguments supplémentaires requis en dimension 1 sont présentés au chapitre 7.

Pour tout entier p ≥ 1, on note p l'ensemble {1, . . . , p} des entiers de 1 à p. 

R n+2 asymptotiques d'homologie entière

; Z) = H * (S n+2 ; Z). Soit ∞ ∈ M , et posons M • = M \ {∞}. Identifions 1 une boule B ∞ (M ) autour de ∞ dans M au complémentaire B ∞ de la boule ouverte unité dans S n+2 = R n+2 ∪ {∞}, et posons B(M ) = M • \ B • ∞ . La variété M • , munie de la décomposition M • = B(M ) ∪ B • ∞ est appelée un R n+2 asymptotique d'homologie entière.
On peut donc voir l'espace M • comme l'espace euclidien standard R n+2 , dont on a remplacé la boule unité par une variété de même bord et de même homologie. Dans ce cadre, on peut définir une notion de noeud long comme suit.

Définition 3.1.2. Soit M • un R n+2 asymptotique d'homologie entière. Un noeud long de M • est un plongement lisse ψ : R n → M • tel que • pour tout x tel que ||x|| ≤ 1, ψ(x) ∈ B(M ), • pour tout x tel que ||x|| ≥ 1, ψ(x) ∈ B • ∞ , et ψ(x) = (0, 0, x) (ce qui a un sens puisque B • ∞ ⊂ R n+2 ).
La figure 3.1 résume les notations précédentes (en imaginant que la direction verticale et le noeud sont de dimension n). 

ψ(R n ) B(M • ) B • ∞ ⊂ R n+2 Figure 3.1 -Un noeud long dans l'espace M • . La boule (en pointillé) représente B(M ). Son extérieur est B • ∞ , contenu dans R n+2 . Deux tels noeuds longs ψ et ψ d'un R n+2 asymptotique d'homologie entière M • sont isotopes s'il existe une famille (ψ t ) t∈[0,1] de noeuds longs de M • , telle que l'application (t, x) ∈ [0, 1] × R n → ψ t (x) ∈ M • est lisse, et que ψ 0 = ψ et ψ 1 = ψ .

Parallélisations des

M • × R n+2 → T M • dont la restriction à B • ∞ × R n+2 ⊂ R n+2 × R n+2 coïncide avec la trivialisation canonique R n+2 × R n+2 → T R n+2 .
Étant donné une telle parallélisation τ , et un point

x ∈ M • , on note τ x : R n+2 → T x M • l'isomorphisme induit entre les fibres de M • × R n+2 et de T M • .
La question de l'existence de telles parallélisations est non triviale, et on exhibe à la fin de la partie 5.8 une obstruction à cette existence qui appartient au groupe π n+1 (SO(n + 2), I n+2 ), qui est de 2-torsion quand n est impair, et non trivial sauf CHAPITRE 3. INVARIANTS BCR GÉNÉRALISÉS pour n = 1 ou n = 5. On en déduit le théorème suivant (qui regroupe la proposition 5.2.18 et la remarque 5.8.4). Proposition 3.2.2. Soit M • un R n+2 asymptotique d'homologie entière. Alors :

• La somme connexe M • M • , telle que définie en partie 3.9, est parallélisable (au sens de la définition 3.2.1).

• Si n + 2 ∈ {3, 7}, l'espace M • est lui-même parallélisable.

Diagrammes BCR numérotés

Les diagrammes utilisés dans cette partie sont ceux de la définition 2. 

Conventions pour les fibrés et les orientations et éclatements

Dans tout ce qui suivra, le bord ∂P d'une variété orientée P est orienté suivant la convention qui veut que la normale sortante en x ∈ ∂P suivie d'une base orientée de T x ∂P forme une base orientée de T x P . Soit P une variété quelconque. On appelle fibré unitaire tangent de P et l'on note U P le fibré sur P dont les fibres sont les quotients U x P = (T x P \ {0})/R * + de T x P \ {0} par les dilatations (c'est-à-dire les homothéties de rapport strictement positif).

Si Q est une sous-variété de P , telle que ∂Q ⊂ ∂P , et que Q rencontre ∂P transversalement, on définit son fibré normal NQ comme le fibré sur Q dont les fibres sont les quotients

N x Q = T x P/T x Q, et son fibré unitaire normal comme le fibré sur Q dont les fibres sont les quotients U x NQ = (N x Q \ 0)/R * + . Pour une telle sous-variété, on définit l'éclatement de P le long de Q comme la variété B (P, Q) = (P \ Q) ∪ U NQ obtenue comme ensemble en remplaçant Q par son fibré normal unitaire U NQ, de telle sorte que ∂B (P, Q) = (∂P \ Q) ∪ U NQ et Int(B (P, Q)) = Int(P ) \ Q. Comme variété B (P, Q) est difféomorphe au com- plémentaire dans P d'un voisinage tubulaire ouvert de Q. L'éclatement B (P, Q) est muni d'une application lisse canonique p b : B (P, Q) → P qui correspond à l'identité sur P \ Q et à l'application de fibré U NQ → Q sur U NQ. Si la variété P est compacte, l'éclatement B (P, Q) l'est aussi.
Détaillons un peu cette construction dans le cas

Q = R d × {0} n-d , P = R n (avec d ≤ n),
qui est un modèle local du cas général hors des bords. On voit alors P comme le produit

R d × R n-d , et l'on identifie x ∈ R n-d \ {0} à (||x||, x ||x|| ) ∈]0, +∞[×S n-d-1 . Ceci nous fournit une identification entre P \ Q et R d ×]0, ∞[×S n-d-1 . L'éclatement de P le long de Q consiste alors à remplacer R d ×]0, ∞[×S n-d-1 par R d × [0, ∞[×S n-d-1 . Ceci revient en effet à ajouter à P \ Q un bord R d × {0} × S n-d-1 qui s'identifie naturellement au fibré normal unitaire à Q dans P .

Espaces de configurations de deux points

Étant donné un R n+2 asymptotique d'homologie entière M • , l'espace de configu- rations C 0 2 (M • ) est la variété non compacte C 0 2 (M • ) = {(x, y) ∈ M • × M • | x = y} = (M • ) 2 \ ∆ M • , où ∆ M • est la diagonale ∆ M • = {(x, x) | x ∈ M • }.
Pour de nombreuses raisons (convergence d'intégrales, théorème de Stokes, définition des propagateurs), il est préférable de manipuler des espaces de configurations compacts en leur rajoutant un bord. Dans ce but, nous allons procéder à des éclatements successifs de M2 . Définition 3.5.1. Soit C 2 (M • ) la variété obtenue en éclatant dans M 2 le point (∞, ∞), puis les adhérences de

{∞} × M • , M • × {∞}, et ∆ M • dans la variété obtenue. La variété C 2 (M • ) est appelée espace de configurations de deux points de M • . La variété C 2 (M • ) est compacte et est munie d'une application canonique p b : C 2 (M • ) → M 2 qui identifie Int(C 2 (M • )) = p b -1 (C 0 2 (M • )) à C 0 2 (M • ) ⊂ M 2 . Les deux propriétés suivantes sont établies dans [Les15b, lemmes 2.1 et 2.2]. 2 Lemme 3.5.2. Soit G S d-1 l'application de Gauss G S d-1 : C 0 2 (R d ) → S d-1 c = (x, y) → y-x ||y-x|| . L'application G S d-1 s'étend en une application lisse G S d-1 : C 2 (R d ) → S d-1 .
Dans le cas général, on a également un analogue de cette application de Gauss, mais défini uniquement sur ∂C 2 (M • ), et avec l'aide d'une parallélisation de M • . Proposition 3.5.3. Le bord de C 2 (M • ) est la réunion des ensembles suivants.

• La face fermée ∂ ∞,∞ C 2 (M • ) = p -1 b ({(∞, ∞)}), dont l'intérieur est formé des classes de couples (u, v) ∈ (R n+2 \ {0}) 2 ∼ = (T ∞ M \ {0}) 2 tels que u = v modulo dilatations. Une telle classe [u, v] est la limite en 0 de l'application t ∈]0, min(||u||, ||v||)] → ( u t , v t ) ∈ C 2 (M • ) . • La face ouverte 3 ∂ M • ,∞ C 2 (M • ) = U N(M • × {∞}) ∼ = M • × S n+1 , où (x, u) ∈ M • ×S n+1 est la limite en 0 de l'application t ∈]0, ||u||] → (x, u t ) ∈ C 2 (M • ) . • La face ouverte ∂ ∞,M • C 2 (M • ) = U N({∞} × M • ) ∼ = S n+1 × M • , où (u, y) ∈ S n+1 ×M • est la limite en 0 de l'application t ∈]0, ||u||] → ( u t , y) ∈ C 2 (M • ) . • La face ouverte ∂ ∆ C 2 (M • ) = p -1 b (∆ M • ) = U N∆ M • , que l'on identifie à U M • au moyen de l'application [(u, v)] (x,x) ∈ U N (x,x) ∆ M • → [v -u] x ∈ U x M • . Puisque B • ∞ ⊂ R n+2 , la face ∂ ∞,∞ C 2 (M • ) s'identifie à ∂ ∞,∞ C 2 (R n+2 ) canonique- ment.
À une éventuelle parallélisation τ de M • , on associe l'application lisse

G τ : ∂C 2 (M • ) → S n+1 c →                G(c) si c ∈ ∂ ∞,∞ C 2 (M • ) ∼ = ∂ ∞,∞ C 2 (R n+2 ), -u si c = (u, y) ∈ ∂ ∞,M • C 2 (M • ) = S n+1 × M • , u si c = (x, u) ∈ ∂ M • ,∞ C 2 (M • ) = M • × S n+1 , τ -1 x (u) ||τ -1 x (u)|| si c = [u] x ∈ U x M • ⊂ U M • ∼ = ∂ ∆ C 2 (M • ).

Espace de configurations associé à un diagramme et un noeud long

Soit Γ un diagramme BCR, comme en définition 2.2.1. On définit l'espace de configurations

C 0 Γ (ψ) = c : V (Γ) → M • Il existe c i : V i (Γ) → R n telle que c |V i (Γ) = ψ • c i .
Une configuration de C 0 Γ (ψ) est donc la donnée d'une manière de placer les sommets du graphe de telle sorte que les sommets internes soient sur le noeud, les sommets externes étant libres. La figure 3.2 donne un exemple d'une configuration dans C Γ (ψ), pour le noeud ψ de la figure 3.1. Sur la figure, les arêtes sont tracées pour mieux visualiser le graphe, mais la configuration n'est que la donnée des images des quatre sommets.

ψ(R n ) B(M • ) B • ∞ ⊂ R n+2 Γ Figure 3.2 -Une configuration dans C Γ (ψ)
Comme dans la partie précédente, on va compactifier cet espace en un espace de configurations C Γ (ψ). Les détails de sa construction peuvent être trouvés dans [Les20, Chapitre 8], dans un cadre plus général. Énonçons-en les propriétés utiles. Théorème 3.6.1. Il existe une variété compacte à bord et à coins C Γ (ψ) telle que

• la variété C Γ (ψ) est compacte, et est munie d'une application canonique C Γ (ψ) → M V (Γ) , qui identifie l'intérieur de C Γ (ψ) à C 0 Γ (ψ),
• pour toute arête f = (v, w) de Γ, l'application

p e f : c ∈ C 0 Γ (ψ) → (c(v), c(w)) ∈ C 2 (M • ) se prolonge de manière lisse à C Γ (ψ), • pour toute arête interne f = (v, w) de Γ, l'application p i f : c ∈ C 0 Γ (ψ) → (c i (v), c i (w)) ∈ C 2 (M • ) se prolonge de manière lisse à C Γ (ψ).
Définition 3.6.2. Pour toute arête f d'un diagramme BCR, on pose

• si f est interne, C f = C 2 (R n ), et p f = p i f : C Γ (ψ) → C e . • si f est externe, C f = C 2 (M • ), et p f = p e f : C Γ (ψ) → C e .

Formes propagatrices

Dans le chapitre 5, nous introduisons les formes propagatrices, qui vont nous permettre de remplacer les formes G * S n(e) (ω n(e) ) du chapitre précédent.

ω F e (Γ, σ, ψ) =    p * e (α σ(e)
) si e est une arête interne, p * e (β σ(e) ) si e est une arête externe,

et on pose alors ω F (Γ, σ, ψ) = e∈E(Γ)
ω F e (Γ, σ, ψ).

Invariants de Bott-Cattaneo-Rossi généralisés

Le résultat suivant donne une définition plus souple des invariants (Z k ) du théorème 2.4. 

Z F k (ψ) = 1 (2k)! (Γ,σ)∈ G k I F (Γ, σ, ψ).
1. La valeur de Z F k (ψ) ne dépend pas du choix de la k-famille F de formes propagatrices de (M • , τ ). Remarquons qu'à ce stade, il est encore nécessaire de se donner une parallélisation pour définir les invariants (Z k ) k≥2 . La partie 3.10 montre comment s'en passer en utilisant la proposition 3.2.2. Dans le cas où M • = R n+2 , on retrouve les invariants du chapitre précédent en prenant comme formes propagatrices les formes

La valeur de Z

k (ψ) = Z F k (ψ) ne dépend pas du choix de la parallélisation τ de la variété M • . 3. Pour tout difféomorphisme ϕ ∈ Diffeo + (M • ) dont la restriction à B • ∞ est l'identité, et tout noeud long ψ de M • , Z k (ψ) = Z k (ϕ • ψ).
α i = G * S n-1 (ω n-1 ) et β i = G * S n+1 (ω n+1 ) pour tout indice i ∈ 2k.

Sommes connexes

Soient M • 1 et M • 2 deux R n+2 asymptotiques d'homologie entière. Nous allons définir leur somme connexe M • 1 M • 2 . Soit B • ∞, 1 4 le complémentaire dans R n+2 des deux boules B1 et B2 de rayon 1 4 centrées respectivement en Ω 1 = (0, 0, . . . , 0, -1 2 ) et en Ω 2 = (0, 0, . . . , 0, 1 2 ). Pour i ∈ {1, 2} et x ∈ ∂B(M i ) ⊂ R n+2 , posons ϕ i (x) = 1 4 x + Ω i . L'application ϕ i est un difféomorphisme entre ∂B(M i ) et ∂B i . Posons M • 1 M • 2 = B • ∞, 1 4 ∪ B(M 1 ) ∪ B(M 2 ), où B(M i ) est recollé 4 à B • ∞, 1 4 le long de ∂B i grâce à l'application ϕ i , et posons B(M • 1 M • 2 ) = (M • 1 M • 2 ) \ B • ∞ . Définition 3.9.1. La variété M • 1 M • 2 avec la décomposition M • 1 M • 2 = B(M • 1 M • 2 )∪ B • ∞ est appelée la somme connexe de M • 1 et de M • 2 . Proposition 3.9.2. La variété M • 1 M • 2 est encore un R n+2 asymptotique d'homo- logie entière, et l'on a deux plongements canoniques ι i : B(M i ) → B(M • 1 M • 2 ) ⊂ M • 1 M • 2 pour i ∈ {1, 2}. Deux parallélisations de M • 1 et M • 2 induisent une parallé- lisation de M • 1 M • 2 à homotopie près. (ψ 1 ψ 2 )(R n ) B(M • 1 ) B • ∞, 1 4 ⊂ R n+2 B(M • 2 )
Figure 3.3 -Un exemple de somme connexe de deux noeuds longs Définition 3.9.3.

Soient M • 1 et M • 2 deux R n+2 asymptotiques d'homologie entière, et soient ψ 1 : R n → M • 1 et ψ 2 : R n → M • 2 deux noeuds longs. La formule (ψ 1 ψ 2 )(x) =        ι 2 (ψ 2 (4.x 1 , . . . , 4.x n-1 , 4.x n -2)) si ||x -(0, . . . , 0, 1 2 )|| ≤ 1 4 , ι 1 (ψ 1 (4.x 1 , . . . , 4.x n-1 , 4.x n + 2)) si ||x -(0, . . . , 0, -1 2 )|| ≤ 1 4 , (0, 0, x) ∈ B • ∞, 1 4 sinon, définit un noeud long ψ 1 ψ 2 de M • 1 M • 2 .
Le noeud long ψ 1 ψ 2 est appelé la somme connexe de ψ 1 et de ψ 2 .

La figure 3.3 montre un exemple de somme connexe de deux noeuds longs.

Additivité des invariants BCR, extension au cas non-parallélisable

Dans la partie 5.9, on démontre le théorème 5.2.17 suivant en dimension n ≥ 3. Le cas de la dimension 1 est la dernière propriété du théorème 7.3.1.

Théorème 3.10.1. Soient ψ 1 : R n → M • 1 et ψ 2 : R n → M • 2 deux noeuds longs dans des R n+2 asymptotiques d'homologie entière parallélisables M • 1 et M • 2 . Alors, pour tout entier k ≥ 2, Z k (ψ 1 ψ 2 ) = Z k (ψ 1 ) + Z k (ψ 2 ).
Le théorème 3.10.1 et la proposition 3.2.2 nous permettent de définir Z k pour les noeuds longs dans tout R n+2 asymptotique d'homologie entière. 

Définition 3.10.2. Soit ψ un noeud long d'un R n+2 asymptotique d'homologie entière M • . Pour tout entier k ≥ 2, on pose Z k (ψ) = 1 2 Z k (ψ ψ).

Chaînes rationnelles

Chaînes propagatrices, version discrète des invariants BCR

Dans cette partie, on définit une notion duale des formes propagatrices en utilisant des chaînes.

Définition 3.12.1. On appelle chaîne propagatrice interne une (n + 1)-chaîne rationnelle plongée

A de C 2 (R n ) telle que ∂A = 1 2 (G S n-1 ) -1 ({-x A , x A }) pour un certain x A ∈ S n-1 .
Étant donné une parallélisation τ de M • , on appelle chaîne propagatrice externe de (M • , τ ) une (n + 3)-chaîne rationnelle plongée

B de C 2 (M • ) telle que ∂B = 1 2 (G τ ) -1 ({-x B , x B }) pour un certain x B ∈ S n+1 .
Pour tout entier naturel non nul k, une k-famille F = (A i , B i ) i∈2k de chaînes propagatrices de (M • , τ ) est la donnée de 2k chaînes propagatrices internes (A i ) i∈2k et de 2k chaînes propagatrices externes (B i ) i∈2k de (M, τ ).

Au chapitre 8, on démontre en théorème 8.1.2 que ces chaînes peuvent être choisies comme étant des sous-variétés lisses hors d'une boule arbitrairement petite.

Pour Γ ∈ G k , définissons l'application 

P Γ : C Γ (ψ) → e∈E(Γ) C e c → (

Supp(B σ(e) ).

• Pour toute arête interne, p e (c) ∈ Int(A σ(e) ).

• Pour toute arête externe, p e (c) ∈ Int(B σ(e) ).

• On a la propriété de transversalité suivante,

ε(c)T P Γ (c)   e∈E(Γ) C e   = T c P Γ (T c C Γ (ψ)) +   e∈E i (Γ) T pe(c) Int(A σ(e) ) × e∈Ee(Γ) T pe(c) Int(B σ(e) )   ,
où ε(c) = ±1, et où l'égalité ci-dessus est une égalité entre espaces vectoriels orientés.

Étant donné une k-famille F

= (A i , B i ) i∈2k et un diagramme BCR numéroté (Γ, σ) ∈ G k tels que F est en position générale pour (Γ, σ, ψ), on pose D F (Γ, σ, ψ) = CHAPITRE 3. INVARIANTS BCR GÉNÉRALISÉS (P Γ (c)) -1 e∈E i (Γ) A σ(e) × e∈Ee(Γ)
B σ(e) et l'on définit le nombre d'intersection algébrique

I F (Γ, σ, ψ) = c∈D F (Γ,σ,ψ)   ε(c) e∈E i (Γ) w A σ(e) (p e (c)) e∈Ee(Γ) w B σ(e) (p e (c))   .
On dit enfin que F est en position générale pour ψ si elle est en position générale pour (Γ, σ, ψ) pour tout (Γ, σ) ∈ G k .

Ceci nous permet d'obtenir une formulation de l'invariant Z k du théorème 3.8.1 en termes d'intersections algébriques. Théorème 3.12.2. Soit ψ un noeud long. Soit F une k-famille de chaînes propagatrices de (M • , τ ) en position générale pour ψ. Alors,

Z k (ψ) = 1 (2k)! (Γ,σ)∈ G k I F (Γ, σ, ψ).
Pour la dimension n ≥ 3, ce théorème est le théorème 5.2.13, démontré en partie 5.4. En dimension n = 1, c'est l'objet du théorème 7.4.1. Comme le théorème 5.4.3 affirme l'existence de familles de chaînes propagatrices en position générale pour ψ, ceci implique en particulier que les invariants BCR généralisés prennent uniquement des valeurs rationnelles.

Chapitre 4

Lien entre invariants BCR et torsion de Reidemeister 

= M • \ ψ(R n ) et K = ψ(R n ) ∪ {∞} ⊂ M .
H * (X) =        Z si * = 0, Z.[µ] si * = 1, 0 sinon.
Puisque X est connexe, on peut noter son groupe fondamental π 1 (X) sans préciser le point base. On déduit du lemme précédent que le quotient π 1 (X)/[π 1 (X), π 1 (X)] du groupe fondamental par son groupe dérivé est isomorphe à Z (et engendré par la classe d'un méridien µ). Le sous-groupe dérivé [π 1 (X), π 1 (X)] correspond donc à un revêtement X → X, muni d'une action canonique de Z.[µ] sur les fibres. Notons T : X → X le difféomorphisme induit par l'action du méridien µ par monodromie. Ceci induit une action naturelle de l'anneau Q[t, t -1 ] des séries de Laurent à coefficients dans Q sur H * ( X; Q), en faisant agir t par l'isomorphisme T * induit par T en homologie. Avec cette structure, H * ( X; Q) est un Q[t, t -1 ]-module de type fini. L'anneau Q[t, t -1 ] étant principal, on peut alors définir les invariants d'Alexander comme suit. 

(D d,i,ψ (t)) i∈r d d'éléments de Q[t, t -1 ] tels que D d,r d ,ψ (t) | D d,r d-1 ,ψ (t) | • • • | D d,1,ψ (t), tels que H d ( X; Q) = Q[t, t -1 ]/D d,1,ψ (t)Q[t, t -1 ] ⊕ • • • ⊕ Q[t, t -1 ]/D d,r d ,ψ (t)Q[t,
(où q ∈ Q * et m ∈ Z), et est l'ordre du Q[t, t -1 ]-module H d ( X, Q).

Nombre d'enlacement de deux cycles

On définit le nombre d'enlacement de deux cycles d'un R n+2 asymptotique d'homologie entière comme suit.

Définition 4.1.4. Soit M • un R n+2 asymptotique d'homologie entière, soit d ∈ n, et soient X d et Y n+1-d deux cycles de M = M • ∪ {∞}. Soient W X et W Y deux chaînes transverses telles que ∂W X = X et ∂W Y = Y . On définit le nombre d'enlacement de X et Y comme l'intersection algébrique lk(X d , Y n+1-d ) = X d , W n+2-d Y M = (-1) d+1 W d+1 X , Y n+1-d . Comme n est impair, lk(X d , Y n+1-d ) = (-1) d+1 lk(Y n+1-d , X d ).
Le lemme (6.2.15) suivant exprime le nombre d'enlacement en termes de chaînes propagatrices.

Lemme 4.1.5. Soit M • un R n+2 asymptotique d'homologie entière, et soient X d et Y n+1-d deux cycles de M . Alors, pour toute chaîne propagatrice externe B,

lk(X, Y ) = [X × Y ], [B] C 2 (M • ) .

Surfaces et matrices de Seifert

Définition 4.1.6. Soit ψ un noeud long d'un R n+2 asymptotique d'homologie entière M • . Une surface de Seifert de ψ est une sous-variété connexe Σ de dimension n + 1 de M • , telle que :

• le bord de Σ est la sous-variété orientée ψ(R n ), • l'intersection Σ ∩ B(M ) est compacte, • il existe θ ∈ R tel que Σ ∩ B • ∞ = {(r cos(θ), r sin(θ), x) | x ∈ R n , r ∈ R + } ∩ B •
∞ . Étant donné une surface de Seifert Σ, l'intersection algébrique induit pour tout d ∈ n une forme bilinéaire non dégénérée 

•, • Σ : H d (Σ; Q) × H n+1-d (Σ; Q) → Q ([a d ], [z n+1-d ]) → [a d ], [z n+1-d ] Σ .
V + d B, B = lk z d i , (a n+1-d j ) + 1≤i,j≤b d V - d B, B = lk (z d i ) + , a n+1-d j 1≤i,j≤b d
En annexe A, on démontre que l'on peut construire des noeuds longs de R n+2 avec des matrices de Seifert données.

Expression du polynôme d'Alexander en fonction de matrices de Seifert

Levine démontre dans [Lev66, p. 542] le résultat suivant.

Théorème 4.1.9 (Levine). Soit Σ une surface de Seifert pour ψ, et soit (B, B) un couple de bases duales de H * (Σ). Pour tout d ∈ n, posons 

∆ d,Σ (t) = det t -1 2 V + d B, B -t 1 2 V - d B,
(t) = ∆ d,ψ (t -1 ) et ∆ d,ψ (1) = 1.

Torsion de Reidemeister

On définit à partir des polynômes d'Alexander une torsion de Reidemeister, appelée aussi parfois fonction d'Alexander, étudiée notamment par [START_REF] Milnor | Infinite cyclic coverings[END_REF] La torsion de Reidemeister de ψ est le produit alterné

T ψ (t) = d∈n ∆ d,Σ (t) (-1) d+1 ∈ Q(t).
Elle ne dépend pas du choix de la surface de Seifert Σ, et vérifie 

T ψ (1) = 1 et T ψ (t -1 ) = T ψ (t)
• la surface Σ est standard à l'infini : il existe θ ∈ R tel que Σ ∩ B • ∞ = {(r cos(θ), r sin(θ), x) | x ∈ R n , r ∈ R + } ∩ B • ∞ , • la sous-variété immergée Σ ∪ {∞} ⊂ M = M • ∪ {∞}
i : B i → D n+2 tels que ϕ i (Σ ∩ B i ) = D ∪ R où • le « disque » D est la réunion 6 du (n+1)-disque (x 1 , . . . , x n+1 , 0) | n+1 i=1 x i 2 ≤ 1 4 2 et du cylindre plein (x 1 , . . . , x n+1 , 0) | x 1 ≥ 0, n+1 i=2 x i 2 ≤ 1 5 2 . • la « bande » R est le cylindre x ∈ D n+2 | x 1 = 0, n+1 i=2 x i 2 ≤ 1 6 2 ∼ = D n × [0, 1]. REIDEMEISTER R D Figure 4.1 -Résolution d'une singularité ruban

Invariants de type fini pour les noeuds rubans longs de R n+2

Pour n ≥ 2, Habiro, Kanenobu, et Shima ont développé dans [START_REF] Habiro | Finite type invariants of ribbon 2-knots[END_REF] une théorie d'invariants de type fini pour la classe des noeuds rubans longs de R n+2 , dont nous présentons un court aperçu ici. Étant donné un noeud ruban long ψ, les arguments de la démonstration de [HS01, Proposition 4.5] impliquent qu'il existe toujours un noeud ruban long ψ isotope à ψ admettant un bon disque ruban long Σ. Pour toute singularité ruban s i , on dispose d'une opération de résolution de la singularité, définie comme suit. On prend une boule B i et un difféomorphisme ϕ i comme en définition 4.2.3. On modifie Σ à l'intérieur de B i , en laissant ∂B i inchangé, comme en figure 4.1. La surface obtenue est encore un disque ruban long pour un certain noeud ruban long ψ = (ψ, s). Le noeud (ψ, s) est bien défini, à isotopie près, et ceci définit donc une opération sur l'ensemble K rub des classes d'isotopie de noeuds rubans longs.

Étant donné des singularités rubans deux-à-deux distinctes s 1 , . . . , s r de Σ, on note (ψ, (s 1 , . . . , s r )) le noeud obtenu en résolvant les singularités s 1 , . . . , s r dans des boules deux à deux disjointes comme ci-avant.

Z soit un invariant de type ruban au plus k. Le type ruban d'un invariant de type ruban fini est le plus petit entier k tel que Z ∈ I k .

Habiro et Shima ont démontré dans [HS01, Theorem 6.12] le théorème suivant.7 Théorème 4.2.5 (Habiro, Shima). Soit I la Q-algèbre graduée formée par les invariants de type ruban fini à valeurs rationnelles, avec la graduation donnée par

I 0 ⊂ I 1 ⊂ • • • .
Pour tout noeud ruban ψ : R n → R n+2 , soit ∆ ψ le polynôme d'Alexander de dimension 1 de ψ de la définition 4.1.3, normalisé par les conditions ∆ ψ (1) = 1 et ∆ ψ (1) = 0. Écrivons pour tout noeud ruban long ψ :

R n → R n+2 Ln(∆ ψ (e h )) = k≥2 β k (ψ)h k ∈ Q[[h]].
Alors, si n est supérieur ou égal à 2, 

• pour tout k ≥ 2,
: x ∈ R n → (τ ψ(x) ) -1 • T x ψ ∈ I(R n , R n+2 ). Alors, la classe [ι(τ, ψ)] ∈ π n (I(R n , R n+2 ), ι 0 )
ne dépend pas de la parallélisation. 

π 1 (I(R, R 3 ), ι 0 ) = π 1 (R 3 \ {0}, (0, 0, 1)) = π 1 (S 2 , (0, 0, 1)) = 0, ce qui conclut.
Le résultat suivant est démontré en partie 6.5. 

i ∈ r, ϕ i (Σ ∩ B i ) = ϕ i (R ∪ D) avec les notations de la définition 4.2.3. Pour tout i ∈ r, il existe R i ⊂ ψ -1 (B i ), homéomorphe à S n-1 × I telle que ψ(R i ) = ϕ i (∂R) ∩ Int(B i ). Soit χ : D n+2 → [0, 1] une fonction lisse égale à 1 sur {x ∈ D n+2 | |x n+2 | < 1 4 }, et dont le support de χ est contenu dans {x ∈ D n+2 | |x n+2 | < 1 2 }. Pour tout t ∈ [0, 1], soit ψ t : R n → M • , l'application telle que ψ t (x) =    ψ(x) si x n'est dans aucun des R i , ϕ i -1 y + χ(y)( t-1 2 , 0, 0, . . . , 0) si x ∈ R i , et y = ϕ i (ψ(x)
Z k (ψ) = d∈n (-1) d+1 k-1 ν=1 λ k,ν Tr V + d (B, B) ν V - d (B, B) k-ν , où pour tout ν ∈ k -1, λ k,ν = 1 (k -1)! Card ({σ ∈ S k-1 | Card{i ∈ k -2 | σ(i) < σ(i + 1)} = ν -1}) .

Lien entre invariants BCR et torsion de Reidemeister

Ln(T ψ (e h )) = n d=1 (-1) d+1 Ln(∆ d,Σ (e h )) = - k≥2 Z k (ψ)h k .
Pour n = 1, si ∆ ψ désigne la normalisation habituelle du polynôme d'Alexander,

Ln(∆ ψ (e h )) = - k≥2 Z k (ψ)h k .

Lien avec les résultats précédents pour les noeuds rubans de R n+2

Démontrons le lemme suivant qui permet de faire le lien entre disque ruban long et surface de Seifert pour les noeuds rubans longs. • On démarre avec D ∪ R comme en définition 4.2.3.

• On retire à D le disque D a de centre 0 et de rayon 1 5 , et l'on note D la surface obtenue. 

• On retire à R le cylindre plein R ∩ {x ∈ D n+2 | 0 ≤ x n+2 ≤ 1 8 }, et le disque D b de centre (0, . . . , 0, 1 3 ) et de rayon 1 8 . Notons R la surface obtenue. • On recolle les n-sphères ∂D a et ∂D b par un cylindre C 1 ∼ = S n × [0, 1] qui ne rencontre pas D ∪ R , et de telle sorte que C 1 ∪ D ∪ R est orientable. • On recolle les n-disques {x ∈ R | x n+2 = 0} et {x ∈ R | x n+2 = 1 6 } par un cylindre plein C 2 ∼ = D n × [0, 1] qui ne rencontre pas D ∪ R ∪ C 1 , et de telle sorte que D ∪ R ∪ C 1 ∪ C 2 soit
B i ) ∪ i∈r ϕ i (D ∪ R ) et V un voisinage ouvert régulier de i∈r ϕ i (C 1 ∪ C 2 ).

Remarquons que :

• l'ouvert U a l'homologie d'une réunion disjointe de bouquets de n-sphères,

• l'ouvert V se rétracte sur une réunion disjointe de points et de n-sphères,

• l'ouvert U ∩ V se rétracte sur une réunion disjointe de points et de n-sphères.

• La surface Σ est la réunion de U et de V .

Par conséquent, une application immédiate de la suite de Mayer-Vietoris implique que H * (Σ) = 0 si * ∈ {0, 1, n}. Le lemme s'en déduit immédiatement.

Le lemme suivant nous permet d'obtenir le résultat suivant, qui étend celui de Watanabe.

Théorème 4.4.2. Soit ψ un noeud ruban long d'un R n+2 asymptotique d'homologie entière. Soit ∆ ψ (t) la normalisation du polynôme d'Alexander de dimension 1 de

ψ vérifiant ∆ ψ (1) = 1 et ∆ ψ (1) = 0, et posons Ln(∆ ψ (e h )) = k≥2 β k (ψ)h k . Alors, pour tout k ≥ 2, Z k (ψ) =    0 si k est impair, -2β k (ψ) si k est pair.
Démonstration. La proposition 4.3.5 implique que le théorème 4.3.8 s'applique aux noeuds rubans longs, et, d'après le lemme 4.4.1, on a

Ln ∆ 1,ψ (e h ) = - k≥2 Z k (ψ)h k .
De plus, avec les notations du théorème 4.2.5, on a

Ln ∆ 1,ψ (e h ) = Ln ∆ ψ (e h ) + Ln ∆ ψ (e -h ) = k≥1 2β 2k (ψ)h 2k .

Chapitre 5

Généralisation des invariants de Bott-Cattaneo-Rossi aux noeuds longs dans les R n+2 d'homologie entière

Introduction

In [START_REF] Bott | Configuration spaces and imbedding invariants[END_REF], Bott introduced an isotopy invariant Z 2 of knots S n → R n+2 in odd dimensional Euclidean spaces. The invariant Z 2 is defined as a linear combination of configuration space integrals associated to graphs by integrating forms associated to the edges, which represent directions in R n or in R n+2 . The involved graphs have four vertices of two kinds and four edges of two kinds. BOTT-CATTANEO-ROSSI This invariant was generalized to a whole family (Z k ) k∈N\{0} of isotopy invariants of long knots R n → R n+2 , for odd n ≥ 3, by Cattaneo and Rossi in [START_REF] Cattaneo | Wilson surfaces and higher dimensional knot invariants[END_REF] and by Rossi in his thesis [START_REF] Rossi | Invariants of Higher-Dimensional Knots and Topological Quantum Field Theories[END_REF]. The degree k Bott-Cattaneo-Rossi (BCR for short) invariant Z k involves diagrams with 2k vertices.

In [START_REF] Watanabe | Configuration space integral for long n-knots and the Alexander polynomial[END_REF], Watanabe proved that, when restricted to ribbon long knots, the BCR invariants are finite type invariants with respect to some operations on ribbon knots, and he used this property to prove that the invariants Z k are not trivial for even k ≥ 1, and that they are related to the Alexander polynomial, for long ribbon knots.

In Theorem 5.2.10, which is the main theorem of this article, we generalize the invariants (Z k ) k≥2 to long knots in the parallelized asymptotic homology R n+2 of Section 5.2.1 when n ≥ 3 is odd, using the notion of propagating forms. When the ambient space is R n+2 , our extended definition also provides a more flexible definition for the original invariants (Z k ) k≥2 . In Theorem 5.2.13, we equivalently define our generalized BCR invariants as rational combinations of intersection numbers of chains in configuration spaces. In particular, our generalized invariants are rational. Theorem 5.2.17 asserts that Z k is additive under connected sum. In [START_REF] Leturcq | The Reidemeister torsion of high-dimensional long knots from configuration space integrals[END_REF], we use our flexible definition to express our generalized Z 2 in terms of linking numbers or of Alexander polynomials for all long knots in parallelizable asymptotic homology R n+2 , when n ≡ 1 mod 4.

Our invariants Z k are precisely defined in Section 5.2, where the three forementioned theorems are stated. Their proofs are given in the following sections.

Our definition of Z k involves a parallelization of the ambient space, which is a trivialization of its tangent bundle that is standard outside a compact as precisely explained in Definition 5.2.1. In Section 5.6, we prove that Z k does not depend on the parallelization when it exists. In order to prove this result, we prove Theorem 5.6.2, which asserts that, up to homotopy, any two parallelizations of a parallelizable asymptotic homology R n+2 that are standard outside a compact coincide outside an (arbitrarily small) ball.

I do not know whether any asymptotic homology R n+2 admits a parallelization in the sense of Definition 5.2.1. However, using the fact that the connected sum of any odd-dimensional asymptotic homology R n+2 with itself is parallelizable in the sense of Definition 5.2.1 (Proposition 5.2.18) and that Z k is additive (Theorem 5.2.17), we extend our invariants to long knots in any (possibly non-parallelizable) asymptotic homology R n+2 with n odd ≥ 3 in Definition 5.2.19.

I thank my advisor Christine Lescop for her help with the redaction of this article. I also thank the referee for her/his helpful comments.

Definition of the BCR invariants

Parallelized asymptotic homology R n+2 and long knots

In this article, we fix an odd integer n ≥ 3, and M denotes an (n + 2)-dimensional closed smooth oriented manifold, such that H * (M ; Z) = H * (S n+2 ; Z). Such a manifold is called a homology (n + 2)-sphere.

In such a homology sphere, choose a point ∞ and a closed ball B ∞ (M ) around this point. Fix an identification of this ball

B ∞ (M ) with the complement B ∞ of the open unit ball of R n+2 in S n+2 = R n+2 ∪ {∞}. Let M • denote the manifold M \ {∞} and let B • ∞ (M ) denote the punctured ball B ∞ (M ) \ {∞}. In all the following, this punctured ball B • ∞ (M ) is identified with the complement B • ∞ of the open unit ball in R n+2 . Let B(M ) denote the closure of M • \ B • ∞ . Then, the manifold M • can be seen as M • = B(M ) ∪ B • ∞ , where B • ∞ ⊂ R n+2 (see Figure 5.1). Note that such a manifold M • has the same homology as R n+2 . The manifold M • equipped with the decomposition M • = B(M ) ∪ B • ∞ is called an asymptotic homology R n+2 . M ∞ B(M ) B ∞ (M ) M • B • ∞ (M ) = B • ∞ B(M ) Figure 5.1
Long knots of such a space M • are smooth embeddings ψ : R n → M • such that ψ(x) = (0, 0, x) ∈ B • ∞ when ||x|| ≥ 1, and ψ(x) ∈ B(M ) when ||x|| ≤ 1. Two long knots ψ and ψ are isotopic if there exists a family (ψ t ) 0≤t≤1 of long knots, such that the map (t, x)

∈ [0, 1] × R n → ψ t (x) ∈ M • is
smooth, and such that ψ 0 = ψ and ψ 1 = ψ . Such a family is called an isotopy (between ψ and ψ ).

Definition 5.2.1. A parallelization of an asymptotic homology

R n+2 is a bundle isomorphism τ : M • ×R n+2 → T M • that coincides with the canonical trivialization of T R n+2 on B • ∞ × R n+2 . An asymptotic homology R n+2 equipped with such a parallelization is called a parallelized asymptotic homology R n+2 .
Two parallelizations τ and τ are homotopic if there exists a smooth family (τ t ) 0≤t≤1 of parallelizations such that τ 0 = τ and τ 1 = τ . Given a parallelization τ and

x ∈ M • , τ x denotes the isomorphism τ (x, •) : R n+2 → T x M • .

BCR diagrams

The definition of the BCR invariants involves the following graphs, called BCR diagrams.

Definition 5.2.2. A BCR diagram is an oriented connected graph Γ, defined by a set V (Γ) of vertices, decomposed into V (Γ) = V i (Γ) V e (Γ), and a set E(Γ) of ordered pairs of distinct vertices, decomposed into E(Γ) = E i (Γ) E e (Γ), whose elements are called edges1 , where the elements of V i (Γ) are called internal vertices, those of V e (Γ), external vertices, those of E i (Γ), internal edges, and those of E e (Γ), external edges, and such that, for any vertex v, one of the five following properties holds:

1. v is external and trivalent, with two incoming external edges and one outgoing external edge, and one of the incoming edges comes from a univalent vertex.

2. v is internal and trivalent, with one incoming internal edge, one outgoing internal edge, and one incoming external edge, which comes from a univalent vertex.

3. v is internal and univalent, with one outgoing external edge.

4. v is internal and bivalent, with one incoming external edge and one outgoing internal edge.

5. v is internal and bivalent, with one incoming internal edge and one outgoing external edge.

The external edges that come from a (necessarily internal) univalent vertex are called the legs of Γ. The subgraph of Γ made of all the other edges, and the non univalent vertices is called the cycle of Γ. Define the degree of a BCR diagram Γ as deg(Γ) = 1 2 Card(V (Γ)), and let G k denote the set of all BCR diagrams of degree k.

In the following, internal edges are depicted by solid arrows, external edges by dashed arrows, internal vertices by black dots, and external vertices by white dots (circles). This is the same convention as in [START_REF] Watanabe | Configuration space integral for long n-knots and the Alexander polynomial[END_REF], but it is the opposite of what was done in [START_REF] Cattaneo | Wilson surfaces and higher dimensional knot invariants[END_REF], where the internal edges are dashed, and the external ones are solid. With these conventions, the five behaviors of Definition 5.2.2 are depicted in Figure 5

.2. BOTT-CATTANEO-ROSSI 1 v 2 v 3 v 4 v 5 v Figure 5.2
Definition 5.2.2 implies that any BCR diagram consists of one cycle with some legs attached to it, which is a cyclic sequence of pieces as in Figure 5.3 with as many pieces of the first type than of the second type. In particular, the degree of a BCR diagram is an integer. 

Two-point configuration spaces

If P is a submanifold of a manifold Q such that P is transverse to the boundary ∂Q of Q and ∂P = P ∩ ∂Q, its normal bundle NP is the bundle over P whose fibers are N x P = T x Q/T x P . A fiber U N x P of the unit normal bundle U NP of P is the quotient of N x P \ {0} by dilations 2 . The differential blow-up of Q along P is the manifold obtained by replacing P with its unit normal bundle U NP . It is diffeomorphic to the complement in Q of an open tubular neighborhood of P . The boundary of the obtained manifold is canonically identified with (∂Q\∂P )∪U NP , and its interior is Q \ (P ∪ ∂Q).

Let X be a d-dimensional closed smooth oriented manifold, let ∞ be a point of X, and set X • = X \ {∞}. Here, we give a short overview of the compactification C 2 (X • ) of the two-point configuration space defined in [Les15b, Section 2.2]. Let C 2 (X • ) be the space defined from X 2 by blowing up the point (∞, ∞), and next the closures of the sets ∞ × X

• , X • × ∞ and ∆ X • = {(x, x) | x ∈ X • }.
The manifold C 2 (X • ) is compact and comes with a canonical map

p b : C 2 (X • ) → X 2 . This map induces a diffeomorphism from the interior of C 2 (X • ) to the open configuration space C 0 2 (X • ) = {(x, y) ∈ (X • ) 2 | x = y}, and C 2 (X • ) has the same homotopy type as C 0 2 (X • ). The manifold C 2 (X • ) is called the two-point configuration space of X • . Let T ∞ X denote the tangent bundle to X at ∞. Identify a punctured neighbor- hood of ∞ in X with B • ∞ . Identify T ∞ X \ {0} with R d \ {0} so that u ∈ R d \ {0} is the tangent vector at 0 of the path γ such that γ(0) = ∞ and for any t ∈ 0, 1 ||u|| , γ(t) = tu ||tu|| 2 ∈ B • ∞ ⊂ X • .
Use this identification to see the unit tangent space U ∞ X to X at ∞ as S d-1 , so that we have the following description of ∂C 2 (X • ).

Notation 5.2.3. The boundary of C 2 (X • ) is the union of:

• the closed face ∂ ∞,∞ C 2 (X • ) = p -1 b ({(∞, ∞)}), whose interior 3 is the set of all classes of pairs (u, v) ∈ (R d \ {0}) 2 ∼ = (T ∞ X \ {0}) 2 such that u = v, up to dilations. • the unit normal bundles to X • ×{∞} and {∞}×X • , which are ∂ X • ,∞ C 2 (X • ) = X • × U ∞ X ∼ = X • × S d-1 and ∂ ∞,X • C 2 (X • ) = U ∞ X × X • ∼ = S d-1 × X • , • the face ∂ ∆ C 2 (X • ) = p -1 b (∆ X • ), which identifies with the unit normal bundle to the diagonal ∆ X • , which is diffeomorphic to the unit tangent bundle U X • via the map [(u, v)] (x,x) ∈ U N (x,x) ∆ X • → [v -u] x ∈ U x X • .
The following lemma can be proved as [Les15b, Lemma 2.2].

Lemma 5.2.4. When X

• = R d , the Gauss map C 0 2 (R d ) → S d-1 (x, y) → y-x ||y-x|| extends to a map G : C 2 (R d ) → S d-1 . BOTT-CATTANEO-ROSSI
Furthermore, G reads as follows on the faces4 of codimension 1 of C 2 (R d ):

G(c) =                v ||v|| 2 -u ||u|| 2 v ||v|| 2 -u ||u|| 2 if c = [u, v] is in the interior of ∂ ∞,∞ C 2 (R d ) -u if c = (u, y) ∈ ∂ ∞,R d C 2 (R d ) = S d-1 × R d u if c = (x, u) ∈ ∂ R d ,∞ C 2 (R d ) = R d × S d-1 u ||u|| if c = [u] x ∈ U x R d ⊂ U R d ∼ = ∂ ∆ C 2 (R d ) This map G exists only when X • = R d , but, if (M • , τ ) is a parallelized asymp- totic homology R n+2 , it is possible to define an analogue G τ of G on the boundary of C 2 (M • ), as in [Les15b, Proposition 2.3]. Definition 5.2.5. Let (M • , τ ) be a parallelized asymptotic homology R n+2 . Note that the face ∂ ∞,∞ C 2 (M • ) is canonically identified with ∂ ∞,∞ C 2 (R n+2 ).
Then, we can define a smooth map G τ : ∂C 2 (M • ) → S n+1 by the following formula:

G τ (c) =            G(c) if c ∈ ∂ ∞,∞ C 2 (M • ) ∼ = ∂ ∞,∞ C 2 (R n+2 ) -u if c = (u, y) ∈ ∂ ∞,M • C 2 (M • ) = S n+1 × M • u if c = (x, u) ∈ ∂ M • ,∞ C 2 (M • ) = M • × S n+1 τ -1 x (u) ||τ -1 x (u)|| if c = [u] x ∈ U x M • ⊂ U M • ∼ = ∂ ∆ C 2 (M • )
One can think of this map as a limit of the Gauss map when one or both points approach infinity (where everything is standard), or when they are close to each other. In the latter case, the limit is defined by the parallelization.

Configuration spaces

Let Γ be a BCR diagram, let (M • , τ ) be a parallelized asymptotic homology R n+2 , and let ψ : Theorem 5.2.6 (Rossi, Sinha). The manifold C Γ (ψ) is a compact manifold with ridges and edges, such that:

R n → M • be a long knot. Let C 0 Γ (ψ) denote the open configuration space C 0 Γ (ψ) = {c : V (Γ) → M • | there exists c i : V i (Γ) → R n satisfying c |V i (Γ) = ψ • c i }. An element c of C 0 Γ (ψ) is called a configuration.
• The interior of C Γ (ψ) is canonically diffeomorphic to C 0 Γ (ψ).
• For any two internal vertices v and w, the map

c ∈ C 0 Γ (ψ) → (c i (v), c i (w)) ∈ C 2 (R n ) extends to a smooth map p ψ,i v,w : C Γ (ψ) → C 2 (R n ).
• For any two vertices v and w, the map Orient C 0 Γ (ψ) as follows. Let dY v i denote the i-th coordinate form of the internal vertex v (parametrized by R n ) and dX v i denote the i-th coordinate form of the external vertex v (in an oriented chart of M • ).

c ∈ C 0 Γ (ψ) → (c(v), c(w)) ∈ C 2 (M • ) extends to a smooth map p ψ v,w : C Γ (ψ) → C 2 (M • ).
Split each external edge e in two halves: the tail e -and the head e + . Define a form Ω e ± for these external half-edges as follows:

• for the head e + of a leg going to an external vertex v, Ω e + = dX 1 v ,

• for the head e + of an edge that is not a leg, going to an external vertex v,

Ω e + = dX 2 v ,
• for the tail e -of an edge coming from an external vertex v,

Ω e -= dX 3 v ∧ • • • ∧ dX n+2 v , • for any (external) half-edge e ± adjacent to an internal vertex v, Ω e ± = dY 1 v ∧ . . . ∧ dY n v .
Note that this distributes the coordinates of each vertex on the half-edges that are adjacent to it, as in Figure 5.5. BOTT-CATTANEO-ROSSI

v w dX 2 v e + e -Ω e - dX 3 v ∧ . . . ∧ dX n+2 v f + Ω f + f - dX 1 v dY 1 w ∧ . . . ∧ dY n w Figure 5
.5 -The forms associated to some external half-edges

Let N T,i (Γ) denote the number of internal trivalent vertices, and define the sign

of a BCR diagram as ε(Γ) = (-1) N T,i (Γ)+Card(Ee(Γ)) . The orientation of C 0 Γ (ψ) is given by the form Ω(Γ) = ε(Γ) e∈Ee(Γ) Ω e ,
where Ω e = Ω e -∧ Ω e + for any external edge e.

Propagating forms

Here we define the notion of propagating forms, which allows us to extend the definition of the BCR invariants to all parallelizable asymptotic homology R n+2 .

For any even integer d, an antisymmetric form on S d is a form ω such that (-Id S d ) * (ω) = -ω, where -Id S d is the antipodal map of the sphere.

Definition 5.2.8. An internal propagating form (or internal propagator

) is a closed (n -1)-form α on C 2 (R n ) such that α |∂C 2 (R n ) = (G |∂C 2 (R n ) ) * (ω α )
where ω α is an antisymmetric volume form on S n-1 such that S n-1 ω α = 1, and where G : C 2 (R n ) → S n-1 is the map defined in Lemma 5.2.4.

An external propagating form (or external propagator) of (M

• , τ ) is a closed (n+ 1)-form β on C 2 (M • ) such that β |∂C 2 (M • ) = G τ * (ω β )
where ω β is an antisymmetric volume form on S n+1 such that S n+1 ω β = 1, and where G τ is the map of Definition 5.2.5.

For a given integer k, a family F = (α i , β i ) 1≤i≤2k of propagating forms of (M • , τ ) is the data of 2k internal propagating forms (α i ) 1≤i≤2k and 2k external propagating forms (β i ) 1≤i≤2k of (M • , τ ).

Given such a family and a degree k numbered BCR diagram (Γ, σ), for each edge e of Γ, set

ω F e,σ = p e * (α σ(e) ) if e is internal, p e * (β σ(e) ) if e is external.
For any edge e, n(e) denotes the integer n -1 if e is internal, and n + 1 if e is external, so that ω F e,σ is an n(e)-form on C Γ (ψ). We will see in Corollary 5.3.4 that families of propagating forms exist.

Definition and properties of generalized BCR invariants of long knots

Fix an integer k ≥ 2, and a family F = (α i , β i ) 1≤i≤2k of propagating forms of (M • , τ ).

Let ψ be a long knot.

For any numbered BCR diagram (Γ, σ) of degree k, define5 the form ω

F (Γ, σ, ψ) on C Γ (ψ) as ω F (Γ, σ, ψ) = e∈E(Γ)
ω F e,σ , and set

I F (Γ, σ, ψ) = C Γ (ψ) ω F (Γ, σ, ψ).
This integral is a real number because of the following lemma.

Lemma 5.2.9.

For any BCR diagram Γ, dim(C Γ (ψ)) = deg(ω F (Γ, σ, ψ)).
Proof. Split any edge e of Γ in two halves e -(the tail) and e + (the head), and let v(e ± ) denote the vertex adjacent to the half-edge e ± . Assign an integer d(e ± ) to each half-edge as follows:

• If e is external, d(e + ) = 1 and d(e -) = n as in n 1 e - e + • If e is internal, d(e + ) = 0 and d(e -) = n-1 as in n -1 0 e - e +
Note that, with these notations:

• for any edge e ∈ E(Γ), d(e + ) + d(e -) = n(e).
• for any vertex v ∈ V (Γ), as it can be checked in Figure 5.6,

e ± ,v(e ± )=v d(e ± ) = n if v is internal, n + 2 if v is external. v 1 n 1 v 0 n -1 1 v n v 1 n -1 v 0 n Figure 5.6 Then, deg(ω F (Γ, σ, ψ)) = e∈E(Γ) (d(e + ) + d(e -)) = v∈V (Γ) e ± ,v(e ± )=v d(e ± ) = v∈V i (Γ) n + v∈Ve(Γ) (n + 2) = dim(C Γ (ψ)). BOTT-CATTANEO-ROSSI Theorem 5.2.10. Set Z F k (ψ) = 1 (2k)! (Γ,σ)∈ G k I F (Γ, σ, ψ).
The following properties hold:

1. The value of Z F k (ψ) does not depend on the choice of the family F of propagating forms of (M • , τ ).

The value of Z

k (ψ) = Z F k (ψ)
does not depend on the choice of the parallelization τ of the ambient manifold M • .

For any

ϕ ∈ Diffeo + (M • ) that fixes B •
∞ pointwise, and for any long knot

ψ of M • , Z k (ψ) = Z k (ϕ • ψ). In particular, Z k is a long knot isotopy invariant. 4. The invariant Z k takes only rational values. 5. If k is odd, Z k is always zero. The obtained invariant Z k is called the generalized BCR invariant of degree k. When M • = R n+2
, and when all the propagators are pullbacks of the homogoneous unit volume form on S n-1 and S n+1 with total volume one, our definition matches the definition of the invariants6 (Θ k ) k≥2 of [CR05, Section 6] and of the invariants 2z k of [Wat07, Section 2.4] (we have Z k = Θ k = 2z k ). Our definition allows more flexibility on the choice of the forms. It extends the invariant to an invariant for long knots in any parallelized asymptotic homology R n+2 . In [Wat07, Theorem 4.1], Watanabe proved that z k is not trivial when k is even and M • = R n+2 , and he related z k to Alexander polynomial for long ribbon knots.

Propagating chains

Let us first fix some notations on the chains used in this article. Definition 5.2.11. A rational k-chain A of a manifold X is a finite rational combination r i=1 q i Y i of compact oriented k-submanifolds with ridges and corners

(Y i ) 1≤i≤r of X. The boundary ∂A of A is the rational (k -1)-chain ∂A = r i=1 q i ∂Y i , up to the usual algebraic cancellations 7 . BOTT-CATTANEO-ROSSI If the (Y i ) 1≤i≤r have pairwise disjoint interiors, A is called an embedded rational k-chain. 8 If A is an embedded rational k-chain, Supp(A) = r i=1 Y i denotes the support of A, A (k-1) = r i=1
∂Y i denotes its (k -1)-skeleton, and Int(A) = Supp(A) \ A (k-1) its interior.

Let us now define the notion of propagating chains, which will give us another way of computing the invariant Z k , and help us to prove the fourth assertion of Theorem 5.2.10. Definition 5.2.12. An internal propagating chain (or internal propagator) is an embedded rational

(n + 1)-chain A of C 2 (R n ) such that there exists x A ∈ S n-1 such that ∂A = 1 2 (G |∂C 2 (R n ) ) -1 ({-x A , x A }). An external propagating chain (or external propagator) of (M • , τ ) is an em- bedded rational (n + 3)-chain B of C 2 (M • ) such that there exists x B ∈ S n+1 such that ∂B = 1 2 G -1 τ ({-x B , x B }). A family F * = (A i , B i ) 1≤i≤2k of propagating chains of (M • , τ ) is the data of 2k internal propagating chains (A i ) 1≤i≤2k and 2k external propagating chains (B i ) 1≤i≤2k of (M • , τ ).
Consider a family F * = (A i , B i ) 1≤i≤2k of propagating chains of (M • , τ ). For any BCR diagram Γ, let P Γ be the following map:

P Γ : C Γ (ψ) → e∈E i (Γ) C 2 (R n ) × e∈Ee(Γ) C 2 (M • ) c → (p e (c)) e∈E(Γ)
The family F * is in general position if, for any (Γ, σ) ∈ G k , and for any c ∈ C Γ (ψ)

such that P Γ (c) ∈ e∈E i (Γ) Supp(A σ(e) ) × e∈Ee(Γ)
Supp(B σ(e) ) :

• For any internal edge e of Γ, p e (c) ∈ Int(A σ(e) ).

• For any external edge e of Γ, p e (c) ∈ Int(B σ(e) ).

• We have the transversality property

T P Γ (c)   e∈E(Γ) C e   = T c P Γ (T c C Γ (ψ)) +     e∈E i (Γ) T pe(c) Int(A σ(e) )   ×   e∈Ee(Γ) T pe(c) Int(B σ(e) )     .
In the following, D F * e,σ denotes the chain p -1 e (A σ(e) ) if e is internal, and the chain p -1 e (B σ(e) ) if e is external. This is a chain of codimension n(e) of C Γ (ψ).

Computation of Z k in terms of propagating chains

We can now give a discrete definition of our generalized BCR invariants.

Theorem 5.2.13. Let F * = (A i , B i ) 1≤i≤2k be a family of propagating chains of (M • , τ ) in general position.

The algebraic intersection number

I F * (Γ, σ, ψ) of the chains (D F * e,σ ) e∈E(Γ) inside C Γ (ψ) makes sense and Z k (ψ) = 1 (2k)! (Γ,σ)∈ G k I F * (Γ, σ, ψ).
This theorem is proved in Section 5.4.1, where a more precise definition of this intersection number is given.

Additivity of Z k under connected sum

Let M • 1 and M • 2 be two asymptotic homology R n+2 . Let us define the connected sum M • 1 M • 2 . Let B • ∞, 1 4 be the complement in R n+2 of the two open balls B1
and B2 of radius 1 4 and with respective centers Ω 1 = (0, 0, . . . , 0, -1 2 ) and Ω 2 = (0, 0, . . . , 0, 1 2 ). For i ∈ {1, 2} and

x in ∂B(M i ) ⊂ R n+2 , define the map ϕ i (x) = 1 4 x + Ω i , which is a diffeomorphism from ∂B(M i ) to ∂B i . Set M • 1 M • 2 = B • ∞, 1 4 ∪ B(M 1 ) ∪ B(M 2 ), where B(M i ) is glued to B • ∞, 1 4
along ∂B i using the map ϕ i , and set

B(M • 1 M • 2 ) = (M • 1 M • 2 ) \ B • ∞ , where B • ∞ is de- fined in Section 5.2.1. The manifold M • 1 M • 2 with the decomposition M • 1 M • 2 = B(M • 1 M • 2 ) ∪ B • ∞ is called the connected sum of M • 1 and M • 2 . Proposition 5.2.14. The obtained manifold M • 1 M • 2 is an asymptotic homology R n+2 with two canonical injections ι i : B(M i ) → B(M • 1 M • 2 ) ⊂ M • 1 M • 2 for i ∈ {1, 2}. If M • 1 and M • 2 are parallelized, M • 1 M • 2 inherits a natural parallelization, up to homotopy.
Proof. This is immediate.

Definition 5.2.15. Let M • 1 and M • 2 be two asymptotic homology R n+2 . Let ψ 1 : R n → M • 1 and ψ 2 : R n → M • 2 be two long knots. The formula (ψ 1 ψ 2 )(x) =        ι 2 (ψ 2 (4.x 1 , . . . , 4.x n-1 , 4.x n -2)) if ||x -(0, . . . , 0, 1 2 )|| ≤ 1 4 , ι 1 (ψ 1 (4.x 1 , . . . , 4.x n-1 , 4.x n + 2)) if ||x -(0, . . . , 0, -1 2 )|| ≤ 1 4 , (0, 0, x) ∈ B • ∞, 1 4 otherwise, defines a long knot ψ 1 ψ 2 → M • 1 M • 2 , which is called the connected sum of ψ 1 and ψ 2 . BOTT-CATTANEO-ROSSI
Let us assert the following immediate result about connected sum. Lemma 5.2.16. Set ψ triv : x ∈ R n → (0, 0, x) ∈ R n+2 . The embedding ψ triv is called the trivial knot.

For any parallelizable asymptotic homology R n+2 M • and for any long knot ψ in M • , there exist two diffeomorphisms T

(1)

M • ,ψ : R n+2 M • → M • and T (2) M • ,ψ : M • R n+2 → M • such that T (1) M • ,ψ • (ψ triv ψ) = ψ = T (2) M • ,ψ • (ψ ψ triv ).
Similarly, the connected sum is associative and commutative up to ambient diffeomorphisms.

In Section 5.9, we prove the following theorem.

Theorem 5.2.17. Let M • 1 and M • 2 be two parallelizable asymptotic homology R n+2 and let

ψ 1 : R n → M • 1 and ψ 2 : R n → M • 2 be two long knots. Then, for any k ≥ 2, Z k (ψ 1 ψ 2 ) = Z k (ψ 1 ) + Z k (ψ 2 ).

Extension of Z k to any asymptotic homology R n+2

We prove the following proposition at the end of Section 5.8. Proposition 5.2.18. For any odd n ≥ 1, the connected sum of any asymptotic homology R n+2 with itself is parallelizable in the sense of Definition 5.2.1.

Theorem 5.2.10, Proposition 5.2.18 and the additivity of Z k under connected sum of Theorem 5.2.17 show that the following definition is consistent. Definition 5.2.19. Let ψ be a long knot in a (possibly non-parallelizable) asymptotic homology R n+2 with n odd ≥ 3. Define Z k (ψ) as 1 2 Z k (ψ ψ). By construction, Z k still satisfies the three last points of Theorem 5.2.10: it is invariant under ambient diffeomorphisms, takes rational values, and is trivial when k is even. The associativity and commutativity of connected sum up to ambient diffeomorphisms of Lemma 5.2.16 and Theorem 5.2.17 show the following proposition, which extends Theorem 5.2.17.

Proposition 5.2.20. Let M •

1 and M • 2 be two asymptotic homology R n+2 and let

ψ 1 : R n → M • 1 and ψ 2 : R n → M • 2 be two long knots. Then, for any k ≥ 2, Z k (ψ 1 ψ 2 ) = Z k (ψ 1 ) + Z k (ψ 2 ).

Independence of the propagating forms

In this section, we study the effect on Z k of a change in the family of propagating forms. Without loss of generality, it suffices to study how Z k changes when α 1 and β 1 change.

Expression of the dependence in terms of boundary integrals

For later purposes, we allow a more general context: as previously, we suppose that a family F = (α i , β i ) 1≤i≤2k of propagating forms is given, but we allow the forms β i to be compatible with different parallelizations

τ i of M • (which means that (β i ) |∂C 2 (M • ) = G * τ i (ω β i ))
. This will allow us to use the results of this section in the proof of the independence of the parallelization in Section 5.6.2. For simplicity, we set

ω n-1 i = ω α i and ω n+1 i = ω β i . Let τ 1 be a parallelization of M • . Let F = (α i , β i ) 1≤i≤2k
be a family of propagating forms such that for any i ≥ 2, (α i , β i ) = (α i , β i ), and such that β 1 is an external propagating form for τ 1 , and α 1 -α 1 and β 1 -β 1 are exact forms. We set

(ω n-1 1 ) = ω α 1 and (ω n+1 1 ) = ω β 1 . Let ζ n-2 1 be an (n -2)-form on C 2 (R n ) and let ζ n 1 be an n-form on C 2 (M • ) such that α 1 = α 1 + dζ n-2 1 and β 1 = β 1 + dζ n 1 . We say that (α 1 -α 1 , β 1 -β 1 ) has the sphere factorization property if we can choose the forms (ζ n-2 1 , ζ n 1 ) such that there exists an antisymmetric (n -2)-form η n-2 1 on S n-1 such that ζ n-2 1 |∂C 2 (R n ) = G |∂C 2 (R n ) * (η n-2 1
) and an antisymmetric n-

form η n 1 on S n+1 such that ζ n 1 |∂C 2 (M • ) = G τ 1 * (η n 1
). In the following, when this property is assumed, we always choose such primitives.

For any (Γ, σ) ∈ G k , and for any edge e of Γ, define the form ωe,σ = ωe,σ , where the order of the forms is not important since all of them except one have even degree.

     ω F e,σ if σ(e) = 1, p * e (ζ n-2 1 ) if σ(e) = 1
Lemma 5.3.1. With these notations,

Z F k (ψ) -Z F k (ψ) = 1 (2k)! (Γ,σ)∈ G k ∂C Γ (ψ) ω(Γ, σ, ψ).
Proof. From the Stokes formula, it directly follows that

I F (Γ, σ, ψ) -I F (Γ, σ, ψ) = C Γ (ψ) dω(Γ, σ, ψ) = ∂C Γ (ψ)
ω(Γ, σ, ψ).

Codimension 1 faces of C Γ (ψ)

The codimension 1 open faces of C Γ (ψ) are in bijection with the subsets S of cardinality at least two of • If S = V (Γ), ∂ S C Γ (ψ) is called the anomalous face. Its elements are configurations that map all the vertices to one point, which is necessarily on the knot.

V * (Γ) = V (Γ) { * }. Let ∂ S C Γ (ψ)
• If S has exactly two points, which are connected by exactly one edge, ∂ S C Γ (ψ) is called a principal face and its elements are configurations that map the two vertices of S to one point x S and all the other ones to pairwise distinct vertices of M • \ {x S }.

• Otherwise, ∂ S C Γ (ψ) is called a hidden face, and its elements are configurations that map all the vertices of S to one point x S , and all the other ones to pairwise distinct points of M • \ {x S }.

One can find precise descriptions of these faces in Section 5.7 or in [Ros02, pp 61-62].

A numbered (codimension 1) face of C Γ (ψ) is a face ∂ S C Γ (ψ) as above, together with a numbering σ of Γ.

For any numbered face (

∂ S C Γ (ψ), σ), set δ S I (Γ, σ, ψ) = ∂ S C Γ (ψ) ω(Γ, σ, ψ), so that Z F k (ψ) -Z F k (ψ) = 1 (2k)! (Γ,σ)∈ G k S∈F (Γ)
δ S I (Γ, σ, ψ).

Vanishing lemma for the face contributions

Lemma 5.3.2. If S ⊂ V (Γ), Γ S denotes the subgraph of Γ whose vertices are the elements of S and whose edges are the edges of Γ that connect two vertices of S.

• For any numbered infinite face

(∂ S C Γ (ψ), σ), such that no end of σ -1 (1) is in S, δ S I (Γ, σ, ψ) = 0.
• The set of hidden faces splits into two sets H 1 (Γ) and H 2 (Γ), such that:

-For any hidden face

∂ S C Γ (ψ) of H 1 (Γ) and any numbering σ of Γ, δ S I (Γ, σ, ψ) = 0.
-For any hidden face -If σ is a numbering of Γ such that σ(e) = 1, and, if e is internal, or if e is external with at least one external end, then δ e I (Γ, σ, ψ) = 0.

∂ S C Γ (ψ) of H 2 (Γ),
Furthermore, if (α 1 -α 1 , β 1 -β 1 )
has the sphere factorization property:

• For any infinite face ∂ S C Γ (ψ) such that S contains an end of the edge σ -1 (1), δ S I (Γ, σ, ψ) = 0.

• The anomalous faces do not contribute: for any

(Γ, σ) ∈ G k , δ V (Γ) I (Γ, σ, ψ) = 0.
• For the principal faces (Γ, e) associated to an edge e where e is external with internal ends, the map s Γ,e above can be extended to a map N (Γ) → N (Γ * ) such that δ e * I(Γ * , σ * , ψ) = -δ e I(Γ, σ, ψ) and s Γ,e • s Γ * ,e * = Id.

The proof of this lemma is given in Section 5.7.

Cohomology groups of two-point configuration spaces

In this section, we study the cohomology of configuration spaces. This allows us to prove the existence of families of propagating forms and the independence of Z F k of the propagating forms (first point of Theorem 5.2.10) up to Lemma 5.3.2 in the next subsection.

Lemma 5.3.3. Let (M • , τ ) be a parallelized asymptotic homology R n+2 . The rel- ative cohomology of C 2 (M • ) is H * (C 2 (M • ), ∂C 2 (M • ); R) =    R if * = n + 3 or * = 2n + 4, 0 otherwise. Proof. Since C 2 (M • ) is a (2n+4)-dimensional compact oriented manifold, we have H 2n+4 (C 2 (M • ), ∂C 2 (M • ); R) = R. Fix 0 ≤ ≤ 2n+3. The Poincaré-Lefschetz duality yields H (C 2 (M • ), ∂C 2 (M • )) = H 2n+4-(C 2 (M • )) = H 2n+4-(C 0 2 (M • ))
. Furthermore, we have a long exact sequence

H 2n+5-((M • ) 2 ) → H 2n+5-((M • ) 2 , C 0 2 (M • )) → H 2n+4-(C 0 2 (M • )) → H 2n+4-((M • ) 2 ) where H * ((M • ) 2 ) = H * (pt) by the Künneth formula. Then, we have an isomor- phism H 2n+4-(C 0 2 (M • )) ∼ = H 2n+5-((M • ) 2 , C 0 2 (M • )). The excision theorem yields H 2n+5-((M • ) 2 , C 0 2 (M • )) = H 2n+5-(N (∆ M • ), N (∆ M • )\ ∆ M • ) = H 2n+5-(∆ M • × D n+2 , ∆ M • × (D n+2 \ {0})), where N (∆ M • ) is a tubular neighborhood of ∆ M • , which can be identified with ∆ M • × D n+2 using the paral- lelization.
By Künneth's formula,

H 2n+5-(∆ M • × D n+2 , ∆ M • × (D n+2 \ {0})) = i+j=2n+5- H i (∆ M • ) ⊗ H j (D n+2 , S n+1 ) = H n+3-(M • ) ⊗ R. Then, H (C 2 (M • ), ∂C 2 (M • )) ∼ = H n+3-(M • ).

Existence of propagating forms. Independence of Z F k of a choice of propagating forms

The results of this section are applications of Lemma 5.3.3.

Corollary 5.3.4. For any parallelized asymptotic homology R n+2 (M • , τ ), there exist external propagating forms for (M • , τ ).

Proof. The triviality of the cohomology group

H n+2 (C 2 (M • ), ∂C 2 (M • )) follows from the lemma. The restriction map H n+1 (C 2 (M • )) → H n+1 (∂C 2 (M • )
) is therefore surjective. Thus, given an antisymmetric closed (n + 1)-form ω n+1 on S n+1 , there exists a closed form

β n+1 0 on C 2 (M • ) such that [(β n+1 0 ) |∂C 2 (M • ) ] = [G τ * (ω n+1 )] in H n+1 (∂C 2 (M • )). There exists a form ξ n 0 on ∂C 2 (M • ) such that (β n+1 0 ) |∂C 2 (M • ) = G τ * (ω n+1 ) + dξ n 0 . Extend ξ n 0 to a form ξ n on C 2 (M • ), and set β n+1 = β n+1 0 - dξ n . The form β n+1 is closed, and (β n+1 ) |∂C 2 (M • ) = G τ * (ω n+1
). The corollary is proved.

Let us now prove the first point of Theorem 5.2.10, i. e. that Z F k does not depend on the choice of the family F of propagating forms of (M • , τ ). Fix (M • , τ ), and choose two families

F = (α i , β i ) 1≤i≤2k and F = (α i , β i ) 1≤i≤2k of propagating forms of (M • , τ ).
As previously said, it suffices to show that Z F k does not change if α 1 and β 1 change. Therefore, we assume that for any i ≥ 2, (α i , β i ) = (α i , β i ), without loss of generality, and we use the notations of Section 5.3.1. BOTT-CATTANEO-ROSSI Lemma 5.3.5. The pair (α 1 -α 1 , β 1 -β 1 ) has the sphere factorisation property.

Proof. By construction, (β

1 -β 1 ) |∂C 2 (M • ) = G * τ ((ω n+1 1 ) -ω n+1 1 ). Since S n+1 (ω n+1 1 ) = S n+1 ω n+1 1 , there exists an n-form η n 1 on S n+1 such that dη n 1 = (ω n+1 1 ) -ω n+1 1 . Since ω n+1 1 and (ω n+1 1
) are antisymmetric, η n 1 can be assumed to be antisymmetric. Extend the form

G τ * (η n 1 ) to a form θ n 1 on C 2 (M • ). Then, β 1 -β 1 - dθ n 1 is a closed form on C 2 (M • ), whose restriction to ∂C 2 (M • ) vanishes. Since H n+1 (C 2 (M • ), ∂C 2 (M • )) = 0, there exists an n-form θ n 2 on C 2 (M • ), which van- ishes on ∂C 2 (M • ), such that β 1 -β 1 -dθ n 1 = dθ n 2 . Set ζ n 1 = θ n 1 + θ n 2 , so that β 1 -β 1 = dζ n 1 , ζ n 1 |∂C 2 (M • ) = G τ * (η n 1 )
and η n 1 is antisymmetric. The same argument on α 1 -α 1 concludes the proof of Lemma 5.3.5.

From the previous lemma and Lemma 5.3.2, it follows that Z F k -Z F k = 0. This proves the independence of Z F k (ψ) of the family F of propagating forms of (M • , τ ). This is the first point of Theorem 5.2.10.

Rationality of Z k

Proof of Theorem 5.2.13

Fix a family F * = (A i , B i ) 1≤i≤2k of propagating chains of (M • , τ ) in general position. In order to prove that Z k can be computed with these propagators, we are going to define forms dual to them, and use the definition of Z k . Fix Riemannian metrics on the configuration spaces C 2 (M • ), C 2 (R n ), and C Γ (ψ), and denote by N ε (X) = {c | d(c, X) ≤ ε} the closed ε-neighborhood of a subset X of any of these spaces. Define

D(Γ, σ) = {c ∈ C Γ (ψ) | (p e (c)) e∈E(Γ) ∈ e∈E i (Γ) Supp(A σ(e) ) × e∈Ee(Γ) Supp(B σ(e) )} = e∈E(Γ) D F * e,σ .
Let ε > 0 be such that for any internal edge e, p e (D(Γ, σ)

) ⊂ Supp(A σ(e) ) \ N ε (A (n)
σ(e) ), and such that for any external edge e, p e (D(Γ, σ)

) ⊂ Supp(B σ(e) ) \ N ε (B (n+2) σ(e) ). Set A 0 i = A i \ N ε (A (n) i ), N ε (A i ) = N ε (Supp(A i )),B 0 i = B i \ N ε (B (n+2) i
), and

N ε (B i ) = N ε (Supp(B i )). For ε small enough, for any x in A 0 i , there exists an open neighborhood V x ⊂ N ε (A i ) of x in C 2 (R n ),
which can be thought of as a tubular neighborhood of an open neighborhood W x of x in A 0 i , so that there is a local (orientation-preserving) trivialization V x → W x × D n-1 . This induces a local fiber projection map p x : V x → D n-1 . This construction can be made so that if

V x ∩V x = ∅, there exists a rotation r x,x ∈ SO(R n-1 ) such that (p x ) |Vx∩V x = (r x,x •p x ) |Vx∩V x . BOTT-CATTANEO-ROSSI For any x ∈ B 0 i , similarly define an open neighborhood V x ⊂ N ε (B i ) of x in C 2 (M • ),

and a local fiber projection map p

x : V x → D n+1 .
Some use of linear algebra and inverse function theorem proves the following lemma.

Lemma 5.4.1. For any c ∈ D(Γ, σ), there exists a neighborhood U c of c in C Γ (ψ) such that for any e ∈ E(Γ), p e (U c ) ⊂ V pe(c) and

ϕ c : U c → e∈E(Γ) D n(e) y → (p pe(c) (p e (y))) e∈E(Γ)
is a diffeomorphism onto its image.

Lemma 5.4.1 implies that D(Γ, σ) is discrete in the compact space C Γ (ψ), so it is a finite set.

Since n(e) is even for any edge,

e∈E(Γ)
D n(e) is naturally oriented, and we can define sgn(det(dϕ c )) as the sign of the Jacobian det(dϕ c ).

For c ∈ D(Γ, σ), set i(c) = sgn(det(dϕ c )) e∈E(Γ)
q(p e (c)), where q(p e (c)) is the coefficient q j of the submanifold Y j in which p e (c) lies in the rational chain

A σ(e) (if e is internal) or B σ(e) (if e is external), which reads i q i Y i . Then, the intersection number I F * (Γ, σ, ψ)
is defined as

I F * (Γ, σ, ψ) = c∈D(Γ,σ) i(c).
The following lemma, which can be obtained as in [Les20, Section 11.4, Lemma 11.13] connects this intersection number to a configuration space integral, thus to the Z k invariant.

Lemma 5.4.2. There exists a family

F = (α i , β i ) 1≤i≤2k of propagating forms of (M • , τ ) such that for any (Γ, σ) ∈ G k : • The support of ω F (Γ, σ, ψ) is a disjoint union of some neighborhoods U c of c ∈ D(Γ, σ) as in Lemma 5.4.1. • For any c ∈ D(Γ, σ), Uc ω F (Γ, σ, ψ) = i(c).
Sketch of proof. The main idea is to define the form

α i supported on N ε (A i ), such that for any x ∈ A 0 i (α i ) |Vx = q(x).p * x (ω n-1
) where ω n-1 is a volum form of total volume one on D n-1 supported in the interior of D n-1 and q(x) is the coefficient of the submanifold Y j in which x lies in

A i = k q k Y k . The proof of [Les20, Section
11.4, Lemma 11.13] explains how these forms can be "glued" along N ε (A (n) i ) in order to get a closed form and how they can be defined on a collar of the boundary to get an internal propagating form. The construction of β i is similar. BOTT-CATTANEO-ROSSI Lemma 5.4.2 implies Theorem 5.2.13. Indeed, with the family F of propagating forms of the lemma, the integrals I F (Γ, σ, ψ) of the definition of Z k in Theorem 5.2.10 are exactly the rational numbers I F * (Γ, σ, ψ) of Theorem 5.2.13.

Existence of propagating chains in general position

Lemma 5.3.3 and the Poincaré duality imply that H n (C 2 (R n )) and H n+2 (C 2 (M • )) are trivial groups. Therefore, propagating chains exist.

As stated in the following theorem, these propagating chains can also be assumed to be in general position.

Theorem 5.4.3. For any family (A i , B i ) 1≤i≤2k of propagating chains of (M • , τ ), and any ε > 0, there exists a family (A i , B i ) 1≤i≤2k of propagating chains of (M • , τ ) in general position such that for any

1 ≤ i ≤ 2k, Supp(A i ) ⊂ N ε (A i ) and Supp(B i ) ⊂ N ε (B i ).
Sketch of proof. This theorem could be proved as in [Les20, Section 11.3, Lemma 11.11]. The main idea is to look at families of diffeomorphisms (ϕ i , ϕ i ) isotopic to the identity of the tubular neighborhoods N ε (A i ), N ε (B i ) that act only fiberwise. In the space of such diffeomorphisms, the condition of general position on (ϕ i (A i ), ϕ i (B i )) can be proved to correspond to an open dense (so non empty) subset. Therefore, there exist some diffeomorphisms such that these perturbed chains are in general position.

In particular, Z k can be computed with such propagating chains. By construction, this gives a rational number. This proves the fourth assertion of Theorem 5.2.10.

Nullity of Z k when k is odd

In this section, we prove the fifth assertion of Theorem 5.2.10. The method is the same as in [Wat07, Section 2.5], but we have to deal with some more general propagating forms, and our orientations are not the same 9 .

Let (M • , τ ) be a parallelized asymptotic homology R n+2 . Let us fix an integer k ≥ 1, a long knot ψ, and a family

F = (α i , β i ) 1≤i≤2k of propagating forms of (M • , τ ). Let T α : C 2 (R n ) → C 2 (R n ) denote the extension of the map (x, y) ∈ C 0 2 (R n ) → (y, x) ∈ C 2 (R n ) to C 2 (R n ). Similarly define T β : C 2 (M • ) → C 2 (M • ). Set F = (α i , β i ) 1≤i≤2k = ( 1 2 (α i -T * α (α i )), 1 2 (β i -T * β (β i ))) 1≤i≤2k
. Since the forms ω α i and ω β i are antisymmetric for any 1 ≤ i ≤ 2k, F is again a family of propagating forms of (M • , τ ). For any 1

≤ i ≤ 2k, T * α (α i ) = -α i and T * β (β i ) = -β i .
Proposition 5.5.1. For any (Γ, σ) ∈ G k , let (Γ * , σ * ) denote the numbered BCR diagram obtained from (Γ, σ) by reversing all the edges of the cycle. Then,

I F (Γ * , σ * , ψ) = (-1) k I F (Γ, σ, ψ).
Proof. Since the vertices and their natures are the same for Γ and Γ * , we have a canonical diffeomorphism C Γ (ψ) ∼ = C Γ * (ψ), but it may change the orientation.

It follows from the definition of the orientation of configuration spaces in Section 5.2.4 that the orientation Ω(Γ * ) can be obtained from Ω(Γ) as follows: first, exchange the coordinate forms dX 2 v and dX

3 v ∧ • • • ∧ dX n+2 v
for any external vertex v ; next, for any external edge e of the cycle, exchange the forms Ω e -and Ω e + .

Set r = 0 if there is no internal edge in Γ. In this case, there are k external vertices and k external edges in the cycle, so Ω(Γ * ) = (-1) k+k Ω(Γ) = Ω(Γ). Otherwise, any external edge of the cycle is contained in one maximal sequence of consecutive external edges of the cycle. If such a sequence has d edges, it has d -1 external vertices. Let us denote by (d 1 , . . . , d r ) the lengths of the r maximal sequences of consecutive external edges of the cycle. Then, the previous analysis yields Ω(Γ * ) = (-1)

r i=1 (d i +(d i -1)) Ω(Γ) = (-1) r Ω(Γ). Let L denote the number of edges of the cycle of Γ. Since F is such that for any 1 ≤ i ≤ 2k, T * α (α i ) = -α i and T * β (β i ) = -β i , we have 10 ω F (Γ * , σ * , ψ) = (-1) L ω F (Γ, σ, ψ). Then, I F (Γ * , σ * , ψ) = (-1) L+r I F (Γ, σ, ψ).
It remains to check that L+r ≡ k mod 2. It is direct when there is no internal edge.

Otherwise, let u (resp. b, resp. t) denote the number of univalent (resp. bivalent, resp. trivalent) vertices of Γ. By definition of the BCR diagrams, u = t, and 2k = u

+ b + t = b + 2t.
Note that there is a bijection between maximal sequences of consecutive external edges of the cycle and bivalent vertices with an external outgoing edge. This bijection is defined by taking the source of the first edge of a sequence. Taking the head of the last edge of a sequence also gives a bijection between the maximal sequences of consecutive external edges of the cycle and the bivalent vertices with an internal outgoing edge. Then, r = b 2 = k -t. The cycle is composed of all the bivalent and trivalent vertices, and has as many vertices and edges. Then, L = b + t = 2k -t.

Eventually, L+r = 3k-2t ≡ k mod 2. This concludes the proof of Proposition 5.5.1. BOTT-CATTANEO-ROSSI Proposition 5.5.1 directly implies that Z k (ψ) = 0 when k is odd.

Independence of the parallelization, invariance under ambient diffeomorphisms

In this section, we prove the second and third assertions of Theorem 5.2.10.

Homotopy classes of parallelizations of M •

Let M • be a fixed parallelizable asymptotic homology R n+2 . Let Z τ k denote the value of the invariant Z k when computed with a family of propagating forms of (M • , τ ).

We recall that two parallelizations τ and τ are homotopic if there exists a smooth family (τ t ) 0≤t≤1 of parallelizations such that τ 0 = τ and τ 1 = τ , as in Definition 5.2.1.

Denote by Par(M • ) the set of homotopy classes of parallelizations of M • .

Lemma 5.6.1. If τ and τ are homotopic, then Z τ k = Z τ k . Proof. Let (τ t ) 0≤t≤1 be a smooth homotopy of parallelizations. Assume without loss of generality that there exists ε > 0 such that τ t = τ 0 for any t ∈ [0, ε]. Let (α i , β i ) be a family of propagating forms of (M • , τ 0 ). For any 1 ≤ i ≤ 2k, there exists a form

ω β i such that (β i ) |∂C 2 (M • ) = G * τ 0 (ω β i ).
For any 1 ≤ i ≤ 2k, we define a smooth family (β s i ) 0≤s≤1 of external propagating forms such that (

β s i ) |∂C 2 (M • ) = G * τs (ω β i ) as follows. Let [-1, 0] × U M • be a collar of U M • = ∂ ∆ C 2 (M • ) such that {0} × U M • cor- responds to ∂ ∆ C 2 (M • ). Let N (∂C 2 (M • )) be a regular neighborhood of ∂C 2 (M • ) that contains [-1, 0] × U B(M ). Extend G τ 0 to a smooth map G τ 0 on N (∂C 2 (M • )) such that for any (t, x) ∈ [-1, 0] × U B(M ), G τ 0 (t, x) = G τ 0 (x). Assume that (β i ) |N (∂C 2 (M • )) = G τ 0 * (ω β i ). Since (G τs ) |∂U B(M ) = (G τ 0 ) |∂U B(M ) for any s ∈ [0, 1], the map p s : (t, x) ∈ [-1, 0] × U B(M ) → G τ (1+t)s (x) ∈ S n+1 coincide with G τ 0 on ([-1, 0] × ∂U B(M )) ∪ ({-1} × U B(M )). The forms p s * (ω β i ) and β i coincide on ([-1, 0] × ∂U B(M )) ∪ ({-1} × U B(M ))
. This allows us to define a closed form

β s i such that (β s i ) |[-1,0]×U B(M ) = p s * (ω β i ) and (β s i ) |C 2 (M • )\([-1,0]×U B(M )) = β i . Then, F s = (α i , β s i )
1≤i≤2k is a family of propagating forms of (M • , τ s ), and

Z τs k = 1 (2k)! (Γ,σ)∈ G k C Γ (ψ) ω Fs (Γ, σ, ψ).
By construction, ω Fs (Γ, σ, ψ) depends continuously on s, and then, Z τs k depends continuously on s. Since it takes only rational values, it is constant, and

Z τ 0 k = Z τ 1 k .
The following theorem will allow us to obtain the independence of Z k of the parallelization in the next subsection. It is proved in Section 5.8. Theorem 5.6.2. Let M • be an asymptotic homology R n+2 , and let B ⊂ B(M ) be a standard (n + 2)-ball. Let [τ ] and [τ ] be two homotopy classes of parallelizations of M • as defined in Definition 5.2.1.

It is possible to choose representatives τ and τ of the classes [τ ] and [τ ], such that τ and τ coincide on

(M • \ B) × R n+2 .

Proof of the independence of the parallelization

Let [τ 0 ] and [τ 1 ] be two homotopy classes of parallelizations of M • . Let B be a ball of B(M ) such that B ∩ ψ(R n ) = ∅. Theorem 5.6.2 allows us to pick representatives τ 0 and τ 1 that coincide outside B.

Fix a family F = (α i , β i ) 1≤i≤2k of propagating forms of (M • , τ 0 ). The following lemma defines a family of propagating forms of (M • , τ 1 ).

Lemma 5.6.3. There exists a family of n-forms (ζ

n i ) 1≤i≤2k on C 2 (M • ) such that:
• The family of forms F = (α i , β i ) 1≤i≤2k obtained by setting

β i = β i + dζ n i is a family of propagating forms of (M • , τ 1 ). • For any index 1 ≤ i ≤ 2k, the form ζ n i |∂C 2 (M • ) is supported on U B ⊂ U M • ∼ = ∂ ∆ C 2 (M • ) (with the notations of Notation 5.2.3). Proof. Fix the index i ∈ {1, . . . , 2k}. First note that G τ 1 and G τ 0 coincide outside U B. Then, the form G * τ 1 (ω β 1 ) -G * τ 0 (ω β 1 ) defines a class in H n+1 (U B, ∂U B) = H n+1 (D n+2 × S n+1 , S n+1 × S n+1 ) = H n+2 (D n+2 × S n+1 ) = 0. Therefore, there exists an n-form (ζ n i ) 0 on U B, which vanishes on ∂U B, such that (G τ 1 -G τ 0 ) * (ω β 1 ) = d(ζ n i ) 0 .
It remains to extend this form (ζ n i ) 0 . Since (ζ n i ) 0 is zero on the boundary of U B, we can extend it by 0 to a form (ζ n i ) 1 on ∂C 2 (M • ). Then, pull this form (ζ n i ) 1 back on a collar N of ∂C 2 (M • ), and multiply it by a smooth function, which sends ∂C 2 (M • ) to 1 and the other component of ∂N to 0. Eventually, extend this last form to C 2 (M • ) by 0 outside N . This gives a n-form ζ n i as in the statement. Let F j denote the family of propagating forms with internal forms (α i ) 1≤i≤2k and external forms (β 1 , . . . , β j , β j+1 , . . . , β 2k ), so that

F 0 = F and F 2k = F . For any 1 ≤ j ≤ 2k, set ∆ j Z k (ψ) = Z F j k (ψ) -Z F j-1 k (ψ) , so that Z τ 1 k (ψ) -Z τ 0 k (ψ) = Z F k (ψ) -Z F k (ψ) = 1≤j≤2k ∆ j Z k (ψ).
Let us prove that ∆ 1 Z k (ψ) = 0. Since j = 1, with the notations of Section 5.3.2, Lemma 5.3.

1 reads ∆ 1 Z k (ψ) = 1 (2k)! (Γ,σ)∈ G k S∈F (Γ)
δ S I (Γ, σ, ψ). Since the internal forms are the same for F 1 and F 2 , the numbered faces such that e 0 = σ -1 (1) is internal do not contribute. According to Lemma 5.3.2, the only possibly contributing codimension 1 numbered faces are:

• numbered infinite faces (∂ S C Γ (ψ), σ), such that S contains at least one end of e 0 , where e 0 is external,

• numbered principal faces (∂ S C Γ (ψ), σ), such that S is composed of the ends of e 0 , and such that e 0 is external with internal ends,

• all the numbered anomalous faces (∂ V (Γ) C Γ (ψ), σ) such that e 0 is external.

In these three cases, the map p e 0 maps the face to ∂C 2 (M • ). Infinite faces are sent to configurations with at least one of the two points at infinity. Anomalous and principal faces are sent to configurations where points of S coincide, but since there exists at least one internal vertex, these points are necessarily on the knot, which does not meet B. Then, p e 0 maps the face outside the support of ζ 1 , and the restriction of the form ω(Γ, σ, ψ) to the face vanishes.

This proves that ∆ 1 Z k (ψ) = 0. Similarly ∆ i Z k (ψ) = 0 for any 2 ≤ i ≤ 2k. The independence of Z k of the parallelization follows.

Invariance of Z k under ambient diffeomorphisms

In this section, we prove the third assertion of Theorem 5.2.10.

Fix a knot ψ 0 inside a parallelized asymptotic homology R n+2 denoted by (M • , τ ), and fix a family F = (α i , β i ) 1≤i≤2k of propagating forms of (M • , τ ) .

Let ϕ ∈ Diffeo(M • ) be a diffeomorphism that fixes B • ∞ pointwise, and let ψ 1 denote the knot ϕ • ψ 0 . In this section, for any i ∈ {0, 1} and for any edge e of a BCR diagram Γ, p e,i denotes the map p ψ i e : C Γ (ψ i ) → S n(e) of Definition 5.2.7. With these notations, ϕ induces a diffeomorphism Φ : C Γ (ψ 0 ) → C Γ (ψ 1 ), and a diffeomorphism Φ β : C 2 (M • ) → C 2 (M • ). These diffeomorphisms extend the maps given by the formula c → ϕ•c on the interiors of these configuration spaces. Then,

Z τ k (ψ 1 ) = 1 (2k)! (Γ,σ)∈ G k C Γ (ψ 1 ) ω F (Γ, σ, ψ 1 ) = 1 (2k)! (Γ,σ)∈ G k C Γ (ψ 0 ) Φ * (ω F (Γ, σ, ψ 1 )) = 1 (2k)! (Γ,σ)∈ G k C Γ (ψ 0 ) e∈E(Γ) Φ * (ω F e (Γ, σ, ψ 1 )) = 1 (2k)! (Γ,σ)∈ G k C Γ (ψ 0 ) e∈E i (Γ) Φ * (p * e,1 (α σ(e) )) ∧ e∈Ee(Γ) Φ * (p * e,1 (β σ(e) )).
Note that, by construction, if e ∈ E i (Γ), we have p e,1 •Φ = p e,0 , and if e ∈ E e (Γ), we have

p e,1 •Φ = Φ β •p e,0 . Define the family F = (α i , Φ * β (β i )) 1≤i≤2k of propagating BOTT-CATTANEO-ROSSI
forms of (M • , τ ), where τ is the parallelization defined for any x by the formula

τ x = T ϕ(x) ϕ -1 • τ ϕ(x)
. The previous equation becomes

Z τ k (ψ 1 ) = 1 (2k)! (Γ,σ)∈G k C Γ (ψ 0 ) e∈E(Γ) ω F e (Γ, σ, ψ 0 ) = Z τ k (ψ 0 ).
Since Z k does not depend on the parallelization, this reads Z k (ϕ•ψ 0 ) = Z k (ψ 0 ). This proves the third assertion of Theorem 5.2.10.

Proof of Lemma 5.3.2

In this section, we analyse the variations of the integral I F (Γ, σ, ψ) under a change of the forms (α 1 , β 1 ). These variations can be expressed as the sum of the integrals δ S I(Γ, σ, ψ) over the numbered codimension 1 faces (∂ S C Γ (ψ), σ) of C Γ (ψ) described in Section 5.3.2. Here, we study all these integrals in order to obtain the face cancellations precisely described in Lemma 5.3.2.

Recall that for any edge e, n(e) = n -1 if e is internal, and n(e) = n + 1 if e is external. In all this section, for any edge e that has at least one end in S, let G e,S :

∂ S C Γ (ψ) → S n(e) be the map G • (p e ) |∂ S C Γ (ψ) if e is internal, and the map G τ σ(e) • (p e ) |∂ S C Γ (ψ) if e is external.

Infinite faces

In this section, we prove that the infinite face contributions vanish. Let S * = S { * } represent an infinite face ∂ S * C Γ (ψ). As in Section 5.3.2, V * (Γ) = V (Γ) { * }. When S * V * (Γ), our proof is inspired from the proof of [Ros02, Lemma 6.5.9].

For infinite faces, the open face

∂ S * C Γ (ψ) is diffeomorphic to the product C 0 Γ |V (Γ)\S × C S,∞
where:

• The manifold C 0 Γ |V (Γ)\S is the set of configurations c : V (Γ) \ S → M • such that c(V i (Γ) \ (S ∩ V i (Γ))) ⊂ ψ(R n ). • The manifold C S,∞ is the quotient set of maps u S : S → R n+2 \ {0} such that u S (S ∩ V i (Γ)) ⊂ {0} 2 × R n by dilations.
Denote by (c, [u S ]) a generic element of the infinite face ∂ S * C Γ (ψ). Such a configuration can be seen as the limit of the map

c λ : v ∈ V (Γ) → c(v) if v ∈ S, λu S (v) ||λu S (v)|| 2 if v ∈ S, ∈ M •
when λ approaches zero (c λ is well-defined for λ sufficiently close to 0).

First case: S * = V * (Γ) and (α 1 -α 1 , β 1 -β 1 ) has the sphere factorization property. In this case,

∂ V * (Γ) C Γ (ψ) is diffeomorphic to C V (Γ),∞ . The following lemma directly implies that δ V * (Γ) I (Γ, σ, ψ) = 0. Lemma 5.7.1. The form (ω(Γ, σ, ψ)) |∂ V * (Γ) C Γ (ψ) is zero. Proof. Define the equivalence relation on C V (Γ),∞ such that [u V (Γ)
] and [u V (Γ) ] are equivalent if and only if there exist representatives u V (Γ) and u V (Γ) , and a vector

x ∈ {0} 2 × R n , such that, for any v ∈ V (Γ), u V (Γ) (v) ||u V (Γ) (v)|| 2 = u V (Γ) (v) ||u V (Γ) (v)|| 2 + x. Let ϕ : ∂ V * (Γ) C Γ (ψ) = C V (Γ),∞ → Q denote the induced quotient map. Then,
for any e ∈ E(Γ), the map G e,V * (Γ) factors through ϕ. Since (α 1 -α 1 , β 1 -β 1 ) has the sphere factorization property, (ω e,σ ) |∂ V * (Γ) C Γ (ψ) is the pullback of a form on the sphere by the map G e,V * (Γ) , for any edge e, including σ -1 (1). Then, (ω e,σ )

|∂ V * (Γ) C Γ (ψ) = ϕ * (θ e,σ )
where θ e,σ is a form on Q, and ω(Γ, σ, ψ)

|∂ V * (Γ) C Γ (ψ) therefore reads ω(Γ, σ, ψ) |∂ V * (Γ) C Γ (ψ) = ϕ * (θ σ ) where θ σ = e∈E(Γ) θ e,σ . Since deg(θ σ ) = deg(ω(Γ, σ, ψ)) = dim(∂C Γ (ψ)) > dim(Q), we have θ σ = 0, so (ω(Γ, σ, ψ)) |∂ V * (Γ) C Γ (ψ) = 0.
Second case: S * V * (Γ) and either σ -1 (1) has no end in S, or σ -1 (1) has at least one end in S and (α 1 -α 1 , β 1 -β 1 ) has the sphere factorization property. In this case, let E S i (Γ) (resp. E S e (Γ)) denote the set of internal (resp. external) edges with at least one end in S, and set E S (Γ) = E S i (Γ) E S e (Γ).

Lemma 5.7.2. For any S * = S { * } V * (Γ), n.Card(S∩V i (Γ))+(n+2).Card(S∩V e (Γ)) < (n-1).Card(E S i (Γ))+(n+1).Card(E S e (Γ)).

Proof. Split any edge e of Γ in two halves e -(the tail) and e + (the head), and let v(e ± ) denote the vertex adjacent to the half-edge e ± , as in the proof of Lemma 5.2.9.

Recall the definition of the integers d(e ± ) from the proof of Lemma 5.2.9:

• If e is external, d(e + ) = 1 and d(e -) = n as in n 1 e - e +
• If e is internal, d(e + ) = 0 and d(e

-) = n-1 as in n -1 0 e - e +
As in the proof of Lemma 5.2.9 and Figure 5.6, these integers satisfy: BOTT-CATTANEO-ROSSI

• for any vertex v ∈ V (Γ), e ± ,v(e ± )=v d(e ± ) = n if v is internal, n + 2 if v is external.
• for any edge e ∈ E(Γ), d(e + ) + d(e -) = n(e).

Since S V * (Γ), one of the following behaviors happens:

• S contains only univalent vertices, and there exists an external edge going from S to V (Γ) \ S.

• S contains at least one vertex of the cycle of Γ, and there exists an edge going from V (Γ) \ S to S.

In both cases, there exists a half-edge e ± such that v(e ± ) ∈ S, v(e ∓ ) ∈ S, and d(e ∓ ) = 0 (n -1 is indeed positive since n = 1). Therefore:

n.Card(S ∩ V i (Γ)) + (n + 2).Card(S ∩ V e (Γ)) = e ± ,v(e ± )∈S d(e ± ) < e∈E S (Γ) (d(e + ) + d(e -)) = (n -1).Card(E S i (Γ)) + (n + 1).Card(E S e (Γ))
Since the edges of E S (Γ) have at least one vertex at infinity, their directions do not depend on the position of the points that are not at infinity, and we have the following.

Lemma 5.7.3. For any edge e ∈ E S (Γ), the map G e,S * factors through ϕ :

∂ S C Γ (ψ) → C S,∞ .
From this lemma, and since either (α 1 -α 1 , β 1 -β 1 ) has the sphere factorization property, or σ -1 (1) ∈ E S (Γ), we can write ωe,σ = ϕ * (θ e,σ ) for any e ∈ E S (Γ), where 

deg(θ e,σ ) = n(e) if σ(e) = 1, n(e) -1 if σ(e) = 1. Then, deg e∈E S (Γ) θ e,σ ≥ e∈E S (Γ) n(e) -1. Since dim(C S,∞ ) = n.Card(S ∩ V i (Γ)) + (n + 2).Card(S ∩ V e (Γ)) -1, Lemma 5.7.2 implies that e∈E S (Γ) n(e) - 1 > dim(C S,

Finite faces

In this section, we study the contribution of the anomalous, hidden and principal faces. Our analysis resembles the analysis in [Wat07, Appendix A], but we have to take care of the fact that the propagating forms are not the same on each edge, and that they may not be pullbacks of forms on the spheres.

Description and restriction to the connected case

Let S be a subset of V (Γ) of cardinality at least two, and let δ S Γ be the graph obtained from Γ by collapsing all the vertices in S to a unique vertex * S , internal if at least one of the vertices of S is, external otherwise. Let I(R n , R n+2 ) denote the space of linear injections of R n in R n+2 . Define the following spaces:

• The space C 0 δ S Γ is composed of the injective maps c : V (δ S Γ) → M • such that there exists c i : V i (δ S Γ) → R n such that c |V i (δ S Γ) = ψ • c i .
• If S contains internal vertices, the space C S is the quotient of the set C S 0 of pairs (u, ι) where ι is a linear injection of R n inside R n+2 and u is an injective map u :

S → R n+2 such that u(S ∩ V i (Γ)) ⊂ ι(R n ), by dilations and by translations of u along ι(R n ).
If S contains only external vertices, C S is the quotient of the set of maps S → R n+2 by dilations and translations along R n+2 .

Then:

• If S contains an internal vertex,

∂ S C Γ (ψ) = C 0 δ S Γ × I(R n ,R n+2 ) C S = {(c, [u, ι]) ∈ C 0 δ S Γ × C S | ι = τ -1 c( * S ) •T ψ c i ( * S ) }. • If S contains only external vertices, ∂ S C Γ (ψ) = C 0 δ S Γ × C S . Keep the notation ∂ S C Γ (ψ) = C 0 δ S Γ × I(R n ,R n+2 ) C S in both cases.
In the following, an element of ∂ S C Γ (ψ) will be represented by (c, [u]) since ι can be deduced from c when S ∩ V i (Γ) = ∅. Lemma 5.7.4. Let Γ S be the graph defined in Lemma 5.3.2. If Γ S is not connected, then δ S I (Γ, σ, ψ) = 0.

Proof. Suppose that Γ S is not connected. Then, there exists a partition S = S 1 S 2 such that no edge connects S 1 and S 2 , and where S 1 and S 2 are non-empty sets.

Suppose that S contains at least one internal vertex, and set ι(c) = τ -1 c( * S ) • T ψ c i ( * S ) . Define the equivalence relation on ∂ S C Γ (ψ) such that (c, [u]) and (c , [u ]) BOTT-CATTANEO-ROSSI are equivalent if and only if c = c and there exist representatives u and u and a vector x ∈ R n such that, for any v ∈ S,

u (v) =    u(v) + ι(c)(x) if v ∈ S 1 , u(v) if v ∈ S 2 .
Let ϕ : ∂ S C Γ (ψ) → Q denote the quotient map. With these notations, for any edge e, the map p e factors through ϕ. We conclude as in the proof of Lemma 5.7.1, since deg(ω(Γ, σ, ψ)) > dim(Q).

If S contains only external vertices, we proceed similarly with the equivalence relation such that (c, [u]) and (c , [u ]) are equivalent if and only if c = c and there exist representatives u and u and a vector x ∈ R n+2 such that, for any v ∈ S,

u (v) =    u(v) + x if v ∈ S 1 , u(v) if v ∈ S 2 .

Anomalous face

In this section, according to the hypotheses of Lemma 5.3.2, assume that (α 1α 1 , β 1 -β 1 ) has the sphere factorization property.

Lemma 5.7.5. There exists an orientation-reversing diffeomorphism of the anomalous face T : Proof. Here, since δ V (Γ) Γ is a graph with only one internal vertex * V (Γ) , the face is diffeomorphic to

∂ V (Γ) C Γ (ψ) → ∂ V (Γ) C Γ (ψ),
ψ(R n ) × I(R n ,R n+2 ) C V (Γ) . Choose an internal vertex v of Γ. For [u] ∈ C V (Γ) , define [u ] ∈ C V (Γ)
as the class of the map u such that, for any vertex w, u (w) = 2u(v) -u(w). Then the map

T : (c, [u]) ∈ ∂ V (Γ) C Γ (ψ) → (c, [u ]) ∈ ∂ V (Γ) C Γ (ψ) is a diffeomorphism. The sign of its Jacobian determinant is (-1) (2k-1)(n+2) = -1, since n is odd. It is easy to check that G e,S • T = (-Id S n(e) )
• G e,S for any edge e.

Since (α 1 -α 1 , β 1 -β 1 ) has the sphere factorization property, (ω e,σ )

|∂ V (Γ) C Γ (ψ) reads G e,S
* (θ e ), where, for any edge e, θ e is an antisymmetric form on the sphere. Then, Lemma 5.7.5 yields

T * ((ω e,σ ) |∂ V (Γ) C Γ (ψ) ) = G e,S * ((-Id S n(e) ) * (θ e )) = -(ω e,σ ) |∂ V (Γ) C Γ (ψ) . BOTT-CATTANEO-ROSSI Then, δ V (Γ) I (Γ, σ, ψ) = ∂ V (Γ) C Γ (ψ) ω(Γ, σ, ψ) |∂ V (Γ) C Γ (ψ) = - ∂ V (Γ) C Γ (ψ) T * ω(Γ, σ, ψ) |∂ V (Γ) C Γ (ψ) = - ∂ V (Γ) C Γ (ψ) (-1) Card(E(Γ)) ω(Γ, σ, ψ) |∂ V (Γ) C Γ (ψ) = -δ V (Γ) I (Γ, σ, ψ) since Card(E(Γ)) = 2k.
Eventually, this implies that δ V (Γ) I (Γ, σ, ψ) = 0.

Hidden faces

Lemma 5.7.6. Let H 1 (Γ) be the set of hidden faces such that at least one of the following properties hold:

• Γ S is non-connected.
• Γ S has at least three vertices, Γ S has a univalent vertex v 0 , and, if this vertex is internal, then its only adjacent edge e 0 in Γ S is internal (as in Figure 5.7).

For any face

∂ S C Γ (ψ) in H 1 (Γ), δ S I (Γ, σ, ψ) = 0. S v 0 v 1 e 0 S v 0 v 1 e 0 e 0 S v 0 v 1 Figure 5.7 -The second property in the definition of H 1 (Γ)
Proof. If Γ S is not connected, this is Lemma 5.7.4. If Γ S is connected, we have a univalent vertex v 0 as in Figure 5.7. There is a natural map

∂ S C Γ (ψ) → C 0 δ S Γ × I(R n ,R n+2 ) × C S\{v 0 } . Let ϕ : ∂ S C Γ (ψ) → Q = (C 0 δ S Γ × I(R n ,R n+2 ) × C S\{v 0 } ) × S n(e 0 )
denote the product of this map and the Gauss map G e 0 ,S . As in the similar lemmas of the previous subsection, for any edge whose ends are both in S, G e,S factors through ϕ, and for any other edge, p e factors through ϕ. Then, all the forms ωe,σ are pullbacks of forms on Q by ϕ, and ω(Γ, σ, ψ) also is. The hypotheses of the lemma imply that dim(Q) < dim(∂ S C Γ (ψ)), so δ S I (Γ, σ, ψ) = 0. BOTT-CATTANEO-ROSSI Lemma 5.7.7. Let H a 2 (Γ) denote the set of hidden faces that are not in H 1 (Γ) and such that Γ S contains a bivalent vertex v, which is trivalent in Γ, and which has one incoming and one outgoing edge in Γ S , which are both internal if v is internal.

For any face Let T be the orientation-reversing diffeomorphism of

∂ S C Γ (ψ) in H a 2 (Γ), δ S I(Γ, σ, ψ) = -δ S I(Γ, σ • ρ, ψ),
∂ S C Γ (ψ) defined as fol- lows: if (c, [u]) ∈ ∂ S C Γ (ψ), let u : S → R n+2 be the map such that, for any w ∈ S, u (w) = u(w) if w = v, u(b) + u(a) -u(v) if w = v,
and set T (c, [u]) = (c, [u ]).
For any g ∈ E(Γ), p g • T = p ρ(g) , so that

T * ((ω(Γ, σ, ψ)) |∂ S C Γ (ψ) ) = (ω(Γ, σ • ρ, ψ)) |∂ S C Γ (ψ) ,
and thus δ S I(Γ, σ, ψ) = -δ S I(Γ, σ • ρ, ψ).

Lemma 5.7.8. Let H b 2 (Γ) be the set of hidden faces that are neither in H 1 (Γ) nor in H a 2 (Γ). For any face ∂ S C Γ (ψ) in H b 2 (Γ), we have the following properties : • If S contains the head of an external edge, then it contains its tail.

• If S contains a univalent vertex, then it contains its only adjacent vertex.

In particular, S necessarily contains at least one vertex of the cycle, but cannot contain all of them, since it would imply S = V (Γ).

Proof. Let ∂ S C Γ (ψ) be a face in H b 2 (Γ).
The second point directly follows from the connectedness of Γ S . Let us prove the first point. Let e = (v, w) be an external edge with w in S. BOTT-CATTANEO-ROSSI

• If e is a leg, we have three possible cases:

-If the two neighbors of w in the cycle are in S, then v is in S. Indeed, otherwise S would contain a piece as in Figure 5.8.

-If S contains one of the neighbors of w in the cycle, then v ∈ S. Indeed, otherwise S would contain a piece such as in the two first pieces of Figure 5.7.

-If none of the neighbors of w in the cycle are in S, then Γ S is not connected, which is impossible.

• Otherwise, e is an external edge of the cycle, and we have two possible cases: 

-If w is bivalent,
u (w) =      u(a) if w = b, u(w) + u(b) -u(a) if w ∈ S 0 , u(w) otherwise,
and define an orientation-reversing diffeomorphism T :

∂ S C Γ (ψ) → ∂ S C Γ (ψ) by the formula T (c, [u]) = (c, [u ]
). Thus, if ρ denotes the transposition of e and f , we have p g • T = p ρ(g) for any g, and we conclude as in Lemma 5.7.7.

Lemma 5.7.10. Suppose that the face

∂ S C Γ (ψ) is in H b 2 (Γ)
, and that Γ S contains no external vertex. Then, it contains at least one of the following pieces:

• Two non adjacent external edges with their sources a and b univalent in Γ S (not necessarily in Γ).

• A sequence of one external, one internal and one external edge, as in the second part of Figure 5.10.

• A trivalent internal vertex with all its neighbors. In all of these three cases, we have a transposition of two edges ρ such that δ S I(Γ, σ, ψ) = -δ S I(Γ, σ • ρ, ψ). 

u (w) =        u(c) + u(b) -u(d) if w = a, u(d) + u(a) -u(c) if w = b, u(w)
otherwise.

• In the second case,

u (w) =        u(c) + u(d) -u(b) if w = a, u(c) + u(d) -u(a) if w = b, u(w)
otherwise.

• In the third case,

u (w) =        u(c) + u(d) + u(a) -2u(b) if w = a, u(c) + u(d) -u(b) if w = b, u(w) otherwise.
As in the previous proofs, T reverses the orientation, and p g • T = p ρ(g) for any edge g of Γ S .

For a given Γ, set

H 2 (Γ) = H a 2 (Γ) ∪ H b 2 (Γ). For any ∂ S C Γ (ψ) in H 2 (Γ)
, define the involution σ → σ * of Lemma 5.3.2 as follows: put a total order on non-ordered pairs of {1, . . . , 2k}. If there is a v as in Lemma 5.7.7, choose the one minimizing {σ(e), σ(f )}, and set σ * = σ • ρ as in the lemma. Otherwise, if there is an external vertex in S, choose one such that the outgoing edge is of minimal σ, and proceed as in Lemma 5.7.9, setting σ * = σ • ρ. Otherwise, if there are two edges e and f as in the first case of Lemma 5.7.10, choose the pair that minimizes {σ(e), σ(f )}. If not, and if there is a piece as in the second case, choose the one with minimal {σ(e), σ(f )}, and otherwise, there is a piece as in the third case: take the one of minimal {σ(e), σ(f )}. In these last three cases, set σ * = σ • ρ where ρ is the transposition of e and f .

Principal faces

It only remains to study the principal faces, which are the faces such that the ends of an edge e collide, and where this edge is the only edge between its two ends. Then,

∂ e C Γ (ψ) ∼ = C 0 δeΓ × S m(e)
, where m(e) = n -1 if the ends of e are both internal, n + 1 otherwise. BOTT-CATTANEO-ROSSI Choose this diffeomorphism in such a way that the Gauss map reads as the second projection map pr 2 in the product, and orient C 0 δeΓ in such a way that this diffeomorphism preserves the orientation.

Lemma 5.7.11. If σ(e) = 1, and if e is either an internal edge or an external edge with at least one external end, then δ e I (Γ, σ, ψ) = 0.

Proof. For any edge f = e, the map p f factors through pr 1 :

∂ e C Γ (ψ) → C 0 δeΓ . Then ω(Γ, σ, ψ) |∂eC Γ (ψ) = ωe,σ ∧ f ∈E(Γ),f =e pr * 1 (θ f,σ ), where θ f,σ are forms on C 0 δeΓ . But we have deg   f ∈E(Γ),f =e θ f,σ   = dim(∂ S C Γ (ψ)) -(n(e) -1) = dim(C 0 δeΓ ) + 1,
since m(e) = n(e) under the hypotheses of the lemma.

Then, deg

f ∈E(Γ),f =e θ f,σ > dim(C 0 δeΓ ),
and δ e I (Γ, σ, ψ) = 0.

Lemmas 5.7.12 to 5.7.16 are proved after the statement of Lemma 5.7.16.

Lemma 5.7.12. Suppose that Γ looks as in Figure 5.11 around e. In all the remaining cases, σ(e) = 1, since the numbered faces with σ(e) = 1 are all studied by Lemmas 5.7.11 and 5.7.12. BOTT-CATTANEO-ROSSI Lemma 5.7.13. Suppose that Γ looks as in Figure 5.13 around e. Proof. Let us prove Lemma 5.7.13, and explain why it is possible to deal with σ(e) = 1 in Lemma 5.7.12. Lemmas 5.7.14 and 5.7.15 are proved similarly. Lemma 5.7.16 is proved as Lemma 5.7.7 (for example), using the orientation-reversing diffeomorphism that exchanges x and y.

In Lemma 5.7.13, we have ) for some form λ on C 0 δeΓ . This implies that

∂ e C Γ (ψ) = C 0 δeΓ ×S n-1 and ∂ e * C Γ * (ψ) = -C 0 δeΓ ×S
δ e I(Γ, σ, ψ) = C 0 δeΓ λ S n-1 ω α σ(e) = C 0 δeΓ λ = C 0 δeΓ λ S n+1 ω β σ(e) = -δ e * I(Γ * , σ * , ψ),
where the minus sign comes from the identification ∂ e * C Γ * (ψ) = -C 0 δeΓ × S n+1 . This proves Lemma 5.7.13.

In the proof of Lemma 5.7.12, we can similarly prove that ω(Γ, σ, ψ

) = pr * 1 (λ) ∧ pr * 2 (µ e ) and ω(Γ * , σ * , ψ) = pr * 1, * (λ) ∧ pr * 2, * (µ e )
where λ is a form on C 0 δeΓ and where Lemma

µ e =    ω β σ(e) if σ(e) = 1, η n 1 if σ(e) = 1 and (α 1 -α 1 , β 1 -β 1 )
ε(Γ * )/ε(Γ) Ω(C δeΓ ) Ω(C δeΓ * ) 5.7.12 -1 ε(Γ)dY v Ω ε(Γ * )dY v Ω 5.7.13 -1 ε(Γ)dY v Ω f -Ω g + Ω ε(Γ * )dY v Ω f -Ω g + Ω 5.7.14 +1 ε(Γ)dY v dY x Ω f -Ω -ε(Γ * )dY v dY x Ω f -Ω 5.7.15 +1 ε(Γ)dY v dY x Ω f + Ω -ε(Γ * )dY v dY x Ω f + Ω Figure 5
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Proofs of Theorem 5.6.2 and Proposition

5.2.18

A topological pair (X, A) is the data of a topological space X and a subset A ⊂ X.

A map f : (X, A) → (Y, B) between two such pairs is a continuous map f : X → Y such that f (A) ⊂ B.
If (X, A) and (Y, B) are two topological pairs, [(X, A), (Y, B)] denotes the set of homotopy classes of maps from (X, A) to (Y, B). Lemma 5.8.1. Let M • be a parallelizable asymptotic homology R n+2 , and fix a parallelization τ 0 of M • . For any map g :

M • → SO(n + 2) that sends B • ∞ to the BOTT-CATTANEO-ROSSI identity matrix I n+2 , define the map ψ(g) : (x, v) ∈ M • × R n+2 → (x, g(x)(v)) ∈ M • × R n+2 .
The map

[(M • , B • ∞ ), (SO(n + 2), I n+2 )] → Par(M • ) [g] → [τ 0 • ψ(g)]
is well-defined and is a bijection.

Proof. The lemma would be direct with GL + n+2 (R) instead of SO(n + 2), and SO(n + 2) is a deformation retract of GL + n+2 (R). A homology (n + 2)-ball is a compact smooth manifold that has the same integral homology as a point, and whose boundary is the (n + 1)-sphere S n+1 .

We are going to prove the following theorem, which implies Theorem 5.6.2.

Theorem 5.8.2. Let B be a standard (n + 2)-ball inside the interior of a homology (n + 2)-ball B(M ). For any map f : (B, ∂B) → (SO(n + 2), I n+2 ), define the map

I(f ) : (B(M ), ∂B(M )) → (SO(n + 2), I n+2 ) such that I(f )(x) = f (x) if x ∈ B, I n+2 otherwise.
Then, the induced map

[(B, ∂B), (SO(n + 2), I n+2 )] → [(B(M ), ∂B(M )), (SO(n + 2), I n+2 )] [f ] → [I(f )]
is surjective.

In order to prove this theorem, we are going to build a right inverse to this map. To a map f : (B(M ), ∂B(M )) → (SO(n + 2), I n+2 ), we will associate a map g homotopic to f , such that g(M \ B) = {I n+2 }.

Lemma 5.8.3. Let (Y, y 0 ) be a path-connected pointed space with abelian fundamental group, and let B(M ) be a homology (n+2)-ball. Let f : (B(M ), ∂B(M )) → (Y, y 0 ) be a continuous map. Then, f is homotopic to a map g that sends the complement of B to y 0 , among the maps that send ∂B(M ) to y 0 .

Proof. In this proof, "homotopic" will always mean "homotopic among the maps that send ∂B(M ) to y 0 ." Fix a triangulation T of (B(M ), ∂B(M )), and denote by T (k) its k-skeleton. The first projection map p :

B = B(M ) × Y → B(M ) defines a trivial bundle over (B(M ), ∂B(M )). Set f 0 : x ∈ B(M ) → (x, f (x)) ∈ B and f 1 : x ∈ B(M ) → (x, y 0 ) ∈ B.
Since H q (B(M ), ∂B(M ), Z) = 0 for any 0 ≤ q ≤ n + 1, the groups BOTT-CATTANEO-ROSSI H q (B(M ), ∂B(M ), π q (Y, y 0 )) are also trivial. Obstruction theory defined by Steenrod in [START_REF] Steenrod | The Topology of Fibre Bundles[END_REF], or more precisely in Theorem 34.10, therefore guarantees the existence of a homotopy between f 0 and a map f 2 such that (f 2 ) |T (n+1) = (f 1 ) |T (n+1) among maps from B(M ) to B that coincide with f 1 on ∂B(M ). This implies that f is homotopic to a map g that maps T (n+1) to y 0 .

It remains to prove that g is homotopic to a map that sends the complement of B to y 0 . Let U be a regular neighborhood of T (n+1) . Up to a homotopy, assume that g sends U to y 0 . There exists a ball V such that U ∪ V = B(M ) and such that V contains B. Then, g maps the complement of V to y 0 . Since V is a ball, and B a ball inside V , g |V is homotopic to a map that sends V \ B to y 0 , among the maps that send ∂V to y 0 . This implies Lemma 5.8.3.

Then, any element of [(B(M ), ∂B(M )), (SO(n + 2), I n+2 )] can be represented by a map f : M • → SO(n + 2), such that f (B(M ) \ B) = {I n+2 }. This proves Theorem 5.8.2, and therefore Theorem 5.6.2.

Proof of Proposition 5.2.18. We are going to prove that the connected sum of any asymptotic homology R n+2 with itself is parallelizable in the sense of Definition 5.2.1.

As in the previous proof, obstruction theory shows that for any ball B inside the interior of B(M ), there exists a parallelization on B(M ) \ B that coincides with the standard one on

∂B(M ) = ∂B • ∞ ⊂ R n+2
, and that the obstruction to extending it to a parallelization as in Definition 5.2.1 lies in the cohomology group

H n+2 (B(M ), ∂B(M ), π n+1 (SO(n + 2), I n+2 )) ∼ = π n+1 (SO(n + 2), I n+2 ).
This group is known (see for example [START_REF] Kervaire | Some non stable homotopy groups of lie groups[END_REF]) and, for any n ≥ 1:

• If n is even, then π n+1 (SO(n + 2), I n+2 ) is infinite.

• The groups π 2 (SO(3), I 3 ) and π 6 (SO(7), I 7 ) are trivial.

• If n + 2 ≡ 1 mod 8, then π n+1 (SO(n + 2), I n+2 ) = (Z/2Z) 2 .
• In any other case, π n+1 (SO(n + 2),

I n+2 ) = Z/2Z.
This proves Proposition 5.2.18 and yields the following remark.

Remark 5.8.4. Any asymptotic homology R 3 or R 7 is parallelizable in the sense of Definition 5.2.1.

Proof of Theorem 5.2.17: additivity of Z k

Recall that G is the Gauss map C 2 (R n ) → S n-1 . In this section, G ext denotes the Gauss map C 2 (R n+2 ) → S n+1 . BOTT-CATTANEO-ROSSI

The proof in this section is an adaptation to the higher dimensional case of the method developed in [Les20, Sections 16.1-16.2]. Important differences appear in Section 5.9.1.

Definition of extended BCR diagrams

Fix an integer k ≥ 2, and let ψ triv : x ∈ R n → (0, 0, x) ∈ R n+2 be the trivial knot.

For any (Γ, σ) ∈ G k , and any S 1 S 2 V (Γ), define the graph Γ S 1 ,S 2 as follows: remove the edges of Γ between two vertices of S 1 or two vertices of S 2 . Next, remove the isolated vertices. Eventually blow up the obtained graph at each vertex of S 1 S 2 , by replacing such a vertex with a univalent vertex for each adjacent half-edge on the corresponding half-edge. Note that the corresponding half-edges do not meet anymore in Γ S 1 ,S 2 . Let S i denote the set of all the vertices in Γ S 1 ,S 2 coming from a (possibly blown-up) vertex of S i in Γ. The graph Γ S 1 ,S 2 is endowed with a partition S 1 S 2 (V (Γ) \ (S 1 S 2 )), and its edges are the edges of Γ that do not have both ends in S 1 or both ends in S 2 . Since any edge of Γ S 1 ,S 2 comes from an edge of Γ, the numbering σ induces a map σ S 1 ,S 2 : E(Γ S 1 ,S 2 ) → {1, . . . , 2k}. Set Ω i = (0, 0, . . . , 0, (-1) i 2 ) as in Section 5.2.9. One can associate the configuration space

C 0 Γ S 1 ,S 2 (ψ triv ) =            c : V (Γ S 1 ,S 2 ) → R n+2 c |V (Γ S 1 ,S 2 )\(S 1 S 2 ) is injective and does not take the values Ω 1 or Ω 2 , c(V i (Γ) \ ((S 1 S 2 ) ∩ V i (Γ))) ⊂ ψ triv (R n ), c(S 1 ) = {Ω 1 }, c(S 2 ) = {Ω 2 }           
to the obtained graph Γ S 1 ,S 2 . As before, c i : R n → R n+2 denotes the map such that c |V i (Γ S 1 ,S 2 ) = ψ triv • c i . This space admits a compactification C Γ S 1 ,S 2 (ψ triv ) as in Section 5.2.4 such that for any e = (v, w) ∈ E(Γ S 1 ,S 2 ) the map

G 0 e : c ∈ C 0 Γ S 1 ,S 2 (ψ triv ) →    c i (w)-c i (v) ||c i (w)-c i (v)|| if e is internal, c(w)-c(v) ||c(w)-c(v)|| if e is external,
∈ S n(e) BOTT-CATTANEO-ROSSI extends to a smooth map G e : C Γ S 1 ,S 2 (ψ triv ) → S n(e) . For simplicity, we will simply denote this compact space by C Γ S 1 ,S 2 in the following.

Lemma 5.9.1. For any (Γ, σ) ∈ G k and any

S 1 S 2 V (Γ), dim(C Γ S 1 ,S 2 ) ≤ e∈E(Γ S 1 ,S 2 )
n(e).

Furthermore, this inequality is an equality if and only if S 1 = S 2 = ∅.

Proof. We use the same method as in the proof of Lemmas 5.2.9 and 5.7.2. Split any edge of Γ S 1 ,S 2 into two halves e -and e + , and assign an integer d(e ± ) to each half-edge e ± as follows:

• if e ± is adjacent to a vertex of S 1 S 2 , d(e ± ) = 0,

• otherwise, d(e ± ) is the integer d(e ± ) of Lemma 5.2.9.

Note that for any vertex v,

e ± adjacent to v d(e ± ) =        0 if v ∈ S 1 ∪ S 2 , n if v is internal and v ∈ S 1 ∪ S 2 , n + 2 if v is external and v ∈ S 1 ∪ S 2 . This implies that e∈E(Γ S 1 ,S 2 ) ( d(e + ) + d(e -)) = dim(C Γ S 1 ,S 2
). This construction also ensures that d(e -) + d(e + ) ≤ n(e) for any edge e = (v, w), with equality if and only if (v, w) ∈ (V (Γ S 1 ,S 2 ) \ (S 1 S 2 )) 2 or if e is an internal edge coming from V (Γ S 1 ,S 2 )\(S 1 S 2 ) and going to S 1 S 2 . This proves the inequality of the lemma.

Let us prove that the inequality is strict when S 1 S 2 = ∅. In this case, S 1 S 2 = ∅, so there exists an edge e with one end in S 1 S 2 and the other one in V (Γ S 1 ,S 2 ) \ (S 1 S 2 ). If there exists such an edge that is not an internal edge going from V (Γ S 1 ,S 2 ) \ (S 1 S 2 ) to S 1 S 2 , it satisfies d(e -) + d(e + ) < n(e), and the inequality of the lemma is strict. But if there is an internal edge from V (Γ S 1 ,S 2 ) \ (S 1 S 2 ) to S 1 S 2 , neither S 1 S 2 nor V (Γ) \ (S 1 S 2 ) contains the whole cycle of Γ. This implies that there is at least one edge from S 1 S 2 to V (Γ S 1 ,S 2 ) \ (S 1 S 2 ), and concludes.

If S 1 S 2 = ∅, the inequality of the lemma is an equality, since Γ ∅,∅ = Γ.

Corollary 5.9.2. For any (Γ, S 1 , S 2 ) as in Lemma 5.9.1 and any numbering σ of Γ, define the maps

G Γ S 1 ,S 2 : C Γ S 1 ,S 2 → e∈E(Γ S 1 ,S 2 ) S n(e) c → (G e (c)) e∈E(Γ S 1 ,S 2 ) BOTT-CATTANEO-ROSSI and π Γ S 1 ,S 2 ,σ : (S n-1 × S n+1 ) 2k → e∈E(Γ S 1 ,S 2 ) S n(e) (X n-1 i , X n+1 i ) 1≤i≤2k → (X n(e)
σ(e) ) e∈E(Γ S 1 ,S 2 ) For any maps ε, ε : {1, . . . , 2k} → {±1}, set

T ε,ε : (S n-1 × S n+1 ) 2k → (S n-1 × S n+1 ) 2k (X n-1 i , X n+1 i ) 1≤i≤2k → (ε(i)X n-1 i , ε (i)X n+1 i ) 1≤i≤2k
.

For any (Γ, σ, S 1 , S 2 , ε, ε ), the set

T ε,ε -1 π Γ S 1 ,S 2 ,σ -1 G Γ S 1 ,S 2 C Γ S 1 ,S 2 is a closed subset with empty interior of (S n-1 × S n+1 ) 2k . Then, O k = Γ,S 1 ,S 2 ,σ,ε,ε (S n-1 × S n+1 ) 2k \ T ε,ε -1 π Γ S 1 ,S 2 ,σ -1 G Γ S 1 ,S 2 C Γ S 1 ,S 2 is an open dense set of (S n-1 × S n+1 ) 2k . Proof. Since C Γ S 1 ,S 2 is compact, G Γ S 1 ,S 2 C Γ S 1 ,S 2 is compact and therefore closed.
Let us prove that its interior is empty.

If S 1 S 2 = ∅, Lemma 5.9.1 and the Morse-Sard theorem ensure that the image of G Γ S 1 ,S 2 has empty interior, since the target of this map has greater dimension than its source.

If

S 1 S 2 = ∅, G Γ ∅,∅ is a map between two manifolds of same dimension. Let R n act by translations along {0} 2 × R n ⊂ R n+2 on C Γ ∅,∅ (ψ triv ). The map G Γ ∅,∅
factors through the quotient map of this action. Using the Morse-Sard theorem, this again implies that the image of G Γ ∅,∅ has empty interior.

Then, G Γ S 1 ,S 2 C Γ S 1 ,S 2 is always closed with empty interior. This implies that

π Γ S 1 ,S 2 ,σ -1 G Γ S 1 ,S 2 C Γ S 1
,S 2 is also closed with empty interior since π Γ S 1 ,S 2 ,σ is an open map. Since T ε,ε is a diffeomorphism, the first assertion of the lemma follows. Then, O k is a finite intersection of open dense sets in the complete metric space (S n-1 × S n+1 ) 2k . The lemma follows from the Baire category theorem. Lemma 5.9.2, which is used in Section 5.9.3 to prove Theorem 5.2.17, also yields a proof of the following result.

Corollary 5.9.3. For the trivial knot ψ triv , Z k (ψ triv ) = 0.

Proof. Because of Corollary 5.9.2, O k is non empty. Fix (X n-1 i , X n+1 i ) 1≤i≤2k ∈ O k . Compute Z k with the propagating chains A i = 1 2 G -1 ({-X n-1 i , +X n-1 i }) and B i = 1 2 G -1 ext ({-X n+1 i , +X n+1 i }).
The definition of O k implies that the intersection numbers in Theorem 5.2.13 are all zero.

An extension of the Gauss map

Let (M •

1 , τ 1 ) and (M • 2 , τ 2 ) be two parallelized asymptotic homology R n+2 . Fix two knots ψ 1 : R n → M • 1 and ψ 2 : R n → M • 2 , and an integer k ≥ 2. Fix η ∈ (0, 1 2 ), and let B • ∞,η be the complement in R n+2 of the open balls B1 η and B2 η of respective centers Ω 1 = (0, . . . , 0, -1 2 ) and Ω 2 = (0, . . . , 0, 1 2 ) and radius η.

Glue B • ∞,η and the two closed balls B(M 1 ) and B(M 2 ) along ∂B 1 η and ∂B 2 η . In this setting, B η (M 1 ) and B η (M 2 ) denote the images of B(M 1 ) and B(M 2 ), since they "replace" the balls B 1 η and B 2 η . The obtained manifold

M • identifies with M • 1 M • 2 and comes with a decomposition B • ∞,η ∪ B η (M 1 ) ∪ B η (M 2
) and a parallelization τ naturally induced by τ 1 , τ 2 , and the standard parallelization of

B • ∞,η ⊂ R n+2 up to homotopy. For η < r < 1 2 , B r (M i ) denotes the union of B η (M i ) with {x ∈ B • ∞,η | d(x, Ω i ) ≤ r}.
Definition 5.9.4. Let χ π : [0, 3η] → R + be a smooth increasing map such that

χ -1 π ({0}) = [0, η] and χ π ([2η, 3η]) = {1}. Let π : M • 1 M • 2 → R n+2 be the smooth map such that, for any x ∈ M • 1 M • 2 , π(x) =                x if x ∈ B • ∞,2η , Ω 1 if x ∈ B η (M 1 ), Ω 2 if x ∈ B η (M 2 ), Ω 1 + χ π (||x -Ω 1 ||).(x -Ω 1 ) if x ∈ B 2η (M 1 ) \ B η (M 1 ), Ω 2 + χ π (||x -Ω 2 ||).(x -Ω 2 ) if x ∈ B 2η (M 2 ) \ B η (M 2 ). Set C 2 (B 2η (M i )) = p -1 b (B 2η (M i ) 2 ), and set D(G τ,η ) = (C 2 (M • )\(C 2 (B 2η (M 1 ))∪ C 2 (B 2η (M 2 )))) ∪ U M • .
Define the analogue G τ,η : D(G τ,η ) → S n+1 of the Gauss map as the map such that for any c ∈ D(G τ,η ),

G τ,η (c) = π(y)-π(x) ||π(y)-π(x)|| if c = (x, y) ∈ C 2 (B 2η (M 1 )) ∪ C 2 (B 2η (M 2 )) ∪ U M • , G τ (c) if c ∈ U M • . Note that this map is such that (G τ,η ) |C 2 (B ∞,2η ) = (G ext ) |C 2 (B ∞,2η ) and (G τ,η ) |∂C 2 (M • ) = G τ .

Proof of the additivity

Define the distance on (S n-1 × S n+1 ) 2k given by the maximum of the Euclidean distances on each spherical factor. For and1 4 > δ > 0 such that the ball of radius 9δ and center (X n-1 i , X n+1 i ) in (S n-1 ×S n+1 ) 2k is contained in O k . Choose η > 0 in Section 5.9.2 such that η < 1 8 ( δ 2 ) 2k . Proposition 5.9.5. For any 1 ≤ i ≤ 2k, fix a closed antisymmetric (n + 1)-form ω β i on S n+1 with total mass one, and with support contained in the union of the two balls of center ±X n+1 i and radius δ. For any 1 ≤ i ≤ 2k, there exists an external propagating form β i such that

d = n ± 1, set S d h = {X ∈ S d | X d+1 2 < 1 2 }. Let O k denote the intersection O k ∩ (S n-1 h × S n+1 h ) 2k . Corollary 5.9.2 ensures that O k is a non-empty open set. BOTT-CATTANEO-ROSSI Fix (X n-1 i , X n+1 i ) ∈ O k ,
(β i ) |D(Gτ,η) = G * τ,η (ω β i ). Furthermore, β i |B 1 4 (M 1 )×B 1 4 (M 2 ) = 0 and β i |B 1 4 (M 2 )×B 1 4 (M 1 ) = 0.
For any 1 ≤ i ≤ 2k, fix a closed antisymmetric (n -1)-form ω α i on S n-1 with total mass one, with support contained in the union of the two balls of center ±X n-1 i and radius δ, and set

α i = G * (ω α i ). Then, α i|ψ -1 (B 1 4 (M 1 ))×ψ -1 (B 1 4 (M 2 )) = 0 and α i|ψ -1 (B 1 4 (M 2 ))×ψ -1 (B 1 4 (M 1 )) = 0, where ψ = ψ 1 ψ 2 .
Proof. Let us first construct the forms β i . First note that the condition on the restriction is compatible with the property of being a propagating form since

(G τ,η ) |∂C 2 (M • ) = G τ . It remains to prove that the closed form G * τ,η (ω β i ) on D(G τ,η ) extends to a closed form on C 2 (M • ). It suffices to prove that the restrictions to ∂C 2 (B 2η (M 1 )) and to ∂C 2 (B 2η (M 2 )) extend to C 2 (B 2η (M 1 )) and to C 2 (B 2η (M 2 )) as closed (n + 1)-forms. Note that C 2 (B 2η (M i )) is diffeomorphic to C 2 (M • i ). Then, Lemma 5.3.3 yields H n+2 (C 2 (B 2η (M i )), ∂C 2 (B 2η (M 2 )
)) = 0 and implies the existence of the form β i . Since the support of ω β i is contained in S n+1 h , the restriction

β i |B 1 4 (M 1 )×B 1 4
(M 2 ) = 0 vanishes. The same argument proves the similar assertion about α i .

We are going to prove the following proposition, which implies Theorem 5.2.17. Proposition 5.9.6. Fix propagating forms (α i ) 1≤i≤2k and (β i ) 1≤i≤2k as in Proposition 5.9.5, and set F = (α i , β i ) 1≤i≤2k . Then, for any (Γ, σ) ∈ G k ,

I F (Γ, σ, ψ 1 ψ 2 ) = I F (Γ, σ, ψ 1 ) + I F (Γ, σ, ψ 2 ). Proof. Fix (Γ, σ) ∈ G k . For 1 ≤ j ≤ 2k + 1, set r j = 1 4 ( δ 2 ) 2k+1-j , and note that r 1 + • • • + r j < δ 2-δ r j+1 < δr j+1 and that r 2k+1 = 1 4 . A coloring is a map χ : V (Γ) → {(1, 1), . . . , (1, 2k)}∪{(2, 1), . . . , (2, 2k)}∪{∞}.
For a given coloring χ, define U (χ) as the set of configurations in C Γ (ψ 1 ψ 2 ) such that:

• If χ(v) = (1, 1), then c(v) is in B2r 1 (M 1 ), and if χ(v) = (2, 1), c(v) is in B2r 1 (M 2 ). • If χ(v) ∈ {(1, 1), (2, 1)}, then c(v) is neither in B r 1 (M 1 ) nor in B r 1 (M 2 ). In particular, since 2η < r 1 , c(v) ∈ B • ∞,r 1 ⊂ B • ∞,2η
, and it makes sense to use the Euclidean norm of R n+2 for such vertices.

• If χ(v) = (i, 2) (for some i ∈ {1, 2}), then c(v) ∈ B2r 2 (M i ), and there exists a vertex w, adjacent12 to v, such that χ(w) = (i, 1).

• If χ(v) = (i, j + 1) for some 2 ≤ j ≤ 2k -1, then there exists a vertex w adjacent to v, such that χ(w) = (i, j) and ||c(v) -c(w)|| < 2r j+1 .

• If χ(v) = ∞, and if there exists a vertex w adjacent to v such that χ(w) = (i, 1), then ||c(v) -Ω i || > r 2 .

• If χ(v) = ∞, and if there exists a vertex w adjacent to v such that χ(w) = (i, j) with j > 1, then ||c(v) -c(w)|| > r j+1 .

Note that if c ∈ U (χ), and if χ(v) = (i, j), c(v) ∈ B2r 1 +...+2r j (M i ) ⊂ B2δr j+1 (M i ). In the following, if e is an edge which connects two vertices v and w, such that χ(v), χ(w) ∈ {(1, 1), (1, 2)}, the distance ||c(v) -c(w)|| is called the length of e. Lemma 5.9.7. The family (U (χ)) χcoloring defines an open cover of C Γ (ψ 1 ψ 2 ).

Proof. The fact that the U (χ) are open subsets is immediate. Let us prove that any configuration is in at least one of these sets. Fix a configuration c.

First color all the vertices v such that c(v) ∈ B2r 1 (M i ) with χ(v) = (i, 1). Next, for i ∈ {1, 2}, color with χ(w) = (i, 2) the vertices w adjacent to those of color (i, 1) such that c(w) ∈ B2r 2 (M 2 ).

Next, for any 2 ≤ j ≤ 2k -1, define the vertices of color (i, j + 1) inductively: when the vertices of color (i, j) are defined, color with (i, j + 1) the vertices v which are not already colored, and such that there exists an edge of length less than 2r j+1 between v and a vertex w colored by (i, j).

With this method, no vertex can be simultaneously colored by (1, j) and (2, j ). Indeed, the construction above ensures that any vertex colored by (i, j)

is in B 2δr j+1 (M i ). Since 2δr j+1 = δ 1 2 ( δ 2 ) 2k-j ≤ 1 2 δ < 1 4 , we have B 2δr j+1 (M 1 ) ∩ B 2δr j +1 (M 2 ) = ∅, which concludes.
Setting χ(v) = ∞ for all the vertices that remain still uncolored after this induction gives a coloring such that c ∈ U (χ).

We are going to use the following two lemmas in the proof of Theorem 5.2.17. Lemma 5.9.8. If χ is a coloring such that there exists an edge between a vertex colored by some (1, j) and a vertex colored by some (2, j ), then ω F (Γ, σ, ψ 1 ψ 2 ) |U (χ) = 0.

Lemma 5.9.9. If χ is a coloring such that at least one vertex is colored by ∞, then ω F (Γ, σ, ψ 1 ψ 2 ) |U (χ) = 0.

Proof of Proposition 5.9.6 assuming Lemmas 5.9.8 and 5.9.9. First note that these two lemmas imply that

I F (Γ, σ, ψ 1 ψ 2 ) = U ω F (Γ, σ, ψ 1 ψ 2 )
where U is the union of all the U (χ) where χ is a coloring such that no vertex is colored by ∞, and no edge connects two vertices colored by some (1, j) and (2, j ). By construction, since Γ is connected, such a coloring χ takes only values of the form (1, j) or only values of the form (2, j). Let U 1 be the union of the U (χ) such that χ takes only values of the form (1, j) and similarly define U 2 , so that U = U 1 U 2 . This implies that

I F (Γ, σ, ψ 1 ψ 2 ) = U 1 ω F (Γ, σ, ψ 1 ψ 2 ) + U 2 ω F (Γ, σ, ψ 1 ψ 2 ).
Note that the form (ω F (Γ, σ, ψ 1 ψ 2 )) |U i does not depend on the knot ψ 3-i , since U i is composed of configurations which send all vertices in B 1 2 (M i ). This implies that Z k (ψ 1 ψ 2 ) = F 1 (ψ 1 ) + F 2 (ψ 2 ) for some functions F 1 and F 2 . For the trivial knot ψ triv , Corollary 5.9.3 directly implies that F 1 (ψ triv ) + F 2 (ψ triv ) = 0. Lemma 5.2.16 implies that:

Z k (ψ 1 ) = Z k (ψ 1 ψ triv ) = F 1 (ψ 1 ) + F 2 (ψ triv ) Z k (ψ 2 ) = Z k (ψ triv ψ 2 ) = F 1 (ψ triv ) + F 2 (ψ 2 )
The sum of these two equalities gives Z k (ψ 1 ) + Z k (ψ 2 ) = F 1 (ψ 1 ) + F 2 (ψ 2 ) = Z k (ψ 1 ψ 2 ). This concludes the proof of Proposition 5.9.6, hence of Theorem 5.2.17.

Proof of Lemma 5.9.8. Lemma 5.9.8 directly follows from Proposition 5.9.5, since it implies that if c is in the support of ω F (Γ, σ, ψ 1 ψ 2 ), no edge of Γ can connect a vertex of B1 4 (M 1 ) and a vertex of B1 4 (M 2 ).

Proof of Lemma 5.9.9. Fix a coloring χ that maps at least one vertex to ∞. For j ∈ {1, 2}, let S j be the set of the vertices of Γ colored by a color of {j} × {1, . . . , 2k}.

Take c ∈ U (χ) and suppose that c is in the support of ω F (Γ, σ, ψ 1 ψ 2 ). For any external edge e = (v, w) of Γ S 1 ,S 2 , since p e (c) ∈ D(G τ,η ), there exists a sign ε σ (e) such that ||G τ,η (c(v), c(w))-ε σ (e)X n+1 σ(e) || < δ, and for any internal edge e = (v, w), there exists a sign ε σ (e) such that ||G(c i (v), c i (w)) -ε σ (e)X n-1 σ(e) || < δ. Lemma 5.9.10. Endow the spheres S n(e) with the usual distance coming from the Euclidean norms || • || on R n(e)+1 .

Let χ be a coloring that maps at least one vertex to ∞, and let c ∈ U (χ). Define a configuration c 0 of C Γ S 1 ,S 2 (ψ triv ) from c as follows:

• If v is a vertex of S 1 in Γ S 1 ,S 2 , c 0 (v) = Ω 1 = (0, 0, . . . , -1 2 ). • If v is a vertex of S 2 in Γ S 1 ,S 2 , c 0 (v) = Ω 2 = (0, 0, . . . , 1 2 ). • If v is a vertex of V (Γ S 1 ,S 2 ) \ (S 1 S 2 ) = V (Γ) \ (S 1 ∪ S 2 ), c 0 (v) = c(v).
Then, d(G e (c 0 ), ε σ (e)X n(e) σ(e) ) < 9δ for any edge e of Γ S 1 ,S 2 . Proof. The edges of Γ S 1 ,S 2 are of four types:

• Those joining two vertices v and w of V (Γ S 1 ,S 2 ) \ (S 1 S 2 ).

• Those joining one vertex v of V (Γ S 1 ,S 2 ) \ (S 1 S 2 ) and one vertex w of S 1 .

• Those joining one vertex v of V (Γ S 1 ,S 2 ) \ (S 1 S 2 ) and one vertex w of S 2 .

• Those joining one vertex v of S 1 and one vertex w of S 2 .

We have to check that in any of these four cases, the direction of the edge e between c 0 (v) and c 0 (w) is at distance less than 9δ from ε σ (e)X n(e) σ(e) . We prove this for external edges, the case of internal edges can be proved with the same method. Assume that e goes from v to w (the proof is similar in the other case). In this case, the construction of G e implies that the direction to look at is

G ext (c 0 (v), c 0 (w)). Since c is in the support of ω F (Γ, σ, ψ 1 ψ 2 ), ||G τ,η (c(v), c(w)) -ε σ (e)X n+1
σ(e) || =

π(c(w)) -π(c(v)) ||π(c(w)) -π(c(v))||

-ε σ (e)X n+1 σ(e) < δ.

Note the following easy lemma.

Lemma 5.9.11. For any a and h in R n+2 such that a and a + h are non zero vectors:

a ||a|| - a + h ||a + h|| ≤ 2||h|| ||a|| .
Now, let us study the previous four cases:

• In the first case, c(v) and c(w) are in B • ∞,2η , then the direction of the edge is G ext (c 0 (v), c 0 (w)) = G ext (c(v), c(w)) = G τ,η (c(v), c(w)). Therefore, it is at distance less than δ from ε σ (e)X n+1
σ(e) .

• In the second case, w comes from a vertex w 0 of Γ with χ(w 0 ) = (1, j), so c 0 (w) = Ω 1 and c 0 (v) = c(v). First suppose j = 1. This implies that BOTT-CATTANEO-ROSSI

||π(c(w)) -Ω 1 || < 2r 1 . Since χ(v) = ∞, we have ||Ω 1 -c(v)|| > r 2 .
Then, using the previous lemma and triangle inequalities:

c 0 (v) -c 0 (w) ||c 0 (v) -c 0 (w)|| -ε σ (e)X n+1 σ(e) = c(v) -Ω 1 ||c(v) -Ω 1 || -ε σ (e)X n+1 σ(e) ≤ c(v) -π(c(w)) ||c(v) -π(c(w))|| -ε σ (e)X n+1 σ(e) + c(v) -Ω 1 ||c(v) -Ω 1 || - c(v) -π(c(w)) ||c(v) -π(c(w))|| < δ + 2 ||Ω 1 -π(c(w))|| ||Ω 1 -c(v)|| ≤ δ + 2 2r 1 r 2 = 3δ < 9δ Suppose now j > 1. Then ||Ω 1 -c(w)|| < 2δr j+1 , and π(c(w)) = c(w). Since χ(v) = ∞, we have ||c(v) -c(w)|| > r j+1 .
As in the previous computation, and since δ < 1 4 , we get

c 0 (v) -c 0 (w) ||c 0 (v) -c 0 (w)|| -ε σ (e)X n+1 σ(e) ≤ c(v) -c(w) ||c(v) -c(w)|| -ε σ (e)X n+1 σ(e) + c 0 (v) -c 0 (w) ||c 0 (v) -c 0 (w)|| - c(v) -c(w) ||c(v) -c(w)|| < δ + 2 ||Ω 1 -c(w)|| ||c(w) -c(v)|| ≤ δ + 2 2δr j+1 r j+1 < 9δ.
• The third case, can be studied exactly like the second one.

• In the last case, note that c(v

) ∈ B 2δr 2k+1 (M 1 ) = B δ 2 (M 1 ) and c(w) ∈ B δ 2 (M 2 ). The direction we look at is G ext (c 0 (v), c 0 (w)) = G ext (Ω 1 , Ω 2 ) = (0, . . . , 0, 1). But, we have π(c(v))-π(c(w)) ||π(c(v))-π(c(w))|| -ε σ (e)X n+1
σ(e) < δ. The previous method yields BOTT-CATTANEO-ROSSI

c 0 (v) -c 0 (w) ||c 0 (v) -c 0 (w)|| -ε σ (e)X n+1 σ(e) ≤ π(c(v)) -π(c(w)) ||π(c(v)) -π(c(w))|| -ε σ (e)X n+1 σ(e) + Ω 1 -Ω 2 ||Ω 1 -Ω 2 || - π(c(v)) -π(c(w)) ||π(c(v)) -π(c(w))|| < δ + Ω 1 -Ω 2 ||Ω 1 -Ω 2 || - π(c(v)) -Ω 2 ||π(c(v)) -Ω 2 || + π(c(v)) -Ω 2 ||π(c(v)) -Ω 2 || - π(c(v)) -π(c(w)) ||π(c(v)) -π(c(w))|| ≤ δ + 2 ||π(c(v)) -Ω 1 || ||Ω 1 -Ω 2 || + 2 ||π(c(w)) -Ω 2 || ||π(c(v)) -Ω 2 || ≤ δ + 2 δ 2 1 + 2 δ 2 1 -δ 2 ≤ 1 + 1 + 8 7 δ < 9δ.
This concludes the proof of Lemma 5.9.10.

For any 1 ≤ i ≤ 2k, set

ε(i) = ε (i) =    ε σ (σ -1 (i)) if e ∈ σ S 1 ,S 2 (E(Γ S 1 ,S 2 )), 1 otherwise. 
For any 1 ≤ i ≤ 2k, also set

Y n-1 i =    G σ(e) (c 0 ) if i ∈ σ(E i (Γ S 1 ,S 2 )), X n-1 i otherwise,
and

Y n+1 i =    G σ(e) (c 0 ) if i ∈ σ(E e (Γ S 1 ,S 2 )), X n+1 i otherwise.
Lemma 5.9.10 implies that

Y = T ε,ε ((Y n-1 i , Y n+1 i ) 1≤i≤2k
) is at distance less than 9δ from (X n-1 i , X n+1 i ) 1≤i≤2k . So it belongs to O k and then to the set O k of Corollary 5.9.2, which is a contradiction since π Γ S 1 ,S 2 ,σ (T ε,ε (Y )) = G Γ S 1 ,S 2 (c 0 ). This concludes the proof of Lemma 5.9.9.

Chapitre 6

La torsion de Reidemeister des noeuds longs comme combinaison d'intégrales sur des espaces de configurations

Ce chapitre reproduit la prépublication "The Reidemeister torsion of high-dimensional long knots from configuration space integrals" [START_REF] Leturcq | The Reidemeister torsion of high-dimensional long knots from configuration space integrals[END_REF].1 Les résultats sont énoncés en dimension n ≥ 3, mais tous les arguments sont valables pour n = 1, sauf dans la démonstration du lemme 6.2.23, dont le résultat est alors l'objet du lemme 4.3.3.

Abstract:

In a previous article, we gave a more flexible definition of an invariant (Z k ) k∈N\{0,1} of Bott, Cattaneo, and Rossi, which is a combination of integrals over configuration spaces for long knots R n → R n+2 , for odd n ≥ 3. This extended the definition of the invariant (Z k ) k∈N\{0,1} to all long knots in asymptotic homology R n+2 , for odd n ≥ 3. In this article, we obtain a formula for Z k in terms of linking numbers of some cycles of a surface bounded by the knot and we express the Reidemeister torsion of the knot complement in terms of (Z k ) k∈N\{0,1} , when n ≡ 1 mod 4.

Introduction

In [START_REF] Bott | Configuration spaces and imbedding invariants[END_REF], Bott introduced an isotopy invariant Z 2 of knots S n → R n+2 in odd dimensional Euclidean spaces. The invariant reads as a linear combination of COMPTAGES DE DIAGRAMMES configuration space integrals associated to graphs by integrating some forms associated to the edges, which represent directions in R n or in R n+2 . The involved graphs have four vertices of two kinds, and four edges of two kinds.

This invariant was generalized to a whole family (Z k ) k∈N\{0,1} of isotopy invariants of long knots R n → R n+2 , for odd n ≥ 3, by Cattaneo and Rossi in [START_REF] Cattaneo | Wilson surfaces and higher dimensional knot invariants[END_REF] and by Rossi in his thesis [START_REF] Rossi | Invariants of Higher-Dimensional Knots and Topological Quantum Field Theories[END_REF]. The invariant Z k involves graphs with 2k vertices of two kinds and 2k edges of two kinds.

In [Wat07, Corollary 4.9], Watanabe proved that these so-called Bott-Cattaneo-Rossi (BCR for short) invariants are finite type invariants with respect to some operations on long ribbon knots. His study allowed him to prove that the invariants Z k are not trivial for even k ≥ 2, and that they are related to the Alexander polynomial for long ribbon knots. He obtained an exact formula for Z 2 in terms of the Alexander polynomial for any long ribbon knot.

In [START_REF] Leturcq | Generalized Bott-Cattaneo-Rossi invariants of highdimensional knots[END_REF], we introduced more flexible definitions for the invariants Z k . Our definitions allowed us to generalize these invariants in the larger setting of long knots inside asymptotic homology R n+2 when n is odd ≥ 3.

In this article, we obtain a formula for the generalized Z k invariant in terms of linking numbers of some cycles of a surface bounded by the knot, which holds at least when n ≡ 1 mod 4. Theorem 6.2.24 gives this formula for the rectifiable knots of Definition 6.2.20, which are particular long knots. More generally, Corollary 6.2.25 extends this formula to virtually rectifiable knots, which are the long knots ψ such that the connected sum ψ • • • ψ of r copies of ψ is rectifiable for some r ≥ 1. Section 6.5 shows that the connected sum of any long knot with three copies of itself is rectifiable when n ≡ 1 mod 4.

In Theorem 6.2.29, we use Corollary 6.2.25 to express the Reidemeister torsion T ψ (t), for virtually rectifiable knots, as the following combination of integrals over configuration spaces:

T ψ (e h ) = exp   - k≥2 Z k (ψ)h k   .
This formula also determines the invariant Z k as an explicit function of the Alexander polynomials of the knot. To our knowledge, our induced explicit determination of (Z k ) k≥2 is the first complete computation of an invariant defined from configuration space integrals in degree higher than five. Our formula for (Z k ) k≥2 extends and refines the forementioned result of Watanabe [Wat07, Corollary 4.9] for virtually rectifiable knots.

In Section 6.2, we first give a self-contained definition of the invariant Z k of [Let19] using intersection numbers of preimages of propagators, where propagators are special chains in the two-point configuration space of the ambient asymptotic homology R n+2 , which are presented in Definition 6.2.9. We state all the foremen-tioned theorems in this section. Section 6.3 describes how to obtain the formula for Z k in terms of linking numbers, for rectifiable knots, using some suitable propagators. The details of the construction of such propagators for any rectifiable knot are presented in Section 6.4. In Section 6.6, we derive the formula of Theorem 6.2.29 for the Reidemeister torsion from Corollary 6.2.25.

I thank my advisor Christine Lescop for her help with the redaction of this article.

Definition of (Z k ) k≥2 and main statements 6.2.1 Parallelized asymptotic homology R n+2 and long knots

In this article, n is an odd integer ≥ 3, and M is an (n + 2)-dimensional closed smooth oriented manifold, such that H * (M ; Z) = H * (S n+2 ; Z). Such a manifold is called a homology (n+2)-sphere. In such a homology sphere, choose a point ∞ and a closed ball B ∞ (M ) around this point. Fix an identification of this ball

B ∞ (M ) with the complement B ∞ of the open unit ball of R n+2 in S n+2 = R n+2 ∪ {∞}, such that this smooth identification extends from a neighborhood of B ∞ (M ) to a neighborhood of B ∞ in S n+2 . Let M • denote the manifold M \{∞} and let B • ∞ (M ) denote the punctured ball B ∞ (M ) \ {∞}, which is identified with the complement B • ∞ of the open unit ball in R n+2 . Let B(M ) denote the closure of M • \ B • ∞ , so that the manifold M • can be seen as M • = B(M ) ∪ B • ∞ , where B • ∞ ⊂ R n+2 . The manifold M • endowed with the decomposition M • = B(M ) ∪ B • ∞ is called an asymptotic homology R n+2 .
Long knots of such a space M • are smooth embeddings ψ : R n → M • such that ψ(x) = (0, 0, x) ∈ B • ∞ when ||x|| ≥ 1, and ψ(x) ∈ B(M ) when ||x|| ≤ 1. Definition 6.2.1. A parallelization of an asymptotic homology R n+2 is a bundle isomorphism τ :

M • × R n+2 → T M • that coincides with the canonical trivializa- tion τ 0 : R n+2 × R n+2 → T R n+2 of T R n+2 on B • ∞ × R n+2 .
An asymptotic homology R n+2 with such a parallelization is called a parallelized asymptotic homology R n+2 . An asymptotic homology R n+2 that admits a parallelization is called parallelizable. Given a parallelization τ and a point x ∈ M • , τ x denotes the isomorphism τ (x, •) : R n+2 → T x M • .

BCR diagrams

In this section, we describe the diagrams involved in the definition of the invariant Z k , which are the BCR diagrams of [Let19, Section 2.2] (Definition 5.2.2 in this thesis). Definition 6.2.2. A BCR diagram is an oriented connected graph Γ, defined by a set V (Γ) of vertices, decomposed into V (Γ) = V i (Γ) V e (Γ), and a set E(Γ) of ordered pairs of distinct vertices, decomposed into E(Γ) = E i (Γ) E e (Γ), whose elements are called edges2 , where the elements of V i (Γ) are called internal vertices, those of V e (Γ) external vertices, those of E i (Γ) internal edges, and those of E e (Γ) external edges, and such that, for any vertex v of Γ, one of the five following properties holds:

1. v is external, with two incoming external edges and one outgoing external edge, and one of the incoming edges comes from a univalent vertex.

2. v is internal and trivalent, with one incoming internal edge, one outgoing internal edge, and one incoming external edge, which comes from a univalent vertex.

3. v is internal and univalent, with one outgoing external edge.

4. v is internal and bivalent, with one incoming external edge and one outgoing internal edge.

5. v is internal and bivalent, with one incoming internal edge and one outgoing external edge.

In the following, internal edges are depicted by solid arrows, external edges by dashed arrows, internal vertices by black dots, and external vertices by white dots, as in Figure 6.1, where all the five behaviors of Definition 6.2.2 appear. 

Two-point configuration spaces

Let X be a d-dimensional closed smooth oriented manifold, let ∞ be a point of X, and set

X • = X \ {∞}. We give a short overview of a compactification C 2 (X • ) of the two-point configuration space C 0 2 (X • ) = {(x, y) ∈ (X • ) 2 | x = y}, as defined in [Les15b, Section 2.2].
If P is a submanifold of a manifold Q, such that P is transverse to ∂Q and ∂P = P ∩ ∂Q, its normal bundle NP is the bundle whose fibers are N x P = T x Q/T x P . A fiber U N x P of the unit normal bundle U NP of P is the quotient of N x P \ {0} by the dilations3 .

Here, we use the blow-up in differential topology, which replaces a compact submanifold P of a compact manifold Q as above with its unit normal bundle U NP . The obtained manifold is a smooth compact manifold. It is diffeomorphic to the complement in Q of an open tubular neighborhood of P . Its interior is Q \ (∂Q ∪ P ), and its boundary is U NP ∪ (∂Q \ ∂P ) as a set.

Define the space C 1 (X • ) as the blow-up of X along {∞}. It is a compact manifold with interior X • and with boundary the unit normal bundle S d-1 ∞ X to X at ∞.

Blow up the point (∞, ∞) in X 2 . In the obtained manifold, blow up the closures of the sets {∞} × X

• , X • × {∞} and ∆ X • = {(x, x) | x ∈ X • }.
The obtained manifold C 2 (X • ) is compact and it comes with a canonical map andC 2 (X • ) has the same homotopy type as C 0 2 (X • ). The manifold C 2 (X • ) is called the two-point configuration space of X • . Its boundary is the union of:

p b : C 2 (X • ) → X 2 . Its interior is canonically diffeomorphic to the open configura- tion space C 0 2 (X • ) = {(x, y) ∈ (X • ) 2 | x = y},
• the closed part p -1 b ({(∞, ∞)}),
• the unit normal bundles to

X • × {∞} and {∞} × X • , which are X • × S d-1 ∞ X and S d-1 ∞ X × X • ,
• the unit normal bundle to the diagonal ∆ X • , which is identified with the unit tangent bundle

U X • via the map [(u, v)] (x,x) ∈ U N (x,x) ∆ X • → [v -u] x ∈ U x X • .
The following lemma can be proved as [Les15b, Lemma 2.2].

Lemma 6.2.4. When X • = R d , the Gauss map

C 0 2 (R d ) → S d-1 (x, y) → y-x ||y-x|| extends to a smooth map G : C 2 (R d ) → S d-1 .
We now define an analogue of G on the boundary of C 2 (M • ) for any parallelized asymptotic homology R n+2 . Definition 6.2.5. Let (M • , τ ) be a parallelized asymptotic homology R n+2 . Identify the sphere S n+1 ∞ M with S n+1 in such a way that u ∈ S n+1 is the limit when t approaches +∞ of the map t

∈ 1 ||u|| , +∞ → t.u ∈ B • ∞ ⊂ R n+2 . The boundary of C 2 (M • ) is the union of: • the closed part ∂ ∞,∞ C 2 (M • ) = p -1 b ({∞ × ∞}), which identifies with the similar part ∂ ∞,∞ C 2 (R n+2 ) ⊂ C 2 (R n+2 ), • an open 4 face ∂ ∞,M • C 2 (M • ) = p -1 b ({∞}×M • ) = S n+1 ∞ M ×M • = S n+1 ×M • . • an open face ∂ M • ,∞ C 2 (M • ) = p -1 b (M • × {∞}) = M • × S n+1 . • an open face ∂ ∆ C 2 (M • ) = p -1 b (∆ M • ) = U M • .
Define the smooth map G τ : ∂C 2 (M • ) → S n+1 by the following formula:

G τ (c) =            G(c) if c ∈ ∂ ∞,∞ C 2 (M • ) = ∂ ∞,∞ C 2 (R n+2 ), -u if c = (u, y) ∈ ∂ ∞,M • C 2 (M • ) = S n+1 × M • , u if c = (x, u) ∈ ∂ M • ,∞ C 2 (M • ) = M • × S n+1 , τ -1 x (u) ||τ -1 x (u)|| if c = [u] x ∈ U x M • ⊂ U M • = ∂ ∆ C 2 (M • ).
In order to simplify the notations, for any configuration in one of the three above open faces, we write c = (x, y, u) where (x, y) = p b (c), and u denotes the coordinate in the previous definition, which is either in S n+1 or in U x M • .

Configuration spaces

Let Γ be a BCR diagram, and let M • be an asymptotic homology R n+2 . Fix a long knot ψ :

R n → M • . Let C 0 Γ (ψ) denote the open configuration space C 0 Γ (ψ) = {c : V (Γ) → M • | There exists c i : V i (Γ) → R n such that c |V i (Γ) = ψ •c i }. An element c of C 0 Γ (ψ) is called a configuration.
Note that c i is uniquely determined by c. By definition, the images of the vertices under a configuration are pairwise distinct, and the images of the internal vertices are on the knot.

This configuration space is a non-compact smooth manifold. It admits a compactification C Γ (ψ), which is defined in [Ros02, Section 2.4, pp. 51-61]. Theorem 6.2.6 (Rossi). There exists a compact manifold with ridges and edges C Γ (ψ), such that:

• its interior is canonically diffeomorphic to C 0 Γ (ψ),
• for any two internal vertices v and w, the map

c ∈ C 0 Γ (ψ) → (c i (v), c i (w)) ∈ C 2 (R n ) extends to a smooth map p i v,w : C Γ (ψ) → C 2 (R n ),
• for any two vertices v and w, the map

c ∈ C 0 Γ (ψ) → (c(v), c(w)) ∈ C 2 (M • ) extends to a smooth map p e v,w : C Γ (ψ) → C 2 (M • ), • for any vertex v, the map c ∈ C 0 Γ (ψ) → c(v) ∈ C 1 (M • ) extends to a smooth map p v : C Γ (ψ) → C 1 (M • ).
Definition 6.2.7. For any edge f of Γ, which goes from a vertex v to a vertex w, C f denotes the configuration space

C 2 (R n ) if f is internal, and C 2 (M • ) if f is external, and p f : C Γ (ψ) → C f denotes the map p i v,w if f is internal, and p e v,w if f is external.
Orient the space C Γ (ψ) as follows. For any i ∈ n, let dY v i denote the ith coordinate form of the internal vertex v (parametrized by R n ) and for any i ∈ n + 2, let dX v i denote the i-th coordinate form of the external vertex v (in an oriented chart of M • ). Split any external edge e in two halves: the tail e -and the head e + . Define a form Ω e ± for any half-edge e ± of an external edge e, as follows:

• for the head e + of a leg going to an external vertex v, Ω e + = dX 1 v ,

• for the head e + of an edge that is not a leg, going to an external vertex v,

Ω e + = dX 2 v ,
• for the tail e -of an edge coming from an external vertex v,

Ω e -= dX 3 v ∧ • • • ∧ dX n+2 v ,
• for any external half-edge e ± adjacent to an internal vertex v,

Ω e ± = dY 1 v ∧ . . . ∧ dY n v .
Let N T,i (Γ) denote the number of internal trivalent vertices, and define the sign of a BCR diagram as ε(Γ) = (-1) N T,i (Γ)+Card(Ee(Γ)) . The orientation of

C Γ (ψ) is Ω(Γ) = ε(Γ) e∈Ee(Γ)
Ω e , where Ω e = Ω e -∧ Ω e + for any external edge e. Lemma 6.2.8. Let Γ k be the degree k BCR diagram of Figure 6.3.

w 1 w 2 w 3 w k v 1 v 2 v 3 v k f 1 f 2 f k 1 2 3 k Figure 6.3 -The graph Γ k Then, -C Γ k (ψ) is oriented by the coordinates (c i (v j ), c(w j )) j∈k ∈ (R n × M • ) k .
Proof. For any j ∈ k, let j + denote the integer

j + =    j + 1 if j < k, 1 if j = k.
First note that ε(Γ k ) = 1 since there are 2k external edges and no internal trivalent vertices. For any j ∈ k, j denotes the leg from v j to w j , and f j denotes the external edge of the cycle from w j to w j + as in Figure 6 dX i w j . We have Ω j = dY v j ∧ dX 1 w j and Ω f j = dX w j ∧ dX 2 w j + . Then,

Ω(Γ k ) = k j=1 (dY v j ∧ dX 1 w j ∧ dX w j ∧ dX 2 w j + ) = dY v 1 ∧ dX 1 w 1 ∧ dX w 1 ∧ k j=2 (dX 2 w j ∧ dY v j ∧ dX 1 w j ∧ dX w j ) ∧ dX 2 w 1 = - k j=1 (dX 2 w j ∧ dY v j ∧ dX 1 w j ∧ dX w j ) = - k j=1
(dY v j ∧ dX w j ).

Conventions about orientations and rational chains

From now on, homology groups are taken with rational coefficients unless otherwise mentioned, all the manifolds are oriented, and their boundaries are oriented with the "outward normal first" convention. The ordered products of manifolds are naturally oriented, and this orientation does not depend on the order if the manifolds are even-dimensional. The fibers of the normal bundle of an oriented submanifold P of a manifold Q are oriented in such a way that the orientation of N x P followed by the orientation of T x P is the orientation of T x Q. The orientation of N x P is called the coorientation of P . The preimages of submanifolds are oriented in such a way that coorientations are preserved. The intersection

A ∩ = r i=1
A r of submanifolds is oriented in such a way that NA ∩ is oriented as r i=1 NA i . If A is an oriented manifold, -A denotes the same manifold, with opposite orientation. In this article, an embedded rational d-chain A of a manifold X is a finite rational combination of compact oriented d-submanifolds with ridges and corners with pairwise disjoint interiors of X. The support Supp(A) of A is the union of these submanifolds, and the interior Int(A) of A is the union of their interiors.

Propagators and first definition of Z k

In this section, we define Z k for long knots in parallelized asymptotic homology R n+2 . Let (M • , τ ) be a parallelized asymptotic homology R n+2 . Definition 6.2.9. An internal propagator5 is an embedded rational (n + 1)-chain

A in C 2 (R n ) such that ∂A = 1 2 (G |∂C 2 (R n ) ) -1 ({-x A , +x A }) for some x A ∈ S n-1 . COMPTAGES DE DIAGRAMMES An external propagator of (M • , τ ) is an embedded rational (n + 3)-chain B in C 2 (M • ) such that ∂B = 1 2 (G τ ) -1 ({-x B , +x B }) for some x B ∈ S n+1 . For any k ≥ 2, a k-family F * = (A i , B i ) i∈2k of propagators of (M • , τ ) is the data of 2k internal propagators (A i ) i∈2k and 2k external propagators (B i ) i∈2k of (M • , τ ).
The existence of such propagators follows from [Let19, Section 4.2] (Section 5.4.2 in this thesis). We recall the discrete definition of the invariant Z k from our previous article [Let19, Sections 2.7-2.8] (Sections 5.2.7 and art1-Section28 in this thesis).

Let ψ be a long knot of M • . Consider a k-family F * = (A i , B i ) i∈2k of propagators of (M • , τ ). For any BCR diagram Γ, let P Γ be the product map

P Γ : C Γ (ψ) → e∈E i (Γ) C 2 (R n ) × e∈Ee(Γ) C 2 (M • ) = e∈E(Γ) C e c → (p e (c)) e∈E(Γ)
.

The k-family F * is in general position for ψ if, for any numbered BCR diagram (Γ, σ) ∈ G k , and for any c ∈ C Γ (ψ) such that P Γ (c)

∈ e∈E i (Γ) A σ(e) × e∈Ee(Γ) B σ(e)
• for any internal edge e, p e (c) ∈ Int(A σ(e) ),

• for any external edge e, p e (c) ∈ Int(B σ(e) ),

• the following transversality property is satisfied.

ε(c)T P Γ (c)   e∈E(Γ) C e   = T c P Γ (T c C Γ (ψ)) +   e∈E i (Γ) T pe(c) Int(A σ(e) ) × e∈Ee(Γ) T pe(c) Int(B σ(e) )   ,
where ε(c) = ±1 is called the sign of the intersection point c, and where the above equality is an equality between oriented vector spaces.

In the following, D F * e,σ denotes the chain p -1 e (A σ(e) ) if e is internal, and the chain p -1 e (B σ(e) ) if e is external. The chain D F * e,σ lies in C Γ (ψ). [Let19, Theorem 4.3] (Theorem 5.4.3 of the thesis) guarantees the existence of k-families of propagators in general position for any ψ and any k. In [Let19, Theorem 2.13] (Theorem 5.2.13 of the thesis), we proved that the extended BCR invariant Z k of [Let19, Theorem 2.10] (Theorem 5.2.10 of the thesis) can be computed as follows.

Theorem 6.2.10. Let (M • , τ ) be a parallelized asymptotic homology R n+2 , and let ψ be a long knot of M • . Let F * = (A i , B i ) i∈2k be a k-family of propagators of (M • , τ ) in general position for ψ.

For any numbered BCR diagram (Γ, σ) ∈ G k , the algebraic intersection number I F * (Γ, σ, ψ) of the chains (D F * e,σ ) e∈E(Γ) inside C Γ (ψ) makes sense. 6 Furthermore,

Z k (ψ) = 1 (2k)! (Γ,σ)∈ G k I F * (Γ, σ, ψ).
In [Let19, Theorem 2.10]/Theorem 5.2.10, we proved that this quantity depends neither on the choice of the propagators nor on the parallelization, and is invariant under ambient diffeomorphisms. In particular, it is an isotopy invariant for long knots.

Connected sum and general definition of Z k

In this section, we review the connected sum defined in [Let19, Section 2.9]/Section 5.2.9.

Let M • 1 and M • 2 be two asymptotic homology R n+2 , respectively decomposed as

B(M 1 ) ∪ B • ∞ and B(M 2 ) ∪ B • ∞ . Let B • ∞, 1 4 be the complement in R n+2
of the two open balls B 1 and B 2 of radius 1 4 and with respective centers (0, 0, . . . , 0, -1 2 ) and (0, 0, . . . , 0, 1 2 ). For i ∈ {1, 2} and

x in ∂B(M i ) ⊂ R n+2 , define the map ϕ i (x) = 1 4 x + (-1) i 1 2 , which is a diffeomorphism from ∂B(M i ) to ∂B i . Set M • 1 M • 2 = B • ∞, 1 4 ∪ B(M 1 ) ∪ B(M 2 ), where B(M i ) is glued to ∂B i via the map ϕ i . Set B(M • 1 M • 2 ) = B(M • 1 ) ∪ B(M • 2 ) ∪ (B • ∞, 1 4 \ B • ∞ )
. This defines an asymptotic homology R n+2 , with two canonical injections ι i :

B(M i ) → B(M • 1 M • 2 ) for i ∈ {1, 2}. If M • 1 and M • 2 contain two long knots ψ 1 and ψ 2 , define the long knot ψ 1 ψ 2 of M • 1 M • 2 by the following formula, for any x ∈ R n : (ψ 1 ψ 2 )(x) =        ι 2 (ψ 2 (4.x 1 , . . . , 4.x n-1 , 4.x n -2)) if ||x -(0, . . . , 0, 1 2 )|| ≤ 1 4 , ι 1 (ψ 1 (4.x 1 , . . . , 4.x n-1 , 4.x n + 2)) if ||x -(0, . . . , 0, -1 2 )|| ≤ 1 4 , (0, 0, x) ∈ B • ∞, 1 4 otherwise.
Similarly, any two parallelizations τ 1 and τ

2 of M • 1 and M • 2 induce a paral- lelization τ 1 τ 2 of M • 1 M • 2 , which is well-defined up to homotopy. In particular, if COMPTAGES DE DIAGRAMMES M • 1 and M • 2 are parallelizable, then M • 1 M •
2 is also parallelizable in the sense of Definition 6.2.1. We recall the result of [Let19, Theorem 2.17]/Theorem 5.2.17. Theorem 6.2.11. For any long knots

ψ 1 : R n → M • 1 and ψ 2 : R n → M • 2 , Z k (ψ 1 ψ 2 ) = Z k (ψ 1 ) + Z k (ψ 2 ).
Let us state [Let19, Proposition 2.18]/Proposition 5.2.18.

Proposition 6.2.12. For any positive odd integer n, the connected sum of any asymptotic homology R n+2 with itself is parallelizable in the sense of Definition 6.2.1.

This allows us to extend Z k as follows.

Definition 6.2.13. Let ψ be a long knot in an asymptotic homology R n+2 . Define

Z k (ψ) = 1 2 Z k (ψ ψ)
, where Z k is the invariant of Theorem 6.2.10. [Let19, Prop 2.20]/Proposition 5.2.20 implies that Theorem 6.2.11 is still valid for this extended Z k .

Linking number

We use the following definition and basic properties of the linking number. Definition 6.2.14. Let X d and Y n+1-d be two disjoint cycles of our homology (n + 2)-sphere M , with d ∈ n. Let W X and W Y be two chains with respective boundaries X and Y , such that W X and W Y are transverse to each other. The linking number of X and Y is defined as the intersection number X, W Y M , so that lk(X,

Y ) = X, W Y M = (-1) d+1 W X , Y M . Furthermore, since n is odd, lk(X d , Y n+1-d ) = (-1) d+1 lk(Y n+1-d , X d ).
These linking numbers will appear in the computation of our invariant Z 2 because of the following lemma, which relates external propagators to linking numbers.

Lemma 6.2.15. Let X d and Y n+1-d be two disjoint cycles of M • . For any external propagator B, lk(X, Y ) = X × Y, B C 2 (M • ) . Proof. The class of the cycle X × Y is an element of H n+1 (C 2 (M • )). [Let19, Lemma 3.3] implies that H n+3 (C 2 (M • )) = 0. Therefore, the intersection number X × Y, B C 2 (M • ) only depends on the homology class [X × Y ].
Let W X and W Y be chains such that ∂W X = X and ∂W Y = Y as above. For the proof, assume that W X and W Y are manifolds (the general case follows easily). Let W X be obtained from W X by removing a little ball D d+1

x with boundary

S d x around each point x ∈ W X ∩ Y . Then, ∂(W X × Y ) = X × Y - x∈W X ∩Y S d x × Y , and [X × Y ] = x∈W X ∩Y [S d x × Y ]. For any x ∈ W X ∩Y , assume that D d+1 x meets W Y transversely along an interval [x, x ]. For any x ∈ W X ∩ Y , remove a little ball D n+2-d x with boundary S n+1-d x around the point x (which is the intersection of S d x and W Y ) from W Y , in order to get [X × Y ] = x∈W X ∩Y [S d x × S n+1-d x ].
It suffices to prove that (-1)

d+1 S d x × S n+1-d x , B C 2 (M • ) is the sign of the in- tersection point x in W X ∩ Y . Since the balls D d+1 x and D n+2-d
x can be taken arbitrarily small, assume without loss of generality that

M • = R n+2 , S d x = {(x 1 , . . . , x d+1 , 0, . . . , 0) | (x 1 ) 2 + . . . + (x d+1 ) 2 = 1}, S n+1-d x = {(0, . . . , x d+1 , . . . , x n+2 ) | (x d+1 -1) 2 + (x d+2 ) 2 + . . . + (x n+2 ) 2 = 1}, and B = 1 2 (G -1 ({-e d+1 }) + G -1 ({+e d+1 })) ,
where e d+1 is the (d + 1)-th vector of the canonical basis of

R n+2 . Now S d x × S n+1-d x , B C 2 (R n+2 ) is the degree of the Gauss map S d x × S n+1-d x → S n+1 , which is (-1) d . Since B d+1
x , S n+1-d

x R n+2 = -1, this concludes the proof.

Seifert surfaces and matrices

Definition 6.2.16. A Seifert surface for a long knot ψ :

R n → M • is an oriented connected (n+1)-submanifold Σ of M • such that ∂Σ = ψ(R n ), such that Σ∩B(M ) is compact, and such that Σ ∩ B • ∞ = {(r cos(θ), r sin(θ), x) | x ∈ R n , r ≥ 0} ∩ B • ∞ for some θ ∈ R.
Let ψ be a long knot, let Σ be a Seifert surface for ψ, and, for any d ∈ n, let b d denote the d-th Betti number of Σ. Let Σ + denote a parallel surface obtained from Σ by slightly pushing it in the positive normal direction. For any cycle z in Σ, let z + denote the image of z in the parallel surface Σ + . Definition 6.2.17. Let Σ be a Seifert surface for a long knot ψ. 

(ψ) = [ι(τ, ψ)] ∈ π n (I(R n , R n+2 ), ι 0 ) is called the rectifiability obstruction of ψ.
The long knot ψ is rectifiable if its rectifiability obstruction is zero.

In Section 6.5.1, we prove the following lemma.

Lemma 6.2.21. For any rectifiable knot ψ of a parallelizable asymptotic homology R n+2 , there exists a parallelization τ such that ι(τ, ψ) is the constant map with value ι 0 .

For long knots in a possibly non-parallelizable asymptotic homology R n+2 , we have the following weaker definition. Definition 6.2.22. Let M • be an asymptotic homology R n+2 . A long knot ψ : R n → M • is virtually rectifiable if there exists a positive integer r such that the connected sum

ψ (r) = ψ • • • ψ of r copies of ψ is rectifiable.
In Section 6.5, we establish the following lemma. Lemma 6.2.23. If n ≡ 1 mod 4, then any long knot in an asymptotic homology R n+2 is virtually rectifiable.

A formula for Z k in terms of linking numbers

In Section 6.3, we prove the following theorem. Theorem 6.2.24. For any rectifiable knot ψ in an asymptotic homology R n+2 , any Seifert surface Σ for ψ, and any pair (B, B) of dual bases of H * (Σ), andwhere L k,ν (B, B) is introduced in Definition 6.2.17. Theorem 6.2.24 yields the following more general corollary. Corollary 6.2.25. For any virtually rectifiable knot ψ in an asymptotic homology R n+2 , any Seifert surface Σ for ψ, and any pair (B, B) of dual bases of H * (Σ),

Z k (ψ) = k-1 ν=1 λ k,ν L k,ν (B, B), where λ k,ν = 1 (k-1)! Card({σ ∈ S k-1 | Card{i ∈ k -2 | σ(i) < σ(i + 1)} = ν -1}),
Z k (ψ) = k-1 ν=1 λ k,ν L k,ν (B, B).
In particular, this formula holds for any long knot when n ≡ 1 mod 4.

Proof. Let ψ be a virtually rectifiable knot, and let r be an integer such that ψ (r) is rectifiable. Let Σ, B and B be as in the theorem. From Theorem 6.2.11, we get that Z k (ψ (r) ) = rZ k (ψ). For any k ≥ 2 and ν ∈ k -1, Lemma 6.2.18 yields L k,ν (B r , Br ) = rL k,ν (B, B), where (B r , Br ) is a pair of dual bases of the reduced homology of a Seifert surface for ψ (r) . On the other hand, Theorem 6.2.24 implies Br ). This concludes the proof of Corollary 6.2.25. Lemma 6.2.23 ensures that the theorem holds for all knots when n ≡ 1 mod 4.

that Z k (ψ (r) ) = k-1 ν=1 λ k,ν L k,ν (B r ,

Alexander polynomials and Reidemeister torsion

We use the following formula of [Lev66, p.542] as a definition of Alexander polynomials. Theorem 6.2.26 (Levine). The Alexander polynomials of the Seifert surface Σ are defined, for d ∈ n, by the formula 7

∆ d,Σ (t) = det t -1 2 V + d (B, B) -t 1 2 V - d (B, B)
and do not depend on the choice of the pair (B, B) of dual bases of H * (Σ). Furthermore, for any Proof. There exists a pair (B, B) of dual bases B = ([

d ∈ n, V + d (B, B) -V - d (B, B) = I b d , so that ∆ d,ψ (1) = 1. If Σ and Σ are two Seifert surfaces for ψ, then there exists an integer a ∈ Z such that 8 ∆ d,Σ (t) = t a 2 .∆ d,Σ (t).
a d i ]) i,d and B = ([z d i ]) i,d of H * (Σ) such that a d i = z d i for d > n+1
2 , and such that , so that (B , B ) is a pair of dual bases of H * (Σ). We have

z d i = (-1) d a d i for d < n+1 2 . It follows that for d = n+1 2 , T V ± d (B, B) = -V ∓ n+1-d (B, B). This implies that ∆ d,Σ (t -1 ) = ∆ n+1-d,Σ (t)
T V ± n+1 2 (B, B) = -V ∓ n+1 2 (B , B ), hence ∆ n+1 2 ,Σ (t -1 ) = ∆n+1 2 ,Σ (t).
The first point of the lemma follows.

This implies that for any

d ∈ n, ∆ d,Σ (1) + ∆ n+1-d,Σ (1) = 0, so d∈n (-1) d+1 Tr(V + d (B, B)) + Tr(V - d (B, B)) = 0.
On the other hand, since

V + d (B, B) -V - d (B, B) = I b d for any d ∈ n, we have d∈n (-1) d+1 Tr(V + d (B, B)) -Tr(V - d (B, B)) = 1 -χ(Σ).
The two equations above imply the second and third point of the lemma. Note that since the Alexander polynomials do not depend on the choice of the bases, neither do these equalities.

We use [START_REF] Milnor | Infinite cyclic coverings[END_REF]Theorem p.131] to compute the Reidemeister torsion of the knot (i.e. the Reidemeister torsion of the knot complement) as follows. Definition 6.2.28. The Reidemeister torsion T ψ (t) of a long knot ψ is defined as

T ψ (t) = d∈n (∆ d,Σ (t)) (-1) d+1 ∈ Q(t),
where Σ is a Seifert surface for ψ. We have T ψ (1) = 1 and T ψ (t -1 ) = T ψ (t), so that the torsion does not depend on the surface Σ.

The Reidemeister torsion in terms of BCR invariants

The following theorem is proved in Section 6.6.2. Theorem 6.2.29. For any virtually rectifiable knot ψ of an asymptotic homology R n+2 , we have the following equality in Q[[h]]:

Ln(T ψ (e h )) = n d=1 (-1) d+1 Ln(∆ d,Σ (e h )) = - k≥1 Z k (ψ)h k .
If n ≡ 1 mod 4, this formula holds for any long knot. COMPTAGES DE DIAGRAMMES Note that the previous proof also yields the following lemma, since GL + n+2 (R) and SO(n + 2) have the same homotopy type.

Lemma 6.3.2. For n ≥ 3, π n (I(R n , R n+2 ), ι 0 ) is isomorphic to π n (SO(n+2), I n+2 ).
Suppose now that ψ is rectifiable, and fix the identification Θ and the parallelization τ as in Lemma 6.3.1. For any r ∈

[1, R], let E r denote the closure of M • \ N r . With the identification induced by Θ, M • reads N 0 r ∪ E r . Notation 6.3.3. In N R = N 0 R , use the coordinates x = (x 1 , x 2 , x) ∈ R × R × R n . For r ∈ [1, R], D µ (r) denotes the disk {(x 1 , x 2 , 0) | x 1 2 + x 2 2 ≤ r 2 } ⊂ N r . For θ ∈ R, set L ± θ (r) = {±(ρ cos(θ), ρ sin(θ), 0) | ρ ≥ 2R 2 r }, L θ (r) = L + θ (r) + L - θ (r)
, and orient these lines by dρ.

Let Θ 2 denote the diffeomorphism C 2 (N 0 R ) → C 2 (N R
) induced by Θ. We now define the main objects of this article, which will be used to compute Z k . Definition 6.3.4. Fix θ ∈ R. Fix Seifert surfaces Σ + and Σ -with disjoint interiors such that Σ

± ∩N R = ( θ Σ ± ) 0 ∩N R , where ( θ Σ ± ) 0 = {±(r cos(θ), r sin(θ), x) | x ∈ R n , r ≥ 0}. For any r ∈ [1, R], let Σ(r) denote the submanifold E r ∩ (Σ + ∪ Σ -). The restriction of the Gauss map of C 2 (R n+2 ) to C 2 (N 0 1 ) and the identification C 2 (N 1 ) ∼ = C 2 (N 0 1 ) given by Θ 2 induce a map G 0 : C 2 (N 1 ) → S n+1 . An external propagator B is called R-admissible (with respect to (Σ + , Σ -, ψ)) if: • B ∩ p -1 b (N 1 × N 1 ) = 1 2 G 0 -1 ({-(cos(θ)
, sin(θ), 0), +(cos(θ), sin(θ), 0)}).

• If c ∈ B ∩p -1 b (ψ(R n ) × M • ), then p 2 (c) lies in the closure Σ + ∪ Σ -of Σ -∪Σ + in C 1 (M • ), where p 2 is the smooth map p 2 : C 2 (M • ) → C 1 (M • ) that extends (x, y) ∈ C 0 2 (M • ) → y ∈ M • ⊂ C 1 (M • ). • For any r ∈]1, R -1], B ∩ p -1 b (N r × E r+1 ) = 1 2 D µ (r) × Σ(r + 1) -p -1 b (L θ (r) × E r+1 ) . • If T denotes the smooth map of C 2 (M • ) such that for any (x, y) ∈ C 0 2 (M • ), T (x, y) = (y, x), then T (B) = B. In particular, for any r ∈]1, R -1], B ∩ p -1 b (E r+1 × N r ) = 1 2 Σ(r + 1) × D µ (r) + p -1 b (E r+1 × L θ (r)) .
In Section 6.4, we prove the following technical lemma.

Lemma 6.3.5. For any integer k ≥ 1, any long knot ψ, any pairwise distinct real numbers (θ i ) i∈2k in [0, π[, and any Seifert surfaces

(Σ - i , Σ + i ) i∈2k such that Σ ± i ∩N R = ( θ i Σ ± ) 0 ∩N R , there exist external propagators (B R (Σ + i , Σ - i , ψ)) i∈2k , such that for any i ∈ 2k, the propagator B R (Σ + i , Σ - i , ψ) is R-admissible with respect to (Σ + i , Σ - i , ψ). Furthermore, we can fix such propagators (B R (( θ i Σ + ) 0 , ( θ i Σ -) 0 , ψ 0 )) i∈2k for the trivial knot such that Θ 2 maps the chain B R (( θ i Σ + ) 0 , ( θ i Σ -) 0 , ψ 0 ) ∩ p -1 b (N 0 R × N 0 R ) to B R (Σ + i , Σ - i , ψ) ∩ p -1 b (N R × N R ) for any i ∈ 2k.

Use of admissible propagators to compute Z k

Three reduction lemmas

We work with the following notations, and we fix the following setting for Section 6.3.2.

Setting 6.3.6.

• The integer k ≥ 2 is fixed.

• The real number R of the previous subsection is fixed to some arbitrary value

R ≥ k + 1. • The numbers (θ i ) i∈2k are such that 0 ≤ θ 1 < θ 2 < • • • < θ 2k < π. • For any i ∈ 2k, (Σ ± i ) 0 = ( θ i Σ ± ) 0 .
• (Σ ± i ) i∈2k are pairwise isotopic and parallel 9 Seifert surfaces for ψ, such that

Σ ± i ∩ N R = (Σ ± i ) 0 ∩ N R , and such that for any (i, ε) ∈ 2k × {±} \ {(1, +)}, Σ ε i ∩ E 1 is obtained from Σ +
1 ∩ E 1 by pushing it in the positive normal direction, so that the order of these surfaces in the positive normal direction is

(Σ + 1 , . . . , Σ + 2k , Σ - 1 , . . . , Σ - 2k ).
• With the notations of Lemma 6.3.5, F 0 * = (A i , B 0 i ) i∈2k is a k-family of propagators of (R n+2 , τ 0 ) in general position for ψ 0 , such that for any i ∈ 2k, B 0 i is an arbitrarily small perturbation of B R ((

Σ + i ) 0 , (Σ - i ) 0 , ψ 0 ).
• With the notations of Lemma 6.3.5,

F * = (A i , B i ) i∈2k is a k-family of propa- gators of (M • , τ ) in general position for ψ such that for any i ∈ 2k, B i is an arbitrarily small perturbation of B R (Σ + i , Σ - i , ψ) and B i ∩ p b -1 (N R × N R ) is the image of B 0 i ∩ p b -1 (N 0 R × N 0 R ) under the identification Θ 2 .
9 They only meet along the knot. COMPTAGES DE DIAGRAMMES For any edge e of a numbered degree k BCR diagram (Γ, σ) as in Definition 6.2.3, define the chains D e,σ ⊂ C Γ (ψ) and D 0 e,σ ⊂ C 0 Γ (ψ) as

D e,σ =    p e -1 (A σ(e)
) if e is internal,

p e -1 (B σ(e)
) if e is external, and

D 0 e,σ =    p e -1 (A 0 σ(e) ) if e is internal, p e -1 (B 0 σ(e)
) if e is external.

Lemma 6.3.7. If Γ has an external edge from an internal vertex to an internal vertex, then, for any numbering σ,

f ∈E(Γ) D f,σ = ∅, and f ∈E(Γ) D 0 f,σ = ∅.
Proof. We first ignore the perturbations of the external propagators. Let e = (v, w) be an external edge between two internal vertices of a numbered BCR diagram (Γ, σ). For a configuration c in D e,σ , set c(v) = p v (c) and c(w) = p w (c), where p v and p w are the maps defined in Theorem 6.2.6. Since v and w are internal, we have G 0 (p e (c)) ∈ {0} 2 × S n-1 . On the other hand, by Definition 6.3.4 of admissible propagators, since (c(v), c(w)) ∈ N 1 × N 1 , we have G 0 (p e (c)) = ±(cos(θ σ(e) ), sin(θ σ(e) ), 0). Thus, D e,σ = ∅ and Proof. Fix a numbering σ. If Γ has only internal vertices, conclude with Lemma 6.3.7. If Γ = Γ k and V e (Γ) = ∅, then Γ contains a maximal sequence (w 1 , . . . , w p ) of consecutive external vertices with p ≥ 1 like in Figure 6.4. Let a be the bivalent vertex such that there is an external edge from a to w 1 and let b be the bivalent vertex such that there is an external edge from w p to b, and note that a = b. For

f ∈E(Γ) D f,σ = ∅. Simi- larly, f ∈E(Γ) D 0 f,σ = ∅. Now, note that the properties f ∈E(Γ) D f,σ = ∅ and f ∈E(Γ) D 0 f,σ = ∅
a b w 1 w i w p v 1 v i v p f 1 f 2 f i f i+1 1 i p f p f p+1
any i ∈ p, since p i (c) ∈ B σ( i ) and v i is internal, c(w i ) = p w i (c) lies in the COMPTAGES DE DIAGRAMMES closure Σ + θ σ( i ) ∪ Σ - θ σ( i ) of Σ + θ σ( i ) ∪ Σ - θ σ( i ) in C 1 (M • ). Similarly, since a is internal, c(w 1 ) ∈ Σ + θ σ(f 1 ) ∪ Σ - θ σ(f 1 ) . Then, c(w 1 ) lies in the closure ψ(R n ) of ψ(R n ) in C 1 (M • ). The same argument now proves that c(w 2 ) is in ψ(R n ). By induction, c(w i ) lies in ψ(R n ) for any i ∈ p.
By construction of C Γ (ψ), c is the limit of configurations (c t ) t∈]0,1] of the interior of C Γ (ψ) when t approaches 0. Since c(w i ) is in ψ(R n ) for any i ∈ p when t = 0, we can assume that c t maps all the vertices (w i ) i∈p in N 1 ⊂ R n+2 , for any t ∈]0, 1]. For any t ∈]0, 1], the vector c t (b) -c t (a) is the sum of the vectors c t (w 1 ) -c t (a), c t (w 2 ) -c t (w 1 ), . . . , c t (w p ) -c t (w p-1 ), and c t (b) -c t (w p ). Since the propagators are admissible, and since c(a), c(b) and the (c

(w i )) i∈p are in N 1 , this implies that G 0 (c t (a), c t (b)) is a linear combination of the vectors ((cos(θ σ(f i ) ), sin(θ σ(f i ) ), 0)) i∈p+1 . Thus, G 0 (c t (a), c t (b)) is in S 1 × {0} n for any t ∈]0, 1].
But since a and b are internal, for any t ∈]0, 1], G 0 (c t (a), c t (b)) reads (0, 0, x t ) for some x t ∈ S n-1 . This is a contradiction, so

e∈E(Γ) D e,σ = ∅. Similarly, e∈E(Γ)
D 0 e,σ = ∅. Again, this property is stable since the D e,σ and the D 0 e,σ are compact. The two above lemmas allow us to reduce our study to the graph Γ k . The following lemma will help us in this study in the next subsection. Lemma 6.3.9. Let Γ k be the BCR diagram of Figure 6

.3. If c is a configuration of e∈E(Γ k ) D e,σ (resp. of e∈E(Γ k ) D 0 e,σ
), and if there exists j ∈ k such that c(w j ) ∈ E k+1 (resp. c(w j ) ∈ E 0 k+1 ), then c(w i ) ∈ N 2 for any i ∈ k. Proof. It suffices to prove the statement on e∈E(Γ k ) D e,σ , the proof for

e∈E(Γ k ) D 0 e,σ
is the same. Let us first ignore the perturbations, and assume without loss of generality that j = k, so that c(w k ) ∈ E k+1 .

Since v k is internal, and since the propagators are admissible, c(w k ) ∈ Σ σ( k ) (k+ 1). Let us prove that c(w k-1 ) ∈ N k . Assume by contradiction that c(w k-1 ) ∈ N k . Since the external propagators are admissible,

p f k-1 (c) = (c(w k-1 ), c(w k )) ∈ D µ (k) × Σ σ(f k-1 ) (k + 1) ∪ p -1 b (L θ σ(f k-1 ) (k) × E k+1 ). Since the surfaces Σ σ(f k-1 ) (k + 1) and Σ σ( k ) (k + 1) are disjoint, c(w k ) ∈ Σ σ(f k-1 ) (k + 1). Thus, c(w k-1 ) ∈ L θ σ(f k-1 ) (k) ⊂ C 1 (M • ). But since v k-1 is internal, c(w k-1 ) ∈ Σ σ( k-1 ) (k) ⊂ C 1 (M • ), which is impossible since L θ σ(f k-1 ) (k) and Σ σ( k-1 ) (k) do not intersect in C 1 (M • ). Thus, c(w k-1 ) ∈ N k . By induction, we prove that c(w i ) ∈ N 1+i for any i ∈ k. Since the set p w k -1 (E k+1 ) ∩ j∈k p w j -1 (N 2
) is compact, the property of the lemma is stable under small perturbations and the lemma is therefore true for small enough perturbations.

A first formula for the contribution of Γ k

For any (Γ, σ)

∈ G k , set ∆ Γ,σ Z k = I F * (Γ, σ, ψ) -I F 0 * (Γ, σ, ψ 0 ), so that Z k (ψ) -Z k (ψ 0 ) = 1 (2k)! (Γ,σ)∈ G k ∆ Γ,σ Z k . Lemma 6.3.8 implies that ∆ Γ,σ Z k = 0 if Γ is not isomorphic to Γ k . Since R ≥ k + 1, B i ∩ p b -1 (N k+1 × N k+1 ) = Θ 2 (B 0 i ∩ p b -1 (N 0 k+1 × N 0 k+1 
)). This yields the following lemma. Lemma 6.3.10. Let •, . . . , • X denote the algebraic intersection of several chains of a manifold X such that their codimensions add up to dim(X).

Let X 1 (Γ k ) (respectively X 0 1 (Γ k )) denote the subset of C Γ k (ψ) (respectively C Γ k (ψ 0 )
), whose elements are the configurations that map at least one vertex to E k+1 . For any edge e of Γ k , set D (1) e,σ = D e,σ ∩ X 1 (Γ k ) and D (1),0 e,σ = D 0 e,σ ∩ X 0 1 (Γ k ). The chains (D (1) e,σ ) e∈E(Γ k ) and (D (1),0 e,σ ) e∈E(Γ k ) are transverse, and

∆ Γ 1 ,σ Z k = (D (1) e,σ ) e∈E(Γ k ) X 1 (Γ k ) -(D (1),0 e,σ ) e∈E(Γ k ) X 0 1 (Γ k ) .
In this subsection, we prove the following lemma. Lemma 6.3.11. Label Γ k as in Figure 6.3. Fix a pair (B, B) of dual bases of

H * (Σ + 1 ) and set B = ([a d i ]) d∈n,i∈b d and B = ([z d i ]) d∈n,i∈b d . For any i ∈ k, set i + =    i + 1 if i < k, 1 if i = k.
For any i ∈ k, any numbering σ of Γ k , and any ε :

k → {±1}, set σ ε( i ) = σ( i ) + (1 -ε(i))k and ε ε,σ (i) =    +1 if σ ε( i ) < σ ε( i + ), -1 otherwise. The invariant Z k reads Z k (ψ) = 1 k(2k)!2 k σ∈Num(Γc) ε : k→{±} d∈n p : k→b d (-1) d+1 j∈k lk z d p(j) , (a n+1-d p(j + ) ) ε ε,σ (i) .
The rest of this section is devoted to the proof of Lemma 6.3.11.

Lemma 6.3.12. Let Y (σ) denote the manifold

i∈k Σ σ( i ) (2). Similarly, set Y 0 (σ) = i∈k Σ 0 σ( i ) (2). For any i ∈ k, set Y i (σ) = Σ σ( i ) (2) × Σ σ( i + ) (2) and B i,σ = B σ(f i ) ∩ Y i (σ) and similarly define Y 0 i (σ) and B 0 i,σ = B 0 σ(f i ) ∩ Y 0 i (σ). Let π i denote the pro- jection map Y (σ) → Y i (σ), and set P i,σ = π -1 i (B i,σ ). Similarly define π 0 i : Y 0 (σ) → Y 0
i (σ) and P 0 i,σ . The chains (P i,σ ) i∈k are transverse, the chains (P 0 i,σ ) i∈k are transverse, and

∆ Γ k ,σ Z k = - 1 2 k P 1,σ , • • • , P k,σ Y (σ) -P 0 1,σ , . . . , P 0 k,σ Y 0 (σ) .
Proof. Let X 2 (Γ k ) denote the set of configurations such that all the external vertices are mapped to E 2 , and set D (2) e,σ = 2D e,σ ∩ X 2 (Γ k ). For simplicity, we assume that D (2) e,σ is a variety. Similarly define X 0 2 (Γ k ) and D (2),0 e,σ . Lemma 6.3.9 ensures that the intersection of the supports of the D (1) e,σ is contained in

e∈E(Γ k ) D (2)
e,σ . On the other hand,

e∈E(Γ k ) D (2) e,σ \ e∈E(Γ k ) Supp(D (1) e,σ ) is contained in p -1 b ((N R ) k ). Then, D (1) e,σ X 1 (Γ k ) = 1 2 2k D (2) e,σ X 2 (Γ k ) + ρ 0 ,
where ρ 0 does not depend on the knot. This implies that

∆ Γ k ,σ Z k = 1 2 2k D (2) e,σ X 2 (Γ k ) -D (2),0 e,σ X 0 2 (Γ k ) .
Let us check that ϕ : c

∈ i∈k D (2) i ,σ → (c(w i )) i∈k ∈ Y (σ) is well-defined and is an orientation-reversing diffeomorphism.
The definition of X 2 (Γ k ) and of admissible propagators implies that if c

∈ i∈k D (2) i ,σ , then (c(v i ), c(w i )) ∈ B σ( i )
for any i ∈ k. Then, for any i ∈ k, since v i is internal and because of Definition 6.3.4, c(w i ) ∈ Σ σ( i ) (2). This implies that ϕ is actually valued in Y (σ). It is a diffeomorphism since the disk D µ (1) meets the knot in exactly one point.

Let us check that ϕ reverses the orientations. Let n i (x) denote the positive normal direction to Σ σ( i ) at x. The normal bundle to

i∈k D (2) i ,σ at c is N c   i∈k D (2) i ,σ   = i∈k T c(v i ) ψ(R n ) × R.n i (c(w i )) , COMPTAGES DE DIAGRAMMES
and we proved in Lemma 6.2.8 that C Γ k (ψ) is oriented as

T c C Γ k (ψ) = - i∈k T c(v i ) ψ(R n ) × T c(w i ) M • = - i∈k T c(v i ) ψ(R n ) × R.n i (c(w i )) × T c(w i ) Σ σ( i ) = -   i∈k T c(v i ) ψ(R n ) × R.n i (c(w i ))   ×   i∈k T c(w i ) Σ σ( i )   ,
where the last equality comes from the fact that the Seifert surfaces are evendimensional. This proves that

D L,σ = i∈k D (2)
i ,σ is oriented as -ϕ -1 (Y (σ)). Let us state without proof the following easy lemma, which we will use in the rest of this proof. Lemma 6.3.13. Let P and Q be two oriented submanifolds of an oriented manifold R.

Let N Q (P ∩ Q) denote the normal bundle of P ∩ Q as a submanifold of Q. For any x ∈ P ∩ Q, N Q x (P ∩ Q) = (-1) (dim(R)-dim(Q))(dim(R)-dim(P )) N x P.
For any i ∈ k, the coorientation of the submanifolds D

(2)

f i ,σ ∩ D L,σ in D L,σ and of the submanifolds D (2) f i ,σ in C Γ (ψ) differ by a factor (-1) k(n+1)(n+1) = 1, so D (2) e,σ e∈E(Γ k ) X 1 (Γ k ) = D (2) f 1 ,σ ∩ D L,σ , . . . , D (2) f k ,σ ∩ D L,σ D L,σ = -ϕ(D (2) f 1 ,σ ∩ D L,σ ), . . . , ϕ(D (2) f k ,σ ∩ D L,σ ) Y (σ)
, where the sign comes from the fact that ϕ reverses the orientation. Now, for any i ∈ k, ϕ(D

(2)

f i ,σ ∩ D L,σ ) is cooriented as D f i ,σ = p -1 f i (B σ(f i ) ), i.e. as B σ(f i ) in C 2 (M • ). On the other hand, P i,σ is cooriented as B σ(f i ) ∩ (Σ σ( i ) (2) × Σ σ( i + ) (2)) in Σ σ( i ) (2) × Σ σ( i + ) (2), i.e. as (-1) 2(n+1) B σ(f i ) = B σ(f i ) in C 2 (M • ).

Because of the 2 factors in the definition of the D

(2)

f i ,σ , this yields D (2) e,σ e∈E(Γ k ) X 2 (Γ k ) = -2 k P 1,σ , • • • , P k,σ Y (σ) . Similarly, D (2),0 e,σ e∈E(Γ k ) X 0 2 (Γ k ) = -2 k P 0 1,σ , • • • , P 0 k,σ Y 0 (σ) .
We are going to define a manifold Y (σ) in which the chains P i,σ and P 0 i,σ embed, in order to compute intersection numbers of the previous chains with boundaries in terms of intersection numbers of cycles inside one common manifold. Lemma 6.3.14. For i ∈ 2k, let S ± i denote the gluing of

Σ ± i ∩E 2 and -(Σ ± i ) 0 ∩ E 0 2 along their boundaries, set S i = S + i S - i ,

and let S ≤3

i denote the set of points of S i that come from a point in N 3 or N 0 3 before the gluing. For any i ∈ k, set Y i (σ) = S σ( i ) × S σ( i + ) , and set Y (σ) = i∈k S σ( i ) . There exist canonical projection maps π i : Y (σ) → Y i (σ) for any i ∈ k. The chains (P i,σ ) i∈k and (P 0 i,σ ) i∈k naturally embed into Y (σ), and the chains (B i,σ ) i∈k and (B 0 i,σ ) i∈k naturally embed into Y i (σ). With these notations,

• the boundaries ∂B i,σ and

∂B 0 i,σ lie in S ≤3 σ( i ) × S ≤3 σ( i + ) ,
• for any i ∈ k, there exists an

(n + 1)-chain Bi,σ in S ≤3 σ( i ) × S ≤3 σ( i + ) such that ∂ Bi,σ = ∂B 0 i,σ -∂B i,σ . The manifold S ≤3 σ( i ) × S ≤3 σ( i + )
does not depend on the knot. The chains ( Bi,σ ) i∈k can be chosen such that they do not depend on the knot, either.

Proof. Fix i ∈ k. Since the Seifert surfaces are parallel, the chain

B i,σ does not meet Y i (σ) ∩ (N 2 × E 3 ) or Y i (σ) ∩ (E 3 × N 2 ). Then, ∂B i,σ is necessarily contained in ∂Y i (σ) ∩ (N 3 × N 3 ). The same argument proves that ∂B 0 i,σ is contained in ∂Y 0 i (σ) ∩ (N 0 3 × N 0 3 ). Therefore, the chain Q i,σ = ∂B 0 i,σ -∂B i,σ is a cycle of S ≤3 σ( i ) × S ≤3 σ( i + )
. Since the propagators are standard inside p b -1 (N 3 × N 3 ), the cycle Q i,σ does not depend on the knot.

For any j ∈ k, let ± j denote the boundary ∂(Σ ± j ∩ E 2 ), which is involved in the gluing in the definition of S ± j , and let x ± j ∈ ± j . Since the product

S ≤3 σ( i ) × S ≤3 σ( i + ) retracts onto ( + σ( i ) - σ( i ) ) × ( + σ( i + ) - σ( i + ) ), H n (S ≤3 σ( i ) × S ≤3 σ( i + ) ) = Q 8
, with a basis given by the eight spheres

[ ε σ( i ) × x ε σ( i + ) ] and [x ε σ( i ) × ε σ( i + ) ] for ε, ε ∈ {±}. Let (s r ) 1≤r≤8 denote these spheres. The manifold S ≤3 σ( i ) × S ≤3 σ( i + ) contains T 0 1 = (S ≤3 σ( i ) × S ≤3 σ( i + ) ) ∩ (Σ 0 σ( i ) (2) × Σ 0 σ( i + ) (2)) and T 1 = (S ≤3 σ( i ) × S ≤3 σ( i + ) ) ∩ (Σ σ( i ) (2) × Σ σ( i + ) (2)).
T 0 1 and T 1 are diffeomorphic to each other because the surfaces Σ 0 j and Σ j are identical inside N 3 for any j. Denote by Θ T : T 0 1 → T 1 the induced diffeomorphism. Note that the eight chains (s r ) 1≤r≤8 also define bases ([s r ]) 1≤r≤8 of H n (T 0 1 ) and H n (T 1 ). The definition of the spheres (s r ) 1≤r≤8 implies that Θ T (s r ) = s r for any 1 ≤ r ≤ 8. Since the propagators do not depend on the knot inside

N 3 × N 3 , Θ T (∂B 0 i,σ ) = ∂B i,σ . The cycle ∂B 0 i,σ defines a class in H n (T 0 1 ) = H n (S ≤3 σ( i ) ×S ≤3 σ( i + ) ). This class reads [∂B 0 i,σ ] = 8 r=1 α i,r [s r ] for some rational numbers (α i,r ) 1≤r≤8 . Apply Θ T to this identity to get [∂B i,σ ] = 8 r=1 α i,r [s r ]. This means that [Q i ] = 0 in H n (S ≤3 σ( i ) × S ≤3 σ( i + )
) and proves the existence of Bi,σ .

Since the cycle

Q i ⊂ S ≤3 σ( i ) × S ≤3 σ( i +
) is independent of the knot, the chain Bi,σ can be chosen independently of the knot. • For any d ∈ n, and any

j ∈ b d , [(a d 1,j ) + ] = [a d j ] and [(z d 1,j ) + ] = [z d j ]
, where the cycles (a d j ) j,d and (z d j ) j,d are defined in Lemma 6.3.11.

For d = n + 1, (a n+1 1,1 ) + = (z n+1 1,1 ) + = S + 1 . For d = 0, (a 0 1,1 ) + = (z 0 1,1 ) + is a point.
In particular, for any d ∈ {0, . . . , n + 1},([(a d 1,j

) + ]) j∈b d and ([(z d 1,j ) + ]) j∈b d are bases of H d (S +
1 ), and for any (j, j ) ∈ b d 2 , we have the duality relation

[(a d 1,j ) + ], [(z n+1-d 1,j ) + ] S + 1 = δ j,j .
• For any d ∈ n, the cycles

((a d 1,j ) + ) j∈b d and ((z d 1,j ) + ) j∈b d are contained in Σ + 1 ∩ E k+1 ⊂ S + 1 . • The point (a 0 1,1 ) + = (z 0 1,1 ) + is in ∂(Σ + 1 ∩ E 2 ).
• For any d > n+1 2 , and any j ∈ b d , (a d 1,j ) + = (z d 1,j ) + , and for any d < n+1 2 and any

j ∈ b d , (z d 1,j ) + = (-1) d (a d 1,j ) + .
Since all the Seifert surfaces (Σ ± i ) i∈k are obtained from Σ + 1 by pushing Σ + 1 in the positive normal direction, these families yield similar families ((a d i,j ) ± ) 0≤d≤n+1,j∈b d and ((

z d i,j ) ± ) 0≤d≤n+1,j∈b d in H * (S ± i ).
Proof. It is possible to choose two families such that the first three properties hold because the map

H d (Σ + 1 ∩ E 3 ) → H d (S + 1 )
induced by the inclusion is an isomorphism for 0 ≤ d ≤ n, which can be deduced from Mayer-Vietoris formula.

Due to the symmetry (and antisymmetry) properties of the intersection number, we can also choose these chains such that the last property holds. Lemma 6.3.16. For any i ∈ k, define the cycle

B i,σ = B i,σ -B 0 i,σ + Bi,σ of Y i (σ). Its class in H n+1 (Y i (σ)) reads [B i,σ ] = d∈n (p,q,ε,ε )∈(b d ) 2 ×{±} 2 lk (z n+1-d σ( i ),p ) ε , (a d σ( i + ),q ) ε (a d σ( i ),p ) ε × (z n+1-d σ( i + ),q ) ε +R B i,σ , where R B i,σ reads d∈{0,n+1} (ε,ε )∈{±} 2 α (i) d,1,1,ε,ε (a d σ( i ),1 ) ε × (z n+1-d σ( i + ),1 ) ε , with rational coefficients (α (i) d,1,1,ε,ε ) d∈{0,n+1},(ε,ε )∈{±} 2 independent of the knot. COMPTAGES DE DIAGRAMMES
Proof. The families of chains ((a d σ( i ),p ) + ) 0≤d≤n+1,p∈b d and ((z d σ( i + ),p ) + ) 0≤d≤n+1,p∈b d induce the two following bases of H n+1 (Y i (σ)):

[(a d σ( i ),p ) ε × (z n+1-d σ( i + ),q ) ε ] 0≤d≤n+1,1≤p,q≤b d ,(ε,ε )∈{±} 2 ,
and [(z n+1-d σ( i ),p ) ε × (a d σ( i + ),q ) ε ] 0≤d≤n+1,1≤p,q≤b d ,(ε,ε )∈{±} 2 . These bases are dual is the sense that for any p, p , q, q , d, d , ε, ε , η, η ,

[(a d σ( i ),p ) ε × (z n+1-d σ( i + ),q ) ε ], [(z n+1-d σ( i ),p ) η × (a d σ( i + ),q ) η ] Y (σ) = δ (d ,p ,q ,η,η ) (d,p,q,ε,ε ) ,
where δ y x is the Kronecker delta. There exist coefficients such that

B i,σ = n+1 d=0 (p,q,ε,ε )∈(b d ) 2 ×{±} 2 α (i) d,p,q,ε,ε (a d σ( i ),p ) ε × (z n+1-d σ( i + ),q ) ε .
For any d ∈ n, and any (p, q, ε, ε

) ∈ (b d ) 2 × {±} 2 , α (i) d,p,q,ε,ε = B i,σ , (z n+1-d σ( i ),p ) ε × (a d σ( i + ),q ) ε Y i (σ) = B σ(f i ) , (z n+1-d σ( i ),p ) ε × (a d σ( i + ),q ) ε C 2 (M • ) = lk (z n+1-d σ( i ),p ) ε , (a d σ( i + ),q
) ε , where the first equality comes from the duality of the bases above, the second one comes from the second point of Lemma 6.3.15, and the third one comes from Lemma 6.2.15.

Set

R B i,σ = d∈{0,n+1} (ε,ε )∈{±} 2 α (i) d,1,1,ε,ε (a d σ( i ),1 ) ε × (z n+1-d σ( i + )
,1 ) ε . The duality allows us to compute the coefficients that appear in R B i,σ , too. First, α

(i) 0,1,1,ε,ε = [B i,σ ], [S ε σ( i ) × (a 0 σ( i + ),1 ) ε ] Y i (σ) . The chain S ε σ( i ) × (a 0 σ( i + ),1 ) ε is contained in S ε σ( i ) × ∂(Σ ε σ( i + ) ∩ E 2 ). Then, it only meets B i,σ inside Σ σ( i ) (2) × ∂(Σ ε σ( i + ) ∩ E 2 ). Let us prove that B i,σ ∩ (Σ σ( i ) (2) × ∂(Σ ε σ( i + ) ∩ E 2 )) lies in p -1 b (N 3 × N 3 ). If a con- figuration in this intersection was in E 3 × ∂N 2 , it would be in (Σ σ(f i ) (3) × D µ (2)) ∪ (E 3 × L θ σ(f i ) (2)). Since Σ σ(f i ) (2) ∩ Σ σ( i ) (2) = ∅ and Σ σ( i + ) (2) ∩ L θ σ(f i ) (2) = ∅, this is impossible. Then, B i,σ , S ε σ( i ) × (a 0 σ( i + ),1 ) ε S σ( i ) ×S σ( i + ) only counts intersection points in p -1 b (N 3 ×N 3 )
. By construction, this implies that this intersection number does not depend on the knot. Similarly,

B 0 i,σ , S ε σ( i ) × (a 0 σ( i + ),1 ) ε S σ( i ) ×S σ( i + )
does not depend on the knot, and Bi,σ , S ε σ( i ) × (a 0 σ( i + ),1 ) ε S σ( i ) ×S σ( i + ) does not depend on the knot because of Lemma 6.3.14. This proves that α (i) 0,1,1,ε,ε does not depend on the knot. The same argument proves that α (i) n+1,1,1,ε,ε does not depend on the knot, so that the coefficients of R B i,σ do not depend on the knot.

Lemma 6.3.17. Let J denote the set of tuples (d, p, q, ε) such that d ∈ n, (p, q) ∈ (b d ) 2 , and ε is a map ε : k → {±}. For any i ∈ k, set P i,σ = P i,σ -P 0 i,σ +π i -1 ( Bi,σ ). With these notations,

[P i,σ ] = R i,σ + (d,p,q,ε)∈J lk z n+1-d σ( i ),p ) ε(i) , (a d σ( i + ),q ) ε(i + )   (a d σ( i ),p ) ε(i) × (z n+1-d σ( i + ),q ) ε(i + ) × j ∈{i,i + } S ε(j) σ( j )   ,
where R i,σ reads

R i,σ = d∈{0,n+1} ε : k→{±} α (i) d,ε   (a d σ( i ),1 ) ε(i) × (z n+1-d σ( i + ),1 ) ε(i + ) × j ∈{i,i + } S ε(j) σ( j )   ,
with coefficients (α

(i) d,ε ) d,ε
that do not depend on the knot. Proof. We have P i,σ = π i -1 (B i,σ ), so Lemma 6.3.16 implies

P i,σ = R i,σ + d∈n (p,q,ε,ε )∈b d 2 ×{±} 2 lk z n+1-d σ( i ),p ) ε , (a d σ( i + ),q ) ε π i -1 (a d σ( i ),p ) ε × (z n+1-d σ( i + ),q ) ε ,
with R i,σ as in the lemma with α

(i) d,ε = α (i) d,1,1,ε(i),ε(i + )
. But for any d ∈ n, any p and q in b d , and any (ε, ε

) ∈ {±} 2 , π i -1 (a d σ( i ),p ) ε × (z n+1-d σ( i + ),q ) ε = ε : k\{i,i + }→{±} 2 η ε   (a d σ( i ),p ) ε × (z n+1-d σ( i + ),q ) ε × j ∈{i,i + } S ε(j) σ( j )  
for some signs (η ε) ε. Since for any ε the chain (

a d σ( i ),p ) ε × (z n+1-d σ( i + ),q ) ε × j ∈{i,i + } S ε(j) σ( j )
is cooriented by (z n+1-d σ( i ),p ) ε × (a d σ( i + ),q ) ε , the signs (η ε) ε are all positive. The lemma follows.

Lemma 6.3.18. Let J denote the set of tuples (d, p, q, ε) such that d ∈ {0, . . . , n+ 1}, (p, q) ∈ (b d ) 2 , and ε :

k → {±}. (We have J ⊂ J .) For (d i , p i , q i , εi ) i∈k ∈ (J ) k ,     (a d i σ( i ),p i ) εi (i) × (z n+1-d i σ( i + ),q i ) εi (i + ) × j ∈{i,i + } S εi (j) σ( j )     i∈k =    (-1) d 1 if d 1 = . . . = d k , ε1 = .
. . = εk , and for any i ∈ k, q i = p i + , 0 otherwise.

Proof. If we do not have ε1 = . . . = εk the intersection is empty. If we do not have d 1 = . . . = d k , there exists an integer i ∈ k such that d i > d i + and the chains (z n+1-d i σ( i + ),q i ) εi (i) and (a i) do not intersect, up to small perturbations, so the intersection number of the lemma is zero. Let us now assume ε1 = . . . = εk = ε and

d i + σ( i + ),p i + ) εi + (
d 1 = . . . = d k = d. The chain (a d σ( i ),p i ) ε(i) × (z n+1-d σ( i + ),q i ) ε(i + ) × j ∈{i,i + } S ε(j) σ( j ) is cooriented by (-1) d N(a d σ( i ),p i ) ε(i) × N(z n+1-d σ( i + ),q i ) ε(i + )
. Then, the normal bundle of the intersection of the lemma is oriented as

i∈k (-1) d N(a d σ( i ),p i ) ε(i) × N(z n+1-d σ( i + ),q i ) ε(i + ) =(-1) kd N(a d σ( 1 ),p 1 ) ε(1) × k-1 i=1 N(z n+1-d σ( i + ),q i ) ε(i + ) × N(a d σ( i + ),p i + ) ε(i + ) × N(z n+1-d σ( 1 ),q k ) ε(1) =(-1) (k+1)d N(z n+1-d σ( 1 ),q k ) ε(1) × N(a d σ( 1 ),p 1 ) ε(1) × k-1 i=1 N(z n+1-d σ( i + ),q i ) ε(i + ) × N(a d σ( i + ),p i + ) ε(i + ) =(-1) d i∈k N(a d σ( i + ),p i + ) ε(i + ) × N(z n+1-d σ( i + ),q i ) ε(i + ) .
This implies that

    (a d σ( i ),p i ) ε(i) × (z n+1-d σ( i + ),q i ) ε(i + ) × j ∈{i,i + } S ε(j) σ( j )     i∈k = (-1) d i∈k (a d σ( i + ),p i + ) ε(i + ) , (z n+1-d σ( i + ),q i ) ε(i + ) S ε(i + ) σ( i + ) = (-1) d i∈k δ q i ,p i +
and concludes the proof.

Lemma 6.3.19. For any numbering σ of Γ k ,

∆ Γ k ,σ Z k = 1 2 k d∈n ε : k→{±} p : k→b d (-1) (d+1) i∈k lk (z n+1-d σ( i ),p(i) ) ε(i) , (a d σ( i + ),p(i + ) ) ε(i + ) .
Proof. Lemmas 6.3.17 and 6.3.18 imply that

P 1,σ , • • •, P k,σ Y (σ) = d∈n ε : k→{±} p : k→b d (-1) d i∈k lk (z n+1-d σ( i ),p(i) ) ε(i) , (a d σ( i + ),p(i + ) ) ε(i + ) + ρ 1 ,
where

ρ 1 = R 1,σ , . . . , R k,σ Y (σ)
does not depend on the knot. For any i ∈ k and j ∈ {0, 1, 2}, set (2))), so that

P i,σ (j) =        P i,σ if j = 0, P 0 i,σ if j = 1, P i,σ = π i -1 ( Bi,σ ) if j = 2,
P 1,σ , • • • , P k,σ Y (σ) = j : k→{0,1,2}
(-1) j(1)+...+j(k) (P i,σ (j(i))) i∈k Y (σ) .

For r ∈ [3, R -1], let S ≤r i denote the set of points of S i that come from a point of N r or N 0 r in the gluing that defines S i in Lemma 6.3.14. Let us prove that for a configuration c

∈ i∈k P i,σ (j(i)), if c(w p ) ∈ S ≤r σ( p) for some r ∈ [3, R -1] and p ∈ k, then c(w p + ) ∈ S ≤r+1 σ( p + ) .
• If j(p) = 0, then (c(w p ), c(w p + )) ∈ B σ(fp) . If c(w p + ) was in E r+1 , then we would have (c(w p ), c(w p + )) ∈ p b -1 (N r × E r+1 ), so c(w p ) ∈ L θ σ(fp) (r) or c(w p + ) ∈ Σ σ(fp) (r + 1). Since the Seifert surfaces (Σ ε j ) j∈k,ε=± are pairwise parallel, this is impossible and c(w

p + ) ∈ Σ σ( p + ) (2) ∩ N r+1 ⊂ S ≤r+1 σ( p + ) . • If j(p) = 1, we similarly prove that c(w p + ) ∈ Σ 0 σ( p + ) (2) ∩ N 0 r+1 ⊂ S ≤r+1 σ( p + ) . • If j(p) = 2, since Bp,σ = π i ( P p,σ ) ⊂ S ≤3 σ( p) × S ≤3 σ( p + ) and r ≥ 2, then c(w p + ) ∈ S ≤3 σ( p + ) ⊂ S ≤r+1 σ( p + )
A finite induction proves that if j takes the value 2, then the intersection number (P i,σ (j(i))) i∈k Y (σ) only counts configurations in i∈k S ≤R σ( i ) , where these chains are independent of the knot. This implies that

P 1,σ , • • • , P k,σ Y (σ) = P 1,σ , • • • , P k,σ Y (σ) + (-1) k P 0 1,σ , • • • , P 0 k,σ Y (σ) + ρ 2
, where ρ 2 is independent of the knot. Note that the quantity ρ 3 = -ρ 2 +((-1) k+1 -1) P 0 1,σ , • • • , P 0 k,σ Y (σ) does not depend on the knot. Lemma 6.3.12 reads

∆ Γ k ,σ Z k = - 1 2 k P 1,σ , • • • , P k,σ Y (σ) -P 0 1,σ , . . . , P 0 k,σ Y 0 (σ) = - 1 2 k P 1,σ , • • • , P k,σ Y (σ) + ρ 3 = 1 2 k d∈n ε : k→{±} p : k→b d (-1) d+1 i∈k lk (z n+1-d σ( i ),p(i) ) ε(i) , (a d σ( i + ),p(i + ) ) ε(i + ) - ρ 3 + ρ 1 2 k .
If ψ is the trivial knot, this formula yields ρ 1 + ρ 3 = 0. This concludes the proof of Lemma 6.3.19. COMPTAGES DE DIAGRAMMES From now on, we assume without loss of generality that θ = 0 and R = 3, and we prove Lemma 6.4.1 until the end of Section 6.4.

Fix Seifert surfaces Σ ± as in Definition 6.3.4. Identify a neighborhood N 3 of the knot with the neighborhood N 0 3 of the trivial knot in R n+2 defined as the union of the cylinder {x ∈ R n+2 | x 1 2 + x 2 2 ≤ 9} and the complement of the open ball of center 0 and radius 2.3 2 3 = 6. In this setting, (G τ

) |(∂C 2 (M • ))∩p -1 b (N 3 ×N 3 ) extends to a smooth map G 0 : p -1 b (N 3 × N 3 ) → S n+1 , which is the restriction of the Gauss map of C 2 (R n+2 ) to p b -1 (N 3 × N 3 ) = p b -1 (N 0 3 × N 0 3 ) ⊂ C 2 (R n+2
). Define the following subsets:

X 0 = p -1 b (N 1 ×N 1 ) X 1 = p -1 b   r∈[1,2] E r+1 × N r   X 2 = p -1 b   r∈[1,2] N r × E r+1   , Y 1 = p -1 b ((N 2 ∩ E 1 ) × N 1 ), Y 2 = p -1 b (N 1 × (N 2 ∩ E 1 )), X = X 0 ∪ X 1 ∪ X 2 , Y = Y 1 ∪ Y 2 , and W = C 2 (M • ) \ (X ∪ Y ).
Figure 6.5 shows this decomposition of C 2 (M • ), where X is in black, Y in gray, and W in white.

Y 1 Y 2 X 0 X 2 X 1 W 1 2 3 1 2 3 y ∈ E 3 y ∈ N 2 x ∈ E 1 Figure 6.5 -The used decomposition of C 2 (M • )
Let (e i ) 1≤i≤n+2 denote the canonical basis of R n+2 . The disks D µ (r) and the lines L ± 0 (r) are defined in Notation 6.3.3. Define the following chains in X:

• B X 0 = G 0 -1 ({e 1 }) ∩ p b -1 (N 1 × N 1 ) • B X 1 = r∈[1,2] (Σ -∩ E r+1 ) × D µ (r) + p b -1 (E r+1 × L + 0 (r)) 126 CHAPITRE 6. LA TORSION DE REIDEMEISTER EN FONCTION DE COMPTAGES DE DIAGRAMMES • B X 2 = r∈[1,2] D µ (r) × (Σ + ∩ E r+1 ) -p b -1 (L - 0 (r) × E r+1 )
Note that B X 0 is naturally oriented. We orient B X 1 such that the inclusions (Σ -∩ E r+1 ) × D µ (r) + p -1 b (E r+1 × L + 0 (r)) → B X 1 preserve the orientation for any r ∈ [1, 2]. The chain B X 2 is similarly oriented. We are going to define a chain

B ⊂ C 2 (M • ) such that ∂B = G τ -1 ({e 1 }) and B ∩ int(X i ) = int(B X i ) for i ∈ {0, 1, 2}.
In

N 3 = N 0 3 ⊂ R n+2 , use the coordinates x = (x 1 , x 2 , x) ∈ R × R × R n .
In these coordinates, and for any r ∈

[1, 3], N r = {(x 1 , x 2 , x) | x 1 2 + x 2 2 ≤ r 2 or ||x|| ≥ 18 r }.
We also define the coordinates x = (x 1 , x 2 , h x .ω x ), such that h x ∈ R + and ω x ∈ S n-1 . This will help us in drawing the next figures in R 2 × R + with ω x fixed in S n-1 . For example, Figure 6.6 depicts N r .

h r = ( 18 r ) 2 -r 2 r R r = 18 r h x x 1 x 2 Figure 6.6 -The neighborhood N r . Set R r = 18 r and h r = R r 2 -r 2 , so that ∂N r = ∂ c N r ∪ ∂ s N r , with ∂ c N r = {(x 1 , x 2 , h x .ω x ) | x 1 2 + x 2 2 = r 2 , h x ≤ h r } and ∂ s N r = {(x 1 , x 2 , h x .ω x ) | x 1 2 + x 2 2 = R r 2 -h x 2 , h x ≤ h r }. We are going to define a chain B Y 1 ⊂ Y 1 such that ∂(B X 0 + B Y 1 + B X 1 ) ⊂ ∂(X 0 ∪ Y 1 ∪ X 1
). For any y ∈ N 3 , define D 0 (y, -e 1 ) = {x ∈ N 1 | there exists t ≥ 0 such that x = y -t.e 1 }, so that B X 0 = {(x, y) | y ∈ N 1 , x ∈ D 0 (y, -e 1 )}. We orient D 0 (y, -e 1 ) with dt, so that B X 0 is oriented by dy ∧ dt. Lemma 6.4.2. The boundary ∂B X 0 splits into three pieces

G -1 τ ({e 1 })∩(∂C 2 (M • )∩ p -1 b (N 1 × N 1 )), ∂ 1 B X 0 = B X 0 ∩ p -1 b (∂N 1 × N 1 ) and ∂ 2 B X 0 = B X 0 ∩ p -1 b (N 1 × ∂N 1 ). The piece ∂ 1 B X 0 is exactly {(x, y) | x ∈ D 0 (y, -e 1 ) ∩ ∂N 1 , y ∈ N 1 }.
For any y ∈ N 1 , define the following points :

• If h y ≤ h 1 , |y 2 | ≤ R 1 2 -h y 2 , and y 1 ≥ R 1 2 -y 2 2 -h y 2 ,
x - s (y) and x + s (y) are the two 10 intersection points of D 0 (y, -e 1 ) with the sphere {x | ||x|| = R 1 }.

10 They coincide when

|y 2 | = R 1 2 -h y 2 .
• If h y ≤ h 1 , |y 2 | ≤ 1, and y 1 ≥ R 1 2 -y 2 2 -h y 2 , x - c (y) and x + c (y) are the two 11 intersection points of D 0 (y, -e 1 ) with the cylinder {x | x 2 1 + x 2 2 = 1}.

• If h y ≤ h 1 , and y 1 2 + y 2 2 ≤ 1, x - c (y) and x - s (y) are the two 12 intersection points of D 0 (y, -e 1 ) with the cylinder or the sphere as above.

More precisely, we have the formulas

x ± c (y) = ± √ 1 -y 2 2 , y 2 , y x ± s (y) = ± R 1 2 -y 2 2 -h y 2 , y 2 , y ,
when they make sense.

For any y ∈ N 1 : 

D 0 (y, -e 1 )∩∂N 1 =                                  ∅ if h y > h 1 or |y 2 | > R 1 2 -h y 2 or ( y 1 < 0 and ||y|| > R 1 ), {x - s (y), x + s (y)} if h y ≤ h 1 , 1 < |y 2 | ≤ R 1 2 -h y 2 and y 1 ≥ R 1 2 -y 2 2 -h y 2 , {x - c (y), x + c (y), x - s (y), x + s (y)} if h y ≤ h 1 , |y 2 | ≤ 1, and 
y 1 ≥ R 1 2 -y 2 2 -h y 2 , {x - s (y), x - c (y)} if h y ≤ h 1 and y 1 2 + y 2 2 ≤ 1.
• The faces ∂ ± s,o B X 0 = {(x ± s (y), y) | h y ≤ h 1 , |y 2 | ≤ R 1 2 -h y 2 , y 1 ≥ R 1 2 -y 2 2 -h y 2 }, oriented by ∓dy. • The faces ∂ ± c,o B X 0 = {(x ± c (y), y) | h y ≤ h 1 , |y 2 | ≤ 1, y 1 ≥ R 1 2 -y 2 2 -h y 2 }, oriented by ±dy. • The face ∂ c,i B X 0 = {(x - c (y), y) | h y ≤ h 1 , y 1 2 + y 2 2 ≤ 1}, oriented by -dy. • The face ∂ s,i B X 0 = {(x - s (y), y) | h y ≤ h 1 , y 1 2 + y 2 2 ≤ 1}
, oriented by +dy.

Lemma 6.4.3. The boundary of B X 1 is the union of:

• The face ∂ B X 1 = ∂(Σ -∩ E 2 ) × D µ (1). • The face 13 ∂ ,µ B X 1 = - r∈[1,2] ∂(Σ -∩ E r+1 ) × ∂D µ (r). • The face ∂ µ B X 1 = (Σ -∩ E 3 ) × ∂D µ (2). • The face ∂ E,L B X 1 = r∈[1,2] (∂E r+1 ) × {(R r , 0, 0)}. • The face ∂ E B X 1 = ∂E 2 × L + 0 (1). • The face 14 ∂ L B X 1 = -E 3 × ∂L + 0 (2). • The face ∂ ∞ B X 1 = G τ -1 ({e 1 }) ∩ p b -1 (E 2 × {∞}).
Among these faces, ∂ B X 1 , and ∂ E B X 1 are contained in ∂Y 1 . We are going to extend the half-line D 0 (y, -e 1 ) inside E 1 in order to cancel the faces of ∂ 1 B X 0 and these faces ∂ B X 1 and ∂ E B X 1 . The goal of Section 6.4.2 is to obtain the following lemma. Lemma 6.4.4. There exists a chain B Y 1 ⊂ Y 1 such that the codimension 1 faces of B Y 1 are:

• the faces -∂ c,i B X 0 , -∂ s,i B X 0 , -∂ ± s,o B X 0 , and -∂ ± c,o B X 0 , • the faces -∂ B X 1 and -∂ E B X 1 , • the face ∂ ∞ B Y 1 = {(x, y = ∞, u = e 1 ) | x ∈ N 2 ∩ E 1 }, oriented by -dx, • faces (∂ i B Y 1 ) 1≤i≤3 , which are contained in p -1 b ((N 2 ∩ E 1 ) × ∂N 1 )
⊂ ∂W and described in Lemmas 6.4.5, 6.4.6, and 6.4.7. 13 The union -

r∈[1,2] ∂(Σ -∩ E r+1 ) × ∂D µ (r) is oriented as -[1, 2] × ∂(Σ -∩ E r+1 ) × ∂D µ (r).

Construction of the chain B Y 1

Cancellation of the faces ∂

c,i B X 0 and ∂ s,i B X 0 In this section, set Y c = {y ∈ N 1 | 0 < h y ≤ h 1 , y 1 2 + y 2 2 ≤ 1}. Let y be a point of Y c . If h y ≥ h 2 , define D 1 (y, -e 1 ) = {x -te 1 ∈ N 2 ∩ E 1 | t > 0}
, and orient it by dt. If h y ≤ h 2 , define D 1 (y, -e 1 ) as the union of the following oriented arcs.

• The line segment L - c (y) ⊂ N 2 from x - c (y) to ∂N 2 with direction -e 1 . Let x c L (y) = (-2 cos(η c ), -2 sin(η c ), y) be the intersection point of this line with ∂N 2 (with

η c ∈ [-π 2 , π 2 ]
). • The circular arc from x c L (y) to x c Σ (y) = (-2, 0, y) given by the formula t ∈ [0, 1] → (-2 cos((1 -t)η c ), -2 sin((1 -t)η c ), y).

• The arc of longitude {x ∈ ∂(Σ -∩ E 2 ) | h x ≥ h y , ω x = ω y }, from x c Σ (y) to x s Σ (y) = -R 2 2 -h y 2 , 0, y .
• The circular arc from x s Σ (y) to the point

x s L (y) = -R 2 2 -h y 2 -y 2 2 , y 2 , y , given by t ∈ [0, 1] → -R 2 2 -h y 2 cos(tη s ), -R 2 2 -h y 2 sin(tη s ), y , where η s ∈ [-π 2 , π 2 ] satisfies x s L (y) = -R 2 2 -h y 2 cos(η s ), -R 2 2 -h y 2 sin(η s ), y .
• The line segment L - s (y) ⊂ N 2 from x s L (y) to x - s (y), which has direction -e 1 . Figure 6.8 depicts the curve D(y, -e 1 ) = D 0 (y, -e 1 ) ∪ D 1 (y, -e 1 ), where the dotted part on the right is not in the plane but in the longitude. • the face -∂ c,i B X 0 ,

y y x c L (y) x c Σ (y) x s Σ (y) x s L (y) x - s (y) x - c (y)
• the face -∂ s,i B X 0 ,

• the face

∂ 1 B Y 1 = {(x, y) | y ∈ ∂ c N 1 , x ∈ D 1 (y, -e 1 )}, oriented by dt ∧ Ω(∂ c N 1 ), • the face -∂ B X 1 = -∂(Σ -∩ E 2 ) × D µ (1). If (x, y) ∈ B c , and if y ∈ ψ(R n ), then x ∈ Σ -.
Proof. The first two faces and their orientations directly follow from the construction of D 1 (y, -e 1 ). The next two faces correspond to y 1 2 + y 2 2 = 1, and h y = 0, respectively. The face corresponding to h y = h 1 is of codimension 2, since D 1 (y, -e 1 ) reduces to a point. Note the cancellation at h y = h 2 since x s Σ (y) = x c Σ (y) and x s L (y) = x c L (y) for such a y.

Cancellation of ∂

+ c,o B X 0 , ∂ - c,o B X 0 , ∂ + s,o B X 0 , and ∂ - s,o B X 0 Set Y s = {y | h y ≤ h 1 , 0 < |y 2 | ≤ R 1 2 -h y 2 , y 1 ≥ R 1 2 -h y 2 -y 2 2 }.
In this section, for any y ∈ Y s , we are going to extend D 0 (y, -e 1 ) to a curve D(y, -e 1 ) in N 2 such that ∂D(y, -e 1 ) = -{y} in M • . In order to do so, we will connect x - s (y) and x + s (y), and, when they exist, we will connect x - c (y) and x + c (y). We split Y s in three parts 

Y 1 s = {y ∈ Y s | h 2 ≤ h y or |y 2 | ≥ R 2 2 -h y 2 }, Y 2 s = {y ∈ Y s | h y ≤ h 2 , 2 < |y 2 | ≤ R 2 2 -h y 2 }, and Y 3 s = {y ∈ Y s | h y ≤ h 2 , 0 < |y 2 | ≤ 2}.
(1) ∈ Y 1 s y (2) ∈ Y 2 s D 1 (y (1) , -e 1 ) x - s,2 (y (2) ) x + s,2 (y (2) ) x - c,2 (y (3) ) x + c,
Set Y 0 s = {y | h y ≤ h 2 , y 1 ≥ R 1 2 -h y 2 , y 2 = 0}.
The codimension 1 faces of B (1) s are:

• the faces -∂ + s,o B X 0 , -∂ - s,o B X 0 , -∂ + c,o B X 0 , and -∂ - c,o B X 0 , • the face ∂ ∞ B Y 1 , • the face ∂ 2 B Y 1 = {(x, y) | y ∈ Y s , y 1 = R 1 2 -h y 2 -y 2 2 , x ∈ D 1 (y, -e 1 )}, which is contained in p b -1 ((N 2 ∩ E 1 ) × ∂N 1 )
, and which is oriented by -dy 2 ∧ dh y ∧ dω y ∧ dt, Proof. The first four faces follow from the fact that the line D(y, -e 1 ) extends D 0 (y, -e 1 ). When y ∈ Y 3 s and h y = h 2 , γ s (y) and γ c (y) cancel each other, so that there is no face corresponding to h y = h 2 . Note that there is no discontinuity when 

• the face ∂ 3 B (1) s = {(x, y) | y ∈ Y 0 s , x ∈ C s (y) ∪ C c (y)} where C s (y) denotes Π y ∩ ∂ s N 2 ,
|y 2 | = R 1 2 -h y 2 since γ s (y)
• The face -∂ 3 B (1)
s .

• The face

-∂E 2 × L + 0 (1) = -∂ E B X 1 . • The face ∂ 3 B Y 1 = {(x, y) | 0 < h y ≤ h 2 , y 1 = R 1 2 -h y 2 , y 2 = 0, x ∈ A(y)},
oriented by Ω(A(y)) ∧ dh y ∧ dω y , and contained in p -1 b ((N 2 ∩ E 1 ) × ∂N 1 ).

Proof. The face -∂ 3 B (1) s corresponds to the boundary of A(y). The face ∂ E B X 1 appears when h y approaches zero. The face corresponding to h y = h 2 is of codimension 2, since A(y) degenerates to a circle. When y 1 = R 1 2 -h y 2 , we obtain the face ∂ 3 B Y 1 , and when y 1 approaches infinity, we obtain a face contained in {(x, y = ∞, u = e 1 ) | x ∈ ∂N 2 }, thus of codimension at least two.

Proof of Lemma 6.4.4 and definition of the chain in

X ∪ Y Set B Y 1 = B c + B (1)
s + B (2) s . The chain B Y 1 satisfies the conditions of Lemma 6.4.4. Let S : C 2 (N 3 ) → C 2 (N 3 ) and T : C 2 (M • ) → C 2 (M • ) be the smooth maps defined on the interior of their respective domains by the formulas S(x, y) = (-x, -y) and T (x, y) = (y, x), and set

B Y 2 = -ST (B Y 1 ) and B X∪Y = B X 0 + B Y 1 + B X 1 + B Y 2 + B X 2 .
By construction, we have the following lemma. Lemma 6.4.8. Let G τ be the map of Definition 6.2.5.

The chain

∂B X∪Y -G -1 τ ({e 1 }) defines a cycle δ W of ∂W ⊂ W . Proof. For any 1 ≤ i ≤ 3, set ∂ i B Y 2 = -ST (∂ i B Y 1 ). Set ∂ L B X 2 = -∂L - 0 (2) × E 3 and ∂ µ B X 2 = (∂D µ (2)) × (Σ + ∩ E 3 ). Set ∂ ,µ B X 2 = -ST (∂ ,µ B X 1 ), and ∂ E,L B X 2 = -ST (∂ E,L B X 1 )
, where the faces ∂ ,µ B X 1 and ∂ E,L B X 1 are defined in Lemma 6.4.3.

The boundary of B X∪Y is the union of :

• The faces (∂ i B Y 1 ) 1≤i≤3 and (∂ i B Y 2 ) 1≤i≤3 . • The faces ∂ ,µ B X i , ∂ µ B X i , ∂ E,L B X i , ∂ L B X i for i ∈ {1, 2}. • The face G -1 τ ({e 1 }) ∩ (X ∪ Y ) = (G τ |(∂C 2 (M • ))\U E 1 ) -1 ({e 1 }).
All the previous faces except the last one are in ∂W . Making the difference with G -1 τ ({e 1 }) replaces the last part with -G -1 τ ({e 1 }) ∩ W = -(G τ |U E 1 ) -1 ({e 1 }), which is contained in ∂W . In this section, we prove that the cycle δ W of Lemma 6.4.8 is null-homologous in W . Lemma 6.4.9. There exists a chain B W ⊂ W such that ∂B W = -δ W .

Extension of the chain to W

Proof of Lemma 6.4.1 assuming Lemma 6.4.9. Let B W be like in the lemma, so that

∂(B W + B X∪Y ) = G -1 τ ({e 1 }). Set B T = 1 2 (B W + B X∪Y + T (B W + B X∪Y )), so that ∂B T = 1 2 G -1 τ ({-e 1 , e 1 }). Note also that if c = (x, y) ∈ B T , and if (x, y) ∈ p b -1 (ψ(R n ) × M •
), the definition of (B X i ) 1≤i≤3 and the construction of B c in Lemma 6.4.5 imply that y lies in the closure Σ

-∪ Σ + of Σ -∪ Σ + in C 1 (M • ).
This proves the first assertion of Lemma 6.4.1. It remains to prove that admissible propagators can be chosen standard in p -1 b (N 3 × N 3 ) as stated in the second part of Lemma 6.4.1.

The previous work with the trivial knot and the surfaces (( 0 Σ + ) 0 , ( 0 Σ -) 0 ), yields an admissible propagator B 0 for (( 0 Σ + ) 0 , ( 0 Σ -) 0 , ψ 0 ).

Set

W 2 = p -1 b (N 3 × N 3 ) ∩ W and W 3 = W \ W 2 . Set B T W 2 = B 0 ∩ W 2 . The chain δ T W 3 = 1 2 (δ W + T (δ W )) + ∂B T W 2 is a cycle of W 3
, which is nullhomologous in W because of Lemma 6.4.9. Since W 3 is a deformation retract of W , this implies that δ T W 3 is a null-homologous cycle in W 3 . Therefore, there exists

B W 3 such that ∂B T W 3 = -δ T W 3 . Since T (δ T W 3 ) = δ T W 3 , choose B T W 3 such that T (B T W 3 ) = B T W 3 . Set B = 1 2 (B X∪Y + T (B X∪Y )) + B T W 2 + B T W 3 . Since the boundary of 1 2 (B X∪Y + T (B X∪Y )) + B T W 2 is 1 2 G -1 τ ({-e 1 , e 1 }) + 1 2 (δ W + T (δ W )) + ∂B T W 2
, the chain B is as requested by Lemma 6.4.1.

The rest of this section is devoted to the proof of Lemma 6.4.9. Set W 1 = p -1 b (E 1 × E 1 ). Note that W → W 1 is a homotopy equivalence. In order to prove Lemma 6.4.9, it suffices to prove that the class [δ W ] ∈ H n+2 (W 1 ) is null. Lemma 6.4.9 directly follows from the following two lemmas. Lemma 6.4.10.

Let M W denote the cycle p -1 b ({(x, x) | x ∈ ∂D µ (2)}) = U M • |∂Dµ(2) . With these notations, H n+2 (W 1 ) = Q.[M W ]. COMPTAGES DE DIAGRAMMES Proof. W 1 is nothing but C 2 (E 1 ), and E 1 is homotopic to the complement of ψ(R n ) ∪ {∞} ⊂ S n+2 . Let ∆ E 1 denote the diagonal of E 1
2 . The construction of the configuration space C 2 (E 1 ) implies that C 2 (E 1 ) has the homotopy type of its interior

E 1 2 \ ∆ E 1 , so that H n+2 (W 1 ) ∼ = H n+2 (E 1 2 \ ∆ E 1
). The Alexander duality implies that H * (E 1 ) is non trivial only in degree 0 and 1, and that H 1 (E 1 ) is generated by [∂D µ (2)]. Then, H * (E 1 2 ) = 0 for * > 2, and the long exact sequence associated to

E 1 2 \ ∆ E 1 → E 1 2 yields an isomorphism from H n+3 (E 1 2 , E 1 2 \ ∆ E 1 ) to H n+2 (E 1 2 \ ∆ E 1 ). The excision theorem yields an isomorphism between H n+3 (E 1 2 , E 1 2 \ ∆ E 1 ) and H n+3 (N (∆ E 1 ), N (∆ E 1 ) \ ∆ E 1 ), where N (∆ E 1 ) denotes a tubular neighborhood of ∆ E 1 . Since M • is parallelizable, N (∆ E 1 ) is diffeomorphic to the trivial disk bundle ∆ E 1 × D n+2
, and

H n+3 (N (∆ E 1 ), N (∆ E 1 ) \ ∆ E 1 ) ∼ = H n+3 (∆ E 1 × D n+2 , ∆ E 1 × (D n+2 \ {0})) ∼ = H 1 (∆ E 1 ) ⊗ H n+2 (D n+2 , ∂D n+2 ) ∼ = H 1 (∆ E 1 ) ⊗ H n+1 (∂D n+2 ) = Q.[∂D µ (2)] ⊗ [∂D n+2 ].
Therefore,

H n+2 (W 1 ) ∼ = Q.[∂D µ (2)] ⊗ [∂D n+2 ]. This identification maps [M W ] to ±[∂D µ (2)] ⊗ [∂D n+2 ].
Lemma 6.4.11. There exists an (n + 2)-chain D W , with ∂D W ⊂ ∂W 1 , such that:

• D W is dual to M W : D W , M W W 1 = ±1.
• The intersection number D W , δ W W 1 is zero.

Since this lemma implies that [δ W ] = 0 ∈ H n+2 (W 1 ), it implies Lemma 6.4.9. We are left with the proof of Lemma 6.4.11.

We will construct the chain D W = D 1 + D 2 + D 3 as the sum of a chain D 1 defined in Lemma 6.4.12, a chain D 2 defined in Lemma 6.4.16, and a chain D 3 defined in Lemma 6.4.17.

Construction of the chain D 1

Fix a Seifert surface Σ 0 parallel to those used in the construction of the chain

B X∪Y , such that Σ 0 ∩ N 3 = {(r cos( π 6 ), r sin( π 6 ), x) | x ∈ R n , r ≥ 0} ∩ N 3 , and let Σ denote Σ 0 ∩ E 1 . Fix an embedding ϕ : [-1, 1] × Σ → E 1 , such that ϕ(0, x) = x
for any x ∈ Σ . This allows us to define a normal vector n x = ( ∂ϕ ∂t )(0,x) ||( ∂ϕ ∂t )(0,x)|| for any x ∈ Σ . Let Σ + denote the parallel surface ϕ({1} × Σ ), and, for any x ∈ Σ , let x + denote the associated point ϕ(1, x) in Σ + . Assume without loss of generality that Σ

+ ∩ N 3 = {(r cos( π 3 ), r sin( π 3 ), x) | x ∈ R n , r ≥ 0} ∩ (E 1 ∩ N 3 ).
Lemma 6.4.12.

Set D 1 = p -1 b ({(ϕ(0, x), ϕ(t, x)) | (t, x) ∈]0, 1] × Σ }). The clo- sure adds the configurations (x, x, [n x ]) ∈ ∂ ∆ C 2 (M • ) where x ∈ Σ . The intersec- tion D 1 ∩M W consists of the configuration c = (x 0 , x 0 , [n x 0 ]
) where x 0 is the unique intersection point of ∂D µ (2) and Σ . Orient D 1 as [0, 1] × Σ .

The boundary of D 1 is the union of three codimension 1 faces:

• The face ∆(Σ , Σ + ) = {(x, x + ) | x ∈ Σ }, oriented as Σ . • The face ∂ 1 D 1 = {(x, x, [n x ]) | x ∈ Σ }, oriented as -Σ . • The face ∂ 2 D 1 = {(x, ϕ(t, x)) | 0 < t ≤ 1, x ∈ ∂Σ }, oriented as -[0, 1]×∂Σ .
Furthermore, the last two faces are contained in ∂W 1 .

Proof. This is a direct check.

Our chain D W will be defined from D 1 by gluing other pieces in order to cancel the face ∆(Σ , Σ + ), which is not contained in ∂W 1 .

Construction of the chain D 2

Let S denote the closed surface obtained by gluing a disk D n+1 and Σ along their boundaries. The surface S is oriented as Σ ∪ -D n+1 . Let S × S + denote the product of two copies of S , where the coordinates read (x, y + ), so that Σ × Σ + ⊂ W 1 naturally embeds into S × S + . Set ∆(S , S + ) = {(x, x + ) | x ∈ S }, and orient it as S . • For any d ∈ {0, . . . , n + 1}, and any (i, j)

∈ (b d ) 2 , [a d i ], [z n+1-d j ] S = δ i,j .
• For any d ∈ n and any i ∈ b d , the chains a d i and z d i are contained in Σ ∩ E 3 .

• The chains a 0 1 and z 0 1 are two distinct points of ∂Σ , and a n+1

1 = z n+1 1 = S .
• ) + ]) 0≤d≤n+1,(i,j)∈(b d ) 2 as bases. For any (d, d ) ∈ {0, . . . , n + 1} 2 , any (i, j) ∈ (b d ) 2 , and any (i , j ) ∈ (b d ) 2 , we have the following duality property:

[a d i × (z n+1-d j ) + ], [z n+1-d i × (a d j ) + ] S ×S + = δ i,i δ j,j δ d,d
There exist coefficients such that [∆(S , S

+ )] = n+1 d=0 b d i=1 b d j=1 α d i,j [a d i × (z n+1-d j ) + ],
and the duality property above and the definition of ∆(S , S + ) yield

α d i,j = [∆(S , S + )], [z n+1-d i × (a d j ) + ] S ×S + = δ i,j .
Let D denote the (n + 1)-disk D n+1 , which we glued to Σ above. To express ∆(Σ , Σ + ) from this lemma, we study ∆(D, D + ) = ∆(S , S + ) -∆(Σ , Σ + ).

Lemma 6.4.15. There exists a chain D

δ in ∂Σ × ∂Σ + such that the chain c 1 δ = D δ -a 0 1 × D + -D × (z 0 1 ) + + ∆(D, D + ) is a null-homologous cycle of D × D + .
Proof. Let S (respectively S + ) denote the sphere that bounds the disk D (respectively D + ), which we glued to Σ (respectively Σ + ). Note that S = -∂Σ . Assume without loss of generality that a 0 1 is the North Pole P N of the sphere S, and that z 0 1 is the South Pole P S . Similarly define P + S and P + N . For any x ∈ S \ {P N }, there exists a unique shortest geodesic parametrized with constant speed (y + x (t)) 0≤t≤1 on the sphere S + going from x + to P + S . Set D δ = {(x, y + x (t)) | 0 ≤ t ≤ 1, x ∈ S \ {P N }}, and orient it as [0, 1] × (S \ {P N }). The boundary of D δ is the union of three codimension 1 faces:

• The face +{P N } × S + .

• The face +S × {P + S }.

• The face -∂∆(D, D + ).

The first face appears when x approaches P N , the second one when t = 1, and the third one when t = 0. This implies that c 1 δ is a cycle. Since H n+1 (D × D + ) = 0, c 1 δ is null-homologous.

Lemma 6.4.16. There exists a chain D 2 ⊂ Σ × Σ + ⊂ W 1 , such that D 2 ∩ ∂W 1 ⊂ ∂D 2 , and such that

∂D 2 =   d∈n i∈b d a d i × (z n+1-d i ) +   + a 0 1 × Σ + + Σ × (z 0 1 ) + + D δ -∆(Σ , Σ + ). Proof. Let c 2 δ = c 1 δ -∆(S , S + ) + n+1 d=0 i∈b d a d i × (z n+1-d i ) + .
Lemma 6.4.14 and 6.4.15 imply that 

c 2 δ is null-homologous in S × S + . Now c 2 δ reads c 2 δ =   d∈n i∈b d a d i × (z n+1-d i ) +   + a 0 1 × Σ + + Σ × (z 0 1 ) + + D δ -∆(Σ , Σ + ). Therefore, c 2 δ is a cycle of Σ × Σ + and the class [c 2 δ ] is null in H n+1 (S × S + ). The Künneth formula proves that ([a d i × (z n+1-d j ) + ]) 1≤d≤n,1≤i,j≤b d is a basis of H n+1 (Σ ×Σ + ). Since it is a subfamily of the basis ([a d i ×(z n+1-d j ) + ]) 0≤d≤n+1,1≤i,j≤b d of H n+1 (S × S + ), the inclusion map H n+1 (Σ × Σ + ) → H n+1 (S × S + ) is injective, and [c 2 δ ] = 0 in H n+1 (Σ × Σ + ). At this point, ∂(D 1 + D 2 ) is

Construction of the chain D 3

Recall that the unit normal bundle to the diagonal of M • × M • has been identified with the unit tangent bundle U M • of M • , and that it is a piece of ∂C 2 (M • ).

Lemma 6.4.17. There exists a chain

D 3 ⊂ p -1 b (E 3 × E 3 ), which meets ∂p -1 b (E 3 × E 3
) only along ∂D 3 , and such that ∂D 3 is the union of: 

• The faces -a d i × (z n+1-d i ) + , for d ∈ n and i ∈ b d . • A finite collection of fibers ε(x i ).U x i M ⊂ ∂W 1 ∩ ∂C 2 (M • ), for 1 ≤ i ≤ m. Furthermore, m i=1 ε(x i ) = χ(Σ )-
⊂ E 3 such that ∂A d+1 i = a d i . For any i ∈ b 1 , there exists (A 2 i ) 0 ⊂ M • such that ∂(A 2 i ) 0 = a 1 i . Since (A 2 i ) 0 , ψ(R n ) ∪ {∞} M = (A 2 i ) 0 , ∂(Σ + ∪ {∞}) M = [∂((A 2 i ) 0 ∩ (Σ + ∪ {∞})] + a 1 i , Σ + ∪ {∞} M = 0,
the chain (A 2 i ) 0 meets the knot in an even number of points (x 1 , . . . , x 2r ) such that x 2i and x 2i+1 have opposite signs. Cut (A 2 i ) 0 along a disk δ i around each of these points, and glue an annulus [0, 1] × S 1 between ∂δ 2i and ∂δ 2i+1 for each i, so that the obtained chain A 2 i does not meet the knot and the boundary of 

A 2 i is a 1 i . It can be assumed that A 2 i is contained in E 3 .
i,d = A d+1 i ∩ (z n+1-d i ) + and K = d∈n i∈b d K i,d . Define D 3 = - d∈n i∈b d p -1 b A d+1 i × (z n+1-d i ) + \ ∆ , so that ∂D 3 = - d∈n i∈b d a d i × (z n+1-d i ) + + x∈K ε(x).U x M,
where (-1) d+1 ε(x) is the sign of the intersection point. For d ∈ n and i ∈ b d ,

x∈K i,d ε(x) = (-1) d+1 A d+1 i , (z n+1-d i ) + M • = lk a d i , (z n+1-d i ) + = (-1) d+1 [V - n+1-d ] i,i , where V - n+1-d = V - n+1-d (B, B) as in Definition 6.2.17 with B = (a d i ) i,d and B = (z d i ) i,d , so that m x∈K ε(x) = d∈n i∈b d x∈K i,d ε(x) = d∈n (-1) d+1 Tr(V - n+1-d ).
Conclude with Lemma 6.2.27. 

∈ N 2 ∩ E 1 such that (x, (z 0 1 ) + ) or (a 0 1 , x) lies in ∂ 1 B Y i or ∂ 2 B Y i .
Lemma 6.4.18. Let P be an oriented manifold with boundary, let Q be a submanifold of P , and let R be a submanifold of ∂P . Assume that • the submanifold Q meets ∂P along its boundary: Q ∩ ∂P ⊂ ∂Q, and this intersection is transverse,

• the submanifolds Q ∩ ∂P and R are transverse in ∂P .

The submanifolds Q and R are transverse in P and Q, R P = ∂Q ∩ ∂P, R ∂P .

Proof. The lemma follows from a direct computation.

The only configurations of D W where the two points collide with u = τ x (e 1 ) are:

• Those coming from the faces ε(

x i )U x i M ⊂ ∂D 3 . Their contribution is D 3 , -G -1 τ ({e 1 }) ∩ W 1 W 1 = m i=1 ε(x i )U x i M, -G -1 τ ({e 1 }) ∩ W 1 ∂W 1 = - m i=1 ε(x i ) = 1 -χ(Σ ) 2
• Those coming from ∂ 1 D 1 . Assume without loss of generality that e 1 is a regular value of the map

ϕ n : x ∈ Σ → τ -1 x (n x ) ∈ S n+1 . Their contribution is D 1 , -G -1 τ ({e 1 }) ∩ W 1 W 1 = ∂ 1 D 1 , -G -1 τ ({e 1 }) ∩ W 1 ∂W 1 = + deg e 1 (ϕ n ),
where deg y (ϕ n ) is the differential degree of ϕ n at y, and where the plus sign comes from the fact that the face ∂ 1 D 1 of Lemma 6.4.12 is oriented as -Σ .

6.5 On virtual rectifiability 6.5.1 Proof of Lemma 6.2.21 Lemma 6.5.1. Let (I t ) 0≤t≤1 be a homotopy of maps

(R n , R n \D n ) → (I(R n , R n+2 ), ι 0 ) with I 0 (R n ) = {ι 0 }. Let G denote the space of smooth maps from R n to GL n+2 (R) that map R n \ D n to I n+2 .
There exists a continous map t ∈ [0, 1] → g t ∈ G, such that for any (t, x) ∈ [0, 1] × R n , I t (x) = g t (x) • I 0 (x), and such that, for any x ∈ R n , g 0 (x) = I n+2 .

Proof. Set g 0 (x) = I n+2 for any x. Endow R n+2 with its canonical Euclidean structure and let P t,x denote the orthogonal complement of

I t (x)(R n ) in R n+2 . Let π t,x denote the orthogonal projection on P t,x . Set f (t, t 0 , x) = min z∈Pt 0 ,x,||z||=1 ||π t,x (z)||.
Since f maps the complement of the compact [0, 1] 2 × B n to 1, it is uniformly continuous. Fix δ > 0 so that for any (t, t 0 , x) and (t , t 0 , x ) with |t-t |+|t 0 -t 0 |+ ||x -x || < δ, |f (t , t 0 , x ) -f (t, t 0 , x)| < 1 2 , and for any j ∈ N, set t j = min(j δ 2 , 1). We are going to define g t on each [t j , t j+1 ].

Note that P 0,x ∩ P ⊥ t,x = {0} if and only if f (t, 0, x) > 0. Since f (0, 0, x) = 1 for any x, we have P 0,x ∩ P ⊥ t,x = {0} for 0 ≤ t ≤ t 1 . For 0 ≤ t ≤ t 1 , define g t (x) by the following formula:

∀z = (z 1 , z 2 , z) ∈ R n+2 = R × R × R n , g t (x)(z 1 , z 2 , z) = π t,x (π 0,x (z)) + I t (x)(z)
Since P 0,x ∩ P ⊥ t,x = {0}, π t,x defines an isomorphism from P 0,x to P t,x . Thus, g t (x) is an isomorphism. For t k ≤ t ≤ t k+1 and x ∈ R n define g t (x) so that

∀z = (z 1 , z 2 , z) ∈ R n+2 , g t (x)(z 1 , z 2 , z) = π t,x (π t k ,x (• • • π t 0 ,x (z) • • • )) + I t (x)(z). Since f (t, t k , x) ≥ f (t k , t k , x) -1 2 = 1 2
, the above method proves that g t (x) is an isomorphism. This defines a family (g t ) 0≤t≤1 as required by the lemma.

Proof of Lemma 6.2.21. Let τ be a parallelization such that the class [ι(τ, ψ)] of Lemma 6.2.19 is zero, so that there exists (I t ) 0≤t≤1 as in Lemma 6.5.1 with I 1 = ι(τ, ψ). Let (g t ) 0≤t≤1 be a smooth approximation of the map (g t ) 0≤t≤1 of Lemma 6.5.1, such that for any x ∈ R n , g0 (x) = I n+2 and I 1 (x) = ι(τ, ψ)(x) = g1 (x) • I 0 (x). Assume without loss of generality that (t ∈ [0, 1] → gt ∈ G) is constant on a neighborhood of {0, 1}. Take a tubular neighborhood N of ψ(R n ) and identify N with ψ(R n ) × D 2 with coordinates (ψ(x), r, θ). For any y = (ψ(x), r, θ) ∈ N , set τ y = (τ e ) y • g1-r (x). This defines a map τ : N × R n+2 → T N , which extends to a map τ : M • × R n+2 → T M • , by setting (τ ) y = (τ e ) y when y ∈ N . This construction ensures that ι(τ , ψ) = ι 0 , and τ is a parallelization of M • . Now, note that σ is equivalent to the data of (r σ , σ(I σ ), σ 1 , σ 2 ), and that, for a given r σ , there are k-2 rσ-1 possible choices of σ(I σ ). This yields the induction formula of the lemma. Lemma 6.6.3. The polynomial L 2 (X) is X, and for any k ≥ 3,

L k (X) = 1 k -1 k-1 r=1 L r (X)L k-r (X).
Proof. The first point of the lemma is immediate since λ

2,1 = 1. For k ≥ 3, (k -1)L k (X) = ν∈k-1 (k -1)λ k,ν X ν = ν∈k-1   λ k-1,ν + λ k-1,ν-1 + k-2 r=2 p≥0 λ r,p λ k-r,ν-p   X ν = L k-1 (X) + XL k-1 (X) + k-2 r=2 ν∈k-1 p≥0 λ r,p X p λ k-r,ν-p X ν-p = (X + 1)L k-1 (X) + k-2 r=2 L r (X)L k-r (X) = k-1 r=1 L r (X)L k-r (X), since L 1 (X)L k-1 (X) + L k-1 (X)L 1 (X) = (X + 1)L k-1 (X). Lemma 6.6.4. L(X, Y ) satisfies the differential equation ∂L ∂Y (X, Y ) = (L(X, Y )) 2 - 1 -X 2 2 . Proof. Indeed, ∂L ∂Y (X, Y ) = k≥2 L k (X)(k -1)Y k-2 = L 2 (X) + k≥3 k-1 r=1 L r (X)Y r-1 L k-r (X)Y k-r-1 = L 2 (X) + k≥1 t k (X)Y k , where (L(X, Y )) 2 = k≥0 t k (X)Y k . Since L(X, Y ) = (X+1) 2 + k≥2 L k (X)Y k-1 , we have t 0 (X) = (X+1) 2 4
, and

∂L ∂Y (X, Y ) = X + L(X, Y ) 2 - (X + 1) 2 4 = L(X, Y ) 2 - 1 -X 2 2
. COMPTAGES DE DIAGRAMMES Lemma 6.6.1 and basic integral calculus yield

M (X, Y ) = Y 0 1 -XY -1 2 1 + XY -1 exp((1 -XY -1 )T ) 1 -XY -1 exp((1 -XY -1 )T ) - XY -1 + 1 2 dT = Y 0 1 -XY -1 2 1 + 2X exp((1 -XY -1 )T ) Y -X exp((1 -XY -1 )T ) - XY -1 + 1 2 dT = Y 0 -XY -1 + X(1 -XY -1 ) exp((1 -XY -1 )T ) Y -X exp((1 -XY -1 )T ) dT = -X -Ln Y -X exp((1 -XY -1 )Y ) Y -X = -Ln Y exp(X) -X exp(Y ) Y -X = Ln(X -Y ) -Y -Ln(X -Y exp(X -Y )).
For any commuting square matrices (A, B) and any h arbitrarily small, this yields

M (hA, hB) = Ln(A -B) -hB -Ln(A -B exp(h(A -B))),
where Ln(C) is defined for C -I sufficiently small as k≥1

(-1) k-1 k (C -I) k . Therefore, M (hV + d , hV - d ) = Ln(V + d -V - d ) -hV - d -Ln(V + d -V - d exp(hV + d -hV - d )) = -hV - d -Ln(V + d -e h V - d ) = - h 2 I b d -hV - d -Ln(e -h 2 V + d -e + h 2 V - d ) = - h 2 (V + d + V - d ) -Ln(e -h 2 V + d -e + h 2 V - d ), so that k≥2 Z k (ψ)h k = d∈n (-1) d+1 Tr h 2 (V + d + V - d ) -Ln(e -h 2 V + d -e + h 2 V - d ) = d∈n (-1) d Ln(∆ d,Σ (e h )) = -Ln(T ψ (e h )),
where the second equality uses Lemma 6.2.27 and the fact that Tr(Ln(I + H)) = Ln(det(I + H)) for H ∈ M n (C) sufficiently small.

Chapitre 7

Invariants BCR des R 3 asymptotiques d'homologie entière

Dans ce chapitre1 , on fixe un R 3 asymptotique d'homologie entière M • , qui est nécessairement parallélisable en vertu de la proposition 3.2.2. Les diagrammes utilisés sont ceux de la définition 2.2.1. On redonne ici les principales définitions dans le cas de la dimension 1, où le formalisme peut être allégé.

Propagateurs

En dimension 1, les propagateurs internes de la définition 3.7.2 sont des 0-formes fermées sur C 2 (R), qui a deux composantes connexes 

C + 2 (R) = p b -1 ({(x, y) | x < y}) et C - 2 (R) = p b -1 ({(x, y) | x > y}
ω F (Γ, σ, ψ) = (-1) N - i (Γ,•) 2 N i (Γ) e∈Ee(Γ)
ω F e (Γ, σ, ψ),

et posons I F (Γ, σ, ψ) = C Γ (ψ)
ω F (Γ, σ, ψ). Les propriétés 2 à 5 du théorème 7.3.1 se démontrent comme leurs analogues en dimension supérieure, une fois démontrée la propriété 1. En revanche, les propriétés 1 et 6 nécessitent des arguments supplémentaires. Il s'agit notamment de démontrer un analogue du lemme 5.3.2 dans le cas de la dimension 1.

Invariants

Z F k (ψ) = 1 (2k)! (Γ,σ)∈ G k I F (Γ, σ, ψ). Alors : 1. la valeur de Z F k (ψ) ne dépend pas du choix de la k-famille F = (β i ) i∈2k de formes propagatrices de (M • , τ ), 2. la valeur de Z k (ψ) = Z F k (ψ) ne dépend pas du choix de la parallélisation de M • , 3. si ϕ est un difféomorphisme de M • dont la restriction à B • ∞ est l'identité, et si ψ est un noeud long, alors Z k (ϕ • ψ) = Z k (ψ),

Preuve de l'indépendance de la famille F

Remarques préliminaires

On se donne deux familles

F = (β i ) i∈2k et F = (β i ) i∈2k avec β i = β i pour i ≥ 2.
On reprend les notations de la partie 5.3, mais comme les formes propagatrices internes sont fixées, on introduit uniquement une 1-forme ζ 1 1 telle que

β 1 = β 1 +dζ 1 1 , et l'on dit que (β 1 -β 1 ) a la propriété de factorisation par la sphère si ζ 1 1 = G τ 1 * (η 1 1 ) pour une certaine 1-forme antisymétrique η 1 1 sur S 2 . Pour tout (Γ, σ) ∈ G k , et toute arête externe e ∈ E e (Γ), on pose alors ωe,σ =    ω F e (Γ, σ, ψ) si σ(e) = 1, p e * (ζ 1 1 ) si σ(e) = 1, et ω(Γ, σ, ψ) =        (-1) N - i (Γ,•) 2 N i (Γ) e∈E i (Γ)
ωe,σ si σ -1 (1) est externe, 0 si σ -1 (1) est interne.

Notons F(Γ) l'ensemble des faces de codimension 1 de C Γ (ψ), et réintroduisons la classification des faces et les notations de la partie 5.3. Avec ces notations, le théorème de Stokes réduit la démonstration de la propriété 1 du théorème 7.3.1 à l'étude des intégrales δ S I(Γ, σ, ψ) = ∂ S C Γ (ψ) ω(Γ, σ, ψ).

Lemme principal

On a alors l'analogue suivant du lemme 5.3.2. 

(v) = u S (v) ||u S (v)|| 2 + (0, 0, t) u S (v) ||u S (v)|| 2 + (0, 0, t) 2 .
Pour toute arête externe e, l'application p e se factorise par l'application quotient 

∂ S * C Γ (ψ) → Q de cette relation d'équivalence. Puisque Card(S) ≥ 2, dim(Q) < dim(∂ S * C Γ (ψ)) = deg(ω(Γ, σ, ψ)).

Démonstration de l'additivité de Z k

Nous reprenons les notations de la partie 5.9. La démonstration de l'additivité de Z k (propriété 6 du théorème 7.3.1) est la même qu'en dimension élevée à ceci près que le lemme 5.9.1 n'est plus valide. En revanche, le corollaire 5.9.2 reste vrai, ce qui permet de conclure la preuve comme en dimension supérieure. Avant de démontrer ce fait, énonçons le lemme suivant qui remplace le lemme 5.9.1.

Lemma 7.3.3. Pour tout (Γ, σ) ∈ G k et tout S 1 S 2 V (Γ), dim C Γ S 1 ,S 2 ≤ e∈E(Γ S 1 ,S 2 )

n(e). D'HOMOLOGIE ENTIÈRE

De plus, cette inégalité est une égalité si et seulement si toute arête de Γ ayant une extrémité dans S 1 S 2 et l'autre dans V (Γ) \ (S 1 S 2 ) ou une extrémité dans S 1 et une extrémité dans S 2 est interne. Démonstration. L'inégalité se démontre rigoureusement comme celle du lemme 5.9.1. Le cas d'égalité tient en compte le fait que, désormais, d(e -) + d(e + ) = n(e) = 0 pour toute arête interne e.

On démontre alors le corollaire suivant, qui remplace le corollaire 5.9.2 et la démonstration de l'additivité de Z k se conclut ensuite comme en partie 5.9.

Corollaire 7.3.4. Pour tout (Γ, S 1 , S 2 ) tel que S 1 S 2 V (Γ), et toute numérotation σ de Γ, définissons les applications

G Γ S 1 ,S 2 : C Γ S 1 ,S 2 → e∈Ee(Γ S 1 ,S 2 ) S 2 c → (G e (c)) e∈Ee(Γ S 1 ,S 2 ) , et π Γ S 1 ,S 2 ,σ : (S 2 ) 2k → e∈Ee(Γ S 1 ,S 2 ) S 2 (X i ) 1≤i≤2k → (X σ(e) ) e∈Ee(Γ S 1 ,S 2 ) .
Pour tout ε : {1, . . . , 2k} → {±1}, posons

T ε : (S 2 ) 2k → (S 2 ) 2k (X i ) 1≤i≤2k → (ε(i)X i ) 1≤i≤2k .
Avec ces notations, pour tout (Γ, σ, S 1 , S 2 , ε), l'ensemble

T ε-1 π Γ S 1 ,S 2 ,σ -1 G Γ S 1 ,S 2 C Γ S 1 ,S 2 est un fermé d'intérieur vide de (S 2 ) 2k . Par conséquent, l'ensemble O k = Γ,S 1 ,S 2 ,σ,ε (S 2 ) 2k \ T ε-1 π Γ S 1 ,S 2 ,σ -1 G Γ S 1 ,S 2 C Γ S 1 ,S 2 est un ouvert dense de (S 2 ) 2k . Démonstration. L'ensemble T ε-1 π Γ S 1 ,S 2 ,σ -1 G Γ S 1 ,S 2 C Γ S 1 ,S 2
est immédiatement compact donc fermé. Montrons qu'il est d'intérieur vide. S'il existe une arête externe de Γ ayant une extrémité dans S 1 S 2 et l'autre dans V (Γ) \ (S 1 S 2 ) ou une extrémité dans S 1 et l'autre dans S 2 , on conclut comme dans la démonstration du lemme 5.9.2, en utilisant le lemme de Sard, qui D'HOMOLOGIE ENTIÈRE entraîne ici que l'image de G Γ S 1 ,S 2 est d'intérieur vide puisque son espace d'arrivée est de dimension strictement plus grande que sa source.

Supposons donc que toute arête de Γ ayant une extrémité dans S 1 S 2 et l'autre dans V (Γ) \ (S 1 S 2 ) ou une extrémité dans S 1 et l'autre dans S 2 est interne. Définissons une relation d'équivalence sur C Γ S 1 ,S 2 telle que deux éléments c et c sont en relation s'il existe t ∈ R tel que pour tout v ∈ V (Γ),

c (v) =    c(v) si v ∈ S 1 S 2 , (0, 0, t) + c(v) sinon. L'application G Γ S 1 ,S 2 se factorise alors par l'application quotient C Γ S 1 ,S 2 → Q, et comme S 1 S 2 = V (Γ S 1 ,S 2 ), Q est de dimension strictement inférieure à C Γ S 1 ,S 2 .
Il s'ensuit par application du lemme de Sard que l'image de G Γ S 1 ,S 2 est d'intérieur vide, ce qui achève la démonstration.

Définition discrète des invariants BCR

On définit les chaînes propagatrices externes comme en définition 3.12.1, et on définit l'application • la configuration p e (c) est dans l'intérieur de B σ(e) ,

P Γ = e∈Ee(Γ) p e : C Γ (ψ) → (C 2 (M • )) Ee(Γ) . On dit qu'une k- famille F = (B i ) i∈2k de
• il existe un signe ε(c) tel que

ε(c)T P Γ (c) (C 2 (M • )) Ee(Γ) = T c P Γ (T c C Γ (ψ)) +   e∈Ee(Γ) T pe(c) Int(B σ(e) )   .
Pour une telle famille et un diagramme numéroté (Γ, σ) ∈ G k , on définit le nombre d'intersection algébrique associé à (Γ, σ, ψ) comme 

I F (Γ, σ, ψ) = c∈ e∈Ee(Γ) pe -1 (B σ(e) )   ε(c) (-1) N - i (Γ,c) 2 N i (Γ)
(ψ) = 1 (2k)! (Γ,σ)∈ G k I F (Γ, σ, ψ).
Ce théorème se démontre à partir du théorème 7.3.1 comme le théorème 5.2.13 dont il est l'analogue.

Le polynôme d'Alexander en fonction des invariants BCR

Le raisonnement du chapitre 6 n'utilise nulle part le fait que la dimension n du noeud soit supérieure à 3, sauf dans la démonstration du lemme 6.2.23, qui est remplacé par le lemme 4.3.3. On en déduit les théorèmes 7.5.1 et 7.5.2 ci-après. Étant donné une surface de Seifert Σ d'un noeud long ψ, une paire (B, B) de bases duales de H 1 (Σ) est la donnée de deux bases B = (a i ) i∈b 1 (Σ) et B = (z i ) i∈b 1 (Σ) telles que pour tout (i, j) ∈ b 1 (Σ) 2 , a i , z j Σ = δ i,j .

Étant donné deux telles bases, on définit les matrices de Seifert V + (B, B) = (lk(z i , a + j )) 1≤i,j≤b 1 (Σ) et V -(B, B) = (lk(z + i , a j )) 1≤i,j≤b 1 (Σ) . On définit E SO(m-1) comme étant le fibré en (m -1)-sphères obtenu en ne gardant que les bords des fibres de A SO(m-1) , et on note M (SO(m -1)) l'espace de Thom, défini comme l'écrasement de E SO(m-1) ⊂ A SO(m-1) en un unique L'OBSTRUCTION arêtes sur un même point x 0 ∈ X. L'application g définit une classe κ(g) dans [(∂e k , s(e k )), (X, x 0 )], qui s'identifie à π k-1 (X, x 0 ).

La classe κ(g) ∈ π k-1 (X, x 0 ) est triviale, si et seulement si g se prolonge à e k .

Démonstration. Si g définit une classe triviale, on a une homotopie (g t ) 0≤t≤1 , telle que g 0 = x 0 et g 1 = g. On voit alors e k comme un cône sur son bord, de sorte que e k = (∂e k × [0, 1])/(∂e k × {0}), et on définit l'application g : (x, t) ∈ e k → g t (x) ∈ M (SO(m -1)), qui est bien définie puisque g 0 est constante. Réciproquement, supposons que g se prolonge en une application g 1 définie sur e k . Notons Ω le centre de gravité de ∆ k . Si le prolongement g 1 envoie le segment [Ω, s k 0 ] entier sur x 0 , il suffit de reprendre la construction précédente utilisant la structure de cône pour récupérer une homotopie fixant le point base. On va se ramener à ce cas en modifiant un peu notre prolongement g 1 .

Soit ∆k ⊂ ∆ k le k simplexe dont les sommets sont (Ω, s k 1 , . . . , s k k ), et soit ϕ : ∆ k → ∆k l'unique application affine envoyant s k 0 sur Ω, et fixant les autres sommets (communs) des simplexes. On se donne alors r : ∆ k → ∆k une application égale à l'identité sur ∆k , et telle que l'image du segment [Ω, s k 0 ] soit {Ω}. Alors, l'application f = g 1 • ϕ -1 • r : ∆ k → X est un prolongement de g envoyant tout le segment [Ω, s k 0 ] sur x 0 . En utilisant la structure de cône introduite dans la démonstration du sens direct, on reconstruit alors une homotopie de g vers l'application constante g(Ω) = x 0 , envoyant toujours le point base sur x 0 , ce qui conclut. Alors,

• les (k + 1)-chaînes de ∂C 2 (M • ) sont dans le noyau de c(f (k) ),

• la cochaîne c(f (k) ) est un cocyle. L'OBSTRUCTION Le premier point vient du lemme 8.1.6, le second s'obtient en remarquant que si e k+2 est un (k + 2)-simplexe, alors c(f (k) )(∂e k+2 ) prend en compte chaque face de codimension 2 de e k+2 deux fois avec des orientations opposées. La classe de cohomologie de c(f (k) ) définit donc un élément du groupe de cohomologie H k+1 (C 2 (M • ), ∂C 2 (M • ); π k (M (SO(m -1)), a)). • si e k est un k-simplexe, qui n'est pas un des e k i , f (k)

|e k = f (k) |e k ,
• si e k = e k i , on commence par modifier f (k) sur l'intérieur de e k de manière à ce que le centre du simplexe soit envoyé sur a (ce qui est autorisé puisque notre simplexe n'est pas dans la triangulation du bord, et possible parce que M (SO(m -1)) est connexe), et on note f (k) 1 l'application obtenue. On écrit ensuite e k i comme un cône au-dessus de son bord, et on définit f

(k) comme étant f (k) (t, x) = f (k) 1 (2t -1, x) si 1 2 ≤ t ≤ 1, α i (2t, x)
sinon , ce qui a un sens, après avoir identifié {(t, x) | 0 ≤ t ≤ 1 2 , x ∈ ∂e k i }/({ 1 2 }×∂e k i ) à (S k , * ), où le point distingué est identifié au bord écrasé du simplexe. L'OBSTRUCTION On a alors, pour ce nouveau prolongement, c( f (k) ) = 0. Par le lemme 8.1.6, ceci nous permet de prolonger f (k) , en une application f (k+1) définie sur le (k + 1)squelette et achève la récurrence.

Soit donc f (2m-1) un prolongement continu de f ∂ au (2m -1)-squelette de T . On choisit un voisinage régulier U du (2m -1)-squelette de T , auquel f (2m-1) s'étend donc continûment en une application continue f 1 . Il existe un voisinage régulier V ⊂ Int(C 2 (M • )) d'un arbre dont les sommets sont un point de l'intérieur de chaque 2m-simplexe de T tel que U ∪ V = C 2 (M • ), et l'on peut supposer R ⊂ V . L'application f 1 est donc définie sur ∂V . Comme V est une boule, et R une boule ouverte de l'intérieur de V , on peut alors étendre (f 1 ) |∂V en une application f 2 : V \ R → M (SO(m -1)). On conclut la démonstration du lemme 8.1.4 en posant pour tout

x ∈ C 2 (M • ) \ R, f (x) =    f 1 (x) si x ∈ U \ V , f 2 (x) si x ∈ V \ R.
On notera dans ce qui suit f le prolongement donné par le lemme 8.1.4, et on notera X = C 2 (M • ) \ R. Il s'agit désormais de montrer que l'on peut choisir ce prolongement de manière lisse, au voisinage de la préimage de la section nulle. Notons, pour r ∈ [0, 1], N r ⊂ M (SO(m -1)) le fibré en disques ouverts de rayon r déduit du fibré en disques ouverts de rayon 1 N 1 = M SO(m-1) \ {a}. On se donne également des trivialisations locales (U i , ϕ i ) 1≤i≤r du fibré en disques ouverts π : M (SO(m -1)) \ {a} → B SO(m-1) , le recouvrant totalement, et on note, pour chaque indice i, l'application induite sur la fibre p i : π -1 (U i ) → D m-1 . • H(e 1 ) est ouvert : soit ϕ ∈ H(e 1 ). On a d(ϕ(e 1 ), C) = δ > 0. Donc, pour d ∞ (ϕ, ϕ ) < δ, ϕ (e 1 ) ne rencontre pas C, et ϕ ∈ H(e 1 ), ce qui conclut.

• H(e 1 ) est dense : soit ϕ ∈ H et soit ε > 0. D'après le lemme 8.1.9, il existe w valeur régulière (c'est à dire non atteinte) de p • ϕ • e 1 de norme inférieure à ε 2 . Alors, si on se donne un difféomorphisme du disque ϕ w fixant le bord, envoyant 0 sur w, et tel que d ∞ (ϕ w , Id) < ε, on a ϕ -1 w • ϕ ∈ H(e 1 ), et d ∞ (ϕ -1 w • ϕ, ϕ) < ε. On conclut alors en remarquant que l'intersection sur tous les 1-simplexes des H(e 1 ) est non vide, car dense, et qu'il existe donc ϕ ∈ H, tel que ϕ(T 1 0 ) ne rencontre pas C.

Adaptons donc ce raisonnement au cas général (c'est-à-dire sans supposer que N est un fibré trivial sur C).

Soient (U i ) i et (V i ) i deux recouvrements de C par des ouverts de trivialisation de N → C, avec U i ⊂ V i , et notons H l'ensemble des difféomorphismes ϕ : N → N , agissant fibre par fibre, en fixant un voisinage du bord de N , et H(U i ) l'ensemble des ϕ ∈ H tels que ϕ(T (1) 0 ) ∩ π -1 N (U i ) ne rencontre pas C. On munit H de la topologie C 1 définie dans [START_REF] Hirsch | Differential Topology[END_REF], et les H(U i ) des topologies induites. L'OBSTRUCTION Démonstration. Dans cette démonstration, « homotope » signifiera toujours « homotope parmi les applications qui envoient ∂B(M ) sur y 0 ». On utilisera des notations additives pour les groupes d'homotopies π k (Y, y 0 ) (qui sont tous abéliens).

Soit = (T (k-1) ×I)∪(T (k) ×{0, 1}). Orientons arbitrairement les cellules de ce complexe. Nous allons d'abord mettre en évidence une application h 2 : T (k) × I → Y telle que pour tout x ∈ T (k) , h 2 (x, 0) = y 0 et h 2 (x, 1) = f (x), et telle que h 2 ((T (k) ∩ ∂B(M )) × I) = {y 0 }. Définissons une application h 0 sur le k-squelette de T I comme suit :

• pour tout x ∈ T (k) , h 0 (x, 0) = y 0 and h 0 (x, 1) = f (x),

• pour tout x ∈ T (k-1) et tout t ∈ I, h 0 (x, t) = y 0 . 

a d i =              a d i si d < n+1 2 , z d i si d > n+1 2 , a d i si d = n+1 2 et 1 ≤ i ≤ n d , z d i-n d si d = n+1 2 et n d < i ≤ b d , et z d i =              (-1) d a d i si d < n+1 2 , z d i si d > n+1 2 , z d i si d = n+1 2 et 1 ≤ i ≤ n d , ( - 

Définition 1.2. 1 .

 1 On dit que deux matrices A et A sont cobordantes si A 0 0 -A est congruente 3 à une matrice de la forme 0 B C D , avec B, C, et D carrées de même taille.
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 24 Figure 2.4 -Deux diagrammes BCR de degrés respectifs 5 et 6

  e + est la tête d'une arête venant d'un sommet univalent et arrivant à un sommet externe v, Ω e + = dX 1 v , • si e ± = e -est la queue d'une arête du cycle partant d'un sommet externe v, Ω e -= dX 2 v , • si e ± = e + est la tête d'une arête du cycle arrivant à un sommet externe v,

Définition 4.1. 2 .

 2 Pour tout entier d ∈ n, il existe un unique entier r d et une suite

4 .

 4 Définition 4.1.11. Soit n un entier naturel impair. Soit ψ : R n → M • un noeud long dans un R n+2 asymptotique d'homologie entière.
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  Figure 4.2 -Le procédé de désingularisation du disque ruban.
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 54 Figure 5.4 -The degree 2 Jacobi diagrams

  By definition, the images of the vertices under a configuration are distinct, and the images of internal vertices are on the knot. This configuration space is a non-compact smooth manifold. It admits a compactification C Γ (ψ), which is defined in [Ros02, Section 2.4], and which is the BOTT-CATTANEO-ROSSI closure of the image of the map c ∈ C 0 Γ (ψ) → c * ∈ C V (Γ)∪{ * } (M ), where c * |V (Γ) = c and c * ( * ) = ∞, and where C V (Γ)∪{ * } (M ) is the compact configuration space defined in [Sin04].

  and e is internal, p * e (ζ n 1 ) if σ(e) = 1 and e is external, and set ω(Γ, σ, ψ) = e∈E(Γ)

  denote the face BOTT-CATTANEO-ROSSI associated to such an S and let F(Γ) denote the set of the codimension 1 faces. There are four types of faces in F(Γ): • If S contains * , ∂ S C Γ (ψ) is called an infinite face, and its elements are configurations of C Γ (ψ) that map the vertices of S \ { * } to infinity, and all the other vertices to pairwise distinct points of M • .

  we have an involution σ → σ * of the numberings of Γ such that δ S I(Γ, σ * , ψ) = -δ S I(Γ, σ, ψ). BOTT-CATTANEO-ROSSI • Represent the principal faces by pairs (Γ, e) where Γ ∈ G k and e ∈ E(Γ). For any numbering σ, let δ e I (Γ, σ, ψ) denote the integral δ S I (Γ, σ, ψ) where S is the set of the two ends of e. Let N =1 (Γ, e) denote the set of the numberings of Γ such that σ(e) = 1, and let N (Γ) denote the set of all the numberings of Γ. Then: -There exists an involution s : (Γ, e) → (Γ * , e * ) of the set of principal faces such that, for any (Γ, e), there exists a canonical map s Γ,e : σ ∈ N =1 (Γ, e) → σ * ∈ N =1 (Γ * , e * ), such that δ e * I(Γ * , σ * , ψ) = -δ e I(Γ, σ, ψ) and such that s Γ,e • s Γ * ,e * = Id.

  ∞ ), and dege∈E S (Γ) θ e,σ > dim(C S,∞ ). Therefore, e∈E S (Γ)θ e,σ and ω(Γ, σ, ψ) |∂ S * C Γ (ψ) are zero. Then, δ S I (Γ, σ, ψ) = 0, as expected.

  such that, for any edge e ∈ E(Γ), we have G e,S • T = (-Id S n(e) ) • G e,S , where -Id S n(e) is the antipodal map.

  Figure 5.8 -Hypotheses of Lemma 5.7.7.
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 5 Figure5.9 -Notations for the proof of Lemma 5.7.9.

Proof.Figure 5

 5 Figure 5.10 -The three behaviors of Lemma 5.7.10

If

  Figure 5.11

  Figure 5.13

Let Γ *

  Figure 5.18

  n+1 since the graphs δ e Γ and δ e * Γ * are identical, and one can check by computation that the orientations are different, as in the second row of Figure 5.20. For any edge h = e of Γ or Γ * the maps p h : ∂ e C Γ (ψ) → C e and p * h : ∂ e * C Γ * (ψ) → C e factor through the maps pr 1 : ∂ e C Γ (ψ) → C 0 δeΓ and pr 1, * : ∂ e * C Γ * (ψ) → C 0 δeΓ . The maps G • p e and G τ σ(e) • p e * are exactly the maps pr 2 : ∂ e C Γ (ψ) → S n-1 and pr 2, * : ∂ e * C Γ * (ψ) → S n+1 . Then, one can write ω(Γ, σ, ψ) = pr * 1 (λ) ∧ pr * 2 (ω α σ(e) ) BOTT-CATTANEO-ROSSI and ω(Γ * , σ * , ψ) = pr * 1, * (λ) ∧ pr * 2, * (ω β σ(e)

  has the sphere factorization property, so that ω(Γ, σ, ψ) = ω(Γ * , σ * , ψ). Since both faces are diffeomorphic with opposite orientations, δ e I(Γ, σ, ψ) = -δ e * I(Γ * , σ * , ψ).Figure5.20 describes the different orientations used to check Lemmas 5.7.12 to 5.7.15, where Ω denotes the wedge products of the Ω h , on the external edges h not named on the pictures, dY * =
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 55 Figure 5.21 -Construction of Γ S 1 ,S 2 for some degree 5 BCR diagram
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 61 Figure 6.1 -An example of a BCR diagram of degree 6
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 2 Figure 6.2

  Lemma 6.2.27. For any Seifert surface Σ, and any d ∈ n, ∆ d,Σ (t -1 ) = ∆ n+1-d,Σ (t). Furthermore, for any pair (B, B) of dual bases of the reduced homology of Σ, d∈n (-1) d+1 Tr(V + d (B, B)) + Tr(V - d (B, B)) = 0, and d∈n (-1) d+1 Tr(V - d (B, B)) = χ(Σ) -1 2 .

  are stable under small perturbations since the D f,σ and the D 0 f,σ are compact. Lemma 6.3.8. Let Γ ∈ G k \{Γ k }, where Γ k is the degree k BCR diagram of Figure 6.3. For any numbering σ of Γ, e∈E(Γ) D e,σ = ∅ and e∈E(Γ) D 0 e,σ = ∅.

Figure 6 . 4 -

 64 Figure 6.4 -Notations for Lemma 6.3.8

  Lemma 6.3.15. Let b d denote the d-th Betti number of S + 1 . It is possible to choose two families of cycles ((a d 1,j ) + ) 0≤d≤n+1,j∈b d and ((z d 1,j ) + ) 0≤d≤n+1,j∈b d in S + 1 such that:

Figure 6 .Figure 6 . 7 -11

 667 Figure 6.7 depicts the four possible cases, with the conventions of Section 6.4.1.
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 68 Figure 6.8 -The curve D(y, -e 1 ) in N 3 (left) or in Π y = {x | x = y} (right)

First case: y ∈ Y 1 sss

 1 In this case, the half-line starting at y with direction -e 1 is contained in N 2 , so we set D(y, -e1 ) = {x ∈ N 2 | G(x, y) = e 1 }.Second case: y ∈ Y 2In this case, the half-line {x ∈ N 2 | G(x, y) = e 1 } meets ∂ s N 2 in two points x ± s,2 (y) as in Figure6.9. Let γ s (y) denote the circular arc contained in the halfcircle∂ s N 2 ∩ {x | x 2 y 2 > 0, x = y} from x +s,2 (y) to x - s,2 (y). Then, the line D(y, -e 1 ) is the union of {x ∈ N 2 | G(x, y) = e 1 } and γ s (y).Third case: y ∈ Y 3In this case, the half-line {x ∈ N 2 | G(x, y) = e 1 } meets ∂ s N 2 in two points x ±s,2 (y) and meets ∂ c N 2 in two 15 points x ± c,2 (y) as in Figure6.9. Let γ s (y) be defined as in the previous case, and let γ c (y) be the circular arc from x - c,2 (y) tox + c,2 (y) in the half-circle ∂ c N 2 ∩ {x | x 2 y 2 > 0, x = y}.Then, the line D(y, -e 1 ) is the union of {x ∈ N 2 | G(x, y) = e 1 }, γ c (y), and γ s (y).

Figure 6 .

 6 Figure 6.9 depicts the curves D 1 (y, -e 1 ) = D(y, -e 1 ) ∩ (N 2 ∩ E 1 ) in the plane Π y = {x | x = y} for different values of y in Y s . The two plain circles depict the boundary of N 1 and the two dotted circles depict the boundary of N 2 . The orientations are given in the picture by the arrows.

  y

s

  Figure 6.9 -The curves D 1 (y, -e 1 ) in Π y .

  oriented as a direct circle of the plane Π y (i.e. as the boundary of a disk), and C c (y) denotes the intersection Π y ∩ ∂ c N 2 , with the opposite orientation. ∂ 3 B (1) s is oriented by dt ∧ dy 1 ∧ dh y ∧ dω y , where dt is the orientation of the circle in which x lies.

  reduces to a point. There is no discontinuity when |y 2 | = 2 either since γ c (y) reduces to a point. COMPTAGES DE DIAGRAMMES When y 1 approaches infinity, we obtain the face ∂ ∞ B Y 1 , when y 1 goes to R 1 2 -h y 2 -y 2 2 , we obtain the face ∂ 2 B Y 1 , and when y 2 approaches 0, we obtain the face ∂ 3 B (1) s .6.4.2.3 Cancellation of the face∂ 3 B (1)sFor any y ∈ Y 0 s such that h y > 0, define A(y) as the annulus {x ∈ ∂N 2 | ω x = ω y , h x ≥ h y } and orient it in such a way that its boundary isC s (y) ∪ C c (y). Lemma 6.4.7. Set B (2) s = {(x, y) | y ∈ Y 0s , h y > 0, x ∈ A(y)}, and orient this chain by -Ω(A(y)) ∧ dy 1 ∧ dh y ∧ dω y , where Ω(A(y)) denotes the orientation of the annulus A(y) in which x lies. The codimension 1 faces of B (2) s are :

6. 4

 4 .3.1 Construction of B W up to Lemma 6.4.11

Notation 6.4. 13 .

 13 Choose two families (a d i ) 0≤d≤n+1,1≤i≤b d and (z d i ) 0≤d≤n+1,1≤i≤b d of chains of S such that: • For any d ∈ {0, . . . , n + 1}, the families ([a d i ]) 1≤i≤b d and ([z d i ]) 1≤i≤b d are two bases of H d (S ).

  the sum of a chain contained in ∂W 1 and the chain d∈n i∈b d a d i × (z n+1-d i ) + , which is not contained in ∂W 1 . It remains to define the chain D 3 in order to cancel d∈n i∈b d a d i × (z n+1-d i ) + .

6.4.3. 5 •Figure 6

 56 Figure 6.10 -Dotted line: The surfaces Σ and Σ+ inside N 3 ∩ Π x for any x such that h x < h 1 . Dashed line: The points x ∈ N 2 ∩ E 1 such that (x, (z 0 1 ) + ) or (a 0 1 , x) lies in ∂ 1 B Y i or ∂ 2 B Y i .

  BCR des noeuds longs dans les R 3 asymptotiques d'homologie entière Théorème 7.3.1. Pour tout noeud long ψ d'un R 3 asymptotique d'homologie entière, toute parallélisation τ de M • , et toute k-famille F = (β i ) i∈2k de formes propagatrices de (M • , τ ), posons

Lemma 7.3. 2 .•-

 2 Si S ⊂ V (Γ), on note Γ S le sous-graphe de Γ dont les sommets sont les éléments de S et les arêtes les arêtes de Γ dont les deux extrémités sont dans S. D'HOMOLOGIE ENTIÈRE• Pour tout (∂ S C Γ (ψ), σ) ∈ F(Γ) × Num(Γ), tel que σ -1 (1) est une arête interne, δ S I(Γ, σ, ψ) = 0.• Pour toute face à l'infini numérotée (∂ S C Γ (ψ), σ) telle que σ -1 (1) n'a aucune extrémité dans S, δ S I(Γ, σ, ψ) = 0.• L'ensemble des faces cachées admet une partition H 1 (Γ) H 2 (Γ) telle quepour toute face ∂ S C Γ (ψ) de H 1 (Γ) et toute numérotation σ, δ S I(Γ, σ, ψ) = 0.pour toute face∂ S C Γ (ψ) de H 2 (Γ),on dispose d'une involution σ → σ * des numérotations de Γ de telle sorte que δ S I(Γ, σ * , ψ) = -δ S I(Γ, σ, ψ). Voyons les faces principales comme des couples (Γ, e) où Γ ∈ G k et e ∈ E(Γ). Pour toute numérotation σ, soit δ e I(Γ, σ, ψ) l'intégrale δ S I(Γ, σ, ψ) associée à l'ensemble S des extrémités de e. Soit N =1 (Γ, e) l'ensemble des numérotations de Γ telles que σ(e) = 1. Alors : -Il existe une involution s : (Γ, e) → (Γ * , e * ) de l'ensemble des faces principales telle que pour tout (Γ, e), il existe une application canonique s Γ,e : σ ∈ N =1 (Γ, e) → σ * ∈ N =1 (Γ * , e * ) telle que δ e * I(Γ * , σ * , ψ) = -δ e I(Γ, σ, ψ) et que s Γ,e • s Γ * ,e * = Id. Si σ est une numérotation de Γ telle que σ(e) = 1, et, si e est externe avec au moins une extrémité externe, alors δ e I(Γ, σ, ψ) = 0. De plus, si (β 1 -β 1 ) a la propriété de factorisation par la sphère, • pour toute face à l'infini ∂ S C Γ (ψ), δ S I(Γ, σ, ψ) = 0, • les faces anormales s'annulent : pour tout (Γ, σ) ∈ G k , δ V (Γ) I(Γ, σ, ψ) = 0, • pour toute face principale (Γ, e) où e est une arête externe entre deux sommets internes, l'application s Γ,e ci-dessus s'étend en une application s Γ,e : σ ∈ Num(Γ) → σ * ∈ Num(Γ * ) telle que δ e * I(Γ * , σ * , ψ) = -δ e I(Γ, σ, ψ) et s Γ,e • s Γ * ,e * = Id. 7.3.1.3 Cas où σ -1 (1) est interne La première propriété du lemme 7.3.2 découle immédiatement de la définition des formes ω(Γ, σ, ψ). D'HOMOLOGIE ENTIÈRE 7.3.1.4 Faces à l'infini Soit S * = S { * } représentant une face à l'infini ∂ S * C Γ (ψ). Les arguments de la partie 5.7.1 démontrent que δ S * I(Γ, σ, ψ) s'annule, sauf éventuellement dans le cas où toutes les arêtes entre S et V (Γ) \ S sont des arêtes internes. En particulier, cela entraîne que S contient au moins deux sommets. Soit donc une face ∂ S * C Γ (ψ) vérifiant cette dernière hypothèse. Écrivons ∂ S * C Γ (ψ) = C 0 Γ |V (Γ)\S × C S,∞ comme en partie 5.7.1. Définissons une relation d'équivalence sur ∂ S * C Γ (ψ), en disant que (c, [u S ]) est équivalent à (c , [u S ]) si et seulement si c = c et s'il existe un choix de représentants u S et u S tels que pour tout sommet v ∈ S, u S

  On en déduit que la forme (ω(Γ, σ, ψ)) |∂ S * C Γ (ψ) est nulle, et donc que δ S * I(Γ, σ, ψ) = 0. 7.3.1.5 Faces cachées, principales et anormales Dans ce cas, tout est identique à la démonstration du lemme 5.3.2, à laquelle nous renvoyons, à l'exception du lemme 5.7.4 dont la démonstration n'est plus valide si S consiste en deux sommets internes entre lesquels il n'y pas d'arête. Montrons que pour une telle face, la contribution s'annule encore. Dans ce cas, la face ∂ S C Γ (ψ) est difféomorphe à C 0 δ S Γ × S 0 . Avec cette identification, l'application ϕ : (c, u) ∈ ∂ S C Γ (ψ) → (c, -u) ∈ ∂ S C Γ (ψ) renverse l'orientation et l'on a p e • ϕ = p e pour toute arête e de Γ. Ceci entraîne alors que δ S I(Γ, σ, ψ) = -δ S I(Γ, σ, ψ) et conclut.

  chaînes propagatrices externes de (M • , τ ) est en position générale pour un noeud long ψ si, pour tout diagramme numéroté (Γ, σ) ∈ G k , et pour toute configuration c ∈ e∈Ee(Γ) p e -1 (B σ(e) ),

  e∈Ee(Γ) w B σ(e) (p e (c))   . D'HOMOLOGIE ENTIÈRE Théorème 7.4.1. Pour tout noeud long ψ d'un R 3 asymptotique d'homologie entière, et toute k-famille F = (B i ) i∈2k de chaînes propagatrices externes de (M • , τ ) en position générale pour ψ, Z k

  Théorème 7.5.1. Pour tout noeud long ψ d'un R 3 asymptotique d'homologie entière, toute surface de Seifert Σ de ψ, et toute paire (B, B) de bases duales de H 1 (Σ),Z k (ψ) = k-1 ν=1 λ k,ν L k,ν (B, B), où λ k,ν = 1 (k-1)! Card ({σ ∈ S k-1 | Card{i ∈ k -2 | σ(i) < σ(i + 1)} = ν -1}) , et où L k,ν (B, B) = 1 k Tr (V + (B, B)) ν (V -(B, B)) k-ν . Pour toute surface de Seifert Σ d'un noeud long ψ : R → M • , le polynôme d'Alexander ∆ 1,Σ (t) vérifie ∆ 1,Σ (t -1 ) = ∆ 1,Σ (t) et ∆ 1,Σ (1) = 1.Il ne dépend donc pas du choix de la surface de Seifert, et il s'agit du polynôme d'Alexander habituel des noeuds de dimension 1. Théorème 7.5.2. Pour tout noeud long ψ d'un R 3 asymptotique d'homologie entière, on a l'égalité suivante dans Q[[h]] :Ln(∆ ψ (e h )) = -k≥2 Z k (ψ)h k . L'OBSTRUCTION 3.5.3. La variété C 2 (M • )présente des faces de codimension 2. Afin de lisser la situation, on commence par prendre un voisinage régulierN ∂ de ∂C 2 (M • ), et l'on note C 2 (M • ) l'adhérence de C 2 (M • ) \ N ∂ . Le bord de N ∂ est la réunion disjointe de ∂C 2 (M • ) et de -∂C 2 (M • ). Étendons G τ en une submersion G τ : N ∂ → S n+1 .On dispose alors d'une sous-variété G τ -1 ({-x, x}), dont le bord est la réunion deG -1 τ ({-x, x}) et d'une sous-variété C 0 (x) de ∂C 2 (M • ).Le théorème suivant nous permet alors de conclure.Théorème 8.1.3. Soit C une sous-variété de codimension m -1 de ∂C 2 (M • ). Alors, pour toute boule ouverte R de l'intérieur de C 2 (M • ), il existe une sousvariété B de C 2 (M • ) \ R, telle que B soit transverse à ∂C 2 (M • ) ∪ ∂R, que ∂B ⊂ ∂C 2 (M • ) ∪ ∂R, et que ∂B ∩ ∂C 2 (M • ) = C.Démonstration du théorème 8.1.2 à partir du théorème 8.1.3. On applique le théorème 8.1.3 à la sous-variété C 0 (x). On dispose alors d'une sous-variété B 0 telle queB 0 soit transverse à ∂C 2 (M • ) ∪ ∂R, ∂B 0 ⊂ ∂C 2 (M • ) ∪ ∂R, et ∂B 0 ∩ ∂C 2 (M • ) = C 0 (x). On pose alors B 1 = B 0 ∪ G τ -1 ({-x,x}), et l'on modifie cette chaîne sur un collier de ∂C 2 (M • ) pour que le recollement soit une sous-variété lisse. Comme H m (R) = 0, il existe une chaîne de R (sans hypothèse de régularité) telle que ∂B 2 = -(∂B 1 ) ∩ R. La chaîne 1 2 (B 1 + B 2 ) est alors une chaîne propagatrice externe presque lisse. Démonstration du théorème 8.1.3. Soient deux voisinages tubulaires π N : N → C et π N : N → C de C dans ∂C 2 (M • ), tels que N ⊂ Int(N ), et que cette inclusion préserve les fibres. Thom construit dans [Tho54] une variété M (SO(m -1)) à partir d'un espace classifiant p SO(m-1) : A SO(m-1) → B SO(m-1) à base compacte pour les fibrés en (m -1)-disques, et démontre que, si il ne s'agit que de classifier les fibrés d'une certaine dimension au plus, l'espace A SO(m-1) peut être construit comme suit : on prend un entier N suffisamment grand, et on note B SO(m-1) la grassmannienne des m -1 plans orientés de R N , et A SO(m-1) = {(x, P ) | P ∈ B SO(m-1) , x ∈ P, ||x|| ≤ 1}, l'application de fibré étant donnée par l'oubli du vecteur. On a alors dans notre cas un morphisme de fibrés vectoriels f N rendant le carré suivant commutatif. ) |C / / B SO(m-1)

  On prolonge ainsi f ∂ au 2-squelette, ceci étant possible car pour tout 2-simplexe hors de ∂C 2 (M • ), son bord est envoyé sur a, donc est homotopiquement trivial. (Ce raisonnement ne marche plus pour le 3-squelette, car f est déjà défini sur les 2-simplexes du bord, et peut prendre des valeurs dans tout M (SO(m -1)), dont l'homotopie n'est pas totalement connue.) Démontrons par récurrence sur k ∈ {2, . . . , 2m -1} la propriété * (k) : « f ∂ admet un prolongement continu au k-squelette de T qui envoie le 1-squelette de T sur a.». La propriété * (2) est déjà démontrée. Supposons la propriété * (k) pour un certain k ∈ {2, . . . , 2m -2}. Supposons donc f ∂ étendue en une application continue f (k) du k-squelette dans M (SO(m -1)) qui envoie le 1-squelette de T sur a, où k ∈ {2, . . . , 2m -1}. Posons alors c(f (k) ) : C k+1 (T ) → π k (M (SO(m -1)), a) e k+1 → κ(f (k) |∂e k+1 ).

Lemma 8.1. 7 .

 7 Pour k ∈ {2, . . . , 2m -2},H k+1 (C 2 (M • ), ∂C 2 (M • ); π k (M (SO(m -1)), a)) = 0, et H 2m (C 2 (M • ), ∂C 2 (M • ); π 2m-1 (M (SO(m -1)), a)) = π 2m-1 (M (SO(2m-1)), a). Démonstration. Remarquons d'abord que C 2 (M • ) et C 2 (M • )sont homéomorphes et ont donc le même type d'homotopie. Le lemme 5.3.3 implique queH i (C 2 (M • ), ∂C 2 (M • )) = Z si i = 2m ou m + 1, 0 sinon. En particulier, on a donc H k+1 (C 2 (M • ), ∂C 2 (M • ); π k (M (SO(m -1)), a)) = 0,pour les entiers k voulus, à l'exception de k = m. Le théorème II.16 de[START_REF] Thom | Quelques propriétés globales des variétés différentiables[END_REF] de Thom affirme que le groupe π m (M (SO(m -1)), a) est nul, ce qui entraîne queH m+1 (C 2 (M • ), ∂C 2 (M • ); π m (M (SO(m -1)), a)) = 0.On peut donc affirmer d'après le lemme précédent que c(f (k) ) est un cobord. Ceci va nous permettre de corriger le prolongement f(k) , pour se placer dans les conditions du lemme 8.1.6.Écrivons pour cela notre cobord sous la forme c(f (k) ) = r i=1 [α i ]d(e k i ) * , où (e k i ) * ∈ C k (C 2 (M • ); Z) est la forme linéaire coordonnée sur le k-simplexe e k i , et les [α i ] sont des éléments de π k (M (SO(m -1)), a). Pour i ∈ {1, . . . , r}, notons α i un représentant de l'inverse de [α i ]. Notons f (k) l'application sur le k-squelette construite comme suit.

Lemma 8.1. 8 .

 8 Il existe une application continue f : X → M (SO(m -1)), telle que ( f ) |∂C 2 (M • ) = f ∂ , et telle que, pour tout indice i ∈ {1, . . . , r}, l'application p i • f est lisse sur f -1 N 1 4 ∩ π -1 (U i ) et admet 0 comme valeur régulière.Commençons par conclure la démonstration du théorème 8.1.3 à partir du lemme 8.1.8 Soit f une application satisfaisant les hypothèses du lemme 8.1.8 cidessus. Le lemme 8.1.8 implique que f -1 (B SO(m-1) ) est une sous-variété de X, dont le bord est inclus dans celui de X, et rencontre ∂C 2 (M • ) exactement en f -1 ∂ (B SO(m-1) ) = C, de manière transverse. En prenant un collier de ∂R, on peut également faire en sorte d'avoir la transversalité au niveau de ∂R, ce qui conclut la démonstration du théorème 8.1.3.Démonstration du lemme 8.1.8. Commençons par prendre deux colliers U∂ et V ∂ du bord de C 2 (M • ), tels que V ∂ ⊂ U ∂ , et notons π ∂ la projection de U ∂ sur ∂C 2 (M • ), qui est lisse. Comme C 2 (M • ) \ U ∂ est difféomorphe à C 2 (M • ), on peut définir une nouvelle application continue f 1 : X → M (SO(m-1)), s'écrivant f ∂ •π ∂ sur U ∂ ,et s'identifiant à f sur son complémentaire, via ce difféomorphisme. En L'OBSTRUCTION Traitons d'abord, à titre d'exemple, le cas où le fibré N serait trivial, et où l'on aurait donc une application globale de fibre p : N → D m-1 . Dans ce cas, il s'agit simplement, pour chaque 1-simplexe e 1 , de s'assurer qu'il ne rencontre pas la section nulle, et donc que l'application p • e 1 admette 0 comme valeur régulière (en effet, comme m -1 > 1, la différentielle de p • e 1 n'est jamais surjective, donc les valeurs atteintes sont toutes critiques). Notons H l'ensemble des difféomorphismes de N agissant fibre par fibre et fixant un voisinage du bord, muni de la distance d ∞ (ϕ, ϕ ) = sup x∈N ||p(ϕ(x)) -p(ϕ (x))||, où ||.|| désigne la norme euclidienne sur le disque. Lemma 8.1.9 (Application du lemme de Morse-Sard). Soient M et N deux variétés, f : M → N une application lisse, et K un compact de M . On note C(f ) l'ensemble des points critiques de f , et on note R(f, K) = N \ f (C(f ) ∩ K) l'ensemble des points réguliers de f restreinte à K. Alors, R(f, K) est un ouvert de mesure pleine, donc dense, de N . Démonstration. Comme R(f, K) contient R(f, M ) qui est de mesure pleine d'après le lemme de Sard, il est également de mesure pleine. Enfin, C(f ) est un fermé, donc C(f ) ∩ K est compact, et f (C(f ) ∩ K) est donc compact. Son complémentaire R(f, K) est alors ouvert. Pour conclure avec ce lemme, montrons comme annoncé que H(e 1 ) = {ϕ ∈ H | p • ϕ • e 1 admet 0 comme valeur régulière} est un ouvert dense.

  T une triangulation de (B(M ), ∂B(M )), et notons T (k) son k-squelette. Nous allons démontrer par récurrence finie la propriété suivante pour k ∈ {0, . . . , n+ 1}. * (k) : Toute application f : (B(M ), ∂B(M )) → (Y, y 0 ) est homotope à une application qui envoie le k-squelette de T sur y 0 . La propriété * (0) découle directement de la connexité par arcs de Y . Supposons démontrée la propriété * (k -1) pour un certain k ∈ {0, . . . , n + 1}, et démontrons la propriété * (k). Soit f : (B(M ), ∂B(M )) → (Y, y 0 ). Par hypothèse, on peut supposer que f envoie déjà le (k -1)-squelette de T sur y 0 . La triangulation T induit un complexe cellulaire T I sur B(M )×I (où I = [0, 1]), tel que T (k) I

  La restriction de h 0 à toute k-cellule e k de T I définit un élément c(h 0 , e k ) de [(e k , ∂e k ), (Y, y 0 )] = π k (Y, y 0 ). Le bord de toute (k + 1)-cellule e k+1 de T I s'écrit ∂e k+1 = j a j (e k+1 )e k j où les e k j sont des k-cellules de T I . Posons κ(h 0 )(e k+1 ) = j a j (e k+1 )c(h 0 , e k j ).Cette application s'étend linéairement en une application κ(h 0 ) : C k+1 (T I , Z) → π k (Y, y 0 ). Par construction, κ(h 0 ) est le cobord d(c(h 0 , •)). Ainsi, κ(h 0 ) est un cocycle.De plus, comme le lemme 8.1.6 le montre, ce cocycle κ(h 0 ) est tel que h 0 admet une extension continue à e k+1 si et seulement si κ(h 0 )(e k+1 ) = 0. En particulier, κ(h 0 ) s'annule sur les cellules deT (k+1) I ∩ ∂(B(M ) × I) auxquelles h 0 peut toujours être continûment étendu, soit par f , soit par y 0 . Ainsi, κ(h 0 ) représente un élément de H k+1 (T I , T I ∩∂(B(M )×I); π k (Y, y 0 )) = H k+1 (B(M )×I, ∂(B(M )×I); π k (Y, y 0 )). Comme k ≤ n + 1, H k+1 (B(M ) × I, ∂(B(M ) × I); Z) = H n+2-k (B(M ); Z) = 0, et le groupe de cohomologie H k+1 (T I , T I ∩ ∂(B(M ) × I); π k (Y, y 0 )) à coefficients dans π k (Y, y 0 ) est également trivial. Ainsi, κ(h 0 ) est le cobord d'un élément de C k (T I , T I ∩ ∂(B(M ) × I); π k (Y, y 0 )).Pour tout (k -1)-simplexe e k-1 de T qui L'OBSTRUCTION n'est pas contenu dans ∂B(M ), notons (e k-1 × I) * : C k (T I ) → Z l'application qui envoie une chaîne de C k (T I , T I ∩ ∂(B(M ) × I)) sur son coefficient sur e k-1 × I. Les cochaînes (e k-1 × I) * forment une base canonique de C k (T I , T I ∩ ∂(B(M ) × I)). Le cobord κ(h 0 ) s'écrit donc r i=1 α i d (e k-1 i × I) * , où les α i sont des éléments de π k (Y, y 0 ), et où les (e k-1 i ) 1≤i≤r sont les (k -1)-simplexes de T non contenus dans ∂B(M ).Changeons la valeur de h 0 sur chaque e k-1 i× I en remplaçant l'application constante (h 0 ) |e k-1 i ×I par une application g i : (e k-1 i × I, ∂(e k-1 i × I)) → (Y, y 0 ). Les g i induisent des classes γ i ∈ [(e k-1 i × I, ∂(e k-1 i × I)), (Y, y 0 )] ∼ = [(D k , ∂D k ), (Y, y 0 )] ∼ = π k (Y, y 0 ). Choisissons les applications g i telles que γ i = -α i . Soit alors h 1 l'application obtenue, de telle sorte que κ(h 1 ) = κ(h 0 ) + r i=1 (-α i )d (e k-1 i × I) * = 0. Comme κ(h 1 ) = 0, h 1 s'étend en une application h 2 définie sur T (k+1) I et donc a fortiori sur T (k) × I. La construction précédente garantit que h 2 envoie (T (k) ∩ ∂B(M )) × I sur y 0 . Étendons h 2 sur B(M ) × {1} par f . Le lemme suivant conclut la récurrence et démontre la propriété * (n + 1). Lemma 8.2.2. Soit T une triangulation d'une variété X. Soit F : (T (k) ×I)∪(X × {1}) → Y une application telle que F ((T (k) ∩ ∂X) × I) = {y 0 }. Alors F s'étend continûment en une application F : X × I → Y telle que F (∂X × I) = {y 0 }.Démonstration. Démontons par récurrence que F s'étend continûment à (T ( ) × I) ∪ (X ∪ {1}) pour tout ∈ {k, . . . , n + 2}.LA propriété pour = k est immédiate. Pour un certain ∈ {k, . . . , n + 1}, supposons que F s'étend continûment en une application F ( ) définie sur (T ( ) × I) ∪ (X × {1}).Choisissons un ( + 1)-simplexe e +1 i de T . Le couple topologique 1 (e+1 i × I, ((∂e +1 i ) × I) ∪ (e +1 i × {1})) est homéomorphe à (D +2 + , S +1 + ) où D +2 + (resp. S +1+ ) désigne l'intersection de la boule (resp. de la sphère) de centre 0 et de rayon 1 de R +2 et du demi-espace {x ∈ R +2 |x 1 ≥ 0}. On démontre facilement que toute application continue définie sur la demi-sphère s'étend continûment à la demi-boule. Ainsi, toute application définie sur ((∂e+1 i ) × I) ∪ (e +1 i × {1}) s'étend continûment à e +1i × I. Ceci permet d'étendre F en une application continue définie sur le simplexe e +1 i × I. Si la cellule e +1 i est contenue dans ∂X, cette extension peut être choisie Annexe AExistence de noeuds longs de matrices de Seifert donnéesDans ce chapitre, on démontre la proposition suivante, certainement connue des spécialistes, et qui donne des exemples de noeuds longs de matrices de Seifert données, avec les notations de la définition 4.1.8.Proposition A.0.1. Soient (V + d ) d∈n et (V - d ) d∈n deuxfamilles de matrices carrées à coefficients entiers telles que• pour tout d ∈ n, V + d -V - d = I, • pour tout d ∈ n \ { n+1 2 }, T V + d = -V - n+1-d ,• les matrices carrées V ± n+1 2 sont de taille paire.Alors, il existe un noeud long ψ : R n → R n+2 et une surface de Seifert Σ de ψ, dont les matrices de Seifert dans un certain couple de bases duales (B, B) deH * (Σ) vérifient V ± d (B, B) = V ± d pour tout d ∈ n.Démonstration. Soit Σ 0 la surface de Seifert R -× {0} × R n du noeud trivial dans R n+2 . On va procéder par modifications successives de Σ 0 . Pour tout d ∈ n, notons b d le nombre de lignes de la matrice carréeV + d d ∈ {1, . . . , n+1 2 }, choisissons n d sphères (S d i ) i∈n d plongées dans Y 0 = R n+2 \ Σ 0 ,et munies de voisinages tubulaires (N i,d ) i∈n d , dont le bord ∂N i,d est difféomorphe à S d × S n+1-d . Supposons les voisinages tubulaires (N i,d ) i,d SEIFERT DONNÉES deux-à-deux disjoints. Écrivons la sphère S d comme la réunion de deux hémisphères H d -et H d + . Notons P i,d le complémentaire du (n + 1)-disque Int H d + × H n+1-d + dans ∂N i,d . La sous-variété P i,d est alors la réunion de H d -× S n+1-d et S d × H n+1-d le long de H d -× H n+1-d -. En fixant m i,d ∈ Int(H d -) et m i,d ∈ Int(H n+1-d -), les cycles S d × {m i,d } et {m i,d } × S n+1-d sont contenus dans P i,d , et P i,d se rétracte par déformation sur (S d × {m i,d }) ∪ ({m i,d } × S n+1-d ), qui est un bouquet S d ∨ S n+1-d . Les deux cycles engendrent donc l'homologie réduite de P i,d et se rencontrent en un seul point. Choisissons alors pour tout d ∈ {1, . . . , n+1 2 } et tout i ∈ n d un point x i,d de ∂Σ 0 , et un chemin γ i,d allant de x i,d à un point y i,d de ∂P i,d dans Y 1 = Y \ i ,d P i ,d , de telle sorte que les chemins γ i,d soient deux-à-deux disjoints (ce qui est possible car Y 1 est connexe et de dimension au moins 3). Pour tout (i, d), on recolle alors à Σ 0 ∪ i ,d P i ,d un cylindre [0, 1] × D n de telle sorte que [0, 1] × {(0, . . . , 0)} s'identifie à γ i,d , {0} × D n à un voisinage de x i,d dans ∂Σ 0 , et {1} × D n à un voisinage de y i,d dans ∂P d i . On obtient alors 1 une sous-variété Σ 1 , dont le bord est la somme connexe de R n et d'un certain nombre de n-sphères, et est donc toujours difféomorphe à R n . L'orientation de Σ 0 fixe une orientation de Σ 1 , ce qui fixe le choix des orientations des P i,d . Orientons alors les cycles a d i = S d × {m i,d } et z n+1-d i = {m i,d } × S n+1-d de telle sorte que a d i , z n+1-d i Σ 1 = 1. Une application directe de la suite de Mayer-Vietoris entraîne que l'homologie réduite de Σ 1 est engendrée par les classes ([a d i ]) i,d et ([z n+1-d i ]) i,d . Par construction, on a a d i , z n+1-d j Σ 1 = δ i,j . On définit alors deux bases duales B = (a d i ) d∈n,i∈b d et B = (z d i ) d∈n,i∈b d de l'homologie réduite de Σ 1 par les formules

4 ,•,

 4 1) d a d i-n d si d = n+1 2 et n d < i ≤ b d , Avec de telles bases, on a V ± d (B, B) = -T V ∓ n+1-d (B, B) pour tout d différent de n+1 2 , et V + d (B, B) -V - d (B, B) = I b d pour tout d ∈ n. Il suffit donc pour avoir la propriété de la proposition de s'assurer que V + d (B, B) = V + d pour d ∈ {1, . .. , n+1 2 }. SEIFERT DONNÉES Fixons d ∈ {1, . . . , n+1 2 }, et i et j dans b d , et montrons comment modifier le nombre d'enlacement lk(z d i , (a n+1-d j ) + ). Notons P (respectivement P ) l'unique P i ,d contenant z d i (respectivement a n+1-d j). Choisissons un chemin γ dez d i à a n+1-d j dans Y 2 = R n+2 , ne rencontrant Σ 1 qu'en γ(0) et γ(1), et la rencontrant transversalement en ces deux points. Pour r ∈]0, 1] et k ∈ n, notons D k r ⊂ D k 1 = D k le k-disque de rayon r. Identifions un voisinage U de γ à [-1, 3] × D d × D n+1-d de telle sorte que • le chemin γ s'identifie au segment [0, 1] × {0} d × {0} n+1-d , • le morceau de cycle z d i ∩ U s'identifie (avec même orientation) à {0} × D d × {0} n+1-d , et P ∩ U à {0} × D d × D n+1-d 1 pour un certain ε ∈ {±1}, le morceau de cycle εa n+1-d j ∩ U s'identifie (avec même orientation) à ε{1} × {0} d × D n+1-d , et l'ensemble P ∩ U à {1} × D d 1 4 × D n+1-d .Prenons une fonction lisse χ :D d → [0, 1] valant 1 sur D d 1 4 et 0 en-dehors de D d 1 2 . Notons N le sous-ensemble -1 2 , 1 2 × D d × D n+1-d de U , qui contient P ∩ U . Pour x = (t, x, y) ∈ N , posons Φ(x) = (t + 2χ(x), x, y) ∈ U.On définit ainsi une application lisse Φ d'un voisinage de N dans U , dont la restriction à P ∩ U est un plongement fixant P ∩ ∂U . Les hypothèses sur χ garantissent que Φ(P ∩ U ) ne rencontre pas P . En remplaçant P ∩ U par Φ(P ∩ U ) dans Σ 1 , on obtient donc une nouvelle surface de Seifert, qui a la même homologie, et où le générateur z d i est remplacé par le cycle zd i obtenu à partir de z d i en remplaçantz d i ∩ U par Φ(z d i ∩ U ). Notons alors W d+1 z = {(t, x, 0) ∈ U | 0 ≤ t ≤ 2χ(x)},que nous orientons par les coordonnées (t, x), de telle sorte que ∂W d+1 z = zd i -z d i . On a alors lk zd i , (a n+1-d j ) + = lk z d i , (a n+1-d j ) + + (-1) d+1 W d+1 z point d'intersection (1, 0, 0), de signe ε. En répétant ce procédé un certain nombre de fois, on peut donc obtenir une surface de Seifert Σ 2 et deux bases duales (B, B) de son homologie réduite telles que V + d (B, B) = V + d pour d ∈ {1, . . . , n+1 2 }.

  

  Les sommets externes seront représentés par des points blancs, et les sommets internes par des points noirs. Les arêtes externes seront représentées en pointillés, et les arêtes internes tracées en trait plein. Les cinq comportements ci-dessus sont alors représentés en figure 2.2. Le degré d'un diagramme BCR est le nombre 1 2 Card(V (Γ)). Ces conditions impliquent qu'un diagramme BCR Γ est constitué d'un cycle, avec une arête externe venant d'un sommet univalent attachée à chaque sommet du cycle dont les arêtes rentrantes et sortantes dans le cycle ont même nature. De manière équivalente, un diagramme BCR est une suite cyclique alternée de fragments comme en figure 2.3, avec autant de morceaux du premier que du deuxième type. En particulier, le degré d'un diagramme BCR est un entier naturel.

	CHAPITRE 2. LES INVARIANTS DE BOTT-CATTANEO-ROSSI DANS
	R N +2				
	1	2	3	4	5
	v	v	v	v	v
			Figure 2.2		
					et une
	arête interne sortante,				
	5. le sommet v est interne et bivalent, avec une arête interne rentrante, et une
	arête externe sortante.				

, où les éléments de V i (Γ) sont appelés sommets internes, ceux de V e (Γ) sommets externes, ceux de E i (Γ) arêtes internes, et ceux de E e (Γ) arêtes externes, tel que chaque sommet v vérifie l'une des cinq propriétés suivantes : 1. le sommet v est externe et trivalent, et possède une arête externe sortante et deux arêtes externes rentrantes, dont exactement une vient d'un sommet univalent, 2. le sommet v est interne et trivalent, et possède une arête interne rentrante, une arête interne sortante, et une arête externe rentrante, venant d'un sommet univalent, 3. le sommet v est interne et univalent, avec une arête externe sortante, 4. le sommet v est interne et bivalent, avec une arête externe rentrante,

R n+2 asymptotiques d'ho- mologie entière Définition 3.2.1. Une

  

parallélisation d'un tel R n+2 asymptotique d'homologie entière est un isomorphisme de fibrés vectoriels τ :

  En particulier, Z k définit un invariant isotopique des noeuds longs. 4. L'invariant Z k prend ses valeurs dans Q. 5. Si l'entier k est impair, l'invariant Z k est toujours nul. L'invariant Z k ainsi obtenu est appelé invariant BCR généralisé de degré k.

  Dans cette thèse, les chaînes manipulées sont définies comme suit. Une d-chaîne rationnelle d'une variété P est une combinaison linéaire à coefficients rationnels

r i=1 w i Y i de sous-variétés orientées à bords et à coins (Y i ) i∈r de dimension d, avec les identifications usuelles, dont notamment -1.Y = 1.(-Y ) pour tout Y ( où -Y désigne la variété Y avec l'orientation opposée), et 1.(Y Z) = 1.Y + 1.Z, pour tous Y et Z disjoints. Dans ce cadre, on définit : • le support Supp(Y ) de Y comme la réunion des Y i , • l'intérieur Int(Y ) de Y comme la réunion des intérieurs de toutes les variétés Y i , • le bord de Y comme la (d -1)-chaîne r i=1 w i ∂Y i . Une d-chaîne rationnelle plongée est une d-chaîne rationnelle comme ci-dessus, dont les Y i sont d'intérieurs deux à deux disjoints. Toute d-chaîne rationnelle est homologue à une d-chaîne rationnelle plongée. Si Y est une chaîne rationnelle plongée, l'intérieur Int(Y ) est une sous-variété de P , et il existe une unique application w Y : Int(Y ) → Q, telle que w Y (Int(Y i )) = {w i }. Ceci nous permet de définir une notion de d-cycles et de d-bords et de retrouver les groupes d'homologie rationnelle de notre variété P via la relation habituelle H d (P, Q) = {d-cycles}/{d-bords} = {d-cycles plongés}/{bords d'une (d + 1)-chaîne plongée}.

4.1 Définition des polynômes d'Alexander et de la torsion de Reidemeister 4.1.1 Polynômes d'Alexander d'un noeud long

  

	On rappelle dans cette partie la définition des polynômes d'Alexander de l'article
	[Lev66] de Levine. Le cadre est ici un peu plus large, puisque l'article de Levine ne
	porte que sur les noeuds dans S n+2 , mais la méthode est essentiellement identique.
	On se donne ψ : R n → M • un noeud long dans un R n+2 asymptotique d'ho-
	mologie entière, et l'on pose X

Lemme 4.1.1. L'extérieur X du noeud a l'homologie d'un cercle, et si µ désigne un méridien du noeud (c'est-à-dire le bord d'un disque tranverse au noeud et le rencontrant en exactement un point),

  

	Le
	lemme suivant s'obtient facilement, par exemple à l'aide d'une suite exacte de
	Mayer-Vietoris.

Définition 4.1.3. On

  t -1 ] , et les éléments (D d,i,ψ (t)) i∈r d sont uniques à multiplication par un monôme qt m près (où q ∈ Q * et m ∈ Z). appelle polynôme 1 d'Alexander de dimension d du noeud long ψ le produit ∆ d,ψ (t) =

	Les séries de Laurent (D d,i,ψ (t)) i,d sont appelés les invariants d'Alexander du
	noeud long ψ.
	D d,i,ψ (t). Il est défini à multiplication par un
	i∈r d
	monôme qt m près 2

Définition 4.1.10. La

  série de Laurent ∆ d,Σ (t) = ∆ d,Σ (t)∆ n+1-d,Σ (t)est simplement notée ∆ d,ψ (t) et est appelée polynôme d'Alexander symétrisé de dimension d de ψ. 3 On a en particulier ∆ d,ψ

		B ,
	où les matrices V ± d	B, B sont celles de la définition 4.1.8.
	Alors, pour tout d ∈ n, le polynôme ∆ d,Σ (t) fournit un représentant du poly-
	nôme d'Alexander ∆ d,ψ (t) de la définition 4.1.3.
	À surface de Seifert Σ fixée, ce polynôme ne dépend pas du choix des bases
	duales (B, B), et l'on démontre dans le lemme 6.2.27 que ∆ d,Σ (t -1 ) = ∆ n+1-d,Σ (t)
	pour tout d ∈ n. Le produit ∆ d,Σ (t) = ∆ d,Σ (t)∆ n+1-d,Σ (t) ne dépend donc que du
	noeud ψ.	

. 5 4.2 Résultats sur les noeuds rubans longs de R n+2 4.2.1 Noeuds rubans longs Définition 4.2.1. Un

  n+1 par une immersion ϕ : D n+1 → M tel que tout point a au plus deux préimages par ϕ, et que l'ensemble des points doubles de ϕ est la réunion d'un nombre fini de n-disques s 1 , . . . , s r tels que, pour tout i ∈ r, ϕ -1 (s i ) est la réunion disjointe de deux n-disques s a,i et s b,i de D n+1 où• pour tout i ∈ r, s a,i est contenu dans l'intérieur de D n+1 ,• pour tout i ∈ r, s b,i rencontre le bord deD n+1 transversalement et ∂s b,i = s b,i ∩ ∂D n+1 .Les lieux doubles (s i ) i∈r sont appelés les singularités rubans de ϕ(D n+1 ). La partie gauche de la figure 4.1 en donne un exemple. Soit M • un R n+2 asymptotique d'homologie entière, et soit ψ : R n → M • un noeud long de M • . On dit que ψ est un noeud ruban long s'il existe une (n + 1)-variété immergée Σ de M • , telle que

	(n + 1)-disque ruban d'une (n + 2)-variété M est l'image du
	(n + 1)-disque D Définition 4.2.2.

.3 Relation entre les invariants BCR (Z k ) k≥2 et le poly- nôme d'Alexander pour les noeuds rubans longs de R n+2

  β k est un invariant de type ruban k, et est additif pour la somme connexe, 'un multiple de β k et d'un invariant de type au plus k -1. La constante de proportionnalité est obtenue en calculant β k sur le noeud ψ k . Dans la suite, nous démontrons que l'on a exactement 1 2 Z k = -β k pour tout noeud ruban long et que cette formule est également valable pour n = 1.

	• si k est pair, la restriction de Z k aux noeuds rubans longs est un invariant
	de type ruban k.
	• si k est pair, 1 2 Z k est la somme de -β k et d'un invariant de type ruban au
	plus k -1.
	Dans le théorème supra, le facteur 1 2 de la dernière propriété vient de ce que
	l'invariant étudié dans l'article de Watanabe est défini comme la moitié de celui
	étudié dans cette thèse. Dans cet article, Watanabe démontre d'abord que l'inva-
	riant Z k est de type au plus k, et exhibe un noeud ruban long particulier ψ k donné
	par une surface ruban à k singularités. Ce noeud a la propriété notable que toute
	résolution d'un nombre fini non nul de ces singularités le rend trivial. Comme le
	calcul de la dérivée de 1 2 Z k en ψ k par rapport aux k singularités est 1 pour k pair, ceci implique que 1 2 Z k (ψ k ) = 1. Le théorème 4.2.5 implique alors que 1 2 Z k (qui
	est additif) est la somme d
	• l'algèbre graduée I est isomorphe à l'algèbre Q[β 2 , β 3 , . . .], graduée par la
	formule deg(β k ) = k pour tout k ≥ 2,
	• le sous-espace vectoriel de I formé par les invariants de type ruban fini ad-
	ditifs pour la somme connexe est engendré par (β k ) k≥2 .
	4.2Dans [Wat07], Watanabe a démontré les résultats suivants, qui font le lien entre
	les invariants BCR des noeuds rubans longs de R n+2 et la théorie d'invariants de
	type fini de Habiro, Kanenobu et Shima.
	Théorème 4.2.6 (Watanabe). Soit n un entier impair supérieur ou égal à 3. Soit
	Z k l'invariant de Bott-Cattaneo-Rossi des noeuds longs de R n+2 défini au chapitre
	2. Alors, pour tout entier k ≥ 2,
	• si k est impair, Z k est nul pour tout noeud long,
	• si k est pair, il existe un noeud (ruban) long ψ k tel que Z k (ψ k ) = 0,

4.3 Invariants BCR comme fonctions de nombres d'enlacement 4.3.1 Noeuds rectifiables, virtuellement rectifiables

  

	Soit I(R n , R n+2 ) l'ensemble des injections linéaires de R n dans R n+2 , et soit ι 0 l'in-
	jection x ∈ R n → (0, 0, x) ∈ R n+2 . Voyons π n (I(R n , R n+2 ), ι 0 ) comme l'ensemble
	des classes des applications R n → I(R n , R n+2 ) envoyant R n \ D n sur ι 0 pour l'ho-
	motopie parmi les applications vérifiant la même propriété. On démontre en partie
	6.2.10 le lemme suivant.

Lemme 4.3.1. Soit M • un R n+2 asymptotique

  

	d'homologie entière, et soit ψ
	un noeud long de M • . À une parallélisation τ de M • , on associe l'application
	ι(τ, ψ)

Proposition 4.3.4. Soit

  ψ un noeud long d'un R n+2 asymptotique d'homologie entière avec n ≥ 3. Si n ≡ 1 mod 4, alors ψ ψ ψ ψ est rectifiable.

	Énonçons ici le résultat suivant qui fournit une autre classe de noeuds virtuel-
	lement rectifiables.

Proposition 4.3.5. Soit

  ψ : R n → M • un noeud ruban long d'un R n+2 asymptotique d'homologie entière. Alors ψ ψ est rectifiable. Si M • est parallélisable, ψ lui-même est rectifiable.

	Avant de démontrer cette proposition énonçons le lemme immédiat suivant.
	Lemme 4.3.6. Soit une famille d'immersions (ψ t ) t∈[0,1] , lisse en t, telle que ψ 0
	et ψ 1 soient des plongements, et que pour tout t ∈ [0, 1], et tout x ∈ B • ∞ , ψ t (x) =
	(0, 0, x)

. Alors, si ψ 0 est rectifiable, ψ 1 est également rectifiable. Démonstration de la proposition 4.3.5. Soit ψ un noeud ruban long. À isotopie près, on peut supposer que ψ admet un bon disque ruban long

  Σ. Notons (B i , ϕ i ) i∈r les difféomorphismes associés, de telle sorte que pour tout

4.3.2 La formule de Z k en terme de nombres d'enlacement

  ). REIDEMEISTER Le noeud ψ 0 est le bord de la surface obtenue en résolvant toute les singularités de Σ. Il borde donc un disque plongé et est isotope au noeud trivial. Par conséquent, il est rectifiable. Le lemme 4.3.6 implique alors que ψ 1 = ψ est également rectifiable.

	Dans le chapitre 6, on démontre le théorème suivant (Corollary 6.2.25) 8 .
	Théorème 4.3.7. Soit ψ un noeud long virtuellement rectifiable, soit Σ une surface
	de Seifert de ψ, et soit (B, B) une paire de bases duales de H * (Σ). Alors, pour tout
	entier k ≥ 2,

Lemme 4.4.1. Soit

  ψ : R n → M • un noeud ruban long de dimension n ≥ 3 d'un R n+2 asymptotique d'homologie entière. Alors il existe une surface de Seifert Σ de ψ telle que, pour tout d ∈ {2, . . . , n -1}, ∆ d,Σ (t) = 1.

	Démonstration. Soit ψ un noeud ruban long, et soit Σ 0 un bon disque ruban long
	pour ψ. Soient s 1 , . . . , s r les singularités rubans de Σ 0 , et soient (B i , ϕ i ) i∈r des
	boules deux à deux disjointes et des difféomorphismes comme en définition 4.2.3.
	Pour tout i ∈ r, remplaçons (B i ∩ Σ, B i ) par (ϕ i (X), ϕ i (D n+2 )), où X est la sous-
	variété de D n+2 décrite en figure 4.2 et obtenue comme suit :

  .3. Set dY v j =

	CHAPITRE 6. LA TORSION DE REIDEMEISTER EN FONCTION DE
	COMPTAGES DE DIAGRAMMES
	dX w j =	n+2 i=3	dX i w j and dX w j =	n+2 i=1
				n i=1	dY i v j ,
				100

  Under the assumptions of Lemma 6.2.19, the class ι

	Definition 6.2.20.
	For any d ∈ n, let
	([a d i ]) i∈b d and ([z d i ]) i∈b d be two bases of H d (Σ). We say that the bases B = ([a d i ]) i,d
	and B = ([z d i ]) i,d of the reduced homology H * (Σ) are dual to each other if, for any d ∈ n, and any (i, j) ∈ (b d ) 2 , [a d i ], [z n+1-d j ] Σ = δ i,j , where •, • Σ denotes the

  . Let B be the basis defined from B by replacing a

	COMPTAGES DE DIAGRAMMES	
	with (-1) B by replacing z n+1 2 z n+1 2 i n+1 for any i ∈ {1, . . . , b n+1 2 n+1 2 i 2 with a i	}, and let B be the basis defined from
		n+1
		2
		i
	7 With the notations of [Lev66, Theorem 1], our Alexander polynomial ∆ d,Σ is the product
	λ d i .	
	i∈b d	

  COMPTAGES DE DIAGRAMMES so that P i,σ = P i,σ (0) -P i,σ (1) + P i,σ (2). By transversality,

	Supp(P i,σ ) ⊂
	i∈k
	(Int(P i,σ (0)) Int(P i,σ (1)) Int(P i,σ
	i∈k

  We have the following equality in H n+1 (S × S + ):

	COMPTAGES DE DIAGRAMMES		
	Lemma 6.4.14. [∆(S , S + )] =	n+1	[a d i × (z n+1-d i	) + ].
			d=0 i∈b d	
	Proof. The Künneth formula implies that H n+1 (S × S + ) admits the two families
	([a d i × (z n+1-d j	) + ]) 0≤d≤n+1,(i,j)∈(b d ) 2 and ([z d i × (a n+1-d j
	For any d > n+1 2 , and any j ∈ b d , a d j = z d j , and for any d < n+1 2 and any j ∈ b d , z d j = (-1) d a d j .
	Such a choice is possible as in Lemma 6.3.15, and the previous chains induce similar
	families ((a d i ) + ) 0≤d≤n+1,i∈b d and ((z d i ) + ) 0≤d≤n+1,i∈b d in S + .

  Recall that H * (E 3 ) = H * (S 1 ). Then, for any d ∈ {2, . . . , n} and any i ∈ b d , there exists A d+1 i

	CHAPITRE 6. LA TORSION DE REIDEMEISTER EN FONCTION DE
	COMPTAGES DE DIAGRAMMES
	Proof.		
	2	1	.
			138

  ). Une telle 0-forme fermée est donc simplement la donnée de sa valeur sur chacune de ces deux composantes, et la condition au bord sur les formes propagatrices impose que α vaut + 1 Une k-famille de formes propagatrices de (M • , τ ) est la donnée de 2k formes propagatrices externes (β i ) i∈2k comme en définition 3.7.2. Soit (Γ, σ) un diagramme BCR numéroté de degré k, et soit F = (β i ) i∈2k une k-famille de formes propagatrices de (M • , τ ). Notons N i (Γ) le nombre d'arêtes internes de Γ. Pour tout c ∈ C 0 Γ (ψ), notons N - i (Γ, c) le nombre d'arêtes internes e = (v, w) de Γ telles que c i (v) > c i (w). La fonction c →

	D'HOMOLOGIE ENTIÈRE	
	7.2 Espace de configurations	
	Soit Γ un diagramme BCR de degré k. On définit l'espace C Γ (ψ) comme en partie
	3.6. Pour chaque arête interne e = (v, w) d'un diagramme numéroté (Γ, σ) ∈ G k ,
	la 0-forme p * e (α σ(e) ) est une fonction valant 1 2 sur les composantes connexes où c i (v) ≤ c i (w) et -1 2 ailleurs. Cette remarque additionnelle nous permet d'exprimer
	la forme différentielle à étudier sur C Γ (ψ) en fonction des seules formes propaga-
	trices externes.	
	Définition 7.2.1. N -	
	C -2 (R).	2 sur C + 2 (R) et -1 2 sur
	Définition 7.1.1. De telles formes propagatrices existent en vertu du corollaire 5.3.4.

i (Γ, c) s'étend à tout C Γ (ψ) en une fonction localement constante. Pour toute arête externe, définissons ω F e (Γ, σ, ψ) = p e * β σ(e) , et posons

  D'HOMOLOGIE ENTIÈRE 4. l'invariant Z k ne prend que des valeurs rationnelles, 5. l'invariant Z k est toujours nul si k est impair, 6. l'invariant Z k est additif par rapport à la somme connexe. Notons que le troisième point implique que Z k est un invariant d'isotopie des noeuds longs dans les R 3 asymptotiques d'homologie entière.

Certains s'attendent ici -Gabriel, je te vois ! à une remarque acerbe sur la mise en scène criminelle qui a été commise l'an dernier au MC2 et contre laquelle j'ai longuement vitupéré en salle café. Je me retiens, je ne pourrais être juste sans commettre de graves entorses à la bienséance et au bon goût, entorses que je laisse aux professionnels, qui s'en chargent visiblement très bien.

i.e. dont les sommets sont de valence 1 ou 3

Dans la suite de la thèse, les noeuds qui nous intéresseront sont les plongements de R n dans une variété de dimension n + 2, avec un comportement standard à l'infini. Il y a une bijection entre les classes d'isotopie de ces deux types de noeuds.

Deux matrices carrées à coefficients P et Q sont congruentes s'il existe une matrice inversible R ∈ SL n (Z) telle que P = ( T R)QR.

Les formes Ω e± et le signe ε (Γ) sont différents de l'orientation définie à la partie 5.2.4, mais la forme Ω (Γ) coïncide avec la forme Ω(Γ) de cette dernière partie. La version présentée ici est plus cohérente avec les conventions habituelles pour les diagrammes unitrivalents en dimension 1.

La convergence de cette intégrale découle des propriétés de la compactification C Γ (ψ) du chapitre suivant.

Les chapitres suivants étendent ces résultats à un cadre plus large, qui inclut la dimension n = 1.

Pour des raisons de régularité, on suppose en fait que cette identification s'étend à un voisinage ouvert de la boule B ∞ (M ).

Les énoncés y sont en dimension

3, mais les démonstrations seraient identiques ici.

c'est-à-dire ouverte comme partie de ∂C 2 (M • )

En toute rigueur, il faudrait recoller le long d'un collier, mais cela alourdirait inutilement la description.

Le polynôme d'Alexander est a priori une classe de Q[t, t -1 ]/(qt m ) m∈Z,q∈Q * , mais est tout de même appelé polynôme.

Quand n = 1, le polynôme d'Alexander normalisé habituel est un représentant du polynôme d'Alexander de dimension 1.

Pour les noeuds longs de R 3 , le polynôme d'Alexandre symétrisé de dimension 1 est le carré du polynôme d'Alexander normalisé usuel.

À ceci près qu'ici, nous ne prenons pas en compte la contribution du degré homologique 0, qui est indépendante du noeud.

En dimension 1, on retrouve simplement le polynôme d'Alexander normalisé.

Pour garantir le caractère C ∞ , il faudrait lisser cette réunion, ce qui peut être fait sans difficulté mais rend la description des ensembles plus technique sans ajouter de clarté.

Définition 4.2.4. Soit k ≥ 0 un entier. Un invariant de type ruban au plus k est une fonction Z : K rub → Q telle que, pour tout noeud ruban long ψ : R n → M • , et toutes singularités rubans deux-à-deux distinctes s 1 , . . . , s k+1 d'un bon disque ruban long de ψ,I⊂{s 1 ,...,s k+1 } (-1) Card(I) Z((ψ, (s i ) i∈I )) = 0.On note I k l'espace vectoriel formé par les invariants de type ruban au plus k.On dit que Z est un invariant de type ruban fini s'il existe un entier k tel que

Leur article traite le cas de la dimension 2, mais le raisonnement est valable en toute dimension au moins 2.

La démonstration y est faite dans le cas n ≥ 3, mais elle est valable pour n = 1.

La démonstration y est faite dans le cas n ≥ 3, mais elle est valable pour n = 1.

Note that this implies that our graphs have neither loops nor multiple edges with same orientation.

Dilations are homotheties with positive ratio.

The boundary of this closed face contains the three codimension 2 faces of C 2 (X • ), which we do not describe here.

Here, we do not give the expression of G on the three codimension 2 faces. It can be found inside the proof of[START_REF] Lescop | An introduction to finite type invariants of knots and 3-manifolds defined by counting graph configurations[END_REF] Lemma 2.2] 

The order of the forms inside the wedge product is not important since they have even degree.

Only Θ 2 and Θ 3 are explicitly defined in[START_REF] Cattaneo | Wilson surfaces and higher dimensional knot invariants[END_REF], but the definition for higher k is mentioned.

These cancellations allow us to write 1.(-Y ) + (-1).Y = 0 for a submanifold Y , where -Y denotes the manifold Y with the opposite orientation, and 1.(Y Z) = 1.Y + 1.Z for disjoint submanifolds Y and Z, for example.

Note that any rational chain is homologous to an embedded one.

The orientation of our configuration spaces is w k (Γ).Ω W at (Γ) with the notations of[START_REF] Watanabe | Configuration space integral for long n-knots and the Alexander polynomial[END_REF].

We consider ω F (Γ * , σ * , ψ) as a form on C Γ (ψ) via the canonical identification C Γ (ψ) ∼ = C Γ * (ψ).

Note that we may have a = b.

i. e. such that there is an edge that connects v to w.

Cette prépublication aura significativement changé après la publication du manuscrit de la thèse, pour contenir notamment des résultats en dimension 1 et en dimension paire.

Note that this implies that our graphs have neither loops nor multiple edges with the same orientation.

Dilations are homotheties with positive ratio.

as a subset of ∂C 2 (M • ).

In[START_REF] Leturcq | Generalized Bott-Cattaneo-Rossi invariants of highdimensional knots[END_REF], propagators were called propagating chains.

This intersection number counts the intersection points of these chains with the previously defined signs and the coefficients of the rational chains. For more details, see [Let19, Section 4.1] or Section 5.4.1 here.

This follows from the fact that the (λ d i ) from[START_REF] Levine | Polynomial invariants of knots of codimension two[END_REF] are defined from the knot up to multiplication by a monomial.

In M • , ∂L + 0 (2) reduces to the point (R 2 , 0, 0) with a negative sign.

which coincide if |y 2 | = 2.

Une prépublication en préparation intitulée « Bott-Cattaneo-Rossi invariants for long knots in asymptotic homology R 3 » contient l'essentiel des résultats de ce chapitre, dans un cadre plus large, et des résultats supplémentaires. Les démonstrations y sont faites sans utiliser les résultats des deux articles reproduits ci-avant, et sont donc sans doute plus à recommander pour qui voudrait s'intéresser au cas de la dimension 1.

Un couple topologique est un couple (X, A) où X est un espace topologique et A ⊂ X. Deux tels couples (X, A) et (Y, B) sont homéomorphes s'il existe un homémomorphisme de X à Y envoyant A sur B.

Il faudrait lisser le recollement et le bord des P i,d , mais cela ne présente aucune difficulté autre que purement technique.

Note that pairs of dual bases as above exist thanks to Poincaré duality. The following immediate lemma describes how the L k,ν behave under connected sum. Lemma 6.2.18. Let Σ 1 and Σ 2 be Seifert surfaces for two long knots ψ 1 and ψ 2 . For i ∈ {1, 2}, let (B i , Bi ) be a pair of dual bases of H * (Σ i ) as in Definition 6.2.17.

There exists a natural Seifert surface Σ 1,2 for the connected sum ψ 1 ψ 2 and a pair (B 1,2 , B1,2 ) of dual bases of H * (Σ 1,2 ) such that, for any d ∈ n,

.

In particular, for any k ≥ 2 and any ν ∈ {0, . . . , k},

Rectifiability and virtual rectifiability

Let I(R n , R n+2 ) denote the space of injections R n → R n+2 , and let ι 0 be the standard injection x ∈ R n → (0, 0, x) ∈ R n+2 . Let D n be the unit ball of R n , and see π n (I(R n , R n+2 ), ι 0 ) as the set [(R n , R n \ D n ), (I(R n , R n+2 ), ι 0 )] of homotopy classes of maps R n → I(R n , R n+2 ) that map R n \ D n to ι 0 among such maps.

Lemma 6.2.19. Let M • be a parallelizable asymptotic homology R n+2 and let ψ be a long knot of M • . For any parallelization τ of M • , the tangent map T ψ induces a map ι(τ, ψ) :

is independent of the parallelization τ .

Proof. Let τ and τ be two parallelizations of M • . [Let19, Theorem 6.2]/Theorem 5.6.2 implies the existence of a smooth family (τ t ) t∈[0,1] of parallelizations of M • such that τ 0 = τ and that τ 1 and τ coincide on ψ(R n ). This yields an homotopy (ι(τ t , ψ)) t∈[0,1] from ι(τ, ψ) to ι(τ , ψ).

Computing Z k from admissible propagators 6.3.1 Admissible propagators

Let M • be a fixed parallelizable asymptotic homology R n+2 and let ψ : R n → M • be a fixed long knot. Let ψ 0 : x ∈ R n → (0, 0, x) ∈ R n+2 denote the trivial knot. Fix a real number R ≥ 3. For 1 ≤ r ≤ R, let N 0 r denote the following neighborhood of the trivial knot

, where τ 0 denotes the canonical parallelization of R n+2 introduced in Definition 6.2.1.

Proof. If there exists such a τ , then

Let us prove the converse. Suppose that ψ is rectifiable, and let τ 1 be a parallelization such that ι(τ 1 , ψ) is the constant map of value ι 0 . Recall that if (X, A) and (Y, B) are two topological pairs, [(X, A), (Y, B)] denotes the set of homotopy classes of maps X → Y that map

is an isomorphism, and

By definition of τ 1 , ι(τ 1 , ψ) = ι 0 , and κ(τ 1 ) is trivial. This proves the existence of a parallelization τ :

, it is immediate to see that τ also does.

Note that

• for any σ ∈ Num(Γ k ), there are exactly k numberings σ of Γ k such that (Γ, σ) and (Γ, σ ) are isomorphic as numbered graphs,

• for any (σ, i) ∈ Num(Γ k )×k, if Σ = Σ + 1 , and if Σ + denote the surface obtained from Σ by pushing Σ + 1 in the positive normal direction, then (Σ 

) as in Definition 6.2.17. For any numbering σ of Γ k and any map ε : k → {±}, let ε ε,σ be defined as in Lemma 6.3.11, and let N (ε, σ) be the number of integers i ∈ k such that ε ε,σ = +1. For any ν ∈ {0, . . . , k}, set

With these notations,

Proof. Note that for any k ≥ 2, λ

k,k = 0. In order to prove Theorem 6.2.24, it remains to prove the following lemma. Lemma 6.3.21. For any k ≥ 2 and any ν ∈ k, λ

and let F 1 (ε, σ) ∈ S k be the permutation such that for any i ∈ k,

Construction of admissible propagators

Preliminary setting

In this section, we prove Lemma 6.3.5. It suffices to prove the following result.

Lemma 6.4.1. Fix a rectifiable long knot ψ : R n → M • , a diffeomorphism Θ : N 0 R → N R as before Lemma 6.3.1, and a parallelisation τ as in Lemma 6.3.1. Fix two real numbers θ ∈ R, and

Under these assumptions, there exist R-admissible propagators for (Σ + , Σ -, ψ) as in Definition 6.3.4. Furthermore, it is possible to choose R-admissible propagators B (for (Σ + , Σ -, ψ)) and B 0 (for

• The faces D δ , a 0 1 × Σ + , and Σ × (z 0 1 ) + of Lemma 6.4.16.

• The faces ε(x i )U x i M of Lemma 6.4.17.

All these faces are contained in

so they do not meet D 1 or D 3 , and since the points ∂L ± 0 (1) are on the Seifert surfaces Σ + and Σ -, and since Σ and Σ + do not meet the surfaces Σ ± , these faces do not meet D 2 , either.

For 1 ≤ i ≤ 3, let us study the intersection of the faces

, which is composed of configurations where the two points are in ∂N 1 . The choice of the longitudes ∂Σ and ∂Σ + , and the description of these faces in Lemmas 6.4.5, 6.4.6, 6.4.7 imply that any configuration c = (x, y) ∈ ∂N 1 × ∂N 1 in one of these faces is such that y-x ||y-x|| = e 1 . Figure 6.10 shows that this never happens when (x, y) ∈ ∂ 2 D 1 .

• Eventually, they could meet D 2 along a 0 1 × Σ + and Σ × (z 0 1 ) + , which would necessarily happen inside a 0

Assume without loss that a 0 1 = (cos( π 6 ), sin( π 6 ), 0) and that (z 0 1 ) + = (18 cos( π 3 ), 18 sin( π 3 ), 0). In this case, we get no intersection points, as it can be seen on Figure 6.10. Therefore, these faces do not meet D W .

We are left with the proof that D W , -G -1 τ ({e 1 }) ∩ W 1 = 0. We will use the following lemma since this intersection is contained in the faces of D W . COMPTAGES DE DIAGRAMMES The proof of Lemma 6.4.11 is now completed by the following lemma. Lemma 6.4.19. Let ϕ n be the map x ∈ Σ → τ -1

x (n x ) ∈ S n+1 . The differential degree of ϕ n may be extended to the constant map on S n+1 with value χ(Σ )-1 2 . Proof. Note that for any x ∈ Σ ∩ N 3 , ϕ n (x) = (cos( 2π 3 ), sin( 2π 3 ), 0). All the boundary of Σ is mapped by ϕ n to one point in S n+1 . This implies that the differential degree of ϕ n does not depend on the chosen regular value in S n+1 . Assume without loss that ϕ n admits -e 1 and e 1 as regular values.

For any x ∈ Σ , define the projection X(x) of τ x (e 1 ) on T x Σ along the direction n x (which is the only vector of T x Σ that can be expressed as τ x (e 1 ) -λn x for some λ ∈ R). This defines a tangent vector field X on Σ , whose zeros are the points such that ϕ n (x) = ±e 1 . Around such a zero z, ϕ n is a local diffeomorphism from a disk around z to a disk inside S n+1 . In this setting, the index i(X, z) of the zero is +1 if and only if this local diffeomorphism preserves the orientation. This implies that

as depicted in Figure 6.11. This is an (n + 1)-disk on which X takes a constant value X 0 = 0. Change the vector field X on D so that it keeps the same value on ∂D\∂Σ but is going outwards on all D∩∂Σ . The obtained vector field X is going outwards on ∂Σ and X |D is going outwards on ∂D as in Figure 6.11. The zeros of X are the union of those of X with same indices (which are in Σ \ D) and those of X |D . In this setting, Poincaré-Hopf theorem (see for example [Mil65, Section 6, p 35]) yields

The difference of these two formulas gives z zero of X i(X, z) = χ(Σ ) -1, and implies the lemma. D Σ Figure 6.11 -Left: The surface Σ with the darker disk D, and the vector field X. The hashed area depicts Σ ∩ E 2 , which is not necessarily a disk as in the picture. Right: The modified field X on D, which points outwards on the boundary.

Case n ≡ 5 mod 8

We use the following Bott periodicity theorem, which is proved in [START_REF] Bott | The stable homotopy of the classical groups[END_REF]. Theorem 6.5.2. [Bott] For any k ≥ 0, and any N ≥ 1, 

), ι 0 ) = 0, and, if M • is parallelizable, the hypothesis of Lemma 6.2.21 is satisfied for any knot.

In the non-parallelizable case, M • M • is parallelizable because of Proposition 6.2.12, and the previous argument applies to ψ ψ.

Case n ≡ 1 mod 8 and connected sum of long knots

The following lemma concludes the proof of Lemma 6.2.23. Lemma 6.5.4. When n ≡ 1 mod 8, for any long knot ψ in a parallelizable asymptotic homology R n+2 , the connected sum ψ ψ is rectifiable. Therefore, for any long knot ψ in a (possibly non-parallelizable) asymptotic homology R n+2 , the connected sum ψ ψ ψ ψ is rectifiable.

Proof. Let (M • , τ ) be a parallelized asymptotic homology R n+2 , let (M • M • , τ τ ) be the induced connected sum, and fix a long knot ψ : R n → M • . Since ψ ψ is defined by stacking two copies of the knot, ι(τ τ, ψ ψ) is the map defined by stacking two copies of ι(τ, ψ). In terms of homotopy classes in

]. Lemma 6.3.2 and Theorem 6.5.2 yield π n (I(R n , R n+2 ), ι 0 ) = Z/2Z. This implies [ι(τ τ, ψ ψ)] = 0. Lemma 6.2.21 implies that ψ ψ is rectifiable.

In the non-parallelizable case, M • M • is parallelizable because of Proposition 6.2.12, and the previous argument applies to ψ ψ.

Note that since π n (SO(n + 2), I n+2 ) = Z for n ≡ 3 mod 4, the same method implies that ψ ψ is virtually rectifiable if and only if ψ ψ is rectifiable (otherwise the class ι(ψ ψ) of Definition 6.2.22 has infinite order). This argument together with Corollary 6.5.3 and Lemma 6.5.4 yields the following remark. Remark 6.5.5. Let M • be an asymptotic homology R n+2 and let ψ be a long knot of M • . Then, ψ is virtually rectifiable if and only if ψ ψ ψ ψ is rectifiable.

6.6 Proof of Theorem 6.2.29 6.6.1 A generating series for the (λ k,ν ) k≥2,1≤ν≤k-1

In this section, we prove the following result for the coefficients (λ k,ν ) k≥2,ν∈k-1 of Theorem 6.2.24. Lemma 6.6.1.

2 , and define the formal power series

In order to prove Lemma 6.6.1, we first obtain an induction formula for the coefficients (λ k,ν ) k≥2,ν∈k-1 in Lemma 6.6.2. We next derive an induction formula for the polynomials (L k ) k≥1 in Lemma 6.6.3, and a differential equation on L(X, Y ) in Lemma 6.6.4.

Lemma 6.6.2. Extend the definition of the coefficients

Proof. By definition, for any k ≥ 3 and any

Let σ ∈ S k-1 , and set r σ = σ -1 (k -1), I σ = {1, . . . , r σ -1}, and J σ = {r σ + 1, . . . , k -1}. Let i σ : σ(I σ ) → I σ and j σ : σ(J σ ) → J σ denote the two only such maps that are strictly increasing bijections. The permutation σ induces two permutations

, and since σ(r σ -1) < σ(r σ ) and σ(r σ ) > σ(r σ + 1).

Proof of Lemma 6.6.1. Since |L k (x)| ≤ 1 for any x ∈ [-1, 1], L(X, Y ) defines a power series that converges at least on ] -1, 1[ 2 . Fix x ∈ 0, 1 2 , and set u x (t) = L(x, t) for any t ∈] -1, 1[. The function u x satisfies the equation u

. Set a = 1-x 2 , and note that

so that, for any t,

Since u x (0) = x+1 2 and a = 1-x 2 , this yields the formula of Lemma 6.6.1. Both sides of the formula of Lemma 6.6.1 are power series with a convergence domain containing a disk around (0, 0), so that the formula also holds for the formal power series.

The formula with the Reidemeister torsion

Lemma 6.6.5. For any virtually rectifiable long knot ψ,

Proof. Let Σ be a Seifert surface for ψ, let (B, B) be a pair of dual bases of H * (Σ), and set

where

Chapitre 8

Quelques applications de la théorie de l'obstruction

Dans ce chapitre, on démontre que les chaînes propagatrices utilisées pour calculer les invariants BCR peuvent être vues comme des sous-variétés hors d'une boule arbitrairement petite des espaces de configurations de deux points. Une méthode similaire donne une démonstration plus détaillée du lemme 5.8.3, utilisé pour démontrer que deux parallélisations quelconques d'un R n+2 asymptotique d'homologie entière coïncident hors d'une boule arbitrairement petite, à homotopie près.

Existence de propagateurs presque lisses

Résultats

Dans cette partie, on s'intéresse à la régularité des chaînes propagatrices externes de la définition 3.12.1. On notera dans cette partie m = n + 2 et on suppose seulement que n est un entier naturel impair. On se donne (M • , τ ) un R m asymptotique d'homologie entière parallélisé.

Definition 8.1.1. On appelle chaîne propagatrice externe presque lisse B de

au bord de l'espace de configurations et à celui de la sphère ∂R B .

Théorème 8.1.2. Il existe des chaînes propagatrices externes presque lisses de

) se prolonge alors de manière continue en une application f ∂ : ∂C 2 (M • ) → M (SO(m -1)), en envoyant le complémentaire de N sur a.

On peut voir B SO(m-1) commme la section nulle de A SO(m-1) , ce qui permet de considérer B SO(m-1) comme une partie de M (SO(m -1)), de sorte que

Démontrons d'abord le lemme suivant.

Lemme 8.1.4. L'application f ∂ se prolonge en une application continue f :

Démonstration. Commençons tout d'abord par définir une triangulation adaptée de notre variété C 2 (M • ) (de telles triangulations existent pour toute variété différentiable, comme montré dans [Whi05, chapitre IV]). Comme C est de codimension m -1 ≥ 2, les théorèmes standard de transversalité entraînent le lemme suivant, dont nous donnons cependant une démonstration détaillée dans la partie 8.1.2.

Lemma 8.1.5. Il existe une triangulation T de ∂C 2 (M • ), telle que C ne rencontre ni le 0-squelette, ni le 1-squelette de T .

On se donne alors une telle triangulation T , on réduit notre voisinage tubulaire N pour qu'il ne rencontre pas le 1-squelette de T , et on définit f N et f ∂ comme précédemment. On étend T en une triangulation de C 2 (M • ), que l'on notera encore T , et dont l'on supposera que le (2m -1)-squelette ne rencontre pas R. On choisit pour chaque simplexe e de dimension ≥ 1 un sommet privilégié s(e).

Pour tout entier k, on notera ∆ k = {(x 0 , . . . , x k ) ∈ R k+1

, et on désignera, par un abus de notation courant, par e k , et on appellera k-simplexe de cette triangulation, aussi bien l'application e k : ∆ k → C 2 (M • ), que son image. On notera également s k i = (0, . . . , 0, 1, 0, . . . , 0) le point de R k+1 ayant une coordonnée i égale à 1, et les autres nulles, de sorte que ∆ k a pour sommets (s k 0 , . . . , s k k ). L'application f ∂ est bien définie sur tous les simplexes de T correspondant au bord de C 2 (M • ), et il s'agit de l'étendre en une application f définie sur toute la triangulation T (moins une boule). Montrons par récurrence que f ∂ s'étend jusqu'au 2m -1 squelette.

On commence par étendre f ∂ à tout le 1-squelette par a, ce qui est compatible avec la valeur déjà fixée sur le bord, car N ne rencontre pas le 1-squelette.

On utilisera dans ce qui suit le lemme suivant.

Lemma 8.1.6. Soit g : ∂e k → X une application envoyant le bord d'un k-simplexe de dimension k ≥ 2 dans un espace topologique X, et envoyant les sommets et les L'OBSTRUCTION particulier, f 1 est lisse sur U ∂ , et coïncide avec f ∂ sur le bord. On va donc dans ce qui suit lisser f 1 sur l'intérieur de la variété, en utilisant des arguments inspirés de la démonstration du théorème 2.5 de [START_REF] Hirsch | Differential Topology[END_REF]p. 48]. 

Ceci définit une application continue T :

4 }, on définit un voisinage de f 1 , et il existe donc g ∈ C ∞ , telle que T (g) ∈ U (f 1 ). On vérifie que T (g) coïncide avec f 1 hors de W (et donc en particulier sur V ∂ ), et avec g sur W 0 . On peut donc l'étendre en une fonction f : X → M (SO(m -1)) par la formule

sinon.

On en déduit que, pour tout indice

4 ) (comme combinaison convexe à coefficients lisses de fonctions lisses). Après perturbation de f 1 , la préimage de la section nulle a pu se déplacer. On prend donc comme voisinage. Par définition de U

Démonstration du lemme 8.1.5

Fixons une triangulation T 0 de ∂C 2 (M • ), et notons T

(1) 0 son 1-squelette. L'OBSTRUCTION Notons dans ce qui suit p i : π -1 N (V i ) → D m-1 l'application de projection sur la fibre donnée par notre trivialisation.

Soit ϕ ∈ H. Pour vérifier que ϕ appartient à H(U i ), il suffit de considérer les 1-simplexes de T 0 qui rencontrent π -1 N (U i ), et de déterminer si leurs images rencontrent ou non C ∩ U i . Soit e 1 un tel simplexe. Comme précédemment, le fait que e k ne rencontre pas C ∩U i est équivalent à ce que l'application

N (U i ) admette 0 comme valeur régulière. Notons H(U i , e k ) les éléments de H vérifiant cette condition. Nous allons montrer que c'est un ouvert dense de H.

• H(U i , e k ) est ouvert : la démonstration est la même que dans l'exemple traité précédemment.

• H(U i , e k ) est dense. Soit ϕ ∈ H.

On se donne une fonction continue χ

, et 0 sur un voisinage du bord. On définit alors une fonction ϕ w :

(en utilisant une trivialisation du fibré N sur V i ). ϕ w se prolonge à tout ∂C 2 (M • ) par l'identité, et pour w assez petit, définit un difféomorphisme. Alors, pour tout tel w, ϕ -1 w •ϕ ∈ H si et seulement si w est valeur régulière de (p i •ϕ•e k ) |(e k ) -1 (π -1 N (U i )) . Le lemme 8.1.9 nous assure que ceci peut se produire pour w arbitrairement petit, c'est-à-dire pour ϕ w arbitrairement proche de l'identité, et pour ϕ -1 w •ϕ arbitrairement proche de ϕ, ce qui établit la densité.

On remarque donc alors que, l'intersection (finie) de ces ouverts denses est un ouvert dense, et elle contient exactement les ϕ ∈ H tels que T = ϕ(T 0 ) ne rencontre C sur aucun de ses 1-simplexes.

Une démonstration détaillée du lemme 5.8.3

Commençons par rappeler l'énoncé que nous allons démontrer. Fin de la démonstration du lemme 8.2.1. La propriété * (n + 1) est donc démontrée, et f est donc homotope à une application f 1 envoyant le (n + 1)-squelette de T sur y 0 . Il reste à démontrer que f 1 est homotope à une application qui envoie le complémentaire de B sur y 0 .

Soit U un voisinage régulier de T (n+1) . À homotopie près, on suppose que f 1 envoie U sur y 0 . Il existe une boule V telle que U ∪ V = B(M ) et telle que V contienne B. En effet, on peut supposer dès le début que B est contenue dans l'intérieur d'un (n + 2)-simplexe de T , et prendre pour V un voisinage régulier d'un arbre ayant pour sommets un point à l'intérieur de chaque (n + 2)-simplexe de T . L'application f 1 envoie le complémentaire de V sur y 0 . Comme V est une boule, et B une boule à l'intérieur de V , (f 1 ) |V est homotope à une application qui envoie V \ B sur y 0 , parmi les applications qui envoient ∂V sur y 0 . Ceci conclut la démonstration du lemme 8.2.1.