N
N

N

HAL

open science

Secure and efficient outsourced computation protocols
for linear algebra

David Lucas

» To cite this version:

David Lucas. Secure and efficient outsourced computation protocols for linear algebra. Performance
[cs.PF]. Université Grenoble Alpes [2020-..], 2020. English. NNT: 2020GRALMO027 . tel-03012730

HAL Id: tel-03012730
https://theses.hal.science/tel-03012730
Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-03012730
https://hal.archives-ouvertes.fr

UGA

Université
Grenoble Alpes

THESE

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE GRENOBLE ALPES

Spécialité : Mathématiques et Informatique

Arrété ministériel : 25 mai 2016

Présentée par

David LUCAS

Thése dirigée par Clément PERNET, Université Grenoble Alpes et
codirigée par Jean-Guillaume DUMAS, Université Grenoble Alpes

préparée au sein du Laboratoire Jean Kuntzmann
dans I'Ecole Doctorale Mathématiques, Sciences et
technologies de lI'information, Informatique

Protocoles de calculs externalisés efficaces et
sécurisés pour l'algébre linéaire

Secure and efficient outsourced computation
protocols for linear algebra

Thése soutenue publiquement le 10 juillet 2020,
devant le jury composé de :

Monsieur Clément PERNET

Maitre de conférences, Université Grenoble Alpes, Directeur de
thése

Monsieur Gilles VILLARD

Directeur de recherche, CNRS, Rapporteur

Madame Melek ONEN

Maitre de conférences, EURECOM, Rapporteure

Monsieur Jean-Guillaume DUMAS

Professeur des Universités, Université Grenoble Alpes, Co-
directeur de thése

Madame Marie-Laure POTET

Professeur des Universités, Grenoble INP, Examinatrice
Présidente du jury

Monsieur Vincent NEIGER

Maitre de conférences, Université de Limoges, Examinateur

PhD Thesis

Secure and Efficient Outsourced
Computation Protocols for Linear
Algebra

David Lucas

August 24, 2020

Under the direction of:
Jean-Guillaume Dumas and Clément Pernet

Contents

1 Introduction 11
1.1 Verification protocols for outsourced computation 17
1.1.1 Overview e 17
1.1.2 Interactive proof systems and verification protocols 17
1.1.3 Evaluation of the efficiency of a verification protocol 20
1.1.4 From interactive to non interactive protocols and public verifia-
bility e 21
1.1.5 Paradigms for verification protocols 22
1.1.6 Linear algebra intermediate approach 26
1.1.7 Overview of existing state of the art algorithm-based verification
protocols e e 27
1.2 Multi-party computation protocols 27
1.2.1 OVerview o . i e e e e 27
1.2.2 Definitions 27
1.2.3 Evaluation of the efficiency of an MPC protocol 29
1.2.4 Paradigms for MPC protocols 30
1.2.5 Algorithm-based approaches 33
2 Verification protocols for triangular equivalence and rank profiles 37
2.1 Non interactive and quadratic communication verification protocols . . . 40
2.1.1 Column rank profile verification protocol 40
2.1.2 Non interactive Rank Profile Matrix verification protocol 41
2.2 An interactive verification protocol for the rank profile matrix 43
2.2.1 Triangular one sided equivalence 43
2.2.2 Genericrank profile-ness. L. 45
2.2.3 LDUP decomposition i .. 49
2.2.4 Column or row rank profile verification protocol 52
2.2.5 Rank profile matrix verification protocol 56
2.3 Constant rounds verification protocols 59
2.3.1 Representative Laurent polynomial of a matrix 60
2.3.2 Constant rounds triangular equivalence verification protocol . . . 60
2.3.3 Constant round verification protocols for the row and column
rank profiles 62
2.4 Some additional verification protocol 64

2.4.1 Linear communication verification protocols for the determinant 64
2.4.2 Verification protocol for the signature of an integer matrix 65

4 Contents
3 Verification protocols for polynomial matrix operations 71
3.1 Preliminaries e e e e e e 74
3.1.1 Some probabilitybounds., 76

3.2 Linear algebra operations 76
3.2.1 Singularity and nonsingularity 77

3.2.2 MatrixRank. 79

3.2.3 Determinantt e e e e 82

3.2.4 Protocols based on matrix multiplication 83

3.3 Rowspace membership, 85
3.3.1 Fullrowrankcase 85

3.3.2 Arbitraryrankcase 90

3.4 Rowspacesand normalforms 98
3.4.1 Row spacesubsetandrowbasis. 98

3.42 Normalforms, 100

3.5 Saturation and kernelbases 103
3.5.1 Saturation and saturated matrices 103

3.5.2 Kernel bases and unimodular completability 107

4 SMC matrix multiplication based on Strassen-Winograd 113
4.1 Preliminaries 118
4.1.1 Strassen-Winograd algorithm 118

4.1.2 Datalayoutand encryption 118

4.1.3 Homomorphic encryption 120

4.1.4 Multiparty protocols security 121

4.1.5 Relaxing an existing algorithm: YTP-SS 121

4.2 Toolbox e 122
4.2.1 InitializationPhase o, 122

4.2.2 Multiparty Copy o ot e e 122

4.2.3 Classical Matrix Multiplication basecase 122

4.2.4 SecurityAnalysis oo 126

4.3 Multiparty Strassen-Winograd, 129
4.3.1 Operation schedule in MP-SW 129

4.3.2 Finalisationstep 134

4.3.3 Cost and security analysis 135

4.4 EXPeriments v v v v v v v it e e e e e e e e e 136
4.5 Variant of MP-SW using proxy re-encryption 137
4.5.1 Description of the new protocol 139

4.5.2 Communication cost analysis 141

4.5.3 Comparisons between fully and semi homomorphic solutions . . 142
Conclusion 147

Bibliography 151

List of Tables

1.1

2.1
2.2

3.1

4.1

4.2
4.3

4.4

State of the art verification protocols for linear algebra properties 28
Comparison between CHARPOLY and PLUQ computation time 65
New verification protocols for Chapter2 69
New verification protocols for Chapter3 75

Timings for basic operations on semi- and fully-homomorphic cryptosys-
L] 01 117
Comparison of computation time per player between MP-SW and MP-PDP 137
Comparison of cryptographic and arithmetic operations in Paillier and
Castagnos-Laguillaumie cryptosystems 143
Comparison of estimated timings per operation in Strassen-Winograd
for semi- and fully-homomorphic cryptosystems 144

List of verification protocols

1.1 Template for verification protocol 20
1.2 Matrix multiplication over a finite field (Freivalds) 24
1.3 Reduction to matrix multiplication 26
2.1 Non interactive column rank profile 40
2.2 Non interactive rank profile matrix 42
2.3 Lower triangular right equivalence of regular matrices 44
2.4 Generic rank profile with linear communication 46
2.5 LDUP decomposition with linear communication 50
2.6 Upper bound on the rank of a matrix over a finite field 53
2.7 Lower bound on the rank of a matrix over a finite field 53
2.8 Interactive column rank profile, 55
2.9 Rank profile matrix of an invertible matrix 57
2.10 Rank profile matrix of an arbitrary matrix 59
2.11 Constant round linear communication verification protocol for triangu-
larequivalence 61
2.12 Constant round verification protocol for the column rank profile 63
2.13 Verification protocol for the signature of a symmetric matrix 66
3.1 Singularity of a polynomial matrix 77
3.2 Non singularity of a polynomial matrix 79
3.3 Lower bound on the rank of a polynomial matrix 80
3.4 Upper bound on the rank of a polynomial matrix 81
3.5 Rankofapolynomial matrix 82
3.6 Determinant of a polynomial matrix 83
3.7 System solving over polynomialring 84
3.8 Matrix multiplication over a polynomialring 84
3.9 Row space memebership for full rank polynomial matrices 86
3.10 Coprimality of a set of polynomials 91
3.11 Row space memebership for arbitrary polynomial matrices 93
3.12 Inclusion of row spaces for polynomial matrices 99
3.13 Equality of row spaces for polynomial matrices 99
3.14 Row basis for polynomial matrices 100
3.15 Hermite form e 101
3.16 Shifted Popovform 103

3.17 Saturation of a polynomial matrix 105

List of verification protocols

3.18 Basis of the saturation of a polynomial matrix 106

3.19 Unimodular completability of a polynomial matrix

3.20 Kernel basis of a polynomial matrix

List of multiparty protocols

4.1 Initialisation phase for MPC Strassen-Winograd 123
4.2 Ciphered element copy using masking 123
4.3 Mask and Decrypt for MPC Strassen-Winograd Base Case 125
4.4 Pointwise products computation for MPC Strassen-Winograd Base Case . 125
4.5 Base Case for MPC Strassen-Winograd 126
4.6 Ciphered matrix copy using masking 130
4.7 SMC Strassen-Winograd 131
4.8 Finalisation step for MPC Strassen-Winograd 135
4.9 Key generation for Proxy MPC Strassen-Winograd 139
4.10 Initialisation phase for Proxy MPC Strassen-Winograd 140

4.11 Ciphered element copy using re-encryption proxy 141

Chapter

1

11

Introduction

Contents
1.1 Verification protocols for outsourced computation 17
1.1.1 Overview e e 17
1.1.2 Interactive proof systems and verification protocols 17
1.1.3 Evaluation of the efficiency of a verification protocol 20
1.1.4 From interactive to non interactive protocols and public verifia-
bility e e e e e 21
1.1.5 Paradigms for verification protocols 22
1.1.6 Linear algebra intermediate approach 26
1.1.7 Overview of existing state of the art algorithm-based verification
protocols e e e e 27
1.2 Multi-party computation protocols, 27
1.21 Overview e 27
1.2.2 Definitions 27
1.2.3 Evaluation of the efficiency of an MPC protocol 29
1.2.4 Paradigms for MPC protocols 30
1.2.5 Algorithm-based approaches. 33

12 Chapter 1: Introduction

Presentation and outline of this thesis

Scientific computation. Computation always played a major role in the history of
sciences. The development of computers from the 1940s allowed for computations
which were faster, easier to reproduce and less prone to errors. The diversity of ap-
plications in which computers could be used led to the development of various com-
putation fields: simulations of physical systems could be performed using numerical
computation, which aims at finding an approximation of the solution to a given prob-
lem; while domains such as cryptanalysis or experimental mathematics led to exact
computation which aims at finding exact solutions to the problems it tackles. Through
the second half of the twentieth century, the need to perform simulations of physical
systems became dominating, which strongly influenced the development of architec-
tures, software and algorithmics. Floating point arithmetic, for instance, became a
standard in computers in 1985 (with IEEE 754). However, exact computation is es-
sential to a large number of research fields in scientific computing. Cryptography, for
instance, widely uses integer numbers or finite field elements and requires highly ef-
ficient exact computation algorithms. In some fields it is not possible to approximate
a solution: this is the case for instance in experimental mathematics, in graph theory,
number theory or combinatorics, which makes the use of efficient exact computation
extremely important in these fields. Finally, formal methods also make extensive use
of exact computation for instance with computer assisted proof. All these applications
make the development of efficient exact computation methods paramount to a wide
number of fields.

Linear algebra in computation. Amongst the many tools available to perform effi-
cient computations, linear algebra presents several major advantages: the data struc-
tures (vectors, matrices) it uses and the operations performed are relatively easy to
handle, allowing to develop algorithms which can be more easily fine tuned and op-
timised. Linear algebra also enables highly regular computations, allowing to take
advantage of efficient parallel programming techniques such as vectorisation. Finally,
linear algebra allows for high intensity computation: some operations, such as matrix
multiplication have an asymptotically larger time complexity than their space com-
plexity (cubic vs. quadratic). By grouping operations, one can ensure that numerous
computations are performed on the same block of data, thus amortising the costly
access to computer’s memory. Because of these advantages, linear algebra is a cen-
tral tool in scientific computation, both in fields using exact algebra such as algebraic
geometry, graph theory, or cryptography and in numerical computation, for solving
partial differential equations or optimisation problems. Thus, any improvement to
one of its fundamental operations can be carried over to a large amount of applica-
tions, making progresses in linear algebra important to a large number of research
fields.

13

High performance computing. The ability to perform computations as fast as pos-
sible, on as many data as possible is paramount in a wide array of applications: in
experimental mathematics, for instance, in which being able to test a conjecture on a
set of examples as large as possible is an extremely desirable feature, or in cryptog-
raphy in which the security of the primitives directly depends on the computational
power of the fastest available hardware. Many numerical applications require high
performance computing, such as weather forecast models or aerospace simulations.
A lot of effort has thus been put in developing computing infrastructures and soft-
ware able to handle such large problems and high performance computing remains an
extremely active field to this day.

Computing infrastructures. Infrastructures able to tackle large computational tasks
vastly evolved over the years. From the 1960s to the 1980s, the fastest infrastructures
available were local machines, such as computing servers or clusters. The democratisa-
tion of the Internet and the personal computer from the 1990s has seen the emergence
of decentralised infrastructures with the development of peer and volunteer comput-
ing, which connects geographically spread resources, owned by a myriad of peers. This
new approach to computing gained popularity thanks to its cost model, redistributing
the overall price of the infrastructure amongst its peers; its ease of use (as maintain-
ing complex hardware was no longer necessary) and its fast first successes, such as
the Mersenne! prime number search. Finally, in the mid-2000s, very large companies
started to buy state-of-the-art computing infrastructures and developed a pricing sys-
tem to rent them by the hour to clients all over the Internet. These clients were able to
access this hardware via a single transparent interface, allowing them to easily perform
tasks on appropriate infrastructures. This model, known as cloud computing spread
rapidly thanks to its versatility and ease of use. This evolution, from local, controlled
computing hardware to global, outsourced or distributed over many geographically
spread machines gave birth to new questions related to confidentiality, security and
safety. The question of trust is central to this new model: as users cannot blindly trust
the entities who perform computations for them, how can they efficiently verify their
outsourced computations? Similarly, users who need to perform outsourced computa-
tions on confidential data need to be sure that their data will not be leaked to others.
This last application is at the centre of many contemporary applications, such as confi-
dential organ donor/recipient matching (see for instance Wueller et al. (2018), or the
EAGER NSF award?) or blind auctions in goods trade (Bogetoft et al., 2009). In this
context, designing efficient protocols both in terms of communication volume over the
network and in client computational cost is essential, as users only have access to lim-
ited computational power and the liberal use of expensive mathematical tools could
quickly lead to unbearably large client cost.

"https://www.mersenne.org/
Zhttps://www.nsf.gov/awardsearch/showAward?AWD_ID=1646999

https://www.mersenne.org/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1646999

14 Chapter 1: Introduction

Our thesis and this document’s structure. While the spread of third party-owned
computing hardware is a fairly recent phenomenon, ensuring confidentiality and cor-
rectness concerns of computations performed on outsourced devices is not. Researchers
such as L. Babai or S. Goldwasser started to work on outsourced computation verifica-
tion as early as 1985 and A. Yao’s Millionaire’s Problem from 1982 is considered as the
seminal work on secure multi-party computation. Numerous research followed, both
on proving the validity or the privacy of outsourced computation. However, many of
these research works aim at developing generic tools verifying any computation in a
given class of problems. Such genericity usually comes with a heavy price: even if
their asymptotic complexities are excellent, they often hide very large constant factors
which undermine their practicality. Designing dedicated protocols, tailored to tackle
specific problem has thus gained some popularity since 2011 Kaltofen et al. (2011),
but a lot of work remain to be done in this area. In this context, we defend the follow-
ing thesis:

Outsourced exact linear algebra computations do not have to rely on users’
trust: we can now verify and ensure confidentiality of its main algorithms.

In this chapter, we formally introduce the notions summarized above. We define
the setting of verification protocols for outsourced computation and secure multiparty
computation, alongside the metrics used to evaluate their efficiency. We also propose
an comparison between the two aforementioned approaches, generic protocols against
dedicated ones and give an overview of existing dedicated protocols and assess their
efficiency.

In Chapter 2, we present new dedicated protocols for the verification of the compu-
tation of a matrix invariant called the rank profile matrix. We achieve better compu-
tational and communication volume complexities than generic protocols on the same
problem. Using some of the protocols we designed for this result, we also improve on
the verification of classical linear algebra properties, matrix determinant and signa-
ture.

In Chapter 3, we still focus on verification protocols, but this time for univariate
polynomial matrices. We propose dedicated protocols to verify numerous properties of
such polynomial matrices, where some verified objects are specific to modules while
some others also carry over the vector space whose coefficient domain is the set of
rational fractions. In this context, we propose a central tool in a protocol to verify that
a vector belongs to a module spanned by a polynomial matrix.

Finally, in Chapter 4, we focus on the privacy aspect with secure multiparty compu-
tation. We propose a secure protocol for the shared computation of matrix multipli-
cation based on the recursive Strassen-Winograd algorithm. This new protocol allows
us to improve on the state of the art for the communication volume required for mul-
tiparty matrix multiplication and has practical applications, as for instance in private
trust evaluation.

15

Notations

Fields and rings We use F to indicate an arbitrary field, F[z] for the ring of polyno-
mials in one variable x with coefficients in F, and F(z) for the field of rational fractions,
i.e., the fraction field of F[x]. The ring of m x n matrices, for example over F[x], is
denoted by F[x]™*".

Vectors and matrices We use bold font and small letters to represent vectors, as v
and bold font and capital letters for matrices A. Vectors are considered as columns
by default, which means v € S™ will be equivalent to v € S"*! and that v” is a row
vector. Regarding matrices, A, ; represents the element on the i-th row, j-th column
of A, while A, , represents the i-th row of A. Given a set of row indices Z and column
indices 7, Az 7 denotes the submatrix extracted from A in these rows and columns.

Asymptotic complexity bounds We use the “soft-oh” notation O(-) to give asymp-
totic bounds hiding logarithmic factors. Precisely, for two cost functions f, g, having
f € O(g) means that f € O(glog(g)°) for some constant ¢ > 0.

We write w for the exponent of matrix multiplication over F, so that any two matrices
A, B € F"*" can be multiplied using O(n*) field operations; we have 2 < w < 3 and
one may take w < 2.373 (Coppersmith and Winograd, 1990; Le Gall, 2014).

For a given matrix A, we denote by 1(A) the worst case arithmetic cost of multiply-
ing A by a vector.

Protocols In protocols, S is always a finite subset of the base field F which we use to
sample field elements uniformly and independently at random. If F is finite and suffi-
ciently large, one can use S = F. If #F is too small, then one may use a field extension,
causing up to a logarithmic factor increase in the computation and communication
COSts.

Following (Dumas and Kaltofen, 2014; Dumas et al., 2016, 2017b) we use the no-

tation = = y as a placeholder for

If x # y then abort and report failure

? ?
to improve the brevity and readability of the protocols. Similarly, we use x < y,z >y,

?
U < V, etc. to check inequalities and set inclusion.

Random sampling We denote by

ads and o >

respectively the actions of drawing a field element uniformly at random from S and of
drawing a vector of n field elements uniformly and independently at random from S.

16 Chapter 1: Introduction

Encryption and decryption Given a player P, we denote by pkp their public key
and by skp their secret key when using an asymmetric cryptosystem. The cleartext
space associated with this player will be denoted by M p and the ciphertext space by
Cp.

Given some scalar u, we denote by {u},;, the encryption of u using the public key
of P. The action of encrypting (resp: decrypting) an element u € Mp (resp: v € Cp)
will be denoted by E(u),k, (resp: D(v)skp)-

1. Verification protocols for outsourced computation 17

Verification protocols for outsourced computation

Overview

Let us consider the following situation: a client, with limited computational power,
wants to perform some heavy computation. As it would take forever for our client to
run this computation by themselves, they will instead rent a server over the Internet
and ask this server to do the heavy work. After some time, the server sends a result
to the client. While this scenario seems to solve the issue at hand, it contains a major
flaw: as the client has absolutely no control over the remote server, they would like
to verify the result the server sent back. However, their limited computational power
forces them to use specific, efficient verification protocols. In this section, we will
describe the so-called interactive proof systems, allowing our client to efficiently verify
the result of an operation which has been performed by an untrusted resource. We will
specifically present different approaches for verifiable computation, focusing on linear
algebra problems, and discuss the metrics that can be used to evaluate the efficiency
of such proof systems.

Interactive proof systems and verification protocols

Interactive proof systems

A proof system, usually consisting in a theorem and a proof, allows to verify the the-
orem by checking the validity of the proof. An interactive proof system, for its part,
models an exchange between two parties, the Prover whose goal is to provide the
proof, and a Verifier who will check its veracity. The general flow of an interactive
proof system is as follows:

1. at the beginning, the Prover and the Verifier share the knowledge of the result of
a computation, which they have to verify,

2. the Verifier then sends a Challenge to the Prover, usually consisting of some
uniformly sampled random values, to which

3. the Prover replies with a Response, used by the Verifier to ensure the validity of
the commitment.

In some cases, several additional rounds of Challenge/Response might be necessary for
the Verifier to accept an answer. This interactive approach has been presented by two
independent teams in 1985: (Babai, 1985) introduced Arthur-Merlin protocols (from
the names he respectively affected to the Verifier and the Prover in his paper), where
only one round of Challenge/Commitment was allowed and where the random values
generated by the Verifier had to be public. (Goldwasser et al., 1985) proposed very
similar proof systems, except they allowed several rounds of Challenge/Commitment
and they forced the random choices of the Verifier to remain hidden. It was later

18 Chapter 1: Introduction

proved than hiding or revealing the Verifier's random choices had no impact on the
proof (Goldwasser and Sipser, 1986; Babai and Moran, 1988).

Proof systems must satisfy two fundamental properties, completeness which states
that the Verifier should not reject a true statement provided by the Prover and sound-
ness which states that the Verifier should not accept a false statement. More precisely,
a protocol is said complete if the probability that the Verifier rejects a true statement
can be made arbitrarily small. If the Verifier never rejects such a statement, the proto-
col is said perfectly complete. Similarly, a protocol is sound if the probability that the
Verifier accepts a false statement can be made arbitrarily small, and is perfectly sound
if the Verifier never accepts a false statement. As all the protocols presented in this
thesis will be perfectly complete, we will describe them just as complete. Note that in
practice, a soundness of 1/2 is enough, as the protocol can be repeated several times,
de facto reducing the probability that the Verifier accepts a wrong statement: a proto-
col for which the Verifier has probability 1/2 to accept a wrong statement, repeated
only five times yields a probability of 1/2° ~ 0.03 for the Verifier to overall accept this
wrong statement. These iterations can always be performed in parallel, so that there
is a linear scaling in the communication, Verifier and Prover costs (see next section
for more details on these metrics), but not in the number of rounds in the protocol.

Finally, we briefly present a few results on problem solving by interactive proofs sys-
tems. It has been proven by (Furer et al., 1989) that interactive proofs can be trans-
formed in interactive proof with perfect completeness. They also show that only prob-
lems in AP have interactive proofs with perfect soundness. (Shamir, 1992) proved
that the class of problems solvable by an interactive proof (ZP) was equal to PSP ACE.
Finally, the fundamental PCP theorem states that every decision problem from the NP
class has probabilistically checkable proofs, with the verification algorithm using a con-
stant number of bits from the proof and a logarithmic amount of random bits (Babai
et al., 1991; Arora and Safra, 1992; Arora et al., 1998).

Verification protocols

In this thesis, we will focus on dedicated verification protocols, a particular representa-
tion of such proof systems. Their initial name, certificate carries different meanings in
particular in linear algebra: a certificate often is an algorithm proving the correctness
of the output of a randomized algorithm, thus allowing to "transform" a Monte-Carlo
algorithm, into a Las Vegas one. Monte-Carlo are randomized algorithms which might
silently fail with a certain probability, producing a wrong output; while Las Vegas are
randomized algorithms which cannot fail but that use random choices while running
which leads to impredictable runtimes. Such certificates have been developed, for in-
stance by (Storjohann, 2009; Mulders and Storjohann, 2004) based on early work by
(Giesbrecht et al., 1998). However, the name certificates implied that they are static
objects. With their generalisation as interactive proof systems does not allow this ter-
minology anymore, we will instead use the name verification protocol throughout this
thesis.

Here, we will focus on verification protocols as Prover/Verifier protocols, where the

1. Verification protocols for outsourced computation 19

Prover is modelled as a computationally unbounded adversary and where the Verifier
has a typically limited amount of computational power.

Generic techniques briefly introduced above prove the evaluation of a boolean or
an arithmetic circuit and require that the Verifier either knows the circuit itself or
computes certain properties of it. More details on these techniques can be found
in Section 1.1.5. The original definition of certificates, was proposed in (Kaltofen
et al., 2011, 2012; Dumas and Kaltofen, 2014) and follows:

Definition 1.1.1. An interactive certificate for a problem that is given by input/output
is an input-dependent data structure and an algorithm that computes from that input
and its certificate the specified output, and that has lower computational complexity than
any known algorithm that does the same when only receiving the input. Correctness of
the data structure is not assumed but validated by the algorithm in the adversary-verifier
model.

This definition is not suitable for the verification protocols proposed in this thesis:
it states that the Verifier has no a priori knowledge of the output of the algorithm.
In Chapter 3, we deal with matrices over polynomial rings, which are large data struc-
tures. In this particular context, considering that the Prover sends the output of the
computation to the Verifier automatically leads to large communication bounds (one
of the key efficiency metrics of such certificates, see Section 1.1.3 for more details)
which will dominate the responses of the Prover. To circumvent this issue, we consider
the output of the computation as an input of the verification protocol, which leads us
to this new definition:

Definition 1.1.2. A verification protocol for a problem P given by input/output Z/O
is a boolean algorithm which states whether O is a valid solution for P on input Z. It
has a lower computational complexity that any known algorithm that solves P. The
verification is done in the adversary-verifier model, in which an untrusted entity provides
a set of elements used by the verification protocol to state whether O is a valid solution
for P or not.

Such verification protocols can either be non interactive (the Prover sends data to
the Verifier only once, and this data is sufficient to verify and/or compute the output),
or interactive (following the interaction flow presented at the beginning of this sec-
tion). Protocol 1.1 gives the generic template we will use in this thesis to represent
verification protocols.

Note that our verification protocols might resemble another category of protocols,
called X-Protocols (Damgard, 2010, Section 2), which present the same communi-
cation structure. However, ¥-Protocols are closely related to proofs of knowledge, as
such protocols always prove that the Prover knows the result that it verifies (Damgard,
2010, Theorem 1). As the verification protocols presented in this thesis have the data
structure to verify as part of the public input, there is no proof of knowledge to provide
here.

20

Chapter 1: Introduction

Public: An algorithm A, a set of input [to A and a data structure O
Certifies: O is the output to A([)

C1
PN U
2. Compute an answer a; to
C1
ai
—_—

Protocol 1.1: Template for verification protocol

Prover Verifier

Generate a challenge ¢;
from public elements

0= A(I) from the set of
answers (aq, ..., a,)

Evaluation of the efficiency of a verification protocol

When designing verification protocols, one should be careful of several metrics that
are used to assess their efficiency, namely:

Communication: this can be measured using two elements: the volume of data ex-

changed throughout, without taking into account the input and output of the
computation, and the number of Challenge/Response rounds required by the
protocol. This duality is necessary to reflect real world constraints: users with
a good bandwidth but a poor latency would indeed favour verification protocols
with a small (ideally constant) number of rounds. Communication volume can
either be measured in number of bits or in field elements. In this thesis, pro-
tocols often work over finite fields in which these two units are equivalent. For
protocols presented in Chapter 3 which are over a polynomial ring, we will mea-
sure communication in field elements. Finally, note that a recent result (Reingold
etal., 2016, Theorem 1) shows that any problem which can be solved in bounded
space and polynomial time (in the size of the input) can be verified by complete
and sound interactive proofs in constant rounds and polynomial communication
volume;

Verifier cost: the worst-case number of arithmetic operations performed by the Verifier

in the protocol, regardless of the data the Prover sent. Another element to look at
for the Verifier efficiency is the minimal size of the field from which the randomly
generated challenges are sampled: soundness usually depends on the input field
size and some protocols require this field to have a size which depends on the

1. Verification protocols for outsourced computation 21

input data size. Note that the cost of an honest Verifier depends only on the
public information — that is, the parameters of the statement being verified —
and even a malicious Prover cannot cause the Verifier to do more work than
this. However, in the case of very large (or even infinite) fields, the Prover
may essentially execute a denial of service attack by sending arbitrary large field
elements in the protocol. In this thesis, our analysis is generic in terms of field
operations, is not able to capture this weakness, and does not attempt to address
it;

Prover cost: the number of operations performed by an honest Prover throughout the
protocol. Note that the type of algorithm the Prover runs is also to consider: if
there is no deterministic algorithm for the Prover, the random algorithm should
be Las Vegas as a Monte Carlo algorithm could lead an honest Prover to handle
wrong responses to the Verifier.

As a side note, verification protocols could also be used locally to verify the im-
plementation of a given algorithm. This presents several advantages over the usual
testing methods, which often rely on testing against trusted implementations or com-
paring results against a pre-computed set of inputs/outputs. In this context, there is
no longer a Prover and the communication cost metric is replaced by a memory cost:
the number of rounds can be seen as the number of memory accesses required to per-
form the protocol while the volume is the additional memory space required by the
verification protocol.

1.1.4 From interactive to non interactive protocols and public

verifiability

In practice, it might not always be possible for the Verifier to interact directly with the
Prover: for instance, a Verifier would like to check the veracity of an already published
result of the computation but has no access to a server whatsoever. Then, it is possible
to transform any interactive verification protocol into a non-interactive one, using
for instance Fiat-Shamir heuristic (Fiat and Shamir, 1987): random values produced
by the Verifier are replaced by cryptographic hashes of the input and the previous
messages, and the Prover publishes once both the Commitment and Response to the
de-randomized challenge. This also solves the issue of public verifiability: the fact
that anyone can verify and be convinced by the Prover’s answers. Indeed, if only the
communications between the Prover and the Verifier were made public, one could
argue that the Prover and the Verifier might be colluding and crafted the challenges.
Using Fiat-Shamir heuristic, doing that would be as hard as breaking the cryptographic
hash function. Some efficient dedicated protocols that focus on public verifability do
exist : as they are not the main focus of this thesis, we will not focus on them here.
Protocols for linear algebra could for instance be found in Elkhiyaoui et al. (2016).

22 Chapter 1: Introduction

Paradigms for verification protocols

In this section, we go through the major approaches developed for verification proto-
cols. We start by giving an overview of what we call generic approaches, whose goal
is to propose multi-purpose protocols which are able to certify a wide range of com-
putations. These approaches usually carry large constant factors on the Prover or the
Verifier computation time. We then focus on algorithm-based approaches, whose goal is
to develop protocols for one specific computation, hence trading generality for better
efficiency. Finally, we present one intermediate approach, which is able to certify any
linear algebra computation reducing to matrix multiplication.

Generic approaches

Circuit verification techniques These generic approaches come from (Goldwasser
et al., 2008) work, in which they propose a protocol able to verify any problem that can
be solved on a parallel computer, that is any problem from the N'C or AC complexity
class.

In a nutshell, the idea here is that the Prover and the Verifier agree on a multi-
layered arithmetic circuit C. The Prover first commits a claim on the value of the
output layer of this circuit. The Verifier cannot verify this claim without evaluating the
circuit, which is very expensive and thus what they want to avoid. What the Verifier
will do instead is to engage in an iterative verification sequence, in which a claim
on the values at the output of each layer of the circuit can be reduced to a claim
about the values on the previous layer of the circuit. The Verifier will use a sum-check
protocol (Lund et al., 1992) to perform this reduction, and proceeding backwards from
the output layer to the input layer of C, the Verifier eventually needs to only verify a
claim on the input of the circuit.

Initially, considering inputs of size n and a circuit of size S(n), depth d, with Prover
runtime for this protocol polynomial in S(n) and verifier time O(n + dlog(S(n))). This
has been refined by (Cormode et al., 2012), who managed to achieve a better Prover
in O(S(n)log(n)) time. (Thaler, 2013) managed to reduce the Prover time complexity
to O(S(n)), but only for regular circuits.

QAP-based approach Another approach has been proposed by (Parno et al., 2016)
with a system called Pinocchio but this time based on converting a circuit into a struc-
ture called a quadratic arithmetic program (QAP). In a nutshell, a QAP is a represen-
tation of the circuit which contains three sets £, R, O of size n of polynomials and
a target polynomial 7" of degree d. These sets respectively encode the left input of
every gate in the circuit, their right input and their output. The target polynomial is
associated to the function the circuit is supposed to evaluate and is used to verify that
the circuit indeed computes the output of this function. To be more specific, to verify
if a set of constants (cy,...,c,) (called an assignment) satisfies the QAP, one needs to
compute three polynomials L = X7 ¢;- £;, R = X' ;¢; - R; and O = ¥7_,¢; - O; and

1. Verification protocols for outsourced computation 23

P = LR—0O. If T divides P, meaning if there exists a polynomial H such that P = HT,
then the assignment satisfies the QAP. In the context of verifiable computation, this can
be applied as follows: the Prover and the Verifier agree on a circuit to evaluate and on
the target polynomial 7" and the Prover computes the four polynomials L, R, O and H.
The Verifier then samples a random evaluation point s which they send to the Prover.
The Prover replies with the evaluation of their four polynomials at s and the Prover
just needs to check that the equality L(s)R(s)—O(s) = T'(s)H (s) holds. The soundness
comes from DeMillo/Lipton/Zippel-Schwartz lemma which states that the probability
of P(s) = H(s)T(s) with P # HT is small. However, this is not enough to prove that
the assignment indeed satisfies the QAP: the former verifications only guarantee that
the polynomials L, R and O have degree at most d and verify L x R — O = T x H,
but not necessarily that they were produced from the assignment. In order to verify
that the Prover did not just forge suitable polynomials, the Verifier will create a new
polynomial F = L + X% x R 4+ X?@+1) »x 0. This new polynomial has been con-
structed such that its coefficients in degree less than d + 1 are exactly the coefficients
of L, the nextd + 1 coefficients are exactly those of R, and the last d + 1 are the ones
of O. Now, combining the polynomials from the sets £, R and O in a similar manner
gives a set of n new polynomials F such that F, € F = L; + X% x R; + X2+ x O,
for some i € {1,...,n}. Now, if F' is a linear combination of the F; polynomials, it
means that L, R and O were indeed produced from the assignment. This can be veri-
fied by random evaluation: the Verifier picks a random evaluation point s’, and sends
s’ x Fi(s),...,s x F,s to the Prover who has to reply with s’ x F'(s). It they succeed,
it means they know how to write F' as a linear combination of the F;, which implies
that the L, R and O indeed come from the assignment.

It has been proven by (Gennaro et al., 2013) that any arithmetic circuit can be
converted into a QAP whose size (the number of polynomials in each set) depends
on the number of multiplication gates and input/output elements in the circuit to
transform. This representation is quite powerful, as addition and multiplication by a
constant gates can be considered free (they do not impact the size of the QAP) and the
correctness of the QAP can be checked by performing cheap polynomial operations.
This approach has been further improved in 2015 by (Costello et al., 2015) whose
Geppetto compiler improves on Pinocchio by enabling more efficient Provers.

Linear algebra computations Both these approaches can be used to compute clas-
sical linear algebra properties, like the rank or the determinant of a matrix, or opera-
tions like the matrix-matrix product. However, the additional logarithmic factors take
a toll on the Prover time. This cost is illustrated, for instance in (Walfish and Blumberg,
2015) which Figure 5 shows the Prover overhead on two computational tasks (matrix
multiplication and PAM clustering - similar to k-means computation) and exhibits a
massive overhead (from 1.5 to 9 orders of magnitude) for generic techniques against
a native C implementation.

24 Chapter 1: Introduction

Algorithm-based approaches

In this section, we go through the major verification protocols using algorithm-based
techniques to verify linear algebra properties.

We start by the first linear algebra protocol, due to (Freivalds, 1979), which allows
to verify the computation of a matrix-matrix product. Given two matrices A, B and
a matrix C, such that A x B = C, the idea is to perform a right projection using a
random vector. If the projection of A x B and the projection of C are equal, then,
with high probability, A x B = C. This verification protocol is given in Protocol 1.2.

Protocol 1.2: Freivalds
Public: A € F™*" B e F**f C e Fmx¢
Certifies: C = AB
Prover Verifier

v ﬁ S£><1

A(Bv) = Cv

Lemma 1.1.3. Protocol 1.2 is a perfectly complete and probabilistically sound non inter-
active protocol. It has Verifier cost j1(A) + u(B) + u(C). The probability that the Verifier
incorrectly accepts is at most 1/#5S.

In Freivalds’ original version, the random projection vector v contained only 1 and
—1s, hence yielding a failure probability of 1/2. (Kimbrel and Sinha, 1993, algorithm
4) proposed a variant to Freivalds’ protocol, in which, instead of picking a random
{—1,1} vector, the Verifier randomly sampled a single element = from S and used
v = (1,z,2% ...,2"1) as the projection vector instead. This variant requires only
log(n) random bits, as S needs at least n elements. Note that in what follows, we will
use Freivalds’ protocol as proposed in Protocol 1.2 and not original {—1, 1} version or
the Kimbrel-Sinha variant.

For the rest of this section, we will give an overview of existing verification proto-
cols using algorithm-based strategies for verifying classical linear algebra properties.
Information of the efficiency of these protocols has been summarized in Table 1.1,
and improvements over the state of the art alongside the new verification protocols
developed in Chapter 2 are presented in Table 2.2.

Matrix rank A first matrix rank dedicated verification protocol was given in 2011
by (Kaltofen et al., 2011, Theorem 2) for square integer matrices, based on the exis-
tence of an LU decomposition for the input matrix modulo a random prime. This proto-
col has O(n3) communication cost and O(n?) verification cost. More recently, (Dumas

1. Verification protocols for outsourced computation 25

and Kaltofen, 2014, Corollary 3, Theorem 5) proposed a verification protocol for the
rank of both integer matrices and matrices over a finite field. For a matrix A € F™*",
their protocol asks the Prover to commit the rank » of A, compute two projection ma-
trices, I € F"”*™ and J € F"*" such that I AJ is non singular, which can be verified,
certifying that r is a lower bound on the rank of A. They then propose a protocol for
an upper bound on the rank of a matrix, which applied to r effectively certifies the
rank of A. (Eberly, 2015) proposes a variant of these protocols in which the Prover is
asked to certify the lower bound on the rank r by recovering a linear combination on
r independent columns on the matrix. The upper bound is then proved by the Prover’s
ability to generate a random vector of the image of A using a linear combination of r
columns of A. The previous two verification protocols have roughly equivalent com-
plexities, with (Dumas and Kaltofen, 2014) having a less costly Prover in the case of
structured or sparse matrices but slightly more expensive communication and Verifier
cost overall. Detailed complexities can be found in Table 1.1.

Determinant A first algorithm-based determinant verification protocol was proposed
in (Kaltofen et al., 2011, Theorem 3) for dense integer matrices, in which the Prover
computes and transmits several LU decompositions of the input matrix A modulo
several prime numbers. The verification then consists either in checking the rank of
the input matrix if the LU decomposition is not full rank, or in checking the zero
equivalence of A and LU and that the product of diagonal coefficients of U is the
determinant the Prover provided. This protocol yields a cubic communication volume
and a soft quadratic verification time. Then, (Dumas et al., 2016, Theorem 13, 14)
proposed an improvement based on minimal polynomial computation. This version
is especially efficient in the sparse case where it is Prover optimal, while yielding a
linear communication volume and a verification time bounded by the cost of applying
a vector to the input matrix. It also retains interesting complexities for structured and
dense matrices. Finally, in Section 2.4.1 we will propose new verification protocols
for dense matrices with no Prover overhead and the same communication volume and
verification time than the latter protocol.

Characteristic and minimal polynomial (Kaltofen et al., 2011, Theorem 4) pro-
posed a first verification protocol for the characteristic polynomial based on simi-
larity residue system and computation modulo prime numbers. This protocol once
again yields cubic communication volume and quadratic verification time. (Dumas
and Kaltofen, 2014, Section 3) improved on the Frobenius normal form computation,
which, combined with the previous protocol, allowed them to reach quadratic com-
munication volume. Finally (Dumas et al., 2016, Section 5) proposed a verification
protocol for the minimal polynomial of structured/sparse matrices, in linear commu-
nication volume and linear verification time.

Signature The signature of a symmetric matrix is the triple (n,,n_,ngy) respectively
indicating the number of positive, negative and zero eigenvalues. (Kaltofen et al.,

26 Chapter 1: Introduction

2011, Corollary 1) verify the signature of a matrix by analyzing the characteristic poly-
nomial of the input matrix. The characteristic polynomial approach can be straightfor-
wardly applied to the signature verification protocol, hence yielding the same commu-
nication volume and verification time cost. In Chapter 2, we propose another approach
based on the LDLT decomposition which allows the get better practical computation
time for the Prover.

1.1.6 Linear algebra intermediate approach

The two approaches presented in previous sections either chose to sacrifice some effi-
ciency in order to gain generality, or to focus on a specific algorithm to achieve better
protocols. Here, we describe another technique, proposed in (Kaltofen et al., 2011,
Theorem 5) for linear algebra computations which reduce to matrix multiplication.
The idea is that the Prover will perform the required computations as normal, but that
every time they will need to compute a matrix product, they will store the result of
this operation. The Prover’s commitment will be all the matrix products’ results. The
Verifier will then rerun the algorithm the Prover ran, and every time a matrix product
needs to be performed, they will verify it using Freivalds’ check on the data the Prover
provided instead of performing it. This technique yields very interesting properties:
while requiring a soft quadratic communication volume, it does not yield any Prover
overhead and the verification cost is quadratic. It is also a non interactive protocol.
The generic shape of this protocol is given in Protocol 1.3.

Protocol 1.3: KNS11

Public: Input to the algorithm .4
Certifies: The output of A

Prover Verifier

1. Run the algorithm
Inter. matrix products

2. Run the algorithm, but
replace each matrix
product by a call to
Freivalds’ check

2. Multi-party computation protocols 27

1.1.7 Overview of existing state of the art algorithm-based verification

protocols

We finally give in Table 1.1 a summary of the efficiency of the best protocols to ver-
ifying the elements described above. We focus on the metrics which were presented
in Section 1.1.3. We denote by A the input matrix, which has size m x n and rank r.
Note that signature or characteristic polynomial verification protocols do not appear in
the table per se. This is because they have the same characteristics as the determinant
protocol from (Dumas et al., 2016) and then can be read on the same line as the latter
on our table.

Multi-party computation protocols

Overview

We now consider a new situation, where several people, each of them owning some
data want to compute a function which takes of all their data as input. We could
imagine those people being owners of databases who want to execute a request on
all of their data, bidders at an auction who want to know who made the highest bid
or hospitals needing to compute compatibility rate between hosts and donor for or-
gan transplant. They could obviously go public and reveal all their data to each other
and then perform the requested computation, but for privacy reasons, they want to
perform computations without revealing their input data. Such protocols allowing
people to perform such shared computations are called secure multiparty computation
protocols (abridged MPC in what follows). This has first been investigated by (Yao,
1982), regarding the famous millionaires problem in which two people wants to know
who is the richest of them all without revealing their actual wealth to one another.
Since then, a lot of effort has been put on this field, and this section will present the
major techniques that can be used and discuss their efficiency. As for the previous sec-
tion on verification protocols, we will focus on the two concurrent paradigms, generic
protocols and algorithm-based protocols.

Definitions

An MPC protocol involves a given number of participants (often designated as players
or parties) Py,..., P,, each with their own private data (or input) x1,...,x,. Players
seek to compute the output y of an n-variate public function f, while keeping their
own input secret. Note that depending on the structure of y, it can be either public
or private: y could for instance be a vector of size n and player i only learns the i-th
element of y. In order to perform such a computation securely, two conditions must
be satisfied: correctness, meaning that the correct value of y is computed, and privacy
meaning that players learn nothing but the output of f.

Chapter 1: Introduction

Algorithm Rounds Prover Communication Probabilistic Min. 45
Determ. Time Verifier Time
(KNS11) over (CKL13) 0 No O@*+u(A) O@*+m+n) OG22+ u(A) 2
On(p(A) +n ~ .
RANK (DK14) 2 No OMOA?MBQNEMVVV O(m+n) 2u(A) + O(m + n) Q(min{m, n} log(mn))
(E15) 2 Yes O(mnr“—?2) O(n+r) O(u(A)+n) 2
(F79) & PLUQ 0 Yes O(n®) O(n?) O(n?) + u(A) 2
DET (DKTV16) & CHARPOLY 2 No NAN\MMWWV O(n) w(A) +O0(n) n?

Table 1.1: State of the art verification protocols for several linear algebra properties

28

2. Multi-party computation protocols 29

Regarding the construction of such protocols, it has been proven by (Goldreich et al.,
1987) that any function can be securely computed. However, early protocols were not
efficient enough to be practical and significant effort has been put in designing pro-
tocols that could be used in practice ever since. In the rest of this section, we first
present the metrics to consider when designing MPC protocols. We then follow a sim-
ilar outline to the previous section by first describing classical tools that are used in
many protocols and then presenting and comparing concurrent approaches for proto-
cols design.

Evaluation of the efficiency of an MPC protocol

The following metrics should be carefully considered when designing an MPC proto-
col:

Communication: the volume of data exchanged throughout the protocol. For the same
bandwidth vs. latency reasons explained in Section 1.1.3, one should take into
account the number of communication rounds required to complete the execu-
tion of a protocol.

Computation cost: the worst-case number of arithmetic operations performed by all
the players during the execution of the protocol. Another parameter to keep
in mind while designing such protocol is computation cost balancing between
players: are some players performing much more computations than others?
Such discrepancy could be problematic as there is no way to guarantee that
the players whose role forces them to perform more computations are using
faster machines than the other ones, which could lead to possibly large waiting
phases during the protocol. Ideally, computations should be balanced amongst
all players.

Security: the type of adversaries against whom the protocol is secure and the optional
countermeasures that one needs to deploy to ensure this security. There are
two major types of adversaries: semi-honest who are not allowed to tamper
with the protocol, but can (and will) perform any additional computation on the
data they know to try to learn secret information, and malicious adversaries (a
la (Dolev and Yao, 1983)) who are allowed to not follow the protocol. They
can, for instance, alter the distribution of the random value they provide or pick
any element they want for their input. Furthermore, these adversaries can be
working alone, or they can be colluding in which case they will share any in-
formation they own. Note that the adversaries can be static in which case they
remain adversaries during the whole protocol, or dynamic which means players
can become adversaries at any time during the execution of the protocol (there
is usually a bound on the number of adversaries existing at the same time). In
this thesis, we will only consider static adversaries. Finally, a word on the afore-
mentioned countermeasures: some protocols might require the deployment of

30 Chapter 1: Introduction

additional techniques to achieve a given security. These countermeasures usually
have a cost (either in communication or computation - maybe both) and should
ideally be avoided. One can for instance cite secure channels, which guaran-
tee authenticity and integrity of a message, but force digital signature of every
message, which induces additional computation cost to verify every message.

Paradigms for MPC protocols

A simple idea for designing MPC protocols could be to assume that there exists some
independent, honest and impossible to corrupt entity called a trusted third party. All
players could send their private input to this party, who will perform the required
computations and send the output back to the players. This solution is both generic
and extremely efficient. However, the existence of such an entity is a very strong se-
curity model and might not be suitable to some applications. Hence, a lot of effort
has been put in designing MPC protocols that do not resort to such trusted parties. In
this section, we describe the two main paradigms for MPC protocols design. As for
verification protocols, they are split between generic approaches aiming at designing
protocols that can be applied to a wide array of problems, and algorithm-based ap-
proaches which focus on one specific computation and use its specificities in order to
get a very efficient protocol. We will start by giving an overview of the main used tools
for designing MPC protocols, before describing the two aforementioned paradigms.

Widely used tools

Secret Sharing. Secret sharing refers to techniques allowing to distribute a secret
amongst a group of parties, each receiving one part (or share) of the secret. The idea
is that the secret can only be reconstructed if a sufficient number of shares are put
together. This originates from (Shamir, 1979), who developed a protocol based on
polynomial interpolation: given a secret s to be shared amongst n players, and setting
the reconstruction threshold to ¢ < n, generate a polynomial function f of degree ¢t — 1
whose degree 0 coefficient is s. Now, each player receives a distinct random evalua-
tion of f, and by Lagrange interpolation ¢ players are needed to reconstruct f, thus
revealing s. Other techniques exists, such as one based on plane equations (Blakley,
1979) or Chinese remainder theorem (Mignotte, 1983; Asmuth and Bloom, 2006).
Secret sharing is widely used for MPC applications, usually using a different ap-
proach: here, a player will split their input s into as many additive shares as there
are players (for n players, s = X' ;s;) and distribute these shares amongst players. In
order to be secure against trivial collusion attacks, it is necessary to add some extra
randomness: consider a protocol with n players, where P, needs to secretly share their
input s;. Each player P;,j # ¢ will generate a random element r; that they will send
to P,. P, will compute » = ¥;r; and broadcast s; — r. Finally, each party will set their
share to s; — r + r;. This mechanism allows to securely perform arithmetic operations:
an addition can be straightforwardly performed on shares of its operands (if two ele-

2. Multi-party computation protocols 31

ments ¢ and b are split into {a;} and {b;}, a+b = ¥;a; + ¥;b;). For multiplication, things
are a bit more complicated and require to generate so called "multiplicative triples",
a set of three non-reusable elements, in order to be performed. We will not go into
details here, but the interested reader can report to (Beaver, 1992) for details on this
method.

Oblivious Transfer. Oblivious transfer protocols allow one player, called the sender,
to transfer one piece of information they own (amongst possibly many) to another
player, the receiver, while remaining oblivious to what piece has been transferred.
The first oblivious transfer protocol has been introduced by (Rabin, 2005) and refined
by (Even et al., 1985), who designed a new protocol with MPC applications in mind.
These first protocols were called 1-2 oblivious transfer as the sender owns two pieces
of data and the receiver gets one. A short description of Even et al’s protocol could be
done as follows: using a public key cryptosystem, the sender generates their key pair
and sends the public key to the receiver. They also generate two random messages
xg, r1, which they send to the receiver. The receiver then picks the random message
corresponding to the information they want (say, x, for my and scrambles z, into v
by using a random element k. The sender receives v and uses it to compute two
possible values for k, ky and k;. One of these will be the same as the k the receiver
picked, but the sender has no way to say which one it is. They will finally generate
two messages my = mg + ko and m} = m; + k; and send these to the receiver, who
can learn the message they wanted by subtracting their original % to the message they
wanted. Since then, these protocols have been generalized into 1—n oblivious transfer,
as for instance in (Aiello et al., 2001; Kolesnikov et al., 2016), or even k& — n oblivious
transfer (Brassard et al., 1987; Ishai and Kushilevitz, 1997) but for what follows we
will only be interested in 1-2 oblivious transfer protocols.

Homomorphic Cryptography. Homomorphic cryptography refers to cryptosystems
allowing to perform computation on ciphertexts which behaves as if the operation has
been performed on the plaintext. This ability is crucial when its deployed in MPC
protocols, as it allows players to perform computations on ciphered data without get-
ting information on the clear data. We distinguish three major types of homomorphic
cryptosystems: fully homomorphic supports an unbounded number of arithmetic oper-
ations, somewhat homomorphic supports a bounded number of arithmetic operations
and semi-homomorphic supports only one type of arithmetic operation, the other one
taking one plaintext and one ciphertext as operands. Without going into much detail
here, we will only mention that the first two are usually considered to be too expen-
sive to be practical, while the latter can be used in practice. The interested reader may
refer to sections 3 and 6 of (Mohassel, 2011) to get an overview of several homomor-
phic cryptosystems. A recent comparison of several modern somewhat homomorphic
cryptosystems can be found in (Costache and Smart, 2016). Finally, another inter-
esting reference is the standardisation document from the Homomorphic Encryption
Standardization Consortium Albrecht et al. (2018) which describes fully homomorphic

32 Chapter 1: Introduction

cryptosystems and gives recommended parameters to efficiently set them in practice.
We will present the specificities of the cryptosystems we used for our work in Chap-
ter 4.

Generic approaches

We present here the main classes of generic approaches, which are both based on
circuits.

Secret sharing-based approaches These approaches rely on arithmetic circuit com-
putation, and work as follows: at the beginning of the protocol, each player will split
their input into shares and send shares to other players as described above. Then, they
will run the algorithm locally, using the shares they received as input to the arithmetic
gates, send the output to the appropriate players who can recompose the output of
the circuit by using all their shares. These approaches are often split into two phases:
the shares generation and exchange, and the actual circuit evaluation. Such secret-
sharing based schemes have been widely used and implemented into several libraries
over the past decade, see for instance (Bendlin et al., 2011; Damgard and Zakarias,
2013). A recent and highly regarded library using this technique is SPDZ (Damgard
et al., 2013), which proposes a quite efficient version of this scheme, with security
against active adversaries. This implies the use of zero-knowledge proofs techniques
and message authentication codes in order to guarantee that players have been hon-
est regarding their shared values and that they did not corrupt data computed while
evaluated the arithmetic circuit. They also use somewhat homomorphic encryption
techniques to generate the multiplicative triples required to perform multiplication on
shares. This step was improved in the most recent work in line, MASCOT (Keller et al.,
2016), which proposed faster oblivious transfer-based techniques for the multiplica-
tive triples generation. However, these approaches still suffer from large overheads:
the preprocessing phase requires to compute one distinct triple per multiplication gate
per player, which is a time and memory consuming process, and the exchange of shares
and gate output amongst players also require a lot of communication. Note that as the
preprocessing phase is by far the costlier element of these protocols, communication
is not the bottleneck of these approaches.

Garbled circuits These techniques apply to boolean circuit, and were initially de-
veloped as two party protocols. The idea is that one player will be in charge of ob-
fuscating (garbling) the information passed through the circuit while the other player
will be in charge of performing the computation. The first garbled circuit protocol
has been proposed by (Yao, 1986). The security of this proposal relies on symmet-
ric cryptography and oblivious transfer and works as follows: for a given gate, let us
consider two players Alice and Bob, where Alice is in charge of the garbling. She will
start by generating four symmetric keys corresponding to each possible input for the
gate, (K9, kL), (K%, k%) and will use these four keys to cipher the four possible output

2. Multi-party computation protocols 33

of the gate. For example, she will use k%, k% to cipher the output corresponding to
0,0. She will then send to Bob the four ciphertexts alongside the key corresponding to
her input. Now, Bob needs to get the key corresponding to his input without revealing
what it is to Alice, which will be done using a 1-2 oblivious transfer protocol. Bob will
now try to decipher each ciphertext, and the one that can be properly deciphered is
the actual output to the gate. In order to perform a full evaluation, our players needs
to repeat that for all gates in the circuit.

Another garbled circuit approach is due to (Goldreich et al., 1987) and is also a two
party protocol. This time, however, instead of using symmetric cryptography to hide
the intermediate values computed during circuit evaluation, secret sharing techniques
are used: each party splits their inputs into two shares, sending one to the other party
and keeping the second to themselves. They will then locally perform the evaluation
of each gate, using the shares they own as input. This idea applies straightforwardly
to (X)OR or NOT gates, but requires a bit more work for AND gates: in this particular
case, the same oblivious transfer-based technique as above has to be performed.

While initially only designed as two-party protocols secure against semi-honest ad-
versaries, both approaches for garbled circuits have been widely studied and improved
since then: practicality of Yao’s garbled circuits have been proven with, for instance, its
Fairplay implementation (Malkhi et al., 2004) and a secure version against malicious
adversaries has been achieved in (Kreuter et al., 2012). At first glance, Goldreich
et al.’s approach might seem more expensive than Yao’s: the latter runs in constant
rounds and requires oblivious transfer for only one of the players, while the former
requires an oblivious transfer per AND gate (which can be replaced by the use of
the aforementioned multiplicative triples for multiplicative secret sharing). However,
in (Choi et al., 2012), the authors propose an n-party implementation of the afore-
mentioned Goldreich et al. scheme which outperforms Yao-based techniques for com-
putations involving more than three players. This improvement has been carried out
for two players schemes in (Schneider and Zohner, 2013). Security against malicious
adversaries has been achieved in (Nielsen et al., 2012).

Despite their genericity making them extremely appealing, these techniques once
again involve some large overhead as the need to engage in an oblivious transfer
protocol for each gate implies a lot of communication between the two parties.

1.2.5 Algorithm-based approaches

Designing MPC protocols for specific tasks seems to be quite less of fashion than work-
ing on generic solutions, and there are not that many articles that focus on this dedi-
cated approach. Nonetheless, we present here a summary of existing algorithm-based
approaches for two linear algebra problems, matrix multiplication (and the underlying
dot product computation) and linear system solving.

34 Chapter 1: Introduction

Scalar and matrix product

We need to open this presentation by a fairly long disclaimer: Comparing algorithm-
based approaches for these operations is a difficult task. Protocols were designed
with different, often incompatible target application in mind which led to very spe-
cific models. Initially, researchers were interested in conducting statistical analysis
between private data sets (for instance customers buying behaviours or employees HR
information). Initially, This model usually involved only two players (see (Du and
Atallah, 2001a; Du et al., 2004; Amirbekyan and Estivill-Castro, 2007)), each owning
the same input data structure (vector or matrix) but was later extended to support N
players (Goethals et al., 2005). In that case, N-party vector product means computing
the sum of all the partial coefficient-wise products. Finally, a new model was intro-
duced for partial trust computation (see (Dolev et al., 2010; Dumas et al., 2017a))
in which N players want to perform dot product, one players owning one full vector
of size N — 1 and the other N — 1 players each own only one coefficient of the other
vector. This last model is the one we use in the work presented in Chapter 4.

Thus, considering the difficulty of comparing those approaches, we propose here
to summarily describe them, give their main advantages and drawbacks and only fo-
cus on their communication cost as it is the usual bottleneck in MPC applications
(see Chapter 4 for more details on that point).

The first dedicated protocol for scalar product applied to confidential statistical anal-
ysis was proposed by (Du and Atallah, 2001a). As mentioned, their protocol was for
two parties only (each party knows a vector) and it was only secure against semi-
honest adversaries. They propose two solutions to achieve this result, one based on
oblivious transfer and the other one on homomorphic encryption. With security pa-
rameter)\, and vectors of size n, the total communication cost for their protocol is
4 n field elements. In 2004, Du et al. extended this result, now allowing matrix-
matrix product in a semi-honest two-party setting (each players knows a matrix) (Du
et al., 2004). Their communication cost is only the size of the input matrix, m x n
field elements. (Goethals et al., 2005) proposed a first n-player dot product protocol
Their solution uses homomorphic encryption and masking techniques to achieve se-
curity against semi-honest players, and can use very costly zero-knowledge proofs to
achieve security against malicious adversaries. While this new protocol is comparable
to the previous ones on communication volume, requiring to exchange n(N — 1) field
elements (with N players and vectors of size n), its (/N > 2)-player version present the
drawback of having asymmetric roles for the players. One "master" player is trusted
with the private key to the homomorphic cryptosystem and has to be honest to guar-
antee privacy. Then, (Amirbekyan and Estivill-Castro, 2007) proposed another scalar
product protocol, in 4n field elements communication volume (for vectors of size n),
but back to the initial two-player only model and achieving only security against semi-
honest adversaries.

On trust computation, (Dolev et al., 2010) propose an N-player protocol for weighted
average achieving security against any number of semi-honest adversaries at the com-
munication cost of O(N?) field elements. Finally, (Dumas et al., 2017a) propose an

2. Multi-party computation protocols 35

improvement of the former in O(N?) field elements. This allowed them to achieve a
communication cost of O(N?) for a matrix product protocol in which a given player P,
knows the i-th row of the input matrices.

Linear system solving

Algorithm-based approaches for solving a linear system of equations Ax = b can be
split in two distinct problems: the first one focuses on two party protocols where
each party brings an entire matrix and vector as their input, and aim at solving the
aforementioned system in which A and b are formed by addition or concatenation
of the two parties’ inputs. A first solution has been proposed by (Du and Atallah,
2001b) in 2001, and is heavily based on oblivious transfer protocols. The authors
are only interested in improving on communication cost and achieve a complexity of
O(u x N?) for matrices of size N and security parameter . This has been improved
several times since (see for instance (Wu et al., 2005; Yang et al., 2008), with the
latest improvement proposed by (Troncoso-Pastoriza et al., 2009). All these protocols
are only secure against semi-honest adversaries.

The second class of problems are more in-line with the core of this thesis, as they
focus on n-party protocols where each party knows one subset of coefficients of the
input matrix A and a set of coefficients of 5. On this topic, we can cite a protocol by
(Dagdelen and Venturi, 2015). This protocol requires at least three players and can be
summarized that way: one player will be in charge of performing computations, one
will be in charge of interacting with the former, and the others will be mostly passive.
The idea is that the master player will engage into a protocol in which they will learn
a masked version A’ of the full input matrix A, and a masked vector & where the "in-
teracting" player will be in charge of picking the masks. The master will then solve the
system A’z = i’ and send the result to the "interacting player", who can remove the
masks and broadcast the solution to the system. The fact that the interacting player is
able to gather the inputs of the other players in order to form A’ is based on oblivious
transfer techniques. This protocol presents nice complexities, with a communication
complexity of O(I + k) and a computational complexity of O(N?(n + u)) where n is the
number of players, ;1 the security parameter and N the input matrix size. However it
does have some disadvantages: the imbalance in player roles forces the master player
to perform most of the computation and the security relies on the master player as
well: should they be corrupted and colluding with any other party and the players’ in-
puts will immediately be leaked. This protocol is also only secure against semi-honest
adversaries.

In the rest of this thesis, we will propose new efficient linear algebra protocols to
verify outsourced computation and securely perform multi-party computations. As
we showed in this first chapter, these two aspects, verified and secure multi-party
computations are two sides of outsourced computation which have many common
features, such as their cost metrics, the requirement to interact between several parties

36 Chapter 1: Introduction

in order to compute a result, and several underlying linear algebra techniques.

37

Chapter

2 Elimination-based

verification protocols for
triangular equivalence and
rank profiles

Contents

2.1 Non interactive and quadratic communication verification protocols . . . 40
2.1.1 Column rank profile verification protocol 40
2.1.2 Non interactive Rank Profile Matrix verification protocol 41
2.2 An interactive verification protocol for the rank profile matrix 43
2.2.1 Triangular one sided equivalence 43
2.2.2 Genericrank profile-ness. 45
2.2.3 LDUP decomposition, 49
2.2.4 Column or row rank profile verification protocol 52
2.2.5 Rank profile matrix verification protocol 56
2.3 Constant rounds verification protocols 59
2.3.1 Representative Laurent polynomial of a matrix 60
2.3.2 Constant rounds triangular equivalence verification protocol . . . 60

2.3.3 Constant round verification protocols for the row and column
rank profiles 62
2.4 Some additional verification protocol, 64

2.4.1 Linear communication verification protocols for the determinant 64
2.4.2 Verification protocol for the signature of an integer matrix 65

38 Chapter 2: Verification protocols for triangular equivalence and rank profiles

Technical summary and overview of this chapter

Focus This chapter focuses on the design of a verification protocol for the compu-
tation of a matrix invariant called the rank profile matrix. Given a matrix A, its rank
profile matrix carries the information on the pivots of A and of all the pivots of its
leading submatrices. These pivots can be used when performing a Gaussian elimina-
tion over A. As the Gaussian elimination is a central tool for linear algebra and is used
in many applications, an efficient dedicated verification protocol for the rank profile
matrix is an important for verified computing in linear algebra. The articles associated
with this chapter are (Dumas et al., 2017b, 2020).

Model We propose verification protocols as defined in Definition 1.1.2, whose effi-
ciency is measured based on the metrics given in Section 1.1.3.

State of the art — main competition There were no dedicated verification proto-
cols for the rank profile matrix prior to this work. We will thus compare our new
protocols to the ones that can be obtained by applying the intermediate approach
of Kaltofen et al. (2011) over the rank profile matrix computation algorithm of Du-
mas et al. (2017¢). For a m x n matrix of rank r, this gives a verification protocol
with a deterministic Prover in O(mnr“~—2), O(mn) communications and O(mn) Veri-
fier cost. State of the art dedicated verification protocols for the determinant were
presented Section 1.1.5 and their cost is given in Table 1.1.

Results We present two verification protocols for the rank profile matrix. The first
one has quadratic communication volume and Verifier complexity and thus slightly
improves on the state of the art. However, it is a non-interactive certificate, which has
the advantage of being straightforwardly publicly verifiable. The second one is the
main result of this chapter: a new interactive verification protocol in linear communi-
cation volume and quadratic Verifier complexity. This protocol relies on a sub-protocol
verifying the triangular equivalence of matrices: two matrices A and B are said trian-
gular equivalent if there exists a triangular matrix 7" such that AT = B. The structure
used in the data exchange for this protocol appear to be a central tool to which sev-
eral problems could be reduced to. Using this observation, we also provide new, more
efficient than the state of the art verification protocols for the determinant and the
signature of a matrix.

Outline

We first present in Section 2.1 non-interactive verification protocols for the column/row
rank profile and the rank profile matrix. Then, we describe and prove in Section 2.2
a new interactive protocol for the rank profile matrix, and its subprotocols, based on
the triangular equivalence problem. After that, in Section 2.3, we show how to have a
constant number of communication rounds for our row/column rank profile protocol.

39

Finally Section 2.4, shows how to use our new protocols to improve Prover efficiency
on the verification protocol for the determinant and signature of dense matrices.

Introduction

Gaussian elimination is a central tool used in a wide array of applications in computer
algebra, as in the LU decomposition (itself used for linear system solving, or determi-
nant and rank computation), or the computation of basis of vector spaces.

In this chapter, we consider a rectangular matrix A € F*" of rank r. The row rank
profile (abridged RRP) is the lexicographically minimal sequence of r indices of inde-
pendent rows of A. The column rank profile (CRP) is defined similarly on the columns
of A. These two sequences describe the shape of the row/column echelon form of
A and give the position of row/column pivots that can be used when performing a
Gaussian elimination over A. The matrix is said to have generic row (resp. column)
rank profile if its row (resp. column) rank profile is (1,...,r). This information is
contained on an invariant of A, called its rank profile matrix (RPM). The rank profile
matrix also contains the information on the row- and column-rank profile of every
leading submatrix of A. Formally, the rank profile matrix of A is the unique m x n
{0-1}-matrix with r nonzero entries of which every leading submatrix has the same
rank as the corresponding submatrix of A. This invariant can be computed, either us-
ing a deterministic algorithm in O(mnr“~2), or a Monte-Carlo probabilistic algorithm
in (r* +m+n + p(A))*°0 (Dumas et al., 2017¢).

A bottom-line verification protocol from the computation of the rank profile matrix
can be immediately derived by applying KNS11 on (for instance) the results of (Du-
mas et al., 2017c, 2013). However, this approach yields logarithmic factors in the
communication volume and the verification cost. Thus, there is room for improve-
ment in designing dedicated protocols for the rank profile matrix. To build our rank
profile matrix verification protocol, we show that it comes down to certifying a matrix
property called the triangular equivalence, which is, for two matrices A, B € F™*",
the existence of a triangular matrix T' € F**" such that AT = B. We then propose
a generalisation of this protocol allowing to verify the generic rank profile-ness of a
matrix and the D and P matrices of an LDUP decomposition. Finally, combining these
protocols, it is possible to verify the column rank profile and the rank profile matrix
of an invertible matrix. Subsequently, by combining these pieces, we propose a rank
profile matrix verification protocol for any matrix. Finally, the D and P from LDUP
verification, initially built with the rank profile matrix verification in mind allows us
to propose more efficient protocols for the determinant and the signature of a matrix.

We introduce some notations that will be used throughout this chapter: the symmet-
ric group and the group of permutation matrices of size n will be denoted by S,,. D,,(F)
is the group of invertible diagonal matrices over the field F, while Dﬁf)(F) represents
block diagonal matrices with 1 or 2-dimensional diagonal blocks. Finally, we denote

by IP the set of prime numbers.

40 Chapter 2: Verification protocols for triangular equivalence and rank profiles

Non interactive and quadratic communication verification
protocols

In this section, we propose two verification protocols, the first one for the column
(resp. row) rank profile of a given matrix, and the second one for the rank profile
matrix of a given matrix. While those protocols have a quadratic communication com-
plexity, they have the advantage of being non interactive.

Column rank profile verification protocol

This verification protocol is based on the P, L, U, Q decomposition of the input ma-
trix A. The main idea here is that the column rank profile of A can be extracted
from its PLUQ decomposition if UQ is in row echelon form, which will be proved
in Lemma 2.1.1. The Prover will hence commit the entire PLUQ decomposition to the
Verifier, who will verify that A = PLUQ using Freivalds’ check (Freivalds) and that
UQ is row echelonised. This is proposed in details in NonlInteractiveColumnRankProfile.

Protocol 2.1: NonlnteractiveColumnRankProfile
Public: Ae F™*", T e (1,...,n)
Certifies: The colum rank profile of A

Prover Verifier

1. Compute a PLUQ decom-
position of A s.t. UQ is
in row echelon form

P, LU,Q
2. Check that U Q is in row
77777777777777777777 echelon form
3 ' Freivalds(A, PLUQ) !
. = (Q[L...,Qlr])

Lemma 2.1.1. Let A = PLUQ be the P, L,U, Q decomposition of an m x n matrix A
of rank r. If UQ is in row echelon form, then (Q|[1],...,Q[r]) is the column rank profile
of A.

Proof. Write A = P[7!|[v1 v:]Q, where L, and U, are r x r lower and upper
I, U U

0(77177”) xXn

triangular respectively. If UQ is in echelon form, then R = [] is in reduced

1. Non interactive and quadratic communication verification protocols 41

echelon form. Now

Ur' L, g _[ur'uQ] _
l Im—r:| lLQ Im—r] PA= O(m—r)xn =R

is left equivalent to A and is therefore the echelon form of A. Hence the sequence of
column positions of the pivots in R, thatis (Q[1],...,Q[r]), is the column rank profile
of A.]

Theorem 2.1.2. Let A € F™*™ with r = rank(A). Protocol 2.1 is a complete and
probabilistically sound non interactive protocol. It requires O(r(m + n)) communications
and Verifier cost O(r(m + n)). The probability that the Verifier incorrectly accepts is at
most 1/#3S. There is a deterministic algorithm for the Prover, which costs O(mnr“=2)

Proof. If UQ is in row echelon form, the Verifier will never reject it, and if A =
PLUQ, as Freivalds’ protocol is complete, the Verifier will systematically accept the
Prover commitment, hence ensuring the completeness of this protocol.

If UQ is not in row echelon form, this will be caught by the Verifier with probability
1. If A # PLUQ, the Verifier will accept with probability 1/#S (Freivalds’ check),
hence the soundness of NonlInteractiveColumnRankProfile.

Now, for the complexities: the Prover needs to find a PLUQ decomposition of
A, where UQ is in row echelon form. Using algorithms provided in (Jeannerod
et al., 2013), Prover complexity will be O(mnr<—2). Verifier checks can be done in
O(r(m + n)) by Freivalds’ check. Finally, communication cost is the one of sending P
and @Q, two permutations matrices and L and U, which are respectively m x r and
r x n matrices, hence the cost of O(r(m + n)). O

Note that this holds for the row rank profile of A: in that case, the Verifier has to
check if PL is in column echelon form.

Non interactive Rank Profile Matrix verification protocol

Lemma 2.1.3. A decomposition A = PLUQ reveals the rank profile matrix, namely
Ra=P[T,]Q, ifand only if P[L o] P" is lower triangular and Q" [¥] Q is upper
triangular.

Proof. The only if case is proven in (Dumas et al., 2017c, Th. 21). Now suppose that

P[L0uxm-r] P"islower triangular. Then we must also have that L = P [z ;° | P”
is lower triangular and non-singular. Similarly suppose that Q' [Y] Q is upper trian-
gular so that U = Q" [, , | Q is non-singular upper triangular. We have A =
LP[! ,]QU. Hence the rank of any (i, j) leading submatrix of A is that of the (4, 5)

leading submatrix of P [’ ;] Q, thus proving that R4y = P [’ ;] Q. O

We use this characterization to verify the computation of the rank profile matrix in
the following protocol: Once the Verifier receives P, L, U and Q, they have to check
that A = PLUQ, using Freivalds’ check Protocol 1.2, and check that L is echelonised

42 Chapter 2: Verification protocols for triangular equivalence and rank profiles

Protocol 2.2: NonlnteractiveRankProfileMatrix

Public: A € F™*", R4 € Fm*"
Certifies: R 4 is the rank profile matrix of A

Prover Verifier

1. Compute a PLUQ de-
composition of A reveal-

ing Ra
P,L,U,Q

2. AL PLUQ

3. Check that PLP7 is up-
per triangular

4. Check that QTUQ is
lower triangular

5. Ra Z

1,
P[O(m—'r)x(n—'r)] Q

by P and U” by Q. If successful, the Verifier can just compute the rank profile matrix
of A from P and @, as shown in NonlInteractiveRankProfileMatrix.

Theorem 2.1.4. NonlinteractiveRankProfileMatrixis a complete and probabilistically sound
non interactive protocol. It requires O(r(m + n)) communications, and has verifier cost
O(r(m + n) + u(A)) The probability that the verifier incorrectly accepts is at most 1/#S.

There is a deterministic algorithm for the Prover in O(mnr*=?2)

Proof. If A = PLUQ), the Verifier will never reject it. If PLP7 is upper triangular and
QTUQ is lower triangular, the Verifier will always accept them and by Lemma 2.1.3,
the Verifier will successfully extract the rank profile matrix, ensuring the completeness
of NonlnteractiveRankProfileMatrix.

Now if A # PLUQ, the Verifier will reject that with probability 1/#S by Freivalds’
check. And finally, if the provided PLUQ decomposition does not reveal the rank
profile matrix of A, Lemma 2.1.3 implies that either PLP? or QTUQ will not have
the expected shape, which the Verifier will always detect.

Now, for the complexities: the Prover needs to find a rank profile matrix-revealing
PLUQ decomposition of A, which can be computed in O(mnr“~2) operations us-
ing algorithms provided in (Dumas et al., 2013). Verifier checks can be done in
O(r(m +mn)) + p(A). Finally, communication cost is the one of sending P and Q,
two permutations matrices and L and U, which are respectively m x r and r x n
matrices, hence the cost of O(r(m + n)). O

2. An interactive verification protocol for the rank profile matrix 43

2.2 An interactive verification protocol for the rank profile
matrix

Triangular one sided equivalence

Two matrices A, B € F™*" are right (resp. left) equivalent if there exists an invertible
n x n matrix T such that AT = B (resp. TA = B). If in addition T is a lower
triangular matrix, we say that A and B are lower triangular right (resp. left) equiva-
lent. The upper triangular (resp. left) equivalence is defined similarly. We propose a
protocol verifying that two matrices are left or right equivalent. These two matrices,
A and B, will be the input of the protocol. We force A to be a regular (full rank) ma-
trix. A naive protocol would be the matrix T itself, and the Verifier would check that
AT = B using Freivalds’ check. However, this protocol requires a quadratic amount
of communication. Here, we instead propose a protocol allowing to verify triangular
equivalence in a linear (2n) amount of communication. We essentially use Freivalds’
check, but with a constrained interaction pattern in the way the challenge and re-
sponse vectors are communicated. This pattern imposes a triangular structure in the
way the Prover’s responses depend on the Verifier’s challenges.TriangularEquivalence
shows the full protocol.

Theorem 2.2.1. TriangularEquivalence is a complete and probabilistically sound interac-
tive protocol. It requires 2n communications, and has Verifier cost ji(A) + u(B). The
probability that the Verifier incorrectly accepts is at most 1/#S. There is a deterministic
algorithm for the Prover in O(mn*~1).

Proof. If T exists, then the Prover can compute it, and answer with appropriate y;,
such that the Verifier check Ay = Bx will always hold, hence the completeness of this
protocol.

Now, if there is no such matrix, we have two distinct cases: either AT # B for
any T, or there exists at least one such T, but it is not triangular. In the rest of this
proof, we replace the random values =1, ..., x, by algebraically independent variables
X1,..., X,

In the first case, if AT # B, then there is at least one inconsistent column in B (say
the j-th). Thus, there exists a Farkas’ certificate of inconsistency (a vector z such that
2T A = 0 and 27 B, ; # 0 for that column. This means that there exists a vector z such
that z” Ay = 0 for any y, but 2" B[X;,..., X,,]7 is a not identically zero polynomial
(at least the coefficient of X is non zero) of degree 1. Therefore, by the DeMillo-
Lipton/Schwartz/Zippel lemma (Demillo and Lipton, 1978; Zippel, 1979; Schwartz,
1980), its evaluation will be zero with probability at most 1/#S.

In the second case, AT = B but T is not triangular. Since A is regular, there is
a unique n x n matrix T (that is, T = A, B, for any A, left inverse of A). For
the same reason, the equality Ay = Bax = AT« implies y = Tx. if T is not lower
triangular, there is a row index ¢ such that the entry ¢, ; # 0 for some j,, > i. The
test y = Tz only succeeds if y; = 37, t; jv;. Now the Prover selects y; before z;,, is

44 Chapter 2: Verification protocols for triangular equivalence and rank profiles

Protocol 2.3: TriangularEquivalence

Public: A, B € F™*" A is regular, and m > n. T exists
Certifies: There exists a matrix T such that AT = B

Prover Verifier

1. Find a lower triangu-
lar matrix T' such that

AT = B
o
3 yl_Tl,*l?]
' 1
4.
e Tn
S yn—Tn,*[]
o Un

Y=y .unl"
Ay;Ba:

2. An interactive verification protocol for the rank profile matrix 45

revealed. Therefore, with probability no more than 1/#S the Verifier selects the field
element x;, = 1/t;;, (yi — X, ti;7;), and the test succeeds for a wrong 7.

Now for the complexities: the Verifier has to Ay and By, whose computational
cost is u(A) + u(B). The Prover has to compute 7', which can be done by a PLUQ
elimination on A followed by a triangular system solve, both in O(mn“~!). Then, y =
Tx requires only O(n?) operations, hence the cost given on the theorem statement.
Finally, this verification protocol requires to transmit « and y two size n vectors, for a
total communication volume of 2n.

N

Note that the case where T is upper triangular works similarly: the Verifier needs to
transmit n in reverse order, starting by z,,.

Generic rank profile-ness

Here, we propose a verification protocol which verifies whether a non-singular input
matrix A € F™*" has generic rank profile. As this matrix needs to be non-singular, one
needs to verify that beforehand, which can be achieved using the protocol proposed
in (Dumas and Kaltofen, 2014, Fig. 2) or RankLowerBound thereafter. A matrix A has
generic rank profile if and only if it has an LU decomposition A = LU, with L (resp.
U) a non-singular lower (resp. upper) triangular. This protocol picks random vectors
¢, 1, X and asks the Prover to provide the vectors z = ATL, & = U¢,y = Ut on the
fly, while receiving the coefficients of ¢, 1, A one at a time. The Verifier will then check
that these vectors satisfy the fundamental equations z'x = AA¢ and 27y = AT Av.
NonSingularGenericRankProfile gives an overview of this verification protocol.

Theorem 2.2.2. NonSingularGenericRankProfile is a complete and probabilistically sound
interactive protocol. It requires 6n communications, and has Verifier cost ji(A) + 8n. The
probability that the Verifier incorrectly accepts is at most 1 — (1 — 1/#S5)*". There is a
deterministic algorithm for the Prover in O(mn®~1).

Proof. If A has generic rank profile, then A = LU, thus 27 [z y| = ATLU [¢] =
ATA [gb ¢]: which means the Verifier will never reject the Prover’s answer. This
proves the completeness of NonSingularGenericRankProfile.

Now, for any ¢ such that the (i — 1) x (i — 1) leading submatrix of A has generic rank
profile, we can write a partial LU decomposition of A with the following notations:

L® 0 U®» v
A= {B@ In¢+1] l e (2.2.1)

< J . J

B C

where L e FU~Ux(-1 js non-singular lower triangular, U<’ e F¢—D*(=1 js non-
singular upper triangular, B e F(r—i+1)x (=1 1@ g pl-Dx(n—i+1),
C<z> c F(n—i+1)><(n—i+1).

46 Chapter 2: Verification protocols for triangular equivalence and rank profiles

Protocol 2.4: NonSingularGenericRankProfile

Public: A € F™*", non-singular, A has generic rank profile
Certifies: A indeed has generic rank profile

Prover Verifier

1. A=LU

for i fromnto 1

2. (¢1,1h;) < S
qbiawi

Tiy Yi
4 A< S
Y
5. 2z =\TL
_ &
6 r 4
' [z y]

2. An interactive verification protocol for the rank profile matrix 47

Let vl = [v;,... v,]" € F**"~*+! for a vector v € F"*!, and let
n = (/\[z'...n])TC<z‘>¢[z‘...n]7 & = (A[i...n])TC@}w[i...n]‘ (2.2.2)
Consider the following predicate:
H;: pi=(zl-"hTgli-nl and g=(2l-nhTyli-nl, (2.2.3)

Note that H,; is what the Verifier checks because then B = I,,. Note also that when A
is in generic rank profile with A = LU and 27 = ATL and x = U¢ and y = U+ then
H, is true for all i. To see this consider an LU-factorization C<» = L°U®

and the identity

L 0 U®» v LY 0 U®» v
= [B@ In_m] l o c»|~|BY || 0 ©o|-tV. (@24
Then (zli-")7 = (Al-"NTL® and gli-nl = T@@li-nl and yli-nl = TOpli-n] verify
H;.
Note that the conditions are only tested by the Verifier for i = 1.
At stage i, let A;, ®; and ¥, be variables for the random choices for);, ¢; and v); and
Z; be a variable for the Prover’s choice of z;. Then H; in Equation (2.2.3) expands as:

€
A

~

ZL‘ZZZ = (dq)z + Z Ciz;?_i.g_lgbj)Az + a(I)i + fv

j=i+1

) o (2.2.5)
yiZi = (d\I/i + Yl)Ai 4l +h,
j=it1
(9
where d = Cﬁ anda =3 .., Akcfjiﬂl, or equivalently
—(d®;+e) x| |N]| |aPi+ f
l_(dlpi + g) Y; Zz - a\I/i +h| (226)

Suppose now that A is not in generic rank profile, and let iy be minimal such that the
leading i(x io minor of A is equal to 0. On any corresponding partial LU decomposition
this means that d = Cif? = 0. Furthermore, because A is assumed to be non-singular,
there exist indices ko with 2 < kg < n —1ip + 1, and j, with 2 < j, < n —io + 1 such that
C{% #0and C{ # 0.

We will now prove the two following statements:

1. H,, is false with probability > (1 — 1/#S)%;

0

2. If H;, is false then H; is false with probability > (1 — 1/#S)? for 1 < i < 4.

48 Chapter 2: Verification protocols for triangular equivalence and rank profiles

Informally, this means that the Prover cannot achieve H;, with any choice of returned
values x,...,z,, with high probability and then this failure propagates with high
probability to H, which is checked by the Verifier. By induction, this leads to a prob-
ability of > (1 — 1/#S5)*+2(0=1 that the Verifier check will fail when the matrix A is
not in generic rank profile. Since A is non-singular, iy < n — 1, and therefore this
probability is > (1 — 1/#S)*".

First, we prove Statement 1, that is the case when d = 0. The Verifier selects a
random J);,, and then the Prover a z;,. If the coefficient matrix in Equation (2.2.6)
is non-singular, there is a unique solution for A;,, which the Verifier will choose with
probability < 1/#S. Otherwise, the coefficient matrix is singular and the only way for
the system to have a solution is that the determinant

—e a®+ f |

g a4+ h | —e(aV¥y;, + h) + g(a®;, + f)

»

is equal to 0, which exactly happens in the three following cases:
a. [e g] =[0 0], which happens with probability < 1/#S” as Cci +0;

1,jo

b. a = 0 (which happens with probability < 1/#S as Cgﬁ # 0) and = 0;

h
c. otherwise, ea # 0 or ga # 0 and A is a nonzero polynomial of degree 1 in ®;,, ¥,

and evaluates to 0 for the random choices ¢;,, 1);, with probability < 1/#S.
Overall, H,, is false with probability

based on the random choices of the Verifier: ¢;,,v;, yield [e g]| # [0 0]; Ay, yields
a # 05 ¢iy, Vi, yield A # 0; \;, avoids the unique solution to Equation (2.2.6).

For Statement 2, consider the predicate H; Equation (2.2.3) at i < ig, that is d # 0.
Similarly, if the coefficient matrix in Equation (2.2.6) is non-singular, there is a unique
solution for A;, which the Verifier will choose with probability < 1/|S|. Otherwise, the
coefficient matrix is singular and the only way for the system to have a solution is that
the following determinant is equal 0:

(dq)z + 6) CL(I),' + f

OZA:‘ (AU, + g) aV+ h

= (df — ae)¥; — (dh — ag)®; — eh + gf.

We block decompose the bottom right block in the incomplete right factor in Equa-

T . .
tion (2.2.1) C¥ = l;l TW], where d = C’ﬁ # 0. We have C¢*V = W — Lsr™. Now

since a = (A\FF1-")Ts e = rTgli+1-n "we have ae = (Ai+1-n)TgpTgli+1-n] and

f—= = ()\[i-‘rl...n])Tc<i+1>¢[i+1...n] o (Z[i-‘rl...n])Tx[i-i-l...n]
d

= Miy1 — (Z[i+1...n]>Tx[z’+1...n]_

2. An interactive verification protocol for the rank profile matrix 49

Similarly, h — % = &4 — (l+1-n))Tgli+1-n] "and these two quantities are not equal
to 0 simultaneously, for otherwise H;,; would be true. Therefore A is a nonzero
polynomial of degree 1 in ® and W. It is equal to 0 with probability < 1/#S. Overall,
H; is false with probability > (1 — 1/#8S)? based on the random choices for \;, ¢; and
1); made by the Verifier.

Finally, for the complexity, the Prover needs one Gaussian elimination to compute
LU in time O(n*), then her extra work is just three triangular solve in O(n?). The
extra communication is six vectors, ¢, 1, X, x, y, z, and the Verifier’s work is four dot-
products and one multiplication by the initial matrix A (certifying the transposed to
have a single matrix times A-vector product). O

LDUP decomposition

With NonSingularGenericRankProfile, when the input matrix does not have generic rank
profile, any attempt to prove that it has generic rank profile will be detected with high
probability, as this protocol is sound. However, when it does have generic rank profile,
the Verifier will accept many possible vectors x, y, z: any scaling of z; by «; and z;, y;
by 1/a; would be accepted, for any non zero constant «;. This slack corresponds to
our lack of specification on the diagonals in the LU decomposition. Indeed, for any
diagonal matrix with non zero elements, LD x D~'U is also a valid LU decomposition
and yields «, y and z scaled as above. As specifying these diagonals was not necessary
to prove generic rank profile-ness, we left it as is for NonSingularGenericRankProfile.

However, for the determinant or the rank profile matrix verification protocols which
follow (Section 2.4.1, InvertibleRankProfileMatrix) we need to ensure that this scaling
is independent from the choice of vectors ¢,), \. Hence, we propose an updated
protocol where L has to be unit triangular and the Prover has to first commit the main
diagonal D of U.

For a non-singular upper triangular matrix U with diagonal
D = Diag(dy,...,d,), the matrix U; = D~'U is unit triangular. Thus, for any) =

[qf/)l] e F»t: Uy = DUWp = D (1/’ + [ﬁ}fZD, where 6:1 = (U, - In){l n—1},{2,...n}

upper triangular in F*~1*"~1 So the idea is that the Prover will commit D before-
hand, and that within a generic rank profile verification protocol, the Verifier will
only communicate qb ¢ and X to obtain z = AL, T = U1qb and y = Ulz,b, where
L= (L — I,){2,...n}.01,..n—1y lower triangular in F"~ Dxn— 1. Then the Verifier will com-
pute by himself the complete vectors. This ensures that L is unit triangular and that
U = DU, with U; unit triangular.

Finally, if an invertible matrix does not have generic rank profile, we note that it is
also possible to incorporate the permutations, by committing them in the beginning
and reapplying them to the matrix during the checks. The full verification protocol is
given in Protocol LDUP.

Theorem 2.2.3. Protocol LDUP is a complete and probabilistically sound interactive
protocol. It requires 6n communications and has Verifier cost pi(A) + 12n + o(n). The

50 Chapter 2: Verification protocols for triangular equivalence and rank profiles

Protocol 2.5: Protocol LDUP

Public: A € F**", non singular, P € F**", D e F»*"
Certifies: That D and P come from an LDUP decomposition of A

Prover Verifier

A=LDU,P

2. PES,, DcD,(F)
for ¢ from n to 2

3. i, ;& S
gbiawi

Ti—1,Y;1
>

5 \ < S
AN
6. z=A'L
Zi1

1,01, A <SP
[z y] =

(¢ ¢]+[§ g]

2T = (AT + 2 0])

?

2'D [z y]
(A\TA)PT (¢ 9]

2. An interactive verification protocol for the rank profile matrix 51

probability that the verifier incorrectly accepts is at most 1 — (1 — 1/#S5)?". There is a
deterministic algorithm for the Prover in O(n®).

Proof. If A has an LDUP decomposition, then A = LUP = LDU, P, so that for any
choice of A and v we have: AT APT+ = ATLDU, 4, that is:

2Dy~ (W = 0pp (w4 |1])
[X aezno sy)

The same is true for A and ¢, which proves the completeness.

Now, the last part of Protocol LDUP is actually a verification that APT has generic
rank profile, in other words that there exists lower and upper triangular matrices L*
and U* such that APT = L*U*. This verification is sound by Theorem 2.2.2. Next,
the multiplication by the diagonal D is performed by the Verifier, in order to be actually
convinced that there exists lower and upper triangular matrices L* and U;* such that
AP" = L*DU;. Finally, the construction of the vectors with the form a + [¢] is
also done by the Verifier, in order to have in fact a guarantee that L* and U} are unit
triangular.

Overall, if the matrix AP7? does not have generic rank profile, the Verifier will catch
him with the probability of Theorem 2.2.2.

_ Finally, for the complexity bounds, the extra communications are the 6 vectors X, ¢,
1 and Z, T and 5. That is 6(n — 1) field elements. The arithmetic computations of the
Verifier are one multiplication by a diagonal matrix, 3 vector sums, 4 dot-products and
one vector-matrix multiplication by A (for (AT A)), thatisn+3(n—1)+4(2n—1). O

We also give the following proposition, which, while not being need to prove Proto-
col LDUP, gives some guaranties on the values of D and x, vy, z.

Proposition 1. In Protocol LDUP, if AP is not in generic rank profile, or else if the
committed diagonal D does not correspond to the unique decomposition APT = LDU,
or [y| # Ui|¢] or 27 # AL, then the verification will fail with probability
> (1- #)2", and therefore Protocol LDUP is sound.
Proof. If A does not have an LDUP decomposition, either

(i) APT is not in generic rank profile, then Protocol LDUP will detect it with the

probability of Theorem 2.2.3;

(ii) or the Prover could still try to send modified vectors Z, ¥y, Z or diagonal D.
Let then D*, z* = ¢ + [| = Ui, y* = ¢ + [¥ | =Uipp and z* = [3'] + A = LT
be the expected diagonal and vectors. Let also iq < n be the largest index such that
there is at least one discrepancy in d,,, Z;,, Y,, Or Z;, that makes at least one of them
respectively different from dj , =} , y; orz; (z, ==, =09, =9, =0,2,=%;, =0

20

by default). Then H; of Equation (2.2.3) is true for all 7 such that n > ¢ > iy, and thus

52 Chapter 2: Verification protocols for triangular equivalence and rank profiles

in particular H; ., is true (H,,, is true by default). Now, H,, is also true if and only if

we have both:
ZigigTig = 2y di T30, (2.2.7)
Zig dio Yip = Zzo d;ko ylo'

Indeed, H;, is (zlio-n])T Dlio-nlglio-n] — (z*[ZO"'”])TD["O"'”]zc*[iU"'”] and similarly H;,
iS([i0+1.. n])TD[io-‘rl n]w[io-i-l n] _ (Z [i0+1...n])TD[io+1 n]CU [io+1...n] Further,

Equation (2.2.7), with a = Z} dj =} — Z;,d;,T;,, and b = Z} d} Y; — Z;,d;,Y;,, 1S equiv-
alent to:

{Amo(dio — i) + Nig(diy iy — di 7) + @iy (digZ4y — dZ5) —a = 0, (2.2.8)

)‘iowio (dio - d;ko) +)‘io (dioyzo d* yzo) + 1% (dlozlo d;,ko 10) —b=0

However, \;,,®;,,v;, are chosen by the Verifier after d,,, =;,, ¥,, and Z,, have been
committed. Hence, on the one hand, if d;, # dj then the coefficient of);, in one
of the two polynomials is not equal to 0 for a random ¢;, with probability > 1 —
1/#S* and then that polynomial does not vanish for a random);, with probability
> (1 — 1/#S%)(1 — 1/#8S), based on the random choices made by the Verifier, and H;,
is violated.
On the other hand, if d;, = dj # 0, they can be removed from Equation (2.2.8)
which then simplifies (for iq < n) as:
)‘io (?io - f:‘o) + gbio (fio - fj) (mem fiofio) =0, (2.2.9)
)‘io (yio - y;'ko) + wio(zio - z;ko) - (zioyio zioyio) =0.

When there is at least one discrepancy with the expected vector coefficients, then
Equation (2.2.9) can be considered as 2 polynomials that are not simultaneously iden-
tically zero. Thus they both vanish with probability < 1/#S based on the random
choices made by the Verifier. H;, is thus false with probability > (1 — 1/#S). As in
the proof of Theorem 2.2.2, this propagates with high probability, to H; and the dis-
honest Prover is detected with probability > (1 — 1/#S)2"=1)(1 — 1/#S?)(1 — 1/#S) >
(1—1/#S)?*". Overall, both (i), APT is not GRP, or (ii), AP? is GRP but some diagonal
or vector elements is wrong, are detected with probability > (1 — 1/#S)?". O]

Column or row rank profile verification protocol

Here, we start by recalling two linear time and space verification protocol for an upper
and lower bound on the rank of a matrix (RankUpperBound and RankLowerBound).
These two protocols combined make a rank verification protocol. We chose to present
the variants proposed in (Eberly, 2015, paragraph 2) of the protocol from (Dumas
and Kaltofen, 2014). An upper bound R on the rank is certified by the ability for the
Prover to generate any vector sampled from the image of A by a linear combination
of R columns of A (|| denotes the Hamming weight of the vector). A lower
bound p is certified by the Prover ability to recover the unique coefficients of p linearly

2. An interactive verification protocol for the rank profile matrix 53

Protocol 2.6: RankUpperBound
Public: A € F*", a positive integer R
Certifies: R is an upper bound on the rank of A
Prover Verifier
$ an
1. v<S" w=Av
v
2. Avy=w
_r
?
)
Ay =w

independent columns of A. LINSY S(r) denotes a complexity bound for solving a
linear system of rank r.
Theorem 2.2.4. RankUpperBound is a complete and probabilistically sound interactive

protocol. It requires m+n communications, and has Verifier cost 2j(A)+n. The probabil-
ity that the Verifier incorrectly accepts is at most 1/#S. There is a deterministic algorithm

for the Prover in LINSY S(r).

Protocol 2.7: RankLowerBound

Public: A € F"*", a set J of p column indices of A
Certifies: p is a lower bound on the rank of A

Prover Verifier
Q. Es
o = J
1. 0 otherwise
v=Ax
v
2. Solve AB =v
B

Il

54 Chapter 2: Verification protocols for triangular equivalence and rank profiles

Theorem 2.2.5. RanklLowerBound is a complete and probabilistically sound protocol. It
requires m + p communications, and has Verifier cost ji(A) + p. The probability that the
Verifier incorrectly accepts is at most 1/#S. There is a deterministic algorithm for the
Prover in LINSY S(r).

Note that the communication in RankLowerBound involves sending m field elements
for vector v, and only p field elements for vector 3, as it has only p non-zero coefficients
which positions are already indicated by 7. Hence the total communication cost is

m + p.
We now consider a column rank profile verification protocol: the Prover is given a
matrix A, and answers the column rank profile of A, J = (¢,...,¢.). In order to

certify this column rank profile, we need to certify two properties:
1. the columns given by 7 are linearly independent; and
2. the columns given by J form the lexicographically smallest set of independent
columns of A.

Property 1 is verified by RankLowerBound, as it checks whether a set of columns are
indeed linearly independent. Property 2 could be certified by successive applications
of RankUpperBound: at step i, checking that the rank of A, . .—1) is at most i — 1
would certify that there is no column located between ¢;_; and ¢; in A which increases
the rank of A. Hence, it would prove the minimality of 7. However, this method
requires O(nr) communication space.

Instead, one can reduce the communication by seeding all challenges from a single n
dimensional vector, and by compressing the responses with a random projection. The
right triangular equivalence verification protocol plays here a central role, ensuring
the lexicographic minimality of 7. More precisely, the Verifier chooses a vector v € F”
uniformly at random and sends it to the Prover. Then, for each index ¢, € 7 the Prover
computes the linear combination of the first ¢, — 1 columns of A using the first ¢, — 1
coefficients of v and has to prove that it can be generated from the k£ — 1 columns
c1,...,cp_1. This means, find a vector v*) solution to the system:

U1

[A*7cl A*,CQ ce A*yck—l] ’y(k) =A UC%J71

Equivalently, find an upper triangular matrix I" such that:

v1 vy e e V1
Vey—1
[Ace, Aver oo Ao JT=A| 4 . (2.2.10)
0 0
0 0 0 w1 ¢
[0 0 0 0 w

2. An interactive verification protocol for the rank profile matrix 55

Note that V' = Diag(vy, ..., v,)W where W = [1,.,,]i; (with ¢, = n + 1 by con-
vention) In order to avoid having to transmit the whole r x r upper triangular matrix T,
the Verifier only checks a random projection x of it, using the triangular equivalence
TriangularEquivalence. We then propose this verification protocol in ColumnRankProfile.

Protocol 2.8: ColumnRankProfile

Public: A € F™*", a set J of r column indices for A
Certifies: 7 is the column rank profile of A

Prover Verifier
1 'RankLowerBound(A4, 7)
9 v &S
W — []li<cj+1] = Fn><7"
v
V = Diag(vy,...,v,)W
3. T upper tri. s.t.
A* {c1 cT}F = A‘/i 77777777777777777777777777777777
4. 3 TriangularEquivalence(A, (¢, ¢}, AV) |
5. Learns x,y, respective
challenge and response
from the previous call to
TriangularEquivalence
7z =
Diag(vy, ..., v,) (W)
6. ij = ij_yj
forj=1.r
Az =0

Theorem 2.2.6. ColumnRankProfile is a complete and probabilistically sound protocol. It
requires m+n -+ 3r communications, and has Verifier cost 2i1(A)+n+ 3r. The probability
that the Verifier incorrectly accepts is at most 1/#S. There is a deterministic algorithm
for the Prover in O(mnr*~2).

Proof. If 7 is the column rank profile of A, ColumnRankProfile corresponds first to an
application of Theorem 2.2.5 to certify that 7 is a set of independent columns. This
protocol is perfectly complete. Second the protocol also uses challenges from RankUp-
perBound, which is perfectly complete, together with TriangularEquivalence, which is
perfectly complete as well. The latter verification protocol is used on A, 7, a regular
submatrix, as 7 is a set of independent columns of A. The final check then corre-

56 Chapter 2: Verification protocols for triangular equivalence and rank profiles

sponds to A(D(Wx)) — A, ..,y = 0 and, overall, ColumnRankProfile is perfectly
complete.

Now, if 7 is not the CRP of A, then either the set of columns in 7 are not linearly
independent, which will be caught by the Verifier with probability at least 1 — %,
from Theorem 2.2.5, or 7 is not lexicographically minimal, or the rank of A is not r. If
the rank is wrong, it will not be possible for the Prover to find a suitable I'. This will be
caught by the Verifier verifier with probability 1— %, from Theorem 2.2.1. Finally, if 7

EJ
is not lexicographically minimal, there exists at least one column ¢, ¢ 7, ¢; < ¢ < ¢i41
for some fixed i such that {ci, ..., ¢;} U{c,} form a set of linearly independent columns

of A. This means that rank(A. 1, .,,,—1) = i+1, whereas it was expected to be i. Thus,
the Prover cannot reconstruct a suitable triangular I" and this will be detected by the
Verifier also with probability 1 — #, as shown in Theorem 2.2.1.

The Prover’s time complexity is that of computing a PLUQ decomposition of A. The
transmission of v, « and y yields a communication cost of n + 2r, which adds up to the
m +r communication cost of RankLowerBound. Finally, in addition to RankLowerBound,
the Verifier computes Wx as a prefix sum with » — 1 additions, multiplies it by D,
then subtracts y; at the r correct positions and finally multiplies by A for a total cost

bounded by 2u(A) +n + 3r — 1. O

Rank profile matrix verification protocol

We propose an interactive protocol for the rank profile matrix based on (Dumas et al.,
2017c, Algorithm 4): first computing the row and column support of the rank pro-
file matrix, using ColumnRankProfile twice for the row and column rank profiles, then
computing the rank profile matrix of the invertible submatrix of A lying on this grid.

In the following we then only focus on a verification protocol for the rank profile
matrix of an invertible matrix. It relies on an LUP decomposition that reveals the
rank profile matrix. From Lemma 2.1.3, this is the case if and only if PTU P is upper
triangular. InvertibleRankProfileMatrix thus gives an interactive protocol that combines
Protocol LDUP for a LDUP decomposition with a check that PTU P is upper triangular.
The latter is achieved by TriangularEquivalence showing that P” and PTU are left upper
triangular equivalent, but since U is unknown to the Verifier, the verification is done
on a random right projection with the vector ¢ used in Protocol LDUP.

Theorem 2.2.7. InvertibleRankProfileMatrix is a complete and probabilistically sound
protocol. It requires 8n communication and has Verifier cost (A) + 16n + o(n). The
probability the Verifier incorrectly accepts is 1 — (1 — 1/#5)?". There is a deterministic
algorithm for the Prover in O(n®).

Proof. If P is the rank profile matrix of A, then PTU P is upper triangular, and this
protocol is complete by the completeness of its sub-protocols

Now, if P is not the rank profile matrix of A and U = PTU P is not upper triangular,
then let (i, j) be the lexicographically minimal coordinates such thati > jand U, ; # 0.

2. An interactive verification protocol for the rank profile matrix 57

Protocol 2.9: InvertibleRankProfileMatrix

Public: A € F™*", invertible, P € F"*" D e F»*"
Certifies: P is the rank profile matrix of A

Prover Verifier

1. A = LDUP, with pub-
lic P and D
P¢S,, DeD,(F)

 TriangularEquivalence(P”, PTU) !

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

5 €; ﬁ S
€1,...,€En

6. fT=e'U
fl) 009 fn

7 ' Protocol LDUP(A, U, P) |

Learns ¢, v, x,y
8. from the call to Protocol LDUP

[a: y] is U[qb v,b]
9. eTPTx £ fPo

58 Chapter 2: Verification protocols for triangular equivalence and rank profiles

Now either [z y]| # U [¢ 1], and the verification will then fail to detect it with

probability less than (1 — 45)*", from Proposition 1. Or one can write e" Pz —

FTPT¢ = (7T — fT)P¢ = 0.
If

e'PTUP - f7 =0. (2.2.11)
25
since e,U and f are set before choosing for ¢. At the time of committing f;, the
value of ¢; is still unknown, hence f; is constant in the symbolic variable E;. Thus the
j-th coordinate in (2.2.11) is a nonzero polynomial in E; and therefore vanishes with
probability 1/#S when sampling the values of e uniformly. Hence, overall if PTUP is
not upper triangular, the verification will detect it with probability > (1 — #)2”

The Verifier’s cost is that of Protocol LDUP with two additional dot products for
the last step, which is u(A) + 16n + o(n). Similarly, the communication cost is that
of Protocol LDUP plus the size of e and f for a total of 8n. The Prover remains
unchanged. O]

is not satisfied, then a random ¢ will fail to detect it with probability less than

Finally, we use (Dumas et al., 2017c, Algorithm 4) to certify the rank profile matrix
of any matrix, even a singular one. To do so, we need to verify the row rank profile and
the column rank profile of the input matrix, which can be done with two applications
of ColumnRankProfile. Then, we certify the rank profile matrix of the » x r selection of
lexicographically minimal independent rows and columns we obtained before. This is
done by an application of InvertibleRankProfileMatrix. We now define &,, ;;, .. ;. as the
m x n matrix whose j-th column is the i;-th vector of the m-dimensional canonical
basis. This verification protocol is detailed in RankProfileMatrix, in the case where
m < n. If n < m, one should first apply ColumnRankProfile on A to compute its column
rank profile, and then apply the verification steps of the same protocol for the row
rank profile of A. The application of InvertibleRankProfileMatrix remains unchanged.

Theorem 2.2.8. RankProfileMatrix is a complete and probabilistically sound protocol. It
requires m+n+min(m, n)+15r communications and has Verifier cost 4j(A)+m+n+21r.
The probability the Verifier incorrectly accepts is 1 — (1 — 1/#5)?". The is a deterministic
algorithm for a Prover, which costs O(mnr<=2).

Proof. If the Prover is honest, Z is the row rank profile of A and 7 is the column rank
profile of A. Then, the application of InvertibleRankProfileMatrix will output the correct
rank profile matrix of Az ; which will lead the Verifier to the correct rank profile
matrix of A, as described in (Dumas et al., 2017c, Theorem 37). Note that one only
needs to verify the lower bound on the rank of A once, which is why ColumnRankProfile
is fully executed once, while the second run only verifies that the committed rank
profile is a rank profile indeed.

Now, for the soundness, Prover has a probability > 1 — 1/#S to be caught when
cheating while running ColumnRankProfile, and a probability > (1 — #)2” to be caught
when cheating while running InvertibleRankProfileMatrix. Overall, this makes a proba-
bility > (1 — #)2” for the Verifier to catch a cheating Prover during the execution of
RankProfileMatrix.

3. Constant rounds verification protocols 59

For the complexities, Prover time complexity is bounded by the complexity of per-
forming a PLUQ decomposition of the input matrix, O(mnr“—2). The Verifier com-
plexity is the one of one full application of ColumnRankProfile and one application of
ColumnRankProfile without applying RankLowerBound, which makes 3.(A) +n-+m-+5r,
plus one application of InvertibleRankProfileMatrix over an r x r matrix for a cost of
u(A) + 16r + o(r), the computation of R 4 only consists of memory operations, hence
a total cost of 4u(A) + m + n + 21r + o(r) field operations. Communication space
is computed as follows: a full application of ColumnRankProfile on A if m > n, on
AT otherwise, an application of the same Protocol without the underlying RankLower-
Bound which makes n + m + min(m,n) + 7r and the same application of InvertibleR-
ankProfileMatrix as above, for a cost of 8r, hence a total communication space of
m + n + min(m,n) + 157. O

Protocol 2.10: RankProfileMatrix

Public: A € F™*"™ m < n, R4 € F™*"
Certifies: R 4 is the rank profile matrix of A

Prover Verifier

1. Extract the row support
of R4 as Z, its column
support as J

2 ' ColumnRankProfile(AT, 7) i
3. ' ColumnRankProfile(A, 7) without its Step 1 |
4. R, =Azy
R;
5. ' InvertibleRankProfileMatrix(Az 7, R,) |
6 Ra = EnzREL,

Constant rounds verification protocols

As previously mentioned in Section 1.1.3, if the network has a poor latency, it is inter-
esting to reduce the number of rounds atop the overall communication volume. We
therefore propose in this section a protocol with a constant number of rounds for tri-
angular equivalence, still preserving Prover efficiency as well as linear communication

60 Chapter 2: Verification protocols for triangular equivalence and rank profiles

volume and Verifier cost. This applies directly, as previously shown, to row or col-
umn rank profiles. However, it fails to apply to the generic rank profile, at least in a
straightforward manner, and we were unable to produce such a verification protocol
in constant rounds for this task.

Representative Laurent polynomial of a matrix

Following a technique in (Mulmuley, 1987), we first define the representative Laurent
polynomial, P4(X) of an mxn matrix A as:

1
X—l m n o
Pa(X)=[1 X X2 ... Xm1 A [=)) A X

i=1j=1

i

Therefore, if a matrix is lower triangular, then its representative Laurent polynomial
cannot have negative powers and it is therefore a polynomial of degree at most m — 1.
The converse is not true, consider for instance an upper diagonal with two opposite
coefficients : A;,,; = 0 for all i except A; , = —A, ;. Generically, if one pre-multiplies
A on the right by a random non-zero diagonal matrix, these cancellations will not
occur as in general dy Ay 2# — dy Ay 3 unless A5 = Ay 3 = 0.

Constant rounds triangular equivalence verification protocol

From this representation, we can obtain a triangular equivalence protocol that requires
only a constant number of rounds: the Prover commits the Laurent polynomial of the
triangular matrix, then the Verifier will evaluate it a random and compare this to the
actual projections. However, the field size must be sufficiently large so that the poly-
nomial identity testing does not fail. The full protocol is given in ConstantRoundTri-
angularEquivalence. It requires that the Prover solves a regular system (this is checked
deterministically by reapplying the resulting vector), and a diagonal preconditioning
on the triangular matrix needs to be applied to prevent cancellations.

Theorem 2.3.1. ConstantRoundTriangularEquivalence is a complete and probabilistically
sound protocol. It requires 3n + 1 communications and has Verifier cost u(A) + u(B) +
7n. The probability the Verifier incorrectly accepts is at most 2(n — 1)/#S. There is an
algorithm for the Prover in O(mn*~1).

1

—1

Proof. Let x = D | . |. If L exists, as A is regular, there is only one solution y
Al.—n

to Ay = Bz, and y = Lx. Therefore [1 A ... X! .y =[1 XA ... Xx!].

3. Constant rounds verification protocols

61

Protocol 2.11: ConstantRoundTriangularEquivalence

Public: A, B,e F*", A is regular, m > n, there exists a lower triangular matrix
Lst. AL=B
Certifies: L indeed exists

Prover Verifier

1. Find L lower triangular

s.t. AL = B
2. D & D,(S\{0})
D
3. g(X) = Ppp(X)
9(X)
4, g€ F[X]zn
N G
A
Y, S.t.
1
5 A
A-y=B-D- _
Al‘fn
N
1
> At
A-y=B-D .
6.)\l—n
g() =

62 Chapter 2: Verification protocols for triangular equivalence and rank profiles

LD . = Prp(\) which proves the correctness.

Al;n
Now, if L does not exist:
e As A isregular, there is only one solution y to Ay = B, thus that check ensures

that y is correct, unless not all columns in B are in the column space of A, which
is handled as in the proof of Theorem 2.2.1.

e If L is not triangular then its upper part is not identically zero. Therefore by
considering D as a diagonal matrix of indeterminates, at least one coefficient
of negative degree of the representative rational fraction LD will be non iden-
tically zero. As those are of degree 1 in the indeterminates of D, for a random
diagonal D, the representative rational fraction of LD will not be a polynomial

with probability at least 1 — 5.

e If g is not a polynomial of degree at most n — 1, it is not the representative of a
triangular matrix.

e If ¢ is not the representative polynomial of LD then by the DeMillo-Lipton/
Schwartz/Zippel lemma (Demillo and Lipton, 1978; Zippel, 1979; Schwartz,
1980), its evaluation at A\ will fail with probability 1 — 2’;;51 (since X" (g —
Prp)(X) is a polynomial of degree at most 2(n — 1)).

For the complexity, the Prover computes L, in O(mn“~'). Then P;p(X) requires one
1

—1
pass over the coefficients of L, and finallyy = LD | . |. The communication cost

Al;n
is D, g(X), y all of size n, and \. The Verifier cost is, u(A)+ u(B) to apply A and B, as

well as 2n — 3 to compute [1 A ... A""'] and their inverses, n — 2 to multiply by D,
2(n—1) to evaluate g, and 2(n—1) to compute the dotproduct [1 A ... A" '].y. O

2.3.3 Constant round verification protocols for the row and column

rank profiles

Now we can combine the lower rank RankLowerBound, with the constant-round Con-
stantRoundTriangularEquivalence for triangular equivalence, as a replacement of Trian-
gularEquivalence, within the column rank profile ColumnRankProfile, in order to get the
constant-round ConstantRoundColumnRankProfile for column rank profile. It remains
Prover efficient, linear in communication volume and Verifier time.

Corollary 2.3.2. ConstantRoundColumnRankProfile is a complete and probabilistically
sound interactive protocol. It requires m + n + 4r + 1 communications and has Verifier
cost 2u(A) + n + 9r.

3. Constant rounds verification protocols

63

Protocol 2.12: ConstantRoundColumnRankProfile

Public: A € F™*", 7 a set of r column indices of A
Certifies: 7 is the column rank profile of A

Prover Verifier

RankLowerBound(A, J) 3

|
|
L e e e e e e e e e = =

2. W = []li<cj+1] e Frxr
V = Diag(vy,...,v,)W

W = []li<c]-+1] e F2xt
V = Diag(vy,...,v,)W

Learns D, g¢,A\ and
y from the call to
ConstantRoundTriangu-
larEquivalence

2 =

D 5

Ze; = Ze,—Yj
forj=1.r

Az <

g(N)
[1 AL)\T_l]y

64 Chapter 2: Verification protocols for triangular equivalence and rank profiles

Some additional verification protocol

In this final section, we present two new protocols for classical linear algebra prob-
lems, the determinant of a matrix and the signature of a symmetric matrix. Using
the protocols presented before, our new verification protocols achieve better practical
Prover costs than the existing ones for the same problems.

Linear communication verification protocols for the determinant

Existing protocols for the determinant are either optimal for the Prover in the dense
case, using the strategy of (Kaltofen et al., 2011, Theorem 5) over a PLUQ decompo-
sition, but quadratic in communication; or linear in communication, using (Dumas
et al., 2016, Theorem 14), but using a reduction to the characteristic polynomial. In
the sparse case the determinant and the characteristic polynomial both reduce to the
same minimal polynomial computations and therefore the latter protocol is currently
optimal for the Prover. Now in the dense case, while the determinant and characteris-
tic polynomial both reduce to matrix multiplication, the determinant, via a single PLUQ
decomposition is more efficient in practice (Pernet and Storjohann, 2007). Therefore,
we propose here an alternative in the dense case: use only one PLUQ decomposition
for the Prover while keeping linear extra communications and O(n) + u(A) operations
for the Verifier, for a square matrix A of size n. The idea is to extract the informa-
tion of an LDUP decomposition without communicating it: one uses Protocol LDUP
for A = LDUP with L and U unit diagonal, but kept on the Prover side, and then
the Verifier only has to compute det(A) = det(D) det(P), with n — 1 additional field
operations.

Corollary 2.4.1. For an nxn matrix, there exists a sound and perfectly complete proto-
col for the determinant over a field using less than 8n extra communications and with
computational cost for the Verifier bounded by 1i(A) + 13n + o(n).

As a comparison, the protocol of (Dumas et al., 2016, Theorem 14) reduces to CHAR-
Polry instead of PLUQ for the Prover. In theory, both approaches are similar: Prover
asymptotic cost is the same, O(n*), Verifier time is the same and communication vol-
ume is 8n for PLUQ and 5n for CHARPOLY. Moreover, CHARPOLY is better than PLUQ
on the number of rounds (constant rounds against O(n)) while PLUQ works on smaller
fields than CHARPOLY (minimum size 2 against n*). However, PLUQ is much more effi-
cient in practice. Table 2.1 shows timings for PLUQ and CHARPOLY computations using
the FFLAS-FFPACK library (version 2.3.1) (The FFLAS-FFPACK group, 2019) on an
Intel i7-6700U@3.4GHz. Communications were measured between two workstations
over an Ethernet Cat. 6@1GB/s network cable. On 50k x 50k matrices, the characteris-
tic polynomial of a random dense matrix can be computed in about 134 minutes, while
it takes approximately 5.5 less time to perform the PLUQ decomposition (24 minutes).
The Verifier time, which is the one of performing a matrix-vector multiplication (the
fgemv routine) is approximately 1s.

4. Some additional verification protocol 65

Dimension 2k 10k 50k
PLUQ 0.28s 17.99s 1448.16s
CHARPOLY 1.96s 100.37s 8047.56s
Linear comm. 0.50s 0.50s 0.50s
Quadratic comm. 1.50s 7.50s 222.68s
fgemv 0.0013s 0.038s 1.03s

Table 2.1: Communication of 64 bit words versus computation modulo 131071

Verification protocol for the signature of an integer matrix

The signature of a symmetric matrix is the triple (n,,n_,ng) indicating the number of
positive, negative, and zero eigenvalues, respectively. Just like (Dumas and Kaltofen,
2014, Theorem 5), the idea is that the Prover commits the list of eigenvalues, and
then certifies it modulo a Verifier chosen prime. This works directly for the signature
algorithm in (Kaltofen et al., 2011, Corollary 1) together with the CHARPOLY protocol
of (Dumas et al., 2016, Theorem 14). As in Section 2.4.1, in the dense case we propose
here to replace the CHARPOLY computation with a symmetric Gaussian elimination.

Over the rationals, an algorithm for the Prover could be to first compute and certify
the rank of A, and to compute a permutation matrix P such that PT AP has generic
rank profile: for instance compute a PL,A, L[P" factorization modulo a sufficiently
large prime p. A symmetric matrix always has such a decomposition, where A is a
block diagonal matrix with square blocks of size 1 or 2 (Bunch and Kaufman, 1977).
Then B = [I,|0]PT AP [%] is symmetric and non-singular. It is then sufficient to lift
or reconstruct only the block diagonal matrix A over Q of a non-pivoting symmetric
factorization of B (the unit triangular matrix over Q need not be computed). Com-
pared to an integer characteristic polynomial computation this gains in practice an
order of magnitude in efficiency for the Prover as shown on the logscale Figure 2.1,
using FFLAS-FFPACK-2.3.1, LinBox-1.5.1 (The LinBox group, 2019) on a single core
of an Intel i7-6700U@3.4GHz.

For the verification, the block diagonal matrix A, and the permutation P are com-
mitted. The Verifier then randomly chooses a prime ¢ and enters an interactive cer-
tification process for P and A mod ¢ using Protocol LDUP, as shown on Protocol
Signature.

From (Dumas and Kaltofen, 2014, Theorem 5), we let i = log,(1/n"||A||%) be the
logarithm of Hadamard’s bound for the invariant factors of A. There cannot be more
than h primes reducing the rank. Therefore it is possible to sample ¢ - h distinct primes
of magnitude bounded by O(hlog(h)) for any constant ¢ > 2 and select ¢; from that
set S7. Once the rank is certified, the Prover can compute the permutation and lift the
diagonal. Finally the rational PLAL” P factorization of the full rank matrix can be
similarly verified modulo a prime ¢,. As for the determinant, no more than 4 primes
can reduce the rank of A and ¢, can be selected from the same kind of set. We have

66

Chapter 2: Verification protocols for triangular equivalence and rank profiles

Protocol 2.13: Protocol Signature
Public: A € Z"*", symmetric, a triple of integers (n,,n_,ng)
Certifies: The signature of A is (n,,n_,ng)
Prover Verifier
1. I = RRP(A)
Z
$
2 ql <« S c IP)
q1
3 ' ColumnRankProfile(A mod ¢;,7) !
77777777777777777777777777 Is convinced that 7
is the RRP and CRP
4. of A mod ¢;
Is convinced that
|Z| = rank(A) mod ¢;
5. A=PLAL"PT
P A
P ? ? 2)
6. €S, AeD7(Q)
777777777777777777777777777777 q;{iﬂsgc P
7 ‘ Protocol LDUP(PTAzzP mod ¢, I, A)!
77777777777777777777777777777 Learns @, y,z,\, ¥, ¢
from the call to Protocol
LDUP
8. 2T A [zy] L
(A"PTA7)P [¢ 9]
mod ¢
9. Compare (ny,m_,ng)
with the number of
positive, negative and
zero elements in A

4. Some additional verification protocol 67

100000 -
10000 | e]
1000 e
100 ¢ i ++/j<>< s
1

0.01
0.001 |
0.0001

seconds

Integer characteristic polynomial —+— *
R§tiongl liftting of tﬁe (%agonal‘ —x—]

500 1000 1500 2000
matrix dimension

Figure 2.1: (Verifiable) signature computation on an Intel i7-6700U@3.4GHz.

proven:

Corollary 2.4.2. For a symmetric matrix A € Z™*", Protocol Signature for its signature
is sound and perfectly complete.

The communication comprise that of the Protocol LDUP, the permutation matrix P,
all of size n, as well as small primes bounded by 4, and finally A. Just like that of
the characteristic polynomial, the size of A can be quadratic and therefore the whole
protocol is not linear. Thus a simpler quadratic protocol communicating the triangular
matrix L modulo ¢,, and checking the decomposition A — LAL” via Freivalds’ check
might also work. But then the communication and Verifier time would always be
quadratic. Instead, Protocol Signature, just like the Protocol using the characteristic
polynomial, is better if the size of the determinant is small, as then the size of A might
be much less than that of L (for instance linear if the determinant is a constant).
Protocol Signature is also interesting if ;(A) is less than quadratic.

Conclusion

A summary of our contributions is given in Table 2.2. In this chapter, we provided veri-
fication protocols that can save overall computational time for the Prover, and an order
of magnitude in terms of communication volume or number of rounds. In particular,
in Table 2.1 which compares both linear and quadratic communication and sub-cubic
or quadratic matrix operations, one can see that it is interesting to use linear space
protocols even when they have quadratic verification time. This table also exhibits a
practical factor of about 5 between PLUQ and CHARPOLY computations.

The key idea of this chapter was to certify the existence of a triangular matrix in an
equivalence relation, by having an n round protocol where data dependency matches

68 Chapter 2: Verification protocols for triangular equivalence and rank profiles

the triangular shape of the unknown matrix factor. This approach was adapted to the
verification of generic rank profile-ness in the LU decomposition, where two triangular
unknown factors are considered.

Mulmuley’s Laurent’s polynomial representation of a matrix successfully replaces the
former technique to certify triangular equivalence, and consequently row or column
rank profiles, reducing the number of rounds from linear to constant. However, we
were unable to adapt this technique for the generic rank profile-ness protocol and the
rank profile matrix protocol.

The use of symmetric Gaussian elimination allowed us to achieve a more practical
protocol for the signature of symmetric integer matrices. Even though it is based on
LDLT verification with linear communication modulo a prime, the diagonal of rational
eigenvalues remains quadratic in size, and full precision was required to recover their
sign. Designing a linear communication and Prover efficient protocol for the signature
is the other major open problem which should be investigated.

69

suonnqrnuo) :Z°¢ 21qel

() (w)o + (V)1 (w)o (ow)O sk (WO ONIdBIPTSE 11dq
(W (wt+w)o+(V)ly (u+rw)o (etiw)o sk (4O STT8 i
¢ W)+ (utw))o ((u+w))O (jemltittt)O SK 0 217§
T—ug< (u+w)o+ (V) (u+w)O (geeiitt)) S9K ¢ €€T8
¢ (utwo+(v)le (u+rw)o (eettw)o SR (0O $'C°T § dNU/ddD
¢ < (V) + ((u+w) VQ (u+w)r)O (gemtut)O SIK 0 I'TC§
QWL], ISYLIA owil, "wIdR(
SH# UONBIIUNUWWO))
onsIIqeqold 191014 spunoy WYILI03[Y

4. Some additional verification protocol

71

Chapter

3 Verification protocols with

sub-linear communication
for polynomial matrix
operations

Contents
3.1 Preliminaries e e e 74
3.1.1 Some probability bounds. 76
3.2 Linear algebra operations 76
3.2.1 Singularity and nonsingularity 77
3.22 MatrixRank. 79
3.2.3 Determinantt e e e e e 82
3.2.4 Protocols based on matrix multiplication 83
3.3 Rowspace membership 85
3.3.1 Fullrowrankcase, 85
3.3.2 Arbitraryrankcase o 90
3.4 Rowspacesandnormalforms 98
3.4.1 Rowspacesubsetandrowbasis. 98
3.4.2 Normalforms 100
3.5 Saturation and kernelbaseso, 103
3.5.1 Saturation and saturated matrices 103

3.5.2 Kernel bases and unimodular completability 107

72 Chapter 3: Verification protocols for polynomial matrix operations

Technical summary and overview of this chapter

Focus This chapter focuses on the design of verification protocols for various com-
putations on matrices over the ring of univariate polynomials over a field F. The article
associated with this chapter is (Lucas et al., 2019).

Model We propose verification protocols as defined in Definition 1.1.2, whose effi-
ciency is measured based on the metrics given in Section 1.1.3.

State of the art — main competition There were no dedicated verification protocols
for the properties we consider on polynomial matrices prior to this work.

Results The first part of this chapter focuses on verification protocols for classical
linear algebra properties of matrices such as the rank, the determinant or the singular-
ity. We also give verification protocols for matrix product and system solving. As these
properties can be seen as vector space problems, the protocols we propose are heavily
based on evaluation techniques: we evaluate the polynomial matrix at a random point
and use vector space verification problems for the property to verify. These protocols
are thus similar to those of Kaltofen et al. (2011), in which they were using similar
techniques of reduction modulo a prime number for integer matrices. In the second
part of this chapter, we focus on module problems. For these problems, the evaluation
technique no longer works and we can no longer rely on vector space verification pro-
tocols. We first present a new verification protocol to verify that a given vector belongs
to the row space of a given full row rank polynomial matrix. Using this new protocol,
we then design a verification protocol for the same problem for matrices of arbitrary
rank. This new row space membership verification protocol proves to be a central
tool for the verification of many module properties of polynomial matrices: it allows
us to verify that the row space of a matrix is contained in the row space of another,
which in turn leads to verifying the row space equality of two matrices. With this, we
can in turn verify normal forms of polynomial matrices, such as the Hermite form or
the shifted Popov form. Finally, we verify properties related to the saturation and the
kernels of polynomial matrices.

Outline

After giving some preliminary material in section 3.1, we propose verification proto-
cols for classical properties of polynomial matrices — singularity, rank, determinant
and matrix product — with sub-linear communication cost with respect to the input
size (section 3.2). Those protocols are based on evaluating considered matrices at
random points, which allows us to reduce the communication space and to use ex-
isting verification protocols for matrices over fields. Then, in section 3.3 we give the
main result of this chapter, which is certifying that a given polynomial row vector is
in the row space of a given polynomial matrix, which can either have full rank or be

73

rank-deficient. section 3.4 shows how to use this result to certify that for two given
polynomial matrices A and B, the row space of A is contained in the row space of
B, and then gives verification protocols for some classical normal forms of polynomial
matrices. In section 3.5, we present verification protocols related to saturations and
kernels of polynomial matrices. Finally, section 3.5.2 gives a conclusion and comments
on a few perspectives.

Introduction

In this chapter, we propose new verification protocols for computations performed on
univariate polynomial matrices. Generically, we consider protocols where a Prover
performs computations and provides additional data structures to or exchanges with
a Verifier, who will use these to check the validity of a result, at a lower cost than by
recomputing it.

This chapter deals with computations on matrices whose entries are univariate poly-
nomials. While certification for matrices over fields and over integer rings have been
studied over the past twenty years, there are only few results on polynomial matrices
(Dumas, 2018; Giorgi and Neiger, 2018).

A polynomial matrix is a matrix M € F[z]™*" whose entries are univariate poly-
nomials over a field F. There is an isomorphism with matrix polynomials (univariate
polynomials with matrices as coefficients) which we will sometimes use implicitly, such
as when considering the evaluation M («) € F™*™ of M at a point « € F.

One general approach for computing with polynomial matrices is based on evalua-
tion and interpolation. The basic idea is to first evaluate the polynomial matrix, say
M e F[z]™™ at a set of points oy, as,... € F in the ground field, then to separately
perform the desired computation on each M («;) over F**", and finally reconstruct the
entries of the result using fast polynomial interpolation. This kind of approach works
well for operations such as matrix multiplication (Bostan and Schost, 2005, Section
5.4) or determinant computation. These computations essentially concern the vector
space in the sense that M may as well be seen as a matrix over the fractions F(z)
without impact on the results of the computations.

Other computational problems with polynomial matrices intrinsically concern F|[z]-
modules and thus cannot merely rely on evaluation and interpolation. Classic and
important such examples are that of computing normal forms such as the Popov form
and the Hermite form (Popov, 1972; Villard, 1996; Neiger et al., 2018) and that of
computing modules of relations such as approximant bases (Beckermann and Labahn,
1994; Giorgi et al., 2003; Neiger and Vu, 2017). The algorithms in this case must
preserve the module structure attached to the matrix and thus deal with the actual
polynomials in some way; in particular, an algorithm which works only with evalua-
tions of the matrix at points « € F is oblivious to this module structure.

A summary of our contributions is given in table 3.1, based on the following nota-
tions: the input matrix has rank r and size n x n if it is square or m x n if it can be
rectangular; if there are several input matrices, then r stands for the maximum of their

74 Chapter 3: Verification protocols for polynomial matrix operations

ranks, m for the maximum of their row dimensions, and n for the maximum of their
column dimensions. Where appropriate, r is the maximum of the actual ranks of the
matrices and the claimed rank by the Prover. We write d for the maximum degree of
any input matrix or vector.

The Prover and Verifier costs are in arithmetic operations over the base field F. We
use O(-) for asymptotic cost bounds with hidden logarithmic factors, and w < 3 is the
exponent of matrix multiplication, so that the multiplication of two n x n matrices over
F uses O(n“) operations in F; see Section 3.1 for more details and references.

The last column indicates the smallest size of the ground field F needed to ensure
both perfect completeness of the protocol and soundness with probability at least 1.
If this lower bound is not met, an extension field may be agreed on in advance by
the Prover and Verifier, for a (logarithmic) increase in arithmetic and communication
costs. For all protocols, an arbitrary low probability p of failure can be achieved by
simply iterating the protocol at most [log,(1/p)| times.

Preliminaries

Asymptotic complexity bounds We complete the notations and notions given in Chap-
ter 1, with specific details for polynomial matrices. Cantor and Kaltofen (1991) have
shown that multiplying two univariate polynomials of degree < d over any algebra
uses 5(d) additions, multiplications, and divisions in that algebra. In particular, mul-
tiplying two matrices in F[z]"*"™ of degree at most d uses 6(nwd) operations in F.

Rational fractions For a rational fraction f € F(z), define its denominator denom(f)
to be the unique monic polynomial g € F[z] of minimal degree such that ¢f € F[z].
Correspondingly, define its numerator numer(f) = f-denom(f). Note that denom(a) =
1 if and only if a € F[z]. More generally, for a matrix of rational fractions A € F(z)™*",
define denom(A) to be the unique monic polynomial g € F[x] of minimal degree such
that gA € F[z]™*", and again write this polynomial matrix g A as numer(A). Note that
we have the identity denom(A) = lem; j(denom(A,; ;)).

Row space, kernel, and row basis For a given matrix A € F[z]™*", two basic sets
associated to it are its row space

ROWSpF[I] (A) = {pAa pbe F[x]lxm}’

and its left kernel
{peF[z]"™ | pA = 0}.

Accordingly, a row basis of A is a matrix in F[z]"*" whose rows form a basis of the
former set, where r is the rank of A, while a left kernel basis of A is a matrix in
F[z]"~")*" whose rows form a basis of the latter set. We use similar notions and
notations for column spaces and column bases, and for right kernels and right kernel

1. Preliminaries 75

u:g: T_:‘_wwwww ~
= T I+ +++ 0+ +
=4 N N ngggggwﬁ‘gww
= I A S S S
g ﬁ++~a~c”3 +~@~3~3~3~3“@~3~@“6”®~3”3
= S S s e EE S S S 2 E g g & &
E N 2 & A A N HF <F © © o0 0 00 0 O 00 O 00 00 o0
=
I
|
- e) — SRR = R T N
& SIS s g g = g ST T E
€ g|TTIEETLEEEESSEEESEEEE
2 0TI T W QW
T e
: R e S S .
g S STIIII I ISR
E |EEEEEE EEEEEEE=SESSE
O QOO VOQ VO oo QWWQWQWWWWWQWWW
j§
|
3
~
IS
N N N +
<SR < ~ =
. g g 2 g =
S & & E g
Yoa e AT SIS
Lo e N N S N N R N
0 3 3 3 + Il 3 3 3 3 3 3 | 3|
L 855 % 3 TR N N s S W W L o3+
NEESE RS g g8 8 g% S % e
2| S EEEE=s<g S EEEEEREEEEE o
O[QWQ OO QO z ZzWQWQWQWQWQWIWQWQ W W W
—
218
8$$3ogo@<\ﬁigooooooo o o o
A A > 2222222 X222 2222224
2
a
]
> 2 (0]
T =
z 3 s =% . ~=~ B
Lbo-o'c o— UCD-H"" EQQ o
s&£s5s . € 22 93 SV Ao E
2wV 3 3 x g w £ 8 S L ‘® O
0 c 0 O = 9 ;w-gg. £ 2 8 g8 ® O
-Eommﬁm“"‘; 3 = o w s 9o O mMm T wn
w2 g o xOo= ¥ o o o o & c O 'x
S S355388FE2 52232323555k 88
OO_szOwEQ:mmmmEg;_;_,_ [0)
uuccuupp_gggqu_jjjigs
S P s 8 Y8 =3 3335 088c B KB KB SO
A AarXroeraapnlLExrrxxoe I nonmumonwmDYX

Table 3.1: Summary of the contributions. The first column states whether the Prover’s
algorithm is deterministic or not. The costs are given in number of arith-
metic operations over the base field and the communication is in number of
elements in the base field F. The last column reports the minimum size size
of F needed to ensure perfect completeness and soundness with probability
at least .

76 Chapter 3: Verification protocols for polynomial matrix operations

bases. We will also often consider the rational row space or F(z)-row space of A,
denoted by RowSpg(,)(A), which is an F(z)-vector space.

Matrices which preserve the row space under left-multiplication, thatis, U € F[z]™*™
such that the F[z]-row space of U A is the same as that of A, are said to be unimod-
ular. They are characterized by the fact that their determinant is a nonzero constant;
or equivalently that they have an inverse (with entries in F[z]).

Some probability bounds.

Many of our protocols rely on the fact that when picking an element uniformly at
random from a sufficiently large finite subset of the field, this element is unlikely
to be a root of some given polynomial. This was stated formally in (Schwartz, 1980;
Zippel, 1979; Demillo and Lipton, 1978) and is often referred to as the DeMillo-Lipton-
Schwartz-Zippel lemma.

Specifically, it states that for any nonzero k-variate polynomial f(xy, ..., z;) with co-
efficients in a field F, and any finite subset S < F, if an evaluation point (a,...,qx) €
F* has entries chosen at random uniformly and independently from S, then the prob-
ability that f(«q,...,ax) = 0 is at most d/#S, where d is the total degree of f.

The following consequence is a standard extension of the soundness proof of Freivalds’
algorithm (1979).

Lemma 3.1.1. Let A € F™*™ be a matrix with at least one nonzgero entry and let S < F
be a finite subset. For a vector of scalars w € S™' chosen uniformly at random, we have
Prl[Aw = 0] < 1/#S.

Proof. Consider each of the n entries of w as an indeterminate. Because A is not
zero, Aw has at least one nonzero entry, which is a nonzero polynomial in n variables
with total degree 1. Then a direct application of the DeMillo-Lipton-Schwartz-Zippel
lemma gives the stated result. O

The next lemma will also be frequently used when analyzing protocols: it bounds
the probability of picking a “bad” evaluation point.

Lemma 3.1.2. Let A € F[z]|™*™ with rank at least r. For any finite subset S < F and

for a point « € S chosen uniformly at random, the probability that rank(A(«)) < r is at
most r deg(A)/#S.

Proof. Any r x r minor of A has degree at most r deg(A), and at least one must be
nonzero since rank(A) > r. On the other hand, rank(A(«)) < r if and only if o is a
root of all such minors. N

Linear algebra operations

In this section, we give some verification protocols for the computation of classical
linear algebra properties on polynomial matrices: singularity, rank, and determinant
of a matrix, as well as system solving and matrix multiplication.

2. Linear algebra operations 77

The protocols we present here all rely on the same general idea, which consists in
picking a random point and evaluating the input polynomial matrix (or matrices) at
that point. This allows us to achieve sub-linear communication space. Note that this
technique has been used before by Kaltofen et al. (2011) to certify the same properties
for integer matrices: in that setup, computations were performed modulo some prime
number, while, in our context, this translates into evaluating polynomials at some
element of the base field.

In several of our protocols, the Prover has to solve a linear system over the base
field. For a linear system whose matrix is in F”*™ and has rank r, this can be done in
O(mnr“=?) operations in F (see Jeannerod et al., 2013, Algorithm 6).

Singularity and nonsingularity

We start by certifying the singularity of a matrix. Here, the Verifier picks a random
evaluation point and sends it to the Prover, who evaluates the input matrix at that
point and sends back a nontrivial kernel vector, which the Prover will always be able
to compute since a singular polynomial matrix is still singular when evaluated at any
point. Then, all the Verifier needs to do is to check that the vector received is indeed
a kernel vector. Note that the evaluation trick here is really what allows us to have
a sub-linear — with respect to the input size — communication cost, as the answer
the Prover provides to the challenge is a vector over the base field, and not over the
polynomials.

Protocol 3.1: Protocol Singularity

Public: A € F[z]™"
Certifies: A is singular

Prover Verifier

Find v € F1*™\{0}
s.t. vA(a) =0

?
v#0

In the next theorem, and for the remainder of the section, for convenience we write
d = max(1,deg(A)).

78 Chapter 3: Verification protocols for polynomial matrix operations

Theorem 3.2.1. Protocol 3.1 is a complete and probabilistically sound interactive proto-
col which requires O(n) communication and has Verifier cost O(n?d). The probability that
the Verifier incorrectly accepts is at most nd/#S. If A is singular, there is an algorithm
for the Prover with cost O(n?d + nr*=1).

Proof. If A issingular, A(«) must also be singular and there exists a nontrivial nullspace
vector that the Verifier will accept.

If A is nonsingular, then the Prover will be able to cheat if the Verifier picked an «
such that A(«) is singular, which happens only with probability nd/#S according to
lemma 3.1.2.

Now, for the complexities: the Prover will have to evaluate A at «, which costs
O(n?*d) and to find a nullspace vector over the base field, which costs O(nr“~'), hence
the Prover cost. The Verifier computes the evaluation and a vector-matrix product
over F, for a total cost of O(n?d) operations. Finally, a vector over F" and a scalar are
communicated, which yields a communication cost of O(n). O]

We now present a verification protocol for nonsingularity. This relies on the same
evaluation-based approach, with one variation: here, we let the Prover provide the
evaluation point. Indeed, if the Verifier picked a random point, they could choose an
“unlucky” point for which a nonsingular matrix evaluates to a singular one, and in
that case, the protocol would be incomplete as the Prover will not be able to convince
the Verifier of nonsingularity. Instead, we let the Prover pick a point as they have the
computational power to find a suitable point (Step 1 in Protocol NonSingularity). Once
this value is committed to the Verifier, in Steps 2 to 4 we use the protocol verifying
nonsingularity over a field due to Dumas and Kaltofen (2014, Theorem 3).

Theorem 3.2.2. Protocol 3.2 is a probabilistically sound interactive protocol and is com-
plete assuming that #S > nd + 1. It requires O(n) communication and has Verifier cost
O(n?d). The probability that the Verifier incorrectly accepts is at most 1/#S. There is an
algorithm for the Prover with cost O (n®d).

Proof. If A is nonsingular, then, as the field is large enough, there exists an « for
which the rank of A(«a) does not drop, and as Steps 2 to 4 form a complete verification
protocol, Protocol NonSingularity is complete.

If A is singular, it is not possible to find an « such that A(«) is nonsingular. This
means the Prover successfully cheats if they manage to convince the Verifier that A(«)
is nonsingular, which only happens with probability 1/#S (Dumas and Kaltofen, 2014,
Theorem 3), hence the soundness of Protocol NonSingularity.

Now, for the complexities: the Prover needs to find a suitable o. The Prover first
computes det(A) € F[z] using the deterministic algorithm of Labahn et al. (2017,
Theorem 1.1) in O(n“d) time. Then, using fast multipoint evaluation, the determinant
is evaluated at nd + 1 points from S in time O(nd) (von zur Gathen and Gerhard, 2013,
Corollary 10.8); since deg(det(A)) < nd, at least one evaluation will be nonzero.
Computing this determinant dominates the later cost for the Prover to evaluate A(«)
and solve a linear system over the base field, hence a total cost of O(n“d).

2. Linear algebra operations 79

Protocol 3.2: NonSingularity

Public: A € F[z]™""
Certifies: A is nonsingular

Prover Verifier

1. Find o € Fs.t.
det(A(a)) #0

2. b < 5t
. b
3. Find we F**! s.t.
A(a)w =>b
RSN
4. A(o)w Zb

The Verifier needs to evaluate A at « and to perform a matrix-vector multiplication
over the base field, hence a cost of O(n*d). Finally, total communications are two
vectors of size n over the base field and a scalar, hence the cost of O(n). O

Matrix Rank

From the protocol for nonsingularity, we immediately infer one for a lower bound p
on the rank: the Prover commits a set of row indices and a set of column indices
which locate a p x p submatrix which is nonsingular, and then the protocol verifying
nonsingularity is run on this submatrix.

Theorem 3.2.3. Let r be the actual rank of A. Protocol 3.3 is a probabilistically sound
interactive protocol and is complete assuming #S > pd + 1 in its subprotocol. It requires
O(p) communication and has Verifier cost O(p*d). If we indeed have r > p, then there is
a Las Vegas randomized algorithm for the Prover with expected cost O(mnr“~2 + mnd).
Otherwise, the probability that the Verifier incorrectly accepts is at most 1/#S.

Proof. If pis indeed a lower bound on the rank of A, there exist two sets I < {1,...,m}
and J < {1,...,n} of size p such that A; ; is nonsingular, and since Protocol NonSin-
gularity is complete, so is this protocol. Note that the completeness of the sub-protocol
is ensured only if #S > pd + 1.

If p is not a lower bound on the rank of A, meaning rank(A) < p, then the Prover
will not be able to find suitable / and J and hence the sets provided by a cheating
Prover yield a singular submatrix A; ;. Now, if the Prover provided sets which do not

80 Chapter 3: Verification protocols for polynomial matrix operations

Protocol 3.3: RankLowerBound

Public: A € F[z]™"™, pe N
Certifies: rank(A) > p

Prover Verifier

1. Find index sets I, J such

that #1 = p, #J = p,
and A; ; is nonsingular

1J

2 Ic {1,...,m}
Jc {1,...,n}

3 Use Protocol NonSingularity (A;)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

contain p elements or which contain elements outside the allowed dimension bounds,
this will always be detected by the Verifier. If the Prover provided sets with enough
elements, the Verifier incorrectly accepts with the same probability as in Protocol Non-
Singularity, which is 1/#S.

Regarding the complexities, the Prover has to find a p x p nonsingular submatrix of
an m x n degree d matrix. This can be achieved in a Las Vegas fashion, by evaluating
the matrix A at a random « in time O(mnd), and computing the rank profile matrix
(or a rank profile revealing PLUQ decomposition) of A(«), see for instance (Dumas
et al., 2015). The cost of this computation is O(mnr“~?), with r the actual rank of A.

As p < r, running Protocol 3.2 on a p x p matrix does not dominate the complexity,
hence the total Prover cost of O(mnr*~2 + mnd). From theorem 3.2.2, the Verifier
cost is O(p?d). Finally, here two sets of p integers are transmitted, which with the
communications in Protocol NonSingularity adds up to a communication cost of O(p).

0

Now, we give a protocol verifying an upper bound on the rank. Note that Steps 2
and 3 of Protocol 3.4 come from the protocol verifying an upper bound on the rank
for matrices over a field (see Dumas and Kaltofen, 2014, Theorem 4). In this protocol,
we use the notation | - |y to refer to the Hamming weight: |v|y < p means that the
vector -y as at most p nonzero entries.

Theorem 3.2.4. Let r be the actual rank of A. Then, Protocol 3.4 is a complete and
probabilistically sound interactive protocol which requires O(n) communication and has
Verifier cost O(mnd). If we indeed have r < p, then there is an algorithm for the Prover
with cost bound O(mnr“~%+mnd). Otherwise, the probability that the Verifier incorrectly
accepts is at most (rd + 1)/#5S.

2. Linear algebra operations 81

Protocol 3.4: RankUpperBound

Public: A € F[z]™*™, pe N
Certifies: rank(A) < p

Prover Verifier

$
a<—S

$
v < Snxl

2. Find v € F! such that
A(a)y = A(a)v and
Yl <p

?
3. |’Y‘H <P
A(a)y = A(a)v

Proof. If p is indeed an upper bound on the rank of A, then, whichever evaluation
point the Verifier picked, p will be an upper bound on the rank of A(a) and, as the
protocol from (Dumas and Kaltofen, 2014, Theorem 4) is complete, this protocol is
complete.

If p is not an upper bound on the rank of A, there are two possibilities of failure.
Either the Verifier picked an evaluation point for which the rank of A drops, which
happens with probability at most rd/#S by Lemma 3.1.2; or the Prover managed to
cheat during the execution of Steps 2 and 3 which happens with probability at most
1/#S (Dumas and Kaltofen, 2014, Theorem 4). Then, the union bound gives a total
probability of (rd + 1)/#S for the Verifier to accept a wrong answer.

The Prover has to evaluate the matrix at « for a cost of O(mnd). Then to find the
vector «, the Prover can for instance first compute a PLUQ decomposition A(«) =

P {21] [Ui U,] Q for a cost of O(mnr“~2). Then, the Prover computes the vector
2

—1
[wl} = Quv, where w; has size r, and computes v = QT wi + Uy Uyws . This

w9 0
vector has Hamming weight at most r (recall that @ is a permutation matrix) and
satisfies A(a)y = P [21] [U1w1 + Ugwg] = A(a)v. The Verifier has to evaluate the
2

matrix at o and to perform two matrix-vector products over the base field, which
yields a cost of O(mnd). The communication cost is the one of sending a scalar and
two vectors of size n over the base field, that is, O(n). O

From these protocols verifying upper bounds and lower bounds on the rank, we

82 Chapter 3: Verification protocols for polynomial matrix operations

directly obtain one for the rank (Protocol 3.5).

Protocol 3.5: Rank

Public: A € F[z]™*™, pe N
Certifies: rank(A) = p

Prover Verifier

Corollary 3.2.5. Let r be the actual rank of A. Protocol 3.5 is a probabilistically sound
interactive protocol and is complete assuming #S > rd + 1 in its subprotocols. It requires
O(n) communication and has Verifier cost O(mnd). If we indeed have p = r, then there is
a Las Vegas randomized algorithm for the Prover with expected cost O(mnr*—2 + mnd).
Otherwise, the probability that the Verifier incorrectly accepts is at most (rd + 1)/#S.

Determinant

We follow on with a protocol verifying the determinant of a polynomial matrix, using
a similar evaluation-based approach: after the Verifier has checked that the degree
of the provided determinant is suitable, a random evaluation point is sampled and
the actual verification occurs on the evaluated input. The check on the degree of
the provided determinant is to allow that the DeMillo-Lipton-Schwartz-Zippel Lemma
applies and produces the claimed probability of the success. There are two choices
available for the protocol to use over the base field: either the one from (Dumas et al.,
2016, Section 2), which runs in a constant number of rounds but requires a minimum
field size of n?, or the one from (Dumas et al., 2017b, Section 4.1) which runs in n
rounds but has no requirement on the field size. Whichever protocol is chosen here,
this has no impact on the asymptotic complexities which are the same for both, or on
the completeness as both are perfectly complete.

Theorem 3.2.6. Protocol 3.6 is a complete and probabilistically sound interactive pro-
tocol which requires O(n) communication and has Verifier cost O(n?d). If § is indeed
the determinant of A, there is an algorithm for the Prover which costs O(n%*d + n®).
Otherwise, the probability that the Verifier incorrectly accepts is at most (nd + 1)/#S.

Proof. Let g = det(A) € F[x] be the actual determinant of A.
If 6 = g, then it must be the case that deg(d) < nd. Then, as FieldDeterminant is
complete, the final check will be positive.

2. Linear algebra operations 83

Protocol 3.6: Determinant

Public: A € F[z]"*"™, 0 € F[x]
Certifies: det(A) =6

Prover Verifier

deg(0) ; nd

L. als
B« d(a)
a
2. ' Use FieldDeterminant(A(a), 3)

If § # g, there are two possibilities of failure. If the Verifier has picked an o which is
aroot of § — g, then 6(a) = g(«) and the checks from FieldDeterminant will always pass;
by the DeMillo-Lipton-Schwartz-Zippel lemma, this happens with probability at most
nd/#S. Otherwise, the Verifier has picked an « such that d(a) # g(a) which means
they will accept ¢ as the determinant with the probability of failure of FieldDeterminant,
that is, 1/#S. Overall, by the union bound, the probability that the Verifier accepts a
wrong statement is at most (nd + 1)/#S.

The Prover has to evaluate the matrix at o and to compute a determinant over the
base field, which yields the cost of O(n?d + n“); the Verifier has to evaluate A at a,
hence a cost of O(n?d); and the communication cost is the one of FieldDeterminant,
that is, O(n). O

Protocols based on matrix multiplication

Finally, we propose verification protocols related to matrix multiplication. While they
are once again based on evaluation techniques, unlike the above protocols the ones
given in this section are non-interactive and thus have no Prover or communication
cost. We first consider linear system solving; recall that when working over F|[z], given
a nonsingular matrix A and a vector b, this problem consists in finding a solution
vector v over F[x] together with a nonzero polynomial ¢ € F[x] such that 6 'v = A™'b
(see for example Gupta et al., 2012).

Theorem 3.2.7. Let d be an upper bound on the degree of A, v, b, and . Then, Proto-
col 3.7 is a complete and probabilistically sound non-interactive protocol which has Veri-
fier cost O(mnd). The probability that the Verifier incorrectly accepts is at most 2d/#S.

Proof. If Av = ¢b, then the same holds when evaluating at «, hence the completeness
of this protocol.

84 Chapter 3: Verification protocols for polynomial matrix operations

Protocol 3.7: SystemSolve

Public: A € F[z]™*", b e Flz]™*!, v € F[z]|"*',§ € F[x]
Certifies: deg(d) < min(m,n)deg(A) and Av = 6b

Prover Verifier

Otherwise, we have Av — b = A for some nonzero vector A € F[z]™*!, and the
Verifier incorrectly accepts if and only if the Verifier picked an « such that A(«) = 0.
Using lemma 3.1.2 with the vector A of rank 1 and degree at most 2d, it follows that
the Verifier picked such an a with probability at most 2d/#-S.

The dominating step in the Verifier’s work is evaluating A at «, which costs O(mnd)
operations in F. O

Remark that when solving linear systems over F[z] one is often interested in the
case of a nonsingular matrix A with m = n. In this context, one usually seeks a
solution (v,) with ¢ of minimal degree (see (Storjohann, 2003, Section 9) and (Gupta
et al., 2012, Section 7)); this implies deg(d) < deg(det(A)) < ndeg(A) and deg(v) =
deg(0A™!b) < (n — 1) deg(A) + deg(b). In this particular case, these bounds could be
checked by the Verifier at the beginning of the protocol; the probability that the Verifier
incorrectly accepts becomes (nd4 +dp)/#S; and the Verifier's work costs O(n?d s +ndp)
operations.

Similarly, we propose a protocol verifying matrix multiplication following an ap-
proach attributed to Freivalds (1979).

Protocol 3.8: MatMul

Public: A e F[z]™", B € F[z]"*¢, C € F[z]™**
Certifies: C = AB
Prover Verifier

deg(C) ; deg(A) + deg(B)
1 ads
’ v ﬁ SZ><1

C(a)v = A(a)(B(a)v)

3. Row space membership 85

Theorem 3.2.8. Let dy = max(1,deg(A)) and similarly for dg,dc. Protocol 3.8 is
a complete and probabilistically sound non-interactive protocol which has Verifier cost
O(mnda + nldg + mldc). The probability that the Verifier incorrectly accepts is at most
(dA +dp + 1)/#5

Proof. Let D be the actual product D = AB, and let A = D — C. Note that the final

check of the Verifier is equivalent to A(a)v Zo0.

If C = D, then A = 0 and whichever evaluation point « the Verifier picked, we have
A(a) = 0. The degree bound checked initially by the Verifier is also valid whenever
AB = C, hence this protocol is complete.

Otherwise, A is a nonzero matrix with degree at most d4 + dg. There are two
events that would lead to the Verifier accepting incorrectly. First, if the Verifier picked
an evaluation point such that A(«a) = 0, which happens with probability at most
(da + dp)/#S by lemma 3.1.2 (with rank lower bound 1), then whichever verification
vector v is picked afterwards, the Verifier will always accept. Otherwise, the Verifier
picked an evaluation point for which A(«) # 0 but they picked a unlucky verification
vector v, that is, v is in the right kernel of A(«), which happens with probability at
most 1/#S according to lemma 3.1.1. The union bound gives the stated bound for the
probability that the Verifier incorrectly accepts.

The cost for the Verifier comes from evaluating all three matrices at « and then
performing three matrix-vector products over F. O

Verifying a matrix inverse is a straightforward application of the previous protocol.

Corollary 3.2.9. For A € F[z]"*" and B € F[x]|"*", there exists a non-interactive
protocol which certifies that B is the inverse of A in Verifier cost O(n*d), where d =
max(1,deg(A),deg(B)). If B # A~!, the probability that the Verifier incorrectly accepts
is at most (2d + 1)/#S.

Row space membership

In this section we present the main tool for verification problems that are essentially
about F[z]-modules, which is to determine whether a given row vector v € F[z|'*" is
in the F[z]-row space of a given matrix A € F[z]™*".

The approach has two steps. First, FullRankRowSpaceMembership shows how to solve
the problem in case A has full row rank. Then, in RowSpaceMembership, we extend
this to the general setting by designing a reduction to several calls to the full row rank
case.

Full row rank case

For this case, we propose Protocol 3.9. Before studying its properties, we emphasize
that its soundness crucially depends on the fact that A has full row rank. To see why,
let A =[x —z|"and v = [1], and write ¢ = [¢; ¢;]T for the random vector chosen

86

Chapter 3: Verification protocols for polynomial matrix operations

Protocol 3.9: FullRankRowSpaceMembership

Public: A € F[z|™*", v € F[z]'*"
Certifies: v e RowSpF[x](A) and rank(A) =m

Prover Verifier
1 'RankLowerBound(A, m)
2 . TTTTTTTTTTTTTTTTTTTT Is cor;)vinced that
rank(A) = m
3. ¢ < s
PR

u € Flz]™>™ s.t. uA = v

4.
g < uc
9
?
deg(g) <
5. mdeg(A) + deg(v)
$
a<S
- *
6. w <« u(a)eF*m
v
v wA(a) = v(a)
' ?

3. Row space membership 87

by the Verifier. Here, A does not have full row rank and v is not in the row space
of A; it is however in the rational row space of A. This allows a dishonest Prover to
make the Verifier accept by means of forging a rational vector u such that uA = v and
uc € F[x]: the Verifier cannot detect that u was not over F[z], since they only receive
uc and an evaluation of u. Indeed, any vector of the form u = [z~! + f(z) f(z)] for
some f € F(x) is such that uA = v. In the likely event that ¢; + ¢, # 0, the Prover can
choose any polynomial g € F[z] and define f = (¢; +) ' (g — c;z™!); then uc = g is
a polynomial.

Remark that if A has full row rank and v belongs to the rational row space of A,
then we have uniqueness of the (rational) vector u such that uA = v and thus there is
no flexibility for the Prover on the choice of w. In this case, the following lemma plays
a key role in the soundness of Protocol 3.9.

Lemma 3.3.1. Let u € F(x)'*" be a rational fraction vector with denom(u) # 1 and let
S < F be a finite subset. For a vector of scalars ¢ € S™*! chosen uniformly at random,
the probability that the inner product uc is a polynomial, i.e., that denom(uc) = 1, is at
most 1/#S.

Proof. Write f = denom(w) and @ = numer(u). By the condition of the lemma we
know that deg(f) = 1. We see that the inner product of u and ¢ is a polynomial if and
only if the inner product of & and ¢ is divisible by f.

Now let h be any irreducible factor of f, and consider the inner product wc with
seen as a vector over the extension field F[x]/(h). Because h | denom(u), we know
that & mod h is not zero; otherwise the degree of the denominator f is not minimal.
Then, since S < F < F[x]/{h), the stated bound follows from lemma 3.1.1. O

Another ingredient for our full row rank space membership protocol is a subroutine
the Prover may use to actually compute the solution w to the linear system, shown
in algorithm 1. More precisely, this algorithm computes the numerator w and the
corresponding minimal denominator f. This algorithm will also be used in the protocol
for arbitrary-rank matrices presented in the next section.

As above, to simplify the cost bounds we write d4 = max(1,deg(A)) and d, =
max(1,deg(v)).

Lemma 3.3.2. Algorithm 1 uses O(m“~'nda + m*“~'d,) operations in F. If A has rank
less than m, then LOW_RANK is returned. If A has rank m and v ¢ RowSpg(,)(A), then
NO_SOLUTION is returned. Otherwise, the algorithm returns (u, f) such that A = fv
and f has minimal degree; in particular, deg(f) < mdeg(A) and deg(u) < (m —
1)deg(A) + deg(v).

Proof. (Zhou, 2012, Chapter 11) presents a deterministic algorithm to compute the
column rank profile on line 1 using 6(m‘”*1nd a) field operations. This guarantees
that LOW_RANK is returned whenever A does not have full row rank.

Now assume that rank(A) = m. Then B is nonsingular, and Gupta et al. (2012)
showed how to solve the linear system on line 5 deterministically using 5(m“d A+

88 Chapter 3: Verification protocols for polynomial matrix operations

Algorithm 1: Linear system solving with full row rank
Input: A € F[z]™*" v € F[z]"*"
Output: Either LOW_RANK, or NO_SOLUTION, or (u, f) € (F[z]'*™ x F[z]) such
that A = fv and f has minimal degree

17,11,...,I, < column rank profile of A

2 if r < m then return LOW_RANK // below, r=m
3 B e F[z]"”*" « columns i, ..., i, from A

4 y € F[z]"™" « columns iy, ..., from v

5 Compute (4, f) € (F[x]'*™ x F[z]) such that f~'u = yB~! and f has minimal

degree, using (Gupta et al., 2012, Algorithm RationalSystemSolve)
if uA # fv then return NO_SOLUTION
7 return u

o)}

m®~1d,) operations; precisely, this cost bound is obtained from the results in (Gupta
et al., 2012, Section 7) applied with d = max(da, md,). The degree bounds on u and
f follow from Cramer’s rule.

Let (1, f) be the system solution computed on line 5. If v ¢ RowSpg(,(A), then
we must have ©A # fv and thus NO_SOLUTION is returned. Now assume that v €
RowSpg) (A), that is, there exists w € F(z)"* such that wA = v. Then we have in
particular wB = y. But because B is nonsingular, we have w = yB~! = f~!a; hence
uA = fu. O

Finally, we present the main result of this subsection.

Theorem 3.3.3. Protocol 3.9 is a complete and probabilistically sound interactive pro-
tocol which requires O(md s + d,,) communication and has Verifier cost O(mnda + nd,).
If rank(A) = m and v € RowSpg, (A), there is an algorithm for the Prover with cost

~

O(nm“~tds + m“~1d,). Otherwise, the probability that the Verifier incorrectly accepts is
at most (3mda + d, + 1)/#S.

Proof. 1f rank(A) < m, then from theorem 3.2.3, the probability that the Verifier in-
correctly accepts is at most 1/#S, less than the stated bound in the theorem. And if
v is the zero vector, then the protocol easily succeeds when the Prover sends all zeros
for g and w; remark that w = 0 is the only solution to uA = v when A has full row
rank. So for the remainder of the proof, assume that v is nonzero and A has full row
rank m.

The rank check entails 2m + 1 field elements of communication, and the degree
check by the Verifier assures that g contains at most mds + d, + 1 field elements,
bringing the total communication in the protocol to at most m(da + 4) + d,, + 3 field
elements.

The work of the Verifier is dominated by computing the evaluations A(«) and v(«)
on the last step. Using Horner’s method the total cost for these is O(mnda + nd,), as
claimed.

3. Row space membership 89

We now divide the proof into three cases, depending on whether v is in the poly-
nomial row space of A (as checked by the protocol), the rational row space of A, or
neither.

Case 1: v € RowSpg(,|(A) Here we want to prove that an honest Prover and Verifier
succeed with costs as stated in the theorem.

The vector u as defined in Step 4 must exist by the definition of RowSp,;, and
computing w can be completed by the Verifier according to lemma 3.3.2 in the stated
cost bound.

If the computations of w and ¢ at Step 4 and of w at Step 6 are performed correctly
by the Prover, then the Verifier’s checks on Step 7 will succeed for any choice of .. Note
also that in this case, deg(g) = deg(uc) < deg(u), and deg(u) < mdeg(A) + deg(v)
holds (see lemma 3.3.2), hence the degree check at Step 5.

This proves the completeness of the protocol.

Case 2: v € RowSpg(,)(A)\ RowSpg(,|(A) In this case, the assertion being verified is
false, and we want to show probabilistic soundness.

Let ¢ € F™*! be the random vector chosen by the Verifier on Step 3. Since A has
full row rank, there is a unique rational solution u € F(z)**™ such that uA = v, and
by the assumption of this case we have denom(u) # 1; besides, lemma 3.3.2 ensures
deg(denom(u)) < mds and deg(numer(u)) < (m — 1)da + d,. Then, lemma 3.3.1 tells
us that the probability that uc is a polynomial is at most 1/#S. Let g be the polynomial
sent by the Prover at Step 4. If uc is not a polynomial, then uc— g is a nonzero rational
fraction with numerator degree at most

max(deg(numer(u)), deg(g) + deg(denom(u))) < 2mda + dy. (3.3.1)

From lemma 3.1.2, the probability that A(a) does not have full row rank is at most
mda/#S. Otherwise, the vector w = wu(«) is the unique solution to wA(«) = v(«), so
the Prover is obliged to send this w on Step 6.

Then, if the Verifier incorrectly accepts, we must have we = g(a), which means
u(a)e = g(«), or in other words, « is a root of uc — g. The degree bound in eq. (3.3.1)
gives an upper bound on the number of such roots « € F.

Therefore the Verifier accepts only when either uc € F[z], or A(«) is singular, or « is
a root of uc— g, which by the union bound has probability at most (3mda +d,, +1)/#S,
as stated.

Case 3: v ¢ RowSpg(,(A) Again, the assertion being verified is false, and our goal is
to prove probabilistic soundness. As with the last case, assume by way of contradiction
that the Verifier accepts.

Consider the augmented matrix

A- lA] & Flz] 0,
v

90 Chapter 3: Verification protocols for polynomial matrix operations

By the assumption of this case, rank(A) = rank(A) + 1 = m + 1. But the vector w
provided at Step 7 is such that wA(a) = v(«a): it corresponds to a nonzero vector
[~w 1] in the left kernel of A(a), which therefore has rank at most 1.

Since all (m + 1) x (m + 1) minors of A have degree at most md4 + d.,, the proof

of lemma 3.1.2 shows that the probability that rank(A(«)) < m is at most (mda +
dy)/#S. [

Arbitrary rank case

Now we move to the general case of a matrix A with arbitrary rank r.

The idea behind our protocol is inspired by Mulders and Storjohann (2004). We
make use of the full row rank case by considering a matrix C' € F[x]"*™ such that
C A has full row rank. Thus C' A has the same rational row space as A, and if v €
RowSpg,(A), then there is a unique rational vector w e F(x)"" such that wC A = v.
In particular, for f = denom(w) we have fv € RowSpg, (A), and therefore if f = 1
the verification is already complete.

Although it might be that w has a nontrivial denominator f, this approach can still

be used for verification by considering several such matrices C, ..., C; and rational
vectors wy, . . ., w; with denominators fi, ..., f;. Indeed, we will see that these matri-
ces can be chosen such that the greatest common divisor of fi,..., f; is 1; as we show

in the next lemma, this implies v € RowSpg(,(A).

Lemma 3.3.4. Let A € F[x|™*" and v € F[z]'*". Let fi,...,f; € F[x] be such that
fiv € RowSpg,(A) for 1 < i <t Ifged(fy,.. ., fi) = 1, then v € RowSpg,(A).

Proof. The ged assumption implies that there exist uy,...,u; € F[z] such that u; f; +
-+ fy = 1. Itdirectly follows that v = u; (f1v)+- - -+u,(fiv) belongs to RowSpeg, (A).
[

Before giving the full protocol for row membership, we first present a subprotocol
CoPrime to confirm that the greatest common divisor of a set of polynomials is 1.

Lemma 3.3.5. Let d = max; deg(f;), and suppose #S > 2d. Then Protocol 3.10 is a
complete and probabilistically sound interactive protocol which requires O(d + t) com-
munication and has Verifier cost O(dt). If ged(fi,..., f:) = 1, then there is a Las Vegas
randomized algorithm for the Prover with expected cost bound O(dt). Otherwise, the
probability that the Verifier incorrectly accepts is at most (2d — 1)/#S.

Proof. The communication and Verifier costs are clear.

Write ¢ = ged(f1, ..., fi), and suppose first that ¢ # 1. Since g divides fis; +
hss, the polynomial f1s; + hs, — 1 is nonzero and has degree at most 2d — 1. If the
Verifier incorrectly accepts, then o must be a root of this polynomial, which justifies
the probability claim.

If g = 1, then a well-known argument (von zur Gathen and Gerhard, 2013, Theorem
6.46) says that, for 33, . .., 3; chosen randomly from a subset S < F, the probability that

3. Row space membership 91

Protocol 3.10: CoPrime

Public: ¢ > 2 polynomials f,. .., f; € F[z]
Certifies: ged(fy,..., fi) =1

Prover Verifier

Compute polynomials s, so € F[z]
and scalars f3s,...,0; € F
S.t. f181 + hSQ = 1,

1. deg(s1) < deg(h),
and deg(sy) < deg(f1),
where h = fo + Y _, Bif;
51,52, 33, -, B
deg(s) < max;o deg(f;)
deg(ss) < deg(f1)
2. als

ha < fa(e) + Xi_s Bifi(e)
fi(a)si(a) + hasa(a) = 1

ged(f1, h) # ged(f1, ..., fir) is at most d/#S. Based on the assumption that #S > 2d, the

Prover can find such a tuple fs, ..., 5; after expected O(1) iterations. Then computing
the Bézout coefﬁciegts s1, So is done via the fast extended Euclidean algorithm on f;
and h, which costs O(dt). O

Protocol 3.11 shows an interactive protocol verifying row space membership. For
free (and as a necessary aspect of the protocol), the rank p is also verified.

The Prover first selects ¢ matrices C; € F"*™ such that C; A has full row rank r» =
rank(A) and the corresponding denominators f; of the rational solutions to wC; A = v
have no common factor.

The Verifier then confirms that the ged of all denominators is 1 using CoPrime. Using
FullRankRowSpaceMembership, the Verifier also confirms that each C;A has full rank
and each f;v is in the row space of C; A and therefore in the row space of A as well;
by lemma 3.3.4 this ensures that v is itself in the row space of A.

To save communication costs, the matrices C; have a certain structure:

Definition 3.3.6. A matrix C € F™*"™ is a sub-Toeplitz matrix if m < n and C consists
of m rows selected out of a full n x n Toeplitz matrix.

Note that we can always write such a matrix C as a sub-permutation matrix S €

92 Chapter 3: Verification protocols for polynomial matrix operations

{0, 1} times the full Toeplitz matrix T € F**", i.e., C = ST'. The benefit for us is
in the communication savings:

Lemma 3.3.7. An m x n sub-Toeplitz matrix C can be sent with O(n) communication.

Proof. Writing C' = ST as above, simply send the 2n — 1 entries of the full Toeplitz
matrix T and the m row indices selected by S. O

The number ¢ of sub-Toeplitz matrices sent must be large enough, according to the
field size, so that the Prover can actually find them with the required properties (see
algorithm 2 below). This value ¢ is computed by the Verifier and Prover independently
as shown in Step 3, where we use the slight abuse of notation that, when F is infinite,
logyr a = 0 for any positive finite value a.

We now proceed to show how the Prover can actually find the values required on
Step 4. We write r = rank(A); if the Prover is honest, then in fact r = p. The next
lemma is inspired from (Mulders and Storjohann, 2004).

Lemma 3.3.8. Let A € F[z]™*" with rank r; v € RowSpg(,;(A); S € {0,1}"*™ be a
selection of r out of m rows; p € F|z] be an irreducible polynomial; and T' € F™*™ be a
Toeplitz matrix with entries chosen independently and uniformly at random from a finite
subset S of F. Then either ST A always has rank strictly below r, or for any rational
solution w € F(z)'*" to wSTA = v, the probability that rank(ST A) < r or that p
divides denom(w) is at most r /#S.

Proof. Let T be a generic m x m Toeplitz matrix, defined by 2m — 1 indeterminates
21, ..., Zom_1. Because I, is an evaluation of 7", then clearly rank(TA) =rank(A) =r,
and furthermore rank(S7T'A) = r if and only if S selects r linearly independent rows
from T A.

So for the remainder assume that rank(S7'A) is nonsingular over (F[z])[z1, . . ., Zom—1];
otherwise rank(ST A) < r for any choice of T', and we are done.

The structure of the proof is as follows. We first show the existence of a unimodular-
completable matrix U € F[z]"*" such that ST A and STU are closely related: in
particular, they both have full rank r if and only if the latter has non-zero determinant,
and p divides w only when this determinant is divisible by p. The proof proceeds to
demonstrate these properties, as well as the fact that STU has nonzero determinant
generically, and therefore with high probability for a random choice of T

Let P € {0,1}"*" be a sub-permutation matrix which selects r linearly independent
columns from ST A. Then rank(AP) = r and we consider a factorization AP = UB,
where

e B e F[x]"™*" is a row basis of AP (and therefore B is nonsingular); and

e U € F[z]™*" can be completed to a square unimodular matrix, meaning there
exists some matrix V e F[z]™*(™~") such that det([U | V]) € F\{0}.

We hope that the reader will forgive us for overloading the capital letter S: a bold S always refers
to this sub-permutation matrix, while a sans-serif S refers to a subset of the field F used to select
random elements.

3. Row space membership 93

Protocol 3.11: RowSpaceMembership

Public: A € F[z]™*", v € F[z]"*", pe N
Certifies: v € RowSpg[,(A) and rank(A) = p

Prover Verifier

——————————————————————

,,,,,,,,,,,,,,,,,,,,,

2. Is cogvinced that
rank(A) < p

p < min(m,n)
3. t— 1+
max (1, [logye,,(2p deg(A))])

Compute sub-Toeplitz C1, . .., C; € FP*™

and polynomials fi, ..., f; € F[z]
4. s.t. Vi,rank(C;A) = p,

and Vi, fiv € RowSpg,(C;A),

and ged(fi,...,fi) =1

C....Co. fi,....

?
5. Vi, deg(fi) < pdeg(A)

fori=1,...,tdo i

94 Chapter 3: Verification protocols for polynomial matrix operations

Such a factorization always exists: if B € F[z]"*" is any row basis of A, then there is
a unimodular matrix [U | V] € F[z]™*™ such that [U | V|[BT | 0] = UB = A; and
then we have UB = AP where B = BP. It is easily verified that B has full row rank
and the same F[x]|-row space as AP; that is, B is a row basis of AP.

From this factorization and the fact that B is nonsingular, we know that

rank(AP) = rank(STAP) = rank(STUB) = rank(STU) = r

over the ring (F[z])[z1, ..., 22m—1]-

Now because [U | V] is unimodular, it is always nonsingular over the extension
field F[z]/(p), and therefore rank(U) = r over F[z]/(p). Since the entries of ST' do
not contain z and from the rank condition above, this means that ST'U is nonsingular
over (F[z]/{p))[#1, ..., 22m—1] for any choice of the polynomial p.

The determinant det(STU) is therefore a nonzero polynomial in z1, ..., 29,,_1 Over
F[z]/{p) with total degree at most r. Then, by the DeMillo-Lipton-Schwartz-Zippel
lemma, the probability that det(STU) mod p = 0 is at most r/#S.

Connecting this back to A, if p t det(STU), then we have

r = rank(STU) = rank(STUB) = rank(ST AP) < rank(STA) <,

and hence ST A has full row rank r.

Finally, we show that denom(w) divides det(STU); this implies p 1 denom(w).
Recall that B is nonsingular with the same F[z|-row space as AP; then, because
v € RowSpg(,(A), we have vP € RowSpg,;(B), so there exists y € F[z]"*" such that
yB = vP. In addition, since STU is nonsingular, there exists an adjugate matrix
D € F[z]"*" such that det(STU)(STU)~! = D. Putting these facts together, we have

wSTA =v
wSTAP = vP
wSTUB = yB

wSTU =y

wdet(STU) = yD.

Because the right-hand side of the last equation has entries in F[z], then so does
the left-land side, which means that det(STU) is a multiple of denom(w). Hence
denom(w) is divisible by p only if det(ST'U) is divisible by p, which we already estab-
lished occurs with probability at most r/#S. O

Repeatedly applying the previous lemma, involving calls to the rational linear solver
of algorithm 1, leads to a Las Vegas randomized algorithm for an honest Prover.

Here we require the Prover to know a finite subset S € F. Because this set is never
communicated nor part of the public information, it is not necessarily the same as any
subset S used by the Verifier in other protocols. In order to match with Protocol 3.11,
the Prover should choose S = F if F is finite, and otherwise #S > 2r? deg(A).

3. Row space membership 95

Algorithm 2: Honest Prover for RowSpaceMembership
Input: A € F[x]™*" with rank r, v € RowSpg(,(A), finite S = F
Output: C,,...,C,, fi,..., [; satisfying the conditions of Step 4 from
Protocol 3.11
t 1+ [logys)(2r deg(A))]
repeat
T, < random m x m Toeplitz matrix with entries from S
until rank(T1A) = r
S €{0,1}"*™ « selection of r linearly independent rows from 7 A
wy < solution to w; ST A = v, using algorithm 1
repeat
71— 2
while i < ¢t do
10 T, — random m x m Toeplitz matrix with entries from S
11 w; < solution to w;ST; A = v, using algorithm 1
12 if w; is not LOW_RANK then 7 «— ¢ + 1
13 until ged(denom(wy), . .., denom(w,)) = 1
14 return ST, ..., ST, and denom(w,),. .., denom (w;)

O 0 N O U1 DA W N e

Lemma 3.3.9. If v € RowSpg(,;(A) and #S > 2r where r = rank(A), then algorithm 2

is a correct Las Vegas randomized algorithm with expected cost bound é(mm’“”d A+
rd,).

Proof. Computing the rank and the row rank profile (giving r independent rows) on
lines 4 and 5 can be done deterministically in the stated cost bound via the column
rank profile algorithm from (Zhou, 2012, Section 11), just as was used in algorithm 1.

Each matrix product T; A can be explicitly computed in 5(mnd A) operations using
O(nd) Toeplitz-vector products, each done in 5(m) operations by relying on fast
polynomial multiplication (Bini and Pan, 1994, Problem 5.1).

If the algorithm returns, correctness is clear from the correctness of algorithm 1.

What remains is to prove the expected number of iterations of each nested loop.

From lemma 3.3.8, for each random Toeplitz matrix T}, the probability that ST; A is
nonsingular is at least 1 — r/#S > 1/2. Therefore the expected number of iterations of
the first loop is at most 2, and the expected number of iterations of the nested while
loop until i reaches ¢ is at most 2t.

Write f; = denom(w;). To find the expected number of iterations of the outer loop
on lines 7 to 13, we need the probability that ged(f1,. .., f;) = 1 given that each ST; A
has full row rank r.

If ged(fi,..., f:) # 1, then there is some irreducible polynomial p which divides
every denominator fi,..., f;. Because the T}’s are chosen independently of each other,
the events “p divides f;” are pairwise independent; thus, according to lemma 3.3.8,
the probability that any given irreducible polynomial p is such a common factor is at
most (r/#S)1.

96 Chapter 3: Verification protocols for polynomial matrix operations

The degree of f; is at most rd4 since ST; A is r x n with degree d 4; this also gives
an upper bound on the number of distinct irreducible factors p of f;. Taking the union
bound we see that the probability of any factor being shared by all denominators is at
most

Ttd A

(#S)
which is at most 3 from the definition of ¢. Therefore the expected number of iterations
of the outer loop is O(1).
The stated cost bound follows from lemma 3.3.2. It does not involve ¢ because we
can see that t € O(log(rd a)), which is subsumed by the soft-oh notation. O

For the sake of simplicity in presentation, and because they do not affect the asymp-
totic cost bound, we have omitted a few optimizations to the Prover’s algorithm that
would be useful in practice, namely:

e The Prover can reduce to the full column rank case by computing a column rank
profile of A once at the beginning (using Zhou (2012, Chapter 11)), and then
removing corresponding non-pivot columns from A and v. This does not change
the correctness, but means that each matrix ST} A is square.

e When each ST; A is square, computing w; can be done in a simpler way than by
calling algorithm 1, as follows: check that ST;A is nonsingular to confirm the
rank, and then use a fast linear system solver to obtain w;.

e The solution vectors w; may be re-used in the subprotocols FullRankRowSpace-
Membership confirming that each f;v € RowSpg, (ST, A).

We conclude the section by proving RowSpaceMembership is complete, sound, and
efficient. As above, write d4 = max(1,deg(A)) and d, = max(1,deg(v)), and let
r = rank(A).

Theorem 3.3.10. Assuming #S > 2min(m, n)d 4, then Protocol 3.11 is a complete and
probabilistically sound interactive protocol which requires O(n + mdat + d,t) communi-
cation and has Verifier cost O(mndat + ndyt). If v € RowSpg, (A), there is a Las Vegas

randomized algorithm for the Prover with expected cost é(mnrw‘Qd A + r“71d,). Other-
wise, the probability that the Verifier incorrectly accepts is at most (3rda + d, + 1)/#S.

Proof. For the communication, note that sending each C; has communication cost
O(m) from lemma 3.3.7. Furthermore, the Verifier does not actually compute the
products C; A, but rather uses these as a black box for matrix-vector products in the
two subprotocols. For any scalar « € F, the complexity of computing C; A(«) times
any vector of scalars on the left or right-hand side is O(mnd).

Along with the degree conditions on each f; and theorems 3.2.3, 3.2.4 and 3.3.3
and lemma 3.3.5, this proves the communication and Verifier cost claims.

The Prover’s cost comes from lemma 3.3.9, which dominates the cost for the Prover
in any of the subprotocols.

3. Row space membership 97

If the rank conditions being verified on Steps 1 and 7 are true, then all matrices
C; A have full row rank equal to the rank of A, that is, rank(C;A) = p = r. And if the
statements verified on Steps 6 and 7 are true as well, then we have v € RowSpg,;(A)
according to lemma 3.3.4. Therefore the soundness of this protocol depends only on
the probabilistic soundness of those subprotocols.

For the remainder of the proof, we assume that v ¢ RowSpg(,;(A) and we want to
know an upper bound on the probability that the Verifier incorrectly accepts. For this,
we divide into cases depending on which subprotocol incorrectly accepted:

Case 1: rank(A) > p According to theorem 3.2.4, the probability that the Verifier
incorrectly accepts in RankUpperBound on Step 1 is at most (rda + 1)/#S.

Case 2: rank(A) < pand ged(fy,...,f;) # 1 We know that each deg(f;) < rda,
where r is the true rank of A. By lemma 3.3.5, the probability that the Verifier incor-
rectly accepts in subprotocol CoPrime is at most (2 max;(deg(f;)) — 1)/#S, which is at
most (2rda — 1)/#S.

Case 3: rank(A) < pand ged(fy,...,f;) = 1 Then, by lemma 3.3.4, there exists
i € {1,...,t} such that f;v ¢ RowSpg[,;(A), and thus either rank(C;A) < p or fiv ¢
RowSpg(,1(C;A). That is, the statement being verified by FullRankRowSpaceMembership
on the ith iteration of Step 7 is false.

Because of the degree checks on Step 5, we know that deg(f;v) < rda + d,,. There-
fore from theorem 3.3.3, the probability that the Verifier incorrectly accepts in Full-
RankRowSpaceMembership is at most (4rda + d,, + 1)/#S.

Observe that the three cases are disjoint and cover all possibilities. In every case, the
probability that the Verifier incorrectly accepts is at most that in Case 3, which proves
the last claim in the Theorem statement. O

We note that it is always possible to conduct the checks on Step 7 of RowSpaceMem-
bership in parallel, so that the total number of rounds of communication in the protocol
is O(1).

A crucial factor in the communication and Verifier costs as seen in theorem 3.3.10
is the value of ¢, which in any case satisfies ¢ € O(log(min(m, n))) due to the condition
on the size of S, so this adds only a logarithmic factor to the cost. Indeed, when the
set S of field elements is large enough, ¢ can be as small as 2. For clarity, we state as a
corollary a condition under which this logarithmic factor can be eliminated.

Corollary 3.3.11. If #S > 2mnd 4, then Protocol 3.11 requires only O(n + mda + d,)
communication and has Verifier cost O(mnda + nd,).

98 Chapter 3: Verification protocols for polynomial matrix operations

Row spaces and normal forms

In this section, we use the row space membership protocol from the previous section in
order to certify the equality of the row spaces of two matrices. Along with additional
non-interactive checks by the Verifier, this can also be applied to prove the correctness
of certain important normal forms of polynomial matrices.

Row space subset and row basis

We will use RowSpaceMembership to give a protocol for the certification of row space
subset; by this we mean the problem of deciding whether the row space of A is con-
tained in the row space of B, for two given matrices A and B.

Our approach is the following: take a random vector A and certify that the row space
element A A is in the row space of B, the latter being done via row space membership
(section 3.3). We will see that taking A with entries in the base field is enough to
ensure good probability of success.

Lemma 3.4.1. Let A € F[z]™*" and B € F[z]**". Let R € {F[z],F(x)}. Then the
following statement holds: Assuming that

RowSps(A) ¢ RowSps(B),

then the F-vector space
V ={XxeF>*™ | XA € RowSpy(B)}

has dimension at most m — 1. For X € F'*™ with entries chosen independently and
uniformly at random from a finite subset S < F then AA € RowSpy(B) with probability

1
at most %5

Proof. Suppose that the vector space V has dimension at least m. Then V is the entire
space F1*™ and every row of A is in RowSpy(B); hence RowSpy(A) < RowSpy(B),
a contradiction. Then the probability that the uniformly random vector A belongs to
the proper subspace V < F*™ follows from lemma 3.1.1. O

In the following, let r4 and rp denote respectively the ranks of A and B, and let
da = max(1,deg(A)) and dp = max(1, deg(B)).

Theorem 3.4.2. Protocol 3.12 is a probabilistically sound interactive protocol, and is
complete assuming #S > 2{dg in its subprotocols. It requires O(n + (¢{dp + da)log(¥))
communication and has Verifier cost

O((ndp + nda)log(f) + mnda).

If RowSpg(,(A) S RowSpg, (B), there is a Las Vegas randomized algorithm for the
Prover with expected cost

5(€nr°§’2d3 + rj‘g’ldA + mndA).

4. Row spaces and normal forms 99

Protocol 3.12: RowSpaceSubset

Public: A € F[z]|™", B € Flz]**", pe N
Certifies: RowSpe(,)(A) S RowSpg(,;(B) and rank(B) = p

Prover Verifier
1. A& gtxm
2. v — ANA
v
3 féb&s}iafcfei\?lééqbfe}sfl{lbf(é V) !

,,,,,,,,,,,,,,,,,,,,,,,,,,

Otherwise, the probability that the Verifier incorrectly accepts is at most

drgdg +da + 2
#S '

Proof. The Verifier may incorrectly accept if either X is such that AA € RowSpg(,(B),
which happens with probability at most 1/#S by lemma 3.4.1, or the subprotocol
RowSpaceMembership has incorrectly accepted. From Theorem 3.3.10, and the union
bound, we obtain the claimed probability bound. O

Repeating this check in both directions proves that two matrices have the same row
space.

Protocol 3.13: RowSpaceEquality
Public: A € F[z]™*", B € F[z]*", pe N
Certifies: RowSpg(,(A) = RowSpg(,;(B) and rank(A) = rank(B) = p
Prover Verifier

,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,

Theorem 3.4.3. Let r = max(ra,rg) and d = max(da,dg). Protocol 3.13 is a proba-
bilistically sound interactive protocol, and is complete assuming #S > 2 max(mda, {dg).
It requires

O((mlog(m) + £log(£))d + n) < O(md + €d + n)

100 Chapter 3: Verification protocols for polynomial matrix operations

communication and has Verifier cost
O((mlog(m) + £log(£))nd) < O(mnd + {nd).

If RowSpg(,1(A) = RowSpgp, (B), there is a Las Vegas randomized algorithm for the

Prover with expected cost O((m + {)nr“~2d). Otherwise, the probability that the Verifier
incorrectly accepts is at most (4rd + d + 2)/#S.

From RowSpaceEquality, we deduce a protocol verifying the property that B is a row
basis of A, that is, a matrix which has the same row space as A and which has full
row rank.

Protocol 3.14: RowBasis

Public: A e F[z]™*", B € F[z]>"
Certifies: B is a row basis of A
Prover Verifier

1. ' RowSpaceEquality (A, B) !

Corollary 3.4.4. Let r = max(ra,rg) and d = max(da,dg). Then, Protocol 3.14 is a
probabilistically sound interactive protocol, and is complete assuming #S > 2 max(mda, ldg).
It requires N

O((mlog(m) + Clog(¢))d +n) < O(md + ¢d + n)

communication and has Verifier cost
O((mlog(m) + £log(£))nd) < O(mnd + {nd).

If B is a row basis of RowSpg,j(A), there is a Las Vegas randomized algorithm for

the Prover with expected cost 5(mn€‘*"2d), with { = r4 in this case. Otherwise, the
probability that the Verifier incorrectly accepts is at most (4rd + d + 3)/#S.

Normal forms

Here, we give protocols for certifying normal forms of polynomial matrices, including
the Hermite form (Hermite, 1851; MacDuffee, 1933) and the Popov form (Popov,
1972; Kailath, 1980). These forms are specific row bases with useful properties such
as being triangular for the former or having minimal degrees for the latter, and being
unique in the sense that a given matrix in F[x]™*™ has exactly one row basis in Hermite
(resp. Popov) form.

Roughly speaking, the Hermite form is a row echelon form that stays within the
underlying ring.

4. Row spaces and normal forms 101

Definition 3.4.5. A matrix B = [b; ;| € F[z]"*" with r < n is in Hermite form if there
are pivot indices 1 < k; < --- < k, < n such that:
(i) (Pivots are monic, hence nongero)

bk, is monic forall 1 <i <,

(ii) (Entries right of pivots are zero)

b =0foralli<i<randk, <j<n,

(iii) (Entries below pivots have smaller degree)

deg(birx,) < deg(bi,) forall1 <i < <.

Each entry at row ¢ and column £; is called a pivot. Observe that these conditions
guarantee B has full row rank, hence the use of the notation r for the row dimension.
For a matrix A € F[z]™*", its Hermite form B € F[x|"*" is the unique row basis of A
which is in Hermite form.

Protocol HermiteForm certifies that a matrix B e F[z]**" is the Hermite form of A. It
first checks that B is in Hermite form, and then it checks that B and A have the same
row space using RowSpaceEquality from section 3.4.1.

Protocol 3.15: HermiteForm

Public: A € F[z]™*", B € F[z]>"
Certifies: B is the Hermite form of A
Prover Verifier

1. Check that B satisfies
definition 3.4.5

Theorem 3.4.6. Let r = max(ra,rp) and d = max(da,dg). Protocol 3.15 is a proba-
bilistically sound interactive protocol and is complete assuming #S > 2max(mda, ¢dp)
in its subprotocol. It requires O(mdlog(m) + n) communication and has Verifier cost
O(mndlog(m)). If B is the Hermite form of A, there is a Las Vegas randomized algo-
rithm for the Prover with expected cost O(mnr+~2d). Otherwise, the probability that the
Verifier incorrectly accepts is at most (4rd + d + 2)/#S.

Proof. To check that B is in Hermite form at Step 1, the Verifier first computes the
pivot indices as the index of the first nonzero on each row, then checks the degree
conditions specified in definition 3.4.5. (If any row is zero, B is not in Hermite form.)
This is a deterministic check with complexity only O(¢n).

102 Chapter 3: Verification protocols for polynomial matrix operations

As discussed previously, the fact that B is in Hermite form immediately implies that
it has full row rank ¢, and hence checking the row space equality is sufficient to confirm
that B is a row basis for A.

The subprotocol RowSpaceEquality dominates the complexity and is also the only
possibility for the Verifier to incorrectly accept when the statement is false; hence the
stated costs follow directly from theorem 3.4.3.]

While the Hermite form has an echelon shape, it is also common in polynomial
matrix computations to resort to the Popov form, for which the pivot of a row is no
longer the rightmost nonzero entry but rather the rightmost entry whose degree is
maximal among the entries of that row. This form loses the echelon shape, but has the
advantage of having smaller-degree entries than the Hermite form.

Here we consider the more general shifted forms (Van Barel and Bultheel, 1992;
Beckermann et al., 2006), which encompass Hermite forms and Popov forms via the
use of the following degree measure. For a given tuple s = (sy,...,s,) € Z", the
s-degree of the row vector v = [v; --- v,] € F[z]'*" is

deg,(v) = max(deg(vy) + s1,...,deg(v,) + sy).
We use the notation B, . to denote the ith row of the matrix B.

Definition 3.4.7. Let s = (s1,...,s,) € Z". Amatrix B = [b; ;] € F[z]"*" withr < n is
in s-Popov form if there are indices 1 < ky < --- < k, < n such that,

(i) (Pivots are monic and determine the row degree)

b; i, is monic and deg(b; ,) + s, = degy(B;) forall 1 <i <,

(ii) (Entries right of pivots do not reach the row degree)
deg(bm) + S5 < degs(Biv*)for all1 <i<rand kz <j <n,

(iii) (Entries above and below pivots have lower degree)
deg(birg,) < deg(biy,) 1 < i’ #i <.

The usual Popov form corresponds to the uniform shift s = (0, ...,0). Furthermore,
one can verify that, specifying the shift as s = (nt, ..., 2t t) for any given ¢t > deg(B),
then the Hermite form is the same as the s-Popov form (Beckermann et al., 2006,
Lem. 2.6).

For a matrix A € F[z]™*", there exists a unique row basis B € F[z]"™*" of A which is
in s-Popov form (Beckermann et al., 2006, Thm. 2.7); B is called the s-Popov form of
A. Generalizing Protocol 3.15 to this more general normal form yields Protocol 3.16
(although the former could be derived as a particular case of the latter for a specific
shift s, we preferred to write both explicitly for the sake of clarity).

The next result is identical to Theorem 3.4.6, in both statement and proof. The only
difference in the protocol is determining the indices of each pivot column in order to
confirm the conditions of s-Popov form; this can be accomplished in linear time by
first computing the s-degree of the row and then finding the rightmost column which
determines this shifted row degree.

5. Saturation and kernel bases 103

Protocol 3.16: ShiftedPopovForm

Public: A € F[z]™", s = (s1,...,5,) € Z", B € F[x]"*"
Certifies: B is the s-Popov form of A

Prover Verifier

1. Check that (s, B) satis-
fies Definition 3.4.7

2. 3 RowSpaceEquality(A, B) !

Theorem 3.4.8. Let r = max(ra,rg) and d = max(da,dg). Protocol 3.16 is a proba-
bilistically sound interactive protocol and is complete assuming #S > 2 max(mda, {dg)
in its subprotocol. It requires O(mdlog(m) + n) communication and has Verifier cost
O(mndlog(m)). If B is the s-Popov form of A, there is a Las Vegas randomized algo-
rithm for the Prover with expected cost 5(mnr“’*2d). Otherwise, the probability that the
Verifier incorrectly accepts is at most (4rd + d + 2)/#S.

Saturation and kernel bases

In this section, we use the protocols described in previous sections to design protocols
verifying computations related to saturations and kernels of polynomial matrices.

Saturation and saturated matrices

The saturation of a matrix over a principal ideal domain is a useful tool in computa-
tions; we refer to (Bourbaki, 1972, Section 11.§2.4) for a general definition of satu-
ration. It was exploited for example in (Zhou and Labahn, 2013) where a matrix is
factorized as the product of a column basis times some saturation basis, and in (Neiger
et al., 2018) in order to find the location of pivots in the context of the computation of
normal forms. The saturation can be computed from the Hermite form, as described
in (Pernet and Stein, 2010, Section 8) for integer matrices, and alternatively it can be
obtained as a left kernel basis of a right kernel basis of the matrix as we prove below
(lemma 3.5.3).

Definition 3.5.1. The saturation of a matrix A € F[z]™*™ is the F[x]-module
Saturation(A) = F[z]""™ n RowSpe(,)(A);

it contains RowSpg,1(A) and has rank r = rank(A). A saturation basis of A is a matrix
in F[z]™*™ whose rows form a basis of the saturation of A. A matrix is said to be saturated
if its saturation is equal to its F|x]-row space.

104 Chapter 3: Verification protocols for polynomial matrix operations

Two matrices with the same saturation may have different F[z]-row spaces. For
example, the matrices
1 1+ 22
r? z+z| and { +2]
0 =

have the same saturation F[z]|'*?, but the F[x]-row space of the former matrix contains
[0] which is not in the F[z]-row space of the latter matrix. We also remark that all
nonsingular matrices in F[z]"*™ have saturation equal to F[z]'*".

The saturation is defined in terms of the F(z)-row space of the matrix: two matrices
have the same saturation if and only if they have the same F(x)-row space. In par-
ticular, A is saturated if and only if any row basis of A is saturated. This yields the
following characterization for matrices having full column rank.

Lemma 3.5.2. Let A € F[x]™*" have full column rank. Then A is saturated if and only
if RowSpe () = Fla]"*".

Proof. Since A has full column rank, its row bases are nonsingular n x n matrices, or
equivalently, RowSpg,)(A) = F(z)"*". Hence the saturation of A is F[z]'*", and the
equivalence follows by definition of being saturated. O

Thus, in this case, verifying that A is saturated boils down to verifying that F[z]'*"
is a subset of RowSpg,;(A), which can be done using RowSpaceSubset.

To obtain a similar result in the case of matrices with full row rank, we will rely on
the following characterization of the saturation using kernel bases.

Lemma 3.5.3. Let A € F[x]™*" have rank r, and let K € F[z]"*("™") be a basis for
the right kernel of A. Then, Saturation(A) is the left kernel of K. In particular, the
saturation bases of A are precisely the left kernel bases of K.

Proof. Each row of A is in the left kernel of K, hence so is any polynomial vec-
tor v € F[z]'*" which is an F(z)-linear combination of rows of A, that is, any v €
Saturation(A).

For the other direction, it is enough to prove that each row of a given left kernel basis
B € F[z]"*" of K is in Saturation(A). Let A € F[z]"*" be a set of r linearly independent
rows of A; since these rows are in the left kernel of K, we have A = U B for some
nonsingular U € F[z]"*". Thus each row of B = U~'A is an F(x)-linear combination
of rows of A. n

Combining this with (Zhou and Labahn, 2013, Lemma 3.3), it follows that for any
saturation basis B € F[z]"*" of A and any factorization A = CB with C e F[z]™*",
then C is a column basis of A. If A has full row rank we obtain that C is non-
singular, and that A is saturated if and only if C is unimodular, or equivalently
ColSpg,)(A) = F[z]™*'. For the sake of completeness, we now present a concise
proof of this characterization (lemma 3.5.5); we will need the following standard re-
sult which essentially says that any kernel basis is saturated (see for example (Giorgi
and Neiger, 2018, Lemma 2.2) for a proof).

5. Saturation and kernel bases 105

Fact 3.5.4. Let K € F[z]"**. For any left kernel basis B € F[z]"*" of K, we have
ColSpg, (B) = Flz]™".

Lemma 3.5.5. Let A € F[z]™*™ have full row rank. Then, A is saturated if and only if
COISpF[x](A) = F[ZE]le.

Proof. If A is saturated, it is a basis of its own saturation since it has full row rank.
Then writing K for a right kernel basis of A, by lemma 3.5.3, A is a left kernel basis
of K. Then fact 3.5.4 gives ColSpg, (A) = Flz]™".

Conversely, assume ColSpg,(A) = F[z]™*'. Since the row space of A is a sub-
module of its saturation, we have A = U B where B € F[z]™*" is a saturation basis
of A and U € F[z]™*™ is nonsingular. By assumption, we have AV = I, for some
V € Flz]™*™, hence U(BV') = I,,. Because these are all polynomial matrices, this
means that U is unimodular, and A = U B implies that A is saturated. O

We are now ready to state Protocol 3.17 for the certification that a matrix is satu-
rated, assuming it has either full row rank or full column rank. The latter restriction
is satisfied in all the applications we have in mind, including the two we present be-
low (section 3.5.2): unimodular completability and kernel basis certification. We note
that, if one accepts a communication cost similar to the size of the public matrix A,
then removing this assumption is easily done by making use of a row basis of A.

Protocol 3.17: Saturated

Public: A € F[z]™*"
Certifies: A is saturated and A has full rank

_Prover Verifier
‘ifm<n: // full row rank!
. ' RowSpaceSubset([,,,, AT)
: 'else: // full column rank

RowSpaceSubset([1,,, A)

Theorem 3.5.6. Let d = max(1,deg(A)), p = max(m,n), and v = min(m,n). Pro-
tocol 3.17 is a probabilistically sound interactive protocol and is complete assuming
#S > 2ud in its subprotocol. It requires O(udlog) communication and has Verifier
cost O(mndlog 11). Assuming that A has full rank and is saturated, there is a Las Vegas
randomized algorithm for the Prover with expected cost O(uv*~d), and otherwise the
probability that the Verifier incorrectly accepts is at most (4vd + 2)/#S.

Proof. This directly follows from lemmas 3.5.2 and 3.5.5 and theorem 3.4.2. Remark
that in both cases m < n and m > n, the protocol RowSpaceSubset is applied with
public matrices I, and a p x v matrix of rank at most v and degree at most d.]

106 Chapter 3: Verification protocols for polynomial matrix operations

Concerning the certification of a saturation basis of A, our protocol will rely on the
following characterization.

Lemma 3.5.7. Let A € F[x]™*". Then, a matrix B € F[z]*" is a saturation basis of A
if and only if the following conditions are satisfied:

(i) rank(B) = (and rank(A) > ¢,
(iii) B is saturated.

Proof. If B is a saturation basis of A, then by definition B is saturated; B has full row
rank with ¢ = rank(B) = rank(A); and RowSpg,)(B) = RowSpg(,)(A).

Conversely, assume that the three items hold. The first two items together imply
¢ = rank(B) = rank(A), and hence RowSpg., (A) = RowSpg(,)(B). This means
Saturation(A) = Saturation(B), and the latter saturation is equal to RowSpg,(B)
since B is saturated by the third item. Hence B has full row rank and F[z]-row space
equal to the saturation of A. O

Protocol 3.18: SaturationBasis

Public: A € F[z]™*", B € F[z]*"
Certifies: B is a saturation basis of A
Prover Verifier

?
Check ¢ < min(m,n)

2 ' RankLowerBound(A, #) |

« %l S
- A i Slxn

v — }\A(a) = F1><n

a,v
4 Find v € F1*" such that
" vB(a) =w.
2
e ~vB(a) = v
3 Saturated(B) i

Theorem 3.5.8. Protocol 3.18 is a probabilistically sound interactive protocol and is
complete assuming #S > max(¢{da+1, 2ndg) in its subprotocols. It requires O(ndpg log(n))

5. Saturation and kernel bases 107

communication and has Verifier cost O(mnda + {ndglog(n)). If B is a saturation basis
of A, then there is a Las Vegas randomized algorithm for the Prover with expected cost

5(mn€w_2 + mnda + nE‘”_ldB);
otherwise the probability that the Verifier incorrectly accepts is at most (40dp + 2)/#5S.

Proof. The check on Step 1 has no arithmetic cost, but ensures that ¢ is less than or
equal to m and n. Steps 3 to 5 certify that RowSpg(,)(A) S RowSpg(,)(B). Note
that this only communicates O(n) field elements, and that the Verifier’s cost at these
steps amounts to the evaluation of A and B at « as well as two scalar vector-matrix
products, hence a total of O(mnd + ¢ndg) operations. Then the Verifier and Prover’s
costs follow from theorems 3.2.3 and 3.5.6.

Note that rank(A) > ¢ and RowSpg,)(A) S RowSpe,(B) imply that rank(B) = ¢,
so that the precondition for the Saturated protocol on Step 6 is valid unless one of the
previous checks failed.

For the probability bound, we consider each of the checks in Steps 2, 5 and 6. By
theorem 3.2.3, the Verifier incorrectly accepts an A with rank < ¢ with probability at
most 1/#S. By theorem 3.5.6, the Verifier incorrectly accepts an unsaturated B with
probability at most (4¢dp + 2)/#S.

For Step 5, assume now that rank(A) > ¢ and B is saturated, and in particular
rank(B) = (, but that RowSpg(,)(A) ¢ RowSpg, (B). By lemma 3.4.1, then for a
random \ € S we have A\A € RowSpg(, (B) with probability at most %. Consider
now that AA ¢ RowSpg(,(B). Let P be an n x n permutation matrix such that BP =
[By | B;] with B, € F[x]*** and full rank. Let u € F(z)'*¢ be the unique vector such
that AAP = [uB, | a], for some a € F(z)'*("9. Then there is some index i of a
that differs from index ¢ of uwB;. By Cramer’s rule the entries of u can be written
with common denominator det(B) and numerators of degree at most (¢ — 1)dg. Hence
the entries of uB; have denominators and numerators of degree at most ¢dg each.
Hence AA(«) and u(«)B(«) agree at index ¢ for at most 2¢dp choices of o € F, and
we conclude that the Verifier incorrectly accepts in this case with probability at most

20dp /#S.
Summing up, the worst case is the check at Step 6, where the Verifier incorrectly
accepts with probability at most (4¢dg + 2)/#S. O

Kernel bases and unimodular completability

Here, we derive two protocols which follow from the ones concerning the saturation.
The second protocol is for the certification of kernel bases, while the first protocol is
about matrices that can be completed into unimodular matrices.

The fast computation of such completions was studied by Zhou and Labahn (2014).
We say that A € F[z]™*" is unimodular completable if m < n and there exists a ma-

trix B e F[z]("~™)*" such that [g] is unimodular. Note that if A does not have full

108 Chapter 3: Verification protocols for polynomial matrix operations

row rank, then it is not unimodular completable. Otherwise, Zhou and Labahn (2014,
Lemma 2.10) showed that A is unimodular completable if and only if A has unimodu-
lar column bases; by lemma 3.5.5, this holds if and only if A is saturated. This readily
leads us to Protocol 3.19.

Protocol 3.19: UnimodularCompletable

Public: A € F[x]™*"
Certifies: A is unimodular completable

Prover Verifier

Theorem 3.5.9. Protocol 3.19 is a probabilistically sound interactive protocol and is
complete assuming #S > 2md in its subprotocols. It requires O(ndlog(n)) communica-
tion and has Verifier cost O(mndlog(n)). If A is unimodular completable, then there is a
Las Vegas randomized algorithm for the Prover with expected cost 5(nmw‘1d); otherwise
the probability that the Verifier incorrectly accepts is at most (4md + 2)/#S.

Proof. The costs follow from theorems 3.2.3 and 3.5.6, noting that the protocol aborts
early if m > n, and therefore m is an upper bound on the rank in the Saturated sub-
protocol. The probability of the Verifier incorrectly accepting here is the same as in
Saturated from theorem 3.5.6. O

Finally, Protocol 3.20 for the certification of kernel bases will follow from the char-
acterization in the next lemma.

Lemma 3.5.10. Let A € F[z]™*" and let B € F[x]**™. Then, B is a left kernel basis of
A if and only if

() rank(B) = (and rank(A) = m — ¢,
(i) BA =0,
(iii) B is saturated.

Proof. 1If B is a left kernel basis of A, then we have rank(B) = ¢ = m — rank(A) as
well as BA = 0; the third item follows from fact 3.5.4 and lemma 3.5.5.

Now assume that the three items hold. Consider some left kernel basis K of A.
Then, rank(K) = m —rank(A) < ¢ by the first item, while the second item implies that
the row space of B is contained in the row space of K, hence ¢ = rank(B) < rank(K);
therefore rank(K) = /. As a result, B = UK for some nonsingular U € F[z]**. Item

5. Saturation and kernel bases 109

(ii) implies ColSpg, (B) = F[z]*' according to lemma 3.5.5, hence I, = BV =
UKYV for some V e F[z]™**. Then, U must be unimodular, and thus B = UK is a
left kernel basis of A. O

Protocol 3.20: KernelBasis

Public: A € F[z]™*", B € F[z]*>™
Certifies: B is a left kernel basis of A

Prover Verifier
1 l ; m
2 ' RankLowerBound(A, m —)
3. ‘MatMul(AB,0)
4 iiéaitiuiriaiédi (Bi)ii

Theorem 3.5.11. Protocol 3.20 is a probabilistically sound interactive protocol and is
complete assuming #S > max((m — {)da + 1,2mdp) in its subprotocols. It requires
O(mdg log(m)) communication and has Verifier cost

O(fmdplog(m) + mnda).

If B is a left kernel basis of A, then there is a Las Vegas randomized algorithm for the
Prover with expected cost

5(m€“’1d3 +mn(m —0)"?da);
otherwise the probability that the Verifier incorrectly accepts is at most

max(da +dp + 1,44dg + 2)
#S '

Proof. The costs follow from lemma 3.5.10 and theorems 3.2.3, 3.2.8 and 3.5.6. As
before, the worst case for the Verifier is that only one of the three checked statements
is wrong, and the resulting maximum of probabilities comes either from Step 2 or
Step 4. [

Conclusion and perspectives

We have developed interactive protocols verifying a variety of problems concerning
polynomial matrices. For rank, determinant, system solving, and matrix multiplication

110 Chapter 3: Verification protocols for polynomial matrix operations

(section 3.2), these amount to evaluating at some random point(s) and reducing to
field-based verifications. For row bases, saturation, normal forms, and kernel basis
computations (sections 3.4 and 3.5), the verifications essentially reduce to testing
row space membership of a single vector (section 3.3) and testing that ranks are the
expected ones.

Our protocols are efficient. The volume of data exchanged in communications is
roughly the size of a single row of the matrix. The time complexity for the Verifier is
linear (or nearly-linear) in the size of the object being checked, and the time for the
Prover is roughly the same as it would take to perform the computation being verified.

Still, there is some room for improvement in these costs. It would be nice to remove
the logarithmic factors in the complexities of most later protocols for the Verifier time
and communication cost; these come from the number of repetitions ¢ required in the
RowSpaceMembership protocol.

Our protocols also require to work over sufficiently large fields, to ensure soundness
of the randomized verification. For smaller fields, a classic workaround is to resort to
a field extension, increasing the arithmetic and communication cost by a logarithmic
factor. An alternative is to increase the dimension in the challenges and responses,
e.g. verifying a block of vectors instead of a single vector of field elements. A further
study on whether this approach is applicable and competitive here is required.

Another possibility for improvement in our complexities would be to have the same
costs where d is the average matrix-vector degree, rather than the maximum degree.
Such complexity refinements have appeared for related computational algorithms, fre-
quently by “partial linearization” of the rows or columns with highest degree (Gupta
et al., 2012, Section 6), and it would be interesting to see if similar techniques could
work here. This would be especially helpful in more efficiently verifying an unbalanced
shifted Popov form, and the Hermite form in particular, of a nonsingular matrix.

The protocols presented here do not assume that the Prover has computed the result
to be verified. This is however likely to be the case in many instances of verified
computing, and it would then be relevant to identify which intermediate results in
a Prover’s computation of the solution (such as the rank profile matrix, the weak
Popov form, etc), could be reused in a certificate for verifying this solution. Though
more constraining on the Prover’s choice of an algorithm, such information would help
reducing the leading constant in the arithmetic cost of its computation.

While we have presented protocols for a variety of basic problems on polynomial
matrices, there are still more for which we do not know yet whether any efficient
verification exists. These include:

¢ high-order terms in expansion of the inverse (see the high-order lifting algorithm
of Storjohann (2003));

e univariate relations, generalizing Hermite-Padé approximation (Beckermann and
Labahn, 2000; Neiger and Vu, 2017);

e Smith form (see (Storjohann, 2003) for the fastest known algorithm).

We also do not know in all cases how to prove the negation of our statements — for

5. Saturation and kernel bases 111

example, that a vector is not in the row space of a polynomial matrix. It seems that
some similar techniques to those we have used may work, but we have not investigated
the question deeply.

Perhaps the most interesting direction for future work would be to adapt our proto-
cols to the case of Euclidean lattices, i.e., integer matrices and vectors. It seems that
most of our protocols in section 3.2 should translate when we replace evaluation at a
point o with reduction modulo a sufficiently-large prime p, but the analysis in terms
of bit complexity rather than field operations will likely be more delicate. Another
seeming hurdle is in our central protocols in section 3.3 on deciding row membership:
while the general ideas of these protocols might translate to integer lattices, the proof
techniques we have used are particular for polynomials.

113

Chapter

¥ Secure multiparty matrix
multiplication based on
Strassen-Winograd
algorithm

Contents
4.1 Preliminaries e e e e 118
4.1.1 Strassen-Winograd algorithm 118
4.1.2 Datalayoutand encryption 118
4.1.3 Homomorphic encryption 120
4.1.4 Multiparty protocols security 121
4.1.5 Relaxing an existing algorithm: YTP-SS 121
4.2 Toolbox e e 122
4.2.1 InitializationPhase 122
4.2.2 Multiparty Copy« . ot e e 122
4.2.3 Classical Matrix Multiplication basecase 122
4.2.4 SecurityAnalysis o 126
4.3 Multiparty Strassen-Winograd 129
4.3.1 Operation schedulein MP-SW 129
4.3.2 Finalisationstep 134
4.3.3 Cost and security analysis 135
4.4 EXPEriMments v v v v v ittt et e e e e e e e e 136
4.5 Variant of MP-SW using proxy re-encryption 137
4.5.1 Description of the new protocol 139
4.5.2 Communication cost analysis 141

4.5.3 Comparisons between fully and semi homomorphic solutions . . 142

114 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

Technical summary and overview of this chapter

Model We consider the product of square N x N matrices, further denoted as A
and B. Our protocol supports up to N players, and each player knows one row (or
one block of consecutive rows) of A, the corresponding row (or block of rows) of B
and learns the corresponding row (or block of rows) of C' = A x B. Our protocol
is proven secure against non-colluding, semi-honest adversaries as defined in Sec-
tion 1.1.3. We require communication between players to be performed over secure
channels, meaning that, for any communication between two players, only these two
players will know the piece of information that were communicated. The main tool
used to secure our protocol is semi-homomorphic cryptography (such as defined in
Section 1.2.4) supporting homomorphic additions. We focus on improving the com-
munication volume of multiparty matrix product. Theoretical communication costs
given in this chapter are based on the number of field elements exchanged between
players, while practical communication costs are a direct measure of the total commu-
nication volume in (Giga)Bytes.

State of the art — main competition We primarily compare our work to the protocol
of Dumas et al. (2017a), which is the state of the art for multiparty matrix multiplica-
tion with the same data repartition model. Their protocol, called YTP-SS, is based on
textbook matrix multiplication and consists of sequential secure multiparty dot prod-
ucts. For input matrices of size N, they achieve a communication cost of O(N?) field
elements. Their protocol, however, has stronger security than ours, as it supports col-
luding malicious adversaries. They manage to achieve such security by splitting input
elements in k shares for each dot product performed, and repeating each dot product
k times. As this security measure requires many exchanges between players, we will
propose a relaxed version of YTP-SS, stripped of these additional security measures.
This simplified protocol, which we call MP-PDP, has the same security than ours and
will thus be a fairer comparison than YTP-SS.

Results The main contribution of this chapter is a new recursive multiparty ma-
trix multiplication protocol based on Strassen-Winograd algorithm. By taking full
advantage of the recursive structure of the algorithm, we manage to achieve a bet-
ter communication cost than the state of the art, O(N?®!) for input matrices of size
N. We show that, with this improvement, our protocol has cheaper communication
cost than MP-PDP for matrices of size N = 96 and larger. We implemented our so-
lution and practical experiments confirm that our protocol has less communications
than MP-PDP. To achieve this result, we designed a data layout which, associated with
the new sub-protocols we propose, ensures that no information is leaked during the
execution. Furthermore, we also propose a variant of our protocol based on proxy
re-encryption techniques that allows us to improve the communication cost of our so-
lution even more. Finally, we compare estimated runtimes of our protocol and a fully
homomorphic version of Strassen-Winograd algorithm based on a simplified setting

115

and we show that our proposition compares favourably to the former is this model.
The article associated with this chapter is (Dumas et al., 2019a).

Outline

We start by presenting Strassen-Winograd algorithm and the competitor YTP-SS pro-
tocols in in Section 4.1. There, we also define the dedicated data layout and the
cryptographic tools we will use. Next, in Section 4.2, we first describe our building
block protocols, with their security analysis. Second, we present in this Section a new
cubic-time matrix multiplication algorithm on ciphered entries to be used as a base
case. Section 4.3 describes the complete novel sub-cubic MPC Strassen-Winograd al-
gorithm and details its theoretical communication cost. In Section 4.4, we propose
practical comparisons between our C++ and competitor implementations. Finally,
in Section 4.5, we give an improved variant of our protocol using proxy re-encryption
techniques and compare estimated runtimes of our protocols and fully-homomorphic
cryptography-based ones.

Introduction

Secure multiparty computations (MPC) allows n players to compute together the out-
put of some function, using private inputs without revealing them. This is useful, e.g.,
for a distributed evaluation of trust, as defined in (Jésang, 2007; Dumas and Hossayni,
2013). In this context, players compute a confidence level by combining their mutual
degrees of trust. This aggregation of trust amongst players can be represented as a
matrix product C = A x B, where each player knows one row of the matrix con-
taining their partial trust towards their neighbours and the network has to compute a
distributed matrix exponentiation, which reduces to several matrix multiplications. In
this chapter, we thus focus on this particular layout of data, and on multiparty matrix
multiplication of dimension N x N with NV players.

As was described in Section 1.2, several tools exist to design MPC protocols, like
Shamir’s secret sharing scheme (Shamir, 1979), homomorphic encryption (Goethals
et al., 2005), oblivious transfer (Dagdelen and Venturi, 2015) or using a Trusted Third
Party (Du and Zhan, 2002). Then, several MPC implementations are available!. Some
of them are for two parties only and most of the others are generic and transform
programs into circuits or use oblivious transfer (Demmler et al., 2015; Rindal and
Rosulek, 2016; Damgard et al., 2017; Jarecki, 2018; Mishra et al., 2018/663). For
instance the symmetric system solving phase of the LINREG-MPC software is reported
in (Gascon et al., 2017) to take about 45 minutes for n = 200, while, in (Dumas et al.,
2017a), a secure multiparty specific algorithm, YTP-SS, developed for matrix multipli-
cation, requires about a hundred seconds to perform an n = 200 matrix multiplication.
These timings, however, do not take into account communications, but for multiparty
matrix multiplication, the number of communications and the number of operations

Ihttps://github.com/rdragos/awesome-mpc

https://github.com/rdragos/awesome-mpc

116 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

should be within the same order of magnitude. Our goal is thus to improve on existing
algorithms, primarily in terms of this number of communications (we do not minimize
the number of messages, as in (Ishai et al., 2018), but instead consider the overall
volume). Our idea is to use an algorithm with a lower time and communication com-
plexity for matrix multiplication. Strassen’s algorithm (Strassen, 1969) was the first
sub-cubic time algorithm, with an exponent log, 7 ~ 2.81 leading to a complexity of
O(n*8!). As Strassen is one of the simplest matrix multiplication algorithm, and one
of the only practically efficient ones, we construct an MPC protocol based Winograd’s
variant of this algorithm which carries the aforementioned complexity over the com-
munication volume.? (Aho et al., 1974, Ex.6.5).

We need to preserve input privacy throughout the computation, which can be achieved
by the use of homomorphic cryptography. Such ciphers allow to perform arithmetic op-
erations over ciphertexts, which will help to maintain privacy in our setting. There ex-
ists two major families of homomorphic cryptosystems, fully-homomorphic and semi-
homomorphic ones. While the former are usually considered more expensive than the
latter, their ability to use all arithmetic operations over ciphertexts make them far less
constrained than the others (see Section 1.2.4 for a few more details and references on
the topic). Table 4.1 shows a comparison of basic cryptographic (encryption, decryp-
tion) and arithmetic (addition, multiplication) operations between semi-homomorphic
cryptosystems and two fully homomorphic libraries. Naccache-Stern and Paillier cryp-
tosystems are our own C+ + implementations, based on Givaro (Givaro group, 2020),
SEAL is the Microsoft SEAL fully homomorphic encryption library (Microsoft Research,
2019) based on Brakerski/Fan-Vercauteren scheme (Fan and Vercauteren, 2012; Brak-
erski, 2012) and HEIib is the IBM Helib fully homomorphic encryption library (hel,
2019), based on Brakerski-Gentry-Vaikuntanathan scheme (Brakerski et al., 2012).
Timings were measured on a workstation with an Intel i5-7300U @2.60 GHz, 16GB
of RAM, with parameters set to have a security level of A = 130. Accordingly to rec-
ommendations given in the libraries documentation, SEAL timings were made for a
plaintext space of 20 bits and HEIlib timings for a plaintext space of 64 bits. While a
few fully homomorphic operations are faster (SEAL decryption) or competitive (SEAL
encryption vs. Paillier) with semi-homomorphic cryptosystems, the former are still
faster in most situations.

We will hence use partial homomorphic encryption scheme (Cramer et al., 2015) as
they allow to perform the operations we need, namely:

1. Do (Epr(my) x Epp(ma)) = my + mo (Additive homomorphism)

2. Dy (Ep(my)™) = my x my (Cipher/clear multiplicative homomorphism)

Several cryptosystems do satisfy these, e.g., the ones designed by Naccache-Stern or
Paillier (Naccache and Stern, 1998; Paillier, 1999). The former is usually costlier than
the latter. However, as the former allow parties to agree on a common message block
size, which solves the issue of defining a consistent message space among them, we

2The best value known to date, due to (Le Gall, 2014), of approximately 2.3728639. However, only a
few sub-cubic time algorithms are competitive in practice and used in software (Dumas et al., 2008;
Boyer and Dumas, 2016; Kaporin, 1999) (see also (Karstadt and Schwartz) and references therein),
among which Strassen’s algorithm and its variants stand out as a very effective one in practice.

117

Operation Message size Naccache-Stern Paillier HElib SEAL

Enervtion 20 0.07 19.3 - 197
yp 64 0.14 201 946 -

Deervbtion 20 15.1 19.2 - 7.2
yp 64 61.6 194 465 -

y 20 0.001 0.01 - 03
Addition 64 0.001 001 62 -

o 20 0.02 0.17 - 788
Multiplication 64 0.05 0.50 29 ~

Table 4.1: Timings in ms for basic operations on libraries and cryptosystems at security
level \ = 130

choose here to use the Naccache-Stern cryptosystem.

Finally, Strassen-Winograd algorithm involves numerous additions and subtractions
on parts of the A and B matrices that are held by different players. Security con-
cerns require then that these entries should be encrypted from the start, contrarily
to (Dumas et al., 2017a). As a consequence, the classical matrix multiplication can no
longer be used as stated in the latter reference, even for the base case of the recur-
sive algorithm. We therefore propose an alternative base case. Its arithmetic cost is
higher, but it involves an equivalent amount of communication. We shall show that
this choice combined with our multiparty recursive Strassen-Winograd algorithm com-
pares favourably to existing implementations in communication cost for matrices of
dimensions larger than N = 96.

As Strassen-Winograd algorithm trades multiplications for additions, and as homo-
morphic additions are cheaper than multiplications, this algorithm is a very good can-
didate for a multiparty protocol using homomorphic techniques.

Hypotheses. In this chapter, we will only consider the case of semi-honest (also
called honest-but-curious) adversaries. As a reminder, such adversaries, represented as
probabilistic polynomial time machines, try to gather as many information as possible
during the execution of the protocol, and can locally run any computation based on
this information in order to deduce some private input. However, they strictly follow
protocol specifications. We also consider that communications are performed over secure
channels: this means transferred data is resistant to eavesdropping and that only the
recipient will learn anything from communicated data.

118 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

Preliminaries
Strassen-Winograd algorithm

C = A x B by splitting the input matrices in four quadrants of equal dimensions:
A=[442]and B = [p!' B2]. Each recursive call consists in 22 block operations:
e 8 additions:
S« A+ Ap Sy~ S —An Sz Ay — Ay Sy A — S
Tl <« B12 - Bll T2 <« B22 - Tl T3 A B22 - B12 T4 <« T2 - B21

e 7 recursive multiplications:
R, — A1 xB;y Ry« Ay x By Ry« Sy x By Ry« AypxT)
R5<—51XT1 R6<—SQ><T2 R7<—53XT3

¢ 7 final additions:
U1<—R1+R2 U2<—R1+R6 U3<—U2+R7 U4<—U2+R5
U —U,+R; Ug—Us— R, U;—U;+ R;

e The result is the matrix: C = [{7].

Although the recursion could be run down to products of 1 x 1 matrices, it is com-
monly stopped at a fixed dimension threshold, where a classical cubic time algorithm is
then used, in order to reduce the overhead of recursion on small dimension instances.
For the sake of simplicity, we consider henceforth that the initial input matrices are of
dimension N x N, with N = b2¢, so that up to ¢ recursive calls can be made without
having to deal with padding with zeroes nor with peeling thin rows or columns.

Data layout and encryption

We consider the setting where the two input matrices A and B have dimension N x N
and each of the N players stores one row of A and the corresponding row of B and
learns the corresponding row of C' = A x B. In this setting, the YTP-SS Algorithm (Du-
mas et al., 2017a, Algorithm 15) can compute C' by encrypting the rows of A only and
then relying on homomorphic multiplications of encrypted coefficients of A by plain
coefficients of B.

However, Strassen’s algorithm, considered here, requires adding and subtracting
submatrices of B of distinct row index sets (e.g. T3 <— By — Bjs). These operations on
non-ciphered rows of B would automatically leak information. We therefore impose
that the rows of both operands A and B, of the result C' and of any intermediate
matrix are encrypted by the public key of a player who is not the one hosting the
row. We therefore introduce the notion of location and key sequences for a matrix, to
identify the roles of the players in this data layout:

Definition 4.1.1. An n x n matrix A of ciphered values has location sequence L =
(I1,19,...,1,) and key sequence K = (ki, ks, ..., k,) if player P,, stores row i of A, that
was encrypted with the public key pky, of player Py, for all 1 < i < n.

1. Preliminaries 119

Example 1. For n = 3, consider the location sequence L = (2,3,1) and key sequence
K = (3,1,2). This means that player P, stores row 1 of A encrypted with the public key
of player P;; player P; stores row 2 of A encrypted with the public key of player P, and
finally player P, stores row 3 of A encrypted with the public key of player Ps.

In the matrix multiplication algorithms presented in the later sections, the location
and key sequences of operand A and C will always be identical. On the other hand
the location and key sequences of B may equal those of A (in the first recursive call),
or differ, but then they must have an empty intersection with those of A.

A recursive step in Strassen-Winograd algorithm splits the matrices A, B and C' into
four quadrants of equal dimensions. Hence their key and location sequences are split
into two sub-sequences: for X € {A,B,C}, Lx = (Lx,.Lx,)and Kx = (Kx,,Kx,)
such that (Lx,,, Kx,) are the location and key sequences for the upper half of X and
(Lx,,Kx,) are the location and key sequences for the lower half of X.

Figure 4.1 summarizes the notations we use on the input/output operands in Strassen-
Winograd algorithm.

Location sequences Key sequences
Lg, By Kp,
Le, | B, | Kn,

X
La, Avu _ Cu Ka,
La| A | | | Ka,

Figure 4.1: Recursive splitting of the location and key sequences of the input and out-
put operands in Strassen-Winograd algorithm.

More formally, we present in Definition 4.1.2 the two distinct data layouts used in
our algorithms: one for the recursive levels of Strassen-Winograd, and one for its base
case.

Definition 4.1.2. Let N € N, n < N and A and B two n x n matrices with location and
key sequences (La, Ka) € ({1.N}")? and (Lg,Kg) € ({1..N}")2
1. (La,Ka, Lp, Kp) is a valid data layout if
a) Vie {1..n}, LA[i] #* KA[i] and LB[i] # KB[i]-
b) ¥i,j e {l.n} withi # j, LA[i] #* LA[j] and LB[z‘] #* LB[j]
C) VZ,] S {1n} with i # j, KA[z] # KA[j] and KB[z] # KB[j]
2. (La,Ka,Lp,Kp) is a base case or a O-recursive data layout if it is a valid data
layout and (La v Ka) n (Lp v Kp) = .
3. (La,Ka,Lp,Kg) is a (-recursive data layout if it is a valid data layout and
a) (LAU Y KAU) a (LAL Y KAL) == (LBU v KBU) A (LBL Y KBL)

120 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

b) (LAU7 KAU? LBL, KBL) ClTld (LAL, KAL, LBU, KBU) are bOth
(¢ — 1)-recursive data layouts

Lemma 4.1.3. For N = b2", the following values for the location and key sequences form
an (-recursive data layout according to Definition 4.1.2:

{ k; = 1 for0<i<N 4.1.1)

liv; = b+ (j+1 modb) for0<i<N/bjand0<j<b
For instance, for a product of dimension 12, with base case dimension b = 3, this

gives; Lo = Lp = L¢ = (1,2,0,4,5,3,7,8,6,11,9,10) and Ko = K = K¢ =
(0,1,2,3,4,5,6,7,8,9,10, 11).

Homomorphic encryption

Naccache-Stern cryptosystem.

In the following, we use Naccache-Stern (Naccache and Stern, 1998) partially homo-

morphic cryptosystem, with security parameter 1%, set up as follows:

Setup(1?) : Select 2k small primes py, . . ., pa; compute u = Hlepi and v = H?ﬁkﬂpi;
let 0 = u-v; uniformly select two large prime numbers a and b of size \/2; find f;
and f; such that p = fi-a-u+1and g = f5-b-v+ 1 are primes; let m = p-¢ and ran-
domly choose ¢ of order aubv in ZZ,. The private key is SK = (p1, ..., Do, P, q),
the public key is PK = (0,9, m).

Encryptpk (z) : for x € Z,, randomly choose r € Z,, and encrypt x as ¢ = Epg(z) =
r? - g* mod m.

Decryptsk(c) : let ¢ = (p — 1)(q¢ — 1), ¢; = ¢?’P mod m and recover, by exhaustive
search (p; is small), x; mod p; such that x; = log o/, (¢;) mod m. Finally recon-
struct « with the Chinese remaindering, + = CRT ({x;,p;}) mod o.

For the rest of this chapter, cleartexts will be elements of Z, while elements are
elements of Z,,. As o is shared by all players, the cleartext space is the same for all
the players and we will hence denote this common message space by M. However,
there is a distinct modulus Z,, for each player, otherwise they would have to share
their private keys. Consequently, each player has their own ciphertext space, which
we will denote by Cp. A plain text matrix then has coefficients in M but in a layout
where each row is encrypted using a different key pk;, its encryption is no longer a
matrix but a sequence of rows over distinct rings Z,,[pk;]. We will abusively refer to
this ciphered data as the ciphered matrix. Finally, for a key sequence K and a matrix
A over M, the ciphered matrix obtained by encrypting row i of A by K7i] is denoted
by {A} k. Row i of { A}k is over Cky;).

1. Preliminaries 121

Multiparty protocols security

Here, we recall some widely used notations and results for the security of multiparty
protocols.

Definition 4.1.4 ((Goldreich, 2004)). Let f be a n-ary functionality, where f;(x1, ..., ;)
denotes the i element of f(x1,...,x,). For I = {iy,...,i;} = [n] = {1,...,n}, we denote
by fi(z1, ..., xy,) the subsequence f;, (z1,....,xpn), oy fi,(T1, ..y). Welet xp = (4, ..., ;).
Let II be a n-party protocol for computing f. The view of the i*" party during an ex-
ecution of Il on T = (z1,...,x,) is denoted view, (Z), and for I, we let view}] () =
(1, viewg (T), ...,viewg(f)). We say that 11 securely computes f if there exist a proba-
bilistic polynomial time algorithm, such that, with S a simulator for 11, for every I — [n]:

{S1((z1), f1(Z)), f(@)}= £ {view}(Z), output™(Z) }, where £ denotes the computational
indistinguishability between two ensembles.

Definition 4.1.5. Let fi, ..., fyu) be functionalities, and let II be a protocol. We say that
the protocol 11 is executed in the fi, ..., fyn)-hybrid mode if 11 uses ideal calls to a trusted

party to compute fi, ..., [pn)-

Theorem 4.1.6 (from (Lindell, 2017)). Let p(n) be a polynomial, let fi,..., fym) be
functionalities, and let 7y, ..., T, be protocols such that each 7; securely computes f; in
the presence of semi-honest adversaries. Let g be a functionality, and let 11 be a protocol
that securely computes g in the fi, ..., fpm)-hybrid model. Then, the protocol 1™ 7e(m)
securely computes g in presence of semi-honest adversaries.

We will also need a function, which, given a small input is able to securely and
deterministically produce a stream of uniformly generated random values. We will
achieve this by using classical mask generation functions, as defined in (Kaliski and
Staddon, 1998, Section 10.2): a function which takes two parameters, a seed s and a
length [and returns a random string of length [. We will then split the output string
in as many fragments as needed, and use each of these fragments as a mask. Such
function achieve an output indistinguishable property: if the seed is unknown, it is
impossible to distinguish between the output of a mask generation function and a truly
random string. Such secure functions exist, see for instance the one given in (Kaliski
and Staddon, 1998) and in what follows, we will denote by MGF any function that
have the aforementioned security properties. Finally, for the rest of this chapter, our
functionalities follow the input/output specification described in the protocols they
realize.

Relaxing an existing algorithm: YTP-SS

The matrix multiplication algorithm using the secure dot-product protocol

YTP-SS (Dumas et al., 2017a, Algorithm 15) is secure against semi-honest adversaries
over insecure communication channels. In order to analyse the difference with our
proposition, MP-SW, we extract here the core of the former protocol, i.e., without

122 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

the securization of the channel (that is we remove the protection of the players private
elements by random values, and the final communications to derandomize the results).
The resulting simplification is called MP-PDP and its costs are given in Theorem 4.1.7.
More details can be found in (Dumas et al., 2017a, Algorithm 15)

Theorem 4.1.7. For n players, (Dumas et al., 2017a, Algorithm 15), without the channel
securization, requires 2(n — 1) communications. When used to compute a classical matrix
product, it requires n® + n(n — 1) operations overall.

Toolbox
Initialization Phase

Before the actual computation, the involved parties need to agree on the location and
key sequences they will use, generate their key pairs, share their associated public
keys, cipher their input data and communicate it where needed. Parties know their
identifier, which is the index of the row they own, and use Equation (4.1.1) to compute
the location/key sequences. SW-Setup shows how the input data is initially ciphered
and dispatched: each party, identified as P;,i € {1..N} starts with the i-th row of A
and B, and, after generating its own key pair, ciphers its row according to the key
sequence.

Finally, the protocol sends the ciphered row to the party hosting this row, desig-
nated by the location sequence. For input matrices of size N, SW-Setup requires 2N
communications.

Multiparty copy

In the various subroutines that compose our algorithm, we will often need to copy
and recipher a vector from one Party to another following location and key sequences.
This is done by masking and decryption, as shown in MP-Copy. For a given ciphered
element = hosted by Bob and encrypted for Dan, to its new location at Alice and
encrypted for Charlie. A schematic version of this protocol focusing on data exchanges
is given in Figure 4.2. Here, Dan is in charge of performing the decryption and the
re-encryption of the element. To prevent Dan from learning the value of z, Bob masks
it additively with a random value. Bob therefore needs to clear out this random mask
on the value re-encrypted by Dan, with Charlie’s key, before sending it to Alice. This
protocol uses a total of 3 communications.

Classical Matrix Multiplication base case

We describe in this section an algorithm to perform classical matrix multiplications in
the data and encryption layout of Definition 4.1.2. It consists in n? scalar products
in which, products of elements a,; of A by elements b, ; of B are performed using

. Toolbox 123

Protocol 4.1: SW-Setup

Input: Two N x N matrices A and B over M, where N = b2¢, such that party
P, knows the i-th row of A and the i-th row B for all i € {1..N}. A location and
a key sequence L € {1.N}" and K € {1..N}¥ such that (L, K, L, K) form an
(-recursive data layout, following Definition 4.1.2. All parties know a security
parameter \.
Output: For all i € {1..N}, party Pp; learns vectors {a; .} k[and {b; .}k and
learns the public key of every other party.
Goal: Generate key pairs for each party, cipher and distribute input matrices
according to their respective location and key sequences.
1. Key generation: for all i € {1..N}, each party P, locally
executes NaccacheSternSetup(lA) to generate a pair of keys (pk;, sk;).
2. Broadcast keys: for all i € {1..N}, party P, broadcasts its public key pk;.
3. Cipher inputs: for all i € {1..N}, for all j € [n], party P; locally performs
NaccacheSternEncrypt (pkkp, a;;) and stores the result as a new vector
{ai«}kp- It does the exact same operation with b; . to get {b; .} k[i]-
4. Distribute rows:
a) Rows of A: for all i € {1..N}, party P, sends {a; .} x[;) to party Pr;.
b) Rows of B: for all i € {1..N}, party P, sends {b; «} x[; to party Pr;.

Protocol 4.2: MP-Copy

Input: Four parties, Alice, Bob, Charlie and Dan. Bob knows a ciphered element
{z}p € Cp (for x € M), ciphered using Dan’s public key.
Output: Alice learns the element {z}, ciphered using Charlie’s public key.
Goal: Recipher from Dan to Charlie and transfer from Bob to Alice.
1. Add masking
a) Random: Bob samples uniformly at random r € M
b) Mask: Bob locally computes o = {z}p - ¢" = {x +r}p € Cp
¢) Communication: Bob sends « to Dan.
2. Recipher:
a) Decipher: Dan computes 3 = NaccacheSternDecrypt(skp,a) = = +
re M.
b) Cipher: Dan computes vy = NaccacheSternEncrypt(pkc, 8) € Cc.
¢) Communication: Dan sends v to Bob.
3. Remove masking:
a) Unmask: Bob locally computes 6 = v ¢~ = {z}c € Co
b) Communication: Bob sends ¢ to Alice.

124 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

B = Dp(a)
v = Ec(B)
Jnowy = (e +rie s/
5=~ x Eo(—r)
/x=now § = {x}c*/
o

Figure 4.2: MP-Copy : Multiparty copy

the homomorphic multiplication between a ciphertext and a plaintext: {aiyk}?fg =
{ai bk ;}Pr, where PK is the public key that has been used to cipher the element.
Therefore, the coefficient b, ; should first be deciphered, and to avoid leaking informa-
tion, it should also be masked beforehand by some random value.

MaskAndDecrypt takes care of masking and deciphering a whole column of B. There,
player Charlie is the only one able to decrypt the masked value 5y ; = {bx; + ti}c-
For this we require a stream of uniformly random values ¢, ;, that can be sent. To
reduce communications, we here instead use a mask generating function (MGF) that
generates this stream from a small seed. Then only the seed need to be communicated
to remove the mask. All players have of course to agree beforehand on a choice for
this mask generating function.

PointwiseProducts shows how player Alice can then recover the ciphertext of one
product {a; by ;}p. Alice sends her value {a; s} p to player Charlie who then performs
the exponentiation, corresponding to a multiplication on the plaintexts, and sends
it back to Alice. Meanwhile Alice has received the seed and generated the masking
values ¢ ; to clean out the product. Finally each coefficient {c; ;}p of the result is
computed during a reduction step where player Alice simply multiplies together all
corresponding point-wise products.

Overall, BaseCase schedules these three operations. In the calls to Protocols MaskAnd-
Decrypt and PointwiseProducts, Alice is incarnated by Player Py, ,[;, Bob by Py (x, Char-

. Toolbox 125

Protocol 4.3: MaskAndDecrypt

Input: Two parties, further denoted as Bob and Charlie. They both know their
own private key, public keys of all the parties involved, the security parameter
A € N and the modulus m € N. Moreover, Bob knows a seed s, € N and a ci-
phered vector of size n, {y . }c, whose elements (b, ;) € M"™ have been ciphered
using Charlie’s public key.
Output: Charlie learns the additively masked plaintext of Bob’s input vector.
Goal: Perform the additive masking of Bob’s input vector, and let Charlie learn
it.
1. Mask Bob’s input:
a) Generate randoms: Bob performs MGF(s;, bitsize(c) xn) and splits
the output in n shares of size bitsize(c), denoted as ¢, ; for j € {1..n}.
b) Mask vector: for j € {1..n}, Bob computes Sy ; = {bx;}c - g™ € Cc.
¢) Communication: for j € {1..n}, Bob sends j; ; to Charlie.
2. Finalise:
a) Decipher: for 4 € {1..n}, Charlie performs
NaccacheSternDecrypt(skc, [i;) and stores the results in
Ug,; = ka + iy € M.

Protocol 4.4: PointwiseProducts

Input: Four parties, further denoted as Alice, Bob, Charlie and Dan. Alice knows
a ciphered {a;,}p € Cp for given ¢ and k, ciphered using Dan’s public key. Bob
knows a seed s, € N and Charlie knows a masked vector (u.) € M™ (each
coefficient is masked by a random value).
Output: Alice learns all the ciphertexts {a; xby ;} p for j € {1..n}.
Goal: Compute the point-wise products for naive matrix product on a given row.
1. Communication: Alice sends {a;}p to Charlie
2. Multiplication: for j € {1..n}, Charlie computes &; . ; = {a;x} ", dix; € Cp
3. Communication: for j € {1..n}, Charlie sends ¢, ; to Alice.
4. Send seed: Bob sends s;, to Alice
5. Generate and remove masks: Alice performs MGF(sy, bitsize(c) xn) and
splits the output in n shares of size o, denoted as ¢, ; for j € {1..n}.

For j € {1..n}, Alice computes:

€ikj = Oikj/ ({ai,k}%’j) = {aix(br,; + tr;) — airte;}p € Co.

126 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

lie by Pg) and Dan by Py ;.

Protocol 4.5: BaseCase

Input: two n x n matrices {A}x, and {B}k, distributed and ciphered accord-

ing to a base-case data layout (L4, K4, Lp,Kp) € ({1.N}")* among parties

(Py, ..., Py) as in Definition 4.1.2.

Output: Matrix C = A x B is distributed and ciphered among parties

(Py, ..., Py) according to the location and key sequences (L a, K).

Goal: Compute C = A x B distributed and ciphered in the same way as A is.
1. Computation:

For all k € {1..n}

a) Choose a seed: Party P, samples uniformly at random a seed
sk € N according to the security parameter .
b) Parties PLB[k] and Py, run MaskAndDecrypt on vector {by
c) Forallie {l1..n}
Parties Pr,p, Prous Prgp and Pk, run PointwiseProdqcts
where Parties S learn €;1; = {a;1br;}x,p for all j e

{1..n}.

2. Reduction: for all i € {1..n} Party P, computes {¢;;}x,, < [[5=; €ikj

Theorem 4.2.1. BaseCase correctly computes the product C = A x B in the specified
layout. It requires a communication of n® + 3n* + n modular integers.

Proof. Correctness stems first from the fact that ¢;; = >, a;4bi; is obtained “in
the exponents” by the homomorphic properties (4). Second the masks applied in
MaskAndDecrypt are all removed in PointwiseProducts. Now, the communication cost
in number of ring element is n for MaskAndDecrypt and n + 1 for PointwiseProducts.
MaskAndDecrypt and PointwiseProducts also send one seed, which, for simplicity, we
consider smaller than a modular integer. Overall this yields a communication cost
lower than n(n + 1) + n*(n + 2) = n® + 3n? + n modular integers for BaseCase. O

As an illustration,we give in Figure 4.3 an illustration of the scheduling of BaseCase
in a scenario with 4 players.

Security Analysis

From the formalization of the different protocols we can state the security of the over-
all base case for matrix multiplication in the following Theorem 4.2.2.

Theorem 4.2.2. If players share a 0-data-layout, BaseCase is secure against one semi-
honest adversary.

2. Toolbox 127

Alice (Ay) Bob (A,) Charlie (By) Dan (By)
Input: {ai,1}4,, {012} 4, {ag1}a,, {az2}a, {b1.1} By {b2.1} B,
random s; random s,

t11 = MGF(sy).next() to1 = MGF(sg).next()

Br1 = {bia}y) Bax = {baa}s)
Bia
Ba
ug1 = Dp,(Ba21) w1 = Dp,(B11)
S1
t11 = MGF(s1).next() {ar1}a
B 2
51,1,1 = {al,l}:zl
- 0111
€111 = 0p1
S1
t11 = MGF(s1).next()
{az1}a,
52,1,1 = {a2,1}:11'1
i 02,11
€211 = 011
52
ta1 = MGE(sg).next() {a12}a
3 2
121 = {ar}y)’
d121 i1
€121 1,2,1

52
ta1 = MGF(sg).next()

{az2}a,

do01 = {ago}">?

51 02,21
€221 =05

{Cl,l}A2 =¢€1,1,1 X €121 {02,1}A2 = €211 X €221

Output: {a;1b11 + a12b22} 4, {ag1b11 + a22b22}a, — —

Figure 4.3: BaseCase protocol execution with 4 players

128 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

Proof. We start by proving that both subprotocols MaskAndDecrypt (M & D) and Point-
wiseProducts (PW P) are secure against one semi-honest adversary.

Security of MaskAndDecrypt

MaskAndDecrypt is a 2-party protocol such that: output™*?(({by}p,,51),—) = (—, u1),
with by = by, 51 = sk, and u; = {ugj}jeq1.n). The proof is then divided in two parts:
one for each corruption case. We labeled P, the player providing the seeds as input.

Py is corrupted: the view of P, is: view},“” = (¢1,3;). From the inputs of P, the
simulator is able to perfectly simulate the view of P;.

P, is corrupted: the view of P, is: view}[“” = (B;). From the output u, of P,

the simulator S, ciphers each of its elements with the key of P,. From the IND-CPA
security, the simulated view is computationally indistinguishable from the real one.

Security of PointwiseProducts

PointwiseProducts is a 4-party protocol. However, the 4" player does not have any
input nor output: only its public key is used. In the same vein, P, only sends s,
and does not interact otherwise. Its view is empty, so that its simulator is trivial.
Therefore, the proof is only divided in two parts. The output of the protocol is:

OUtPUtPWP({a1}P4, 9, Uk, —) = (€, —, —, —) witha; = Qi Wi = Up,x and € = {Ei,k,j}je{l..n}-
P, is corrupted: the view of P, is: view}"” = (s2,1,681). The simulator S; picks

sh & N and computes t; as in the protocol. Then, from the output € and the input

{a1}p,, it computes §’ = € = {aLl}ﬁ.E4 component wise. Since the § values are ciphered
with the key of P, and that s; is a random value, both views are indistinguishable.

Py is corrupted: we have viewE" " = ({a;}p,, 61). Ss: a < M, then the value is
ciphered with the public key of P, to obtain {a}}p,. Next, it computes] as in protocol
using the simulated value {a}}p,. This simulation is computationally indistinguishable
from the real view thanks to the IND-CPA security of the cryptosystem.

We denote by FM&D (respectively FPWF) the ideal functionalities associated to
MaskAndDecrypt (resp. PointwiseProducts). We will now prove that if players shares a 0-
data-layout, BaseCase is secure against one semi-honest adversary in the (FM&P pPWF).
hybrid model.

Security of BaseCase

BaseCase is am N-party protocol, where the view depends on which group the player
belongs. Since players share a 0-data-layout, there are four distinct possibilities:
{La,Ka,Lp, Kg}. The cases where Py, or Pp,[; is corrupted are trivial, since their
respective view are empty in the (FM¢P FPWP) hybrid model.

3. Multiparty Strassen-Winograd 129

Pr 1 is corrupted: the view of Pr,p; is: view]'ijs:[f]ase = ({€}Pk,[j) where ¢; is
the output of a call to F”WP. The simulator S; executes: for each k € {1..N}: from
BaseCase output in the ideal world, it picks N — 1 random shares in M (denoted
€;,i € {1.N — 1}), and ciphers them using Pk, [i]. Then, it chooses the last share
¢ such that: ¢, « [[1_} €. If €, belongs to Cx app» then it outputs each component of
€/, otherwise it redoes the process from the beginning for the k' step. The definition
of the data layout ensures that Py ,;; # Pk,[;, S0 that ¢; and € are indistinguishable
as long as the encryption scheme is IND-CPA. Moreover, since the choice of each
share is consistent with the output of the protocol (i.e., their product is equal to the
output), the adversary is not able to computationally distinguish between the real and

the simulated execution.

Pr.1 is corrupted: the view of Prp; is: {view}%jsljg]ase = (u)}. The output of
the protocol is empty for this player. The simulator picks n random values from M,
andoutputs each of them to form w’. In the real world, each u; is masked by a random
value (unknown by P ;) since Pp ;) # Pg,p), so that u; and v are then perfectly
indistinguishable.

Finally, we apply the composition Theorem 4.1.6: since we have proven the secu-
rity of BaseCase in the (FM*P FPWP) hybrid model, and that PointwiseProducts and
MaskAndDecrypt are secure, and that each call to both of these protocols are sequen-
tially made, we conclude that BaseCase is secure against one semi-honest adversary.
Moreover, the 0-data layout ensures that the seed sharing does not leak informa-

tion. O

Multiparty Strassen-Winograd

Operation schedule in MP-SW

The 22 operations in a recursive step of Strassen-Winograd’s algorithm is composed by
15 matrix additions and 7 recursive calls. The matrix additions are performed using
component-wise homomorphic additions, denoted by Hom-Mat-Add: each player per-
forms locally a simple homomorphic addition of the rows of the two input operands
that she stores. Homomorphic subtraction, denoted by Hom-Mat-Sub, works similarly.
However, this requires that the two operands share the same key and location se-
quences. To ensure this, some matrices will be copied from one key-location sequence
to another, using a multiparty matrix copy, denoted by MP-Mat-Copy. The location se-
quences of the input an output are non-intersecting (and therefore so are the related
key sequences). These operations are achieved by n? instances of MP-Copy as shown
in MP-Mat-Copy.

Theorem 4.3.1. Assuming an (-data layout, Protocol MP-Mat-Copy is secure against one
semi-honest adversary.

130 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

Protocol 4.6: MP-Mat-Copy

Input: An n x n matrix {A}, distributed and ciphered according to a location
and a key sequence (La, K4) € ({1..N}")? among parties (P,..., Py) follow-
ing Definition 4.1.2 and a location-key sequence (L, K”).

Output: A copy {A}y is distributed and ciphered among parties (Fy,..., Py)
according to the location and key sequences (L', K').

For all i, j € {1..n}?
Parties Pp(;, Prp), Prrip and P run MP-Copy to copy {a;;}k[; to
{aig} i

We only give a sketch of the proof, since its very similar to the one for the MaskAnd-
Decrypt protocol within the proof of Theorem 4.2.2.

Proof. First, we prove that MP-Copy is secure against one semi-honest adversary: from
the data layout or the added randomness, each players only see ciphers or additively
masked values so that it does not lean anything from the execution. Then, we prove
the security in an hybrid model where calls to MP-Copy are replaced by an equivalent
ideal functionality. Since the output is ciphered accordingly to the data layout, a
simulation by ciphering random values is computationally indistinguishable from the
real execution. Finally, by sequentially composing calls to the MP-Copy protocol, we
apply the sequential composition theorem to conclude. O

We propose in MP-SW a scheduling of these operations and data movement en-
suring that all additions can be made homomorphically, that the key and location
sequences for all seven recursive calls satisfy the requirements for a base-case data-
layout (Definition 4.1.2) and finally that the output matrix also follows the location
and key sequences of the first operand. The last three columns in MP-SW indicate the
location sequences of the input and output operands for each operation.

Figure 4.4 also presents the data exchange between groups of players in one recur-
sive level of MP-SW.

Note that the initial problem requires that both operands A and B share the same
key and location sequences (so that matrix squaring is possible). However, the base
case protocol (BaseCase) requires that these sequences are non-intersecting. In order
to satisfy these two constraints the recursive Strassen-Winograd algorithm is presented
with a location and key sequence for A (L4 and K 4) and a location and key sequence
for B (Lp and Kp). The algorithm does not require that they are non intersecting,
but ensures that from the first recursive call, they will always be, so as to fit with the
requirement of the base case, BaseCase.

Lemma 4.3.2. The total communication cost of a recursive level of MP-SW following the
schedule defined MP-SW, Step 2 is 18 (%)2 communications.

3. Multiparty Strassen-Winograd

131

Protocol 4.7: MP-SW

Input: two n x n matrices {A}x, and {B}f,, distributed and ciphered accord-
ing to an (-recursive data layout (L4, K4, Lg, Kg) € ({1..N}")* among parties
(Py,..., Py) following Definition 4.1.2, where n = b2°.

Output: {C}x, = {A x B}g,, distributed and ciphered among parties
(Py,. .., Py) according to the location and key sequences (L 4, K).
1. If ¢ = 0: Parties in (La, Ka) and (Lp, Kp) run BaseCase on {A}x, and
{B}KB
2. Else
Inl loc. In2loc. Out loc.
{Sl}KAL «— Hom—Mat—Add ({A21}KAL7 {AQQ}KAL) LAL LAL LAL
{Alll}KAL <~ MP'Mat'COpy ({All}KAU7 (LAL’KAL)) LAU LAL
{S2}k,, <« Hom-Mat-Sub ({Si}k,,, {Aulx.,) La, La, La,
{S3}KAL < Hom-Mat-Sub ({AIII}KAL7 {A21}KAL) LAL LAL LAL
{Sé}KAU < MP-Mat-Copy ({52}KAL7 (LAU7KAU)) La, La,
{S4}KAU «— Hom—Mat—Sub ({A12}KAU7 {SQ}KAU) LAU LAU LAU
{Tl}KBU <« Hom—Mat—Sub ({312}KBU7 {Bll}KBU) LBU LBU LBU
{Bé2}KBU - MP-Mat-Copy ({B22}KBL7 (LBU’KBU)) LBL LBU
{TQ}KBU « Hom-Mat-Sub ({Bé2}KBUv {Tl}KBU) Lp, Lp, Lp,
{3}k, <« Hom-Mat-Sub ({Bi}ky,, {Bi2}rg,) Lg, Lg, Lg,
{Bél}KBU - MP—Mat—Copy ({321}KBL7 (LBU7 KBU)) LBL LBU
{T4}KBU < Hom-Mat-Sub ({TQ}KBL,v {Bél}KBU) LBU LBU LBU
{Ritk,, <« MP-SW ({Altka,, {Bulks,) La, Lp, La,
{Ro}i,, <« MP-SW ({Aw2}ka,. {Batxks,) Lay Lg, La,
{Rs}ka, < MP-SW ({Sitka,, {(Bxlks,) La, Lg, La,
{Ritk,, <« MP-SW ({A2tra, . {Titkg,) La, Lp, La,
{R5}KAL — MP-SW ({Sl}KAL7 {TI}KBU) La, LBU La,
{Re}x,, <« MP-SW ({Sotra,, {Tolig,) La, Lp, La,
{R7}KAL — MP-SW ({53}KAL7 {T3}KBU) La, Lp, La,
{Rll}KAU — MP-Mat-Copy ({RI}KAL) (LAU7 KAU)) La, Lay,
{Ul}KAU <~ Hom-Mat-Add ({RII}KAuv {RZ}KAU) LAU LAU LAU
{UQ}KAL <~ Hom-Mat-Add ({Rl}KAL7 {Rﬁ}KAL) LAL LAL LAL
{U3}KAL «— Hom-Mat-Add ({UQ}KAL7 {R7}KAL) LAL LAL LAL
{U4}KAL <« Hom-Mat-Add ({UQ}KAL7 {R5}KAL) LAL LAL LAL
{Uﬁi}KAU < MP-Mat-Copy ({U4}KAL7 (LAU7KAU)) LAL LAU
{Ustk,, <« Hom-Mat-Add ({Uilk,,. {(Rslxa,) La, La, La,
{U@}KAL <~ Hom-Mat-Sub ({Ug}}(AL7 {R4}KAL) LAL LAL LAL
{Ur}ka, < Hom-Mat-Add ({Usjk,,, {Rsik,,) La, La, La,

{Uitka, {Uslka,

3. End result {C}x, < l{UG}K {Ur}ka
A %

132 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

La, La, Lg, Lg,
{An}, {Aw} {An}, {An} {Bu},{B12} {Bx},{Bx}
{Si}a, {T1}B,
A (S (Te (D), A
(50}, =2l (T, — 2202
_______________ (Ripp — Bule
(Rl Eale,
(Rl Bee,
(Riba, {T4}B,
(R}a, {T\}B,
(Roba, —— 22
(Rila, {Ts}B,
B L
{Uz}a,:{Us}a,, {Us}a,
(Usta, {Ui}a,
{Us}a, {Ur}a,

Figure 4.4: Protocol for Strassen-Winograd algorithm. Each column represents one of
the four sub-group of players where the submatrices Ay, A, By, By, are
stored.

3. Multiparty Strassen-Winograd 133

Proof. The only communication are that of the 6 calls to MP-Mat-Copy, each account-
ing for 3(n/2)? communication. O

Finally, our main security result is that of the following Theorem 4.3.3.

Theorem 4.3.3. Assuming an (-data layout, MP-SW is secure against one semi-honest
adversary.

Proof. First, we prove that MP-SW is secure in the [-52Cose, Cory FRIESW.hybrid model,
where [BaseCase, rCorv and FN1ESY respectively denotes the ideal functionality associ-
ated to BaseCase, MP-Mat-Copy, and MP-SW with N /2 players. In this model, calls
to MP-Mat-Copy are replaced by ideals calls to F“°?Y, In the same vein, if N < T,
the MP-SW calls are replaced by F®2%**, or by F}li">"V otherwise. We need to prove
that for any corrupted player, its real view is indistinguishable from the simulated one.
From the inputs described as in MP-SW (implicit in the following), the outputs for
the player P, , are the rows of the following matrices, ciphered with Pk, |, with
X e {U,L}. output'\’IP *W(Uy, Us) and output'{PSW(Us, Uy). Using the same notatlons
we obtains the followmg views:

VIGW%I‘EUSW (5/27 S4, Rlv R2, R3, U,)

view "W = (8y, A}, S5, S3, R, Ry, Rs, Rg, Ry, Uz, Us, Us),

viewy, > = (T1, By,, Ty, Ts, T), viewy, > = () We construct a generic simulator,

where differences depending on the corrupted player are explicitly detailed. The simu-
lator Sieq1..vy takes two random matrices in o and 3 both in MW*N) Then, it replaces
the rows for the corrupted player with its actual inputs (i.e., the rows of A and B owned
by the corrupted player). The remaining coefficients are ciphered accordingly to the
data layout. The first part of the protocol (i.e. the computation of S; and T}, i € {1..4})
is simulated using the inputs and ideal calls to F“°?Y. This simulates the views for the
Lp cases. Then, there are two cases.

P, ., is corrupted: From the output, the simulator S, |, takes N /2 random values
from C AU to obtain the simulation of the row of Uy. T en it computes the row of
R3 = Hom Mat-Sub(Us, Uy). Similarly, it take the row R} at random, and computes
R; = Hom-Mat-Sub(Uy, R)).

Pr, ., is corrupted: Sp, , samples 3V/2 random values from C4,[;) to simulate
the row of U,, R; and R;. Next, it computes: Rg = Hom-Mat- Sub(Uz,Rl), Us =
Hom-Mat-Add(Us, R7), Ry = Hom-Mat-Sub(Us, Ug), Rs = Hom-Mat-Sub(Uz, Us and
U4 = Hom—Mat—Add(UQ, R5)

We now prove that the simulated view is indistinguishable from the real one. The
proof relies on a sequence of hybrid games, where each transition is based on indistin-
guishability.

Hy: The first game represents the view of a real protocol execution in the
(FCopy, prBaseCase [0 SW)-hybrid model.

H,: for each call to F'°°?Y, we replace the output of the functionality by random

numbers, accordingly ciphered with the data layout. i.e.: Vj € {1.N},r; & M and
{ri} iy With X € {A, By}. As only one player is corrupted, and (L4, K4, Lp, K) is

134 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

a l-recursive data layout which verifies (Lx, U Kx,)n (Lx, v Kx,) = &, X € {A, B},
then the player obtains ciphers which it cannot decipher. Then, the IND-CPA security
of the cryptosystem ensures that H, and H,; are indistinguishable.

H,: In this game, we replace the output obtained from: FBaCae if N < T; or
FyJ5>V otherwise; by the previously detailed simulation for the R;, i € {1..N}. From
the data layout, the corrupted player (£, , or P,) in the real case gets undeci-
pherable values that cannot be guessed from the inputs of the adversary (which knows
one row of each matrix in the worst case) so that the simulation is computationally

indistinguishable. Then, H, < Hi.

Hj: In this game, we replace the U; of the real view with the simulated ones Uj,
i € {2..4}. Each of the simulated values is directly computed from the output, so that
as long as the adversary is not able to distinguish ciphers, the simulation is computa-
tionally indistinguishable from the real execution.

Hj; represents the simulated view for N players. We have then proven that MP-SW
is secure against one semi-honest adversary in the (F“rv, BaseCase, pIIESW).-model.

Second, we prove that if we assume a [-data layout between the players, MP-SW is
secure against one semi-honest adversary under a sequential composition of the sub-
protocols MP-Mat-Copy and BaseCase. By induction, we suppose that MP-SW is secure
with N/2 players, and we show that MP-SW for N players.

Base Case : N < T. In this case, MP-SW calls are replaced by calls to BaseCase. By
construction, the data layout is now O-recursive. Then, the corrupted player cannot act
as more than one player in the execution, so that the security of the protocol against
one-semi honest is enough.

Induction : N > T. In this case, each call to MP-SW is assumed secure from the
induction hypothesis. Then, each of these calls can be sequentially realized.

Then, since all sub-protocols calls can be realized sequentially, and since we have
proven that MP-SW is secure in the F82sCes, fCorv, P SW.hybrid model, the sequen-
tial composition theorem ensures that the protocol obtained by composition is also
secure. Henceforth, by induction, we have proven that from F]'Q,/'/F;‘SW, we are able to
construct a secure execution of MP-SW. In conclusion, MP-SW is secure against one
semi-honest adversary. O

4.3.2 Finalisation step

Finally, there remains to decipher and distribute each row of {C'}, to the party who
has to learn it. By setting the key sequence to K4 = (1,2,3...) as in Lemma 4.1.3,
this player is able to perform the decryption himself. This finalisation step is formally
described in SW-Finalise and uses N? communications.

3. Multiparty Strassen-Winograd 135

Protocol 4.8: SW-Finalise

Input: An N x N matrix {C'} g, distributed and ciphered according to the lo-
cation and key sequences (L¢, K¢) € ({1..N}")? among parties Py, ..., Py, fol-
lowing Definition 4.1.1.
Output: Each party Pk, learns the plaintext of the i-th row of C'.
1. Exchange rows: For all i € {1..N}, party P, send row i of C to party
PKC[z‘] .
2. Decipher vector: For all i € {1..V}, for all j € {1..N}, party Pk, runs
NaccacheSternDecrypt(skix,, ({¢ij} ko)) and stores the output values

in a vector ¢k, € M".

i

Cost and security analysis

From Lemma 4.3.2 and Theorem 4.2.1, the recurrence relation for communication
complexity of MP-SW writes:

{ C(n) = 7C(2) +18(2)” forn > b 4.3.1)

C(b) = b+ 3b* + 0 for the base case

The threshold at which the recursive algorithm should switch to the base case algo-
rithm is set by finding at which dimension b does the base case algorithm start to
perform worse than one recursive level. In terms of communication cost, this means
the following equation: 7((2)% + 3(2)? + &) + 18(%)? = b* + 3b* + b which comes from
injecting the base case cost of Theorem 4.2.1 into the recurrence formula. It gives a
threshold of b = 56.

Theorem 4.3.4. For N = b2’ parties (P;);c(1. ny and two matrices A, B € M™*N, such
that party P, knows the i-th row of A and the i-th row B for all i € {1..N}, the exe-
cution in sequence of algorithms (SW-Setup; MP-SW; SW-Finalise), using the (-recursive
data layout of Equation (4.1.1), correctly computes C = A x B € M with O(7°b*) com-
munications in O({¢) rounds and is secure against one semi-honest adversary. When b is
constant, then ¢ = O(log,(N)), and the communication bound is O(N'"&2(7),

Proof. Correctness of MP-SW is given by Theorem 4.2.1 for the basecase and that
of Strassen-Winograd algorithm (Section 4.1.1). Then SW-Setup is just the set up
of the keys and initial encipherings, while SW-Finalise is the associated decipherings.
Then, the communication bound stems from Theorem 4.2.1 and Equation (4.3.1),
with 3N? communications for SW-Setup and SW-Finalise. The non-recursive parts of
each recursive level of MP-SW require a constant number of rounds, and so does
the execution of BaseCase, leading to a total of O(¢) rounds. For the security. again
SW-Setup is just the communication of public keys and self-ciphered values, while
SW-Finalise is also the communication of ciphered values to their legitimate locations.

136 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

Finally, Theorem 4.3.3 asserts the security of MP-SW and the sequential execution of
(SW-Setup; MP-SW; SW-Finalise) that of the whole process. O

We now compare the cost of MP-SW with the cost of MP-PDP, Cyp_ppp(n) = n® +
n(n — 1). We also recall that the initialization step SW-Setup costs Cip;; = 2n? and
the finalisation step SW-Finalise costs Cgna = n?. The crossover point where our full
algorithm improves over MP-PDP in communication cost is obtained by solving the
equation: C(n) + 3n* < n® + n(n — 1) which yields n > 94, with one recursive call.
This means that for any instance of dimension larger than 96, the proposed MP-SW
algorithm has a better communication cost than MP-PDP.

Experiments

We implemented the algorithms under study to demonstrate their behavior in prac-
tice and compared them to the state of the art implementations of other solutions.
In the following SPDZ,: refers to a run of a textbook matrix multiplication algorithm
performed with the general purpose library SPDZ,. (Cramer et al.)?, YTP-SS refers to
n? applications of (Dumas et al., 2017a, Algorithm 15); MP-PDP refers the relaxation
and improvement of this algorithm to the current setting; MP-SW refers to our im-
plementation of MP-SW using BaseCase as a basecase with threshold set to n = 56.
The Naccache-Stern cryptosystem is set with public keys of size 2048 bits and message
space of 224 bits (using 14 primes of 16 bits).

Please note that, while MP-PDP and MP-SW share the same security model, YTP-SS
and SPDZ,. achieve better security: malicious adversaries over insecure channels.
Also, SPDZ,: uses a different approach based on oblivious transfer and secret shar-
ing. However, as they were the only state of the art implementations available, we still
chose to include them in our comparisons.

Figure 4.5 presents the volume of communication performed by these four variants.
Communication-wise, for n = 100 players, MP-SW is 4% cheaper than MP-PDP (271 vs.
261 MB), but becomes 24% cheaper for n = 400 (15.3 vs. 11.7 GB) and up to 27.8% for
n = 528 (35.2 vs. 25.4 GB). Note that the cross-over point of n = 96 between MP-PDP
and MP-SW is confirmed experimentally. For SPDZ,., computations were performed
for small matrices only because of computational power requirements: on a worksta-
tion with 16 GB of RAM and an Intel i5-7300U @2.60GHz, computations stalled for
any matrices larger than 37 x 37.

To reach this communication improvement, the price to pay is that of some compu-
tational slowdown, as shown in Table 4.2

Finally, as there is same order of magnitude for the computational cost and the
communication cost, communications should be largely dominant. Therefore, the im-
provement in communication volume is the one that matters.

Shttps://github.com/bristolcrypto/SPDZ-2

https://github.com/bristolcrypto/SPDZ-2

5. Variant of MP-SW using proxy re-encryption 137

0 102030405060 70 0O 100 200 300 400 500
Matrix order Matrix order

m
S 0.45 — 50
v 04 SPDZ-2 (2) /J45 |
035 —= YIP-8S (1) / 140 . yTP-SS
S 03] MP-PDP 738 -
0.25 |- 4V
= —— MP:SW 25 L —— MP-S
S 02} 450 |
g 0.15 |- 15 L
a 0.1+ 10 L
g 0.05 // 51
E O T | | | O
o
O

Figure 4.5: Comparing communication volume for multiparty matrix multiplications

Table 4.2: Computation time (in s) per player of Multiparty Strassen-Winograd MP-SW
compared to MP-PDP on an Intel Xeon E7-8860 2.2Ghz.

Key size 1024 2048
n 16 32 64 16 32 64

MP-PDP 0.58 2.68 11.01 | 4.54 18.05 69.80

MP-SW 2.87 6.19 13.27 | 23.63 49.22 196.24

Variant of MP-SW using proxy re-encryption

In this section we show how the use of proxy re-encryption schemes can improve
the communication cost of MP-SW. Proxy re-encryption, abriged proxy in the rest of
this document, are cryptosystems which allow to convert a ciphertext for one key
into the same ciphertext but for another key. Formally introduced by Blaze et al. in
(Blaze et al., 1998), the initial definition of a proxy involved the use of a trusted
third party which is entrusted with a so-called proxy key allowing it to perform the re-
encryption. While the original proxy scheme (Blaze et al., 1998, Section 3) was based
on ElGamal encryption, techniques evolved as new needs arose, and modern proxy
protocols with more properties (for instance the unidirectionality of the proxy function
or the resistance to collusion) were developed (see for instance (Ateniese et al., 2006),
(Green and Ateniese, 2007), (Ivan and Dodis, 2003), (Hohenberger et al., 2007)).
However, these new approaches are usually based on expensive cryptographic tools,
as pairings.

The main tool we use for all the recursive phases of MP-SW, MP-Copy is actually a
proxy scheme in disguise: (reusing the naming conventions of MP-Copy), its goal is
to recipher an element owned by Bob and protected with Dan’s key to Charlie’s key
and send it to Alice. In order to save some communications, we propose to use proxy
re-encryption instead of the masking and reciphering technique proposed in MP-Copy.

Given our security model, we can use one of the less expensive proxy solutions avail-

138 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

able and we will hence use the aforementioned Blaze et al. proxy scheme. However,
the native ElGamal cryptosystem used in this scheme requires that ciphered elements
remain small in order to be deciphered. As we extensively use random masking tech-
niques, particularly in our BaseCase protocol, ensuring this requirement is not possible.
While picking small masks is an option, thus limiting the growth of ciphered elements,
it would however compromise the security of our protocol, as players would be able
to tackle discrete logarithm computations on these new small ciphertexts.

We instead propose to rely on a variant by Castagnos and Laguillaumie (Castagnos
and Laguillaumie, 2015). This cipher is a variant of the homomorphically additive
ElGamal, which circumvents the main drawback of the vanilla additive ElGamal (hav-
ing to solve a discrete logarithm to perform a decryption) by taking the plaintext in a
subgroup where the discrete logarithm problem is less expensive to solve. This variant
also allows unbounded additive homomorphic operations.

Castagnos-Laguillaumie cryptosystem sets up as follows:

Setup(1*,1#) : let u be an integer, and B, n, p, s four integers such that s in an \-bit
integer, p is a p-bit integer, p and s are coprime, n = p x s and B is an upper
bound for s. Let GG be a cyclic group of order n and generator g, F' < G a group
of order p and generator f. Pick x & {0,...,Bp — 1} and compute h = g*. The
public key is PK = (B, p, g, h, f) and the secret key is SK = z.

Encryptpi(m) : for m € Z,, pick r & {0,...,Bp—1} and compute ¢; = g",co = f"h'.
The ciphered message is ¢ = (cy, ¢2).

Decryptsk(c) : Compute M = cy/c}, which gives M = f™. Use an algorithm

Solve(p, g, f,G, F, M)
to compute the discrete logarithm f™ and recover the message m.

This cryptosystem supports the same homomorphic operations as Naccache-Stern
and thus can be used in MP-SW. The interested reader may refer to (Castagnos and
Laguillaumie, 2015, Section 3) for details on G and F' groups and on the Solve algo-
rithm. In Blaze et al. scheme, proxy keys are a quotient of players’ secret keys. While
it is possible to adapt Castagnos-Laguillaumie scheme to fit this specification, it does
require to restrain the choice of secret keys to invertible elements, thus modifying the
security of the scheme. Instead, we propose to create a proxy key from a difference
of players’ secret keys: given two players, A with secret key sk and B with secret key
skp, the key enabling recipher from A to B, I14_, is skg — ska.

This allows to use an unmodified version of Castagnos-Laguillaumie: with the same
notations as above, a ciphertext using A’s key would be (¢, ¢2) = (¢%, fi'g'+*). Then,

reciphering this cipher for B requires to perform: c, « ¢, x {48 = frgiFa x
gg(”_“) = f7g"’F. As this multiparty use of Castagnos-Laguillaumie would require

to remember which player first ciphered an element in order to know which subgroup
and generator to use for discrete logarithm computation, we propose that all players
share the same subgroup and generator, respectively denoted as £’ and f.

5. Variant of MP-SW using proxy re-encryption 139

Description of the new protocol

In the original Blaze et al. proxy scheme, proxy entities were trusted third parties. This
setting is not desirable here, as it would mean extra communications in order to send
and recover data from the proxy, and as we chose to not rely on trusted entities anyway.
The data repartition we have in Strassen-Winograd, alongside the regularity of the
algorithm allows us to predict the list of players for which a given player will need to
perform copy operations for throughout the protocol. This means we can ensure that
there will always be a player able to take the role of a proxy without compromising the
security, and we thus propose that players play the role of proxies instead of invoking
trusted third parties. We then need a new protocol which allows players to craft their
proxy keys in a secure way: players cannot learn any information on the secret keys
of the others’ secret keys. We consider three players Alice, Bob and Charlie, where
Charlie needs to learn the proxy key I, ., Bob first ciphers his private key with
Charlie’s public key and sends the result to Alice. Using homomorphic properties of
Castagnos-Laguillaumie cryptosystem, she computes a ciphered skp — sk, and sends
it to Charlie, who then deciphers it and only learns the proxy key. ProxyKeyGen gives a
formal description of this proxy key generation.

Protocol 4.9: ProxyKeyGen

Input: Three parties, further denoted as Alice, Bob and Charlie. They both
know their own private key and the public keys of all the parties involved.
Output: Charlie learns the proxy key allowing to transform a cipher for Alice
into a cipher for Bob.

Goal: Perform the difference between Bob’s secret key and Alice’s secret key.

1. Cipher Bob’s secret key: Bob performs
CastagnosLaguillaumieEncrypt(pkc, skp) and stores the result in
{3 kg }Skc C

2. Communication: Bob sends {skp}. to Alice.

3. Cipher Alice’s secret key: Alice performs
CastagnosLaguillaumieEncrypt(pkc, -ska) and stores the result in
{SkA}Sk’c‘

4. Proxy key generation: Alice performs {skp}sr. % {—Ska}ske-

5. Communication: Alice sends {skp — ska}sk. to Charlie.

6. Decipher: Charlie performs CastagnosLaguillaumieDecrypt(skc, {skp —

ska}sk.) and learns skp — ska.

Theorem 4.5.1. ProxyKeyGen is secure against one semi-honest adversary.

Proof. Players Alice and Bob only see ciphered elements so they do not learn anything
from the execution. As the output of the protocol is a difference of values which are

140 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

unknown to Charlie, the player receiving them, it is computationally indistinguishable
from a simulation in which inputs are ciphered random values. O

According to the definition of the location and key sequences and the schedule of
MP-SW, a given player Pp; will always own elements ciphered with the key of Pky;,
hence always having to recipher elements from this player to another. The "destina-
tion" player changes at each recursive level, meaning that for an instance of MP-SW
with k recursive levels, our player Py, will have to get k different proxy keys. More
specifically, at a given recursive level r, where input matrices have size s = n/(2"7!),
Py has to relocate the elements they own for Prji1(i—14s/2 mod s)], Mmeaning they have
to recipher it for Px[i4(i—14s/2 mod s)]- This allows to predict which proxy keys will be
needed throughout the whole protocol, and to generate them during the setup phase.

From this information, the setup phase is now modified and the new setup is pro-
posed in SW-Setup-Proxy.

Protocol 4.10: SW-Setup-Proxy

Input: Two N x N matrices A and B over M, where N = b2¢, such that party

P, knows the i-th row of A and the i-th row B for all € {1..N}. A location and

a key sequence L € {1.N}¥ and K € {1.N}" such that (L, K, L, K) form an

(-recursive data layout, following Definition 4.1.2. All parties know a security

parameter), an integer x and a group F with generator f.

Output: Forall i € {1..N}, party P.; learns vectors {a; .} x[;) and {b; . } k[;], learns

the public key of every other party and the required proxy keys.

Goal: Generate key pairs for each party, cipher and distribute input matrices

according to their respective location and key sequences.

1. Key generation: for all i € {1..N}, each party P, locally

executes CastganosLaguillaumieSetup(1*, 1#) to generate a pair of keys

(pk;, sk;). The group generator for the group in which the message will be

mapped to has to be f.

Broadcast keys: for all i € {1..V}, party P; broadcasts its public key pk;.

3. Proxy keys generation: for all i € {1..N}, for all j € {1../}, run ProxyKey-
Gen (Pkri}> Prl14+(-14N/20 mod N/2i+1)]s Prpp)-

4. Cipher inputs: for all i € {1..N}, for all j € [n], party P, locally performs
CastagnosLaguillaumieEncrypt(pkgy;, a;;) and stores the result as a new
vector {a; .} kp;]- It does the exact same operation with b; , to get {b; ..} k.

5. Distribute rows:

a) Rows of A: for all i € {1..N}, party P, sends {a; .} x[;] to party Pr.
b) Rows of B: for all i € {1..N}, party P, sends {b; .} x[;] to party Pr;.

b

The call to MP-Copy is simply replaced by a call to the proxy re-encryption function,
and the reciphered value is forwarded to the appropriate player, as shown in MP-Copy-
Proxy. This new copy protocol, MP-Copy-Proxy is a simple application of the secure

5. Variant of MP-SW using proxy re-encryption 141

proxy scheme of Blaze et al. and a communication over a secure channel. It is thus
secure by security of Blaze et al. scheme.

Protocol 4.11: MP-Copy-Proxy

Input: Four parties, Alice, Bob, Charlie and Dan. Bob knows a ciphered element
{z}p € Cp (for z € M), ciphered using Dan’s public key and a proxy key I1p_,¢.
Output: Alice learns the element {z}., ciphered using Charlie’s public key.
Goal: Recipher from Dan to Charlie and transfer from Bob to Alice.

1. Recipher: Bob applies ProxyRecipher(Ilp_ ¢, {x}p) and gets {x}¢.

2. Communication: Bob sends {z} to Alice.

The other steps in MP-SW remain unchanged.

Communication cost analysis

We now perform the same analysis as the one from Section 4.3.3 for the proxy-based
version of MP-SW.

Lemma 4.5.2. The total communication cost of a recursive level of the proxy-based ver-
sion of MP-SW following the schedule defined MP-SW, Step 2 is 6 (g)2 communications.

Proof. The only communication are that of the 6 calls to MP-Copy-Proxy, each account-
ing for (n/2)? communication.

0
This gives us a new recurrence relation for the communication complexity:
n n 2
C(n) = 7C(2)+6(2)" forn>b “45.1)
C(b) = b*+ 3b* + 0 for the base case

Using this new recurrence relation and the base cast cost, we can compute the new
recursion threshold, which gives us b = 32.

We then compare the cost of proxy-based MP-SW to MP-PDP, with Cyp_ppp(n) = n? +
n(n — 1). The new initialisation step SW-Setup-Proxy costs Cine = 2n? + 2nf, with ¢
the number of recursive levels, and the finalisation step SW-Finalise costs Cfpa = n°.
The crossover point where this variant improves over MP-PDP in communication cost is
obtained by solving the equation: C(n) +3n*+ 2n < n®+n(n— 1) which yields n > 71,
with one recursive call. This means that for any instance of dimension larger than 71,
the proposed MP-SW algorithm has a better communication cost than MP-PDP, which
also makes it better than the proxyless MP-SW.

142 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

Comparisons between fully and semi homomorphic solutions

In the introduction of this chapter, we justified setting aside fully homomorphic cryp-
tography based on the sheer cost of their arithmetic operations. However, the protocols
we developed need to perform a large amount of additional cryptographic operations,
which would not be required with fully homomorphic tools. Hence, we need to verify
that this argument still holds. One bottleneck of fully homomorphic cryptography is
the multiplicative depth of the algorithm: if it is too high, costly bootstrapping opera-
tions have to be performed in order to ensure proper decryption. As matrix multipli-
cation algorithms have a multiplicative depth of 1, they seem to be quite favourable
algorithms for such cryptographic solutions, which further calls for a refined analysis
on the cost of fully homomorphic cryptography in our setting. For Strassen-Winograd,
ciphered elements are only used in product operations when computing dot products
in the base case step, and there are no accumulations, as the result of multiplications
performed for dot products are not reused for other multiplications. Thus, there is no
need to perform bootstrapping operations with fully homomorphic cryptosystems with
Strassen-Winograd algorithm.

Thus, we propose to estimate the total runtime of a run of Strassen-Winograd for
SEAL and HElib. We model this run in a slightly different setting than the one con-
sidered in MP-SW. We will indeed assume there exists a trusted third party, to which
players will send their ciphered inputs, and from which players will receive their out-
put. In this model, the protocol only consists in running Strassen-Winograd algorithm
homomorphically, which amounts for the exact same amount of arithmetic operations
as the textbook version, and the initial and final encryptions and decryptions. This
will allow us to evaluate the practical cost of the fully homomorphic libraries under
consideration.

Our estimations are based on an input matrix size of N = 224, with a threshold of 56,
as given in Section 4.3.3. This means two recursive levels will be performed before the
base case. Table 4.4 gives an estimation of the execution time per operation, and of the
total execution for MP-SW (proxyless vanilla version and the improved proxy-based
version) and for HElib and SEAL. We computed the amount of times each operation
has to be performed to complete an execution of Strassen-Winograd on both models
and used the timings per operations that were given in Table 4.1.

In order to get an estimation of the runtime of the proxy variant of MP-SW, we had
to get timings for elementary cryptographic and arithmetic operations in Castagnos-
Laguillaumie. We chose to base these timings on Paillier cryptosystem, as Castagnos-
Laguillaumie behaves the same, mostly using exponentiations modulo n?, where n
is the public modulus obtained from the key generation phase of the cryptosystem.
Table 4.3 presents a comparison between the modular operations used to perform
an encryption, a decryption, an homomorphic addition and a multiplications in both
cryptosystems. We chose to display only the most expensive operation: Paillier, for
instance, also requires to perform a multiplication modulo n in the encryption step,
but its cost is negligible compared to the cost of exponentiations modulo n?. The ratio
column shows the factor to apply to the timings measured for Paillier in Table 4.1 to

5. Variant of MP-SW using proxy re-encryption 143

Paillier Castagnos-Laguillaumie Ratio
Encryption 2 exponentiations 3 exponentiations 1.5
Decryption 1 exponentiation 1 small discrete logarithm 1
Addition 1 multiplication 2 multiplications 2
Multiplication 1 exponentiation 2 exponentiations 2

Table 4.3: Comparison of cryptographic and arithmetic operations in Paillier and
Castagnos-Laguillaumie

get the estimated timings for the same operation in Castagnos-Laguillaumie.

A complete run of Strassen-Winograd requires to perform N? encryptions, N de-
cryptions for the input/output data, 7° x (§)% + 15 x (§)? + 7 x 15 x (§)? additions
and 72 x (£)3 multiplications (with 2 recursive levels, using the formulae from Sec-
tion 4.3.3. MP-SW requires even more operations: 72 x (£')? encryptions and decryp-
tions from the base case (for the masking operations) and 6 x (5)*+6 x 7 x ()2 extra
calls to MP-Copy (with 3 encryptions, 1 decryption and 2 additions per call). The proxy
variant of MP-SW modifies this operation count once again: the cost of copy is reduced
to one application of ProxyRecipher per call, which is equivalent to performing two
modular exponentiations. Performing Decryptions and Additions is no longer needed,
but there is an extra (though negligible) cost in the call to SW-Setup-Proxy, with four
calls per player as our example runs over two recursive levels.

Table 4.1 shows that decryption is by far the most expensive operation for Naccache-
Stern. In MP-SW, the amount of decryptions is equivalent to the amount of multipli-
cations, O(N?8), which is not the case for fully homomorphic encryption (where it
is O(N?)). Table 4.4 shows that our solution remains cheaper: MP-SW would take
roughly 7 hours to perform over messages of 64-bit at A\ = 130 against 88 hours for
HElib. At 20-bit, MP-SW would roughly take 2 hours against the 190 hours of SEAL.
Our proxy variant of MP-SW runs roughly 3 times slower than the vanilla version for
20-bit messages, because of the field size required for Castagnos-Laguillaumie. How-
ever, runtimes are equivalent with 64-bits messages, and given the rapid growth of
Naccache-Stern operation cost, especially the discrete logarithms required for deci-
phering elements, the proxy variant should perform better than the vanilla one on
larger message size.

While considering these timings, it is important to remember that we compare ele-
mentary arithmetic operations on both sides. An interesting extension on this estima-
tion would be to consider linear algebra optimizations (vector and matrix products)
for semi- and fully-homomorphic solutions.

Finally, in term of communication, it is worth noting that fully homomorphic ci-
phertexts are much more heavy than Naccache-Stern’s: at A = 112, roughly 264kb for
SEAL, 360kb for HElib against only 5.14kb for Naccache-Stern. For matrices of order
224, sending and recovering the matrices to the trusted third party would then cost
3 x 2242 x 264 = 5.1GB for SEAL and 6.9GB for HElib against the 2.4GB of MP-SW.

144 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

Operation Timings
. MP-SW .
Nature Number Msg bit size HEIlib SEAL
Vanilla Proxy
20 7 2910.2 - 197.6
Enc 100352
64 14.1 3030.6 9493.3 -
20 757.7 963.4 - 361.3
Dec 50176
64 3090.8 973.4 2333.2 -
20 9.1 182.5 - 2736.8
Add 9122624
64 9.1 182.5 56560.3 -
20 172.1 2925.8 - 678088.5
Mul 8605184
64 430.3 8605.2 249550.3 -
20 10.8 4456.3 - -
EncBaseCase 153664
64 21.5 4640.7 - -
20 2320.3 2950.3 - -
DecBaseCase 153664
64 9435 2981.1 - -
. 20 43.5 - - -
EncCopyVanilla 620928
64 87 - - -
20 - 3994.6 - -
2ExpCopyProxy 206976
64 - 4160.2 - -
20 3125.4 - - -
DecCopy 206976
64 12748 - - -
20 0.4 - - -
AddCopy 413952
64 0.4 - - -
20 - 52 - -
ProxySetupEnc 1792
64 - 54.1 - -
20 - 0.02 - -
ProxySetupAdd 896
64 - 0.02 - -
20 - 17.2 - -
ProxySetupDec 896
64 - 17.4 - -
20 6446.3 18452.3 - 681384.2

Total -
64 25836.2 24645.2 317937.1 —

Table 4.4: Timings comparison in seconds for matrices of order 224, threshold 56 and
A = 130. Number is the number of times the relevant operation is performed
during an execution of the protocol.

5. Variant of MP-SW using proxy re-encryption 145

Conclusion

We have presented in this chapter a novel secure multiparty matrix multiplication
where each player owns one row of the different matrices. For this we use Strassen-
Winograd algorithm and reduce for the first time the total communication volume
from O(N?) to O(N'"#("), The improvement in communication cost over state of the
art algorithms takes effect for dimensions as small as 96, verified in practice, or 72 with
the proxy-based variant.

In this matrix multiplication protocol, it was necessary to protect both multiplicands,
as Strassen-Winograd algorithm requires to perform pre-additions between elements
of one input matrix at a time. This new constraint required to have a secure rou-
tine to move data and change its encryption key: this was initially done with encryp-
tion/decryption and random masking sequences, which was later improved with proxy
re-encryption techniques.

The version of Strassen-Winograd we presented here is secure against semi-honest
adversaries. However, as many of its building blocks have a stronger security level
anyway, it would be interesting to see if it is possible to increase the security of the
whole MP-SW protocol and how it would impact its performance.

Even if this chapter is a about improving the communication cost while preserv-
ing security, several arithmetic cost improvements could be envisioned. A possibility
would be to replace the Naccache-Stern by a faster cryptosystem. The difficulty is to
be able to combine the masking schemes with the homomorphic encryption.

This chapter proposed a new protocol for matrix multiplication. Matrix multiplica-
tion is a tool used in many applications and computations, as linear system solving,
Az = b. Developing an efficient multiparty protocol for this problem with the same
data layout (each player knows one row of A, one coefficient of b and learns one
coefficient of x) has interesting real world applications: multiparty polynomial inter-
polation, for instance, where each player knows one interpolation point. We explored
one idea for this application, based on building a protocol with entropic security for
the LU decomposition of matrix. In this protocol, players would build a shared U ma-
trix and keep their row of L secret, thus protecting their input values. This protocol
would then straightforwardly allow for system solving, as it would just be a run of the
LU protocol on matrix A augmented with b. However, with this idea, players input
are in the worst case only protected by one coefficient — which is especially danger-
ous for polynomial interpolation as the input matrix is Vandermonde, meaning that
leaking information about one coefficient leaks information about the entire row. It
would then be worth exploring other directions, as for instance designing a protocol
for secure triangular system solving which could be used to securely compute the LU
decomposition.

147

Conclusion

In this thesis, we focused on two aspects of outsourced computation in exact linear
algebra: output verification, and data confidentiality. We proposed new protocols
to verify rank-related invariants: the matrix rank, the row and column rank profiles
and the rank profile matrix. This lead us to design a verification protocol for the
generic rank profile-ness of a matrix, which we then used to develop new protocols for
problem based on triangular decompositions: the determinant and the signature. We
then designed verification protocols for the classical properties of polynomial matrices,
either specific to modules or carrying to vector spaces. Our protocols for modules, are,
to the best of our knowledge, the first verification protocols for matrix properties on
such algebraic structures. Finally, we proposed a new multi-party protocol for matrix
multiplication based on Strassen-Winograd algorithm, improving the state of the art
for the important communication volume cost of such protocols. It is also, as far as we
are aware of, the first multi-party algorithm with a recursive structure.

These results are either maiden contributions (verification protocols for modules,
multi-party protocols with a recursive structure) or crucial improvements (rank-related
protocols) to the field of algorithm-based outsourced computation for exact linear
algebra. Short-term perspectives and improvements to our results have been given in
the conclusions to the different chapters. The two major ones are the design of a Smith
form verification protocol for polynomial matrices and a secure multi-party protocol
for the LU decomposition. They also allow us to envision new significant, longer-term
perspectives that we propose in what follows.

Verification protocols for numerical linear algebra. The verification protocols we
proposed in this thesis are based on verification checks in which the output of the check
only depends on the Prover’s honesty: if a check is false, then the Prover cheated.
This restrictive definition of the Verifier’s checks makes it harder to design protocols
for numerical linear algebra: defining equality checks in this field is a complex task
because of the rounding errors in computations, which might cause a check to fail
with an honest Prover. To design such protocols, we could focus on new definitions of
completeness, based for instance on stability analysis.

Error correction. In this thesis, we focused on verifying outsourced computations:
the goal was to design protocols able to detect whether a given result was correct.
An extension to this work would be to also fix the errors in a wrong result in order
to recover the actual output to the outsourced problem. While coding theory seems
to be the perfect candidate for this task, the redundancy in encoding is not efficient

148 Chapter 4: SMC matrix multiplication based on Strassen-Winograd

communication-wise, and error-correcting codes are designed to deal with uniform
distribution of errors, which does not fit our model. It is possible to design such pro-
tocols, by for instance using the redundancy in algebraic relations between the public
input and the output. There have been advances on designing error-correction proto-
cols for outsourced computations in exact linear algebra in the past few years, with for
instance Roche (2018) on matrix multiplication (and inverse) or Dumas et al. (2019b)
for LU decomposition of generic rank profile matrices. Some difficult problems remain:
a straightforward improvement to these works would be to find an error-correction
protocol for the LU decomposition with pivoting, leading to the correction of the LUP
or the PLUQ decomposition. Designing such protocols for the properties we focused
on in this thesis, as the rank profile matrix computation would be a natural extension
to our work.

A slightly different focus could be to incorporate Monte-Carlo probabilistic algo-
rithms for the Prover side of our verification protocols. These algorithms can silently
fail, meaning they can return a wrong result without notice. Our verification protocols
already are Monte-Carlo for the Verifier: a dishonest Prover can sometimes not be de-
tected (this is the probabilistic soundness), but an honest Prover will never be rejected
(perfect completeness). Because of the nature of our verification checks, which as-
sume that failures are due to the Prover, we naturally excluded such algorithms when
designing our protocols. Being able to fix the errors that might come from the use of
Monte-Carlo algorithms would allow us to actually use these algorithms, leading to
protocols with faster computation time for the Prover. As the verification certificate
from (Dumas et al., 2016, Section 4) allows the use of Monte-Carlo algorithms for the
Prover, their approach should also be investigated.

Verify the negation of a statement. Our verification protocols frequently prove af-
firmative statements, for instance that there exists a triangular matrix such 7" such that
AT = B or that a given vector is in the row space of a polynomial matrix. Designing
protocols that are able to verify negative statements would be a major improvement
to the family of algorithm-based verification protocols. These are often quite harder
to prove than the affirmative ones, as they are more generic: the Prover can no longer
provide a simple single answer (such as the constraint projection of the triangular ma-
trix) to the Verifier. A very ambitious question would be to investigate how to get a
verification protocol for a the negation of a statement from the protocol for the af-
firmative statement. A starting point could be to develop several negative statements
verification protocols on specific problems, —such as the ones from this thesis — to inves-
tigate how they relate to their affirmative statements counterparts and whether these
relations have similarities. Farkas certificate of inconsistency (Farkas, 1902) could be
a useful tool for the verification of such negative statements.

Existence of fundamental building blocks for verification protocols. The veri-
fication protocols we proposed in this thesis heavily rely on a few sub-protocols: the
step-by-step data exchange of TriangularEquivalence is a central tool for the protocols

5. Variant of MP-SW using proxy re-encryption 149

in Chapter 2 while RowSpaceMembership is heavily used by the protocols from Chap-
ter 3. These two sub-protocols can be seen as building block for verification protocols:
central elements into which problems could be reduced. Matrix multiplication (with
Freivalds’ check) and linear system solve verification also appear to be such building
blocks, as they are heavily used, not only by some of our protocols but also by many of
the others that were given in Chapter 1. We then wonder the scope of these four build-
ing blocks: which verification protocols could be reduced to one of them, and amongst
the protocols that we cannot reduce to our building blocks, could we find new build-
ing blocks to cover such protocols ? We would need to develop more algorithm-based
verification protocols in exact linear algebra, in order to look for these building blocks.
These fundamental building blocks are also extremely useful for the practicality of ver-
ification protocols: they would allow us to take one step further towards real-world
applications, with the development of a library for outsourced computation verifica-
tion containing highly efficient implementation of these fundamental protocols.

New data layout for MP-SW. The multiparty protocol version of Strassen-Winograd
algorithm we proposed in Chapter 4 requires a very specific data layout in which play-
ers knows one full row of both input matrices. This layout is very well suited to the
problem, as its high regularity allowed us to take full advantage of the algorithm’s
structure. A data layout often used in multi-party computation setting is the addi-
tive sharing of the input (Cramer et al., 2015, Chapter 9) (Dagdelen and Venturi,
2015): each party knows one share of the input and the full input can be obtained
by adding all the shares owned by the parties. Designing a multi-party version of
Strassen-Winograd for this layout would allow us to open our work to a wider ar-
ray of practical applications. However, this would require some heavy work on the
foundations of our protocol: with this layout, it is no longer possible to perform local
homomorphic operations during the recursive steps, and our other subroutines would
need to be adapted as well. Our main result was to obtain the same communica-
tion volume complexity as the textbook Strassen-Winograd’s algorithm computational
complexity (O(n*?)). However, reaching the same cost with the additive setting seems
much more difficult, as performing arithmetic operations would require to communi-
cate data between more than two players, thus increasing the overall communication
volume.

151

Bibliography

[Citing pages are listed after each reference.]

IBM HElib (release 1.3), August 2019. URL github. com/homenc/HElib. [Page 116.]

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analy-
sis of Computer Algorithms. Pearson, 1974. ISBN 0201000296, 9780201000290.
d0i:10.1002/zamm.19790590233. [Page 116.]

William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to
sell digital goods. In Proceedings of the International Conference on the Theory
and Application of Cryptographic Techniques: Advances in Cryptology, EUROCRYPT
'01, pages 119-135, London, UK, UK, 2001. Springer-Verlag. ISBN 3-540-42070-3.
doi:10.1007/3-540-44987-6_8. [Page 31.]

Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod Vaikun-
tanathan. Homomorphic encryption security standard. Technical report, Homomor-
phicEncryption.org, Toronto, Canada, 2018. [Page 31.]

Artak Amirbekyan and Vladimir Estivill-Castro. A new efficient privacy-preserving
scalar product protocol. In Proceedings of the Sixth Australasian Conference on
Data Mining and Analytics - Volume 70, AusDM ’07, pages 209-214, Darlinghurst,
Australia, Australia, 2007. Australian Computer Society, Inc. ISBN 978-1-920682-
51-4. doi:10.5555/1378245.1378274. URL https://dl.acm.org/doi/10.5555/
1378245.1378274. [Page 34.]

Sanjeev Arora and Shmuel Safra. Approximating clique is np- complete. In FOCS
1992, 1992. [Page 18.]

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM,
45:501-555, 1998. ISSN 0004-5411. doi:10.1145/278298.278306. [Page 18.]

C. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE
Transactions on Information Theory, 29:208-210, 2006. ISSN 0018-9448.
doi:10.1109/TIT.1983.1056651. [Page 30.]

github.com/homenc/HElib
http://dx.doi.org/10.1002/zamm.19790590233
http://dx.doi.org/10.1007/3-540-44987-6_8
http://dx.doi.org/10.5555/1378245.1378274
https://dl.acm.org/doi/10.5555/1378245.1378274
https://dl.acm.org/doi/10.5555/1378245.1378274
http://dx.doi.org/10.1145/278298.278306
http://dx.doi.org/10.1109/TIT.1983.1056651

152 BIBLIOGRAPHY

Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved
proxy re-encryption schemes with applications to secure distributed storage. ACM
Transactions on Information Systems and Security, 9:1-30, 2006. ISSN 1094-9224.
doi:10.1145/1127345.1127346. [Page 137.]

Laszl6 Babai. Trading group theory for randomness. In Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing, STOC ’85, pages 421-429, New
York, NY, USA, 1985. Association for Computing Machinery. ISBN 0-89791-151-2.
doi:10.1145/22145.22192. [Page 17.]

Laszlé Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system,
and a hierarchy of complexity classes. Journal of Computer and System Sciences, 36:
254-276, 1988. ISSN 0022-0000. doi:10.1016/0022-0000(88)90028-1. [Page 18.]

Laszlé Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking
computations in polylogarithmic time. In Proceedings of the Twenty-Third An-
nual ACM Symposium on Theory of Computing, STOC 91, pages 21-32, New
York, NY, USA, 1991. Association for Computing Machinery. ISBN 0897913973.
doi:10.1145/103418.103428. [Page 18.]

Donald Beaver. Efficient multiparty protocols using circuit randomization. In Advances
in Cryptology — CRYPTO ’91, pages 420-432, Berlin, Heidelberg, 1992. Springer
Berlin Heidelberg. ISBN 978-3-540-46766-3. [Page 31.]

Bernhard Beckermann and George Labahn. A uniform approach for the fast computa-
tion of matrix-type Padé approximants. SIAM Journal of Matrix Analysis and Appli-
cations, 15:804-823, 1994. ISSN 0895-4798. doi:10.1137/50895479892230031.
[Page 73.]

Bernhard Beckermann and George Labahn. Fraction-free computation of matrix ra-
tional interpolants and matrix geds. SIAM Journal of Matrix Analysis and Appli-
cations, 22:114-144, 2000. ISSN 0895-4798. doi:10.1137/50895479897326912.
[Page 110.]

Bernhard Beckermann, George Labahn, and Gilles Villard. Normal forms for general
polynomial matrices. Journal of Symbolic Computation, 41:708-737, 2006. ISSN
0747-7171. doi:10.1016/].jsc.2006.02.001. [Page 102.]

Rikke Bendlin, Ivan Damgérd, Claudio Orlandi, and Sarah Zakarias. = Semi-
homomorphic encryption and multiparty computation. In Proceedings of the 30th
Annual International Conference on Theory and Applications of Cryptographic Tech-
niques: Advances in Cryptology, EUROCRYPT’11, pages 169-188, Berlin, Heidelberg,
2011. Springer-Verlag. ISBN 978-3-642-20464-7. d0i:10.5555/2008684.2008699.
[Page 32.]

http://dx.doi.org/10.1145/1127345.1127346
http://dx.doi.org/10.1145/22145.22192
http://dx.doi.org/10.1016/0022-0000(88)90028-1
http://dx.doi.org/10.1145/103418.103428
http://dx.doi.org/10.1137/S0895479892230031
http://dx.doi.org/10.1137/S0895479897326912
http://dx.doi.org/10.1016/j.jsc.2006.02.001
http://dx.doi.org/10.5555/2008684.2008699

BIBLIOGRAPHY 153

Dario A. Bini and Victor Pan. Polynomial and Matrix Computations (Vol. 1) Fundamental
Algorithms. Progress in Theoretical Computer Science. Birkhduser Basel, 1994. ISBN
978-3-7643-3786-5. doi:10.1007/978-1-4612-0265-3. [Page 95.]

G.R. Blakley. Safeguarding cryptographic keys. In Proceedings of the 1979 AFIPS Na-
tional Computer Conference, pages 313-317, Monval, NJ, USA, 1979. AFIPS Press.
doi:10.1109/AFIPS.1979.98. [Page 30.]

Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy
cryptography. In Proceedings of EUROCRYPT’98 in Advances in Cryptology, pages
127-144, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. ISBN 978-3-540-
69795-4. doi:10.1007/BFb0054122. [Page 137.]

Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Martin Geisler, Thomas Jakob-
sen, Mikkel Krgigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob
Pagter, Michael Schwartzbach, and Tomas Toft. Secure multiparty computation goes
live. In Financial Cryptography and Data Security: 13th International Conference, FC
2009, pages 325-343, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN
978-3-642-03549-4. d0i:10.1007/978-3-642-03549-4_20. [Page 13.]

Alin Bostan and Eric Schost. Polynomial evaluation and interpolation on special
sets of points. Journal of Complexity, 21:420-446, 2005. ISSN 0885-064X.
doi:10.1016/j.jc0.2004.09.009. [Page 73.]

N. Bourbaki. Commutative Algebra. Elements of Mathematics. Addison-Wesley, 1972.
ISBN 978-3-540-64239-8. [Page 103.]

Brice Boyer and Jean-Guillaume Dumas. Matrix multiplication over word-size modular
rings using approximate formulas. ACM Transactions on Mathematical Software, 42,
2016. ISSN 0098-3500. doi:10.1145/2829947. [Page 116.]

Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In Proceedings of the 32nd Annual Cryptology Conference on Advances
in Cryptology, CRYPTO 2012, page 868-886, Berlin, Heidelberg, 2012. Springer-
Verlag. ISBN 9783642320088. doi:10.1007/978-3-642-32009-5 50. [Page 116.]

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, ITCS '12, page 309-325, New York,
NY, USA, 2012. Association for Computing Machinery. ISBN 9781450311151.
doi:10.1145/2090236.2090262. [Page 116.]

Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing disclosure of
secrets. In Proceedings on Advances in cryptology—CRYPTO ’86, pages 234-238,
London, UK, UK, 1987. Springer-Verlag. ISBN 0-387-18047-8. doi:10.1007/3-540-
47721-7 17. [Page 31.]

http://dx.doi.org/10.1007/978-1-4612-0265-3
http://dx.doi.org/10.1109/AFIPS.1979.98
http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1007/978-3-642-03549-4_20
http://dx.doi.org/10.1016/j.jco.2004.09.009
http://dx.doi.org/10.1145/2829947
http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1145/2090236.2090262
http://dx.doi.org/10.1007/3-540-47721-7_17
http://dx.doi.org/10.1007/3-540-47721-7_17

154 BIBLIOGRAPHY

James R. Bunch and Linda Kaufman. Some stable methods for calculating inertia and
solving symmetric linear systems. Mathematics of Computation, 31:163-179, 1977.
ISSN 0025-5718. d0i:10.1090/50025-5718-1977-0428694-0. [Page 65.]

David G. Cantor and Erich Kaltofen. On fast multiplication of polynomials over
arbitrary algebras. Acta Informatica, 28:693-701, 1991. ISSN 0001-5903.
doi:10.1007/BF01178683. [Page 74.]

Guilhem Castagnos and Fabien Laguillaumie. Linearly homomorphic encryption from
ddh. In Topics in Cryptology — CT-RSA 2015, pages 487-505, Cham, 2015. Springer
International Publishing. ISBN 978-3-319-16715-2. d0i:10.1007/978-3-319-16715-
2 26. [Page 138.]

Ho Yee Cheung, Tsz Chiu Kwok, and Lap Chi Lau. Fast matrix rank algo-
rithms and applications. Journal of the ACM, 60:1-25, 2013. ISSN 0004-5411.
doi:10.1145/2528404. [Page 28.]

Seung Geol Choi, Kyung-Wook Hwang, Jonathan Katz, Tal Malkin, and Dan Ruben-
stein. Secure multi-party computation of boolean circuits with applications to pri-
vacy in on-line marketplaces. In Topics in Cryptology — The cryptographers’ track at the
RSA conference, CT-RSA 2012, pages 416-432, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg. ISBN 978-3-642-27954-6. d0i:10.1007/978-3-642-27954-6_26.
[Page 33.]

Donc Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic pro-
gressions. Journal of Symbolic Computation, 9:251 — 280, 1990. ISSN 0747-7171.
doi:10.1016/S0747-7171(08)80013-2. [Page 15.]

Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified com-
putation with streaming interactive proofs. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, ITCS '12, pages 90-112, New York,
NY, USA, 2012. Association for Computing Machinery. ISBN 978-1-4503-1115-1.
doi:10.1145/2090236.2090245. [Page 22.]

Ana Costache and Nigel P. Smart. Which ring based somewhat homomorphic encryp-
tion scheme is best? In Topics in Cryptology — The cryptographers’ track at the RSA
conference, CT-RSA 2016, pages 325-340, Cham, 2016. Springer International Pub-
lishing. ISBN 978-3-319-29485-8. doi:10.1007/978-3-319-29485-8 19. [Page 31.]

Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,
Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable
computation. In Proceedings of the 2015 IEEE Symposium on Security and Privacy,
SP ’15, page 253-270, USA, 2015. IEEE Computer Society. ISBN 9781467369497.
doi:10.1109/SP.2015.23. [Page 23.]

Ronald Cramer, Ivan Damgéard, Daniel Escudero, Peter Scholl, and Chaoping Xing.
SPDZ,: Efficient mpc mod 2* for dishonest majority. In Proceedings of the 38nd

http://dx.doi.org/10.1090/S0025-5718-1977-0428694-0
http://dx.doi.org/10.1007/BF01178683
http://dx.doi.org/10.1007/978-3-319-16715-2_26
http://dx.doi.org/10.1007/978-3-319-16715-2_26
http://dx.doi.org/10.1145/2528404
http://dx.doi.org/10.1007/978-3-642-27954-6_26
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1145/2090236.2090245
http://dx.doi.org/10.1007/978-3-319-29485-8_19
http://dx.doi.org/10.1109/SP.2015.23

BIBLIOGRAPHY 155

Annual Cryptology Conference on Advances in Cryptology, CRYPTO 2018, pages
769-798, Berlin, Heidelberg. Springer-Verlag. doi:10.1007/978-3-319-96881-0 26.
[Pages 136 and 137.]

Ronald Cramer, Ivan Bjerre Damgard, and Jesper Buus Nielsen. Secure Multiparty Com-
putation and Secret Sharing. Cambridge University Press, 2015. ISBN 1107043050,
9781107043053. doi:10.1017/CB09781107337756. [Pages 116 and 149.]

Ozgiir Dagdelen and Daniele Venturi. A multi-party protocol for privacy-preserving
cooperative linear systems of equations. In Revised Selected Papers of the First In-
ternational Conference on Cryptography and Information Security in the Balkans -
Volume 9024, BalkanCryptSec 2014, pages 161-172, New York, NY, USA, 2015.
Springer-Verlag New York, Inc. ISBN 978-3-319-21355-2. d0i:10.1007/978-3-319-
21356-9 11. [Pages 35, 115, and 149.]

Ivan Damgard and Sarah Zakarias. Constant-overhead secure computation of boolean
circuits using preprocessing. In Proceedings of the 10th Theory of Cryptography
Conference on Theory of Cryptography, TCC’13, pages 621-641, Berlin, Heidelberg,
2013. Springer-Verlag. ISBN 978-3-642-36593-5. do0i:10.1007/978-3-642-36594-
2 35. [Page 32.]

Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P.
Smart. Practical covertly secure mpc for dishonest majority — or: Breaking the spdz
limits. In Proceedings of the 2013 European Symposium on Research in Computer
Security, ESORICS 2013, pages 1-18, Berlin, Heidelberg, 2013. Springer Berlin Hei-
delberg. ISBN 978-3-642-40203-6. d0i:10.1007/978-3-642-40203-6 1. [Page 32.]

Ivan Damgéard, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. The
tinytable protocol for 2-party secure computation, or: Gate-scrambling revisited. In
Proceedings of the 2017 International Conference on Advances in Cryptology, CRYPTO
2017, Cham, 2017. Springer International Publishing. do0i:10.1007/978-3-319-
63688-7 6. [Page 115.]

Ivan Bjerre Damgard. On sigma-protocols, 2010. URL https://www.cs.au.dk/ ivan/
Sigma.pdf. [Page 19.]

Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic pro-
gram testing. Information Processing Letters, 7:193 — 195, 1978. ISSN 0020-0190.
doi:10.1016/0020-0190(78)90067-4. [Pages 43, 62, and 76.]

Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for
efficient mixed-protocol secure two-party computation. In Proceedings of the 2015
NDSS Symposium, NDSS 2015, 2015. do0i:10.14722/ndss.2015.23113. [Page 115.]

Danny Dolev and Andrew C. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, 29:198-208, 1983. ISSN 0018-9448.
doi:10.1109/TIT.1983.1056650. [Page 29.]

http://dx.doi.org/10.1007/978-3-319-96881-0_26
http://dx.doi.org/10.1017/CBO9781107337756
http://dx.doi.org/10.1007/978-3-319-21356-9_11
http://dx.doi.org/10.1007/978-3-319-21356-9_11
http://dx.doi.org/10.1007/978-3-642-36594-2_35
http://dx.doi.org/10.1007/978-3-642-36594-2_35
http://dx.doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-319-63688-7_6
http://dx.doi.org/10.1007/978-3-319-63688-7_6
https://www.cs.au.dk/~ivan/Sigma.pdf
https://www.cs.au.dk/~ivan/Sigma.pdf
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.14722/ndss.2015.23113
http://dx.doi.org/10.1109/TIT.1983.1056650

156 BIBLIOGRAPHY

Shlomi Dolev, Niv Gilboa, and Marina Kopeetsky. Computing multi-party trust pri-
vately: In o(n) time units sending one (possibly large) message at a time. In Pro-
ceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10, pages 1460-
1465, New York, NY, USA, 2010. Association for Computing Machinery. ISBN 978-
1-60558-639-7. do0i:10.1145/1774088.1774401. [Page 34.]

Wenliang Du and Mikhail J. Atallah. Privacy-preserving cooperative statistical analysis.
In Proceedings of the 17th Annual Computer Security Applications Conference, ACSAC
'01, pages 102-110, 2001a. ISBN 0769514057. doi:10.1109/ACSAC.2001.991526.
[Page 34.]

Wenliang Du and Mikhail J. Atallah. Privacy-preserving cooperative scientific compu-
tations. In Proceedings of the 14th IEEE Workshop on Computer Security Foundations,
CSFW ’01, pages 273-273, Washington, DC, USA, 2001b. IEEE Computer Society.
doi:10.1109/CSFW.2001.930152. [Page 35.]

Wenliang Du and Zhijun Zhan. A practical approach to solve secure multi-party com-
putation problems. In Proceedings of the 2002 Workshop on New Security Paradigms,
NSPW °02, page 127-135, New York, NY, USA, 2002. Association for Computing
Machinery. ISBN 158113598X. d0i:10.1145/844102.844125. [Page 115.]

Wenliang Du, Shigang Chen, and Yunghsiang S. Han. Privacy-preserving multivariate
statistical analysis: Linear regression and classification. In Proceedings of the 4th
SIAM International Conference on Data Mining, pages 222-233, 2004. ISBN 978-0-
89871-568-2. d0i:10.1137/1.9781611972740.21. [Page 34.]

Jean-Guillaume Dumas. Proof-of-work certificates that can be efficiently computed
in the cloud (invited talk). In Computer Algebra in Scientific Computing, pages
1-17, Cham, 2018. Springer International Publishing. ISBN 978-3-319-99639-4.
[Page 73.]

Jean-Guillaume Dumas and Hicham Hossayni. Matrix powers algorithms for trust eval-
uation in public-key infrastructures. In Proceedings of the 2012 International Work-
shop on Security and Trust Management, STM 2012, pages 129-144, 2013. ISBN
978-3-642-38004-4. doi:10.1007/978-3-642-38004-4_9. [Page 115.]

Jean-Guillaume Dumas and Erich Kaltofen. Essentially optimal interactive cer-
tificates in linear algebra. In Proceedings of the 39th International Symposium
on Symbolic and Algebraic Computation, ISSAC 14, pages 146-153, New York,
NY, USA, 2014. Association for Computing Machinery. ISBN 9781450325011.
doi:10.1145/2608628.2608644. [Pages 15, 19, 24, 25, 28, 45, 52, 65, 78, 80,
and 81.]

Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. Dense linear
algebra over word-size prime fields: The FFLAS and FFPACK packages.
ACM Transactions on Mathematical Software, 35, 2008. ISSN 0098-3500.
d0i:10.1145/1391989.1391992. [Page 116.]

http://dx.doi.org/10.1145/1774088.1774401
http://dx.doi.org/10.1109/ACSAC.2001.991526
http://dx.doi.org/10.1109/CSFW.2001.930152
http://dx.doi.org/10.1145/844102.844125
http://dx.doi.org/10.1137/1.9781611972740.21
http://dx.doi.org/10.1007/978-3-642-38004-4_9
http://dx.doi.org/10.1145/2608628.2608644
http://dx.doi.org/10.1145/1391989.1391992

BIBLIOGRAPHY 157

Jean-Guillaume Dumas, Clément Pernet, and Ziad Sultan. Simultaneous computation
of the row and column rank profiles. In Proceedings of the 38th International Sympo-
sium on Symbolic and Algebraic Computation, ISSAC '13, pages 181-188, New YorKk,
NY, USA, 2013. Association for Computing Machinery. ISBN 978-1-4503-2059-7.
doi:10.1145/2465506.2465517. [Pages 39 and 42.]

Jean-Guillaume Dumas, Clément Pernet, and Ziad Sultan. Computing the rank
profile matrix. In Proceedings of the 2015 ACM on International Symposium
on Symbolic and Algebraic Computation, ISSAC ’15, pages 149-156, New York,
NY, USA, 2015. Association for Computing Machinery. ISBN 978-1-4503-3435-8.
doi:10.1145/2755996.2756682. [Page 80.]

Jean-Guillaume Dumas, Erich Kaltofen, Emmanuel Thomé, and Gilles Villard. Lin-
ear time interactive certificates for the minimal polynomial and the determi-
nant of a sparse matrix. In Proceedings of the 41st International Symposium
on Symbolic and Algebraic Computation, ISSAC ’16, pages 199-206, New York,
NY, USA, 2016. Association for Computing Machinery. ISBN 978-1-4503-4380-0.
doi:10.1145/2930889.2930908. [Pages 15, 25, 27, 28, 64, 65, 82, and 148.]

Jean-Guillaume Dumas, Pascal Lafourcade, Jean-Baptiste Orfila, and Maxime
Puys. Dual protocols for private multi-party matrix multiplication and trust
computations. Computers and Security, 71:51-70, 2017a. ISSN 0167-4048.
doi:10.1016/j.cose.2017.04.013. [Pages 34, 114, 115, 117, 118, 121, 122, 136,
and 137.]

Jean-Guillaume Dumas, David Lucas, and Clément Pernet. Certificates for trian-
gular equivalence and rank profiles. In Proceedings of the 2017 ACM on Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC 17, pages
133-140, New York, NY, USA, 2017b. Association for Computing Machinery.
doi:10.1145/3087604.3087609. [Pages 15, 38, and 82.]

Jean-Guillaume Dumas, Clément Pernet, and Ziad Sultan. Fast computation of the
rank profile matrix and the generalized Bruhat decomposition. Journal of Symbolic
Computation, 83:187-210, 2017c. ISSN 0747-7171. d0i:10.1016/j.jsc.2016.11.011.
[Pages 38, 39, 41, 56, and 58.]

Jean-Guillaume Dumas, Pascal Lafourcade, Julio Lopez Fenner, David Lucas, Jean-
Baptiste Orfila, Clément Pernet, and Maxime Puys. Secure multiparty matrix
multiplication based on strassen-winograd algorithm. In Advances in Information
and Computer Security, INSEC’19, pages 67-88, Cham, 2019a. Springer Interna-
tional Publishing. ISBN 978-3-030-26834-3. d0i:10.1007/978-3-030-26834-3 5.
[Page 115.]

Jean-Guillaume Dumas, Joris van der Hoeven, Clément Pernet, and Daniel S. Roche.
Lu factorization with errors. In Proceedings of the 2019 on International Sympo-
sium on Symbolic and Algebraic Computation, ISSAC ’19, page 131-138, New York,

http://dx.doi.org/10.1145/2465506.2465517
http://dx.doi.org/10.1145/2755996.2756682
http://dx.doi.org/10.1145/2930889.2930908
http://dx.doi.org/10.1016/j.cose.2017.04.013
http://dx.doi.org/10.1145/3087604.3087609
http://dx.doi.org/10.1016/j.jsc.2016.11.011
http://dx.doi.org/10.1007/978-3-030-26834-3_5

158 BIBLIOGRAPHY

NY, USA, 2019b. Association for Computing Machinery. ISBN 9781450360845.
doi:10.1145/3326229.3326244. [Page 148.]

Jean-Guillaume Dumas, Erich Kaltofen, David Lucas, and Clément Pernet. Elimination-
based certificates for triangular equivalence and rank profiles. Journal of Symbolic
Computation, 98:246 — 269, 2020. ISSN 0747-7171. d0i:10.1016/j.jsc.2019.07.013.
Special Issue on Symbolic and Algebraic Computation: ISSAC 2017. [Page 38.]

Wayne Eberly. A new interactive certificate for matrix rank. Technical report, Univer-
sity of Calgary, 2015. URL http://prism.ucalgary.ca/bitstream/1880/50543/1/
2015-1078-11.pdf. [Pages 25, 28, and 52.]

Kaoutar Elkhiyaoui, Melek Onen, Monir Azraoui, and Refik Molva. Efficient tech-
niques for publicly verifiable delegation of computation. In Proceedings of the
11th ACM on Asia Conference on Computer and Communications Security, ASIA CCS
16, pages 119-128, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4233-9.
doi:10.1145/2897845.2897910. [Page 21.]

Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Communications of the ACM, 28:637-647, 1985. ISSN 0001-0782.
doi:10.1145/3812.3818. [Page 31.]

Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic en-
cryption. Cryptology ePrint Archive, Report 2012/144, 2012. https://eprint.
iacr.org/2012/144. [Page 116.]

Julius Farkas. Theorie der einfachen ungleichungen. Journal fuer die reine und ange-
wandte Mathematik, 1902:1 — 27, 1902. do0i:10.1515/crll.1902.124.1. [Page 148.]

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In Proceedings on Advances in cryptology—CRYPTO
'86, pages 186-194, London, UK, UK, 1987. Springer-Verlag. ISBN 0-387-18047-8.
doi:10.1007/3-540-47721-7 _12. [Page 21.]

Risin$ Freivalds. Fast probabilistic algorithms. In Mathematical Foundations of Com-
puter Science 1979, pages 57-69, Berlin, Heidelberg, 1979. Springer Berlin Heidel-
berg. ISBN 978-3-540-35088-0. [Pages 24, 28, 76, and 84.]

Martin Furer, Oded Goldreich, Yishay Mansour, Micheal Sipser, and Stathis Zachos. On
completeness and soundness in interactive proof systems, 1989. [Page 18.]

Adria Gascén, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner,
Samee Zahur, and David Evans. Privacy-preserving distributed linear regression
on high-dimensional data. Proceedings on Privacy Enhancing Technologies, 2017.
doi:10.1515/popets-2017-0053. [Page 115.]

http://dx.doi.org/10.1145/3326229.3326244
http://dx.doi.org/10.1016/j.jsc.2019.07.013
http://prism.ucalgary.ca/bitstream/1880/50543/1/2015-1078-11.pdf
http://prism.ucalgary.ca/bitstream/1880/50543/1/2015-1078-11.pdf
http://dx.doi.org/10.1145/2897845.2897910
http://dx.doi.org/10.1145/3812.3818
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
http://dx.doi.org/10.1515/crll.1902.124.1
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1515/popets-2017-0053

BIBLIOGRAPHY 159

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct nizks without pcps. In Advances in Cryptology — EUROCRYPT
2013, pages 626—645, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN
978-3-642-38348-9. doi:10.1007/978-3-642-38348-9 37. [Page 23.]

Mark. Giesbrecht, Austin Lobo, and B. David Saunders. Certifying inconsistency
of sparse linear systems. In Proceedings of the 23rd International Symposium
on Symbolic and Algebraic Computation, ISSAC ’98, pages 113-119, New York,
NY, USA, 1998. Association for Computing Machinery. ISBN 1-58113-002-3.
doi:10.1145/281508.281591. [Page 18.]

Pascal Giorgi and Vincent Neiger. Certification of minimal approximant bases. In Pro-
ceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Compu-
tation, ISSAC’18, page 167-174, New York, NY, USA, 2018. Association for Comput-
ing Machinery. ISBN 9781450355506. do0i:10.1145/3208976.3208991. [Pages 73
and 104.]

Pascal Giorgi, Claude-Pierre Jeannerod, and Gilles Villard. On the complexity of
polynomial matrix computations. In Proceedings of the 2003 International Sym-
posium on Symbolic and Algebraic Computation, ISSAC ’03, pages 135-142, New
York, NY, USA, 2003. Association for Computing Machinery. ISBN 1-58113-641-2.
doi:10.1145/860854.860889. [Page 73.]

The Givaro group. Givaro 4.1.1, January 2020. URL https://github.com/
linbox-team/givaro. [Page 116.]

Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikdinen. On private scalar
product computation for privacy-preserving data mining. In Proceedings of the 7th
International Conference on Information Security and Cryptology, ICISC 2004, pages
104-120, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-
32083-8. d0i:10.1007/978-3-642-20465-4 11. [Pages 34 and 115.]

Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge
University Press, 2004. ISBN 0521830842, 9780521830843. do0i:10.5555/1804390.
URL https://dl.acm.org/doi/book/10.5555/1804390. [Page 121.]

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game.
In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC 87, pages 218-229, New York, NY, USA, 1987. Association for Computing
Machinery. ISBN 0-89791-221-7. d0i:10.1145/28395.28420. [Pages 29 and 33.]

Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive
proof systems. In Proceedings of the Eighteenth Annual ACM Symposium on Theory
of Computing, STOC 86, page 59-68, New York, NY, USA, 1986. Association for
Computing Machinery. ISBN 0897911938. d0i:10.1145/12130.12137. [Page 18.]

http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1145/281508.281591
http://dx.doi.org/10.1145/3208976.3208991
http://dx.doi.org/10.1145/860854.860889
https://github.com/linbox-team/givaro
https://github.com/linbox-team/givaro
http://dx.doi.org/10.1007/978-3-642-20465-4_11
http://dx.doi.org/10.5555/1804390
https://dl.acm.org/doi/book/10.5555/1804390
http://dx.doi.org/10.1145/28395.28420
http://dx.doi.org/10.1145/12130.12137

160 BIBLIOGRAPHY

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems. In Proceedings of the Seventeenth Annual ACM Symposium
on Theory of Computing, STOC ’85, pages 291-304, New York, NY, USA, 1985. Asso-
ciation for Computing Machinery. ISBN 0-89791-151-2. doi:10.1145/22145.22178.
[Page 17.]

Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating com-
putation: Interactive proofs for muggles. In Proceedings of the Fortieth Annual
ACM Symposium on Theory of Computing, STOC ’08, pages 113-122, New York,
NY, USA, 2008. Association for Computing Machinery. ISBN 978-1-60558-047-0.
doi:10.1145/1374376.1374396. [Page 22.]

Matthew Green and Giuseppe Ateniese. Identity-based proxy re-encryption. In Ap-
plied Cryptography and Network Security, pages 288-306, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg. ISBN 978-3-540-72738-5. doi:10.1007/978-3-540-
72738-5_19. [Page 137.]

Somit Gupta, Soumojit Sarkar, Arne Storjohann, and Johnny Valeriote. Triangu-
lar z-basis decompositions and derandomization of linear algebra algorithms over
K|[z]. Journal of Symbolic Computation, 47:422-453, 2012. ISSN 0747-7171.
d0i:10.1016/j.jsc.2011.09.006. [Pages 83, 84, 87, 88, and 110.]

Charles Hermite. Sur lintroduction des variables continues dans la théorie des nom-
bres. Journal fiir die reine und angewandte Mathematik, 41:191-216, 1851. ISSN
0075-4102. doi:10.1515/crll.1851.41.191. [Page 100.]

Susan Hohenberger, Guy N. Rothblum, Abhi Shelat, and Vinod Vaikuntanathan.
Securely obfuscating re-encryption. In Theory of Cryptography, pages 233-252,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-70936-7.
[Page 137.]

Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with ap-
plications. In Proceedings of the Fifth Israel Symposium on the Theory of Comput-
ing Systems (ISTCS ’97), ISTCS 97, pages 174-174, Washington, DC, USA, 1997.
IEEE Computer Society. ISBN 0-8186-8037-7. doi:10.5555/523986.857981. URL
https://dl.acm.org/doi/10.5555/523986.857981. [Page 31.]

Yuval Ishai, Manika Mittal, and Rafail Ostrovsky. On the message complexity of se-
cure multiparty computation. In Proceedings of the International Workshop on Pub-
lic Key Cryptography, PKC 2018, Cham, 2018. Springer International Publishing.
doi:10.1007/978-3-319-76578-5_24. [Page 116.]

Anca Ivan and Yevgeniy Dodis. Proxy cryptography revisited. In in Proceedings of the
Network and Distributed System Security Symposium (NDSS). The Internet Society,
2003. [Page 137.]

http://dx.doi.org/10.1145/22145.22178
http://dx.doi.org/10.1145/1374376.1374396
http://dx.doi.org/10.1007/978-3-540-72738-5_19
http://dx.doi.org/10.1007/978-3-540-72738-5_19
http://dx.doi.org/10.1016/j.jsc.2011.09.006
http://dx.doi.org/10.1515/crll.1851.41.191
http://dx.doi.org/10.5555/523986.857981
https://dl.acm.org/doi/10.5555/523986.857981
http://dx.doi.org/10.1007/978-3-319-76578-5_24

BIBLIOGRAPHY 161

Stanislaw Jarecki. Efficient covert two-party computation. In Proceedings of the
International Workshop on Public Key Cryptography, PKC 2018, pages 644-674,
Cham, 2018. Springer International Publishing. doi:10.1007/978-3-319-76578-
5 22. [Page 115.]

Claude-Pierre Jeannerod, Clément Pernet, and Arne Storjohann. Rank-profile reveal-
ing gaussian elimination and the cup matrix decomposition. Journal of Symbolic
Computation, 56:46 — 68, 2013. ISSN 0747-7171. doi:10.1016/j.jsc.2013.04.004.
[Pages 41 and 77.]

Audun Jgsang. Probabilistic logic under uncertainty. In Proceedings of the Thir-
teenth Australasian Symposium on Theory of Computing - Volume 65, CATS
‘07, page 101-110, AUS, 2007. Australian Computer Society, Inc. ISBN
1920682465. d0i:10.5555/1273694.1273707. URL https://dl.acm.org/doi/10.
5555/1273694.1273707. [Page 115.]

Thomas Kailath. Linear Systems. Prentice-Hall, 1980. ISBN 0135369614, 978-
0135369616. [Page 100.]

B. Kaliski and J. Staddon. RSA Cryptography Specifications. RFC 2437, 1998. URL
https://www.rfc-editor.org/rfc/rfc2437.txt. [Page 121.]

Erich L. Kaltofen, Michael Nehring, and B. David Saunders. Quadratic-time cer-
tificates in linear algebra. In Proceedings of the 36th International Symposium
on Symbolic and Algebraic Computation, ISSAC 11, page 171-176, New York,
NY, USA, 2011. Association for Computing Machinery. ISBN 9781450306751.
doi:10.1145/1993886.1993915. [Pages 14, 19, 24, 25, 26, 28, 38, 64, 65, 72,
and 77.]

Erich L. Kaltofen, Bin Li, Zhengfeng Yang, and Lihong Zhi. Exact certification in global
polynomial optimization via sums-of-squares of rational functions with rational co-
efficients. Journal of Symbolic Computation, 47:1 — 15, 2012. ISSN 0747-7171.
doi:10.1016/j.jsc.2011.08.002. [Page 19.]

I Kaporin. A practical algorithm for faster matrix multiplication. In Nu-
merical Linear Algebra with Applications, 1999. doi:10.1002/(SICI)1099-
1506(199912)6:8<687::AID-NLA177>3.0.CO;2-1. [Page 116.]

Elaye Karstadt and Oded Schwartz. Matrix multiplication, a little faster. In SPAA ’17.
doi:10.1145/3087556.3087579. [Page 116.]

Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: Faster malicious arith-
metic secure computation with oblivious transfer. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS '16, pages 830—
842, New York, NY, USA, 2016. Association for Computing Machinery. ISBN 978-1-
4503-4139-4. d0i:10.1145/2976749.2978357. [Page 32.]

http://dx.doi.org/10.1007/978-3-319-76578-5_22
http://dx.doi.org/10.1007/978-3-319-76578-5_22
http://dx.doi.org/10.1016/j.jsc.2013.04.004
http://dx.doi.org/10.5555/1273694.1273707
https://dl.acm.org/doi/10.5555/1273694.1273707
https://dl.acm.org/doi/10.5555/1273694.1273707
https://www.rfc-editor.org/rfc/rfc2437.txt
http://dx.doi.org/10.1145/1993886.1993915
http://dx.doi.org/10.1016/j.jsc.2011.08.002
http://dx.doi.org/10.1002/(SICI)1099-1506(199912)6:8<687::AID-NLA177>3.0.CO;2-I
http://dx.doi.org/10.1002/(SICI)1099-1506(199912)6:8<687::AID-NLA177>3.0.CO;2-I
http://dx.doi.org/10.1145/3087556.3087579
http://dx.doi.org/10.1145/2976749.2978357

162 BIBLIOGRAPHY

Tracy Kimbrel and Rakesh K. Sinha. A probabilistic algorithm for verifying matrix
products using o(n2) time and log2n + o(1) random bits. Information Processing
Letters, 45:107 — 110, 1993. ISSN 0020-0190. d0i:10.1016,/0020-0190(93)90224-
W. [Page 24.]

Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched
oblivious prf with applications to private set intersection. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, CCS '16, pages
818-829, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
978-1-4503-4139-4. doi:10.1145/2976749.2978381. [Page 31.]

Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure computation
with malicious adversaries. In Proceedings of the 21st USENIX Conference on Security
Symposium, Security’12, pages 14-14, Berkeley, CA, USA, 2012. USENIX Associ-
ation. doi:10.5555/2362793.2362807. URL https://dl.acm.org/doi/10.5555/
2362793.2362807. [Page 33.]

George Labahn, Vincent Neiger, and Wei Zhou. Fast, deterministic computation of the
Hermite normal form and determinant of a polynomial matrix. Journal of Complex-
ity, 42:44-71, 2017. ISSN 0885-064X. do0i:10.1016/].jco.2017.03.003. [Page 78.]

Francois Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the
39th International Symposium on Symbolic and Algebraic Computation, ISSAC 14,
pages 296-303, New York, NY, USA, 2014. Association for Computing Machinery.
ISBN 978-1-4503-2501-1. doi:10.1145/2608628.2608664. [Pages 15 and 116.]

The LinBox group. LinBox 1.6.3, July 2019. URL http://linalg.org. [Page 65.]

Yehuda Lindell. How to Simulate It — A Tutorial on the Simulation Proof Technique,
pages 277-346. Springer International Publishing, Cham, 2017. ISBN 978-3-319-
57048-8. do0i:10.1007/978-3-319-57048-8 6. [Page 121.]

David Lucas, Vincent Neiger, Clement Pernet, Daniel Barry Roche, and Johan
Rosenkilde. Verification Protocols with Sub-Linear Communication for Polyno-
mial Matrix Operations. MICA special edition of Journal of Symbolic Computation,
2019. URL https://hal-unilim.archives-ouvertes.fr/hal-01829139. In press.
[Page 72.]

Carsten Lund, Lance Fortnow, H Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM, 39:859-868, 1992. ISSN 0004-5411.
doi:10.1145/146585.146605. [Page 22.]

Cyrus Colton MacDuffee. The Theory of Matrices. Springer-Verlag Berlin Heidelberg,
1933. ISBN 978-3-642-99234-6. d0i:10.1007/978-3-642-99234-6. [Page 100.]

Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay—a secure two-
party computation system. In Proceedings of the 13th Conference on USENIX Security

http://dx.doi.org/10.1016/0020-0190(93)90224-W
http://dx.doi.org/10.1016/0020-0190(93)90224-W
http://dx.doi.org/10.1145/2976749.2978381
http://dx.doi.org/10.5555/2362793.2362807
https://dl.acm.org/doi/10.5555/2362793.2362807
https://dl.acm.org/doi/10.5555/2362793.2362807
http://dx.doi.org/10.1016/j.jco.2017.03.003
http://dx.doi.org/10.1145/2608628.2608664
http://linalg.org
http://dx.doi.org/10.1007/978-3-319-57048-8_6
https://hal-unilim.archives-ouvertes.fr/hal-01829139
http://dx.doi.org/10.1145/146585.146605
http://dx.doi.org/10.1007/978-3-642-99234-6

BIBLIOGRAPHY 163

Symposium - Volume 13, SSYM’04, pages 20-20, Berkeley, CA, USA, 2004. USENIX
Association. d0i:10.5555/1251375.1251395. URL https://dl.acm.org/doi/abs/
10.5555/1251375.1251395. [Page 33.]

WA. Microsoft Research, Redmond. Microsoft SEAL (release 3.4), October 2019. URL
https://github.com/Microsoft/SEAL. [Page 116.]

Maurice Mignotte. How to share a secret. In Proceedings of the 1982 Conference on
Cryptography, pages 371-375, Berlin, Heidelberg, 1983. Springer-Verlag. ISBN 3-
540-11993-0. d0i:10.5555/1756088.1756122. [Page 30.]

Pradeep Kumar Mishra, Deevashwer Rathee, Dung Hoang Duong, and Masaya Yasuda.
Fast secure matrix multiplications over ring-based homomorphic encryption. Cryp-
tology ePrint, 2018/663. URL https://eprint.iacr.org/2018/663. [Page 115.]

Payman Mohassel. Efficient and secure delegation of linear algebra. Cryptology ePrint
Archive, Report 2011/605, 2011. https://eprint.iacr.org/2011/605. [Page 31.]

Thom Mulders and Arne Storjohann. Certified dense linear system solv-
ing. Journal of Symbolic Computation, 37:485-510, 2004. ISSN 0747-7171.
doi:10.1016/j.jsc.2003.07.004. [Pages 18, 90, and 92.]

Ketan Mulmuley. A fast parallel algorithm to compute the rank of a matrix
over an arbitrary field. Combinatorica, 7:101-104, 1987. ISSN 1439-6912.
doi:10.1007/BF02579205. [Page 60.]

David Naccache and Jacques Stern. A new public key cryptosystem based on higher
residues. In Proceedings of the 5th ACM Conference on Computer and Communications
Security, CCS 98, page 59-66, New York, NY, USA, 1998. Association for Computing
Machinery. ISBN 1581130074. doi:10.1145/288090.288106. [Pages 116 and 120.]

Vincent Neiger and Thi Xuan Vu. Computing canonical bases of modules of uni-
variate relations. In Proceedings of the 2017 ACM on International Symposium
on Symbolic and Algebraic Computation, ISSAC’17, pages 357-364, New York,
NY, USA, 2017. Association for Computing Machinery. ISBN 978-1-4503-5064-8.
doi:10.1145/3087604.3087656. [Pages 73 and 110.]

Vincent Neiger, Johan Rosenkilde, and Grigory Solomatov. Computing Popov and
Hermite forms of rectangular polynomial matrices. In Proceedings of the 2018 ACM
on International Symposium on Symbolic and Algebraic Computation, ISSAC’18, page
295-302, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450355506. doi:10.1145/3208976.3208988. [Pages 73 and 103.]

Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Proceed-
ings of the 32nd Annual Cryptology Conference on Advances in Cryptology, CRYPTO
2012, pages 681-700, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-
32008-8. d0i:10.1007/978-3-642-32009-5_40. [Page 33.]

http://dx.doi.org/10.5555/1251375.1251395
https://dl.acm.org/doi/abs/10.5555/1251375.1251395
https://dl.acm.org/doi/abs/10.5555/1251375.1251395
https://github.com/Microsoft/SEAL
http://dx.doi.org/10.5555/1756088.1756122
https://eprint.iacr.org/2018/663
https://eprint.iacr.org/2011/605
http://dx.doi.org/10.1016/j.jsc.2003.07.004
http://dx.doi.org/10.1007/BF02579205
http://dx.doi.org/10.1145/288090.288106
http://dx.doi.org/10.1145/3087604.3087656
http://dx.doi.org/10.1145/3208976.3208988
http://dx.doi.org/10.1007/978-3-642-32009-5_40

164 BIBLIOGRAPHY

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology — EUROCRYPT 99, EUROCRYPT ’99, pages 223-238,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. ISBN 978-3-540-48910-8.
doi:10.1007/3-540-48910-X_16. [Page 116.]

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. Communications of the ACM, 59:103-112, 2016.
ISSN 0001-0782. doi:10.1145/2856449. [Page 22.]

Clément Pernet and Arne Storjohann. Faster algorithms for the characteristic polyno-
mial. In Proceedings of the 32nd International Symposium on Symbolic and Algebraic
Computation, ISSAC 07, pages 307-314, New York, NY, USA, 2007. Association for
Computing Machinery. ISBN 978-1-59593-743-8. d0i:10.1145/1277548.1277590.
[Page 64.]

Clément Pernet and William Stein. Fast computation of Hermite normal forms of
random integer matrices. Journal of Number Theory, 130:1675-1683, 2010. ISSN
0022-314X. d0i:10.1016/j.jnt.2010.01.017. [Page 103.]

Vasile M. Popov. Invariant description of linear, time-invariant controllable
systems. SIAM Journal on Control, 10:252-264, 1972. ISSN 0036-1402.
doi:10.1137/0310020. [Pages 73 and 100.]

Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive, Report 2005/187, 2005. https://eprint.iacr.org/2005/187. [Page 31.]

Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round inter-
active proofs for delegating computation. In Proceedings of the Forty-eighth An-
nual ACM Symposium on Theory of Computing, STOC ’16, pages 49-62, New York,
NY, USA, 2016. Association for Computing Machinery. ISBN 978-1-4503-4132-5.
doi:10.1145/2897518.2897652. [Page 20.]

Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computation with
online/offline dual execution. In Proceedings of the 25th USENIX Conference on Se-
curity Symposium, SEC’16, page 297-314, USA, 2016. USENIX Association. ISBN
9781931971324. d0i:10.5555/3241094.3241118. URL https://dl.acm.org/doi/
10.5555/3241094.3241118. [Page 115.]

Daniel S. Roche. Error correction in fast matrix multiplication and inverse. In Proceed-
ings of the 2018 ACM International Symposium on Symbolic and Algebraic Computa-
tion, ISSAC 18, page 343-350, New York, NY, USA, 2018. Association for Comput-
ing Machinery. ISBN 9781450355506. doi:10.1145/3208976.3209001. [Page 148.]

Thomas Schneider and Michael Zohner. GMW vs. Yao? efficient secure two-party
computation with low depth circuits. In Financial Cryptography and Data Secu-
rity - 17th International Conference, FC 2013, pages 275-292, Berlin, Heidelberg,

http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1145/2856449
http://dx.doi.org/10.1145/1277548.1277590
http://dx.doi.org/10.1016/j.jnt.2010.01.017
http://dx.doi.org/10.1137/0310020
https://eprint.iacr.org/2005/187
http://dx.doi.org/10.1145/2897518.2897652
http://dx.doi.org/10.5555/3241094.3241118
https://dl.acm.org/doi/10.5555/3241094.3241118
https://dl.acm.org/doi/10.5555/3241094.3241118
http://dx.doi.org/10.1145/3208976.3209001

BIBLIOGRAPHY 165

2013. Springer Berlin Heidelberg. ISBN 978-3-642-39884-1. doi:10.1007/978-3-
642-39884-1 23. [Page 33.]

Jacob T. Schwartz. Fast probabilistic algorithms for verification of polyno-
mial identities. Journal of the ACM, 27:701-717, 1980. ISSN 0004-5411.
doi:10.1145/322217.322225. [Pages 43, 62, and 76.]

Adi Shamir. How to share a secret. Communications of the ACM, 22:612-613, 1979.
ISSN 0001-0782. d0i:10.1145/359168.359176. [Pages 30 and 115.]

Adi Shamir. IP = PSPACE. Journal of the ACM, 39:869-877, 1992. ISSN 0004-5411.
doi:10.1145/146585.146609. [Page 18.]

Arne Storjohann. High-order lifting and integrality certification. Journal of Sym-
bolic Computation, 36:613-648, 2003. ISSN 0747-7171. doi:10.1016/S0747-
7171(03)00097-X. [Pages 84 and 110.]

Arne Storjohann. Integer matrix rank certification. In Proceedings of the 34th In-
ternational Symposium on Symbolic and Algebraic Computation, ISSAC ’09, page
333-340, New York, NY, USA, 2009. Association for Computing Machinery. ISBN
9781605586090. doi:10.1145/1576702.1576748. [Page 18.]

Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:
354-356, 1969. ISSN 0945-3245. doi:10.1007/BF02165411. [Page 116.]

Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Advances in
Cryptology — CRYPTO 2013, CRYPTO ’13, pages 71-89, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. ISBN 978-3-642-40084-1. doi:10.1007/978-3-642-
40084-1 5. [Page 22.]

The FFLAS-FFPACK group. FFLAS-FFPACK: Finite Field Linear Algebra Subroutines /
Package, v2.4.4, June 2019. URL http://linbox-team.github.io/fflas-ffpack.
[Page 64.]

Juan Ramon Troncoso-Pastoriza, Pedro Comesana, and Fernando Perez-Gonzalez. Se-
cure direct and iterative protocols for solving systems of linear equations. 2009.
[Page 35.]

Marc Van Barel and Adhemar Bultheel. A general module theoretic framework for
vector M-Padé and matrix rational interpolation. Numerical Algorithms, 3:451-462,
1992. ISSN 1017-1398. doi:10.1007/BF02141952. [Page 102.]

Gilles Villard. Computing popov and hermite forms of polynomial matrices. In Proceed-
ings of the 1996 International Symposium on Symbolic and Algebraic Computation,
ISSAC ’96, pages 250-258, New York, NY, USA, 1996. Association for Computing
Machinery. ISBN 0897917960. doi:10.1145/236869.237082. [Page 73.]

http://dx.doi.org/10.1007/978-3-642-39884-1_23
http://dx.doi.org/10.1007/978-3-642-39884-1_23
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1145/146585.146609
http://dx.doi.org/10.1016/S0747-7171(03)00097-X
http://dx.doi.org/10.1016/S0747-7171(03)00097-X
http://dx.doi.org/10.1145/1576702.1576748
http://dx.doi.org/10.1007/BF02165411
http://dx.doi.org/10.1007/978-3-642-40084-1_5
http://dx.doi.org/10.1007/978-3-642-40084-1_5
http://linbox-team.github.io/fflas-ffpack
http://dx.doi.org/10.1007/BF02141952
http://dx.doi.org/10.1145/236869.237082

166 BIBLIOGRAPHY

Joachim von zur Gathen and Jiirgen Gerhard. Modern Computer Alge-
bra. Cambridge University Press, third edition, 2013. ISBN 0521826462.
doi:10.1017/CB09781139856065. [Pages 78 and 90.]

Michael Walfish and Andrew J. Blumberg. Verifying computations without reexe-
cuting them. Communications of the ACM, 58:74-84, 2015. ISSN 0001-0782.
doi:10.1145/2641562. [Page 23.]

Ningning Wu, Jing Zhang, and li Ning. Discovering multivariate linear relationship se-
curely. In Proceedings from the Sixth Annual IEEE SMC Information Assurance Work-
shop, pages 436— 437, Washington, DC, USA, 2005. IEEE Computer Society. ISBN
0-7803-9290-6. d0i:10.1109/IAW.2005.1495989. [Page 35.]

Stefan Wueller, Malte Breuer, Ulrike Meyer, and Susanne Wetzel. Privacy-preserving
trade chain detection. In Data Privacy Management, Cryptocurrencies and Blockchain
Technology, LNCS ’18, pages 373-388, Cham, 2018. Springer International Publish-
ing. ISBN 978-3-030-00305-0. do0i:10.1007/978-3-030-00305-0_26. [Page 13.]

Xuan Yang, Bin Kang, and Zhaoping Yu. Privacy-preserving cooperative linear sys-
tem of equations protocol and its application. In 2008 4th International Con-
ference on Wireless Communications, Networking and Mobile Computing, Wash-
ington, DC, USA, 2008. IEEE Computer Society. ISBN 978-1-4244-2107-7.
doi:10.1109/WiCom.2008.1131. [Page 35.]

Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, SFCS ’82, pages 160-164, Washing-
ton, DC, USA, 1982. IEEE Computer Society. doi:10.1109/SFCS.1982.88. [Page 27.]

Andrew Chi-Chih Yao. How to generate and exchange secrets. In Proceedings of the
27th Annual Symposium on Foundations of Computer Science, SFCS '86, pages 162—
167, Washington, DC, USA, 1986. IEEE Computer Society. ISBN 0-8186-0740-8.
doi:10.1109/SFCS.1986.25. [Page 32.]

W. Zhou. Fast Order Basis and Kernel Basis Computation and Related Problems. PhD
thesis, University of Waterloo, 2012. URL http://hdl.handle.net/10012/7326.
[Pages 87, 95, and 96.]

Wei Zhou and George Labahn. Computing column bases of polynomial matrices. In
Proceedings of the 38th International Symposium on Symbolic and Algebraic Com-
putation, ISSAC’13, pages 379-386, New York, NY, USA, 2013. Association for
Computing Machinery. ISBN 978-1-4503-2059-7. d0i:10.1145/2465506.2465947.
[Pages 103 and 104.]

Wei Zhou and George Labahn. Unimodular completion of polynomial matrices. In Pro-
ceedings of the 39th International Symposium on Symbolic and Algebraic Computation,
ISSAC’14, pages 413-420, New York, NY, USA, 2014. Association for Computing

http://dx.doi.org/10.1017/CBO9781139856065
http://dx.doi.org/10.1145/2641562
http://dx.doi.org/10.1109/IAW.2005.1495989
http://dx.doi.org/10.1007/978-3-030-00305-0_26
http://dx.doi.org/10.1109/WiCom.2008.1131
http://dx.doi.org/10.1109/SFCS.1982.88
http://dx.doi.org/10.1109/SFCS.1986.25
http://hdl.handle.net/10012/7326
http://dx.doi.org/10.1145/2465506.2465947

BIBLIOGRAPHY 167

Machinery. ISBN 978-1-4503-2501-1. doi:10.1145/2608628.2608640. [Pages 107
and 108.]

Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of
the International Symposium on Symbolic and Algebraic Computation, EUROSAM
’79, page 216-226, Berlin, Heidelberg, 1979. Springer-Verlag. ISBN 3540095195.
[Pages 43, 62, and 76.]

http://dx.doi.org/10.1145/2608628.2608640

Abstract

Exact linear algebra is an essential tool for scientific computation, which is used in a wide array of appli-
cations such as experimental mathematics, number theory, cryptography or formal proofs. High performance
computing infrastructures, used to tackle scientific computation, vastly evolved over the past 60 years: while
initially performed over local, privately owned machines, the rise of the Internet in the 1990s ushered in the
era of outsourced computation, which culminated with the recent development of cloud computing. Nowa-
days, many applications are run on machines which are no longer owned but instead rent by clients. This new
model gave birth to questions related to trust in computation: as clients no longer own and control computing
resources, how can they ensure the confidentiality, the security or even the validity of their computations? In
this thesis, we focus on two key aspects for the security of outsourced computation for exact linear algebra:
output correctness verification and data confidentiality in multiparty computations. We propose new proto-
cols allowing clients to efficiently verify rank-related invariants and use them to improve the verification of
classical linear algebra properties, matrix determinant and signature. We also introduce the first verification
protocols for classical properties of the modules of polynomial vectors and their related matrices. Finally,
we propose the first recursive secure multiparty computation protocol for matrix multiplication, based on
Strassen-Winograd algorithm that allow users owning some rows of the matrices to compute some rows of
the product. Neither the user’s initial data, nor the intermediate values, even during the recurrence, are ever
revealed to other users. This novel protocol allows us to improve the state of the art for the communication
volume of such protocols.

Résumé

L’algebre linéaire exacte est un outil essentiel du calcul scientifique et trouve de nombreuses applications
en mathématiques expérimentales, en théorie des nombres, en cryptographie ou encore pour les preuves
formelles. Les infrastructures de calcul a haute performance utilisées pour le calcul scientifique ont connu de
nombreuses évolutions au cours des 60 derniéres années. Les calculs, initialement exécutés sur des machines
locales possédées par les utilisateurs, sont désormais réalisés sur des machines externes, évolution permise
par le rapide développement d’'Internet au cours des années 1990. Ce phénomene a atteint son apogée avec
l'arrivée récente du cloud computing. Désormais, un grand nombre de calculs sont effectués sur des machines
non plus possédées, mais louées par des clients. Ce nouveau modeéle a donné naissance a de nombreuses
questions autour de la confiance a accorder a de tels calculs. Alors que les clients n’ont plus le contrdle des
infrastructures qu’ils utilisent, comment peuvent-ils s’assurer de la confidentialité, la sécurité ou encore la
validité de leurs calculs ? Dans cette thése, nous considérons deux aspects fondamentaux de la sécurité des
calculs externalisés en algebre linéaire exacte : la vérification de la justesse des résultats, et la confidentialité
des données pour les calculs multipartites. Nous proposons de nouveaux protocoles permettant aux clients
de vérifier efficacement les invariants liés au rang et nous les utilisons pour améliorer la vérification de
propriétés classiques de 'algébre linéaire, le déterminant de matrices et la signature. Nous introduisons
également les premiers protocoles de vérification pour les propriétés classiques des modules de vecteurs
de polynémes et leurs matrices associées. Enfin, nous proposons le premier protocole multipartite sécurisé
récursif pour la multiplication de matrices basé sur I'algorithme de Strassen-Winograd. Notre protocole
permet a des utilisateurs possédant certains lignes des matrices d’entrée de calculer les mémes lignes de
la matrice de sortie. Ni les données initiales, ni les valeurs intermédiaires du calcul ne sont révelées aux
autres participants. Ce nouveau protocole nous permet d’améliorer I'état de I'art pour le volume de données

communiquées lors de I'exécution de tels protocoles.

	1 Introduction
	1.1 Verification protocols for outsourced computation
	1.1.1 Overview
	1.1.2 Interactive proof systems and verification protocols
	1.1.3 Evaluation of the efficiency of a verification protocol
	1.1.4 From interactive to non interactive protocols and public verifiability
	1.1.5 Paradigms for verification protocols
	1.1.6 Linear algebra intermediate approach
	1.1.7 Overview of existing state of the art algorithm-based verification protocols

	1.2 Multi-party computation protocols
	1.2.1 Overview
	1.2.2 Definitions
	1.2.3 Evaluation of the efficiency of an MPC protocol
	1.2.4 Paradigms for MPC protocols
	1.2.5 Algorithm-based approaches

	2 Verification protocols for triangular equivalence and rank profiles
	2.1 Non interactive and quadratic communication verification protocols
	2.1.1 Column rank profile verification protocol
	2.1.2 Non interactive Rank Profile Matrix verification protocol

	2.2 An interactive verification protocol for the rank profile matrix
	2.2.1 Triangular one sided equivalence
	2.2.2 Generic rank profile-ness
	2.2.3 LDUP decomposition
	2.2.4 Column or row rank profile verification protocol
	2.2.5 Rank profile matrix verification protocol

	2.3 Constant rounds verification protocols
	2.3.1 Representative Laurent polynomial of a matrix
	2.3.2 Constant rounds triangular equivalence verification protocol
	2.3.3 Constant round verification protocols for the row and column rank profiles

	2.4 Some additional verification protocol
	2.4.1 Linear communication verification protocols for the determinant
	2.4.2 Verification protocol for the signature of an integer matrix

	3 Verification protocols for polynomial matrix operations
	3.1 Preliminaries
	3.1.1 Some probability bounds.

	3.2 Linear algebra operations
	3.2.1 Singularity and nonsingularity
	3.2.2 Matrix Rank
	3.2.3 Determinant
	3.2.4 Protocols based on matrix multiplication

	3.3 Row space membership
	3.3.1 Full row rank case
	3.3.2 Arbitrary rank case

	3.4 Row spaces and normal forms
	3.4.1 Row space subset and row basis
	3.4.2 Normal forms

	3.5 Saturation and kernel bases
	3.5.1 Saturation and saturated matrices
	3.5.2 Kernel bases and unimodular completability

	4 SMC matrix multiplication based on Strassen-Winograd
	4.1 Preliminaries
	4.1.1 Strassen-Winograd algorithm
	4.1.2 Data layout and encryption
	4.1.3 Homomorphic encryption
	4.1.4 Multiparty protocols security
	4.1.5 Relaxing an existing algorithm: YTP-SS

	4.2 Toolbox
	4.2.1 Initialization Phase
	4.2.2 Multiparty copy
	4.2.3 Classical Matrix Multiplication base case
	4.2.4 Security Analysis

	4.3 Multiparty Strassen-Winograd
	4.3.1 Operation schedule in [pro:mpsw]MP-SW
	4.3.2 Finalisation step
	4.3.3 Cost and security analysis

	4.4 Experiments
	4.5 Variant of [pro:mpsw]MP-SW using proxy re-encryption
	4.5.1 Description of the new protocol
	4.5.2 Communication cost analysis
	4.5.3 Comparisons between fully and semi homomorphic solutions

	Conclusion
	Bibliography

