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A B S T R A C T

Intertidal mudflats at temperate latitudes are among the most productive ecosys-
tems on Earth. Their high primary production (PP) is mostly supported by
microphytobenthos (MPB). MPB form a dense biofilm at the surface of the
mudflats during daytime low tides. They fix a high quantity of inorganic car-
bon into organic carbon through photosynthesis, which supports both benthic
and pelagic food webs. With a global annual primary production estimated
to ∼ 500 million tons of carbon, MPB also participate to the Blue Carbon. Re-
cent methods using physical-biological coupled modelling or remote sensing
improve our capacity to assess the MPB biomass and PP in response to highly
variable environmental conditions.

In the present thesis, we use a physical-biological coupled model to inves-
tigate the spatial and temporal variability of MPB dynamics on a large tem-
perate intertidal mudflat, the Brouage mudflat (French Atlantic coast). The
model explicitly simulates the MPB biomass within the surface biofilm and the
first centimetre of sediment and the grazer (Peringia ulvae) biomass and den-
sity at the sediment surface. It is constrained by realistic atmospheric and tidal
forcings and simulated mud surface temperature (MST). The outputs of the
physical-biological coupled model fairly compare to time-coincident remotely-
sensed and in situ data and provide key findings on MPB dynamics. Light
and MST mostly constrain the seasonal cycle of MPB biomass on the intertidal
mudflat. In winter and early spring, optimal light and MST conditions for
MPB growth lead to a MPB spring bloom. Light is the most limiting driver
over the year. However, a high MST limits the MPB growth 40 % of the time
during summer. The photoinhibition of MPB photosynthesis can potentially
superimpose on thermo-inhibition in spring and summer. With more frequent
and longer emersion periods, the upper shore of the mudflat receives higher
amount of light and might experience stronger photoinhibition than the lower
shore. However, the lower shore might be more sensitive to photoinhibition
due to its low MPB biomass, PP and its emersion periods restricted to high
light levels. Grazing and resuspension of MPB biomass also shape the dynam-
ics of the photosynthetically active and competent MPB biomass. In late spring
and summer, a moderate grazing pressure by P. ulvae combines with thermo-
inhibition to lead to a summer depression of the MPB biomass. In addition,
bioturbation by P. ulvae contributes to a chronic export of MPB biomass from
the sediment to the water column in spring and summer. Waves substantially
contribute to the MPB resuspension through massive resuspension events in
winter, spring and fall. 50 % of the annual MPB PP is exported to the water
column through chronic and massive resuspension events. During the thesis,
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we also developed a new method that combines remote sensing data with out-
puts of the physical-biological coupled model into a single algorithm that can
predict PP from satellite data. This algorithm provides the first PP estimates at
the mudflat scale.

A next step would be the coupling of the physical-biological model into a
3D high resolution ocean-biogeochemical coupled model in order to monitor
and predict the MPB PP at the seasonal, annual and inter-annual scales and,
ultimately, to improve our knowledge on the fate of MPB carbon in the coastal
ocean in response to contemporary climate change.
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CHAPTER I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

Acronyms:
EPS: Extracellular
Polymeric
Substances
MPB:
Microphytobenthos
MST: Mud Surface
Temperature
PP: Primary
Production

Coastal ecosystems are among the most productive ecosystems in the world
and provide numerous services to the human society (Millennium Ecosystem
Assessment, 2005). Within coastal areas, tidal flats are defined as sand, rocky
or mud flats that undergo regular tidal immersion. Tidal flats are one of the
most represented coastal ecosystems on Earth (Healy et al., 2002; Murray et al.,
2019). They are present from equatorial to polar latitudes (Fig. 1; Deppe,
2000). They are of key importance as they contribute to storm protection,
shoreline stabilisation and support a high biological production constituting
food resources for the millions of people that live on littoral worldwide (Mil-
lennium Ecosystem Assessment, 2005; Nicholls and Wong, 2007). With a high
autochthonous production combined with inputs of allochthonous organic mat-
ter and low decomposition rates of organic matter, tidal flats are carbon sinks
corresponding to Blue Carbon (Duarte et al., 2004; Mcleod et al., 2011). In
the era of climate change and growing human footprint, tidal flats and their
services are threatened by coastal development (Millennium Ecosystem Assess-
ment, 2005; Arkema et al., 2013), sea-level rise (Passeri et al., 2015; Lovelock
et al., 2017), coastal erosion (Nicholls and Wong, 2007) and reduced riverine
sediment inputs (Syvitski et al., 2005; Blum and Roberts, 2009). These natural
and anthropic pressures make uncertain the ecological equilibrium of tidal flats
whose high biological production is partly supported by the microphytobenthic
biofilm that colonize their sediment surface (MacIntyre et al., 1996; Underwood
and Kromkamp, 1999).

Figure 1: Examples of intertidal mudflats colonised by microphytobenthos (source:
GEBCO and Lebreton et al., 2019).
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what are microphytobenthos (mpb) of intertidal mudflat?

MPB is a generic term that regroups microalgae and photosynthetic bacteria
that live in the upper millimetre of the sediment (e.g. diatoms, euglenids, di-
noflagellates and cyanobacteria; MacIntyre et al., 1996; Paterson and Hagerthey,
2001). At temperate latitudes, MPB are dominated by diatoms (Admiraal, 1984;
MacIntyre et al., 1996; Underwood and Kromkamp, 1999). In the present the-
sis, the further reference to MPB will refer to diatoms as considered dominant
in MPB assemblages of the study site. MPB can be distinguished into three
functional groups according to the nature of the sediment. Epipelic MPB are
mainly composed by motile and free living diatoms. Epipsammic diatoms live
in close association with sediment grains and their mobility is limited to the
grain sphere. Finally, tychoplanktonic diatoms are able to grow both in the
benthic and the pelagic compartment.

Epipelic diatoms dominate the MPB assemblage in very fine cohesive sedi-
ments where light is rapidly attenuated with depth in the sediment (see Box
1.1.1; Underwood, 2001). Epipelic diatoms can migrate up to the sediment
surface during daytime low tides to receive sufficient light for photosynthesis.
This vertical migration is made possible by excreting extracellular polymeric
substances (EPS; Edgar and Pickett-Heaps, 1983). Consequently, their time win-
dow for photosynthesis is mainly restricted to low tides. The vertical motility
in the sediment is therefore a way to remain in optimal conditions for growth
and avoid harmful conditions related to tides, temperature, light, dessication,
nutrients and grazing (Kingston, 2002; Saburova and Polikarpov, 2003; Con-
salvey et al., 2004). In addition to the tidal regime and photoperiods, this diel
migration scheme is ruled by endogenous rythms that can be maintained over
several days without any environmental change (Consalvey et al., 2004).

In contrast, epipsammic diatoms inhabit coarser and sandier sediments and
live attached to sediment grain by a pad or short stalk of EPS (Underwood,
2001). Sandy sediments exhibit deeper light penetration (see Box 1.1.1). It
results that, both during emersion and immersion, burried epipsammic MPB
can maintain their photosynthetic activity if solar irradiance reaches the sea
bottom and are therefore better adapted to subtidal area than epipelic MPB
(Varela and Penas, 1985). Finally, tychoplanktonic cells live both at the surface
of intertidal and subtidal sediments and in the water column (Vos and De Wolf,
1993). Depending on light conditions, they are photosynthetically active during
low tides and during high tides if resuspended into the water column.
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Light penetration in sediments and MPB biomass vertical distri-
bution

In fine cohesive muddy sediments, the light penetrates up to 600

µm (Fig. 2; Cartaxana et al., 2011). The photic zone in sandy sedi-
ments is deeper (up to 3000 µm; Fig. 2; Cartaxana et al., 2011).

Figure 2: Percentage of surface irradiance (mean ± standard deviation)
along depth profiles for intertidal muddy and sandy sediments
(from Cartaxana et al., 2011).

Such vertical profile of light results in homogeneous 1-mm verti-
cal profile of MPB biomass in sandy sediments, whereas the MPB
biomass in muddy sediments is restricted to the upper hundred
micrometers of the sediment (Cartaxana et al., 2011).

the environmental drivers of mpb photosynthesis

The spatial and temporal dynamics of MPB biomass and primary production
(PP) is constrained by environmental factors that can be distinguished as abiotic
or biotic divers.

Abiotic drivers

Light

Light is the major ecological factor driving the MPB photosynthesis (MacIntyre
et al., 1996; Underwood, 2001). Considering both the light attenuation in the
sediment and the full exposure of intertidal sediments, MPB have to adapt to
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low and high light levels. Low light levels limit the MPB photosynthesis that
does not exceed respiration losses. Consequently, light is a limiting factor for
MPB photosynthesis deepward in muddy sediments and, in a lesser extent, in
sandy sediments as it penetrates deeper (Kühl et al., 1995; MacIntyre et al., 1996;
Kromkamp et al., 1998; Cartaxana et al., 2011). In addition, the attenuation of
light in the sediment is accompanied by a variation of the spectral quality as
infrared light penetrates deeper than the photosynthetically active visible light
(Kühl and Jørgensen, 1992). Consequently, epipelic MPB inhabiting muddy
sediments migrate at the sediment surface to meet their light requirements
for photosynthesis. However, light levels reaching the sediment surface varies
within an extremely wide range and on a short-term basis (Kühl et al., 1995).
Irradiance at the mud surface can reach very high levels (> 2000 µmol m−2 s−1;
Laviale et al., 2015). So that, MPB must develop adaptations to cope with such
conditions.

Epipsammic diatoms use the Non-Photochemical Quenching of chlorophyll
fluorescence (NPQ) to dissipate the excess of energy from light (XC; Lavaud
and Goss, 2014). It corresponds to the de-epoxidation of xanthophyll pigments
in the xanthophyll cycle (XC). In epipelic assemblages, low photoinhibition and
low NPQ values indicate that the physiological photoprotection is not fully ex-
ploited and compensated by migration behavioural adaptations (Serôdio et al.,
2001, 2012; Raven, 2011). In addition, "micro-migrations" within the sediment
topmost layer (∼ 250 µm) can be used by epipelic diatoms as a negative photo-
taxic short-term change of position (Kromkamp et al., 1998; Perkins et al., 2001;
Cartaxana et al., 2011). While photoinhibition was successfully measured on
MPB cells in laboratory experiments (Serôdio et al., 2012; Vieira et al., 2013),
the MPB behavioural and physiological adaptations make scarce the observa-
tion of photoinhibition in the field (Serôdio et al., 2008).
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Production-Irradiance curves for MPB photosynthesis

Several Production-Irradiance (P-I) models were used to study
MPB photosynthesis as a function of light. The models of Platt
and Jassby (1976), Webb et al. (1974), Chalker (1981) and Bannister
(1979) that do not include photoinhibition was used (e.g. Barranguet
et al., 1998; Uthicke and Klumpp, 1998; Dizon and Yap, 1999; Serô-
dio and Catarino, 2000; Guarini et al., 2000; Migné et al., 2004; Denis
et al., 2012; Kwon et al., 2014, 2018; Rakotomalala et al., 2019).

Figure 3: P-I models used in MPB studies (the asterisks indicate that P-I
models use the same mathematical equation).

P-I models including photoinhibition of photosynthesis at saturat-
ing irradiance such as Eilers and Peeters (1988) and Platt et al. (1980)
models were also used (e.g. Dodds et al., 1999; Goto et al., 2000; Her-
lory et al., 2007; Pniewski et al., 2015; Cartaxana et al., 2015; Vieira
et al., 2016; Daggers et al., 2018).

Several P-I models are thus available for MPB studies. With or
without photoinhibition, the choice must go to the model that
exhibits the best adjustment to observations. Consequently, the
use of P-I models in predictive models of MPB PP requires in
situ or laboratory measurements to select the P-I model showing
the best adjustment.

Temperature

The mud surface temperature (MST) significantly affects the MPB photosyn-
thesis by changing the photosynthetic capacity (Pbmax in mg C mg Chl a−1

h−1; Blanchard et al., 1996; Guarini et al., 1997). MPB at the sediment surface
experience variations of MST on a short-term basis depending on prevailing
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physical factors like solar irradiance, air temperature, wind, humidity and at-
mospheric pressure (Guarini et al., 1997). The short-term fluctuations of these
factors depend on the time of the day, on the tidal cycle and on the meteorolog-
ical conditions.

The hourly variations of the MPB photosynthetic capacity have been related
to the fluctuation of the MST during low tides (Blanchard et al., 1996; Admiraal,
1984; Morris and Kromkamp, 2003; Salleh and McMinn, 2011). The photosyn-
thetic capacity increases toward a temperature optimum and decreases beyond
this optimum until any photosynthesis is precluded (Blanchard et al., 1996).
The optimal and lethal temperature for MPB growth were reported to vary
from 20 to 35

◦C and from 30 to 40
◦C, respectively (Blanchard et al., 1997a;

Morris and Kromkamp, 2003; Hubas et al., 2006; Vieira et al., 2013; Rakotoma-
lala et al., 2019). The seasonal variation of MST superimposes on the short-term
fluctuations. In summer, the MST can be as high as 40

◦C at midday and can
alter the photosynthetic activity of MPB through thermoinhibition (Blanchard
et al., 1996; Vieira et al., 2013). At extreme MST, the energy capture and electron
transport for photosynthesis can be impeded (Vieira et al., 2013).
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Seasonal adjustment of photosynthesis to temperature

Blanchard et al. (1997a) measured the variations of the photosyn-
thetic capacity (Pbmax in mg C mg Chl a−1 h−1) in response to
changes of temperature on suspensions of MPB collected at each
season on the Brouage mudflat (French Atlantic coast). They esti-
mated the temperature-related parameters of the equation formu-
lated by Blanchard et al. (1996):

Pbmax = PbMAX ×
(

Tmax − T

Tmax − Topt

)β
× e

(
−β×

[
Tmax−T

Tmax−Topt
−1
])

, (1)

where Tmax (◦C) and Topt (◦C) are the maximum and optimal
temperature for photosynthesis, respectively. β is a curvature co-
efficient that shapes the temperature-photosynthesis relationship.
PbMAX (mg C mg Chl a−1 h−1) is the maximum value that takes
Pbmax at Topt.

Figure 4: Relationship between Pbmax (mg C mg Chl a−1 h−1) and tem-
perature (◦C) according to Blanchard et al. (1996).

Blanchard et al. (1997a) showed that Pbmax at Topt was 3-fold
higher in April than in December. No significant change was
detected for Tmax and Topt over the year. The high Pbmax in
spring coincides with the seasonal increase of the mud surface
temperature and solar irradiance and is likely the driver of the
spring bloom observed at their study site.
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Salinity

The effect of changes in salinity in porewater on MPB photosynthesis is difficult
to disentangle from the effect of other environmental factors as salinity can
fluctuate with factors such as light, temperature and nutrients (Admiraal and
Peletier, 1980; Underwood and Provot, 2000; Juneau et al., 2015). High solar
irradiance and thus heating of the mud surface can lead to high salinity due
to porewater evaporation in the upper layer of the sediment (Admiraal and
Peletier, 1980). In addition, the increase of the riverine discharge in estuarine
coastal waters decreases the salinity and increases nutrients concentrations in
the water column (Ogilvie et al., 1997).

MPB diatoms were assumed to be highly tolerant to salinity changes (Admi-
raal, 1976; Admiraal and Peletier, 1980; Williams, 1964). The motility of epipelic
diatoms is supposed to be a strategy to avoid harmful conditions at the surface
of cohesive sediments (Consalvey et al., 2004). However, no significant nega-
tive effect of high salinity was detected on motility-deprived epipelic diatoms
(Juneau et al., 2015). Their capacity to mitigate high-stress conditions through
vertical migration depends on the rate of dessication of the sediment. In the
study of Coelho et al. (2009), whereas the photosynthesis of the MPB biofilm
was not affected by slow desiccation (reduction by 40 % of the porewater con-
tent in 4.5 h), it was reduced by fast desiccation (reduction by 40 % of the
porewater content in 2 h). The resulting production of reactive oxygen can
lead to the oxidation of the photosynthetic unit (Nishiyama et al., 2006). The
excretion of EPS by epipelic diatoms is another protective mechanism that can
dampen the effect of desiccation and high salinity (Steele et al., 2014).

pH

The pH reflects the inorganic carbon content within the sediment porewater.
MPB exhibit high volume-specific rates of PP. The carbon dioxide (CO2) assim-
ilation within the photosynthetic layer of MPB results in a CO2 depletion and
a pH that can reach 9 (Revsbech and Jørgensen, 1986; de Jong et al., 1988). A
high pH indicates a depletion in the concentration of dissolved inorganic car-
bon that might limit the MPB photosynthesis. Such a limitation is detailed in
Section 1.2.2.1.

Tides and Hydrodynamics

Tidal regime is of key importance in determining the light and temperature
levels at the sediment surface. The immersion-emersion cycle along with hy-
drodynamics also regulates the diffusive and advective transport of nutrients
across the benthic boundary layer. In addition, the fortnightly tidal cycle drives
longer and shorter emersion periods during spring and neap tides, respectively.
It also drives the timing of emersion over the day, potentially leading to a high
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light exposure during emersion occurring at noon. In contrast, emersion can
occur early and late in the day and, as such, can lead to light limitation of the
MPB photosynthesis. Therefore, a long emersion at noon (spring or neap con-
dition depending on the geographical location) can be more optimal for MPB
growth than a shorter emersion at low light levels early or late in the day (Kwon
et al., 2014).

The variation of the seawater depth with tides is determinant for the waves-
sea bottom interactions. The wave height and orbital velocity increase with
the water depth until a critical depth is reached when orbital motions at the
bottom start to decrease (Mariotti and Fagherazzi, 2013; Green and Coco, 2014;
Li et al., 2019). Moreover, tidal current velocities over tidal flats are generally
higher at mid-tide (Le Hir et al., 2000). The resulting combination of waves and
tidal currents constrains the force exerted by the water movement on the sea
bottom and drives MPB resuspension with or without any concomitant sedi-
ment resuspension (Mehta et al., 1989; Blanchard et al., 1997b; Wiltshire et al.,
1998; Bassoullet et al., 2000; French et al., 2008; Dupuy et al., 2014; Orvain et al.,
2014b). For example, de Jonge and van Beusekom (1995) associated the increase
of resuspended benthic chlorophyll a with the increase of wind speed and re-
suspension of sediment in the Ems estuary (The Netherlands). Chlorophyll a
pigments originating from MPB biofilms were also measured in the water col-
umn without any concomitant bed failure (Blanchard et al., 1997b; Wiltshire
et al., 1998; Dupuy et al., 2014; Orvain et al., 2014b). The resuspended chloro-
phyll a pigments originating from the sediment in the absence of bed failure
were associated to the resuspension of the biogenic fluff layer at the sediment
surface. The fluff layer is formed through the action of bioturbation (grazing,
crawling and egestion) by benthic deposit-feeders at the sediment surface. The
fluff layer contains MPB cells and sediment grains and are more easily eroded
than the sediment (Davis, 1993; Blanchard et al., 1997b; Willows et al., 1998;
Andersen, 2001; Orvain et al., 2003; Le Hir et al., 2007).

While not directly affecting MPB photosynthesis, MPB resuspension acts on
the MPB biomass within the sediment and thus on the photosynthetically com-
petent biomass (MacIntyre and Cullen, 1995). Such synoptic variations of MPB
biomass can impact locally the MPB PP. Finally, sediment resuspension along
with MPB can alter indirectly the MPB photosynthesis through the increase of
the water column turbidity. The increase of water turbidity was shown to de-
crease the light and temperature at the sediment surface with, as a result, the
MPB photosynthesis in subtidal mudflats (Pivato et al., 2019).
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Biotic drivers

Nutrients

In seawater, the diffusion of CO2 from the water into phytoplankton cells is
generally too low to match the rate of photosynthesis. However, microalgae
are generally not limited by CO2 as they develop carbon concentrating mecha-
nisms in order to actively transport CO2 and bicarbonate across the cell mem-
brane and maintain efficient photosynthetic rates (Raven, 1997). Despite carbon
concentrating mechanisms, the local depletion in dissolved inorganic carbon
within dense photosynthetic biofilms due to CO2 assimilation may result in
the limitation of MPB photosynthesis. While no significant increase of MPB
biomass with increasing air CO2 concentration was detected by Hicks et al.
(2011), enrichment experiments exhibited contrasting results. Torstensson et al.
(2012) reported a negative effect of dissolved CO2 enrichment on the biomass
and growth rate of benthic diatoms in suspensions. In contrast, in the dis-
solved CO2 enrichment experiment conducted by Cartaxana et al. (2015), low
temperature microcosms exhibited a high MPB biomass at low pH (7.4). The
bicarbonate enrichment of MPB suspensions by Vieira et al. (2016) caused an
increase of the MPB photosynthetic rate, suggested a likely in vitro limitation
by dissolved inorganic carbon.

In coastal estuarine waters, the nutrients load is high compared to open ocean
waters. Anthropogenic sources in nitrogen and phosphorous add to the natural
riverine nutrients inputs (Cloern, 2001). Inorganic nutrients can be exchanged
between the water column and the sediment upper layer porewater by advec-
tive and diffusive transport (e.g. Zabel et al., 1998; Jahnke et al., 2003). The
sediment porewater is particularly enriched by mineralisation of organic mat-
ter within the sediment (Deborde et al., 2008). The nutrients porewater content
varies with the nutrients adsorption on organic or mineral compounds and the
uptake by MPB (Mackin and Aller, 1984; Coelho et al., 2004). Nevertheless,
the pool of nutrients in the sediment porewater is often considered as an inex-
haustible source of nutrients (Cibic et al., 2008).

Epipelic diatoms are also able to locate nutrient- depleted and enriched zones
by combining chemokinetic and chemotactic motility for dissolved silicate and
phosphate (Bondoc et al., 2016, 2019b,a). In addition to the uptake of nutri-
ents from the porewater, benthic diatoms can grow on the intracellularly-stored
pool of ammonium, phosphate and silicate (Martin-Jézéquel et al., 2000; García-
Robledo et al., 2010; Yamaguchi et al., 2015). The MPB affinity to ammonium
is high due to its reduced molecular state and energetically-favourable assimi-
lation (Feuillet-Girard et al., 1997; Sanz-Luque et al., 2015; Glibert et al., 2016).
Motile epipelic MPB have the ability to access nutrients in deep sediment layers.
Unbalanced C/N cell quota within the biofilm is an hypothesis for explaining
the cells turnover at the sediment surface in order to re-equilibrate the C/N
quota by taking up carbon in the photic zone and nitrogen in the aphotic zone
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(Rakotomalala et al., 2019). In addition, in nutrient-depleted conditions, MPB
can exudate carbon through EPS excretion (Staats et al., 2000; Rakotomalala
et al., 2019).

The faunal activity in the upper layer of sediment can alter the nutrients
availability at the sediment- water or air interface. The excretion of dissolved
nutrients like ammonium (Prins et al., 1997; Martin et al., 2006; van Broekhoven
et al., 2015) and the enhanced mineralisation of organic matter through biodepo-
sition (e.g. by suspension-feeders) or bioturbation (Kristensen, 2000; Mermillod-
Blondin and Rosenberg, 2006) by benthic fauna can enrich the sediment and
promote directly or indirectly MPB growth (Chennu et al., 2015; Engel et al.,
2017; Androuin et al., 2018; Echappé et al., 2018). Benthic fauna can potentially
control MPB biomass directly through grazing and indirectly through minerali-
sation (Rakotomalala et al., 2019). High levels of MPB biomass were observed in
presence of engineering species such as lugworms, oysters, mussels and slipper
limpets (Chennu et al., 2015; Engel et al., 2017; Androuin et al., 2018; Echappé
et al., 2018).

Grazing

Grazing pressure acts on MPB photosynthesis via the regulation of the photo-
synthetically active and competent biomass. Grazers can be benthic meiofauna
(e.g. Blanchard, 1991; Lebreton et al., 2012) and macrofauna (e.g. Blanchard et al.,
2000a; Peer et al., 2019), demersal fishes (e.g. Como et al., 2014), shorebirds (e.g.
Jardine et al., 2015) and, once resuspended in the water column, suspensive
feeders plankton (e.g. Perissinotto et al., 2003), fishes (e.g. Krumme et al., 2008)
and sessile suspensive filter feeders (e.g. Smaal and Zurburg, 1997). The graz-
ing pressure by benthic fauna on intertidal mudflats can be so high that it can
drive local and potentially seasonal depletion of MPB biomass, especially in
summer (Cadée and Hegeman, 1974; Cariou-Le Gall and Blanchard, 1995; Sa-
han et al., 2007; Orvain et al., 2014a). Morrisey (1988) reported a decrease by
up to 30 % of the MPB cells abundance along with an increasing density of gas-
tropod Peringia ulvae and amphipod Corophium arenarium. In the experiment
conducted by Weerman et al. (2011), the addition of benthic fauna induced a
strong decrease in MPB biomass driven by direct grazing and the absence of
mud stabilisation due to bioturbation compared to treatments without fauna.

The potential of grazing to decrease the MPB biomass is also related to en-
vironmental factors such as light, MST, nutrients and hydrodynamics (Miller
et al., 1996). Depending on the MPB growth conditions, the MPB PP could
overcome the grazing pressure. Meanwhile, grazing intensity can also be pro-
moted by external factors such as temperature. Thompson et al. (2000) sug-
gested that the depression of the benthic microalgal biomass in summer re-
sulted from the combination of light- and temperature- inhibited microalgal PP
with temperature-promoted grazing. Locally, the grazing intensity can over-
come the MPB growth and biomass accumulation supplemented by the deposi-
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tion of resuspended MPB cells (Miller et al., 1996). However, the local depletion
of MPB biomass through grazing can turn into an increase of the MPB growth
rate due to a reduced MPB cells density (Admiraal et al., 1983).

on the need to better decipher mpb dynamics

The current intertidal and subtidal MPB dynamics results from the balance be-
tween the different environmental drivers. More importantly, such an equilib-
rium contributes to maintain the sustainability of ecosystem services provided
by MPB.

Carbon storage

In shallow water areas such as subtidal and intertidal zones, MPB PP can be
high and equal or exceed the phytoplankton PP (Underwood and Kromkamp,
1999). MPB exhibit high production rates ranging from 0 to 1.9 g C m−2 d−1

and from 29 to 314 g C m−2 yr−1 (Underwood and Kromkamp, 1999, and ref-
erences within). In the Marennes-Oléron Bay (French Atlantic coast), the MPB
annual PP was estimated equal to two-fold higher than that of phytoplankton
(Leguerrier et al., 2003; Struski and Bacher, 2006). In the highly turbid Colne
Estuary (UK), the phytoplankton annual PP was light-limited and estimated to
8.9 g C m−2 yr−1 (Kocum et al., 2002), which is 134-fold lower than the esti-
mated range of MPB PP in the intertidal zone of the estuary (Thornton et al.,
2002). In addition, once resuspended, MPB can contribute to the pelagic PP
(Guarini et al., 2008b; Polsenaere et al., 2012).

With a global annual primary production estimated to ∼ 500 million tons of
carbon (Cahoon, 1999), MPB participate to the Blue Carbon (Otani and Endo,
2019). Guarini et al. (2008b) suggested that the high MPB PP was not accounted
for in the global carbon cycle, making its contribution uncertain. The alteration
of tidal flats under the effect of coastal development (Duraiappah et al., 2005;
Arkema et al., 2013), sea-level rise (Passeri et al., 2015; Lovelock et al., 2017),
coastal erosion (Nicholls and Wong, 2007) and reduced riverine sediment in-
puts (Syvitski et al., 2005; Blum and Roberts, 2009) might impact the carbon
storage ensured by MPB PP. The loss of such an ecosystem service might have
catastrophic consequences for natural and human systems as it contributes to
the uptake of anthropogenic CO2 emissions.

Trophic resource

In addition to carbon storage, MPB PP largely supports secondary production
in shallow water systems (Daehnick et al., 1992; Moncreiff et al., 1992; Miller
et al., 1996). Diet analysis underlined the importance of MPB in the diet of ben-
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thic macrofauna (Herman et al., 2000) and meiofauna (van der Heijden et al.,
2019). The high abundance and PP of MPB combined with its high nutritional
quality (high nitrogen and phosphorus content, low refractory compounds)
make MPB a reliable food resource (Moncreiff and Sullivan, 2001; Lebreton
et al., 2009; van der Heijden et al., 2018).

Also, resuspended MPB supplement the pelagic food webs as it is consumed
by suspensive feeders plankton (e.g. Perissinotto et al., 2003), fishes (e.g. Krumme
et al., 2008) and sessile suspensive filter feeders (e.g. Smaal and Zurburg, 1997).
For example, farmed bivalves such as oysters and mussels ingest MPB (Leroux,
1956; Paulmier, 1972; Newell et al., 1989). Riera and Richard (1996) highlighted
the major contribution of MPB in the diet of oysters. Finally, an increase of the
export of particulate organic carbon from the benthic compartment to the water
column might fuel the pelagic carbon production (Saint-Béat et al., 2014). Any
change in the current equilibrium between MPB and secondary producers is
likely to upset the functioning of natural systems and ecosystem services such
as the support of economical activities like shellfishes farming.

Nutrients exchanges

The presence of dense MPB biofilms at the sediment surface can modify the
nutrients fluxes across the benthic boundary layer. MPB biofilms take up and
assimilate nutrients from the overlying water column and from sediment pore-
water. The release of dioxygen in the photic sediment layer during MPB pho-
tosynthesis increases the depth of the oxic layer. The activity of aerobic decom-
posers is then stimulated and decreases the vertical export through diffusion of
reduced forms of nutrients at the sediment-water interface (Underwood, 2001).

The assimilation of nutrients at the sediment surface by MPB is closely re-
lated to coupled bacterial nitrification-denitrification processes (Sundbäck et al.,
2000; Risgaard-Petersen et al., 2004). Bacteria transform and remove available
nitrogen into dinitrogen. The rate of denitrification relies on available nitrate
and ammonium concentrations diffusing from the water column and from the
sediment porewater to the sediment-water interface. Consequently, MPB al-
ter the availability of ammonium and nitrate for nitrifying and denitrifying
bacteria, respectively (Nils, 2003; Risgaard-Petersen et al., 2004). Finally, the
increase of the oxic sediment surface layer due to MPB photosynthesis reduces
the denitrification that is an anaerobic process (Rysgaard et al., 1995). MPB
play therefore a role in the nutrients retention through their intracellular stor-
age, growth and assimilation. Nutrients cycling within sediment upper layers
is a bottom-up process. It controls the nutrients availability for MPB photosyn-
thesis and thus the subtidal and intertidal PP, which sustains both benthic and
pelagic food webs.
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Morphodynamics of tidal flats

The excretion of EPS by benthic diatoms binds silt and clays. As a result, the
presence of MPB decreases the probability of sediment erosion by stabilizing
the sediment upper layer, which can turn into sediment accumulation through
sediment deposition (Paterson, 1989; Madsen et al., 1993; Underwood and Pa-
terson, 1993; Austen et al., 1999; Decho, 1990, 2000; Stal, 2010; Pierre et al., 2010,
2012). The biostabilisation by MPB was described as a positive feedback in
which a high MPB biomass in the sediment leads to a higher resistance to ero-
sion hence promoting MPB biomass accumulation in the sediment (Pivato et al.,
2019). Such a feedback leads to the formation of spatial patterns of MPB coloni-
sation as uncolonised spots may be hostile for MPB biomass establishment and
accumulation.

The presence of ridges and runnels on intertidal mudflats is an example of
a spatial self-organisation resulting from the biota-geomorphology interaction
(Blanchard et al., 2000b). Runnels formed through the action of strong ebb
currents correspond to channels that drain seawater seaward. Consequently,
MPB preferentially colonise ridges and make them more resistant to erosion
(Blanchard et al., 2000b). Therefore, tidal currents will erode the uncolonised
runnels and will deposit sediment on the MPB-inhabited ridges, pending for
consolidation. Such a process generates a regular self-organised pattern of MPB
and geomorphological structures (van de Koppel et al., 2001). It results into a
high stability of the mudflat system increasing the ecosystem biological produc-
tion of organic matter but also its resistance and resilience to physical forcings
like waves and currents (Stal, 2010; Pivato et al., 2019). The biostabilisation by
plants such as halophytic vegetation and MPB biofilms is suggested to be a key
component of tidal morphological equilibrium (Marani et al., 2010). In conclu-
sion, even distributed in patchiness, MPB might drive the long and short term
morphodynamic of the intertidal mudflats.

objectives of the thesis

In view of the physical and biological factors involved, the spatial and tem-
poral dynamics of MPB is highly variable. Efforts to integrate the physical
and biological linkage are therefore needed in order to better understand the
MPB dynamics at the scale of intertidal mudflats. However, the large extent
and composition made of fine cohesive sediments of intertidal mudflats make
them difficult to study and monitor on the field at the appropriate spatial and
temporal scales. The main objective of the present thesis is to investigate the
drivers involved in the spatial and temporal dynamics of MPB and to quantify
their relative contribution at the synoptic to seasonal time scale. To meet this
goal, we used an approach that combines numerical modelling, remote sensing
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and in situ data analysis. The approach was applied to the Brouage intertidal
mudflat (French Atlantic coast; see Box 1.4.1).

• The first specific objective is to quantify the contribution of the main abi-
otic (light, temperature, tides, waves, currents, biostabilisation) and biotic
(grazing, bioturbation) drivers in the spatial and temporal variability of
the MPB primary production;

• The second objective is to assess the export of MPB biomass from the
benthic to the pelagic compartment and its temporal variability;

• The third objective is to investigate the potential of coupling physical-
biological modelling and remote sensing to monitor MPB PP at the mud-
flat scale.

In the present thesis, we first describe the MPB modelling approach and the
model developed during the thesis to answer our 3 specific objectives (Chapter
2). In Chapter 3, we study the seasonal cycle of MPB in relation to environmen-
tal factors. In Chapter 4, we assess the role of chronic and massive resuspension
on MPB temporal dynamics by introducing waves and current forcings. Then,
in Chapter 5, we extend our comprehensive view of MPB dynamics by using
a tri-dimensional model to assess over the whole Brouage mudflat the poten-
tial impact of photoinhibition on MPB PP. Finally, in Chapter 6, we propose
a new monitoring tool that combines in situ and laboratory data, satellite and
physical-biological modelling in order to map MPB PP at the whole mudflat
scale. The thesis aims to bring new insights on the organic matter fluxes at the
land-ocean continuum and to contribute to a more accurate assessment of the
role of MPB in the coastal carbon cycle.
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Les Pertuis Charentais: a relevant site for MPB studies

The Pertuis Charentais Sea is a coastal ecosystem under pressure
that provides multiple services to people living in the littoral zone.
It is a shallow semi-enclosed sea that hosts one of the biggest shell-
fish farming activities in Europe (Goulletquer, 1998). It receives
riverine inputs originating from the agricultural watershed of the
Sèvre, Charente and Seudre rivers (Fig. 5). The area also exhibits a
high tourist attendance as it welcomes, especially during summer,
a major part of the almost 10 millions overnights of the Charente-
Maritime (source: Charentes Tourisme). In the southern part of
the Pertuis Charentais, the Brouage mudflat is an 42-km2 intertidal
mudflat composed of fine cohesive sediments (Bocher et al., 2007).
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Figure 5: Bathymetry of the Pertuis Charentais Sea with its main intertidal
mudflats (source: French marine service for hydrography and
oceanography (SHOM)).

As in many mudflats along the northern European Atlantic coast, a
dense biofilm of MPB develops at the sediment surface at low tide
and reaches up to 25 mg Chl a m−2 (Herlory et al., 2004).

The Brouage mudflat was studied since the nineties and, the
presence of a well-developed MPB makes it a relevant site for
studying the spatial and temporal dynamics of MPB.



CHAPTER II

M I C R O P H Y T O B E N T H O S M O D E L L I N G

While first attempts to simulate phytoplankton dynamics date back
to Fleming’s work in 1939, efforts to simulate MPB dynamics are rel-
atively new and the drivers involved are still in debate. In Chapter 2,
we present a short state of the art of MPB modelling and how it all
began with phytoplankton. The objective is to highlight the models
ability to test hypotheses on MPB dynamics. We also give details
about the mud surface temperature and MPB models developed
during the thesis. They could serve as a framework for improve-
ments and developments such as their coupling to high resolution
tri-dimensional (3D) models.
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M I C R O P H Y T O B E N T H O S M O D E L L I N G

The coupled
physical-biological
MPB model
presented in this
chapter was
published in an
article in the journal
Biogeosciences
(Savelli et al., 2018).
Acronyms:
EPS: Extracellular
Polymeric
Substances
MPB:
Microphytobenthos
MST: Mud Surface
Temperature
NDVI: Normalised
Difference
Vegetation Index
PP: Primary
Production

Biological modelling is a relevant tool to understand complex biological sys-
tems and can extend the temporal and spatial coverage of observational data.
Models are always based on observations. As such they can bring insights on
the mechanisms in play behind the observations.

the origins

Biological models were initially developed for demographic purposes when
Graunt (1662) used mortality data to estimate human population density. A
hundred years later, Malthus (1798) depicted growth of human population as
an exponential growth. Verhulst (1845) introduced the notion of carrying ca-
pacity in the Malthus growth model, which tempers the exponential growth
according to the maximal population size sustainable by the ecosystem. In the
mid-1920s, Lotka and Volterra developed the prey-predator model to explain
the relationships between prey and predator densities such in fish populations
(Lotka, 1925; Volterra, 1926). The first plankton model was introduced by Flem-
ing (1939) in order to describe the role of grazing on the phytoplankton tempo-
ral variability. Despite important simplifications and assumptions (negligible
phytoplankton sinking, cell death and advection, no light and nutrient limita-
tion and linear increase of grazing in time), the author obtained a relatively
good agreement between model and in situ data. Fleming’s approach high-
lighted the need to better understand zooplankton ingestion and growth to ex-
plain phytoplankton temporal dynamics. Based on the work of Fleming, Riley
developed several phytoplankton models by improving the Fleming’s assump-
tions (Riley, 1946). In addition to the grazing rate varying according observed
zooplankton density, he introduced the variation of phytoplankton growth rate
as a function of light intensity, water transparency, light penetration, nutrients,
turbulence (mixed layer vs. euphotic zone depths) and respiration. Riley im-
proved its first mass flux model by adding zooplankton and nutrient dynamics
(phosphate; Riley, 1947, 1949). On the basis of Riley’s model, Steele developed a
nutrient-phytoplankton-zooplankton (NPZ) food chain model including nutri-
ent and plankton dynamics within the oceans surface mixed layer enriched by
nutrients fluxes from depth (Steele, 1958). Besides of estimating phytoplankton
production and dynamics, Steele benefited the improvement in computation to
perform sensitivity analysis on parameters values and mathematical formula-
tions of his equations.

21
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The models developed by Fleming (1939), Riley (1946) and (Steele, 1958) were
pioneering works in mass flux ecosystem modelling of plankton. The principle
of mass flux ecosystem models relies on the mass-balance between influxes
and outfluxes of matter plus changes in biomass within a closed system where
mass is conserved. Mass fluxes in these models are generally expressed in
units of carbon, nitrogen or phosphorous. It will be some decades before mass
flux ecosystem modelling spreads to MPB. In the 1960s, the first MPB mod-
elling works consisted in the extrapolation of MPB PP measured at the synop-
tic hourly scale to daily and annual scales using a relationship with irradiance
(Pomeroy, 1959; Leach, 1970; Marshall et al., 1971; Joint, 1978; Riznyk et al., 1978;
Zedler et al., 1978; Zedler, 1980; Shaffer and Onuf, 1985). Using a model that
accounted for tides and irradiance variations, Pinckney and Zingmark (1991)
suggested that, because MPB PP varied too much at the hourly scale, such
simple extrapolations were likely to result in large errors.

the short-term variability of mpb biomass and primary produc-
tion

Pinckney and Zingmark (1993) developed the first MPB mathematical model
to better assess the annual primary production (PP) of MPB without making
extrapolations. The objective was to include the day-to-day variability of MPB
PP related to light conditions, tides and MPB vertical migration. The simulated
daily MPB PP was consistent with the monthly measurements in five different
light-attenuated habitats. In addition, the authors used the model to test the
sensitivity of the MPB PP to irradiance.

Brotas and Serôdio (1995) developed a model to describe the vertical distribu-
tion of MPB biomass from MPB biomass measured at the surface of muddy sed-
iments. Their model was parametrised with a fixed degradation rate of chloro-
phyll a (i.e. senescence, grazing) and a burial rate representing the downward
migration of MPB. The model estimates were in good agreement with the mea-
sured vertical profiles of MPB biomass. In contrast, the simulated decreasing
exponential profile of MPB biomass was less satisfactory in sandy sediments.

The model of Pinckney and Zingmark (1991) and Pinckney and Zingmark
(1993) was modified by Serôdio and Catarino (2000) to describe hourly vari-
ations of chlorophyll a fluorescence at the sediment surface. The authors as-
sumed that the hourly variability of the MPB photosynthetic activity was caused
by variations of the photosynthetically active biomass in the photic layer of the
sediment due to MPB migration. They used the MPB biomass at the sediment
surface expressed in fluorescence unit (F0) to predict the short-term variations
of the photosynthetic light response. The authors estimated F0 as a function
of tides and irradiance at the hourly scale. Then, they obtained photosynthetic
parameters from hourly estimates of F0 with empirical relationships and com-
puted MPB production with a P-I model. From consistent hourly rates of MPB
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production, they estimated MPB annual production in time and space at the
scale of the Tagus Estuary (Portugal).

Guarini (1998) used the works of Blanchard et al. (1996), Blanchard et al.
(1997a) and Guarini et al. (1997) to develop a discrete 2-layer mass flux model
of intertidal MPB biomass accounting for light, mud surface temperature (MST),
tides and MPB vertical migration at the mud surface. The model simulated the
MPB biomass in the sediment first centimetre and in the surface biofilm. The
total simulated MPB biomass compared with measurements made over 15 days
at different tidal levels of an intertidal mudflat.

mpb in mass flux ecosystem models

Subtidal MPB was first introduced as a benthic primary producer in an ecosys-
tem model of Port Phillip Bay in Australia to study the effect of varying nitro-
gen load in this semi-enclosed area (Murray and Parslow, 1997). MPB PP was
related to light, temperature, nutrients, biomass and maximum growth rate
of MPB. MPB mortality was represented through a quadratic mortality rate
to represent an increased predation rate at higher MPB densities. The authors
suggested that the ammonium uptake by MPB limited the coupled nitrification-
denitrification process. The consideration of different primary producers (MPB,
seagrass, macroalgae) in the bay tempered the response of the system to increas-
ing nitrogen load, because the capacity of the system to cope with high nitrogen
loads varied in space.

Blackford (2002) introduced a MPB module in the European Regional Seas
Ecosystem Model (ERSEM; Baretta et al., 1995). They inferred on the role of
subtidal MPB in an one-dimensional (1D) ecosystem model of the Northern
Adriatic Sea. They parametrised the MPB compartment as they did for the phy-
toplankton compartment but with specific parameters that related its response
to light, temperature and nutrients (nitrogen, phosphorous, silica) limitation,
respiration, senescence and grazing. The authors highlighted the substantial
contribution of MPB to the total PP in shallow waters. In addition, the presence
of MPB affected the benthic compartment by increasing benthic carbon fixation
through photosynthesis, by enhancing higher detritus uptake by benthic graz-
ers and by promoting the activity of aerobic decomposers in the surface layer
of the sediment. However, the authors did not detect any effect of MPB on the
dynamics of the phytoplankton community.

In their study, Hochard et al. (2010) introduced subtidal MPB activity in the
biogeochemical model OMEXDIA (Soetaert et al., 1996) run in a 1D config-
uration for the Florida Bay, a semi-enclosed, shallow, sub-tropical estuary in
southern Florida (USA). The MPB growth was related to light, temperature
and nutrients as well as EPS exudation. The MPB PP was simulated with the
phytoplankton cell quota model of Geider et al. (1998). Cell quota models allow
for a variable chlorophyll a/C mass ratio and account for a dynamic carbon/ni-
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trogen molar ratio in phytoplankton cells. The model suggested that MPB
enhanced mineralisation at the sediment surface due to the production of EPS
and inhibited the coupled nitrification-denitrification bacteria that reduced the
export of nutrients from the sediment to the water column. By adding physi-
cal forcings (waves and currents) in a similar biogeochemical model, Hochard
et al. (2012) showed that the physical forcings can overcome the nutrient reten-
tion capacity of MPB at the sediment surface by light-limiting MPB PP through
sediment resuspension and by increasing the rate of nutrients exchanges from
porewater to the water column.

In the modelling work of Brito et al. (2011) applied to a Portuguese lagoon,
subtidal MPB growth depended on light, temperature and on the uptake of nu-
trients flux from the sediment and of nutrients supply from the water column.
The MPB photosynthetic rate as a function of light was modulated by MPB
vertical migration. The authors succeeded to simulate the MPB biomass within
the range of variability of observations (Brito et al., 2010). In contrary to Black-
ford (2002) but similarly to Hochard et al. (2012), the study of Brito et al. (2011)
highlighted the role of MPB in nutrients retention at the seawater-sediment
interface.

Recently, Rakotomalala et al. (2019) developed a model based on the mod-
elling approach of Guarini (1998) and on the phytoplankton cell quota model
of Geider et al. (1998). The objective was to analyse the biogeochemical func-
tioning of an intertidal benthic system including epipelic MPB, associated EPS,
bacteria and nutrients dynamics. The model accounted for the vertical migra-
tion of MPB as a function of light and tides but also of the carbon and nitrogen
cell requirements. They remained at the surface until carbon exceeded nitro-
gen cell content. In the aphotic sediment layer, if nitrogen exceeded the carbon
cell content, MPB migrated upward at the sediment surface during daytime
low tides. Such a parametrisation of MPB migration gave satisfactory results
compared to observations in tidal mesocosms. In the model, nutrients deple-
tion was shown to limit the MPB growth in the absence of faunal-enhanced
nutrients diffusion and availability (bioturbation, bioirrigation, secretion). Sub-
sequent sensitivity analysis revealed that the diffusion of nutrients within the
sediment was enhanced by faunal activity.

the coupled physical-biological mpb model

The coupled model consisted of a mud temperature model coupled to a biologi-
cal model. In order to quantify the contribution of the abiotic and biotic drivers
in the MPB spatial and temporal dynamics, we extended the work of Guarini
(1998) which represented the dynamics of MPB biomass within the sediment
and at the surface of the intertidal mudflat in a 2-layer mass flux model. We
added a third layer that accounted for the dynamics of P. ulvae at the sediment
surface, a very abundant MPB grazer on the intertidal mudflats of the Pertuis
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Charentais (Sauriau et al., 1989). The model used realistic meteorological and
tidal forcings in order to simulate the MST and the MPB biomass and PP.

Mud temperature model

The original version of the mud temperature model of Guarini et al. (1997) is
simplified by only resolving the MST (K) which is governed by the following
equation during emersion periods:

ρMCPM
∂TM (z0, t)

∂t
= f (TM(z0, t)) , (2)

where f (TM(z0, t)) is the heat energy balance (HEB, W m−2) at the sediment
surface z0 (m) at time t (s). This sediment surface layer is 1-cm deep. The tem-
perature (K) is assumed to be homogeneous within the layer and is governed by
the HEB (Harrison and Phizacklea, 1987; Piccolo et al., 1993). ρM is the volumet-
ric mass of mud (kg m−3) i.e. the sum of the water and dry sediment fractions
(ρM = ρWξ + ρS(1 − ξ) where ρW and ξ are the water volumetric mass (kg
m−3) and the porosity (%), respectively. CPM is the specific heat capacity of
mud at constant pressure (J kg−1 K−1):

CPM =
η

µρM
, (3)

where η is the heat conductivity (W m−1 K−1) and µ the thermal diffusivity
(m2 s−1). Heat exchange fluxes at the sediment surface are different according
to the emersion-immersion cycle. During low tide, the HEB is governed by
fluxes of radiation from the sun (RS, W m−2), the atmosphere (RAtm, W m−2),
the mud surface (RM, W m−2), by conductive sensible heat fluxes due to mud-
air temperature differences (SMud→Air, W m−2) and by evaporative heat flux
(VM, W m−2)(Fig. 6):

f (TM(z0, t)) = RS + RAtm − RM − SMud→Air − VM with VM = ξVW , (4)

where ξ is the mud porosity (ξ ∈ [0, 1], %) and VW is the seawater evaporative
heat flux (W m−2). Details about equations and parameters governing fluxes
during emersion are given in Tables 1 and 2.

During immersion periods, Guarini et al. (1997) and Harrison and Phizacklea
(1987) suggested a rapid equilibrium between MST and the temperature of the
overlying water layer. The simulated MST is therefore set to water temperature
during immersion periods:

TM(z0, t) = TW(t), (5)

The simulated seawater temperature of the whole water column (TW) results
from the mixing of the surface layer (ztop, i.e. the mixed layer) with the bottom
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Figure 6: Conceptual scheme of heat exchange at the mud surface in the intertidal zone.
Fluxes contributing to heat energy balance are represented by arrows during
emersion and immersion periods (modified from Guarini et al., 1997).

layer (zbot), which conserves the seawater temperature computed at the previ-
ous time step. The seawater temperature in ztop is governed by the HEB at the
air-water interface:

ρWCPW
∂TW (ztop, t)

∂t
= f (TW(ztop, t)) , (6)

with f (TW(ztop, t)) = RS + RAtm − RW − SAir→Water, (7)

where ρW is the volumetric mass of water (kg m−3). CPW is the specific heat
capacity of seawater at constant pressure (J kg−1 K−1). TW(ztop, t) is the water
temperature (K) in the surface mixed layer. The term SAir→Water is the sensi-
ble heat flux (W m−2) mediated by the air-water thermal conduction. RW (W
m−2) is the seawater upward radiation.

The upper fraction of the water column influenced by atmospheric forcings
is defined by the coefficient αtop:

αtop = 0.15
(
1+

U

3

)
, (8)

where U is the wind speed (m s−1). Consequently, the simulated seawater
temperature of the whole water column (TW) results from the mixing between
the fraction αtop and the remaining fraction of the water column (1−αtop):

TW(t) = αtopTW(ztop, t)+ (1−αtop) TW(zbot, t) with TW(zbot, t) = TW(t− 1)

(9)
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TW (K) is initialised by the following equation:

TW(t) = 18.5+ 5cos
(
2π

day− 230

year length

)
+ 273.15, (10)

where day is the day of the year and the year length is in days. Details on
parameters and constants are given in Tables 1 and 2.

Table 2: Parameters of the MST model

Parameter Description Value Unit

General equations

η Conductivity 0.8 W m−1 K−1

ρS Soil volumetric mass 2650 kg m−3

ρW Water volumetric mass 1000 kg m−3

ξ Mud porosity 0.62 %

µ Thermal diffusivity 0.48 × 10
−6 m2 s−1

Solar radiation

R0 Solar constant 1353 W m−2

A Albedo 0.08 -

Atmospheric radiation

σ Stephan-Boltzman 5.67 × 10
−8 W m−2 K−4

ζ Constant Radiation on water : 1.7 -

Radiation on mud : 1 -

Mud radiation

εM Mud emissivity 0.96 -

Conduction

ρA Air volumetric mass 1.2929 kg m−3

CPA Air specific heat 1003 J kg−1 K−1

CPW Water specific heat 4180 J kg−1 K−1

ChM→A Mud-air bulk coefficient 5 -

ChA→W Air-water bulk coefficient 0.014 -

Evaporation

CV Bulk coefficient 0.0014 -

λ Constant ratio 0.621 -

Biological model

MPB migration scheme

A system of three partial differential equations describes the temporal dynam-
ics of MPB biomass within the surface biofilm (S), MPB biomass within the
first cm of sediment (F), and biomass of MPB grazer P. ulvae (Z). The system
drives the MPB migration scheme according to the diurnal and tidal cycles that
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constrain the biological-physical coupled model (see Box 2.4.1). During the
daytime emersion periods:

if γ∗ > 0



dS
dt =

(
rFF+ P

bS
) (
1− S

Smax

)
−mSS−

[
IR
(

Z
Wmean
Z

)]
×H (S,Smini)

dF
dt = −rFF

(
1− S

Smax

)
+ PbS

(
S

Smax

)
−mFF

dZ
dt = θ×

[
IR
(

Z
Wmean
Z

)]
×H (S,Smini) −mZZ

dγ∗
dt = −1

(11)

if γ∗ 6 0



dS
dt = −rSS−mSS−

[
IR
(

Z
Wmean
Z

)]
×H (S,Smini)

dF
dt = rSS−mFF

dZ
dt = θ×

[
IR
(

Z
Wmean
Z

)]
×H (S,Smini) −mZZ

dγ∗
dt = −1

(12)

where γ∗ (h) corresponds to the potential duration of the biofilm at the sedi-
ment surface. It is computed at the end of each night-time emersion and immer-
sion periods for the next daytime emersion period (Eq. 14 and 15). According
to Guarini et al. (2006) and Guarini et al. (2008a), γ∗ is set by dividing the MPB
biomass in F into fractions of biofilm (Smax = 25 mg Chl a m−2) that spend 1

h in average at the sediment surface (γ). The higher is the biomass in F, the
longer is γ∗. This potential time is independent of the duration of the daytime
emersion periods, which can be shorter or longer.

When γ∗ > 0, the MPB cells migrate upward in the sediment from F to S
compartment at a transfer rate of rF (h−1). MPB stop migration when S reaches
saturation at Smax (mg Chl a m−2). PP within the S compartment regulated
by the biomass-specific photosynthetic rate Pb (µg C (µg Chl a)−1 h−1) is set
to zero when S = Smax according to the term

(
1− S

Smax

)
, which represents

the MPB space-limitation in the S compartment. The MPB biomass produced is
therefore transferred from S to F according to the term PbS

(
S

Smax

)
in the F time

derivative. The dynamics of the biomass in the MPB biofilm and its associated
PP is represented by the S∗ time derivative:

dS∗
dt

=
dS

dt
+PbS

(
S

Smax

)
. (13)

When γ∗ 6 0, the MPB cells migrate downward in the sediment from the S to F
compartment at a transfer rate of rS (h−1). The terms mS and mF are loss rates
(h−1) representing MPB senescence and grazing by surface deposit feeders (on
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S) and subsurface deposit feeders (on F). mZ is a loss rate (h−1) representing P.
ulvae mortality (see section 2.4.2).

B
O

X
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Conceptual scheme of MPB migration

Active grazer

Non-active grazerbiofilm
grazer

grazer
grazer

1 2

3

biofilm

3

biofilm

Low tide

High tide

4

Figure 7: Conceptual scheme of MPB migration (modified from Guarini
et al., 2008a).

During daytime emersion periods, MPB cells migrate at the sedi-
ment surface (1) to produce and transfer biomass to the sediment
first centimetre (2). Before the end of daytime emersion periods
or during night-time emersion periods, MPB cells migrate down to
the sediment first centimetre (3). During immersion periods, MPB
cells are chronically resuspended from the sediment first centime-
tre to the water column (4) and the persisting MPB cells within
the biofilm finish their downward migration (3). P. ulvae grazing is
only active during emersion periods (modified from Guarini et al.,
2008a).

During night emersion periods, the MPB cells migrate downward into the
sediment from S to F. P. ulvae grazes on MPB cells remaining in the biofilm (S):

dS
dt = −rSS−mSS−

[
IR
(

Z
Wmean
Z

)]
×H (S,Smini)

dF
dt = rSS−mFF

dZ
dt = θ×

[
IR
(

Z
Wmean
Z

)]
×H (S,Smini) −mZZ

γ∗ =
(

F
Smax

+ 1
)
× γ

(14)
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During immersion periods, MPB cells remaining in the biofilm finish their
downward migration from S to F and P. ulvae does not exert any grazing pres-
sure any more: 

dS
dt = −rSS−mSS

dF
dt = rSS− νFF

dZ
dt = −mZZ

γ∗ =
(

F
Smax

+ 1
)
× γ

(15)

In the model, we assumed a constant rate of MPB cells resuspended dur-
ing immersion periods. During immersion periods, the generic loss term (νF,
0.003 h−1) includes the chronic resuspension, MPB senescence processes and
the grazing by subsurface deposit feeders. During emersion periods, the loss
term is lower (mF, 0.001 h−1) as it only represents the MPB senescence and the
grazing by subsurface deposit feeders. Parameter values are given in Table 3.

MPB primary production

The biomass-specific photosynthetic rate Pb (µg C (µg Chl a)−1 h−1) is regu-
lated by temperature (T , ◦C) and by photosynthetically active radiation (I, W
m−2), which corresponds to 44 % of downward short-wave radiation (Britton
and Dodd, 1976). The model of Platt and Jassby (1976) is used to compute the
production rate as a function of I:

Pb = Pbmax × tanh
(
I

Ik

)
, (16)

where Pbmax is the photosynthetic capacity (µg C (µg Chl a)−1 h−1) and Ik is the
light saturation parameter (W m−2). Pbmax depends on the MST (T ) according
to the relationship of Blanchard et al. (1996):

Pbmax = PbMAX ×
(

Tmax − T

Tmax − Topt

)β
× e

(
−β×

[
Tmax−T

Tmax−Topt
−1
])

, (17)

where Tmax (◦C) and Topt (◦C) are the maximum and optimal temperature for
MPB photosynthesis, respectively. β is a curvature coefficient that shapes the
temperature-photosynthesis relationship. PbMAX is the maximum value that
takes Pbmax at Topt.

The biomass-specific photosynthetic rate Pb is expressed in µg C (µg Chl
a)−1 h−1. It is therefore necessary to convert it in terms of produced Chl a to
obtain a gross growth rate in h−1. In that respect, we used a variable C:Chl
a ratio (g C g Chl a−1). The ratio is computed according the formulation of
Cloern et al. (1995) adapted for coastal pelagic diatoms (Sibert et al., 2010, 2011;
Le Fouest et al., 2013):

Chla
C

=

(
Chla
C

)
min

×
(
1+ 4× e−0.5× I

KE

)
, (18)
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where
(
Chla
C

)
min

is the minimum Chl a:C ratio (g Chl a g C−1) and KE, the
half-saturation constant for light use (Ein m−2 d−1).

The MPB PP (µg C m−2 h−1) corresponds to the sum of the space-dependant
production at the surface of the biofilm (i.e. the PbS

[
1− S

Smax

]
term) and of the

biomass produced and directly transferred from S to F (i.e. the PbS
[
S

Smax

]
term). Consequently, it can be simplified by:

production = PbS

(
1−

S

Smax

)
+ PbS

(
S

Smax

)
= PbS (19)

The constants are given in Table 3.

Grazer P. ulvae

S is explicitly grazed by the mud snail Peringia ulvae (Z, mg C m−2). The graz-
ing rate is regulated by the individual ingestion rate of snails (IR, ng Chl a
ind−1 h−1) and by Z expressed in terms of density (ind m−2). Density is com-
puted as the ratio of Z (mg C m−2) over the mean individual weight (Wmean

Z ,
mg C) linearly interpolated (Table 4). An Heaviside function limits the grazing
to a feeding threshold (Smini, mg Chl a m−2). Only a fraction (θ, %) of the
MPB biomass grazed by Z is assimilated into new Z biomass. The individual
ingestion rate (ng Chl a ind−1 h−1) by P. ulvae is calculated using a sigmoid
mathematical function accounting for the effect of MST (T , ◦C):

IR = IRmax ×
TαZ

TαZ + (
ToptZ+10

2 )αZ
, (20)

where ToptZ (◦C) is the optimal temperature for grazing. IRmax is the maxi-
mal observed individual ingestion rate. αZ (no unit) is a curvature parameter.
The maximal individual ingestion rate IRmax (ng Chl a ind−1 h−1) is calcu-
lated according the formulation of Haubois et al. (2005) for adult snails. IRmax
depends on the total MPB biomass:

IRmax = 0.015× (F+ S)1.72 (21)

The Chl a uptake rate is converted into carbon unit according to the C:Chl
a ratio described previously. The term (F+ S) is expressed in µg Chl a g dry
sed−1. The biomass expressed in mg Chl a m−2 is converted into µg Chl a g
dry sed−1 as follows:

[Chl a](µg Chl a g dry sed−1) =
[Chl a]1.2605(mg Chl a m−2)

ρS
× thicknesssed,

(22)
where ρS is the sediment bulk density in g l−1 and thicknesssed is the sed-

iment thickness i.e. 1 cm. The Chl a concentration is scaled by the exponent
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1.2605 in order to reach a maximal observed ingestion rate of 385 ng Chl a
ind−1 h−1 (Coelho et al., 2011) when the Chl a concentration converges towards
a maximal observed value (300 mg Chl a m−2, Guarini, 1998).

Finally, the mortality rate of Z is a quadratic density-dependant mortality
rate:

mZ = mminZ Z, (23)

where mminZ is the minimum mortality rate (h−1). The constants are given in
Table 3.

Table 4: Observed mean individual weight of P. ulvae (mg C).

Month J F M A M J J A S O N S

Weight 0.21 0.13 0.11 0.11 0.15 0.22 0.26 0.23 0.10 0.23 0.19 0.15

conclusions

Eighty years ago, Fleming developed the first phytoplankton model. New de-
velopments on mass flux marine ecosystem models along with increasing com-
putational capacity never stop ever since. Modelling efforts on MPB are limited
and much remained to be done. Nevertheless, any further developments will
be conditioned by a better understanding of the MPB dynamics made possible
from in situ and laboratory observations. In the following chapters, we com-
bine MPB modelling with in situ and remotely-sensed data analysis to investi-
gate the spatial and temporal variability of MPB dynamics on a large temperate
intertidal mudflat (see Box 2.5.1).
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Remote sensing of MPB

The first use of remote sensing to measure MPB biomass dates back
to 1979 (Zingmark, 1979). Ever since, remote sensing for study-
ing MPB spread in the MPB scientific community (e.g. Méléder
et al., 2003a; Brito et al., 2013; Benyoucef et al., 2014; Daggers et al.,
2018). Remote sensing covers large spatial scales (∼ from one to
few hundred meters) and is useful to map MPB biomass with the
Normalised Difference Vegetation Index (NDVI; Tucker, 1979). The
NDVI is calculated from surface reflectance (ρ) in the red (R) and
near-infrared (NIR) bands following Eq. (24) to estimate the hori-
zontal distribution of the MPB biomass (e.g. Méléder et al., 2003a)

NDVI =
ρ(NIR) − ρ(R)
ρ(NIR) + ρ(R)

(24)

0
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Figure 8: MPB normalised-difference vegetation index on 3 March 2018

on the Brouage mudflat.

Remotely-sensed NDVI maps inform about the horizontal dis-
tribution of MPB biomass at the sediment surface. In addition,
time series of MPB remotely-sensed products can be extracted
from remotely-sensed data at a daily frequency depending on
the revisit time of the satellite and the meteorological conditions.





CHAPTER III

O N B I O T I C A N D A B I O T I C D R I V E R S O F T H E
M I C R O P H Y T O B E N T H O S S E A S O N A L C Y C L E I N A

T E M P E R AT E I N T E RT I D A L M U D F L AT: A M O D E L L I N G
S T U D Y

Uncertainties on the likely key factors driving the MPB dynamics
(nutrients, photoinhibition, thermoinhibition, grazing) are a chal-
lenge for MPB mass flux modelling. They impede our ability to
accurately represent the mechanistic processes involved in the MPB
primary production. In Chapter 3, the objective is to infer on the
factors that shape the MPB seasonal cycle. For this purpose, we use
the MPB model to test hypotheses on the potential factors control-
ling the MPB primary production and biomass at low tide over a
seasonal cycle on the Brouage mudflat in 2008. The model explic-
itly simulates MPB and its main grazer (P. ulvae) over and within
the first centimetre of sediment. It is forced by realistic seasonal cy-
cles of irradiance and mud surface temperature. In situ and remote
sensing time series based on the Normalised Difference Vegetation
Index (NDVI) are used to calibrate the model and assess its pre-
dictive capacity. The simulated seasonal cycle of MPB biomass is
characterised by a spring bloom, a summer depression and a mod-
erate fall bloom. It is consistent with the reported seasonal cycle at
the study site. Light is the most limiting factor over the year. In sum-
mer, the high mud surface temperature limits the MPB growth. In
addition, grazing by P. ulvae individuals contributes to decrease PP
already thermoinhibited. Regarding the high variability of abiotic
and biotic factors in play on the Brouage mudflat, the model was
relevant to disentangle the relative contribution of all the factors
considered.
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O N B I O T I C A N D A B I O T I C D R I V E R S O F T H E
M I C R O P H Y T O B E N T H O S S E A S O N A L C Y C L E I N A
T E M P E R AT E I N T E RT I D A L M U D F L AT: A M O D E L L I N G
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This chapter was
published as an
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EPS: Extracellular
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Substances
MPB:
Microphytobenthos
MST: Mud Surface
Temperature
NDVI: Normalised
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PAR:
Photosynthetically
Active Radiation
PP: Primary
Production

abstract

Microphytobenthos (MPB) from intertidal mudflats are key primary producers
at the land-ocean interface. MPB can be more productive than phytoplankton
and sustain both benthic and pelagic higher trophic levels. The objective of this
study is to assess the contribution of light, mud temperature, and gastropod
Peringia ulvae grazing pressure in shaping the seasonal MPB dynamics on the
Brouage mudflat (NW France). We use a physical-biological coupled model
applied to the sediment first centimeter for the year 2008. The simulated data
compare to observations including time-coincident remotely sensed and in situ
data. The model suggests a MPB annual cycle characterised by a main spring
bloom, a biomass depression in summer, and a moderate fall bloom. In early
spring, simulated photosynthetic rates are high due to mud surface tempera-
ture (MST) values close to the MPB temperature optimum for photosynthesis
and because increasing solar irradiance triggers the onset of the MPB spring
bloom. Simulated peaks of high P. ulvae grazing (11 days during which inges-
tion rates exceed primary production rate) mostly contribute to the decline of
the MPB bloom along with the temperature limitation for MPB growth. In late
spring-summer, the MPB biomass depression is due to the combined effect of
thermoinhibition and a moderate but sustained grazing pressure. The model
ability to infer on biotic and abiotic mechanisms driving the seasonal MPB dy-
namics could open the door to a new assessment of the export flux of biogenic
matter from the coast to the open ocean and, more generally, of the contribution
of productive intertidal biofilms to the coastal carbon cycle.

introduction

Coastal and nearshore waters receive large amounts of organic matter and in-
organic nutrients from land that support a high biological productivity (Mann,
1982; Admiraal, 1984; Hopkinson and Smith, 2005). However, the high turbid-
ity of estuarine influenced coastal waters limits the penetration of downward
solar irradiance in the water column and, as such, phytoplankton production
(Cloern, 1987; Struski and Bacher, 2006). In subtidal and intertidal zones, pri-
mary production (PP) sustained by benthic microalgae, or microphytobenthos

39
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(MPB), can exceed that of phytoplankton (Underwood and Kromkamp, 1999;
Struski and Bacher, 2006). MPB are mostly composed of free motile epipelic
diatoms and of epipsammic diatoms that live in close association (attached or
free-living) with sediment grains (Round, 1971). Epipelic MPB are associated
with fine cohesive intertidal sediments and develop within the top few millime-
tres (Underwood, 2001). During daytime exposure, they migrate toward the
sediment surface constituting a dense biofilm of a few hundred micrometers
(Herlory et al., 2004). They are fully exposed to solar irradiance at low tide pro-
moting PP that can reach values as high as 1.9 g C m−2 d−1 (Underwood and
Kromkamp, 1999). During the flood, epipelic MPB move downward within the
sediment but can be resuspended into the water column (Demers et al., 1987;
de Jonge and van Beusekom, 1992, 1995; Lucas et al., 2001; Orvain et al., 2004;
Ubertini et al., 2012). Both epipelic and epipsammic MPB are a key resource
for higher trophic levels from benthic fauna to birds on bare mudflats (Herman
et al., 2000; Kang et al., 2006; Jardine et al., 2015), but also for pelagic organ-
isms such as zooplankton and planktivorous fishes (Perissinotto et al., 2003;
Krumme et al., 2008).

On intertidal mudflats, MPB PP rates are mainly constrained by solar irradi-
ance and temperature (Barranguet et al., 1998). The MPB biofilm faces strong
daily and seasonal variations of mud surface temperature (MST) caused by
heating through solar irradiance during low tide emersion periods (Harrison
and Phizacklea, 1985; Harrison, 1985; Guarini et al., 1997) and develops phe-
nological adaptations. Blanchard and Cariou-Le Gall (1994), Barranguet et al.
(1998) and Pniewski et al. (2015) showed a light-related seasonal adjustment
of photosynthetic parameters (the photosynthetic capacity Pbmax and the light
saturation parameter Ik) from Production-Irradiance (P-I) curves fitted to the
model of Platt and Jassby (1976). Photo-inhibition was rarely observed in the
field since epipelic diatoms can achieve "micro-migrations", i.e. a negative pho-
totaxic short-term change of position in the sediment (Kromkamp et al., 1998;
Perkins et al., 2001; Cartaxana et al., 2011). With respect to mud temperature,
Blanchard et al. (1996) related mathematically Pbmax to temperature. Using this
relationship, Blanchard et al. (1997a) showed that Pbmax varies according to
seasons suggesting a thermoinhibition process in response to high mud tem-
perature (> 25

◦C). de Jonge (1980) also showed seasonal variations of the
carbon (C) to chlorophyll a (Chl a) ratio, which is a proxy of the physiologi-
cal state of autotrophic cells, as a function of air temperature (de Jonge et al.,
2012). Regarding nutrients, their limiting role on the MPB growth and pho-
tosynthetic rate is not evidenced in fine cohesive sediments naturally enriched
both from within the sediment and the water column (Underwood, 2001; Cadée
and Hegeman, 1974; Admiraal, 1984). Vieira et al. (2016) suggested a likely in
vitro limitation by dissolved inorganic carbon within biofilms. Benthic diatoms
were shown to store ammonium and phosphate within the intracellular matrix
(García-Robledo et al., 2010; Yamaguchi et al., 2015) potentially usable for as-
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similation and growth (Garcia-Robledo et al., 2016). The nutrient limitation of
MPB is still in debate.

At temperate latitudes, the seasonal cycle of MPB is shaped by the prevailing
environmental conditions. Seasonal blooms are reported to occur throughout
the year, i.e. in spring (de Jong and de Jonge, 1995; Sahan et al., 2007; Brito et al.,
2013), summer (Cadée and Hegeman, 1977) and fall (Hubas et al., 2006; Garcia-
Robledo et al., 2016). Along the French Atlantic coast, the spring bloom and
summer depression observed in the Brouage mudflat in the Marennes-Oléron
Bay are explained by optimal temperature conditions and thermoinhibition, re-
spectively (Blanchard et al., 1997a). Reported differences in the observed MPB
seasonal cycles are also attributed to the benthic diatom assemblage (Under-
wood, 1994). In terms of biomass, epipelic diatoms associated with muddy sed-
iments show a higher seasonality caused by a marked exposure to stressful en-
vironmental conditions (e.g. cycle of deposition/erosion, desiccation, grazing)
than less motile epipsammic species in coarser sandy sediments (Underwood,
1994). In summer, thermoinhibition and a high grazing pressure by deposit
feeders are suggested to dampen the MPB biomass (Cadée and Hegeman, 1974;
Cariou-Le Gall and Blanchard, 1995; Sahan et al., 2007). On intertidal mudflats,
the prosobranch gastropod Peringia ulvae can reach densities up to 30 000 snails
m−2 (Sauriau et al., 1989) with a reported maximal ingestion rate of 385 ng Chl
a snail−1 h−1 (Coelho et al., 2011). Such grazing activity may translate into a
theoretical uptake of 12 g C m−2 d−1 for a C:Chl a ratio of 45 g C g Chl a−1

(Guarini, 1998), which is 6-fold more than the daily maximum MPB PP rate
reported for MPB (Underwood and Kromkamp, 1999).

The role of each individual abiotic or biotic factor involved in the MPB short-
term dynamics is well documented (e.g. Admiraal, 1977; Admiraal et al., 1983;
Blanchard and Cariou-Le Gall, 1994; Montagna et al., 1995; Blanchard et al.,
1997a; Feuillet-Girard et al., 1997; Barranguet et al., 1998; Light and Beardall,
2001; Blanchard et al., 2002; Pinckney et al., 2003; Coelho et al., 2009; Weerman
et al., 2011; Dupuy et al., 2014; Pniewski et al., 2015; Barnett et al., 2015; Car-
taxana et al., 2015; Vieira et al., 2016). However, and in light of the current
knowledge, the quantitative contribution of combined factors in the seasonal
MPB dynamics remains uncertain. This impedes any future assessment on how
global change might impact the MPB dynamics and carbon cycle in the land-
ocean continuum. The goal of this study is to quantify the relative contribution
of light, temperature and grazing on the MPB seasonal cycle and production on
an intertidal mudflat (Marennes-Oléron Bay) of the French Atlantic coast. For
this purpose, we use a two-layer physical-biological model representing the
MPB and P. ulvae compartments to assess the contribution of the three drivers
over an annual cycle. In the paper, we describe first the physical-biological
coupled model and the in situ and remotely-sensed data used to investigate
the MPB seasonal cycle. Second, we assess the relative contribution of light,
MST and P. ulvae grazing on the MPB dynamics and PP, and we analyse the
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Figure 9: Bathymetry of the Pertuis Charentais (source: SHOM) and location of the
main intertidal mudflats. The study site is represented by a red full point
and the Meteo France weather station is represented by a blue full point.

model sensitivity to key biological constants. Finally, we discuss the role of
light, temperature and grazing in the MPB seasonal cycle and the future chal-
lenges of modelling the MPB contribution to the carbon cycle at the land-ocean
continuum.

material and methods

The study area is the Pertuis Charentais sea on the French Atlantic coast. It is a
shallow semi-enclosed sea characterised by semi-diurnal tides and a macrotidal
regime. The tidal range is ∼ 6 m during spring tides. The intertidal zone
has two main mudflats composed of fine cohesive sediments, i.e. the Brouage
mudflat (42 km2) and the Aiguillon mudflat (28.7 km2) (Fig. 22). The study
site (45

◦
54’50”N, 01

◦
05’25”W) is located on the Brouage mudflat (Fig. 22). It is

composed of fine cohesive sediments (median grain size of 17 µm and 85 % of
grain with a diameter lower than 63 µm; Bocher et al., 2007) and sheltered from
Atlantic swells by the Oléron Island (Pascal et al., 2009).

Observations

A large multiparametric dataset of physical and biological measurements col-
lected in the Pertuis Charentais was used to constrain the model and to com-
pare with the model outputs. We provide here a summary of the data used
along with their respective references, where a detailed methodology of each
set of measurements can be found.
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In situ data

Atmospheric and hydrological forcings were required to set the temperature
and light environment that constrained the physical-biological model. Atmo-
spheric forcings (Fig. 10a-e) consisted of meteorological observations (short-
wave radiation, air temperature in the shade, atmospheric pressure above the
sea, wind speed and relative humidity) acquired at the Meteo France weather
station located near the airport of La Rochelle (46

◦
10’36”N, 1

◦
11’3”W; data

available online: https://publitheque.meteo.fr; Fig. 22). Hydrology was repre-
sented by the absence or presence of seawater at the study site of the Brouage
mudflat. Emersion/immersion periods were determined by the observed water
height at the tide gauge of La Rochelle-La Pallice (46

◦
9’30”N, 1

◦
13’14”W, data

Service Hydrographique et Océanographique de la Marine (SHOM) / Grand
Port Maritime La Rochelle-La Pallice; data available: http://data.shom.fr/) cor-
rected by the bed elevation at the study site. The bed elevation (3.204 m above
chart datum) was extracted from a digital elevation model (Litto3D® 2010

Charente Maritime by the Institut National de l’Information Géographique et
Forestière (IGN) and the SHOM) at pixels corresponding to the study site (Fig.
22). The weather and tide gauge stations were located ∼ 30 km away from the
study site. Atmospheric and hydrological forcings were one hour frequency
from January 1, 2008 (00:00 AM) to December 31, 2008 (11:00 PM). They were
linearly interpolated at the time step of the model (6 min).

In order to validate the model, we used daily measurements of MST (first
cm of sediment), Chl a concentration (first cm of sediment) and Peringia ulvae
biomass and density from a multiparametric dataset collected in February 16-
24 and July 13-26, 2008 at the study site where the model was run (45

◦
54’50”N,

01
◦
05’25”W, Fig. 22). The sampling protocol is fully detailed in Orvain et al.

(2014a). In addition to the 2008 dataset, we used data of in situ MPB Chl a con-
centration collected within the first cm of sediment at the same station in April
19-22, 2012, July 05, 2012, November 14, 2012, February 11, 2013 and April 10,
2013. The sampling protocol is fully detailed in Lavergne et al. (2017). Monthly
data of P. ulvae abundance and biomass sampled monthly from April, 2014 to
July, 2015 over the Aiguillon mudflat were used to estimate a monthly-averaged
individual weight. The monthly-averaged individual weight was used to con-
vert the simulated biomass per unit of surface into density per unit of surface.
The sampling protocol is given in Bocher et al. (2007). We spatially averaged
the P. ulvae abundance and biomass data to obtain a monthly mean value for
the entire mudflat. Ash-free dry mass (AFDM) was converted to carbon using
the relationship derived from Jansson and Wulff (1977) and Remmert (2013)
and used by Asmus (1994) for benthic deposit feeders (1 g AFDM = 0.58 g C).
When the individual weight was not available, the individual height was used
to estimate the AFDM (mg) using the formulation of Santos et al. (2005):

AFDM = 0.0154H2.61, (25)

https://publitheque.meteo.fr
http://data.shom.fr/
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Figure 10: Annual cycle of the 2008 (a) relative humidity, (b) atmospheric pressure
above the sea, (c) global irradiance, (d) air temperature in the shade, (e)
wind velocity, and (f) water height at the study site. Meteorological data
comes from the weather station located near the airport of La Rochelle and
the water height was measured at the tide gauge of La Rochelle-La Pallice
corrected by the bed elevation at the study site.

where H is the total individual height (mm).

Remote sensing data

Moderate Resolution Imaging Spectroradiometer (MODIS) images from the
Terra satellite were downloaded from the USGS Earth Resources Observation
and Science Center (http://earthexplorer.usgs.gov/). The Terra MODIS Sur-
face Reflectance Daily L2G Global 250m SIN Grid product (MOD09GQ) con-
tains 250-m surface reflectance in a red band (620-670 nm, band center at 645

nm) and a near-infrared band (841-876 nm, band center at 859 nm). Terra data
were used because the morning-pass (10-11 h Universal Time) is better adapted
than Aqua MODIS data to observe spring low tides at our study site. The
data were corrected for atmospheric effects (aerosol, water vapor) and each im-
age was checked for clouds/cirrus and cloud shadows. Cloud-free low-tide
scenes were selected to apply a vegetation index. Images were reprojected to
UTM/WGS84 coordinate system. The Normalised Difference Vegetation Index

http://earthexplorer.usgs.gov/
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(NDVI; Tucker, 1979) was calculated with the reflectance (ρ) in the red (R) and
near-infrared (NIR) bands :

NDVI =
ρ(NIR) − ρ(R)
ρ(NIR) + ρ(R)

(26)

The NDVI thresholds proposed by Méléder et al. (2003a) to identify MPB with
SPOT images was adapted for MODIS data and a range of 0 to 0.35 was used in
this study. Negative NDVI values were associated with water and null values
to bare sediment, while values higher than 0.35 corresponded to macrophytes
(macroalgae and seagrass). For the present study, a NDVI time-series was ex-
tracted for 2008 (47 scene images) at pixels corresponding to the study site (Fig.
22). Scene images were processed with the ENVI® software.

The coupled physical-biological one-dimensional model

The coupled model consisted of a mud temperature model coupled to a 3-
compartment biological model. The mud temperature model was a thermo-
dynamic model developed by Guarini et al. (1997) resolving heat fluxes at the
surface in a 1-cm thick sediment layer. Equations are given in Chapter 2 (sec-
tion 2.4.1) and Table 1. It was calibrated and validated on the Brouage mudflat
by Guarini et al. (1997). During exposure periods, the simulated MST resulted
from heat exchanges between the sun, the atmosphere, the sediment surface,
from the conduction between mud and air and from evaporation (Fig. 11).
The MST was set to the temperature of the overlying seawater during immer-
sion periods. The seawater temperature was simulated according to heat fluxes
resulting from thermal conduction between air and seawater, from upward sea-
water radiation, and from downward solar and atmospheric radiation. The
simulated mud temperature was considered homogeneous at the horizontal
scale. The heat fluxes were determined according equations given in Table 1

(Chapter 2, section 2.4.1). The MST differential equation (Eq. 2 in Chapter 2,
section 2.4.1) was solved with an Euler Cauchy algorithm at a 30-sec time step.

The mud temperature model constrained a 3-compartment biological model,
which was modified from Guarini (1998) and Guarini et al. (2000). It is fully
detailed in Chapter 2 (section 2.4.2). MPB was represented by two compart-
ments including the Chl a concentration in the first cm sediment (F, mg Chl a
m−2) and the Chl a concentration within the surface biofilm (S, mg Chl a m−2).
The variable S∗ represented the S compartment that incorporated the S instan-
taneous production of biomass (mg Chl a m−2), which is directly transferred
to F. The model assumed no sediment erosion nor deposition and no hori-
zontal movement of MPB within the sediment. It included a scheme of MPB
vertical migration between the S and F compartments (Guarini, 1998; Guarini
et al., 2000). The migration scheme is summarised in Table 5. The MPB growth
rate was constrained by the photosynthetically active radiation (PAR) intensity,
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Figure 11: Conceptual scheme of heat exchange at the mud surface in the intertidal
zone. Fluxes contributing to heat energy balance are represented by ar-
rows during emersion and immersion periods. Modified from Guarini et al.
(1997).

the simulated MST, and the grazing pressure. The grazing pressure was repre-
sented through a new scalar, Z, representing the P. ulvae biomass (mg C m−2).
P. ulvae is a very abundant MPB grazer on the Pertuis Charentais intertidal
mudflats (Sauriau et al., 1989). The P. ulvae growth rate was constrained by the
simulated MPB biomass and the MST. The fourth-order Runge-Kutta method
was used to solve the biological differential equations with a 6-min time step.

The coupled physical-biological model was run at the study site (Fig. 22)
from 1 January to 30 December, 2008. Initial conditions were 100 mg Chl a m−2

for F and 1000 mg C m−2 for Z. No biomass was set for S at the beginning
of the simulation as it started at midnight (i.e. no light). The initial MST was
initialised at the seawater temperature (see Eq. 6-10 in Chapter 2, section 2.4.1)
at the first period of immersion. A 2008 10-year spin-up was performed before
the analysis of the model outputs. The spin-ups and initial biomass conditions
allowed for the convergence towards similar values of biomass at the end of
each run.

We performed a sensitivity analysis to quantify how simultaneous variations
of key biological constants might impact the simulated MPB production. A
Monte-Carlo fixed sampling method (Hammersley and Handscomb, 1964) was
used to randomly select values of the temperature optimum for photosynthe-
sis (Topt), the temperature maximum for photosynthesis (Tmax), the optimal
temperature for grazing (ToptZ), the shape parameter of the temperature re-
lated grazing (αZ), the light saturation parameter (Ik) and the half-saturation
constant for light use (KE) within observed ranges (Table 6). A total of 10,000

model runs was performed with the same previous initial conditions. Statistical
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Figure 12: Measured (black points) and simulated (red lines) mud surface temperature
in 2008. r is the Pearson’s correlation coefficient. RMSD is the root mean
square deviation (◦C).

metrics on simulated annual PP according to parameters values and variations
(Spearman’s correlation coefficient and parameters average, normalised stan-
dard deviation, minimum and maximum) were computed. In addition to the
simultaneous variations of parameters, the effect of a gradual variation of each
single parameter on the MPB production was investigated. Each single param-
eter varied while the others were fixed at the value set by default in the model
(Topt = 18

◦C, Tmax = 38
◦C, Ik = 100 W m−2, KE = 20 Ein m−2 d−1, ToptZ =

20
◦C, αZ = 15).

results

Mud surface temperature

The simulated MST followed the seasonal cycle of air temperature (Pearson’s r
= 0.85, p-value < 0.05; Fig. 10d and Fig. 12). From November to April, the sim-
ulated mud temperature was 9.7 ± 2.6 ◦C in average. The simulated average
temperature was twice from May to October reaching 18.3 ± 3

◦C. The am-
plitude (i.e. the difference between the seasonal maximum and the minimum
value) of the simulated mud temperature was higher from May to October (32.1
◦C) than from November to April (18.1 ◦C). At the synoptic scale, the model
reasonably simulated the high frequency (1 min) variations of MST measured at
the study site in February and July 2008 (RMSD = 2.7 and 1.7 ◦C, respectively;
Fig. 12).
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Figure 13: Daily-averaged in situ MPB biomass (mg Chl a m−2) sampled in the sedi-
ment first cm at the study station on the Brouage mudflat in 2008 (black full
dots), 2012 (grey full dots) and 2013 (blue full dots). Error bars correspond
to the standard deviation.

MPB dynamics

Based on in situ Chl a measurements sampled in the sediment first cm in 2008

and 2012-2013, the observed seasonal cycle of Chl a was characterised by con-
centrations increasing from February to April, when the values were the highest
(234-306 mg C m−2; Fig. 13). Then the Chl a concentration decreased to reach
a seasonal minimum in July (48-191 mg C m−2; Fig. 13).

The total MPB biomass (S+ F) simulated by the model within the first cm
sediment was the lowest in January and September (∼ 30 and 40 mg Chl a m−2,
respectively) and reached a seasonal maximum in March (∼ 266 mg Chl a m−2,
Fig. 14a). The simulated seasonal maximum and minimum of MPB biomass
during spring and summer were consistent with the observations of 2008 and
2012-2013 (Fig. 13). The model reproduced the fortnightly tidal cycle with
maximum values of MPB biomass simulated in spring tides (Fig. 14a). The
simulated values of biomass of MPB were compared to 2008 time coincident
observations (Fig. 14a). In February 2008, the simulated biomass was about
140.7 ± 27.7 mg Chl a m−2, which was close but significantly higher compared
to the measured total MPB biomass (106.5 ± 11.3 mg Chl a m−2; Mann Whitney
test: p-value < 0.05). In July 2008, the model also overestimated (68.1 ± 4.5 mg
Chl a m−2) the observed (58.6 ± 10.3 mg Chl a m−2) MPB biomass (Mann
Whitney test: p-value < 0.05). Nevertheless, the simulated values reasonably
compared, on average, with match-up measurements gathered. The simulated
daily biomass-specific photosynthetic rate followed a seasonal pattern similar
to that of the simulated Chl a with values higher in late winter-spring (0.56 ±
0.1 mg C (mg Chl a)−1 h−1) than in summer (0.41 ± 0.06 mg C (mg Chl a)−1

h−1) and fall-early winter (0.29 ± 0.14 mg C (mg Chl a)−1 h−1) (Fig. 14b).
The observed seasonal cycle of MPB retrieved from NDVI time series was

compared to the biomass simulated in the biofilm (S∗). The daily maximum
values of S∗ simulated by the model for 2008 were subsampled to match the
2008 NDVI time series data (Fig. 15). Three distinct seasonal phases were
identified in both time series using the amplitude of sign change of the S∗ and
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Figure 14: Seasonal cycle of the 2008 (a) simulated total MPB biomass (mg Chl a m−2),
and (b) simulated biomass-specific photosynthetic rate (mg C (mg Chl a)−1

h−1) averaged during daytime low tides. Black dots and error bars corre-
spond to the mean and standard deviation of the Chl a (mg Chl a m−2)
measured in situ.

NDVI second order time derivatives (Fig. 15). The phase 1 corresponded to
the spring bloom during which the biomass in the biofilm and the NDVI data
reached their seasonal maximum value (day 1 to 144 and day 1 to 158 in the
NDVI and model data, respectively). The phase 2 coincided with a summer
depression in the simulated MPB biomass and NDVI data (day 145 to 270 and
day 159 to 263 in the NDVI and model data, respectively). Finally, the phase 3

showed an increase of both the simulated biomass and NDVI values suggesting
a fall bloom (day 271 to 365 and day 264 to 365 in the NDVI and model data,
respectively). With respect to the NDVI data, the model showed a 14 days and
7 days longer spring and fall bloom, respectively, and a 21 days shorter summer
depression (Fig. 15). Overall, the seasonal cycle of the simulated MPB biofilm
compared reasonably to that depicted by the remotely-sensed NDVI data.

Biological parameters simulated by the model were compared to observed
ranges reported in the literature (Table 7). The yearly-averaged value of S∗
simulated by the model (27.2 ± 3.6 mg Chl a m−2) was in agreement with the
value given by Herlory et al. (24 ± 5 mg Chl a m−2; 2004). The yearly-averaged
MPB gross growth rate (µ) simulated within the biofilm was 0.25 ± 0.07 d−1

with values ranging between 0.05 d−1 and 0.41 d−1, which compared to the
observed growth rate (0.035-0.86 d−1; Table 7). In the model, the MPB growth
rate was related to the C:Chl a ratio (see Eq. 18 Chapter 2, section 2.4.2). The
simulated C:Chl a ratio (16 and 75.5 g C g Chl a−1 varied between the observed
range (18.7-80 g C g Chl a−1; Table 7). The simulated annual and daily MPB
PP rates (127 g C m−2 yr−1 and 369 ± 281 mg C m−2 d−1, respectively) were
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Figure 15: Seasonal cycle of the 2008 (a) Normalised difference vegetation index
(NDVI), and (b) simulated daily maximum of the MPB biomass (mg Chl
a m−2) in the biofilm. Original extracted data (black circles) are overlaid.
The black full lines represent the original extracted data regularised and fil-
tered with running medians (window size = 7). The NDVI was calculated at
the pixel corresponding to the study site. Phases were determined according
to the amplitude of the sign change of the second order derivative.

also consistent with the reported in situ estimates (142 ± 82 g C m−2 yr−1 and
690 ± 682 mg C m−2 d−1, respectively).

In the model, a linear loss term representing the resuspension process was
applied to the MPB biomass simulated within the first cm of sediment (F com-
partment; see Appendix B1). In average over a high tide, 1.7 ± 0.3 % of the
simulated MPB biomass was resuspended. With respect to primary produc-
tion, 25 % of the MPB primary production simulated during low tides was
resuspended, which corresponded in the model to a total annual resuspension
of 31.6 g C m−2.

P. ulvae dynamics

The MPB biomass simulated by the model was also constrained by the grazing
pressure from the gastropod P. ulvae. The simulated density and biomass of P.
ulvae increased in late winter with a first seasonal peak of ingestion on Febru-
ary 22 (Fig. 16c). A seasonal maximum of simulated density (25135 ind m−2)
and biomass (4 g C m−2) was reached on May 2 (Fig. 16ab). The simulated
density and biomass of P. ulvae were compared to 2008 time coincident obser-
vations (Fig. 16ab). In February, 2008 the simulated density (2616 ± 371 ind
m−2) was significantly lower than the measured density (5766 ± 2985 ind m−2;
Mann Whitney test: p-value < 0.05). In July, 2008 an average density of 9020 ±
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Figure 16: Seasonal cycle of the 2008 (a) simulated P. ulvae density (ind m−2), (b) simu-
lated P. ulvae biomass (g C m−2), and (c) simulated individual ingestion rate
by P. ulvae (ng Chl a ind−1 h−1). Black dots (mean) and error bars (standard
deviation) correspond to in situ observations.

227 ind m−2 was simulated by the model while a significantly higher average
density of 17191 ± 7084 ind m−2 was measured (Mann Whitney test: p-value <
0.05). In February, 2008 the simulated biomass of P. ulvae was 303.8 ± 40 mg C
m−2, which was significantly lower (Mann Whitney test: p-value < 0.05) than
the observed biomass (749.5 ± 388 mg C m−2). In July, 2008 the model un-
derestimated biomass (2157.2 ± 85 mg C m−2) whereas the measured biomass
was 4469.8 ± 1841.9 mg C m−2 (Mann Whitney test: p-value < 0.05). The P. ul-
vae gross secondary production simulated by the model was 27 g C m−2 yr−1.
Overall, the model reasonably captured the seasonal features depicted by the
match-up observations.

Contribution of light, temperature and grazing to the MPB seasonal cycle

In the model, bottom-up (MST and solar irradiance) and top-down (grazing
by P. ulvae) processes constrained the simulated MPB growth rate. Light and
temperature limitation terms (see Eq. 16 and 17 in Chapter 2, section 2.4.2)
varied between 0 and 1. At each time step, the lowest value was set as the
most limiting term constraining the computation of the MPB photosynthetic
rate. Over each daytime exposure period, the most limiting bottom-up factor
was defined as the factor whose limitation was the longest.

In phase 1, MST and light limited MPB growth 30 % and 70 % of the time,
respectively, because PAR and simulated MST values were lower than the light



3.4 results 55

Table 8: Simulated contribution of light and temperature limitation during the three
phases of the MPB seasonal cycle.

Phase Temperature Light

Phase 1 30 % 70 %

Phase 2 40 % 60 %

Phase 3 1 % 99 %

Figure 17: Simulated time occurrence of the light or temperature limitation of the MPB
growth rate over daytime emersion periods in 2008.

saturation parameter (Ik, 100 W m−2) and the temperature optimum for pho-
tosynthesis (Topt, 18

◦C), respectively (Table 8). In phase 2, light was the most
limiting factor (60 %, Table 8). The increasing daytime duration allowed MPB
to grow on two daytime emersion periods at the beginning and at the end of
the daytime period during neap tides (Fig. 17). However, the simulated MPB
was exposed to relatively low light levels during dawn and dusk compared to
spring tides conditions, when the emersion periods occurred in the middle of
the day and at relatively high light levels (Fig. 17). With respect to temperature,
the MPB growth was more limited by MST in phase 2 (40 %) than in phase 1

(30 % Table 8). The high summer air temperature and solar irradiance heated
the mud surface (Fig. 10cd and 12), especially when daytime exposure periods
occurred in the middle of the day (10 AM - 16 PM) in spring tides (Fig. 17)
with, as a consequence, simulated MST higher in average than the MPB Topt
value (Fig. 18a). In phase 3, the MPB growth rate was almost limited only by
downward irradiance (99 %, Table 8). In fall, the average solar irradiance in
daytime exposure periods decreased faster (slope = - 2.34 W m−2 d−1, p-value
< 0.05, corresponding to a deviation from Ik of - 2.3 % d−1) than the MST
(slope = - 0.13

◦C d−1, p-value < 0.05, corresponding to a deviation from Topt
of - 0.7 % d−1).

Figure 18a shows the daily occurrence of MPB limitation by the simulated
MST over 2008. In phase 1, the simulated MST increased towards Topt and,
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Figure 18: Seasonal cycle of the 2008 (a) simulated MPB biomass (mg Chl a m−2, green
full line) with time occurrence and duration (days) of the simulated temper-
ature limitation term when daily-averaged mud surface temperature during
emersion periods was lower (grey vertical bars) or higher (black vertical
bars) than the optimal temperature for MPB growth (Topt), and (b) simu-
lated daily primary production rate (mg C m−2 d−1) and P. ulvae ingestion
rate (mg C m−2 d−1). The dashed vertical lines delimit the 3 phases shown
in Fig. 15.

combined with increasing irradiance, led to a seasonal maximum of the biomass-
specific photosynthetic rate (Fig. 14b). It resulted in a seasonal maximum of
MPB biomass in late March (Fig. 18a). In May (phase 1), the biomass-specific
photosynthetic rate started to decrease due to thermoinhibition as soon as the
MST exceeded Topt (Fig. 14b and Fig. 18a). In phase 2, the simulated MST was
always higher than Topt when temperature limitation occurred (Fig. 18a).

With respect to grazing, the simulated biomass grazed by P. ulvae was com-
pared to the simulated MPB biomass produced over the daytime emersion pe-
riod (Fig. 18b). During phase 1, the ingested MPB biomass exceeded the MPB
PP during 11 days (Fig. 18b). The simulated peaks of ingestion rate during
these days varied between ∼ 20 and 90 ng Chl a ind−1 h−1 (Fig. 16c), which
was consistent with the reported values from laboratory measurements (0.75-
385 ng Chl a ind−1 h−1; Table 7). The daily-averaged P. ulvae ingestion:MPB
production ratio was lower but more variable in phase 1 (0.31 ± 0.45) than in
phase 2 (0.47 ± 0.18) (Fig. 18b). Phase 1 was characterised by a marked and
synoptic impact of grazing at high MPB biomass levels. By contrast, grazing
was moderate but more sustained in phase 2. Grazing contributed with ther-
moinhibition to maintain relatively low levels of MPB biomass (Fig. 18). As the
ingestion rate of P. ulvae was related to the MPB biomass and to the MST, the
peaks of grazing simulated in spring resulted from both the high MPB biomass
accumulated during the bloom and the MST close to the temperature optimum
for grazing by P. ulvae (ToptZ).
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In the model, the occurrence of temperature or light limitation resulted from
the coupling of the fortnightly tidal cycle with the seasonal solar irradiance and
air temperature cycles. Over 2008, light was the most limiting factor because
of low light levels in fall-winter and the occurrence of early and late daytime
exposure periods during neap tides in spring-summer. During summer spring
tides, the exposure periods occurred in the middle of the day and led to high
simulated MST value (> 20

◦C), hence limiting the MPB growth rate (Topt =

18
◦C). Consequently, the high grazing by P. ulvae in spring driven by the high

MPB biomass simulated during the bloom was followed by a low MPB PP due
to thermoinhibition along with a moderate but sustained grazing by P. ulvae in
summer. It resulted into a marked depression of the simulated MPB biomass
in summer.

Annual MPB production sensitivity

A total of 10,000 model runs (N) was performed, in which a set of biological
constants (Topt, Tmax, ToptZ , αZ, Ik and KE) was randomly selected within
the reported observed ranges (Table 6). These biological constants were chosen,
because they were direct inputs in the mathematical functions used in the cal-
culation of the simulated MPB production rate and P. ulvae ingestion rate. The
sensitivity analysis resulted in two kinds of model runs according to the sus-
tainability of the MPB PP over the year. Model runs in which PP was sustained
(SPP runs, PP > 40 g C m−2 yr−1, N = 1632) were distinguished from runs
characterised by vanishing PP (VPP runs, PP 6 40 g C m−2 yr−1, N = 8368)
according to a graphical representation of the annual PP as a function of the
number of runs (Fig. 19). Figure 20 shows the 10,000 parameters combinations
and the resulting MPB annual PP. The VPP runs are represented by the dark
blueish lines (PP < 40 g C m−2 yr−1) while the light blueish to reddish color
gradient represent the SPP runs (PP > 40 g C m−2 yr−1). In addition to SPP
and VPP runs where all six biological constants varied simultaneously, simu-
lations were run for which only one of the six constants varied at a time (Fig.
21).

Figures 20 and 21ab show that either a Topt value greater than 24
◦C or a

MPB temperature maximum (Tmax) lower than 26
◦C induced the reduction

of the annual MPB PP. The annual MPB PP was significantly negatively and
positively correlated with Topt and Tmax, respectively (Fig. 21ab). In SPP runs,
the annual PP was negatively but not significantly correlated with Topt (Spear-
man’s r = -0.04, p-value > 0.05; Table 9) because Topt slightly varied within a
range (18 ± 2.34

◦C) corresponding to the Topt threshold shown in Figure 21a.
Moreover, the annual PP simulated in the SPP runs reflected the combined ef-
fect of the variation of Topt with the other biological constants (Fig. 20). The
annual PP simulated in SPP runs was positively and significantly correlated
with Tmax (Spearman’s r = 0.15, p-value < 0.05; Table 9). In SPP runs, the
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Figure 19: Frequency histogram of the annual primary production (g C m−2 yr−1)
simulated in the Monte-Carlo sensitivity analysis.

correlation between the annual PP and the MPB temperature amplitude (Tamp,
the difference between Topt and Tmax) was even higher than the correlation
between PP and Topt and Tmax (Spearman’s r = 0.21, p-value < 0.05; Table
9). Figure 20 showed indeed that an increase of Tamp (i.e. a decrease of Topt
concomitant with an increase of Tmax) led to an increase of PP. The positive
effect of an increase of Tamp on the annual PP is also shown in Figure 21ab as
either Topt or Tmax varied while the other was fixed (Topt = 18

◦C, Tmax = 38

◦C). The mean values of Tamp, Topt and Tmax were 15
◦C, 18

◦C and 34
◦C,

respectively, with relatively low variations of Topt and Tmax (σnorm ≈ 0.13) in
SPP runs (Table 9). With respect to temperature, the use of such a set of values
promoted PP in the model. In the contrary, runs with combinations which in-
cluded a Topt above 27

◦C or a Tmax below 20
◦C resulted in the vanishing of

PP over 2008 (dark blueish lines on Fig. 20). In VPP runs, the mean value of
Tamp was 10.1 ◦C lower than in SPP runs, because the mean Topt value (29

◦C)
was higher than in SPP runs (18

◦C). The maximum value of Topt was 13
◦C

higher in VPP runs than in SPP runs. The resulting wider range of Topt values
led to higher variations in Tamp in VPP runs (σnorm = 0.73). However, SPP
runs were also characterised by a Tamp minimum of 4.5 ◦C, which was ∼ 3-fold
lower than the Tamp mean value (15

◦C).
PP was negatively correlated with Ik in SPP runs (Spearman’s r = -0.71, p-

value < 0.05) and induced large variations of annual MPB PP (Fig. 21c). Runs
in which the simulated annual PP was high were characterised by Ik values in
the lower part (from 2.5 to 100 W m−2) of the full tested range (Fig. 20). In
SPP runs, the mean value of Ik (77 m−2) was lower than in VPP runs (94 W
m−2). However, Ik variations were comparable (0.55 < σnorm < 0.64) and the
minimum (2.5 W m−2) and maximum values (180 W m−2) were same in both
the SPP and VPP runs. Consequently, annual PP is less sensitive to variations of
Ik than to variations of Topt and Tmax and in SPP runs, a low value of Ik could
sustain PP if Tamp was lower than 15

◦C. Annual PP was sensitive to the half-
saturation constant for light use (KE) but to a lesser extent as a high annual PP
was simulated using a KE value spanning within the full tested range (Fig. 20).
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I

Figure 20: Parallel coordinates of the MPB annual primary production (g C m−2 yr−1)
according to the temperature optimum for MPB growth (Topt), the tempera-
ture maximum for MPB growth (Tmax), the light saturation parameter (Ik),
the half saturation constant for light use (KE), the temperature optimum for
grazing by P. ulvae (ToptZ), and the shape parameter of the temperature graz-
ing function (αZ) 10,000 combinations tested in the Monte-Carlo sensitivity
analysis.

The annual PP in SPP runs was positively correlated with the half-saturation
constant for light use (KE; Spearman’s r = 0.2, p-value < 0.05; Table 9 and Fig.
21d). Parameters combinations including high KE values (15-20 Ein m−2 d−1)
resulted into highest annual PP.

When either ToptZ or the shape parameter of the temperature grazing func-
tion (αZ) varied individually in the model, it induced only small variations of
the simulated annual PP (Fig. 21ef). In SPP runs, PP showed a low but signifi-
cant correlation with ToptZ (Spearman’s r = 0.17, p-value < 0.05) suggesting that
high ToptZ values resulted in high levels of annual PP. PP was not correlated
with αZ in SPP runs (Spearman’s r = -0.03, p-value > 0.05). However, ToptZ
and αZ variations were high and of the same extent in both the SPP and VPP
runs (σnorm = 0.21 and σnorm ≈ 0.57, respectively). The mean, maximum and
minimum value of ToptZ and αZ were also very similar in both SPP and VPP
runs (Table 9). Compared to other parameters, annual PP was less sensitive to
the P. ulvae grazing parameters as SPP runs took place in all the regions of the
tested ranges (Fig. 20). Overall, the simulated annual PP was most sensitive to
the MPB light- and temperature-related constants. The specific set of biological
constants used in the study promoted realistic levels of MPB primary produc-
tion. A specific set of these temperature and light related parameters allowed
for a sustainable level of MPB production and biomass, which resulted in a
significant effect of grazing on the MPB annual production.
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Figure 21: Sensitivity analysis of the 2008 simulated annual primary production of
MPB according to (a) the temperature optimum for MPB growth (Topt), (b)
the temperature maximum for MPB growth (Tmax), (c) the light saturation
parameter (Ik), (d) the half saturation constant for light use (KE), (e) the
temperature optimum for grazing by P. ulvae (ToptZ), and (f) the shape pa-
rameter of the temperature grazing function (αZ). N is the number of tested
values and r is the Spearman’s correlation coefficient (the asterisk indicates
that p-value < 0.05).

discussion

The MPB seasonal cycle

Our study suggests a MPB seasonal cycle on the Brouage mudflat characterised
by three phases in 2008, i.e. a bloom in winter-spring, low biomass levels in
summer, and a peak of moderate intensity in fall. Cariou-Le Gall and Blan-
chard (1995) sampled monthly from March 1992 to February 1993 the MPB Chl
a concentration within the top 0.5 cm sediment on the Brouage mudflat. Their
measurements suggest a bloom in winter-spring and low Chl a concentrations
in summer, which is consistent with the 2008 NDVI data, the observed MPB
biomass (2008, 2012-2013) and MPB biomass simulated by the model. Cariou-
Le Gall and Blanchard (1995) did not report any peak of MPB biomass in fall,
which may be modulated by the inter-annual variability driven by the meteoro-
logical conditions. In Northern (de Jong and de Jonge, 1995; Sahan et al., 2007)
and Southern (Brito et al., 2013) European mudflats, MPB spring blooms are
also observed. However, the contribution of underlying abiotic (e.g. air temper-
ature, irradiance, rain, wind) and biotic (e.g. autotrophic species community,
predators) factors are likely to be different in shaping the seasonal MPB cycle
at such contrasted latitudes.
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In the Brouage mudflat, the simulated seasonal cycle of MPB at the sedi-
ment surface compares to that depicted by the remotely sensed NDVI data and
measurements made in 2008 and 2012-2013. The simulated MPB biomass in
the biofilm and its instantaneous PP are close to maximum values of biomass
previously measured in biofilms developing at the surface of very fine sedi-
ments of the Brouage mudflat (Herlory et al., 2004). Once at the surface, the
simulated MPB growth is regulated by the mass-specific photosynthetic rate
in µg C (µg Chl a)−1 h−1 converted into a growth rate (h−1) using a variable
C:Chl a ratio. The resulting MPB growth rates simulated by the model were
consistent with observations made on epipelic diatoms (Gould and Gallagher,
1990; Underwood and Smith, 1998; Scholz and Liebezeit, 2012). With respect
to the simulated C:Chl a ratio, it varies within the range of observed values in
mudflats (Guarini, 1998; Gould and Gallagher, 1990; de Jonge et al., 2012).

Contrary to Chl a measurements, there were no PP measurements made in
2008 on the Brouage mudflat. For comparison, we use averages of biomass-
specific photosynthetic rates computed from previous measurements at differ-
ent locations on the Brouage mudflat for different years (using CO2 fluxes data
measured in benthic chambers). Despite the year-to-year variability, the mean
biomass-specific photosynthetic rates simulated by the model during spring
tides (0.66 ± 0.04 mg C (mg Chl a)−1 h−1 in April, 0.52 ± 0.03 mg C (mg Chl
a)−1 h−1 in May and 0.44 ± 0.04 mg C (mg Chl a)−1 h−1 in July) were in the
range of measurements for the same months (1.6 ± 1.1 mg C (mg Chl a)−1 h−1

in April 2012, 0.28 ± 0.11 mg C (mg Chl a)−1 h−1 in May 2015 and 0.32 ± 0.13

mg C (mg Chl a)−1 h−1 in July 2015; pers.comm. from J. Lavaud). Moreover,
simulated daily and yearly PP rates compared to measurements made across
other European intertidal mudflats (Underwood and Kromkamp, 1999). The
model-data comparison suggests that the model can resolve with confidence
the main patterns of the MPB seasonal cycle.

The relative contribution of light, MST and grazing to the simulated MPB
seasonal cycle resulted from the coupling of the fortnightly tidal cycle and sea-
sonal solar irradiance and air temperature cycles. Such a coupling is reported
in intertidal sediments in the Tagus estuary, Portugal (Serodio and Catarino,
1999). In the model, an emersion period takes place in the middle of the day
during spring tides exposing the mud surface to a daily solar irradiance and
temperature maximum. In summer, when the seasonal maximum of daily solar
irradiance and temperature is reached, the high simulated MST values translate
into an enhanced thermoinhibition of MPB growth and P. ulvae grazing pres-
sure. The highest MPB thermoinhibition in summer spring tides was also high-
lighted by Guarini et al. (1997) in the Brouage mudflat. During neap tides, light
limits the MPB growth when exposure periods occur early in the morning and
late in the afternoon at low daily light levels. The reduced PP of MPB at low
light levels and MST values during neap tides compared to spring tides was
also observed by Kwon et al. (2014) on the Hwaseong mudflat, South Korea.
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In the model, we do not consider any MPB limitation by inorganic nutrients.
In the Brouage mudflat, Feuillet-Girard et al. (1997) highlighted the greater
affinity of MPB to ammonium compared to nitrate. They suggest a higher
availability of ammonium released from the sediment in summer, making un-
likely that the nutrient limitation is responsible of the summer depression of
MPB biomass. The high nutrient availability in the sediment in summer can be
attributed to faunal activities (bioturbation, bio-irrigation, excretion; Feuillet-
Girard et al., 1997; Heilskov et al., 2006; Laverock et al., 2011).

The short-term daily dynamics of MPB is also regulated by resuspension
events (Blanchard et al., 2002). The intensity of resuspension of MPB into the
water column can be either chronic or catastrophic according to the flow veloc-
ity and the sediment stabilisation (Mariotti and Fagherazzi, 2012). Catastrophic
events can locally resuspend all the MPB biomass as the resuspended sediment
layer is thicker than the vertical distribution of MPB biomass (Mariotti and
Fagherazzi, 2012). The repeated occurrences of such events over several days
could contribute to shape the seasonal cycle of MPB by lowering the biomass
of photosynthetically competent MPB. In their model, Guarini et al. (2008a)
introduced a chronic resuspension of all the MPB biomass remaining in the
biofilm when tidal floods occurred. In their parametrisation, the MPB biomass
remains at the sediment surface according to a mean time spent at the sur-
face (equivalent to τs in our study). In our study, the chronic resuspension of
MPB biomass is formulated by a linear loss term of the MPB biomass within
the first cm (0.002 h−1). In the absence of MPB biomass deposition, the total
simulated MPB biomass that is resuspended into the water column represents
25 % of the simulated benthic MPB annual production. Such a value suggests
that the benthic MPB production contributes significantly to the pelagic food
web (Perissinotto et al., 2003; Krumme et al., 2008). In the light of the work
of Mariotti and Fagherazzi (2013), resuspension and deposition are key mech-
anisms that need to be related to fauna bioturbation, sediment characteristics
(e.g. nature and stabilisation) and hydrodynamics (Mariotti and Fagherazzi,
2013). Such an approach requires the availability of waves and current data to
estimate the bed shear stress and modulate the intensity of resuspension (from
chronic to catastrophic events), which are not available at our study site for
2008.

Role of mud surface temperature on the MPB and P. ulvae activity

On the Brouage mudflat, the simulated MST plays a major role in the MPB
seasonal cycle. In spring, the simulated MST increases towards the MPB tem-
perature optimum for photosynthesis. Along with increasing light levels, it
contributes to increase the mass-specific photosynthetic rate and triggers the
onset of the MPB spring bloom. As soon as the simulated MST exceeds the
MPB temperature optimum for photosynthesis, the MPB PP starts to decrease
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due to thermoinhibition, particularly during spring tides. In fall, the average
solar irradiance during daytime exposure periods decreased faster than the
simulated MST. The simulated MST departs slower from the temperature op-
timum for photosynthesis than does the downward irradiance from the light
saturation parameter. Despite decreasing solar irradiance in fall, the simulated
MPB PP increases until November, when the simulated MPB growth rate is lim-
ited by low light levels and MST values with respect to the MPB light saturation
parameter (100 W m−2) and temperature optimum for photosynthesis (18

◦C),
respectively.

Using the Production-Temperature (P-T) model from Blanchard et al. (1996),
Blanchard et al. (1997a) and Guarini et al. (2006) also suggested that the MPB
PP was temperature-limited in summer on the Brouage mudflat. On a southern
intertidal mudflat (Tagus Estuary, Portugal), Brito et al. (2013) suggested that
thermoinhibition was responsible for the summer MPB depression observed
in NDVI times series in conditions of high sediment temperature (30

◦C). In
addition, the detrimental effect of MST ranging between 18

◦C and 24
◦C was

shown in microcosms using fluorescence (Cartaxana et al., 2015).
In the model, the production is related to temperature according the P-T

relationship of Blanchard et al. (1996). As a result, the occurrence and inten-
sity of MPB thermoinhibition depends on the MPB temperature optimum and
maximum for photosynthesis used in the relationship. The set of parameters
determines the thermal threshold and interval at which thermoinhibition oc-
curs. The sensitivity analysis shows that the annual PP is very sensitive to the
temperature amplitude between the two parameters. The annual PP increases
as the amplitude increases. On the Brouage mudflat, the MPB temperature op-
timum and maximum for photosynthesis were estimated to 25

◦C and 38
◦C,

respectively, and assumed to be constant over the year (Blanchard et al., 1997b).
In our study, a lower MPB temperature optimum for photosynthesis value of
18
◦C is required to simulate a spring bloom that compares to the NDVI time

series. Such a temperature optimum also implies a more rapid onset and a
higher MPB thermoinhibition as the simulated MST increases in summer. Val-
ues of both MPB temperature optimum and maximum for photosynthesis are
reported to vary by up to 10

◦C (Table 10). In that respect, the MPB tempera-
ture optimum for photosynthesis is a key parameter in the model, because it
constrains the onset of the MPB spring bloom and the thermoinhibition span
and intensity.

In addition, the strong heating and wind exposure of the mud surface is
accompanied by pore water evaporation that results into desiccation and in-
creased salinity (Coelho et al., 2009). A decrease of pore water content can
induce even more detrimental effects within the cells through production of
reactive oxygen species (Rijstenbil, 2003; Roncarati et al., 2008) potentially lead-
ing to the oxidation of the photosynthetic unit (Nishiyama et al., 2006). The
motility of epipelic diatoms is supposed to be a strategy to avoid harmful con-
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Table 10: Temperature optimum and maximum for photosynthesis (Topt and Tmax,
respectively; ◦C).

Location Topt Tmax Reference

Marennes-Oléron (France) 25 38 Blanchard et al. (1997a)

Roscoff (France) 21 32.5 Hubas et al. (2006)

Ems Dollard (Netherlands) 30 40 Morris and Kromkamp (2003)

Marennes-Oléron (France) 18 38 Present study

ditions at the surface of cohesive sediments (Admiraal, 1984). However, Juneau
et al. (2015) showed no significant negative effect of salt stress on the photosyn-
thesis of immobile epipelic diatoms. Coelho et al. (2009) highlighted the role
of the rate of pore water content decrease in the field. While slow desiccation
(reduction by 40% of the pore water content in 4.5 h) had no significant nega-
tive effect on the photosynthesis of microphytobenthic cells within the biofilm,
fast desiccation (reduction by 40% of the pore water content in 2 h) resulted
in desiccation and decreased the photosynthetic activity of MPB (Coelho et al.,
2009). In addition to micro-migrations, epipelic diatoms produce extracellular
polymeric substances (EPS) to temper the effect of desiccation and high salin-
ity (Steele et al., 2014). High sediment temperature (> 35

◦C) is also known
to reduce the motility of MPB diatoms and so their capacity to avoid harmful
conditions at the sediment surface (Cohn et al., 2003; Laviale et al., 2015). The
detrimental effects of high salinity levels are not explicitly accounted for in the
model. The underlying processes could be accounted for in the model in an
implicit way by adjusting the MPB temperature-related growth parameters to
accentuate the PP reduction, in simulated conditions when high evaporation
is associated to high MST. The detrimental effects of desiccation on MPB cells
motility could also be implicitly represented in the model through more photo-
inhibition.

The simulated MST also governs the ingestion rate of MPB by the grazer P.
ulvae in the model. Simulated PP rates increase as the value of the optimal
temperature for grazing increases, because the grazing optimum is not often
reached in the model. In the model, the ingestion rate increases when the MST
tends towards the optimal temperature for grazing (fixed at 20

◦C ; Pascual
and Drake, 2008). A high metabolism of benthic grazers promoted by high
temperature conditions (up to 22

◦C) and the resulting increase of the grazing
pressure on benthic diatoms was observed by Sahan et al. (2007) on a mudflat
in Netherlands.
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Effect of light on MPB photosynthesis

In the model, light is the most limiting factor throughout the year. The low irra-
diance during fall and winter limits the MPB photosynthesis as the irradiance
is in average lower than the light saturation parameter. In spring, the increasing
irradiance and MST translate into higher biomass-specific photosynthetic rates
than in fall-winter leading to the onset of the simulated MPB spring bloom. In
summer, photo-inhibition is not accounted for in the model as the simulated
mean time spent by a MPB cells at the surface is lower than the time required
to induce photo-inhibition at saturating light levels (Blanchard et al., 2004). As
a consequence, light limits the simulated MPB growth only during neap tides,
when the sediment exposure occurs at low light levels early and late in the day.

Photosynthesis is represented in the model by the Production-Irradiance (P-I)
model of Platt and Jassby (1976). It relies on the photosynthetic capacity (Pbmax),
the light saturation parameter (Ik) and the maximum light utilisation coefficient
(α = Pbmax

Ik
, Talling, 1957). Irradiance has no influence on the photosynthetic ca-

pacity and maximum light utilisation coefficient (MacIntyre et al., 2002) in our
study. Based on the work of Blanchard et al. (1996), the photosynthetic capacity
and maximum light utilisation coefficient vary in the model with the simulated
MST. Therefore, the seasonal adjustment of photosynthesis to irradiance de-
pends mainly on the photoacclimation status of MPB cells, which can be related
to the light saturation parameter (Sakshaug et al., 1997). The light saturation
parameter corresponds to the irradiance at which photosynthesis switches from
light reactions (light absorption and photochemical energy conversion) to dark
reactions (reductant utilisation) (Sakshaug et al., 1997). It has been reported
to vary seasonally in benthic microalgae (Blanchard and Cariou-Le Gall, 1994;
Barranguet et al., 1998; Light and Beardall, 2001; Pniewski et al., 2015; Barnett
et al., 2015). Cells increase their light saturation parameter at high irradiance
(summer) and reduce it with decreasing light levels (Sakshaug et al., 1997). In
our study, as the light saturation parameter is set as constant throughout the
year (100 W m−2), photoacclimation is simulated by the way of a variable C:Chl
a ratio.

During winter, low light acclimated cells have a lower C:Chl a ratio due to
an increase of the Chl a content (MacIntyre et al., 2002; Brunet et al., 2011). In
summer, with the increasing irradiance and day length, high light-acclimated
cells reduce their Chl a content leading to a higher C:Chl a ratio (MacIntyre
et al., 2002; Brunet et al., 2011). In the model, solar irradiance shapes the sim-
ulated C:Chl a ratio (Eq. 18 in Chapter 2, section 2.4.2). The C:Chl a ratio
reaches a seasonal maximum value (75.5 g C g Chl a−1 in summer when solar
irradiance is the highest. Such a result is consistent with estimate (80 g C g
Chl a−1 reported in summer by de Jonge et al. (2012). In the model, given that
the biomass-specific photosynthetic rate (µg C (µg Chl a)−1 h−1) and the C:Chl
a ratio are related to the growth rate (h−1), the growth rate increases as the
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C:Chl a ratio decreases (low light acclimated cells). The seasonal variation of
the simulated growth rate results from the combination of the variation of the
photosynthetic capacity and maximum light utilisation coefficient driven by the
simulated MST and the variation of the C:Chl a ratio with irradiance.

Finally, photoinhibition at high irradiance is not accounted for in the P-I
model of Platt and Jassby (1976) used in the model. Epipelic diatoms achieve
"micro-migrations" within the sediment to avoid harmful light conditions pre-
vailing at the sediment surface (Kromkamp et al., 1998; Perkins et al., 2001;
Cartaxana et al., 2011). However, combined with high temperature conditions
(> 35

◦C) at the sediment surface potentially leading to reduced cell motility
(Cohn et al., 2003), epipelic diatoms can be photoinhibited (Laviale et al., 2015).
In temperate intertidal mudflats, high light and temperature conditions occur
during summer and their combined effect on MPB photosynthetic rate may
explain the depression of MPB biomass observed in summer.

Top-down regulation of MPB dynamics

Grazing by meio- and macrobenthos is often suggested as the main driver of the
MPB biomass depression observed in summer on intertidal mudflats (Cadée
and Hegeman, 1974; Cariou-Le Gall and Blanchard, 1995; Sahan et al., 2007;
Orvain et al., 2014a). Weerman et al. (2011) showed experimentally a strong de-
crease of MPB biomass in the presence of macrofauna driven by direct grazing
and by the absence of surface mud stabilisation due to bioturbation by deposit
feeders.

In the model, P. ulvae grazing exceeds the MPB PP mainly in spring (11 days
of MPB biomass removal). P. ulvae depletes a substantial part of the MPB
biomass accumulated during the spring bloom. After the bloom, a moder-
ate but sustained grazing by P. ulvae adds to the effect of thermoinhibition on
the MPB dynamics. The simulated gain terms promoting the growth rate of
MPB limited by thermoinhibition do not compensate the loss terms dominated
by the grazing pressure, which leads to a decrease of the MPB biomass. In a
conceptual model, Thompson et al. (2000) showed such a seasonal uncoupling
between the grazing intensity by intertidal grazing molluscs and the microalgae
abundance from observations made on a rocky shore of the Isle of Mann (UK).
The authors conceptualised the role played by the light and temperature stress
on the microalgae productivity and by the temperature-promoted grazing in
the depression of the microalgal standing stocks in summer.

The simulated annual P. ulvae gross secondary production is 27 g C m−2 yr−1,
which represents 21 % of the simulated annual MPB PP (127 g C m−2 yr−1).
This fraction of PP transferred to P. ulvae secondary production is consistent
with the average fraction reported by Asmus and Asmus (15 ± 12 %; 1985) on
intertidal sand bottom communities of the Island of Sylt in the North Sea. In
July, the simulated density of P. ulvae lies in the lower range of time-coincident
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measurements. As the simulated MST fairly agrees with time-coincident mea-
surements, other factors may explain the likely underestimation by the model
of the density and ingestion of P. ulvae. First, there may be a bias resulting
from the monthly-averaged weight estimates used to simulate the P. ulvae den-
sity (see Chapter 2, section 2.4.2). The monthly-averaged weights are based on
samples gathered in 2014-2015 on the Aiguillon mudflat, in the vicinity of the
Brouage mudflat (Fig. 22). Nevertheless, the seasonality of the P. ulvae density
is similar on the two mudflats with a peak of density in late summer (Haubois
et al., 2002), which suggests that such a bias is likely limited. In addition, the
simulated ingestion rates (20 - 90 ng Chl a ind−1 h−1) are consistent with inges-
tion rates measured in experiments with P. ulvae and benthic diatoms collected
in our study area and performed at a temperature close to the optimal temper-
ature for grazing in the model (15 - 20

◦C; 0.75 - 52 ng Chl a ind−1 h−1; Blan-
chard et al., 2000a; Haubois et al., 2005; Pascal et al., 2008). Second, the P. ulvae
density on the mudflat can change horizontally as a result of the foraging activ-
ity of the individuals and transport mediated by the wave- and tidal-induced
shear stress on the bottom sediment. Such a process is not accounted for in the
model and may lead to an underestimation of the P. ulvae biomass and density.
Finally, potential MPB grazing by fauna other than P. ulvae is represented in a
simple way by a linear and generic loss term in the model whereas it might
be a non-linear process that can vary seasonally (Pinckney et al., 2003). This
closure term may be underestimated in the model.

With respect to meiofauna, Pinckney et al. (2003) suggested a more intense
grazing by meiofauna in summer than in winter in the Terrebonne Bay estu-
ary (USA). Admiraal et al. (1983) estimated the meiofauna grazing at 300 mg
C m−2 d−1 on a mudflat of the Ems Dollard estuary (Netherlands). Compa-
rable rates of meiofauna ingestion (58 - 189 mg C m−2 d−1) are reported for
the Brouage mudflat (Montagna et al., 1995). Admiraal et al. (1983) observed
a non-significant effect of meiofauna grazing relative to the MPB production
rates. Nevertheless, their estimated grazing rate exceeds our simulated daily
MPB production rates for 36 days in summer i.e. 34% of the time of the sec-
ond phase in the model, suggesting that meiofauna grazing could impact MPB.
In addition, Pascal et al. (2008) compared ingestion rates by P. ulvae and a
nematode community from the Brouage mudflat in experimental conditions.
According to the abundance of organisms selected for the experiment of Pascal
et al. (2008) and a constant C:Chl a ratio of 45 g C g Chl a−1 (Guarini, 1998),
the amount of Chl a ingested by nematodes per hour was only 1.5 % of the
Chl a ingested by P. ulvae per hour in their experiment. However, in regard to
the observed abundances on the field and without density-dependant effect on
grazing rates, this theoretical amount of Chl a ingested by nematodes increases
to almost 50% of the Chl a ingested by P. ulvae in the study of Pascal et al.
(2008). According to the measured biomass uptake by meiofauna (Montagna
et al., 1995) and nematodes (Pascal et al., 2008) for the Brouage mudflat, an
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explicit representation of meiofauna ingestion in the model might magnify the
simulated depletion of MPB biomass in summer months. The representation
of grazing in the model can be improved. Nevertheless, the fair agreement
between the simulated P. ulvae densities and biomass levels with time-limited
but time-coincident observations suggests that overall the model simulates with
some confidence the grazing pressure on MPB.

Physical setting of the coupled model

The predictive ability of the physical-biological coupled model depends on the
accuracy of the oceanic and meteorological forcings. The frequency of the wa-
ter height and meteorological time series used to constrain the model is hourly
while the model time step 6 minutes. The lower frequency of the model forc-
ings over a day partly explains the model-data discrepancies. In addition, the
weather station where meteorological data were acquired is located 30 km away
from the Brouage study site. Local weather conditions may differ between the
two sites, especially the global irradiance and wind speed used to simulate the
MST and MPB growth rate. Global irradiance can be impacted by local cloud
cover and the wind regime can be different due to local thermal winds. In
the model, the timing of the emersion-immersion cycle is constrained by the
observed water heights and bathymetric level. The bathymetric level used to
compute the water height above the Brouage study site originates from a digital
elevation model with a 1-m horizontal resolution and a 15-cm vertical precision.
Even if the Brouage mudflat is relatively flat (1:1000), ridges and runnels are
present near the study site (Gouleau et al., 2000) and the topography is highly
variable at a meter scale. Inaccuracies in the bathymetric level relative to the
study site may translate into model-data discrepancies in terms of timing of
the emersion-immersion cycle in the model. Given that the mud temperature
model is constrained by the water height and meteorological data, it is sensitive
to possible inaccuracies in the forcings that may impact the simulated hourly
dynamics of MPB and P. ulvae. Nevertheless, at the seasonal scale, the impact
on the biological compartments of such inaccuracies in the forcings may be
limited.

conclusions

This study is a first attempt to simulate the MPB seasonal cycle observed on a
temperate intertidal mudflat and to quantify the relative contribution of both bi-
otic and abiotic factors on the seasonal MPB dynamics. The physical-biological
coupled model fairly compares to time-coincident remotely sensed and in situ
data and provides key findings about the seasonality of MPB on the Brouage
mudflat (French Atlantic coast):
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• The 2008 MPB seasonal cycle consists in 3 phases: a spring bloom, a sum-
mer depression of the biomass levels, and a moderate peak of biomass in
fall;

• In winter and early spring, the seasonal mass-specific maximum photo-
synthetic rate mainly driven by the simulated MST and the seasonal low
C:Chl a ratios lead to a seasonal maximum of MPB growth rate and to a
MPB spring bloom;

• P. ulvae grazing has a marked and synoptic impact on the MPB biomass
accumulated during the spring bloom;

• In late spring-summer, grazing is moderate but more sustained. Both
grazing and thermoinhibition, which is limiting for MPB growth 40 %
of time in summer, contribute to maintain relatively low levels of MPB
biomass;

• The model is sensitive to MPB temperature parameters (temperature op-
timum and maximum for photosynthesis), to the MPB light saturation
parameter and, to a lesser extent, to grazing parameters (the optimal tem-
perature for grazing and the shape parameter of the temperature-related
grazing function).

The seasonal MPB dynamics simulated by the model compares to time coin-
cident times series of remotely sensed NDVI data hence providing a qualitative
assessment of the model predictive ability. A next step would be to extend
such a model-satellite data comparison to a more quantitative assessment to
validate the simulated levels of MPB Chl a concentration and PP. The recent
advance of multispectral and hyperspectral remote sensing allows for the de-
velopment of new algorithms to retrieve products of ecological interest for MPB.
Brito et al. (2013) developed local empirical relationships relating synchronised
NDVI data to in situ Chl a concentrations to retrieve from space estimates of
Chl a concentration on a Portuguese intertidal mudflat. Efforts are also fo-
cused in using remote sensing reflectance from airborne hyperspectral data to
assess MPB PP rates (Méléder et al., 2018). Recently, and in light of the work
of Brito et al. (2013), Daggers et al. (2018) combined biomass derived from
NDVI data with simulated photosynthetic capacity from environmental condi-
tions (irradiance and air temperature) to map MPB PP on intertidal mudflats
in Netherlands. Other promising methods in the estimation of PP in intertidal
mudflat at the ecosystem scale are the non-invasive atmospheric and aquatic
Eddy Covariance (EC) techniques. The atmospheric EC provides continuous
and direct CO2 flux measurements at the air-water and air-sediment interfaces
during high and low tides, respectively, across different time scales from hours
to years (Baldocchi et al., 1988; Aubinet et al., 1999; Zemmelink et al., 2009;
Polsenaere et al., 2012). Similarly, the aquatic EC measures benthic O2 fluxes
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at the sediment/water interface (Berg et al., 2003). Quantifying the MPB PP
and biomass on intertidal mudflats is a prerequisite for further estimating the
flux of biogenic carbon from the benthos to the pelagos. During the immersion
period, MPB can be resuspended (9.7 mg C per high tide, i.e 3 % of the mean
simulated production during low tides, Dupuy et al., 2014) and highly disturb
the functioning of the benthic-pelagic ecosystem (Saint-Béat et al., 2014). The
study of air-water and sediment-water exchanges through simultaneous atmo-
spheric and aquatic EC measurements could allow quantifying the importance
of metabolic fluxes during immersion and exposure periods but also the cou-
pled processes between the benthic and pelagic compartments such as MPB
resuspension. Microphythobenthic community resuspension can significantly
contribute to planktonic gross PP and, in turn, explain lower CO2 fluxes from
the water column to the atmosphere at high tide during the day than at night
(Guarini et al., 2008a; Polsenaere et al., 2012). To date, the modelling effort put
on the physically-driven (tides and waves) resuspension processes of MPB is
still limited (see Mariotti and Fagherazzi, 2012). Accounting in models for sedi-
ment bottom shear stress mediated by hydrological forcings (current and waves)
along with bioturbation processes could lead to more realistic predictions of
the inter-annual MPB dynamics. Such a representation of the biologically and
physically-driven benthic-pelagic interactions would be fully apprehended by
the coupling of biological MPB models to high resolution ocean models. Such
an approach would open the door to an accurate assessment of the vertical and
horizontal export flux of biogenic matter at the land-ocean interface and, more
generally, of the contribution of productive biofilms in mudflats in the carbon
cycle of the global coastal ocean.





CHAPTER IV

I M PA C T O F C H R O N I C A N D M A S S I V E
R E S U S P E N S I O N M E C H A N I S M S O N T H E

M I C R O P H Y T O B E N T H O S D Y N A M I C S I N A
T E M P E R AT E I N T E RT I D A L M U D F L AT

In Chapter 3, we used the MPB one-dimensional (1D) model to test
hypotheses on the factors likely controlling the seasonal cycle of
MPB biomass on the Brouage mudflat. We identified the key role
played by light, mud surface temperature and grazing in shaping
the MPB seasonality. However, we assumed a constant and linear re-
suspension of MPB during high tides. To date, the modelling effort
put on the physically- (tides and waves) and biologically- (biosta-
bilisation, bioturbation) driven resuspension processes of MPB is
limited. In Chapter 4, we constrain the MPB 1D model with hy-
drodynamical forcings for the year 2012 to test hypotheses on the
factors controlling MPB resuspension on the Brouage mudflat. The
model is constrained by bed shear stress data computed from realis-
tic waves, tidal currents simulated by the SCHISM two-dimensional
(2D) model and sediment characteristics. The effect of physically-
induced bed shear stress, bioturbation and MPB biomass in the sed-
iment on the quantity and frequency of MPB resuspended in the wa-
ter column is highlighted. At the tidal scale, the MPB resuspension
is the highest at the flood beginning and at the end of ebb, and dur-
ing spring tides due to high current velocities and low water heights
that promote waves-sea bottom interactions and sediment erosion.
In 2012, the simulated MPB resuspension is the highest in spring
and the lowest in summer. The seasonal dynamics of MPB resuspen-
sion results from the MPB biomass in the sediment, physical distur-
bances and the grazer activity at the mud surface that remobilised
and facilitated the MPB resuspension through bioturbation. The
explicit representation of bed shear stress mediated by oceanic forc-
ings along with the bioturbation and biostabilisation processes pro-
moted realistic MPB dynamics and consistent benthopelagic fluxes
of MPB biomass.
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abstract

Microphytobenthos (MPB) resuspension is a key mechanism in the transfer of
organic matter from productive intertidal mudflats to terrestrial and marine
systems. In this study, we infer on the contribution of physical and biological
factors involved in the MPB resuspension. We use a physical-biological coupled
model forced by realistic meteorological and hydrodynamical forcings to sim-
ulate chronic (without any concomitant sediment resuspension) and massive
(driven by bed failure) resuspension over a year. The model simulates mud
surface temperature, MPB growth and grazing by the gastropod Peringia ulvae.
The model suggests that MPB resuspension is the highest in spring tides and
at the flood beginning due to high current velocity and low water heights that
promote waves-sea bottom interactions. The seasonal export of MPB biomass
is the highest in spring, up to 3-fold higher than in summer when the export is
the lowest. The simulated seasonal dynamics of MPB resuspension results from
the MPB biomass concentration in the sediment, physical disturbances and the
bioturbation activity by P. ulvae. Annually, 43 % of the simulated MPB primary
production is resuspended. The MPB resuspension (60.8 g C m−2 yr−1) ex-
ceeds the loss by P. ulvae grazing (41.1 g C m−2 yr−1). The model suggests
that chronic and massive resuspension events are important in the synoptic to
seasonal MPB dynamics in temperate intertidal mudflats. Accounting for such
processes in the carbon budget assessment in the land-ocean interface could
bring new insights to our understanding of the role played by MPB in the
coastal carbon cycle.

introduction

Tidal flats play a key role in the structure and functioning of coastal areas
(Healy et al., 2002, Millennium Ecosystem Assessment, 2005). Benthic microal-
gae or microphytobenthos (MPB) living in intertidal and shallow sediments
significantly contribute to the high biological production of coastal ecosystems
(MacIntyre et al., 1996; Underwood and Kromkamp, 1999). MPB assemblages
consist mainly of diatoms, cyanobacteria, euglenophyta and chlorophyta, which
vary with sediment properties (Underwood, 2001). In sandy, coarse and non-
cohesive sediments, MPB are composed by epipsammic taxa that live in close
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association with sediment grains (Underwood, 2001). In very fine cohesive sed-
iments, MPB consist mainly of free motile epipelic cells that bury in the first
centimetre of sediment during high tides and migrate up to the sediment sur-
face during daytime low tides (Underwood, 2001). At the sediment surface, the
MPB photosynthetic rate is driven by mud surface temperature (MST) and solar
irradiance (Barranguet et al., 1998; Perkins et al., 2010; Vieira et al., 2013; Car-
taxana et al., 2013, 2015). At optimal levels, they drive a high MPB primary pro-
duction (PP) up to 1.9 g C m−2 d−1 (Underwood and Kromkamp, 1999). The
MPB production is transferred to adjacent terrestrial and marine zones through
trophic export (Carlton and Hodder, 2003; Perissinotto et al., 2003; Galván et al.,
2008; Saint-Béat et al., 2013; Jardine et al., 2015) and hydrodynamics (Ubertini
et al., 2012). During the rising tide, MPB cells are susceptible to be resuspended
in the water column (de Jonge and van Beusekom, 1992, 1995). Therefore, in ad-
dition to the direct export to benthic food webs through grazing (Herman et al.,
2000; Lucas et al., 2001; Kang et al., 2006; Jardine et al., 2015), MPB also sustain
pelagic suspensive and filter feeders, such as herbivorous fishes and zooplank-
ton, as well as wild or farmed shellfishes (Leroux, 1956; Paulmier, 1972; Newell
et al., 1989; Perissinotto et al., 2003; Krumme et al., 2008).

The MPB resuspension consists of chronic resuspension of MPB cells with-
out any concomitant sediment resuspension and of episodic massive resus-
pension driven by bed failure. As MPB are associated with sediment, MPB
resuspension can be driven by the same hydrodynamical mechanisms that gov-
ern sediment resuspension. In intertidal mudflats, tidal currents can be strong
enough to induce the resuspension of unconsolidated sediment (Mehta et al.,
1989). However, only high bed shear stress (BSS) driven by waves, combined
or not with tidal currents, can resuspend consolidated sediment (Bassoullet
et al., 2000; French et al., 2008). Episodes of strong waves and tidal currents
can therefore remobilise a sediment surface layer deeper than 1 cm (Andersen
et al., 2007; Christie et al., 1999) and export a high quantity of MPB biomass
to the water column, identified as massive resuspension (Mariotti and Fagher-
azzi, 2013). Moreover, MPB control the bed failure probability by stabilising
the sediment upper layer. The excretion of extracellular polymeric substances
(EPS) mainly by MPB, increases the sediment consolidation and its resistance
to hydrodynamical disturbances by binding the sediment particles together (Pa-
terson, 1989; Madsen et al., 1993; Underwood and Paterson, 1993; Austen et al.,
1999; Decho, 1990, 2000; Pierre et al., 2010, 2012).

In conditions without any bed failure, chlorophyll pigments originating from
MPB biofilms were measured in the water column and were related to the fluff
layer erosion (Blanchard et al., 1997b; Wiltshire et al., 1998; Dupuy et al., 2014;
Orvain et al., 2014b). This biogenic fluff layer is formed by the tracks, mucus
and pellets generated by grazing, crawling and egestion of benthic deposit-
feeders at the sediment surface containing MPB cells and sediment grains (Wil-
lows et al., 1998; Le Hir et al., 2007). The fluff layer formed through the action
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of bioturbation is not bounded to the sediment bed and can be eroded more
easily (Davis, 1993; Blanchard et al., 1997b; Willows et al., 1998; Andersen, 2001;
Orvain et al., 2003). Consequently, normal hydrodynamical conditions can pro-
mote fluff layer erosion and associated MPB more frequently. Such a process
can be considered as chronic resuspension (Orvain et al., 2014b).

The in situ monitoring of the MPB export from the sediment to the water
column is not trivial. This is due to the highly responsive behaviour of MPB
when exposed to the highly variable physical (light, temperature, tide, waves)
and biological (MPB dynamics, bacteria and grazers) conditions. Remotely-
sensed data of MPB cover a wide range of spatial scales (∼ from one to few
hundred meters) but their limited number of products and their limited time
resolution (∼ from one to several days and 1 hour for geostationary satellites)
impede our capacity to investigate the underlying processes of the retrieved
state of MPB (e.g. Brito et al., 2013; Benyoucef et al., 2014; Gernez et al., 2017;
Daggers et al., 2018; Méléder et al., 2018).

Physical-biological coupled modelling is a complementary tool to field and
remote sensing studies to better understand physical and biogeochemical pro-
cesses prevailing in these complex intertidal systems. Our study aims to esti-
mate the chronic and massive MPB resuspension and to infer on its role on the
seasonal MPB dynamics over one of the largest intertidal mudflat of the French
Atlantic coast, in the Bay of Marennes-Oléron. We used a physical-biological
coupled model that simulated the seasonal pattern of MPB growth and graz-
ing by gastropod deposit-feeder Peringia ulvae. In the paper, we first describe
the coupled physical-biological modelling approach. Then, we assess the role
and the temporal variability of each resuspension type (chronic vs. massive)
on the MPB dynamics. Finally, we discuss the importance of considering MPB
resuspension to better understand the coastal food webs functioning and the
seasonal export to the water column of organic matter mediated by MPB.

material and methods

Study site

The study area is the Pertuis Charentais Sea, a shallow semi-enclosed sea on the
French Atlantic coast (Fig. 22). It is characterised by a semi-diurnal macrotidal
regime (tidal range ∼ 6 m at spring tides). In the southern part of the domain,
the Bay of Marennes-Oléron covers 170 km2 including 60 km2 of intertidal
mudflats. The study site (45

◦
54’50”N, 01

◦
05’25”W) is located in the Bay, on the

Brouage mudflat (Fig. 22). It is a 42 km2 intertidal mudflat made of fine cohe-
sive sediments (median grain size 17 µm and 85 % of grains with a diameter
< 63 µm; Bocher et al., 2007) and characterised by a gentle slope (∼ 1/1000; Le
Hir et al., 2000). The concentration of total suspended matter over the mudflat
lies in the range 50-80 mg l−1 at neap tides and can reach 500 mg l−1 at spring
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tides (Kervella, 2009). North of the Brouage mudflat, the turbidity usually takes
values between 4 ± 1 NTU and 12 ± 8 NTU in summer and winter, respectively
(Luna-Acosta et al., 2015). South of the mudflat, it varies between 10 ± 8 NTU
and 14 ± 12 NTU in summer and winter, respectively (Luna-Acosta et al., 2015).
The highest current velocity reached at neap and spring tides is ∼ 0.2 m s−1 and
0.5 m s−1, respectively (Le Hir et al., 2000). On the Brouage mudflat, the wave
height was measured as up to 0.7 m (Bassoullet et al., 2000). As in many mud-
flats along the northern European Atlantic coast, a dense biofilm of epipelic
MPB develops at the surface of the mudflat at low tide and can reach up to 25

mg Chl a m−2 (Herlory et al., 2004). When resuspended by waves and tidal
currents, MPB can contribute significantly to in-water Chl a measured in the
area (from 4 to 16 mg Chl a m−3; Soletchnik et al., 1998; Guarini et al., 2004;
Struski and Bacher, 2006; Soletchnik et al., 2017).

Figure 22: Bathymetric map of the Pertuis Charentais Sea (source: SHOM) and location
of the main intertidal mudflats. The study site and the Meteo France weather
station are represented by a red and a blue full point, respectively. The two
REPHY monitoring stations are represented by the purple and green full
points.

Observations

A large multiparametric dataset of physical and biological measurements col-
lected in the Pertuis Charentais Sea was used to constrain the model and to
compare with the model outputs. We provide here a summary of the data used
along with their respective references, within which a detailed methodology of
each set of measurements can be found.
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In situ data

We used 2012 atmospheric forcings to constrain the MST model and the MPB
model. Atmospheric forcings consisted of hourly meteorological observations
(shortwave radiations, air temperature in the shade, and relative humidity) ac-
quired at the Meteo France weather station located near the La Rochelle airport
(46
◦
10’36” N, 1

◦
11’3” W; data available online at https://publitheque.meteo.

fr; Fig. 23). They were complemented by hourly sea level atmospheric pressure
and wind velocity extracted from the atmospheric reanalysis CFSR (NCEP Cli-
mate Forecast System Version 2 (CFSv2) selected hourly time-series products,
https://rda.ucar.edu/datasets/ds094.1) at the study site (Fig. 23). Atmo-
spheric forcings span from 1 September 2011 (03:00 UTC) to 31 December 2012

(23:00 UTC).

Figure 23: Time series of the 2012 (a) relative humidity, (b) atmospheric pressure above
the sea, (c) global irradiance, (d) air temperature in the shade, and (e) wind
velocity at the study site.

An acoustic Doppler current profiler mounted with a pressure transducer
(ADCP; Aquadopp Profiler 2MHz, Nortek AS) was deployed on the sea bot-
tom from 19 April 2012 (12:00 UTC) to 22 April 2012 (12:00 UTC). The ADCP
data were used to compare with the water depth, the current velocity and the
wave parameters simulated by the SCHISM model and used to constrain the
coupled physical-biological model. The ADCP was set to measure 1 minute-
mean velocity profiles with a 0.1 m vertical resolution followed by 10 minutes
continuous measurements at 2 Hz, where current velocities were averaged in a
0.5 m-thick cell. Power spectral density (PSD) estimates were computed using
5 overlapping and hanning-windowed segments, which results in 10 degrees

https://publitheque.meteo.fr
https://publitheque.meteo.fr
https://rda.ucar.edu/datasets/ds094.1
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of freedom and a frequency resolution of 0.0196 Hz. Pressure attenuation with
depth was corrected using linear wave theory. The spectral significant wave
height Hm0 and the mean wave period Tm02 were computed integrating the
corrected PSD from 0.05 to 0.44 Hz.

The overall consistency of the MPB compartment was assessed using both
field and satellite-derived data of chlorophyll concentration. We compared the
simulated resuspended MPB biomass (mg Chl a m−3) with the in-water Chl a
concentration (mg Chl a m−3) measured at two sampling stations of the French
Phytoplankton and Phycotoxin Monitoring Network (REPHY; Belin and Raf-
fin, 1990; French Observation and Monitoring program for Phytoplankton and
Hydrology in coastal waters, 2017) in the Pertuis Charentais Sea. The samples
were collected twice a month at a sub-surface depth (between 0 and 1 m) with
a HYDROBIOS sampling bottle (2.5 L). The first station is the Boyard station
located at the East of Oléron Island (Fig. 22). The second station is the Auger
station located to the South of the Bay of Marennes-Oléron (Fig. 22; Soletchnik
et al., 2017, 2018). In addition to Chl a concentration, we also used the phyto-
plankton cells taxonomic identification from the same samples, in order to dif-
ferentiate the contribution of resuspended benthic species to the total microal-
gae cell counts. Taxonomic identification was performed at the class to species
level. Class and species were associated to a full or partial benthic growth and
pelagic growth form according to the classification given in Hernández Fariñas
et al. (2017). Counts (number of cells per liter) were used to determine the con-
tribution of each forms. Only Chl a measurements from samples in which the
contribution of benthic form exceed 50 % were used.

Remote sensing data

In addition to in situ REPHY data, we compared the simulated Chl a data with
space and time coincident cloud-free satellite data from the Medium Resolu-
tion Imaging Spectrometer (MERIS) on-board the polar-orbiting environmen-
tal research satellite (ENVISAT) of the European Space Agency (ESA). MERIS
has a global coverage of 3 days and a horizontal resolution of 300 m in Full-
resolution mode (Rast et al., 1999). Level2 data of spectral marine reflectance
were downloaded from the ESA’s MERCI server (https://merisfrs-merci-ds.
eo.esa.int/). The Chl a concentration was computed using a semi-analytical
inversion algorithm specifically developed for coastal and inland waters (Gons,
1999; Gons et al., 2005). The algorithm used the spectral bands at 665, 705, and
775 nm, and the Chl a retrieval was performed in three steps.

The backscattering coefficient (bb) was first estimated from the water re-
flectance (ρw) at 775 nm:

bb(775) =
1.61ρw(775)

0.082− 0.6ρw(775)
(27)

https://merisfrs-merci-ds.eo.esa.int/
https://merisfrs-merci-ds.eo.esa.int/
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Then, a NIR/red band ratio was used to compute the phytoplankton absorp-
tion at 665 nm:

aphy(665) =
(0.70+ bb)ρw(705)

ρw(665)
− 0.40− bpb, (28)

where p is a constant set to 1.02 (Gernez et al., 2017). Finally, Chl a concentra-
tion (mg Chl a m−3) was obtained by dividing the phytoplankton absorption
by the chlorophyll-specific absorption coefficient at 665 nm (a∗phy):

[Chl a] =
aphy(665)

a∗phy(665)
(29)

The value of a∗phy (0.014 m2 (mg Chl a)−1) was set up from Gons results,
which correspond to the average computed from a large variety of inland and
coastal water samples. As communication with ENVISAT-1 was lost on 8 April
2012, 6 cloud-free high tide scene images were extracted from 4 January to 1

April 2012. Chl a concentration was estimated at the pixels corresponding to
the study site (Fig. 22).

The coupled physical-biological one-dimensional model

The mud surface temperature model

A mud temperature model was coupled to a two-layer biological model and
run for the year 2012. The model is not horizontally-resolved. Heat fluxes were
simulated in a 1-cm deep sediment layer through a set of thermo-dynamic equa-
tions detailed in Savelli et al. (2018). The simulated temperature of exposed
mud resulted from heat exchanges between the Sun, the atmosphere, the sedi-
ment surface, from the heat conduction between mud and air, and from mud
evaporation. The simulated surface (1 cm) temperature of immersed mud was
set to the temperature of the overlying seawater, which resulted from thermal
conduction between air and seawater, upward seawater radiation, and down-
ward solar and atmospheric radiation. The MST simulated by the model was
successfully compared to 2008 in situ 1-min data at the same study site (see
Savelli et al., 2018). The differential equation was solved with a 30-s Euler-
Cauchy scheme.

The MPB model

The biological model explicitly represented the MPB biomass concentration in
the surface biofilm compartment (S, mg Chl a m−2) and in the sediment first
centimetre (F, mg Chl a m−2). The MPB model was developed and calibrated
for epipelic diatoms. Exchanges of MPB biomass between the biofilm and the
underlying sediment were ruled by a vertical MPB migration scheme according
to the diurnal and tidal cycles (Guarini, 1998). During the daytime emersion
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periods, the MPB cells migrated upward in the sediment from F to the S com-
partment until the biofilm saturation. In the biofilm, the MPB growth rate
depended on the photosynthetically active radiation (PAR), the simulated MST
and the grazing pressure. The potential time spent by the MPB at the surface
was calculated before each low tide by the parameter γ* (h):

γ∗ = (
F

Smax
+ 1)× γ, (30)

where Smax is the saturation value of the surface biofilm (25 mg Chl a m−2)
and γ is the mean time spent by a MPB cells at the surface (1 h; Blanchard et al.,
2004). The formula sets the potential duration of MPB biofilm at the sediment
surface during daytime emersion periods by dividing the MPB biomass in F into
fractions of biofilm (Smax = 25 mg Chl a m−2) that spend 1 h in average at the
sediment surface. The higher is the biomass in F, the longer is γ*. This potential
time is independent of the duration of the daytime emersion periods, which
can be shorter or longer. As soon as MPB exceeded their potential duration
at the surface, they migrated downward from S to the F compartment. MPB
migrated downward also at nightfall and during immersion if hydrodynamical
conditions were calm (i.e. when τmax < τcritmass , see Section 4.3.3.5). The
grazing pressure was simulated through the Peringia ulvae biomass (Z, mg C
m−2) grazing on MPB at the sediment surface. The P. ulvae growth rate was
related to the MST and the simulated MPB biomass.

The crawling activity of P. ulvae generates at the sediment surface a fluff
layer composed by a mineral and organic matrix including MPB cells. Conse-
quently we introduced a new compartment that represented the dynamics of
MPB biomass in the fluff layer. Such a compartment was not taken into account
in Savelli et al. (2018). The fluff layer was represented by the B compartment
(mg Chl a m−2), supplemented by a flux of MPB biomass from the biofilm to
the fluff layer:

dB

dt
= min

[
S× (1−

B

Bmax
)× νZ,

S

dt

]
, (31)

where Bmax is the saturation of Chl a concentration in the fluff layer. Con-
sidering a mean Chl a concentration in the sediment of 500 µg Chl a g−1 of dry
sediment and a maximal resuspended mass of sediment of 23 g of dry sediment
m−2 (Orvain et al., 2007), Bmax was set to 11.5 mg Chl a m−2. Here, Z was
expressed in density of individuals (ind m−2) using the same P. ulvae monthly-
averaged individual weight estimated in Savelli et al. (2018). Therefore, the
higher is the MPB biomass in the biofilm (S), the higher is the flux of MPB
biomass from the biofilm to the fluff layer. This flux was also modulated by the
density of P. ulvae individuals (Z) and their crawling rate υ (m2 s−1 ind−1).
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The SCHISM modelling system

The SCHISM modelling system (Zhang et al., 2016) was used to obtain the
2012 10-min time series of water height (m), East-West and North-South depth-
integrated velocity (m s−1), significant wave height (m), mean wave period
(s) and direction (◦) and wave orbital velocity (m s−1) used to compute the
BSS and emersion-immersion periods used to constrain the physical-biological
model. SCHISM fully couples several modules to simulate e.g. hydrodynamic
circulation, short waves, sediment transport and that all share the same un-
structured grid and domain decomposition. In the present application, the
two-dimensional horizontal (2DH) circulation model was fully coupled with
the spectral wave model Wind Wave Model II (hereafter WWM-II; Roland et al.,
2012), which were implemented over the study area using an unstructured grid
with a spatial resolution ranging from ∼ 2 km along the open boundaries and
∼ 100 m in the Bay of Marennes-Oléron. The circulation model uses the combi-
nation of an Eulerian-Lagrangian Method with a semi-implicit scheme, which
relaxes the CFL condition associated with the advection of momentum and
allows for stable and accurate numerical results, even using large time steps.
Along its open boundary, the circulation model was forced with amplitudes
and phases of the 19 main tidal constituents, linearly interpolated from the re-
gional model of Bertin et al. (2012). Over the whole domain, the circulation
model was forced by wind and sea-level pressure fields at 10 m above the sea
surface originating from the CFSR reanalysis, with spatial resolutions of 0.20

◦

and 0.5◦, respectively. SCHISM was fully coupled with WWM-II using a radia-
tion stress formalism (Longuet-Higgins and Stewart, 1964). WWM-II simulates
short wave generation and propagation by solving the wave action equation
(Komen et al., 1996) using a four-step fractional method. In the present applica-
tion, the source terms included wave growth and dissipation by whitecapping
according to Bidlot et al. (2007), non-linear wave interactions computed using
the Discrete Interaction Approximation of Hasselmann et al. (1985), bottom
friction using the JONSWAP approach (Hasselmann et al., 1973) and depth-
induced breaking using the model of Battjes and Janssen (1978). The fields
were extracted at the node corresponding to the study site.

BSS computation

The current BSS (τc, Pa) was calculated assuming a logarithmic velocity profile
in the first layer above the sea bottom (Schlichting and Gersten, 2016):

τc = ρu
2
∗ , with u∗ =

κu(z)

ln
(
z
z0

) , (32)

where u∗ is the current friction velocity (m s−1), ρ is the seawater density
(kg m−3) and κ is the Von Karman constant (0.4). z is the water height (m) and
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u(z) is the associated depth-integrated current velocity (m s−1). We applied a
Nikuradse roughness (ks) of 0.01 m previously applied by Le Hir et al. (2000)
on the Brouage mudflat. The bottom roughness z0 was equal to ks

30 . The wave
BSS (τw, Pa) was calculated according to the formula of Soulsby (1997):

τw = 0.5ρfwU2b, (33)

where Ub is the wave orbital velocity (m s−1) and fw is the wave friction
coefficient. fw was calculated according to the formula of Swart (1974):

fw = 0.3, if r 6 1.57, (34)

fw = 0.00251exp
(
5.21r−0.19) , if r > 1.57, (35)

where r is the relative roughness related to the wave excursion A (m) and the
Nikuradse roughness:

r =
A

ks
, with A =

UbT

2π
, (36)

where T is the wave period (s). The average BSS (τm) and the maximum BSS
(τmax) were calculated according to the formulation of Soulsby (1997), which
takes into account non-linear interactions between waves and currents:

τm = τc

[
1+ 1.2

(
τw

τc + τw

)3.2
]

, and (37)

τmax =
[
(τm + τwcosφ)

2 + (τwsinφ)
2
] 1
2

, (38)

where φ is the angle (◦) between waves and currents direction.

The MPB resuspension

The model previously used in Savelli et al. (2018) was modified to take into
account the explicit representation of the hydrodynamically and wave driven
MPB resuspension mechanisms. We set the loss rate of MPB biomass in the sed-
iment to 0.001 h−1 during high tides. The constant represents MPB senescence
and the grazing by subsurface deposit feeders. We related the resuspension of
MPB biomass to the simulated τmax, which combined τw and τc. During high
tides, three different resuspension scenarios were modulated by BSS thresh-
olds. First, the critical BSS for fluff layer resuspension (τcritfluff) was set at
0.015 Pa (Orvain et al., 2004). Second, the critical BSS for massive resuspension
(τcritmass) was set according to the critical BSS for bare sediment (τbaresed),
consolidated by the total MPB biomass (mg Chl a m−2; Mariotti and Fagher-
azzi, 2012):



4.3 material and methods 85

τcritmass = τbaresed + [ω× (F+ S)] , (39)

where ω is the consolidation coefficient of the bare sediment by the MPB
biomass (Pa(mg Chl a m−2)−1).

During immersion periods,

• if τmax < τcritfluff , no resuspension occurred. Immersed MPB cells
achieved the downward migration from S to F and P. ulvae individuals
were still active (grazing and bioturbating);

• if τcritfluff < τmax < τcritmass , P. ulvae individuals were not grazing and
bioturbating any more and only the fluff layer was eroded at the rate:

dB

dt
= −φB×

[
τmax

τcritmass
− 1

]
, (40)

where φ is the erosion coefficient of the fluff layer (s−1) and
[
τmax

τcritmass
− 1
]

represents the intensity of the resuspension.

• if τmax > τcritmass , the resuspension was considered massive and all the
MPB compartments (sediment, biofilm and fluff layer) were impacted by
resuspension. P. ulvae individuals were inactive. Both the surface biofilm
and the fluff layer were fully resuspended. The Partheniades-Ariathurai
law (Partheniades, 1962; Ariathurai and Krone, 1976) for mud erosion was
used to determined the MPB biomass resuspension from the sediment:

E = E0 ×
[
τmax

τcritmass
− 1

]n
, (41)

where E and E0 are the sediment erosion rate (kg m−2 s−1) and the ero-
sion constant (kg m−2 s−1), respectively. n is a power function of the
sediment composition (for mud, n = 1). The MPB biomass in the sedi-
ment (mg Chl a m−2) was converted into Chl a concentration per mass of
sediment (F∗, mg Chl a kg−1 dry sediment) using a constant bulk density
of sediment (520 g l−1). The resulting MPB erosion rate (EMPB, mg Chl a
m−2 s−1) is as follows:

EMPB = E0 × F∗ ×
[
τmax

τcritmass
− 1

]n
, (42)

The occurrence of the massive resuspension events also depended on the
MPB biomass remaining in the sediment first centimetre. In case of a mas-
sive resuspension event, a background of MPB biomass (Fmini, mg Chl a
m−2) was always kept in the sediment to allow the biomass recovery after
the event. If F > Fmini, EMPB and all the surface biofilm and fluff layer
were eroded. Otherwise, only the fluff layer was integrally resuspended.
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Figure 24: Conceptual scheme of the MPB resuspension. (a) τmax <

τcritfluff , no resuspension occurs. Immersed MPB cells achieve
the downward migration from S to F and P. ulvae individu-
als are still active (grazing and bioturbating). (b) τcritfluff <
τmax < τcritmass , P. ulvae individuals are not grazing and
bioturbating any more and only the fluff layer is eroded. (c)
τmax > τcritmass , the resuspension is considered massive and
all the MPB compartments (sediment, biofilm and fluff layer)
are impacted by resuspension. P. ulvae individuals are inac-
tive. Both the surface biofilm and the fluff layer are fully resus-
pended. The MPB biomass in the sediment is resuspended ac-
cording to the Partheniades-Ariathurai law (Partheniades, 1962;
Ariathurai and Krone, 1976) for mud erosion.
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The physical and biological constants used in this study are given in Ta-
ble 11. The differential equations of the biological model without wave- and
tidal-induced MPB resuspension are fully detailed in Savelli et al. (2018). The
physical-biological coupled model was run at the study site from 1 Septem-
ber 2011 to 31 December 2011 for the spin-up, and from 1 January 2012 to 31

December 2012 for the analysis. F and Z were initially set to 100 mg Chl a
m−2 and 500 mg C m−2, respectively. The differential equations were solved
with the fourth-order Runge-Kutta method with a 6-min time step. The model
run with the explicit representation of wave- and tidal-induced MPB resus-
pension (PHYrun) was compared to a reference run (REFrun) with a constant
rate of MPB resuspension during high tides without any parametrisation of
biologically-consolidated sediment. The setup of the REFrun is detailed in
Savelli et al. (2018).

Finally, we tested the sensitivity of the simulated MPB PP and instantaneous
resuspension to simultaneous variations of key biological and physical con-
stants. Random values of the bed roughness length (z0), critical BSS for resus-
pension of bare sediment (τbaresed), consolidation factor (ω), erosion constant
of pure mud (E0), minimum MPB biomass in the sediment (Fmini) and mean
time spent by a MPB cell at the sediment surface (γ) were selected within the
observed ranges (Table 12) by a Monte Carlo fixed sampling method (Hammer-
sley and Handscomb, 1964). The method aims to quantify how simultaneous
variations of key biological and physical constants might impact the simulated
MPB production and instantaneous resuspension (see Chapter 3). A total of
10,000 model runs was performed using the same set of initial conditions.

results

Physical conditions

In situ water height and current velocity derived from ADCP measurements
in April 2012 were used to compute the 10-min mean significant wave height
and mean wave period that were compared to the model data (Fig. 25). The
model simulated well the high-frequency (10 min) variations of the water height
(RMSD = 0.14 m, NRMSD = 9%) and current velocity components. The RMSD
was 0.087 m s−1 for the East-West component and 0.06 m s−1 for the North-
South component (Fig. 25). With respect to the wave height and mean wave
period, the RMSD was 0.057 m and 0.337 s, respectively (Fig. 25). It corre-
sponded to NRMSD of 19 % and 10 %, respectively.

The water height and depth-integrated velocity simulated by the model in
2012 varied fortnightly with the tidal cycle (Fig. 26). During neap tides, the
simulated water height and current velocity reached 1.42 m and 0.41 m s−1,
respectively. During spring tides, they were higher and reached 3.24 m and
0.83 m s−1, respectively.
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Figure 25: Measured and simulated (a) water height, (b) East-West current velocity
component, (c) North-South current velocity component, (d) significant
wave height, and (e) wave period of the 2

nd moment at the study site be-
tween 19 April 2012 and 22 April 2012. r is the Pearson’s correlation co-
efficient. RMSD and NRMSD are the root mean square deviation and the
normalised root mean square deviation.

The simulated wave period ranged from 3 to 15.5 s (Fig. 26). The simulated
wave height and orbital velocity varied by several orders of magnitude, rang-
ing between 2×10

−3 m and 0.61 m and between 5×10
−3 m s−1 and 0.62 m

s−1, respectively (Fig. 26). The median wave orbital velocity was 0.14 m s−1.
High values of wave orbital velocity (i.e. higher than the median) were more
frequently reached during winter and fall compared to spring and summer (Fig.
27).

During winter, the simulated MST was 6.2 ± 4.3 ◦C in average (Fig. 28). The
simulated mean MST was more than twice in summer reaching 20.4 ± 2.8 ◦C
(Fig. 28). It was comparable in spring and fall with 14.2 ± 3.5 ◦C and 12.4 ±
3.8 ◦C, respectively (Fig. 28).
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Figure 26: Time series of the 2012 simulated (a) water height, (b) depth-integrated cur-
rent velocity, (c) significant wave height, (d) wave period of the 2

nd moment,
and (e) wave orbital velocity

MPB and P. ulvae dynamics

The total simulated MPB biomass (MPB biomass in the biofilm and the MPB
biomass in the sediment) reached a seasonal maximum on May 1 (252 mg Chl
a m−2 ; Fig. 29a). This peak is preceded by three peaks of simulated MPB
biomass around 150 mg Chl a m−2 on January 30, February 29 and March 23

(Fig. 29a). In summer, the simulated MPB biomass decreased below 100 mg
Chl a m−2. In fall, one peak of MPB biomass of moderate intensity (137 mg
Chl a m−2) occurred on November 14 (Fig. 29a). The peaks of MPB biomass
simulated in March and April were tightly followed by two seasonal peaks of
simulated P. ulvae density (∼ 20,100 and 37,000 ind m−2, respectively; Fig. 29b)
during which the simulated MST (19.5 ◦C and 17.6 ◦C) was close to the optimal
temperature for P. ulvae grazing (20

◦C). In fall, the simulated P. ulvae density
was low (∼ 3,500 ind m−2 ; Fig. 29b).
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Figure 27: Histograms of the 2012 simulated wave orbital velocity in (a) winter, (b)
spring, (c) summer, and (d) fall.

Figure 28: Simulated mud surface temperature (◦C) in 2012.

MPB biomass resuspension

Model validation

The modelled resuspended MPB Chl a was normalised by the water height
and compared to the time-coincident in-water Chl a concentration provided by
remote sensing and in situ water samples from two monitoring stations (Figs.
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Figure 29: Time series of the 2012 simulated (a) total MPB biomass (mg Chl a m−2),
and (b) P. ulvae density (ind m−2).

22 and 30). Both in situ and satellite observations favourably compared with
the simulated resuspended Chl a. Whatever the source of data (model output,
in situ sampling or remote sensing), the in-water Chl a concentration exhib-
ited a consistent seasonal variability with higher value in winter-spring than in
summer-fall. The simulated maximum peaks of resuspended MPB (from 5 - 45

mg Chl a m−3) generally compared to satellite estimates (1.4 - 35.4 mg Chl a
m−3). In particular, the height of peaks occurring from late February - early
March was consistent with satellite observations (30 ± 18 mg Chl a m−3, Febru-
ary 28; Fig. 30). In fall and winter, the lower concentration of resuspended MPB
(2.44 ± 7 mg Chl a m−3) was in agreement with in situ measurements (2.1 ± 1

mg Chl a m−3; Fig. 30). All together, the reasonable agreement between simu-
lation outputs, satellite estimates, and in situ observations is very encouraging.
In order to better understand the temporal dynamics of MPB resuspension, we
now analyse in more details the time-series of MPB resuspension using high
frequency simulations.

Temporal variability

MPB resuspension was highly variable in terms of seasonal occurrence and
quantity and did not systematically occur during each tidal cycle (Fig. 31).
The instantaneous resuspended biomass was in average 0.04 ± 0.45 mg Chl a
m−2. The instantaneously resuspended MPB water column-normalised concen-
tration peaked to 110 mg Chl a m−3 on February 1. Over a high tide, the rate of
MPB erosion averaged 0.4 ± 0.85 mg Chl a m−2 h−1 with a maximum of 8.93

mg Chl a m−2 h−1 on November 12.
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Figure 30: Time series of the 2012 simulated and observed remotely-sensed and mea-
sured in situ in-water Chl a concentration (mg Chl a m−3). The simulated re-
suspended MPB biomass was cumulated over each high tide and normalised
over the corresponding maximal water depth.

Massive resuspension

Interestingly, the seasonal variation of the MPB resuspension was mainly driven
by massive resuspension events. Massive resuspension represented 70 % of the
MPB biomass resuspended annually, which was exported to the water column
in 37 days only (Tables 13 and 14). Massive resuspension mostly occurred
during winter and fall, as evidenced by a mean contribution of 80 % to total
resuspended MPB biomass (Fig. 31b). The contribution of such events relative
to total resuspension was the highest during winter (613 mg Chl a m−2, Table
13). In winter, 18 days (457 events) of massive resuspension were responsible of
the export to the water column of 32 % of the total annually resuspended MPB
biomass (Table 13). The same trend was also observed during spring, when
5.8 days (363 events) of massive resuspension contributed to 20 % of the total
annually resuspended MPB biomass (Table 13). On the contrary, massive resus-
pension was rare during summer (only 192 events), and did not substantially
contribute to the total annual export of MPB to the water column (Table 13).
In the model, spring tides were isolated by considering tides with a maximal
water depth > 1.8 m. Beside the above-mentioned seasonal pattern, it is note-
worthy to report that 60 % of the annual MPB export from the sediment to the
water column occurred during spring tides.

Chronic resuspension

In contrast, the MPB biomass resuspended in the model through bioturbation
contributed to only 30 % of the total annual water column export (Table 13). Re-
suspension through bioturbation mainly occurred from late March to Septem-
ber (Fig. 31b and Table 13), when P. ulvae individuals were active and abundant
in the model (Fig. 29b). Fluff layer mediated export of MPB corresponded to
46 days of resuspension and 392 events (Table 13). In spring, fluff layer MPB
resuspension (337 mg Chl a m−2) compared to that of massive resuspension
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(381 mg Chl a m-2) but was 3-fold more frequent. In summer, the fluff layer
resuspension (157 mg Chl a m−2) was higher than massive resuspension (78

mg Chl a m−2), which was only episodic (< 2 days). Annually, the number of
fluff layer resuspension events (392 events) were lower than the massive resus-
pension events (1504 events; Table 13). However, the fluff layer resuspension
events were longer (46.2 days) than the synoptic and shorter massive resuspen-
sion events (37 days; Table 13).

Figure 31: Time series of the 2012 simulated (a) total resuspended MPB biomass (mg
Chl a m−2), (b) relative contribution (%) of resuspended MPB biomass
through bioturbation (blue) and massive events (red). The simulated re-
suspended MPB biomass was cumulated over each high tide.

Resuspended MPB biomass and MPB PP

In order to assess the impact of wave- and tidal-induced resuspension on MPB
dynamics, we compared the time-integrated total resuspended MPB biomass
and MPB PP simulated in 2012 (PHYrun) with the reference run where the rate
of MPB resuspension is constant during high tides (REFrun). The total resus-
pended MPB biomass was twice in the PHYrun (60.8 g C m−2) than in the
REFrun (30.2 g C m−2; Table 14). The seasonal variability also differs between
the two series of simulations. In the PHYrun, the resuspended MPB biomass
was the highest in spring (27.9 g C m−2) and the lowest in fall (7.38 g C m−2;
Table 14). On the contrary, in the REFrun, the resuspended MPB biomass was
the highest in winter (10.3 g C m−2) and the lowest in summer (5.6 g C m−2;
Table 14), and the amplitude of the seasonal difference was twice lower than in
the PHYrun. In the REFrun, the frequency (53 - 56 %) and duration (48.6 - 51.4
d) of MPB resuspension events were similar throughout all the seasons (Table
14). By contrast, in the PHYrun, summer and fall were characterised by the low-
est seasonal MPB resuspension frequency (20 % and 16.6 %, respectively) and
duration (18.8 d and 15.1 d, respectively; Table 14), whereas the frequency and
duration of resuspension events were both higher during spring (respectively
29 % and 26.6 d).



96 microphytobenthos resuspension

Table
1

3:Sim
ulated

total
resuspended

M
PB

biom
ass

( ∑
R
E
S )

in
2

0
1

2
through

bioturbation
and

m
assive

events,
and

frequency
(Freq

R
E
S ),

duration
(D

ur
R
E
S ),and

num
ber

(N
)

of
the

sim
ulated

events.

M
assive

resuspension
Fluff

layer
resuspension

∑
R
E
S

Freq
R
E
S

D
ur
R
E
S

N
∑
R
E
S

Freq
R
E
S

D
ur
R
E
S

N

(m
g

C
hla

m
−
2)

(%
)

(d)
(m

g
C

hla
m

−
2)

(%
)

(d)

W
inter

6
1
3.

1
2
0

1
8

4
5
7

3
4.

4
5

4.
6

7
3

Spring
3
8
1.

3
6.

3
5.

8
3
6
3

3
3
7.

7
2
2.

6
2
0.

8
1
2
0

Sum
m

er
7
8.

4
1.

7
1.

5
4

1
9
2

1
5
7.

6
1
9

1
7.

3
1
2
9

Fall
2
8
3.

7
1
2.

7
1
1.

6
4
9
2

4
1.

7
4

3.
5

7
0

A
nnual

1
3
5
5.

5
1
0

3
7

1
5
0
4

5
7
1.

3
1
2.

6
4
6.

2
3
9
2



4.4 results 97

With respect to MPB PP, the annual rate was close both in the PHYrun (140.5
g C m−2) and the REFrun (151.5 g C m−2; Table 14). In both runs, PP was the
highest in spring (47.2 g C m−2 in the REFrun and 67.6 g C m−2 in the PHYrun).
PP simulated in spring departed more from the other seasons in the PHYrun
than in the REFrun. In the PHYrun, the spring PP was 2.3-fold to 3.6-fold
higher than in other seasons (Table 14). At the annual scale, 43.3 % (PHYrun)
and 19.9 % (REFrun) of the PP was resuspended (Table 14). At the seasonal
scale, PP was resuspended the most in winter and the least in summer in both
runs (Table 14). In winter, PP was relatively low while the resuspended biomass
was high. In the PHYrun, high resuspended MPB biomass resulted from more
frequent intense hydrodynamical disturbances combined with moderate MPB
biomass in winter (Fig. 31a). Such a pattern led to a moderate consolidation of
the sediment (0.82 ± 0.13 Pa; Fig. 32). In contrast, in summer, PP was slightly
lower than in winter but the level of resuspended biomass was much lower due
to less frequent intense hydrodynamic disturbances and lower MPB biomass in
the sediment than in winter. This pattern was simulated although the sediment
was relatively unconsolidated (0.64 ± 0.08 Pa; Fig. 32).

Table 14: Simulated total resuspended MPB biomass (
∑
RES), frequency (FreqRES) and

duration (DurRES) of the resuspension events, and MPB PP in the REFrun
and the PHYrun in 2012.∑

RES FreqRES DurRES PP
∑
RES:PP

(g C m−2) (%) (d) (g C m−2) (%)

REFrun
Winter 10.3 53 48.6 34 30.3

Spring 8.1 56 51.4 47.2 17.2

Summer 5.6 55 50.6 41 13.7

Fall 6.2 56 51 29.3 21.7

Annual 30.2 55 201.6 151.5 19.9

PHYrun
Winter 15.9 25 22.6 28.4 56

Spring 27.9 29 26.6 67.6 41.3

Summer 9.61 20 18.8 26 37

Fall 7.38 16.6 15.1 18.6 39.7

Annual 60.8 22 83.2 140.5 43.3
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Drivers of MPB resuspension

Waves and currents bed shear stress

The critical BSS for massive resuspension (τcritmass) was compared to the wave
BSS (τw) and, current BSS (τc) and to the maximal BSS (τmax) which com-
bined both current and wave BSS. As MPB had a consolidating effect on the
sediment, τcritmass was set to co-vary with MPB biomass in the model. As a
result, τcritmass displayed a seasonal variation similar to that of MPB biomass
(Fig. 29 and 32): winter-spring maximum (with 4 peaks from 1 to 1.8 Pa) and
summer minimum (0.64 ± 0.08 Pa). Overall, τmax exceeded τcritmass at a simi-
lar frequency than τw.

In contrast to the massive resuspension BSS, τw was more variable and exhib-
ited more peaks in winter (1.15 ± 0.6 Pa) and fall (1.1 ± 0.75 Pa) than in spring
(0.65 ± 0.34 Pa) and summer (0.43 ± 0.25 Pa; Fig. 32a). During the studied year,
τw exceeded τcritmass during 84 days. The dominance of τw was higher in win-
ter (36 %) and fall (34 %) than during summer (10 %; Table 4). The current BSS
was generally lower (annual average of 0.1 ± 0.13 Pa) than τw (annual average
of 0.8 ± 0.6 Pa), and displayed values similar to that of τcritmass during each
season (Table 15). As τc was driven by tidal dynamics, it reached a maximum
and was as high as τcritmass during spring tides (Fig. 32b).

Resuspension intensity

In order to relate MPB dynamics with BSS, the highest MPB resuspension
events (corresponding to the last percentile of the resuspended MPB biomass
simulated time series, i.e. higher than 40.6 mg Chl a m−2) were highlighted in
Fig. 32c by dark circles. All the seven highest resuspension events occurred
during November or February-March. Three of them were responsible for the
export to the water column of ∼ 150 mg Chl a m−2 in early-March (Fig. 32c).
They were followed by a drop in τcritmass , which was due to a decrease in MPB
biomass within the sediment. Though the decrease in MPB biomass contributes
to lessen the sediment consolidation (Fig. 29), strong resuspension events did
not occur during summer (Fig. 32c). The lowest maximal value reached by
τmax during high tides of 2012 was 0.29 Pa (Fig. 32b). τcritfluff (0.015 Pa) was
therefore exceeded at each high tide. The simulated fluff layer was therefore
always eroded at least one time during immersion periods.

Over a tidal cycle, most of the simulated resuspension events occurred at the
flood beginning (14 %) and at the end of ebb (10 %; Fig. 33). These moments
correspond to low water height when τw was maximised until around 1 - 1.25

m of seawater depth (Fig. 34). Most of the simulated total resuspended MPB
biomass (76 %) was exported at the flood beginning (Fig. 33).
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Figure 32: Time series of the 2012 simulated (a) wave BSS, (b) current BSS, and (c)
maximum BSS along with the total resuspended MPB biomass. The green
line represents the critical BSS for massive resuspension events. Dark circles
indicate resuspended biomass higher than the last percentile of the resus-
pended MPB biomass simulated in 2012 (40.6 mg Chl a m−2). Note that
only maximum values of BSS per tidal cycle are shown.

Table 15: Simulated frequency of waves BSS, tidal current BSS and combined waves
and current maximal BSS higher than the critical BSS in 2012.

Waves (%) Current (%) Combined waves and current (%)

Winter 36 0.22 36.2

Spring 13 0.18 13.4

Summer 10 0.5 11.5

Fall 34 0.28 34.6

Annual 23 0.30 23.7

MPB PP and resuspension, P. ulvae ingestion

In order to relate the resuspended MPB biomass with the MPB growth condi-
tions, the simulated daily MPB resuspension was compared to the simulated
daily MPB PP and to the simulated daily P. ulvae ingestion (Fig. 35b). PP in-
creased during winter-spring and reached a maximum in late-March (∼ 1.6 g C
m−2 d−1; Fig. 35). It resulted into an increase of MPB biomass in the sediment
(Fig. 35a). The simulated decreases of the MPB biomass in early-March, late-
March and early-May were driven by strong resuspension and/or by P. ulvae
ingestion events (Fig. 35). Seven peaks of daily resuspension (1 - 2.2 g C m−2

d−1) occurred in winter, spring and fall (Fig. 35b). By comparison, the daily
P. ulvae ingestion exhibited two peaks, one of them reaching a maximum of 4.1
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Figure 33: Frequency of the resuspension events simulated in 2012 and the relative
distribution of the total resuspended MPB biomass over a high tide.

Figure 34: Relationship between the simulated wave BSS and the water depth.

g C m−2 d−1 in early-May (Fig. 35b). The yearly-integrated resuspension of
MPB (60.8 g C m−2 yr−1) was 1.3-fold higher than the yearly-integrated P. ulvae
ingestion (41.1 g C m−2 yr−1). The loss of MPB biomass by resuspension was
therefore higher than the loss by grazing by P. ulvae.

Sensitivity analysis

A total of 10,000 simulations were run using random sets of biological (Fmini,
γ) and physical (ω, τbaresed, E0, z0) constants varying within the reported
observed ranges (Table 12). This approach was used in Savelli et al. (2018).
The constants were chosen as they shape the simulated MPB production and
the occurrence and rate of MPB resuspension. Figures 36 and 37 show the
10,000 parameters combinations and the resulting simulated MPB annual PP
and maximal instantaneous resuspension.

Except for γ, a high annual MPB PP was simulated in all regions of the tested
ranges of Fmini, ω, τbaresed, E0 and z0 (Fig. 36). The annual PP was the most
sensitive to γ (Fig. 36). This constant set the duration of the time spent by the
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Figure 35: Time series of the 2012 simulated (a) MPB biomass in the first centimetre of
sediment (mg Chl a m−2), (b) daily PP rate (g C m−2 d−1), daily resuspen-
sion of MPB biomass (g C m−2 d−1), and daily ingestion of P. ulvae (g C
m−2 d−1).

MPB biofilm at the sediment surface for the next low tide. The higher was γ,
the higher was the annual PP. Below 25 min spent at the sediment surface, the
annual PP reached critical values (PP < 50 g C m−2 yr−1; Fig. 36).

Figure 36: Parallel coordinates of the simulated MPB primary production (g C m−2

yr−1) according to the consolidation factor of sediment by the MPB biomass
(ω), the critical BSS for the resuspension of bare sediment (τbaresed), the
erosion constant (E0), the background MPB biomass (Fmini), the average
time spent by MPB cells at the surface (γ), and the bed roughness (z0) for
10,000 combinations run in the Monte Carlo sensitivity analysis.

The instantaneous rate of MPB biomass resuspension was also sensitive to γ
when it took values lower than 25 min (Fig. 37). A low PP resulting from a low
γ value led to the decline of the MPB biomass in the sediment and resuspended



102 microphytobenthos resuspension

MPB biomass. When γ was higher than 25 min, the MPB resuspension was
sensitive to ω, E0 and τbaresed (Fig. 37).

An increase of ω and E0 combined with a decrease of τbaresed resulted into
a higher maximal instantaneous resuspension of MPB (Fig. 37). The strongest
resuspension events (> 200 mg Chl a m−3) occurred for ω, E0 and τbaresed
values ranging between 0.001 and 0.005 Pa(mg Chl a m−2), 5.5×10

−4 to 1×10
−3

kg m−2 s−1 and 0.4 and 1 Pa, respectively (Fig. 37).

Figure 37: Parallel coordinates of the maximal simulated instantaneous resuspension
of MPB biomass (mg Chl a m−3) according to the consolidation factor of
sediment by the MPB biomass (ω), the critical BSS for the resuspension of
bare sediment (τbaresed), the erosion constant (E0), the background MPB
biomass (Fmini), the average time spent by MPB cells at the surface (γ),
and the bed roughness (z0) for 10,000 combinations run in the Monte Carlo
sensitivity analysis.

Overall, the simulated annual MPB PP was mainly sensitive to γ. When PP
was relatively high (γ > 25 min), the MPB resuspension was mostly sensitive
to the sediment erodibility constants ω, E0 and τbaresed, as they constrained
the occurrence and rate of MPB resuspension.

discussion

The seasonal cycle of MPB resuspension

The dynamics of the simulated MPB resuspension relies on the seasonal cycle
of MPB biomass in the sediment. Here, we used the model of Savelli et al.
(2018), which reasonably simulates the MPB dynamics in the sediment for the
year 2008. The simulated seasonal cycle of MPB biomass is characterised by a
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spring bloom, a summer depression and a moderate fall bloom. According to
Savelli et al. (2018), the spring bloom of MPB biomass was driven by a high PP
triggered by MST close to the MPB temperature optimum for photosynthesis
and an increasing solar irradiance from late winter to the end of spring. In
summer, the combined effect of a low thermoinhibited MPB PP and a moderate
but sustained grazing pressure was responsible for a low MPB PP and biomass
(Savelli et al., 2018). In fall, the absence of grazing and a lower simulated MST
than in summer led to a moderate bloom of biomass that declined rapidly
due to decreasing light levels (Savelli et al., 2018). The total MPB biomass
simulated within the first centimetre of sediment exhibited a seasonal pattern
consistent with that previously observed in other northern European mudflats
(i.e. van der Wal et al., 2010; Echappé et al., 2018). The simulated synoptic
events of MPB resuspension superimposed on the MPB intrinsec seasonal cycle
of MPB biomass and PP.

The model suggests a high seasonal MPB resuspension during winter and
spring. In their study on the South Korean Nanaura mudflat, Koh et al. (2007)
sampled the MPB Chl a concentration in the sediment and the suspended par-
ticulate matter to derive resuspended benthic Chl a concentration in seawater
from July 2002 to February 2003. The measured Chl a concentration in the
sediment and the resuspended benthic Chl a were higher during winter than
in summer and fall in line with our results. On the same study site, Koh et al.
(2006) estimated the highest concentrations of resuspended Chl a during spring
tides, which is consistent with the high MPB export from the sediment to the
water column simulated during spring tides (60 % of the annual export). The
simulated resuspended MPB biomass is also higher during flood than ebb. 76

% of the annual export of MPB biomass from the sediment to the water col-
umn occurs during flood in the model. In the Bay of Bourgneuf (NW France),
Gernez et al. (2017) also retrieved higher benthic Chl a resuspension in flood
than in ebb using the remote sensing algorithm used in our study.

We compared the resuspended Chl a concentrations simulated for year 2012

with 2012 seawater Chl a concentrations remotely-sensed above the mudflat
and measured in situ at water quality monitoring stations in the vicinity of
the Brouage mudflat. The simulated seasonal cycle of the resuspended MPB
biomass is consistent with the winter, spring and fall observations. The model
suggests a higher contribution of benthic micro-algae in winter-spring than in
summer. Guarini et al. (2004) and Hernández Fariñas et al. (2017) analysed
the phytoplankton community in seawater sampled at water quality monitor-
ing stations in the Bay of Marennes-Oléron and the Bay of Bourgneuf (160-km
north of the Brouage mudflat), respectively. Both studies suggest a similar sea-
sonal pattern with a higher contribution of benthic microalgae in seawater in
winter-spring than in summer. Nevertheless, we remain cautious on the rea-
sonable agreement between the model and in situ data as the number of in situ
samples we used was defined by a threshold we set for benthic cells resuspen-
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sion representativeness. Below 50 % of benthic cells in the sample, the sample
was discarded in the analysis. Such a threshold implies that, in summer, all the
samples are discarded so no model-data comparison is possible. In addition, ∼
15 km separate the study site from the monitoring stations. Such a distance may
involve some model-data discrepancies caused by grazing, MPB deposition and
resuspension occurring between sites.

The horizontal transport of the MPB cells within the water column may im-
pact the biomass of resuspended MPB. Guarini et al. (2004) and Guarini et al.
(2008a) report an horizontal transport of resuspended MPB cells in the Bay of
Marennes-Oléron and over the Brouage mudflat. In our modelling approach,
there is no horizontal transport in seawater or deposition on the sea floor of
the resuspended MPB biomass. Such a parametrisation implies that once resus-
pended, all the MPB biomass is definitely transported away from the study site.
Similarly, the model precludes any incoming flux of MPB biomass produced in
other areas and transported to the study site. Waves and current BSS can also
shape the spatial distribution of P. ulvae individuals on the mudflat (Armonies
and Hartke, 1995) and so the local grazing pressure on MPB developing in the
sediment. In the model, the lack of grazing pressure on MPB cells resuspended
in the water column may result into an overestimation of the simulated resus-
pended MPB biomass (Guizien et al., 2014). The intensive oyster farming in
the Brouage mudflat vicinity can result into a substantial removal of the resus-
pended MPB biomass (Smaal and Zurburg, 1997). Such a process is not consid-
ered in the model. To that respect, an explicit benthopelagic coupling would be
required to fully account for the complex biogeochemical processes controlling
the planktonic activity within the water column (Hochard et al., 2012).

With respect to the rate and amplitude of the MPB resuspension, the simu-
lated values compare with the values reported in the literature. The instanta-
neous resuspended MPB biomass simulated by the model reaches 110 mg Chl
a m−3, in the range of observations (∼ 45 mg Chl a m−3 measured by Bail-
lie and Welsh (1980); 320 mg Chl a m−3, derived from suspended particulate
matter measurements by Koh et al. (2007); 52.5 mg Chl a m−3 retrieved from
remote sensing data by Gernez et al. (2017)). The maximum erosion rate of Chl
a in the sediment simulated during massive resuspension events (8.93 mg Chl
a m−2 h−1 or 2.48 µg Chl a m−2 s−1) is consistent with measurements (1.72

µg Chl a m−2 s−1) made by Orvain et al. (2014b) in July, 2008 in an erosion
flume with sediment samples gathered in the Brouage mudflat. In the model,
the MPB biomass export to the water column through the fluff layer erosion
corresponds to MPB resuspension without any concomitant sediment erosion.
The chronic events of fluff layer erosion led to instantaneous resuspended Chl
a concentrations between 0 and 5.51 mg Chl a m−2. On the Brouage mudflat,
Guarini et al. (2008a) estimated the chronic resuspension to up to 11 mg Chl
a m−3 in 1.5 m of seawater height (i.e. corresponding to 16.5 mg Chl a m−2).
They related it to a full resuspension of a well-established biofilm (∼ 25 mg Chl
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a m−2) rather than erosion of the fluff layer only. In the model, the export of
the entire biofilm is represented through the massive resuspension.

Physical and biological controls on MPB resuspension

Waves and tides

On the annual scale, the simulated export of MPB biomass to the water column
is partly driven by wave-related massive resuspension events. These events
occur mostly in winter and, to a lesser extent, in fall. In the model, the high
bottom wave orbital velocity in winter and fall results in high simulated values
of τw and τmax. On mudflats of the Ems estuary in The Netherlands, de Jonge
and van Beusekom (1995) related the MPB resuspension to wind waves. They
showed a concomitant increase of resuspended benthic Chl a concentration
with an increase of wind speed. The Bay of Marennes-Oléron extends over
170 km2 and, regarding the geometry of the Bay, the highest fetch in the area
can established from the North-West or the South-West (Fig. 22). This fetch con-
figuration is promoted by dominant winds from the oceanic sector (SW to NW)
especially during winter-fall (source: Meteo France 1961-1990). Such fetches
drive wind waves with a short period and orbital motions that reach easily the
shallow sea bottom with, as a result, the resuspension of the sediment including
MPB biomass (Green and Coco, 2014). At the highest water depth simulated
at our study site (3.24 m), orbital motions of waves with periods higher than
2 s start to interact with the sea bottom. Waves with periods higher than 2 s
occur 55 % of the time in 2012. As a consequence, orbital motions often reach
the sea bottom in the model. Moreover, wave-related MPB resuspension in the
Brouage mudflat is not only dominated by waves generated locally but also by
swells entering in the Bay from the ocean (Bertin et al., 2005). As a result, and
contrarily to de Jonge and van Beusekom (1995), the sediment and MPB resus-
pension is not related to local winds only as peaks of wave orbital velocity are
not always associated to strong local winds. The low wave orbital velocity sim-
ulated in spring and summer results in a much lower contribution of massive
resuspension events to MPB resuspension at these seasons.

With respect to tides, the tidal currents contribute to massive MPB resuspen-
sion events during spring tides. Only the highest current velocities reached dur-
ing spring tides can overpass τcritmass . The high contribution of spring tides
current velocity on sediment resuspension was suggested by Toublanc et al.
(2016) in their tri-dimensional (3D) modelling study in the Charente estuary in
close vicinity of the Brouage mudflat. They suggest a higher concentration of
resuspended sediment in spring tides than in neap tides, because the current
velocity and τc were lower in neap tides.

14 % and 10 % of the simulated events of MPB resuspension occurs at the
flood beginning and at the end of ebb, respectively. The action of waves on sea
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bottom are limited by the water height (Fig. 25). The wave height and orbital
velocity increase with the water level until a critical depth when orbital motions
at the bottom start to decrease (Mariotti and Fagherazzi, 2013; Green and Coco,
2014; Li et al., 2019). In the model, the average critical depth is about 1 - 1.25 m.
Such a water height is reached mainly at the beginning and at the end of high
tides, which explains the high simulated impact of average wave conditions on
MPB resuspension at the beginning of flood and at the end of ebb. Moreover,
the high current velocity and τc at the flood beginning and at the end of ebb,
combine to high τw at this moment of the tide, which increases τmax. Using
a 2D model, Le Hir et al. (2000) also simulated higher current velocities at the
beginning of flood and at the end of ebb on the Brouage mudflat. Overall, the
model reasonably simulates the process of MPB resuspension at both the tidal
and seasonal scale.

MPB behaviour

The seasonal cycle of the MPB biomass in the sediment also plays a role in
the seasonality of the massive MPB resuspension. Waves drive more frequent
massive resuspension events in winter and fall. However, most of the high re-
suspension events (events identified when resuspended MPB biomass is higher
than the last percentile of the resuspended MPB biomass simulated time se-
ries in 2012) are simulated in late winter-early spring. The occurrence from
March to June of the simulated spring bloom of MPB biomass in the sediment
explains this pattern. Because of the high MPB biomass in the sediment, the
sediment erosion driven by strong-moderate hydrodynamical conditions leads
to an important export of MPB biomass in the water column.

The mean time spent by MPB cells at the surface (γ) is a key parameter in
the model that controls both the simulated MPB PP and resuspension. The
highest value of instantaneous MPB resuspension is simulated when MPB cells
remain longer at the sediment surface. The longer is the stay of the cells at the
sediment surface, the higher is their PP. The MPB biomass accumulates in the
sediment and leads to a high export of MPB biomass to the water column. In
the model, the mean time spent by the MPB cells at the sediment surface is
set according to the time required to induce photoinhibition (Blanchard et al.,
2004). Combined with the MPB biomass in the sediment before the emersion
period, γ sets the potential duration of the biofilm or the potential duration of
the production period named γ* (h) in the model. The longer is γ*, the higher
is the PP and the more likely are the cells remaining at the surface resuspended
during the rising tide.

Resuspension events also contribute to shape the dynamics of the MPB biomass
in the sediment. For example, in early February and early and late March, the
simulated MPB biomass in the sediment decreases in response to massive re-
suspension events. In the model, a minimum threshold of MPB biomass in
the sediment (73 mg Chl a m−2) is set when massive resuspension events occur.
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Such a threshold dampens the resuspension intensity when the MPB biomass is
lower than this value. In their modelling study, Mariotti and Fagherazzi (2012)
also set a constant background of MPB biomass during massive resuspension
events to prevent any non resilient behavior of the simulated MPB. In addi-
tion, the laboratory erosion flume experiments made by Valentine et al. (2014)
suggest that only a small biofilm can build up when repeated erosion events
occur.

In response to massive resuspension events, MPB inhabiting the sediment
first centimetre can develop resilience strategies to maintain a background of
active biomass in the sediment. Larson and Sundbäck (2008) suggested that
MPB cells in anoxic stressful conditions could migrate down in the sediment
and go into a dormant state and keep respiration demands to a minimum. The
survival capacity of non-resting benthic diatoms can be due to heterotrophy on
organic substrates present in the sediment (Tuchman et al., 2006). Veuger and
van Oevelen (2011) suggested that non-resting benthic diatoms can remain in
dark sediment for a year and remain fully photosynthetically active. Once the
sediment uppermost layer is eroded, buried MPB cells from deeper sediment
layers newly exposed to favourable growth conditions can get active and pro-
ductive. MPB cells newly deposited on the eroded sediment can also initiate
recolonisation. In their field experiment, Pan et al. (2017) suggest that benthic
diatoms are able to recolonise the sediment. By removing the top 2-cm of the
microbial mat present at the sediment surface, the authors observed a rapid (4
- 7 days) recolonisation by diatoms corresponding to epipelic groups triggered
by the horizontal advection and redistribution of cells over the mudflat during
high tides

Fauna

The chronic erosion of the fluff layer simulated by the model is responsible for a
substantial export of the MPB biomass from the sediment to the water column
in spring and summer. The Chl a content in the fluff layer is fueled by the
crawling activity of P. ulvae individuals, which increases the transfer of MPB
biomass from the biofilm to the fluff layer. The high contribution of fluff layer
erosion to total resuspended MPB biomass in spring and summer is driven by
the relatively high P. ulvae density at these seasons. At the annual scale, the
fluff layer erosion is more frequent than massive resuspension (31.3 % and 24

%, respectively). However, it contributes less to the total resuspended MPB
biomass (36.7 %) than massive resuspension events (63.3 %). In our study, we
considered the bioturbation by P. ulvae only but other fauna species can also
contribute to bioturbation. On the upper Brouage mudflat, bivalve Scrobicularia
plana individuals exhibit high densities (∼ 1,000 ind m−2) and play an important
role in the bioturbation process in this part of the mudflat (Orvain et al., 2007).
Other abundant species of macrofauna and meiofauna (e.g. the homogeneously
spatially distributed nematodes on the Brouage mudflat) can also bioturbate
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substantially the sediment (Rzeznik-Orignac et al., 2003; Passarelli et al., 2014).
As we only explicitly account for the dominant MPB grazer at our study station,
the model may underestimate bioturbation and the fluff layer erosion compared
to the massive resuspension process.

The presence and grazing-crawling activity of P. ulvae can also impact the
sediment bed roughness as the gastropod is able to cope with strong currents.
Blanchard et al. (1997b) and Orvain et al. (2003) suggest that the P. ulvae shell
can increase the bed roughness, which results into an increase of the BSS. Such
an effect is not represented in the model. However, the bed roughness varia-
tions driven by P. ulvae individuals might have a limited effect in the model
as the simulated annual MPB PP and instantaneous resuspension show a low
sensitivity to bed roughness.

Sediment

The instantaneous MPB resuspension and annual MPB PP simulated by the
model are not sensitive to the bed roughness. The model is run with the same
constant value used in Le Hir et al. (2000) in their 2D hydrodynamical mod-
elling study on the Brouage mudflat. Nevertheless, the Brouage mudflat is
characterised by the presence of ridges and runnels (Gouleau et al., 2000), by
the settlement of a sheet flow (i.e. a fluid sediment layer moving along the bot-
tom) and the presence of biogenic structures. Consequently, the bed roughness
is likely to vary in space and time. The horizontal resolution of the SCHISM
physical model is ∼ 100 m on the Brouage mudflat, which is too coarse for
resolving ridges and runnels. These morphological sea bed structures are im-
portant in the sediment erosion-deposition-consolidation mechanisms. Average
wave conditions and tidal currents remobilise the sediment mainly in runnels
(Carling et al., 2009). In contrast, strong wind waves and spring tides current
and associated high BSS can induce sediment resuspension both in runnels
and ridges (Carling et al., 2009; Fagherazzi and Mariotti, 2012). Blanchard et al.
(2000b) suggest that MPB colonise and consolidate preferentially ridges com-
pared to runnels, which are more drainage structures. Consequently, ridges
are more consolidated than runnels due to a high MPB and EPS content (Blan-
chard et al., 2000b). Marani et al. (2010) showed that biostabilisation processes
by halophytic vegetation and microbial biofilm is a key component of tidal
morphological equilibrium. Therefore, even spatially distributed in patchiness,
MPB might play a key role on the long and short term morphodynamic of the
intertidal mudflat. The current and waves simulated by the SCHISM physical
model compare with the ADCP measurements deployed in 2012 on a ridge
of the Brouage mudflat, which suggests that the physical-biological model can
reproduce the MPB dynamics prevailing on ridge-like structures.

In the model, the physical properties of the sediment are impacted by the bi-
ology. The sediment is consolidated by biota as the erosion threshold increases
along with the MPB biomass in the sediment first centimetre. Such a mecha-
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nism represents the sediment consolidation by EPS excreted mainly by MPB
(Pierre et al., 2010, 2012). EPS increase the adhesion of fine sediment grains
(Decho, 1990, 2000) and decrease the sediment permeability, which results into
a increase of the sediment consolidation (Zetsche et al., 2011). Consequently,
the higher is the simulated MPB biomass in the sediment, the higher is simu-
lated τcritmass . τcritmass reaches a seasonal maximum in early-May when the
MPB biomass in the sediment is the highest. Pivato et al. (2019) described the
relationship between the biostabilisation effect and the seasonal cycle of MPB
biomass as a positive feedback. The high MPB PP in spring promotes the fast re-
covery of MPB biomass in the sediment hence leading to a higher resistance to
erosion through biostabilisation. In that sense, MPB create their own favourable
conditions for MPB biomass accumulation in the sediment in spring. On a mud-
flat in the Westerscheldt in The Netherlands, Stal (2010) reports the highest ero-
sion threshold right after the MPB biomass maximum in the biofilm during one
low tide. On a mudflat at Kjelst in the Danish Wadden Sea, Andersen (2001)
also suggests a good correspondence between a well-established MPB biofilm
and a high erosion threshold in spring and late summer-early winter. In our
study, the simulated seasonal maximum of τcritmass (1.8 Pa) is 6-fold higher
than the critical BSS constant for bare cohesive sediment. This is consistent
with the laboratory flume experiment of Neumeier et al. (2006) that suggests
that biofilm-inhabited sediments exhibit a critical BSS 4- to 10-fold higher than
in bare sediments without any established biofilm. On the Kapellebank mudflat
of the Western Scheldt Estuary (the Netherlands), Zhu et al. (2019) also report a
critical BSS 5-fold higher in a sediment inhabited by diatoms than in sediments
without diatoms. The erosion threshold commonly follows the Chl a content in
sediment. However, a stronger correlation is found between sediment consol-
idation and EPS production (Underwood and Paterson, 1993) by both benthic
diatoms and bacterial assemblages (Chen et al., 2017), the latter process being
not simulated by the model. Accounting for bacteria and EPS production might
improve the model ability to simulate the sediment consolidation.

MPB-driven benthic-pelagic flux

At the annual scale, 43 % of the simulated PP is resuspended. In winter, the
ratio between MPB resuspension and PP is the highest due to a moderate resus-
pension and a low PP. In contrast, in spring, the ratio decreases as resuspension
reaches its seasonal maximum and PP is higher than in winter. With respect to
secondary production, the simulated annual resuspension (60.8 g C m−2 yr−1)
is 1.3-fold higher than the annually-integrated MPB ingestion by P. ulvae (41.1 g
C m−2 yr−1). It suggests that the export of MPB biomass to the water column is
higher than the MPB grazing that builds up secondary production. Moreover,
the simulated annual resuspension represents 33 % of the phytoplankton PP
estimated in the same study area (Struski and Bacher, 2006). Such a result high-
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lights the key role played by MPB in the benthopelagic coupling. Using inverse
modelling based on data from the Brouage mudflat, Saint-Béat et al. (2014) sug-
gest that the export of particulate organic carbon from the benthic compartment
fuels the pelagic carbon production when biofilm resuspension is considered in
summer. MPB resuspension varies seasonally in response to contrasting hydro-
dynamical conditions. The coupled physical-biological model simulates such
a seasonal dynamics that impacts the seasonal benthopelagic flux of organic
carbon. This is not the case in Savelli et al. (2018), where MPB resuspension
is formulated as a continuous and linear MPB loss term at high tide. Such a
formulation in Savelli et al. (2018) results in a seasonality of resuspension that
only varies according to the MPB biomass in the sediment without consider-
ing any physical forcing. It then implies that the higher is the MPB biomass
in the sediment, the higher is the resuspension of the MPB biomass. Such a
parametrisation is not realistic considering the increase of sediment consolida-
tion with the MPB biomass. In addition, this formulation might overestimate
and underestimate the MPB resuspension during calm physical conditions and
intense physical conditions, respectively.

conclusions

We used a physical-biological model to assess the role of chronic and massive
resuspension events on the MPB dynamics in a very productive temperate in-
tertidal mudflat. The model reasonably simulates the seasonal pattern of MPB
resuspension and gives some insights to our understanding of the contribution
of the physical and biological mechanisms controlling the MPB export from the
sediment to the water column:

• At the tidal scale, MPB resuspension is the highest in spring tides due
to strong tidal currents. Over the year, 76 % of the resuspended MPB
biomass is exported to the water column at the flood beginning due to
high velocity currents and low water heights that promote wave orbital
motions-sea bottom interactions;

• In winter and fall, waves are the main driver for massive MPB resuspen-
sion events;

• During the spring bloom, MPB biomass accumulates and consolidates the
sediment first centimetre. The simulated critical BSS is 6-fold higher than
the critical BSS constant for bare sediment;

• In spring, the density of P. ulvae individuals increases and so the biotur-
bation, which promotes MPB in the chronically eroded fluff layer at the
sediment surface;

• When the MPB biomass in the sediment reaches its seasonal maximum
in spring, massive resuspension events driven by the wave- and tidal-
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induced BSS and chronic fluff layer erosion events lead to the highest
seasonal export of MPB biomass to the water column (from 1.1 to 3-fold
higher than in other seasons in terms of Chl a). In terms of Chl a, massive
and chronic resuspension events in spring represent 20 % and 17.5 % of
the MPB biomass resuspended annually;

• In summer, MPB resuspension is the lowest (1.3 to 3-fold lower than in
other seasons in terms of Chl a) due to calm hydrodynamical conditions
and low MPB biomass in the sediment;

• At the annual scale, 43.3 % of the MPB PP is resuspended to the water
column and this export (60.8 g C m−2 yr−1) exceeds the P. ulvae grazing
pressure on MPB (41.1 g C m−2 yr−1).

Accounting for the physically (tides and waves) and biologically (biostabil-
isation and bioturbation) driven resuspension processes of MPB in predictive
physical-biological coupled models is an important step in assessing the export
of biogenic matter at the land-ocean interface. These processes could be repre-
sented into 3D ocean-biogeochemical coupled models that resolve the 3D fields
of advection and diffusion in the water column required to simulate the spa-
tial and temporal dynamics of MPB over a whole mudflat. 3D models would
hence allow the assessment of benthopelagic MPB fluxes driven by the action
of waves and tidal currents. Once in the water column, MPB can turn into
a planktonic life forms whose growth rate can depend on seawater nutrients,
light availability and temperature (MacIntyre et al., 1996). According to the
prevailing environmental conditions, MPB can be grazed, contribute to pelagic
PP (Guarini et al., 2008a; Polsenaere et al., 2012), remain into the water col-
umn until senescence or can sink and return to a benthic life form (MacIntyre
et al., 1996; Miller et al., 1996; Guizien et al., 2014). Such processes could be
inferred by coupling MPB models that include the resuspension mechanisms
with high-resolution regional models that simulate the interactions between
the coastal ocean and the planktonic ecosystem dynamics. Accounting for such
processes in the carbon budget of the land-ocean interface would improve our
understanding and assessment of the benthopelagic fluxes of organic matter,
and bring new insights on the role played by MPB in the carbon cycle of the
global coastal ocean.





CHAPTER V

P O T E N T I A L I M PA C T O F M I C R O P H Y T O B E N T H O S
P H O T O I N H I B I T I O N O N P R I M A RY P R O D U C T I O N O F

A T E M P E R AT E I N T E RT I D A L M U D F L AT

In the previous chapters, the MPB model was not resolved spatially
on a tri-dimensional (3D) framework. In Chapter 5, we use a re-
gional and high-resolution 3D hydrodynamical model (MARS-3D)
in which we couple the MPB model to investigate the spatial and
temporal variability of MPB dynamics on the Brouage mudflat in
2015. The objective is to infer on the potential effect of photoinhi-
bition on MPB primary production over the mudflat. The model
suggests that the light exposure on the upper shore is higher than
on the lower parts of the mudflat due to more frequent and longer
emersions. Consequently, the annual MPB primary production is
higher on the upper shore than on the middle and lower shores. As
the upper shore emerges more frequently and longer than the lower
shore, the quantitative difference of MPB PP under the effect of pho-
toinhibition is higher on the upper shore than on the lower shore.
However, the lower shore might be more sensitive to photoinhibi-
tion due to its low MPB biomass, PP and its emersion periods re-
stricted to high light levels. Photoinhibition over the whole mudflat
is stronger in spring and summer than in fall and winter. It results
into a decrease by 50 % of MPB primary production in spring and
summer.
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abstract

The benthic microalgae or microphytobenthos (MPB) biofilm formed at the
surface of intertidal mudflats during low tides faces strong daily to seasonal
variations of solar irradiance. Despite photoacclimation and photoprotective
mechanisms, MPB cells can be subject to photoinhibition. The objective of
this study is to estimate and map the potential impact of photoinhibition on
MPB primary production (PP) over the whole Brouage mudflat (NW France).
We use a regional and high-resolution tri-dimensional (3D) hydrodynamical
model (MARS-3D) in which we couple the MPB model with and without pho-
toinhibition. The model suggests that photosynthetically active radiation (PAR)
reaching the mud surface of the upper shore is higher than on the lower parts
of the mudflat due to more frequent (almost twice a day) and longer (6.8 ± 2.6
h in average) emersion periods on the upper shore. The amount of PAR reach-
ing the mud surface of the whole mudflat is the highest during spring-summer
when it represents 70 % of the total annual PAR reaching the surface of the
mudflat. As a result, with or without photoinhibition, annual MPB PP on the
upper shore represents 50 % of the annual MPB PP over the whole mudflat
and half of the annual MPB PP is attributed to spring-summer MPB PP. As
the upper shore emerges more frequently and longer than the lower shore, the
quantitative difference of MPB PP under the effect of photoinhibition is higher
on the upper shore (-0.9 Gg C yr−1) than on the lower shore (-0.3 Gg C yr−1).
However, the lower shore might be more sensitive to photoinhibition due to its
low MPB biomass, PP and its emersion periods restricted to high light levels.
Photoinhibition over the whole mudflat is stronger in spring and summer than
in fall and winter. It results into a decrease by 50 % of MPB primary production
in spring and summer. The accurate estimation of the photosynthetic response
of MPB to its highly variable environment is a challenge in a perspective of
quantifying MPB PP over large mudflats from a synoptic to inter-annual time
scale.

introduction

The primary production (PP) of benthic microalgae or microphytobenthos (MPB)
sustains the high biological productivity of intertidal mudflats (MacIntyre et al.,
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1996; Underwood and Kromkamp, 1999). Despite highly variable physical
conditions, intertidal mudflats constitute one of the most productive natural
ecosystems on Earth (Cahoon, 1999). MPB cells can be exposed to high light
levels at the sediment surface (> 2000 µmol m−2 s−1; Laviale et al., 2015). In
response, MPB develop physiological and behavioural photoprotective mecha-
nisms which vary with MPB growth forms (Jesus et al., 2009; Cartaxana et al.,
2011; Barnett et al., 2015; Pniewski et al., 2015; Cartaxana et al., 2016). In sandy
sediments, light penetrates up to 3000 µm (Cartaxana et al., 2011) and MPB
are mostly composed of epipsammic diatoms that live in close association with
sediment grains (Underwood, 2001). Epipsammic diatoms exhibit high physio-
logical photoprotection and low behavioural adaptations as their motility is re-
stricted to the sphere of the sediment grains (van Leeuwe et al., 2008; Jesus et al.,
2009; Cartaxana et al., 2011; Barnett et al., 2015). Epipsammic diatoms dissipate
the excess of energy from light mostly through the Non-Photochemical Quench-
ing of chlorophyll fluorescence (NPQ), which corresponds to de-epoxidation of
xanthophyll pigments in the xanthophyll cycle (XC; Lavaud and Goss, 2014).
Free motile epipelic diatoms dominate MPB assemblages in muddy sediments
(Underwood, 2001). Light is strongly attenuated in muddy sediments (photic
layer of 600 µm) and limits the growth of epipelic diatoms (Cartaxana et al.,
2011). Consequently, they migrate at the sediment surface to meet optimal light
conditions during daytime low tides. In addition, epipelic diatoms can achieve
"micro-migrations" within the sediment topmost layer (∼ 250 µm) i.e. a nega-
tive phototaxic short-term change of position (Kromkamp et al., 1998; Perkins
et al., 2001; Cartaxana et al., 2011). In epipelic growth forms, NPQ physiological
photoprotection is minimised and compensated by vertical migration (Serôdio
et al., 2001, 2012; Raven, 2011).

The MPB photoinhibition is therefore the result of the outbalance between
photoprotection efficiency and light conditions. Osmond (1994) and Osmond
and Grace (1995) define dynamic photoinhibition as a short-term reversible,
regulatory process for the dissipation of excessive light energy, and chronic
photoinhibition as a slowly reversible process that may occur under prolonged
and harmful light conditions. Photoinhibition of MPB photosynthesis was suc-
cessfully measured in laboratory experiments (Serôdio et al., 2012). However, in
regard to the physiological and behavioural adaptations, photoinhibition was
rarely observed in the field. Serôdio et al. (2008) reported in situ photoinhibition
of MPB assemblage on an intertidal mudflat in Portugal due to an incomplete
recovery of the photosynthetic apparatus damaged from a previous light stress.

With regard to the photoprotective mechanisms of MPB, investigating pho-
toinhibition and its consequences is highly of interest to accurately estimate
MPB PP at the mudflat scale. The goal of this study is to quantify and map the
potential impact of photoinhibition on MPB PP over the mudflat scale. For this
purpose, the current study quantifies the impact of photoinhibition on MPB
PP using a coupled physical-biological tri-dimensional (3D) model. The model
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simulates the MPB dynamics (biomass and production) and grazing by gas-
tropod deposit-feeder Peringia ulvae in order to estimate the potential effect of
photoinhibition on MPB PP at the seasonal scale over the Brouage intertidal
mudflat (NW France). In the paper, we describe first the physical-biological
coupled 3D model. Second, we map the light, temperature and tidal condi-
tions over the mudflat and we estimate the potential impact of photoinhibition
on MPB PP at the mudflat scale. Finally, we discuss the spatial and temporal
variability of photoinhibition of MPB PP.

material and methods

Study site

The study area is the Pertuis Charentais Sea and the study site is the Brouage
mudflat (Fig. 45). It is a shallow semi-enclosed sea located on the French At-
lantic coast. The semi-diurnal and macrotidal regime ranges up to ∼ 6 m during
spring tides. The study site is the 42-km2 intertidal Brouage mudflat located in
the South-Eastern part of the study area (Fig. 45) made of fine cohesive sedi-
ments (median grain size 17 µm and 85 % of grains with a diameter < 63 µm;
Bocher et al., 2007) and characterised by a gentle slope (∼ 1/1000; Le Hir et al.,
2000) dominated by free motile epipelic diatoms.

Figure 38: Bathymetry of the model domain covering the Pertuis Charentais Sea
(source: SHOM) and location of the main intertidal mudflats. The site of
MST and PAR measurements is represented by a red full point.
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Observations

Two field campaigns were planed during spring low tides, on 5-6 May 2015,
2-3 July 2015. Incident photosynthetically active radiation (400 to 700 nm; PAR,
µmol photons m−2 s−1) and mud surface temperature (MST, ◦C) were mea-
sured with a 30-sec frequency at the "Merignac" site (45

◦
53’20.87"N; 1

◦
7’54.37"W;

Fig. 45). In addition, we used the Production-Irradiance (P-I) data measured
by Pniewski et al. (2015) on the upper part of the Aiguillon mudflat (46

◦
15’N,

1
◦
10’W) located north the Brouage mudflat and composed of fine cohesive sed-

iment (< 63 µm; Haubois et al., 2005, Fig. 45). Pniewski et al. (2015) con-
ducted field campaigns in March (spring), June-July (summer) and November-
December (autumn) 2007 during which they sampled epipelic diatoms 3 to 5

times. The light curves were determined in a micro-respirometer according the
method developed by Zurzycki and Starzecki (1971). More details on samplings
and measurements are given in Pniewski et al. (2015).

The coupled physical-biological 3D model

The MARS-3D modelling system

The MARS-3D tri-dimensional model (3D hydrodynamical Model for Applica-
tions at Regional Scale) was used to simulate the physical environment (tides,
PAR, MST) over the whole mudflat. This finite-difference model solves the
Navier-Stokes primitive equations under assumptions of Boussinesq approx-
imation, hydrostatic equilibrium and incompressibility (Blumberg and Mellor,
1987; Lazure and Dumas, 2008). The model was discretised into 100 m by 100 m
horizontal grid cells and 20 σ vertical coordinates. The model was run over the
same domain used by Polsenaere et al. (Fig. 45; 2017). The MARS-3D model is
fully detailed in Lazure and Dumas (2008). Atmospheric forcings (wind speed
in m s−1, air temperature in ◦C, atmospheric pressure at sea level in Pa, nebu-
losity fraction, relative humidity and solar fluxes in W m−2) were provided
by Meteo France AROME model (https://donneespubliques.meteofrance.fr).
MARS-3D simulates current velocity, seawater temperature and salinity for the
whole domain. Along its open boundaries, the circulation model was forced
with amplitudes and phases of 115 harmonic constituents from the cstFRANCE
tidal model developed by French marine service for hydrography and oceanog-
raphy (SHOM; Simon and Gonella, 2007). Initial and boundary conditions of
seawater temperature, salinity, current velocity and sea surface height came out
from the MANGA 2500 Ifremer model (Lazure et al., 2009).

The mud surface temperature model

The mud temperature model developed by Savelli et al. (2018) was coupled with
MARS-3D. Thermodynamic equations detailed in Savelli et al. (2018) simulated

https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=131&id_rubrique=51
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heat fluxes in a 1-cm deep sediment layer. No horizontal fluxes were considered.
During low tides, the simulated MST resulted from heat exchanges between the
Sun, the atmosphere, the sediment surface, from the heat conduction between
mud and air, and from mud evaporation. During high tides, the simulated MST
was set to the temperature of the overlying seawater simulated by MARS-3D.
In their study, Savelli et al. (2018) successfully compared the simulated MST
with 1-min MST data measured in situ on the Brouage mudflat. The differential
equation of heat energy balance was solved by MARS-3D numerical scheme.
The MST model is fully detailed in Savelli et al. (2018).

The MPB model

The MPB model developed by Savelli et al. (2018) was also coupled with MARS-
3D. The MPB model simulated the MPB biomass concentration in the surface
biofilm (S, mg Chl a m−2), in the sediment first centimetre (F, mg Chl a m−2)
and the Peringia ulvae biomass (Z, mg C m−2) at the sediment surface. The
MPB model accounted for vertical MPB migration driven by diurnal and tidal
cycles through exchanges of MPB biomass between S and F (Guarini et al.,
2000). The MPB cells migrated upward from the sediment to the sediment
surface to form a productive biofilm during daytime low tides. The MPB PP
rate was regulated by PAR and mud temperature at the sediment surface. At
nightfall or at the flood beginning, MPB migrated downward from S to F until
the complete disappearance of biomass in the biofilm. The P. ulvae growth was
sustained by grazing on MPB biofilm controlled by MST and MPB biomass in
the biofilm. The MPB model and differential equations are fully detailed in
Savelli et al. (2018).

Photoinhibition of MPB

The model of Platt and Jassby (1976) originally used in Savelli et al. (2018) was
substituted by the model of Platt et al. (1980), which accounts for photoinhi-
bition to determine the photosynthetic rate Pb (mg C mg Chl a−1 h−1) as a
function of light (I, µmol photons m−2 s−1):

Pb = Pbs ×
[
1− exp

(
−
αI

Pbs

)]
× exp

(
−
βI

Pbs

)
, (43)

where Pbs is the maximum potential light-saturated photosynthetic rate (mg C
mg Chl a−1 h−1). Considering that P-I data were measured in optimal temper-
ature conditions, Pbs was assimilated to PbMAX in the Production-Temperature
relationship developed by Blanchard et al. (1996). Temperature-related param-
eters for MPB photosynthesis were adjusted in Savelli et al. (2018). α and β
are the photosynthetic efficiency (mg C mg Chl a−1 h−1 (µmol photons m−2

s−1)−1) and the photoinhibition parameter (mg C mg Chl a−1 h−1 (µmol pho-
tons m−2 s−1)−1), respectively.
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The differential evolution algorithm (DE) implemented in the R package "DE-
optim" (Ardia et al., 2016) was used to minimise the differences between the
predicted and observed photosynthetic rate in order to obtain α and β from
fitting the 33 P-I datasets from Pniewski et al. (2015). The DE algorithm does
not require arbitrary initial parameter values which can result into errors in op-
timisation of light-response models (Chen et al., 2016). The seasonal values of α
and β correspond to the mean values extracted from the P-I data fit. Seasonal α
and β in spring, summer and fall were then spline-interpolated at a daily time
step over the year.

Two scenarios were investigated i.e. with and without photoinhibition (Fig.
39). In the scenario without photoinhibition (NoPhoto), β was set to zero. In
the scenario with photoinhibition (Photo), α and β were set at values given
in Table 16. Pbs corresponds to the photosynthetic rate in absence of photoin-
hibition i.e. the asymptotic maximal light-saturated photosynthetic rate in the
NoPhoto run (mg C mg Chl a−1 h−1; Fig. 39). Pbmax is the maximal photo-
synthetic rate accounting for photoinhibition in the Photo run (mg C mg Chl
a−1 h−1; Fig. 39). In both scenarios, Ik is the light saturation parameter (P

b
max

α ;
µmol photons m−2 s−1). It represents the intersection between the photosyn-
thetic efficiency α with the asymptotic Pbs in the NoPhoto run or Pbmax in the
Photo run. Iopt is the optimal light intensity (µmol photons m−2 s−1)−1) at
which the photosynthetic rate is maximal (= Pbmax in the Photo run or Pbs in
the NoPhoto run; Fig. 39). According the Platt et al. (1980) P-I model, it is
obtained by:

Iopt =
Pbs
α
× ln

(
α+β

β

)
. (44)

Beyond Iopt, the photosynthetic rate is photoinhibited and decreases.

Figure 39: P-I characteristics (a) in spring, (b) in summer, and (c) in fall. In the
NoPhoto run, Ik differs from Table 16 as it was computed with β = 0.
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Table 16: Seasonally-averaged fitted parameters of the Platt et al. (1980) P-I model on
the 33 P-I datasets from Pniewski et al. (2015). r2 is the determination coeffi-
cient and RSD is the residual standard deviation.

Parameter Spring Summer Fall

Pbs (mg C mg Chl a−1 h−1) 2.5 ± 0.83 5.13 ± 2.5 2.8 ± 1.7

Pbmax (mg C mg Chl a−1 h−1) 2.02 ± 0.67 3.75 ± 1.7 1.5 ± 0.8

α (mg C mg Chl a−1 h−1

(µmol photons m−2 s−1)−1)
0.06 ± 0.03 0.05 ± 0.01 0.04 ± 0.04

β (mg C mg Chl a−1 h−1

(µmol photons m−2 s−1)−1)
0.003 ± 0.002 0.01 ± 0.02 0.02 ± 0.03

Ik (µmol photons m−2 s−1) 35 ± 7.93 76.85 ± 33.2 37.82 ± 23.47

Iopt (µmol photons m−2 s−1) 130.12 ± 25.81 300.8 ± 170.7 115.12 ± 65.47

r2 0.91 ± 0.04 0.95 ± 0.1 0.84 ± 0.3

RSD (mg C mg Chl a−1 h−1) 0.24 ± 0.11 0.24 ± 0.14 0.14 ± 0.07

Modelling set-up and output

The physical-biological coupled model was initialised with a spin-up starting
from 12 September 2014 00:00:00 UTC to 1 January 2015 00:00:00 UTC. F, S and
Z were initially set to 100 mg Chl a m−2, 0 mg Chl a m−2 and 1000 mg C
m−2, respectively. The physical-biological coupled model was then run from 1

January 2015 00:00:00 UTC to 1 January 2016 00:00:00 UTC.
Conditions at the sediment surface over the whole mudflat were seasonally-

averaged (emersion duration and episodes, MST) and integrated (PP, PAR) dur-
ing daytime emersions in winter (January to March), spring (April to June),
summer (July to September) and fall (October to December). Iopt and the
photoinhibition span, which corresponds to the cumulated duration of pho-
toinhibition (when I > Iopt) relatively to the cumulated duration of daytime
emersion periods were seasonally-averaged and integrated. In addition, we
computed spatial analysis by spatially-averaging and integrating the outputs
over the whole mudflat and on three tidal levels. Three equal areas of 11.93

km2 were defined according to the mean time of emersion in 2015 (Fig. 40).
Such partitioning distinguished the upper shore as it emerged more than 5.15

h from the middle shore emerging between 5.15 and 2.9 h and the lower shore
emerging less than 2.9 h.
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Figure 40: Partitions of the mudflat according to the tidal level.

results

Physical conditions on the mudflat

The simulated MST and PAR during daytime emersion periods reasonably com-
pared to the 30-sec frequency measurements made in May and July 2015 at the
study site (Fig. 41). Over the daytime emersion periods of 5-6 May 2015, the
simulated PAR (1404.9 ± 101.3 µmol photons m−2 s−1) showed a lower disper-
sion and underestimated observations (1514.7 ± 532.4 µmol photons m−2 s−1)
(Mann Whitney test: p-value < 0.01). The simulated mean PAR during daytime
emersion periods in 2-3 July 2015 (1195.1 ± 304.9 µmol photons m−2 s−1) sig-
nificantly compared to the measured PAR (1229.9 ± 305.9 µmol photons m−2

s−1) (Mann Whitney test: p-value > 0.01). In 5-6 May 2015, the simulated MST
over daytime emersion periods was in average 20.7 ± 0.6 ◦C and was signifi-
cantly higher than the observed mean MST on the same periods (19.5 ± 1.8 ◦C)
(Mann Whitney test: p-value < 0.01). The simulated MST (31.2 ± 5

◦C) was not
significantly different than the measured MST during daytime low tides in 2-3
July 2015 (31.4 ± 3.4 ◦C) (Mann Whitney test: p-value > 0.01).

The simulated integrated PAR was not spatially uniform over the mudflat
(Fig. 42b and Table 17). The total simulated PAR at the surface of the mud
decreased seaward on the mudflat (Fig. 42b and Table 17). Annually, the total
simulated PAR at the surface of the upper shore was 6.1×10

10 mol photons,
which was two- and three-fold higher than the middle and lower shores, re-
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Figure 41: Simulated and observed (a) PAR and, (b) mud surface temperature during
in situ measurements in 2015. Red crosses correspond the mean value of
PAR and MST for the corresponding period.

spectively (Table 17). The integrated PAR was the highest during spring and
summer and the lowest during fall over the whole mudflat (Table 17). In spring
and summer, the seasonal total PAR available for MPB represented 70 % of the
annual total PAR (Table 17). Moreover, the spring-summer total PAR on the
upper and middle shores was almost one order of magnitude higher than on
the lower shore (Table 17).

The simulated MST was spatially homogeneous over the whole mudflat scale
during daytime emersion periods (Fig. 42a and Table 17). In winter, the sim-
ulated MST was 11 ± 4.4 ◦C in average on the mudflat (Table 17). In spring,
the simulated MST increased to reach 19.9 ± 6

◦C in average on the three tidal
levels (Table 17). The simulated MST on the mudflat reached its seasonal maxi-
mum in summer with 22.8 ± 6.5 ◦C and decreased in fall to 15 ± 4.1 ◦C (Table
17).

The simulated daytime emersion period decreased seaward (Fig. 42c and
Table 17). The upper shore emerged 6.8 ± 2.6 h in average, which was two-
to five-fold longer than the emersion duration on the middle and lower shores,
respectively (4 ± 1.7 and 1.3 ± 1.4 h, respectively; Table 17). The entire mudflat
emerged longer in spring-summer compared to the other seasons (Table 17 and
Fig. 42c).

The number of daytime emersion episodes decreased seaward (Fig. 42d). The
upper shore emerged 1.4 ± 0.6 times per day in average (Table 17). The lower
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shore rarely exceeded 1 daytime emersion period per day with an annual mean
of 0.7 ± 0.6 times per day (Table 17). The number of daytime emersion per day
slightly increased during spring and summer over the whole mudflat (Fig. 42d
and Table 17).

Figure 42: Map of seasonal diurnal emersion conditions of (a) mud surface temperature
(◦C), (b) total PAR (mol photons m−2), (c) daytime emersion duration (h)
and, (d) daytime emersion episodes (d−1). The black contour lines indicate
the three tidal levels.



5.4 results 125

Table 17: Seasonal mean (± standard deviation) of MST (◦ C), total integrated PAR
(10
10 mol photons), emersion duration (h) and daytime emersion episodes

(d−1) during daytime emersions according to the level of the mudflat in 2015.

Season Upper Middle Lower Mudflat

PAR in-
tegral
(10
10 mol

photons)

Winter 0.92 0.57 0.21 1.7

Spring 2.28 1.35 0.44 4.07

Summer 2.07 1.27 0.44 3.78

Fall 0.76 0.47 0.17 1.42

Annual 6.03 3.7 1.27 11

MST (◦C)

Winter 10.5 ± 4.6 10.6 ± 4.5 10.6 ± 4.6 11 ± 4.4

Spring 20.9 ± 6 20.7 ± 5.7 20.9 ± 5.8 19.9 ± 6

Summer 24.1 ± 5.9 24.3 ± 5.9 24.9 ± 5.8 22.8 ± 6.5

Fall 15.2 ± 4.4 15.2 ± 4.3 15.1 ± 4.4 15 ± 4.1

Annual 18.4 ± 7.5 18.4 ± 7.4 18.4 ± 7.5 17.8 ± 7

Duration (h)

Winter 5.7 ± 1.9 3.3 ± 1.4 1.1 ± 1.2 1.3 ± 2.3

Spring 8.1 ± 2.9 4.8 ± 1.8 1.4 ± 1.5 1.8 ± 3.2

Summer 7.7 ± 2.4 4.5 ± 1.5 1.4 ± 1.4 1.7 ± 3

Fall 5.7 ± 1.7 3.5 ± 1.3 1.2 ± 1.2 1.3 ± 2.3

Annual 6.8 ± 2.6 4 ± 1.7 1.3 ± 1.4 1.5 ± 2.7

Emersion (d−1)

Winter 1.2 ± 0.5 1 ± 0.3 0.6 ± 0.5 0.4 ± 0.6

Spring 1.7 ± 0.6 1.5 ± 0.6 0.8 ± 0.7 0.5 ± 0.8

Summer 1.6 ± 0.5 1.4 ± 0.5 0.8 ± 0.7 0.5 ± 0.7

Fall 1.2 ± 0.4 1 ± 0.3 0.6 ± 0.5 0.4 ± 0.6

Annual 1.4 ± 0.6 1.2 ± 0.5 0.7 ± 0.6 0.4 ± 0.7

MPB biomass

In the NoPhoto run, the simulated MPB biomass was higher than in the Photo
run in all seasons and levels of the mudflat (Table 18). In both runs, the MPB
biomass was higher on the upper and middle shores than on the lower shore
(Table 18). In the Photo run, the highest decrease of MPB biomass was on the
lower shore where it decreased by 41 % compared to the NoPhoto run (Table
18). Even if the simulated seasonal cycle of MPB biomass was characterised
by a maximum in winter and a minimum in summer, the mean simulated
MPB biomass did not differ significantly over seasons as the variability of MPB
biomass was high (Table 18).
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Table 18: Mean simulated (± standard deviation) MPB biomass concentration in the
sediment first cm (mg Chl a m−2) in 2015.

Simulation Season Upper Middle Lower Mudflat

NoPhoto

Winter 225.6 ± 133.4 190.9 ± 63.1 60.3 ± 68.1 70.4 ± 110.3

Spring 65.1 ± 38 80.9 ± 26.2 36.6 ± 38.9 26.9 ± 39.6

Summer 54.9 ± 32.5 67.5 ± 21.6 24.5 ± 30 21.7 ± 33.3

Fall 96.5 ± 61.9 114.7 ± 38.9 43.1 ± 52.8 37.5 ± 58.3

Annual 110.1 ± 102.5 113.1 ± 62.6 41 ± 51.3 38.9 ± 68

Photo

Winter 189.4 ± 109.3 148.4 ± 48.5 38.1 ± 52.5 55.5 ± 92.1

Spring 57.8 ± 35.9 69.5 ± 26.1 22.2 ± 30.3 22.1 ± 35.1

Summer 48.1 ± 29.8 54.3 ± 20.1 12.3 ± 20 16.9 ± 27.4

Fall 88.3 ± 57.3 102.1 ± 35.9 24 ± 42.2 31.7 ± 52

Annual 95.5 ± 86 93.3 ± 49.7 24.1 ± 32.2 31.4 ± 56.2

The effect of photoinhibition on MPB primary production

In both the NoPhoto and the Photo runs, the mean simulated annual PP was
higher on the upper (195.6 ± 88.2 and 126.1 ± 48.5 g C m−2 in the NoPhoto
and the Photo runs, respectively) and middle shores (172.2 ± 38 and 102.5 ±
22.3 g C m−2 in the NoPhoto and the Photo runs, respectively) than on the
lower shore (47.8 ± 57.2 and 21.9 ± 33.2 g C m−2 in the NoPhoto and the
Photo runs, respectively) (Table. 19 and Fig. 43ab).

Table 19: Mean annual PP (± standard deviation) (g C m−2) in 2015.

Simulation Upper Middle Lower Mudflat

NoPhoto 195.6 ± 88.2 172.2 ± 38 47.8 ± 57.2 133.6 ± 93.5

Photo 126.1 ± 48.5 102.5 ± 22.3 21.9 ± 33.2 79.1 ± 58.6

In the Photo run, the simulated PP was lower than in the NoPhoto run in
all seasons and levels of the mudflat (Fig. 43 and Table 20). As in the NoPhoto
run, PP decreased seaward in the Photo run. The highest annual integrated PP
was simulated on the upper shore in both the NoPhoto (2.33 Gg C) and Photo
runs (1.43 Gg C) (Table 20). The upper and middle shores accounted for ∼ 90 %
of the annual PP in both runs (Table 20). When photoinhibition was introduced
in the model, the decrease of PP on the upper shore (-0.9 Gg C, annually) was
higher than the decrease on the middle and lower shores (-0.83 and -0.31 Gg
C, annually; Table 20). Nevertheless, relatively to the initial PP simulated in
the NoPhoto run, the highest decrease occurred on the lower shore (-54 %)
compared to the upper and middle shores (-39 and -40 %, annually; Table 20).
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In the Photo run, the highest PP was simulated in winter and fall, while it was
simulated in spring in the NoPhoto run (Fig. 43a). In both runs, the simulated
PP was the lowest in summer (Fig. 43ab and Table 20). In the NoPhoto run,
the highest integrated PP was simulated in spring (Fig. 43a and Table 20). The
annual PP in the Photo run was the highest in fall over the whole mudflat (0.85

Gg C annually; Fig. 43b and Table 20). When photoinhibition was introduced in
the model, the highest and the lowest decreases of PP over the whole mudflat
occurred in spring (-0.69 Gg C) and fall (-0.38 Gg C), respectively (Table 20).
Relatively to the initial PP simulated in the NoPhoto run, the decrease of PP at
the whole mudflat scale was the highest in spring and summer (-49 %) and the
lowest in fall (-31 %; Table 20).

Figure 43: Map of annual and seasonal MPB PP (mg C m−2) (a) without photoinhi-
bition (NoPhoto), (b) with photoinhibition (Photo) and, (c) the difference
between the Photo and the NoPhoto simulations. The black contour lines
indicate the three tidal levels.

Iopt in the P-I model of Platt et al. (1980) set the irradiance threshold be-
yond which MPB photosynthesis is photoinhibited. The simulated Iopt was
spatially homogeneous over the mudflat (Fig. 44a and Table 21). It decreased
from winter (385.7 ± 189.2 µmol photons m−2 s−1) to fall (134.1 ± 24.1 µmol
photons m−2 s−1), when it reached its seasonal minimum (Table 21). The pho-
toinhibition span i.e. the duration of photoinhibition (I > Iopt) relative to the
daytime emersion duration increased from the upper (71.2 % annually) to the
lower shore (78.2 %; Fig. 44b and Table 21). The photoinhibition span was the
lowest in winter (55.2 %) and the highest in summer (85.2 %) over the whole
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Table 20: Spatially and seasonally-integrated PP (Gg C) according to the tidal levels in
the Photo and the NoPhoto simulations in 2015.

Simulation Season Upper Middle Lower Mudflat

NoPhoto

Winter 0.63 0.47 0.15 1.25

Spring 0.64 0.61 0.16 1.41

Summer 0.49 0.46 0.12 1.07

Fall 0.57 0.51 0.14 1.23

Annual 2.33 2.05 0.57 4.96

Photo

Winter 0.41 0.30 0.08 0.79

Spring 0.33 0.31 0.07 0.72

Summer 0.27 0.24 0.04 0.55

Fall 0.41 0.37 0.07 0.85

Annual 1.43 1.22 0.26 2.91

Difference (Gg C)

Winter -0.22 -0.17 -0.07 -0.46

Spring -0.31 -0.3 -0.09 -0.69

Summer -0.22 -0.22 -0.08 -0.52

Fall -0.16 -0.14 -0.07 -0.38

Annual -0.9 -0.83 -0.31 -2.05

Difference (%)

Winter -34 -36 -47 -37

Spring -48 -49 -56 -49

Summer -45 -48 -67 -49

Fall -28 -27 -50 -31

Annual -39 -40 -54 -41

mudflat (Table 21). Annually, the mudflat MPB PP was photoinhibited 72.3 %
of the daytime emersion periods (Fig. 44b and Table 21).

discussion

Spatio-temporal variability of MPB primary production

The MPB PP is the highest on the upper and middle shores in the NoPhoto
and Photo runs due to more frequent, longer emersion periods and higher
MPB biomass than on the lower shore. On the upper and middle shores, the
MPB PP varies from 125 to 250 g C m−2 yr−1 and from 80 to 150 g C m−2

yr−1 in the NoPhoto and the Photo runs, respectively and represents 90 % of
the simulated annual MPB PP over the whole the mudflat. Annual MPB PP
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Figure 44: Seasonal (a) mean Iopt (µmol photons m−2 s−1) and, (b) photoinhibition
span (when PAR > Iopt during daytime emersion periods; % of the cumu-
lated duration of emersion periods). The black contour lines indicate the
three tidal levels.

simulated in both runs compares to simulations run for the same mudflat in
2008 (45

◦
54’50”N, 01

◦
05’25”W; 127.3 g C m−2 yr−1; Savelli et al., 2018) and

2012 (151.2 and 140.5 g C m−2 yr−1; see Chapter 4). The simulated annual
MPB PP in the present study is also in the range of MPB PP measurements
made across other European mudflats listed by Underwood and Kromkamp
(142 ± 82 g C m−2 yr−1; 1999).

On a sandflat of the Bay of Paranaguá in Brazil, Fonseca et al. (2008) also mea-
sured with benthic chambers higher PP rates in the upper and middle shores
(1.9 - 2.1 g C m−2 d−1 and 1.3 - 2.2 g C m−2 d−1, respectively) compared to
the lower shore (0.24 - 0.27 g C m−2 d−1). Cook et al. (2004) measured CO2
fluxes at the air-sediment interface of two tidal levels of a mudflat located in
Tasmania. The uptake of inorganic carbon (total CO2) at the benthic interface
was greater in the upper shore (up to 15 000 µmol m−2 h1) than in the lower
shore (up to 6 000 µmol m−2 h1), suggesting a higher benthic PP on the upper
zone.

In the NoPhoto run, MPB PP reaches a seasonal peak in spring with a total
of 1.41 Gg C (∼ 30 % of the annual mudflat PP) and was low during summer
(1.07 Gg C). Such a seasonality characterised by a spring bloom and a summer
depression is consistent with the reported seasonal cycle of MPB PP at the
study site (Cariou-Le Gall and Blanchard, 1995; Savelli et al., 2018). MST close
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to the optimum for MPB growth and increasing solar irradiance trigger high
rates of MPB PP and thus, accumulation of MPB biomass in the sediment in
spring (Savelli et al., 2018). According to the authors, thermoinhibition of MPB
PP due to high MST combined with a moderate but sustained grazing pressure
is responsible to the low MPB PP and biomass in summer.

The simulated PAR and MST compare reasonably to time-coincident observa-
tions made on the same mudflat (45

◦
53’20.87"N; 1

◦
7’54.37"O). The model-data

discrepancies result from the comparison of 30-sec frequency PAR and MST
measurements with simulated PAR and MST constrained by 1-hour frequency
meteorological forcings. Second, single-point measurements were compared
to model outputs extracted at the corresponding horizontal 100 m × 100 m
grid cell. The coarse horizontal resolution (2.5 km) of the meteorological model
contributes also to simulation inaccuracies. Nevertheless, at the seasonal scale,
the impact of such inaccuracies may be limited as the model succeeds to cap-
ture the mean MST and PAR conditions in 2015. The relative agreement of
simulated MST and PAR with in situ measurements along with the consistent
simulated annual PP compared to literature suggests that the model can resolve
with confidence the spatio-temporal variability of MPB PP.

Spatial variability of photoinhibition

Until now, the MPB photoinhibition was only detected from in situ or labora-
tory single-point measurements (e.g. Serôdio et al., 2008; Serôdio et al., 2012).
The present modelling study draws the first map and estimate of potential MPB
photoinhibition over the whole mudflat. The mudflat can be divided into two
systems: the upper and middle shores together (high light, high production,
high biomass) and the lower shore (low light, low production, low biomass).
Light has been previously identified as the key driver in MPB PP differences
on a transversal transect on mudflats (Underwood and Kromkamp, 1999). The
upper and middle shores are more exposed to light as they emerge longer and
more frequently. Consequently, the upper and middle shores are more produc-
tive than the lower shore whose PP is limited to shorter periods of emersion.
High tidal heights exhibit favourable light conditions in terms of photo-period
(Underwood and Kromkamp, 1999). In the model, the photoinhibition span is
relatively low when compared to the cumulated emersion duration on the up-
per shore. In contrast, the emersion time on the lower shore is shorter and less
frequent as it emerges only during spring tides, at noon when the daily ampli-
tude of solar irradiance is maximal. Consequently, in response to the exposure
at high light levels, photoinhibition occurs during a large part of the emersion
periods on the lower shore (78.2 % of the emersion periods, annually). Nev-
ertheless, the high frequency of relatively short periods of photoinhibition on
the upper shore drives the highest decrease of MPB PP when photoinhibition
is introduced in the model (-0.9 Gg C, annually). On the lower shore, with
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photoinhibition, the MPB PP decreases by 0.31 Gg C. Relatively to the initial
low PP without photoinhibition on the lower shore, such a decline represents
a decrease by 54 % of MPB PP on the lower shore. Our results suggest there-
fore that the effect of photoinhibition on MPB PP is higher on the upper shore
than on the lower shore. However, the lower shore might be more sensitive
to photoinhibition due to its low MPB biomass, PP and its emersion periods
restricted to high light levels. In the field, this pattern may be tempered or en-
hanced by the capacity of cells to cope with high light levels (photoacclimation,
photoprotective adaptations).

The MPB photoinhibition was only detected from in situ or laboratory single-
point measurements (e.g. Serôdio et al., 2008; Serôdio et al., 2012). The present
modelling study draws the first map of potential MPB photoinhibition over
the whole mudflat. Similarly to our results, macroalgae studies investigating
the spatial variability of photoinhibition also reported the higher effect of pho-
toinhibition on the highly illuminated upper shore compared to the lower shore
(Stengel and Dring, 1998; Gómez et al., 2004). However, macroalgae individuals
from the upper shore can exhibit a higher recovery capacity than individuals
from the lower shore, which tempers the photoinhibitory effect on photosyn-
thesis (Hanelt et al., 1993). In the model, the MPB recovery after light stress is
not accounted for and MPB is always fully operational as soon as light reaches
non-inhibitory levels. In addition, the photoacclimation state might change in
space over the mudflat with individuals on the upper shore more able to cope
with high light levels as suggested for macroalgae (Hanelt et al., 1993). In the
present study, MPB photoacclimation is assumed spatially homogeneous over
the mudflat but high light acclimated MPB cells on the upper shore could have
tempered the effect of photoinhibition. In addition, the spatial change in the
MPB assemblage and thus in the capacity of tidal level-autochthonous species
to cope with high light levels at different tidal height was not considered in the
model. In the Severn Estuary (UK), non-motile epipsammon, which is more
physiologically adapted to high light levels is more distributed on the lower
shore than motile epipelic species, which are dominant on the upper and mid-
dle shores (Underwood, 1994). Finally, in the model, the use of photosynthetic
parameters (α and β) estimated on MPB cells sampled on the upper shore of
the Aiguillon mudflat might translate into a good estimation of photoacclima-
tion and photoinhibition on the upper shore but requires to remain cautious
when applied on the middle and lower shores.

Temporal variability of photoinhibition

The simulated effect of photoinhibition is the highest during spring-summer
over the whole mudflat. Light levels are low during winter-fall and increase
during spring until they reach their maximal amplitude in summer. In addi-
tion, spring tides in the study area drive longer exposure duration and coin-
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cide with the maximal daily amplitude of solar irradiance at noon, promoting
MPB photoinhibition over the whole mudflat. The lower shore is particularly
exposed as it emerges only during spring tides. During neap tides, two low
tides with a small tidal range occur early and late in the day when light levels
are too low to induce photoinhibition. Nevertheless, low light levels during
neap tides emersion periods limit also the MPB growth as showed previously
by Savelli et al. (2018). This is in agreement with measurements made by Kwon
et al. (2014) on the Hwaseong mudflat in South Korea. The authors observed
lower MPB PP at low light levels during neap tides compared to spring tides.
Consequently, spring tides conditions at our study site are more optimal for
MPB growth than neap tides conditions even if photoinhibitory light levels are
more frequently reached during spring tides.

The photosynthetic parameters were fitted on P-I data of Pniewski et al.
(2015) measured on MPB cells sampled on the Aiguillon mudflat, north the
Bay of Marennes-Oléron. The light saturation parameter (Ik) indicates the irra-
diance at which photosynthesis switches from light reactions (light absorption
and photochemical energy conversion) to dark reactions (reductant utilisation)
(Sakshaug et al., 1997). It was reported to vary seasonally for MPB (Blan-
chard and Cariou-Le Gall, 1994; Barranguet et al., 1998; Light and Beardall,
2001; Pniewski et al., 2015; Barnett et al., 2015). The light saturation parameter
increases under high light levels in summer and decreases at low or moder-
ate irradiance in winter, spring and fall (Sakshaug et al., 1997). The model
parametrisation with a low light saturation parameter in spring and fall sug-
gests low light acclimated MPB cells at these seasons. In summer, with a high
light saturation parameter in the model, the MPB cells are high light acclimated
and can cope with relatively high light levels. In addition, the photoacclima-
tion status of MPB cells determines their light preferendum and their photo-
taxis (Ezequiel et al., 2015). Therefore, low light acclimated cells avoid pho-
toinhibitory high light levels. Considering such behavioural mechanisms could
have limit the high photoinhibition effect on the spring low light acclimated
cells in the model.

In addition, during winter, the cells increase their Chl a content and reduce
their C:Chl a ratio in order to make the most of low light levels (MacIntyre
et al., 2002; Brunet et al., 2011). On the contrary, in summer, the increasing
irradiance and day length lead to a decrease of the cell Chl a content and thus to
a higher C:Chl a ratio (MacIntyre et al., 2002; Brunet et al., 2011). Consequently,
high light acclimated cells have a lower carbon-specific rates of photosynthesis
(Pbs ×Chla : C) at sub-saturating irradiance compared to low light acclimated
cells (MacIntyre et al., 2002). Therefore, the consideration in the model of a
variable C:Chl a ratio as a function of light (see formulation in Savelli et al., 2018)
can moderate photoinhibition of the carbon-specific rates of photosynthesis of
low light acclimated cells at saturating irradiance.
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The effect of mud surface temperature on photoinhibition

The introduction of photoinhibition detrimental effects adds to the already in
play thermoinhibition of MPB PP in the model (Savelli et al., 2018). With high
MST and desiccation driven by high solar irradiance and long exposure, photo-
and thermoinhibition combine particularly on the upper shore and in spring-
summer (Underwood, 1994; Guarini et al., 1997). In addition, temperature
higher than the optimal temperature for MPB growth leads to a decrease of the
photosynthetic capacity of microalgae (Salleh and McMinn, 2011; Defew et al.,
2004) due to the de-activation of the carbon fixation enzymes such as RUBISCO
(MacIntyre et al., 1997). Furthermore, the photoprotective NPQ physiological
mechanism was shown to vary with temperature and some benthic diatoms
species have a greater capacity to cope with high light levels via NPQ at high
temperature (Salleh and McMinn, 2011). Damages to PSII photosynthetic appa-
ratus and its structuring D1 protein can be caused by high light levels. The rate
of D1 reparation process is temperature dependant and decreases with high
temperature (Campbell et al., 2006). The exposure of MPB cells to high temper-
ature could therefore alter the D1 reparation process and thus the subsequent
recovery of the PSII system (Jensen and Knutsen, 1993; Long et al., 1994). Fi-
nally, behavioural photoprotective mechanisms of MPB cells can be altered by
MST. High MST (> 35

◦C) reduce the motility of MPB cells and thus their neg-
ative phototaxic capacity under high irradiance to avoid photoinhibition (Cohn
et al., 2003; Laviale et al., 2015). The detrimental effect of high MST on cells
motility is not accounted for in the model and could be implicitly represented
through temperature-related migration capacity of cells.

conclusions

This study is a first attempt to simulate the potential effect of the MPB photoin-
hibition on PP and its spatial and temporal variability at the scale of a whole
mudflat. We numerically induce photoinhibition of MPB over the whole mud-
flat during one year. In the model, behavioural and physiological photoprotec-
tive mechanisms are not considered and MPB cells can therefore not avoid or
dissipate harmful light levels. The model maps MPB PP under the potential
effect of photoinhibition at the mudflat scale. Even if the simulated photoin-
hibition effect on MPB PP might be overestimated in regards to the absence
of photoprotective mechanisms, the 3D physical-biological coupled model pro-
vides key findings about the spatial and temporal variability of MPB PP and its
potential response to photoinhibition:

• The total of light reaching the mud surface is higher on the upper shore
(two to three -fold higher than the middle and lower shores, respectively)
as it emerges more frequently (almost twice every day) and longer (6.8
h in average) than the lower shore. The seasonal maximal amplitude of
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irradiance drives high amount of light at the surface of the whole mudflat
during spring-summer (70 % of the total annual irradiance reaching the
mud surface).

• With or without photoinhibition, the annual MPB PP is higher on the
upper shore (195.6 ± 88.2 g C m−2 and 126.1 ± 48.5 g C m−2 with and
without photoinhibition, respectively) than on the lower shore (47.8 ±
57.2 g C m−2 and 21.9 ± 33.2 g C m−2 with and without photoinhibition,
respectively).

• The quantitative difference of MPB PP under the effect of photoinhibition
is higher on the upper shore (- 0.9 Gg C yr−1) than on the lower shore
(- 0.3 Gg C yr−1). However, the lower shore might be more sensitive to
photoinhibition due to its low MPB biomass, PP and its emersion periods
restricted to high light levels.

• Without photoinhibition, MPB PP reaches its seasonal maximum and min-
imum during spring and summer, respectively. The simulated seasonal-
ity of MPB PP without photoinhibition compares to the reported seasonal
cycle at the study site. The introduction of photoinhibition fades this con-
sistent seasonality as the decrease by 50 % of MPB primary production in
spring and summer results in a maximum of PP now reached in fall.

As MPB photoinhibition has been rarely observed in situ, the subsequent
detrimental effect was not always considered in the P-I models used in MPB
PP predictive models (e.g. Barranguet et al., 1998; Uthicke and Klumpp, 1998;
Dizon and Yap, 1999; Serôdio and Catarino, 2000; Guarini et al., 2000; Migné
et al., 2004; Denis et al., 2012; Kwon et al., 2014, 2018; Rakotomalala et al., 2019).
The MPB photoprotective mechanisms are generally considered sufficient to
exclude photoinhibition. The definition of a MPB PP model that takes into
account such fine physiological processes and their regulation by temperature
could lead to more realistic predictions of MPB PP. In the light of the model
developed by Rakotomalala et al. (2019), in which MPB cells migrate vertically
according to their C/N cell quota, a vertical migration scheme that take into
account the light dose of MPB cells could be used to track the light history of the
cells and modulate their recovery from stressful irradiance. The present work
also highlights the need of a spatial investigation of photoinhibition to better
understand the dynamics of MPB PP and biomass on intertidal mudflats. The
estimation of the photosynthetic parameters on a transversal transect would
allow us to detect spatial variations of potential photoinhibition according to
tidal levels and to better parametrise physical-biological coupled models.





CHAPTER VI

C O U P L I N G S PA C E R E M O T E S E N S I N G A N D C O U P L E D
P H Y S I C A L - B I O L O G I C A L M O D E L L I N G F O R M A P P I N G

M I C R O P H Y T O B E N T H O S P R I M A RY P R O D U C T I O N

As suggested in the previous chapter, the tri-dimensional physical-
biological coupled model is a relevant tool to infer at the appropri-
ate spatial and temporal scale on MPB dynamics. In Chapter 6, we
develop a MPB primary production algorithm that combines labo-
ratory measurements, satellite data and time-coincident light, mud
surface temperature and tidal height data simulated by the high-
resolution physical-biological coupled 3D model set up in Chapter
5. PP predicted by the algorithm are consistent with PP measured
in situ in the same periods. The algorithm presents interesting skills
to predict PP on intertidal mudflats mostly composed by fine cohe-
sive sediments dominated by epipelic diatoms and could be applied
for other similar environments. The accurate assessment of MPB PP
in a highly variable environment is a challenge in a perspective of
quantifying MPB primary production over large mudflats from a
synoptic to inter-annual time scale.
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C O U P L I N G S PA C E R E M O T E S E N S I N G A N D C O U P L E D
P H Y S I C A L - B I O L O G I C A L M O D E L L I N G F O R M A P P I N G
M I C R O P H Y T O B E N T H O S G R O S S P R I M A RY P R O D U C T I O N
( G P P )

This chapter will be
submitted as two
articles. The first
article on the
GPP-algorithm will
be submitted in the
journal Frontiers
(Méléder et al., in
prep) and the second
article on the
accurate setting of
the MPB
photosynthetic
capacity in
predictive MPB PP
models will be
submitted in a
journal which has
not yet been
determined.
Acronyms:
GPP: Gross
Primary Production
MPB:
Microphytobenthos
MST: Mud Surface
Temperature
NDVI: Normalised
Difference
Vegetation Index
PAR:
Photosynthetically
Active Radiation
P-I: Production-
Irradiance
PP: Primary
Production

abstract

Microphytobenthos (MPB) at the sediment surface of intertidal mudflats are
known to show a high spatial and temporal variability in response to the biotic
and abiotic conditions prevailing at the mud surface. It makes monitoring of
MPB primary production (PP) difficult over the long term and at large spatial
scale. In the previous Chapters, we showed that coupled physical-biological
modelling is relevant for predicting MPB PP and biomass at the mudflat scale
on a seasonal basis. We also highlighted the benefit of using remote sensing for
monitoring MPB from space. However, the remote sensing of MPB PP is only
at its beginning at the scale of a whole mudflat.

Compared to the PP simulated by the regional physical-biological model pre-
sented in Chapter 5, the PP derived from the remote sensing algorithm is more
consistent with measured PP estimates. Introducing photoinhibition in the
model or parametrising the photosynthetic rate to get close to the observed
biomass-specific PP leads to a better agreement between the simulated PP rates
and measured estimates. Setting the photosynthetic capacity in both the numer-
ical model and remote sensing algorithm might be a challenge in a perspective
of mapping MPB PP over large mudflats from a synoptic to inter-annual time
scale.

introduction

Benthic microalgae or microphytobenthos (MPB) inhabiting the sediment sur-
face sustain a high biological production in intertidal mudflats (MacIntyre et al.,
1996; Underwood and Kromkamp, 1999). The MPB assemblage is mainly dom-
inated by diatoms that form a dense biofilm at the sediment surface during
daytime low tides (MacIntyre et al., 1996; Underwood and Kromkamp, 1999).
As the main primary producer on intertidal mudflats, MPB are of key impor-
tance for higher trophic levels from benthic fauna to birds (Herman et al., 2000;
Kang et al., 2006; Jardine et al., 2015) and for pelagic organisms when MPB
are resuspended by tides and waves (Perissinotto et al., 2003; Krumme et al.,
2008). With a global annual primary production estimated to ∼ 500 million tons
of carbon (Cahoon, 1999), MPB also participate to the Blue Carbon (Otani and
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Endo, 2019). However, their contribution to the global carbon budget remains
unknown, but is likely to be high.

The MPB spatial and temporal distribution is highly variable on mudflats as
it is driven by highly variable physical (light, mud surface temperature (MST),
tides, waves, current) and biological (grazing, biostabilisation, bioturbation) fac-
tors. Such a variability impedes an accurate and robust assessment of the role of
MPB at the scale of the whole mudflat ecosystem and of its contribution to the
global carbon cycle. MPB PP and biomass measurements are usually limited to
single-point sampling (e.g. Orvain et al., 2014a; Pniewski et al., 2015; Cartaxana
et al., 2015; Vieira et al., 2013). This approach succeeds in capturing the MPB
temporal dynamics but is rapidly limited when dealing with spatial and tem-
poral variations of MPB PP and biomass at the scale of the entire mudflat. Only
a few studies resolved this MPB variability, as time and important logistical
resources are required to meet this goal (e.g. Guarini et al., 1998; Ubertini et al.,
2012).

Jobson et al. (1980) initiated the use of remote sensing to assess the MPB
biomass from a tower-mounted sensor designed to scan a mudflat of South
Carolina (USA). Since then, airborne and space remote sensing methods were
increasingly developed and more widely used in MPB studies (e.g. Méléder
et al., 2003a; Brito et al., 2013; Benyoucef et al., 2014; Daggers et al., 2018). Re-
mote sensing data can cover large spatial scales (∼ from one to a few hundred
meters) and multispectral broadband sensors promise high quality data to map
MPB biomass and PP over the whole mudflats. Some efforts would hence be re-
quired to upscale in situ measurements of MPB PP to the remote sensing scales.
Daggers et al. (2018) were the first study to couple in situ measurements, satel-
lite remote sensing data and tidal heights to map MPB spring PP at the scale
of the Oosterschelde and Westerschelde estuaries (The Netherlands). However,
the authors used air temperature to compute the MPB photosynthetic capacity
and not MST that directly constrains the MPB growth. The methods they used
to convert chlorophyll fluorometry data into MPB PP expressed in carbon first
and then Normalised Difference Vegetation Index (NDVI) into chlorophyll a
concentration can also be a source of uncertainty.

In order to minimise the uncertainty, we associate in a GPP-algorithm labo-
ratory measurements with 3 NDVI scenes derived from remotely-sensed data
and with time coincident light, temperature and tidal height data simulated by
a tri-dimensional (3D) high resolution physical-biological coupled model. The
seasonal adjustment of photosynthetic parameters used in the GPP-algorithm
is obtained from fitting Production-Irradiance (P-I) curves on laboratory mea-
surements expressed in NDVI-specific PP rates. In the paper, we first compare
data of the physical environment (light, temperature) prevailing at the date of
the in situ measurements and satellite sensor acquisition. Second, we compare
the fitted data obtained using five P-I models widely used in the literature with
the laboratory measurements. Finally, we map the MPB PP in winter, spring
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and summer using the P-I models of Platt et al. (1980) and Eilers and Peeters
(1988). The ability of the GPP-algorithm to map MPB PP at a mudflat scale and
to provide new insights on the role played by MPB in the coastal carbon cycle
is discussed.

material and methods

Study site

The study site is located in the Pertuis Charentais Sea, which is a shallow semi-
enclosed sea located on the French Atlantic coast (Fig. 45). The tidal regime
is semi-diurnal and macrotidal. The tidal range reaches up to ∼ 6 m during
spring tides. We focused on the Brouage mudflat, which extends over 42 km2

in the Southeastern part of the area. The mudflat sediment is composed of very
fine and cohesive grains (median grain size 17 µm and 85 % of grains with a
diameter < 63 µm; Bocher et al., 2007) distributed on a gentle slope (∼ 1/1000;
Le Hir et al., 2000). The station for field campaign and sediment sampling was
located at the "Merignac" site (Fig. 45, 45

◦
53’20.87”N; 1

◦
7’54.37”W).

Figure 45: Bathymetry of the model domain covering the Pertuis Charentais Sea
(source: SHOM) and location of the main intertidal mudflats. The study
site is represented by a red full point.
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Observations

In situ data

Three periods were selected for field campaigns and sediment sampling: March,
with the highest value of MPB biomass, May, corresponding to medium value
of MPB biomass and July, with the lowest value (Savelli et al., 2018; Méléder
et al., in prep). Field campaigns were planed during spring tides and daytime
low tides, on 5-6 May 2015, 2-3 July 2015 and 5 March 2018 for in situ measure-
ments and sediment sampling for laboratory experiments. Carbon fluxes for
estimation of the PP at the air-sediment interface were measured using benthic
chambers. The CO2 concentration was measured in the chambers continuously,
over a period of 20 to 30 min using an infrared gas analyser (IRGA). A translu-
cent chamber was used to measure net flow (= net primary production, NPP),
including the flow due to photosynthesis and that due to respiration. A dark
chamber was used to measure only the flow due to respiration (= Resp). Light
and dark incubations were performed successively. Due to the duration of the
tidal cycle, only 4 incubations were done per day: 2 lights and 2 darks. The
difference between these fluxes gives the gross primary production (GPP) ex-
pressed in mg C m−2 h−1 (Eq. 45, Migné et al., 2002):

GPP = NPP+ Resp (45)

where Resp is negative.
In the aim to link GPP to the MPB biomass, reflectance (ρ) was measured

near to the benthic chambers using a JAZ (OceanOptics®) spectroradiometer
(200-1100 nm, sampling: 0.3 nm, spectral resolution: 0.3-10 nm full width at
half maximum) to calculated the MPB-specific NDVI index (Eq. 46). Because
the spectral resolution of this detector was higher than a multispectral one on-
board a satellite, the red reflectance, ρ(R) was considered as the averaged value
of data at 675 nm ± 3 nm and the NIR reflectance, ρ(NIR), as the average at
750 nm ± 3 nm (Méléder et al., 2003a, 2010). MPB-specific NDVI measured
during the same period of NPP (e.g. during light incubations) were used to
standardised GPP values to be expressed in mg C (NDVI)−1 m−2 h−1 .

NDVI =
ρ(NIR) − ρ(R)
ρ(NIR) + ρ(R)

(46)

Synchronously, incident photosynthetically active radiation (400 to 700 nm;
PAR, µmol photons m−2 s−1) and temperature (◦C) were measured near to
the chambers at the sediment surface with a 30-sec frequency.

In parallel to the NDVI measurements during the whole low tide, biomass
and physiological status were surveyed. The biomass was estimated continu-
ously by Chl a content in the first 250 µm of sediment by the "crème brulée"
methodology sampling (Laviale et al., 2015). After freeze-drying of the sedi-
ment discs, pigments were extracted in a cold mixture (4◦C) of 90 % methanol/0.2M



6.3 material and methods 143

ammonium acetate (90/10 vol/vol) and 10 % ethyl acetate. Injection, High-
Performance Liquid Chromatography (HPLC) device (Hitachi Lachrom Elite,
Tokyo, Japan), pigment identification and quantification is detailed in Barnett
et al. (2015) and Roy et al. (2011). Chl a amount was normalised to the sampled
surface (1.5 cm2) to be expressed in mg Chl a m−2.

Laboratory experiments: P-I curves

During the three field campaigns, the upper-layer (∼ the top first cm) of sedi-
ment was collected to be brought back to the laboratory. There, the mud was
cleaned of the fauna by sieving through a 500 µm mesh. The sediment was
homogenised by thoroughly mixing and was spread as plane layer in nine plas-
tic trays of 4 cm-deep (Serôdio et al., 2012). A water layer was added for the
night and sediment was left undisturbed overnight. The next morning, the
water layer was manually removed by a syringe 3 hours before low tide and
trays were kept in shadow at ∼ 22

◦C. Experimentation started two hours be-
fore low tide, when biofilm dark coloured the sediment surface. It consisted to
light one of the nine trays with LEDs panel (LED Light SL 3500-E, Photo Sys-
tem Instrument, Czech Republic) during 30 min at controlled temperature (22

◦C). During the 30 min, C flux was estimated by translucent benthic chambers.
Light intensities used for the three periods varied from 5 to 2 200 µmol photons
m−2 s−1. For each intensity, a new tray of sediment was used. After the 30 min
of lightening, respiration flux was measured using dark benthic chamber. GPP
for each intensity was calculated using the flux from dark (= Resp) and translu-
cent (NPP) chambers as done in situ (Eq. 45) and expressed by NDVI (mg C
(NDVI)−1 m−2 h−1).

For the three periods, laboratory measurements of photosynthetic rate (Pb,
mg C (NDVI)−1 m−2 h−1) were fitted using several P-I models: Platt et al.
(1980), Eilers and Peeters (1988), Steele (1962), Platt and Jassby (1976) and mod-
ified Platt and Jassby (1976). The modified Platt and Jassby (1976) P-I model is
as follow:

Pb = Pbmax × tanh
(

αI

Pbmax

)
×
[
1− tanh

(
βI

Pbmax

)]
, (47)

where Pbmax is the photosynthetic capacity (mg C (NDVI)−1 m−2 h−1), I is
the PAR (µmol photons m−2 s−1), α is the initial slope (mg C (NDVI)−1 m−2

h−1 (µmol photons m−2 s−1)−1) and β is the photoinhibition parameter (mg C
(NDVI)−1 m−2 h−1 (µmol photons m−2 s−1)−1).

The differential evolution algorithm (DE) implemented in the R package "DE-
optim" (Ardia et al., 2016) was used to minimise the difference between the pre-
dicted and observed photosynthetic rate to obtain the photosynthetic parame-
ters of the five P-I models. The DE algorithm does not require arbitrary initial
parameter values which can result in errors in optimisation of light-response
models (Chen et al., 2016). Moreover, the parameters values were explored
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within a range of values given in Table 23 based on graphical features of P-I
data (Fig. 50).

Remote sensing data

Multispectral images for GPP mapping were selected from SPOT, Landsat and
Pleiades archives following three acquisition criteria: 1) acquisition day the clos-
est to the field campaign day; 2) acquisition time the closest to spring low tide,
when mudflats were the most exposed; 3) acquisition under cloud-free condi-
tions (< 10%) with an almost zenithal sun. These criteria allowed to select three
images from SPOT and Pleiades satellites: one per field campaign (Table 22).
Images were atmospherically corrected and converted into surface reflectance
with FLAASH correction (Fast Line of sight Atmospheric Analysis of Spectral
Hypercubes), using ENVI software and MODTRAN4 transfer codes for the at-
mospheric corrections method (Matthews et al., 2000). For coherence within the
images, the same FLAASH parameters were applied: US atmospheric model,
40 km initial visibility and maritime aerosol model. The images were registered
in the WGS 84 UTM 30N coordinate system. Finally, the MPB-specific NDVI
was then calculated from surface reflectance following Eq. (46) to estimate the
horizontal distribution of the MPB biomass (e.g. Méléder et al., 2003a; Beny-
oucef et al., 2014; Echappé et al., 2018). These maps are used as an input in the
GPP-algorithm (Fig. 46).

The lower horizontal resolution of the SPOT 6 image diluted the MPB biomass
into larger pixels and resulted to lower MPB-specific NDVI compared to Pleaides
images. Consequently, when the MPB-specific NDVI was compared between
SPOT 6 and Pleaides images, it was normalised by the respective MPB-specific
NDVI maximum (0.3 and 0.4 for SPOT 6 and Pleaides, respectively).

MARS-3D modelling system

The tidal height and photosynthetic available irradiance (PAR) were simulated
over the mudflat by the 3D hydrodynamical Model for Applications at Regional
Scale (MARS-3D). The bathymetry was extracted from the model numerical
grid. The Navier-Stokes primitive equations were solved under assumptions
of Boussinesq approximation, hydrostatic equilibrium and incompressibility
(Blumberg and Mellor, 1987; Lazure and Dumas, 2008). The numerical domain
of the Pertuis Charentais Sea consisted of 100 m × 100 m grid cells discretised
over 20 sigma-levels (Fig. 45). The MARS-3D model is fully detailed in Lazure
and Dumas (2008). The meteorological forcings (i.e. 10-m wind speed, 2-m
air temperature and relative humidity, atmospheric pressure at sea level, neb-
ulosity and solar fluxes) used to constrain MARS-3D were extracted from the
Meteo France AROME model (https://donneespubliques.meteofrance.fr). The
tidal model cstFRANCE developed by the SHOM (Simon and Gonella, 2007)

https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=131&id_rubrique=51
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forced MARS-3D at the domain boundaries. The tidal model solved the ampli-
tude and phase of 115 harmonic constituents. Initial and boundary conditions
of seawater temperature, salinity, current velocity and sea surface height were
extracted from the MANGA 2500 Ifremer model of 2.5 km lateral resolution
(Lazure et al., 2009).

Mud surface temperature model

The simulated MST was obtained from the coupling of the MST model of Savelli
et al. (2018) with MARS-3D. The simulated heat fluxes in a 1-cm deep sediment
layer were solved by thermodynamic equations detailed in Savelli et al. (2018).
The horizontal fluxes of heat were neglected. During exposure periods, the
simulated MST resulted from heat exchanges between the sun, the atmosphere,
the sediment surface, from the conduction between mud and air and from
evaporation. The simulated MST of immersed mud was set to the temperature
of the overlying seawater simulated by MARS-3D. The simulated MST data
were successfully compared with time-coincident in situ 1-min data measured
on the Brouage mudflat in 2008 (Savelli et al., 2018). The MST differential
equation was solved by the MARS-3D numerical scheme. The MST model is
fully detailed in Savelli et al. (2018).

MPB GPP-algorithm

To estimate MPB GPP, the algorithm (Fig. 46) coupled NDVI maps from SPOT
and Pleiades scenes with forcings by hydrodynamical MARS-3D. Whereas the
NDVI estimates the horizontal distribution of MPB biomass, the MARS-3D
model simulates the emersion time over the whole mudflat using the bathymetry
and the tidal height. Coupled with the MPB biomass, the emersion time de-
termined the photosynthetically active biomass at the mud surface. We as-
sumed that the MPB biomass detected by satellite corresponded to the fully-
established biofilm during the daytime low tide (total photosynthetically active
biomass). The migration behaviour of MPB biomass was introduced in the
model through a progressive establishment of the total photosynthetically ac-
tive biomass at the sediment surface taking place during 20 min (Herlory et al.,
2004). The photosynthetically active biomass started to migrate at the sediment
surface just after water removal to reach 50 % of the total amount (= NDVI/2)
after 10 minutes of emersion of respective grid cells. After 20 minutes, the
MPB biofilm at the sediment surface was fully-formed. 20 minutes before the
immersion, downward migration started to leave only the half of the total pho-
tosynthetically active biomass at the surface after 10 minutes and no biomass
when water overlaid the sediment.

We used the PAR and MST simulated by MARS-3D to constrain the algo-
rithm. The relationship of Blanchard et al. (1996) was used to compute the
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photosynthetic capacity (mg C (NDVI)−1 m−2 h−1) according to the simulated
temperature. The Platt et al. (1980) and Eilers and Peeters (1988) P-I models
and their respective parameters values fitted on the laboratory measurements
were used to compute the MPB photosynthetic rates (mg C (NDVI)−1 m−2 h−1)
according to the simulated light conditions. Assuming that temperature was
optimal during light curves acquisition in the laboratory, the maximal photo-
synthetic capacity (PbMAX) in the model of Blanchard et al. (1996) was set to the
value of Pbs which represents the photosynthetic rate without photoinhibition
in the model of Platt et al. (1980). Combined with the horizontal distribution of
the MPB biomass of the NDVI scenes, the photosynthetic capacity was further
used to simulate the MPB GPP (mg C m−2 h−1).

The current configuration of the GPP-algorithm was consistent only for inter-
tidal mudflats as the studied mudflat is mostly composed by very fine cohesive
grains (Bocher et al., 2007) and for epipelic diatoms as they dominate MPB as-
semblages in muddy sediments (Underwood, 2001). Consequently, we used a
MST model developed and validated for the mud (Savelli et al., 2018). Then,
laboratory measurements were conducted on mud collected at the very sur-
face of the sediment in order to sample mostly epipelic diatoms mixed with
sediment.

With the GPP-algorithm, we computed maps of daily-integrated GPP (mg C
m−2 d−1) and hourly GPP (mg C m−2 h−1) averaged over the emersion dura-
tion of the respective pixel. In addition, for each satellite scene, we integrated
the daily GPP over the entire mudflat. The comparison of the GPP obtained
with the GPP-algorithm with in situ GPP rates was made difficult due to the
error introduced by different physical conditions and NDVI during satellite ac-
quisition and field campaigns. Therefore, in order to evaluate the skill of the
GPP-algorithm without the effect of the environment, we computed the GPP
with the production-temperature relationship of Blanchard et al. (1996) and the
Platt et al. (1980) and Eilers and Peeters (1988) P-I models constrained by the
same temperature, light and NDVI conditions than during the field campaigns.
In addition, the GPP values obtained with the GPP-algorithm extracted from
the pixel corresponding to the study site were still compared with GPP rates
measured in situ during the same period.

Comparison with GPP simulated by MARS-3D

We compared the remotely-sensed MPB GPP with the MPB GPP simulated
by MARS-3D (see Chapter 5). In the 3D model, the photosynthetic capacity de-
pended on MST and PAR according to the relationship of Blanchard et al. (1996)
and Platt et al. (1980), respectively. Consequently, we compared the PP simu-
lated by MARS-3D with that derived from the algorithm parametrised with the
Platt et al. (1980) P-I model only. MARS-3D was run with and without photoin-
hibition (see Chapter 5).The Photo and the NoPhoto runs were simulations of
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Figure 46: Conceptual scheme of the MPB GPP-algorithm.

MPB PP with (β set to 0.003 mg C mg Chl a−1 h−1 (µmol photons m−2 s−1)−1

in spring, 0.01 mg C mg Chl a−1 h−1 (µmol photons m−2 s−1)−1 in summer
and 0.02 mg C mg Chl a−1 h−1 (µmol photons m−2 s−1)−1 in fall) and without
photoinhibition (β permanently set to zero), respectively. A third run (Pbfix run)
was used, parametrised as the NoPhoto run but with a photosynthetic rate (Pb)
(mg C (mg Chl a)−1 h−1) whose value during the day of in situ measurements
(May and July 2015) was constrained by the mean value of the biomass-specific
production rate (mg C (mg Chl a)−1 h−1) measured during the field campaigns.
This biomass-specific production rate was obtained by dividing the GPP mea-
sured in situ (mg C m−2 h−1) by the mean in situ MPB biomass in mg Chl a
m−2 averaged over the time of each GPP measurement (20 min). Therefore, the
simulated production rate in the Pbfix run did not account for light and temper-
ature conditions any more and was set to 0.28 mg C (mg Chl a)−1 h−1 during
5-6 May 2015 and 0.32 mg C (mg Chl a)−1 h−1 during 02-03 July 2015.

results

Physical environment

The simulated MST and PAR on matching days with in situ measurements rea-
sonably compared to the 30-sec frequency PAR and MST measured in May-July
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2015 and March 2018 at the study site (Fig. 47). In March, the simulated PAR
(710 ± 125.5 µmol photons m−2 s−1) was significantly higher than the mea-
sured PAR (630.4 ± 139.4 µmol photons m−2 s−1; Mann Whitney test: p-value
< 0.01). In May, the model underestimated PAR (1404.9 ± 101.3 µmol photons
m−2 s−1) compared to more scattered observations (1514.7 ± 532.4 µmol pho-
tons m−2 s−1; Mann Whitney test: p-value < 0.01). In July, the simulated PAR
(1195.1 ± 304.9 µmol photons m−2 s−1) was not significantly different from the
measured PAR (1229.9 ± 305.9 µmol photons m−2 s−1; Mann Whitney test: p-
value > 0.01). With respect to MST, in March, the simulated MST (16.4 ± 0.9 ◦C)
was not significantly different from the measured MST (15.7 ± 2.1 ◦C; Mann
Whitney test: p-value > 0.01). The simulated MST in May was in average 20.7
± 0.6 ◦C and was significantly different from the MST measurements (19.5 ±
1.8 ◦C; Mann Whitney test: p-value < 0.01). In July, the simulated MST (31.2
± 5

◦C) was not significantly different from the measured MST (31.4 ± 3.4 ◦C;
Mann Whitney test: p-value > 0.01).
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Figure 47: (a) PAR measured in situ and, simulated by MARS-3D on matching days
with in situ measurements at the study site and, (b) MST measured in situ
and, simulated by MARS-3D on matching days with in situ measurements
at the study site. Red crosses correspond the mean value of PAR and MST
for the corresponding period.

Overall, the PAR and temperature conditions simulated by MARS-3D on
satellite data matching days were not significantly different from the in situ
data (Fig. 48). In March, the simulated PAR matching the satellite scene ac-
quisition (941.8 ± 33.7 µmol photons m−2 s−1) was significantly higher than
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the measured PAR (630.4 ± 139.4 µmol photons m−2 s−1; Mann Whitney test:
p-value < 0.01). In May, the simulated PAR was in average 1110.9 ± 125.8 µmol
photons m−2 s−1, which compared to the PAR data measured in situ (1514.7 ±
532.4 µmol photons m−2 s−1; Mann Whitney test: p-value = 0.01). In July, the
simulated PAR (1319.7 ± 133.7 µmol photons m−2 s−1) was not significantly
different from the observed PAR measured in situ (1229.9 ± 305.9 µmol photons
m−2 s−1; Mann Whitney test: p-value > 0.01). With respect to MST, in March,
the model simulated a mean MST of 15.7 ± 0.7 ◦C that was not significantly
different from the in situ MST (15.7 ± 2.1 ◦C; Mann Whitney test: p-value >
0.01). In May, the mean simulated MST (18.5 ± 4.8 ◦C) was not significantly dif-
ferent from the observed MST measured in situ (19.5 ± 1.8 ◦C; Mann Whitney
test: p-value > 0.01). In July, the model simulated a mean MST of 30.3 ± 3.4 ◦C
that was not significantly different from the in situ MST (31.4 ± 3.4 ◦C; Mann
Whitney test: p-value > 0.01). The comparison between simulations and in situ
data showed the robustness of the prediction of the MST and PAR models.
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Figure 48: (a) PAR measured in situ and, simulated by MARS-3D on satellite data
matching days at the study site and, (b) MST measured in situ and, sim-
ulated by MARS-3D on satellite data matching days at the study site. Red
crosses correspond the mean value of PAR and MST for the corresponding
period.

To ensure that the delay (respectively 13, 14 and 2 days in May 2015, July
2015 and March 2018) between field campaigns used to calibrate P-I models,
and images acquisition used to map GPP, was not an issue, simulated physical
conditions were analysed (Fig. 49). The main risk was a change in acclimation
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status of MPB cells due to a change in light and temperature conditions dur-
ing this delay (Fig. 49). For this purpose, simulated physical conditions were
averaged during daytime emersion periods two weeks before in situ measure-
ments and satellite scenes to be compared (Fig. 49). In March 2018, the PAR
averaged over daytime emersion periods simulated two weeks before the in
situ measurements (456.9 ± 280.7 µmol photons m−2 s−1) was not significantly
different from the PAR averaged over daytime emersion periods simulated two
weeks before the satellite scene acquisition (412.3 ± 236.7 µmol photons m−2

s−1; Student test: p-value > 0.01). In May 2015, the PAR averaged over daytime
emersion periods simulated two weeks before the in situ measurements (646.3
± 445 µmol photons m−2 s−1) was not significantly different from the PAR av-
eraged over daytime emersion periods simulated two weeks before the satellite
scene acquisition (844.2 ± 387.4 µmol photons m−2 s−1; Student test: p-value >
0.01). Two weeks before the measurements gathered in July 2015, the PAR aver-
aged over daytime emersion periods simulated by MARS-3D was 765.6 ± 370

µmol photons m−2 s−1, which was not significantly different from the PAR av-
eraged over daytime emersion periods simulated two weeks before the satellite
scene acquisition (853.7 ± 414.3 µmol photons m−2 s−1; Student test: p-value >
0.01).

Similarly, the MST conditions simulated two weeks before in situ measure-
ments and satellite scene were not significantly different. In March 2018, the
MST averaged over daytime emersion periods simulated two weeks before the
in situ measurements was 4.9 ± 8

◦C. It was not significantly different from the
MST averaged over daytime emersion periods simulated two weeks before the
satellite scene acquisition (6.3 ± 7.1 ◦C; Student test: p-value > 0.01). In May
2015, the MST averaged over daytime emersion periods simulated two weeks
before the in situ measurements (19.5 ± 5.3 ◦C) compared to the MST averaged
over daytime emersion periods simulated two weeks before the satellite scene
acquisition (21.3 ± 3.7 ◦C; Student test: p-value > 0.01). In July 2015, the MST
averaged over daytime emersion periods simulated two weeks before the in situ
measurements (25.4 ± 3.2 ◦C) was not significantly different from the MST av-
eraged over daytime emersion periods simulated two weeks before the satellite
scene acquisition (26.6 ± 4.9 ◦C; Student test: p-value > 0.01). These results
mean that MPB cells were in the same acclimation status and satellite images
can be used to estimate GPP, even if the data to calibrate P-I models were not
obtained the same day.

Evaluating P-I models

The shape of the relationship between the NDVI-specific photosynthetic rate
(Pb) and the irradiance measured in laboratory varied with seasons (Fig. 50)
and so the fitted photosynthetic parameters P-I models (Table 23). In all P-
I models, the highest value for the photosynthetic capacity (Pbs in the Platt



152 coupling remote sensing and modelling

(a)

0

250

500

750

1000

1250

1500

PA
R

 (
 µ

m
ol

 p
ho

to
ns

 m
−2

 s
−1

)

Before in situ
Before satellite

(b)

−10
−5

0
5

10
15
20
25
30
35
40

March May July
Date

M
ud

 s
ur

fa
ce

 
te

m
pe

ra
tu

re
 (

°C
) Before in situ

Before satellite

Figure 49: (a) PAR and, (b) MST simulated by MARS-3D two weeks before the in situ
measurements and the satellite scene acquisition and averaged over daytime
emersion periods. Red crosses correspond the mean value of PAR and MST
for the corresponding period.

et al. (1980) model or Pbmax otherwise) occurred in May 2015 (Fig. 50 and
Table 23). In May 2015, the photoinhibition was also the strongest (Fig. 50) as
showed by the highest β values reported in the Platt et al. (1980) and modified
Platt and Jassby (1976) models. In March 2018, the best fit on the laboratory
measurements was obtained with the Platt et al. (1980) and Eilers and Peeters
(1988) models, which exhibited a higher determination coefficient (r2) and a
lower Residual Standard Deviation (RSD)(0.88 and ∼ 8.4 mg C (NDVI)−1 m−2

h−1, respectively; Fig. 50 and Table 24). In May 2015, the models of Eilers and
Peeters (1988), Steele (1962) and modified Platt and Jassby (1976) best fitted the
laboratory measurements (r2 = 0.96 and RSD < 12 mg C (NDVI)−1 m−2 h−1;
Fig. 50 and Table 24). In July 2015, the best fit on laboratory measurements
was obtained with the Platt et al. (1980), Eilers and Peeters (1988) models (r2

= 0.96 and RSD < 7 mg C (NDVI)−1 m−2 h−1; Fig. 50 and Table 24). Overall,
the highest r2 and lowest RSD suggested that the Platt et al. (1980), Eilers
and Peeters (1988) and modified Platt and Jassby (1976) models best fitted the
laboratory measurements. As the Platt et al. (1980) and Eilers and Peeters (1988)
models are well-referenced and widely used, we applied both of them in our
MPB GPP-algorithm.

Under similar light and temperature conditions prevailing during the GPP
measurements, the GPP rates estimated with the models of Eilers and Peeters
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Figure 50: Measured and predicted NDVI-specific photosynthetic rate according to the
evaluated P-I models in (a) March 2018, (b) May 2015 and, (c) July 2015.

(1988) and Platt et al. (1980) were in the same order of magnitude than the
observed rates except in March 2018 when the predicted rates were 5- to 10-
fold higher than the measured GPP rates. This predicted GPP in March was
much higher than the measured GPP as it was constrained by the high MPB-
specific NDVI measured in situ in March 2018 compared to May and July 2015

(Fig. 53). The predicted and measured GPP in March was therefore excluded
from the following skill assessment of the GPP-algorithm. The models of Eilers
and Peeters (1988) in May and July 2015, showed the best agreement with the
measured PP compared to Platt et al. (1980) (Fig. 51). The model of Eilers and
Peeters (1988) exhibited a slope close to 1 and an intercept close to 0 mg C m−2

h−1 (Fig. 51). The model showed a better fit than that of Platt et al. (1980)
characterised by a slope of 0.4 and an intercept of 4.4 mg C m−2 h−1 (Fig. 51).
Moreover, the Eilers and Peeters (1988) model has a higher r2 (0.34) than the
model of Platt et al. (0.06; 1980).

The remote sensing of the MPB GPP

Over the mudflat, the MPB-specific NDVI varied from 0 to 0.4 on the Pleiade
image in March 2018 (Fig. 52). In May 2015, the MPB-specific NDVI varied
from 0 to 0.3 on the SPOT 6 image (Fig. 52). In July 2015, the MPB-specific
NDVI derived from the Pleiade image varied from 0 to 0.3 (Fig. 52).

Over the mudflat, the normalised MPB-specific NDVI was the highest in
March 2018 (0.51 ± 0.21; Fig. 52) and the lowest in July 2015 (0.35 ± 0.13; Fig.
52). In May 2015, the normalised MPB-specific NDVI was 0.47 ± 0.17 (Fig. 52).
The MPB-specific NDVI was higher on the middle and lower shores than on
the upper shore, especially in March and May (Fig. 52).

The MPB-specific NDVI measured in situ was always higher than the remotely-
sensed MPB-specific NDVI at the study site. In March 2018, the MPB-specific
NDVI measured in situ (0.61± 0.03) was almost 5-fold higher than the remotely-
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Table 23: Parameters of the P-I models fitted with the differential evolution method in
(a) March 2018, (b) May 2015 and, (c) July 2015. The interval gives the lower
and upper bound of the explored values, respectively.

Model March May July

Interval Value Interval Value Interval Value

Platt et al. (1980)

Pbs [0; 150] 108.2 [0; 250] 250 [0; 200] 108.67

α [0; 10] 0.27 [0; 10] 0.9 [0; 10] 0.57

β [0; 50] 0.03 [0; 50] 0.21 [0; 50] 0.02

Eilers and Peeters (1988)

Pbmax [0; 150] 70.41 [0; 250] 154.2 [0; 200] 95.82

α [0; 10] 0.34 [0; 10] 0.43 [0; 10] 0.64

Iopt [0; 1000] 922.3 [0; 1000] 415.75 [0; 1000] 784.68

Steele (1962)

Pbmax [0; 150] 77.89 [0; 250] 145.93 [0; 200] 106.68

α [0; 10] 0.08 [0; 10] 0.29 [0; 10] 0.12

Platt and Jassby (1976)

Pbmax [0; 150] 65.77 [0; 250] 122.83 [0; 200] 89.87

α [0; 10] 0.24 [0; 10] 0.71 [0; 10] 0.5

Modified Platt and Jassby (1976)

Pbmax [0; 150] 92.73 [0; 250] 250 [0; 200] 100.43

α [0; 10] 0.21 [0; 10] 0.66 [0; 10] 0.46

β [0; 50] 0.02 [0; 50] 0.17 [0; 50] 0.01

sensed MPB-specific NDVI at the study site (0.14; Fig. 53). The MPB-specific
NDVI measured in situ in May 2015 (0.14 ± 0.02) was 1.5-fold higher than the
remotely-sensed MPB-specific NDVI at the study site (0.09; Fig. 53). In July
2015, the MPB-specific NDVI measured in situ (0.18 ± 0.09) was almost 1.8-fold
higher than the remotely-sensed MPB-specific NDVI at the study site (0.1; Fig.
53).

The hourly MPB GPP averaged over 24 h was the highest in March 2018 and
the lowest in July 2015 with both P-I models (Fig. 54). At the three dates, the
amplitude of the hourly GPP was same with the Platt et al. (1980) and Eilers
and Peeters (1988) models. In March 2018, the hourly PP was high on the
middle and lower shores with values up to 2.4 mg C m−2 h−1 (Fig. 54). The
upper shore was less productive with an hourly GPP of ∼ 1.25 mg C m−2 h−1

(Fig. 54). In May 2015, the upper shore was almost as much productive as in
March 2018 (∼ 1 mg C m−2 h−1) but the middle and lower shores were less
productive than in March 2018 (∼ 1.25 mg C m−2 h−1; Fig. 54). The hourly PP
exhibited no spatial pattern in July 2015, because GPP was low over the entire
mudflat (∼ 0.3 mg C m−2 h−1; Fig. 54).
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Table 24: Scores of the P-I models fitted with the differential evolution method in (a)
March 2018, (b) May 2015 and, (c) July 2015. r2 is the determination coeffi-
cient and RSD is the residual standard deviation.

Model March May July

r2 RSD r2 RSD r2 RSD

Platt et al. (1980) 0.88 8.4 0.92 16.26 0.95 6.37

Eilers and Peeters (1988) 0.88 8.33 0.96 10.71 0.96 5.86

Steele (1962) 0.86 8.94 0.96 11.54 0.77 13.81

Platt and Jassby (1976) 0.82 10.25 0.58 36.11 0.92 8.27

Modified Platt and Jassby (1976) 0.85 9.36 0.96 10.67 0.94 7.19

Figure 51: Measured GPP and GPP predicted by the GPP-algorithm constrained by the
same light, temperature and NDVI conditions concomitant to the GPP in
situ measurements. Predicted GPP rates in March 2018 were considered as
outliers and were not considered in the metrics.

The seasonal amplitude of the daily-integrated GPP was similar in the Platt
et al. (1980) and Eilers and Peeters (1988) models (Fig. 55). In March 2018,
both models simulated the highest daily-integrated GPP (Fig. 55). Integrated
over the mudflat, GPP in March 2018 was 2.15 and 2.06 t C with the Platt et al.
(1980) and Eilers and Peeters (1988) models, respectively (Table 25). The daily-
integrated PP was particularly high on the middle and lower shores with values
as high as 100 mg C m−2 in both P-I models (Fig. 55). In May 2015, the daily-
integrated PP was lower in March 2018, especially on the middle and lower
shores (∼ 40 mg C m−2; Fig. 55). Integrated over the mudflat, GPP reached
1.44 and 1.42 t C in May 2015 with the Platt et al. (1980) and Eilers and Peeters
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Figure 52: MPB-specific NDVI from Pleaides in March 2018 and July 2015 and, from
SPOT 6 in May 2015.
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Figure 53: MPB-specific NDVI measured in situ and remotely-sensed at the study site
in March 2015 (Pleiades), May 2015 (SPOT 6) and July 2015 (Pleiades).

(1988) models, respectively, which was lower than in July 2015 (Table 25). The
daily-integrated GPP was the lowest in July 2015 when GPP rarely exceeded 20

mg C m−2 on the upper shore (Fig. 55). In July 2015, the GPP integrated over
the entire mudflat was 0.63 and 0.8 t C with the Platt et al. (1980) and Eilers
and Peeters (1988) models, respectively (Table 25).

In March 2018, the measured GPP (4.8 ± 2.08 mg C m−2 h−1) was lower
than the GPP remotely-sensed at the corresponding grid cell with the Platt
et al. (1980) and Eilers and Peeters (1988) models (8.1 ± 3.2 and 7.8 ± 3.1 mg
C m−2 h−1, respectively; Fig. 56). In May 2015, the remotely-sensed GPP with
the Platt et al. (4.2 ± 2.4 mg C m−2 h−1; 1980) and Eilers and Peeters (4.1 ±
2.2 mg C m−2 h−1; 1988) compared to GPP measured at the study site (5.7 ±
3.2 mg C m−2 h−1; Fig. 56). The remotely-sensed GPP in July 2015 (1.4 ± 1.2
and 2.2 ± 1.4 mg C m−2 h−1 with the Platt et al. (1980) and Eilers and Peeters
(1988) models, respectively) was lower than the GPP measured at the study site
(6.3 ± 0.3 mg C m−2 h−1; Fig. 56).
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Figure 54: Daily-averaged GPP (mg C m−2 h−1) remotely-sensed with the GPP-
algorithm in March 2018, May 2015 and July 2015.

Table 25: Integrated-GPP (t C) in March 2018, May 2015 and July 2015 according to the
GPP-algorithm.

March May July

Platt et al. (1980) 2.15 1.44 0.63

Eilers and Peeters (1988) 2.06 1.42 0.8

Comparison of the MARS-3D simulated, measured and remotely-sensed GPP

In this section, we compare GPP rates simulated by the MARS-3D model,
remotely-sensed using the GPP-algorithm with the Platt et al. (1980) P-I model
and measured in situ. In the NoPhoto run, the simulated GPP was higher than
the remotely-sensed GPP in May and July 2015 (Fig. 57). In the Photo run, the
simulated PP was higher than the remotely-sensed GPP only in May 2015 (Fig.
57). In the Photo run, there was no difference in the GPP in July 2015, except
on the upper mudflat where the remotely-sensed GPP remained lower than the
simulated PP (Fig. 58).

In May 2015, in the NoPhoto run, the simulated biomass-specific GPP aver-
aged over the daytime emersion (3.7 ± 1.7 mg C (mg Chl a)−1 m−2 h−1) was
higher than the measured biomass-specific GPP (0.28 ± 0.1 mg C (mg Chl a)−1
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Figure 55: Daily-integrated GPP (mg C m−2) remotely-sensed with the GPP-algorithm
in March 2018, May 2015 and July 2015.
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Figure 56: Measured GPP during in situ measurements and GPP remotely-sensed at
the study site with the GPP-algorithm during satellite scene acquisition in
March 2018, May 2015 and July 2015. Red crosses correspond the mean
value of PAR and MST for the corresponding period.

m−2 h−1; Fig. 59a). In the NoPhoto run, the GPP simulated in May 2015 (93 ±
42.6 mg C m−2 h−1) was 17-fold higher than the measured GPP (5.7 ± 3.2 mg
C m−2 h−1) Fig. 59b). In July 2015, the biomass-specific GPP simulated in the
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NoPhoto run was 1.4 ± 1.2 mg C (mg Chl a)−1 m−2 h−1, which was higher
than the measured biomass-specific GPP (0.32 ± 0.12 mg C (mg Chl a)−1 m−2

h−1; Fig. 59a). In July 2015, the GPP simulated in the NoPhoto run (35.1 ± 30.4
mg C m−2 h−1) was 6-fold higher than the measured PP (6.3 ± 0.3 mg C m−2

h−1; Fig. 59b). The hourly rates of GPP simulated in the NoPhoto run on 5-6
May 2015 and 2-3 July 2015 never compared to the measured GPP. In addition,
the amplitude of GPP simulated in the NoPhoto run from 28 April to 12 May
2015 rarely compared to the measured GPP on 5-6 May 2015 and 2-3 July 2015

(Fig. 60).
With an average over the daytime emersion of 0.47 ± 0.2 mg C (mg Chl

a)−1 m−2 h−1, the biomass-specific GPP simulated in the Photo run better
compared with the biomass-specific GPP measured in May 2015 (Fig. 59a). In
contrast, the biomass-specific GPP simulated in the Photo run (0.11 ± 0.19 mg
C (mg Chl a)−1 m−2 h−1) was comparable with the measurements (Fig. 59a).
In the Photo run, the simulated GPP in May 2015 (11.7 ± 5.1 mg C m−2 h−1)
and July 2015 (3 ± 4.7 mg C m−2 h−1) was 8-fold to 11-fold lower than the GPP
simulated in the NoPhoto run (Fig. 59b). Such a result suggests that a better
model/in situ data comparison with the Photo run than with the NoPhoto
run in May and July 2015 59b). The GPP simulated in the Photo run on 5-6
May 2015 and 2-3 July 2015 compared with measurements. Moreover, the GPP
simulated in the Photo run often reached values similar to those measured
during the simulated two weeks period (Fig. 60).

In MARS-3D, the MPB biomass simulated in the biofilm quickly saturated
at 25 mg Chl a m−2 at daytime for each low tide (Fig. 61). Such a model
behaviour agreed with the biomass at the sediment surface averaged during in
situ measurements in May 2015 (20.6 ± 6.9 mg Chl a m−2) and July 2015 (22.6
± 10.8 mg Chl a m−2; Fig. 61). In May and July 2015, the NDVI data suggested
that the MPB biomass was distributed more on the middle shore than on the
upper shore (Fig. 62). Both in the NoPhoto and Photo runs, the MPB biomass
simulated in the biofilm during the satellite scene acquisition saturated at 25

mg Chl a m−2 on a major part of the mudflat. The simulated MPB biomass was
particularly high on the upper shore (Fig. 62).

In the Pbfix run, in which we set a photosynthetic rate similar to the measured
biomass-specific GPP (0.28 ± 0.11 and 0.32 ± 0.13 mg C (mg Chl a)−1 h−1 in
May and July, respectively), the simulated GPP compared with the measured
GPP (Fig. 63). In May and July 2015, the simulated biomass-specific GPP was
0.2 ± 0.1 mg C (mg Chl a)−1 m−2 h−1 in average in both the NoPhoto and the
Photo runs (Fig. 63a). Consequently, the simulated GPP with the constrained
photosynthetic rate in the 3D model was lower than with the photosynthetic
rate as a function of PAR and MST (Fig. 63b). In the Pbfix run, the simulated
GPP matching the in situ measurements was 4.89 ± 2.2 mg C m−2 h−1 in May
2015 and 5.1± 2.6 mg C m−2 h−1 in July 2015 and compared the GPP measured
in situ (Fig. 63b).
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Figure 57: Daily-averaged (mg C m−2 h−1) and daily-integrated GPP (mg C m−2) dif-
ference between the GPP simulated with MARS-3D in the NoPhoto run and
the GPP remotely-sensed with the GPP-algorithm.

discussion

Remotely-sensed NDVI variability

The GPP-algorithm is based on NDVI data remotely-sensed by the satellite
sensor. MPB-specific NDVI data obtained from Pleiades and SPOT 6 reach
maximal values of 0.4 and 0.3, respectively. Such values are in the range of
the MPB-specific NDVI derived from satellite data over temperate mudflats
(e.g. van der Wal et al., 2010; Brito et al., 2013; Benyoucef et al., 2014; Echappé
et al., 2018). In our study, the NDVI data suggest a seasonal cycle characterised
by a seasonal maximum and minimum of MPB biomass in spring and sum-
mer, respectively. No satellite scenes nor field campaigns were conducted in
fall. Nevertheless, the NDVI seasonality observed in the Brouage mudflat is
consistent with the seasonal pattern reported for the same mudflat in previous
studies (Cariou-Le Gall and Blanchard, 1995; Savelli et al., 2018) and for other
northern European mudflats (i.e. van der Wal et al., 2010; Echappé et al., 2018).
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Figure 58: Daily-averaged (mg C m−2 h−1) and daily-integrated GPP (mg C m−2) dif-
ference between the GPP simulated with MARS-3D in the Photo run and
the GPP remotely-sensed with the GPP-algorithm.

The NDVI is a proxy of Chl a absorption and thus, of MPB biomass at the
mud surface. As the biomass-specific photosynthetic capacity is expressed in
terms of Chl a (mg C (mg Chl a)−1 h−1), the higher the Chl a in the sedi-
ment photic layer, the higher the PP. Given that the NDVI-Chl a relationship
is non-linear, especially at high values (Méléder et al., 2003a; Méléder et al.,
2003b; Serôdio et al., 2009), and that the C:Chl a ratio of MPB varies according
to seasons and species (Gould and Gallagher, 1990; de Jonge et al., 2012), the
Chl a photosynthetic rate obtained from the NDVI-Chl a relationship is haz-
ardous. The model developed by Daggers et al. (2018) required the conversion
of the NDVI into Chl a, which introduces uncertainties. The GPP-algorithm
we developed in this study is the first to be NDVI-calibrated rather than Chl
a-calibrated. NDVI-specific photosynthetic parameters estimated during labo-
ratory experiments combined with in situ radiometry reduces the uncertainty
due to a NDVI-Chl a relationship.
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Figure 59: (a) Measured biomass-specific GPP and biomass-specific GPP (mg C (mg
Chl a)−1 m−2 h−1) simulated with MARS-3D on matching days with in situ
measurements and, (b) measured hourly GPP and hourly GPP (mg C m−2

h−1) simulated with MARS-3D on matching days with in situ measurements.
Red crosses correspond the mean value for the corresponding period.

Figure 60: Measured hourly GPP and hourly GPP (mg C m−2 h−1) simulated with
MARS-3D one week before and after in situ measurements.
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Figure 61: Measured and simulated MPB biomass in the biofilm during in situ mea-
surements). Red crosses correspond the mean value for the corresponding
period.
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Figure 62: MPB-specific NDVI and simulated MPB biomass with MARS-3D in May
and July 2015.

Inherent skills of the GPP-algorithm

In order to minimise errors due to discrepancies between in situ and satellite-
derived NDVI data, the predictive capacity of the GPP-algorithm was first
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Figure 63: (a) Measured biomass-specific production and biomass-specific production
simulated with MARS-3D (mg C (mg Chl a)−1 m−2 h−1) and, (b) measured
hourly GPP and hourly GPP simulated with MARS-3D (mg C m−2 h−1)
during in situ measurements. Simulation was run with a constant photosyn-
thetic capacity set to the average biomass-specific production during in situ
measurements. Red crosses correspond the mean value for the correspond-
ing period.

tested by constraining the algorithm with environmental data (light, MST) and
NDVI data (radiometry) measured in situ during the 2015 and 2018 field cam-
paigns. With rates ranging from 3 to 11 mg C m−2 h−1, the predicted GPP
lies in the range of the observed rates reported in other European mudflats
(Barranguet et al., 1998; Underwood and Kromkamp, 1999; Hubas et al., 2006).
However, the predicted GPP departs from the GPP measured in the field, par-
ticularly in March 2018. Such discrepancies can be due to differences in the
photosynthetic properties of the MPB cells and NDVI measured in situ. The
measured in situ NDVI is particularly high in March 2018 compared to May
and July 2015. The high NDVI value in March may be driven by the spring
bloom of MPB biomass reported on the study site (Savelli et al., 2018). Such a
difference with in situ measured NDVI in May and July is responsible of the
high predicted GPP compared to the measured GPP in March 2018. Benthic
chambers deployed in the field might have measured GPP of a less dense MPB
biofilm at the sediment surface few meters away from NDVI measurements
due to the high MPB patchiness.

The calibration of the GPP-algorithm relies on photosynthetic parameters re-
sulting from the fitting of the Platt et al. (1980) and Eilers and Peeters (1988) P-I
models on the light curves we measured in laboratory. Only one light curve
was measured per season, which may not be representative of the photosyn-
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thetic properties of the in situ MPB community. Moreover, the fit of different
P-I models reveals that the scores of the adjustment is sensible to the quality of
the data measured as the score of a model can vary with seasons. We suggest
that more P-I measurements would be required to better estimate the photosyn-
thetic properties of the MPB community and so the GPP by the algorithm.

Ability of the GPP-algorithm to map the current state of the mudflat

When constrained by the light and MST conditions simulated by the MARS-
3D model during the satellite sensor acquisitions, the GPP predicted with the
GPP-algorithm compares with the GPP measured in situ during the same time
periods. The reported algorithm-in situ data discrepancies can be related to
differences between the in situ and remotely-sensed NDVI data. The NDVI
measured in situ at the sediment surface can depart from the remotely-sensed
NDVI due to variations of the environmental conditions. In addition, the GPP-
algorithm uses a vertical migration scheme of MPB biomass within the upper
layer of sediment that is represented through the modulation of the total pho-
tosynthetically active biomass detected from the remotely-sensed NDVI. Such
a migration scheme in the GPP-algorithm was set according to the observation
of the progressive sediment covering by MPB during low tides (Herlory et al.,
2004). This simplification of the process may miss the short-term variations of
the MPB biomass at the sediment surface in response to light conditions during
the low tide (Kromkamp et al., 1998; Perkins et al., 2001; Cartaxana et al., 2011).
Moreover, the representativeness of the in situ NDVI data is questionable as it is
inferred from highly synoptic and localised reflectance measurements. NDVI
data derived from reflectances remotely-sensed by the satellite sensors dilute
the in situ patchiness of MPB biomass in large pixels, which is likely to be more
reliable to get an overview of the studied system. Consequently, and in contrast
with the GPP measured in situ, the seasonality of the remotely-sensed GPP at
the study site characterised with a spring bloom and a summer depression is
consistent with previous studies (Cariou-Le Gall and Blanchard, 1995; Savelli
et al., 2018). However, the differences between the GPP measured in situ and the
remotely-sensed GPP are not fully explained by differences between the NDVI
measured in situ and the remotely-sensed NDVI. Indeed, an in situ-measured
NDVI higher than a remotely-sensed NDVI do not systematically corresponds
to a GPP measured in situ higher than the remotely-sensed GPP.

The photoacclimation status of MPB cells during the sampling periods can
impact the photosynthetic response of MPB cells to the light conditions prevail-
ing during the satellite sensor acquisitions. The high photoinhibition of MPB
photosynthesis at a moderate irradiance in May 2015 suggests that MPB cells
were low light acclimated. Photoinhibition hence constrains the GPP predicted
by the algorithm that depend on the light environment during the satellite
scenes acquisitions. However, comparable light and MST conditions simulated
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by the MARS-3D model two weeks before in situ measurements and two weeks
before the satellite scenes for the three periods suggest that the light and tem-
perature acclimation status of MPB cells during the in situ measurements and
satellite sensor acquisition may be similar. Consequently, differences in the
thermo- and photoacclimation status of MPB cells is likely to translate into
limited algorithm-measurements GPP discrepancies only.

GPP-algorithm physical setting

The GPP-algorithm is well adapted for intertidal mudflat composed of fine
cohesive sediments and dominated by epipelic diatoms. NDVI data are derived
from spectroradiometry measurements that correspond to a proportion of the
solar energy returned back to the sensor (satellite or in situ) after interacting
with the upper sediment layer. The optical depth varies with the MPB biomass
at the sediment surface, the sediment texture, the organic and water content
and the wavelengths of the incident light. The length of the path of the reflected
light corresponds to the photic zone, where the biomass is photosynthetically
active. In muddy sediments, the photic zone rarely exceeds 500 µm (Cartaxana
et al., 2011). In the present study, the NDVI data reflect the MPB biomass in the
biofilm constituted by epipelic diatoms as the mud surface (Kazemipour et al.,
2012). In the model of Daggers et al. (2018), the vertical distribution of the MPB
biomass in the sediment is set by the formulation of Jesus et al. (2006). In their
study, the sediment is sandier than our study site. As a result, light penetrates
deeper in the sediment (Cartaxana et al., 2011) and the MPB biomass remotely-
sensed at the sediment surface is not representative of the photosynthetically
active biomass and needs to be extended in depth.

The MST and light conditions simulated by the MARS-3D model compare to
the conditions observed in the field. The model-in situ data comparison sug-
gests that the 3D model can resolve with confidence the physical environment
experienced by MPB at the sediment surface. In regards to the frequency of the
atmospheric AROME model (1 h), the simulated light conditions vary less than
the observations. The 3D model cannot reproduce the observed synoptic vari-
ations of light at the sub-hourly scale that can induce a substantial variability
in the MPB GPP over a low tide. In addition, the horizontal resolution of the
3D model (100 m × 100 m) may also translate into model-data discrepancies.
Indeed, in regards to the MPB patchiness observed in the field, a 100 m lateral
resolution implies that we compared GPP extracted from a relatively coarse
grid cell with very localised in situ GPP measurements. Such a comparison is
also made difficult as the corresponding 100 m × 100 m grid cell of the 3D
model emerged ∼ 30 min later than the study site due to the inaccuracy in the
bathymetric level. Nevertheless, as the physical conditions simulated by the
model are reasonably close to the in situ conditions prevailing during the 2015
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and 2018 field campaigns, we are confident on the ability of the GPP-algorithm
to predict GPP values representative of the productive state of the mudflat.

Differences between measurements, MARS-3D and GPP-algorithm

The GPP simulated by the MARS-3D model without accounting for photoin-
hibition is much higher than the GPP measured in situ. Accounting for the
photoinhibition process decreases the simulated GPP that, in turn, better com-
pares to measurements. As the simulated MPB biomass in the biofilm lies in
the range of the observations, the model-in situ discrepancies in the GPP can
be attributed to differences in the MPB photosynthetic rate in the model and
on the field. When set up with a photosynthetic rate (Pb) comparable to the
observed values , GPP simulated by the 3D model better compared to in situ
GPP measurements. As the simulated physical conditions are consistent with
those prevailing during the field campaigns, they may not fully explain the re-
ported differences in the MPB photosynthetic capacity between the 3D model
and the measurements. We hence suggest that the 3D model is sensitive to the
parametrisation of the MPB photosynthetic capacity when compared to highly
synoptic measurements.

In the 3D model, the MPB photosynthetic parameters (α and β) are set from
fitting the Platt et al. (1980) P-I model on the P-I data from Pniewski et al. (2015)
at three seasons (spring, summer and fall). The relationship between the photo-
synthetic capacity and the MST is ruled by the model of Blanchard et al. (1996)
that is parametrised for the four seasons (see Chapter 2, section 2.4.2). With this
parametrisation, the purpose of the 3D model is limited to a seasonal scale and
it can not reproduce precisely the hourly to daily temporal scale, contrary to
the GPP-algorithm that was fitted on highly synoptic data. The GPP-algorithm
predicts GPP rates consistent with measurements as it is parametrised using
photosynthetic parameters (α, β, Pbs , Pbmax and Iopt) estimated on the basis of
time-coincident field campaigns. Interestingly, the 3D model-in situ GPP data
comparison suggests a potential impact of photoinhibition, especially in July
2015. This result echoes to the Chapter 5 conclusions which suggest the poten-
tial importance of MPB photoinhibition in summer on the Brouage mudflat.

conclusions

We developed a GPP-algorithm that combines data from satellite remote sens-
ing scenes with data derived from laboratory measurements and a 3D physical
model. The algorithm is constrained by realistic simulated two-dimensional
(2D) fields of tidal heights, MST and PAR. It is parametrised by NDVI-specific
photosynthetic parameters estimated from laboratory measurements and ex-
pressed in carbon fixation rates hence limiting possible bias due to unit conver-
sions. This study shows that:
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• The NDVI data retrieved from the SPOT 6 and Pleaides sensors are con-
sistent with the seasonality of the MPB biomass reported for the study
site and their range are comparable to NDVI data from other mudflats;

• The GPP-algorithm succeeds in reproducing MPB GPP rates in the range
of in situ GPP measurements and the seasonal variability of GPP;

• The GPP-algorithm is well adapted to intertidal mudflats mostly com-
posed by fine cohesive sediments dominated by epipelic diatoms and
could be applied for similar environments.

The horizontal resolution of the MARS-3D model (100 m) is lower than the
SPOT 6 and Pleiades sensors resolution (6 m and 2 m, respectively). A finer
horizontal mesh of the bathymetry and of the simulated water height might im-
prove the simulated emersion-immersion cycles, MST and light fields and thus,
GPP. While the GPP-algorithm might prove useful to monitor MPB GPP at the
scale of an entire mudflat, it will be limited by the still too low spectral resolu-
tion of the multispectral (3-10 bands) satellite sensors. Airborne hyperspectral
(hundreds of bands) data could complement such satellite remote sensing data
in a era of remote sensing drone aircraft democratisation (Launeau et al., 2018).
A first hyperspectral index, the MPBLUE was recently developed to estimate
a GPP proxy (= Electron Transfer Rate or ETR) using laboratory experiments
(Méléder et al., 2018). Such an index can be promising, but it must also be vali-
dated with in situ measurements before to be applied to hyperspectral data. The
GPP comparison with the 3D physical-biological coupled model underlines the
caution to set a realistic photosynthetic capacity in both the numerical model
and remote sensing algorithm. The accurate estimation of the photosynthetic
response of MPB to its highly variable environment is a challenge in a perspec-
tive of quantifying MPB PP over large mudflats from a synoptic to inter-annual
time scale.
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We developed a physical-biological coupled model in close association with
observational data to infer on the spatial and temporal dynamics of MPB in
the Brouage intertidal mudflat. Gastropod Peringia ulvae was for the first time
represented explicitly as a state variable in a mass flux model. The model
simulated consistent MPB biomass levels and primary production (PP) rates. It
also simulated a realistic seasonal dynamics of MPB and P. ulvae. Part of the
novelty of the thesis relies on the approach that combines physical-biological
modelling, remote sensing, and in situ data analysis. Such an approach allowed
us to answer the objective of the thesis and to bring new insights on MPB
dynamics in intertidal mudflats at temperate latitudes:

• The combination of light and temperature are intrinsically responsible of
the seasonal cycle of MPB on the intertidal mudflat. Light is the main lim-
iting driver, especially in fall and winter. When light levels increase along
with mud surface temperature in spring, it drives the MPB spring bloom
in terms of biomass and PP. In summer, high mud surface temperature
drives the thermoinhibition of MPB PP. At saturating light levels, photoin-
hibition of MPB PP can potentially superimpose on thermoinhibition in
spring and summer. With more frequent and longer emersion periods,
the upper shore of the mudflat receives higher amount of light and might
experience stronger photoinhibition than the lower shore. However, the
lower shore might be more sensitive to photoinhibition due to its low
MPB biomass, PP and its emersion periods restricted to high light levels.
Grazing and resuspension of MPB biomass add to the intrinsic MPB sea-
sonal cycle. Both processes shape the dynamics of the photosynthetically
active and competent biomass. Grazing pressure by P. ulvae increases in
late-spring with increasing MPB biomass and combines with the already
low thermoinhibited MPB PP in summer. Grazing and temperature are
responsible of a seasonal depletion of the MPB biomass. In addition, bio-
turbation resulting from the P. ulvae activity lead to a substantial chronic
export of MPB biomass from the sediment to the water column in spring
and summer. Waves significantly contribute to the MPB resuspension
through massive resuspension events in winter, spring and fall. At the
tidal scale, MPB resuspension occurs mostly at the flood beginning and
at the end of ebb, and is enhanced during spring tides.

• The annual export of MPB biomass from the sediment to the water col-
umn accounts for almost 50 % of the MPB annual PP. The export is high
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in spring with the effect of both chronic and massive MPB resuspension
events. Furthermore, the occurrence of the spring bloom of MPB biomass
in the sediment results into a high biostabilisation of the sediment and
thus to an accumulation of MPB biomass in the sediment. This posi-
tive feedback enhances the export of MPB biomass once the sediment is
eroded. The export of MPB from the sediment to the water column is the
highest in winter and spring and represents one third of the MPB annual
PP.

• Combining for the first time remote sensing data with outputs of the
physical-biological coupled model into a single algorithm led us to pro-
vide the first estimates of the MPB PP at the whole Brouage mudflat scale.
We produced maps of MPB PP that showed a good agreement with in situ
measurements. The comparison with PP simulated by the tri-dimensional
(3D) physical-biological coupled model was less satisfactory but it under-
lines future ways of improving MPB predictions at the mudflat scale along
with the future development of remote sensing.
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The developments made during the thesis pave the way for a better understand-
ing and assessment of the export flux of biogenic matter from the land-ocean
interface to the coastal ocean. In addition to bring new insights on the MPB dy-
namics, this work proposes new numerical tools to monitor and predict MPB
primary production (PP) and its fate in coastal waters in a context of climate
change.

the fate of mpb-derived organic carbon

In the water column, MPB can be subject to grazing, senescence, deposition and
advective-diffusive transport (MacIntyre et al., 1996; Miller et al., 1996; Guizien
et al., 2014). Once resuspended, MPB can grow and contribute to the PP of
coastal waters by producing fresh carbon through photosynthesis in the water
column under favourable light and nutrients conditions (Guarini et al., 2008b;
Polsenaere et al., 2012). In the thesis, processes such as advection-diffusion,
grazing or growth were not considered in the one-dimensional (1D) model
(Chapter 3 and 4). In the tri-dimensional (3D) model, the absence of wave
forcings excluded any representation of the lateral and vertical export of resus-
pended MPB biomass. A next step would be the coupling of the MPB model
including the resuspension processes into ocean-biogeochemical coupled 3D
models that resolve the 3D fields of advection and diffusion in the water col-
umn, the two-dimensional (2D) fields of wave parameters and the planktonic
ecosystem. Such an approach would allow an assessment of benthopelagic
MPB fluxes driven by the action of waves and tidal currents and of the lateral
and vertical flux of resuspended MPB biomass within the water column.

In addition, such an approach would allow to quantify the contribution of re-
suspended MPB to the pelagic PP. In the field, this contribution can be assessed
by combining atmospheric and aquatic eddy covariance measurements. The
atmospheric eddy covariance measures at high frequency CO2 fluxes at the
air-water and air-sediment interfaces during high and low tides, respectively
(Baldocchi et al., 1988; Aubinet et al., 1999; Zemmelink et al., 2009; Polsenaere
et al., 2012). The aquatic eddy covariance measures benthic O2 fluxes at the
sediment-water interface (Berg et al., 2003). Consequently, the measurement of
metabolic fluxes (production, respiration) both in the water and in the atmo-
sphere during high and low tides would allow us to detect changes in CO2
fluxes at air-water interface, a marker of MPB resuspension. Tracking the fate
of MPB organic carbon in coastal waters would open the door to an accurate
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estimation of the contribution of productive intertidal biofilms to the coastal
carbon cycle.

mpb in a context of climate change

In 2019 and for the first time in Human history (3 billions years ago), the CO2
atmospheric concentration reached 415 ppm (NOAA, 2019). By the end of the
century, it could increase by 200 % in the worst IPCC climate change scenario
(RCP 8.5; IPCC, 2014). Under such a scenario, the global mean surface temper-
ature would rise by 4.3 ◦C by 2081-2100 compared to 1850-1900 (IPCC, 2019).
In addition, the global mean sea level will rise by 0.84 m in 2100 with respect
to 1986-2005 (IPCC, 2019).

The consequences of climate change on the MPB PP are uncertain. The re-
sponse of MPB to increasing temperature is uncertain as seasonal response of
primary production can compensate. The predicted increase in frequency of
high temperature events (IPCC, 2013) might induce longer and stronger peri-
ods of MPB thermoinhibition in summer. With regard to benthic MPB grazers,
a temperature increase could promote their metabolism. Consequently, the top-
down control on MPB might increase and induce a depletion of MPB biomass.
This hypothesis relies on the metabolic theory of ecology, which states that
chemical reactions are generally stimulated by temperature and that feeding,
growth and reproduction by heterotroph are more strongly stimulated than
photosynthesis of autotrophs (Brown et al., 2004; López-Urrutia et al., 2006). In
the model developed in the thesis, the ingestion of MPB by P. ulvae is asymp-
totic at high temperature, which limits the increase of grazing with increasing
temperature. Nevertheless, further work is needed to assess the effect of in-
creasing temperature on both MPB and benthic grazers.

By 2100, ∼ 48 % of the global coastline could experience change in its wave
regime due to modifications of off-shore wave parameters (significant wave
height, wave period, wave direction) under the most pessimistic IPCC climate
change scenario (RCP 8.5; Morim et al., 2019). Combined with sea-level rise, it
might result in a decrease of intertidal areas (Pethick and Crooks, 2000; Fujii,
2012). Murray et al. (2019) already detected a global decrease by 3 % of tidal
flats since 1999. In addition, the existence of coastal defences might imped the
landward migration of tidal flats and salt marshes, resulting in the narrowing
of those areas (Carpenter and Pye, 1996; Fujii, 2012).

To conclude, the pressure on the MPB PP is high and the MPB responses
might be multiple. MPB are not accounted for in global ocean biogeochemical
model as their horizontal resolution is too coarse to account for coastal pro-
cesses such as benthic PP. However, it would be interesting to implement MPB
processes into high resolution regional coastal models that resolve benthic habi-
tats. They could be further constrained by downscaled global climate models
forced by the IPCC scenarios of climate change in order to identify the drivers
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of the future response of MPB dynamics and to quantify the global variability
of MPB PP in a changing climate.

combining modelling and remote sensing : a promising tool to

monitor mpb

With the improvement of satellites and on board sensors (i.e. bands, horizontal
resolution, revisit time), remote sensing is a very relevant tool to cover large
spatial scales. The use of remote sensing data in the thesis provides additional
support to modelling and enlarges the spatial extent of in situ observations.
The many earth-observation satellites and the different on board sensors open
the door to a diversity of applications rather than just synoptic maps of MPB
biomass. The deployment of hyperspectral broadband sensors is promising
as more MPB biofilms properties such as MPB PP can be inferred from high
spectral resolution images (Méléder et al., 2018). Time series of remote sensing
data is already and could be an even more powerful tool to monitor the MPB
biomass and PP at the mudflat scale.

We expect the thesis could be seen as an example of how physical-biological
models could be helpful to bring new insights on the underlying processes of
observations. However, it is important to note that we were confronted to a
limited set of data for the validation of the model because too few observations
repeated in time and space were available. In the future, we could expect the
implementation of fixed monitoring stations allowing high-frequency measure-
ments, such as benthic and in-water fluorometry and gases exchanges sensors
(eddy covariance) for PP estimation. Nevertheless, the model developed during
the thesis could be a relevant tool that might be used to monitor and predict the
MPB dynamics on intertidal mudflats at the seasonal, annual and inter-annual
scales and ultimately to improve our knowledge on the fate of MPB carbon in
the coastal ocean or the response of MPB to climate change.
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Étude de la dynamique du microphytobenthos des vasières intertidales aux latitudes
tempérées

Résumé :
La production primaire (PP) élevée des vasières intertidales aux latitudes tempérées est principale-
ment assurée par le microphytobenthos (MPB), qui soutient les réseaux trophiques benthiques
et pélagiques. Dans cette thèse, nous utilisons un modèle couplé physique-biologie pour étudier
la variabilité spatio-temporelle de la dynamique du MPB sur une vasière intertidale de la côte
Atlantique française. Le modèle simule explicitement la biomasse du MPB et du brouteur Peringia
ulvae. Les résultats fournissent des conclusions clées sur la dynamique du MPB. À l’hiver et
au printemps, une lumière et une température de surface de la vase (TSV) optimales pour la
croissance du MPB donnent lieu à une efflorescence printanière du MPB. La lumière est le facteur
le plus limitant annuellement. Cependant, la TSV limite la croissance du MPB 40 % du temps en
été. La photoinhibition pourrait se superposer à la thermoinhibition au printemps et en été. Le
broutage et la remise en suspension (RES) du MPB façonnent également la dynamique du MPB.
La bioturbation par P. ulvae contribue à une RES chronique du MPB du sédiment vers la colonne
d’eau au printemps et en été. Les vagues contribuent à la RES du MPB par le biais d’événements
de RES massive en hiver, au printemps et en automne. 50 % de la PP annuelle du MPB est
exporté vers la colonne d’eau par le biais de RES chroniques et massives. Nous avons également
développé une méthode qui combine les données de télédétection et les résultats du modèle couplé
physique-biologique en un algorithme capable de prédire la PP à partir de données satellitales.
En plus d’apporter de nouvelles perspectives sur la dynamique du MPB, ce travail propose de
nouveaux outils numériques pour surveiller et prédire la PP du MPB et son devenir dans les eaux
côtières dans un contexte de changement climatique.
Mots clés : microphytobenthos, vasière intertidale, production primaire, modélisation physique-
biologie, télédétection

Study of microphytobenthos dynamics in temperate intertidal mudflats

Summary :
The high primary production (PP) of intertidal mudflats at temperate latitudes is mostly supported
by microphytobenthos (MPB), which support both benthic and pelagic food webs. In the present
thesis, we use a physical-biological coupled model to investigate the spatial and temporal variability
of MPB dynamics on a large temperate intertidal mudflat of the French Atlantic coast. The model
explicitly simulates the MPB biomass and the grazer (Peringia ulvae) biomass and density. The
outputs provide key findings on MPB dynamics. In winter-spring, optimal light and mud surface
temperature (MST) conditions for MPB growth lead to a MPB spring bloom. Light is the most
limiting driver over the year. However, a high MST limits the MPB growth 40 % of the time during
summer. The photoinhibition of MPB photosynthesis can potentially superimpose on thermoinhi-
bition in spring-summer. Grazing and resuspension of MPB biomass also shape the dynamics of
the MPB biomass. Bioturbation by P. ulvae contributes to a chronic export of MPB biomass from
the sediment to the water column in spring-summer. Waves contribute to the MPB resuspension
through massive resuspension events in winter, spring and fall. 50 % of the annual MPB PP is
exported to the water column through chronic and massive resuspension events. We also developed
a new method that combine remote sensing data with outputs of the physical-biological coupled
model into a single algorithm that can predict PP from satellite data. In addition to bring new in-
sights on the MPB dynamics, this work proposes new numerical tools to monitor and predict MPB
PP and its fate in coastal waters in a context of climate change.
Keywords : microphytobenthos, intertidal mudflat, primary production, physical-biological mod-
elling, remote sensing
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