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Résumé

Cette thèse étudie un problème de calcul formel qui a des applications et conséquences
importantes sur la théorie des codes correcteurs algébriques : la reconstruction rationnelle
simultanée (RRS). En effet, une analyse rigoureuse de ce problème amène à des résultats
intéressants dans ce deux domaines scientifiques.

Plus précisément, la reconstruction simultanée de fractions rationnelles est le problème
de la reconstruction d’un vecteur de fractions rationnelles ayant le même dénominateur étant
donné ses évaluations (ou plus généralement étant donné ses restes modulo de polynômes diffé-
rents). La particularité de ce problème consiste dans le fait que la contrainte du dénominateur
commun réduit le nombre de points d’évaluation qui assurent l’existence d’une solution, au
prix d’une éventuelle perte d’unicité. Une des principales contributions de ce travail consiste
à prouver que l’unicité est garantie pour quasiment tous les instances de ce problème.

Ce résultat a été obtenu par l’élaboration des résultats et techniques précédents dérivées
des applications du probleme RRS, depuis la résolution de systèmes linéaires polynomiaux
jusqu’au décodage de codes Reed-Solomon entrelacés.

Dans ce travail, nous avons aussi étudié et présenté une autre application du problème
RRS, concernant le problème de la construction d’algorithmes tolérants aux fautes : des algo-
rithmes résistants aux erreurs de calcul. Ces algorithmes sont construits en introduisant une
redondance et en utilisant des outils de codes correcteurs d’erreurs pour détecter et éventuelle-
ment corriger les erreurs qui se produisent pendant les calculs. Dans ce contexte d’application,
nous améliorons une technique existante de tolérance aux fautes pour la résolution de sys-
tèmes linéaires polynomiaux par interpolation-évaluation, avec une attention particulière au
problème RRS correspondant.
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Abstract

This dissertation deals with a Computer Algebra problem which has significant conse-
quences in Algebraic Coding Theory and Error Correcting Codes: the simultaneous rational
function reconstruction. Indeed, an accurate analysis of this problem leads to interesting
results in both these scientific domains.

More precisely, the simultaneous rational function reconstruction is the problem of re-
constructing a vector of rational functions with the same denominator given its evaluations
(or more generally given its remainders modulo different polynomials). The peculiarity of
this problem consists in the fact that the common denominator constraint reduces the num-
ber of evaluation points needed to guarantee the existence of a solution, possibly losing the
uniqueness. One of the main contribution of this work consists in the proof that uniqueness
is guaranteed for almost all instances of this problem.

This result was obtained by elaborating some other contributions and techniques derived
by the applications of SRFR, from the polynomial linear system solving to the decoding of
Interleaved Reed-Solomon codes.

In this work, we will also study and present another application of the SRFR prob-
lem, concerning the problem of constructing fault-tolerant algorithms: algorithms resilients
to computational errors. These algorithms are constructed by introducing redundancy and
using error correcting codes tools to detect and possibly correct errors which occur during
computations. In this application context, we improve an existing fault-tolerant technique
for polynomial linear system solving by interpolation-evaluation, by focusing on the SRFR
problem related to it.
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Résumé de la thèse

Cette thèse a pour objectif d’étudier un problème de calcul formel ainsi que son application
à la théorie des codes correcteurs algébriques.

Le calcul formel est le domaine scientifique qui s’intéresse à l’analyse et au développe-
ment d’algorithmes pour la résolution de problèmes mathématiques en représentations finie
et exacte.

D’autre part, la théorie du codage trouve son origine dans les publications pionnières de
Shannon [Sha48] et Hamming [Ham50]. Shannon a formalisé le concept de communication
fiable sur un canal bruité. Il a également déterminé une limite inférieure sur la quantité de
redondance qui doit être rajoutée aux informations transmises pour assurer une transmission
presque sans erreur (ce résultat est connu comme le deuxième théorème de Shannon). Ce-
pendant, la preuve de ce théorème n’est pas constructive et on ne sait pas comment toujours
construire des codes correcteurs d’erreurs qui atteignent réellement la limite de Shannon. Par
ailleurs, Hamming a proposé l’une des premières classes de codes correcteurs d’erreurs et il a
introduit la notion de distance de Hamming, une métrique qui mesure la distance entre deux
mots de code en comptant le nombre de positions dans lesquelles ils sont différents.

La théorie des codes correcteurs algébriques est un sous-domaine de la théorie du codage,
dans lequel toutes les propriétés des codes sont exprimées en termes algébriques. Elle utilise
également des techniques algébriques classiques et modernes pour la conception de codes
correcteurs d’erreurs.

Les deux disciplines du calcul formel et de la théorie des codes correcteurs algébriques
peuvent être combinées : les problèmes algébriques liés aux codes correcteurs d’erreurs peuvent
être résolus efficacement par des algorithmes et outils de calcul formel. Un exemple classique
qui met en évidence cette interaction concerne une classe célèbre et très utilisée en pratique
de codes correcteurs d’erreurs algébriques : les codes de Reed-Solomon (RS) [RS60]. Les
codes RS ont plusieurs propriétés remarquables qui les rendent largement utilisés dans des
applications pratiques. Par exemple, ils sont maximum distance séparables (MDS), c’est-à-dire
qu’ils atteignent la borne de Singleton. D’un point de vue algébrique, les codes RS peuvent
être considérés comme les évaluations de polynômes de degrés bornés. Le décodage d’un mot
de code RS consiste à récupérer un polynôme de degré borné étant donné ses évaluations
potentiellement erronées (problème d’interpolation avec erreurs, IaE). Les deux techniques
classiques de décodage des codes RS, l’une basée sur l’interpolation [BW86] et l’autre basée
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sur le syndrome [Ber68], ramènent le problème de décodage à un problème classique de calcul
formel : la reconstruction rationnelle (RR). Cela conduit à la construction des décodeurs
efficaces à distance minimale limitée qui diffèrent fondamentalement par l’algorithme choisi
pour effectuer la RR correspondante ([BW86, Gao03, SKHN75, Ber68]).

Dans cette thèse, nous étudions la reconstruction rationnelle simultanée (RRS) en analy-
sant surtout la condition sur ses paramètres qui garantit l’unicité de sa solution ainsi que son
impact sur les problèmes connexes de la théorie des codes correcteurs algébriques.

La RRS désigne le problème de la reconstruction d’un vecteur de fractions rationnelles
ayant le même dénominateur, c’est-à-dire v/d = (v1/d, . . . , vn/d), étant donné ui = vi/d mod
ai et les bornes sur les degrés deg(vi) < Ni, deg(d) < D. La RRS généralise le problème
d’interpolation en considérant a1 = . . . = an =

∏
(x − αj) pour des points d’évaluation

αj distincts. En effet dans ce cas les équations modulaires ui = vi/d mod ai deviennent
des équations sur les évaluations ui(αj) = vi(αj)/d(αj). Par soucis de simplicité, nous nous
concentrons dans cette partie sur la version d’interpolation de la RRS et nous supposons
que N1 = . . . = Nn = N . Cependant, nous remarquons que dans ce travail, nous étudions
également le cas général.

Dans ce travail, nous étudions la RRS en nous concentrant sur le nombre de points d’éva-
luation qui assurent l’unicité de la solution du problème. Par unicité, nous entendons que tous
les vecteurs des fractions rationnelles correspondants à des solutions de la RRS sont égaux,
ou en d’autres termes, que chaque solution (v, d) est un multiple polynomial d’une solution
minimale. Afin de déterminer les solutions de la RRS, comme pour le problème RR classique,
nous nous concentrons sur le problème linéaire plus faible de la reconstruction de (v, d) qui
satisfait vi(αj) = ui(αj)d(αj) et tel que deg(vi) < N et deg(d) < D.

Pour trouver les solutions de la RRS, nous pouvons appliquer la RR classique à chaque
composante et avec L ≥ LRR = N +D−1 points d’évaluation, nous avons unicité de la RRS.

La particularité de la RRS réside dans le fait que le dénominateur commun réduit le
nombre d’inconnues du système linéaire homogène liées à ce problème, en diminuant le nombre
de points d’évaluation LRRS = N + (D − 1)/n qui assurent l’existence d’une solution non-
triviale.

Cependant, il y a des instances u de la RRS pour lesquels ce nombre de points d’évalua-
tion n’est pas suffisant pour garantir l’unicité (comme montre l’exemple 1.2.1). Dans cette
thèse, nous étudions des instances qui conduisent à l’unicité, en supposant que le nombre de
points d’évaluation soit L = LRRS . Les deux travaux précédents qui motivent notre analyse
dans ce sens proviennent de deux applications de RRS : la résolution de systèmes linéaires
polynomiaux et le décodage de codes de Reed-Solomon entrelacés (RSE).

La solution d’un système carré et non singulier d’équations linéaires à coefficients poly-
nomiaux (SLP), est un vecteur de fractions rationnelles ayant le même dénominateur, selon
la règle de Cramer. Certaines des techniques de résolution des SLP, par exemple l’évaluation-
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interpolation, peuvent utiliser RRS pour abaisser le nombre de points d’évaluation. Dans
ce cadre, la réduction du nombre d’évaluations a un impact direct sur la complexité des
algorithmes de résolution qui dépend de ce nombre. Une contribution importante dans ce
contexte d’application provient de [OS07]. Dans cet article, les auteurs ont prouvé qu’avec
LRRS points d’évaluation et sous certaines hypothèses spécifiques de degrés, RRS admet une
solution unique.

Un autre résultat important provient de la théorie des codes algébrique et il est lié aux
codes RSE. En général, l’entrelacement est une construction qui peut être appliquée à dif-
férents codes correcteurs d’erreurs et qui est utilisée pour la correction des erreurs par pa-
quets, c’est-à-dire des erreurs étendues à des symboles consécutifs. Nous considérons ici cette
construction appliquée aux codes RS. Plus précisément, un code l-RSE est une somme directe
de l codes RS avec les mêmes points d’évaluation. Par conséquent, ils peuvent être considérés
comme des évaluations de vecteurs de polynômes de degrés bornés. Dans ce contexte parti-
culière, une erreur par paquets est une erreur qui corrompt une évaluation dans tous les l
mots de code. D’un point de vue algébrique, le décodage d’un mot de code RSE consiste à la
reconstruction d’un vecteur de polynômes étant données ses évaluations, dont certaines sont
erronées (interpolation simultanée avec erreurs, ISaE).

Le problème du décodage des codes RSE a été l’objet de beaucoup d’attention en ces
derniers temps ([BKY03, BMS04, SSB07, SSB09, SSB10, PR17]. En effet, les codes RSE
sont intéressants car ils peuvent être décodés au-delà de la moitié de la distance minimale.
C’est pourquoi tous les décodeurs proposés dans ces articles sont des décodeurs à distance
limitée partiels, car ils peuvent échouer pour quelques erreurs spécifiques. En outre, le rayon
de décodage de ces décodeurs atteint la limite de Shannon en supposant que le paramètre
d’entrelacement l tend vers l’infini.

La technique pour le décodage des codes RSE basée sur l’interpolation ([BKY03, BMS04])
réduit le problème de décodage à une RRS. En effet, dans [BKY03] il a été prouvé qu’avec
le nombre d’évaluations dérivées de la contrainte du dénominateur commun, pour tous les
vecteurs de polynômes v et pour quasiment toutes les erreurs e, le problème RRS appliqué
aux instances u tel que u(αj) = v(αj) + ej admet une solution unique. Ce résultat, même
s’il s’agit d’un scénario différent avec des erreurs, motive notre étude sur les cas conduisant à
l’unicité du problème général de la RRS.
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PROBLÈMES
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⊆

RR- équation clé RRS - équation clé

REDUCTION DES PROBLÈMES

Dans ce document, nous étudions et présentons aussi une autre application de la RRS,
concernant la construction d’algorithmes tolérants aux fautes. Dans ce cadre, nous voyons
comment les outils des codes correcteurs d’erreurs sont utilisés pour une application qui va
au-delà du scénario de communication classique.

Les technologies de calcul à haute performance (supercalculateurs) contiennent des milliers
de nœuds de calcul mis en réseau (calcul parallèle) pour fournir de très hautes performances.
Plus le nombre de composants du système augmente, plus le problème de corriger des erreurs
introduites par ces nœuds devient important. Par exemple, les supercalculateurs modernes
commettent environ 3,5 fautes par jour [DGP+19, LC18]. Par conséquent, sans un changement
drastique au niveau algorithmique, un tel taux de fautes empêchera certainement les super-
calculateurs de progresser. C’est pourquoi de nombreuses techniques et algorithmes tolérants
aux fautes ont été proposés pour détecter et corriger ces erreurs.

Ces fautes peuvent être traitées par des techniques de contrôle et de redémarrage, consis-
tant à enregistrer périodiquement des données sur des dispositifs de stockage ([BD93]). Ce-
pendant, cette approche pourrait s’avérer coûteuse en termes de ressources, car elle pourrait
nécessiter un stockage externe ou de la bande passante sur le réseau. L’autre grande approche
pour tolérer les fautes est logicielle (technique de construction des algorithmes tolérants aux
fautes (TCATF) [HA84]). Cette technique exploite les outils des codes correcteurs d’erreurs
algébriques en rajoutant une redondance aux entrées du problème afin de détecter et éven-
tuellement de corriger les erreurs de calcul survenues dans des environnements distribués
parallèles.

Les techniques TCATF [HA84] se caractérisent par le codage des entrées de l’algorithme,
la ré-conception de l’algorithme pour qu’il puisse fonctionner sur les données codées et la
répartition de certaines étapes de calcul entre des nœuds (parallélisation). Dans ce cadre, les
erreurs sont introduites par les nœuds et le modèle d’erreur dépend fortement du schéma de
parallélisation.

Dans cette thèse, nous étudions une technique TCATF pour la résolution des systèmes
linéaires polynômiaux par évaluation-interpolation [BK14, Per14, KPSW17]. Considérons un
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SLP carré, non singulierA(x)y(x) = b(x) et prenons v(x)/d(x) sa solution où pgcd(pgcdi(vi), d) =
1 and d est unitaire. En général, la technique d’évaluation-interpolation pour la résolution des
SLP consiste à évaluer A(x) et b(x) en certains points d’évaluation distincts {α1, . . . , αL},
à la résolution ponctuelle des systèmes évalués y(αj) = A(αj)

−1b(αj) et à l’interpolation et
reconstruction de y(x) = v(x)/d(x) étant données ses évaluations.

L’idée principale de la technique TCATF appliquée à l’évaluation-interpolation est de mo-
difier cette méthode par l’introduction de la redondance, en considérant plus de points d’éva-
luation par rapport au nombre nécessaire pour le cas général. Dans ce scénario, l’étape d’éva-
luation de la technique classique d’évaluation-interpolation est réalisée par différents nœuds
(parallélisation). Ces nœuds introduisent éventuellement des erreurs et calculent y(αj) 6=
v(αj)/d(αj).

Le problème de résoudre un système linéaire polynomial avec erreurs (SLPaE) [BK14,
Per14, KPSW17] est alors le problème de la récupération du vecteur des fractions rationnelles
v/d, qui est une solution du SLP, étant données ses évaluations où certaines pourraient être
erronées. Dans ce cas également, la technique de résolution de ce problème peut être considérée
comme une RRS.

Nos contributions

Nos contributions concernent un résultat d’unicité sur la RRS [GLZ20b] et d’autres résul-
tats [GLZ19, GLZ20a] sur le SLPaE et son problème plus général de l’interpolation de Cauchy
simultanée avec erreurs (ICSaE).

Unicité générique de RRS. Une première contribution nouvelle développée dans cette
thèse concerne le problème général de la RRS.

Problème 2. Reconstruction Rationnelle Simultanée
Entrée : a1, . . . , an ∈ K[x],u = (u1, . . . , un) ∈ K[x]n, où deg(ui) < deg(ai) et

1 ≤ Ni ≤ deg(ai), 1 ≤ D ≤ min1≤i≤n{deg(ai)}
Sortie : (v, d) = (v1, . . . , vn, d) ∈ K[x]n+1 tel que

[vi = dui mod ai]1≤i≤n, deg(vi) < Ni, deg(d) < D. (1.5)

Dans le Chapitre 3 nous prouvons (Théorème 3.2.1) que si

n∑
i=1

deg(ai) =
n∑
i=1

Ni +D − 1,

pour quasiment tous les instances u, la RRS admet une solution unique. Notre approche pour
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prouver le Théorème 3.2.1 consiste à étudier les degrés en ligne d’un K[x]-module particulier, le
module de relation lié à une matrice spécifique. En effet, les solutions de RRS sont des éléments
de ce module de relation avec degrés en ligne décalés, où les décalages sont nécessaires pour
intégrer les contraintes de degré. Dans le cas d’unicité, il n’y a qu’un seul élément d’une base
du module de relation avec des degrés en ligne négatifs. Cela représente un outil central pour
vérifier l’unicité de la RRS. En effet, dans le Théorème 3.2.1 nous prouvons que pour quasiment
toutes les instances du problème (instances génériques) il n’y a qu’un seul générateur avec
des degrés en ligne décalés négatifs.

Avant de prouver ce théorème, nous prouvons un résultat sur le degré en ligne générique
des modules de relation liés á des matrices générales (Section 3.1, Corollaire 3.1.2). Des
travaux précédents ont étudié les degrés en ligne génériques de différents K[x]-modules : e.g.
les modules des récurrences vectorielles d’une suite de matrices scalaires [Vil97] ou pour le
noyau d’une matrice polynomiale de dimensions spécifiques [JV05]. Les degrés génériques
apparaissent également comme des dimensions de blocs d’une forme de Hessenberg décalée
[PS07]. Dans tous ces cas, aucun décalage n’est pris en compte. Nous prouvons notre résultat
pour tous décalages et pour tous modules de relation en reformulant et en adaptant certaines
des techniques introduites dans les articles mentionnés ci-dessus.

Interpolation de Cauchy Simultanée avec Erreurs. La interpolation de Cauchy si-
multanée avec erreurs (ICSaE) consiste dans la reconstruction d’un vecteur de fractions ra-
tionnelles v(x)/d(x) de degrés bornés, étant données ses évaluations dont certaines pourraient
être erronées. Il s’agit d’un problème plus général que la résolution du SLPaE défini ci-dessus.

Dans [GLZ19], à la suite de [Per14], nous observons que ce problème est l’extension ration-
nelle du problème de décodage des codes RSE. En effet, dans ce cas nous voulons récupérer
un vecteur de fractions rationnelles au lieu d’un vecteur de polynômes.

PROBLÈMES

RRS - équation clé

REDUCTION DES PROBLÈMES

ISaE

décodage  
codes RSE 

⊆ ICSaE

Ce lien nous permet d’étendre la même technique basée sur l’interpolation [BKY03] à ce
cas rationnel, en réduisant ICSaE à une RRS appliqué aux instances u de la forme u(αj) =
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v(αj)/d(αj) + ej . Les résultats précédents sur ce sujet [BK14, KPSW17], plus liés au cas
spécifique du SLPaE, ont montré qu’avec

LBK = N +D − 1 + 2τ (1)

où τ ≥ |E| := |{j | ej 6= 0}| est une borne sur le nombre d’erreurs, alors nous avons l’unicité de
la RRS. Ce nombre de points coïncide avec LRR, obtenu en appliquant le RR avec contraintes
de degrés N + τ , D+ τ composant par composant. Dans [GLZ19], en soulignant la similarité
entre ce problème et le décodage des codes RSE, nous proposons l’Algorithme 6 pour la
résolution de ICSaE qui réduit ce nombre de points à

LGLZ1 = N +D − 1 + τ + dτ/ne. (2)

Cependant, comme pour le cas des codes RSE, puisque nous sommes en dessous du nombre
de points d’évaluation qui garantit l’unicité de la RRS, cet algorithme pourrait échouer pour
quelques erreurs spécifiques.

Résolution d’un Système Linéaire Polynomial avec Erreurs. Le ICSaE est un cas
général de SLPaE, dans lequel on veut récupérer un vecteur de fractions rationnelles ayant le
même dénominateur, qui est une solution d’un SLP A(x)y(x) = b(x). Pour cette raison, dans
ce cas, nous pouvons rajouter le degré de la matrice de coefficients A et du vecteur b comme
entrées supplémentaires. Ainsi, de la même manière que ICSaE, SLPaE peut également être
réduit à une reconstruction rationnelle simultanée appliqué à des instances de la forme u où
u(αj) = v(αj)/d(αj) + ej et v(αj)/d(αj) est une solution d’un SLP A(x)y(x) = b(x). Par
conséquent, nous pouvons obtenir les mêmes résultats sur le nombre de points d’évaluation
d’avant.

D’ailleurs dans [KPSW17], Kaltofen et al. ont montré qu’avec

L ≥ min{LBK , LKPSW } (3)

points d’évaluation, où LBK = N +D − 1 + 2τ (comme dans (1)) et

LKPSW = max{deg(A) +N, deg(b) +D}+ 2τ (4)

la RRS correspondant a une solution unique.

Dans cette thèse, nous présentons un résultat, issu d’un travail en cours [GLZ20a] qui
réduit ce nombre à

L ≥ min{LGLZ1, LGLZ2} (5)
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points d’évaluation, où LGLZ1 = N +D − 1 + τ + dτ/ne (comme dans (6)) et

LGLZ2 = max{deg(A) +N, deg(b) +D}+ τ + dτ/ne. (6)

Cependant, même dans ce cas, notre algorithme (une version étendue de l’Algorithme 6) peut
échouer pour quelques erreurs spécifiques.

Techniques de terminaison anticipée. Nous concluons en présentant la dernière contri-
bution de cette thèse, qui fait partie d’un travail en cours (certains résultats se trouvent dans
[GLZ20a]).

Considérez le problème SLPaE. Nous observons que tous les nombres de points d’évalua-
tion introduits jusqu’à présent LBK , LKPSW , LGLZ1, LGLZ2 dépendent fortement des bornes
N (respectivement D) de degrés du numérateur (dénominateur) de la solution qu’on cherche
à reconstruire et de la borne sur le nombre d’erreurs τ . Ainsi, une surestimation des degrés
réels et du nombre réel d’erreurs (que nous ne connaissons pas a priori) pourrait augmenter
considérablement le nombre de points d’évaluation par rapport au nombre dont nous avons
réellement besoin. Une stratégie classique [KPSW17] pour surmonter cette limite consiste à
effectuer une technique de terminaison anticipée qui, à partir d’un nombre de points d’éva-
luation petit, incrémente itérativement ce nombre jusqu’à ce qu’une certaine valeur minimale
soit atteinte. Nous soulignons que cette technique vise à diminuer éventuellement le nombre
de points d’évaluation, afin d’accélérer les calculs.

Dans cette thèse, nous présentons aussi un algorithme de terminaison anticipée (Algo-
rithme 11) qui réduit le nombre d’évaluations par rapport aux résultats précédents [KPSW17].
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Introduction

This dissertation deals with a Computer Algebra problem especially focusing on its appli-
cation in Algebraic Coding Theory.

Computer algebra refers to the scientific domain aiming to the analysis and development of
algorithms for solving mathematical problems and manipulating algebraic tools. It involves
computations in algebraic structures, such as groups and fields, polynomial rings, rational
function fields etc.

Coding theory has its origin in the pioneering publications by Shannon [Sha48] and Ham-
ming [Ham50]. Shannon formalized the concept of reliable communication over a noisy chan-
nel. He also determined a limit on the amount of redundancy which should be added to
the transmitted information to provide a nearly error-free transmission (this results is known
as the Noisy Channel Coding Theorem). However, the proof of the Noisy Channel Coding
Theorem is non-constructive and it is not clear how to construct error-correcting codes which
actually achieve the Shannon limit. Hamming proposed one of the first class of error correct-
ing codes and introduced the Hamming distance notion, a metric which measures the distance
between codewords by counting the number of positions in which they disagree.

Algebraic Coding Theory is a subfield of coding theory, where all the properties of codes
are expressed in algebraic terms. It also employs classical and modern algebraic techniques
for the design of error correcting codes.

The two disciplines of computer algebra and algebraic coding theory can be combined:
algebraic problems related to error correcting codes can be efficiently solved by computer
algebra algorithms. A classical example which highlights this interaction involves a famous
and widespread class of algebraic error correcting code: the Reed-Solomon (RS) codes [RS60].
RS codes have several remarkable properties which make them widely used in practical ap-
plications. For instance they are maximum distance separable (MDS), i.e. they attain the
Singleton bound [Sin64] on the minimum distance with equality. From an algebraic point
of view, RS codes can be seen as the evaluations of polynomials of bounded degrees. The
decoding of a RS codeword consists in the recovering of a bounded degree polynomial given
its evaluations, some of which being erroneous (the interpolation with errors problem). Both
classical decoding techniques for RS codes, the interpolation-based [BW86] and the syndrome-
based [Ber68], can be seen as a classical computer algebra problem: the rational function
reconstruction (RFR). This leads to the construction of efficient bounded minimum distance
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(BMD) decoders which basically differ in the algorithm chosen to solve the corresponding
RFR ([BW86, Gao03, SKHN75, Ber68]).

In this thesis we study a computer algebra problem, i.e. the Simultaneous Rational Func-
tion Reconstruction (SRFR), focusing on the conditions on its parameters in order to guaran-
tee the uniqueness of its solution. We also analyze its impact on the related algebraic coding
theory problems.

SRFR refers to the problem of recovering a vector of rational functions with the same
denominator, i.e. v/d = (v1/d, . . . , vn/d), given ui = vi/d mod ai and the degree bounds
deg(vi) < Ni, deg(d) < D. SRFR generalizes the interpolation problem when the a′is satisfy
a1 = . . . = an =

∏
(x − αj) for distinct αj , since in this case the modular equations ui =

vi/d mod ai become equations on the evaluations ui(αj) = vi(αj)/d(αj). For the sake of
simplicity in this part we focus on the interpolation version of SRFR and we assume that
N1 = . . . = Nn = N . Besides, we remark that in this work we study also the general case.

In this thesis we study SRFR focusing on the number of evaluation points needed for the
uniqueness of this problem solution. By uniqueness we mean that all the vectors of rational
function which are solutions of SRFR are equal, or in other terms, that any solution (v, d)

is a polynomial multiple of a minimal one. In order to determine SRFR solutions, as for
the classical RFR problem, we focus on the weaker linear problem of recovering (v, d) which
satisfies vi(αj) = ui(αj)d(αj) and such that deg(vi) < N and deg(d) < D.

In order to solve SRFR we can apply the classical RFR componentwise. With L ≥ LRFR =

N +D − 1 evaluation points, we have the uniqueness of SRFR.
Besides, the peculiarity of SRFR lies in the fact that the common denominator feature

reduces the number of unknowns of the homogeneous linear system related to this linear
problem, decreasing the number of evaluation points, i.e. LSRFR = N + (D − 1)/n, needed
to ensure the existence of a nontrivial solution.

However, there are instances u of SRFR for which this number of evaluation points is
not sufficient to guarantee uniqueness (as shown in Example 1.2.1). In this dissertation we
study instances which lead to uniqueness, assuming that the number of evaluation points is
L = LSRFR. The two contributions which motivates our analysis in this direction derived
from two applications of SRFR: the polynomial linear system solving and the decoding of
interleaved Reed-Solomon (IRS) codes.

The solution of a square, nonsingular system of linear equations with polynomial co-
efficients, i.e. Polynomial Linear System (PLS) is a vector of rational functions with the
same denominator, by the Cramer’s Rule. Some of the techniques for PLS solving, e.g. the
evaluation-interpolation, are based on an SRFR. In this framework, the reduction of the num-
ber of evaluations has a direct impact on the complexity of the resolution algorithms which
depends on this number. A significant contribution in this application context derives from
[OS07]. In this article, the authors proved that with the number of evaluation points derived
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from the common denominator constraint and under some specific assumptions on the degree
bounds, SRFR admits a unique solution.

Another important result comes from algebraic coding theory. It is related to IRS codes.
In general interleaving is an encoding construction which can be applied to different error
correcting codes, used in setting of burst errors, i.e. errors extended to consecutive symbols.
Here we consider this construction applied to RS codes. More specifically, an l-IRS code is
a direct sum of l RS codes with the same evaluation points. Therefore, they can be seen as
evaluations of vector of polynomials of bounded degrees. In this specific setting, a burst error
is an error which corrupts the same evaluation point position in all the l codewords. From an
algebraic point of view, decoding an IRS codeword is the problem of recovering a vector of
polynomials given its evaluations, some of which erroneous (Simultaneous Rational Function
with Errors).

In recent years, the decoding problem of IRS codes has achieved a lot of attention, e.g.
[BKY03, BMS04, SSB07, SSB09, SSB10, PR17]. Indeed, IRS codes are interesting because
they can be decoded beyond half of the minimum distance. For this reason all the decoders
proposed in these articles are partial BD decoders, in the sense they can fail for few error
patterns. Furthermore, the decoding radius of these decoders reaches the Shannon’s limit
assuming that the interleaving parameter l tends to infinity.

The interpolation-based technique for IRS codes decoding ([BKY03, BMS04]) reduces the
decoding problem to an SRFR applied to instances u such that u(αj) = v(αj) + ej where
ej is the error vector. Indeed, [BKY03] proved that with the number of evaluations derived
from the common denominator constraint, for all vectors of polynomials v and for almost all
errors e, the SRFR problem applied to instances u such that u(αj) = v(αj) + ej admits a
unique solution. This result, even if in a different scenario with errors, motivates our study
about instances leading to uniqueness of the general SRFR problem.

PROBLEMS

IwE

decoding  
RS codes 

SIwE

decoding  
IRS codes 

⊆

RFR - key equation SRFR - key equation

PROBLEMS REDUCTIONS

In this document we also study and present another application of SRFR, concerning the
construction of fault-tolerant algorithms. In this framework, we see how the error correcting
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codes tools are used for an application setting which goes beyond the classical communication
scenario.

With the advent of High Performance Technologies (supercomputers), composed of thou-
sands of computing nodes networked together to provide very high performances, the problem
of correcting faults introduced by these nodes becomes increasingly relevant. These faults can
be handled by checkpoint-restart techniques, consisting in periodically saving data onto stor-
age devices ([BD93]). However this approach could by expensive in terms of resources since it
could require external storage like memories or network bandwidth. An alternative approach
consists in the application of the algorithm-based fault tolerance (ABFT) technique [HA84].
This technique exploits the algebraic tools of error correcting codes adding redundancy to
the problem’s inputs in order to detect and possibly correct computational errors occurred in
parallel-distributed environments.

ABFT techniques [HA84] are characterized by the encoding of inputs of the algorithm,
the redesign of the algorithm to ensure that it can operate on the encoding data and the
distribution of some computation steps among computational nodes. In this setting, errors
are introduced by nodes and the error model strongly depends on the parallelization scheme.

In this thesis we study an ABFT techique for PLS solving by evaluation-interpolation
[BK14, Per14, KPSW17]. Consider a square, non singular PLS A(x)y(x) = b(x) and let
v(x)/d(x) be its solution, where gcd(gcdi(vi), d) = 1 and d is monic. The evaluation-
interpolation technique for PLS solving consists in the evaluation of A(x) and b(x) at some
distinct evaluation points {α1, . . . , αL}, the pointwise resolution of the evaluated systems
y(αj) = A(αj)

−1b(αj) and the interpolation and reconstruction of y(x) = v(x)/d(x) given
its evaluations.

The main idea of the ABFT technique applied to the evaluation-interpolation is to modify
this method by the introduction of redundancy, considering more evaluation points compared
to the number we need in the general case. In this scenario the evaluation step of the classic
evaluation-interpolation technique is performed by different nodes (parallelization). These
nodes may possibly introduce some errors and compute y(αj) 6= v(αj)/d(αj).

The polynomial linear system with errors [BK14, Per14, KPSW17] is then the problem
of recovering the vector of rational function v/d, which is a solution of our PLS, given its
evaluations where some could be erroneous. Also in this case the resolution technique of this
problem can be seen as an SRFR.

Our contributions

Our contributions concern a uniqueness result on SRFR [GLZ20b] and some other results
[GLZ19, GLZ20a] about the PLSwE and the more general problem of simultaneous Cauchy
interpolation with errors (SCIwE).
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On the generic uniqueness of SRFR. A first new contribution developed in this thesis
is about the general SRFR problem.

Problem 2. Simultaneous Rational Function Reconstruction
Input: a1, . . . , an ∈ K[x],u = (u1, . . . , un) ∈ K[x]n, where deg(ui) < deg(ai)

and 1 ≤ Ni ≤ deg(ai), 1 ≤ D ≤ min1≤i≤n{deg(ai)}
Output: (v, d) = (v1, . . . , vn, d) ∈ K[x]n+1 such that

[vi = dui mod ai]1≤i≤n, deg(vi) < Ni, deg(d) < D. (1.5)

In Chapter 3 we prove (Theorem 3.2.1) that if

n∑
i=1

deg(ai) =
n∑
i=1

Ni +D − 1,

then for almost all instances u, SRFR admits a unique solution. Our approach to prove
Theorem 3.2.1 consists in the study of the row degrees of a particular K[x]-module, the relation
module related to a specific matrix. Indeed, we observe that solutions of SRFR are elements
of this relation module with negative shifted row degrees, where the shifts are necessary to
integrate the degree constraints. In the uniqueness case there is only one element of a basis
of the relation module with negative row degrees. This represents a useful tool to check the
uniqueness of SRFR. Indeed, in Theorem 3.2.1 we prove that for almost all instances (generic
instances) there is only one generator with negative shifted row degree.

Before proving this theorem, we prove a general result about generic row degrees of relation
modules related to general matrices (Corollary 3.1.2). Previous works studied generic row
degrees of different K[x]-modules: e.g. the module of generating polynomials of a scalar matrix
sequence [Vil97] or for the kernel of a polynomial matrix of specific dimensions [JV05]. The
generic degrees also appear as dimensions of blocks of a shifted Hessenberg form [PS07].
However, the link with the degrees of a module is unclear. In all these cases any shift
is considered. We prove our result for any shift and for any relation module also by re-
elaborating and adapting some of the techniques introduced in the articles mentioned above.

Simultaneous Cauchy interpolation with errors. The simultaneous Cauchy interpola-
tion with errors (SCIwE) is the problem of recovering a vector of rational functions v(x)/d(x)
of bounded degrees, given its evaluations where some could be erroneous. It is a more general
problem than the PLSwE defined above.

In [GLZ19], following [Per14], we observe that this problem is the rational extension of the
problem of decoding IRS codes. Indeed, in this case we want to recover a vector of rational
functions instead of a vector of polynomials.
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SRFR - key equation

PROBLEMS REDUCTION

SIwE

decoding  
IRS codes 

⊆ SCIwE

This link allows us to extend the same interpolation-based technique [BKY03] to this
rational case, reducing the problem to an SRFR applied to instances u of the form u(αj) =

v(αj)/d(αj) + ej . Previous results about this topic [BK14, KPSW17], more related to the
specific case of PLSwE, showed that with

LBK = N +D − 1 + 2τ (7)

where τ ≥ |E| := |{j | ej 6= 0}| is a bound on the number of errors, then we have uniqueness
of SRFR. This number of points coincides with LRFR, obtained by applying RFR component-
wise. In [GLZ19], by stressing the similarity between this problem and the decoding of IRS
codes we propose Algorithm 6 for SCIwE solving which reduces this number of points to

LGLZ1 = N +D − 1 + τ + dτ/ne. (8)

However, as for the IRS case, since we are below the number which guarantees uniqueness of
SRFR, this algorithm could fail for a few error patterns.

Polynomial Linear System Solving with Errors. The SCIwE is a general case of
PLSwE, in which we want to recover a vector of rational functions with the same denomina-
tor, which is a solution of a PLS A(x)y(x) = b(x). For this reason, in this case we can add
the degrees of the coefficient matrix A and of the vector b as additional inputs. So, in the
same way as SCIwE also PLSwE can be reduced to an SRFR applied to instances of the form
u where u(αj) = v(αj)/d(αj) + ej and v(αj)/d(αj) is a solution of a PLS A(x)y(x) = b(x).
Therefore, we have the same previous results about the number of evaluation points.

Besides in [KPSW17], Kaltofen et al. showed that with

L ≥ min{LBK , LKPSW } (9)
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evaluation points, where LBK = N +D − 1 + 2τ (as in (7)) and

LKPSW = max{deg(A) +N, deg(b) +D}+ 2τ, (10)

then the corresponding SRFR has a unique solution.
In this thesis we present a result, derived from a work in progress [GLZ20a] which reduces

this number to
L ≥ min{LGLZ1, LGLZ2} (11)

evaluation points, where LGLZ1 = N +D − 1 + τ + dτ/ne (as in (8)) and

LKPSW = max{deg(A) +N, deg(b) +D}+ τ + dτ/ne. (12)

However, also in this case our algorithm (an extended version of Algorithm 6) can fail for a
few fractions of errors.

Early termination techniques. We conclude by presenting the last contribution of this
work, which is still a work in progress (some results are in [GLZ20a]).

Consider the PLSwE problem. We observe that all the number of evaluation points
introduced so far LBK , LKPSW , LGLZ1, LGLZ2 strongly depends on the bounds on the degrees
of the numerators and the denominator of our vector solution and on the bound on the number
of errors τ . So, an overestimation of the real degrees and of the real number of errors (which we
do not know a priori) could significantly increase the number of evaluation points compared to
the number we really need. A classical strategy [KPSW17] to overcome this limit consists in
performing an early termination technique which, starting from a minimal value of evaluation
points, iteratively increment this number until a result is found. We point out that this
technique aims at possibly decreasing the number of evaluation points, in order to speed up
the computations.

In this thesis we also present an early termination algorithm (Algorithm 11) which decrease
the number of evaluations to compared to previous results in [KPSW17].
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Outline of the thesis

This dissertation is structured as follows.

— We start the first chapter with the introduction of the rational function reconstruction
(Section 1.1) problem with a focus on the conditions of parameters which ensure unique-
ness. We then generalize this problem to its vector version and we then present the main
problem of this work: the simultaneous rational function reconstruction (Section 1.2).
Then, in Section 1.3 we introduce some algebraic tools as K[x]-modules, shifted row
degrees, relation modules, reduced bases, etc. which we use to check the uniqueness of
SRFR. Finally in Section 1.4 we see how the polynomial linear system solving can be
reduced to the SRFR problem.

— Chapter 2 is devoted to the introduction of basic coding theory notions (Section 2.1),
especially focusing on the famous and widespread family of Reed-Solomon codes. In
particular, we introduce some decoding techniques for RS codes and we see how these
techniques reduce the decoding problem to a rational function reconstruction.
Finally we move on to interleaved RS codes (Section 2.3), which are obtained by applying
the interleaving technique on RS codes. This technique is applied in burst error settings.
We then introduce a technique for IRS decoding and we see that this technique also
consists in an SRFR.

— Chapter 3 is devoted to the presentation of our article [GLZ20b]. In detail, we present
our result about the generic uniqueness of SRFR, under the assumption on parameters
derived from the common denominator constraint. This chapter is divided in two parts.
In the first section we present some general results about shifted row degrees of general
relation modules. In the second part we transpose all these results in the specific case
of SRFR.

— In Chapter 4 we focus on an algorithm-based fault tolerant technique (Section 4.1) for
polynomial linear system solving by evaluation interpolation. Indeed, we see how this
technique leads to the problem of recovering the solution of a PLS given its evaluations
where some could be erroneous, which is the polynomial linear system solving with
errors (PLSwE). This problem is an application of a more general problem, i.e. the
simultaneous Cauchy interpolation with errors (SCIwE), which is a natural extension
of SRFR to an error context.
SCIwE can be seen as an extension of the problem of decoding IRS codes to rational
functions and we can reduce this problem to an SRFR. In this chapter we present our
results of [GLZ19] and new ones, which come from a work in progress [GLZ20a]. We
compare them to the current state of the art about this topic [BK14, Per14, KPSW17].
Finally in Section 4.2 we present a new early termination algorithm which possibly
reduces the number of evaluation points needed to guarantee uniqueness of SRFR and
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so to uniquely recover the solution of SCIwE.

A short summary of the main results of this document and further research tracks completes
this document.
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CHAPTER 1
Simultaneous Rational Function Reconstruction

Contents
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Rational function reconstruction is a classic computer algebra problem, whose main aim
is to reconstruct a rational function given its remainder modulo a polynomial. This problem
can be straightforwardly generalized to its vector version, whose goal is to reconstruct a
vector of rational functions. In this thesis we especially focus on the particular case of the
vector rational function reconstruction in which all the rational functions share the same
denominator: the simultaneous rational function reconstruction problem.

In this chapter, we present the current state of the art of these problems. All the re-
sults of this chapter have been reinterpreted with a focus on the condition on the parameters
which guarantees the uniqueness of the solution. Indeed, we explain how the common de-
nominator assumption impacts that condition, with interesting consequences especially from
an application point of view.

1.1 Rational Function Reconstruction

In this section we define the rational function reconstruction, i.e. the problem of recon-
structing a rational function whose numerator and denominator degrees are bounded, given
its remainder modulo a polynomial. We also introduce the notion of uniqueness of the solu-
tion, which is crucial for this work, explaining the condition that guarantees such a property.
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Finally, in the uniqueness case we explain how this problem can be solved using the Extended
Euclidean Algorithm.

Definition 1.1.1 (Rational function reconstruction). Let K be a field, a, u ∈ K[x] such that
deg(u) < deg(a) and 1 ≤ N,D ≤ deg(a). The rational function reconstruction (RFR) is the
problem of finding a couple of polynomials (v, d) ∈ K[x]2 such that,

gcd(d, a) = 1 and v

d
= u mod a, deg(v) < N, deg(d) < D. (1.1)

Remark 1.1.1. To be rigorous, we observe that in (1.1) we consider the unique monic gcd
of d(x) and a(x). 

This problem is also known as:

— Padé approximation: if a = xL,

— Cauchy interpolation: if a =
∏L
i=1(x − αi), where the {α1, . . . , αL} are L ≥ 1 pairwise

distinct elements of the field K. Note that in this case, by the Chinese Remainder
Theorem, the equation (1.1) becomes an equation on the evaluations

d(αi) 6= 0 and v(αi)

d(αi)
= u(αi), deg(v) < N, deg(d) < D. (1.2)

for any 1 ≤ i ≤ L.

— Rational Hermite interpolation: if a =
∏L
i=1(x − αi)

ei , where the {α1, . . . , αL} are
pairwise distinct elements of the field K and the ei are nonnegative integers, called
multiplicities.

Let us assume that
deg(a) = N +D − 1. (1.3)

In this case, equation (1.1) may have no solution, as shown in the next example.

Example 1.1.1. Let a = x3, u = x2 − 1 and N = D = 2. We want to reconstruct (v, d)

which satisfies (1.1). Let d = d1x+ d0. Since d has to be a unit modulo a, the constant term
d0 6= 0. Hence

v = (d1x+ d0)(x
2 − 1) = d0x

2 − d1x− d0 mod x3

and deg(v) = 2 which contradicts the degree constraint deg(v) < 2 = N . Hence in this case,
equation (1.1) does not admit a nonzero solution. 

Nevertheless, under assumption (1.3), if a solution exists, it is unique, i.e. the correspond-
ing rational function is unique. In detail, if there exist (v1, d1) and (v2, d2), both solutions of
(1.1) then

v1
d1

=
v2
d2

mod a =⇒ a|(v1d2 − v2d1).
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Since the degree of the polynomial v1d2 − v2d1 is strictly smaller than the degree of a, it is
the zero polynomial. Therefore v1

d1
= v2

d2
.

Remark 1.1.2. We observe that:

1. if deg(a) ≥ N+D−1 we still have the uniqueness of the rational solution. Indeed, if there
exist (v1, d1) and (v2, d2) solutions of (1.1) then the degree of v1d2−v2d1 is smaller than
the degree of a, which implies the equality of the two corresponding rational functions;

2. if deg(a) < N+D−1, the uniqueness is not always guaranteed, as shown in the following
example.



Example 1.1.2. Let K = F11, a = x4+3x3+5x2+8x+1, u = 6x3+7x2+4x+2 and N = 3,
D = 3. Note that deg(a) = 4 < N +D − 1 = 5. Both (v1, d1) = (4x + 7, 7x2 + x + 1) and
(v2, d2) = (8x2 +4x+1, 9x) are solutions of (1.1) and their corresponding rational functions
are different. 

We now observe that if (v, d) ∈ K[x]2 is a solution of the RFR problem (1.1), it is also a
solution of the weaker problem,

v = du mod a, deg(v) < N, deg(d) < D. (1.4)

Unlike (1.1), if (1.3) holds, the weaker problem (1.4) always admits a nonzero solution (v, d) ∈
K[x]2. Indeed, a solution of (1.4) belongs to the right kernel of the homogeneous linear system
associated to the equation (1.4). This homogeneous linear system has deg(a) equations and
N +D unknowns, which are the coefficients of the polynomials of the solution that we want
to recover. Since deg(a) = N + D − 1, by the Rank-Nullity Theorem, the dimension of the
right kernel is at least 1. Hence it is nontrivial, meaning that (1.4) always admits a nonzero
solution (v, d). Furthermore, the uniqueness of the rational solution is still guaranteed: let
(v1, d1) and (v2, d2) be solutions of (1.4), then a divides v1 − d1u and v2 − d2u and so it
divides d2(v1 − d1u) − d1(v2 − d2u) = v1d2 − v2d2. With the same argument as before, we
can prove that the polynomial v1d2 − v2d1 is zero. This implies that any solution of (1.4) is
a polynomial multiple of a minimal solution and we will see later (Theorem 1.1.1) how to
compute such a solution. Therefore, the solution space is a subset of a free K[x]-module of
rank 1 (see Definition 1.3.1).

Remark 1.1.3. If deg(a) < N +D−1 the uniqueness of the rational solution is not anymore
guaranteed. Indeed by the Rank-Nullity Theorem, the dimension of the right kernel is greater
than 2, meaning that there could exist two linearly independent solutions of the problem
(1.4). 
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The weaker problem (1.4) is easier to study for its linearity. For this reason, we refer to
RFR as this version of the problem,

Problem 1. Rational Function Reconstruction
Input: a, u ∈ K[x], with deg(u) < deg(a) and 1 ≤ N,D ≤ deg(a)
Output: (v, d) ∈ K[x]2 such that v = du mod a, deg(v) < N, deg(d) < D.

1.1.1 RFR by the Extended Euclidean Algorithm

From now on we suppose that (1.3) holds, i.e. RFR always admits a unique solution. A
classic approach to solve the RFR problem consists in using the Extended Euclidean Algorithm
(EEA) (Algorithm 1). Recall that, given two polynomials f, g ∈ K[x], EEA returns a gcd(f, g)
and the Bézout coefficients for f, g, i.e. the polynomials s, t ∈ K[x] such that sf + tg =

gcd(f, g).

Algorithm 1: Extended Euclidean Algorithm, EEA(f, g)
Input : f, g ∈ K[x]
Output: gcd(f, g) = r and the Bézout coefficients s, t ∈ K[x] for f, g.

1 r0  f ; s0  1; t0  0; r1  g; s1  0; t1  1; i 1;
2 while ri 6= 0 do
3 qi  ri−1 quo ri;
4 ri+1  ri−1 − qiri;
5 si+1  si−1 − qisi;
6 ti+1  ti−1 − qiti;
7 i! i+ 1;
8 r  ri−1; s si−1; t ti−1;
9 return r, s, t

An important property of this algorithm is that the i-th step results si, ti, ri satisfy sif +
tig = ri. This is useful for many computer algebra applications as RFR.

We can now underline the link between the rational function reconstruction and EEA
observing that the congruence of (1.4) implies the existence of a polynomial e such that
v = du + ea. In detail, the following theorem shows that some intermediate results of the
Extended Euclidean Algorithm are solutions of RFR.

Theorem 1.1.1. Let a, u,N,D be the inputs of the RFR problem. Let rj , sj , tj be the output
of the j-th step of EEA with input a, u, where j is the smallest integer such that deg(rj) < N .
Then, (rj , tj) is a solution of RFR and if gcd(rj , tj) = 1 it is also a solution of (1.1). Moreover
(rj , tj) is the minimal solution, i.e. any other solution is a polynomial multiple of this one.
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Proof. We first observe that rj = sja + tju = tju mod a. By [GG13, Lemma 3.15(b)], by
the minimality of j and since deg(a) = N + D − 1 (equation (1.3)), we can conclude that
deg(tj) = deg(a)− deg(rj−1) ≤ N +D − 1−N = D − 1 and so (rj , vj) is a solution of RFR.
Moreover, since gcd(rj , tj) = gcd(a, tj), if rj and tj are coprime then tj is invertible modulo
a and so (rj , tj) is a solution of (1.1).

We now prove the minimality of such a solution. Let (v, d) be a solution of RFR, then
there exists e ∈ K[x] such that v = du + ea. On the other hand, also (rj , tj) is a solution of
RFR and rj = sja+ tju. So, since deg(a) = N +D − 1 (1.3), then

0 = vtj − rjd = (du+ ea)tj − (sja+ tju)d = eatj − sjad.

Now, tj divides sjd and since gcd(tj , sj) = 1, then tj divides d. So, there exists p ∈ K[x] such
that d = ptj .

Recall that vtj = rjd and so by replacing d we get vtj = rjptj and we can conclude that
v = prj .

In conclusion, we can derive the following Algorithm based on EEA to solve RFR using
O(deg(a)2) arithmetic operations in the field K ([GG13, Theorem 3.16]). There are some
other strategies based on the half-gcd computation, which improve the complexity of the
EEA to O(M(deg(a)) log(deg(a))) arithmetic operations (see [BCG+17, Section 6.3]), where
M(t) is the classic polynomial multiplication complexity ([BCG+17, Section 2.7]).

Algorithm 2: Rational function reconstruction by EEA, RFREEA(a, u,N)

Input : a, u,N instances of RFR (Problem 1)
Output: (v, d) the minimal degree solution of RFR

1 r0  a; s0  1; t0  0; r1  u; s1  0; t1  1; i 1;
2 while deg(ri) ≥ N do
3 qi  ri−1 quo ri;
4 ri+1  ri−1 − qiri;
5 si+1  si−1 − qisi;
6 ti+1  ti−1 − qiti;
7 i! i+ 1;
8 return ri, ti

1.2 Simultaneous Rational Function Reconstruction

The rational function reconstruction problem can be straightforwardly generalized to its
vector version, in which we want to reconstruct a vector of rational functions. In this section
we introduce the simultaneous rational function reconstruction , i.e. the problem of recon-
structing a vector of rational functions with the same denominator, given their remainders
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modulo some polynomials. We explain how the common denominator feature can be used to
reduce the number of unknowns of the related linear system and how this effect the uniqueness
of the reconstructed solution.

Formally, given a1, . . . , an ∈ K[x], u = (u1, . . . , un) ∈ K[x]1×n where deg(ui) < deg(ai)
and the degree constraints 1 ≤ Ni, Di ≤ deg(ai), the vector rational function reconstruction
(VRFR) is the problem of reconstructing (vi, di) for 1 ≤ i ≤ n such that

vi = diui mod ai, deg(vi) < Ni, deg(di) < D.

In order to solve this problem we can apply RFR componentwise and as we saw in the previous
section, if deg(ai) = Ni +Di − 1 we can uniquely reconstruct the solution.

In this thesis, we focus on the following specific case:

Problem 2. Simultaneous Rational Function Reconstruction
Input: a1, . . . , an ∈ K[x], u = (u1, . . . , un) ∈ K[x]1×n, where deg(ui) < deg(ai)

and 1 ≤ Ni ≤ deg(ai), 1 ≤ D ≤ min1≤i≤n{deg(ai)}
Output: (v, d) = (v1 . . . , vn, d) ∈ K[x]1×(n+1) such that

[vi = dui mod ai]1≤i≤n, deg(vi) < Ni, deg(d) < D. (1.5)

Since solutions of SRFR are solutions of VRFR, then SRFR has a unique solution (if it exists)
whenever

deg(ai) = Ni +D − 1, for any 1 ≤ i ≤ n. (1.6)

We observe that in this case, the unknowns of the homogeneous linear system related to
(1.5) are the coefficients of any polynomial vi and of the polynomial d. So, the number of
unknowns is

∑n
i=1Ni +D while the number of equations is

∑n
i=1 deg(ai). If

n∑
i=1

deg(ai) =
n∑
i=1

Ni +D − 1 (1.7)

SRFR always admits a nonzero solution by the Rank-Nullity Theorem. However, the unique-
ness is not always guaranteed as shown in the following example.

Example 1.2.1. Let K = F17, n = 2, N = 4, D = 5, a1 = a2 =
∏6
i=1(x− 3i) = x6 + 13x5 +

x4 + 15x3 + 11x2 + 9x+ 5, where deg(a) = N + D−1
n = 6 and u = (11x5 + 3x4 + 3x3 + 4x2 +

9x+ 5, 4x4 + 14x3 + 8x2 + 7x+ 14). Then, both

(v1, d1) = (v1,1, v1,2, d) = (13x3 + 2x2 + 14x+ 12, 6x3 + 3x2 + 11x+ 12, x3 + 5x2 + 8x+ 9)

(v2, d2) = (v2,1, v2,2, d) = (16x3 + 12x2 + 4x+ 12, 10x2 + 4x+ 6, 8x4 + 4x2 + 11x+ 1)
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are solutions of SRFR. 

Remark 1.2.1. We now remark that SRFR decreases the number of equations of the corre-
sponding homogeneous linear system up to a factor 2, compared to VRFR of RFR. Indeed,
consider for simplicity N1 = . . . = Nn = N and a1 = . . . = an = a with deg(a) = L. Recall
that if we solve SRFR by applying RFR componentwise (1.3), if

L = N +D − 1 =: LRFR

we have the uniqueness. On the other hand by (1.7), if

L = N + (D − 1)/n =: LSRFR

then SRFR admits a nontrivial solution, but the uniqueness is not anymore guaranteed. We
claim that

LSRFR/LRFR ≥ 1/2 (1.8)

First we observe that

LSRFR/LRFR ≥ 1/2 ⇐⇒ (n− 2)(D − 1) ≤ nN. (1.9)

Then, by our assumptions D − 1 < LSRFR (see Problem 2). So, n(D − 1) < nLSRFR =

nN + (D − 1) and since
(n− 1)(D − 1) < nN

we can deduce that (n− 2)(D − 1) ≤ nN and so (1.8) holds. 

Let u be an instance of the SRFR problem. We denote by Su the set of solutions. We
also denote by s the rank of the K[x]-module spanned by the solutions in Su. In other terms,
all the solutions can be written as a linear combination of s vectors of polynomials with
polynomial coefficients. Note that the case s = 1 corresponds to the uniqueness case.

In the following section we will see that there is a specific way to find these solutions: they
are generated by some rows of a shifted row-reduced basis (Definition 1.3.4) of a particular
K[x]-module, i.e. the relation module (see Subsection 1.3.2).

1.3 The K[x]-module of solutions of SRFR

In this section we explain the link between solutions of SRFR and the relation module. For
this purpose, we introduce useful definitions and recall some results about specific bases of
free K[x]-modules, the shifted reduced basis. We refer to [Nei16] for all notions and historical
references.
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Preliminaries about K[x]-modules. We start by briefly recalling the definition of a mod-
ule [DF04, Section 10.1], which is the generalization to rings of the notion of vector space.

Let R be a commutative ring with identity.

Definition 1.3.1 (R-module). An R-module is a set N together with
1. a binary operation + on N , under which N is an abelian group, and
2. a map R×N −! N denoted by rn, for all r ∈ R and for all n ∈ N which satisfies

(a) (r + s)n = rn+ sn, for all r, s ∈ R, n ∈ N ,
(b) (rs)n = r(sn), for all r, s ∈ R, n ∈ N ,
(c) r(m+ n) = rm+ rn, for all r ∈ R, m,n ∈ N ,
(d) if 1 is the multiplicative identity in R, 1n = n for all n ∈ N .

An R-module N is free if it admits a basis, i.e. a set of linearly independent generators of
N . The rank of N is the cardinality of such a basis. If b1, . . . , br is a basis of N , we denote
N := 〈b1, . . . , br〉.

Definition 1.3.2 (R-submodule). Let N be an R-module. An R-submodule of N is a
subgroup M of N such that rm ∈ M for all r ∈ R and m ∈ M.

Contrary to vector spaces over a field, not every module has a basis. Besides, modules over
Principal Ideal Domains (PID) have some important properties, as stated by the following
two results.

Lemma 1.3.1. Let R be a PID, let N be a free R-module of finite rank ν and let M be a
submodule of N . Then,

1. M is free of rank µ ≤ ν,
2. there exists a basis y1, . . . , yν of N so that a1y1, . . . , aµyµ is a basis of M, where a1, . . . , aµ

are nonzero elements of R with the divisibility relations

a1|a2|. . . |aµ.

Proof. For the proof of this result we refer the reader to [DF04, Theorem 4, Section 12.1].

Theorem 1.3.2 (Invariant Factor Form [DF04, Theorem 5, Section 12.1]). Let R be a PID
and N be a finitely generated R-module. Then N is isomorphic to the direct sum of finitely
many cyclic modules. More precisely,

N ' Rρ ⊕R/(a1)⊕ . . .⊕R/(aµ)

for some integer ρ ≥ 0 and nonzero elements a1, . . . , aµ ∈ R which are not units in R and
which satisfy the divisibility relations

a1|a2|. . . |aν .
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Proof. Let ν be the rank of N and x1, . . . , xν be its basis. Consider the R-module Rν of rank
ν and basis b1, . . . , bν and define the homomorphism π : Rν ! N such that bi 7! xi for all i.
This homomorphism is surjective since x1, . . . , xν is a basis of N . So, by the First Isomorphism
Theorem for modules [DF04, Theorem 4, Section 10.2], we have that Rν/ ker(π) ' N . Now,
by Lemma 1.3.1, there exists a basis y1, . . . yν such that a1y1, . . . , aµyµ is a basis of ker(π),
for some nonzero elements a1, . . . , aµ ∈ R with a1|. . . |aµ. Therefore,

N ' Rν/ ker(π) = (Ry1 ⊕ . . .⊕Ryν)/(Ra1y1 ⊕ . . .⊕Raµyµ).

Now consider the map

θ : Ry1 ⊕ . . .⊕Ryν −! R/(a1)⊕ . . .⊕R/(aµ)⊕Rν−µ

(α1y1, . . . , ανyν) 7−! (α1 mod (a1), . . . , αµ mod (aµ), αµ+1, . . . , αν).

This is a surjective R-module homomorphism. Note that ker(θ) = Ra1y1 ⊕ . . .⊕Raµyµ and
so, by the First Isomorphism Theorema applied to θ we get

N ' R/(a1)⊕ . . .R/(aµ)⊕Rν−µ.

Finally we remark that if a is a unit in R, then the quotient R/(a) = 0 and so in the direct
sum we may remove any of the ai which are units.

Remark 1.3.1 (Uniqueness of the Invariant Factor Form). By the divisibility condition, the
decomposition of Theorem 1.3.2 is unique (see [DF04, Section 12.1]), i.e. if we have

N ' Rρ′ ⊕R/(b1)⊕ . . .⊕R/(bµ′)

for some integer ρ′ ≥ 0 and nonzero b1, . . . , bµ′ which are not units of R and with b1|. . . |bµ′ ,
then ρ′ = ρ, µ = µ′ and (ai) = (bi) for all i.

Moreover, the elements a1, . . . , aµ, defined up to multiplication by units in R, are called
invariants of the R-module N . 

In this thesis we focus on modules over the polynomial ring R = K[x]. Note that, by the
previous lemma, if M is a K[x]-submodule of K[x]ν := K[x]1×ν , it is free of rank µ ≤ ν. Any
basis P of M can be represented by a µ × ν matrix of polynomials over K[x] whose rows
Pj,∗ are the elements of the basis, hence P ∈ K[x]µ×ν . We observe that, in this notation, M
coincides with the row space of P , i.e. M = K[x]1×µP = {λP | λ ∈ K[x]1×µ}.

As it turns out, basis of K[x]-modules are related through unimodular transformations.
Recall that a square matrix U ∈ K[x]µ×µ is unimodular if its determinant is a nonzero

element of the field K.
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Lemma 1.3.3. Let P,R be two bases of M, a K[x]-submodule of K[x]ν of rank µ ≤ ν. Then
P and R are unimodularly equivalents, i.e. there exist U, V ∈ K[x]µ×µ unimodular matrices
such that P = UR and R = V P .

Proof. We observe that each row of P belongs to the row space of R and vice versa. So there
exist U, V ∈ K[x]µ×µ such that P = UR and R = V P . Now, P = UV P which implies that
(Iµ−UV )P = 0, where Iµ is the identity matrix. Since by definition the rows of P are linearly
independent, Iµ − UV = 0 and so det(U)det(V ) = 1. We can then conclude that both U, V

are unimodular.

1.3.1 Row degrees and reduced basis

We start by defining the shifted row degree which extends the notion of degrees for poly-
nomial row vectors.

Definition 1.3.3 (Shifted row degree). Let p = (p1, . . . , pν) ∈ K[x]1×ν be a row vector,
s = (s1, . . . , sν) ∈ Zν a shift and ri := deg(pi) + si for 1 ≤ i ≤ ν. The s-row degree of p is

rdegs(p) = max
1≤i≤ν

(ri).

We denote p = ([r1]s1 , . . . , [rν ]sν ) to stress the shifted degrees of p.

If s = (0, . . . , 0) is the uniform shift, the shifted row degree is simply called row degree.
This definition of shifted row degree is equivalent, up to change of sign, to the notion of

defect introduced in [BL94, Definition 3.1] which is sometimes used in the literature ([OS07]).

Remark 1.3.2. The shifted row degree is particularly useful for the degree constraints rep-
resentation. For instance, consider a row vector p = (p1, . . . , pν) and the degree constraints
n = (n1, . . . , nν) ∈ Zν>0, then

deg(pi) < ni, 1 ≤ i ≤ ν ⇐⇒ rdeg−n(p) < 0. (1.10)



We can easily extend Definition 1.3.3 to polynomial matrices: let P ∈ K[x]µ×ν and s =

(s1, . . . , sν) ∈ Zν , then the s-row degrees of P are rdegs(P ) = (r1, . . . , rµ) where ri :=

rdegs(Pi,∗).

Example 1.3.1. Let P =

(
x2 + 1 x

2x3 + x2 3x2 + 1

)
∈ F7[x]

2×2 and s = (1, 0). Using the nota-

tion of the Definition 1.3.3, we get

P =

(
[3]1 [1]0

[4]1 [2]0

)

38



Note that in this case rdegs(P ) = (3, 4) 

In this work we are interested in some particular bases of K[x]-modules with minimal
shifted row degrees.

Definition 1.3.4 (Shifted row reduced form). Let µ ≤ ν, P ∈ K[x]µ×ν be a full rank
polynomial matrix and s = (s1, . . . , sν) ∈ Zν a shift. Then P is s-row reduced if rdegs(P ) ≤
rdegs(UP ) for all unimodular matrices U ∈ K[x]µ×µ. In this last inequality the row degrees
are sorted in non-decreasing order and then lexicographically compared.

Again, if we consider the uniform shift we can say that the polynomial matrix is simply
row reduced.

Note that since all the bases are unimodularly equivalents, then the shifted row reduced
bases have minimal shifted row degrees. Furthermore, this notion is invariant under permu-
tations of the rows and we can conclude that all shifted row reduced basis have the same row
degree up to permutation.

Given t = (t1, . . . , tν) ∈ Zν , we denote by Xt the diagonal matrix whose entries are the
monomials xt1 , . . . , xtν .

Definition 1.3.5 (Shifted Leading Matrix). Let µ ≤ ν, P ∈ K[x]µ×ν a full rank polynomial
matrix and s = (s1, . . . , sν) ∈ Zν a shift. The s-leading matrix of P , LMs(P ), is the matrix
in K[x]µ×ν whose entries are the coefficients of degree zero of X−rdegs(P )PXs.

The following lemma gives us a more practical method to verify if a basis is s-row reduced.

Lemma 1.3.4 ([Nei16, Theorem 1.11]). Let µ ≤ ν, P ∈ K[x]µ×ν be a full rank polynomial
matrix and s = (s1, . . . , sν) ∈ Zν a shift. Then P is s-row reduced if and only if the s-leading
matrix of P LMs(P ) has full rank.

Example 1.3.2. Let K = F7, s = (0, 2, 1) and

P =

2x4 + 6x3 + x2 + 3x+ 1 5x+ 1 6x2 + 3x

2x3 + 6x2 + 3 6x+ 2 5x+ 1

4x5 + 5x4 + 2x3 + 3x2 2x3 + 3x2 + 3x+ 5 4x4 + 2x3 + x+ 1


Using the notation of Definition 1.3.3,

P =

[4]0 [3]2 [3]1

[3]0 [3]2 [2]1

[5]0 [5]2 [5]1


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The s-leading matrix of P is

LMs(P ) =

2 0 0

2 6 0

4 2 4


which is full rank, hence the basis P is s-row reduced. 

We can now introduce an important property of shifted row reduced bases which is central
for this work.

Proposition 1.3.5 (Predictable degree property). Fix a shift s = (s1, . . . , sν) ∈ Zν . A
polynomial matrix P ∈ K[x]µ×ν is s- row reduced if and only if for all λ = (λ1, . . . , λµ) ∈
K[x]1×µ,

rdegs(λP ) = max
1≤i≤µ

{deg(λi) + rdegs(Pi,∗)} = rdegd(λ)

where d = rdegs(P ).

The proof of this classic proposition can be found in [Nei16, Theorem 1.11]. Note that if
P ∈ K[x]µ×ν is an s-row reduced basis of a K[x]-module M, the latter proposition implies
that any nonzero element p ∈ M has rdegs(p) greater than min1≤i≤µ{rdegs(P )}.

Remark 1.3.3. Consider a shift s ∈ Zν , t ∈ Z and the K-vector space 1 M<t := {p ∈ M |
rdegs(p) < t}. Let R be an s-row reduced basis of M with rdegs(R) = (r1, . . . , rµ). Note
that by Proposition 1.3.5, elements p ∈ M<t are the linear combination (with polynomial
coefficients) of the rows Ri,∗ with rdegs(Ri,∗) = ri < t and so,

dim(M<t) =
∑
ri<t

(t− ri). (1.11)

We now consider the case of the Remark 1.3.2 in which we want to recover an element p

of a K[x]-module whose degrees are bounded by n = (n1, . . . , nν). Then we can consider the
shift s = −n. By the previous considerations t = 0 and we get that

dim(M<0) =
∑
ri<0

(−ri) (1.12)

where (r1, . . . , rµ) are the row degrees of any −n-row reduced basis of M.


As already remarked, shifted reduced basis are invariant under permutation of the rows.
Nevertheless, in this thesis, we need to define shifted row degrees uniquely and not just up
to a permutation. For this reason we introduce shifted ordered weak Popov bases which are
special reduced bases, based on the notion of pivot.

1. Notice that to lighten the notations we omit the shift dependency of the K-vector space M<t.
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Definition 1.3.6 (Pivot). Let p ∈ K[x]1×ν and s ∈ Zν be a shift. The s-pivot index of p
is max{1 ≤ i ≤ ν | rdegs(p) = deg(pi) + si}. The corresponding pi is the s-pivot entry and
deg(pi) is the s-pivot degree of p.

We can naturally extend the notion of pivot to polynomial matrices. Indeed, consider
µ ≤ ν, P ∈ K[x]µ×ν a full rank polynomial matrix and s = (s1, . . . , sν) ∈ Zν a shift. Then
the s-pivot indices are j = (j1, . . . , jµ) and the s-pivot degrees are d = (d1, . . . , dµ) where ji
and di are respectively the s-pivot index and the s-pivot degree of Pi,∗, for 1 ≤ i ≤ µ.

We are now ready to introduce the following notion.

Definition 1.3.7 ((Ordered) weak Popov form). Let µ ≤ ν, P ∈ K[x]µ×ν be a full rank
polynomial matrix and s = (s1, . . . , sν) ∈ Zν a shift. The polynomial matrix P is in

— s-weak Popov form if the s-pivot indices are pairwise distinct,

— s-ordered weak (or quasi) Popov form if the sequence of s-pivot indices is strictly in-
creasing.

Note that if µ = ν and P is in s-ordered weak Popov form, the pivot indices are (1, . . . , µ).
The polynomial matrix of Example 1.3.2 is in s-ordered weak Popov form. We observe that
bases in s-weak Popov form (and in particular in ordered form) are also s-row reduced. First,
any matrix in s-weak Popov form can be transformed into an ordered one by a row permu-
tation. Moreover, the leading matrix of an ordered weak Popov basis is a lower triangular
matrix with nonzero entries on the diagonal (e.g. Example 1.3.2). Hence it is full rank.

Ordered weak Popov bases have a strong degree minimality property that is particularly
useful for this work, stated by the following lemma.

Lemma 1.3.6 ([Nei16, Lemma 1.17]). Let s = (s1, . . . , sν) ∈ Zν be a shift, µ ≤ ν and
P ∈ K[x]µ×ν a full rank polynomial matrix in s-weak Popov form with s-pivot degrees d =

(d1, . . . , dµ). Let p ∈ K[x]1×ν be a nonzero vector in the row space of P with s-pivot index i.
Then, the s-pivot degree of p is at least di.

Note that if P is a basis of M, a K[x]-submodule of K[x]ν of rank ν, and p ∈ M with
s-pivot index i, then by the previous lemma deg(pi) ≥ di, and so rdegs(p) ≥ rdegs(Pi,∗).
Therefore, these bases provide more information about the row degree of elements of the
corresponding K[x]-module than row-reduced ones.

We are now ready for the following result, which states the uniqueness of the s-row degrees
of ordered weak Popov bases.

Proposition 1.3.7. Let s = (s1, . . . , sν) ∈ Zν be a shift, µ ≤ ν and P,R ∈ K[x]µ×ν two full
rank, unimodularly equivalent matrices in s-ordered weak Popov form. Then P and R have
the same s-row degrees.
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Proof. We denote rdegs(P ) := (π1, . . . , πµ) and rdegs(Q) := (ρ1, . . . , ρµ). Note that any row
Pi,∗ of P belongs to the row space of R, for 1 ≤ i ≤ µ. By Lemma 1.3.6, the pivot degree of
Pi,∗, i.e. πi − si, is greater than the pivot degree of Ri,∗, i.e. ρi − si, so rdegs(P ) ≥ rdegs(R).
On the other hand, any row Ri,∗ of R belongs to the row space of P , hence the equality
follows.

Therefore, we can conclude that for ordered weak Popov bases of a K[x]-modules, the
tuples of shifted row degrees and pivot degrees are uniquely defined.

The shifted ordered weak Popov form is a weaker version of the shifted Popov form. The
shifted Popov form is a shifted ordered weak Popov form with some additional constraints on
the pivot entry (that must be monic) and on the degrees of elements of the columns containing
the pivot entry. This notion was firstly introduced in [Pop72] for the uniform shift, in control
theory. Contrary to shifted ordered weak Popov form, the shifted Popov form is canonical:
given a K[x]-module there exists only one basis in shifted Popov form. However since in this
thesis we are only interested in the uniqueness of the row and pivot degrees, we can simply
focus on shifted ordered weak Popov forms.

The classic algorithm [MS03] for computing reduced bases, compute a basis in ordered
weak Popov form.

1.3.2 Solutions of SRFR and Relation Module

Let m ≥ n ≥ 0 and M ∈ K[x]m×n. We consider a K[x]-submodule M of K[x]n of rank n.
We define the K[x]-module homomorphism,

ϕ̂M : K[x]m −! K[x]n/M
p 7−! pM

We denote
AM,M := ker(ϕ̂M ) = {p ∈ K[x]m | pM = 0 mod M}, (1.13)

the relation module whose elements are relations between rows of the matrix M .
By the First Isomorphism Theorem of modules [DF04, Theorem 4, Section 10.2], we get

the injection,
ϕM : K[x]m/AM,M ↪−! K[x]n/M

p 7−! pM
(1.14)

In order to lighten the notations, we denote by ε1, . . . , εm the canonical basis of K[x]m, by
ε′1, . . . , ε

′
n the canonical basis of K[x]n. Moreover, let ei = εi mod AM,M for 1 ≤ i ≤ m.

Remark 1.3.4. By Theorem 1.3.2,

K := K[x]n/M ' K[x]/(a1(x))⊕ . . .⊕K[x]/(an(x))
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for nonzero polynomials ai(x) ∈ K[x], deg(ai(x)) 6= 0 and such that an | . . . | a1. Recall
that such polynomials are the invariants of the module. For this reason, from now on we
assume M := 〈ai(x)ε′i〉1≤i≤n. We also denote Li := deg(ai) for 1 ≤ i ≤ n and observe that
L1 ≥ . . . ≥ Ln.



Let s ∈ Zm be a shift, M ∈ K[x]m×n, where m ≥ n ≥ 0 and suppose that all the invariants
are equals a = a1 = . . . = an. According to the form of the invariants, an s-reduced basis of
the relation module AM,M is called:

1. s-minimal approximant basis of order L for M , if a = xL;

2. s-minimal interpolant basis of order L for M , if a =
∏L
i=1(x− αi), where {α1, . . . , αL}

are pairwise distinct elements of K.

Recall that the row degrees of ordered Weak Popov bases are uniquely defined (Lemma 1.3.6).
Hence it is convenient to give the following,

Definition 1.3.8 (Row and pivot degrees of a relation module). Let s ∈ Zm be a shift and
P be any s-ordered weak Popov basis of AM,M . We shortly call ρ := rdegs(P ) and δ = ρ−s

respectively the s-row degrees and s-pivot degrees of AM,M .
Sometimes, we also denote them ρM and δM to stress their matrix dependency.

We now recall the SRFR problem (Problem 2). Fix an instance of SRFR, i.e. a1, . . . , an
and u = (u1, . . . , un) ∈ K[x]n, where deg(ui) < deg(ai) and the degree constraints Ni, D. We
denote by Su the set of the corresponding solutions (v, d) ∈ K[x]1×(n+1) such that vi = dui

mod ai, deg(vi) < Ni and deg(d) < D.
Let M = 〈ai(x)ε′i〉. The following lemma exploits the link between solutions of SRFR

and elements of the relation module related to a specific matrix. In this case the shift is
determined by the degree constraints.

Lemma 1.3.8. Given the shift s = (−N1, . . . ,−Nn,−D) ∈ Zn+1, then (v, d) ∈ Su if and
only if (v, d) ∈ AM,Ru with rdegs((v, d)) < 0 where

Ru :=

[
In

−u

]
∈ K[x](n+1)×n (1.15)

Proof. Observe that (v, d) ∈ Su if and only if v − du = (v, d)Ru = 0 mod M, i.e. (v, d) ∈
AM,Ru , and rdegs((v, d)) = max{deg(v1) − N1, . . . , deg(vn) − Nn,deg(d) − D} < 0 (see
Remark 1.3.2).
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By Remark 1.3.3, we can conclude that

dim(Su) = −
∑
ρu,i<0

ρu,i (1.16)

where ρu are the s-row degree of the relation module AM,Ru .
Notice that in the uniqueness case dim(Su) = 1 there is only one element of an s-ordered

weak Popov basis of AM,Ru with negative s-row degree.
In Chapter 3 (see Theorem 3.2.1) we will prove that for almost all instances u of SRFR

the s-row degrees of AM,Ru are of the form (0, . . . , 0,−1). Indeed, this means that there is
only one generator of the solution space and we have the uniqueness of the solution ([BL97]).

Previous works about SRFR. In [OS07], the authors studied the SRFR problem (Prob-
lem 2) in the specific case of a = a1 = . . . = an and N = N1 = . . . = Nn. They proved the
following.

Theorem 1.3.9 ([OS07, Theorem 4.2]). Let a ∈ K[x], u ∈ K[x]n and 1 ≤ N,D ≤ deg(a).
Let k be minimal such that deg(a) ≥ N + (D − 1)/k. Then the rank s of the K[x]-module
spanned by the solutions of SRFR with instance u, a1 = . . . = an = a and degree constraints
N1 = . . . = Nn = N and D, is s ≤ k.

In other terms, the rank s of the K[x]-module of solutions is bounded. Note that, if
k = 1, the solution is always unique since s = 1. This matches the uniqueness condition
deg(a) ≥ N +D−1 of the classic rational function reconstruction (Section 1.1). On the other
hand, if k = n and deg(a) ≥ N + (D − 1)/n then s ≤ n, which is always true. Therefore
in this case this theorem does not provide any new information about the solution space.
Besides, this was the starting point of this work, since it represents a connection between the
classic bound on the deg(a) which guarantees the existence (classic RFR) and the ideal one,
i.e. deg(a) = N + (D − 1)/n (see (1.7)) which exploits the common denominator constraint,
assuring the existence of a nontrivial solution.

In the same paper, the authors also proposed an algorithm that allows to find all the
rows of an (−N, . . . ,−N,−D)-row reduced basis with negative row degrees, i.e. a basis of the
solution space, in

O(nkω−1B(deg(a))) (1.17)

where

— 2 ≤ ω ≤ 3 is the exponent of the matrix multiplication,

— B(t) := O(M(t) log t), where M(t) is the classic polynomial multiplication arithmetic
complexity (see for instance [GG13]),

— k minimal such that deg(a) ≥ N + (D − 1)/k (as in Theorem 1.3.9).
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This complexity was then generalized in [RS16] where it was proposed an algorithm for
the general case of different moduli (different invariants ai) whose complexity is

O(nω−1B(L) log(L/n)2) (1.18)

where L := max1≤i≤n{deg(ai)}.
Both algorithms of [OS07] and [RS16] are strongly based on minimal approximant bases

computation.
Notice that if we consider k = n and a1 = . . . = an = a, the complexity (1.17) of the algo-

rithm of [OS07] becomes O(nωB(deg(a))), which is bigger than O(nω−1B(deg(a)) log(deg(a)/n)2)
(see equation (1.18)). Therefore, in this case (which corresponds to deg(a) ≥ N +(D− 1)/n)
the complexity of the algorithm proposed in [RS16] is better than the complexity of the
algorithm proposed in [OS07].

1.4 Application to Polynomial Linear System Solving

The simultaneous rational function reconstruction is applied for solving systems of linear
equations with polynomial coefficients, called polynomial linear systems (PLS). Throughout
this thesis we focus on nonsingular, square linear systems. Let

A(x)y(x) = b(x) (1.19)

be a PLS where,
— A(x) is an n× n nonsingular matrix, whose entries are polynomials in K[x],
— b(x) is a column vector of polynomials in K[x].

Lemma 1.4.1. The PLS (1.19) admits only one solution which is a vector of rational func-
tions with the same denominator, y = v

d = (v1d , . . . ,
vn
d ) ∈ K(x)n×1. Moreover deg(v) ≤

(n− 1)deg(A) + deg(b) and deg(d) ≤ ndeg(A), where deg(A) = max1≤i,j≤n{deg(aij)}.

Proof. We denote by A∗,j the j-th column of the matrix A, for 1 ≤ j ≤ n. Note that we can
write the system (1.19) as the linear combination A∗,1y1 +A∗,2y2 + . . .+A∗,nyn = b. Hence,
by Cramer’s Rule

yi =
det(A∗,1 . . . A∗,i−1 b A∗,i+1 . . . A∗,n)

det(A)
∈ K(x), 1 ≤ i ≤ n.

and so follows the claim.

Fix a PLS (1.19) and let y = v
d be its solution. A classic approach to solve a PLS consists in

the computation of u = A−1b mod a, for a certain polynomial a, and then in SRFR 2 with
2. Usually for the application of SRFR to polynomial linear system solving it is assumed that all the

polynomials ai’s are equals.
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instance u. There are many techniques for the computation of u, which differs according to
the decomposition of the polynomial a: some are based on the interpolation (as evaluation-
intepolation, that we will see in the following paragraph) [BCG+17, Section 5] and others on
p-adic methods [Dix82, MC79, Sto03].

Uniqueness results. We now fix a polynomial linear system (1.19)

Lemma 1.4.2 ([OS07, Theorem 5.1]). If deg(a) > max{N + deg(A), D + deg(b)} − 1, then
SRFR with instance u = A−1b mod a and degree constraints N,D (see Problem 2) admits
a unique solution. In other terms the rank of the K[x]-module generated by the solutions is
s = 1.

Proof. Let (v1, d1) and (v2, d2) be two solutions of SRFR, i.e.

Avi = dib mod a, deg(vi) < N, deg(di) < D,

for i = 1, 2.
We observe that deg(Avi − dib) ≤ max{deg(A) +N, deg(b) +D} − 1 is smaller than the

degree of a which implies that Avi = dib for i = 1, 2. Now, if we multiply Av1 = d1b and
Av2 = d2b by d2 and d1 respectively and then we subtract them, we get A(v1d2 − v2d1) = 0.
Since A is full rank then v1d2 − v2d1 = 0 and so v1

d1
= v2

d2
.

Recall that by Lemma 1.4.1, the degrees of the numerator and denominator of the solution
of a PLS are bounded by (n − 1)deg(A) + deg(b) and ndeg(A). If we consider N := (n −
1)deg(A) + deg(b) + 1 and D := ndeg(A) + 1, then by Lemma 1.4.2, if

deg(a) > max{N + deg(A), D + deg(b)} − 1 = ndeg(A) + deg(b)

= (N − 1 + deg(A)− deg(b)) + deg(b)

= N − 1 + (D − 1)/n.

we can uniquely reconstruct the solution of the PLS. Equivalently the rank of the K[x]-module
generated by solutions is 1. The authors of [OS07] proved the same result in the particular
case N = D = ndeg(A)+1 and deg(A) = deg(b). In this work we extend this result to a more
general case (see Chapter 3). This proves that there are some cases, for which the condition
deg(a) ≥ N + (D − 1)/n guarantees uniqueness. This was the starting point of this work:
indeed the existence of this specific case motivates us to investigate about the uniqueness of
the solution of SRFR.

Evaluation-interpolation for PLS solving. Fix a PLS (1.19). If a =
∏L
i=1(x − αi),

where αi are pairwise distinct elements of the field K, SRFR with instance u = A−1b mod a

46



and with degree constraints N,D, is equivalent to the problem of finding (v, d) such that

A(αi)v(αi) = d(αi)b(αi), deg(v) < N, deg(d) < D. (1.20)

This is an evaluation-interpolation technique since we first evaluate the matrix A and the
vector b in the L evaluation points and then we interpolate the solution y of the PLS given
its evaluations y(αi) = u(αi) =

v(αi)
d(αi)

= A(αi)
−1b(αi). Notice that we are assuming that for

any 1 ≤ i ≤ L, the corresponding evaluated matrix A(αi) is still full rank.
Therefore we can conclude that, if

L ≥ min{N +D − 1,max{deg(A) +N, deg(b) +D}} (1.21)

we can uniquely reconstruct the solution of our problem. Notice that we take the minimum
to reduce the computations.

Rank drop case. Fix a PLS (1.19). Consider L pairwise distinct evaluation points
{α1, . . . , αL}. Following [BK14, KPSW17] we assume that there exists 1 ≤ i ≤ L such that
det(A(αi)) = 0. In other terms, we want to determine the number of evaluation points that
we need to uniquely reconstruct the solution of the PLS by evaluation-interpolation, if we
consider evaluation points which may drop the rank of the corresponding evaluated matrix.

For this purpose, consider

R = {1 ≤ i ≤ L | det(A(αi)) = 0}

and assume to know a bound r ≥ |R|.
In [BK14, KPSW17] authors proved that, in order to handle rank drops, it suffices to add

this bound r to the number of points which guarantees the uniqueness.

Theorem 1.4.3. [BK14, KPSW17] If L ≥ min{N+D−1,max{deg(A)+N, deg(b)+D}}+r,
then SRFR (1.20) admits a unique solution.

Proof. We divide the proof in two cases:

1. N +D − 1 ≤ max{deg(A) +N, deg(b) +D},

2. max{deg(A) +N, deg(b) +D} ≤ N +D − 1.

Let (v1, d1), (v2, d2) solutions of (1.20).
1. For any 1 ≤ i ≤ L,

A(αi)v1(αi) = b(αi)d1(αi)

A(αi)v2(αi) = b(αi)d2(αi)

By multiplying the first equation by d2(αi) and the second by d1(αi) and then subtracting
them we finally get,

A(αi)[v1(αi)d2(αi)− v2(αi)d1(αi)] = 0.
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Now, for i /∈ R, the matrix A(αi) has linearly independent columns and so v1(αi)d2(αi) −
v2(αi)d1(αi) = 0. Note that the vector of polynomials v1(x)d2(x)−v2(x)d1(x) has deg(v1d2−
v2d1) < N +D and L− |R| ≥ L− r ≥ N +D − 1 roots, and so v1(x)d2(x) = v2(x)d1(x).

2. We have that (v1, d1) satisfies A(αi)v1(αi) = b(αi)d1(αi) for any 1 ≤ i ≤ L. Notice that
the degree of A(x)v1(x) − b(x)d1(x) is at most max{deg(A) + N, deg(b) + D} − 1 and the
number of roots is L − |R| ≥ L − r ≥ max{deg(A) + N, deg(b) + D} hence A(x)v1(x) −
b(x)d1(x) = 0. Therefore, we have also that A(x)v2(x) − b(x)d2(x) = 0. By multiplying
A(x)v1(x) − b(x)d1(x) = 0 by d2(x) and A(x)v2(x) − b(x)d2(x) = 0 by d1(x) and then
subtracting them we get A(x)[v1(x)d2(x) − v2(x)d1(x)] = 0. So, since A(x) is nonsingular
then v1

d1
= v2

d2
and the claim follows.

1.5 A short summary of the chapter

We now briefly summarize the main notions and results of this chapter.

∗ ∗ ∗ ∗ ∗

On the uniqueness of Simultaneous Rational Function Reconstruction. The ratio-
nal function reconstruction (RFR) is the problem of reconstructing a rational function whose
numerator and denominator degrees are bounded, given its remainder modulo a polynomial.
We saw that under a certain assumption (1.3) on the parameters of the problem, the solution
is unique, i.e. any solution is a polynomial multiple of a minimal one. In particular, the set
of solutions of RFR is a subset of a K[x]-module of rank 1.

The simultaneous rational function reconstruction (SRFR) is the vector generalization of
RFR, in which all the rational functions share the same denominator. In this case, we want
to reconstruct a vector of rational functions with the same denominator, given its remainder
modulo different polynomials. Therefore, under the same uniqueness condition of RFR, a so-
lution of SRFR (if it exists) is also unique. Nevertheless, the common denominator constraint
affects the condition on the parameters of the problem which guarantees the existence of a
nontrivial solution, possibly losing its uniqueness (Example 1.2.1).

The K[x]-module of solutions of SRFR. In Section 1.3 we introduced some general
notions about elements and bases of K[x]-modules: shifted row degrees, shifted row reduced
bases and ordered weak Popov bases. Recall that a basis of a K[x]-module is shifted row
reduced if it has minimal shifted row degrees. Moreover an ordered weak Popov basis is a
specific shifted row reduced basis for which the shifted row degree is uniquely defined.

All these ingredients were essential to check the uniqueness of the SRFR: SRFR admits
a unique solution if there is only one generator of an ordered weak Popov basis of a specific
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module, i.e. the relation module, with negative row degree. Recall that the shifts are necessary
to integrate the degree constraints.

Application of SRFR to Polynomial Linear System solving. In Section 1.4 we saw
that solutions of polynomial linear systems are vectors of rational functions with the same
denominator (Lemma 1.4.1). Indeed the classic evaluation interpolation approach to solve
PLS basically consists in an SRFR. In this case, the common denominator assumption allows
to reduce the number of evaluation points needed to uniquely reconstruct the solution of PLS,
impacting the complexity of the chosen algorithm for the PLS solving.
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CHAPTER 2
Application of SRFR to Coding Theory
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The simultaneous rational function reconstruction is also applied for the decoding of in-
terleaved Reed-Solomon codes. This chapter introduces basic notions of coding theory (Sec-
tion 2.1), especially focusing on linear block codes. It then presents a famous and widespread
family of such codes: Reed-Solomon codes (Section 2.2). In Subsection 2.2.1 we explain how
the decoding of this class of codes can be seen as the rational function reconstruction problem
(Section 1.1).

Section 2.3 is devoted to the introduction of Interleaved Reed-Solomon codes. Interleaving
is a technique that allows one to construct robust codes with interesting decoders [BKY03,
BMS04, SSB07, SSB09, SSB10, PR17]. We then underline the link between the decoding of
such codes and the simultaneous rational function reconstruction problem (Subsection 2.3.1).

So, by summing up, the goal of this chapter is to introduce the basic decoding techniques
of Reed-Solomon and interleaving Reed-Solomon codes, which are reinterpreted with a focus
on the main problem of this thesis: the simultaneous rational function reconstruction.

Notations. We start by making some clarifications about the notations we are going to use
throughout this chapter. For any set A we denote by An the set of n-tuples a = (a1, . . . , an)

of elements of A.
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If A = Fq or A = Fq[x], i.e. the finite field of order q or the ring of polynomials with
coefficients in Fq, we identify An with the row vector space An = A1×n. In this case, as
in the previous chapter, we use the lowercase bold notation for row vectors. Notice that in
Section 2.3 we will use the same notation also for column vectors. Nevertheless, for the sake
of clarity we will specify if they belong to An or to An×1.

2.1 Basics of Coding Theory

This section provides some preliminary notions related to coding theory. We refer to
classic literature about this topic, e.g. [Ber15, Bla03, Rot06, HP03, PWBJ17] and the notes
in [GRS19].

Coding theory is a discipline intersecting mathematics, computer science and engineering,
concerned with the problem of a communication over a noisy channel that can introduce some
errors, corrupting the transmitted message. It has many applications: from data transmission
over the Internet, any kind of electronic communication device as cellular telephones, deep
space communication and satellite broadcast, to compact disks and other physical media for
which the data integrity is crucial. The main idea to recover a message after its transmission
over an unreliable channel, is to add redundancy. In the classic communication scenario
[Sha48], a k-symbol message (also called information word) is first encoded obtaining an n-
symbol message, called codeword, transmitted over a noisy channel and finally decoded in
order to recover the original message. Informally speaking, encoding is the process of adding
redundancy and decoding is the process of removing errors.

2.1.1 Channel Model

The classic Shannon channel model is defined by the triple (Σ,Φ,Pr), where

— Σ is the input alphabet,

— Φ is the output alphabet,

— the conditional probability distribution Pr(y received|x sent) is defined for every pair
(x,y) ∈ Σn × Φn. Recall that Σn and Φn both denote the set of n-tuples in the
alphabet Σ and Φ respectively.

Channels considered by Shannon are also memoryless, which means that the noise acts inde-
pendently on each transmitted symbol.

In this work we focus on discrete channels: the input and the output alphabet are both
finite. We also suppose that the channel is additive, i.e. Σ = Φ and Σ is a finite abelian
group (indeed, for every positive integer q there is an abelian group of size q, e.g. the ring
Zq of integers modulo q). The action of such a kind of channels can be described as adding
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componentwise an error word e ∈ Σn, e.g.

x ∈ Σn −! channel −! y = x+ e ∈ Σn

"

e

The error support E is the set of nonzero positions of the error vector e, i.e. E := {i ∈
{1, . . . , n} | ei 6= 0}.

We now introduce two examples of channels frequently used in practical applications.

Example 2.1.1 (Binary Symmetric Channel). The Binary Symmetric Channel (BSC) has
input and output alphabet equal to Σ = F2. Moreover, for any (x,y) ∈ (F2)

2n,

Pr(y received|x sent) =
n∏
i=1

Pr(yi received|xi sent)

where for any x, y ∈ F2

Pr(y received|x sent) =

1− p if y = x

p if y 6= x

The parameter 0 ≤ p ≤ 1 is called crossover probability of the channel. Usually, BSC is
represented by the following diagram,

1

0

1

0

1− p

p

p

1− p

We can assume that p < 1/2. Indeed, by Shannon Theorem (see for instance [HP03, Theorem
1.11.10]) if p = 1/2, the communication is not possible. Moreover, if one knows how to assure
reliable communication over a BSC with crossing probability p < 1/2, he also knows how to
handle the case p > 1/2. Indeed, after receiving a symbol y ∈ F2, the receiver could interpret
a 0 with a 1 and vice versa, transforming the BSC channel with crossover probability p to an
equivalent one with crossover probability 1− p < 1/2. 

Example 2.1.2 (q-ary Symmetric Channel). The q-ary Symmetric Channel with crossover
probability p is a generalization of BSC where the alphabet is Σ = Fq, where q ≥ 2. In this
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case, given x, y ∈ Fq, the conditional probability is

Pr(y received|x sent) =

1− p if y = x

p/(q − 1) if y 6= x

In other terms, every symbol rests unchanged with probability 1−p and it is switched to each
of the q − 1 possible different symbols with probability p/(q − 1).

This specific channel model usually applies to settings where aggregates of bits are sent
and errors are assumed to be bursty. In particular, bursts errors are errors which are extended
to consecutive bits of the received word. This kind of errors frequently appears in many com-
munication and data storage channels: they could be caused by media defects or interference
with contiguous symbols. For instance, for CDs they can be caused by scratches on the disk
surface or by interferences from adjacent tracks.



2.1.2 Block codes

Coding theory mainly studies two classes of codes: finite and infinite length ones. Finite
length codes, known as block codes were first studied by Golay [Gol49] and Hamming [Ham50].
Throughout this thesis we focus on the latter class of codes.

Definition 2.1.1 (Block code). Given an alphabet Σ, a (block) code C of length n is a subset
of Σn. We denote q := |Σ|. Elements c = (c1, . . . , cn) ∈ C are called codewords. The size
of the code is its cardinality M := |C| and its dimension (or information length) is logq(M).
Moreover, the rate of C is R := logq(M)/n.

We refer to a code C with length n and size M as an (n,M)-code.

Note that the rate of a code is the average amount of real information contained in each
of the n symbols; so the higher the rate the lesser the redundancy of the code. In these terms,
the rate measures the redundancy of a code.

Definition 2.1.2 (Encoder). Let C be an (n,M)-code over Σ, where q := |Σ|. Assume that
M = qk. An encoder of C is a one-to-one map

E : Σk −! Σn

such that C = E(Σk). Given a codeword c ∈ C there exists a unique x ∈ Σk such that
c = E(x). This x is called message or information word.

Besides the length and the dimension of a code, it is also important to define a metric
which measures the distance between two codewords.
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Definition 2.1.3 (Hamming distance and weight). The Hamming distance between x =

(x1, . . . , xn) and y = (y1, . . . , yn) in Σn is defined as the number of components in which x

and y differ, i.e.
d(x,y) := |{i | xi 6= yi}|,

and the Hamming weight of x is

w(x) := |{i | xi 6= 0}|.

The Hamming distance is a well defined metric on Σn (see [PWBJ17, Proposition 1.1.9]).

The minimum distance of an (n,M)-code C is then the minimum Hamming distance
between any two distinct codewords, i.e. d := min{d(c1, c2) | c1, c2 ∈ C, c1 6= c2}. Length,
size and distance are the parameters of a code. We can merge them into one expression and
refer to C as an (n,M, d)-code.

Let x ∈ Σn and r ≥ 0. We denote by B(r)(x) := {y ∈ Σn | d(x,y) ≤ r}, the ball of radius
r centered at x, w.r.t the Hamming metric.

We can now introduce the following important result.

Theorem 2.1.1 (Unique Decoding Capability). Let C be an (n,M, d)-code and τ0 :=
⌊
d−1
2

⌋
.

Then for any pair of distinct codewords c1, c2,

B(τ0)(c1) ∩ B(τ0)(c2) = ∅.

Proof. Fix c1, c2 ∈ C with c1 6= c2 and suppose that y ∈ B(τ0)(c1)∩B(τ0)(c2). Then d(ci,y) ≤
τ0 for i = 1, 2 and by the triangle inequality

d(c1, c2) ≤ d(c1,y) + d(c2,y) ≤ d− 1.

The minimum distance of the code is d, so d(c1, c2) ≥ d. This implies that c1 = c2, which
contradicts our hypothesis.

This theorem is crucial since it highlights the link between the minimum distance and the
error correction capability of a code, which is the maximum number of errors that one can
uniquely correct. Indeed, we assume to send a codeword c of a certain (n,M, d)-code C over
a channel and to receive y = c + e ∈ Σn, where e ∈ Σn is the error vector. Note that the
number of errors is the distance d(y, c) or the weight w(e). Theorem 2.1.1 tells us that if
the number of errors is less than τ0 (i.e. d(y, c) ≤ τ0), then y can be corrected: it suffices to
consider the codeword inside the ball B(τ0)(y), which is then unique (see Subsection 2.1.3).
Therefore the error correction capability of C is τ0, which is strictly related to its minimum
distance. In this sense the minimum distance allows one to quantify the error correction
capability of a code.
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For this reason, one of the main goal of coding theory is to construct for a given length
and size a code with the largest possible minimum distance.

In the literature, there exist many bounds on the parameters of codes. One of the most
famous is the Singleton bound [Sin64]: for any (n,M, d)-code over an alphabet Σ of size q
then

d ≤ n− (logq(M)) + 1. (2.1)

Codes which attain the Singleton bound are called Maximum Distance Separable (MDS)
codes. The name MDS comes from the fact that this code has the maximum possible distance
between codewords.

Linear codes. One important class of algebraic codes, is the class of linear codes.

Definition 2.1.4 (Linear code). Let Σ = Fq. A linear code C of length n is an Fq-vector
subspace of (Fq)n. In this case the dimension of the code is its dimension as a vector space.
If k = dim(C) we refer to C as an [n, k, d]-code.

Note that the size of an [n, k, d]-linear code over Fq is qk and its rate is k/n.
We now briefly recall some basic notions of linear codes.
A generator matrix of a [n, k, d]-code C over Fq is a k × n matrix G whose rows form a

basis of the code. This matrix can be used to describe the encoding process. Indeed, we can
consider the following map as an encoder (see Definition 2.1.2)

E : Fkq −! Fnq
x 7−! xG

In other terms, given a message x in Fkq , the corresponding codeword c is obtained by the
multiplication c = xG.

Given two vectors x,y ∈ Fq, let x · y :=
∑n

i=1 xiyi be the inner product and C be an
[n, k, d]-linear code over Fq. We define the dual code of C as

C⊥ := {h ∈ Fq | h · c = 0, ∀c ∈ C}

The dual code C⊥ is a linear code of length n and dimension n − k. A generator matrix H

of the dual code is called parity-check matrix of C. The minimum distance of this code is
not always determined by its parameters (unless they are MDS). Note that for any c ∈ C,
HcT = 0 and also HGT = 0.

Let C be an [n, k, d]-code with parity check matrix H. Given y ∈ Fnq , the vector s = HyT

is a syndrome of y. We remark that,

— the syndrome of a codeword is the zero vector;
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— if y = c+ e is the received word after the transmission over a channel where c ∈ C and
e ∈ Fnq is the error vector, the syndrome s only depends on the error vector. Indeed,

s = HyT = HcT +HeT = HeT .

For this reason, syndromes are used for the construction of decoders. For instance, in
Subsection 2.2.1 we will see a syndrome-based decoding technique for RS codes.

2.1.3 Basic decoding principles

Let C be an (n,M, d)-code over an alphabet Σ. Decoding is the process of reconstructing
the sent codeword from the received word.

Definition 2.1.5 (Decoder). A decoder D for the code C is a map

D : Σn −! Σn ∪ {?}

such that for any c ∈ C, D(c) = c.
If M = qk and E : Σk −! Σn is an encoder of C (Definition 2.1.2), then the map

D : Σn −! Σn ∪ {?} such that D(E(x)) = x for any x ∈ Σk is called decoder w.r.t the
encoder E.

Note that if M = qk, E is an encoder of C and D is a decoder w.r.t E, then the composition
D ◦E is a decoder of C. The decoder could also give as outcome the symbol “?”, in this case
we say that we have a decoding failure. This happens if it fails to find a codeword.

A decoder D is complete if it always returns a codeword.

Maximum-likelihood decoding. The maximum-likelihood (ML) decoding is a well stud-
ied decoding technique for block codes. In particular, for any y ∈ Σn the ML decoder DML

is a complete decoder which gives as an outcome a codeword c = DML(y) that maximize the
following probability, i.e.

Pr(y received|c sent).

If there exist two codewords for which the corresponding conditional probability is the same,
the decoder can arbitrarily choose one of them (for example the first according to some
ordering on the codewords of C).

Nearest-codeword decoding. The nearest-codeword (NC) decoder (Figure 2.1) DNC ,
maps any received word y ∈ Σn to DNC(y) which is a nearest codeword w.r.t the Hamming
distance, i.e. DNC(y) = c, where

c ∈ arg min
c∈C

{d(y, c)} = {c ∈ C | ∀c′ ∈ C, d(c,y) ≤ d(c′,y)}.

57



Figure 2.1: Nearest-codeword decoding

The following lemma shows the equivalence of the two decoders introduced so far for BSC.

Lemma 2.1.2 (Equivalence between ML and NC decoders for BSC). In a BSC with crossover
probability p < 1/2, the maximum-likehood and the nearest-codeword decoder both coincide.

Proof. Let y ∈ Σn and c be a codeword, then

Pr(y received|c sent) = pd(y,c)(1− p)n−d(y,c) = (1− p)n
(

p

1− p

)d(y,c)
We observe that since p < 1/2, then

(
p

1−p

)
< 1. Therefore, maximizing this probability is

equivalent to minimizing the distance.

We can prove the same result for a q−ary symmetric channel with crossover probability
p < 1− 1/q.

The problem of NC decoding is known to be NP-complete [BMT78]. For this reason, it
is customary to consider the following decoders.

Bounded minimum distance decoder. Let τ0 = bd−1
2 c be the error correction capability

of the code C. First notice that if y is a received word such that C ∩ B(τ0)(y) 6= ∅, then by
Theorem 2.1.1, there is only one element in the ball, i.e. |C ∩ B(τ0)(y)| = 1. A bounded
minimum distance (BMD) decoder (Figure 2.2) is a decoder Dτ0 such that for any received
word y ∈ Σn,

— if C ∩ B(τ0)(y) 6= ∅, then Dτ0(y) = c, where c is the only codeword in the ball B(τ0)(y),

— otherwise Dτ0(y) =?, meaning that it outputs a decoding failure.
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Figure 2.2: Bounded minimum distance decoding

Bounded distance decoder. A bounded distance (BD) decoder is a generalization of the
BMD decoder for a general decoding radius τ ≥ τ0. We denote it Dτ . Note that if τ ≥ τ0,
Theorem 2.1.1 does not hold anymore, meaning that if y ∈ Σn such that C ∩ B(τ)(y) 6= ∅
there could exist more than one codeword in the ball B(τ)(y) (see Figure 2.3).

Figure 2.3: Existence of two codewords c1, c2 at the same distance ≤ τ from the received
word y.

Therefore, for any received word y ∈ Σn,

— if |C ∩ B(τ)(y)| = 1, then Dτ (y) = c where c the only codeword in the ball B(τ)(y),

— otherwise,

— if C ∩ B(τ)(y) = ∅, then Dτ (y) =?,

— if |C ∩ B(τ)(y)| > 1, then Dτ (y) =?.

List decoding Another famous decoding technique, which can be seen as the generalization
of the BD decoding is the list decoding, first introduced by [Eli57] and [Woz58]. Fix a decoding
radius τ , a list decoder outputs for any y ∈ Σn the list of all codewords which belong to the
ball B(τ)(y) or a decoding failure. However since list decoding is beyond the purposes of this
work, we do not go further into details of this technique. We refer to [GRS19, Section 7.2]
for more details about this topic.
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2.2 Reed-Solomon Codes

Reed Solomon (RS) codes constitute a very popular family of linear codes thanks to their
remarkable properties: they are MDS and their algebraic structure allows the construction
of efficient BMD decoders. They were first introduced by I. S. Reed and G. Solomon in 1960
[RS60] and they are still very common in practical applications: e.g. storage devices (CD,
DVD, Blu-Ray Disc), barcodes and QR-codes, wireless and mobile communications, satellite
communications, digital television (DVB), etc...

Definition 2.2.1 (Reed-Solomon code). Let k ≤ n ≤ q and {α1, . . . , αn} be a set of pairwise
distinct elements of the field Fq, called evaluation points. A Reed-Solomon code is defined by

CRS(n, k) := {(f(α1), . . . , f(αn)) | f ∈ Fq[x],deg(f) ≤ k − 1}

We now recall the classic communication scenario described at the beginning of the Sec-
tion 2.1. We observe that we can interpret any message m = (m0, . . . ,mk−1) ∈ Fkq as a
polynomial f of degree deg(f) ≤ k− 1 whose coefficients are the components of the message,
i.e. f =

∑k−1
i=0 mix

i. A codeword of CRS(n, k) is then obtained by evaluating the correspond-
ing polynomial at the n evaluation points {α1, . . . , αn}. Formally, we can define an encoding
map

ERS : Fq[x]/xk −! Fnq
f 7−! (f(α1), . . . , f(αn))

The RS code CRS(n, k) is a linear code of length n and dimension k. Indeed, the encoding
function defined above is linear. It is also injective: if f(α1) = . . . = f(αn) = 0, then f would
have more roots than its degree and so it is the zero polynomial. Therefore the dimension of
CRS(n, k) is k.

Theorem 2.2.1 (RS is MDS). RS codes are MDS, i.e. they attain the Singleton bound (2.1).

Proof. Since CRS(n, k) is a linear code and satisfies the Singleton bound (2.1) it suffices to
show that the minimum distance d of the code is d ≥ n−k+1. Let c1 = (f(α1), . . . , f(αn)) and
c2 = (g(α1), . . . , g(αn)) be two distinct codewords of CRS(n, k). Note that d(c1, c2) = |{1 ≤
i ≤ n | (f − g)(αi) 6= 0)}| = w(f − g). Now, since the polynomial f − g has deg(f − g) ≤ k−1

it has at most k − 1 roots, hence d(c1, c2) ≥ n − (k − 1). Therefore, d ≥ n − (k − 1) which
implies the claim.
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Generator and parity check matrix of an RS code. A generator matrix of CRS(n, k)
is

G =



1 1 . . . 1

α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αk−1
1 αk−1

2 . . . αk−1
n


(2.2)

Note that it is the transposed of the Vandermonde matrix Vn,k := (vi,j)1≤i≤n
1≤i≤k

= (αj−1
i )1≤i≤n

1≤j≤k
.

Before talking about the dual of an RS code, we need to introduce a generalization of this
family of codes.

Definition 2.2.2 (Generalized RS codes.). Let {α1, . . . , αn} be pairwise distinct elements of
the field Fq and v1, . . . , vn nonzero elements 1 of Fq (called column multipliers). A generalized
RS code (shortly GRS) is

CGRS(n, k) := {(v1f(α1), . . . , vnf(αn)) | f ∈ Fq[x],deg(f) ≤ k}.

We observe that since vi 6= 0 for any 1 ≤ i ≤ n, the map

Fnq −! Fnq
(y1, . . . , yn) 7−! (v1y1, . . . , vnyn)

is a bijective, distance-preserving transformation, i.e. an isometry. This map transforms
CRS(n, k) into CGRS(n, k) and so the two codes have the same dimension and minimum dis-
tance. Therefore GRS codes are also MDS.

A GRS code CGRS(n, k) is also linear and a generator matrix is obtained by multiplying
on the right G = V T

n,k (see equation (2.2)) by the diagonal matrix whose diagonal elements
are the column multipliers of the code.

The dual of an [n, k]-GRS code is an [n, n− k]-GRS code (see for instance [Rot06, Propo-
sition 5.2] or the notes [Hal12]). Moreover, a parity check matrix of CGRS(n, k), or in other
terms a generator matrix of its dual code is of the form

HGRS = V T
n,n−k


v′1 0 . . . 0

0 v′2 . . . 0
...

... . . . ...
0 . . . . . . v′n

 (2.3)

1. Note that v1, . . . , vn are not necessarily distinct.
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where for any 1 ≤ i ≤ n the column multipliers are

v′i :=
1

vi
∏

1≤j≤n
j 6=i

(αi − αj)
.

We can conclude that the dual of an [n, k]-RS code is an [n, n−k]-GRS code with column
multipliers v′i = 1∏

1≤j≤n
j 6=i

(αi−αj)
and a parity check matrix is defined as in (2.3). Recall that

n ≤ q. In the special case n = q, it is possible to prove that the dual of an RS code is an RS
code, i.e. CRS(n, k)⊥ = CRS(n, n− k). Note that, the column multipliers of the parity check
matrix of the code (see equation (2.3)) are all equal to 1.

2.2.1 Decoding RS codes

In this section we introduce some BMD decoders for RS codes. We also point out how
the decoding of such a family of codes can be reduced to the rational function reconstruction
(Definition 1.1.1).

Let CRS(n, k) be an RS code over Fq, with k ≤ n ≤ q and evaluation points {α1, . . . , αn}.
We want to construct a BMD decoder,

Problem 3. BMD decoder for RS codes
Input: CRS(n, k) with {α1, . . . , αn}, y ∈ Fnq a received vector
Output: f ∈ Fq[x] with deg(f) ≤ k − 1 or “decoding failure”.

which for any received word y returns

1. the only f ∈ Fq[x] with deg(f) ≤ k − 1 such that (f(α1), . . . , f(αn)) ∈ Bτ0(y), if
CRS(n, k) ∩ Bτ0(y) 6= ∅,

2. a decoding failure otherwise.

Note that this decoder (contrary to the general definition of decoders of Subsection 2.1.3), in
the first case, returns exactly the polynomial corresponding to the message in Fkq instead of
the codeword.

Interpolation with errors. First recall that given n pairwise distinct evaluation points
{x1, . . . , xn} in Fq, where n ≤ q, and given y1, . . . , yn ∈ Fq, the polynomial interpolation
(or simply interpolation) is the problem of reconstructing the unique polynomial p ∈ Fq[x]
of degree at most n − 1 such that p(xi) = yi for any 1 ≤ i ≤ n. Informally speaking, it
is the problem of recovering a polynomial from its evaluations. The Lagrange interpolating
polynomial L is defined as

L(x) =

n∑
i=1

yi`i
∏
j 6=i

(x− xj) (2.4)
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where for any 1 ≤ i ≤ n, `i =
∏
j 6=i

1
xi−xj .

We now consider a variation of the classic interpolation problem, in which we add some
errors.

Definition 2.2.3 (Interpolation with errors). Fix some parameters n, τ, k, q, where k, τ ≤
n ≤ q. Fix also {α1, . . . , αn} pairwise distinct elements of Fq. A satisfiable instance of the
interpolation with errors (shortly IwE) problem is the vector y ∈ Fnq such that there exist

1. a polynomial f ∈ Fq[x], deg(f) ≤ k − 1,

2. an error vector e ∈ Fnq with error support E := {i | ei 6= 0}, where |E| ≤ τ

which satisfy the following
y = (f(α1), . . . , f(αn)) + e. (2.5)

IwE is the problem of finding a polynomial f as in (2.5) given an instance y.

Note that (2.5) is equivalent to saying that yi = f(αi) if i /∈ E and yi 6= f(αi) otherwise.
This clarifies the link with the interpolation problem. Therefore IwE is the problem of recon-
structing a polynomial of bounded degree given its evaluations where some of them could be
erroneous or corrupted. In Subsection 4.1.1 we will generalize the interpolation with errors
problem to rational functions.

Remark 2.2.1. Note that y is an instance of IwE with parameters n, k, τ0, {α1, . . . , αn} if
and only if CRS(n, k)∩B(τ0)(y) 6= ∅. Recall that by Theorem 2.1.1 if CRS(n, k)∩B(τ0)(y) 6= ∅,
then |CRS(n, k) ∩ B(τ0)(y)| = 1.

Therefore, we point out that IwE with instance y coincides with decoding y. Indeed,
note that the main aim of both problems is to recover the polynomial f given its evaluations,
where some are wrong. 

The state of the art of decoding techniques for constructing efficient BMD decoders can
be classified according to two main paradigms: an interpolation-based and a syndrome-based
approach. For both of them, we can reduce the decoding problem to the rational function
reconstruction. More specifically, the interpolation-based technique can be reduced to a
Cauchy interpolation while the syndrome-based one can be reduced to the Padé approximation
(see Section 1.1).

For all the rest of this section we fix an RS code CRS(n, k) over Fq with evaluation points
{α1, . . . , αn}.

We now introduce the following polynomials, which are relevant for both the decoding
techniques that we will describe later. Let y = (f(α1), . . . , f(αn)) + e be a received vector
with error support E = {i | ei 6= 0}. Let ε = |E| be the number of errors.

Definition 2.2.4 (Error locator and error evaluator polynomial ).
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— The error locator polynomial Λ is a monic polynomial whose roots are the erroneous
evaluations, i.e. Λ =

∏
i∈E(x−αi). Note that its degree is exactly the number of errors.

— The error evaluator polynomial Γ is determined by the Lagrange interpolating polyno-
mial (see (2.4)) of all the components of the error vector, i.e.

Γ = −
n∑
i=1

ei`i
∏
j 6=i

(x− αj) = −
∑
i∈E

ei`i
∏

j∈E\{i}

(x− αj)

where `i =
∏
j 6=i

1
αi−αj

.

First, we observe that these two polynomials do not have any common root and so they
are coprime. Moreover, they are related by the following relation

Γ(x) = −
∑
i∈E

ei`i
Λ(x)

x− αi
.

We now denote G :=
∏n
i=1(x−αi) and we consider the Lagrange interpolating polynomial Y of

the components of the received word, i.e. Y =
∑n

i=1 yi`i
∏
j 6=i(x−αj), where `i =

∏
j 6=i

1
αi−αj

for all 1 ≤ i ≤ n. The following result shows the link between all the polynomials introduced
so far.

Lemma 2.2.2. Λ(f − Y ) = ΓG.

Proof. Since y = (f(α1), . . . , f(αn)) + e, then we have that

f − Y = −
n∑
i=1

ei`i
∏
j 6=i

(x− αj) = −
∑
i∈E

ei`i
G

x− αi

therefore
Λ(f − Y ) = −

∑
i∈E

ei`i
Λ

x− αi
G = ΓG.

Interpolation-based decoding technique. By the previous lemma we can deduce that

Λf = ΛY mod G (2.6)

or equivalently, that the following condition on the evaluations holds,

Λ(αi)f(αi) = Λ(αi)yi, for all 1 ≤ i ≤ n.
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However the equation (2.6) is nonlinear. The classic technique for building a decoder consists
in the study of the following linear equation

ϕ = λY mod G, (2.7)

considering all the solutions (ϕ, λ) ∈ Fq[x]2 which satisfy the degree constraints

deg(ϕ) ≤ ε+ k − 1,deg(λ) ≤ ε. (2.8)

The equation (2.7) with degree constraints (2.8) is also called key equation. We observe that
this is exactly the rational function reconstruction (Problem 1) with degree constraints ε+k,
ε+ 1 and instance Y . More specifically, since the polynomial G is of the form

∏n
i=1(x− αi),

this is the weaker 2 form of the Cauchy interpolation (see Section 1.4).
Note that (Λf,Λ) is a solution of this problem. Moreover, by the uniqueness results of

Section 1.1 (see Remark 1.1.2) if

deg(G) = n ≥ (ε+ k) + (ε+ 1)− 1 = k + 2ε⇐⇒ ε ≤ n− k

2
(2.9)

then RFR (Problem 1) with input G, Y and the degree constraints ε+k, ε+1 admits a unique
solution: any solution is a polynomial multiple of a minimal one. In Lemma 2.2.3 we prove
that this minimal solution is exactly (Λf,Λ).

Note that this result is coherent with Theorem 2.1.1. Indeed, if ε ≤ τ0, then |CIRS(n, k)∩
B(τ0)(Y )| = 1, meaning that we can uniquely decode the received word. Therefore, in this
case the uniqueness of the solution of RFR is strictly related to unique decoding.

All the existing BMD-decoders basically differ in the algorithm chosen to solve RFR. The
Welch-Berlekamp decoder [BW86] is based on the study of the homogeneous linear system
related to the key equation (2.7), while the Gao’s decoder [Gao03] (Algorithm 3) is based on
the Extended Euclidean Algorithm 3(see Algorithm 2).

Correctness of Algorithm 3. Recall that we are considering CRS(n, k) with evaluation
points {α1, . . . , αn}.

Lemma 2.2.3. Let y be a received word for which CRS(n, k)∩Bτ0(y) 6= ∅. Let f the polynomial
corresponding to the codeword in CRS(n, k) ∩ Bτ0(y) and let (ϕ, λ) = RFREEA(G,Y, τ0 + k) be
the minimal solution of RFR such that λ is monic.

Then (ϕ, λ) = (Λf,Λ), where Λ is the error locator polynomial.

2. In the literature, the Cauchy interpolation usually refers to the rational function reconstruction as in
the equation (1.2). Here we are considering its weaker linear version, dropping the gcd condition.

3. S. Gao in [Gao03] also proposed another version of the algorithm based on the half-gcd, which speeds
up the computations improving the efficiency of the algorithm (see Subsection 1.1.1)
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Algorithm 3: Interpolation-based BMD decoder based on EEA
Input : CRS(n, k) with {α1, . . . , αn}, y a received word
Output: f ∈ Fq[x] such that d(y, (f(α1), . . . , f(αn))) ≤ τ0, if

|CRS(n, k) ∩ Bτ0(y)| 6= 0;
otherwise a “decoding failure”.

1 Compute the Lagrange interpolating polynomial Y of the components of the received
vector;

2 (ϕ, λ) = RFREEA(G, Y, τ0 + k);
3 perform the Euclidean division ϕ = λf + r;
4 if r = 0 and deg(f) ≤ k − 1 then
5 return f

6 else
7 return “decoding failure”

Proof. Let (ϕ, λ) = RFREEA(G, Y, τ0 + k) with λ monic. Then, for any 1 ≤ j ≤ n, ϕ(αj) =

yjλ(αj). As already remarked, also (Λf,Λ) is a solution, i.e. for any 1 ≤ j ≤ n, Λ(αj)f(αj) =
yjΛ(αj) therefore, by multiplying the former equation by Λ(αj) and the latter by λ(αj) and
then by subtracting them we get

Λ(αj)[ϕ(αj)− f(αj)λ(αj)] = 0 (2.10)

Note that for j 6∈ E, since Λ(αj) 6= 0, then ϕ(αj) − f(αj)λ(αj) = 0. Therefore since the
polynomial ϕ − fλ has degree at most τ0 + k − 1 and n − |E| ≥ n − τ0 = τ0 + k roots
it is the zero polynomial. Hence ϕ = λf . Now, since for any 1 ≤ j ≤ n, we have that
λ(αj)f(αj) = ϕ(αj) = yjλ(αj), then all the erroneous evaluations αj for j ∈ E are roots of
λ and so Λ divides λ. In conclusion, since (ϕ, λ) is the minimal solution with λ monic then
(ϕ, λ) = (Λf,Λ).

Another useful result for the proof of the correctness of Algorithm 3 is the following.

Lemma 2.2.4. Let y ∈ Fnq a received word, Y the Lagrange interpolating polynomial of the
components of y and (ϕ, λ) = RFREEA(G, Y, τ0+k), where λ is monic. Then if λ|ϕ and deg(f) ≤
k − 1, where f := ϕ/λ, then the Hamming distance satisfies d((f(α1), . . . , f(αn),y) ≤ τ0.

Proof. Since for any 1 ≤ i ≤ n we have that ϕ(αi) = yiλ(αi) and since ϕ = λf , then
λ(αi)[f(αi) − yi] = 0. Therefore for i ∈ {1 ≤ i ≤ n | f(αi) 6= yi} = E then λ(αi) = 0. Note
that |E| ≤ deg(λ) ≤ τ0.

This proves the correctness of Algorithm 3 since, given a received word y,

— if |CRS(n, k) ∩ Bτ0(y)| = 0, by contrapposing Lemma 2.2.4, the solution (ϕ, λ) =

RFREEA(G, Y, τ0 + k) either does not satisfy the divisibility criteria or leads to a poly-
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nomial of degree greater than k − 1. In this case the algorithm outputs a decoding
failure.

— if |CRS(n, k)∩Bτ0(y)| = 1, by Remark 2.2.1 y is an instance of IwE and by Lemma 2.2.3
the solution (ϕ, λ) = RFREEA(G,Y, τ0 + k) is a scalar multiple of (Λf,Λ), where f is
the polynomial related to the codeword in the ball Bτ0(y). Hence (ϕ, λ) satisfies the
divisibility and the degree condition of step 4 of the algorithm and so the decoder
outputs the polynomial f .

Syndrome-based decoding technique. In this thesis we especially focus on the interpolation-
based decoding technique for RS and later for interleaved RS codes. Nevertheless, for the
sake of completeness, in this paragraph we also introduce the syndrome-based approach.

For the syndrome-based decoding technique it is important to suppose that the evaluation
points of CRS(n, k) are all nonzero.

First we precise some notations and notions that we use here. The reciprocal polynomial
of a polynomial p of degree t is the polynomial xtp(1/x). Since we often know bounds on the
polynomial degrees instead of the real degrees, we consider a generalization of this notion.

Definition 2.2.5 (Reciprocal polynomial). Given a polynomial p ∈ Fq[x] with deg(p) ≤ t,
the reciprocal of p for the degree t is the polynomial revt(p) := xtp(1/x).

In order to derive a syndrome-based key equation, given the received vector

y = (f(α1), . . . , f(αn)) + e,

we

1. introduce the syndrome polynomial S(x) =
∑n−k−1

l=0 slx
l, a polynomial whose coefficients

are the components of a syndrome;

2. prove that the syndrome polynomial can be seen as the truncated series expansion of
the rational function revn−1(Y )

revn(G) (Lemma 2.2.5);

3. use the previous result to link the error locator Λ, the error evaluator polynomial Γ and
the syndrome polynomial S by the following

revε(Λ)S = −revε−1(Γ) mod xn−k (2.11)

Recall that we can easily compute a syndrome, i.e. s = HyT , where H is a parity check
matrix of our code CRS(n, k) (as in equation (2.3)). In particular, by expanding the matrix
product we get for any 0 ≤ l ≤ n− k − 1,

sl =
n∑
j=1

yjv
′
jα

l
j , (2.12)
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where for any j
v′j =

1∏
j 6=i(αi − αj)

= `j .

As previously remarked, syndromes only depend on the error vector, hence for any 0 ≤ l ≤
n− k − 1

sl =
∑
j∈E

ej`jα
l
j (2.13)

Note that the syndrome polynomial S(x), is of the form

S(x) =
n−k−1∑
l=0

slx
l =

n−k−1∑
l=0

xl
∑
j∈E

ej`jα
l
j =

∑
j∈E

ej`j

n−k−1∑
l=0

(xαj)
l (2.14)

and since
n−k−1∑
l=0

(xαj)
l =

1− xn−kαn−kj

1− xαj

we finally get
S(x) =

∑
j∈E

ej`j
1− xαj

mod xn−k. (2.15)

We are now ready for the following result.

Lemma 2.2.5. revn−1(Y )
revn(G) = S(x) mod xn−k.

Proof. First observe that revn−1(Y ) =
∑n

i=1 yi`i
∏
j 6=i(1 − xαj) and revn(G) =

∏n
i=1(1 −

xαi). The claim follows by noticing that gcd(rev(G), x) = 1, revn−1(Y )
revn(G) =

∑n
i=1

yi`i
1−xαi

and by
(2.15).

If we now consider the reciprocal polynomials of the two members of ΛY = Λf − ΓG, of
Lemma 2.2.2, we get

revε+n−1(ΛY ) = revε+k−1(Λf)x
n−k − revε+n−1(ΓG) = −revε+n−1(ΓG) mod xn−k.

Note that revε+n−1(ΛY ) = revε(Λ)revn−1(Y ) and revε+n−1(ΓG) = revε−1(Γ)revn(G) and by
Lemma 2.2.5 we finally obtain

revε(Λ)S = −revε−1(Γ) mod xn−k (2.16)

In this case, decoding is reduced to the problem of finding the polynomials (γ, λ) such
that

gcd(γ, λ) = 1, γ = λS mod xn−k, deg(γ) < ε, deg(λ) < ε+ 1 (2.17)

The congruence of this equation is the so-called syndrome-based key equation. Note that this
is exactly the Padé approximation (see (1.1)) with degree constraints ε, ε+1 and instance S.
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By Remark 1.1.2 if
n− k ≥ 2ε⇐⇒ ε ≤ n− k

2
,

then we can uniquely reconstruct the rational solution. Even in this case all syndrome-based
BMD decoders depend on the algorithm chosen for the Padé Approximation. For instance,
we can construct a decoder based on the Extendend Euclidean Algorithm [SKHN75] or on
the Berlekamp-Massey algorithm [Ber68], which is the most commonly used in practice.

2.3 Interleaved Reed-Solomon code

Interleaving is an encoding technique used in the setting of burst errors. In this section we
show how this technique applied to RS codes allows the construction of interesting decoders
[KL97, KY98, Kra03, BKY03, BMS04, SSB07, SSB09, SSB10, PR17] which decode beyond
the error correction capability of the code.

Definition 2.3.1 (Interleaved Reed-Solomon codes). Let l ≥ 1 and k1, . . . , kl ≤ n ≤ q and
{α1, . . . , αn} be pairwise distinct evaluation points in Fq. The l-Interleaved Reed-Solomon
(IRS) code is

CIRS(n, k1, . . . , kl) :=



c1
...
cl


∣∣∣∣∣∣∣∣ci ∈ CRS(n, ki), 1 ≤ i ≤ l

 ∈ (Fq)l×n

An homogeneous IRS code is an IRS code whose l constituent RS codes all have the same
dimension k1 = . . . = kl = k. We denote it simply by CIRS(n, k). In this work we focus on
homogeneous IRS codes.

Remark 2.3.1. Note that by the definition of RS codes (Definition 2.2.1) we can see an IRS
code CIRS(n, k) as the evaluation of a (column) vector of polynomials of bounded degrees,
i.e.

CIRS(n, k) =
{
(f(α1), . . . ,f(αn)) | f ∈ Fq[x]l×1,deg(f) ≤ k − 1

}
Moreover for any codeword C = (f(α1), . . . ,f(αn)) ∈ CIRS(n, k), we can interpret any com-
ponent f(αi) ∈ Fl×1

q as an element of Fql . In this way, CIRS(n, k) ⊆ Fn
ql

and it is easy to see
that it is an [n, k, n−k+1]-linear code over Fql . The error correction capability of CIRS(n, k)
is then τ0 =

⌊
n−k
2

⌋
.



The interpretation of any component of any codeword as a vector on an extension field is
crucial for the error model comprehension.
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2.3.1 Decoding IRS codes

Error model. We consider a burst-error channel as in [Kra03]. In this simplified model,
the transmitted codeword is a matrix over a certain alphabet and the channel introduce some
errors, called phased burst (simply bursts) that corrupt columns of the codeword. Therefore,
in the specific case of IRS codes the action of these channels can be described as follows

C ∈ CIRS(n, k) ⊆ Fl×nq −! channel −! Y = C + Ξ ∈ Fl×nq

"

Ξ ∈ Fl×nq

error matrix

where E := {i ∈ {1, . . . , n} | Ξ∗,i 6= 0} is the error support.
In this case burst errors alter columns of the received matrix (see Figure 2.4).

Figure 2.4: Received word of an IRS code under the burst error model.

Now, since Flq ' Fql , by using the field extension representation we can model this channel
by a ql-ary Symmetric Channel (see Example 2.1.2) over the alphabet Fql .

Simultaneous interpolation with errors. Fix a received word Y = (f(α1), . . . ,f(αn))+

Ξ, where f ∈ Fq[x]l×1, deg(f) ≤ k − 1 and Ξ the error matrix with error support E := {i ∈
{1, . . . , n} | Ξ∗,i 6= 0}, |E| ≤ τ for a given τ . We now observe that the problem of decoding
Y coincides with the problem of reconstructing a vector of polynomials with bounded degree
given its evaluations, where some of them could be erroneous. This is exactly the vector
generalization of the interpolation with errors (Definition 2.2.3) which is called simultaneous
interpolation with errors. 4

4. In [BKY03], authors introduced the simultaneous polynomial reconstruction, a particular case of SIwE
for which the number of errors is known, i.e. |E| = τ .
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Definition 2.3.2 (Simultaneous interpolation with errors). Fix some parameters l, n, τ, k, q,
where k, τ ≤ n ≤ q and l ≥ 1. Fix also {α1, . . . , αn} pairwise distinct elements of Fq. A
satisfiable instance of the simultaneous interpolation with errors (shortly SIwE) problem is
the matrix Y ∈ Fl×nq such that there exist

1. a vector of polynomials f ∈ Fq[x]l×1, deg(f) ≤ k − 1,
2. an error matrix Ξ ∈ Fl×nq with error support E := {i | Ξi 6= 0}, where |E| ≤ τ

which satisfy the following
Y = (f(α1), . . . ,f(αn)) + Ξ. (2.18)

SIwE is the problem of finding a vector of polynomials f as in (2.18) given an instance Y .

In Subsection 4.1.1 we will generalize this problem to vector of rational functions, the
simultaneous Cauchy interpolation with errors.

Remark 2.3.2. Note that Y is an instance of SIwE with parameters n, k, τ, {α1, . . . , αn} if
and only if CIRS(n, k) ∩ Bτ (Y ) 6= ∅. 

We now observe that, since any row of an IRS codeword is an RS codeword, we could
construct a BMD decoder for IRS codes which decode any row of the received word separately
as we saw in Subsection 2.2.1. Nevertheless, the interleaving technique applied to RS codes
allows the construction of partial BD decoders [BKY03, SSB07, SSB09, SSB10, PR17], in
the sense that they fail for a few error patterns of any weight beyond the error correction
capability of the code τ0.

As for classic RS codes, we can distinguish two main approaches to construct such de-
coders: an interpolation-based and a syndrome-based one. In this section, we especially focus
on the first one and on a decoder derived from it, since we generalize this approach for solving
the simultaneous Cauchy interpolation with errors (Chapter 4).

By the way, it important to remark that the most efficient decoder for IRS is a syndrome-
based one [SSB07, SSB09, SSB10]. It is based on a generalized version of the Berlekamp-
Massey [Ber68, Mas69] algorithm for decoding RS codes and it has a similar arithmetic
complexity [SSB09].

We now fix an IRS code CIRS(n, k) over Fq with evaluation points {α1, . . . , αn} and a
received word Y = (f(α1), . . . ,f(αn)) + Ξ, of error support E := {i | Ξ∗,i 6= 0}, ε := |E|. We
also denote the received matrix by Y = (yi,j) 1≤i≤l

1≤j≤n
.

For any 1 ≤ i ≤ l, let Ψi be the Lagrange interpolating polynomial of the i-th row of Y ,
i.e. Ψi =

∑n
j=1 Yi,j`j

∏
k 6=j(x − αk) where `j =

∏
k 6=j

1
αj−αk

for any 1 ≤ j ≤ n. We denote
Ψ = (Ψ1,Ψ2, . . . ,Ψl)

T ∈ Fl×1
q . Recall that G =

∏n
i=1(x− αi).

Note that

Λf = ΛΨ mod G ⇐⇒ Λ(αj)f(αj) = Λ(αj)Y∗,j , for any 1 ≤ j ≤ n

⇐⇒ Λ(αj)fi(αj) = Λ(αj)yi,j , for any 1 ≤ i ≤ l, 1 ≤ j ≤ n
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Indeed, it suffices to observe that if j ∈ E then Λ(αj) = 0, otherwise yi,j = fi(αj) for any
1 ≤ j ≤ n. Therefore, as for classic RS codes, since this equation is not linear in the unknowns
f and Λ, we study the linear problem

ϕ = λΨ mod G, deg(ϕ) ≤ ε+ k − 1, deg(λ) ≤ ε (2.19)

or equivalently, for any 1 ≤ i ≤ l and 1 ≤ j ≤ n,

ϕi(αj) = λ(αj)Ψi(αj), deg(ϕi) ≤ ε+ k − 1, deg(λ) ≤ ε (2.20)

Note that this problem coincides with the simultaneous rational function reconstruction 5

(Problem 2) with input G,Ψ and degree constraints ε+ k, ε+ 1.

Remark 2.3.3. We denote by SY,ε,k := {(ϕ1, . . . , ϕl, λ) satisfying (2.20)}. Note that we
write SY,ε,k to stress the dependency on the received matrix Y , on k and ε. If we consider
the homogeneous linear system related to (2.20), we observe that the set of solutions SY,ε,k is
the kernel of the matrix

MY,ε,k =


Vn,k+ε −D1Vn,ε+1

Vn,k+ε −D2Vn,ε+1

. . . ...
Vn,k+ε −DlVn,ε+1

 (2.21)

where Vn,d denotes the Vandermonde matrix whose entries are (αj−1
i )1≤i≤n

1≤j≤d
and for any 1 ≤

i ≤ l, Di is the diagonal matrix whose elements on the diagonal are yi,1, . . . , yi,n. 

We now recall (1.6), which derives from the fact that we can apply RFR to solve SRFR.
We also recall that in this case a1 = . . . = al = G =

∏n
i=1(x−αi), N1 = . . . = Nl = N = ε+k

and D = ε+ 1. So we can conclude that if

deg(G) = n ≥ (ε+ k) + (ε+ 1)− 1 = 2ε+ k ⇐⇒ ε ≤ n− k

2

this problem admits a unique solution. In this case, we can prove with the same technique of
Lemma 2.2.3 that all the solutions are polynomial multiples of a minimal one, which is exactly
(Λf ,Λ). Indeed, recall that τ0 = n−k

2 is the error correction capability of the code, and by
Theorem 2.1.1 then |CIRS(n, k) ∩ B(τ0)(Y )| = 1. Therefore, also in this case, the uniqueness
of the solution of SRFR is strictly related to the uniqueness of the decoding.

We now ask what happens if we consider the reduced number of points of (1.7) derived

5. Note that we can equivalently consider the SRFR problem for row or column vectors
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from the common denominator property of SRFR. Specifically, if

l∑
i=1

deg(ai)︸ ︷︷ ︸
ln

=
l∑

i=1

Ni︸ ︷︷ ︸
l(ε+k)

+ D︸︷︷︸
ε+1

−1 ⇐⇒ n = (k + ε) + (ε+ 1− 1)/l

⇐⇒ ε =
l(n− k)

l + 1
.

In [BKY03, BMS04, SSB07, SSB09, SSB10], authors proved that we can construct some
decoders, which can uniquely correct almost all errors up to the decoding radius

τIRS =

⌊
l(n− k)

l + 1

⌋
. (2.22)

Note that for l ≥ 1 then τIRS ≥ τ0, meaning that these decoders could correct beyond the
error correction capability of the code.

In what follows we “reinterpret” some results of [BKY03] thanks to our study of the
generalized rational function case (see Subsection 4.1.1).

In [BKY03] authors first introduced a decoder which assumes to know exactly the number
of errors that occurred during the transmission. Then, they generalized their results to the
construction of a more general decoder which is suited to a channel’s model for which they
estimated the expected number of errors. Here we define a more general decoder (Algorithm 4)
fitting to the error model previously described.

An interpolation-based partial decoder. As previously observed, we can reduce the
decoding problem of IRS to SRFR in the interpolation version (Problem 2) with input G =∏n
i=1(x−αi), Y (where Y is the received word) and degree constraints τIRS +k, τIRS +1, i.e.

ϕ(αj) = λ(αj)Y∗,j , deg(ϕ) ≤ τIRS + k − 1, deg(λ) ≤ τIRS . (2.23)

However, since we are beyond the error correction capability of the code, the uniqueness of
the solution to the decoding problem is not always guaranteed. In what follows we denote, as
in Remark 2.3.3, by SY,τIRS ,k the set of solutions of SRFR (2.23). Recall that this coincides
with the kernel of MY,τIRS ,k as in (2.21).

Note that to compute a basis of the Fq[x]-module of solutions (step 3 of Algorithm 4) we
can use the algorithm of [RS16] (see Section 1.2), which computes all the rows of a shifted
row reduced basis, (the shift is s = (−τIRS − k, . . . ,−τIRS − k,−τIRS − 1)) with negative
row degrees. As seen in Subsection 1.3.2 this is a basis of the Fq[x]-module generated by the
solutions in SY,τIRS ,k.
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Algorithm 4: Partial BD decoder for IRS codes
Input : CIRS(n, k) with {α1, . . . , αn}, Y received word
Output: f ∈ Fq[x]l×1, deg(f) ≤ k − 1 or a “decoding failure”.

1 Let M be Fq[x]-module generated by solutions in SY,τIRS ,k;
2 if rank(M) = 1 then
3 find (ϕ, λ) a generator of M scaled to obtain λ monic;
4 perform Euclidean division ϕ = λf + r;
5 if r = 0 and deg(f) ≤ k − 1 then
6 return f

7 else
8 return “decoding failure”

9 else
10 return “decoding failure”

Correctness of Algorithm 4. We now introduce some lemmas useful to prove the cor-
rectness of the algorithm. In particular, the following lemma is an adaptation of Theorem 1
of [BKY03] for a more general result. The proof of this algorithm is new and it is a specific
case of Theorem 4.1.2, in which we prove the same result for the reconstruction of a vector
of rational functions instead of polynomials.

Lemma 2.3.1. Fix E ⊆ {1, . . . , n}, and assume that ε := |E| satisfies ε ≤ τIRS. Moreover,
fix f ∈ Fq[x]l, deg(f) ≤ k − 1.

Consider the random matrix Y = (yi,j) 1≤i≤l
1≤j≤n

such that,

— if j ∈ E, then Y∗,j is a uniformly distributed element in Fl×1
q ,

— if j 6∈ E, then Y∗,j = f(αj).

Then SY,τIRS ,k is spanned by elements of the form (xiΛf , xiΛ), i.e.

SY,τIRS ,k = 〈xiΛf , xiΛ〉0≤i≤τIRS−ε−1,

with probability at least 1− τIRS/q.

Proof. First notice that, since (Λf ,Λ) ∈ SY,τIRS ,k then

〈xiΛf , xiΛ〉0≤i≤τIRS−ε−1 ⊆ ker(MY,τIRS ,k) = SY,τIRS ,k. (2.24)

In the first part of the proof we show the existence of a draw of columns of Y corresponding
to the error positions, for which we have SY,τIRS ,k ⊆ 〈xiΛf , xiΛ〉0≤i≤τIRS−ε−1 and so by (2.24),
we have the equality.
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Consider a partition of E, i.e. E = ∪li=1Ii, such that for any 1 ≤ i ≤ l, |Ii| ≤ dε/le. Note
that such a partition exists since ldε/le ≥ ε = |E|. For any j ∈ E, we denote by ij the unique
index such that j ∈ Iij . Construct a matrix V , such that

— V∗,j = f(αj), if j 6∈ E,

— otherwise if j ∈ E, V∗,j is chosen so that

f(αj)− V∗,j = εij , (2.25)

where εi is a vector of Fl×1
q , whose i-th entry is 1 and all the others are zero.

Now, consider (ϕ, λ) ∈ SV,τIRS ,k. By multiplying (2.25) by λ(αj) and since (ϕ, λ) belongs
to the solution space SV,τIRS ,k then,

λ(αj)f(αj)− λ(αj)V∗,j︸ ︷︷ ︸
ϕ(αj)

= λ(αj)εij .

Fix 1 ≤ i ≤ l, observe that for any j /∈ Ii then,

— if j /∈ E, then V∗,j = f(αj) and so we get λ(αj)fi(αj)− ϕi(αj) = 0,

— if j ∈ E \ Ii, then by the choice of V∗,j we have λ(αj)fi(αj)− ϕi(αj) = 0,

hence in both cases, λ(αj)fi(αj) − ϕi(αj) = 0. Note that the polynomial λfi − ϕi has
n− |Ii| ≥ n− dε/le roots. Since ε ≤ τIRS ≤ l(n−k)

l+1 , then n− dε/le ≥ n− τIRS/l ≥ τIRS + k.
On the other hand, the degree of the polynomial λf − ϕi is at most τIRS + k − 1, hence it is
the zero polynomial. Hence ϕ− λf = 0.

Now, since for any 1 ≤ j ≤ n λ(αj)f(αj) = ϕ(αj) = λ(αj)V∗,j , we have λ(αj)[f(αj) −
V∗,j ] = 0. We remark that for j ∈ E, by construction f(αj)−V∗,j 6= 0 and so Λ =

∏
j∈E(x−αj)

divides λ. This implies that there exists P such that λ = PΛ and ϕ = λf = PΛf .
Therefore, SV,τIRS ,k ⊆ 〈xiΛf , xiΛ〉0≤i≤τIRS−ε−1 and so we have the equality.

Given Y as in the assumption of this lemma, since 〈xiΛf , xiΛ〉0≤i≤τIRS−ε−1 ⊆ SY,τIRS ,k,
then dim(ker(MY,τIRS ,k)) ≥ τIRS − ε. By the Rank-Nullity Theorem

rank(MY,τIRS ,k) = l(τIRS + k) + τIRS + 1− dim(ker(MY )) ≤ l(τIRS + k) + 1 + ε =: ρ.

Hence rank(MY,τIRS ,k) ≤ ρ. On the other hand, as proved above, there exists a draw V∗,j

of Y∗,j for j ∈ E, such that rank(MV,τIRS ,k) = ρ. This means that there exists a nonzero ρ-
minor in MV,τIRS ,k. We consider this nonzero ρ-minor as a multivariate polynomial C whose
indeterminates are (yi,j)1≤i≤n

j∈E
. We can remark that we showed the existence of a draw V∗,j

of Y∗,j , for j ∈ E such that the corresponding C(V∗,j) is non zero. Hence the polynomial C
is nonzero.

For any matrix Y such that (Y∗,j)j∈E are not roots of C, then the solution space is
SY,τIRS ,k = 〈xiΛf , xiΛ〉0≤i≤τIRS−ε−1. Note that the total degree of the polynomial C is at
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most τIRS , since only the last τIRS columns of the corresponding matrix MY,τIRS ,k contain
the variables (yi,j)1≤j≤n

j∈E
(see (2.21)).

Finally by the Schwartz-Zippel Lemma, the polynomial C cannot be zero in more than
τIRS/q fractions of its domain. Therefore we can conclude that the probability that SY,τIRS ,k 6=
〈xiΛf , xiΛ〉0≤i≤τIRS−ε−1 is at most τIRS/q.

We observe that the assumption on the error distribution of Lemma 2.3.1 is somewhat
consistent with the channel model: a ql-ary Symmetric Channel over Fql .

Remark 2.3.4. Note that if Y is a received word for which the solution space is SY,τIRS ,k =

〈xiΛf , xiΛ〉0≤i≤τIRS−ε−1, then the Fq[x]-module generated by solutions of (2.23) has rank 1

and the generator of the basis (ϕ, λ), scaled to have λ monic is exactly (Λf ,Λ). Therefore, the
divisibility and the degree condition of the step 5 of Algorithm 4 are satisfied and it outputs
f . 

Lemma 2.3.2. Let Y ∈ Fl×nq a received matrix and let (ϕ, λ) ∈ SY,τIRS ,k such that λ|ϕi
for any 1 ≤ i ≤ l and deg(f) ≤ k − 1, where f := (f1, . . . , fl)

T and fi := ϕi/λ. Then the
Hamming distance 6 satisfies d((f(α1), . . . ,f(αn), Y ) ≤ τIRS.

Proof. Indeed, since ϕ = λf , the λ(αj)[f(αj) − Y∗,j ] = 0 for any 1 ≤ j ≤ n. Therefore,
|E| = d((f(α1), . . . ,f(αn), Y ) ≤ deg(λ) ≤ τIRS .

Lemma 2.3.3. Let Y ∈ Fl×nq a received word such that CIRS(n, k) ∩ B(τIRS)(Y ) 6= ∅. Let f

be the vector of polynomials related to the codeword in the ball B(τIRS)(Y ) and Λ the error
locator polynomial.

If the rank of the Fq[x]-module of solutions in SY,τIRS ,k is 1, then its generator (ϕ, λ) with
λ monic coincides exactly with (Λf ,Λ).

Proof. Since (ϕ, λ) is a generator of the Fq[x]-module of solutions SY,τIRS ,k and since (Λf ,Λ) ∈
SY,τIRS ,k there exists P ∈ Fq[x] such that (Λf ,Λ) = (Pϕ, Pλ). Therefore, λ|Λ and it is of the
form λ =

∏
j∈E′(x−αj), where E′ ⊆ E. Moreover, ϕ = λf . As in the proof of Lemma 2.3.2,

we have that |E| = d((f(α1), . . . ,f(αn)), Y ) ≤ deg(λ) = |E′| and so E = E′ and P ∈ Fq.

Remark 2.3.5.

1. Let Y ∈ Fl×nq a received word such that CIRS(n, k) ∩ B(τIRS)(Y ) 6= ∅. We denote by f

the vector of polynomials corresponding to a codeword in B(τIRS)(Y ) and Λ the error
locator polynomial. Lemma 2.3.3 basically tells us that if the rank of the Fq[x]-module
of solutions in SY,τIRS ,k is 1 then SY,τIRS ,k is spanned by 〈xiΛf , xiΛ〉. This is a sort of
“vice versa” of Remark 2.3.4. Informally speaking, this allows us to conclude that the

6. Recall that in Section 2.1 we defined the Hamming distance in the vector space Fn
q , for a general finite field

Fq. By the extension field representation, we can consider codewords of CIRS(n, k), i.e. (f(α1), . . . ,f(αn)) ∈
Fl×n
q , as elements in Fn

ql . Hence the Hamming distance in this case is defined in the vector space Fn
ql .
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fact that the rank of the Fq[x]-module of solutions is 1 is equivalent to have a solution
space of the form 〈xiΛf , xiΛ〉.

2. Note that by Lemma 2.3.3 we cannot have more than one codewords in the ball
B(τIRS)(Y ) and rank of the Fq[x]-module equal to 1. This means that if the rank is
1, then |CIRS(n, k) ∩BτIRS (Y )| = 1.



We now analyze the behavior of the decoder of Algorithm 4, in order to verify its correct-
ness.

Remark 2.3.6 (Correctness of the partial BD decoder (Algorithm 4)). Let Y be a received
word, M the Fq[x]-module of solutions in SY,τIRS ,k (as in step 1 of the algorithm) and r =

rank(M). We have the following possibilities,

— if CIRS(n, k) ∩ B(τIRS)(Y ) = ∅, the decoder outputs a decoding failure. Indeed, by
Lemma 2.3.2, it cannot return a vector of polynomial f ∈ Fq[x]l×1 of deg(f) ≤ k − 1,

— if |CIRS(n, k)∩B(τIRS)(Y )| = 1, then by Lemma 2.3.1, with probability at least 1−τIRS/q
then SY,τIRS ,k = 〈xiΛf , xiΛ〉 and so rank(M) = 1. Note that in the equality case, the
element of the basis computed at step 3 of Algorithm 4 is exactly (Λf ,Λ) and so by
performing the division we get f , which corresponds to the sent codeword.

— if |CIRS(n, k)∩B(τIRS)(Y )| > 1, then by Remark 2.3.5, rank(M) > 1 and so the decoder
outputs a decoding failure.



As previously remarked, this decoder is a partial BD decoder with decoding radius τIRS ,
indeed, if Y is such that |CIRS(n, k)∩B(τIRS)(Y )| = 1 it could eventually fail, even if there is
only one codeword in the ball.

Failure probability. We introduced a decoder which, given a received vector
Y = (f(α1), . . . ,f(αn)) +Ξ, where ε ≤ τIRS , can recover the sent codeword f with a certain
probability. Precisely, by Lemma 2.3.1, the failure probability, that is the probability that the
decoder does not recover this sent codeword, leading to a decoding failure message is at most
τIRS/q. As previously observed, this result is just an adaptation of Theorem 1 of [BKY03],
for a slightly different decoder.

In [BMS04] A. Brown et al. proved that the failure probability does not depend on the
number of errors and it is O(1/q). More specifically they proved that this probability is at
most

exp(1/(ql−2))

q − 1
.
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On the other hand, in [SSB07, SSB09, SSB10] it was introduced a partial decoder based
on the syndrome-based approach with decoding radius τIRS . They proved that the failure
probability of this decoder is at most(

ql − 1
q

ql − 1

)ε
q−(l+1)(τIRS−ε)

q − 1
(2.26)

In the same papers, the authors show that this failure probability is tight in practice.

2.4 A short summary of the chapter

Here we present a short summary of the main results and notions of the chapter.

∗ ∗ ∗ ∗ ∗

Reed-Solomon codes. The Reed-Solomon (RS) code is a linear code which is determined
by the evaluations of polynomials with bounded degrees. Decoding a Reed-Solomon codeword
is then the problem of reconstructing a polynomial of bounded degree by its evaluations, where
some are erroneous. We called this problem interpolation with errors.

We saw that there are basically two approaches to decode RS codes: an interpolation-based
and a syndrome-based. Moreover, for both of them the decoding problem can be reduced to
a rational function reconstruction (RFR) and so, all the existing RS decoders basically differ
in the algorithm chosen to solve RFR.

In this coding theory scenario, the number of evaluation points which guarantees the
uniqueness of RFR is related to the maximum number of errors that we can uniquely correct,
i.e. the error correction capability of the RS code.

Interleaved Reed-Solomon codes. Interleaving is an encoding technique used in settings
where errors are extended to consecutive symbols of the received word. This technique applied
to RS codes allows the construction of partial decoders, which can correct almost all error
patterns beyond the error correction capability of the code.

In detail, the interleaved RS (IRS) code is determined by evaluations of vectors of poly-
nomials with bounded degrees.

Decoding an IRS codeword consists in reconstructing a vector of polynomials of bounded
degrees given its evaluations, where some are erroneous (the simultaneous interpolation with
errors problem). This is the vector extension of the interpolation with errors problem.

As for classic RS codes, there are two techniques for decoding IRS codes: an interpolation-
based and a syndrome-based one. In this chapter we focus on the first one, since we will
generalize this technique later, for the simultaneous polynomial reconstruction with errors
problem (see Subsection 4.1.1).
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The interpolation-based approach basically reduces the decoding problem to the simulta-
neous rational function reconstruction (SRFR) problem. In this case the common denominator
of the vector of rational functions that we want to recover is the error locator polynomial.

In this coding theory scenario, we pointed out that reducing the number of evaluation
points which guarantees the uniqueness of SRFR is equivalent to increasing the number of
errors that we can uniquely correct. So, this reduction allows one to construct decoders which
correct more errors.

As seen in the previous chapter, if we consider the number of evaluation points which
guarantees the uniqueness of the classic RFR, we have also the uniqueness of SRFR. From
the coding theory perspective, this means that if the number of errors is smaller than the
error correction capability of the code, i.e. half of the minimum distance, we can uniquely
decode any IRS codeword. Indeed, it suffices to separately decode any component of the IRS
codeword, which is an RS codeword.

Besides, the interleaving construction allows to do better: if the number of errors is
smaller than the number derived from the common denominator feature of SRFR, we have
the uniqueness of SRFR for the corresponding instance y = f +e, for all f and for almost all
(see Definition 3.1.1) errors e. This means that we can construct decoders which can uniquely
correct almost all error patterns beyond the error correction capability of the code.

This motivates our study about uniqueness of the general SRFR problem with this reduced
number of evaluation points, as we will see in the following chapter.
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CHAPTER 3
Generic Uniqueness of SRFR
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The simultaneous rational function reconstruction (Problem 2), is the problem of recon-
structing a vector of rational functions with the same denominator given their remainders
modulo some polynomials.

We saw how the common denominator constraint affects the condition on the parameters
of the problem which guarantees the existence of a nontrivial solution (see equation 1.7). For
instance, in the interpolation case, in which we want to reconstruct a vector of polynomials
given its evaluation, the common denominator constraint reduces the number of evaluation
points needed to guarantee the existence of a nontrivial solution, possibly losing its uniqueness.
We also saw that this reduction is significant for the applications of this problem:

— for the polynomial linear system solving (Section 1.4) by evaluation-interpolation, this
means a reduction on the number of points needed to reconstruct the solution. This
reduction has an impact on the complexity of the resolution algorithms which depend
on this number of points;

— from a coding theory perspective, this reduction allows the construction of decoders for
IRS (Section 2.3) which correct beyond the error correction capability of the code.

Moved by these considerations, in [GLZ20b] we proved that with this smaller number
of evaluation points (or if equation (1.7) holds, in the general case) SRFR admits a unique
solution for almost all instances of the problem (Theorem 3.2.1).
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This chapter is devoted to the presentation of this result.

Recall that in Section 1.2 we saw that solutions of SRFR are elements of a specific relation
module with negative shifted row degrees (see Lemma 1.3.8). The shift integrates the degree
constraints. Therefore, in the uniqueness case there is only one element of an ordered weak
Popov basis of this relation module with negative shifted row degrees. Hence the goal of this
chapter is to prove that for almost all instances u of SRFR the row degrees of the relation
module are of the form ρ = (0, . . . , 0,−1) (Theorem 3.2.1).

In order to achieve it, in Section 3.1 we first prove some results about the row degrees
of general relation modules, i.e. relation modules related to general matrices M ∈ K[x]m×n.
Then in Section 3.2 we transpose all these results to the relation module AM,Ru related to
solutions of SRFR in order to finally prove our uniqueness result (Theorem 3.2.1).

3.1 Generic Row Degrees of the Relation Module

In this section we derive the generic form of the row degrees of relation modules. For
the sake of clarity, we start this section with a short summary of some notions and notations
introduced in Section 1.3.

Short summary of previous notions. Let M ∈ K[x]m×n, where m ≥ n and M a
K[x]-submodule of K[x]n = K[x]1×n of rank n. The relation module AM,M is the kernel of
the K[x]-module homomorphism ϕ̂M : K[x]m −! K[x]n/M such that ϕ̂(p) = pM for any
p ∈ K[x]m. We denote by ϕM : K[x]m/AM,M ↪−! K[x]n/M the corresponding injection.

To lighten the notations we also denote by ε1, . . . , εm and ε′1, . . . , ε
′
n the canonical bases

of K[x]m and K[x]n respectively. Moreover, let K = K[x]n/M ' K[x]n/〈ai(x)ε′i〉 and Li =

deg(ai), where L1 ≥ L2 ≥ . . . ≥ Ln (see Remark 1.3.4). We also consider ei = εi mod AM,M .
Given a shift s ∈ Zm, we let ρ and δ be the s-row degrees and s-pivot degrees of AM,M

(see Definition 1.3.8). In particular, δ = ρ− s.
Sometimes, we write ρM and δM to stress the matrix dependency.

At this point the reader may ask what we mean by the terminology “generic” which we
frequently use in this work. We now give a formal definition.

Definition 3.1.1 (Generic property). A property P is said to hold generically, or for generic
instances or even for almost all instances, if there exists a nonzero polynomial such that the
property holds for all instances for which the polynomial is not vanishing.

Remark 3.1.1. Lemma 2.3.1 can be reformulated by saying that for a fixed error sup-
port E ⊆ {1, . . . , n}, with |E| ≤ τIRS , for almost all error patterns in Flq then SY,τIRS ,k =

〈xiΛf, xiΛ〉0≤i≤τIRS−ε−1. Indeed, in this case the nonzero polynomial is the ρ-minor of the
matrix MY,τIRS ,k (see the proof of Lemma 2.3.1 for more details). 

82



3.1.1 Monomial orders on modules

Let K be a field and K[x] = K[x1, . . . , xt] be a multivariate polynomial ring. In this
subsection we introduce the notion of monomial orders on K[x]-modules. We see a particular
monomial order, the term over position (shortly TOP ) in its general and shifted version
(s− TOP ). Finally, by transposing all these results to the univariate case, we underline the
link between s-pivots (Definition 1.3.6) and leading terms w.r.t s− TOP order.

Monomial orders on K[x]. We now recall basic notions about monomial orders in K[x].
For more details, we refer the reader to [CLO07, Section 2.2].

Recall that a monomial in K[x] is a product of the form xα := xα1
1 · · ·xαt

t , where α =

(α1, . . . , αt) ∈ Nt.

Definition 3.1.2 (Monomial order). A monomial ordering ≺ is any ordering relation on
monomials in K[x], where α = (α1, . . . , αt) ∈ Nt, such that,

— ≺ is a total ordering, i.e. for any pair of monomials then we have only one of the
following: xα ≺ xβ, xα = xβ, xβ ≺ xα.

— if xα ≺ xβ, then xαxγ ≺ xβxγ , for any monomial xγ ,

— ≺ is a well ordering, i.e. there are no infinite descending chains of monomials.

Among all the monomial orders we especially focus on the lexicographic order.

Example 3.1.1 (Lexicographic order). Let xα and xβ be monomials in K[x]. Then xα ≺LEX

xβ, if in the difference α− β ∈ Zt, the left-most nonzero entry is negative.
Here are some examples, for t = 3

1. x32x43 ≺LEX x1x2

2. x1x2 ≺LEX x1x
2
2x

3
3.



Remark 3.1.2. We observe that in the univariate case, the only monomial order is the
natural degree order, xα < xβ if α < β. 

Let f =
∑

α cαx
α, be a polynomial in K[x] and ≺ be a monomial order. Let xα be the

maximal monomial w.r.t ≺ such that cα 6= 0. Then xα is called leading monomial , cα is
the leading coefficient and cαx

α is the leading term. Formally, we denote them respectively
LM≺(f), LC≺(f) and LT≺(f).

Notice that, we can identify monomials xα in K[x] with n-tuples α = (α1, . . . , αt) in Nt.
For this reason we can consider monomial orders on K[x] as orders on Nt.
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Monomial orders on K[x]-modules. We can naturally extend Definition 3.1.2 to the
K[x]-module K[x]t [CLO05, Chapter 2]. A monomial in K[x]t is an element m of the form
xαεi for some i, 1 ≤ i ≤ t. We denote by ε1, . . . , εt the canonical basis of K[x]t.

Definition 3.1.3 (Monomial order on a module). An ordering relation ≺ on the monomials
in K[x]t is a monomial ordering if,

— ≺ is a total ordering,

— for any m,n monomials in K[x]t, such that m ≺ n then xαm ≺ xαn for any xα

monomial in K[x],

— ≺ is a well ordering.

Some of the common monomial orders on K[x]t derive from the extension of orders on K[x].
Basically, according to the chosen order on the canonical basis vectors, we can distinguish
two main approaches to derive the monomial orders, which are described in the following
definition. Note that here we suppose that ε1 ≺ . . . ≺ εt.

Definition 3.1.4 (TOP and POT monomial orderings). Let ≺ be a monomial order on K[x].
Then,

— xαεi ≺TOP xβεj if xα ≺ xβ, or if xα = xβ and i < j;

— xαεi ≺POT xβεj if i < j, or if i = j and xα ≺ xβ;

The terminologies TOP and POT derive from [AL94]. In detail TOP stands for “terms-
over-position” and POT for “position-over-terms”. Indeed, the TOP order sorts monomial
first by the monomial order on K[x] and then by the position of the canonical basis elements.
The POT sorts exactly in the opposite way.

We now introduce the shifted TOP order. In the literature shifted orders are also called
weighted orders ([FF92, OF07]). Here the former terminology is preferred to the latter since
it underlines the link with shifted row degrees (Definition 1.3.3).

Definition 3.1.5 (shifted TOP monomial orderings). Let ≺ be a monomial order on K[x] and
xs1 , . . . ,xst be the shifting monomials in K[x]. Then xαεi ≺s−TOP xβεj if xαxsi ≺ xβxsj ,
or if xαxsi = xβxsj and i < j.

Note that each shifting monomial is related to a shift s = (s1, . . . , st) ∈ Zt.

Example 3.1.2. Consider t = 2, the ≺LEX -order on K[x1, x2] and shift s = (1, 0). We have,

1. x1ε2 ≺TOP x
2
1ε1 ≺TOP x

2
1ε2 ≺TOP x

2
1x

3
2ε2,

2. x1ε1 ≺POT x
2
1x

2
2ε1 ≺POT x1ε2 ≺POT x1x

3
1ε2,

3. x1ε1 ≺s−TOP x
2
1ε2 ≺s−TOP x

2
1x2ε1 ≺s−TOP x

2
1x2ε2.


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As for polynomials in K[x], we can introduce the notions of leading coefficient, monomial
and term. Let f ∈ K[x]t and ≺ a monomial order in K[x]t. We can write f =

∑t
i=1 cimi,

where mi are monomials in K[x]t. Let mi the maximal monomial w.r.t ≺ such that ci 6= 0.
Then mi is the leading monomial, ci is the leading coefficient and cimi is the leading term,
i.e. LM≺(f) = mi, LC≺(f) = ci and LT≺(f) = cimi.

Given N a submodule of K[x]t we can also define LT (N ), the monomial submodule
{LT (f) | f ∈ N} of K[x]t.

The univariate case. We now consider the K[x]-module K[x]t, then we have

— xαεi ≺TOP x
βεj if (α, i) ≺LEX (β, j),

— xαεi ≺POT x
βεj if (i, α) ≺LEX (j, β),

— given a shift s = (s1, . . . , st) ∈ Zt then xαεi ≺s−TOP x
βεj if (α+si, i) ≺LEX (β+sj , j).

We now focus on ≺TOP and ≺s−TOP orders. Notice that these orders sort monomials w.r.t
to their row degree and shifted row degree respectively. Indeed, we can observe that given
a monomial xαεi in the K[x]-module K[x]t and a shift s ∈ Zn, then rdeg(xαεi) = α and
rdegs(xαεi) = α+ si.

So, we can conclude that

— xαεi ≺TOP x
βεj if rdeg(xαεi) < rdeg(xβεj) or if rdeg(xαεi) = rdeg(xβεj) or i < j,

— xαεi ≺s−TOP xβεj if rdegs(xαεi) < rdegs(xβεj) and if rdegs(xαεi) = rdegs(xβεj) and
i < j.

Example 3.1.3. Let K = F7, t = 3 and s = (0, 1, 2). Then

Mon (1, 0, 0) ≺s−TOP (x, 0, 0) ≺s−TOP (0, 1, 0) ≺s−TOP (x2, 0, 0) ≺s−TOP (0, x, 0)

rdegs 0 1 2



We can now state the link between the ≺s−TOP monomial order on K[x]t and pivots
(Definition 1.3.6).

Remark 3.1.3. Let p = (p1, . . . , pn) ∈ K[x]t, s ∈ Zt be a shift and LT (p) = cix
αεi. Then

the s-pivot index, entry and degree are respectively i, pi and α. 

Example 3.1.4. Let K = F7, t = 3 and s = (0, 1, 2). Consider p = (x2+3, 3x3+5x+2, 2x2+

1).
Mon (x2, 0, 0) ≺s−TOP (0, 3x3, 0) ≺s−TOP (0, 0, 2x2)

rdegs 2 4

Therefore LT≺s−TOP (p) = 2x2ε3. Indeed, note that the s-pivot index, entry and degree are
respectively 3, 2x2 + 1 and 2. 
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The link between s-pivots and the leading term w.r.t ≺s−TOP is useful to prove the
following result, which basically relates the existence of p ∈ AM,M with a certain lead-
ing term LT (p) = xdεi to a linearly dependency relation of monomials in the K[x]-module
K[x]m/AM,M .

Proposition 3.1.1. There exists p ∈ AM,M with s-pivot index i and s-pivot degree d if and
only if xdei ∈ B≺xdεi

M where B≺xdεi
M := 〈xnej | xnεj ≺s−TOP x

dεi〉.

Proof. Fix i, d ∈ N and let p ∈ K[x]m with s-pivot index i and s-pivot degree d. Then,
r := rdegs(p) = d + si and p = ([≤ r]s1 , . . . , [≤ r]si−1 , [r]si , [< r]si+1 , . . . , [< r]sm). Therefore
we can write p = cxdεi + p′ where c ∈ K∗ and p′ = ([≤ r]s1 , . . . , [≤ r]si−1 , [< r]si , [<

r]si+1 , . . . , [< r]sm). So,

p ∈ AM,M has s-pivot index i and degree d ⇐⇒
xdεi = (−1/c) p′ mod AM,M ⇐⇒

xdei ∈

〈
xnej

∣∣∣∣∣ n+ sj ≤ d+ si, for 1 ≤ j ≤ i− 1

n+ sj < d+ si, for i ≤ j ≤ m

〉
= B≺xdεi

M .

In other terms, this proposition tells us that the K[x]-module K[x]m/AM,M is generated by
monomials which do not belong to LT (AM,M ). Proposition 3.1.1 is a specific case, adapted
to the modules on which we are focusing AM,M and K[x]m, of a more general result (see
[Eis95, Theorem 15.3]).

In conclusion, the next result exploits the relation between the s-pivot degrees of AM,M

and a set of generators of K[x]m/AM,M .

Theorem 3.1.2. Let δ be the s-pivot degrees of the relation module AM,M . Then, for any
1 ≤ j ≤ m,

δj = min{d | xdej ∈ B
≺xdεj
M }.

Proof. Fix 1 ≤ j ≤ m. During this proof we denote δj := min{d | xdej ∈ B
≺xdεj
M }. We

want to prove that δj = δj . Recall that by Proposition 3.1.1, xδjej ∈ B
≺xδj εj
M . Hence, by the

minimality of δj , δj ≥ δj . On the other hand, xδjej ∈ B
≺xδj εj
M so by Proposition 3.1.1 there

exists p ∈ AM,M of s-pivot index j and degree δj . Finally, by Lemma 1.3.6 we can conclude
that δj ≥ δj .

3.1.2 Row degrees of a relation module as row rank profile

We now define the matrix OM as the ordered matrix w.r.t ≺s−TOP related to the K[x]-
module homomorphism ϕ̂M . More specifically, we suppose that
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— the rows of the matrix from top to bottom are indexed by the monomials of K[x]m

sorted increasingly w.r.t the ≺s−TOP ,

— the rows are written w.r.t the basis {xiε′j}0≤i<Lj of K = K[x]n/M as a K-vector space.
Recall that the polynomials a1, . . . , am are the invariants of the module M and Li =

deg(ai).

Therefore, this matrix has infinite number of rows and
∑n

j=1 Lj columns. So, it has finite
rank r, where 0 ≤ r ≤

∑n
j=1 Lj .

Example 3.1.5. Let K = F7 and

M =

x
2 + 1 0

0 2x

0 x+ 4


so, m = 3 and n = 2. Let a1 = a2 = x3 and s = (0, 1, 2).

OM =



ϕ̂M (ε1)

ϕ̂M (xε1)

ϕ̂M (ε2)

ϕ̂M (x2ε1)

ϕ̂M (xε2)

ϕ̂M (ε3)
...


=



1 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 2 0

0 0 1 0 0 0

0 0 0 0 0 2

0 0 0 4 1 0
...

...
...

...
...

...


Notice that any row of the matrix is written w.r.t the basis {ε′1, xε′1, x2ε′1, ε′2, xε′2, x2ε′2} of the
K-vector space K[x]2/〈a1ε′1, a2ε′2〉. This matrix has infinite rows and L1 + L2 = deg(a1) +
deg(a2) = 6 columns.



In this subsection our goal is to relate the row rank profile ([Nei16, DPS15]) of OM to the
row degrees of the relation module.

First we give the following,

Definition 3.1.6 (Row rank profile). The row rank profile of a matrix A ∈ Kµ×ν is the
lexicographically smallest sub-sequence (i1, . . . , is) of (1, . . . , µ) such that the rank of A is s
and the rows Ai1,∗, . . . , Ais,∗ are linearly independent.

In other terms it is the lexicographically smallest sequence of s (equal to the rank of A)
indices of linearly independent rows of the matrix.

In our case, since the rows of OM are indexed by monomials in K[x]m, we transpose the
previous definition to monomials instead of indices. We denote Monr the set of sets of r
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monomials of K[x]m, where r is the rank of the matrix OM . In order to do so, we first need
to define an “extension” of the lexicographical ordering on families of monomials of Monr.

Definition 3.1.7. Let F = {xαiεβi}1≤i≤r and F ′ = {xγiελi}1≤i≤r two families of monomials
in Monr both sorted increasingly w.r.t ≺s−TOP -order. Then, F ≤LEX F ′ if there exists
1 ≤ t ≤ r such that xαiεβi = xγiελi for i < t and xαtεβt ≺s−TOP x

γtελt

We use this order to define the row rank profile of OM .

Definition 3.1.8 (Row rank profile of the ordered matrix). For any matrix M ∈ K[x]m×n,
we define the row rank profile of OM (shortly RRPM ) as the family of monomials of K[x]m

defined by RRPM := min≤LEXPM where

PM := {F ∈ Monr | {mM}m∈F are linearly independent in K} . (3.1)

We now introduce a particular family of monomials, that we frequently use in this work.
Given d = (d1, . . . , dn) we denote Fd := {xiεj}i<dj

This family allows us to finally relate the row rank profile of OM to the pivot degrees of
the relation module.

Proposition 3.1.3. The row rank profile of the ordered matrix OM is given by the s-pivot
degrees δM of the relation module AM,M , i.e. RRPM = FδM .

Proof. To lighten the notations we omit the matrix dependency of the row rank profile.
We define δ′j = min

{
δ | xδεj /∈ RRP

}
and δ′ = (δ′1, . . . , δ

′
m). By the definition of row

rank profile, we have that xδ
′
jej ∈ B≺xδ

′
j εj (otherwise we could create a smaller family of

linearly independent monomials). Using Theorem 3.1.2, we deduce that δ′j ≥ δj . Therefore
Fδ ⊂ Fδ′ ⊂ RRP . Since the families of monomials Fδ and RRP have the same cardinality r
(i.e. the rank of OM ), they are equal and so Fδ = RRP .

3.1.3 Constraints on linearly independent monomial families

We now characterize families of monomials in Monr which are linearly independent in K,
or in other words which belong to PM .

Note that we can extend the n-tuple L = (L1, . . . , Ln) of the degrees of the invariants of
the module M to an m-tuple, by adding some zeros, i.e. Ln+1 = . . . = Lm = 0.

Theorem 3.1.4. Let d = (d1, . . . , dm) ∈ Nm such that d1 ≥ d2 ≥ . . . ≥ dm and L =

(L1, . . . , Lm). Then,

∃M ∈ K[x]m×n such that Fd ∈ PM ⇐⇒
l∑

i=1

di ≤
l∑

i=1

Li for all 1 ≤ l ≤ m.
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Remark 3.1.4. The non-increasing property of d can be dropped. Consider d ∈ Nm such
that d1 ≥ . . . ≥ dm and π any permutation of {1, . . . ,m}. Denote d′ = (dπ(1), . . . , dπ(m)).
Then there exists M ∈ K[x]m×n such that Fd ∈ PM if and only if there exists M ′ ∈ K[x]m×n

such that Fd′ ∈ PM ′ . Indeed, recall that Fd = {xiεj}i<dj and so Fd′ = {xiεπ(j)}i<dπj
.

Therefore the permutation on d leads to a permutation of the rows of M , not affecting the
existence property. 

Theorem 3.1.4 is an adaptation of [Vil97, Proposition 6.1] and its derivation [PS07, Theo-
rem 3]. Even if the statements of these two papers are in a different but related context, their
proof can be applied almost straightforwardly. We still provide the main steps of the proof,
for the sake of clarity and also because we adapt it later in the proof of Theorem 3.2.1. Note
also that we complete the “if” part of the proof because it was not detailed in earlier refer-
ences. For this purpose, we introduce the following lemma and the corresponding corollary.

Lemma 3.1.5. Let N be a K[x]-submodule of K = K[x]n/M of rank l. Then the dimension
of N as K-vector space is at most L1 + · · ·+ Ll.

Proof. First, remark that if q = (q1, . . . , qn) ∈ N has its first nonzero element at index j then
since an|an−1|. . . |a1 we have that ajq = 0. Now, since N has rank l, we can consider the
matrix B whose rows are the l elements of a basis of N . We perform a transformation on
the rows of B to obtain the Hermite normal form B′ of B. Recall that the so-obtained B′ is
an upper triangular matrix and so the rows B′

i,∗ have the first nonzero elements at distinct
indices k1, . . . , kl. Therefore akjB′

∗,j = 0 and {xiB′
∗,j}0≤i<Lkj

1≤j≤l
is a generating set of N . So

the dimension of N as a K-vector space is dim(N ) ≤ Lk1 + · · · + Lkl ≤ L1 + · · · + Ll since
L1 ≥ . . . ≥ Ln and the kj are pairwise distinct.

Corollary 3.1.1. Let l ≥ 0, d = (d1, . . . , dl) ∈ Nl and v1, . . . ,vl ∈ K such that {xjvi}0≤j<di
1≤i≤l

are linearly independent in K. Then
∑l

i=1 di ≤
∑l

i=1 Li.

Proof. We consider N the K[x]-module spanned by {v1, . . . ,vl}, and we observe that d1 +
· · ·+ dl ≤ dim(N ) ≤ L1 + · · ·+ Ll by Lemma 3.1.5.

Proof of Theorem 3.1.4. We observe that if m > n, we can write K = K[x]n/ 〈aiε′i〉1≤i≤n =

K[x]m/ 〈aiεi〉1≤i≤m where ai = 1 for n + 1 ≤ i ≤ m. Hence, we can suppose w.l.o.g. that
m = n.

⇒) By the hypothesis, there exists a matrix M ∈ K[x]m×n such that {xiεjM}xiεj∈Fd
=

{xivj}0<i<dj are linearly independent in K where vj := εjM . Hence, for all 1 ≤ l ≤ m,
v1, . . . ,vl satisfy the conditions of the Corollary 3.1.1 and so

∑l
i=1 di ≤

∑l
i=1 Li.

⇐) Note that for 1 ≤ i ≤ m, {xiuj}i<Lj are linearly independent in M. Set ui = εTi .
We now consider the matrix K := [K1| . . . |Km] where Kj ∈ K[x]m×Lj is in Krylov form, i.e.
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Kj = K(uj , Lj) := [uj |xuj | . . . |xLj−1uj ]. Note that K is full column rank by construction.
Our goal is to find vectors v1, . . . ,vm such that [K(v1, d1)| . . . |K(vm, dm)] is full column rank
(see K̃ later).

For this purpose, we first need to consider the matrix K made of columns of K so that
it remains full column rank. It is defined as K := [K1| . . . |Km] where for 1 ≤ j ≤ m,
Kj ∈ K[x]m×dj are defined iteratively by

Kj := [K(uj ,min(Lj , dj))|K(xs1uj1 , t1)| . . . |K(xskujk , tk)]

and K(xslujl , tl) derives from previously unused columns in Kjl , which we add from left to
right, i.e. the sequence of indices (jl) is increasing. Since

∑j
i=1 di ≤

∑j
i=1 Li, we only pick

from previous blocks, i.e. jk < j. Since we need to complete a block Kil before going to
another one, we can observe that sl + tl = Ll for l < k. The last block Kik is the only
one that may not be completed, i.e. sk + tk ≤ Lk. Conversely, sl = dl for l > 1 because
no columns have been picked yet from the blocks jl, except maybe the first block j1 where
s1 ≥ d1.

We want to transform Kj into a Krylov matrix K̃j , working block by block. First we
extend [K(uj ,min(Lj , dj))|0| . . . |0] to the right to K(uj , dj). Then we extend all blocks
[0| . . . |0|K(xslujl , tl)|0| . . . |0] to the left and the right to K(xs

′
lujl , dl) where s′l equals sl minus

the number of columns of the left extension. In this way, the extension matches the original
matrix on its non-zero columns. Now we can define K̃ := [K̃1| . . . |K̃m], where K̃j := K(vj , dj)

with vj := uj +
∑k

l=1 x
s′lujl .

A crucial point of the proof is to show that s′k ≥ 0. But since the di are-non increasing,
jl are increasing and jk < j. So we get sl ≥ djl ≥ djk ≥ dj . As the number of columns of the
left extension is at most dj , we can conclude s′k ≥ 0.

In [Vil97] and [PS07] it is proved that there exist an upper triangular matrices T such
that K̃ = KT . So we can conclude that K̃, which is in the desired block Krylov form, is full
column rank as is K, which concludes the proof.

We now illustrate with an example the construction of the proof of Theorem 3.1.4.

Example 3.1.6. Let m = 4, n = 3, L = (8, 4, 4) and d = (5, 5, 3, 3). We put L4 = 0.
Note that,

5 ≤ 8

5 + 5 ≤ 8 + 4

5 + 5 + 3 ≤ 8 + 4 + 4

5 + 5 + 3 + 3 ≤ 8 + 4 + 4 + 0

and

1. K1 = K(u1, 8) = [u1|xu1|x2u1|x3u1|x4u1|x5u1|x6u1|x7u1],

2. K2 = K(u2, 4) = [u2|xu2|x2u2|x3u2],
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Figure 3.1: Construction of Example 3.1.6

3. K3 = K(u3, 4) = [u3|xu3|x2u3|x3u3].

Now,

— since min(d1, L1) = d1 = 5, then K1 = K(u1, d1) = [u1|xu1|x2u1|x3u1|x4u1],

— since min(d2, L2) = L2 = 4, thenK2 = [K(u2, L2)|K(xd1u1, d2−d1)] = [u2|xu2|x2u2|x3u2|x5u1].
It picks its missing column from the first unused column of K1.

— since min(d3, L3) = d3 = 3, then K3 = K(u3, d3) = [u3|xu3|x2u3],

— since min(d4, L4) = L4 = 0, thenK4 = [K(u4, L4) = ∅|K(xd1+1u1, L1−(d1+1)|K(xd3u3, L3−
d3)) = [x6u1|x7u1|x3u3]. It picks its missing columns from the last 2 unused of K1

and from K3.

Figure 3.1 illustrates the construction of K1,K2 and K3. Finally in the proof, we extend K

to K̃ = [K̃1|K̃2|K̃3|K̃4], where K̃i = K(vi, di). In detail,

— since K1 = K(u1, d1) = [u1|xu1| . . . |x4u1] then v1 = u1 = (1, 0, 0)T ,

— we write
K2 = [u2|xu2| . . . |x3u2|0] + [0|0|0|0|x5u1].

We now extend the fist block to the right and the second to the left and we get,

K2 = [u2|xu2|x2u2|x3u2| 0︸︷︷︸
x4u2

] + [ 0︸︷︷︸
xu1

| 0︸︷︷︸
x2u1

| 0︸︷︷︸
x3u1

| 0︸︷︷︸
x4u1

|x5u1].
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In this way, by looking at the first column of both blocks we finally get

v2 = u2 + xu1 = (x, 1, 0)T .

— Since K3 = [u3|xu3|x2u3], then v3 = u3 = (0, 0, 1)T ,

— K4 = [x6u1|x7u1|x3u3]. Again we consider it as,

K4 = [x6u1|x7u1|0] + [0|0|x3u3]

and we extend it, obtaining

K4 = [x6u1|x7u1| 0︸︷︷︸
x8u1

] + [ 0︸︷︷︸
xu3

| 0︸︷︷︸
x2u3

|x3u3].

By looking at the first columns we get

v4 = x6u1 + xu3 = (x6, 0, x)T .

Therefore the matrix of the Theorem 3.1.4 is

M =


1 0 0

x 1 0

0 0 1

x6 0 x




We can now state the principal constraint on the pivot degrees δM of the relation module
AM,M where M varies in the set of matrices K[x]m×n such that the rank of OM is fixed.

Theorem 3.1.6. Recall that L = (L1, . . . , Lm) are the degrees of the invariants of M where
Li = 0 for n+ 1 ≤ i ≤ m, and r is the rank of the ordered matrix OM . Then Fdr ≤lex FδM

where

Fdr = min<LEX

{
Fd ∈ Monr

∣∣∣∣∣ ∀1 ≤ l ≤ m,

l∑
i=1

di ≤
l∑

i=1

Li

}
(3.2)

Proof. We know from Proposition 3.1.3 that RRPM = FδM so {xiεjM}i<δj,M are linearly
independent in K and

∑m
i=1 δi,M = r. Using Theorem 3.1.4, we get that

∑l
i=1 δi,M ≤

∑l
i=1 Li

for all 1 ≤ l ≤ m. This means that FδM belongs to the set whose minimum is Fdr , which
implies our result.

We observe that the rank r of the ordered matrix OM satisfies the following 0 ≤ r ≤ Σ :=∑m
i=1 Li. Indeed, the dimension of K as a K-vector space is Σ.
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3.1.4 Generic row degrees

The main aim of this subsection is to prove that the two families introduced so far are
generically equal. Precisely we prove that for all matrices M ∈ K[x]m×n such that the rank
r of the ordered matrix OM is r = Σ =

∑m
i=1 Li (or equivalently such that the map ϕM is an

isomorphism), then FδM = FdΣ
. This allows us to deduce that generically ρM , i.e. the s-row

degree of the relation module AM,M , coincides with dΣ + s (see (3.2)).

Corollary 3.1.2. For almost all matrices M ∈ K[x]m×n, with m ≥ n ≥ 0, δM = dΣ.

Proof. Our goal is to prove that there exists a non-zero polynomial C in the coefficients mi,j,k

of the polynomial entries mi,j of M such that for any matrix with C(mi,j,k) 6= 0, we have the
equality δM = dΣ.

Since
∑l

i=1 dΣ,i ≤
∑l

i=1 Li for all 1 ≤ l ≤ m, we deduce from Theorem 3.1.4 that there
exists M ∈ K[x]m×n such that {mM}m∈FdΣ

are linearly independent. So the Σ-minor of
the ordered matrix OM corresponding to those rows is non-zero. We now consider this Σ-
minor as a function C in the coefficients mi,j,k of the polynomial entries mi,j of M . Note
that C ∈ K[mi,j,k] since the entries of OM are linear combinations of mi,j,k. Indeed, we can
write mi,j =

∑Lj−1
k=0 mi,j,kx

k because the polynomials mi,j are only considered modulo aj ,
and the coefficient of OM (recall the definition of this matrix, subsection 3.1.2) w.r.t the row
xuεi and the column xvε′j of OM is

∑Lj−1
k=0 mi,j,kcj,k,u,v where cj,k,u,v ∈ K is the coefficient of

(xk+u mod aj) in xv.
We saw that C admits a nonzero evaluation so it is a non-zero polynomial.
Now for any matrix M such that C(mi,j,k) 6= 0, the vectors {mM}m∈FdΣ

are linearly
independent in K, so the rank of OM is equal to Σ. We have RRPM ≤lex FdΣ

because FdΣ
∈

PM (see Definition 3.1.8). Theorem 3.1.6 gives the other inequality, so FdΣ
= RRPM = FδM

and δM = dΣ.

Hence, by summing up we have a characterization of the generic pivot degrees of relation
modules.

Special cases. Under some assumptions on shifts and the degrees of the invariants, the
generic row degrees of relation modules have a simplified expression which allows us to easily
determine them.

Let s = max1≤i≤m(si). Let us define p and u as the quotient and remainder of the
Euclidean division of

∑m
i=1 Li + si by m, i.e.

∑m
i=1(Li + si) = p ·m + u. We prove that in

this case the generic s row degree ρM = pΣ has this specific form

p := (p+ 1, . . . , p+ 1︸ ︷︷ ︸
u times

, p, . . . , p︸ ︷︷ ︸
m−u times

). (3.3)
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We have this specific form if the following conditions on L and s hold:

p ≥ s (3.4)

∀1 ≤ l ≤ m− 1,

l∑
i=1

pi ≤
l∑

i=1

(Li + si) (3.5)

Theorem 3.1.7. Let p as in (3.3), and let L = (L1, . . . , Lm), where L1 ≥ L2 ≥ . . . ≥ Lm

and such that (3.4) and (3.5) hold. Then, pΣ := dΣ + s = p.

Proof. Recall that Σ =
∑n

i=1 Li. Let F be the first Σ monomials of K[x]m sorted w.r.t
≺s−TOP ordering. Let p = (p + 1, . . . , p + 1, p, . . . , p) be the candidate row degrees as in
the theorem statement and d = p − s be the corresponding pivot degrees. Note that the
assumption (3.4) implies that d ∈ Nm.

First we show that p ≥ s implies F = Fd. In order to prove F = Fd, we need to show
that di = min{d ∈ N | xdεi /∈ F}. As already remarked, di ∈ N. We need to study the row
degrees of the first monomials to conclude.

Notice that the monomials of K[x]m of s-row degree r increasingly sorted w.r.t ≺s−TOP

are xr−siεi for increasing 1 ≤ i ≤ m such that si ≤ r. Now,

— if r ≥ s, there are exactly m of such monomials,

— otherwise, they are {xiεj}i+sj<s and their number is
∑m

i=1(s− si).

From this we can deduce that the row degree of the t-th smallest monomial is⌊
(t− 1−

m∑
i=1

(s− si))/m

⌋
+ s =

⌊
(t− 1 +

m∑
i=1

si)/m

⌋
provided that t ≥

∑m
i=1(s−si)+1. Hence the (Σ+1)-th smallest monomial has s-row degree

p. More precisely, the (Σ+1)-th smallest monomial is the (u+1)-th monomial of row-degree
r, so F is equal to all monomials of row degree less than p and the first u monomials of row
degree p. This proves di = min{d ∈ N | xdεi /∈ F} and F = Fd.

Second we deduce from assumption 3.5 that for all 1 ≤ l ≤ m,
∑l

i=1 di =
∑l

i=1(pi− si) ≤∑l
i=1 Li , so Fdr ≤lex Fd by Theorem 3.1.6 and finally Fdr = Fd because F is the smallest

set of Σ monomials.

This specific form of row degree was already observed in different but related settings.
To the best of our knowledge, it can be found in [Vil97, Proposition 6.1] for row degrees of
minimal generating matrix polynomial and in [PS07, Corollary 1] for dimensions of blocks in
a shifted Hessenberg form and in [JV05] for kernel basis were m = 2n. In all the three cases
authors do not study the shifted case (the shifted Hessenberg form is not related to the shift
that we defined).
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Example 3.1.7. Let m = n = 3 and s = (0, 2, 4). So s = 4 and
∑

(s− si) = 6.

1. Consider L = (6, 1, 0). Then
∑3

i=1 Li+si = 13 = 4·m+1. Notice that (3.4) and (3.5) are
both verified. Hence pΣ = (5, 4, 4) and so dΣ = (5, 2, 0). As we can see in the following
table, F1, i.e. the set of the first Σ =

∑m
i=1 Li = 7 monomials of K[x]3, increasingly

sorted w.r.t ≺s−TOP coincides exactly with FdΣ,1
:= FdΣ

= {ε1, . . . , x4ε1, ε2, xε2}.

2. Consider L = (3, 0, 0). Then
∑3

i=1 Li + si = 9 = 3 · m. Notice that in this case
p = 3 ≤ s = 4 and so (3.4) does not hold. By Corollary 3.1.2, dΣ = (3, 0, 0) since∑l

i=1 dΣ,i ≤
∑l

i=1 Li for any 1 ≤ l ≤ m. So the row degrees are pΣ = (3, 2, 4). The
set F2 of the first Σ = 3 monomials, increasingly sorted w.r.t ≺s−TOP coincides with
FdΣ,2

:= FdΣ
.

3. Consider L = (3, 3, 1). Then
∑3

i=1 Li + si = 13 = 4 · m + 1. Let p = (5, 4, 4). Note
that p = 4 ≥ 4 = s = 4 but since p1 = 5 ≥ L1 + s1 = 3 then (3.5) does not hold.
By Corollary 3.1.2, dΣ = (3, 3, 1) since

∑l
i=1 dΣ,i ≤

∑l
i=1 Li for any 1 ≤ l ≤ m. So

the row degrees are pΣ = (3, 5, 5). Notice that in this case the set F3 of the first
Σ = 7 monomials, increasingly sorted w.r.t ≺s−TOP is different from FdΣ,3

:= FdΣ
=

{ε1, . . . , x2ε1, ε2, . . . , x2ε2, ε3}.

Mon ε1 xε1 x2ε1 ε2 x3ε1 xε2 x4ε1 x2ε2 ε3

rdegs 0 1 2 3 4

FdΣ,1
• • • • • • •

FdΣ,2
• • •

FdΣ,3
• • • • • • •



3.2 Generic row degrees of the SRFR Relation Module

We can now transpose all these results to the specific case of SRFR in order to prove
our main result (Theorem 3.2.1). First we recall SRFR (Problem 2). Let a1, . . . , an ∈ K[x]

with degrees Li := deg(ai) and u = (u1, . . . , un) ∈ K[x]n such that deg(ui) < Li. Moreover
let 1 ≤ Ni ≤ Li for 1 ≤ i ≤ n and 1 ≤ D ≤ min1≤i≤n{deg(ai)}. The goal of SRFR is to
reconstruct (v, d) ∈ K[x]n+1 such that for any 1 ≤ i ≤ n

vi = dui mod ai, deg(vi) < Ni, deg(d) < D. (3.6)

We consider M = 〈ai(x)ε′i〉1≤i≤n and Su := {(v, d) | satisfying (3.6)}. Recall that by
Lemma 1.3.8

(v, d) ∈ Su ⇐⇒

(v, d) ∈ AM,Ru

rdegs((v, d)) < 0
(3.7)
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where, the shift s = (−N1, . . . ,−Nn,−D) and

Ru :=

[
In

−u

]

Therefore the K[x]-module of solutions of SRFR is generated by elements of the relation
module AM,Ru with negative shifted row degree.

We now denote by ρu := ρRu
and δu := δRu , respectively the s-row degrees and the

s-pivot degrees of ordered weak Popov bases of the relation module AM,Ru . As already
remarked in Section 1.2, by Remark 1.3.3,

dim(Su) =
∑
ρu,i<0

−ρu,i (3.8)

We are now ready to introduce the main result of this section.

Theorem 3.2.1. If
∑n

i=1 Li =
∑n

i=1Ni+D−1 then for almost all instances u, SRFR admits
a unique solution.

Moreover, if K = Fq the proportion of instances leading to nonuniqueness is at most
(D − 1)/q.

Proof. By the previous considerations it suffices to prove that for almost all u ∈ K[x]n, then
ρu = (0, . . . , 0,−1).

We divide the proof in two steps:

1. first we observe that
∑n

i=1 Li + si = (
∑n

i=1(Li −Ni))−D = −1 and by performing the
Euclidean division of

∑n
i=1 Li + si by n+ 1 we get

n∑
i=1

Li + si = −1 · (n+ 1) + n.

In this first part we prove that the assumptions (3.4) and (3.5) of Theorem 3.1.7 are
satisfied so that we can conclude that the generic row degree is of the specific form
ρΣ = (0, . . . , 0,−1), where Σ =

∑n
i=1 Li.

2. Then we prove that there exists u ∈ K[x]n such that the corresponding matrix Ru

satisfies the generic condition of Corollary 3.1.2 and so ρu = ρΣ.

1. Notice that p = −1 and s = max1≤i≤n+1{si} ≤ −1. So (3.4) is verified. On the other hand
also (3.5) holds since for any 1 ≤ i ≤ n+ 1, we have that pi ≤ 0 ≤ Li + si.
2. We now show that the construction of Theorem 3.1.4 provides a matrix of the form Ru.

Notice that in this case, (d1, . . . , dn+1) = (N1, . . . , Nn, D− 1). By SRFR assumptions, for
any 1 ≤ i ≤ n, di ≤ Li and so Ki = [K(ui, di)]. Therefore, K̃i = Ki, for 1 ≤ i ≤ n. The last
matrix Kn+1 = [K(xd1u1, t1)| . . . |K(xdnun, tn)] where dj + tj = Lj for any 1 ≤ j ≤ n (see
Figure 3.2).
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K1K1 =

d1 t1

K2K2 =

d2 t2

K3K3 =

d3 t3

K4 =

t1 t2 t3

K(xd1u1, t1) K(xd2u2, t2) K(xd3u3, t3)

Figure 3.2: Construction of Krylov matrices of the proof of Theorem 3.2.1. In this case n = 3.

We then extend blocks of the matrix Kn+1 to get K̃n+1 (see Figure 3.3). Note that we
have K̃n+1 = [K(vn+1, dn+1)]. where vn+1 =

∑n
j=1 x

s′juj . We now need to show that s′j ≥ 0.
We cannot use the same technique as the proof of Theorem 3.1.4 since the sequence of (di) is
not increasing.

Fix j, recall that s′j is equal to sj which in this case is exactly dj minus the number of
columns added to extend the block to the left (see Figure 3.3). This number of columns is at
most dn+1 − tj . Therefore,

s′j ≥ dj − (dn+1 − tj) = dj − (dn+1 − (Lj − dj)) = Lj − dn+1 ≥ 0

since dn+1 = D − 1 ≤ D ≤ min1≤i≤n{Li}.
So, with this construction we obtain vi = εi for 1 ≤ i ≤ n and vn+1 =

∑n
j=1 x

s′juj . Note
that the matrix whose rows are determined by these vi is of the form

M =



1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
. . .

0 0 0 . . . 1

∗ ∗ ∗ . . . ∗


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K4 =

t1 t2 t3

d4 d4 d4

++

≤ d4 − t2 d4 − t3

Figure 3.3: Construction of the last Krylov matrix of the proof of Theorem 3.2.1. In this case
n = 3.

where ∗ represent polynomials in K[x]. This shows that there exists u such that the polyno-
mial C (see proof of Corollary 3.1.2) does not vanish in Ru. By the particular form of Ru,
we can consider C as a polynomial whose indeterminates are uj,k, where for any 1 ≤ j ≤ n,
uj =

∑Lj−1
k=1 uj,kx

k. Recall that C is the Σ-minor of the ordered matrix ORu and note that
all the coefficients of this matrix are scalar elements of the field, except for the D − 1 rows
corresponding to {xlεn+1}0≤l<D−1 which are linear combinations of uj,k (as remarked in the
proof of Corollary 3.1.2). Therefore, the total degree of C is at most D − 1 and if K = Fq,
by Schwartz-Zippel Lemma the proportion of instances leading to non-uniqueness among all
possible instances is at most (D − 1)/q.

3.3 Conclusions and open problems

We now draw the conclusions on the main results of this section and we discuss about the
related open problems.

∗ ∗ ∗ ∗ ∗

In this thesis we focus on the simultaneous rational function reconstruction.

Problem 2. Simultaneous Rational Function Reconstruction
Input: a1, . . . , an ∈ K[x],u = (u1, . . . , un) ∈ K[x]n, where deg(ui) < deg(ai)

and 1 ≤ Ni ≤ deg(ai), 1 ≤ D ≤ min1≤i≤n{deg(ai)}
Output: (v, d) = (v1, . . . , vn, d) ∈ K[x]n+1 such that

[vi = dui mod ai]1≤i≤n, deg(vi) < Ni, deg(d) < D. (1.5)

In other terms, this is the problem of recovering several rational functions with the same
denominator, given their remainders modulo different polynomials. As for the classical ratio-
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nal function reconstruction problem (Problem 1), we drop the assumption on the invertibility
of the denominator and we focus on the weaker equation (1.5). Indeed, this equation has the
advantage to be linear and allows us to focus on the homogeneous linear system related to it,
in order to deduce some useful information about the existence of a nontrivial solution and
the uniqueness.

We observe that in the interpolation case, when a1 = . . . = an =
∏L
i=1(x − αi), where

{α1, . . . , αL} are pairwise distinct elements of the field, then (1.5) becomes an equation on
the evaluations

[vi(αj) = d(αj)ui(αj)]1≤i≤n
1≤j≤L

, deg(vi) < Ni, deg(d) < D.

So, in this case SRFR becomes the problem of recovering a vector of rational functions with
the same denominator, given its evaluations.

In Chapter 1, we saw that in order to solve SRFR we could apply the rational function
reconstruction componentwise and that we have uniqueness of SRFR whenever

deg(ai) = Ni +D − 1, for any 1 ≤ i ≤ n =⇒
n∑
i=1

deg(ai) =
n∑
i=1

(Ni +D − 1).

Alternatively, we could use the fact that all the rational functions that we want to recover
share the same denominator to decrease the number of unknowns of the homogeneous linear
system related to (1.5). As a matter of fact if

n∑
i=1

deg(ai) =
n∑
i=1

Ni +D − 1 (3.9)

SRFR admits a nontrivial solution. The main aim of this work is to study, under the as-
sumption (3.9), instances leading to uniqueness. There were two results which motivate us
to pursue our research in this direction: the former is related to the computer algebra ap-
plication of SRFR to polynomial linear system solving (see Section 1.4) and the latter is
related to the coding theory application of the decoding of interleaved Reed-Solomon codes
(see Subsection 2.3.1).

— In [OS07] (see Lemma 1.4.2), Z. Olesh and A. Storjohann proved that in the case of
the polynomial linear system solving, under some specific assumptions on the degree
bounds N1 = . . . = Nn = N = D = ndeg(A) + 1 and by considering a1 = . . . = an, if
deg(a) = N + (D − 1)/n (which coincides with (3.9)), then we have uniqueness of the
corresponding SRFR.

— In Section 2.3 we saw how the interpolation-based decoding technique for interleaved
Reed-Solomon codes can be reduced to SRFR.
More specifically, consider n-IRS code of length L and dimension N , L evaluation
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points {α1, . . . , αL} and a received vector Y = (f(α1), . . . ,f(αL)) + Ξ ∈ Fn×Lq , where
f ∈ Fq[x]n×1 with deg(f) < N (see Definition 2.3.1). Recall that Ξ is the error matrix
with error support E = {j | Ξ∗,j 6= 0}.
In order to decode Y , we can solve SRFR in the interpolation version and find (ϕ, λ)

such that for any 1 ≤ j ≤ L,

ϕ(αj) = Y∗,jλ(αj), deg(ϕ) < ε+ k, deg(ψ) < ε+ 1

where ε ≥ |E|, is a bound on the number of errors. Recall that (Λf ,Λ), where Λ is the
error locator polynomial (see Definition 2.2.4), is a solution of this specific SRFR. In
this context, uniqueness of SRFR means that we can uniquely recover such a solution
and so the vector of polynomials related to the codeword of this IRS.
We now recall that Lemma 2.3.1 basically tells us that if

L = (N + ε) + (ε+ 1− 1)/n

(which coincides with (3.9) since L = deg(a) = deg(
∏L
i=1(x − αi))) then for almost all

error matrices Ξ with error support E, then SRFR admits a unique solution for the
corresponding instance Y .
So, even if this result is true in an error scenario, we thought that it could suggest
something about the uniqueness of SRFR also for the general case.

Therefore, the main result (Theorem 3.2.1) of this chapter states that under (3.9), for almost
all instances u, SRFR admits a unique solution. This represents a step towards the following
conjecture.

Conjecture 3.3.1. If (3.9) is satisfied then for almost all (v, d) ∈ K[x]n+1 with gcd(d, ai) = 1,
for any 1 ≤ i ≤ n, then SRFR with instance u = v

d admits a unique solution.

We strongly believe in this conjecture, which is suggested by some tests that we imple-
mented in SageMath. Indeed, we recall that here we dropped the gcd assumption, in order to
focus on the linear problem (1.5). Therefore, informally speaking, instances u of the SRFR
problem in its linear version (Problem 2) may not derive from vector of rational functions. So,
in order to formally prove the conjecture above, since we proved the existence for a generic
instance, it would be sufficient to show the existence of an instance u of the form v

d mod a. In
the next chapter, we will see how this conjecture is crucial also in the error correction setting
case.
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CHAPTER 4
Simultaneous Cauchy interpolation with errors
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The main aim of error correcting codes is to correct errors which can be introduced by
noisy channels. Besides, they have others applications which do not involve communication
over a channel: for instance they can be used to correct and detect computational errors.

High Performance Computing Technologies (supercomputers) contain thousands of com-
puting nodes networked together (parallel computing) to provide very high performances and
to complete heavy tasks. The more the number of system components grows, the more the
failure of computing nodes becomes relevant. For instance, modern supercomputers commit
approximately 3.5 faults per day [DGP+19, LC18]. Therefore, without a drastic change at the
algorithmic level such a failure rate will certainly prevent supercomputers from progressing.
For this reason, many fault tolerant techniques and algorithms have been proposed to detect
and correct these faults.

Faults can be distinguished into hard and soft faults: hard faults, also called fail-stop,
include hardware failures and cause an immediate interruption of processes. While soft faults
are more subtle faults which basically do not lead to any interruption. Examples are bit flips
and data corruption due to a number of possible causes, including occasional cosmic rays.

The hard faults can be handled by checkpoint-restart techniques whose main principle
consists of periodically saving data onto a reliable storage device; the system can then recover
from the most recent checkpoint whenever an hard fault occurs [BD93]. However, this tech-
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Figure 4.1: Matrix multiplication by ABFT method.

nique is expensive in terms of time and resources, since it requires a certain time to recover
data and it could require external data storage and network bandwidth.

To overcome drawbacks of checkpoint-restart techniques, K-H. Huang and J.A. Abraham
introduced the algorithm-based fault tolerant (ABFT) technique [HA84] which, exploiting
algorithm’s characteristics, allows one to design a fault tolerant algorithm which can detect
and/or correct faults. More specifically, this technique enriches the input of a given algorithm
with redundancy (e.g. by using algebraic tools of error correcting codes) in order to correct
computational errors which occur in parallel-distributed environments. It is characterized by

— the encoding of inputs of the algorithm,

— the redesign of the algorithm to operate on the encoding data,

— the distribution of some computation steps of the algorithm among some computational
units.

For instance, consider the matrix multiplication of A,B ∈ Kn×n. The encoding of the two
matrices is obtained by adding to A (respectively to B) a checksum row (column), whose
components are determined by the sum of any element of the column (row) of A (B). Then,
the multiplication row by column of A and B are performed by different nodes (parallelization)
(see Figure 4.1). In this way, an error is detectable and correctable by checking if the sum of
any row and column of the resulting matrix coincides with the corresponding checksum.

Notice that in this framework, the error model strongly depends on the chosen paralleliza-
tion scheme: e.g. in the matrix multiplication example above, errors are introduced in the
computation of any element of the product matrix.

Recently, many fault tolerant algorithms have been proposed for classic computer algebra
problems: e.g. Chinese remaindering [BDFP15, GRS00, KPR+10], matrix multiplication and
inversion [GLL+17, Pag13, Roc18], LU factorization [DHPR19].

In this chapter we focus on an algorithm-based fault tolerant technique for polynomial
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linear system solving (Section 1.4) by evaluation-interpolation [BK14, KPSW17]. We describe
our results of [GLZ19] and new contributions in progress [GLZ20a].

4.1 ABFT for Polynomial Linear System Solving by Evaluation-
Interpolation

Consider a polynomial linear system (PLS) (see Section 1.4),

A(x)y(x) = b(x) (4.1)

where A ∈ Fq[x]n×n is nonsingular and b ∈ Fq[x]n×1. Recall that by Lemma 1.4.1, this system
admits only one solution y = v

d ∈ Fq(x) which is a vector of rational functions with the same
denominator. We assume that gcd(gcd(v1, . . . , vn), d) = 1 and that d is monic.

Our goal in this section is to introduce an algorithm-based fault tolerant technique for
PLS solving by evaluation-interpolation.

Recall from Section 1.4 that the evaluation-interpolation technique for the PLS solving
consists in:

1. (evaluation) given L distinct evaluation points {α1, . . . , αL}, evaluate the polynomial
matrix A and the polynomial vector b at these points.

Recall that in Section 1.4, we saw how to handle the rank drop case: it suffices to add
r ≥ |R| = |{j | det(A(αj)) = 0}| evaluation points to the number of points which allows
one to uniquely recover the solution of the PLS. For simplicity, from now on, we assume
that all the evaluation points do not cause rank drops of the corresponding evaluated
matrices.

2. (Pointwise resolution of the evaluated systems) Compute for any 1 ≤ j ≤ L, y(αj) =
A(αj)

−1b(αj) =
v(αj)
d(αj)

.

3. (Interpolation) Reconstruct (v, d), given y(αj) for 1 ≤ j ≤ L and some bounds N >

deg(v), D > deg(d). Or in other terms, perform SRFR (Problem 2, in the interpolation
form i.e. a1 = . . . = an = a =

∏L
j=1(x−αj)) with input Y := (y(αj))1≤j≤n ∈ Fl×nq , and

N,D.

We also recall that the minimum number of evaluation points that we need to uniquely
reconstruct the solution (see Section 1.4) is

L′ := min{N +D − 1,max{deg(A) +N, deg(b) +D}} (4.2)

As previously pointed out, ABFT techniques are characterized by the encoding of inputs,
the parallelization of computations and the redesign of the algorithm so that it can manage

103



α1 α2 α3 αL

y1 y2 y3 yL

…

error

Figure 4.2: Parallelization in the evaluation step of PLS solving

the so obtained encoded data. Here, following this scheme we modify the classic evaluation-
interpolation technique for PLS solving so that,

— (Encoding) inputs are encoded by considering more evaluation points than L′ (adding
redundancy),

— (parallelization) the evaluation step is performed by different nodes which can introduce
some errors,

— (redesign, interpolation with errors) perform the interpolation step on the encoded data.

In what follows we formally detail this scheme.

Parallelization and error model. Fix L pairwise distinct evaluation points {α1, . . . , αL}.
Assume that any node, which we can consider as a black box, computes yj = A(αj)

−1b(αj) ∈
Fn×1
q for any 1 ≤ j ≤ L (Figure 4.2). These nodes could make some errors and compute

yj 6= A(αj)
−1b(αj) =

v(αj)
d(αj)

. Notice that, in this error model, the number of errors coincides
with the number of nodes which compute an incorrect result. Hence, we assume that after
the parallelization we get

Y =

(
v(α1)

d(α1)
, . . . ,

v(αL)

d(αL)

)
+ Ξ (4.3)

where Ξ ∈ Fn×Lq is the error matrix, whose error support is E := {j | Ξ∗,j 6= 0}.
So, given the matrix Y , some bounds N > deg(v), D > deg(d) and deg(A), deg(b) our

goal is to correct such errors and recover the solution (v, d) of the PLS. We call this problem
polynomial linear system solving with errors (PLSwE).

4.1.1 Simultaneous Cauchy interpolation with errors

Polynomial linear system solving with errors consists in the recovering of a vector of
rational functions v

d , which in this case is the solution of a PLS (4.1), given its evaluations
(see (4.3)), where some are erroneous or corrupted. It is then an application of the following
more general problem, that we introduced in [GLZ19].
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Definition 4.1.1 (Simultaneous Cauchy interpolation with errors). Fix some parameters
L, τ,N,D, q and n ≥ 1, where

— L is the number of evaluation points {α1, . . . , αL}, 1 ≤ L ≤ q,

— N,D are the degree bounds, 1 ≤ N,D ≤ L,

— τ is the bound on the number of errors, 0 ≤ τ ≤ L.

A satisfiable instance of the simultaneous Cauchy interpolation with errors (shortly SCIwE)
problem is a matrix Y ∈ Fn×Lq such that there exist,

— a vector of rational functions v
d ∈ Fq(x)n×1, where deg(v) < N , deg(d) < D, gcd(gcdi(vi), d) =

1, d is monic and for any 1 ≤ j ≤ L then d(αj) 6= 0,

— an error matrix Ξ ∈ Fn×Lq with error support E := {j | Ξ∗,j 6= 0}, where |E| ≤ τ ,

which satisfy the following

Y =

(
v(α1)

d(α1)
, . . . ,

v(αL)

d(αL)

)
+ Ξ. (4.4)

SCIwE is the problem of finding a vector of rational functions v
d as in (4.4) given an instance

Y .

We observe that this problem is the rational extension (see Figure 4.3) of the simultaneous
interpolation with errors (SIwE, Definition 2.3.2) which is the problem of decoding an inter-
leaved Reed-Solomon code. Indeed, here we want to reconstruct a vector of rational functions
instead of a vector of polynomials. This link allows us to extend the same interpolation-based
technique for decoding IRS codes to this rational case (as we proved in [GLZ19]).

In detail, from now on we fix an instance Y =
(
v(α1)
d(α1)

, . . . , v(αL)
d(αL)

)
+ Ξ of SCIwE with

parameters L, τ,N,D, q and evaluation points {α1, . . . , αL}. For any 1 ≤ j ≤ L, we denote
yj := Y∗,j .

As for IRS and also RS codes, we can consider the error locator polynomial (see Defini-
tion 2.2.4),

Λ =
∏
j∈E

(x− αj)

where E = {j | Ξ∗,j 6= 0} is the error support. Therefore, we notice that for any 1 ≤ j ≤ L,

Λ(αj)v(αj) = yjd(αj)Λ(αj) ⇐⇒ Λ(αj)[v(αj)− yjd(αj)] = 0. (4.5)

Indeed if j ∈ E then since Λ(αj) = 0, then (4.5) becomes the identity 0 = 0. On the other
hand, if j /∈ E then yj =

v(αj)
d(αj)

and so (4.5) becomes the identity 0 = 0.
As IRS codes (and also for classic RS codes), we can linearize this equation by replacing

the polynomial Λv by ϕ and Λd by ψ, thus obtaining for any 1 ≤ j ≤ L the following key
equation,

ϕ(αj) = yjψ(αj), deg(ϕ) < N + τ, deg(ψ) < D + τ. (4.6)
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Figure 4.3: Scheme which illustrates the relation between SIwE and SCIwE.

So, we reduced the problem of reconstructing the vector of rational functions to the problem
of finding the couple (ϕ, ψ) which satisfies the key equation (4.6), or equivalently SRFR (in
the interpolation form) with input Y,N + τ,D + τ (see Problem 2).

Remark 4.1.1. We denote by SY,N,D,τ := {(ϕ1, . . . , ϕn, ψ) satisfying (4.6)}. Again, we use
this notation to stress the dependency on the instance Y and on the parameters τ,N,D. If we
consider the homogeneous linear system related to (4.6), we observe that the set of solutions
SY,N,D,τ is the kernel of the matrix

MY,N,D,τ =


VL,N+τ −D1VL,D+τ

VL,N+τ −D2VL,D+τ

. . . ...
VL,N+τ −DnVL,D+τ

 (4.7)

where VL,N+τ and VL,D+τ are Vandermonde matrices and for any 1 ≤ i ≤ n and Di is the
diagonal matrix whose elements on the diagonal are yi,1, . . . , yi,L. 

Previous results. We now observe that by (1.6) if

L ≥ (N + τ) + (D + τ)− 1 = N +D + 2τ − 1 ⇐⇒ τ ≤ L− (N +D − 1)

2
=: τ ′0 (4.8)

then SRFR admits a unique solution.
Note that in the polynomial case, i.e. D = 1, then τ ′0 = L−N

2 is exactly the error correction
capability τ0 of an n-IRS code with length L and dimension N (see Definition 2.3.1).

Furthermore, we have the following result.
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Theorem 4.1.1 ([BK14, Theorem 2.2]). Consider L ≥ N + D + 2τ − 1 evaluation points
{α1, . . . , αL} and M the Fq[x]-module of solutions in SY,N,D,τ . Then rank(M) = 1 and given
(ϕ, ψ) a generator of M with ψ monic then (ϕ, ψ) = (Λv,Λd).

Proof. First, notice that ψ(x) is nonzero. Indeed, if ψ = 0, then by the key equation (4.6),
for any 1 ≤ j ≤ L, ϕ(αj) = 0. Now, notice that deg(ϕ) ≤ N + τ − 1 and that the number of
roots is L ≥ N +D + 2τ − 1 > N + τ − 1. Hence, since the polynomial has more roots than
its degree then ϕ = 0. Since (ϕ, ψ) is a generator of the Fq[x]-module, it cannot be equal to
(0, 0).

As seen in Section 1.2, if L ≥ N + D + 2τ − 1 (see (1.6)), then ϕψ′ = ϕ′ψ for any
(ϕ′, ψ′) ∈ SY,τ,N,D and so rank(M) = 1.

Now,

— since (ϕ, ψ) is a generator of M and (Λv,Λd) ∈ SY,τ,N,D, then there exists R ∈ Fq[x]
such that (Λv,Λd) = (Rϕ, Rψ).

— on the other hand, since ϕΛd = ψΛv and both ψ and d are nonzero, then ϕ
ψ = v

d . More-
over, gcd(gcdi(vi), d) = 1 and so there exists P ∈ Fq[x] such that (ϕ, ψ) = (Pv, Pd).

Therefore, Λ = PR and P = Λ/R is of the form P =
∏
j∈E′(x − αj), for E′ ⊆ E. As in

Lemma 2.3.3, we can observe that |E| = |{j | Ξ∗,j 6= 0}| ≤ deg(P ) = |E′| and so E = E′ and
P ∈ Fq. Since ϕ = Pv and ψ = Pd and ψ and d are both monic, then we can conclude that
P = 1.

Remark 4.1.2. Notice that this lemma basically tells us that if the number of evaluation
points is L ≥ N + D + 2τ − 1, then the rank of the module M generated by solutions in
SY,N,D,τ is 1 and the solution space is exactly of the form

SY,N,D,τ = 〈xiΛv, xiΛd〉0≤i<δN,D,τ
(4.9)

where
δN,D,τ := min{N − deg(v), D − deg(d)}+ (τ − |E|). (4.10)

Indeed, notice that
deg(xiΛv) = i+ |E|+ deg(v) ≤ N − 1 + τ

deg(xiΛd) = i+ |E|+ deg(d) ≤ D − 1 + τ

and so,
i ≤ min{N − deg(v), D − deg(d)}+ (τ − |E|)− 1 = δN,D,τ − 1.


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In [BK14, KPSW17] 1 the authors introduced Algorithm 5 which uniquely 2 recovers (v, d),
a solution of SCIwE with instance Y and parameters τ,N,D, q, n and {α1, . . . , αL}. Note that
this algorithm is correct: indeed, by Theorem 4.1.1, since L = N +D + 2τ − 1, then (ϕ, ψ)

computed at step 1 coincides with (Λv,Λd) and so the gcd computed at step 2 is exactly the
error locator polynomial Λ.

Algorithm 5: Algorithm for SCIwE of [BK14]

Input : Y =
(
v(α1)
d(α1)

, . . . , v(αL)
d(αL)

)
+ Ξ an instance of SCIwE with parameters

τ,N,D, q and L := N +D + 2τ − 1 evaluation points {α1, . . . , αL}
Output: (v, d)

1 compute (ϕ1, . . . , ϕn, ψ) a generator of the Fq[x]-module generated by solutions in
SY,N,D,τ , scaled to obtain ψ monic;

2 Λ gcd(ϕ1, . . . , ϕn, ψ);
3 return

(
ϕ
Λ ,

ψ
Λ

)

New results. In [GLZ19], motivated by the link between SCIwE and the decoding of IRS
codes (SIwE, Definition 2.3.2 and Figure 4.3), we proposed 3 Algorithm 6 that recovers (v, d)

a solution of our given instance Y , with L ≥ N +D−1+τ +
⌈
τ
n

⌉
=: LGLZ1 evaluation points.

Notice that, for n ≥ 1

LGLZ1 = N +D − 1 + τ +
⌈ τ
n

⌉
≤ N +D + 2τ − 1

meaning that we reduce the number of evaluation points needed to reconstruct the solution
of SCIwE. However, since we use fewer evaluation points than the number which guarantees
to uniquely reconstruct (v, d), our algorithm can possibly fail.

Remark 4.1.3. We observe that

L ≥ LGLZ1 = N +D − 1 + τ +
⌈ τ
n

⌉
⇐⇒ τ ≤ n(L− (N +D − 1))

n+ 1
=: τGLZ .

Furthermore, since n ≥ 1, note that

τ ′0 =
L− (N +D − 1)

2
≤ n(L− (N +D − 1))

n+ 1
= τGLZ

1. Ihe authors introduced in [BK14, KPSW17] Algorithm 5 for the PLSwE problem. As previously re-
marked, PLSwE is a specific case of simultaneous Cauchy interpolation with errors (Definition 4.1.1) in which
we want to recover a vector of rational functions which is a solution of a polynomial linear system.

2. The algorithm introduced in [BK14, KPSW17] is slightly different from Algorithm 5: it computes the
column echelon form of a basis of the solution space SY,N,D,τ = ker(MY,N,D,τ ) in order to find the minimal
degree solution (Λv,Λd).

3. We remark that in [GLZ19] we considered a more specific case in which we assumed to know exactly the
number of errors and the degree of the denominator. So in this thesis, we present a more general result.
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Algorithm 6: A new algorithm for SCIwE

Input : Y =
(
v(α1)
d(α1)

, . . . , v(αL)
d(αL)

)
+ Ξ an instance of SCIwE with parameters

τ,N,D, q and L = LGLZ1 evaluation points {α1, . . . , αL}
Output: (v, d) or “fail”

1 let M be Fq[x]-module generated by solutions in SY,N,D,τ ;
2 if rank(M) = 1 then
3 find a generator (ϕ, ψ) of M;
4 Λ gcd(ϕ, ψ);
5 return

(
ϕ
Λ ,

ψ
Λ

)
6 else
7 return “fail”

meaning that our algorithm may correct more errors than Algorithm 5. However, as for
interleaved Reed-Solomon codes (see Subsection 2.3.1), since we are beyond the number of
errors that we can uniquely correct, the uniqueness of the solution recovery is not always
guaranteed and the algorithm may fail.

Indeed, if D = 1, we remark that τGLZ = τIRS = n(L−N)
n+1 (see (2.22)), i.e. the decoding

radius of the partial BD decoder (Algorithm 4) for the n-interleaved Reed Solomon code of
length L and dimension N . In this sense, Algorithm 6 is a generalization of Algorithm 4 for
IRS codes decoding.



Correctness of Algorithm 6. The following result allows us to prove the correctness of
our algorithm. It also determines a bound for the failure probability, i.e. the probability that
the algorithm fails.

Theorem 4.1.2. Let τ ≥ 0 and n,N,D ≥ 1. Consider L ≥ LGLZ1 evaluation points
{α1, . . . , αL} and E ⊆ {1, . . . , L}, with |E| ≤ τ . Moreover, fix v

d ∈ Fq(x)n×1 with gcd(gcdi(vi), d) =
1 such that deg(v) < N and deg(d) < D.

Consider the random matrix Y = (yi,j)1≤i≤n
1≤i≤L

such that,

— if j ∈ E, Y∗,j is a uniformly distributed element of Fn×1
q ,

— if j /∈ E, Y∗,j = v(αj)
d(αj)

.

Then
SY,N,D,τ = 〈xiΛv, xiΛd〉0≤i<δN,D,τ

,

where δN,D,τ is as in (4.10), with probability at least 1− D+τ
q .

Proof. First notice that since (Λv,Λd) ∈ SY,τ,N,D then

〈xiΛv, xiΛd〉0≤i<δN,D,τ
⊆ ker(MY,N,D,τ ) = SY,τ,N,D. (4.11)
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This proof has the same structure as the proof of Lemma 2.3.1. In detail, in the first part
we show the existence of a draw of columns of Y corresponding to the error positions, i.e.
Y∗,j with j ∈ E, for which we have SY,N,D,τ ⊆ 〈xiΛv, xiΛd〉0≤i<δN,D,τ

. So thanks to (4.11) we
can derive the equality.

Consider a partition of E, i.e. E = ∪ni=1Ii, such that for any 1 ≤ i ≤ n, |Ii| ≤ d|E|/ne.
Note that such a partition exists since nd|E|/ne ≥ |E|. For any j ∈ E, denote by ij the
unique index such that j ∈ Iij . Construct a matrix V , such that

— V∗,j =
v(αj)
d(αj)

, if j 6∈ E,

— if j ∈ E, V∗,j ∈ Fn×1
q is chosen so that

v(αj)− d(αj)V∗,j = εij , (4.12)

where εi is a vector of Fn×1
q , whose i-th entry is 1 and all the others are zero.

Now, consider (ϕ, ψ) ∈ SV,τ,N,D. By multiplying (4.12) by ψ(αj) and since (ϕ, ψ) ∈ SV,τ,N,D
(see (4.6)) we get

ψ(αj)v(αj)− d(αj)ψ(αj)V∗,j︸ ︷︷ ︸
ϕ(αj)

= ψ(αj)εij .

Fix 1 ≤ i ≤ n, we claim that for any j /∈ Ii then ψ(αj)vi(αj)− d(αj)ϕi(αj) = 0.
Indeed,

— if j /∈ E, then V∗,j =
v(αj)
d(αj)

and so by replacing V∗,j in (4.6), we get in particular
ψ(αj)vi(αj)− d(αj)ϕi(αj) = 0,

— if j ∈ E \ Ii, by the choice of V∗,j , then ψ(αj)vi(αj)− d(αj)ϕi(αj) = 0.

So, ψ(αj)vi(αj)− d(αj)ϕi(αj) = 0. Note that deg(ψvi− dϕi) < N +D+ τ − 1. On the other
hand the number of roots of this polynomial is L − |Ii| ≥ L − d|E|/ne ≥ LGLZ1 − τ/n and
since LGLZ1 ≥ N +D− 1 + τ + τ/n it is then L− |Ii| ≥ N +D+ τ − 1. Therefore since this
polynomial has more roots than its degree it is the zero polynomial. Hence ψv − dϕ = 0.
Now, since gcd(gcdi(vi), d) = 1, there exists R ∈ Fq[x] such that ϕ = Rv and ψ = Rd. Notice
that for any 1 ≤ j ≤ L by (4.6) we get,

0 = ϕ(αj)− ψ(αj)V∗,j = R(αj)[v(αj)− V∗,jd(αj)].

By construction, if j ∈ E, then v(αj) − V∗,jd(αj) 6= 0 and so R(αj) = 0. Therefore, the
error locator polynomial Λ =

∏
j∈E(x−αj) divides R and so (ϕ, ψ) ∈ 〈xiΛv, xiΛd〉0≤i<δN,D,τ

.
Hence, SV,τ,N,D ⊆ 〈xiΛv, xiΛd〉0≤i<δN,D,τ

and so the equality holds.
Therefore, we showed that SV,τ,N,D = 〈xiΛv, xiΛd〉0≤i<δN,D,τ

for a draw of Y . Let us show
that the equality holds for many draws. Given Y as in the assumption of this theorem, since

〈xiΛv, xiΛd〉0≤i<δN,D,τ
⊆ SY,τ,N,D = ker(MY,N,D,τ ), then dim(ker(MY,N,D,τ )) ≥ δN,D,τ . By
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the Rank-Nullity Theorem

rank(MY,N,D,τ ) = n(N + τ) +D+ τ − dim(ker(MY,N,D,τ )) ≤ n(N + τ) +D+ τ − δN,D,τ =: ρ.

On the other hand, as proved above, there exists a draw V∗,j of Y∗,j , for j ∈ E, such that
rank(MV,N,D,τ ) = ρ. This means that there exists a nonzero ρ-minor in MV,N,D,τ . We consider
the same nonzero ρ-minor in MY,N,D,τ as a multivariate polynomial C whose indeterminates
are (yi,j)1≤i≤n

j∈E
. We remark that we showed the existence of a draw V∗,j of Y∗,j , for j ∈ E,

such that C(V∗,j) is non zero. Hence the polynomial C is nonzero. For any matrix Y such
that (Y∗,j)j∈E is not a root of C, then SY,N,D,τ = 〈xiΛv, xiΛd〉0≤i<δN,D,τ

. Note that the total
degree of the polynomial C is at most D+ τ , since only the last D+ τ columns of the matrix
MY,N,D,τ contains the variables (yi,j)1≤i≤n

j∈E
(see (4.7)).

Finally by the Schwartz-Zippel Lemma, the polynomial C cannot be zero in more than
(D + τ)/q fractions of its domain. Therefore, we can conclude that the probability that
SY,N,D,τ 6= 〈xiΛv, xiΛd〉0≤i<δN,D,τ

is at most (D + τ)/q.

Remark 4.1.4. We now recall that by Remark 4.1.2 we have that

rank(M) = 1 ⇐⇒ SY,τ,N,D = 〈xiΛv, xiΛd〉0≤i<δN,D,τ

Note that ⇐) is trivial, while the other implication derives from the proof of Theorem 4.1.1.
This allows us to prove the correctness of our Algorithm 6. Indeed, if rank(M) = 1 once
found a generator (ϕ, ψ) of M, by computing gcd(ϕ, ψ) we then recover the error locator
polynomial Λ, and by dividing (ϕ, ψ) by Λ we finally reconstruct the solution (v, d). 

4.1.2 Polynomial Linear Solving with Errors

We shortly recall the main aim of this chapter: constructing an ABFT technique for PLS
solving by evaluation interpolation.

We now consider a PLS A(x)y(x) = b(x), where y(x) = v(x)
d(x) , gcd(gcdi(vi), d) = 1 and such

that d is monic. Fix L evaluation points {α1, . . . , αL}. We assume that both the evaluation
and the pointwise resolution of the evaluated systems steps (of the evaluation-interpolation
algorithm for PLS solving) are parallelized. Therefore, our nodes compute

Y =

(
v(α1)

d(α1)
, . . . ,

v(αL)

d(αL)

)
+ Ξ (4.13)

with E := {j | Ξ∗,j 6= 0}.
The PLSwE is then the problem of recovering (v, d), given

— the matrix Y as in (4.13),

— the evaluation points {α1, . . . , αL},
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— the degree bounds N > deg(v), D > deg(d) and deg(A) and deg(b),

— an upper bound τ on the number of errors |E| occurred at the parallelization step.

Notice that this is an application of the SCIwE problem introduced so far. Indeed, here
we want to recover a vector of rational functions, which is a solution of a PLS, given its
evaluations and some bounds on the degrees. For this reason we can add the degrees of A
and b as additional inputs.

So, we can use the same technique for solving the SCIwE problem to solve PLSwE, i.e. the
simultaneous polynomial reconstruction (4.6), to recover (Λv,Λd), where Λ =

∏
j∈E(x− αj)

is the error locator polynomial.

Previous results. In [KPSW17], E. Kaltofen et al. proved the following theorem.

Theorem 4.1.3. [KPSW17] Consider L ≥ min{N +D−1,max{deg(A)+N, deg(b)+D}}+
2τ evaluation points {α1, . . . , αL} and M the Fq[x]-module of solutions in SY,N,D,τ . Then
rank(M) = 1 and given (ϕ, ψ) a generator of M with ψ monic then (ϕ, ψ) = (Λv,Λd).

Proof. If N +D − 1 ≤ max{deg(A) +N, deg(b) +D} the claim follows by Theorem 4.1.1.
On the other hand, if max{deg(A) + N, deg(b) + D} ≤ N + D − 1 denote LKPSW :=

max{deg(A) +N, deg(b) +D}+ 2τ and consider (ϕ′, ψ′) ∈ SY,N,D,τ . Then, by (4.6), for any
1 ≤ j ≤ L,

ϕ′(αj) = yjψ
′(αj).

Now observe that for j /∈ E, since yj = A(αj)
−1b(αj) then,

A(αj)ϕ
′
j(αj) = b(αj)ψ

′(αj).

The vector of polynomials A(x)ϕ′(x) − b(x)ψ′(x) has degree deg(A(x)ϕ′(x) − b(x)ψ′(x)) <

max{deg(A)+N, deg(b)+D}+τ and L−|E| ≥ LKPSW−τ ≥ max{deg(A)+N, deg(b)+D}+τ
roots. Therefore,

A(x)ϕ′(x)− b(x)ψ′(x) = 0. (4.14)

We now consider (v, d), the solution of our given PLS. Then,

A(x)v(x) = b(x)d(x). (4.15)

If we multiply the equation (4.14) by d(x) and the equation (4.15) by ψ(x) and we subtract
them we get

A(x)[ϕ′(x)d(x)− v(x)ψ′(x)] = 0

and since A(x) is full rank, then ϕ′(x)d(x)−v(x)ψ′(x) = 0. Therefore, the rank(M) = 1 and
the proof follows from the proof of Theorem 4.1.1.
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Therefore, this means that if we consider L := min{N + D − 1,max{N + deg(A), D +

deg(b)}}+2τ evaluation points we can uniquely recover the solution (v, d). So we can adapt
Algorithm 5 with this new number of evaluation points to get an algorithm for PLSwE. Indeed,
notice that once again we have reduced the uniqueness of the recovering of our solution to
the uniqueness of the solution of SRFR.

New results. In [GLZ19] we introduced an algorithm for SCIwE (Algorithm 6) which
reduces the number of evaluation points w.r.t Theorem 4.1.1. As seen before, this algorithm
is obtained by generalizing the interpolation-based decoding technique for interleaved Reed-
Solomon codes (Subsection 2.3.1).

We now introduce a new result which allows us to construct an algorithm for PLSwE with
a smaller number of evaluation points w.r.t Theorem 4.1.3 [GLZ20a].

Theorem 4.1.4. Let τ ≥ 0 and n,N,D ≥ 1. Consider

L ≥ min{N +D − 1,max{deg(A) +N, deg(b) +D}}+ τ +
⌈ τ
n

⌉
=: LGLZ2

evaluation points {α1, . . . , αL} and E ⊆ {1, . . . , L}, with |E| ≤ τ . Moreover, fix a PLS
A(x)y(x) = b(x) and denote by v(x)

d(x) its solution, with gcd(gcdi(vi), d) = 1 and d monic. Let
deg(v) < N and deg(d) < D.

Consider the random matrix Y such that,

— if j ∈ E, Y∗,j is a uniformly distributed element of Fn×1
q ,

— if j /∈ E, Y∗,j = v(αj)
d(αj)

,

then the solution space of SRFR (4.6) is of the form

SY,N,D,τ = 〈xiΛv, xiΛd〉0≤i<δN,D,τ
,

where δN,D,τ is as in (4.10), with probability at least 1− D+τ
q .

Proof. Note that if N + D − 1 ≤ max{deg(A) + N, deg(b) + D}, the proof follows from
Theorem 4.1.2. On the other hand, assume that max{deg(A) +N, deg(b) +D} ≤ N +D− 1

and so consider L ≥ max{deg(A) +N, deg(b) +D}+ τ +
⌈
τ
n

⌉
evaluation points.

This proof is similar to the proof of Theorem 4.1.2. In the first part we prove the existence
of a draw of columns of Y corresponding to the error positions for which we have SY,τIRS ,k =

〈xiΛf , xiΛ〉0≤i<δN,D,τ
.

Indeed, consider a partition of E, i.e. E = ∪ni=1Ii, such that for any 1 ≤ i ≤ n, |Ii| ≤
d|E|/ne. Note that such a partition exists since nd|E|/ne ≥ |E|. For any j ∈ E, denote by ij
the unique index such that j ∈ Iij .

Construct a matrix V , such that

— if j /∈ E, then V∗,j =
v(αj)
d(αj)

,
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— if j ∈ E, then V∗,j is chosen so that

v(αj)− d(αj)V∗,j = −A(αj)−1d(αj)εij (4.16)

where εi is a vector of Fn×1
q , whose i-th entry is 1 and all the others are zero.

Now consider (ϕ, ψ) ∈ SV,τ,N,D and since that by our assumptions d(αj) 6= 0, then

v(αj)− d(αj)V∗,j = −A(αj)−1d(αj)εij ⇐⇒
A(αj)d(αj)V∗,j −A(αj)v(αj) = d(αj)εij ⇐⇒

A(αj)V∗,j −A(αj)
v(αj)

d(αj)︸ ︷︷ ︸
b(αj)

= εij
(4.17)

for all j ∈ E. By multiplying (4.17) by ψ(αj) we get

A(αj)V∗,jψ(αj)− b(αj)ψ(αj) = ψ(αj)εij

and since (ϕ, ψ) ∈ SV,τ,N,D, it satisfies ϕ(αj) = V∗,jψ(αj) ans so we have

A(αj)ϕ(αj)− b(αj)ψ(αj) = ψ(αj)εij .

We now denote
p := A(x)ϕ(x)− ψ(x)b(x) ∈ Fq[x]n×1.

Fix 1 ≤ i ≤ n, we claim that for any j /∈ Ii then pi(αj) = 0, where pi is the i-th component
of p.

Indeed,

— if j /∈ E, then V∗,j =
v(αj)
d(αj)

= A(αj)
−1b(αj) and so since ϕ(αj) = V∗,jψ(αj), we get

p(αj) = A(αj)ϕ(αj)− ψ(αj)b(αj) = 0. In particular pi(αj) = 0.

— If j ∈ E \ Ii, by the choice of V∗,j , then pi(αj) = 0.

Therefore pi(αj) = 0. Note that deg(pi(x)) < max{deg(A) + N, deg(b) +D}. On the other
hand the roots of this polynomial are

L− |Ii| ≥ L− d|E|/ne ≥ LGLZ2 − τ/n = max{deg(A) +N, deg(b) +D}+ τ.

So we can conclude that p(x) = A(x)ϕ(x) − ψ(x)b(x) = 0. Therefore, as in the proof of
Theorem 4.1.3 we have that ϕ(x)d(x) − ψ(x)v(x) = 0. The rest of the proof is coincides
exactly with the proof of Theorem 4.1.2.

Therefore, we conclude by introducing Algorithm 7 for PLSwE, obtained by slightly mod-
ifying Algorithm 6 for the general SCIwE problem. The correctness of this algorithm can be
proved in the same way as Remark 4.1.4.
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Algorithm 7: A new algorithm for PLSwE

Input : Y =
(
v(α1)
d(α1)

, . . . , v(αL)
d(αL)

)
+ Ξ,

τ ≥ |E| = |{j | Ξ∗,j 6= 0}|, N > deg(v), D > deg(d), deg(A), deg(b)
and

L = LGLZ2 = min{N +D − 1,max{N + deg(A), D + deg(b)}}+ τ + dτ/ne
evaluation points {α1, . . . , αL}

Output: (v, d) solution of (4.1) or “fail”.
1 Let M be the Fq[x]-module generated by solutions in SY,N,D,τ ;
2 if rank(M) = 1 then
3 find (ϕ, ψ) a generator of M;
4 Λ gcd(ϕ, ψ);
5 return

(
ϕ
Λ ,

ψ
Λ

)
6 else
7 return ‘fail”

4.2 Early termination techniques

In the previous section, we introduced a method for solving the PLSwE problem which
generalizes the interpolation-based decoding technique of interleaved Reed-Solomon codes.
This technique basically reduces the problem to SRFR, and once again the goal is to determine
the number of evaluation points needed for the uniqueness of SRFR solution.

We now briefly recall previous results. In [KPSW17], E. Kaltofen et al. proved that with

L = min{LBK , LKPSW } (4.18)

evaluation points, where

— LBK := N +D − 1 + 2τ ,

— LKPSW := max{deg(A) +N, deg(b) +D}+ 2τ,

the corresponding SRFR admits a unique solution and so we can uniquely recover the solution
of a PLS.

By Theorem 4.1.2 and Theorem 4.1.4, we can reduce this number to

L̃ = min{LGLZ1, LGLZ2}, (4.19)

where

— LGLZ1 := N +D − 1 + τ +
⌈
τ
n

⌉
,

— LGLZ2 := max{deg(A) +N, deg(b) +D}+ τ +
⌈
τ
n

⌉
.

However, since we are below the number of evaluation points which guarantees the uniqueness
of SRFR (see Remark 4.1.3), Algorithm 7 can fail for at most D+τ

q fractions of possible errors.
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Note that both L and L̃ strongly depends on the bounds N and D on the degrees of the
solution that we want to recover and of the bound τ of the number on errors which occur in
the parallelization step. Therefore, if we consider N,D much bigger than the real degrees of
the solution and τ much bigger then the real number of errors, we can significantly increase
the number of evaluation points compared to the number we really need.

We now provide an example, to better visualize the problem.

Example 4.2.1. Let F37 and consider the PLS whose coefficient matrix is

A =

(
35x3 + 4x2 + 35x+ 8 29x5 + 35x4 + 35x3 + 5x+ 9

12x5 + 3x4 + 3x3 + 11x+ 5 11x7 + 9x6 + 28x4 + 27x3 + 18x2 + 36x+ 10

)

and

b =

(
8x+ 1

2x2 + 5

)
Let

v

d
=

(
10x5+22x4+x3+20x+34

x5+10x4+4x3+28x2+16x+3
16x3+14x2+9x+3

x5+10x4+4x3+28x2+16x+3

)
be the solution with d monic that we want to recover. We do not know a priori the real
degrees of v and d, i.e. deg(v) = 5 and deg(d) = 5. The same holds for the number of errors
|E| introduced by nodes. Assume for instance that it is |E| = 2.

Recall that by the Cramer’s Rule (see Lemma 1.4.1), we can take as bounds for the degrees
of v and d

deg(v) < N = (n− 1)deg(A) + deg(b) + 1 = 10

deg(d) < D = ndeg(A) + 1 = 15

and also consider τ = 4. Then,

L = min{LBK , LKPSW } = min{32, 25} = 25

L̃ = min{LGLZ1, LGLZ2} = min{30, 23} = 23.

Besides, the real number of points that we need is

Lideal = min{LBK ,LKPSW } = 15

L̃ideal = min{LGLZ1,LGLZ2} = 14
(4.20)

where

— LBK := deg(v) + deg(d) + 2|E|+ 1,

— LKPSW := max{deg(A) + deg(v),deg(b) + deg(d)}+ 2|E|+ 1,

— LGLZ1 := deg(v) + deg(d) + |E|+ d|E|/ne+ 1,

— LKPSW := max{deg(A) + deg(v),deg(b) + deg(d)}+ |E|+ d|E|/ne+ 1.
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Notice that we replace N,D, τ by deg(v) + 1,deg(d) + 1 and |E| respectively. 

Therefore, the discrepancy between bounds N,D and the real degrees deg(v), deg(d) and
between the bound τ and the real number |E| of errors implies an overestimation on the
number of evaluation points needed for the computations.

A classical strategy to overcome this limit consists in performing an early termination
technique [KPSW17] which is an adaptive strategy which, starting from a minimal value of
evaluation points, iteratively increments this number until a nontrivial result is found. Note
that this means that the minimal number of evaluations which guarantees the existence is
reached and it is really important in this setting to determine this minimal number.

We point out that the main goal of this early termination technique is to possibly de-
crease the number of evaluation points needed for the reconstruction and not to decrease the
complexity of the algorithm used for the resolution.

In the following paragraph we reinterpret and revisit the results of [KPSW17].

4.2.1 Previous results

In this subsection we consider a PLS A(x)y(x) = b(x) and its solution v(x)
d(x) , where

gcd(gcdi(vi), d) = 1 and d is monic. Given L ≤ q evaluation points {α1, . . . , αL}, we re-
ceive the matrix

Y =
v(αj)

d(αj)
+ Ξ, for any 1 ≤ j ≤ L

computed at the parallelization step, where the error support is E = {j | Ξ∗,j 6= 0}. For any
1 ≤ j ≤ L, we also denote yj := Y∗,j and we consider the bounds N > deg(v), D > deg(d)
and τ ≥ |E|.

In [KPSW17], E. Kaltofen et al. introduced Algorithm 8 which takes as inputs the addi-
tional parameters ν, ϑ, ξ ≥ 0 allowing one to reduce the number of evaluation points needed
for computations. Specifically, the main idea of the algorithm consists in the study of the
solution space SY,ν,ϑ,ξ of the SRFR related to Y and with degree constraints determined by
these new parameters ν + ξ and ϑ + ξ. The algorithm declares a failure if these bounds are
too small compared to the real degrees of the solution (Λv,Λd) that we are searching for, or
in other terms deg(v) + |E| > ν + ξ or deg(d) + |E| > ϑ+ ξ.

The correctness of this algorithm is based on the following theorem.

Theorem 4.2.1. Let ν, ϑ, ξ ≥ 0 and

L ≥ min{LBK ,LKPSW } =: L

where

— LBK := max{ν + deg(d), ϑ+ deg(v)}+ ξ + |E|,

— LKPSW := max{deg(A) + ν,deg(b) + ϑ}+ ξ + |E|.
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Algorithm 8: Algorithm which computes v
d or determine if the degree bounds are

too small [KPSW17]

Input : Y =
(
v(α1)
d(α1)

, . . . , v(αL)
d(αL)

)
+ Ξ,

τ ≥ |E| = |{j | Ξ∗,j 6= 0}|, N > deg(v), D > deg(d), deg(A), deg(b),
ν, ϑ, ξ ≥ 0,
L = min{max{N − 1+ ϑ,D− 1+ ν},max{deg(A) + ν,deg(b) + ϑ}}+ τ + ξ,
the evaluation points {α1, . . . , αL}.

Output: (v, d) or “the bounds ν, ϑ, ξ are too small”
1 Let M be the Fq[x]-module generated by solutions in SY,ν,ϑ,ξ;
2 if rank(M) = 0 then
3 return “the bounds ν, ϑ, ξ are too small”;
4 else
5 find a generator (ϕ, ψ) of M;
6 Λ gcd(ϕ, ψ);
7 return

(
ϕ
Λ ,

ψ
Λ

)

Then
SY,ν,ϑ,ξ = 〈xiΛv, xiΛd〉0≤i<δν,ϑ,ξ

where
δν,ϑ,ξ := min{ν − deg(v), ϑ− deg(d)}+ ξ − |E|.

By convention we set 〈xiΛv, xiΛd〉0≤i<δν,ϑ,ξ
= {(0, 0)} if δν,ϑ,ξ ≤ 0.

Before presenting the proof of this theorem we briefly explain the meaning of this result.

Remark 4.2.1. This result basically tells us that with L ≥ L evaluation points, the solution
space SY,ν,ϑ,ξ determined by solutions (ϕ, ψ) of the equation

ϕ(αj) = yjψ(αj), deg(ϕ) < ν + ξ, deg(ψ) < ϑ+ ξ

for any 1 ≤ j ≤ L (or equivalently of SRFR in the interpolation form with inputs Y, ν+ξ, ϑ+ξ),
is spanned by elements of the form 〈xiΛv, xiΛd〉. And so, if we consider ν, ϑ, ξ too small then
SY,ν,ϑ,ξ is trivial. Formally, we observe that given ν, ϑ, ξ ≥ 0,deg(v) + |E| < ν + ξ

deg(d) + |E| < ϑ+ ξ
⇐⇒ δν,ϑ,ξ > 0 ⇐⇒ 〈xiΛv, xiΛd〉0≤i<δν,ϑ,ξ

6= {(0, 0)}.

By Theorem 4.2.1,
if L ≥ L then SY,ν,ϑ,ξ = 〈xiΛv, xiΛd〉0≤i<δν,ϑ,ξ
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and so, we can conclude that if L ≥ L,

δν,ϑ,ξ > 0 ⇐⇒ SY,ν,ϑ,ξ = 〈xiΛv, xiΛd〉0≤i<δν,ϑ,ξ
6= {(0, 0)} (4.21)



Proof of Theorem 4.2.1. The outlines of this proof are the same as the proofs of Theorem 4.1.1
and Theorem 4.1.3. Besides, we remark that here we are considering ν, ϑ, ξ some general non-
negative parameters while in Theorem 4.1.1 and Theorem 4.1.3 we considered the bounds
N,D, τ on the degrees of v, d and the number of errors |E|. Hence the solution space SY,ν,ϑ,ξ
does not depend on the bounds N,D, τ , but it depends the parameters ν, ϑ, ξ. These param-
eters may be too small, meaning that SY,ν,ϑ,ξ could be trivial, since it may not contain the
solution (Λv,Λd) that we are searching for.

So, the only difference compared to the proofs of the Theorem 4.1.1 and Theorem 4.1.3
we have to pay attention to, is how we prove that for any (ϕ, ψ) ∈ SY,ν,ϑ,ξ

— ϕ(x)Λ(x)d(x)− ψ(x)Λ(x)v(x) = 0, if LBK ≤ LKPSW ,

— A(x)ϕ(x)− b(x)ψ(x) = 0, if LKPSW ≤ LBK .

since it is here that we use the parameters ν, ϑ, ξ.

First, we assume that LBK ≤ LKPSW . We consider (ϕ, ψ) ∈ SY,ν,ϑ,ξ and since (Λv,Λd) ∈
SY,ν,ϑ,ξ we have that for any 1 ≤ j ≤ L

ϕ(αj) = yjψ(αj)

Λ(αj)v(αj) = yjΛ(αj)d(αj)

Fix 1 ≤ j ≤ L and by multiplying the former equation by Λ(αj)d(αj) and the latter by ψ(αj)
and by subtracting them we finally get

ϕ(αj)Λ(αj)d(αj)− ψ(αj)Λ(αj)v(αj) = 0.

Now we observe that deg(ϕ(x)Λ(x)d(x) − ψ(x)Λ(x)v(x)) ≤ max{ν + deg(d), ϑ + deg(v)} +
ξ + |E| − 1 and so, since the number of evaluation points is L ≥ LBK = max{ν + deg(d), ϑ+

deg(v)}+ ξ + |E|, we can conclude that

ϕ(x)Λ(x)d(x)− ψ(x)Λ(x)v(x) = 0.

The rest of the proof is identical to the proof of Theorem 4.1.1. First we observe that
ψ(x) 6= 0 and so by the previous equation we have that ϕ(x)

ψ(x) = v(x)
d(x) . Then, the claim follows

by remarking that the vector of rational functions v(x)
d(x) is gcd(gcdi(vi), d) = 1.

On the other hand, we now assume that LKPSW ≤ LBK . In this case, we consider
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(ϕ, ψ) ∈ SY,ν,ϑ,ξ. Then, since for j /∈ E we have that yj = A(αj)
−1b(αj), then

A(αj)ϕ(αj)− b(αj)ψ(αj) = 0

Now, observe that deg(A(x)ϕ(x)−b(x)ψ(x)) ≤ max{deg(A)+ν,deg(b)+ϑ}+ξ−1 and that the
roots of this vector of polynomials are L−|E| ≥ LKPSW−|E| = max{deg(A)+ν,deg(b)+ϑ}+ξ
then

A(x)ϕ(x)− b(x)ψ(x) = 0.

So, since (Λv,Λd) ∈ SY,ν,ϑ,ξ then we also have that A(x)Λ(x)v(x) − b(x)Λ(x)d(x) = 0 and
the rest of the proof coincides exactly with the proof of Theorem 4.1.3.

Correctness of Algorithm 8. Notice that, since by assumption N − 1 ≥ deg(v), D− 1 ≥
deg(d) and τ ≥ |E| then

L = min{max{N − 1 + ϑ,D − 1 + ν},max{deg(A) + ν,deg(b) + ϑ}}+ τ + ξ

≥ min{max{deg(v) + ϑ,deg(d) + ν},max{deg(A) + ν,deg(b) + ϑ}}+ |E|+ ξ = L

and so by Theorem 4.2.1 and the Remark 4.2.1 (see (4.21)) we can deduce the correctness of
Algorithm 8. Indeed, since L ≥ L,

— if SY,ν,ϑ,ξ = ker(MY,ν,ϑ,ξ) is trivial, then δν,ϑ,ξ ≤ 0 and so deg(v) + |E| ≥ ν + ξ or
deg(d) + |E| ≥ ϑ+ ξ. In this case, the new parameters ν, ϑ, ξ are too small and so the
algorithm outputs the failure message “the bounds ν, ϑ, ξ are too small”.

— otherwise, δν,ϑ,ξ > 0 and Algorithm 5 returns (v, d).

Based on these results, we can construct Algorithm 9 (which is a revisited version 4 of
Algorithm 2.2 of [KPSW17]) which dynamically increase the number of evaluation points and
the parameters ν, δ and ξ, until it reaches the minimal number of evaluation points which
allows us to find a solution

L ET = min{LBK ,LKPSW } (4.22)

where

— LBK = max{N + deg(d), D + deg(v)}+ τ + |E|,

— LKPSW = max{deg(A) + deg(v) + 1,deg(b) + deg(d) + 1}+ τ + |E|.

4. In [KPSW17] it was introduced an early termination algorithm similar to Algorithm 9. The only differ-
ence consists in how the bound on the number of errors is handled. Indeed, in that article, authors estimated
the error rate of the nodes and derived a bound on the number of errors which is close to the real one. Here,
we introduce the parameter ξ, which, informally speaking, play the same role of the other two parameters ν, ϑ.
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Algorithm 9: Early termination algorithm from [KPSW17]
Input : a stream of vectors (yj), for j = 1, . . ., which is extensible in length on

demand, where yj =
v(αj)
d(αj)

+ ej

τ an upper bound on the number of errors, N > deg(v), D > deg(d)
deg(A), deg(b)

Output: (v, d)
1 ν  0;
2 ϑ 0;
3 ξ  0;
4 L min{max{N − 1 + ϑ,D − 1 + ν},max{deg(A) + ν,deg(b) + ϑ}}+ τ + ξ;
5 if Algorithm 8(Y, τ, ν, ϑ, L, {α1, . . . , αL}) = (v, d) then
6 return (v, d)

7 while true do
8 L L+ 1;
9 require a new yL;

10 foreach (ν, ϑ, ξ) with
min{max{N − 1 + ϑ,D − 1 + ν},max{deg(A) + ν,deg(b) + ϑ}}+ τ + ξ = L do

11 if Algorithm 8(Y, τ, ν, ϑ, L, {α1, . . . , αL}) = (v, d) then
12 return (v, d)

Notice that we suppose that the of Algorithm 9 takes as input a stream of vectors (yj) which is
extensible in length 5. In other terms, we assume that any time that the number of evaluation
points is incremented we can ask to a new node of the parallelization step to compute a new
vector yj = v(αj)/d(αj) + ej related to a new evaluation point αj .

We now illustrate this algorithm with an example.

Example 4.2.2. Let us consider the PLS of Example 4.2.1. Recall that deg(v) = 5, deg(d) =
5, the number of errors is |E| = 2, deg(A) = 7 and deg(b) = 2.

We take as degree bounds N = 10, D = 15 and τ = 4. At the beginning ν = 0, ϑ = 0, ξ = 0

and so the initial number of evaluation points is

L = min{max{N + ϑ− 1, D + ν − 1},max{deg(A) + ν,deg(b) + ϑ}}+ τ + ξ = 11.

We first notice that
SY,ν,ϑ,τ = {0, 0}

5. Notice that in this case, since we consider as input a stream of vectors variable in length, the number
of errors can vary. For this reason, we can take τ as a bound related to the bigger number of points L ≥ L ET

(recall (4.18) and (4.22)). Or, following the same strategy of [KPSW17] we may derive a bound on the number
of errors by estimating the error rate of the nodes. This is still a work in progress.
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since
deg(Λv) = 7 > ν + ξ = 0

deg(Λd) = 7 > ν + ξ = 0
⇐⇒ δν,ϑ,ξ < 0

and so, ker(MY,ν,ϑ,ξ) is trivial and the number of points is incremented. We now observe that
the number of evaluation points at which the algorithm is supposed to stop is

L ET = min{max{N + deg(d), D + deg(v)},max{deg(A) + deg(v) + 1,deg(b) + deg(d) + 1}}+ τ + |E| = 19,

and we study the possible values of ν, ϑ, ξ for the number of evaluation points of the last two
iterations of the algorithm

number of evaluation points ν ϑ ξ

L = 18

7 0 . . . 12 0

6 0 . . . 11 1

5 0 . . . 10 2

4 0 . . . 9 3

3 0 . . . 8 4

2 0 . . . 7 5

1 0 . . . 6 6

0 0 . . . 5 7

L = 19

8 0 . . . 13 0

7 0 . . . 12 1

6 0 . . . 11 2

5 0 . . . 10 3

4 0 . . . 9 4

3 0 . . . 8 5

2 0 . . . 7 6

1 0 . . . 6 7

0 0 . . . 5 8

Notice that if L = 18, then we have that ν + ξ ≤ 7 and ϑ + ξ ≤ 12 and so δν,ϑ,ξ < 0.
Besides, for L = 19, then ν + ξ ≤ 8 and ϑ+ ξ ≤ 13, and so

deg(Λv) = 7 < ν + τ = 8

deg(Λd) = 7 < ϑ+ τ = 13
⇐⇒ δν,ϑ,τ ≥ 0 ⇐⇒ SY,ν,ϑ,τ 6= (0, 0).



We now prove that Algorithm 4.2.3 terminates exactly when it reaches the following
number of evaluation points

L ET = min{LBK ,LKPSW }
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where recall,

— LBK = max{N + deg(d), D + deg(v)}+ τ + |E|,

— LKPSW = max{deg(A) + deg(v) + 1,deg(b) + deg(d) + 1}+ τ + |E|.

Proposition 4.2.2. Let L(ν, ϑ, ξ) = min{max{N−1+ϑ,D−1+ν},max{deg(A)+ν,deg(b)+
ϑ}}+ ξ + τ for the parameters ν, ϑ, ξ.

Then Algorithm 9 terminates when L(ν, ϑ, ξ) = L ET.

Proof. We need to prove the following two facts:

1. if L(ν, ϑ, ξ) < L ET, for all ν, ϑ, ξ then deg(v) + |E| ≥ ν + ξ or deg(d) + |E| ≥ ϑ+ ξ.

2. if L(ν, ϑ, ξ) = L ET, then there exist ν, ϑ, ξ such that deg(v) + |E| < ν + ξ and deg(d) +
|E| < ϑ+ ξ.

1. We prove the first claim by contraposition. We assume that there exists ν, ϑ, ξ such that
deg(v) + |E| < ν + ξ and deg(d) + |E| < ϑ + ξ. Then, since ν + ξ − 1 ≥ deg(v) + |E| and
ϑ+ ξ − 1 ≥ deg(d) + |E|, we have that

L(ν, ϑ, ξ) = min{max{N − 1 + ϑ,D − 1 + ν},max{deg(A) + ν,deg(b) + ϑ}}+ ξ + τ

≥ min{max{N + deg(d), D + deg(v)},max{deg(A) + deg(v) + 1,deg(b) + deg(d) + 1}}

+ |E|+ τ = L ET.

2. If L(ν, ϑ, ξ) = L ET, then the claim follows by taking ν = deg(v) + 1, ϑ = deg(d) + 1 and
ξ = |E|.

4.2.2 Our contribution

We now present an early termination technique which allows to further reduce the number
of evaluation points. This is a new technique which is the result of a work in progress [GLZ20a].
It is based on the following theorem.

Theorem 4.2.3. Let ϑ, ν, ξ ≥ 0, n ≥ 1, consider

L ≥ min{LGLZ1,LGLZ2} =: L̃

evaluation points {α1, . . . , αL}, where

— LGLZ1 := max{ν + deg(d), ϑ+ deg(v)}+ ξ +
⌈
|E|
n

⌉
,

— LGLZ2 := max{deg(A) + ν,deg(b) + ϑ}+ ξ +
⌈
|E|
n

⌉
.

Also let E ⊆ {1, . . . , L}. Moreover, fix a PLS A(x)y(x) = b(x) and denote by v(x)
d(x) its solution,

with gcd(gcdi(vi), d) = 1 and d monic.
Consider the random matrix Y where we denote by yj := Y∗,j for any 1 ≤ j ≤ L, such

that
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— if j ∈ E, then yj is a uniformly distributed element of Fn×1
q ,

— if j /∈ E, then yj =
v(αj)
d(αj)

,

then the solution space of SRFR with inputs Y, ν, ϑ, ξ is

SY,ν,ϑ,τ = 〈xiΛv, xiΛd〉0≤i<δν,ϑ,τ

where
δν,ϑ,τ = min{ν − deg(v), ϑ− deg(d)}+ (ξ − |E|),

with probability at least 1− ϑ+ξ
q .

By convention if δν,ϑ,τ ≤ 0 we set 〈xiΛv, xiΛd〉0≤i≤δν,ϑ,τ
= {(0, 0)}.

Proof. The structure of the proof is the same as the proofs of Theorem 4.1.2 and Theo-
rem 4.1.4. We recall that in the proofs of the Theorem 4.1.2 and Theorem 4.1.4 are based on
the following two steps:

1. first we need to prove that there exists a draw of yj for j ∈ E for which the corresponding
solution space SY,ν,ϑ,ξ (which in this case depends on ν, ϑ, ξ) is generated by elements
of the form 〈xiΛv, xiΛd〉. More specifically recall that this inclusion ⊆ is always true
and so we need the other one in order to prove the equality.

2. In the second part, we derive the generic condition (see Chapter 3) and the bound on
fraction of errors for which the solution space is not of the form 〈xiΛv, xiΛd〉.

Since here we are considering some general parameters ν, ϑ, ξ instead of the bounds N,D, τ ,
the only difference between this proof and the previous ones consists in the first part.

We assume that LGLZ1 ≤ LGLZ2. We consider E = ∪ni=1Ii, such that for any 1 ≤ i ≤ n,
|Ii| ≤ d|E|/ne. Construct a matrix V , such that

— V∗,j =
v(αj)
d(αj)

, if j /∈ E,

— V∗,j ∈ Fn×1
q is chosen so that

v(αj)− d(αj)V∗,j = εij (4.23)

where εij is a vector of the canonical basis of Fn×1
q .

So, notice that we consider the same matrix as the proof of Theorem 4.1.2. We now consider
(ϕ, ψ) ∈ SV,ν,ϑ,ξ. By multiplying (4.23) by ψ(αj) and since ϕ(αj) = V∗,jψ(αj) for any
1 ≤ j ≤ L, then

ψ(αj)v(αj)− d(αj)ψ(αj)V∗,j︸ ︷︷ ︸
ϕ(αj)

= ψ(αj)εij .

Fix 1 ≤ i ≤ n, then for any j /∈ Ii then (see the proof of Theorem 4.1.2)

ψ(αj)vi(αj)− d(αj)ϕi(αj) = 0.
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Now, notice that deg(ψvi− dϕi) ≤ max{ϑ+ deg(v),deg(d) + ν}+ ξ− 1 and that the roots of
this polynomial are

L− |Ii| ≥ L− d|E|/ne ≥ LGLZ1 − d|E|/ne = max{ν + deg(d), ϑ+ deg(v)}+ ξ

and so it is the zero polynomial. Therefore ψv − dϕ = 0. The rest follows by observing that
v
d is such that gcd(gcdi(vi), d) = 1. So, we can conclude that SV,ν,ϑ,ξ = 〈xiΛv, xiΛd〉0≤i<δν,ϑ,ξ

.

We now assume that LGLZ2 ≤ LGLZ1. Again we consider a partition of E as before, and
we construct a matrix V as the proof of Theorem 4.1.4 such that

— V∗,j =
v(αj)
d(αj)

, if j /∈ E,

— V∗,j ∈ Fn×1
q is chosen so that

v(αj)− d(αj)V∗,j = −A(αj)−1d(αj)εij . (4.24)

Now, consider (ϕ, ψ) ∈ SV,ν,ϑ,ξ and since d(αj) 6= 0, then by performing the same algebraic
operations as in (4.17) we get

A(αj)V∗,j − b(αj) = εij

and finally by multiplying all by ψ(αj) and since (ϕ, ψ) ∈ SV,ν,ϑ,ξ then

A(αj)ϕ(αj)− b(αj)ψ(αj) = ψ(αj)εij .

We now denote p := A(x)ϕ(x) − b(x)ψ(x) and by pi its i-th component. Fix 1 ≤ i ≤ n,
then we observe that for any j /∈ Ii then pi(αj) = 0 (by the same argument as in the proof
of Theorem 4.1.4). Now, notice that deg(pi) ≤ max{deg(A) + ν,deg(b) + ϑ}+ ξ− 1 and that
the number of roots is

L− |Ii| ≥ L− d|E|/ne ≥ LGLZ2 − d|E|/ne ≥ max{deg(A) + ν,deg(b) + ϑ}+ ξ

and so pi = 0. Therefore, p = A(x)ϕ(x) − b(x)ψ(x) = 0 The rest of the proof follows by
observing that since (Λv,Λd) ∈ SY,ν,ϑ,τ then also A(x)v(x)−b(x)d(x) = 0 and that v

d is such
that gcd(gcdi(vi), d) = 1.

We now introduce Algorithm 10 which given some parameters ν, ϑ, ξ ≥ 0 and using

L = min{max{ν +D,ϑ+N},max{deg(A) + ν + 1,deg(b) + ϑ+ 1}}+ ξ +
⌈ τ
n

⌉
(4.25)

evaluation points, either recover the solution or determine if the parameters are too small,
i.e. deg(Λv) > ν + ξ or deg(Λd) > ϑ+ ξ.
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Algorithm 10: Algorithm which determines if the bounds are too small

Input : Y =
(
v(α1)
d(α1)

, . . . , v(αL)
d(αL)

)
+ Ξ,

τ ≥ |E| = |{j | Ξ∗,j 6= 0}|, N > deg(v), D > deg(d), deg(A), deg(b),
ν, ϑ, ξ ≥ 0,
L = min{max{N−1+ν,D−1+ϑ},max{deg(A)+ν,deg(b)+ϑ}}+ξ+

⌈
τ
n

⌉
,

{α1, . . . , αL}
Output: (v, d) or “fail” or “the bounds ν, ϑ, ξ are too small”

1 Let M be the Fq[x]-module generated by solutions in SY,N,D,τ ;
2 if rank(M) = 0 then
3 return “the bounds ν, ϑ, ξ are too small”;
4 else
5 if rank(M) = 1 then
6 find (ϕ, ψ) a generator of M;
7 Λ gcd(ϕ, ψ);
8 return

(
ϕ
Λ ,

ψ
Λ

)
9 else

10 return “fail”

Correctness of Algorithm 10. Recall that,

deg(v) + |E| < ν + ξ

deg(d) + |E| < ϑ+ ξ
⇐⇒ δν,ϑ,ξ > 0 ⇐⇒ 〈xiΛv, xiΛd〉0≤i<δν,ϑ,ξ

6= {(0, 0)}.

We now observe that since by assumption N − 1 ≥ deg(v), D − 1 ≥ deg(d) and τ ≥ |E|,
then the number of evaluation points of Algorithm 10 is

L = min{max{N − 1 + ν,D − 1 + ϑ},max{deg(A) + ν,deg(b) + ϑ}}+ ξ +
⌈ τ
n

⌉
≥ min{max{deg(v) + ν,deg(d) + ϑ},max{deg(A) + ν,deg(b) + ϑ}}+ ξ +

⌈
|E|
n

⌉
= L̃

and so by Theorem 4.2.3, we have that since L ≥ L̃,

SY,ν,ϑ,τ = 〈xiΛv, xiΛd〉0≤i<δν,ϑ,ξ︸ ︷︷ ︸
with probability at least 1−ϑ+ξ

q

= {(0, 0)} ⇐⇒ δν,ϑ,ξ ≤ 0

6= {(0, 0)} ⇐⇒ δν,ϑ,ξ > 0

This result allows us to deduce the following proposition, about our Algorithm 10.

Proposition 4.2.4.

— If Algorithm 10 outputs “the bounds ν, ϑ, ξ are too small” at step 3 then δν,ϑ,ξ is always
negative;
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— Otherwise if Algorithm 10 returns (v, d), then δν,ϑ,ξ > 0 with probability at least 1− ϑ+ξ
q .

Proof. First notice that if SY,ν,ϑ,ξ = ker(MY,ν,ϑ,ξ) = {(0, 0)}, then since
〈xiΛv, xiΛd〉0≤i<δν,ϑ,ξ

⊆ SY,ν,ϑ,ξ = {(0, 0)} we can conclude that δν,ϑ,ξ ≤ 0.
The other claim follows from the previous remark: indeed if Algorithm 10 arrives at

step 4, then SY,ν,ϑ,ξ 6= {(0, 0)} and with probability at least 1 − ϑ+ξ
q , then SY,ν,ϑ,ξ =

〈xiΛv, xiΛd〉0≤i<δν,ϑ,ξ
6= {(0, 0)} which implies that δν,ϑ,ξ > 0.

So, by summing up,

— if SY,ν,ϑ,ξ = ker(MY,ν,ϑ,ξ) = {(0, 0)} then δν,ϑ,ξ ≤ 0, which means that deg(v) + |E| >
ν+ ξ or deg(d)+ |E| > ϑ+ ξ and Algorithm 10 outputs the message “the bounds ν, ϑ, ξ
are too small”.

— Otherwise, if SY,ν,ϑ,ξ = ker(MY,ν,ϑ,ξ) is nontrivial, then

— with probability at least 1−ϑ+ξ
q the solution space is SY,ν,ϑ,ξ = 〈xiΛv, xiΛd〉0≤i<δν,ϑ,ξ

6=
{(0, 0)}, which implies that δν,ϑ,ξ > 0 and so by Remark 4.1.4, we have that
rank(M) = 1. Hence, Algorithm 10 returns (v, d).

— On the other hand, with probability at most ϑ+ξ
q the solution space is SY,ν,ϑ,ξ 6=

〈xiΛv, xiΛd〉0≤i<δν,ϑ,ξ
and we may have that δν,ϑ,ξ < 0. In this case Algorithm 10

can either returns “fail” or another solution (v′, d′) 6= (v, d).

Notice that this algorithm is deterministic, but since its input contains random errors, it
may output an incorrect result with a certain probability. Indeed, we have seen that if
SY,ν,ϑ,ξ = ker(MY,ν,ϑ,ξ) is nontrivial, with probability at most ϑ+ξ

q , the algorithm can output
an incorrect solution, i.e. it can either returns “fail” or (v′, d′) 6= (v, d). For this reason we
can compare this algorithm to a probabilistic Monte Carlo algorithm. Indeed, recall that a
Monte Carlo algorithm is an algorithm which can produce an incorrect solution with a certain
probability. For decision problems, a Monte Carlo algorithm is one-sided if the probability
that it computes an incorrect solution is zero for at least one possible output that it produces
[MR95]. In this case, this algorithm can be compared to a one-sided Monte Carlo algorithm
for the decision problem “is the solution space SY,ν,ϑ,ξ = ker(MY,ν,ϑ,ξ) trivial?” Indeed, notice
that it always returns the message “the bounds ν, ϑ, ξ are too small” if the kernel is trivial,
which is the correct solution since in this case δν,ϑ,ξ ≤ 0.

We conclude this subsection by introducing an early termination Algorithm 11 which
terminates when it reaches the following number of evaluation points

L̃ET = min{LGLZ1,LGLZ2} (4.26)

where

— LGLZ1 := max{N + deg(d), D + deg(v)}+ |E|+
⌈
τ
n

⌉
,

— LGLZ2 := max{deg(A) + deg(v) + 1,deg(b) + deg(d) + 1}+ |E|+
⌈
τ
n

⌉
.
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This algorithm is obtained by slightly modifying Algorithm 9 and by adapting it to our
number of evaluation points.

Algorithm 11: Adapted Early termination Algorithm
Input : a stream of vectors (yj) for j = 1, . . . which is extensible in length on

demand, where yj =
v(αj)
d(αj)

+ ej

τ an upper bound on the number of errors, N > deg(v), D > deg(d),
deg(A), deg(b)
Output: (v, d)

1 ν  0;
2 ϑ 0;
3 ξ  0;
4 L min{max{N − 1 + ϑ,D − 1 + ν},max{deg(A) + ν,deg(b) + ϑ}}+ ξ +

⌈
τ
n

⌉
;

5 if Algorithm 10(Y, τ, ν, ϑ, L, {α1, . . . , αL}) = (v, d) then
6 return (v, d)

7 while true do
8 L L+ 1;
9 require a new yL;

10 foreach (ν, ϑ, ξ) with
min{max{N − 1+ ϑ,D− 1+ ν},max{deg(A) + ν,deg(b) + ϑ}}+ ξ+

⌈
τ
n

⌉
= L do

11 if Algorithm 10(Y, τ, ν, ϑ, L, {α1, . . . , αL}) = (v, d) then
12 return (v, d)

As in Proposition 4.2.2 we now prove that this algorithm eventually terminates.

Proposition 4.2.5. Let L̃(ν, ϑ, ξ) = min{max{N−1+ϑ,D−1+ν},max{deg(A)+ν,deg(b)+
ϑ}}+ ξ +

⌈
τ
n

⌉
for the parameters ν, ϑ, ξ.

Then Algorithm 11 terminates when L(ν, ϑ, ξ) = L̃ET (see (4.26)).

Proof. As for Proposition 4.2.2, we need to prove the following two facts:

1. if L(ν, ϑ, ξ) < L ET, then for all ν, ϑ, ξ, deg(v) + |E| ≥ ν + ξ or deg(d) + |E| ≥ ϑ+ ξ.

2. if L(ν, ϑ, ξ) = L ET, then there exist ν, ϑ, ξ such that deg(v) + |E| < ν + ξ and deg(d) +
|E| < ϑ+ ξ.

1. We prove the first claim by contrapposition. We assume that there exists ν, ϑ, ξ such that
deg(v) + |E| < ν + ξ and deg(d) + |E| < ϑ + ξ. Then, since ν + ξ − 1 ≥ deg(v) + |E| and
ϑ+ ξ − 1 ≥ deg(d) + |E|, we have that

L(ν, ϑ, ξ) = min{max{N − 1 + ϑ,D − 1 + ν},max{deg(A) + ν,deg(b) + ϑ}}+ ξ ++
⌈ τ
n

⌉
≥ min{max{N + deg(d), D + deg(v)},max{deg(A) + deg(v) + 1,deg(b) + deg(d) + 1}}

+ |E|+
⌈ τ
n

⌉
= L̃ET.
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2. If L(ν, ϑ, ξ) = L̃ET, then the claim follows by taking ν = deg(v) + 1, ϑ = deg(d) + 1 and
ξ = |E|.

4.3 Conclusion and open problems

We now shortly summarize the main results of this chapter and we present open problems
and future perspectives related to them.

∗ ∗ ∗ ∗ ∗

Algorithm-based fault tolerant technique for PLS solving by evaluation-interpolation.
In this chapter we studied an application of error correcting codes that goes beyond the clas-
sical communication scenario in which they are traditionally applied. Indeed, we used the
algebraic tools of error correcting codes for constructing an algorithm-based fault tolerant
technique for solving polynomial linear systems by evaluation-interpolation.

The ABFT is a technique which exploits the algorithm’s features in order to design a fault
tolerant algorithm. This technique is characterized by the following three steps: encoding,
parallelization and the redesign of the algorithm so that it can work with the encoded data.

We applied this technique to the polynomial linear system solving by evaluation-interpolation.
So, informally speaking, we modified the classic evaluation-interpolation algorithm for PLS
solving by

1. adding redundancy by encoding inputs of the algorithm by considering more evaluation
points than the classic algorithm,

2. parallelizing the evaluation step, which is performed by different nodes which can in-
troduce some errors,

3. performing the interpolation step on the encoded data affected by some errors.

Note that in this model, the errors are introduced at the parallelization step. The third
step is related to what we called polynomial linear system solving with errors (PLSwE), which
is the problem of recovering the solution of a PLS (which is a vector of rational functions)
given its evaluations where some are possibly erroneous.

Simultaneous Cauchy Interpolation with Errors as the decoding of Interleaved
Rational Function Codes. PLSwE is an application of a more general problem that we
introduced in Subsection 4.1.1: the simultaneous Cauchy interpolation with errors (SCIwE).
This is the problem of reconstructing a vector of rational functions, given its evaluations,
where some are erroneous. It can be seen as the rational extension of the simultaneous
interpolation with errors (SIwE) (see Definition 2.3.2), which is basically the problem of
decoding interleaved RS codes. This connection allowed us to extend the interpolation-based
decoding technique of IRS to this rational case.
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Figure 4.4: Scheme which illustrates the relation between SIwE, SCIwE and IRF codes

But there is more than that. Indeed, even in this case, SCIwE is related to a coding theory
problem which is the decoding of particular interleaved rational function codes. These codes
represent the rational generalization of IRS codes and they were first introduced in [Per14]
(see Figure 4.4).

We now define rational function codes.

Definition 4.3.1 (Rational Function Codes). Let N,D ≤ L ≤ q and {α1, α2, . . . , αL} be
pairwise distinct evaluation points in Fq. The rational function (RF) code is

CRF (L,N,D) :=

{(
v(α1)

d(α1)
, . . . ,

v(αL)

d(αL)

)∣∣∣∣vd ∈ Fq(x),deg(v) < N, deg(d) < D, d(αi) 6= 0

}
∈ FLq

Notice that this is a generalization of RS codes.
As for classic RS codes, we can define interleaved rational function codes as follows.

Definition 4.3.2 (Interleaved Rational Function Codes). Let n ≥ 1, N,D ≤ L ≤ q and
{α1, α2, . . . , αL} be pairwise distinct evaluation points in Fq. An (homogeneous) interleaved
rational function (IRF) code is

CIRF (L,N,D) :=



c1
...
cn


∣∣∣∣∣∣∣∣ci ∈ CRF (L,N,D), 1 ≤ i ≤ l

 ∈ (Fq)n×L

Notice that we can see an IRF code as the evaluation of a vector of rational functions
whose degrees of any numerator and denominator are bounded,

CIRF (L,N,D) :=

{(
v(α1)

d(α1)
, . . . ,

v(αL)

d(αL)

)∣∣∣∣vd ∈ Fq(x)n×1,deg(f) < N, deg(d) < D, di(αj) 6= 0

}
.

130



This is the rational extension of IRS codes.
We now observe that the SCIwE problem can be seen as the problem of decoding IRF

codes, in particular when the codeword that we want to recover is a vector of rational functions
with the same denominator.

There are many open problems related to this rational code and to its interleaved ver-
sion. First of all, notice that in this rational extension of RS codes we lose some important
properties, like the linearity of the code. This prevents rational codes to have all the nice
characteristics of linear codes (see Subsection 2.1.3). So we would like to study these codes
more in depth, determine their properties and parameters (like their minimum distance) and
understand other possible applications besides the one proposed in this chapter.

Following [Per14, Theorem 2.3.1] we can prove that the minimum distance of this code is
d ≥ L− (N +D + 2).

More specifically, we remark that we provide a slightly different definition of RF codes
compared to [Per14, Definition 2.3.1] since we consider denominators not vanishing on the
fixed evaluation points. Indeed, we recall that this assumption on the denominator was
crucial in the proof of Theorem 4.1.2. This difference makes it difficult to compute exactly
the minimum distance of this code, showing the existence of two codewords at distance exactly
d = L− (N +D + 2).

Therefore, there are two different possible research tracks: either extend the proof of
Theorem 4.1.2 in order to include the possibility for the denominator to vanish at evaluation
points, or continue to investigate this slightly different rational function code (which is a
subcode of the one defined in [Per14, Definition 2.3.1]) of Definition 4.3.1 and its properties.

Analysis of Algorithm 6 from a Coding Theory point of view. We recall that a
satisfiable instance of SCIwE (Definition 4.1.1) with parameters L, τ,N,D, q and {α1, . . . , αn}
is a matrix

Y =

(
v(α1)

d(α1)
, . . . ,

v(αL)

d(αL)

)
+ Ξ

where

— v
d is a vector of rational functions with gcd(gcdi(vi), d) = 1 and deg(v) < N , deg(d) < D,
d is monic and d(αj) 6= 0 for any 1 ≤ j ≤ L,

— Ξ ∈ Fn×Lq is an error matrix, with error support E := {j | Ξ∗,j 6= 0} and |E| ≤ τ .

As previously said, this instance can be seen as a received word of a n-IRF code with length
L and parameters N,D and so SCIwE can be seen as the decoding of IRF codewords.

We now briefly sum up the two main results of Subsection 4.1.1:

— By Theorem 4.1.1, if we consider

L ≥ N +D + 2τ − 1 = LBK
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evaluation points, or equivalently if

τ ≤ L− (N +D − 1)

2
= τ ′0

we have that
SY,N,D,τ = 〈xiΛv, xiΛd〉0≤i<δN,D,τ

where δN,D,τ = min{N − deg(v), D − deg(d)} + (τ + |E|). This result derives from
[BK14].

— On the other hand in [GLZ19] (see Theorem 4.1.2) we proved that with

L = N +D − 1 + τ +
⌈ τ
n

⌉
= LGLZ1

evaluation points, or equivalently if

τ ≤ n(L− (N +D − 1))

n+ 1
= τGLZ

under some assumptions on the error distribution,

SY,N,D,τ = 〈xiΛv, xiΛd〉0≤i<δN,D,τ
with probability ≥ 1− D + τ

q
.

We now observe that the former result tells us that if the number of errors is smaller than
τ ′0 then we can uniquely recover the vector of rational functions v

d corresponding to the
codeword of an IRF. This seems to suggest that the error correction capability of IRF and
also RF codes is exactly τ ′0 (see Theorem 2.1.1) and so that the minimum distance of this
code is L− (N −D + 2).

Besides, as for IRS codes, we can use the interleaving construction to construct a decoder
with a bigger decoding radius. However, since we are beyond τ ′0 we may lose the guarantee
of the uniqueness of the decoding.

This is exactly what we did in [GLZ19]. Indeed, thanks to the result of Theorem 4.1.2, we
constructed Algorithm 6, which can be seen as a partial BD decoder of specific IRF codewords.
This algorithm is a generalized version of the partial BD decoder of IRS codes (Algorithm 4)
introduced in Subsection 2.3.1. We now analyze the behavior of Algorithm 6 as a decoder, as
we did for the partial BD decoder of IRS codes in Remark 2.3.6. First recall that BτGLZ (Y )

is the Hamming ball of radius τGLZ , centered in Y and that we are considering the Hamming
distance in the vector space FLqn . We now observe that since in this case we are assuming
that |E| ≤ τ ≤ τGLZ then CIRF (L,N,D) ∩ B(τGLZ)(Y ) 6= ∅ and so we have the following two
possibilities,

— if |CIRF (L,N,D)∩B(τGLZ)(Y )| = 1, then with probability at least 1− D+τ
q the solution

space is SY,N,D,τ = 〈xiΛv, xiΛd〉0≤i<δN,D,τ
and so rank(M) = 1. In this case, the gcd
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computed at step 4 of Algorithm 6 is exactly the error locator polynomial Λ and so by
dividing the generator (ϕ, ψ) (computed at step 3) of M by Λ we obtain (v, d).

— If |CIRF (L,N,D) ∩ B(τGLZ)(Y )| > 1, then by Remark 4.1.4, rank(M) > 1 and so the
algorithm outputs a failure message.

In conclusion we observe that this decoder is partial since for Y such that |CIRF (L,N,D) ∩
B(τGLZ)(Y )| = 1 it may possibly fail, even if there is only one codeword in the ball.

Failure Probability. In this chapter we saw how we can generalize the interpolation-based
decoding technique for IRS to solve the SCIwE problem, or in other words, to decode IRF
codes. We introduced Algorithm 6 which can be seen as a partial BD decoder of these
codes, and we saw that under some assumptions on the error distribution, this algorithm
could fail with probability which depends on the bound D on the degree of the denominator,
on the bound on the number of errors τ and on the order of the field q. Specifically, this
failure probability is at most (D + τ)/q. Notice that this is a generalization of the failure
probability of Algorithm 4 for IRS codes, i.e. τ/q (see Lemma 2.3.1, [BKY03]). However, in
Subsection 2.3.1 we pointed out that in [BMS04], A. Brown et al. proved that the failure
probability of the interpolation-based partial BD decoder for IRS codes, does not depend on
the number of errors. Later, [SSB07, SSB09, SSB10] introduced another decoding algorithm
based on the syndrome-based approach and estimated its failure probability (see (2.26)). The
bound introduced in these articles is tight in practice.

In our case, indeed, experiments implemented in SageMath suggest that the failure prob-
ability of our algorithm does not depend on the number of errors, as for IRS codes. For this
reason a possible future research track could be to better estimate the failure probability of
our algorithm.

On the uniqueness of simultaneous rational function reconstruction related to
SCIwE. In this chapter we saw how we can reduce the SCIwE problem to the simultaneous
rational function reconstruction. Indeed, given an instance Y with parameters L, τ,N,D, q
and evaluation points {α1, . . . , αL} as above, we find a solution of SRFR related to Y by
performing an SRFR in the interpolation form, with inputs Y,N + τ,D + τ and the given
evaluation points. As a matter of fact we want to recover (ϕ, ψ) such that

ϕ(αj) = Y∗,jψ(αj), deg(ϕ) < N + τ, deg(ψ) < D + τ (4.27)

for any 1 ≤ j ≤ L, since our main goal is to recover the solution (Λv,Λd), where Λ is the
error locator polynomial. We now observe that Theorem 4.1.2 basically tells us that, given
1 ≤ N, τ,D ≤ L ≤ q and an error support E ⊆ {1, . . . , L} such that |E| ≤ τ , if L ≥ LGLZ1,
then for all (v, d) ∈ K[x]n+1 and for almost all error matrices Ξ of error support E, then the
corresponding SRFR admits a unique solution on the instance Y =

(
v(α1)
d(α1)

, . . . , v(αL)
d(αL)

)
+ Ξ.
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Notice that if τ = 0, i.e. in the case where there are no errors, we get L ≥ LGLZ1 =

N +D − 1 + τ +
⌈
τ
l

⌉
= N +D − 1 = LBK and so SRFR always admits a unique solution.

We now observe that if we consider the SRFR problem of (4.27) and the corresponding
homogeneous linear system, then the number of equations is nL and the number of unknowns
is n(N + τ) +D + τ . By the Rank-Nullity Theorem, if

nL = n(N + τ) +D + τ − 1 ⇐⇒ L = N + τ + (D + τ − 1)/n

then there exists a nontrivial solution of (4.27).

Conjecture 4.3.1. Fix 1 ≤ N, τ,D ≤ L ≤ q and an error support E ⊆ {1, . . . , L} such that
|E| ≤ τ . If

L = N + τ + (D + τ − 1)/n (4.28)

then for almost all (v, d) and almost all error matrices Ξ of error support E, SRFR admits a
unique solution on the instance Y =

(
v(α1)
d(α1)

, . . . , v(αL)
d(αL)

)
+ Ξ.

We point out that we conjecture the uniqueness for almost all (v, d) whereas Theorem 4.1.2
holds for all (v, d). This difference is due to our counterexample (Example 1.2.1) which shows
that we cannot have uniqueness for all instances u = v

d whenever L = N + (D − 1)/n.
We also remark that this latter number of evaluations matches the one in the Conjec-

ture 3.3.1 in the case τ = 0.
Our Theorem 3.2.1 is a step towards Conjecture 4.3.1. Indeed, since we proved uniqueness

of SRFR under assumption (4.28) for generic instances u, it remains to prove the existence
of an instance of the form u =

(
v(α1)
d(α1)

, . . . , v(αL)
d(αL)

)
+Ξ for any N,D, τ,E in order to prove the

conjecture.

Polynomial Linear System Solving with Errors. SCIwE is the problem of recovering
a vector of rational functions with the same denominator given its evaluations, some of which
are possibly erroneous. The PLSwE is then a specific case of SCIwE in which we want to
recover a vector of rational functions which is a solution of a polynomial linear system. Recall
indeed, that the main aim of this chapter was to introduce an ABFT technique for PLS solving
by evaluation-interpolation. In order to do so, we delegated the computation of the evaluated
systems to some nodes which could eventually introduce some errors. Therefore, the PLSwE
coincides exactly with the third step of our technique, in which we want to recover the solution
of our PLS by its evaluations where some have been corrupted by the nodes computations.

We saw how we can apply the same technique for SCIwE also to this case and reduce
the problem to SRFR in which we want to recover (Λv,Λd), where Λ is the error locator
polynomial. Moreover, since we have considered a vector of rational functions which is a
solution of a PLS we can also add some additional parameters which are the degree of the
coefficient matrix and of the vector of the corresponding PLS. Also in this case, the main
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goal was to determine the number of evaluation points which guarantees the uniqueness of
the corresponding SRFR.

In [KPSW17], E. Kaltofen et al. proved that with

L = min{LBK , LKPSWE}, (4.29)

where

— LBK = N +D − 1 + 2τ ,

— LKPSWE = max{deg(A) +N, deg(b) +D}+ 2τ ,

we can uniquely recover (Λv,Λd) and then in particular (v, d).
Besides, in Theorem 4.1.4 we showed how we can decrease this number of points to

L̃ = min{LGLZ1, LGLZ2}, (4.30)

where

— LGLZ1 = N +D − 1 + τ +
⌈
τ
n

⌉
,

— LGLZ2 = max{deg(A) +N, deg(b) +D}+ τ +
⌈
τ
n

⌉
.

We observe that since we are below the number of evaluation points that guarantees to
uniquely reconstruct the solution our Algorithm 7 (derived from Theorem 4.1.4), could even-
tually fail.

Early Termination. All the bounds on the number of evaluation points introduced so far,
i.e. L and L̃ of (4.29), (4.30), strongly depends on the bounds on the degrees of the solution
that we want to recover and on the bound on the number of errors. Therefore, if we consider
N,D, τ much bigger than the real degrees of the solution or than the real number of errors,
we could significantly overestimate the number of evaluation points, compared to the real
number of points that we really need, i.e.

Lideal = min{LBK ,LKPSW } (4.31)

where

— LBK = deg(v) + deg(d) + 2|E|+ 1,

— LKPSW = max{deg(A) + deg(v),deg(b) + deg(d)}+ 2|E|+ 1;

or
L̃ideal = min{LGLZ1,LGLZ2} (4.32)

where

— LGLZ1 = deg(v) + deg(d) + |E|+
⌈
|E|
n

⌉
+ 1,
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— LGLZ2 = max{deg(A) + deg(v),deg(b) + deg(d)}+ |E|+
⌈
|E|
n

⌉
+ 1.

In [KPSW17], E. Kaltofen et al. proposed an early termination algorithm (Algorithm 9),
which starting from a minimal number of evaluation points, iteratively increases this number
until a result is found. We remark that the main goal of this technique is to possibly decrease
the number of evaluation points to speed up the computations. So, basically this algorithm
terminates when a sort of stabilization is detected, that is when the minimum number which
guarantees the existence of a solution is reached. More specifically, this number is

L ET = min{LBK ,LKPSW } (4.33)

where

— LBK = max{N + deg(d), D + deg(v)}+ τ + |E|,

— LKPSW = max{deg(A) + deg(v) + 1,deg(b) + deg(d) + 1}+ τ + |E|.

Notice that LKPSW is really close to the ideal number LKPSW of (4.31).
In Section 4.2, we also presented our algorithm (Algorithm 11) which allowed us to fur-

ther decrease the number of evaluation points compared to (4.33). Precisely, this algorithm
terminates when the following number of evaluation points is reached,

L̃ET = min{LGLZ1,LGLZ2} (4.34)

where

— LGLZ1 = max{N + deg(d), D + deg(v)}+ |E|+
⌈
τ
n

⌉
,

— LGLZ2 = max{deg(A) + deg(v) + 1,deg(b) + deg(d) + 1}+ |E|+
⌈
τ
n

⌉
.

We observe that from a coding theory point of view, an overestimation on the bounds on
the degrees of the solution that we want to recover, could significantly decrease the number
of errors that we could correct. Indeed, in [KPR+10], authors already observed that even for
classic RS codes, the overestimation of the bound on the degree of the polynomial related to an
RS codeword instead of the real degree could significantly decrease the amount of errors that
the decoder could correct. For this reason, [KPR+10, Per14] proposed a parameter oblivious
algorithm which could correct up to

n− deg(f)− 1

2
≥ n− k

2

errors, for a given f ∈ CRS(n, k). So, a natural question related to this topic could concern
the extension of this technique to other codes, as for instance IRS codes.
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Concluding Remarks

As a conclusion we summarize the main contributions and the proposed new research
perspectives related to them (which we already introduced in Section 3.3 and Section 4.3).
We divide this presentation into two sections according to the purpose of these new research
tracks and open problems.

Improving the previous results

Simultaneous Rational Function Reconstruction problem. One of the main contri-
bution of this work concerns [GLZ20b] the general SRFR problem (see Chapter 3). Indeed,
in Theorem 3.2.1 we proved that under the assumption on the degrees of the moduli derived
from the common denominator constraint, SRFR admits a unique solution for almost all
instances u.

In Section 3.3 we noticed that this result represents a step towards Conjecture 3.3.1
according to which for almost all (v, d) with d invertible, then SRFR with instance u = v

d

admits a unique solution.
Indeed, in our result we showed uniqueness for almost all instances u which could not

derive from a vector of rational functions. This is due to the fact that, following the classic
RFR problem, we focused on the weaker linear problem of recovering (v, d) such that vi =
dui mod ai and with deg(vi) < Ni, deg(d) < D, dropping the invertibility of d modulo ai.

Nevertheless, since in Theorem 3.2.1 we proved uniqueness for generic instances u, it
would be sufficient to show the existence of an instance u = v/d to prove Conjecture 3.3.1.

Failure probability of SCIwE and PLSwE algorithms. In Chapter 4 we introduced
Algorithm 6 for SCIwE solving which generalizes the interpolation-based decoding technique
of IRS codes. In Section 4.3, we saw how SCIwE can be seen as the decoding of IRF codes
(Definition 4.3.2). We also reinterpreted Algorithm 6 as a partial BD decoder for these
kind of codes. Indeed, under some assumptions on the error distribution, the Algorithm 6
may fail with a certain probability (Theorem 4.1.2). Specifically, the failure probability is
at most (D + τ)/q, where D and τ are respectively bounds on the degree of the common
denominator of all rational functions and on the number of errors. We also remarked that
this probability bound generalizes the failure probability bound of the partial BD decoder of
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IRS codes (Lemma 2.3.1, [BKY03]), i.e. τ/q. This IRS decoding failure probability bound
was then improved ([BMS04, SSB07, SSB09, SSB10]) by showing that the failure probability
does not depend on the number of errors or on its bound.

In the case of Algorithm 6, experiments implemented in SageMath suggest that even in
our rational generalization, the failure probability does not depend on the number of errors.
Hence, it would be interesting to improve the bound on the failure probability, trying to find
a more tight one.

Extending the previous results

Rational Function Codes. In Section 4.3 we introduced Rational Function codes (Def-
inition 4.3.1) and their interleaved version (Definition 4.3.2). We saw the link between the
decoding of IRF codes and the SCIwE problem. However, as previously underlined, there are
many open problems related to these codes. First, RF codes are not linear and so they do
not have all the useful properties of linear codes. Also, manipulating them could be more
complicated since we cannot reduce all the related problems, e.g. the decoding, to linear
problems.

A future and ambitious research track would be a better investigation and study of these
codes, starting from the determination of their parameters. It would also be interesting to
understand other possible application scenarios, different from the one proposed in this work.

Early termination techniques. In this thesis, by extending the results of [BK14, KPSW17]
we proposed an early termination technique which leads to a possible reduction on the number
of evaluation points needed to PLSwE solving. This strategy, starting from a small value of
evaluation points, dynamically increase this number until a result is found. This means that
the minimal number which guarantees to uniquely recover the solution is attained.

In [KPR+10], the authors observed that the problem of overestimating the degree bounds
leading to more evaluation points compared to the needed one (for the RFR in this case),
could affect also error correcting codes and in particular RS codes. Indeed, even for RS
codes an overestimation of the bound k on the degree of the codeword polynomial, could
significantly increase the number of evaluation points needed for the uniqueness of RFR (and
so uniqueness of the decoding). Equivalently it can decrease the amount of errors that the
decoder could uniquely correct. Indeed,

τ =
n− deg(f)− 1

2
≥ n− k

2
= τ0

for f ∈ CRS(n, k). For this reason, [KPR+10] proposed parameter oblivious algorithm which
basically performs an early termination technique on the corresponding RFR problem related
to the decoding.
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So, in view of these results it would be interesting to extend this technique also to IRS
codes or to other codes constructions [Jus06].
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