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Résumé

Cette thèse étudie un problème de calcul formel qui a des applications et conséquences importantes sur la théorie des codes correcteurs algébriques : la reconstruction rationnelle simultanée (RRS). En effet, une analyse rigoureuse de ce problème amène à des résultats intéressants dans ce deux domaines scientifiques.

Plus précisément, la reconstruction simultanée de fractions rationnelles est le problème de la reconstruction d'un vecteur de fractions rationnelles ayant le même dénominateur étant donné ses évaluations (ou plus généralement étant donné ses restes modulo de polynômes différents). La particularité de ce problème consiste dans le fait que la contrainte du dénominateur commun réduit le nombre de points d'évaluation qui assurent l'existence d'une solution, au prix d'une éventuelle perte d'unicité. Une des principales contributions de ce travail consiste à prouver que l'unicité est garantie pour quasiment tous les instances de ce problème.

Ce résultat a été obtenu par l'élaboration des résultats et techniques précédents dérivées des applications du probleme RRS, depuis la résolution de systèmes linéaires polynomiaux jusqu'au décodage de codes Reed-Solomon entrelacés.

Dans ce travail, nous avons aussi étudié et présenté une autre application du problème RRS, concernant le problème de la construction d'algorithmes tolérants aux fautes : des algorithmes résistants aux erreurs de calcul. Ces algorithmes sont construits en introduisant une redondance et en utilisant des outils de codes correcteurs d'erreurs pour détecter et éventuellement corriger les erreurs qui se produisent pendant les calculs. Dans ce contexte d'application, nous améliorons une technique existante de tolérance aux fautes pour la résolution de systèmes linéaires polynomiaux par interpolation-évaluation, avec une attention particulière au problème RRS correspondant.

Abstract

This dissertation deals with a Computer Algebra problem which has significant consequences in Algebraic Coding Theory and Error Correcting Codes: the simultaneous rational function reconstruction. Indeed, an accurate analysis of this problem leads to interesting results in both these scientific domains.

More precisely, the simultaneous rational function reconstruction is the problem of reconstructing a vector of rational functions with the same denominator given its evaluations (or more generally given its remainders modulo different polynomials). The peculiarity of this problem consists in the fact that the common denominator constraint reduces the number of evaluation points needed to guarantee the existence of a solution, possibly losing the uniqueness. One of the main contribution of this work consists in the proof that uniqueness is guaranteed for almost all instances of this problem.

This result was obtained by elaborating some other contributions and techniques derived by the applications of SRFR, from the polynomial linear system solving to the decoding of Interleaved Reed-Solomon codes.

In this work, we will also study and present another application of the SRFR problem, concerning the problem of constructing fault-tolerant algorithms: algorithms resilients to computational errors. These algorithms are constructed by introducing redundancy and using error correcting codes tools to detect and possibly correct errors which occur during computations. In this application context, we improve an existing fault-tolerant technique for polynomial linear system solving by interpolation-evaluation, by focusing on the SRFR problem related to it. Merci Nico pour ton aide pour toutes les formalités administratives. Merci pour ta disponibilité, ton aide a été très précieuse.
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Résumé de la thèse

Cette thèse a pour objectif d'étudier un problème de calcul formel ainsi que son application à la théorie des codes correcteurs algébriques.

Le calcul formel est le domaine scientifique qui s'intéresse à l'analyse et au développement d'algorithmes pour la résolution de problèmes mathématiques en représentations finie et exacte. D'autre part, la théorie du codage trouve son origine dans les publications pionnières de Shannon [START_REF] Shannon | A mathematical theory of communication[END_REF] et Hamming [START_REF] Hamming | Error Detecting and Error Correcting Codes[END_REF]. Shannon a formalisé le concept de communication fiable sur un canal bruité. Il a également déterminé une limite inférieure sur la quantité de redondance qui doit être rajoutée aux informations transmises pour assurer une transmission presque sans erreur (ce résultat est connu comme le deuxième théorème de Shannon). Cependant, la preuve de ce théorème n'est pas constructive et on ne sait pas comment toujours construire des codes correcteurs d'erreurs qui atteignent réellement la limite de Shannon. Par ailleurs, Hamming a proposé l'une des premières classes de codes correcteurs d'erreurs et il a introduit la notion de distance de Hamming, une métrique qui mesure la distance entre deux mots de code en comptant le nombre de positions dans lesquelles ils sont différents.

La théorie des codes correcteurs algébriques est un sous-domaine de la théorie du codage, dans lequel toutes les propriétés des codes sont exprimées en termes algébriques. Elle utilise également des techniques algébriques classiques et modernes pour la conception de codes correcteurs d'erreurs.

Les deux disciplines du calcul formel et de la théorie des codes correcteurs algébriques peuvent être combinées : les problèmes algébriques liés aux codes correcteurs d'erreurs peuvent être résolus efficacement par des algorithmes et outils de calcul formel. Un exemple classique qui met en évidence cette interaction concerne une classe célèbre et très utilisée en pratique de codes correcteurs d'erreurs algébriques : les codes de Reed-Solomon (RS) [START_REF] Reed | Polynomial Codes Over Certain Finite Fields[END_REF]. Les codes RS ont plusieurs propriétés remarquables qui les rendent largement utilisés dans des applications pratiques. Par exemple, ils sont maximum distance séparables (MDS), c'est-à-dire qu'ils atteignent la borne de Singleton. D'un point de vue algébrique, les codes RS peuvent être considérés comme les évaluations de polynômes de degrés bornés. Le décodage d'un mot de code RS consiste à récupérer un polynôme de degré borné étant donné ses évaluations potentiellement erronées (problème d'interpolation avec erreurs, IaE). Les deux techniques classiques de décodage des codes RS, l'une basée sur l'interpolation [START_REF] Berlekamp | Error Correction of Algebraic Block Codes[END_REF] et l'autre basée sur le syndrome [START_REF] Berlekamp | Nonbinary bch decoding[END_REF], ramènent le problème de décodage à un problème classique de calcul formel : la reconstruction rationnelle (RR). Cela conduit à la construction des décodeurs efficaces à distance minimale limitée qui diffèrent fondamentalement par l'algorithme choisi pour effectuer la RR correspondante ([BW86, [START_REF] Gao | A New Algorithm for Decoding Reed-Solomon Codes[END_REF][START_REF] Sugiyama | A method for solving key equation for decoding Goppa codes[END_REF][START_REF] Berlekamp | Nonbinary bch decoding[END_REF]).

Dans cette thèse, nous étudions la reconstruction rationnelle simultanée (RRS) en analysant surtout la condition sur ses paramètres qui garantit l'unicité de sa solution ainsi que son impact sur les problèmes connexes de la théorie des codes correcteurs algébriques.

La RRS désigne le problème de la reconstruction d'un vecteur de fractions rationnelles ayant le même dénominateur, c'est-à-dire v/d = (v 1 /d, . . . , v n /d), étant donné u i = v i /d mod a i et les bornes sur les degrés deg(v i ) < N i , deg(d) < D. La RRS généralise le problème d'interpolation en considérant a 1 = . . . = a n = (x -α j ) pour des points d'évaluation α j distincts. En effet dans ce cas les équations modulaires u i = v i /d mod a i deviennent des équations sur les évaluations u i (α j ) = v i (α j )/d(α j ). Par soucis de simplicité, nous nous concentrons dans cette partie sur la version d'interpolation de la RRS et nous supposons que N 1 = . . . = N n = N . Cependant, nous remarquons que dans ce travail, nous étudions également le cas général.

Dans ce travail, nous étudions la RRS en nous concentrant sur le nombre de points d'évaluation qui assurent l'unicité de la solution du problème. Par unicité, nous entendons que tous les vecteurs des fractions rationnelles correspondants à des solutions de la RRS sont égaux, ou en d'autres termes, que chaque solution (v, d) est un multiple polynomial d'une solution minimale. Afin de déterminer les solutions de la RRS, comme pour le problème RR classique, nous nous concentrons sur le problème linéaire plus faible de la reconstruction de (v, d) qui satisfait v i (α j ) = u i (α j )d(α j ) et tel que deg(v i ) < N et deg(d) < D.

Pour trouver les solutions de la RRS, nous pouvons appliquer la RR classique à chaque composante et avec L ≥ L RR = N + D -1 points d'évaluation, nous avons unicité de la RRS.

La particularité de la RRS réside dans le fait que le dénominateur commun réduit le nombre d'inconnues du système linéaire homogène liées à ce problème, en diminuant le nombre de points d'évaluation L RRS = N + (D -1)/n qui assurent l'existence d'une solution nontriviale.

Cependant, il y a des instances u de la RRS pour lesquels ce nombre de points d'évaluation n'est pas suffisant pour garantir l'unicité (comme montre l'exemple 1.2.1). Dans cette thèse, nous étudions des instances qui conduisent à l'unicité, en supposant que le nombre de points d'évaluation soit L = L RRS . Les deux travaux précédents qui motivent notre analyse dans ce sens proviennent de deux applications de RRS : la résolution de systèmes linéaires polynomiaux et le décodage de codes de Reed-Solomon entrelacés (RSE).

La solution d'un système carré et non singulier d'équations linéaires à coefficients polynomiaux (SLP), est un vecteur de fractions rationnelles ayant le même dénominateur, selon la règle de Cramer. Certaines des techniques de résolution des SLP, par exemple l'évaluation-interpolation, peuvent utiliser RRS pour abaisser le nombre de points d'évaluation. Dans ce cadre, la réduction du nombre d'évaluations a un impact direct sur la complexité des algorithmes de résolution qui dépend de ce nombre. Une contribution importante dans ce contexte d'application provient de [START_REF] Olesh | The Vector Rational Function Reconstruction problem[END_REF]. Dans cet article, les auteurs ont prouvé qu'avec L RRS points d'évaluation et sous certaines hypothèses spécifiques de degrés, RRS admet une solution unique.

Un autre résultat important provient de la théorie des codes algébrique et il est lié aux codes RSE. En général, l'entrelacement est une construction qui peut être appliquée à différents codes correcteurs d'erreurs et qui est utilisée pour la correction des erreurs par paquets, c'est-à-dire des erreurs étendues à des symboles consécutifs. Nous considérons ici cette construction appliquée aux codes RS. Plus précisément, un code l-RSE est une somme directe de l codes RS avec les mêmes points d'évaluation. Par conséquent, ils peuvent être considérés comme des évaluations de vecteurs de polynômes de degrés bornés. Dans ce contexte particulière, une erreur par paquets est une erreur qui corrompt une évaluation dans tous les l mots de code. D'un point de vue algébrique, le décodage d'un mot de code RSE consiste à la reconstruction d'un vecteur de polynômes étant données ses évaluations, dont certaines sont erronées (interpolation simultanée avec erreurs, ISaE).

Le problème du décodage des codes RSE a été l'objet de beaucoup d'attention en ces derniers temps ([BKY03, BMS04, SSB07, SSB09, SSB10, PR17]. En effet, les codes RSE sont intéressants car ils peuvent être décodés au-delà de la moitié de la distance minimale. C'est pourquoi tous les décodeurs proposés dans ces articles sont des décodeurs à distance limitée partiels, car ils peuvent échouer pour quelques erreurs spécifiques. En outre, le rayon de décodage de ces décodeurs atteint la limite de Shannon en supposant que le paramètre d'entrelacement l tend vers l'infini.

La technique pour le décodage des codes RSE basée sur l'interpolation ( [START_REF] Bleichenbacher | Decoding of interleaved Reed-Solomon codes over noisy data[END_REF][START_REF] Brown | Probabilistic decoding of Interleaved RS-Codes on the Q-ary symmetric channel[END_REF]) réduit le problème de décodage à une RRS. En effet, dans [START_REF] Bleichenbacher | Decoding of interleaved Reed-Solomon codes over noisy data[END_REF] il a été prouvé qu'avec le nombre d'évaluations dérivées de la contrainte du dénominateur commun, pour tous les vecteurs de polynômes v et pour quasiment toutes les erreurs e, le problème RRS appliqué aux instances u tel que u(α j ) = v(α j ) + e j admet une solution unique. Ce résultat, même s'il s'agit d'un scénario différent avec des erreurs, motive notre étude sur les cas conduisant à l'unicité du problème général de la RRS. Dans ce document, nous étudions et présentons aussi une autre application de la RRS, concernant la construction d'algorithmes tolérants aux fautes. Dans ce cadre, nous voyons comment les outils des codes correcteurs d'erreurs sont utilisés pour une application qui va au-delà du scénario de communication classique.

Les technologies de calcul à haute performance (supercalculateurs) contiennent des milliers de noeuds de calcul mis en réseau (calcul parallèle) pour fournir de très hautes performances. Plus le nombre de composants du système augmente, plus le problème de corriger des erreurs introduites par ces noeuds devient important. Par exemple, les supercalculateurs modernes commettent environ 3,5 fautes par jour [DGP + 19, LC18]. Par conséquent, sans un changement drastique au niveau algorithmique, un tel taux de fautes empêchera certainement les supercalculateurs de progresser. C'est pourquoi de nombreuses techniques et algorithmes tolérants aux fautes ont été proposés pour détecter et corriger ces erreurs.

Ces fautes peuvent être traitées par des techniques de contrôle et de redémarrage, consistant à enregistrer périodiquement des données sur des dispositifs de stockage ( [START_REF] Bode | Parallel Computer Architectures[END_REF]). Cependant, cette approche pourrait s'avérer coûteuse en termes de ressources, car elle pourrait nécessiter un stockage externe ou de la bande passante sur le réseau. L'autre grande approche pour tolérer les fautes est logicielle (technique de construction des algorithmes tolérants aux fautes (TCATF) [START_REF] Huang | Algorithm-Based Fault Tolerance for Matrix Operations[END_REF]). Cette technique exploite les outils des codes correcteurs d'erreurs algébriques en rajoutant une redondance aux entrées du problème afin de détecter et éventuellement de corriger les erreurs de calcul survenues dans des environnements distribués parallèles.

Les techniques TCATF [START_REF] Huang | Algorithm-Based Fault Tolerance for Matrix Operations[END_REF] se caractérisent par le codage des entrées de l'algorithme, la ré-conception de l'algorithme pour qu'il puisse fonctionner sur les données codées et la répartition de certaines étapes de calcul entre des noeuds (parallélisation). Dans ce cadre, les erreurs sont introduites par les noeuds et le modèle d'erreur dépend fortement du schéma de parallélisation.

Dans cette thèse, nous étudions une technique TCATF pour la résolution des systèmes linéaires polynômiaux par évaluation-interpolation [START_REF] Boyer | Numerical Linear System Solving with Parametric Entries by Error Correction[END_REF][START_REF] Pernet | High Performance and Reliable Algebraic Computing[END_REF][START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF]. Considérons un SLP carré, non singulier A(x)y(x) = b(x) et prenons v(x)/d(x) sa solution où pgcd(pgcd i (v i ), d) = 1 and d est unitaire. En général, la technique d'évaluation-interpolation pour la résolution des SLP consiste à évaluer A(x) et b(x) en certains points d'évaluation distincts {α 1 , . . . , α L }, à la résolution ponctuelle des systèmes évalués y(α j ) = A(α j ) -1 b(α j ) et à l'interpolation et reconstruction de y(x) = v(x)/d(x) étant données ses évaluations. L'idée principale de la technique TCATF appliquée à l'évaluation-interpolation est de modifier cette méthode par l'introduction de la redondance, en considérant plus de points d'évaluation par rapport au nombre nécessaire pour le cas général. Dans ce scénario, l'étape d'évaluation de la technique classique d'évaluation-interpolation est réalisée par différents noeuds (parallélisation). Ces noeuds introduisent éventuellement des erreurs et calculent y(α j ) = v(α j )/d(α j ).

Le problème de résoudre un système linéaire polynomial avec erreurs (SLPaE) [START_REF] Boyer | Numerical Linear System Solving with Parametric Entries by Error Correction[END_REF][START_REF] Pernet | High Performance and Reliable Algebraic Computing[END_REF][START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF] est alors le problème de la récupération du vecteur des fractions rationnelles v/d, qui est une solution du SLP, étant données ses évaluations où certaines pourraient être erronées. Dans ce cas également, la technique de résolution de ce problème peut être considérée comme une RRS.

Nos contributions

Nos contributions concernent un résultat d'unicité sur la RRS [START_REF] Guerrini | On the Uniqueness of Simultaneous Rational Function Reconstruction[END_REF] et d'autres résultats [START_REF] Guerrini | Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes[END_REF][START_REF] Guerrini | Enhancing Simultaneous Rational Function Recovery: adaptive error correction capability and new bounds for applications[END_REF] sur le SLPaE et son problème plus général de l'interpolation de Cauchy simultanée avec erreurs (ICSaE).

Unicité générique de RRS. Une première contribution nouvelle développée dans cette thèse concerne le problème général de la RRS. Avant de prouver ce théorème, nous prouvons un résultat sur le degré en ligne générique des modules de relation liés á des matrices générales (Section 3.1, Corollaire 3.1.2). Des travaux précédents ont étudié les degrés en ligne génériques de différents K[x]-modules : e.g. les modules des récurrences vectorielles d'une suite de matrices scalaires [START_REF] Villard | A study of Coppersmith's block Wiedemann algorithm using matrix polynomials[END_REF] ou pour le noyau d'une matrice polynomiale de dimensions spécifiques [START_REF] Jeannerod | Essentially optimal computation of the inverse of generic polynomial matrices[END_REF]. Les degrés génériques apparaissent également comme des dimensions de blocs d'une forme de Hessenberg décalée [START_REF] Pernet | Faster Algorithms for the Characteristic Polynomial[END_REF]. Dans tous ces cas, aucun décalage n'est pris en compte. Nous prouvons notre résultat pour tous décalages et pour tous modules de relation en reformulant et en adaptant certaines des techniques introduites dans les articles mentionnés ci-dessus.

Problème 2. Reconstruction Rationnelle Simultanée

Entrée : a 1 , . . . , a n ∈ K[x], u = (u 1 , . . . , u n ) ∈ K[x] n , où deg(u i ) < deg(a i ) et 1 ≤ N i ≤ deg(a i ), 1 ≤ D ≤ min 1≤i≤n {deg(a i )} Sortie : (v, d) = (v 1 , . . . , v n , d) ∈ K[x] n+1 tel que [v i = du i mod a i ] 1≤i≤n , deg(v i ) < N i , deg ( 

Interpolation de Cauchy Simultanée avec Erreurs.

La interpolation de Cauchy simultanée avec erreurs (ICSaE) consiste dans la reconstruction d'un vecteur de fractions rationnelles v(x)/d(x) de degrés bornés, étant données ses évaluations dont certaines pourraient être erronées. Il s'agit d'un problème plus général que la résolution du SLPaE défini ci-dessus.

Dans [START_REF] Guerrini | Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes[END_REF], à la suite de [START_REF] Pernet | High Performance and Reliable Algebraic Computing[END_REF], nous observons que ce problème est l'extension rationnelle du problème de décodage des codes RSE. En effet, dans ce cas nous voulons récupérer un vecteur de fractions rationnelles au lieu d'un vecteur de polynômes.

PROBLÈMES

RRS -équation clé

REDUCTION DES PROBLÈMES

ISaE décodage codes RSE ⊆ ICSaE
Ce lien nous permet d'étendre la même technique basée sur l'interpolation [START_REF] Bleichenbacher | Decoding of interleaved Reed-Solomon codes over noisy data[END_REF] à ce cas rationnel, en réduisant ICSaE à une RRS appliqué aux instances u de la forme u(α j ) = v(α j )/d(α j ) + e j . Les résultats précédents sur ce sujet [START_REF] Boyer | Numerical Linear System Solving with Parametric Entries by Error Correction[END_REF][START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF], plus liés au cas spécifique du SLPaE, ont montré qu'avec

L BK = N + D -1 + 2τ
(1) où τ ≥ |E| := |{j | e j = 0}| est une borne sur le nombre d'erreurs, alors nous avons l'unicité de la RRS. Ce nombre de points coïncide avec L RR , obtenu en appliquant le RR avec contraintes de degrés N + τ , D + τ composant par composant. Dans [START_REF] Guerrini | Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes[END_REF], en soulignant la similarité entre ce problème et le décodage des codes RSE, nous proposons l'Algorithme 6 pour la résolution de ICSaE qui réduit ce nombre de points à

L GLZ1 = N + D -1 + τ + τ /n . (2) 
Cependant, comme pour le cas des codes RSE, puisque nous sommes en dessous du nombre de points d'évaluation qui garantit l'unicité de la RRS, cet algorithme pourrait échouer pour quelques erreurs spécifiques. 

Résolution d'un

L ≥ min{L BK , L KP SW } (3) points d'évaluation, où L BK = N + D -1 + 2τ (comme dans (1)) et L KP SW = max{deg(A) + N, deg(b) + D} + 2τ (4) 
la RRS correspondant a une solution unique.

Dans cette thèse, nous présentons un résultat, issu d'un travail en cours [START_REF] Guerrini | Enhancing Simultaneous Rational Function Recovery: adaptive error correction capability and new bounds for applications[END_REF] qui réduit ce nombre à

L ≥ min{L GLZ1 , L GLZ2 } (5) points d'évaluation, où L GLZ1 = N + D -1 + τ + τ /n (comme dans (6)) et L GLZ2 = max{deg(A) + N, deg(b) + D} + τ + τ /n . (6) 
Cependant, même dans ce cas, notre algorithme (une version étendue de l'Algorithme 6) peut échouer pour quelques erreurs spécifiques.

Techniques de terminaison anticipée. Nous concluons en présentant la dernière contribution de cette thèse, qui fait partie d'un travail en cours (certains résultats se trouvent dans [START_REF] Guerrini | Enhancing Simultaneous Rational Function Recovery: adaptive error correction capability and new bounds for applications[END_REF]). Considérez le problème SLPaE. Nous observons que tous les nombres de points d'évaluation introduits jusqu'à présent L BK , L KP SW , L GLZ1 , L GLZ2 dépendent fortement des bornes N (respectivement D) de degrés du numérateur (dénominateur) de la solution qu'on cherche à reconstruire et de la borne sur le nombre d'erreurs τ . Ainsi, une surestimation des degrés réels et du nombre réel d'erreurs (que nous ne connaissons pas a priori) pourrait augmenter considérablement le nombre de points d'évaluation par rapport au nombre dont nous avons réellement besoin. Une stratégie classique [START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF] pour surmonter cette limite consiste à effectuer une technique de terminaison anticipée qui, à partir d'un nombre de points d'évaluation petit, incrémente itérativement ce nombre jusqu'à ce qu'une certaine valeur minimale soit atteinte. Nous soulignons que cette technique vise à diminuer éventuellement le nombre de points d'évaluation, afin d'accélérer les calculs.

Dans cette thèse, nous présentons aussi un algorithme de terminaison anticipée (Algorithme 11) qui réduit le nombre d'évaluations par rapport aux résultats précédents [START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF].

Introduction

This dissertation deals with a Computer Algebra problem especially focusing on its application in Algebraic Coding Theory.

Computer algebra refers to the scientific domain aiming to the analysis and development of algorithms for solving mathematical problems and manipulating algebraic tools. It involves computations in algebraic structures, such as groups and fields, polynomial rings, rational function fields etc.

Coding theory has its origin in the pioneering publications by Shannon [START_REF] Shannon | A mathematical theory of communication[END_REF] and Hamming [START_REF] Hamming | Error Detecting and Error Correcting Codes[END_REF]. Shannon formalized the concept of reliable communication over a noisy channel. He also determined a limit on the amount of redundancy which should be added to the transmitted information to provide a nearly error-free transmission (this results is known as the Noisy Channel Coding Theorem). However, the proof of the Noisy Channel Coding Theorem is non-constructive and it is not clear how to construct error-correcting codes which actually achieve the Shannon limit. Hamming proposed one of the first class of error correcting codes and introduced the Hamming distance notion, a metric which measures the distance between codewords by counting the number of positions in which they disagree.

Algebraic Coding Theory is a subfield of coding theory, where all the properties of codes are expressed in algebraic terms. It also employs classical and modern algebraic techniques for the design of error correcting codes.

The two disciplines of computer algebra and algebraic coding theory can be combined: algebraic problems related to error correcting codes can be efficiently solved by computer algebra algorithms. A classical example which highlights this interaction involves a famous and widespread class of algebraic error correcting code: the Reed-Solomon (RS) codes [START_REF] Reed | Polynomial Codes Over Certain Finite Fields[END_REF]. RS codes have several remarkable properties which make them widely used in practical applications. For instance they are maximum distance separable (MDS), i.e. they attain the Singleton bound [START_REF] Singleton | Maximum distance q-nary codes[END_REF] on the minimum distance with equality. From an algebraic point of view, RS codes can be seen as the evaluations of polynomials of bounded degrees. The decoding of a RS codeword consists in the recovering of a bounded degree polynomial given its evaluations, some of which being erroneous (the interpolation with errors problem). Both classical decoding techniques for RS codes, the interpolation-based [START_REF] Berlekamp | Error Correction of Algebraic Block Codes[END_REF] and the syndromebased [START_REF] Berlekamp | Nonbinary bch decoding[END_REF], can be seen as a classical computer algebra problem: the rational function reconstruction (RFR). This leads to the construction of efficient bounded minimum distance (BMD) decoders which basically differ in the algorithm chosen to solve the corresponding RFR ([BW86, [START_REF] Gao | A New Algorithm for Decoding Reed-Solomon Codes[END_REF][START_REF] Sugiyama | A method for solving key equation for decoding Goppa codes[END_REF][START_REF] Berlekamp | Nonbinary bch decoding[END_REF]).

In this thesis we study a computer algebra problem, i.e. the Simultaneous Rational Function Reconstruction (SRFR), focusing on the conditions on its parameters in order to guarantee the uniqueness of its solution. We also analyze its impact on the related algebraic coding theory problems. SRFR refers to the problem of recovering a vector of rational functions with the same denominator, i.e. v/d = (v 1 /d, . . . , v n /d), given u i = v i /d mod a i and the degree bounds deg(v i ) < N i , deg(d) < D. SRFR generalizes the interpolation problem when the a i s satisfy a 1 = . . . = a n = (x -α j ) for distinct α j , since in this case the modular equations u i = v i /d mod a i become equations on the evaluations u i (α j ) = v i (α j )/d(α j ). For the sake of simplicity in this part we focus on the interpolation version of SRFR and we assume that N 1 = . . . = N n = N . Besides, we remark that in this work we study also the general case.

In this thesis we study SRFR focusing on the number of evaluation points needed for the uniqueness of this problem solution. By uniqueness we mean that all the vectors of rational function which are solutions of SRFR are equal, or in other terms, that any solution (v, d) is a polynomial multiple of a minimal one. In order to determine SRFR solutions, as for the classical RFR problem, we focus on the weaker linear problem of recovering

(v, d) which satisfies v i (α j ) = u i (α j )d(α j ) and such that deg(v i ) < N and deg(d) < D.
In order to solve SRFR we can apply the classical RFR componentwise. With L ≥ L RF R = N + D -1 evaluation points, we have the uniqueness of SRFR.

Besides, the peculiarity of SRFR lies in the fact that the common denominator feature reduces the number of unknowns of the homogeneous linear system related to this linear problem, decreasing the number of evaluation points, i.e. L SRF R = N + (D -1)/n, needed to ensure the existence of a nontrivial solution.

However, there are instances u of SRFR for which this number of evaluation points is not sufficient to guarantee uniqueness (as shown in Example 1.2.1). In this dissertation we study instances which lead to uniqueness, assuming that the number of evaluation points is L = L SRF R . The two contributions which motivates our analysis in this direction derived from two applications of SRFR: the polynomial linear system solving and the decoding of interleaved Reed-Solomon (IRS) codes.

The solution of a square, nonsingular system of linear equations with polynomial coefficients, i.e. Polynomial Linear System (PLS) is a vector of rational functions with the same denominator, by the Cramer's Rule. Some of the techniques for PLS solving, e.g. the evaluation-interpolation, are based on an SRFR. In this framework, the reduction of the number of evaluations has a direct impact on the complexity of the resolution algorithms which depends on this number. A significant contribution in this application context derives from [START_REF] Olesh | The Vector Rational Function Reconstruction problem[END_REF]. In this article, the authors proved that with the number of evaluation points derived from the common denominator constraint and under some specific assumptions on the degree bounds, SRFR admits a unique solution.

Another important result comes from algebraic coding theory. It is related to IRS codes. In general interleaving is an encoding construction which can be applied to different error correcting codes, used in setting of burst errors, i.e. errors extended to consecutive symbols. Here we consider this construction applied to RS codes. More specifically, an l-IRS code is a direct sum of l RS codes with the same evaluation points. Therefore, they can be seen as evaluations of vector of polynomials of bounded degrees. In this specific setting, a burst error is an error which corrupts the same evaluation point position in all the l codewords. From an algebraic point of view, decoding an IRS codeword is the problem of recovering a vector of polynomials given its evaluations, some of which erroneous (Simultaneous Rational Function with Errors).

In recent years, the decoding problem of IRS codes has achieved a lot of attention, e.g. [BKY03, BMS04, SSB07, SSB09, SSB10, PR17]. Indeed, IRS codes are interesting because they can be decoded beyond half of the minimum distance. For this reason all the decoders proposed in these articles are partial BD decoders, in the sense they can fail for few error patterns. Furthermore, the decoding radius of these decoders reaches the Shannon's limit assuming that the interleaving parameter l tends to infinity.

The interpolation-based technique for IRS codes decoding ([BKY03, BMS04]) reduces the decoding problem to an SRFR applied to instances u such that u(α j ) = v(α j ) + e j where e j is the error vector. Indeed, [START_REF] Bleichenbacher | Decoding of interleaved Reed-Solomon codes over noisy data[END_REF] proved that with the number of evaluations derived from the common denominator constraint, for all vectors of polynomials v and for almost all errors e, the SRFR problem applied to instances u such that u(α j ) = v(α j ) + e j admits a unique solution. This result, even if in a different scenario with errors, motivates our study about instances leading to uniqueness of the general SRFR problem. 

PROBLEMS REDUCTIONS

In this document we also study and present another application of SRFR, concerning the construction of fault-tolerant algorithms. In this framework, we see how the error correcting codes tools are used for an application setting which goes beyond the classical communication scenario.

With the advent of High Performance Technologies (supercomputers), composed of thousands of computing nodes networked together to provide very high performances, the problem of correcting faults introduced by these nodes becomes increasingly relevant. These faults can be handled by checkpoint-restart techniques, consisting in periodically saving data onto storage devices ( [START_REF] Bode | Parallel Computer Architectures[END_REF]). However this approach could by expensive in terms of resources since it could require external storage like memories or network bandwidth. An alternative approach consists in the application of the algorithm-based fault tolerance (ABFT) technique [START_REF] Huang | Algorithm-Based Fault Tolerance for Matrix Operations[END_REF]. This technique exploits the algebraic tools of error correcting codes adding redundancy to the problem's inputs in order to detect and possibly correct computational errors occurred in parallel-distributed environments.

ABFT techniques [START_REF] Huang | Algorithm-Based Fault Tolerance for Matrix Operations[END_REF] are characterized by the encoding of inputs of the algorithm, the redesign of the algorithm to ensure that it can operate on the encoding data and the distribution of some computation steps among computational nodes. In this setting, errors are introduced by nodes and the error model strongly depends on the parallelization scheme.

In this thesis we study an ABFT techique for PLS solving by evaluation-interpolation [START_REF] Boyer | Numerical Linear System Solving with Parametric Entries by Error Correction[END_REF][START_REF] Pernet | High Performance and Reliable Algebraic Computing[END_REF][START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF]. Consider a square, non singular PLS A(x)y(x) = b(x) and let v(x)/d(x) be its solution, where gcd(gcd i (v i ), d) = 1 and d is monic. The evaluationinterpolation technique for PLS solving consists in the evaluation of A(x) and b(x) at some distinct evaluation points {α 1 , . . . , α L }, the pointwise resolution of the evaluated systems y(α j ) = A(α j ) -1 b(α j ) and the interpolation and reconstruction of y(x) = v(x)/d(x) given its evaluations.

The main idea of the ABFT technique applied to the evaluation-interpolation is to modify this method by the introduction of redundancy, considering more evaluation points compared to the number we need in the general case. In this scenario the evaluation step of the classic evaluation-interpolation technique is performed by different nodes (parallelization). These nodes may possibly introduce some errors and compute y(α j ) = v(α j )/d(α j ).

The polynomial linear system with errors [BK14, Per14, KPSW17] is then the problem of recovering the vector of rational function v/d, which is a solution of our PLS, given its evaluations where some could be erroneous. Also in this case the resolution technique of this problem can be seen as an SRFR.

Our contributions

Our contributions concern a uniqueness result on SRFR [START_REF] Guerrini | On the Uniqueness of Simultaneous Rational Function Reconstruction[END_REF] and some other results [START_REF] Guerrini | Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes[END_REF][START_REF] Guerrini | Enhancing Simultaneous Rational Function Recovery: adaptive error correction capability and new bounds for applications[END_REF] about the PLSwE and the more general problem of simultaneous Cauchy interpolation with errors (SCIwE).

On the generic uniqueness of SRFR.

A first new contribution developed in this thesis is about the general SRFR problem.

Problem 2. Simultaneous Rational Function Reconstruction

Input: a 1 , . . . , a n ∈ K[x], u = (u 1 , . . . , u n ) ∈ K[x] n , where deg(u i ) < deg(a i ) and 1 ≤ N i ≤ deg(a i ), 1 ≤ D ≤ min 1≤i≤n {deg(a i )} Output: (v, d) = (v 1 , . . . , v n , d) ∈ K[x] n+1 such that [v i = du i mod a i ] 1≤i≤n , deg(v i ) < N i , deg(d) < D.
(1.5)

In Chapter 3 we prove (Theorem 3.2.1) that if

n i=1 deg(a i ) = n i=1 N i + D -1,
then for almost all instances u, SRFR admits a unique solution. Our approach to prove Theorem 3.2.1 consists in the study of the row degrees of a particular K[x]-module, the relation module related to a specific matrix. Indeed, we observe that solutions of SRFR are elements of this relation module with negative shifted row degrees, where the shifts are necessary to integrate the degree constraints. In the uniqueness case there is only one element of a basis of the relation module with negative row degrees. This represents a useful tool to check the uniqueness of SRFR. Indeed, in Theorem 3.2.1 we prove that for almost all instances (generic instances) there is only one generator with negative shifted row degree.

Before proving this theorem, we prove a general result about generic row degrees of relation modules related to general matrices (Corollary 3.1.2). Previous works studied generic row degrees of different K[x]-modules: e.g. the module of generating polynomials of a scalar matrix sequence [START_REF] Villard | A study of Coppersmith's block Wiedemann algorithm using matrix polynomials[END_REF] or for the kernel of a polynomial matrix of specific dimensions [START_REF] Jeannerod | Essentially optimal computation of the inverse of generic polynomial matrices[END_REF]. The generic degrees also appear as dimensions of blocks of a shifted Hessenberg form [START_REF] Pernet | Faster Algorithms for the Characteristic Polynomial[END_REF]. However, the link with the degrees of a module is unclear. In all these cases any shift is considered. We prove our result for any shift and for any relation module also by reelaborating and adapting some of the techniques introduced in the articles mentioned above.

Simultaneous Cauchy interpolation with errors.

The simultaneous Cauchy interpolation with errors (SCIwE) is the problem of recovering a vector of rational functions v(x)/d(x) of bounded degrees, given its evaluations where some could be erroneous. It is a more general problem than the PLSwE defined above.

In [START_REF] Guerrini | Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes[END_REF], following [START_REF] Pernet | High Performance and Reliable Algebraic Computing[END_REF], we observe that this problem is the rational extension of the problem of decoding IRS codes. Indeed, in this case we want to recover a vector of rational functions instead of a vector of polynomials. 

⊆

SCIwE

This link allows us to extend the same interpolation-based technique [START_REF] Bleichenbacher | Decoding of interleaved Reed-Solomon codes over noisy data[END_REF] to this rational case, reducing the problem to an SRFR applied to instances u of the form u(α j ) = v(α j )/d(α j ) + e j . Previous results about this topic [START_REF] Boyer | Numerical Linear System Solving with Parametric Entries by Error Correction[END_REF][START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF], more related to the specific case of PLSwE, showed that with

L BK = N + D -1 + 2τ (7) 
where τ ≥ |E| := |{j | e j = 0}| is a bound on the number of errors, then we have uniqueness of SRFR. This number of points coincides with L RF R , obtained by applying RFR componentwise. In [START_REF] Guerrini | Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes[END_REF], by stressing the similarity between this problem and the decoding of IRS codes we propose Algorithm 6 for SCIwE solving which reduces this number of points to

L GLZ1 = N + D -1 + τ + τ /n . (8) 
However, as for the IRS case, since we are below the number which guarantees uniqueness of SRFR, this algorithm could fail for a few error patterns.

Polynomial Linear System Solving with Errors. The SCIwE is a general case of PLSwE, in which we want to recover a vector of rational functions with the same denominator, which is a solution of a PLS A(x)y(x) = b(x). For this reason, in this case we can add the degrees of the coefficient matrix A and of the vector b as additional inputs. So, in the same way as SCIwE also PLSwE can be reduced to an SRFR applied to instances of the form u where u(α j ) = v(α j )/d(α j ) + e j and v(α j )/d(α j ) is a solution of a PLS A(x)y(x) = b(x). Therefore, we have the same previous results about the number of evaluation points.

Besides in [START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF], Kaltofen et al. showed that with

L ≥ min{L BK , L KP SW } (9) 
evaluation points, where L BK = N + D -1 + 2τ (as in (7)) and

L KP SW = max{deg(A) + N, deg(b) + D} + 2τ, (10) 
then the corresponding SRFR has a unique solution.

In this thesis we present a result, derived from a work in progress [START_REF] Guerrini | Enhancing Simultaneous Rational Function Recovery: adaptive error correction capability and new bounds for applications[END_REF] which reduces this number to

L ≥ min{L GLZ1 , L GLZ2 } (11)
evaluation points, where

L GLZ1 = N + D -1 + τ + τ /n (as in (8))
and

L KP SW = max{deg(A) + N, deg(b) + D} + τ + τ /n . (12) 
However, also in this case our algorithm (an extended version of Algorithm 6) can fail for a few fractions of errors.

Early termination techniques. We conclude by presenting the last contribution of this work, which is still a work in progress (some results are in [START_REF] Guerrini | Enhancing Simultaneous Rational Function Recovery: adaptive error correction capability and new bounds for applications[END_REF]).

Consider the PLSwE problem. We observe that all the number of evaluation points introduced so far L BK , L KP SW , L GLZ1 , L GLZ2 strongly depends on the bounds on the degrees of the numerators and the denominator of our vector solution and on the bound on the number of errors τ . So, an overestimation of the real degrees and of the real number of errors (which we do not know a priori) could significantly increase the number of evaluation points compared to the number we really need. A classical strategy [START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF] to overcome this limit consists in performing an early termination technique which, starting from a minimal value of evaluation points, iteratively increment this number until a result is found. We point out that this technique aims at possibly decreasing the number of evaluation points, in order to speed up the computations.

In this thesis we also present an early termination algorithm (Algorithm 11) which decrease the number of evaluations to compared to previous results in [START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF].

Outline of the thesis

This dissertation is structured as follows.

-We start the first chapter with the introduction of the rational function reconstruction (Section 1.1) problem with a focus on the conditions of parameters which ensure uniqueness. We then generalize this problem to its vector version and we then present the main problem of this work: the simultaneous rational function reconstruction (Section 1.2).

Then, in Section 1.3 we introduce some algebraic tools as K[x]-modules, shifted row degrees, relation modules, reduced bases, etc. which we use to check the uniqueness of SRFR. Finally in Section 1.4 we see how the polynomial linear system solving can be reduced to the SRFR problem.

-Chapter 2 is devoted to the introduction of basic coding theory notions (Section 2.1), especially focusing on the famous and widespread family of Reed-Solomon codes. In particular, we introduce some decoding techniques for RS codes and we see how these techniques reduce the decoding problem to a rational function reconstruction.

Finally we move on to interleaved RS codes (Section 2.3), which are obtained by applying the interleaving technique on RS codes. This technique is applied in burst error settings.

We then introduce a technique for IRS decoding and we see that this technique also consists in an SRFR.

-Chapter 3 is devoted to the presentation of our article [START_REF] Guerrini | On the Uniqueness of Simultaneous Rational Function Reconstruction[END_REF]. In detail, we present our result about the generic uniqueness of SRFR, under the assumption on parameters derived from the common denominator constraint. This chapter is divided in two parts.

In the first section we present some general results about shifted row degrees of general relation modules. In the second part we transpose all these results in the specific case of SRFR.

-In Chapter 4 we focus on an algorithm-based fault tolerant technique (Section 4.1) for polynomial linear system solving by evaluation interpolation. Indeed, we see how this technique leads to the problem of recovering the solution of a PLS given its evaluations where some could be erroneous, which is the polynomial linear system solving with errors (PLSwE). This problem is an application of a more general problem, i.e. the simultaneous Cauchy interpolation with errors (SCIwE), which is a natural extension of SRFR to an error context.

SCIwE can be seen as an extension of the problem of decoding IRS codes to rational functions and we can reduce this problem to an SRFR. In this chapter we present our results of [START_REF] Guerrini | Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes[END_REF] and new ones, which come from a work in progress [START_REF] Guerrini | Enhancing Simultaneous Rational Function Recovery: adaptive error correction capability and new bounds for applications[END_REF]. We compare them to the current state of the art about this topic [START_REF] Boyer | Numerical Linear System Solving with Parametric Entries by Error Correction[END_REF][START_REF] Pernet | High Performance and Reliable Algebraic Computing[END_REF][START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF].

Finally in Section 4.2 we present a new early termination algorithm which possibly reduces the number of evaluation points needed to guarantee uniqueness of SRFR and so to uniquely recover the solution of SCIwE.

A short summary of the main results of this document and further research tracks completes this document.

Publications

International conferences with proceedings Rational function reconstruction is a classic computer algebra problem, whose main aim is to reconstruct a rational function given its remainder modulo a polynomial. This problem can be straightforwardly generalized to its vector version, whose goal is to reconstruct a vector of rational functions. In this thesis we especially focus on the particular case of the vector rational function reconstruction in which all the rational functions share the same denominator: the simultaneous rational function reconstruction problem.

In this chapter, we present the current state of the art of these problems. All the results of this chapter have been reinterpreted with a focus on the condition on the parameters which guarantees the uniqueness of the solution. Indeed, we explain how the common denominator assumption impacts that condition, with interesting consequences especially from an application point of view.

Rational Function Reconstruction

In this section we define the rational function reconstruction, i.e. the problem of reconstructing a rational function whose numerator and denominator degrees are bounded, given its remainder modulo a polynomial. We also introduce the notion of uniqueness of the solution, which is crucial for this work, explaining the condition that guarantees such a property. Finally, in the uniqueness case we explain how this problem can be solved using the Extended Euclidean Algorithm. (1.1)

Remark 1.1.1. To be rigorous, we observe that in (1.1) we consider the unique monic gcd of d(x) and a(x). 

This problem is also known as:

-Padé approximation:

if a = x L , -Cauchy interpolation: if a = L i=1 (x -α i )
, where the {α 1 , . . . , α L } are L ≥ 1 pairwise distinct elements of the field K. Note that in this case, by the Chinese Remainder Theorem, the equation (1.1) becomes an equation on the evaluations

d(α i ) = 0 and v(α i ) d(α i ) = u(α i ), deg(v) < N, deg(d) < D. (1.2) 
for any 1 ≤ i ≤ L.

-Rational Hermite interpolation: if a = L i=1 (x -α i ) e i , where the {α 1 , . . . , α L } are pairwise distinct elements of the field K and the e i are nonnegative integers, called multiplicities.

Let us assume that deg(a) = N + D -1.

(1.3)

In this case, equation (1.1) may have no solution, as shown in the next example.

Example 1.1.1. Let a = x 3 , u = x 2 -1 and N = D = 2. We want to reconstruct (v, d) which satisfies (1.1). Let d = d 1 x + d 0 . Since d has to be a unit modulo a, the constant term

d 0 = 0. Hence v = (d 1 x + d 0 )(x 2 -1) = d 0 x 2 -d 1 x -d 0 mod x 3
and deg(v) = 2 which contradicts the degree constraint deg(v) < 2 = N . Hence in this case, equation (1.1) does not admit a nonzero solution.  Nevertheless, under assumption (1.3), if a solution exists, it is unique, i.e. the corresponding rational function is unique. In detail, if there exist (v 1 , d 1 ) and (v 2 , d 2 ), both solutions of (1.1) then

v 1 d 1 = v 2 d 2 mod a =⇒ a|(v 1 d 2 -v 2 d 1 ).
Since the degree of the polynomial v 1 d 2 -v 2 d 1 is strictly smaller than the degree of a, it is the zero polynomial. Therefore

v 1 d 1 = v 2 d 2 .
Remark 1.1.2. We observe that:

1. if deg(a) ≥ N +D-1 we still have the uniqueness of the rational solution. Indeed, if there exist (v 1 , d 1 ) and (v 2 , d 2 ) solutions of (1.1) then the degree of v 1 d 2 -v 2 d 1 is smaller than the degree of a, which implies the equality of the two corresponding rational functions;

2. if deg(a) < N +D-1, the uniqueness is not always guaranteed, as shown in the following example.

 Example 1.1.2. Let K = F 11 , a = x 4 + 3x 3 + 5x 2 + 8x + 1, u = 6x 3 + 7x 2 + 4x + 2 and N = 3, D = 3. Note that deg(a) = 4 < N + D -1 = 5. Both (v 1 , d 1 ) = (4x + 7, 7x 2 + x + 1) and (v 2 , d 2 ) = (8x 2 + 4x + 1, 9x
) are solutions of (1.1) and their corresponding rational functions are different.

 We now observe that if (v, d) ∈ K[x] 2 is a solution of the RFR problem (1.1), it is also a solution of the weaker problem, v = du mod a, deg(v) < N, deg(d) < D.
(1.4)

Unlike (1.1), if (1.3) holds, the weaker problem (1.4) always admits a nonzero solution (v, d) ∈

K[x] 2
. Indeed, a solution of (1.4) belongs to the right kernel of the homogeneous linear system associated to the equation (1.4). This homogeneous linear system has deg(a) equations and N + D unknowns, which are the coefficients of the polynomials of the solution that we want to recover. Since deg(a) = N + D -1, by the Rank-Nullity Theorem, the dimension of the right kernel is at least 1. Hence it is nontrivial, meaning that (1.4) always admits a nonzero solution (v, d). Furthermore, the uniqueness of the rational solution is still guaranteed: let

(v 1 , d 1 ) and (v 2 , d 2 ) be solutions of (1.4), then a divides v 1 -d 1 u and v 2 -d 2 u and so it divides d 2 (v 1 -d 1 u) -d 1 (v 2 -d 2 u) = v 1 d 2 -v 2 d 2 .
With the same argument as before, we can prove that the polynomial v 1 d 2 -v 2 d 1 is zero. This implies that any solution of (1.4) is a polynomial multiple of a minimal solution and we will see later (Theorem 1.1.1) how to compute such a solution. Therefore, the solution space is a subset of a free K[x]-module of rank 1 (see Definition 1.3.1).

Remark 1.1.3. If deg(a) < N + D -1 the uniqueness of the rational solution is not anymore guaranteed. Indeed by the Rank-Nullity Theorem, the dimension of the right kernel is greater than 2, meaning that there could exist two linearly independent solutions of the problem (1.4). 

The weaker problem (1.4) is easier to study for its linearity. For this reason, we refer to RFR as this version of the problem, Problem 1.

Rational Function Reconstruction

Input: a, u ∈ K[x], with deg(u) < deg(a) and 1 ≤ N, D ≤ deg(a) Output: (v, d) ∈ K[x] 2 such that v = du mod a, deg(v) < N, deg(d) < D.

RFR by the Extended Euclidean Algorithm

From now on we suppose that (1.3) holds, i.e. RFR always admits a unique solution. A classic approach to solve the RFR problem consists in using the Extended Euclidean Algorithm (EEA) (Algorithm 1). Recall that, given two polynomials f, g ∈ K[x], EEA returns a gcd(f, g) and the Bézout coefficients for f, g, i.e. the polynomials s, t ∈ K[x] such that sf + tg = gcd(f, g).

Algorithm 1: Extended Euclidean Algorithm, EEA(f, g) Input : f, g ∈ K[x]
Output: gcd(f, g) = r and the Bézout coefficients s, t ∈ K[x] for f, g.

1 r 0 f ; s 0 1; t 0 0; r 1 g; s 1 0; t 1 1; i 1; 2 while r i = 0 do 3 q i r i-1 quo r i ; 4 r i+1 r i-1 -q i r i ; 5 s i+1 s i-1 -q i s i ; 6 t i+1 t i-1 -q i t i ; 7 i i + 1; 8 r r i-1 ; s s i-1 ; t t i-1 ; 9 return r, s, t
An important property of this algorithm is that the i-th step results s i , t i , r i satisfy s i f + t i g = r i . This is useful for many computer algebra applications as RFR.

We can now underline the link between the rational function reconstruction and EEA observing that the congruence of (1.4) implies the existence of a polynomial e such that v = du + ea. In detail, the following theorem shows that some intermediate results of the Extended Euclidean Algorithm are solutions of RFR.

Theorem 1.1.1. Let a, u, N, D be the inputs of the RFR problem. Let r j , s j , t j be the output of the j-th step of EEA with input a, u, where j is the smallest integer such that deg(r j ) < N . Then, (r j , t j ) is a solution of RFR and if gcd(r j , t j ) = 1 it is also a solution of (1.1). Moreover (r j , t j ) is the minimal solution, i.e. any other solution is a polynomial multiple of this one.

Proof. We first observe that r j = s j a + t j u = t j u mod a. By [GG13, Lemma 3.15(b)], by the minimality of j and since deg(a) = N + D -1 (equation (1.3)), we can conclude that deg(t j ) = deg(a) -deg(r j-1 ) ≤ N + D -1 -N = D -1 and so (r j , v j ) is a solution of RFR. Moreover, since gcd(r j , t j ) = gcd(a, t j ), if r j and t j are coprime then t j is invertible modulo a and so (r j , t j ) is a solution of (1.1).

We now prove the minimality of such a solution. Let (v, d) be a solution of RFR, then there exists e ∈ K[x] such that v = du + ea. On the other hand, also (r j , t j ) is a solution of RFR and r j = s j a + t j u. So, since deg(a) = N + D -1 (1.3), then 0 = vt j -r j d = (du + ea)t j -(s j a + t j u)d = eat j -s j ad. Now, t j divides s j d and since gcd(t j , s j ) = 1, then t j divides d. So, there exists p ∈ K[x] such that d = pt j .

Recall that vt j = r j d and so by replacing d we get vt j = r j pt j and we can conclude that v = pr j .

In conclusion, we can derive the following Algorithm based on EEA to solve RFR using O(deg(a) 

0; t 1 1; i 1; 2 while deg(r i ) ≥ N do 3 q i r i-1 quo r i ; 4 r i+1 r i-1 -q i r i ; 5 s i+1 s i-1 -q i s i ; 6 t i+1 t i-1 -q i t i ; 7 i i + 1; 8 return r i , t i

Simultaneous Rational Function Reconstruction

The rational function reconstruction problem can be straightforwardly generalized to its vector version, in which we want to reconstruct a vector of rational functions. In this section we introduce the simultaneous rational function reconstruction , i.e. the problem of reconstructing a vector of rational functions with the same denominator, given their remainders modulo some polynomials. We explain how the common denominator feature can be used to reduce the number of unknowns of the related linear system and how this effect the uniqueness of the reconstructed solution.

Formally, given a 1 , . . . , a n ∈ K[x], u = (u 1 , . . . , u n ) ∈ K[x] 1×n where deg(u i ) < deg(a i ) and the degree constraints 1 ≤ N i , D i ≤ deg(a i ), the vector rational function reconstruction

(VRFR) is the problem of reconstructing (v i , d i ) for 1 ≤ i ≤ n such that v i = d i u i mod a i , deg(v i ) < N i , deg(d i ) < D.
In order to solve this problem we can apply RFR componentwise and as we saw in the previous section, if deg(a i ) = N i + D i -1 we can uniquely reconstruct the solution.

In this thesis, we focus on the following specific case:

Problem 2. Simultaneous Rational Function Reconstruction Input: a 1 , . . . , a n ∈ K[x], u = (u 1 , . . . , u n ) ∈ K[x] 1×n , where deg(u i ) < deg(a i ) and 1 ≤ N i ≤ deg(a i ), 1 ≤ D ≤ min 1≤i≤n {deg(a i )} Output: (v, d) = (v 1 . . . , v n , d) ∈ K[x] 1×(n+1) such that [v i = du i mod a i ] 1≤i≤n , deg(v i ) < N i , deg(d) < D. (1.5) 
Since solutions of SRFR are solutions of VRFR, then SRFR has a unique solution (if it exists) whenever deg(a i ) = N i + D -1, for any 1 ≤ i ≤ n.

(1.6)

We observe that in this case, the unknowns of the homogeneous linear system related to (1.5) are the coefficients of any polynomial v i and of the polynomial d. So, the number of unknowns is n i=1 N i + D while the number of equations is n i=1 deg(a i ).

If n i=1 deg(a i ) = n i=1 N i + D -1 (1.7)
SRFR always admits a nonzero solution by the Rank-Nullity Theorem. However, the uniqueness is not always guaranteed as shown in the following example.

Example 1.2.1.

Let K = F 17 , n = 2, N = 4, D = 5, a 1 = a 2 = 6 i=1 (x -3 i ) = x 6 + 13x 5 + x 4 + 15x 3 + 11x 2 + 9x + 5
, where deg(a) = N + D-1 n = 6 and u = (11x 5 + 3x 4 + 3x 3 + 4x 2 + 9x + 5, 4x 4 + 14x 3 + 8x 2 + 7x + 14). Then, both

(v 1 , d 1 ) = (v 1,1 , v 1,2 , d) = (13x 3 + 2x 2 + 14x + 12, 6x 3 + 3x 2 + 11x + 12, x 3 + 5x 2 + 8x + 9) (v 2 , d 2 ) = (v 2,1 , v 2,2 , d) = (16x 3 + 12x 2 + 4x + 12, 10x 2 + 4x + 6, 8x 4 + 4x 2 + 11x + 1)
are solutions of SRFR.



Remark 1.2.1. We now remark that SRFR decreases the number of equations of the corresponding homogeneous linear system up to a factor 2, compared to VRFR of RFR. Indeed, consider for simplicity N 1 = . . . = N n = N and a 1 = . . . = a n = a with deg(a) = L. Recall that if we solve SRFR by applying RFR componentwise (1.3), if

L = N + D -1 =: L RF R
we have the uniqueness. On the other hand by (1.7), if

L = N + (D -1)/n =: L SRF R
then SRFR admits a nontrivial solution, but the uniqueness is not anymore guaranteed. We claim that

L SRF R /L RF R ≥ 1/2 (1.8)
First we observe that

L SRF R /L RF R ≥ 1/2 ⇐⇒ (n -2)(D -1) ≤ nN.
(1.9)

Then, by our assumptions D -1 < L SRF R (see Problem 2). So, n(D -1) < nL SRF R = nN + (D -1) and since (n -1)(D -1) < nN we can deduce that (n -2)(D -1) ≤ nN and so (1.8) holds. 

Let u be an instance of the SRFR problem. We denote by S u the set of solutions. We also denote by s the rank of the K[x]-module spanned by the solutions in S u . In other terms, all the solutions can be written as a linear combination of s vectors of polynomials with polynomial coefficients. Note that the case s = 1 corresponds to the uniqueness case.

In the following section we will see that there is a specific way to find these solutions: they are generated by some rows of a shifted row-reduced basis (Definition 1.3.4) of a particular K[x]-module, i.e. the relation module (see Subsection 1.3.2).

The K[x]-module of solutions of SRFR

In this section we explain the link between solutions of SRFR and the relation module. For this purpose, we introduce useful definitions and recall some results about specific bases of free K[x]-modules, the shifted reduced basis. We refer to [START_REF] Neiger | Bases of relations in one or several variables: fast algorithms and applications[END_REF] for all notions and historical references.

Preliminaries about K[x]-modules. We start by briefly recalling the definition of a module [DF04, Section 10.1], which is the generalization to rings of the notion of vector space.

Let R be a commutative ring with identity. Contrary to vector spaces over a field, not every module has a basis. Besides, modules over Principal Ideal Domains (PID) have some important properties, as stated by the following two results. Lemma 1.3.1. Let R be a PID, let N be a free R-module of finite rank ν and let M be a submodule of N . Then, 1. M is free of rank µ ≤ ν, 2. there exists a basis y 1 , . . . , y ν of N so that a 1 y 1 , . . . , a µ y µ is a basis of M, where a 1 , . . . , a µ are nonzero elements of R with the divisibility relations

a 1 |a 2 |. . . |a µ .
Proof. For the proof of this result we refer the reader to [DF04, Theorem 4, Section 12.1].

Theorem 1.3.2 (Invariant Factor Form [DF04, Theorem 5, Section 12.1]). Let R be a PID and N be a finitely generated R-module. Then N is isomorphic to the direct sum of finitely many cyclic modules. More precisely,

N R ρ ⊕ R/(a 1 ) ⊕ . . . ⊕ R/(a µ )
for some integer ρ ≥ 0 and nonzero elements a 1 , . . . , a µ ∈ R which are not units in R and which satisfy the divisibility relations

a 1 |a 2 |. . . |a ν .
Proof. Let ν be the rank of N and x 1 , . . . , x ν be its basis. Consider the R-module R ν of rank ν and basis b 1 , . . . , b ν and define the homomorphism π : R ν N such that b i x i for all i. This homomorphism is surjective since x 1 , . . . , x ν is a basis of N . So, by the First Isomorphism Theorem for modules [DF04, Theorem 4, Section 10.2], we have that R ν / ker(π) N . Now, by Lemma 1.3.1, there exists a basis y 1 , . . . y ν such that a 1 y 1 , . . . , a µ y µ is a basis of ker(π), for some nonzero elements a 1 , . . . , a µ ∈ R with a 1 |. . . |a µ . Therefore,

N R ν / ker(π) = (Ry 1 ⊕ . . . ⊕ Ry ν )/(Ra 1 y 1 ⊕ . . . ⊕ Ra µ y µ ).

Now consider the map

θ : Ry 1 ⊕ . . . ⊕ Ry ν - R/(a 1 ) ⊕ . . . ⊕ R/(a µ ) ⊕ R ν-µ (α 1 y 1 , . . . , α ν y ν ) - (α 1 mod (a 1 ), . . . , α µ mod (a µ ), α µ+1 , . . . , α ν ).
This is a surjective R-module homomorphism. Note that ker(θ) = Ra 1 y 1 ⊕ . . . ⊕ Ra µ y µ and so, by the First Isomorphism Theorema applied to θ we get

N R/(a 1 ) ⊕ . . . R/(a µ ) ⊕ R ν-µ .
Finally we remark that if a is a unit in R, then the quotient R/(a) = 0 and so in the direct sum we may remove any of the a i which are units. Moreover, the elements a 1 , . . . , a µ , defined up to multiplication by units in R, are called invariants of the R-module N .



In this thesis we focus on modules over the polynomial ring

R = K[x]. Note that, by the previous lemma, if M is a K[x]-submodule of K[x] ν := K[x] 1×ν
, it is free of rank µ ≤ ν. Any basis P of M can be represented by a µ × ν matrix of polynomials over K[x] whose rows P j, * are the elements of the basis, hence P ∈ K[x] µ×ν . We observe that, in this notation, M coincides with the row space of P , i.e.

M = K[x] 1×µ P = {λP | λ ∈ K[x] 1×µ }.
As it turns out, basis of K[x]-modules are related through unimodular transformations.

Recall that a square matrix U ∈ K[x] µ×µ is unimodular if its determinant is a nonzero element of the field K.

Lemma 1.3.3. Let P, R be two bases of M, a K[x]-submodule of K[x] ν of rank µ ≤ ν. Then P and R are unimodularly equivalents, i.e. there exist U, V ∈ K[x] µ×µ unimodular matrices such that P = U R and R = V P .

Proof. We observe that each row of P belongs to the row space of R and vice versa. So there exist U, V ∈ K[x] µ×µ such that P = U R and R = V P . Now, P = U V P which implies that (I µ -U V )P = 0, where I µ is the identity matrix. Since by definition the rows of P are linearly independent, I µ -U V = 0 and so det(U ) det(V ) = 1. We can then conclude that both U, V are unimodular.

Row degrees and reduced basis

We start by defining the shifted row degree which extends the notion of degrees for polynomial row vectors.

Definition 1.3.3 (Shifted row degree). Let p = (p 1 , . . . , p ν ) ∈ K[x] 1×ν be a row vector, s = (s 1 , . . . , s ν ) ∈ Z ν a shift and r i := deg(p i ) + s i for 1 ≤ i ≤ ν. The s-row degree of p is rdeg s (p) = max 1≤i≤ν (r i ).
We denote p = ([r 1 ] s 1 , . . . , [r ν ] sν ) to stress the shifted degrees of p.

If s = (0, . . . , 0) is the uniform shift, the shifted row degree is simply called row degree. This definition of shifted row degree is equivalent, up to change of sign, to the notion of defect introduced in [BL94, Definition 3.1] which is sometimes used in the literature ( [START_REF] Olesh | The Vector Rational Function Reconstruction problem[END_REF]).

Remark 1.3.2. The shifted row degree is particularly useful for the degree constraints representation. For instance, consider a row vector p = (p 1 , . . . , p ν ) and the degree constraints

n = (n 1 , . . . , n ν ) ∈ Z ν >0 , then deg(p i ) < n i , 1 ≤ i ≤ ν ⇐⇒ rdeg -n (p) < 0.
(1.10)



We can easily extend Definition 1.3.3 to polynomial matrices: let P ∈ K[x] µ×ν and s = (s 1 , . . . , s ν ) ∈ Z ν , then the s-row degrees of P are rdeg s (P ) = (r 1 , . . . , r µ ) where r i := rdeg s (P i, * ).

Example 1.3.1. Let P = x 2 + 1 x 2x 3 + x 2 3x 2 + 1 ∈ F 7 [x]
2×2 and s = (1, 0). Using the notation of the Definition 1.3.3, we get

P = [3] 1 [1] 0 [4] 1 [2] 0
Note that in this case rdeg s (P ) = (3, 4)



In this work we are interested in some particular bases of K[x]-modules with minimal shifted row degrees. Definition 1.3.4 (Shifted row reduced form). Let µ ≤ ν, P ∈ K[x] µ×ν be a full rank polynomial matrix and s = (s 1 , . . . , s ν ) ∈ Z ν a shift. Then P is s-row reduced if rdeg s (P ) ≤ rdeg s (U P ) for all unimodular matrices U ∈ K[x] µ×µ . In this last inequality the row degrees are sorted in non-decreasing order and then lexicographically compared.

Again, if we consider the uniform shift we can say that the polynomial matrix is simply row reduced.

Note that since all the bases are unimodularly equivalents, then the shifted row reduced bases have minimal shifted row degrees. Furthermore, this notion is invariant under permutations of the rows and we can conclude that all shifted row reduced basis have the same row degree up to permutation.

Given t = (t 1 , . . . , t ν ) ∈ Z ν , we denote by X t the diagonal matrix whose entries are the monomials x t 1 , . . . , x tν . Definition 1.3.5 (Shifted Leading Matrix). Let µ ≤ ν, P ∈ K[x] µ×ν a full rank polynomial matrix and s = (s 1 , . . . , s ν ) ∈ Z ν a shift. The s-leading matrix of P , LM s (P ), is the matrix in K[x] µ×ν whose entries are the coefficients of degree zero of X -rdeg s (P ) P X s .

The following lemma gives us a more practical method to verify if a basis is s-row reduced.

Lemma 1.3.4 ([Nei16, Theorem 1.11]). Let µ ≤ ν, P ∈ K[x] µ×ν be a full rank polynomial matrix and s = (s 1 , . . . , s ν ) ∈ Z ν a shift. Then P is s-row reduced if and only if the s-leading matrix of P LM s (P ) has full rank.

Example 1.3.2. Let K = F 7 , s = (0, 2, 1) and

P =    2x 4 + 6x 3 + x 2 + 3x + 1 5x + 1 6x 2 + 3x 2x 3 + 6x 2 + 3 6x + 2 5x + 1 4x 5 + 5x 4 + 2x 3 + 3x 2 2x 3 + 3x 2 + 3x + 5 4x 4 + 2x 3 + x + 1   
Using the notation of Definition 1.3.3,

P =    [4] 0 [3] 2 [3] 1 [3] 0 [3] 2 [2] 1 [5] 0 [5] 2 [5] 1   
The s-leading matrix of P is

LM s (P ) =    2 0 0 2 6 0 4 2 4   
which is full rank, hence the basis P is s-row reduced. 

We can now introduce an important property of shifted row reduced bases which is central for this work.

Proposition 1.3.5 (Predictable degree property). Fix a shift s = (s 1 , . . . , s ν ) ∈ Z ν . A polynomial matrix P ∈ K[x] µ×ν is s-row reduced if and only if for all λ = (λ 1 , . . . , λ µ ) ∈ K[x] 1×µ , rdeg s (λP ) = max 1≤i≤µ {deg(λ i ) + rdeg s (P i, * )} = rdeg d (λ)
where d = rdeg s (P ).

The proof of this classic proposition can be found in [START_REF] Neiger | Bases of relations in one or several variables: fast algorithms and applications[END_REF]Theorem 1.11]. Note that if P ∈ K[x] µ×ν is an s-row reduced basis of a K[x]-module M, the latter proposition implies that any nonzero element p ∈ M has rdeg s (p) greater than min 1≤i≤µ {rdeg s (P )}.

Remark 1.3.3. Consider a shift s ∈ Z ν , t ∈ Z and the K-vector space 1 M <t := {p ∈ M | rdeg s (p) < t}.
Let R be an s-row reduced basis of M with rdeg s (R) = (r 1 , . . . , r µ ). Note that by Proposition 1.3.5, elements p ∈ M <t are the linear combination (with polynomial coefficients) of the rows R i, * with rdeg s (R i, * ) = r i < t and so,

dim(M <t ) = r i <t (t -r i ).
(1.11)

We now consider the case of the Remark 1.3.2 in which we want to recover an element p of a K[x]-module whose degrees are bounded by n = (n 1 , . . . , n ν ). Then we can consider the shift s = -n. By the previous considerations t = 0 and we get that

dim(M <0 ) = r i <0 (-r i ) (1.12)
where (r 1 , . . . , r µ ) are the row degrees of any -n-row reduced basis of M. 

As already remarked, shifted reduced basis are invariant under permutation of the rows. Nevertheless, in this thesis, we need to define shifted row degrees uniquely and not just up to a permutation. For this reason we introduce shifted ordered weak Popov bases which are special reduced bases, based on the notion of pivot.

Definition 1.3.6 (Pivot). Let p ∈ K[x] 1×ν and s ∈ Z ν be a shift. The s-pivot index of p is max{1 ≤ i ≤ ν | rdeg s (p) = deg(p i ) + s i }.
The corresponding p i is the s-pivot entry and deg(p i ) is the s-pivot degree of p.

We can naturally extend the notion of pivot to polynomial matrices. Indeed, consider µ ≤ ν, P ∈ K[x] µ×ν a full rank polynomial matrix and s = (s 1 , . . . , s ν ) ∈ Z ν a shift. Then the s-pivot indices are j = (j 1 , . . . , j µ ) and the s-pivot degrees are d = (d 1 , . . . , d µ ) where j i and d i are respectively the s-pivot index and the s-pivot degree of P i, * , for 1 ≤ i ≤ µ.

We are now ready to introduce the following notion. Note that if µ = ν and P is in s-ordered weak Popov form, the pivot indices are (1, . . . , µ). The polynomial matrix of Example 1.3.2 is in s-ordered weak Popov form. We observe that bases in s-weak Popov form (and in particular in ordered form) are also s-row reduced. First, any matrix in s-weak Popov form can be transformed into an ordered one by a row permutation. Moreover, the leading matrix of an ordered weak Popov basis is a lower triangular matrix with nonzero entries on the diagonal (e.g. Example 1.3.2). Hence it is full rank.

Ordered weak Popov bases have a strong degree minimality property that is particularly useful for this work, stated by the following lemma.

Lemma 1.3.6 ([Nei16, Lemma 1.17]). Let s = (s 1 , . . . , s ν ) ∈ Z ν be a shift, µ ≤ ν and P ∈ K[x] µ×ν a full rank polynomial matrix in s-weak Popov form with s-pivot degrees d = (d 1 , . . . , d µ ). Let p ∈ K[x] 1×ν be a nonzero vector in the row space of P with s-pivot index i. Then, the s-pivot degree of p is at least

d i . Note that if P is a basis of M, a K[x]-submodule of K[x] ν of
rank ν, and p ∈ M with s-pivot index i, then by the previous lemma deg(p i ) ≥ d i , and so rdeg s (p) ≥ rdeg s (P i, * ). Therefore, these bases provide more information about the row degree of elements of the corresponding K[x]-module than row-reduced ones.

We are now ready for the following result, which states the uniqueness of the s-row degrees of ordered weak Popov bases.

Proposition 1.3.7. Let s = (s 1 , . . . , s ν ) ∈ Z ν be a shift, µ ≤ ν and P, R ∈ K[x] µ×ν two full rank, unimodularly equivalent matrices in s-ordered weak Popov form. Then P and R have the same s-row degrees.

Proof. We denote rdeg s (P ) := (π 1 , . . . , π µ ) and rdeg s (Q) := (ρ 1 , . . . , ρ µ ). Note that any row P i, * of P belongs to the row space of R, for 1 ≤ i ≤ µ. By Lemma 1.3.6, the pivot degree of P i, * , i.e. π i -s i , is greater than the pivot degree of R i, * , i.e. ρ i -s i , so rdeg s (P ) ≥ rdeg s (R). On the other hand, any row R i, * of R belongs to the row space of P , hence the equality follows.

Therefore, we can conclude that for ordered weak Popov bases of a K[x]-modules, the tuples of shifted row degrees and pivot degrees are uniquely defined.

The shifted ordered weak Popov form is a weaker version of the shifted Popov form. The shifted Popov form is a shifted ordered weak Popov form with some additional constraints on the pivot entry (that must be monic) and on the degrees of elements of the columns containing the pivot entry. This notion was firstly introduced in [START_REF] Popov | Invariant Description of Linear, Time-Invariant Controllable Systems[END_REF] for the uniform shift, in control theory. Contrary to shifted ordered weak Popov form, the shifted Popov form is canonical: given a K[x]-module there exists only one basis in shifted Popov form. However since in this thesis we are only interested in the uniqueness of the row and pivot degrees, we can simply focus on shifted ordered weak Popov forms.

The classic algorithm [START_REF] Mulders | On lattice reduction for polynomial matrices[END_REF] for computing reduced bases, compute a basis in ordered weak Popov form.

Solutions of SRFR and Relation Module

Let m ≥ n ≥ 0 and M ∈ K[x] m×n . We consider a K[x]-submodule M of K[x] n of rank n. We define the K[x]-module homomorphism, φM : K[x] m - K[x] n /M p - pM We denote A M,M := ker( φM ) = {p ∈ K[x] m | pM = 0 mod M}, (1.13) 
the relation module whose elements are relations between rows of the matrix M .

By the First Isomorphism Theorem of modules [DF04, Theorem 4, Section 10.2], we get the injection,

ϕ M : K[x] m /A M,M - K[x] n /M p - pM (1.14)
In order to lighten the notations, we denote by ε

1 , . . . , ε m the canonical basis of K[x] m , by ε 1 , . . . , ε n the canonical basis of K[x] n . Moreover, let e i = ε i mod A M,M for 1 ≤ i ≤ m. Remark 1.3.4. By Theorem 1.3.2, K := K[x] n /M K[x]/(a 1 (x)) ⊕ . . . ⊕ K[x]/(a n (x))
for nonzero polynomials a i (x) ∈ K[x], deg(a i (x)) = 0 and such that a n | . . . | a 1 . Recall that such polynomials are the invariants of the module. For this reason, from now on we assume M := a i (x)ε i 1≤i≤n . We also denote

L i := deg(a i ) for 1 ≤ i ≤ n and observe that L 1 ≥ . . . ≥ L n .  Let s ∈ Z m be a shift, M ∈ K[x] m×n
, where m ≥ n ≥ 0 and suppose that all the invariants are equals a = a 1 = . . . = a n . According to the form of the invariants, an s-reduced basis of the relation module A M,M is called:

1. s-minimal approximant basis of order L for M , if a = x L ; 2. s-minimal interpolant basis of order L for M , if a = L i=1 (x -α i ),
where {α 1 , . . . , α L } are pairwise distinct elements of K.

Recall that the row degrees of ordered Weak Popov bases are uniquely defined (Lemma 1.3.6). Hence it is convenient to give the following, Definition 1.3.8 (Row and pivot degrees of a relation module). Let s ∈ Z m be a shift and P be any s-ordered weak Popov basis of A M,M . We shortly call ρ := rdeg s (P ) and δ = ρs respectively the s-row degrees and s-pivot degrees of A M,M . Sometimes, we also denote them ρ M and δ M to stress their matrix dependency.

We now recall the SRFR problem (Problem 2). Fix an instance of SRFR, i.e. a 1 , . . . , a n and u = (u 1 , . . . , u n ) ∈ K[x] n , where deg(u i ) < deg(a i ) and the degree constraints N i , D. We denote by S u the set of the corresponding solutions

(v, d) ∈ K[x] 1×(n+1) such that v i = du i mod a i , deg(v i ) < N i and deg(d) < D.
Let M = a i (x)ε i . The following lemma exploits the link between solutions of SRFR and elements of the relation module related to a specific matrix. In this case the shift is determined by the degree constraints.

Lemma 1.3.8. Given the shift s = (-N 1 , . . . , -N n , -D) ∈ Z n+1 , then (v, d) ∈ S u if and only if (v, d) ∈ A M,Ru with rdeg s ((v, d)) < 0 where R u := I n -u ∈ K[x] (n+1)×n (1.15) Proof. Observe that (v, d) ∈ S u if and only if v -du = (v, d)R u = 0 mod M, i.e. (v, d) ∈ A M,Ru , and rdeg s ((v, d)) = max{deg(v 1 ) -N 1 , . . . , deg(v n ) -N n , deg(d) -D} < 0 (see Remark 1.3.2). By Remark 1.3.3, we can conclude that dim(S u ) = - ρ u,i <0 ρ u,i (1.16)
where ρ u are the s-row degree of the relation module A M,Ru .

Notice that in the uniqueness case dim(S u ) = 1 there is only one element of an s-ordered weak Popov basis of A M,Ru with negative s-row degree.

In Chapter 3 (see Theorem 3.2.1) we will prove that for almost all instances u of SRFR the s-row degrees of A M,Ru are of the form (0, . . . , 0, -1). Indeed, this means that there is only one generator of the solution space and we have the uniqueness of the solution ([BL97]).

Previous works about SRFR. In [START_REF] Olesh | The Vector Rational Function Reconstruction problem[END_REF], the authors studied the SRFR problem (Problem 2) in the specific case of a = a 1 = . . . = a n and N = N 1 = . . . = N n . They proved the following.

Theorem 1.3.9 ([OS07, Theorem 4.2]). Let a ∈ K[x], u ∈ K[x] n and 1 ≤ N, D ≤ deg(a). Let k be minimal such that deg(a) ≥ N + (D -1)/k. Then the rank s of the K[x]-module spanned by the solutions of SRFR with instance u, a 1 = . . . = a n = a and degree constraints N 1 = . . . = N n = N and D, is s ≤ k.
In other terms, the rank s of the K[x]-module of solutions is bounded. Note that, if k = 1, the solution is always unique since s = 1. This matches the uniqueness condition deg(a) ≥ N + D -1 of the classic rational function reconstruction (Section 1.1). On the other hand, if k = n and deg(a) ≥ N + (D -1)/n then s ≤ n, which is always true. Therefore in this case this theorem does not provide any new information about the solution space. Besides, this was the starting point of this work, since it represents a connection between the classic bound on the deg(a) which guarantees the existence (classic RFR) and the ideal one, i.e. deg(a) = N + (D -1)/n (see (1.7)) which exploits the common denominator constraint, assuring the existence of a nontrivial solution.

In the same paper, the authors also proposed an algorithm that allows to find all the rows of an (-N, . . . , -N, -D)-row reduced basis with negative row degrees, i.e. a basis of the solution space, in

O(nk ω-1 B(deg(a))) (1.17) where -2 ≤ ω ≤ 3 is the exponent of the matrix multiplication, -B(t) := O(M (t) log t)
, where M (t) is the classic polynomial multiplication arithmetic complexity (see for instance [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]),

-k minimal such that deg(a) ≥ N + (D -1)/k (as in Theorem 1.3.9).

This complexity was then generalized in [START_REF] Rosenkilde | Algorithms for Simultaneous Padé Approximations[END_REF] where it was proposed an algorithm for the general case of different moduli (different invariants a i ) whose complexity is

O(n ω-1 B(L) log(L/n) 2 ) (1.18)
where L := max 1≤i≤n {deg(a i )}. Both algorithms of [START_REF] Olesh | The Vector Rational Function Reconstruction problem[END_REF] and [START_REF] Rosenkilde | Algorithms for Simultaneous Padé Approximations[END_REF] are strongly based on minimal approximant bases computation.

Notice that if we consider k = n and a 1 = . . . = a n = a, the complexity (1.17) of the algorithm of [START_REF] Olesh | The Vector Rational Function Reconstruction problem[END_REF] becomes

O(n ω B(deg(a))), which is bigger than O(n ω-1 B(deg(a)) log(deg(a)/n) 2 ) (see equation (1.18))
. Therefore, in this case (which corresponds to deg(a) ≥ N + (D -1)/n) the complexity of the algorithm proposed in [START_REF] Rosenkilde | Algorithms for Simultaneous Padé Approximations[END_REF] is better than the complexity of the algorithm proposed in [START_REF] Olesh | The Vector Rational Function Reconstruction problem[END_REF].

Application to Polynomial Linear System Solving

The simultaneous rational function reconstruction is applied for solving systems of linear equations with polynomial coefficients, called polynomial linear systems (PLS). Throughout this thesis we focus on nonsingular, square linear systems. Let

A(x)y(x) = b(x) (1.19)
be a PLS where, -A(x) is an n × n nonsingular matrix, whose entries are polynomials in

K[x], -b(x) is a column vector of polynomials in K[x].
Lemma 1.4.1. The PLS (1.19) admits only one solution which is a vector of rational functions with the same denominator,

y = v d = ( v 1 d , . . . , vn d ) ∈ K(x) n×1 . Moreover deg(v) ≤ (n -1) deg(A) + deg(b) and deg(d) ≤ n deg(A), where deg(A) = max 1≤i,j≤n {deg(a ij )}.
Proof. We denote by A * ,j the j-th column of the matrix A, for 1 ≤ j ≤ n. Note that we can write the system (1.19) as the linear combination A * ,1 y 1 + A * ,2 y 2 + . . . + A * ,n y n = b. Hence, by Cramer's Rule

y i = det(A * ,1 . . . A * ,i-1 b A * ,i+1 . . . A * ,n ) det(A) ∈ K(x), 1 ≤ i ≤ n.
and so follows the claim.

Fix a PLS (1.19) and let y = v d be its solution. A classic approach to solve a PLS consists in the computation of u = A -1 b mod a, for a certain polynomial a, and then in SRFR 2 with instance u. There are many techniques for the computation of u, which differs according to the decomposition of the polynomial a: some are based on the interpolation (as evaluationintepolation, that we will see in the following paragraph) [BCG + 17, Section 5] and others on p-adic methods [Dix82, [START_REF] Moenck | Approximate algorithms to derive exact solutions to systems of linear equations[END_REF][START_REF] Storjohann | High-order lifting and integrality certification[END_REF].

Uniqueness results. We now fix a polynomial linear system (1.19) Proof. Let (v 1 , d 1 ) and (v 2 , d 2 ) be two solutions of SRFR, i.e. 

Av i = d i b mod a, deg(v i ) < N, deg(d i ) < D, for i = 1, 2.

We observe that deg(Av

i -d i b) ≤ max{deg(A) + N, deg(b) + D} -1 is smaller than the degree of a which implies that Av i = d i b for i = 1, 2.
A(v 1 d 2 -v 2 d 1 ) = 0. Since A is full rank then v 1 d 2 -v 2 d 1 = 0 and so v 1 d 1 = v 2 d 2 .
Recall that by Lemma 1. 

= (N -1 + deg(A) -deg(b)) + deg(b) = N -1 + (D -1)/n.
we can uniquely reconstruct the solution of the PLS. Equivalently the rank of the K[x]-module generated by solutions is 1. The authors of [START_REF] Olesh | The Vector Rational Function Reconstruction problem[END_REF] proved the same result in the particular case N = D = n deg(A)+1 and deg(A) = deg(b). In this work we extend this result to a more general case (see Chapter 3). This proves that there are some cases, for which the condition deg(a) ≥ N + (D -1)/n guarantees uniqueness. This was the starting point of this work: indeed the existence of this specific case motivates us to investigate about the uniqueness of the solution of SRFR.

Evaluation-interpolation for PLS solving. Fix a PLS (1.19). If a = L i=1 (x -α i ), where α i are pairwise distinct elements of the field K, SRFR with instance u = A -1 b mod a and with degree constraints N, D, is equivalent to the problem of finding (v, d) such that

A(α i )v(α i ) = d(α i )b(α i ), deg(v) < N, deg(d) < D.
(1.20)

This is an evaluation-interpolation technique since we first evaluate the matrix A and the vector b in the L evaluation points and then we interpolate the solution y of the PLS given its evaluations y(

α i ) = u(α i ) = v(α i ) d(α i ) = A(α i ) -1 b(α i ).
Notice that we are assuming that for any 1 ≤ i ≤ L, the corresponding evaluated matrix A(α i ) is still full rank.

Therefore we can conclude that, if

L ≥ min{N + D -1, max{deg(A) + N, deg(b) + D}} (1.21)
we can uniquely reconstruct the solution of our problem. Notice that we take the minimum to reduce the computations.

Rank drop case. Fix a PLS (1.19). Consider L pairwise distinct evaluation points {α 1 , . . . , α L }. Following [BK14, KPSW17] we assume that there exists

1 ≤ i ≤ L such that det(A(α i )) = 0.
In other terms, we want to determine the number of evaluation points that we need to uniquely reconstruct the solution of the PLS by evaluation-interpolation, if we consider evaluation points which may drop the rank of the corresponding evaluated matrix. For this purpose, consider

R = {1 ≤ i ≤ L | det(A(α i )) = 0}
and assume to know a bound r ≥ |R|.

In [START_REF] Boyer | Numerical Linear System Solving with Parametric Entries by Error Correction[END_REF][START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF] authors proved that, in order to handle rank drops, it suffices to add this bound r to the number of points which guarantees the uniqueness. Proof. We divide the proof in two cases:

1. N + D -1 ≤ max{deg(A) + N, deg(b) + D}, 2. max{deg(A) + N, deg(b) + D} ≤ N + D -1. Let (v 1 , d 1 ), (v 2 , d 2 ) solutions of (1.20). 1. For any 1 ≤ i ≤ L, A(α i )v 1 (α i ) = b(α i )d 1 (α i ) A(α i )v 2 (α i ) = b(α i )d 2 (α i )
By multiplying the first equation by d 2 (α i ) and the second by d 1 (α i ) and then subtracting them we finally get,

A(α i )[v 1 (α i )d 2 (α i ) -v 2 (α i )d 1 (α i )] = 0.
Now, for i / ∈ R, the matrix A(α i ) has linearly independent columns and so v 1

(α i )d 2 (α i ) - v 2 (α i )d 1 (α i ) = 0. Note that the vector of polynomials v 1 (x)d 2 (x)-v 2 (x)d 1 (x) has deg(v 1 d 2 - v 2 d 1 ) < N + D and L -|R| ≥ L -r ≥ N + D -1 roots, and so v 1 (x)d 2 (x) = v 2 (x)d 1 (x). 2. We have that (v 1 , d 1 ) satisfies A(α i )v 1 (α i ) = b(α i )d 1 (α i ) for any 1 ≤ i ≤ L. Notice that the degree of A(x)v 1 (x) -b(x)d 1 (x) is at most max{deg(A) + N, deg(b) + D} -1 and the number of roots is L -|R| ≥ L -r ≥ max{deg(A) + N, deg(b) + D} hence A(x)v 1 (x) - b(x)d 1 (x) = 0. Therefore, we have also that A(x)v 2 (x) -b(x)d 2 (x) = 0. By multiplying A(x)v 1 (x) -b(x)d 1 (x) = 0 by d 2 (x) and A(x)v 2 (x) -b(x)d 2 (x) = 0 by d 1 (x) and then subtracting them we get A(x)[v 1 (x)d 2 (x) -v 2 (x)d 1 (x)] = 0. So, since A(x) is nonsingular then v 1 d 1 = v 2 d 2
and the claim follows.

A short summary of the chapter

We now briefly summarize the main notions and results of this chapter. * * * * * On the uniqueness of Simultaneous Rational Function Reconstruction. The rational function reconstruction (RFR) is the problem of reconstructing a rational function whose numerator and denominator degrees are bounded, given its remainder modulo a polynomial. We saw that under a certain assumption (1.3) on the parameters of the problem, the solution is unique, i.e. any solution is a polynomial multiple of a minimal one. In particular, the set of solutions of RFR is a subset of a K[x]-module of rank 1.

The simultaneous rational function reconstruction (SRFR) is the vector generalization of RFR, in which all the rational functions share the same denominator. In this case, we want to reconstruct a vector of rational functions with the same denominator, given its remainder modulo different polynomials. Therefore, under the same uniqueness condition of RFR, a solution of SRFR (if it exists) is also unique. Nevertheless, the common denominator constraint affects the condition on the parameters of the problem which guarantees the existence of a nontrivial solution, possibly losing its uniqueness (Example 1.2.1).

The K[x]-module of solutions of SRFR. In Section 1.3 we introduced some general notions about elements and bases of K[x]-modules: shifted row degrees, shifted row reduced bases and ordered weak Popov bases. Recall that a basis of a K[x]-module is shifted row reduced if it has minimal shifted row degrees. Moreover an ordered weak Popov basis is a specific shifted row reduced basis for which the shifted row degree is uniquely defined.

All these ingredients were essential to check the uniqueness of the SRFR: SRFR admits a unique solution if there is only one generator of an ordered weak Popov basis of a specific module, i.e. the relation module, with negative row degree. Recall that the shifts are necessary to integrate the degree constraints.

Application of SRFR to Polynomial Linear System solving. In Section 1.4 we saw that solutions of polynomial linear systems are vectors of rational functions with the same denominator (Lemma 1.4.1). Indeed the classic evaluation interpolation approach to solve PLS basically consists in an SRFR. In this case, the common denominator assumption allows to reduce the number of evaluation points needed to uniquely reconstruct the solution of PLS, impacting the complexity of the chosen algorithm for the PLS solving. The simultaneous rational function reconstruction is also applied for the decoding of interleaved Reed-Solomon codes. This chapter introduces basic notions of coding theory (Section 2.1), especially focusing on linear block codes. It then presents a famous and widespread family of such codes: Reed-Solomon codes (Section 2.2). In Subsection 2.2.1 we explain how the decoding of this class of codes can be seen as the rational function reconstruction problem (Section 1.1).

Section 2.3 is devoted to the introduction of Interleaved Reed-Solomon codes. Interleaving is a technique that allows one to construct robust codes with interesting decoders [BKY03, BMS04, SSB07, SSB09, SSB10, PR17]. We then underline the link between the decoding of such codes and the simultaneous rational function reconstruction problem (Subsection 2.3.1).

So, by summing up, the goal of this chapter is to introduce the basic decoding techniques of Reed-Solomon and interleaving Reed-Solomon codes, which are reinterpreted with a focus on the main problem of this thesis: the simultaneous rational function reconstruction.

Notations. We start by making some clarifications about the notations we are going to use throughout this chapter. For any set A we denote by A n the set of n-tuples a = (a 1 , . . . , a n ) of elements of A.

If A = F q or A = F q [x
], i.e. the finite field of order q or the ring of polynomials with coefficients in F q , we identify A n with the row vector space A n = A 1×n . In this case, as in the previous chapter, we use the lowercase bold notation for row vectors. Notice that in Section 2.3 we will use the same notation also for column vectors. Nevertheless, for the sake of clarity we will specify if they belong to A n or to A n×1 .

Basics of Coding Theory

This section provides some preliminary notions related to coding theory. We refer to classic literature about this topic, e.g. [Ber15, Bla03, Rot06, HP03, PWBJ17] and the notes in [START_REF] Guruswami | Essential Coding Theory[END_REF].

Coding theory is a discipline intersecting mathematics, computer science and engineering, concerned with the problem of a communication over a noisy channel that can introduce some errors, corrupting the transmitted message. It has many applications: from data transmission over the Internet, any kind of electronic communication device as cellular telephones, deep space communication and satellite broadcast, to compact disks and other physical media for which the data integrity is crucial. The main idea to recover a message after its transmission over an unreliable channel, is to add redundancy. In the classic communication scenario [START_REF] Shannon | A mathematical theory of communication[END_REF], a k-symbol message (also called information word) is first encoded obtaining an nsymbol message, called codeword, transmitted over a noisy channel and finally decoded in order to recover the original message. Informally speaking, encoding is the process of adding redundancy and decoding is the process of removing errors.

Channel Model

The classic Shannon channel model is defined by the triple (Σ, Φ, Pr), where -Σ is the input alphabet, -Φ is the output alphabet, -the conditional probability distribution Pr(y received|x sent) is defined for every pair (x, y) ∈ Σ n × Φ n . Recall that Σ n and Φ n both denote the set of n-tuples in the alphabet Σ and Φ respectively.

Channels considered by Shannon are also memoryless, which means that the noise acts independently on each transmitted symbol.

In this work we focus on discrete channels: the input and the output alphabet are both finite. We also suppose that the channel is additive, i.e. Σ = Φ and Σ is a finite abelian group (indeed, for every positive integer q there is an abelian group of size q, e.g. the ring Z q of integers modulo q). The action of such a kind of channels can be described as adding componentwise an error word e ∈ Σ n , e.g.

x ∈ Σ n - channel -y = x + e ∈ Σ n e
The error support E is the set of nonzero positions of the error vector e, i.e. E := {i ∈ {1, . . . , n} | e i = 0}.

We 

Pr(y received|x sent) =    1 -p if y = x p if y = x
The parameter 0 ≤ p ≤ 1 is called crossover probability of the channel. Usually, BSC is represented by the following diagram,

1 0 1 0 1 -p p p 1 -p
We can assume that p < 1/2. Indeed, by Shannon Theorem (see for instance [HP03, Theorem 1.11.10]) if p = 1/2, the communication is not possible. Moreover, if one knows how to assure reliable communication over a BSC with crossing probability p < 1/2, he also knows how to handle the case p > 1/2. Indeed, after receiving a symbol y ∈ F 2 , the receiver could interpret a 0 with a 1 and vice versa, transforming the BSC channel with crossover probability p to an equivalent one with crossover probability 1 -p < 1/2.  Example 2.1.2 (q-ary Symmetric Channel). The q-ary Symmetric Channel with crossover probability p is a generalization of BSC where the alphabet is Σ = F q , where q ≥ 2. In this case, given x, y ∈ F q , the conditional probability is

Pr(y received|x sent) =    1 -p if y = x p/(q -1) if y = x
In other terms, every symbol rests unchanged with probability 1 -p and it is switched to each of the q -1 possible different symbols with probability p/(q -1).

This specific channel model usually applies to settings where aggregates of bits are sent and errors are assumed to be bursty. In particular, bursts errors are errors which are extended to consecutive bits of the received word. This kind of errors frequently appears in many communication and data storage channels: they could be caused by media defects or interference with contiguous symbols. For instance, for CDs they can be caused by scratches on the disk surface or by interferences from adjacent tracks. 

Block codes

Coding theory mainly studies two classes of codes: finite and infinite length ones. Finite length codes, known as block codes were first studied by Golay [START_REF] Golay | Notes on Digital Coding[END_REF] and Hamming [START_REF] Hamming | Error Detecting and Error Correcting Codes[END_REF]. Throughout this thesis we focus on the latter class of codes. Definition 2.1.1 (Block code). Given an alphabet Σ, a (block) code C of length n is a subset of Σ n . We denote q := |Σ|. Elements c = (c 1 , . . . , c n ) ∈ C are called codewords. The size of the code is its cardinality M := |C| and its dimension (or information length) is log q (M ). Moreover, the rate of C is R := log q (M )/n.

We refer to a code C with length n and size M as an (n, M )-code.

Note that the rate of a code is the average amount of real information contained in each of the n symbols; so the higher the rate the lesser the redundancy of the code. In these terms, the rate measures the redundancy of a code. Definition 2.1.2 (Encoder). Let C be an (n, M )-code over Σ, where q := |Σ|. Assume that M = q k . An encoder of C is a one-to-one map

E : Σ k -Σ n such that C = E(Σ k ). Given a codeword c ∈ C there exists a unique x ∈ Σ k such that c = E(x). This x is called message or information word.
Besides the length and the dimension of a code, it is also important to define a metric which measures the distance between two codewords. Definition 2.1.3 (Hamming distance and weight). The Hamming distance between x = (x 1 , . . . , x n ) and y = (y 1 , . . . , y n ) in Σ n is defined as the number of components in which x and y differ, i.e. d(x, y)

:= |{i | x i = y i }|,
and the Hamming weight of x is

w(x) := |{i | x i = 0}|.
The Hamming distance is a well defined metric on Σ n (see [PWBJ17, Proposition 1.1.9]).

The minimum distance of an (n, M )-code C is then the minimum Hamming distance between any two distinct codewords, i.e.

d := min{d(c 1 , c 2 ) | c 1 , c 2 ∈ C, c 1 = c 2 }.
Length, size and distance are the parameters of a code. We can merge them into one expression and refer to C as an (n, M, d)-code.

Let x ∈ Σ n and r ≥ 0. We denote by B (r) (x) := {y ∈ Σ n | d(x, y) ≤ r}, the ball of radius r centered at x, w.r.t the Hamming metric.

We can now introduce the following important result. 2 . Then for any pair of distinct codewords c 1 , c 2 ,

B (τ 0 ) (c 1 ) ∩ B (τ 0 ) (c 2 ) = ∅.
Proof. Fix c 1 , c 2 ∈ C with c 1 = c 2 and suppose that y ∈ B (τ 0 ) (c 1 )∩B (τ 0 ) (c 2 ). Then d(c i , y) ≤ τ 0 for i = 1, 2 and by the triangle inequality

d(c 1 , c 2 ) ≤ d(c 1 , y) + d(c 2 , y) ≤ d -1.
The minimum distance of the code is d, so d(c 1 , c 2 ) ≥ d. This implies that c 1 = c 2 , which contradicts our hypothesis. This theorem is crucial since it highlights the link between the minimum distance and the error correction capability of a code, which is the maximum number of errors that one can uniquely correct. Indeed, we assume to send a codeword c of a certain (n, M, d)-code C over a channel and to receive y = c + e ∈ Σ n , where e ∈ Σ n is the error vector. Note that the number of errors is the distance d(y, c) or the weight w(e). Theorem 2.1.1 tells us that if the number of errors is less than τ 0 (i.e. d(y, c) ≤ τ 0 ), then y can be corrected: it suffices to consider the codeword inside the ball B (τ 0 ) (y), which is then unique (see Subsection 2.1.3). Therefore the error correction capability of C is τ 0 , which is strictly related to its minimum distance. In this sense the minimum distance allows one to quantify the error correction capability of a code.

For this reason, one of the main goal of coding theory is to construct for a given length and size a code with the largest possible minimum distance.

In the literature, there exist many bounds on the parameters of codes. One of the most famous is the Singleton bound [START_REF] Singleton | Maximum distance q-nary codes[END_REF]: for any (n, M, d)-code over an alphabet Σ of size q then d ≤ n -(log q (M )) + 1.

(2.1)

Codes which attain the Singleton bound are called Maximum Distance Separable (MDS) codes. The name MDS comes from the fact that this code has the maximum possible distance between codewords.

Linear codes. One important class of algebraic codes, is the class of linear codes.

Definition 2.1.4 (Linear code). Let Σ = F q . A linear code C of length n is an F q -vector subspace of (F q ) n . In this case the dimension of the code is its dimension as a vector space.

If k = dim(C) we refer to C as an [n, k, d]-code.
Note that the size of an [n, k, d]-linear code over F q is q k and its rate is k/n. We now briefly recall some basic notions of linear codes.

A generator matrix of a [n, k, d]-code C over F q is a k × n matrix G whose rows form a basis of the code. This matrix can be used to describe the encoding process. Indeed, we can consider the following map as an encoder (see Definition 2.1.2)

E : F k q - F n q x - xG
In other terms, given a message x in F k q , the corresponding codeword c is obtained by the multiplication c = xG.

Given two vectors x, y ∈ F q , let x • y := n i=1 x i y i be the inner product and C be an [n, k, d]-linear code over F q . We define the dual code of C as

C ⊥ := {h ∈ F q | h • c = 0, ∀c ∈ C}
The dual code C ⊥ is a linear code of length n and dimension n -k. A generator matrix H of the dual code is called parity-check matrix of C. The minimum distance of this code is not always determined by its parameters (unless they are MDS). Note that for any c ∈ C, Hc T = 0 and also HG T = 0.

Let C be an [n, k, d]-code with parity check matrix H. Given y ∈ F n q , the vector s = Hy T is a syndrome of y. We remark that, -the syndrome of a codeword is the zero vector; -if y = c + e is the received word after the transmission over a channel where c ∈ C and e ∈ F n q is the error vector, the syndrome s only depends on the error vector. Indeed, s = Hy T = Hc T + He T = He T .

For this reason, syndromes are used for the construction of decoders. For instance, in Subsection 2.2.1 we will see a syndrome-based decoding technique for RS codes.

Basic decoding principles

Let C be an (n, M, d)-code over an alphabet Σ. Decoding is the process of reconstructing the sent codeword from the received word. Definition 2.1.5 (Decoder). A decoder D for the code C is a map

D : Σ n -Σ n ∪ {?} such that for any c ∈ C, D(c) = c. If M = q k and E : Σ k -Σ n is an encoder of C (Definition 2.1.2), then the map D : Σ n -Σ n ∪ {?} such that D(E(x)) = x for any x ∈ Σ k is called decoder w.r.t the encoder E.
Note that if M = q k , E is an encoder of C and D is a decoder w.r.t E, then the composition D • E is a decoder of C. The decoder could also give as outcome the symbol "?", in this case we say that we have a decoding failure. This happens if it fails to find a codeword.

A decoder D is complete if it always returns a codeword.

Maximum-likelihood decoding. The maximum-likelihood (ML) decoding is a well studied decoding technique for block codes. In particular, for any y ∈ Σ n the ML decoder D M L is a complete decoder which gives as an outcome a codeword c = D M L (y) that maximize the following probability, i.e.

P r(y received|c sent).

If there exist two codewords for which the corresponding conditional probability is the same, the decoder can arbitrarily choose one of them (for example the first according to some ordering on the codewords of C).

Nearest-codeword decoding. The nearest-codeword (NC) decoder ( The following lemma shows the equivalence of the two decoders introduced so far for BSC.

Lemma 2.1.2 (Equivalence between ML and NC decoders for BSC). In a BSC with crossover probability p < 1/2, the maximum-likehood and the nearest-codeword decoder both coincide.

Proof. Let y ∈ Σ n and c be a codeword, then

Pr(y received|c sent) = p d(y,c) (1 -p) n-d(y,c) = (1 -p) n p 1 -p d(y,c)
We observe that since p < 1/2, then p 1-p < 1. Therefore, maximizing this probability is equivalent to minimizing the distance.

We can prove the same result for a q-ary symmetric channel with crossover probability p < 1 -1/q.

The problem of NC decoding is known to be NP-complete [START_REF] Berlekamp | On the inherent intractability of certain coding problems[END_REF]. For this reason, it is customary to consider the following decoders. 

-if C ∩ B (τ ) (y) = ∅, then D τ (y) =?, -if |C ∩ B (τ ) (y)| > 1, then D τ (y) =?.
List decoding Another famous decoding technique, which can be seen as the generalization of the BD decoding is the list decoding, first introduced by [Eli57] and [START_REF] Wozencraft | List Decoding[END_REF]. Fix a decoding radius τ , a list decoder outputs for any y ∈ Σ n the list of all codewords which belong to the ball B (τ ) (y) or a decoding failure. However since list decoding is beyond the purposes of this work, we do not go further into details of this technique. We refer to [GRS19, Section 7.2] for more details about this topic.

Reed-Solomon Codes

Reed Solomon (RS) codes constitute a very popular family of linear codes thanks to their remarkable properties: they are MDS and their algebraic structure allows the construction of efficient BMD decoders. They were first introduced by I. S. Reed and G. Solomon in 1960 [START_REF] Reed | Polynomial Codes Over Certain Finite Fields[END_REF] and they are still very common in practical applications: e.g. storage devices (CD, DVD, Blu-Ray Disc), barcodes and QR-codes, wireless and mobile communications, satellite communications, digital television (DVB), etc... Definition 2.2.1 (Reed-Solomon code). Let k ≤ n ≤ q and {α 1 , . . . , α n } be a set of pairwise distinct elements of the field F q , called evaluation points. A Reed-Solomon code is defined by

C RS (n, k) := {(f (α 1 ), . . . , f (α n )) | f ∈ F q [x], deg(f ) ≤ k -1}
We now recall the classic communication scenario described at the beginning of the Section 2.1. We observe that we can interpret any message m = (m 0 , . . . , m k-1 ) ∈ F k q as a polynomial f of degree deg(f ) ≤ k -1 whose coefficients are the components of the message, i.e. f = k-1 i=0 m i x i . A codeword of C RS (n, k) is then obtained by evaluating the corresponding polynomial at the n evaluation points {α 1 , . . . , α n }. Formally, we can define an encoding map E RS :

F q [x]/x k - F n q f - (f (α 1 ), . . . , f (α n ))
The RS code C RS (n, k) is a linear code of length n and dimension k. Indeed, the encoding function defined above is linear. It is also injective: if f (α 1 ) = . . . = f (α n ) = 0, then f would have more roots than its degree and so it is the zero polynomial. Therefore the dimension of

C RS (n, k) is k.
Theorem 2.2.1 (RS is MDS). RS codes are MDS, i.e. they attain the Singleton bound (2.1).

Proof. Since C RS (n, k) is a linear code and satisfies the Singleton bound (2.1) it suffices to show that the minimum distance d of the code is

d ≥ n-k+1. Let c 1 = (f (α 1 ), . . . , f (α n )) and c 2 = (g(α 1 ), . . . , g(α n )) be two distinct codewords of C RS (n, k). Note that d(c 1 , c 2 ) = |{1 ≤ i ≤ n | (f -g)(α i ) = 0)}| = w(f -g). Now, since the polynomial f -g has deg(f -g) ≤ k -1 it has at most k -1 roots, hence d(c 1 , c 2 ) ≥ n -(k -1). Therefore, d ≥ n -(k -1) which implies the claim.
Generator and parity check matrix of an RS code. A generator matrix of

C RS (n, k) is G =          1 1 . . . 1 α 1 α 2 . . . α n α 2 1 α 2 2 . . . α 2 n . . . . . . . . . . . . α k-1 1 α k-1 2 . . . α k-1 n          (2.2)
Note that it is the transposed of the Vandermonde matrix

V n,k := (v i,j ) 1≤i≤n 1≤i≤k = (α j-1 i ) 1≤i≤n 1≤j≤k
.

Before talking about the dual of an RS code, we need to introduce a generalization of this family of codes. Definition 2.2.2 (Generalized RS codes.). Let {α 1 , . . . , α n } be pairwise distinct elements of the field F q and v 1 , . . . , v n nonzero elements1 of F q (called column multipliers). A generalized RS code (shortly GRS) is

C GRS (n, k) := {(v 1 f (α 1 ), . . . , v n f (α n )) | f ∈ F q [x], deg(f ) ≤ k}.
We observe that since v i = 0 for any 1 ≤ i ≤ n, the map

F n q - F n q (y 1 , . . . , y n ) - (v 1 y 1 , . . . , v n y n )
is a bijective, distance-preserving transformation, i.e. an isometry. This map transforms C RS (n, k) into C GRS (n, k) and so the two codes have the same dimension and minimum distance. Therefore GRS codes are also MDS.

A GRS code C GRS (n, k) is also linear and a generator matrix is obtained by multiplying on the right G = V T n,k (see equation (2.2)) by the diagonal matrix whose diagonal elements are the column multipliers of the code.

The dual of an [n, k]-GRS code is an [n, n -k]-GRS code (see for instance [Rot06, Proposition 5.2] or the notes [START_REF] Hall | Notes in Coding Theory[END_REF]). Moreover, a parity check matrix of C GRS (n, k), or in other terms a generator matrix of its dual code is of the form

H GRS = V T n,n-k       v 1 0 . . . 0 0 v 2 . . . 0 . . . . . . . . . . . . 0 . . . . . . v n       (2.3)
where for any 1 ≤ i ≤ n the column multipliers are

v i := 1 v i 1≤j≤n j =i (α i -α j )
.

We can conclude that the dual of an

[n, k]-RS code is an [n, n -k]-GRS code with column multipliers v i = 1 1≤j≤n j =i (α i -α j )
and a parity check matrix is defined as in (2.3). Recall that n ≤ q. In the special case n = q, it is possible to prove that the dual of an RS code is an RS code, i.e. C RS (n, k) ⊥ = C RS (n, n -k). Note that, the column multipliers of the parity check matrix of the code (see equation (2.3)) are all equal to 1.

Decoding RS codes

In this section we introduce some BMD decoders for RS codes. We also point out how the decoding of such a family of codes can be reduced to the rational function reconstruction (Definition 1.1.1).

Let C RS (n, k) be an RS code over F q , with k ≤ n ≤ q and evaluation points {α 1 , . . . , α n }. We want to construct a BMD decoder, Problem 3.

BMD decoder for RS codes Input:

C RS (n, k) with {α 1 , . . . , α n }, y ∈ F n q a received vector Output:

f ∈ F q [x] with deg(f ) ≤ k -1 or "decoding failure".
which for any received word y returns

1. the only f ∈ F q [x] with deg(f ) ≤ k -1 such that (f (α 1 ), . . . , f (α n )) ∈ B τ 0 (y), if C RS (n, k) ∩ B τ 0 (y) = ∅,
2. a decoding failure otherwise.

Note that this decoder (contrary to the general definition of decoders of Subsection 2.1.3), in the first case, returns exactly the polynomial corresponding to the message in F k q instead of the codeword.

Interpolation with errors.

First recall that given n pairwise distinct evaluation points {x 1 , . . . , x n } in F q , where n ≤ q, and given y 1 , . . . , y n ∈ F q , the polynomial interpolation (or simply interpolation) is the problem of reconstructing the unique polynomial p ∈ F q [x] of degree at most n -1 such that p(x i ) = y i for any 1 ≤ i ≤ n. Informally speaking, it is the problem of recovering a polynomial from its evaluations. The Lagrange interpolating polynomial L is defined as

L(x) = n i=1 y i i j =i (x -x j ) (2.4)
where for any 1 ≤ i ≤ n, i = j =i 1

x i -x j . We now consider a variation of the classic interpolation problem, in which we add some errors.

Definition 2.2.3 (Interpolation with errors). Fix some parameters n, τ, k, q, where k, τ ≤ n ≤ q. Fix also {α 1 , . . . , α n } pairwise distinct elements of F q . A satisfiable instance of the interpolation with errors (shortly IwE) problem is the vector y ∈ F n q such that there exist 1. a polynomial

f ∈ F q [x], deg(f ) ≤ k -1,
2. an error vector e ∈ F n q with error support E := {i | e i = 0}, where |E| ≤ τ which satisfy the following y = (f (α 1 ), . . . , f (α n )) + e.

(2.5)

IwE is the problem of finding a polynomial f as in (2.5) given an instance y.

Note that (2.5) is equivalent to saying that

y i = f (α i ) if i / ∈ E and y i = f (α i )
otherwise. This clarifies the link with the interpolation problem. Therefore IwE is the problem of reconstructing a polynomial of bounded degree given its evaluations where some of them could be erroneous or corrupted. In Subsection 4.1.1 we will generalize the interpolation with errors problem to rational functions. Remark 2.2.1. Note that y is an instance of IwE with parameters n, k, τ 0 , {α 1 , . . . , α n } if and only if C RS (n, k) ∩ B (τ 0 ) (y) = ∅. Recall that by Theorem 2.1.

1 if C RS (n, k) ∩ B (τ 0 ) (y) = ∅, then |C RS (n, k) ∩ B (τ 0 ) (y)| = 1.
Therefore, we point out that IwE with instance y coincides with decoding y. Indeed, note that the main aim of both problems is to recover the polynomial f given its evaluations, where some are wrong. 

The state of the art of decoding techniques for constructing efficient BMD decoders can be classified according to two main paradigms: an interpolation-based and a syndrome-based approach. For both of them, we can reduce the decoding problem to the rational function reconstruction. More specifically, the interpolation-based technique can be reduced to a Cauchy interpolation while the syndrome-based one can be reduced to the Padé approximation (see Section 1.1).

For all the rest of this section we fix an RS code C RS (n, k) over F q with evaluation points {α 1 , . . . , α n }.

We now introduce the following polynomials, which are relevant for both the decoding techniques that we will describe later. Let y = (f (α 1 ), . . . , f (α n )) + e be a received vector with error support E = {i | e i = 0}. Let ε = |E| be the number of errors. Definition 2.2.4 (Error locator and error evaluator polynomial ).

-The error locator polynomial Λ is a monic polynomial whose roots are the erroneous evaluations, i.e. Λ = i∈E (x -α i ). Note that its degree is exactly the number of errors.

-The error evaluator polynomial Γ is determined by the Lagrange interpolating polynomial (see (2.4)) of all the components of the error vector, i.e.

Γ = - n i=1 e i i j =i (x -α j ) = - i∈E e i i j∈E\{i} (x -α j )
where i = j =i 1

α i -α j .
First, we observe that these two polynomials do not have any common root and so they are coprime. Moreover, they are related by the following relation

Γ(x) = - i∈E e i i Λ(x)
x -α i .

We now denote G := n i=1 (x-α i ) and we consider the Lagrange interpolating polynomial Y of the components of the received word, i.e. Y = n i=1 y i i j =i (x -α j ), where i = j =i 1 α i -α j for all 1 ≤ i ≤ n. The following result shows the link between all the polynomials introduced so far.

Lemma 2.2.2. Λ(f -Y ) = ΓG.

Proof. Since y = (f (α 1 ), . . . , f (α n )) + e, then we have that

f -Y = - n i=1 e i i j =i (x -α j ) = - i∈E e i i G x -α i therefore Λ(f -Y ) = - i∈E e i i Λ x -α i G = ΓG.

Interpolation-based decoding technique. By the previous lemma we can deduce that

Λf = ΛY mod G (2.6)
or equivalently, that the following condition on the evaluations holds,

Λ(α i )f (α i ) = Λ(α i )y i , for all 1 ≤ i ≤ n.
However the equation (2.6) is nonlinear. The classic technique for building a decoder consists in the study of the following linear equation

ϕ = λY mod G, (2.7) 
considering all the solutions (ϕ, λ) ∈ F q [x] 2 which satisfy the degree constraints

deg(ϕ) ≤ ε + k -1, deg(λ) ≤ ε. (2.8)
The equation (2.7) with degree constraints (2.8) is also called key equation. We observe that this is exactly the rational function reconstruction (Problem 1) with degree constraints ε + k, ε + 1 and instance Y . More specifically, since the polynomial G is of the form n i=1 (x -α i ), this is the weaker 2 form of the Cauchy interpolation (see Section 1.4).

Note that (Λf, Λ) is a solution of this problem. Moreover, by the uniqueness results of Section 1.1 (see Remark

1.1.2) if deg(G) = n ≥ (ε + k) + (ε + 1) -1 = k + 2ε ⇐⇒ ε ≤ n -k 2 (2.9)
then RFR (Problem 1) with input G, Y and the degree constraints ε+k, ε+1 admits a unique solution: any solution is a polynomial multiple of a minimal one. In Lemma 2.2.3 we prove that this minimal solution is exactly (Λf, Λ).

Note that this result is coherent with Theorem 2.1.1. Indeed, if ε ≤ τ 0 , then |C IRS (n, k) ∩ B (τ 0 ) (Y )| = 1, meaning that we can uniquely decode the received word. Therefore, in this case the uniqueness of the solution of RFR is strictly related to unique decoding.

All the existing BMD-decoders basically differ in the algorithm chosen to solve RFR. The Welch-Berlekamp decoder [START_REF] Berlekamp | Error Correction of Algebraic Block Codes[END_REF] is based on the study of the homogeneous linear system related to the key equation (2.7), while the Gao's decoder [START_REF] Gao | A New Algorithm for Decoding Reed-Solomon Codes[END_REF] (Algorithm 3) is based on the Extended Euclidean Algorithm 3 (see Algorithm 2).

Correctness of Algorithm 3. Recall that we are considering C RS (n, k) with evaluation points {α 1 , . . . , α n }. Lemma 2.2.3. Let y be a received word for which C RS (n, k)∩B τ 0 (y) = ∅. Let f the polynomial corresponding to the codeword in C RS (n, k) ∩ B τ 0 (y) and let (ϕ, λ) = RFR EEA (G, Y, τ 0 + k) be the minimal solution of RFR such that λ is monic.

Then (ϕ, λ) = (Λf, Λ), where Λ is the error locator polynomial. Proof. Let (ϕ, λ) = RFR EEA (G, Y, τ 0 + k) with λ monic. Then, for any 1 ≤ j ≤ n, ϕ(α j ) = y j λ(α j ). As already remarked, also (Λf, Λ) is a solution, i.e. for any 1 ≤ j ≤ n, Λ(α j )f (α j ) = y j Λ(α j ) therefore, by multiplying the former equation by Λ(α j ) and the latter by λ(α j ) and then by subtracting them we get

Λ(α j )[ϕ(α j ) -f (α j )λ(α j )] = 0 (2.10)
Note that for j ∈ E, since Λ(α j ) = 0, then ϕ(α j ) -f (α j )λ(α j ) = 0. Therefore since the polynomial ϕ -f λ has degree at most τ 0 + k -1 and n -|E| ≥ n -τ 0 = τ 0 + k roots it is the zero polynomial. Hence ϕ = λf . Now, since for any 1 ≤ j ≤ n, we have that λ(α j )f (α j ) = ϕ(α j ) = y j λ(α j ), then all the erroneous evaluations α j for j ∈ E are roots of λ and so Λ divides λ. In conclusion, since (ϕ, λ) is the minimal solution with λ monic then (ϕ, λ) = (Λf, Λ).

Another useful result for the proof of the correctness of Algorithm 3 is the following.

Lemma 2.2.4. Let y ∈ F n q a received word, Y the Lagrange interpolating polynomial of the components of y and (ϕ, λ) = RFR EEA (G, Y, τ 0 +k), where λ is monic. Then if λ|ϕ and deg(f

) ≤ k -1, where f := ϕ/λ, then the Hamming distance satisfies d((f (α 1 ), . . . , f (α n ), y) ≤ τ 0 . Proof. Since for any 1 ≤ i ≤ n we have that ϕ(α i ) = y i λ(α i ) and since ϕ = λf , then λ(α i )[f (α i ) -y i ] = 0. Therefore for i ∈ {1 ≤ i ≤ n | f (α i ) = y i } = E then λ(α i ) = 0. Note that |E| ≤ deg(λ) ≤ τ 0 .
This proves the correctness of Algorithm 3 since, given a received word y, -if |C RS (n, k) ∩ B τ 0 (y)| = 0, by contrapposing Lemma 2.2.4, the solution (ϕ, λ) = RFR EEA (G, Y, τ 0 + k) either does not satisfy the divisibility criteria or leads to a poly-nomial of degree greater than k -1. In this case the algorithm outputs a decoding failure.

-if |C RS (n, k) ∩ B τ 0 (y)| = 1, by Remark 2.2.1 y is an instance of IwE and by Lemma 2.2.3 the solution (ϕ, λ) = RFR EEA (G, Y, τ 0 + k) is a scalar multiple of (Λf, Λ), where f is the polynomial related to the codeword in the ball B τ 0 (y). Hence (ϕ, λ) satisfies the divisibility and the degree condition of step 4 of the algorithm and so the decoder outputs the polynomial f .

Syndrome-based decoding technique.

In this thesis we especially focus on the interpolationbased decoding technique for RS and later for interleaved RS codes. Nevertheless, for the sake of completeness, in this paragraph we also introduce the syndrome-based approach.

For the syndrome-based decoding technique it is important to suppose that the evaluation points of C RS (n, k) are all nonzero.

First we precise some notations and notions that we use here. The reciprocal polynomial of a polynomial p of degree t is the polynomial x t p(1/x). Since we often know bounds on the polynomial degrees instead of the real degrees, we consider a generalization of this notion. Definition 2.2.5 (Reciprocal polynomial). Given a polynomial p ∈ F q [x] with deg(p) ≤ t, the reciprocal of p for the degree t is the polynomial rev t (p) := x t p(1/x).

In order to derive a syndrome-based key equation, given the received vector y = (f (α 1 ), . . . , f (α n )) + e, we 1. introduce the syndrome polynomial S(x) = n-k-1 l=0 s l x l , a polynomial whose coefficients are the components of a syndrome; 2. prove that the syndrome polynomial can be seen as the truncated series expansion of the rational function rev n-1 (Y ) revn(G) (Lemma 2.2.5); 3. use the previous result to link the error locator Λ, the error evaluator polynomial Γ and the syndrome polynomial S by the following

rev ε (Λ)S = -rev ε-1 (Γ) mod x n-k (2.11)
Recall that we can easily compute a syndrome, i.e. s = Hy T , where H is a parity check matrix of our code C RS (n, k) (as in equation (2.3)). In particular, by expanding the matrix product we get for any 0 ≤ l ≤ n -k -1,

s l = n j=1 y j v j α l j , (2.12) 
where for any j

v j = 1 j =i (α i -α j ) = j .
As previously remarked, syndromes only depend on the error vector, hence for any

0 ≤ l ≤ n -k -1 s l = j∈E e j j α l j (2.13)
Note that the syndrome polynomial S(x), is of the form

S(x) = n-k-1 l=0 s l x l = n-k-1 l=0 x l j∈E e j j α l j = j∈E e j j n-k-1 l=0 (xα j ) l (2.14)
and since

n-k-1 l=0 (xα j ) l = 1 -x n-k α n-k j 1 -xα j
we finally get

S(x) = j∈E e j j 1 -xα j mod x n-k . (2.15) 
We are now ready for the following result. If we now consider the reciprocal polynomials of the two members of ΛY = Λf -ΓG, of Lemma 2.2.2, we get rev ε+n-1 (ΛY ) = rev ε+k-1 (Λf )x n-k -rev ε+n-1 (ΓG) = -rev ε+n-1 (ΓG) mod x n-k .

Note that rev ε+n-1 (ΛY ) = rev ε (Λ)rev n-1 (Y ) and rev ε+n-1 (ΓG) = rev ε-1 (Γ)rev n (G) and by Lemma 2.2.5 we finally obtain

rev ε (Λ)S = -rev ε-1 (Γ) mod x n-k (2.16)
In this case, decoding is reduced to the problem of finding the polynomials (γ, λ) such that gcd(γ, λ)

= 1, γ = λS mod x n-k , deg(γ) < ε, deg(λ) < ε + 1 (2.17)
The congruence of this equation is the so-called syndrome-based key equation. Note that this is exactly the Padé approximation (see (1.1)) with degree constraints ε, ε + 1 and instance S.

By Remark 1.1.2 if n -k ≥ 2ε ⇐⇒ ε ≤ n -k 2 ,
then we can uniquely reconstruct the rational solution. Even in this case all syndrome-based BMD decoders depend on the algorithm chosen for the Padé Approximation. For instance, we can construct a decoder based on the Extendend Euclidean Algorithm [START_REF] Sugiyama | A method for solving key equation for decoding Goppa codes[END_REF] or on the Berlekamp-Massey algorithm [START_REF] Berlekamp | Nonbinary bch decoding[END_REF], which is the most commonly used in practice.

Interleaved Reed-Solomon code

Interleaving is an encoding technique used in the setting of burst errors. In this section we show how this technique applied to RS codes allows the construction of interesting decoders [KL97, KY98, Kra03, BKY03, BMS04, SSB07, SSB09, SSB10, PR17] which decode beyond the error correction capability of the code. Definition 2.3.1 (Interleaved Reed-Solomon codes). Let l ≥ 1 and k 1 , . . . , k l ≤ n ≤ q and {α 1 , . . . , α n } be pairwise distinct evaluation points in F q . The l-Interleaved Reed-Solomon (IRS) code is

C IRS (n, k 1 , . . . , k l ) :=            c 1 . . . c l     c i ∈ C RS (n, k i ), 1 ≤ i ≤ l        ∈ (F q ) l×n
An homogeneous IRS code is an IRS code whose l constituent RS codes all have the same dimension k 1 = . . . = k l = k. We denote it simply by C IRS (n, k). In this work we focus on homogeneous IRS codes. Remark 2.3.1. Note that by the definition of RS codes (Definition 2.2.1) we can see an IRS code C IRS (n, k) as the evaluation of a (column) vector of polynomials of bounded degrees, i.e.

C IRS (n, k) = (f (α 1 ), . . . , f (α n )) | f ∈ F q [x] l×1 , deg(f ) ≤ k -1 Moreover for any codeword C = (f (α 1 ), . . . , f (α n )) ∈ C IRS (n, k), we can interpret any com- ponent f (α i ) ∈ F l×1 q
as an element of F q l . In this way, C IRS (n, k) ⊆ F n q l and it is easy to see that it is an [n, k, n -k + 1]-linear code over F q l . The error correction capability of

C IRS (n, k) is then τ 0 = n-k 2 .


The interpretation of any component of any codeword as a vector on an extension field is crucial for the error model comprehension.

Decoding IRS codes

Error model. We consider a burst-error channel as in [START_REF] Krachkovsky | Reed-Solomon codes for correcting phased error bursts[END_REF]. In this simplified model, the transmitted codeword is a matrix over a certain alphabet and the channel introduce some errors, called phased burst (simply bursts) that corrupt columns of the codeword. Therefore, in the specific case of IRS codes the action of these channels can be described as follows

C ∈ C IRS (n, k) ⊆ F l×n q - channel -Y = C + Ξ ∈ F l×n q Ξ ∈ F l×n q error matrix
where E := {i ∈ {1, . . . , n} | Ξ * ,i = 0} is the error support.

In this case burst errors alter columns of the received matrix (see Figure 2.4). F q l , by using the field extension representation we can model this channel by a q l -ary Symmetric Channel (see Example 2.1.2) over the alphabet F q l . Simultaneous interpolation with errors. Fix a received word Y = (f (α 1 ), . . . , f (α n ))+ Ξ, where f ∈ F q [x] l×1 , deg(f ) ≤ k -1 and Ξ the error matrix with error support E := {i ∈ {1, . . . , n} | Ξ * ,i = 0}, |E| ≤ τ for a given τ . We now observe that the problem of decoding Y coincides with the problem of reconstructing a vector of polynomials with bounded degree given its evaluations, where some of them could be erroneous. This is exactly the vector generalization of the interpolation with errors (Definition 2.2.3) which is called simultaneous interpolation with errors. 4Definition 2.3.2 (Simultaneous interpolation with errors). Fix some parameters l, n, τ, k, q, where k, τ ≤ n ≤ q and l ≥ 1. Fix also {α 1 , . . . , α n } pairwise distinct elements of F q . A satisfiable instance of the simultaneous interpolation with errors (shortly SIwE) problem is the matrix Y ∈ F l×n q such that there exist 1. a vector of polynomials f ∈ SIwE is the problem of finding a vector of polynomials f as in (2.18) given an instance Y .

F q [x] l×1 , deg(f ) ≤ k -1,
In Subsection 4.1.1 we will generalize this problem to vector of rational functions, the simultaneous Cauchy interpolation with errors. Remark 2.3.2. Note that Y is an instance of SIwE with parameters n, k, τ, {α 1 , . . . , α n } if and only if

C IRS (n, k) ∩ B τ (Y ) = ∅.


We now observe that, since any row of an IRS codeword is an RS codeword, we could construct a BMD decoder for IRS codes which decode any row of the received word separately as we saw in Subsection 2.2.1. Nevertheless, the interleaving technique applied to RS codes allows the construction of partial BD decoders [BKY03, SSB07, SSB09, SSB10, PR17], in the sense that they fail for a few error patterns of any weight beyond the error correction capability of the code τ 0 .

As for classic RS codes, we can distinguish two main approaches to construct such decoders: an interpolation-based and a syndrome-based one. In this section, we especially focus on the first one and on a decoder derived from it, since we generalize this approach for solving the simultaneous Cauchy interpolation with errors (Chapter 4).

By the way, it important to remark that the most efficient decoder for IRS is a syndromebased one [SSB07, SSB09, SSB10]. It is based on a generalized version of the Berlekamp-Massey [START_REF] Berlekamp | Nonbinary bch decoding[END_REF][START_REF] Massey | Shift-register synthesis and BCH decoding[END_REF] algorithm for decoding RS codes and it has a similar arithmetic complexity [START_REF] Schmidt | Collaborative Decoding of Interleaved Reed-Solomon Codes and Concatenated Code Designs[END_REF].

We now fix an IRS code C IRS (n, k) over F q with evaluation points {α 1 , . . . , α n } and a received word Y = (f (α 1 ), . . . , f (α n )) + Ξ, of error support E := {i | Ξ * ,i = 0}, ε := |E|. We also denote the received matrix by Y = (y i,j ) 1≤i≤l 1≤j≤n .

For any 1 ≤ i ≤ l, let Ψ i be the Lagrange interpolating polynomial of the i-th row of Y , i.e.

Ψ i = n j=1 Y i,j j k =j (x -α k ) where j = k =j 1 α j -α k for any 1 ≤ j ≤ n. We denote Ψ = (Ψ 1 , Ψ 2 , . . . , Ψ l ) T ∈ F l×1 q . Recall that G = n i=1 (x -α i ). Note that Λf = ΛΨ mod G ⇐⇒ Λ(α j )f (α j ) = Λ(α j )Y * ,j , for any 1 ≤ j ≤ n ⇐⇒ Λ(α j )f i (α j ) = Λ(α j )y i,j , for any 1 ≤ i ≤ l, 1 ≤ j ≤ n
Indeed, it suffices to observe that if j ∈ E then Λ(α j ) = 0, otherwise y i,j = f i (α j ) for any 1 ≤ j ≤ n. Therefore, as for classic RS codes, since this equation is not linear in the unknowns f and Λ, we study the linear problem

ϕ = λΨ mod G, deg(ϕ) ≤ ε + k -1, deg(λ) ≤ ε (2.19)
or equivalently, for any 1 ≤ i ≤ l and 1 ≤ j ≤ n, 

ϕ i (α j ) = λ(α j )Ψ i (α j ), deg(ϕ i ) ≤ ε + k -1, deg(λ) ≤ ε (2.
M Y,ε,k =       V n,k+ε -D 1 V n,ε+1 V n,k+ε -D 2 V n,ε+1 . . . . . . V n,k+ε -D l V n,ε+1       (2.21) 
where V n,d denotes the Vandermonde matrix whose entries are (α j-1 i ) 1≤i≤n 1≤j≤d and for any 1 ≤ i ≤ l, D i is the diagonal matrix whose elements on the diagonal are y i,1 , . . . , y i,n . 

We now recall (1.6), which derives from the fact that we can apply RFR to solve SRFR. We also recall that in this case a 1 = . . .

= a l = G = n i=1 (x -α i ), N 1 = . . . = N l = N = ε + k and D = ε + 1. So we can conclude that if deg(G) = n ≥ (ε + k) + (ε + 1) -1 = 2ε + k ⇐⇒ ε ≤ n -k 2 
this problem admits a unique solution. In this case, we can prove with the same technique of Lemma 2.2.3 that all the solutions are polynomial multiples of a minimal one, which is exactly (Λf , Λ). Indeed, recall that τ 0 = n-k 2 is the error correction capability of the code, and by Theorem 2.1.1 then |C IRS (n, k) ∩ B (τ 0 ) (Y )| = 1. Therefore, also in this case, the uniqueness of the solution of SRFR is strictly related to the uniqueness of the decoding.

We now ask what happens if we consider the reduced number of points of (1.7) derived 5. Note that we can equivalently consider the SRFR problem for row or column vectors from the common denominator property of SRFR. Specifically, if

l i=1 deg(a i ) ln = l i=1 N i l(ε+k) + D ε+1 -1 ⇐⇒ n = (k + ε) + (ε + 1 -1)/l ⇐⇒ ε = l(n -k) l + 1 .
In [BKY03, BMS04, SSB07, SSB09, SSB10], authors proved that we can construct some decoders, which can uniquely correct almost all errors up to the decoding radius

τ IRS = l(n -k) l + 1 . (2.22)
Note that for l ≥ 1 then τ IRS ≥ τ 0 , meaning that these decoders could correct beyond the error correction capability of the code.

In what follows we "reinterpret" some results of [START_REF] Bleichenbacher | Decoding of interleaved Reed-Solomon codes over noisy data[END_REF] thanks to our study of the generalized rational function case (see Subsection 4.1.1).

In [START_REF] Bleichenbacher | Decoding of interleaved Reed-Solomon codes over noisy data[END_REF] authors first introduced a decoder which assumes to know exactly the number of errors that occurred during the transmission. Then, they generalized their results to the construction of a more general decoder which is suited to a channel's model for which they estimated the expected number of errors. Here we define a more general decoder (Algorithm 4) fitting to the error model previously described.

An interpolation-based partial decoder.

As previously observed, we can reduce the decoding problem of IRS to SRFR in the interpolation version (Problem 2) with input G = n i=1 (x -α i ), Y (where Y is the received word) and degree constraints τ IRS + k, τ IRS + 1, i.e. Note that to compute a basis of the F q [x]-module of solutions (step 3 of Algorithm 4) we can use the algorithm of [START_REF] Rosenkilde | Algorithms for Simultaneous Padé Approximations[END_REF] (see Section 1.2), which computes all the rows of a shifted row reduced basis, (the shift is s = (-τ IRS -k, . . . , -τ IRS -k, -τ IRS -1)) with negative row degrees. As seen in Subsection 1.3.2 this is a basis of the F q [x]-module generated by the solutions in S Y,τ IRS ,k . Correctness of Algorithm 4. We now introduce some lemmas useful to prove the correctness of the algorithm. In particular, the following lemma is an adaptation of Theorem 1 of [START_REF] Bleichenbacher | Decoding of interleaved Reed-Solomon codes over noisy data[END_REF] for a more general result. The proof of this algorithm is new and it is a specific case of Theorem 4.1.2, in which we prove the same result for the reconstruction of a vector of rational functions instead of polynomials.

ϕ(α j ) = λ(α j )Y * ,j , deg(ϕ) ≤ τ IRS + k -1, deg(λ) ≤ τ IRS . ( 2 
Lemma 2.3.1. Fix E ⊆ {1, . . . , n}, and assume that ε

:= |E| satisfies ε ≤ τ IRS . Moreover, fix f ∈ F q [x] l , deg(f ) ≤ k -1.
Consider the random matrix Y = (y i,j ) 1≤i≤l 1≤j≤n such that,

-if j ∈ E, then Y * ,j is a uniformly distributed element in F l×1 q , -if j ∈ E, then Y * ,j = f (α j ).
Then S Y,τ IRS ,k is spanned by elements of the form

(x i Λf , x i Λ), i.e. S Y,τ IRS ,k = x i Λf , x i Λ 0≤i≤τ IRS -ε-1 ,
with probability at least 1 -τ IRS /q.

Proof. First notice that, since (Λf , Λ) ∈ S Y,τ IRS ,k then

x i Λf , x i Λ 0≤i≤τ IRS -ε-1 ⊆ ker(M Y,τ IRS ,k ) = S Y,τ IRS ,k . (2.24)
In the first part of the proof we show the existence of a draw of columns of Y corresponding to the error positions, for which we have S Y,τ IRS ,k ⊆ x i Λf , x i Λ 0≤i≤τ IRS -ε-1 and so by (2.24), we have the equality.

Consider a partition of E, i.e. E = ∪ l i=1 I i , such that for any 1 ≤ i ≤ l, |I i | ≤ ε/l . Note that such a partition exists since l ε/l ≥ ε = |E|. For any j ∈ E, we denote by i j the unique index such that j ∈ I i j . Construct a matrix V , such that

-V * ,j = f (α j ), if j ∈ E, -otherwise if j ∈ E, V * ,j is chosen so that f (α j ) -V * ,j = i j , (2.25) 
where i is a vector of F l×1 q , whose i-th entry is 1 and all the others are zero. Now, consider (ϕ, λ) ∈ S V,τ IRS ,k . By multiplying (2.25) by λ(α j ) and since (ϕ, λ) belongs to the solution space S V,τ IRS ,k then,

λ(α j )f (α j ) -λ(α j )V * ,j ϕ(α j ) = λ(α j ) i j . Fix 1 ≤ i ≤ l, observe that for any j / ∈ I i then, -if j / ∈ E, then V * ,j = f (α j ) and so we get λ(α j )f i (α j ) -ϕ i (α j ) = 0, -if j ∈ E \ I i , then by the choice of V * ,j we have λ(α j )f i (α j ) -ϕ i (α j ) = 0, hence in both cases, λ(α j )f i (α j ) -ϕ i (α j ) = 0. Note that the polynomial λf i -ϕ i has n -|I i | ≥ n -ε/l roots. Since ε ≤ τ IRS ≤ l(n-k) l+1 , then n -ε/l ≥ n -τ IRS /l ≥ τ IRS + k.
On the other hand, the degree of the polynomial λf -ϕ i is at most τ IRS + k -1, hence it is the zero polynomial. Hence ϕ -λf = 0. Now, since for any 1 ≤ j ≤ n λ(α j )f (α j ) = ϕ(α j ) = λ(α j )V * ,j , we have λ(α j )[f (α j ) -V * ,j ] = 0. We remark that for j ∈ E, by construction f (α j )-V * ,j = 0 and so Λ = j∈E (x-α j ) divides λ. This implies that there exists P such that λ = P Λ and ϕ = λf = P Λf .

Therefore, S V,τ IRS ,k ⊆ x i Λf , x i Λ 0≤i≤τ IRS -ε-1 and so we have the equality.

Given Y as in the assumption of this lemma, since

x i Λf , x i Λ 0≤i≤τ IRS -ε-1 ⊆ S Y,τ IRS ,k , then dim(ker(M Y,τ IRS ,k )) ≥ τ IRS -ε. By the Rank-Nullity Theorem rank(M Y,τ IRS ,k ) = l(τ IRS + k) + τ IRS + 1 -dim(ker(M Y )) ≤ l(τ IRS + k) + 1 + ε =: ρ.
Hence rank(M Y,τ IRS ,k ) ≤ ρ. On the other hand, as proved above, there exists a draw V * ,j of Y * ,j for j ∈ E, such that rank(M V,τ IRS ,k ) = ρ. This means that there exists a nonzero ρminor in M V,τ IRS ,k . We consider this nonzero ρ-minor as a multivariate polynomial C whose indeterminates are (y i,j ) 1≤i≤n j∈E . We can remark that we showed the existence of a draw V * ,j of Y * ,j , for j ∈ E such that the corresponding C(V * ,j ) is non zero. Hence the polynomial C is nonzero.

For any matrix Y such that (Y * ,j ) j∈E are not roots of C, then the solution space is S Y,τ IRS ,k = x i Λf , x i Λ 0≤i≤τ IRS -ε-1 . Note that the total degree of the polynomial C is at most τ IRS , since only the last τ IRS columns of the corresponding matrix M Y,τ IRS ,k contain the variables (y i,j ) 1≤j≤n j∈E (see (2.21)).

Finally by the Schwartz-Zippel Lemma, the polynomial C cannot be zero in more than τ IRS /q fractions of its domain. Therefore we can conclude that the probability that S Y,τ IRS ,k = x i Λf , x i Λ 0≤i≤τ IRS -ε-1 is at most τ IRS /q.

We observe that the assumption on the error distribution of Lemma 2.3.1 is somewhat consistent with the channel model: a q l -ary Symmetric Channel over F q l . Remark 2.3.4. Note that if Y is a received word for which the solution space is S Y,τ IRS ,k = x i Λf , x i Λ 0≤i≤τ IRS -ε-1 , then the F q [x]-module generated by solutions of (2.23) has rank 1 and the generator of the basis (ϕ, λ), scaled to have λ monic is exactly (Λf , Λ). Therefore, the divisibility and the degree condition of the step 5 of Algorithm 4 are satisfied and it outputs f .  Lemma 2.3.2. Let Y ∈ F l×n q a received matrix and let (ϕ, λ) ∈ S Y,τ IRS ,k such that λ|ϕ i for any 1 ≤ i ≤ l and deg(f

) ≤ k -1, where f := (f 1 , . . . , f l ) T and f i := ϕ i /λ. Then the Hamming distance 6 satisfies d((f (α 1 ), . . . , f (α n ), Y ) ≤ τ IRS . Proof. Indeed, since ϕ = λf , the λ(α j )[f (α j ) -Y * ,j ] = 0 for any 1 ≤ j ≤ n. Therefore, |E| = d((f (α 1 ), . . . , f (α n ), Y ) ≤ deg(λ) ≤ τ IRS . Lemma 2.3.3. Let Y ∈ F l×n q
a received word such that C IRS (n, k) ∩ B (τ IRS ) (Y ) = ∅. Let f be the vector of polynomials related to the codeword in the ball B (τ IRS ) (Y ) and Λ the error locator polynomial.

If the rank of the F q [x]-module of solutions in S Y,τ IRS ,k is 1, then its generator (ϕ, λ) with λ monic coincides exactly with (Λf , Λ).

Proof. Since (ϕ, λ) is a generator of the F q [x]-module of solutions S Y,τ IRS ,k and since (Λf , Λ) ∈ S Y,τ IRS ,k there exists P ∈ F q [x] such that (Λf , Λ) = (P ϕ, P λ). Therefore, λ|Λ and it is of the form λ = j∈E (x -α j ), where E ⊆ E. Moreover, ϕ = λf . As in the proof of Lemma 2.3.2, we have that

|E| = d((f (α 1 ), . . . , f (α n )), Y ) ≤ deg(λ) = |E | and so E = E and P ∈ F q . Remark 2.3.5. 1. Let Y ∈ F l×n q a received word such that C IRS (n, k) ∩ B (τ IRS ) (Y ) = ∅.
We denote by f the vector of polynomials corresponding to a codeword in B (τ IRS ) (Y ) and Λ the error locator polynomial. Lemma 2.3.3 basically tells us that if the rank of the F q [x]-module of solutions in S Y,τ IRS ,k is 1 then S Y,τ IRS ,k is spanned by x i Λf , x i Λ . This is a sort of "vice versa" of Remark 2.3.4. Informally speaking, this allows us to conclude that the 6. Recall that in Section 2.1 we defined the Hamming distance in the vector space F n q , for a general finite field Fq. By the extension field representation, we can consider codewords of CIRS(n, k), i.e. (f (α1), . . . , f (αn)) ∈ F l×n q , as elements in F n q l . Hence the Hamming distance in this case is defined in the vector space F n q l . fact that the rank of the F q [x]-module of solutions is 1 is equivalent to have a solution space of the form x i Λf , x i Λ .

2. Note that by Lemma 2.3.3 we cannot have more than one codewords in the ball B (τ IRS ) (Y ) and rank of the F q [x]-module equal to 1. This means that if the rank is

1, then |C IRS (n, k) ∩ B τ IRS (Y )| = 1.



We now analyze the behavior of the decoder of Algorithm 4, in order to verify its correctness.

Remark 2.3.6 (Correctness of the partial BD decoder (Algorithm 4)). Let Y be a received word, M the F q [x]-module of solutions in S Y,τ IRS ,k (as in step 1 of the algorithm) and r = rank(M). We have the following possibilities,

-if C IRS (n, k) ∩ B (τ IRS ) (Y ) = ∅,
the decoder outputs a decoding failure. Indeed, by Lemma 2.3.2, it cannot return a vector of polynomial

f ∈ F q [x] l×1 of deg(f ) ≤ k -1, -if |C IRS (n, k)∩B (τ IRS ) (Y )| = 1, then by Lemma 2.
3.1, with probability at least 1-τ IRS /q then S Y,τ IRS ,k = x i Λf , x i Λ and so rank(M) = 1. Note that in the equality case, the element of the basis computed at step 3 of Algorithm 4 is exactly (Λf , Λ) and so by performing the division we get f , which corresponds to the sent codeword.

-if |C IRS (n, k) ∩ B (τ IRS ) (Y )| > 1, then by Remark 2.3.5, rank(M) > 1 and so the decoder outputs a decoding failure.



As previously remarked, this decoder is a partial BD decoder with decoding radius τ IRS , indeed, if Y is such that |C IRS (n, k) ∩ B (τ IRS ) (Y )| = 1 it could eventually fail, even if there is only one codeword in the ball.

Failure probability. We introduced a decoder which, given a received vector Y = (f (α 1 ), . . . , f (α n )) + Ξ, where ε ≤ τ IRS , can recover the sent codeword f with a certain probability. Precisely, by Lemma 2.3.1, the failure probability, that is the probability that the decoder does not recover this sent codeword, leading to a decoding failure message is at most τ IRS /q. As previously observed, this result is just an adaptation of Theorem 1 of [START_REF] Bleichenbacher | Decoding of interleaved Reed-Solomon codes over noisy data[END_REF], for a slightly different decoder.

In [START_REF] Brown | Probabilistic decoding of Interleaved RS-Codes on the Q-ary symmetric channel[END_REF] A. Brown et al. proved that the failure probability does not depend on the number of errors and it is O(1/q). More specifically they proved that this probability is at most exp(1/(q l-2 )) q -1 .

On the other hand, in [SSB07, SSB09, SSB10] it was introduced a partial decoder based on the syndrome-based approach with decoding radius τ IRS . They proved that the failure probability of this decoder is at most

q l -1 q q l -1 ε q -(l+1)(τ IRS -ε) q -1 (2.26)
In the same papers, the authors show that this failure probability is tight in practice.

A short summary of the chapter

Here we present a short summary of the main results and notions of the chapter. * * * * *

Reed-Solomon codes. The Reed-Solomon (RS) code is a linear code which is determined by the evaluations of polynomials with bounded degrees. Decoding a Reed-Solomon codeword is then the problem of reconstructing a polynomial of bounded degree by its evaluations, where some are erroneous. We called this problem interpolation with errors.

We saw that there are basically two approaches to decode RS codes: an interpolation-based and a syndrome-based. Moreover, for both of them the decoding problem can be reduced to a rational function reconstruction (RFR) and so, all the existing RS decoders basically differ in the algorithm chosen to solve RFR.

In this coding theory scenario, the number of evaluation points which guarantees the uniqueness of RFR is related to the maximum number of errors that we can uniquely correct, i.e. the error correction capability of the RS code.

Interleaved Reed-Solomon codes.

Interleaving is an encoding technique used in settings where errors are extended to consecutive symbols of the received word. This technique applied to RS codes allows the construction of partial decoders, which can correct almost all error patterns beyond the error correction capability of the code.

In detail, the interleaved RS (IRS) code is determined by evaluations of vectors of polynomials with bounded degrees.

Decoding an IRS codeword consists in reconstructing a vector of polynomials of bounded degrees given its evaluations, where some are erroneous (the simultaneous interpolation with errors problem). This is the vector extension of the interpolation with errors problem.

As for classic RS codes, there are two techniques for decoding IRS codes: an interpolationbased and a syndrome-based one. In this chapter we focus on the first one, since we will generalize this technique later, for the simultaneous polynomial reconstruction with errors problem (see Subsection 4.1.1).

The interpolation-based approach basically reduces the decoding problem to the simultaneous rational function reconstruction (SRFR) problem. In this case the common denominator of the vector of rational functions that we want to recover is the error locator polynomial.

In this coding theory scenario, we pointed out that reducing the number of evaluation points which guarantees the uniqueness of SRFR is equivalent to increasing the number of errors that we can uniquely correct. So, this reduction allows one to construct decoders which correct more errors.

As seen in the previous chapter, if we consider the number of evaluation points which guarantees the uniqueness of the classic RFR, we have also the uniqueness of SRFR. From the coding theory perspective, this means that if the number of errors is smaller than the error correction capability of the code, i.e. half of the minimum distance, we can uniquely decode any IRS codeword. Indeed, it suffices to separately decode any component of the IRS codeword, which is an RS codeword.

Besides, the interleaving construction allows to do better: if the number of errors is smaller than the number derived from the common denominator feature of SRFR, we have the uniqueness of SRFR for the corresponding instance y = f + e, for all f and for almost all (see Definition 3.1.1) errors e. This means that we can construct decoders which can uniquely correct almost all error patterns beyond the error correction capability of the code.

This motivates our study about uniqueness of the general SRFR problem with this reduced number of evaluation points, as we will see in the following chapter. The simultaneous rational function reconstruction (Problem 2), is the problem of reconstructing a vector of rational functions with the same denominator given their remainders modulo some polynomials.

We saw how the common denominator constraint affects the condition on the parameters of the problem which guarantees the existence of a nontrivial solution (see equation 1.7). For instance, in the interpolation case, in which we want to reconstruct a vector of polynomials given its evaluation, the common denominator constraint reduces the number of evaluation points needed to guarantee the existence of a nontrivial solution, possibly losing its uniqueness. We also saw that this reduction is significant for the applications of this problem:

-for the polynomial linear system solving (Section 1.4) by evaluation-interpolation, this means a reduction on the number of points needed to reconstruct the solution. This reduction has an impact on the complexity of the resolution algorithms which depend on this number of points;

-from a coding theory perspective, this reduction allows the construction of decoders for IRS (Section 2.3) which correct beyond the error correction capability of the code.

Moved by these considerations, in [START_REF] Guerrini | On the Uniqueness of Simultaneous Rational Function Reconstruction[END_REF] we proved that with this smaller number of evaluation points (or if equation (1.7) holds, in the general case) SRFR admits a unique solution for almost all instances of the problem (Theorem 3.2.1). This chapter is devoted to the presentation of this result.

Recall that in Section 1.2 we saw that solutions of SRFR are elements of a specific relation module with negative shifted row degrees (see Lemma 1.3.8). The shift integrates the degree constraints. Therefore, in the uniqueness case there is only one element of an ordered weak Popov basis of this relation module with negative shifted row degrees. Hence the goal of this chapter is to prove that for almost all instances u of SRFR the row degrees of the relation module are of the form ρ = (0, . . . , 0, -1) (Theorem 3.2.1).

In order to achieve it, in Section 3.1 we first prove some results about the row degrees of general relation modules, i.e. relation modules related to general matrices M ∈ K[x] m×n . Then in Section 3.2 we transpose all these results to the relation module A M,Ru related to solutions of SRFR in order to finally prove our uniqueness result (Theorem 3.2.1).

Generic Row Degrees of the Relation Module

In this section we derive the generic form of the row degrees of relation modules. For the sake of clarity, we start this section with a short summary of some notions and notations introduced in Section 1.3.

Short summary of previous notions. Let

M ∈ K[x] m×n , where m ≥ n and M a K[x]-submodule of K[x] n = K[x] 1×n of rank n. The relation module A M,M is the kernel of the K[x]-module homomorphism φM : K[x] m -K[x] n /M such that φ(p) = pM for any p ∈ K[x] m . We denote by ϕ M : K[x] m /A M,M -K[x] n /M the corresponding injection.
To lighten the notations we also denote by ε 1 , . . . , ε m and ε 1 , . . . , ε n the canonical bases of K[x] m and K[x] n respectively. Moreover, let

K = K[x] n /M K[x] n / a i (x)ε i and L i = deg(a i ), where L 1 ≥ L 2 ≥ . . . ≥ L n (see Remark 1.3.4). We also consider e i = ε i mod A M,M .
Given a shift s ∈ Z m , we let ρ and δ be the s-row degrees and s-pivot degrees of A M,M (see Definition 1.3.8). In particular, δ = ρs.

Sometimes, we write ρ M and δ M to stress the matrix dependency.

At this point the reader may ask what we mean by the terminology "generic" which we frequently use in this work. We now give a formal definition. Definition 3.1.1 (Generic property). A property P is said to hold generically, or for generic instances or even for almost all instances, if there exists a nonzero polynomial such that the property holds for all instances for which the polynomial is not vanishing. Remark 3.1.1. Lemma 2.3.1 can be reformulated by saying that for a fixed error support E ⊆ {1, . . . , n}, with |E| ≤ τ IRS , for almost all error patterns in F l q then S Y,τ IRS ,k = x i Λf, x i Λ 0≤i≤τ IRS -ε-1 . Indeed, in this case the nonzero polynomial is the ρ-minor of the matrix M Y,τ IRS ,k (see the proof of Lemma 2.3.1 for more details). 

Monomial orders on modules

Let K be a field and K[x] = K[x 1 , . . . , x t ] be a multivariate polynomial ring. In this subsection we introduce the notion of monomial orders on K[x]-modules. We see a particular monomial order, the term over position (shortly T OP ) in its general and shifted version (s -T OP ). Finally, by transposing all these results to the univariate case, we underline the link between s-pivots (Definition 1.3.6) and leading terms w.r.t s -T OP order.

Monomial orders on K[x]. We now recall basic notions about monomial orders in K[x].

For more details, we refer the reader to [CLO07, Section 2.2].

Recall that a monomial in K[x] is a product of the form

x α := x α 1 1 • • • x αt t , where α = (α 1 , . . . , α t ) ∈ N t .

Definition 3.1.2 (Monomial order). A monomial ordering ≺ is any ordering relation on monomials in K[x]

, where α = (α 1 , . . . , α t ) ∈ N t , such that, -≺ is a total ordering, i.e. for any pair of monomials then we have only one of the following:

x α ≺ x β , x α = x β , x β ≺ x α . -if x α ≺ x β , then x α x γ ≺ x β x γ , for any monomial x γ ,
-≺ is a well ordering, i.e. there are no infinite descending chains of monomials.

Among all the monomial orders we especially focus on the lexicographic order.

Example 3.1.1 (Lexicographic order). Let x α and x β be monomials in K[x]. Then x α ≺ LEX x β , if in the difference αβ ∈ Z t , the left-most nonzero entry is negative.

Here are some examples, for t = 3

1. x 3 2 x 4 3 ≺ LEX x 1 x 2 2. x 1 x 2 ≺ LEX x 1 x 2 2 x 3 3 .  Remark 3.1.2.
We observe that in the univariate case, the only monomial order is the natural degree order,

x α < x β if α < β.  Let f = α c α x α , be a polynomial in K[x]
and ≺ be a monomial order. Let x α be the maximal monomial w.r.t ≺ such that c α = 0. Then x α is called leading monomial , c α is the leading coefficient and c α x α is the leading term. Formally, we denote them respectively LM ≺ (f ), LC ≺ (f ) and LT ≺ (f ).

Notice that, we can identify monomials x α in K[x] with n-tuples α = (α 1 , . . . , α t ) in N t . For this reason we can consider monomial orders on K[x] as orders on N t . As for polynomials in K[x], we can introduce the notions of leading coefficient, monomial and term. Let f ∈ K[x] t and ≺ a monomial order in K[x] t . We can write f = t i=1 c i m i , where m i are monomials in K[x] t . Let m i the maximal monomial w.r.t ≺ such that c i = 0. Then m i is the leading monomial, c i is the leading coefficient and c i m i is the leading term, i.e.

LM ≺ (f ) = m i , LC ≺ (f ) = c i and LT ≺ (f ) = c i m i .
Given N a submodule of K[x] t we can also define LT (N ), the monomial submodule

{LT (f ) | f ∈ N } of K[x] t .
The univariate case. We now consider the K[x]-module K[x] t , then we have

-x α ε i ≺ T OP x β ε j if (α, i) ≺ LEX (β, j), -x α ε i ≺ P OT x β ε j if (i, α) ≺ LEX (j, β), -given a shift s = (s 1 , . . . , s t ) ∈ Z t then x α ε i ≺ s-T OP x β ε j if (α + s i , i) ≺ LEX (β + s j , j).
We now focus on ≺ T OP and ≺ s-T OP orders. Notice that these orders sort monomials w.r.t to their row degree and shifted row degree respectively. Indeed, we can observe that given a monomial

x α ε i in the K[x]-module K[x] t and a shift s ∈ Z n , then rdeg(x α ε i ) = α and rdeg s (x α ε i ) = α + s i .
So, we can conclude that

-x α ε i ≺ T OP x β ε j if rdeg(x α ε i ) < rdeg(x β ε j ) or if rdeg(x α ε i ) = rdeg(x β ε j ) or i < j, -x α ε i ≺ s-T OP x β ε j if rdeg s (x α ε i ) < rdeg s (x β ε j ) and if rdeg s (x α ε i ) = rdeg s (x β ε j ) and i < j.
Example 3.1.3. Let K = F 7 , t = 3 and s = (0, 1, 2). Then

Mon (1, 0, 0) ≺ s-T OP (x, 0, 0) ≺ s-T OP (0, 1, 0) ≺ s-T OP (x 2 , 0, 0) ≺ s-T OP (0, x, 0)

rdeg s 0 1 2



We can now state the link between the ≺ s-T OP monomial order on K[x] t and pivots (Definition 1.3.6).

Remark 3.1.3. Let p = (p 1 , . . . , p n ) ∈ K[x] t , s ∈ Z t be a shift and LT (p) = c i x α ε i .
Then the s-pivot index, entry and degree are respectively i, p i and α.  Example 3.1.4. Let K = F 7 , t = 3 and s = (0, 1, 2). Consider p = (x 2 +3, 3x 3 +5x+2, 2x 2 + 1). Mon (x 2 , 0, 0) ≺ s-T OP (0, 3x 3 , 0) ≺ s-T OP (0, 0, 2x 2 )

rdeg s 2 4
Therefore LT ≺ s-T OP (p) = 2x 2 ε 3 . Indeed, note that the s-pivot index, entry and degree are respectively 3, 2x 2 + 1 and 2. 

The link between s-pivots and the leading term w.r.t ≺ s-T OP is useful to prove the following result, which basically relates the existence of p ∈ A M,M with a certain leading term LT (p) = x d ε i to a linearly dependency relation of monomials in the K[x]-module

K[x] m /A M,M .
Proposition 3.1.1. There exists p ∈ A M,M with s-pivot index i and s-pivot degree d if and only if

x d e i ∈ B ≺x d ε i M where B ≺x d ε i M := x n e j | x n ε j ≺ s-T OP x d ε i . Proof. Fix i, d ∈ N and let p ∈ K[x] m with s-pivot index i and s-pivot degree d. Then, r := rdeg s (p) = d + s i and p = ([≤ r] s 1 , . . . , [≤ r] s i-1 , [r] s i , [< r] s i+1 , . . . , [< r] sm ). Therefore we can write p = cx d ε i + p where c ∈ K * and p = ([≤ r] s 1 , . . . , [≤ r] s i-1 , [< r] s i , [< r] s i+1 , . . . , [< r] sm ). So, p ∈ A M,M has s-pivot index i and degree d ⇐⇒ x d ε i = (-1/c) p mod A M,M ⇐⇒ x d e i ∈ x n e j n + s j ≤ d + s i , for 1 ≤ j ≤ i -1 n + s j < d + s i , for i ≤ j ≤ m = B ≺x d ε i M .
In other terms, this proposition tells us that the K[x]-module K[x] m /A M,M is generated by monomials which do not belong to LT (A M,M ). Proposition 3.1.1 is a specific case, adapted to the modules on which we are focusing A M,M and K[x] m , of a more general result (see [START_REF] Eisenbud | Commutative Algebra: with a View Toward Algebraic Geometry[END_REF]Theorem 15.3]).

In conclusion, the next result exploits the relation between the s-pivot degrees of A M,M and a set of generators of K[x] m /A M,M . Theorem 3.1.2. Let δ be the s-pivot degrees of the relation module A M,M . Then, for any

1 ≤ j ≤ m, δ j = min{d | x d e j ∈ B ≺x d ε j M }. Proof. Fix 1 ≤ j ≤ m. During this proof we denote δ j := min{d | x d e j ∈ B ≺x d ε j M }.
We want to prove that δ j = δ j . Recall that by Proposition 3.1.1, x δ j e j ∈ B ≺x δ j ε j M

. Hence, by the minimality of δ j , δ j ≥ δ j . On the other hand, x δ j e j ∈ B ≺x δ j ε j M so by Proposition 3.1.1 there exists p ∈ A M,M of s-pivot index j and degree δ j . Finally, by Lemma 1.3.6 we can conclude that δ j ≥ δ j .

Row degrees of a relation module as row rank profile

We now define the matrix O M as the ordered matrix w.r.t ≺ s-T OP related to the K[x]module homomorphism φM . More specifically, we suppose that -the rows of the matrix from top to bottom are indexed by the monomials of K[x] m sorted increasingly w.r.t the ≺ s-T OP , -the rows are written w.r.t the basis {x i ε j } 0≤i<L j of K = K[x] n /M as a K-vector space.

Recall that the polynomials a 1 , . . . , a m are the invariants of the module M and L i = deg(a i ).

Therefore, this matrix has infinite number of rows and n j=1 L j columns. So, it has finite rank r, where 0 ≤ r ≤ n j=1 L j .

Example 3.1.5. Let K = F 7 and

M =    x 2 + 1 0 0 2x 0 x + 4   
so, m = 3 and n = 2. Let a 1 = a 2 = x 3 and s = (0, 1, 2).

O M =               φM (ε 1 ) φM (xε 1 ) φM (ε 2 ) φM (x 2 ε 1 ) φM (xε 2 ) φM (ε 3 ) . . .               =              
1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 4 1 0 . . . . . . . . . . . . . . . . . .

             
Notice that any row of the matrix is written w.r.t the basis

{ε 1 , xε 1 , x 2 ε 1 , ε 2 , xε 2 , x 2 ε 2 } of the K-vector space K[x] 2 / a 1 ε 1 , a 2 ε 2 .
This matrix has infinite rows and

L 1 + L 2 = deg(a 1 ) + deg(a 2 ) = 6 columns. 
In this subsection our goal is to relate the row rank profile ([Nei16, DPS15]) of O M to the row degrees of the relation module.

First we give the following, Definition 3.1.6 (Row rank profile). The row rank profile of a matrix A ∈ K µ×ν is the lexicographically smallest sub-sequence (i 1 , . . . , i s ) of (1, . . . , µ) such that the rank of A is s and the rows A i 1 , * , . . . , A is, * are linearly independent.

In other terms it is the lexicographically smallest sequence of s (equal to the rank of A) indices of linearly independent rows of the matrix.

In our case, since the rows of O M are indexed by monomials in K[x] m , we transpose the previous definition to monomials instead of indices. We denote Mon r the set of sets of r monomials of K[x] m , where r is the rank of the matrix O M . In order to do so, we first need to define an "extension" of the lexicographical ordering on families of monomials of Mon r . Definition 3.1.7. Let F = {x α i ε β i } 1≤i≤r and F = {x γ i ε λ i } 1≤i≤r two families of monomials in Mon r both sorted increasingly w.r.t ≺ s-T OP -order. Then, F ≤ LEX F if there exists Proof. To lighten the notations we omit the matrix dependency of the row rank profile. We define δ j = min δ | x δ ε j / ∈ RRP and δ = (δ 1 , . . . , δ m ). By the definition of row rank profile, we have that x δ j e j ∈ B ≺x δ j ε j (otherwise we could create a smaller family of linearly independent monomials). Using Theorem 3.1.2, we deduce that δ j ≥ δ j . Therefore F δ ⊂ F δ ⊂ RRP . Since the families of monomials F δ and RRP have the same cardinality r (i.e. the rank of O M ), they are equal and so F δ = RRP .

1 ≤ t ≤ r such that x α i ε β i = x γ i ε λ i for i < t and x αt ε βt ≺ s-T OP x γt ε λt

Constraints on linearly independent monomial families

We now characterize families of monomials in Mon r which are linearly independent in K, or in other words which belong to P M .

Note that we can extend the n-tuple L = (L 1 , . . . , L n ) of the degrees of the invariants of the module M to an m-tuple, by adding some zeros, i.e. L n+1 = . . . = L m = 0. Then there exists M ∈ K[x] m×n such that F d ∈ P M if and only if there exists M ∈ K[x] m×n such that F d ∈ P M . Indeed, recall that F d = {x i ε j } i<d j and so F d = {x i ε π(j) } i<d πj . Therefore the permutation on d leads to a permutation of the rows of M , not affecting the existence property.  Theorem 3.1.4 is an adaptation of [Vil97, Proposition 6.1] and its derivation [PS07, Theorem 3]. Even if the statements of these two papers are in a different but related context, their proof can be applied almost straightforwardly. We still provide the main steps of the proof, for the sake of clarity and also because we adapt it later in the proof of Theorem 3.2.1. Note also that we complete the "if" part of the proof because it was not detailed in earlier references. For this purpose, we introduce the following lemma and the corresponding corollary.

Theorem 3.1.4. Let d = (d 1 , . . . , d m ) ∈ N m such that d 1 ≥ d 2 ≥ . . . ≥ d m and L = (L 1 , . . . , L m ). Then, ∃M ∈ K[x] m×n such that F d ∈ P M ⇐⇒ l i=1 d i ≤ l i=1 L i for all 1 ≤ l ≤ m.
Lemma 3.1.5. Let N be a K[x]-submodule of K = K[x] n /M of rank l. Then the dimension of N as K-vector space is at most L 1 + • • • + L l .
Proof. First, remark that if q = (q 1 , . . . , q n ) ∈ N has its first nonzero element at index j then since a n |a n-1 |. . . |a 1 we have that a j q = 0. Now, since N has rank l, we can consider the matrix B whose rows are the l elements of a basis of N . We perform a transformation on the rows of B to obtain the Hermite normal form B of B. Recall that the so-obtained B is an upper triangular matrix and so the rows B i, * have the first nonzero elements at distinct indices k 1 , . . . , k l . Therefore a k j B * ,j = 0 and {x i B * ,j } 0≤i<L k j 1≤j≤l is a generating set of N . So the dimension of N as a K-vector space is dim(N

) ≤ L k 1 + • • • + L k l ≤ L 1 + • • • + L l since L 1 ≥ . . . ≥ L n and the k j are pairwise distinct. Corollary 3.1.1. Let l ≥ 0, d = (d 1 , . . . , d l ) ∈ N l and v 1 , . . . , v l ∈ K such that {x j v i } 0≤j<d i 1≤i≤l are linearly independent in K. Then l i=1 d i ≤ l i=1 L i .
Proof. We consider N the K[x]-module spanned by {v 1 , . . . , v l }, and we observe that

d 1 + • • • + d l ≤ dim(N ) ≤ L 1 + • • • + L l by Lemma 3.1.5.
Proof of Theorem 3.1.4. We observe that if m > n, we can write

K = K[x] n / a i ε i 1≤i≤n = K[x] m / a i ε i 1≤i≤m where a i = 1 for n + 1 ≤ i ≤ m.
Hence, we can suppose w.l.o.g. that m = n. ⇒) By the hypothesis, there exists a matrix M ∈ K[x] m×n such that {x i ε j M } x i ε j ∈F d = {x i v j } 0<i<d j are linearly independent in K where v j := ε j M . Hence, for all 1 ≤ l ≤ m, v 1 , . . . , v l satisfy the conditions of the Corollary 3.1.1 and so l i=1 d i ≤ l i=1 L i . ⇐) Note that for 1 ≤ i ≤ m, {x i u j } i<L j are linearly independent in M. Set u i = ε T i . We now consider the matrix 

K := [K 1 | . . . |K m ] where K j ∈ K[x] m×L j is in Krylov form, i.e.
3. K 3 = K(u 3 , 4) = [u 3 |xu 3 |x 2 u 3 |x 3 u 3 ]. Now, -since min(d 1 , L 1 ) = d 1 = 5, then K 1 = K(u 1 , d 1 ) = [u 1 |xu 1 |x 2 u 1 |x 3 u 1 |x 4 u 1 ], -since min(d 2 , L 2 ) = L 2 = 4, then K 2 = [K(u 2 , L 2 )|K(x d 1 u 1 , d 2 -d 1 )] = [u 2 |xu 2 |x 2 u 2 |x 3 u 2 |x 5 u 1 ].
It picks its missing column from the first unused column of K 1 .

-since min(d

3 , L 3 ) = d 3 = 3, then K 3 = K(u 3 , d 3 ) = [u 3 |xu 3 |x 2 u 3 ], -since min(d 4 , L 4 ) = L 4 = 0, then K 4 = [K(u 4 , L 4 ) = ∅|K(x d 1 +1 u 1 , L 1 -(d 1 +1)|K(x d 3 u 3 , L 3 - d 3 )) = [x 6 u 1 |x 7 u 1 |x 3 u 3 ].
It picks its missing columns from the last 2 unused of K 1 and from K 3 .

Figure 3.1 illustrates the construction of K 1 , K 2 and K 3 . Finally in the proof, we extend

K to K = [ K 1 | K 2 | K 3 | K 4 ],
where

K i = K(v i , d i ). In detail, -since K 1 = K(u 1 , d 1 ) = [u 1 |xu 1 | . . . |x 4 u 1 ] then v 1 = u 1 = (1, 0, 0) T , -we write K 2 = [u 2 |xu 2 | . . . |x 3 u 2 |0] + [0|0|0|0|x 5 u 1 ].
We now extend the fist block to the right and the second to the left and we get,

K 2 = [u 2 |xu 2 |x 2 u 2 |x 3 u 2 | 0 x 4 u 2 ] + [ 0 xu 1 | 0 x 2 u 1 | 0 x 3 u 1 | 0 x 4 u 1 |x 5 u 1 ].
In this way, by looking at the first column of both blocks we finally get

v 2 = u 2 + xu 1 = (x, 1, 0) T . -Since K 3 = [u 3 |xu 3 |x 2 u 3 ], then v 3 = u 3 = (0, 0, 1) T , -K 4 = [x 6 u 1 |x 7 u 1 |x 3 u 3 ]
. Again we consider it as,

K 4 = [x 6 u 1 |x 7 u 1 |0] + [0|0|x 3 u 3 ]
and we extend it, obtaining

K 4 = [x 6 u 1 |x 7 u 1 | 0 x 8 u 1 ] + [ 0 xu 3 | 0 x 2 u 3 |x 3 u 3 ]
.

By looking at the first columns we get

v 4 = x 6 u 1 + xu 3 = (x 6 , 0, x) T .
Therefore the matrix of the Theorem 3.1.4 is

M =       1 0 0 x 1 0 0 0 1 x 6 0 x      



We can now state the principal constraint on the pivot degrees δ M of the relation module A M,M where M varies in the set of matrices K[x] m×n such that the rank of O M is fixed. Theorem 3.1.6. Recall that L = (L 1 , . . . , L m ) are the degrees of the invariants of M where L i = 0 for n + 1 ≤ i ≤ m, and r is the rank of the ordered matrix O M . Then F dr ≤ lex F δ M where

F dr = min < LEX F d ∈ Mon r ∀1 ≤ l ≤ m, l i=1 d i ≤ l i=1 L i (3.2)
Proof. We know from Proposition 3.1.3 that RRP M = F δ M so {x i ε j M } i<δ j,M are linearly independent in K and m i=1 δ i,M = r. Using Theorem 3.1.4, we get that l i=1 δ i,M ≤ l i=1 L i for all 1 ≤ l ≤ m. This means that F δ M belongs to the set whose minimum is F dr , which implies our result.

We observe that the rank r of the ordered matrix O M satisfies the following 0 ≤ r ≤ Σ := m i=1 L i . Indeed, the dimension of K as a K-vector space is Σ.

Generic row degrees

The main aim of this subsection is to prove that the two families introduced so far are generically equal. Precisely we prove that for all matrices M ∈ K[x] m×n such that the rank r of the ordered matrix O M is r = Σ = m i=1 L i (or equivalently such that the map ϕ M is an isomorphism), then F δ M = F d Σ . This allows us to deduce that generically ρ M , i.e. the s-row degree of the relation module A M,M , coincides with d Σ + s (see (3.2)).

Corollary 3.1.2. For almost all matrices

M ∈ K[x] m×n , with m ≥ n ≥ 0, δ M = d Σ .
Proof. Our goal is to prove that there exists a non-zero polynomial C in the coefficients m i,j,k of the polynomial entries m i,j of M such that for any matrix with C(m i,j,k ) = 0, we have the equality δ M = d Σ .

Since l i=1 d Σ,i ≤ l i=1 L i for all 1 ≤ l ≤ m, we deduce from Theorem 3.1.4 that there exists M ∈ K[x] m×n such that {mM } m∈F d Σ are linearly independent. So the Σ-minor of the ordered matrix O M corresponding to those rows is non-zero. We now consider this Σminor as a function C in the coefficients m i,j,k of the polynomial entries m i,j of M . Note that C ∈ K[m i,j,k ] since the entries of O M are linear combinations of m i,j,k . Indeed, we can write m i,j = L j -1 k=0 m i,j,k x k because the polynomials m i,j are only considered modulo a j , and the coefficient of O M (recall the definition of this matrix, subsection 3.1.2) w.r.t the row x u ε i and the column

x v ε j of O M is L j -1 k=0 m i,j,k c j,k,u,v where c j,k,u,v ∈ K is the coefficient of (x k+u mod a j ) in x v .
We saw that C admits a nonzero evaluation so it is a non-zero polynomial. Now for any matrix M such that C(m i,j,k ) = 0, the vectors {mM } m∈F d Σ are linearly independent in K, so the rank of O M is equal to Σ. We have RRP M ≤ lex F d Σ because F d Σ ∈ P M (see Definition 3.1.8). Theorem 3.1.6 gives the other inequality, so

F d Σ = RRP M = F δ M and δ M = d Σ .
Hence, by summing up we have a characterization of the generic pivot degrees of relation modules.

Special cases.

Under some assumptions on shifts and the degrees of the invariants, the generic row degrees of relation modules have a simplified expression which allows us to easily determine them.

Let s = max 1≤i≤m (s i ). Let us define p and u as the quotient and remainder of the Euclidean division of m i=1 L i + s i by m, i.e. m i=1 (L i + s i ) = p • m + u. We prove that in this case the generic s row degree ρ M = p Σ has this specific form p := (p + 1, . . . , p + 1 u times , p, . . . , p m-u times ).

(

We have this specific form if the following conditions on L and s hold: First we show that p ≥ s implies F = F d . In order to prove F = F d , we need to show that

p ≥ s (3.4) ∀1 ≤ l ≤ m -1, l i=1 p i ≤ l i=1 (L i + s i ) (3.5 
d i = min{d ∈ N | x d ε i / ∈ F}. As already remarked, d i ∈ N.
We need to study the row degrees of the first monomials to conclude.

Notice that the monomials of K[x] m of s-row degree r increasingly sorted w.r.t ≺ s-T OP are x r-s i ε i for increasing 1 ≤ i ≤ m such that s i ≤ r. Now, -if r ≥ s, there are exactly m of such monomials, -otherwise, they are {x i ε j } i+s j <s and their number is m i=1 (s -s i ). From this we can deduce that the row degree of the t-th smallest monomial is

(t -1 - m i=1 (s -s i ))/m + s = (t -1 + m i=1 s i )/m provided that t ≥ m i=1 (s -s i ) + 1.
Hence the (Σ + 1)-th smallest monomial has s-row degree p. More precisely, the (Σ + 1)-th smallest monomial is the (u + 1)-th monomial of row-degree r, so F is equal to all monomials of row degree less than p and the first u monomials of row degree p. This proves

d i = min{d ∈ N | x d ε i / ∈ F} and F = F d .
Second we deduce from assumption 3.5 that for all

1 ≤ l ≤ m, l i=1 d i = l i=1 (p i -s i ) ≤ l i=1 L i , so F dr ≤ lex F d by Theorem 3.1.6 and finally F dr = F d because F is the smallest set of Σ monomials.
This specific form of row degree was already observed in different but related settings. To the best of our knowledge, it can be found in [Vil97, Proposition 6.1] for row degrees of minimal generating matrix polynomial and in [PS07, Corollary 1] for dimensions of blocks in a shifted Hessenberg form and in [START_REF] Jeannerod | Essentially optimal computation of the inverse of generic polynomial matrices[END_REF] for kernel basis were m = 2n. In all the three cases authors do not study the shifted case (the shifted Hessenberg form is not related to the shift that we defined).

Example 3.1.7. Let m = n = 3 and s = (0, 2, 4). So s = 4 and (s -s i ) = 6.

1. Consider L = (6, 1, 0). Then 3 i=1 L i +s i = 13 = 4•m+1. Notice that (3.4) and (3.5) are both verified. Hence p Σ = (5, 4, 4) and so d Σ = (5, 2, 0). As we can see in the following table, F 1 , i.e. the set of the first Σ = m i=1 L i = 7 monomials of K[x] 3 , increasingly sorted w.r.t ≺ s-T OP coincides exactly with

F d Σ,1 := F d Σ = {ε 1 , . . . , x 4 ε 1 , ε 2 , xε 2 }.
2. Consider L = (3, 0, 0). Then 

F d Σ,2 := F d Σ . 3. Consider L = (3, 3, 1). Then 3 i=1 L i + s i = 13 = 4 • m + 1. Let p = (5, 4, 4). Note that p = 4 ≥ 4 = s = 4 but since p 1 = 5 ≥ L 1 + s 1 = 3 then (3.5) does not hold. By Corollary 3.1.2, d Σ = (3, 3, 1) since l i=1 d Σ,i ≤ l i=1 L i for any 1 ≤ l ≤ m.
So the row degrees are p Σ = (3, 5, 5). Notice that in this case the set F 3 of the first Σ = 7 monomials, increasingly sorted w.r.

t ≺ s-T OP is different from F d Σ,3 := F d Σ = {ε 1 , . . . , x 2 ε 1 , ε 2 , . . . , x 2 ε 2 , ε 3 }. M on ε 1 xε 1 x 2 ε 1 ε 2 x 3 ε 1 xε 2 x 4 ε 1 x 2 ε 2 ε 3 rdeg s 0 1 2 3 4 
F d Σ,1 • • • • • • • F d Σ,2 • • • F d Σ,3 • • • • • • •  3.

Generic row degrees of the SRFR Relation Module

We can now transpose all these results to the specific case of SRFR in order to prove our main result (Theorem 3.2.1). First we recall SRFR (Problem 2). Let a 1 , . . . ,

a n ∈ K[x] with degrees L i := deg(a i ) and u = (u 1 , . . . , u n ) ∈ K[x] n such that deg(u i ) < L i . Moreover let 1 ≤ N i ≤ L i for 1 ≤ i ≤ n and 1 ≤ D ≤ min 1≤i≤n {deg(a i )}. The goal of SRFR is to reconstruct (v, d) ∈ K[x] n+1 such that for any 1 ≤ i ≤ n v i = du i mod a i , deg(v i ) < N i , deg(d) < D. (3.6) We consider M = a i (x)ε i 1≤i≤n and S u := {(v, d) | satisfying (3.6)}. Recall that by Lemma 1.3.8 (v, d) ∈ S u ⇐⇒    (v, d) ∈ A M,Ru rdeg s ((v, d)) < 0 (3.7)
where, the shift s = (-N 1 , . . . , -N n , -D) and

R u := I n -u
Therefore the K[x]-module of solutions of SRFR is generated by elements of the relation module A M,Ru with negative shifted row degree. We now denote by ρ u := ρ Ru and δ u := δ Ru , respectively the s-row degrees and the s-pivot degrees of ordered weak Popov bases of the relation module A M,Ru . As already remarked in Section 1.2, by Remark 1.

3.3, dim(S u ) = ρ u,i <0 -ρ u,i (3.8) 
We are now ready to introduce the main result of this section.

Theorem 3.2.1. If n i=1 L i = n i=1 N i +D -1
then for almost all instances u, SRFR admits a unique solution.

Moreover, if K = F q the proportion of instances leading to nonuniqueness is at most (D -1)/q.

Proof. By the previous considerations it suffices to prove that for almost all u ∈ K[x] n , then ρ u = (0, . . . , 0, -1).

We divide the proof in two steps:

1. first we observe that n i=1 L i + s i = ( n i=1 (L i -N i )) -D = -1 and by performing the Euclidean division of n i=1 L i + s i by n + 1 we get

n i=1 L i + s i = -1 • (n + 1) + n.
In this first part we prove that the assumptions (3.4) and (3.5) of Theorem 3.1.7 are satisfied so that we can conclude that the generic row degree is of the specific form ρ Σ = (0, . . . , 0, -1), where Σ = n i=1 L i . 2. Then we prove that there exists u ∈ K[x] n such that the corresponding matrix R u satisfies the generic condition of Corollary 3.1.2 and so ρ u = ρ Σ .

1. Notice that p = -1 and s = max 1≤i≤n+1 {s i } ≤ -1. So (3.4) is verified. On the other hand also (3.5) holds since for any 1 ≤ i ≤ n + 1, we have that p i ≤ 0 ≤ L i + s i . 2. We now show that the construction of Theorem 3.1.4 provides a matrix of the form R u . Notice that in this case, (d 1 , . . . , d n+1 ) = (N 1 , . . . , N n , D -1). By SRFR assumptions, for any 1 ≤ i ≤ n, d i ≤ L i and so We then extend blocks of the matrix K n+1 to get K n+1 (see Figure 3.3). Note that we have

K i = [K(u i , d i )]. Therefore, K i = K i , for 1 ≤ i ≤ n. The last matrix K n+1 = [K(x d 1 u 1 , t 1 )| . . . |K(x dn u n , t n )] where d j + t j = L j for any 1 ≤ j ≤ n (see Figure 3.2). K 1 K 1 = d 1 t 1 K 2 K 2 = d 2 t 2 K 3 K 3 = d 3 t 3 K 4 = t 1 t 2 t 3 K(x d 1 u 1 , t 1 ) K(x d 2 u 2 , t 2 ) K(x d 3 u 3 , t 3 )
K n+1 = [K(v n+1 , d n+1 )].
where v n+1 = n j=1 x s j u j . We now need to show that s j ≥ 0. We cannot use the same technique as the proof of Theorem 3.1.4 since the sequence of (d i ) is not increasing.

Fix j, recall that s j is equal to s j which in this case is exactly d j minus the number of columns added to extend the block to the left (see Figure 3.3). This number of columns is at most d n+1 -t j . Therefore,

s j ≥ d j -(d n+1 -t j ) = d j -(d n+1 -(L j -d j )) = L j -d n+1 ≥ 0 since d n+1 = D -1 ≤ D ≤ min 1≤i≤n {L i }.
So, with this construction we obtain v i = ε i for 1 ≤ i ≤ n and v n+1 = n j=1 x s j u j . Note that the matrix whose rows are determined by these v i is of the form where * represent polynomials in K[x]. This shows that there exists u such that the polynomial C (see proof of Corollary 3.1.2) does not vanish in R u . By the particular form of R u , we can consider C as a polynomial whose indeterminates are u j,k , where for any

M =            1 0 0 . . . 0 0 1 0 . . . 0 0 0 1 . . . 0 . . . 0 0 0 . . . 1 * * * . . . *            K 4 = t 1 t 2 t 3 d 4 d 4 d 4 + + ≤ d 4 -t 2 d 4 -t 3
1 ≤ j ≤ n, u j = L j -1 k=1 u j,k x k .
Recall that C is the Σ-minor of the ordered matrix O Ru and note that all the coefficients of this matrix are scalar elements of the field, except for the D -1 rows corresponding to {x l ε n+1 } 0≤l<D-1 which are linear combinations of u j,k (as remarked in the proof of Corollary 3.1.2). Therefore, the total degree of C is at most D -1 and if K = F q , by Schwartz-Zippel Lemma the proportion of instances leading to non-uniqueness among all possible instances is at most (D -1)/q.

Conclusions and open problems

We now draw the conclusions on the main results of this section and we discuss about the related open problems. * * * * *

In this thesis we focus on the simultaneous rational function reconstruction.

Problem 2. Simultaneous Rational Function Reconstruction

Input: a 1 , . . . , a n ∈ K[x], u = (u 1 , . . . , u n ) ∈ K[x] n , where deg(u i ) < deg(a i ) and 1 ≤ N i ≤ deg(a i ), 1 ≤ D ≤ min 1≤i≤n {deg(a i )} Output: (v, d) = (v 1 , . . . , v n , d) ∈ K[x] n+1 such that [v i = du i mod a i ] 1≤i≤n , deg(v i ) < N i , deg(d) < D. (1.5)
In other terms, this is the problem of recovering several rational functions with the same denominator, given their remainders modulo different polynomials. As for the classical ratio-nal function reconstruction problem (Problem 1), we drop the assumption on the invertibility of the denominator and we focus on the weaker equation (1.5). Indeed, this equation has the advantage to be linear and allows us to focus on the homogeneous linear system related to it, in order to deduce some useful information about the existence of a nontrivial solution and the uniqueness.

We observe that in the interpolation case, when a 1 = . . . = a n = L i=1 (x -α i ), where {α 1 , . . . , α L } are pairwise distinct elements of the field, then (1.5) becomes an equation on the evaluations

[v i (α j ) = d(α j )u i (α j )] 1≤i≤n 1≤j≤L , deg(v i ) < N i , deg(d) < D.
So, in this case SRFR becomes the problem of recovering a vector of rational functions with the same denominator, given its evaluations.

In Chapter 1, we saw that in order to solve SRFR we could apply the rational function reconstruction componentwise and that we have uniqueness of SRFR whenever

deg(a i ) = N i + D -1, for any 1 ≤ i ≤ n =⇒ n i=1 deg(a i ) = n i=1 (N i + D -1).
Alternatively, we could use the fact that all the rational functions that we want to recover share the same denominator to decrease the number of unknowns of the homogeneous linear system related to (1.5). As a matter of fact if

n i=1 deg(a i ) = n i=1 N i + D -1 (3.9)
SRFR admits a nontrivial solution. The main aim of this work is to study, under the assumption (3.9), instances leading to uniqueness. There were two results which motivate us to pursue our research in this direction: the former is related to the computer algebra application of SRFR to polynomial linear system solving (see Section 1.4) and the latter is related to the coding theory application of the decoding of interleaved Reed-Solomon codes (see Subsection 2.3.1).

-In [START_REF] Olesh | The Vector Rational Function Reconstruction problem[END_REF] (see Lemma 1.4.2), Z. Olesh and A. Storjohann proved that in the case of the polynomial linear system solving, under some specific assumptions on the degree bounds N 1 = . . . = N n = N = D = n deg(A) + 1 and by considering a 1 = . . . = a n , if deg(a) = N + (D -1)/n (which coincides with (3.9)), then we have uniqueness of the corresponding SRFR.

-In Section 2.3 we saw how the interpolation-based decoding technique for interleaved Reed-Solomon codes can be reduced to SRFR.

More specifically, consider n-IRS code of length L and dimension N , L evaluation points {α 1 , . . . , α L } and a received vector Y = (f (α 1 ), . . . , f (α L )) + Ξ ∈ F n×L q , where f ∈ F q [x] n×1 with deg(f ) < N (see Definition 2.3.1). Recall that Ξ is the error matrix with error support E = {j | Ξ * ,j = 0}.

In order to decode Y , we can solve SRFR in the interpolation version and find (ϕ, λ) such that for any 1 ≤ j ≤ L,

ϕ(α j ) = Y * ,j λ(α j ), deg(ϕ) < ε + k, deg(ψ) < ε + 1
where ε ≥ |E|, is a bound on the number of errors. Recall that (Λf , Λ), where Λ is the error locator polynomial (see Definition 2.2.4), is a solution of this specific SRFR. In this context, uniqueness of SRFR means that we can uniquely recover such a solution and so the vector of polynomials related to the codeword of this IRS.

We now recall that Lemma 2.3.1 basically tells us that if

L = (N + ε) + (ε + 1 -1)/n (which coincides with (3.9) since L = deg(a) = deg( L i=1 (x -α i ))
) then for almost all error matrices Ξ with error support E, then SRFR admits a unique solution for the corresponding instance Y . So, even if this result is true in an error scenario, we thought that it could suggest something about the uniqueness of SRFR also for the general case.

Therefore, the main result (Theorem 3.2.1) of this chapter states that under (3.9), for almost all instances u, SRFR admits a unique solution. This represents a step towards the following conjecture.

Conjecture 3.3.1. If (3.9) is satisfied then for almost all (v, d) ∈ K[x] n+1 with gcd(d, a i ) = 1, for any 1 ≤ i ≤ n, then SRFR with instance u = v d admits a unique solution.

We strongly believe in this conjecture, which is suggested by some tests that we implemented in SageMath. Indeed, we recall that here we dropped the gcd assumption, in order to focus on the linear problem (1.5). Therefore, informally speaking, instances u of the SRFR problem in its linear version (Problem 2) may not derive from vector of rational functions. So, in order to formally prove the conjecture above, since we proved the existence for a generic instance, it would be sufficient to show the existence of an instance u of the form v d mod a. In the next chapter, we will see how this conjecture is crucial also in the error correction setting case. The main aim of error correcting codes is to correct errors which can be introduced by noisy channels. Besides, they have others applications which do not involve communication over a channel: for instance they can be used to correct and detect computational errors.

CHAPTER 4 Simultaneous Cauchy interpolation with errors

High Performance Computing Technologies (supercomputers) contain thousands of computing nodes networked together (parallel computing) to provide very high performances and to complete heavy tasks. The more the number of system components grows, the more the failure of computing nodes becomes relevant. For instance, modern supercomputers commit approximately 3.5 faults per day [DGP + 19, LC18]. Therefore, without a drastic change at the algorithmic level such a failure rate will certainly prevent supercomputers from progressing. For this reason, many fault tolerant techniques and algorithms have been proposed to detect and correct these faults.

Faults can be distinguished into hard and soft faults: hard faults, also called fail-stop, include hardware failures and cause an immediate interruption of processes. While soft faults are more subtle faults which basically do not lead to any interruption. Examples are bit flips and data corruption due to a number of possible causes, including occasional cosmic rays.

The hard faults can be handled by checkpoint-restart techniques whose main principle consists of periodically saving data onto a reliable storage device; the system can then recover from the most recent checkpoint whenever an hard fault occurs [START_REF] Bode | Parallel Computer Architectures[END_REF]. However, this tech- nique is expensive in terms of time and resources, since it requires a certain time to recover data and it could require external data storage and network bandwidth.

To overcome drawbacks of checkpoint-restart techniques, K-H. Huang and J.A. Abraham introduced the algorithm-based fault tolerant (ABFT) technique [START_REF] Huang | Algorithm-Based Fault Tolerance for Matrix Operations[END_REF] which, exploiting algorithm's characteristics, allows one to design a fault tolerant algorithm which can detect and/or correct faults. More specifically, this technique enriches the input of a given algorithm with redundancy (e.g. by using algebraic tools of error correcting codes) in order to correct computational errors which occur in parallel-distributed environments. It is characterized by -the encoding of inputs of the algorithm, -the redesign of the algorithm to operate on the encoding data, -the distribution of some computation steps of the algorithm among some computational units.

For instance, consider the matrix multiplication of A, B ∈ K n×n . The encoding of the two matrices is obtained by adding to A (respectively to B) a checksum row (column), whose components are determined by the sum of any element of the column (row) of A (B). Then, the multiplication row by column of A and B are performed by different nodes (parallelization) (see Figure 4.1). In this way, an error is detectable and correctable by checking if the sum of any row and column of the resulting matrix coincides with the corresponding checksum.

Notice that in this framework, the error model strongly depends on the chosen parallelization scheme: e.g. in the matrix multiplication example above, errors are introduced in the computation of any element of the product matrix.

Recently, many fault tolerant algorithms have been proposed for classic computer algebra problems: e.g. Chinese remaindering [BDFP15, GRS00, KPR + 10], matrix multiplication and inversion [GLL + 17, Pag13, Roc18], LU factorization [START_REF] Dumas | LU Factorization with Errors[END_REF].

In this chapter we focus on an algorithm-based fault tolerant technique for polynomial linear system solving (Section 1.4) by evaluation-interpolation [START_REF] Boyer | Numerical Linear System Solving with Parametric Entries by Error Correction[END_REF][START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF]. We describe our results of [START_REF] Guerrini | Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes[END_REF] and new contributions in progress [START_REF] Guerrini | Enhancing Simultaneous Rational Function Recovery: adaptive error correction capability and new bounds for applications[END_REF].

ABFT for Polynomial Linear System Solving by Evaluation-Interpolation

Consider a polynomial linear system (PLS) (see Section 1.4),

A(x)y(x) = b(x) (4.1)
where A ∈ F q [x] n×n is nonsingular and b ∈ F q [x] n×1 . Recall that by Lemma 1.4.1, this system admits only one solution y = v d ∈ F q (x) which is a vector of rational functions with the same denominator. We assume that gcd(gcd(v 1 , . . . , v n ), d) = 1 and that d is monic.

Our goal in this section is to introduce an algorithm-based fault tolerant technique for PLS solving by evaluation-interpolation.

Recall from Section 1.4 that the evaluation-interpolation technique for the PLS solving consists in:

1. (evaluation) given L distinct evaluation points {α 1 , . . . , α L }, evaluate the polynomial matrix A and the polynomial vector b at these points.

Recall that in Section 1.4, we saw how to handle the rank drop case: it suffices to add r ≥ |R| = |{j | det(A(α j )) = 0}| evaluation points to the number of points which allows one to uniquely recover the solution of the PLS. For simplicity, from now on, we assume that all the evaluation points do not cause rank drops of the corresponding evaluated matrices. We also recall that the minimum number of evaluation points that we need to uniquely reconstruct the solution (see Section 1.4) is

(Pointwise

L := min{N + D -1, max{deg(A) + N, deg(b) + D}} (4.2)
As previously pointed out, ABFT techniques are characterized by the encoding of inputs, the parallelization of computations and the redesign of the algorithm so that it can manage In what follows we formally detail this scheme.

Parallelization and error model. Fix L pairwise distinct evaluation points {α 1 , . . . , α L }. Assume that any node, which we can consider as a black box, computes y j = A(α j ) -1 b(α j ) ∈ F n×1 q for any 1 ≤ j ≤ L (Figure 4.2). These nodes could make some errors and compute y j = A(α j ) -1 b(α j ) = v(α j ) d(α j ) . Notice that, in this error model, the number of errors coincides with the number of nodes which compute an incorrect result. Hence, we assume that after the parallelization we get

Y = v(α 1 ) d(α 1 ) , . . . , v(α L ) d(α L ) + Ξ (4.3)
where Ξ ∈ F n×L q is the error matrix, whose error support is E := {j | Ξ * ,j = 0}. So, given the matrix Y , some bounds N > deg(v), D > deg(d) and deg(A), deg(b) our goal is to correct such errors and recover the solution (v, d) of the PLS. We call this problem polynomial linear system solving with errors (PLSwE).

Simultaneous Cauchy interpolation with errors

Polynomial linear system solving with errors consists in the recovering of a vector of rational functions v d , which in this case is the solution of a PLS (4.1), given its evaluations (see (4.3)), where some are erroneous or corrupted. It is then an application of the following more general problem, that we introduced in [START_REF] Guerrini | Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes[END_REF]. 

Y = v(α 1 ) d(α 1 ) , . . . , v(α L ) d(α L ) + Ξ. (4.4)
SCIwE is the problem of finding a vector of rational functions v d as in (4.4) given an instance Y .

We observe that this problem is the rational extension (see Figure 4.3) of the simultaneous interpolation with errors (SIwE, Definition 2.3.2) which is the problem of decoding an interleaved Reed-Solomon code. Indeed, here we want to reconstruct a vector of rational functions instead of a vector of polynomials. This link allows us to extend the same interpolation-based technique for decoding IRS codes to this rational case (as we proved in [START_REF] Guerrini | Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes[END_REF]).

In detail, from now on we fix an instance Y = v(α 1 ) d(α 1 ) , . . . , v(α L ) d(α L ) + Ξ of SCIwE with parameters L, τ, N, D, q and evaluation points {α 1 , . . . , α L }. For any 1 ≤ j ≤ L, we denote y j := Y * ,j .

As for IRS and also RS codes, we can consider the error locator polynomial (see Definition 2.2.4),

Λ = j∈E (x -α j )
where E = {j | Ξ * ,j = 0} is the error support. Therefore, we notice that for any 1 ≤ j ≤ L,

Λ(α j )v(α j ) = y j d(α j )Λ(α j ) ⇐⇒ Λ(α j )[v(α j ) -y j d(α j )] = 0. (4.5)
Indeed if j ∈ E then since Λ(α j ) = 0, then (4.5) becomes the identity 0 = 0. On the other hand, if j / ∈ E then y j = v(α j ) d(α j ) and so (4.5) becomes the identity 0 = 0. As IRS codes (and also for classic RS codes), we can linearize this equation by replacing the polynomial Λv by ϕ and Λd by ψ, thus obtaining for any 1 ≤ j ≤ L the following key equation, ϕ(α j ) = y j ψ(α j ), deg(ϕ) < N + τ, deg(ψ) < D + τ. 

M Y,N,D,τ =       V L,N +τ -D 1 V L,D+τ V L,N +τ -D 2 V L,D+τ . . . . . . V L,N +τ -D n V L,D+τ       (4.7)
where V L,N +τ and V L,D+τ are Vandermonde matrices and for any 1 ≤ i ≤ n and D i is the diagonal matrix whose elements on the diagonal are y i,1 , . . . , y i,L .  Previous results. We now observe that by (1.6) if

L ≥ (N + τ ) + (D + τ ) -1 = N + D + 2τ -1 ⇐⇒ τ ≤ L -(N + D -1) 2 =: τ 0 (4.8)
then SRFR admits a unique solution.

Note that in the polynomial case, i.e. D = 1, then τ 0 = L-N 2 is exactly the error correction capability τ 0 of an n-IRS code with length L and dimension N (see Definition 2.3.1). Furthermore, we have the following result. Proof. First, notice that ψ(x) is nonzero. Indeed, if ψ = 0, then by the key equation (4.6), for any 1 ≤ j ≤ L, ϕ(α j ) = 0. Now, notice that deg(ϕ) ≤ N + τ -1 and that the number of roots is L ≥ N + D + 2τ -1 > N + τ -1. Hence, since the polynomial has more roots than its degree then ϕ = 0. Since (ϕ, ψ) is a generator of the F q [x]-module, it cannot be equal to (0, 0). such that (Λv, Λd) = (Rϕ, Rψ).

As seen in

-on the other hand, since ϕΛd = ψΛv and both ψ and d are nonzero, then ϕ ψ = v d . Moreover, gcd(gcd i (v i ), d) = 1 and so there exists P ∈ F q [x] such that (ϕ, ψ) = (P v, P d).

Therefore, Λ = P R and P = Λ/R is of the form P = j∈E (x -α j ), for E ⊆ E. As in Lemma 2. 



In [BK14, KPSW17] 1 the authors introduced Algorithm 5 which uniquely 2 recovers (v, d), a solution of SCIwE with instance Y and parameters τ, N, D, q, n and {α 1 , . . . , α L }. Note that this algorithm is correct: indeed, by Theorem 4.1.1, since L = N + D + 2τ -1, then (ϕ, ψ) computed at step 1 coincides with (Λv, Λd) and so the gcd computed at step 2 is exactly the error locator polynomial Λ.

Algorithm 5: Algorithm for SCIwE of [START_REF] Boyer | Numerical Linear System Solving with Parametric Entries by Error Correction[END_REF] Input : Y = v(α 1 ) d(α 1 ) , . . . , v(α L ) d(α L ) + Ξ an instance of SCIwE with parameters τ, N, D, q and L := N + D + 2τ -1 evaluation points {α 1 , . . . , α L } Output: (v, d) 1 compute (ϕ 1 , . . . , ϕ n , ψ) a generator of the F q [x]-module generated by solutions in S Y,N,D,τ , scaled to obtain ψ monic; 2 Λ gcd(ϕ 1 , . . . , ϕ n , ψ); 

L GLZ1 = N + D -1 + τ + τ n ≤ N + D + 2τ -1
meaning that we reduce the number of evaluation points needed to reconstruct the solution of SCIwE. However, since we use fewer evaluation points than the number which guarantees to uniquely reconstruct (v, d), our algorithm can possibly fail.

Remark 4.1.3. We observe that

L ≥ L GLZ1 = N + D -1 + τ + τ n ⇐⇒ τ ≤ n(L -(N + D -1)) n + 1 =: τ GLZ .
Furthermore, since n ≥ 1, note that

τ 0 = L -(N + D -1) 2 ≤ n(L -(N + D -1)) n + 1 = τ GLZ
1. Ihe authors introduced in [BK14, KPSW17] Algorithm 5 for the PLSwE problem. As previously remarked, PLSwE is a specific case of simultaneous Cauchy interpolation with errors (Definition 4.1.1) in which we want to recover a vector of rational functions which is a solution of a polynomial linear system.

2. The algorithm introduced in [BK14, KPSW17] is slightly different from Algorithm 5: it computes the column echelon form of a basis of the solution space SY,N,D,τ = ker(MY,N,D,τ ) in order to find the minimal degree solution (Λv, Λd).

3. We remark that in [START_REF] Guerrini | Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes[END_REF] we considered a more specific case in which we assumed to know exactly the number of errors and the degree of the denominator. So in this thesis, we present a more general result.

This proof has the same structure as the proof of Lemma 2.3.1. In detail, in the first part we show the existence of a draw of columns of Y corresponding to the error positions, i.e. Y * ,j with j ∈ E, for which we have S Y,N,D,τ ⊆ x i Λv, x i Λd 0≤i<δ N,D,τ . So thanks to (4.11) we can derive the equality.

Consider a partition of E, i.e. E = ∪ n i=1 I i , such that for any 1 ≤ i ≤ n, |I i | ≤ |E|/n . Note that such a partition exists since n |E|/n ≥ |E|. For any j ∈ E, denote by i j the unique index such that j ∈ I i j . Construct a matrix V , such that

-V * ,j = v(α j ) d(α j ) , if j ∈ E, -if j ∈ E, V * ,j ∈ F n×1 q is chosen so that v(α j ) -d(α j )V * ,j = i j , (4.12) 
where i is a vector of F n×1 q , whose i-th entry is 1 and all the others are zero. Now, consider (ϕ, ψ) ∈ S V,τ,N,D . By multiplying (4.12) by ψ(α j ) and since (ϕ, ψ) ∈ S V,τ,N,D (see (4.6)) we get

ψ(α j )v(α j ) -d(α j ) ψ(α j )V * ,j ϕ(α j ) = ψ(α j ) i j .
Fix 1 ≤ i ≤ n, we claim that for any j /

∈ I i then ψ(α j )v i (α j ) -d(α j )ϕ i (α j ) = 0. Indeed, -if j / ∈ E, then V * ,j = v(α j )
d(α j ) and so by replacing V * ,j in (4.6), we get in particular ψ(α j )v i (α j ) -d(α j )ϕ i (α j ) = 0, -if j ∈ E \ I i , by the choice of V * ,j , then ψ(α j )v i (α j ) -d(α j )ϕ i (α j ) = 0.

So, ψ(α j )v i (α j ) -d(α j )ϕ i (α j ) = 0. Note that deg(ψv i -dϕ i ) < N + D + τ -1. On the other hand the number of roots of this polynomial is

L -|I i | ≥ L -|E|/n ≥ L GLZ1 -τ /n and since L GLZ1 ≥ N + D -1 + τ + τ /n it is then L -|I i | ≥ N + D + τ -1.
Therefore since this polynomial has more roots than its degree it is the zero polynomial. Hence ψv -dϕ = 0. Now, since gcd(gcd i (v i ), d) = 1, there exists R ∈ F q [x] such that ϕ = Rv and ψ = Rd. Notice that for any 1 ≤ j ≤ L by (4.6) we get,

0 = ϕ(α j ) -ψ(α j )V * ,j = R(α j )[v(α j ) -V * ,j d(α j )].
By construction, if j ∈ E, then v(α j ) -V * ,j d(α j ) = 0 and so R(α j ) = 0. Therefore, the error locator polynomial Λ = j∈E (x -α j ) divides R and so (ϕ, ψ) ∈ x i Λv, x i Λd 0≤i<δ N,D,τ . Hence, S V,τ,N,D ⊆ x i Λv, x i Λd 0≤i<δ N,D,τ and so the equality holds. Therefore, we showed that S V,τ,N,D = x i Λv, x i Λd 0≤i<δ N,D,τ for a draw of Y . Let us show that the equality holds for many draws. Given Y as in the assumption of this theorem, since On the other hand, as proved above, there exists a draw V * ,j of Y * ,j , for j ∈ E, such that rank(M V,N,D,τ ) = ρ. This means that there exists a nonzero ρ-minor in M V,N,D,τ . We consider the same nonzero ρ-minor in M Y,N,D,τ as a multivariate polynomial C whose indeterminates are (y i,j ) 1≤i≤n j∈E . We remark that we showed the existence of a draw V * ,j of Y * ,j , for j ∈ E, such that C(V * ,j ) is non zero. Hence the polynomial C is nonzero. For any matrix Y such that (Y * ,j ) j∈E is not a root of C, then S Y,N,D,τ = x i Λv, x i Λd 0≤i<δ N,D,τ . Note that the total degree of the polynomial C is at most D + τ , since only the last D + τ columns of the matrix M Y,N,D,τ contains the variables (y i,j ) 1≤i≤n j∈E (see (4.7)).

x i Λv, x i Λd 0≤i<δ N,
Finally by the Schwartz-Zippel Lemma, the polynomial C cannot be zero in more than (D + τ )/q fractions of its domain. Therefore, we can conclude that the probability that S Y,N,D,τ = x i Λv, x i Λd 0≤i<δ N,D,τ is at most (D + τ )/q. Remark 4.1.4. We now recall that by Remark 4.1.2 we have that

rank(M) = 1 ⇐⇒ S Y,τ,N,D = x i Λv, x i Λd 0≤i<δ N,D,τ
Note that ⇐) is trivial, while the other implication derives from the proof of Theorem 4.1.1. This allows us to prove the correctness of our Algorithm 6. Indeed, if rank(M) = 1 once found a generator (ϕ, ψ) of M, by computing gcd(ϕ, ψ) we then recover the error locator polynomial Λ, and by dividing (ϕ, ψ) by Λ we finally reconstruct the solution (v, d). 

Polynomial Linear Solving with Errors

We shortly recall the main aim of this chapter: constructing an ABFT technique for PLS solving by evaluation interpolation.

We now consider a PLS A(x)y(x) = b(x), where y(x) = v(x) d(x) , gcd(gcd i (v i ), d) = 1 and such that d is monic. Fix L evaluation points {α 1 , . . . , α L }. We assume that both the evaluation and the pointwise resolution of the evaluated systems steps (of the evaluation-interpolation algorithm for PLS solving) are parallelized. Therefore, our nodes compute

Y = v(α 1 ) d(α 1 ) , . . . , v(α L ) d(α L ) + Ξ (4.13) with E := {j | Ξ * ,j = 0}.
The PLSwE is then the problem of recovering (v, d), given -the matrix Y as in (4.13),

-the evaluation points {α 1 , . . . , α L }, Note that both L and L strongly depends on the bounds N and D on the degrees of the solution that we want to recover and of the bound τ of the number on errors which occur in the parallelization step. Therefore, if we consider N, D much bigger than the real degrees of the solution and τ much bigger then the real number of errors, we can significantly increase the number of evaluation points compared to the number we really need. We now provide an example, to better visualize the problem.

Example 4.2.1. Let F 37 and consider the PLS whose coefficient matrix is

A = 35x 3 + 4x 2 + 35x + 8 29x 5 + 35x 4 + 35x 3 + 5x + 9 12x 5 + 3x 4 + 3x 3 + 11x + 5 11x 7 + 9x 6 + 28x 4 + 27x 3 + 18x 2 + 36x + 10 and b = 8x + 1 2x 2 + 5 Let v d = 10x 5 +22x 4 +x 3 +20x+34 x 5 +10x 4 +4x 3 +28x 2 +16x+3 16x 3 +14x 2 +9x+3 x 5 +10x 4 +4x 3 +28x 2 +16x+3
be the solution with d monic that we want to recover. We do not know a priori the real degrees of v and d, i.e. 

L = min{L BK , L KP SW } = min{32, 25} = 25 L = min{L GLZ1 , L GLZ2 } = min{30, 23} = 23.
Besides, the real number of points that we need is A classical strategy to overcome this limit consists in performing an early termination technique [START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF] which is an adaptive strategy which, starting from a minimal value of evaluation points, iteratively increments this number until a nontrivial result is found. Note that this means that the minimal number of evaluations which guarantees the existence is reached and it is really important in this setting to determine this minimal number.

L ideal = min{L BK , L KP SW } = 15 L ideal = min{L GLZ1 , L GLZ2 } = 14 ( 
We point out that the main goal of this early termination technique is to possibly decrease the number of evaluation points needed for the reconstruction and not to decrease the complexity of the algorithm used for the resolution.

In the following paragraph we reinterpret and revisit the results of [KPSW17].

Previous results

In this subsection we consider a PLS A(x)y(x) = b(x) and its solution v(x) d(x) , where gcd(gcd i (v i ), d) = 1 and d is monic. Given L ≤ q evaluation points {α 1 , . . . , α L }, we receive the matrix In [KPSW17], E. Kaltofen et al. introduced Algorithm 8 which takes as inputs the additional parameters ν, ϑ, ξ ≥ 0 allowing one to reduce the number of evaluation points needed for computations. Specifically, the main idea of the algorithm consists in the study of the solution space S Y,ν,ϑ,ξ of the SRFR related to Y and with degree constraints determined by these new parameters ν + ξ and ϑ + ξ. The algorithm declares a failure if these bounds are too small compared to the real degrees of the solution (Λv, Λd) that we are searching for, or in other terms deg(v)

Y = v(α j ) d(α j ) + Ξ,
+ |E| > ν + ξ or deg(d) + |E| > ϑ + ξ.
The correctness of this algorithm is based on the following theorem. does not depend on the bounds N, D, τ , but it depends the parameters ν, ϑ, ξ. These parameters may be too small, meaning that S Y,ν,ϑ,ξ could be trivial, since it may not contain the solution (Λv, Λd) that we are searching for. So, the only difference compared to the proofs of the Theorem 4.1.1 and Theorem 4.1.3 we have to pay attention to, is how we prove that for any (ϕ, ψ) ∈ S Y,ν,ϑ,ξ

-ϕ(x)Λ(x)d(x) -ψ(x)Λ(x)v(x) = 0, if L BK ≤ L KP SW , -A(x)ϕ(x) -b(x)ψ(x) = 0, if L KP SW ≤ L BK .
since it is here that we use the parameters ν, ϑ, ξ.

First, we assume that L BK ≤ L KP SW . We consider (ϕ, ψ) ∈ S Y,ν,ϑ,ξ and since (Λv, Λd) ∈ S Y,ν,ϑ,ξ we have that for any 1 ≤ j ≤ L ϕ(α j ) = y j ψ(α j ) Λ(α j )v(α j ) = y j Λ(α j )d(α j ) Fix 1 ≤ j ≤ L and by multiplying the former equation by Λ(α j )d(α j ) and the latter by ψ(α j ) and by subtracting them we finally get

ϕ(α j )Λ(α j )d(α j ) -ψ(α j )Λ(α j )v(α j ) = 0. Now we observe that deg(ϕ(x)Λ(x)d(x) -ψ(x)Λ(x)v(x)) ≤ max{ν + deg(d), ϑ + deg(v)} + ξ + |E| -1 and so, since the number of evaluation points is L ≥ L BK = max{ν + deg(d), ϑ + deg(v)} + ξ + |E|, we can conclude that ϕ(x)Λ(x)d(x) -ψ(x)Λ(x)v(x) = 0.
The rest of the proof is identical to the proof of Theorem 4.1.1. First we observe that ψ(x) = 0 and so by the previous equation we have that ϕ(x) ψ(x) = v(x) d(x) . Then, the claim follows by remarking that the vector of rational functions

v(x) d(x) is gcd(gcd i (v i ), d) = 1.
On the other hand, we now assume that L KP SW ≤ L BK . In this case, we consider (ϕ, ψ) ∈ S Y,ν,ϑ,ξ . Then, since for j / ∈ E we have that y j = A(α j ) -1 b(α j ), then In this case, the new parameters ν, ϑ, ξ are too small and so the algorithm outputs the failure message "the bounds ν, ϑ, ξ are too small".

A(α j )ϕ(α j ) -b(α j )ψ(α j ) = 0 
-otherwise, δ ν,ϑ,ξ > 0 and Algorithm 5 returns (v, d).

Based on these results, we can construct Algorithm 9 (which is a revisited version 4 of Algorithm 2.2 of [START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF]) which dynamically increase the number of evaluation points and the parameters ν, δ and ξ, until it reaches the minimal number of evaluation points which allows us to find a solution

L ET = min{L BK , L KP SW } (4.22)
where

-L BK = max{N + deg(d), D + deg(v)} + τ + |E|, -L KP SW = max{deg(A) + deg(v) + 1, deg(b) + deg(d) + 1} + τ + |E|. 4.
In [START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF] it was introduced an early termination algorithm similar to Algorithm 9. The only difference consists in how the bound on the number of errors is handled. Indeed, in that article, authors estimated the error rate of the nodes and derived a bound on the number of errors which is close to the real one. Here, we introduce the parameter ξ, which, informally speaking, play the same role of the other two parameters ν, ϑ.

Algorithm 9: Early termination algorithm from [START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF] Input : a stream of vectors (y j ), for j = 1, . . ., which is extensible in length on demand, where y j = v(α j ) d(α j ) + e j τ an upper bound on the number of errors,

N > deg(v), D > deg(d) deg(A), deg(b) Output: (v, d) 1 ν 0; 2 ϑ 0; 3 ξ 0; 4 L min{max{N -1 + ϑ, D -1 + ν}, max{deg(A) + ν, deg(b) + ϑ}} + τ + ξ; 5 if Algorithm 8(Y, τ, ν, ϑ, L, {α 1 , . . . , α L }) = (v, d) then 6 return (v, d) 7 while true do 8 L L + 1; 9 require a new y L ; 10 foreach (ν, ϑ, ξ) with min{max{N -1 + ϑ, D -1 + ν}, max{deg(A) + ν, deg(b) + ϑ}} + τ + ξ = L do 11 if Algorithm 8(Y, τ, ν, ϑ, L, {α 1 , . . . , α L }) = (v, d) then 12 return (v, d)
Notice that we suppose that the of Algorithm 9 takes as input a stream of vectors (y j ) which is extensible in length 5 . In other terms, we assume that any time that the number of evaluation points is incremented we can ask to a new node of the parallelization step to compute a new vector y j = v(α j )/d(α j ) + e j related to a new evaluation point α j .

We now illustrate this algorithm with an example. We take as degree bounds N = 10, D = 15 and τ = 4. At the beginning ν = 0, ϑ = 0, ξ = 0 and so the initial number of evaluation points is

L = min{max{N + ϑ -1, D + ν -1}, max{deg(A) + ν, deg(b) + ϑ}} + τ + ξ = 11.
We first notice that S Y,ν,ϑ,τ = {0, 0}

5. Notice that in this case, since we consider as input a stream of vectors variable in length, the number of errors can vary. For this reason, we can take τ as a bound related to the bigger number of points L ≥ L ET (recall (4.18) and (4.22)). Or, following the same strategy of [START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF] we may derive a bound on the number of errors by estimating the error rate of the nodes. This is still a work in progress.

since deg(Λv

) = 7 > ν + ξ = 0 deg(Λd) = 7 > ν + ξ = 0 ⇐⇒ δ ν,ϑ,ξ < 0
and so, ker(M Y,ν,ϑ,ξ ) is trivial and the number of points is incremented. We now observe that the number of evaluation points at which the algorithm is supposed to stop is Notice that if L = 18, then we have that ν + ξ ≤ 7 and ϑ + ξ ≤ 12 and so δ ν,ϑ,ξ < 0. Besides, for L = 19, then ν + ξ ≤ 8 and ϑ + ξ ≤ 13, and so

L ET = min{max{N + deg(d), D + deg(v)}, max{deg ( 
deg(Λv) = 7 < ν + τ = 8 deg(Λd) = 7 < ϑ + τ = 13 ⇐⇒ δ ν,ϑ,τ ≥ 0 ⇐⇒ S Y,ν,ϑ,τ = (0, 0).



We now prove that Algorithm 4.2.3 terminates exactly when it reaches the following number of evaluation points Then Algorithm 9 terminates when L(ν, ϑ, ξ) = L ET .

L ET = min{L BK , L KP SW } where recall, -L BK = max{N + deg(d), D + deg(v)} + τ + |E|, -L KP SW = max{deg(A) + deg(v) + 1, deg(b) + deg(d) + 1} + τ + |E|.
Proof. We need to prove the following two facts:

1. if L(ν, ϑ, ξ) < L ET , for all ν, ϑ, ξ then deg(v) + |E| ≥ ν + ξ or deg(d) + |E| ≥ ϑ + ξ. 2. if L(ν, ϑ, ξ) = L ET , then there exist ν, ϑ, ξ such that deg(v) + |E| < ν + ξ and deg(d) + |E| < ϑ + ξ.
1. We prove the first claim by contraposition. We assume that there exists ν, ϑ, ξ such that deg(v) 

+ |E| < ν + ξ and deg(d) + |E| < ϑ + ξ. Then, since ν + ξ -1 ≥ deg(v) + |E| and ϑ + ξ -1 ≥ deg(d) + |E|, we have that L(ν, ϑ, ξ) = min{max{N -1 + ϑ, D -1 + ν}, max{deg(A) + ν, deg(b) + ϑ}} + ξ + τ ≥ min{max{N + deg(d), D + deg(v)}, max{deg(A) + deg(v) + 1, deg(b) + deg(d) + 1}} + |E| + τ = L ET .

Our contribution

We now present an early termination technique which allows to further reduce the number of evaluation points. This is a new technique which is the result of a work in progress [START_REF] Guerrini | Enhancing Simultaneous Rational Function Recovery: adaptive error correction capability and new bounds for applications[END_REF]. It is based on the following theorem. 

4.2.3. Let ϑ, ν, ξ ≥ 0, n ≥ 1, consider L ≥ min{L GLZ1 , L GLZ2 } =: L evaluation points {α 1 , . . . , α L }, where -L GLZ1 := max{ν + deg(d), ϑ + deg(v)} + ξ + |E| n , -L GLZ2 := max{deg(A) + ν, deg(b) + ϑ} + ξ + |E| n .
Also let E ⊆ {1, . . . , L}. Moreover, fix a PLS A(x)y(x) = b(x) and denote by v(x) d(x) its solution, with gcd(gcd i (v i ), d) = 1 and d monic.

Consider the random matrix Y where we denote by y j := Y * ,j for any 1 ≤ j ≤ L, such that 123

-if j ∈ E, then y j is a uniformly distributed element of F n×1 q , -if j / ∈ E, then y j = v(α j ) d(α j ) , then the solution space of SRFR with inputs Y, ν, ϑ, ξ is S Y,ν,ϑ,τ = x i Λv, x i Λd 0≤i<δ ν,ϑ,τ where δ ν,ϑ,τ = min{ν -deg(v), ϑ -deg(d)} + (ξ -|E|),
with probability at least 1 -ϑ+ξ q . By convention if δ ν,ϑ,τ ≤ 0 we set x i Λv, x i Λd 0≤i≤δ ν,ϑ,τ = {(0, 0)}.

Proof. The structure of the proof is the same as the proofs of Theorem 4.1.2 and Theorem 4.1.4. We recall that in the proofs of the Theorem 4.1.2 and Theorem 4.1.4 are based on the following two steps:

1. first we need to prove that there exists a draw of y j for j ∈ E for which the corresponding solution space S Y,ν,ϑ,ξ (which in this case depends on ν, ϑ, ξ) is generated by elements of the form x i Λv, x i Λd . More specifically recall that this inclusion ⊆ is always true and so we need the other one in order to prove the equality.

2. In the second part, we derive the generic condition (see Chapter 3) and the bound on fraction of errors for which the solution space is not of the form x i Λv, x i Λd .

Since here we are considering some general parameters ν, ϑ, ξ instead of the bounds N, D, τ , the only difference between this proof and the previous ones consists in the first part.

We assume that L GLZ1 ≤ L GLZ2 . We consider E = ∪ n i=1 I i , such that for any

1 ≤ i ≤ n, |I i | ≤ |E|/n . Construct a matrix V , such that -V * ,j = v(α j ) d(α j ) , if j / ∈ E, -V * ,j ∈ F n×1 q is chosen so that v(α j ) -d(α j )V * ,j = ε i j (4.23)
where ε i j is a vector of the canonical basis of F n×1 q .

So, notice that we consider the same matrix as the proof of Theorem 4.1.2. We now consider (ϕ, ψ) ∈ S V,ν,ϑ,ξ . By multiplying (4.23) by ψ(α j ) and since ϕ(α j ) = V * ,j ψ(α j ) for any

1 ≤ j ≤ L, then ψ(α j )v(α j ) -d(α j ) ψ(α j )V * ,j ϕ(α j ) = ψ(α j )ε i j .
Fix 1 ≤ i ≤ n, then for any j / ∈ I i then (see the proof of Theorem 4.1.2)

ψ(α j )v i (α j ) -d(α j )ϕ i (α j ) = 0. Now, notice that deg(ψv i -dϕ i ) ≤ max{ϑ + deg(v), deg(d) + ν} + ξ -1
and that the roots of this polynomial are

L -|I i | ≥ L -|E|/n ≥ L GLZ1 -|E|/n = max{ν + deg(d), ϑ + deg(v)} + ξ
and so it is the zero polynomial. Therefore ψv -dϕ = 0. The rest follows by observing that v d is such that gcd(gcd i (v i ), d) = 1. So, we can conclude that S V,ν,ϑ,ξ = x i Λv, x i Λd 0≤i<δ ν,ϑ,ξ .

We now assume that L GLZ2 ≤ L GLZ1 . Again we consider a partition of E as before, and we construct a matrix V as the proof of Theorem 4.1.4 such that

-V * ,j = v(α j ) d(α j ) , if j / ∈ E, -V * ,j ∈ F n×1 q is chosen so that v(α j ) -d(α j )V * ,j = -A(α j ) -1 d(α j )ε i j . (4.24)
Now, consider (ϕ, ψ) ∈ S V,ν,ϑ,ξ and since d(α j ) = 0, then by performing the same algebraic operations as in (4.17) we get A(α j )V * ,j -b(α j ) = ε i j and finally by multiplying all by ψ(α j ) and since (ϕ, ψ) ∈ S V,ν,ϑ,ξ then A(α j )ϕ(α j ) -b(α j )ψ(α j ) = ψ(α j )ε i j .

We now denote p := A(x)ϕ(x) -b(x)ψ(x) and by p i its i-th component. Fix 1 ≤ i ≤ n, then we observe that for any j / ∈ I i then p i (α j ) = 0 (by the same argument as in the proof of Theorem 4.1.4). Now, notice that deg(p i ) ≤ max{deg(A) + ν, deg(b) + ϑ} + ξ -1 and that the number of roots is

L -|I i | ≥ L -|E|/n ≥ L GLZ2 -|E|/n ≥ max{deg(A) + ν, deg(b) + ϑ} + ξ
and so p i = 0. Therefore, p = A(x)ϕ(x) -b(x)ψ(x) = 0 The rest of the proof follows by observing that since (Λv, Λd) ∈ S Y,ν,ϑ,τ then also A

(x)v(x) -b(x)d(x) = 0 and that v d is such that gcd(gcd i (v i ), d) = 1.
We now introduce Algorithm 10 which given some parameters ν, ϑ, ξ ≥ 0 and using 

L = min{max{ν + D, ϑ + N }, max{deg(A) + ν + 1, deg(b) + ϑ + 1}} + ξ + τ n ( 
Input : Y = v(α 1 ) d(α 1 ) , . . . , v(α L ) d(α L ) + Ξ, τ ≥ |E| = |{j | Ξ * ,j = 0}|, N > deg(v), D > deg(d), deg(A), deg(b), ν, ϑ, ξ ≥ 0, L = min{max{N -1 + ν, D -1 + ϑ}, max{deg(A) + ν, deg(b) + ϑ}} + ξ + τ n , {α 1 , . . . , α L } Output: (v,
L = min{max{N -1 + ν, D -1 + ϑ}, max{deg(A) + ν, deg(b) + ϑ}} + ξ + τ n ≥ min{max{deg(v) + ν, deg(d) + ϑ}, max{deg(A) + ν, deg(b) + ϑ}} + ξ + |E| n = L
and so by Theorem 4.2.3, we have that since L ≥ L,

S Y,ν,ϑ,τ = x i Λv, x i Λd 0≤i<δ ν,ϑ,ξ with probability at least 1-ϑ+ξ q    = {(0, 0)} ⇐⇒ δ ν,ϑ,ξ ≤ 0 = {(0, 0)} ⇐⇒ δ ν,ϑ,ξ > 0
This result allows us to deduce the following proposition, about our Algorithm 10. -If Algorithm 10 outputs "the bounds ν, ϑ, ξ are too small" at step 3 then δ ν,ϑ,ξ is always negative;

-Otherwise if Algorithm 10 returns (v, d), then δ ν,ϑ,ξ > 0 with probability at least 1 -ϑ+ξ q .

Proof. First notice that if S Y,ν,ϑ,ξ = ker(M Y,ν,ϑ,ξ ) = {(0, 0)}, then since x i Λv, x i Λd 0≤i<δ ν,ϑ,ξ ⊆ S Y,ν,ϑ,ξ = {(0, 0)} we can conclude that δ ν,ϑ,ξ ≤ 0.

The other claim follows from the previous remark: indeed if Algorithm 10 arrives at step 4, then S Y,ν,ϑ,ξ = {(0, 0)} and with probability at least 1 -ϑ+ξ q , then S Y,ν,ϑ,ξ = x i Λv, x i Λd 0≤i<δ ν,ϑ,ξ = {(0, 0)} which implies that δ ν,ϑ,ξ > 0.

So, by summing up,

-if S Y,ν,ϑ,ξ = ker(M Y,ν,ϑ,ξ ) = {(0, 0)} then δ ν,ϑ,ξ ≤ 0, which means that deg(v) + |E| > ν + ξ or deg(d) + |E| > ϑ + ξ
and Algorithm 10 outputs the message "the bounds ν, ϑ, ξ are too small".

-Otherwise, if S Y,ν,ϑ,ξ = ker(M Y,ν,ϑ,ξ ) is nontrivial, then -with probability at least 1-ϑ+ξ q the solution space is S Y,ν,ϑ,ξ = x i Λv, x i Λd 0≤i<δ ν,ϑ,ξ = {(0, 0)}, which implies that δ ν,ϑ,ξ > 0 and so by Remark 4.1.4, we have that rank(M) = 1. Hence, Algorithm 10 returns (v, d).

-On the other hand, with probability at most ϑ+ξ q the solution space is S Y,ν,ϑ,ξ = x i Λv, x i Λd 0≤i<δ ν,ϑ,ξ and we may have that δ ν,ϑ,ξ < 0. In this case Algorithm 10 can either returns "fail" or another solution (v , d ) = (v, d).

Notice that this algorithm is deterministic, but since its input contains random errors, it may output an incorrect result with a certain probability. Indeed, we have seen that if S Y,ν,ϑ,ξ = ker(M Y,ν,ϑ,ξ ) is nontrivial, with probability at most ϑ+ξ q , the algorithm can output an incorrect solution, i.e. it can either returns "fail" or (v , d ) = (v, d). For this reason we can compare this algorithm to a probabilistic Monte Carlo algorithm. Indeed, recall that a Monte Carlo algorithm is an algorithm which can produce an incorrect solution with a certain probability. For decision problems, a Monte Carlo algorithm is one-sided if the probability that it computes an incorrect solution is zero for at least one possible output that it produces [START_REF] Motwani | Randomized Algorithms[END_REF]. In this case, this algorithm can be compared to a one-sided Monte Carlo algorithm for the decision problem "is the solution space S Y,ν,ϑ,ξ = ker(M Y,ν,ϑ,ξ ) trivial?" Indeed, notice that it always returns the message "the bounds ν, ϑ, ξ are too small" if the kernel is trivial, which is the correct solution since in this case δ ν,ϑ,ξ ≤ 0.

We conclude this subsection by introducing an early termination Algorithm 11 which terminates when it reaches the following number of evaluation points 

Conclusion and open problems

We now shortly summarize the main results of this chapter and we present open problems and future perspectives related to them. * * * * *

Algorithm-based fault tolerant technique for PLS solving by evaluation-interpolation.

In this chapter we studied an application of error correcting codes that goes beyond the classical communication scenario in which they are traditionally applied. Indeed, we used the algebraic tools of error correcting codes for constructing an algorithm-based fault tolerant technique for solving polynomial linear systems by evaluation-interpolation.

The ABFT is a technique which exploits the algorithm's features in order to design a fault tolerant algorithm. This technique is characterized by the following three steps: encoding, parallelization and the redesign of the algorithm so that it can work with the encoded data.

We applied this technique to the polynomial linear system solving by evaluation-interpolation. So, informally speaking, we modified the classic evaluation-interpolation algorithm for PLS solving by 1. adding redundancy by encoding inputs of the algorithm by considering more evaluation points than the classic algorithm, 2. parallelizing the evaluation step, which is performed by different nodes which can introduce some errors, 3. performing the interpolation step on the encoded data affected by some errors.

Note that in this model, the errors are introduced at the parallelization step. The third step is related to what we called polynomial linear system solving with errors (PLSwE), which is the problem of recovering the solution of a PLS (which is a vector of rational functions) given its evaluations where some are possibly erroneous.

Simultaneous Cauchy Interpolation with Errors as the decoding of Interleaved

Rational Function Codes. PLSwE is an application of a more general problem that we introduced in Subsection 4.1.1: the simultaneous Cauchy interpolation with errors (SCIwE). This is the problem of reconstructing a vector of rational functions, given its evaluations, where some are erroneous. It can be seen as the rational extension of the simultaneous interpolation with errors (SIwE) (see Definition 2.3.2), which is basically the problem of decoding interleaved RS codes. This connection allowed us to extend the interpolation-based decoding technique of IRS to this rational case. But there is more than that. Indeed, even in this case, SCIwE is related to a coding theory problem which is the decoding of particular interleaved rational function codes. These codes represent the rational generalization of IRS codes and they were first introduced in [START_REF] Pernet | High Performance and Reliable Algebraic Computing[END_REF] (see Figure 4.4).

We now define rational function codes. Notice that this is a generalization of RS codes.

As for classic RS codes, we can define interleaved rational function codes as follows.

Definition 4.3.2 (Interleaved Rational Function Codes). Let n ≥ 1, N, D ≤ L ≤ q and {α 1 , α 2 , . . . , α L } be pairwise distinct evaluation points in F q . An (homogeneous) interleaved rational function (IRF) code is

C IRF (L, N, D) :=            c 1 . . . c n     c i ∈ C RF (L, N, D), 1 ≤ i ≤ l        ∈ (F q ) n×L
Notice that we can see an IRF code as the evaluation of a vector of rational functions whose degrees of any numerator and denominator are bounded, This is the rational extension of IRS codes.

We now observe that the SCIwE problem can be seen as the problem of decoding IRF codes, in particular when the codeword that we want to recover is a vector of rational functions with the same denominator.

There are many open problems related to this rational code and to its interleaved version. First of all, notice that in this rational extension of RS codes we lose some important properties, like the linearity of the code. This prevents rational codes to have all the nice characteristics of linear codes (see Subsection 2.1.3). So we would like to study these codes more in depth, determine their properties and parameters (like their minimum distance) and understand other possible applications besides the one proposed in this chapter.

Following [START_REF] Pernet | High Performance and Reliable Algebraic Computing[END_REF]Theorem 2.3.1] we can prove that the minimum distance of this code is d ≥ L -(N + D + 2).

More specifically, we remark that we provide a slightly different definition of RF codes compared to [Per14, Definition 2.3.1] since we consider denominators not vanishing on the fixed evaluation points. Indeed, we recall that this assumption on the denominator was crucial in the proof of Theorem 4.1.2. This difference makes it difficult to compute exactly the minimum distance of this code, showing the existence of two codewords at distance exactly d = L -(N + D + 2).

Therefore, there are two different possible research tracks: either extend the proof of Theorem 4.1.2 in order to include the possibility for the denominator to vanish at evaluation points, or continue to investigate this slightly different rational function code (which is a subcode of the one defined in [Per14, Definition 2. As previously said, this instance can be seen as a received word of a n-IRF code with length L and parameters N, D and so SCIwE can be seen as the decoding of IRF codewords.

We now briefly sum up the two main results of Subsection 4.1.1:

-By Theorem We now observe that the former result tells us that if the number of errors is smaller than τ 0 then we can uniquely recover the vector of rational functions v d corresponding to the codeword of an IRF. This seems to suggest that the error correction capability of IRF and also RF codes is exactly τ 0 (see Theorem 2.1.1) and so that the minimum distance of this code is L -(N -D + 2).

Besides, as for IRS codes, we can use the interleaving construction to construct a decoder with a bigger decoding radius. However, since we are beyond τ 0 we may lose the guarantee of the uniqueness of the decoding. This is exactly what we did in [START_REF] Guerrini | Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes[END_REF]. Indeed, thanks to the result of Theorem 4.1.2, we constructed Algorithm 6, which can be seen as a partial BD decoder of specific IRF codewords. This algorithm is a generalized version of the partial BD decoder of IRS codes (Algorithm 4) introduced in Subsection 2.3.1. We now analyze the behavior of Algorithm 6 as a decoder, as we did for the partial BD decoder of IRS codes in Remark 2.3.6. First recall that B τ GLZ (Y ) is the Hamming ball of radius τ GLZ , centered in Y and that we are considering the Hamming distance in the vector space F L q n . We now observe that since in this case we are assuming that |E| ≤ τ ≤ τ GLZ then C IRF (L, N, D) ∩ B (τ GLZ ) (Y ) = ∅ and so we have the following two possibilities, -if |C IRF (L, N, D) ∩ B (τ GLZ ) (Y )| = 1, then with probability at least 1 -D+τ q the solution space is S Y,N,D,τ = x i Λv, x i Λd 0≤i<δ N,D,τ and so rank(M) = 1. In this case, the gcd Notice that if τ = 0, i.e. in the case where there are no errors, we get L ≥ L GLZ1 = N + D -1 + τ + τ l = N + D -1 = L BK and so SRFR always admits a unique solution. We now observe that if we consider the SRFR problem of (4.27) and the corresponding homogeneous linear system, then the number of equations is nL and the number of unknowns is n(N + τ ) + D + τ . By the Rank-Nullity Theorem, if nL = n(N + τ ) + D + τ -1 ⇐⇒ L = N + τ + (D + τ -1)/n then there exists a nontrivial solution of (4.27). then for almost all (v, d) and almost all error matrices Ξ of error support E, SRFR admits a unique solution on the instance Y = v(α 1 ) d(α 1 ) , . . . , v(α L ) d(α L ) + Ξ.

We point out that we conjecture the uniqueness for almost all (v, d) whereas Theorem 4.1.2 holds for all (v, d). This difference is due to our counterexample (Example 1.2.1) which shows that we cannot have uniqueness for all instances u = v d whenever L = N + (D -1)/n. We also remark that this latter number of evaluations matches the one in the Conjecture 3.3.1 in the case τ = 0. Our Theorem 3.2.1 is a step towards Conjecture 4.3.1. Indeed, since we proved uniqueness of SRFR under assumption (4.28) for generic instances u, it remains to prove the existence of an instance of the form u = v(α 1 ) d(α 1 ) , . . . , v(α L ) d(α L ) + Ξ for any N, D, τ, E in order to prove the conjecture.

Polynomial Linear System Solving with Errors. SCIwE is the problem of recovering a vector of rational functions with the same denominator given its evaluations, some of which are possibly erroneous. The PLSwE is then a specific case of SCIwE in which we want to recover a vector of rational functions which is a solution of a polynomial linear system. Recall indeed, that the main aim of this chapter was to introduce an ABFT technique for PLS solving by evaluation-interpolation. In order to do so, we delegated the computation of the evaluated systems to some nodes which could eventually introduce some errors. Therefore, the PLSwE coincides exactly with the third step of our technique, in which we want to recover the solution of our PLS by its evaluations where some have been corrupted by the nodes computations.

We saw how we can apply the same technique for SCIwE also to this case and reduce the problem to SRFR in which we want to recover (Λv, Λd), where Λ is the error locator polynomial. Moreover, since we have considered a vector of rational functions which is a solution of a PLS we can also add some additional parameters which are the degree of the coefficient matrix and of the vector of the corresponding PLS. Also in this case, the main goal was to determine the number of evaluation points which guarantees the uniqueness of the corresponding SRFR. n . We observe that since we are below the number of evaluation points that guarantees to uniquely reconstruct the solution our Algorithm 7 (derived from Theorem 4.1.4), could eventually fail.

Early Termination. All the bounds on the number of evaluation points introduced so far, i.e. L and L of (4.29), (4.30), strongly depends on the bounds on the degrees of the solution that we want to recover and on the bound on the number of errors. Therefore, if we consider N, D, τ much bigger than the real degrees of the solution or than the real number of errors, we could significantly overestimate the number of evaluation points, compared to the real number of points that we really need, i.e. In [START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF], E. Kaltofen et al. proposed an early termination algorithm (Algorithm 9), which starting from a minimal number of evaluation points, iteratively increases this number until a result is found. We remark that the main goal of this technique is to possibly decrease the number of evaluation points to speed up the computations. So, basically this algorithm terminates when a sort of stabilization is detected, that is when the minimum number which guarantees the existence of a solution is reached. More specifically, this number is Notice that L KP SW is really close to the ideal number L KP SW of (4.31). In Section 4.2, we also presented our algorithm (Algorithm 11) which allowed us to further decrease the number of evaluation points compared to (4.33). Precisely, this algorithm terminates when the following number of evaluation points is reached, n . We observe that from a coding theory point of view, an overestimation on the bounds on the degrees of the solution that we want to recover, could significantly decrease the number of errors that we could correct. Indeed, in [KPR + 10], authors already observed that even for classic RS codes, the overestimation of the bound on the degree of the polynomial related to an RS codeword instead of the real degree could significantly decrease the amount of errors that the decoder could correct. For this reason, [KPR + 10, Per14] proposed a parameter oblivious algorithm which could correct up to

L ET = min{L
L ET = min{L GLZ1 , L GLZ2 } (4.
n -deg(f ) -1 2 ≥ n -k 2 
errors, for a given f ∈ C RS (n, k). So, a natural question related to this topic could concern the extension of this technique to other codes, as for instance IRS codes.

IRS codes (Lemma 2.3.1, [START_REF] Bleichenbacher | Decoding of interleaved Reed-Solomon codes over noisy data[END_REF]), i.e. τ /q. This IRS decoding failure probability bound was then improved ([BMS04, SSB07, SSB09, SSB10]) by showing that the failure probability does not depend on the number of errors or on its bound.

In the case of Algorithm 6, experiments implemented in SageMath suggest that even in our rational generalization, the failure probability does not depend on the number of errors. Hence, it would be interesting to improve the bound on the failure probability, trying to find a more tight one.

Extending the previous results

Rational Function Codes. In Section 4.3 we introduced Rational Function codes (Definition 4.3.1) and their interleaved version (Definition 4.3.2). We saw the link between the decoding of IRF codes and the SCIwE problem. However, as previously underlined, there are many open problems related to these codes. First, RF codes are not linear and so they do not have all the useful properties of linear codes. Also, manipulating them could be more complicated since we cannot reduce all the related problems, e.g. the decoding, to linear problems.

A future and ambitious research track would be a better investigation and study of these codes, starting from the determination of their parameters. It would also be interesting to understand other possible application scenarios, different from the one proposed in this work.

Early termination techniques.

In this thesis, by extending the results of [START_REF] Boyer | Numerical Linear System Solving with Parametric Entries by Error Correction[END_REF][START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF] we proposed an early termination technique which leads to a possible reduction on the number of evaluation points needed to PLSwE solving. This strategy, starting from a small value of evaluation points, dynamically increase this number until a result is found. This means that the minimal number which guarantees to uniquely recover the solution is attained.

In [KPR + 10], the authors observed that the problem of overestimating the degree bounds leading to more evaluation points compared to the needed one (for the RFR in this case), could affect also error correcting codes and in particular RS codes. Indeed, even for RS codes an overestimation of the bound k on the degree of the codeword polynomial, could significantly increase the number of evaluation points needed for the uniqueness of RFR (and so uniqueness of the decoding). Equivalently it can decrease the amount of errors that the decoder could uniquely correct. Indeed,

τ = n -deg(f ) -1 2 ≥ n -k 2 = τ 0
for f ∈ C RS (n, k). For this reason, [KPR + 10] proposed parameter oblivious algorithm which basically performs an early termination technique on the corresponding RFR problem related to the decoding.
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N

  i + D -1,pour quasiment tous les instances u, la RRS admet une solution unique. Notre approche pour prouver le Théorème 3.2.1 consiste à étudier les degrés en ligne d'un K[x]-module particulier, le module de relation lié à une matrice spécifique. En effet, les solutions de RRS sont des éléments de ce module de relation avec degrés en ligne décalés, où les décalages sont nécessaires pour intégrer les contraintes de degré. Dans le cas d'unicité, il n'y a qu'un seul élément d'une base du module de relation avec des degrés en ligne négatifs. Cela représente un outil central pour vérifier l'unicité de la RRS. En effet, dans le Théorème 3.2.1 nous prouvons que pour quasiment toutes les instances du problème (instances génériques) il n'y a qu'un seul générateur avec des degrés en ligne décalés négatifs.

  Système Linéaire Polynomial avec Erreurs. Le ICSaE est un cas général de SLPaE, dans lequel on veut récupérer un vecteur de fractions rationnelles ayant le même dénominateur, qui est une solution d'un SLP A(x)y(x) = b(x). Pour cette raison, dans ce cas, nous pouvons rajouter le degré de la matrice de coefficients A et du vecteur b comme entrées supplémentaires. Ainsi, de la même manière que ICSaE, SLPaE peut également être réduit à une reconstruction rationnelle simultanée appliqué à des instances de la forme u où u(α j ) = v(α j )/d(α j ) + e j et v(α j )/d(α j ) est une solution d'un SLP A(x)y(x) = b(x). Par conséquent, nous pouvons obtenir les mêmes résultats sur le nombre de points d'évaluation d'avant. D'ailleurs dans [KPSW17], Kaltofen et al. ont montré qu'avec

  Definition 1.1.1 (Rational function reconstruction). Let K be a field, a, u ∈ K[x] such that deg(u) < deg(a) and 1 ≤ N, D ≤ deg(a). The rational function reconstruction (RFR) is the problem of finding a couple of polynomials (v, d) ∈ K[x] 2 such that, gcd(d, a) = 1 and v d = u mod a, deg(v) < N, deg(d) < D.

Definition 1. 3 .

 3 1 (R-module). An R-module is a set N together with 1. a binary operation + on N , under which N is an abelian group, and 2. a map R × N -N denoted by rn, for all r ∈ R and for all n ∈ N which satisfies(a) (r + s)n = rn + sn, for all r, s ∈ R, n ∈ N , (b) (rs)n = r(sn), for all r, s ∈ R, n ∈ N , (c) r(m + n) = rm + rn, for all r ∈ R, m, n ∈ N , (d) if 1 is the multiplicative identity in R, 1n = n for all n ∈ N . An R-module N is free if it admits a basis, i.e. a set of linearly independent generators of N . The rank of N is the cardinality of such a basis. If b 1 , . . . , b r is a basis of N , we denote N := b 1 , . . . , b r . Definition 1.3.2 (R-submodule). Let N be an R-module. An R-submodule of N is a subgroup M of N such that rm ∈ M for all r ∈ R and m ∈ M.

Remark 1. 3 . 1 (

 31 Uniqueness of the Invariant Factor Form). By the divisibility condition, the decomposition of Theorem 1.3.2 is unique (see [DF04, Section 12.1]), i.e. if we have N R ρ ⊕ R/(b 1 ) ⊕ . . . ⊕ R/(b µ ) for some integer ρ ≥ 0 and nonzero b 1 , . . . , b µ which are not units of R and with b 1 |. . . |b µ , then ρ = ρ, µ = µ and (a i ) = (b i ) for all i.

Definition 1. 3 .

 3 7 ((Ordered) weak Popov form). Let µ ≤ ν, P ∈ K[x] µ×ν be a full rank polynomial matrix and s = (s 1 , . . . , s ν ) ∈ Z ν a shift. The polynomial matrix P is in s-weak Popov form if the s-pivot indices are pairwise distinct, -s-ordered weak (or quasi) Popov form if the sequence of s-pivot indices is strictly increasing.

Lemma 1. 4 . 2 (

 42 [OS07, Theorem 5.1]). If deg(a) > max{N + deg(A), D + deg(b)} -1, then SRFR with instance u = A -1 b mod a and degree constraints N, D (see Problem 2) admits a unique solution. In other terms the rank of the K[x]-module generated by the solutions is s = 1.

  Now, if we multiply Av 1 = d 1 b and Av 2 = d 2 b by d 2 and d 1 respectively and then we subtract them, we get

  4.1, the degrees of the numerator and denominator of the solution of a PLS are bounded by (n -1) deg(A) + deg(b) and n deg(A). If we consider N := (n -1) deg(A) + deg(b) + 1 and D := n deg(A) + 1, then by Lemma 1.4.2, if deg(a) > max{N + deg(A), D + deg(b)} -1 = n deg(A) + deg(b)

  Theorem 1.4.3. [BK14, KPSW17] If L ≥ min{N +D-1, max{deg(A)+N, deg(b)+D}}+r, then SRFR (1.20) admits a unique solution.
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Theorem 2 .

 2 1.1 (Unique Decoding Capability). Let C be an (n, M, d)-code and τ 0 := d-1

Figure 2 .

 2 1) D N C , maps any received word y ∈ Σ n to D N C (y) which is a nearest codeword w.r.t the Hamming distance, i.e. D N C (y) = c, where c ∈ arg min c∈C {d(y, c)} = {c ∈ C | ∀c ∈ C, d(c, y) ≤ d(c , y)}.

Figure 2 .

 2 Figure 2.1: Nearest-codeword decoding

  Bounded minimum distance decoder. Let τ 0 = d-1 2 be the error correction capability of the code C. First notice that if y is a received word such that C ∩ B (τ 0 ) (y) = ∅, then by Theorem 2.1.1, there is only one element in the ball, i.e. |C ∩ B (τ 0 ) (y)| = 1. A bounded minimum distance (BMD) decoder (Figure2.2) is a decoder D τ 0 such that for any received word y ∈ Σ n , -if C ∩ B (τ 0 ) (y) = ∅, then D τ 0 (y) = c, where c is the only codeword in the ball B (τ 0 ) (y), -otherwise D τ 0 (y) =?, meaning that it outputs a decoding failure.

Figure 2 . 2 :

 22 Figure 2.2: Bounded minimum distance decoding

Figure 2 . 3 :

 23 Figure 2.3: Existence of two codewords c 1 , c 2 at the same distance ≤ τ from the received word y.

2 .Algorithm 3 :1

 23 In the literature, the Cauchy interpolation usually refers to the rational function reconstruction as in the equation (1.2). Here we are considering its weaker linear version, dropping the gcd condition. 3. S. Gao in [Gao03] also proposed another version of the algorithm based on the half-gcd, which speeds up the computations improving the efficiency of the algorithm (see Subsection 1.1.1) Interpolation-based BMD decoder based on EEA Input : C RS (n, k) with {α 1 , . . . , α n }, y a received word Output: f ∈ F q [x] such that d(y, (f (α 1 ), . . . , f (α n ))) ≤ τ 0 , if |C RS (n, k) ∩ B τ 0 (y)| = 0; otherwise a "decoding failure". Compute the Lagrange interpolating polynomial Y of the components of the received vector; 2 (ϕ, λ) = RFR EEA (G, Y, τ 0 + k); 3 perform the Euclidean division ϕ = λf + r; 4 if r = 0 and deg(f ) ≤ k -

Lemma 2 . 2 . 5 .

 225 rev n-1 (Y ) revn(G) = S(x) mod x n-k . Proof. First observe that rev n-1 (Y ) = n i=1 y i i j =i (1 -xα j ) and rev n (G) = n i=1 (1xα i ).The claim follows by noticing that gcd(rev(G), x) = 1, rev n-1 (Y ) revn(G)

Figure 2 . 4 :

 24 Figure 2.4: Received word of an IRS code under the burst error model.

2 .

 2 an error matrix Ξ ∈ F l×n q with error support E := {i | Ξ i = 0}, where |E| ≤ τ which satisfy the following Y = (f (α 1 ), . . . , f (α n )) + Ξ.(2.18)

Algorithm 4 :1then 3 find 4 perform

 434 Partial BD decoder for IRS codesInput : C IRS (n, k) with {α 1 , . . . , α n }, Y received word Output: f ∈ F q [x] l×1 , deg(f ) ≤ k -1 or a "decoding failure". Let M be F q [x]-module generated by solutions in S Y,τ IRS ,k ; 2 if rank(M) = 1 (ϕ,λ) a generator of M scaled to obtain λ monic; Euclidean division ϕ = λf + r; 5 if r = 0 and deg(f ) ≤ k -
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Proposition 3 . 1 . 3 .

 313 We use this order to define the row rank profile of O M . Definition 3.1.8 (Row rank profile of the ordered matrix). For any matrix M ∈ K[x] m×n , we define the row rank profile of O M (shortly RRP M ) as the family of monomials of K[x] m defined by RRP M := min ≤ LEX P M where P M := {F ∈ Mon r | {mM } m∈F are linearly independent in K} . (3.1) We now introduce a particular family of monomials, that we frequently use in this work. Given d = (d 1 , . . . , d n ) we denote F d := {x i ε j } i<d j This family allows us to finally relate the row rank profile of O M to the pivot degrees of the relation module. The row rank profile of the ordered matrix O M is given by the s-pivot degrees δ M of the relation module A M,M , i.e. RRP M = F δ M .

Remark 3 . 1 . 4 .

 314 The non-increasing property of d can be dropped. Consider d ∈ N m such that d 1 ≥ . . . ≥ d m and π any permutation of {1, . . . , m}. Denote d = (d π(1) , . . . , d π(m) ).

Figure 3 . 1 :

 31 Figure 3.1: Construction of Example 3.1.6

) Theorem 3 . 1 . 7 .

 317 Let p as in (3.3), and let L = (L 1 , . . . , L m ), where L 1 ≥ L 2 ≥ . . . ≥ L m and such that (3.4) and (3.5) hold. Then, p Σ := d Σ + s = p. Proof. Recall that Σ = n i=1 L i . Let F be the first Σ monomials of K[x] m sorted w.r.t ≺ s-T OP ordering. Let p = (p + 1, . . . , p + 1, p, . . . , p) be the candidate row degrees as in the theorem statement and d = ps be the corresponding pivot degrees. Note that the assumption (3.4) implies that d ∈ N m .

3 i=1

 3 L i + s i = 9 = 3 • m. Notice that in this case p = 3 ≤ s = 4 and so (3.4) does not hold. By Corollary 3.1.2, d Σ = (3, 0, 0) since l i=1 d Σ,i ≤ l i=1 L i for any 1 ≤ l ≤ m. So the row degrees are p Σ = (3, 2, 4). The set F 2 of the first Σ = 3 monomials, increasingly sorted w.r.t ≺ s-T OP coincides with

Figure 3 . 2 :

 32 Figure 3.2: Construction of Krylov matrices of the proof of Theorem 3.2.1. In this case n = 3.

Figure 3 . 3 :

 33 Figure 3.3: Construction of the last Krylov matrix of the proof of Theorem 3.2.1. In this case n = 3.
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Figure 4 . 1 :

 41 Figure 4.1: Matrix multiplication by ABFT method.

  resolution of the evaluated systems) Compute for any1 ≤ j ≤ L, y(α j ) = A(α j ) -1 b(α j ) = v(α j ) d(α j ) . 3. (Interpolation) Reconstruct (v, d), given y(α j ) for 1 ≤ j ≤ L and some bounds N > deg(v), D > deg(d).Or in other terms, perform SRFR (Problem 2, in the interpolation form i.e. a 1 = . . . = a n = a = L j=1 (x -α j )) with input Y := (y(α j )) 1≤j≤n ∈ F l×n q , and N, D.

Figure 4 . 2 :

 42 Figure 4.2: Parallelization in the evaluation step of PLS solving

Definition 4 .

 4 1.1 (Simultaneous Cauchy interpolation with errors). Fix some parameters L, τ, N, D, q and n ≥ 1, where -L is the number of evaluation points {α 1 , . . . , α L }, 1 ≤ L ≤ q, -N, D are the degree bounds, 1 ≤ N, D ≤ L, -τ is the bound on the number of errors, 0 ≤ τ ≤ L.A satisfiable instance of the simultaneous Cauchy interpolation with errors (shortly SCIwE) problem is a matrix Y ∈ F n×L q such that there exist, -a vector of rational functionsv d ∈ F q (x) n×1 , where deg(v) < N , deg(d) < D, gcd(gcd i (v i ), d) = 1,d is monic and for any 1 ≤ j ≤ L then d(α j ) = 0, -an error matrix Ξ ∈ F n×L q with error support E := {j | Ξ * ,j = 0}, where |E| ≤ τ , which satisfy the following

Figure 4 . 3 :

 43 Figure 4.3: Scheme which illustrates the relation between SIwE and SCIwE.

Theorem 4 .

 4 1.1 ([BK14, Theorem 2.2]). Consider L ≥ N + D + 2τ -1 evaluation points {α 1 , . . . , α L } and M the F q [x]-module of solutions in S Y,N,D,τ . Then rank(M) = 1 and given (ϕ, ψ) a generator of M with ψ monic then (ϕ, ψ) = (Λv, Λd).

  Section 1.2, if L ≥ N + D + 2τ -1 (see (1.6)), then ϕψ = ϕ ψ for any (ϕ , ψ ) ∈ S Y,τ,N,D and so rank(M) = 1. Now, -since (ϕ, ψ) is a generator of M and (Λv, Λd) ∈ S Y,τ,N,D , then there exists R ∈ F q [x]

  3.3, we can observe that |E| = |{j | Ξ * ,j = 0}| ≤ deg(P ) = |E | and so E = E and P ∈ F q . Since ϕ = P v and ψ = P d and ψ and d are both monic, then we can conclude that P = 1. Remark 4.1.2. Notice that this lemma basically tells us that if the number of evaluation points is L ≥ N + D + 2τ -1, then the rank of the module M generated by solutions in S Y,N,D,τ is 1 and the solution space is exactly of the form S Y,N,D,τ = x i Λv, x i Λd 0≤i<δ N,D,τ (4.9) where δ N,D,τ := min{N -deg(v), D -deg(d)} + (τ -|E|). (4.10) Indeed, notice that deg(x i Λv) = i + |E| + deg(v) ≤ N -1 + τ deg(x i Λd) = i + |E| + deg(d) ≤ D -1 + τ and so, i ≤ min{N -deg(v), D -deg(d)} + (τ -|E|) -1 = δ N,D,τ -1.

Λ

  New results. In[START_REF] Guerrini | Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes[END_REF], motivated by the link between SCIwE and the decoding of IRS codes (SIwE, Definition 2.3.2 and Figure4.3), we proposed 3 Algorithm 6 that recovers (v, d) a solution of our given instance Y , with L ≥ N + D -1 + τ + τ n =: L GLZ1 evaluation points. Notice that, for n ≥ 1

  D,τ ⊆ S Y,τ,N,D = ker(M Y,N,D,τ ), then dim(ker(M Y,N,D,τ )) ≥ δ N,D,τ . By the Rank-Nullity Theorem rank(M Y,N,D,τ ) = n(N + τ ) + D + τ -dim(ker(M Y,N,D,τ )) ≤ n(N + τ ) + D + τ -δ N,D,τ =: ρ.

  deg(v) = 5 and deg(d) = 5. The same holds for the number of errors |E| introduced by nodes. Assume for instance that it is |E| = 2. Recall that by the Cramer's Rule (see Lemma 1.4.1), we can take as bounds for the degrees of v and d deg(v) < N = (n -1) deg(A) + deg(b) + 1 = 10 deg(d) < D = n deg(A) + 1 = 15 and also consider τ = 4. Then,

  4.20) where -L BK := deg(v) + deg(d) + 2|E| + 1, -L KP SW := max{deg(A) + deg(v), deg(b) + deg(d)} + 2|E| + 1, -L GLZ1 := deg(v) + deg(d) + |E| + |E|/n + 1, -L KP SW := max{deg(A) + deg(v), deg(b) + deg(d)} + |E| + |E|/n + 1. Notice that we replace N, D, τ by deg(v) + 1, deg(d) + 1 and |E| respectively.  Therefore, the discrepancy between bounds N, D and the real degrees deg(v), deg(d) and between the bound τ and the real number |E| of errors implies an overestimation on the number of evaluation points needed for the computations.

  for any 1 ≤ j ≤ L computed at the parallelization step, where the error support is E = {j | Ξ * ,j = 0}. For any 1 ≤ j ≤ L, we also denote y j := Y * ,j and we consider the bounds N > deg(v), D > deg(d) and τ ≥ |E|.

Theorem 4 . 2 . 1 .

 421 Let ν, ϑ, ξ ≥ 0 and L ≥ min{L BK , L KP SW } =: L where -L BK := max{ν + deg(d), ϑ + deg(v)} + ξ + |E|, -L KP SW := max{deg(A) + ν, deg(b) + ϑ} + ξ + |E|.and so, we can conclude that if L ≥ L,δ ν,ϑ,ξ > 0 ⇐⇒ S Y,ν,ϑ,ξ = x i Λv, x i Λd 0≤i<δ ν,ϑ,ξ = {(0, 0)} (4.21)  Proof of Theorem 4.2.1. The outlines of this proof are the same as the proofs of Theorem 4.1.1 and Theorem 4.1.3. Besides, we remark that here we are considering ν, ϑ, ξ some general nonnegative parameters while in Theorem 4.1.1 and Theorem 4.1.3 we considered the bounds N, D, τ on the degrees of v, d and the number of errors |E|. Hence the solution space S Y,ν,ϑ,ξ

Now, observe that

  deg(A(x)ϕ(x)-b(x)ψ(x)) ≤ max{deg(A)+ν, deg(b)+ϑ}+ξ-1 and that the roots of this vector of polynomials are L-|E| ≥ L KP SW -|E| = max{deg(A)+ν, deg(b)+ϑ}+ξ then A(x)ϕ(x) -b(x)ψ(x) = 0. So, since (Λv, Λd) ∈ S Y,ν,ϑ,ξ then we also have that A(x)Λ(x)v(x) -b(x)Λ(x)d(x) = 0 and the rest of the proof coincides exactly with the proof of Theorem 4.1.3. Correctness of Algorithm 8. Notice that, since by assumption N -1 ≥ deg(v), D -1 ≥ deg(d) and τ ≥ |E| then L = min{max{N -1 + ϑ, D -1 + ν}, max{deg(A) + ν, deg(b) + ϑ}} + τ + ξ ≥ min{max{deg(v) + ϑ, deg(d) + ν}, max{deg(A) + ν, deg(b) + ϑ}} + |E| + ξ = L and so by Theorem 4.2.1 and the Remark 4.2.1 (see (4.21)) we can deduce the correctness of Algorithm 8. Indeed, since L ≥ L, -if S Y,ν,ϑ,ξ = ker(M Y,ν,ϑ,ξ ) is trivial, then δ ν,ϑ,ξ ≤ 0 and so deg(v) + |E| ≥ ν + ξ or deg(d) + |E| ≥ ϑ + ξ.

Example 4 . 2 . 2 .

 422 Let us consider the PLS of Example 4.2.1. Recall that deg(v) = 5, deg(d) = 5, the number of errors is |E| = 2, deg(A) = 7 and deg(b) = 2.

  A) + deg(v) + 1, deg(b) + deg(d) + 1}} + τ + |E| = 19, and we study the possible values of ν, ϑ, ξ for the number of evaluation points of the last two iterations of the algorithm number of evaluation points ν

Proposition 4 . 2 . 2 .

 422 Let L(ν, ϑ, ξ) = min{max{N -1+ϑ, D-1+ν}, max{deg(A)+ν, deg(b)+ ϑ}} + ξ + τ for the parameters ν, ϑ, ξ.

2 .

 2 If L(ν, ϑ, ξ) = L ET , then the claim follows by taking ν = deg(v) + 1, ϑ = deg(d) + 1 and ξ = |E|.

Theorem

  

  d) or "fail" or "the bounds ν, ϑ, ξ are too small" 1 Let M be the F q [x]-module generated by solutions in S Y,N,D,τ ; 2 if rank(M) = 0 then 3 return "the bounds ν, ϑ, ξ are too small";4 else 5 if rank(M) = 1 then 6 find (ϕ, ψ) a generator of M; Correctness of Algorithm 10. Recall that, deg(v) + |E| < ν + ξ deg(d) + |E| < ϑ + ξ ⇐⇒ δ ν,ϑ,ξ > 0 ⇐⇒ x i Λv, x i Λd 0≤i<δ ν,ϑ,ξ = {(0, 0)}.We now observe that since by assumption N -1 ≥ deg(v), D -1 ≥ deg(d) and τ ≥ |E|, then the number of evaluation points of Algorithm 10 is

L 4 LL do 11 ifProposition 4 . 2 . 5 .

 411425 ET = min{L GLZ1 , L GLZ2 } (4.26) where -L GLZ1 := max{N + deg(d), D + deg(v)} + |E| + τ n , -L GLZ2 := max{deg(A) + deg(v) + 1, deg(b) + deg(d) + 1} + |E| + τ n .This algorithm is obtained by slightly modifying Algorithm 9 and by adapting it to our number of evaluation points.Algorithm 11: Adapted Early termination Algorithm Input : a stream of vectors (y j ) for j = 1, . . . which is extensible in length on demand, where y j = v(α j ) d(α j ) + e j τ an upper bound on the number of errors,N > deg(v), D > deg(d), deg(A), deg(b) Output: (v, d) min{max{N -1 + ϑ, D -1 + ν}, max{deg(A) + ν, deg(b) + ϑ}} + ξ + τ n ; 5 if Algorithm 10(Y, τ, ν, ϑ, L, {α 1 , . . . , α L }) = (v, d) then 6 return (v, d) y L ; 10 foreach (ν, ϑ, ξ) with min{max{N -1 + ϑ, D -1 + ν}, max{deg(A) + ν, deg(b) + ϑ}} + ξ + τ n = Algorithm 10(Y, τ, ν, ϑ, L, {α 1 , . . . , α L }) = (v, d) then 12 return (v, d)As in Proposition 4.2.2 we now prove that this algorithm eventually terminates. Let L(ν, ϑ, ξ) = min{max{N -1+ϑ, D-1+ν}, max{deg(A)+ν, deg(b)+ ϑ}} + ξ + τ n for the parameters ν, ϑ, ξ. Then Algorithm 11 terminates when L(ν, ϑ, ξ) = L ET (see (4.26)). Proof. As for Proposition 4.2.2, we need to prove the following two facts: 1. if L(ν, ϑ, ξ) < L ET , then for all ν, ϑ, ξ, deg(v) + |E| ≥ ν + ξ or deg(d) + |E| ≥ ϑ + ξ.

2 .

 2 if L(ν, ϑ, ξ) = L ET , then there exist ν, ϑ, ξ such that deg(v)+ |E| < ν + ξ and deg(d) + |E| < ϑ + ξ.1. We prove the first claim by contrapposition. We assume that there exists ν, ϑ, ξ such that deg(v)+ |E| < ν + ξ and deg(d) + |E| < ϑ + ξ. Then, since ν + ξ -1 ≥ deg(v) + |E| and ϑ + ξ -1 ≥ deg(d) + |E|, we have that L(ν, ϑ, ξ) = min{max{N -1 + ϑ, D -1 + ν}, max{deg(A) + ν, deg(b) + ϑ}} + ξ + + τ n ≥ min{max{N + deg(d), D + deg(v)}, max{deg(A) + deg(v) + 1, deg(b) + deg(d) + 1}} + |E| + τ n = L ET .

2 .

 2 If L(ν, ϑ, ξ) = L ET , then the claim follows by taking ν = deg(v) + 1, ϑ = deg(d) + 1 and ξ = |E|.

Figure 4 . 4 :

 44 Figure 4.4: Scheme which illustrates the relation between SIwE, SCIwE and IRF codes

Definition 4 . 3 . 1 (

 431 Rational Function Codes). Let N, D ≤ L ≤ q and {α 1 , α 2 , . . . , α L } be pairwise distinct evaluation points in F q . The rational function (RF) code isC RF (L, N, D) := v(α 1 ) d(α 1 ) , . . . , v(α L ) d(α L ) v d ∈ F q (x), deg(v) < N, deg(d) < D, d(α i ) = 0 ∈ F L q

C

  IRF (L, N, D) := v(α 1 ) d(α 1 ) , . . . , v(α L ) d(α L ) v d ∈ F q (x) n×1 , deg(f ) < N, deg(d) < D, d i (α j ) = 0 .

  3.1]) of Definition 4.3.1 and its properties.Analysis of Algorithm 6 from a Coding Theory point of view. We recall that a satisfiable instance of SCIwE (Definition 4.1.1) with parameters L, τ, N, D, q and {α 1 , . . . , α n } is a matrixY = v(α 1 ) d(α 1 ) , . . . , v(α L ) d(α L ) + Ξwhere v d is a vector of rational functions with gcd(gcd i (v i ), d) = 1 and deg(v) < N , deg(d) < D, d is monic and d(α j ) = 0 for any 1 ≤ j ≤ L, -Ξ ∈ F n×L qis an error matrix, with error support E := {j | Ξ * ,j = 0} and |E| ≤ τ .

  4.1.1, if we considerL ≥ N + D + 2τ -1 = L BK evaluation points, or equivalently if τ ≤ L -(N + D -1) 2 = τ 0 we have that S Y,N,D,τ = x i Λv, x i Λd 0≤i<δ N,D,τ where δ N,D,τ = min{N -deg(v), D -deg(d)} + (τ + |E|).This result derives from[START_REF] Boyer | Numerical Linear System Solving with Parametric Entries by Error Correction[END_REF].-On the other hand in[START_REF] Guerrini | Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes[END_REF] (see Theorem 4.1.2) we proved that withL = N + D -1 + τ + τ n = L GLZ1evaluation points, or equivalently ifτ ≤ n(L -(N + D -1)) n + 1 = τ GLZunder some assumptions on the error distribution, S Y,N,D,τ = x i Λv, x i Λd 0≤i<δ N,D,τ with probability ≥ 1 -D + τ q .

Conjecture 4 . 3 . 1 .

 431 Fix 1 ≤ N, τ, D ≤ L ≤ q and an error support E ⊆ {1, . . . , L} such that |E| ≤ τ . If L = N + τ + (D + τ -1)/n (4.28)

  In[START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF], E. Kaltofen et al. proved that withL = min{L BK , L KP SW E },(4.29)where-L BK = N + D -1 + 2τ , -L KP SW E = max{deg(A) + N, deg(b) + D} + 2τ ,we can uniquely recover (Λv, Λd) and then in particular (v, d).Besides, in Theorem 4.1.4 we showed how we can decrease this number of points toL = min{L GLZ1 , L GLZ2 },(4.30)where-L GLZ1 = N + D -1 + τ + τ n , -L GLZ2 = max{deg(A) + N, deg(b) + D} + τ + τ

L

  ideal = min{L BK , L KP SW } (4.31) where -L BK = deg(v) + deg(d) + 2|E| + 1, -L KP SW = max{deg(A) + deg(v), deg(b) + deg(d)} + 2|E| + 1; or L ideal = min{L GLZ1 , L GLZ2 } (4.32)where-L GLZ1 = deg(v) + deg(d) + |E| + |E| n + 1, -L GLZ2 = max{deg(A) + deg(v), deg(b) + deg(d)} + |E| + |E| n + 1.

  BK , L KP SW } (4.33)where-L BK = max{N + deg(d), D + deg(v)} + τ + |E|, -L KP SW = max{deg(A) + deg(v) + 1, deg(b) + deg(d) + 1} + τ + |E|.

  34)where-L GLZ1 = max{N + deg(d), D + deg(v)} + |E| + τ n , -L GLZ2 = max{deg(A) + deg(v) + 1, deg(b) + deg(d) + 1} + |E| + τ
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  2 ) arithmetic operations in the field K ([GG13, Theorem 3.16]). There are some other strategies based on the half-gcd computation, which improve the complexity of the EEA to O(M (deg(a)) log(deg(a))) arithmetic operations (see [BCG + 17, Section 6.3]), where M (t) is the classic polynomial multiplication complexity ([BCG + 17, Section 2.7]).

	Algorithm 2: Rational function reconstruction by EEA, RFR EEA (a, u, N )
	Input : a, u, N instances of RFR (Problem 1)
	Output: (v, d) the minimal degree solution of RFR
	1 r 0	a; s 0	1; t 0	0; r 1	u; s 1

  now introduce two examples of channels frequently used in practical applications.

	Example 2.1.1 (Binary Symmetric Channel). The Binary Symmetric Channel (BSC) has
	input and output alphabet equal to Σ = F

2 . Moreover, for any (x, y) ∈ (F 2 ) 2n , Pr(y received|x sent) = n i=1 Pr(y i received|x i sent) where for any x, y ∈ F 2

  20)Note that this problem coincides with the simultaneous rational function reconstruction 5 (Problem 2) with input G, Ψ and degree constraints ε + k, ε + 1.

Remark 2.3.3. We denote by S Y,ε,k := {(ϕ 1 , . . . , ϕ l , λ) satisfying (2.20)}. Note that we write S Y,ε,k to stress the dependency on the received matrix Y , on k and ε. If we consider the homogeneous linear system related to (2.20), we observe that the set of solutions S Y,ε,k is the kernel of the matrix

  .23) However, since we are beyond the error correction capability of the code, the uniqueness of the solution to the decoding problem is not always guaranteed. In what follows we denote, as in Remark 2.3.3, by S Y,τ IRS ,k the set of solutions of SRFR(2.23). Recall that this coincides with the kernel of M Y,τ IRS ,k as in (2.21).

3.1.4 Generic row degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notice that to lighten the notations we omit the shift dependency of the K-vector space M<t.

Usually for the application of SRFR to polynomial linear system solving it is assumed that all the polynomials ai's are equals.

Note that v1, . . . , vn are not necessarily distinct.

In[START_REF] Bleichenbacher | Decoding of interleaved Reed-Solomon codes over noisy data[END_REF], authors introduced the simultaneous polynomial reconstruction, a particular case of SIwE for which the number of errors is known, i.e. |E| = τ .

Remerciements

Résumé de la thèse

Remerciements

Monomial orders on K[x]-modules. We can naturally extend Definition 3.1.2 to the Chapter 2]. A monomial in K[x] t is an element m of the form x α ε i for some i, 1 ≤ i ≤ t. We denote by ε 1 , . . . , ε t the canonical basis of K[x] t . Definition 3.1. 3 (Monomial order on a module). An ordering relation ≺ on the monomials in K[x] t is a monomial ordering if, -≺ is a total ordering, -for any m, n monomials in K[x] t , such that m ≺ n then x α m ≺ x α n for any x α monomial in K[x],

-≺ is a well ordering.

Some of the common monomial orders on K[x] t derive from the extension of orders on K[x]. Basically, according to the chosen order on the canonical basis vectors, we can distinguish two main approaches to derive the monomial orders, which are described in the following definition. Note that here we suppose that ε 1 ≺ . . . ≺ ε t . Definition 3.1. 4 (TOP and POT monomial orderings). Let ≺ be a monomial order on K[x]. Then, -x α ε i ≺ T OP x β ε j if x α ≺ x β , or if x α = x β and i < j; -x α ε i ≺ P OT x β ε j if i < j, or if i = j and x α ≺ x β ;

The terminologies TOP and POT derive from [START_REF] Adams | An Introduction to Gröbner Bases[END_REF]. In detail TOP stands for "termsover-position" and POT for "position-over-terms". Indeed, the TOP order sorts monomial first by the monomial order on K[x] and then by the position of the canonical basis elements. The POT sorts exactly in the opposite way.

We now introduce the shifted TOP order. In the literature shifted orders are also called weighted orders ( [START_REF] Fitzpatrick | A Gröbner basis technique for Padé approximation[END_REF][START_REF] O'keeffe | Gröbner basis approach to list decoding of algebraic geometry codes[END_REF]). Here the former terminology is preferred to the latter since it underlines the link with shifted row degrees (Definition 1.3.3). Definition 3.1.5 (shifted TOP monomial orderings). Let ≺ be a monomial order on K[x] and x s 1 , . . . , x st be the shifting monomials in K[x]. Then x α ε i ≺ s-T OP x β ε j if x α x s i ≺ x β x s j , or if x α x s i = x β x s j and i < j.

Note that each shifting monomial is related to a shift s = (s 1 , . . . , s t ) ∈ Z t . Example 3.1.2. Consider t = 2, the ≺ LEX -order on K[x 1 , x 2 ] and shift s = (1, 0). We have,

For this purpose, we first need to consider the matrix K made of columns of K so that it remains full column rank. It is defined as

where for 1 ≤ j ≤ m, K j ∈ K[x] m×d j are defined iteratively by

and K(x s l u j l , t l ) derives from previously unused columns in K j l , which we add from left to right, i.e. the sequence of indices (j l ) is increasing. Since j i=1 d i ≤ j i=1 L i , we only pick from previous blocks, i.e. j k < j. Since we need to complete a block K i l before going to another one, we can observe that s l + t l = L l for l < k. The last block K i k is the only one that may not be completed, i.e. s k + t k ≤ L k . Conversely, s l = d l for l > 1 because no columns have been picked yet from the blocks j l , except maybe the first block j 1 where s 1 ≥ d 1 .

We want to transform K j into a Krylov matrix K j , working block by block. First we extend [K(u j , min(L j , d j ))|0| . . . |0] to the right to K(u j , d j ). Then we extend all blocks [0| . . . |0|K(x s l u j l , t l )|0| . . . |0] to the left and the right to K(x s l u j l , d l ) where s l equals s l minus the number of columns of the left extension. In this way, the extension matches the original matrix on its non-zero columns. Now we can define

where K j := K(v j , d j ) with v j := u j + k l=1 x s l u j l . A crucial point of the proof is to show that s k ≥ 0. But since the d i are-non increasing, j l are increasing and j k < j. So we get s l ≥ d j l ≥ d j k ≥ d j . As the number of columns of the left extension is at most d j , we can conclude s k ≥ 0.

In [START_REF] Villard | A study of Coppersmith's block Wiedemann algorithm using matrix polynomials[END_REF] and [START_REF] Pernet | Faster Algorithms for the Characteristic Polynomial[END_REF] it is proved that there exist an upper triangular matrices T such that K = KT . So we can conclude that K, which is in the desired block Krylov form, is full column rank as is K, which concludes the proof.

We now illustrate with an example the construction of the proof of Theorem 3.1.4. Example 3.1.6. Let m = 4, n = 3, L = (8, 4, 4) and d = (5, 5, 3, 3). We put L 4 = 0.

Note that, 5 ≤ 8 5 + 5 ≤ 8 + 4 5 + 5 + 3 ≤ 8 + 4 + 4 5 + 5 + 3 + 3 ≤ 8 + 4 + 4 + 0 and

Algorithm 6: A new algorithm for SCIwE

d(α 1 ) , . . . , v(α L ) d(α L ) + Ξ an instance of SCIwE with parameters τ, N, D, q and L = L GLZ1 evaluation points {α 1 , . . . , α L } Output: (v, d) or "fail" 

(see (2.22)), i.e. the decoding radius of the partial BD decoder (Algorithm 4) for the n-interleaved Reed Solomon code of length L and dimension N . In this sense, Algorithm 6 is a generalization of Algorithm 4 for IRS codes decoding. 

Correctness of Algorithm 6. The following result allows us to prove the correctness of our algorithm. It also determines a bound for the failure probability, i.e. the probability that the algorithm fails.

where δ N,D,τ is as in (4.10), with probability at least 1 -D+τ q .

Proof. First notice that since (Λv, Λd) ∈ S Y,τ,N,D then On the other hand, if max{deg(A)

Now observe that for j / ∈ E, since y j = A(α j ) -1 b(α j ) then,

The vector of polynomials

We now consider (v, d), the solution of our given PLS. Then, Therefore, this means that if we consider L := min{N + D -1, max{N + deg(A), D + deg(b)}} + 2τ evaluation points we can uniquely recover the solution (v, d). So we can adapt Algorithm 5 with this new number of evaluation points to get an algorithm for PLSwE. Indeed, notice that once again we have reduced the uniqueness of the recovering of our solution to the uniqueness of the solution of SRFR.

New results. In [START_REF] Guerrini | Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes[END_REF] we introduced an algorithm for SCIwE (Algorithm 6) which reduces the number of evaluation points w.r.t Theorem 4.1.1. As seen before, this algorithm is obtained by generalizing the interpolation-based decoding technique for interleaved Reed-Solomon codes (Subsection 2.3.1).

We now introduce a new result which allows us to construct an algorithm for PLSwE with a smaller number of evaluation points w.r.t Theorem 4.1.3 [START_REF] Guerrini | Enhancing Simultaneous Rational Function Recovery: adaptive error correction capability and new bounds for applications[END_REF]. Consider the random matrix Y such that,

d(α j ) , then the solution space of SRFR (4.6) is of the form

where δ N,D,τ is as in (4.10), with probability at least 1 -D+τ q .

Proof. 

Indeed, consider a partition of E, i.e. E = ∪ n i=1 I i , such that for any 1 ≤ i ≤ n, |I i | ≤ |E|/n . Note that such a partition exists since n |E|/n ≥ |E|. For any j ∈ E, denote by i j the unique index such that j ∈ I i j .

Construct a matrix V , such that

where i is a vector of F n×1 q , whose i-th entry is 1 and all the others are zero. Now consider (ϕ, ψ) ∈ S V,τ,N,D and since that by our assumptions d(α j ) = 0, then

for all j ∈ E. By multiplying (4.17) by ψ(α j ) we get

and since (ϕ, ψ) ∈ S V,τ,N,D , it satisfies ϕ(α j ) = V * ,j ψ(α j ) ans so we have

We now denote

Fix 1 ≤ i ≤ n, we claim that for any j / ∈ I i then p i (α j ) = 0, where p i is the i-th component of p.

Indeed,

d(α j ) = A(α j ) -1 b(α j ) and so since ϕ(α j ) = V * ,j ψ(α j ), we get p(α j ) = A(α j )ϕ(α j ) -ψ(α j )b(α j ) = 0. In particular p i (α j ) = 0.

-If j ∈ E \ I i , by the choice of V * ,j , then p i (α j ) = 0.

Therefore p i (α j ) = 0. Note that deg(p i (x)) < max{deg(A) + N, deg(b) + D}. On the other hand the roots of this polynomial are

So we can conclude that p(x) = A(x)ϕ(x) -ψ(x)b(x) = 0. Therefore, as in the proof of Theorem 4.1.3 we have that ϕ(x)d(x) -ψ(x)v(x) = 0. The rest of the proof is coincides exactly with the proof of Theorem 4.1.2. Therefore, we conclude by introducing Algorithm 7 for PLSwE, obtained by slightly modifying Algorithm 6 for the general SCIwE problem. The correctness of this algorithm can be proved in the same way as Remark 4.1.4. 

Algorithm 7: A new algorithm for PLSwE

Early termination techniques

In the previous section, we introduced a method for solving the PLSwE problem which generalizes the interpolation-based decoding technique of interleaved Reed-Solomon codes. This technique basically reduces the problem to SRFR, and once again the goal is to determine the number of evaluation points needed for the uniqueness of SRFR solution.

We now briefly recall previous results. In [START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF] 

where

However, since we are below the number of evaluation points which guarantees the uniqueness of SRFR (see Remark 4.1.3), Algorithm 7 can fail for at most D+τ q fractions of possible errors.

Algorithm 8: Algorithm which computes v d or determine if the degree bounds are too small [START_REF] Kaltofen | Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error Correction[END_REF] Input :

the evaluation points {α 1 , . . . , α L }. Output: (v, d) or "the bounds ν, ϑ, ξ are too small" 1 Let M be the F q [x]-module generated by solutions in S Y,ν,ϑ,ξ ; 2 if rank(M) = 0 then 3 return "the bounds ν, ϑ, ξ are too small"; 

By convention we set

Before presenting the proof of this theorem we briefly explain the meaning of this result.

Remark 4.2.1. This result basically tells us that with L ≥ L evaluation points, the solution space S Y,ν,ϑ,ξ determined by solutions (ϕ, ψ) of the equation

for any 1 ≤ j ≤ L (or equivalently of SRFR in the interpolation form with inputs Y, ν+ξ, ϑ+ξ), is spanned by elements of the form x i Λv, x i Λd . And so, if we consider ν, ϑ, ξ too small then S Y,ν,ϑ,ξ is trivial. Formally, we observe that given ν, ϑ, ξ ≥ 0,

computed at step 4 of Algorithm 6 is exactly the error locator polynomial Λ and so by dividing the generator (ϕ, ψ) (computed at step 3) of M by Λ we obtain (v, d).

-If |C IRF (L, N, D) ∩ B (τ GLZ ) (Y )| > 1, then by Remark 4.1.4, rank(M) > 1 and so the algorithm outputs a failure message.

In conclusion we observe that this decoder is partial since for Y such that |C IRF (L, N, D) ∩ B (τ GLZ ) (Y )| = 1 it may possibly fail, even if there is only one codeword in the ball.

Failure Probability. In this chapter we saw how we can generalize the interpolation-based decoding technique for IRS to solve the SCIwE problem, or in other words, to decode IRF codes. We introduced Algorithm 6 which can be seen as a partial BD decoder of these codes, and we saw that under some assumptions on the error distribution, this algorithm could fail with probability which depends on the bound D on the degree of the denominator, on the bound on the number of errors τ and on the order of the field q. Specifically, this failure probability is at most (D + τ )/q. Notice that this is a generalization of the failure probability of Algorithm 4 for IRS codes, i.e. τ /q (see Lemma 2.3.1, [START_REF] Bleichenbacher | Decoding of interleaved Reed-Solomon codes over noisy data[END_REF]). However, in Subsection 2.3.1 we pointed out that in [START_REF] Brown | Probabilistic decoding of Interleaved RS-Codes on the Q-ary symmetric channel[END_REF], A. Brown et al. proved that the failure probability of the interpolation-based partial BD decoder for IRS codes, does not depend on the number of errors. Later, [SSB07, SSB09, SSB10] introduced another decoding algorithm based on the syndrome-based approach and estimated its failure probability (see (2.26)). The bound introduced in these articles is tight in practice.

In our case, indeed, experiments implemented in SageMath suggest that the failure probability of our algorithm does not depend on the number of errors, as for IRS codes. For this reason a possible future research track could be to better estimate the failure probability of our algorithm.

On the uniqueness of simultaneous rational function reconstruction related to SCIwE. In this chapter we saw how we can reduce the SCIwE problem to the simultaneous rational function reconstruction. Indeed, given an instance Y with parameters L, τ, N, D, q and evaluation points {α 1 , . . . , α L } as above, we find a solution of SRFR related to Y by performing an SRFR in the interpolation form, with inputs Y, N + τ, D + τ and the given evaluation points. As a matter of fact we want to recover (ϕ, ψ) such that

for any 1 ≤ j ≤ L, since our main goal is to recover the solution (Λv, Λd), where Λ is the error locator polynomial. We now observe that Theorem 4.1.2 basically tells us that, given 1 ≤ N, τ, D ≤ L ≤ q and an error support E ⊆ {1, . . . , L} such that |E| ≤ τ , if L ≥ L GLZ1 , then for all (v, d) ∈ K[x] n+1 and for almost all error matrices Ξ of error support E, then the corresponding SRFR admits a unique solution on the instance Y = v(α 1 ) d(α 1 ) , . . . , v(α L ) d(α L ) + Ξ.

Concluding Remarks

As a conclusion we summarize the main contributions and the proposed new research perspectives related to them (which we already introduced in Section 3.3 and Section 4.3). We divide this presentation into two sections according to the purpose of these new research tracks and open problems.

Improving the previous results

Simultaneous Rational Function Reconstruction problem. One of the main contribution of this work concerns [START_REF] Guerrini | On the Uniqueness of Simultaneous Rational Function Reconstruction[END_REF] the general SRFR problem (see Chapter 3). Indeed, in Theorem 3.2.1 we proved that under the assumption on the degrees of the moduli derived from the common denominator constraint, SRFR admits a unique solution for almost all instances u. In Section 3.3 we noticed that this result represents a step towards Conjecture 3. Indeed, in our result we showed uniqueness for almost all instances u which could not derive from a vector of rational functions. This is due to the fact that, following the classic RFR problem, we focused on the weaker linear problem of recovering (v, d) such that v i = du i mod a i and with deg(v i ) < N i , deg(d) < D, dropping the invertibility of d modulo a i . Nevertheless, since in Theorem 3.2.1 we proved uniqueness for generic instances u, it would be sufficient to show the existence of an instance u = v/d to prove Conjecture 3.3.1.

Failure probability of SCIwE and PLSwE algorithms.

In Chapter 4 we introduced Algorithm 6 for SCIwE solving which generalizes the interpolation-based decoding technique of IRS codes. In Section 4.3, we saw how SCIwE can be seen as the decoding of IRF codes (Definition 4.3.2). We also reinterpreted Algorithm 6 as a partial BD decoder for these kind of codes. Indeed, under some assumptions on the error distribution, the Algorithm 6 may fail with a certain probability (Theorem 4.1.2). Specifically, the failure probability is at most (D + τ )/q, where D and τ are respectively bounds on the degree of the common denominator of all rational functions and on the number of errors. We also remarked that this probability bound generalizes the failure probability bound of the partial BD decoder of 
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