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Corinne Rouby
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Abstract

Dielectric elastomers are soft active materials capable of large deformations when acti-
vated by a high voltage. They consist of a thin elastomer membrane (generally made
of silicone or acrylic), sandwiched between compliant electrodes. The thickness of the
assembly is about 100microns. When a high voltage is applied between the electrodes,
the membrane is squeezed between the electrodes, and increases in area by up to
100%.

This electromechanical conversion principle can be used to build loudspeakers. Proto-
types have been developed and tested by several research groups, and models have
been proposed to estimate their performance.

An intrinsic characteristic of dielectric elastomer loudspeakers is their multi-physic na-
ture. Indeed, the actuation mechanism is itself a coupling between electrostatics and
mechanics; the membrane is very thin and light, and couples therefore strongly with the
surrounding air which is comparatively heavy; and finally the electrode electrical resistiv-
ity induces a coupling between electrodynamics and mechanics.

The models proposed so far did not consider all of these couplings together, which lim-
ited their use to qualitative estimations. In this thesis, a multi-physic model of dielectric
elastomer loudspeakers is set-up, in order to optimize their acoustic performances, in
terms of frequency response, radiated level, and directivity. The strong couplings be-
tween electrostatics, membrane dynamics, acoustics and electrodynamics are studied
with a finite element model in FreeFEM. This model is validated by dynamical and acous-
tical measurements, and then used to improve the performances of the prototype, by
working on several levels: optimization of the excitation, filtering, damping and con-
trol.
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Résumé

Les élastomères diélectriques sont des matériaux actifs souples capables de grandes
déformations sous chargement électrique. Ils sont constitués d’une fine membrane
d’élastomère (en général en silicone ou en acrylique), recouverte de chaque côté par
des électrodes souples et étirables. L’ensemble a une épaisseur de l’ordre de 100 mi-
crons. Lorsqu’une tension électrique est appliquée entre les électrodes, la membrane
se comprime et sa surface peut augmenter de plus de 100%.

Ce principe de conversion électromécanique peut être utilisé pour réaliser des haut-
parleurs. Des prototypes ont été développés par plusieurs groupes de recherche, et
des modèles ont été proposés pour évaluer leurs performances.

Une caractéristique intrinsèque des haut-parleurs en élastomères diélectriques est leur
naturemultiphysique. En effet, lemécanisme d’actionnement est lui-même un couplage
entre électrostatique et mécanique; la membrane est très fine et légère, et se couple
ainsi fortement à l’acoustique car l’air est lourd par rapport à la membrane; et enfin
la résistivité des électrodes engendre un couplage entre l’électro-dynamique et la mé-
canique.

Les modèles proposés jusqu’alors ne considéraient pas l’ensemble de ces couplages,
limitant leur utilisation à des estimations qualitatives. Dans cette thèse, un modèle
multiphysique de haut-parleurs en élastomères diélectriques est mis en place, afin de
permettre l’optimisation de leurs performances acoustiques, en terme de réponse en
fréquence, niveau rayonné, et directivité. Les couplages forts entre électrostatique, dy-
namiquemembranaire, acoustique, et électrodynamique sont étudiés à l’aide d’unmod-
èle par éléments finis dans FreeFEM. Ce modèle est validé par des comparaisons avec
des mesures dynamiques et acoustiques, et ensuite utilisé pour améliorer les perfor-
mances du prototype, en travaillant sur plusieurs plans : optimisation de l’excitation, fil-
trage, amortissement, et contrôle.
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Main variables

In the whole thesis, capital letters denote dimensional variables and small letters non-
dimensional variables.

In the following list, the main dimensional variables are defined.

Variables with an overbar stand for variables defined in the reference configuration [see
fig. 2.1].

Geometry

C = F TF Cauchy deformation tensor -

F = ∂X/∂X̄ Displacement gradient -

n Normal unit vector -

u1, u2 In-plane unit vectors -

Ȟ Membrane thickness at center in reference configuration m

λ1, λ2,λn Radial, ortho-radial and normal stretches -

Γ Electrode repartition function -

A Membrane radius in deformed configuration m

H Membrane thickness m

R Radial coordinate m

RE Electrode radius m

V Volume m3

X Radial displacement m

Y Vertical displacement m

Z Vertical coordinate m

General variables

ϵ Permittivity Fm−1

µ Shear modulus Pa

Ω Angular frequency rad s−1

ρf Density of air kgm−3

ρs Density of the membrane kgm−3

ρratio Ratio of electrode over membrane mass per unit area -

c = Cf/Cs Non-dimensional speed of sound -

Cf Speed of sound in air m s−1

Cs Speed of shear waves in the membrane ms−1

F Frequency Hz

1



G Green function m−1

Jm Material parameter of Gent’s law -

m = ρf Ā/ρsȞ Non-dimensional air density -

Electrical

D Electric displacement Cm−2

E Electric field Vm−1

P Polarization Cm−2

ϱe Electrode resistivity Ω/□
U Voltage applied to the electrodes V

W Alternative excitation signal V2

Stresses

σ1 Radial stress Pa

σ2 Orth-radial stress Pa

P Pressure Pa

S1 Radial nominal stress Pa

S2 Orth-radial nominal stress Pa

Modal parameters

ψn Modeshape n -

kn Modal stiffness -

mn Modal mass -
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Introduction 1
In this chapter the scientific context of the thesis is presented, starting from
a general overview of dielectric elastomer applications to the challenges
for modelling, designing and manufacturing efficient dielectric elastomer
loudspeakers. The goals of the thesis are then stated, and its structure is
outlined.

1.1 General context

We are today surrounded by loudspeakers, in our electronic devices, cars, buildings, etc.
The vast majority are electro-dynamic loudspeakers, in which the sound-radiating mem-
brane is moved by a coil oscillating inside a magnet. This principle has been developed
by Rice and Kellogg in 1925 [92], and has been gradually improved since then.

For example, a high-frequency tweeter has been built in a larger woofer by Altec lansing
in 1943, yielding a coaxial loudspeaker (Altec Lansing Model 604 Duplex radiator) that
outperformed most of other loudspeakers at that time.

However, the physical principle remained the same for almost 100 years, andmost inno-
vations concerning loudspeakers concerned the enclosure, such as horn loudspeakers
as the Klipschorn [65], or bass reflex which has been developed by Jensen in the 1940s.
The reader is referred to [5] for a short history of the development of hi-fi loudspeakers.

Even though electrodynamic loudspeakers have shown their ability to perform well in
a wide range of applications, they still have a few drawbacks. The magnet which is re-
quired to put into motion the voice coil is heavy, and also bulky. Strong magnets are
made out of neodymium, which is costly. To obtain the necessary power, the magnet
and voice coil need to be relatively thick, so manufacturing flat loudspeakers remains a
challenge. Also, their distortion is rather large: the total harmonic distortion lies around
3% at low frequencies.

The last limitation (distortion) has been addressed by electro-static loudspeakers (ESLs),
which have been patented by Janszen in 1953 [55]. They consist of a very thin plastic
sheet placed between rigid and perforated metal electrodes (see fig. 1.1).

The main advantages of this driving mechanism is that the moving part is very light, and
driven on its whole surface. The coupling with acoustics is therefore very strong, and the
diaphragm is heavily damped. A very flat frequency response can be obtained, and dis-
tortion is reduced by one order ofmagnitude compared to conventional electrodynamic
drivers.
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Varying electric field

Metal grids

Plastic diaphragm coated 
with conductive material

Static high
voltage

Fig. 1.1. Schematics of electrostatic loudspeakers. A thin plastic diaphragm is coated with con-
ductive material, and placed between perforated metal plates. A high voltage static bias
U0 is applied to the diaphragm, and the electrodes are driven by the audio signal u(t).

ESLs have been commercialized from the late 1950s to nowadays, mostly for high-end
loudspeakers. They aremost of the time combined with a conventional woofer, because
ESLs behave as acoustic dipoles, and can therefore not radiate properly at low frequen-
cies.

The last type of loudspeakers which have obtained a commercial success are piezoelec-
tric drivers. A piezoelectric crystal bends when a voltage is applied across its electrodes,
and this mechanism can be used to radiate sound. Most piezoelectric drivers are used
in applications where a high level is desired for a small size, and where cost is a ma-
jor constraint. They are limited to high frequencies as only small displacements can be
obtained.

In this thesis, we will investigate another type of loudspeakers, based on a different phys-
ical principle. We will use an active material (dielectric elastomer) like piezoelectric crys-
tals, but which is capable of much larger deformations (up to more than 100%), and
should thus perform better at low frequencies.

Dielectric elastomer loudspeakers should also help address some limitations of elec-
trodynamic loudspeakers, as it should be possible to obtain much lighter and flatter
devices, by avoiding using a magnet.

The ultimate goal is to obtain small and flat loudspeakers, which can radiate at low fre-
quencies, with limited distortion.

1.2 A short history of dielectric elastomers

Dielectric elastomer (DEs) are soft active materials, which have been studied for about
20 years now, after Pelrine et al. [87] showed that deformations of more than 100% in
area can be achieved when a high voltage is applied.

The working principle is the following, and is described in fig. 1.2:

• A soft elastomer membrane is coated on both sides with conductive and stretch-
able electrodes.

• A high voltage is applied between the electrodes. This brings positive charges on
one side of the membrane and negative charges on the other.

• The positive and negative charges are attracted to each other, and thus apply a
normal pressure on the membrane surfaces.
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• The membrane is therefore squeezed between the electrodes, and since the elas-
tomer is usually incompressible, the decrease in thickness results in an increase in
area.

+ + + ++ + + ++
_ _ _ __ _ __ _

++

_ _ Compliant electrodes
Elastomer membrane

Electrostatic pressure

+
_

Positive charge
Negative charge

(a)

(b)

Fig. 1.2. Principle of dielectric elastomers. (a) Initial state, no voltage applied. (b)Deformed state,
a voltage U is applied between the electrodes.

The research interest in DEs is high for several reasons.

First, DE actuators are soft, contrary to all motor-based solutions. This is of primary inter-
est in robotics, where nature inspired robots become possible. Indeed, DEs reproduce
the behavior of real muscles, as they have similar achievable stretch, energy density and
stiffness.

Second, they offer combined actuation and position sensing. The deformation of the de-
vice is related to its capacitance, which is easilymeasuredduring actuation. Thedeforma-
tion can thus bemonitored in real time. Self-sensing strategies can thenbe implemented
to control the actuator in closed loop without any added sensor. Huge improvements
of the actuator precision can be obtained.

DEs also work as energy harvesters, and can thus be used to build soft generators, that
can be embedded in deformable structures, such as robots, cloths, gloves, etc.

It is beyond the scope of this introduction to provide a general review of the multiple
possible applications of DEs, as it has been an active field of research for more than
twenty years. For a broader view of the field, the reader is referred to the reviews by
Anderson et al. [4], Rosset and Shea [99], and Gu et al. [40].

1.3 Dielectric elastomer loudspeakers

1.3.1 Founding work

The first published work on DE loudspeakers is the study by Heydt, Pelrine, Kornbluh
and Mason from SRI International [43], in which inflated bubbles of silicone membrane
coated with graphite powder are investigated. This configuration will be studied in the
whole thesis, so the principle is described in fig. 1.3.
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Fig. 1.3. Inflated DE membrane. (a) Initial configuration, the membrane is inflated over a closed
cavity. (b)When a high voltage is applied, the membrane increases in area, and because
of the the initial pressure, its moves outwards.

It was found in [43] that DEs have a high potential for making loudspeakers, because of
their large achievable deformation, quick response and high energy density. A promis-
ing sensitivity of 100dBSPL/1W/1m was obtained, exceeding the average sensitivity of
standard electrodynamic loudspeakers (about 90dBSPL/1W/1m). The main identified
limitations are the high voltage required to actuate the speaker, as well as the large dis-
tortion. However, it is indicated that the results were obtained without optimizing the
design to improve those characteristics.

A similar device was further investigated in [46], where an array of inflated bubbles was
considered. A radiated sound pressure level of more than 70dB was obtained in the fre-
quency range 1-20 kHz. It was also shown that shaping the excitation signal by a square
root helps reducing a lot themajor non-linearity coming from the square dependence of
the electrostatic pressure on the applied voltage, reducing the total harmonic distortion
to less than 5% over the whole frequency range.

A patent of SRI international on the device studied in [43, 46] was published in 2002
[86].

An experimental study by the same authors in 2006 [45] investigated this time a sin-
gle large inflated DE membrane, and not an array of small bubbles. The sound radia-
tion properties were analysed, and it was found experimentally that a prototype with a
positive inflation pressure (membrane inflated towards the outside) had a more omni-
directional directivity than a membrane inflated with a negative pressure. General ideas
of possible applications, where the directivity could be controlled by the inflation pres-
sure, or by signal processing methods were mentioned but not studied.

The results of [45] have been patented in 2009 [44], where different biasingmechanisms
were included in the patent, such as inflation pressure, foam backing, push-pull config-
uration, etc.
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1.3.2 First models and dynamic experiments

The pioneering work of Pelrine et al. raised a large interest in the research community,
and several teams started investigating inmoredetails thedynamics and sound radiation
of DE membranes.

A substantial work has been carried out by Fox, Mockensturm and Goulbourne on the
dynamics of inflated DE membranes. The purpose of their work is not loudspeakers, as
they focused on the low frequency range.

Their first numerical study [81] focused on the transition between multiple state of equi-
librium. The equations for the dynamics of axisymmetric DE membranes are derived,
and used to analyse the static behavior of a spherical membrane, as well as the transient
response of the membrane to a step input voltage.

The dynamics of an inflatedDEmembrane were then analysed experimentally in [32, 31]
in the low frequency range (up to 200Hz). A resonance was observed, and the influence
of the excitation frequency on the membrane displacement was measured.

Their most complete study is [30], where the influence of the major design parameters
(cavity volume, inflation pressure, bias voltage) on themembrane resonance frequencies
has been experimentally analysed. However, no model was proposed to compute the
forced dynamics of the membrane, so only experimental conclusions could be drawn.

Among the early works it is worth mentioning the study by Dubois et al. [25], where a
millimetric flat DE membrane was investigated. The electrostatic pressure created by
the applied voltage decreases the tension in the membrane, which decreases its first
resonance frequency. A decrease in frequency of 77% is observed when the voltage is
applied, and a simple model is derived to explain this decrease.

A similar study was performed by Hochradel et al. [47], but for an inflated membrane.
The change in frequency due to the electric voltagewas studied, as well as the dynamical
and acoustical response of the membrane when actuated by an oscillating signal. A
model has been developed, but only to analyse the influence of the static voltage on
the first resonance frequency of the system.

Also, the work by Keplinger et al. published in Science is interesting, as it demonstrated
the possibility to manufacture transparent loudspeakers using DEs. This is made pos-
sible by the use of ionic hydrogels as electrodes, instead of the electronic conductors
which are generally used (carbon or metal based). Inoic conductors are found to have a
higher conductivity than electronic conductors, which is important for the high frequency
efficiency of DE loudspeakers.

Transparent DE loudspeakers have also been studied by Yu et al. [122], where trans-
parency is achieved by using carbon nanotube electrodes. The loudspeaker frequency
response is measured, but the sound generation mechanism is unclear as the loud-
speaker consists only in a stretched DE film. Without any biasing mechanism the DE
membrane should move in plane, and thus does not radiate sound efficiently.

Transparent DE loudspeakers have also been demonstrated by Xu et al. [120], where
graphene based electrodes are used.
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The first model of the dynamics of an inflated DE membrane, that does not make the as-
sumption that the membrane behaves like a one-degree-of-freedom system is the study
by Zhu et al. [126]. The eigenmodes of an inflated membrane around a non-linear static
equilibrium are computed, and the influence of the inflation pressure and bias voltage
are analysed. This paper is also the first to compute the frequency-response functions of
an inflatedDEmembrane, using time integration. Interesting non-linear phenomena are
observed, such as sub- and super-harmonic resonances. However, the results presented
in this study are purely numerical, and are not validated by experiments.

1.3.3 More recent work

Directivity

The teamofMaeda et al. carried out several studies on the use of inflatedDEmembranes
as loudspeakers.

They investigated the directivity of a hemispherical membrane [51], showing that an al-
most omni-directional directivity could be achieved in a hemisphere. A suggested po-
tential application of DE loudspeakers is room impulse response measurements, where
an omnidirectional point source is required. However, the maximum sound pressure
level radiated by DE loudspeakers may limit this application.

This study was extended to the case of a spherical loudspeaker in [52], where the di-
rectivity of an inflated VHB (commercial 3M acrylic tape) membrane is measured. The
authors claim that they explained the observed directivity by membrane modeshapes
measurements, but this part of the study suffers from methodological flaws.

Other biasing mechanisms

Other geometries based on different biasing mechanisms than the inflation have also
been investigated.

Sugimoto et al. [107] used a rigid elastomer instead of the commonly used silicone or
acrylic membranes. The rigidity of the elastomer allows the authors to avoid the use
of a frame to hold the membrane. To convert the in-plane displacement to out-of-plane
displacement, theDE is bent into a semi-cylindrical shape. The influence of themajor de-
sign parameters is investigated experimentally, but no model capable of computing the
radiated pressure is provided. The sensitivity is also analysed, and found to lie around
70dB/W/m, that is to say about 20dB lower than standard loudspeakers.

The same team investigated the push-pull configuration suggested by Heydt et al. [44],
in which two membranes are placed one apon another, with a rigid connector between
them. When one membrane increases in area, the other decreases. They proposed
a model to compute the fundamental resonance [106]. It is found that the push-pull
configuration reduces the second harmonic distortion by 10dB, the non-linearity of one
membrane being compensated by the other.
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(a) (b)

Fig. 1.4. From Rustighi et al. [102], c. Working principle of DE with perforated rigid electrodes.
(a) Un-deformed configuration. (b) Deformed configuration, when an actuation voltage
is applied.

A team at Darmstadt, Germany, developed another interesting concept for using DEs as
loudspeakers [113, 59]. Contrary to most other studies, rigid electrodes are used. They
aremadeor perforatedmetal plates, as shown in fig. 1.4. A stack of alternating elastomer
and electrode layers is built. When a voltage is applied between the electrodes, the
elastomer is squeezed and the excess material can move in the electrode holes. The
whole stack is then compressed, and a normal displacement is obtained, so sound can
be radiated. One of the main advantages of this geometry is that metal electrodes are
used, which are thus very conductive. The high frequency response will not be limited
by the electrical behavior of the system.

This acoustic actuator is then used for active noise control with promising results in dou-
ble glazed windows [42].

A more in-depth experimental analysis of the sound radiation of the sandwich structure
proposed in [59] is performed in [102]. The sound radiation properties of the flat perfo-
rated plate loudspeaker are studied, including frequency response, directivity, and har-
monic distortion. Sound radiation in the frequency range 1-15 kHz is demonstrated.

Coupling with acoustics

Few authors investigated the influence of the coupling between acoustics and mechan-
ics on DE vibrations.

A first attempt is the work by Lassen, but the methodology and the results presented in
[71] are doubtful and unreliable. The influence of acoustics is modelled by the plane
wave impedance, which does not hold in the near field.

Another attempt in found in the paper by Chakravarty [16], but it is restricted to a flat
membrane, and studies only the variation of the first resonance frequency when the var-
ious design parameters are varied. The coupling with acoustics is taken into account by
analytical formulas valid only for flat circular membranes. This is thus of little use to study
inflated DE membranes.

Abbad et al. [1] studied both experimentally and numerically a tunable Helmholtz res-
onator, in which one of the cavity walls is made of a stretched dielectric elastomer mem-
brane. The membrane is flat, so a membrane model with uniform tension is used, and
coupled to acoustics in a commercial finite element code.
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https://creativecommons.org/licenses/by/4.0/


In a different context, Rothemund et al. [100] from the Harvard group studied a trans-
parent DE membrane for active noise control in ducts. The membrane is pre-stressed
and placed in a duct, and a plane wave is sent on it to analyse the transmission loss. The
membrane is also used as an actuator to implement active noise cancellation, leading
to an improvement of 10dB of the transmission loss. The interaction between acoustics
and the membrane dynamics is taken into account, but in this case it is relatively simple
since only plane waves propagate in the duct.

Improvement by signal processing

The team at Darmstadt recently investigated possible improvements of the frequency
response and directivity of DE loudspeakers bymeans of digital signal processing [66].

A DE loudspeaker made of an array of inflated bubbles, such as described in [86] was
studied. The audio signal is processed by a digital signal processor (DSP) before it is
fed into the high voltage amplifier and the DE loudspeaker. This method is shown to
enable great improvements of the frequency response, as well as of the total harmonic
distortion.

Some of the main limitations of this method is that the response of the speaker needs to
be precisely known to design correctly the filters. If the system response changes (aging,
change of the inflation pressure), the filters become inappropriate.

1.4 Related work on dielectric elastomers

1.4.1 Non-linear dynamics

Due to their large deformations, DE are non-linear in nature. For accurate description
of their properties, hyper-elastic material models are needed, and geometrical non-
linearities must also be taken into account. What is more, the relation between the
electrostatic pressure and the voltage is quadratic. Also, elastomer membranes often
exhibit visco-elastic behavior, which may require non-linear visco-elastic models to be
described. For all these reasons, there is a substantial literature on the non-linear dy-
namics of DE actuators.

As noticed above, the effect of non-linearities on the dynamics was observed in the first
studies on the use of DEs as loudspeakers [46] in the form of harmonic distortion of the
radiated acoustic pressure.

The first study on the non-linear dynamics of DEs may be the paper by Zhu et al., who
investigated the oscillations of a DE balloon using a 1-DOF model [125]. The frequency
response is studied, and sub-harmonic, harmonic, as well as super-harmonic resonances
are observed. Also, the oscillation amplitude may jump when the excitation frequency
is varied.
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This study was extended to multiple-DOF models in Zhu et al. [126], where an inflated
dielectric membrane is analysed using time integration of non-linear membrane equa-
tions.

Apart from the study by Zhu et al., most of the studies on non-linear dynamics of DEs
focus on 1-DOF devices.

For example, Xu et al. showed that even for a simple DE slab undergoing uniform de-
formation [116], complex dynamics are observed, in particular pulsating (modulated)
responses when the system is excited with a sine electrical signal.

Cao et al. tried to design DE systems to observe strongly non-linear behaviors. A planar
DE actuator which oscillates out of plane when a oscillating voltage is applied is studied
in [14]. A 1-DOF model is set-up, including viscosity, and used to analyse the non-linear
dynamics. A prototype is also built, and shown to exhibit sub-harmonic, harmonic, and
super-harmonic responses.

A similar study but for a 1-DOF oscillator with two stable equilibrium positions was car-
ried out by the same team [13]. The non linear dynamics of a bi-stable DE oscillator are
studied, and various oscillation regimes are identified depending on the amplitude and
frequency of the excitation.

This prototype was designed to reach the largest possible displacement at resonance,
so a membrane designed for use as a loudspeaker may not vibrate in this strongly non-
linear regime, and exhibit the same complex dynamics.

Some authors also started investigating control strategies to handle the non-linear dy-
namics, such as Li et al. [72] who show that the non-linear dynamical response can be
controlled using a PID and a feedback loop.

We listed above some interestingworks on the non-linear dynamics of DE devices, which
are more or less closely related to loudspeakers applications. It appears that most stud-
ies either focus on 1-DOF systems where a physical understanding of the observed non-
linear phenomena is possible, or demonstrate rich dynamic behaviors onmore complex
systems. To study and reduce the distortion of DE loudspeakers, there is more a need of
models capable of predicting the weakly non-linear dynamic response over a large fre-
quency range, than a need of models focusing on 1-DOF systems exhibiting a strongly
non-linear behavior.

We therefore believe that setting-upmultiple-DOFmodels of DE loudspeakers is the pri-
mary step, first to study linear dynamics and then to compute the harmonic distortion.
The non-linear dynamics could unfortunately not be studied for time reasons in this the-
sis.

1.4.2 Viscosity

Two types of materials are commonly used to manufacture DE actuators: silicone and
acrylic elastomers.

1.4 Related work on dielectric elastomers 11



Acrylic (and especially the very commonly used 3M VHB) exhibits the most impressive
electromechanical coupling, with the largest obtained static deformations and energy
density.

However, VHB has a large viscosity, and typically creeps during several minutes when
actuated. The effects of visco-elasticity on the dynamics have thus been studied by sev-
eral research groups, and shown to affect the non-linear dynamics of DE devices [124,
17, 103, 50, 123].

Silicone elastomers on the other hand have a lower viscosity, and react faster [96]. The
dynamics will thus be less influenced by visco-elastic effects in silicone elastomers than
in acrylics.

Silicone is used in this thesis, and loss phenomena are taken into account by simple
damping models, and not visco-elastic models. This choice will be justified by experi-
mental analyses.

1.5 Goals of the thesis

The study of the literature on DE loudspeakers reveals that the field is currently in a state
wheremost ideas and options on how to produce sound with these materials have been
tested.

There are many studies that show that sound radiation of interesting level can be ob-
tained in a rather large frequency range [45, 88, 102], that distortion can be reduced
to acceptable values by signal processing methods [45, 66], and that the device can be
made transparent by using specific types of electrodes [122, 63, 120].

However, there is still no commercially available DE loudspeaker. We believe several
reasons explain this:

• DEs need high voltage to be actuated. This may be dangerous, and requires bulky
high voltage amplifiers. This limitation is addressed by research teams working on
the manufacturing processes, who aim at producing reliable thinner membranes
and electrodes. One may hope that stacked DE actuators with low operation volt-
ages should be available in the coming years.

• DE loudspeaker designs are non-linear in nature, which is in contradiction with the
desired behavior of loudspeakers. The non-linear dynamics of DE devices are stud-
ied by several research groups, and control strategies to limit the harmonic distor-
tion start to appear.

• Most studies demonstrate the possibility to make loudspeakers out of DEs, but few
try to optimise for real the system. We believe the reason why no real optimization
is performed is that there are still modelling issues that are not addressed. The
models used currently for DE loudspeakers allow to qualitatively explain the main
characteristics, but are not predictive. To the author’s knowledge there is no study
where a model is shown to be able to predict quantitatively the sound radiation
properties of a DE loudspeaker.
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Therefore, the goal of this thesis is to develop an accurate model of DE loudspeakers,
that is capable of computing the acoustic and dynamic response of sufficiently precisely,
so that it can be used for design purposes, for example to run optimization routines to
improve the behavior of the loudspeaker.

Several difficulties are raised by this goal, the main being the multi-physics nature of DE
membranes. Indeed, the excitation mechanism itself is a coupling between electrostat-
ics and mechanics. The DE membranes are usually so thin that the surrounding air must
be considered as a heavy fluid, leading to strong vibroacoustic coupling. Also, due to
the high electrode resistivity, the dispersion of electric charges on the electrodes takes
time, and appears to be coupled to themembrane vibrations. This questions the validity
of electrostatic models to describe the electrical part of the system.

Neglecting some of these couplings is perfectly acceptable for a phenomenological ap-
proach, if the goal is to provide an understanding of the global behavior of DE loud-
speakers. However, as soon as a predictive model is needed, these couplings need to
be taken into account.

Predictive models have been developed for other DE devices, but not yet for loudspeak-
ers. Models for loudspeakers typically require features that may not be useful for other
uses. A large frequency range is studied, from a few hundred hertz to more than 10 kHz.
This implies that the model will need multiple degrees of freedom, as many modes will
contribute to the dynamics and sound radiation. There is a substantial literature on 1-
DOF models for DE, but fewer studies using multiple-DOF models.

Also, loudspeakers should behave as linear systems. Even though non-linear models
are useful to predict and reduce the distortion for example, we believe that many limita-
tions of DE loudspeakers can be addressed by linear analyses. Therefore we will work
here with linear models, which allow solving in the frequency domain, which saves a lot
of computational time. Being able to compute quickly frequency-responses opens the
path for automatic optimization of the design, as the loudspeaker models can be fed
into optimization routines.

To summarize, the main objectives of the thesis are:

• Develop a predictive model for DE loudspeakers.

• Use this model to optimize the parameters of the device, and investigate whether
large improvements are achievable by properly choosing the appropriate values
of the design parameters, or by setting up control strategies.

• Improve themodelling of DE devices in the high frequency range, where resistivity
effects are important.

These objectives are in line with the conclusions of the recent review on DEs by Gu et al.
[40], where the main challenges of the field are identified as:

• Accurate models to compute DE actuators dynamics are needed.

• Control strategies specifically designed for DE actuators should be developed.

• Driving electronics designed for DE actuators should be designed, to cope with
the high voltage and low current context.
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1.6 Organization of the thesis

In this thesis, a single geometry is investigated, namely inflated DE loudspeakers. This
configuration was chosen because it is the most widely studied in the literature [45, 126,
51, 66, 30], and because it also appears to be simple, and can thus be implemented in
real situations. The studied device is presented fig. 1.5, and the reader should keep this
geometry in mind as it will be used throughout the thesis.

Membrane

Electrodes

Aluminium tape

Frames

Connectors

Pressurized
cavity

Fig. 1.5. Schematics of the studied device.

The second chapter presents the developed model of DE loudspeakers. The different
physics that must be taken into account are analysed one by one, and coupled together.
The numericalmethodbased on finite elements which is used to solve the coupled equa-
tions is also presented.

In the third chapter, the experimental setup is introduced, including the manufacturing
process of the membranes, the coating with soft electrodes, and the various measure-
ment processes for static and dynamic analyses.

The fourth chapter presents the results of both the model and the experiments, in order
to validate the model. Statics, dynamics and acoustics are validated successively.

In the fifth chapter, the model is used to examine whether the DE loudspeakers can be
improved, by making the right choices of the design parameters. Static analysis are first
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carried out to enhance the low-frequency behavior, the electrode shape is then opti-
mized to improve the frequency response, and digital signal processing methods are
finally investigated to control the frequency response and the directivity.

The electrode resistivity effects on the electrodynamical loading, and the resulting cou-
pling between electrodynamics and mechanics is finally investigated in chapter 6. This
effect has little consequences on the acoustical behavior, and is therefore omitted in
chapter 2 for clarity reasons. However, it may enable possible new self-sensing strate-
gies.
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Model of a DE
loudspeaker

2
In this chapter, the model that is developed to study inflated dielectric elas-
tomer membranes is presented. First, an overview of the modelling pro-
cedure describing the main steps is given to identify the different physics
that will be taken into account. The second section derives the constitutive
equations of dielectric elastomermembranes. The three following sections
study one by one the main physics involved: membranemechanics, acous-
tics, and electrokinetics. Finally, the numerical procedure which is used to
solve for all the steps is described.

2.1 Overview of the modelling procedure

Pre-stretch
Applied pressure Static voltage Dynamic excitation

- Non-linear mechanics - Non-linear mechanics
- Electromechanical 
  coupling
- Adiabatic gas evolution

- Linear membrane dynamics
- Electromechanical coupling
- Strong vibroacoustic coupling
- Electrokinetics

step 1 step 2 step 3

reference 
configuration

static 
configuration

Fig. 2.1. Overview of the modelling procedure. In step 1, the membrane is pre-stretched from
radius Ā to radius A, and inflated with the applied pressure Papp. In step 2, the cavity
is closed, and a static voltage U0 is applied. The volume and the pressure in the cavity
change. In step 3 a dynamic excitation signal is superimposed to the static voltage. The
membrane vibrates and couples to the surrounding air.

The modelling procedure is decomposed into the following steps [see fig. 2.1], which
mimic the experimental procedure:

• step 1. The membrane is originally at rest in a reference state denoted hereafter
as reference configuration. During step 1, the membrane is equi-biaxially pre-
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stretched from the radius Ā to the radius A, and inflated with the applied pres-
sure Papp. In order to compute the resulting deformation, a hyper-elastic model is
used for the membrane. The non-linear static equilibrium is computed using the
Newton-Raphson algorithm.

• step 2. The cavity is closed and contains a fixed quantity of air, whose thermody-
namic evolution is supposed to be adiabatic. This is valid as long as the timescale
of the mechanical dynamics is smaller than the timescale for thermal conduction.
A static voltage U0 is applied between the electrodes.

To compute the resulting equilibrium, the same non-linear model as in step 1 is
used, but this time including electromechanical coupling. The obtained equilib-
rium is denoted the static configuration. In this configuration, the membrane co-
ordinates are written (X0, Y0), and the pressure in the cavity P0. All variables that
refer to this configuration are written with the subscript zero.

• step 3. An alternating signal is superimposed to the static voltage U0. This signal
vibrates the membrane which radiates sound in the surrounding air.

The strong couplings between the membrane vibrations and acoustics must be
taken into account to yield accurate results. Also, due to resistivity effects, the ef-
fective voltage on the electrodes may differ from the applied voltage U . This will
be taken into account by electrokinetics lumped models. During step 3, only lin-
ear vibrations are considered, and all quantities will be linearized around the static
configuration.

2.2 Electromechanical coupling

In this section, a model to describe the electromechanical coupling is derived, first in a
general 3D case, and later simplified to membrane mechanics.

2.2.1 Literature review

Uniform deformation of flat DE membranes

The first works on DEs, by Pelrine et al. [87, 88] used simple models to describe the
electromechanical coupling.

They model the DE device as a parallel plate capacitor, whose energy is written as:

E =
Q2

2C
=
Q2H

ϵS
, (2.1)

where C is the capacitance, Q the electrical charge on the top electrode, ϵ the dielectric
permittivity of themembrane,H the thickness of the capacitor andS its area. The change
in energy due to a change of thickness and area can be expressed as:

dE =
Q2

ϵS
dH − Q2H

ϵS2
dS . (2.2)
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Assuming that the elastomer is incompressible yields the following constraint between
the thickness and the area:

dS
S

= −dH
H

. (2.3)

Inserting this constraint in eq. (2.2) finally yields:

dE =
Q2

ϵS
dH . (2.4)

The effective pressure that deforms the membrane is defined as:

σ =
1

S

dE
dH =

Q2

ϵS2
. (2.5)

The charge on the electrodes can be related to the applied voltage byGauss’s law, which
gives:

σ =
ϵU2

H2
= ϵE2 , (2.6)

where U is the applied voltage, and E the electric field. Equation (2.6) defines the effec-
tive electrostatic pressure, which is found to be twice theMaxwell pressure which equals
σMax = 1/2ϵE2. This doubling of the effective pressure is directly related to the incom-
pressibility constraint.

A more detailed look at the electric field and interaction between the electric charges
gives a different interpretation of the electrostatic loading of the membrane. An inves-
tigation of the pressure created by a distribution of electric charges was performed by
Wissler and Mazza [115], who found that there is both a normal pressure σz = 1/2ϵE2

which is appliednormal to themembrane surface, and apressure in themembraneplane
of value σr = −1/2ϵE2. The pressure in the membrane plane can be interpreted as the
repulsion between charges of similar sign.

The comparison between these two points of view is shown in fig. 2.2.

(a) (b)

Equivalence
for incompressible

materials

Fig. 2.2. Electrostatic loading of an axisymmetric DE membrane. (a) Point of view of Pelrine et al.
[88]. (b) Force repartition obtained from the analysis of charge distributions [115]. The
two points of view describe stress states which result in the same deformation for incom-
pressiblematerials, as the distribution in (b) is obtainedby superimposing the hydrostatic
stress σ = 1/2ϵE2 to the distribution of (a) . The equivalence is valid for flat membranes.

Deformation of DE curved membranes

When the membrane is curved, the analysis of the charge distribution becomes a lit-
tle more complicated, and is schematized in fig. 2.3. The surface charge on the outer

2.2 Electromechanical coupling 19



electrode will be lower than the surface charge on the inner electrode. This results in a
different electrostatic pressure applied on the two electrodes.

(a)

Equivalence
for incompressible

materials

(b)

Fig. 2.3. Electrostatic stresses generated by charged electrodes on a curved DE membrane. κ1

and κ2 are the curvatures in the radial and orthoradial directions respectively. (a) Pelrine’s
point of view: double normal pressure. (b) Stress distribution found by analyzing the
charge distribution.

Anticipating a little on the following, the equilibrium equations of an inflated axisymmet-
ric hyper-elastic membrane read [2]:

∂σ1HR

∂R
= σ2H , κ1Hσ1 + κ2Hσ2 = P , (2.7)

where σ1 is the radial stress (along u1) and σ2 the ortho-radial stress (along u2), H the
membrane thickness, P the inflation pressure, R the radial coordinate. The jump condi-
tion at the membrane border reads:

JHσ1K +Hts = 0, (2.8)

where ts is the surface stress applied on the membrane border in the direction nb [see
fig. 2.3], JHσ1K = (Hσ1)in − (Hσ1)out is the jump ofHσ1 across a discontinuity surface of
normal nb.

The stress state can be described in two different manners.

First description of the electromechanical coupling The total stresses read:

σ1 = σ1m − 2σMax , σ2 = σ2m − 2σMax , (2.9)

whereσMax = 1/2ϵE2, andσ1m andσ2m are themechanical parts of theprincipal stresses.

These expressionswill be obtained rigorously in the following section, and are used here
to explain fig. 2.3. The total set of equilibriumequations for theDEmembrane comprises
eqs. (2.7) to (2.9), and describes the stress state shown in fig. 2.3a.

Second description of the electromechanical coupling We define new stresses by:

σ̃1 = σ1m − σMax = σ1 + σMax , σ̃2 = σ2m − σMax = σ1 + σMax , (2.10)
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Inserting these expressions in the equilibrium equations (2.7) and (2.8) yields:

κ1Hσ̃1 + κ2Hσ̃2 = P + σMax(κ1H + κ2H) , (2.11a)
∂σ̃1HR

∂R
+R

∂σMaxH

∂R
= σ̃2H , (2.11b)

JHσ̃1K + JHσMaxK +Hts = 0 . (2.11c)

If the thickness is uniform, the electrostatic pressure σMax is uniform too, and the second
term in eq. (2.11b) vanishes. The set of equations (2.11) then corresponds exactly to the
stresses described in fig. 2.3b. If the thickness is not uniform, the second equilibrium has
one more term compared to eq. (2.7), that is related to the variation of the electrostatic
stress along the radius.

This second description of the electrostatic coupling is easier to interpret in terms of
electric charge distributions, but is way less practical to use for numerical calculations
than the first description where only a normal electrostatic pressure is required.

Moreover, the first description of the electrostatic coupling comes out naturally from
the analysis of DE membranes based on energy considerations, as it will be shown in
section 2.2.2.

General models for non-uniform deformations

While the approachproposedbyPelrineet al. is valid todescribeone-degree-of-freedom
system, thismethod is harder to apply todeformablemembranes undergoingnon-uniform
deformations.

A unifying theory of DEs has been proposed by Suo et al. [109, 108], where the coupled
electromechanical equations are obtained starting from the definitions of work, electric
charges, and force.

Another general approach to obtain coupled electromechanical equations derives from
thework byColeman andNoll [19], who proposed a framework based on thermodynam-
ics to derive coupledmulti-physics constitutive relations. This framework was used to de-
rive the constitutive equations for electromagnetism, mechanics, and electromagnetism
coupled tomechanics by Kovetz [69]. Edmiston and Steigmann [26], and Dorfmann and
Ogden [24] applied it successfully to DEs.

A review of the different modelling approaches for non-linear electromechanics has
been written by Bustamante et al. [12].

In this thesis, we will use the approach proposed by Kovetz [69], and its application to
DEs by Edmiston and Steigmann [26] as it appears to be one of themost comprehensive
and rigorous.
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2.2.2 Theory

The method of Edmiston and Steigmann [26] to derive the constitutive relations of di-
electric elastomers is summarized in appendix A. The constitutive equations are here
simplified to membrane kinematics.

Constitutive relations in a general 3D case

We consider a dielectric body partially covered by electrodes on its surface.

In the absence of any electric charge or mechanical load, the body occupies a reference
configuration, where each material particle is identified by its position X̄ 1. Under elec-
trical andmechanical loading, the body is transformed to a deformed configuration: the
material point initially in X̄ moves to the positionX.

The deformation gradient tensor is defined by F = ∂X/∂X̄, and the Cauchy-Green
tensor by C = F T · F .

Reference configuration Deformed configuration

Fig. 2.4. Description of a material sample and definition of external loads

The problem is sketched in fig. 2.4. Themass density is denoted by ρs, the Cauchy stress
tensor by σ, and the electric displacement byD = ϵ0E+P , where ϵ0 is the vacuum per-
mittivity, E the electric field and P the electric polarization density, all in the deformed
configuration.

The constitutive relations of a general DE system read [see appendix A]:

σ = σ0 + σMaxwell , (2.12a)

with σ0 = 2ρsF · ∂ϕ0
∂C

· F T , and σMaxwell = ϵ

(
E ⊗E − 1

2
E ·EI

)
, (2.12b)

where ϕ0 is a purelymechanical free energy, I the identity operator, and ϵ is the dielectric
permittivity of the membrane.

Reduction of the constitutive equations to the case of a membrane

The constitutive laws of the DE have been given in the general 3D case. In the case of a
membrane they can be significantly simplified.
1In the whole thesis, variables with an over-bar¯are defined in the reference configuration.
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Fig. 2.5. Assumptions on the electric field in a thin DE membrane.

Concerning the electrostatics, the classical approximation for a thin dielectric between
electrodes is made: the electric field is assumed to be normal to the membrane, and
null outside of the dielectric portion covered with electrodes [see fig. 2.5]. Fringe effects
are neglected. This leads to:

E = −E n , with E =
U

H
, (2.13)

where n is the normal to the membrane, H the thickness, and U the electric potential
difference between the electrodes. The electric field E does not vary in the thickness
direction.

A specific form of the mechanical free energy now needs to be chosen. In the follow-
ing the elastomer is assumed to behave according to the Gent material law [35] (this
assumption will be validated in the experimental section 3.3.1). A LagrangemultiplierΠ
is used to impose the incompressibility constraint J = det(F ) = 1:

ϕ0 = −µJm
2

log
(
1− I1 − 3

Jm

)
+

Π

ρs
(J − 1) , (2.14)

where I1 = trC is the first invariant of the Cauchy-Green tensor, µ is the shear modulus,
and Jm is a parameter describing the stiffening of the material at large strains.

In the principal basis [see fig. 2.5], the deformation gradient and the right Cauchy-Green
deformation tensor read:

F = λ1u1 ⊗ u1 + λ2u2 ⊗ u2 + λnn⊗ n , (2.15)

C = F TF = λ21u1 ⊗ u1 + λ22u2 ⊗ u2 + λ2nn⊗ n , (2.16)

where λ1 and λ2 are the two principal planar stretches and λn the normal stretch.

Inserting eqs. (2.13) to (2.16) into eq. (2.12) provides the expression of σ in the principal
basis (σ = σ1u1 ⊗ u1 + σ2u2 ⊗ u2 + σnn⊗ n):

σ1 =
µJm

Jm − I1 + 3
λ21 −

ϵE2

2
+ Π , (2.17a)

σ2 =
µJm

Jm − I1 + 3
λ22 −

ϵE2

2
+ Π , (2.17b)

σn =
µJm

Jm − I1 + 3
λ2n +

ϵE2

2
+ Π . (2.17c)

The mechanical equilibrium equations are exactly the same as classical purely mechan-
ical equations. The coupling with electrostatics appears only in the constitutive relation
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defining the stress. Therefore, classical membrane equations can be used, in which
plane stress is assumed: σ · n = σn = 0 [2]. This provides the expression of the La-
grange multiplier Π.

The constitutive equations for the principal planar strains of a DE membrane are thus
obtained:

σ1 =
µJm

Jm − I1 + 3

(
λ21 − λ2n

)
− ϵE2 , (2.18a)

σ2 =
µJm

Jm − I1 + 3

(
λ22 − λ2n

)
− ϵE2 , (2.18b)

where I1 = λ21 + λ22 + λ2n. The stretches are linked by the incompressibility relation
λ1λ2λn = 1. Here one may notice that due to incompressibility the electromechanical
coupling results in an increased stress in the planar directions that is twice the commonly
called Maxwell pressure σmax = ϵE2/2. This is due to the coupling between the normal
and planar deformations of the membrane.

Finally, the non-dimensional nominal stresses s1 = σ1/µλ1 and s2 = σ2/µλ2 are defined,
and read:

s1 =
Jm

Jm − I1 + 3

(
λ1 − λ1

−3λ2
−2
)
− U2

µH̄2
λ1λ

2
2 , (2.19a)

s2 =
Jm

Jm − I1 + 3

(
λ2 − λ1

−2λ2
−3
)
− U2

µH̄2
λ21λ2 . (2.19b)

where H̄ is the thickness of the membrane in the reference configuration [see fig. 2.6].

Note on damping

In all the foregoing, we did not mention the losses inherent to the membrane material,
which has been modelled so far as a loss-free hyper-elastic material.

In practice, the silicone used to manufacture the membrane exhibits a visco-elastic be-
havior. However, in this thesis the structural losses will be taken into account by a con-
stant loss factor η, by considering a complex shear modulus:

µ∗ = µ(1 + iη) , (2.20)

where µ is the real loss-free shearmodulus. This expression is substituted in the equation
defining the stresses eq. (2.19), which yields:

s1 =
Jm(1 + iη)
Jm − I1 + 3

(
λ1 − λ1

−3λ2
−2
)
− U2

µH̄2
λ1λ

2
2 , (2.21a)

s2 =
Jm(1 + iη)
Jm − I1 + 3

(
λ2 − λ1

−2λ2
−3
)
− U2

µH̄2
λ21λ2 . (2.21b)

The loss factor will be tuned on experimental data, and this simple damping model will
be validated in chapter 4, by comparisons with experiments.
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More realistic damping models for DEs have been developed by other authors, and
can be implemented if the simple constant structural damping does not capture the
experimental behavior.

2.3 Hyper-elastic membrane mechanics

We now return to the problem of the dynamics of a DE membrane in an inflated config-
uration, as sketched in fig. 2.6. The equilibrium equations of axisymmetric hyperelastic
membranes are derived, and a weak form of these equations is obtained, for later imple-
mentation in finite elements.

2.3.1 Literature review

Hyperelastic membranes have been studied for a long time, and the static equilibrium
equations have been written by Adkins and Rivlin in 1952 [2].

The equilibrium equations for dynamics are for example available in [73].

2.3.2 Theory

Definition of the useful variables

SurfacePressure

Pressure
Volume

Compliant electrodes
Elastomer membrane

Volume

Symmetry axis

(a) (b)

Fig. 2.6. Schematics of the studied system. (a) Reference configuration, where the membrane is
flat. In the example shown,Γ (R̄) = 1 for R̄ < R̄E andΓ (R̄) = 0 for R̄ > R̄E . (b)Deformed
configuration, where the membrane is stretched and inflated.

Only axisymmetric deformations are studied in the present work. The thickness of the
membrane aswell as the electrodes canbeof any axisymetrical shape. The functionΓ (R̄)
describes the electrode location: it equals unity when electrodes are present at radius R̄
in the reference configuration [see fig. 2.6a], and zero otherwise. The membrane is pre-
stretched from the radius Ā to a radius A and inflated with the pressure Papp. A voltage
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U is then applied between the electrodes. The pressure inside the cavity is denoted Pi,
and the exterior pressure Pe.

The material points of the membrane identified by the radius R̄ in the reference config-
uration move to the radius X(R̄, T ) and to the altitude Y (R̄, T ) in the deformed config-
uration at time T [see fig. 2.6b]. The corresponding stretches are denoted by λ1 and λ2
respectively. The principal stretches as well as the angle of incline θ, defined in fig. 2.6b,
can be expressed in terms of the variables X and Y :

λ1 =

√(
∂X

∂R̄

)2

+

(
∂Y

∂R̄

)2

, λ2 =
X

R̄
, λn =

1

λ1λ2
=
H

H̄
,

cos θ = 1

λ1

∂X

∂R̄
, sin θ = 1

λ1

∂Y

∂R̄
, (2.22)

where H̄(R̄) andH(R̄) are the non-uniform thickness of the membrane in reference and
deformed configuration respectively. The thickness in the reference configuration is writ-
ten H̄(R̄) = Ȟh̄(R̄), where Ȟ is the thickness at the center, and h̄(R̄) a non-dimensional
function which equals one at the center.

Equilibrium equations of the membrane

The dynamic equilibrium equations are derived from the classical membrane equations,
commonly written along the normal and the tangential directions [73]. Given the axisym-
metry of the problem, they are here projected along the radial and the vertical directions:

ρs(1 + Γρratio)
XH

cos θ
∂2X

∂T 2
= −σ2Hcos θ − (Pi − Pe)X

sin θ
cos θ +

∂

∂X
(σ1XH cos θ) , (2.23a)

ρs(1 + Γρratio)
XH

cos θ
∂2Y

∂T 2
= (Pi − Pe)X +

∂

∂X
(σ1XH sin θ) , (2.23b)

where ρratio is the ratio of the electrode over the membrane mass per unit area. The
dependence in radius R and time T of X , Y , θ, H has been omitted for clarity.

These equations are the same as those derived by Zhu et al. [126], and are similar to
those used by Mockensturm and Goulbourne [81], except that they neglect tangential
inertia. If all inertia is neglected eq. (2.23) is equivalent to the well-known hyperelastic
membrane equations derived by Atkins [2]. Note that the electrostatic coupling appears
only in constitutive equations (2.21), and not in equilibrium equations (2.23).

All the equations of the problem are now transformed into a non-dimensional form, by
introducing non-dimensional variables, written with small letters:

r =
R

Ā
, z =

Z

Ā
, r̄ =

R̄

Ā
, a =

A

Ā
, x =

X

Ā
,

y =
Y

Ā
, h̄ =

H̄

Ȟ
, t =

Cs

Ā
T , pi =

ĀPi

µȞ
, pe =

ĀPe

µȞ
, (2.24)

where Cs =
√
µ/ρs is the speed of shear waves in the elastomer.
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Using the geometrical relations eq. (2.22) and the definition of the non-dimensional pa-
rameters eq. (2.24)weobtain fromeq. (2.23) the non-dimensional equilibriumequations:

(
h̄r̄s1x

′

λ1

)′

− (pi − pe)xy
′ − s2h̄ = r̄

(
h̄+ Γρratio

)
ẍ , (2.25a)(

h̄r̄s1y
′

λ1

)′

+ (pi − pe)xx
′ = r̄

(
h̄+ Γρratio

)
ÿ , (2.25b)

where the prime (′) stands for the space derivative ∂/∂r̄, and the dot (˙) is the time deriva-
tive ∂/∂t.

The boundary conditions for the membrane displacement are the following. Because
of axisymmetry, and as the displacement and the curvature of the membrane are con-
tinuous, the radial displacement and the membrane slope are null at the center. The
membrane is clamped at the outer edge at R = A. This reads:

x(r̄ = 0) = 0 , x(r̄ = 1) = a , y′(r̄ = 0) = 0 , y(r̄ = 1) = 0 . (2.26)

Weak form of the membrane equilibrium equations

Multiplying eq. (2.25) by test functions X and Y , and integrating by part on the mem-
brane Σ yields the following weak form of the membrane equilibrium equations:∫

Σ

Y ′ h̄r̄s1y
′

λ21
dl +

∫
Σ

X ′ h̄r̄s1x
′

λ21
dl +

∫
Σ

1

λ1
s2h̄Xdl −

∫
Σ

1

λ1
(pi − pe) (−y′X + x′Y)xdl

=−
∫
Σ

1

λ1

(
h̄+ Γρratio

)
(Y ÿ + X ẍ) r̄dl ∀X ,Y |X (r̄ = 1) = Y(r̄ = 1) = 0 , (2.27)

where dl = λ1dR̄ is the element length of the membrane.

2.4 Electrical model of the dielectric elastomer
membrane

In section 2.2, we derived the constitutive equations of dielectric elastomers, and mod-
elled the influence of the applied voltage on the stress state. In the present section, we
want to estimate the effective voltage on the electrodes, which may differ, as we will see,
from the voltage applied to the electrical connections of the membrane.

2.4.1 Literature review

When DEs are used in high frequency applications (several kHz) such as loudspeakers
[45, 51, 31], the resistivity of the electrodes starts to play a significant role. Combined
with the capacitive nature of theDEmembrane, it creates an equivalent resistor-capacitor
circuit, that is characterized by its time constant τRC or its characteristic frequency ωRC .
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For frequencies ω > ωRC , the effective voltage which actuates the transducer is smaller
than the supplied voltage, leading to a decrease in performance at high frequencies.

What is more, it has then been noticed that at higher frequencies, lumped RCmodels do
not describe correctly the electrical behavior of DEs, and transmission linemodels which
account for the spacial variation of the voltage on the electrodes have been proposed
as a refinement [117, 58, 39], either to study the voltage distribution on DE membranes
for actuator applications, or to investigate self-sensing of stacked DE transducers where
the resistivity of the electrodes connections is large [49, 48].

The effects of electrode resistivitywill be studied indetails in chapter 6, and in thepresent
chapter we settle for the lumped model to compute the electrical behavior of the DE
membrane, as the electrode resistivity is sufficiently low.

2.4.2 Theory

Lumped electrical model

The most simple way to account for electrode resistivity is to build a lumped model of
the membrane and its electrodes, which forms an RC circuit [see fig. 2.7].

Effective voltage on the electrodes
Voltage applied to the electrode connections
Total resistance of the electrodes
Capacitance of the dielectric membrane

Fig. 2.7. Lumped electrical model of the DE membrane. The voltage supplied by the generator is
Ua, and the voltage that effectively deforms the membrane is U .

The circuit is a low-pass filter, whose transfer function in the frequency domain reads:

Û

Ûa

=
1

1 + i ω
ωRC

, (2.28)

where ωRC = 1/RtCt. In this section hats denote Fourier transforms (Û = F(U)).

Effect on the chosen electrical signal

The Maxwell stress, which is responsible for the electromechanical activation, is propor-
tional to the squared voltage [see eqs. (2.12) and (2.13)]. This will be themajor source of
non-linearity. However, shaping the input signal can help reducing distortion, as shown
by Heydt et al. [46], and Kaal and Herold [57]. The following voltage is therefore applied
to the electrode connections:

Ua(t) =

√
U0

2 +Wa(t) , with U0
2 > |Wa| , (2.29)
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whereU0 is a DC voltage, andWa(t) an alternating component (in V2) which corresponds
to the audio signal that is played on the loudspeakers.

The first order effect of the RC filter on the voltage Ua applied to the electrodes is now
estimated. For small amplitudes of Wa compared to U0

2, the applied voltage can be
linearized as:

Ua(t) =

√
U0

2 +Wa(t) ≈ U0 +
Wa(t)

2U0
. (2.30)

Filtering Ua by the RC circuit eq. (2.28) yields:

U(t) ≈ U0 +
1

2U0
W (t) , withW (t) = F−1

(
Ŵa(ω)

1 + i ω
ωRC

)
, (2.31)

where F−1 is the inverse Fourier transform. Finally, by squaring and keeping the first
order term:

U2(t) ≈ U2
0 +W (t) . (2.32)

At low frequencies, 1 + iω/ωRC ≈ 1, meaning that the electrical circuit has no effect, so
U(t) = Ua(t). The expression eq. (2.32) is therefore exact at low frequencies, even for
large values ofWa.

Above the cutting frequency ωRC , the voltage is no longer uniform on the electrodes,
while themodel still assumes a uniformdistribution. The correctionofW by theRCcircuit
should therefore only be seen as a qualitative way to account for the decrease of the
excitation amplitude above ωRC .

Finally, using eq. (2.32) in the constitutive relations eq. (2.21) yields:

s1 =
Jm(1 + iη)
Jm − I1 + 3

(
λ1 − λ1

−3λ2
−2
)
− u20

Γ

h̄2
λ1λ

2
2 − w

Γ

h̄2
λ1λ

2
2 , (2.33a)

s2 =
Jm(1 + iη)
Jm − I1 + 3

(
λ2 − λ1

−2λ2
−3
)
− u20

Γ

h̄2
λ21λ2 − w

Γ

h̄2
λ21λ2 , (2.33b)

where u0 =
√
ϵ/µU0/Ȟ is the non-dimensional static voltage, and w = ϵW/µȞ2 the non-

dimensional excitation. In both equations, the first term is the mechanical stress, the
second is the stress created by the static voltage, and the third is the dynamical stress
due to the alternating component of the excitation voltage. This last term is proportional
to W , meaning the excitation force depends linearly on the audio signal. The electric
field is non-zero only where the electrodes are located, as indicated by the factor Γ in
eq. (2.33).
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2.5 Acoustic radiation

2.5.1 Literature review

Strong vibroacoustic coupling

The DE membrane thickness is typically around 50µm in the reference configuration,
and around 25µm in the static configuration. A non-dimensional parameter describing
the relation between the membrane mass and the mass of the air put into motion by the
membrane can be built:

m =
ρf Ā

ρsȞ
, (2.34)

where ρf is the fluid density, ρs the membrane density, Ā the initial membrane radius
and Ȟ the initial thickness at the center. For typical values of the thickness and radius,
this parameter is of the order of one:

m ≈ 1.2× 0.02

1000× 50× 10−6
≈ 0.5 , (2.35)

meaning that the air surrounding the membrane is comparatively heavy. Strong vibroa-
coustic coupling therefore needs to be accounted for to yield an accurate prediction
of the membrane vibrations and acoustic radiation. The parameter m will appear as
an added mass in the boundary conditions between the membrane and the air [see
eq. (2.51)].

Strong vibroacoustic coupling has been investigated in depth for the past fifty years or
more, and several formulations of the vibroacoustic problem have been proposed, ei-
ther with symmetric matrices or not, using different state variables to describe the fluid
and solid domains (displacement, velocity, pressure, displacement potential…). These
different formulations can be found in Morand & Ohayon [82] or in Sigrist [104] for ex-
ample. A shorter summary is available in the article by Ohayon & Schotté [84], where
the standard formulation using the pressure and the structure displacement is given.

Model order reduction methods have been developed for fluid-structure interaction
problem, including for strong vibroacoustic coupling. Thesemethodaregenerally based
on substructuring: modes of substructures (the fluid only, the structure only) are com-
puted, and the coupled system is then reduced using these uncoupled modal bases.
Symmetric matrices can be obtained at the end [84, 82]. The dynamic substructuring
methods can be extended to exterior vibroacoustic problems by modelling the exterior
fluid by the Boundary Element Method (BEM) [85, 82].

The methods proposed in Morand & Ohayon [82] for modal order reduction of exterior
fluid structure problems imply coupling FEM and BEM softwares, which may rise practi-
cal issues to obtain reliable results. Moreover, a new type of non-reflective boundary con-
dition has been developed after Morand & Ohayon [82], namely the Perfectly Matched
Layers (PMLs). These boundary conditions are very well suited for finite element calcu-
lations in open domains, and thus new methods have been developed based on PMLs
to reduce exterior vibroacoustic problems. This is investigated in next section.
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Perfectly matched layers

Perfectly Matched Layers are an efficient way to ensure reflection-free boundary condi-
tions in a finite element calculation. They consist of an added absorbing layer placed
around the outer boundary. PMLs have first been suggested by Berenger [7] for calcu-
lations in the time domain, but they are well suited to frequency domain computations
as well. They are nowadays implemented in most commercial finite element softwares
for acoustics. Here axisymmetric PMLs are used, with the complex change of variables
introduced by Collino and Monk [20].

Modal methods for exterior acoustics

In order to compute the pressure radiated by the DE loudspeaker fast enough to later
performoptimization, the dynamics and radiationwill be solved usingmodalmethods.

The most common modal approach for exterior acoustics is based on the so-called ra-
diation modes [9, 22, 89]. Radiation modes are obtained by diagonalizing the radiation
operator, which defines the power radiated by a structure. The radiationmodes can then
be used to efficiently compute the power radiated by the structure, but not the radiated
acoustic pressure. What is more, they are frequency-dependent, and therefore need to
be computed for all frequencies of interest.

Modal methods have also been investigated to compute the radiated pressure, but this
field has less been investigated. For damped and open (exterior radiation) systems,
complex resonance modes will be obtained (in opposition to classical real un-damped
modes [29]). At this point, a clarification of the distinction between resonance modes
and eigenmodes is necessary.

The general fluid-structure problem can be written in the general matrix form:[
−Ω2Mtot +Ktot(Ω)

]
Xtot = Ftot , (2.36)

whereMtot and Ktot are the total fluid-structure mass and stiffness matrices, Xtot the
vector of unknowns (containing both the acoustic and structural unknowns), and Ftot
the excitation, which may contain both excitations of the structure and of the fluid. The
stiffness matrix generally depends on frequency because of the Sommerfeld radiation
condition. The eigenfrequencies Ωn and eigenmodes Ψn of eq. (2.36) are defined by
the following linear eigenvalue problem:[

−Ω2
nMtot +Ktot(Ω)

]
Ψn = 0 (2.37)

so the eigenfrequencies and eigenmodes depend on the frequency Ω, and need to be
computed for all frequencies. They are therefore of little use for reducing the system
eq. (2.36). On the other hand, the resonance frequencies Λn and the resonance modes
Φn are defined by the non-linear eigenvalue problem:[

−Λ2
nMtot +Ktot(Λn)

]
Φn = 0 , (2.38)

which is non-trivial to solve. However, the obtained resonance modes do not depend
this time on frequency. Filippi and Habault [29] derived an analytical modal expansion
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formula on the resonance mode basis, but it requires the knowledge of the derivatives
of the eigenvalues with respect to frequency, which are a impractical to obtain.

This type of non-linear eigenvalue problem, where the stiffness matrix depends on fre-
quency is frequently obtained in structural mechanics, when part of the system has a vis-
cous behavior for example. Several modal methods have been investigated to reduce
such problems [101].

The general idea for using modal methods for exterior problem is to discretize the con-
tinuous spectrum that exists in open domains. Indeed, in bounded domains, free vibra-
tions can only occur at a set of discrete frequencies, the eigenfrequencies of the system.
In open domain, free oscillationsmay occur for all frequencies, which can be interpreted
as a continuous spectrum of eigenfrequencies [77].

Marburg [77, 79, 78] studied the use of resonance modes as a basis to compute the
pressure radiated by open systems in acoustics. He investigates a simple open acoustic
resonator [79], using finite elements to describe the acoustics around the object, and
infinite elements to model the Sommerfeld radiation condition. This model coupling
finite elements and infinite elements leads to a quadratic eigenvalue problem, with a
damping matrix that represents the loss of energy through radiation.

Compared to interior problems, it is found that a large number of modes is needed in
the reduced basis in order to obtain a good convergence of the modal summation solu-
tion. This is directly related to the fact that many modes are needed to approximate the
continuous spectrum that characterizes open systems. Marburg concludes that modal
approaches for exterior problems are particularly interesting to perform structural opti-
mization in view of improving the acoustic behavior of the structure.

There is also a substantial literature in the field of optics and photonics [70, 121], where
nano-scale open light resonators have been investigated using resonance modes (also
called Quasi Normal Modes). The coupling of finite element methods and PMLs ap-
pears to be one of the most efficient method to compute resonance modes, and modal
superposition is shown to work on such a reduced modal basis. The advantage of the
PMLs tomodel the Sommerfeld radiation condition is that frequency independent matri-
ces can be obtained, leading to a linear eigenvalue problem (contrary to the quadratic
eigenvalue problemwhich is obtained when infinite elements are used [79]). Themodal
method is claimed to provide a better physical understanding of the radiation properties
of the studied system compared to direct approaches where the governing equations
are solved for all frequencies of interest.

Thus, we will use modal approaches using PMLs to solve for the fluid loaded dynamics
and acoustical radiation of the DE membrane.

2.5.2 Theory

Acoustic equilibrium equations

The pressure difference between the inside and the outside of the cavity is small com-
pared to the atmospheric pressure, so the fluid density ρf and the speed of sound Cf

are assumed to be the same inside and outside.
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Fig. 2.8. Definition of the variables for acoustic calculations.

The pressure field inside the cavity is split into a static part P0, a uniform oscillating part
Pu, and an acoustic part Pa:

Pi = P0 + (Pu + Pa)eiΩT . (2.39)

The total dynamic pressure satisfies the Helmholtz equation, and the uniform pressure
is proportional to the volume variation of the cavity. This yields the following system of
governing equations [82]:

Ω2Pa +Ω2Pu + C2
f∆Pa = 0 , (2.40a)∫

Ωi

PaRdS = 0 , (2.40b)

Pu + C2
f

ρf
V0

2π

∫
Σ

1

λ10
(−Y ′

0X̃ +X ′
0Ỹ )X0dL = 0 , (2.40c)

where dL = λ10dR̄ is the element length of the membrane, and dS = dRdZ the element
surface of Ωi and Ωe. The integrations domains are defined in fig. 2.8.

The interior pressure satisfies Neumann boundary conditions: the normal velocity on
the walls of the cavity Σwall is null, and the normal velocity equals the membrane normal
velocity on the membrane Σ:

∇Pa · n = 0 on Σwall , (2.41a)

∇Pa · n = ρfΩ
2 1

λ10
(−Y ′

0X̃ +X ′
0Ỹ ) on Σ . (2.41b)

The exterior pressure also obeys the Helmholtz equation:

Ω2Pe + C2
f∆Pe = 0 , (2.42)
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and satisfies Neumann boundary conditions on the cavity walls and on the membrane:

∇Pe · n = 0 on Σwall , (2.43a)

∇Pe · n = −ρfΩ2 1

λ10
(−Y ′

0X̃ +X ′
0Ỹ ) on Σ , (2.43b)

as well as a Sommerfeld radiation condition on the outer boundary Σin. This bound-
ary condition will be implemented by PMLs, using the complex change of coordinates
defined in the following section.

Axisymmetric perfectly matched layers

In order to define perfectly matched layers in the regions shown in fig. 2.8, a complex
change of coordinates is defined. The coordinates will become complex in the PML
region, creating numerical absorption properties.

The same procedure as in Collino andMonk’s work [20] is followed, with a single change:
the frequency dependence of the change of coordinates is removed so that frequency
independent mass and stiffness matrices can be obtained. Thus, we define:

r̂ =

r − i
∫ r

rin
Θr(r)ds for r > rin

r otherwise
, ẑ =

z − i
∫ z

zin
Θz(z)ds for |z| > |zin|

z otherwise
, (2.44)

where classical quadratic attenuation functions are chosen:

Θr(r) = Θ0(r − rin)
2 , Θz(z) = Θ0(z − zin)

2 , (2.45)

Θ0 being an attenuation parameter that should be adjusted.

These changes of variables imply the following changes of the partials derivatives:

∂

∂r̂
=

1

γr(r)

∂

∂r
,

∂

∂ẑ
=

1

γz(z)

∂

∂z
, (2.46)

where the γi functions are defined as follows:

γr(r) =

1− iΘr(r) for r > rin

1 otherwise
, γz(z) =

1− iΘz(z) for |z| > |zin|

1 otherwise
. (2.47)

The changes of variables eq. (2.44) will then be inserted in the equations governing ex-
terior acoustics. If the parameter Θ0 of the PMLs is correctly chosen, the reflections of
outgoing waves on the PMLs should be negligible in the frequency range of interest.
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Weak form of the acoustic equilibrium equations

Non-dimensional pressures are defined as:

pa =
ĀPa

µȞ
, pe =

ĀPe

µȞ
, p0 =

ĀP0

µȞ
, pu =

ĀPu

µȞ
. (2.48)

In the followingnon-dimensional equations, theprime stands for spacederivative ∂/∂r̄.

The use of the displacement potential instead of the acoustic pressure as state variable
for the fluid will largely improve the convergence of the modal summation to compute
the radiated pressure in section 2.6. The displacement potentials are defined for interior
and exterior acoustics as:

pa = ω2qa , pe = ω2qe . (2.49)

The complete set of non-dimensional equations for acoustics reads:

ω2qa + pu + c2∆qa = 0 , (2.50a)∫
Ωi

qards = 0 , (2.50b)

pu +
mc2

v0
2π

∫
Σ

1

λ10
(−y′0x̃+ x′0ỹ)x0dl = 0 , (2.50c)

ω2pe + c2∆pe = 0 , (2.50d)

where c2 = C2
f/C

2
s is a non-dimensional parameter describing the relation between the

speed of sound in the membrane and in the air, and v0 = V0/Ā
3 is the non-dimensional

volume of the cavity in the static configuration [see fig. 2.1]. The boundary conditions
read:

∇qa · n = 0 on Σwall , (2.51a)

∇qa · n = m
1

λ10
(−y′0x̃+ x′0ỹ) on Σ , (2.51b)

∇pe · n = 0 on Σwall , (2.51c)

∇pe · n = −mω2 1

λ10
(−y′0x̃+ x′0ỹ) on Σ . (2.51d)

Multiplying eq. (2.50c) by a test scalarPu yields theweak form of the equation governing
the uniform pressure in the cavity:

Pupu + Pu
mc2

v0
2π

∫
Σ

1

λ10
(−y′0x̃+ x′0ỹ)x0dl = 0 , ∀Pu . (2.52)

Multiplying eq. (2.50a) by a test function Qa, integrating by parts, taking into account
the boundary conditions eq. (2.51), and using a Lagrange multiplier κi to ensure the
mean pressure constraint eq. (2.50b) yields the weak form of the Helmholtz equation
governing the interior pressure:
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− ω2

∫
Ωi

qaQards+ c2
∫
Ωi

∇qa · ∇Qards

−
∫
Ωi

puQards−mc2
∫
Σ

1

λ10
(−y′0x̃+ x′0ỹ)Qax0dl

+ κi

∫
Ωi

Qards+Ki

∫
Ωi

qards = 0, ∀Qa, ∀Ki . (2.53)

The weak form of the Helmholtz equation governing exterior acoustics is obtained in a
similar manner, but the PML change of coordinates defined in previous section is now
inserted, in order to implement the Sommerfeld radiation boundary condition.

− ω2

∫
Ωe

qeQer̂ds+ c2
∫
Ωe

(
γz
γr

∂qe
∂r

∂Qe

∂r
+
γr
γz

∂qe
∂z

∂Qe

∂z

)
r̂ds

+mc2
∫
Σ

1

λ10
(−y′0x̃+ x′0ỹ)Qex0dl = 0, ∀Qe . (2.54)

2.6 Numerical procedure

In this section, the numerical procedure used to solve the problem introduced in sec-
tion 2.1 is described. First, the set of coupled equations to be solved is summarized,
and the methods to calculate the static deformation and the linear vibrations are then
presented.

2.6.1 Set of coupled equations

As the coupled problem will be solved using finite elements, the weak forms of all the
coupled equations are necessary. They have been derived in the previous sections, and
are listed here altogether, in non-dimensional form.

• Material behavior eq. (2.33):

s1 =
Jm(1 + iη)
Jm − I1 + 3

(
λ1 − λ1

−3λ2
−2
)
− u20

Γ

h̄2
λ1λ

2
2 − w

Γ

h̄2
λ1λ

2
2 , (2.55a)

s2 =
Jm(1 + iη)
Jm − I1 + 3

(
λ2 − λ1

−2λ2
−3
)
− u20

Γ

h̄2
λ21λ2 − w

Γ

h̄2
λ21λ2 , (2.55b)

• Membrane equilibrium eq. (2.27):

∫
Σ

Y ′ r̄h̄s1y
′

λ21
dl+

∫
Σ

X ′ r̄h̄s1x
′

λ21
dl+

∫
Σ

1

λ1
s2h̄Xdl−

∫
Σ

1

λ1
(p0 + pu) (−y′X + x′Y)xdl

= −
∫
Σ

1

λ1

(
h̄+ Γρratio

)
(Y ÿ + X ẍ) r̄dl −

∫
Σ

1

λ1
(q̈a − q̈e) (−y′X + x′Y)xdl ,

∀X ,Y, |X (r̄ = 1) = Y(r̄ = 1) = 0 . (2.56)
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Here the changes of state variable for the interior and exterior fluids, which were
introduced in section 2.5.2, have been inserted in eq. (2.27).

• Uniform pressure in the cavity eq. (2.52):

Pupu + Pu
mc2

v0
2π

∫
Σ

1

λ10
(−y′0x̃+ x′0ỹ)x0dl = 0 , ∀Pu . (2.57)

• Interior acoustics eq. (2.53):

− ω2

∫
Ωi

qaQards+ c2
∫
Ωi

∇qa · ∇Qards

−
∫
Ωi

puQards−mc2
∫
Σ

1

λ10
(−y′0x̃+ x′0ỹ)Qax0dl

+ κi

∫
Ωi

Qards+Ki

∫
Ωi

qards = 0 , ∀Qa, ∀Ki . (2.58)

• Exterior acoustics section 2.5.2:

− ω2

∫
Ωe

qeQer̂ds+ c2
∫
Ωe

(
γz
γr

∂qe
∂r

∂Qe

∂r
+
γr
γz

∂qe
∂z

∂Qe

∂z

)
r̂ds

+mc2
∫
Σ

1

λ10
(−y′0x̃+ x′0ỹ)Qex0dl = 0 , ∀Qe . (2.59)

2.6.2 Static deformation: step 1 and step 2

The first stage of the numerical procedure consists of solving for the static deformation
of the membrane when it is pre-stretched, inflated, and when a static voltage is applied
to the electrode connections. This stage contains step 1 and step 2, which have been
defined in fig. 2.1.

Solving step 1

In this first step, the interior pressure is fixed Pi = Papp, and is therefore not a variable
that needs to be solved for. The weak form which is solved therefore reads:∫

Σ

Y ′ r̄h̄s1y
′

λ21
dl +

∫
Σ

X ′ r̄h̄s1x
′

λ21
dl +

∫
Σ

1

λ1
s2h̄Xdl −

∫
Σ

1

λ1
papp (−y′X + x′Y)xdl = 0 ,

∀X ,Y |X (r̄ = 1) = Y(r̄ = 1) = 0 . (2.60)

Equation (2.60) is of the form :

ℜ([x, y], [X ,Y]) = 0, ∀X ,Y . (2.61)

It is solved using the Newton Raphson algorithm. First an initial guess of the solution
is made in the form of a spherical cap, and denoted xi = [xi, yi]. Then the residual
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ℜ([x, y], [X ,Y]) is linearized to provide the gradient for Newton-Raphson’s method. In-
troducing the perturbation x̃ = [x̃, ỹ] by x = [x, y] = xi + x̃, the linearized weak form
reads:

ℜ([xi, yi], [X ,Y]) + ⟨ℜ′([xi, yi], [X ,Y]) , [x̃, ỹ]⟩ = 0 . (2.62)

The explicit linearized form of eq. (2.62) is provided in appendix B. The linear equation
(2.62) is solved at each step of Newton-Raphson’s method to find the increment x̃ to
update the initial guess xi: xi = xi + x̃. This is repeated until x̃ is sufficiently small
(∥x̃∥2< 1e−8).

FreeFEM [41] is used to assemble the stiffness matrix and the force vector, and to solve
the non-linear inflation problem. The membrane is meshed in the reference configura-
tion, and 100 Lagrange P2 elements along the radius are used.

Solving step 2

In step 2, the cavity is closed, and a static voltage is applied between the electrodes. The
membrane deforms and the pressure in the cavity thus changes. The solving method is
similar to step 1, but this time the interior pressure is a variable, and eq. (2.57) must be
solved too. The new weak form reads:

ℜ([x, y, pu], [X ,Y,Pu]) = 0, ∀X ,Y,Pu , (2.63)

and the explicit form is given in appendix B. Here again, FreeFEM is used to assemble
the stiffness matrix and force vector of the problem. The coupling between the mem-
brane and the uniform pressure is taken into account by adding a line and column to
the stiffness matrix obtained in step 1. The tangent stiffness matrix for step 2 is of the
form:

Ktot =

Ku Ks
u

Ku
s Ks

 . (2.64)

whereKu is the stiffness addedby the cavity, coming fromeq. (2.57);Ks is themembrane
stiffness matrix, coming from eq. (2.56); andKs

u ,K
u
s describe the coupling between the

membrane and the uniform pressure in the cavity.

At the end of this step, the static configuration is known, which means that x0(r̄), y0(r̄)
and their derivatives, as well as p0 and v0 are known.

2.6.3 Linear dynamics: step 3

PML validation

The PML parameters (thickness, attenuationΘ0, and distance from the membrane) have
been adjusted on a numerical test case, consisting of a flat piston embedded in an infi-
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nite baffle. For this setup, the Rayleigh integral provides an exact solution for the radi-
ated pressure. Further details on this test case are given in appendix C.

Discretization using finite elements

The membrane and the interior and exterior domains are meshed this time in the static
configuration. Lagrange P2 elements are used in all domains. The meshed geometry is
shown in fig. 2.9.

PMLs

Exterior acoustics

Interior acoustics

Membrane

Cavity walls

Fig. 2.9. Mesh of the fully coupled model. The yellow area is the acoustical domain, the exterior
black area is the PML, the interior black area is the interior fluid, and themembranemesh
is too thin to be visible on this picture. The grey area corresponds to the walls of the
cavity.

The number of elements along the radius of themembrane is chosen so that there are 12
elements per flexural wavelength at 5 kHz, and similarly the number of acoustic elements
is chosen so that there are 12 elements per acoustic wavelength at 5 kHz. The pressure
fluctuations close to themembrane aregovernedby thewavelengthof the flexural waves
in the membrane and not by the acoustic wavelength. Therefore, at the interface the
size of the acoustic elements is the same as the size of the membrane elements, and a
conforming mesh is used.
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Assembly of the coupled mass and stiffness matrices

The linearized weak form of the coupled vibroacoustic problem is given in appendix B,
and is discretized using finite elements in order to obtain the total stiffness and mass
finite element matrices:

−ω2



Ma 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 Me 0

Ma
s 0 0 Me

s Ms


+



Ka Kκ
a Ku

a 0 Ks
a

Ka
κ 0 0 0 0

0 0 Ku 0 Ks
u

0 0 0 Ke Ks
e

0 0 Ku
s 0 Ks







qa

κ

pu

qe

x̃T


=



0

0

0

0

F


, (2.65)

which is written in condensed form as:

(−ω2Mtot +Ktot)Xtot = Ftot . (2.66)

The different sub-matrices are defined by the weak forms derived in the previous sec-
tions, and explicitly given in appendix B. The force F is the electrostatic force applied
on the membrane, due to the terms in w in eq. (2.33).

The matricesMtot and Ktot are both frequency independent, as the PMLs have been
modified to become frequency independent, and because losses in themembrane have
been modelled by a constant loss factor.

Forced response

A first method to solve the system eq. (2.66) is to use a direct approach: the system is
inverted for all frequencies of interest.

Xtot = (−ω2Mtot +Ktot)
−1Ftot . (2.67)

This method, later referred to as the FEM method, may be time consuming if many fre-
quency bins are required, and provides little insight for understanding the dynamics of
the system.

A second option is to use a modal approach, which provides a clearer physical inter-
pretation of the results, and is much more efficient to compute several frequency re-
sponse functions of the same system but with various excitation forces. As the matrices
are frequency-independent, a linear eigenvalue problem is obtained. Standard eigen-
value solvers are therefore used to compute the modes of the homogeneous system
eq. (2.66) with Ftot = 0.

In the present case, the mass and stiffness matrices are not symmetric so left and right
eigenvectors (ΨL

n andΨR
n ) need to be computed:

ΨL
n(−ω2

nMtot +Ktot) = 0 , (−ω2
nMtot +Ktot)Ψ

R
n = 0 . (2.68)
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We recall that the resonance frequencies ωn are complex due to the losses in the PMLs
and to the structural damping η.

(a)

50 100 150 200 250

Mode number

50

100

150

200

250

M
o

d
e

 n
u

m
b

e
r

-15

-10

-5

lo
g
1
0
(A

m
p
lit

u
d
e
)

(b)

50 100 150 200 250

Mode number

50

100

150

200

250

M
o

d
e

 n
u

m
b

e
r

-10

-5

0

lo
g
1
0
(A

m
p
lit

u
d
e
)

Fig. 2.10. (a) Computed modal mass matrix, and (b) computed modal stiffness matrix, for mode
orthogonality check. A quantitative indicator Iqual of how close the matrices are to di-
agonal matrices can be defined, by computing the ratio between the smallest diagonal
element over the largest non-diagonal element. It yields Iqual = 7.5× 105 for themodal
mass, and Iqual = 1.4× 104 for themodal stiffness. These values canbe considered very
large, close to the numeric precision of the export of data from FreeFEM.

If all eigenvalues are of order one, the following bi-orthogonality relations hold:

ΨLMtotΨ
R = diag(mn) , ΨLKtotΨ

R = diag(kn) , (2.69)

where mn and kn are the modal mass and stiffness of mode n, and ΨL and ΨR the
matrices containing the left and right modeshapes. The bi-orthogonality relations are
checked in fig. 2.10 where the modal mass and stiffness matrices of a typical inflated
membrane coupled to acoustics are plotted.

The total displacement is projected onto the right modeshapes basis Xtot = ΨRα. By
inserting this into eq. (2.66), left-multiplying byΨL, and using the bi-orthogonality rela-
tions, the modal amplitudes can be expressed as:

αn(ω) =
Fn

mn(ω2
n − ω2)

, (2.70)

where the modal force is defined as:

Fn = ΨL
nFtot . (2.71)

The displacement and the acoustic pressure are then known everywhere:

pe =
∑
n

ω2αn(ω)Ψ
R
n,e , pa =

∑
n

ω2αn(ω)Ψ
R
n,a , (2.72a)

x̃ =
∑
n

αn(ω)Ψ
R
n,x , ỹ =

∑
n

αn(ω)Ψ
R
n,y , (2.72b)

whereΨR
n has been split into parts containing the different types of degrees of freedom,

ΨR
n,e containing for example the exterior acoustics degrees of freedom. This method will
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be referred to as the modal method. Due to the use of the displacement potential as
the state variable for the fluid, the obtained pressure is proportional to the membrane
acceleration, which is expected for acoustic radiation. If the pressure had been used
instead as the state variable, the radiated pressure would have been proportional to the
displacement, which would have led to poor convergence of the modal summation for
the radiated pressure [see appendix D].

SurfacePressure

Pressure

Receiver

Region where 
the pressure is 
computed by 
FEM

PMLs

Fig. 2.11. Definition of the variables for the propagation of the near field solution to the far field
using the Kirshoff-Helmholtz integral.

The modal method works to compute the pressure in the near field, in the part of the
acoustical domain that is meshed [see fig. 2.11]. If the far field pressure is needed, this
near field solution is propagated using the Kirshoff-Helmholtz integral:

pe(xr) = −
∫
ΣKH

[pe(x)∇g(x,xr) · nKH(x) −∇pe(x) · nKH(x)g(x,xr)]ds(x) , (2.73)

where ΣKH is a surface enclosing the loudspeaker [see fig. 2.11], xr the location of the
receiver, nKH(x) the outer normal to ΣKH, and g the free-field Green’s function:

g(x,xr, ω) =
e−i∥x−xr∥ω/c

4π∥x− xr∥
. (2.74)

The modal expansion of pe eq. (2.72a) can be used in eq. (2.73), and this method will be
referred to as themodal KH method.

Truncation of the modal basis

When the modes of a resonant system coupled to an exterior fluid are computed using
PMLs, two types of modes will be obtained [70]: the resonant modes of the fluid loaded
structure referred to hereafter as membrane modes [see fig. 2.12a], and a series of so
called PML modes [see fig. 2.12b]. The PML modes arise from reflections inside the
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PMLs, so they will change both in frequency and in shape if the PML parameters (size,
attenuation, number of elements) are changed.

Both the structural and the acoustic response are dominated bymembrane modes and
it is interesting to study only these modes for the physical interpretation they provide.

The pressure in the PML modes is very large inside the PMLs and smaller in the physical
part of the model [see fig. 2.12b]. As the PML is largely damped, PML modes have a
highmodal loss factor. A damping criterion is thus used to distinguishmembranemodes
from PMLmodes. Figure 2.13 shows that there is a clear distinction in damping between
the two types of modes, and that the chosen criterion is efficient in sorting them out.
As emphasized in fig. 2.13, the damping value of 5% will be used in the following to
distinguish between the two types of modes.

PML(a) (b)
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Radius Radius
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Fig. 2.12. (a) Example of a membrane mode. (b) Example of a PML mode. PML modes are char-
acterized by large pressure values in the PML layer. The black line shows themembrane
part of the modeshape. The color scale for the acoustic pressure is the same on both
plots.
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Fig. 2.13. Computed modal loss factor of the first 250 modes. The structural loss factor η is set to
4%, so all modes with a damping higher than 5% are considered to be PML modes.

The two types of modes (membrane and PML modes) must be included in the modal
summation toprovide accurate reconstructions of the acoustic and structural responses.
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In the present study the modal basis is truncated by selecting all the modes that have an
absolute value of their eigenfrequency below a given threshold. The threshold is chosen
so that the modal solution is close enough to the direct calculation (FEM).

Different modal basis truncations have been suggested by Marburg [77] for example.
However, in the present context, selecting the relevant modes according to the abso-
lute value of their eigenfrequencies performs well. This requires to run the costly direct
calculation FEM one time. Yet, once the modes are computed and the modal truncation
criterion is defined, calculating various frequency responses for various excitations can
be performed quickly using the modal approach.

The modal method for exterior fluid-structure problems is studied in more details in ap-
pendix D on a simpler system consisting of a flat piston embedded in an infinite baffle.
The convergence of themodal summation to the direct calculation is studied for different
modal truncations, both for the radiated pressure and for the membrane dynamics.

The convergence will also be checked in chapter 4 when the results of the model for the
exterior radiation are shown, in section 4.4.

2.7 Conclusion

In this chapter, a complete model of a inflated DE loudspeaker has been set up. Three
different physics are strongly coupled together: mechanics, electrostatics and acoustics.
The obtained coupled problem is solved by finite elements, in the open-source software
FreeFEM.

In order to compute quickly frequency response functions for both acoustics and dynam-
ics, the system of equations is projected on a basis of coupled fluid/structure modes,
which are computed by implementing frequency-independent perfectly matched lay-
ers.

In the following chapter, a prototype is built to validate this model, and the results of the
model are compared to experimental data in chapter 4.
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Experimental setup 3
In this chapter the fabrication process of DE loudspeakers is described,
frommanufacturing the siliconemembrane to applying the compliant elec-
trodes. The prototype design is then presented and explained.
The different measurements needed to identify the model parameters are
also described, and finally the setups for static, dynamic, and acoustic mea-
surements are presented.

3.1 Fabrication process

3.1.1 Fabrication of the membranes

Elastomer membranes for use as DE actuators need to satisfy the following require-
ments:

• There should not be any defect in the membrane, meaning any small bubble in
the silicone, or dust on the surface is not acceptable. Indeed, any defect would
locally increase the electric field when a voltage is applied, up to a value higher
than the breakdown field. The maximum voltage before breakdown is therefore
determined by these defects [see fig. 3.1].

• The thickness should be as uniform as possible. The electric field is maximal where
the thickness is minimal, so breakdown occurs at the thinnest point of the mem-
brane. A uniform thickness guaranties that the breakdown is reached approxi-
mately for the same voltage on the whole membrane.

Surface defect Air inclusion(a) (b)

Fig. 3.1. Defects on DE membranes, and consequences on the breakdown voltage. ebd(silicone)
and ebd(air) are the breakdown electric fields of silicone and air, and e is the actual local
electric field. (a) When there is a surface defect, the electric field is locally higher, so
dielectric breakdown occurs for lower applied voltages. (b) Air has a lower dielectric
strength than silicone, so an air bubble locally reduces the total dielectric strength.
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Spin-coating at IMSIA

The first prototypes were manufactured at IMSIA, using the tools I could find in the
lab. Spin-coating appeared to be the easiest solution to manufacture acceptable mem-
branes, in terms of thickness uniformity and amount of defects (dust, air inclusions, etc.).
No proper spin-coater was available, so I used a polishing machine, which could only
rotate at a given speed, around 500 rpm. The manufacturing process is summarized as
follows:

1. Mix 10g of silicone Part A, 10g of silicone part B, and 12g of isooctane. The sol-
vent isooctane helps reducing the viscosity of the Nusil CF19-2186 silicone which
is very viscous and impossible to spin-coat without added solvent. The mixing is
performed by hand during 2min.

2. Put the obtained mix under vacuum during 2min to remove air bubbles.

3. Pour a small amount on a polystyrene culture dish, which is fixed on the polishing
machine.

4. Spin the dish for 2min.

5. Cure the membrane during 30min at 80°.

The spin-coating process is schematized in fig. 3.2.

10g silicone Part A

10g silicone Part B

12g Isooctane (solvent)

Fig. 3.2. Schematics of the spin-coating process, to manufacture thin DE membrane from Nusil
CF19-2186 silicone.

In theory, the thickness of a spin-coated membrane is uniform, as a result of the balance
between centrifugal and viscous forces [114]. The uniformity of the thickness will be
checked in section 3.3.2.

Also, the spin-coating process should be carried out in a clean room, as dust particles
falling on themembranebefore it has curedmust be avoided. No clean room is available
at IMSIA, therefore limiting strongly the quality of the obtained membranes. To limit the
amount of dust on the membrane, the culture dish lock is put on the dish at all times,
and removed only to pour the silicone.

Once the membrane is cured in the culture dish, it is released by hand, and deposited
on a paper sheet. Thanks to the low adhesion forces between the paper and the silicone
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membrane, the membrane can be deposited on the sheet with very little stretch, so the
membrane is considered to be at rest on the sheet. A PMMA frame is then pressed
against the membrane, and thanks to electrostatic forces the membrane is then fixed on
the frame. This process is described in fig. 3.3.

Silicone membrane

Paper sheet

Holding frames (PMMA)

Manually remove the 
membrane from the 
culture dish

Put the membrane on a 
paper sheet, with as little 
tension as possible

Stick the top holder on 
the membrane

Remove the paper sheet Stick the bottom holder 
on the other side of the 
membrane.

1 2 3

4 5

Fig. 3.3. Release of the membrane from the culture dish after spin-coating, and mounting on the
holders.

The limitations of the process described in fig. 3.3 are related to themanual intervention,
when themembrane is released from the culture dish and deposited on the paper sheet.
Placing themembranewith no constraints and nowrinkles on the paper sheet is not easy,
and is in particular hard for very thin membranes.

What is more, it is not possible to pre-stretch themembrane using this method. This may
be a problem because of the Muhlins effect. Indeed once the membrane is stretched
and released a few times, a residual deformation is obtained. For a membrane fixed on
a frame with no initial tension, wrinkles appear in the rest state.

Manufacturing at LMTS: pre-stretching commercial membranes

Given the above-listed limitations of the fabrication process that could be implemented
at IMSIA, I searched for collaborations with teams who are more specialized in the man-
ufacturing and characterization of soft transducers. Prof. Herbert Shea responded posi-
tively to my request, so I spent a month at the LMTS, the soft transducers lab at the EPFL,
in oder to manufacture more accurate and efficient prototypes.

The manufacturing process that I used at the LMTS differs from what I implemented at
IMSIA, as I could benefit from the experience in handling soft materials that has been
gathered at the LMTS. I used silicone membrane that are sold by Wacker, under the
name Elastosil. The main advantage of these membranes is that they are free from de-
fects, there are no air inclusions nor dust particles on the surface. The membrane are
delivered on a PET substrate, which should be removed before the membrane can be
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used. The release process, as well as the pre-stretching process are described step-by-
step in fig. 3.4. This process is inspired by the publication by Rosset et al. [95].

Laser cut a disk

Silicone membrane

PET protective layer

Double-sided silicone tape

Pre-stretcher

Holding frames (PMMA)

Stick a frame of silicone 
double-sided tape on the 
membrane

Remove the protective 
layer from the silicone 
membrane

Cut the double-side 
tape

Stick the frame on the pre-
stretcher

Pre-stretch the membrane 
to the desired radius

Stick the holding frame on 
the membrane, using 
double sided silicone tape

Release the membrane from 
the pre-stretcher

Stick the second frame on 
the other side of the 
membrane

Elastosil membrane on its 
PET protective layer

1 2 3

4 65

7 8 9

10

Fig. 3.4. Pre-stretching process, starting from a commercially available Wacker Elastosil mem-
brane. In practice, the pre-stretcher has eight ’arms’, and not four as shown here for clarity
reasons.

The process described in fig. 3.4 is designed to precisely control the pre-stretch of the
membrane. Indeed the membrane is fixed on a rigid component during the whole pro-
cess, inhibiting any undesired stretch.

At the end of the process of fig. 3.4, a stretchedmembrane fixed at the outer radius on a
rigid PMMA frame is obtained. It can then easily be handled to apply the soft conductive
electrodes.

48 Chapter 3 Experimental setup



3.1.2 Applying soft conductive electrodes

Literature review

When manufacturing DEs, the main difficulty is to apply soft conductive electrodes. In-
deed, the goal is to obtain electrodes with the highest possible conductivity, and at the
same time limiting the added mass and stiffness. The electrodes should also remain
conductive when they are stretched, typically up to 100% or more for common appli-
cations of DE transducers. Several technologies have been considered, with different
properties, and application complexity. They are listed in table 3.1.

Tab. 3.1. Characteristics of the different electrode materials for DE actuators.

Material Conductivity Stretchability Manufacturing

Carbon black low high difficult to pattern

Carbon grease high high
difficult to pattern
precisely

Carbon black
loaded silicone

high high patterning possible

Carbon nano-tubes very high
very compliant
because very thin

difficult, slow

Conductive grease

At IMSIA, I used carbon conductive grease for the electrodes. It was deposited by hand,
using a small pencil. Therefore, the accuracy of the shapeof thedeposited electrodewas
low (≈ 1mm), and the electrode thickness was uneven, as I had no control on the local
thickness. The average thickness of the electrodes could be estimated bymeasuring the
mass of added carbon grease on the membrane.

This method was easy to implement and allowed me to quickly manufacture prototypes.
However, the possible electrode shapes were limited to a disk, as the accuracy was not
sufficient to paint several rings.

Conductive ink, made out of silicone and carbon black

In order to manufacture electrodes with more complex shapes, typically several concen-
tric rings, and also to control the electrode thickness, I went to the LMTSwhere they have
been developing manufacturing processes for DEs for more than ten years.

I usedpad-printing toprecisely deposit electrodes of a desired shapeon themembranes
which had been pre-stretched beforehand following the process explained in fig. 3.4.
The pad printing process is described in fig. 3.5, and is inspired from [95].

The idea of pad printing is to use a soft silicone pad, to pick up ink from a reservoir called
the cliché, and to stamp it on the membrane. This process is used in the industry to print
on curved surfaces. At LMTS, I used a Teca-Print TPM101 machine to perform all the
steps described in fig. 3.5.
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Silicone
membrane
Holding frames
Electrode ink
PET mask

1 2

3 4

5 6

7 8

Initial state Slide the cliché to the left

Slide the cliché to the right Press the pad against the cliché

Pick up the ink from the reservoir Press the pad against the membrane

Remove the pad from the membrane Remove the mask

Fig. 3.5. Pad-printing process to apply soft electrodes made of silicone and carbon black. The
steps 1-7 can be repeated several times in order to increase the thickness and thus the
conductivity of the deposited electrodes. The mask can be patterned with any desired
shape with a laser cutter. Once the electrode is deposited on one side, it is cured 30min
at 80°, and the process is repeated on the second side.

3.1.3 Design of the electrode connections

Two types of electrodes have been used in this thesis: full electrodes, which cover the
whole surface, and patterned electrodes, which cover only a limited region of the DE
membrane. The full electrodes have been used for general testing and for studying
resistivity effects [see chapter 6], whereas the patterned electrodes have been used to
optimize the electrode shape for improving the frequency response of the loudspeaker
[see chapter 5].

Full electrodes

As full electrodes are used to study resistivity effects on an axisymmetric device, with an
axisymmetric model, the electrodes connections should be axisymmetric as well, mean-
ing that both the top and bottom electrodes should be connected to the high voltage
supply on the whole outer perimeter of the membrane. The final prototype design is
shown in fig. 3.6.

The main difficulty in designing full connections is that in order to ensure the electrical
contact between the electrodes and the connections made of aluminum tape, a pres-
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Membrane
Electrodes
Aluminium tape
Membrane holder

The membrane is compressed
   Locally thinner
   Higher electric field
   Dielectric breakdown

Fig. 3.6. Design of the electrode connections for full electrodes.

sure has to be applied between the connectors. This results in a local thinning of the
membrane, and therefore to a locally higher electric field. As a consequence dielectric
breakdown always occur between the connectors. In order to mitigate this effect, the
connectors should be as flat as possible, so that the the pressure is uniform between
the connectors, and the prototype should be designed in such way that the pressure
between the connectors can be adjusted precisely. Also the sealing of the cavity, which
is necessary to inflate the membrane is taken care of when the membrane is assembled
to the holder, so the connection between the aluminum tape and the electrodes need
not be airtight.

Patterned electrodes

In chapter 5, the shape of the electrodes will be optimized to improve acoustic criteria of
the loudspeaker, like for the example the spectral balance. The electrode will be shaped
as several concentric rings, whose radii are the optimized parameters.

Silicone
membrane
Electrodes
Active area

Fig. 3.7. Design of the connections patterned electrodes, for two different designs. The active
area denotes zones where there are electrodes on both sides of the membrane.

Figure 3.7 shows the principle that has been chosen to design the electrode connections
for ring-shaped electrodes. If there is an electrode on one side only of the membrane,
thepotential on theother side is not fixed. Theelectric fieldon areas coveredonone side
is therefore much lower than on areas covered on both sides. The electrostatic Maxwell
pressure is thus applied only where there is an electrode on both sides of themembrane,
and denoted the active area [see fig. 3.7]. In order to bring the electric charges to the

3.1 Fabrication process 51



different active areas, there must be connections made of electrode material. These
connectionsmust have the lowest possible resistance, and thus the largest possible area.
Therefore, radial connections are used, located alternatively on the top and bottom, and
separated by a distance of 1mm, see fig. 3.9.

(a)
Top electrode Bottom electrode

Silicone membrane
Electrodes
Holding frames (PMMA)
Aluminium tape
Electrical connections

(b)
Bottom connector Top connector

Fig. 3.8. Connections of the patterned electrodes. The top and bottom electrodes are connected
on different zones at the border, so that the membrane is never squeezed between two
connections. Thus, no dielectric breakdown should occur at the border. (a) Schematics,
(b) picture of the connectors.

At the membrane border, the radial electrodes connections are connected to aluminum
tape, as shown in fig. 3.8. The 3D shape of all pieces is the same as for the full electrodes
[see fig. 3.6], except that the aluminum tape does not cover the whole perimeter of the
connectors.
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Fig. 3.9. Samples of dielectric elastomer membrane coated with patterned electrodes, with differ-
ent electrode shapes.

3.2 Prototype design

The design of the prototype is explained in figs. 3.10 and 3.11, and pictures are shown
in fig. 3.12.

Membrane
Aluminium tape
Membrane holder
Rubber seal
Bottom connector

Top connector

(a) (b)

Fig. 3.10. Schematics of the prototype. (a)Whole prototype. (b) Slice view.

The membrane is initially sandwiched between two PMMA frames, as obtained at the
end of the pre-stretching process. The electrodes are printed on the membrane while
it is fixed on the frames. The membrane is then inserted in the prototype, in which the
connection of the electrodes to the supply is made with aluminum tape, stuck on con-
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Membrane
Top connector
Membrane holder
Aluminium tape
Rubber seal
Bottom connector

Fig. 3.11. Exploded view of the prototype.

nections 3D-printed pieces. The sealing of the cavity is ensured by a rubber seal, which
is pressed against the bottom part of the membrane PMMA frame.

When the screws are tightened, the membrane is compressed between the two con-
nection pieces, which ensures the electrical contact between the electrode and the alu-
minum on the whole perimeter.

This design is practical in the sense that the membrane can be changed quickly, by re-
moving the eight screws.
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(a) (b)

Fig. 3.12. (a) Picture of the prototype. (b) Picture of a membrane on its frame, with a printed
patterned electrode.

3.3 Identification of the material parameters

3.3.1 Hyper-elastic parameters

Large deformations of the elastomer membrane are studied, so a hyper-elastic material
law is necessary to model the non-linear mechanical behavior.

The hyper-elastic parameters are generally identified on uni-axial tensile tests, but due
to the particular geometry of the membrane (very thin samples with a high aspect-ratio),
these tests may not be best suited to identify the parameters of DE membranes. What is
more, dielectric membranes are most of the time used in bi-axial stretch configurations,
so identification of the hyper-elastic parameters on bi-axial tests usually delivers more
accurate results [15, 97, 10].

In the present research, three methods have been used to identify the hyper-elastic ma-
terial parameters: classical uni-axial tests, a method based on the work of Rosset et al.
[97] where the stretch at the center of an inflatedmembrane is monitored, and amethod
where the deformation of an inflated membrane is compared to the results of a finite el-
ement calculation, using the model presented in section 2.6.2.

As mentioned in section 2.2, the Gent hyper-elastic constitutive strain energy is used
[35]. This relation has only two parameters, and is well suited for elastomers. The strain
energy reads:

ϕ0 = −µJm
2

log
(
1− I1 − 3

Jm

)
, (3.1)
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where the different variables have been defined in section 2.2.2.

In the rest of this section, the results are presented for aWacker Elastosil 200 µm silicone
membrane. Other materials and other thicknesses are used throughout this thesis, but
the methods and the general conclusions are similar.

Uni-axial test

A sample of the membrane is tested in a traction machine. The sample is L̄ = 86mm
long, l̄ = 10mmwide and H̄ = 200µm thick. The deformation is assumed to be uniaxial,
and the axial stress is estimated by:

σ =
Fλ1
H̄l̄

, (3.2)

where F is the measured force, and λ1 = L/L̄ the axial strain, L being the current length
of the sample.

For uni-axial traction, the Gent stress reads:

σ =
µJm

Jm − I1 + 3

(
λ21 −

1

λ1

)
, (3.3)

with I1 = λ21 + 2/λ1.
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Fig. 3.13. Uni-axial testing to identify the hyper-elastic Gent parameters of a Wacker Elastosil
200 µm silicone membrane. The obtained parameters are µ = 2.9× 105 Pa and Jm =
54. The test lasts 6min.

The results are presented in fig. 3.13, where the measured stress is plotted with the fit of
eq. (3.3). The obtained parameters are µ = 2.9× 105 Pa and Jm = 54. However, their
values depend a lot on the strain interval on which the gent model is fitted, indicating
that theGentmodelmay not describe perfectly the hyper-elastic behavior of the Elastosil
membrane.
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Bi-axial test

The method described by Rosset et al. [97] is based on the inflation of an axisymmetric
membrane of known thickness. At the center, the membrane is in an equi-biaxial stress
state, so the membrane equilibrium equation reads:

2σH

Rc
= P , (3.4)

where Rc is the radius of curvature of the membrane at the center, and P the inflation
pressure. The thickness is related to the stretch by the relationH = H̄/λ2, where H̄ is the
initial thickness and λ the stretch at the center (equal in all directions). This implies:

σ =
PRcλ

2

2H̄
. (3.5)

Thus, if the initial thickness is known, and if the curvature radiusRc, the stretch at the apex
λ, and the pressure P are measured simultaneously, the stress can be determined.

For equi-biaxial traction, the Gent stress reads:

σ =
µJm

Jm − I1 + 3

(
λ2 − 1

λ4

)
, (3.6)

with I1 = 2λ2 + 1/λ4.

A test device similar to the one described by Rosset et al. [97] is set-up. A silicone
membrane of known thickness is put on a frame without pre-stress, and placed over a
closed cavity. Two parallel lines are drawn on the membrane using carbon conductive
grease (which does not add any stiffness to themembrane). A piston actuated by a linear
motor can inject air in the cavity to inflate the membrane. The pressure is measured
using a Valydine pressure sensor, and the Z displacement of the apex of the membrane
is recorded using a Keyence LK G-407 laser displacement sensor. In parallel, a video of
the membrane is taken in side view, see fig. 3.14.

Laser displacement 
sensor

Linear 
stage

Automatic syringe

Pressure sensor

Inflated 
membrane

Light

Fig. 3.14. Setup for the bi-axial inflation test, to identify the material parameters.

The video is used to measure the curvature radius at the center, by detecting the mem-
brane contour and fitting a circle to the region betweenR ∈ 0−5mm. The lines are used

3.3 Identification of the material parameters 57



to measure the stretch at the apex, by following their position using a point tracking al-
gorithm (Matlab pointTracker). Two examples of recorded frames are shown in fig. 3.15,
with the fitted circle and the tracked positions of the lines.
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Fig. 3.15. Tracking of the points of interest during the inflation, and fitting of a circle at the apex
to obtain the curvature radius. (a) Time 1, at the start of the inflation (T = 0). (b) Time 2,
at the end of the inflation (T = 4min).

Figure 3.15 shows that the membrane contour as well as the position of the lines are
correctly detected, even when the membrane deforms a lot, here the maximum stretch
at the apex is close to 2. Equation (3.6) is fitted on the measured stress, and plotted in
fig. 3.16, for two different inflation rates.
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Fig. 3.16. Biaxial inflation test to identify the hyper-elastic Gent parameters of a Wacker Elastosil
200 µm silicone membrane. (a) Inflation duration 5 s. (b) Inflation duration 4min. The
obtained parameters are µ = 3.7× 105 Pa and Jm = 33 for (a) , µ = 3.6× 105 Pa and
Jm = ∞ for (b) .

The obtained parameters depend on the inflation rate, especially the stiffening parame-
ter Jm, which is very sensitive to the measurement precision. The large observed varia-
tion indicates that the performed inflation experiment does not provide an reliable value
for Jm. Moreover, the obtained parameters are very different from those obtained by the
uni-axial test. Here again, this indicates that the Gent free energy does not describe per-
fectly thematerial behavior. However, themembranewill later be used in a configuration
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which is very close to bi-axial traction, so it is likely that the parameters obtained by the
bi-axial test will provide a correct description of the material behavior during inflation.

Finite element based method

In this method, the non-linear finite element model presented in section 2.1 is used to
compute the deformation of the membrane when it is inflated. The deformation of the
inflated membrane is measured using a Keyence LK-G407 laser displacement sensor,
which is moved over the membrane using a bi-directional linear stage. The material
parameters µ and Jm are then adjusted in the code so that the computed deformations
fit the measured deformation.
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Fig. 3.17. Measured and computed deformation of an Elastosil 200 µm silicone membrane.
FEM calculations, measurements. The obtained parameters are µ =

3.6× 105 Pa and Jm = 100.

Figure 3.17 shows that once the material parameters are adjusted, the computed defor-
mation agrees well with the measured one. What is more, the obtained shear modulus
µ is close to the one obtained by the bi-axial test. This validates the use of the Gent free-
energy to describe the material behavior, for deformations close to equi-biaxial strain.

The value of Jm differs a lot from the one found using the bi-axial test, but it has been
noted that the bi-axial test is not reliable to estimate this parameter. The value found by
the FEM method will thus be used in the following.

3.3.2 Membrane thickness

The membrane thickness is a parameter of primary importance for DEs. Indeed the
Maxwell pressure, which is responsible for the actuation depends on the squared elec-
tric field: σMax = ϵ(U/H)2, so small errors in the thickness may lead to large errors in the
calculation of the actuation of the device.

Twomethods have been used tomeasured the thickness, the first one is based on a laser
displacement sensor, and the second one used a microscope.
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Laser displacement sensor method

Themembranewhich is used for the results in this section hasbeen spin-coatedusing the
home-made spin-coater [see section 3.1.1]. The measurement procedure is described
in fig. 3.18, and the results are shown in fig. 3.19.

Support

Laser 
displacement 
sensor

2D linear stage

Membrane

(a) (b)

Fig. 3.18. Procedure to measure the membrane thickness using a Keyence LK-G37 laser displace-
ment sensor. (a) The distance between the laser and the support is measured, and
(b) the procedure is repeated with the membrane stuck on the support.
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Fig. 3.19. Measurement of the thickness using a laser displacement sensor. (a) Measured posi-
tion of the support, and of the membrane. The membrane thickness is the difference
between the membrane and the support. (b) Thickness plotted as a function of the
radius, and quadratic fit.

Figure 3.19 shows that the thickness of the spin-coatedmembrane is un-even: the mem-
brane is thicker at the center. This feature has been observed on all the membranes I
spin-coated. The low rotation speed may be the main reason.

To allow the use of themeasured thickness in the finite element simulation, the thickness
should be defined as an analytical function of the radius. A simple 3-parameter function
H̄(R̄) = Ȟ(a1R̄

2+a2R̄+1) is thus fitted on the measurements, and plotted in fig. 3.19.

Microscope method

In order to validate the laser sensormeasurements of the thickness, amembranewas cut
in themiddle, and the edgewasmeasured using amicroscope. An example of obtained
picture is shown in fig. 3.20a, and the results in fig. 3.20b. The microscope method
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yields the same results as the laser sensor method, so both methods can be considered
validated. The laser method is more practical, because it is non-destructive.
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Fig. 3.20. Thickness measured by a calibrated microscope, by cutting the membrane and looking
at the edge. (a) Picture obtained by the microscope. (b) Results, and comparison with
the laser method.
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3.4 DE loudspeaker characterization procedure

3.4.1 Overview

An overview of the measurement procedure is shown in fig. 3.21. The different steps of
fig. 3.21 have been defined in section 2.1.

First the static deformation of the membrane when it is inflated and when a static volt-
age is applied is measured. The dynamics around this non-linear equilibrium are then
studied, by measuring the membrane velocity and the acoustic radiation.

The setups for these different measurements are presented in the following sections.

Pre-stretch
Applied pressure Static voltage Dynamic excitation

- static deformation

step 1 step 2 step 3

reference 
configuration

static 
configuration

- static deformation - Membrane velocity
- Experimental modal analysis
- Acoustic radiation
- Directivity
- Electrical impedance

Measurements

Step

Fig. 3.21. Overview of the experimental procedure, indicating which measurements are per-
formed at the different steps.

3.4.2 Static deformation

The static deformation of the membrane (when it is inflated and when a static voltage
is applied [see fig. 3.21]) is measured using a Keyence LK-G407 laser displacement sen-
sor, using the setup shown in fig. 3.22. The laser is moved over the membrane using
a Newport 2-directional linear stage, and the position of the membrane is measured
on one or more diameters. Meanwhile, the pressure is recorded by a Furness Control
manometer.

3.4.3 Impedance measurements

The setup for impedance measurements is shown in fig. 3.23.
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Laser 
displacement 
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2D linear 
stage

Reference points
Elastomer membrane
Electrodes
Membrane frame

Fig. 3.22. Setup to measure the static deformation of the membrane. The reference points are
used to estimate the position of the membrane holder, to provide a reference.

Trek high
voltage amplifier

National instrument 
aquisition card

Fig. 3.23. Setup to measure the impedance of the DE membrane. Um is the voltage monitor out-
put of the high voltage amplifier, and Us the voltage across the shunt resistor used to
measure the current.

Matlab is used to generate a white noise or a frequency sweep, and a National Instru-
ments card then sends the signal to the high voltage amplifier and finally to the mem-
brane.

The current monitor of the TREK amplifier cannot be used, as it provides erroneous re-
sults at high frequencies. Therefore, a shunt resistor of Rs = 500Ω is added in series
with the membrane. The amplifier can deliver at most 20mA, so the maximum voltage
across the shunt resistor will be 10V, which is the maximum input voltage of the NI card.
Also, the shunt resistor is much lower than the resistance of the electrodes which is of
the order of 10 kΩ, so it will not affect the electrical behavior of the membrane.

The voltagemonitor of the Trek amplifier is used tomeasure the voltage, but it has a low-
pass behavior, because of the combined effect of the internal resistance of this monitor
output, and of the internal capacitance of the NI card, which is about 100pF. As a result,
measurements above 5 kHz should be interpreted with care, as the measured voltage
can be lower than the effective voltage. This effect can be compensated for by inverse
filtering, but the accuracy of this tweak could not be assessed.

3.4.4 Modal analysis and membrane dynamics measurements

Measurement of transfer functions

In order measure themembrane dynamics, a Polytec PSV-500 laser scanning vibrometer
is used [see setup in fig. 3.24]. The DE membrane is excited with the signal given in sec-
tion 2.4, so the excitation force is proportional toWa. Therefore, the transfer function be-
tweenWa and the membrane normal velocity is computed, on a mesh of approximately
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Fig. 3.24. Measurement setup for modal analysis.

300 points [see fig. 3.25a]. For each point, the transfer function is estimated using the
H1 estimator:

H1 =
GW,Ż

GW,W
, (3.7)

where GW,Ż is the cross power spectral density between the excitation signal Wa and
the membrane velocity Ż, and GW,W the power spectral density of Wa. This estimate
of the transfer function suppresses uncorrelated noise on the output Ż [27]. The Welch
method is used to estimate the power spectral densities, by averaging over six Hanning
windows for each measured point. The coherence between the velocity and the exci-
tation signal is also computed, to provide an indicator of the measurement quality: the
coherence should be equal to unity if the velocity is perfectly correlated to the excitation,
and smaller than unity otherwise [see fig. 3.25].
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Fig. 3.25. (a)Mesh formodal analysis: each circle is ameasured point. Here themembrane radius
isA = 19mm. (b) Exemple of the coherence between Ż andWa for an arbitrary chosen
point.
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Figure 3.25b shows that the coherence is close to unity over the whole frequency range
of interest 50-5000Hz. The sharp drops most likely come from optics, as the membrane
surface is black which is not optimal for reflecting the laser.

Extraction of the modal parameters

Once the transfer function between the excitation Wa and the membrane velocity Ż is
measured for all points of the mesh, this data can be used to extract the modal param-
eters, namely the eigenfrequencies, the modal loss factor, and the modeshapes. This
procedure is called experimental modal analysis, and many different algorithms have
been developed to perform this extraction.

The most simple option is to identify the peaks in the amplitude plot of the frequency
response, and measure their amplitude and phase. This works if all modes are well sep-
arated in frequency, which may not be the case for the considered membrane. What
is more, a different set of eigenfrequencies would be found for each point of the mesh,
making the global interpretation of the obtainedmodes very cumbersome. Thismethod
can be classified in the SDOF class (Single Degree Of Freedom): all points are treated
one by one, without using the knowledge of the other points.

More advanced techniques have been developed, making use of the knowledge of all
points to identify the modal parameters. These methods are called Multiple Degrees
Of Freedommethods. The most used is the Least Square Complex Exponential method
[27], which builds an auto-regressive model of the system in the time domain. In the
present thesis I used the open-source Abravibe toolbox [11], which provides routines
that perform the Least Square Complex Exponential modal extraction.

3.4.5 Acoustic radiation

Acoustic measurements are performed in the anechoic chamber at IMSIA, whose dimen-
sions are 3×3×3m3, an which is specified down to 120Hz. The loudspeaker is placed
1m above a rotating platform, which can be controlled with a precision of 1°. Two Bruel
and Kjaer half inch free-field microphones are placed on axis of the loudspeaker, one
in the near-field and the other in the far-field [see fig. 3.26]. The acoustic pressure, and
the excitation signalWa are recorded simultaneously using a National Instrument acqui-
sition card. The transfer function between the pressure and Wa is computed using the
H1 transfer function estimate, like for the modal analysis [see section 3.4.4].

The loudspeaker can be rotated while keeping the microphone fixed, in order to obtain
directivity plots [see fig. 3.26].

3.5 Conclusion

In this chapter, the different measurement setups that are used throughout the thesis
have been presented.
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(a)
Anechoic chamber
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Rotating 
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Fig. 3.26. Measurement setup for acoustic measurements: pressure radiated on-axis and directiv-
ity. (a) Schematics of the setup. (b) Picture of the setup in the anechoic chamber.

The static, dynamic and acoustic results will be analysed together with the numerical
calculations in the following chapter.
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Comparison of
experimental and
numerical results

4

In this chapter, the results of the model derived in chapter 2 are compared
to experimental results, obtained following the procedure of chapter 3.
First the static deformation of the membrane is investigated, and then dy-
namic results are presented, including membrane free and forced vibra-
tions, as well as acoustic radiation.
Finally, the multiphysics nature of the device is demonstrated, by showing
the influence of the coupling with the cavity stiffness, and of strong vibroa-
coustic coupling.

4.1 Parameters of the prototype

All the results and calculations presented in the thesis are obtained with the parameters
given in table 4.1. These parameters correspond to a membrane of Wacker Elastosil
silicone, of initial thickness 50 µm, equi-biaxially pre-stretched by 1.1. The electrodes
are applied by pad-printing, using amix of silicone, carbon black and iso-octane. During
the pad-printing process, the conductive ink penetrates in the silicone membrane, and
this relaxes the tension. This is why the pre-stretch in table 4.1 is smaller than the applied
pre-stretch.

4.2 Static deformation

4.2.1 Without applied voltage

Position of the center

Themembrane is inflated, and theposition of the center point ismonitored togetherwith
the inflation pressure. The result is plotted in fig. 4.1 for two membranes with different
electrodes.

Figure 4.1 shows that the two membranes have a similar mechanical behavior, and that
the inflation is correctly captured by the finite element model. Thematerial hyper-elastic
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Tab. 4.1. List of all experimental dimensional and non-dimensional parameters. These parameters
are used in all experiments and numerical results presented in the thesis.

Parameter Dimensional Value Non-dimensional Value

Thickness at the center Ȟ 46µm - -

Cavity volume Vcav 37mL vcav = Vcav/A
3 6.3

Electrode radius R̄E 1.8 cm r̄E 1

Shear modulus µ 4.8× 105 Pa - -

Inflation pressure Papp 1000Pa papp 1.27

Membrane density ρs 1042 kgm−3 - -

Gent parameter Jm 100 Jm 100

Static voltage U0 1000V u2
0 0.011

Electrode surface density ρelec 0.09 kgm−2 ρratio 0.5

Membrane radius Ā 1.8 cm - -

Stretched membrane radius A 1.9 cm a 1.056

Excitation signal W 2× 105 V2 - -

Relative permittivity ϵr 2.8 - -

Loss factor η 2% η 2%

Speed of sound Cf 343ms−2 c2 255

Air density ρf 1.2Kgm−3 m 0.45

Cavity depth Lcav 1.5 cm lcav = Lcav/A 0.86

Cavity radius Rcav 3 cm rcav = Rcav/A 1.18

parameters have been adjusted on this measurement [see section 3.3], which explains
the perfect match between the measurements and the finite element simulation.

The slight difference between the twomeasurements may be due to the electrodemate-
rial. When the electrodes are printed using the pad-printing method [see section 3.1.2],
the ink relaxes the pre-stressedmembrane, and the tension decreases. So the larger the
electrode, the stronger this effect.

This may be the reason that slightly increases the slope at the origin for the membrane
with full electrodes.

Deformation of the membrane

In order to further validate the finite elementmodel, the full deformed shape of themem-
brane is measured, and plotted together with the simulation in fig. 4.2. The model per-
fectly captures the deformed shape of the membrane with partial electrodes (r̄E = 0.52),
which is in-line with the conclusions drawn from fig. 4.1.

The fit between the model and the measurement is slightly worse for the membrane
with full electrodes, which again indicates that the electrodes change the behavior of
the silicone membrane.

68 Chapter 4 Comparison of experimental and numerical results



0 500 1000 1500 2000 2500

Pressure (Pa)

0

5

10

15

Z
 c

e
n

te
r 

(m
m

)

Fig. 4.1. Position of the membrane apex, when the membrane is inflated. Two membranes are
measured, one with electrodes covering the whole surface (r̄E = 1), and a second with
electrodes only on a disk of radius r̄E = 0.52.
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Fig. 4.2. Deformation of a membrane inflated to Papp = 1000Pa, measured and computed. The
membrane with full electrodes used in this measurement is not the same as in fig. 4.1,
which explains the difference between fig. 4.1 and fig. 4.2. This difference provides an
estimation of the measurement dispersion. The points which are not aligned with the
others are measurement errors, which occur when the laser is not properly reflected by
the membrane.

4.2.2 With applied voltage

Comparison with Zhu et al.

Zhu et al. studied the static deformation and the dynamics of an inflated DE membrane
[126]. They computed the static deformation resulting from a pre-stretch of the mem-
brane, inflation, and applied static voltage. These conditions correspond to particular
parameters of the studied situation where we also account for non-uniform thickness,
change in the inflation pressure due to adiabatic evolution of the gas in the cavity, and
Gent material behavior instead of Neo-Hookean in [126].

For the non-dimensional parameters in table 4.2, the static deformation computed using
the finite element method developed in the present thesis is compared to the results
obtained by Zhu et al. by the shooting method in fig. 4.3.
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Tab. 4.2. Non-dimensional parameters used to compare with the static deformation results of Zhu
et al. [126].

Vcav Jm a h̄

∞ ∞ 3 1
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Fig. 4.3. Static deformation of the membrane when it is inflated and when a static voltage is ap-
plied, comparison with the article from Zhu et al. [126]. code used in this thesis,

Zhu et al.(a) Deformed shape for a fixed pressure and various applied voltages.
(b) Deformed shape for a fixed voltage and various inflation pressures.

Figure 4.3 shows that the developed finite element method yields the same results as
Zhu et al.. Yet, the change of internal pressure which occurs when a voltage is applied
is not accounted for by Zhu et al., so the presented method will now be validated by
comparisons with experiments.

Comparison with experiments

Once the membrane is inflated, a static voltage is applied to the electrodes. The mem-
brane further deforms, which increases the volume of the cavity. As a consequence, the
pressure inside the cavity decreases. This corresponds to step 2 in the figure describing
the experimental procedure fig. 3.21. During this step, the relative displacement of the
membrane ∆Z is measured and computed, and the pressure change ∆P is monitored
[see fig. 4.4].

Fig. 4.4. Displacement of the membrane when a static voltage is applied. Papp is the applied
pressure, P0 the equilibrium pressure which is reached when the voltage U0 is applied,
and∆P the pressure variation caused by the applied voltage [see fig. 2.1].
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The membrane displacement ∆Z when a static voltage is applied can be measured by
two methods.

Inmethod 1 a given voltage is applied, and the deformation of the whole membrane is
measured by moving the laser displacement sensor using the setup of fig. 3.22).

In method 2 the laser displacement sensor is fixed at a given radius, and the voltage is
increased step by step, and the process is repeated for all the radii of interest.

The advantage of the second method is that it avoids errors related to the calibration of
the distance between the membrane and the laser, as this distance remains fixed dur-
ing the whole measurement. In method 1, the laser is moved by several centimeters
between two measurements of the same point for a given voltage, so the distance be-
tween the laser and the membrane may vary due to positioning errors. In the following,
the results of the two measurement methods are given, but method two is considered
to be more reliable.

The results are plotted for two different membranes with different electrodes (full elec-
trodes with r̄E = 1, and partial electrodes with r̄E = 0.52.) in figs. 4.5 and 4.6.
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Fig. 4.5. Deformation of the membrane caused by the actuation voltage. The initial inflation pres-
sure is Papp = 1000Pa, the electrodes cover the whole membrane. calculations,
and measurements. (a) method 1, (b) method 2.

Figures 4.5 and 4.6 shows that the model predicts overall correctly the deformation of
themembrane cause by the static voltage. For the full electrode [fig. 4.5], themembrane
moves towards positive Z at all radii, versus with the partial electrode [fig. 4.6] the mem-
brane move towards negative Z close to the border. This difference between the two
electrodes is captured both by the measurements by and the model.

The measurements are very delicate, because the relative displacement caused by the
voltage is small compared to the size of the membrane, and measuring such a small
displacement of a soft elastomeric structure is difficult, especially because of viscoelas-
tic relaxation. Therefore, the differences between the model and the measurements
most likely come from measurement errors. The measurement error could be reduced
by increasing the voltage, in order to increase the relative displacement, however, this
increases the risk for electrical breakdown.
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Fig. 4.6. Deformation of the membrane caused by the actuation voltage. The initial inflation pres-
sure is Papp = 1000Pa, the electrode radius is r̄e = 0.52. calculations, and
measurements. (a) method 1, (b) method 2.

For some radii R > RE , the membrane seems to move inwards. To better understand
what is happening there, the initial membrane position (for no voltage), the deformed
position (magnified by 50), and the relative displacement between the two positions are
plotted in fig. 4.7.
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Fig. 4.7. Relative displacement of the membrane, caused by the static voltage. The membrane is
initially inflated to Papp = 1000Pa (Initial position), and a voltage of 1000V is applied. In
order to make the membrane displacement visible, the relative displacement is magni-
fied by 50. The electrodes radius is r̄E = 0.52.

Figure 4.7 shows that in the membrane area that is not covered by an electrode, the
displacement is indeed directed towards the inside of the membrane. This can be ex-
plained as follows: the voltage decreases the membrane tension in the area with an
electrode, which therefore deforms more. The electrode area becomes comparatively
stiffer than the rest of the membrane and shrinks, as seen in fig. 4.7.
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4.3 Membrane dynamics

4.3.1 Free response

Comparison with Zhu et al.

As for the static validation [see section 4.2.2], the finite element method used to solve
the equations can be partially validated by comparing the first eigenfrequencies to the
results of Zhu et al. [126]. In their study, the cavity stiffness is not taken into account,
meaning that the pressure is fixed inside the cavity, and does not vary as the membrane
moves. What is more, the coupling with acoustics is not accounted for, and the elec-
trodes cover the whole surface of the membrane.
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Fig. 4.8. (a) First modeshapes found by Zhu et al. from [126], (b) first modeshapes found using
the code developed in this thesis. The scaling of the modes used in [126] is not given,
so it has been chosen here to scale the modes to a maximal displacement of 0.05. This
explains the differences between (a) and (b) .

The non-dimensional frequencies are compared in table 4.3.

Tab. 4.3. Comparison of the first computed eigenfrequencies of the in-vacuo membrane to Zhu
et al.

Mode number 1 2 3 4 5 6 7

ω present study 2.27 3.65 5.25 6.70 8.24 9.72 11.23

ω Zhu et al. [126] 2.3 3.7 5.2 6.7 8.2 9.7 11.2

The results of fig. 4.8 and table 4.3 compare well with the code used in the present study
for the parameters used by Zhu et al. I find the same modeshapes and the same eigen-
frequencies. However, many physics that we account for are neglected in [126], and
experiments will next be presented to validate the calculation of the dynamics of the
inflated DE membrane.
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Fig. 4.9. Modes of a membrane with full electrodes, inflated to Papp = 1000Pa. Z-
component of the mode, R-component of the mode, measurements. The x-axis
is the non-dimensional radius r, and the modes are scaled so that the maximum ampli-
tude of the Z-component of the mode is 1. The computed eigenfrequency of mode n is
denoted ffn, and the measured one fmn.

Comparison with experiments

The modes of a DE membrane are measured following the procedure described in sec-
tion 3.4.4, using a laser scanning vibrometer. The modes are plotted as a function of the
membrane radius in fig. 4.9, even if they are measured on a mesh covering the whole
membrane [see fig. 3.25]. Therefore, several points appear at the same radius in fig. 4.9,
but are located at different positions on the membrane. By using this visualization of the
modeshapes, their axisymmetry can be checked: if all points align on a single line, the
mode is perfectly axisymmetric, and if there is a large vertical dispersion it means that
points at the same radius but different positions have a different movement.

As the laser vibrometer measures only the vertical component of the velocity, only this
component can be compared to the calculation. However, in order to get more infor-
mation on the modeshape, the computed radial component is also shown in fig. 4.9.
Thus, modes in which the membranemoves mainly along Z, and modes where it moves
mainly in the radial direction can be distinguished.

Figure 4.9 shows that the model correctly captures the 14 first membrane modes. The
fist measured membrane modes are almost perfectly axisymmetric as there is no verti-
cal dispersion of the measured points. The higher order modes deviate more from the
axisymmetry, certainly due to the electrode connections which are not symmetric [see
fig. 3.8] and add a non-symmetric mass distribution.
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Fig. 4.10. Modes of the inflated membrane projected in the normal ( ) and tangential ( )
directions.

It should also be noted that some computed modes could not be measured (modes 4,
6, 9 and 12). In these modes, the radial component is large compared to the vertical
component. Thus, measuring the vertical component may not be sufficient to capture
them. To better understand why thesemodes are not measured, another representation
of the modeshapes is shown in fig. 4.10, where the modes are projected on the normal
and tangential directions to the membrane.

Figure 4.10 shows that the modes that have a large radial component are the modes
that have a large tangential component, and could not be measured experimentally. As
only the normal component can be measured, it seems reasonable that the tangential
modes could not be measured.

The membrane eigenfrequencies are plotted in fig. 4.11, where it can be seen that for
most modes, the error between the measured and computed frequencies is below 5%.
The relative error is larger for the first modes, but this absolute error is close to constant
for the 14 first modes. The small discrepancy between measurements and numerical
results may come from errors in the estimation of the model parameters, such as for
example the shear modulus µ, the membrane thickness H , the electrode mass per unit
area, etc.

Finally, the modal loss factor is also computed. It is recalled that a constant structural
loss factor is used in the model to account for the losses in the membrane. So if only the
membrane is modelled, all modes would have a loss factor equal to the structural loss
factor. However, here strong coupling with acoustics is accounted for, and losses due
to acoustic radiation may affect the modal damping. This is visible in fig. 4.12, where
all computed modes have a loss factor close to 2 %, which is the used structural loss
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Fig. 4.11. Measured and computed eigenfrequencies of amembrane with full electrodes, inflated
toPapp = 1000Pa. (a) Frequencies. (b) Relative error between FEMandmeasurements.

factor, but the modes 4 and 5 have a slightly higher loss factor. As these modes radiate
the most, they are more affected by the coupling with acoustics, and lose more energy
through radiation.

Overall, the structural damping assumption is not really satisfied, as the computedmodal
loss factors differ significantly from themeasured ones. However, since amodal descrip-
tion of the system is obtained using the numerical model, the measured loss factors can
very easily be implemented in the model.
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Fig. 4.12. Measured and computed modal loss factor of a membrane with full electrodes, inflated
to Papp = 1000Pa.

4.3.2 Forced response

Convergence of the modal summation

As explained in the theory section section 2.1, two methods are used to compute the
frequency response of the dielectric membrane.

In the FEM method the system of governing equations is solved for all frequencies of
interest, and in themodal method the solution is expanded on a basis of fluid/structure
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Fig. 4.13. Comparison of the FEM method and modal method for the membrane displacement,
at radius r = 0.5. 300 modes, including PML modes are included in the modal summa-
tion. (a) Amplitude of the radial displacement x. (b) Phase of the radial displacement x.
(c) Amplitude of the vertical displacement y. (d) Phase of the vertical displacement y.

coupled modes. The modal method is much faster to compute the system frequency
responses, so it will be used in all the following. Here the convergence of the modal
method to the FEMmethod is validated in fig. 4.13, for the structural part (themembrane
dynamics).

Themodalmethod yields exactly the same results as theFEMmethod, as seen in fig. 4.13,
both for the phase and the amplitude. This validates the use of the fluid/structure cou-
pled modes to compute the membrane dynamics. The results presented here are ob-
tained with a modal basis comprising the 300 first modes, including both membrane
modes and PML modes. It is interesting to point out that the same results are obtained
if only the membrane modes are included in the modal basis, even if the results are not
shown here for conciseness reasons.

The convergence of themodal method to the FEMmethod is also validated for a much
simpler system in appendix D, where the convergence of the modal method is studied
in greater details.
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Comparison with experiments

The modal method has now been validated, and will be used for all the comparisons
between numerical results and experiments.

The forcedmembrane dynamics, when themembrane is excited by the electrostatic exci-
tation, are computed and compared to the frequency response functionmeasured using
the laser scanning vibrometer, as described in section 3.4.4.
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Fig. 4.14. Transfer function between the membrane velocity along Z and the excitation signal
Wa, measured and computed for a membrane with full electrodes inflated to Papp =
1000Pa, and with static voltage U0 = 1000V. (a) Average on 8 points around the radius
r = 0. (b) Average on 20 points around the radius r = 0.5.

The transfer function between the membrane velocity and the excitation signal Wa is
plotted in fig. 4.14 at two different radii. The computed frequency response is close to
the measured one, for both chosen radii. There is an error in the frequency of the first
mode, which has already been observed in fig. 4.11. The amplitude of most peaks is
correctly estimated, and the errors for some of the modes may come from the damping:
as analyzed in fig. 4.12, the dampingmodel overestimates the damping at high frequen-
cies, formodes 6 and above. The global behavior of the amplitude is correctly predicted,
including the decrease of the response at high frequencies due to the resistivity of the
electrodes, which is accounted for by the electrical model [see section 2.4.2].

The electrical impedance is plotted in fig. 4.15, and compared with the simple electrical
model presented in fig. 2.7, which is fitted to the measurements. The obtained capaci-
tance is Cmemb = 23nF, and resistanceRmemb = 1.1 kΩ, which gives an electrical cutting
frequency of 6 kHz.

The simple lumped RC electrical model seems sufficient to describe the electrical be-
havior of the DE membrane, as the impedance behaves at low frequencies as a pure ca-
pacitance, with the slope of−20dB/dec, and like a resistance at high frequencies above
6 kHz. The deviation of the measured impedance from the model at high frequencies is
most likely due to measurement errors, and especially to the voltage measurements. In-
deed the voltage is measured using the voltage monitor output of the Trek high voltage
amplifier, which itself has a low-pass behavior.
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Fig. 4.15. Measured impedance, and fittedRC-model, for amembranewith full electrodes inflated
to Papp = 1000Pa, and with static voltage U0 = 1000V. (a) Amplitude. (b) Phase.

4.4 Acoustic radiation

4.4.1 Pressure on axis

Convergence of the modal summation

The convergenceof themodal expansionof the radiatedpressure is checked in fig. 4.16.
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Fig. 4.16. (a) Definition of the integration surface for the Kirshoff-Helmholtz integral, and receiver
location for pressure calculation. (b) Radiated pressure at the receiver location defined
in figure (a) , computed using the FEMmethod, themodal method, and themodal KH
method.

Figure 4.16 shows first that themodalmethod yields the same results as theFEMmethod.
This validates the modal summation procedure as well as the truncation of the modal
basis. This convergence is no surprise, as it has been studied in details on a simpler
system in appendix D.3.

Secondly, themodal KHmethod yields the same results as themodalmethod for a point
located in the near field. This gives two indications: the Kirshoff-Helmholtz integral is
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correctly calculated, and the Sommerfeld radiation condition is correctly implemented.
Indeed, the free-field radiation condition is embedded in the free-field Green’s function
which is used in the Kirshoff-Helmholtz integral, so the KH-integral propagates the solu-
tion from the surface ΣKH to the receiver assuming they are no reflections on the outer
boundary of the domain. As it yields the same results as the modal method where the
propagation is performed by finite elements and PMLs, it means that the finite elements
and the PMLs correctly implement the Sommerfeld radiation condition.

Comparison with experiments

The pressure radiated by the membrane is measured in the anechoic chamber at IMSIA
following the procedure of section 3.4.5, at two different distances: 6 cm and 1m. Con-
sidering the size of the membrane (≈ 4 cm diameter), one measurement is performed
in the acoustic near field, and the other in the far field. The near field results are shown
in fig. 4.17, and the far field measurements in fig. 4.18.
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Fig. 4.17. Pressure radiated by membrane with full electrodes inflated to Papp = 1000Pa, and
with static voltage U0 = 1000V. The measurement is performed on axis at a distance
from the membrane of 6 cm. (a) Amplitude, the decibels are dB ref. 2× 10−5 Pa/1V2.
(b) Phase.

Figures 4.17 and 4.18 show that themodel computes accurately the pressure radiatedby
the membrane. Except for the first mode, the eigenfrequencies are correctly estimated,
as already analysed in figs. 4.11 and 6.8.

Additionally, in the acoustical response, the modal behavior of the acoustic cavity on
which the membrane is inflated is more visible in acoustical results than in velocity mea-
surements. The large peaks at 5885Hz, 9613Hz and 11940Hz corresponds to acous-
tic modes of the cavity. As the membrane vibrations are strongly coupled to acoustics,
the acoustic behavior of the cavity influences the membrane vibrations, which radiates
sound in the free field. Therefore, the peaks at high frequencies in the radiated response
highlight strong vibroacoustic coupling effects, as they would not occur if themembrane
vibrations were not influenced by acoustics.

The radiation is not dominated by the first membrane modes, as it is the case for all
standard loudspeakers. The cavity stiffens a lot the first modes, because these modes
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Fig. 4.18. Pressure radiated by membrane with full electrodes inflated to Papp = 1000Pa, and
with static voltage U0 = 1000V. The measurement is performed on axis at a distance
from the membrane of 1m. (a) Amplitude, the decibels are dB ref. 2× 10−5 Pa/1V2.
(b) Phase.

generate a large change of the volume of the cavity. Thus, thesemodes radiate less than
higher order modes.

There is a clear maximum of the radiation around 1200Hz, where a couple of modes
radiate a lot. This maximum is directly related to the ratio between the membrane mass
and the cavity stiffness. The membrane mass can be estimated roughly by:

Mmemb ≈ πA2ρsH , (4.1)

and the stiffness created by the compression of air in the cavity by:

Kcav ≈ πA2c2f
ρf
L
, (4.2)

where L is the cavity depth. This yields the following resonance frequency:

fres =
1

2π

√
Kcav
Mmemb

=
1

2π

√
c2fρf

LHρs
≈ 2000Hz , (4.3)

for the membrane measured in figs. 4.17 and 4.18.

This is a very rough estimation of the resonance frequency, but the order of magnitude
is coherent with the observations. The global frequency behavior of the membrane is
dominated by the resonance of the membrane mass over the cavity stiffness, and this
response is modulated by the modal behavior of the membrane. Of course, this inter-
pretation is a simplification of the real phenomena, but provides a physical interpretation
of the membrane dynamics and sound radiation. A related consequence is that increas-
ing the cavity volume would reduce the frequency of the maximum in the response.

The influence of the major design parameters will be further analysed in chapter 5.
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4.4.2 Directivity

Using the setup described in fig. 3.26, the directivity of the inflated DE loudspeaker is
measured in the anechoic chamber. The same frequency response measurements as
shown in section 4.4.1 are carried out for different angles between the loudspeaker axis
and the microphone.

The results are presented in fig. 4.19 for arbitrary chosen frequencies which cover the
frequency range of interest.
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Fig. 4.19. Directivity of a membrane with the parameters given in table 4.1. (a) Near field: the
microphone is placed at 6 cm from the center of the membrane. (b) Far field: the micro-
phone is placed at 1m from the loudspeaker. Measurements, FreeFEM.

Themodel captures well the directivity of the prototype up to more than 8 kHz. In the far
field the computed directivity matches perfectly the measurements, but there is a larger
error for the near field directivity. The error comes very likely frommicrophone position-
ing inaccuracies, as the measured directivity is not axisymmetric. The loudspeaker was
maybe not placed perfectly on the rotation axis of the rotating platform [see fig. 3.26].

The radiation is omnidirectional up to more than 1 kHz, when the loudspeaker is acous-
tically compact. Above that frequency, it becomes more directional and radiates mostly
on axis as the wavelength becomes smaller than the size of the loudspeaker enclosure.

4.4.3 Harmonic distortion

One of the most important quality criteria for loudspeakers is the Total Harmonic Distor-
sion (THD), which is a measure of the non-linearity of the system.

If a sine wave is sent to the loudspeaker, the THD quantifies the amplitude of the higher
order harmonics in the response compared to the fundamental. More precisely,

THD =

√
P 2
2 + P 2

3 + P 2
4 + . . .

P1
, (4.4)

where Pi is the RMS amplitude of the i-th harmonic in the radiated pressure, i = 1 being
the fundamental frequency.
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The model which has been developed in this thesis is linear, so no predictions of the
total harmonic distribution will be presented here.

However, the THD is relatively easilymeasured, using the exponential swept-sinemethod
which has been developed by Farina in 2000 [28]. An exponential sweep is sent to the
system and the response is measured, and then deconvolved by the inverse of the expo-
nential sweep. The linear impulse response as well as higher order impulse responses
are obtained simultaneously, enabling the calculation of the THD as a function of fre-
quency.

The THD is plotted for three excitation amplitudes in fig. 4.20.
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Fig. 4.20. THD of the DE loudspeaker, inflated to 1000Pa, with static voltage U0 = 2000V, for
different excitation levels |Wa|/U2

0 (the applied voltage is U =
√

U2
0 +Wa).

Figure 4.20 shows that the THD increases with the excitation level |Wa|/U2
0 , and reaches

a maximum at each membrane eigenfrequency, because the membrane has larger dis-
placements at these frequencies.

At high frequencies, above4 kHz, themeasurementwith thehighest excitation |Wa|/U2
0 =

0.5 has a much higher distortion. This is related to the current limit of the TREK ampli-
fier (20mA) which saturates. Indeed, due to the capacitive behavior of the membrane,
more current is required to excite the membrane at high frequencies. Using more a
more powerful amplifier would reduce the THD at high frequencies of the measurement
at |Wa|/U2

0 = 0.5 to the values obtained for smaller values of |Wa|/U2
0 .

To conclude this section, the distortionmeasured onDE loudspeakers in standard condi-
tions is rather high, in the order of 10% at medium frequencies. Further work is therefore
needed to reduce this distortion to acceptable levels. As a comparison, the THD of stan-
dard electrodynamic loudspeakers lies around 1%.

4.5 Demonstration of the multi-physics nature of the
studied device

In the previous sections, the results of the numerical model were compared to experi-
ments. The numerical results were obtained using the fully coupled model, where the
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strong vibroacoustic coupling and the coupling with the cavity stiffness were taken into
account. In the present section, the influence of these couplings is studied, and it is
shown that they are of primary importance to model the dynamics and sound radiation
of a DE loudspeaker.

4.5.1 Influence of the cavity stiffness

First, the influence of the cavity stiffness is studied. Two calculations are performed. In
the first one, only the membrane dynamics are considered, and the coupling with the
cavity stiffness as well as the coupling with acoustics are neglected. In the second one,
the coupling with the cavity stiffness is added, but still not the coupling with acoustics.
Thedifferencesbetween the two calculations are therefore only due to the cavity stiffness.
The results are plotted together with the measurements in fig. 4.21.
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Fig. 4.21. Influence of the cavity stiffness on acoustic radiation. FreeFem membrane is computed
by only considering the membrane. FreeFem membrane + cavity is obtained by com-
puting the dynamics of the membrane coupled to the cavity stiffness.

Figure 4.21 shows that the stiffening effect of the cavity is of primary importance. The
maximum of radiation is shifted from the first mode to the third and fourth modes, at a
muchhigher frequency. Also, the eigenfrequencies increasewhen the cavity is taken into
account. With the cavity in the model, the low frequency behavior is correctly captured,
because low frequencies are stiffness dominated. This means all the relevant stiffness
of the the system have correctly been accounted for. At high frequencies, there is still
a large error between the measurement and the model, and in next section this will be
related to strong vibroacoustic coupling effects.

4.5.2 Influence of the vibroacoustic coupling

The effect of strong vibroacoustic coupling is now studied, by comparing calculations
with and without taking the coupling into account. The radiated pressure is plotted in
fig. 4.22.

Figure 4.22 demonstrates that the coupling with acoustics has a large influence on the
membrane vibrations, and therefore on the acoustical radiation.
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Fig. 4.22. Influence of vibro-acoustic coupling on acoustic radiation. FreeFem membrane + cav-
ity is computed without taking the strong vibroacoustic coupling into account, and
FreeFem membrane + cavity + acoustics is the result of the fully coupled model.

The main effect of the fluid is an added mass, as it decreases the frequencies of most
eigenmodes of the membrane, as seen in fig. 4.23. The first modes, which create the
largest fluid displacement, are the most heavily affected by the fluid loading, and their
frequencies decrease by up to 13%. The higher order modes are less impacted by the
fluid coupling.

Also, the couplingwith exterior radiation increases the damping of themodes, as energy
is lost through radiation. This effect is mostly visible for the modes 3-6, which are the
ones that radiate the most, as seen in fig. 4.22.

The membrane modeshapes computed in vacuo and with fluid coupling are plotted in
fig. 4.24, to analyse the fluid influence on the modeshapes. It appears that the modes
which are the most influenced by the fluid coupling are the modes 3-6, that is to say the
same which see their modal loss factor change a lot [see fig. 4.23c]. The location of the
nodal lines change with the fluid loading, like for example for mode 5.

4.6 Conclusion

In this section themulti-physicsmodel of an inflatedDE loudspeaker that has been devel-
oped in chapter 2 is validated experimentally, in terms of static deformation, membrane
dynamics and acoustical radiation. It is demonstrated that themodel accurately captures
the observed behavior of a DE loudspeaker prototype, and that all the different physics
that were coupled together in chapter 2 are necessary to compute the dynamics.

This is to the author’s knowledge the first fully coupled vibroacoustic model of DE loud-
speakers, and thus the first time the acoustical behavior of a such structure is studied in
fine details. This opens the path to optimization of the behavior of theDE loudspeaker, in
terms of frequency response, radiation efficiency, directivity, etc. Several optimization
ideas are presented in the next chapter, which builds upon the results of the coupled
model.
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Fig. 4.23. Influence of the fluid loading on the membrane modes. (a) Eigenfrequencies in vacuo
(Without fluid), and loaded with the surrounding fluid. (b) Relative difference between
the in-vacuo and the fluid-loaded eigenfrequencies. (c) Computed loss factor of the
membrane modes with and without taking into account the fluid loading.
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Fig. 4.24. Influence of the fluid loading on themembranemodeshapes. z-component, with
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Optimization 5
In this chapter, solutions to improve the acoustic behavior of the DE loud-
speaker are investigated, using the numerical model that has been devel-
oped in chapter 2.
First, static analyses are performed in order to improve the low-frequency
behavior. Second, the electrode shape is optimized in order to improve
the spectral balance. Third, the cavity is filled with foam to damp out the
acoustic modes. Finally, signal processing tools are used to compensate
for defects in the frequency response.

5.1 Static analysis

5.1.1 Limits of dielectric elastomer membranes

Dielectric breakdown

When an electric field is applied across a dielectric material, the material will remain in-
sulating up to a certain value of the electric field. Then, suddenly, a conductive path is
created through the material and the current flowing through the membrane increases
sharply [15]. This phenomenon is called dielectric breakdown, and is characterized by
the electric field at which it occurs, called the dielectric strength of the material and writ-
tenEbd in the following. This is a non-reversible phenomena, thematerial gets damaged,
and is no longer insulating after breakdown.

As dielectric breakdown is the main operating limit of DE transducers, a lot of research
effort has been engaged to characterize precisely when it occurs, by which parameters it
is influenced, and what can be done to increase the dielectric strength. The breakdown
strength is typically related to the Young’s modulus of the material [68], the pre-stretch
[67, 54], the thickness [54], and humidity [6].

In thepresent thesis, siliconebasedDEmembranes are used,madeeither of spin-coated
Nusil CF19-2186, or commercially available film Wacker Elastosil 50 µm. For these two
silicones, the dielectric strength is about Ebd ≈ 80V/µm [76]. In the following analysis,
the stretch dependence will be neglected as the following study focuses on themethod,
and not on the exact results. Taking into account this dependence would only change
slightly the numerical results, but not the general trends.
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Solutions for controlling dielectric breakdown

The static inflation of DE membranes has been studied in details by several authors,
which try to maximize the increase of the volume of the inflated membrane when a high
voltage is applied between the electrodes. Impressive deformations by up to 1600%
have been reported by Keplinger et al.[62]. They used the electrostatic stress to trig-
ger the instability that occurs when inflating elastomer membranes, called the snap-
through instability. This requires the precise selection of the system parameters in order
to achieve the snap-through without reaching the dielectric breakdown, which defini-
tively damages the membrane.

Fig. 5.1. FromKeplinger et al. [62]. ”Solid curves are the pressure–volume relations of amembrane
subject to constant values of voltage, with conditions of electrical breakdown marked by
crosses. When a large chamber is used, the pressure remains constant when the volt-
age triggers the snap-through instability, leading to electrical breakdown (inset). When
a medium-sized chamber is used, the pressure drops as the voltage triggers the snap-
through instability, averting electrical breakdown.” The red crosses indicate for each volt-
age thedielectric breakdown, which occurswhen themembranebecomes too thin (when
the volume is too large) for the given voltage. In the top right figure, breakdown occurs
when the volume becomes larger than the point marked by the red cross.

Figure 5.1 is extracted from [62], and provides guidelines to achieve large deformations
of inflated DE membranes. Two cases are studied: one case where the cavity is small,
and where the pressure decreases a lot when the voltage is applied, and a second case
where the cavity is large and where the pressure stays constant during the membrane
deformation. The maximum voltage than can be applied is controlled by the dielectric
breakdown field. The goal is therefore to obtain the snap-through instability without
crossing the red cross which represents the dielectric breakdown conditions. By adjust-
ing the cavity volume the evolution path in the p − v plane can be tilted, in order to
achieve a safe snap-through.

The goal of Keplinger et al. is different from ours. Our goal here is to choose the best
parameters to enhance the low-frequency behavior of the DE loudspeaker. This can be
studied by looking at the static behavior, by maximizing the achievable volume change
of the membrane before breakdown. However, all instabilities should be avoided, as a
linear behavior is desired. Therefore, the analysis of Keplinger et al. will be carried out
on our systemwith the parameters given in table 4.1, in order to find the optimal inflation
pressure.
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5.1.2 Optimal parameters for low frequency behavior

The goal here is to maximize the achievable volume change of the inflated membrane
under electrostatic actuation, without instability. For this purpose, the figure of Keplinger
et al. is replicated with the parameters of table 4.1 in fig. 5.2.

This plot is obtained by solving for the static deformation for several pressures and ap-
plied voltages [step 1 and step 2, see section 2.1]. In the calculation the cavity volume is
set to vcav = 100, which is a sufficiently low value to avoid any snap-through instability.

The dielectric breakdown conditions are also estimated, by detecting when the maxi-
mum electric field on the membrane exceeds the dielectric breakdown field, which is
assumed to be constant and equal to Ebd = 80V/µm.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

: initial inflation
  pressure

: maximum volume variation

Dielectric
breakdown

Increasing
voltage

Fig. 5.2. Static characteristics of the inflated DE membrane. The horizontal axis is the non-
dimensional volume of the inflated membrane, and the vertical axis is the non-
dimensional pressure inside the cavity [see chapter 2 for the definition]. The red line
corresponds to the breakdown conditions, when the maximal electric field in the mem-
brane equals the breakdown electric field. The color lines correspond each to a value of
the voltage applied between the electrodes, from null voltage u2

0 = 0 for the black line
at the top, to u2

0 = 0.4 at the bottom.

The system evolution can be represented by a line on fig. 5.2, which describes a path
in the p − v plane. For an adiabatic evolution of the gas inside the cavity, the relation
between the pressure and the volume changes reads:

P̃ ≈ −γ Patm
Vcav

Ṽ , (5.1)

so the slope of this line can be adjusted by the the cavity volume Vcav.

An inflation pressure papp is chosen, and the system will evolve on a straight line starting
from that point when the voltage is increased. The maximum voltage is limited by the
breakdown, represented by the red line in fig. 5.2. The maximum volume variation ∆v

is thus defined as the difference between the volume of the membrane at the starting
point (no voltage), and at the end point (the breakdown).
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This maximum volume variation depends on the inflation pressure papp, so the inflation
pressure that yields the largest volume variation is searched for.

The maximum volume variation depends also on the volume cavity vcav, as a large cavity
would yield a more horizontal evolution in the p − v plane, and thus a larger volume
variation before breakdown. The maximum volume variation is therefore plotted as a
function of the inflation pressure papp for several cavity volume vcav in fig. 5.3.
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Fig. 5.3. Maximum volume variation before breakdown as a function of the inflation pressure, for
several cavity volumes.

It appears that for each cavity volume vcav there is an optimal inflation pressure for which
the volume variation before breakdown is maximal. This optimal pressure seems to al-
ways lie close to p = 1: the pressure which approximately inflates the membrane into a
hemisphere. The cavity volume is the key parameter that determines the volume varia-
tion, and its influence is studied inmore details in fig. 5.4 where themaximal volume vari-
ation (for the optimal inflation pressure) is plotted as a function of the cavity volume.

Figure 5.4 shows clearly that large volume variations can only be obtained for large cavity
volumes. As a reminder, the non-dimensional volume is v = V /A3, so ∆v = 0.5 means
that the volume variation of the membrane is equal to half a cube of dimension A, the
membrane radius.

Also, the optimal inflation pressure is close to 1 for small cavity volumes, but becomes
larger (close to 2) for large volumes. This can be explained by fig. 5.2: for small volumes,
the evolution line (pvγ = cst in grey) would be almost vertical. The optimal pressure
would then be located where there is a large vertical distance between the curve with-
out voltage, and the dielectric breakdown curve. On the other hand, for large volumes,
the evolution line is almost horizontal, and the optimal pressure is then located where
there is the largest horizontal distance between the no-voltage curve and the dielectric
breakdown curve.

A last interestingpoint concerns the applied voltage u0. For large inflationpressures papp,
themembrane is very thin, so for a given voltage u0 the electric field is larger. Thismeans
that the membrane can be actuated with lower voltages when the inflation pressure is
large [see fig. 5.4c].

In practice, the size of the cavity is limited by practical considerations, so the design
procedure would be the following:
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Fig. 5.4. (a)Optimal initial inflationpressure as a function of the cavity volume. (b)Maximal volume
variation as a function of the cavity volume. (c) Maximal voltage before breakdown, for
the optimal initial inflation pressure.

• Choose the device volume, by considering the balance between the size and the
desired low-frequency behavior.

• Find the optimal inflation pressure using fig. 5.3.

5.1.3 Acoustic radiation with the optimal parameters

The study in the previous section is based on static considerations only. In the present
section, the acoustic radiation of the prototype with the optimal parameters found in the
previous section is computed, to demonstrate the relevance of the static study.

Electrical excitation signal

In the static analysis only a constant voltage u0 was considered, whereas the signal to
study dynamics is:

U(T ) =
√
U2
0 +Wa(T ) , (5.2)

which yields in non dimensional form:

u(t) =
√
u20 + wa , (5.3)
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where wa = ϵWa/µȞ
2. In order to study the maximal acoustic response, the maximal ex-

citation is considered, for which |wa| = u20. The amplitude of the total excitation voltage
must remain below the maximal voltage before breakdown u0,max [see fig. 5.4c]. The
maximal value of the static voltage is then:

u0 =
u0,max√

2
. (5.4)

The maximal acoustical response will therefore be computed in the following for u20 =

u20,max/2 and |wa| = u20,max/2.

Influence of the cavity volume

The pressure radiated by the prototype, for the parameters used in fig. 5.3 is plotted in
fig. 5.5 for two cavity volumes vcav = 5 and vcav = 20.
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Fig. 5.5. Maximal radiated pressure on axis before breakdown at 1m, for two different volumes of
the cavity. The inflation pressure is papp = 0.9.

Figure 5.5 shows that the volume cavity indeed has a large influence on the low fre-
quency behavior of the loudspeaker. For frequencies below the first mode, where the re-
sponse is stiffness-dominated, the prototype with the large cavity volume radiates about
10dB louder, meaning its volume change during one oscillation period is 10dB = 3.2
times larger. The maximum volume change with the large cavity is about 0.4 and 0.12
with the small cavity [see fig. 5.3], and 0.4/0.12 = 3.3, so the static analysis directly reflects
the low frequency behavior.

Influence of the inflation pressure

Once the cavity volume is fixed, the radiated pressure depends on the inflation pressure.
Amethodwas proposed in section 5.1.2 to choose the optimal inflation pressure in order
to enhance the low frequency behavior. In fig. 5.6 for a cavity volume vcav = 20, the
acoustic response is plotted for two different pressures, at the maximum voltage before
breakdown.

Themembranewith the low inflation pressure appears to radiate themost at low frequen-
cies. This is the result of the balance between two opposing phenomena. On the one
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Fig. 5.6. Maximal radiated pressure on axis before breakdown at 1m, for two inflation pressures.
The cavity volume is vcav = 20.

hand, the larger the inflation pressure, the larger the radiating surface of the membrane.
Also, the larger the pressure, the thinner the membrane, so for a given voltage the elec-
tric field will be larger for large pressures, and the electrostatic excitation stronger. This
should increase the radiation for the very inflated membrane (papp = 2). On the other
hand, for large inflation pressures, the maximum voltage that can be applied before
breakdown is much lower as seen in fig. 5.2, and the membrane is stiffer so it deforms
less. This appears to be the dominant effect here, and is directly related to the result
that was found in section 5.1.2: the largest volume displacement before breakdown is
obtained for papp = 0.9.

5.1.4 Conclusion

Theoperation rangeof thedielectricmembrane is limitedbydielectric breakdown, which
limits the maximal applicable voltage. The maximal voltage depends on the inflation
pressure and on the cavity volume. Therefore, a deep understanding of the interplay of
the inflation pressure, cavity volume, and dielectric breakdown is necessary to choose
properly the value of these parameters for an optimal operation.

The static analysis of the inflation of aDEmembrane provides guidelines to choose some
of themain parameters of the loudspeaker to enhance the low frequency behavior. It has
been verified on acoustic calculations that the conclusions drawn from the static analysis
were valid to improve the low frequency behavior.

5.2 Optimization of the electrode shape

5.2.1 Introduction

The electrode shape is a parameter that can very easily be controlled, as the electrode
is deposited on the membrane by pad-printing using a mask [see section 3.1.2].
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The electrode shape has various effects: it locally adds mass and stiffens the membrane,
and changes the excitation force. Indeed, the electrostatic pressure is applied only in
areas where there is an electrode on both sides. As a consequence, changing the elec-
trode shape is a way to control the modal forces, and therefore a way of controlling the
frequency response, by exciting more or less the different modes.

The general idea in this section is to use numerical optimization procedures to find the
optimal electrode shape to improve certain characteristics of the loudspeaker, like for
example the frequency response, or the directivity.

Vibroacoustic optimization has been investigated mainly for sound reduction purposes,
like for example by Rattle & Berry [91], where point masses are added on a vibrating
plate, and their position optimized to reduce the radiation. A genetic algorithm is used
to solve the highly non-linear optimization problem.

Optimization of the modal distribution has also been investigated on Distributed Mode
Loudspeakers [74], where the objective was to evenly spread the modes of a radiating
panel in frequency, in order to obtain the flattest frequency response as possible. The
modal distribution was modified by adding local masses to the surface of the radiator.

The modal forces can also be optimized, as carried out by Clarck & Fuller [18]. A baf-
fled vibrating plate is equipped with a piezoelectric sensor and a piezoelectric actuator,
which are used to implement an active control of the plate sound radiation. The shape
and size of the piezoelectric sensor actuator placed on a vibrating plate are optimized,
in order to improve the active noise control performances.

In the context of loudspeakers, optimization has been carried out for structures excited
with piezoelectric patches in order to improve the frequency response of flat loudspeak-
ers by Doaré et al. [23]. A non-linear optimization algorithm is used as the optimization
problem has many local minima, but with only a small number of parameters to opti-
mize.

5.2.2 Definition of the optimization problem

The studied device is the same as in the rest of the thesis, namely a DE membrane in-
flated over a closed cavity. In this section, the inflation pressure Papp is fixed, as well
as the static voltage U0. The only optimized parameter is the electrode shape. As the
model is axisymmetric [see chapter 2], the optimized electrode must be axisymmetric
too. Therefore, the electrode will consist in several rings, whose radii are the optimized
parameters. The electrode shape is shown in fig. 5.7.

The electrode radii in the reference configuration are denoted r̄i, r̄1 being the inner
radius of the first ring. The radii may vary between the two neighboring radii:

r̄i−1 ≤ r̄i ≤ r̄i+1 . (5.5)

This definitionof theoptimizationparameters is quite unpractical, as it defines abounded
optimization problem, where the bounds for one parameter depends on the values of

94 Chapter 5 Optimization



Membrane

Electrode

(a) (b)

Fig. 5.7. (a) Initial electrode shape. (b) Optimal electrode shape, defined by the radii of the elec-
trode in the reference configuration [see fig. 2.1].

the other parameters. In order to overcome this difficulty, relative radii are defined as:

ři =
r̄i
r̄i+1

, (5.6)

so all ři vary between 0 and 1.

5.2.3 Objective functions

The objective (or cost) function is certainly themost important choice in the optimization
procedure. Depending on the acoustic criteria that wewant to improve, a scalar function
should bebuild, that isminimal when the systembehaves the best. In the present section
the spectral balance (or flatness of the frequency response) will mainly be investigated.
The ideal frequency response function that we wish to obtain is shown in fig. 5.8.
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Fig. 5.8. Ideal frequency response that wewish to obtain, comparedwith the computed frequency
response of the DE loudspeaker before optimization.

Maximisation of the contribution of one mode to the radiation

In standard electrodynamic loudspeakers, the acoustical response is dominated by the
firstmodeof the speaker: the resonance of themovingmass (membrane and coilmainly)
over the stiffness of the suspension. This mode occurs at frequencies which are much
lower than the other modes, which arise due to the membrane dynamics. The contribu-
tion of the membrane modes to the radiation typically should be avoided, as it creates
deviations from a flat frequency response.
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In chapter 2, the pressure radiated by the membrane was expanded on a basis of
coupled fluid-structure modes. The following expression was obtained for the non-
dimensional radiated pressure [see eqs. (2.70) and (2.72a)]:

pe =
∑
n

ω2 Fn

mn(ω2
n − ω2)

ΨR
n,e , (5.7)

where it is recalled that Fn is the modal force,mn the modal mass, and ΨR
n,e the exterior

acoustics part of mode n. The pressure at the resonance of mode n is thus proportional
to :

pe ∼
Fn

mn
ΨR

n,e . (5.8)

A cost function to improve the loudspeaker behavior by maximizing the contribution of
mode k to the radiation would then be:

J1 =

∑
n ̸=k FnΨ

R
n,e/mn

FkΨR
k,e/mk

. (5.9)

A similar expression was used by Doaré et al. [23] who improved a flat loudspeaker by
adding piezoelectric patches.

For standard loudspeakers, the first mode would be maximized, so k = 1. For the in-
flated DE membrane, the radiation is not dominated at all by the first mode, so maybe
maximizing the radiation of another modemay bemore useful. This will be investigated
in the results section 5.2.5.

Minimizing the sound pressure level standard deviation

As the frequency response of the studied DE loudspeaker is very different from the fre-
quency response of standard loudspeakers, the cost function J1 defined in eq. (5.9) may
not be the most appropriate. Another cost function will be tested, which is based on the
standard deviation of the radiated sound pressure level. It has been used for Distributed
Mode Loudspeakers to improve the frequency response [74].

The second cost-function is obtained by computing the standard deviation of the sound
pressure level in a given frequency band, where we want to flatten the frequency re-
sponse, and is thus defined as follows:

J2 =

√∑
n(SPLn −SPL0)

Nf
, (5.10)

where Nf is the number of frequencies at which the sound pressure level is evaluated,
SPLn is the sound pressure level (in dB) at frequency ωn, and SPL0 the mean sound
pressure level in the frequency range of interest.
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Fig. 5.9. Block diagram of the optimization procedure. Either the cost function J1 is used, and
then the left part of the diagram is followed, or J2 is used, and the right part is followed.

5.2.4 Optimization procedure

The optimization procedure is summarized in fig. 5.9. The general idea of this proce-
dure is that the time-consuming operations, namely computing the modal parameters
(eigenfrequencies, eigenmodes and modal loss factor) should be performed only once.
For this purpose, we assume that influence of the mass of the electrodes on the mode-
shapes and eigenfrequencies can be neglected. As a result, the modal parameters do
not change when the electrode shape is varied during the optimization process. The
electrode shape only changes the modal forces, which can be computed very quickly
using the following formula:

Fn =

∫ 1

0

(
r̄
Γ

h̄
λ220

(
(ΨL

n,y)
′z′0 + (ΨL

n,x)
′r′0
)
+
Γ

h̄
λ210λ20Ψ

L
n,x

)
dr̄ , (5.11)

which comes from eq. (2.71). The electrode shape is defined by the function Γ , which
equals unity when an electrode is present, and zero otherwise. Calculating numerically
this integral is performed by computing a single sum as all the terms are constant, and
only the electrode shape needs to be re-evaluated at each iteration of the optimization.

The optimization is performed as follows:

1. Compute the modal parameters using the model of chapter 2.

2. Build a function that returns the cost as a function of the electrode radii.

3. Feed this function into a non-linear optimization routine, such as MultiStart in the
Matlab Global Optimization Toolbox.
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MultiStart is a routine that generates randomstartingpoints, and finds the localminimaof
the cost function by running a gradient descent algorithm from each starting point [see
fig. 5.10]. The best local minimum is returned as an estimation of the global minimum.
There is no evidence that the returned minimum is indeed the global minimum, but
the more starting points are tested, the higher the chance that the global minimum is
found. For the present study, finding the true global minimum may not be of primary
importance, as a local minimum would already be an improvement of the frequency
response compared to the initial geometry.

Still, for all the presented results, it has been checked that increasing the number of
starting points did not change the outcome of MultiStart.

Starting points
Local minima

Global minimum

Fig. 5.10. Principle of theMultiStart algorithm, explained on a 1-parameter optimization problem.

5.2.5 Results

The following results are obtained for the parameters given in table 4.1 of the prototype
that was measured in chapter 4. In all the following plots, the initial frequency response
is obtained with an electrode occupying the whole membrane as shown in fig. 5.7a.

Optimization of the radiation of one mode

A first test is performed in which the radiation of the first mode is maximized compared
to the other modes, and the results plotted in fig. 5.11. This would be the natural opti-
mization if a standard loudspeaker is optimized.

This first test case [see fig. 5.11] shows that the optimization succeeds in modifying the
frequency response in the desired way. Indeed, the radiation of the first mode is larger
compared to the other modes after optimization. However, even though the optimiza-
tion succeeded inminimizing the cost function, it appears that the optimal solution is not
interesting from the acoustic point of view: the frequency response is not better after the
optimization than before.

A second test is therefore performed, where the radiation of mode 5 is maximized, see
fig. 5.12. Mode 5 is chosen because it dominates the frequency response.

Figure 5.12 shows again that the optimization procedure succeeds in maximizing the
radiation of mode 5 compared to the others. Still, the optimized frequency response is
not convincing in terms of spectral balance.
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Fig. 5.11. Maximization of the radiation of mode 1. (a) Optimal electrode shape. (b) Pressure
radiated on axis before and after optimization.
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Fig. 5.12. Maximization of the radiation of the mode 5, which is the one that dominates the fre-
quency response (at f = 1230Hz). (a) Optimal electrode shape. (b) Pressure radiated
on axis before and after optimization.

The problem with the optimization results shown in figs. 5.11 and 5.12 is that the fre-
quency response of the DE loudspeaker is inherently multi-modal. Many modes con-
tribute to the response, so trying to obtain a response dominated by a single mode is
pointless. This means that the cost function J1 which is used for figs. 5.11 and 5.12, is
not adapted, and does not transcribe the desired frequency response correctly.

Optimization of the SPL standard deviation

Therefore, the second cost function J2 is now used to try to improve the frequency re-
sponse.

Two calculations are presented, one where the SPL deviation is minimized over a large
frequency range [see fig. 5.13], and one where only the high-frequency range is opti-
mized [see fig. 5.14].

When the large frequency range is optimized, it appears that the initial solution actu-
ally is the optimal solution, and that no improvement of the frequency response can be
obtained by changing the shape of the electrodes. One possible explanation is that
the frequency response is dominated by modes which have a relatively large number of
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Fig. 5.13. Minimization of the SPL deviation between 760Hz and 4740Hz. (a) Optimal electrode
shape. (b) Pressure radiated on axis before and after optimization. The black line is the
mean value of the SPL in the optimized frequency range. Initial value of the cost function
J2 = 18.6, final value J2 = 18.0.
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Fig. 5.14. Minimization of the SPL deviation between 1330Hz and 4740Hz. (a)Optimal electrode
shape. (b) Pressure radiated on axis before and after optimization. The black line is the
mean value of the SPL in the optimized frequency range. Initial value of the cost function
J2 = 8.8, final value J2 = 3.6.

nodal lines. Controlling themodal force on thesemodesmay therefore require very fine
patterned electrodes, and 3 rings parametrized by 5 parameters may not be sufficient.
Also, themodes 3, 4 and 5which dominate the frequency response are hard to reduce in
amplitude, because they correspond to a global resonance of the system (the resonance
of the membrane mass over the stiffness cavity, see section 4.4). As a consequence, the
membrane is easier to excite in this frequency range and naturally moves and thus radi-
ates more. This global resonance can be decreased by increasing the cavity volume for
example, as seen in section 4.4. A better option to reduce the amplitude of the modes
3, 4 and 5 would therefore be to damp this resonance, for example by adding porous
material in the cavity. This option will be considered in section 5.3.

If the optimized frequency range does not contain the dominant modes, as in fig. 5.14,
the results are slightly more convincing. The cost function decreases by a noticeable
amount during the optimization (from 8.8 to 3.6), and the frequency response is flatter
in the optimized frequency range. However, the spectral balance improvement must be
balanced by the loss of amplitude. As the electrode surface is smaller, the electrostatic
excitation is smaller, and the membrane radiates less. A loss of about 12dB is observed,
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which is quite important. The small gain in spectral balance may not be worth to loose
12dB in amplitude.

This drawback could be taken into account in the optimization procedure, by adding a
constraint on the electrode surface for example. This has been implemented and tested,
but the results were not considered sufficiently convincing to be shown here.

5.2.6 Experimental investigation

Description of the tested designs

Even though the optimization results presented in previous section 5.2.5 were not very
convincing, the optimal geometries have been built and tested, in order to assess the
global procedure consisting in adjusting the electrode shape to control the system’s
dynamics. This design method could have many other applications in other contexts
than loudspeakers.

The practical electrode design, which connects the different rings to the power supply
has been described in section 3.1.2, and an example of the electrode design shown in
fig. 3.7.

The four tested electrodes are described in table 5.1. The first one (OP1) is obtained
when the radiation of the third mode is maximized, with only one optimized electrode
radius. The electrode is thus a disk. The second electrode is obtainedwhen the radiation
of modes 4 and 5 is minimized. The idea was to smoothen out the dominant peaks in
the frequency response. Two radii are optimized. The third electrode is obtained when
the SPL standard deviation is minimized in the frequency range 950-2800Hz, and same
for the fourth but in the frequency range 1200-2800Hz.

Tab. 5.1. Definition of the experimentally tested electrode geometries.

Name Label in fig. 5.15 Electrode Optimization criteria

OP1 (a) Maximization of mode 3

OP2 (b)
Minimize radiation of modes 4 and
5

OP3 (c)
Minimize SPL standard deviation in
F ∈ 950− 2800Hz.

OP4 (d)
Minimize SPL standard deviation in
F ∈ 1200− 2800Hz.
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Results

The radiation on axis at one meter obtained with the electrodes described in table 5.1 is
plotted in fig. 5.15.
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Fig. 5.15. Pressure radiated on axis, for different electrode patterns. For each electrode geome-
try, two membranes are measured, to demonstrate the measurement repeatability. (a)
Electrode OP1. (b) Electrode OP2. (c) Electrode OP3. (d) Electrode OP4.

None of the tested designs is very convincing from the acoustical point of view, the fre-
quency obtained with the optimized electrodes is not flatter than the initial frequency
response. However, the effect of the electrode geometry on the frequency response
was quite visible on these designs (at least on the numerical calculations), and corre-
sponds well to the optimized criteria. This is the reason why these designs were tested,
to investigate wether the frequency response could be designed in some extent by the
shape of the electrodes.

For example, in the first optimization OP1, the radiation of mode 3 is maximized. This
effect is very clear in fig. 5.15a on the numerical frequency response. Unfortunately, the
maximization of mode 3 could not be observed experimentally.

Similar conclusions are drawn from fig. 5.15b, where the radiation of modes 4 and 5 is
minimized. After the optimization, it is quite clear that thesemodes non longer dominate
the frequency response in the calculation. Here again, this effect is not as clear on the
measured frequency response.
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The main limitation of the optimization of the electrode shape appears to be that the
model no longer predicts correctly the system’s dynamics and acoustic radiation when
the electrode occupies only a portion of the membrane area. Indeed, there is a larger
discrepancy between the measurements and the calculations for the plots of fig. 5.15
than with full electrodes [see fig. 4.18]. The amplitude of the first modes is no longer
correctly predicted with partial electrodes [see fig. 5.15], but the global level of the fre-
quency response is on the other hand well captured. For example, with electrode OP3,
the mean level between 1500Hz and 5000Hz is about 100dB, and only 90dB with elec-
trode OP4. This effect is both measured and computed, and is directly related to the
surface of active area of the electrodes.

Conclusion

In brief:

• The model predicts correctly the global influence of the electrode shape on the
frequency response. The global level is correct.

• The model fails in predicting the change in amplitude of the first modes due to the
electrode shape.

• The model can therefore not be used to optimize the electrode shape to improve
the frequency response at low frequencies.

The error between themodel and themeasurements are not due tomeasurement errors,
as two differentmembranes with the same electrode geometry are found to have exactly
the same frequency response [see fig. 5.15].

One possible explanation is related to the effect of the electrodes on the membrane.
Indeed, as the electrodes are made of carbon black embedded in a silicone matrix, they
locally stiffen the membrane. What is more, the elastomer membrane relaxes when the
electrodes are applied. These effects are hard to quantify and are therefore not taken
into account in the model. Only the global effect of the electrodes on the membrane
behavior is accounted for, in other words the shear modulus is considered uniform in
the membrane. This may not be valid for patterned electrodes.

5.2.7 Conclusion

In this section themodel built in chapter 2 has been used to run optimization algorithms,
in order to find the optimal electrode shape for improving certain acoustic criteria.

Two criteria have been considered, either maximizing the radiation of one membrane
mode compared to others, or minimizing the radiated sound pressure level standard
deviation in a given frequency range. It has been shown that optimizing the electrode
shape according to the second criteria could help improving a little the frequency re-
sponse on axis.

However, no significant improvement could be obtained just bymodifying the electrode
shape. The main limitation is related to the high number of modes that contribute to the
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radiation in the frequency range of interest, making it hard to control precisely themodal
force on each mode with an electrode consisting of only three rings.

Finally, the optimal designs found by optimizing themodel have been tested experimen-
tally. It is observed that the electrode shape changes the measured frequency response,
but the model fails in capturing accurately these changes. Therefore, before the op-
timization for improving the loudspeaker frequency response can be used in practice,
the model needs to be refined even further to take into account the local relaxation and
stiffening effect of the electrodes. This requires an extensive study of the change of the
membranehyper-elastic parameterswhen the electrode is applied, and is not addressed
in this thesis.

5.3 Acoustic damping

In this section, another possible way of improving the behavior of the inflated DE loud-
speaker is tested: the cavity is filled with porousmaterial as shown in fig. 5.16, in order to
damp out the acoustic modes which distort the frequency response at high frequencies
[see fig. 4.17]. As the first membrane modes are coupled to the acoustic cavity, it is also
expected that adding foam will increase the damping of these modes.

In the following, the influence of foam in the cavity is investigated both experimentally
and numerically.

Fig. 5.16. DE loudspeaker cavity with foam, for damping both the membrane modes and the
acoustic cavity modes.

5.3.1 Theory

In order to optimize the behavior of the loudspeaker with foam in the cavity, it is inter-
esting to be able to model the influence of the foam.
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Porous material model

Themost simple porous material models are equivalent fluids, among which the Delany-
Bazley-Miki model is the most widely used [80]. The porous material is assumed to be-
have as an acoustic fluid, but with complex and frequency dependent density and speed
of sound, or equivalently with complex and frequency dependent wavenumberKc and
characteristic impedance Zc. Fitting on experimental data provided the coefficients in
the following expressions [80]:

Zc = ρfCf

[
1 + 5.50

(
103

F

σ

)−0.632

− 8.43 i
(
103

F

σ

)−0.632
]
, (5.12a)

Kc =
Ω

Cf

[
1 + 7.81

(
103

F

σ

)−0.618

− 11.41 i
(
103

F

σ

)−0.618
]
, (5.12b)

where σ denotes here the static air flow resistivity, and F the frequency. This model is
considered valid for frequencies in 0.01 < F/σ < 1 [80].

Non-dimensional complex impedance and wavenumber are then defined as:

zc =
Zc

ρfCf
, kc =

Kc

Ω/Cf
. (5.13)

As the solving method described in section 2.6 requires that the mass and stiffness ma-
trices of the coupled vibroacoustic system are frequency independent, the above ex-
pressions are modified by removing the frequency dependence. The frequency F in
eq. (5.12) is replaced by a fixed arbitrarily chosen reference frequency Fref = 1000Hz.
This modification of the expressions of the complex wavenumber and impedance will
be validated by measurements in the following section.

Acoustic equations with equivalent fluid model

The acoustic equations (2.40) which have been given in section 2.5.2 are re-written with
the complex impedance and wavenumber:

kc
zc

Ω2 (Pa + Pu) + C2
f∇ ·

(
1

zckc
∇Pa

)
= 0 , (5.14a)∫

Ωi

PaRdS = 0 , (5.14b)

Pu

∫
Ωi

kc
zc
RdS + C2

f

ρf
V0

2π

∫
Σ

1

λ10
(−Y ′

0X̃ +X ′
0Ỹ )X0dL = 0 , (5.14c)

where zc and kc should be seen as functions of the position: they are equal to 1 if no
foam is present, and to the values given in eq. (5.13) where there is porous material.

These equations are implemented in the coupled vibroacoustic model, and solved by
the same algorithm as before. The same modal approach is used to compute the radi-
ated pressure.
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5.3.2 Results

Measurement of the acoustic properties of the porous material

In order to identify the acoustic behavior of the chosen porous material (grey acoustic
foam of unknown properties), a sample is placed in a Brüel & Kjaer Kundt tube, and
its reflection coefficient is measured [see fig. 5.17]. The tube diameter is 29mm, so only
planewaves can propagate up to the cut-on frequency of higher ordermodes at 6400Hz.
All following measurements are therefore valid only up to this frequency.

M
ic

 1

M
ic

 2

Test sample (foam)

Hard backing

Absorbing material

Loudspeaker

Fig. 5.17. Measurement of the reflection coefficient of a foam sample in a Kundt tube, in order to
identify its flow resistivity σ.

The two-microphone method [8] is used to decompose the acoustic field in the tube
into propagating waves, and the reflection coefficient of the foam on hard backing is
obtained by computing their relative amplitudes.

The reflection coefficient is also computed analytically [3], and compared to the mea-
surement in fig. 5.18.
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Fig. 5.18. Reflection coefficient of a 4 cm-thick sample of grey acoustic foam, measured in a Kundt
tube, and computed analytically. (a) Amplitude, (b) Phase. The flow resistivity has
been adjusted for the model to fit at best the measurement. The obtained value is
σ = 15× 103Nsm−4.

Figure 5.18 shows that the foam has absorbing properties, as the reflection coefficient
is smaller than unity. The Delany-Bazley-Miki model modified to remove the frequency-
dependence captures the global behavior of the reflection coefficient, both in amplitude
and phase. There are oscillations in the measurements around 2000Hz, which are not
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observed in the computed reflection coefficient. This indicates small deviations of the
behavior of the sample from the equivalent fluid model.

As the main goal here is to predict the global influence of the porous material on the
radiated pressure, the accuracy observed in fig. 5.18 will be considered sufficient.

Influence of the porous material on the radiated acoustic pressure

The pressure radiated by the prototype is measured using the same protocol as for the
previous measurements [see section 3.4.5], for two configurations:

• In configuration (a) , the cavity is empty, as it was for all the measurements which
have been shown up to this point.

• In configuration (b) , the cavity is filled with acoustic foam, as shown in fig. 5.16.

The pressure radiated on axis is plotted in fig. 5.19 for the two configurations, together
with the results of the model.
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Fig. 5.19. Pressure radiated by the DE loudspeaker on axis at 14 cm, measured in the anechoic
chamber at IMSIA, and computed using the model presented in chapter 2. (a) Empty
cavity. (b) Cavity filled with 5 cm-thick foam.

Figure 5.19 shows that the porous material has a tremendous effect on the frequency
response of the loudspeaker, both at low and high frequencies.

As expected, at high frequencies above 3 kHz, all acoustic cavity dominated modes are
completely damped, and are no longer visible in the frequency response, which is rather
flat between 2-10 kHz. The decrease of the amplitude above 10 kHz is due to electrical
resistivity effects, as explained in section 2.4.

At low frequencies, the frequency response is dominated bymembranemodes [see sec-
tion 2.6.3 for the definition of membrane modes]. Comparing fig. 5.19a and fig. 5.19b
reveals that even the first membrane modes have seen their modal loss factor increase
when the porous material was added. This occurs because the membrane modes are
strongly coupledwith the acoustic cavity, as alreadyobserved in sections 4.5.1 and4.5.2.

In the medium frequency range, where the frequency response is dominated by higher
ordermembrane modes, between 800-3000Hz, the acoustic behavior is less influenced
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by the porous material. This happens because higher order membrane modes are less
coupled to the cavity, so the acoustic damping has a smaller influence. It would be in-
teresting to investigate complementary damping solutions in this frequency range, for
example by damping directly the membrane, either by increasing the elastomer loss
factor, or by adding some visco-elastic material. Adding porous material closer to the
membrane could also increase the damping on the first modes.

Themodel captures correctly the influenceof theporousmaterial, especially below6 kHz
where it yields exactly the same level as the measurements. At higher frequencies, there
is larger deviation from the measurements. Several reasons could explain this: errors in
the identification of the flow resistivity, or deviations of the behavior of the foam from
the equivalent fluid model. The Kundt tube which has been used to identify the porous
material parameters is limited to 6 kHz, so we have no information on the behavior of
the foam above that frequency, and it may thus deviate a lot from the equivalent fluid
model.

5.3.3 Conclusion

To conclude, it appears that adding porous material in the cavity is an effective solution
to flatten the frequency response of the DE loudspeaker, both in the low-frequency and
high-frequency ranges.

A simple model based on equivalent fluids has been implemented to model the influ-
ence of the added porous material, and it captures accurately the influence of the foam
on the radiated pressure.

Using this model, the acoustic and geometrical properties of the porous material could
be optimized, in order to further improve the frequency response.

5.4 Control and filtering solutions

5.4.1 Introduction

In this section, signal processing solutions are investigated to improve the behavior of
the loudspeaker, in terms of frequency response and directivity. The idea is to filter the
audio signal before it is send to the loudspeaker to compensate for the loudspeaker re-
sponse. This problem is known in the audio-engineering world as equalization, and has
been vastly studied for standard electrodynamic loudspeakers [64, 60]. From the signal
processing point of view, it consists in a deconvolution: the audio signal is convolved
by the speaker response, and we look for an inverse filter that deconvolves the speaker
response, so that the pressure signal radiated by the speaker is identical to the original
signal.

Themost simple equalization problem is the on-axis equalization of a single loudspeaker,
where a filter is designed to obtain a flat frequency response at a single position. This
may overall reduce the soundquality because there is no control of what happens off axis

108 Chapter 5 Optimization



[60]. Therefore, the deconvolution problem should consider radiation at different angles
in the definition of the optimal response. What is more, a sound reproduction system
usually consists of several loudspeakers, and equalizing all the speakers together leads
to more interesting results. The general equalization problem is therefore a multiple in-
put multiple output problem. Tokuno et al. [110] proposed an Inverse Fourier transform
method to computed the inverse filters for such a system, which is relatively simple and
fast to implement.

In this section, the equalization method by Tokuno et al. [110] will be used to improve
the response of the inflated DE loudspeaker with one and two electrodes, in terms of
frequency response and directivity.

5.4.2 Description of the studied system

Amodified prototype is considered, where two distinct electrodes can be excited by two
different electrical signals. This enables a much larger freedom for control strategies, as
two independent excitations can be used at the same time, in order to control the mem-
brane dynamics. One electrode is a disk at the center of the membrane, and the second
is an annulus around the first one. In order to allow electrical connections, the second
electrode cannot be a full annulus, so the symmetry of the system is no longer exact. A
picture of the manufactured membrane is shown in fig. 5.20, annotated to indicate the
active areas and the connections.

Exterior electrode
Top connection of exterior electrode
Bottom connection of exterior electrode
Center electrode
Top connection of center electrode
Bottom connection of center electrode
PMMA frame

Fig. 5.20. Design of the electrodes and electrode connections for actuation with two different volt-
ages. The active parts are denoted Center electrode and Exterior electrode.

5.4.3 Theory of the control strategy

In this section, the notations are adapted a little to be more consistent with signal pro-
cessing conventions. The center electrode is referred to hereafter as electrode 1, and
electrode 2 denotes the exterior electrode. They are excited with the following electrical
signals:

U1(T ) =
√
U2
0 +W1(T ) , U2(T ) =

√
U2
0 +W2(T ) . (5.15)

As explained in section 2.4.2, the excitation of the DE membrane will be proportional to
W1 andW2.
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Thenotations for thedifferent signals andfilters used in this section aregiven in fig. 5.21.
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Objective

Filter System

Regularization

Number of source signals

Number of transducers

Number of receivers

Audio signal

objective response

System response

Error

Regularization signal

Filtered signal

Fig. 5.21. Block-diagram of the system. The filters should be seen as matrices, and the signals as
vectors. The size of each vector is written into brackets.

A vector of input signals (for example left and right channels) is fed into the system. The
ideal response is defined by thematrixA, which gives the signal that is wanted at each re-
ceiver location. The input signal is first filtered by the filterH that we want to determine,
and then by the system response C, which is known either from measurements or from
the numerical model presented in chapter 2. An error is defined as the difference be-
tween the objective signal d and the system response p. The optimalH is obtainedwhen
the error e is minimal, in the least square sense. A regularization signal z is also defined,
and will be used to improve the conditioning before the inverse filter is computed.

A cost function is defined as follows:

J = ee∗ + βzz∗ , (5.16)

where the superscript ∗ denotes the hermitian transpose, and β is a regularization scalar
parameter that will be adjusted.

Substituting e by e = Aw−Cp in eq. (5.16), and minimizing the error in terms of w yields
the optimal w0:

w0 = (CC∗ + βArA
∗
r)

−1C∗As . (5.17)

Inserting the relation between s and w finally yields [110]:

H0 = (CC∗ + βArA
∗
r)

−1C∗A , (5.18)

whereH0 is the optimal inverse filter.

The most simple regularization is to take Ar equal to the identity matrix.

The method to obtain the optimal inverse filter is summarized as follows:

1. Compute C(ω) by taking the Fourier transform of the system impulse response.

2. ComputeH0(ω) using eq. (5.18).

3. Compute h0 the impulse response of the filter by taking the inverse Fourier Trans-
form of H0.

4. Perform a cyclic shift of the obtained impulse response by half of its length, to cre-
ate a modelling delay [110].
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The objective matrix A will depend on the desired response of the system, and several
options will be studied in the following section.

5.4.4 Results

Equalization of a single channel loudspeaker

First, in order to validate themethod on a simple test case, a single channel loudspeaker
is considered. The number of input signals is therefore equal toNs = 1. To simplify even
further this preliminary test, the number of receivers is also set to Nr = 1, and only the
acoustic pressure on axis is considered. The objective function is defined as follows:

A(ω) =

1 for ω ∈ [ωmin, ωmax] ,

ε otherwise ,
(5.19)

where ε is a small parameter that can be adjusted. In the following, we use ε = 1× 10−6.
The frequency range in which the loudspeaker response is equalized is [ωmin, ωmax]. In
this study we take fmin = 100Hz, and fmax = 10000Hz.

The impulse response is obtained from the computed frequency response function of
the loudspeakers studied in chapter 4, with electrodes occupying thewhole surface. The
membrane is inflated to 1000Pa, and the applied static voltage is u0 = 1000V. The
frequency response and the impulse response are plotted in fig. 5.22.
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Fig. 5.22. (a) Frequency response and (b) impulse response of the studied prototype. This re-
sponse is the ratio between the radiated pressure on axis at 1m and the excitation signal
s. The amplitude is non-dimensional here.

The frequency response of the loudspeaker exhibits many peaks and drops due to the
membranemodes, and herewewill try to flatten the frequency response using the equal-
ization method by Tokuno et al.

Numerical validation To validate the method, and understand the influence of the regu-
larization, the optimal inverse filter is tested on a trial signal: a pink noise s is generated,
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filtered first by the filter H and then by the system response C to obtain p, as described
in the block diagram in fig. 5.21. The transfer function between the obtained signal and
the initial signal is then computed and plotted in fig. 5.23.

(a)

102 103 104

Frequency (Hz)

-40

-20

0

|p
/
s|
(d
B
)

β = 1e-10
β = 1e-08
β = 1e-06

(b)

102 103 104

Frequency (Hz)

-100

-50

0

ar
g
p
/
s
(d
eg
)

β = 1e-10
β = 1e-08
β = 1e-06

Fig. 5.23. Transfer function between the excitation signal s and the output signal of the system
p with equalization, for three values of the regularization parameter β. (a) Amplitude.
(b) Phase corrected by the modelling delay.

Figure 5.23 shows that a flat frequency response can be obtained by equalization if the
regularization parameter is correctly chosen. For a too small β, the obtained response
exhibits many drops and peaks that deviate from the flat response. For a too large β,
the filter deviates from the ideal inverse filter (here at low frequencies), and the desired
inversion is not observed any longer. The parameter β limits the power of the filter,
which is why at low frequencies the response with the large β deviates from the flat
response, as not enough power is added at low frequencies. For the optimal β, here
around β ≈ 1× 10−8, both a flat frequency response and good low frequency behavior
are obtained.

Experimental validation The control strategy is now tested experimentally on the proto-
type filled with porous material [see section 5.3]: a first measurement is carried out to
obtain the transfer function between the excitation s and the pressure radiated on axis
at 1m Pe. The inverse filter is then computed using the method by Tokuno et al., as ex-
plained above. Finally, the excitation signal is filtered by the inverse filter and sent to the
loudspeaker. The transfer function between the original signal and the radiated pres-
sure is computed, and plotted in fig. 5.24, together with the transfer function without
filtering.

Figure 5.24 shows that the proposed inverse filtering method succeeds in flattening the
frequency response of the DE loudspeaker over a large frequency range 400-15000Hz.
Small oscillations remain, especially around 2 kHzwhere the original frequency response
has a very sharp peak. This could be due to a slight evolution of the system between the
moment when its transfer function was measured, and the moment when the measure-
ment with the inverse filter was performed. To get rid of such troubles, adaptive filtering
algorithms which track the system eigenfrequencies would be helpful.

Of course, there is a tradeoff between the quality of the frequency response and the
radiated level: for a maximum excitation amplitude (to avoid dielectric breakdown), the
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Fig. 5.24. Measured transfer function between the excitation signal s and the radiated pressure Pe

[see fig. 2.1 for the definitions], with andwithout inverse filtering basedon themeasured
frequency response. (a) Amplitude, (b) Phase.

filtered response will be lower in amplitude, as themaximum voltage will be determined
by low frequencies where the original frequency response is small.

The same procedure can be followed, but using the response computed in FreeFEM
instead of the measured response to compute the inverse filter. This is particularly in-
teresting, as it opens adaptive control possibilities: the model can be run in real time
to follow the evolution of the system, in order to adapt the filter. Only a preliminary
test is shown here on the prototype without porous material: the model is used to com-
pute the acoustic response of the prototype in given conditions, and the inverse filter is
computed from the numerical results. It is then applied to the signal before it is sent to
the speaker, and the frequency response is measured again. The results are shown in
fig. 5.25.
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Fig. 5.25. (a) Pressure radiated on axis of a DE inflated loudspeaker, measured and computed.
(b)Measured pressure radiated on axis of the same DE loudspeaker, when the signal is
filtered by an inverse filter obtained from the response calculated in FreeFEM shown in
(a) .

Figure 5.25 shows that the filter computed from FreeFEM succeeds in improving a lit-
tle the frequency response, but large peaks remain at the system’s eigenfrequencies.
This is related to a small mismatch between the measured and computed eigenfrequen-
cies, which for sharp resonances yields a large error between the model and the mea-
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surements at a given frequency. Tuning the model with the measured eigenfrequencies
would therefore be of primary interest. Ideas on self-sensing methods to measure the
dominant eigenfrequencies will be discussed in chapter 6.

Equalization for several receiver locations As explained in [60], equalizing a loudspeaker
only for the on-axis response may create problem for the off-axis response. Therefore,
the method of Takuno et al. is now applied for several receivers (using the numerical
results), located on a circle of radius 1m around the loudspeaker. Five positions are
considered, and the objective function for each of them is the same as for only one re-
ceiver: flat response in the frequency range 100-10000Hz [see eq. (5.19)]. The results
are plotted in fig. 5.26.
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Fig. 5.26. Transfer function between the excitation signal s, and the output signal of the system P
with equalization for several receiver locations, located on a circle of radius 1m around
the loudspeaker. The regularization parameter is set to β = 1× 10−8. (a) Amplitude.
(b) Phase.

Figure 5.26 shows that the equalization procedure is still useful for improving the fre-
quency response of the loudspeaker even for several receiver locations. However, a
perfectly flat frequency response can no longer be obtained, as the equalization is now
a compromise between the different locations. Also, at high frequencies, the radiated
pressure is larger on axis than off axis, and this is due to the inherent directivity of the
loudspeaker. The equalization does not change the directivity, so the directivity pattern
remains the same.

In order to improve the directivity of the loudspeaker, two different excitation channels
can be used. Each of them has its own directivity pattern, and by combining them a
desired directivity pattern can be approached. This is studied in the following section.

Equalization of a dual-channel loudspeaker

The loudspeakerwith two channels (two electrodes) described in fig. 5.20 is now studied,
for improvements of the frequency response using the method of Tokuno et al. [110].

The loudspeaker response to the excitation with each electrode is computed using the
method of chapter 2. As the system is assumed to be linear, the response of the system
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to a combined excitation by the two electrodes will be the sum of the system response
to each excitation. Therefore, this system can be described by the block-diagram of
fig. 5.21, where there is one source signal (Ns = 1), two transducers (Ns = 2), and as
many receivers as desired. In the following the receivers will be distributed on a circle
of radius 1m around the loudspeaker [see fig. 5.27]. For each receiver, an objective
frequency response is defined. Typically, a flat frequency response in a given frequency
range is searched for, as defined by eq. (5.19). However, this objective functionmay vary
for each receiver, for example, an objective could be to radiate only around the axis, and
not on the sides. The objective function would then be set to zero for the receivers on
the side, as represented in fig. 5.27.

Fig. 5.27. Block-diagram of the loudspeaker with two electrodes, and definition of the objective
response A. The transfer functions between the two excitation channels and the differ-
ent microphone positions are denoted Cj

i .

A first equalization is performed, where a flat frequency-response in the range 100-
10000Hz with omnidirectional radiation is searched for. This is obtained by setting all
the objective functions Ai in fig. 5.27 equal to A defined in eq. (5.19). The transfer func-
tion between the source signal s and the pressure received by the differentmicrophones
is plotted in fig. 5.28 for the optimal filters H1 and H2.

Figure 5.28 should be compared with fig. 5.26, indeed the equalization objective is the
same for both results, but fig. 5.26 is obtained for a single excitation, and fig. 5.28 for
two excitations. With only one excitation it was not possible to control the directivity,
so a flat frequency response could only be obtained on axis. With two excitations, the
relative level and phase between the two can be used to control the directivity. This is
what is observed in fig. 5.28, where all themicrophones have almost the same frequency
response. Even at high frequencies, the deviation between the receivers is smaller than
5dB, when 20dB where observed with one excitation.

The equalization procedure can also be used to force a certain directivity pattern. For
example, the radiation close the loudspeaker axis could be maximized compared to the
off-axis radiation. The interesting thing here is that the directivity can be modified only
by signal processing, it can be adjusted instantly depending on which radiation pattern
is wanted. In fig. 5.29, the objective function is set to unity for the angles α < 45°, and
zero for angles α > 45°.
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Fig. 5.28. Transfer function between the excitation signal s, and the pressure radiated at the differ-
ent receiver locations p with equalization aiming at flat frequency response and omni-
directional radiation. The regularization parameter is set to β = 1× 10−7. (a) Ampli-
tude. (b) Phase.
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Fig. 5.29. Transfer function between the excitation signal s, and the pressure radiated at the dif-
ferent microphone locations pi with equalization aiming at flat frequency response and
radiation only for α < 45°. The regularization parameter is set to β = 1× 10−7. (a) Am-
plitude. (b) Phase.

Figure 5.29 shows that the directivity can be controlled using the equalization proce-
dure of Tokuno et al.. Indeed, above 1 kHz, a 20dB difference is observed between the
receivers with α < 45° and those with α > 45°. Below 1kHz, the loudspeaker is acous-
tically compact, so the radiation is omnidirectional, and cannot be changed. Also, it is
interesting to note that the frequency response deviates more from the desired flat fre-
quency response than in fig. 5.28 where an omnidirectional response is wanted. This is
certainly due to the definition of the objective functions A, where for now the ideal off
axis response is just null. Definingmore clever objective functionsmight help improving
the flatness of the frequency response, even off-axis.

The frequency response of the equalization filters for the omnidirectional [see fig. 5.28]
and on-axis [see fig. 5.29] equalizations are plotted in fig. 5.30.

Figure 5.30 shows that it is really the interplay of the two channels that makes it possible
to control the directivity. Indeed, the amplitudes of the two filters are in the same order
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Fig. 5.30. Amplitude of the equalization filters for the two investigated cases. (a) omni-directional
radiation [see fig. 5.28]. (b)On-axis radiation [see fig. 5.29].

of magnitude over the whole frequency range, meaning that both channels contribute
to the total radiated pressure.

5.4.5 Conclusion

A method to improve the frequency response of the DE, based on digital signal pro-
cessing and inverse filters has been proposed, and tested numerically on the results of
the model presented in chapter 2. This method succeeds in flattening the frequency
response over a large frequency-range, and if two different excitations are available, the
directivity of the loudspeaker can also be controlled.

Moreover, the inverse filter can be computed from the results of themodel, which opens
adaptive control possibilities.

This method has some major limitations:

• The generated filters are quite long (2048 taps in the present study), and intro-
duce a delay of about 50ms. In some situations this is not acceptable, as the maxi-
mumaudio/videodelay should remainbelow45ms for television applications, and
20ms for cinema [21]. Shorter filters can be used in order to reduce the modelling
delay, at a cost of a decrease in performance.

• The filters are computed from the system frequency response (or impulse response).
Therefore, the frequency response must either be measured, or computed using a
numerical model. Using the numerical model to compute the inverse filter is quite
delicate, as a perfect match between the model and the real prototype is needed.
Indeed, a small error in the eigenfrequencies for example leads to large amplitude
errors in the inverse filter at a given frequency.

• The system may evolve in time, at a timescale much larger than the audio-
frequencies. This evolution could be due to visco-elastic relaxation, leakages in
the cavity which would change the inflation pressure, softening of the membrane
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due to heat created by the Joule effect in the electrodes, etc. The frequency re-
sponse of the system could therefore change, and the filters would need to be
re-computed regularly.

One interesting solution to cope with the evolution of the system problem would be
to implement adaptive filters, whose parameters are adapted in order to follow the sys-
tem evolution. This requires live knowledge of the system state, so either external sen-
sors have to be used, or self-sensing possibilities offered by DEs can be used [98]. For
example, the impedance can be measured during operation, and in chapter 6 we will
show that the impedance contains information on the dominant eigenfrequencies. The
inverse filter could then be adjusted to follow the evolution of the system eigenfrequen-
cies.

5.5 Conclusion

In this chapter four options to improve the acoustical behavior of DE loudspeakers have
been investigated:

• Choosing the right inflation pressure helps enhancing the low frequency radiation.

• Patterning the electrode to tune themodal forcesmayhelp improving the frequency
response.

• Adding porous material in the cavity damps out acoustic cavity modes, but also
increases the damping on coupled modes dominated by membrane vibrations,
and yields a flatter frequency response.

• Finally, digital signal processing can be used to flatten the frequency response, and
to control the directivity of the loudspeaker, especially if several electrodes can be
excited independently.
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Resistive effects 6
In this chapter the effects of electrode resistivity are investigated in greater
details than in chapter 2.
It is found that for large resistivity the voltage is not uniform on the elec-
trodes at high frequencies, and that the voltage distribution is coupled to
the membrane vibrations. A model to describe this phenomenon is de-
rived, and compared to experiments.
Possible applications of the coupling between the voltage distribution and
the membrane vibrations are then discussed, in particular for self-sensing.

6.1 Literature review

When DEs are operated in high frequency applications (several kHz) such as loudspeak-
ers [45, 51, 31], the resistivity of the electrodes starts to play a significant role. It de-
creases the actual actuation voltage, which gets lower than the voltage supplied by the
high voltage source.

Different approaches have been used to model this effect, using either lumped models
or more realistic distributed models, depending on the desired accuracy and on the
system parameters.

6.1.1 Lumped models

Themost simplemodel for the resistive effects is a lumpedmodel, in which the electrical
behavior of the wholemembrane is modelled as a resistor in series with a capacitor [105,
37]. The equivalent resistor-capacitorRC circuit is characterizedby its time constant τe =
RC or its characteristic frequency ΩRC = 1/RC. For frequencies Ω > ΩRC , the effective
voltage which actuates the transducer is smaller than the supplied voltage, leading to a
decrease in performance.

The lumpedmodel has been extensively used to study self-sensing applications for one-
degree-of-freedom systems [61, 98, 53]. The deformation of the actuator can be mon-
itored during actuation without any added sensor: its deformation can be estimated
from measurements of the supplied voltage and current. Self-sensing leads to huge im-
provement of the performance of DE actuators, as they can be operated in closed loop
to compensate for their limitations, such as visco-elastic creep [98].

Most self-sensing methods are based on measurements of the capacitance, which is in-
versely proportional to the actuator area. The capacitance is either measured by super-
imposing a high frequency signal to the actuation voltage [56, 53, 98], or the actuation
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signal can be directly used for sensing [36]. Other self-sensing methods based on mea-
surements of the resistance of the DE have also been proposed, but appear to be less
accurate [83].

Most of the time the influence of the mechanics on the electrical dynamics is neglected.
It is assumed that the mechanical displacement occurs at time scales which are much
larger than the electrical dynamics (at frequencies Ω ≪ ΩRC ). Therefore, the electrical
response can be computed assuming that the resistivity and the capacitance are con-
stant.

One of the first study to take into account the strong influence of the mechanical dy-
namics on the electrical dynamics is the article by Rizzello et al. [93]. A one degree of
freedom DE oscillator is investigated carefully, by taking into account among other phe-
nomena the influence of the vibrations on the electrical dynamics, which is introducedby
the dependence of the capacitance and resistance on the actuator position. This study
is performed in the time domain, in order to compute all the non-linear effects, coming
from the material behavior, the geometry or the visco-elasticity. Rizzello et al. show that
the electrical dynamics do influence the mechanical displacement at high frequencies.
This fully coupled model is then used for self-sensing control of a 1-DOF DE oscillator
[94].

Another study which takes into account the couplings between the electrical and me-
chanical dynamics is the article by Hoffstadt and Maas [48], where a stacked dielectric
transducer is studied, and a control strategy based on a Kalman filter is set up.

6.1.2 Transmission line models

It has then been noticed that at higher frequencies, the lumped RC model does not
describe correctly the electrical behavior of DEs, and transmission line models which
account for the spacial variation of the voltage on the electrode have been proposed as
a refinement [58, 39, 38]. These models are built by assembling unit circuit cells which
are themselves built with lumped resistive and capacitive elements [see fig. 6.2].

The transmission line models have been used to study the voltage distribution on DE
membranes for actuator applications [58, 39, 38], where the position of the electrode
connections is optimized to improve the actuation at high frequencies. Transmission line
models have also been used to investigate stacked DE transducers where the resistivity
of the electrodes connections is large [49].

However, in the above-mentioned studies the influence of the membrane displacement
on the electric field is not taken into account in the electrical model, in which the geom-
etry is considered static.

In most DE applications, resistivity is considered as a drawback because it limits the fre-
quency bandwidth of actuation and sensing. A huge research effort has been made to
manufacture thinner and more conductive electrodes, and this for now remains a major
limitation for downsizing DE actuators and sensors [99]. Developing actuation and sens-
ing methods that work with more resistive electrodes is another path, as manufacturing
thinner but more resistive electrodes is relatively easy.
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Recently, Xu et al. [117, 118, 119] developed a method that builds on the voltage drop
across a DEmembrane caused by resistivity to sense capacitance changes at different lo-
cations, using a single pair of connections. High frequency signals are quickly attenuated
in the DE, so they sense only areas close to the electrode connections. Low frequency
signals (Ω ≪ ΩRC ) propagate on the whole membrane, so they can sense deformations
far away from the connections. A transmission line model is used to model the electric
field propagation in the resistive DE.

6.1.3 Goal of the present work

On the one hand the effect of electrode resistivity on the voltage distribution in DEs
has been largely studied using transmission line models, for applications as actuators
or sensors, but without taking into account the influence of the membrane vibrations
on the voltage distribution. On the other hand, the coupling between the mechanical
vibrations and the electrical dynamics has been studied in depth in a single-degree-of-
freedom device, using lumped electrical models.

Therefore the goal of the present work is to combine these two approaches, by studying
the influence of the DE vibrations on the spatial distribution of the voltage, and analyse
the influence of the coupling in both directions between electrodynamics and mechan-
ical dynamics. These couplings are likely to occur in large devices operated at high
frequencies, which is typically the case for DE loudspeakers. Potential outcomes of this
study are extended self-sensing possibilities at high frequencies, and the opportunity
to design control methods based on self-sensing for DE actuators operated at high fre-
quencies. Also, it could refine the estimation of the electrostatic excitation in resistive
systems.

In all the forgoing, high frequencies are defined as frequencies above the electrical cut-
off frequency Ω > ΩRC . Therefore, the present work would also be useful to investigate
DE devices with less conductive electrodes at relatively low frequencies. This is also of
general interest because less conductive electrodes generally means thinner and more
compliant electrodes, which are easier to manufacture.

6.2 Theory

The present section is divided into four parts. After a description of the studied system
in section 6.2.1, the equations governing the dynamic voltage distribution are obtained
using the transmission line theory in section 6.2.2, which is the method that is used by
most authors. In section 6.2.3, a similar set of equations is derived starting fromMaxwell’s
equations. The differences between the two methods are finally commented on in sec-
tion 6.2.4.
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6.2.1 Description of the studied system

We consider a DE membrane on which an electrode is deposited on both sides, on the
surface Σ. This setup is described in fig. 6.1. The voltage on the top and bottom elec-
trodes are denoted U1 and U2 respectively. The top electrode is connected to the volt-
age supply on the contour Γ1 where the voltage is fixed at Ua. The bottom electrode is
connected to the ground on Γ2. On the rest of the border Γ = ∂Σ, no current is flowing
out.

Elastomer membrane

Electrodes

Voltage

Resistivity
Permittivity

Voltage

Electrode border

Applied voltage

Velocity

Fig. 6.1. Studied dielectric elastomer membrane, and definition of the variables.

6.2.2 Transmission line model

In section 6.2.2 only, small letters are used for the dimensional spatial coordinates x and
y.

Fig. 6.2. Lumped model of the dielectric elastomer membrane. The black lines denote the con-
sidered unit cell, and grey lines correspond to the neighboring cells.

Transmission line theory is a intuitive way to derive the equations governing the charge
and voltage distribution on a DE membrane [58]. It is here applied to the membrane
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sketched in fig. 6.2. An element of the DE membrane is modelled as a capacitor, con-
nected to resistors which stand for the electrode resistivity. The surface capacitance is
denotedC = ϵ/H where ϵ is the membrane permittivity andH its thickness. The volume
current density flowing from the top to the bottom electrode is Iz . The surface current
densities on the top and bottom electrodes are J1 and J2:

J1 = J1xex + J1yey , J2 = J2xex + J2yey . (6.1)

The current balance at the node marked by a green circle in fig. 6.2 reads:

Iz(x, y)δxδy =J1x(x− δx, y)δy − J1x(x, y)δy + J1y(x, y − δy)δx− J1y(x, y)δx . (6.2)

Making δx and δy tend towards 0 and considering similarly thebottomelectrode yields:

Iz = −∇s · J1 , Iz = ∇s · J2 , (6.3)

where∇s denotes the surface del operator:

∇s =
∂

∂x
ex +

∂

∂y
ey . (6.4)

The constitutive law of the capacitor reads:

Iz =
∂

∂T
[C(U1 − U2)] . (6.5)

The last needed equations are provided by Ohm’s law, which reads, in the x-direction
on the top electrode:

U1(x, y) = U1(x+ δx, y) +
ϱe
He

δx

δy
J1xδy . (6.6)

Making δx tend towards 0 yields ∂U1/∂x = −J1xϱe/He. Using the same method in the
y-direction and considering similarly the bottom electrode, we obtain:

J1 = −He

ϱe
∇sU1 , J2 = −He

ϱe
∇sU2 . (6.7)

Substituting in the current balance (6.3) the expressions of the surface current densities
J1 and J2 given by Ohm’s law (6.7) and the expression of the volume current density Iz
given by the constitutive law (6.5) yields:

∇s ·
(
He

ϱe
∇sU1

)
=

∂

∂T

( ϵ
H

(U1 − U2)
)
, (6.8a)

−∇s ·
(
He

ϱe
∇sU2

)
=

∂

∂T

( ϵ
H

(U1 − U2)
)
. (6.8b)

These governing equations must be completed with the boundary conditions which
read:
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U1 = Ua on Γ1 , U2 = 0 on Γ2 ,

∇sU1 · n = 0 on Γ/Γ1 , ∇sU2 · n = 0 on Γ/Γ2 . (6.9)

Even if they are not always written in this partial differential equation form, eqs. (6.8)
and (6.9) have been used by many researchers to study resistivity effects in DEs (see [58,
38, 118] for example). Most of the time they are used in a more simple form, which is
obtained if the thickness and resistivity are assumed to be uniform, and if themembrane
thickness does not depend on time:

∆Ū =
Heϵ

ϱeH

∂Ū

∂T
, (6.10)

where Ū = U1 − U2. This is a diffusion equation which is easily solved by finite element
methods for example. Although the governing equation is more compact in the form
eq. (6.10), the formeq. (6.8) ismore practical because the boundary conditions aremuch
easier to implement when the two variables U1 and U2 are used.

6.2.3 Model based on Maxwell’s equations

The assumptions that lie behind the transmission line theory must be clarified for a mov-
ing medium. A DE membrane under dynamic excitation will move and deform, and
the motion could very likely interact with the charge diffusion. In this section we derive
the equations governing the voltage distribution on the electrodes fromMaxwell’s equa-
tions written for a moving medium [69]. We will show that it leads to additional terms in
the equations.

Maxwell’s equations for electroquasistatics in a moving frame.

Maxwell’s equations for amovingmediumhavebeenwritten thoroughly byKovetz [69].

Two frames are defined: R is a Galilean reference frame, andR′ is the frame of reference
of thematter. The frameR′moves relatively toR in amotion defined by the velocity field
V (X, T ). Quantitieswill be notedwith an apostrophewhen referring to the frameR′ and
without when referring to the frame R. In particular, the current density I refers to the
velocity of the charges with respect to the reference frameRwhile the current density I ′

refers to the velocity of the charges with respect to the matter. In the frameR, Maxwell’s
equations read:

∇ ·D = ρ , (6.11a)

∇×H = I +
∂D

∂T
, (6.11b)

∇ ·B = 0 , (6.11c)

∇×E = −∂B
∂T

, (6.11d)
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whereD is the electric displacement,E the electric field,H the magnetic field strength,
B the magnetic flux density, and ρ the charge density. These equations must be com-
pleted by the aether relations:

D = ϵ0E + P , H =
B

µ0
−M , (6.12)

where P andM are the material polarization and magnetization. The electromagnetic
fields are transformed as follows in the moving frameR′ [69]:

B′ = B , E′ = E + V ×B ,

H ′ =H − V ×D , D′ =D ,

M ′ =M + V × P , P ′ = P ,

I ′ = I − ρV , ρ′ = ρ . (6.13)

The expressions of the polarization P ′ and the magnetization M ′ as functions of the
electric field E′ and the magnetic fieldH ′ are given by constitutive relations, written in
the frameR′ attached to matter.

In the present application electromagnetic wave propagation can be neglected, and
magnetic effects aswell. Wewill thereforeworkwithin the frameworkof electro-quasistatics
[112]. The time derivative of the magnetic flux is neglected (∂B/∂T ≈ 0), and induction
effects are disregarded as well, which suppresses the terms in V × B. Moreover, the
divergence of the Maxwell-Ampère equation (the second one in Eqs. (6.11)) is taken, to
obtain the charge balance equation. The fields B, H andM are then removed from
the formulation of the problem, and Maxwell’s equations for electro-quasistatics are ob-
tained:

∇ ·D = ρ , (6.14a)

∇ · I + ∂ρ

∂T
= 0 , (6.14b)

E = −∇U , (6.14c)

D = ϵ0E + P , (6.14d)

where the scalar potential U from which the electric fieldE derives has been introduced
because of the Maxwell-Faraday equation (the last one in Eqs. (6.11)).

These equations have to be completed by constitutive relations. In the present case two
types of materials are considered:

• The membrane is made of a linear dielectric material, which does not conduct free
charges, that is I ′ = 0, and in which the polarization P ′ is proportional to the elec-
tric field E′. Given that there are no free charges initially in the dielectric, and that
there are no currents, the charge remains null at all times (∀T, ρ′ = 0). So in the
dielectric membrane:

P = ϵ0χeE , I = 0 , (6.15)

where χe is the membrane electrical susceptibility.
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• The electrodes are made of linear conductive material, which satisfies Ohm’s law
I ′ = E′/ϱe, and is not polarizable, that is P ′ = 0. Thus, in the electrodes:

P = 0 , I − ρV =
1

ϱe
E . (6.16)

Simplification for a thin DE membrane

Modelling assumptions Maxwell’s equations presented in the previous paragraph are
now simplified in the case of a thin dielectric membrane between electrodes as de-
scribed in section 6.2.1. Because of the thinness of the system, the aim is to describe

Dielectric membrane
Electrodes

Fig. 6.3. Definition of the geometry of a thin membrane for the simplification of Maxwell’s equa-
tions. A point of the system is identified by the location X of its projection on the ref-
erence surface, and its coordinate ξ along the normal n to the reference surface. The
surfaces ξ = ξ±i (X, T ) define the bottom and top sides of the electrodes, so that the
thickness of the dielectric membrane is h = ξ−1 − ξ+2 , and the thicknesses of the top and
bottom electrodes are ξ+1 − ξ−1 and ξ+2 − ξ−2 respectively, both supposed to be equal to
he in the section 6.2.2.

the problem by planar equations written on a given reference surface Σ close to the
membrane geometry, involving only two spatial variables. Each point in the volume of
the membrane is identified by a pointX on the reference surface and an altitude ξ, see
Fig. 6.3. For an arbitrary vector field a(X, ξ) in this volume, a∥(X, ξ) denotes its projec-
tion on the tangent plane to the reference surface at locationX.

The equations will be expressed using surface operators: ∇sa refers to the surface gra-
dient of a scalar field a, defined as the projection of ∇a on the tangent plane to the
reference surface, and∇s ·a refers to the surface divergence of a vector field a, defined
as the divergence of a∥. Assuming that the thickness of the membrane is much smaller
than the radius of curvature of the reference surface, these surface operators are simply
expressed using the surface del operator defined by Eq. (6.4), where x and y denotes
now curvilinear coordinates on the reference surface. Indeed, neglecting curvature ef-
fects, the following relation holds:

∇ = ∇s +
∂

∂ξ
n . (6.17)

The construction of the 2D model is based on the following assumptions:

• In the electrodes the electric field is tangential (i.e. E · n = 0).
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• In the membrane the electric field is dominated by the normal component (fringe
effects are neglected).

• Outside of the electrodes and of the membrane the electric field is null.

The first assumption amounts to assume that the potentialU fromwhich the electric field
derives by Eq. (6.14c) does not depend on ξ in the electrodes. So we define the poten-
tials U1 and U2 in the top and bottom electrodes respectively, by U1(X, T ) = U(X, ξ, T )

for ξ−1 (X) ≤ ξ ≤ ξ+1 (X) and U2(X, T ) = U(X, ξ, T ) for ξ−2 (X) ≤ ξ ≤ ξ+2 (X). The second
assumption implies that in the membrane the electric field is expressed as a function of
the electrode potentials as:

E = −U1 − U2

h
n . (6.18)

Indeed, due to the aether relation (6.14d) and the constitutive law (6.15), the electric
field and the electric displacement are proportional:

D = ϵE , (6.19)

where ϵ = ϵ0(1+χe) is thepermittivity of themembrane’smaterial. Therefore, as there are
no free charges in the membrane (ρ = 0), Gauss’s law (6.14a) implies that the dominant
normal component of the electric field is uniform in the thickness of themembrane. From
Eqs. (6.14c) and (6.17), this component is given by:

E · n =
∂U

∂ξ
,

which gives eq. (6.18).

Note that in this expression, the tangential component E∥ of the electric field has been
omitted because it is negligible compared to E · n. The tangential component of the
electric field is actually of the same order of magnitude in the membrane and in the
electrodes, due to its continuity across the interface between the two materials. On the
other hand, our assumptions violate the continuity of the normal component of the elec-
tric field (null in the electrodes and given by eq. (6.18) in the membrane). In practice,
the charges will be mainly localized near the interface because of the discontinuity of
the material properties, which justifies the jump of the electric field.

In the following paragraphsMaxwell’s equations are integrated with respect to ξ in order
to obtain surface equations.

Integration of Gauss’s law Using eq. (6.17), the integration of Gauss’s law eq. (6.14a) from
the reference surface to the outer boundary of the top electrode reads:∫ ξ+1

0

∇s ·Ddξ +
∫ ξ+1

0

∂D

∂ξ
dξ · n =

∫ ξ+1

0

ρdξ . (6.20)

Note that the interval of integration includes the interface whereD · n was assumed to
be discontinuous. The jump of D, related to the charge density ρ, is expressed by the

6.2 Theory 127



secondmember. Given that there are charges only in the electrode, and that the electric
displacement is null for ξ ≥ ξ+1 , eq. (6.20) is then rewritten as:∫ ξ+1

0

∇s ·Ddξ −D⊥ = σ , (6.21)

where σ is the surface charge density of the top electrode defined as:

σ =

∫ ξ+1

ξ−1

ρdξ , (6.22)

and D⊥ is the normal component of the electric displacement in the membrane, which
does not depend on ξ as seen in eqs. (6.18) and (6.19).

The normal component of the electric field in the membrane is much larger than its tan-
gential component both in the electrode and in the membrane and, in addition, the
membrane radius is much larger that its thickness so the first term of eq. (6.21) is negli-
gible compared to the second one.

Finally, combiningeqs. (6.18), (6.19) and (6.21) gives the expressionof the surface charge
density as a function of the electrode potentials:

σ =
ϵ

h
(U1 − U2) . (6.23)

The same procedure applied to the bottom electrode shows that its surface charge den-
sity is −σ.

Integration of the charge balance Integrating the charge balance equation (6.14b) over
the thickness of the top electrode reads:∫ ξ+1

ξ−1

∇s · Idξ +
(∫ ξ+1

ξ−1

∂I

∂ξ
dξ
)

· n+

∫ ξ+1

ξ−1

∂ρ

∂T
dξ = 0 . (6.24)

Using the Leigniz integral rule to express the terms of this equation yields:

∇s ·

(∫ ξ+1

ξ−1

Idξ
)

− I(ξ+1 ) ·
(
∇sξ

+
1 − n

)
+ I(ξ−1 ) ·

(
∇sξ

−
1 − n

)
+

∂

∂T

(∫ ξ+1

ξ−1

ρdξ
)

− ρ(ξ+1 )
∂ξ+1
∂T

+ ρ(ξ−1 )
∂ξ−1
∂T

= 0 . (6.25)

As neither the dielectric membrane nor the surrounding air can conduct free charges,
the boundary conditions for the current on the top and bottom surfaces of the electrode
read I ′(ξ±1 ) · n±

1 = 0, that is:[
I(ξ±1 )− ρ(ξ±1 )V (ξ±1 )

]
·
(
n−∇sξ

±
1

)
= 0 . (6.26)
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Moreover, the normal velocity of the interfaces reads:

V (ξ±1 ) · n =
∂ξ±1
∂T

+ V (ξ±1 ) ·∇sξ
±
1 , (6.27)

so the boundary conditions eq. (6.26) become:

I(ξ±1 ) ·
(
n−∇sξ

±
1

)
− ρ(ξ±1 )

∂ξ±1
∂T

= 0 . (6.28)

Introducing these boundary conditions in the charge balance eq. (6.25) cancels all the
boundary terms, so this equation finally reads:

∇s · J1 +
∂σ

∂T
= 0 , (6.29)

where σ is the surface charge density defined by eq. (6.22), and the surface current den-
sity on the top and bottom electrodes

J1 =

∫ ξ+1

ξ−1

I∥dξ , J2 =

∫ ξ+2

ξ−2

I∥dξ , (6.30)

have been introduced.

Integration of Ohm’s law In this work, we are interested in the voltage distribution on the
electrodes, which is related to the charges’ in-plane motion. The slowing down of this
motion, due to the resistivity of the electrodes, is described by Ohm’s law. Since the
significant component of the charges’ motion is the tangential one, Ohm’s law (6.16) is
projected on the tangent plane to the reference surface:

I∥ − ρV∥ =
1

ϱe
E∥ . (6.31)

As in the previous paragraphs, let us examine the case of the top electrode. The electric
field is there given by the surface gradient of the potential U1 and is uniform in the elec-
trode thickness. Integrating Ohm’s law eq. (6.31) over the electrode thickness yields:∫ ξ+1

ξ−1

I∥dξ −
∫ ξ+1

ξ−1

ρV∥dξ = −∇sU1

∫ ξ+1

ξ−1

1

ϱe
dξ . (6.32)

In order to recognize in the second term the surface charge σ defined by eq. (6.22), we
further assume that the tangential velocity V∥ does not depend on ξ in the electrodes.
This tangential velocity is denoted by V1∥ and V2∥ in the top and bottom electrodes re-
spectively. The surface Ohm’s law eq. (6.32) is then simplified as follows:

J1 − V1∥σ + γ1∇sU1 = 0 , (6.33)

6.2 Theory 129



where J1 is the surface current defined by eq. (6.30) and the surface conductivity of the
top and bottom electrodes

γ1 =

∫ ξ+1

ξ−1

1

ϱe
dξ , γ2 =

∫ ξ+2

ξ−2

1

ϱe
dξ , (6.34)

have been introduced.

Diffusion equations By introducing in the charge balance eq. (6.29) the expression of
the surface current J1 given by Ohm’s law eq. (6.33) and the expression of the surface
charge σ given by eq. (6.23), a diffusion equation governing the voltage distribution on
the top electrode is obtained, and this procedure is repeated for the bottom electrode,
yielding:

∇s · (γ1∇sU1) =
∂

∂T

( ϵ
H

(U1 − U2)
)
+∇s ·

( ϵ
H

(U1 − U2)V1∥

)
, (6.35a)

−∇s · (γ2∇sU2) =
∂

∂T

( ϵ
H

(U1 − U2)
)
+∇s ·

( ϵ
H

(U1 − U2)V2∥

)
. (6.35b)

In the following, given the small thickness of the electrodes and of the membrane, it
is assumed that the tangential velocity is the same in the whole membrane, meaning
that V1∥ = V2∥ = V∥. Also, the top and bottom electrode thicknesses and resistivity are
assumed to be identical and uniform, which yields γ1 = γ2 = He/ϱe.

The diffusion equations obtained fromMaxwell’s equations in a moving frame are there-
fore simplified to:

∇s ·
(
He

ϱe
∇sU1

)
=

∂

∂T

( ϵ
H

(U1 − U2)
)
+∇s ·

( ϵ
H

(U1 − U2)V∥

)
, (6.36a)

−∇s ·
(
He

ϱe
∇sU2

)
=

∂

∂T

( ϵ
H

(U1 − U2)
)
+∇s ·

( ϵ
H

(U1 − U2)V∥

)
. (6.36b)

On the portion of the top electrode border where there is no connection, the boundary
condition reads I ′ · nb = 0, that is:

I · nb = ρV · nb forX ∈ Γ\Γ1 and ξ ∈ [ξ−1 (X), ξ+1 (X)] . (6.37)

Integrating this condition over the thickness of the top electrode and using Ohm’s law
eq. (6.33) yields:

∇sU1 · nb = 0 on Γ\Γ1 . (6.38)

The same holds for the bottom electrode, and the full set of boundary conditions is fi-
nally the same as in the case of the model based on transmission line theory, namely
eq. (6.9).
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6.2.4 Comparison of transmission line and Maxwell models

The governing equations obtained using the transmission line theory are eq. (6.8) with
the boundary conditions eq. (6.9). The equations obtained using Maxwell’s equations
are eq. (6.36) with the boundary conditions eq. (6.9).

First, the boundary conditions obtained using both approaches are identical.

Second, if the dielectric membrane is at rest, V = 0, and ϵ/H can be moved out of the
derivative in eq. (6.36), and eq. (6.36) is then identical to eq. (6.8).

However, if the membrane moves and deforms, eqs. (6.8) and (6.36) differ by the con-
vective term∇s ·

(
ϵ/H(U1 − U2)V∥

)
in eq. (6.36), whichmatters when there is an in-plane

movement of the membrane.

6.2.5 Linearized coupled equations

For small actuation voltage compared to the static voltage (Ũa ≪ U0), eq. (6.36) can be
linearized around a steady state:

U1 = U0 + Ũ1(T ), U2 = 0 + Ũ2(T ),

H = H0 + H̃(T ), He = He0 + H̃e(T ).

The linearized version of eq. (6.36) is:

ϵ

H0

∂

∂T

(
Ũ1 − Ũ2

)
− ϵU0

H2
0

∂H̃

∂T
= ∇s ·

(
He0

ϱe
∇sŨ1

)
− U0∇s ·

(
ϵ

H0
V∥

)
,

ϵ

H0

∂

∂T

(
Ũ1 − Ũ2

)
− ϵU0

H2
0

∂H̃

∂T
= −∇s ·

(
He0

ϱe
∇sŨ2

)
− U0∇s ·

(
ϵ

H0
V∥

)
. (6.39)

Equation (6.39) shows that even at the linear order, the voltage distribution is coupled to
the mechanical vibrations, through the time derivative of the membrane thickness and
through the membrane velocity V . Note that the coupling terms are proportional to the
bias voltage U0.

6.3 Application

As emphasized here-above, the system of electrical equations (6.39) is coupled to the
mechanical equations.

For now in chapter 6, the equations have been derived in a general case for an arbitrary
geometry. In order to further investigate the influence of the coupling terms, a given
mechanical design should be chosen.
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Elastomer membrane

Electrodes

Pressure

Fig. 6.4. Schematics of the device used for the experimental validation of the electromechanical
coupling model.

Here as an application, the same system as in the rest of the thesis is considered, namely
an inflated DEmembrane, as shown in fig. 6.4. This system enables high frequency actu-
ation, as no additional mass apart from the DE membrane is moving. It has been inves-
tigated by several researchers for use as loudspeakers [52, 46, 30, 34] or pumps [90].

6.3.1 Coupled equations

Weak form of the coupled electromechanical system

The equations governing the dynamics of this membrane have already been derived
in chapter 2 and linearized around an inflated configuration. We showed in chapter 4
that acoustics have a strong influence on the membrane dynamics, and must therefore
be taken into account to compute correctly the dynamics of the system. Thus, vibro-
acoustic coupling is modelled here by the equations derived in chapter 2, but in the
following we omit writing them for clarity reasons. The equations for acoustics can be
considered included in the mechanical variables x̃, ỹ.

The complete system of mechanical and electrical linearized equations can be written in
the following weak form:

ℜK ([X ,Y,U1,U2]) , [x̃, ỹ, ũ1, ũ2])

+ℜC

(
[X ,Y,U1,U2]) , [ ˙̃x, ˙̃y, ˙̃u1, ˙̃u2]

)
+ℜM

(
[X ,Y,U1,U2]) , [¨̃x, ¨̃y, ¨̃u1, ¨̃u2]

)
=ℜF ([X ,Y,U1,U2], ua) , ∀[X ,Y,U1,U2] , (6.40)

where (x̃(t), ỹ(t) is the position of the membrane [see fig. 2.1], ũ1 = Ũ1/U0 and ũ2 =

Ũ2/U0 the non-dimensional voltages on the top and bottom electrodes. The force term
ℜF contains only the boundary condition on the top electrode (ũ1 = ũa on a portion of
the border). We emphasize that eq. (6.40) is linear, but strongly couples electrical and
mechanical dynamics.

Solving using finite elements

The linearizedweak form for the voltagedistribution andmechanical vibrations eq. (6.40)
is discretized on the samemesh as the weak form for themechanical vibrations eq. (2.27)
in chapter 2. There are now four variables (x̃,ỹ,ũ1,ũ2) instead of two in chapter 2 to de-
scribe the membrane state.
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Equation (6.40) is solved in the frequency domain, by inverting the discretized finite ele-
ment matrix system for all frequencies of interest.

6.3.2 Experimental setup

High voltage probe

In order to measure the voltage on the membrane, a Testec TT-HVP15 HF high voltage
probe has been used. A high voltage probe behaves electrically like a large resistor,
which builds together with the input impedance of an oscilloscope a voltage divider
[see fig. 6.5].

Oscilloscope NI card

Fig. 6.5. Electrical schematics of the high voltage probe, and connection to the measurement de-
vices.

In order to obtain an attenuation of the measured voltage by a factor of 1000, the high
voltage probe must be connected to an oscilloscope of input impedance 1MΩ, it is not
possible to connect it directly to the acquisition card, whose input impedance is too
high (RNI > 10GΩ). Unfortunately, both the oscilloscope and the NI card have an input
capacitance, which forms an RC circuit together with the input resistance [see fig. 6.5].
The measured voltage then reads in the frequency domain:

Umeas =

(
1

Rosc
+ 1

RNI
+ iCoscΩ+ iCNIΩ

)−1

Rprobe
U . (6.41)

At low frequency, the capacitive terms are negligible, and as the resistance of the oscil-
loscope is much smaller than the NI card resistance, the measured voltage reads:

Umeas ≈
Rosc
Rprobe

U ≈ U

1000
, (6.42)

so the high voltage probe behaves as expected, as a 1000 × voltage divider. At high
frequencies, capacitive effects start to play a role, and it is then interesting to define the
cut-off frequency of the probe as:

Ωcut =
1

Rosc(CNI + Cosc)
, (6.43)

where the resistance of theNI card has been neglected compared to the resistance of the
oscilloscope. With the parameters of fig. 6.5, eq. (6.43) yields fcut ≈ 1400Hz. Therefore
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above the cut-off frequency fcut, the measured voltage is not equal to U/1000, and this
limits the measurement frequency range. The capacitive effects can be compensated
for, by applying the inverse transfer function of the electrical circuit shown in fig. 6.5,
which is done in the following. However, the measurement accuracy decreases at high
frequencies, so measurements above the cut-off frequency may not be very reliable.

Voltage spatial distribution measurements

The goal is to measure the spatial distribution of the voltage on the electrode surface,
during actuation. This means that the membrane is moving while the voltage is mea-
sured. This cannot be avoided, as we are here interested in the coupling between the
membrane vibrations and the voltage distribution. Therefore, special caremust be taken
to ensure the connection of the high voltage probe to the electrode surface even when
it moves.

The best found solution was to use a very thin wire (≈ 100µm), pressed against the
electrode surface as shown in figs. 6.6 and 6.7. A small droplet of conductive grease is
deposited between the membrane and the wire, to ensure the connection during the
movement. The viscosity of the grease also helps to avoid the wire bouncing on the
membrane during actuation. To minimize the influence of the probe on membrane vi-
brations, the amount of conductive grease should be minimal.

Elastomer membrane

Electrodres

Droplet of conductive grease

Pressure

High voltage
probe

Thin wire 
pressed against 
the membrane

Trek 609E-6
high voltage amplifier

National Instrument
acquisition card

To computer

Furness control
manometer

Fig. 6.6. Measurement setup to measure the local voltage on the membrane. The top electrode
is connected on its whole outer perimeter to the high voltage source, and the bottom
electrode is Similarly connected on its whole outer perimeter to the ground. See fig. 3.6
for the details of the connections on the prototype.

The first membrane eigenfrequencies have been measured with and without applying
the wire, to estimate its influence on the membrane vibrations. The first eigenfrequen-
cies changed by only a few percent when the wire was pressed against the membrane,
showing its limited influence.

Parameters of the tested prototype

The parameters of the prototype used in this chapter are given in table 6.1.

134 Chapter 6 Resistive effects



Cavity

Connection wire

Membrane

Membrane frame

High voltage probe

Fig. 6.7. Picture of the measurement setup to measure the voltage distribution on the electrode
surface during actuation.

Tab. 6.1. List of all experimental dimensional parameters (Dim.) and non-dimensional parame-
ters (Non-dim.). These parameters are used in all experiments and numerical results
presented in the present chapter.

Dimensional Value Non-dimensional Value

Ȟ 48µm - -

Vcav 125mL vcav = Vcav/A
3 23.4

R̄E 1.75 cm r̄E 1

µ 4.5× 105 Pa - -

Papp 1500Pa papp 1.2

ρs 1042 kgm−3 - -

Jm 100 Jm 100

U0 1500V u2
0 0.052

ρelec 0.0036 kgm−2 ρratio 0.07

Ā 1.75 cm - -

A 1.9 cm a 1.085

W 2× 105 V2 - -

ϵr 2.8 - -

η 2 % η 2 %

Cf 343ms−2 c2 272

ρf 1.2Kgm−3 m 0.41

Lcav 5 cm lcav = Lcav/A 2.8

Rcav 3 cm rcav = Rcav/A 1.18

6.4 Results

For the interpretation of the results, the characteristic time for the mechanics is defined
as:

τm =
A√
µ
ρ

≈ 800µs , (6.44)
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where µ is the shear modulus of the membrane, ρ its density, and A its radius. A charac-
teristic time scale for the charge diffusion effects is also built from eq. (6.39):

τe =
ϵA2ϱe
HHe

≈ 80µs . (6.45)

6.4.1 Membrane dynamics

First, the transfer function between the membrane velocity at r = 0.1 and the applied
voltage is plotted in fig. 6.8. The model predicts correctly the dynamics of the inflated
membrane, which validates the mechanical model and the electrostatic excitation.
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Fig. 6.8. Transfer function between the membrane vibrations and the applied voltage, measured
and computed at radius r = 0.1. Computed is the velocity computed using the cou-
pled electrodynamics/mechanics model, using the electrical equations derived from
Maxwell’s equations in a moving frame [see eq. (6.36)], and Computed un-coupled is
the velocity computed by a weakly coupledmodel: the voltage on the electrodes is com-
puted assuming the membrane is at rest, and the resulting voltage is used as the excita-
tion for the membrane dynamics.

There is a slight difference between the coupled and un-coupled calculations in fig. 6.8,
the coupled calculation seems to have a slightly higher damping than the un-coupled
one. This may be due to resistivity effects, for example the third mechanical mode may
strongly couple to resistivity effects, which increases its damping. The amplitude of this
mode appears to be closer to the measurements with the coupled model.

6.4.2 Impedance

The impedance of the membrane Z = Ua/I can be obtained from the numerical results,
as the current flowing through the membrane reads:

I =

∫
Σ

ϵ

H0

∂

∂T
(Ũ1 − Ũ2)dS +

∫
Σ

ϵU0
∂

∂T

(
1

H̃

)
dS . (6.46)
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If membrane dynamics are neglected, the current reads:

Istatic =

∫
Σ

ϵ

H0

∂

∂T
(Ũ1 − Ũ2)dS . (6.47)

The impedance is measured using a shunt resistor for the current, and the voltage mon-
itor output of the used Trek 609-E amplifier. It is plotted in fig. 6.9, together with the
impedance computed by the fully coupled model [see eq. (6.46)], and the impedance
computedby themodel neglecting the influenceof themembrane vibrations [see eq. (6.47)].
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Fig. 6.9. Membrane impedance, measured on a prototype, computed with the coupled model,
and computed omitting membrane displacement effect (Computed static).

The general shape of the impedance is characteristic of a capacitor at low frequencies
(below 800Hz), and resistive effects make it deviate from the purely capacitive behavior
at high frequencies. This resistive effect is correctly captured by the static impedance
calculation using eq. (6.47).

As the frequency of the excitation passes one of the first eigenfrequencies of the mem-
brane, a large displacement of the membrane will be caused by the applied voltage
Ua. As a consequence, the membrane thickness will oscillate, and the second term
in eq. (6.46) results in peaks in the impedance. This effect is visible in the measured
impedance and correctly captured by the coupled model eq. (6.46).

Physically, if the membrane vibrations are in phase with the voltage oscillations (a maxi-
mum of the voltage corresponds to a maximum of the thickness), then a smaller amount
of charges are needed on the membrane to satisfy Gauss’s law (U1 − U2)/H = Heρ/ϵ.
Therefore the required current is smaller than if the membrane were at rest, and the
impedance is larger. Such a situation where the thickness oscillates in phase with the
voltage is a dynamical effect. Indeed the opposite effect occurs in the quasi-static case:
an increase of the voltage decreases the thickness.

The impedance reveals coupling effects between the electrodynamic loading of the
membrane and its vibrations. However, the coupling mechanism analysed above is not
related to the electrode resistivity, but to capacitance changes during actuation.
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6.4.3 Voltage on the membrane

The voltage on the electrodes is now investigated. It has been measured using a high
voltage probe, which is connected by a very thin wire to the electrode surface, as de-
scribed in section 6.3.2. The electrode voltage can thus be measured at different radius,
and is plotted in fig. 6.10, together with the results of the coupled model. The voltage
distribution is also plotted as a function of the membrane non-dimensional radius r in
fig. 6.11 for three arbitrary chosen frequencies.
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Fig. 6.10. Voltage on the membrane during actuation, measured at different radius.

Figure 6.10 exhibits several interesting phenomena. First, the voltage on the electrodes
decreases at high frequencies, down to half of the applied voltage. Also, the farther away
from the connections, the fastest the voltage decreases, as observed clearly in fig. 6.11.
This is a consequence of the resistivity, and has already been analysed [58, 38]. However,
this is to the author’s knowledge the first experimental results validating the numerical
predictions.

More interesting is the behavior of the voltage around1 kHz, at the firstmembrane eigen-
frequencies (see fig. 6.8): clear peaks and drops are visible infig. 6.10. This highlights
a coupling between the membrane vibrations and the voltage distribution, which arises
because of the electrode resistivity. Indeed, with perfectly conductive electrodes, the
voltage would be equal to Ua on the whole electrode. This coupling phenomenon can
be explained by the schematics in fig. 6.12.

This coupling phenomenon can be explained by the schematics in fig. 6.12.

• Stage 1 Consider a DE membrane at rest, charged by a static voltage at its edge.

• Stage 2 Suppose that, under external action, the membrane deforms during a me-
chanical response time τm. This deformation induces local changes in thickness.
Before the charges move on the membrane, due to Gauss’s law (U1 − U2)/H =

Heρ/ϵ, the voltage on the membrane will increase where it is thicker, and decrease
where it is thinner.

• Stage 3Charges will be supplied by the generator, and they will move on themem-
brane so that the voltage equals the applied voltage everywhere. This diffusion
occurs during the timescale τe.

In practice, the membrane is actuated by a non stationary input voltage Ua(t), which
vibrates the system at the period τm. The deformation is most significant at system’s
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Fig. 6.11. Voltage on the membrane as a function of the radius, measure and computed. (a) at
674Hz, (b) at 1348Hz, (c) at 4000Hz.

eigenmodes, thus, we now examine the case where the excitation frequency matches
one of the eigenfrequencies. The electromechanical behavior of the system is governed
by the ratio of the mechanical timescale τm and the electrical timescale τe:

• If τe ≪ τm, the electrodynamic equilibrium is satisfied at all times, the voltage is
uniform on the membrane, and equal to the applied voltage Ua(t).

• If τe ≈ τm, the charge diffusion takes approximately one period of oscillation, and
the coupling phenomenon described in Fig. 6.12 then occurs.

• If τe ≫ τm, the charges do not have the time to spread on the membrane, so the
electrostatic excitation is small, and the membrane does not move. If the mem-
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Fig. 6.12. Coupling between the electrodynamics of a resistive capacitor and its vibrations.

brane is vibrated by another excitation of period τm, the voltage will still locally
vary on the electrodes because the charges are ’fixed’ by the high resistivity.

The coupling exhibited in fig. 6.10 also highlights that for resistiveDE actuators operated
at high frequencies, as the actuation depends on the voltagewhich itself depends on the
vibrations, the voltage and the vibrations must be computed together using a coupled
model.

6.5 Conclusion

In this chapter, resistivity effects on DE actuators are investigated, with a special focus
on the high frequency behavior. It has been shown that for a certain set of parameters,
when the timescale for electrodynamics is similar to themechanical timescale, a coupling
between the voltagedistribution and the vibrations occurs. Amodel has beenpresented
to explain this phenomenon and is validated experimentally.

We believe that the model developed in this section may have two different uses.

Refined modelling of the electromechanic excitation at high frequencies

The calculation of the electromechanical excitation of DE devices is refined at high fre-
quencies. The response of DE actuators can thus be computed with increased accu-
racy.
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Adaptive filtering

The other consequence of the study presented in this chapter concerns self-sensing. We
see two possible applications:

• The first membrane eigenfrequencies can be estimated from impedancemeasure-
ments [see fig. 6.9]. This can be useful to implement adaptive filtering techniques,
such as adapting the control method proposed in section 5.4 to changes of the
dynamics of the DE membrane. The filters could be adjusted to follow the change
of the membrane eigenfrequencies.

• The voltage on the membrane could also be monitored, maybe at different loca-
tions. More complete information on the membrane state could then be obtained,
and exploited to design adaptive control methods too.
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Conclusion 7
7.1 Summary of the main results

In this thesis, we studied the dynamics and sound radiation of dielectric elastomer loud-
speakers. A specific geometry was chosen, namely a DE membrane inflated over a
closed cavity, to identify the different physics that are coupled in these devices, and
to set up the modelling methods.

In chapter 2, a model of this inflated DE loudspeaker is set up, by studying the different
physics that matter. The coupled electromechanical behavior of dielectric elastomers is
obtained from thermodynamics considerations. Strong vibroacoustic coupling is taken
into account, and a modal method for solving exterior acoustic radiation problems is
proposed. The system of coupled equations is solved by finite elements, implemented
in the open source software FreeFEM.

Chapter 3 presents the experimental procedure to design, manufacture and test DE
loudspeakers. Set-ups for measuring the static deformation, the linear dynamics and
acoustical radiation are presented, as well as the experiments required to identify the
material parameters of the membrane.

The experimental and numerical results of the first two chapters are compared to each-
other in chapter 4, in terms of static deformation, free and forced dynamics, acoustic
radiation and directivity. It is shown that electrostatics, large-deformations mechanics,
and acoustics must all be taken into account to yield an accurate prediction of the loud-
speaker behavior. The model is validated, and is capable of predicting the acoustical
radiation.

In chapter 5, the validated model is used to try to improve the loudspeaker behavior,
in terms of frequency response (spectral balance), low frequency cut-off, and directivity.
Four options are considered: choosing properly the inflation pressure to maximize the
low frequency radiation, patterning the electrode to control the modal response, filling
the cavity with porous material to damp out acoustic modes, and filtering the excitation
signal to achieve a flatter frequency response as well as a more omni-directional direc-
tivity.

Chapter 6 departs a little from themain goal of the thesis which is to model and improve
DE loudspeakers, as it focuses on resistivity effects at high frequencies. These effects
have little influence on the speaker behavior, but are interesting from an academic point
of view, and may open self-sensing possibilities. It is found that the voltage spatial dis-
tribution on the electrodes of DE membranes is coupled to the membrane vibrations,
when the timescale for electrodynamic effects is similar to the mechanical timescale. To
my knowledge, these effects had not been observed before, nor described bymodels.
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7.2 Perspectives

7.2.1 Model improvement

From the modelling point of view, several points could be improved.

The model, which predicted very accurately the sound radiation when the electrode oc-
cupied thewhole surface of themembrane, gave less accurate predictions for electrodes
covering only partially the membrane. This limited the use of the model to optimize the
electrode shape, so further investigations should be carried out to analyse and correct
these errors.

The losses inherent to the elastomer material were taken into account by a simple struc-
tural damping model. This model seemed to be sufficient to capture the behavior of
the system, but for other materials the losses could have a larger role. Increasing the
damping of the membrane would improve the acoustical response, by flattening the
frequency response. The electrode material could maybe be tuned to have a high loss
factor, in order to increase the damping of the whole sandwich.

Acoustical radiation was computed on a reduced modal basis, made of coupled vibroa-
coustic modes. This type of modal methods for exterior acoustics has not been used a
lot in the literature, so there are still no clear guidelines on how truncate the modal basis.
This deserves further work to improve the efficiency of these modal methods.

7.2.2 Optimization

The main focus of this thesis was on refining the models for dielectric elastomer loud-
speakers, in order to enable more efficient design of these devices. We started using
the developed models to improve the acoustical behavior, with more or less convincing
results depending on the chosen optimization strategy.

This part of the work would require further work, especially on the following points:

• The whole study presented in thesis concerns linear dynamics. Harmonic distor-
tion is rather high in DE loudspeakers, because of the large deformations of the
membrane, and models capable of computing the distortion would therefore be
useful to improve this point. I believe that reduced order models (see [111] for
example) would be of particular interest, for computing quickly the response and
use the model in automatic optimization routines.

• The results obtained in chapter 6 are promising in terms of self-sensing possibili-
ties. Information on the membrane dynamics at high frequencies can be retrieved
from impedance measurements. For example, the first membrane eigenfrequen-
cies can then be monitored in real time, while music is played on the loudspeaker.
This type of information could then be used in adaptive filtering methods to im-
prove the frequency response, the harmonic distortion or the directivity.
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• As soon as several electrodes can be excitedwith different signals, a great freedom
is available to improve the response by signal processing. Combined with the self-
sensing capabilities of dielectric elastomers, large improvement of the frequency
response, distortion and directivity may be possible. Adaptive control algorithms
are particularly promising as they could follow the evolution of the system, due to
relaxation of the elastomer, loss of inflation pressure, aging of the material, etc.

• In the present thesis, we focused on a single geometry, namely the inflated mem-
brane. This geometry was particularly suited to develop themodels, but other may
be more interesting from an acoustical point of view.
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Appendix

A





Constitutive equations
of dielectric elastomers

A
In this appendix, the constitutive relations of DEs are derived, following the method of
Coleman and Noll [19], applied to dielectric elastomers by Kovetz [69], and simplified
for DE membranes by Edmiston & Steigmann [26].

We consider a dielectric body partially covered by electrodes on its surface.

In the absence of any electric charge or mechanical load, the body occupies a reference
configuration, where each material particle is identified by its position X̄. Under electri-
cal and mechanical loading, the body is transformed to a deformed configuration: the
material point initially in X̄ moves to the positionX.

The deformation gradient tensor is defined by F = ∂X/∂X̄. In the deformed configu-
ration, body forces per unit mass Tv and surface forces Tb are applied to the body, as
well as electric surface charges σb. It is assumed that there is no electric body charge.

Reference configuration Deformed configuration

Fig. A.1. Description of a material sample and definition of external loads

The problem is sketched in fig. A.1. The mass density is denoted by ρs, the Cauchy
stress tensor by σ, and the electric displacement by D = ϵ0E + P , where ϵ0 is the vac-
uum permittivity, E the electric field and P the electric polarization density, all in the
deformed configuration. The Lagrangian time derivative d/dT is written (˙), and the no-
tation∇ = ∂/∂X̄ is introduced.

If the resistivity of the electrodes is low enough, the time scale for electrodynamic effects
is much shorter than that for mechanics. It is therefore assumed that Maxwell’s equations
for electrostatics hold.

The local electrostatic equations (Gauss and Faraday), linear momentum balance and
mass conservation are thus:

∇ ·D = 0 , ∇×E = 0 , ρsẌ = ∇ · σ + ρsTv , ρ̇s + ρs∇ · Ẋ = 0 . (A.1)
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The related jump conditions on the boundaries are:

n · JDK = σb , n× JEK = 0 , n · JσK + Tb = 0 , (A.2)

wherendenotes the normal to the surface and JaK = a(X+)−a(X−),X+ andX− being
points just outside and inside of the surface respectively.

In the following, we search for a constitutive relation compatible with the local balance
equations (A.1) and (A.2). Thermodynamic principles will restrict the expression of the
constitutive relation: the global energy balance and entropy imbalance need to be sat-
isfied. They read, for any arbitrary region Ω ⊂ R3 of boundary ∂Ω:

d
dt

(∫
Ω

ρsεdΩ
)

=

∫
Ω

Tv · ẊρsdΩ−
∫
∂Ω

(σ · n) · ẊdA

+

∫
Ω

ρsϑdΩ+

∫
∂Ω

−Q · ndA−
∫
∂Ω

E × (Ẋ ×D) · ndA , (A.3)

d
dt

(∫
Ω

ρsηdΩ
)

≥
∫
Ω

ρsϑθ
−1
T dΩ+

∫
∂Ω

−Q · nθ−1
T dA , (A.4)

where ε is the total energy per unit mass,Q the heat flux, ϑ the volume heat source, η the
entropy, and θT the temperature. The two first terms on the right hand side of eq. (A.3)
are the mechanical power, the two next ones the thermal power, and the last one the
electrostatic power.

Using eq. (A.1) in eqs. (A.3) and (A.4), applying the divergence theorem and using vector
identities yields the local energy balance and entropy imbalance:

ρsε̇ = ρs(Ẋ · Ẍ + ϑ) + [σ −D ⊗E + (E ·D)I] : Ḟ +E · Ḋ −∇ ·Q , (A.5)

ρsη̇ ≥ ρsϑθ
−1
T −∇ ·

(
QθT

−1
)
. (A.6)

Replacing the heat source ϑ in eq. (A.6) using eq. (A.5) yields:

− ρsε̇+ ρs(θT η̇ + Ẋ · Ẍ) + [σ −D ⊗E + (E ·D)I] : Ḟ +E · (ϵ0Ė + Ṗ )

− θT
−1Q · (∇θT ) ≥ 0 . (A.7)

This equation shows that variations of the internal energy ε are related to variations of Ẋ,
F , E, P and η.

Therefore, εmust be a function of those five variables only, or of five independent combi-
nations of them. Computing the derivatives of ε and inserting into the entropy imbalance
eq. (A.7) yields:

ρs

[(
θT − ∂ε

∂η

)
η̇ + Ẍ ·

(
Ẋ − ∂ε

∂Ẋ

)]
+

[
−ρs

(
∂ε

∂F
· F T

)T

+ σ −D ⊗E + (E ·D)I

]
: Ḟ

+

(
ϵ0E − ρs

∂ε

∂E

)
· Ė +

(
E − ρs

∂ε

∂P

)
· Ṗ − θT

−1Q · (∇θT ) ≥ 0 . (A.8)
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As Ẋ,F ,E,P and η are independent variables that can take arbitrary values, the internal
energy εmust satisfy the following equations:

∂ε

∂η
= θT ,

∂ε

∂Ẋ
= Ẋ , ρs

(
∂ε

∂F
· F T

)T

= σ −D ⊗E + (E ·D)I ,

ρs
∂ε

∂E
= ϵ0E , ρs

∂ε

∂P
= E , (A.9)

and the heat fluxQ is restricted by the condition θT−1Q · (∇θT ) ≤ 0. For a given expres-
sion of ε in terms of Ẋ, F , E, P and η, eq. (A.9) specify the constitutive relations of the
coupled system. These equations can be simplified, by defining the free energy ψ:

ψ = ε− 1

2
Ẋ · Ẋ − ηθT − ϵ0

2ρs
E ·E − 1

ρs
E · P . (A.10)

Computing the derivatives of ψ in terms of the derivatives of ε, and using eq. (A.9) shows
that ψ is a function of F , E, and θT only. Finally the expression of ε in terms of ψ can be
substituted into eq. (A.7), yielding:

ρs

[
−
(
∂ψ

∂E
+
P

ρs

)
· Ė −

(
∂ψ

∂θT
+ η

)
˙θT

]
+

[
−ρs

(
∂ψ

∂F
· F T

)T

+ σ −D ⊗E +
ϵ0
2
(E ·E)I

]
: Ḟ − θT

−1Q · (∇θT ) ≥ 0 . (A.11)

And again for the energy imbalance eq. (A.11) to hold for any arbitrary evolution, the
following equations need to be satisfied:

∂ψ

∂E
= −P

ρs
,

∂ψ

∂θT
= −η , σ = ρs

(
∂ψ

∂F
.F T

)T

+D ⊗E − ϵ0
2
(E ·E)I . (A.12)

We now assume that the transformation is isotherm, which removes the dependence on
θT of the free energy. The principle of material frame invariance [69] implies that the free
energy should depend only on the Cauchy-Green tensorC = F T ·F and on the electric
field in reference configuration Ē = F T ·E , that is to say ψ(F ,E) = ϕ(C, Ē). Equating
variations of ψ and ϕ yields :

σ = 2ρsF · ∂ϕ
∂C

· F T + ϵ0E ⊗E − ϵ0
2
(E ·E)I , P = −ρsF · ∂ϕ

∂Ē
. (A.13)

Equations (A.13) are the two constitutive equations giving the material behavior, which
is fully described by the specification of the free energy function ϕ. The first resembles
the classical mechanical equation relating the Cauchy stress tensor to the free energy,
but with added terms that depend on electrostatics.

Following the method of Edminston and Steigmann [26], a realistic free energy function
is now searched for. In this step, we aim at reproducing behaviors that have been ob-
served experimentally.

Typical DEs have been shown to be linear for the electrostatics (the material polarization
P is proportional to the electric field E, meaning that the permittivity ϵ does not de-
pend on the deformation). This class of materials is called ideal DEs by Suo [108]. Also,
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when no electric field is applied, the material should behave as a standard hyperelastic
material. Therefore, a free energy function that satisfies the two following conditions is
searched for:

P = ϵ0χeE , (A.14a)

σ = ρs

(
2F · ∂ϕ0

∂C
· F T

)T

when Ē = 0 , (A.14b)

where ϕ0 is a purely mechanical free energy, and χe the electrical susceptibility. We
suggest the following form of the free energy, which fulfills the two conditions:

ϕ(C, Ē,Π) = ϕ0(C)− ϵ0χeJ

2ρs
Ē ·C−1 · Ē . (A.15)

For this specific form of the free energy, eq. (A.13) implies that the total stress is the sum
of a purely mechanical stress σ0 and a Maxwell stress:

σ = σ0 + σMaxwell , (A.16a)

with σ0 = 2ρsF · ∂ϕ0
∂C

· F T , and σMaxwell = ϵ

(
E ⊗E − 1

2
E ·EI

)
, (A.16b)

where ϵ = ϵ0(1+χe). Equation (A.16) is a well known equation that is used by most peo-
ple working with DEs. They have here been thoroughly derived starting from general
equilibrium equations, making clear the assumptions that have been made to obtain
these equations. The distinction between the mechanical and the Maxwell stress ap-
pears to have no importance, as all equilibrium equations depend on the total stress
σ.
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Linearized weak forms B
B.1 Static deformation

B.1.1 Solving step 1

In the first step (step 1, see Figure 2.1 the definition of the different calculation steps),
the membrane is inflated with the pressure papp, and the resulting non-linear static de-
formation is computed.

Theweak formof the equationsgoverning the static evolutionof themembrane is eq. (2.56):

∫
Σ

Y ′ r̄h̄s1y
′

λ21
dl +

∫
Σ

X ′ r̄h̄s1x
′

λ21
dl +

∫
Σ

1

λ1
s2h̄Xdl −

∫
Σ

1

λ1
(papp) (−y′X + x′Y)xdl = 0 ,

∀X ,Y, |X (r̄ = 1) = Y(r̄ = 1) = 0 , (B.1)

where the nominal non-dimensional stresses are defined by (2.55):

s1 =
Jm(1 + iη)
Jm − I1 + 3

(
λ1 − λ1

−3λ2
−2
)
− u20

Γ

h̄2
λ1λ

2
2 (B.2a)

s2 =
Jm(1 + iη)
Jm − I1 + 3

(
λ2 − λ1

−2λ2
−3
)
− u20

Γ

h̄2
λ21λ2 (B.2b)

These equations need to be linearized, to provide the gradient for Newton-Raphson’s
method.

An initial state is defined, and written with zero subscripts (x0, y0). We stress that the
initial state (x0, y0) is not the static configuration defined in fig. 2.1. Small perturbations
this initial state are introduced, and written with tildes:

x = x0 + x̃ , y = y0 + ỹ , s1 = s10 + s̃1 , s2 = s20 + s̃2 ,

I1 = I10 + Ĩ1 , λ1 = λ10 + λ̃1 , λ2 = λ20 + λ̃2 . (B.3)

All quantities that appear in eq. (B.2) need to be linearized. Writing only the first order
terms, the strains read:

λ1 =

√(
∂x0
∂r̄

)2

+

(
∂y0
∂ȳ

)2

+
1

λ10
(x′0x̃

′ + y′0ỹ
′) ,

λ2 =
x0
r̄

+
x̃

r̄
,
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and the first invariant of the deformation tensor reads:

I1 = λ210 + λ220 + λ−2
10 λ

−2
20

+ 2λ10λ̃1 + 2λ20λ̃2 − 2λ−3
10 λ

−2
20 λ̃1 − 2λ−2

10 λ
−3
20 λ̃2 .

The linearized stresses are obtained:

s1 =
Jm(1 + iη)
Jm − I10 + 3

(
λ10 − λ10

−3λ20
−2
)
− u20

Γ

h̄2
λ10λ

2
20

+
Jm(1 + iη)

(Jm − I10 + 3)2
Ĩ1
(
λ10 − λ−3

10 λ
−2
20

)
+

Jm(1 + iη)
Jm − I10 + 3

(
λ̃1 + 3λ−4

10 λ
−2
20 λ̃1 + 2λ−3

10 λ
−3
20 λ̃2

)
− u20

Γ

h̄2

(
λ220λ̃1 + 2λ10λ20λ̃2

)
s2 =

Jm(1 + iη)
Jm − I10 + 3

(
λ20 − λ10

−2λ20
−3
)
− u20

Γ

h̄2
λ210λ20

+
Jm(1 + iη)

(Jm − I10 + 3)2
Ĩ1
(
λ20 − λ−2

10 λ
−3
20

)
+

Jm(1 + iη)
Jm − I10 + 3

(
λ̃2 + 3λ−2

10 λ
−4
20 λ̃2 + 2λ−3

10 λ
−3
20 λ̃1

)
− u20

Γ

h̄2

(
λ210λ̃2 + 2λ10λ20λ̃1

)

Inserting the linearized quantities in the weak form eq. (B.1) defines the residual for
Newton-Raphson’s method:

ℜ([x0 + x̃, y0 + ỹ], [X ,Y]) =

(Vs)

∫
Σ

Y ′ r̄h̄s10y
′
0

λ10
dr̄ +

∫
Σ

X ′ r̄h̄s10x
′
0

λ10
dr̄ +

∫
Σ

s20h̄Xdr̄ −
∫
Σ

p0 (−y′0X + x′0Y)x0dr̄

(Ks) +

∫
Σ

Y ′ rh̄s̃1
λ10

y′0dr̄ −
∫
Σ

Y ′ rh̄s10
λ210

y′0λ̃1dr̄ +
∫
Σ

Y ′ rh̄s10
λ10

ỹ′dr̄

(Ks) +

∫
Σ

X ′ rh̄s̃1
λ10

x′0dr̄ −
∫
Σ

X ′ rh̄s10
λ210

x′0λ̃1dr̄ +
∫
Σ

X ′ rh̄s10
λ10

x̃′dr̄

(Ks) +

∫
Σ

s̃2h̄Xdr̄

(Ks) −
∫
Σ

papp(x̃x
′
0 + x0x̃

′)Ydr̄ +
∫
Σ

papp(x̃y
′
0 + x0ỹ

′)Xdr̄ . (B.4)

Equation (B.4) defines a linear form, and a bilinear form. These forms are discretized in
the finite element software FreeFEM++, to build the vector Vs and thematrixKs. Amesh
of the membrane in the reference configuration is used, with 100 P2 Lagrange elements
along the radius.
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The matrix equation solved at each step of Newton-Raphson’s algorithm is:

Ks

x̃
ỹ

+ Vs = 0 (B.5)

At each stepof theNewtonRaphson algorithm, the initial guess of the solution is updated
by: x0

y0

 =

x0
y0

+

x̃
ỹ

 , (B.6)

where [x̃, ỹ] is the solution of eq. (B.5). This loop is stopped when the L2 norm of [x̃, ỹ] is
smaller than a chosen value, typically 1× 10−8.

B.1.2 Solving step 2

In step 2, the cavity is closed, so the amount of air that is contains is fixed. The pressure
will drop as the voltage is increased, because the volume of the membrane increases.

Theweak formof the equationsgoverning the static evolutionof themembrane is eq. (2.56):∫
Σ

Y ′ r̄h̄s1y
′

λ21
dl +

∫
Σ

X ′ r̄h̄s1x
′

λ21
dl +

∫
Σ

1

λ1
s2h̄Xdl −

∫
Σ

1

λ1
pi (−y′X + x′Y)xdl

∀X ,Y |X (r̄ = 1) = Y(r̄ = 1) = 0 , (B.7)

where pi is the pressure inside the cavity.

Similarly to step 1, small perturbations are introduced around the initial guess of the
solution (the result of step 1 is used as initial guess):

x = x0 + x̃ , ỹ = y0 + ỹ , pi = p0 + pu . (B.8)

The perturbation of the pressure is written pu instead of p̃ because it obeys an adiabatic
evolution, as pu in eq. (2.52):

Pupu + Pu
mc2

v0
2π

∫
Σ

1

λ10
(−y′0x̃+ x′0ỹ)x0dl = 0 , ∀Pu . (B.9)

Equation (B.9) is the linearized form of the adiabatic evolution PV γ = cst, but is suffi-
cient because the pressure variations inside the cavity will remain small compared to the
atmospheric pressure.

The linearized weak form governing the evolution of the system in step 2 is:
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ℜ([x0 + x̃, y0 + ỹ, p0 + pu], [X ,Y,Pu]) =

(Vs)

∫
Σ

Y ′ r̄h̄s10y
′

λ10
dr̄ +

∫
Σ

X ′ r̄h̄s10x
′

λ10
dr̄ +

∫
Σ

s20h̄Xd−̄
∫
Σ

p0 (−y′0X + x′0Y)x0dr̄

(Ks) +

∫
Σ

Y ′ rh̄s̃1
λ10

y′0dr̄ −
∫
Σ

Y ′ rh̄s10
λ210

y′0λ̃1dr̄ +
∫
Σ

Y ′ rh̄s10
λ10

ỹ′dr̄

(Ks) +

∫
Σ

X ′ rh̄s̃1
λ10

x′0dr̄ −
∫
Σ

X ′ rh̄s10
λ210

x′0λ̃1dr̄ +
∫
Σ

X ′ rh̄s10
λ10

x̃′dr̄

(Ks) +

∫
Σ

s̃2h̄Xdr̄

(Ks) −
∫
Σ

p0(x̃x
′
0 + x0x̃

′)Ydr̄ +
∫
Σ

p0(x̃y
′
0 + x0ỹ

′)Xdr̄

(Ks
u) + pu

∫
Σ

x0(−x′0Y + y′0X )dr̄

(Ku
s ) + Pu

∫
Σ

x0(−x′0ỹ + y′0x̃)dr̄

(Ku) − puPu
v0

2πmc2
, (B.10)

which is then discretized in FreeFEM on the same mesh as for step 1, to obtain the fol-
lowing matrix system: Ku Ks

u

Ku
s Ks

pu
x̃

+

 0

Vs

 = 0 , (B.11)

where the different matrices are defined in eq. (B.10), and x̃ = [x̃, ỹ]. The same Newton-
Raphson algorithm as for step 1 is used, and the loop is stopped when the norm of the
increment [x̃, ỹ, pu] is sufficiently small.

At the end of this step, the static configuration is known, and in the following the sub-
script zero refers to the static configuration.

B.2 Dynamics

The third calculation step (step 3) consists of computing the linear dynamics of the sys-
tem around the static configuration. This time the couplings with the acoustics must be
taken into account. To this end, the membrane is meshed this time in the static configu-
ration and not in the reference configuration as in step 1 and step 2.

The linear weak form of the equations governing the coupled problem is obtained by
summing the weak forms of the different physics eqs. (2.56) to (2.59). The weak forms
for acoustics are already linearized, weak form for themembrane is linearized in a similar
manner as for step 1 and step 2. The linearized coupled weak form finally reads:
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(Ks) +

∫
Σ

Y ′ r̄h̄s̃1
λ210

y′0dl −
∫
Σ

Y ′ r̄h̄s10
λ310

y′0λ̃1dl +
∫
Σ

Y ′ r̄h̄s10
λ210

ỹ′dl

(Ks) +

∫
Σ

X ′ r̄h̄s̃1
λ210

x′0dl −
∫
Σ

X ′ r̄h̄s10
λ310

x′0λ̃1dl +
∫
Σ

X ′ r̄h̄s10
λ210

x̃′dl

(Ks) +

∫
Σ

s̃2
λ10

h̄Xdl

(Ks) −
∫
Σ

p0(x̃x
′
0 + x0x̃

′)Y 1

λ10
dl +

∫
Σ

p0(x̃y
′
0 + x0ỹ

′)X 1

λ10
dl

(Ku
s ) + pu

∫
Σ

x0(−x′0Y + y′0X )
1

λ10
dl

(Ks
u) + Pu

∫
Σ

x0(−x′0ỹ + y′0x̃)
1

λ10
dl

(Ku) − puPu
v0

2πmc2

(Ka) + c2
∫
Ωi

∇qa · ∇Qards

(Ku
a ) −

∫
Ωi

puQards

(Ks
a) −mc2

∫
Σ

1

λ10
(−y′0x̃+ x′0ỹ)Qax0dl

(Kκ
a ) + κi

∫
Ωi

Qards

(Ka
κ) +Ki

∫
Ωi

qards

(Ke) + c2
∫
Ωe

(
γz
γr

∂qe
∂r

∂Qe

∂r
+
γr
γz

∂qe
∂z

∂Qe

∂z

)
r̂ds

(Ks
e ) +mc2

∫
Σ

1

λ10
(−y′0x̃+ x′0ỹ)Qex0dl = 0

(Ms) − ω2

∫
Σ

1

λ10λ20
(1 + Γρratio) (Y ỹ + X x̃)x0dl

(Ma) − ω2

∫
Ωi

qaQards

(Me) − ω2

∫
Ωe

qeQer̂ds

(Me
s ) + ω2

∫
Σ

1

λ10
qe (−y′0X + x′0Y)x0dl

(Ma
s ) − ω2

∫
Σ

1

λ10
qa (−y′0X + x′0Y)x0dl

=

(Fs) w

(∫
Σ

x0
Γ

h̄

λ20
λ10

(Y ′y′0 + X ′x′0)dl +
∫
Σ

X Γ

h̄
λ10λ20dl

)
,

∀X ,Y,Pu,Qa,Qe,Ki . (B.12)
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The coupled finite element matrices are assembled as follows:

Mtot =



Ma 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 Me 0

Ma
s 0 0 Me

s Ms


, Ktot =



Ka Kκ
a Ku

a 0 Ks
a

Ka
κ 0 0 0 0

0 0 Ku 0 Ks
u

0 0 0 Ke Ks
e

0 0 Ku
s 0 Ks


, Ftot =



0

0

0

0

Fs


,

(B.13)

where all sub-matrices are defined in eq. (B.12).
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Validation of the
axisymmetric perfectly
matched layers
implementation

C

This appendix has been published as Supplementary Material to Garnell, E., Doaré, O., &
Rouby, C., (2020). Coupled vibroacousticmodeling of a dielectric elastomer loudspeaker.
Journal of the Acoustical Society of America.

In this supplementary material, axisymmetric perfectly matched layers (PMLs) for acous-
tical radiation in free field are implemented in the open source finite element software
FreeFEM. The theory of frequency-independent PMLs is detailed, and an example code
is provided to show how they can be implemented in practice. To validate the implemen-
tation, a simple system for which a semi-analytical solution for the radiation is available
is considered: a moving surface is embedded in an infinite baffle, and radiates into the
half space. The finite element solution is compared to the Rayleigh integral, which is
exact for the considered system.

C.1 Description of the studied system

A circular moving surface Σ located in an infinite baffle is considered. We are interested
in the acoustic pressure P radiated in the half space Ω by the harmonic motion of Σ at
the frequency ω. The acceleration of the surface is written G = g eiωt.

In the following, the pressure is written P = p eiωt. The non dimensional equations gov-
erning the acoustic radiation are:

∆p+ ω2p = 0 , in Ω , (C.1a)

∇p · n = g , on Σ , (C.1b)

lim
|x|→∞

|x|
(
∂p

∂|x|
+ iω

)
p = 0 , (Sommerfeld radiation condition) , (C.1c)

where the lengths have been scaled by the radius A of the membrane, and the time by
A/Cs where Cs is the speed of sound.
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Fig. C.1. Schematics of the studied system, and definition of the geometrical parameters.

C.2 Theory

C.2.1 Weak form of the governing equation

The weak form of the system eq. (C.1) is the following:

−ω2

∫
Ω

pq +

∫
Ω

∇p ·∇q =

∫
Σ

gq , ∀q ,

and the Sommerfeld radiation condition must also be satisfied. To implement this radia-
tion condition, PMLs are added at the outer boundary of the domain.

C.2.2 PML definition

Attenuation functions Θi are defined:

Θr(r) = Θ0(r − rin)
2 , Θz(z) = Θ0(z − zin)

2 ,

where Θ0 is a parameter that should be adjusted, and rin and zin the coordinates of
the inner boundary of the PMLs (see fig. C.2). The following changes of variables are
considered:

r̂ =

r − i
∫ r

rin
Θr(r)ds for |r| > |rin|

r otherwise
, ẑ =

z − i
∫ z

zin
Θz(z)ds for |z| > |zin|

z otherwise
,

(C.2)

which imply the following changes of the partials derivatives:

∂

∂r̂
=

1

γr(r)

∂

∂r
,

∂

∂ẑ
=

1

γz(z)

∂

∂z
,
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where the functions γi are defined as:

γr(r) =

1− iΘr(r) for |r| > |rin|

1 otherwise
, γz(z) =

1− iΘz(z) for |z| > |zin|

1 otherwise
.

The change of variables eq. (C.2) are inserted in the weak form:

−ω2

∫
Ω

pq +

∫
Ω

∇̂p · ∇̂q =

∫
Σ

gq .

In axisymmetric coordinates this yields:

−ω2

∫
Ω

pqr̂dr̂dẑ +
∫
Ω

∇̂p · ∇̂qr̂dr̂dẑ =
∫
Σ

gqr̂dr̂dẑ .

Finally by substituting the expressions for r̂, ẑ and their derivatives, we get:

−ω2

∫
Ω

pqγrγz r̂drdz +
∫
Ω

(
γz
γr

∂p

∂r

∂q

∂r
+
γr
γz

∂p

∂z

∂q

∂z

)
r̂drdz =

∫
Σ

gqrdr .

There is no PML on the boundary Σ where the acceleration is prescribed, so the force
term is the same as it would be without PMLs.

C.2.3 Pressure computation using the Rayleigh integral

As the radiating surface is flat and embedded in a infinite baffle, the radiated pressure
can be computed using the Rayleigh integral:

p(xr) =

∫
Σ

g
e−iωd

2πd
dS ,

wherexr is the receiver location, and d the distance between the receiver and the source
element location xs (defined in fig. C.1):

d =
√
(xs − xr)2 + y2s + z2r .

C.3 Results

All the following results are obtained using the example code which is provided as sup-
plementary material to the article mentioned at the beginning of the appendix [33]. The
reader is encouraged to run this code using the open source software FreeFEM, and test
the influence of the different parameters.

The results shown here are obtained with a uniform prescribed acceleration g = 1 on
Σ.
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C.3.1 Frequency range of interest

For the application considered in the article, the frequency range of interest is 100Hz to
5 kHz. For amembrane radius of approximately 4 cmanda speedof soundCs = 340m/s
this corresponds to non-dimensional angular frequencies:

ω ∈ [0.04, 2] .

The efficiency of the PMLs are therefore tested for these two extreme frequencies. If
there are no reflections at either of these frequencies, it can be assumed that the PML
behave correctly over the whole frequency range of interest.

The PML attenuation parameter is set to Θ0 = 400.

C.3.2 Mesh

The mesh which is used for the following results is shown in fig. C.2. The pressure com-
puted using the FreeFEM code and the Rayleigh integral are plotted for the two frequen-
cies ω = 0.04 and ω = 2 in figs. C.3 and C.4.

Fig. C.2. Mesh used for the following numerical results. The PML thickness is Dpml = 0.7, the
height of the acoustical domain isH0 = 1, the distance between the membrane and the
PML is L0 = 1.

C.3.3 Convergence analysis

The FreeFEM code given in supplementary material to [33] can be used to compute the
convergence of the FEM solution to the analytical solution, when the size of the PML
mesh decreases. It is expected that for a fixed attenuation parameter Ψ0, if the number
of elements in the PMLmesh is increased, the numerical solution should converge to the
analytical one.
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(a) FreeFEM solution (b) Rayleigh integral solution

(c) Relative error (%)

Fig. C.3. Real part of the pressure radiated by the moving surface Σ. Comparison of FreeFEM
calculation with PMLs, and Rayleigh integral, for ω = 0.04. The maximum relative error is
5.4%.

C.4 Conclusion

In this appendix axisymmetric frequency-independent perfectly matched layers have
been derived, and tested on a simple case where an analytical solution is available. The
numerical solution implemented in FreeFEM converges to the analytical solution when
the mesh is refined, over a large frequency range ω ∈ 0.04− 2 .

C.4 Conclusion 171



(a) FreeFEM solution (b) Rayleigh integral solution

(c) Relative error (%)

Fig. C.4. Real part of the pressure radiated by the moving surface Σ. Comparison of FreeFEM
calculation with PMLs, and Rayleigh integral, for ω = 2. The maximum relative error is
1.3%.
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Fig. C.5. Convergence of the numerical solution to the analytical solution in L2

sense, when the mesh is refined in the PML. The relative error is defined as√∫
Ω
|PFEM − PRayleigh|2/

∫
Ω
|PRayleigh|2. The refinement parameter equals 1 when

the mesh is the same as in fig. C.2, and defines howmany elements there are on the PML
borders compared to the mesh in fig. C.2. For example if the PML refinement equals
2, there are twice as many elements on the PML borders than in fig. C.2. In the PML
domain there would then be approximately 4 times more elements.

172 Appendix C Validation of the axisymmetric perfectlymatched layers implementation



Validation of modal
methods for exterior
vibroacoustic problems

D

In this appendix a simple exterior coupled vibroacoustic problem is studied usingmodal
methods. The goal is to present the modal method used throughout this thesis to com-
pute the acoustic radiation of the inflated DE membrane on a test case which contains
only the necessary ingredients to understand the key problems and limitations.

This appendix is organized as follows. First the system is described and the governing
equations are derived. The numerical method to solve the equations using modal meth-
ods is presented, and finally the performance of themodalmethod is evaluated, in terms
of modal summation convergence.

D.1 Description of the studied system

The studied system consists in a flat circular tensioned membrane embedded in an infi-
nite baffle. The membrane vibrations are strongly coupled to the surrounding air. The
system is similar to the one studied in appendix C, but this time the piston is replaced by
a membrane. The membrane is excited by an exterior pressure g, applied on the whole
membrane surface.

Membrane displacement 

Fig. D.1. Schematics of the studied system
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D.2 Governing equations

In this whole appendix section, all equations are written in non-dimensional form.

The governing equations for the membrane dynamics are:

∂z

∂t2
− (1 + iη) ∂z

∂r2
+ p = g on Σ , (D.1)

∂z

∂r
(r = 0) = 0 , (D.2)

z(r = 1) = 0 (D.3)

where η is a constant structural loss factor. The governing equations for acoustics are:

∂p

∂t2
−m∆p = 0 in Ω , (D.4a)

∇p · n = −c2ω2z on Σ , (D.4b)

lim
|x|→∞

|x|
(
∂p

∂|x|
+ iω

)
p = 0 , (Sommerfeld radiation condition) , (D.4c)

∇p · n = 0 on the other boundaries. (D.4d)

wherem = ρF

ρs
and c2 =

c2F
c2s
. g(r) is an external pressure applied to the membrane.

Theweak formsof thegoverningequations areobtainedbymultiplyingeqs. (D.1) and (D.4a)
by the test functions Z and P and integrating by parts:

−ω2

∫
Σ

zZrdr +
∫
Σ

z′Z ′rdr +
∫
Σ

pZrdr =
∫
Σ

gZrdr ,

(D.5a)

−ω2

∫
Ω

pPγrγz r̂drdz +m

∫
Ω

(
γz
γr

∂p

∂r

∂P
∂r

+
γr
γz

∂p

∂z

∂P
∂z

)
r̂drdz +mc2ω2

∫
Σ

zPrdr = 0 .

(D.5b)

where the PML complex change of coordinates introduced in appendix C has been ap-
plied to account for the Sommerfeld radiation condition at the outer limit of the compu-
tational domain.

A different set of equations is obtained if the displacement potential q = p
iω is used as

the state variable for the fluid instead of the pressure:

−ω2

∫
Σ

zZrdr +
∫
Σ

z′Z ′rdr + ω2

∫
Σ

qZrdr =
∫
Σ

gZrdr ,

(D.6a)

−ω2

∫
Ω

qPγrγz r̂drdz +m

∫
Ω

(
γz
γr

∂q

∂r

∂P
∂r

+
γr
γz

∂q

∂z

∂P
∂z

)
r̂drdz +mc2

∫
Σ

zPrdr = 0 .

(D.6b)
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D.3 Numerical solving

D.3.1 Finite element discretization

Equations (D.5) and (D.6) are discretized using finite elements, in the software FreeFEM.
Twodifferentmatrix equations are obtained, depending on the state variable that is used
for the fluid. If the pressure is used, the following system is obtained, and referred to
hereafter as the p-formulation:−ω2

MF −mc2R

0 Ms

+

mKF 0

R Ks

p
z

 =

 0

Fs

 , (D.7)

where MF and Kf are the mass and stiffness matrices of the fluid, Ms and Ks those of
the structure, R is the coupling matrix, and Fs the force vector on the structure.

If the displacement potential is used, the following system is obtained and referred to
as the q-formulation:−ω2

MF 0

−R Ms

+

mKF mc2R

0 Ks

q
z

 =

 0

Fs

 . (D.8)

The systemseqs. (D.7) and (D.8) differ only by the extra-diagonal terms. The sub-matrices
are the same, but couplingmass and stiffness appear either on the first or on the second
lines of the matrices. We will see that this has a major importance for the convergence
of the modal summation.

For both the p- and the q-formulation, the full system can be re-written as:

(−ω2Mtot +Ktot)Xtot = Ftot , (D.9)

where Mtot and Ktot are frequency-independent matrices, because of the choice of
frequency-independent PMLs that has been made [see appendix C]. Of course, the ma-
tricesMtot andKtot depend on the formulation that is chosen (p or q), but as the solving
method does not depend on the formulation, this generic writing is kept in the follow-
ing.

D.3.2 Modal analysis

As the mass and stiffness matrices are not symmetric, left and right modes need to be
computed to diagonalize the system [75], we call themΨR

n andΨL
n :

ΨL
n(−ω2

nMtot +Ktot) = 0 , (D.10)

(−ω2
nMtot +Ktot)Ψ

R
n = 0 . (D.11)
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The total displacement vector is expanded on the right modeshapes:

Xtot = ΨRd (D.12)

where d is a vector of modal amplitudes, andΨR the matrix containing the right mode-
shapes.

If all eigenvalues are of order one, the bi-orthogonality relations between the left and
right modeshapes hold:

ΨLMtotΨ
R = diag(µn) , ΨLKtotΨ

R = diag(κn) . (D.13)

Themodalmass and stiffnessmatrices areplotted in fig.D.2 to check thebi-orthogonality
relations. Figure D.2 confirms that the modal mass and stiffness are diagonal.

(a) (b)

Fig. D.2. (a) Modal mass matrix. (b) Modal stiffness matrix. A quantitative indicator Iqual of how
close the matrices are to diagonal matrices can be defined, by computing the ratio be-
tween the smallest diagonal element over the largest non-diagonal element. It yields
Iqual = 9× 106 for the modal mass, and Iqual = 6× 104 for the modal stiffness. These
values can be considered very large, close to the numeric precision of the data exported
from FreeFEM.

Left multiplying eq. (D.9) by the left eigenvectorsΨL, inserting the modal expansion of
the displacement vector eq. (D.12), and using the orthogonality relations yields:

(−ω2µn + κn)dn = Fn , (D.14)

where Fn = Ψn
LFtot, and dn is the modal amplitude which thus reads:

dn(ω) =
Fn

µn(ω2
n − ω2)

, (D.15)

where ω2
n = κn/µn.

The modal summation for the total displacement is finally obtained:

Xtot =
∑
n

dn(ω)Ψ
R
n . (D.16)
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The modal summation for the pressure and for the membrane displacement now de-
pend on the chosen formulation (pressure or displacement potential).

Pressure fomulation In the p-formulation, the total displacement contains the pressure
and the membrane displacement. Thus, the modal expansion yields:

Xtot =

p
z

 =
∑
n

dn(ω)Ψ
R
n =

∑
n

dn(ω)

ΨR
n,p

ΨR
n,z

 , (D.17)

whereΦR
n,z contains the structural degrees of freedomofmode n, andΦR

n,p the acoustical
degrees of freedom. The modal expansions for the membrane displacement and the
radiated pressure are:

z =
∑
n

dn(ω)Ψ
R
n,z , p =

∑
n

dn(ω)Ψ
R
n,p . (D.18)

Here, one may notice that the pressure and the membrane displacement have the same
frequency dependence. This is surprising as the pressure radiated from a vibrating sur-
face is proportional to the surface acceleration, and not proportional to its displacement.
This will cause a poor convergence of the modal summation for the pressure, as seen in
next section.

Displacement potential fomulation In the q-formulation, the total displacement contains
the displacement potential and the membrane displacement. Thus, the modal expan-
sion yields:

Xtot =

q
z

 =

 p
ω2

z

 =
∑
n

dn(ω)Ψ
R
n =

∑
n

dn(ω)

ΨR
n,p

ΨR
n,z

 , (D.19)

whereΦR
n,z contains the structural degrees of freedomofmode n, andΦR

n,p the acoustical
degrees of freedom. The modal expansions for the membrane displacement and the
radiated pressure are:

z =
∑
n

dn(ω)Ψ
R
n,z , p =

∑
n

ω2dn(ω)Ψ
R
n,p . (D.20)

This time, the pressure has the same frequency dependence as the membrane acceler-
ation, which will improve the modal summation convergence.

The convergence of the two formulations is studied in the following section D.4.

D.4 Results

All the following results are obtained with the parameters given in table D.1.

The perfectly matched layers attenuation parameter Θ0 is defined in appendix C.
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Tab. D.1. Non-dimensional parameters used for the results in appendix D.4.

Parameter m c2 Θ0 η

Value 1 100 100 0.01

The mesh used for the numerical results is shown in fig. D.3.

Fig. D.3. Mesh used for the numerical results. The black dot is the point where the pressure is com-
puted, and the grey area corresponds to the perfectly matched layers. The membrane
mesh is too thin to be visible, but is located at the bottom, from radius r = 0 to r = 1.

D.4.1 Modal parameters

First, the modal parameters are studied. The two formulations behave similarly here, so
only the results for the q-formulation are given. The first computed modes are plotted
in fig. D.4.

Figure D.4 highlights that two different types of modes are computed. The membrane
modes are dominated by the membrane dynamics, the structural part of the mode re-
semble classical modes of a flat circular tensioned membrane, and the pressure is cre-
ated by the membrane displacement. The PMLmodes on the other hand are created by
reflections in the PMLs themselves, and have no physical interpretation. They depend
on the shape and size of the PMLs, and cannot be defined for a infinite domain. They
exist just because the computational domain for the exterior was truncated.

The eigenfrequencies are plotted in the complex plane in fig. D.5a to provide further
explanation. There is a clear distinction between membrane modes and PML modes:
the membrane modes lie on the real axis, and have a very small imaginary part. This
means their damping is low, and can be confirmed by fig. D.5b. The PML modes have
a large displacement in the PML part of the computational domain, and as a numerical
damping is introduced in this region, the PML modes have a larger damping.

In order to distinguish PMLmodes frommembranemodes, a simple damping threshold
is sufficient, as seen in fig. D.5b. All modes with a modal loss factor over the threshold
are considered to be PML modes, and all modes below to be membrane modes. Other
authors studied the variations eigenfrequencies when the PMLparameters (size, attenua-
tion, distance from the surface) are varied, and tracked themodes which are not affected
by these parameters. The obtained modes are the membrane modes, and the rest the
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Fig. D.4. First nine computed coupled modes, c2 = 100,m = 1, Θ0 = 100. The black line is
the membrane displacement, and the color represents the displacement potential in the
fluid domain. All modes are scaled (both the structural and the acoustical parts) so that
the membrane maximum displacement is 0.2.
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Fig. D.5. Eigenfrequencies of the coupled vibroacoustic system. (a) Frequencies in the complex
plane. (b) Modal loss factor, and threshold to distinguish membrane modes from PML
modes.

PML modes. This has been checked, and yields the same results in terms of distinction
between PML and membrane modes.
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D.4.2 Convergence of the modal summation

The two formulations (pressure and displacement potential) are now compared in terms
of convergence of themodal summation. First, themembrane displacement is analysed,
and plotted in fig. D.6.
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Fig. D.6. Convergence of the modal summation for the membrane displacement, at an arbitrary
chosen point. (a) Pressure formulation. (b) Displacement potential formulation. The
FEM calculation is obtained by inverting the system eq. (D.9) for all frequencies of
interest.

The modal method is evaluated by comparing to the FEM method,in which the system
eq. (D.9) is inverted for all frequencies of interest. As the implementation of the per-
fectly matched layers has been validated in appendix C, the FEM solution is a reference.
Figure D.6 shows that the modal method converges to the FEM solution for a small num-
ber of modes. All presented modal truncations have converged to the FEM solution.
Interestingly, only membrane modes are necessary to describe the membrane displace-
ment, meaning that the basis formed by only membrane modes is a complete basis for
the membrane displacement. The contribution of the PML modes to the membrane dis-
placement is negligible. Both formulations yield the same results.

On the other hand, the modal summation for the radiated pressure yields different re-
sults, and is plotted in fig. D.7.

Figure D.7a shows that the convergence of the modal summation to the FEM solution
for the p-formulation is poor. Many modes (200) are needed to describe correctly the
radiated pressure. Keeping only the membrane modes in the modal basis is clearly not
sufficient to capture the radiated pressure, which demonstrates that all types of modes
should be included in the summation, as found by Marburg [77, 79, 78]. This poor con-
vergence is directly related to the frequency dependence of themodal amplitude for the
p-formulation eq. (D.18). Indeed the amplitude for each mode behaves like a constant
value at low frequencies, when the FEM solution behaves like ω2.

On theother hand the q-formulation yields amuchbetter convergence, as seen in fig.D.7b.
A satisfying approximation of the pressure is obtained even if onlymembranemodes are
used, especially at low frequencies. This may be useful if a rough estimation of the pres-
sure only is needed, as the calculation can be very fast with only a few modes. With 200
modes, the modal solution converged completely to the reference solution. Even if 200
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Fig. D.7. Convergence of the modal summation for the radiated pressure, at an arbitrary chosen
point. (a) Pressure formulation. (b) Displacement potential formulation.

may seem to be a large number compared to the number of membrane eigenfrequen-
cies in the frequency range of interest, it is still much lower than the number of finite
element degrees of freedom, in the order of 10000, and thus provide a large model
order reduction.

Figure D.7 showed the pressure and themembrane displacement at only one point. The
pressure and displacement are also plotted in the whole domain in fig. D.8 to show that
the modal solution is identical to the reference solution on the whole computationnal
domain.

(a) (b)

Fig. D.8. Pressure and membrane displacement plotted at ω = 15. (a) FEM solution. (b) Modal
summation using the q-formulation and 200 modes.
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D.5 Conclusion

Modal methods for exterior vibroacoustic problems have been investigated on a simple
test case, consisting in a flat tensioned membrane embedded in an infinite baffle. It has
been shown that the pressure radiated by the membrane can be expanded on a basis
of coupled fluid/structure modes, that are obtained by solving a linear eigenvalue prob-
lem. Frequency-independent PMLs appear to be a convenient solution to model the
Sommerfeld radiation condition, as frequency-independent mass and stiffness matrix
can be obtained.

The methods developed in this thesis are limited to frequency-independent systems.
As soon as more complex damping models are used, the system matrices are likely to
depend on frequency, and the eigenvalue problem becomes non-linear. The orthogo-
nality relations that are used to obtain the modal summation formula may not be valid
for non-linear eigenvalue problems.
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Titre : Haut-parleurs en élastomères diélectriques: modèles, expériences et optimisation
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Résumé : Les élastomères diélectriques sont des
matériaux actifs souples capables de grandes
déformations sous chargement électrique. Ils sont
constitués d’une fine membrane d’élastomère (en
général en silicone ou acrylique), recouverte de
chaque côté par des électrodes souples et étirables.
L’ensemble a une épaisseur de l’ordre de 100 mi-
crons. Lorsqu’une tension électrique est appliquée
entre les électrodes, la membrane se comprime et sa
surface peut augmenter de plus de 100%.
Ce principe de conversion électromécanique peut être
utilisé pour réaliser des haut-parleurs. Des proto-
types ont été développés par plusieurs groupes de
recherche, et des modèles ont été proposés pour
évaluer leurs performances.
Une caractéristique intrinsèque des haut-parleurs
en élastomères diélectriques est leur nature mul-
tiphysique. En effet, le mécanisme d’actuation est
lui-même un couplage entre électrostatique et
mécanique ; la membrane est très fine et légère, et

se couple ainsi fortement à l’acoustique car l’air est
lourd par rapport à la membrane ; et enfin la résistivité
des électrodes génère un couplage entre l’électro-
dynamique et la mécanique.
Les modèles proposés jusqu’alors ne considéraient
pas l’ensemble de ces couplages, limitant leur uti-
lisation à des estimations qualitatives. Dans cette
thèse, un modèle multiphysique de haut-parleurs en
élastomères diélectriques est mis en place, afin de
permettre l’optimisation de leurs performances acous-
tiques, en terme de réponse en fréquence, niveau
rayonné, et directivité. Les couplages forts entre
électrostatique, dynamique membranaire, acoustique,
et électrodynamique sont étudiés à l’aide d’un modèle
par éléments finis dans FreeFEM. Ce modèle est
validé par des comparaisons avec des mesures dy-
namiques et acoustiques, et ensuite utilisé pour
améliorer les performances du prototype, en tra-
vaillant sur plusieurs plans : optimisation de l’excita-
tion, filtrage, amortissement, et contrôle.

Title : Dielectric elastomer loudspeakers: models, experiments and optimization

Keywords : Dielectric elastomers, loudspeakers, vibroacoustic coupling

Abstract :
Dielectric elastomers are soft active materials capable
of large deformations when activated by a high vol-
tage. They consist of a thin elastomer membrane (ge-
nerally made of silicone or acrylic), sandwiched bet-
ween compliant electrodes. The thickness of the as-
sembly is about 100 microns. When a high voltage
is applied between the electrodes, the membrane is
squeezed between the electrodes, and increases in
area by up to 100%.
This electromechanical conversion principle can be
used to build loudspeakers. Prototypes have been de-
veloped and tested by several research groups, and
models have been proposed to estimate their perfor-
mance.
An intrinsic characteristic of dielectric elastomer loud-
speakers is their multi-physic nature. Indeed, the ac-
tuation mechanism is itself a coupling between elec-
trostatics and mechanics ; the membrane is very thin

and light, and couples therefore strongly with the sur-
rounding air which is comparatively heavy ; and finally
the electrode electrical resistivity induces a coupling
between electrodynamics and mechanics.
The models proposed so far did not consider all of
these couplings together, which limited their use to
qualitative estimations. In this thesis, a multi-physic
model of dielectric elastomer loudspeakers is set-up,
in order to optimize their acoustic performances, in
terms of frequency response, radiated level, and di-
rectivity. The strong couplings between electrostatics,
membrane dynamics, acoustics and electrodynamics
are studied with a finite element model in FreeFEM.
This model is validated by dynamical and acoustical
measurements, and then used to improve the perfor-
mances of the prototype, by working on several le-
vels : optimization of the excitation, filtering, damping
and control.
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